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1 Introduction 

 

J’ai commencé à m’intéresser à la recherche quand j'étais élève à l'École Nationale 

d'Ingénieurs de Tunis (ENIT). En particulier, mon projet de fin d’année 2 et le dévouement 

de mon encadrant m’ont vraiment marquée et ont suscité mon intérêt pour ce domaine. Cette 

première expérience m'a ouvert les yeux sur l'importance et les défis sous-jacents à la 

compréhension d’un problème et à la recherche de solutions appropriées et originales. En 

outre, mon intérêt pour la recherche était à l’origine de ma motivation à travailler plus dur et 

à être parmi les meilleurs de ma promotion. Ainsi, j’ai pu obtenir la bourse du Ministère 

tunisien de l'Enseignement Supérieur et de la Recherche Scientifique qui m’a permis de 

poursuivre des études doctorales en Génie Industriel à l'Institut National Polytechnique de 

Grenoble (aujourd’hui Grenoble INP). Tout en étant doctorante au Laboratoire 

d’Automatique de Grenoble (présentement nommé Gipsa-Lab) et membre du projet HRP 

(Hospital Resource Planning) financé par la région Rhône-Alpes (présentement nommée 

Auvergne-Rhône-Alpes), j’ai clairement vu l’intérêt de collaborer et interagir avec d’autres 

chercheurs ; en effet cela ne peut qu’enrichir la réflexion, favoriser l’interdisciplinarité et 

stimuler des résultats de recherche innovants.  

 

Après l’obtention de mon doctorat, j'ai réintégré l’ENIT en tant que maître assistante en génie 

industriel. Ensuite, j'ai rejoint l'Université Prince Sultan (Riyad, Arabie Saoudite) en tant que 

maître assistante en management des opérations. J'ai eu également l'occasion de rejoindre 

l'Institut des Sciences et des Technologie de Masdar (Abou Dhabi, Emirats Arabes Unis) en 

tant que chercheur et l'Université de Sharjah en tant que maître assistante en génie industriel. 

J’ai aussi eu l’opportunité de rejoindre l’équipe génie industriel du département d'ingénierie 

des systèmes (ISYS) à l'ESIEE Paris. Depuis Août 2019, j’ai intégré SKEMA Business 

School en tant que Professeur Associé en gestion des opérations et de la Supply Chain. Dans 

les différents départements et laboratoires de recherche auxquels j'ai été affiliée, j'ai eu 

l’opportunité de participer à des projets de recherche, d’encadrer et de co-encadrer des projets 

de masters et des thèses de doctorat. Cela m'a permis en particulier d’apprendre comment 

accompagner des nouveaux diplômés dans le processus de devenir des chercheurs autonomes.  

 

Le présent résumé vise à présenter une synthèse succincte de mes travaux de recherche qui 

ont principalement porté sur les deux axes suivants : (1) conception et planification des 

systèmes de santé et (2) logistique et management de la supply chain. Les travaux sur les 

deux axes ont été menés en parallèle. En effet, après ma thèse de doctorat, ma stratégie était 

d’élargir l’étendu de mes recherches sur ces deux axes en même temps. L’accent sera mis 

dans tout le rapport sur les principaux travaux et le cadre dans lequel ils ont été réalisés. Je 

finirai par présenter mes projets en cours ainsi que mes perspectives de recherche. 

 

2 Travaux de recherche  

 

2.1 Conception et planification des systèmes de santé 

 

Planification et ordonnancement des ressources dans les services de soins 

 

J’ai commencé à m’intéresser à l’étude des systèmes de soins dans mon DEA et ma thèse de 

doctorat où j’ai abordé le problème de la planification et de l’ordonnancement des ressources. 

Une nouvelle approche considérant les ressources critiques intervenant dans le processus de 

soins est proposée. L’objectif est de minimiser le délai de séjour du patient dans l’hôpital ainsi 
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que les coûts de sa prise en charge, et ce dans le respect de la qualité des soins. Cette approche 

a été particulièrement illustrée dans le cas de processus de soins passant par un service de 

chirurgie. Afin de tenir compte des aspects aléatoires, l’une des caractéristiques importantes 

de l’environnement hospitalier, nous avons proposé de traiter le problème de la planification 

et de l’ordonnancement des ressources suivant une structure hiérarchique qui porte sur quatre 

niveaux décisionnels. Le premier niveau porte sur la planification des admissions qui consiste 

à fixer les dates d’hospitalisation des patients pour une intervention chirurgicale. Cependant, 

la planification des admissions fournit au patient une date d’hospitalisation qui risque de ne 

pas être très fiable à cause de la possibilité d’occurrence de différentes perturbations. Nous 

avons ainsi proposé d’adopter un processus de confirmation des dates d’hospitalisation 

conformément au programme opératoire construit sur l’horizon de T jours. Le troisième 

niveau décisionnel consiste dans la construction du programme opératoire journalier. Cette 

construction est à double objectifs : d’une part, mettre à jour le programme opératoire établi 

sur l’horizon de T jours en intégrant les différents aléas qui ont pu avoir lieu dans le système 

de soins tel que le report d’interventions à cause d’admissions de cas urgents, non 

programmées à l’avance ; d’autre part, préciser l’ordre de réalisation des interventions en 

considérant les ressources critiques utilisées dans le processus opératoire (Jebali et al., 2004 ; 

Jebali et al., 2006). Ensuite, nous avons proposé une approche temps-réel pour aider au 

pilotage du bloc opératoire devant l’occurrence d’aléas nécessitant de repenser le programme 

opératoire journalier, en cours de réalisation.  

 

Ces travaux ont été réalisés au Laboratoire d’Automatique de Grenoble à l’INP de Grenoble 

sous la direction de Pierre Ladet. Ceux réalisés dans ma thèse ont été aussi co-encadré par 

Atidel Hadj Alouane de l’ENIT. Par ailleurs, mes travaux de thèse ont été faits dans le cadre 

du projet HRP (Hospital Resource Planning) associant plusieurs laboratoires de la région 

Rhône-Alpes et ont bénéficié de deux cadres applicatifs : Hôpital de la Croix Rousse (Lyon) 

et Hôpital Charles Nicolle (Tunis). 

 

Approches stochastiques pour la planification des interventions au bloc opératoire   

 

Les approches et modèles proposés pour la planification des interventions, dans mes travaux 

de thèse, sont déterministes. Ces modèles ont été étendus afin de tenir compte explicitement 

de l’incertitude inhérente à l’activité du bloc opératoire. 

 

Tout d'abord, dans le cadre du master recherche de Sana Aniba, un premier modèle 

stochastique (M1) a été proposé pour la planification du bloc opératoire avec prise en compte 

de l’incertitude liée aux durées des interventions chirurgicales (Jebali et Aniba, 2011). Le 

modèle permet de déterminer les interventions à réaliser chaque jour de la semaine tout en 

minimisant les coûts liés au patient et à l'utilisation des salles opératoires. Ce dernier inclut 

les coûts de sous-utilisation et de surutilisation des salles opératoires. Le modèle stochastique 

est ensuite approximé par un modèle déterministe (programme linéaire en nombres mixtes) 

utilisant la méthode Sample Average Approximation (SAA). Les programmes opératoires 

générés par l'approche stochastique sont évalués et comparés à ceux obtenus par une 

approche déterministe en utilisant la simulation. Les résultats montrent l'intérêt de développer 

des approches stochastiques pour la planification du bloc opératoire. Ce premier travail a été 

ensuite étendu pour tenir compte, en plus de l'incertitude liée à la durée des interventions 

chirurgicales, celle liée à l'arrivée des cas urgents (Aniba et Jebali, 2011). Le problème a été 

formulé sous forme d’un modèle stochastique (M2). Une méthode heuristique a été proposée 

pour résoudre le modèle SAA en un temps raisonnable.  
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Par la suite, dans le cadre d’une collaboration avec Ali Diabat de l’Université de New York 

(NYU), ce travail a été étendu afin de tenir compte des parcours cliniques des patients au sein 

de l’hôpital. Les contraintes de capacité de toutes les ressources critiques intervenant dans la 

prise en charge du patient sont désormais prises en compte. Les incertitudes liées à la 

consommation de ces ressources sont aussi considérées.  

 

Tout d’abord, un modèle stochastique est proposé pour la planification des interventions dans 

les services de chirurgie cardio-thoracique et vasculaire, tout en tenant compte des contraintes 

de capacité des trois ressources suivantes : les salles opératoires, les lits dans l’unité de soins 

intensifs (USI), et les lits d’hospitalisation (Jebali et Diabat, 2015). Le modèle proposé tient 

compte de l’incertitude des durées opératoires et des délais de séjour du patient dans l’USI et 

dans le service d’hospitalisation. Un algorithme SAA est développé pour résoudre ce 

problème de planification. Les résultats obtenus mettent en évidence, en particulier, la 

supériorité des programmes opératoires obtenus par une approche stochastique par rapport à 

ceux générés par une approche déterministe en termes de robustesse, ainsi que l'importance 

de prendre en compte la capacité des lits de l’USI et d’hospitalisation dans la planification du 

bloc opératoire. La robustesse d’un programme opératoire a été évaluée en fonction du risque 

d'annulation de l'admission du patient et/ou de l’intervention à cause de l'indisponibilité de 

l’une des ressources considérées.  

 

Ce travail a été ensuite étendu afin de considérer l’incertitude liée à l’arrivée de cas urgents 

(Jebali et Diabat, 2017). Un modèle stochastique avec contraintes de hasard (chance-

constrained stochastic model) est proposé afin d’assurer que le risque d'annulation de 

l'admission du patient et/ou de l’intervention ne dépasse pas un seuil donné. Un algorithme 

SAA adapté aux modèles stochastiques avec contraintes de hasard a été ensuite proposé pour 

la construction du programme opératoire. Une étude comparative a permis ensuite d’identifier 

les avantages et les inconvénients de différentes approches de modélisation et de résolution 

du problème de planification du bloc opératoire avec prise en compte des incertitudes. 

 

Configuration des services logistiques dans les systèmes hospitaliers 

 

De plus, j'ai élargi mes recherches s’intéressant aux systèmes de santé en étudiant des 

problèmes liés à la configuration des services logistiques dans les systèmes de soins.  

 

Dans un premier temps, dans le cadre du master recherche de Houda Tlahig que j’ai co-

encadré avec Hanen Bouchriha de l’ENIT, nous nous sommes intéressées au choix de la 

meilleure configuration du service de stérilisation au sein d’un hôpital. Le choix entre 

centralisation et décentralisation du service de stérilisation est alors abordé. Je souligne ici 

que cette décision est pertinente pour les hôpitaux ayant une structure pavillonnaire où 

chaque spécialité de chirurgie a ses propres salles opératoires et service de stérilisation. Dans 

ce cas, il est, en effet, intéressant de montrer les avantages de passer à un service de 

stérilisation central, partagé par les différentes spécialités de chirurgie de l’hôpital. Afin de 

résoudre ce problème, une approche de résolution itérative en deux étapes a été proposée 

(Tlahig et al., 2009).  

 

Ce travail de master s’est ensuite prolongé en une thèse à Gipsa-Lab de l’INP de Grenoble 

que j’ai co-encadrée avec Pierre Ladet et Hanen Bouchriha. Tout d’abord, le choix entre 

internalisation et externalisation du service de stérilisation au sein d’un établissement 

hospitalier a été examiné. En ce qui concerne l'externalisation, deux types de prestataires ont 

été considérés : (1) une entreprise industrielle et (2) un établissement hospitalier situé dans la 
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même région. Ensuite, le problème de configuration du service de stérilisation au sein d’un 

réseau d’hôpitaux a été abordé. Deux options ont été considérées : (1) chaque hôpital du 

réseau maintient son service de stérilisation en interne ; (2) mutualisation du service de 

stérilisation. Dans ce dernier cas, un service central de stérilisation assurera cette activité pour 

tous les hôpitaux du réseau (Tlahig et al., 2013). Ce problème est formulé sous forme d’un 

programme linéaire en nombres mixtes. Le modèle vise, entre autres, à déterminer la 

configuration du service de stérilisation dans le cadre d’un réseau d’hôpitaux qui minimise 

les coûts de transport, d’exploitation, d’acquisition et de transfert de ressources. 

 

Cette thèse a bénéficié du support financier du projet CMCU 05/S1105 et a contribué aux 

réalisations effectuées dans le cadre des projets de la région Rhône-Alpes HRP2 et HRP3, 

extensions successives du projet HRP. L’ensemble de ces travaux ont également bénéficié de 

deux cadres applicatifs : Centre hospitalier de l’Aigle (Orne) et Hôpital Charles Nicolle 

(Tunis). 

 

Par ailleurs, dans le cadre d’une collaboration avec le Ministère de la Santé Publique en 

Tunisie, le choix entre internalisation et externalisation a été abordé pour d’autres activités 

logistiques de l’hôpital. Avec Hanen Bouchriha de l’ENIT et Sondes Hammami de Ecole 

Nationale d'Ingénieurs de Carthage (ENIC), nous avons abordé ce problème pour les 

processus de restauration et de blanchisserie au sein de l’Institut de Nutrition de Tunis et de 

l’Institut Hédi Raîes d’ophtalmologie (Hammami et al., 2009 ; Jebali et al., 2009).  

 

En outre, dans le cadre du master recherche d’Ahlem Jenzri que j’ai co-encadré avec Hanen 

Bouchriha, nous avons étudié la question de partage d’équipements d’Imagerie par 

Résonance Magnétique (IRM) par un groupe d’hôpitaux à Tunis (Jenzri et al., 2010).  

 

Conception et gestion des systèmes d’aide médicale urgente 

 

Dans le cadre du master recherche et de thèse de Rania Boujemaa que j’ai co-encadrés avec 

Sondes Hammami de l’ENIC, nous avons abordé le problème de conception et gestion des 

systèmes d’aide médicale urgente. De toute évidence, l’objectif de tout système d’aide 

médicale urgente est de satisfaire la demande en se rendant le plus rapidement possible sur 

les lieux de l’incident et prodiguant au patient les premiers soins avant d’assurer son transport 

à un hôpital approprié. Clairement, le temps de réponse, c’est-à-dire le temps écoulé entre la 

réception de l’appel et l’arrivée de l’équipe SMUR (Services Mobiles d’Urgence et de 

Réanimation) sur place doit être minimisé afin d’augmenter les chances de survie du patient 

en état critique. Dans cette recherche, l'accent est mis sur le cas de systèmes d’aide médicale 

urgente inclusifs à deux niveaux traitant plusieurs types de demandes en déployant deux 

types d’ambulances.  

 

Dans son master recherche, Rania Boujemaa a développé un modèle déterministe pour la 

conception du système d’aide médicale urgente. Ces travaux ont été étendus dans le cadre de 

sa thèse afin de tenir compte des incertitudes.  

 

Dans un premier temps, un modèle stochastique a été proposé pour la conception d’un 

système d’aide médicale urgente en tenant compte, d’une façon explicite, de l’incertitudes 

liée à la demande (Boujemaa et al., 2018). Le modèle permet de trouver les sites où localiser 

les ambulances et le nombre d’ambulances à affecter à chaque site afin d’assurer une 

couverture rapide des différentes zones de demande. Le modèle stochastique est résolu en 

utilisant un algorithme SAA. L’approche proposée est appliquée sur le cas du SAMU01 
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(Services d’Aide Médicale Urgente) de la région nord-est de la Tunisie. Les résultats obtenus 

démontrent, en particulier, l’applicabilité de l’approche proposée en pratique. 

 

Dans un deuxième temps, nous avons abordé le problème de relocalisation des ambulances 

(Boujemaa et al., 2020). L’objectif est d’améliorer les performances du système d’aide 

médicale urgente à travers un repositionnement des ambulances en fonction des fluctuations 

de la demande au cours de la journée. Un modèle stochastique multi-périodique est ainsi 

proposé pour la relocalisation des ambulances en tenant compte de l'incertitude liée à la 

demande. Afin de surmonter la complexité du modèle SAA, deux heuristiques ont été 

développées : (1) une heuristique de décomposition temporelle (HDT) et (2) une heuristique 

basée sur la relaxation lagrangienne (SBG). En outre, un modèle de simulation est proposé 

pour évaluer le niveau de service du système d’aide médicale urgente et le taux d’utilisation 

moyen des ambulances. Les résultats montrent la supériorité de HDT, car elle fournit une 

solution proche de la solution optimale en un temps raisonnable. La simulation montre 

également que le niveau de service du système d’aide médicale urgente est plus élevé lorsque 

HDT est utilisée. 

 

Une collaboration avec Angel Ruiz de l’Université Laval a eu lieu dans le cadre de ces 

travaux de thèse. Ainsi, Rania Boujemaa a pu bénéficier de plusieurs stages recherche au 

Centre interuniversitaire de recherche sur les reseaux d'entreprise, la logistique et le transport 

(CIRRELT) sous la direction d’Angel Ruiz. 

 

Par ailleurs, avec Sondes Hammami, nous avons développé un modèle pour la conception 

d’un système d’aide médicale urgente à deux niveaux en prenant en compte une prédiction de 

l’hôpital où le patient sera transféré (i.e. sa destination finale). Dans le modèle proposé, la 

prise en charge du patient doit se faire dans le respect d’un temps de réponse exigé. Dans 

cette recherche, nous avons pu démontrer la supériorité de ce modèle par rapport à ceux qui 

n’intègrent pas la destination finale du patient. Dans le cas d’étude considéré, une réduction 

de 3% des coûts peut être obtenu grâce à l’utilisation du modèle proposé (Hammami et Jebali, 

2021). 

 

2.2 Logistique et management de la supply chain  

 

Planification intégrée de la production-distribution dans la supply chain du secteur textile 

 

Dans le cadre de la thèse d’Imen Safra que j’ai co-encadré avec Hanen Bouchriha de l’ENIT 

et, Zied Jemai et Asma Ghaffari de l’Ecole Centrale de Paris (présentement nommée 

CentraleSupélec), nous nous sommes intéressés à l'étude de la supply chain dans l’industrie 

textile. Cette étude a été motivée par les défis rencontrés par les entreprises du secteur textile 

en Tunisie, qui s'efforcent de satisfaire efficacement leurs clients afin de préserver leurs 

compétitivités. Pour survivre à la concurrence mondiale acharnée, les entreprises du secteur 

textile doivent être en mesure de réduire leurs délais, satisfaire une demande imprévisible tout 

en étant efficaces. En particulier, nous considérons ici la planification intégrée production-

distribution où deux types de commande sont prises en compte : (1) des commandes de mise 

en place des collections à venir, souvent de délais longs et (2) des commandes de réassort, 

souvent de délais très courts, pour les collections en cours de vente. 

 

Tout d’abord, une méthode de planification tactique-opérationnelle qui vise à optimiser 

simultanément les décisions de production et de distribution est développée (Safra et al., 

2019). Cette méthode se caractérise par une anticipation d’une certaine flexibilité dans le plan 
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de production tactique pour pouvoir insérer les commandes de réassort dans le plan de 

production opérationnel. La méthode a été appliquée sur des données réelles d’une supply 

chain internationale, fournies par un partenaire industriel en Tunisie. Les résultats ont 

démontré qu’une telle méthode permet une réduction de 10% des coûts pour le cas étudié. 

 

Cette méthode a été ensuite étendue pour examiner l’intérêt de partager des informations sur 

les ventes actuelles entre le fabricant et le détaillant et d’évaluer l’effet de cette coordination 

sur les performances de la supply chain (Safra et al., 2021). En se basant sur la même étude 

de cas, il a été constaté qu’une réduction des coûts de 18% peut être réalisée grâce à ce 

partage d'informations.  

 

Planification des opérations dans le secteur du transport aérien 

 

Les compagnies aériennes s’efforcent d’optimiser leurs opérations pour survivre à une 

concurrence de plus en plus féroce. De plus, il a été remarqué que les performances de ces 

compagnies peuvent être considérablement améliorées si les décisions de planification des 

opérations, à savoir la planification des vols, l’affectation de flotte, le routage d’avions et la 

planification et l’établissement d’horaires d’équipages sont intégrées. De toute évidence, 

l'intégration de certains de ces quatre processus de planification reste très difficile vu la 

complexité associée à ces problèmes.  

 

Dans le cadre de la thèse de Nabil Kenan que j’ai co-encadrée avec Ali Diabat (NYU), nous 

nous sommes particulièrement intéressés aux problèmes de planification des vols, 

d’affectation de flotte et de routage d’avions tout en prenant en compte les incertitudes. Dans 

un premier temps, nous avons étudié le problème intégré de planification des vols et 

d’affectation de flotte en prenant en compte les incertitudes liées à la demande et aux tarifs 

(Kenan et al., 2018a). Ce problème est formulé sous forme d’un modèle stochastique. 

L’objectif est de maximiser le profit. L'algorithme SAA est utilisé pour résoudre le problème 

et fournir des informations sur la qualité de la solution trouvée. Nous avons ensuite abordé le 

problème intégré de planification des vols, d’affectation de flotte et de routage d’avions avec 

prise en compte de l’incertitude liée à la demande. L’objectif est de maximiser le profit. A 

travers la prise en compte d’un coût de pénalité dans la fonction objectif, le modèle essaye 

aussi de minimiser le retard des avions (Kenan et al., 2018b). Une approche basée sur la 

génération de colonnes a été proposée pour résoudre le problème en un temps raisonnable. Ce 

travail a été par la suite étendu pour inclure le partage de codes (codeshare). Par conséquent, 

la décision de poursuivre ou d'abandonner un accord de partage de code est considérée dans 

le problème intégré de planification de vol, d'affectation de flotte et de routage d’avions 

(Kenan et al., 2018c). L'incertitude de la demande et les retards sont également pris en 

compte. Ce problème a été aussi résolu en utilisant une approche basée sur la génération de 

colonnes. 

 

Logistique maritime 

 

La mondialisation de la supply chain a entraîné une augmentation significative des échanges 

de biens entre les pays. Cela explique, en effet, la croissance continue du nombre de ports et 

terminaux à conteneurs dans le monde et l'intérêt porté à l’optimisation des opérations 

portuaires au cours des deux dernières décennies.  

 

Dans le cadre de la thèse de Noura Al-Dhaheri que j’ai co-encadrée avec Ali Diabat (NYU), 

nous avons abordé le problème d’ordonnancement des opérations de déchargement et de 
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chargement des conteneurs dans les ports (Quay Crane Scheduling Problem, QCSP). 

L’objectif dans ce problème d’ordonnancement est de déterminer la séquence d’opérations de 

déchargement/chargement qui permettra de minimiser le temps passé par le navire sur le quai 

(ce qui correspond à minimiser le temps d’achèvement de toutes les opérations de 

déchargement/chargement). Dans ces travaux, nous avons essayé d'étendre la littérature selon 

les deux dimensions suivantes : 

 

- Nous avons proposé une nouvelle formulation du QCSP qui prend en compte les 

contraintes de stabilité des navires (Al-Dhaheri et al., 2016a). En outre, le modèle 

proposé intègre d’autres caractéristiques réalistes du problème, telles que la durée de 

déplacement de la grue, la possibilité de préemption de tâche, les restrictions de 

franchissement et marge de sécurité (non-crossing and safety margin restrictions). Vu la 

complexité de ce problème, un algorithme génétique (AG) est développé pour le 

résoudre ce en un temps raisonnable. 

 

- Nous avons développé un modèle stochastique pour l’ordonnancement des opérations de 

déchargement/chargement tout en considérant la dynamique et l'incertitude inhérentes au 

processus de manutention des conteneurs dans le port (Al-Dhaheri et al., 2016b). Le 

problème est résolu en utilisant une approche hybride de simulation-optimisation. 

 

Ces travaux ont été réalisés dans le cadre du projet « Maritime Logistics » financé par les 

Ports d’Abou Dhabi (ADPC). 

 

Dans un travail plus récent, réalisé en collaboration avec Ali Diabat et Nabil Kenan, nous 

avons étendu nos travaux sur l’ordonnancement des opérations dans les ports en prenant en 

compte les émissions de dioxyde de carbone qui en découlent (Kenan et al., 2022). Nous 

avons traité le problème intégré d’affectation et d’ordonnancement des grues. En particulier, 

nous avons étudié l’impact de deux formes de taxe carbone (carbon tax vs. carbon cap-and-

trade) sur les coûts et les émissions de dioxyde de carbone dans les ports.  

 

La plupart des travaux de recherche présentés ci-dessous (et mêmes ceux qui n’ont pas été 

inclus dans ce rapport mais qui pourraient être retrouvés à travers la liste des publications) 

ont été réalisés dans le cadre d’encadrements ou de co-encadrements d’étudiants en master 

recherche et de doctorants. J’ai aussi eu l'opportunité, dans mes travaux de recherche, de 

collaborer avec des enseignants-chercheurs dans plusieurs universités et structures de 

recherche en Tunisie, en France, aux Emirats Arabes Unis, au Canada et aux États-Unis 

(Gipsa-Lab, INP Grenoble ; Laboratoire ACS, ENIT ; Labo. Génie Industriel, 

CentraleSupélec, NYU ; CIRRELT, etc.). Ainsi, les modèles et résultats présentés tout au 

long de ce rapport émanent d’un travail collectif impliquant des jeunes chercheurs et des 

collègues, sans qui, rien n’aurait pu avoir lieu.  

 

3 Quelques travaux en cours et perspectives de recherche 

 

Mes projets de recherche sont guidés par les deux objectifs suivants : (1) approfondir et 

capitaliser sur les recherches que j'ai effectuées ; (2) élargir mes recherches en s’intéressant à 

des problèmes préoccupants et d’actualité. Ces projets sont suscités par le besoin 

d’entreprises industrielles et de services à faire face aux différents changements et défis 

auxquelles elles sont confrontées dans le contexte actuel particulièrement marqué par une 

forte tendance vers la digitalisation en vue d’offrir des services et des produits mieux adaptés 

aux besoins des clients et de moindres coûts et une règlementation de plus en plus stricte en 
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ce qui concerne le respect de l’environnement. Par ailleurs, la crise sanitaire du COVID-19 a 

été à l’origine de l’intérêt que j’ai porté à l’étude de la résilience et la viabilité de la supply 

chain, les deux dernières années.  

 

 3.1 Approfondissement de la recherche 

 

Le premier objectif, qui vise l’approfondissement de la recherche, inclut le développement de 

modèles et d’approches de résolution plus sophistiquées et/ou l’extension des recherches 

actuelles en considérant/intégrant des problèmes connexes.  

 

Plus spécifiquement, dans mes travaux futurs, je souhaiterai développer des approches de 

résolution avancées pour les problèmes de planification du bloc opératoire et de relocalisation 

des ambulances. De plus, il serait intéressant de développer une approche stochastique pour 

l’ordonnancement journalier du bloc opératoire. Comme on peut le constater, la planification 

et l’ordonnancement du bloc opératoire sont interdépendants et impactent significativement la 

performance du bloc. En développant une approche qui intègre ces deux problèmes en tenant 

compte du parcours clinique des patients et des incertitudes, les hôpitaux disposeront d’un 

outil d’aide à la décision plus complet pour gérer efficacement non seulement les salles 

opératoires mais aussi d’autres ressources rares et coûteuses de l’hôpital, telles que les lits de 

l’USI.  

 

Dans ce cadre, une thèse qui vise le développement d’une approche holistique de 

planification et d’ordonnancement du bloc opératoire sera lancé en collaboration avec Erik 

Demeulemeester de Katholieke Universiteit Leuven (KUL, Belgique) à partir d’Octobre 

2022.  

 

En plus, j’envisage d’approfondir mes recherches très récentes sur la logistique maritime 

verte et la conception de la chaîne logistique en boucle fermée (Closed-Loop Supply Chain, 

CLSC) vu que la prise en compte des aspects environnementaux et l’évolution vers une 

économie circulaire deviennent une priorité socio-économique.  

 

Logistique maritime verte 

 

(Kenan et al, 2022) sera étendu, dans un premier temps, pour intégrer les décisions 

d’attribution des postes d’amarrage avec celles d’affectation et d’ordonnancement des grues 

tout en prenant en compte l’incertitude inhérente à l’arrivée des navires. Dans un deuxième 

temps, nous viserons le développement d’une approche holistique pour la gestion et la 

synchronisation des opérations dans le port, celles prenant lieu avant l’amarrage du navire, 

après l’amarrage, d’une part entre le navire et le quai et d’autre part, entre le quai et les zones 

de stockage. L’objectif de cette recherche est de développer des modèles et algorithmes 

d’ordonnancement des opérations qui permettent une réduction des émissions de dioxyde de 

carbone générées dans les ports. En effet, au-delà du développent de modèles et solutions 

plus sophistiqués à ces problèmes complexes, nous visons évaluer l’impact d’une meilleure 

synchronisation des opérations sur la performance économique et environnementale du port. 

 

Conception de la chaîne logistique en boucle fermée (Closed-Loop Supply Chain, CLSC)  

 

Dans de nombreux pays développés, la législation environnementale oblige les fabricants à 

recycler une partie de leurs produits en fin de vie et/ou à assurer leur destruction dans le 

respect de l'environnement. Par exemple, dans l'Union Européenne, la directive sur les 
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déchets d'équipements électriques et électroniques (Waste Electrical and Electronic 

Equipment, WEEE) impose la collecte et le recyclage de ce type de produits avec un taux 

minimum prédéfini par habitant et par an. Ces réglementations ont été mises en place suite à 

une prise de conscience du public et des gouvernements concernant la nécessité imminente de 

réduire les effets néfastes sur l'environnement causés par certains produits en fin de vie. En 

plus de réduire les déchets et la pollution, la récupération des produits en fin de vie à travers 

le recyclage des matières précieuses qu’ils contiennent ou le reconditionnement/rénovation de 

certains composants offre des opportunités pour réduire et maîtriser la consommation 

d’énergie et de ressources et pourrait également offrir de nouvelles sources de revenus.  

 

La CLSC comprend toutes les étapes permettant de fournir le produit au client final mais 

aussi celles qui vont permettre la récupération des produits en fin de vie y compris la collecte, 

le recyclage et le reconditionnement/rénovation. 

 

Au cours des deux dernières décennies, une littérature abondante a été consacrée à la 

conception et l’étude du fonctionnement de la CLSC. De toute évidence, les caractéristiques 

du problème diffèrent d’un secteur industriel à l’autre. En outre, nous pouvons voir que la 

qualité des retours, l'éco-efficacité et les opportunités de revenus supplémentaires associés 

avec chaque type de récupération (recyclage, reconditionnement/rénovation) sont des 

éléments importants à prendre en compte dans le choix du type de récupération à adopter 

pour un produit en fin de vie.  

 

Dans un premier temps, en collaboration avec Ali Diabat, nous nous sommes intéressés à la 

conception de la CLSC des produits durables avec prise en compte du contexte législatif 

(Diabat et Jebali, 2021). Des modèles déterministes ont été développés et utilisés pour 

évaluer la performance économique et environnementale de la CLSC pour différents types de 

législations portant sur la reprise de produits (take-back legislation). Ces travaux seront 

étendus pour tenir compte des incertitudes liées à la demande et aux retours. Une autre 

perspective intéressante consiste à étudier l’impact d’une conception modulaire (modular 

design and part commonality) sur la configuration et la performance de la CLSC.     

 

3.2 Elargissement de la recherche 

 

Dans le cadre du deuxième objectif, visant l’élargissement de la recherche, la plupart de mes 

travaux ont porté sur le développement de modèles et d’approches pour la conception et la 

planification d’une supply chain résiliente et viable. 

 

Conception et planification pour une supply chain résiliente et viable 

 

Une pandémie peut faire des ravages dans les supply chain, comme en témoigne la crise du 

COVID-19. Il est ainsi important de centrer la réflexion sur comment concevoir et planifier 

une supply chain tout en renforçant sa résilience, sa capacité d’adaptation, sa durabilité et 

donc sa viabilité sur le long-terme.  

 

Dans un premier travail, avec Xavier Brusset et Davide La Torre (SKEMA Business School), 

nous avons étudié comment l’effort investi en termes d’implémentation de mesures 

protectives (au-delà de celles imposées par le gouvernement) au sein d’un système de 

production pourrait augmenter la résilience de celui-ci et assurer la continuité de production 

(Brusset et al., 2022). Ce travail a été étendu afin de prendre en compte le niveau de service 

des fournisseurs pendant la période de crise (i.e. la fiabilité de livrer la quantité commandée 
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dans les temps). L’originalité de ces deux travaux est double : (1) ils intègrent un modèle 

épidémiologique avec un modèle de planification de la production ; (2) ils explorent 

l’implémentation de mesures protectives comme une stratégie de résilience des systèmes de 

production et de la supply chain. En particulier, les modèles développés sont recommandés 

pour les industries à forte intensité de main d’œuvre, telle que l’industrie de la viande.  

 

Par ailleurs, nous sommes en train de développer une approche pour la planification de la 

supply chain de la viande en situation de crise sanitaire. Dans cette recherche, nous 

considérons tous les maillons de cette supply chain : fournisseur, producteur et détaillant. 

Notre objectif est de se baser sur ce qui s’est passé dans la crise du COVID-19 pour fournir 

des recommandations aux managers de la supply chain de la viande sur les types de modèles 

de prévision de la demande et de la capacité à utiliser, et l’approche de planification à suivre, 

dans un contexte de crise sanitaire.   

 

Récemment, avec Xavier Brusset, Davide La Torre, Marco Repetto (SKEMA Business 

School), et Dmiry Ivanov (Berlin School of Economics and Law), nous avons développé un 

modèle pour la sélection de fournisseurs en situation de crise sanitaire. Ce dernier se 

distingue par la prise en compte du risque de perte de niveau de service dû à l’effet 

d’entrainement (ripple effect).  

 

Nous sommes actuellement en train d’étendre ce travail à la conception d’une supply chain à 

quatre étages. Nous visons l’application du modèle proposé dans l’industrie pharmaceutique. 

En particulier, nous sommes en train d’étudier l’impact de la digitalisation et du niveau 

technologique du système de production, de la substituabilité des produits (product 

substituatability) et de la diversification de la base fournisseur, sur la résilience de la supply 

chain.  

 

Les projets de recherche susmentionnés seront réalisés en collaboration avec des enseignants-

chercheurs de SKEMA Business School, du KUL, de l'ENIT, du CIRRELT, et de NYU et 

feront l’objet de soumissions à des appels à projets (tels que les projets ANR, projets PHC 

Utique, etc.). Par ailleurs, dans ces projets de recherche, nous envisageons de trouver des 

partenaires économiques et industriels afin de valoriser leur impact socio-économique. Le 

montage et la réalisation de projets de recherche appliquée co-financés par des partenaires 

économiques est l’un de nos objectifs sur le court et moyen terme. Cette démarche est d’ores 

et déjà entamé avec un groupe de consulting d’envergure. 
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My keen interest and motivation for research started since I was an industrial engineering 

student at Ecole Nationale d’Ingénieurs de Tunis (ENIT). In particular, my second-year 

project and my experience with my advisor awakened in me this interest. This first research-

oriented project opened my eyes on the importance and challenges to understand problems 

and search how to solve them; besides it uncovered the feeling of being unsatisfied with the 

solution I found because aware that a better one exists.  

 

After obtaining my engineering degree, and without any hesitation, I decided to pursue a 

Master of Science followed by a PhD in Industrial Engineering at Grenoble INP. My master 

project and PhD work were both dedicated to the study of healthcare systems. My master 

project aimed at conducting an exploratory study in order to point out the problems and 

challenges of healthcare systems. The imminent need of healthcare systems to improve their 

performances contrasted by the paucity of works devoted to support decision making in this 

field motivated me to continue with the same topic in my PhD. Hence the objective of my 

PhD work was to find out how to improve healthcare systems’ performances by developing 

appropriate and novel optimization models for efficient and effective decision making. In 

light of this, while adopting a novel approach based on patients’ clinical path, I devised 

models and solution methods that constitute the basis toward a hospital resource planning and 

scheduling decision tool.  

 

During this period, my passion for research soared. Beyond being a member of Laboratoire 

d’Automatique de Grenoble (currently named Gipsa-Lab), I got the opportunity, in my PhD, 

to participate to the research project HRP (Hospital Resource Planning) funded by the Rhône-

Alpes region (currently Auvergne-Rhône-Alpes). This experience unveiled the significance 

of collaborating and interacting with other researchers; indeed, this can only bring up 

thinking and favor interdisciplinarity and innovative research outcomes. For that, I am 

particularly thankful to my PhD supervisor Pierre Ladet who let me benefit of a such 

excellent and rich research context. I also thank Atidel Hadj-Alouane from ENIT who co-

supervised my PhD work for her support and pertinent advice. 

 

After successfully completing my PhD, I was appointed as an assistant professor of Industrial 

Engineering at ENIT. Afterward, I joined the Department of Business Administration at 

Prince Sultan University (Riyadh, Saudi Arabia) as an assistant professor of Operations 

Management. Then I got the opportunity to join the Department of Engineering Systems and 

Management at Masdar Institute of Science and Technology (currently merged with Khalifa 

University) as a Research Scientist and the University of Sharjah as an assistant professor of 

Industrial Engineering. I also got the opportunity to join the Department of Systems 

Engineering (ISYS) at ESIEE Paris (Gustave Eiffel University). Since 2019, I am associate 

professor of operations and supply chain management at SKEMA Business School. These 

different appointments gave me the opportunity to enrich my teaching experiences and 

research activities through different collaborations and the supervision and co-supervision of 

master and PhD theses. As a scholar, my strategy is indeed to maintain a good balance 

between teaching and research.  

 

My research works and contributions pertain to two principal areas: (1) healthcare systems 

engineering and management and (2) logistics and supply chain management. Different 

topics related to each of these areas have been addressed. The objective of all my researches 
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is to address topical decision problems and provide both academicians and practitioners with 

efficient solution approaches and valuable managerial recommendations and insights.   

 

Based on my experiences and credentials, in teaching as well as research, I truly feel ready to 

state my case toward the Habilitation à Diriger des Recherches (HDR) qualification. First, 

this would qualify me to go a step forward in my career by obtaining a professorship in 

industrial engineering and/or operations and supply chain management. Moreover, it will 

give me, the opportunity to supervise doctoral students and, access to more ambitious 

responsibilities and research projects as a senior scholar.  

 

The remainder of this dissertation contains four parts that are structured as follows.  

 

In part I, I present a detailed curriculum vitae stating my education and qualifications, my 

research and teaching activities and outcomes. In addition, I present my administrative 

responsibilities and editorial activities. 

 

Part II contains a synthesis of my contributions to the literature related to healthcare systems 

engineering and management. The focus is placed on the works that develop stochastic 

approaches in order to account for the uncertainty inherent to healthcare activities. This part 

is composed of two chapters: Chapter II.1 describes my works on operating room planning 

and scheduling under uncertainty while Chapter II.2 is dedicated to the design and 

management of Emergency Medical Service (EMS) system.  

 

Part III will be devoted to my works in the area of logistics and supply chain management. 

Part III is divided into three chapters that cover the main topics addressed in this area. 

Chapter III.1 deals with the integrated production-distribution planning problem encountered 

by global textile and apparel supply chains. Chapter III.2 and III.3 summarize my 

contributions to the existing literature on airline operations planning and maritime logistics, 

respectively.  

 

In all these chapters, the focus will be placed on the works and results entailing the most 

significant contributions. Moreover, as can be noted, the presented chapters do not cover all 

the addressed research topics. The priority in this report was given to the recent works and in 

particular those that, I deem, are bearing a good contribution to the literature. 

 

In part IV, I present my ongoing work and my future research projects. The latter are 

intended either to deepen and capitalize on the research I have dealt with up until now or 

enlarge the scope of my research in the above-mentioned research areas by addressing 

trending topics and concerns. Henceforth, the focus will be placed mainly on four research 

projects which are related to the following topics: operating room planning and scheduling, 

green port operations, the design of closed-loop supply chains and the design of resilient and 

viable supply chains.  

 

The research findings presented along this dissertation stem from fruitful collaborations with 

master students, doctoral students and colleagues in different universities in, Tunisia, France, 

UAE and Canada and to whom I am very thankful and grateful. Their names will be 

mentioned throughout the report.  
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2 Education 

 

PhD in Industrial Engineering, Grenoble INP 
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healthcare services  

• PhD supervisor: Pierre Ladet 
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- President: Mireille Jacomino, Professor, Grenoble INP 

- Reviewers: Christian Tahon, Professor, Université de Valencienne, and Michel 

Gourgand, Professor, Université Blaise Pascal, Clermont-Ferrand 

- Examiners: Alain Guinet, Professor, INSA de Lyon & Jean-Paul Viale, Professor 

and Chair of the anesthesiology department, Hôpital de la Croix Rousse, Lyon 

   

Master of Science in Industrial Engineering, Grenoble INP  

• Graduated in July 2000 (obtained with Honors) 

• Subject of the thesis: Resource assignment and allocation problem in the healthcare 

services: a literature review and the basis of an optimization model  

• Supervisor: Pierre Ladet 

 

Engineer Diploma in Industrial Engineering, Ecole Nationale d’Ingénieurs de Tunis 

(ENIT) 

• Graduated in July 1999 

• Ranking: 5/41 

 

3 Academic positions held 

 

• 2019-present: Associate Professor of Operations and Supply Chain Management, 

Digitalization academy, SKEMA Business School – Campus Grand Paris – France 

 

• 2018-2019: Associate Professor, Department of Systems Engineering (ISYS), ESIEE 

Paris - France 

 

• 2005–present: Assistant Professor, Industrial Engineering Department, ENIT - 

Tunisia 

 

mailto:aida.jebali@skema.edu
mailto:aida_jebali@yahoo.fr
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• 2016-2018: Assistant Professor, Department of Industrial Engineering and 

Engineering Management, College of Engineering, University of Sharjah – United 

Arab Emirates (UAE) 

 

• 2014–2016: Research Scientist, Department of Engineering Systems & Management, 

Masdar Institute of Science and Technology - UAE 

 

• 2011–2013: Assistant Professor, Business Administration Department, College for 

Women, Prince Sultan University - Saudi Arabia 

 

• 2001–2005: Lecturer, Industrial Engineering Department, ENIT - Tunisia 

 

4 Administrative positions held 

 

• Member of the faculty search committee, Industrial Engineering and Engineering 

Management Department, College of Engineering, University of Sharjah, UAE (2016-

2018) 

• Member of the faculty social affairs committee, College of Engineering, University of 

Sharjah, UAE (2016-2018) 

• Research coordinator, Business Administration Department, College for Women, 

Prince Sultan University, Saudi Arabia (2012-2013)  

• Learning Management System coordinator, Business Administration Department, 

College for Women, Prince Sultan University, Saudi Arabia (2012-2013)  

• Member of the faculty search committee, Business Administration Department, 

College for Women, Prince Sultan University, Saudi Arabia (2012-2013)  

• Coordinator for the Master of Business Creation and Innovation Management, 

Industrial Engineering Department, ENIT, Tunisia (2008-2010)  

5 Awards 

 

• High Level Scientific Stay, Research Grant of the French Ministry of Foreign Affairs, 

July 2009 and December 2007 

• PhD Scholarship Award of the French Ministry of Foreign Affairs, 2000-2003  

• National scholarship for Doctoral Studies of the Tunisian Ministry of Higher 

Education and Scientific Research, 1999-2000 

 

6 Research activities 

 

My research interests are tied to system design and management in the production of services 

and goods. More specifically, my research thrives the development of operations research 

models and solution approaches to address topical decision problems related to operations 

planning and supply chain design and management. Overall, the problems that I tackle in my 

research pertain to the following two main areas: (1) healthcare systems engineering and 

management and (2) logistics and supply chain management. In order to provide managers 

with useful recommendations and insights, realistic features of the considered problems are 

taken into account including uncertainty. Moreover, some of my recent research has 

incorporated environmental aspects and resilience with an objective to curb climate change 

and/or foster the continuity of operations and supply chains prone to disruptive risks as those 

of a pandemic.  
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6.1 Research supervision 

 

I have been involved in the supervision of 5 PhD students in collaboration with professors 

from Tunisia, France, UAE and Canada. I also supervised and co-supervised 7 research 

projects of master’s students. More details on the supervised PhDs and Master projects are 

given in subsections 6.1.1 and 6.1.2, respectively. 

 

6.1.1 Supervision of PhD students 

 

Rania Boujemaa 

• PhD in Industrial Engineering (ENIT)  

• Defended in September 2018 

• Subject of the thesis: Stochastic approach for ambulance location and relocation 

• Financial support: Tunisian Ministry of Higher Education and Scientific Research 

• Supervision rate 50%. Co-supervised with Sondes Hammami (Assistant professor, 

Ecole Nationale d'Ingénieurs de Carthage (ENIC)) and Hanen Bouchriha (Professor, 

ENIT) 

• PhD examination committee:  

- President: Najoua Dridi (Professor, ENIT) 

- Reviewers: Anis Gharbi (Professor, Tunis Business School) and Jouhaina Siala 

(Professor, Institut des Hautes Etudes Commerciales)                

- Examiners: Talel Ladhari (Professor, Ecole Supérieure des Sciences Economiques 

et Commerciales de Tunis) and Angel Ruiz (Professor, Université Laval) 

• Publications 

- 2 papers published in international journals  

- 2 international conference papers 

 

Rania is currently « Professionnelle de Recherche » at Laval University - Canada. 

 

Nabil Kenan 

• PhD in Interdisciplinary Engineering (Masdar Institute of Science and Technology)  

• Defended in August 2017 

• Subject of the thesis: Planning in the airline industry under uncertainty 

• Financial support: Masdar Institute of Science and Technology PhD scholarship 

• Supervision rate 50%. Co-supervised with Ali Diabat (Professor, New York 

University Abu Dhabi) 

• PhD examination committee: I-Tsung Tsai (Associate professor, Masdar Institute of 

Science and Technology) and David Simchi-Levi (Professor, Massachussets Institute 

of Technology) 

• Publications 

- 3 papers published in international journals  
 

Nabil is currently Senior Specialist - Operations and Development at Abu Dhabi Ports - 

UAE. 

 

Noura Al-Dhaheri 

• PhD in Interdisciplinary Engineering (Masdar Institute of Science and Technology)  

• Defended in March 2016 
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• Subject of the thesis: The Quay Crane Scheduling Problem with Ship Stability 

Consideration: Formulations and Solution Approaches  

• Financial support: Grant EX2014-000003, Abu Dhabi Ports 

• Supervision rate 40%. Co-supervised with Ali Diabat (Professor, New York 

University Abu Dhabi) 

• PhD examination committee: I-Tsung Tsai (Associate professor, Masdar Institute of 

Science and Technology) and David Simchi-Levi (Professor, Massachussets Institute 

of Technology) 

• Publications 

- 2 papers published in international journals  

 

Noura is currently the CEO of Maqta Gateway, Abu Dhabi Ports - UAE. 

 

Imen Safra  

• PhD in Industrial Engineering (Ecole Centrale de Paris (ECP) & ENIT)  

• Defended in February 2013 

• Subject of the thesis: Towards an integrated production-distribution planning in the 

textile supply chain 

• Financial support: Tunisian Ministry of Higher Education and Scientific Research 

• Supervision rate 25%. Co-supervised with Hanen Bouchriha (Professor, ENIT), Zied 

Jemai (Professor, ENIT-ECP), Asma Ghaffari (Associate Professor, ECP) and 

Chengbin Chu (Professor, ECP) 

• PhD examination committee:  

- Reviewers: Gilles Goncalves (Professor, Université d’Artois) and Samir Lamouri 

(Professor, Ecole Nationale des Arts et Métiers)              

- Examiner: Vincent Giard (Professor, Université Paris Dauphine) 

• Publications 

- 2 papers published in international journals 

- 3 international conference papers 

 

Imen is currently assistant professor at ENIB (Ecole Nationale d’Ingénieurs de Bizerte) - 

Tunisia 

 

Houda Tlahig  

• PhD in Industrial Engineering (Grenoble INP)  

• Defended in February 2009 

• Subject of the thesis: Towards a decision tool support for the choice between the 

internalisation, the externalisation or the pooling of the hospital logistics activities: the 

sterilisation service case 

• Financial support: Project CMCU 05/S1105 

• Supervision rate 50%. Co-supervised with Hanen Bouchriha (Assistant professor, 

ENIT) and Pierre Ladet (Professor, INP de Grenoble) 

• PhD examination committee:  

- President: Eric Marcon (Professor, IUT Roanne) 

- Reviewers: Christian Tahon (Professor, Université de Valencienne) and Michel 

Gourgand (Professor, Université Blaise Pascal, Clermont-Ferrand) 

- Examiner: Lamine Dhidah (CHU Sahloul, Tunisia) 

• Publications 
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- 1 paper published in an international journal 

- 1 paper published in a specialized journal with reading committee 

- 6 international conference papers 

 

Houda is currently researcher-lecturer at Cesi, Ecole d’Ingénieurs - France. 

 

6.1.2 Supervision of Masters’ students 

 

Rania Boujemaa  

• Master of Science in Automatic Control and Production engineering (Tunis College 

of Sciences and Techniques (ESSTT)) 

• Defended in March 2012 

• Supervision rate 50%. Co-supervised with Sondes Hammami (Assistant professor, 

ENIC) 

• Subject of the thesis: Ambulance location problem 

• Publications 

- 1 international conference paper 

 

Sana Aniba 

• Master of Science in Automatic Control and Production engineering (ESSTT) 

• Defended in December 2010 

• Subject of the thesis: A stochastic approach for operating room planning and 

scheduling  

• Publications 

- 3 international conference papers 

 

Ahlem Jenzri 

• Master of Science in Automatic Control and Production engineering (ESSTT) 

• Defended in December 2009 

• Supervision rate 50%. Co-supervised with Hanen Bouchriha (Professor, ENIT) 

• Subject of the thesis: Resource pooling in multi-hospital network: case of the MRI 

equipment  

• Publications 

- 1 international conference paper 

 

Jamel Arfaoui 

• Master of Science in Industrial Systems Management (ENIT) 

• Defended in April 2009 

• Subject of the thesis: Modeling and solution approach for the inventory routing 

problem: application to the textile and apparel distribution network  

• Publications 

- 1 international conference paper 

 

Houda Aloui 

• Master of Science in Industrial Systems Management (ENIT) 

• Defended in December 2005 

• Supervision rate 50%. Co-supervised with Hanen Bouchriha (Professor, ENIT) 
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• Subject of the thesis: Performance evaluation of two strategies for the operating room 

planning  

 

Houda Tlahig 

• Master of Science in Industrial Systems Management (ENIT) 

• Defended in July 2005 

• Supervision rate 50%. Co-supervised with Hanen Bouchriha (Professor, ENIT) 

• Subject of the thesis: Centralization vs. decentralization of the hospital sterilization 

service department 

• Publications: 

- 1 paper published in an international journal 

- 1 international conference paper 

 

6.2 Participation in funded research projects  

 

• 2018-2021: Participation in the joint French-Tunisian research project PHC-UTIQUE 

2018 (18G1410) entitled “Robust planning of home healthcare services” 

 

• 2014-2016: Participation in the Research Project « Maritime logistics » (Grant 

EX2014-000003, Abu Dhabi Ports)  

 

• 2000-2009: Participation in the research projects HRP (Hospital Resource Planning), 

HRP2 and HRP3 (HRP2 and HRP3 are extensions of the project HRP)  

- Financial support: Région Rhône-Alpes, France 

 

• 2005-2008: Participation in the research project CMCU 05/S1105 (project of Tunisian 

French joint committee for university cooperation) – Modeling and management of 

industrial and service production systems 

 

• 2002-2003: Participation in the research project « Collaborative Management in 

Healthcare »  

- Financial support: CNRS (French National Center of Scientific Research), France 

 

6.3  Main academic collaborators 

 

• Pierre Ladet, Grenoble INP (presently retired). He is my PhD supervisor. Subsequent to 

my PhD, we co-supervised 1 PhD student. This research collaboration was related to 

the area of healthcare engineering and management. In the frame of this collaboration, 

we co-authored 1 paper published in an international journal and 1 paper in a 

specialized journal with reading committee.  

 

• Hanen Bouchriha, ENIT. We co-supervised the PhD theses of Houda Tlahig, Imen 

Safra and Rania Boujemaa. In addition, as noted above, we co-supervised 3 master’s 

theses. Most of our collaboration pertained to the configuration of hospital logistics 

activities and the integrated production-distribution planning in textile and apparel 

supply chain. We co-authored 6 papers published in international journals and 1 paper 

published in a specialized journal with reading committee. 
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• Ali Diabat, NYU. We conducted joint research on operating room planning under 

uncertainty, maritime logistics, airline operations planning and the design of closed-

loop supply chain network. We co-supervised the PhD theses of Noura Al-Dhaheri and 

Nabil Kenan. We co-authored 9 papers published in international journals. 

 

• Sondes Hammami, ENIC. We conducted joint research on the design and management 

of EMS systems. We co-supervised the master’s thesis and the PhD thesis of Rania 

Boujemaa. We co-authored 3 papers published in international journals. 

 

• Zied Jemai, ENIT & ECP and Asma Ghaffari, ECP. We conducted joint research on 

integrated production-distribution planning in textile and apparel supply chain. We co-

supervised the PhD thesis of Imen Safra. We co-authored 2 papers published in 

international journals. 

 

• Angel Ruiz, Université Laval & CIRRELT. We conducted joint research on the design 

and management of EMS systems. We co-authored 2 papers published in international 

journals. 

 

• Xavier Brusset and Davide La Torre, SKEMA Business School. We conducted joint 

research on production and supply chain optimization. We co-authored 4 papers: 2 of 

them have been recently published in international journals and 2 are under review.  

 

• Sarra Dahmani, SKEMA Business School, and Oussama Ben-Ammar, IMT Mines 

Alès. We are conducting joint research on the role of Artificial Intelligence in 

augmenting project resilience. The focus of this research will be put on project 

scheduling. 

 

6.4  Publications 

 

Table 1 provides a summary of my research outputs. A detailed list of my publications is then 

given. In this subsection the focus is placed on publications in journal papers and 

international peer reviewed conference proceedings.  

 
Table 1. Summary of research outputs 

Papers in international peer reviewed journals (ISI Journals) 19 

Papers in international peer reviewed journals (Non-ISI Journals) 2 

Papers in specialized journals with reading committee 1 

Papers in international peer reviewed conference proceedings 35 

 

Papers in international peer reviewed journals (ISI Web of Science) 

 

1. Brusset, X., Jebali, A., La Torre, D., Mazahir, S. (2022). Optimal Pollution Control in a 

Dynamic Multi‑echelon Supply Chain. Environnemental Modeling & Assessment, 

27, 585–598. 

 

2. Brusset, X., Jebali, A., La Torre, D. (2022). Production optimisation in a pandemic 

context. International Journal of Production Research.  

       https://doi.org/10.1080/00207543.2022.2044535. 

 

https://doi.org/10.1080/00207543.2022.2044535
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3. Kenan, N., Jebali, A., Diabat, A. (2022). The integrated quay crane assignment and 

scheduling problems with carbon emissions considerations. Computers & Industrial 

Engineering, 165, 107734. 

 

4. Safra, I., Jebali, A., Jemai, Z., Bouchriha, H., Ghaffari, A. (2021). The beneficial effect 

of information sharing in the integrated production-distribution planning of textile and 

apparel supply chain. RAIRO-Operations Research, 55, 1171-1195. 

 

5. Diabat, A. and Jebali, A. (2021). Multi-product and multi-period closed loop supply 

chain network design under take-back legislation. International Journal of Production 

Economics, 231, 107879. 

 

6. Hammami, S. and Jebali, A. (2021). Designing modular capacitated emergency medical 

service using information on ambulance trip. Operational Research, 21(3), 1723-1742. 

 

7. Boujemaa, R., Jebali, A., Hammami, S., Ruiz, A. (2020). Multi-period stochastic 

programming models for two-tiered emergency medical service system. Computers & 

Operations Research, 123, 104974. 

 

8. Safra, I., Jebali, A., Jemai, Z., Bouchriha, H., Ghaffari, A. (2019). Capacity planning in 

textile and apparel supply chains. IMA Journal of Management Mathematics, 30(2), 209–

233. 

 

9. Kenan, N., Diabat, A., Jebali, A. (2018). Codeshare agreements in the integrated aircraft 

routing problem. Transportation Research Part B: Methodological, 117, 272-295. 

 

10. Kenan, N., Jebali, A., Diabat, A. (2018). The integrated aircraft routing problem with 

optional flights and delay considerations. Transportation Research Part E: Logistics and 

Transportation Review, 118, 355-375. 

 

11. Kenan, N., Jebali, A., Diabat, A. (2018). An integrated flight scheduling and fleet 

assignment problem under uncertainty. Computers & Operations Research, 100, 333-

342.  

 

12. Boujemaa, R., Jebali, A., Hammami, S., Ruiz, A., Bouchriha, H. (2018). A stochastic 

approach for designing two-tiered emergency medical service system. Flexible Services 

and Manufacturing Journal, 30, 123-152.  

 

13. Jebali, A. and Diabat, A. (2017). A Chance-constrained operating room planning with 

elective and emergency cases under downstream capacity constraints. Computers & 

Industrial Engineering, 114, 329-344. 

 

14. Al-Dhaheri, N., Jebali, A., Diabat, A. (2016). A simulation based genetic algorithm 

approach for the quay crane scheduling under uncertainty. Simulation Modelling 

Practice and Theory, 66, 122–138. 

 

15. Al-Dhaheri, N., Jebali, A., Diabat, A. (2016). The quay crane scheduling problem with 

nonzero crane repositioning time and vessel stability constraints. Computers & Industrial 

Engineering, 94, 230–244.  
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16. Jebali, A. and Diabat, A. (2015). A stochastic model for operating room planning under 

capacity constraints. International Journal of Production Research, 53(24), 7252-7270.  

 

17. Tlahig, H., Jebali, A., Bouchriha, H., Ladet, P. (2013). Centralized Versus Distributed 

Sterilization Service: A location-allocation Decision Model. Operations Research for 

Health care, 2(4), 75-85. 

 

18. Tlahig, H., Jebali, A., Bouchriha, H. (2009). A two-phased approach for the 

centralization versus decentralization of hospital sterilization service department. 

European Journal of Industrial Engineering, 3, 227-246. 

 

19. Jebali, A., Hadj Alouane, A., Ladet, P. (2006). Operating rooms scheduling.  

International Journal of Production Economics, 99, 52-62. 

 

Papers in international peer reviewed journals (Non-ISI journals) 

 

1. Jebali, A. and Bouchriha, H. (2007). Evaluation de deux stratégies de planification des 

interventions dans un bloc opératoire central. Revue Logistique & Management, 15(1), 

27-36. 

 

2. Jebali, A., Ladet, P., Hadj Alouane, A. (2004). Une méthode pour l’ordonnancement du 

bloc opératoire, RS – JESA / Journal Européen des Systèmes Automatisés, 38(6), 657-

689. 

 

Papers in specialized journals with reading committee 

 

1. Tlahig, H., Bouchriha, H., Jebali, A., Ladet, P., Taggiasco, N. (2009). Etude de 

l’externalisation du secteur de stérilisation hospitalière : une analyse par les coûts. 

Gestions Hospitalières, 483, 1-6. 

      

Papers in international peer reviewed conference proceedings 

1. Dahmani, S., Ben-Ammar, O., Jebali, A. (2021). Resilient Project Scheduling Using 

Artificial Intelligence: A Conceptual Framework. In IFIP International Conference on 

Advances in Production Management Systems (311-320). Springer, Cham. 

 

2. Kenan, N., Jebali, A., Al-Dhaheri, N. (2020). The Integrated Quay Crane Assignment 

and Scheduling Problems under Carbon Taxation. Proceedings of the Twenty-first 

International Working Seminar on Production Economics, Innsbruck, Austria. 

 

3. Boujemaa, R., Hammami, S., Jebali, A., Bouchriha, H., Ruiz, A. (2017). A stochastic 

programming model for solving multi-period ambulance relocation problem in two-

tiered EMS system. Proceedings of the International Conference on Computers & 

Industrial Engineering (CIE47), Lisbon, Portugal.  

 

4. Boujemaa, R., Hammami, S., Jebali, A. (2013). A stochastic programming model for 

ambulance location allocation problem in the Tunisian context. Proceedings of the 

International Conference on Industrial Engineering and Systems Management 

(IESM’2013), Rabat, Morocco. 
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5. Safra, I., Bouchriha, H., Ghaffari, A., Jemai, Z., Jebali, A. (2012). Approche intégrée de 

planification de la production et de la distribution avec partage de l’information. 

Proceedings of the International IEEE Conference on Logistics Operations Management, 

Le Havre, France. 

 

6. Jebali, A. and Aniba, S. (2012). A stochastic approach for operating room planning and 

sequencing under uncertainty. Proceedings of the International Conference on 

Information Systems, Logistics and Supply Chain (ILS’2012), Québec, Canada. 

 

7. Jebali, A., Hammami, S., Boujemaa, R. (2012). A mathematical model for ambulance 

location-allocation in the Tunisian context. Proceedings of the International Conference 

on Computer Related Knowledge (ICCRK), Sousse, Tunisia. 

 

8. Jebali, A. and Aniba, S. (2011). A stochastic approach for operating room planning with 

uncertain surgical case durations. Proceedings of the International conference on 

Industrial Engineering and Systems Management (IESM’2011), Metz, France. 

 

9. Aniba, S. and Jebali, A. (2011). Approches stochastiques pour la planification des 

interventions au bloc opératoire. Proceedings of Congrès International de Génie 

Industriel (CIGI’2011), St-Sauveur, Québec, Canada. (Prix d’encouragement étudiant). 

 

10. Safra, I., Jebali, A., Jemai, Z., Bouchriha, H., Ghaffari, A. (2011). Planification 

séquentielle tactique-opérationnelle d’une chaine logistique textile. Proceedings of 

Congrès International de Génie Industriel (CIGI’2011), St-Sauveur, Québec, Canada. 

 

11. Jenzri, A., Jebali, A., Bouchriha, H. (2010). Une approche pour la conception et la mise 

en œuvre d’un réseau de partage de ressources : cas de la mutualisation des équipements 

d’imagerie par résonance magnétique. Proceedings of Conférence Francophone en 

Gestion et Ingénierie des Systèmes Hospitaliers (GISEH’2010), Clermont-Ferrand, 

France. 

 

12. Safra, I., Jebali, A., Bouchriha, H., Ghaffari, A., Jemai, Z. (2010). Planification tactique 

du problème intégré production-distribution en tenant compte des délais de transport - 

cas de la chaine logistique textile. Proceedings of Conférence Internationale de 

Modélisation et Simulation (MOSIM’2010), Hammamet, Tunisia. 

 

13. Jebali, A. and Arfaoui, J. (2010). An integrated model for the the inventory routing 

problem in textile-apparel distribution network. Proceedings of the International 

Conference on Information Systems, Logistics and supply chain (ILS’2010), Casablanca, 

Morocco. 

 

14. Hammami, S., Jebali, A., Bouchriha, H., Tlahig, H., Ladet, P. (2009). Approche pour le 

choix entre internalisation ou externalisation d’un service logistique au sein d’un 

établissement de soins : application au service de restauration. Proceedings of Congrès 

International de Génie Industriel (CIGI’2009), Bagnères de Bigorre, France. 

 

15. Jebali, A., Bouchriha, H., Hammami, S., Tlahig, H., Ladet, P. (2009). Approche pour le 

choix entre internalisation ou externalisation d’un service logistique au sein d’un 

établissement de soins : application au service de lingerie. Proceedings of the 
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international workshop: Logistique et Transport, IEEE Systems, Man & Cybernetics 

Society, Sousse, Tunisia. 

 

16. Tlahig, H., Bouchriha, H., Jebali, A., Ladet, P. (2009). Une approche heuristique pour 

l’aide au choix entre « internalisation » ou « mutualisation » du service de stérilisation. 

Proceedings of the international workshop: Logistique et Transport, IEEE Systems, Man 

& Cybernetics Society, Sousse, Tunisia. 

 

17. Tlahig, H., Bouchriha, H., Jebali, A., Ladet, P. (2008). Vers la mutualisation des services 

de stérilisation au sein d’un réseau d’établissements de santé : évaluation de deux 

stratégies d’allocation de ressources. Proceedings of Conférence Francophone en Gestion 

et Ingénierie des Systèmes Hospitaliers (GISEH’08), Lausanne, Switzerland. 

 

18. Tlahig, H., Jebali, A., Bouchriha, H., Ladet, P. (2008). Centralized Versus Distributed 

Sterilization Service: A Location-Allocation Decision Model. Proceedings of the 

International Conference on Information Systems, Logistics and supply chain 

(ILS’2008), Madison, USA. 

 

19. Bouchriha, H., Jebali, A., Benzarti, E. (2007). Towards a decision tool for home care 

planning. Proceedings of the 33rd International Conference on Operational Research 

Applied to Health Services (ORAHS’07), Saint-Etiennes, France.  

 

20. Tlahig, H., Jebali, A., Bouchriha, H., Ladet, P. (2007). A mathematical model for the 

decision “internalization/externalization” of the hospital sterilization process. 

Proceedings of the 33rd International Conference on Operational Research Applied to 

Health Services (ORAHS’07), Saint-Etiennes, France.  

 

21. Jebali, A. and Bouchriha, H. (2007). Une approche multi-objectif pour l’évaluation de 

deux stratégies de planification des interventions dans un bloc opératoire central. 

Proceedings of Congrès International de Génie Industriel (CIGI’07), Trois-Rivières, 

Québec, Canada.  

 

22. Tlahig, H., Bouchriha, H., Jebali, A., Ladet, P. (2007). Une approche d’aide au choix 

entre « internalisation » ou « externalisation » du secteur de stérilisation. Proceedings of 

Congrès International de Génie Industriel (CIGI’07), Trois-Rivières, Québec, Canada.  

 

23. Jebali, A. and Bouchriha, H. (2006). Evaluation de deux stratégies de planification des 

interventions dans un bloc opératoire central. Proceedings of Conférence Francophone en 

Gestion et Ingénierie des Systèmes Hospitaliers (GISEH’06), Tudor, Luxembourg. 

 

24. Tlahig, H., Jebali, A., Bouchriha, H. (2006). Un outil d’aide à la décision pour le choix 

centralisation/décentralisation de l’activité de stérilisation au sein d’un établissement 

hospitalier. Proceedings of 6ème Conférence Internationale de Modélisation et Simulation 

(MOSIM’06), Rabat, Morocco.  

 

25. Jebali, A., Ladet, P., Hadj Alouane, A. (2005). Vers un outil d’aide à la planification et à 

l’ordonnancement des ressources dans les services de soins. Proceedings of 

MHOSI’2005 (Méthodologies et Heuristiques pour l’Optimisation des Systèmes 

Industriels), Hammamet, Tunisia. 

 



 

32 

26. Jebali, A., Ladet, P., Hadj Alouane, A. (2004). Planification des interventions : une 

approche par processus. Proceedings of 2ème Conférence Francophone en Gestion et 

Ingénierie des Systèmes Hospitaliers (GISEH’04), Mons, Belgium. 

 

27. Hammami, S., Hadj Alouane, A., Jebali, A., Ladet, P. (2003). Approche multi-objectif 

pour l’introduction de l’urgence dans le programme opératoire. Proceedings of 5ème 

Congrès International de Génie Industriel (GI’2003), Québec, Canada. 

 

28. Jebali, A., Ladet, P., Hadj Alouane, A. (2003). Une approche heuristique pour la 

construction du programme opératoire. Proceedings of 5ème Congrès International de 

Génie Industriel (GI’2003), Québec, Canada. 

 

29. Jebali, A., Hadj Alouane, A., Ladet, P. (2003). Operating rooms scheduling. Proceedings 

of the International Conference on Industrial Engineering and Production Management 

(IEPM’03), Porto, Portugal.  

 

30. Jebali, A., Hadj Alouane, A., Ladet, P. (2003) Performance comparison of two strategies 

for operating room scheduling. Proceedings of International Symposium on 

Computational Intelligence and Intelligent Informatics (ISCIII’03), Nabeul, Tunisia. 

 

31. Jebali, A., Ladet, P., Hadj Alouane, A. (2003). Une méthode pour la planification des 

admissions dans les systèmes hospitaliers. Proceedings of 4ème Conférence Internationale 
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7 Teaching activities and project supervision 

 

7.1  Teaching activities 

 

I started teaching in 2001. Overall, I ensured a teaching volume of around 3080 hours. 85% 

of my teaching activities (corresponding to 2630 teaching hours) have been conducted after 

my appointment as assistant professor in 2005. I gave courses in several institutions: ENIT, 

PSU, UoS, ESIEE Paris and SKEMA Business School. Most of the courses I taught are 
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related to operations management, supply chain management, and operations research. All 

courses I gave at ENIT and ESIEE Paris are in French while those I gave at PSU and UoS are 

in English. The courses I am giving in SKEMA Business School are in both languages. A 

summary of my teaching activities is given in table 2.  

 
Table 2. Summary of my teaching activities 

 

Institution 

 

 

Course 

 

Program 
Hourly 

volume  
Period Total  

ENIT 

Recherche 

opérationnelle 

2nd year (Industrial 

engineering and Civil 

engineering) 

45h 
2005-

2010 

825h 

Simulation des 

systèmes 

industriels 

3rd year (Industrial 

engineerin) & Mastère 

Gestion des Systèmes 

Industriels 

30h 
2005-

2010 

Analyse des 

systèmes de 

production  

2nd year (Industrial 

engineering) 
45h 

2005-

2010 

PSU 

Production & 

Operations 

Management 

3rd year (Bachelor in 

Business Administration 

& Bachelor in Computer 

Science and Information 

Systems) 

45h 
2011-

2013 

675h 

Management 

Information 

Systems 

3rd year (Bachelor in 

Business Administration 

& Bachelor in Computer 

Science and Information 

Systems) 

45h 
2011-

2012 

Introduction to 

Business 

1st year (Bachelor in 

Business Administration 

& Bachelor in Computer 

Science and Information 

Systems) 

45h 
2012-

2013 

UoS 

Operations 

Research I 

3rd year (Bachelor in 

Industrial Engineering 

and Engineering 

Management) 

45h 
2016-

2018 

540h 

Operations 

Research II 

4th year (Bachelor in 

Industrial Engineering 

and Engineering 

Management) 

45h 
2016-

2017 

Operations 

Management 

Master of science in 

Engineering 

Management 

45h 
2016-

2017 

Supply Chain 

Management 

4th year (Bachelor in 

Industrial Engineering 

and Engineering 

Management) & Master 

of science in 

45h 
2016-

2018 
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Engineering 

Management 

ESIEE 

Supply Chain 

Management 

5th year (Filière Génie 

Industriel-classique & 

apprentissage) 

28h 
2018-

2019 

160h 

Gestion de projet 

3rd year (Filière Génie 

Industriel - 

apprentissage) 

26h 
2018-

2019 

Ordonnancement 

de la production 

4th year (Filière Génie 

Industriel - classique) 
12h 

2018-

2019 

Planification de 

la production 

4th year (Filière Génie 

Industriel -classique & 

apprentissage) 

18h 
2018-

2019 

Introduction à la 

programmation 

linéaire 

3rd year (Filière Génie 

Industriel - 

apprentissage) 

10h 
2018-

2019 

Prévision de la 

demande 

5th year (Filière Génie 

Industriel - 

apprentissage) 

12h 
2018-

2019 

SKEMA 

Business 

School 

Supply Chain 

Management 

MS MCLA (Manager de 

la Chaine Logistique et 

Achat) 

24h 
2020-

2022 

430h 

Méthodologie de 

recherche 

 

MS MCLA 24h 
2019-

2022 

Operations 

Management 

M1 PGE (Programme 

Grande Ecole) 
18h 

2020-

2021 

Achat MS MCLA 24h 
2020-

2021 

 

Figure 1 portrays the distribution of my teaching hours between the above-mentioned 

courses. It is worth noting here that in figure 1 “Production planning & scheduling” includes 

the following courses: “Analyse des systèmes de production”, “Planification de la 

production”, “Ordonnancement de la production” and “Prévision de la demande” while 

“Operations research” includes “Recherche opérationnelle”, “Operations research I and II”, 

“Introduction à la programmation linéaire” and “Simulation”. Similarly, “Operations 

management” in figure 1 includes both “Production and operations management” and 

“Operations management” while “Supply chain management” includes “Achat”. 
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Figure 1 . Distribution of teaching hours 

 

As it can be noticed, 82% of my teaching pertains to Production planning & scheduling, 

Operations research, Operations management and Supply chain management. The topics 

covered in these courses are provided in table 3. 

 
Table 3. Main topics covered in the delivered courses 

Production planning 

& scheduling 

Introduction to production planning system – Aggregate planning – 

Master scheduling - Rough-cut capacity planning – Material 

requirements planning - Capacity requirement planning – Time 

series and forecasting – Project scheduling – Single machine 

models – Parallel machine models – Flow shops – Job shops 

Operations research Mathematical modelling – Linear Programming – Graph Theory – 

Dynamic Programming – Markov chains – Queuing theory - 

Simulation 

Operations 

management 

Introduction to operations management – Operations strategy – 

Capacity planning - Production planning - Time series and 

forecasting – Product and service design - Process selection and 

facility layout – Facility location – Inventory management and 

control - Quality management and control – Process analysis and 

improvement – Service Management 

Supply chain 

management 

Supply chain strategy – Drivers of supply chain performance – 

Distribution network design - Supply chain network design – Sales 

& Operations Planning - Supply chain coordination – Sourcing – 

Purchasing – Sustainable procurement - Transportation 

 

At this level, it is important to note the consistency between my teaching and research topics. 

This consistency brings an added value to both activities. First, it permits to enrich the 

contents of my courses through examples and cases translating my research findings. Second, 

it forces me to be all the time up to date on the topical problems and applications related to 

my research areas. 
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7.2  Project supervision  

 

In addition to teaching, I regularly supervise student projects and internships. Table 4 gives a 

summary of my supervision activities. 

 
Table 4. Summary of supervision activities 

Institution Type of supervision  Number 

SKEMA 

Business 

School 

MS & MSc Theses 
31 theses (MS MCLA & MSc Supply 

Chain Management and Purchasing) 

ESIEE Paris Internship 
9 (4 5th year students, 2 4th year students 

and 3 3rd year students) 

UoS Senior design project I and II 4 projects 

ENIT 

Final year projects 34 projects 

Second year projects 18 projects 

Bibliographical research projects 6 projects 

 
The vast majority of the final year and senior design projects that I supervised were related to 

production planning and scheduling, supply chain design and management, continuous 

improvement, cost modelling and information system design. These projects have been 

always driven by companies' need to improve their performance. Project supervision allowed 

me to explore the specificities of different industries such as automotive, healthcare, apparel, 

furniture, etc. Noticeably, some of these projects sparked the interest and motivated some of 

the addressed topics in my research. 

 

Since 2020, I have supervised at Skema Business School more than 31 MS and MSc theses. 

In the latter, the students should define a relevant research question and follow a scientific 

approach to answer it. Therefore, through their thesis, the students are initiated to research. 

Most of the theses that I supervised are related to the following topics and concepts: supply 

chain management, procurement, logistics, resiliency, digitalization, sustainability, project 

management and artificial intelligence. 

 

8 Other activities 

 

8.1 Membership of conference & seminar committees 

 

• Member of the scientific committee of the 10ème Congrès International de Génie 

Industriel, EIGSI, June 2013, La Rochelle, France.  

• Participation in the organization of the special track on « Healthcare Information 

Systems and Decision Making », IFAC International Conference of Modeling and 

Simulation (MOSIM), May 2010, Hammamet, Tunisia.  

• Member of the organization committee of the project CMCU 05/S1105 seminar 

“Healthcare system engineering”, December 2007, ENIT, Tunisia. 

• Organization of the invited session « Health Care Delivery Engineering in Magreb », 

The 33rd International Conference on Operational Research Applied to Health 

Services, July 2007, Saint-Etienne, France. 

• Member of the organization committee of the project CMCU 05/S1105 seminar “Cost 

and quality optimization in healthcare systems: reengineering and novel modes of 

management”, December 2006, Cepex, Tunis, Tunisia. 
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• Member of the organization committee of the seminar “Company change and industrial 

engineering”, Mai 2005, ENIT, Tunisia. 

• Member of the organization committee of GISEH 2003 (1ère conférence francophone en 

Gestion et Ingénierie des SystèmEs Hospitaliers), January 2003, Lyon, France.  

• Member of the scientific committee of MAJECSTIC 2003 (Manifestation des jeunes 

chercheurs STIC), Marseille, France. 

 

8.2 Service as reviewer 

 

I regularly review papers submitted for eventual publication in the following journals:  

• International Journal of Production Economics (Elsevier) 

• Omega (Elsevier) 

• Applied Mathematical Modelling (Elsevier) 

• Socio-Economic Planning Sciences (Elsevier) 

• Journal of Manufacturing Systems (Elsevier) 

• Computers and Industrial Engineering (Elsevier) 

• Operations Research for Health Care (Elsevier) 

• Annals of Operations Research (Springer) 

• European Journal of Industrial Engineering (Inderscience) 

• Transportation Research Part E: Logistics and Transportation Review (Elsevier) 

• International Journal of Operational research (Inderscience) 

• Journal of Logistics Systems and Management (Inderscience) 

• Journal of Decision Systems (Taylor & Francis) 

• International Journal of Production Research (Taylor & Francis) 

 

I also review papers submitted to the following conferences: MIM, CoDIT, CIGI, MOSIM 

and APMS.   

 

 

 
 
 
 
 
 
 
 
 
 
 

http://www.sciencedirect.com.uoseresources.remotexs.xyz/science/journal/13665545
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Overview on My Research Activities 
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In what follows, I present my research works that have been devoted, on the one hand, to the 

design and management of healthcare systems, and on the other hand, to the study of some 

decision problems related to supply chain planning and to airline and maritime logistics. I 

describe the progress of my research on each of the tackled topics over time, as well as the 

context in which they have been conducted (Master thesis, PhD thesis, collaboration with 

colleagues, involved companies, etc.). 

 

Design and management of healthcare systems  
 

• Master of science and PhD  

 

- Resource planning and scheduling in healthcare services    

 

My research activities officially started when I joined Grenoble Institute of Technology to 

pursue a Master followed by a PhD in Industrial Engineering. My interest in these research 

works was focused on studying healthcare systems and finding out how to improve their 

performance by developing appropriate and novel optimization models for efficient and 

effective decision making. This interest is spurred by the challenges of healthcare systems to 

satisfy increasing demand because of aging population and the alarming spread of some 

chronic diseases and health conditions such as diabetes and overweight while striving to 

streamline the use of scarce resources and reduce costs.  

 

More specifically, in my PhD Thesis, I investigated resource planning and scheduling 

problem. A novel approach based on patient clinical path was proposed. This approach 

intends to take into account all scarce resources needed by the patient during his stay in the 

hospital. All developed models and solution approaches pertain to clinical paths that include a 

surgery activity. Resource planning and scheduling aims at maximizing resource utilization, 

patient satisfaction and safety. One of the major challenges of this research remains in 

handling uncertainties related to the hospital environment, mainly those stemming from 

service duration and the arrival of emergency cases. These uncertainties are at the origin of 

hospital inefficiencies regarding resource utilization. For example, when emergency cases are 

not properly taken into account, elective cases could be cancelled, and this leads to elongate 

patient’s length of stay. For that, a hierarchical planning approach comprising four decision-

making levels was proposed. The first level tackled elective patient admission planning based 

on a forecast of patient clinical path. A rolling horizon approach is adopted in order to take 

into account diverse disruptions that can affect the initial planning. Therefore, patient 

admission date provided to the patient at this level is tentative and should be confirmed 

further through weekly operating room planning. Thus, the objective of operating room 

planning, which is the second decision level of this hierarchical planning approach, is to 

confirm the hospitalization date initially given to the patient, minimize operating room cost 

and patient length of stay. The third decision level consists in building a daily operating 

schedule and the objective of this decision level is twofold: (1) update the weekly operating 

room plan; (2) define a detailed schedule of the operating rooms considering the scarce 

resources used in the surgery process (Jebali et al., 2004; Jebali et al., 2006). The fourth 

decision level comprises an approach for real-time operating room rescheduling. This 

approach is developed to support decision making tied to the admission of emergency cases 

and their introduction in the operating room schedule. The proposed approach was inspired 

from real life hospital cases in France and Tunisia.  
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• Research conducted after my PhD 

 

- Operating room planning and scheduling under uncertainty 

 

The operating room planning and scheduling problem is very challenging topic. Subsequent 

to my PhD, I extended my results on OR planning along three foremost dimensions: 

 

- By assessing and comparing the performances of a decentralized versus centralized 

operating room planning management strategies. The decentralized management strategy 

arises when each surgery specialty is assigned a specific number of operating rooms. The 

weekly operating room planning is performed by each surgery specialty independently of 

the other ones. Contrarily, the centralized management strategy opts for the sharing of 

operating rooms among the different surgery specialties. Henceforth, the weekly 

operating room planning considers all surgery specialties and includes the assignment of 

operating rooms to these specialties over each weekday. The developed models were 

applied to an operating room suite of a Tunisian hospital and permit to highlight the 

advantages of a centralized management.  

 

This research has been initiated within the framework of the Master of Science of Houda 

Aloui that I co-supervised with Hanen Bouchriha. Thereafter, this research has been 

refined and deepened and the obtained results have been published in a joint paper with 

Hanen Bouchriha (Jebali and Bouchriha, 2007). 

  

- By investigating operating room planning and scheduling while explicitly taking into 

account the uncertainty related to surgery durations and the arrival of emergency cases. 

First, a stochastic mixed integer programming model (M1) is proposed for operating 

room planning (Jebali and Aniba, 2011). The proposed model determines the elective 

cases to perform over each weekday while accounting for operating room capacity and 

the uncertainty in surgery durations. The objective is to minimize patient-related cost and 

operating room utilization cost. The latter pertains to operating room underutilization and 

overutilization cost. The stochastic model is then approximated by a deterministic mixed 

integer linear program (MIP) using a sampling-based approach. Operating room plans 

generated by the stochastic vs. the deterministic approach are evaluated and compared 

using simulation.  The obtained results pointed out the interest for developing stochastic 

approaches for operating room planning. This first work has been then extended to 

address operating room scheduling while accounting for the uncertainty related to surgery 

durations and the arrival of emergency cases. In order to construct the operating room 

schedule and evaluate its performance, a stochastic three-step approach is proposed. The 

first step consists in: (1) devising a stochastic mixed integer program for operating room 

planning that accounts for emergency cases and the uncertainty in surgery durations 

(M2), (2) developing a sampling-based approach to solve the obtained model (Aniba and 

Jebali, 2011). Clearly, the model (M2) presented in this first step can be seen as an 

extension of (M1) by including the uncertainty related to the arrival of emergency cases.   

The second step consists in selecting off-line and on-line sequencing rules. The off-line 

rules determine the sequence of elective surgeries to perform daily in each operating 

room. The third step aims at evaluating operating room performance. The operating room 

schedule obtained in step 2 is evaluated using simulation model. At this level, it is worth 

noting that the decisions related to the addition of emergency cases are taken based on the 

on-line sequencing rules selected in step2 (Jebali and Aniba, 2012). 
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This work has been accomplished through the supervision of the Master of Science of 

Sana Aniba.  

 

- By studying operating room planning with consideration of patients’ clinical paths within 

the hospital. The capacity constraints of all scarce resources required for patient 

treatment, including surgery, are accounted for. Uncertainties stemming from the 

operating room environment and other scarce hospital resources involved in patient 

treatment are also taken into account. In light of this, first, a two-stage stochastic 

programming model is proposed for operating room planning in cardiothoracic and 

vascular surgery departments while taking into account the capacity constraints of three 

hospital resources: operating rooms, beds in the Intensive Care Unit (ICU), and beds in 

the ward (or Medium Care Unit, MCU). Elective surgeries to perform over each weekday 

of the planning horizon are determined while considering uncertainties related to surgery 

durations as well as patient Length Of Stay (LOS) in the ICU and the ward. Sample 

Average Approximation (SAA) is then used to solve the planning problem, aiming at 

minimizing the sum of patient-related costs and expected resource utilization 

costs. Computational experiments are conducted to evaluate the performance of the 

proposed solution method. The obtained results highlight the robustness of operating 

room plans obtained by a stochastic approach, in comparison to those generated by a 

deterministic approach, and the importance of considering both ICU and ward beds in 

operating room planning (Jebali and Diabat, 2015). The robustness of the operating room 

plan has been gauged through the risk of cancellation of patient admission and/or surgery 

entailed by resource unavailability. This work has been then extended in order to account 

for the arrival of emergency cases. In addition, the operating room plan is built here while 

enforcing the risk of cancellation of patient admission and/or surgery to be less than a 

pre-specified threshold. For that, a two-stage chance-constrained stochastic programming 

model and a featured SAA algorithm are proposed. A comparison of different modelling 

and solution approaches of operating room planning under uncertainty highlights the 

advantages vs. disadvantages of each of them (Jebali and Diabat, 2015). 

 

This work is the fruit of a collaboration with Ali Diabat.  

 

- Analysis and design of hospital logistics activities 

 

Furthermore, I expanded my interests in healthcare systems engineering and management to 

include the design of hospital logistics activities. First, we addressed the problem of the 

centralization vs. decentralization of the sterilization activity within hospital’s premises. This 

reflects the case of a Tunisian hospital where many surgical services were located in different 

wings, with each surgical service having its own sterilization department. A two-stepped 

iterative approach solution was proposed (Tlahig et al., 2009). The first step consisted of 

finding the best configuration between the centralization and decentralization of the various 

sterilization service departments; in the second step, the optimal size of the configuration 

proposed in the first step is sought. Thereafter, we extended this first work by investigating 

the choice between outsourcing or keeping in-house the hospital sterilization process. As far 

as outsourcing is concerned, two types of third-party providers have been considered: (1) an 

industrial company and (2) a hospital located in the same region. Afterward, we tackled the 

problem of sterilization service configuration within a hospital network. Two options are 

considered: (1) each hospital in the network maintains its sterilization service in-house; (2) a 

central sterilization service ensures this function for all hospitals in the network. A Mixed 

Integer Program (MIP) is proposed for this location-allocation problem (Tlahig et al., 2013). 



 

42 

The model flags the optimal configuration of the sterilization service (centralized vs. 

distributed), and determines the optimal location and the optimal capacity of the centralized 

sterilization service over a multi-period planning horizon. The objective is to minimize costs 

related to transportation, operation and resource acquisition and transfer.  

 

This research has been done within the framework of the Master of Science and the PhD of 

Houda Tlahig that I co-supervised with Hanen Bouchriha and Pierre Ladet (from Gipsa-Lab, 

Grenoble INP). It is worth noting that this research has been supported financially by the joint 

french-tunisian research project CMCU 05/S1105.  

 

Furthermore, on the one hand, these works have been extended to investigate the outsource 

vs. insource decision for other hospital logistics activities such as food, laundry and 

housekeeping within the framework of a collaboration project with the Tunisian Ministry of 

Health. On the other hand, resource pooling of costly and scarce hospital resources has been 

addressed in the Master of Science of Ahlem Jenzri that I co-supervised with Hanen 

Bouchriha. The focus has been placed in this study on the Magnetic Resonance Imaging 

(MRI) machines that can be shared by different hospitals in order to achieve higher utilization 

of the equipment and reduce patient waiting time for diagnosis (Jenzri et al., 2010).    

 

- Design and management of Emergency medical Service (EMS) system 
 

Obviously, the objective of any EMS system is to satisfy demand requests by providing fast 

and timely first care medical assistance to the patients at incident scene. In this research, the 

focus is placed on the case of two-tiered EMS systems where two types of ambulances are 

considered: (1) Basic Life Support (BLS) ambulances equipped with basic equipment and, 

(2) Advanced Life Support (ALS) ambulances capable to perform life-saving procedures in 

addition to all procedures that BLS ambulance can perform. Clearly, ALS ambulance can 

serve a call requesting a BLS care level. First, a two-stage stochastic programming model is 

devised in order to design a two-tiered EMS system while accounting for demand 

uncertainty. The model determines the location of ambulance stations, the number and the 

type of ambulances to be deployed, and the demand areas served by each station. This design 

problem is then solved using Sampling Average Approximation (SAA) algorithm. 

Computational experiments highlight the performance of the proposed solution approach and 

its applicability in practice (Boujemaa et al., 2018). Second, we investigated ambulance 

relocation problem that aims at improving the performance of the EMS system through a 

repositioning of ambulances based on demand fluctuations over the course of the day. Hence 

a multi-period two-stage stochastic programming model is proposed for ambulance relocation 

under demand uncertainty. A sampling approach is first used to approximate the stochastic 

model by a deterministic one. Given the complexity of the obtained model, off-the-shelf 

solver (more precisely, CPLEX) fails to solve it. In order to overcome this issue, two 

heuristics are proposed: a Temporal Decomposition Heuristic, and a Lagrangian Relaxation 

based Heuristic (Boujemaa et al., 2020). 

 

This research has been done within the framework of the Master of Science and the PhD of 

Rania Boujemaa that I co-supervised with Sondes Hammami and Hanen Bouchriha. Rania 

defended her PhD in September 2018. Rania’s PhD also involves a collaboration with Angel 

Ruiz (from CIRRELT, Laval University, Canada).  

 

Moreover, in collaboration with Sondes Hammami, we investigate the design of a two-tiered 

EMS system while considering advanced information on ambulance trip and accounting for 
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ambulance busy fractions. The proposed approach is compared to the traditional approach 

that does not consider advanced information on ambulance trip. Results stemming from a 

real-life case study pointed out the usefulness and superiority of the proposed approach. For 

the considered case, a cost saving of 3% is achieved, in addition to the reduction in 

ambulance round-trip time (Hammami et Jebali, 2021). 

 

Figure 2 summarizes the different research works pertaining to the design and management 

of healthcare systems conducted after the completion of my PhD. In particular, figure 2 

provides for each research work its timeframe and the master and PhD theses it has involved.  

 

 

Figure 2. Summary of research works on the design and management of healthcare systems 

 

Logistics and Supply chain management 
 

Production-distribution planning in textile and apparel supply chain  

 

Additionally, we have been interested in studying the textile and apparel supply chain. This 

interest is driven by the challenges of the Tunisian manufacturers to effectively satisfy their 

customers and compete on a global scale. In order to survive the fierce global competition, 

textile and apparel companies should be capable to ensure shorter lead times, responsiveness, 

adaptability and cost savings. In this perspective, an integrated production-distribution 

planning approach is proposed while taking into account the features of textile and apparel 

industry. Tactical and operational decision levels are considered to model the multi-product 

and multi-period planning problem. At the tactical level, decisions related to production and 

distribution over a six-month planning horizon are made while considering subcontracting 

options and reserve production capacity. The operational planning involves available full 

production capacity in addition to overtime and subcontracting. First, we assessed and 

demonstrate the importance of considering a monthly variable reserve production capacity at 

the tactical level. Then, we examined the interest of sharing information on current sales 

between manufacturer and retailer to adjust short-term production capacity requirements. 

Using real-life data from a textile and apparel Tunisian firm, we found out that a cost saving 
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of 18% can be achieved through adequate sizing of the reserve production capacity to 

consider at the tactical level, and manufacturer-retailer coordination based on information 

sharing on current sales.  

 

This research has been done within the framework of the PhD of Imen Safra that I co-

supervised with Hanen Bouchriha, Zied Jemai and Asma Ghaffari (from Laboratoire de 

Génie Industriel, CentraleSupelec, France). 

 

Airline operations planning  

 

Airline companies strive to optimize their operations in order to survive the soaring 

competition. Moreover, it has been noticed that company’s performance can be improved 

significantly if operations planning decisions, namely flight scheduling, aircraft assignment, 

aircraft routing and crew scheduling are integrated. Obviously, the integration of even some 

of these four airline planning processes remains very challenging in terms of computational 

complexity. In this work, we first investigated the integrated flight scheduling and aircraft 

assignment problem under demand and fare uncertainty (Kenan et al., 2018a). A two-stage 

stochastic programming model was devised: in the first-stage, a fleet family is assigned to 

each scheduled flight leg, while at the second-stage, a fleet type is assigned to each flight leg 

based on demand and fare realization. SAA algorithm is then used to solve the problem and 

provide information on the quality of the solution. Then, we addressed the integrated flight 

scheduling, aircraft assignment and aircraft routing under demand uncertainty. This study 

was also intended to minimize propagated delays in aircraft schedule. A column generation 

based solution approach has been then proposed to solve the problem within a reasonable 

computational time (Kenan et al., 2018b). This work has been extended to include 

codesharing. Hence the decision of continuing or dropping a codeshare agreement is taken 

while addressing the integrated flight scheduling, aircraft assignment and aircraft routing. 

Demand uncertainty and delays are also considered. A column generation based solution 

approach inspired from the one proposed in (kenan et al., 2018b) allows for solving this 

problem within a reasonable computing time (Kenan et al., 2018c). 

 

This research has been done within the framework of the PhD of Nabil Kenan that I co-

supervised with Ali Diabat (at Masdar Institute of Science and Technology, United Arab 

Emirates).  

 

Maritime logistics  

 

Globalization of the supply chain entails a significant increase in the exchange of goods 

amongst countries. This explains the continuous growth in worldwide container terminals and 

the increasing interest for problems pertaining to port operations in research and practice over 

the last two decades. In particular, we addressed the quay crane scheduling problem (QCSP). 

The latter consists in scheduling the discharge and load operations of the containers of a 

vessel by a set of quay cranes; the objective is to minimize the completion time in an attempt 

to increase container terminal throughput. We tried to extend the literature along three 

dimensions: 

 

- We devised a novel MIP formulation of the QCSP that takes into account vessel stability 

constraints. Indeed, despite the importance given by practitioners to vessel stability in 

scheduling unload and load operations, there is little research that considers this 

constraint. In addition, the proposed model incorporates many other realistic features of 
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the QCSP such as crane traveling time, task preemption, non-crossing and safety margin 

restrictions. A Genetic Algorithm (GA) is developed to heuristically solve the considered 

QCSP (Al-Dhaheri et al., 2016a). 

 

- We developed a stochastic mixed integer programming model to construct quay crane 

(QC) schedules while accounting for the dynamics and the uncertainty inherent to 

container handling process. It is worth noting that this model extends the first one by: (1) 

including, in addition to seaside operations, container transfer operations, taking place 

between the quay and the stacking yard; (2) taking into account the uncertainty related to 

port operations such as container handling time. The problem is solved using a simulation 

based Genetic Algorithm (GA) solution approach (Al-Dhaheri et al., 2016b).  
 

- We addressed the Quay Crane Assignment and Scheduling Problem (QCASP) while 

considering carbon mitigation policies, namely the carbon tax and carbon cap-and-trade. 

Two MIPs are proposed and used to study the impact of these two policies on costs and 

carbon emissions in ports (Kenan et al., 2022). 

 

The two first works have been done within the framework of the PhD of Noura Al-Dhaheri 

that I co-supervised with Ali Diabat (at Masdar Institute of Science and Technology, United 

Arab Emirates) and was supported by grant number EX2014-000003 provided by Abu Dhabi 

Ports, Abu Dhabi, UAE. The third one was carried out in collaboration with Ali Diabat and 

Nabil Kenan. 

 

Similarly to figure 2, figure 3 summarizes the different research works pertaining to logistics 

and supply chain management conducted after the completion of my PhD.  
 

 

Figure 3. Summary of research works on logistics and supply chain management 

 

As noted above, the chapters of this report do not cover all the addressed research topics.  

The focus is placed on the recent works which, in my opinion, led to bring a good 

contribution to the literature.  
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Chapter II.1 

 

Operating room planning and scheduling under uncertainty 
 

The chapter is based on (Jebali and Diabat, 2015) and (Jebali and Diabat, 2017) 

 

1 Introduction  

 

Operating rooms generally incur more than 8% of the hospital’s cost (Bai and Zare, 2020) 

and, as such, they are the most costly of hospital facilities. At the same time, they generate a 

very high revenue for hospitals (Min and Yih, 2010) and hence play a significant role in 

attaining hospital profit objectives. Optimal use of operating rooms, aiming at containing the 

cost of surgical service delivery while preserving good quality of care and service, shortening 

surgical patient waiting times, and increasing patient admission rate, remain one of the major 

challenges for health care institutions. 

 

Interestingly, operating rooms can be seen as the engine of hospital activity because the use 

of other scarce hospital resources is also paced by operating room activity. Optimizing 

operating room activity while considering a hospital’s other scarce resources, such as beds in 

the intensive care unit (ICU) or beds in the suite of regular wards, leads to a better utilization 

of hospital resources, prevents system congestion (Hsu et al., 2003) and reduces the risk of 

surgery cancellation due to the unavailability of such resources (Chang et al., 2014). More 

specifically, this risk is entailed foremost by the different sources of uncertainties inherent to 

healthcare processes involving a surgery. Evidently, the degree of uncertainty varies among 

these processes: some processes are indeed more predictable than others. But in all cases, 

uncertainty often pertains to surgery duration, emergency arrival and the demand for other 

scarce hospital resources such as the ICU and the beds in the suite of regular wards.  

 

The operating room planning and scheduling problem has become popular in healthcare 

literature over the last two decades as highlighted in the broad literature reviews provided in 

(Guerriero and Guido, 2011; Cardoen et al., 2010; Zhu et al., 2019; Wang et al., 2021). 

Operating room planning consists of specifying the set of elective patients that would be 

operated on each day-period over a finite planning horizon that can range from one day to 

one month (Denton et al., 2010; Rizk & Arnaout, 2012; Wang et al., 2014). Nevertheless, it is 

very common to consider a planning horizon of one week (Molina-Pariente et al., 2015a). 

This problem is often referred to as surgery case assignment problem (Burni et al., 2014; 

Denton et al., 2010; Fei et al., 2010; Guinet and Chaabane, 2003; Jebali and Bouchriha, 2007; 

Lamiri et al., 2009; Lamiri e al., 2008a; Lamiri et al., 2008b; Min and Yih, 2010; Rizk and 

Arnaout, 2012; Shylo et al., 2012; Wang et al., 2014). It is worth noting at this level that the 

assignment of a patient to an operating room and day also serves to define patients’ 

admission dates. The set and the sequence of elective surgeries to be performed in each 

operating room is generally determined on a daily basis in order to account for updated and 

more detailed data on the list of eligible patients and the availability of scarce resources 

(Batun et al., 2011; Denton, 2007; Jebali et al., 2006; Mancilla and Storer, 2009; Pulido et al., 

2014; Saadouli et al., 2015). This problem is referred to as the daily surgery scheduling 

problem. Clearly, the above-mentioned operational decisions depend on each other. That is 

why some authors opt to tackle them jointly while developing multi-step approaches (Addis 



 

48 

et al., 2016; Aringhieri et al., 2015; Fei et al., 2010; Jebali et al., 2006; Molina-Pariente et al., 

2015b; Testi et al., 2007). 

 

In this research, we study operating room planning with elective and emergency surgery 

cases under uncertainty. Daily surgery scheduling and its integration with operating room 

planning constitutes one of the prominent perspectives of this research as will be detailed 

later. Note that hereafter surgery case assignment problem and operating room planning 

problem will be used interchangeably. 
 

In the following, we present the works that tackle the operating room planning problem under 

uncertainty published before 2017. The vast majority of these works focuses on the operating 

room only and do not consider other scarce hospital’s resources intervening in patient’s 

clinical path. Two main sources of uncertainty have been considered while tackling operating 

room planning: (1) the uncertainty related to surgery duration and (2) the uncertainty related 

to the arrival of emergency cases.  

 

Works that consider the uncertainty related to surgery duration 

 

To hedge the uncertainty of surgery durations, Hans et al. (2008) assign capacity slacks to 

operating room days. Different heuristics are proposed in order to maximize operating room 

utilization and minimize the risk of overtime. Addis et al. (2014) use robust optimization to 

build a surgery plan that remains feasible for some variation of surgery durations. Denton et 

al. (2010) compare two models proposed for daily assignment of surgery cases to operating 

rooms: (1) a two-stage stochastic programming model that can be used when the distribution 

of surgery durations is known and (2) a robust optimization model that can be used when 

only a lower and an upper bound on each surgery duration are available. The objective is to 

minimize the fixed cost of opening operating rooms and the variable cost of overtime while 

accounting for the uncertainty of surgery durations. The authors highlight the superiority of 

the robust optimization model in terms of computing time. This work has been extended by 

Deng et al. (2016) to include surgery sequencing and the case of ambiguous surgery 

durations. Jebali and Aniba (2011) develop a two-stage stochastic programming model for 

weekly operating room planning with random surgery durations. The stochastic model is 

approximated and solved using a sampling-based approach. Shylo et al. (2012) formulate a 

chance-constrained stochastic programming model for the assignment of surgery cases to 

operating rooms. The objective is to maximize the utilization of operating rooms while 

restricting the probability of an overtime exceeding a given threshold to be less than a pre-

specified scalar (ranging between 0 and 1). The model is solved heuristically using an 

algorithm based on a normal approximation of the sum of surgery durations. Henceforth, the 

proposed approach is suitable for high-volume surgery specialties.  

 

Works that consider the uncertainty related to the arrival of emergency cases 

 

Obviously, in this stream of research, we consider that operating rooms are shared between 

elective and emergency cases. Gerchak et al. (1996) develop a stochastic dynamic 

programming model to determine, at the beginning of each day, how many additional elective 

surgeries to assign to that operating room day while accounting for emergency cases. In 

Lamiri et al. (2008a) and Lamiri et al. (2009), and Lamiri et al. (2008b), the authors assume 

that the surgery durations of elective cases are deterministic while a random slack of 

operating room capacity is reserved for emergency cases. In Lamiri et al. (2008a), the authors 

use SAA method to solve the stochastic operating room planning model. In order to 
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overcome the computational burden of the stochastic model, in Lamiri et al. (2009), the 

authors solve it using several heuristics and meta-heuristics, namely simulated annealing and 

tabu search. The obtained results show that SAA outperforms the proposed heuristics and 

metaheuristics. In these two papers (Lamiri et al., 2008a; Lamiri et al., 2009), the proposed 

models consider the total operating room capacity and do not specify the assignment of a 

surgery to a room. A column generation based approach is devised in (Lamiri et al., 2008b) to 

solve the problem while incorporating the assignment of surgery cases to specific operating 

rooms. The results demonstrate that near-optimal solutions for problem instances of practical 

size can be found in a short amount of time.  
 

Works that consider the uncertainty related to both, surgery durations and the arrival of 

emergency cases 
 

Aniba and Jebali (2011) expand their previous work presented in Jebali and Aniba (2011) by 

considering emergency cases in weekly operating room planning. Burni et al. (2014) propose 

a general stochastic programming modelling framework to deal with the weekly operating 

room planning. The latter encompasses three recourse strategies representative of common 

practices used in hospitals to handle the uncertainty in surgery durations and emergency 

arrivals. Based on problem structure, tailored heuristics are developed and allow for solving 

realistic-sized problem instances within a reasonable computational time. Wang et al. (2014) 

devise a chance-constrained stochastic programming model for the daily operating room 

planning. The proposed model determines the operating rooms to open and the surgeries to 

perform in each operating room. The objective is to minimize the fixed cost of opening 

operating rooms and the expected overtime cost. In addition, the model incorporates chance 

constraints in order to enforce an upper bound on the risk of surgery cancellation entailed by 

exceeding overtime capacity. The SAA method is then used to transform the stochastic model 

into a deterministic one. The obtained integer program is solved using a column generation 

based heuristic. The results highlight that accepting higher surgery cancellation risk helps in 

reducing operating room costs.  

 

Works that consider the scarce resources intervening in the patient’s clinical path including 

a surgery  

 

Min and Yih (2010) develop a two-stage stochastic programming model for weekly operating 

room planning that accounts for ICU capacity. The model considers the randomness related 

to elective surgery durations and patients’ Lengh Of Stay (LOS) in the ICU. Additionally, a 

random slack of operating room capacity is reserved for emergency cases. The objective is to 

minimize the patients’ related costs and overtime costs. The proposed model is efficiently 

solved using SAA algorithm. In (Adan et al., 2008), the authors formulate a MIP to construct 

a master surgical schedule for a Cardiothoracic Center. The schedule specifies the mix of 

patients (from different groups) that can be admitted over each day of a four-week planning 

horizon. The proposed MIP takes into account the capacity of several resources: the operating 

rooms, the beds in the intensive and medium care units (MCU), and nursing hours in the ICU. 

This MIP has been extended in (Adan et al., 2011) to account for both elective and 

emergency patients. In order to deal with the real elective patient flow, operating slots are 

introduced in the master surgical schedule (also referred to as tactical plan) while considering 

a higher than average number of patients. These slots are then filled in the operational weekly 

schedule based on patient group flexibility. An algorithm is proposed to modify the weekly 

schedule on a daily basis in order to deal with arriving emergency patients. In the algorithm, a 
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few of the scheduled elective surgeries are cancelled whenever a resource capacity is 

exceeded.  
 

At this level, first, we can notice that most of the works mentioned above have taken into 

consideration the capacity of the operating room while only a few have accounted for 

overtime capacity (Shylo et al., 2012; Wang et al., 2014). Second, although the unavailability 

of other scarce hospital’s resources intervening in the patient’s clinical path affect the 

feasibility of the operating room plan (Blake & Carter, 1997; Bowers, 2013), the models that 

integrated them are rather scant. 
 

This research seeks to start filling this gap. In the sequel, operating room planning problem 

under uncertainty is tackled while considering the scarce resources intervening in the 

patient’s clinical path. Specifically, we study two problem variants for which we propose 

models and solution approaches.  
 

2 Problem description 

 

The objective of the weekly operating room planning is to determine the elective surgery 

cases to be performed during each day-period so that the overall cost incurred is minimized. 

We suppose that each elective patient is provided with a tentative admission date as soon as 

the decision to have surgery (decision-to-treat) is made. An elective patient can undergo the 

operation on the day of his/her admission or the day after admission depending on the type of 

surgery he/she shall undergo. However, because of the diverse sources of uncertainty inherent 

to the demand of scarce resources needed by elective and emergency patients, the tentative 

admission and surgery date might change. From this angle, operating room planning also 

serves to confirm elective patients’ admission dates. Regarding patient satisfaction, the initial 

admission date should be respected as much as possible. If the initial date of patient 

admission cannot be maintained, a penalty cost is incurred based on patient waiting time and 

the urgency of the case (Testi et al., 2007). This penalty cost is embedded in patient-related 

costs.  

 

Surgeries can be performed during regular opening hours or overtime. However, in addition 

to the high cost of overtime, it has been noted that overtime working hours increase nurse 

dissatisfaction and turnover rate (Nursing Solutions, Inc. 2013). That is why, the use of each 

operating room beyond its regular opening hours should be avoided. In terms of regulation, 

the overtime is generally capped to two hours. Undertime is also undesirable as operating 

rooms and surgical staff incur relatively high fixed costs. Therefore, operating room planning 

seeks to minimize costs incurred by OR overtime, undertime, as well as patients’ waiting 

time.  

 

As it has been mentioned above, each elective patient can be operated either on the day of 

admission or one day after admission in the regular ward. It is worth noting that the clinical 

path of each elective patient can be predicted before admission based on the surgery type and 

his health status revealed in the pre-operative diagnosis. As can be noticed from figure 4, 

after undergoing the surgery, some patients are transferred to the ICU where they stay some 

days for recovery while others are transferred to the regular ward. After recovering in the 

ICU, the patient is generally transferred to the regular ward. The patient leaves the hospital as 

soon as his/her health status allows for that.  
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The scarcity of a resource is tied to its capacity and the demand for it. Indeed, resources 

whose capacity is sufficiently high and often allows to satisfy the demand are not considered 

as scarce resources. Apart the operating rooms, in the considered clinical paths, two resources 

might be considered as scarce resources: (1) the beds in the regular ward and (2) the beds in 

the ICU. Obviously, the daily capacity of the regular ward and the ICU are measured in terms 

of number of beds. All other required resources are assumed available.  

 

We consider the uncertainty related to the demand for scarce resources. Note that the demand 

for operating rooms is gauged by surgery durations while the demand for beds in the ICU and 

in the regular ward is determined through patient LOS. Therefore, in operating room planning 

we consider the uncertainty related to surgery duration, to patient’s LOS in the ICU and in 

the suite of regular wards.  

 

The scarce resources are shared between elective patients and emergency patients. The 

emergency patients may arrive throughout the day (between 8 am and 6 pm) or night (Adan 

et al., 2011). The surgeries of those arriving during the day are directly incorporated in the 

operating room schedule. For those arriving during the night, it is assumed that they are 

operated on during the night shift. Subsequently, a part of the capacity of the operating room 

over the day shift should be reserved for emergency surgeries. Furthermore, a number of beds 

in the ICU and in the ward should be also reserved for emergency patients.  
 

 
Figure 4. Possible patients’ clinical paths including a surgery 

 

3 First problem formulation and solution approach  
 

3.1 Problem formulation 
 

In this first operating room planning problem, we consider the following assumptions: 

 

A1. The operating rooms, the beds in the ward and the beds in the ICU are scarce resources. 

A2. A known slack of each scarce resource capacity is reserved for emergency patients, thus 

allowing for their implicit consideration. 

A3. Surgery durations depend on surgery type and are supposed mutually independent.  

A4. The duration of each surgery type is assumed to follow a log-normal distribution (May et 

al., 2000; Strum et al., 2000; Zhou and Dexter 1998) with a known mean and standard 

deviation.  
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A5. We know the surgery type of each patient.  

A6. The post-operative LOS in the ICU, as well as in the regular ward, are expressed in 

number of days.  

A7. The post-operative LOS in the ICU, as well as in the regular ward, are supposed mutually 

independent and follow an empirical discrete distribution. 

A8. For each patient, we know the empirical discrete distribution that can approximate 

his/her LOS in the ICU and in the ward.  

A9. The remaining LOS in the ICU and/or the regular ward of each hospitalized and operated 

patient is assumed deterministic (Adan et al. 2011). Based on that, the available capacity of 

the ICU and the regular ward are determined for each day-period of the planning horizon. 

A10. An earliest date is associated with each elective surgery. 

 

The operating room planning problem is first modelled as a two-stage stochastic mixed 

integer programming model. In the first stage, the model determines the elective surgery 

cases to be performed on each day of the week. Uncertainty related to operating room 

planning is represented by the set of possible scenarios. Each scenario is defined through the 

vector of outcomes of three independent random variables: surgery duration, LOS in ICU and 

LOS in the ward and has a probability of occurrence. Second-stage variables are scenario-

dependent and therefore include overtime and undertime of each operating room on each day-

period and the utilization of ICU and ward beds. Moreover, it is worth mentioning that the 

proposed model can be used regardless of the probability distribution of surgery duration, 

LOS in the ICU and LOS in the ward.  

 

The proposed model aims at minimizing the sum of the first-stage costs and the expected 

second-stage costs. The first-stage costs represent patient-related costs, while the second-

stage costs include undertime and overtime costs. Each elective surgery can be assigned at 

most to an operating room over a weekday of the planning horizon. A surgery cannot be 

performed before its earliest date. Capacity constraints of the three scarce resources (i.e., 

operating rooms, beds in the ICU, and beds in the regular ward) are accounted for. Operating 

room can be used only during the permitted opening time, thus ensuring that overtime 

capacity is respected. Over each day-period, the number of occupied beds in the ward and in 

the ICU cannot exceed their respective available capacities.  

 

A major concern in stochastic programming models is related to the satisfaction of the 

condition of relatively complete recourse. Specifically, we seek to determine whether all 

second-stage problems are feasible when first-stage variables are fixed. For our problem, 

infeasibility of the second stage can occur from resource capacity constraints. Indeed, for a 

given realization of surgery durations and LOSs in the ICU and the ward, these constraints 

might not be satisfied. To overcome this issue, we propose to modify the initial stochastic 

programming model by including penalty costs to penalize violations of the capacity 

constraints. For that, three second-stage variables representing the excess of capacity of the 

operating room, the ICU and the regular ward are introduced in the model. More specifically, 

these variables are embedded in the objective function to account for the penalty cost for 

exceeding resource capacity and in the resource capacity constraints. 

 

For the details of the mathematical formulation of the proposed two-stage stochastic 

programming model we refer the reader to (Jebali and Diabat, 2015). 
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3.2 Solution approach 

 

A typical problem instance in a real-life case entails thousands of scenarios. Thus, solving the 

proposed stochastic programming model would be impractical. For that, we propose to use 

the SAA algorithm, which allows for finding a good solution among a smaller number of 

scenarios. Random samples including a smaller number of scenarios (or realizations) of the 

uncertain parameters are generated and integrated in the model. The expected value of the 

second-stage costs is approximated by the sample average over these scenarios that are 

assumed equiprobable. As can be noted, the obtained deterministic MIP, hereafter referred to 

as SAA model, can be seen as an approximation of the stochastic programming model. 
 

In order to reduce the computational burden of the SAA model, we relax the integrality of the 

second-stage variables that flag if a bed in the ICU or in the ward is occupied by a patient 

during a day-period of the planning horizon. Indeed, according to (Wolsey 1998), given the 

characteristics of the coefficients and variables used in the constraints containing these ICU 

and ward bed utilization variables, the linear relaxation of the latter variables will have 

integer (0–1) solutions. 
 

The optimal solution of the SAA model converges with probability one to an optimal solution 

of the stochastic programming model as the sample size L (i.e., number of scenarios 

integrated in the model) increases (Kleywegt et al., 2001). Choosing the sample size requires 

making a trade-off between the quality of an optimal solution of the SAA model and the 

computational effort needed to solve it. Moreover, as presented in (Kleywegt et al., 2001), 

solving the SAA problem repeatedly by generating M independent samples, each of size L, 

and solving the associated SAA models, can be more efficient than increasing the sample size 

L.  
 

The procedure of the implemented SAA algorithm is as follows: 

 

Step 1. For m=1..M do steps 1.1 through 1.4. 

 Step 1.1. Generate a sample of size L 

 Step 1.2. Solve the corresponding SAA problem and save its optimal solution ˆm

Lx with 

 optimal objective value ˆm

Lo  

 Step 1.3. Generate a sample of size L’ (L’>L) 

 Step 1.4. Estimate the “true” objective value '
ˆ ˆg ( )m

L Lx of the SAA optimal solution ˆm
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Step 3. For each solution ˆm

Lx , m=1..M, compute the optimality gap '
ˆ ˆg ( )m M

L L Lx o− and a 

corresponding estimate of variance 
'
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Note that samples of size L’ are generated independently of the samples used in the SAA 

problems. Because the first-stage solution is fixed, one can choose a value for L’ larger than 

for L as this step involves only the evaluation of the obtained first-stage solution, using 

simulation. 
  

The variables M

Lo and '
ˆ ˆg ( )m

L Lx respectively provide a statistical lower bound (LB) and upper 

bound (UB) on the optimal objective value of the original problem (Mak et al., 1999). If we 

let *o denote the optimal objective value of the original problem, then the following 

inequality holds for the statistical LB: *M

Lo o . Now, as the property of relatively complete 

recourse is valid, ˆm

Lx is also a feasible solution of the original stochastic problem. Hence the 

inequality *

'
ˆ ˆg ( )m

L Lx o holds. An estimate of the optimality gap of a given SAA solution is thus 

given by '
ˆ ˆg ( )m M

L L Lx o− , and the variance of the estimated optimality gap is given by 

'

2 2 2

ˆ ˆg ( )M m
L L L

gap O x
  = + . 

 

3.3 Experimentation and main results 
 

Experimentation & Data description 

 

Computational experiments are conducted to evaluate the performance of the proposed 

solution method and generate some insights. The test problems considered in the 

experimentation are derived from the real-life case study of the Thorax Centre Rotterdam of 

the Erasmus University Medical Centre presented in (Adan et al., 2008) and (Adan et al., 

2011). The Thorax Centre comprises a MCU (Medium Care Unit), which is the regular ward, 

four operating rooms and an ICU. For certain patients, it is necessary to spend some days in 

recovery in the ICU, before being transferred to the MCU, while others do not require an 

additional stay in the ICU. A known slack of each of these resources’ capacity is reserved for 

emergency cases each day of the week. There are eight elective patient groups that are 

considered, with patients of the same group requiring a homogeneous use of resources (i.e., 

for patients belonging to the same group, the surgery duration, LOS in the ICU and LOS in 

the MCU follow the same probability distribution). The probability distribution of resource 

demand is known for each patient group. Finally, all patients need hospitalization one day 

prior to surgery except for patients of group 1 and 2.  

 

Due to the lack of detailed information on the slack capacity reserved in each operating room 

for emergency cases, the experimentation considers the total available capacity of all 

operating rooms over each day of the week (i.e., the four operating rooms were aggregated). 

The regular opening time of operating rooms to be used by elective cases is set to 29 hours 

(h) for Monday through Thursday and 25 h for Friday. The overtime capacity for each 

operating room is set to 3 hours. The number of beds in the MCU available for elective cases 

is 20 out of 27. The number of beds in the ICU available for elective cases is seven during 

weekdays and two during the weekend. As noted above, to generate surgery case durations, a 

log-normal distribution is used while to generate LOS in the ICU and in the MCU, an 

empirical discrete distribution (based upon a sample of 593 patients) is used. At this point, we 

will provide some details on the model costs. The overtime cost is set to 500 €/h (Lamiri et 

al., 2008a), while the undertime cost is set to 500/1.75 €/h. As far as penalty costs are 

concerned, they are given large values in order to prevent as much as possible the violation of 

resource capacity constraints (Lamiri et al., 2008b). Thus, the penalty for exceeding the OR-

day available capacity (regular plus overtime) is set to 4000 €/h. The penalty costs for 
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exceeding the capacity of MCU and ICU are determined based on the penalty cost for 

exceeding OR-day available capacity using the relative weight of each resource as defined in 

(Adan et al., 2011). 

 

Patient-related costs are determined based on the initial date of surgery given to the patient. 

Obviously, when the waiting time of the patient with reference to that initial date gets higher, 

patient-related cost increases; the patient is thus given a superior priority to be scheduled. 

 

Main results 

 

Performance of the SAA algorithm 

 

We conducted experiments on a test problem considering 28 elective patients. We first 

intended to evaluate the SAA algorithm and demonstrate its convergence toward the optimal 

solution of the initial stochastic programming model. For that, we run the SAA algorithm 

with L = 10, 50, 100, 400, 700 and 1000; M = 10 and L’= 10,000. Recall that L is the sample 

size used in the SAA model while L’ is the sample size used in the simulation. As can be 

observed from figure 5, the optimality gap becomes narrower as the sample size L increases, 

meaning that better solutions are obtained for larger sample sizes. A near-optimal solution of 

1.08% optimality gap is obtained with sample size L=1000. Expectedly, the time needed to 

solve the SAA model increases with the sample size but remains reasonable for a sample size 

L = 1000 (less than 30 minutes). Overall, these results point out that the SAA algorithm can 

be used in practical cases.  

 

 
Figure 5. Performance of the SAA algorithm 

 

Robustness of the proposed operating room planning approach 

 

In order to assess the importance of adopting the proposed operating room planning 

approach, we compared its performance to: (1) the performance of the plan obtained for the 

expected value problem (EVP) and (2) the performance of a plan obtained without 

considering overtime capacity and MCU capacity, referred to as, SAA’. In the EVP, random 

variables are replaced by their means. Therefore, it reflects the solution obtained by a 

deterministic approach. The SAA’ is obtained by solving SAA while omitting the variables 

and constraints tied to overtime and MCU capacity constraints. SAA’ represents indeed the 

solution obtained for a problem setting similar to the one tackled by Min and Yih (2010). 

SAA’ solutions are also obtained by the SAA algorithm with L = 10, 50, 100, 400, 700 and 

1000, L’= 10,000 and M = 10. 
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The performance of an operating room plan is measured through its ‘infeasibility risk’, which 

is simply the probability of ‘second-stage problem being infeasible’. Recall that an infeasible 

second-stage problem is spotted by its solution that encompasses at least a non-zero capacity 

excess variable. Indeed, building an operating room plan that can be executed, without 

cancellation of a patient's admission and/or surgery, remains one of the high priority 

objectives of an operating room manager.   
 

We can observe from figure 6 that the SAA solution outperforms EVP and SAA’ solutions in 

terms of cost and robustness as it induces a lower risk of infeasibility. It has been also noted 

that this robustness comes at the expense of higher first-stage cost. This higher first-stage 

cost, resulting from a lesser number of scheduled elective cases, entails a flexibility in the 

second-stage that mitigates the infeasibility risk. Nevertheless, this flexibility tends to 

augment undertime.  

 
Figure 6. Comparison of the performance of different operating room plans 

 

Furthermore, from figure 7, one can see that for SAA and SAA’ the infeasibility risk clearly 

decreases when the sample size increases. This result points out the increased robustness of 

the operating room plan when obtained using a larger sample size.  
 

 
Figure 7. Average infeasibility risk (%) associated with different operating room planning approaches 

 

Effect of ICU and MCU capacity on the operating room performance 

 

In this case, an increase in ICU or MCU capacity has been always followed by an increase in 

the number of planned patients and the utilization rate of the operating rooms. Therefore, the 

capacity of any scarce resource intervening in the patient’s clinical path can be used as a lever 

to improve operating room performance and reduce the waiting time for a surgery. 

 

4 Second problem formulation and solution approach  

 

4.1 Problem formulation 

 

Assumptions A3 through A8 are common to the first and second problem. Assumptions A1 

and A2 in the first problem are replaced in the second problem by B1 and B2, presented 

below. 
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B1. The operating rooms and the beds in the ICU are scarce resources.  

B2. Operating room and ICU capacities used by emergency cases are stochastic and therefore 

a stochastic slack of the capacity of each of these scarce resources should be reserved for 

emergency patients. 

 

In this problem, each scenario has a probability of occurrence and is defined through the 

vector of outcomes of four independent random variables: surgery duration, LOS in the ICU, 

daily capacity of the operating room and the ICU reserved for emergency cases over the 

planning horizon. Obviously, the randomness of operating room and ICU capacities used by 

emergency cases is entailed by the randomness of the arrival process of emergency patients 

and the randomness of their surgery durations and LOS in the ICU. Indeed, the capacity of 

the operating room used by emergency cases is derived from the sum of a random number of 

random variables. The number of emergency arrivals over one day is assumed to follow a 

Poisson distribution (Adan et al., 2011). Therefore, the capacity of the operating room 

reserved for emergency patients over one weekday is given by the sum of their surgery 

durations while the capacity of the ICU used by emergency patients is determined through the 

number of emergency patients admitted over the planning horizon and their respective LOS 

in the ICU. 
 

This second problem can also be formulated as a two-stage stochastic programming model. 

However, penalizing the case where the capacity of a scarce resource, such as the ICU, is 

exceeded reduces the infeasibility risk of the operating room plan, when the per unit penalty 

cost is relatively high (Jebali and Diabat, 2015), but cannot completely preclude it. More 

importantly, this type of modelling does not allow to restrict this risk to be lesser than a 

prespecified threshold, and so control it. In practice, the violation of one capacity constraint 

entails the cancellation and postponement of the admission and the surgery of planned 

elective patients. To overcome this issue, we propose to formulate the problem as a two-stage 

chance-constrained stochastic program (TSCCSP). The chance-constraint tries indeed to 

guarantee low risk of cancellation of elective patients’ admission and surgery over the 

considered planning horizon. 
 

At this level, it is noteworthy that the proposed formulation considers only the excess of ICU 

capacity. Indeed, the excess of ICU capacity on a day-period incurs the cancellation of the 

admission and the surgery of at least one elective patient. However, the excess of operating 

room capacity can be recovered through overtime. Furthermore, in the considered case, when 

the ICU capacity is respected, the cancellation of elective surgeries generally does not happen 

(Jebali and Diabat, 2015). If the cancellation of elective surgeries happens even though the 

ICU capacity is respected, then the current formulation should be extended to include 

overtime capacity and the penalty cost for exceeding overtime capacity.  

 

Let us denote by yt the number of ICU beds used on day-period t by elective patients and   

𝛼 (𝛼 ∈ (0,1)) the upper bound considered for the risk of cancellation of the admission and the 

surgery of elective patients because of the excess of ICU capacity. The chance constraint is 

written as follows: 𝑃( 𝑚𝑎𝑥
𝑡=1..𝑇+2

(𝑦𝑡 + 𝑊𝐼𝐶𝑈𝑡 − 𝐶𝑖𝑐𝑢𝑡) > 0), where 𝑦𝑡 and 𝑊𝐼𝐶𝑈𝑡 are the 

number of ICU beds occupied by elective and emergency patients on day-period t, and 𝐶𝑖𝑐𝑢𝑡 

is the number of ICU beds available on day-period t. The proposed formulation is a TSCCSP 

with risk level  (also referred to as significance level). 
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4.2 Solution approach 

 

A featured SAA algorithm is proposed to solve the chance-constrained stochastic problem. 

This algorithm is based on the theoretical findings of several studies that have been devoted 

to the use of SAA to solve chance-constrained stochastic problems (namely, Ahmed and 

Shapiro, 2008; Luedtke et al., 2010; Pagnoncelli et al., 2009) and two-stage stochastic 

programs (Ahmed and Shapiro, 2002; Kleywegt et al., 2001). To the best of our knowledge, 

this is the first research that formulates the operating room planning problem as a TSCCSP 

and develops a featured SAA algorithm to solve it. The proposed algorithm has been inspired 

from the SAA scheme developed by Wang et al. (2012) to solve a chance-constrained two-

stage stochastic program for unit commitment with uncertain wind power output. It starts by 

writing the SAA model corresponding to the TSCCSP at hand with risk level . 
 

In the following, we present three properties that bear the foundation of the proposed 

algorithm.  

 

Property 1. (Wang et al., 2012): For the same significance levels =, the optimal objective 

value ˆ
Lv  and solution ˆ

Lx of the SAA problem converge to their counterparts of the true problem 

TSCCSP, *v and *x , with probability one as the sample size L goes to infinity. 
 

From property 1, we can expect that with an increase of the sample size L, an optimal solution 

of the SAA problem will approach an optimal solution of the true problem TSCCSP with the 

risk level   rather than . Additionally, for L large enough, if , then the probability that a 

feasible solution of the SAA problem is also a feasible solution of the true problem approaches 

one exponentially fast and; on the other hand, if , then the optimal objective value of SAA 

solution provides a lower bound of the true problem with high probability (Luedtke and 

Ahmed, 2008). These results are used in the featured SAA algorithm to produce a feasible 

solution or a lower bound to the true problem with high probability. 
 

If the obtained SAA solution respects the chance constraint, then, as a feasible solution, it can 

be used to calculate an upper bound for TSCCSP. To verify if a SAA solution is feasible, we 

employ the Monte Carlo sampling technique to generate a sample of size L’>L and estimate 

the probability of the chance constraint. Let us denote by '
ˆ ( )Lq X the estimate of the probability 

of the chance constraint (𝑃( 𝑚𝑎𝑥
𝑡=1..𝑇+2

(𝑦𝑡 + 𝑊𝐼𝐶𝑈𝑡 − 𝐶𝑖𝑐𝑢𝑡) > 0) by using the sample of size 

L’. 
 

According to Ahmed and Shapiro (2008), based on the estimator
'

ˆ ( )Lq X , a (1-)-confidence 

upper bound on the probability of the chance constraint is given by: 

 𝑈𝐿′(𝑋̄) = 𝑞̂𝐿′(𝑋̄) + 𝑧𝛽√𝑞̂𝐿′(𝑋̄)(1 − 𝑞̂𝐿′(𝑋̄))/𝐿′ (1) with 𝑧𝛽 = 𝛷−1(1 − 𝛽) where 𝛷(𝑧) is the 

cumulative distribution function (cdf) of the standard normal distribution. If this upper bound 

is less than the risk level , then the obtained SAA solution is a feasible solution to TSCCSP 

with confidence level (1-). In this case, the “true” objective value
'ĝ ( )L X represents an upper 

bound for TSCCSP with confidence level (1-). Note that '
ˆ ( )Lq X  and 

'ĝ ( )L X  are determined 

using Monte Carlo simulation.  
 

Let 𝜃𝐿: = 𝐵(⌊𝛾𝐿⌋; 𝛼, 𝐿) and 𝑉̄𝐿 the optimal objective value of a SAA solution obtained by 

considering a sample of size L where B is the cdf of binomial distribution and ⌊𝑎⌋ is the integer 

part of the real number 𝑎. 
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Property 2. (Luedtke and Ahmed, 2008): *( )L LP V v    

 

Property 2 pertains to the probability that the objective value of a solution of the SAA problem 

with sample of size L bears a lower bound of the true problem TSCCSP. 

 

Let us now consider two positive integers M and K such that KM and K is the largest integer 

such that: 𝐵(𝐾 − 1; 𝜃𝐿 , 𝑀) ≤ 𝛽 (2) 

 

We generate M independent samples of size L and denote by m

LV the optimal objective value of 

the SAA problem m, m=1..M, solved with one of the samples of size L. We then sort the 

obtained optimal objective values 
1

M
m

L m
V

=
in non-decreasing order such that (1) ( )... M

L LV V  . 

 

Property 3. (Luedtke and Ahmed, 2008): ( ) *( ) 1K

LP V v   −  

 

According to property 3, the statistical quantity ( )K

LV is a lower bound of the true problem with 

probability at least (1-). 
 

The procedure of the featured SAA algorithm is as follows: 

 

Step 0. Select [0,1), (0,1), L, L’, S, M and K positive integers such that KM and 

verifying (2) 

Step 1. For s=1..S do steps 1.1. through 1.3. 

   Step 1.1. For m=1..M do steps 1.1.1 through 1.1.6. 

      1.1.1. Generate a sample of size L 

      1.1.2. Solve the corresponding SAA problem and save its optimal solution m

LX and the 

corresponding objective value m

LV  

      1.1.3. Generate a sample of size L’ (L’>L) 

      1.1.4. Estimate 
' ( )m

L LU X  using (1) 

      1.1.5. If 
'( )m

L LU X   go to step 1.1.6.  

      1.1.6. Estimate the “true” objective value of the SAA solution 'ĝ ( )m

L LX  

   Step1.2. Pick the smallest “true” objective value found in step 1.1. and denote it as ĝs  

   Step 1.3. Sort the M optimal objective values  
1

M
m

L m
V

=
in non-decreasing order such that  

(1) ( )... M

L LV V  and pick the Kth optimal value ( )K

LV and denote it as sV  

Step 2. Compte the statistical lower bound 
1

1 S

s

s

V V
S =

=   

Step 3. Select the best upper bound 
1

ˆ ˆmin s
s S

g g
 

= and the corresponding solution  

Step 4. Estimate 
ˆ( )

100%
g V

V

−
 , the optimality gap of the best solution  

 

It is expected that the quality of the produced solution increases with an increase of sample 

size L. However, an increase of L makes the SAA problem hard to solve. Again, the trade-off 

between the quality of the SAA solution and the computational time needed to obtain it should 

be considered when choosing the sample size L. Moreover, as increasing M and/or S entails 

the exploration of a larger number of SAA solutions, this obviously results in improving the 

quality of the produced solution. 
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4.3 Main results 
 

Data description 

 

The conducted experimentation for this second problem also used data pertaining to the real-

life case study presented in (Adan et al., 2008) and (Adan et al., 2011). In addition to those 

presented in subsection 3.2, we generate the necessary data to determine, for each scenario, 

the capacity of the operating room and the ICU needed by emergency cases. First, the number 

of emergency patients, of a given group, arriving to the Thorax Center over each day-period 

of the planning horizon is generated based on a Poisson distribution whose parameters have 

been extracted from (Adan et al., 2008) and (Adan et al., 2011). The probability that an 

emergency patient arrives during the day shift is 0.8. A discrete distribution is used to flag the 

emergency patients that arrive over the day shift. The surgery duration and the LOS in the 

ICU are generated for emergency patients in the same way they are generated for elective 

patients of the same group. Therefore, the daily capacity of the operating room reserved for 

emergency cases is approximated through the sum of surgery durations of emergency patients 

arriving over the day shift. The number of beds in the ICU used by emergency patients is 

determined based on the number of emergency arrivals over each day-period of the planning 

horizon and their LOS in the ICU.  
 

Main results 
 

The results presented in this part are obtained while considering a test problem including 30 

elective patients. 

 

Performance of the featured SAA algorithm 
 

The featured SAA algorithm is aimed at solving the proposed TSCCSP at risk level  = 10%. 

In order to find a larger number of candidate solutions for TSCCSP, the SAA model is solved 

with  = 9% (slightly lesser than ). The featured SAA algorithm is tested with L = 10, 50, 

100, 150 and 200; M = 10; S = 5 and L = 2000. K is chosen for each sample size according to 

(2) with  = 10%. Hence for L = 10, 50, 150 and 200, and K = 2 for L = 100, K = 3. 

 

From figure 8, one can see that when the sample size L increases, the optimality gap becomes 

smaller. A near-optimal solution of 1.87% optimality gap is obtained with sample size L = 

200. In particular, this result demonstrates the convergence property of the featured SAA 

algorithm. Although the computing time required to solve SAA problem becomes higher 

when the sample size increases, it remains relatively reasonable for a sample of size L = 200 

(less than 40 minutes). Overall, the obtained results demonstrate that the featured SAA 

algorithm can be used in practice to provide near-optimal solutions with relatively high 

confidence level. 

 
Figure 8. Performance of the featured SAA algorithm 
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Effect of the risk level  on the operating room performance 

 

The featured SAA algorithm with L = 200, M = 10; S = 5 and L’ = 2000 is thereafter used to 

solve the considered test problem at different risk levels , ranging from 2% to 20%. The 

objective is to find a solution with 90% confidence level. The corresponding SAA models are 

solved while setting  = 0.9.  

 

As it can be seen from table 5, the total cost, the first-stage and second-stage costs decrease 

as the risk level  increases. This is reasonable because the number of scheduled patients gets 

smaller when the risk level decreases. Obviously, scheduling a smaller number of patients 

tends to reduce the risk of cancellation of patient admission and/or surgery entailed by ICU 

bed shortage. This can also explain why the operating room and the ICU utilization rates 

decrease when a lower risk level  is considered, as delineated in figure 9. Note that these 

utilization rates respectively attain a maximum of 89.52% and 74.71% for = 100% and a 

minimum of 67.37% and 52.49% for  = 2%. Seeking better patient satisfaction by reducing 

the risk for admission/surgery cancellation will incur higher costs and reduced operating 

room and ICU utilization rates. Thus, the choice of the risk level should take into account the 

targeted levels of resource utilization or hospital cost vs. profit and patient satisfaction. 

 
Table 5. Effect of the risk level on the operating room performance 

 (%) 
Total 

cost 

First-stage 

cost 

Second-stage 

cost 

Nb. of scheduled 

patients 

Probability_OR 

overtime (%) 

2 19932 2500 17432 26 6.03 

5 14630 2200 12430 27 7.44 

10 13072 2000 11072 28 11.73 

15 12199 1900 10299 29 12.69 

20 12039 1600 10439 29 16.53 

 
 

 
 

Figure 9. Operating room and ICU utilization rates as a function of the risk level 

 

5 Concluding remarks and future research 

 

This research addressed operating room planning under uncertainty. Apart operating rooms, it 

considers the capacity of scarce resources intervening in patients’ clinical path, namely beds 

in the ICU and beds in the ward (or medium care unit). First, the problem is formulated as a 

two-stage stochastic programming model. SAA algorithm is used to solve the planning 

problem. The obtained results highlight the robustness of the proposed approach and stress 

the importance of considering, in operating room planning, the availability of hospital’s 

scarce resources. Thereafter, an operating room plan is built while enforcing the risk of 
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cancellation of patient admission and/or surgery to be less than a pre-specified threshold. For 

that, a two-stage chance-constrained stochastic programming model and a featured SAA 

algorithm are proposed. 
 

The current research can be extended to include different types of operating rooms and the 

assignment of surgery cases to operating rooms. Another interesting extension remains in 

integrating operating room planning with daily operating room scheduling. These extensions 

will require the development of sophisticated solution methods such as column generation 

and simulation-based optimization approaches. The ultimate goal is to develop a holistic 

approach for operating room management as will be detailed further in part IV.  
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Chapter II.2 

 

Design and management of Emergency Medical Service 

(EMS) system  
 

The chapter is based on (Boujemaa et al., 2018) and (Boujemaa et al., 2020) 

 

1 Introduction  

 

Emergency medical services (EMS, for short) are a critical component of any healthcare 

system. Their first aim is to send ambulances to the emergency scenes in a timely manner to 

provide medical aid and, in some situations, transport the patient to the hospital. As such, 

they play a crucial role in reducing human suffering and economic losses resulting from 

disabilities due to injuries and sudden illnesses by providing the fastest and the highest 

quality of healthcare services available in a pre-hospital setting. Unfortunately, thousands of 

patients die because of ambulance delays (O’Keeffe et al., 2010). Each second counts in life-

threatening emergencies. Therefore, the emergency vehicle response time is the most used 

indicator to evaluate the effectiveness of EMS systems. The response time, i.e. the time 

between the emergency call being received and the ambulance arriving at the incident scene, 

depends on ambulance deployment and redeployment strategies.  
 

Ambulance deployment pertains to decisions tied to the strategic, tactical and operational 

levels.  Ambulance deployment at the strategic-tactical level, also known as static ambulance 

location-allocation, is tied to the design of the EMS system where, in addition to deciding on 

the locations of ambulance stations, the number and the type of ambulances assigned to each 

station are determined (Bélanger et al., 2019). Ambulance deployment at the operational level 

includes ambulance redeployment or relocation and dispatching. Ambulance dispatching 

aims at assigning available ambulances to incoming emergency calls. Ambulance 

redeployment or relocation is the repositioning of idle ambulances to compensate for 

coverage loss due to busy ambulances.  

 

In this research, we investigate both decision problems for a two-tiered inclusive EMS system 

with explicit consideration of demand uncertainty. In such a system, two types of vehicles, 

namely, Advanced Life Support (ALS) and Basic Life Support (BLS) ambulances, are 

deployed simultaneously, in order to respond to two types of calls that are distinguished 

based on case acuity: namely, life-threatening and non-life threatening calls.  

 

2 Design of EMS system  

 

Literature review  

 

Various modelling approaches have been devoted to the design of EMS systems, also called 

ambulance location-allocation problem. We focus here on those that either tackle ambulance 

location-allocation problems while accounting for demand uncertainty, or address the design 

of two-tiered EMS systems. 

 



 

64 

Three main approaches have been proposed for ambulance location-allocation under demand 

uncertainty: (1) stochastic programming models (Beraldi et al., 2004; Beraldi and Bruni 

2009; Noyan, 2010; Zhang and Li, 2015; Lam et al., 2016; Nickel et al., 2015; van Essen et 

al., 2013), (2) robust programming models (Zhang and Jiang 2014; Lam et al., 2016) and (3) 

hypercube queuing models (Iannoni et al., 2011; Geroliminis et al., 2011; McLay, 2009). 

Obviously, stochastic programming models for ambulance location-allocation are those that 

are particularly tied to our work. Recall that in this kind of model, contrarily to robust 

optimization, it is assumed that the probability distributions governing the data are known or 

can be estimated. 
 

To design a reliable EMS system, Beraldi et al. (2004), Beraldi and Bruni (2009), Noyan 

(2010), Zhang and Li (2015) and Lam et al. (2016) developed chance-constrained stochastic 

programming models where the main uncertainty was assumed to be due to the stochastic call 

arrival process. The reliability is represented by the EMS’s capability to guarantee a target 

service level (also referred to as coverage level), thus ensuring that demand coverage is kept 

above a specified value of probability for all demand areas. EMS’s reliability is enforced in 

the proposed models through chance constraints. Beraldi et al. (2004), Beraldi and Bruni 

(2009) and Noyan (2010) restrict the service level, measured by the fraction of calls covered 

within the required response time, which is a common performance indicator used by EMS 

managers, to be above a predetermined threshold. 
 

In Beraldi et al. (2004), the authors provided a deterministic equivalent formulation of the 

chance constraints using the so-called p-efficient points of a joint probability distribution 

function. This formulation is based on the assumption that the demand is independent which 

is well justified in normal operating conditions. Indeed, a correlation among demand points 

can only be established in the case of large-scale emergency situations. Beraldi and Bruni 

(2009) introduced chance constraints in the traditional two-stage stochastic programming 

framework. The facilities’ location and the definition of the corresponding capacities present 

the first-stage strategic decisions. Once uncertainty has been resolved, tactical decisions 

concerning the allocation of demand points to facilities are taken while considering non-

splittable demand, i.e., each demand point must be served by exactly one ambulance station 

under each scenario.  In Noyan (2010), the author proposed two models that account for 

target service level by including risk measures on random unmet demand. The first model 

incorporates the integrated chance constraints (ICCs) and the second one includes ICCs and a 

stochastic dominance constraint to account for the largest acceptable expected unmet 

demand. He modelled the random demands using the scenario approach. With the addition of 

ICCs constraints, the unmet demand is capped to a predefined nonnegative risk aversion 

parameter that represents the largest acceptable expected unmet demand value. In order to 

address the complexity inherent to the two-stage formulation, the author introduced the ICCs 

in the single-stage formulation, where it is assumed that the assignment of vehicles to 

demand nodes is scenario-independent. However, this single-stage formulation incurs a 

significant increase of the total system’s cost compared to its counterpart two-stage 

formulation. Zhang and Li (2015) devised a novel stochastic model with chance constraints to 

design EMS systems by considering the randomness in the maximum number of 

simultaneous demands occurring at a demand site over a day. The original model is 

transformed into a conic quadratic mixed-integer program by approximating the chance 

constraints as a second-order cone constraints. The obtained model is then solved by a 

commercial solver for problem instances of practical sizes. Lam et al. (2016) proposed a two-

stage stochastic programming model to find an ambulance deployment that minimizes the 

overall shortfall in demand coverage. They reformulated their problem as a robust 
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mathematical program by replacing the chance constraints with a set of deterministic 

constraints based on the Poisson arrival rates and Markov inequality and solved it using a 

standard solver.  

 

Other works do not include a chance constraint. Nickel et al. (2015) devised a scenario-

indexed model to locate and size ambulances based on stochastic demand. In their model, a 

pre-specified coverage level is enforced by ensuring that the expected number of ambulances 

allocated to a demand point is greater than or equal to the product of the considered service 

level factor and the expected demand. The obtained results from small-sized problem 

instances highlight the relevance of using a stochastic approach to design EMS systems. van 

Essen et al. (2013) presented a two-stage stochastic program for the joint strategic and 

tactical ambulance planning. At the first-stage, the model determines the location of 

ambulance bases and the number of ambulances to assign to each opened ambulance base, 

while at second-stage, it specifies which ambulance to dispatch to which emergency call for 

all demand scenarios. The problem is then solved by adopting a two-stepped heuristic 

approach: the first step solves the strategic level (so determines the location of ambulance 

bases) and the second step considers the tactical level (so determines the number of 

ambulances assigned to each base). The authors considered different types of demand 

(demand from urban vs. rural areas) resulting in different coverage requirements but covered 

by only one type of vehicle. 

 

It is worth noting that these papers either reformulate the stochastic programming model as a 

deterministic one or solve it using heuristics. In all cases, limited discussion on the quality 

and the characteristics of resulting solutions is provided. Moreover, none of them did 

consider the two types of commonly used ambulances in EMS systems. 
 

The papers that considered different types of ambulances developed deterministic or queuing 

hypercube models (Schilling et al., 1979; ReVelle and Marianov, 1991; Marianov and 

ReVelle, 1992; Mandell, 1998; McLay, 2009, to list a few). Hypercube queuing models, such 

the one proposed in (McLay, 2009), account for the uncertainty in the demand. They include 

a step where they define the possible combinations of medical units that might be dispatched 

and solving the problem for each of these combinations. Given that the number of 

combinations significantly increases in real-life problem instances, these approaches become 

of little practical use because of their computational intractability. More importantly, these 

works highlight that ambulance deployment protocols used in two-tiered EMS systems are 

application specific (the type of vehicles, the skills of the crew assigned to each type of 

ambulances and their deployment rules are generally country-dependent). Therefore, this 

research will be devoted to design a two-tiered EMS system in accordance with the 

ambulance deployment paradigm adopted in Tunisia. 

 

Contribution 
 

In this research, the ambulance location-allocation problem with two types of vehicles is 

formulated as a cost-based two-stage stochastic programming model with recourse where the 

demand is assumed to be a random variable with known probability distribution. This model 

is solved using the SAA algorithm that allows, as indicated in subsection 3.2 of chapter II.1, 

for computing lower and upper bounds for problem solutions and providing the 

corresponding optimality gaps. Hence, our solution approach informs on the quality of the 

generated solutions, which is a valuable contribution in itself.  
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Problem description and formulation 

 

As noted above, we consider an EMS system that is equipped with ALS and BLS units. Life-

threatening calls require an ALS care level while non-life-threatening calls require a BLS 

care level. An ALS can be used to serve a non-life-threatening call. However, a BLS is 

under-equipped for a life-threatening call. The target response time for a life-threatening call 

is obviously shorter than that of a non-life-threatening call.  

 

The number of life-threatening calls and non-life-threatening calls coming from a demand 

point within a defined time interval is assumed to follow a Poisson distribution (Ingolfsson et 

al., 2008). An ambulance is busy for a certain amount of time when responding to an 

emergency call. Similarly to most studies in this area, namely (Beraldi et al., 2004), (Beraldi 

and Bruni, 2009), (Noyan, 2010), (van Essen et al., 2013) and (Zhang and Jiang, 2014), we 

assume that one hour is a reasonable time requirement for a service trip. Based on this 

assumption, the proposed model formulates the ambulance location-allocation problem over a 

horizon of one hour and does not explicitly consider time. In this formulation, similarly to 

(van Essen et al., 2013), each ambulance can be assigned to at most one emergency call over 

one hour.  

 

In the considered EMS system, each demand point can be served by more than one 

ambulance station and the ambulances housed at a given ambulance station are not dedicated 

to serve specific demand points.  

 

The problem is formulated as a two-stage stochastic programming model with recourse. The 

uncertainty related to the number of emergency calls coming from each demand point over 

one hour is accounted for through the set of possible scenarios. Each scenario is defined by 

the vector of outcomes of two independent random variables: the number of life-threatening 

calls and the number of non-life-threatening calls arriving to each demand point over one 

hour. The ambulance stations to open, the number of vehicles of each type to be housed at 

each opened station are first-stage decision variables while the allocation of ambulances to 

demand points, and the unsatisfied demand depend on demand realization, and thus constitute 

second-stage variables. 

 

The objective is to minimize the location-allocation costs incurred by the system’s 

infrastructure (the fixed cost of setting up ambulance stations and the fixed per-unit capacity 

cost related to the cost of ambulances), the expected transportation cost, and the expected 

penalty cost stemming from unsatisfied demand. The reliability of the EMS system to provide 

adequate demand coverage is therefore reinforced through this penalty cost.  

 

The main constraints of the model are aimed at guaranteeing that the total number of 

ambulances allocated to demand points under a given scenario is less or equal to the total 

number of ambulances available in the EMS system. Needless to mention that ambulances 

are only assigned to opened stations. 

 

Solution approach 

 

Solving the proposed two-stage stochastic programming model with recourse would be 

computationally intractable given the large number of possible scenarios. To overcome this 

challenge, we propose to use the SAA algorithm, which allows for finding a near-optimal 

solution while considering a modest number of scenarios. To start with, a random sample 
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with S scenarios (or realizations) of the uncertain parameters is generated using Monte Carlo 

simulation technique. The generated scenarios are used to approximate the stochastic 

programming model with recourse is approximated by a deterministic one, referred to SAA 

model. The expected value of the recourse costs (travelling and penalty costs) is 

approximated by the average of these scenarios.  

 

In order to speed up the solution of the SAA model, the integrality constraints on the second-

stage variables are relaxed. According to (Wolsey, 1998), given the characteristics of the 

constraints containing these second-stage variables, the linear relaxation of these second-

stage variables will have integer (0–1) solutions. 

 

The used SAA algorithm is an adjusted version of the one presented in section 3 of chapter 

II.1. The details of the algorithm can be found in (Boujemaa et al., 2018). 

 

Case study  

 

The proposed model and solution approach are applied to a real-life case study arising in the 

Northern Region of Tunisia (referred to as SAMU 01). In Tunisia, the calls received by the 

EMS system are classified as follows: (1) calls that do not require an ambulance (code 1); (2) 

calls that require transportation service without any emergency (code 2); (3) calls associated 

with a non-life-threatening incident (code 3) and (4) calls involving danger to human life 

(code 4). The emergency calls requesting an ambulance and a medical team are those of 

codes 3 and 4. Obviously, the highest priority is given to code 4 calls. To satisfy calls of 

codes 3 and 4, a team composed of one or two nurses and an emergency physician, and an 

adequately equipped ambulance are assigned to serve the patient. Two types of ambulances 

could be used: (1) BLS ambulances and (2) ALS ambulances. Only the crew of the ALS 

ambulance type includes an emergency physician. This type of ambulance is intended to 

serve patients of code 4 as it can provide cardiac and medical monitoring and ensure the 

patient’s treatment during transport to the hospital. ALS ambulances can also cover demand 

of code 3. However, the BLS ambulance type can only cover the demand of code 3. The 

response time threshold is set to 20 minutes for emergency calls of code 3 and 15 minutes for 

emergency calls of code 4.  

 

The Northern Region of Tunisia is divided into seven governorates, where each of them is 

further divided into a number of delegations. Henceforth, the demand points represent the 

different delegations, while the potential sites for ambulance stations, are proposed by the 

SAMU 01 manager, and correspond to the region’s hospitals. Therefore, 31 potential 

ambulance stations’ sites and 78 demand points are considered. SAMU 01 historical data is 

used to determine the average hourly demand of codes 3 and 4 associated with each demand 

point. The number of incoming calls of codes 3 and 4 for each demand point are 

independently drawn from a Poisson distribution.  

 

The per-unit capacity cost is set to 7.412 (resp. 6.156) Tunisian Dinar (TND) per hour for 

ALS (resp. BLS). The travelling time between each demand point and potential ambulance 

site is determined based on the distance between the two locations and the average speed of 

the ambulance. The ALS ambulance is faster than BLS (the speed of BLS is assumed to be 

approximately equal to 0.85*the speed of ALS). The transportation cost depends on the 

distance and is equal to 1.2 TND/Km for ALS and 0.8 TND/Km for BLS (this cost is based 

on fuel and maintenance costs of each ambulance type). As far as penalty costs are 

concerned, they are given relatively large values (in comparison to other costs) in order to 
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prevent as much as possible the violation of demand coverage constraints. Thus, the penalty 

for an unsatisfied code 3 call (resp. code 4) is set to 300 TND (resp. 500 TND). Moreover, as 

it can be noticed, penalty cost values are used to enforce a higher priority for demand of code 

4 over that of code 3.  

 

Main results 

 

Performance of the SAA algorithm and solution 

 

We begin with verifying the convergence of the SAA algorithm and assessing its 

performance. We run the SAA algorithm using a number of replications M=10 with sample 

sizes of S=5, 10, 20, 50, 100 and 200 scenarios. We estimate the “true objective value” of 

each SAA optimal solution by simulation using a sample of size S’=1000. For each sample 

size, we estimate the lower bound and select the best-found solution (upper bound). 

 

As it can be seen from figure 10, the optimality gap decreases as the sample size increases, 

meaning that better solutions are obtained for larger sample sizes. For the problem at hand, a 

near-optimal solution of 0.5% optimality gap is obtained with sample size S=200 at a 

reasonable computational time (the CPU is 76 seconds on average). The results for the 

optimality gap indicate that the solutions produced by the SAA algorithm scheme are good 

enough to be used in a practical application. 

 

 
Figure 10. Convergence of the proposed SAA algorithm 

 

Furthermore, as shown by figure 11, when the sample size increases, the first-stage cost 

increases whereas the expected second-stage cost decreases. Overall, the total cost decreases. 

This behavior is explained by the nature of the simulation scheme: when larger samples are 

used, more robust solutions are produced but they require the use of a larger number of 

facilities and vehicles, thus increasing the first-stage cost. Consequently, the penalty cost is 

reduced by the higher reliability of the EMS system. This result points out the value of a 

well-dimensioned infrastructure to achieve better robustness. 

 

 
Figure 11. EMS system costs associated with different SAA solutions 
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Sensitivity analysis 

 

A sensitivity analysis is conducted in order to investigate the effect of a change in the per-unit 

penalty cost and the demand on EMS system configuration and coverage level. All SAA 

models are solved with M=10, S=200 and S’=1000.  

 

The per-unit penalty cost used in the base case is multiplied by a factor lying between 0.125 

and 2. As it can be noticed from figure 12, when the penalty cost increases, the number of 

stations and deployed ambulances in the EMS system tend to increase, which entails an 

increase in the percentage of covered demand. Thus, an increase in the penalty cost favours 

the design of a more reliable EMS system. When an acceptable coverage level is reached, 

managers should wonder if additional improvement is worth the incurred cost. It is important 

to note at this level that an increase in the penalty cost incurs an increase in the average 

optimality gap of the best-found SAA solution. Henceforth, with an increase in the penalty 

cost, the quality of the SAA solution can be improved by considering in the SAA algorithm a 

larger sample size S and/or larger number of replications M. 

 

 
Figure 12. Effect of penalty cost on the configuration of the EMS system and its performance 

 

Figure 13 shows the optimal configuration of the EMS system when the demand is decreased 

by 20 and 40% and increased by 40 and 80%. It should be noted that an increase in the 

demand value does not affect the decisions pertaining to the opened ambulance stations. 

Conversely, with a decrease in the demand, the number of opened ambulance stations is 

reduced. However, an increase or a decrease in the demand clearly impacts the number of 

ambulances required by the EMS system. Expectedly, the number of ambulances increases 

along with the demand. Moreover, an increase of the demand entails an increase in the 

percentage of covered demand. This means that the increase in the unsatisfied demand is 

lesser than the increase in the demand.  

 

 
Figure 13. Effect of the demand on the configuration of the EMS system and its performance 
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3 Ambulance redeployment  

 

Literature review  

 

Ambulance redeployment 

 

In the last two decades, several works have been devoted to the study of ambulance 

redeployment while accounting for the fluctuations of the demand over time and space. Two 

alternative approaches are found in the literature: (1) online (Gendreau et al., 2001; 

Andersson and Värbrand, 2007; Mason, 2013; Naoum-Sawaya and Elhedhli, 2013; Moeini et 

al., 2014; Jagtenberg et al., 2015; Bélanger et al., 2016; van Barneveld e al., 2016) and (2) 

offline redeployment approaches (Enayati et al., 2017; van Barnevelda et al., 2018). The 

online approach seeks on real-time the best ambulance redeployment plan whenever there is a 

change in the state of the system. In the offline approach, redeployment decisions are 

precomputed based on an anticipation of the demand or the possible states of the system. Two 

types of offline approaches can be distinguished according to the manner in which 

redeployment decisions are made. In the first one, called offline dynamic redeployment 

approach, the models are solved a priori to generate a set of relocation plans or compliance 

tables, one for each possible state of the system (Gendreau et al., 2006; Nair and Miller-

Hooks, 2009;  ; Alanis et al., 2013; Liu et al., 2013; Maleki et al., 2014; Sudtachat et al., 

2016; van Barneveld, 2016). This approach is easy to implement in real-life settings; 

however, the number of states to consider could be significantly large. In the second 

approach, referred to as multi-period redeployment approach, redeployment decisions are 

taken at given and fixed time periods over the course of a planning horizon. In the following, 

we focus on papers that tackle multi-period ambulance redeployment problem and 

particularly those that are relevant to our research.  

 

Rajagopalan et al. (2008) propose a formulation of the multi-period ambulance redeployment 

problem called the dynamic available coverage location model (DACL). The latter aims at 

minimizing the total number of ambulances deployed for each time-period while meeting 

predetermined ambulance availability requirements. Schmid and Doerner (2010) aim to 

maximize the demand coverage while considering time-dependent travel times. Contrarily to 

previous models such as DACL, that do not explicitly account for redeployment costs, in  

(Schmid and Doerner, 2010), the authors minimize the penalty for relocating vehicles 

between time-periods. Saydam et al. (2013) build on Rajagopalan et al. (2008) work to 

introduce the dynamic redeployment coverage location model (DRCL). This model 

minimizes simultaneously the fleet size and the number of redeployments during a given shift 

while maintaining overall coverage requirement. Experiments reveal that the DRCL reduces 

the number of redeployments with respect to DACL and allows for a more stable deployment 

during the planning horizon. van Berg and Aardal (2015) consider both time-dependent 

ambulance availability and time-dependent demand. The proposed model aims to maximize 

the expected coverage throughout the day and minimizes the number of opened locations and 

the number of relocations between periods. This model provides a higher coverage with 

lower base locations while taking into account the randomness of vehicle availability. Enayati 

et al. (2018) propose a two-stage stochastic programming model to redeploy and dispatch 

ambulances under demand uncertainty while maximizing the expected coverage. The 

proposed model restricts personnel workload in a shift and considers multiple call priority 

levels. In order to solve realistic size instances, the authors develop a Lagrangian branch and 

bound algorithm.  
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Ambulance dispatching 

 

Ambulance redeployment is highly impacted by dispatching decisions which have a 

significant effect on response time, service time and thus on the EMS system’s performance 

such as the service level. Various ambulance dispatching policies are proposed in the 

literature. Nevertheless, the policies that are widely considered are the “nearest idle 

ambulance’’ (Aboueljinane et al., 2012; Buuren et al., 2012; Ingolfsson et al., 2003; 

Kergosien et al., 2015; Maxwell et al., 2009) and its variants such as the “closest available 

vehicle with pre-emption’’ (Lubicz and Mielczarek, 1987; Savas, 1969), the “closest base’’ 

(Iskander, 1989), the “lower response vehicle’’ (Silva and Pinto, 2010), the “nearest available 

vehicle conditioned by call priorities’’(Aringhieri et al., 2007) and the “regionalized 

response’’(Su and Shih, 2003). It has been demonstrated that the “nearest idle” policy may 

not be the best to adopt (Bandara et al., 2014; Schmid, 2012). Some works devise more 

sophisticated implementations to jointly address ambulance dispatching and redeployment in 

a dynamic setting. Gendreau et al. (2001) proposed to dispatch the available ambulance that 

will minimize subsequent relocation costs. Andersson and Värbrand (2007) suggest 

dispatching the idle ambulance that will cause the smallest preparedness degradation. Based 

on a Markov Decision Process (MDP), the models developed by (Bandara et al., 2012; 

McLay and Mayorga, 2012) determine the dispatching rules that seek to maximize 

respectively the patient survival and the expected coverage of true high risk calls. Toro-Diaz 

et al. (2015) propose to dispatch vehicles according to a prefixed preference list for each 

demand zone so that the first idle ambulance on the list is dispatched upon call arrival. For a 

more detailed survey on ambulance dispatching rules, we refer the reader to the literature 

reviews presented in (Aringhieri et al., 2017; Belanger et al., 2019).   

 

The literature review reveals that only a few papers devise a two-stage stochastic 

programming model for ambulance redeployment (Enayati et al., 2018; Naoum-Sawaya and 

Elhedhli, 2013). As it has been mentioned earlier, the  model proposed by Naoum-Sawaya 

and Elhedhli (2013) provides real-time decisions on ambulance redeployment  given that it 

considers a very short planning horizon (less than one hour). However, none of the above-

mentioned papers investigates the particular redeployment problem that arises in two-tiered 

EMS systems. 

 

Contribution 

 

The contributions of this research are the following:  

(1) unlike most of the works in the literature, this research addresses ambulance 

redeployment for two-tiered EMS systems that use ALS and BLS ambulances to respond to 

both, life threatening and non-life threatening calls, according to rules similar to those 

practiced in Tunisia;  

(2) the proposed model tackles time-dependent and stochastic demand in multi-period 

ambulance redeployment;   

(3) to tackle the computational burden of the problem, two heuristic solution approaches are 

developed and compared.  

 

As can be noted, this work on ambulance redeployment extends the one on EMS system 

design. Indeed, it complements the strategic-tactical approach devoted to the design of an 

EMS system by an operational approach aimed at handling ambulances’ redeployment. In 

this vein, it proposes a multi-period framework able to account for demand variability along 
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the day and anticipate ambulance relocation accordingly. Evidently, ambulance redeployment 

will rely on the designed EMS system. 

 

Problem formulation 

 

Ambulance redeployment problem is formulated as a multi-period two-stage stochastic 

programming problem with recourse while considering the following assumptions:  

- The base station of each ambulance is known, 

- Each ambulance is located at its base station at the beginning of the planning horizon, 

- Each emergency call needs only one vehicle, 

- The capacity of each ambulance is set to one for each period of the planning horizon, 

- Emergency calls arrive according to a non-homogeneous Poisson process, 

- The locations of ambulances at the end of one day (length of the planning horizon) are also 

their location at the start of the next day (cyclic schedule).  

 

At the beginning of each period (namely one hour) of the planning horizon T (namely one 

day and so T=24), the proposed model: (1) assigns ambulances to demand points based on 

ambulances’ current locations and (2) if it is needed, it relocates ambulances to other stations. 

The model deals with demand uncertainty during each period of the planning horizon. First-

stage decisions pertain to ambulance relocation at the beginning of each period. In the second 

stage, dispatching decisions are taken through time periods based on demand realization.  

 

The objective is to minimize the overall cost incurred by the relocation cost, the expected 

ambulance assignment cost and the penalty cost incurred by the unsatisfied demand within 

the considered horizon. Some constraints enforce the assumptions while others ensure that 

each ambulance is located at one station at the beginning of each period, and guarantee that at 

each period the total number of deployed ambulances is less than the number of available 

ambulances in the EMS system. Some constraints are aimed at ensuring the relation between 

ambulance location at the beginning of each two consecutive periods and the relocation 

decision, while others allow for determining the unsatisfied demand. Moreover, some 

constraints ensure the relation between the assignment of an ambulance to a demand point 

and its position. As such, they relate some second-stage variables with some first-stage 

variables. 

 

Solution approach 

 

SAA model  

 

We start by approximating the stochastic model representing the true problem by a 

deterministic one that integrates a sample of size S, referred to as SAA model. In the latter, 

the expected value of the recourse costs (assignment and penalty cost) is approximated by the 

sample average. Recall that the optimal solution of the SAA model converges to an optimal 

solution of the true problem with probability approaching one exponentially fast as the 

sample size S tends to infinity (Shapiro and Homem-de-Mello, 2000). However, solving the 

SAA model with samples of even small sizes could be computationally intractable. For 

example, in our case, with T=6 an optimal solution of the SAA model can only be obtained 

within a reasonable time for S20 while with T=24 (which represents the number of periods 

involved in the considered planning horizon), the solver fails to optimally solve the SAA 

model even for S=2. In order to overcome this issue, we devise two heuristic approaches able 
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to solve the SAA model for real-life problem instances within a reasonable computational 

time.  

 

Time based decomposition heuristic approach  

 

The idea of this heuristic is to decompose the SAA problem including T periods into T/ 

sub-problems containing at most  periods each, while including the prior decisions on 

ambulance redeployment between periods. The solutions produced to the sub-problems may 

then be combined to yield a feasible solution to the original problem. In our case, solving 

subproblems containing more than two periods with an acceptable sample size was very time 

consuming. Therefore, we decided to set =2 to obtain T/2 sub-problems, referred to as subg, 

g={1,…,T/2), where each of them is solved with a generated sample of size S. Notice that the 

location of the ambulances at the end of the sub-problem (subg) is used as the initial location 

of ambulances when solving the next sub-problem (subg+1). Moreover, this heuristic 

determines the ambulances to be relocated and their new location. A detailed version of this 

algorithm, hereafter referred to as HDT, can be found in (Boujemaa et al., 2020). 

 

A Lagrangian relaxation-based heuristic approach 

 

The main concept of this method is to relax a set of complicating constraints by adding them 

to the objective function with a penalty attached using Lagrangian multipliers. The new 

relaxed problem is hence easier to solve optimally; and its optimal objective value represents 

a lower bound for the original problem.  

 

To better clarify this approach, we consider the following generic model:  

𝑧 = 𝑀𝑖𝑛 𝐶𝑥 (1) 

Subject to:  

𝐴𝑥 ≥ 𝑏 (2) 

𝐵𝑥 ≥ 𝑑 (3) 

𝑥 ≥ 0 (4) 

Relaxing the complicating constraints (2) into the objective with Lagrangian multipliers 𝜆 ∈
ℝ+, yields the following Lagrangian relaxation problem:  

 

𝑧𝑟 = 𝑀𝑖𝑛𝑥≥0{𝐶𝑥 + 𝜆(𝑏 − 𝐴𝑥)/𝐵𝑥 ≥ 𝑑} (5) 

 

As mentioned above, solving the relaxed problem will produce a lower bound of the original 

problem. However, the best lower bound is provided by the optimal solution of the 

Lagrangian dual problem (6).  

 

𝑧𝑑 = 𝑀𝑎𝑥𝜆≥0𝑀𝑖𝑛𝑥≥0{𝐶𝑥 + 𝜆(𝑏 − 𝐴𝑥)/𝐵𝑥 ≥ 𝑑}  (6) 

 

In the problem at hand, we choose to relax the constraints that link the first-stage decision 

variables with the second-stage decision variables. Interestingly, in this case the relaxed 

problem RP can be decomposed into two separable sub-problems, which are hereafter 

referred to as SP1 and SP2, respectively. The first sub-problem SP1 determines the first-stage 

variables, namely the number of relocations performed and the location of ambulances in 

each station at the beginning of each period of the planning horizon. The second sub-
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problem, using the solution of SP1 determines the second-stage variables, namely the 

assignment of each ambulance to the demand points and the unsatisfied demand. Moreover, a 

set of valid inequalities are added to both sub-problems to speed up their solving and finding 

a Lagrangian bound.  

 

We propose to solve the Lagrangian dual heuristically using the subgradient method (Fisher, 

2004). The concept behind this procedure is to adjust iteratively the Lagrangian multipliers to 

find values that produce the best lower bound. This process is repeated until a suitable 

stopping criterion is met (when a tighter gap between the best lower and upper bound is 

achieved, a negligible change in the solution configuration is detected, or the maximum 

computing time is reached). The detailed algorithm, hereafter referred to as SBG, is provided 

in (Boujemaa et al., 2020). Note that the upper bound of the SAA problem is provided by the 

true objective function value of the first-stage solution found by SP1, estimated by simulation 

using a sample of size S’. We also remark, at this level, that based on (Mak et al., 1999), we 

can infer that the lower bound of the SAA model determined by SBG allows to determine a 

lower bound of the true problem (i.e. the multi-period two-stage stochastic programming 

model with recourse).  

 

Main results 

 

The proposed algorithms were also tested using a set of real-world instances derived from the 

historical data provided by SAMU 01 in charge of the EMS system within the northern 

region of Tunisia. In particular, we consider the data pertaining to Tunis region. The design 

phase, presented above, suggests that SAMU 01 can adequately operate using 1 ambulance of 

type BLS and 20 ambulances of type ALS located at 7 different EMS stations at Tunis 

region. The arrival rates of emergency calls are determined for each hour of the day. 

Obviously, for each demand point, hourly calls of code 3 (non-life threatening) and code 4 

(life threatening) were randomly generated accordingly to a Poisson distribution based on the 

corresponding arrival rate.  

 

Performance of HDT 

  

To assess the performance of the HDT with respect to sample size S, the algorithm was tested 

with S=2, 100, 150 and 200 while M and S’ are set to 5 and 1000, respectively. Table 6 

reports for each sample size S, the total cost (TC) in TND, the relocation cost (RO) in TND, 

the assignment cost (AS) in TND, the penalty cost (PE) in TND, the percentage of covered 

demand (CD) and the average computing time (CPU) in seconds. It is worth noting that all 

costs reported in table 6 are those of the best-found solution estimated via simulation. 

 
Table 6. Performance of HDT with different sample sizes 
Sample size S  TC  RO AS PE CD CPU  

2 36434 728 2903 32803 90.18 15 

100 15918 978 2863 12077 95.32 147 

150 12790 1149 2600 9041 96.81 257 

200 12749 1271 2570 8908 97.36 480 

 

As it can be seen in table 6, the first stage cost (composed of the relocation cost), increases 

with the sample size S whereas the expected second stage cost (composed of assignment cost 

and penalty cost) decreases. Indeed, the consideration of a larger sample size allows for 

improving the percentage of demand coverage and thus decreasing the total EMS system 

cost.  
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Performance of SBG 

 

SBG is tested with S=2, 5, 20, 100, 200, M=5 and S’=1000. In table 7, the first column 

provides the sample size S used in SBG. Column LB corresponds to the average of the sum of 

the objective values of SP1 and SP2 which represents a lower bound of the true problem. 

Column UB corresponds to the estimated true objective value of the first-stage solution 

estimated by simulation. The optimality gap (%) presented in the fourth column is calculated 

as follows: 

𝑔𝑎𝑝 (%) =
𝑈𝐵 − 𝐿𝐵

𝐿𝐵
∗ 100 

 

The last column in table 7 reports the average computational times of SBG.  

 
Table 7. Performance of SBG with different sample sizes 

S LB (TND) UB (TND) gap (%) CPU (s) 

2 6 228 21 067 >100 83 

5 6 410 14 333 >100 111 

20 6 465 13 953 >100 1055 

50 7 087 13 894 96 1710 

100 7 439 13 374 80 3218 

200 12 086 13 333 10 5967 

 

As outlined in table 7, when the sample size S increases, the lower bound increases while the 

upper bound decreases, and subsequently the gap between the bounds becomes narrower. In 

fact, increasing the number of scenarios allows to obtain a better lower bound. For the largest 

sample (S=200), the algorithm reached an acceptable gap of 10% in less than two hours of 

computational time, which represents a very good trade-off between solution quality and 

computational effort.  
 

Comparison of HDT and SBG 

 

Table 8 compares the cost term values, the demand coverage and the optimality gap of the 

best solutions provided by HDT and SBG (with S=200, M=5 and S’=1000). 

 
Table 8. Comparison of different algorithms 

Algorithm TC RO AS PE CD  gap (%) 

HDT 12 749 1 271 2570 8908 97 5 

SBG 13 333 1 256 2 523 9 554 96 10 

 

The results reported in table 8 provide further empirical evidence that the quality of the 

solution obtained by HDT is slightly better than the one incurred by SBG in terms of 

robustness and costs. HDT exhibits a tighter optimality gap as it can be evidenced by the 

lower bound of the true problem provided by SBG. Overall, HDT is more computationally 

efficient than SBG and reveals a notable performance in terms of both demand coverage and 

total cost. As can be noted, the lower bound produced by SBG allows for estimating the 

quality of HDT. This sheds light on the complementarity of the two proposed heuristics. 

 

4 Concluding remarks and future research 

 

First, we investigate the design of a two-tiered EMS system with consideration of demand 

uncertainty. The problem is formulated as a two-stage stochastic programming model. The 
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objective was to find the configuration of the EMS system that minimizes the total cost 

composed of the ambulance station opening cost, per-unit capacity cost, transportation cost 

and penalty cost associated with demand unsatisfaction. A SAA algorithm was then proposed 

to solve the considered problem. The solution approach has been applied to a real-life case 

study. The results highlight the usefulness of the proposed approach in practice and stress the 

importance of calibrating the per-unit penalty cost based on the targeted demand coverage.  

 

Second, for the designed EMS system, we investigate the ambulance redeployment problem. 

Based on the variability of the hourly demand during the course of a day, the proposed multi-

period two-stage stochastic programming model allows to decide on vehicle relocation 

between periods to offer a better coverage of the demand. The objective is to minimize the 

total cost composed of relocation cost, dispatching cost and penalty cost incurred by the 

unsatisfied demand. Two heuristics are proposed to solve the proposed model, namely HDT 

and SBG. Numerical results show that the solution produced by the HDT outperforms the one 

generated by SBG, and that in much lower computational times.  

 

Future work will include developing more sophisticated approaches for the design and 

deployment of two-tiered EMS systems. We intend to devise a chance-constrained two-stage 

stochastic programming model that aims to restrict the risk of not serving a call within the 

response time standard to a certain threshold. Furthermore, our future research will include 

the development of a multi-stage stochastic programming model for ambulance 

redeployment. Adequate method will be designed to solve it. Another interesting extension of 

our research remains in developing a simulation-based optimization approach for the design 

of the EMS system while accounting for other sources of uncertainties such as the travelling 

and service time. Moreover, such approach will allow to investigate how real-time decisions 

(ambulance dispatch) are related to strategic and tactical ones and therefore impact the 

system performance.   
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Part III 

Logistics and supply chain management  
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Chapter III.1 

 

Production-distribution planning in textile and apparel supply 

chain  
 

The chapter is based on (Safra et al., 2019) and (Safra et al., 2021) 

 

1 Introduction  

 

To succeed, supply chains compel to keep their goods and services reaching markets quickly, 

efficiently, and as cost-effectively as possible. This success is challenged by a more complex 

supply chain structure involving several actors with multiple ownership and different sources 

of risks and uncertainties. For that, a close coordination across the supply chain actors is 

necessary. This coordination becomes indeed crucial to business success in sectors, where 

products have a short lifecycle, a volatile demand and face fierce competition, such as the 

textile and apparel supply chain (Adhikari et al., 2020). Given that fashion and apparel 

products are seasonal with short lifespan and uncertain demand, creating an intimate link 

between production and distribution decisions is essential to achieve a desired on-time 

delivery performance at a minimum total cost (Chen, 2010). 

 

Demand uncertainty is particularly high in the case of the apparel fashion industry due to 

customer preferences and tastes that are difficult to predict before the start of the selling 

season. Achieving a match between demand and supply to minimize unsold quantities and 

markdowns at the end of the selling season while, at the same time, ensuring the availability 

of demanded products is very challenging in this case. To better adjust the supply to the 

demand, textile apparel companies opt for producing a certain quantity of each trendy product 

before the start of its selling season and the rest during its selling season. Therefore, two 

types of orders are distinguished: (1) pre-season orders with medium lead time and (2) in-

season replenishment orders with short lead time. Pre-season orders are based on demand 

forecast established before the start of the selling season and target in general to cover a 

percentage of the whole season’s demand while replenishment orders are intended to satisfy 

the persistent demand for successful trendy items. After observing the sales over the first 

weeks of the selling season, some companies, such as Zara, can even decide to stop the 

production and the display of certain items to replace them by others that match better 

customer preferences (Chopra and Meindl, 2016). 

 

In this research, we address a multi-period production-distribution planning problem arising 

in global textile and apparel supply chain, involving a manufacturer and retailer stage with 

multiple actors dispersed all around the world, and offering a wide variety of trendy products 

with short lifespans and unpredictable demand. Both pre-season orders and in-season 

replenishment orders are accounted for in production and distribution planning. Because of 

the difference between the lead time of pre-season and replenishment orders, the considered 

problem integrates production and distribution decisions pertaining to the tactical and 

operational planning levels. We investigate two production-distribution planning approaches: 

(1) with no information sharing on current in-season sales and (2) with information sharing 

on current in-season sales. In particular, we assess the impact of information sharing on the 

overall cost of the textile and apparel supply chain. 
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2 Literature review  

 

Integrated production-distribution planning 

The literature on integrated production-distribution planning problem is abundant as shown 

by Mula et al. (2010), Chen (2010) and Fahimnia et al. (2013). Different variants of this 

problem have been investigated: some works considered a single manufacturer and/or a 

single retailer (Armentano et al., 2011; Chen and Vairaktarakis, 2005; Pundoor and chen, 

2009) with multiple products, while others took into account a single product (Boudia and 

Prins, 2009; Liao et al., 2017; Sarkar and Giri, 2018). Some other papers studied the case of 

multiple manufacturers with multiple products (Kim et al., 2008; Keskin and Üster, 2007), 

though the latter are limited to a single period. More recently, other works considered the 

multi-product and multi-period problem (Liu and Papageorgiou, 2013; Ghasemi Bijaghini 

and SeyedHosseini, 2018; Selim et al., 2008; Kumar et al., 2019).  

Noticeably, the vast majority of integrated production-distribution planning models are sector 

specific and have been especially devoted to time-sensitive and/or perishable products such 

as medicine (Ghasemi Bijaghini and SeyedHosseini, 2018), food (Li et al., 2019; Chen and 

Vairaktarakis, 2005; Farahani et al., 2012), dairy products (Ghosh and Mondal, 2018), 

newspapers (Russell et al., 2008) and fashion apparel (Felfel et al., 2018; Darvishi et al., 

2020; Ait-Alla et al., 2014). The works that integrated tactical and operational planning 

decisions remain scarce (Kanyalkar and Adil, 2005; Rømo et al., 2009; Sousa et al., 2008) 

though.  

 

More importantly, all the papers mentioned so far do not integrate tactical and operational 

decision levels in textile and apparel supply chain planning. Nevertheless, this integration is 

essential to ensure decision process consistency and achieve production-distribution planning 

objectives. This research is devoted to fill this gap. Two integrated production-distribution 

planning approaches that account for the most relevant features of apparel supply chain are 

devised. The proposed approaches are two-level as they incorporate tactical and operational 

decisions and account for both pre-season and replenishment orders. The first approach 

pertains to the case where there is no information sharing between the retailer and the 

manufacturer on current in-season sales. Oppositely, the second approach considers the case 

where the retailer shares with the manufacturer the information on current in-season sales.      

 

Information sharing  

Research streams considering information sharing are emerging given that the latter can be a 

key factor for a firm’s success. Li et al. (2017) evaluated the impact of a disruption arising at 

the end-customers, and how it can be mitigated through information sharing among different 

supply chain echelons. Wu et al. (2010) evaluated the benefits of sharing information on 

suppliers’ product quality with the buyer. Yang and Fan (2016) showed that information 

sharing reduces the bullwhip effect under demand disruptions. Notably, none of these works 

considers information sharing in the integrated production and distribution planning with 

consideration of tactical and operational decisions.  

 

Information sharing is aimed at improving the quality of demand forecasts and hence the 

effectiveness of the resulting planning decisions. This is particularly promising in the textile 

and apparel supply chain where demand forecasting is highly challenging (Wen et al., 2019).  
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To the best of our knowledge, integrated production-distribution planning that incorporates 

tactical and operational decisions with demand forecasting based on information sharing in 

the textile and apparel supply chain has not been yet investigated. The second planning 

approach is devoted to fill this gap. 

 

3 Problem description  

 

The considered textile and apparel supply chain planning problem is based on a real-life case 

study which is representative of the vast majority of current worldwide textile and apparel 

supply chains. The case study considers the supply chain of a textile and apparel 

manufacturing company that belongs to one of the largest industrial groups in Tunisia. The 

group has its own women apparel and fashion brand and operates a large number of retail 

stores. As illustrated in figure 14, the supply chain network comprises: 

- A set of internal manufacturing units located in Tunisia, denoted by U 

- A set of subcontractors’ manufacturing units located either in Tunisia, or overseas (in 

China), denoted by V 

- A set of warehouses located in Tunisia, denoted by J 

- A set of retailers, denoted by I, where the majority of them are located in the european 

market, and a few in the tunisian market  

 

 

Figure 14. Textile and apparel supply chain network 

 

The considered textile and apparel manufacturing company is adopting a commit-to-delivery 

business model. After receiving retailers’ orders, it validates a delivery due date and assumes 

for the shipping cost. Finished products are shipped immediately towards the warehouses 

where they are gathered and stored till their delivery time. More than four million pieces per 

year are sold to the most well-known clothing brands and retailers (Lacoste, Kookaï, Promod, 

Camaïeu, Jaqueline Riu, Cache Cache, Bonprix, Morgan, Go Sport, Orsay, Dixit...). A set of 

transportation modes might be used, namely trucks, ships or aircraft. The received pre-season 

orders are due within several months (6 months at most) because the ordered products are 

sold during the next season. Replenishment orders are due within weeks (8 weeks at most) as 

they are intended to prevent stockouts of products sold over the current selling season. 

Overseas subcontracting induces higher transportation costs and longer lead times but 

generally offers lower prices. Local subcontractors are however more flexible, as they are 

close at hand. Each manufacturing unit is characterized by a production capacity. The 

production of each item incurs either a variable and a fixed cost, or a subcontracting cost. For 

more production flexibility, an overtime production capacity in each internal manufacturing 

unit is considered. The recourse to this capacity induces an overtime production cost. 

Underutilization cost of internal production capacity at each internal manufacturing unit is 

also considered to penalize the unused available resources. Each product is characterized by a 
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production lead time, a unit volume and a unit inventory holding cost tied to the considered 

time period and facility. Each warehouse has a known storage capacity, and each 

transportation mode is characterized by a capacity and a lead time. For each product, a 

variable and a fixed distribution cost are also accounted for. They are associated with the 

moving of one unit of product, first, from the manufacturing unit to the warehouse, and then, 

from the warehouse to retailer store.  

 

4 Production-distribution planning approach 

 

4.1 The proposed rolling horizon approach 

 

As portrayed in figure 15, the proposed sequential two-level planning approach uses two 

models: (1) a tactical model and (2) an operational model.  

 
Figure 15. Planning approach 

 

The tactical model (see figure 15) includes six 4-week periods (referred to as a month) 

planning horizon. The length of the planning horizon is indeed dictated by the lead time of 

pre-season orders. To face unforeseen and urgent demand that may happen over weeks, a 

reserve production capacity is considered at the tactical level. The latter provides a lever for 

incorporating replenishment orders at the operational level. A monthly rolling horizon is 

considered to integrate newly received preseason orders. 

 

At the operational level, a variable planning horizon including eight to eleven one-week 

periods is considered (see figure 16). This choice allows to properly detail production 

decisions taken by the tactical model, and hence strive to guarantee consistency between 

tactical and operational decisions. A weekly rolling horizon is considered to integrate new 

replenishment orders received each week. Note that the maximum lead time for a 

replenishment order (eight weeks) also justifies the chosen length of the operational planning 

horizon. The objectives of the operational planning model are twofold: (1) split the monthly 

planned quantities to produce internally, according to the tactical planning, over weeks; and 

(2) introduce newly arrived replenishment orders over the weekly rolling horizon while 

respecting their delivery due dates. The reserve production capacity considered at the tactical 

level is released and the entire internal capacity can be used in addition to overtime. This will 

give more flexibility to accommodate unforeseen and urgent replenishment orders.  
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Figure 16. Variable operational planning horizon 

 

When a new pre-season order, with a delivery lead time larger than the number of periods 

included in the operational planning horizon, arrives, it is introduced to the tactical planning 

model of the following month to decide on production assignment while taking into 

consideration subcontractors’ capacity. The operational planning model might afterwards 

incorporate these orders if the tactical model proposes to produce them in internal 

manufacturing units. This procedure is repeated accordingly to orders' delivery lead times.  

 

Quantities produced, stored and distributed at the first week of each planning horizon are 

retained and related costs are recorded. However, decisions concerning the other periods 

(weeks) are released and reconsidered while running the operational planning model, at the 

beginning of the following week, which allows for incorporating the newly received 

replenishment orders. Finally, a weekly detailed production, storage and distribution plan is 

obtained. The latter incorporates the tactical production assignments and new replenishment 

orders.  

 

In the operational planning with information sharing (see the blue part of figure 15), in 

addition to received replenishment orders, we integrate the forecast of replenishment orders. 

The latter is established using an adequately chosen forecast model that considers the 

observed in-season sales. More details on the used forecast model are provided in subsection 

4.4. 

 

4.2 Tactical planning model 

 

The tactical planning model aims at minimizing total production, inventory holding and 

distribution costs. As such, it minimizes the sum of: variable production cost, set up cost, 

subcontracting cost, internal capacity underutilization cost, inventory holding cost, variable 

transportation cost from manufacturing units to warehouses, variable transportation cost from 

warehouses to retailers, fixed transportation cost from manufacturing units to warehouses and 

finally the fixed transportation cost from warehouses to retailers. As can be noted, the 

transportation cost is composed of a variable cost, depending on the transported quantity 

given the selected transportation mode, and a fixed cost depending on the selected 

transportation mode. The outcomes of the tactical planning model include the following: 

monthly production quantities in internal and subcontractors' manufacturing units, monthly 

stored quantities in warehouses and monthly delivered quantities to retailers. Flow balance 
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considering the involved lead times, demand satisfaction and capacity constraints represent 

the main constraints of the addressed tactical production-distribution planning problem. The 

mathematical formulation of this problem can be retrieved in (Safra et al., 2019). 

 

4.3 Operational planning model in the case of no information sharing  

 

The operational planning model employs the sets, parameters and decision variables of the 

tactical model but tied to one week given that the latter represents the period considered in 

this model. It determines the quantities to produce, store and deliver over each week of the 

planning horizon. Recall that the production plan proposed by the tactical model for any 

month whose weeks are included in the operational planning horizon becomes input of the 

operational model and will be detailed per week. In addition to the decision variables used in 

the tactical planning model, we introduce decision variables that determine overtime. 

 

Similarly to the tactical model, but while considering weekly cost parameters and decisions, 

the objective function minimizes the total supply chain cost composed of: the variable 

production cost, the set up cost for producing during regular working hours and during 

overtime, the subcontracting cost, the overtime cost, the internal capacity underutilization 

cost, the average inventory holding cost and the transportation costs from manufacturing 

units to warehouses and then from warehouses to retailers. In addition to flow balance, 

demand satisfaction and capacity constraints, the operational planning model incorporates 

constraints that ensure the consistency with decisions made by the tactical planning model. 

 

As can be noted, in this operational planning model, we account only for received 

replenishment orders and we assume that the retailer does not share information on current 

in-season sales with the manufacturer. The mathematical formulation of this problem can be 

found in (Safra et al., 2019). 

 

4.4 Operational planning model in the case of information sharing   

 

This second operational planning model considers information sharing on current sales 

between the retailer and the manufacturer. Hence, it levels up the first operational planning 

model as well as the first planning approach, to shed the light on the interest of information 

sharing and its impact on the total supply chain cost. It extends the first operational planning 

model by incorporating a forecast of replenishment orders (as highlighted in blue in figure 

16) in addition to received replenishment orders. These forecasts are based on shared in-

season sales data between the retailers and the manufacturer and are established using a well 

fitted logistic diffusion model.  

 

Why the logistic diffusion model? 

 

As mentioned above, fashion apparel products are single-period products with short lifespan. 

The lack of historical demand data in this case constitutes one of the challenges of demand 

forecasting. To overcome this issue, Şen and Zhang (2009) advocated the use of the sales 

data observed at the beginning of the season to update the forecast for later in-season 

demand.  

 

Interestingly, diffusion models, such as Logistic and Gompertz models, are intended to 

forecast the demand of new products with no or some sales history (Morrison, 1996). For 

standard life cycle curve products, these models try to determine future sales by quantifying 
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the long-term saturation level, the period of sales peak over product life cycle and the 

intensity of the introduction phase (Kurawarwala and Matsuo, 1996). Otherwise, for products 

whose sales does not follow the standard shape of life cycle curve (one or more phases are 

absent), Ching-Chin et al. (2010) proposed a model based on the average sales of similar 

product families.  

 

That is why, we propose to use the logistic diffusion model to predict replenishment orders 

that may arrive to the manufacturer over the current selling season. First, it is fit to textile and 

apparel products as it can be used even if there is no or limited historical data on the demand. 

Moreover, this choice can be justified by the adequacy of fashion apparel products to the 

standard life cycle curve where sales volumes follow the four phases of introduction, growth, 

maturity and decline. More importantly, the logistic diffusion model is easy to implement 

while repeatedly adjusting its parameters based on in-season sales information shared 

between the retailer and the manufacturer.  

 

Forecast of replenishment orders  

 

Replenishment orders are forecasted according to the following four steps:  

 

- The first step consists in developing the logistic diffusion forecasting model by defining 

its parameters: (1) the long-term saturation level, (2) the period of inflection, and (3) the 

intensity of the introduction phase. The latter is based on in-season sales data shared by 

the retailer and the orders received from and/or delivered to the retailer during the weeks 

of the selling season.  

- The second step involves the construction of the cumulative sales curve. This step also 

includes forecasting sales of the next periods using the logistic diffusion model.  

 

- The third step consists in defining order points and the quantities to deliver to retailers.  

 

- Finally, forecasts of replenishment orders are used as inputs in the operational planning 

model.  

Once confirmed information regarding cumulative sales is received, this four-step scheme is 

used to update the forecasts.  

An illustration of these steps and the mathematical formulation of the operational planning 

problem in the case of information sharing can be found in (Safra et al., 2021). 

 

5 Computational experiments & main results 

 

5.1 Case study 

 

Our experimentation focuses on knitting products. This business, with almost 200 different 

references produced and delivered per year, is amongst the most important activities of the 

company. Production is performed in three knitting company-owned manufacturing plants. 

Eleven subcontractors are involved in the company’s network: Ten local and one overseas, 

located China. Local subcontractors offer prices generally 20% higher than the unit costs of 

internal production. The Chinese subcontractor, oppositely, offers relatively lower prices. 

However, in this case, subcontracting needs to be planned sufficiently in advance because it 

involves a 6-week transportation lead time. Produced items are shipped to one of the two 



 

85 

local warehouses and then to retailers. International deliveries are performed using a 

combination of the transportation modes mentioned above. The inventory holding cost per 

unit is about 5% of its production cost. Pre-season orders are received well in advance, often 

six to four months before the start of the selling season, whereas for the replenishment orders, 

the delivery lead time is in general of three weeks. An underutilization cost corresponding to 

fixed expenses incurred by idle production, is supposed to be the third of the internal 

production cost. Overtime production costs 40% higher than production during regular hours.  

5.2 Comparison of proposed production-distribution planning approaches 

 

In order to shed the light on the benefits and the value of information sharing, we compare 

the results obtained by the production-distribution planning approach with no information 

sharing (hereafter referred to as A1) to those obtained by a production-distribution planning 

approach with information sharing (hereafter referred to as A2). For that, we simulate each 

tactical-operational production-distribution planning approach over six months and determine 

the corresponding total supply chain cost. 

 

To stress the importance of introducing a reserve production capacity at the tactical planning 

level, the supply chain cost is calculated for three types of production–distribution plans: (1) 

plans constructed without considering a reserve production capacity, (2) plans constructed 

while considering a fixed reserve production capacity of 20%, and (3) plans constructed 

while considering a monthly variable reserve production capacity. These three scenarios will 

be referred to as WIRP, WFRP-20% and WMVRP, respectively. The monthly variable 

reserve production capacity is estimated using available two-year historical data on 

production and incorporated in the tactical planning model. More precisely, it is obtained by 

computing, for each month, the ratio: replenishment production / total internal production 

during regular hours. At this level, it is worth noting that A1 under WIRP represents the 

planning approach currently used by the company. 

 

Table 9 provides supply chain costs obtained by A1 and A2 for the three scenarios WIRP, 

WFRP-20% and WMVRP. Expectedly, the highest cost is the one tied to A1 without 

consideration of a reserve production capacity at the tactical planning. Recall that the latter 

reflects the current practice in the considered company. Moreover, table 9 gives the cost 

saving that can be achieved for each approach over the current practice.  
 

Table 9. Comparison of total supply chain cost 
 WIRP WFRP-20% WMVRP 

 C CS C CS C CS 

A1  2 864 0% 2 746  4% 2 575 10% 

A2  2 429 15% 2 411 16% 2 332 18% 

                       

                       A1: Approach without information sharing 

                       A2: Approach considering information sharing 

                       C: Total cost (K€) 

                                                                CS: Cost saving (%)  

 

The results in table 9 demonstrate that the adoption of a production-distribution planning 

approach with information sharing and a monthly-varying reserve production capacity allows 

the company to achieve a cost saving of 18% over the current practice. Let us note, that the 

cost saving can reach 20% in the case of perfect forecasts. This obviously highlights the 

interest to develop a reliable and efficient forecast system. Indeed, such a system will 



 

86 

accurately estimate the monthly-varying reserve production capacity and predict the 

replenishment orders.  

 

Table 10 compares production assignments obtained by A1 and A2 for the three scenarios 

WIRP, WFRP-20% and WMVRP. 

 
Table 10. Comparison of production assignments 

 WIRP WFRP-20% WMVRP 

 A1 A2 A1 A2 A1 A2 

Regular hour 

production 
259359 259832 259654 261641 259727 268690 

Overtime 

production 
1833 1746 1401 1281 2303 154 

Subcontracted 

production 
25507 26590 35373 25482 16793 14785 

Total 

quantities 
286699 288168 296428 288404 278823 283629 

 

We notice that when the retailer shares in-season sales information with the manufacturer, a 

better use of the internal production capacity is accomplished whether considering or not a 

reserve production capacity at the tactical level. This sharing of information enables the 

company to anticipate the arrival of replenishment orders and hence to produce the ordered 

quantities internally at a lower cost. However, the best internal production capacity utilization 

is observed when a monthly-varying reserve production capacity is considered at the tactical 

level given that this reserve, which in this case is better estimated, allows to adjust internal 

capacity to accommodate orders. It is also worth noting that the increase in produced 

quantities at internal production sites is accompanied by a decrease in overtime and a 

decrease in subcontracted quantities except for the case where the full production capacity is 

used at the tactical level since no flexibility is provided to accommodate orders at the 

operational level. In this case, subcontractors’ production has increased in A2 with 

comparison to A1. This increase is explained by advanced production of some quantities 

using internal capacities or subcontracting. Such a planning decision is made due to: (1) the 

high cost of overtime production in comparison to competitive prices offered by 

subcontractors, (2) the use of full internal production capacity available at the tactical 

planning level and (3) the unavailability of internal capacity when planning newly arrived 

orders at the operational level. Moreover, as it can be noted, the total produced quantities are 

not similar for the three scenarios (i.e. WIRP, WFRP-20% and WMVRP). This can be 

explained by the fact that some orders have to be delivered to customers at a due date beyond 

the six-month planning horizon. These orders might be processed in advance when the 

available production capacity is able to accommodate them. Otherwise, the related production 

will be delayed for the next months, beyond the six-month planning horizon, as their due date 

is not yet reached.  

 

5.3 Sensitivity analysis 

 

A sensitivity analysis is carried out in order to investigate the impact of some parameters on 

planning decisions and the performance of the considered supply chain. Three parameters are 

considered in this analysis: demand, transportation cost and subcontracting cost. Indeed, these 

parameters may be subject to fluctuations because of different factors such as competition, 

economic conditions, or diverse disruptions such as the COVID-19 pandemic.  
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In our experimentation, we constructed production-distribution plans while considering 

information sharing and a monthly-varying reserve production capacity (A2 – WMVRP) 

while varying the value of the above-mentioned parameters from -50 to +50%, around their 

current values. Moreover, we compared the total supply chain cost obtained by this 

outperforming planning approach to the supply chain cost obtained by the current practice 

(A1-WIRP).   

 

Sensitivity analysis of demand  

 

The results reported in table 11 show the superiority of A2-WMVRP over A1-WIRP. As can 

be noted, even when the demand is reduced by half, the cost remains lower for A2-WMVRP. 

However, the gap between costs gets smaller when demand decreases. Indeed, in this case, 

internal production sites can satisfy lower demand without considering a reserve production 

capacity at the tactical level and without sharing information. Nevertheless, the adoption of 

A2-WMVRP has a significant effect on supply chain cost reduction in the case of a surge in 

the demand as it yields a 19% reduction in the supply chain cost when the demand increases 

by 20% and 50%.  

 
Table 11. Effect of demand variation on total supply chain cost 

 D-50% D-20% D D+20% D+50% 

A1 – WIRP (K€) 1658 2152 2864 3285 3794 

A2 – WMVRP (K€) 1601 1898 2332 2653 3055 

Gap (%) 3 12 18.6 19 19 

 

Sensitivity analysis of transportation cost 

 

Once again, as shown in table 12, A2 – WMVRP outperforms A1 – WIRP when overseas 

transportation cost fluctuates.  

 
Table 12. Effect of overseas transportation cost variation on supply chain cost 

 T-50% T-20% T T+20% T+50% 

A1 – WIRP (K€) 2424 2678 2864 2891 2894 

A2 – WMVRP (K€) 2260 2301 2332 2356 2358 

Gap (%) 6 14.1 18.6 18.5 18.5 

 

When the overseas transportation cost decreases, the supply chain cost also decreases. More 

importantly, we notice a migration of some productions from internal production sites to the 

manufacturing units of overseas subcontractors. As such, a reduction in overseas 

transportation costs favors the recourse to overseas subcontracting as the latter offers lower 

unit production costs compared to those of local production. We also note a small increase of 

the supply chain cost when the overseas transportation cost increases. In this case, overseas 

subcontracting becomes an expensive option. That is why an increase of overseas 

transportation cost fosters production in local manufacturing units.  

 

Sensitivity analysis of subcontracting cost 

 

Let us first note that when the cost of local subcontracting is reduced by half, it becomes 

more cost competitive than internal production. A large part of the internal production is 

therefore assigned to local subcontractors. As shown in table 13, the gap between the two 

approaches is smaller when local subcontracting cost decreases. Hence the value of 

information sharing is lessened in this case as local subcontracting becomes a lever to 
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efficiently handle demand unpredictability. Oppositely, the increase of local subcontracting 

cost can only encourage the manufacturer to plan its internal capacity as well as possible to 

meet urgent demand that may occur at the operational level without using costly 

subcontracting, and this is ensured through information sharing with the retailer. The value of 

information sharing is highlighted by the significant gap estimated at 19% between the 

supply chain cost of A2 – WMVRP and A1 – WIRP. 

 
Table 13. Effect of subcontracting cost variation on supply chain cost 

 S-50% S-20% S S+20% S+50% 

A1 – WIRP (K€) 2509 2798 2864 2925 2964 

A2 – WMVRP (K€) 2305 2321 2332 2382 2408 

Gap (%) 8% 17% 18.6% 18.6% 19% 

 

At this level, one can conclude that the interest in adopting A2 – WMVRP significantly 

increases when demand, overseas transportation cost and subcontracting cost increase. But 

even if there is a decrease in the value of these parameters, A2 – WMVRP persistently 

remains superior to A1 – WIRP, i.e. the current practice. Therefore, adopting a planning 

approach with information sharing and considering a variable reserve production capacity 

allows to the supply chain to better face disruptions such as those caused by the COVID-19 

pandemic.  

 

6 Concluding remarks and future research 

 

In this paper, we propose a sequential two-level approach for the planning of global textile 

and apparel supply chains including a manufacturer and a retailer stage. The objective is to 

achieve cost minimization while offering products that fit customer’s taste. Both pre-season 

orders and in-season replenishment orders are accounted for in production and distribution 

planning. Because of the difference between the lead time of pre-season and replenishment 

orders, the considered problem integrates production and distribution decisions pertaining to 

the tactical and operational planning levels. We investigate two planning approaches: (1) with 

no information sharing on current in-season sales and (2) with information sharing on current 

in-season sales. To handle demand unpredictability, the proposed approaches recourse to 

flexibility by considering a reserve production capacity at the tactical level, and overtime and 

local subcontracting at the operational level.   

 

The proposed approaches are tested over a six-month planning horizon using data stemming 

from a real-life case study. For each approach, three types of production–distribution plans 

are constructed: (1) without considering a reserve production capacity, (2) while considering 

a fixed reserve production capacity of 20%, and (3) while considering a monthly variable 

reserve production capacity. The lowest supply chain cost is entailed when information 

sharing is coupled with a variable reserve production capacity at the tactical level; the cost 

cutting attains 18% with respect to current practice. Moreover, a sensitivity analysis study, 

reveals that this approach remains superior to the current practice under different changes of 

market conditions. 

 

The complexity of the devised models will soar if we consider lager sized problem instances. 

They cannot be solved using off-the-shelf solvers. Therefore, one possible extension of the 

current research remains in developing more sophisticated solution methods such as 

decomposition-based methods or meta-heuristics to obtain near-optimal solutions. Another 

important perspective of this research lies in developing a stochastic approach to account for 

the uncertainties tied to the demand and the supply.  
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Chapter III.2 

 

Contribution to airline operations planning 
 

The chapter is based on (Kenan et al., 2018a), (Kenan et al., 2018b) and (Kenan et al., 

2018c) 
 

1 Introduction 

 

The airline industry is a highly competitive one and the demand for airline tickets, mainly the 

last years, is showing important steep swings triggered by different type of crises. Seeking for 

higher cost-effectiveness and higher value to offer to their customers, airline companies have 

often opted to reduce operations on non-profitable routes, diversify their business, retire old 

and fuel-inefficient aircraft. Some choose to create alliances, including codesharing 

agreements, with other airline companies, which has proven profitable at times. Conversely, 

some companies enact poor decisions by decreasing their service quality and capital 

investments or by using aircraft with smaller capacity while increasing fares (Sherali et al., 

2013). Each flight that takes off with an empty seat represents a revenue opportunity lost 

forever. Henceforth, now more than ever, airline companies need to implement a proper 

operations planning process to accommodate passenger traffic in a profitable manner.  

 

Airline operations planning process involve the following four main steps: 

 

Flight scheduling: It consists of designing a timetable of flights that specifies the covered 

origins and destinations along with departure and arrival times. It is the component of airline 

planning that has the most prominent impact on airline profits (Bazargan, 2016). The factors 

to be considered during flight scheduling include market demand, available aircraft, crew 

availability, and country and airport rules and regulations.  

 

Fleet assignment: It consists of assigning different aircraft types of different capacities to the 

scheduled flights. This means it has a direct effect on the revenue and operating costs and 

thus is considered to have the second most significant impact on airline profits after flight 

scheduling. These assignments are based on aircraft type characteristics and capabilities, fleet 

type and size, operational costs, and potential revenues given the demand.  

 

Aircraft routing: It consists of determining the set of flight legs that each aircraft will cover 

within a rotation given that it ends at the same location from where it started. To ensure 

safety, each aircraft may spend time in some airports to undergo routine maintenance checks.  

 

Crew scheduling: It consists of assigning different crews to suitable aircraft. In addition, the 

crew scheduling should account for the large number of restrictive rules mandated both by 

the airline governing agencies and the labor unions. Given the relatively high salaries of the 

airline crews, the improvement of the airline crew schedule through the reduction of crew 

connections would translate into significant savings.  

 

Although these four decision problems are closely interdependent, they are generally solved 

sequentially because of their size and complexity. The development of airline planning 

models and solution approaches that integrate some of these decisions has been receiving the 

greatest level of attention from the research community. In this perspective, we intend, first, 
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to develop a formulation that solves the integrated flight scheduling and fleet assignment 

problem as these two steps allow for the selection of the most profitable paths. Moreover, to 

address some important concerns of the planning process, namely delays and related costs, 

this first work has been extended to include aircraft routing. Indeed, delays result in huge 

costs since they translate into increased working hours for the crew, higher fuel consumption, 

loss of passengers, and thus loss of goodwill. Markedly, cutting delays, and more specifically, 

the propagated delays, i.e. those caused by delays that happen upstream in the route of an 

aircraft, and related burden, becomes of great concern to many airline companies. 

 

At this level, it is worth noting that an aircraft type refers to a certain model of aircraft with 

the same cockpit configuration, crew rating, and a given seating capacity. The set of aircraft 

types with the same cockpit configuration and crew rating is referred to as an aircraft family. 

Crew members are usually trained to fly all the aircraft types belonging to a single family. 

Henceforth, crew scheduling decisions cannot be made independently of fleet assignment 

decisions. In addition, crew scheduling should be made 10–12 weeks prior to the flight date 

in order to fulfill the scheduling requirements of the cabin crews as it is mandated by the 

labor union regulations. The addressed decisions are therefore subject to the same timeframe. 

However, 10–12 weeks prior to the flight date, the demand is highly uncertain and so are the 

fares. These sources of uncertainties are henceforth accounted for in the proposed 

formulations.  

 

2 Literature review 
 

Integrated flight scheduling and fleet assignment 

 

Most of the works found in the literature on airline operations planning are in the field of 

airline fleet assignment. These works formulate the problem and solve it based on a flight 

schedule that specifies the covered flight legs and their respective departure times. The 

underlying frameworks for the fleet assignment problem are time-space networks and/or 

connection-based networks. Most of the works aimed at maximizing the airline company 

profit. Some works, mainly the earliest ones, addressed the fleet assignment problem while 

assuming that the demand is deterministic (Abara, 1989; Hane et al., 1995; Clarke et al., 

1996; Rushmeier and Kontogiorgis, 1997; Barnhart et al., 2002; Bélanger et al., 2006). To 

deal with demand uncertainty, some papers opt for a dynamic reassignment of aircraft within 

the same family (also called refleeting) in order to account for a more detailed and reliable 

demand information as departure dates get closer (Berge and Hopperstad, 1993; Fry, 2015; 

Sherali et al., 2005; Jiang and Barnhart, 2009). The main difficulty in refleeting remains in 

how to assign aircraft types belonging to the same family to flights such that the swapping 

respects the practical constraints of the airline network. Indeed, two aircraft can only be 

swapped if they depart from the same airport and have similar departure times. A more 

comprehensive and detailed survey on deterministic fleet assignment and refleeting can be 

found in Sherali et al. (2006). Furthermore, in some other works, the authors have rather 

opted for incorporating the uncertainty in the demand by using stochastic programming (Pilla 

et al., 2008; Sherali and Zhu, 2008; Listes and Dekker, 2005; Cadarso and de Celis, 2017). 

Naumann et al. (2012) also present a two-stage stochastic program to solve the fleet 

assignment problem while accounting for both, the uncertainty in the demand and in fuel 

prices. The work of Yan et al. (2008) devises a stochastic flight scheduling model with 

uncertain demand. These works show that the results obtained by the stochastic approach are 

an improvement over the ones obtained by the deterministic one.  
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In an attempt to increase the revenues through improved flight connection opportunities, 

some works address the integrated flight scheduling and fleet assignment problem 

(Desaulniers et al., 1997; Lohatepanont and Barnhart, 2004; Sherali et al., 2010; Sherali et al., 

2013; Cadarso and Marín, 2013). Although there is common consent on the significance of 

accounting for demand uncertainty in fleet assignment, all the papers that tackle the 

integrated flight scheduling and fleet assignment ignore this realistic problem feature. This 

research attempts to start filling this gap. 
 

Integrated flight scheduling, fleet assignment and aircraft routing 
 

Many works investigate the integration of fleet assignment and aircraft routing with 

extensions in some recent works to include flight scheduling and crew scheduling 

considerations (Desaulniers et al., 1997; Barnhart et al., 1998; Haouari et al., 2009; Haouari 

et al., 2011; Zeghal et al., 2011; Liang and Chaovalitwongse, 2012). Two types of models are 

distinguished: (1) leg-based models; and (2) itinerary-based models. Leg-based models are 

well justified for small- to medium-sized airline companies or also low-cost companies 

operating point-to-point networks as most of the itineraries served in this case include a 

single flight leg. Oppositely, operations planning of large airline companies should rather 

resort to itinerary-based models because they use a hub-and-spoke network and commonly 

serve itineraries that include several flight legs.  

 

Some works integrate flight schedule design, fleet assignment and aircraft routing (Sherali et 

al., 2013; Gürkan et al., 2016; Jamili, 2017). All these works consider that the demand is 

deterministic. Jamili (2017) formulates a robust mixed integer mathematical model to account 

for traveling time uncertainty caused by disturbances. The robustness is achieved through the 

adequate addition of buffer times while defining the departure times of aircraft. The proposed 

model in (Gürkan et al., 2016) aims at minimizing costs including passengers spill (lost 

demand), delay costs, fuel and carbon emission costs while considering the cruise times of 

each flight and ensuring a pre-specified passengers’ connection service level. Nevertheless, to 

the extent of our knowledge, no work has considered uncertainty in the demand while solving 

the integrated flight scheduling, fleet assignment and aircraft routing problem. Moreover, 

even though flight disruptions are a major concern for the airline industry, none of the 

previously cited works incorporating aircraft routing decisions has tackled this issue, with the 

exception of Jamili (2017) and Gürkan et al. (2016).  

 

Some works attempt to minimize flight delays through robust aircraft routing and and/or 

flight retiming. Lan et al. (2006) formulate a stochastic discrete model to minimize the total 

propagated delay in the flight schedule. They consider that flight total arrival delay is the sum 

of its independent and propagated delay, and that the latter can be approximated using log-

normal distribution. In (Ahmadbeygi et al., 2010), the authors propose a model that 

minimizes the total propagated delay by retiming flight departure times and hence 

redistributing the existing slack in the airline schedule. Yan and Kung (2016) propose a 

robust optimization model that minimizes the maximal possible total propagated delay while 

assuming that flight leg delays lie in a pre-specified uncertainty set. Marla et al. (2018) 

compare three classes of models for aircraft routing, namely chance-constrained 

programming, robust optimization, and stochastic optimization. The authors conclude that 

three approaches can be used to mitigate the propagated delay and enhance the airline on-

time performance.  
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As can be noted, the amount of work in the literature that integrates aircraft routing with 

flight scheduling and fleet assignment is sparse, and even rarer are those that consider 

propagated delay. Although Jamili (2017) and Gürkan et al. (2016) address the integrated 

flight scheduling, fleet assignment and aircraft routing with delay considerations, they do not 

consider the maximization of airline profit with explicit consideration of delay costs. 

Moreover, they do not consider the uncertainty in the demand.  

 

The objective of airline operations planning is to maximize the profit which is substantially 

impacted by demand variability and disruptions. To achieve this objective, it is required to 

account for demand uncertainty and also flight delays in the integrated flight scheduling, fleet 

assignment and aircraft routing. Given that no work addresses this problem, this research is 

designed to start filling this gap. In addition, some features pertaining to small and medium 

sized airline companies, such as the need to resort to deadhead flights in order to operate 

profitable flights, are considered. 

 

3 Integrated flight scheduling and fleet assignment under uncertainty 
 

3.1 Problem description and formulation 

 

The main challenge of the integrated flight scheduling and fleet assignment pertains to the 

high uncertainty of the demand 10–12 weeks prior to the flight date. On the one hand, 

assigning an aircraft with a smaller seating capacity than the realized demand will result in 

lost customers and a missed opportunity. On the other hand, assigning an aircraft with a 

larger seating capacity than the realized demand will result in empty seats and higher 

operational costs. Moreover, this uncertainty in the demand incurs uncertainty in fare prices. 

To overcome this issue, a two-stage stochastic programming model was devised where the 

randomness in demand and fares are accounted for through the consideration of the set of 

plausible scenarios and their probabilities. The first-stage variables, are scenario-independent, 

and pertain to the assignment of a fleet family (for instance, Boeing B737 family) to each 

scheduled flight leg, while the second-stage variables, are scenario-dependent, and include 

the refinement of this decision by selecting a fleet type (for instance, Boeing B737-300 type 

belonging to the Boeing B737 family) for the flight leg based on demand and fare 

realizations. Given that aircraft belonging to the same family have the same cockpit 

configuration and crew qualification requirements, the assignment of a fleet family to each 

scheduled flight leg 10–12 weeks prior to the flight departure date will allow for crew 

scheduling. The decision on fleet type assignment can be later revised based on more 

accurate forecasts of the demand. This greater flexibility will foster a more effective decision-

making plan that allows for achieving higher profits. 

 

In the first stage, exactly one fleet family is assigned to each of the mandatory flight legs and 

at most one fleet family is assigned to each of the optional flight legs. In the second stage, 

each scheduled flight leg is assigned to exactly one fleet type from the fleet family to which it 

has been assigned. In addition, each fleet type is considered to have up to two different fare 

classes each with its own capacity and demand. Each airport is characterized by a maximum 

available number of arrival and departure slots per hour per day. It is particularly important to 

consider this airport capacity constraint for arrivals and departures in busy airports during 

rush hours. The demand and fares follow a normal distribution (Listes and Dekker, 2005; 

Zhu, 2006).  
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The objective function aims at maximizing the expected profit. Some constraints ensure that 

exactly one fleet family should be assigned to each of the mandatory flight legs while others 

specify that at most one fleet family is assigned to each of the optional flight legs. If a flight 

leg is assigned to a given fleet family, some constraints enforce that this flight leg is assigned 

to a fleet type of the same family. Other model’s constraints are aimed at accounting for the 

violation of fleet size. The model also includes aircraft and airport capacity constraints and 

domain constraints.  

 

For the details of the mathematical formulation of the proposed two-stage stochastic 

programming model we refer the reader to (Kenan et al., 2018a). 

 

3.2 Solution methodology 
 

Real-life situations involve a large number of plausible scenarios which make it extremely 

difficult to solve this two-stage stochastic programming model. To overcome this challenge, 

the SAA algorithm was used. As noted, the main advantage of the SAA algorithm is its 

ability to find near-optimal solutions while considering samples comprising a smaller number 

of scenarios. Needless to detail the different steps of this algorithm that starts by the 

approximation of the true stochastic model by the SAA model. Indeed, the used SAA 

algorithm is an adjusted version of the one presented in section 3 of chapter II.1. The details 

of the algorithm can be found in (Kenan et al., 2018a). 
 

 

3.3 Main Results  
 

Data description 
 

The base case is derived from an international airline’s flight network. The airline company 

may cover up to 228 flight legs involving more than 45 destinations. To cover these flights, a 

fleet of 59 aircraft is deployed. The latter is divided into 4 fleet families and 5 fleet types: 

A320-200, A319-100, A300-600, B737-500, and B737-600. Each fleet type has two cabin 

classes, namely the business class and the economy class. Each aircraft type offers a fixed 

number of available seats for each cabin class. The itinerary-level demand and the fare 

associated with each cabin class are generated using normal distribution truncated at zero 

(Ahuja et al., 2007). The average of the itinerary-level demand was randomly generated using 

a discrete uniform distribution on the interval [0, 118] for the economy class and on the 

interval [0, 14] for the business class. Note that 118 and 14 represent around 50% of the   

A300-600 seating capacity for the economy and the business class, respectively. The latter is 

the aircraft type having the largest seating capacity for both cabin classes. The standard 

deviation of each itinerary-level demand is set to 200% of its average value. The average fare 

prices are collected from the airlines website by simply proceeding with a booking and noting 

down the price of the flight ticket. The standard deviation of the fare is set to 50% of its 

average value. The cost of assigning an aircraft type to a given flight leg is set to 15% of the 

maximum average revenue that can be generated by economy fare class of the considered 

aircraft type. In the base case, 30% of the flight legs are optional. Monte Carlo simulation is 

used to generate the scenarios based on the probability distribution of the demand and the 

fare associated with each cabin class. 
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Convergence of the SAA algorithm 

 

We begin with verifying the convergence of the proposed SAA. For that, the SAA algorithm 

is run while progressively increasing the number of scenarios from 5 to 200. Moreover, the 

algorithm is run for 10 replications and considers a sample of 10000 scenarios to obtain a 

better estimate of the objective function value (lower bound). For each sample size, the best 

lower bound (objective function value of the best-found solution) and upper bound, and the 

computational time to obtain them were noted. Figure 17 shows how the upper bound and 

best lower bound change as sample size increases. Both converge toward an optimal solution 

of the true stochastic problem as the number of scenarios increases. Figure 17 clearly 

indicates that the optimality gap becomes tight enough starting from a sample size of 100 

scenarios.  

 
Figure 17. Convergence of the SAA algorithm 

 

A good trade-off between the quality of the solution and the computational effort needed to 

obtain it can be achieved for a sample size of 100 scenarios. Indeed, with this sample size, a 

near-optimal solution with an optimality gap less than 1% is obtained within an acceptable 

computational time (less than 1 h). Additionally, the quality of the solutions obtained while 

considering samples of size 150 and 200 scenarios are slightly better than the one obtained 

with a sample size of 100 scenarios whereas the computational time needed to obtain them is 

much higher than the one required to solve the SAA problem with 100 scenarios. More 

importantly, these results point out that the SAA algorithm can be used in practical cases 

pertaining to medium- and small-sized airline companies such as the airline considered in this 

work. 
 

Sensitivity analysis 

 

An important aspect of the planning process of any airline company is checking whether 

existing flight legs or potentially new flight legs are profitable or not. This can be done by 

introducing these flight legs into the optimization model as optional flight legs and 

determining whether aircraft will be assigned to them or not. This experiment was divided 

into two parts. Part one consisted of varying the percentage of optional flight legs from 10 to 

30% whereas part two consisted of elevating this percentage from 30 to 50%. Another 

difference between part one and part two remains in the considered upper bounds on the 

number of arrivals and departures at the capital’s airport, respectively. The experiments in 

part two consider the upper bounds used in the base case. Given that with these values the 

problem becomes infeasible when only 10% of the flight legs are set optional, higher upper 

bounds on the number of arrivals and departures are accommodated while carrying out the 

experiments in part one. As expected, the total number of flight legs between part one and 

part two drops as it can be seen from table 14. This is mainly due to two reasons: (1) the total 

number of mandatory flight legs decreases as the percentage of optional flight legs increases, 
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and (2) the consideration of more optional flight legs gives the possibility of not including in 

the schedule those that are non-profitable.  
 
 

Table 14. Effect of the percentage of optional legs  

on the number of scheduled flights and profit  

 
                                                           *Base case 

 

Demand on specific flight legs is highly variable. As the seasons of the year change, the 

demand varies significantly. Moreover, demand variation can be influenced by other external 

factors such as the COVID-19 crisis. Therefore, it is very important to model these changes 

by varying the standard deviation of the demand. Table 15 shows that even though the total 

number of scheduled flight legs is almost the same in all cases, the profit increases when the 

standard deviation of the demand increases. This can be explained by a higher passenger load 

factor that arises when the standard deviation of the demand increases. This means that the 

aircraft are on average better filled when the standard deviation of the demand increases. This 

can be explained by the fact that, in most of the cases, the probability that the demand is 

greater than a given aircraft capacity increases with the standard deviation.  

 
Table 15. Effect of the standard deviation of the demand  

on the number of scheduled flights and profit 

 
 

4 Integrated aircraft routing with consideration of propagated delay 
 

4.1 Problem description and formulation 
 

The integrated flight scheduling and fleet assignment determines which aircraft will serve 

which scheduled flight leg in order to achieve the match between aircraft seating capacity and 

demand that maximizes the profit. However, the obtained schedule and assignment can later 

result in aircraft routes with high delays given the scheduled flight departure times, 

turnaround times and independent delays. Evidently, these delays propagate and result in 

many disruptions and in some extreme cases might cause flight cancellation. In order to 

contain the delay, and resulting disruptions and burden, we extend here the previous research 

by integrating aircraft routing with flight scheduling and fleet assignment. The objective is to 

determine based on the demand, the available fleet and the independent delay, the flight legs 

to include in the schedule, the aircraft to perform each served flight leg and the route of each 

aircraft that maximize the profit while trying to reduce the delay. Without this integration, it 

is possible to observe excessive delays because, for example, the flight schedule includes a 

large number of optional flight legs.  
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A two-stage stochastic mixed-integer programming model for the integrated flight 

scheduling, fleet assignment and aircraft routing problem under demand uncertainty 

(hereafter referred to as OFAR) is formulated. The model aims at maximizing the airline’s 

profit that is determined by the difference between the expected revenue and the sum of the 

different costs including the delay cost. Flight scheduling, fleet assignment and aircraft 

routing decisions should be made ahead of time, and hence, they constitute the first-stage 

decisions. The number of passengers accepted on each flight leg represent the second-stage 

decisions given that they are determined based on demand realization. At this level, it is 

worth noting that the proposed model and solution approaches will be applied to a medium-

sized airline company where most of the served itineraries involve a single flight leg. In 

addition, the proposed model considers deadhead flights in order to operate profitable flights, 

which is a practice mainly used by small and medium-sized airline companies. Under this 

practice, an airline company let some aircraft take passive flights (i.e. fly empty) from one 

airport to another to serve profitable flights. 

 

The objective function aims at maximizing the profit for the airline company which is the 

difference between the expected revenue from serving all the scheduled flights and the sum 

of: expected costs incurred from delay over all the flight legs, the costs incurred from 

assigning a specific aircraft to a flight leg, and the cost of deadhead flights. With respect to 

the stochastic programming model, introduced in subsection 3.1, OFAR includes constraints 

that allow for determining the actual departure time of each flight leg and the corresponding 

delay cost. These constraints consider the independent delay, the scheduled departure and 

arrival time of each flight leg, the turn-time and the flight duration associated with the aircraft 

assigned to the flight leg. The delay cost associated with a given flight leg is weighted by its 

revenue, which is scenario-dependent, as it depends on the number of accepted passengers, 

and so the realized demand and aircraft capacity. 

 
4.2 Solution methodology 

 

It was not possible to solve the SAA model approximating OFAR while incorporating 

medium-sized samples including 100 demand scenarios using commercial software. This 

complexity is mainly entailed by the large number of constraints it includes. To overcome 

this complexity issue, we reformulate OFAR using a column-based formulation called the 

master problem and hereinafter referred to as CGAR. Each column of CGAR represents a 

feasible route r served by an aircraft type a. Indeed, aircraft of the same type are identical as 

they have the same capacity for each fare class. Hence instead of assigning a route to a 

specific aircraft, we assign it to an aircraft type while enforcing the respect of the initial 

aircraft stations. CGAR aims at selecting a set of feasible aircraft routes, i.e. a set of columns, 

that optimizes the objective function.  

 

For each column involved in the CGAR, the flight legs included in a feasible route and the 

aircraft type serving that route are known. While assuming that the demand for each fare 

class on each flight leg follows a truncated normal distribution (Listes and Dekker, 2005; 

Zhu, 2006), the closed form of the expected number of passengers accepted in each fare class 

can be calculated by numerical integration over the truncated normal distribution function. It 

follows that the expected revenue for each flight leg included in each route can be determined 

beforehand and input in CGAR as a parameter. Similarly, knowing the order in which the 

flight legs belonging to a route are performed and the expected revenue, the delay cost 

associated with each column is determined and input as parameter in the CGAR.  
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Remarkably, the number of columns of CGAR is extremely large (because the number of 

feasible routes is huge) and similarly to OFAR, CGAR cannot be solved directly using a 

commercial solver. Hence, we start by solving the linear relaxation of the CGAR (hereinafter 

denoted by LCGAR) using column generation. Henceforth, only a subset of LCGAR columns 

(i.e. a subset of feasible routes) is considered. The solved problem is called the restricted 

master problem (RMP) associated with LCGAR. 

 

First, a starting set of columns is determined to initiate the column generation-based solution 

procedure. Afterwards, additional new columns are generated by repeatedly solving the 

pricing problem called the subproblem. The objective of the subproblem is to construct a 

column with minimum reduced cost. If the minimum reduced cost is negative this means that 

the obtained column is added to the RMP because its addition can increase the airline profit. 

Oppositely, if the reduced cost is positive then the obtained column when added to the RMP 

cannot increase the airline profit. This means that the optimal solution of the RMP which is 

also an optimal solution of LCGAR has been reached. 

 

Interestingly, the subproblem can be solved separately for each aircraft type. Therefore, three 

column generation-based approaches are proposed. The main difference between all three 

approaches is when to move from one subproblem to the next. This will greatly affect the 

number of columns generated and, hence, the computational time.  

 

Approach one solves each subproblem until it completely prices out (i.e. produces a positive 

objective value) and then moves on to the next subproblem. The algorithm terminates when 

all subproblems price out.  

 

Approach two solves each subproblem one time, updates the dual variables from the RMP, 

and then moves on to the next subproblem. The algorithm terminates when all subproblems 

price out.  

 

Approach three starts by solving the RMP and then inserts the dual variables into all 

subproblems. When all subproblems are solved, the newly generated columns will be inserted 

into the RMP and solved once again. This process is repeated until all five subproblem price 

out.  

 

Obviously, the optimal expected profit obtained for LCGAR represents an upper bound for 

both CGAR and OFAR. Additionally, if the optimal solution of LCGAR is integer then it is 

also an optimal solution of CGAR and OFAR. However, if the solution of LCGAR is 

fractional, then it is not a feasible solution of CGAR and OFAR. In this case, a near-optimal 

solution of CGAR and OFAR will be constructed by directly solving CGAR while 

incorporating the generated columns associated with the optimal solution of LCGAR. Given 

that only a subset of the columns (feasible routes) is involved in solving CGAR, the 

computational complexity and size of the problem are significantly reduced.  

 

The mathematical formulation of OFAR, CGAR and the pricing problem, as well as the 

algorithms tied to the column generation based solution scheme can be found in (Kenan et al., 

2018b).  
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4.3 Main results 

 

The conducted experimentation relies on the data of the base case introduced in subsection 

3.3. Four problem instances with 50, 100, 150 and 228 flight legs are tested. Note that the 

base case is the one with 228 flight legs.  

 

Table 16 compares the three proposed approaches. Given the number of aircraft types, five 

subproblems are considered. For the two instances with the largest data set sizes, Approach 

two outperforms Approach three. This happens for two main reasons, (1) Approach three 

produces additional unnecessary columns since the dual variables do not update regularly and 

(2) the nature of the algorithm of Approach three which execution involves many loops. 

However, it is worth noting that on a cluster computer the subproblems of Approach three 

may be solved in parallel. In this case, the computing time of Approach three will be 

significantly reduced and hence it would outperform Approach two. 

 
Table 16. Comparison between the three column generation based approaches 

 
 

A sensitivity analysis is conducted in order to study the effect, of the fleet size and the 

independent delay, on the profit and other performances. For that, first, the number of aircraft 

was increased from 20 in increments of 10 until the actual fleet size of 59 is reached. The 

results are presented in Table 17. The increase in the number of aircraft results in an increase 

in the number of routes that can be served. This leads to more flight legs (out of the 228) 

being served if they tend to be profitable. The results show that for a fleet size of 20 aircraft 

the airline company is only able to serve 85 out of the 228 flight legs. When the fleet size is 

increased to thirty, 39 additional flight legs that are profitable will be served by the additional 

10 aircraft. Certainly, these additional aircraft also incur additional operating costs. It is, 

however, worth noting that this sensitivity analysis is not intended to determine the fleet size, 

as the latter relates to the strategic level decision which is beyond the scope of this research.  

 

The most important results in table 17 are the variations of the cost associated with the delay. 

As can be noted, when the number of aircraft increases, the average cost associated with 

delay decreases. The indirect effect of these delays is the company’s image is tarnished and 

some customers might be lost to other competitors. 
                                    

Table 17. The effect of increasing the number of aircraft  

on profit and propagated delay 
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Second, we investigate the effect of an increase in the independent delays on the results. As 

mentioned in Section 3.2, independent delay is caused by conditions that affect a specific 

flight leg such as crew delay, weather conditions, and congestion on airport runways and 

terminals. For these reasons, the value of the independent delay for each flight leg is based on 

historical data. In this experiment, the values of the independent delays used to produce the 

results shown in table 18 were randomly generated. The obtained results show that 

independent delays have a huge impact on profits. Recall that independent delays might 

propagate and cause delays in flight legs downstream of the aircraft route. Therefore, the 

bigger the independent delay early in the route, the higher the chances are that one flight leg 

down the route will have to be cancelled, thus canceling the entire route. This is clearly seen 

in the steep drop in profit with every increment of one hour to the independent delay. The 

profits of the airline company drop to a third of its original value as the independent delay 

varies from (0–2) h up until (0–8) h.  

 
Table 18. Effect of increasing the independent delay  

on the profit and other performance measures 

 
 

4.4 Integrated aircraft routing with consideration of codesharing 

 
A codeshare agreement permits one or several airlines to market a flight that is operated by 

another carrier. The former airlines accommodate their own number for the codeshared flight 

and are called marketing carriers while the latter are called operating carriers. Under such 

agreement, airline companies can offer their customers a wider range of itineraries and 

regional connections at minimal cost. In addition, such agreements might contribute to reduce 

schedule delay. Codeshare agreements are generally signed between airline companies for a 

specified period of time. Although many types of codeshare agreements exist (Adler and 

Hanany, 2016), the used one by the considered legacy airline company is the hard block 

agreement. Under this type of agreement, the marketing carriers swap or purchase a pre-

agreed set of seats on the operating airline’s flight, normally per season. Therefore, it is 

common to see that sometimes a route or a flight is added and dropped several times during 

the agreement period whereas others are codeshared for one quarter and then dropped forever 

(Du and Starr, 2015).  

 

Even though there is abundant literature on codesharing from a strategic perspective, the 

works investigating codesharing related decisions at the tactical-operational level are scant. 

To start filling this gap, our previous research on integrated flight scheduling, fleet 

assignment and aircraft routing is extended in order to explore the possibilities this type of 

alliance, and more specifically the hard block agreement, holds. In particular, this extension 

allows for deciding whether to continue/start or drop a flight codesharing for the next quarter 

and the number of seats to be taken under block agreement with the involved operating 

carrier.  

 

More details on this extension can be retrieved in (Kenan et al., 2018c). 
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6 Concluding remarks and future research 
 

First, a two-stage stochastic programming model for the integrated flight scheduling and fleet 

assignment under demand and fare price uncertainty was developed. A near-optimal solution 

of the problem arising at a medium-sized legacy airline company was found using SAA 

algorithm within a reasonable time. This research has been then extended to include aircraft 

routing and so account for propagated delay, which remains a major concern of several 

legacy airline companies. This extended model proves to be of high complexity and hence a 

commercial solver fails to solve the corresponding SAA model for medium-sized instances. 

Three column generation-based approaches were developed and were able to solve the 

problem optimally or near-optimally within a reasonable time. Furthermore, sensitivity 

analysis reveals that increasing the number of aircraft will have a huge impact on the profit of 

the company. It also shows that larger independent delays have the biggest impact on the 

profit of the company.  

 

This research has been further extended by considering codeshare agreements in the 

integrated flight scheduling, fleet assignment, and aircraft routing in an optimization context. 

Integrating codeshare agreements with these three processes helped in deciding which flight 

legs are best to be codeshared and how many seats should be purchased by the marketing 

carrier.  

 

Many possibilities exist for extending this work. First, it can be extended by considering 

flexible departure windows which may result in a schedule with even further decreased delay 

costs. Second, in addition to the current consideration of delays, aircraft routing can also 

consider maintenance requirements. By knowing the exact path of an aircraft, it is possible to 

decide on the ending station of each day along the route to make sure the corresponding 

airport has a maintenance station. Also, integrating crew scheduling as the fourth and final 

process in airline planning is essential in achieving a fully integrated model and avoiding sub-

optimal solutions. This full integration comes along with increased profits and customer 

satisfaction but at the expense of increased model complexity and the need for more 

sophisticated solution methods. Furthermore, one of the shortfalls of the extension that 

incorporates codesharing agreements remains in the fact that the demand of the operating 

carrier and the demand of the marketing carrier were assumed independent. An interesting 

prospective of this research consists in integrating a new demand model based on the 

customers’ demand for both the operating and marketing carrier with consideration of 

competition. 
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Chapter III.3 

 

Contribution to maritime logistics 
 

The chapter is based on (Al-Dhaheri et al., 2016a), (Al-Dhaheri et al., 2016b) and (Kenan et 

al., 2022) 

 

1 Introduction 

 

Globalization has driven a steep increase in the exchange of goods amongst countries. This 

has driven a significant growth in the volume of transshipped containers worldwide as 

approximately 90% of the incurred international transport is ensured through maritime 

shipping (UNCTAD, 2018). Therefore, container terminals play a crucial role in the 

efficiency of the global logistics network and, more widely, in the success of the global 

supply chain. Container terminals owe operate in the most efficient way, by delivering timely 

and rapid service to vessels, at the least possible cost. Providing container terminals with 

models and methods that support them in shortening vessel handling time and increasing 

terminals’ throughput is essential to respond to the incrementing container streams through 

the universal supply chain system and even achieve a competitive advantage. This explains 

the great interest given by researchers, the last two decades, to the optimization of seaport 

operations as demonstrated by the literature review presented by Bierwirth and Meisel 

(2010), Carlo et al. (2015) and Bierwirth and Meisel (2015).  

 

Container terminals can be divided into four main areas: the berth, the quay, the yard and the 

gate. The berth and the quay areas are considered seaside, while the yard and the gate are 

considered landside (Carlo et al., 2015). Once a vessel is berthed, three main operations are 

processed: loading/unloading containers between vessels and landside trucks, transporting 

containers between berths and the storage yard and, loading/unloading containers between 

landside trucks and storage yard. The vessel is divided into several bays and each container is 

unloaded from or loaded onto a given bay according to the stowage plan; at any time, at most 

one QC can perform operations on a bay. Containers are temporarily stored in the container 

stacking yard. Import containers, after being discharged from the vessel, are transported from 

the quay to the stacking yard where they stay till being delivered to customers through the 

gate. Transshipment and export containers are stored in the stacking yard until the vessel that 

ships them to their next destination arrive. They are subsequently transported to the quay and 

loaded onto the vessel. Container transport from the quay to the stacking yard and vice versa 

is ensured by shuttle vehicles such as internal trucks, automated guided vehicles and straddle 

carriers. For a more comprehensive overview on the layout of container terminals and, the 

handling and transport equipment, the reader can refer to (Steeken et al., 2004) and 

(Brinkmann, 2011).  

 

Minimizing the handling time of a vessel relies on a variety of interrelated seaside and 

landside operational decisions. Seaside decisions include the allocation of berths to arriving 

vessels (known as the Berth Allocation Problem and referred to as BAP), the assignment of 

QCs to vessels (known as the Quay Crane Assignment Problem and referred to as QCAP) 

and the scheduling of QC loading/unloading operations (known as the Quay Crane 

Scheduling Problem and referred to as QCSP). Landside decisions bear on the scheduling of 

https://www.sciencedirect.com/science/article/pii/S1366554522001132?casa_token=T82UdV1cZ7oAAAAA:1Aa0JZcDapPVL0WoMXThWEckU_qplUPosA3yo799w7DvJpaCfH5gbzcatoMEJHQBChsk_ZAh2PqL2A#b0735
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shuttle vehicles, the allocation of a position in the stack to containers and, the scheduling of 

yard cranes. 

 

Over the last decade, a major emphasis of the literature in maritime logistics has been placed 

on the optimization of seaside operations because they involve the utilization of the most 

expensive and critical resources of a container terminal: the berths and the QCs. In our 

research, the focus was placed on two problems, the QCSP and the integrated QCAP and 

QCSP, hereafter referred to as QCASP. 

 

The QCSP considers a set of containers to be discharged and/or loaded from and/or onto a 

single berthed vessel, according to a stowage plan, by a set of assigned QCs. A solution to 

this problem consists in defining the containers to be handled by each QC and the start time 

of each QC operation. The objective is to minimize the handling time of the vessel which is 

given by the latest completion time of all discharging and loading operations (the so-called 

vessel makespan). QC scheduling is subject to various practical constraints. For example, to 

convey containers, QCs move along the quay on a single rail track and are not allowed to 

cross one another, referred to as non-crossing constraint. Moreover, in order to ensure safe 

operation, a minimum distance (in number of bays) must be kept between any adjacent QCs, 

referred to as safety margin constraint. The QCASP extends the QCSP by considering several 

berthed vessels and the decision on the QC to assign to each of them.  
 

Although there is an abundant literature on the QCSP and the QCASP (Bierwirth and Meisel, 

2010; Carlo et al., 2015; Bierwirth and Meisel, 2015; Al-Dhaheri et al., 2016a; Al-Dhaheri et 

al., 2016b; Kenan et al., 2022 ), one can note that: 

- Some realistic features of the QCSP have been seldom incorporated in the proposed models. 

For example, despite the importance given by practitioners to vessel stability in crane 

scheduling, there is little research that considers this constraint. Similarly, safety margin 

constraints and QC traveling time have not been considered in most of the works. 

- Most of the papers that address the QCSP focus on deterministic optimization models and 

do not consider the dynamics and stochasticity inherent to container terminal operations.  

- The extant works do not integrate environmental considerations. A recent stream of research 

has been devoted to carbon emission and energy consumption at ports though (Bjerkan and 

Seter, 2019). 
 

At this level, it is worth stressing the importance of integrating environmental aspects in port 

operations. Indeed, container terminals are presently facing a pressure, like never before, to 

reduce their carbon emissions. This pressure is entailed by the commitment of the 

International Maritime Organization (IMO) to reduce international shipping emissions by at 

least 50% by 2050 compared to 2008 (International Maritime Organization, 2018). It can be 

followed by the enforcement, in the medium- or long-term, of carbon mitigation policies such 

as carbon tax and carbon cap-and-trade (Parry et al., 2018; Kachi et al., 2019). 

 

This work is aimed at contributing to fill the above-mentioned three research gaps. 

 

For a more thorough literature review on seaport operations, we refer the reader to (Bierwirth 

and Meisel, 2010; Carlo et al., 2015; Bierwirth and Meisel, 2015; Al-Dhaheri et al., 2016a; 

Al-Dhaheri et al., 2016b; Kenan et al., 2022).  

 

 

 



 

103 

2 The quay crane scheduling with consideration of stability constraints 

 

2.1 Problem description and formulation 

 

The considered QCSP tackles a single vessel divided into a set of bays. The workload is 

expressed in number of work units, where a work unit is a considered fixed number of 

containers. The workload on the vessel can be processed by a set of identical QCs. Each task 

refers to container unloading or loading operations to be handled on a bay. Preemption is 

allowed since a single bay can be assigned to multiple QCs. Nevertheless, at any time, at 

most one QC can operate on a bay. Each QC has an initial bay position and is ready to 

commence service at time 0. All QCs are mounted on the same track and can move from one 

bay to another without crossing. The traveling time between two consecutive bays is 

constant. A safety margin of 𝜈 bays is maintained between each two adjacent QCs. In order to 

enforce non-crossing and safety margin constraints, a temporal distance should be 

incorporated in the schedule to separate the processing of containers located in two different 

bays when processed by two different QCs. The latter is adapted from (Bierwirth and Meisel, 

2009).  

 

One of the main contributions of this research remains in incorporating vessel stability 

constraints in the QCSP. Indeed, the stability of the vessel is violated if the vessel’s center of 

gravity (CG) shifts too much toward one side during the loading or unloading process. This 

shift results from workload distribution along the vessel and the sequence of operations. 

Henceforth the incorporation of vessel stability constraints allows for obtaining QC schedules 

that can be used in practice. In particular, the proposed model ensures the longitudinal 

stability of the vessel throughout the whole service process. While assuming that initially the 

vessel’s CG is located at its middle point, the shift of the vessel’s CG is determined for each 

time unit based on the distribution of the finished work along the vessel, the average weight 

of a work unit and the weight of the vessel before starting operations. Nevertheless, the 

model can be easily accommodated to consider other possible initial positions of the vessel’s 

CG. Vessel stability constraints allow to respect the permitted shift of the CG of the vessel.  

 

Adopting a time-based formulation, the QCSP at hand is modelled as a MIP. The objective is 

to minimize the makespan of the schedule in order to provide the fastest possible service to 

the vessel and increase container terminal throughput. Beyond the constraints allowing for 

the respect of the above-mentioned problem features, some constraints are added in order to 

identify the completion of a task based on the processed workload on each bay and determine 

the makespan, i.e. the latest completion time among all bays involved in the service.  

 

Since it considers non-crossing constraints, the considered QCSP is NP-hard (Guan et al., 

2013).  

 

First, in order to strengthen the MIP formulation and speed up the solving time, valid cuts 

related to the safety margin condition are added. The latter imply that at any time, at most one 

QC can operate on any +1 consecutive bays.  

 

Second, unidirectional QC scheduling, in which the QCs do not change the moving direction 

after the initial repositioning and have identical directions of movement either from upper to 

lower bays (referred to as right-to-left QC movement) or vice versa (referred to as left-to-

right QC movement), is the preferred policy in practice (Legato et al., 2012). Reducing the 

search space to unidirectional schedules might allow for finding a good solution to the 
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original problem within reasonable computational time (Bierwirth and Meisel, 2009). 

Therefore, it might represent a good strategy for solving the considered QCSP heuristically. 

This can be achieved by solving, for example, the proposed MIP while adding the constraints 

that restrict the direction of QCs’ movement. Evidently, amongst the two unidirectional QC 

schedules, we retain the one with the lowest makespan. However, even when we reduce the 

search to unidirectional schedules, an optimal solution (using off-the-shelf solver) can only 

be reached, within a reasonable computational time, for small-sized instances. That is why we 

propose a Genetic Algorithm (GA) based heuristic to solve this problem.  

 

2.2 Solution approach 

 

The general structure of the GA is illustrated by figure 18. It starts by randomly generating an 

initial population of chromosomes. Each chromosome encodes a solution of the problem and 

entails a fitness value derived from the value of the objective function for that solution. In the 

proposed GA, a chromosome is a matrix whose columns represent the bays of the vessel 

while rows represent the QCs. Each element of this matrix specifies a bay’s work units 

assigned to a QC.  

 

As the proposed GA embraces the strategy of searching a good solution to the considered 

QCSP within the space of unidirectional schedules, the sequence of bays to be processed by 

each QC is thus determined based on a unidirectional operating mode. First, the left-to-right 

and the right-to-left unidirectional schedules that account for the travel time and the non-

interference constraints, are represented through a properly defined disjunctive graph model. 

Let us denote, hereafter, these schedules by SL and SR, respectively. The makespan of each 

schedule is determined by the longest path of the corresponding disjunctive graph. Hence, the 

Critical Path Method (CPM) is then used to determine the longest path and so the makespan 

of each schedule. We consider that in SL and SR the QCs perform their operations on bays at 

their earliest start time (i.e. QCs do not stay idle while they can start processing a bay). If SL 

and SR violate vessel stability constraints, the chromosome is discarded by setting its fitness 

value to 0. If vessel stability constraint is respected by SL and SR, then the schedule that 

minimizes the makespan is retained. Otherwise, the feasible schedule among SL and SR is 

retained. Let us denote by S the retained schedule for the chromosome. The fitness of the 

chromosome is set as follows: 𝐹 =
1

𝐶𝑚𝑎𝑥(𝑆)
 

 

 

 
Figure 18. Procedure of the proposed GA 

 

Then, during each iteration step (referred to as “generation”), crossover and mutation are 

employed to breed offspring (new chromosomes) from two parent chromosomes, that are 
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selected based on their level of fitness. The quality of the population should keep improving 

along with generations through the selection process of better fitted genes as occurs in the 

natural evolution of individuals (Goldberg, 1989). The GA is run until a suitable solution is 

found or a certain number of iterations (generations) is reached.  
 

2.3 Lower bound for the assessment of solution quality 
 

A combined lower bound, LB=max{LB1, LB2}, where LB1 and LB2 represent two lower 

bounds of the considered QCSP (without including any restriction on the search space) is 

determined. This is particularly needed to assess the quality of the GA solution for problem 

instances that cannot be optimally solved within reasonable computational time, and for 

which linear programming relaxation cannot provide a good lower bound. 
 

LB1 is determined by a dynamic programming algorithm (LBA), adapted from the dynamic 

programming algorithm ALB, proposed in (Guan et al., 2013). The foundation of ALB stems 

from the observation that when preemption is allowed and safety margin and vessel stability 

constraints are not considered, in an optimal solution, each QC will serve consecutive bays 

(Guan et al., 2013). Under this scenario, ALB provides a lower bound for the preemptive 

QCSP and therefore a lower bound for the preemptive QCSP that considers safety margin and 

vessel stability constraints. In LBA, we improve ALB by incorporating the range of bays that 

can be served by each QC. Indeed, this allows to exclude some of the schedules that do not 

respect the safety margin from the search space. Nevertheless, this will not guarantee finding 

a solution that satisfies all safety margin constraints. 

 

As highlighted by Lu et al. (2012), in a feasible schedule at any time there can be at most one 

QC processing any +1 consecutive bays. Building on this finding, the maximum time to 

process the work units of any +1 consecutive bays (referred to as LB2), represents another 

lower bound of the makespan.  

 

More details on the proposed MIP, GA and LBA can be found in (Al-Dhaheri et al., 2016a). 

 

2.4 Main results 

 

The performance of the proposed MIP formulation when solved with GAMS and the 

effectiveness of the developed GA are evaluated by solving small, medium, and large-sized 

problem instances.  

 

In all instances, QCs are assumed to be equally located on the vessel at time 0. The traveling 

time of a QC between adjacent bays is set to one time unit and the safety margin is set to one 

bay. For each QC, the service rate is set to one work unit per time unit. The permitted shift of 

the vessel’s CG is assumed to be of one bay length. The average weight of a work unit is set 

to 1 and the weight of the vessel before starting operations is assumed to be around 4 times 

the total number of work units on the vessel. 

 

Small-sized problem instances 

 

Thirty small-sized instances are considered. The number of QCs ranges from 2 to 5 and the 

number of bays ranges from 8 to 12. For each number of QCs and bays, five problem 

instances, with different workload at each bay, are generated. The workload of each bay in 

number of work units is randomly generated from a uniform distribution of U(0,20). 
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GAMS is used to find the optimal objective value of the unidirectional schedule and 

wherever possible, the optimal objective value of the bidirectional one, within a time limit of 

four hours. The same instances are also solved by the proposed GA. Based on the preliminary 

tests, the population size, the probability of crossover, the probability of mutation, and the 

maximum number of generations are set to 50, 0.8, 0.2, and 50, respectively. Each problem 

instance is solved 10 times. If the optimal objective solution of an instance is not provided by 

GAMS within the computational time limit, the corresponding best lower bound is 

determined. This best lower bound is the largest value amongst LB and the lower bound 

provided by GAMS.  

 

An optimal unidirectional schedule is obtained for all the considered small-sized instances. 

Moreover, for 90% of the considered small-sized instances, GAMS returned the optimal 

unidirectional schedule in less than 30 minutes. Nonetheless, an optimal schedule 

(bidirectional) has been found only for 19 instances and with an excessive computational 

burden. An optimal unidirectional schedule bears an optimal solution of the problem on 21 

out of the 30 small-sized instances. Overall, the average optimality gap between the optimal 

unidirectional schedule and the optimal one, is 0.85%. This confirms that the search for a 

unidirectional schedule is a good strategy to find an optimal or a near-optimal solution to the 

considered QCSP. Moreover, it is worth mentioning that for 18 out of the 30 instances, the 

proposed lower bound LB either equals the optimal objective value or outperforms the lower 

bound provided by GAMS. Based only on LB, the average optimality gap between the 

optimal unidirectional schedule and the optimal one, amounts to 2.61%, with a maximum 

value of 13.79%.  

 

In addition, GA returns the optimal unidirectional schedule for all small-sized instances. The 

computational time to obtain the GA solution (the average computational time to obtain a GA 

solution is 6.28 seconds) is markedly lower than the one spent to obtain the GAMS solution 

(the average computational time to obtain the optimal unidirectional schedule using GAMS is 

591.30 seconds). This indeed highlights the major advantage of the proposed GA.  

 

Medium and large-sized problem instances 

 

The GA is used to solve thirty medium and large -sized instances. In these problem instances, 

the number of QCs ranges from 2 to 6 while the number of bays ranges from 15 to 25. For 

each number of QCs and bays, five problem instances, with a different workload at each bay, 

are generated. The workload of each bay in number of work units is randomly generated from 

a uniform distribution of U(0,100). In these experiments, the parameters of the GA are 

maintained similar to those used for small-sized problem instances, except for the number of 

generations. The latter is tuned based on problem complexity as revealed by preliminary tests 

conducted on instances characterized by the same number of QCs and bays. Accordingly, the 

number of generations is set to 50, 100, 150 or 200. 

 

For the considered medium and large -sized problem instances, GAMS is not able to reach a 

solution within the time limit. However, the GA delivers solutions for these problem 

instances within reasonable computational time (the average computational time is less than 

30 minutes for 22 out of the 30 problem instances). LB is used to estimate the optimality gap. 

Interestingly, for all instances, LB is obtained in a very short time (less than 1 second). As it 

can be seen from figure 19, on average, both the computational time and the optimality gap 

increase when the number of bays increases and/or the number of QCs increases. More 
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computational effort is indeed needed for instances of larger sizes to better explore the 

unidirectional search space. For the most intractable instances, the computational time of the 

GA does not exceed 50 minutes and the quality of the obtained solutions is acceptable. These 

results can only favor the recommendation of the proposed GA for use, particularly, in 

medium and large size problems.  

 

 
Figure 19. GA performance – Medium and large-sized instances 

 

3 The QC scheduling with consideration of uncertainty 

 

3.1 Problem description and formulation 

 

As noted above, most papers in the QCSP literature do not consider the dynamics and 

uncertainty inherent to container terminal operations.  For example, they assume that QCs are 

characterized by a constant handling rate and so do not consider the randomness in container 

processing time. Additionally, they ignore the QC idleness that may be incurred by landside 

operations and related randomness. The handling time of a vessel is indeed the output of the 

entire discharging/loading process that certainly involves seaside operations but also, transfer 

operations taking place between the quay and the stacking yard. Here we investigate QCSP 

while taking into account the dynamics and uncertainty related to QC and straddle carriers’ 

(SC) operations. The consideration of this type of shuttle vehicles is motivated by their 

common deployment in medium and large size deep-water terminals such as Khalifa port in 

Abu Dhabi. After discharging an import container from the vessel, the QC places it on one of 

the lanes, located on the quay underneath it, and which serve as a buffer area. As soon as one 

SC becomes available, it picks it up from the lane and transports it to the stack where it is 

stored at the designated position. If the buffer area is full, the import container remains held 

by the QC until a lane becomes available. This incurs an idle time for the QC. Similarly, a SC 

might wait for a container to be placed on the lane before starting pick up operation. This 

situation rather incurs an idle time for the SC. For loading operations, first the SC picks up an 

export container from the stack and drops it down at one of the lanes. Then, the QC loads it 

on the vessel. If the buffer is empty, the QC waits until the SC brings a container and places it 

at one of the lanes. This situation incurs an idle time for the QC. On the other hand, the SC 

can arrive to the QC and waits for a lane to become available.  

 

We start by devising a mathematical formulation of the considered stochastic QCSP. The 

objective is to minimize the expected makespan. Both QCs and SCs operations, the 

uncertainty tied to their durations and resulting idleness, are considered. More precisely, in 

the considered problem, three parameters are assumed mutually independent random 

variables with known probability distribution: (1) the handling time of a container by a QC, 

(2) the time for a SC to pick up a container and (3) the time for a SC to transport the 

container to the stack, store it and come back to the quay (referred to as SC round-trip time). 
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The model accounts for all the constraints introduced in 2.1, at the exception of the stability 

constraints. In addition, it takes into account constraints related to SCs’ operations and their 

interaction with QCs’ operations.  

 

For problems of practical size including the discharge of a large number of containers, the 

proposed model cannot be solved using off-the-shelf solver within reasonable time even 

when stochastic parameters are replaced by their expected values (Tang et al., 2014). 

Therefore, we propose a simulation based GA to solve the tackled stochastic QCSP.  

 

3.2 Solution approach 
 

The GA proposed in subsection 2.2 is extended by: (1) embedding a simulation Monte Carlo 

model to evaluate the fitness of each chromosome (or solution) and (2) adding a local search 

in an attempt to improve the solution.  

 

Recall that the fitness is determined based on the expected vessel makespan. The latter is 

estimated while considering QC idleness entailed by the dynamics and the duration of QCs 

and SCs’ operations under each scenario of the generated sample of size L, used in the 

simulation. 

 

The local search is used whenever an improvement of the so-far-best solution occurs during 

GA process. The idea is to reduce the expected vessel makespan through the elimination of a 

part of the expected QC idleness. Therefore, the expected idleness of each QC while serving 

each bay is determined by simulation. The QC i having the highest expected idleness is 

selected. The highest and lowest index of bays served by QC i are determined. QC i’ that can 

process these two bays and having the lowest expected idleness is determined. The containers 

assigned to QC i are reassigned to QC i’. The newly generated chromosome is evaluated by 

simulation and replaces the best-so-far solution in case it achieves a lower expected vessel 

makespan (i.e. a higher fitness).   

 

The simulation based GA terminates when the maximum number of generations is reached. 

The flowchart of the proposed solution procedure is given by figure 20. The formulation and 

simulation based GA are detailed in (Al-Dhaheri et al., 2016b). 

 

 
Figure 20. Procedure of the proposed simulation based GA 
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3.3 Main results 

 

Fist, experimentation is conducted in order to tune the parameters of the simulation based 

GA. The results showed that a reasonable trade-off between computational time and the 

quality of the best solution found can be attained for a population size, a crossover rate, a 

mutation rate, a number of generations and a sample size of 50, 0.8, 0.2, 100 and 200, 

respectively. It is worth noting that all presented results hereafter are based on those 

parameters’ values and 10 runs of the proposed algorithm. 

 

In order to evaluate the performance of the proposed simulation based GA, 9 problem 

instances are generated while varying the number of employed QCs from 2 to 4 and the 

number of SCs assigned to each QC from 2 to 4. In all instances, we consider a vessel with 

20 bays, and that in the buffer area, 6 lanes are available beside each bay to drop down 

containers before transporting them to the yard stack. The traveling time of a QC between 

adjacent bays is set to 1 minute and the safety margin is set to 1 bay. For each QC, the 

handling time of a container follows 32-Erlang distribution with an expected value of 2.45 

minutes. The time requested to lift a container from the lane follows 16-Erlang distribution 

with an expected value of 1.67 minutes. The SC round-trip time follows a Weibull 

distribution with a mean value of 10.2 minutes and a shape parameter equal to 1.28. It is 

worth noting here that these service times and the number of containers to be discharged from 

each bay of the vessel have been extracted from the real-life case study presented in (Legato 

et al., 2010).  

 

The simulation based GA is used under both stochastic and deterministic environment. Under 

deterministic environment, the simulation based GA employs only one scenario in which the 

stochastic parameters are substituted to their mean values when evaluating the fitness of each 

chromosome. Let us denote by S1 the QC schedules obtained under stochastic environment 

and, by S2 those obtained under deterministic environment. The simulation model is 

furthermore used to evaluate the solutions S1 and S2; the sample size is set to 1000 in order 

to obtain more accurate estimates of solutions’ performances.  

 

Table 19 reports the obtained results. For each solution S1 and S2, we provide the expected 

vessel makespan (E.Cmax) and vessel makespan (Cmax) obtained by the simulation based 

GA (in minutes), respectively. Moreover, table 19 gives for each solution S1 and S2, the 

average computational time (Avg. CPU) to obtain it (in seconds), the expected vessel 

makespan obtained by the simulation model (S_Cmax) and its standard deviation (S_Sd).    

 
Table 19. Results – Simulation based GA 

N. 

QCs 

N. SCs 

per QC 

E.Cmax 

S1 

Avg. CPU 

S1 

Cmax 

S2 

Avg. CPU 

S2 

S_Cmax 

S1 
S_SdS1 

S_Cmax 

S2 

S_Sd

S2 

 

4 

 

4 1778.00 3160.24 1751.65 16.28 1779.73 32.87 1800.39 34.3 

3 2366.98 3365.74 2324.77 14.94 2364.04 45.88 2378.28 47.22 

2 3523.86 2979.93 3485.41 12.45 3527.53 67.17 3577.11 72.32 

 

3 

 

4 2350.29 3531.99 2303.46 16.44 2355.29 41.9 2356.17 42.43 

3 3126.47 3286.35 3066.64 15.55 3126.61 54.42 3133.09 56.85 

2 4676.83 2842.20 4595.38 13.06 4684.8 84.86 4689.22 86.62 

 

2 

 

4 3500.91 3861.84 3461.28 18.01 3507.95 53.18 3509.11 54.67 

3 4650.73 3133.34 4607.45 17.05 4658.42 74.07 4659.86 76.36 

2 6973.01 2693.98 6907.99 11.72 6976.02 109.69 6987.86 116.4 

 

Table 19 shows that the expected makespan increases when the number of SCs assigned to 

each QC decreases. Similarly, with a same number of SCs assigned to each QC, the expected 
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makespan increases when the number of QCs decreases (also meaning that the total number 

of deployed SCs decreases). Moreover, it can be observed that the variance of vessel 

makespan increases when the number of SCs assigned to each QC decreases.  

 

The average computational time to obtain S1, even though it can be considered acceptable, it 

is much larger than the one needed to obtain S2. The comparison between S1 and S2 based 

on simulation shows that S1 slightly outperforms S2. However, the comparison between the 

value of vessel makespan obtained by the solution procedure under deterministic 

circumstance (Cmax S2) and its estimate obtained by simulation (S_Cmax S2), stresses the 

importance of considering the randomness related to QCs and SCs operations. Based on these 

results, one can opt for embedding a deterministic simulation model inside the GA 

framework in order to significantly reduce the computational time. Nevertheless, the final 

solution must be evaluated through the stochastic simulation model in order to obtain more 

realistic and reliable performance of the proposed QC schedule. It is worthwhile to note that 

if the standard deviation of vessel makespan obtained by the stochastic simulation takes high 

values, it becomes more appropriate to use the simulation based GA under stochastic 

environment.  

 

4 The Integrated QCASP with consideration of carbon emissions  

 

Several studies have concluded that vessels at berth and cargo handling equipment are the 

two major sources of carbon emissions in ports (Yun et al., 2018; Styhre et al., 2017; Corbett 

et al., 2009). Moreover, carbon emissions resulting from container terminal operations are 

often correlated to the efficiency of vessel handling. The latter is indeed aimed at reducing 

vessel turnaround time at port which results in less energy consumption from berthed vessels 

and QCs. Furthermore, as mentioned above, enacting carbon mitigation policies in ports, such 

as carbon tax and carbon cap-and-trade, might happen in the next few years.  

 

Our previous research on QCSP is extended here in order to investigate the QCASP with 

consideration of these two carbon mitigation policies. Indeed, although there is an abundant 

literature that tackles QCASP, to the best of our knowledge, there are no works that study it 

while assessing the impact of such policies on emissions and costs.  

 
Two MIPs have been devised. The first formulates the QCASP with consideration of carbon 

taxation. The main principle of this policy is that carbon emissions from the QCs and vessels 

involved in the considered processes are taxed. The objective function minimizes the sum of 

the penalty/rewards due to vessel departure delay/earliness, the operating cost of QCs 

including the labor cost and the cost due to energy consumption by QCs, and carbon taxation 

costs. The model accounts for all the constraints introduced in 2.1, at the exception of the 

stability constraints. In addition, it takes into account constraints related to the assignment of 

QCs to vessels, and to the determination of the earliness or tardiness of a vessel based on 

departure time as per the agreement between the port and the vessel. In addition, some 

constraints allow to determine the waiting and the operating time of each QC. This first 

model is then adjusted in order to consider cap-and-trade policy.  The principle of this policy 

is that each entity is allocated a cap on the amount of its emissions. In the events of exceeding 

the allocated cap or having an abundance of unused units, the entity is allowed to buy or sell 

additional units, respectively. In this second formulation, we introduce the price of 

purchasing and selling carbon units as well as the cap on carbon emissions. Decisions include 

the amount of carbon units purchased and the amount of carbon units sold. The objective 

function is similar to its counterpart in the first formulation, only the taxation cost is replaced 
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by the purchasing/selling carbon emissions allowance. Constraints that determine the amount 

of carbon units purchased and sold based on carbon cap are also added. 

 
Results showed that neither policy provides a clear-cut edge over the other in terms of 

reducing emissions but with the used data, extracted from the industry and literature, carbon 

cap-and-trade yields slightly lower carbon emissions and costs. Noticeably, the costs 

associated with the vessels, whether from emissions or delay penalties, have a high weight 

and hence influence the decisions most. Whether carbon taxation or carbon cap-and-trade 

policy is implemented, in ports, the focus should be therefore on the vessels staying less and 

departing as early as possible. This is because even with the implementation of optimal QC 

operations, the reduction in emissions remains insignificant, especially in comparison to 

those of the vessel. For example, berthing the vessel when it arrives to the port, with no wait, 

can substantially reduce carbon emissions. Increasing the number of operating QCs is the 

most decisive factor in reducing emissions for berthed vessels, as it contributes to reducing 

vessel handling time, but comes at the expense of acquiring these QCs.  

 

5 Concluding remarks and future research 
 

In this research, we start by investigating the QCSP. First, we propose a novel MIP model for 

the QCSP that takes into account several practical features of the problem, such as 

preemption, non-crossing, safety margin, QC traveling time, QC initial position and vessel 

stability. A Genetic Algorithm (GA), embracing the unidirectional search strategy, is then 

designed to solve the problem. The results demonstrate that the proposed GA can optimally 

or near-optimally solve the problem within a reasonable computational time. As such, they 

foster its use as a solution approach, especially for medium and large sized problem instances 

that off-the-shelf solver fails to solve.  

 

This first work has been thereafter extended by considering the dynamics and randomness 

related to QCs and SCs’ operations taking place between the vessel, the quay and the stacking 

yard. First a stochastic mixed integer programming model is proposed. A simulation based 

GA approach is then developed to generate the QC schedules. The proposed algorithm is 

tested under both stochastic and deterministic environments. Furthermore, the obtained 

solutions are evaluated more accurately using simulation with a larger sample size. Results 

show that the algorithm provides better QC schedules when it is used under stochastic 

environment but at the expense of higher computational burden. It has also been noted that 

the intended QC performance in terms of utilization rate cannot be reached without 

employing a sufficient number of SCs. Given that the QCs represent one of the major 

valuable resources at container terminals, it is worth to further investigate the SCs to assign to 

each QC while taking into account more details regarding yard congestion and containers’ 

stack location. Also, it is noteworthy to investigate other SCs deployment strategies such as 

pooling, where SCs are assigned to vessels rather than to QCs.  

 

More recently, we addressed the QCASP with consideration of carbon mitigation policies, 

namely carbon tax and carbon cap-and-trade. Results indicate that future work should study 

the impact of these regulatory policies while integrating berth allocation with QC assignment 

and scheduling. In particular, uncertainties related to vessels’ arrivals will be considered. 

Thereafter, transfer operations taking place between the quay and the yard using shuttle 

vehicles such as trucks, AGVs and SCs will be integrated in the work to provide a more 

accurate estimation of the expected emissions in port premises. 
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Our research aimed at developing models and solution approaches that support managers in 

making effective and efficient decisions. For that, it always starts from a decision problem 

encountered in real-life with an important impact on the concerned industry, and more 

broadly on the economy and the society. Evidently, the considered problems are 

characterized by a high complexity and that is why they are attractive for research. As such, 

they require the development of novel modelling and solution approaches that allow for 

integrating, incrementally, some of problem’s realistic features.  

 

Several problems related to the domains of healthcare management, supply chain design and 

planning, and maritime and airline logistics have been addressed. As mentioned above, most 

of the contributions consisted in accounting for more realistic features of these problems. The 

interest for some of the tackled research topics has been sparked by new problem features 

stemming from latest technology advances, changes in the regulatory context, or have 

emerged in the sequel of a crisis such as the COVID-19. Novel models and/or solution 

approaches are devised in order to incorporate the new problem’s feature. My goal in 

research is henceforth to contribute in creating scientific value that aids practitioners to 

sustainably create value in the production of services and goods. What nurtures my 

motivation is the soaring need of practitioners for relevant research findings, accounting for 

real-life features of the decision problems they encounter, that allow to derive useful 

managerial recommendations and insights and create value.  

 

The above-mentioned goal and motivation guided my previous and ongoing research; and 

they will continue guiding my future research. To achieve that, two objectives are sought in 

my future research: (1) deepen and capitalize on the research I have dealt with; (2) direct my 

research toward novel and topical research subjects. 
 

The first objective pertains to the development of more sophisticated solution approaches 

and/or the extension of some of the current research by investigating them jointly with other 

related problems. More specifically, future work will include the development of advanced 

solution approaches for operating room planning and scheduling, and ambulance relocation. 

In addition, I intend to extend the study of operating room planning by including daily 

operating room scheduling under uncertainty. As can be noticed, operating room planning 

and daily scheduling are interrelated and both are determinant of operating room 

performance. Henceforth, developing an approach that integrates them with consideration of 

patients’ clinical path will devise hospitals with a more holistic decision-making approach. 

The latter will support hospitals in managing efficiently not only operating rooms but also 

other hospital scarce and costly resources such as the beds in the ICU, etc.    

 

Furthermore, I intend to deepen my very recent research on green maritime logistics and the 

design of closed-loop supply chain (CLSC) for durable products since the consideration of 

environmental aspects and the evolution toward a circular economy are becoming a socio-

economic priority. 

  

In addition, the COVID-19 health crisis reveals that supply chain resiliency is not sill 

comprehensively understood. Some recent works foster to target supply chain viability, in 

order to avoid supply chain market collapse and secure the provision of goods and services in 

cases of extraordinary event such as pandemic (Ivanov, 2020); a new concept in supply chain 

management literature, that needs to be dug more in-depth. The need of companies for further 

understanding of resiliency and viability, how they can be achieved and their impact on 
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supply chain performance, sparked my interest. One of my projects is henceforth devoted to 

this topic.  

 

Finally, I would like to point out that in my future research, I will try to validate the proposed 

models and solution approaches using data stemming from real-life cases. This, undoubtedly, 

will lead to add value to the research outcomes and result in high impact studies. For that, I 

intend to involve in my future research projects socio-economic partners. 

 

More details on my ongoing and my main future research projects are described below. 

 

Toward a holistic approach for operating room planning and scheduling 

 

Operating room planning and scheduling involves four different hierarchical decision levels: 

strategic, tactical, offline operational, and online operational (Hans and Vanberkel, 2012). 

The strategic level addresses the dimensioning of OR time among different patient surgical 

groups (often referred to as case mix planning), typically with a long-term planning horizon 

(e.g., a year or more). The tactical planning level assigns the OR time surgery specialties or 

surgeons over a medium term (e.g., several weeks). This level usually provides the so-called 

Master Surgery Schedule (MSS) which defines the number, type, and opening hours of 

available ORs, as well as the allocation of OR time among surgical specialties or surgeons. 

The offline operational level usually includes the selection of elective patients to operate each 

day of the planning horizon (generally of one week) and scheduling decisions and daily 

surgery sequencing. The online operational level handles the monitoring and control of the 

process during OR schedule execution. When operating rooms are shared between elective 

and emergency patients, this fourth decision level encompasses the insertion of emergency 

cases.  

 

Given the complexity of each of the above-mentioned decisions (Wang et al., 2021; 

Aringhieri et al., 2022) and the data available when they are needed (Jebali, 2004), they are 

generally treated separately, although this leads to sub-optimal decisions and performance of 

the operating rooms. From another perspective, the improvement of the extant modelling and 

solution approaches proposed for these decision problems, even without integration, remains 

one of the research objectives in this field. 

 

As far as operating room management is concerned, it is worthwhile to distinguish two 

common practices in hospitals, namely block and open scheduling. In block scheduling, 

surgeons are guaranteed blocks of specific OR times on specific days of the week, whereas in 

open scheduling there are no guaranteed allocations and cases are booked on a first-come, 

first-served basis. Some operating rooms use flexible block scheduling that combines open 

and block scheduling. Under flexible scheduling, some OR blocks are either not allocated, or 

released if they are unused till a few days (in general one week) before each surgery day.  

These OR blocks can therefore be used by the surgical specialties/surgeons that face the 

highest need for OR time (in general during that week). Most of the literature is devoted to 

block and open scheduling. The works on flexible scheduling are scant even though flexible 

scheduling can capture the advantages of block scheduling while avoiding the operating room 

being unused because of lack of demand or the unavailability of a surgeon1. Among these 

advantages, one can cite the elimination of time wastage incurred by the moving time of 

surgeons amongst operating rooms, restricted delay propagation and less complexity in the 

 
1 https://hospitalmedicaldirector.com/operating-room-block-scheduling-versus-open-scheduling/ 

https://hospitalmedicaldirector.com/operating-room-block-scheduling-versus-open-scheduling/
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decision problems posed at the offline operational level. Although surgeons in many hospitals 

would rather prefer block scheduling over flexible scheduling, but it is worth investigating 

the latter and assessing the improvement it could bring to operating room performance.  

 

As mentioned above, most of the hospitals are using either open scheduling or block 

scheduling. What is the best practice, including flexible scheduling, to use and what are the 

determinants of such choice? For example, which practice fits better large operating room 

suits, or operating room suits where a few operating rooms contain special equipment (such 

as robotic surgery equipment)? These are important questions that have not sufficiently 

tackled in operating room planning and scheduling literature. 

 

The aim of this research project is to develop a holistic approach for operating room planning 

and scheduling that integrates tactical, offline and online operational decisions. This approach 

will be based on several models and solution algorithms designed for block scheduling, open 

scheduling and flexible scheduling that should be used according to a specified decision 

process. Building on my previous work on operating room planning and scheduling (Jebali, 

2004; Jebali et al., 2006; Jebali and Diabat, 2015; Jebali and Diabat, 2017), we propose to 

account for all scarce resources intervening in patient’s clinical path.  

 

This project will include the following steps: 

 

- Design a hierarchical decision process for each scheduling practice (namely, block 

scheduling, open scheduling, and flexible scheduling) integrating the three decision levels 

(namely, tactical, offline and online operational levels). 

 

In this step, the deployed decision processes under open, block and flexible scheduling will 

be explored and compared. The objective is to understand in which operating room suits they 

are used, and what are the determinants of this choice. Improvement of the current processes 

will be proposed based on this exploration phase. The improved decision process should 

consider for each involved decision the available data and when those data become available.  

 

- Develop more sophisticated models to deploy in the designed decision processes.  

 

In particular, this step will involve the development of novel models and solutions to build 

the MSS, the operating room plan (assigning elective cases to operating rooms over a 

planning horizon of on week) and the daily operating room schedule. The proposed models 

should consider the uncertainty related to hospital environment, as this constitutes the biggest 

challenge in the considered decisions. Contribution can be brought in two ways: (1) jointly 

investigating some of the above-mentioned problems and/or (2) adopting a new methodology 

in modelling and solving the posed problems. Models integrating some of these problems will 

be designed in order, for instance, to improve the quality of the taken decisions, mainly at the 

upper decision level. More concretely, I will investigate the integrated operating room 

planning and scheduling problem with consideration of uncertainty in the case of open 

scheduling. Different sources of uncertainty (namely, availability of critical resources 

intervening in patient’s clinical path, resource demand, and the arrival of emergency cases) 

will be accounted for. A first idea, for example, is to extend the work presented in (Naderi et 

al., 2021) while accounting for the above-mentioned sources of uncertainty. From 

methodological perspective, I will use distributionally robust optimization as the uncertain 

input data is generally not precisely known. Another interesting avenue for future research, 

will foster the use of machine learning techniques in order to (1) obtain more accurate 
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predictions of model parameters and (2) better overcome the complexity issue of the tackled 

problems. More specifically, I intend to embed scenario clustering in solving stochastic 

programming models. Another perspective will consist in devising simulation optimization 

approaches, in which multi-level decisions can be addressed while taking into account 

uncertainty within a reasonable computational burden. 

 

In the frame of this project, Gabriela Pinto Espinosa has been recently recruited to pursue a 

PhD in which she will develop a holistic approach for operating room planning and 

scheduling. The focus will be put on studying large to medium sized hospitals in Belgium and 

France, deploying block scheduling. This PhD is launched in collaboration with Erik 

Demeulemeester from Katholieke Universiteit Leuven (KUL, Belgium) and will start in 

October 2022. 

 

At the same time, I am planning to extend this project into a research proposal that I will 

submit for ANR. The project will be conducted in collaboration with other researchers in 

France and involve hospitals as partners 

 

Green port operations 

 

Although there is a soaring pressure to reduce carbon emissions entailed by maritime 

transportation, the literature on the optimization of port operations with environmental 

consideration remains relatively scant. In (Kenan et al., 2022), we investigated the QCASP 

with consideration of carbon mitigation policies, namely carbon tax and carbon cap-and-

trade. This first work shed the light on several interesting future research avenues toward 

greener port operations. Thereafter, we provide some details on those that can contribute to 

the current literature and at the same time represent some of the most important topics to be 

presently tackled by terminal ports. 

 

First, the integrated berth allocation and QCASP (referred to as BACASP) under uncertainty 

will be addressed with considerations of environmental aspects. Several carbon mitigation 

policies and sources of uncertainties will be investigated. Maritime transportation is indeed 

frequently affected by several uncertainty factors such as weather conditions and equipment 

failures (Rodrigues and Agra, 2021), that are at the origin of the uncertainty inherent to vessel 

arrival and handling time. As revealed by many works (Murty et al., 2005; Han et al., 2010; 

Rodrigues and Agra, 2021), this uncertainty may affect the efficiency of port operations if not 

proactively accounted for.  As such, this research can be viewed as an extension of the recent 

works of Wang et al. (2018), Wang et al. (2020) and Rodrigues and Agra (2021). 

Sophisticated modelling and approaches should be developed to overcome the complexity 

issue of this problem, which will bring a methodological contribution to the literature.  

 

Second, I will develop a holistic approach for the management and synchronization of 

operations in the port, those taking place before the mooring of the ship, after the mooring, on 

the one hand, between the ship and the quay, and on the other hand, between the quay and the 

storage areas. Therefore, my first work will be extended in order to include transfer 

operations taking place between the quay and the yard using shuttle vehicles such as trucks, 

SCs or AGVs (electric or alternatively powered vehicles). The objective of this research is to 

develop models and algorithms for scheduling operations that allow to find the best trade-off 

between port efficiency, service and carbon emissions. Beyond the development of more 

sophisticated models and solutions to these complex problems, we aim to assess the impact of 

deploying more energy-efficient equipment and better synchronization of operations on the 
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economic and environmental performance of the port. Another research outcome consists in 

providing management insights that help policy makers finding how ports can reduce their 

carbon footprint without compromising their operation efficiency.    

 

The first part of this research project constitutes one of the projects I am going to work on 

this year.  

 

Design of closed-loop supply chain 

 

In many countries, environmental legislation mandates manufacturers to take-back a part of 

their end-of-life products and/or to ensure their eco-friendly disposal and landfilling. This 

legislation aims at curbing the harmful environmental impact caused by some end-of-life 

products and/or recovering their remaining value through the recycling of their valuable 

materials and whenever possible the remanufacturing of their components. As such, the take-

back of end-of-life products yields lower resource and energy usage and could also offer new 

sources of raw material and revenue.  

 

Environmental legislation primarily emphasizes environment and resource efficiency. 

However, in terms of regulations and implementation details, one can distinguish a diversity 

around the world. For example, in the European Union, the Waste Electrical and Electronic 

Equipment (WEEE) directive enforces the collection, recycling, and recovery of all types of 

electrical goods, with a minimum rate of 4 kilograms per head of population per annum 

(Georgiadis and Besiou, 2010). Thereafter, a recast of the WEEEs directive in the European 

Union introduces recovery targets of WEEEs. Henceforth, manufacturers are required to 

process a pre-specified fraction of returns or products sold in the market (Jeihoonian et al., 

2016; Wang et al., 2018). In some provinces of China, the local governments enacted 

environmental legislation based on reward-penalty (RP) mechanisms to stimulate the take-

back of used products. Under this scheme, the manufacturer receives a reward if the actual 

recovery rate, hereafter referred to as reverse service level, exceeds a pre-specified recovery 

target, and, in the opposite condition, the manufacturer should pay a penalty (Wang et al., 

2017; Wang et al., 2018).  

 

The collection, recycling, and recovery including remanufacturing is called the reverse 

supply chain (RSC) as the flows of products are moving from customers to producers, which 

is opposite to the forward supply chain. Closed-loop supply chains (CLSC) are those where 

forward and RSCs are considered simultaneously. Obviously, environmental legislation 

should be accounted for while designing the CLSC as it impacts the take-back decision, the 

RSC structure, and the CLSC performance in terms of economic and environmental 

efficiency.  

 

Markedly, although abundant literature has been devoted to study the design of CLSC, scant 

research explicitly accounts for take-back regulations. Many works assumed a 100% recovery 

of the return stream in the design of the CLSC network which does not necessarily reflect the 

take-back regulations with which most comply. A few works (Krikke et al., 2003; Jeihoonian 

et al., 2016; Jeihoonian et al., 2017) incorporated recovery target in the design of the CLSC 

network, while others penalized unrecovered returns (Qin and Ji, 2010; Jerbia et al., 2018). 

To the best of our knowledge, take-back regulations based on RP mechanism have not been 

considered yet in the design of CLSC network.  
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In order to start filling the above-mentioned research gap, in collaboration with Ali Diabat, 

we investigated the design of a multi-product and multi-period CLSC network for durable 

products with consideration of take-back legislation (Diabat and Jebali, 2021). In particular, 

this work was motivated by the CLSC for durable products that can be disassembled into 

different components when they reach their end-of-life, such as washing machines and 

tumble dryers. At this point, it is worth noting the particular features of the considered design 

problem pertaining to a company, an original equipment manufacturer (OEM), that is the 

liable for the take-back of returns. The company produces different products with common 

components. Various types of facilities are involved in both the forward and reverse chains, 

namely manufacturing, distribution, inspection/disassembly, and remanufacturing facilities. 

Some components are remanufactured or recycled while others are properly disposed of. 

First, mixed integer programming (MIP) model is proposed while assuming a 100% recovery 

target. The latter is then extended in order to incorporate other take-back legislations, namely 

regulation based on other recovery targets and regulation based on reward-penalty (RP) 

mechanisms. Sensitivity analysis is then carried out in order to capture how some model 

parameters influence the take-back decision, the integration of the reverse supply chain, and 

its structure when there are no regulatory restrictions on the take-back of returns. In addition, 

the CLSC performance, in terms of environment and economic efficiency, is investigated 

under different take-back legislations. The results unveiled that, for the considered case 

study, a higher reverse service level and CLSC profit can be achieved when a regulation 

based on RP mechanism is implemented.    

 

The models proposed so far are deterministic. This work will be extended, first, to take into 

account uncertainties related to the demand and the returns. Another interesting perspective is 

to study the impact of modular design and component commonality on the configuration and 

performance of the CLSC. In the first work, even though we consider that there are common 

components used in the two manufactured products (washing machine and tumble dryer), we 

do not assess the impact of such product-design strategy on the configuration and 

performance of the CLSC. Moreover, we intend to incorporate the option of outsourcing 

inspection/disassembly and remanufacturing in the design of the CLSC. Let us note at this 

level that the impact of product-design strategy, including commonality, on the CLSC and its 

operations have been investigated using game theoretic models (Subramanian et al., 2013; 

Liu et al., 2019). The proposed models do not explicitly consider configurational decisions 

related to the design of the CLSC network, which is the purpose of this research.  

 

Design and planning for a resilient and viable supply chain 

 

A pandemic can wreak havoc in supply chains, as witnessed in the COVID-19 crisis. In 

particular, this extraordinary long-term disruptive event demonstrated that the so far known 

resiliency strategies, namely multiple sourcing, backup suppliers, fortification, etc. could not 

be enough to protect supply chains in such occurrences. The issue of improving supply chain 

resilience, adaptability and survivability under such extraordinary disruptions has since then 

attracted the attention of many scholars and practitioners. Ivanov (2020) introduces a new 

notion that attributes to a supply chain a special property, the capability to survive and adapt 

to long-term disruptions by reconfiguring its structure and replanning its performance, 

namely the viability of the supply chain. Although many works have been recently devoted to 

defining, understanding and theorizing this novel concept (Ivanov, 2020; Ivanov and Dolgui, 

2021; Ruel e al., 2021, to list a few), the latter needs further exploration as the particular 

criteria that allow for reaching supply chain viability are still not clearly identified. For 

example, an extensive literature has been dedicated to the design of resilient and/or 
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sustainable supply chain. How to extend these models to ensure supply chain viability? 

Which criteria should be incorporated in the design model to reach viability? 

 

The design and planning for resilient and viable supply chains prone to severe disruptions, is 

at the heart of some of my ongoing works and will constitute one of my research projects in 

the near future. 

 

In a first work, with Xavier Brusset and Davide La Torre (SKEMA Business School), we 

studied how the effort invested in terms of implementing protective measures (beyond those 

imposed by the government) within a production plant could increase its resilience and 

ensure production continuity (Brusset et al., 2022). This work is presently extended to take 

into account the service level of suppliers during the crisis period (i.e. the reliability of 

delivering the quantity ordered in full and on time). The originality of these works is twofold: 

(1) they integrate an epidemiological model with a production planning model; (2) they 

introduce the implementation of protective measures as a new resilience strategy for supply 

chains in pandemic context. In particular, the developed models are recommended for labor-

intensive industries, such as the meat industry. 

 

In addition, we are developing an approach for planning the meat supply chain in pandemic 

context. Indeed, the COVID-19 crisis unveiled the vulnerability of the meat supply chain, one 

of the most impacted supply chains by this pandemic crisis. The successive demand and 

supply shocks, the perishability of meat, facility closures in the sequel of workers’ infections, 

substantially weaken the supply chain performance. In the existing literature, a few works 

handle demand forecasting and supply forecasting in a pandemic context such as the COVID-

19. In this research, we propose a comprehensive two-stage approach that embeds a 

mathematical model for meat supply chain planning and demand and supply forecasting 

models. One of the contributions remains in identifying the most suitable models for 

predicting the demand and the supply based on the quality of the planning decisions. A case 

study is used to evaluate the proposed approach. Managerial insights are drawn in order to 

help meat supply chain managers adjusting the forecasting and planning models in pandemic 

context.  

 

Recently, with Xavier Brusset, Davide La Torre, Marco Repetto (SKEMA Business School), 

and Dmiry Ivanov (Berlin School of Economics and Law), we investigate supplier selection 

problem considering the novel settings of a pandemic crisis, as the COVID-19 outbreak. We 

devise a model for supplier selection integrating ripple effect analysis and epidemic 

modelling. More specifically, the proposed prescriptive forward-looking model provides 

supply chain managers with the optimal choice over a planning horizon among subsets of 

interchangeable suppliers and corresponding orders; which will maximize demand 

satisfaction given their prices, lead times, exposure to COVID-19 infection, and upstream 

suppliers’ risk exposure. Results demonstrate that our model can help reconfigure a supply 

chain and mitigate the ripple effect that stems from reduced production because of infected 

workers.  

 

In future research, we are going to investigate the design of viable multi-echelon supply 

chains. For that, we started by addressing the design of a four-echelon pharmaceutical supply 

chain network prone to severe disruptions. We intend to explore the effect of (1) technology 

including digitalization, manufacturing and warehouse process automation, (2) product 

substitutability, and (3) diversification of the supplier base on supply chain resiliency, 

viability and cost, especially in pandemic context. Novel models and solution approaches will 
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be devised to account for new problem features, including the criteria to achieve supply chain 

viability. 

 

As mentioned above, these research projects will be the subject of research proposals 

submitted to funding programmes that support research and innovation projects (such as 

projects ANR, PHC Utique projects, etc.). In addition, in these research projects, we plan to 

involve industrial partners in order to enhance their socio-economic impact. Setting up and 

carrying out applied research projects, co-funded by industrial partners, is one of our short- 

and medium-term objectives.  
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