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Je présente dans ce manuscrit une grande partie des travaux effectués depuis ma thèse. Mes recherches concernent le développement et l'analyse de schémas numériques de type volumes finis discrétisant des équations aux dérivées partielles, qui apparaissent notamment dans des modèles issus de la physique et de la biologie. Je m'intéresse plus particulièrement à la préservation au niveau discret de propriétés du modèle continu : comportements asymptotiques (en temps long, à la limite de diffusion) et conservation de quantités physiques entre autres. Dans tous les travaux présentés ici, une attention particulière est accordée à la discrétisation, qui est construite de sorte à pouvoir adapter au cadre discret les outils d'analyse du cadre continu, et ainsi proposer une étude mathématique rigoureuse des méthodes numériques obtenues.

La première partie de ce manuscrit concerne la construction et l'étude de schémas numériques pour des modèles de semi-conducteurs, et s'inscrit dans la continuité de mes travaux de thèse. Dans la vaste hiérarchie de modèles décrivant les semi-conducteurs [START_REF] Jüngel | Quasi-hydrodynamic semiconductor equations[END_REF], je m'intéresse à l'approximation de deux modèles macroscopiques : le système de dérivediffusion et le modèle de transport d'énergie. Dans le chapitre 1, j'étudie le comportement en temps long d'une discrétisation du système de dérive-diffusion. Le schéma considéré est de type volumes finis, avec flux de Scharfetter-Gummel généralisés, permettant la prise en compte à la fois de lois de pression linéaires et non linéaires. La convergence en temps long des solutions numériques vers une approximation de l'équilibre thermique à taux exponentiel est démontrée en contrôlant l'entropie relative par la production d'entropie. Ce résultat est obtenu sous l'hypothèse de bornes L ∞ uniformes en temps sur les densités approchées de porteurs de charge, que nous prouvons rigoureusement dans le cas où la diffusion est linéaire en adaptant au cadre discret une technique d'itération de Moser. Dans le chapitre 2, je présente la construction et l'analyse de schémas volumes finis pour le modèle de transport d'énergie. L'idée est de construire un schéma de sorte à pouvoir en obtenir une reformulation équivalente en variables duales entropiques, permettant de démontrer la décroissance d'une entropie discrète et le contrôle de la production d'envii viii CHAPITRE 0. INTRODUCTION tropie discrète correspondante. À partir de là, un certain nombre de propriétés peuvent être analysées : estimations a priori, existence d'une solution approchée, comportement en temps long. Nous considérons tout d'abord un schéma de type TPFA (Two Points Flux Approximation) puis une généralisation au cadre DDFV (Discrete Duality Finite Volume) permettant de considérer des maillages plus généraux.

La deuxième partie est dédiée à l'étude de la convergence vers la limite de diffusion de schémas numériques pour des systèmes hyperboliques avec termes sources. Le chapitre 3 est consacré à l'étude de convergence à la limite de diffusion d'un schéma préservant l'asymptotique pour le p-système avec amortissement. La nouveauté principale de ce travail est l'établissement d'un taux explicite de convergence, obtenu par une estimation d'erreur entre les solutions approchées du système hyperbolique et la limite diffusive approchée grâce à une version discrète de la méthode d'entropie relative [START_REF] Lattanzio | Relative entropy in diffusive relaxation[END_REF]. Le modèle considéré dans le chapitre 4, le système de Saint-Venant avec friction de Manning, fait intervenir une difficulté supplémentaire. En effet, le terme source étant quadratique, l'équation de diffusion limite implique un opérateur non linéaire de type p-laplacien. Nous proposons deux discrétisations du problème hyperbolique, de type Godunov à deux états intermédiaires, asymptotiquement consistantes avec la limite de diffusion. Cette propriété est établie de manière formelle à l'aide de développements de Chapman-Enskog de la solution approchée.

Dans la troisième partie, je me concentre sur l'analyse numérique de schémas pour des équations cinétiques unidimensionnelles relativement simples. Dans le chapitre 5, je m'intéresse à la discrétisation d'équations cinétiques linéaires sans champ électromagnétique, où l'opérateur de collision est de type Fokker-Planck ou BGK linéaire. Le schéma volumes finis proposé permet d'établir des estimations a priori dont nous déduisons d'une part la préservation de la limite de diffusion au niveau discret, et d'autre part la convergence en temps long, à taux exponentiel, vers l'équilibre. Il s'agit d'une adaptation au cadre discret de la méthode d'hypocoercivité L 2 [START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF]. Enfin, le chapitre 6 est consacré à l'étude de stabilité et de convergence de discrétisations conservatives du système de Vlasov-Poisson écrit sous forme d'un système hyperbolique à l'aide de polynômes de Hermite. L'idée principale est de se placer dans un cadre fonctionnel adapté aux variations de la fonction de distribution au cours du temps. Nous introduisons pour cela un espace L 2 à poids dépendant du temps, et étudions les propriétés du schéma obtenu en considérant une discrétisation en espace de type Galerkin discontinue.
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CHAPITRE 1

Comportement en temps long d'une approximation du modèle de dérive-diffusion

Dans ce chapitre, je présente des résultats concernant le comportement en temps long d'une discrétisation du système de dérive-diffusion pour les semi-conducteurs. Dans le cadre continu, la preuve de la convergence en temps long à taux exponentiel vers l'équilibre thermique a notamment été obtenue dans [START_REF] Gajewski | On the basic equations for carrier transport in semiconductors[END_REF][START_REF] Gajewski | Semiconductor equations for variable mobilities based on Boltzmann statistics or Fermi-Dirac statistics[END_REF] Dans le cas du système de dérive-diffusion, la fonction de Liapounov considérée est l'énergie électrochimique. L'étude de cette quantité permet de prouver la convergence exponentielle vers l'équilibre thermique. Mon objectif est d'adapter la méthode d'entropieproduction au niveau discret pour étudier le comportement en temps long des solutions approchées obtenues à partir d'un schéma numérique pour le modèle de dérive-diffusion.

Les travaux présentés dans ce chapitre sont dans la continuité naturelle de mes travaux de thèse. En effet, j'avais d'abord étudié le comportement en temps long du schéma de Scharfetter-Gummel pour le modèle de dérive-diffusion isotherme, et obtenu la convergence en temps long de la solution numérique vers une approximation de l'équilibre thermique, en établissant un analogue discret de (1.1). Cependant, cette première contribution [START_REF] Chatard | Asymptotic Behavior of the Scharfetter-Gummel Scheme for the Drift-Diffusion Model[END_REF] comporte deux limitations importantes. D'une part, en l'absence d'une version discrète de (1.2), le caractère exponentiel de la convergence n'est pas prouvé pour la solution numérique. D'autre part, le schéma de Scharfetter-Gummel classique ne s'applique que dans le cas de la statistique de Boltzmann, exploitant la dépendance exponentielle des densités de porteurs de charge en les potentiels chimiques, et correspondant à une diffusion linéaire. J'ai proposé au cours de ma thèse une généralisation du schéma de Scharfetter-Gummel utilisant une moyenne appropriée de la diffusion non linéaire, qui garantit la consistance thermodynamique [START_REF] Bessemoulin-Chatard | A finite volume Scheme for convection-diffusion equations with nonlinear diffusion derived from the Scharfetter-Gummel scheme[END_REF]. L'idée était donc d'étendre les résultats obtenus dans le cas d'une diffusion linéaire [START_REF] Chatard | Asymptotic Behavior of the Scharfetter-Gummel Scheme for the Drift-Diffusion Model[END_REF] au cas non linéaire plus général en utilisant ce schéma généralisé.

Dans l'article [START_REF] Bessemoulin-Chatard | Exponential decay of a finite volume scheme to the thermal equilibrium for drift-diffusion systems[END_REF] écrit en collaboration avec Claire Chainais-Hillairet, nous abordons ces deux questions. Plus précisément, nous démontrons des analogues discrets des inégalités (1.1) et (1.2), et obtenons ainsi la convergence exponentielle (Théorème 1.3), à la fois dans le cas isotherme (linéaire), mais également dans le cas non linéaire.

Ce résultat est établi sous l'hypothèse assez forte que les densités discrètes vérifient des bornes supérieures et inférieures strictement positives uniformes en temps. Nous avons par la suite obtenu ces bornes dans le cas isotherme [START_REF] Bessemoulin-Chatard | Uniform L ∞ Estimates for Approximate Solutions of the Bipolar Drift-Diffusion System[END_REF][START_REF] Bessemoulin-Chatard | Uniform-in-time bounds for approximate solutions of the drift-diffusion system[END_REF] (Théorème 1.1), en adaptant au cadre discret une technique d'itération de Moser développée dans le cadre continu dans [START_REF] Gajewski | On the basic equations for carrier transport in semiconductors[END_REF][START_REF] Gajewski | Semiconductor equations for variable mobilities based on Boltzmann statistics or Fermi-Dirac statistics[END_REF].

Dans la section 1.1, j'introduis le modèle de dérive-diffusion et les hypothèses considérées. La section 1.2 est consacrée à la définition du schéma numérique. La section 1.3 est dédiée à l'analogue discret de l'inégalité d'entropie-production (1.1), qui est fondamental pour établir les résultats présentés dans la suite. Dans les sections 1.4 et 1.5, je présente les principaux résultats que j'ai obtenus concernant l'existence de solutions numériques vérifiant des bornes uniformes en temps, et convergeant à taux exponentiel vers une approximation de l'équilibre thermique.

Le modèle de dérive-diffusion

Le modèle de dérive-diffusion est constitué de deux équations de continuité pour les densités d'électrons N et de trous P , et d'une équation de Poisson pour le potentiel électrique Ψ. Étant donné Ω un ouvert borné de R d correspondant à la géométrie du semi-conducteur considéré, et T > 0 un temps final, le système s'écrit : pour tous (t, x) ∈ (0, T ) × Ω, ∂ t N + div(-∇r(N ) + N ∇Ψ) = -R(N, P ), (1.3) ∂ t P + div(-∇r(P ) -P ∇Ψ) = -R(N, P ), (1.4) -λ 2 ∆Ψ = P -N + C. (1.5) La fonction donnée C(x) est le profil de dopage, et λ est la longueur de Debye adimensionnée. La définition de la fonction r apparaissant dans le terme de diffusion dépend de la statistique choisie pour décrire la relation entre les densités de porteurs de charge et les potentiels chimiques. Je considère dans tout ce chapitre une fonction r de la forme [START_REF] Jüngel | On the existence and uniqueness of transient solutions of a degenerate nonlinear drift-diffusion model for semiconductors[END_REF][START_REF] Jüngel | Qualitative behavior of solutions of a degenerate nonlinear drift-diffusion model for semiconductors[END_REF] r(s) = s α , α ≥ 1.

Le cas linéaire (α = 1) est le modèle isotherme, correspondant au choix de la statistique de Boltzmann. Dans le cas non linéaire, ce choix de fonction puissance correspond à une approximation de la distribution de Fermi-Dirac dans la limite de haute densité.

Le terme R(N, P ) est le taux de recombinaison-génération. Dans le cas isotherme (r = Id), ce terme peut être supposé de la forme Tous les résultats présentés dans ce chapitre sont valables sous les hypothèses suivantes.

Hypothèses H.1.

• Le domaine Ω est un ouvert borné de

R d (d ≥ 1) et ∂Ω = Γ D ∪ Γ N , avec Γ D ∩ Γ N = ∅ et m(Γ D ) > 0. • Le dopage C est dans L ∞ (Ω).
• Les conditions au bord N D , P D et Ψ D sont les traces de fonctions définies sur Ω tout entier, encore notées N D , P D et Ψ D , et telles que

(1.9) N D , P D ∈ L ∞ (Ω) ∩ H 1 (Ω), Ψ D ∈ H 1 (Ω).
• Les conditions initiales N 0 , P 0 sont supposées dans L ∞ (Ω).

• Il existe M, m > 0 telles que

(1.10) m ≤ N 0 , P 0 , N D , P D ≤ M p.p. dans Ω.
Nous allons par la suite considérer deux cas, correspondant chacun à l'un des deux jeux d'hypothèses suivants : le cas isotherme avec terme de recombinaison-génération (Hypothèses H.2) et le cas non linéaire sans terme de recombinaison génération (Hypothèses H.3).

Hypothèses H.2.

• La fonction r est l'identité.

• Le terme de recombinaison-génération est de la forme (1.6), avec R 0 continue, positive, vérifiant

(1.11) ∃ R > 0 tel que 0 ≤ R 0 (N, P ) ≤ R (1 + |N | + |P |) ∀N, P ∈ R.
• Les conditions au bord satisfont N D P D = 1.

Hypothèses H.3.

• La fonction r est dans C 1 (R), et satisfait

r(0) = r ′ (0) = 0, r ′ (s) ≥ c 0 s α-1 , α > 1.
• Le taux de recombinaison-génération R est supposé nul.

Je rappelle pour finir la définition de l'équilibre thermique. Il s'agit d'un état stationnaire particulier pour lequel les courants d'électrons et de trous s'annulent :

-∇r(N ) + N ∇Ψ = -∇r(P ) -P ∇Ψ = 0.

Pour définir cet équilibre, introduisons la fonction enthalpie

h(s) = s 1 r ′ (τ ) τ d τ, et l'inverse généralisée de h g(s) = h -1 (s) if h(0 + ) < s < ∞, 0 if s ≤ h(0 + ),
en supposant que h(+∞) = +∞. Le cas isotherme correspond simplement à h = log et g = exp.

Si les conditions de Dirichlet vérifient la condition de compatibilité

(1.12) h(N D ) -Ψ D = α N et h(P D ) + Ψ D = α P sur Γ D ,
alors l'équilibre thermique est défini dans Ω par -λ 2 ∆Ψ eq = g(α P -Ψ eq ) -g(α N + Ψ eq ) + C, (1.13) N eq = g(α N + Ψ eq ), (1.14) P eq = g(α P -Ψ eq ), (1.15) avec les conditions au bord (1.7)-(1.8). L'existence et l'unicité de cet équilibre sont démontrées dans [START_REF] Markowich | Semiconductor equations[END_REF] pour le cas linéaire, et dans [START_REF] Markowich | Vacuum solutions of a stationary driftdiffusion model[END_REF] pour le cas non linéaire.

Comme rappelé dans l'introduction de ce chapitre, la preuve de convergence en temps long vers l'équilibre thermique est fondée sur une méthode d'entropie-production. Ici la fonctionnelle de Liapounov considérée est l'énergie relative, déviation de l'énergie totale (somme des énergies internes pour les densités d'électrons et de trous et de l'énergie due au potentiel électrique) par rapport à l'équilibre thermique :

(1.16) E(t) = Ω H(N (t)) -H(N eq ) -h(N eq )(N (t) -N eq ) + H(P (t)) -H(P eq ) -h(P eq )(P (t) -P eq ) + λ 2 2 |∇(Ψ(t) -Ψ eq )| 2 d x,
avec H une primitive de h, et la production d'entropie correspondante est donnée par (1.17)

I(t) = Ω N |∇(h(N ) -Ψ)| 2 + P |∇(h(P ) + Ψ)| 2 d x + Ω R(N, P ) (h(N ) + h(P ) -h(N eq ) -h(P eq )) d x.

Un schéma de Scharfetter-Gummel généralisé

Je présente maintenant les schémas numériques considérés pour le système de dérivediffusion (1. 

: E ext = E D ext ∪ E N ext .
Pour un volume de contrôle K ∈ T , E K est l'ensemble de ses arêtes, qui est également scindé en

E K = E K,int ∪ E D K,ext ∪ E N K,ext . Pour toute arête σ ∈ E, nous définissons d σ = d(x K , x L ) si σ = K|L ∈ E int et d σ = d(x K , σ) si σ ∈ E K,ext . Le coefficient de transmissibilité est alors défini par τ σ = m(σ)/d σ .
Je suppose dans tout ce chapitre que le maillage vérifie les conditions de régularité et de non dégénerescence suivantes :

∃ξ > 0 tel que d(x K , σ) ≥ ξ d σ , ∀K ∈ T , ∀σ ∈ E K , (1.18) ∃τ m > 0 tel que τ σ ≥ τ m , ∀σ ∈ E. (1.19)
Concernant la discrétisation en temps, soit 0 < ∆t ≤ 1 le pas de temps. Nous posons

N T = E(T /∆t) et t n = n∆t pour tout 0 ≤ n ≤ N T . La taille de la discrétisation espace- temps est définie par (1.20) δ = max ∆t, max K∈T diam(K) .
Un schéma volumes finis approchant une équation d'inconnue u fournit un vecteur

u T = (u K ) K∈T ∈ R θ (avec θ = Card(T )) qui est identifié avec la fonction constante par morceaux u T = K∈T u K 1 K .
Puisque des conditions de Dirichlet sont imposées sur une partie du bord, nous avons également besoin de définir u

E D = (u σ ) σ∈E D ext . Nous notons alors X(M) l'ensemble des fonctions discrètes u M = (u T , u E D ), et pour tout u M ∈ X(M), nous définissons pour tout K ∈ T et tout σ ∈ E K : u K,σ =      u L si σ = K|L ∈ E K,int , u σ si σ ∈ E D K,ext , u K si σ ∈ E N K,ext , et D K,σ u = u K,σ -u K , D σ u = |D K,σ u|.
Pour finir, j'introduis la norme

L 2 et la semi-norme H 1 sur X(M) : pour tout u M ∈ X(M), |u M | 2 1,M = σ∈E τ σ (D σ u) 2 , ∥u M ∥ 2 0,M = ∥u T ∥ 2 0 = K∈T m(K)u 2 K ,
où ∥ • ∥ 0 est la norme L 2 usuelle pour les fonctions constantes par morceaux.

Le schéma pour le système de dérive-diffusion (1.3)-(1.8). Les conditions initiales et conditions au bord sont discrétisées classiquement par

N 0 K , P 0 K = 1 m(K) K (N 0 (x), P 0 (x)) d x, ∀K ∈ T , (1.21) N D σ , P D σ , Ψ D σ = 1 m(σ) σ N D (γ), P D (γ), Ψ D (γ) d γ, ∀σ ∈ E D ext , (1.22) et les valeurs au bord sont définies par (1.23) N n σ = N D σ , P n σ = P D σ , Ψ n σ = Ψ D σ , ∀σ ∈ E D ext , ∀n ≥ 0.
Je considère un schéma complètement implicite en temps et volumes finis en espace :

∀K ∈ T , ∀n ≥ 0, m(K) N n+1 K -N n K ∆t + σ∈E K F n+1 K,σ = -m(K) R(N n+1 K , P n+1 K ), (1.24) m(K) P n+1 K -P n K ∆t + σ∈E K G n+1 K,σ = -m(K) R(N n+1 K , P n+1 K ), (1.25) -λ 2 σ∈E K τ σ D K,σ Ψ n = m(K)(P n K -N n K + C K ). (1.26)
Les flux numériques sont de type Scharfetter-Gummel généralisés, comme introduits dans un de mes travaux de thèse [START_REF] Bessemoulin-Chatard | A finite volume Scheme for convection-diffusion equations with nonlinear diffusion derived from the Scharfetter-Gummel scheme[END_REF] :

F n+1 K,σ = τ σ dr(N n+1 K , N n+1 K,σ ) B -D K,σ Ψ n+1 dr(N n+1 K , N n+1 K,σ ) N n+1 K (1.27) -B D K,σ Ψ n+1 dr(N n+1 K , N n+1 K,σ ) N n+1 K,σ , G n+1 K,σ = τ σ dr(P n+1 K , P n+1 K,σ ) B D K,σ Ψ n+1 dr(P n+1 K , P n+1 K,σ ) P n+1 K (1.28) -B -D K,σ Ψ n+1 dr(P n+1 K , P n+1 K,σ ) P n+1 K,σ , avec (1.29) dr(a, b) =        h(b) -h(a) log(b) -log(a) si a, b > 0, a ̸ = b, r ′ a + b 2 sinon,
B étant la fonction de Bernoulli donnée par

B(0) = 1 et B(x) = x exp(x) -1 ∀x ̸ = 0.
Schéma pour l'équilibre thermique (1.14)-(1.13). L'approximation (N eq T , P eq T , Ψ eq T ) de l'équilibre thermique est obtenue par le schéma volumes finis suivant : ∀K ∈ T ,

-λ 2 σ∈E K τ σ D K,σ Ψ eq = m(K) (g(α P -Ψ eq K ) -g(α N + Ψ eq K ) + C K ) , (1.30) N eq K = g(α N + Ψ eq K ), (1.31) P eq K = g(α P -Ψ eq K ). (1.32)

Inégalité d'entropie-production discrète

Je présente maintenant l'analogue discret de (1.1), qui est fondamental pour la suite. Pour cela, définissons la fonctionnelle d'entropie relative discrète

E n = K∈T m(K) (H(N n K ) -H(N eq K ) -h(N eq K )(N n K -N eq K ) +H(P n K ) -H(P eq K ) -h(P eq K )(P n K -P eq K )) + λ 2 2 |Ψ n M -Ψ eq M | 2 
1,M , (1.33) et la production d'entropie discrète correspondante

I n = σ∈E τ σ min(N n K , N n K,σ ) (D σ (h(N n ) -Ψ n )) 2 + min(P n K , P n K,σ ) (D σ (h(P n ) + Ψ n )) 2 (1.34) + K∈T m(K)R(N n K , P n K ) [h(N n K ) + h(P n K ) -h(N eq K ) -h(P eq K )] .
Grâce aux propriétés des flux de Scharfetter-Gummel (généralisés), la proposition suivante est établie. La preuve de ce résultat se fait en deux temps. La première étape consiste à démontrer l'existence d'une solution au schéma telle que les densités sont strictement positives et vérifient une borne supérieure uniforme en temps. La borne inférieure uniforme est ensuite prouvée dans un deuxième temps. Je donne maintenant les principales étapes de cette démonstration.

Le cas isotherme avec terme de recombinaison-génération

La preuve de l'existence d'une solution vérifiant la positivité et une borne supérieure uniforme repose sur un argument de degré topologique. Plus précisément, étant donnés

(N 0 K , P 0 K ) K∈T et (N n σ , P n σ ) σ∈E D ext , n≥0
, nous définissons l'application H de la manière suivante

H : R θ×N T × R θ×N T × [0, 1] → R θ×N T × R θ×N T (N n K , P n K ) K∈T , 1≤n≤N T , κ → ((H κ N ) n K , (H κ P ) n K ) K∈T , 1≤n≤N T , où (H κ N ) n K = m(K) N n+1 K -N n K ∆t + σ∈E K F n+1 K,σ + κm(K)R(N n+1,+ K , P n+1,+ K ), (H κ P ) n K = m(K) P n+1 K -P n K ∆t + σ∈E K G n+1 K,σ + κm(K)R(N n+1,+ K , P n+1,+ K ), la notation x + = max(0, x) désignant la partie positive de x. Les flux F n+1 K,σ et G n+1 K,σ sont définis par F n+1 K,σ = τ σ B -D K,σ Ψ n+1 N n+1,+ K -B D K,σ Ψ n+1 N n+1,+ K,σ , G n+1 K,σ = τ σ B D K,σ Ψ n+1 P n+1,+ K -B -D K,σ Ψ n+1 P n+1,+ K,σ , avec Ψ n+1 T satisfaisant (1.36)    -λ 2 σ∈E K τ σ D K,σ Ψ n+1 = κm(K)(P n+1 K -N n+1 K + C K ) ∀K ∈ T , Ψ n σ = Ψ D σ ∀σ ∈ E D ext .
Notons (S κ ) le schéma associé à H( 

K ∈ T , 0 ≤ n ≤ T /∆t, m exp - ∥C∥ ∞ λ 2 T ≤ m n ≤ N n K , P n K ≤ M n ≤ M exp ∥C∥ ∞ λ 2 T , où m n := m 1 + ∆t λ 2 ∥C∥ ∞ -n , M n := M 1 - ∆t λ 2 ∥C∥ ∞ -n
.

En particulier, si C = 0, les densités vérifient le principe du maximum :

m ≤ N n K , P n K ≤ M, ∀K ∈ T , ∀n ≥ 0.
Ce résultat se démontre en appliquant le théorème de Brouwer à un problème basé sur une linéarisation du schéma (1.24)-(1.28). Soulignons que dans le cas d'un dopage nul C = 0, nous obtenons des bornes supérieure et inférieure uniformes en temps pour les densités approchées (qui sont en fait les bornes sur les données initiales et au bord), sans restriction sur le pas de temps.

Convergence exponentielle vers l'équilibre thermique

Je présente maintenant le résultat de convergence vers l'équilibre au niveau discret, sous l'hypothèse que les densités approchées vérifient des bornes uniformes en temps. Alors il existe une constante β > 0 dépendant uniquement des bornes supérieure et inférieure des densités, de λ, r et du paramètre de régularité du maillage ξ, mais pas de la taille du maillage, telle que

E n ≤ e -β t n E 0 ∀n ≥ 0.
Il existe de plus une constante c > 0 dépendant uniquement de la borne inférieure des densités, de r et ξ telle que

∥N n T -N eq T ∥ 2 0 + ∥P n T -P eq T ∥ 2 0 + ∥Ψ n T -Ψ eq T ∥ 2 0 ≤ c e -β t n E 0 .
La preuve de ce théorème est une adaptation au niveau discret de la démarche présentée dans l'introduction de ce chapitre. La première étape est d'établir l'analogue discret de (1.1), ce qui est l'objet de la Proposition 1.1. La seconde étape consiste à obtenir l'analogue discret de (1.2), ce qui se fait grâce à une quantité intermédiaire F n comme énoncé dans la proposition suivante. 

E n ≤ C EF F n ≤ C EI I n , ∀n ≥ 0, où F n = ∥N n T -N eq T ∥ 2 0 + ∥P n T -P eq T ∥ 2 0 + λ 2 2 |Ψ n M -Ψ eq M | 2 1,M .
C'est dans la preuve de ce résultat que les bornes uniformes en temps sur les densités, établies dans le théorème 1.1 pour le cas isotherme et dans le théorème 1.2 pour le cas non linéaire avec dopage nul, interviennent de manière cruciale. La combinaison des inégalités obtenues dans les propositions 1.1 et 1.2 permet d'obtenir la convergence exponentielle vers 0 de l'entropie relative discrète E n quand n tend vers +∞, et la convergence en norme L 2 s'en déduit grâce à une inégalité de Poincaré discrète [START_REF] Bessemoulin-Chatard | On discrete functional inequalities for some finite volume schemes[END_REF]Theorem 4.3].

La figure 1.3 fournit une illustration de la convergence exponentielle vers 0 de l'énergie relative pour une diode à jonction PN, dans le cas linéaire, pour différents choix de dopage et de terme de recombinaison-génération (Auger et Schockley-Read-Hall). Les données utilisées ainsi que d'autres illustrations numériques sont présentées dans [START_REF] Bessemoulin-Chatard | Exponential decay of a finite volume scheme to the thermal equilibrium for drift-diffusion systems[END_REF].

Perspectives

Modèles avec diffusion non linéaire. Le résultat de convergence exponentielle des solutions approchées vers l'équilibre thermique a été rigoureusement démontré sous les [START_REF] Kantner | Generalized Scharfetter-Gummel schemes for electro-thermal transport in degenerate semiconductors using the Kelvin formula for the Seebeck coefficient[END_REF]. Nous pouvons également mentionner les travaux récents sur un modèle de cellules photovoltaïques à pérovskite, consistant en trois équations de dérive-diffusion (une espèce supplémentaire de porteurs de charge est considérée pour prendre en compte la migration des ions) couplées avec l'équation de Poisson [ACHFH]. L'analyse du schéma volumes finis proposé pour ce modèle repose sur une inégalité d'entropie-dissipation, et les résultats numériques font apparaître une convergence exponentielle vers l'équilibre thermique associé.

CHAPITRE 2

Schémas numériques pour le modèle de transport d'énergie

Ce chapitre est consacré à la construction et l'analyse de schémas numériques pour des modèles de transport d'énergie unipolaires. Contrairement au modèle de dérive-diffusion considéré dans le chapitre 1, les modèles de transport d'énergie pour les semi-conducteurs prennent en compte la température, et permettent par exemple d'observer l'effet d'électrons chauds. Le système considéré est constitué de deux équations de continuité sur la densité d'électrons, notée dans ce chapitre ρ 1 , et la densité d'énergie interne ρ 2 , couplées avec l'équation de Poisson sur le potentiel électrique Ψ. En se plaçant dans le cadre adopté dans [START_REF] Degond | A system of parabolic equations in nonequilibrium thermodynamics including thermal and electrical effects[END_REF], ces densités sont considérées comme des fonctions des variables entropiques u = (u 1 , u 2 ), où

u 1 = µ T , u 2 = - 1 T , µ étant le potentiel chimique et T la température. Étant donné un ouvert borné Ω ⊂ R d , d ≥ 1, et T max > 0 un temps final, le système de transport d'énergie s'écrit alors : pour tous (t, x) ∈ (0, T max ) × Ω, ∂ t ρ 1 (u) + divJ 1 (u) = 0, (2.1) ∂ t ρ 2 (u) + divJ 2 (u) = ∇Ψ • J 1 (u) + W (u), (2.2) -λ 2 ∆Ψ = C(x) -ρ 1 (u), (2.3)
où les densités de courant d'électrons J 1 et d'énergie J 2 sont données par :

J 1 (u) = -L 11 (u)(∇u 1 + u 2 ∇Ψ) -L 12 (u)∇u 2 , J 2 (u) = -L 21 (u)(∇u 1 + u 2 ∇Ψ) -L 22 (u)∇u 2 .
Les coefficients (L ij (u)) 1≤i,j≤2 forment une matrice L(u) supposée symétrique et uniformément définie positive. Comme dans le chapitre précédent, C(x) est le profil de dopage, 19 et λ la longueur de Debye adimensionnée. Ce système (2.1)-(2.3) est complété par des conditions initiales u 0 = (u 1,0 , u 2,0 ) et des conditions au bord mixtes de type Dirichlet Neumann, supposées indépendantes du temps :

u 1 = u D 1 , u 2 = u D 2 , Ψ = Ψ D sur Γ D , J 1 • ν = J 2 • ν = ∇Ψ • ν = 0 sur Γ N , où ∂Ω = Γ D ∪ Γ N et ν est le vecteur unitaire sortant normal à ∂Ω.
Notons que selon les définitions choisies pour L(u) et W (u), ce cadre général inclut les modèles de Chen et de Lyumkis [J 01].

Dans [START_REF] Degond | A system of parabolic equations in nonequilibrium thermodynamics including thermal and electrical effects[END_REF], l'étude de ce système d'EDP est fondée sur un changement de variables permettant de symétriser le problème :

(2.4)

w 1 = u 1 + u 2 Ψ, w 2 = u 2 .
En appliquant ce changement de variables, le système (2.1)-( 2.3) est équivalent à

∂ t b 1 (w, Ψ) + divI 1 (w, Ψ) = 0, (2.5) ∂ t b 2 (w, Ψ) + divI 2 (w, Ψ) = W (w) -∂ t Ψb 1 (w, V ), (2.6) -λ 2 ∆Ψ = C -b 1 (w, Ψ), (2.7) où b 1 (w, Ψ) = ρ 1 (u), b 2 (w, Ψ) = ρ 2 (u)-Ψρ 1 (u) et W (w) = W (u)
. Les courants symétrisés s'écrivent alors :

(2.8)

I 1 (w, Ψ) = -D 11 (w, Ψ)∇w 1 -D 12 (w, Ψ)∇w 2 , I 2 (w, Ψ) = -D 21 (w, Ψ)∇w 1 -D 22 (w, Ψ)∇w 2 , où la nouvelle matrice de diffusion D(w, Ψ) = (D ij (w, Ψ)) 1≤i,j≤2 est définie par D(w, Ψ) = P(Ψ) T L(u)P(Ψ), avec P(Ψ) = 1 -Ψ 0 1 .
À l'aide de ce modèle dual (2.5)-(2.7), une propriété d'entropie-production est établie, sur laquelle repose l'analyse du modèle (2.1)-(2.3) proposée dans [START_REF] Degond | A system of parabolic equations in nonequilibrium thermodynamics including thermal and electrical effects[END_REF].

Plus précisément, faisons les hypothèses suivantes, qui seront valables pour le reste du chapitre.

Hypothèses H.4.

• La condition au bord u D 2 est constante sur

Γ D et u D 2 < 0.
• Les conditions au bord sont à l'équilibre thermique :

∇w D 1 = ∇w D 2 = 0. • Le terme source W (u) vérifie : pour tous u ∈ R 2 et u D 2 < 0, W (u)(u 2 -u D 2 ) ≤ 0. • La fonction ρ = (ρ 1 , ρ 2 ) est telle que -ρ ∈ W 1,∞ (R 2 , R 2 ), -il existe C 0 > 0 tel que pour tous u, v ∈ R 2 , (ρ(u) -ρ(v)) • (u -v) ≥ C 0 |u -v| 2 , -il existe χ ∈ C 1 (R 2 , R) convexe telle que ρ(u) = ∇ u χ(u).
Définissions l'entropie par (2.9)

S(t) = Ω ρ(u) • (u -u D ) -(χ(u) -χ(u D )) dx - λ 2 2 u D 2 Ω ∇(Ψ -Ψ D ) 2 dx.
Il est prouvé dans [START_REF] Degond | A system of parabolic equations in nonequilibrium thermodynamics including thermal and electrical effects[END_REF] que sous les hypothèses H.4, la propriété d'entropie-production suivante est vérifiée :

(2.10)

d dt S(t) = - Ω ∇w T D ∇w + Ω W (u)(u 2 -u D 2 ) ≤ 0.
À partir de cette inégalité, des estimations a priori sur u, w et Ψ peuvent être démontrées, permettant notamment d'établir l'existence d'une solution au système (2.1)-(2.3).

Un certain nombre de schémas numériques pour les modèles de transport d'énergie ont été proposés dans la littérature [DJP00, Fou02, HJP03, Rom07, CH09], principalement dans le cas stationnaire, mais sans analyse de convergence. L'objectif des travaux présentés dans ce chapitre est de construire des schémas numériques pour le modèle de transport d'énergie de telle sorte que la méthode d'entropie décrite brièvement ci-dessus soit adaptable au cadre discret.

Dans la section 2.1, je présente le schéma volumes finis de type TPFA (Two Points Flux Approximation) que nous avons proposé avec Claire Chainais-Hillairet et Hélène Mathis [START_REF] Bessemoulin-Chatard | Numerical schemes for semiconductors energy-transport models[END_REF][START_REF] Bessemoulin-Chatard | Analysis of numerical schemes for semiconductor energy-transport models[END_REF]. Plus précisément, nous construisons des schémas pour le système en variables primales (2.1)-(2.3) et pour le système en variables duales (2.5)-(2.7) de telle sorte qu'ils soient équivalents, ce qui permet d'établir l'analogue discret de l'inégalité d'entropie (2.10). À partir de cette propriété, l'analyse numérique du schéma peut être conduite dans la section 2.2 : estimations a priori, existence d'une solution au schéma et comportement en temps long. Dans la section 2.3, je présente finalement l'extension de ces résultats au cadre DDFV (Discrete Duality Finite Volume), obtenue en collaboration avec Giulia Lissoni et Hélène Mathis [START_REF] Bessemoulin-Chatard | Numerical analysis of DDFV schemes for semiconductors energy-transport models[END_REF].

Structure entropique discrète

Je considère une discrétisation de type volume fini classique, en utilisant les notations introduites dans la section 1.2 du chapitre 1. Comme dans le chapitre 1, nous supposons la condition de régularité suivante vérifiée :

(2.11) ∃ξ > 0 tel que d(x K , σ) ≥ ξ d σ , ∀K ∈ T , ∀σ ∈ E K .
Les conditions initiales et au bord sont discrétisées classiquement :

u 0 1,K , u 0 2,K = 1 m(K) K (u 1,0 (x), u 2,0 (x)) dx, ∀K ∈ T , u D 1,σ , u D 2,σ , Ψ D σ = 1 m(σ) σ u D 1 (γ), u D 2 (γ), Ψ D (γ) dγ, ∀σ ∈ E D ext ,
et les valeurs au bord sont définies par

u n 1,σ = u D 1,σ , u n 2,σ = u D 2,σ , Ψ n σ = Ψ D σ , ∀σ ∈ E D ext , ∀n ≥ 0.
La difficulté principale pour définir un schéma TPFA pour le système (2. (2.12)

∇Ψ • J 1 = div(Ψ J 1 ) -Ψ div(J 1 ).
Nous considérons le schéma volumes finis implicite en temps suivant pour le système en variables primales (2.1)

-(2.3) : pour tous n ≥ 0 et K ∈ T , m(K) ρ n+1 1,K -ρ n 1,K ∆t + σ∈E K F n+1 1,K,σ = 0, (2.13) m(K) ρ n+1 2,K -ρ n 2,K ∆t + σ∈E K F n+1 2,K,σ = σ∈E K Ψ n+1 σ F n+1 1,K,σ -Ψ n+1 K σ∈E K F n+1 1,K,σ + m(K)W n+1 K , (2.14) -λ 2 σ∈E K τ σ D K,σ Ψ n+1 = m(K)(C K -ρ n+1 1,K ), (2.15) où ρ n+1 i,K = ρ i (u n+1 K ), i = 1, 2, et W n+1 K = W (u n+1 K ), pour tous K ∈ T . Les flux numériques sont définis par (2.16) F n+1 1,K,σ = -τ σ (L n 11,σ (D K,σ u n+1 1 + u n+1 2,σ D K,σ Ψ n+1 ) + L n 12,σ D K,σ u n+1 2 ), F n+1 2,K,σ = -τ σ (L n 12,σ (D K,σ u n+1 1 + u n+1 2,σ D K,σ Ψ n+1 ) + L n 22,σ D K,σ u n+1 2 ).
Les coefficients L n ij,σ sont des approximations des coefficients de la matrice L à l'interface σ. La matrice discrète L n σ = (L n ij,σ ) 1≤i,j≤2 est donnée par

L n σ = L u n K + u n K,σ 2 , pour tous K ∈ T , σ ∈ E K .
Pour achever la construction de ce schéma, il reste à définir les approximations aux interfaces Ψ n+1 σ et u n+1 2,σ , ce qui est fait dans la proposition 2.1 de sorte à obtenir l'équivalence avec un schéma pour le système en variables duales.

En appliquant le changement de variables (2.4), le schéma numérique suivant est établi :

m(K) b n+1 1,K -b n 1,K ∆t + σ∈E K G n+1 1,K,σ = 0, (2.17) m(K) b n+1 2,K -b n 2,K ∆t + σ∈E K G n+1 2,K,σ = m(K) W n+1 K -m(K) Ψ n+1 K -Ψ n K ∆t b n 1,K , (2.18) -λ 2 σ∈E K τ σ D K,σ Ψ n+1 = m(K)(C K -b n+1 1,K ), (2.19) où W n+1 K = W n+1 K = W (w n+1 K , Ψ n+1 K ) et les flux numériques sont donnés par : (2.20) G n+1 1,K,σ = F n+1 1,K,σ , G n+1 2,K,σ = F n+1 2,K,σ -Ψ n+1 σ F n+1 1,K,σ .
Le point crucial est de s'assurer que les flux numériques obtenus 

G i,K,σ , i = 1,
• Cas 1 : schéma centré. Pour tous σ ∈ E et n ≥ 0, (2.21) u n+1 2,σ = u n+1 2,K + u n+1 2,K,σ 2 et Ψ n+1 σ = Ψ n+1 K + Ψ n+1 K,σ 2 . • Cas 2 : schéma upwind. Pour tous σ ∈ E et n ≥ 0, (2.22) u n+1 2,σ = u n+1 2,K,σ , si D K,σ Ψ n+1 > 0, u n+1 2,K , si D K,σ Ψ n+1 ≤ 0, et Ψ n+1 σ = min(Ψ n+1 K , Ψ n+1 K,σ
G n+1 i,K,σ = -τ σ (D * i1,σ D K,σ w n+1 1 + D * i2,σ D K,σ w n+1 2 ), i = 1, 2,
les coefficients (D * ij,σ ) 1≤i,j≤2 étant ceux de la matrice suivante : Nous avons donc à notre disposition plusieurs discrétisations possibles du système de transport d'énergie, et donc des choix à opérer entre les options suivantes :

(2.24) D * σ = (P n+1 σ ) T L n σ P n+1 σ avec P n+1 σ = 1 -Ψ n+1 σ 0 1 .
• variables primales ou duales,

• discrétisation centrée ou upwind.

La discrétisation temporelle étant implicite, tous ces schémas conduisent en pratique à résoudre un système non linéaire à chaque pas de temps, ce qui est réalisé par une méthode de Newton. Afin de choisir la discrétisation la plus performante, nous avons donc réalisé des comparaisons entre les différents choix, pour différents cas tests unidimensionnels. Une illustration en est donnée sur la figure 2.1, et une étude numérique plus détaillée est proposée dans [START_REF] Bessemoulin-Chatard | Analysis of numerical schemes for semiconductor energy-transport models[END_REF].

Nous avons constaté que les variables primales semblent plus adaptées numériquement, ce qui peut peut-être s'expliquer par le manque de régularité des fonctions impliquées dans la méthode de Newton pour le schéma en variables duales. Concernant le choix entre discrétisation centrée ou upwind, les performances sont comparables dans le cas des variables primales. D'un point de vue théorique, cette construction de deux schémas équivalents pour les systèmes en variables primales (2.1)-(2.3) et duales (2.5)-(2.7) est essentielle. Définissons l'entropie discrète de la manière suivante : 

S n = K∈T m(K) ρ n K • (u n K -u D K ) -(χ(u n K ) -χ(u D K )) (2.25) - λ 2 2 u D 2 σ∈E τ σ D σ (Ψ n -Ψ D ) 2 . L'
S n+1 -S n ∆t ≤ - σ∈E τ σ (D K,σ w n+1 ) T D * σ D K,σ w n+1 + K∈T m(K)W n+1 K (w n+1 2,K -w D 2,K ) ≤ 0.

Analyse numérique du schéma 2.2.1 Estimations a priori

Les estimations a priori suivantes constituent la première étape dans l'étude des schémas. 

sup n=0,...,N T ∥u n 1,T -u D 1,T ∥ 2 + ∥u n 2,T -u D 2,T ∥ 2 + |Ψ n+1 M -Ψ D M | 2 1,M ≤ C 1 , (2.27) N T -1 n=0 ∆t w n+1 1,M 2 1,M + w n+1 2,M 2 1,M ≤ C 2 . (2.

Existence d'une solution au schéma

En adaptant au cadre discret la preuve proposée dans [DGJ97, Lemma 3.2], fondée sur une application du théorème du point fixe de Leray-Schauder, nous obtenons l'existence de solutions aux schémas en variables primales et duales. La démonstration utilise des arguments similaires à ceux développés dans les preuves des propositions 2.2 et 2.3. 

W (u D ) = 0, (2.29) -λ 2 ∆Ψ D = C -ρ 1 (u D ).
(2.30) L'équilibre thermique (w eq , Ψ eq ) est alors défini comme étant l'unique solution du problème elliptique non linéaire suivant :

(2.31) -λ 2 ∆Ψ eq = C -b 1 (w eq , Ψ eq ), w eq = w D sur Ω, avec Ψ eq = Ψ D sur Γ D et ∇Ψ eq • ν = 0 sur Γ N .
Nous considérons une discrétisation TPFA classique de cet équilibre thermique : pour tout K ∈ T ,

(2.32) -λ 2 σ∈E K τ σ D K,σ Ψ eq = m(K) (C K -b 1 (w eq K , Ψ eq K )) , w eq K = w D K , avec Ψ eq σ = Ψ D σ pour tous σ ∈ E D ext .
L'étude du comportement en temps long des solutions approchées est fondée, comme dans le chapitre 1, sur une estimation d'entropie relative par rapport à l'équilibre thermique définie par

S n = K∈T m(K) [ρ n K • (u n K -u eq K ) -(χ(u n K ) -χ(u eq K ))] (2.33) - λ 2 2 u D 2 σ∈E τ σ |D σ (Ψ n -Ψ eq )| 2 .
En adaptant les preuves des propositions 2.2 et 2.3, nous établissons la double inégalité d'entropie-production discrète suivante :

S n+1 -S n ≤ -∆t w n+1 1,M 2 1,M + w n+1 2,M 2 1,M ≤ - ∆t C SI S n+1 ,
de laquelle nous déduisons la convergence exponentielle vers l'équilibre thermique quand t → +∞. 

(2.34) S n ≤ S 0 e -γt n , ∀n ≥ 0.
De plus, il existe c > 0 dépendant uniquement des données et de ξ tel que

(2.35) ∥u n T -u eq T ∥ 2 2 + ∥Ψ n M -Ψ eq M ∥ 2 1,M ≤ c S 0 e -γt n ∀n ≥ 0.
Si d'un point de vue théorique la convergence exponentielle en temps long vers un état stationnaire est démontrée uniquement dans le cas très particulier de l'équilibre thermique, elle semble cependant bien vérifiée dans des cas plus généraux. Par exemple, dans le cas d'un transistor de type MESFET [START_REF] Holst | A mixed finite-element discretization of the energy-transport model for semiconductors[END_REF], nous observons sur la figure 2.3 une convergence exponentielle des solutions approchées vers l'état stationnaire illustré sur la figure 2.2.

Extension au cadre DDFV

Pour des cas tests physiquement réalistes, la différence d'épaisseur entre différentes parties du domaine de simulation peut nécessiter l'usage de maillages localement raffinés (voir par exemple [START_REF] Holst | An adaptive mixed scheme for energytransport simulations of field-effect transistors[END_REF]). Dans ce contexte, il peut s'avérer compliqué de construire un maillage admissible, requis pour appliquer les schémas de type TPFA présentés depuis le début de ce chapitre. Je m'intéresse donc dans cette section à une généralisation au cadre DDFV des idées présentées jusqu'ici dans le cadre TPFA. En effet, les méthodes de type DDFV permettent de considérer des maillages très généraux. Contrairement aux schémas TPFA, elles nécessitent des inconnues à la fois aux centres et aux sommets des volumes de contrôle, ce qui permet de construire une approximation bidimensionnelle des gradients, en dualité discrète avec les opérateurs de divergence correspondants. Ce cadre est donc bien adapté pour transposer au niveau discret les propriétés des opérateurs différentiels continus [START_REF] Andreianov | Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes[END_REF].

Un schéma DDFV pour le modèle de transport d'énergie avait déjà été proposé dans [START_REF] Chainais-Hillairet | Discrete duality finite volume schemes for twodimensional drift-diffusion and energy-transport models[END_REF]. Celui que nous considérons dans [START_REF] Bessemoulin-Chatard | Numerical analysis of DDFV schemes for semiconductors energy-transport models[END_REF] • un schéma DDFV en variables duales équivalent à celui en variables primales (analogue dans le cadre DDFV de la proposition 2.1),

• une inégalité d'entropie-production discrète (analogue de la proposition 2.2)

• une estimation a priori L ∞ en temps, L 2 en espace pour les approximations de uu D et ∇(Ψ -Ψ D ) (analogue de (2.27)),

• l'existence de solutions aux schémas en variables primales et duales (analogue du théorème 2.1).

Perspectives

Convergence des schémas TPFA. À partir des estimations a priori énoncées dans la proposition 2.3, on déduit par inégalité de Poincaré discrète les bornes suivantes : 

N T -1 n=0 ∆t ∥w n+1 1,M ∥ 2 1,M + ∥w n+1 2,M ∥ 2 1,M ≤ c, sup n=0,...,N T ∥Ψ n+1 M -Ψ D M ∥ 1,M ≤ c.
∂ t τ -∂ x u = 0, ∂ t u + ∂ x p(τ ) = -σ u, (x, t) ∈ R × R + .
La loi de pression p est supposée vérifier les hypothèses suivantes, assurant notamment l'hyperbolicité du système homogène correspondant :

(3.2) p ∈ C 2 (R * + ), p(τ ) > 0, p ′ (τ ) < 0, si τ ≥ c > 0 alors il existe m tel que p(τ ) ≥ m > 0 et p ′ (τ ) ≤ -m < 0.
Typiquement, les fonctions de la forme p(s) = s -γ , γ ≥ 1 peuvent être considérées.

À ce système est associée une inégalité d'entropie permettant de déterminer les solutions physiquement admissibles :

(3.3) ∂ t η(τ, u) + ∂ x ψ(τ, u) ≤ -σ u 2 ≤ 0, où le couple entropie-flux (η, ψ) est défini par η(τ, u) = u 2 2 -P (τ ), ψ(τ, u) = u p(τ ),
l'énergie interne -P (τ ) étant une primitive de -p(τ ).
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Nous nous intéressons au comportement en temps long des solutions w = (τ, u) T de ce système, et plus précisément à leur limite w = (τ , u) T dans le régime de diffusion, vérifiant le problème parabolique non linéaire suivant (équation des milieux poreux) :

(3.4)    ∂ t τ + 1 σ ∂ xx p(τ ) = 0, ∂ x p(τ ) = -σ u, (x, t) ∈ R × R + .
Il existe une littérature importante concernant l'étude de la limite de diffusion de systèmes hyperboliques de lois de conservation. Citons par exemple [START_REF] Hsiao | Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping[END_REF] et [START_REF] Nishihara | Convergence rates to nonlinear diffusion waves for solutions of system of hyperbolic conservation laws with damping[END_REF] où des taux de convergence en temps sont obtenus par des méthodes d'énergie, avec utilisation d'inégalités de Sobolev. Des taux explicites de convergence en temps ont également été démontrés pour une large classe de systèmes hyperboliques dissipatifs [START_REF] Bianchini | Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF]. Ces résultats semblant difficiles à adapter dans un cadre discret, nous considérons plutôt le point de vue adopté par exemple dans [START_REF] Marcati | Singular convergence of weak solutions for a quasilinear nonhomogeneous hyperbolic system[END_REF][START_REF] Mei | Best asymptotic profile for hyperbolic p-system with damping[END_REF], qui repose sur l'introduction d'un paramètre ε de mise à l'échelle.

Plus précisément, nous nous intéressons au régime temps long et friction dominante pour le système (3.1). Dans ce cadre de forte friction, il apparaît que la vitesse est de l'ordre de ε. Le système mis à l'échelle que nous considérons s'écrit finalement

(3.5) ∂ t τ ε -∂ x u ε = 0, ε 2 ∂ t u ε + ∂ x p(τ ε ) = -σ u ε , (x, t) ∈ R × R + .
On appelle tout couple de fonctions couple entropie-flux d'entropie muni de l'inégalité d'entropie suivante :

(3.6) ∂ t η ε (τ ε , u ε ) + ∂ x ψ(τ ε , u ε ) ≤ -σ |u ε | 2 ≤ 0, avec (3.7) η ε (τ, u) = ε 2 u 2 2 -P (τ ).
Les solutions fortes entropiques w ε = (τ ε , u ε ) T de (3.5) vérifient en particulier l'inégalité d'entropie (3.6) avec η ε définie par (3.7).

Quand ε tend vers 0, les solutions w ε = (τ ε , u ε ) T de (3.5) convergent vers les solutions w = (τ , u) T de (3.4). Suivant [START_REF] Lattanzio | Relative entropy in diffusive relaxation[END_REF], ce résultat peut être établi grâce à une méthode d'entropie relative dont je rappelle maintenant les grandes lignes, puisque l'idée est de l'adapter au cadre discret.

L'entropie relative est définie comme étant le terme quadratique du développement de Taylor au voisinage de w solution régulière de (3.4) :

η ε (w| w) = η ε (w) -η ε ( w) -∇η ε ( w) • (w -w) (3.8) = ε 2 2 (u -u) 2 -P (τ |τ ), où P (τ |τ ) = P (τ ) -P (τ ) -p(τ )(τ -τ ).
Cette entropie relative satisfait une loi d'évolution décrite dans le lemme suivant.

Lemme 3.1. Soit w ε = (τ ε , u ε ) T une solution forte entropique de (3.5) et w = (τ , u) T une solution régulière de (3.4). Alors l'entropie relative vérifie

∂ t η ε (w ε |w)+∂ x ψ(w ε |w) = -σ(u ε -u) 2 + 1 σ p(τ ε |τ )∂ xx p(τ ) + ε 2 σ (u ε -u)∂ xt p(τ ), (3.9)
où le flux relatif est défini par

(3.10) ψ(w|w) = (u -u)(p(τ ) -p(τ )).
Introduisons maintenant la quantité suivante, qui va permettre de quantifier l'écart entre w ε et w :

(3.11) ϕ ε (t) = R η ε (w ε |w) dx.
En supposant que les conditions initiales des systèmes (3.5) et (3.4) sont telles que les conditions aux limites suivantes sont satisfaites : 

(3.12) lim x→±∞ τ ε (x, t) = lim x→±∞ τ (x, t) = τ ± > 0, lim x→±∞ u ε (x, t) = lim
∥∂ xx p(τ )∥ L ∞ (Q T ) ≤ K, ∥∂ xt p(τ )∥ L 2 (Q T ) ≤ K.
Soit w ε une solution forte entropique de

(3.5) avec τ ≥ c > 0 sur Q T , telle que ϕ ε (0) < +∞. Alors (3.14) ϕ ε (t) ≤ C(ϕ ε (0) + ε 4 ), t ∈ [0, T ), où C est une constante dépendant de T , σ et K. De plus, si ϕ ε (0) → 0 quand ε → 0, alors (3.15) sup t∈[0,T ) ϕ ε (t) → 0 quand ε → 0.
La preuve de ce théorème repose sur l'intégration en espace et en temps de la loi d'évolution de l'entropie relative (3.9), et sur l'utilisation des propriétés de p(τ ) et ses dérivées, grâce notamment à l'application d'inégalités de Cauchy-Schwarz et Young. La conclusion est obtenue par application du lemme de Grönwall.

Ce résultat (3.14) permet de quantifier la vitesse de convergence vers la limite de diffusion quand ε tend vers 0. Remarquons de plus que du fait de la convexité de l'entropie η ε , l'intégrale de l'entropie relative ϕ ε se comporte comme ∥w ε -w∥ 2 L 2 (R) , permettant de déduire une convergence en norme L 2 à vitesse ε 2 .

L'objectif des travaux présentés dans ce chapitre est de retrouver rigoureusement au niveau discret ce taux de convergence, quand w ε et w sont approchés par des schémas numériques appropriés. En effet, d'un point de vue numérique, il n'est pas immédiat de construire un schéma pour (3.5) restant valide dans la limite ε → 0. Nous considérons donc une méthode préservant l'asymptotique (AP) au sens de Jin [Jin99, JPT98], c'est-à-dire fournissant une discrétisation stable de (3.5) pour toute valeur de ε > 0, et conduisant lorsque ε tend vers 0, à paramètres de discrétisation fixés, à un schéma consistant avec le problème limite (3.4). Établir l'analogue discret du théorème 3.1 permet en particulier de prouver le caractère AP du schéma numérique considéré.

Dans la section 3.1, je considère le cas semi-discret (continu en temps et discrétisé en espace) que nous avons étudié avec Christophe Berthon et Hélène Mathis [START_REF] Berthon | Numerical convergence rate for a diffusive limit of hyperbolic systems : p-system with damping[END_REF]. Nous prouvons, pour une discrétisation volumes finis avec flux de type HLL [START_REF] Harten | On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[END_REF], l'analogue semi-discret du théorème 3.1. Ce résultat est fondé sur un analogue semi-discret de la loi d'évolution de l'entropie relative (3.9), mais nécessite le contrôle de termes additionnels provenant de la viscosité numérique. Dans la section 3.2, je présente l'extension de ces résultats au cadre complètement discret, que nous avons obtenue en collaboration avec Christophe Berthon et Solène Bulteau [15]. L'idée générale de la preuve est la même, mais la discrétisation temporelle fait apparaître beaucoup de termes supplémentaires à contrôler, rendant la preuve assez technique.

Le cadre semi-discret en espace

Considérons un maillage uniforme de l'espace constitué de cellules (x i- ) par une fonction (dépendant du temps) constante en espace w i (t) = (τ i (t), u i (t)) T (à partir de maintenant, la dépendance en ε est omise pour alléger les notations).

Définissons maintenant les normes semi-discrètes qui seront utilisées par la suite. Pour v(t) = (v i (t)) i∈Z une fonction de t ∈ [0, T ), nous notons :

(3.16) ∥D x v∥ L ∞ (Q T ) = sup t∈[0,T ) sup i∈Z v i+1 -v i ∆x , ∥ Dxx v∥ L ∞ (Q T ) = sup t∈[0,T ) sup i∈Z v i+2 -2v i + v i-2 (2∆x) 2 , ∥D xx v∥ L ∞ (Q T ) = sup t∈[0,T ) sup i∈Z v i+1 -2v i + v i-1 (∆x) 2 , ∥ Dtx v∥ L 2 (Q T ) =   T 0 i∈Z ∆x d dt v i+1 -v i-1 2∆x 2 (s) ds   1/2 , ∥D xx v∥ L 2 (Q T ) =   T 0 i∈Z ∆x v i+1 -2v i + v i-1 (∆x) 2 2 (s) ds   1/2 .
Le schéma numérique semi-discret en espace que nous étudions, basé sur le flux HLL [START_REF] Harten | On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[END_REF], s'écrit (3.17)

       d dt τ i = 1 2∆x (u i+1 -u i-1 ) + λ 2∆x (τ i+1 -2τ i + τ i-1 ), d dt u i = λ 2∆x (u i+1 -2u i + u i-1 ) - 1 2ε 2 ∆x (p(τ i+1 ) -p(τ i-1 )) - σ ε 2 u i , avec (3.18) λ = sup t∈(0,T ) max i∈Z ( -p ′ (τ i )).
Formellement, en prenant ε → 0 dans ce schéma (3.17), nous obtenons une discrétisation consistante du problème limite (3.4) :

(3.19)        d dt τi = 1 2∆x (ū i+1 -ūi-1 ) + λ 2 ∆x (τ i+1 -2τ i + τi-1 )
,

σū i = - p(τ i+1 ) -p(τ i-1 ) 2∆x . En notant w i (t) = (τ i (t), u i (t)) T , l'entropie relative semi-discrète est donnée par (3.20) η ε i (t) = η ε (w i (t)|w i (t)) = ε 2 2 (u i (t) -ūi (t)) 2 -P (τ i (t)|τ i (t)), et l'analogue semi-discret de ϕ ε , noté ϕ ∆x ε , est donné par (3.21) ϕ ∆x ε (t) = i∈Z ∆x η ε i (t).
En supposant que l'analogue de la condition aux limites (3.12) est vérifiée par les solutions approchées :

(3.22) lim i→±∞ τ i = lim i→±∞ τi = τ ± , lim i→±∞ u i = lim i→±∞ ūi = 0, le résultat suivant peut être établi. Théorème 3.2. Soit (w i (t)) i solution régulière de (3.19) telle que τ i ≥ c > 0 sur Q T . Supposons qu'il existe K > 0 telle que ∥ Dtx p(τ )∥ L 2 (Q T ) ≤ K, ∥ Dxx p(τ )∥ L ∞ (Q T ) ≤ K, (3.23) ∥D xx τ ∥ L ∞ (Q T ) ≤ K, ∥D x τ ∥ L ∞ (Q T ) ≤ K, ∥D xx ū∥ L 2 (Q T ) ≤ K. (3.24) Soit (w i (t)) i une solution de (3.17) avec τ i ≥ c > 0 sur Q T , telle que ϕ ∆x ε (0) < +∞. Alors (3.25) ϕ ∆x ε (t) ≤ C(ϕ ∆x ε (0) + ε 4 ), t ∈ [0, T ), où C est une constante dépendant de T , σ et K. De plus, si ϕ ∆x ε (0) → 0 quand ε → 0, alors sup t∈[0,T ) ϕ ∆x ε (t) → 0 quand ε → 0.
De manière analogue au cadre continu, cet énoncé fait intervenir des hypothèses sur des normes semi-discrètes de la solution régulière du schéma (3.19) pour le problème parabolique, définies par (3.16). Plus précisément, les hypothèses (3.23) correspondent aux hypothèses (3.13), tandis que les hypothèses supplémentaires (3.24) sont nécessaires pour contrôler les termes additionnels dus à la viscosité numérique.

La preuve de ce théorème repose sur une version semi-discrète de la loi d'évolution de l'entropie relative énoncée dans le lemme suivant.

Lemme 3.2. Soit (w

i ) i = (τ i , u i ) T i une solution de (3.17) et (w i ) i = (τ i , u i ) i une solution de (3.19). Alors l'entropie relative η ε i vérifie (3.26)
dη ε i dt + 1 ∆x (ψ i+1/2 -ψ i-1/2 ) = -σ(u i -ūi ) 2 + 1 σ p(τ i+2 ) -2p(τ i ) + p(τ i-2 ) (2∆x) 2 p(τ i |τ i ) + ε 2 σ (u i -ūi ) d dt p(τ i+1 ) -p(τ i-1 ) 2∆x + R u i + R τ i , où ψ i+1/2 correspond à une approximation du flux relatif ψ à l'interface x i+1/2 donnée par (3.27) ψ i+1/2 = 1 2 (u i -ūi )(p(τ i+1 ) -p(τ i+1 )) + 1 2 (u i+1 -ūi+1 )(p(τ i ) -p(τ i )), et les quantités R u i et R τ i sont des restes numériques définis par (3.28) R u i = λε 2 2∆x (u i -ūi )(u i+1 -2u i + u i-1 ), R τ i = - λ 2∆x (p(τ i ) -p(τ i ))(τ i+1 -2τ i + τ i-1 ) -(τ i -τi )p ′ (τ i )(τ i+1 -2τ i + τi-1 ) .
Comme dans le cas continu, le résultat du théorème 3.2 se démontre en intégrant en temps l'identité (3.26). Les deux termes résiduels R u i et R τ i sont alors contrôlés en utilisant les hypothèses additionnelles (3.24), et l'estimation finale est obtenue en utilisant les propriétés sur p(τ i ) et ses dérivées, des inégalités de Cauchy-Schwarz et Young, et finalement le lemme de Grönwall.

Le cadre complètement discret

Pour obtenir un résultat complet, il est nécessaire de considérer également une discrétisation temporelle. Pour cela, notons ∆t > 0 le pas de temps, et t n = n ∆t pour n = 0, . . . , N T + 1, avec T = t N T +1 le temps final.

Nous considérons un schéma analogue à celui proposé dans [START_REF] Jin | Diffusive relaxation schemes for multiscale discrete-velocity kinetic equations[END_REF], basé sur la reformulation suivante du système (3.5) :

   ∂ t τ -∂ x u = 0, ∂ t u + ∂ x p(τ ) = - 1 ε 2 σ u + (1 -ε 2 )∂ x p(τ ) .
La discrétisation est fondée sur un splitting en deux étapes. Dans un premier temps, le système hyperbolique homogène (non raide)

∂ t τ -∂ x u = 0, ∂ t u + ∂ x p(τ ) = 0.
est traité par un schéma HLL explicite :

τ n+ 1 2 i = τ n i - ∆t ∆x F τ i+ 1 2 -F τ i-1 2 , (3.29a) u n+ 1 2 i = u n i - ∆t ∆x F u i+ 1 2 -F u i-1 2 , (3.29b)
les flux numériques étant donnés par

F τ i+ 1 2 = 1 2 (-u n i -u n i+1 ) - λ 2 (τ n i+1 -τ n i ), F u i+ 1 2 = 1 2 (p(τ n i ) + p(τ n i+1 )) - λ 2 (u n i+1 -u n i ), où (3.30) λ = sup 0≤n≤N T max i∈Z ( -p ′ (τ i )).
Dans un deuxième temps, le terme source raide est pris en compte de manière implicite :

τ n+1 i = τ n+ 1 2 i , u n+1 i -u n+ 1 2 i ∆t = - 1 ε 2   σ u n+1 i + (1 -ε 2 ) p n+1 i+ 1 2 -p n+1 i-1 2 ∆x   , où p i+ 1 2
sont des discrétisations centrées de p(τ ).

Puisque

τ n+1 i = τ n+ 1 2 i
, u n+1 i peut finalement être calculé explicitement à partir de (τ n i , u n i ) i , et l'étape de relaxation s'écrit finalement 

τ n+1 i = τ n+ 1 2 i , (3.31a) u n+1 i = ε 2 ε 2 + σ ∆t u n+ 1 2 i -∆t 1 -ε2 ∆t σ + ε 2 p(τ n+ 1 2 i+1 ) -p(τ n+ 1 2 i-1 ) 2 ∆x . ( 3 
τ n+1 i = τ n i + ∆t 2 ∆x u n i+1 -u n i-1 - λ ∆t 2 ∆x (τ n i+1 -2τ n i + τ n i-1 ), (3.32a) u n+1 i = - 1 2 σ ∆x p(τ n+1 i+1 ) -p(τ n+1 i-1 ) , (3.32b)
qui est bien consistant avec le problème parabolique limite puisque le dernier terme de la première équation est un terme de viscosité numérique.

Le résultat principal est énoncé dans le théorème suivant. 

• il existe K > 0 tel que (3.33) ∥D t u n+ 1 2 ∥ L 2 , ∥D xx u n ∥ L 2 , ∥D t τ n+ 1 2 ∥ L ∞ , ∥D x τ n ∥ L ∞ ≤ K,
• il existe L τ > 0 tel que

(3.34) 1 L τ ≤ τ n i , τ n i ≤ L τ ,
• la fonction de pression p vérifie, pour tous τ

∈ [1/L τ , L τ ], (3.35) 1 L p ≤ p(τ ), p ′′ (τ ) ≤ L p , -L p ≤ p ′ (τ ), p (3) (τ ) ≤ - 1 L p ,
• les paramètres de discrétisation vérifient une condition CFL parabolique ∆t/∆x 2 ≤ C p , C p constante dépendant de K, L τ et L p ,

• ε est tel que

(3.36) ε 2 ≤ min σ C p (2 + 15 L 2 p ) , σ 8λ ∆x .
Alors, l'analogue discret de ϕ ε vérifie

(3.37) ϕ N T +1 ε ≤ C(ϕ 0 ε + ∥u 0 -u 0 ∥ 2 L 2 + ε 4 ),
où C est une constante dépendant uniquement de T et des paramètres σ, λ, K, L τ et L p .

Comme dans les cas continu et semi-discret, cet énoncé fait intervenir des hypothèses (3.33) sur l'approximation w n i de la solution du problème limite, qui permettent de contrôler les termes de viscosité additionnels dus à la discrétisation en espace et en temps. Dans le cas continu et semi-discret, des conditions sont imposées uniquement sur les deux premières dérivées de la pression p. Ici, des hypothèses jusqu'à la dérivée d'ordre 3 (3.35) sont requises pour contrôler les termes de reste additionnels issus de la discrétisation temporelle. Notons que ces hypothèses sont vérifiées par la fonction de pression classique p(τ ) = τ -γ , γ > 1. L'hypothèse (3.36) n'est pas restrictive en pratique puisque nous sommes intéressés par la limite ε → 0. Enfin, la condition CFL parabolique est naturelle, le schéma limite étant une discrétisation explicite en temps d'un problème diffusif.

La preuve du théorème 3.3 suit le même cheminement que celles des cas continu et semi-discret. Une version discrète de la loi d'entropie relative (3.9) est tout d'abord établie. L'idée générale pour contrôler les nombreux termes de reste est de faire apparaître soit des termes en ε 4 , soit des termes impliquant uniquement la condition initiale, soit des termes qui vont pouvoir être compensés par les termes négatifs déjà présents. Nous constatons que le taux de convergence en ε 4 établi dans les cadres continu [START_REF] Lattanzio | Relative entropy in diffusive relaxation[END_REF] et semi-discret est bien retrouvé pour le schéma (3.29)-(3.31). Sur la figure 3.1 est représentée l'intégrale spatiale de l'entropie relative discrète ϕ N T +1 ε en fonction de ε en échelle logarithmique, pour deux données initiales, et pour différents nombres N de cellules en espace. Les simulations numériques donnent un taux de convergence en parfait accord avec celui établi dans le théorème 3.3, ce qui laisse à penser que ce résultat est optimal.

Perspectives

Dans l'article [START_REF] Lattanzio | Relative entropy in diffusive relaxation[END_REF], la méthode d'entropie relative est également appliquée au système d'Euler isentropique et à un système quasi-linéaire de viscoélasticité. Les preuves sont fondées sur les expressions des entropies particulières à chaque système. Cependant, la méthode n'est pas formalisée pour un système général, comme c'est le cas pour l'asymptotique hyperbolique [START_REF] Tzavaras | Relative entropy in hyperbolic relaxation[END_REF]. Pourtant, la structure de relaxation est définie de façon générale dans [START_REF] Bianchini | Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF][START_REF] Berthon | Late-time/stiff-relaxation asymptotic-preserving approximations of hyperbolic equations[END_REF]. Ainsi, dans [START_REF] Berthon | Late-time/stiff-relaxation asymptotic-preserving approximations of hyperbolic equations[END_REF], un système hyperbolique non linéaire général avec terme de relaxation est considéré : 

ε ∂ t U + ∂ x F (U ) = - R(U ) ε . À l'
       ∂ t h + ∂ x q = 0, ∂ t q + ∂ x q 2 h + gh 2 2 = -k|q|qh -η , (x, t) ∈ R × R + ,
g étant la constante universelle de gravitation, et les paramètres de friction apparaissant dans le terme source de Manning étant η, en général égal à 7/3, et k qui définit l'intensité de la friction. Je m'intéresse, comme dans le chapitre précédent, au comportement des solutions de ce problème en temps long et friction dominante. Pour cela, une mise à l'échelle en temps et en friction est considérée, en introduisant un paramètre ε > 0 qui sera amené à tendre vers 0 :

(4.2) t ← t/ε, k ← k/ε 2 .
La mise à l'échelle de la friction (en ε 2 ) est différente de celle proposée au chapitre 3 (en ε), du fait du terme quadratique en q dans le terme source [START_REF] Berthon | Late-time/stiff-relaxation asymptotic-preserving approximations of hyperbolic equations[END_REF]. Après mise à l'échelle, le système (4.1) se réécrit :

(4.3)        ε∂ t h + ∂ x q = 0, ε∂ t q + ∂ x q 2 h + gh 2 2 = - k ε 2 |q|qh -η .
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Le comportement quand ε tend vers 0 de h et q peut être étudié formellement en utilisant un développement de Chapman-Enskog :

h = h 0 + εh 1 + • • • , q = q 0 + εq 1 + • • •
La hauteur d'eau h étant ici considérée strictement positive, avec de plus h 0 > 0, il est clair que q 0 est nécessairement nul, et finalement le problème limite est donné par (4.4)

       ∂ t h 0 + ∂ x q 1 = 0, ∂ x g(h 0 ) 2 2 = -k |q 1 | q 1 (h 0 ) -η .
La deuxième équation de ce système conduit à l'expression suivante pour q 1 : (4.5)

q 1 = -sign(∂ x h 0 ) (h 0 ) η k ∂ x g(h 0 ) 2 2 ,
ce qui mène finalement à l'équation diffusive non linéaire suivante (de type p-laplacien) pour h 0 :

(4.6) ∂ t h 0 + ∂ x   -sign(∂ x h 0 ) (h 0 ) η k ∂ x g(h 0 ) 2 2   = 0.
L'objectif des travaux présentés dans ce chapitre, effectués dans le cadre de la thèse de Solène Bulteau, est de construire des discrétisations de (4.1) asymptotiquement consistantes (AC ) avec la limite de diffusion, c'est-à-dire consistantes avec le modèle hyperbolique (4.1) pour tous ε > 0, et convergeant, quand ε tend vers 0, vers un schéma consistant avec le modèle limite de diffusion (4.5)-(4.6). Cette propriété de consistance asymptotique est moins forte que la propriété AP étudiée dans le chapitre 3 puisqu'elle n'impose pas la stabilité de la méthode indépendamment de la valeur de ε > 0.

Je présente dans ce chapitre deux schémas ayant cette propriété de consistance asymptotique. Ces deux discrétisations sont de type Godunov à deux états intermédiaires. Le cadre général considéré est donné dans la section 4.1.

Dans la section 4.2, je présente une généralisation de la méthode de perturbation HLL introduite dans [START_REF] Berthon | Asymptotic preserving HLL schemes[END_REF] que nous avons proposée avec Christophe Berthon et Solène Bulteau [START_REF] Bulteau | An Asymptotic Preserving scheme for the shallow-water equations with Manning friction using viscous correction of the HLL scheme[END_REF]. L'idée de cette méthode est d'inclure la discrétisation du terme source dans le solveur de Riemann approché (de type HLL [START_REF] Harten | On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[END_REF]). En introduisant dans ce schéma HLL perturbé un paramètre supplémentaire, la viscosité numérique peut être contrôlée de sorte à être consistante avec la diffusion du problème limite considéré. Dans l'article [START_REF] Berthon | Asymptotic preserving HLL schemes[END_REF], le cadre traité est linéaire, dans le sens où le terme source est linéaire et conduit à une limite de diffusion impliquant un opérateur linéaire (de type laplacien). Dans le cas qui m'intéresse ici, le système de Saint-Venant avec friction de Manning (4.1), le terme source est quadratique, conduisant à une limite de diffusion impliquant un opérateur non linéaire de type p-laplacien. Nous proposons donc une extension adaptée à ce contexte pour obtenir une discrétisation consistante à la limite de diffusion. Cette consistance est établie formellement à l'aide de développements de Chapman-Enskog de la solution approchée.

Dans la section 4.3, je m'intéresse au schéma équilibre de type Godunov proposé dans [START_REF] Michel-Dansac | A well-balanced scheme for the shallow-water equations with topography or Manning friction[END_REF], construit initialement dans le but de préserver tous les états stationnaires du système de Saint-Venant avec friction de Manning (4.1). Ces états stationnaires sont gouvernés par un débit uniforme q 0 , et l'équation suivante sur la hauteur d'eau

(4.7) ∂ x q 2 0 h + gh 2 2 = -kq 0 |q 0 |h -η ,
qui peut être intégrée et donne une équation non linéaire sur h [START_REF] Michel-Dansac | A well-balanced scheme for the shallow-water equations with topography or Manning friction[END_REF]. Avec Solène Bulteau, Mehdi Badsi et Christophe Berthon [START_REF] Bulteau | A fully well-balanced and asymptotic preserving scheme for the shallow-water equations with a generalized Manning friction source term[END_REF], nous montrons que, à une petite modification près, le schéma équilibre proposé est en fait également consistant à la limite de diffusion, tout en continuant de préserver tous les états stationnaires.

Schémas de type Godunov à deux états intermédiaires

Considérons un maillage uniforme en espace, composé de cellules

K i = (x i-1 2 , x i+ 1 2
), i ∈ Z, de longueur ∆x et de centre x i . Concernant la discrétisation temporelle, notons ∆t le pas de temps et t n = n∆t pour n ∈ N.

Le système (4.1) peut se réécrire sous la forme générique d'un système hyperbolique avec terme source (4.8)

∂ t W + ∂ x F (W ) = S(W ), avec W = (h, q) T , F (W ) = q, q 2 h + g h 2 2 T , S(W ) = (0, -k q |q| h -η ) T .
Notons W n i une approximation de la solution W de (4.8) sur la cellule K i , au temps t n . Nous considérons des schémas de type Godunov ; au temps t n+1 , l'approximation est mise à jour comme (4.9)

W n+1 i = x i+ 1 2 x i-1 2 W ∆ (x, t n + ∆t) dx, où W ∆ (x, t n + t) = W x -x i+ 1 2 t ; W n i , W n i+1 , si x ∈ (x i , x i+1 ).
Les solveurs de Riemann approchés W utilisés dans ce chapitre sont composés de trois ondes discontinues de vitesses λ L < 0 < λ R séparant quatre états constants. Je suppose dans la suite que -λ L = λ R = λ LR > 0 pour alléger les notations. Considérons donc

(4.10) W x t , W L , W R =                      W L si x t ≤ -λ LR , W L * si -λ LR < x t ≤ 0, W R * si 0 < x t ≤ λ LR , W R si λ LR < x t .
Les deux états intermédiaires W L * et W R * sont déterminés de telle sorte que la relation de consistance intégrale suivante soit vérifiée [START_REF] Berthon | A fully well-balanced, positive and entropysatisfying Godunov-type method for the shallow-water equations[END_REF] : 

1 ∆x ∆x 2 -∆x 2 W x ∆t ; W L , W R dx = 1 2 (W L + W R ) - ∆t ∆x (F (W R ) -F (W L )) +∆tS(W L , W R ), (4.11) S(W L , W R ) étant
W n+1 i = W n i + ∆t ∆x λ i+ 1 2 W L * i+ 1 2 -W n i + λ i-1 2 W R * i-1 2 -W n i .
Il reste donc à définir de manière adéquate les deux états intermédiaires W L * et W R * . Les deux choix exposés dans les sections 4.2 et 4.3 font intervenir l'état intermédiaire W * du schéma HLL classique [START_REF] Harten | On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[END_REF] (ou simplement Rusanov ici puisque -λ L = λ R = λ LR > 0) pour un système hyperbolique homogène :

(4.15) W * = 1 2 (W R + W L ) - 1 2λ LR (F (W R ) -F (W L )) .

Un schéma basé sur la généralisation du cas linéaire

Je m'intéresse tout d'abord à une généralisation au cadre non linéaire du schéma proposé dans [START_REF] Berthon | Asymptotic preserving HLL schemes[END_REF]. Pour rappel, ce schéma est fondé sur l'écriture de terme source sous la forme

S(W ) = k(R(W ) -W ) = (k + k)(R(W ) -W ),
le paramètre k étant un degré de liberté permettant d'ajuster la diffusion numérique de sorte à obtenir une discrétisation consistante à la limite de diffusion. Dans le cadre linéaire, les états intermédiaires sont définis par 

W L * = α LR W * + (1 -α LR )R(W L ), (4.16) W R * = α LR W * + (1 -α LR )R(W R ), ( 4 
h n+1 i = h n i - ∆t 2ε∆x α ε i+ 1 2 q n i+1 -q n i + α ε i-1 2 q n i -q n i-1 (4.20) + ∆t 2ε∆x λ i+ 1 2 α ε i+ 1 2 h n i+1 -h n i -λ i-1 2 α ε i-1 2 h n i -h n i-1 , q n+1 i = q n i - ∆t 2ε∆x α ε i+ 1 2 (q n i+1 ) 2 h n i+1 + g (h n i+1 ) 2 2 - (q n i ) 2 h n i -g (h n i ) 2 2 (4.21) +α ε i-1 2 (q n i ) 2 h n i + g (h n i ) 2 2 - (q n i-1 ) 2 h n i-1 -g (h n i-1 ) 2 2 + ∆t 2ε∆x λ i+ 1 2 α ε i+ 1 2 q n i+1 -q n i -λ i-1 2 α ε i-1 2 q n i -q n i-1 - k∆t 2ε 2 α ε i+ 1 2 + α ε i-1 2 q n i |q n i |(h n i ) -η ,
où le paramètre α défini par (4.18) est lui aussi mis à l'échelle :

(4.22) α ε i+ 1 2 = 2λ i+ 1 2 ε 2λ i+ 1 2 ε + (k + k i+ 1 2 )∆x . Le paramètre k i+ 1 2
est déterminé de telle sorte que lorsque ε → 0, le schéma (4.20)-(4.21) fournisse une approximation consistante de l'équation de diffusion (4.6) :

(4.23) k i+ 1 2 = 2λ 2 i+ 1 2 k|h n i+1 -h n i | g∆x((h n i+1 ) η + (h n i ) η )(h n i+1 + h n i ) -k.
Le théorème suivant établit l'échec de ce premier schéma (dans le cas d'une hauteur d'eau non constante). Partant de ce constat, nous proposons une méthode générique pour construire des schémas consistants à la limite de diffusion pour des problèmes de type (4.8), dont le régime de diffusion est gouverné par une mise à l'échelle de la forme

Théorème 4.1. En développant h n

i = h 0,n i + O(ε), supposons h n,0 i > 0 pour tous i ∈ Z. Soit K i une cellule telle que h n,0 i ̸ = h n,0 i-1 et h n,0 i ̸ = h n,0 i+1 . Alors, quand ε → 0, la première équation (4.20) du schéma s'écrit h 0,n+1 i -h 0,n i ∆t = 1 ∆x   sign h 0,n i+1 -h 0,n i (h 0,n i+1 ) η + (h 0,n i ) η 2k g 2 (h 0,n i+1 ) 2 -g 2 (h 0,n i ) 2 ∆x (4.24) -sign h 0,n i -h 0,n i-1 (h 0,n i ) η + (h 0,n i-1 ) η 2k g 2 (h 0,n i ) 2 -g 2 (h 0,n i-1 ) 2 ∆x
t ← t/ε, k ← k/ε m .
Il s'agit donc de généraliser le cas m = 1 traité dans [START_REF] Berthon | Asymptotic preserving HLL schemes[END_REF]. Pour cela, l'idée est d'introduire, en plus de k, un second degré de liberté δ > 0 :

∂ t W + ∂ x F (W ) = δ(k + k)(R(W ) -W ). En remplaçant k + k LR par δ(k + k LR ), et en procédant à la mise à l'échelle ∆t ← ∆t/ε, k ← k/ε m , k LR ← k LR /ε m , le paramètre δ est alors fixé égal à ε m-1 .
En appliquant cette procédure pour le cas qui nous intéresse, à savoir les équations de Saint-Venant avec friction de Manning pour lequel m = 2, nous obtenons le schéma suivant : Ce résultat est établi de manière formelle, à l'aide de développements de Chapman-Enskog des solutions approchées h n i et q n i , et l'identification des termes du même ordre en ε. La figure 4.2 présente les résultats obtenus avec ce schéma corrigé pour le même cas test que celui présenté dans la figure 4.1. 

h n+1 i = h n i - ∆t 2ε∆x α ε i+ 1 2 q n i+1 -q n i + α ε i-1 2 q n i -q n i-1 (4.25) + ∆t 2ε∆x λ i+ 1 2 α ε i+ 1 2 h n i+1 -h n i -λ i-1 2 α ε i-1 2 h n i -h n i-1 , q n+1 i = q n i - ∆t 2ε∆x α ε i+ 1 2 (q n i+1 ) 2 h n i+1 + g (h n i+1 ) 2 2 - (q n i ) 2 h n i -g (h n i ) 2 2 (4.26) +α ε i-1 2 (q n i ) 2 h n i + g (h n i ) 2 2 - (q n i-1 ) 2 h n i-1 -g (h n i-1 ) 2 2 + ∆t 2ε∆x λ i+ 1 2 α ε i+ 1 2 q n i+1 -q n i -λ i-1 2 α ε i-1 2 q n i -q n i-1 - k∆t 2ε 3 α ε i+ 1 2 + α ε i-1 2 q n i |q n i |(h n i ) -η , où α ε

Un schéma construit pour préserver les équilibres

Je m'intéresse maintenant au schéma équilibre proposé dans [START_REF] Michel-Dansac | A well-balanced scheme for the shallow-water equations with topography or Manning friction[END_REF]. Il s'écrit sous la forme (4.14), et les états intermédiaires sont définis par :

(4.27)

h L * = h * + kq|q|h -η ∆x 2γ LR , h R * = h * - kq|q|h -η ∆x 2γ LR , q L * = q R * = q * - kq|q|h -η ∆x 2λ LR =: q LR * , où le paramètre γ LR est donné par (4.28) γ LR = - q 2 h L h R + g 2 (h R + h L ) , et supposé strictement positif.
Ce choix d'états intermédiaires vérifie la condition de consistance intégrale (4.11) quand l'approximation du terme source est donnée par

S = 0 -kq|q|h -η .
Les approximations q et h -η sont alors définies de telle sorte que tous les états stationnaires soient préservés. Pour cela, (4.29)

h -η = [h 2 ] 2 η + 2 [h η+2 ] - sign(q) k∆x 1 h + [h 2 ] 2 η + 2 [h η+2 ] [h η-1 ] η -1 , avec la notation [X] := X R -X L .
Quant à q = q(q L , q R ), il apparaît dans [START_REF] Michel-Dansac | A well-balanced scheme for the shallow-water equations with topography or Manning friction[END_REF] que la seule condition de consistance à assurer est (4.30) q(q, q) = q ∀ q ∈ R.

L'idée est d'utiliser ce degré de liberté restant sur la définition de q pour obtenir un schéma consistant à la limite de diffusion. En procédant à la mise à l'échelle temps long et friction dominante (4.2), et en utilisant la définition (4.27) des états intermédiaires, le schéma (4.14) s'écrit finalement

h n+1 i = h n i + ∆t 2ε∆x λ i+ 1 2 h n i+1 -h n i -λ i-1 2 h n i -h n i-1 (4.31) - ∆t 2ε∆x q n i+1 -q n i-1 + k∆t 2ε 3   λ i+ 1 2 q i+ 1 2 |q i+ 1 2 |h -η i+ 1 2 γ i+ 1 2 -λ i-1 2 q i-1 2 |q i-1 2 |h -η i-1 2 γ i-1 2   , q n+1 i = q n i + ∆t 2ε∆x λ i+ 1 2 q n i+1 -q n i -λ i-1 2 q n i -q n i-1 (4.32) - ∆t 2ε∆x (q n i+1 ) 2 h n i+1 + g (h n i+1 ) 2 2 - (q n i-1 ) 2 h n i-1 -g (h n i-1 ) 2 2 - k∆t 2ε 3 q i+ 1 2 |q i+ 1 2 |h -η i+ 1 2 + q i-1 2 |q i-1 2 |h -η i-1 2 .
En ajoutant une condition supplémentaire sur la définition de q, nous établissons que ce schéma (4.31)-(4.32) est consistant avec le problème de diffusion (4.4).

Théorème 4.3. Les vitesses d'ondes (λ i+ 1 2

) i∈Z sont supposées définies de sorte que

(4.33) λ i+ 1 2 γ i-1 2 + λ i-1 2 γ i+ 1 2 ̸ = 0 ∀i ∈ Z.
Considérons une approximation q i+ 1 2 vérifiant (4.34)

q i+ 1 2 = 0 si et seulement si q n i = q n i+1 = 0.
Alors, quand ε → 0, les discrétisations données par le schéma (4.31)-(4.32) satisfont

h n i = h n(0) i + O(ε) et q n i = εq n(1) i + O(ε 2 ) ∀i ∈ Z, ∀n ∈ N, h n+1(0) i = h n(0) i - ∆t 2∆x q n(1) i+1 -q n(1) i-1 + O(∆t∆x), (4.35) g 2 (h n(0) i+1 ) 2 -g 2 (h n(0) i-1 ) 2 2∆x = - k 2 q|q| (2) i+ 1 2 h -η (0) i+ 1 2 + q|q| (2) i-1 2 h -η (0) i-1 2 , (4.36) où h -η (0) i+ 1 2 = (h n(0) i+1 ) 2 -(h n(0) i ) 2 2 η + 2 (h n(0) i+1 ) η+2 -(h n(0) i ) η+2 , (4.37) q|q| (2) i+ 1 2 = sign q n(1) i + q n(1) i+1 1 2 (q n(1) i ) 2 + (q n(1) i+1 ) 2 . (4.38)
L'hypothèse technique (4.33) est en pratique peu restrictive et dans tous les cas tests que nous avons considérés, la définition classique (4.12) des vitesses d'ondes convenait.

Remarquons que l'approximation q doit vérifier simultanément la condition de consistance (4.30) et la restriction (4.34). En pratique, la définition suivante peut par exemple être adoptée :

(4.39) q = sign(q L + q R ) 1 2 (q 2 L + q 2 R ).
Il apparaît en fait que si la restriction (4.34) est nécessaire à la preuve du théorème 4.3, la consistance à la limite de diffusion est obtenue en pratique avec un choix de q vérifiant uniquement (4.30). Ce fait est illustré sur la figure 4.3, où nous comparons les résultats obtenus avec la définition (4.39) de q et ceux obtenus avec la définition adoptée dans [MDBCF17] :

(4.40) q =      sign(q L + q R ) 2|q L ||q R | |q L | + |q R | si q L ̸ = 0 et q R ̸ = 0, 0 sinon.
Notons enfin qu'en pratique, le schéma limite associé à (4.31)-(4.32) ne s'écrit pas de manière explicite : des termes de viscosité apparaissant dans (4.35)-(4.36) dépendent des termes d'ordre 1 et 2 du développement asymptotique de h et q, et ne sont pas calculables numériquement.

(a) Hauteur d'eau h, q défini par (4.39) (b) Ordre 1 du débit q 1 , q défini par (4.39) (c) Hauteur d'eau h, q défini par (4.40) (d) Ordre 1 du débit q 1 , q défini par (4.40) 
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Limite de diffusion et hypocoercivité discrètes pour un modèle cinétique linéaire

Dans ce chapitre, je présente des résultats concernant l'analyse de propriétés asymptotiques d'un schéma numérique pour des équations cinétiques linéaires unidimensionnelles. L'équation considérée décrit l'évolution d'une distribution de particules f ε (t, x, v), pour un temps t ≥ 0, une position x ∈ T et une vitesse v ∈ R :

(5.1)

         ε ∂f ε ∂t + v ∂f ε ∂x = 1 ε Q(f ε ), f ε (0, x, v) = f 0 (x, v) ≥ 0 .
Le paramètre ε > 0 est le ratio entre le libre parcours moyen des particules et la longueur caractéristique du problème, correspondant par exemple dans le contexte de la dynamique des gaz raréfiés au nombre de Knudsen adimensionné. Le système est dit en régime cinétique quand ε ∼ 1, et en régime diffusif quand ε ≪ 1. L'opérateur Q décrit le processus de collision agissant uniquement sur la variable de vitesse v, et préservant la masse. Je me concentre ici sur deux opérateurs de collision particuliers :

• un opérateur de type Fokker-Planck (5.2)

Q F P (f )(v) = ∂ v (∂ v f + vf ) ,
• un opérateur de type BGK [START_REF] Bhatnagar | A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-component Systems[END_REF] linéaire (ou relaxation)

(5.3) Q BGK (f )(v) = ρM (v) -f (v), ρ = R f (v) dv, M étant la Gaussienne centrée réduite M (v) := 1 √ 2π exp - |v| 2 2 , 57 de moments m k = R |v| k M (v) dv.
Remarquons que la Gaussienne centrée réduite vérifie

(5.4) M ′ (v) = -v M (v) ∀v ∈ R,
ce qui permet de réécrire l'opérateur de Fokker-Planck sous la forme (5.5)

Q F P (f ) = ∂ v M ∂ v f M .
L'objectif des travaux présentés dans ce chapitre est de construire et d'analyser un schéma numérique efficace pour deux asymptotiques de (5.1) : la limite de diffusion ε → 0 et la limite en temps long t → ∞.

Limite de diffusion.

Elle permet de capturer des dynamiques macroscopiques non triviales du modèle. Cette limite peut s'obtenir en écrivant les équations sur les premiers moments de f ε :

(5.6)

∂ t ρ ε + ∂ x j ε = 0, ε 2 ∂ t j ε + m 2 ∂ x ρ ε + ∂ x S ε = -j ε ,
où les moments sont définis par

ρ ε := R f ε dv, j ε := 1 ε R f ε v dv, S ε := R (v 2 -m 2 )f ε dv.
Formellement, en prenant ε → 0 dans l'équation cinétique (5.1) et les équations aux moments (5.6), nous constatons que f ε → f = ρ M ce qui implique S ε → 0, et la seconde équation de (5.6) donne j ε → -m 2 ∂ x ρ. Ainsi, la densité limite ρ est solution de l'équation de la chaleur

(5.7) ∂ρ ∂t -∂ x (m 2 ∂ x ρ) = 0.
Cette limite de diffusion a été étudiée dans de nombreux articles (voir par exemple [BLP79, BSS84, Pou91, DGP00]).

Hypocoercivité. L'autre problème classique auquel je m'intéresse dans ce chapitre est le comportement en temps long de l'équation cinétique (5.1). Dans un espace fonctionnel approprié X , le retour exponentiel à l'équilibre peut être démontré : il existe des constantes

κ > 0 et C ≥ 1 telles que (5.8) ∥f ε (t) -µ f M ∥ X ≤ C ∥f 0 -µ f M ∥ X e -κt , où µ f = T×R f 0 dx dv .
Dans le cadre de la mise à l'échelle diffusive que nous considérons ici, les constantes C et κ peuvent être choisies indépendammment de ε. Depuis quelques années, des méthodes systèmatiques et robustes, dites d'hypocoercivité, ont été développées pour démontrer (5.8) (voir par exemple [HN04, MN06, Vil09, DMS15]). Ces méthodes s'inscrivent dans la classe des méthodes d'entropie. En effet, l'idée générale est de construire une fonctionnelle d'entropie modifiée H(f ε ) dissipée le long des solutions. Le contrôle de l'entropie modifiée par sa dissipation permet alors d'établir la convergence, avec un taux explicite.

Dans ce chapitre, je propose une synthèse de résultats obtenus en collaboration avec Maxime Herda et Thomas Rey [START_REF] Bessemoulin-Chatard | Hypocoercivity and diffusion limit of a finite volume scheme for linear kinetic equations[END_REF]. La section 5.1 est consacrée à la construction de schémas volumes finis implicites en temps pour l'équation (5.1) avec opérateurs de Fokker-Planck (5.2) et de BGK linéaire (5.3). Nous proposons l'étude complète de leurs limites de diffusion et de leur comportement en temps long, qui repose notamment sur des estimations uniformes en temps et en ε présentées dans la section 5.2. La propriété de préservation de l'asymptotique de diffusion ε → 0 de nos discrétisations est établie dans la section 5.3, et une implémentation adéquate, détaillée dans la section 5.4, permet de prendre ε = 0 dans le schéma. Enfin, nous prouvons dans la section 5.5 l'analogue discret de l'estimation de décroissance exponentielle (5.8), en adaptant la méthode proposée dans le cadre continu dans [START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF].

Définition du schéma numérique

Considérons un domaine borné symétrique en vitesse [-v * , v * ], décomposé en 2L volumes de contrôle arrangés symétriquement autour de 0

V j := (v j-1 2 , v j+ 1 2 ) , j ∈ J := {-L + 1, . . . , L}, avec v -L+1/2 = -v ⋆ , v 1/2 = 0 , v j+1/2 = -v -j+1/2 , ∀j = 0, . . . , L .
Pour chaque cellule V j , notons ∆v j sa longueur et v j son milieu. Définissons également le maillage dual composé des cellules

V * j+1/2 := (v j , v j+1 ) , j ∈ J * := {-L, . . . , L} , avec v -L := v -L+1/2 = -v ⋆ et v L+1 := v L+1/2 = v ⋆ .
Concernant l'espace, considérons une discrétisation du tore T en N sous-intervalles

X i := (x i-1 2 , x i+ 1 2 ) , i ∈ I := Z/N Z de longueur ∆x i et centres x i .
Les volumes de contrôle dans l'espace des phases sont donc définis par

K ij := X i × V j , ∀(i, j) ∈ I × J .
Finalement, notons ∆t > 0 le pas de temps et t n = n∆t pour tout n ≥ 0. Un point crucial pour établir nos résultats est de considérer une discrétisation adéquate de la Maxwellienne M (v). Dans le cas de l'opérateur BGK (5.3), considérons des valeurs par cellules M = (M j ) j∈J vérifiant les hypothèses suivantes :

(5.9)

           M j > 0 , M j = M -j+1 , ∀j = 1, . . . , L ; j∈J M j ∆v j = 1 ; 0 < m 2 ≤ m ∆v 2 ≤ m 2 , m ∆v 4 ≤ m 4 , où pour k ∈ N, m ∆v k := j∈J |v j | k M j ∆v j et m 2 , m 2 , m 4 sont des constantes.
Dans le cas de l'opérateur de Fokker-Planck (5.2), nous considérons des valeurs aux interfaces (

M * j+1/2 ) j∈J * ∈ R J * vérifiant (5.10) 
                             M * j+1/2 = M * -j+1/2 , ∀j ∈ J * ; M * L+1/2 = M * -L+1/2 = 0 ; M j := M * j-1/2 -M * j+1/2 v j ∆v j > 0 , ∀j ∈ J ; j∈J M j ∆v j = 1 ; 0 < m 2 ≤ m ∆v 2 ≤ m 2 , m ∆v 4 ≤ m 4 .
De manière pratique, de telles Maxwelliennes discrètes peuvent facilement être construites. La deuxième hypothèse dans (5.10) dans le cas Fokker-Planck est nécessaire pour des raisons techniques lors des intégrations par parties discrètes. Pour des domaines suffisamment grands, cette hypothèse est pertinente du fait de la décroissance exponentielle de la Gaussienne. La troisième hypothèse dans (5.10) est un analogue discret de la relation (5.4), permettant de réécrire au niveau continu l'opérateur de Fokker-Planck sous la forme (5.5), ce qui nous est essentiel au niveau discret.

Remarquons enfin que les hypothèses de symétrie des vitesses et des Maxwelliennes impliquent (5.11) j∈J ∆v j v j M j = 0.

Présentons maintenant les discrétisations de l'équation (5.1) dans les cas Fokker-Planck et BGK. Nous considérons des schémas volumes finis, avec une discrétisation temporelle de type Euler implicite. Afin d'alléger les notations, j'omets à partir de maintenant les exposants ε dans la discrétisation de f ε et ses moments, même si ces quantités dépendent bien entendu de ε. Schéma pour l'équation de Fokker-Planck. Pour tous i ∈ I, j ∈ J , n ≥ 0, (5.12)

ε∆x i ∆v j (f n+1 ij -f n ij ) + ∆t F n+1 i+ 1 2 ,j -F n+1 i-1 2 ,j = ∆t ε G n+1 i,j+ 1 2 -G n+1 i,j-1 2 .
Le transport libre est approché par un flux centré :

(5.13)

F n+1 i+ 1 2 ,j = v j f n+1 i+1,j + f n+1 ij 2 ∆v j , ∀j ∈ J , ∀i ∈ I ,
tandis que la définition des flux en vitesse G i,j+ 1 2 est basée sur la forme (5.5) de l'opérateur de Fokker-Planck :

(5.14) G n+1 i,j+ 1 2 = M * j+ 1 2 f n+1 i,j+1 M j+1 - f n+1 ij M j 1 ∆v j+ 1 2 ∆x i , ∀j ∈ J * \ {-L, L}, ∀i ∈ I .
Nous imposons finalement des conditions au bord de flux nul (5.15)

G n+1 i,-L+ 1 2 = G n+1 i,L+ 1 2 = 0, ∀i ∈ I .
Schéma pour l'équation de BGK. Pour tous i ∈ I, j ∈ J , n ≥

)

ε∆x i ∆v j (f n+1 ij -f n ij ) + ∆t F n+1 i+ 1 2 ,j -F n+1 i-1 2 ,j = ∆t ε ∆x i ∆v j ρ n+1 i M j -f n+1 ij ,
où le flux F i+ 1 2 ,j est défini par (5.13) et la densité discrète est donnée par (5.17)

ρ n i := j∈J ∆v j f n ij .

Estimations uniformes discrètes

Dans cette section, je présente les estimations uniformes discrètes qui sont le point clé pour étudier à la fois la limite de diffusion du schéma et le retour exponentiel à l'équilibre des solutions discrètes.

Le premier résultat est une version discrète de l'estimation d'entropie L 2 à poids γ = 1/M. La norme L 2 discrète à poids γ étant définie pour g = (g ij ) i∈I,j∈J par :

∥g∥ 2 2,γ := (i,j)∈I×J |g ij | 2 γ j ∆x i ∆v j ,
le lemme suivant est obtenu.

Lemme 5.1. Soit M une Maxwellienne discrète vérifiant (5.10) (resp. (5.9)) et (f n ij ) i∈I,j∈J ,n∈N solution du schéma (5.12) (resp. (5.16)). Alors, pour tous n ≥ 0, (5.18)

∥f n+1 ∥ 2 2,γ -∥f n ∥ 2 2,γ 2∆t + 1 ε 2 ∥f n+1 -ρ n+1 M∥ 2 2,γ ≤ 0 .
En particulier, les estimations suivantes sont vérifiées :

(5.19) max sup n≥0 ∥f n ∥ 2 2,γ , 2 ε 2 ∞ n=1 ∆t ∥f n -ρ n M∥ 2 2,γ ≤ ∥f 0 ∥ 2 2,γ .
Ce résultat est démontré en utilisant la définition de la densité discrète (ρ i ) i et les hypothèses (5.9) sur la Maxwellienne discrète dans le cas BGK. Dans le cas Fokker-Planck, la discrétisation particulière (5.14) des flux ainsi qu'une inégalité de Poincaré à poids gaussien discrète sont utilisées.

Puisque les schémas (5.12) et (5.16) sont des systèmes linéaires de dimension finie, l'estimation (5.19) permettant en particulier de montrer l'unicité de la solution discrète, elle en assure également l'existence.

Le deuxième lemme concerne des estimations uniformes sur les moments discrets définis par :

(5.20)

J n i := 1 ε j∈J ∆v j v j f n ij , S n i := j∈J ∆v j (v 2 j -m ∆v 2 ) f n ij ,
Ces estimations sont obtenues grâce à des inégalités de Cauchy-Schwarz et les majorations (5.19) obtenues dans le lemme précédent.

Lemme 5.2. Sous les hypothèses du lemme 5.1, les moments discrets vérifient les estimations suivantes :

(5.21)

∥ρ n ∥ 2 ≤ ∥f n ∥ 2,γ , (5.22) ε ∥J n ∥ 2 ≤ (m ∆v 2 ) 1/2 ∥f n ∥ 2,γ , (5.23) ε ∥J n ∥ 2 ≤ (m ∆v 2 ) 1/2 ∥f n -ρ n M∥ 2,γ , (5.24) ∥S n ∥ 2 ≤ (m ∆v 4 -(m ∆v 2 ) 2 ) 1/2 ∥f n -ρ n M∥ 2,γ .
En particulier, il existe une constante C > 0 dépendant uniquement des bornes uniformes sur m ∆v 2 et m ∆v 4 telle que

(5.25) max   sup n∈N ∥ρ n ∥ 2 , ε sup n∈N ∥J n ∥ 2 , ∞ n=0 ∆t ∥J n ∥ 2 2 1/2 , 1 ε ∞ n=0 ∆t ∥S n ∥ 2 2 1/2   ≤ C ∥f 0 ∥ 2,γ .

Préservation de l'asymptotique de diffusion

Comme dans le cadre continu, l'étude de la limite de diffusion se base sur une version discrète des équations aux moments (5.6), donnée dans le lemme suivant.

Lemme 5.3. Soit M une Maxwellienne discrète vérifiant (5.10) (resp. (5.9)) et (f n ij ) i∈I,j∈J ,n∈N solution du schéma (5.12) (resp. (5.16)). Alors les moments discrets vérifient : pour tous i ∈ I, n ≥ 0,

∆x i (ρ n+1 i -ρ n i ) + ∆t (J n+1 i+ 1 2 -J n+1 i-1 2
) = 0, (5.26)

ε 2 ∆x i (J n+1 i -J n i ) + ∆t (S n+1 i+ 1 2 -S n+1 i-1 2 ) + ∆t m ∆v 2 (ρ n+1 i+ 1 2 -ρ n+1 i-1 2 ) = -∆t ∆x i J n+1 i ,
(5.27) où les valeurs approchées aux interfaces sont définies par la moyenne

Q i+ 1 2 = Q i + Q i+1 2 , Q = ρ, J, S.
À partir de là, la propriété de préservation de l'asymptotique de diffusion ε → 0 des schémas peut être rigoureusement démontrée. Théorème 5.1. Soit M une Maxwellienne discrète vérifiant (5.10) (resp. (5.9)), soit f n ε = (f n ij ) i∈I,j∈J la solution de (5.12) (resp. (5.16)). Alors il existe ρ n = (ρ n i ) i∈I tel que quand ε → 0, f n ε -→ ρ n M dans R I×J , pour tous n ≥ 1, et la densité limite ρ n vérifie le schéma aux différences finies suivant pour l'équation de la chaleur

(5.28) ∆x i ρ n+1 i -ρ n i ∆t = m ∆v 2 2 (D x ρ n+1 ) i+1 -(D x ρ n+1 ) i-1 , ∀i ∈ I,
le gradient discret D x ρ étant défini sur le maillage primal par

(5.29) (D x ρ) i = ρ i+1/2 -ρ i-1/2 ∆x i .
En utilisant les résultats établis dans les lemmes précédents, la preuve de ce théorème est assez directe. En effet, l'estimation (5.25) sur la densité discrète donne l'existence d'une sous-suite convergente ρ n ε k → ρ n . Grâce à l'estimation (5.19), la suite (f n ε k ) k converge vers (ρ n i M j ) i∈I,j∈J . Le schéma limite (5.28) s'obtient en combinant les équations aux moments (5.26) et (5.27), et en passant à la limite ε → 0 en utilisant les estimations (5.25). Finalement, le schéma limite ayant une unique solution, la convergence de toute la suite est obtenue.

Cette propriété de préservation de l'asymptotique de diffusion au niveau discret est illustrée dans le cas Fokker-Planck sur la figure 5 

Implémentation

En pratique, l'implémentation des schémas écrits sous la forme (5.12) (resp. (5.16)) présente deux problèmes. D'une part, la matrice à inverser est mal conditionnée pour ε petit. Cela conduit à des erreurs numériques importantes proche du régime diffusif, et détériore donc la propriété de préservation de l'asymptotique. D'autre part, l'évaluation de la différence de quantités qui sont du même ordre, telle que par exemple ∥f n -µ f M∥ (5.33)

f n ij = µ f M j + λ n i M j + ε h n ij M j , (5.30) λ n i = ρ n i -µ f = j∈I f n ij ∆v j -µ f . ( 5 
∆x i (λ n+1 i -λ n i ) + ∆t j∈J ∆v j v j M j h n+1 i+1,j -h n+1 i-1,j 2 = 0 , ∀i ∈ I .
Cas Fokker-Planck. En utilisant (5.30) dans le schéma cinétique initial (5.12) et en soustrayant (5.33) multiplié par -∆v j ε, nous obtenons l'équation d'évolution microscopique suivante :

(5.34)

ε 2 ∆x i ∆v j (h n+1 ij -h n ij ) + ∆t ∆v j v j λ n+1 i+1 -λ n+1 i-1 2 + ε ∆t ∆v j   v j h n+1 i+1,j -h n+1 i-1,j 2 - k∈J ∆v k v k M k h n+1 i+1,k -h n+1 i-1,k 2   = ∆t ∆x i M * j+1/2 ∆v j+1/2 M j h n+1 i,j+1 -h n+1 ij - M * j-1/2 ∆v j-1/2 M j h n+1 ij -h n+1 i,j-1 .
Cas BGK. En utilisant (5.30) dans le schéma cinétique initial (5.16), nous obtenons l'équation d'évolution microscopique suivante :

(5.35)

ε 2 ∆x i ∆v j (h n+1 ij -h n ij ) + ∆t ∆v j v j λ n+1 i+1 -λ n+1 i-1 2 + ε ∆t ∆v j   v j h n+1 i+1,j -h n+1 i-1,j 2 - k∈J ∆v k v k M k h n+1 i+1,k -h n+1 i-1,k 2   = -∆t ∆x i ∆v j h n+1 ij .
Partant de ces calculs, trois schémas peuvent être définis : Ce résultat repose sur une étude du noyau de l'opérateur de collision discret associé à chacun des schémas.

(S ε f ) L'inconnue (f n ij ) i,
Nous déduisons de cette proposition que le conditionnement du système linéaire apparaissant dans ( Sε λ,h ) est uniformément borné par rapport à ε ∈ [0, 1].

Hypocoercivité discrète

Je présente maintenant l'adaptation au cadre discret de la méthode d'hypocoercivité proposée dans [START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF]. Notre résultat principal, analogue discret de (5.8), est présenté dans le théorème suivant. 

∥f n -µ f M∥ 2,γ ≤ C ∥f 0 -µ f M∥ 2,γ e -β 2 t n .
De plus, les constantes C et β ne dépendent pas des paramètres de discrétisation, et ∆t max peut être choisi de façon arbitraire.

Sans perte de généralité, la masse totale discrète étant préservée par les schémas, il suffit de démontrer le résultat dans le cas µ f = 0. La preuve repose sur l'étude d'une fonctionnelle d'entropie modifiée définie par (5.37)

H η (f n ) := 1 2 ∥f n ∥ 2 2,γ + ηε 2 i∈I ∆x i J n i (D x ϕ) n i + ηε 2 2 i∈I ∆x i (D x ϕ) n i -(D x ϕ) n-1 i 2 ∆t ,
η > 0 étant un paramètre libre à déterminer, et (ϕ n i ) i∈I vérifiant le problème de Poisson discret suivant

- (D x ϕ) n i+1 -(D x ϕ) n i-1 2 = ∆x i ρ n i , ∀i ∈ I, (5.38) i∈I ∆x i ϕ n i = 0. (5.39)
Les deux premiers termes de H η (f n ) correspondent à une discrétisation de la fonctionnelle considérée dans le cadre continu [START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF], et le troisième terme est nécessaire pour contrôler des termes de restes induits par la discrétisation temporelle, mais d'ordre ∆t. Si les paramètres de discrétisation tendent vers 0, l'entropie modifiée continue est donc retrouvée.

Le problème de Poisson (5.38)-(5.39) est bien posé si et seulement si N est pair. Dans ce cas-là, des estimations sur (ϕ n i ) i∈I par les moments discrets de f sont obtenues :

∥D x ϕ n ∥ 2 ≤ C P ∥ρ n ∥ 2 , (5.40) (D x ϕ) n+1 i -(D x ϕ) n i ∆t 2 ≤ ∥J n+1 i ∥ 2 ,
(5.41) C P étant la constante de l'inégalité de Poincaré discrète sur T, qui peut être prouvée dans le cas N impair. Cette hypothèse d'imparité résulte de la discrétisation particulière du gradient (5.29) intervenant ici.

La preuve s'articule classiquement en deux grandes étapes. D'une part, pour η > 0 suffisamment petit, la racine de l'entropie modifiée H η (f n ) est équivalente à la norme ∥ • ∥ 2,γ . Ce résultat, énoncé dans le lemme suivant, s'obtient en utilisant les estimations (5.39) et (5.40) 

H η (f n+1 ) -H η (f n ) ∆t + K(η) ∥f n+1 -ρ n+1 M∥ 2 2,γ + ∥ρ n+1 ∥ 2 2 ≤ 0 , ∀n ≥ 1 , avec K(η) = 1 2 min (1 -ηm 2 , ηm 2 )
. Le résultat d'hypocoercivité discrète (5.36) s'obtient finalement en combinant (5.42) et (5.43), et en choisissant η de manière adéquate.

La figure 5.2 fournit une illustration du taux de décroissance exponentielle observé dans le cas Fokker-Planck, pour différentes valeurs de ε, et met en évidence une borne inférieure uniforme en ε de ce taux. Le résultat du théorème 5.2 pourrait être affiné en suivant précisément la dépendance en ε du taux de convergence β.

Enfin, remarquons que dans le cas BGK, notre résultat s'applique plus largement que dans le cas d'un équilibre gaussien, et nécessite uniquement que les hypothèses (5.9) soient vérifiées. À titre d'exemple, le cas d'un équilibre non gaussien à queue polynomiale (5.44) M (v) = 1 1 + 0.1|v| 6 (cos(πv) + 1.1) est présenté dans la figure 5.3.

Perspectives

Extension avec un terme de potentiel externe confinant. Une première extension naturelle consiste à ajouter un terme ∂ x V ∂ v f ε dans l'équation (5.1), modélisant le comportement de particules soumises à une force dérivant d'un champ V . Le champ V étant supposé connu, le problème reste dans ce cas linéaire. Pour un potentiel confinant V vérifiant des conditions de régularité et de croissance à l'infini, la convergence exponentielle vers l'équilibre [HN04, Vil09, DMS15] ainsi que la limite de diffusion [START_REF] Poupaud | Diffusion approximation of the linear semiconductor Boltzmann equation : analysis of boundary layers[END_REF] sont étudiées dans le cadre continu.

Partant du schéma que nous avons proposé pour (5.1), l'objectif est d'ajouter une discrétisation appropriée du terme ∂ x V ∂ v f ε , de sorte à obtenir les estimations nécessaires pour : • adapter au cadre discret le résultat d'hypocoercivité L 2 démontré dans [DMS15],

t ||f ε -µ f M || 2,γ α exp(-0.96t) ||ρ ε -µ f || L 2
• démontrer rigoureusement la préservation de la limite de diffusion par le schéma construit.

Notons que dans un article récent [BF], la préservation de la limite de diffusion et l'hypocoercivité au niveau discret sont établies pour l'équation de Vlasov-Fokker-Planck approchée en vitesse par une méthode spectrale de Hermite et en espace par une méthode volumes finis classique. Mon objectif est d'obtenir ce type de résultats pour une discrétisation de type volumes finis à la fois en espace et en vitesse, ce qui fait apparaître d'autres difficultés.

Extension au couplage avec l'équation de Poisson. Une fois ces premiers résultats établis, l'idée est de passer au système de Vlasov-Fokker-Planck-Poisson

ε∂ t f ε + v∂ x f ε -(∂ x V + ∂ x Ψ ε )∂ v f ε = 1 ε ∂ v (vf ε + ∂ v f ε ), (5.45) -∂ xx Ψ ε = ρ ε := R f ε dv. (5.46)
Ici, le potentiel auto-consistant Ψ ε , défini par le couplage avec l'équation de Poisson (5.46), correspond à des forces électrostatiques répulsives et le potentiel extérieur V est toujours supposé confinant. Du fait du couplage avec l'équation de Poisson, le problème n'est plus linéaire, ce qui complique fortement l'étude par rapport à celle menée dans les cas linéaires. Sur le modèle de ce que nous avons fait dans le cas très simplifié (5.1), l'idée serait d'étudier au niveau discret à la fois la limite de diffusion ε → 0 et la convergence vers l'équilibre quand t → ∞, en adaptant des outils et méthodes du cadre continu. La convergence vers le système de dérive-diffusion-Poisson quand ε → 0 est par exemple étudiée dans le cas V = 0 dans [START_REF] Poupaud | Parabolic limit and stability of the Vlasov-Fokker-Planck system[END_REF][START_REF] Goudon | Hydrodynamic limit for the Vlasov-Poisson-Fokker-Planck system : Analysis of the two-dimensional case[END_REF]. Concernant le comportement en temps long, la piste qui semble la plus prometteuse serait d'adapter au cadre discret les travaux récents proposés dans [START_REF] Addala | L 2 -hypocoercivity and large time asymptotics of the linearized Vlasov-Poisson-Fokker-Planck system[END_REF]. Dans cet article, les auteurs considèrent une version linéarisée autour de l'équilibre du système (5.45)-(5.46) et établissent rigoureusement la convergence exponentielle vers l'équilibre de la solution du linéarisé quand t → ∞. À partir de cette étude du linéarisé, il est possible en dimension 1 d'en déduire le résultat pour le problème non linéaire de départ.

CHAPITRE 6

Analyse de méthodes spectrales de Hermite pour le système de Vlasov-Poisson 

         ∂f ∂t + v ∂f ∂x + E ∂f ∂v = 0 , ∂E ∂x = ρ -ρ 0 ,
où ρ 0 est une constante assurant la quasi-neutralité du plasma :

(6.2) T ρ(t, x)dx = T R f (t, x, v)dvdx = ρ 0 , ∀ t ≥ 0.
Un grand nombre de méthodes numériques ont été proposées pour approcher les solutions de ce problème. Ici, l'idée est d'écrire le système (6.1) sous la forme d'un système hyperbolique en utilisant des polynômes de Hermite en la variable vitesse. Des méthodes de Galerkin avec un petit nombre de fonctions de base sont alors utilisées. Deux approches de discrétisations ont été formalisées dans [START_REF] Holloway | Spectral velocity discretizations for the Vlasov-Maxwell equations[END_REF] : la première, dite symétriquement pondérée, utilise les fonctions de Hermite standards à la fois comme fonctions de base et comme fonctions tests, alors que la deuxième, dite asymétriquement pondérée, utilise un ensemble de fonctions tests différent de l'ensemble des fonctions de base. L'approche symétrique ne 71 permet pas de conserver simultanément la masse et la quantité de mouvement, mais sa stabilité L 2 peut être établie. Au contraire, l'approche asymétrique assure la conservation simultanée de la masse, quantité de mouvement et énergie totale, mais sa stabilité L 2 n'est pas obtenue.

Dans les travaux [START_REF] Bessemoulin-Chatard | On the stability of conservative discontinuous Galerkin/Hermite spectral methods for the Vlasov-Poisson system[END_REF][START_REF] Bessemoulin-Chatard | On the convergence of discontinuous Galerkin/Hermite spectral methods for the Vlasov-Poisson system[END_REF], obtenus en collaboration avec Francis Filbet, nous étudions la stabilité et la convergence d'une méthode de Hermite asymétrique. L'idée principale pour obtenir la stabilité est d'introduire une fonction de mise à l'échelle t → α(t) bien adaptée aux variations de la fonction de distribution au cours du temps. Cette idée a déjà été employée pour stabiliser des méthodes spectrales de Hermite dans le contexte d'équations de diffusion linéaires [START_REF] Ma | Hermite spectral methods with a timedependent scaling for parabolic equations in unbounded domains[END_REF] 

L 2 (dµ t ) := g : T × R → R : T×R |g(x, v)| 2 dµ t < +∞ .
Remarquons que pour toutes fonctions α, α : R + → R + telles que α(t) ≤ α(t) pour tout t ≥ 0, les poids correspondants ω, ω définis par (6.4) satisfont ω(t, v) ≤ ω(t, v) pour tout t, v, et donc la norme L 2 à poids ω contrôle la norme L 2 à poids ω. En particulier pour α = 0, la norme L 2 (dx dv) classique est majorée par la norme L 2 (dµ t ). L'objectif est de déterminer une fonction positive α permettant d'établir un résultat de stabilité dans la norme associée à cet espace. Si (f, E) est solution du système de Vlasov-Poisson, quelques manipulations impliquant (6.1) ainsi que l'application d'une inégalité de Young conduisent à l'estimation suivante, pour tous η > 0 :

(6.5) 1 2 d dt ∥f ∥ 2 L 2 (dµt) ≤ α 2 η 2 α 3 ∥E∥ 2 L ∞ + α ′ T×R f 2 |v| 2 dµ t + 1 4η ∥f ∥ 2 L 2 (dµt) . Si α vérifie (6.6) α ′ (t) α(t) 3 ≤ - η 2 ∥E(t)∥ 2 L ∞ ∀t ≥ 0, alors pour tous t ≥ 0, (6.7) ∥f (t)∥ L 2 (dµt) ≤ ∥f 0 ∥ L 2 (dµ 0 ) e t/4η .
Dans la section 6.1, j'introduis la formulation de l'équation de Vlasov à l'aide d'une base de Hermite en vitesse, et je définis une classe de discrétisation de type Galerkin discontinue en espace, pour lesquelles les conservations sont discutées. La section 6.2 est dédiée aux propriétés de stabilité des discrétisations, en lien avec la définition de la fonction α. Nous établissons finalement un résultat de convergence avec estimation d'erreur entre la solution approchée et la solution régulière du système de Vlasov-Poisson dans la section 6.3.

Méthode spectrale de Hermite en vitesse, Galerkin discontinue en espace

Nous nous plaçons dans le même cadre que [START_REF] Filbet | Conservative Discontinuous Galerkin/Hermite Spectral Method for the Vlasov-Poisson System[END_REF] : l'approximation en vitesse s'effectue en développant la fonction de distribution à l'aide d'une base de Hermite, tandis que la discrétisation en espace de l'équation de Vlasov est traitée par une méthode de Galerkin discontinue. La méthode est construite en supposant la fonction strictement positive t → α(t) donnée, sa définition étant discutée dans la section 6.2. Les propriétés de conservation présentées dans cette section ne sont pas impactées par le choix de α.

Forme spectrale de Hermite

Nous considérons les fonctions de base de Hermite suivantes, à poids asymétrique dépendant du temps :

(6.8) Ψ n (t, v) = α(t) H n (α(t)v) ω(t, v) -1 , où H n sont les polynômes de Hermite définis par H -1 (ξ) = 0, H 0 (ξ) = 1 et pour n ≥ 1, √ n H n (ξ) = ξ H n-1 (ξ) - √ n -1 H n-2 (ξ) . L'ensemble (Ψ n ) n est un système orthogonal dans l'espace L 2 (ω(t)dv) : (6.9) ⟨Ψ n , Ψ m ⟩ L 2 (ω(t)dv) = α(t) R Ψ n (v) H m (α(t) v)dv = α(t) δ n,m .
Notons finalement V N le sous-espace de L 2 (ω(t)dv) défini par (6.10)

V N := Span{Ψ n (t), 0 ≤ n ≤ N -1}.
Nous construisons une approximation f N de la solution f de (6.1) sous la forme (6.11)

f N (t, x, v) = N -1 n=0 C n (t, x) Ψ n (t, v) ,
où le système vérifié par les coefficients (C n ) 0≤n≤N -1 est obtenu en utilisant la propriété d'orthogonalité (6.9) et en prenant H n (α v) comme fonction test dans (6.1) : pour n = 0, . . . , N -1, (6.12)

                 ∂ t C n + T n [C] = S n [C, E N ] , T n [C] = 1 α √ n ∂ x C n-1 + √ n + 1 ∂ x C n+1 , S n [C, E N ] = α ′ α n C n + (n -1)n C n-2 + E N α √ n C n-1 ,
avec C n = 0 pour n < 0 et n ≥ N . En remarquant que ρ N = C 0 , l'équation de Poisson est alors approchée par (6.13)

∂E N ∂x = C 0 -ρ 0,N .
Les équations pour n = 0, 1, 2 du système (6.12) permettent d'établir la conservation de la masse, de la quantité de mouvement et de l'énergie totale. 

d dt T×R f N dv dx = d dt T C 0 dx = 0, d dt T×R v f N dv dx = d dt T C 1 α dx = 0,
ainsi que l'énergie totale :

d dt 1 2 T×R v 2 f N dv dx + T |E N | 2 dx = d dt 1 2 T 1 α 2 √ 2 C 2 + C 0 + |E N | 2 dx = 0 .

Discrétisation en espace

Nous considérons une approximation de Galerkin discontinue de l'équation de Vlasov écrite sous la forme (6.12) grâce à la base de Hermite. Le tore T est subdivisé en N x sous-intervalles I j = [x j-1/2 , x j+1/2 ], j ∈ J = {0, . . . , N x -1}, de longueur h = 1/N 

- ∂ 2 Φ N ∂x 2 = C 0 -ρ 0,N .
Plusieurs choix de discrétisations de ce problème sont possibles.

• Approximation conforme : cela correspond à une intégration directe du problème (6.19), qui est évidente en dimension un.

• Approximation Galerkin discontinue : déterminer Φ δ (t, •), E δ (t, •) ∈ X h tels que pour tous η et ζ ∈ X h , pour tous i ∈ J , (6.20) Dans le cas d'une discrétisation Galerkin discontinue de l'équation de Poisson (6.20), avec ν 0 = 0 dans (6.17) (correspondant à un flux centré pour le schéma sur C δ,0 ), la conservation de l'énergie totale est prouvée rigoureusement, mais pas celle de la quantité de mouvement. Cependant, comme illustré sur la figure 6.1 dans le cas bump-on-tail [START_REF] Bessemoulin-Chatard | On the stability of conservative discontinuous Galerkin/Hermite spectral methods for the Vlasov-Poisson system[END_REF], nous constatons numériquement que la variation au cours du temps de la quantité de mouvement reste très faible.

         + I j Φ δ η ′ dx -Φδ,j+ 1 2 η -

Propriétés de stabilité

La définition (6.4) du poids ω(t, v), avec une fonction t → α(t) vérifiant un analogue de la condition (6.6), permet d'établir rigoureusement la stabilité L 2 (dµ t ) des approximations f N et f δ , en adaptant les idées du cadre continu au cadre semi-discret.

Plus précisément, indépendamment du choix de discrétisation pour l'équation de Poisson, nous obtenons le résultat de stabilité suivant pour l'approximation f δ obtenue par la méthode de Hermite / Galerkin discontinue. Proposition 6.2. Soit (f δ , E δ ) la solution approchée de (6.1) définie par (6.15)-( 6 Remarquons que l'estimation (6.24) est un analogue discret de (6.5), dans lequel apparaît un terme de dissipation additionnel provenant de la discrétisation Galerkin discontinue en espace.

Pour étudier la convergence de la méthode numérique, nous avons besoin d'une estimation de stabilité pour la solution exacte f du système de Vlasov-Poisson (6.1) dans la même norme à poids L 2 (dµ t ). Ce résultat n'est pas évident puisque le poids ω dépend de la solution approchée, du fait de la dépendance de la fonction α en ∥E δ ∥ 2 L ∞ . En reprenant la preuve de (6.7) esquissée dans l'introduction de ce chapitre et en ajustant de manière appropriée le paramètre η impliqué dans l'inégalité de Young, la proposition suivante peut être établie. Proposition 6.3. Soit (f, E) une solution régulière du système de Vlasov-Poisson (6.1). Supposons que f 0 ∈ L 2 (dµ 0 ). Alors il existe η > 0, dépendant uniquement de la masse initiale de f 0 , tel que pour tous t ≥ 0, ∥f (t)∥ L 2 (dµt) ≤ ∥f 0 ∥ L 2 (dµ 0 ) e t/4η , où dµ t est défini par (6.3), la fonction α apparaissant dans le poids ω étant donnée par (6.23).

Plus précisément, le paramètre η > 0 est choisi tel que η C/γ < 1, où C > 0 est une constante dépendant uniquement de la masse de f 0 , telle que ∥E(t)∥ 2 L ∞ ≤ C pour tous t ≥ 0, et γ > 0 est le paramètre fixé apparaissant dans la définition (6.23) de α.

Notons que l'espace L 2 (dµ t ) dépend de α défini par (6.23), et donc du paramètre de discrétisation δ du fait du terme ∥E δ ∥ L ∞ impliqué dans cette définition. Ainsi, pour établir un résultat de convergence, il est indispensable de contrôler α uniformément par rapport à δ. Ce contrôle est obtenu en bornant uniformément par rapport à δ la norme L ∞ du champ électrique discret E δ . Proposition 6.4. Soit (f δ , E δ ) la solution approchée de (6.1) définie par (6.15)-(6.18) et une approximation conforme de l'équation de Poisson. La fonction α est donnée par (6.23). Supposons ∥f δ (0)∥ L 2 (dµ 0 ) < +∞. Soit T > 0 un temps final fixé.

Alors il existe une constante C T > 0, indépendante du paramètre de discrétisation δ, telle que 

∥E δ (t)∥ 2 L ∞ ≤ c 0 α(t) ∥f δ (t)∥ 2 L 2 (dµt) .
En utilisant l'estimation de stabilité (6.25) et la définition (6.23) de α, le lemme de Gronwall permet d'obtenir la borne (6.26) sur la norme L ∞ de E δ . Grâce à cette borne, l'obtention de la borne inférieure α T de α(t) est directe, et la borne supérieure α 0 est claire par décroissance de α.

Les résultats numériques que nous avons obtenus [START_REF] Bessemoulin-Chatard | On the stability of conservative discontinuous Galerkin/Hermite spectral methods for the Vlasov-Poisson system[END_REF] indiquent que ce cadre mathématique avec un poids dépendant du temps est approprié pour étudier la stabilité. La figure 6.2 présente l'évolution au cours du temps de la norme L 2 à poids de f δ et de la fonction α pour l'instabilité double faisceau. Les variations de α restent petites même si le champ électrique varie fortement du fait de l'instabilité. Dans le cas où α est choisi constant au cours du temps, nous constatons que la norme de f δ croît plus rapidement, alors que le choix de α(t) permet d'amortir cette norme quand les effets non linéaires dominent. La comparaison avec une solution de référence obtenue par le schéma PFC [START_REF] Filbet | Conservative numerical schemes for the Vlasov equation[END_REF] sur un maillage fin permettent de valider nos résultats.

Convergence de la méthode

Dans cette section, je me place dans le cas d'une approximation conforme de l'équation de Poisson (6.19). À partir des résultats de stabilité obtenus, nous sommes en mesure d'établir la convergence de la semi-discrétisation Hermite / Galerkin discontinue proposée, avec une estimation d'erreur. La preuve du théorème 6.1 s'appuie classiquement sur l'étude de l'erreur totale décomposée comme la somme de l'erreur de projection et de l'erreur de consistance. Plus précisément, soit W δ le sous-espace de L 2 (dµ t ) défini par W δ := V N ⊗ X h , où V N est donné par (6.10) et X h est défini par (6.14). En notant P W δ la projection orthogonale sur W δ , l'erreur totale est estimée comme (6.30)

∥f (t) -f δ (t)∥ L 2 (dµt) ≤ ∥f (t) -P W δ f (t)∥ L 2 (dµt) + ∥P W δ f (t) -f δ (t)∥ L 2 (dµt) .
Le premier terme, erreur de projection, s'estime en combinant les propriétés de P V N la projection sur V N , obtenues en généralisant les résultats obtenus dans [START_REF] Fok | Combined Hermite spectral-finite difference method for the Fokker-Planck equation[END_REF] au cas où α dépend du temps, et les propriétés classiques de P X h la projection sur X h . Le second terme, erreur de consistance, s'estime quant à lui en étudiant sa dérivée en temps, et en utilisant les arguments de stabilité sur f et f δ ainsi que les propriétés d'interpolation. Le théorème 6.1 met en évidence la précision spectrale de la discrétisation en vitesse basée sur des polynômes de Hermite, tandis que l'ordre de convergence classique de la méthode de Galerkin discontinue est retrouvée pour la discrétisation spatiale. Nous vérifions bien ce résultat en pratique, ce qui est mis en évidence dans la table 6.1, où nous présentons les résultats obtenus pour l'amortissement Landau avec k = 1 et 2 [START_REF] Bessemoulin-Chatard | On the convergence of discontinuous Galerkin/Hermite spectral methods for the Vlasov-Poisson system[END_REF]. 

P 1 P 2 N x × N L 2 (

Perspectives

Discrétisation en temps. Dans nos travaux, nous avons considéré uniquement une semi-discrétisation en espace-vitesse. Dans [START_REF] Bessemoulin-Chatard | On the stability of conservative discontinuous Galerkin/Hermite spectral methods for the Vlasov-Poisson system[END_REF], nous proposons pour la mise en oeuvre de notre schéma une discrétisation temporelle de type Runge-Kutta d'ordre 2 pour l'approximation (6.15)-(6.17) de l'équation de Vlasov, couplée avec une discrétisation de α comme solution de

α ′ = - γ 2 ∥E∥ 2 L ∞ α 3 .
Cette méthode généralise au cas d'un poids dépendant du temps la discrétisation temporelle définie dans [START_REF] Filbet | Conservative Discontinuous Galerkin/Hermite Spectral Method for the Vlasov-Poisson System[END_REF]. Cependant, elle ne permet pas d'obtenir rigoureusement de propriétés de conservation et de stabilité. Une perspective naturelle est de construire un schéma temporel de type Crank-Nicolson pour f et α adapté de sorte à pouvoir démontrer rigoureusement la stabilité pour une discrétisation complète du problème.

Généralisation au cas multidimensionnel. Pour l'instant, notre analyse se limite au cas unidimensionnel, dans lequel le contrôle du champ électrique E est aisé du fait de l'injection de H 1 dans L ∞ . À l'avenir, nous voudrions adapter notre approche au cadre multidimensionnel en s'appuyant sur les idées développées dans [START_REF] Ayuso | Discontinuous Galerkin methods for the multi-dimensional Vlasov-Poisson problem[END_REF] pour le contrôle de la norme L ∞ du champ électrique en dimensions 2 et 3.
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 6 R(N, P ) = R 0 (N, P )(N P -1), cette expression générale incluant en particulier les termes de Shockley-Read-Hall et Auger[START_REF] Markowich | Semiconductor equations[END_REF].Le système (1.3)-(1.5) est complété avec des conditions initiales N 0 , P 0 , et des conditions au bord mixtes de type Dirichlet Neumann, supposées indépendantes du temps :N = N D , P = P D , Ψ = Ψ D sur Γ D , (1.7) ∇r(N ) • ν = ∇r(P ) • ν = ∇Ψ • ν = 0 sur Γ N , (1.8)où ∂Ω = Γ D ∪ Γ N et ν est le vecteur unitaire sortant normal à ∂Ω.
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 1312 Figure 1.3 : Évolution de E n dans le cas linéaire avec C = 0 et C ̸ = 0, pour différents termes de recombinaison-génération.
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 14 Figure 1.4 : Évolution de E n dans le cas non linéaire avec r(s) = s 5/3 .
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 21 Figure 2.1 : Nombre d'itérations de la méthode de Newton au cours du temps pour différents choix de discrétisation.
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Théorème 3 . 1 .

 31 x→±∞ u(x, t) = 0, le résultat suivant peut finalement être démontré. Soit w une solution régulière de (3.4) telle que τ ≥ c > 0 sur Q T = R × [0, T ). Supposons qu'il existe K > 0 telle que (3.13)

  .31b) L'approximation du problème limite (3.4) est obtenue en passant à la limite ε → 0 dans le schéma (3.29)-(3.31). Nous obtenons
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 31 Figure 3.1 : Intégrale en espace de l'entropie relative ϕ N T +1 ε en fonction de ε, en échelle logarithmique.
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 41 Figure 4.1 : Comparaison de la solution approchée obtenue par le schéma (4.20)-(4.22) pour différentes valeurs de ε avec la solution du problème limite (4.5)-(4.6).

  tandis que la seconde équation (4.21) se réduit à une discrétisation de ∂ x h 0 = 0. Comme attendu par construction de k i+ 1 2 , l'équation limite discrète (4.24) est une discrétisation consistante de l'équation de diffusion (4.6). Cependant, la seconde équation (4.21) du schéma développé dans [DMTB15] ne tend pas vers une discrétisation de la relation (4.5), et donne à la limite ε → 0 une hauteur d'eau constante, ce qui est en contradiction avec le cas spécifique considéré ici. Ce comportement non consistant à la limite de diffusion du schéma proposé dans [DMTB15] est illustré sur la figure 4.1.
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 12442 est toujours défini par (4.22) et k i+ 1 23). Remarquons que nous retrouvons en fait la discrétisation proposée dans [BLT13] pour le cas non linéaire. La différence entre ce schéma (4.25)-(4.26) et le schéma (4.20)-(4.21) développé dans [DMTB15] réside dans l'introduction du coefficient δ qui modifie l'ordre en ε de la discrétisation du terme source (ordre 1/ε 3 dans (4.26) contre 1/ε 2 dans (4.21)). Cette modification permet d'avoir un schéma asymptotiquement consistant à la limite de diffusion. Le schéma (4.25)-(4.26) vérifie les propriétés suivantes à la limite de diffusion ε → 0 : • l'équation (4.25) coïncide avec l'équation de diffusion discrète (4.24) qui est une discrétisation de l'équation de diffusion non linéaire (4.6),• l'équation (4.26) coïncide avec une discrétisation de l'expression (4.5) de q 1 .
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 42 Figure 4.2 : Comparaison de la solution approchée obtenue par le schéma (4.25)-(4.26) pour différentes valeurs de ε avec la solution du problème limite (4.5)-(4.6).
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 43 Figure 4.3 : Comparaison de la solution approchée obtenue par le schéma (4.31)-(4.32) pour différentes valeurs de ε avec la solution du problème limite (4.5)-(4.6).
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 51 Figure 5.1 : Comparaison de la solution de l'équation de la chaleur obtenue par le schéma (5.28) avec la solution obtenue par le schéma (5.34) pour différents ε, aux temps t = 0.05, 0.1, 0.15 et 10.

  .31) En conséquence immédiate de ces définitions, la relation suivante est vérifiée (5.32) j∈J h n ij M j ∆v j = 0 ∀i ∈ I , ∀n ∈ N . Avec ces nouvelles inconnues, le schéma (5.26) donne l'équation d'évolution macroscopique suivante :
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 52 Figure 5.2 : Comparaison des taux de convergence de ∥f ε -µ f M∥ 2,γ pour différentes valeurs de ε, dans le cas Fokker-Planck.
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 53 Figure 5.3 : Cas BGK non gaussien : distribution à l'équilibre (gauche), et évolution de la norme L 2 à poids de la différence entre f ε et l'équilibre global.
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 6 ,0 -ρ 0,δ ) ζ dx , où les flux numériques Φδ et Êδ sont donnés par({Φ δ } , Êδ = {E δ } -β [Φ δ ] ,avec β > 0 une constante ou une constante multipliée par 1/h.
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 61 Figure 6.1 : Variation de la masse, de la quantité de mouvement et de l'énergie totale au cours du temps, pour l'instabilité bump-on-tail.
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 6 26) ∥E δ (t)∥ L ∞ ≤ C T , ∀t ∈ [0, T ].De plus, la fonction α vérifie(6.27) 0 < α T ≤ α(t) ≤ α 0 , ∀t ∈ [0, T ],où la constante α T est indépendante de δ et donnée parα T := α 0 (1 + γ α 2 0 (1 + C T ) T ) -1/2. Les inégalités de Sobolev et Poincaré-Wirtinger permettent d'établir qu'il existe une constante c 0 > 0 telle que(6.28) 
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 6261 Figure 6.2 : Évolution de ∥f δ ∥ L 2 (dµt) (gauche) et de la fonction α δ (droite), et comparaison avec une solution de référence obtenue avec le schéma PFC, pour l'instabilité double faisceau.

  Je me place dans le cadre d'une discrétisation de type volume fini classique en espace [EGH00]. Le maillage M = (T , E, P) du domaine Ω est donné par une famille T de volumes de contrôle, une famille E d'arêtes (ou faces) et une famille P de points (x K ) K∈T . Le maillage est supposé admissible au sens de [EGH00, Definition 9.1]. Dans l'ensemble des arêtes, nous distinguons les arêtes intérieures σ = K|L ∈ E int des arêtes de bord σ ∈ E ext . Parmi ces arêtes de bord, nous distinguons également le bord Dirichlet Γ D du bord Neumann Γ N

3)-(1.8) et pour l'équilibre thermique (1.14)-

(1.13)

. Au niveau numérique, il est essentiel de considérer des méthodes qui préservent les principales propriétés qualitatives du système continu, telles que par exemple la positivité des densités et la convergence vers l'équilibre thermique. Dans le cas d'une diffusion linéaire, le schéma de Scharfetter-Gummel

[Il'69,[START_REF] Scharfetter | Large signal analysis of a silicon Read diode[END_REF] 

est particulièrement bien adapté. Dans le cas non linéaire, plusieurs généralisations de ce schéma ont été proposées [Jün95, PCC89], mais ne s'avèrent pas appropriées pour étudier le comportement en temps long. Plus récemment, une autre généralisation a été construite dans l'esprit du schéma de Scharfetter-Gummel original

[START_REF] Eymard | A finite volume scheme for nonlinear parabolic equations derived from one-dimensional local Dirichlet problems[END_REF]

, mais apparaît compliquée à mettre en oeuvre, car conduit à résoudre un problème non linéaire à chaque interface pour calculer les flux numériques. Nous avons donc plutôt considéré la généralisation que j'ai proposée dans un de mes travaux de thèse

[START_REF] Bessemoulin-Chatard | A finite volume Scheme for convection-diffusion equations with nonlinear diffusion derived from the Scharfetter-Gummel scheme[END_REF]

, dont une interprétation alternative ainsi qu'une extension à des modèles de semi-conducteurs organiques ont été développées dans [KRF

+ 15]

.

1.4.2 Le cas non linéaire sans terme de recombinaison-génération Théorème 1.2. Supposons

  

				'influence du dopage sur les
	bornes supérieure et inférieure des densités est illustrée Figure 1.2. D'autres simulations,
	illustrant également l'influence de la longueur de Debye λ, sont présentées dans [4]. Du
	fait de la technique de preuve mise en oeuvre, nous ne disposons pas de résultats donnant
	une dépendance explicite des bornes D et E en fonction des paramètres.
		les Hypothèses H.1 et H.3 vérifiées. Soit M = (T , E, P) un
	maillage admissible.			
	Supposons de plus que le pas de temps vérifie	
	(1.37)	∆t ≤	λ 2 ∥C∥ ∞	.
	Alors il existe une solution (N n T , P n T , Ψ n T ) n≥0 au schéma numérique (1.24)-(1.28), telle
	que les densités approchées vérifient des bornes inférieures et supérieures : pour tous

Théorème 1.3. Supposons les

  

	Hypothèses H.1 vérifiées. Soit M = (T , E, P) un maillage
	admissible vérifiant (1.18). Supposons que les conditions au bord vérifient la condition de
	compatibilité (1.12). Enfin, plaçons-nous sous l'un des deux jeux d'hypothèses H.2 ou H.3.
	Si le cas H.3

est considéré, supposons de plus le dopage C nul.

  

  1)-(2.3) est la discrétisation du terme d'effet Joule ∇Ψ • J 1 . En effet, ce terme contient le produit de deux gradients, et dans le cadre TPFA seule une approximation unidimensionnelle du gradient selon la normale à l'interface est accessible, ne permettant pas d'obtenir directement une discrétisation consistante pour ce produit. Pour contourner cet obstacle et faciliter l'obtention du schéma équivalent pour le système en variables duales (2.5)-(2.7), le terme d'effet Joule est reformulé comme suit [CCC19] :

  2 sont effectivement des approximations des courants symétrisés I i définis par (2.8) pour avoir des schémas pour les systèmes en variables primales et duales, qui sont équivalents entre eux. Cette propriété est obtenue grâce à un choix judicieux des valeurs d'interface Ψ n+1

σ et u n+1 2,σ , comme le détaille la proposition suivante. Proposition 2.1. Le schéma (2.13)-(2.15) est complété avec les définitions des quantités aux interfaces (Ψ n+1 σ ) σ∈E, n≥0 et (u n+1 2,σ ) σ∈E, n≥0 . Nous distinguons deux cas :

  équivalence des schémas en variables primales et duales permet d'obtenir un analogue discret de l'inégalité d'entropie-production (2.10).

	Proposition 2.2. Supposons les hypothèses H.4 vérifiées. Soit (u n K , Ψ n K ) K∈T ,n≥0 une so-
	lution du schéma en variables primales (2.13)-(2.15) complété par la définition des discré-
	tisations aux interfaces (2.21) ou (2.22).
	Alors l'entropie discrète vérifie l'inégalité suivante : pour tous n ≥ 0,
	(2.26)

  Pour établir (2.28), le point crucial est d'avoir une borne L ∞ uniforme sur le potentiel approché Ψ T . Ce résultat est établi dans un cadre général pour les schémas TPFA dans [CCHFG21, Proposition A1]. Il permet de montrer que la matrice D *

	28)
	L'estimation (2.27) s'obtient en utilisant l'inégalité d'entropie-production discrète (2.26)
	et les hypothèses sur ρ. σ
	est uniformément définie positive, et donc de déduire (2.28) en sommant sur n l'inégalité
	d'entropie-production (2.26).

  Théorème 2.1. Soit M = (T , E, P) un maillage admissible vérifiant la contrainte de régularité(2.11). Sous les hypothèses H.4, il existe une solution (u n

	1,T , u n 2,T , Ψ n T ) n≥0 au
	schéma en variables primales (2.13)-(2.3). Par équivalence, le schéma en variables duales
	(2.5)-(2.7) admet donc également une solution (w n 1,T , w n 2,T , Ψ n T ) n≥0 .
	2.2.3 Comportement en temps long
	J'établis maintenant la convergence exponentielle en temps long de la solution approchée
	du système de transport d'énergie vers une approximation de l'équilibre thermique. Nous
	nous plaçons dans le cadre considéré dans [DGJ97] pour le modèle continu. Sous les hy-
	pothèses H.4, supposons de plus les conditions de compatibilité suivantes sur les données
	au bord :

  est différent, construit de telle sorte que les idées développées dans le cadre TPFA (équivalence entre les discrétisations en variables entropiques primales et duales, inégalité d'entropie-production) puissent être retrouvées dans le cadre DDFV général.

	En construisant ainsi le schéma DDFV pour le système en variables primales (2.1)-
	(2.3), nous obtenons dans ce cadre généralisé :

Comme dans la section 2.1, le terme d'effet Joule est réécrit sous la forme (2.12). Ici, nous reformulons également le terme u 2 ∇Ψ comme (2.36) u 2 ∇Ψ = div(u 2 Ψ) -Ψ∇u 2 . Cette reformulation permet de prouver directement l'équivalence entre les schémas en variables primales et duales. En effet, contrairement au cadre continu, la version discrète de (2.36) n'est en générale pas vérifiée. Dans le cadre TPFA développé dans la section 2.1, les approximations de u 2 et ∇Ψ aux interfaces sont justement construites de sorte à obtenir un analogue discret de (2.36). Ici, nous choisissons plutôt d'avoir une unique définition de l'opérateur de reconstruction par diamant (correspondant à une approximation aux interfaces), et de discrétiser directement le terme u 2 ∇Ψ sous sa forme reformulée (2.36).

  Ces estimations sont la première étape pour effectuer une preuve complète de convergence des schémas TPFA pour le modèle de transport d'énergie. La principale difficulté pour montrer rigoureusement ce résultat provient de la non linéarité des densités ρ 1 (u), ρ 2 (u). Dans ce contexte, il semble nécessaire d'utiliser le résultat général donné dans[START_REF] Andreianov | A nonlinear time compactness result and applications to discretization of degenerate parabolic-elliptic PDEs[END_REF] pour déduire de la compacité en espace et en temps à partir des estimations a priori en espace. Ensuite, l'identification de la limite obtenue comme une solution faible du problème continu devrait s'obtenir de manière assez standard.

	Deuxième partie
	Schémas préservant la limite diffusive
	de systèmes hyperboliques avec termes
	sources

Analyse des schémas DDFV. Dans le cadre DDFV, nous obtenons uniquement un analogue de l'estimation (2.27) pour les approximations de u et Ψ. À ce stade, nous ne pouvons pas obtenir d'estimation discrète L 2 en temps, H 1 en espace de w M . En effet, ce résultat nécessite une borne L ∞ sur le potentiel Ψ T , qui est obtenu dans le cadre TPFA en tirant parti de la structure particulière de la matrice associée au schéma. Il n'existe pas de résultat analogue dans le cadre DDFV. Plus généralement, la discrétisation DDFV classique d'une équation elliptique linéaire -∆u = f dans le cas de maillages non admissibles est non monotone, dans le sens où en considérant un terme source positif, la solution approchée obtenue peut présenter des valeurs négatives. Dans

[START_REF] Camier | A monotone nonlinear finite volume method for approximating diffusion operators on general meshes[END_REF]

, un schéma DDFV monotone non linéaire pour l'équation de diffusion est proposé, mais il présente un défaut de coercivité ne permettant pas de démontrer sa convergence.

À ce stade, l'étude proposée dans le cadre TPFA ne peut donc pas s'adapter au contexte DDFV et l'analyse complète nécessitera la mise en place d'une nouvelle stratégie.

CHAPITRE 3

Taux de convergence vers la limite diffusive pour une discrétisation du p-système

Ce chapitre est consacré à l'étude de la limite de diffusion d'un schéma numérique pour un système hyperbolique particulier : le p-système avec friction. Ce modèle décrit la dynamique isotherme lagrangienne d'un gaz de covolume τ > 0 et de vitesse u :

(3.1)

  Théorème 3.3. Soient (w n i ) i,n la solution du schéma (3.29)-(3.31) et (w n i ) i,n la solution du schéma limite (3.32). Supposons les hypothèses suivantes satisfaites :

  une approximation du terme source. Cette relation (4.11) est valide tant que les vitesses d'ondes exactes de (4.1) appartiennent à (-λ LR , λ LR ), conduisant à prendre

	(4.12)	λ LR = max	|q L | h L	+ gh L ,	|q R | h R	+ gh R ,
	et à imposer la condition CFL suivante :			
	(4.13)		∆t ∆x	max i∈Z	λ i+ 1 2	≤	1 2	.
	En utilisant la relation de consistance (4.11) ainsi que la définition du solveur de Riemann
	approché, le schéma (4.9) s'écrit finalement		
	(4.14)						

  Ce schéma est adopté dans[START_REF] Duran | Asymptotic preserving scheme for the shallow water equations with source terms on unstructured meshes[END_REF] pour les équations de Saint-Venant avec friction de Manning, dans lequel le régime limite considéré est obtenu par la mise à l'échelle suivante (qui n'est pas consistante avec celle du cadre continu (4.2)) :

	.17)			
	où W * est l'état intermédiaire HLL classique (4.15) et le paramètre α LR est donné par
	(4.18)	α LR =	2λ LR 2λ LR + (k + k LR )∆x	.
	(4.19)			
	En appliquant aux équations de Saint-Venant le schéma (4.14) avec les états inter-
	médiaires (4.16) et (4.17), et en considérant cette mise à l'échelle (4.19), la discrétisation
	obtenue suivant [DMTB15] s'écrit		

∆t ← ∆t/ε, k ← k/ε, k LR ← k LR /ε.

  2,M quand n est grand, conduit à une accumulation d'erreurs machine et donc à de mauvaises approximations de ces différences. Pour résoudre ces problèmes, nous proposons une écriture équivalente des schémas, fondée sur une formulation micro-macro. Ainsi, introduisons les inconnues micro et macro, (h n ij ) i∈I,j∈J ,n∈N et (λ n i ) i∈I,n∈N respectivement, vérifiant

  Théorème 5.2. Soit M une Maxwellienne discrète vérifiant (5.10) (resp. (5.9)), et supposons le nombre de points N de la discrétisation spatiale impair. Alors il existe des constantes C ≥ 1 et β > 0 telles que pour tous ε ∈ (0, 1), tous ∆t ≤ ∆t max , la solu-

	tion (f n ij ) i∈I,j∈J ,n∈N de (5.12) (resp. (5.16)) vérifie
	(5.36)

  sur (ϕ n i ) i∈I , ainsi que le contrôle des moments discrets (lemme 5.2). ) i∈I , ainsi que sur l'estimation d'entropie L 2 à poids γ (lemme 5.1). Le même type de calculs que dans le cadre continu sont mis en oeuvre pour prouver ce résultats, avec des termes additionnels à contrôler provenant de la discrétisation temporelle. Sous les hypothèses du théorème 5.2, il existe η 2 > 0 tel que pour tous ε ≤ 1, ∆t ≤ ∆t max et η ≤ η 2 ,

	Lemme 5.4. Sous les hypothèses du théorème 5.2, en supposant ε ≤ 1 et ∆t ≤ ∆t max ,
	l'estimation suivante est vérifiée pour tous n ≥ 1		
	(5.42)				
	1 2	-η (m ∆v 2 ) 1/2 ∥f n ∥ 2 2,γ ≤ H η (f n ) ≤	1 2	+ η (m ∆v 2 ) 1/2 C P +	η 2	m ∆v 2 ∆t max ∥f n ∥ 2 2,γ .
	D'autre part, une estimation d'entropie-dissipation discrète est démontrée, basée elle
	aussi sur l'utilisation de l'estimation des moments discrets (lemme 5.2) et les estimations
	(5.39) et (5.40) sur (ϕ n i Proposition 5.2. (5.43)				

  et d'équations de convection-diffusion non linéaires[START_REF] Ma | A stabilized Hermite spectral method for second-order differential equations in unbounded domains[END_REF]. Plus précisément, soit µ t la mesure définie par

	(6.3)	dµ t = ω(t, v)dxdv	
	avec					
	(6.4)	ω(t, v) :=	√	2π exp	α 2 (t) |v| 2 2	,

et introduisons l'espace L 2 à poids suivant :

  Proposition 6.1. Soit f N définie par(6.11), où ((C n ) n , E N ) est solution du système de Vlasov-Poisson écrit sous la forme (6.12)-(6.13). Alors la masse et la quantité de mouvement sont conservées :

  Nous cherchons une approximationC δ = (C δ,n ) 0≤n≤N -1 des modes (C n ) n telle que C δ,n (t, •) ∈ X h et pour tous φ n ∈ X h , (6.15) d dt I , avec le coefficient de viscosité numérique ν n tel que ν n ∈ [ν, ν] avec 0 < ν ≤ ν < ∞.Nous obtenons donc une solution approchée en espace et vitesse de (6.1) sous la forme (6.18)f δ (t, x, v) = où (C δ,n ) n vérifiele système (6.15) et (Ψ n ) n sont les fonctions de base définies par (6.8). Concernant l'approximation E δ du champ électrique E N , considérons le potentiel Φ N

	où A n,j est défini par			
	(6.16)	      	A n,j (g n , φ n ) = -g n (C δ ) = 1 α √ n C δ,n-1 + I j g n φ ′ n dx + ĝn,j+ 1 2 √ n + 1 C δ,n+1 . φ -n,j+1/2 -ĝn,j-1/2 φ + n,j-1/2 ,
	Le flux numérique ĝn est donné par
	(6.17)		ĝn =	1 2	g -n (C δ ) + g + n (C δ ) -	ν n α	C + δ,n -C -δ,n
							N -1
	tel que					
	(6.19)			E N = -	∂Φ N ∂x	,	∂E N ∂x	= C
							En
	notant u ± j+1/2 = u(x ± j+1/2 ), le saut [u] j+1/2 et la moyenne {u} j+1/2 de u à l'interface
	x j+1/2 sont définis respectivement par
	[u] j+1/2 = u(x + j+1/2 ) -u(x -j+1/2 ) et {u} j+1/2 =	1 2	u(x + j+1/2 ) + u(x -j+1/2 ) , ∀ j ∈ Ĵ .

x . Notons Ĵ = {0, . . . , N x } l'ensemble des indices des interfaces. Introduisons finalement le paramètre de discrétisation en espace et vitesse δ = (h, 1/N ).

Étant donné un degré k ∈ N fixé, définissons l'espace (6.14)

X h = u ∈ L 2 (T) : u| I j ∈ P k (I j ), j ∈ J ,

où P k (I) désigne l'espace local des polynômes de degré au plus k sur l'intervalle

I. j C δ,n φ n dx + A n,j (g n (C δ ), φ n ) = I j S n [C δ , E δ ] φ n dx, j ∈ J , 0 ≤ n ≤ N -1, n=0 C δ,n (t, x) Ψ n (t, v) , 0 -ρ 0,N ,

conduisant à l'équation de Poisson unidimensionnelle

  Supposons que ∥f δ (0)∥ L 2 (dµ 0 ) < +∞. Alors, pour tous t ≥ 0,

								.18),
	avec la fonction α définie par			
	(6.23)	α(t) := α 0 1 + γ α 2 0	0	t	max(1, ∥E δ (s)∥ 2 L ∞ )ds	-1/2	.
	(6.24)	d dt	∥f δ (t)∥ 2 L 2 (dµt) :=	d dt	α(t)	N -1 n=0 T	|C δ,n | 2 dx
		≤ -	N -1 n=0 j∈	Ĵ ν n [C δ,n ] 2 j-1 2	+	1 2 γ	∥f δ (t)∥ 2 L 2 (dµt) ,
	d'où nous déduisons					
	(6.25)		∥f			

δ (t)∥ L 2 (dµt) ≤ ∥f δ (0)∥ L 2 (dµ 0 ) e t/4γ

, où le paramètre fixé γ > 0, pouvant être choisi arbitrairement, est celui apparaissant dans la définition (6.23) de α.

Table 6 .

 6 dµ t ) error Order L 2 (dµ t ) error Order 1 : Erreur ∥f -f δ ∥ L 2 (dµt) et ordre de convergence pour l'amortissement Landau.

	16 × 16	5.12E-4	-	1.44E-5	-
	32 × 32	1.05E-4	2.28	1.68E-6	3.09
	64 × 64	2.31E-5	2.18	2.05E-7	3.04
	128 × 128 5.42E-6	2.09	2.48E-8	3.04

Taux de convergence vers la limite diffusive pour une discrétisation du p-système limite diffusive de systèmes de type BGK à vitesses discrètes.
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