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Introduction and presentation of the
links with my thesis

0.1 Introduction

This document is an overview of my different works since my PhD thesis. There are
essentially two themes which constitute the main part of my work since my thesis:
PDMP (piecewise deterministic Markov process) and the modeling of processes
coming from biology. We will see that these two themes are very often linked.

This document consists of an introduction and three chapters.
In the introduction, I will present my main object of study during my thesis: the

fragmentations. I will especially highlight the key tool that I used in the work I
did on PDMP: the many to-one-formula. This tool is the link between my thesis
work about fragmentations and what I did afterwards related to PDMP. I will not
make a chronological presentation, because I prefer a more logical presentation of the
different results in order to show the underlying links between the different works.
Having introduced some notations and definitions, at the end of the introduction I
will detail more precisely the contents of the following chapters.

Then, there will be three chapters that make up my three main research themes.
The first one is about the modeling of the growth of the size of E. Coli bacterium. In
a second chapter, I will be interested in the estimation of the jump rate of PDMP. In
the last chapter, I will care about more complex processes because they are processes
with values in RN

+ which have more complex dependency structures. I will go into
more details about these three main axes at the end of this introduction.

And at the end of each chapter, I will give some research perspectives that are
works in progress or longer term research perspectives.
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0.2 The rates of presence in homogeneous fragmen-
tation

There are different types of fragmentation. You can refer to Jean Bertoin’s book
(Ber06) (see also (Bas06) and (Ber03)). I will make a short overview of this subject.
I will start by defining the interval fragmentation point of view because it allows to
define naturally the associated marked fragment.

We consider a homogenous fragmentation F of intervals, which is a Markov process
in continuous time taking its values in the set U of open sets of (0, 1). Informally,
each interval component - or fragment - splits as time goes on, independently of the
others and with the same law, up to a rescaling. We make the restriction that the
fragmentation is conservative, which means that no mass is lost. In this case, the
law of the fragmentation F is completely characterized by the so-called dislocation
measure ν (which corresponds to the jump-component of the process) which is a
measure on U fulfilling the following conditions

ν((0, 1)) = 0,

∫
U

(1− u1)ν(dU) <∞, (0.1)

and
∞∑
i=1

ui = 1 for ν − almost every U ∈ U ,

where for U ∈ U ,
|U |↓ := (u1, u2, ...)

is the decreasing sequence of the lengths of the interval components of U .
It appears quite natural to study the rates of decay of fragments. If we measure

the fragments by logarithms of their sizes, a homogeneous fragmentation can be
considered as an extension of a classical branching random walk in continuous time.
The common feature of many branching models consists in the alternative between
exponential growth and extinction. Let us recall some basic facts about a Galton-
Watson process (ζn)n≥0 started from ζ0 = 1 with finite mean m = Eζ1. We have
limn→∞ n

−1 logE(ζn) = logm and
(a) if m > 1, and P(ζ1 ≥ 1) = 1 then limn→∞ n

−1 logZn = logm a.s.
(b) if m < 1 then limn→∞ n

−1 logP(Zn 6= 0) = logm.
More generally, in branching random walks, when the local rate of growth of the

population in expectation is (exponentially) positive, it is a.s. the effective local rate
of growth of the population. When it is negative, it is the local rate of decrease of
the probability of presence.

After the defense of my Thesis, Alain Rouault who was one of the reviewer
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0.2. THE RATES OF PRESENCE IN HOMOGENEOUS FRAGMENTATION

proposed me to go further in the study of the asymptotic behavior of fragments
having an "exponential decay".

The goal of the paper written with Alain Rouault (KR11) is to present results of
the second type, i.e. asymptotic study of presence of abnormally large fragments.
Let us first explain known results of the first type - exponential growth - and fix
some notation.

For x ∈ (0, 1) let Ix(t) be the component of the interval fragmentation F (t) which
contains x, and let |Ix(t)| be its length. Jean Bertoin showed in (Ber01) that if V is
an uniform random variable on [0, 1] independent of the fragmentation, then

ξ(t) := − log |IV (t)|

is a subordinator whose distribution is entirely determined by the characteristics of
the fragmentation. Its Laplace exponent is given by

Ee−qξ(t) = e−tκ(q)

where κ is the concave positive function :

κ(q) :=

∫
U

(
1−

∞∑
j=1

uq+1
j

)
ν(dU) ∀q > p (0.2)

and p is the smallest real number for which κ remains finite :

p := inf

{
p ∈ R :

∫
U

∞∑
j=2

up+1
j ν(dU) <∞

}
.

The strong law of large numbers tells us that a.s. limt→∞ ξ(t)/t→ κ′(0) =: vtyp, so
that a.s.

lim
t→∞

−t−1 log |IV (t)| = vtyp .

In fact, there is an interval (vmin, vmax) straddling vtyp of effective asymptotic expo-
nential rates of decreasing of fragments which we describe now. Let p be the unique
solution of the equation

κ(q) = (q + 1)κ′(q), q > p .

We define vmin := κ′(p) and vmax := κ′(p+).
In all the following, we fix a and b such that 0 < a < 1 < b.
If we set

G̃v,a,b(t) = {Ix(t) : x ∈ (0, 1) and ae−vt < |Ix(t)| < be−vt}

then it is known ((Ber03), (BR05) Corollary 3) that the asymptotic growth of G̃v,a,b(t)
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is ruled by the concave function C defined for v < vmax by

C(v) = inf
q>p

((q + 1)v − κ(q)) , (0.3)

or
C(v) = (Υv + 1)v − κ(Υv) , κ′(Υv) = v . (0.4)

More precisely we have:
• for v ∈ (vmin, vmax), C(v) is strictly positive and

lim
t→∞

t−1 log ]G̃v,a,b(t) = C(v) a.s. (0.5)

• for v ≤ vmin, C(v) is strictly negative and the set G̃v,a,b(t) is a.s. empty for t
large enough.

Let us stress that C(v) depends only on v and not on a, b.
In the sequel, the latter setting referred to classical.
In (Kre08) done during my PhD, I studied the more constrained set

Gv,a,b(t) = {Ix(t) : x ∈ (0, 1) and ae−vs < |Ix(s)| < be−vs ∀ s ≤ t} ,

and proved a result of the same kind. In particular, Proposition 3 (p.908) (Kre08)
shows us that it exists a positive number ρ(v, a, b) depending upon v, a, b such that
• for v > ρ(v, a, b), conditionally on {inf{t : Gv,a,b(t) 6= ∅} =∞}

lim
t→∞

t−1 log ]Gv,a,b(t) = v − ρ(v, a, b) , a.s. (0.6)

• for v ≤ ρ(v, a, b), limt→∞ ]Gv,a,b(t) = 0 a.s..
This result holds under the following Assumption α, which comes from (Lam00)

and (Ber97), and ensures the absolute continuity of the marginals of the underlying
Lévy process.

Assumption α. The image ν1 of the measure ν by the mapping U 7→ u1 satisfies

νac1 ((1− ε, 1]) =∞ for any ε > 0 , (0.7)

where νac1 is the absolutely continuous part of ν1.
If we refer to the above general comments on branching models, we can say that

the above assertions (0.5) and (0.6) are of the first type. Our main aim here is to
present results of the second type.

For the classical model, an assumption is needed. A fragmentation is called
r-lattice with r > 0, if (ξ(t))t≥0 is a compound Poisson process whose jump measure
has a support carried by a discrete subgroup of R and r is the mesh. If there is no
such r, the fragmentation is called non-lattice.
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0.3. STATISTICAL ANALYSIS OF SELF-SIMILAR CONSERVATIVE FRAGMENTATION CHAINS

Theorem 0.1. (BM05b) Under either the fragmentation is non-lattice, or it is
r-lattice and a, b satisfy b > aer, if v < vmin, then

lim
t→∞

t−1 logP(G̃v,a,b(t) 6= ∅) = C(v). (0.8)

In (BM05b), the result of Theorem 5 is more precise since it gives sharp (i.e. non
logarithmic) estimates of the latter probability.

For the more constrained set Gv,a,b(t), the corresponding result is the following.

Theorem 0.2. Under Assumption α, if v − ρ(v, a, b) < 0, then

lim
t→∞

t−1 logP(Gv,a,b(t) 6= ∅) = v − ρ(v, a, b). (0.9)

Let us remark that since Gv,a,b ⊂ G̃v,a,b, the limits (0.5), (0.8), (0.6) and (0.9) are
comparable. In fact, we have the following general result

Proposition 0.1. Under Assumption α, for all v < vmax

C(v) > v − ρ(v, a, b). (0.10)

Theorem 0.2 is the main result of the paper (KR11). The crucial tool consists
in first introducing additive martingales to make a change of probability and then
using a decomposition according to the spine method.

I decided I will not develop in this part how the many-to-one formula solved the
problem because I would have to go in too many details to give the link between
partition fragmentations and interval fragmentations. Therefore, a lot of unnecessary
notations and definitions would have been introduced in the following. Instead, I
refer to the article (KR11) for more details on this subject. On the other hand I
will detail further the paper I wrote with Marc Hoffmann on the estimation of the
Lévy measure associated to the subordinator, which is the marked fragment. It will
indeed allow to understand the link, there will be then with the study of the bacteria
and the associated marked bacteria.

0.3 Statistical analysis of self-similar conservative
fragmentation chains

0.3.1 The fragmentation chains

In a first time after my thesis I finished two papers that I had started during my
thesis. The first paper (FKM10) was about a problem from the mining industry.
During my thesis I went to Chile for 6 months. Where a collaboration with Joaquim
Fontbona and Servet Martinez started. We worked on minimizing the energetic
cost of reducing the size of a fragment of mass x to fragments of size less than or
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equal to ε. For this purpose it is assumed that the crushing of the ore, using devices
can be modeled by fragmentation. Two devices are considered. We represent them
as different stochastic fragmentation processes. We followed the self-similar energy
model introduced by Jean Bertoin and Servet Martinez (BM05), to calculate the
average energy required to reach a ε size with this two-device procedure. Then we
asymptotically compare, when ε goes to 0 or 1, its energy requirement with that of
individual fragmentation processes. In particular, it is interesting to observe that for
certain ranges of parameters of the fragmentation processes and their energy cost
functions, the consecutive use of two devices can be asymptotically more efficient
than the use of each of them separately, or vice versa.

One of the key tools for this is to use a many-to-one formula and the properties
of the Lévy process associated with the marked fragment.

To do this, we will first introduce the notions and definitions related to mass
fragmentation. We can notice that if we consider the size reordered by decreasing
order of the interval fragmentation introduced in the previous section, we will obtain
a mass fragmentation.

Let X =
(
X(t), t ≥ 0

)
be a fragmentation chain with state space

S↓ :=
{
s = (s1, s2, . . .), s1 ≥ s2 ≥ . . . ≥ 0,

∞∑
i=1

si ≤ 1
}
.

We assume that X has parameter of self-similarity α ≥ 0. To ensure that everything
is well-defined, see e.g. Jean Bertoin (Ber06), the following mild assumptions on the
dislocation measure ν(ds) of X are in force in the rest of this section:

Assumption A. We have ν
(
(1, 0, . . .)

)
= 0 and ν

(
s1 ∈ (0, 1)

)
> 0. Moreover, for

every ε > 0:
∫
S↓
∑∞

i=1 1{si>ε}ν(ds) <∞.

We denote by Pm the law of X started from the initial configuration (m, 0, . . .)

with m ∈ (0, 1]. Under Pm, X is a Markov process and its evolution can be described
as follows: a fragment with size x lives for an exponential time with parameter
xαν(S↓) and then splits and gives rize to a family of smaller fragments distributed
as xξ, where ξ is distributed according to ν(·)/ν(S↓). Under Pm, the law of X is
entirely determined by α and ν(·).

We will repeatedly use the representation of fragmentation chains as random
infinite marked trees. Let

V :=
∞⋃
n=0

INn

denote the infinite genealogical tree (with IN0 := {∅}) associated to X as follows: to
each node u ∈ V , we set a mark

(ξu, au, ζu), (0.11)

Page 12



0.3. STATISTICAL ANALYSIS OF SELF-SIMILAR CONSERVATIVE FRAGMENTATION CHAINS

where ξu is the size of the fragment labelled by u, au is its birthtime and ζu is its
lifetime. We have the following identity between point measures on (0,+∞):

∞∑
i=1

1{
Xi(t)>0

}δXi(t) =
∑
u∈V

1{
t∈[au,au+ζu)

}δξu , t ≥ 0, (0.12)

with X(t) =
(
X1(t), X2(t), . . .

)
, and where δx denotes the Dirac mass at x. Finally,

X has the following branching property: for every fragment s = (s1, . . .) ∈ S↓ and
every t ≥ 0, the distribution of X(t) given X(0) = s is the same as the decreasing
rearrangement of the terms of independent random sequences X(1)(t), X(2)(t), . . .

where, for each i, X(i)(t) is distributed as X(t) under Psi .
If we can observe the whole fragmentation process as time grows, then the

statistical problem is somehow degenerate. In this paper, we postulate a more
realistic observation scheme, based on mining industry, where the goal is to separate
metal from non valued components in large mineral blocks by a series of operations
such as of blasting, crushing and grinding operations. The context is exactly the
same as the one used previously in the paper with Joaquim Fontbona and Servet
Martinez (FKM10).

0.3.2 The empirical measure

If we keep in mind the motivation of mineral crushing, we consider the fragmentation
under P := P1, initiated with an unique block of size m = 1 and we observe the
process stopped at the time when all the fragments become smaller than some given
threshold ε > 0, so we have data ξu, for every u ∈ V ε, with

Vε :=
{
u ∈ U , ξu− ≥ ε, ξu < ε

}
,

where we denote by u− the parent of the fragment labelled by u. We will further
assume that the total mass of the fragments remains constant through time:

Assumption B. (Conservative property). We have: ν
(∑∞

i=1 si = 1
)

= 1.

We next consider the empirical measure integrated against a test function g(·)

Eε(g) :=
∑
u∈Vε

ξu g(ξu/ε).

Indeed, under Assumption B, we have∑
u∈Vε

ξu = 1 P− almost surely, (0.13)

so Eε(g) appears as a weighted empirical version of g(·). Notice that the empirical
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measure Eε only depends on the size of the fragmentation and is thus independent of
the self-similarity parameter α. We consider α as a nuisance parameter. Jean Bertoin
and Servet Martinez show in Corollary 1 of (BM05) that under mild assumptions on
ν(·), the random variable measure Eε(g) converges to

E(g) :=
1

c(ν)

∫ 1

0

g(a)

a

∫
S↓

∞∑
i=1

si 1{si<a}ν(ds)da

in L1(P), as ε → 0, with c(ν) = −
∫
S↓
∑∞

i=1 si log si ν(ds), tacitly assumed to be
well-defined. This suggests a strategy for recovering information about ν(·) by picking
suitable test functions g(·).

In (HK11) we give a rate of convergence for the empirical measure Eε toward its
limit, extending former results (under more stringent assumptions) of Jean Bertoin
and Servet Martinez (BM05). The rate is of the form ε1/2−`(π), where `(π) > 0

can arbitrarily be made small under suitable exponential moment conditions for π.
We additionally consider the more realistic framework of observations with limited
accuracy, where each fragment is actually known up to a systematical stochastic
error of order σ � ε: Xε,σ :=

(
ξ

(σ)
u , u ∈ Vε,σ

)
with

Vε,σ :=
{
u ∈ U , ξ(σ)

u− ≥ ε, ξ(σ)
u < ε

}
,

and
ξ(σ)
u := ξu + σUu. (0.14)

The random variables (Uu, u ∈ V) are identically distributed, centred and are almost
surely bounded in absolute value by 1. They account for a systematic experimental
microstructure noise in the measurement of Xε, independent of Xε. The noise level
0 ≤ σ = σ(ε)� ε is assumed to be known and represents the accuracy level of the
statistician.

The observations ξu + σUu are further discarded below a threshold σ ≤ tε ≤ ε

beyond which they become irrelevant, leading to the modified empirical measure

Eε,σ(g) :=
∑

u∈V ε,σ

1{ξ(σ)u ≥ tε}
ξ(σ)
u g

(
ξ(σ)
u /ε

)
.

In the sequel, we take tε = γ0ε for some (arbitrary) 0 < γ0 < 1 and assume further
that σ ≤ 1

2
tε.

Assumptions A and B are in force. At this stage, we can relate E(g) to a more
appropriate quantity by means of the so-called tagged frament approach.
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0.3. STATISTICAL ANALYSIS OF SELF-SIMILAR CONSERVATIVE FRAGMENTATION CHAINS

0.3.3 The randomly tagged fragment

Let us first consider the homogeneous case α = 0. Assume we can randomly "tag" a
point –according to an uniform distribution– on the initial fragment and imagine we
can follow the evolution of the fragment that contains this point.

Let us denote by
(
χ(t), t ≥ 0

)
the process of the size of the fragment that contains

the randomly chosen point. This fragment is a typical observation in our data set
Xε, and it appears at time

Tε := inf
{
t ≥ 0, χ(t) < ε

}
.

Jean Bertoin (Ber06) shows that the process ζ(t) := − logχ(t) is a subordinator,
with Lévy measure:

π(dx) := e−x
∞∑
i=1

ν(− log si ∈ dx). (0.15)

We can anticipate that the information we get from Xε is actually information about
the Lévy measure π(dx) of ζ(t) obtained via ζ(Tε). The dislocation measure ν(ds)

and π(dx) are related by (0.15) which reads∫
S↓

∞∑
i=1

sif(si)ν(ds) =

∫
(0,+∞)

f(e−x)π(dx), (0.16)

for any suitable f(·) : [0, 1]→ [0,+∞). In particular, by Assumption B and the fact
that ν(S↓) = 1, π(dx) is a probability measure hence ζ(t) is a compound Poisson
process. Informally, a typical observation takes the form ζ(Tε), which is the value
of a subordinator with Lévy measure π(dx) at its first passage time strictly above
− log ε. The case α 6= 0 is a bit more involved and reduces to the homogeneous case
by a time change.

In terms of the limit of the empirical measure Eε(g), we equivalently have

E(g) =
1

c(π)

∫ 1

0

g(a)

a
π(− log a,+∞) da =

1

c(π)

∫ +∞

0

g(e−x)π(x,+∞) dx,

with c(π) =
∫

(0,+∞)
x π(dx), where both representations will be found useful. Except

in the binary case, knowledge of π(·) does not, in general, allow us to recover ν(·).
More precisely, the many-to-one formula described in the following lemma allows

us to see the link between the evolution of the fragmentation and of the marked
fragment. Thus, with the help of the marked fragment and thus of the associated
subordinator, we can obtain the information we need about the fragmentation.

Page 15



Lemma 0.1. Let f(·) : [0,+∞)→ [0,+∞). Then for ε > 0,

IE
[ ∑
v∈Uε

ξv f(ξv)
]

= IE?
[
f
(
χ(Tε)

)]
, (0.17)

where χ(t) = exp
(
− ζ(t)

)
and

(
ζ(t), t ≥ 0

)
is a subordinator with Lévy measure π(·)

defined on an appropriate probability space (Ω?,P?), and

Tε := inf
{
t ≥ 0, ζ(t) > − log ε

}
.

It is important to specify here that, the process of the associated many-to-one
is explicit according to the starting process and that one does not have only the
existence in law of a process which is present in the many-to-one formula, as it is
often the case (Clo17; BT11).

We can also note that in the demonstration we will need a special case of Sgibnev’s
result (Sgi02) on uniform rates of convergence in the key renewal theorem.

For statistical purposes, our main tool is the empirical measure Eε of the size of
fragments when they reach a size smaller than a threshold ε in the limit ε→ 0. We
highlight the fact that Eε captures information about the dislocation measure through
the Lévy measure π of a randomly tagged fragment associated to the fragmentation
process.

0.3.4 The statistical inference

Definition 0.1. For κ > 0, we say that a non-lattice probability measure π(dx)

defined on [0,+∞) belongs to Π(κ) if∫
[0,+∞)

eκx π(dx) < +∞,

Assumption C. The probability π(dx) is absolutely continuous w.r.t. the Lebesgue
measure: π(dx) = π(x)dx. Moreover, its density function x; π(x) is continuous on
(0,+∞) and satisfies lim supx→+∞ e

ϑxπ(x) < +∞ for some ϑ ≥ 1.

We distinguish two cases: the parametric case, where we estimate a linear
functional of π(·) of the form

mk(π) :=

∫ +∞

0

xkπ(x)dx, k = 1, 2, . . .

and the non-parametric case, where we estimate the function x ; π(x) pointwise.
In that latter case, it will prove convenient to assess the local smoothness properties
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of π(·) on a logarithmic scale. Henceforth, we consider the mapping

a; β(a) := a−1π(− log a), a ∈ (0, 1). (0.18)

In the non-parametric case, we estimate β(a) for every a ∈ (0, 1).

The parametric case

Preliminaries. For k ≥ 1, we estimate

mk(π) :=

∫ +∞

0

xk π(x)dx =

∫ 1

0

log(1/a)kβ(a)da

by the correspondence (0.18) and implicitly assumed it is well-defined. We first focus
on the case k = 1. Pick a sufficiently smooth test function f(·) : [0, 1]→ R such that
f(1) = 0 and let g(a) := −af ′(a). Plainly

E(g) =
1

c(π)

∫ 1

0

g(a)

a
π(− log a,+∞) da

= − 1

m1(π)

∫ 1

0

f ′(a)

∫ a

0

β(u)du da =
1

m1(π)

∫ 1

0

f(a)β(a)da. (0.19)

Formally, taking f(·) ≡ 1 would identify 1/m1(π) since β(·) integrates to one, but
this choice is forbidden by the boundary condition f(1) = 0. We shall then consider
instead a family of regular functions which are close to the constant function 1 while
it satisfies the boundary condition f(1) = 0.

Construction of the approximating functions. Let fγ : [0, 1]→ R with 0 < γ < 1 be a
family of smooth functions satisfying the following conditions.

• fγ(a) = 1 for a ≤ 1− γ and fγ(1) = 0.

•
sup
γ>0

(
‖fγ‖∞ + γ‖f ′γ‖∞ + γ2‖f ′′γ ‖∞

)
< +∞. (0.20)

• For some δ > 0, we have

lim sup
a→0

(
a−1−δ sup

γ>0
γ1+δ|fγ(1− a)|+ a−1 sup

γ>0
γ2|f ′γ(1− a)|

)
< +∞. (0.21)

The family (fγ, γ > 0) imitates the behaviour of the target function f0(a) = 1 for
0 ≤ a < 1 and f0(1) = 0 and is close to f0 as γ → 0.

Construction of an estimator. We are now ready to give an estimator of the first
moment m1(π) of π, and more generally, of any moment mk(π), k ≥ 1. For a
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parametrization γ := γε → 0 to be specified later, we set

gγε(a) := −af ′γε(a), a ∈ (0, 1).

By Theorem 1 in (HK11), we exhibit explicit rates in the convergence of Eσ,ε(gγε)
to E(gγε) which in turn is equal to m1(π)−1

∫ 1

0
fγε(a)β(a)da by (0.19). Since fγε ≈ 1

and β(·) is a density function, by appropriate regularity assumptions on π, we may
further expect this last quantity to be close to 1/m1(π). We therefore set

m̂1,ε :=
1

Eε,σ
(
gγε
) (0.22)

for an estimator of m1(π). More generally, for k > 1, we define successive moment
estimators as follows. Set hγε(a) := fγε(1− a) log(1/a)k and g̃γε(a) := −ah′γε(a). The
same heuristics as before lead to the following estimator

m̂k,ε :=
Eε,σ
(
g̃γε
)

Eε,σ
(
gγε
) .

In the parametric case (Theorem 2.3), we establish that the best achievable rate is
ε1/2 in the particular case of binary fragmentations, where a particle splits exactly in
two blocks at each step.

The non-parametric case

Definition 0.2. For κ > 0, we say that the probability π(·) belongs to the class R(κ)

if
lim sup
x→0

x−κ+1π(x) < +∞

appended with R(∞) :=
⋂
κ>0R(κ).

Given s > 0, we say that β(·) belongs to the Hölder class Σ(s) if there exists a
constant c > 0 such that ∣∣β(n)(y)− β(n)(x)

∣∣ ≤ c|y − x|{s},

with s = n+ {s}, where n is a non-negative integer and {s} ∈ (0, 1]. We also need
to relate β(·) to the decay of its corresponding Lévy measure π(·). Abusing again
notation, we identify Π(κ) with the set of β(·) such that exβ(e−x)dx ∈ Π(κ), thanks
to the inverse of (0.18). Likewise for R(κ).

We construct an estimator of β(·) in the same way as for the parametric case: for
a ∈ (0, 1) and a normalizing factor 0 < γε → 0, set

ϕγε,a(x) := γ−1
ε ϕ

(
(x− a)/γε

)
,

Page 18
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where ϕ is a smooth function with support in (0, 1) that satisfies the following
oscillating property: for some integer N ≥ 1,∫ 1

0

ϕ(a)da = 1,

∫ 1

0

akϕ(a)da = 0, k = 1, . . . , N. (0.23)

So the function ϕγε,a plays the role of a kernel centred around a. Set

ha,ε(x) = −xϕ′γε,a(x), x ∈ (0, 1).

We have

E(ha,ε) =
1

m1(π)

∫ 1

0

ϕγε,a(x)β(x)dx

by (0.19). By letting hε → 0 with an appropriate rate as ε→ 0, we expect this term
to be close to β(a)/m1(π). We can eventually get rid of the denominator by our
preliminary estimator m̂1,ε. Our non-parametric estimator of β(a) takes thus the
form

β̂ε(a) := m̂1,ε Eε,σ
(
ha,ε
)
, a ∈ (0, 1),

where m̂1,ε is the estimator of m1(π) defined in (0.22).

Theorem 0.3. Work under Assumptions A, B and C. Let κ1 ≥ 4 and κ2 > 1. For
any 1 ≤ µ < κ1, let β̂ε(·) be specified by γε := εµ/(µ+1)(2s+3). For every a ∈ (0, 1), the
family (

ε−µ/(µ+1)
)s/(2s+3)(

β̂ε(a)− β(a)
)

is tight, as soon as
β ∈ Σ(s) ∩ Π(κ1) ∩R(κ2)

for 0 < s < min{N, 3κ2} and σε−3 remains bounded.

0.4 The use of the tools from the fragmentation

The marked fragment and the many-to-one formula were keytools for the paper with
Marc Hofmann (HK11) about estimation on fragmentation and also in the paper
with Alain Rouault (KR11) and Joaquim Fontbona et Servet Martinez (FKM10).

It gave me the idea of using it in an other context of the growth of bacteria. It
will be the first chapter of this HDR. This new direction has been an important part
of my research since my PhD. Thanks to a lot of interesting discussions about the
behavior of a growing bacteria with Lydia Robert who is a biologist with incredible
knowledge in probability, a new world was open to me. The first question was to try
to understand the factor that plays a primordial role in the division of the bacteria.
Lots of different factors (size, age, elongation,...) can intervene and of course there
can be combinations of several factors. To answer this question, a collaboration
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with Marie Doumic, Marc Hoffmann and Lydia Robert began which gave rise to two
publications (DHK+14; DHKR15). What is the factor which determinates the fact
that the bacteria decides to divide? The two most common possibilities were the fact
that the bacteria was too old or was too tall. In the first paper, we constructed two
models, the first was based on length as key element of the division and the second
one was based on age. The model taking into account the age led to simulations where
there would be an accumulation of bacteria of small sizes, this did not correspond
at all to the experimental data which existed on this subject. In a second paper
(DHKR15), we decided to explore the model where the length would determinate
the division. The first difficulty was to build a model which allowed the growth of
bacteria to be modeled. As I was familiar with fragmentations, this gave me the idea
to make a construction analogous to that of fragmentations using an indexed tree of
the classical Ulam-Harris-Neveu notation. The strength of this tool is that we could
put as many parameters as we wanted in the nodes of our tree and then build our
process. Like in the fragmentation case it exists a many-to-one formula which makes
an explicit link between the whole process and a "marked" bacterium. Thus we will
simplify the study of a process with value in RN

+ to a process with value in R+. In
addition, this marked process turns out to be a PDMP.

Then, with Bernard Delyon, Benoîte de Saporta, and Lydia Robert we were
interested in understanding how the growth rate parameter evolves particulary if
there was a difference between these old bacteria and young bacteria. A young
bacteria had inherited from youngest part of their mother. A old bacteria had
inherited the oldest part. This difference between the kinds of bacteria is an issue
that interested a lot Lydia Robert and we decided to look at it for growth rates which
gave birth to the (DSKR18) paper. At this moment with Bertrand Cloez, Benoîte
de Saporta and Tristan Roget we were interested in looking at the influence of this
difference between the old pole and the young pole and how this also intervenes in
the division rate and in the factor of division in the size of the bacterium after its
division. We also tried to compare the division model of the bacteria because of size
using a new model, the Adder model. It is a work in progress.

Thanks to the PDMP, which appeared for the modeling of the growth of the
size of a marked bacterium, I started to get interested in PDMPs. In a first paper
(Kre16), I was interested in a particular class of PDMP, which includes the case of the
marked bacteria. Thus, I obtained an upper bound for the speed of convergence of
my estimator. Then, in a second step I wanted to go further in this study by making
the estimator adaptive and by showing that the speed of convergence what min-max.
For this, I started a collaboration with Emeline Schmisser who is a specialist in
this kind of tool. For that we had to change our estimator, in (Kre16) I used a
kernel estimator and there we took an estimator by projection. We also succeeded in
showing that the estimator did indeed have a min-max speed and we also generalized
the class of PDMP studied. The results can be found in the publication (KS21).
This part will be the second part of this HDR.
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0.4. THE USE OF THE TOOLS FROM THE FRAGMENTATION

As I studied problems coming from biological issue such as neuronal process,
where the interaction between the element are more much complicated as the one
for the bacterium. We will need other kinds of tools. In fact this process was no
longer a branching process and the many-to-one formula was lost. This will lead to
a publication with Eva Löcherbach and Pierre Hodara (whom I co-supervised with
her) (HKL18). This direction will be detailed in the last chapter.
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Chapter 1

Cell Division structured Models

1.1 Why do bacteria divide?

1.1.1 Two dataset

Following the discussion with Lydia Robert the goal was to try to model the growth
of Escherichia coli (denoted E. coli) bacteria.

The reported results in the modeling of the growth of bacteria were obtained
from the analysis of two different datasets which were obtained through microscopic
time-lapse imaging of E. coli single-cells growing in rich medium, by Eric Stewart
et al. (SMPT05) and Robert Wang, et al. (WRPDTWS10). We will refer to these
two models. Stewart et al. followed E. coli single cells growing into microcolonies
on LB-agarose pads at 300C. The cell lineages were followed and the length of each
cell in the microcolony was measured every 2 minutes. In the data from Robert
Wang, et al., the cells were grown in LB medium at 370C in a micro fuid setup
(WRPDTWS10) and the length of the cells was measured every minute. Due to the
micro fuid device structure, only one daughter cell is followed at each division (data
si: sparse tree), in contrast to the experiment of Eric Stewart et al. where all the
individuals of a genealogical tree are followed (data fi: full tree). It is worth noting
that this different structure of the data fi and si leads to different PDE models, and
the statistical analysis was adapted to each situation. From each dataset (fi and si)
we extracted the results of three experiments (experiments f1; f2 and f3 and s1; s2

and s3). Each experiment fi corresponds to the growth of 6 microcolonies up to 600
cells and each experiment si to the growth of bacteria in a hundred microchannels
for 40 generations.

Given the accuracy of image analysis, we do not take into account variations of
cell width within the population, because they are negligible compared to cell-cycle
induced length variations. Thus, in the present study we do not distinguish between
length, volume and mass and use the term cell size as a catch-all descriptor.
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CHAPTER 1. CELL DIVISION STRUCTURED MODELS

1.1.2 By what factor do you model the division of the bacte-
ria?

Many organisms coordinate cell growth and division through size control mechanisms:
cells must reach a critical size to trigger some cell cycle event. Bacterial division is
often assumed to be controlled in this way, but we miss experimental evidence to
support this assumption. Theoretical arguments show that size control is required
to maintain size homeostasis in the case of exponential growth of individual cells.
Nevertheless, if the growth law deviates slightly from exponential in very small cells,
homeostasis can be maintained with a simple "timer" triggering division.Therefore,
to decide if division control in bacteria relies on a "timer" or "sizer" mechanism
requires quantitative comparisons between models and data. This is the question we
were interested in in (DHK+14) where we give reference about the result existing
before.

The "timer" and "sizer" hypotheses are easily expressed in mathematical terms:
two different PDE models are commonly used to describe bacterial growth, using a
division rate (i.e. the instantaneous probability of division) depending either on cell
age or cell size. In the age-structured model (Age model) the division rate B1 is a
function only of the age a of the cell. The density n(t; a) of cells of age a at time t is
given as a solution to the Mc-Kendrick Von Forster equation ((Per07) and references
therein).

We have (in a weak sense):

∂tn(t, a) + ∂an(t, a) = −B1(a)n(t, a), (1.1)

with the boundary condition

n(t, a = 0) = 2

∞∫
0

B1(a)n(t, a)da.

The methods relie on tagged fragment approach ((Ber06), (Haa03)) and many-
to-one formula ((Ban09), (BT11), (Kre08) (DHKR15) and (Clo17)) .

In this model, a cell of age a at time t has the probability B1(a)dt of dividing
between time t and t+ dt.

In the size-structured model (Size model), the division rate B is a function only
of the size x of the cell. Assuming that the size of a single cell grows with a rate
v(x), the density n(t;x) of cells of size x at time t is given as a solution to the
size-structured cell division equation (Per07).

We have (in a weak sense) if we keep the 2 daugthers at each generation:

∂tn(t, x) + ∂x
(
v(x)n(t, x)

)
+B(x)n(t, x) = 4B(2x)n(t, 2x). (1.2)
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1.1. WHY DO BACTERIA DIVIDE?

Therefore the mean empirical distribution of X(t) satisfies the deterministic transport-
fragmentation equation. In the Size Model, a cell of size x at time t has the probability
B(x)dt of dividing between time t and t+ dt. This model is related to the so-called
"sloppy size control" model (Whe82) describing division in S. pombe.

The PDE given by Eq. (1.1) and (1.2) can be embedded into a two-dimensional
age-and-size-structured equation (Age and Size Model), describing the temporal
evolution of the density n(t; a; x) of cells of age a and size x at time t, with a division
rate Ba,x a priori depending on both age and size:

(∂t + ∂a)n(t, a, x) + ∂x(v(x)n(t, a, x)) = −Ba,x(a)n(t, a, x), (1.3)

with the boundary condition

n(t, a = 0, x) = 4

∞∫
0

Ba,s(a, x)n(t, a, 2x)da.

In the paper (DHK+14) we confront these models with recent data on E. coli single
cell growth, using a rigorous statistical methodology. In particular, we develop the
estimation part with the dependence on height in the different part and for the model
of the dependence on age we will be able to refer to the works of Adélaïde Olivier and
Marc Hoffmann (HO16). We demonstrate that a size-independent "timer" mechanism
for division control, though theoretically possible, is quantitatively incompatible with
the data and extremely sensitive to slight variations in the growth law. In contrast,
a "sizer" model is robust and fits the data well. In addition, we tested the effect of
variability in individual growth rates and noise in septum positioning and found that
size control is robust to this phenotypic noise.

In the following figures 1.1, we will show the experimental and reconstructed age-
size distributions for representative experiments from Eric Stewart et al.(SMPT05)
(f1) and Robert Wang, et al.(WRPDTWS10) (s1). In the Figure 1.1 A and B: It is
the experimental age-size distribution for a representative experiment f1 (A) and
s1 ( B). The frequency of cells of age a and size s in the population is represented
by the color of the figure at the point of coordinate a on the x-axis and s on the
y-axis, according to the scale indicated on the right of the figure. C and D: It is the
reconstruction of the distributions using the Age model (C: reconstruction of the
data f1 shown in panel A; D: reconstruction of the data s1 shown in panel B). These
reconstructed distributions are obtained by simulations of the Age model using a
division rate estimated from the data (C: from f1, D: from s1); the growth functions
used for the simulations are detailed in the Methods section in (DHK+14). E and F:
It is the reconstruction of the distributions using the Size model (E: reconstruction
of the data f1 shown in panel A; F: reconstruction of the data s1 shown in panel B);
these distributions are obtained by simulations of the Size model using a division
rate estimated from the data (E: from f1, F: from s1) with an exponential growth
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function.
Experimental and reconstructed age-size distributions

Figure 1.1: Age Size Distribution for all cells - whole tree data

We can conclude that the confrontations between cell cycle models and data
usually suffer from a lack of high-quality data and suitable statistical estimation
techniques. Here we overcome these limitations by using high precision measurements
of tens of thousands of single bacterial cells combined with recent statistical inference
methods to estimate the division rate within the models. We, therefore, provide the
first precise quantitative assessment of different cell cycle models.

1.2 The estimation of the division rate

After the first work with Lydia Robert, Marc Hoffmann and Marie Doumic (DHK+14),
we decided to study more precisely the evolution of the size of the bacteria when the
division factor was induced by the size of the bacteria.

The underlying biological problem concerns the division of Escherichia coli (E.
coli) which is a single cell bacterium. Single cells grow and divide to give birth to
two daughter cells, that grow and divide and so on. So a colony of cells from a single
ancestor is structured as a binary genealogical tree.

E. coli is a rod-shaped bacterium with constant width and elongating length,
hence its length (or size) is representative of its biomass or volume. It is commonly
admitted, that starting from size x at birth, the bacterium size growths exponentially
fast with time at constant rate until its division. This goes back to Monod (1942).
More specifically, if T is the age of the bacterium at division, there exists a constant
τ , which will be called the growth rate, such that the size of the bacterium at time
0 ≤ t ≤ T equals xeτt.

The mother cell gives rize to two offsprings, at a rate B(x) that depend on its
size x. The two offsprings have initial size x1/2, where x1 is the size of the mother at
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division and start independent growth according to the rate τ and divide according
to the rate B(x).

We could also notice that the variability of the growth rate from one cell to
another comes from exogeneous and endogeneous factors. Using the dataset of
Stewart (fi) consists of 88 microcolonies followed for a few hours (average time of
division is of order 20 minutes): approximately 5 microcolonies are followed everyday,
for 16 days. We can see that the variability in growth rate may vary from one day to
the next (exogeneous factor). And there are also variability in growth rate may vary
within a microcolony if specific factors are transmitted from parents to offsprings.
(endogeneous factor).

Figure 1.2: one curve = 1 day

Figure 1.3: one curve = 1 microcolony

1.2.1 The genealogical construction

As we did for the fragmentations we will use a genealogical tree with the Ulam-Harris-
Neveu numbering. In each node we will be able to store all information we need to
build our process of growth of the size of our bacteria.
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We can note that we are in a simpler case because each division of a bacterium
gives birth to two bacteria.

Let U :=
⋃∞
n=0{0, 1}n (with {0, 1}0 := {∅}) denotes the infinite binary genealogical

tree. Each node u ∈ U is identified with a cell of the population and has a mark

(ξu, bu, ζu, τu),

where ξu is the size at birth, τu the growth rate, bu the birthtime and ζu the lifetime of
u. The evolution

(
ξut , t ∈ [bu, bu + ζu)

)
of the size of u during its lifetime is governed

by
ξut = ξu exp

(
τu(t− bu)

)
for t ∈ [bu, bu + ζu). (1.4)

Each cell splits into two offsprings of the same size according to a division rate B(x)

for x ∈ (0,∞). Equivalently

P
(
ζu ∈ [t, t+ dt]

∣∣ ζu ≥ t, ξu = x, τu = v
)

= B
(
x exp(vt)

)
dt. (1.5)

At division, a cell splits into two offsprings of the same size. If u− denotes the parent
of u, we thus have

2 ξu = ξu− exp
(
τu−ζu−

)
. (1.6)

Finally, the growth rate τu of u is inherited from its parent τu− according to a Markov
kernel

ρ(v, dv′) = P(τu ∈ dv′ | τu− = v), (1.7)

where v > 0 and ρ(v, dv′) is a probability measure on (0,∞) for each v > 0.
Eq. (1.4), (1.5), (1.6) and (1.7) completely determine the dynamics of the model(
(ξu, τu), u ∈ U

)
, as a Markov chain on a tree, given an additional initial condition

(ξ∅, τ∅) on the root. The chain is embedded into a piecewise deterministic continuous
Markov process thanks to (1.4) by setting

(ξut , τ
u
t ) =

(
ξu exp

(
τu(t− bu)

)
, τu
)

for t ∈ [bu, bu + ζu)

and (0, 0) otherwise. Define(
X(t), V (t)

)
=
((
X1(t), V1(t)

)
,
(
X2(t), V2(t)

)
, . . .

)
as the process of sizes and growth rates of the living particles in the system at time
t. As for the fragmentation process we have an identity between point measures

∞∑
i=1

1{Xi(t)>0}δ(Xi(t),Vi(t)) =
∑
u∈U

1{bu≤t<bu+ζu}δ(ξut ,τ
u
t ) (1.8)

where δ denotes the Dirac mass.
If µ is a probability measure on the state space S = [0,∞)× E , we shall denote
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1.2. THE ESTIMATION OF THE DIVISION RATE

indifferently by Pµ the law of any of the three processes above where the root (ξ∅, τ∅)

has distribution µ. The construction is classical (see for instance (Ber06) and the
references therein).

1.2.2 The behaviour of the mean empirical measure

Denote by C1
0(S) the set of real-valued test functions with compact support in the

interior of S.

Theorem 1.1. Work under Assumption 1 in (DHKR15). Let µ be a probability
distribution on S. Define the distribution n(t, dx, dv) by

〈n(t, ·), ϕ〉 = IEµ

[ ∞∑
i=1

ϕ
(
Xi(t), Vi(t)

)]
for every ϕ ∈ C1

0(S).

Then n(t, ·) solves (in a weak sense)

∂tn(t, x, v) + v ∂x
(
xn(t, x, v)

)
+B(x)n(t, x, v)

= 4B(2x)
∫
E ρ(v′, v)n(t, 2x, dv′),

n(0, x, v) = n(0)(x, v), x ≥ 0

with initial condition n(0)(dx, dv) = µ(dx, dv).

Theorem 1.1 somehow legitimates our methodology: by enabling each cell to have
its own growth rate and by building-up new statistical estimators in this context,
we still have a translation in terms of the approach in (DPZ09). In particular,
we will be able to compare our estimation results with (DHRBR12). Our proof is
based on fragmentation techniques, inspired by Jean Bertoin (Ber06) and Bénédicte
Haas (Haa03). Alternative approaches to the same kind of questions include the
probabilistic studies of Brigitte Chauvin et al. (CRW91), Vincent Bansaye et al.
(BDMT11) or Simon Harris and Matthew Roberts (HR17) and the references therein.

1.2.3 A many-to-one formula via a tagged branch

For u ∈ U , we set miu for the i-th parent along the genealogy of u. Define

τut =

|u|∑
i=1

τmiuζmiu + τut (t− bu) for t ∈ [bu, bu + ζu)

and 0 otherwise for the cumulated growth rate along its ancestors up to time t. In
the same spirit as tagged fragments in fragmentation processes (see the book by Jean
Bertoin (Ber06) for instance) we pick a branch at random along the genealogical tree
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at random: for every k ≥ 1, if ϑk denotes the node of the tagged branch at the k-th
generation, we have

P(ϑk = u) = 2−k for every u ∈ U such that |u| = k,

and 0 otherwise. For t ≥ 0, the relationship

bϑCt ≤ t < bϑCt + ζϑCt

uniquely defines a counting process (Ct, t ≥ 0) with C0 = 0. The process Ct enables
in turn to define a tagged process of size, growth rate and cumulated growth rate via(

χ(t),V(t),V(t)
)

=
(
ξ
ϑCt
t , τ

ϑCt
t , τ

ϑCt
t

)
for t ∈ [bϑCt , bϑCt + ζϑCt )

and 0 otherwise. We have the representation

χ(t) =
xeV(t)

2Ct
(1.9)

and since V(t) ∈ [emin, emax], we note that

emint ≤ V(t) ≤ emaxt. (1.10)

The behaviour of
(
χ(t),V(t),V(t)

)
can be related to certain functionals of the whole

particle system via a so-called many-to-one formula. This is the key tool to obtain
Theorem 1.1.

Proposition 1.1 (A many-to-one formula). Work under Assumption 1 in (DHKR15).
For x ∈ (0,∞), let Px be defined as in Lemma 1 in (DHKR15). For every t ≥ 0, we
have

IEx

[
φ
(
χ(t),V(t),V(t)

)]
= IEx

[∑
u∈U

ξut
e−τ

u
t

x
φ
(
ξut , τ

u
t , τ

u
t

)]
(1.11)

for every φ : S × [0,∞)→ [0,∞).

1.2.4 Statistical estimation of the division rate

Two observation schemes

Let Un ⊂ U denote a subset of size n of connected nodes: if u belongs to Un, so does
its parent u−. We look for a nonparametric estimator of the division rate

y ; B(y) for y ∈ (0,∞).
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Statistical inference is based on the observation scheme(
(ξu, τu), u ∈ Un

)
and asymptotic study is undertaken as the population size of the sample n → ∞.
We are interested in two specific observation schemes.

The full tree case. We observe every pair (ξu, τu) over the first Nn generations of the
tree:

Un = {u ∈ U , |u| ≤ Nn}

with the notation |u| = n if u = (u0, u1, . . . , un) ∈ U , and Nn is chosen such that
that 2Nn has order n. This model corresponds to the database of the publication
Eric Stewart et al. (SMPT05) described in the section 1.1.1.

The sparse tree case. We follow the first n offsprings of a single cell, along a fixed
line of descendants. This means that for some u ∈ U with |u| = n, we observe
every size ξu and growth rate τu of each node (u0), (u0, u1), (u0, u1, u2) and so on up
to a final node u = (u0, u1, . . . , un).This model corresponds to the database of the
publication Robert Wang et al. (WRPDTWS10) described in the Section 1.1.1.

Remark 1.1. For every n ≥ 1, we tacitly assume that there exists a (random) time
Tn <∞ almost surely, such that for t ≥ Tn, the observation scheme Un is well-defined.
This is a consequence of the behaviour of B near infinity that we impose later on in
(1.19) below.

Estimation of the division rate

We denote by x = (x, v) an element of the state space S = [0,∞) × E . Introduce
the transition kernel

PB(x, dx′) = P
(
(ξu, τu) ∈ dx′∣∣ (ξu− , τu−) = x

)
of the size and growth rate distribution (ξu, τu) at the birth of a descendant u ∈ U ,
given the size at birth and growth rate of its parent (ξu− , τu−). From (1.5), we infer
that P(ζu− ∈ dt

∣∣ ξu− = x, τu− = v) is equal to

B
(
x exp(vt)

)
exp

(
−
∫ t

0

B
(
x exp(vs)

)
ds
)
dt.

Using formula (1.6), by a simple change of variables

P
(
ξu ∈ dx′

∣∣ ξu− = x, τu− = v
)

=
B(2x′)

vx′
1{x′≥x/2} exp

(
−
∫ x′

x/2

B(2s)
vs

ds
)
dx′.
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Incorporating (1.7), we obtain an explicit formula for

PB(x, dx′) = PB
(
(x, v), x′, dv′)dx′,

with

PB
(
(x, v), x′, dv′) =

B(2x′)

vx′
1{x′≥x/2} exp

(
−
∫ x′

x/2

B(2s)
vs

ds
)
ρ(v, dv′). (1.12)

Assume further that PB admits an invariant probability measure νB(dx), i.e. a
solution to

νBPB = νB, (1.13)

where
µPB(dy) =

∫
S
µ(dx)PB(x, dy)

denotes the left action of positive measures µ(dx) on S for the transition PB.

Proposition 1.2. Work under Assumption 1 in (DHKR15). Then PB admits an
invariant probability measure νB of the form νB(dx) = νB(x, dv)dx and we have

νB(y) =
B(2y)

y
IEνB

[ 1

τu−
1{ξu−≤2y, ξu≥y}

]
(1.14)

where IEνB [·] denotes expectation when the initial condition (ξ∅, τ∅) has distribution
νB and where we have set νB(y) =

∫
E νB(y, dv′) in (1.14) for the marginal density of

the invariant probability measure νB with respect to y.

Key idea for the proof of (1.14)
As νB(dx) = νB(x, dv)dx, it follows that for every y ∈ (0,∞),

νB(y, dv′) =

∫
S
νB(x, dv)dxPB

(
(x, v), y, dv′

)
=
B(2y)

y

∫
E

∫ 2y

0

νB(x, dv) exp
(
−
∫ y

x/2

B(2s)
vs

ds
)ρ(v, dv′)

v
dx.

By Assumption 1 in (DHKR15), we have
∫∞
x/2

B(2s)
s
ds =∞ hence

exp
(
−
∫ y

x/2

B(2s)
vs

ds
)

=

∫ ∞
y

B(2s)
vs

exp
(
−
∫ s

x/2

B(2s′)
vs′

ds′
)
ds.

It follows that νB(y, dv′) is equal to

B(2y)

y

∫
E

∫ 2y

0

νB(x, dv)dx

∫ ∞
y

B(2s)
vs

exp
(
−
∫ s

x/2

B(2s′)
vs′

ds′
)
ds
ρ(v, dv′)

v

=
B(2y)

y

∫
S

∫
[0,∞)

1{x ≤ 2y, s ≥ y}v
−1νB(x, dv)dxPB

(
(x, v), s, dv′

)
ds.
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Integrating with respect to dv′, we obtain the result.

Construction of a nonparametric estimator

Inverting (1.14) and applying an appropriate change of variables, we obtain

B(y) =
y

2

νB(y/2)

IEνB

[
1
τu−

1{ξu−≤y, ξu≥y/2}

] , (1.15)

provided the denominator is positive. Representation (1.15) suggests an estima-
tion procedure, replacing the marginal density νB(y/2) and the expectation in the
denominator by their empirical counterparts. To that end, pick a kernel function

K : [0,∞)→ R,
∫

[0,∞)

K(y)dy = 1,

and set Kh(y) = h−1K
(
h−1y

)
for y ∈ [0,∞) and h > 0. Our estimator is defined as

B̂n(y) =
y

2

n−1
∑

u∈Un Kh(ξu − y/2)

n−1
∑

u∈Un
1
τu−

1{ξu− ≤ y, ξu ≥ y/2}
∨
$
, (1.16)

where $ > 0 is a threshold that ensures that the estimator is well defined in all cases
and x

∨
y = max{x, y}. Thus (B̂n(y), y ∈ D) is specified by the choice of the kernel

K, the bandwidth h > 0 and the threshold $ > 0.

Assumption. The function K has compact support, and for some integer n0 ≥ 1,
we have

∫
[0,∞)

xkK(x)dx = 1{k=0} for 0 ≤ k ≤ n0.

Rate of convergence

We are ready to state our main result. For s > 0, with s = bsc+{s}, 0 < {s} ≤ 1 and
bsc an integer, introduce the Hölder space Hs(D) of functions f : D → R possessing
a derivative of order bsc that satisfies

|f bsc(y)− f bsc(x)| ≤ c(f)|x− y|{s}. (1.17)

The minimal constant c(f) such that (1.17) holds defines a semi-norm |f |Hs(D). We
equip the space Hs(D) with the norm

‖f‖Hs(D) = ‖f‖L∞(D) + |f |Hs(D)

and the Hölder balls

Hs(D,M) = {B, ‖B‖Hs(D) ≤M}, M > 0.
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For λ > 0 and a vector of positive constants c = (r,m, `, L), introduce the class
Fλ(c) of continuous functions B : [0,∞)→ [0,∞) such that∫ r/2

0

x−1B(2x)dx ≤ L,

∫ r

r/2

x−1B(2x)dx ≥ `, (1.18)

and
B(x) ≥ mxλ for x ≥ r. (1.19)

Theorem 1.2. Work under Assumption 3 in (DHKR15) in the sparse tree case and
Assumption 4 in (DHKR15) in the full tree case. Specify B̂ with a kernel K satisfying
Assumption 2 in (DHKR15) for some n0 > 0 and

h = c0n
−1/(2s+1), $n = (log n)−1.

For everyM > 0 there exist c0 = c0(c,M) and d(c) ≥ 0 such that for every 0 < s < n0

and every compact interval D ⊂ (d(c),∞) such that inf D ≥ r/2, we have

sup
ρ,B

IEµ

[
‖B̂n −B‖2

L2(D)

]1/2
. (log n)n−s/(2s+1),

where the supremum is taken over

ρ ∈M(ρmin, ρmax) and B ∈ Fλ(c) ∩Hs(D,M),

and IEµ[·] denotes expectation with respect to any initial distribution µ(dx) for (ξ∅, τ∅)

on S such that
∫
S V(x)2µ(dx) <∞.

Remarks 1.1. 1. We obtain the classical rate n−s/(2s+1) (up to a log term) which
is optimal in a minimax sense for density estimation. It is presumably optimal in
our context, using for instance classical techniques for nonparametric estimation
lower bounds on functions of transition densities of Markov chains, see for
instance (GHR04).

2. The extra logarithmic term is due to technical reasons: we need it in order to
control the decay of correlations of the observations over the full tree structure.

3. The knowledge of the smoothness s that is needed for the construction of B̂n

is not realistic in practice. An adaptive estimator could be obtained by using
a data-driven bandwidth in the estimation of the invariant density νB(y/2) in
(1.16). The Goldenschluger-Lepski bandwidth selection method (GL11), see also
(DHRBR12) would presumably yield adaptation, but checking the assumptions
still requires a proof in our setting. We implement data-driven bandwidth in
the numerical Section 1.2.5 below.
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1.2.5 Numerical implementation

For the simulations, we first generated simulated data in order to verify that our
protocol did work. For more details we can refer to (DHKR15) and that gave the
figure 1.4.

0 1 2 3 4 5
0

5

10

15

20

25

 

 

true B(x)
reconstructed B(x)
reconstructed B with no variability
B(x)

Figure 1.4: Reconstruction for n = 217 and $ = n−1/2. When the variability in the
growth rate is ignored, the estimate reveals unsatisfactory. The parameter values are
the reference ones.

We proceed as in the above protocol. Figure 1.5 shows the reconstructed B

and νB for a sample of n = 2335 cells. Though much more precise and reliable,
thanks both to the experimental device and the reconstruction method, our results
are qualitatively in accordance with previous indirect reconstructions carried out in
(DMZ10) on old datasets published in (Kub69) back in 1969. The reconstruction of
the division rate is prominent here since it appears to be the last component needed
for a full calibration of the model. Thus, our method provides the biologists with a
complete understanding of the size dependence of the biological system. Phenotypic
variability between genetically identical cells has recently received growing attention
with the recognition that it can be genetically controlled and subject to selection
pressures (KEBC05). Our mathematical framework allows the incorporation of this
variability at the level of individual growth rates. It should allow the study of the
impact of variability on the population fitness and should be of particular importance
to describe the growth of populations of cells exhibiting high variability of growth
rates. Several examples of high variability have been described, both in genetically
engineered or natural bacterial populations (SMPT05; TMY09).
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Figure 1.5: Estimation of B (dotted line) and νB (solid line) on experimental data
of E. coli dividing cells, n = 2335. In abscissae, the bacterial length is in arbitrary
unit.

1.3 The old and the new pole

1.3.1 The growth rate

One of the many questions that interested Lydia Robert, in addition to better
understanding the growth of E. coli bacteria, was to understand a little about the
influence for a bacterium to be old poles or not. In this section, we will interest us
on the paper (DSKR18). In this paper written with Benoîte de Saporta, Bernard
Delyon and Lydia Robert, we tried to respond to this question.

Although two sister cells are clones with identical genetic material, asymmetry in
E. coli division makes sense biologically as E. coli grows and reproduces by dividing
roughly at its middle. Each cell has thus a new pole (created at the division of its
mother) and an old one (one of the two original poles of its mother), see in the next
Figure 1.6. The cell that inherits the old pole of its mother is called the old pole
cell, the other one is called the new pole cell. It is suspected that both cells inherit
different material or material of different quality from their mother cell. Therefore,
each cell has a type: old pole (O) or new pole (N) cell. On experimental data, we
usually do not know the type of the original cell and its two daughters at the root
of the genealogy, but from generation 2 on, the type of each cell is known. For the
cells of unknown types we will note them UT in the Figure 1.6 and we will write
it in black. The cells of young type will be written in blue and the old one in red.
For further generations, we can associate to one cell not only its type, but also the
sequence of types of its ancestors, see Figure 1.6. The original ancestor is labelled 1

and the two daughters of cell n are labelled 2n for the new pole one and 2n+ 1 for
the old pole one. Therefore, even-labelled cells are type N and odd-labelled cells are
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type O and the whole sequence of types of their ancestors can be retrieved from the
decomposition of their label in base 2 (with 0 coding for N and 1 coding for O). For
instance, cell number 19 is type NOO which means, it is type O, its mother is type
O and its grand-mother is type N.

One of the difficulties comes from the fact that we have access to two different
data sets structured as binary genealogical trees. For the statistician, this special
structure is hard to take into account rigorously because of the intricate dependence
structure within a tree. The data sets come from two different biological experiments.
One set corresponds to small complete trees (the Steward sets), whereas the other
one corresponds to long specific sub-trees (the Wang sets). In the previous figure
Wang’s observations correspond to the bacteria with the orange circle. You can refer
to the Section 1.1.1 for more details on these two data sets. Our aim is to compare
both sets, which is especially complicated as they have very different tree structures.

The starting point of the present work is that the latter questions have seemingly
opposite answers in the biological literature: in (SMPT05), the growth rate of older
cells is significantly slowed down, whereas in (WRPDTWS10) it is stable. We provide
the data sets from both of these papers, and our aim is to conduct a new statistical
study of both data sets to investigate the behavior of the growth rate of E. coli and
try to decide whether both experiments yield contradictory results or not.

For the study of the data there was a big work of treatment of the data because
the measurements are extremely noisy. We can refer to (DSKR18) for more details
on this point.

The main difficulty to analyze these data sets lies on the special dependence
structure coming from the genealogical trees. To take this into account, we may use
the BAR model from (GBP+05; Guy07; dSGPM11; dSGPM12; dSGPM14).

Let Xj,k be the growth rate of cell number k in tree number j. The asymmetric
BAR model is an autoregressive model defined as follows: Xj,1 is arbitrary and for
k ≥ 1, one has

Xj,2k = a0 + b0Xj,k + εj,2k,
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Figure 1.6: Cell division binary tree with the type of each cell
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Xj,2k+1 = a1 + b1Xj,k + εj,2k+1,

where (εj,k) is a noise sequence and θ = (a0, b0, a1, b1) parameters to be estimated.
By adapting the techniques of (dSGPM14), we obtain the estimation results given

in Figure 1.7.

1.3.2 The influence of being old or new

As it is not possible to compare the BAR model for both data sets, we turned to
more basic tools to compare the influence of the mother and higher ancestors on the
growth rate of a given cell.

We averaged the growth rates of cells within the same generation of the same
tree (without taking care of the border distance), and normalized the growth rate of
each cell with the suitable average. Then we computed the mean growth rate over
all normalized cells that have cumulated n new poles or n old poles (for 1 ≤ n ≤ 7).
The results are given on Figure 1.8 (a), circles are cumulated new-pole cells and
stars cumulated old-pole cells. This figure corresponds to Figure 3 in (SMPT05).
Then we compared the mean of all new-pole cells which mother cumulated n old
poles, and old-pole cells which mother cumulated n new poles (for 1 ≤ n ≤ 6), see
Figure 1.8 (b), circles are new-pole cells with cumulated old-pole mother and stars
old-pole cells with cumulated new-pole mother. The scales of both figures are the
same to facilitate comparison.

The linear regression slope coefficients are respectively 4.4% for the new pole cells
and −1.1% in Figure 1.8 (a), 0.1% for the new pole cells and −0.5% in Figure 1.8 (b).

We can conclude that one new pole is enough to forget an accumulation of old
poles and similarly one old pole is enough to forget an accumulation of new poles.

The influence of the mother and the grand-mother

For each tree, we selected the old cell branch (rightmost branch in Figure 1.6) and
we fit an additive regression model explaining the growth rate of a cell with the one

Estimation 95% confidence interval

â0,n 0.0304 [0.0200; 0.0410]

b̂0,n 0.0664 [−0.4652; 0.5980]

â1,n 0.0281 [0.0178; 0.0385]

b̂1,n 0.0994 [−0.3194; 0.5182]

Figure 1.7: Estimated parameters for the BAR model, Wang data, n = 302, m = 224.
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Figure 1.8: Mean normalized growth rate within generations and trees for cells that
have cumulated (a) n consecutive new poles (circles) or n consecutive old poles (stars)
for 1 ≤ n ≤ 7; (b) 1 new pole after n consecutive old poles (circles), 1 old pole after n
consecutive new poles (stars), for 1 ≤ n ≤ 6, Stewart data set.

of its mother and the one of its grand mother

rn = βmmn + βggn + β0 + en (1.20)

where

• rn is the growth rate of the n-th generation cell (X2n+1−1 with previous notation),

• mn is the growth rate of its mother (X2n−1),

• gn is the growth rate of its grand mother (X2n−1−1)

• en the prediction error.

The triple (β0, βm, βg) depends on the tree. The R command is lm(rate∼ratemo+rategdmo).
Histograms of p-values for the significance of the mother coefficient βm and for the
grand mother coefficient βg are plotted in Figure 1.9 .

We conclude that the effect of the grand mother is not significant. The coefficient
βm is significantly positive with a value around 0.3.

Looking at Wang’s data, we compared new pole and old pole cells means as well
as mother-daughter correlation. More specifically,

1. Student test for comparison of the mean of the growth rate of old pole cells
and of new pole cells yields a p-value < 10−16, and 1% confidence intervals for
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0
20

40
60

80
10

0

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

Figure 1.9: Histogram of p-value for significance of the mother coefficient βm (a) and
for the grand mother coefficient βg (b), Wang data set.
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mean growth rates are: [0.0309, 0.031] for old pole cells and [0.03186, 0.03195]

for new pole cells;

2. Correlation daughter mother. We have computed one confidence interval for
overall correlation between old pole daughters and their mother, and another
for new pole daughters. 1% confidence intervals for correlation between growth
rates of new pole daughters and that of their mother is: [0.085, 0.123], the same
for old pole cells is [0.125, 0.16].

A significant difference thus holds for the mean as well as for the correlation with
the mother cell.

The stationary of the process

Both experiments were not conducted at the same stage in the life of E. coli cells. In
(SMPT05), they selected a random cell from a previous colony and let it grow and
divide in a new medium. Thus, the first generations of observed cells are stressed,
leading to a reduced growth rate, see Figure 1.11. This corresponds to a transient
phase.

We see on Figure 1.10 an uniform distribution of the p-value, which is characteristic
of the non-significance of the hypothesis of different distributions.

Conclusion

In these two data sets, we made efforts to take in account the tree structure of the
data. We tried different statistical procedures that can be summed up as follows.

Wang data: Because of the simple structure of this data set, each tree is here
just the orange subtree in Figure 1.6. We have tried dynamical models in which the
growth rate of a cell may have a multi-generation memory, with coefficients possibly
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Figure 1.10: P-values for the Kolmogorov
test of stationarity, Wang data set.
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Figure 1.11: Box plots of growth rates
for cells in generations 2 to 8, Stewart
data set.
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dependent on the tree (mixed effects). We did not find a significant improvement over
the simplest model where the rate of a cell depends only on the one of its mother,
and that the grand mother has no significant influence. We found that

1. The old pole cell growth rate is significantly more correlated to its mother than
the new pole cell.

2. The mean old pole cell growth rate is significantly smaller than the mean new
pole cell growth rate.

3. The stationarity cannot be rejected.

Stewart data: The tree structure induces dependency in the data which we have
taken into account in our testing procedures...

We observe that

1. The old pole cell growth rate is significantly more correlated to its mother than
the new pole cell.

2. The mean old pole cell growth rate is significantly smaller than the mean new
pole cell growth rate.

3. There is no stationarity of the growth rate across generations. This means that
the initial stress of the experiment has not enough time to vanish during only
10 generations.

4. An important factor is the number of generations since the last change of pole
type, for example, cell 17 (NNO) in figure 1.6 should behave similarly as cell
21 (ONO), or NONOONN as ONONONN.

To conclude, in both data sets, we recover a statistically significant difference
between the growth rate of sister cells. Therefore, asymmetry is present in the
division of the E. coli, even after hundreds of generations.

The apparent conflict between both data sets may simply come from observations
at different phases: Stewart’s data are still in a transient phase whereas Wang’s data
are stationary. From this point of view, the two data sets are not contradictory.
To our best knowledge, there is no available data set of E. coli division with both
transient and steady states. It would be interesting to design an experiment where
both the transient and the stationary phase could be observed on the same colonies.
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1.4 To go further

After having tried to take into account the influence of the old pole and the young
pole of a bacterium for the growth rates in the previous section, we could ask the
question more generally for all the other parameters of the bacterium. This is what
motivated the current collaboration with Bertrand Cloez, Benoîte de Saporta and
Tristan Roget. We also wanted to generalize the model studied in the Section 1.2 by
incorporating the fact that this time the size of the bacteria would not be divided
exactly in two, but that there would be a proportion θi of the size of the mother
for young bacteria and 1− θi for old bacteria with the θi depending on the type of
mother. The growth rate τi will also depend on the type, as well as the division rate
Bi. One of the first question is to estimate the new parameter θi. A second step is
to make the same work that was done in (DHKR15) to estimate the new division
rate by incorporating the adaptive method that we developed in (KS21).

Let (τ0, τ1) describes the growth rates of old and young cells and the parameters
(θ0, θ1) describe the size proportions inherited by the old and young cell.

In the same way as in the Subsection 1.2.1, we can construct the genealogical tree
and the underlying process. We can make the convention that the labels ending with
1 will be of young type and those ending with 0 will be of old type. The difference is
that for the equation (1.6) we will obtain instead

ξuij = θiξui exp
(
τiζi
)

(1.21)

for u ∈ U and (i, j) ∈ {0, 1}2.
Similarly the equation (1.12) for the transition kernel of the size at death and

the type (0 for the old cell and 1 for the young) will become:

QB

(
(x, i), (x′, i′)) =

B(x′, i′)

2αi′x′
1{x′≥xθi′} exp

(
−
∫ x′

xθi′

B(s,i′)
αi′s

ds
)
. (1.22)

With methods similar to (DHKR15), one could obtain that under good assump-
tions:

Proposition 1.3. QB admits an invariant probability measure with density µB(x, i)

and we have
µB(y, j) =

B(y, j)

y
IEµB

[ 1

τj
1{θjdu−≤y, du≥y, ju=j}

]
. (1.23)

We could then combine the methods used in (DHKR15) with the adaptive
estimators developed in (KS21) in order to have an adaptive estimate of B.

In this work in progress, we have obtained first simulations concerning the
estimation of the division rate for young bacteria and another for old bacteria that is
visibly significantly different, as you can observe in the figure 1.12.

We could also extend the question that was asked in (DHK+14) in order to find
the best possible modeling of the division rate. We could add a possible modeling
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Figure 1.12: In red the invariant probability and in blue the division rate. On the left for
the old cell and on the right for the young.

where the factor of the division, would also be the elongation and thus propose a
model Adder.

Parameter estimation in branching processes has received significant attention; we
refer the reader to the survey by (Yan08) , and to (Gut91) for a book-length treatment
and also to the articles (DHK21) for the case of birth-and-death processes and
(BHM22) for the case of branching processes with almost sure extinction. Another
approach would be to study this literature to see what can be done in different
branching process settings.
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Chapter 2

A specific class of PDMP

2.1 Introduction

During the study of the evolution of bacterial growth (see previous chapter), there is
a PDMP that appeared naturally, it was the process modeling the size of a marked
bacterium. And at that time, Florent Malrieu was in Rennes and created his ANR
on PDMP. It was a chance for me, it allowed me to know this processes better.

PDMPs were first introduced in the literature by Davis ((Dav84) and (Dav93)).
Already at this time, the theory of diffusions had such powerful tools as the theory
of Itô calculus and stochastic differential equations at its disposal. Davis’s goal was
to endow the PDMP with rather general tools. The main reason for that was to
provide a general framework. Until this work only particular cases had been dealt
with, which turned out not to be easily generalizable.

PDMPs form a family of càdlàg Markov processes involving a deterministic motion
punctuated by random jumps. The motion of the PDMP (X(t))t≥0 depends on three
local characteristics, namely the jump rate λ, the flow φ and the transition measure
Q according to which the location of the process at the jump time is chosen. The
process starts from x and follows the flow φ(x, t) until the first jump time T1 which
occurs either spontaneously in a Poisson-like fashion with rate λ(φ(x, t)) or when
the flow φ(x, t) hits the boundary of the state-space. In both cases, the location
of the process at the jump time T1, denoted by Z1 = X(T1), is selected by the
transition measure Q(φ(x, T1), ·) and the motion restarts from this new point as
before. This fully describes a piecewise continuous trajectory for {X(t)}t≥0 with
jump times {Tk}k≥1 and post jump locations {Zk}k≥1, and which evolves according
to the flow φ between two jumps.

These processes have been heavily studied from both a theoretical and an applied
perspective. For example in communication networks with the control of congestion
TCP/IP (V. Dumas and al (DGR02), V. Guillemin et al. (GRZ04)), for molecular
biology (BLM15), for the model of Hodgkin-Huxley concerning the neuronal activity
(K. Pakdaman et al. (PTW10)), for bacterial chemotaxis (FGM16) in reliability
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(F. Dufour and Y. Dutuit (DD02)) and for the movement of a population of bacteria
(H.G. Othmer et al.(ODA88) as well as R. Erban and H.G. Othmer (EO05)). You
can also refer to the survey (BT21) for applications in biology.

With Romain Azaïs, Jean-Baptiste Bardet, Alexandre Génadot and Pierre-André
Zitt we wrote a proceedings (ABGKZ14) for the MAS days. In a first part, we give
a precise definition and some general properties of the PDMPs. Then, we illustrate
the state of the art regarding PDMPs through three specific examples: a model of
switched vector fields, the TCP process, and a modelization of neuronal activity.
Finally, we briefly review some results about a non-parametric statistical method to
get an estimation of the conditional density associated with the jumps of a PDMP
defined on a separable metric space and we end with a survey of numerical methods.
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2.2 Nonparametric estimation of jump rates for a
specific class of PDMP

2.2.1 The background

After the writing of the paper (DHKR15) on the estimation of the division rate of
bacteria and the study of the specific PDMP that appeared in this study, I wanted
to try to see how I could generalize the estimation of the division rate of a more
general PDMP. Therefore, I wrote a first paper on the estimation of a class of PDMP
(Kre16) which included 2 important examples, the TCP and the evolution of the
marked bacteria.

The TCP (transmission control protocol) (see (DGR02), (GRZ04) for instance) is
one of the main data transmission protocol on Internet. It is a piecewise deterministic
Markov process (Xt)t≥0withflowφ(x, t) = x+ct and deterministic transition measure
Q(x, y) = 1l{y=κx}. The data transmitted by the network grows in a linear way, until
an error occurs then we restrict the quantity of transmitted data, it is only a
proportion κ of the previous data which are transmitted. This process grows linearly
(by construction) and the constant κ can be configured in the server implementation
(so that is also known), but the moment when the transmission fails is of course
unknown. In the literature, it is usually supposed that the jump rate satisfies
λ(x) = x, but with this work we can check if it is a realistic assumption or not.

Another example of PDMP is the size of a marked bacteria (see (DHKR15),
(LP09)). We randomly choose a bacteria, and follow its growth, until it divides in
two. Then we randomly choose one of its daughters, and so on. Between the jumps,
the bacteria grows exponentially: φ(x, t) = xect. The size of the bacteria after the
division is random, as the bacteria does not divide itself in two equal parts.

Simulations for these 2 types of processes (with non-standard parameter choices
(λ(x) =

√
x for the TCP and a beta transition probability for the labeled bacterium)

are given in Figure 2.1.
At that time, there were only few studies about estimation on PDMP. The paper

(ADGP14) Azaïs et al. is an exception, which gives an estimator of the conditional
distribution of the inter-jump times for a PDMP. The estimator is uniformly consistent
when only one observation of the process within a long time is available. They deal
with PDMPs which jump when they hit the boundary (this case is not considered
in our paper). Their method relies on a generalization of Aalen’s multiplicative
intensity model (Aal75; Aal77; Aal78). But they only prove the uniform consistency
of their estimator. They also have to assume that the process (X(t))t≥0 evolves in a
bounded space. Here we do not make such assumption. As a consequence the tools
of their paper and of (Kre16) are different. To the best of my knowledge at this
time, (ADGP14) was the only work investigating the nonparametric estimation of
the conditional distribution of the inter-arrival times for PDMPs.
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Figure 2.1: Examples of simulations of processes {Xt}t≥0 and {Zk}k∈N
TCP protocol Bacterial growth
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φ(x, t) = x+ t, Zk = Yk/2, φ(x, t) = xet, Zk = YkU , U ∼ β(20, 20),
λ(x) =

√
x λ(x) = x2

• : process {Zk}k∈N − : process {X(t)}t≥0

I was interested in the study of the class of PDMP, whose state space is (0,∞), that
possess an increasing deterministic motion and with a deterministic jump mechanism.
As we observed the PDMP until its nth jump, I construct a nonparametric estimator
of the jump rate λ. The main result was that for D a compact subset of (0,∞), if λ is
in the Hölder space Hs(D), the squared-loss error of the estimator is asymptotically
close to the speed of n−s/(2s+1). I decided not to detail it, in the presentation of the
work (KS21) that generalizes it, instead I will insist on the differences with (Kre16).

Indeed, I was interested in generalizing this first work. There were two motivations,
the first one was to have an adaptive estimator and the second one was to show
that the speed was indeed min-max. For that I asked Emeline Schmisser to work
with me because she was much more familiar with these notions than me, so a new
collaboration was born.

At the time of the work (KS21), there was a bit more literature on the subject
in particular (AMG16) but it was in a different framework than ours because it
supposed that the distribution transition was absolutely continuous relative to the
Lebesgue measure and that there was a boundary. But these were two things that
we did not want, if we wanted to include our two key examples. We also refere on
(Fuj13) and (AG18) but which only showed the consistency of their estimator. For a
more detailed description of the existing works, we can refer to the papers cited in
(KS21).

2.2.2 Presentation of the model

In the second paper (KS21) on estimation about PDMP, the framework is more
general than the one I had supposed at the beginning, in particular the transition
distribution can contain in addition to the deterministic part an absolutely continuous
part with respect to the Lebesgue measure, which moreover will lead to an estimator
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different from the one I had proposed and more complicated to study.
We consider a filtered PDMP (Xt)t≥0 taking values in R+, with flow φ, transition

measure Q(x, dy) and homogeneous jump rate λ. Starting from initial value x0, the
process follows the flow φ until the first jump time T1 which occurs spontaneously in
a Poisson-like fashion with rate λ(φ(x, t)). The post-jump location of the process at
time T1 is governed by the transition distribution Q(φ(x0, T1), dy) and the motion
restarts from this new point as before.

A piecewise deterministic Markov process (PDMP) is defined by its local charac-
teristics, namely, the jump rate λ, the flow φ and the transition measure Q according
to which the location of the process is chosen after the jump. In this article, we
consider an one-dimensional PDMP {X(t)}t≥0. More precisely:

Assumption (A1).

1. The flow φ : R+ × R+ 7→ R+ is a one-parameter group of homeomorphisms: φ
is C1, for each t ∈ R+, φ(., t) is an homeomorphism satisfying the semigroup
property: φ(., t+ s) = φ(φ(., s), t) and for each x ∈ R+, φx(.) := φ(x, .) is an
increasing C1-diffeormorphism. In particular, φ(x, 0) = x.

2. The jump rate λ : R+ → R+ is a measurable function satisfying

∀x ∈ R+, ∃ ε′ > 0 such that
∫ ε′

0

λ(φ(x, s))ds <∞

that is, the jump rate does not explode.

3. ∀x ∈ R+, Q(x,R+ \ {x}) = 1.

For instance, we can take φ(x, t) = x+ct (linear flow) or φ(x, t) = xect (exponential
flow). The transition measure may be continuous with respect to the Lebesgue
measure or deterministic (for example Q(x, {y}) = 1l{y=f(x)}).

Given these three characteristics, it can be shown ((Dav93, p62-66)), that it
exists a filtered probability space (Ω,F , {Ft}t≥0, {Px}x∈R+) such that the motion of
the process {X(t)}t≥0 starting from a point x0 ∈ R+ may be constructed as follows:
consider a random variable T1 with survival function

P (T1 > t|X0 = x0) = e−Λ(x0,t), where Λ(x, t) =

∫ t

0

λ(φ(x, s))ds. (2.1)

If T1 is equal to infinity, then the process {X(t)}t≥0 follows the flow, i.e. for
t ∈ R+, X(t) = φ(x0, t). Otherwise let Y1 = φ(x0, T

−
1 ) the pre-jump location

and Z1 the post-jump location. Z1 is defined through the transition kernel Q:
P (Z1 ∈ A|Y1 = y) =

∫
A
Q(y, dz). The trajectory of {X(t)}t≥0 starting at x0, for

t ∈ [0, T1], is given by

X(t) =

{
φ(x0, t) for t < T1,

Z1 for t = T1.
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Inductively starting from X(Tn) = Zn, we now select the next inter-jump time
Tn+1−Tn and post-jump location X(Tn+1) = Zn+1 in a similar way. This construction
properly defines a strong Markov process {X(t)}t≥0 with jump times {Tk}k∈IN (where
T0 = 0). A very natural Markov chain is linked to {X(t)}t≥0, namely the jump chain
{Yn, Zn}n∈IN (or, equivalently, {Tn, Zn}n∈N).

To simplify the notations, let us set φx(t) = φ(x, t) and z0 = x0. By (2.1),

P (Y1 > y|Z0 = z0) = P
(
T1 > (φz0)

−1(y)
∣∣Z0 = z0

)
= exp

(
−
∫ (φz0 )−1(y)

0

λ(φz0(s))ds

)
1l{y≥z0}

and by the change of variable u = φz0(s) (we recall that for any z ∈ R+, φz is a
monotonic function), we get

P (Y1 > y|Z0 = z0) = exp

(
−
∫ y

z0

λ(u)
(
φ−1
z0

)′
(u)du

)
1l{y≥z0}. (2.2)

If the function λ(y)(φ−1
z0

)′(y) is finite, we obtain the conditional density:

P(z0, y) := λ(y)(φ−1
z0

)′(y)e
−

∫ y
z0
λ(u)(φ−1

z0
)′(u)du

1l{y≥z0}. (2.3)

Estimating directly λ is difficult, but we can construct a quotient estimator. By
(2.2) and (2.3), we get that, for any y ∈ I,

λ(y)(φ−1
z0

)′(y)1l{z0≤y}P (Y1 > y|Z0 = z0) = P(z0, y)

λ(y)E
(

1l{Z0≤y<Y1}(φ
−1
Z0

)′(y)
∣∣Z0 = z0

)
= P(z0, y)

and we integrate with respect to the stationary distribution µ of Z0

λ(y)Eξ
((
φ−1
Z0

)′
(y)1l{Z0≤y<Y1}

)
=

∫
P(z, y)µ(dz) = ν(y)

recalling that ξ is the stationary measure of the couple (Z0, Y1). Let us set

D(y) := Eξ
(
(φ−1

Z0
)′(y)1l{Z0≤y<Y1}

)
. (2.4)

Then, if D(y) > 0, we get:

λ(y) =
ν(y)

D(y)
. (2.5)

Our aim is to estimate the jump rate λ on the compact interval I := [i1, i2] ⊂
(0,∞). For that purpose, we assume:

Assumption (S).

1. The transition kernel is a contraction mapping: there exists κ < 1, such that
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P(Z1 ≤ κY1) = 1.

2. The flow is bounded: there exist two functions m and M such that, ∀x, y ∈
(R+)2:

0 <m(y) ≤ (φ−1
x )′(y) ≤M(y).

3. The jump rate is positive on [i1,∞[ and there exists a > 0, b > −1 such that

∀y ≥ i1, λ(y)m(y) ≥ a
yb

b+ 1
.

Then ∀y ≥ z, Pz(Y1 ≥ y) ≤ exp(−a(yb+1 − zb+1)) and limy→∞ Pz(Y1 ≥ y) = 0.

4. The jump rate does not explode too soon: there exist two positive constants L, l,
such that ‖λ‖L∞([i1,i′2]) ≤ L and

∫ i1
0
λ(u)M(u)du ≤ l where

i′2 = max

(
i2, (i2 − i1) +

(
1

a(1− κb+1)
ln

(
2κb+1

1− κb+1

))1/(b+1)

1l{κb+1≥1/3}

)
.

These conditions ensure that D(y) > 0 and that the Markov chain (Yk, Zk) is geomet-
rically β-mixing. The following two assumptions allow us to control the regularity of
ν (the rate of convergence of the estimator λ̂n depends on the regularity of ν, not on
the regularity of λ).

1. For any y ∈ R+, λ(y) < ∞. This ensures that ν and P are continuous with
respect to the Lebesgue measure on R+.

2. There exists α > 0 such that:

• ∀K ⊂ R+∗ compact, ∀z ∈ R+∗, the function (φ−1
. )′(.) belongs to Hα([0, z]×

K).

• ∀K ⊂ R+∗ compact, λ ∈ Hα(K).

• The transition measure Q can be written

Q(x, dy) = Q1(x, y)dy + p0(x)δ0(dy) +

jQ∑
i=1

pi(x)δfi(x)(dy)

with, for any compact K, Q1 and (pi)0≤i≤jQ in Hα−1(K), and (fi)1≤i≤jQ
invertible functions such that (f−1

i )1≤i≤jQ ∈ Hα(K).

Remark 2.1. The Assumption (S) is quite technical but it has the advantage of
being directly linked to the function we want to estimate and of not having to suppose
that there is an invariant probability and to make assumptions about it, when we have
no idea of what it is worth. This is often done in articles.
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If Assumption (S) is satisfied, for fixed flow φ and transition measure Q, we can
introduce the class of functions

E(s, b, α) =

{
λ ∈ Hα(J ),∀y ≥ i1, λ(y)m(y) ≥ ayb

b+ 1
,

∫ i1

0

λ(u)M(u) ≤ l, ‖λ‖Hα(J ) ≤ L

}
with s = (a, l,L) ∈ (R+)3 and the convex set

J = Jbαc ∪ [i1, i
′
2] := [j1, j2] (2.6)

is defined by the recurrence:

J0 = I and Jk+1 = Conv

(
I ∪

jQ⋃
i=1

f−1
i (Jk)

)
.

Note that we want to do the estimation on I but we need more technical
assumptions on J , so that the results are valid.

2.2.3 Estimation

(Kre16) and (AMG16) construct a pointwise kernel estimator of ν before deriving
an estimator of λ. Indeed, densities are often approximated by kernels methods
(see (Tsy04) for instance). If the kernel is positive, the estimator is also a density.
However, we want to control the L2 risk of our estimator (not the pointwise risk), and
also to construct an adaptive estimator. Estimators by projection are well adapted
for L2 estimation: if they are longer to compute at a single point than pointwise
estimators, it is sufficient to know the estimated coefficients to construct the whole
function. Furthermore, to find an adaptive estimator, we minimize a function of
the norm of our estimator, that is the sum of the square of the coefficients, and the
dimension. That is the reason why we choose an estimation by projection.

We first aim at estimating ν on the compact set I. We construct a sequence of
L2 estimators by projection on an orthonormal basis. As usual in nonparametric
estimation, their risks can be decomposed in a variance term and a bias term
which depends of the regularity of the density function ν. We choose to use the
Besov spaces to characterize the regularity, which are well adapted to L2 estimation
(particularly for the wavelet decomposition). The "best" estimator is then selected
by penalization. To construct the sequence of estimators, we introduce a sequence of
vectorial subspaces Sm. We construct an estimator ν̂m of ν on each subspace and
then select the best estimator ν̂m̂.

Assumption (4).

1. The subspaces Sm are increasing and have finite dimension Dm.
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2. The L2-norm and the L∞-norm are connected:

∃ψ1 > 0, ∀m ∈ IN, ∀s ∈ Sm, ‖s‖2
∞ ≤ ψ1Dm‖s‖2

L2 .

This implies that, for any orthonormal basis (ϕl)1≤l≤Dm of Sm,

‖
Dm∑
l=1

ϕ2
l ‖∞ ≤ ψ1Dm.

3. There exists a constant ψ2 > 0 such that, for any m ∈ IN, there exists an
orthonormal basis (ϕl)1≤l≤Dm such that:

‖
Dm∑
l=1

‖ϕl‖∞|ϕl(x)|‖∞ ≤ ψ2Dm.

4. There exists r ∈ IN, called the regularity of the decomposition, such that:

∃C > 0,∀α ≤ r,∀s ∈ Bα
2,∞, ‖s− sm‖L2 ≤ CD−αm ‖s‖Bα2,∞

where sm is the orthogonal projection of s on Sm and Bα
2,∞ is a Besov space.

Conditions 1, 2 and 4 are usual (see (CGCR07, Section 2.3) for instance). They are
satisfied for subspaces generated by wavelets, piecewise polynomials or trigonometric
polynomials (see (DL93) for trigonometric polynomials and piecewise polynomials and
(Mey90) for wavelets). Condition 3 is necessary because we are not in the stationary
case: it helps us to control some covariance terms. It is obviously satisfied for bounded
bases (trigonometric polynomials), and localized bases (piecewise polynomials). Let
us prove it for a wavelet basis. Let ϕ be a father wavelet function, then Dm = 2m and
ϕl(x) = 2m/2ϕ(2mx−l). We get that ‖

∑Dm
l=1 ‖ϕl‖∞|ϕl(x)|‖∞ ≤ 2m‖ϕ‖∞‖

∑
l∈Z |ϕ(x−

l)|‖∞. As ϕ is at least 0-regular, for m = 2, there exists a constant C such that
|ϕ(x)| ≤ C(1 + |x|−2). Then supx

∑
l∈Z |ϕ(x− l)| ≤ C supx

∑
l∈Z(1 + |x− l|−2) <∞

and condition 3 is satisfied.

Estimation of the stationary density

Let us now construct an estimator ν̂m of ν on the subspace Sm. We consider an
orthonormal basis (ϕl)1≤l≤Dm of Sm satisfying Assumption A4. Let us set

al = 〈ϕl, ν〉 =

∫
I
ϕl(x)ν(x)dx and νm(x) =

Dm∑
l=1

alϕl(x).
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The function νm is the orthogonal projection of ν on L2(I). We consider the estimator

ν̂m(x) =
Dm∑
l=1

âlϕl(x) with âl =
1

n

n∑
k=1

ϕl(Yk).

Proposition 2.1. If D2
m ≤ n, under Assumptions A1-A2 and A4, we have

Ez0
(
‖ν̂m − ν‖2

L2(I)

)
≤ ‖νm − ν‖2

L2(I) + (ψ1 + Cλψ2)
Dm

n
+
c

n

where Cλ = 2R
1−γ

∫
Vλ(z)µ(dz) and c depends explicitly on Vλ, γ, R.

When m increases, the bias term decreases whereas the variance term increases.
It is important to find a good bias-variance compromise. If ν belongs to the Besov
space Bα

2,∞(I) (defined in the Section A.4. from the Supplemental Content of (KS21),
then ‖νm − ν‖2

L2(I) ≤ C‖ν‖Bα2,∞(I)D
−2α
m (see Assumption A4). We choose to use the

Besov spaces to characterize the regularity, which are well adapted to L2 estimation
(particularly for the wavelet decomposition). If α ≥ 1/2, the risk is then minimum
for Dmopt ∝ n1/(2α+1) and we have, for some continuous function ψ:

Ez0
(
‖ν̂mopt − ν‖2

L2(I)

)
≤ ψ

(
‖ν‖Bα2,∞(I),Vλ, R, γ

)
n−2α/(2α+1).

This is the usual nonparametric convergence rate (see (Tsy04)). If α < 1/2, then the
risk is minimum for Dm = n1/2 and the bias term is greater than the variance term.
We can remark that a piecewise continuous function belongs to B1/2

2,∞.
Let us now construct the adaptive estimator. We compute (ν̂0, . . . , ν̂m, . . .) for

m ∈ Mn = {m,D2
m ≤ n}. Our aim is to select automatically m, without knowing

the regularity of the stationary density ν. Let us introduce the contrast function
γn(s) = ‖s‖2

L2 − 2
n

∑n
k=1 s(Yk). If s ∈ Sm, then we can write s =

∑Dm
l=1 blϕl and

γn(s) =
Dm∑
l=1

b2
l −

Dm∑
l=1

bl
2

n

n∑
k=1

ϕl(Yk).

The minimum is obtained for bl = âl = 1
n

∑n
k=1 ϕl(Yk). Therefore

ν̂m = arg min
s∈Sm

γn(s). (2.7)

As the subspaces Sm are increasing, the function γn(ν̂m) decreases when m increases.
To find an adaptive estimator, we need to add a penalty term pen(m). Let us
set pen(m) = 48(ψ1+Cλψ2)Dm

n
+ 48cλψ1

n
(or more generally pen(m) = σDm

n
+ σ′

n
, with

σ ≥ 48(ψ1 + Cλψ2), σ′ ≥ 48cλψ1) and choose

m̂ = arg min
m∈Mn

γn(ν̂m) + pen(m). (2.8)
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We obtain an adaptive estimator ν̂m̂.

Theorem 2.1 (Risk of the adaptive estimator). Under Assumptions A1-A2 and A4,
∀σ ≥ 48(ψ1 + Cλψ2), σ′ ≥ 48cλψ1, pen(m) = σDm

n
+ σ′

n
,

Ez0
(
‖ν − ν̂m̂‖2

L2(I)

)
≤ min

m∈Mn

(
3‖νm − ν‖2

L2(I) + 4pen(m)
)

+
c′

n
.

where c′ is a function of (Vλ, R, γ, ‖ν‖L2(I)). We recall thatMn = {m,D2
m ≤ n}.

The estimator is adaptive: it realizes the best bias-variance compromise, up to a
multiplicative constant. We have an explicit rate of convergence if ν belongs to some
(unknown) Besov space Bα

2,∞: in that case,

‖ν − νm‖2
L2(I) ≤ 3‖νmopt − ν‖2

L2(I) + 4pen(mopt) +
c

n
≤ C‖ν‖Bα2,∞D

−2α
m

and if α ≥ 1/2,

Ez0
(
‖ν − ν̂m̂‖2

L2(I)

)
≤ ψ

(
‖ν‖Bα2,∞(I),Vλ, R, γ

)
n−2α/(2α+1) (2.9)

for some continuous function ψ.

Estimation of λ.

Remark 2.2. 1. We notice that this formula is different as the one used in
(Kre16)

λ(y) =
f(ν(y))

D̃(y)

where
D̃(y) := Eν

(
((f ◦ φZ0)

−1)′(f(y))1l{f(Z0)≤f(y)}1l{Z1≥f(y)}
)
.

As in (Kre16), the author works under the assumption that Q(x, {y}) =

1l{y=f(x)}, the study was easier, here we need to consider the Markov chain
(Yk, Zk)k∈N.

2. It is interesting to see that

λ(y) =
ν(y)

D(y)

is a similar as the key representation for the bacterium case (1.14). In both
case, we manage to obtain a rewriting which allows us to find an estimator of
λ.

To estimate the jump rate, we construct a quotient estimator. Let us consider
the estimator

λ̂n(y) =
ν̂m̂(y)

D̂n(y)
1l{ν̂m̂(y)≥0}1l{D̂n(y)≥ln(n)−1} (2.10)
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where

D̂n(y) :=
1

n

n∑
k=1

(φ−1
Zk−1

)′(y)1l{Zk−1≤y≤Yk}.

Remark 2.3. As the process {X(t)}t≥0 is observed continuously without errors, φ−1

(and therefore (φ−1)′) is known on ∪k∈N∗ [Zk−1, Yk] so D̂n(y) is computable.

The estimator λ̂n converges with nearly the same rate of convergence as ν̂.
The process (Xt)t≥0 is observed continuously without errors (so the flow φ is

known). Another major difference with existing papers on the estimation of the
jump rate of a PDMP is that assumptions are made to ensure the process to be
ergodic, with fast convergence toward the stationary measure, and exponentially
β-mixing. We denote by (T1, . . . , Tn) the jump times and consider the Markov chain
(Z0 = x0, (Yk = XT−k

, Zk = XTk)k∈IN). Our aim is to construct a non-parametric
adaptive estimator of the jump rate λ on a compact interval.

We find the same speed of convergence as in (Kre16) in n−2α/(α+1) up to a factor
ln(n)2. We show this result uniformly on a good class of function. We refer to (KS21)
for the definitions of spaces. We must specify that here contrary to (Kre16) the
estimator does not depend on the regularity class of our λ, even if the speed depends
on it. Moreover we show that this speed is indeed min-max.

Theorem 2.2. Under A1, (S) and A4, as soon as ln(n)−1 ≤ D0/2, for any α ≥ 1/2,

sup
λ∈E(s,b,α)

Ez0
(
‖λ̂n − λ‖2

L2(I)

)
. ln2(n)n−2α/(2α+1).

This Theorem is Corollary 9 in (KS21).
In (KS21), it is well on to specify how we choose the penalization and there are

results, specify on the increase of the speed of convergence of the estimator of the
probability invariance, as well as that of λ.

We have proved that, under assumptions A1, (S) and A4,

sup
λ∈E(s,b,α)

Ez0
(
‖λ̂n − λ‖2

L2(I)

)
. ln2(n)n−2α/(2α+1).

We would like to verify that our estimator converges with the minimax rate of
convergence, i.e:

inf
λ̂n

sup
λ∈E(s,b,α)

Ez0
(
‖λ̂n − λ‖2

L2(I)

)
≥ C ln2(n)n−2α/(2α+1).

The ln2(n) factor comes from the quotient estimator, we can not expect it will stay
in the minimax bound. Indeed, it is clear that we could replace ln−1(n) in (2.10)
by any function w(n) greater than D0/2. The best estimator will be obtained of
course by taking w(n) = D0/2 and the risk of this estimator (unreachable as D0 is
unknown) will be proportional to n−2α/(2α+1).
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Theorem 2.3 (Minimax bound). If A1, (S) and A4 are satisfied, then

inf
λ̂n

sup
λ∈E(s,b,α)

Ez0
(
‖λ̂n − λ‖2

L2(I)

)
≥ Cn−2α/(2α+1)

where the infimum is taken among all estimators.

Some simulations for the TCP protocol and the bacterial growth are provided in
(KS21), with various functions λ. The outcomes are consistent with the theoretical
results.
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2.3 To go further

After this generalization with Emeline Schmisser, a natural question arises: how can
we generalize this to n dimensions? There will be two particular cases, which will
be studied in the next chapter. They are particular models coming from biological
problems, with complicated dependency structures. One of my research track would
be to see how to study the growth rate of a PDMP in the framework of a PDMP with
value in Rn

+, and having a good branching structure in order to have the existence
of a many-to-one formula. The goal is to have the existence of an equation of the
type (1.11) for the framework of the modeling of the growth of bacteria or (0.17)
within the framework of the fragmentations (even if in this case it is not a PDMP
which appears but a subordinator). For that, the first step would be to see which
family class for PDMPs I would like to consider. Indeed, the structure using the
generation tree and the fact that at each node, we can put all the i.i.d. information
we need is very powerful. For example, for the modeling of the growth of bacteria, it
allowed to take into account the variability in the growth rate and that it is modeled
by a Markov process. The model studied in the perspective of the previous chapter
(in the joint work in progress with Bertrand Cloez, Benoîte de Saporta and Tristan
Roget) would also be an example to include in my more general case study. A first
step would be to define such a process, then show that it has the right properties
and then estimate it.
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More dependency

One day Eva Löcherbach asked me to co-supervise Pierre Hodora who was doing a
PhD thesis with her. They wanted to estimate the spiking rate for an interacting
neural network.

Thus I had the chance to co-supervise Pierre Hodara on a part of his thesis and
to discover the role of co-supervisor. It is a role that I really appreciated and that I
would like to renew in the future.

The good thing is that we can model the "activity of a biological neural network"
by a PDMP. On the other hand, the difficulty is that contrary to the case we had
looked to model the growth of bacteria here we did not have that conditioning to
their size at birth, the bacteria had independent behaviors. Neither have we a nice
many-to-one formula. We could not therefore reduce ourselves to the study of a
problem in dimension 1, and we had to really study the process with values in RN .

Building a model for the activity of a neural network that can fit biological
considerations is crucial in order to understand the mechanics of the brain. Many
papers in the literature use Hawkes processes in order to describe the spatio-temporal
dependencies which are typical for huge systems of interacting neurons, see (GL13),
(HRBR15) and (HL17) for example. Our model can be interpreted as Hawkes process
with memory of variable length (see (GL16)); it is close to the model presented
in (DO16). It is of crucial interest for modern neuro-mathematics to be able to
statistically identify the basic parameters defining the dynamics of a model for neural
networks. The most relevant mechanisms to study are the way the neurons are
connected to each other and the way that a neuron deals with the information it
receives. In (DGLO19) and in (HRBR15), the authors build an estimator for the
interaction graph, in discrete or in continuous time. In the present work, we assume
that we observe a subsystem of neurons which are all interconnected and behave in a
similar way. We then focus on the estimation of the firing rate of a neuron within
this system. This rate depends on the membrane potential of the neuron, which is
influenced by the activity of the other neurons.
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3.1 Interacting neurons

3.1.1 The dynamics

Let N > 1 be fixed and (N i(ds, dz))i=1,...,N be a family of i.i.d. Poisson random
measures on R+ × R+ having intensity measure dsdz. We study the Markov process
(Xt)t≥0 = (X1

t , . . . , X
N
t )t≥0 taking values in [0, K]N and solving, for i = 1, . . . , N , for

t ≥ 0,

X i
t = X i

0 − λ
∫ t

0

(X i
s −m)ds−

∫ t

0

∫ ∞
0

X i
s−1{z≤f(Xi

s−)}N
i(ds, dz) (3.1)

+
∑
j 6=i

∫ t

0

∫ ∞
0

aK(X i
s−)1{z≤f(Xj

s−)}N
j(ds, dz).

In the above equation, λ > 0 is a positive number, m is the equilibrium potential
value such that 0 < m < K. Moreover, we will always assume that K ≥ 2

N
. Finally,

the functions aK : [0, K]→ [0, K] and f : R+ 7→ R+ satisfy (at least) the following
assumption.

Assumption (B1).
1. aK : [0, K]→ [0, 1

N
] is non-increasing and smooth, aK(x) = 1

N
, for all x < K − 2

N

and aK(x) < K − x for all x ≥ K − 2
N
.

2. f ∈ C1(R+), f is non-decreasing, f(0) = 0, and there exists fmin : R+ 7→ R+,

non-decreasing, such that f(x) ≥ fmin(x) > 0 for all x > 0.

K is the maximal height of the membrane potential of a single neuron. λ gives
the speed of attraction of the potential value of each single neuron to an equilibrium
value m. The function aK denotes the increment of membrane potential received by a
neuron when an other neuron fires. For neurons with membrane potential away from
the bound K, this increment is equal to 1

N
. However, for neurons with membrane

potential close to K, this increment may bring their membrane potential above the
bound K. This is why we impose this dynamic close to the bound K.

In what follows, we are interested in the estimation of the intensity function
f, assuming that the parameters K, fmin and aK are known and that the function
f belongs to a certain Hölder class of functions. The parameters of this class of
functions are also supposed to be known. The assumption f(0) = 0 comes from
biological considerations and expresses the fact that a neuron, once it has fired, has
a refractory period during which it is not likely to fire.

The generator of the process X is given for any smooth test function ϕ : [0, K]N →
R and x ∈ [0, K]N by

Lϕ(x) =
N∑
i=1

f(xi) [ϕ(∆i(x))− ϕ(x)]− λ
N∑
i=1

(
∂ϕ

∂xi
(x) [xi −m]

)
, (3.2)
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where

(∆i(x))j =

{
xj + aK(xj) j 6= i

0 j = i

}
. (3.3)

For more details on the existence of such a process X, we can refer to (HKL18) and
Theorem 9.1 in chapter IV of (IW81).

We denote by Px the probability measure under which the solution (Xt)t≥0 of
(3.1) starts from X0 = x ∈ [0, K]N . Moreover, Pν =

∫
[0,K]N

ν(dx)Px denotes the
probability measure under which the process starts from X0 ∼ ν. Figure 3.1 is an
example of trajectory for N = 5 neurons, choosing f = Id, λ = 1, m = 1, and
K = 2.
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Figure 3.1: Trajectory of 5 neurons

The aim of this work is to estimate the unknown firing rate function f based
on an observation of X continuously in time. Notice that for all 1 ≤ i ≤ N, X i

reaches the value 0 only through jumps. Therefore, the following definition gives the
successive spike times of the i−th neuron, 1 ≤ i ≤ N. We set

T i0 = 0, T in = inf{t > T in−1 : X i
t− > 0, X i

t = 0}, n ≥ 1,

and introduce the jump measures

µi(ds, dy) =
∑
n≥1

1{T in<∞}δ(T in,X
i
T in−

)(dt, dy), µ(dt, dx) =
N∑
i=1

µi(ds, dx).

By our assumptions, µi is compensated by µ̂i(ds, dy) = f(X i
s)dsδXi

s
(dy), and therefore
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the compensator µ̂ of µ is given by

µ̂(dt, dy) = f(y)η(dt, dy), where η(A×B) =

∫
A

(
N∑
i=1

1B(X i
s)

)
ds

is the total occupation time measure of the process X.
We will also write Tn, n ≥ 0, for the successive jump times of the process X, i.e.

T0 = 0, Tn = inf{T ik : T ik > Tn−1, k ≥ 1, 1 ≤ i ≤ N}, n ≥ 1.

To estimate the jump rate f in a position a, we propose a Nadaraya-Watson type
kernel estimator which is roughly speaking of the form

f̂t(a) =
] spikes in positions in Bh(a) during [0, t]

occupation time of Bh(a) during [0, t]
,

where Bh(a) is a neighborhood of size h of the position a where we estimate the
jump rate function f.

More precisely, for some kernel function Q such that

Q ∈ Cc(R),

∫
R
Q(y)dy = 1, (3.4)

we define the kernel estimator for the unknown function f at a point a with bandwidth
h, based on observation of X up to time t by

f̂t,h(a) =

∫ t
0

∫
RQh(y − a)µ(ds, dy)∫ t

0

∫
RQh(y − a)η(ds, dy)

, where Qh(y) :=
1

h
Q
(y
h

)
and

0

0
:= 0. (3.5)

For h small, f̂t,h(a) is a natural estimator for f(a). Indeed, this expression as a ratio
follows the intuitive idea to count the number of jumps that occurred with a position
close to a and to divide by the occupation time of a neighborhood of a, which is natural
to estimate an intensity function depending on the position a. More precisely, by
the martingale convergence theorem, the numerator

∫ t
0

∫
RQh(y − a)µ(ds, dy) should

behave, for t large, as
∫ t

0

∫
RQh(y − a)f(y)η(ds, dy). But by the ergodic theorem,∫ t

0

∫
RQh(y − a)f(y)η(ds, dy)∫ t

0

∫
RQh(y − a)η(ds, dy)

→ π1(Qh(· − a)f)

π1(Qh(· − a))

as t→∞, where π1 is the stationary measure of each neuron (X i
t)t≥0. Finally, if the

invariant measure π1 is sufficiently regular, then

π1(Qh(· − a)f)

π1(Qh(· − a))
→ f(a)
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as h→ 0.

We restrict our study to fixed Hölder classes of rate functions f. For that sake,
we introduce the notation β = k + α for k = bβc ∈ IN and 0 ≤ α < 1. We consider
the following Hölder class for arbitrary constants F,L > 0, and a function fmin as in
Assumption B1.

H(β, F, L, fmin) = {f ∈ Ck(R+) : | d
l

dxl
f(x)| ≤ F, for all 0 ≤ l ≤ k, x ∈ [0, K],

f(x) ≥ fmin(x) for all x ∈ [0, K], |f (k)(x)−f (k)(y)| ≤ L|x−y|α for all x, y ∈ [0, K]}.
(3.6)

3.1.2 Probabilistic results

In this section, we collect important probabilistic results. We first establish that the
process (Xt)t≥0 is recurrent in the sense of Harris.

Theorem 3.1. Grant Assumption B1. Then the process X is positive Harris recur-
rent having unique invariant probability measure π, i.e. for all B ∈ B([0, K]N),

π(B) > 0 implies Px
(∫ ∞

0

1B(Xs)ds =∞
)

= 1 (3.7)

for all x ∈ [0, K]N . Moreover, there exist constants C > 0 and κ > 1 which do only
depend on the class H(β, F, L, fmin), but not on f, such that

sup
f∈H(β,F,L,fmin)

‖Pt(x, ·)− π‖TV ≤ Cκ−t. (3.8)

It is well-known that the behavior of a kernel estimator such as the one introduced
in (3.5) depends heavily on the regularity properties of the invariant probability
measure of the system. Our system is however very degenerate. Firstly, it is a PDMP
in dimension N, with interactions between particles. Hence, no Brownian noise is
present to smoothen the dynamic. Moreover, the transition kernels associated to the
jumps of system (3.1) are highly degenerate (recall (3.3)). The transition kernel

K(x, dy) = L(XT1|XT1− = x)(dy) =
N∑
i=1

f(xi)

f̄(x)
δ∆i(x)(dy)

with f̄(x) :=
∑N

i=1 f(xi) puts one particle (the one which is just spiking) to the
level 0. As a consequence, the above transition does not create density – and it even
destroys smoothness due to the reset to 0 of the spiking neuron. Finally, the only way
that “smoothness” is generated by such process is the smoothness which is present
in the “noise of the jump times” (which are basically of exponential density). For
this reason, we have to stay away from the point x = m, where the drift of the flow
vanishes. Moreover, the reset-to-0 of the spiking particles implies that we are not
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able to say anything about the behavior of the invariant density of a single particle
in 0 (actually, near to 0) neither. Finally, we also have to stay strictly below the
upper bound of the state space K. This is the reason for introducing the following
open set Sd,β given by

Sd,β := {w ∈ [0, K] :
bβc
N

< w < K − bβc
N

, |w −m| > d}, (3.9)

where β is the smoothness of the fixed class H(β, F, L, fmin) that we consider and
where d is fixed such that d > bβc+2

N
. Notice that Sd,β also depends on K,m and N

which are supposed to be known. We are able to obtain a control of the invariant
measure only on this set Sd,β. The dependence in β is due to the fact that the
regularity of f is transmitted to the invariant measure by the means of successive
integration by parts (see (Löc18) for more details).

We quote the following theorem from (Löc18).

Theorem 3.2. (Theorem 5 of (Löc18))
Suppose that f ∈ H(β, F, L, fmin). Let

π1 := Lπ(X1
t )

be the invariant measure of a single neuron, i.e.
∫
gdπ1 = Eπ(g(X1

t )). Then π1

possesses a bounded continuous Lebesgue density π1 on Sd,β for any d such that
d > (bβc + 2)/N, which is bounded on Sd,β, uniformly in f ∈ H(β, F, L, fmin).

Moreover, π1 ∈ Ck(Sd,β) and

sup
`≤bβc,w∈Sd,β

|π(`)
1 (w)|+ sup

w 6=w′,w,w′∈Sd,β

π
(bβc)
1 (w)− π(bβc)

1 (w′)

|w − w′|α
≤ CF , (3.10)

where the constant CF depends on d and on the smoothness class H(β, F, L, fmin),

but on nothing else.

3.1.3 Statistical results

We can now state the main theorem of (HKL18) which describes the quality of our
estimator in the minimax theory. We assume that m and λ are known and that f is
the only parameter of interest of our model. We shall always write P f

x and Ef
x in

order to emphasize the dependence on the unknown f. Fix some r > 0 and some
suitable point a ∈ Sd,β. For any possible rate of convergence (rt)t≥0 increasing to
∞ and for any process of Ft−measurable estimators f̂t we shall consider pointwise
square risks of the type

sup
f∈H(β,F,L,fmin)

r2
tE

f
x

[
|f̂t(a)− f(a)|2|At,r

]
,
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where

At,r :=

{
1

Nt

∫ t

0

∫
R
Qh(y − a)η(ds, dy) ≥ r

}
is roughly the event ensuring that sufficiently many observations have been made
near a, during the time interval [0, t]. We are able to choose r small enough such that

lim inf
t→∞

inf
f∈H(β,F,L,fmin)

P f
x (At,r∗) = 1, (3.11)

see Proposition 8 in (HKL18).
Recall that the kernel Q is chosen to be of compact support. Let us write

R for the diameter of the support of Q, therefore Q(x) = 0 if |x| ≥ R. For any
fixed a ∈ Sd,β, write h0 := h0(a,R, β, d) := sup{h > 0 : BhR(a) ⊂ Sd/2,β}. Here,
BhR(a) = {y ∈ R+ : |y − a| < hR}.

Theorem 3.3. Let f ∈ H(β, F, L, fmin) and choose Q ∈ Cc(R) such that
∫
RQ(y)yjdy =

0 for all 1 ≤ j ≤ bβc, and
∫
R |y|

βQ(y)dy < ∞. Then there exists r∗ > 0 such that
the following holds for any a ∈ Sd,β, r ≤ r∗ and for any ht ≤ h0.

(i) For the kernel estimate (3.5) with bandwidth ht = t−
1

2β+1 , for all x ∈ [0, K],

lim sup
t→∞

sup
f∈H(β,F,L,fmin)

t
2β

2β+1Ef
x

[
|f̂t,ht(a)− f(a)|2|At,r

]
<∞.

(ii) Moreover, for ht = o(t−1/(1+2β)), for every f ∈ H(β, F, L, fmin) and a ∈ Sd,β√
tht

(
f̂t,ht(a)− f(a)

)
→ N (0,Σ(a))

weakly under P f
x , where Σ(a) = f(a)

Nπ1(a)

∫
Q2(y)dy.

The next theorem shows that the rate of convergence achieved by the kernel
estimate f̂t,t−1/(2β+1) is indeed optimal.

Theorem 3.4. Let a ∈ Sd,β and x ∈ [0, K] be any starting point. Then we have

lim inf
t→∞

inf
f̂t

sup
f∈H(β,F,L,fmin)

t
2β

1+2βEf
x [|f̂t(a)− f(a)|2] > 0, (3.12)

where the infimum is taken over the class of all possible estimators f̂t(a) of f(a).

3.1.4 Simulation results

In this subsection, we present some results on simulations, for different jump rates f.
The other parameters are fixed: N = 100, λ = 1, K = 2 and m = 1. The dynamics
of the system are the same when λ and f have the same ratio. In other words,
variations of λ and f keeping the same ratio between the two parameters lead to the
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same law for the process rescaled in time. This is why we fix λ = 1 and propose
different choices for f. The kernel Q used here is a truncated Gaussian kernel with
standard deviation 1.

We present for each choice of a jump rate function f the associated estimated
function f̂ and the observed distribution of X or more precisely of X̄ = 1

N

∑N
i=1 X

i.

Figures 2, 3 and 4 correspond respectively to the following definitions of f : f(x) =

x, f(x) = log(x+ 1) and f(x) = exp(x)− 1.

For Figures 3.2, 3.3 and 3.4, we fixed the length of the time interval for observations
respectively to t = 200, 300 and 150. This allows us to obtain a similar number
of jump for each simulation, respectively equal to 17324, 18579 and 21214. These
simulations are realized with the software R.

The optimal bandwidth ht = t−
1

2β+1 depends on the regularity of f given by the
parameter β. Therefore, we propose a data-driven bandwidth chosen according to
a Cross-validation procedure. For that sake, we define the sequence (Zk)k∈IN∗ by
Zi
k = X i

T ik−
for all 1 ≤ i ≤ N. For each a ∈ [0, K] and each sample Z = (Z1, ..., Zn),

for 1 ≤ ` ≤ n we define the random variable π̂`,n,h1 (a) by

π̂`,n,h1 (a) =
1

(n− `)N

n∑
k=`+1

N∑
i=1

Qh(Z
i
k − a).

π̂`,n,h1 (a) can be seen as an estimator of the invariant measure πZ1 of the discrete
Markov chain.

We propose an adaptive estimation procedure at least, for this simulation part.
We use a Smoothed Cross-validation (SCV) to choose the bandwidth (see for example
the paper of Hall, Marron and Park (HMP92)), based on ideas which were first
published by Bowmann (Bow84) and Rudemo (Rud82). As the bandwidth is mainly
important for the estimation of the invariant probability πZ1 , we use a Cross validation
procedure for this estimation. More precisely, we use a first part of the trajectory
to estimate π̂`,n,h1 and then another part of the trajectory to minimize the Cross
validation SCV (h) in h. In order to be closer to the stationary regime, we chose the
two parts of the trajectory far from the starting time. Moreover we chose two parts
of the trajectory sufficiently distant from each other. This is why we consider m1,m2

and ` such that 1〈m1 ≤ m2〈` ≤ n.

We use the method of the least squares Cross validation and minimize

SCV (h) =

∫ (
π̂`,n,h1 (x)

)2

dx− 2

N(m2 −m1)

m2∑
k=m1+1

N∑
i=1

π̂`,n,h1 (Zi
k)

(where we have approximated the integral term by a Riemann approximation), giving
rise to a minimizer ĥ. We then calculate the estimator f̂ along the trajectory. In the
next figure, we use this method to find the reconstructed f with an adaptive choice
of h.
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Observed density of X

Figure 3.2: Estimation of the intensity function f(x) = x

On Figure 3.2, it is interesting to see, that the two ways of finding the bandwith
give differents results. Minimizing the log-likelihood gives a smoother estimator.

As expected, we can see that the less observations we have, the worse is our
estimator. Note that close to 0 the observed density of X explodes. This was also
expectable due to the reset to 0 of the jumping neurons, and this may explain why
our estimator is less performing close to 0.

Moreover, the simulations show a lack of regularity of the observed density close
to m, which is consistent with our results, but this does not seem to affect the quality
of the estimator.

For the sake of readability, the observed density of X on Figure 3.4 has been
multiplied by 3.

Page 69



CHAPTER 3. MORE DEPENDENCY

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

fig. 3

Membrane potential: a

f(
a)

True parameter
Estimator
Observed density of X

Figure 3.3: Estimation of the intensity function f(x) = log(x+ 1)
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Figure 3.4: Estimation of the intensity function f(x) = exp(x)− 1

3.2 To go further: Stochastic differential equation
depending on the rank

During a workshop, I saw the presentation by Fabrice Mahé of a model of the growth
of rainbow trout in rearing. I thought that this could be very interesting to model. So
we had discussions in order to better understand their growth. During the discussions
it appears that there is competition between fish and in particular that the most
fearful animals could have less access to food and thus have a lesser growth and
conversely. A priori this dominant character of a fish could change over time. With
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Hélène Guérin, we thought that it could be very interesting to try to model this. So
we were interested in a model in which the growth factors of the fish would depend
on its rank within the population.

Let N ≥ 1. We consider a ranked based interacting diffusion model defined by

dX i,N
t =

N∑
k=1

bNk (t,X i,N
t )1l{Xi,N

t =X
(k)
t }

dt+
N∑
k=1

σNk 1l{Xi,N
t =X

(k)
t }

dW i
t (3.13)

where bNk : R+ × R→ R are the growth rate coefficients, σNk are the diffusive coeffi-
cients, {W i}1≤i≤N are N independent Brownian motions, and X(1), X(2), . . . , X(N)

are the order statistics of the N -uplet (X1,N , X2,N , . . . , XN,N): i.e.for all t ≥ 0,

min
1≤i≤N

X i,N
t = X

(1)
t ≤ X

(2)
t ≤ . . . ≤ X

(N)
t = max

1≤i≤N
X i,N
t .

When the coefficients (bNk )k∈{1,...,N are constants, we recover the Atlas model,
which has been first introduced to model equity markets (see e.g. (Fer02; BFK05)):
for 1 ≤ i ≤ N

dX i,N
t =

N∑
k=1

1l{Xi,N
t =X

(k)
t }

bNk dt+
N∑
k=1

1l{Xi,N
t =X

(k)
t }

σNk dW i
t . (3.14)

At the beginning we wanted to make b and σ as general as possible and quickly we
were confronted with a lot of difficulties. Indeed, the discontinuity of the terms poses
important problems in the demonstrations. In the end, we have the feeling that there
are very few cases that have been studied in the literature and that could generalize
the Atlas model as we would have liked. So for the moment, we are interested in a
simplified model where there are only two fishes in interaction. The goal is of course
to show that the equation (3.14) admits a weak solution, and it is unique. We also
want to make sure that the solution is positive. Indeed, a negative fish size could be
a problem and in a second time we would like to estimate the different parameters of
the problem. This is a work in progress.
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