
HAL Id: tel-04201144
https://hal.science/tel-04201144

Submitted on 9 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Security Verification Framework for SysML Activity
Diagrams

Samir Ouchani

To cite this version:
Samir Ouchani. A Security Verification Framework for SysML Activity Diagrams. Computer Science
[cs]. Concordia University, 2013. English. �NNT : �. �tel-04201144�

https://hal.science/tel-04201144
https://hal.archives-ouvertes.fr

A Security Verification Framework for SysML Activity
Diagrams

Samir Ouchani

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy at

Concordia University

Montréal, Québec, Canada

September 2013

c© Samir Ouchani, 2013

CONCORDIA UNIVERSITY

Division of Graduate Studies

This is to certify that the thesis prepared

By: Samir Ouchani

Entitled: A Security Verification Framework for SysML Activity Diagrams

and submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

Dr. Akif A.Bulgak

Dr. Yamine Aït-Ameur

Dr. Ferhat Khendek

Dr. Abdelwahab Hamou-Lhadj

Dr. Olga Ormandjieva

Dr. Mourad Debbabi

Dr. Otmane Aït Mohamed

Approved by
Chair of the ECE Department

2012
Dean of Engineering

ABSTRACT

A Security Verification Framework for SysML Activity Diagrams

Samir Ouchani

Concordia University, 2013

UML and SysML play a central role in modern software and systems engineering.

They are considered as the de facto standard for modeling software and systems. Today’s

systems are created from a myriad of interacting parts that are combined to produce visible

behavior. The main difficulty arises from the different ways in modeling each component

and the way they interact with each other. Moreover, nowadays secure software has become

an essential part in industrial development. One challenge in academia as well as in industry

is to produce a secure product. Another challenge is to prove its correctness especially when

the software environment is imprecise and uncertain.

The aim of this thesis is to provide a practical and formal framework that enables

security risk assessment and security requirements verification on a system modeled as a

composition of UML/SysML behavioral diagrams. Our main contribution is a novel ap-

proach to automatically verify security of systems on their design models based on secu-

rity requirements, probabilistic adversarial interactions between potential attackers and the

system’s models. These structures are shaped to provide an elegant way to define the com-

bination between different kinds of diagrams. We rely on stochastic security templates to

specify security properties and a standard catalogue of attack patterns to build a library

of attacks design patterns. The result of the interaction between selected attack scenarios

and the composed diagrams with the instantiated security properties are used to quantify

security risk by applying probabilistic model-checker. To handle the verification process

iii

scalability, our approach allows the verification of large system efficiently by optimizing

and avoiding the global model construction. To demonstrate the effectiveness of our ap-

proach, we apply our methodology on academia as well as industrial benchmarks.

keywords: Probabilistic Verification, Temporal Logic, Probabilistic Automata, Security

Properties, Attack Pattern, Vulnerability Detection, Risk Assessment, UML, SysML, Ac-

tivity Diagrams.

iv

ACKNOWLEDGEMENTS

I would like to express my deeply-felt gratitude to my supervisors Professor Mourad

Debbabi, and Dr. Otmane Ait Mohamed, for having accepted me as a Ph.D student. I could

not have asked for better role models, each inspirational, supportive, and patient. I could

not be prouder of my academic roots and hope that I can in turn pass on the research values

and the dreams that these two men have given to me.

This thesis was co-funded by Concordia University and ERICSSON for MOBS II

project, and I would like to thank both organizations for their generous support. As a mem-

ber of MOBS II project, I have been surrounded by wonderful colleagues; both communities

have provided a rich and fertile environment to study and explore new ideas. At ERICS-

SON, I would like to thank Dr. Makan Pourzandi, who has been extremely supportive.

l am beholden to all my friends in the computer security laboratory and the hardware

verification group at Concordia university for their assistance. Thank you for welcoming

me as a friend and helping to develop the ideas in this thesis.

More especially, I owe a huge debt of gratitude to my parents and to all my family

members back home for their support, encouragement, and most of all patience throughout

the course of my studies.

And last, but not least, to my wife, who shares my passions, thank you for your help.

To my wonderful daughter who always brings me inspiration, meaning and purpose to my

life. I dedicate to all of you this thesis.

v

TABLE OF CONTENTS

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF ACRONYMS . xiii

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Statement . 5

1.3 Objectives . 6

1.4 Proposed Methodology . 6

1.5 Thesis Contributions . 9

1.6 Thesis Organization . 10

2 Background 12

2.1 Introduction . 12

2.2 System Models . 13

2.2.1 Transition Systems . 13

2.2.2 Probabilistic Transition Systems 14

2.2.3 SysML Behavioral Diagrams . 15

2.3 System Requirements Specification . 19

2.3.1 Temporal Logic . 20

2.3.2 Probabilistic Temporal Logic . 21

2.4 Verification Procedures . 22

2.4.1 Non-Probabilistic Verification . 22

2.4.2 Probabilistic Verification . 23

vi

2.5 Verification Techniques . 26

2.5.1 Abstraction . 26

2.5.2 Compositional Verification . 27

2.6 Probabilistic Verification Tools . 28

2.7 Conclusion . 29

3 Verification of SysML Activity Diagrams 30

3.1 Introduction . 30

3.2 SysML Activity Diagrams . 32

3.3 SysML Activity Diagram Formalization 33

3.3.1 Syntax of SysML Activity Diagrams 33

3.3.2 Semantics of SysML Activity Diagrams 36

3.4 PRISM Formalization . 41

3.4.1 PRISM Syntax . 44

3.4.2 PRISM Semantics . 44

3.5 The Verification of SysML Activity Diagrams 47

3.6 The Soundness of the Verification Approach 51

3.7 Experimental Results . 53

3.7.1 Online Shopping System . 54

3.7.2 Real Time Streaming Protocol . 55

3.8 Related Work . 59

3.8.1 Verification of UML Interaction Diagrams 59

3.8.2 Verification of UML State Machine Diagrams 60

3.8.3 Verification of UML/SysML Activity Diagrams 61

3.9 Conclusion . 64

vii

4 Abstraction of SysML Activity Diagrams 65

4.1 Introduction . 65

4.2 Abstraction Approach . 67

4.2.1 The Abstraction Algorithm . 67

4.2.2 The Call Behavior Case . 71

4.2.3 The Complexity Measure . 72

4.3 The Soundness of the Abstraction Approach 73

4.4 Experimental Results . 76

4.4.1 Online Shopping System. 77

4.4.2 Real Time Streaming Protocol . 78

4.5 Related Work . 80

4.6 Conclusion . 84

5 Compositional Verification of SysML Activity Diagrams 86

5.1 Introduction . 86

5.2 The Compositional Verification Approach 87

5.3 Experimental Results . 91

5.4 Related Work . 94

5.5 Conclusion . 95

6 Security Specification of SysML Activity Diagrams 96

6.1 Introduction . 96

6.2 Software Security . 98

6.2.1 Security Properties . 98

6.2.2 Attack Scenario . 99

6.2.3 Standard Attack Patterns . 99

viii

6.3 Security Properties Specification . 104

6.3.1 The Security Requirements Specification 104

6.3.2 The Security Requirements Evaluation 108

6.4 Experimental Results . 110

6.4.1 Attack Scenario . 110

6.4.2 Properties Specification and Evaluation 111

6.5 Related Work . 114

6.6 Conclusion . 115

7 Conclusion 117

7.1 Conclusion . 117

7.2 Future Work . 119

Bibliography 120

A Chapter 3 132

B Chapter 4 134

B.1 Motivation Proof . 134

B.2 The Abstraction Approach Proof . 135

B.3 Complexity . 137

B.4 Abstraction Soundness Proof . 137

ix

LIST OF TABLES

2.1 SysML Activity diagrams Vs. Formal Models 19

2.2 Model Checkers vs. Supported Formal Models 28

2.3 Model Checkers vs. Supported Temporal Logic 29

3.1 NuAC Terms of SysML Activity Diagrams Artifacts 34

4.1 Verification Results for Property 1. 80

4.2 Comparison with the Related Work . 84

5.1 The Verification Cost for Properties Φ1, Φ11, and Φ12. 93

5.2 The Verification Cost for Properties Φ2 Φ21, and Φ22. 93

6.1 Probability Values Scale. 101

x

LIST OF FIGURES

1.1 Software Development Error Cost [5]. 2

1.2 Security Verification Framework. 7

2.1 The PBP protocol : Node0 (left) and Node1 (right). 15

3.1 A Probabilistic Verification Framework. 31

3.2 ATM SysML Activity Diagram. 31

3.3 SysML Activity Diagram Artifacts. 32

3.4 Syntax of New Activity Calculus . 35

3.5 Syntax of PRISM Probabilistic Automata. 45

3.6 Mapping Soundness. 51

3.7 The Online Shopping System SysML Activity Diagram. 54

3.8 The Verification of PCTL Properties on the Shopping Online System. . . . 56

3.9 The Client SysML Activity Diagram for RTSP Protocol. 57

3.10 The Server SysML Activity Diagram for RTSP Protocol. 58

3.11 The Verification of PCTL Properties on the RTSP Diagrams. 59

4.1 A Probabilistic Abstraction Framework. 66

4.2 Abstract ATM SysML Activity Diagrams. 66

4.3 Inference Rules for ϒ Function. 69

4.4 Abstraction Correctness. 74

4.5 The Abstract SysML Activity Diagram for Property 1. 79

4.6 The Abstraction Rates for SOS. 81

4.7 The Abstraction Rates for RTSP. 82

xi

5.1 A Compositional Verification Framework. 87

6.1 Security Risk Assessment Framework. 97

6.2 SysML Activity Diagram of the Attack Pattern Template. 101

6.3 SysML activity diagram for RTSP Attack Scenario. 111

xii

LIST OF ACRONYMS

BNF Backus-Naur Form

CAPEC Common Attack Pattern Enumeration and ClassiïňĄcation

CTL Computation Tree Logic

CTMC Continuous Time Markov Chains

CTS Configuration Transition System

CMRM Continuous time Markov Reward Models

CTMDP Continuous Time Markov Decision Processes

DTMC Discrete Time Markov Chains

DMRM Discrete time Markov Reward Models

ERTS Embedded Real-time System

ETPN Time Petri Net with Energy constraints

GSMP Generalized Semi Markovian Process

GTS Graph Transformation Systems

I/O Input/Output

INCOSE International Council on Systems Engineering

LTL Linear Temporal Logic

L2TS Doubly-Labeled Transition System

MDP Markov Decision Processes

MARTE Modeling and Analysis of Real-Time and Embedded sys-

tems

ND Non-Determinism

NuAC New Activity Calculus

OMG Object Management Group

xiii

PCTL Probabilistic Computation Tree Logic

PRISM PRobabilistIc Symbolic Model checker

PA Probabilistic Automata

PTA Probabilistic Timed Automata

PC Probabilistic Choice

PP Protocol Predictor

QVT Query View Transformation

RTSP Real Time Streaming Protocol

SPN Stochastic Petri Nets

SysML Systems Modeling Language

SVF Static VeriïňĄcation Framework

SPSL Symmetric probabilistic speciïňĄcation language

TOPCASED Toolkit in OPen source for Critical Applications and Sys-

tEms Development

TABU tool for the Active Behavior of UML

TPTL Timed Propositional Temporal Logic

UML Unified Modeling Language

WASC Web Application Security Consortium

xUML Executable UML

xiv

Chapter 1

Introduction

Unified and Systems Modeling Languages (UML and SysML) [60, 61] are software and

systems engineering dedicated modeling languages developed by the Object Management

Group (OMG) and the International Council on Systems Engineering (INCOSE). UML and

SysML are prominent object-oriented modeling languages that have become today’s de-

facto standards for modern software and systems engineering. They support both structural

and behavioral modeling, and they bear the composition and the interaction between dif-

ferent types of behavioral diagrams. SysML reuses a subset of UML packages and extends

others with specific systems engineering features such as probability. It covers four main

perspectives of systems modeling: structure, behavior, requirements, and parametric dia-

grams [60]. Particularly, SysML activity diagrams are behavioral diagrams used to model

system behaviors at various levels of abstraction [35]. In addition, they support systems’

composition by the call behavior and send/receive artifacts.

1

1.1 Motivation

A major challenge in software and systems development process is to advance error de-

tection at early stages of their life-cycles. It has been shown that the cost of repairing a

software flaw during maintenance is approximately 500 times higher than fixing it at early

design phases [5]. Figure 1.1 depicts bugs introduction, detection, and repair costs during

software life cycle. It shows that only 15% of flaws are detected in the initial design phase,

whereas the cost of fixing them at this phase is extremely beneficial as compared to fixing

them at the testing phase. Therefore, an ambitious challenge is to accelerate the verification

process of a product based on its design artifacts.

Analysis Conceptual
Design Programming Unit Testing Operation

0

Time (non-linear)

errors errors
detected

cost of
correction
per error

50%

40%

30%

20%

10%

0%

2.5

5

7.5

10

12.5

(in %)
introduced (in %)

System Testing

(in 1,000 US $)

Figure 1.1: Software Development Error Cost [5].

Yet, another more ambitious challenge is to accurately specify, express and measure

the security level of a product based on its design artifacts. Various techniques have been

proposed for the verification of software and hardware such as model checking [15], type

checking, equivalence checking [38], theorem proving [55], as well as static and dynamic

analysis. Particularly in software and systems engineering [21], the most popular technique

used to verify UML/SysML behavioral diagrams is model checking.

2

Model checking [9, 15] is an automatic formal verification technique that checks sys-

tems specifications on finite-state concurrent systems. Generally, temporal logic is used to

express system requirements and symbolic-based algorithms are implemented to check if

those requirements hold on the system model or not. If the property is violated, a coun-

terexample is provided. In addition to qualitative model checking, quantitative verification

techniques based on probabilistic model checkers [5, 27] have recently gained popularity.

Probabilistic verification offers the capability of measuring the satisfiability probability of

a given property on systems that inherently exhibit probabilistic behavior. In this thesis, we

use the PRISM probabilistic symbolic model checker [50] for our experiments.

Despite its wide use, model checking is generally a resource-intensive process that

requires a large amount of memory and processing time. This is due to the fact that the sys-

tems’ state space may grow exponentially with the number of variables combined with the

presence of concurrent behaviors, which may hinder the verification process. Consequently,

it is of a major importance to reduce the verification process complexity. To overcome this

issue, various techniques have been explored [5, 9, 15, 90] for qualitative model checking

and then leveraged to the probabilistic case. Among these techniques, several solutions

aim at optimizing the employed model checking algorithms by introducing symbolic data

structures based on binary decision diagrams [15], while others target the analysis of the

model itself. Henceforth, two classes of solutions are found in the literature: abstraction and

compositional verification. The former provides a minimized representation of the global

system under verification. Whereas, the latter avoids the construction of the considered

global system during the verification process. This thesis concentrates on both classes.

Abstraction is one of the most relevant techniques for addressing the state explosion

problem [5, 9, 15, 90]. It can be defined as a mapping from a concrete model into a more

3

abstract one that encapsulates the systems’ behavior while being of a reduced size. The in-

tuition behind this transformation is to be able to check a property against an abstract model

and then to infer safely the same results on the concrete model. Abstraction techniques can

be classified into four categories: 1) Abstraction by state merging, 2) Abstraction on vari-

ables, 3) Abstraction by restriction, and 4) Abstraction by observer automata. As well as,

the well-known compositional verification techniques [10]: partitioned transition relation,

lazy parallel composition, interface processes, and assume-guarantee. Our proposed frame-

work takes advantage of the three first categories of abstraction, and the interface processes

technique that complies with the composition of SysML activity diagrams.

Owing to the fact that it is never enough to just ensure the functional correctness

of a given system [36], ensuring the security of a system is a real challenge. Especially,

Symantec statistics [56] show an increasing by 42% of attacks for 5291 vulnerabilities in

2012 versus 4989 vulnerabilities in 2011. In addition, McAfee [53] announced in Septem-

ber 2012 that a mass fraud campaign planned against 30 US banks is supposed to occur by

spring 2013. From a security perspective, a strong system is one in which the cost of an

attack is greater than the potential gain to the attacker. Conversely, a weak system is one

where the cost of an attack is less than the potential gain. The cost of an attack should take

into account not only money, but also time to recovery and potential punishment for crim-

inal activities [59]. For this purpose different attack models have been deployed such as:

attack tree [52], attack graph [78], and network attack graph [78]. By using the existing at-

tack models, there is a gap between the system and the attack semantics. Hence, we propose

to use SysML activity diagrams to model attacks by relying on the attack standard CAPEC1

that is developed by the community knowledge resource for building secure software.

It is extremely important to provide a mechanism employing quantitative techniques
1http://capec.mitre.org, Common Attack Pattern Enumeration and Classification sponsored by the Na-

tional Cyber Security Division of the U.S. Department of Homeland Security.

4

for security evaluation of software and systems based on their design models. In this thesis,

we address the issue of security risk assessment of software/systems modeled by using

SysML activity diagrams. The goal is to gauge how well a product is meeting its security

requirements. Since we use model-checking technique, temporal logic is used to express

security properties. The downside of temporal logic resides in its expressiveness. It is

difficult to express a temporal logic formula starting from a natural language statement. To

circumvent this downside, we propose to automatically generate security properties from

SysML activity diagrams.

1.2 Problem Statement

Current research initiatives focus mainly on qualitative model checking of SysML to ensure

the correctness of systems security and functionality. Furthermore, most of the proposed

approaches are intended to verify or propose a formal model of only a single behavioral

diagram [3, 8, 13, 20, 22, 40, 41, 43, 44, 46, 81]. To verify these diagrams, the existing ap-

proaches [3, 6, 7, 13, 18, 20, 22, 40, 41, 75] ignore systems composition. More especially,

they do not show the preservation of the system requirements while they use generally

model-checking. In addition, most of these approaches inherit the model checker limita-

tions. Furthermore, security is rarely verified in UML and SysML behavioral diagrams.

Since SysML is a young modeling language that extends UML with system features, only

few related works exist. Herein, this thesis aims at investigating and answering fundamental

questions:

1. How SysML activity diagrams are composed?

2. How to specify security aspect in SysML activity diagrams?

3. How to verify and evaluate security in SysML activity diagrams?

5

4. How to avoid the model checking limitations?

1.3 Objectives

The main goal of this thesis is to check and quantify the security of systems at design

level by introducing security properties and potential attack models. Thus, we propose

a set of stochastic security templates values and a library of attack models with varied

potential gains that can exploit the main system vulnerabilities. The security properties to

be verified are instantiated easily from the proposed templates. The objectives of this thesis

are summarized as follows:

1. Providing an efficient verification framework to evaluate security of systems modeled

by SysML activity diagrams,

2. Studying the formal verification background and surveying the existing related work

and model checking tools,

3. Facilitating the specification of the system security and functional requirements,

4. Giving an adequate formal semantics for SysML activity diagram,

5. Demonstrating the efficiency of the proposed framework on real systems.

1.4 Proposed Methodology

This section describes our framework to specify and verify the security of systems mod-

eled by using SysML activity diagrams. As an improvement over the existing solutions,

our proposed framework targets systems composed of different parts. Furthermore, it au-

tomatically evaluates the security of systems at the design level by instantiating a set of

6

CAPEC
Repository

Standard Library of
Application Independent

Attack Patterns

Specification Document,
Code Source

System&Software
Requirements

SysML Activity
Diagrams

System Property
SysML Activity

Diagrams

Composition of
System/Attack

Scenarios Diagrams

Set of Application
Dependent Attack

Patterns

PCTL Temporal
Logic Properties

Abstracted
Diagrams

Abstraction
Rules

Local
Properties

Minimized
Diagrams

Minimization
Rules

PRISM
Code

Model
Checking

Results
Analysis

Modeling

Selecting
a set

of Attacks
Identifying
Attack
Surfaces

ModelingSpecifying

Modeling Composing

Instantiating

Using Composing

Input

Abstracting

Applying

Decomposing Minimizing

Applying

Encoding

Input

Input

Output

Figure 1.2: Security Verification Framework.

7

proposed security and attack templates. In addition, it overcomes the model checking lim-

itations by proposing two efficient approaches: abstraction and compositional verification.

The proposed framework depicted in Figure 1.2 is based on model checking, and it develops

five main concepts: security templates, a standard library of attack patterns, extracting the

semantics of the studied diagrams, coding the semantics in Prism input language, abstract-

ing the diagrams, and dividing the property and conquer its satisfiability. The bold font in

Figure 1.2 indicates the automatic procedures.

A given SysML activity diagrams can be obtained from a system specification docu-

ment, or extracted from a source code. First, we use SysML activity diagrams to develop a

library of CAPEC attack application-independent templates with varied potential gains that

can exploit the system vulnerabilities. By using this library, application-dependent attack

scenarios are instantiated and the interaction between the attack and the system diagrams is

defined. In order to subject this interaction to the model checker, the security requirements

are represented by SysML activity diagrams. Then, a specification algorithm is proposed

to generate their equivalent PCTL expressions. Before verification, we propose to reduce

the model size of the diagram under verification. First, we introduce a set of abstraction

rules that abstracts the diagram with respect to a system requirement. Then, we minimize

the abstracted diagram by providing a set of minimization rules. As we deal with a com-

posed diagram, we propose to verify the system locally by distributing a property over each

diagram component. For verification, we extract the formal semantics of SysML activity di-

agrams. This helps to encode easily diagrams into the input language of the PRISM model

checker. To ensure the correctness of our proposed framework, we prove the soundness of

each step in the framework.

8

1.5 Thesis Contributions

In this section, we summarize the main contributions in this thesis.

1. Security verification framework. We propose a practical and formal framework to

specify and verify the security of systems modeled by SysML activity diagrams.

2. Studying the related work. We survey the most existing initiatives and tools dedi-

cated to the formal description of UML and SysML behavioral diagrams, the system

security specification, and the formal verification.

3. Formal semantics of SysML activity diagrams. We formalize SysML activity di-

agrams by giving an adequate meaning that can be supported by the existing model

checking tools. As we study behavioral diagrams, we developed a calculus based on

the structural operational semantics.

4. Formal semantics of PRISM language. We formalize PRISM model by providing

a syntax and operational semantics that support the main operators of PRISM.

5. Verification. Our verification mechanism uses the PRISM kernel to check systems

requirements. It encodes the semantics of SysML activity diagrams in the input lan-

guage of PRISM. We prove the soundness of the verification by showing that our

encoding preserves the satisfiability of the existing properties.

6. Attack Modeling. We propose to use SysML activity diagrams to model the attack

standard CAPEC.

7. Security Specification. We express security properties by considering SysML activ-

ity diagrams as a specification language. We present an algorithm to generate PCTL

expressions from SysML activity diagrams.

9

8. Abstraction. We propose to abstract SysML activity diagrams by ignoring the ir-

relevant behaviors and minimizing their structure. We prove the soundness of the

proposed abstraction by showing the preservation of properties satisfiability before

and after abstraction.

9. Compositional Verification. We propose a compositional verification approach ded-

icated to SysML activity diagrams. It distributes a property over diagrams which

helps to verify the distributed properties locally. We prove the soundness of the prop-

erty decomposition by showing that the satisfiability of the global property can be

deduced from the results of the local properties.

10. Application. Our framework is implemented as a java plugin with the eclipse-based

TOPCASED toolkit, and it is successfully applied on real case studies.

1.6 Thesis Organization

The rest of the thesis is organized as follows:

• Chapter 2 explores the background needed for our thesis. First, we explore some

formal models dedicated to probabilistic system modeling. We present the appro-

priate temporal logics to specify system requirements. Then, the concepts of non-

probabilistic and probabilistic verification procedures are detailed. Also, we show

the main techniques needed in verification. Finally, a classification of the existing

probabilistic model checking tools is given.

• Chapter 3 is a collection of four papers: [63], [64], [70], [72], and one submitted

journal [65]. It presents the probabilistic verification framework of SysML activity

diagrams. It is implemented as a frontend with PRISM. We first describe diagrams

10

as reported by OMG/INCOSE standard. Then, we formalize them by giving the ex-

pected semantics. And, we present the semantics of PRISM models that conform

to the studied diagrams. Then, our verification framework is detailed and its sound-

ness is proved. Finally, we describe the experimental results and we compare our

framework to existing related work.

• Chapter 4 is the result of the following papers: [67], [68], and [66]. The proposed

abstraction approach is detailed, and, its soundness is proved. The impact of the

abstraction framework is shown by presenting the experimental results and comparing

it to the related work.

• Chapter 5 details the compositional verification framework and proves its soundness.

First, it shows the efficiency of the composition presenting a promising experimen-

tal results. Finally, it discusses existing related work. Chapter 5 is submitted as a

conference paper [69].

• Chapter 6 proposes our security specification framework. First, it presents and models

the standard attack patterns. Then, it details the security specification algorithm that

generates a system requirements by defining the system/attack composition model.

Finally, it presents the experimental results and surveys the existing related work.

Chapter 6 contains two conference papers: [62] and [71].

• Chapter 7 concludes our work by summarizing the main contributions in the thesis,

and discussing the possible future work that are potential research directions.

11

Chapter 2

Background

2.1 Introduction

Verifying a system using model checking is a three steps procedure: system modeling, sys-

tem specification, and verification. In system modeling, the system design is converted into

a formalism accepted by the used model checker tool. The specification step asserts how

the system can behave. Commonly, temporal logic is used to express systems’ specifica-

tions. The verification process explores exhaustively the state space of the system model to

check automatically if the specifications hold or not. When a specification is not satisfied,

a counterexample (sequence of states) is produced showing the system failures.

This chapter introduces the main concepts needed in this thesis. In Section 2.2, some

formal models dedicated to system design are described. Also, temporal logics for sys-

tem requirement specification are presented in Section 2.3. Then, the concepts of non-

probabilistic and probabilistic verification procedures are detailed in Section 2.4. Also, two

main verification techniques are described in Section 2.5. Finally, a classification of the ex-

isting probabilistic model checker tools is given in Section 2.6 and we conclude the present

chapter in Section 2.7.

12

2.2 System Models

In the literature, some probabilistic formal models are used for the evaluation of perfor-

mance and dependability of information-processing systems. Most of them are automa-

ton, Markovian, or PetriNets based models. Mainly, we cite: Markov Decision Processes

(MDP), Probabilistic Timed Automata (PTA), Discrete Time Markov Chains (DTMC),

Continuous Time Markov Chains (CTMC), Discrete time Markov Reward Models (DMRM),

Continuous time Markov Reward Models (CMRM), Continuous Time Markov Decision

Processes (CTMDP), Generalized Semi Markovian Process (GSMP), and Stochastic Petri

Nets (SPN). Next, we define a transition system and its probabilistic version. Then, we

introduce SysML behavioral diagrams as a modeling formalism.

2.2.1 Transition Systems

Transition systems [5, 15, 54] are often used as models to describe systems behaviors. Basi-

cally, they are a directed graphs where nodes represent states, and edges model transitions,

i.e., state changes. A state describes some information about a system at a certain moment

of its execution. Definition 2.1 defines formally a transition system.

Definition 2.1 (Transition System). A transition system is a tuple M=(s,S,L,Σ,R), where:

• s is an initial state, such that s ∈ S,

• S is a finite set of states,

• L : S→ 2AP is a labeling function that assigns each state to a set of atomic propositions

taken from the set of atomic propositions (AP),

• Σ is a finite set of actions,

• R⊆ S×Σ×S is a transition relation.

13

2.2.2 Probabilistic Transition Systems

Probabilistic transition systems extend the transition systems to support the probabilis-

tic decision. More specifically, Probabilistic Automata (PAs) [27] are a modeling for-

malism for systems that exhibit both probabilistic and nondeterministic features. Defini-

tion 2.2 illustrates a PA where Dist(S) denotes the set of convex distributions over S and

μ = [. . . ,si �→ pi, . . .] is a distribution in Dist(S) that assigns a probability pi to a state si.

Definition 2.2 (Probabilistic Automaton). A probabilistic automaton is a tupleM= (s,S,L,

Σ,δ), where:

• s is an initial state, such that s ∈ S,

• S is a finite set of states,

• L : S→ 2AP is a labeling function that assigns each state to a set of atomic propositions

taken from the set of atomic propositions (AP),

• Σ is a finite set of actions,

• δ : S×Σ→ Dist(S) is a probabilistic transition function assigning for each s∈ S and

α ∈ Σ a probabilistic distribution μ ∈ Dist(S).

Generally, a system is composed of interacting parts. For PAs, this concept is modeled

by the parallel composition as stipulated in Definition 2.3.

Definition 2.3 (Parallel Composition of PAs). The parallel composition of two PAs: M1 =

(s1, S1, L1, Σ1, δ1) and M2 = (s2, S2, L2, Σ2, δ2) is a PAM = ((s1,s2), S1×S2, L(s1)∪

L(s2), Σ1∪Σ2, δ), where: δ (S1×S2,Σ1∪Σ2) is the set of transitions (s1,s2)
α
−→ μ1×μ2

such that one of the following requirements is met.

1. s1
α
−→ μ1,s2

α
−→ μ2, and α ∈ Σ1∩Σ2,

14

2. s1
α
−→ μ1,μ2 = [s2 �→ 1], and α ∈ Σ1\Σ2,

3. μ1 = [s1 �→ 1], s2
α
−→ μ2, and α ∈ Σ2\Σ1.

As example, we present in Figure 2.1 the probabilistic automata of two selected nodes

(Node0 and Node1) from the Probabilistic Broadcast Protocol (PBP)1. Each node has two

atomic propositions: Sndi and Acti to describe a local state. The actions in each node are

described by mi.

act0 = 1
snd0 = 0

act0 = 1
snd0 = 1

act0 = 0
snd0 = 0

m1

m3

m1

p
1− p

act1 = 1
snd1 = 0

act1 = 1
snd1 = 1

act1 = 1
snd1 = 2

act1 = 0
snd1 = 0

m0
m2
m4

m0,2,4 :
1− p

m0,2,4 :
p

m0,2,4 m0
m2
m4

m1

Figure 2.1: The PBP protocol : Node0 (left) and Node1 (right).

2.2.3 SysML Behavioral Diagrams

Here, we explore SysML behavioral diagrams and their composition. The diagrams con-

sidered are: Interaction, State Machine and Activity behavioral diagrams. The interaction

diagram answers the question: “ When does who call whom and how?”, the state machine

diagram answers the question: “ How does an object respond to events in a specific state?”,

and the activity diagram answers the question:“ What happens in which sequence?”.

Interaction diagram. Interaction is a mechanism to describe an abstract communi-

cation between objects of a system. It provides different capabilities that makes it more

appropriate for certain situations (i.e, Sequence Diagrams, Interaction Overview Diagrams,
1http://www.prismmodelchecker.org/benchmarks

15

Communication Diagrams, Timing Diagrams and Interaction Tables). SysML uses only

the sequence diagram. The main elements of the syntax of an interaction are: lifelines and

messages. A lifeline represents a communication role and a message is a communication

between two lifelines. For interaction, UML defines branches and loops (alt, opt, break,

and loop), concurrency and order (seq, strict, and par), filters and constraints (critical, neg,

assert, consider, and ignore) operators are set in a combined fragment.

State Machine. A system in a given time, can be seen as a configuration containing

a set of values describing its behavior. The values can be changed when a system reacts to

an event. In UML, we have two kinds of state machines: behavioral state machines and

protocol state machines. The first expresses the behavior of the system, and the second

describes the protocol of a part of that system. Mainly, a state machine contains a set of

states related by transitions. A state is to model a situation where some invariant condition

holds. A transition is a directed relationship specifying the system changes between states.

The sequence of events can be controlled by the following elements: shallow history, deep

history, join, fork, junction, choice, exit point, entry point, and terminate.

Activity Diagram. Activity diagram can be used to model system’s behavior at var-

ious level of abstractions. It allows low-level modeling compared with other behavioral

diagrams [35]. An activity diagram notation can be decomposed into two basic categories:

activity nodes and activity edges. There are three types of activity nodes, which are activity

invocation, object and control nodes. Activity invocation includes receive and send signals,

action, and call-behavior. Activity control nodes are initial, flow final, activity final, deci-

sion, merge, fork, and join nodes. Activity edges are of two types: Control flow and object

flow edges. Control flow edges are used to show the execution path through the activity

diagram and connects activity nodes that are not object nodes. Object flow edges are used

to show the flow of information between activity nodes. More precisely, SysML extends

16

system features to UML activity diagram by using stereotype. The stereotype is an extensi-

bility mechanism to define or refine the meaning of a model element. Four system features

are supported in SysML:

• The «probability» stereotype is applied in two ways: (1) Extension of edges leaving

decision nodes, or (2) Object flow edges extension of output parameter sets. It denotes

the likelihood that a value will traverse an edge.

• The «rate» stereotype is applied to an activity edge to specify the expected value of

the number of objects/values that traverse the edge per time interval.

• The «nobuffer» stereotype is applied to object nodes, tokens arriving at the node

are discarded if they are refused by outgoing edges, or refused by actions for object

nodes that are input pins.

• The «overwrite» stereotype is applied to object nodes, a token arriving at a full object

node replaces the ones already there.

Other features supported in behavioral diagrams include: clocks, delay and action non-

deterministic. The Time can be modeled as a time reference that other elements may be

dependent on. A time reference can be established by a local or global clock that produces

continuous or discrete time values. Also, the simple time model in UML can be used to rep-

resent the duration of actions in an activity model. The duration can be notated as constraint

notes in an activity diagram. The nondeterministic choice can be found in “ConditionalN-

ode” which is a generalization of “StructuredActivityNode” [61]. Herein, two attributes

can be defined by the developer “isAssured” and “isDeterminate”. The former asserts that

at least one test will succeed, and the latter asserts that at most one test will succeed. Both

of them are considered false by default.

17

Composition in UML and SysML behavioral diagrams. In UML as in SysML,

a behavioral diagram can call others of the same or a different category. For interaction

diagrams, a model can have an association with only one behavioral diagram at a time in a

BehaviorExecutionSpecification element. It is a kind of ExecutionSpecification represent-

ing the execution of a behavior. In state machines, a behavioral diagram can be invoked in a

state or in a transition. During the transition firing, the associated behavioral diagram with

Effect will be executed. In a state, a behavior can be triggered in:

1. Entry, a behavioral diagram is executed whenever entering the state.

2. doActivity, a behavioral diagram is executed while the state is active.

3. Exit, a behavioral diagram is executed whenever this state is exited regardless of

which transition was taken out of the state. If defined, exit actions are always executed

to completion only after all internal activities and transition actions have executed.

For an activity diagram, only one association with another behavior at a time can be applied

in the following activity elements:

1. CallBehavior Action: it is a call action that invokes a behavior directly rather than

invoking a behavioral feature that, in turn, results in the invocation of that behavior.

2. CallOperation Action: it is an action that transmits an operation call request to the

target object, where it may cause the invocation of the associated behavior.

3. DecisionNode: It is a control node that chooses between outgoing flows. It has an as-

sociation in decisionInput to provide input to guard specifications on edges outgoing

from the decision node.

4. ObjectFlow: It is an activity edge to model the flow of values to/or from object nodes

that can have objects or data passing along them. It can have two associations with

18

a behavioral diagram in Selection object to select tokens from a source object node,

and in Transformation object to change or replace data tokens flowing along the edge.

5. ObjectNode: It’s an abstract activity node that contains only values at runtime that

conform to the type of the object node. It has an association with a behavioral diagram

in Selection to select tokens for outgoing edges.

In Table 2.1, we compare SysML activity diagrams to some formal models with respect to

the main system features: Probabilistic Choice (PC), Non-Determinism (ND), Clock, Rate,

and Buffer.

Features MDP PTA DTMC CTMC DMRM CMRM CTMDP GSMP SPN SysML
PC � � � � � � � � � �
ND � � � �

Clock � � � � � � �
Rate � � �

Buffer �

Table 2.1: SysML Activity diagrams Vs. Formal Models

2.3 System Requirements Specification

Here, we describe a logic for specifying requirements of transition-based systems. The

logic uses atomic propositions and connective operators describing properties in states. For

sequences of transitions, temporal logic is used to describe requirements. Two commonly

used temporal logics are Computation Tree Logic (CTL) and Linear Temporal Logic (LTL).

They differ in how they handle branching in the underlying tree structure. In LTL, opera-

tors are intended to describe properties of all possible computation paths, whereas in CTL

temporal operators it is possible to quantify over the paths departing from a given state.

19

2.3.1 Temporal Logic

In temporal logic, time is not mentioned explicitly. For CTL, time is modelled as an infinite

tree-like structure with many future paths. The transition system structure can be unwound

into a computational tree. Thus, the future is nondeterministic as any of these paths can

be considered as the future path. Temporal operators are used to reason over the paths and

states of the structure. The operators reason over paths, where A means “along all paths”

and E means “along at least one path”. The second temporal operators that reason over

states, where F means “some future state”, G means “all future states”, U means “until”

and X means “next state”. E is dual to ∃ as A is to ∀ in predicate logic. The syntax of CTL

formulas is defined inductively via a Backus-Naur form [5, 9, 15]:

φ ::= � | ap | φ ∧φ | ¬φ | EXφ | E[φUφ] | A[φUφ].

where ap ranges over a countable set of atomic formulas. The symbols ⊥ and � denote

false and true, respectively.

Contrarily to CTL, Time is modelled in LTL as a single infinite future path. Therefore,

LTL has no path quantifiers such as A and E of CTL. However, the temporal operators

that deal with states of the model are the same as those of CTL. It may seem that LTL is

less expressive than CTL. However, this is not true as LTL allows the nesting of boolean

connectives and modalities in a way that is not allowed in CTL. The syntax for LTL is

expressed in BNF as follows [5, 9, 15]:

φ ::= � | ap | φ ∧φ | ¬φ | Xφ | φUφ .

where ap is any atomic proposition. An LTL formula is evaluated on a single path, or on a

set of paths. A formula φ holds on a set of paths if it holds on every path in the set.

20

2.3.2 Probabilistic Temporal Logic

To verify probabilistic systems, PCTL [5, 27] is used to express its related specifications.

PCTL is a probabilistic version of CTL. The following BNF represents the PCTL syntax.

φ ::= � | ap | φ ∧φ | ¬φ | P�� p[ψ]

ψ ::= Xφ | φU≤kφ | φUφ

Where “�′′ means true, “ap” is an atomic proposition, k ∈N, p ∈ [0,1], and ��∈ {<,≤,>

,≥}. “∧” represents the conjunction operator and “¬” is the negation operator. “X”, “U≤k”,

and “U” are the next, the bounded until, and the until temporal logic operators, respectively.

Other useful operators can be derived such as:

• � ≡ ¬⊥.

• φ1∨φ2 ≡ ¬(¬φ1∧¬φ2).

• φ1→ φ2 ≡ ¬φ1∨φ2.

• φ1↔ φ2 ≡ φ1→ φ2∧φ2→ φ1.

• Future: Fφ ≡ � U φ or F≤ kφ ≡ � U≤ k φ and k ≥ 0.

• Generally: Gφ ≡ ¬(F¬φ) or G≤ kφ ≡ ¬(F≤ k¬φ) and k ≥ 0.

• P≥p[Gφ] = P≤1−p[F¬φ].

To specify a satisfaction relation of a PCTL formula in a state “s”, a class of adver-

saries has been defined to solve the nondeterminism in PAs. Hence, a PCTL formula should

be satisfied under all adversaries. The satisfaction relation (|=) of a PCTL formula is de-

fined as follows, where “s” is a state and “π” is a path (sequence of states) obtained by a

memoryless adversary [27].

21

• s |=� is always satisfied.

• s |= ap⇔ ap ∈ L(s) and L is a labeling function.

• s |= φ1∧φ2⇔ s |= φ1∧ s |= φ2.

• s |= ¬φ ⇔ s �|= φ .

• s |= P�� p[ψ]⇔ P({π |π |= ψ}) �� p.

• π |=Xφ ⇔ π(1) |= φ where π(1) is the second state of π .

• π |= φ1U≤kφ2⇔∃i≤ k : ∀ j < i, π(j) |= φ1∧π(i) |= φ2.

• π |= φ1Uφ2⇔∃ k ≥ 0 : π |= φ1U≤kφ2.

2.4 Verification Procedures

In this section, we present the verification procedures needed for both non-probabilistic and

probabilistic systems.

2.4.1 Non-Probabilistic Verification

For a transition system M, the verification procedure determines the subset of states from S

that satisfy a CTL formula φ . The algorithm labels the states that satisfy the subformulas

of φ , then labels sequences satisfying the combined subformulas. As example, Algorithm 1

returns the set of states that satisfies the CTL formula E[φ1Uφ2]. First, it looks for the states

that satisfy the formula φ2. Then, it searches backward for states satisfying the formula φ1.

22

Algorithm 1 Procedure of labeling the states satisfying E[φ1Uφ2].
Input: A transition system M, and a CTL property φ = E[φ1Uφ2].
Output: A set of states T ∈ S satisfying φ .

1: procedure CHECKEU(M,φ1 ,φ2)
2: T = {s| f2 ∈ label(s)};
3: for all s ∈ T do
4: label(s) = label(s)∪{E[φ1Uφ2]};
5: end for
6: while T �= /0 do
7: choose s ∈ T ;
8: T = T\{s};
9: for all t such that R(t,s) do

10: if E[φ1Uφ2] �∈ label(t) and f1 ∈ label(t) then
11: label(t) = label(t)∪{E[φ1Uφ2]};
12: T = T ∪{t};
13: end if
14: end for
15: end while
16: end procedure

2.4.2 Probabilistic Verification

The actual probabilistic model checkers such as PRISM are mainly based on the stochastic

version of the classical shortest path problem. This problem was first formulated by Eaton

and Zadeh [11] who called it the problem of pursuit.

In this section, we describe probability computation in a symbolic model checker. It pro-

ceeds by induction on the parse tree of the formula, as in the case of CTL model checking

[15]. To show that, we select MDP defined in Definition 2.4 as a special formalism [27] of

probabilistic automata that exhibits both probabilistic and nondeterministic behaviors.

Definition 2.4 (Markov Decision Process). A Markov decision process (MDP) is a tuple

M = (S,s,αM,δM,L) where:

• S is a finite set of states,

• s is an initial state,

23

• αM is a finite alphabet,

• δM : S×αM→ Dist (S) is a (partial) probabilistic transition function,

• L : S→ 2AP is a labeling function mapping each state to a set of atomic propositions

taken from a set AP.

To reason formally about MDPs, we need a probabilistic space over it. And, as it

is a nondeterministic behavior, the adversary notion is introduced to decide which action

should be chosen in any state of the MDP. In general, the choice is made depending on the

history execution of the MDP. The Definition 2.5 describes the adversary function.

Definition 2.5 (Adversary). An adversary of an MDP M=(S,s,αM,δM,L) is a function

σ :FPathM→ Dist(αM) that maps every finite path of the system into a distribution, where:

• σ(ρ)(a)> 0 only if a ∈ A(last(ρ)),

• FPathM is a finite set of states,

• Dist(αM) is a labeled function assigning to each state of the automaton the set of

atomic propositions that are true in that state.

Reachability analysis is the kernel of a model checker, and probabilistic reachability

refers to the minimum/maximum probability with which a given set of states of a proba-

bilistic system (T ⊆ S) can be reached from a particular state (s). To this end, reachs (T) is

the set of paths that start from s and contain a state from T , and IPathM,s defines the infinite

paths starting from a state s in M.

reachs (T) = {π ∈ IPathM,s|π (i) ∈ T and i ∈ N} =
⋃

ρ∈ I{π ∈ IPathM,s|π has prefix ρ},

where I is the (countable) set of all finite paths from s ending in T, and each element of

this union is measurable. This is equivalent to computing the probabilistic bounds of the

24

reached paths:

PminM,s (reachs (T)) = in fσ∈AdvMProb
σ
M,s(s,ψ) (2.1)

PmaxM,s (reachs (T)) = supσ∈AdvMProb
σ
M,s(s,ψ) (2.2)

In fact, finding the probability xs = PminM,s (reachs (T)), s ∈ S is the unique solution of

the following linear programming problem:

maximize
Xs

Σs∈ Sxs

subject to xs = 1 ∀ s ∈ Ss=1
min ,

xs = 0 ∀ s ∈ Ss=0
min ,

xs ≤∑δM(s,a)(s′) ·xs′ ∀ s /∈ (Ss=1
min ∪ S

s=0
min).

In the case of xs = PmaxM,s (reachs (T)), s ∈ S. It solution is similar to the previous and

it has the following linear programming problem:

minimize
Xs

Σs∈ Sxs

subject to xs = 1 ∀ s ∈ Ss=1
max,

xs = 0 ∀ s ∈ Ss=0
max,

xs ≥∑δM(s,a)(s′) ·xs′ ∀ s /∈ (Ss=1
max∪ S

s=0
max).

Bertsekas and Tsitsiklis [11], prove that this minimum is the unique solution for Bell-

man’s equation and the successive approximation methods converge to the optimal vector.

This leads to the fact that the linear programming problem can be solved as an equation sys-

tem problem. This means finding the probability xs = PminM,s (reachs (T)), s ∈ S is the unique

25

solution of Bellman’s equation:

Xs =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if s ∈ Ss=1
min

0 if s ∈ Ss=0
min

mina∈ A(s)∑δM(s,a)(s
′
) ·Xs′ Otherwise

(2.3)

The Computing reachability probabilities can be computed through three ways: value

iteration, the linear programming problem or policy iteration. The first one is the most used

methos in practice due to its approximate algorithm that is based on an iterative solution

method which corresponds to a fixed point computation. From practical experience, the

second approach is more scalable than the first one.

2.5 Verification Techniques

The main challenge in model checking is the state explosion problem. To deal with this

problem two approaches exist in literature: Abstraction and Compositional Verification.

2.5.1 Abstraction

Abstraction or compositional minimization refers generally to ignoring some behaviors of

the involved system. Two situations may lead to the use of abstraction:

1. Size of system. The size of a system can grow by the presence of many variables,

concurrency and clocks.

2. Type of system. The disposed model checkers don’t support all systems’ features

such as buffers, channels, and real variables.

26

In verification, the abstraction aims to reduce a complex problem M |= φ to a simpler one

M′ |= φ ′ [9]. Many techniques have been introduced and they can be classified in four cate-

gories [9]: abstraction by state merging, abstraction on variables, abstraction by restriction,

and observer automata. The first technique aims at merging states of systems that have sim-

ilar features. Abstraction on variables targets the data in the model and aims at representing

a set of values as one symbolic variable. The third category operates by forbidding some

behaviors of the system. The method of observer automata restricts the system behaviors to

those acceptable by an automaton that observes the system from outside.

2.5.2 Compositional Verification

The main objective of this method is to avoid the construction of the global model of the

system. Each component of the system is verified separately, then the global property can

be inferred directly. Several approaches have been proposed to compositional reasoning

which are: partitioned transition relations, lazy parallel composition, interface processes

and assume-guarantee reasoning. The first and the second compute the set of successors (or

predecessors) of a state set without constructing the transition relation of the global system.

The third one minimizes the global state transition graph by focusing on the communication

among the component processes. The fourth one is described by the formulae (1) for a

system containing two modelsM1 and M2. Their composition satisfies the property φ only

if by assumingM1 satisfies an assumption ϕ then it satisfies φ and ifM2 satisfies ϕ then the

whole system satisfies φ [15].

< ϕ > M1 < φ >

< true> M2 < ϕ > (1)
< true> M1 ‖ M2 < φ >

27

Model Checker MDP PTA DTMC CTMC DMRM CMRM CTMDP GSMP SPN
PRISM � � �
Modest � � �
MRMC � � � �
UPPAAL PRO �
LiQuor � � �
VESTA � � �
Ymer � �
SMART � � �

Table 2.2: Model Checkers vs. Supported Formal Models

2.6 Probabilistic Verification Tools

Here, we compare most existing probabilistic model checkers. Our selection was based on

two main features: the kind of models that they can support, and the temporal logic that

they use to specify a given property.

In the Table 2.2, we compare the model checkers based on their supported model. To

complete the comparison, we show in Table 2.3, the supported temporal logic for each tool.

The most used temporal logics are mainly of probabilistic and stochastic nature such as

Probabilistic Computation Tree Logic (PCTL), Continuous Stochastic Logic (CSL), Prob-

abilistic Reward Computation Tree Logic (PRCTL), and Continuous Stochastic Reward

Logic (CSRL). From Table 2.3, we found that only SMART doesn’t support a probabilistic

temporal logic. It supports only LTL and CTL.

From our perspective, PRISM is the most appropriate tool for our propose. It is

open source, and, it supports nondeterminism and probabilistic choice behaviors, also, the

properties have extensions for quantitative and costs/rewards specifications. The specifi-

cations can be expressed either in the probabilistic computation tree logic (PCTL) [5, 27]

or in a continuous stochastic logic. The models can be described using the PRISM lan-

guage as discrete-time Markov chains, continuous-time Markov chains, Markov decision

28

Model Checker CSL PCTL PCTL* PRCTL CSRL
PRISM � � �
Modest � � �
MRMC � � � �
UPPAALPRO � � �
LiQuor � � �
VESTA � �
Ymer �
SMART

Table 2.3: Model Checkers vs. Supported Temporal Logic

processes (MDPs) or probabilistic timed automata. PRISM also supports probabilistic au-

tomata (PAs), but for simplicity, PRISM refers to PAs by MDPs [27]. For the verification

efficiency, the constructed models can be stored as binary decision diagrams (BDDs) and

multi-terminal BDDs. In addition, PRISM has built-in symmetry reduction and implements

iterative numerical computations to overcome the state explosion problem [5, 27].

2.7 Conclusion

In this chapter, we introduced the main background and concepts needed in the rest of the

thesis. Also, we presented a comparison between the existing semantic models, temporal

logics, the verification techniques, and existing tools. In the next chapter, we propose a

model-checking based methodology for the verification of SysML activity diagrams.

29

Chapter 3

Verification of SysML Activity Diagrams

3.1 Introduction

In this chapter, we are interested in the formal verification of systems modeled by using

SysML activity diagrams. These diagrams can call and communicate with other diagrams,

and allow for probabilistic behavior specification. Our proposed verification framework is

depicted in Figure 3.1. It takes a composition of SysML activity diagrams and a set of PCTL

properties as input. Our framework is based on extracting the formal semantics of SysML

activity diagrams. This helps to easily express the diagrams in the input language of the

used model checker. From our comparative studies of Chapter 2, we selected PRISM as a

verification engine. Herein, we express SysML activity diagrams in PRISM input language.

Then, we use PRISM model checker to verify PCTL properties on the obtained PRISM

model. To prove the soundness of our verification approach, we compare the underlying

semantics of both the SysML activity diagrams and their generated PRISM code. We found

that the probabilistic equivalence relation between both semantics preserve the satisfaction

of all PCTL operators.

As a motivating example, we present in Figure 3.2 an ATM system to be verified

30

SysML Activity
Diagrams

Specification

Semantics
Model

PCTL
Properties

PRISM Code

PRISM

Extracting

Expressing

Modeling Mapping

InputInput

Figure 3.1: A Probabilistic Verification Framework.

using our framework. It represents the ATM SysML activity diagram that is composed

of the main diagram “Figure 3.2-(a)” and its call behavior diagram “Figure 3.2-(b)”. Our

goal is to measure the minimum probability of authorizing a transaction after inserting a

card. By using our verification approach, we found the probability value that satisfies this

requirement is 0.84.

(a) Main ATM Diagram. (b) Transaction Call Behavior.

Figure 3.2: ATM SysML Activity Diagram.

The remainder of this chapter is organized as follows. Section 3.2 and Section 3.3

describes and formalizes SysML activity diagrams, respectively. The semantics of PRISM

models is presented in Section 3.4. Our verification framework is detailed in Section 3.5 and

31

its soundness is proved in Section 3.6. Section 3.7 describes the experimental results and

Section 3.8 surveys the existing related work. Finally, Section 3.9 concludes this chapter.

3.2 SysML Activity Diagrams

SysML activity diagrams are graph-based diagrams where activity nodes are connected by

activity edges. They consist of three types of artifacts: activity nodes, activity control nodes,

and activity edges. In our work, we take into consideration the artifacts that are illustrated

in Figure 3.3.

Figure 3.3: SysML Activity Diagram Artifacts.

Activity nodes have three types: activity invocation, object and control nodes. Ac-

tivity invocation includes receive and send signals (or objects), actions, and call behaviors.

Activity control nodes can be initial, flow final, activity final, decision, merge, fork, and join

nodes. Activity edges are of two types: control flow and object flow. Control flow edges

are used to show the execution path through the activity diagram and object flow edges are

used to show the flow of data between activity nodes. Concurrency and synchronization are

modeled using forks and joins, whereas, branching is modeled using decision and merge

nodes. While a decision node specifies a choice between different possible paths based on

the evaluation of a guard condition (and/or a probability distribution), a fork node indicates

32

the beginning of multiple parallel control threads. More specifically, UML 2.0 [61] activity

forks model unrestricted parallelism. Thus, a token evolves asynchronously according to

an interleaving semantics. Moreover, a merge node specifies a point from where different

incoming control paths follow the same path, whereas a join node allows multiple parallel

control threads to synchronize and rejoin.

Initially, when a SysML activity diagram is invoked, its initial node is activated. Then,

the activation of any other node depends only on the deactivation of its predecessor node

and the guard satisfaction of its input edge. In addition, the call behavior action or the

decision node can consume its input tokens to invoke its specified behavior. In this case,

the invocation supports both synchronous and asynchronous calls. In the asynchronous

case, the execution of the invoked behavior proceeds without any further dependency on

the execution of the activity containing the invoking artifact. But in the synchronous case,

the execution of the calling artifact is blocked until it receives a reply token from the invoked

behavior. In the case of the decision node, when the invoked behavior enables more than

one guard; the nondeterminism mechanism is adopted.

3.3 SysML Activity Diagram Formalization

In this section, we formalize SysML activity diagrams by providing an adequate calculus

that helps to formalize and prove the soundness of our approach.

3.3.1 Syntax of SysML Activity Diagrams

Based on the textual specification in the UML superstructure standard [61] and the SysML

specification standard [60], we formalize SysML activity diagrams by developing a calculus

called “New Activity Calculus (NuAC)”. In Table 3.1, each SysML activity diagram artifact

33

is described and represented by its NuAC term.

Artifacts NuAC Terms Description

l : ι �N Initial node is activated when a diagram is invoked.
l : � Activity final node stops the diagram execution.
l : � Flow final node kills its related path execution.

� l : a�N Action node defines an atomic action execution.

l : a ↑A �N Call behavior node invokes a new behavior.

l : a!v�N Send node is used to send a signal/object.

l : a?v�N Receive node is used to receive a signal/object.

Decision node with a call behavior A ,
l :D(A , p,g, a convex distribution {p,1− p}
N ,N) and guarded edges {g,¬g}.

l :M(x)�N Merge node specifies the continuation
or l and x= {x1,x2} is a set of input flows.

Fork node models the concurrency that begins
l : F(N1,N2) multiple parallel control threads. UML 2.0

activity forks model unrestricted parallelism.
l : J(x)�N Join node presents the synchronization
or l where x= {x1,x2} is a set of input pins.

Table 3.1: NuAC Terms of SysML Activity Diagrams Artifacts.

The NuAC syntax presented in Figure 3.4 optimizes the syntax in [18] by eliminating

the redundant terms. Also, NuAC exploits the commutativity and the associativity prop-

erties for multi-input/output nodes that are described by Property 3.1 and Property 3.2,

respectively. These properties allow handling multiplicity by considering only two input-

s/outputs. Furthermore, NuAC covers more important behaviors such as: behavior calls,

and communication by sending and receiving messages (signals or objects).

Property 3.1 (Commutativity). In a SysML activity diagram A ; fork, join, decision, and

merge nodes are commutative.

• l : F(N1,N2) = l : F(N2,N1).

34

A ::= ε | l : ιn�N

N ::=N | l : F(N ,N) | l : D(A , p,g,N ,N) |

l | l : X
n
�N | l : � | l : �

X ::= aB | J(x1,x2) | M(x1,x2)
B ::=↑A | !v | ?v | ε

Figure 3.4: Syntax of New Activity Calculus (NuAC).

• l : J(x1,x2)�N = l : J(x2,x1)�N .

• ∀p ∈]0,1[, l : D(A , p,g,N1,N2) = l : D(A ,1− p,¬g,N2,N1).

• l :M(x1,x2)�N = l :M(x2,x1)�N .

Property 3.2 (Associativity). In a SysML activity diagram A ; fork, join, decision, and

merge nodes are associative.

• l : F(l′ : F(N1,N2),N3) = l : F(N1, l′′ : F(N2,N3)).

• l : J(x1, l′ : J(x2,x3))�N = l : J(l′′ : J(x1,x2),x3)�N .

• ∀p, p′ ∈]0,1[, l : D(A , p,N1, l′ : D(A ′, p′,N2,N3))

= l :D(F(A ,A ′), p+ p′ − p.p′, l′′ : D(p
p+p′−p.p′ ,N1,N2),N3).

• ∀p, p′ ∈]0,1[, l : D(A , p,g,N1, l′ : D(A ′, p′,g′,N2,N3)) = l : D(F(A ,A ′),

(p,g,N1),(p′(1− p),¬g∧g′,N2),((1− p′)(1− p),¬g∧¬g′,N3).

• l :M(x1, l′ :M(x2,x3))�N = l :M(l′′ :M(x1,x2),x3)�N .

In NuAC syntax, we can distinguish two main syntactic concepts: marked and un-

marked terms. A marked NuAC term corresponds to an activity diagram with tokens. But,

the unmarked NuAC term corresponds to the static structure of the diagram. A marked

term is typically used to denote a reachable state that is characterized by the set of tokens’

locations in a given term.

35

To support multiple tokens, we augment the “overbar” operator with an integer n

such that N
n denotes a term marked with n tokens with the convention that N

1
= N and

N
0
= N . Multiple tokens are needed when there are loops that encompass in their body

a fork node. Furthermore, we use a prefix label “l” for each node to uniquely reference it

in the case of a backward flow connection. Particularly, labels are useful for connecting

multiple incoming flows towards merge and join nodes. Let L be a collection of labels

ranged over by l0, l1, · · · and N be any node in the activity diagram. We write l : N

to denote an l-labeled activity node N . It is important to note that nodes with multiple

incoming edges (e.g. join and merge) are visited as many times as they have incoming

edges. Thus, as a syntactic convention we use only a label (i.e. l) to express a NuAC term

if its related node is encountered already. We denote by D(g,N ,N) and D(p,N ,N) to

express the guarded and the probabilistic decisions without any behavior invocation.

3.3.2 Semantics of SysML Activity Diagrams

To give a meaning to the execution of SysML activity diagrams, we use structural oper-

ational semantics to formally describe how the computation steps of NuAC atomic terms

take place. NuAC derivation rules are based on the informally specified locus of control

rules defined in the standard [61].

We define Σ as the set of non-empty actions labeling the transitions (i.e. the alphabet

of NuAC, to be distinguished from action nodes in activity diagrams). An element α ∈ Σ

is the label of the executing active node. Let Σ include the empty action denoted by ε and

p be probability values such that p ∈]0,1]. The general form of a transition is A
α
−→p A ′.

The probability value specifies the likelihood of a given transition to occur and it is denoted

by P(A ,α,A ′). The case of p= 1 presents a non-probabilistic transition and it is denoted

simply by A
α
−→ A ′. For simplicity, we denote by A [N] to specify N as a sub-term of

36

A and by |A | to specify a term A without tokens. For the call behavior case of a ↑N , we

denote A [a ↑ A ′] by A ↑a A ′. In the sequel, we describe the operational semantic rules

of the NuAC calculus.

INT-1 l : ι �N
ε
−→ l : ι �N

This axiom introduces the execution of A by putting a token on ι .

INT-2 l : ι �N
l
−→ l : ι �N

This axiom propagates the token in the marked term ι into its outgoing N .

ACT-1 l : am�N
n l
−→ l : am+1�N

n−1
∀n> 0, m≥ 0

ACT-2 l : am+1�N
n l
−→ l : am�N

n
∀n, m≥ 0

ACT-3 N
α
−→p N ′

l : am�N
n α
−→p l : am�N ′n ∀n,m≥ 0

The ACT-1 axiom introduces the execution of an action a and ACT-2 shows its execu-

tion propagation to the succeeding behavior N . The derivation rule ACT-3 illustrates

the evolution of the term l : am�N
n when the action α in the term N is executed

with a probability p.

BEH-0 l : a ↑A
n
�N

l
−→ l : a ↑A

n−1
�N ∀ n> 0

BEH-1 A = l′ : ι �N ′ A ′ = l′ : ι �N ′ ∀ n> 0
l : a ↑A

n
�N

l
−→ l : a ↑A ′n−1

�N

BEH-2 A [l′ : �]
l′
−→ |A | ∀n≥ 0

l : a ↑A
n
�N

l′
−→ l : a ↑ |A |n�N

BEH-3 A
α
−→p A ′ ∀n> 0

l : a ↑A
n
�N

α
−→p l : a ↑A

′n�N

BEH-4 N
α
−→p N ′ ∀n≥ 0

l : a ↑A
n
�N

α
−→p l : a ↑A

n
�N ′

37

The BEH-1 axiom introduces the execution of the behavior A called by a. The

derivation rule BEH-2 finishes the execution of a call behavior and moves the token to

the succeeding term N . The derivation rules BEH-3 and BEH-4 present the effect on

a ↑A
n
�N when A or N executes an action α with a probability p, respectively.

FRK-1 l : F(N ,N)
n l
−→ l : F(N ,N)

n−1
∀n> 0

FRK-2 N
α
−→p N ′ ∀n≥ 0

l : F(N ,N)
n α
−→p l : F(N ′,N)

n

The FRK-1 axiom shows the multiplicity of the arriving tokens according to the out-

going sub-terms. The FRK-2 derivation rule illustrates the changes on a fork term

when its outgoing execute an action α with a probability p.

DEC-1 l :D(g,N ,N)
n l,g
−→ l : D(g,N ,N)

n−1
∀n> 0

DEC-2 l :D(p,g,N ,N)
n l,g
−→p l :D(p,g,N ,N)

n−1
∀ n> 0

DEC-3
A = l′ : ι �N ′ A ′ = l′ : ι �N ′ ∀ n> 0
l :D(A , p,g,N ,N)

n l
−→ l : D(A ′, p,g,N ,N)

n−1

DEC-4 A [l′ : �]
l′
−→ |A | ∀ n> 0

l :D(A , p,g,N ,N)
n l′,g
−→p l : D(|A |, p,g,N ,N)

n

DEC-5 N
α
−→p N ′ ∀n> 0

l :D(A , p,g,N ,N ′′)
n α
−→p l : D(A , p,g,N ′,N ′′)

n

The axiom DEC-1 describes a guarded decision where a token flows through the edge

satisfying its guard g. Contrary, DEC-2 describes a probabilistic decision where a

token flows with a probability p through the edge satisfying its related guard g. DEC-

3 axiom shows a transition of probability one to initiate an invoked behavior. DEC-4

derivation rule shows the termination of a behavior with a transition of probability

one and shows how a token can flow from a behavior call execution to a guarded path

38

(or unguarded) with a probability value (or without probability value). DEC-6 shows

the evolution of a decision term when one of its behaviors is changed.

MRG-1 l : N � l′ :M(x,y)
n l
−→ l : N � l′ :M(x,y)

n
∀ n≥ 0

MRG-2 l :M(x,y)�N
l
−→ l :M(x,y)�N

MRG-3 A [l :M(x,y)�N , lx]
o
−→A [l :M(x,y)�N , lx]

MRG-4 N
α
−→p N ′

l :M(x,y)�N
α
−→p l :M(x,y)�N ′

MRG-1 is a transition with a probability of value 1 to put a token coming from the

sub-term N on a merge labeled by l. MRG-2 is a transition with a probability of

value 1 to present a token flowing from a merge node labeled by l to the sub-term N .

MRG-2 fuses labels referring to the same merge node. The derivation rule MRG-3

presents the subsequence of l :M(x,y)�N when N executes an action α with a

probability of value p.

JON-1 l : N � l′ : J(x,y)
n l
−→ l : N � l′ : J(x,y)

n
∀ n≥ 0

JON2 l : J(x,y)�N
l
−→ l : J(x,y)�N

JON-3 A [l : J(x,y)�N , lx]
l
−→A [l : J(x,y)�N , lx]

JON-4 N
α
−→p N ′

l : J(x,y)�N
α
−→p l : J(x,y)�N ′

JON-1 and JON-2 are axioms representing a transition with a probability of value 1

to activate the pin x in a join labeled by l and to move a token in join to the sub-term

N , respectively. JON-3 fuses labels referring to the same join. The derivation rule

JON-4 presents the subsequence of l : J(x,y)�N when N executes an action α

with a probability p.

39

SND l : a!vn�N
l
−→ l : a!vn−1

�N ∀n> 0

SND describes the evolution of the token after sending an object v.

REC l′ : a!vm�N ′ l′
−→ l′ : a!vm−1

�N ′ ∀n, m≥ 1

l : a?vn�N
l
−→ l : a?vn−1

�N

REC describes the reception of an object v just after sending it which is a synchro-

nization communication.

COM l : a!vn�N
l
−→ l : a!vn−1

�N l′ : a?vm�N2
l′
−→ l′ : a?vm−1

�N2

A [l : a!vn�N , l′ : a?vm−1
�N2]−→A [l : a!vn�N1, l′ : a?v

m−1
�N2]

COM describes sending and receiving an object v.

FFin A [l :
⊗

]
l
−→A [l :

⊗
]

This axiom states that if the sub-term l :
⊗

is reached in A then a transition of

probability one is enabled to produce a term describing the termination of a flow.

AFin A [l : �]
l
−→ |A |

This axiom states that if the sub-term l : � is reached then no action is taken later by

destroying all tokens.

PRG1 N
α
−→p N ′

A [N]
α
−→p A [N ′]

PRG2 N1
α1−→p1 N ′

1 N2
α2−→p2 N ′

2

A [N1,N2]
α
−→p1×p2 A [N ′

1 ,N
′

2]

The ACT3, BEH-3, BEH-4, FRK2, DEC5, MRG4, JON4, PRG1 derivation rules

preserve the evolution when a sub-term N evolves to N ′ by executing the action

α with a probability p. The PRG2 derivation rule describes the interleaving between

two terms N1 and N2.

The semantics of SysML activity diagrams expressed using A is the result of the defined

inference rules. The NUAC semantics can be described in terms of a PA as stipulated by

Definition 3.1.

40

Definition 3.1 (NuAC-PA). A probabilistic automaton of an activity calculus term A is a

tupleMA = (s, L, S, Σ,Steps), where:

• s is an initial state, such that L(s)=l : ι �N ,

• L : S→ 2{A } is a labeling function that assigns for each state an A marked term,

• S is a finite set of states reachable from s, such that, S = {si:0≤ i ≤ n|L(si) ∈ {A }},

• Σ is a finite set of actions corresponding to the labels in A ,

• Steps : S×Σ→ 2Dist(S) is a (partial) probabilistic transition function such that:

– ∀s ∈ S, and α ∈ Σ: Steps(s) =

{〈α,μ〉|s α
−→ μ}, Stepsα(s) = {μ ∈ Dist(S)|〈α,μ〉 ∈ Steps(s)} where Dist(S)

is a set of convex probability distributions over S.

– If Steps(s) = /0 then s is the terminal state.

3.4 PRISM Formalization

In this section, we formalize PRISM by presenting its syntax and semantics. In our formal-

ization, we focus more on the probabilistic automata model in PRISM.

Generally, a probabilistic system “S” that is described as a PRISM program “P” that

comprises a set of n modules (n > 0), the state of each one is defined by the evaluation

of a countable set of finite-ranging local variables. The global state of the system is the

evaluation of the local variables (Vl) and the global ones (Vg) denoted by V =Vg∪ Vl. The

behavior of each module is a set of guarded commands.

A guarded command describes the main changes of P behaviors. It takes the fol-

lowing form: [a] g → p1 : u1+...+pm : um , or, [a] g → u, which means, for the action

41

“a” if the guard “g” is true, then, an update “ui” is enabled with a probability “pi”. For

the second case, for the action “a” if the guard “g” is true, then, the update “u” is en-

abled. A guard is a logical proposition consisting of variables evaluation and proposi-

tional logic operators. The update “ui” is an evaluation of variables expressed as a con-

junction of assignments: (v′j = val j)& · · ·&(v′k = valk) where vi are local variables and

vali are values evaluated via expressions denoted by “eval” that requires type consistency

(eval :Vl → N∪{true, f alse}). A command is formally defined in Definition 3.2.

Definition 3.2 (PRISM Command). A PRISM command is a tuple c= (a,g,u), where:

• a: is an action label,

• g: is a predicate over V ,

• u= {(pi,ui)|m> 1,0 < pi < 1,∑mi=1 pi = 1 and ui = {(v,eval(v)) : v ∈Vl}}

∪{(v,eval(v)) : v ∈Vl}.

A module that describes the behavior of a sub-part of a system can be considered as

a set of commands. The variables of each module are declared and initialized locally. A

module is formally defined in Definition 3.3.

Definition 3.3 (PRISM Module). A PRISM module “M” is a tupleM = (Vl, Il,C), where:

• Vl is a finite set of local variables associated to the moduleM,

• Il is the initial values of Vl,

• C= {ci : 0≤ i≤ k} is a finite set of commands that defines the behavior of the PRISM

moduleM.

To describe the composition between modules, PRISM uses the following Commu-

nicating Sequential Processes (CSP) [34] operators.

42

1. Synchronization: It is a parallel composition of modules. For two modules M1 and

M2, their synchronization is denoted by M1||M2 and they can synchronize only on

actions appearing in bothM1 and M2.

2. Interleaving: It is an asynchronous parallel composition of modules that are fully

interleaved without synchronization. M1 interleaves withM2 is denoted by M1|||M2.

3. Parallel Interface: It is a restricted parallel composition of modules. The modules

synchronize only on shared actions. For example, let {a,b, · · ·} be the set of shared

actions between M1 and M2, the interface parallel composition of M1 and M2 in

{a,b, · · ·} is denoted by: M1|[a,b, · · ·]|M2.

Other useful CSP operators supported by PRISM are hiding and renaming:

1. Hiding: This operation permits to hide actions in a module. We denote by

M/{a,b, · · ·} to hide actions a, b, · · · in the moduleM.

2. Renaming: This operator facilitates rewriting the behavior of a module by renaming

its actions. We denote by M{a← b,c← d, · · ·} to rename actions a by b, c by d, · · ·

in the moduleM.

As a result, Definition 3.4 stipulates formally a system containing n modules and

combined by a CSP algebraic expression.

Definition 3.4 (PRISM System). A PRISM system is a tuple P= (V, I,exp,M1, . . . ,

Mn,CSPexp), where:

• V =VG
⋃n
i=1Vli is a finite set of the union of global and local variables,

• I = IG
⋃
Il is a finite set of the initial values of global (IG) and local (Il) variables,

• exp is a set of global logic expressions,

43

• M1, . . . ,Mn is a countable set of modules,

• CSPexp is a CSP algebraic expression.

3.4.1 PRISM Syntax

The PRISM syntax of a probabilistic automata is defined by the BNF grammar presented

in Figure 3.5. To clarify PRISM syntax, we define the following:

• [min..max] is a range of values such that min, max ∈N and min < max.

• p ∈]0..1[is a probability value.

• eval is an evaluation expression that can be composed of the following operators:

−(unary minus),+,−,∗,/,<,<=,>=,>,=,=, !,&, |,<=>,=>,?(g ? a : b).

• val ∈N
⋃
{true, f alse} is a value given by the function eval.

• v is a string describing a variable (v ∈V) and init(v) is its initial value.

• name is a string label describing the module name. For the module i, its name label

is denoted byMi.

• CSPexp is a CSP expression composed of the following operators ||, |||, |[a,b, · · ·]|,

/{a,b, · · ·}, and {a← b,c← d, · · ·}.

3.4.2 PRISM Semantics

The probabilistic automata of a PRISM program P is based on the atomic semantics of a

command “c” denoted by [[c]]. The latter is a set of transitions defined as follows: [[c]] =

{(s,a,μ) | s |= g} where μ is a distribution over S such that μ(s′) = {|0 < pi ≤ 1 : ∀v ∈

V, s′(v) = evali(V)|}.

44

P ::=MDP <Variables> < eval > <Modules> < System>
<Variables> ::=ε

| < kindVariables> v: <VariablesType> init init(v);<Variables>
< kindVariables> ::=ε |global
<VariablesType> ::= bool | int | [min..max]
<Modules> ::= module name <Variables> <ModuleBehavior> endmodule
<ModuleBehavior> ::=ε |[a] g→< update> ;<ModuleBehavior>
< update> ::=< p>< eval >; | < p >< eval > + < update>
< eval > ::=(v′ = eval(V)) | (v’=eval(V))&< eval >
< p> ::=ε | p :
< System> ::=system < AlgebraExpressions> endsystem
< AlgebraExpressions> ::= ε | name CSPexp name;< AlgebraExpressions>

Figure 3.5: The Syntax of PRISM Probabilistic Automata.

Definition 3.5 stipulates the formal definition of PRISM probabilistic automata de-

noted by MP. The states of MP take the form 〈V1, · · · ,Vn,eval〉. The stepwise behavior of

MP is described by the operational semantic rules provided as follows.

INIT 〈Vi, init(Vi)〉 −→ 〈Vi([[init(Vi)]]),−〉

INIT initializes variables. For a module Mi, init returns the initial value of the local

variable v j ∈Vi.

LOOP 〈Vi,−〉 −→ 〈Vi〉

This axiom presents a loop in a state without changing variables’ evaluations. It can

be applied to avoid a deadlock.

UPDATE 〈Vi,v′i = eval(V)〉 −→ 〈Vi([[vi]])〉

UPDATE axiom describes the execution of a simple assignment for a given variable

vi. Its evaluation is updated in Vi ofMi.

CNJ-UPD 〈Vi,v′i = eval(V)∧ v′j = eval(V)〉 −→ 〈Vi([[vi]], [[v j]])〉

CNJ-UPD implements the conjunction of a set of assignments.

PRB-UPD1 〈Vi, pi : v′i = eval(V)〉 −→pi 〈Vi([[vi]])〉 0 < pi ≤ 1

45

PRB-UPD2 〈Vi, pi : v′i = eval(V)∧ v′j = eval(V)〉 −→pi 〈Vi([[vi,v j]])〉0 < pi ≤ 1

PRB-UPD1 and PRB-UPD2 describe probabilistic updates.

ENB-CMD1
V |= g

〈V,M([a]g→ ∑i pi : ui)〉
a
−→ μ

ENB-CMD1 enables the execution of a probabilistic command.

ENB-CMD2
V |= g V �|= g′

〈V, [a]g→ u; [a′]g′ → u′〉 a
−→ 〈V ([[u]]), [a′]g→ u′〉

ENB-CMD2 enables the execution of a command in a module.

ENB-CMD3 V |= g∧g′

〈V, [a]g→ u; [a′]g→ u′〉 −→ 〈V ([[u]]), [a′]g′ → u′〉
ENB-CMD3 solves the nondeterminism in a module by following a policy.

SYNC 〈Vi,ci〉
a
−→ μi 〈Vj,c j〉

a
−→ μ j

〈Vi∪Vj,Mi||Mj〉
a
−→ μi.μ j

SYNC derivation rule permits the synchronization between modules on the action

labeled by “a”.

INTERL 〈Vi,Mi(c j)〉
a j
−→ μ

〈V,Mi|||Mj〉
a j
−→ μ

INTERL derivation rule describes the interleaving between modules.

Definition 3.5 (PRISM-PA). A probabilistic automaton of a PRISM program P is a tuple

MP = (si, S, L, Σ, δ) where:

• si is an initial state, such that L(si)=[[init(V)]],

• S is a finite set of states reachable from s, such that, S = {si:0≤ i ≤ n|L(si) ∈ {AP}},

• L : S→ 2AP is a labeling function that assigns for each state a set of valuated propo-

sitions,

• Σ is a finite set of actions,

46

• δ : S×Σ→ Dist(S) is a (partial) probabilistic transition function assigning for each

s ∈ S and α ∈ Σ a probabilistic distribution μ ∈ Dist(S). μ is a convex combination

of distributions. Distr(S) denotes the set of (sub) distributions over S. δ defines

non deterministic and probabilistic steps as follows: Steps(s)={〈a,μ〉 : s a
−→ μ} and

Stepsa(s) = {μ ∈ Dist(S) : 〈a,μ〈∈ Steps(s)}.

3.5 The Verification of SysML Activity Diagrams

This section describes the transformation of SysML activity diagrams A into a PA written

in PRISM input language. Algorithm 2 illustrates the transformation algorithm T that takes

A as input and returns its PRISM code image denoted by PrismCode. The diagram A

is visited using a depth-first search procedure and the algorithm’s output produces PRISM

synchronized modules. The algorithm is described as follows. First, the initial node is

pushed into the stack of nodes denoted by nodes (line 5). While the stack is not empty (line

6-17), the algorithm pops a node from the stack into the current node denoted by cNode

(line 7). The current node is added into the list vNode of visited nodes (line 9) if it is not

already visited (line 8). PrismCode is constructed by calling the function Γ that has two

arguments which are the current node and its successors (line 11). The explored successors

are pushed into the stack nodes (line 13-15). The algorithm terminates the execution when

all nodes are visited.

The mapping function Γ presented in Listing 3.1produces the appropriate PRISM

command for the current node. The action label of the command is the label of the current

node. The guard of this command depends on how the current node can be activated,

therefore, a boolean expression as a flag is assigned to define this activation. The variables

of each module are locals of type boolean initialized to false except for the initial node that

is initialized to true. It marks the first token produced by the rule “INT-1”. Generally, the

47

Algorithm 2 Transformation Algorithm T of SysML Activity Diagrams into PRISM Code
Input: SysML activity diagrams A .
Output: PRISM code PrismCode.

1: nodes as Stack; � A stack of nodes which is initially empty.
2: cNode as Node; � The current node which is initially empty.
3: nNode, vNode as list_of_ Node; � List of nodes that are initially empty.
4: procedure T(A)
5: nodes.push(in); � Read the initial node.
6: while not nodes.empty() do
7: cNode := nodes.pop(); � Pop the current node.
8: if cNode not in vNode then
9: vNode.add(cNode); � Consider the current node as a visited node.

10: nNode := cNode.successors(); � Get the successors of the current node.
11: PrismCode.add(Γ(cNode,nNode)); � Call the mapping rules function.
12: end if
13: for all n in nNode do � Stores all newly discovered nodes in the stack.
14: nodes.push(n);
15: end for
16: nNode.clear(); � Empty the list nNode.
17: end while
18: end procedure

updates deactivate the propositions of the current node and activate that the ones related to

its successors. For a node n, we define three useful functions: L(n), S(n) and E(n) that

return the label, the start and the end of its related call behaviors, respectively.

Now, we calculate the time complexity of the algorithm T for a SysML activity di-

agram A of n nodes (we consider n as the maximum number of nodes supported by A).

In Algorithm 2, the while loop can run at most n times (line 6). Recursively, Γ can recall

the algorithm T when a call behavior node exists. This mechanism of recalling produces a

hierarchical form of diagrams where each node can call a new SysML activity diagram. We

introduce the notion of hierarchy depth denoted by k, which means the level in the hierarchy

from where a node has a call behavior. The worst case is that for any level of the hierarchy,

each node can call a new behavior. The computing complexity of T is of class P with a

worst case running time of O(nk).

48

1 Γ : A �→ P

2 Γ (A) = ∀n ∈A , Case (n) of

3 l : ι�N ⇒

4 in

5 {[l]l −→ (l′ =⊥)&(L(N)′ =�);}∪Γ(N)

6 end

7 l :M(x,y)�N ⇒

8 in

9 {[lx]lx −→ (l′x =⊥)&(L(N)′ =�);}

10 ∪{[ly]ly −→ (l′y =⊥)&(L(N)′ =�);}∪Γ(N)

11 end

12 l : J(x,y)�N ⇒

13 in

14 {[l]lx ∧ ly −→ (l′x =⊥)&(l′y =⊥)&(L(N)′ =�);}∪Γ(N)

15 end

16 l : F(N1,N2) ⇒

17 in

18 {[l]l −→ (l′ =⊥)&1≤i≤2(L(Ni)
′ =�);}

19
⋃

1≤i≤2 Γ(Ni)

20 end

21 l : aB�N , Case (B) of

22 ↑A ⇒

23 in

24 {[ls]l→ (l′ =�);}

25 ∪{[le]l&L(E(A))→ (l′ =⊥)&(L(N)′ =�);}

26 ∪Γ′(A);

27 end

28 !v ⇒

29 in

30 {[l]l −→ (l′ =⊥)&(L(N)′ =�);}∪Γ(N ′)

31 end

32 ?v ⇒

33 in

34 {[L(a?v)]l&¬L(a!v) −→ (l′ =�);}

35 ∪{[L(a!v)]l&L(a!v) −→ (l′ =⊥)&(L(N)′ =�);}∪Γ(N ′)

36 end

37 ε ⇒

38 in

39 {[l]l −→ (l′ =⊥)&(L(N)′ =�);}∪Γ(N ′)

49

40 end

41

42 l : D(A , p,g,N1 ,N2) ⇒

43 Case (A) of

44 ε ⇒

45 Case (p) of

46]0,1[⇒

47 in

48 {[l]l −→ p : (l′ =⊥)&(l′g =�)+(1− p) : (l′ =⊥)&(l′¬g =�);}

49
⋃
{[lg]lg ∧g −→ (l′g =⊥)&(L(N1)

′ =�);}

50
⋃
{[l¬g]lg ∧¬g−→ (l′¬g =⊥)&(L(N2)

′ =�);}

51
⋃
i=1···2 Γ(Ni)

52 end

53 − ⇒

54 in

55 {[l]l −→ (l′ =⊥)&(L(g)′ =�);}

56
⋃
{[l]l −→ (l′ =⊥)&(L(¬g)′ =�);}

57
⋃
{[lg]lg ∧g −→ (l′g =⊥)&(L(N1)

′ =�);}

58
⋃
{[l¬g]lg ∧¬g−→ (l′¬g =⊥)&(L(N2)

′ =�);}

59
⋃
i=1···2 Γ(Ni)

60 end

61 O t h e r w i s e

62 in

63 {[ls]l→ (l′ =�);}∪Γ′(A);

64 ∪{[le]l&L(E(A))→ (l′ =⊥)&(L(D(p,g,N1,N2))
′ =�);}

65 ∪Γ(l : D(p,g,N1 ,N2))

66 end

67 l : � ⇒

68 in

69 [l]l −→ (l′ =⊥);

70 end

71 l : � ⇒

72 in

73 [l]l −→&l∈L (l′ =⊥);

74 end

75 / / D e f i n i n g t h e f u n c t i o n Γ′(A)

76 Γ′ : A → P

77 Γ′(A) = ∀m ∈A : L(m) =⊥ , Case (m) of

78 lι : ι �N ⇒

50

79 in

80 {[ls]l→ (L(S(A))′ =�);

81 [L(S(A))]L(S(A))−→ (L(S(A))′ =⊥)&(L(N)′ =�);}∪Γ(N)

82 end

83 l : � ⇒

84 in

85 [le]l&L(E(A))→&l∈L ′ (l′ =⊥);

86 end

87 O t h e r w i s e Γ(A);

Listing 3.1: Generating PRISM Commands Function.

3.6 The Soundness of the Verification Approach

Our aim is to prove the soundness of our transformation algorithm T and to show that

it preserves PCTL properties. Let A be a NuAC term and MA be its corresponding PA

constructed by the NuAC operational semantics denoted by S such that S (A) = MA .

The function Γ is defined previously to implement the transformation rules that produce a

PRISM program P such that Γ(A) =P . For the program P , letMP be its corresponding

PA constructed by the PRISM operational semantics denoted by S ′ such that S ′(P) =

MP . As illustrated in Figure 3.6, proving the soundness of Γ algorithm is to find the

adequate relation R between MA and MP .

A MA

P MP

S

Γ
S ′

R

Figure 3.6: Mapping Soundness.

To define the relationMA R MP , we have to establish a step by step correspondence

51

between MA and MP . First, we introduce the notion of the probabilistic strong bisimula-

tion relation. This relation is based on the probabilistic equivalence relation R defined in

Definition 3.6 where X/R denotes the quotient space of X with respect to R and≡R is the

lifting of R to a probabilistic space.

Definition 3.6 (The equivalence≡R). If R is an equivalence on X , then the induced equiv-

alence ≡R on Dist(X) is given by: μ ≡R μ ′ iff μ[C]≡R μ ′[C] for allC ∈ X/R.

Hence, Definition 3.7 stipulates the probabilistic strong bisimulation relation.

Definition 3.7 (Strong Probabilistic Bisimulation). A strong probabilistic bisimulation be-

tween two probabilistic automataM1 andM2 is an equivalence relation R � S1× S2 where:

1. Each initial state ofM1 is related to at least one initial state ofM2;

2. For each pair of states s1Rs2 and each transition s1
a
−→ μ1 of M1 of either M1 or M2,

there exists a transition s2
a
−→ μ2 of eitherM1 orM2, such that μ1 ≡R μ2.

Here, �R is the lifting of R to a probability space. It is achieved by finding a weight

function [79] that associates each state of M1 with others in M2 by a certain probability

value. The weight function is defined below in Definition 3.8.

Definition 3.8 (Weight Function). Given two sets of states S1 and S2. Let R � S1× S2,

μ1 ∈ Dist(S1) and μ2 ∈ Dist(S2) are two distributions over S1 and S2. A weight function

for (μ1,μ2) w.r.t. R is a function� : S1× S2→ [0,1] such that:

1. ∀ s1 ∈ S1 : Σs2∈S2�(s1,s2) = μ1(s1),

2. ∀ s2 ∈ S2 : Σs1∈S1�(s1,s2) = μ2(s2),

3. �(s1,s2)> 0⇒ s1Rs2.

52

For our proof, we stipulate herein the mapping relation R denoted by MA RMP

between a NuAC term A and its corresponding PRISM term P .

Definition 3.9 (Mapping Relation). The relation MA RMP between a NuAC term A and

a PRISM term P such that Γ(A) = P is a strong probabilistic bisimulation relation.

Finally, proving that Γ is sound means showing the existence of a strong probabilistic

bisimulation between MA and MP .

Lemma 3.1 (Soundness). The mapping algorithm Γ is sound, i.e. MA �R MP .

Proof. Our abstraction is sound and the proof is provided in Appendix B.4.

In the following, we show that the mapping relation preserves the satisfaction of

PCTL properties. This means, if a PCTL property is satisfied in the resulting model by a

mapped function Γ then it is satisfied by the original one.

Proposition 3.1 (PCTL Preservation). For two PAs MA and MP such that Γ(A) = P

where MA �R MP . For a PCTL property φ , then: (MA |= φ)⇔ (MP |= φ).

Proof. Our abstraction is sound and the proof is provided in Appendix B.4.

3.7 Experimental Results

In this section, we apply our verification framework on the online shopping system [32] and

the Real Time Streaming Protocol (RTSP) 1 hypothetical application. The related SysML
1http://tools.ietf.org/html/rfc2326

53

activity diagrams are modeled on Topcased2 then mapped into Prism code via our Java im-

plementation. In the purpose of providing experimental results demonstrating the efficiency

and the validity of our approach, we verify a set of functional requirements of the system

under study.

3.7.1 Online Shopping System

The online shopping system aims at providing services for purchasing online items. Figure

3.7a illustrates the corresponding SysML activity diagram. It contains four call-behavior

actions3, which are: “Browse Catalogue”, “Make Order”, “Process Order” and “Shipment”.

As example, Figure 3.7b expands the call behavior action “Process Order”.

(a) Online Shopping System. (b) Process Order.

Figure 3.7: The Online Shopping System SysML Activity Diagram.

In order to check the correctness of the online shopping system, we propose to verify

four functional requirements. They are expressed in PCTL as follows where n (n ∈ [0..K])
2http://www.topcased.org Toolkit in OPen source for Critical Applications and SystEms Development.
3Each call-behavior action is represented by its proper diagram.

54

and m represent the order and the shipment numbers, respectively.

1. For each order, what is the minimum probability value to make a delivery?

PCTL: Pmin=?[(n≤ K) U (Delivery)].

2. After browsing the catalogue, what is the minimum probability value to ship a se-

lected item?

PCTL: Pmin=?[((SelectItem∧m= n∧m≤ K)⇒ F(Delivery))⇒ F(Shipment)].

3. For a given customer, what is the maximum probability value to make a new order

after confirming the bill?

PCTL: Pmax=?[G((Con f irmBill)⇒ F(MakeOrder))].

4. For each order, what is the maximum probability value to enter a wrong credit card

code?

PCTL: Pmax=?[(n= m)⇒ (!CardOk))].

The verification results of the above four properties are shown in Figure 3.8. For

different values of the maximum number of orders “K”, Figure 3.8a shows that the verifi-

cation result for Property 1 converges to 0.9977 after three steps. Figure 3.8b presents the

verification result of Property 2 decrementing quickly from an initial value of 0.8487 to a

steady-state value of 0.0420. The same applies to Property 3 which converges to 0.9622

and to Property 4 which converges to 0.0977.

3.7.2 Real Time Streaming Protocol

RTSP is a client-server application for the delivery of data with real-time features. To de-

liver the continuous RTSP streams, it relies on the control of multiple data delivery sessions

and provides means for choosing delivery mechanisms based upon RTP or Secure RTP

55

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

K

M
in

im
um

 p
ro

ba
bi

lit
y

(a) Property 1.

0 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

K

M
in

im
um

 p
ro

ba
bi

lit
y

(b) Property 2.

0 2 4 6 8 10

0.3

0.4

0.5

0.6

0.7

0.8

0.9

K

M
ax

im
um

 p
ro

ba
bi

lit
y

(c) Property 3.

0 2 4 6 8 10

0.02

0.04

0.06

0.08

K

M
ax

im
um

 p
ro

ba
bi

lit
y

(d) Property 4.

Figure 3.8: The Verification of PCTL Properties on the Shopping Online System.

(SRTP)4. SRTP provides confidentiality of RTP data, message integrity and supports source

origin authentication. From RTSP and SRTP RFC’s, we have extracted and designed the

behavior of RTSP upon Secure RTP client-server application as SysML activity diagrams.

Figure 3.9 shows the SysML activity diagram of RTSP client and Figure 3.10 presents the

SysML activity diagram of the server specific to RTSP application. The main methods used

to define RTSP vocabulary are:

• DESCRIBE: a request includes an RTSP URL, and the type of reply data that can be

handled.
4http://tools.ietf.org/html/rfc3711

56

• SETUP: causes the server to allocate resources for a stream and start an RTSP session.

• PLAY and RECORD: starts data transmission on a stream allocated via SETUP.

• PAUSE: temporarily halts a stream without freeing server resources.

• TEARDOWN: frees resources associated with the stream. The RTSP session ceases

to exist on the server.

• SUCCESS and ERROR: server’s response to client requests.

act RTSPClient

Describe

DescribeOK

Setup

Validate

SetupOK Validate

Teardown

error

success error

success

Play

PlayerPause

Pause

PlayerExit

PlayOk
success

error

ReceiveRTP

<<continuous>>
Play Media

Validate

Playerplay

PauseOK
<<Control Operator>>

Disable if paused

diasable

Figure 3.9: The Client SysML Activity Diagram for RTSP Protocol.

Here, we propose a set of PCTL properties to be verified against the composed model.

1. Compute the maximum probability to disconnect a client immediately by a TEAR-

DOWN attack.

Pmax=?[(¬Client!SendTeardown U≤step (Client.End))].

2. Measure the maximum probability of an attacker intercepting DESCRIBE message

57

act RTSPServer

error

Validate

PlayOk

Pauseok

success

Validate

error

Describe Validate

DescribeOK

Setup

SetupOK

success

Play

Rtp
<<continuous>>

Prepare RTP

Teardown

success

TeardownOk

Pause

Validate

success

<<Control Operator>>

Disable if paused

or teardowndisable

Validate

error

success

errorerror

Critical Resource

Figure 3.10: The Server SysML Activity Diagram for RTSP Protocol.

of a client.

Pmax=? [true U≤step (Attack?Describe)].

3. Evaluate the maximum probability to successfully hijack a session.

Pmax=? [Client?RTP & Attack?RTP].

4. Find the minimum probability that a client fails to connect.

Pmin=?[Client.start⇒ (X(Client.start))].

By interpreting the results showed in Figure 3.11, we conclude that the RTSP applica-

tion is free of deadlocks and the service of the client can be interrupted with a maximum

probability of 0.82 after a TEARDOWN attack. Furthermore, the attacker’s probability to

intercepting a message is at least 0.63. Finally, an attacker can hijack the client session by

a probability greater than 0.378 and a client can fail to be connected by a probability of

58

0.099.

15 20 25 30
0

0.2

0.4

0.6

0.8

1

Step

M
ax

im
um

 p
ro

ba
bi

lit
y

(a) Property 1.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Step

M
ax

im
um

 p
ro

ba
bi

lit
y

(b) Property 2.

12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Step

M
ax

im
um

 p
ro

ba
bi

lit
y

(c) Property 3.

0 2 4 6 8 10
−1

−0.5

0

0.5

1

1.5

Connection

M
in

im
um

 p
ro

ba
bi

lit
y

(d) Property 4.

Figure 3.11: The Verification of PCTL Properties on the RTSP Diagrams.

3.8 Related Work

In this section, we cite the state-of-the-art related to the formalization and the verification

of UML/SysML interaction, state machine and activity diagrams, respectively.

3.8.1 Verification of UML Interaction Diagrams

Amstel et al. [85] propose an approach to analyze the quality of UML sequence diagram.

It contains four steps: 1) analyzing the interaction traces and identify ambiguities by using

59

SPIN model checker, 2) identifying patterns of common interactive behavior, 3) identifying

syntactic defects, 4) metric-based technique to describe properties such as coverage is used.

The translation in the first step is based on state machine. The pattern identification is to

locate message exchange and recurring message sequences. The static analysis is used in

the third step to detect a sequence diagram syntactic defects such as unnamed message, and

the last step is the stochastic version of basic and coverage analysis.

Lima et al. [51] verify UML 2.0 sequence diagrams by mapping each fragment into a

PROMELA process where the send/receive event specified the communication between

processes. The security properties are specified using LTL temporal logic so that they can

be verified using SPIN model checker. The counterexample is mapped to a trace in the

model to be analyzed later by the user.

3.8.2 Verification of UML State Machine Diagrams

The Static Verification Framework (SVF) developed by Siveroni et al. [81] translates the

UML state machine into PROMELA models based on automata concept. The communi-

cation assigns two channels to an object one for receiving and the other for sending. To

specify a property, they proposed a high level grammar to express properties in a user-

friendly form and translate them later to LTL.

Beato et al. [8] present a tool for the Active Behavior of UML (TABU) to verify UML ac-

tive diagrams by using SMV model checker. Three kinds of diagram are taken into account:

class, state and activity diagrams. The first provides information concerning the elements

that make up the system and their relationships, while the second and third provide infor-

mation about the timing behavior of each of those elements. The properties are specified by

the assistance of two pattern schemes: occurrence and order. Occurrence patterns describe

60

properties with respect to the occurrence of a state or signal during the evolution of a sys-

tem. Order patterns establish properties with respect to the order in which they occur.

Kaliappan et al. [46] design and verify communication protocols by using model driven ar-

chitecture and SPIN Model checker. The state machine is converted into PROMELA code

as a protocol model and its properties are derived from the sequence diagram as Linear

Temporal Logic (LTL) by using the Protocol Predictor (PP). The mapping rules are written

in the standard OMG Query View Transformation (QVT) model.

3.8.3 Verification of UML/SysML Activity Diagrams

R. Eshuis [22] translates an activity diagram to NuSMV code. The translation is based on

state machine and follows four steps: 1) Inserting a WAIT node for each edge entering a

join, 2) Inserting a WAIT node between a join and a fork, 3) Replacing object nodes and

flows by wait nodes and control flows, 4) Eliminating pseudonodes and define hyperedges.

PLTL temporal logic is used for property specification.

Das et .al [17] present a timing verification of activity diagrams. The timing queries are

described in a sub-set of Timed Propositional Temporal Logic (TPTL). The constructed

semantic model is a reduced timed reachability graph which is Kripke structure-based. It

represents a set of locations and time events for each token in the system at any time. To

verify a TPTL property, two steps are: 1) Creating the tableaux of the complement of the

underlying LTL formula of the given TPTL formula, 2) Deriving a Büchi automata from

the presented semantic model. Finally, applying a double DFS algorithm for checking the

product of both automaton for a reachable accepting cycle. Rafe et .al [75] determine the

correctness behavior and formal semantics of UML2.0 activity diagrams by Graph Trans-

formation Systems (GTS).

Paolo et .al [6] specify and verify an airport case study described by a class diagram and

61

its behavioral activity diagram. The class diagram is interpreted as a graph, and the activity

as graph transformations. μL 2 temporal logic is introduced which allows for formulating

relevant properties of a GTS. The satisfaction of a property is defined inductively.

Federico et .al [7] map a UML4SOA activity diagram to COW. UML4SOA is an UML

profile that has been designed for modeling SOA. COW is a process calculus for specifying

service-oriented systems. An encoding function on the form of a predicate is defined to

transform each UML4SOA construct to COW term. The authors don’t show how they deal

with merge element to define recursivity.

The approach proposed by Raida et .al [20] transforms a UML activity diagram to CSP

expressions by using a graph transformation tool called ATOM. A meta-model for UML

activity diagrams is proposed for UML activity diagram and a graph grammar that per-

forms the transformation.

Ermeson et .al [13] propose a solution for verification of embedded realtime systems with

energy constraints. Real-time systems are modeled using SysML State Machine diagram,

and MARTE UML Profile (Modeling and Analysis of Real-Time and Embedded systems)

to specify ERTS’s (Embedded Real-time Systems) constraints such as execution time and

energy. They map only the states and the transitions into ETPN (Time Petri Net with En-

ergy constraints). In their transformation, they don’t give the transformation of actions in a

given state even the semantic transformation of the mutual exclusive, and orthogonal states

by taking just the states inside into consideration.

The same authors of [13] propose in [3] a similar methodology for mapping SysML ac-

tivity diagram to time Petri Net for requirement validation of embedded real-time systems

with energy constraints. The computation model formalized as an extended Time Petri Net

(TPN) is not well written. It misses the representation of the energy consumption values.

The authors don’t provide a formal transformation for the UML elements even the values

62

represented from MARTE profile. Also, they don’t clarify why they present each constraint

in an action by a separate transition.

Yosr et .al [44] use PRISM Model checker to verify a SysML Activity Diagram where the

execution time of actions are formalized as constraints and the outputs of a decision node

are attributed by a specific probabilities. Their approach is to map the source model to a

Discrete-Time Markov Chains (DTMC) in order to use PRISM model checker for the as-

sessment and evaluation of performance characteristics.

Yosr et .al [43] propose an algebraic calculus called Activity Calculus (AC) for SysML ac-

tivity diagram. The semantic of the given calculus is constructed from five sets of axioms

and derivation rules (construction rules) that are used to describe the behavior evolution of

the studied diagram.

David et .al [41] introduced an extension of UML statecharts with randomly varying dura-

tion. It allows state transition to select probability. The Input/Output (I/O) automata concept

is used to provide a compositional semantics. Also, probability distribution after a continu-

ous or discrete time is introduced as an arbitrary operator. David et .al [40] introduce means

to specify system randomness within statecharts, and to verify probabilistic temporal prop-

erties. The model is represented as MDP, and the properties ares expressed in PCTL. In [2]

a framework has been proposed for verifying UML behavioral diagrams (State machine,

Activity and Sequence diagrams). Each diagram is mapped into its proper semantic model

that takes the form of of labeled transition system called Configuration Transition System

(CTS). The resulting CTS is translated into NuSMV input language.

63

3.9 Conclusion

In this chapter, we presented a formal verification framework to improve the requirement

checking of SysML activity diagrams. To verify these diagrams, we have devised an ap-

proach that maps a set of SysML activity diagrams composed by call behavior and com-

munication actions into the input language of the probabilistic model checker PRISM. We

proposed a calculus dedicated to these diagrams to capture precisely their underlying se-

mantics. In addition, we formalized PRISM language. To this end, we proved the soundness

of our proposed approach by defining adequately the relationship between the semantics of

the mapped diagrams and the resulting models. In addition, we proved the preservation of

the satisfaction of PCTL properties by this relation. Finally, we demonstrated the effec-

tiveness of our approach by applying it on a real studies representing an online shopping

system and the real time streaming protocol. The proposed framework could form the basis

of any future work targeting any other operation rather than the mapping for SysML dia-

grams. In the next chapter, we propose a property-based abstraction methodology to reduce

the verification complexity of SysML activity diagrams.

64

Chapter 4

Abstraction of SysML Activity Diagrams

4.1 Introduction

It is of a major importance to reduce the size complexity of SysML activity diagrams while

any approach translating the concrete diagrams into the input language of the model checker

would be limited by the tool’s abstraction mechanism, if exists. Moreover, abstracting

the semantic model instead of the concrete diagram can be costly, while the size of the

semantic model is greater than that of the diagram itself (Appendix B.1). In this chapter,

we are interested in the efficient verification of SysML activity diagrams by proposing an

abstraction framework.

Our proposed framework is based on abstracting the irrelevant action nodes and

guards with respect to a specific requirement, then, collapsing nodes that share similar

behaviors. Figure 4.1 presents an overview of the proposed abstraction framework. It takes

SysML activity diagrams and PCTL [5, 27] expressions as input. To perform verification,

we devise using the verification framework developed in Chapter 3. We prove the sound-

ness of our abstraction approach by comparing the satisfaction relation of PCTL properties

on both the abstract and the concrete diagrams. To do so, we define the adequate relation

65

between the semantics models related of both diagrams (concrete and abstract). Then, we

show the PCTL operators that can be preserved by this relation.

SysML Activity
Diagrams

Abstraction
Rules

Minimization
Rules

PCTL
Properties

Verification
Framework

Abstracted
Diagrams

Minimized
Diagrams

Abstracting

Applying

Using

Minimizing

Applying

Input

Input

Figure 4.1: A Probabilistic Abstraction Framework.

By applying our approach on the example of ATM system introduced in Chapter 3,

we get a new model “Figure 4.2”. From the obtained results, we find that our approach

preserves the requirement probability value (0.84). As expected, our approach consumes

less time and size memory.

Figure 4.2: Abstract ATM SysML Activity Diagrams.

The remainder of this chapter is organized as follows. The proposed abstraction ap-

proach is detailed in Section 4.2 then its soundness is proved in Section 4.3. Section 4.5

66

surveys the related work. Section 4.4 describes the experimental results. Finally, Section

4.6 concludes this chapter.

4.2 Abstraction Approach

This section describes our abstraction approach for SysML activity diagrams. First, we

present our abstraction algorithm. Then, we cover the special case of calling behaviors.

Finally, we calculate the complexity of our abstraction algorithm.

4.2.1 The Abstraction Algorithm

The abstraction of a SysML activity diagram A is based on both structures of A and the

PCTL property φ to be verified. The abstraction algorithm δ illustrated in Algorithm3

takes A and φ as input and returns a reduced SysML activity diagram denoted by Â . The

diagram A is visited using a depth-first search procedure that can be described as follows.

First, the initial node is pushed into the stack of nodes denoted by nodes (line 5). While

the stack is not empty (line 6-18), the algorithm pops a node from the stack into the current

node denoted by cNode (line 7). The current node is added into the list vNode of visited

nodes (line 9) if it is not already visited (line 8). Â is constructed by calling both functions

ϒ and Ψ. The function ϒ has the current node along with φ as arguments (line 10). It

forbids A behaviors and represents symbolically decision guards. The function Ψ has two

arguments that are the current node and its successors (line 13). It merges the current node

and its successors that share specific properties. The successor nodes are pushed into the

stack nodes (line 14) to be explored later. The algorithm ends when all nodes are visited.

The function ϒ uses the atomic propositions of the PCTL property φ . These are

principally formed from actions and guards labels while the other nodes are used to control

67

Algorithm 3 The abstraction algorithm δ of SysML Activity Diagrams
Input: SysML activity diagram A , a PCTL property φ .
Output: SysML activity diagram Â .

1: nodes as Stack; � A stack of nodes which is initially empty.
2: cNode as Node; � The current node which is initially empty.
3: nNode, vNode as list_of_ Node; � List of nodes that are initially empty.
4: procedure δ (A ,φ)
5: nodes.push(in); � Read the initial node.
6: while not nodes.empty() do
7: cNode := nodes.pop(); � Pop the current node.
8: if cNode not in vNode then
9: vNode.add(cNode); � Consider the current node as a visited node.

10: ϒ(cNode,φ); � Call the function ϒ.
11: nNode := cNode.successors(); � Get the successors of the current node.
12: for all n in nNode do � Stores all newly discovered nodes in the stack.
13: Ψ(cNode,n); � Call the function Ψ.
14: nodes.push(n); � Stores all newly discovered nodes in the stack.
15: end for
16: nNode.clear(); � Empty the list nNode.
17: end if
18: end while
19: end procedure

the execution of these actions. Let Σφ be a set of independent atomic propositions such that

Σφ ⊆ {ai : i≤ n}∪{gi : i≤ m} where ai is a label corresponding to an action, gi is a guard

label, n and m are the number of actions and guards in A , respectively. The function ϒ

hides the action nodes and guards of the SysML activity diagram that are not part of the

atomic propositions of the PCTL property to be verified. It takes as input a NuAC term N

along with Σφ and generates an abstract term N̂ such that ϒ(N ,Σφ) = N̂ . The function

ϒ implements the six inference rules stipulated in Figure 4.3 that are explained as follows.

ABS-1 rule preserves an action label when it appears in φ propositions set.

ABS-2 rule hides an action label when it does not appear in φ propositions set. The pro-

duced result is that its predecessor will be connected directly with its successor after

applying the rule ABS-5.

68

ABS-1 a�N a ∈ Σφ
a�N

ABS-2 a�N a �∈ Σφ
ε �N

ABS-3
N1

g
�→N2 g ∈ Σφ

N1
g
�→N2

ABS-4 N1
g
�→N2 g �∈ Σφ
N1 �→N2

ABS-5 N1�ε�N2
N1�N2

ABS-6
D(g1,N1,g2,N2,g3,N3) gi:i>1 �∈ Σφ

D(g1,N1,¬g1,N2,¬g1,N3)

Figure 4.3: Inference Rules for ϒ Function.

ABS-3 rule preserves the guard label in an edge when it belongs to the set of φ proposi-

tions.

ABS-4 rule empties a guarded edge when its guard g is not a part of φ propositions.

ABS-6 rule modifies decision guarded edges by replacing guards of the unconcerned edges

by the negation of the other guards. ABS-6 can be applied on the extended versions

of decision nodes riches in probabilities and/or behavior calls.

The second function Ψ minimizes the diagram by collapsing specific control nodes while

preserving the number of tokens and their control paths too. This is achieved by prevent-

ing the modification of guarded and probabilistic choices and the modification in multi-

input/output nodes. The function Ψ implements twelve derivation rules (MIN-1,12). The

rules MIN-1,...,MIN-6 are based on the commutativity described in Property 3.2. These

rules aim at merging consecutive control nodes of the same type. The rules MIN-7,...,MIN-

10 merge parallel paths that have similar destination. The rules MIN-11 and MIN-12 elim-

inate useless nodes resulting from the application of the described ABS and MIN rules.

Hence, the minimization rules are explained as follows.

MIN-1 rule consolidates two consecutive fork nodes to produce an equivalent one.
l : F(N1,N2) N1 = l1 : F(N11,N12)

l : F(N1,N12,N22)

69

MIN-2 rule merges two consecutive join nodes in only one join node.
l : J(x1,x2)�N N = l′ : J(x3,x4)�N ′

l : J(x1,x2,x3,x4)�N ′

MIN-3 rule incorporates two successive merge nodes in one.
l :M(x1,x2)�N N = l′ :M(x3,x4)�N ′

l :M(x1,x2,x3,x4)�N ′

MIN-4 rule collapses two successive probabilistic decision nodes to form one equivalent

probabilistic decision node.
l : D(A , p,g,N1,N2) N1 = l1 : D(A1, p1,g1,N11,N12)

l : D(F(A ,A1), p× p1,g∧g1,N11, p× (1− p1),g∧¬g1,N12,1− p,¬g,N2)

MIN-5 rule constructs a deterministic decision node starting from two consecutive deter-

ministic decision nodes.
l : D(A ,g,N1,N2) N1 = l1 : D(A1,g1,N11,N12)

l : D(F(A ,A1),g∧g1,N11,g∧¬g1,N12,¬g,N1)

MIN-6 rule merges a guarded decision node followed by another probabilistic decision

node. The result is a probabilistic decision node.
l : D(A ,g,N1,N2) N1 = l1 : D(A1, p1,g1,N11,N12)

l : D(F(A ,A1), p1,g∧g1,N11,1− p1,g∧¬g1,N12,¬g,N2)

MIN-7 rule minimizes outputs of a decision node that have the same join successor to only

one output. This also results in the minimization of input pins of the join node.
l : D(A , p1,g1,N1, p1,¬g1N2, p3,¬g1,N3) Ni = l′ : J(xi)�N ′ i= 2,3

l : D(A , p1,g1,N1,N2) x= x\{x3}.

MIN-8 rule replaces a decision node outputs that have the same merge successor with only

one output.
l : D(A , p,g,N ,N1,N2) Ni = l′ :M(xi)�N ′ i= 1,2.

l : D(A , p,g,N ,N1) x= x\{x2}.

MIN-9 rule reduces outputs of a fork node followed by a join.
l : F(N ,N1,N2) Ni = l′ : J(xi)�N ′ i= 1,2.

l : F(N ,N1) x= x\{x2}.

MIN-10 rule reduces outputs of a fork node followed by a merge node.
l : F(N ,N1,N2) Ni = l′ :M(xi)�N ′ i= 1,2.

l : F(N ,N1) x= x\{x2}.

70

MIN-11 rule eliminates a merge node when it has only one input.
l :M(x)�N |x|= 1.

ε −→N

MIN-12 rule eliminates a join node when it has only one input.

l : J(x)�N |x|= 1.
ε −→N

4.2.2 The Call Behavior Case

In order to ensure the scalability of the verification process of a SysML activity diagram

A composed of k call behaviors Ai:1≤i≤k, we have proved Proposition 4.1, and Proposition

4.2. First, Property 4.1 stipulates the associativity property of the call behavior operator “↑”

that is needed in our proofs.

Property 4.1. The call behavior operator ↑ is associative:

(A1 ↑a1 A2) ↑a2 A3 ≡A1 ↑a1 (A2 ↑a2 A3)

Proof. The proof is based on the call behavior definition by following five steps are: 1)

constructingM1 =A1 ↑a1 A2, 2) constructingM =M1 ↑a2 A3, 3) constructing N1 =A2 ↑a2

A3, 4) constructing N = A1 ↑a1 N1, 5) comparingM and N.

Based on Property 4.1, we have proved Proposition 4.1 to handle the verification of

the diagram A of k associated behaviors with respect to a PCTL property φ . It takes into

consideration a set of call behaviors of size less than k. The call behavior composition is

built upon the fact that the property φ holds on the constructed diagram.

Proposition 4.1. Let A = A0 ↑a1 . . . ↑ak Ak be a SysML activity diagram with k call be-

haviors and φ be a PCTL property, we have:

∀i≤ k : A0 ↑a1 . . . ↑ai Ai |= φ ⇒ A |= φ .

71

Proof. The proof of Proposition 4.1 is in Appendix B.2.

To further improve Proposition 4.1, we define the identity element associated to the

operator ↑ and denote it by Aid such that:

A ↑a Aid ≡A and Aid = ε .

By using the identity element, we focus more on behaviors influenced by the property

φ . This is achieved by replacing the unconcerned behaviors in Proposition 4.1 by Aid . In

Proposition 4.2, we use ΣA and Σφ to denote the set of action labels of the diagram A and

the set of atomic propositions of the property φ , respectively.

Proposition 4.2. Let A = A0 ↑a1 . . . ↑ak Ak be a SysML activity diagram with k call be-

haviors, Aid is the identity element for “↑” operator and φ be a PCTL property. For a

proposition α , we have the following:

∀1≤ i≤ k, α /∈ (∑φ ∩∑Ai) : [Ai = Aid ∧ (A0 ↑a1 . . . ↑ak Ak) |= φ]⇒ [A |= φ].

Proof. The proof follows the structural induction on PCTL syntax and it is provided in

Appendix B.2.

4.2.3 The Complexity Measure

Basically, the function ϒ produces a new model that includes mainly the specified actions

and guards in the property φ where other actions are considered as silent action. Thus,

the resulting diagram has a reduced number of actions, which increases the occurrence of

consecutive control nodes. Consequently, applying ϒ before Ψ is more efficient in terms of

time complexity as shown by Proposition 4.3.

Proposition 4.3 (Application Order). Let “A ” be a NuAC term and “φ” be a PCTL prop-

erty, we have: Ψ(ϒ(Ψ(A),φ))≡Ψ(ϒ(A ,φ)).

72

Proof. The proof of Proposition 4.3 is in Appendix B.3.

Now, we calculate the time complexity of the algorithm δ for a SysML activity di-

agram A of n nodes (we consider n as the maximum number of nodes supported by A).

In Algorithm 3, the while loop can run at most n times (line 6). Recursively, functions ϒ

and Ψ recall the algorithm δ when a call behavior node exists. This mechanism of recalling

produces a hierarchical form of diagrams where each node can call a new SysML activity

diagram. We introduce the notion of hierarchy depth denoted by k, which means the level

in the hierarchy from where a node has a call behavior. The worst case is that for any level

of the hierarchy, each node can call a new behavior. The computing time complexity of δ

is of class P with a worst case running time of O(nk).

4.3 The Soundness of the Abstraction Approach

In this section, we prove the soundness of our proposed abstraction algorithm. More pre-

cisely, we prove that our algorithm preserves the satisfaction of PCTL properties.

Let A be a NuAC term and MA be its corresponding PA constructed by NuAC op-

erational semantics S presented in Section 3.3 such that S (A) ≡MA . The abstraction

algorithm δ calls both procedures ϒ and Ψ such that δ (A ,φ) = Â , where Â denotes the

abstracted term of A with respect to the PCTL property φ . Let M
Â

be its corresponding

PA defined using NuAC operational semantics S such that S (Â) ≡ M
Â

. Proving the

soundness of the algorithm δ is to find a pre-order relation R between MA and M
Â

. This

relation represents the degree of precision of MA in M
Â

. As illustrated in Figure 4.4, the

relation R is composed of two relations which are Rϒ and RΨ to specify both functions ϒ

and Ψ.

To define the relation MA Rϒ MÂ
, we introduce the notion of weakness [79] while

73

A Aϒ AΨ

MA MA
ϒ MA

Ψ

ϒ Ψ

S

Rϒ RΨ

SS

Figure 4.4: Abstraction Correctness.

ϒ stutters action nodes and guarded edges. The probabilistic version of a weak transition is

denoted by (s a
=⇒ μ) where μ is the distribution over states reached from s through a se-

quence of mimicked steps. The probabilistic weak simulation relation is formally described

in Definition 4.1.

Definition 4.1 (Probabilistic Weak Simulation). A probabilistic weak simulation between

two probabilistic automataM1 andM2 is a relation R � S1× S2, such that:

1. Each initial state ofM1 is related to at least one initial state ofM2,

2. For each pair of states s1Rs2 and each transition s1
a
−→ μ1 of M1, there exist a weak

combined transition s2
a

=⇒ μ2 ofM2 such that μ1 �R μ2.

Here, �R is the lifting of R to a probability space. It is achieved by finding a weight

function [79] that associates each state of M1 with others in M2 by a certain probability

value. Definition 4.2 defines the weight function.

Definition 4.2 (Weight Function). A function � : S× S′ → [0,1] is a weight function for

the two distributions μ1,μ2 ∈ Dist(S) w.r.t. R � S× S′, iff:

1. �(s1,s2)> 0⇒ (s1,s2) ∈R,

2. ∀ s1 ∈ S : Σs2∈S�(s1,s2) = μ1(s1),

3. ∀ s2 ∈ S : Σs1∈S�(s1,s2) = μ2(s2) then s1Rs2.

74

For our proof, we stipulate herein Definition 4.3 ϒ-abstraction relation between MA

and M
Â

that is denoted byMA Rϒ MÂ
where M

Â
≡MA

ϒ .

Definition 4.3 (ϒ-Abstraction Relation). An ϒ-abstraction relation is a weak probabilistic

simulation relation between a term A and its abstracted term Aϒ after applying ϒ algorithm.

In the following, we present the soundness of ϒ algorithm. Let MA be a PA repre-

senting the semantics of the NuAC term A , and M
Â

is the PA representing the semantics

of Â such that Â = ϒ(A ,φ). Proving that ϒ is sound means proving there exists a weak

probabilistic simulation betweenMA and M
Â

.

Lemma 4.1 (ϒ-Soundness). The abstraction algorithm ϒ is sound, i.e. MA �Rϒ MÂ
.

Proof. Our abstraction is sound and the proof is provided in Appendix B.4.

Now, we show that ϒ-abstraction relation preserves PCTL properties. To achieve that,

we prove by induction on the structure of the PCTL syntax to check PCTL preservation in

both abstract and concrete models. We found that, except for the neXt operator (PCTL\X),

such a formula (φ) holds in the concrete model if it holds in the abstracted model as stated

in Proposition 4.4.

Proposition 4.4 (ϒ-Preservation). For two PAs MA and M
Â
such that MA �Rϒ MÂ

. If φ

is a PCTL\X property, then we have: (MÂ
|= φ)⇒ (MA |= φ).

Proof. The proof of Proposition 4.4 is provided in Appendix B.4.

Similarly to ϒ-abstraction relation, we define in Definition 4.4 Ψ-Abstraction Rela-

tion.

Definition 4.4 (Ψ-Abstraction Relation). An Ψ-abstraction relation is a weak probabilistic

simulation relation between a term A and its abstracted term Â by applying Ψ algorithm.

75

In Proposition 4.2, we present the soundness of Ψ-abstraction relation.

Lemma 4.2 (Ψ-Soundness). The abstraction algorithmΨ is sound, i.e. MA �RΨ MÂ
.

Proof. Our abstraction is sound and the proof is provided in Appendix B.4.

In Proposition 4.5, we prove the set of PCTL operators that are preserved by Ψ-

abstraction relation.

Proposition 4.5 (Ψ-Preservation). For two PAs MA and M
Â
such that MA �RΨ MÂ

. If φ

is a PCTL property, then we have: (M
Â
|= φ)⇒ (MA |= φ).

Proof. The proof of Proposition 4.5 is provided in Appendix B.4.

4.4 Experimental Results

In this section, we apply our abstraction approach on an online shopping system and the

real time streaming protocol detailed in Chapter 3. In the purpose of providing experimen-

tal results demonstrating the efficiency and the validity of our abstraction, we verify PCTL

properties on both: the concrete and the abstract diagrams. These diagrams are modeled on

Topcased, then abstracted via our Java implementation in order to gain from the implemen-

tation of Chapter 3.

To this end, we compare the results perspective of the verification cost (β) and the

abstraction efficiency (η). To evaluate the verification cost, we measure the time required

for verifying a given property, denoted by Tv. To evaluate the abstraction efficiency, we

measure the time required to construct the model, denoted by Tc. The verification cost is

given by β = 1− |Tv(M̂)|
|Tv(M)| and the abstraction efficiency by η = 1− |Tc(M̂)|

|Tc(M)| . Concerning the

abstraction efficiency, we measure the number of states (#s) and transitions (#t) for both

concrete and abstract diagrams. The result of the verification is denoted by (Res).

76

4.4.1 Online Shopping System.

The online shopping system [32] aims at providing services for purchasing online items.

It contains four call-behavior actions1, which are: “Browse Catalogue”, “Make Order”,

“Process Order” and “Shipment”.

In order to prove the correctness of the online shopping system, we propose to verify

four functional requirements. They are expressed in PCTL as follows where n (n ∈ [0..K])

and m represent the order and the shipment numbers, respectively.

1. For each order, what is the minimum probability value to make a delivery? We ex-

press this property in PCTL as follows, where K is the maximum allowed number to

make an order.

Pmin=?[(n≤ K)U (Delivery)].

From this expression, it is clear that only the main diagram and “Process Order”

behavior are affected.

2. After browsing the catalogue, what is the minimum probability value to ship a se-

lected item? Its corresponding PCTL expression is:

Pmin=?[((SelectItem ∧ m= n ∧ m≤ K) ⇒ F(Delivery)) ⇒ F(Shipment)].

The propositions of this property belong to the main diagram and the behaviors of:

“Browse Catalogue”, “Process Order” and “Shipment”.

3. For a given customer, what is the maximum probability value to make a new order

after confirming his bill? Hence, the PCTL property related to this statement is for-

mulated.
1Each call-behavior action is represented by its proper SysML activity diagram.

77

Pmax=?[G((Con f irmBill)⇒ F(MakeOrder))].

The atomic propositions of this property belongs to the main diagram.

4. For each order, what is the maximum probability value to enter a wrong code? We

write its PCTL expression as:

Pmax=?[(n= m)⇒ F(!CardOk))].

We observe that the atomic propositions of this property belong to the “Process Or-

der” SysML activity diagram.

After applying our abstraction approach, we obtain for each property a new abstracted

SysML activity diagrams and its verification results.

For Property 1, Figure 4.5 shows its abstracted diagram and Table 4.1 presents its

different verification results in function of the number of orders “n”. Furthermore, the ver-

ification results for Property 2, Property 3 and Property 4 are 0.88889, 0.145 and 0.14726,

respectively. The obtained values show that our abstraction algorithm actually preserves

the verification results. In addition, Figure 4.6 illustrates both abstraction rates in terms of

the model size and the computation time for the verification of the above PCTL properties

on the online shopping system. The evolution of both abstraction rates are important com-

pared to the growing of the model size which means the proposed abstraction improves the

verification cost.

4.4.2 Real Time Streaming Protocol

Here, we propose a set of PCTL properties to be verified against the composed model.

1. Compute the maximum probability to disconnect a client immediately by a TEAR-

DOWN attack.

Pmax=?[(¬Client!Teardown⇒ F (Client.End))].

78

(a) Online Shopping System (b) Process Order

Figure 4.5: The Abstract SysML Activity Diagram for Property 1.

2. Measure the maximum probability of an attacker intercepting DESCRIBE message

of a client.

Pmax=? [true⇒ F (Attack?Describe)].

3. Evaluate the maximum probability to successfully hijack a session.

Pmax=? [Client?RTP & Attack?RTP].

4. Find the minimum probability that a client fails to connect.

Pmin=?[Client.start⇒ (F(Client.start))].

The results obtained from the verification of the above properties with and without abstrac-

tion show that Property 1 achieves a maximum probability of 0.82 and at least a probability

value of 0.63 for Property 2. Furthermore, the maximum probability of the third property

is 0.974 and the minimum probability for Property 4 is 0.099. To show the abstraction ef-

ficiency of the verification of these properties, Figure 4.7 illustrates their abstraction rates

in terms of the model size and the computation time in function of the number of the sent

79

Concrete Model Abstract Model Res
n #s #t Tc Tv #s #t Tc Tv
5 4848 9682 0.404 33.31 1339 2727 0.058 5.198 0.9977

10 9308 18607 0.548 63.501 0.122 2619 5352 10.49 0.9977
15 13768 27532 0.72 94.264 3899 7977 0.147 15.914 0.9977
20 18228 36457 1.137 124.904 5179 10602 0.23 21.444 0.9977
25 22688 45382 1.156 155.256 6459 13227 0.266 25.976 0.9977
30 27148 54307 1.182 187.068 7739 15852 0.325 32.037 0.9977
35 31608 63232 1.632 217.651 9019 18477 0.457 36.725 0.9977
40 36068 72157 1.819 248.451 10299 21102 0.479 41.758 0.9977
45 40528 81082 2.11 277.156 11579 23727 0.566 47.764 0.9977
50 44988 90007 2.354 306.741 12859 26352 0.399 49.84 0.9977

Table 4.1: Verification Results for Property 1.

messages. After 50 messages streaming, the model checker could not establish the verifica-

tion without abstraction. Then, we conclude that those properties are difficult to be verified

without abstraction.

4.5 Related Work

In the literature, few works examine the abstraction of SysML activity diagrams before

verification and the majority rely on the implemented abstraction algorithms within the

model checker. To our knowledge, some probabilistic model checkers support abstraction,

for example PRISM builds the symmetry reduction and LiQuor2 includes bi-simulation

equivalences. In this section, we survey the existing initiatives that propose abstraction

techniques to deal with the verification of probabilistic systems and that ones expressed as

activity diagrams.

The probabilistic abstraction [4] is a probabilistic version of the partial order reduc-

tion technique on CTL. It extends the four reduction rules of the action-sets ample by two

new rules to handle non-determinism and probabilistic decision in MDPs. The correctness
2http://www.i1.informatik.uni-bonn.de/baier/projectpages/LIQUOR/LiQuor

80

(a) Property 1. (b) Property 2.

(c) Property 3. (d) Property 4.

Figure 4.6: The Abstraction Rates for SOS.

of the extended ample-sets has been proved to preserve PCTL∗\X . [19] presents a sym-

metric probabilistic specification language (SPSL) close to PRISM input language. SPSL

specifies MDP symmetric models and a symmetric PCTL formula is satisfied on isomor-

phic MDPs. For verification, SPSL specification is mapped into PRISM. [47] applies the

bisimulation minimization to preserve PCTL until operator “U” on DTMCs. They use the

partition refinement algorithm to obtain Markov chain bisimulation quotient. [76] applies

the magnifying lens abstraction algorithm on MDPs. This algorithm is of two steps, the

magnified computation is performed on regions and the sliding of the magnification in a

region is performed symbolically. [48, 49] apply the predicate abstraction on MDPs. The

proposed abstraction is based on stochastic games that provide distinct lower and upper

bounds of probabilistic requirements. The key idea is to separate non-determinism in the

abstract MDPs from the original ones.

81

(a) Property 1. (b) Property 2.

(c) Property 3. (d) Property 4.

Figure 4.7: The Abstraction Rates for RTSP.

Ober et al [58, 57] propose a framework to map UML models into communicating

extended timed automata (CETA) expressed in an intermediate formal representation (IF

format). To do verification, the IF validation environment incorporating a model checker

and a simulation tool is used. The former implements a set of model reduction techniques

including static analysis, partial order reduction and model minimization. In their work, the

abstraction is performed on CETA instead of UML diagrams.

Westphal [87] proposes to exploit the symmetry of UML models on the type of object

references. It uses the Rhapsody UML verification environment where the requirements are

expressed in Live Sequence Charts. Query reduction and data-type reduction are proposed.

Query reduction reduces quantified verification tasks if the model is symmetric in the quan-

tified variable’s type whereas data-type reduction interprets the concrete operators in an

abstract domain. In contrast with our approach, the proposed abstraction therein focuses on

82

symmetric UML models, which represent special cases.

Prashanth and Shet [74] propose an abstraction technique for statechart models. Their

approach consists of determining the set of relevant events with respect to the safety prop-

erty (considering only the events that may lead to a non-safe state) and then constructing

the state space accordingly.

Daoxi et al [16] propose an abstraction framework of Promela models for UML be-

havioral diagrams. The abstraction is driven by LTL properties on the Kripke model ob-

tained from the Promela code. Then, the abstract Kripke model is converted to Promela

code. The latter can be verified using SPIN3 model checker. Therein, the proposed abstrac-

tion does not show the resulting abstract UML diagram. Moreover abstracting the semantics

of Promela instead of its code needs more processing steps.

Xie and Browne [88, 89] propose a verification framework for executable UML

(xUML) models. The properties are also expressed using xUML. Their framework in-

cludes a user-driven state space reduction procedure supporting the decomposition and the

symmetry reduction. The resulting model is translated into S/R language to be verified on

COSPAN model checker.

Beek et al present in [83] a framework called (UMC) for the formal analysis of con-

current systems specified by a collection of UML state machines. The formal model of a

system is given by a doubly-labeled transition system (L2TS), and the logic used to spec-

ify its properties is the state-based and event-based logic UCTL. It is an on-the-fly based

analysis with a user-guided abstraction of the transition system. The main limitation of the

approaches in [88, 89, 83] is that they are not fully automatic.

Del Mar Gallardo et al [91] propose a verification framework for UML behavioral

diagrams. The approach is devised to abstract data and events in state chart diagrams. The

first one replaces the original access definitions of variables, so the interval of their possible
3http://spinroot.com

83

values is minimized. Next, abstracting events consists of using a single event name to

represent a set of real ones. In their approach, they took already abstracted models where a

mother state encompasses a set of states that will be abstracted to just one state by ignoring

what’s inside.

R. Eshuis [22, 23] propose a translation of UML activity diagrams to NuSMV code.

The proposed data abstraction is applied on guards and events. But from our experience,

some activity diagrams can be poor in these two features because the activity diagram is an

action-based diagram.

In Table 4.2, we compare our approach to the existing ones. We observe that few

of them formalize SysML activity diagrams and prove the soundness of their proposed

abstraction approaches. Moreover, our abstraction approach is efficient as it reduces the size

of the model by a considerable rate. Furthermore, our mechanism allows to gain advantage

from algorithms built within the tool in use.

Approach Design Probabilistic Property Formalization Soundness
[58, 57]

[87] �
[74] � �
[16] �

[88, 89] �
[83] �
[91] �

[22, 23] �
Our � � � � �

Table 4.2: Comparison with the Related Work

4.6 Conclusion

In this chapter, we presented a formal abstraction framework to improve the scalability

of probabilistic model-checking in general, and more especially for verifying UML and

84

SysML activity diagrams. The presented framework implements two algorithms, the first

abstracts the irrelevant action nodes and guards in a diagram with respect to a PCTL. And,

the second algorithm collapses nodes that share similar behaviors. We proved the soundness

of our abstraction algorithms by defining a probabilistic weak simulation relation between

the semantics of the abstract and the concrete diagrams. In addition, the preservation of

the satisfaction of PCTL properties by this relation is proved. Finally, we demonstrated the

effectiveness of our approach by applying it the online shopping system and the real time

streaming protocol. In the next chapter, we propose a compositional verification methodol-

ogy to avoid the verification of the whole diagrams.

85

Chapter 5

Compositional Verification of SysML

Activity Diagrams

5.1 Introduction

The exhaustive research algorithms in model checking are generally a resource-intensive

process that requires a large amount of memory and time processing. This is due to the

fact that the systems’ state space may grow exponentially with the number of variables

combined with the presence of concurrent behaviors such as invoking behaviors in SysML

activity diagrams. In this chapter, we overcome this limitation by proposing a compositional

verification solution.

Figure 5.1 presents an overview of our proposed compositional verification frame-

work. It takes a set of SysML activity diagrams composed by the call behavior interface

and a PCTL [5, 27] property as input. First, we rely to the abstraction framework devel-

oped in the previous chapter that collapses similar behaviors and ignores the useless ones

in diagrams with respect to a PCTL property. In addition, we propose a compositional

verification approach by interface processes to distribute a PCTL property into local ones

86

and to verify them separately on the obtained reduced diagrams. Each single property is

verified locally by using the verification framework proposed in Chapter 3. Finally, we

deduce the result of the main property from the local properties results. In a nutshell, the

main contributions of the present chapter can be summarized as follows: 1) Proposing an

efficient verification approach that reduces the verification overhead of probabilistic model

checkers, and 2) Proving the soundness of the proposed approach.

SysML Activity
Diagrams

Global
Results

Parallel
Verification

PCTL
Properties

Minimized
Diagrams

Local
Properties

Minimizing

Using

Decomposing

Input

Input
Measuring

Figure 5.1: A Compositional Verification Framework.

The remainder of this chapter is organized as follows. Our compositional verification

framework is detailed in the next section and Section 5.3 presents the experimental results.

Finally, Section 5.5 concludes this chapter.

5.2 The Compositional Verification Approach

This section describes first our compositional approach to verify a PCTL property on a

SysML activity diagram. Then, it shows how an activity diagram is mapped into PRISM.

Let A be a SysML activity diagram with n call behaviors denoted by:

A = A0 ↑a0 A1 · · ·Ai−1 ↑ai−1 Ai · · ·An−1 ↑an−1 An.

First, we reduce the diagram A by applying NuAC axioms and introducing Proposition 5.1

that ignores behaviors Ai that are not influenced by the property φ to be verified.

87

Proposition 5.1. LetA be a diagram that contains n behaviors, APφ is the atomic proposi-

tions of the PCTL property φ and APAi is the atomic propositions of the behavior diagram

Ai. Then, we have:

∀Ai:0≤i≤n,APφ ∩APAi:0≤i≤n = /0 : Ai = ε∧ [(A0 ↑a0 A1 · · ·An−1 ↑an−1 An) |= φ]⇒ [A |= φ].

Proof. The proof of this proposition follows an induction reasoning on PCTL structure.

Here, we take the case of φ = φ1Uφ2.

For ∀Ai:0≤i≤n,APφ ∩APAi:0≤i≤n = /0 : Ai = ε , we will have: A0 ↑a0 A1 · · ·Ak−1 ↑ak−1 Ak).

Let [(A0 ↑a0 A1 · · ·Ak−1 ↑ak−1 Ak) |= φ]

⇔∃m, ∀ j < m : π(j) |= φ1∧π(m) |= φ2.

By calling Ai in ai using BH-1, the only changes in π are the propositions of Ai till execut-

ing BH-2, then:

∃m′ ≥ m, j′ ≥ j, ∀ j′ < m′ : π(j′) |= φ1∧π(m′) |= φ2

⇔ A0 ↑a1 . . . ↑ak Ak . . . ↑ai Ai |= φ .

By calling new Ai+1 in ai+1 up to n, we will have:

∃m′′ ≥ m′, j′′ ≥ j′, ∀ j′′ < m′′ : π(j′′) |= φ1∧π(m′′) |= φ2

⇔A0 ↑a1 . . . ↑an An |= φ ⇔A |= φ1Uφ2.

For φ1U≤kφ2 and Xφ cases, we deduce the following.

• ∀Ai:0≤i≤n,APφ∩APAi:0≤i≤n = /0 : Ai= ε∧[(A0 ↑a0 A1 · · ·An−1 ↑an−1 An) |= φ1U≤kφ2]⇒

[∃k′ ≥ k : A |= φ1U≤k′φ2].

• ∀Ai:0≤i≤n,APφ ∩APAi:0≤i≤n = /0 : Ai = ε∧

[(A0 ↑a0 A1 · · ·An−1 ↑an−1 An) |= Xφ]⇒ [A |= Xφ].

To decompose the PCTL property φ into local ones φi:0≤i≤n over Ai with respect to

the call behavior actions ai:0≤i≤n (interfaces), we introduce the decomposition operator “�”

88

proposed in Definition 5.1. The operator “�” is based on substituting the propositions of Ai

to the propositions related to its interface ai−1 which allows the compositional verification.

It uses the π-calculus substitution notation Q[z/y] which means in the structure Q, the term

z is substituted for the term y.

Definition 5.1 (PCTL Property Decomposition). Let φ be a PCTL property to be verified

on A1 ↑a A2. The decomposition of φ into φ1 and φ2 is denoted by φ = φ1�aφ2 where APAi

are the atomic propositions of Ai, then:

1. φ1 = φ([la/APA2]), where la is the atomic proposition related to the action a in A1.

2. φ2 = φ([�/APA1]).

The first rule is based on the fact that the only transition to reach a state in A2 from

A1 is the transition of the action la (BH-1). The second rule ignores the existence of A1

while it kept unchanged till the execution of BH-2. To handle multiplicity for the operator

“�”, we prove Property 5.1.

Property 5.1. The decomposition operator “�” is commutative and associative, i.e.

1. For A1 ↑a1 A2, the decomposition operator � is commutative: φ1�a1φ2 ≡ φ2�a1φ1.

2. ForA1 ↑a1 A2 ↑a2 A3, the decomposition operator � is associative: φ1�a1(φ2�a2φ3)≡

(φ1�a1φ2)�a2φ3.

Proof. 1. The commutativity of � is proved by constructing Φ1 = φ1�φ2 and Φ2 = φ2�φ1,

then comparing Φ1 and Φ2.

2. Similarly to the commutativity, the associativity of � is proved.

For the verification of φ on A1 ↑a1 A2, Theorem 5.1 deduces the satisfiability of φ

from the satisfiability of local properties φ1 and φ2 obtained by �.

89

Theorem 5.1 (Compositional Verification-CV). The decomposition of the PCTL property

φ by the decomposition operator � for A1 ↑a1 A2 is sound. i.e.

A1 |= φ1 A2 |= φ2 φ = φ1�a1φ2

A1 ↑a1 A2 |= φ

Proof. The proof of Proposition 5.1 follows a structural induction on the PCTL structure

by using Definition 5.1.

As an example, we take the until operator “U”. Let φ = ap1 U ap2 where ap1 ∈ APA1 and

ap2 ∈ APA2.

By applying Definition 5.1, we have: φ1 = ap1 U a1 and φ2 = � U ap2. Let A1 |= φ1⇔

∃m1, ∀ j1 < m1 : π1(j1) |= ap1∧π1(m1) |= ap1∧a1.

For A2 |= φ2⇔∃m2, ∀ j2 < m2 : π2(j2) |=�∧π2(m2) |= ap2.

To construct A1 ↑a1 A2, BH-1 is the only transition to connect π1 and π2 which form:

π = π1.π ′2 such that π ′2(i) = π2(i)∪π1(m1). Then: ∃ j ≤ m, m = m1 +m2 : π(j) |= ap1∧

π(m) |= ap2⇔A1 ↑a1 A2 |= φ

Finally, Proposition 5.2 generalizes Theorem 5.1 to support the satisfiability of φ on

an activity diagram with n behaviors.

Proposition 5.2 (CV-Generalization). Let φ be a PCTL property to be verified on A , such

that: A = A0 ↑a0 · · · ↑an−1 An and φ = φ0�a0 · · ·�an−1φn, then:

A0 |= φ0 · · ·An |= φn
φ = φ0�a0 · · ·�an−1φn

A0 ↑a0 · · · ↑an−1 An |= φ

Proof. We prove Proposition 5.2 by induction on n.

• The base step where “n= 1” is proved by Theorem 5.1.

• For the inductive step, first, we assume:

90

A0 |= φ0 · · ·An |= φn
φ = φ0�a0 · · ·�an−1φn

A0 ↑a0 · · · ↑an−1 An |= φ

Let A ′ =A0 ↑a0 · · · ↑an−1 An and φ ′ = φ0�a0 · · ·�an−1φn. While � and ↑ are associative

operators, then: A = A ′ ↑an An+1 and φ = φ ′�anφn+1. By assuming An |= φn and

applying Theorem 5.1, then:

A ′ |= φ ′ An+1 |= φn+1

A = A ′ ↑an An+1 φ = φ ′�anφn+1
A |= φ

5.3 Experimental Results

In the purpose of providing experimental results demonstrating the efficiency and validity

of our framework, we verify a set of PCTL properties on the online shopping system [32]

studied in the previous chapters. To this end, we compare the results “β” and the verification

cost in terms of the model size 1 “γ” and the verification time “δ” (sec) with and without

applying our approach.

For the diagram depicted in Figure 3.7a, the call behaviors action nodes: “Browse

Catalogue”, “Make Order”, “Process Order” and “Shipment” are denoted by a, b, c and d,

respectively. For simplicity, we take this order to denote their associated diagrams by A1

to A4, respectively, where A0 denotes the main diagram. As example, Figure 3.7b expands

the call behavior action “Process Order” denoted by A3. The whole diagram is written by:

A = A0 ↑a A1 ↑b A2 ↑c A3 ↑d A4.

Here, we propose to verify the the following properties that are expressed in PCTL.
1The model size is the number of transitions (edges).

91

Property Φ1. “For each order, what is the minimum probability value to make a

delivery after browsing the catalogue?”

Pmin=?[(Browse Catalogue) ⇒ (F(Delivery))].

In this expression, the “Browse Catalogue” proposition is part of A0 and “Delivery”

is a proposition of A3. For comparison, we verify first Φ on A . Then, by using Propo-

sition 5.1, we reduce the verification of Φ on A to Φ on A0 ↑c A3. By using the de-

composition rules of Definition 5.1, Φ1 is decomposed into two properties: Φ11 and Φ12

such that: Φ11 � Pmin =?[(Browse Catalogue) ⇒ (F(Process Order))], and Φ12 �

Pmin=?[(True) ⇒ (F(Delivery))].

After the verification of Φ1 on A , Φ11 on A0 and Φ12 on A3, Table 5.1 summa-

rizes the verification results and costs for different values of the number of orders “n”.

From the obtained results, we observe that the probability values are preserved where

β (Φ1)=β (Φ11)×β (Φ12). In addition, the size of the diagrams is minimized (γ(Φ11) +

γ(Φ12) < γ(Φ1)). Consequently, the verification time is reduced significantly: (δ (Φ11)+

δ (Φ12)� δ (Φ1)).

Property Φ2. “For each order, what is the maximum probability value to confirm a

shipment?”

Pmax=?[G((CreateDelivery)⇒ F(Con f irmShipment)].

The propositions of this property “CreateDelivery” and “ConfirmShipment” belong to A2,

and A4, respectively. Similarly to the verification Φ1, we verify Φ2 on A . Then, we

decompose Φ2 to Φ21, Φ22 with respect to A0 ↑b A2 ↑d A4. The PCTL expressions of the

decomposition are as follows.

Φ21 : Pmax=?[G((CreateDelivery)⇒ F(Shipment)].

Φ22 : Pmax=?[G((True)⇒ F(Con f irmShipment)].

92

n
1

2
3

4
5

6
7

8
9

10
β

(Φ
1)

0.
76

0.
76

0.
76

0.
76

0.
76

0.
76

0.
76

0.
76

0.
76

0.
76

γ(
Φ

1)
41

98
2

60
64

70
22

13
88

0
48

23
29

0
84

34
70

0
13

04
81

10
51

14
51

60
20

24
89

26
0

45
40

33
36

0
80

57
77

46
0

δ(
Φ

1)
0.

87
2

3.
12

10
.7

64
24

.3
64

44
.0

98
72

.1
73

35
8.

55
8

18
18

.2
47

62
97

.2
34

17
76

1.
63

6
β

(Φ
11

)
0.

8
0.

8
0.

8
0.

8
0.

8
0.

8
0.

8
0.

8
0.

8
0.

8
γ(

Φ
11

)
19

26
37

06
54

86
72

66
90

46
10

82
6

12
60

6
14

38
6

16
16

6
17

94
6

δ(
Φ

11
)

0.
46

0.
64

1.
09

3.
12

7.
51

1
12

.8
6

27
.0

3
54

.3
8

11
1.

74
16

3.
89

β
(Φ

12
)

0.
95

0.
95

0.
95

0.
95

0.
95

0.
95

0.
95

0.
95

0.
95

0.
95

γ(
Φ

12
)

12
12

12
12

12
12

12
12

12
12

δ(
Φ

12
)

0.
00

5
0.

00
5

0.
00

5
0.

00
5

0.
00

5
0.

00
5

0.
00

5
0.

00
5

0.
00

5
0.

00
5

Ta
bl

e
5.

1:
Th

e
Ve

rifi
ca

tio
n

C
os

tf
or

Pr
op

er
tie

sΦ
1,

Φ
11

,a
nd

Φ
12

.

j
1

2
3

4
5

6
7

8
9

10
β

(Φ
2)

0.
93

77
0.

93
77

0.
93

77
0.

93
77

0.
93

77
0.

93
77

0.
93

77
0.

93
77

0.
93

77
0.

93
77

γ(
Φ

2)
41

98
2

60
64

70
22

13
88

0
48

23
29

0
84

34
70

0
13

04
81

10
51

14
51

60
20

24
89

26
0

45
40

33
36

0
80

57
77

46
0

δ(
Φ

2)
4.

21
7

11
.4

58
33

.3
94

78
.7

46
16

8.
64

9
35

4.
21

1
22

80
.2

52
17

58
8.

75
5

34
29

0.
63

5
63

09
7.

01
4

β
(Φ

21
)

0.
93

77
0.

93
77

0.
93

77
0.

93
77

0.
93

77
0.

93
77

0.
93

77
0.

93
77

0.
93

77
0.

93
77

γ(
Φ

21
)

48
08

72
11

96
14

12
01

7
14

42
0

16
82

3
19

22
6

21
62

9
24

03
2

26
43

5
δ(

Φ
21

)
0.

92
6

1.
58

4
4.

77
5

12
.3

01
32

.8
52

83
.3

37
27

4.
9

45
0.

81
58

6.
43

65
2.

76
β

(Φ
22

)
1

1
1

1
1

1
1

1
1

1
γ(

Φ
22

)
9

9
9

9
9

9
9

9
9

9
δ(

Φ
22

)
0.

00
3

0.
00

3
0.

00
3

0.
00

3
0.

00
3

0.
00

3
0.

00
3

0.
00

3
0.

00
3

0.
00

3

Ta
bl

e
5.

2:
Th

e
Ve

rifi
ca

tio
n

C
os

tf
or

Pr
op

er
tie

sΦ
2

Φ
21

,a
nd

Φ
22

.

93

Table 5.2 shows the verification results and costs of Φ2 on A , Φ21 A0 ↑bA2, and Φ22

on A4 for different values of the number of orders “n”. We found that β (Φ2) = β (Φ21)×

β (Φ22), γ(Φ21)+ γ(Φ22)< γ(Φ2) and δ (Φ21)+δ (Φ22)� δ (Φ2).

5.4 Related Work

To compare our work to the existing ones, we survey the verification initiatives dedi-

cated mainly to SysML activity diagrams and the probabilistic compositional verification.

[18, 42] map the basic artifacts of a single SysML activity diagram into PRISM code where

both of them inherit PRISM verification limitations. [67] introduces the abstraction by state

merging to reduce the verification cost of SysML activity diagrams whereas [68] improves

the abstraction technique in [67] by proposing the abstraction by restriction on more behav-

iors. Concerning the compositional verification for probabilistic systems, [26] discusses

assume-guarantee technique for probabilistic system by focusing more on the leaning algo-

rithm to generate the minimal deterministic automata that represents a probabilistic safety

property. [25] proposes assume-guarantee where both assumption and guarantee properties

are probabilistic safety properties such that assumptions are generated manually. [24] ap-

plies the assume-guarantee technique on synchronous systems modeled as DTMC, where

assumptions are safety properties defined as probabilistic finite automata. To our knowl-

edge, few probabilistic model checkers support abstraction and compositional verification

techniques. As example, PRISM builds the symmetry reduction and LiQuor2 implements

the bi-simulation equivalence.
2http://www.i1.informatik.uni-bonn.de/baier/projectpages/LIQUOR/LiQuor

94

5.5 Conclusion

In this chapter, we presented a compositional verification framework to improve the effi-

ciency and the scalability of probabilistic model-checking. More specifically, our target

was verifying systems modeled using SysML activity diagrams. The presented framework

is based on abstraction by ignoring and merging behaviors that are irrelevant to a given

PCTL property. Moreover, we introduced a probabilistic compositional verification ap-

proach based on decomposing a global PCTL property into local ones with respect to the

interfaces between diagrams. We proved the soundness of the proposed framework by

showing that the satisfaction relation of the PCTL properties are preserved. Furthermore,

we proposed a semantic for SysML activity diagrams that helps on proofs and to encode

easily the diagrams in PRISM. In addition, we demonstrated the effectiveness of our ap-

proach by applying it on the online shopping system. In the next chapter, we propose a

security specification by using SysML activity diagrams that helps to express the system

requirements automatically.

95

Chapter 6

Security Specification of SysML Activity

Diagrams

6.1 Introduction

In this chapter, we address the issue of security specification and security risk assessment

of software/systems modeled by using SysML activity diagrams. The goal is to gauge how

well a product is meeting its security requirements. Our security specification framework

uses the verification framework introduced in the previous chapter to assess security risk. It

is composed of two stages: specification and evaluation as depicted in Figure 6.1. The for-

mer is to express easily the system requirements by introducing potential attack templates,

whereas the latter is a verification approach to evaluate their security level. First, we use

SysML activity diagrams to develop a library of CAPEC attack application-independent

templates with varied potential gains that can exploit the system vulnerabilities. By using

this library, application-dependent attack scenarios are instantiated and the interaction be-

tween the attack and the system diagrams is defined. In order to subject this interaction

96

to the verification framework (Chapter 3), the interaction is defined and the security re-

quirements are represented by SysML activity diagrams. Then, a specification algorithm

is proposed to generate their equivalent PCTL expressions. Finally, the verification frame-

work produces the probability value that represents the satisfaction degree of the generated

security property on the system under test.

CAPEC
Repository

Standard Library of
SysML Activity Diagrams

for Application
Independent Attack

Patterns

System&Software
Requirements

SysML Activity
Diagrams

System Property
SysML Activity

Diagrams

Composition of
System/Attack

Scenarios Diagrams

Set of Application
Dependent Attack

Patterns

PCTL Temporal
Logic Properties

Verification
Framework

Modeling

Selecting
a set

of AttacksIdentifying
Attack

SurfacesModeling Composing

Instantiating

Using Composing

Input

Input

Figure 6.1: Security Risk Assessment Framework.

The remainder of this chapter is organized as follows. Section 6.2.3 presents the

attack patterns. Our framework that contains the security specification and evaluation is

detailed in Section 6.3. Section 6.4 describes the experimental results and Section 6.5

surveys the existing related work. Finally, Section 6.6 concludes this chapter.

97

6.2 Software Security

In this chapter, we introduce the concept of security requirements and security attack mod-

els. The, we model a standard catalogue of attacks.

6.2.1 Security Properties

A software should satisfy its related security requirements to avoid the exploitation of vul-

nerabilities by attacks and threats. These requirements are also called security properties

and some of them are used by measure community to evaluate security. Here, we cite the

main known security properties:

• Authentication. It identifies an entity before granting access to a system’s resource.

• Confidentiality. It is the concealment of information or resources. The data is dis-

closed only as intended by the enterprize.

• Integrity. The integrity of a variable is preserved if it doesn’t take any value different

from the ones it should have at any time during the execution of a system.

• Availability. It is the property that enterprize assets, including business processes,

will be accessible when needed for authorized use.

• Secrecy. A system preserves the secrecy of an information, if, it does not appear for

an adversary.

• Authenticity. The message authenticity is to secure the information on the message

origin.

• Freshness. A message is fresh, only if, it is unpredictable and it has never appeared

during the system execution.

98

6.2.2 Attack Scenario

Here, we present the attack behavior and show its impact on a system. As defined in [1], an

attack is an attempt to gain unauthorized access to an Information System’s (IS) services,

resources, or information or the attempt to compromise an IS’s integrity, availability, or

confidentiality, as applicable. Different attack models have been deployed such as: attack

tree, attack graph, and network attack graph.

• An attack tree [52] is a tree where the nodes represent attacks. The root node of the

tree is the global goal of the attack. Children of a node are refinements of this goal,

and leafs therefore represent attacks that can no longer be refined. A refinement can

be done by either an aggregation or a choice.

• An attack graph [78] is a graph where each vertex represents the entire network state

and the arcs represent state transitions caused by an attacker’s actions. Also, a vertex

can not represent the entire state of a system but rather a system condition in a predi-

cate form and the arcs represent the relations between the system conditions. In this

case, the attack graph is called a dependency attack graph.

• A network attack [80] is an attack model [80] composed of the computer network, the

attacker, and the defender. A state transition in a network attack model corresponds

to a single action by the intruder, a defensive action by the system administrator, or a

routine network action.

6.2.3 Standard Attack Patterns

This section presents the concept of attack patterns, introduces the notion of probabilistic

likelihood of an attack and formalizes attack patterns as SysML activity diagrams.

99

Software security attack patterns are currently being researched and designed to ex-

pose exploited code development flaws and describe the common methods, techniques, and

logic that attackers use to exploit software [31]. Many researches and organizations such

as CAPEC and WASC1 show special interest in attack patterns. They are expressed in a

textual format and described using a set of predefined elements including the attack goal,

the preconditions, the attack steps and the post-conditions of a successful attack.

Particularly, CAPEC is a software assurance strategic initiative that provides a pub-

licly available catalog of attack patterns. It counts 311 attack patterns (each identified using

a unique identifier) organized into 67 categories and sub-categories. The CAPEC attack pat-

terns are documented according to a standard schema devised by CAPEC that includes both

primary and supporting schema elements. Primary schema elements include the pattern id,

the description of the attack, related weaknesses, typical severity, likelihood of exploitation,

attack surface, and abstraction level. The supporting schema elements are categorized into

describing, diagnosing, and enhancing information. Our first objective is to model attack

patterns using SysML activity diagrams. To this end, we propose the template of attack

patterns described as a SysML activity diagram shown in Figure 6.2.

Each concrete attack pattern is built by instantiating this template and specifying the

call behavior action denoted by “Pattern Behavior”. The main control flow in this template

is a probabilistic decision used to specify the likelihood of the attack occurrence, which

corresponds to the probability “P”. The value of “P” is determined based on the “typical

likelihood of exploitation” schema element provided within CAPEC catalogue. However,

this schema element is a qualitative description of the likelihood that ranges from “low”

to “high”. In order to quantify this attribute, we propose to assign ranges of probabilities

to each qualitative description based on the standard of security risk management [39] in
1http://www.webappsec.org, The Web Application Security Consortium.

100

combination with the Kent‘s Words of Estimative Probability2. The probability ranges

corresponding to the estimative terms are specified in Table 6.1. The probability related to

the instantiated attack pattern is obtained by a centroid defuzzification function3.

Figure 6.2: SysML Activity Diagram of the Attack Pattern Template.

Table 6.1: Probability Values Scale.

CAPEC terms Kent’s Estimative terms Probability values
High Certain 100
High Almost Certain 93% (±6%)

Medium to High Probable 75% (±12%)
Medium Chances About Even 50%(±10%)

Low to Medium Probably Not 30%(±10%)
Low Almost Certainly Not 7%(±5%)
Low Impossible 0

Since not all attacks in CAPEC can be applied at the design level, we need to select

attack patterns that are technology and platform independent. Thus, we rely on the “pattern

abstraction level” schema element to select the applicable attack patterns. The latter schema

element defines three levels of abstraction: meta, standard, and detailed. Particularly, we

focus on the standard level, which corresponds to a typically functional context-dependent

but technology context-independent attack pattern. In the following, we provide the set of

the considered CAPEC attack patterns with their corresponding activity flows representing

the pattern behavior and their associated likelihoods.
2https://www.cia.gov/library; Words of Estimative Probability.
3http://www.osti.gov; Office of Scientific and Technical Information.

101

• Spoofing (CAPEC-156): An attacker builds a message such that it is able of mas-

querading an authorized message from a trusted principal. As a result, consumers

of these messages can be manipulated into responding or processing the deceptive

message. It may refer to spoofing the content (CAPEC-148) or the id (CAPEC-151).

Their pattern is depicted by the followingfigure such that P(CAPEC-148)=P(CAPEC-

151)=0.8.

• Data Leakage (CAPEC-118): In this class, the attacker uses well-formed requests

to get sensitive information by exploiting weaknesses in the design. The attacker

may collect this information through a variety of methods including active querying

as well as passive observation. Three techniques are used in this class: Data exca-

vation (CAPEC-116), Data interception (CAPEC-117), and Sniffing (CAPEC-148).

CAPEC-116 and CAPEC-117 are presented by the first control flow with P(CAPEC-

116)=0.5 and =P(CAPEC-117)=0.5. Also, CAPEC-148 is illustrated in the second

control flow with a probability value P(CAPEC-148)=0.2.

• Resource Depletion (CAPEC-119): The attacker depletes a resource to the point that

the target’s functionality is affected. The result is usually the degradation or denial of

one or more services offered by the target. In order to deplete the target’s resources,

the attacker can achieve its objective through flooding (CAPEC-125), through leak

(CAPEC-131) by uploading a malicious file, or through allocation (CAPEC-131) by

sending a formatted request. The pattern of these attacks is depicted by the fol-

lowing figure and launched by these probability values: P(CAPEC-125|n≥ m)= 0.8,

102

P(CAPEC-131|n<m)=0.8 where n is the number of requests andm is a number fixed

by the designer.

• Injection (CAPEC-152): The attacker is able to control or disrupt the behavior of

a target through crafted input data submitted using an interface functioning to pro-

cess data input. Different resource-dependent patterns are detailed in CAPEC and

abstracted to design level such as SQL (CAPEC-66), email (CAPEC-134), format

string (CAPEC-135), LDAP (CAPEC-136), resource injection (CAPEC-240), script

injection (CAPEC-242), and command injection (CAPEC-248). All of them take the

form of the following control flow with a probability value equal to 0.8.

• Exploitation of Authentication (CAPEC-225) takes advantage of weaknesses related

to authentication mechanisms including authentication bypass by spoofing (CWE-ID-

290), authentication bypass by assumed immutable data (CWE-ID-302), and origin

validation error (CWE-ID-346). Particularly, its descendent sub-category CAPEC-

21 aims at exploiting session variables, resource IDs and other trusted credentials to

take advantage of the fact that some software accepts user input without verifying its

authenticity. They have the following work flow with P = 0.8.

• Fuzzing (CAPEC-28): It is part of the probabilistic techniques (CAPEC-223) and

it is inspired by a software testing method. The attacker provides randomly gener-

ated input to the system and looks for an indication to identify weaknesses in the

103

system. The pattern of this attack is depicted by the following control flow such

that P(CAPEC-28) = 0.8 and P1, P2,· · · , Pn are probability values (e.g. uniformly

distributed).

6.3 Security Properties Specification

In this section, we detail the specification and the evaluation procedures of the proposed

framework presented in Section 6.1.

6.3.1 The Security Requirements Specification

This section describes the specification of SysML activity diagrams A as PCTL temporal

logic expressions. Algorithm 4 illustrates the specification procedure Ξ that takes A as

input and produces its equivalent PCTL expression denoted by PCTLexp. The procedure Ξ

parses the diagram A with a complexity of O(|n|2) by using a depth-first search where |n|

is the number of activity nodes in A .

The procedure Ξ is described as follows. First, the initial node is pushed into the

stack of nodes denoted by nodes (line 9). While the stack is not empty (line 10-27), the

algorithm pops a node from the stack nodes into the current node denoted by cNode (line

12). Then, the current node is added into the list vNode of visited nodes (line 15) if it is

not already visited (line 13). The PCTL expressions denoted by PCTLexp is constructed by

calling the function Λ (line 19) that has two arguments which are the current node cNode

and its successors saved in the list nNode (line 17). The explored successors are pushed into

104

the stack nodes (line 22-24), then, they are cleared from the list nNode (line 26). Finally,

the algorithm terminates when all nodes are visited.

Algorithm 4 Specification Algorithm Ξ of SysML Activity Diagrams into PCTL Expres-
sion.
Input: SysML activity diagrams A .
Output: PCTL expression PCTLexp.

1: nodes as Stack; � A stack of nodes which is initially empty.
2: cNode as Node; � The current node which is initially empty.
3: nNode, vNode as list_of_Node; � List of nodes that are initially empty.
4: procedure Ξ(A)
5: nodes.push(in); � Push the initial node in the stack nodes.
6: while not nodes.empty() do � Pop the current node.
7: cNode := nodes.pop();
8: if cNode not in vNode then � Consider the current node as a visited node.
9: vNode.add(cNode); � Get the successors of the current node.

10: nNode := cNode.successors();
� Call the mapping rules function.

11: PCTLexp.add(Λ(cNode,nNode));
12: end if � Stores all newly discovered nodes.
13: for all n in nNode do
14: nodes.push(n);
15: end for � Empty the list nNode.
16: nNode.clear();
17: end while
18: end procedure

The function Λ presented in Listing 6.1 produces the appropriate PCTL expression

for the current node. It takes into consideration the current node and its successors, both of

them constitute the atomic propositions of the resulted PCTL property. The selected PCTL

operators (X, U≤k or U) to express the produced property depends on the structure of the

current node and the semantic operational rules developed by NuAC. The rule 1 (line 3)

expresses the existence of an element “N ” during the execution of a SysML activity di-

agram, whereas the rule 2 (line 7) shows the execution of successive elements “N1” and

“N2” that both of them have one output and one input, respectively. The rule 4 (line 18)

specifies the properties of a guarded decision node and the rule 3 (line 12) is a probabilistic

105

version of the previous rule (rule 4). The rule 5 in line 25 denotes properties proper to a

merge node and the rule 6 in line 31 specifies properties related to a fork node. The rule 7

in line 38 describes the properties related to a join node. Finally, the rule 8 in line 46 mea-

sures the minimum/maximum probability of the satisfaction of a generated PCTL property.

The min/max probability values are considered with respect to the non-determinism in the

system/attack interaction. Each rule is referenced by its order, for example “l⇒F(L(N2))”

(line 9) is denoted by Rule 2-b and L(N2) returns a label of the term N2.

Listing 6.1: PCTL Specification Function.

1 Λ : A �→ φ

2 Λ (A) = ∀n ∈A , Case (n) o f

3 l : N ⇒

4 in

5 {X(l)} ∪ {F(l)} ∪ {�U≤k l}

6 end

7 l : N1�N2 ⇒

8 in

9 {l⇒X(L(N2))} ∪ {l⇒F(L(N2))} ∪ {l U L(N2)}

10 ∪ {l U≤k L(N2)}∪ Λ(N1) ∪ Λ(N2)

11 end

12 l : D(p,g,N1,N2) ⇒

13 Case (p) o f

14]0,1[⇒

15 in

16 {P(Λ(l : D(g,N1,N2))) �� pi}

17 end

18 O t h e r w i s e ⇒

19 in

20 {l⇒X(L(N1)∨L(N2))} ∪ {l⇒F(L(N1))}

21 ∪ {l⇒F(L(N2))} ∪ {g⇒X(L(N1))}

106

22 ∪ {g⇒F(L(N1))} ∪ {¬g⇒X(L(N2))}

23 ∪ {¬g⇒F(L(N2))} ∪ Λ(N1) ∪ Λ(N2)

24 end

25 l :M(x,y)�N ⇒

26 in

27 {lx⇒X(L(N))} ∪ {lx⇒F(L(N))}∪ {lx U L(N)}

28 ∪ {lxU≤k L(N)}∪{ly⇒X(L(N))}∪ {lyU≤kL(N)}

29 ∪ {ly⇒F(L(N))} ∪ {ly U L(N)} ∪ Λ(N)

30 end

31 l : F(N1,N2) ⇒

32 in

33 {l⇒X(L(N1)∧L(N2))} ∪ {l⇒X(L(N1)}

34 ∪ {l⇒X(L(N2)} ∪ {l⇒F(L(N1)∧L(N2))}

35 ∪ {l⇒F(L(N1))} ∪ {l⇒F(L(N2))}

36 ∪ Λ(N1) ∪ Λ(N2)

37 end

38 l : J(x,y)�N ⇒

39 in

40 {lx⇒X(L(N))} ∪ {lx⇒F(L(N))}

41 ∪ {lx U L(N)} ∪ {lx U≤k L(N)}∪ {ly⇒X(L(N))}

42 ∪ {ly⇒F(L(N))} ∪ {ly U L(N)} ∪ {ly U≤k L(N)}

43 ∪ {lx∧ ly⇒X(L(N))} ∪ {lx∧ ly⇒F(L(N))}

44 ∪ {ly⇒ U L(N)}∪Λ(N)

45 end

46 O t h e r w i s e

47 in

48 {Pmin=?[G(Λ(N))]} ∪ {Pmin=?[F(Λ(N))]}

49 ∪ {Pmin=?[GF(Λ(N))]}∪{Pmax=?[G(Λ(N))]}

50 ∪ {Pmax=?[F(Λ(N))]} ∪ {Pmax=?[GF(Λ(N))]}

51 ∪ {Pmin=?[(Λ(N))]} ∪ {Pmax=?[(Λ(N))]}

107

52 end

6.3.2 The Security Requirements Evaluation

In this section, we define the interaction operator between the system and the attack dia-

grams. For evaluation, we express this interaction in PRISM.

Basically, a system’s attack surface is the way in which an adversary can interact with

the system and potentially cause damage to it. The larger the attack surface, the greater

will be the number of potential attacks. The definition of an attack surface for an activity

diagram is given by Definition 6.1.

Definition 6.1 (NuAC Attack Surface). An attack surface of a NUAC term A is the tuple

ASA = (N, X , O, Ch), where:

• N is the set of entry points that can receive signal and object tokens,

• X is the set of exit points that produces tokens,

• O is the set of un-trusted data/tokens,

• Ch : N×X → O is a function assigning to each entry and exit point a token/object.

To define the global model, we introduce the concept of interaction interface denoted

by I between two SysML activity diagrams A1 and A2. It is based on the attack surfaces

of the interacting diagrams. Specifically, it matches exit points of one activity diagram to

the entry points of the other. The interaction interface is given in Definition 6.2.

Definition 6.2 (NuAC Interaction Interface). An interaction interface between two SysML

activity diagrams A1 with an attack surface ASA1 and A2 with an attack surface ASA2 is a

set of triplet I = {(n, x, o) ∈ NA1×XA2×O2∪NA2×XA1×O1|Ch1(n) =Ch2(x) = o}.

108

In our perspective, we consider the interaction between the system and the attack

scenario. Thus, given the system diagram A1, the attack diagram A2, and their interaction

interface I , the global diagram can be written as follows A = A1 ‖I A2. We define

the composition in PRISM as a system combined by the synchronization CSP algebraic

operator as presented in Listing 6.2.

Listing 6.2: PRISM Fragment code for the Composition

1

2 / / PRISM Fragment code f o r t h e d iag ram Ai

3

4 Module Ai

5 / / V a r i a b l e i n i t i a l i z a t i o n .

6 l0 b o o l i n i t t r u e ;

7 · · ·

8 li b o o l i n i t f a l s e ;

9 · · ·

10 ln b o o l i n i t f a l s e ;

11 / / Module commands .

12 / / I n i t i a l node command .

13 [l0] l0 → (l′0 = f alse)&(L(N)′ = true) ;

14 · · ·

15 / / A p r o b a b i l i s t i c node command .

16 [li] gi → ···+pk : uk+· · · ;

17 · · ·

18 / / A non p r o b a b i l i s t i c node command .

19 [l j] g j → um ;

20 · · ·

21 / / F i n a l node command .

22 [ln] ln → (l′0 = f alse)& · · ·&(l′n = f alse) ;

23 endModule

109

24

25 / / PRISM Fragment code f o r t h e c o m p o s i t i o n A1 ‖I A2

26 sy s tem

27 A1|[L(n1)L(x1),L(n2)L(x2)]|A2

28 e n d sy s t em

6.4 Experimental Results

We apply the developed approach in this chapter on the Real Time Streaming Protocol.

First, we describe the builded attack scenario. Then, We evaluate the proposed security

properties.

6.4.1 Attack Scenario

In Figure 6.3, we present the SysML activity diagram that describes the behavior of the

attack scenario specific to RTSP application. It is composed of the attack patterns CAPEC-

(156 ,118, 119, 225). The main abilities of these attacks are: flooding the server by sending

DESCRIBE messages (CAPEC-119), hijacking users sessions by modifying SETUP mes-

sages (CAPEC-156), disturbing the service by sending PAUSE message after a successful

hijacking session (CAPEC-156), illegitimate access to media by sending PLAY message

after a successful session hijacking (CAPEC-118), sniffing the media in transit (CAPEC-

156), and interrupting the service by sending TEARDOWN message (CAPEC-119). The

generated attack model interacts with the RTSP client and server models as a third party.

The composition of the three SysML activity diagrams are automatically translated into

PRISM code by using the framework developed in Chapter 3.

110

Figure 6.3: SysML activity diagram for RTSP Attack Scenario.

6.4.2 Properties Specification and Evaluation

Here, we propose four security requirements to be verified against the composition of

Server/Client/Attack diagrams. Each security requirement is described by a SysML activity

diagram then mapped into PCTL expression.

Property 1. “Compute the maximum probability to disconnect a client immediately

by a TEARDOWN attack”. This requirement is described by the following diagram.

We refer to the labels “Attack.Teardown” send message node from the attack diagram

and “Client.End” action node from the client SysML activity diagram to consider them as

two atomic propositions. In addition, this requirement asks for an immediate consequence

which means Rule 2-a will be applied. Then, the obtained property will be:

111

(Attack.Teardown⇒(X (Client.End))).

Furthermore, to measure the maximum probability we rely on Rule 8-d that generates the

following PCTL property.

Pmax=?[G(Attack.Teardown⇒(X (Client.End)))].

After the verification of this property, we observe that the client can be interrupted with a

probability of 0.82 after a Teardown attack.

Property 2. “Compute the minimum probability of an attacker pausing the me-

dia viewed by a client”. This requirement is expressed in the following diagrams where

“Client.Play”, “Attack.Pause”, and “Client.Stop” are the atomic propositions.

First, we apply Rule 5-b related to the second merge node we have:

(Client.Play)⇒(F(Attack.Pause)).

Then, we apply Rule 3-b for the second decision node, we get:

((Client.Play)⇒(F(Attack.Pause)))⇒(F(Client.Stop)).

Finally, by applying Rule 8-g we get the last PCTL expression.

Pmin=? [((Client.Play)⇒(F(Attack.Pause)))⇒(F(Client.Stop))].

After verification, we found that the attacker’s probability to disturb a client from viewing

media is 0.6.

112

Property 3. “Measure the minimum probability to successfully hijack a session”. This

requirement is described by the following SysML activity diagram such that “Client.Play”,

“Attack.Setup” and “Client.End” are the atomic propositions.

First, by applying Rule 5-b for the third merge node we have:

Client.Play⇒(F(Attack.Setup)).

Then, we apply Rule 2-c to have:

(Client.Play⇒(F(Attack.Setup)) U Client.End

Finally, Rule 8-g is applied to generate the final property:

Pmin=? [G((Client.Play⇒(F(Attack.Setup)) U Client.End)].

After the evaluation of this property, we conclude that the client can lose its session by a

probability value 1.

Property 4. “Find the minimum probability that an attacker enforces a client to pause

viewing”. The SysML activity diagram of this requirement is shown here.

First, we rely to Rule 5-b for the third merge node which result:

113

Client.Play⇒(F(Attack.Pause)).

Then, we apply Rule 2-c to have:

Client.Play⇒(F(Attack.Pause)U Client.End).

Finally, Rule 8-a is applied to obtain the last PCTL expression:

Pmin=?[G(Client.Play⇒(F(Attack.Pause)U Client.End))].

The result obtained regarding the verification of the fourth property deduces that a client

can be stopped to view the media by a probability of 0.8.

6.5 Related Work

In this section, we cite the existing works related to security specification and attack-based

security analysis.

[29] identifies security vulnerabilities in code level by tailoring attack patterns based

on the software components. These patterns take the form of regular expressions that are

generic representations of vulnerabilities. [33] proposes a risk-based approach that cre-

ates modular attack trees for each component in the system. These trees are specified as

parametric constraints, which allow quantifying the probability of security breaches that

occur due to internal and external component vulnerabilities. [30] advocates the use of the

Aspect-Oriented Risk-Driven Development (AORDD) methodology based on formal secu-

rity evaluation and a trade-off analysis. [12] verifies security requirements by a qualitative

analysis and then computes performance measure as a quantitative entity provided by a

performance analysis of UML sequence diagram. [77] verifies the security of communica-

tion systems designed with UML by using AVISPA4 and TTool5 tools. [73] analyzes the
4http://www.avispa-project.org
5http://labsoc.comelec.enst.fr/turtle/

114

security of system configurations in terms of the weakest adversary that can compromise

the network. [28] models probability metrics based on attack graphs as a special Bayesian

Network. Each node of the network represents vulnerabilities as well as the pre and post

conditions.

[45, 37] extract specific cryptography-related information from UMLsec diagrams.

Moreover, the Dolev-Yao model of an attacker is included with UMLsec to model the in-

teraction with the environment. [14] proposes a collection of security patterns that include

security-specific and requirements-oriented information. The behavioral aspects of a pat-

tern are depicted as state machine or sequence diagram, and constraints that must hold are

expressed in LTL. [82] extends UMLsec to model peer-to-peer applications along with their

security aspects. It relies on the concept of abuse cases defined as UML use cases and state

machine diagrams to represent attack scenarios. [86] elaborates security requirements by

constructing intentional anti-models. It addresses malicious obstacles set up by attackers

to threaten security goals. [84] presents an approach to verify security and time-related

requirements. Both, UMLsec and MARTE profiles are used to address security and time.

6.6 Conclusion

In this chapter, a security assessment framework has been proposed to automatically ex-

press and evaluate security requirements in systems/software modeled by using SysML

activity diagrams. This framework models the standard catalogue of common attack pat-

terns as application-independent SysML activity diagrams templates. These templates are

used to easily instantiate an application-dependent attack diagrams. To this end, we have

defined the attack/system diagram interaction and map it into PRISM code. In addition,

we have developed a specification algorithm that transforms SysML activity diagrams into

the probabilistic temporal logic ”PCTL”. The effectiveness of our contribution has been

115

demonstrated by illustrating how expressing security properties and evaluating them easily

on the secure real time streaming protocol. This framework helps to reduce the develop-

ment cost by allowing flaws detection and measuring security level at an earlier stage of

software/system life cycle. The next chapter concludes the thesis by summing up the major

contributions and points out open research questions for future work.

116

Chapter 7

Conclusion

7.1 Conclusion

To tackle the difficulty in the security verification process of model-based systems, we

developed a novel formal framework that includes two parts: one for security specification

and a second for the formal verification of security. The main purpose of this framework is

to improve the verification process of model-based system, so they can meet the essential

security requirements.

We described the state of the art in the area of the verification and the security spec-

ification of model-based systems using model checking that, to the best of our knowledge,

does not have the required infrastructure to deal with security formal verification of com-

posed and interacted SysML behavioral diagrams.

To deal with the formal verification, we defined the adequate formal semantics of

SysML activity diagrams that helps to verify them easily by using model checker. Our

verification approach maps a set of SysML activity diagrams composed by call behavior and

communication actions into the input language of the probabilistic model checker PRISM.

To this end, we proved the soundness of our proposed verification approach by defining

117

adequately the relationship between the semantics of the mapped diagrams and the resulting

PRISM models. This is done by formalizing PRISM models. In addition, we proved the

preservation of the satisfaction of PCTL properties by this relation.

Moreover, we defined the behavior of attacks as SysML activity diagrams based on

a standard catalogue of common attack patterns. These patterns are used to build attack

scenarios encompassing probabilistic and non-deterministic behaviors. The result is a li-

brary of security templates that facilitate the formal expressiveness of temporal logic. We

developed a specification algorithm that generates temporal logic expressions starting from

security templates. Then, by using the proposed verification approach, we showed how to

evaluate systems’ security level based on its design model and a set of attack scenarios.

To minimize the verification cost, we presented a formal abstraction framework to

improve the scalability of probabilistic model-checking in general, and more especially for

verifying UML and SysML activity diagrams. We proved the soundness of the abstraction

algorithm by defining a probabilistic weak simulation relation between the semantics of the

abstract and the concrete diagrams. In addition, the preservation of the satisfaction of PCTL

properties by this relation is proved.

To avoid the verification complexity of the composed diagrams, we proposed a com-

positional verification approach to improve the efficiency and the scalability of probabilistic

model-checking. The presented solution is based on decomposing a global PCTL property

into local ones with respect to interfaces between diagrams. We proved the soundness of the

proposed framework by showing that the satisfaction relation of the PCTL properties are

preserved. In addition, we demonstrated the effectiveness of our framework by verifying

real systems that require a large amount of memory and time processing.

To the best of our knowledge, this thesis proposes an efficient security verification

framework of model-based systems, which behavior can be expressed as a probabilistic

118

system that exhibit non-determinism.

7.2 Future Work

In future, we would like to extend our work by investigating several directions. First, we

extend our framework to support more system features, and more diagrams such as state

machines and sequence diagrams. This targets to extend the proposed formal semantics to

handle the new features. Also, this helps to ensure the equivalence between the different

diagrams by finding a common semantics. Another important aspect is extracting the for-

mal syntax of diagrams automatically from the existing standard meta-models. Concerning

the specification part of the framework, we intend to handle the reliability requirements of

systems, and, prove the completeness of the proposed extension. In addition, expressing

the system requirements by using different diagrams. For the abstraction part, we intend to

transform a SysML activity diagram to its fractal form in order to benefit from our abstrac-

tion framework. This helps in the abstraction/refinement process of UML/SysML diagrams.

By adding new system features, we have to explore other abstraction approaches especially

data abstraction targeting specific system features like time and objects. Also, we intend

to investigate reducing the property within the model. In the compositional part, we target

to extend the compositional verification technique for other composition operators such as

send and receive messages. And, we plan to extend our framework to handle more com-

positional verification techniques like assume-guaranty. Finally, we want to validate our

framework on more complex system especially the cyber-physical systems.

119

Bibliography

[1] Marshall D. Abrams. Nims information security threat methodology. Mitre Technical

Report MTR 98 W000009, MITRE, Center for Advanced Aviation System Develop-

ment,McLean, Virgini, August 1998.

[2] L. Alawneh, M. Debbabi, Y. Jarraya, A. Soeanu, and F. Hassayne. A Unified Approach

for Verification and Validation of Systems and Software Engineering Models. In ECBS

’06., pages 409–418, Washington, DC, USA, 2006. IEEE Computer Society.

[3] Ermeson Andrade, Paulo Maciel, Gustavo Callou, and Bruno Nogueira. A Methodol-

ogy for Mapping SysML Activity Diagram to Time Petri Net for Requirement Valida-

tion of Embedded Real-Time Systems with Energy Constraints. In ICDS ’09: Proc.of

the 2009 Third Int. Conf. on Dig. Soc., pages 266–271, Washington, DC, USA, 2009.

IEEE Computer Society.

[4] Christel Baier, Pedro R. D’Argenio, and Marcus Größer. Partial order reduction for

probabilistic branching time. Electr. Notes Theor. Comput. Sci., 153(2):97–116, 2006.

[5] Christel Baier and Joost Pieter Katoen. Principles of Model Checking. The MIT Press,

may 2008.

[6] Paolo Baldan, Andrea Corradini, and Fabio Gadducci. Specifying and Verifying UML

Activity Diagrams Via Graph Transformation. In Corrado Priami and Paola Quaglia,

120

editors,Global Computing, volume 3267 of Lecture Notes in Computer Science, pages

18–33. Springer Berlin / Heidelberg.

[7] Federico Banti, Rosario Pugliese, and Francesco Tiezzi. An accessible verification

environment for uml models of services. Journal of Symbolic Computation, 46(2):119

– 149, 2011. Automated Specification and Verification of Web Systems.

[8] M. Encarnación Beato, Manuel Barrio-Solórzano, Carlos E. Cuesta, and Pablo de la

Fuente. UML Automatic Verification Tool with Formal Methods. Electron. Notes

Theor. Comput. Sci., 127:3–16, April 2005.

[9] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, and Ph. Schnoe-

belen. Systems and Software Verification. Springer, 2001.

[10] Sergey Berezin, Sérgio Vale Aguiar Campos, and Edmund M. Clarke. Compositional

reasoning in model checking. In Int. Symp. on Compositionality: The Significant

Difference, COMPOS’97, pages 81–102, 1998.

[11] Dimitri P. Bertsekas and John N. Tsitsiklis. An analysis of stochastic shortest path

problems. Math. Oper. Res., 16:580–595, August 1991.

[12] Mikael Buchholtz, Stephen Gilmore, Valentin Haenel, and Carlo Montangero. Endto-

end integrated security and performance analysis on the DEGAS Choreographer plat-

form. In Proceedings of the International Symposium of Formal Methods Europe (FM

2005), number 3582 in LNCS, pages 286–301. Springer-Verlag, 2005.

[13] Ermeson Carneiro, Paulo Maciel, Gustavo Callou, Eduardo Tavares, and Bruno

Nogueira. Mapping SysML State Machine Diagram to Time Petri Net for Analy-

sis and Verification of Embedded Real-Time Systems with Energy Constraints. In

121

ENICS ’08: Proc.of the 2008 Int.Conf.on Adv.in Elec.and Micro-elec., pages 1–6,

Washington, DC, USA, 2008. IEEE Computer Society.

[14] B H. C. Cheng, S. Konrad, L. A. Campbell, and R. Wassermann. Using Security

Patterns to Model and Analyze Security. In In IEEE W. on Requirements for High

Assurance Systems, pages 13–22, 2003.

[15] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The MIT

Press, 1999.

[16] Chen Daoxi, Zhang Guangquan, and Fan Jianxi. Abstraction framework and complex-

ity of model checking based on the Promela models. In Computer Science Education,

2009. ICCSE ’09. 4th International Conference on, pages 857 –861, july 2009.

[17] D. Das, R. Kumar, and P.P. Chakrabarti. Timing Verification of UML Activity Dia-

gram Based Code Block Level Models for Real Time Multiprocessor System-on-Chip

Applications. In Software Engineering Conference, 2006. APSEC 2006. 13th Asia

Pacific, pages 199 –208.

[18] Mourad Debbabi, Fawzi Hassaïne, Yosr Jarraya, Andrei Soeanu, and Luay Alawneh.

Verification and Validation in Systems Engineering - Assessing UML / SysML Design

Models. Springer, 2010.

[19] Alastair F. Donaldson, Alice Miller, and David Parker. Language-level symmetry re-

duction for probabilistic model checking. QEST ’09, pages 289–298. IEEE Computer

Society, 2009.

[20] Raida Elmansouri, Houda Hamrouche, and Allaoua Chaoui. From UML Activity

Diagrams to CSP Expressions: A Graph Transformation Approach using Atom3 Tool.

IJCSI International Journal of Computer Science Issues, 8, March 2011.

122

[21] A. Enders and H.D. Rombach. A Handbook of Software and Systems Engineering:

Empirical Observations, Laws, and Theories. Fraunhofer IESE science series on soft-

ware engineering. Addison-Wesley Longman, Incorporated, 2003.

[22] Rik Eshuis. Symbolic Model Checking of UML Activity Diagrams. ACM Transac-

tions on Software Engineering and Methodology, 15:2006, 2006.

[23] Rik Eshuis and Roel Wieringa. Tool support for verifying uml activity diagrams. IEEE

Transactions on Software Engineering, 30:2004, 2004.

[24] Lu Feng, Tingting Han, Marta Kwiatkowska, and David Parker. Learning-based com-

positional verification for synchronous probabilistic systems. In Proc. of the 9th int.

conf. on Aut. tech. for verif. and analy., ATVA’11, pages 511–521. Springer-Verlag,

2011.

[25] Lu Feng, Marta Kwiatkowska, and David Parker. Compositional verification of prob-

abilistic systems using learning. In Proceedings of the 2010 Seventh Int. Conf. on the

Quant. Eval. of Sys., QEST ’10, pages 133–142. IEEE Computer Society, 2010.

[26] Lu Feng, Marta Kwiatkowska, and David Parker. Automated learning of probabilistic

assumptions for compositional reasoning. In Proc. of the 14th int. conf. on Fund.

approaches to software engineering, FASE’11/ETAPS’11, pages 2–17, 2011.

[27] V. Forejt, M. Kwiatkowska, G. Norman, and D. Parker. Automated Verification Tech-

niques for Probabilistic Systems. In M. Bernardo and V. Issarny, editors, Formal

Methods for Eternal Networked Software Systems (SFM’11), LNCS, pages 53–113.

Springer, 2011.

123

[28] M. Frigault and Lingyu Wang. Measuring Network Security Using Bayesian Network-

Based Attack Graphs. In Computer Software and Applications, 2008. COMPSAC ’08.

32nd Annual IEEE International, pages 698–703, August 2008.

[29] M Gegick and L Williams. On The Design of More Secure Software-Intensive Sys-

tems by Use of Attack Patterns. Inf. Softw. Technol., 49:381–397, April 2007.

[30] Geri Georg, Kyriakos Anastasakis, Behzad Bordbar, Siv Hilde Houmb, Indrakshi Ray,

and Manachai Toahchoodee. Verification and Trade-Off Analysis of Security Proper-

ties in UML System Models. IEEE Transactions on Software Engineering, 36:338–

356, 2010.

[31] Karen Mercedes Goertzel, Theodore Winograd, Holly Lynne McKinley, Lyndon

Oh Michael Colon, Thomas McGibbon, Elaine Fedchak, and Robert Vienneau. Soft-

ware Security Assurance, State-of-the-Art Report SOAR. State-of-the-Art Report

SPO700-98-D-4002, IATAC and DACS, July 2007.

[32] H. Gomaa. Software Modeling and Design: UML, Use Cases, Patterns, and Software

Architectures. Cambridge University Press, 2011.

[33] L Grunske and D Joyce. Quantitative Risk-Based Security Prediction for Component-

Based Systems with Explicitly Modeled Attack Profiles. J. Syst. Softw., 81:1327–

1345, August 2008.

[34] C. A. R. Hoare. Communicating sequential processes, 2004.

[35] J. Holt and S. Perry. SysML for Systems Engineering. Institution of Engineering and

Technology Press, January 2007.

[36] Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall,

Inc., Upper Saddle River, NJ, USA, 1991.

124

[37] Siv Hilde Houmb, Shareeful Islam, Eric Knauss, Jan Jürjens, and Kurt Schneider.

Eliciting Security Requirements and Tracing them to Design: An Integration of Com-

mon Criteria, Heuristics, and UMLsec. Requir. Eng., 15:63–93, March 2010.

[38] H.S.Y. Huang and K.T.G. Cheng. Formal Equivalence Checking and Design Debug-

ging. Frontiers in electronic testing; FRET 12. Kluwer Academic, 1998.

[39] ISO. Information technology – Security techniques – Information security risk man-

agement, 2008.

[40] David N. Jansen, Holger Hermanns, and Joost Pieter Katoen. A Probabilistic Exten-

sion of UML Statecharts - Specification and Verification. In In Formal Techniques

in Real-Time and Fault-Tolerant Systems (FTRTFT), LNCS 2469: 355Ű374, pages

76–91. Springer, 2002.

[41] David N. Jansen, Holger Hermanns, and Joost Pieter Katoen. A QoS-Oriented Exten-

sion of UML Statecharts. Lecture notes in computer science, 2863:76–91, 2003.

[42] Yosr Jarraya and Mourad Debbabi. Formal specification and probabilistic verification

of sysml activity diagrams. In TASE, pages 17–24, 2012.

[43] Yosr Jarraya, Mourad Debbabi, and Jamal Bentahar. On the Meaning of SysML Ac-

tivity Diagrams. In Proc. of the 2009 16th Ann. IEEE Int. Conf. and Work. on the Eng.

of Comp. Based Sys., ECBS ’09, pages 95–105, Washington, DC, USA, 2009. IEEE

Computer Society.

[44] Yosr Jarraya, Andrei Soeanu, Mourad Debbabi, and Fawzi Hassaine. Automatic Veri-

fication and Performance Analysis of Time-Constrained SysML Activity Diagrams. In

ECBS ’07: Proc. of the 14th An. IEEE Int. Conf. and Work. on the Eng. of Comp.-Bas.

Sys., pages 515–522, Washington, DC, USA, 2007. IEEE Computer Society.

125

[45] Jan Jürjens and Pasha Shabalin. Automated Verification of UMLsec Models for Se-

curity Requirements. In UML 2004 Ű The Unified Modeling Language, volume 2460

of LNCS, pages 412–425. Springer, 2004.

[46] P.S. Kaliappan, H. Koenig, and V.K. Kaliappan. Designing and Verifying Commu-

nication Protocols Using Model Driven Architecture and Spin Model Checker. In

Computer Science and Software Engineering, 2008 International Conference on, vol-

ume 2, dec. 2008.

[47] Joost-Pieter Katoen, Tim Kemna, Ivan Zapreev, and David N. Jansen. Bisimulation

minimisation mostly speeds up probabilistic model checking. TACAS’07, pages 87–

101, Berlin, Heidelberg, 2007. Springer-Verlag.

[48] Mark Kattenbelt, Marta Kwiatkowska, Gethin Norman, and David Parker. Game-

based probabilistic predicate abstraction in prism. Electron. Notes Theor. Comput.

Sci., 220(3):5–21, December 2008.

[49] Mark Kattenbelt, Marta Kwiatkowska, Gethin Norman, and David Parker. A game-

based abstraction-refinement framework for markov decision processes. FormalMeth-

ods in System Design, 36:246–280, 2010.

[50] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of Probabilistic

Real-Time Systems. In CAV, LNCS, pages 585–591. Springer, 2011.

[51] V. Lima, C. Talhi, D. Mouheb, M. Debbabi, L. Wang, and Makan Pourzandi. Formal

verification and validation of uml 2.0 sequence diagrams using source and destination

of messages. Electron. Notes Theor. Comput. Sci., 254:143–160, October 2009.

126

[52] Sjouke Mauw and Martijn Oostdijk. Foundations of attack trees. In International

Conference on Information Security and Cryptology Ű ICISC 2005. LNCS 3935, pages

186–198. Springer, 2005.

[53] McAfee. 2013 Threats Predictions. McAfee an Intel Company, April 2013.

[54] Robin Milner. Communicating and mobile systems - the Pi-calculus. Cambridge

University Press, 1999.

[55] Monty Newborn. Automated theorem proving - theory and practice. Springer, 2001.

[56] Norton. Internet Security Threat Report. Symantec Corporation, April 2013.

[57] Iulian Ober, Susanne Graf, and Ileana Ober. Validating Timed UML models by simu-

lation and verification. In Workshop SVERTS, San Francisco, October 2003.

[58] Iulian Ober, Susanne Graf, and Ileana Ober. Model Checking of UML Models via a

Mapping to Communicating Extended Timed Automata. In 11th International SPIN

Workshop on Model Checking of Software, 2004, volume 2989 of LNCS, 2004.

[59] L. OGorman. Comparing Passwords, Tokens, and Biometrics for User Authentication.

Proceedings of the IEEE, 91(12):2021–2040, 2003.

[60] OMG. OMG Systems Modeling Language (OMG SysML) Specification. Object Man-

agement Group, September 2007.

[61] OMG. OMG Unified Modeling Language: Superstructure 2.1.2. Object Management

Group, November 2007.

[62] Samir Ouchani, Yosr Jarraya, and Otmane Aït-Mohamed. Model-based systems se-

curity quantification. In PST, pages 142–149, 2011.

127

[63] Samir Ouchani, Yosr Jarraya, Otmane Ait Mohamed, and Mourad Debbabi. Security

estimation in Streaming Protocols. In International Conference on Innovations in

Information Technology, 2011.

[64] Samir Ouchani, Yosr Jarraya, Otmane Aït Mohamed, and Mourad Debbabi. Prob-

abilistic attack scenarios to evaluate policies over communication protocols. JSW,

7(7):1488–1495, 2012.

[65] Samir Ouchani, Otmane Aït Mohamed, and Mourad Debbabi. A Formal Verification

Framework for SysML Activity Diagrams. Software and System Modeling (SoSyM).

[66] Samir Ouchani, Otmane Aït Mohamed, and Mourad Debbabi. A Property-Based Ab-

straction Framework for SysML Activity Diagrams. Journal of Systems and Software

(JSS).

[67] Samir Ouchani, Otmane Aït Mohamed, and Mourad Debbabi. Efficient probabilistic

abstraction for sysml activity diagrams. In SEFM, pages 263–277, 2012.

[68] Samir Ouchani, Otmane Aït Mohamed, and Mourad Debbabi. A probabilistic verifi-

cation framework for sysml activity diagrams. In SoMeT, pages 108–123, 2012.

[69] Samir Ouchani, Otmane Aït Mohamed, and Mourad Debbabi. A compositional veri-

fication framework for sysml activity diagrams. In ICFEM, page Submitted, 2013.

[70] Samir Ouchani, Otmane Aït Mohamed, and Mourad Debbabi. A probabilistic model

checking framework for sysml activity diagrams. In SoMeT, page To appear, 2013.

[71] Samir Ouchani, Otmane Aït Mohamed, and Mourad Debbabi. A security risk assess-

ment framework for sysml activity diagrams. In SERE, page To appear, 2013.

128

[72] Samir Ouchani, Otmane Ait Mohamed, Mourad Debbabi, and Makan Pourzandi. Ver-

ification of the Correctness in Composed UML Behavioural Diagrams. In SERA (se-

lected papers), pages 163–177, 2010.

[73] Joseph Pamula, Sushil Jajodia, Paul Ammann, and Vipin Swarup. A Weakest-

Adversary Security Metric For Network Configuration Security Analysis. In the Pro-

ceedings of the 2nd ACM workshop on Quality of protection, QoP’06, pages 31–38,

New York, NY, USA, 2006. ACM.

[74] Chikmagalur Manjappa Prashanth and K. Chandrashekhar Shet. Efficient Algorithms

for Verification of UML Statechart Models. Journal of Software, 4:175–182, 2009.

[75] V. Rafe, R. Rafeh, S. Azizi, and M.R.Z. Miralvand. Verification and Validation of

Activity Diagrams Using Graph Transformation. In Computer Technology and Devel-

opment, 2009. ICCTD ’09. International Conference on, volume 1, pages 201 –205,

nov. 2009.

[76] Pritam Roy, David Parker, Gethin Norman, and Luca de Alfaro. Symbolic magnifying

lens abstraction in markov decision processes. QEST ’08, pages 103–112, Washing-

ton, DC, USA, 2008. IEEE Computer Society.

[77] P. Saqui-Sannes, T. Villemur, B. Fontan, S. Mota, M. S. Bouassida, N. Chridi, I. Chris-

ment, and L. Vigneron. Formal Verification of Secure Group Communication Proto-

cols Modelled in UML. Innovations in Systems and Software Engineering, 6:125–133,

2010.

[78] R. Sawilla and Defence R&D Canada Ottawa. Googling attack graphs. Technical

memorandum. Defence R&D Canada - Ottawa, 2007.

129

[79] Roberto Segala. A compositional trace-based semantics for probabilistic automata.

In Insup Lee and Scott Smolka, editors, CONCUR ’95: Concurrency Theory, volume

962 of Lecture Notes in Computer Science, pages 234–248. Springer Berlin / Heidel-

berg, 1995.

[80] Oleg Mikhail Sheyner. Scenario graphs and attack graphs. PhD thesis, Pittsburgh,

PA, USA, 2004. AAI3126929.

[81] Igor Siveroni, Andrea Zisman, and George Spanoudakis. Property Specification and

Static Verification of UML Models. In Proceedings of the 2008 Third International

Conference on Availability, Reliability and Security, pages 96–103, 2008.

[82] Igor Siveroni, Andrea Zisman, and George Spanoudakis. A UML-Based Static Veri-

fication Framework for Security. Requirements Engineering, 15:95–118, 2010.

[83] Maurice H. ter Beek, Alessandro Fantechi, Stefania Gnesi, and Franco Mazzanti. A

State/Event-Based Model-Checking Approach for the Analysis of Abstract System

Properties. Sci. Comput. Program., 76:119–135, February 2011.

[84] V. Thapa, Eunjee Song, and Hanil Kim. An Approach to Verifying Security and

Timing Properties in UML Models. In 15th IEEE Int. Conf. on ICECCS, 2010.

[85] M.F. van Amstel, C.F.J. Lange, and M.R.V. Chaudron. Four Automated Approaches

to Analyze the Quality of UML Sequence Diagrams. In Computer Software and Ap-

plications Conference, 2007. COMPSAC 2007. 31st Annual International, volume 2,

pages 415 –424, july 2007.

[86] A. van Lamsweerde. Elaborating Security Requirements by Construction of Inten-

tional Anti-Models. In 26th ICSE 2004., pages 148 – 157.

130

[87] Bernd Westphal. LSC Verification for UML Models with Unbounded Creation and

Destruction. Electronic Notes in Theoretical Computer Science, 144:133–145, 2006.

[88] Fei Xie and James C. Browne. Integrated State Space Reduction for Model Check-

ing Executable Object-oriented Software System Designs. In Proc. of FASE 2002.

Springer-Verlag, 2002.

[89] Fei Xie, Vladimir Levin, and James C. Browne. ObjectCheck: A Model Checking

Tool for Executable Object-Oriented Software System Designs. In Fundamental Ap-

proaches to Software Engineering, pages 331–335, 2002.

[90] Zhu Xin-feng, Wang Jian-dong, Zhu Xin-feng, Li Bin, Zhu Jun-wu, and Wu Jun.

Methods to tackle state explosion problem in model checking. In Proceedings of the

3rd int. conf. on IITA, pages 329–331, NJ, USA, 2009. IEEE Press.

[91] Hongji Yang. Software Evolution With Uml And Xml, chapter Abstracting UML Be-

havior Diagrams for Verification, pages 296–320. IGI Publishing, Hershey, PA, USA,

2005.

131

Appendix A

Chapter 3

In this Appendix, we present proofs of the previous theorems and propositions.

Lemma A.1 (Soundness). The mapping algorithm Γ is sound, i.e. MA �R MP .

Proof. To prove MA �R MP , we follow a structural induction reasoning on NuAC terms

and their related PRISM terms. For that, let s,s′ ∈ S(MA) and t, t ′ ∈ S(MP). We distinguish

the following cases where L(s) takes different values:

1. L(s) = l : x�N such as x ∈ {ι,a,a!v}⇒ ∃s l
−→1 s′, L(s′) = l : x�N .

For L(t) = Γ(L(s)), we have L(t) = 〈L(x),¬L(N)〉 then ∃t l
−→1 t ′ where L(t ′) =

〈¬L(x),L(N)〉.

2. L(s) = l : � then ∃s l
−→1 s′ such as L(s′) = |A |. For L(t) = Γ(L(s)), we have L(t) =

〈l〉 then ∃t l
−→1 t ′ where ∀li ∈L : L(t ′) = 〈· · · ,¬li, · · · 〉.

3. L(s) = l : � then ∃s l
−→1 s′ such as L(s′) = l : �. For L(t) = Γ(L(s)), we have L(t) =

〈l〉 then ∃t l
−→1 t ′ where L(t ′) = 〈¬l〉.

4. L(s) = l : F(N1,N2)
m then ∃s l

−→1 s′ such as L(s′) = l : F(N1,N2)
m−1

. For L(t) =

Γ(L(s)), we have L(t)= 〈l,¬lN1,¬lN2〉 then ∃t l
−→1 t ′ where ∀l : L(t ′)= 〈¬l, lN1, lN2〉.

132

From the obtained results, we found that μ(s) = μ(t) = 1 then s�R t. In addition, the

unique initial state of MA is always corresponding to the unique initial state in MP . By

following the same style of proof, we find that MA �R MP , which confirms that Lemma

3.1 holds.

Proposition A.1 (PCTL Preservation). For two PAs MA and MP such that Γ(A) = P

where MA �R MP . For a PCTL property φ , then: (MA |= φ)⇔ (MP |= φ).

Proof. To prove the preservation of PCTL properties, we follow an inductive reasoning on

the PCTL structure. WhileMA �R MP , for each PCTL operator ζ ∈{¬,∧,X,U≤k,U,P�� p}

we have: MA |= ζ ⇐⇒MP |= ζ which means:

(MA |= φPCTL)⇐⇒ (MP |= φPCTL).

133

Appendix B

Chapter 4

B.1 Motivation Proof

Let A be a SysML activity diagram and Â is its abstracted model obtained by the algorithm

δ with respect to a PCTL property φ . The complexity of checking φ takes into consideration

the complexity of the abstraction algorithm δ , the complexity of the mapping algorithm

of the obtained diagram into PRISM code and the complexity of the probabilistic model

checking procedure. The both first algorithms are a DFS-based procedures with a time

complexity of O(|A |), the third one is of O(Poly(|MA |)×υmax× |φ |) such that υmax =

max{k : φ1U≤kφ2 occurs in φ} and MA ≡S (A). Hence, Equation B.1 and Equation B.2

present the complexity with and without abstraction, respectively.

A= O(A |= p) = O(|A |)+O(Poly(|MA |)×υmax×|φ |) (B.1)

B= O(A |= p) = O(|A |)+O(|Â |)+O(Poly(|M
Â
|)×υmax×|φ |) (B.2)

134

By comparing the equations B.1 and B.2, we have:

B< A ⇔ |A |+ |Â |+Poly(|M
Â
|)×υmax×|φ |< |A |+Poly(|MA |)×υmax×|φ |

⇔ |Â |+Poly(|M
Â
|)×υmax×|φ |< Poly(|MA |)×υmax×|φ |

⇔ |Â |
Poly(|MA |)×υmax×|φ | +

Poly(|M
Â
|)

Poly(|MA |)
< 1

⇔
Poly(|M

Â
|)

Poly(|MA |)
� 1(while |Â |

Poly(|MA |)×υmax×|φ | ! 0)

From this result of comparison, we conclude that applying the abstraction is useful for any

model.

B.2 The Abstraction Approach Proof

Proposition B.1. Let A = A0 ↑a1 . . . ↑ak Ak be a SysML activity diagram with k call be-

haviors and φ be a PCTL property. Then:

∀i≤ k : A0 ↑a1 . . . ↑ai Ai |= φ ⇒ A |= φ .

Proof. The proof of this proposition follows an induction reasoning on PCTL structure by

taking into consideration the size of call behaviors composition “k”.

1. Case of φ = φ1Uφ2

Let i< k: A0 ↑a1 . . . ↑ai Ai |= φ (Assumption)

⇔∃m, ∀ j<m : π(j) |=Adv φ1∧π(m) |=Adv φ2. (Definition)

By calling a new behavior Ai+1, the satisfaction path π will not be changed while ai+1

stays unchanged during the execution of Ai+1 then we have:

∃m′, ∀ j′ < m′ : π(j′) |=Adv φ1∧π(m′) |=Adv φ2⇔ A0 ↑a1 . . . ↑ai+1 Ai+1 |= φ .

By following the same kind of construction up to k behavior, we will have:

135

A0 ↑a1 . . . ↑ak Ak |= φ which means:

∃m′′, ∀ j′′ < m′′ : π(j′′) |=Adv φ1∧π(m′′) |=Adv φ2. Then: A |= φ1Uφ2.

By following the same kind of proof, we deduce the satisfaction relation for φ1U≤kφ2

and Xφ cases.

2. Case of φ = φ1U≤ lφ2

When j′′ = j and m′′ = m after calling a new behavior then A |= φ1U≤ lφ2. Else,

A |= φ1U≤ l′φ2 such that l′ ≥ l

3. Case of Xφ

While ai+1 stays true during the execution of Ai+1 then the next operator is preserved.

Proposition B.2. Let A = A0 ↑a1 . . . ↑ak Ak be a SysML activity diagram with k call be-

haviors, Aid is the identity element for “↑” operator and φ be a PCTL property. For a

proposition α , we have the following:

∀1≤ i≤ k, α /∈ (∑φ ∩∑Ai) : [Ai = Aid ∧ (A0 ↑a1 . . . ↑ak Ak) |= φ]⇒ [A |= φ].

Proof. The proof is similar to that one of Proposition 4.1, for both cases of until and next

operators. For the case of bounded until, the satisfaction of φ is not deduced while some

steps are mimicked by the identity element. But, we can infer the satisfaction of two im-

portant properties are:

1. ∀1≤ i≤ k, α /∈ (∑φ ∩∑Ai) :

[Ai = Aid ∧ (A0 ↑a1 . . . ↑ak Ak) |= φ1U≤ lφ2]⇒A |= φ1Uφ2.

2. ∀1≤ i≤ k, α /∈ (∑φ ∩∑Ai) :

[Ai = Aid ∧ (A0 ↑a1 . . . ↑ak Ak) |= φ1U≤ lφ2]⇒∃l′ ≥ l : A |= φ1U≤ l′φ2.

136

B.3 Complexity

Proposition B.3 (Application Order). Let “A ” be a NuAC term and “φ” be a PCTL prop-

erty, we have: Ψ(ϒ(Ψ(A),φ))≡Ψ(ϒ(A ,φ)).

Proof. Let M1 = Ψ(A),M2 = ϒ(M1,φ) and M3 = Ψ(M2), we have:

1. M1 = Ψ(A)⇔ if ∃l : Nk�Nm ∈A , then l : Nk�Nm is replaced by l : Nkm if one

of the control merging rules is satisfied.

2. M2 = ϒ(M1,φ)⇔ ∀a /∈ Σφ : ϒ(l : an�N ,φ) = l : εn�N . In fact, ϒ produces new

consecutive control nodes and preserves the diagram structure.

3. M3 = Ψ(M2)⇔ if ∃l : Ni�N j ∈ A , then l : Ni�N j is replaced by l : Ni j. The

minimization rules are applied on the initial and the produced one by Ψ function.

It is clear that the first step has no effect on the second one. In addition, applying Ψ two

times successively is equivalent to applying it once. Thus, the proposition holds.

B.4 Abstraction Soundness Proof

Lemma B.1 (ϒ-Soundness). The abstraction algorithm ϒ is sound, i.e. MA �Rϒ MÂ
.

Proof. To proveMA �Rϒ MÂ
, we follow a structural induction reasoning on NuAC terms

such that Â = ϒ(A). For that, let s,s′ ∈ S(MA)1 and t, t ′ ∈ S(M
Â
). We distinguish the

following cases where L(s) takes different values:

• Case a�N :

Let L(s) = a�N ⇒∃ s′ : s→ s′ by applying ACT-2 such that:

L(s′) = a�N ⇒ μs(s′) = 1.
1S(M) is the set of states ofM.

137

By considering t as the abstracted state of s where L(t) = ϒ(L(s)), we can distinguish

two cases for ABS-1 and ABS-2 that are presented respectively as follows:

1. a ∈Σφ : L(t) = ϒ(a�N) = a� ϒ(N). By applying ACT-2, ∃ t ′ : t→ t ′ such

that: L(t ′) = a�ϒ(N)⇒ μt(t ′) = 1. Then, it exists a weight function � for

Rϒ = {(s′, t ′)} such that:

�(s′, t ′) = 1⇒ μs(s′) =�(s′, t ′) and�(t ′,s′) = 1⇒ μt(t ′) =�(t ′,s′).

While�(s, t)> 0 then s�Rϒ t.

2. a /∈Σφ : L(t) = ϒ(s) = ϒ(a�N) = ε � ϒ(N)⇒∃ t ′ : t→ t ′.

By applying ACT-2 rule such that L(t ′) = ε �N ⇒ μ2(t ′) = 1. Then it exists

a weight function� for Rϒ = {(s′, t ′)} such that:

�(s′, t ′) = 1⇒ �(s′, t ′) = μs(s′) and �(t ′,s′) = 1⇒ μt(t ′) = �(t ′,s′), with

�(s, t)> 0 then s�Rϒ t.

• Case N1
g
�→N2 is similar to the case of a�N after applying ABS-3 and ABS-4.

It is clear that, the marked NuAC term A is the unique initial state of MA corresponding

to the unique initial state inM
Â

. By following the same style of proof, we find:

MA �Rϒ MÂ
, which confirms that Proposition 4.1 holds.

Proposition B.4 (ϒ-Preservation). For two PAs MA and M
Â
such that MA �Rϒ MÂ

. If φ

is a PCTL\X property, then we have: (MÂ
|= φ)⇒ (MA |= φ).

Proof. To prove the preservation of PCTL properties by Rϒ, we follow an inductive rea-

soning on PCTL structure after applying each ϒ-abstraction rule.

Let π ∈ M with π = (s0 · · · si · · · s j · · · sn) and π ′ ∈ M̂ with π ′ = (t0 · · · tk · · · tl · · · tm)

are two finite paths such that; ∀s ∈ π : ∃s′ ∈ π ′, s�Rϒ s
′. For PCTL expression satisfaction,

we distinguish these cases:

138

• Case φ1Uφ2:

For π and π ′ such that: π ′ |= φ1Uφ2 ⇔ ∃r′ ≤ m : ∀u ≤ r′ − 1, L(s′u) = φ1 and

L(s′r) = φ2. Similarly, π |= φ1Uφ2⇔∃r ≤ n : ∀w≤ r−1, L(sw) = φ1 and L(sr) = φ2.

By applying the ABS rules, the states that do not satisfy either φ1 and φ2 in π are

mimicked.

Consequently, π ′ |= φ1Uφ2⇒ π |= (φ1⇒ Fφ2).

• Case P�� p[φ1Uφ2]:

We have π ′ |= φ1Uφ2⇒ π |= (φ1⇒ Fφ2) and the mimicked states with the ABS rules

have a Dirac distribution, then: π ′ |= P�� p[φ1Uφ2]⇒ π |= P�� p[φ1⇒ Fφ2].

By following the same proof style on PCTL structure, we conclude that:

(M
Â
|= P�� p[φ])⇒ (MA |= P�� p[φ]).

Lemma B.2 (Ψ-Soundness). The abstraction algorithmΨ is sound, i.e. MA �RΨ MÂ
.

Proof. To proveMA �RΨ MÂ
, we follow a structural induction reasoning on NuAC terms

by comparing each term before and after applying Ψ rules. Let s0,s1,s2,s3,s4 ∈ S(MA) and

t0, t1, t2, t3 ∈ S(MÂ
). We distinguish the following cases where L(s0) takes different values:

• Case D(p,g,N ,N ′): Let L(s0) =D(p1,g1,N1,N
′

1), by applying PDEC-1 rule, we

will have: s0→ μ0(s1,s2) such that:

– L(s1) = D(p1,g1,N1,N
′

1) such as μ0(s1) = p1,

– L(s2) = D(p1,g1,N1,N
′

1) such as μ0(s2) = 1− p1.

By considering N1 = D(p2,g2,N2,N
′

2), let t0 be the merged state of s0 with s1 by

applying the MIN-2 rule, we will have:

139

L(t0) = D(p1× p2,g1∧g2,N2,N
′

2 ,1− p1,N
′
1)⇒ ∃t1, t2, t3 : t0→ μ ′(t1, t2, t3). By

applying PDEC-1 rule, we have:

– L(t1) = D(p1× p2,g1∧g2,N 2,N
′

2 ,1− p1,¬g1,N
′
1)⇒ μ ′(t1) = p1×p2.

– L(t2) =D(p1× p2,g1∧g2,N2,N
′

2 ,1− p1,¬g1,N
′
1)⇒ μ ′(t2) = p1×(1− p2).

– L(t3) = D(p1× p2,g1∧g2,N2,N
′

2 ,1− p1,¬g1,N
′

1)⇒ μ ′(t3) = 1− p1.

It exists a weight function� for RΨ = {(s0, t0),(s3, t1),(s4, t2),(s2, t3)} such that:

1. �(s3, t1) = p1⇒�(s3, t1) = μ ′(t1)

2. �(s4, t2) = p1× (1− p2)⇒�(s4, t2) = μ ′(t2)

3. �(s2, t3) = 1− p1⇒�(s2, t3) = μ ′(t3)

We have: (�(s3, t1)> 0∧�(s2, t3)> 0)∧�(s4, t2)> 0)⇒ μ �RΨ μ ′.

It is clear that, the marked NuAC term A is the unique initial state of MA corresponding

to the unique initial state inM
Â

. By following the same style of proof, we find:

MA �RΨ MÂ
, which confirms that Proposition 4.1 holds.

Proposition B.5 (Ψ-Preservation). For two PAs MA and M
Â
such that MA �RΨ MÂ

. If φ

is a PCTL property, then we have: (M
Â
|= φ)⇒ (MA |= φ).

Proof. To prove the preservation of PCTL properties by RΨ, we follow an inductive rea-

soning on PCTL structure for each ϒ-abstraction rule.

Let π ∈ M with π = (s0 · · · si · · · s j · · · sn) and π ′ ∈ M̂ with π ′ = (t0 · · · tk · · · tl · · · tm)

are two finite paths such that; ∀s∈ π : ∃s′ ∈ π ′, s�RΨ s
′. For PCTL expression satisfaction,

we distinguish these cases:

• Case φ1Uφ2:

For π and π ′ such that: π ′ |= φ1Uφ2⇔∃r′ ≤ m : ∀u≤ r′ −1, L(s′u) = φ1 and L(s′r) =

140

φ2. Similarly, π |= φ1Uφ2⇔∃r ≤ n : ∀w≤ r−1, L(sw) = φ1 and L(sr) = φ2.

By applying MIN rules, some states in π are merged.

Consequently, π ′ |= φ1Uφ2⇒ π |= φ1⇒ Fφ2.

• Case P�� p[φ1Uφ2]:

We have π ′ |= φ1Uφ2⇒ π |= φ1⇒ Fφ2 and the merged states with MIN rules accu-

mulate the probabilistic distribution, then: π ′ |= P�� p[φ1Uφ2]⇒ π |= P�� p[φ1⇒ Fφ2].

By following the same proof style on PCTL structure, we conclude that:

(M
Â
|= φ)⇒ (MA |= φ).

141

