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RÉSUMÉ EN FRANÇAIS

La quantité de contenu visuel, que ce soient des images ou des vidéos, est en constante
augmentation ces dernières années. En effet, nous estimons qu’environ 300 heures de
vidéo sont mises en ligne chaque minute sur le site internet YouTube dans le monde
entier. En prenant en compte les images ainsi que les contenus hors ligne, la quantité
réelle de contenu visuel est donc bien supérieure à ces 300 heures estimées. Ce grand
volume conduit à poser des questions et des problématiques dans différents domaines :
comment stocker une telle quantité de données ? Est-ce qu’il est possible de créer des
requêtes efficaces pour interroger des bases de données visuelles de grandes tailles ? Et
la question qui nous intéresse dans cette thèse : Y a-t-il des méthodes pour améliorer
automatiquement la qualité de contenus visuels ? En effet, il est important non seulement
de créer du contenu, mais surtout de créer du contenu de bonne qualité. Cela soulève
une autre question : qu’est-ce qu’une image ou une vidéo de «bonne qualité» ? Selon la
réponse que l’on donne à cette question, il existe plusieurs outils qui permettent d’évaluer
la qualité (des métriques objectives, basées sur des calculs numériques ; ou bien des études
utilisateurs, où les avis d’observateurs extérieurs sont agrégés pour calculer la qualité d’une
image) ou bien d’améliorer la qualité (grâce à des méthodes basées matériel ou logiciel).

Dans cette thèse, nous proposons deux définitions différentes de la «qualité d’image».
La première définition consiste à considérer les images comme des signaux en deux di-
mensions. Il y a plusieurs façons de définir ce qu’est un bon signal. De fait, il existe
plusieurs façons d’améliorer la qualité d’un signal. Par exemple, utiliser un algorithme
de débruitage permet d’avoir un signal plus propre. Dans notre situation, nous consi-
dèrerons que les images de bonne qualité sont les images avec une grande précision. Il
existe deux formes de précision pour les images : la précision spatiale (et dans ce cas, une
image avec une grande précision spatiale correspond à une image de haute résolution) et
la précision spectrale, à laquelle nous nous intéressons ici. Pour les images numériques, la
précision spectrale correspond à la précision des valeurs des pixels. Les images avec une
grande précision spectrale ont un meilleur contraste, et un ensemble plus grand de valeurs
potentielles de luminosité. De telles images sont appelées images HDR (grande gamme
dynamique, High Dynamic Range en anglais), en contraste avec les images communément
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Résumé en Français

répandues et qualifiées de SDR (pour Standard Dynamic Range, gamme dynamique stan-
dard). La problématique principale est alors de générer de telles images HDR. Plusieurs
méthodes ont été développées pour générer de nouvelles images HDR. La méthode que
nous proposons ici est appelée opérateur de correspondance inverses de couleurs (Inverse
Tone Mapping Operator, iTMO en anglais). Le but des méthodes dites iTMO est de trans-
former une image SDR en image HDR. Pour cela, nous entraînons un modèle statistique
pour associer efficacement une image HDR à une image SDR donnée. Les principaux mo-
dèles statistiques utilisés dans la littérature sont les réseaux de neurones. Les réseaux de
neurones contiennent un certain nombre de paramètres qui sont modifiés pendant l’en-
traînement. Ces paramètres sont ensuite utilisés pour calculer plusieurs représentations
de l’image d’entrée, et finalement, ces représentations sont agrégées en une unique image
de sortie. Le nombre de paramètres du réseau influe directement sur ses performances :
pour améliorer les performances du réseau, il est possible d’augmenter le nombre de pa-
ramètres dont il a besoin. Les iTMOs récents sont basés sur des réseaux de neurones qui
contiennent aux alentours d’un million de paramètres, mais certains réseaux dépassent les
dix millions. Augmenter le nombre de paramètres affine les représentations intermédiaires,
et donc améliore la qualité de l’image finale, mais augmente le nombre d’images exemples
nécessaires pour avoir une performance correcte, ainsi que la consommation de ressources
de manière générale (temps d’entraînement, espace mémoire, temps de traitement).

Notre première contribution est une nouvelle méthode iTMO appelée HDR-LFNet.
Notre méthode a comme but d’être aussi performante que les méthodes de l’état de l’art,
tout en consommant significativement moins de ressources. Pour ce faire, nous avons
conçu un réseau de neurones qui fusionne plusieurs images HDR en une image HDR. Cette
transformation étant plus simple que la transformation de SDR en HDR, le nombre de
paramètres nécessaires pour le réseau de neurones est ainsi réduit. Pour traiter une image
SDR donnée, il faut donc en premier lieu l’augmenter de plusieurs manières différentes.
Nous utilisons plusieurs iTMOs existants qui ne sont pas basés sur des réseaux de neurones,
afin de ne pas augmenter la complexité de notre méthode. La fusion de ces différentes
méthodes grâce à un réseau de neurones permet d’obtenir une image HDR de meilleure
qualité que chaque image HDR en entrée du réseau. L’image obtenue en sortie du réseau est
à nouveau traitée (augmentation du contraste et ajout de couleurs) pour obtenir une image
HDR aussi proche de la réalité que possible. En plus de proposer une implémentation de
notre méthode, nous mettons à disposition la base de données d’images HDR utilisée pour
entraîner notre réseau de neurones. Il s’agit d’une base de données de plus de 490 images
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Résumé en Français

HDR en très haute résolution pouvant être utilisée à toutes fins utiles. Enfin, notre étude
comporte une évaluation de notre méthode par rapport aux méthodes existantes dans
l’état de l’art. Nous montrons grâce à une batterie de métriques objectives et une étude
subjective que notre méthode atteint des performances similaires à l’état de l’art, mais
consomme beaucoup moins de ressources.

Au lieu de considérer les images comme de simples signaux à deux dimensions, une
autre solution est de les considérer comme une unité visuelle atomique. Nous nous intéres-
sons alors à l’avis d’observateurs humains à propos de cette image. Dans cette situation,
il est impossible d’avoir une mesure de qualité purement objective : la qualité va forte-
ment dépendre de l’observateur, de ses goûts, de l’environnement ambiant (luminosité de
la pièce, dimensions de l’écran, etc...) et d’un certain nombre d’autres facteurs qui em-
pêchent la modélisation parfaite de la situation. Notre intérêt principal ici est l’interaction
qui existe entre l’observateur et l’objet considéré (ici, une image). De cette interaction naît
la notion d’esthétique : ainsi, une image de bonne qualité sera une image de bonne qualité
esthétique. Il faut noter que la qualité en tant que signal et la qualité esthétique sont
deux notions complètement différentes et indépendantes (la Figure 1 illustre cette diffé-
rence). Cela explique pourquoi une nouvelle étude de la qualité esthétique est importante.
Plusieurs algorithmes permettant de mesurer la qualité esthétique d’images ont déjà été
proposés. La grande majorité des méthodes existantes sont basées sur des techniques d’ap-
prentissage supervisé. Un des facteurs important d’un algorithme basé sur l’apprentissage
supervisé est la base de données d’entraînement. La base de données la plus utilisée pour
l’évaluation d’esthétique est AVA (Aesthetics Visual Analysis [MMP12]). Nous souhaitons
donc évaluer la pertinence de cette base de données.

Notre seconde contribution consiste à évaluer AVA. Nous avons collecté plusieurs pho-
tographies professionnelles de différentes sources, afin d’obtenir une diversité de conte-
nus et d’intentions artistiques. Ces six catégories de photographies (Mode ; Automobile ;
Guerre ; Nature ; Architecture ; Sport) contiennent aux alentours de 100 photographies
(exceptée la catégorie Mode qui en contient plus de 1.000) d’esthétiques différentes. En
utilisant ces photographies professionnelles, nous voulons étudier les performances de mo-
dèles d’esthétique entraînés sur AVA. Les deux modèles que nous considérons ici sont
NIMA [TM18a] et le Ranking Network [Kon+16a]. Notre étude montre ainsi qu’il existe
des types d’image qui ne sont pas représentés dans AVA. L’impact de ce manque de di-
versité est surtout visible sur NIMA qui est un modèle générique, entraîné en premier
lieu sur une autre tâche que l’évaluation d’esthétique. Nous remarquons que les scores
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Figure 1 – La qualité d’image et la qualité esthétique sont deux notions différentes.
(gauche) La Suerte de Capa, Ernst Haas (1956) : la faible netteté de l’image est une
intention du photographe. Cela réduit la qualité de l’image, mais la photographie en elle-
même est considérée de bonne qualité esthétique ; (droite) une image provenant de la base
de données AVA [MMP12] avec un score esthétique moyen de 4.95/10. Même si l’image
n’a pas d’erreur flagrante, le score esthétique est moyen.

de NIMA ne sont pas différents d’une catégorie à l’autre, et ont une distribution simi-
laire à la distribution des scores d’AVA. Pour essayer d’améliorer le comportement de
NIMA, nous proposons d’augmenter la base de données d’entraînement en utilisant les
images professionnelles collectées au préalable. Afin de conserver au maximum les perfor-
mances du modèle sur AVA et de réduire le temps nécessaire à l’entraînement, nous avons
décidé d’utiliser une technique de raffinement en entraînant le réseau une seconde fois.
Nous montrons que notre technique améliore les performances de NIMA sur les images
professionnelles tout en conservant les performances sur AVA.

Pour conclure, nous proposons deux différentes contributions dans cette thèse. Tout
d’abord, nous souhaitons évaluer la pertinence d’AVA, la principale base de données anno-
tée utilisée pour les modèles de prédiction d’esthétique. Pour cela, nous collectons plusieurs
sortes d’images professionnelles afin d’évaluer des modèles entraînés avec AVA. Comme
nous observons un manque de généralisation pour certains modèles, nous avons entraîné
ces modèles avec de nouvelles photographies, et nous montrons que notre technique de
raffinement est une solution pour améliorer la portée des modèles. Dans un second temps,
nous proposons un nouvel algorithme d’augmentation de la gamme dynamique (iTMO)
appelé HDR-LFNet. Notre nouvel iTMO contient beaucoup moins de paramètres, mais a
des performances similaires aux méthodes de l’état de l’art.

Le travail présenté ici peut se poursuivre de plusieurs manières. Tout d’abord, notre
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travail soutient la conception d’une nouvelle méthode d’évaluation automatique de l’es-
thétique. Les deux points à traiter en premier lieu sont la conception d’une architecture
spécifique à l’évaluation d’esthétique, et la création d’un ensemble d’images plus riche
en contenus qu’AVA. De plus, étant donné que l’esthétique est une notion complexe et
subjective, il serait intéressant d’avoir une explication de la décision du modèle. Plusieurs
travaux ont déjà exploré la notion d’explicabilité dans le cadre de l’évaluation d’esthé-
tique [Wan+19b ; KVD20 ; Sch+23].

Enfin, il est envisageable de travailler sur d’autres modalités de contenu visuel. Nous
pouvons en premier lieu citer la vidéo, dont la principale difficulté est l’aspect temporel. En
effet, la méthode naïve qui consisterait à traiter chaque image de la vidéo indépendamment
des autres ne fonctionne pas. Dans le cas d’un iTMO, cela peut faire apparaître des
artéfacts temporels. Il est alors nécessaire de concevoir des modèles adaptés à la vidéo.
D’autres formats visuels tels que les images omnidirectionnelles ou bien les images à grand
gamut de couleurs sont des formats riches en contenus, similaires aux images HDR ou aux
vidéos par certains aspects, pour lesquels il serait possible d’adapter notre travail.
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Chapter 1

INTRODUCTION

The amount of visual content (images and videos) created has been steadily increasing
for the past decade. For example, we can estimate that there are 300 hours of video
uploaded to the website YouTube every minute in the world. The true amount of visual
content in the entire world is then much larger than that, if we take into account images
and offline content. This raises questions and problematics in many different fields: How
to store a very large amount of data? Is it possible to design efficient queries in very large
image databases? In this thesis, we consider the following question: Are there automatic
methods to improve the quality of visual content? Indeed, more than creating content, there
is a need to create good quality content. However, what does “good quality” mean for an
image or a video? Depending on the answer to this question, there exist different tools to
measure the quality (either objective metrics, that are based on numerical algorithms; or
subjective studies, where the opinion of independant observers are compiled to evaluate
the quality of an image) or to improve the quality (using hardware or software solutions).

In our work, we propose two different definitions of “image quality”. The first defi-
nition of quality is to consider images as two-dimensional signals. There are many ways
to define what is a good signal. Consequently, there are many ways to improve a sig-
nal. For example, denoising methods allow to have a cleaner signal. In this thesis, good
quality images refer to “precise” images. The precision can be considered in two different
domains: in spatial domain (and so a precise image is an image with high resolution)
or in frequency domain. We have focused our work on the latter domain. For numeric
images, the frequency precision corresponds to the precision with which we store pixel
values (number of bits per pixel per channel). Images with great frequency precision have
better contrast, and higher brigthness values. Such images are called High Dynamic Range
(HDR) images. The main problematic is to generate such HDR images. Many methods
developed in Chapter 3 have been devised to generate new HDR images. The method
that we propose in our work is called inverse tone mapping (iTMO), and is based on
expanding a given standard image to high dynamic range. The idea behind such methods
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Introduction

is to train a statistical model to efficiently map a standard image to its HDR counterpart.
One of the most used statistical model in the literature is the neural network. It is the
main model used in the state-of-the-art for iTMO. Neural networks contain a number of
parameters that are modified during the training process. These parameters are used to
compute several representations of the input image, that are in turn used to compute the
final output. To get better results, recent models have increased the model size in terms
of number of parameters (usually around 1 million parameters, but some models require
more than 10 million parameters). Increasing the number of parameters allows to get finer
representations of images, and so better results in the end. However, this increases the
number of images needed to get good representations, as well as the general resources
needed to set up and execute such models. We devised a specific, light architecture called
HDR-LFNet (which is presented in details in Chapter 5). Our method requires around
400,000 parameters, which is a lower number of parameters than the state-of-the-art. Be-
sides, we show that our method runs faster and needs fewer resources (training images
and time, evaluation time) than the state-of-the-art.

Instead of considering images as simple 2D signals, a second solution is to consider
them as external stimuli for human beings. In this case, our measure of quality cannot be
purely objective and universal. The quality of an image heavily depends on the observer
and their taste, the environmental conditions (the room lighting, the dimension of the
screen for a digital image, etc...) and many different factors that cannot be perfectly
reproduced to get a reproducible result. The main point of interest is the interaction
between the observer and the object. From this interaction arises the notion of aesthetics,
and a good quality image corresponds to an image with high aesthetic quality. For an
image, the quality as a signal and the aesthetic quality are two different notions, and one
cannot be entirely computed from the other (an example is shown on Figure 1.1). This
explains why studying aesthetic quality independently from signal quality is important.
Several methods for automatic aesthetic quality assessment have already been devised,
and the large majority of those methods are based on supervised learning techniques. One
of the most used dataset for training such methods is called Aesthetics Visual Analysis
(AVA) [MMP12]. The large majority of the methods of the state-of-the-art use AVA as
training dataset. Therefore, it is important to assess whether AVA is a good training
dataset or not. In our work, presented in details in Chapter 4, we show that AVA lacks a
diversity of images, and that these images can be included in the training data without
impeding on the training performed on the original images. This shows that improving
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Figure 1.1 – Image quality and Aesthetics quality are different. (left) La Suerte de Capa,
Ernst Haas (1956): although the photograph is blurry, the quality degradation serves the
artistic message, and so the image is considered of good aesthetic quality; (right) an image
from the AVA dataset [MMP12] with an average aesthetic score of 4.95/10. Even though
the image has a good focus and no particular technical errors, the aesthetic score is not
high.

automatic aesthetics assessment models can be done by improving the training dataset.
To conclude, our first contribution is to assess the relevance of AVA as a training

dataset for aesthetics assessment models. Our proposed approach consists in gathering
different kinds of professional photographs to evaluate some aesthetics assessment models.
As we observed a lack of generalization for some models, we have trained these latter with
new photographs, and we have shown that this training effectively improves the range of
action of the model. Our second contribution is the design of a new inverse tone mapping
operator called HDR-LFNet. Our new iTMO contains fewer trainable parameters, but
achieves results of similar quality than the state-of-the-art. Our model is proposed along
with its training dataset, a new set of HDR images that may be used by the community.

The rest of this thesis is structured as follows.
Chapter 2 presents some general notions important to understand our contributions.

We explain the notion of aesthetics in general and in the specific case of computer science,
as well as the concept of High Dynamic Range imaging.

Chapter 3 provides a survey of techniques related to our contributions in High Dy-
namic Range and Automatic Aesthetics Assessment. We present the different methods
that we based our work on, and the datasets and metrics available.

Chapter 4 explains the process that we have devised to evaluate some aesthetics
assessment models. Using a kind of photograph different from the training photographs of
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aesthetics models, we show that the widely used AVA dataset [MMP12] can be improved.
Chapter 5 presents a new inverse Tone Mapping Operator developed to be lighter and

faster than the state-of-the-art methods. Along with the architecture and training process,
we present an evaluation of our work using objective metrics and a user subjective study.

Chapter 6 is a conclusion that contains a summary of our work, as well as some
perspective about image quality improvement.
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Chapter 2

GENERAL NOTIONS

In this chapter, we present general knowledge about some aspects of our work, namely
aesthetics and inverse tone mapping.

2.1 Introduction

For human beings, one of the method to capture information from their surroundings
is by seeing. The visual system, composed of the eyes, the optical nerve and the parts of
the brain that process visual information, is used not only as a sensor to gather factual
data about the world, but also as a processing unit that use the factual information to
make decisions. To better understand how do we make a given decision based on what
we see, it is important to understand each of the parts at stake here: how is the light
transported through the world? How do we see? What happens in our brain? And most
importantly, is it possible to model the different factors (namely the light transportation
and the human visual system), and the interaction between both of them?

2.2 Human Visual Perception

In this section, we present characteristics of the human visual system that guided some
choices we have made and that are explained in the following chapters.

2.2.1 The eye

Human visual perception starts from the eye. This organ captures light coming into
it, and transforms it into an electric signal later processed by the brain. Many processes
related to how this signal is processed are still unknown nowadays.

The part that acts as the transducer is the retina. The surface of the retina is composed
of two different types of cells, called cones and rods. The rods are sensitive to light
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Figure 2.1 – Distribution of rods and cones on the retina (extracted from [MEP09]). The
fovea (zone of maximal visual acuity) is represented.

intensity: they allow vision in low light conditions, and they are able to discriminate
brightness values. On the other hand, the cones are more sensitive to color values: they
need more light to operate than the rods, but they can discriminate color hues. The cones
and rods transform the light wave into an electric signal, and sends it to the brain through
the optical nerve. We show on Figure 2.1 a repartition of the cones and rods on the retina
as a function of the distance to the optical nerve. We can see that the majority of the
cones are concentrated around a small area. This zone is called the fovea, and is the zone
of maximum visual acuity. It captures light in a cone of peak angle of 2°. This two-cells
repartition of the retina lead to one of the representation of images, where the color value
of one specific point is represented by two values: the color value, and the brightness
value. As the rods are globally more present on the retina, human eye is more sensitive
to light variations than to color variations. That is why in Chapter 5 we process only the
luminance of images, and then recolor them.
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2.2. Human Visual Perception

Figure 2.2 – The luminous efficiency function (extracted from [Rei+10]).

2.2.2 Radiometry and Photometry

In the world, light is transported by photons or waves. Light has several physical
properties – such as color hue, energy, direction, polarity, etc...– that can be measured
and expressed using different physical quantities. The human eye acts as a transducer and
we are usually more interested in how we perceive things rather than the precise energy
value. That is why each value has a measurable physical value, and an estimated perceived
value. The study of physical values is called radiometry while the study of perceived values
is called photometry. Every radiometric value has a photometric counterpart.

The photometric values are obtained by computing the average of the corresponding
radiometric value, weighted by a function called the luminous efficiency function. This
luminous efficiency function (represented on Figure 2.2) represents the eye sensitivity of
a standard observer, which corresponds to a norm established by the CIE (Commission
Internationale de l’Éclairage, International Commission on Illumination). In particular,
the energy in frequencies outside the visible domain range is not taken into account, and
the frequency with maximum weight corresponds to the frequency of maximum acuity of
the human eye (around a wavelength λ = 510 nm for scotopic vision, which corresponds
to green).
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One important value we consider in this work is the radiometric radiance (in
W.m−2.sr−1) and its photometric counterpart the luminance (in cd.m−2). The luminance
quantifies the perceived brightness of a point. Besides, we base our approach on results
from psychophysical experiments. In particular, Fechner’s law [NW97] states that the
perceived brightness of a surface by a human is proportional to the logarithm of the
radiance. In consequence, the majority of the operations we have to do on the luminance
is performed in the log-domain.

2.2.3 High Dynamic Range imaging

The Dynamic Range (DR) is a measure of the range of luminance in a scene, in an
image, or capable to be rendered by a display. It is computed as DR = max L

min L
where DR

is the Dynamic Range and L is the luminance in cd.m−2. The DR is usually given with a
reference of min L = 1 cd.m−2, that we note 10n:1 in the rest of this section. For example,
a screen that can display luminances from min L = 0.1 cd.m−2 to max L = 100 cd.m−2

has a dynamic range of DR = 102

0.1 , noted here as 103:1. We can compare the DR of a
conventional screen, which is about 102:1 to the DR of the real world, which can be up
to 1032:1. As we can see, the displaying technologies of classic screen are nowhere near
enough to display the full range of luminances of the real world. Besides, the DR of the
eyes is about 1010:1, which means that we are able to perceive more details than what
can be displayed on screens.

Due to that observation, researchers and industries have studied and devised new
devices capable of displaying a broader range of luminances. Those devices and the content
that they are able to display are called High Dynamic Range (HDR), in contrast to the
Standard Dynamic Range (SDR) of conventional screens. Therefore, one operation, which
is very important nowadays as the HDR displays are not as widespread as the HDR images
themselves, is the transformation from an HDR image to an SDR one. This transformation
is called tone mapping and is a key subject of many articles in computer vision.

There are several ways of creating HDR images. It is possible to synthesize HDR images
using rendering techniques. Indeed, computer-generated images can have pixel values of
arbitrary precision. Nevertheless, the main focus of our work is HDR photographs, so
HDR rendering technique will not be detailed in this thesis.

There exists two main methods to capture photographs with HDR content. The first
intuitive way consists in using specific sensors that are able to capture HDR images.
For instance, we can use cameras adapted to HDR photography, or other devices added
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to a camera to improve the capted DR, such as lenses, event cameras, etc. . . Taking
HDR photographs is very easy with specific devices, however, such cameras are not easily
available.

The second way to capture HDR photographs consists in merging together several
pictures of the same scene, but containing information in different areas of the image.
To do so, is is possible to take several photographs with different exposure values. The
exposure value is controlled by three variables: the film sensitivity (ISO), the shutter speed
and the shutter aperture. For this purpose, it is easier to change the exposure value by
changing the shutter speed of the camera. The different shots of the scene then contain
information for every range of luminance: the darker shot (with the lowest exposure time)
contain information in bright areas, while the brighter shot (with the highest exposure
time) contain information in dark areas. This method is easily achieved on a modern
camera using the bracketing function. However, this method has many constraints, the
main one being that everything must stand still for the duration of all the shots. We can
act on the camera itself by using a tripod (to avoid camera shaking) and activating the
camera from a distance (as pushing the button could move the camera), but sometimes,
it is difficult to act on the scene itself, as objects can move (for example, clouds or birds).
The presence of a moving object in the scene leads in the final reconstituted HDR image
to ghosting artifacts, as shown on Figure 2.3.

2.2.4 Tone Mapping and Inverse Tone Mapping

The first algorithms needed to work with HDR content are tone mapping operators
(TMO). HDR content is quite easy to create (exposure fusion using bracketed images,
renderings from virtual scenes) compared to designing HDR-capable hardware. Therefore,
we need to convert HDR content to SDR one, while keeping as much information as
possible depending on the use case. Algorithms that transform HDR content to SDR are
called TMO. The most simple and naive TMO would be the operation that consists in
clamping the value of the image to the range of the display. More sophisticated methods
were proposed to try to keep specific information (such as local contrast, more details and
examples can be found in Chapter 3).

Generally, applying a TMO on an image leads to a loss of information when we try to
compress values. However, some of the TMOs are functions that are completely reversible.
This means that if the SDR image is stored correctly, then no information is lost due to
the tone mapping operation. This leads to the creation of Inverse Tone Mapping Oper-
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Figure 2.3 – An example of an HDR image with ghosting artifacts (the image has been
tone-mapped with the Drago algorithm for ease of view).
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ators (iTMOs) that process a single SDR image to yield an HDR image. By extension,
researchers have devised new algorithms to expand the dynamic range of images that are
called Expansion Operators (EOs), or abusively inverse Tone Mapping Operators. Expan-
sion operators work using heuristics, as it is impossible to recreate HDR content from one
unique source of SDR content.

One application of EOs is to easily create a large amount of HDR images. Since the
emergence of machine learning, it is now possible to process HDR images, but to do so,
a large amount of HDR content is needed. The collection of such images is tedious, so it
is possible to rely on computational methods, such as EOs.

2.2.5 Metrics

To assess the performance of image processing algorithms, we need a way to measure
the quality of images. To do so, it is possible to use metrics. There are two main kinds of
metrics: with reference (that needs a reference image along with the tested image, which
can be treated as a distance between images); and no reference metrics (which try to
compute an intrinsic quality value of images). For SDR images, there are many metrics
such as MSE, SSIM, PSNR (if we see the image as a 2D signal), etc... Some of them
can be expanded to work with HDR content quite easily. Other metrics were especially
designed for HDR content [Rou19], to compare two HDR images, or even an HDR to an
SDR image (to be able to evaluate the performances of (i)TMOs).

HDRVDP is certainly the most used metric to compare HDR images. It is a metric with
reference (meaning that we compare the original HDR image with a degraded version of
it). This metric mimics the visualisation environment to predict the perceived differences
between the two input images (for example, some differences are visible if you are close
to the screen, but are unnoticed if you are farther away).

2.3 Aesthetics

Based on the information given by the visual system, one of the feeling that the brain
can evoke is the aesthetic feeling. Aesthetics is commonly a measure of beauty. In this
section, we propose a more precise definition of aesthetics applied in computer science.
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2.3.1 Definition

It is quite difficult to give a general definition of what is aesthetics. The aesthetic feeling
has been studied, quantified and defined for a very long time, by people of different fields.
Moreover, depending on the field, the different problematics about aesthetics are different.
This means that the actual concept of aesthetics is different, although the name is the
same.

The questions we want to answer here are: Are there instrinsic features of objects
(more specifically photographs) that make them beautiful? If so, can we model them to
be able to automatically assess aesthetics quality? If no, then the aesthetic feeling is a
pure subjective value: can we model the perception of human beings to be able to assess
aesthetics at least for a given individual?

According to Shelley [She22], aesthetics is a by-product of the concept of taste. Intu-
itively, the aesthetic feeling comes from the interaction between the human and a given
object. Aesthetics is strongly linked to emotions, as aesthetically pleasant objects are usu-
ally the objects that make people feel some emotion when they interact with it. Human
beings interact with the world using their senses, and as such, aesthetics is a strongly
subjective notion. Through the years, several scientific fields tried to explain and define
the aesthetic feeling, such as philosophy, psychology, and even computer science. Even in
each of these fields, aesthetics is defined differently depending on the use case and the
historical context of such definition.

At first, the aesthetics was said to be "objectivist": this means that each object is
defined by its own attributes, and its aesthetic quality is inherent in the object itself.
However, this implies that only an expert with knowledge of aesthetics can truly appre-
ciate an object and accurately rate its aesthetic value. With the observation that people
have their own sense of taste and aesthetic feeling, this theory as a general explaination
of aesthetics is not sufficient. As a consequence, the subjectivist theory had been studied:
this theory claims that the aesthetic feeling only comes from the interaction between a
sentient being and an object, and if this interaction evoke some emotions, then the object
is considered aesthetically pleasing. The aesthetic quality of an object is then entirely
defined by the perception of people interacting with it, and is considered entirely subjec-
tive. Different people may have different experience with the same object, meaning that
it is impossible to assign an aesthetic quality to an object without taking into account
the possible observers. However, this hypothesis failed as some objects (especially some
work of art) were considered beautiful by a large majority of people. This implies that
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objects themselves can have characteristics that impact the aesthetic perception of ob-
servers, whoever the observer may be. Therefore, the exclusive objectivist and exclusive
subjectivist theories are both not enough to fully explain the aesthetic feeling.

These discussions led to the creation of a new domain called neuroaesthetics. The goal
is to observe the brain signals of observers to try to explain how do human beings perceive
an object as aethetic or not. This field tries to understand which parts of the brain are
activated when viewing a beautiful object, and what specific patterns activate or not these
brain parts. The experimentations done in neuroaesthetics try to prove using the scientific
methodology what is exactly aesthetics.

2.3.2 Application in computer science

In our work, we use the definition of aesthetics given by the field of computational
aesthetics. One of the precursor of computational aesthetics is George David Birkhoff,
with his book Aesthetic Measure [Bir33]. In his book, Birkhoff claims that the aesthetic
quality of any object (paintings, vase patterns, polygons, but also poems, or music pieces)
heavily depends on the ratio O

C
, where C is the complexity of the object, and O a measure

of its order. Of course, the definition of C and O depends on the type of the object we
consider. More than giving some hints about what impacts aesthetics, Birkhoff provides
the community with a mathematical formula which computes the aesthetic quality of
an object as a real number. The aesthetic quality is then comparable between different
objects and, based on this formula, we can claim that an object is "more beautiful" or
"less beautiful" than another.

The aesthetic quality is in particular useful for images. In our work, we mainly study
the aesthetics of photographs. Computing the complexity and order of an image is possible
using the notion of entropy and of information theory [Mol66]. In the first few articles
tackling the problem of aesthetics assessment [FB09], complexity and order were computed
using image features: either specific features – such as rule of thirds compliance, color
harmony or symmetry – or generic features such as SIFT. Then, learning algorithms such
as SVM or simple regression were used to link the features with a level of aesthetics.

From then until today, the extraction of characteristic features from images has
evolved, and aesthetic quality followed this trend. Deep convolutional networks are
known to successfully extract patterns from images to be able to perform computations
(generating new images for style transfer, super-resolution, re-colorization; or generating
other types of data, such as text for captioning, numerical value for quality, and many
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other applications) and this is also the case for aesthetic quality.
The goal is to design an algorithm to predict what would be the global aesthetic feeling

of one photograph, by extrapolating from the data gathered from hundreds of observers,
thanks to learning techniques.

The definition of aesthetics that we consider is then "liked by a majority of people". We
gather the subjective feelings of a lot of people to get an objective value. This definition
is questionable, and is one of the discussions of the conclusion.

2.4 Conclusion

In this chapter, we have presented some important notions (aesthetics, HDR imaging)
and some operations (aesthetics assessment and inverse tone mapping). We want to ad-
dress some of the problematics raised by those operations. In the next chapter, we present
the state-of-the-art, and a general scientific outline of the different domains we tackle.
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Chapter 3

RELATED WORK

In this chapter, we present the most recent work about what is presented in the first
chapter, that is to say aesthetics prediction, and HDR imaging.

3.1 Aesthetics assessment

Computational aesthetics involves supervised learning methods today. There are two
main characteristics of supervised learning algorithms, which are the architecture (and
its loss function, training algorithm, etc...) and the training datasets. In this section, we
present an overview of the different learning-based aesthetics prediction methods.A more
thorough study of such methods can be found in [VKD22].

3.1.1 Prediction models

The first learning-based methods were using handcrafted features, derived from pho-
tographic rules. Photographic rules are common rules in photography. These rules are not
absolute, but compliance to these rules is seen as a good start for a beginner in photog-
raphy. An overview of some photographic rules is presented in Table 3.1. It is important
to note here that the term "rules" is misleading: a photograph that complies to many
photographic rules is not necessarily beautiful. These photographic rules are closer to
general guidelines that the photographer chooses to follow or not. The first aesthetics
prediction model was proposed in 2006 by Datta et al. [Dat+06]. Their work is heavily
based on photographic rules: they have chosen 47 different features easily computed for
photographs and then feed a SVM classifier with those features for a given dataset to
learn how each of those features impacts the aesthetic value of the photographs.

The development of generic feature extraction also contributed to the improvement
of aesthetics prediction models. Indeed, as we explained in the current section, photo-
graphic rules are not absolute, and so are not directly linked with aesthetics. As such, it
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Name Description Positive example Negative example

Rule of thirds

The object of interest in the pho-
tograph should be placed on one
of the lines dividing the image in
thirds

Depth of field

The focus should be placed
mainly on the object of interest,
blurring the other parts of the
photograph

Color harmony
Opponent colors allow to high-
light the main subject of the pho-
tograph

N/A

Table 3.1 – Presentation of some of the commonly accepted photographic rules. The
example images all come from the AVA dataset [MMP12].

is important to propose models that do not rely solely on photographic rules, and generic
features allows to represent images in a different way. For example, Marchesotti and Per-
ronnin [MPM13] use SIFT [Low99] along with pattern-mined textual features to classify
the aesthetic quality of photographs.

The emergence of deep learning lead to tremendous breakthrough in computer vision,
and so in computational aesthetics. The first deep learning-based model for assessing the
aesthetic quality is RAPID [Lu+14]. The idea behind RAPID is to process both large
scale (or global) features, and detail (or local) features using a two-stream convolutional
neural network.

Many other networks followed, and as such, it is quite difficult to offer an exhaustive
overview of the different learning-based aesthetics assessment models since RAPID.

One way to classify the different aesthetics assessment models is by grouping together
models with the same kind of output quality. RAPID [Lu+14] for example outputs a
binary category: "high quality" or "low quality". This is one of the most basic output
possible for aesthetics prediction.

To improve on these classification networks, it is possible to enrich the output infor-

26



3.1. Aesthetics assessment

mation. The next logical step is to output a numerical score.
Many networks offer to get more information from meaningful output. NIMA [TM18a]

has an architecture derived from already-trained classification networks (such as Incep-
tion [Sze+16a] or MobileNet [How+17]) adapted to aesthetics assessment. The output is
a full histogram of scores. Histograms allow to have information on the consensus. If the
standard deviation of the histogram is very small, then the large majority of the scores
are gathered around the mean, and so it means that the model predicts that people would
agree on the given score (be it high or low). On the other hand, a high standard deviation
means that people would not agree on the aesthetic quality of the image, and then this
image is more prone to subjectivity than others.

The Ranking Network [Kon+16a] provides a single aesthetic score, but bases its calcu-
lations on several attributes that an image may or may not have that are deemed to have
an impact on aesthetics by the authors. These attributes are based on photographic rules
(compliance to the rule of thirds, symmetry, good field of view, etc...) but each of them
corresponds to the output of a specific CNN, and the final aesthetics score is given by a
final CNN that merges the outputs of all intermediate CNNs. Therefore, the output of
the network is one general aesthetics score, with a rating of each intermediate attributes.
This is one step closer to explainable aesthetics.

3.1.2 Aesthetics assessment datasets

The goal here is to propose aesthetics assessment methods that are as generic as
possible. This means that a characteristic that we want to foster is the ability to be able
to rate accurately any kind of images, that we call coverage in the rest of this thesis. As the
training dataset delimits the theoretical boundaries of acceptable inputs of the network,
it is important to have an effective training dataset to improve the coverage. However,
the training dataset is not the only impactful factor on the coverage. Indeed, it is possible
to act on the coverage by working on the architecture or other parts of the model. We
present in this section the different datasets proposed for aesthetics assessment, as well as
some techniques that were used to improve the coverage other than changing the dataset
(that is to say, techniques to compensate for the lack of variety in the dataset).

Providing new datasets Recent models of aesthetics prediction are based on super-
vised machine learning algorithms. One key component of such algorithms is the training
dataset. In this chapter and the following ones, we consider the datasets to be images
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along with their respective ground truth value (which may be of different form depending
on the dataset). In this section, we present the different training datasets that exist for
aesthetics prediction.

There are two main ways to create aesthetics prediction datasets. The first method
is to ask a population to rate a specific set of images according to the wanted criteria
(in our case, aesthetics). This first method allows to have ground truth values which are
very accurate and that can describe precisely the wanted feature in the images. However,
to have enough information, it is important to have a sufficiently large population of
observers, which is not easy to gather. Besides, it is not possible to ask people to rate
thousands of images in a sensible time, so it is quite hard to gather enough scores for a
number of images on the scale of what is needed to train neural networks.

The second method to create aesthetics prediction datasets is to crawl existing websites
that propose a system of votes for images. The first datasets that were proposed were
based on all-purpose photograph social networks, such as Flickr (used in [DOB11])). The
ground truth scores have to be derived from values given by the website. In the case of
Flickr, the interestingness value given by the website for each image may be used as an
estimation of the aesthetic value. However, it is not suitable to train a robust network. It
is not possible to precisely know how this value is calculated and Flickr do not claim that
this value should be at least proportional to the aesthetic value of the image. It is better
to take images and scores from more specialized websites, for example ones that tackle
more specifically photography.

Datta et al. [Dat+06], in the first known aesthetics assessment model, used a dataset
based on photo.net. On photo.net, the images are rated by the users of the website on
two different scales: aesthetics and originality. Even though the website contains enough
images to be able to train deep networks, each image is not rated by many users.

In 2012, Murray et al. [MMP12] proposed the first large scale training dataset for
aesthetics prediction, called Aesthetics Visual Analysis (AVA). AVA contains more than
250000 images taken from dpchallenge.com, a social network for photographer. Every
week, the organizers propose a new challenge with a given theme, and the users have
a few days to upload a photograph corresponding to the theme. After the end of the
time limit, the visitors can then grade the images according to two criteria: aesthetics
and accordance to the theme. The website has been crawled to gather the images, the
challenge theme and the repartition of scores for both scales. It is still, to this day, the
largest training dataset for aesthetics prediction.
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Name Source of annotations # of images Information available
CUHKPQ [LWT11] Manual 17,500 Aesthetics class

AVA [MMP12] dpchallenge.com 220,000 Histogram
PCCD [CLC17] gurushots.com 4,000 Aesthetics captions
EVA [KVD20] Crowd-sourcing 4,000 Scores for different char-

acteristics
RPCD [NCF22] reddit.com 74,000 Aesthetics captions

Table 3.2 – Summary of aesthetics assessment datasets.

Many work have improved on AVA to create new, richer dataset. In some cases, AVA
is improved as the designed method needs more information in the dataset. It is the case
for NAIR [Wan+19a] that is an aesthetics assessment network that outputs an aesthetics
score as well as a textual review of the image. The training of such a network calls for
a specialized dataset that contains ground truth value for aesthetic score and a textual
explanation of the aesthetic quality. Therefore, Wang et al. proposed their architecture
NAIR along its training dataset called Ava-reviews, that contains a subset of AVA aug-
mented with the comments given by the users of dpchallenge.

On the other hand, some improvements over AVA do not stem from a necessity of
the application. For example, the Explainable Visual Analysis [KVD20] (EVA) dataset
contains images from AVA, graded by additional people (via crowd-sourcing) on different
attributes, that were chosen by the authors by thinking they were impactful for aesthetics.
We present a summary of the different aesthetics datasets available in Table 3.2.

Using the architecture to improve the coverage Wang et al. [Wan+16] propose
a new architecture for aesthetics models based on neurosciences. In parallel, the authors
conduct some user experiments to assess how the image transformations used in data
augmentation affect aesthetics. In their study, participants were presented with rotated,
color-changed or cropped images and they were asked to rate the images according to
their preference. They conclude that only three transformations do not severely impact
the aesthetic quality of an image: horizontal flip, scaling with a small random factor, and
adding some small gaussian noise. This conclusion gives some insights when using data
augmentation for training aesthetic assessment models, but does not question the validity
of currently available datasets.

Carballal et al. [Car+19b] recently expose the limits of existing training datasets, and
create their own dataset composed of images from www.dpchallenge.com. Those images
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are rated in three ways: the mean score given to the image by users of www.dpchallenge.
com; an aesthetic score given by observers in an environment with controlled viewing
conditions; and a preference score given by observers in the same controlled environment.
This is the first and only dataset dedicated to aesthetics prediction with scores from
several populations. However, this dataset has not been compared to the dataset most
used today (AVA) and contains only 1,000 images.

Some models were proposed to counter the bias caused by the imbalance of
AVA [MMP12]. In that optic, Jin et al. [JSS16] propose the weighted CNN architecture.
This is an architecture based on the VGG-16 network, but differs from the VGG-16
network in the cost function used. Instead of using a classic mean square error function,
they add weights corresponding to the frequency of apparition of the score of the image.
To compute those weights, the authors use the histogram of scores of the training dataset
(in this case, AVA). The weight w(I) of an image I is proportional to the inverse of the
number of images having the same average score as I. The cost function is then defined
as

C(ŷ) =
∑
I∈I

w(I)∥y0(I) − ŷ(I)∥2
2 (3.1)

with I the set of training images, ŷ the vector composed of the computed scores of each
image in the dataset and y0 the vector composed of the ground truth score of the images.
This method allows to assign greater weights to images which scores are less represented
in the training dataset. This leads to a network having a better coverage and being able
to rate accurately images with very high (s > 6) or very low (s < 4) scores.

Rather than assessing the aesthetics of images, a number of authors addressed the
problem of Blind Image Quality Assessment (BIQA). These methods use new techniques
based on machine learning, such as Continual Learning [Zha+22], meta-learning [Zhu+20]
or datasets fusion [Zha+21; WM21]. Differently from aesthetic quality assessment meth-
ods, BIQA methods process images purely as signals. This implies that the quality of an
image as measured by BIQA methods is an objective value, contrary to the aesthetic qual-
ity which may differ depending on the observer. Therefore, we think that these methods
are not suited for general purpose aesthetics assessment models, but could be adapted
to personalised aesthetics prediction [Ren+17b]. Indeed, when considering only one ob-
server, an objective aesthetic quality score exists. That is why, in our approach presented
in Chapter 4, we did not use these techniques and prefer an aesthetic-based one.
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Dataset Number of images Characteristics
pfstools [Man+07b] 8 -

HDR PS [Fai07] 450 Some images come with photometric measurements
Raise [Dan+15] 8152 Only RAW images

HDR-Synth [Liu+20] 562 Aggregation of different datasets
HDR-Real [Liu+20] 480 -

Our dataset [Cha+23] 496 High resolution

Table 3.3 – Overview of different datasets with HDR content.

3.2 High Dynamic Range Imaging

In this Section, we present the recent work about HDR imaging.

3.2.1 HDR datasets

HDR image datasets serve several pruposes, and depending on the use case, the best
characteristic would change. For example, testing a new tone mapping operator by com-
paring the SDR output of one method to the SDR outputs of the state-of-the-art methods
requires far fewer images than training a deep supervised neural network containing sev-
eral millions of parameters. In this section, we present some of the HDR datasets used
in the state-of-the-art depending on their application. Table 3.3 presents an overview of
commonly used HDR datasets.

First, for testing purposes, HDR images needs to be of high quality (resolution, artistic
quality, dynamic range) and of different kinds to be as exhaustive as possible. Nevertheless,
a few hundreds of images are usually enough. In this case, HDR photographs are a good
source of test images.

However, to train neural networks, a large number is usually better than image of
great quality. There are several methods to gather many HDR images of correct quality:
transformations from fewer high quality HDR image (cropping); synthetic images from
rendered scene (although the variety of depicted scenes in this case might not be much).
Several techniques are used: smaller networks [Cha+23] (that need fewer training images),
data augmentation of many kinds (cropping, exposure change, mirroring, etc...), transfer
learning (first learn on many synthetic data, then finetune on few real data).
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3.2.2 HDR Image Generation

Hardware-based HDR generation Intuitively, the best way to create HDR content
is to devise specific devices. One method is to use other kinds of sensors along with classic
CCD sensors to get more information. For example, Han et al. [Han+20] propose a new
method to fuse an SDR image with an intensity map provided by an event camera (also
called neuromorphic camera) using deep learning.

Instead of adding new information (such as intensity maps) of the same scene, another
method is to modify an existing camera to better reconstruct the HDR afterwards. Some
articles [Met+20; Sun+20] combine the design of a new lens – which point spread function
is thus known and optimized for HDR content – and a neural network to reconstruct HDR
content from the image taken by this modified lens.

Multi-exposure fusion Using only a classic camera, the most popular way to create
HDR content is by fusing multiple images of the same scene with different exposure times.
Several fusion algorithms exist [MKV08; DM08]. The fusion methods are known to yield
HDR images of very good quality, but the process of taking the image is more difficult
than other methods: both the camera and the scene must stand still for several seconds,
the time to take several images with different exposure times. If the camera, or objects
in the scene, move between the different shots, some ghosting artifacts will appear on the
merged HDR image.

Single-exposure non-deep fusion The first iTMOs were based on TMOs: by looking
at what was reduced during the tone mapping process, we can deduce where it would be
good to expand the dynamic, hence the term "inverse" tone mapping. Some tone mapping
operator are inversible, so we can consider their inverse function.

By using iTMOs to generate HDR images, information is lacking in several parts of
the images and HDR generation becomes an ill-posed problem. In this situation we need
to make some assumptions about the images we have. For example, we can assume that
only the high luminance areas are lost. In that case, any pixel in the low or medium
ranges would not be modified by the iTMO. Many algorithms were devised to expand the
dynamic range from a single image. One idea is to use a non-linear function to modify
the luminance of the image differently based on the pixel value of the SDR version.
We can cite several methods, such as Akyuz [Aky+07], Kovaleski & Oliveira [KO14], or
Landis [Lan02]. All of them differ from one another by the non-linear function they use
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to improve the dynamic range. The modification of the luminance value is solely based
on the SDR pixel value, and so the context is not taken into account. Later works try
to consider the semantics of each pixel to better improve the output quality using neural
networks.

Deep neural networks for single image HDR reconstruction The latest and more
powerful algorithms for single image HDR reconstruction are based on deep-learning algo-
rithms, and more specifically supervised learning methods. These algorithms allow for tun-
ing several millions of parameters using big datasets of images as ground truth. The first
widely recognized deep CNNs for single image HDR reconstruction are HDRCNN [Eil+17]
and DrTMO [EKM17].

DrTMO is a collection of several CNNs. Each CNN computes a new exposure from
a given SDR input (the output of each CNN is then an SDR image with an exposure
value different from the input). These exposures are then merged together using the HDR
generation techniques described at the begin of the current section.

HDRCNN uses a really deep network of about 30 million parameters to enhance the
brightest part of the SDR picture in input. The output of the network is then combined
with an augmented version of the SDR (obtained with an average inverse camera response
function estimated over a dataset) using a mask to use the network output in bright
zones and the augmented SDR in the other areas. The network has been pre-trained on
simulated HDR data (using a simple iTMO on a large image dataset) and fine-tuned
with true HDR images. Other papers [SRK20; Liu+20] improve on HDRCNN by using
inpainting-like tasks in the network – either as pre-trained weights or as another module.
The idea is that such a network must reconstruct the over-exposed areas of the images,
as this information is lost in the SDR image. Usually, HDR imaging focuses on high
lights, and therefore the proposed methods work on improving the over-exposed areas.
However, the same tricks can be used to improve the quality of under-exposed areas as
well. The network of Marnerides et al. [MBD21] uses generative adversarial networks and
inpainting to improve the dynamic range in both lowly and highly lit parts of the image.
Some authors carefully designed the architecture of their network to process HDR images
more efficiently. For example, Yu et al. [Yu+21] designed a specific CNN module, called
luminance attention module, to process luminance information. The authors proposed
LANet, a deep learning-based iTMO composed of two different parts: a stream designed to
perform a dynamic range expansion (the iTMO part) and a stream trained for luminance
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segmentation. The luminance attention module is used to transfer needed information
from the luminance segmentation stream to the iTMO stream.

To improve on classic CNN architectures, new methods have been developed, and
some of them have been implemented to perform dynamic range expansion. For example,
the Deep Recursive HDRI model [LAK18] presents a Generative Adversarial Network
(GAN) architecture for iTMOs. GANs allow to have more realistic results. The main
idea of GANs is to add a second network trained together with the generative CNN. The
new network, called the discriminator, is trained to recognize, given two inputs, which
one comes from the generative network, and which one does not. The training of the
discriminator improves the results from the generator, and therefore the overall quality
of the network.

During the past few years, transformers have acquired a large notoriety thanks to
their improved performances over classic CNN. Many different computer vision task were
improved thanks to transformers, and iTMOs are not an exception. Several new iTMOs
that includes transformers were proposed. DenSE SwinHDR [BYB22] uses both CNN and
transformers to produce an HDR image from an SDR input. By using transformers for
global features and CNN for local ones, DenSE SwinHDR have great performances as an
iTMO.

3.2.3 Our approach

The majority of the above presented methods are based on neural networks containing
a large number of parameters (between 106 and 108 trainable parameters). A large number
of parameters usually allows to have better performance (thanks to a finer latent repre-
sentation of images in the network), however, the network then requires a large amount
of resources (training time, training images, etc...). This is a problem in situations with
limited resources (such as HDR processing, as there exists few high quality HDR images
for training neural networks). That is why we decided to propose a new iTMO.

In our approach presented in chapter 5, we use preprocessing to reduce significantly the
number of parameters of our network, and postprocessing to correct the network output
as best as possible. This allows us to improve lowly and highly lit parts of images.

The method we propose tries to broaden the scope of the above presented models by
modifying the used training dataset. We show that, although a smart data augmentation
and the use of a weighted loss function can alleviate the effect of the specialisation of
the training dataset, the fine-tuning method we propose is more effective to improve the
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coverage of the aesthetics models.
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Chapter 4

ASSESSING AESTHETICS USING

PROFESSIONAL PHOTOGRAPHS

4.1 Introduction

Assessing the aesthetic quality of images using computational models has been a prob-
lem in the computer vision field for many years. Aesthetic quality assessment has some
applications in image sorting for databases management, or in aesthetics-driven image
processing for example. Yet, automatically scoring the beauty of an image is still a dif-
ficult problem. Compared to the problem of image quality assessment [Wan11; WSB03],
aesthetics assessment has to be measured by using high level features, which are hardly
described by common low level features. Beyond this point, the problem is even trickier
since the aesthetic quality of an image is a highly subjective quantity.

For predicting the aesthetic quality of an image, many computational models have
been proposed. The first models are based on specific photographic rules, such as the rule
of thirds related to image composition, or narrow depth of field [Jos+11a]. Performances of
such models are however rather limited. We are currently witnessing a new breakthrough
in this field thanks to the emergence of huge datasets (e.g. AVA [MMP12]) and new
machine learning methods relying on deep learning algorithms. Thanks to deep networks,
trained over millions of images [SZ14], it is now possible to get a large number of features
able to describe complex and abstract patterns. A more thorough study on recent models
can be found in [DLX17].

In 2012, Murray et al. [MMP12] proposed AVA, a dataset specifically designed for
aesthetics assessment methods. This dataset, composed of more than 250,000 aestheti-
cally annotated and scored images from the photography website www.dpchallenge.com,
greatly helped research in this domain. However, this dataset is mainly composed of
competitive photographs aimed to be shown in juried exhibitions, to be published in spe-
cialised photography magazines or web sites, and to compete for recognition and prizes,
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as described in [TM18b]. For the specific case of AVA, the scores range from 1 (i.e. ugly)
to 10 (i.e. beautiful). The mean score is 5.10; the maximum and minimum scores are 8.52
and 1.81, respectively. As current models are trained over the AVA dataset, we could say
that current aesthetic models are mainly dedicated to scoring competitive photography.

Using such a dataset suggests that some assumptions are implicitly made, in particular
the definition of aesthetic quality used. If we consider an image with a high score in AVA
dataset as an image with high aesthetic quality, this means that we recognise the general
agreement as an accurate measure of the aesthetic quality: if enough people find an image
beautiful, then it must be objectively beautiful. While this assumption is quite restrictive,
it certainly fits the competitive nature of the photographs of AVA. However, this definition
of aesthetics is not applicable to all categories of photographs. Because most of the recent
papers on aesthetic assessment do not make explicit this assumption, we want to show
in our work the importance of content diversity in the training images, especially for
aesthetics quality assessment.

It is common to consider three main usages of photography: competitive, vernacular
and professional.

Competitive photographs, as mentioned previously, are beautiful images that
should be liked by a very large audience [TM18b]. Competitive photography existed
before Internet, but it becomes very popular with social networks specialised in photo
sharing such as www.instagram.com, www.DPchallenge.com, www.flickr.com, etc. To
be liked by a larger number of people, competitive photography usually follows classic
aesthetics rules and is very aesthetically conservative.

Vernacular photographs are for a personal and family usage. They capture personal
events in order to keep a souvenir or to share these personal events with family or a private
community. The beauty is not the main objective in this context.

Professional photographs aim to be seen by a large number of people and aim
to convey a message or an emotion. Since the beginning of professional image creation
(including paintings and photographs), an image of high aesthetic quality is in most of
the cases more efficient to convey the intent, message or emotion. In this professional case,
aesthetics means well designed technically speaking, but does not necessarily mean that
the photography is pleasant. Indeed, the photograph objective can be to shock in order
to produce a reaction. Professional photography can further be classified into two main
genres: photojournalism (war photography, sport photography) and product photography
(fashion photography, real estate or architecture photography, etc.). The former endeavors

38

www.instagram.com
www.DPchallenge.com
www.flickr.com


4.2. Testing models and datasets

to capture an instant or its related emotion, while product photographs aim to promote
a product to make it desirable.

The main difference between those categories is the aim of the photograph. Competi-
tive photography aims at being pleasant for a majority of people, therefore high aesthetic
quality is the end goal of such photography. On the other hand, professional photography
aims at conveying the intent of the photographer or its commissioner. Complying with
common aesthetic rules in this case is only one mean among others to achieve such a goal.

In this chapter, we present our two main contributions. Our first contribution is to
test aesthetics prediction algorithms (which we call models in the rest of this chapter) to
assess whether or not they perform well on different categories of photography. This test
allowed us to quantify the coverage of the models – kinds of photographs accurately rated
by the model –, to eventually improve it. As models are mainly trained using competitive
photographs, we have collected several datasets of professional photographs to test the
recent models NIMA [TM18a] as well as the Ranking Network [Kon+16a]. This first
study shows that there exists a significant difference in the behaviour of the models on
competitive and professional photographs, and between different categories of professional
photographs. This observation led us to our second contribution: we propose a solution
to reduce the impact of the training dataset on the coverage of the networks by fine-
tuning the already trained models using other kinds of photographs (in our case, using
professional photographs). We prove that this method effectively improves the coverage
of the models as explained in the following sections.

These contributions led to an article [CCL22]. The rest of this chapter is structured as
follows: Section 4.2 presents the models and the different professional datasets we used in
the experiments and Section 4.3 presents the experiments themselves; Section 4.4 exposes
the results of the experiment and finally, we conclude in Section 4.5 by summing up our
findings and proposing some future work.

4.2 Testing models and datasets

The experiment we propose relies on testing two recent computational aesthetics mod-
els to measure their coverage, namely NIMA [TM18a] and the Ranking Network proposed
by Kong [Kon+16a] with datasets of professional photography. We chose these two net-
works primarily because the source codes and final weights of the network can be found
easily. We present the models and the datasets in this section, as well as our method to
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(a) 5.81 – 6.24 (b) 5.34 – 5.24 (c) 4.76 – 4.77 (d) 5.70 – 5.51

Figure 4.1 – Different images from the AVA dataset (competitive photographs) with
scores from the third-party implementation (on the left) – quoted from the original arti-
cle [TM18a] (on the right).

improve the coverage of the models.

4.2.1 NIMA model

In the following, we present the NIMA architecture we use and the training process.
More details can be found in the original paper [TM18a]. The main feature of NIMA
model is its ability to rely on existing pre-trained deep networks. It consists in replacing
the last layers of an image classification network with a fully-connected layer, and then
train only the final layer. The model is first completely trained on ImageNet, and then
fine-tuned using a dataset specific to the final use of the network. Two different examples
of uses are proposed: (1) prediction of the aesthetics score of an image and (2) prediction
of the quality of an image. The former uses the AVA dataset whereas the latter uses the
TID2013 dataset. In this study, we focus only on the aesthetics prediction models.

NIMA model relies on existing architectures, two of which are Inception [Sze+16a]
and MobileNet [How+17]. Those are architectures for image classification. NIMA adapts
those models to the problem of aesthetics assessment. According to the authors, the model
based on Inception is more accurate, but slower than the model based on MobileNet.

A third-party implementation is available online 1. This implementation also proposes a
NIMA model based on NasNet [Zop+18], another neural network for image classification.

1. https://github.com/titu1994/neural-image-assessment
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NasNet-based NIMA model was not presented in the original article, but it performs
better on AVA than the models based on Inception or MobileNet. As NIMA outputs a
distribution of scores, the performance of these models is measured with an Earth Mover
Distance (EMD). NasNet gets 0.067 EMD while Inception gets 0.070 EMD and MobileNet
gets 0.080 EMD (lower is better). In the following, we perform our study on the most
relevant architectures which are Inception (the best method presented in the original
article) and NasNet (the best method available in our third-party implementation).

Before going further, we have checked that the behaviour of the third-party model and
the original NIMA model are similar, although the scores of images are not exactly the
same. Figure 4.1 illustrates some examples with both predicted scores. To see if the two
implementations are similar, we compute the correlation coefficient between the scores
given by the third-party implementation and the ground truth score of AVA, then we
compare it to the given correlation coefficient in the original article [TM18a] between the
ground truth scores and the scores given by the original network. On a sample of 4662
images from AVA, we achieve a correlation coefficient of 0.581 between the ground truth
and the third-party implementation, which is close to the 0.636 announced in the original
article.

4.2.2 Ranking Network model

The Ranking Network was proposed by Kong et al. in 2016 [Kon+16a]. The input of
the model is two images passing through two identical networks. The output is a score for
each image (on a scale from 0 to 1) and a ranking between the two images. Besides, the
model outputs several characteristics of the images (compliance with the rule of thirds,
presence of symmetry, of vivid colors, etc...) that were used to compute the final score.
As the model needs this information for training, the authors also devised a new training
database called AADB. The implementation was provided by the authors themselves on
their GitHub 2. More details can be found in the original paper.

4.2.3 Datasets of professional photography

In this section, we present the photograph datasets we used to test the above presented
models on professional photography. In order to cover a wide range of professional pho-
tograph, we used six datasets corresponding to different photography genres. Among the

2. https://github.com/aimerykong/deepImageAestheticsAnalysis
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(a) Fashion. (b) Architecture. (c) Cars.

(d) Sport. (e) National Geographic. (f) War.

Figure 4.2 – Different sample images from professional datasets. We show here the worst
(on left) and the best (on right) of each category according to NIMA.

six datasets, we have created five of them by collecting images by hand. As the process of
collecting images one by one is very time consuming, we have collected around 100 images
per category, as it is sufficient to test the different models. Figure 4.2 illustrates a sample
of images of these photography genres.

Fashion category contains photographs coming from various editorial fashion photo-
shoots and published in fashion magazines during the year 2018. These photos are cap-
tured by professional photographers in collaboration with magazine art director. The
photographs are of different aesthetic styles (black and white, color, high key, low key,
etc.) These images are not only of high aesthetic quality but also have an artistic dimen-
sion. These images have been collected for a long time and thus, the dataset collected is
larger than the other categories. We have collected 1373 images.

Architecture category contains real estate, indoor design and architecture pho-
tographs published in Architectural Digest Magazine. These photographs have been cap-
tured by professional photographs and promote the beauty of architecture. They are of
high aesthetics quality but in a more classic manner than fashion ones. We have collected
117 images.

Cars category contains photographs done by various car manufacturers to advertise
their new cars. Due to marketing strategy, the aim of these photographs is to promote
different values such as power, robustness and sometimes beauty. We have collected 109
images.

Sport category contains photographs of various sports from the French journal
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(a) Architecture. (b) Fashion. (c) National Geographic.

(d) Cars. (e) War. (f) Sport.

Figure 4.3 – Histograms of scores for the four models (Inception-based NIMA; Nasnet-
based NIMA; the Ranking Network; and the Weighted CNN network) and for six different
datasets.

L’équipe dedicated to sport news. These images have been captured by professional pho-
tographers and try to capture crucial moments. We have collected 155 images.

War category contains war photographs from the photography agency called Agence
VU. Obviously the first aim of these photos is not to make aesthetically pleasant photos,
but to tell the truth about war. We have collected 138 images.

National Geographic category contains wildlife and landscape photographs from
the National Geographic website. Similarly to the previous datasets, the photographs have
been captured by professional photographers. The usual objective of these photographs is
to show the beauty of Earth and wild life. We have collected 110 images.

4.2.4 Overview of models

Figure 4.3 shows histograms of scores for images from the professional datasets we
have built presented in section 4.2.3 computed by the different models we tested.

We can draw several observations from these distributions. First, we notice that the
histograms for NIMA (green/blue on Figure 4.3) and for the Ranking Network (named
"Kong", in orange on Figure 4.3) are extremely different from each other. Two histograms
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are noteworthy: War and Sport from Kong model. The War histogram (Figure 4.3e in
orange) is well below the average score while the Sport histogram (Figure 4.3f in orange)
is well above the average. The scores from War were expected. While they come from a
professional dataset, their main goal is not to have a high aesthetic value, but to show the
truth of war. Therefore, they are bound to have low aesthetics values. On the other hand,
the sport images are quite colourful and with a low depth of field. These are two qualities
that the Ranking Network assesses to compute the final aesthetic score. Therefore, they
get higher score than average.

Several observations can be made from these distributions. First, we observe that all
histograms are located near the mid-point of the evaluation scale. The number of ugly
and beautiful images is almost zero. This observation is not what was expected for the
categories Fashion and National Geographic. Indeed, these categories gather beautiful
images, for which photographers pay attention to composition, lighting, depth of field,
etc. Therefore, those images should get, for most of them, a high aesthetic score. For
other categories, such as war, it was also expected to get some bad aesthetic scores. The
second observation is related to the rather small difference in terms of aesthetic scores
between competitive and professional photographs. These two observations may suggest
that the NIMA models do not generalise well because they specialise in images from
AVA (this specialisation is what we call over-fitting). To make this point clearer, we have
conducted a statistical analysis presented in Section 4.3.2.

Several differences exist in NIMA and the Ranking Network. First, the architectures
of the associated networks are different. On the one hand, the authors of the Ranking
Network carefully designed the architecture using several pipelines corresponding to dif-
ferent aesthetic attributes. On the other hand, NIMA uses a generic features extraction
learned from classification tasks. While it has been shown that networks which use features
learned from classification can perform well for various tasks in computer vision [Wen+19],
features crafted for a specific task (in our case aesthetic quality prediction) are more rele-
vant. Besides, aesthetics does not rely only on signal patterns [Jos+11b] but also on more
subjective criteria. That is why generic features learned from classification (which is a
problem with an objective answer) might not be optimal for aesthetics prediction. That
could explain why NIMA does not perform as well as the Ranking Network on professional
photographs.
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4.3 Presentation of experiments

As the results of Section 4.2.4 show that NIMA does not discriminate between com-
petitive and professional images, we have devised a method to improve the coverage of
NIMA. We present in this section our method that consists in fine-tuning the trained
network with new images.

4.3.1 Hypotheses

We conducted our experiments under some assumptions. These assumptions are pre-
sented and motivated in this section.

The images from the category Fashion are expected to have a high aesthetic quality,
and therefore high scores. Indeed, the aim of such images is to promote the value of fashion
products, so we can argue that the end goal specific to the Fashion category is to have
high aesthetic quality. Besides, in the images we collected we can argue that the end goal
was achieved as these photographs were taken by professional photographer, and they
also were published, which proves that they are acknowledged to be efficient.

On the other hand, the images from the category War are expected to have a low
aesthetic value (according to common aesthetic sense) and therefore would get rather low
scores.

4.3.2 Fine-tuning of Nasnet-based model

We want to address the over-fitting problem. As we already have a trained model to
start with, we do not use classic regularisation techniques. It is easier and faster to train
again the network using the professional photographs. Indeed, using the already trained
network as a basis requires less epochs and less training image for the second training.
That is what we call fine-tuning. We fine-tune the Nasnet-based model using one of the
professional datasets. We consider Fashion for two reasons: first, this category contains
the most images among all professional datasets we have, second, based on the content
and the aim of those photographs, they must have a high aesthetic score according to
competitive photography aesthetic. We construct a training dataset using the 1373 images
from Fashion and 1373 random images of AVA. Among these 2746 images, 300 were set
aside and used as a validation set (150 from Fashion and 150 from AVA). As we use
supervised learning methods, we need labels (in our case, the labels are numerical scores)

45



Chapter 4 – Assessing aesthetics using professional photographs

for our images. Several methods are possible, we chose to create artificial scores for the
Fashion images. This method is faster, but less accurate than collecting new scores from
observers. However, as the goal of this experiment is only to see whether a fine-tuning can
effectively improve the coverage of the network, the absolute scores do not matter. We
want to see if we can improve the networks coverage using some professional photographs
(increasing scores in Fashion, decreasing scores in War) without impeding on the learning
done on competitive photographs. Therefore, a full user study to collect new scores is not
necessary here, but is mandatory if the network is designed to give accurate results.

As explained in Section 4.3.1, we make the assumption that the images from Fashion
must have a high mean score. We also assume that although the actual scores for Nasnet-
based NIMA on the Fashion dataset are not correct, the ranking of the images is. Then,
to create artificial scores for the Fashion images, we shifted the average value of the
histogram of scores given by Nasnet-based NIMA to a higher value. More specifically, if
the current mean score for the dataset on Nasnet-based NIMA is µ, the ground truth
score for each image of score s is computed as s̄ = s − µ + µ̄ where µ̄ = µhigh + 1 is
the new mean score. We considered the value µhigh = 6 because it corresponds to high
aesthetics value according to many previous work [Wan+18; MMP12]. Using this method,
we ensured that the fashion dataset had a mean score of µ̄, and therefore, a majority of
images from Fashion had a score higher than µhigh.

4.4 Results

We present in this section the results of our two experiments: the behaviour of the
different models when exposed to professional photographs, and the outcome of the fine-
tuning process on NIMA.

4.4.1 Statistical analysis

Table 4.1 presents the mean scores and whether the paired t-test for all pairs of scores
computed by the tested models are significant or not.

NIMA models. Results indicate that the mean score of ground truth scores (5.1) is
significantly lower than the mean score of tested professional photographs (ranging from
5.52 to 5.84). This difference, although very small on a scale of 10 grades, was expected
and statistically significant. From the t-test analysis, we can infer a clustering of datasets
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Figure 4.4 – Influence of the fine-tuning process using the Fashion dataset on Nasnet-
based NIMA scores. Results are reported for AVA (left) and Fashion (right).

depending on the p-values of the t-test. However, these clusters are quite different for the
different models. They are represented on Figure 4.5 (a) and (b), and given below with
clusters between parentheses in ascending order of aesthetic scores:

— For NasNet-based NIMA model: (AVA), (AVA), (Cars), (War; Fashion; Architecture;
Sport) and (National Geographic).

— For Inception-based NIMA model: (AVA), (AVA), (War; Fashion; Cars; Sport), (Ar-
chitecture) and (National Geographic).

Ranking Network model. As the distributions are not normal, we did not use a t-
test, but a Wilcoxon rank-sum test. We observe that the range of scores is greater than for
NIMA; the dynamic of scores represents 54.4% of the whole scoring scale, whereas NIMA
scores represent only 22.3% of the scoring scale in average. This observation would suggest
that the ranking model is more selective for the professional categories. As previously,
Figure 4.5 (c) represents the clustering inferred from statistical analysis. The clusters
for the Ranking Network are: (War), (AVA; Architecture), (Cars; Fashion; AVA) and
(National Geographic; Sport).

We notice that in both cases, AVA and National Geographic are separated from the
others. The mean scores of datasets Cars and Architecture do not vary much between
the models, so we can argue that their scores are more reliable than the score of the
four other datasets. In any case, the p-values show that there are significant differences
between some photography categories. This could come from differences in the aesthetics
features of the images.
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AVA NG C F A S W
NIMA NasNet 5.10 5.84 5.52 5.63 5.69 5.67 5.62Mean Score

AVA *** *** *** *** *** ***
Nat.Geo. *** *** * ** ***

Cars * ** * ns
Fashion ns ns ns
Archi. ns ns
Sport ns
War

NIMA Inception 5.10 5.84 5.55 5.59 5.66 5.57 5.53Mean Score
AVA *** *** *** *** *** ***

Nat.Geo. *** *** ** *** ***
Cars ns ** ns ns

Fashion ** ns ns
Archi. * ***
Sport ns
War

Ranking Net 0.455 0.545 0.510 0.503 0.443 0.565 0.386Mean Score
AVA *** *** *** ns *** ***

Nat.Geo. * ** *** ns ***
Cars ns *** *** ***

Fashion *** *** ***
Archi. *** ***
Sport ***
War

Table 4.1 – Table of paired t-test (or Wilcoxon rank-sum) p-values for different
datasets (AVA=Ground truth scores; NG=National Geography; C=Cars; F=Fashion;
A=Architecture; S=Sport; W=War) on the three models. The stars are attributed us-
ing the p-values: * for 0.05 ≥ p > 0.005, ** for 0.005 ≥ p > 0.0005, *** for 0.0005 ≥ p;
ns stands for non significant. For the Ranking Network, the scale is from 0 to 1 instead
of 1 to 10. The scores given for each dataset correspond to the mean for this particular
model.

4.4.2 Does fine-tuning Nasnet-based NIMA model improve the
overall prediction capabilities?

Figure 4.4 presents predicted scores when the Nasnet-based NIMA model is fine-tuned
following the procedure described in Section 4.3.2. The blue histograms represent the
score distribution of AVA and our Fashion dataset on the original networks, and the red
histograms those after fine-tuning the model. As expected, we notice that the scores of
Fashion have increased after fine-tuning while AVA scores slightly decreased. The fine-
tuned model is then able to better discriminate Fashion photography from competitive
photography. It may suggest that models trained over AVA are specialised for competitive
photography. However, a simple fine-tuning process allows to make the model more generic
and more relevant. The results of the statistical tests for the fine-tuning experiment are
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5 5.5 6
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AVA

Cars

Architecture
War
Fashion
Sport
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Geographic

(a) NasNet. Red arrows show the modifications
of the mean scores brought by the fine-tuning:
Sport and National Geographic are not mod-
ified whereas War and AVA are in the same
cluster.

5 5.5 6

AVA

AVA
Architecture

War
Fashion
Cars
Sport

National
Geographic

(b) Inception.

4 64.5 5 5.5

Cars
Fashion
AVA

National
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Sport

Architecture
AVAWar

(c) Ranking Network.

Figure 4.5 – Clustering the datasets according to the p-value of the statistical tests.
The arrows point to the mean aesthetic score given by the corresponding model. AVA
corresponds to the average estimated score of 26122 images of AVA on the model and
AVA corresponds to the ground truth mean.

not represented here, but a representation of the clusters can be found in Figure 4.5
(a). Results indicate that after fine-tuning, the mean scores of the datasets have slightly
changed. As we used the Fashion dataset to train the model using high scores as ground
truth, it was expected that Fashion photography would get a higher score after fine-tuning.
We observe that War, Cars and Architecture have lower mean scores. This must come
from the modification of the features used by the network.

4.4.3 Comparison with weighted CNN

As the proposed fine-tuning process and the weighted CNN [JSS16] have the same goal
(reducing the bias caused by the imbalance of AVA), we compare the performance of both
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(a) AVA.
(b) Architecture. (c) Fashion.

(d) National Geographic. (e) Cars.

(f) War. (g) Sport.

Figure 4.6 – Histograms of scores for different categories on the retrained Ranking Net-
work.

networks. The model and weights of Jin et al. [JSS16] are available on their website 3.
We can then compare our Nasnet-based NIMA model fine-tuned with Fashion and the
original weighted CNN model. Besides, to assess the relevance of their proposed novel loss
function, we trained another model – namely the Ranking Network [Kon+16a] – on AVA
using their loss function. Figure 4.4 presents our datasets outputs on Nasnet-based NIMA
fine-tuned (in orange) and Figure 4.3 presents the results for the original weighted CNN
model (in red) and Figure 4.6 presents the results for the Ranking Network retrained
using the weighted loss function.

The histograms in Figure 4.6 and 4.3 (in orange) are very similar: the fine-tuning
process has a very slight impact on the Ranking Network. We will therefore focus on the

3. https://ivrlwww.epfl.ch/bjin/project_aesthetics/Image_Aesthetics.html
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(a) Architecture. (b) Fashion. (c) National Geographic.

(d) Cars. (e) War. (f) Sport.

Figure 4.7 – Histograms of scores for different categories on the weighted CNN proposed
by Jin et al. [JSS16].

comparison of the two other models. The histograms from Nasnet-based NIMA (Figure 4.4
in orange) have smaller dispersion than the ones from the weighted CNN (Figure 4.3 in
red). Therefore, the model from Jin et al. seems to be more able to reduce disparity in high
and low score value zones. However, we notice a significant difference in the average scores
for the Fashion category in both models, Jin et al. being the lowest. It is thus possible
that the weighted CNN significantly improve the dispersion of the score histogram, but
is overall less accurate on the score themselves. We can verify this using a correlation
metric.

Therefore, we compute the Pearson correlation metric, – as well as the Mean-Square
Error (MSE) to measure the differences per image – with AVA for different models: our
Nasnet-based NIMA fine-tuned with the Fashion dataset, the original Nasnet-based NIMA
and the weighted CNN proposed by Jin et al. These values are reported on Table 4.2.

MSE (↓) Pearson ρ (↑)
Original NIMA 0.387 0.618

Fine-tuned NIMA 0.391 0.596
Jin et al.[JSS16] 0.500 0.585

Retrained Ranking Network 1.939 0.165

Table 4.2 – Mean square error and Pearson correlation metric for four different models.
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First, we notice that the best model according to both metrics is the original Nasnet-
based NIMA. Our fine-tuning process slightly degrades the performances of NIMA on
AVA. However, as explained previously, it also significantly improves the performances on
the Fashion dataset. The fine-tuning process is thus quite effective and allows for better
results on Fashion, and good results on AVA. In terms of correlation, the weighted CNN
is worse than NIMA and the fine-tuned NIMA. This shows that our method is more
faithful to the ground truth scores. All of this proves that our fine-tuning process is a real
improvement over the weighted loss function.

4.4.4 Discussion

Using the fine-tuning method, we managed to increase the score of the Fashion
database without modifying too much the scores from other categories. If we assume
that the Fashion dataset is mainly composed of high aesthetic quality images, we have
effectively improved the model accuracy and coverage. However, we can discuss the
relevance of our assumption.

The score threshold used as high aesthetic quality is used in previous work as a dis-
tinction between professional and amateur photographs. The professional photographs we
used in our experiments were chosen because of their relevance. Indeed, these photographs
were taken by professional photographers, furthermore they were published, which proves
that they are acknowledged to be efficient. This shows that our assumptions on the scores
(of images from War and Fashion) are reasonable.

4.5 Conclusion

In this chapter, we have presented a study based on the models NIMA and the Ranking
Network. We wanted to understand how these models behave for other kinds of photog-
raphy than their own training dataset. As the dataset AVA is composed of competitive
photographs, we have chosen six datasets of professional photographs in order to test
whether or not the models generalise well for these photographs.

We have observed that NIMA and the Ranking Network have different behaviours.
NIMA gives scores with rather small deviation around the mean, whereas the Ranking
Network scores are much more spread on the rating scale. We have also noticed that, for
NIMA, there is a strong discrepancy between the scores of AVA and professional pho-
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tographs. This is alleviated by the fine-tuning process, but raises other issues, such as the
correct way to fine-tune and train the networks. Despite the fact that there is a significant
difference of scores for the datasets, meaning that NIMA models actually recognise pho-
tographs from professional sources as more beautiful than images from AVA, this study
raises a number of issues. First, we do not observe, but we were expected to observe, a
strong discrepancy between the scores of AVA and professional photographs. Second, all
aesthetic scores of professional photographs are in a very limited range, approximately
from 5 to 6, whereas AVA scores span from 3 to 8.

These observations reflect how far we are from accurately predicting the aesthetics
of an image. However, we have demonstrated that fine-tuning existing models with pro-
fessional photography can reduce the specialisation of existing models to competitive
photography. This work shows the importance of the training dataset, especially when
dealing with such a difficult notion as aesthetics.

There are several future improvements of this work. First, to improve the training
datasets of aesthetics assessment networks, we could define and provide the community
with a new annotated image dataset of professional photographs. Then, by looking more in
details into a network, we could find how a network discriminates between different kinds
of photographs, and eventually better understand and model human aesthetics feeling.
This could lead to the design of novel personalised aesthetics prediction architectures
that are based on new generic techniques used for example in BIQA (as presented in
Section 3.1). Finally, as our work does not take into account the standard deviation
of scores, a more thorough study about means and standard deviations would also be
interesting, because this could help characterise the categories of professional photography.
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Chapter 5

HDR-LFNET: INVERSE TONE MAPPING

BY FUSION METHODS

5.1 Introduction

High Dynamic Range (HDR) images consist of 2D arrays which contain, for each pixel,
the raw luminance captured by the sensor at this point. These values are, in theory, un-
bounded and not quantized. This is a much richer content than Standard Dynamic Range
(SDR) images, which correspond to the common widespread images. HDR-compatible
hardware, such as monitors or cameras, are more and more available to the general pub-
lic. This creates a need for image processing algorithms adapted to HDR content, making
the HDR imaging a trending research domain.

HDR photographs are usually obtained using the exposure fusion technique. We take
several photographs of the same scene with different exposure times. The longer the
exposure time, the more light is coming through the camera, and the more information
we can obtain in dark parts. On the other hand, short exposure time pictures provide
information in the brightest areas of the scene. This allows to gather information in every
area of the scene. The different photographs are then merged together to yield a single
HDR image. Modern cameras can take several photographs with different exposure times
using a single press of the trigger. This function is called the bracketing function, and it
allows to take the specific photographs that are needed for exposure fusion. That is why
exposure fusion to generate HDR is so popular.

As most of the image datasets available are composed of SDR images, it is useful to
devise algorithms to recover lost information in SDR images. From a single SDR image,
we must use approximations if we want to extend the dynamic range. Algorithms that
extend dynamic range of SDR images are called inverse tone mapping operators (iTMO).
Contrary to the classic method of exposure fusion, iTMOs only take as input a single
SDR image and yield an HDR image. The result is an approximation of the truth, as SDR
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images do not contain as much information as HDR ones. However, iTMOs manage to
avoid some artifacts caused by the exposure fusion, such as ghosting (due to movement in
the scene), motion blur or Moiré effect (usually present in high exposure pictures). While
at first, iTMOs were based on content-based assumptions and were using photographic
rules to extend the dynamic range, neural networks are now used to this end.

Inspired by other computer vision domains (such as saliency [MNL13] or denois-
ing [Ker14]), we devised the HDR Light Fusion Network (HDR-LFNet), a new iTMO
aggregating several existing iTMOs that are not based on learning algorithms. Hopefully,
the fusion of all iTMOs performs better than each input method individually. We work
with standard gamut, HDR images. As such, the main component at stake here is the
luminance. Besides, we know that processing possibly unbounded values in a neural net-
work can lead to difficulties in the training. Therefore, instead of luminance, we process
lightness values, which are bounded and closer to the human perception than luminance.
That explains why we have decided to mainly process lightness, while using a generic
recolourization algorithm (explained in Section 5.2.4) to generate coloured images.

Our approach uses a supervised neural network with several orders of magnitude fewer
parameters to learn compared to existing networks, which is achieved thanks to some pre-
processing. This pre-processing lowers as well the number of training images needed. This
is a real improvement, as our network needs HDR training images and HDR images are
not as easy to gather as SDR images.

However, as we need fewer images to train, each image is increasingly important and
needs to carry a lot of information to effectively train the network. We consider that high
resolution images have a higher probability to contain the qualities that we need (light
sources, dark areas, smooth gradient and high frequency areas). The HDR datasets that
already exist usually contain a few hundreds images at most, with size around (1920 ×
1080). To train our network, we then collected high resolution HDR images, and we
compiled them in a new dataset.

We tested our method against state-of-the-art using four metrics on HDR images:
HDR-VDP2, Harmonic HDR-IQA, PU-PSNR and PU-SSIM. Our method yields results
similar to the state-of-the-art, but runs with fewer parameters. We also conducted a user
experiment to compare HDR-LFNet to state-of-the-art methods. Results show that HDR-
LFNet is preferred to others in the user study. Along with the short training time required
by our network, this user study shows that our method is usable and effective in a wider
range of applications.
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SDR
Input iTMO 2

iTMO 1

iTMO 3

RGB → L∗ Neural
network

Contrast
correction Recolour

HDR
Output

Figure 5.1 – Our method HDR-LFNet uses a neural network to fuse several expanded
versions of the input. This allows for faster training and lighter network. We use a con-
trast correction and colourization as postprocessing. The operator ⊙ corresponds to the
concatenation along the depth dimension: if I1 and I2 are two images of size (H, W, C),
then I1 ⊙ I2 is a volume of images of size (H, W, 2, C).

Our contributions consist in:

1. devising a novel inverse tone mapping light architecture that merges several existing
iTMOs to get a more powerful one;

2. proposing a new dataset of high definition HDR images composed of 496 pairs of
middle exposure SDR and the corresponding HDR;

3. evaluating our work and other state-of-the-art methods using objective metrics and
a user experiment.

These contributions led to a submission [Cha+23]. The rest of this chapter is divided as
follows. We explain our approach in section 5.2 and then present the evaluation of our
method in section 5.3. Finally, section 4.5 concludes the chapter.

5.2 Our fusion network

Our goal is to propose a new method to expand the dynamic range of images that is
faster and requires fewer training images. To achieve this goal, we use supervised learning
algorithms to train a neural network. In this section we present the network architecture
and the training process along with the training dataset. As we decided to use expanded
version of images through iTMOs as input of our algorithm, we also present how we choose
those operators. Our method is represented in Figure 5.1.
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5.2.1 Overview of 3D convolutions

In this section we present some general characteristics of 3D convolutions, that we
extensively use in our network.

An image can be represented as a tensor of size (H, W, C) with H the height, W the
width and C the number of channels. A channel is a scalar array of size (H, W ) containing
information about a specific characteristic. For example, in traditional coloured images,
C = 3 (each channel contain information about a specific colour component for example
in RGB values), or if we only use gray level images, C = 1. Convolutional neural networks
work by learning the weights of convolution filters. At each level (that we call layer) in
the encoder section, the number of channel increases, to learn more and more structured
information. For example in our proposed architecture, the deepest layer contains 64
channels. Tensors which are not the input or the output tensors of a neural network are
called feature maps.

A classic 2D convolution in a CNN layer is characterized by its kernel size, denoted
by (kx, ky). A 2D convolution between a layer with C channels and another one with C ′

channels will have kx × ky × C × C ′ parameters to learn. All scalar values in a (kx, ky, C)
voxel of the input tensor are multiplied term by term with the kernel weights, and then
added together to yield a single scalar value. This process is repeated C ′ times with C ′

different sets of weights, to get C ′ values. Starting with a tensor of size (H, W, C), this
convolution yields a tensor of size (H − kx + 1, W − ky + 1, C ′).

In our case, we use 3D convolutions, which work on volumes of images of size
(H, W, D, C). The convolution kernels also have one more dimension (kx, ky, kz), but
they are similar to 2D convolution: they have kx × ky × kz × C × C ′ parameters to learn,
and starting with a tensor of size (H, W, D, C), this convolution yields a tensor of size
(H − kx + 1, W − ky + 1, D − kz + 1, C ′). Besides, as 2D convolutions, they consider all
channels when computing the convolution sum. The advantage of 3D convolutions in our
case is to specify the depth dimension: this allows for more control over the training of
the network, and its behaviour.

2D convolutions and 3D convolutions are related: if we consider tensors with size
(H, W, C) as (H, W, 1, C), 2D convolutions (kx, ky) are the same as 3D convolutions
(kx, ky, 1). On the other hand, we can view tensors (H, W, D, C) as (H, W, DC) and con-
volutions (kx, ky, D) are the same as (kx, ky), but convolutions (kx, ky, kz) with kz < D

are not translatable to 2D convolutions, so 3D convolutions are strictly more expressive
than 2D ones.
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We represent on Figure 5.2 a visualisation of the 3D convolution that we use in our
work.

5.2.2 Architecture

As represented on Figure 5.1, our method uses a neural network at its core. The
architecture of our network is represented on Figure 5.3. We adopt an encoder-decoder
shape to reduce the size of the images during the forward pass, and thus reducing the
time and memory needed for training. Many different characteristics of our network are
explained in this section.

Our network only processes the lightness of images – the L∗ component in the L∗u∗v∗

colour space –, and thus the input has one channel. We apply a contrast correction to
the network output, as well as adding back colour to yield a final HDR output. These
postprocessing operations are presented in Section 5.2.4. The activation function is based
on ReLU. As HDR images usually do not contain values of 0, we define a new activation
function called Nonzero-Relu as

ReLUa(x) =

a if x ≤ a

x else
(5.1)

with a value of a = 10−12.
While designing our architecture, we follow some common guidelines to avoid well

known problems. To avoid artifacts usually caused by deconvolutions, we instead upsample
the feature maps, and then apply a classic convolution in the decoder part. Besides, along
with maxpooling to reduce the dimension of our network, we use dropout layers to stabilize
the training and dodge local minima of the loss function.

Inspired by other neural networks [Liu+20; Kon+16b], we decided to lighten our net-
work — in order to improve its performances -– by using an architecture specific to our
problem. For this purpose we have provided the network with two new characteristics: (1)
the input of our network are images expanded with existing iTMOs, (2) 3D convolution
layers are used to force the network to learn the added value of each pair of expanded
images. These two characteristics are detailed in this section.

By using already inverse tone-mapped images as input of the network, this latter must
learn an easier transformation from HDR to HDR rather than from SDR to HDR. These
images are concatenated on the depth dimension of the tensor.
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I1 I2 I3 I1 (I1, I2) (I2, I3) (I3, I1)

Figure 5.2 – Diagram representing the 3D Convolution used in our architecture. The
kernel size of this convolution is (k, k, 2). The input of the convolution (on the left) is a
volume of images (H, W, D = 4, C) where the depth D is represented by magenta lines.
The output of the convolution (on the right) is then a volume (H ′, W ′, D′ = 3, C). The
red and blue blocks represent two different steps of the convolution.

60



5.2. Our fusion network
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Figure 5.3 – Architecture of our network, which uses 3D-convolutions. The network pro-
cesses volumes of images (H, W, D, C) (represented in yellow), where depth D is repre-
sented by magenta lines. The number below each feature map corresponds to the number
of channels C (not graphically represented on the figure). Green arrows represent 3D con-
volution of kernel size (kx, ky, kz) followed by the activation function ReLUa, blue arrows
represent skip connections (which are detailed in Section 5.2.2). The red arrow indicates
the 3D convolution that effectively fuse the input images. Downsampling and maxpooling
are represented by red-orange layers, and upsampling are represented by blue layers.
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We manage to drastically reduce the number of parameters of our network. By using
three expanded versions of the same image (obtained with three different iTMOs) as
input,

we are able to reduce the number of parameters to approximately 2 × 105, against
the 106 to 108 parameters of state-of-the-art networks. The choice of iTMOs we use as
input of our network is discussed in Section 5.2.6. As the number of trainable parameters
is quite low compared to other networks, the function learned by our network should be
simpler than the functions learned by state-of-the-art networks, but as the inputs are
more complex, the output quality should be at least similar that the quality of state-of-
the-art methods. Besides, we use full resolution images during training instead of random
crops, this should not impact the performance of the network while reducing the training
time. This assumption is verified in Section 5.3.2 by training our architecture with the
HDR-Real dataset.

As we have several versions of the same image with only one channel, we can induce
the network to learn how each iTMO interacts with the others. To this end, we use 3D
convolutions instead of the classic 2D ones to guide the training.

To ensure that each pair of iTMO is considered, we need to input redundant infor-
mation in our network. Our input tensor is the concatenation (I1, I2, I3, I1) in the depth
dimension with Ii the expanded image generated by the i-th iTMO algorithm. This allows
3D-convolution with depth kz = 2 to process all pairs (I1, I2); (I1, I3) and (I2, I3) as ex-
plained in Section 5.2.1. This convolution is done at the heart of the network (represented
by the red arrow on Figure 5.3). After this convolution, we just need to upsample the
feature maps to get back the original resolution. The final convolutions are done using
maximum depth 3D convolutions to simulate 2D convolutions, as the depth dimension is
not useful anymore. We compare this method to the classic 2D Convolution in the ablation
study (Section 5.3.3). Therefore, the input tensor of the network is of size (Height, Width,
Depth = 4, Channels = 1). These considerations determine the depths of all feature maps
of the networks, and therefore the depth values kz of all 3D convolutions. In the following,
the depth values of 3D convolutions which are irrelevant (because they are already fixed
by our previous construction choices) are denoted by a question mark ?.

Finally, we know that using convolution filters usually averages neighbour pixels, and
therefore degrades the edges. First, to keep high frequencies as much as possible, we use
skip connections. However, the feature maps before and after the fusion convolution have
different depths, so we compute the average values of the first feature maps in the depth

62



5.2. Our fusion network

dimension before merging them with the second ones. The aggregation of the feature maps
is done by concatenating both feature maps, and then running a convolution with a kernel
of (1, 1, ?). Moreover, we modify the kernel sizes of the convolutions of the decoder part in
a coarse-to-fine manner. Indeed, we decrease the kernel size from (5, 5, ?) to (1, 1, ?). This
allows the final convolution to be a (1, 1, ?) convolution, which better preserves the edges
in the images. The impact of the kernel size decrease in the decoder part is discussed in
the ablation study (Section 5.3.3).

5.2.3 Loss function

Our loss function is designed for comparing HDR images. We denote by L(IHDR)
the lightness of the ground truth HDR image, and by L̂ the output of the network.
The loss function used for training consists of four parts: (i) a mean absolute error
(MAE) Yc = L1(L(IHDR), L̂) for the actual values, (ii) a gradient-based error (gMAE)
Yg = L1(g(L(IHDR)), g(L̂)) – with g the gradient computation using Scharr filters – to
emphasize the shapes, (iii) a perceptual loss Yp to be more accurate on areas that are
sensitive, and (iv) a dynamic range error Yd.

The perceptual loss is based on VGG16 [SZ15]. The idea is to compute visible errors
at different scales, and to that end we use activation maps from an already trained VGG
network. We compute the mean absolute error between deep features of the target and
the output images at the first four layers. The computation is done using a L1 difference.

Finally, we add a dynamic range error Yd:

Yd =
∣∣∣D(L(IHDR)) − D(L̂)

∣∣∣ with D(X) = max(log X) − min(log X)

This dynamic range error is to ensure the network produces an output with a dynamic
range similar to that of the ground truth. The actual loss function is then a combination
of those four components:

Y = αYc + βYg + δYp + εYd (5.2)

Using the validation set, we found that the values α = 1, β = 0.3, δ = 0.15 and ε = 1
work best.
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5.2.4 Postprocessing

As our network only processes the lightness of images, we need some postprocessing
to at least add colour to the output image. Besides, we add a contrast correction to the
output of the network to better match the ground truth image. We explain this process
in this section.

In the following, we denote by I the coloured SDR input and IX its colour component
X (the red, green, or blue channel in our case); IY the luminance channel of the image I;
L̂ the output lightness of the network; and Î the HDR output recoloured in RGB with our
method. To recolor our HDR images, we use the luminance preserving formula proposed
by Mantiuk et al. [Man+09]:

Î(γ, s)X = Yexp(L̂, γ)
((

IX

IY + 10−5 − 1
)

× s + 1
)

(5.3)

with γ the contrast factor, s ∈ [0; 1] the saturation factor and Yexp(L̂, γ) the expected
HDR luminance. Because this formula was designed to preserve luminance, we ensure
that Î(γ, s))Y = Yexp(L̂, γ). We add the value 10−5 to avoid problems with luminances
of zero. We convert the output lightness computed by the network to luminance using a
power function Yexp(L̂, γ) = L̂ γ. The work of Mantiuk et al. also contains a method for
automatic colour correction, however, their studies show that this method is not applicable
to HDR images.

The saturation factor s and the contrast factor γ can be modified to yield different
results. To get the maximum of correlation between the ground truth and our modified
output, we choose both factors by minimizing the mean square error between the images
of our training dataset and the computed image from our network. As human beings
are more sensitive to order of magnitude of light values rather than absolute values, we
compute those differences in the log-domain. These considerations yield the equations 5.4
and 5.5, where T is the set of training images.

γ∗ = arg min
γ

∑
I∈T

∥∥∥log10(L(IHDR)) − γ log10(L̂)
∥∥∥2

2
(5.4)

s∗ = arg min
s

∑
I∈T

∥∥∥IHDR − Î(γ∗, s)
∥∥∥2

2
(5.5)

After optimizing these formulas, we consider the parameters γ∗ = 2.659 and s∗ = 1.
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5.2. Our fusion network

Dataset Nb. of HDR images Images size
HDR-Eye [Nem+15] 46 (1920 × 1080)
DEIMOS [Klí+11] 79 (4300 × 2900)
pfstools [Man+07a] 8 Variable

HDRPS [Fai07] 105 (4300 × 2900)
HDR-Real [Liu+20] 480∗ Variable

Our dataset 496 ∼ (6000 × 4000)

Table 5.1 – Characteristics of different HDR datasets. (∗This is the number of original
HDR images in the training set, but this dataset is composed of more than 19,000 crops
of size (512 × 512))

5.2.5 Training dataset

Because we use supervised learning methods, we need an image dataset with HDR
ground truth and SDR input images to train our network. We present our new training
dataset in this section.

The training dataset is an essential component of a neural network. It is mandatory
that we carefully select the right images regarding the architecture and our needs. The
network we devised includes fewer parameters than the state-of-the-art networks. To train
such a network, we need a sufficient number of images – which is less than other state-
of-the-art networks –, but each image must contain as much information as possible. To
do so, we need very high resolution images. These images may be found in currently
available datasets, but they are not easily recoverable (see Table 5.1 for a comparison of
the different existing HDR datasets). Therefore, we collect a new HDR image dataset.

This dataset is mandatory to train our network, but can be added to other datasets: the
same data augmentation techniques can be applied to yield several thousands of smaller
images. As such, our dataset can be used for the same purposes as other datasets.

We have taken photographs with a Sony Alpha 7 III camera. We use the bracketting
mode to take 3 exposures at -3, 0 and +3 exposure values. The ground truth HDR image
is obtained through exposure fusion using Photoshop algorithm, as it provides images
with less artifacts. For the SDR input, we choose the middle-exposed photograph as
it contains information balanced between dark areas and bright areas. Besides, colours
are usually more saturated in low light environments, and less saturated in high light
environments. The middle-exposed shot provides the best colour quality among the three
exposure photographs. Each element of our dataset is then composed of the fused HDR
image and the middle-exposed image as the SDR image input. Some examples of images
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Figure 5.4 – Examples of SDR images from the proposed dataset.

are shown on Figure 5.4. We have managed to take 496 HDR photographs. We have done
no photometric calibration, so all the images are provided in relative luminance values.
We then have to normalize all images to use them as training images: we divide all image
RGB values by the maximal RGB value in the dataset. As all images were taken with the
same camera, this ensures that every HDR image has values in [0; 1] while maintaining
homogeneity.

To train our model, we split this dataset in three parts: 80 images for testing the
model; 56 images for validation; and the remaining 360 images for training. The 360
training images are then flipped horizontally and vertically to yield an effective training
database of 1,440 images. To allow the model and the images to fit in the memory, the
training is performed using downscaled versions of the training images. We use images
of dimension around (2000, 1300) by resizing the gathered HDR and SDR photographs
presented in Section 5.2.5. This dataset is available online 1.

For testing purposes and comparison with other methods, we use the HDR-Real test
dataset proposed by Liu et al. [Liu+20]. It contains more than 8,000 pairs of SDR/HDR
images and is widely used in the state-of-the-art as a test set thanks to its number of
images. These images were obtained from 480 original HDR images using augmentation
techniques, namely cropping (with a crop window of 512 × 512) and varying exposure
times and CRFs to create SDR from HDR.

1. ftp://ftp.irisa.fr/local/percept/public/hdrlfnet/
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5.2. Our fusion network

5.2.6 Choice of input iTMO

As we want to use already inverse tone-mapped images as input of our network, we
now need to select the iTMOs that we can use.

Method

We start from a set of inverse tone mapping operators: the five operators implemented
in the Matlab HDR toolbox [Ban+17] and the style-aware tone expansion [Bis+16]. Those
iTMOs are not based on learning algorithms, but rather handcrafted using photographic
rules and common assumptions. Setting up the input tensor so that each pair of images
is processed by the 3D convolution is feasible only with three operators (as shown in
Section 5.2.2). Among the six available iTMOs, we want to select three operators that are
quite different, such that we have maximum performances with minimal network input
size. The selection method is presented in this section.

First, we suppose that all of our operators are of similar output quality (with different
strengths and weaknesses), and we use quality metrics to differentiate the operators on a
chosen set of N images. We use our training dataset to do this, so we have N = 360. We
process each inverse tone-mapped images of our set with six different metrics: HDR-VDP2,
FSIM, MCS5, SI, PU-PSNR, PU-SSIM. These metrics are the ones used by Harmonic
HDR-IQA [Rou+19], and PU-PSNR and PU-SSIM [AMS08]. Each of the N images is
then represented by a 6D vector of metrics scores. Then, we project those vectors in a
2D space using the t-SNE visualization algorithm, to make the analysis easier. From this,
we compute the coverage of the space of each set of 3 iTMOs among the 6. To do so, we
compute the convex hull which encloses all points from 3 of the iTMOs, and we finally
choose the 3 iTMOs which have a convex hull of maximum area. The t-SNE plot, along
with the convex hull with largest area, is represented in Figure 5.5. The three chosen
iTMOs are Akyuz [Aky+07], Landis [Lan02] and Kovaleski and Oliveira [KO14].

Discussion

All of these operators have different strengths and weaknesses. Akyuz operator is a
simple algorithm that sets the maximum luminance value to a constant. While it usually
burns the high luminance areas, low- and middle-exposed areas of the HDR output are
quite faithful to the SDR version.

Landis operator uses a power function to improve the luminance values of pixels above
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Figure 5.5 – 2D projection of the scores of images obtained with the t-SNE algorithm.
Each colour corresponds to a different iTMO. The red line is the maximum area convex
hull, which encompasses points from Akyuz, Landis and Kovaleski & Oliveira iTMOs.

a certain threshold. This yields high-exposed pixels with appropriate value, but may
introduce artifacts: as the SDR image is quantized, some blocks or bands may appear on
smooth gradient areas.

Finally, the operator from Kovaleski & Oliveira uses joint bilateral filters to smooth
out the areas to expand. This method reduces the pixel values, but produces HDR images
with less artifacts than Landis.

Note that the t-SNE algorithm which projects high dimension data points in smaller
spaces is not very stable: small variations in the input data could modify the projection,
and thus the chosen operators. We can however see on the Figure 5.5 that several iTMOs
are very close to each other. As the areas of the bounding boxes are not very different
from each others, this choice do not have a huge impact on the performances of our model.
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5.3. Results

5.3 Results

5.3.1 Implementation details

The network is written using the PyTorch framework and is available online 2. Using
the dataset presented in Section 5.2.5, we train the network for 15 epochs, while reducing
the learning rate each time the validation error increases. The number of epoch is quite
low compared to other networks due to the small size of the network. Due to memory
restrictions, we use a batchsize of 1.

Besides, each epoch runs for about 40 minutes, for a total training time of approxi-
mately 10 hours. This is a much faster training than state-of-the-art training, which ranges
from a few days to a full week.

5.3.2 State-of-the-art comparison

In this section, we compare our method to other state-of-the art ones using objective
metrics. The iTMOs we consider are HDRCNN [Eil+17], ExpandNet [Mar+18], the Single
Image Network [Liu+20], HDRUNet [Che+21] LANet [Yu+21], DrTMO [EKM17] and the
model from Santos et al. [SRK20] (called HDR-masked in the rest of this article).

HDRCNN, DrTMO, LANet and the Single Image Network are presented in Sec-
tion 3.2.2. We remind that HDRCNN contains about 30 × 106 trainable parameters while
HDR-LFNet contains about 2 × 105 trainable parameters. Besides, the Single Image Net-
work improves on HDRCNN by using inpainting-like tasks during the training. It contains
about 2×106 parameters. HDRUNet contains 1.6×106 parameters. The main idea behind
HDRUNet is to split the network into three modules: a base network that performs most
of the work, a condition network that computes spatially-variant transformations used
to modify the deep features of the base network, and a weighting network that detects
over-exposed areas to improve the reconstruction in those areas. All these networks are
trained using their novel tanhL1 loss function. ExpandNet is a much lighter network with
around 5 × 105 parameters. It also proposes a network with different modules, with each
module working on a different scale: a global branch, a local branch and a dilation branch
for mid-scale features. Each of those branches adds new information, which allows for a
more faithful HDR reconstruction. HDR-masked [SRK20] is a CNN-based iTMO. Inspired
by HDRCNN, the model is composed of a neural network that estimates the over-exposed

2. ftp://ftp.irisa.fr/local/percept/public/hdrlfnet/
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(a) SDR input (b) Ground Truth (c) Our method

(d) HDR-CNN (e) Expandnet (f) HDR-UNet (g) HDR-masked

(h) Single Image (i) DrTMO (j) LANet

Figure 5.6 – Example of an image from HDR-Real dataset processed by different mod-
els. For ease of view, HDR images have been tone-mapped using the Drago algo-
rithm [Dra+03], which impairs the colours. To view HDR images in full quality, an HDR
display with HDR images is necessary.
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5.3. Results

(a) SDR input (b) Ground Truth (c) Our method

(d) HDR-CNN (e) Expandnet (f) HDR-UNet (g) HDR-masked

(h) Single Image (i) DrTMO (j) LANet

Figure 5.7 – Example of an over-exposed image from HDR-Real dataset processed by
different models. Due to burned areas in the image, the colors have not been processed
correctly. For ease of view, HDR images have been tone-mapped using the Drago algo-
rithm [Dra+03].
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areas in the SDR. As over-exposed areas are completely white in the SDR, the information
is completely lost. Therefore, to improve the HDR reconstruction, the authors pre-trained
their network for an inpainting task, before fine-tuning it for HDR reconstruction. Besides,
to focus the reconstruction on over-exposed areas in the network processing, a mask is ap-
plied on the features to focus the modifications on the over-exposed areas. Their network
contains more than 50 × 106 parameters.

All of the networks are fully convolutional neural networks, meaning that the input
can theoretically be of any size. However, for HDRCNN, due to how the deconvolutions
are used, the input must have its height and width multiple of 32. This means that some
of the images are either cropped or resized to fit this requirement.

We show some examples of images obtained with our method and with existing models
on Figures 5.6 and 5.7. We notice that LANet generates images with many artifacts. In
our experiment, LANet uses the weights provided by the authors. Therefore, this model,
trained with the dataset of the authors, does not perform well on the images from the
HDR-Real dataset, but should benefit from a re-training using the HDR-Real training
set. Figure 5.7 presents an over-exposed image. The reconstruction of burned areas in
images is one of the main difficulties of iTMOs. As such, few methods manage to generate
a convincing HDR image. This is one of the limits of most of the methods, including our
proposed method.

The metric used in the state of the art for comparing models is HDR-VDP2 [Man+11].
It is a metric with reference, and it takes as supplementary argument the angular resolu-
tion (measured in pixel per degree (ppd)). The angular resolution depends on the distance
between the observer and the screen, and the resolution of the screen. This metric allows
for a faithful simulation of the viewing experience on a specific screen. We represent on
Figure 5.8 the impact of the angular resolution on the score. We notice that, although
the actual scores change, the ranking of the different models do not. For the rest of the
evaluation, we use an angular resolution of 30 ppd, and we set the maximum luminance
value of images to 1000.

As HDR-VDP2 only works on luminances, we use Harmonic HDR-IQA [Rou+19],
which is sensitive to colours, as well as PU-PSNR and PU-SSIM [AMS08].

For this experiment, we test our network using the HDR-Real test dataset proposed
by Liu et al. [Liu+20]. We train three versions of our network: (i) using the HDR-Real
train, (ii) using our training dataset, and (iii) using our training dataset fine-tuned on
HDR-Real train dataset. For fairness of comparison, we train these three versions for
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5.3. Results

Figure 5.8 – HDR-VDP2 score variation depending on the angular resolution on the HDR-
Real dataset for four models.

the same amount of time (10 hours). HDRCNN, HDRUNet, the Single Image Network
and DrTMO are trained with the HDR-Real train set, while the other networks use the
weights provided by their respective authors. The different images were provided by Liu
et al. [Liu+20]. We present the results of our evaluation in Table 5.2. We find out that,
although our method do not perform the best, we manage to get second best on most of
the metrics, except on Harmonic IQA. As Harmonic IQA assess the differences in colour
between HDR images, this shows that our method does not reproduce colours as well as
the other methods. However, the user study presented in Section 5.3.4 reveals that our
method is preferred by observers. These results mean that although we are less faithful
to the colours of the original image, our method produces a more appealing picture than
the state-of-the-art methods. Furthermore, our method is faster than all tested methods.

Note that our method performs best on HDR-Real test set when it is trained on our
dataset, and not on HDR-Real train set. This comes from the nature of the datasets and
our architecture: we managed to drastically reduce the number of trainable parameters. As
explained in Section 5.2.5, the low number of parameters calls for fewer train images, but
with richer content. HDR-Real images being only 512 × 512, our dataset is better suited
to train our network than HDR-Real. We present on Figure 5.9 the mean HDR-VDP2
score as a function of the number of trainable parameters for our network, and networks
of the state of the art. From this point of view, our model actually performs better than
the state of the art. The state-of-the-art models would have better performances if they
were trained with our training dataset. As the training of the state-of-the-art methods
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Chapter 5 – HDR-LFNet: Inverse Tone Mapping by Fusion Methods

Figure 5.9 – Mean HDR-VDP2 score against the number of trainable parameters of the
tested models.

takes a long time, the full study of the different architectures trained using all the different
training dataset is left as future work.
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Model Score Input iTMO Score
With 2DConv 42.6345 Landis 32.4351

Without kernel size change 38.9088 Kovaleski & Oliveira (KO) 34.5834
Only MAE 36.3503 Akyuz 26.2426

MAE + gMAE 34.9649 KO + Landis 26.4762
MAE + dynLoss 39.9745 KO + Akyuz 32.1067

MAE + VGGLoss 35.4325 Landis + Akyuz 28.4841
Final model 49.8686

Table 5.3 – Mean HDR-VDP2 score for different variants of the model. On the left,
variations based on the architecture or the loss function. On the right, variations based
on the input of the fusion network.

5.3.3 Ablation study

In this section, we present the study conducted to assess the quality of the different
components: the composed loss function and the usage of 3D convolutions, skip connec-
tions, and convolution kernel with varying sizes.

Each subsequent section presents a modified variant of our network. It is trained on
our dataset and tested on HDR-Real. We did not train our network using the HDR-Real
training set as, to the best of our knowledge, the full resolution images are not available.
The average HDR-VDP2 score is presented on Table 5.3 for all variants, as well as for our
proposed method (called final model in this section).

Composed loss function

Our loss function is composed of four different components. We train the same archi-
tecture with loss functions composed of only some of the original components detailed in
Section 5.2.3. The mean absolute error (MAE) keeps the overall structure better among
the four components, so we train networks with MAE and gradient loss (gMAE); MAE
and dynamic range loss; and MAE and perceptual VGG loss. We also train a network with
only MAE to compute the added value of each component. We use the same weighting
as given in Equation (5.2) when training the different networks: for example, the version
MAE + gMAE was trained using the loss function Y = Yc + 0.3Yg.

Surprisingly, our method performs better when trained with only MAE rather than
MAE + gMAE or MAE + Perceptual loss. This can be explained as follows. In the final
model, each weighting coefficient assigned to each component of the loss function has been
carefully tuned with regards to the others. When using only two components of the loss
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function, the weighting coefficients should be different.
Therefore, we can assume that the scores given in Table 5.3 are not optimal, except

when training only with MAE (as no tuning is necessary because there is only one com-
ponent). However, due to the large difference in score between the final model and the
different loss function versions, we assume that our full loss function improves the output
quality compared to the other tested loss functions. Besides, we notice that the dynamic
loss is the most important component of the loss, as it effectively improves the quality
according to the HDR-VDP2 scores. This is reflected in the relative weights of the loss:
the weighting coefficient of the dynamic range loss component is much higher than the
other weighting coefficients.

2-by-2 processing

As explained in section 5.2.2, we use 3D convolution layers in our network. To assess
the usefulness of the 3D convolution layers, we train the same architecture with 2D convo-
lution layers only. The related HDR-VDP2 scores in Table 5.3 show that 3D convolutions
contribute positively to the quality of the result. Visually, the output of the 2D Convo-
lution network is similar to the output of our network, but we notice some discrepancies,
especially in lowly lit areas. This may come from the fact that highly lit areas are repre-
sented by high values in the tensor, and those values make low light levels not significant
during the backpropagation. On the other hand, by using 3D convolutions, low light levels
– represented by low tensor values – are not always processed together with high tensor
values. If at least two input images present low light values, there exists one channel that
processes only those two input images and the low light values are correctly passed on to
the next layer. Therefore, low light values are more accurately described in the different
layers, and thus also in the final output image.

However, we have to note that the total number of trainable parameters was changed
by this simple modification of the network. Therefore, the observed performance drop
may be partly caused by the lower complexity of the network with 2D convolutions.

Varying kernel size

To further improve the reconstruction of details, we use, in the second half of the
network, convolutions with decreasing size from (5, 5, ?) to (1, 1, ?). We train the same
architecture with fixed-sized convolution kernel of (3, 3, ?). We notice some blur on those
images, that comes from the convolution. Indeed, (3, 3, ?) averages the values of the pixels
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in the neighbourhood, which leads to faded edges on the image, and to a worse HDR-VDP2
score.

Changing the network input

We assume that the fusion of three different versions of the image can only improve
the quality of the reconstruction. We verify this assumption by training networks with
different inputs from our proposed method: either one reconstructed HDR image generated
from one iTMO, or two reconstructed images generated from two different iTMOs. We
notice some strong artifacts, which are the same as the ones produced by the chosen input
iTMO. In the proposed version, with three inputs, the artifacts are present only on one
of the versions, and therefore these artifacts are attenuated through the convolutions.

We notice that the scores for the different variants of the network with different inputs
are quite low. This may come from the loss function. The relative weights of each com-
ponent of the loss function were carefully tuned for our proposed dataset, and we used
those weights to train the different versions of our network. As the input images are not
the same, the relative weights should be different too.

5.3.4 Subjective user study

We present in this section the user study we have conducted using our HDR SIM2
screen, to effectively compare the performance of our proposed method with state-of-the
art ones.

We want to compare the quality of the HDR images produced by different methods,
including ours. We decided to perform a Two-Alternative Forced Choice (2AFC) experi-
ment setting. To do so, we need to define the images pairs to be displayed on the HDR
screen. For each participant, we randomly chose 10 images among our 80 test images and
5 versions of each of them: our method, HDRCNN, HDRUNet, ExpandNet and Single
Image Network. The participants were presented with all possible image pairs created
from the 10 test images and the 5 methods, for a total of 100 image pairs observed per
session. In the following, we denote by ⟨IM , IM ′⟩ or ⟨IM ′ , IM⟩ an image pair (with IX half
the image generated by the method X): one half is generated by the method M from the
SDR image ISDR and the other half by the method M ′ from the same SDR image ISDR

(see Figure 5.10). We then asked the participants to choose their preferred method among
the two methods shown in the image pair displayed on the HDR screen. To respect the
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Figure 5.10 – Example of an image pair shown to one participant of the user study. Here,
the left half was generated with HDRUNet and the right half with HDRCNN (all images
have been tone-mapped using the Drago algorithm).

aspect ratio of the images, we randomly chose if we display the left sides or the right sides
of each image in the pair. The displayed image pair is then composed of twice the same
side of one image, as shown in Figure 5.10.

As it is difficult to train state-of-the-art networks with our dataset, we decided to
use the pre-trained networks provided by the authors of the state-of-the-art methods.
Therefore, our study compares not only the architecture of these networks, but also their
respective training datasets.

Each participant can attend multiple sessions (a session corresponds to the evaluation
of 100 images pairs). If a participant attends another session, we use 10 images that
the participant has not seen yet. The user study involved 29 participants (23M, 6F; age:
avg=36.3 ± 12.7, min = 23, max = 71), and 30 sessions, for a total of 3,000 image pairs
observed. Among the 29 participants, all of them reported to have normal or corrected-to-
normal vision and 10 of them reported to have experienced HDR imaging before. During
the experiment, each participant was asked to choose the method they preferred in the
image pair. We have collected for each participant 100 answers (left or right of the image
pair), each of them corresponds to a tested iTMO. For each participant p, we compute
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Figure 5.11 – Preference of all participants for each method. The red line corresponds to
a preference of 50%. The stars are attributed according to the p-values of the Tukey HSD
test: nothing for p > 0.05, * for 0.05 ≥ p > 0.005, ** for 0.005 ≥ p > 0.0005, *** for
0.0005 ≥ p.

the preference scores xp(M1), . . . , xp(M5) for each method Mi. If we denote by IP (M) the
set of image pairs that contains an image generated with the method M , we can compute
xp(M) with

xp(M) = card({⟨IM , IM ′⟩ ∈ IP (M) s.t. p preferred IM over IM ′})
card(IP (M)) .

The method M performs well according to the participant p if xp(M) ≥ 0.5. These
preference scores are represented in Figure 5.11.

We can see on the Figure 5.11 that our method is largely preferred on average to
all other tested methods. To further study these preferences, we performed a one-way
ANOVA test after asserting that our data (the computed xp(M)) come from a normal
distribution (using a Shapiro-Wilk test). We obtain a p-value p ≪ 0.05, meaning that
the average values are significantly different. To further discriminate the methods, we
perform a post-hoc test using a Tukey HSD test. This statistical test allows to compare
the mean of every group (in our case, the groups are the different iTMOs) two-by-two.
The results of the Tukey HSD test provides, for each pair of methods, the probability p
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that the mean preference scores of the two considered methods are the same. We present
the results of the Tukey HSD test in Figure 5.11 by grouping together the methods with
close probabilities p.

Using the post hoc test, we notice that the participants found on average no significant
differences between the images processed by HDRCNN and by ExpandNet (Average value
of preference score of x̄ = 0.57). Using the same test, our method is preferred on average to
all other methods (Average value of preference score of x̄ = 0.83). Our method, HDRCNN
and ExpandNet all have an average preference score of above 0.5, meaning that those
three methods are most of the time preferred by the participants. This study shows that
our method performs well for human observers on our test dataset.

Surprisingly, we notice that HDRUNet performed the best regarding the Harmonic
HDR IQA metric, and the worst in the subjective study. This may come from the arti-
facts on the images generated by HDRUNet. While HDRUNet provides photographs with
general colours more faithful to the original ground truth HDR image, our method has
fewer artifacts and more saturated colours. This explains why the proposed method is
preferred in the subjective study.

5.4 Conclusion

We have presented a new inverse tone mapping operator, called HDR-LFNet, along
with its training dataset. Our architecture is lighter than the networks of the state-of-
the-art thanks to methods aggregation, a technique inspired by other computer vision
domains. To be fully effective, this lightweight architecture requires high resolution images
to train. As there is no existing training HDR dataset with sufficient resolution, we also
release a new dataset of high resolution HDR images that can be used by the community
in complement or in place of existing datasets.

Objective metrics showed that our method is on-par with other methods, but the
conducted user study showed that our method is preferred by observers. Along with the
lower number of parameters, our method is a real improvement over the state-of-the-art.
Our HDR-LFNet can be used in several applications, where resources for training and
storage of the model are limited. This also should allow to transform an SDR image
dataset with annotations (quality score, aesthetics score, saliency data) to an HDR image
dataset with corrected annotations.
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Chapter 6

CONCLUSION

In this thesis, we have tackled two main problems concerning image quality improve-
ment: high dynamic range (HDR) image generation and aesthetics assessment.

In Chapter 4, we have presented the notion of aesthetics in photography. Aesthetics is
essentially a subjective concept that may differ from one person to another, but thanks
to statistical learning it is possible to aggregate many different opinions. We can then
compute an average aesthetic value for photographs using this aggregation of opinions.
However, as the statistical learning methods used in the state-of-the-art are based on
supervised learning algorithms, it is mandatory to use an annotated image dataset. Our
contribution is to highlight the biases that come from AVA, one of the largest and most
used dataset for aesthetics prediction. We have shown that recent models do not behave
correctly on professional photographs – which are not present in the training dataset.
However, by fine-tuning the models it is possible to change the scores given to professional
photographs without altering the scores from AVA. This proves that professional and
competitive photographs have aesthetic features different enough such that a training on
competitive photographs is not sufficient to effectively predict aesthetics for professional
photographs. However, it is possible to train a network with both kinds of photographs,
meaning that a general purpose aesthetics assessment model should benefit from training
with as many kinds of photographs as possible.

In Chapter 5, we have devised a new inverse tone mapping operator (iTMO) that
merges several outputs from existing iTMOs. The neural network that we propose takes
as input three different HDR images to yield a single HDR image, as opposed to state-
of-the-art methods that devise neural networks aiming at transforming SDR to HDR.
Our transformation is easier, and therefore requires fewer parameters to learn. We have
shown that our method achieves similar performances than the state-of-the-art using less
resources. We evaluated our work using objective metrics such as HDR-VDP to compare
the output of our network to the ground-truth HDR image built using the exposure fusion
method. Besides, we have performed a user study that have shown that our method is
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preferred by human observers on an HDR screen.

Our work lays the groundwork for future projects. As we have shown that the training
dataset is very important for supervised learning methods, especially for the methods
trained for aesthetics assessment, two main options are viable. The first one is to propose
a new annotated datataset for image aesthetics assessment. This new dataset should be
as large as AVA (same number of images, same number of votes, same number of voters),
with a higher diversity of images. A second option would be to remove the dependency
on the training dataset. This would have two effects. First, an annotated dataset would
not be needed anymore. This would make the design of new aesthetics assessment models
easier. Second, models could be trained with other kinds of aesthetic qualities as a goal
than what is used today – namely “liked by the majority of people”. New aesthetics with
no relation with the community of voters of the training dataset could be considered.
Training with no annotated dataset can be achieved thanks to unsupervised learning
algorithms. A ranking of aesthetic quality would be harder with an unsupervised model,
but such a model should be able to discriminate images by their aesthetic features, and
so this model would be a good recommender system. Half-way between supervised and
unsupervised methods lie semi-supervised methods. In the case of aesthetics assessment
models, there are several interesting semi-supervised techniques to explore. We can either
use partially annotated data (we choose a subset of our training images to be rated by
observers, while some of the training images have no ground truth: when we consider
only one observer, this is the basis of personalized aesthetics assessment [Ren+17b]), or
fuzzy annotations (we allow the observers and the trained network to give a range of
aesthetic scores, instead of a unique ground truth). Finally, it is useful to process images
containing as much information as possible to accurately assess their aesthetic quality.
That was one of the reasons leading to the design of HDR-LFNet, but other rich image
formats exist. We can mention wide color gamut (WCG) images and panoramic and 360°
images. WCG images are images with a better color representation than standard images.
They are similar to HDR images, as such, the same processing techniques may be used.
To assess the aesthetic quality of WCG or HDR images, techniques used in HDR-LFNet
(Convolutions for processing, reduction of dimension thanks to an operation before the
neural network) may be tested. Panoramic images are images with a larger field of view
than standard images, while 360° images are a particular kind of panoramic images (with
a field of view of 360°). Unlike HDR images, the added information in panoramic images
is in the spatial domain. As such, it may be preferable to use another course of action,
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such as processing different levels of details using different sizes of convolution kernels.
The ultimate goal of tackling these different kinds of images would be to design a method
to assess the aesthetic quality of an image consisting in a combination of these different
characteristics (HDR, WCG, panoramic). This would lead to a way to assess the quality
of real world scenes, and could be used to help photographers choosing their preferred
settings (camera settings and viewpoint) when taking a photograph.

Furthermore, one of our motivations to devise our inverse tone mapping operator was
to be able to generate a large number of HDR images. This stems from the observation that
deep learning methods were successful for many different tasks in SDR image processing.
As there are more and more HDR images, it is important to be able to perform the same
tasks on HDR images, and the first option is to try using the same methods. Therefore,
it would be interesting to implement some tasks for HDR images (such as compression,
denoising, inpainting, etc...) One method is to use generic features, but generic feature
extractors do not exist for HDR imaging. Now that iTMOs allow to have as many HDR
training images as possible, the next step would be to devise an architecture to perform
generic feature extraction for HDR images. Finally, we can wonder about the processing
of content richer than images. The most interesting visual content to tackle would be
video. The main problematic of video content is the time component: the processing of a
video as a collection of frames do not usually produce good results. For example, for video
inverse tone mapping, the naive iTMO that consists in applying an iTMO to every frame
of the video introduces temporal artifacts, with some frames brighter than others. It is
then mandatory to take the time aspect into account. In our situation, we can discuss the
use of 4D convolution operators in a neural network. Indeed, the extra dimension would
help process the last few frames of the video so that the operation do not only depend
on the current frame. Thanks to the 4D convolutions and the pre- and post-processing
performed in our HDR-LFNet, it may be possible to propose a lightweight video inverse
tone mapping operation.
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Titre : Améliorer les images grâce à l’imagerie HDR et à l’évaluation automatique d’esthétique
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Résumé : Pour traiter la grande quantité de
données visuelles disponible, il est important
de concevoir des algorithmes qui peuvent trier,
améliorer, compresser ou stocker des images
et des vidéos. Dans cette thèse, nous propo-
sons deux approches différentes pour amélio-
rer la qualité d’images.

Tout d’abord, nous proposons une étude
des méthodes d’évaluation automatique de
l’esthétique. Ces algorithmes sont basés sur
des réseaux de neurones supervisés. Nous
avons récolté des images de différents types,
puis nous avons utilisé ces images pour tester
des modèles. Notre étude montre que les ca-
ractéristiques nécessaires pour évaluer préci-
sément les esthétiques de photographies pro-
fessionnelles ou compétitives sont différentes,

mais qu’elles peuvent être apprises par un
seul et unique réseau.

Enfin, nous proposons de travailler sur les
images à grande gamme dynamique (High
Dynamic Range, HDR en anglais). Nous pré-
sentons ici un nouvel opérateur pour aug-
menter la gamme dynamique d’images stan-
dards, appelé HDR-LFNet. Cet opérateur fu-
sionne la sortie de plusieurs algorithmes pré-
existants, ce qui permet d’avoir un réseau plus
léger et plus rapide. Nous évaluons les perfor-
mances de la méthode proposée grâce à des
métriques objectives, ainsi qu’une évaluation
subjective. Nous prouvons que notre méthode
atteint des résultats similaires à l’état de l’art
en utilisant moins de ressources.

Title: Improving Image Quality using High Dynamic Range and Aesthetics Assessment

Keywords: Artificial Intelligence; Aesthetics Assessment; HDR imaging

Abstract:
To cope with the increasing amount of vi-

sual content available, it is important to devise
automatic processes that can sort, improve,
compress or store images and videos. In this
thesis, we propose two different approaches
to software-based image improvement.

First, we propose a study on existing aes-
thetics assessment algorithms. These algo-
rithms are based on supervised neural net-
works. We have collected several datasets of
images, and we have tested different models
using these images. We report here the perfor-
mances of such networks, as well as an idea
to improve the already trained networks. Our
study shows that the features needed to accu-

rately predict the aesthetics of competitive and
professional are different but can be learned
simultaneously by a single network.

In a second time, we propose to work
with High Dynamic Range (HDR) images. We
present here a new operator to increase the
dynamic range of images called HDR-LFNet,
that merges the output of existing operators
and therefore, consists in far fewer parame-
ters. Besides, we evaluate our method through
objective metrics and a user study. We show
that our method is on-par with the state-of-
the-art according to objective metrics, but is
preferred by observers during the user study,
while using less resources overall.
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