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Titre : Normalisations quadratiques et présentations cohérentes de monoïdes

Résumé : Le but principal de cette thèse est d’utiliser le cadre des polygraphes
pour une étude fine des formes des cellules de dimension supérieure (de dimension
3, et implicitement de dimension 4) provenant des normalisations quadratiques ap-
paraissant en théorie combinatoire des groupes. La thèse propose une construction
de présentations cohérentes pour une classe de monoïdes admettant une famille de
Garside noethérienne à droite. Ainsi, elle présente une généralisation unificatrice de
deux extensions distinctes de la construction originale de Deligne de présentations
cohérentes de monoïdes d’Artin-Tits sphériques, données par Gaussent, Guiraud et
Malbos : aux monoïdes d’Artin-Tits quelconques, et aux monoïdes de Garside.

En outre, des correspondances sont établies entre la notion de normalisation
quadratique et la notion de structure de factorabilité. Les monoïdes factorisables
sont caractérisés dans le cadre axiomatique des normalisations quadratiques. En
outre, les normalisations quadratiques de classe (4, 3) sont caractérisées en termes
de structures de factorabilité et d’une condition garantissant la terminaison du
système de réécriture associé.

De plus, on construit une présentation cohérente des monoïdes admettant une
normalisation quadratique de classe (4, 3), qui généralise la présentation cohérente
construite par Hage et Malbos pour les monoïdes plaxiques de type A à l’aide de
la présentation colonne.

Mots clefs : monoïde, présentation cohérente, réécriture, polygraphe, monoïde
d’Artin-Tits, famille de Garside, factorabilité, monoïde plaxique, normalisation
quadratique, réduction homotopique
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Title: Quadratic normalisations and coherent presentations of monoids

Abstract: The principal goal of this thesis is to use the framework of poly-
graphs for a fine study of the shapes of higher-dimensional cells (of dimension 3,
and implicitly of dimension 4) arising from quadratic normalisations appearing in
combinatorial group theory. The thesis proposes a construction of coherent presen-
tations for a class of monoids admitting a right-noetherian Garside family. Thereby,
it presents a unifying generalisation of two distinct extensions of Deligne’s original
construction of coherent presentations of spherical Artin-Tits monoids, given by
Gaussent, Guiraud and Malbos: to general Artin-Tits monoids and to Garside
monoids.

Furthermore, correspondences are established between the notion of quadratic
normalisation and the notion of factorability structure. Namely, factorable monoids
are characterised in the axiomatic setting of quadratic normalisations. Additionally,
quadratic normalisations of class (4, 3) are characterised in terms of factorability
structures and a condition ensuring the termination of the associated rewriting
system.

Moreover, a coherent presentation of monoids admitting quadratic normali-
sation of class (4, 3) is constructed and specialised to the already known column
coherent presentation of plactic monoids of type A, constructed by Hage and Mal-
bos.

Keywords: monoid, coherent presentation, rewriting, polygraph, Artin-Tits
monoid, Garside family, factorability, plactic monoid, quadratic normalisation, ho-
motopical reduction
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Introduction (français)

Les monoïdes figurent parmi les structures algébriques de base. Il s’agit d’ensem-
bles non vides dotés d’une opération binaire associative et d’un élément identité bi-
latéral. Les monoïdes sont donc plus généraux que les groupes, car les éléments des
monoïdes ne sont pas tenus d’être inversibles. Il existe une autre façon de consid-
érer les monoïdes, à savoir comme des catégories ayant un seul objet, les éléments
d’un monoïde correspondant aux flèches d’une catégorie.

Si S est un ensemble, le monoïde libre engendré par S est l’ensemble de toutes
les séquences finies (ou mots) d’éléments de S, avec la concaténation comme opéra-
tion du monoïde, et la séquence vide comme élément identité. Tous les monoïdes
ne sont pas libres, car il peut exister des relations non triviales entre les élé-
ments. Cependant, tout monoïde est une image homomorphe (ou un quotient)
d’un monoïde libre. Cela permet de présenter un monoïde par un ensemble de
générateurs et un ensemble de relations génératrices.

En remontant d’une dimension, on constate qu’il peut aussi y avoir des relations
entre les relations, et ainsi de suite. Le cadre des polygraphes permet de garder
une trace de toutes ces informations. Les polygraphes nous permettent également
d’appliquer des transformations homotopiques à une présentation, afin d’obtenir
une présentation du même monoïde mais possédant certaines propriétés.

L’un des attributs souhaitables d’une présentation est la convergence. Elle
permet de résoudre le problème du mot (décider si deux représentants dans le
quotient représentent bien le même élément du monoïde). Une propriété qui nous
intéresse particulièrement est la cohérence.

Le but principal de cette thèse est d’utiliser le cadre des polygraphes pour
une étude fine des formes des cellules de dimension supérieure (de dimension 3,
et implicitement de dimension 4) provenant des normalisations quadratiques appa-
raissant en théorie combinatoire des groupes. La thèse propose une construction
de présentations cohérentes pour une classe de monoïdes admettant une famille de
Garside noethérienne à droite. Ainsi, elle présente une généralisation unificatrice de
deux extensions distinctes de la construction originale de Deligne de présentations
cohérentes de monoïdes d’Artin-Tits sphériques, données par Gaussent, Guiraud
et Malbos : aux monoïdes d’Artin-Tits quelconques, et aux monoïdes de Garside.
De plus, on construit une présentation cohérente des monoïdes admettant une nor-
malisation quadratique de classe (4, 3), qui généralise la présentation cohérente
construite par Hage et Malbos pour les monoïdes plaxiques de type A à l’aide de la
présentation colonne. En outre, des correspondances sont établies entre la notion
de normalisation quadratique (développée en France, notamment par Dehornoy) et
la notion de structure de factorabilité (développée en Allemagne, notamment par
Bödigheimer, dans le but d’utiliser des formes normales appropriées pour compren-
dre l’homologie des groupes). Les monoïdes factorisables sont caractérisés dans le
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2 INTRODUCTION (FRANÇAIS)

cadre axiomatique des normalisations quadratiques. En outre, les normalisations
quadratiques de classe (4, 3) sont caractérisées en termes de structures de factorabil-
ité et d’une condition garantissant la terminaison du système de réécriture associé.

Voici un aperçu des classes de monoïdes pertinentes, avec des flèches indiquant
les inclusions, les flèches en pointillé « dash » étant notre contribution et les flèches
en pointillé « dots » étant notre hypothèse :

monoïdes
chinois

monoïdes
factorisables

monoïdes admettant
une norm. quad.
de la classe (5, 4)

monoïdes admettant
une norm. quad.

satisfaisant une faible
règle du domino

monoïdes
plaxiques

monoïdes admettant
une norm. quad.
de la classe (3, 3)

monoïdes admettant
une normalisation

quadratique
de la classe (4, 3)

monoïdes avec
présentations cohérentes

construites

monoïdes admettant
une famille de Garside

monoïdes
d’Artin-Tits

monoïdes admettant
une famille de Garside
noethérienne à droite

monoïdes
de tresses

monoïdes
sphériques
d’Artin-Tits

monoïdes de Garside

Chap. 3

Chap. 3

Chap. 4

Chap. 2

.

Schéma de la thèse

Brèves notes historiques. Nous préparons le terrain en donnant un très bref
aperçu historique des sujets étudiés.

Ce que l’on appelle aujourd’hui la théorie de Garside a commencé avec les
travaux de Garside sur les monoïdes de tresses dans les années 1960. Garside
[25] a étudié les propriétés arithmétiques des groupes de tresses. Il a résolu le
problème du mot et le problème de conjugaison pour les groupes de tresses en
introduisant des monoïdes de tresses. Il a montré que la présentation d’Artin définit
le monoïde des mots positifs dans le groupe des tresses. Il a notamment prouvé que
le monoïde tressé B+

n est simplifiable à gauche, et que deux éléments quelconques
de B+

n admettent un plus petit multiple commun. Il a également introduit l’élément
de Garside (qu’il a appelé mot fondamental) d’un monoïde de tresses.
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Les observations de Garside pour les monoïdes de tresses ont été généralisées
aux monoïdes d’Artin-Tits (de type) sphériques par Brieskorn et Saito [5] et par
Deligne [18].

La forme normale dite gloutonne a été introduite pour la première fois pour les
monoïdes de tresses dans les années 1980, sur la base des observations de Garside
(voir [13, Introduction] pour les références). Le développement s’est poursuivi
en France, où Dehornoy et Paris [17] ont introduit les monoïdes de Garside afin
d’abstraire les propriétés qui établissent l’existence de la forme normale gloutonne.
Ensuite, Dehornoy, Digne et Michel [14] ont généralisé les monoïdes de Garside à des
catégories admettant des familles de Garside. Par exemple, un groupe de Coxeter
constitue une famille de Garside dans le monoïde d’Artin-Tits correspondant. De
plus, Dehornoy, Dyer et Hohlweg [15] ont montré que tout monoïde Artin-Tits
admet une famille de Garside finie (même si le groupe de Coxeter correspondant
est infini). Un développement approfondi de la notion de famille de Garside se
trouve dans la monographie [13].

Deligne [19] a étudié les actions faibles des monoïdes d’Artin-Tits sur les caté-
gories. Il a prouvé que pour définir une action faible d’un monoïde d’Artin-Tits
sphérique, il suffit de considèrer des endofuncteurs pour chaque élément du groupe
de Coxeter correspondant (c’est-à-dire qu’il n’est pas nécessaire de le faire pour
chaque élément du monoïde). Cette définition alternative est basée sur ce qui est
maintenant appelé la présentation de Garside des monoïdes d’Artin-Tits. Deligne
a explicitement donné la présentation de Garside pour les monoïdes d’Artin-Tits
sphériques. Michel [46] a étendu cette présentation à tous les monoïdes d’Artin-
Tits. Gaussent, Guiraud et Malbos [26] ont prouvé que le résultat de Deligne
est équivalent à l’affirmation que les monoïdes d’Artin-Tits sphériques admettent
une présentation cohérente particulière, appelée présentation cohérente de Garside.
Dans ce cadre, ils ont utilisé une complétion-réduction homotopique en s’appuyant
sur les travaux de Squier [49] et de Brown [6], et ont étendu le résultat de Deligne
à l’ensemble de tous les monoïdes d’Artin-Tits, ainsi qu’aux monoïdes de Garside.

La procédure de complétion-réduction homotopique a également été appliquée
avec succès aux monoïdes plaxiques et chinois dans [32], ce qui donne des présen-
tations cohérentes. Ceci suggère que les familles de Garside ne fournissent pas,
en fin de compte, le cadre le plus général pour les formes normales gloutonnes.
La notion de normalisation quadratique, introduite par Dehornoy et Guiraud [16]
(influencés par Krammer [37]), semble remplir ce rôle car elle généralise, dans le
même cadre axiomatique, deux classes bien connues de normalisations : celles is-
sues des systèmes de réécriture quadratiques, telles qu’étudiées dans [26] pour les
monoïdes Artin-Tits, et dans [4] et [7] pour les monoïdes plaxiques; et celles qui
découlent de familles de Garside, comme cela a été étudié dans [13]. Nous ren-
voyons le lecteur à l’étude [12] pour une vue d’ensemble des extensions successives
de la forme normale gloutonne, des monoïdes de tresses aux monoïdes admettant
des normalisations quadratiques pondérées à gauche.

Pendant ce temps, en Allemagne, Bödigheimer et ses collaborateurs ont mis
au point la notion de structure de factorabilité, introduite par Wang [51] et Heß
[34] sur les monoïdes et les catégories comme une extension de la définition de
structure de factorabilité sur les groupes introduite par Bödigheimer [3] et Visy
[50]. Leur motivation était d’abstraire la structure, découverte dans les groupes
symétriques, qui assure l’existence d’une forme normale permettant de réduire le
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complexe « bar » associé à un complexe comportant beaucoup moins de cellules
et permettant de calculer l’homologie de la structure en question. Cette réduction
est obtenue grâce à la théorie des « schémas de contraction », qui a été introduite
dans un contexte topologique par Brown [6], élaborée pour l’algèbre par Cohen
[10], et redécouverte (sous le nom de théorie de Morse discrète) par Forman [23].
L’idée est d’établir, pour chaque entier positif n, une correspondance entre une
classe de n-cellules dites redondantes et une classe de (n+ 1)-cellules dites « con-
tractiles » d’une manière telle que l’élimination des cellules appariées préserve le
type d’homotopie.

Structure des chapitres. La thèse se compose de quatre chapitres : Le
chapitre 1 est une introduction, et les autres chapitres sont structurés comme suit.

Le chapitre 2 présente les résultats de [11], un travail réalisé conjointement avec
Pierre-Louis Curien et Yves Guiraud. Par rapport à l’article, les préliminaires sont
ici plus élaborés et, dans la mesure du possible, exprimés en termes de catégories
plutôt que de monoïdes. De nouveaux détails sont ajoutés, par exemple l’exemple
des monoïdes de tresses doubles. Le chapitre commence par fixer une terminologie
issue du cadre des polygraphes; les transformations homotopiques sont l’objet d’une
attention particulière. La notion clé de présentation cohérente est rappelée de [26]
et illustrée par des exemples. La méthode principale, à savoir la procédure de
complétion-réduction homotopique, est décrite sur les cas déjà connus des monoïdes
d’Artin-Tits et des monoïdes de Garside. Une autre notion clé, celle de famille de
Garside, est rappelée.

Enfin, le principal résultat de ce chapitre est donné. Nous montrons comment
construire des présentations cohérentes de monoïdes simplifiables à gauche, admet-
tant une famille de Garside noethérienne à droite ainsi que les multiples communs
minimaux à droite, et ne contenant aucun élément inversible non trivial. Nous
résolvons ainsi la question d’une généralisation commune aux deux extensions dis-
tinctes, données dans [26], du résultat original de Deligne pour les monoïdes Artin-
Tits sphériques : aux monoïdes d’Artin-Tits généraux, et aux monoïdes de Garside.
Nous appliquons nos résultats à certains monoïdes qui ne sont ni d’Artin-Tits ni
de Garside. Un autre avantage de nos résultats est que nous pouvons prendre une
famille de Garside finie pour ensemble de générateurs pour calculer une présenta-
tion cohérente des monoïdes d’Artin-Tits, alors qu’auparavant il fallait prendre le
groupe de Coxeter correspondant, même s’il était infini.

Le chapitre 3 présente les résultats de [20], un travail supervisé par Viktoriya
Ozornova. Par rapport à [20], nous expliquons ici les principales notions plus en
détail et fournissons davantage d’exemples pour les illustrer. La notion de structure
de factorabilité dans les monoïdes est rappelée, principalement à partir de [35]. La
définition de la factorabilité locale est légèrement corrigée. Ensuite, des notions et
des résultats sur les normalisations quadratiques dans les monoïdes sont rappelées
de [16]. Après avoir posé les préliminaires, notre contribution est présentée.

Nous répondons à la question, laissée ouverte dans [13] et [16], de déterminer un
lien entre les structures de factorisation et les normalisations quadratiques, malgré
des origines et des motivations différentes pour ces deux notions. Plus concrète-
ment, nous caractérisons les monoïdes factorisables dans le cadre axiomatique des
normalisations quadratiques en tant que monoïdes admettant une normalisation
quadratique satisfaisant une condition plus forte que la classe (5, 4) mais plus faible
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que la classe (4, 4). Ici, la notion de classe est un paramètre évaluant la complexité
de la normalisation de mots de longueur trois. Nous caractérisons également la
classe (4, 3) en termes de structures de factorabilité et d’une condition garantissant
la terminaison du système de réécriture associé.

Le chapitre 4 commence par quelques préliminaires sur les monoïdes plaxiques
en mettant l’accent sur leur présentation « colonne », introduite par Cain, Gray
et Malheiro dans [7]. Nous donnons ensuite de nouveaux résultats, à savoir une
présentation cohérente de monoïdes admettant une normalisation quadratique de
classe (4, 3), sans autres restrictions. Nous montrons également que la présentation
cohérente construite se spécialise en la présentation cohérente construite par Hage et
Malbos dans [33] pour les monoïdes plaxiques de type A à l’aide de la présentation
colonne.





CHAPTER 1

Introduction

A monoid is one of the basic algebraic structures. It is a nonempty set equipped
with an associative binary operation and a two-sided identity element. Monoids are
more general than groups, which have an additional requirement that all elements
are invertible. There is another way of looking at monoids, namely as categories
having a single object, with elements of a monoid corresponding to arrows of a
category.

For a set S, the free monoid generated by S is the set of all finite sequences (or
words) of elements of S, with concatenation as the monoid operation, and the empty
sequence as the identity element. Not every monoid is free as there can be some
nontrivial relations among elements. However, every monoid is a homomorphic
image (or a quotient) of a free monoid. This enables a presentation of a monoid by
a generating set and a set of generating relations.

Climbing one dimension up, one observes that there can also be some relations
among relations, and so on. A way to keep track of all this information is provided
by the framework of polygraphs. Another benefit of using polygraphs is that they
allow us to apply homotopical transformations to a presentation, in order to obtain
a presentation of the same monoid but enjoying some preferable qualities.

One of the desirable attributes of a presentation is called convergence. It grants
some very favourable computational properties, e.g. solvable word problem. A
quality of a presentation, that we are particularly interested in, is a homotopical
one called coherence.

The principal goal of this thesis is to use the framework of polygraphs for a
fine study of the shapes of higher-dimensional cells (of dimension 3 and implicitly
of dimension 4) arising from quadratic normalisations appearing in combinatorial
group theory. The thesis proposes a construction of coherent presentations for a
class of monoids admitting a right-noetherian Garside family. Thereby, it presents
a unifying generalisation of two distinct extensions of Deligne’s original construc-
tion of coherent presentations of spherical Artin-Tits monoids, given by Gaussent,
Guiraud and Malbos: to general Artin-Tits monoids and to Garside monoids. In
addition, a coherent presentation of monoids admitting quadratic normalisation
of class (4, 3) is constructed and specialised to the already known column coher-
ent presentation of plactic monoids of type A, constructed by Hage and Malbos.
Furthermore, correspondences are established between the notion of quadratic nor-
malisation (developed in France, notably by Dehornoy) and the notion of factorabil-
ity structure (developed by mathematicians in Germany led by Bödigheimer, with
the goal of using suitable normal forms to understand group homology). Namely,
factorable monoids are characterised in the axiomatic setting of quadratic normal-
isation. Additionally, quadratic normalisations of class (4, 3) are characterised in
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8 1. INTRODUCTION

terms of factorability structures and a condition ensuring the termination of the
associated rewriting system.

Here is an overview of relevant classes of monoids, with arrows denoting inclu-
sions, the dashed ones being the present contribution with the dotted one being
our hypothesis:

Chinese
monoids

factorable
monoids

monoids admitting
a quad. norm.
of class (5, 4)

monoids admitting
a quad. norm.
satisfying weak
domino rule

plactic
monoids

monoids admitting
a quad. norm.
of class (3, 3)

monoids admitting
a quadratic
normalisation
of class (4, 3)

monoids with
constructed coherent

presentation

monoids admitting
a Garside family

Artin-Tits
monoids

monoids admitting
a right-noetherian
Garside family

braid
monoids

spherical
Artin-Tits
monoids

Garside monoids

Chap. 3

Chap. 3

Chap. 4

Chap. 2

.

In this introductory chapter, we recall the main notions, but not necessarily in
their full formality. Namely, technical definitions will not be given before chapters
in which they are actually needed. Some new results are recollected, again not in
a manner more technical than convenient.

The structure of the introduction is ‘homomorphic’ to the structure of the
thesis. Namely, Section 1.1 provides a brief historical overview and a structural
outline, whereas Sections 1.2, 1.3 and 1.4 respectively present Chapters 2, 3 and 4.

1.1. Thesis outline

1.1.1. Brief historical notes. We set up the stage by giving a very brief
historical overview of the subjects investigated.

What is now called Garside theory has started with the work of Garside on
braid monoids in the 1960s. Garside [25] investigated arithmetic properties of
braid groups. He solved the word problem and the conjugacy problem for braid
groups by introducing braid monoids. He showed that Artin’s presentation defines
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the monoid of positive words in a braid group. Among other things, he proved
that the braid monoid B+

n is left-cancellative and that each pair of elements of B+
n

admits a least common multiple. He also introduced the Garside element (he called
it the fundamental word) of a braid monoid.

Garside’s observations for braid monoids were generalised to spherical Artin-
Tits monoids by Brieskorn and Saito [5] and by Deligne [18].

The greedy normal form was first introduced for braid monoids in the 1980s,
based on Garside’s observations (see [13, Introduction] for references). The devel-
opment continued in France, where Dehornoy and Paris [17] introduced Garside
monoids in order to abstract properties which establish the existence of the greedy
normal form. Then, Dehornoy, Digne and Michel [14] further generalised Garside
monoids to categories admitting Garside families. For example, a Coxeter group
constitutes a Garside family in the corresponding Artin-Tits monoid. Moreover,
Dehornoy, Dyer and Hohlweg [15] showed that every Artin-Tits monoid admits a
finite Garside family (even if the corresponding Coxeter group is infinite). A thor-
ough development of the notion of Garside family can be found in the monograph
[13].

Deligne [19] studied weak actions of Artin-Tits monoids on categories. He
proved that to define a weak action of a spherical Artin-Tits monoid, it suffices to
consider endofunctors for every element of the corresponding Coxeter group (i.e. it is
not necessary to do it for every element of the monoid). This alternative definition is
based on what is now called Garside’s presentation of Artin-Tits monoids. Deligne
explicitly gave Garside’s presentation of spherical Artin-Tits monoids. Michel [46]
extended this presentation to all Artin-Tits monoids. Gaussent, Guiraud and Mal-
bos [26] proved that Deligne’s result is equivalent to saying that spherical Artin-
Tits monoids admit a particular coherent presentation, called Garside’s coherent
presentation. In this framework, they used the homotopical completion-reduction
procedure, relying on the work of Squier [49] and Brown [6], to extend the result
to all Artin-Tits monoids and also to Garside monoids.

The homotopical completion-reduction procedure was also successfully applied
to plactic and Chinese monoids in [32], yielding coherent presentations. This sug-
gested that Garside families did not provide, after all, an ultimate generalisation
of the greedy normal form. The notion of quadratic normalisation, introduced by
Dehornoy and Guiraud [16] (influenced by Krammer [37]), seems to succeed in this
task, as it generalises, under the same axiomatic setting, two well-known classes of
normalisations: those arising from quadratic rewriting systems, as studied in [26]
for Artin-Tits monoids, and in [4] and [7] for plactic monoids; and those arising
from Garside families, as investigated in [13]. We refer the reader to the survey
[12] for an overview of the successive extensions of the greedy normal form from
braid monoids to monoids admitting left-weighted quadratic normalisations of class
(4, 3).

Meanwhile in Germany, Bödigheimer and his collaborators developed the no-
tion of factorability structure, introduced by Wang [51] and Heß [34] on monoids
and categories as an extension of the definition of factorability structure on groups
introduced by Bödigheimer [3] and Visy [50]. Their motivation was to abstract the
structure, discovered in symmetric groups, which ensures the existence of a normal
form allowing a reduction of the bar complex to a complex having considerably
fewer cells, computing the homology of the structure in question. This reduction is
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achieved using the theory of collapsing schemes, which was introduced in a topo-
logical flavour by Brown [6], elaborated for the algebraic setting by Cohen [10],
and rediscovered (under the name of discrete Morse theory) by Forman [23]. The
idea is to establish, for every nonnegative integer n, a matching between a class of
n-cells called redundant and a class of (n+ 1)-cells called collapsible in such a way
that collapsing matched pairs preserves the homotopy type.

1.1.2. Structure of chapters. The thesis consists of four chapters: the
present Chapter 1 is introductory, and the other chapters are structured as fol-
lows.

Chapter 2 reports on the results of [11], a joint work with Pierre-Louis Curien
and Yves Guiraud. Compared to the article, preliminaries here are elaborated and,
where possible, expressed in terms of categories rather than monoids. New details
are added, e.g. the example of dual braid monoids. The chapter starts by fixing
some terminology from the framework of polygraphs, of which homotopical transfor-
mations are given a particular attention. The key notion of coherent presentation
is recalled from [26] and illustrated by means of examples. The main method,
namely, the homotopical completion-reduction procedure, is described and demon-
strated using the known applications to Artin-Tits monoids and Garside monoids.
Another key notion, that of Garside family, is recalled.

Finally, the principal result of the chapter is given. Namely, we show how
to construct coherent presentations of left-cancellative monoids admitting a right-
noetherian Garside family and minimal common right multiples, and containing
no nontrivial invertible element. Thereby, we resolve the question of finding a
common generalisation to the two distinct extensions, given in [26], of Deligne’s
original construction of coherent presentations of spherical Artin-Tits monoids: to
general Artin-Tits monoids and to Garside monoids. The results are applied to
some monoids that are neither Artin-Tits nor Garside. Another benefit of is that
we can take a finite Garside family for a generating set in computing a coherent
presentation of Artin-Tits monoids, whereas before one could only take the corre-
sponding Coxeter group even if it was infinite.

Chapter 3 presents the results of [20], a work supervised by Viktoriya Ozornova.
In comparison to [20], this thesis explains the main notions in greater detail and
provides more examples to illustrate them. Definitions and results concerning fac-
torability structures in monoids are recollected, mostly from [35]. Definition of
local factorability is slightly corrected. Then, notions and results about quadratic
normalisations for monoids are recalled from [16]. After the preliminaries are set,
new results are presented.

We answer the question, left open in [13] and [16], of determining a connection
between factorability structures and quadratic normalisations, despite different ori-
gins and motivations for these two notions. More concretely, factorable monoids
are characterised in the axiomatic setting of quadratic normalisations as monoids
admitting a quadratic normalisation satisfying a condition stronger than the class
(5, 4) yet weaker than the class (4, 4). Here, the notion of class is a parameter
evaluating the complexity of normalising length-three words. We also characterise
the class (4, 3) in terms of factorability structures and a condition ensuring the ter-
mination of the associated rewriting system, and we prove an equivalence between
the two known such conditions.



1.2. COHERENT PRESENTATIONS AND GREEDY NORMAL FORM 11

Chapter 4 begins by giving some preliminaries on plactic monoids with a spe-
cial emphasis on their column presentation, introduced by Cain, Gray and Mal-
heiro in [7]. Then some new results are provided, namely, a coherent presentation
of monoids admitting a quadratic normalisation of class (4, 3), with no further re-
strictions. It is then shown that the constructed coherent presentation specialises
to the already known column coherent presentation of plactic monoids of type A,
constructed by Hage and Malbos in [33].

1.2. Coherent presentations and greedy normal form

Subsection 1.2.1 fixes basic terminology and notation to be used throughout the
thesis. Subsections 1.2.2 and 1.2.4 recall coherent presentations and Garside fami-
lies, respectively. In Subsection 1.2.3, notions concerning rewriting are recollected.
Subsection 1.2.5 presents new results.

1.2.1. Basic terminology and notation. If S is a set, then S∗ denotes
the free monoid over S. Elements of S and S∗ are called S-letters and S-words,
respectively. So, an S-word is a finite sequence of S-letters, e.g. (s1, . . . , sn). In
the broader context of categories, words are generalised to paths of composable
morphisms. The prefix S- is sometimes left out when the considered generating set
is evident from the context.

The product in S∗ of two words u and v is denoted by u|v. A letter is custom-
arily identified with the single-letter word consisting of that letter. Accordingly, a
word (s1, . . . , sn) can be written as the product (in S∗) of its letters: s1| · · · |sn.

A monoid M is said to be generated by a set S, and elements of S are called
generators of M , which is often written as (M,S), if M is a homomorphic image of
the free monoid S∗. Such a homomorphism is called an evaluation map and denoted
by ev : S∗ →M . A normal form forM with respect to S is a set-theoretic section,
denoted by nf, of the evaluation map. To rephrase it, a normal form maps elements
of M to distinguished representative words in S∗. An S-word s1| · · · |sn is called a
decomposition of an element g of M if the equality s1 · · · sn = f holds in M . An
S-word u is said to be a factor of an S-word v if there exist S-words w and w′

satisfying wuw′ = v.
The length of u in S∗ is denoted by |u|. For an element f ofM , the minimal S-

length of an S-word representing f is denoted by |f |. The same notation will be used
for other length functions when they are introduced, but the proper interpretation
will always be evident from the context (besides, all the length functions in this
thesis concur with each other).

1.2.2. Coherent presentations of monoids. A monoid can be presented by
a generating set and a set of generating relations between words over the generating
set. A coherent presentation of a monoid consists of a generating set, a set of
generating relations and, in addition, a set of generating relations among relations,
by means of which each two parallel relations can be ‘transformed’ into each other.

The notion of coherent presentation is closely related to other known notions:
2-syzygies for presentations of groups (see e.g. [43]); polygraphic resolutions of
monoids, introduced by Métayer in [45], from which abelian resolutions can be
deduced; cofibrant approximations in the canonical model structure on 2-categories,
given by Lack in [39], [40]; weak actions of Artin-Tits monoids on categories,
investigated by Deligne in [19]. Coherent presentations are also studied in [21],
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under the name 3-presentations. Motivation and context for the notion of coherent
presentation are briefly recalled in Subsection 2.1.5.

The construction of coherent presentations of spherical Artin-Tits monoids has
been extended in [26] in two disjoint directions: to general Artin-Tits monoids and
to Garside monoids. This has been done using methods from rewriting theory and
Squier’s work.

1.2.3. Rewriting methods. Generating relations, when considered directed
from left to right (as ordered pairs), provide rewriting rules, which, together with
the corresponding generating set, constitute a rewriting system. In the framework of
higher rewriting, the notion of coherent presentation can be described topologically
by saying that relations among relations fill all the spheres formed by two parallel
rewriting paths.

A presentation is called terminating if there is no infinite rewriting sequence.
It is called confluent if each pair of distinct rewriting sequences starting from the
same word can be completed in such a way that the sequences eventually lead to a
common result:1

∗

∗ ∗

∗

α′α

β β′

.

A presentation is convergent if it is both terminating and confluent. The homotopi-
cal completion-reduction procedure enriches a terminating presentation to a coher-
ent one. The main element is Squier’s theorem (recalled here as Theorem 2.2.2.1),
which allows one to simply compute generators of the relations among relations for
a convergent presentation. Let us illustrate it by a simple example. Consider the
following convergent presentation of the free abelian monoid N3:〈

a, b, c
∣∣∣ ba α→ ab, cb

β→ bc, ca
γ→ ac

〉
.

Squier’s theorem yields a generator of the relations among relations for each critical
branching of the presentation, i.e. for each minimal overlap of the rewriting rules.
In this example, there is exactly one such situation:

bca bac

cba abc

cab acb

bγ

αcβa

cα

γb

aβ

E .

The generator E of the relations among relations is added.
The homotopical completion-reduction procedure has three stages. Firstly, the

Knuth-Bendix completion procedure enriches a terminating presentation to a con-
vergent one by adding a (not necessarily finite) number of generating relations in
order to make every critical branching confluent. Secondly, the Squier completion

1In a confluent presentation, one can safely follow the directions given by L. P. Berra, ‘When
you come to a fork in the road, take it.’
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procedure adjoins generating relations among relations, thus providing a coherent
presentation of the monoid admitting the original presentation. Thirdly, the ho-
motopical reduction procedure removes extra relations (among relations). These
homotopical transformations of presentations having certain properties are depicted
in the following diagram (and recollected in Section 2.2):

(1.2.1)

coherent
reduced

coherent
convergent

terminating convergent

homotopical
reduction

homotopical
completion

Knuth-Bendix
completion

homotopical

completion-reduction

Squier

completion

.

Let us illustrate the first two stages by giving a preview of Example 2.2.2.3.
Consider the following presentation of the Klein bottle monoid:〈

a, b
∣∣∣ bab α→ a, baa

β→ aab
〉
.

There are exactly two critical branchings: {αab, baα} and {αaa, baβ}. Both branch-
ings are confluent. The Squier completion procedure adjoins the generators A and
B of the relations among relations. Here are the shapes of A and B:

babab aab

baa

αab

baα

A

β

babaa aaa

baaab aabab

αaa

baβ

βab

B
aaα

.

During the homotopical completion procedure, superfluous relations (among
relations) may be adjoined. The homotopical reduction procedure provides a sys-
tematic way to eliminate them by recursively removing pairs (ρ, C) of redundant
and collapsible generating cells, as illustrated by the following diagram (and ex-
plained in Subsection 2.2.4):

∗ ∗ρ
CC

EE
reduces to ∗ ∗EE .

1.2.4. Garside families. A Garside family in a monoid is a generating family,
not minimal in general, but ensuring the existence of the greedy normal form.

The greedy normal form is simple (the language of normal words is regular) and
easily computed (there are simple incremental methods, thanks to the diagrammatic
tool called the domino rule) as it has favourable locality properties (recalled in
Subsection 1.3.2).
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Assume that S is a subfamily S of a left-cancellative (meaning that fg = fg′

implies g = g′) monoid M having no nontrivial invertible element. A length-two
S-word r1|r2 is said to be S-greedy if, for all s in S and h in M , commutativity of
the following diagram without the dashed arrow implies the existence of a dashed
arrow making the square (and thus also the triangle) commute:

• •

• • •

s

h
r1 r2

.

A longer S-word is S-greedy if all of its length-two factors are S-greedy. A Garside
family in M is a subfamily S such that, for every element of M , there exists an
S-greedy word representing it. A precise definition is recalled in Section 2.4.

1.2.5. Attaining coherence. One of the main results presented in this thesis
is a unification of the two above-mentioned results of [26] in the same generalisation.
Namely, we apply the homotopical completion-reduction procedure to compute co-
herent presentations for a certain class of monoids admitting a Garside family. We
take the following two main steps.

(1) First, we use the fact that, for every left-cancellative monoid M with no
nontrivial invertible element and every Garside family S in M , there is
a presentation, here denoted by Gar2 (S), having S \ {1} as a generating
set, with generating relations α of the form s|t = st, for s, t in S \ {1}
such that st lies in S (Proposition 2.4.4.4, adapted from [16]). We observe
(Example 2.4.4.5) that Garside’s presentation Gar2 (W ) of an Artin-Tits
monoid B+ (W ) is a special case, with S being the Coxeter group W .
Similarly (Example 2.4.4.6), Garside’s presentation Gar2 (M) of a Garside
monoid M is another special case of Gar2 (S).

(2) Then, starting from Gar2 (S), we embark on extending [26, Theorem 3.1.3]
(which we recall in Example 2.3.3.2) to a wider class of monoids, includ-
ing left-cancellative noetherian monoids having no nontrivial invertible
element, admitting a Garside family. Working in a more general setting,
we encounter additional critical branchings which cannot occur in the case
of Artin-Tits or Garside monoids due to specific properties not shared by
Garside families in general. Therefore, we construct new generating re-
lations among relations. Conveniently, we then remove all the additional
relations using the homotopical reduction procedure.

This results in Theorem 2.5.1.4, the main result of Chapter 2, of which we give here
a weaker but simpler version (Corollary 2.5.5.1).

Theorem. Let M be a left-cancellative noetherian monoid containing no non-
trivial invertible element. If S is a Garside family containing 1 in M , then M
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admits the coherent presentation Gar3 (S) which extends Gar2 (S) with the follow-
ing set of generating relations among relations:

uv|w

u|v|w uvw

u|vw

αuv,w

Au,v,w

αu,v|w

u|αv,w αu,vw

for each triple (u, v, w) of elements of S \ {1} such that uv, vw and uvw lie in S.

Note that Au,v,w can be read as a relation among relations ensuring asso-
ciativity. We reach Gar3 (S) by applying the homotopical completion-reduction
procedure to the presentation Gar2 (S).

In Section 2.6, the result is used to compute coherent presentations of some
monoids which are neither Artin-Tits nor Garside and to construct a finite coherent
presentation of the Artin-Tits monoid of type Ã2, taking a finite generating set. In
some cases, homotopical reduction can be carried further. As a matter of fact, that
is how we prove (in Subsection 2.6.3) that Artin’s presentation of the Artin-Tits
monoid of type Ã2 is coherent (with the empty set of generating relations among
relations).

We mainly consider monoids because that is where our present applications lie,
but the approach presented here can be extended to categories, viewed as monoids
with partial multiplication. To prepare the grounds for potential more general ap-
plications in future, we therefore prefer to state preliminaries in terms of categories.

1.3. Factorability and normalisation

The notions of factorability and normalisation are recalled in Subsections 1.3.1
and 1.3.2, respectively. Subsection 1.3.3 reports on new results.

1.3.1. The idea of factorability. For a monoid M and its generating set
S, the idea of factorability is to determine a way to split off a generator from
an element of the monoid. The goal is to ensure the existence of a normal form,
obtained by recursively factorising, that would yield a favourable bijection in the
bar complex, in order to collapse superfluous cells (as recalled in Subsection 1.1.1).

Before we go any further, let us recall the seminal example given by the sym-
metric group Sn and its generating set consisting of all transpositions, proved to
be factorable in [50]. Let σ be a nontrivial permutation in Sn and j the largest
value in {1, . . . , n} that is not fixed by σ. Then the generator

(
j, σ−1 (j)

)
is split

off. In the remainder of σ, the value j is fixed, which guarantees termination of
the process. We illustrate this using a concrete permutation (note that we multiply
permutations from left to right): (

1 2 3 4 5 6
2 4 5 1 3 6

)
=(

3 5
5 3

)(
1 2 3 4 5 6
2 4 3 1 5 6

)
=
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(
3 5
5 3

)(
2 4
4 2

)(
1 2 3 4 5 6
2 1 3 4 5 6

)
=

(
3 5
5 3

)(
2 4
4 2

)(
1 2
2 1

)(
1 2 3 4 5 6
1 2 3 4 5 6

)
.

A desired factorisation is achieved by the notion of factorability structure, which
consists of a factorisation map η = (η′, η) : M → M2 subject to several axioms
ensuring, in particular, a compatibility with the multiplication µ : M2 →M in the
monoid. In a manner of speaking, η acts on an element f of M by splitting off, in
a suitable way, a generator η′ (f).

For every factorability structure, there is an associated rewriting system having
rules of the form (r, s) → η ◦ µ (r, s). This rewriting system is confluent but it is
not necessarily terminating. However, termination is obtained under the additional
assumption that, for all s in S and f in M , the following equalities hold:

(1.3.1) η′ (sf) = η′ (s · η′ (f)) , η (sf) = η (s · η′ (f)) · η (f) .

1.3.2. The idea of quadratic normalisations. As hinted in Subsection 1.1.1,
quadratic normalisations in monoids generalise, in the same axiomatic framework,
two well-known classes of normalisations: those arising from quadratic rewriting
systems (notably, those associated with plactic monoids); and those arising from
Garside families, resulting from successive generalisations of the greedy normal form
in braid monoids. So, quadratic normalisations provide an extension past Garside
families of the greedy normal form. One of the advantages of this step further
is that certain monoids that are not even left-cancellative, e.g. plactic monoids,
become eligible.

Assume that a monoid is generated by a set S. By a normalisation, we mean
a syntactic transformation of an arbitrary word over S to a ‘canonical’ one, called
normal. Quadratic normalisations admit the following locality properties: a word
is normal if, and only if, its length-two factors are normal; and the procedure of
transforming a word into a normal form consists of a finite sequence of rewriting
steps, each of which transforms a length-two factor.

The notion of class of a quadratic normalisation is defined in order to measure
the complexity of normalising length-three words. The class (m,n) means that
every length-three word admits at most m rewriting steps starting from the left
and at most n rewriting steps starting from the right.

The class (4, 3) is explored in great detail in [16] as it exhibits exceptionally
favourable computational properties, mainly thanks to the following diagrammatic
characterisation called the domino rule. If the solid arcs connect normal length-two
words in the diagram

(1.3.2)

• • •

• • •

of elements of S, then so does the dashed arc. In particular, the rewriting system
associated with a quadratic normalisation of class (4, 3) is always terminating.
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1.3.3. A correspondence between factorability and normalisation. The
main result here answers the question, mentioned in [13] and [16], of determining
the relation between the two approaches to combinatorial properties of a certain
class of monoids: factorability and normalisation.

A correspondence is established between factorability structures and quadratic
normalisations for monoids, despite the different origins and motivations for these
two notions. By a correspondence, we mean maps in both directions between
appropriate subclasses, which are inverse to each other up to technicalities, and
moreover this bijection is compatible with the associated rewriting systems.

Since the rewriting system associated with a factorability structure is not nec-
essarily terminating, whereas the rewriting system associated with a quadratic nor-
malisation of class (4, 3) is always terminating, it was known that a quadratic
normalisation corresponding to a factorability structure is not necessarily of class
(4, 3). It is shown here that a quadratic normalisation corresponding to a factora-
bility structure is always of class (5, 4) and not smaller in general. A necessary
and sufficient condition is given for a quadratic normalisation of class (5, 4) to
correspond to a factorability structure.

Theorem. A monoid is factorable if, and only if, it admits a quadratic nor-
malisation such that the domino rule holds for a diagram (1.3.2) whenever 1 does
not occur in the upper or the right side (of the displayed rectangle).

Thereby, factorable monoids are characterised in terms of quadratic normalisa-
tions, thus adding another important family of monoids to those unified under the
axiomatic framework of quadratic normalisations.

In particular, a quadratic normalisation of class (4, 3) always yields a factora-
bility structure, but not vice versa. However, the converse does hold under the
stronger condition described as follows. Consider the map F := η ◦ µ from the set
M2 to itself, with µ : M2 → M denoting the multiplication in M . Denote by F1

(resp. F2) the application of F to the first two elements (resp. the second and the
third element) of a triple in M3. In general, a factorability structure ensures the
equality

F1F2F1F2 (r, s, t) = F2F1F2 (r, s, t)

for each triple (r, s, t) in S3 such that F2F1F2 (r, s, t) contains no 1. The stronger
condition states that this equality holds for every (r, s, t) in S3. Since this con-
dition is implied by the class (4, 3), quadratic normalisations of class (4, 3) are
characterised in terms of factorability structures.

Furthermore, it is shown that this stronger condition is equivalent to the afore-
mentioned additional assumption (1.3.1) which is known to grant termination of
the rewriting system associated with a factorability structure. Simply put, the class
(4, 3) equals factorability plus termination.

One of the benefits of the established correspondence between factorability
structures and quadratic normalisations is that it provides a way of importing the
results concerning homology, derived from the former (see e.g. [50], [51], [35]) to
the framework of the latter, with the hope of generalising those results to higher
classes. This is one of the potential further steps in the present direction of research.
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1.4. Coherent presentations from class (4, 3)

Since a quadratic normalisation of class (4, 3) always yields a convergent rewrit-
ing system, a Squier completion of the corresponding presentation can be computed.
Conveniently, several important families of monoids do admit such a normalisation:
monoids admitting a Garside family and plactic monoids, to name a few. Therefore,
obtaining results about monoids admitting quadratic normalisation of class (4, 3)
provides a fortiori results about those specific classes of monoids. This is precisely
what is done in Chapter 4.

Namely, we construct a coherent presentation of a general monoid admitting
a quadratic normalisation of class (4, 3). Then we show that this construction
specialises to the column coherent presentation of plactic monoids of type A, con-
structed by Hage and Malbos [33].
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CHAPTER 2

Coherent presentations arising from Garside
families

This chapter aims to motivate, present and apply a construction of coherent
presentations for a class of monoids admitting a Garside family, after recalling
preliminaries. The following diagram displays the context, with arrows denoting
inclusions:

Artin-Tits
monoids

monoids with a
right-noetherian
Garside family

monoids with
constructed coherent

presentation

spherical
Artin-Tits
monoids

Garside monoids

Gaussent
Guiraud
Malbos
2015

the present
contribution

Deligne
1997

Gaussent
Guiraud
Malbos
2015

.

Section 2.1 recalls the framework of polygraphs, in which the notion of coher-
ent presentation of a category is defined. In Section 2.2, the main method, namely
the homotopical completion-reduction procedure, is recalled. Section 2.3 recollects
some known applications of this method, which will later turn out to be special
cases of our main result. Section 2.4 briefly recollects relevant facts about Gar-
side families. Section 2.5, reports on new results. Finally, some applications are
presented in Section 2.6.

2.1. Presentations of categories by polygraphs

In this section, we briefly recall the notions concerning polygraphic presenta-
tions of monoids (of which a technical elaboration can be found in [26]). Basic
terminology is given in Subsection 2.1.1. Some basic notions of polygraphic rewrit-
ing theory are recollected in Subsection 2.1.2. The notion of coherent presentation
of a monoid is recalled in Subsection 2.1.3 and technically elaborated in Subsec-
tion 2.1.4.

Throughout the present article, 2-categories and 3-categories are always as-
sumed to be strict (see e.g. [31, Section 2]).

19
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2.1.1. Presentations by 2-polygraphs. The framework of polygraphs en-
compasses (in the same globular object) words, rewriting rules, and homotopical
properties of a rewriting system. Polygraphs provide a generalisation of a presenta-
tion of a monoid by generators and relations to the higher categories that are free
up to codimension 1.

A polygraph is a higher-dimensional generalisation of a graph. Recall that a
(directed) graph is a pair (X0, X1) of sets, together with two maps, called the source
and target, from X1 to X0. A 0-polygraph (X0) is a set. A 1-polygraph (X0, X1)
is a graph. The free category generated by a 1-polygraph (X0, X1), denoted by
X∗1 , contains: X0 as the set of objects, and paths (freely concatenated elements of
X1) between objects as morphisms. A 2-polygraph is a triple X = (X0, X1, X2),
where (X0, X1) is a 1-polygraph and X2 is a set of 1-spheres, i.e. pairs of parallel
paths, in X∗1 . Elements of Xk are called generating k-cells. In diagrams, distinct
arrows are used to denote generating k-cells for low k: →, ⇒, V for k equal to 1,
2 and 3, respectively.

For a 2-polygraphX, the category presented by X, denoted byX = X∗1/X2,
is obtained by factoring out generating 2-cells, regarded as relations among 1-cells
of X∗1 . For a category C , a presentation of C is a 2-polygraph X such that C
is isomorphic to X. In the case where category is a monoid, which we are mainly
interested in, X0 is a singleton so each pair of paths in X∗1 forms a 1-sphere, and
X∗1 is the free monoid generated by the set X1.

Example 2.1.1.1 (The standard presentation). Let C be a category. The
standard presentation of C is the 2-polygraph Std2 (C ) consisting of:

• one generating 0-cell x for every 0-cell x of C ;
• one generating 1-cell û : x→ y for every 1-cell u : x→ y of C ;
• one generating 2-cell γu,v : ûv̂ ⇒ ûv for every pair of composable 1-cells
u and v of C ;

• one generating 2-cell ιx : 1x ⇒ 1̂x for every 0-cell x of C . Here, 1x
denotes the empty path (consisting of zero generating 1-cells) from x to
x. By contrast, 1̂x is the path of length 1, consisting of the generating
1-cell (of Std2 (C )) associated with the identity of x in C .

2.1.2. Rewriting properties of 2-polygraphs. Let X be a 2-polygraph.
Generating 2-cells of X are called rewriting rules. The free 2-category over
X, denoted by X∗2 = X∗1 [X2], is obtained by adjoining to X∗1 all the formal compo-
sitions of elements of X2, treated as formal 2-cells. Standard notions from rewriting
theory naturally translate into the framework of polygraphs. A rewriting step of
a 2-polygraph X is a 2-cell of the free category X∗2 that contains a single generating
2-cell of X, here considered as a transformation of its source into its target. So, a
rewriting step has a shape

• • • •w
u

v

α
w′

where α : u ⇒ v is a generating 2-cell of X, and w and w′ are 1-cells of X∗2 , and
every 0-cell involved is denoted by •.

Let u and v be 1-cells of X∗2 . We say that u rewrites to v if there is a finite
composable sequence of rewriting steps, such that the source of the first step of the
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sequence is u and the target of the last step is v. A 1-cell v is reduced if there is
no rewriting step whose source is v.

A termination order on X is a well-founded order relation ≤ on parallel
1-cells of X∗2 having the following properties:

• the compositions by 1-cells ofX∗2 are strictly monotone in both arguments,
i.e. ≤ is compatible with the composition of 1-cells;

• for every generating 2-cell α of X, the strict inequality t (α) < s (α) holds.

A 2-polygraph X is terminating if it has no infinite sequence of rewriting steps.
Admitting a termination order is equivalent to being terminating (in a terminating
polygraph, a termination order is generated by putting u > v for each pair of 1-cells
u and v such that u rewrites to v).

A branching of a 2-polygraph X is a two-element multiset {α, β} of sequences
of rewriting steps of X∗2 having the same source, called the source of the branching.
If α and β are rewriting steps, then a branching {α, β} is called local. A local
branching is trivial if it has one of the following two shapes: {α, α}, or {αv, uβ}
for u = s (α) and v = s (β). Local branchings can be compared by the order 4
generated by the relations {α, β} 4 {wαw′, wβw′} given for every local branching
{α, β} and all possible 1-cells w and w′ of X∗2 . A minimal nontrivial local branching
is called critical. A branching {α, β} is confluent if α and β can be expanded into
sequences having the same target. A 2-polygraph X is confluent (resp. locally
confluent, resp. critically confluent) if all its branchings (resp. local branchings,
resp. critical branchings) are confluent. If a 2-polygraph is terminating and con-
fluent, then it is said to be convergent. A convergent 2-polygraph X is called
a convergent presentation of any category isomorphic to X. In that case, for
every 1-cell u of X∗, there is a unique reduced word, denoted by û, to which u
rewrites.

The following theorem states that two basic results of rewriting theory concern-
ing confluence, called Newman’s lemma [47, Theorem 3] and the critical branchings
theorem respectively, are also valid for polygraphs.

Theorem 2.1.2.1 ([31, Theorem 3.1.6]).

(1) If a 2-polygraph is terminating, then it is confluent if, and only if, it is
locally confluent.

(2) A 2-polygraph is locally confluent if, and only if, it is critically confluent.

As a consequence of Theorem 2.1.2.1, a 2-polygraph is convergent if, and only
if, it is terminating and its critical branchings are confluent.

Example 2.1.2.2. Consider the free abelian monoid:

(2.1.1) N3 =
〈
a, b, c

∣∣∣ ba α→ ab, cb
β→ bc, ca

γ→ ac
〉
.

This presentation admits the following termination order: comparing the lengths
of words, then (i.e. if words are equal in length) applying, from left to right, the
lexicographic order induced by a < b < c. Hence, it is terminating.
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Let us illustrate confluence of the presentation (2.1.1) on the unique critical
branching {βa, cα}:

bca bac

cba abc

cab acb

bγ

αcβa

cα

γb

aβ

.

Thus, the presentation (2.1.1) is convergent, by Theorem 2.1.2.1.

2.1.3. Coherent presentations. A 2-category (resp. 3-category) is called a
(2, 1)-category (resp. a (3, 1)-category) if all its 2-cells (resp. 2-cells and 3-cells)
are invertible. For a 2-polygraph X, the free (2, 1)-category over X, denoted by
X>2 = X∗1 (X2), is constructed by adjoining to X∗1 all the formal compositions of
elements of X2 and formal inverses of elements of X2, and then factoring out the
compositions of elements with their corresponding inverses. A (3, 1)-polygraph is
a quadruple X = (X0, X1, X2, X3), where (X0, X1, X2) is a 2-polygraph and X3 is a
set of 2-spheres, i.e. pairs of parallel paths of 2-cells, in X>2 . For a (3, 1)-polygraph
X, the free (3, 1)-category over X, denoted by X>3 = X>2 (X3), is constructed by
adjoining to X>2 all the formal compositions of elements of X3 and formal inverses
of elements of X3, and then factoring out the compositions of elements with their
corresponding inverses. A (3, 1)-polygraph is called convergent if its underlying
2-polygraph is convergent. The category presented by a (3, 1)-polygraph X is
again X, the category presented by its underlying 2-polygraph.

An extended presentation of a monoid M is a (3, 1)-polygraph X such
that M is isomorphic to X.

Definition 2.1.3.1. A coherent presentation of a monoidM is an extended
presentation (X0, X1, X2, X3) of M such that factoring out elements of X3 leaves
only trivial 2-spheres (where the parallel paths are equal).

For example, presentations of the free abelian monoid N3 and the Klein bottle
monoid in Subsection 1.2.3, obtained by Squier completion, are coherent. For
simplicity, the single generating 0-cell is sometimes left out of a presentation of
a monoid.

2.1.4. Cellular extensions of higher categories. An n-category is called
an (n, p)-category if its k-cells are invertible for all k > p. For a k-cell f of an
n-category C , the identity (k + 1)-cell and the i-source and i-target of f are respec-
tively denoted by 1f and si (f) and ti (f); the subscript i is dropped if i = k − 1.
If ti (f) = si (g), that is if f and g are i-composable k-cells, then their i-composite
is denoted by f ?i g; abbreviated to fg if i = 0. When 1f (resp. the identity of 1f ,
etc.) is composed with cells of dimension k + 1 (resp. k + 2, etc.), it is denoted by
f , for simplicity.

For k ≥ 1, two k-cells are called parallel if they have a common source and
a common target. Any two 0-cells are considered parallel. An (ordered) pair of
parallel k-cells in an n-category is called a k-sphere. The source and target of a
k-sphere γ = (f, g) are k-cells f and g, respectively, which is written as s (γ) = f



2.1. PRESENTATIONS OF CATEGORIES BY POLYGRAPHS 23

and t (γ) = g. For a k-cell γ of C , the (k − 1)-sphere (s (γ) , t (γ)) is called the
boundary of γ.

For a set Γ and an n-category C , a map from Γ to the set of n-spheres of
C is called a cellular extension of C . Usually, we identify elements of Γ with
their images and say that Γ is a cellular extension of C . A cellular extension of
C can be interpreted as a set of directed relations between parallel n-cells. Iden-
tifying the n-cells s (γ) and t (γ) for every n-sphere γ of Γ, produces the quotient
n-category C /Γ. A cellular extension of C can also be interpreted as a set of for-
mal (n+ 1)-cells, filling the n-spheres of C . For an n-category C and a cellular
extension Γ, one constructs the free (n+ 1)-category generated by Γ over C ,
denoted by C [Γ], by adjoining to C all the formal compositions of elements of Γ,
treated as formal (n+ 1)-cells. Similarly, for an (n, 1)-category C and its cellular
extension Γ, one constructs the free (n+ 1, 1)-category generated by Γ over
C , denoted by C (Γ), as the quotient C (Γ) = C

[
Γ, Γ̌

]
/ Inv (Γ), where Γ̌ denotes

the cellular extension obtained by reversing directions (i.e. switching components)
of spheres in Γ, and Inv (Γ) denotes the cellular extension of C

[
Γ, Γ̌

]
consisting of

(n+ 2)-cells χ̌ ?n χ→ 1t(χ) and χ ?n χ̌→ 1s(χ) for every (n+ 1)-cell χ in Γ.
That is why, in Section 2.1.3, the free 2-category over a 2-polygraph X and

the free (2, 1)-category over X are denoted respectively by X∗2 = X∗1 [X2] and
X>2 = X∗1 (X2). Technically, that is how they are, in fact, defined.

In formal terms, a (3, 1)-polygraph is a quadruple X = (X0, X1, X2, X3), where
(X0, X1, X2) is a 2-polygraph and X3 is a cellular extension of X>2 . Hence, the free
(3, 1)-category X>3 over (3, 1)-polygraph X and the (2, 1)-category presented by X
are denoted (technically, defined) respectively by X>3 = X>2 (X3) and X̃ = X>2 /X3.
The category presented by a (3, 1)-polygraph X is again X, the category presented
by its underlying 2-polygraph.

An extended presentation of C is a (3, 1)-polygraph X such that C is
isomorphic to X.

An acyclic cellular extension of an n-category C is a cellular extension Γ of
C such that all the n-spheres of the quotient n-category C /Γ are of the form (f, f)
or, equivalently, such that, for every n-sphere γ of C , there is an (n+ 1)-cell whose
boundary is γ in the (n+ 1)-category C (Γ).

Definition 2.1.4.1. A coherent presentation of a category C is an ex-
tended presentation (X0, X1, X2, X3) of C such that X3 is an acyclic cellular ex-
tension of X>2 .

Note that this definition agrees with the one for monoids (given in the previous
subsection), seen as categories having a single object.

Example 2.1.4.2 (The standard coherent presentation). Recalling the standard
presentation in Example 2.1.1.1, let us extend it with the generating 3-cells

ûvŵ

ûv̂ŵ ûvw

ûv̂w

γuv,w

Au,v,wAu,v,w

γu,vŵ

ûγv,w γu,vw

1̂xû

û û

γ1x,uιxû
LuLu

û1̂y

û û

γu,1yûιy
RuRu

.
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The generating 3-cell Au,v,w is adjoined for each triple (u, v, w) of 1-cells of C such
that the pairs (u, v) and (v, w) are composable; the generating 3-cell Lu and Ru are
adjoined for each 1-cell u of C . The resulting (3, 1)-polygraph, denoted by Std3 (C ),
is called the standard coherent presentation of C (see [29, Subsection 3.3.3]
for the explanation why Std3 (C ) is, indeed, a coherent presentation).

2.1.5. Motivation for coherent presentations. Coherent presentations gen-
eralise 2-syzygies for presentations of groups. They also form the first dimensions
of polygraphic resolutions of monoids. The notion of coherent presentation is also
closely connected with other two known notions: weak actions of Artin-Tits monoids
on categories, and cofibrant approximations of 2-categories. In what follows, we are
going to briefly recall the last.

Assume that C and D are 2-categories. A 2-functor G : D → C is called a weak
equivalence if there exists a pseudofunctor (i.e. a 2-functor preserving composition
and identities of 1-cells only up to 2-isomorphism; see [26, 5.1.1]) F : C → D
such that GF is isomorphic to 1C and FG is isomorphic to 1D . A 2-category D
is called cofibrant if its underlying 1-category is free. A 2-category D is called
a cofibrant approximation of a category C if D is cofibrant and if there exists a
weak equivalence D → C . The next theorem displays the close relation between
coherent presentations of categories and their cofibrant approximations. Recall that
X̃ denotes the (2, 1)-category presented by X.

Theorem ([26, Theorem 1.3.1]). Let C be a category, and let X be an extended
presentation of C . Then X is a coherent presentation of C if, and only if, X̃ is a
cofibrant approximation of C (viewed as a 2-category).

A strict action of a monoid M on a category C is a morphism of monoids
F : M → End (C ). A weak action of M on C replaces the morphism equalities
F (fg) = F (f)F (g) and F (1M ) = 1C with natural isomorphisms satisfying coher-
ence relations. Pseudofunctors generalise weak actions of monoids on categories.
A consequence of the next theorem is that the Deligne’s result [19, Theorem 1.5]
is equivalent to saying that [26, Theorem 3.1.3] holds for Artin-Tits monoids of
spherical type.

Theorem ([26, Theorem 5.1.6]). Let C be a category, and let X be an extended
presentation of C . Then X is a coherent presentation of C if, and only if, for
every 2-category D , the category of pseudofunctors from C to D and the category
of 2-functors from X̃ to D are equivalent, and this equivalence is natural in D .

2.2. Homotopical transformations of polygraphs

This section elaborates the diagram (1.2.1), by recalling the notion of homo-
topical completion-reduction, introduced in [26]. Subsection 2.2.1 recollects the
Knuth-Bendix completion procedure, which transforms a terminating 2-polygraph
into a convergent one. Subsection 2.2.2 describes the Squier completion procedure,
which upgrades a convergent 2-polygraph to a convergent coherent (3, 1)-polygraph.
Subsection 2.2.3 recollects the basic transformations one can perform on a poly-
graph without changing the presented category. In Subsection 2.2.4, we recall
the homotopical reduction procedure, which turns a coherent (3, 1)-polygraph into
a coherent one having fewer generating cells. Finally, Subsection 2.2.5 describes
a particular method for obtaining a homotopical reduction in the case when the
starting coherent (3, 1)-polygraph is also convergent.
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2.2.1. Knuth-Bendix completion. Starting with a terminating 2-polygraph
X equipped with a total termination order ≤, the Knuth-Bendix completion pro-
cedure adjoins generating 2-cells aiming to produce a convergent 2-polygraph that
presents the category presented by X. It works by iteratively examining all the
critical branchings and adjoining a new generating 2-cell whenever the branching is
not already confluent. Namely, for a critical branching {α, β}, if t̂ (α) > t̂ (β) (resp.
t̂ (β) > t̂ (α)), then a generating 2-cell γ : t̂ (α) ⇒ t̂ (β) (resp. γ : t̂ (β) ⇒ t̂ (α)) is
adjoined, thus forcing the confluence of the branching:

t (α) t̂ (α)

∗

t (β) t̂ (β)

γ

α

β

.

If new critical branchings are created by adjoining additional generating 2-cells,
then confluence of such critical branchings is also examined. For details, see [31,
3.2.1]. This procedure is not guaranteed to terminate. In fact, its termination
depends on the chosen termination order (see [22, Example 6.3.1]). If it does
terminate, then the result is a convergent 2-polygraph. Otherwise, it produces an
increasing sequence of 2-polygraphs, and the result is the union of all members of
this sequence. Either way, the result is called a Knuth-Bendix completion of X.
Note that different orders of examining critical branchings may result in different
2-polygraphs.

Theorem 2.2.1.1 ([31, Theorem 3.2.2]). If X is a 2-polygraph equipped with a
total termination order, then every Knuth-Bendix completion of X is a convergent
presentation of the category X.

Remark 2.2.1.2. The Knuth-Bendix completion procedure, as described above,
requires not only termination, but also a specification a total termination order, to
be able to orient the generating 2-cells which are added and to be able to maintain
the termination during the completion. There is an alternative approach. Namely,
we can orient the newly added generating 2-cells ‘manually’, according to our inspi-
ration, and verify after each addition in an ad hoc manner whether we maintain a
terminating presentation, without having defined a total order beforehand. There-
fore, we can invoke Theorem 2.2.1.1 even if we do not provide a total termination
order in advance, as long as we are able to ensure termination after each addition
of a generating 2-cell (we shall do this in the proof of Proposition 2.5.3.1).

2.2.2. Squier completion. A family of generating confluences of a con-
vergent 2-polygraph X is a cellular extension of X>2 containing, for every critical
branching {α, β} of X, exactly one 3-cell A:

∗

∗ ∗

∗

α′

AA

α

β β′
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where the rewriting sequences α′ and β′ are completing α and β, respectively, in
such a way that they eventually reach the same target (such α′ and β′ exist by the
assumption of confluence), with all the 1-cells involved denoted by ∗.

A Squier completion of a convergent 2-polygraph X is a (3, 1)-polygraph,
with X as underlying 2-polygraph, whose generating 3-cells form a family of gener-
ating confluences of X. The following result is due to Squier ([49, Theorem 5.2]);
we state a version in terms of polygraphs and higher-dimensional categories proved
in [31].

Theorem 2.2.2.1 ([31, Theorem 4.3.2]). If X is a convergent 2-polygraph, then
every Squier completion of X is an acyclic cellular extension of X>2 .

In particular, if X is a convergent presentation of a monoid M , then every
Squier completion ofX is a convergent coherent presentation ofM . Theorem 2.2.2.1
is extended to higher-dimensional polygraphs in [30, Proposition 4.3.4].

Let X be a terminating 2-polygraph equipped with a total termination order
≤. A homotopical completion of X is a Squier completion of a Knuth-Bendix com-
pletion of X. We have seen that the Knuth-Bendix completion procedure enriches
a terminating 2-polygraph to a convergent one and that a Squier completion of a
convergent 2-polygraph X is a coherent presentation of X. These two transforma-
tions can be performed consecutively. They can also be performed simultaneously
(see [26, 2.2.4]). Either way, the result is called a homotopical completion of
X. Theorem 2.2.2.1 has the following consequence.

Theorem 2.2.2.2. Let C be a category, and let X be a 2-polygraph. If X
is a terminating presentation of C , then every homotopical completion of X is a
coherent convergent presentation of C .

Example 2.2.2.3 (Klein bottle monoid). Let us consider the Klein bottle
monoid K+, as defined in [13, Subsection I.3.2]. It has the following presenta-
tion:

(2.2.1) 〈a, b | bab = a〉 .

The name comes from the fact that K+ is the submonoid generated by a and b
of the fundamental group of the Klein bottle generated by a and b, subject to the
relation bab = a.

Let us apply the homotopical completion procedure to the presentation (2.2.1),
which consists of the generating 1-cells a and b, and the single generating 2-cell
α : bab ⇒ a. Let us adopt the following termination order: comparing the lengths
of words, then applying, from left to right, the lexicographic order induced by
a < b if words have the same length. For instance, b < aa < ab. The only critical
branching is {αab, baα}, with source babab. The homotopical completion procedure
adjoins the generating 2-cell β : baa ⇒ aab and the generating 3-cell A, thereby
granting convergence and coherence, respectively. The generating 2-cell β causes
only one new critical branching, namely {αaa, baβ} with source babaa, which is
confluent, hence only the generating 3-cell B is adjoined. Diagrammatically, the



2.2. HOMOTOPICAL TRANSFORMATIONS OF POLYGRAPHS 27

generating 3-cells have the shapes as follows:

babab aab

baa

αab

baα

A

β

babaa aaa

baaab aabab

αaa

baβ

βab

B
aaα

.

By Theorem 2.2.2.2, we have thus obtained a convergent coherent presentation of
the Klein bottle monoid, having two generating 1-cells, two generating 2-cells, and
two generating 3-cells:

(
a, b
∣∣∣ bab α⇒ a, baa

β⇒ aab
∣∣∣A,B) .

Convention 2.2.2.4. For simplicity, we mostly leave implicit the orientation
of the 3-cells in the diagrams. We only label the corresponding area with the name
of a 3-cell. The convention is that the source and target of a 3-cell are the upper and
lower path, respectively, of the sphere bounding the area, unless explicitly stated
otherwise.

2.2.3. Tietze transformations and Tietze equivalence. Polygraphs allow
one to treat presentations of categories homotopically. This subsection recalls a
framework for homotopical transformations of (3, 1)-polygraphs, established in [26],
formalising the idea of collapsing scheme introduced in [6]. We will use it to formally
describe the homotopical reduction procedure in Subsection 2.2.4.

Let X be a (3, 1)-polygraph. A generating 2-cell (resp. generating 3-cell, resp.
3-sphere) α of X is called collapsible if it meets the following two requirements:

• the target of α is a generating 1-cell (resp. 2-cell, resp. 3-cell) of X,
• the source of α is a 1-cell (resp. 2-cell, resp. 3-cell) of the free (3, 1)-category

over X \ {t (α)}.
The target of a collapsible cell is said to be redundant.

The following six operations are called elementary Tietze transformations
of X:

• simultaneous adjunction or elimination of a redundant generating 1-cell v
and a collapsible 2-cell α : u⇒ v,

• simultaneous adjunction or elimination of a redundant generating 2-cell β
and a collapsible 3-cell A : αV β,

• simultaneous adjunction or elimination of a redundant generating 3-cell
B such that there is a collapsible 3-sphere whose target is B.

Formally, these transformations define 3-functors with domain X>3 (see [26, 2.1.1]).
A Tietze transformation is a composition of elementary Tietze transformations.

Two (3, 1)-polygraphs are said to be Tietze-equivalent if they satisfy the
following two conditions:

• the 1-categories they present are isomorphic,
• the (2, 1)-categories they present are equivalent.

Consequently, Tietze-equivalent (3, 1)-polygraphs have the same 0-cells (up to a bi-
jection), and two coherent presentations of the same category are Tietze-equivalent.
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It is easily shown that two (3, 1)-polygraphs related by a Tietze transformation
are Tietze-equivalent. Namely, it suffices to verify that every one of the six ele-
mentary Tietze transformations preserves Tietze equivalence. Furthermore, Tietze
transformations preserve the property of being coherent, which we formally state
for future reference.

Proposition 2.2.3.1 ([26, Theorem 2.1.3]). If a (3, 1)-polygraph X is a coher-
ent presentation of a category C , and if there exists a Tietze transformation from
X to a (3, 1)-polygraph Y , then Y is a coherent presentation of C .

An elementary Nielsen transformation on a (3, 1)-polygraph X is any of
the following operations:

• replacement of a 2-cell or a 3-cell with its formal inverse;
• replacement of a 3-cell A : αV β with

∗ ∗

∗ ∗

∗

α
χ′χ

χ

β
χ′

Ã̃A

where χ and χ′ are 2-cells of X>3 , and all the 1-cells involved are denoted
by ∗.

Elementary Nielsen transformations are Tietze transformations (see [26, 2.1.4]).
Therefore, they preserve presented 1-categories, equivalence of presented (2, 1)-cat-
egories and homotopy type of (3, 1)-polygraphs (see [26, 2.1.4]). In particular, they
transform a coherent presentation of a category C into another coherent presenta-
tion of C . A Nielsen transformation is a composition of elementary ones. In
the homotopical completion-reduction procedure, Nielsen transformations are often
performed implicitly for convenience.

2.2.4. Homotopical reduction. A coherent presentation obtained by the
homotopical completion procedure is not necessarily minimal, in the sense that
it may contain superfluous cells. The homotopical reduction procedure aims to
remove such superfluous cells by performing a series of elementary collapses, anal-
ogous to that used by Brown in [6]. In the present terminology, these are Tietze
transformations (up to Nielsen transformations).

For a (3, 1)-polygraph X = (X0, X1, X2, X3), a collapsible part of X is a
triple Γ = (Γ2,Γ3,Γ4) where Γ2, Γ3, Γ4 respectively denote families of generating
2-cells of X, generating 3-cells of X, 3-spheres of X>3 , such that the following
requirements are met:

• every γ of every Γk is collapsible (possibly up to a Nielsen transformation);
• no γ of Γk is the target of an element of Γk+1;
• there exist well-founded order relations on X1, X2 and X3 such that, for

every γ in every Γk, the target of γ is strictly greater than every generating
(k − 1)-cell that occurs in the source of γ .

Here, we say that a generating 1-cell (resp. 2-cell, resp. 3-cell) x occurs in a 1-cell
(resp. 2-cell, resp. 3-cell) γ of X>3 if it occurs in a minimal-length decomposition
of γ into generating 1-cells (resp. 2-cells, resp. 3-cells).
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The result of the homotopical reduction of X with respect to Γ is the
(3, 1)-polygraph

X/Γ = (X0, X1 \ t (Γ2) , X2 \ t (Γ3) , X3 \ t (Γ4)) .

Sources and targets are given by πΓ ◦ s and πΓ ◦ t, where πΓ is the 3-functor from
X> to (X/Γ)

> given by the recursive formula

πΓ (x) =


πΓ (s (γ)) if x = t (γ) for γ in Γ

1πΓ(s(x)) if x in Γ

x otherwise.

Such a Tietze transformation of a (3, 1)-polygraph is called the homotopical
reduction procedure.

LetX be a terminating 2-polygraph, with a termination order≤. A homotopi-
cal completion-reduction of X is a (3, 1)-polygraph, obtained as a homotopical
reduction, with respect to a collapsible part, of a homotopical completion of X.
Proposition 2.2.3.1 and Theorem 2.2.2.1 imply the following result.

Theorem 2.2.4.1. If X is a terminating 2-polygraph presenting a category C ,
then every homotopical completion-reduction of X is a coherent presentation of C .

2.2.5. A special case of reduction. We have just recalled the definition of
a generic collapsible part of a (3, 1)-polygraph X. For the applications considered
here, however, it is practical to also recall a particular technique, given in [26,
Subsection 3.2], to construct a collapsible part in the case where X is convergent
and coherent. A local triple branching is a three-element multiset {α, β, γ} of
rewriting steps having a common source:

v

u w

x

α

β

γ

.

A local triple branching is trivial if two of its elements are equal or if one of
its elements forms branchings of the type {αv, uβ}, for u = s (α) and v = s (β),
with the other two. In a manner analogous to the case of local branchings, local
triple branchings can be ordered by ‘inclusion’, and a minimal nontrivial local triple
branching is called critical.

Let X be a convergent and coherent (3, 1)-polygraph. A generating triple
confluence of X is a 3-sphere Φ whose boundary consists of the following two
parts:

v x′

u w û

x v′

αC

C
γ′α

β

γ

βC

βA

B′

A

γA

α′
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and

v x′

u w′ û

x v′

αC

αB
γ′α

B

γ

A′

β′

C ′γB

γA

α′

.

Here, {α, β, γ} is a critical triple branching, and the other cells are obtained in the
following way. Consider the branching {α, β}: use confluence to get the 2-cells αC
and βC ; then use coherence to get the 3-cell C. Similarly, treat the branchings
{β, γ} and {α, γ}. Then, consider the branching {αC , αB}: use convergence to
get the 2-cells γ′ and β′ which have the 1-cell û as their common target; then use
coherence to get the 3-cell A′. Treat the branching {γB ?1 β

′, γA} similarly. Finally,
use coherence to get the 3-cell B′.

The boundary of the 3-sphere Φ consist of generating 3-cells of X in context.
They have the shape zFz′ where F is a generating 3-cell and z and z′ are 1-cells.
If one of the generating 3-cells, say F , occurs only once (in the boundary of Φ)
and in an empty context (meaning z = z′ = 1), then Φ provides a definition of
F in terms of the other 3-cells involved. Thus, the 3-sphere Φ is collapsible, up
to a Nielsen transformation (transforming Φ into a 3-sphere having F as target).
The component Γ4 of a collapsible part can be constructed by iteratively examining
all the critical triple branchings and taking the collapsible 3-spheres, detected as
described above.

After constructing Γ4, proceed to construct Γ3 in the following way. For every
3-cell D of X>3 , consider its source and target, which are 1-composites of rewriting
steps zδz′, where δ is a generating 2-cell and z and z′ are 1-cells. If any such
δ occurs only once and with z = z′ = 1, then D is collapsible (up to a Nielsen
transformation). Iteratively examining all the 3-cells and taking the ones such
as D, the component Γ3 of a collapsible part can be constructed. Finally, Γ2 is
constructed by iteratively taking 2-cells whose source or target consists of a single
generating 1-cell occurring only once in the boundary.

We illustrate this technique by means of an example.

Example 2.2.5.1. Let us perform the homotopical reduction procedure on the
homotopical completion of the Klein bottle monoid, computed in Example 2.2.2.3.
We construct a collapsible part Γ = (Γ2,Γ3,Γ4). There is only one critical triple
branching, namely {αabab, baαab, babaα}. It yields the generating triple confluence
Φ whose boundary consists of the following two parts (we display the generating
3-cells A and B differently now, to make the generating triple confluence more
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evident):

aabab aabab

bababab baaab aaa

aabab

babaa baaab

Aab
aaααabab

baαab

babaα

βab

=

aaα
baA

baβ

βab

and

aabab aabab

bababab aaa aaa

aabab

babaa baaab

aaα
aaααabab

=

babaα

=

B
aaα

αaa

baβ

βab

.

Hence the component Γ4 of the collapsible part contains the 3-sphere Φ which
has the generating 3-cell B as target (recall that we implicitly perform a Nielsen
transformation when needed). By the definition of collapsible part, we also need to
provide a well-founded order relation on the set of generating 3-cells, such that, for
every 3-sphere γ in Γ4, the target of γ is strictly greater than every generating 3-cell
that occurs in the source of γ. So, we put B > A. Proceeding as described above,
we examine the remaining 3-cells and construct the component Γ3 out of those
3-cells whose boundary contains a generating 2-cell occurring only once. There is
only one generating 3-cell left, namely A, and the generating 2-cell β appears only
once in the boundary of A. So, Γ3 contains A, and we order the set of generating
2-cells by setting β > α. The component Γ2 is empty because there is no 2-cell
whose source or target consists of a single generating 1-cell appearing only once in
the boundary.

Therefore, after performing the homotopical reduction procedure with respect
to the collapsible part (∅,Γ3,Γ4), we are left with the presentation(

a, b
∣∣∣ bab α⇒ a

∣∣∣ ∅) ,
which is thus coherent by Theorem 2.2.4.1. Having a coherent presentation X with
the empty set of generating 3-cells means that any two parallel rewriting paths
represent the same 2-cell in X>3 .

Note that the homotopical reduction procedure, in general, does not preserve
convergence because it can remove generating 2-cells that enabled confluence, as
witnessed by the previous example.
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2.3. Garside’s coherent presentations of Artin-Tits and Garside
monoids

In this section, we recollect some results of [26, Section 3], namely two instances
of application of the homotopical completion-reduction procedure. We shall revisit
these examples in Subsection 2.5.1 since the theorems of [26, Section 3] are spe-
cial cases of the main result in the present chapter. Note that the homotopical
completion-reduction procedure was also applied to other examples (see [32] for
plactic and Chinese monoids).

2.3.1. Divisibility in categories. First, let us adopt a terminology concern-
ing divisibility in categories. Since categories here are regarded as generalisations of
monoids, morphisms will henceforth be called elements of a category (following [13,
Subsection II.1.1]). A category C is left-cancellative (resp. right-cancellative)
if, for all f , g and g′ in C , the equality fg = fg′ (resp. gf = g′f) implies the
equality g = g′. A category is cancellative if it is both left-cancellative and right-
cancellative.

An element f of a category C is said to be a left divisor of g in C , and g is
said to be a right multiple of f , denoted by f � g, if there is an element f ′ in
C such that ff ′ = g. If, additionally, f ′ is not invertible, then divisibility is called
proper, and written as f ≺ g.

If C is a left-cancellative category and f � g holds in C , then there is a unique
element f ′ in C such that ff ′ = g. Here, f ′ is called the right complement of
f in g.

For an element h of a left-cancellative category C and a subfamily S of C (i.e.
family of elements of C ), we say that h is a greatest common left divisor, or left-
gcd, (resp. least common right multiple, or right-lcm) of S if h � s (resp. s � h)
holds for all s in S and if every element of C that is a left divisor (resp. right
multiple) of all s in S is also a left divisor (resp. right multiple) of h. Left-gcds and
right-lcms are unique up to multiplication by an invertible element.

A (proper) right divisor, a left-lcm and a right-gcd are defined similarly.
We say that a left-cancellative category C admits conditional right-lcms if

each pair of elements having a common right multiple has a right-lcm.

2.3.2. Coxeter groups and Artin-Tits monoids. For elements s and t of
a set S, the element 〈st〉m of the free monoid S∗ is defined inductively by 〈st〉0 = 1

and 〈st〉m+1
= s 〈ts〉m. A Coxeter group W is a group generated by a finite set

S and subject to relations

(2.3.1)
{
s2 = 1, 〈st〉mst = 〈ts〉mst

∣∣ s, t ∈ S}
with (mst)s,t∈S being a symmetric matrix whose entries are positive integers or
∞ (here, mst = ∞ means that there is no given relation between s and t) and
whose diagonal entries are all equal to 1. Note that a Coxeter group can admit
several generating sets, but we always assume that such a set is fixed and totally
ordered. One defines the length |u| of an element u inW as the minimal length of an
S-word needed to represent the element u, which is consistent with the definition of
length (in monoids) given in Subsection 1.2.1 on page 11. The relations in (2.3.1),
other than the involutions, are called braid relations. The Artin-Tits monoid
B+ (W ) corresponding to a Coxeter group W is the monoid presented by

(2.3.2) 〈S | {〈st〉mst = 〈ts〉mst | s, t ∈ S}〉 .
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This presentation is called Artin’s presentation of an Artin-Tits monoid. The
Coxeter group W corresponding to an Artin-Tits monoid B+ (W ) is obtained by
adding an involution s2 = 1 for each generator s in (2.3.2). Since all the relations
in B+ (W ) are length-preserving, one can naturally define the length of an element
of B+ (W ) as the length of any S-word representing it. By Matsumoto’s lemma
([13, Corollary IX.1.11] or [28, Theorem 1.2.2]), two minimal-length expressions (as
products of elements of S) for an element inW can be obtained from one another by
braid relations alone, hence they represent the same element in B+ (W ). Therefore,
the canonical projection map π : B+ (W )→W has a canonical set-theoretic section
σ : W → B+ (W ). The image of σ consists of all the elements of the monoid B+ (W )
whose length is preserved by π. To simplify notation, we often identify elements of
im (σ) with their images under π. An Artin-Tits monoid is said to be of spherical
type, or spherical for short, if its corresponding Coxeter group is finite.

Artin-Tits monoids are cancellative (see [5, Proposition 2.3]). Furthermore, if
we regard w in W as an element of B+ (W ), by the canonical embedding provided
by Matsumoto’s lemma, then an equality uv = w in B+ (W ) implies that both u
and v are elements of W , which further implies that the condition |uv| = |u| + |v|
holds.

Artin-Tits monoids admit conditional right-lcms (see [5, Proposition 4.1]).
In a presentation of a category, a relation u = v is called an ε-relation if one

of the paths u and v is the empty path and the other one is not. By [13, Lemma
II.1.42], if a presentation of a category C contains no ε-relation, then C contains
no nontrivial invertible element. Note that a braid relation is not an ε-relation.
Hence, an Artin-Tits monoid has no nontrivial invertible element.

Example 2.3.2.1.
• Every free abelian monoid on a finite set is an Artin-Tits monoid because

commutativity relations are braid relations. It is of spherical type because
making generators involutive results in a finite Coxeter group.
• The braid monoid B+

n on n strands is the monoid presented by

(2.3.3) 〈σ1, . . . , σn−1 |σiσjσi = σjσiσj , |i− j| ≥ 2;σiσj = σjσi, |i− j| = 1〉 .

By definition, braid monoids are Artin-Tits monoids. The Coxeter group
corresponding to the braid monoid B+

n is the symmetric group Sn. So,
braid monoids are Artin-Tits monoids of spherical type.

2.3.3. Garside’s coherent presentation of Artin-Tits monoids. The
monoid B+ (W ) admits another presentation (see [28, Proposition 4.1.3]). Gar-
side’s presentation (see [46, Section 1]) of an Artin-Tits monoid B+ (W ), seen as a
2-polygraph and denoted by Gar2 (W ), has a single generating 0-cell, elements of
W \ {1} as generating 1-cells, and a generating 2-cell

αu,v : u|v ⇒ uv

for each pair (u, v) of elements of W \ {1} such that |uv| = |u| + |v| holds. Here,
u|v denotes the product in W ∗, whereas uv denotes the product in M . Note that
the number of generating 1-cells in Garside’s presentation of an Artin-Tits monoid
is finite if, and only if, the Artin-Tits monoid is of spherical type.

Remark 2.3.3.1. In this thesis, the letters u, v and w are commonly used to
denote words over a generating set (i.e. 1-cells). However, in the present subsection,
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these letters are actually used to denote only elements of a generating set (i.e.
generating 1-cells). The reason for this is the fact that elements of a Coxeter group,
which form a generating set for Garside’s presentation, are themselves words over
a generating set for Artin’s presentation (2.3.2). For consistency, we shall extend
this practice to the rest of the present section.

Now, let us recall the seminal example of application of the homotopical comple-
tion-reduction procedure.

Example 2.3.3.2. Let Gar3 (W ) denote the extended presentation of B+ (W )
obtained by adjoining to Gar2 (W ) a generating 3-cell

uv|w

u|v|w uvw

u|vw

αuv,w

Au,v,w

αu,v|w

u|αv,w αu,vw

for each triple (u, v, w) of elements ofW \{1} such that the equalities |uv| = |u|+|v|,
|vw| = |v| + |w| and |uvw| = |u| + |v| + |w| hold. By [26, Theorem 3.1.3], the
(3, 1)-polygraph Gar3 (W ) is a homotopical completion-reduction of Gar2 (W ) so,
by Theorem 2.2.4.1, it is a coherent presentation of B+ (W ).

The (3, 1)-polygraph Gar3 (W ) is called Garside’s coherent presentation of the
Artin-Tits monoid B+ (W ).

2.3.4. Garside monoids. Recall that a Garside monoid (see [13, Defini-
tion I.2.1]) is a pair (M,∆) such that the following conditions are satisfied:

(1) M is a cancellative monoid;
(2) there is a map λ : M → N such that λ (fg) ≥ λ (f) + λ (g) holds for all f

and g in M , and λ (f) = 0 implies f = 1;
(3) each pair of elements has a left-gcd, a right-gcd, a left-lcm and a right-lcm;
(4) there is an element ∆ in M , called the Garside element, such that the left

and the right divisors of ∆ coincide and they generate M ;
(5) the family of all divisors of ∆ is finite.

Observe that the second condition implies that M has no nontrivial (here meaning
different from 1) invertible element. Namely, λ (1) = λ (1 · 1) ≥ λ (1)+λ (1) implies
λ (1) = 0, whence fg = 1 implies 0 ≥ λ (f) +λ (g) which further implies f = g = 1.
Consequently, a left-gcd is unique in a Garside monoid. We write f ∧ g for the left-
gcd of f and g. For a (left) divisor f of ∆, we write ∂ (f) for the right complement
of f in ∆.

Example 2.3.4.1. The class of Garside monoids includes Artin-Tits monoids
of spherical type (see [17]) and, consequently, braid monoids (see [5]).

• In the free abelian monoid (Nn,+), the Garside element is ∆n = (1, . . . , 1).
• For the braid monoid B+

n , the Garside element ∆n (called the half-turn
braid) is defined inductively: ∆1 = 1, ∆2 = σ1, ∆n = ∆n−1σn−1 · · ·σ1

for n ≥ 2. Divisors of ∆n are called simple braids.
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Dual braid monoids (to be recalled in Subsection 2.6.4) make another important
family of Garside monoids.

For more examples, see [13, Examples I.2.7 and I.2.8].

2.3.5. Greedy decomposition. As mentioned in Subsection 1.1.1, Garside
monoids were introduced in order to axiomatise the greedy normal form that was
observed in braid monoids. In a Garside monoid (M,∆), a word u1| · · · |um, with
u1, . . . , um being divisors of ∆, is said to be ∆-normal if, for all i < m,

(2.3.4) for all h ∈M \ {1} , h � ui+1 implies uih � ∆,

and it is said to be strict if, additionally, um is not equal to 1.
A (strict) ∆-normal decomposition of g in M is a (strict) ∆-normal word rep-

resenting g with respect to the generating set consisting of all divisors of ∆. Note
that the strict ∆-normal decomposition of 1 is the empty word. Let us examine how
to compute a ∆-normal decomposition of g in M represented by a length-two word
u|v that is not ∆-normal. Notice that, in the length-two case, the condition (2.3.4)
translates to ∂ (u)∧ v = 1. Indeed, u|v is ∆-normal if, and only if, there is no non-
trivial left divisor h of v such that uh is a divisor of ∆ (or, equivalently, h � ∂ (u)).
Hence, a procedure can be established to find a ∆-normal decomposition of g, as
follows. If there is a nontrivial left divisor h of v such that h � ∂ (u), then ∂ (u)∧ v
is nontrivial too. A ∆-normal form of g is obtained in a single step by replacing u
and v respectively with u′ = u (∂ (u) ∧ v) and the right complement v′ of ∂ (u) ∧ v
in v. Thus we have rewritten u|v to u′|v′, which is ∆-normal. This step is called
local sliding in [27, Subsection 2.2] as (∂ (u) ∧ v) ‘slides’ from v to u.

For a strict ∆-normal decomposition, one further distinguishes two cases:

• ∂ (u) ∧ v = v, in which case v′ is equal to 1, and u′ = uv is returned as a
length-one strict ∆-normal decomposition of g;
• ∂ (u) ∧ v properly divides v, in which case u′|v′ is a strict ∆-normal de-

composition of g.

The condition (2.3.4) says that ui is the maximal divisor of ∆ that left-divides
uiui+1 · · ·um (hence this decomposition is called greedy, a term to be formally
recalled in Subsection 2.4.3), as illustrated by the following simple example.

Example 2.3.5.1. Let us compute a strict ∆3-normal decomposition of the
element g = (2, 1, 3) of the free abelian monoid N3. The maximal divisor of ∆ that
left-divides g is ∆3. The right complement of ∆3 in g is (1, 0, 2). The maximal
divisor of ∆ that left-divides (1, 0, 2) is (1, 0, 1). The right complement of ∆3 in g
is (0, 0, 1), which is a divisor of ∆. The decomposition, therefore, is complete. De-
noting the generators (1, 0, 0), (0, 1, 0) and (0, 0, 1) of N3 by a, b and c, respectively,
gives a2bc3 = abc|ac|c.

The main idea is that the finite lattice formed by divisors of ∆ reveals the
structure of the entire Garside monoid, as expressed by the following result.

Proposition 2.3.5.2 ([12, Proposition 2.4]). If (M,∆) is a Garside monoid,
then every g in M admits a unique strict ∆-normal decomposition.

We refer the reader to [12, Subsection 2.2] for an overview of the computational
properties of the ∆-normal form.
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2.3.6. Garside’s coherent presentation of Garside monoids. Garside’s
presentation of a Garside monoid M is the 2-polygraph Gar2 (M), having divisors
of ∆ other than 1 as generating 1-cells and a generating 2-cell αu,v : u|v ⇒ uv
whenever the condition ∂ (u) ∧ v = v is satisfied.1 Here, u|v denotes the product
in the free monoid over the set of proper divisors of ∆, whereas uv denotes the
product in M . It is easily verified that Gar2 (M) is, indeed, a presentation of M ,
because uv is the strict (we leave out the 1 from uv|1) ∆-normal form of u|v if, and
only if, the condition ∂ (u) ∧ v = v holds.

Having noticed in the previous subsection that, in the case of a length-two word
u|v, the condition (2.3.4) of being ∆-normal amounts to ∂ (u)∧ v = 1 , we can take
the condition ∂ (u) ∧ v = v here to mean ‘as far as possible from being ∆-normal’.

Example 2.3.6.1. We want to describe the extended presentation Gar3 (M),
which is introduced in [26, 3.3.2].2 To that end, we are going to reformulate the
condition ∂ (u)∧ v = v in a suitable way, in order to generalise it to three elements.
Let us first notice that the condition ∂ (u) ∧ v = v is equivalent to saying that v
is a left divisor of ∂ (u). In other words, there is an element w in M such that
vw = ∂ (u). By definition of ∂ (u), this means that uvw = ∆, so uv and w are
divisors of ∆. This reformulation allows us to extend the given condition to a
greater number of elements. Let Gar3 (M) denote the extended presentation of M
obtained by adjoining to Gar2 (M) a generating 3-cell

uv|w

u|v|w uvw

u|vw

αuv,w

Au,v,w

αu,v|w

u|αv,w αu,vw

for each triple (u, v, w) of divisors of ∆, not equal to 1, such that uv, vw and uvw
are divisors of ∆. By [26, Theorem 3.3.3], Gar3 (M) is a homotopical completion-
reduction of Gar2 (M) so, by Theorem 2.2.4.1, it is a coherent presentation of M .

2.4. Garside families

The present section briefly recollects the basic notions and results concerning
Garside families (for technical elaboration, see the monograph [13]).

2.4.1. Motivation for Garside family. Introducing Garside monoids gener-
alised spherical Artin-Tits monoids (and a fortiori braid monoids) and axiomatised
properties allowing the greedy decomposition. Shortly afterwards, a further exten-
sion was invited by the examples that were not Garside monoids but whose elements
nevertheless admitted decompositions similar to the ∆-normal decomposition (pro-
vided by Proposition 2.3.5.2).

Free abelian monoids over infinite basis, infinite braids, the Klein bottle group,
ribbon categories, among others, fail to fit in the frame of Garside monoids, yet
they do grant decompositions structurally identical to the greedy decomposition.
Such examples suggested seeking more general requirements which a subfamily of

1There is a typo in [26, 3.3.2], where it is written ∂ (u) ∧ v = 1 instead of ∂ (u) ∧ v = v.
2Conditions for the generating 3-cells of Gar3 (M) are omitted in [26, 3.3.2].
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a category has to meet in order to guarantee the existence of a decomposition such
as the ∆-normal decomposition.

Some of these examples will be recollected in Section 2.6 and more can be found
in [13, Section I.3].

2.4.2. Right-mcms. Let C be a left-cancellative category and, let S be a
subfamily of C . The left-divisibility relation � is a preorder of elements; it is an
order if, and only if, C has no nontrivial invertible element.

A subfamily S of a left-cancellative category C is said to be closed under
right comultiple if every common right multiple of two elements s and t of S (if
there is any) is a right multiple of a common right multiple of s and t that lies in
S.

For f and g in a category C , a minimal common right multiple, or right-mcm,
of f and g is a right multiple h of f and g, such that no proper left divisor of h is a
common right multiple of f and g. A category C admits right-mcms if, for all f
and g of C , every common right multiple of f and g is a right multiple of some right-
mcm of f and g. Observe that, in a left-cancellative category admitting conditional
right-lcms, the notions of a right-mcm and right-lcm coincide. Let us state a rather
basic observation about right-mcm in a left-cancellative monoid, which we will use
in one step of the main proof in Subsection 2.5.3. The following lemma is similar
to [35, Lemma 11.24], which deals with lcms, whereas here it suffices to consider
mcms, under weaker assumptions.

Lemma 2.4.2.1. Let M be a left-cancellative monoid. If v′ is a right-mcm of
v1 and v2 in M , then uv′ is a right-mcm of uv1 and uv2 for every u in M .

Proof. Let x1 and x2 denote the right complements in v′ of v1 and v2, re-
spectively. Note that uv′ is a common right multiple of uv1 and uv2, namely,
uv1x1 = uv′ = uv2x2. Assume that there is a common right multiple f of uv1 and
uv2 such that f is a proper left divisor of uv′. Then there exist elements f1, f2 and
a non-invertible element g in M satisfying uv1f1 = f = uv2f2 and fg = uv′. By
the left cancellation property, the equations uvkfkg = uv′ yield vkfkg = v′ for k in
{1, 2}. Thus we obtain the common right multiple v1f1 = v2f2 of v1 and v2, which
is a proper left divisor of v′. This contradicts the fact that v′ is a right-mcm of v1

and v2. Therefore, uv′ is a right-mcm of uv1 and uv2. �

Relying on [13, Propositions II.2.28 and II.2.29], we say that a left-cancellative
category C is left-noetherian (resp. right-noetherian) if for every g in C ,
every increasing sequence of right (resp. left) divisors of g with respect to proper
right divisibility (resp. left divisibility) is finite. A left-cancellative category C is
noetherian if it is both left-noetherian and right-noetherian.

Example 2.4.2.2.
• Proper division, left or right, strictly reduces the length of an element of

an Artin-Tits monoid. Therefore, no element admits an infinite number
of divisors, so Artin-Tits monoids are noetherian.

• Garside monoids are noetherian by definition (thanks to the map λ : M →
N).

• For an example of a monoid that is right-noetherian but not noetherian,
we refer to reader to the lifted omega monoid given in [13, Exercises II.14
and IV.46].
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2.4.3. Garside families. In this subsection, we recollect the definition and
some basic properties of the all-important notion of Garside family, which provides
a way of extending the notion of greedy decomposition beyond Garside monoids.

For a subfamily S of a left-cancellative small category C , a C -path f1| · · · |fm
is said to be S-greedy if, for all i < m,

(2.4.1) for all s ∈ S and h ∈ C , s � hfifi+1 implies s � hfi.

This property can be expressed diagrammatically as follows. Commutativity of the
diagram

• •

• • •

s

h
fi fi+1

without the dashed arrow implies the existence of a dashed arrow making the
square (and thus also the triangle) commute. The arc joining fi and fi+1 denotes
greediness.

By definition, a path of length 0 or 1 is S-greedy for any subfamily S. The
following result observes an immediate but important consequence of the definition
of S-greedy C -path.

Lemma 2.4.3.1 ([14, Lemma 2.12]). Let S be a subfamily of a left-cancellative
category C . If a C -path f1| · · · |fm is S-greedy, then the length-two C -path f1|f2 · · · fm
is S-greedy, as well.

Proof. Suppose that s � hf1 (f2 · · · fm) for some s in S and h in C . The idea
is to use associativity to group together all factors except the last two, then to use
the fact that the remaining pair is S-greedy. Namely, s � (hf1f2 · · · fm−2) fm−1fm
implies s � (hf1f2 · · · fm−2) fm−1. We repeat this process until we get s � (h) f1f2

which implies s � hf1. Therefore, f1|f2 · · · fm is S-greedy. �

Let C× denote the family of all invertible elements of C . For a subfamily S of
C , a C -path r1| · · · |rm is said to be S-normal if it is S-greedy and if, moreover,
r1, . . . , rm lie in SC× ∪ C×. An S-normal path r1| · · · |rm is called strict if, addi-
tionally, r1, . . . , rm−1 lie in S \ C× and rm lies in in SC× \ C×. In (other) words,
an S-normal path is strict if all its components are non-invertible and if all, except
possibly the last one, lie in S.

An S-normal decomposition of f in C is an S-normal path r1| · · · |rm such that
f = r1 · · · rm holds in C . In general, an S-normal decomposition of an element
is not unique. Nevertheless, the number of non-invertible letters is the same in
all S-normal decompositions of f (see [14, Proposition 2.11] or [13, Proposition
III.1.25] for exposition). This motivates the following notion. For a subfamily S
of a left-cancellative category C and an element f of C admitting at least one S-
normal decomposition, the S-length of f is defined as the common number of non-
invertible letters in all S-normal decompositions of f . The next subsection will show
that the S-length concurs with the length in monoids, as given in Subsection 1.2.1
on page 11 (and, in particular, with the lengths in Coxeter groups and Artin-Tits
monoids, mentioned in Subsection 2.3.2).
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Definition 2.4.3.2. A subfamily S of a left-cancellative small category C is
called a Garside family in C if every element of C admits an S-normal decom-
position.

Since every left-cancellative category C is a Garside family in itself (for every
f in C , simply take the length-one word f as a C -normal decomposition of f), we
are interested only in proper (meaning other than C itself) Garside families.

Example 2.4.3.3.
• The Coxeter group W corresponding to a Artin-Tits monoid B+ (W ) is

a, possibly infinite, Garside family in B+ (W ).
• Every Artin-Tits monoid admits a finite Garside family (see [15]). In the

case of an Artin-Tits monoid of spherical type, a finite Garside family is
given by the corresponding Coxeter group. In the particular case of a
braid monoid, the family of all simple braids is a Garside family.

• Every Garside monoid (M,∆) has a finite Garside family given by the
family of all divisors of ∆ (see [14, Proposition 2.18] or [13, Proposition
III.1.43]).

More examples will be presented in Section 2.6. The following proposition gives a
simple characterisation of a Garside family.

Proposition 2.4.3.4 ([14, Proposition 3.1] or [13, Proposition III.1.39]). A
subfamily S of a left-cancellative category C is a Garside family if, and only if,
the following conjunction holds: SC×∪C× generates C and every length-two word
over SC× ∪ C× admits an S-normal decomposition.

We recall another characterisation of Garside family, which we will invoke in
Subsection 2.5.3. More characterisations of Garside families can be found in [14,
Subsetion 3.2] or [13, Subsection IV.1.2].

Proposition 2.4.3.5 ([14, Proposition 3.9]). Let C be a left-cancellative cate-
gory. A subfamily S of C is a Garside family if, and only if, the following conditions
are satisfied:

• SC× ∪ C× generates C ,
• it is closed under right comultiple and right divisor,
• and evaluation of every non-invertible length-two word over SC× ∪ C×

admits a ≺-maximal left divisor in S.

Let us recall another result to be used in Subsection 2.5.3.

Lemma 2.4.3.6 ([13, Lemma IV.2.24]). Let C be a left-cancellative category. If
C admits right-mcms, then, for every subfamily S of C , the following are equivalent.

• The family S is closed under right comultiple.
• The family SC× ∪ C× is closed under right-mcm, i.e. if f and g lie
in SC× ∪ C×, then so does every right-mcm of f and g.

2.4.4. Special case of left-cancellative monoids with no nontrivial in-
vertible element. In the case of a left-cancellative monoidM having no nontrivial
invertible element, the normality conditions simplify to the following. For a sub-
family S of M , an M -word r1| · · · |rm is called S-normal if it is S-greedy and if,
moreover, all r1, . . . , rm lie in S. An S-normal word r1| · · · |rm is strict if, addition-
ally, rm 6= 1. Therefore, under the given restrictions, the existence of an S-normal
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form implies the existence of a strict one. Furthermore, by [12, Lemma 3.5], every
element admits at most one strict S-normal decomposition.

Proposition 2.4.4.1 ([12, Proposition 3.10]). Let M be a left-cancellative
monoid containing no nontrivial invertible element, and let S be a Garside family
in M . Then, for every S-word v, there exists a unique S-normal word NS (v) that
represents the same element as v and has the same length as v.

Observe that, consequently, the S-length agrees with the length (for monoids)
given in Subsection 1.2.1 on page 11.

For a Garside family S in a left-cancellative monoid M with no nontrivial
invertible element, the normalisation map derived from the Garside family
S is the length-preserving map NS : S∗ → S∗ which assigns to each v in S∗ \ {1}
the S-normal decomposition of the element ofM represented by v; and NS (1) = 1.
It is well defined due to Proposition 2.4.4.1. The following result provides an
important property of S-normal decomposition. It is a straightforward extension
of [16, Lemma 6.9], which deals with length-two S-words, to all S-words.

Lemma 2.4.4.2. Let M be a left-cancellative monoid having no nontrivial in-
vertible element, and let S be a Garside family in M . Then, for every word v in
S∗, the leftmost letter of v is a left divisor of the leftmost letter of NS (v).

Proof. Let r1| · · · |rm be the word NS (v). Since v and r1|r2 · · · rm evaluate to
the same element of M , the leftmost letter of v is a left divisor of r1 (r2 · · · rm). By
Lemma 2.4.3.1, the length-two M -word r1|r2 · · · rm is S-greedy. Hence, the desired
conclusion follows. �

A property granted by Lemma 2.4.4.2, but limited to S-words of length 2, is
called left-weightedness and will be revisited in a more general framework in
Subsection 3.3.5.

A Garside family yields a presentation in the following sense.

Proposition 2.4.4.3 ([16, Proposition 6.17] or [29, Corollary 6.6.4]). Let M
be a left-cancellative monoid containing no nontrivial invertible element, and let
S be a Garside family in M . Then M admits, as a convergent presentation, the
2-polygraph that contains a single generating 0-cell, one generating 1-cell for each
element of S \ {1}, and one generating 2-cell of the form

(2.4.2) s|t⇒ the strict S-normal decomposition of s|t
for each pair s, t in S \ {1} such that s|t is not S-normal. In particular, every
Artin-Tits monoid admits a finite convergent presentation.

A Garside family also induces a ‘smaller’ presentation, beside the one provided
by Proposition 2.4.4.3, which will be instrumental in deriving a main result in the
next section. The following proposition is an adaptation of [16, Proposition 6.15]
using [16, Proposition 6.10].

Proposition 2.4.4.4. Let M be a left-cancellative monoid containing no non-
trivial invertible element, and let S be a Garside family containing 1 in M . Then
M admits, as a presentation, the 2-polygraph Gar2 (S) that contains a single gen-
erating 0-cell, one generating 1-cell for each element of S \ {1}, and one generating
2-cell of the form

(2.4.3) s|t⇒ st
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for each pair s, t in S \ {1} such that the product st in M lies in S.

Proof. Proposition 2.4.4.3 grants a presentation of M in terms of S by the
relations (2.4.2). In this paragraph, we want to show that the relations (2.4.3)
are included in the relations (2.4.2). If s and t in S \ {1} are such that st lies in
S \ {1}, then the strict S-normal decomposition of s|t is st. Otherwise, st = 1
holds and the strict S-normal decomposition of s|t is 1. In both cases, the strict
S-normal decomposition of s|t is st. Hence, the relations (2.4.3) are included in the
relations (2.4.2).

Conversely, let us show that each relation (2.4.2), with s and t in S\{1}, follows
from a finite number of relations (2.4.3). Assume that s and t lie in S \ {1} and
let s′|t′ := NS (s|t). If t′ = 1 holds, then s′ = st, which is a (2.4.3) relation, so
the result is true in this case. Otherwise, Lemma 2.4.4.2 implies that there exists
r in M , satisfying sr = s′, which is a (2.4.3) relation. Indeed, being a right divisor
of s′ in S, the element r also lies in S by Proposition 2.4.3.5. Multiplying the
equality sr = s′ by t′ on the right yields srt′ = s′t′ = st. Then the left cancellation
property of M implies rt′ = t, which is a (2.4.3) relation. Therefore, the relation
s|t = s|r|t′ = s′|t′ follows from the relations s|r = s′ and r|t′ = t. �

The 2-polygraph Gar2 (S) is calledGarside’s presentation ofM , with respect
to Garside family S. We study it in the next section. Here, let us just observe that it
extends Garside’s presentation of Artin-Tits monoids, recalled in Subsection 2.3.3.

Example 2.4.4.5. Garside’s presentation Gar2 (W ) of an Artin-Tits monoid
B+ (W ) is an instance of a Garside’s presentation Gar2 (S) with respect to a Garside
family S. Indeed, the Artin-Tits monoid B+ (W ) is a cancellative monoid (see [5])
with no nontrivial invertible element, and the Coxeter group W is a Garside family
containing 1. Hence, B+ (W ) meets all the requirements of Proposition 2.4.4.4,
which, for this particular Garside family as input for S, produces precisely Garside’s
presentation Gar2 (W ).

Example 2.4.4.6. Garside’s presentation Gar2 (M) of a Garside monoid M is
another instance of a Garside’s presentation with respect to a Garside family S.
Namely, a Garside monoid is cancellative, by definition. Note that the property (2)
of Garside monoid implies that it has no nontrivial invertible element. All the
divisors of ∆ form a Garside family containing 1. Hence, M meets all the require-
ments of Proposition 2.4.4.4, which, for this particular Garside family as input for
S, produces precisely Garside’s presentation Gar2 (M).

2.5. Coherent presentations from Garside families

Having recalled necessary notions and results in previous sections, in this sec-
tion we present new results. Subsection 2.5.1 gives the statement and sketches
a proof of Theorem 2.5.1.4, a main result in the present chapter, which gives a
construction of coherent presentations for a class of monoids admitting a Gar-
side family, thus providing a unifying generalisation of theorems recalled in Exam-
ples 2.3.3.2 and 2.3.6.1 concerning Artin-Tits and Garside monoids, respectively.
Subsections 2.5.2, 2.5.3 and 2.5.4 aim to prove Theorem 2.5.1.4 by respectively
providing termination, homotopical completion and homotopical reduction, start-
ing with Garside’s presentation Gar2 (S). In Subsection 2.5.5, the necessity of
noetherianity is illustrated by means of example.
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For the rest of this chapter, we shall resume the practice observed in Re-
mark 2.3.3.1 of using the letters u, v, w to denote generators rather than words.

2.5.1. Main statement and sketch of proof. In this subsection, we adapt
some notation from [26] and set a suitable noetherianity condition. Then we state
Theorem 2.5.1.4.

Let M be a monoid generated by a set S containing 1. We define the notations
u v and u v× , as follows. Given two elements u and v of S \ {1}, write:

u v ⇐⇒ uv ∈ S,
u v× ⇐⇒ uv /∈ S.

The notation extends to a greater number of elements. For three elements u, v, w
in S, we write u v w if both conditions u v and v w hold. The case u v w
splits into two mutually exclusive subcases:

u v w ⇐⇒
(
u v w and uvw ∈ S

)
,

u v w
×

⇐⇒
(
u v w and uvw /∈ S

)
.

Let us formally redefine symbols Gar2 and Gar3 in a more general context,
as follows. The 2-polygraph Gar2 (S) contains: a single generating 0-cell; one
generating 1-cell for every element of S \ {1}; one generating 2-cell of the form

αu,v : u|v ⇒ uv

for each pair (u, v) of elements of S \ {1} such that u v holds. Here, u|v denotes
the product in S∗, whereas uv denotes the product in M . The (3, 1)-polygraph
Gar3 (S) is consisting of the 2-polygraph Gar2 (S) and the generating 3-cells of the
form

uv|w

u|v|w uvw

u|vw

αuv,w

Au,v,w

αu,v|w

u|αv,w αu,vw

for each triple (u, v, w) of elements of S \ {1} such that u v w .

Remark 2.5.1.1. Note that the 2-polygraph Gar2 (S) is not a presentation
of M , in general. Consequently, since Gar3 (S) is an extended presentation of a
monoid presented by Gar2 (S), it is not necessarily an extended presentation of M .
Proposition 2.4.4.4 gives sufficient conditions for Gar2 (S) to be a presentation of
M , thus making Gar3 (S) an extended presentation of M .

To formulate the main result, we need a restriction of right noetherianity to a
Garside family.
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Definition 2.5.1.2. A Garside family S in a left-cancellative monoidM is said
to be right-noetherian if for every s in S, every increasing sequence of proper left
divisors in S of s with respect to proper left divisibility is finite.3

Example 2.5.1.3. Every Garside family in a right-noetherian left-cancellative
monoid M is right-noetherian. In Subsection 2.5.5, we shall see an example of a
Garside family that is not right-noetherian.

Now, we state the main result of this chapter.

Theorem 2.5.1.4. Let M be a left-cancellative monoid containing no nontriv-
ial invertible element, and let S be a Garside family containing 1 in M . If S is
right-noetherian, and if M admits right-mcms, then M admits the (3, 1)-polygraph
Gar3 (S) as a coherent presentation.

Remark 2.5.1.5. Results of [13, Subsection IV.2.2] enable us to rephrase The-
orem 2.5.1.4 by referring to a right-noetherian monoid rather than just a right-
noetherian Garside family. However, we prefer the above formulation since it agrees
better with the rather formal construction of a homotopical completion which we
will give in Subsection 2.5.3.

Before we proceed to prove the theorem, let us show that it gives a common
generalisation of the two distinct directions of extension, given in [26], of Deligne’s
result [19, Theorem 1.5].

Corollary 2.5.1.6 ([26, Theorem 3.1.3]). For every Coxeter group W , the
Artin-Tits monoid B+ (W ) admits Gar3 (W ) as a coherent presentation.

Proof. Let us restrict the conditions u v and u v w , defined in the
beginning of the current subsection, to the case of the Artin-Tits monoid B+ (W ),
with the Coxeter group W as a Garside family S. Observe that, for u, v in W \{1},
the condition u v amounts to the condition |uv| = |u|+|v| given in Example 2.3.3.2
(see Matsumoto’s lemma, e.g. [13, Corollary IX.1.11]). Accordingly, the condition

u v w becomes the conjunction of u v and v w and |uvw| = |u| + |v| + |w|.
Recall from Section 2.3 that Artin-Tits monoids are cancellative and noetherian
(Example 2.4.2.2), and that they contain no nontrivial invertible element. Note
that they also admit right-mcms: in fact, they admit conditional right-lcms ([5,
Proposition 4.1]). Consequently, Theorem 2.5.1.4 specialises to [26, Theorem 3.1.3]
when a monoid considered is Artin-Tits with Coxeter group as a Garside family. �

Similarly, one shows that Theorem 2.5.1.4 specialises to [26, Theorem 3.3.3]
when a monoid considered is Garside with S being the set of divisors of the Garside
element.

Corollary 2.5.1.7 ([26, Theorem 3.3.3]). Every Garside monoid M admits
Gar3 (M) as a coherent presentation.

3Technically, we can drop the condition that the family S is Garside and relax the finiteness
condition by considering only such sequences with every quotient (of a member of the sequence
by its predecessor) also lying in S. However, for simplicity, we already assume that S is Garside
family (since that will be the case in applications, anyway), so the quotients automatically lie in
S due to the closure under right divisor.
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Proof. If we restrict the conditions u v and u v w to the case of a Garside
monoid (M,∆), with divisors of ∆ making a Garside family S, then we get precisely
our equivalent reformulation, given in Example 2.3.6.1, of the conditions stated in

[26, Subsection 3.3]. Literally, the condition u v w then says that uv is a divisor
of ∆. Garside monoids are cancellative by definition. Note that the property (2)
of a Garside monoid (see Subsection 2.3.4) implies noetherianity as well as the fact
that there is no nontrivial invertible element. They also admit right-mcms: in fact,
they admit right-lcms (by definition). �

The following diagram summarises key steps of the proof of Theorem 2.5.1.4
and thus motivates the next three subsections which together contain the proof.

Gar3(S)
coherent, reduced

Gar3(S)
coherent, convergent

Gar2(S)
terminating

Gar2(S)
convergent

homotopical
reduction

Knuth-Bendix
completion

homotopical

completion-reduction

Squier

completion

In Subsection 2.5.2, Garside’s presentation Gar2 (S) of M is extended with
the generating 2-cells β, which results in a terminating presentation Gar2 (S). In
fact, Gar2 (S) is a convergent presentation, namely a Knuth-Bendix completion of
Gar2 (S). The proof of confluence of Gar2 (S) is postponed until Subsection 2.5.3,
but looking ahead prompts us to begin Subsection 2.5.2 with a formal definition of
the 2-polygraph Gar2 (S).

In Subsection 2.5.3, a Squier completion of the polygraph Gar2 (S) is computed
formally, under certain assumptions on the monoid. The resulting (3, 1)-polygraph
is denoted by Gar3 (S). It is then shown that this construction applies to a ter-
minating presentation of the monoid M given in the statement of Theorem 2.5.1.4
and produces a coherent convergent presentation Gar3 (S).

Finally, in Subsection 2.5.4, a homotopical reduction of Gar3 (S) is computed
resulting in the (3, 1)-polygraph Gar3 (S) as a coherent presentation of M .

2.5.2. Attaining termination. In this subsection, we ensure that a certain
presentation, denoted by Gar2 (S), is terminating. This presentation will arise nat-
urally (in the next subsection) as a result of applying the Knuth-Bendix completion
procedure to Garside’s presentation Gar2 (S). Hence the motivation for the formal
definition of the 2-polygraph Gar2 (S) here.

Let M be a monoid generated by a subset S containing 1. Observe that the
2-polygraph Gar2 (S) has exactly one critical branching for all u, v and w of S \{1}
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such that u v w holds:
uv|w

u|v|w

u|vw

αu,v|w

u|αv,w

.

If the subcase u v w holds, then the branching is already confluent. Otherwise
u v w
×

holds, and the branching requires a new generating 2-cell to reach conflu-
ence, so the generating 2-cell βu,v,w : u|vw ⇒ uv|w is adjoined. We write Gar2 (S)
for the 2-polygraph that contains a single generating 0-cell, one generating 1-cell
for every element of S \ {1}, and the generating 2-cells

αu,v : u|v ⇒ uv, u, v ∈ S \ {1} , u v,

βu,v,w : u|vw ⇒ uv|w, u, v, w ∈ S \ {1} , u v w
×

.

To show that the 2-polygraph Gar2 (S), under certain conditions, is a Knuth-
Bendix completion of the 2-polygraph Gar2 (S), we need to ensure two things: a
way to maintain a terminating presentation in the sense of Remark 2.2.1.2, and a
demonstration that all new critical branchings caused by the generating 2-cells β
are confluent. These are respectively given by Proposition 2.5.2.1, and the proof of
Proposition 2.5.3.1.

Proposition 2.5.2.1. Let M be a left-cancellative monoid containing no non-
trivial invertible element, and let S be a Garside family containing 1 in M . If S is
right-noetherian, then the 2-polygraph Gar2 (S) is terminating.

Proof. Let us first adopt some notation, to facilitate exposition. For an
S-word x, we write h (x) for the leftmost letter of x, and t (x) for the word ob-
tained from x by removing the letter h (x). For a generating 2-cell χ, a χ-step is a
rewriting step in which the generating 2-cell is χ, and χi is a χ-step

• • • •z
x

y

χ z′ ,

where z is an S-word of length i − 1. For an infinite sequence of positive integers
i1|i2| · · · , we denote the path · · · ◦ χi2 ◦ χi1 by χi1|i2|···.

Having introduced the needed notation, we proceed to prove the proposition.
Suppose that there is an infinite rewriting path. Note that an α-step strictly reduces
the (S \ {1})-length of a word. So, in every rewriting path, there can be only finitely
many of the generating 2-cells α. Hence, there is no loss in generality if we consider
only β-steps. Namely, we can simply consider an infinite path after the last α-
step is applied and we are left with an infinite path composed out of β-steps only.
Suppose, then, that there is an infinite rewriting path consisting of β-steps. Let
βi1|i2|··· be such a path having source x of minimal (S \ {1})-length. Note that |x|,
the length of x, is at least 2.
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The minimality assumption about |x| implies that the number 1 occurs infin-
itely many times in the sequence i1|i2| · · · . In other words, infinitely many gener-
ating 2-cells β of the path modify letters at the leftmost position. Indeed, if the
number 1 occurred only finitely many times in i1|i2| · · · , then, denoting the last
occurrence of 1 by iq, we would have an infinite path of β-steps βiq+1−1|iq+2−1|···,
starting at the word t

(
βi1|i2|···|iq (x)

)
, whose (S \ {1})-length would equal |x| − 1.

But that would contradict the minimality assumption about |x|. Therefore, the
number 1 occurs infinitely many times in the sequence i1|i2| · · · .

We write ic1 |ic2 | · · · for the constant subsequence of the sequence i1|i2| · · ·
taking all the members whose value equals 1. To be specific, denote by c1 the
least d such that id = 1; and, for all p in N, denote by cp+1 the least d such that
the conditions d > cp and id = 1 hold.

Let x(m) denote the mth word in the path βi1|i2|···, i.e. the source of the step
βim . Notice that the leftmost letter of a word is modified by the step βim if, and
only if, im equals 1. In this case, the modification is such that the current leftmost
letter h

(
x(m)

)
is a proper left divisor of the next leftmost letter h

(
x(m+1)

)
, and

the corresponding complement lies in S \ {1} by the definition of the generating
2-cell β. In formal terms,

(2.5.1) h
(
x(m+1)

)
=

{
h
(
x(m)

)
if im 6= 1,

h
(
x(m)

)
um for some um ∈ S \ {1} if im = 1.

Let r denote the leftmost letter of the S-normal form of x. Notice that all the
words in the path βi1|i2|··· have the same evaluation in M and that, consequently,
the equality NS (x) = NS

(
x(m)

)
holds for all m by the definition of NS . Hence,

Lemma 2.4.4.2 implies that h
(
x(m)

)
is a left divisor of r for all m.

Consider the sequence

(2.5.2)
(

h
(
x(cp)

))∞
p=1

of elements of S that divide r. Observe that, by (2.5.1), we have h
(
x(cp+1)

)
=

h
(
x(cp)

)
ucp . Since ucp lies in S \ {1} and there is no nontrivial invertible element,

h
(
x(cp)

)
is a proper left divisor of h

(
x(cp+1)

)
. Therefore, the existence of the

sequence (2.5.2) contradicts the fact that the Garside family S is right-noetherian.
We conclude that the 2-polygraph Gar2 (S) is terminating. �

2.5.3. Homotopical completion of Garside’s presentation. In this sub-
section, we enrich Garside’s presentation to reach a coherent convergent presenta-
tion. First we compute purely formally, in Proposition 2.5.3.1, a homotopical com-
pletion of a terminating presentation of a monoid satisfying certain conditions, but
not presumed to have a proper Garside family. Then we show, in Corollary 2.5.3.5,
that this provides a coherent convergent presentation of a left-cancellative monoid
containing no nontrivial invertible element, admitting right-mcms and a right-
noetherian Garside family containing 1.

Proposition 2.5.3.1. Let M be a left-cancellative monoid admitting right-
mcms, and let S be a subfamily of M . Assume that S is closed under right-mcm
and right divisor, and assume that the 2-polygraph Gar2 (S) is a terminating pre-
sentation of M . Then M admits, as a coherent convergent presentation, the (3, 1)-
polygraph Gar3 (S) which extends Gar2 (S) with the following twelve families of
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generating 3-cells, indexed by all possible elements of S \ {1} (i.e. for which all the
generating 2-cells involved are defined):

uv|w

u|v|w uvw

u|vw

αuv,w

Au,v,w

αu,v|w

u|αv,w αu,vw

u|v|w uv|w

u|vw

αu,v|w

u|αv,w

Bu,v,w

βu, v, w

uv|wx

u|v|wx uvw|x

u|vw|x

βuv,w,x

Cu,v,w,x

αu,v|wx

u|βv,w,x αu,vw|x

u|v|wx uv|wx

u|vw|x uv|w|x

αu,v|wx

u|βv,w,x
βu,v,w|x

Du,v,w,x

uv|αw,x

uv|w|x

u|vw|x uv|wx

u|vwx

uv|αw,x

Eu,v,w,x

βu,v,w|x

u|αvw,x βu,v,wx

uv|w|x uv|wx

u|vw|x uvwx

u|vwx

uv|αw,x
αuv,wxβu,v,w|x

u|αvw,x

E′u,v,w,x

αu,vwx

uv|w|xy

u|vw|xy uv|wxy

u|vwx|y uv|wx|y

Fu,v,w,x,y

uv|αw,xyβu,v,w|xy

u|βvw,x,y
βu,v,wx|y

uv|αwx,y

uv|w|xy uv|wxy

u|vw|xy uvwx|y

u|vwx|y

uv|αw,xy
βuv,wx,yβu,v,w|xy

u|βvw,x,y

F ′u,v,w,x,y

αu,vwx|y

uv|w|xy

u|vw|xy uv|wx|y

u|vwx|y

uv|βw,x,y

Gu,v,w,x,y

βu,v,w|xy

u|βvw,x,y βu,v,wx|y

uv|w|xy uv|wx|y

u|vw|xy uvwx|y

u|vwx|y

uv|βw,x,y
αuv,wx|yβu,v,w|xy

u|βvw,x,y

G′u,v,w,x,y

αu,vwx|y

uv|xy

u|vxy uvx|y
Hu,v,x,y

βuv,x,yβu,v,xy

βu,vx,y

uv1|w1 = uv1|x1y

u|v1w1

=
u|v2w2

uv1x1|y
=

uv2x2|y

uv2|w2 = uv2|x2y

βuv1,x1,y

Iu,v1,w1,v2,w2

βu,v1,w1

βu,v2,w2 βuv2,x2,y

.

The meanings of the 1-cells (i.e. words) x1, x2, y and x, y which appear respectively
in the definitions of the generating 3-cells I and H, are as follows. Since v1 and
v2 have the common right multiple v1w1 = v2w2, they also have a right-mcm. The



48 2. COHERENT PRESENTATIONS ARISING FROM GARSIDE FAMILIES

words x1 and x2 are the right complements of v1 and v2, respectively, in their right-
mcm. The word y is the right complement of v1x1 = v2x2 in v1w1 = v2w2. If either
x1 or x2 is equal to 1, then the other one is simply denoted by x (in the generating
3-cell H).

The structure of the following proof closely resembles that of the proof of
[26, Proposition 3.2.1], but we need to devise more general arguments to assure
favourable properties in a more general context.

Proof. Termination of the 2-polygraph Gar2 (S) is assumed, so we can per-
form a relaxed version of the Knuth-Bendix completion procedure, as described in
Remark 2.2.1.2, simultaneously with the Squier completion procedure. It will turn
out that all critical branchings are confluent. Accordingly, only a Squier completion
will be actually computed, i.e. no further 2-generating cells will be added.

Let us first consider critical branchings consisting only of the generating 2-cells
α. There is only one such critical branching for each triple (u, v, w) of elements of
S \ {1} satisfying u v w :

uv|w

u|v|w

u|vw

αu,v|w

u|αv,w

.

If the subcase u v w holds, then the branching is already confluent, so the
homotopical completion procedure adjoins only the generating 3-cell Au,v,w. If

u v w
×

holds, then the branching is again confluent, so the generating 3-cell Bu,v,w
is adjoined.

Let us now consider critical branchings containing the generating 2-cell β. The
sources of 2-cells forming such a branching can either overlap on one element of
S \ {1} or be equal, as the lengths in (S \ {1})∗ of the sources of the generating
2-cells α and β equal 2. We consider the two cases accordingly.

For the first case (when the overlap is of length 1, i.e. the source of branching
is of length 3), the proof of [26, Proposition 3.2.1] applies here to a certain extent.
The source of a branching has length 3, as a word in (S \ {1})∗. One of the 2-cells
which form a branching, changes the leftmost two generating 1-cells of the source,
and the other one changes the rightmost two. There are three distinct forms of
such branchings, which we discuss in the following three paragraphs.

The form
uv|wx

u|v|wx

u|vw|x

αu,v|wx

u|βv,w,x
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is defined under the condition u v w x
×

, which splits into two mutually exclusive
possibilities

u v w x
×

and u v w x
× ×

yielding respectively the generating 3-cells Cu,v,w,x and Du,v,w,x by the homotopical
completion procedure.

The branching
uv|w|x

u|vw|x

u|vwx

βu,v,w|x

u|αvw,x

is defined when u v w x
×

. This conjunction splits into two disjoint possibilities

u v w x
××

and u v w x
×

producing respectively the generating 3-cells Eu,v,w,x and E′u,v,w,x .
The form

uv|w|xy

u|vw|xy

u|vwx|y

βu,v,w|xy

u|βvw,x,y

is defined under the condition u v w x y
× ×

. This conjunction splits into two
mutually exclusive possibilities

u v w x y
× ×

and u v w x y
× ××

.

The former possibility further splits into

u v w x y
×× ××

and u v w x y
× ××

yielding the generating 3-cells Fu,v,w,x,y and F ′u,v,w,x,y, respectively; the latter splits
into

u v w x y
× ×× ××

and u v w x y
× ××
×

yielding the generating 3-cells Gu,v,w,x,y and G′u,v,w,x,y, respectively.
We have thus considered the first case. The second case (when the source of

branching is of length 2), is going to be considered in greater detail because this is
where new justifications are needed. Assume that the two generating 2-cells which
generate a critical branching have the same source. One of these two generating
2-cells has to be β (otherwise, the branching is trivial). Therefore, the source has to
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have a form u|v1w1 satisfying the condition u v1 w1

×
. Since the generating 2-cells

α are not defined under this condition, the other generating 2-cell also has to be
β. The only way for the generating 2-cells β with the same source u|v1w1 to form
a critical branching is for v1w1 to have another decomposition v1w1 = v2w2 such
that u v2 w2

×
. Then the branching is as follows:

uv1|w1

u|v1w1

=
u|v2w2

uv2|w2

βu,v1,w1

βu,v2,w2

.

Let us invoke the assumed property of M admitting right-mcms. Since v1 and
v2 have a common right multiple, namely v1w1 = v2w2, they also have a right-mcm,
say v′. Since S is closed under right-mcm by assumption, v′ lies in S. By the left
cancellation property which grants the uniqueness of right complements, we define
x1 and x2 as the right complements in v′ of v1 and v2, respectively. Since S is
closed under right divisor, x1 and x2 are elements of S. We also define y as the
right complement of v′ in v1w1 = v2w2. Note that y lies in S as a right divisor of
v1w1 which lies in S. Uniqueness of the right complements of v1 and v2 in v1w1

and v2w2, respectively, yields w1 = x1y and w2 = x2y. To sum up, the diagram

•

• • •

•

w1
x1

v1

v′

v2

y

x2
w2

commutes (with • denoting the unique 0-cell). Furthermore, the equality wk = xky,

the fact that v′ lies in S, and the condition vk wk together imply vk xk y for k in
{1, 2}.

We have only shown that x1, x2 and y are elements of S. In order to construct
the generating 3-cell Iu,v1,w1,v2,w2 , let us verify that all the generating 1-cells in-
volved are, indeed, elements of S \ {1}. First we demonstrate that y cannot be

equal to 1. Suppose the opposite. Then the condition u v1 w1

×
reduces to u v1 x1

×
.

On the other hand, uv′ is a right-mcm of uv1 and uv2 by Lemma 2.4.2.1. Since S
is closed under right-mcm, uv′ lies in S, which contradicts the condition u v1 x1

×
.

Thus, we deduce that y is not equal to 1.
Note that if x1 and x2 were both equal to 1, then the branching {βu,v1,w1

, βu,v2,w2
}

would be trivial. So, at most one of the 1-cells x1 and x2 can be equal to 1. If x2

is equal to 1, then the generating 3-cell Hu,v,x,y is constructed, with v := v1 and
x := x1. Similarly, if x1 is equal to 1, the generating 3-cell Hu,v,x,y is constructed,
with v := v2 and x := x2. Finally, if neither x1 nor x2 is equal to 1, then the
generating 3-cell Iu,v1,w1,v2,w2

is adjoined.
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By Theorem 2.2.2.2, the constructed (3, 1)-polygraph Gar3 (S) is a coherent
convergent presentation of M . �

The rest of this subsection is made up of remarks and corollaries of Proposi-
tion 2.5.3.1.

Remark 2.5.3.2. Notice that Proposition 2.5.3.1 gives three new families of
generating 3-cells (namely, E′, F ′ and G′) that were not a part of the [26, Proposi-
tion 3.2.1], an analogous result for Artin-Tits monoids. The reason for this is that
the Garside families considered in [26] for Artin-Tits monoids and Garside monoids
are closed under left and right divisors, whereas a family S in Proposition 2.5.3.1
is only closed under right divisor (like a Garside family in general). Consequently,
certain conjunctions of conditions, discussed in the proof of Proposition 2.5.3.1,
could not be satisfied in the setting of Artin-Tits monoids. For instance, here we
consider the possibility of uvwx lying in S under the condition that uvw is not an
element of S, to construct the generating 3-cell E′. In an Artin-Tits monoid, on
the other hand, if uvwx lies in S then so does uvw due to closure under left divisor.

Corollary 2.5.3.3. Let M be a left-cancellative monoid containing no non-
trivial invertible element, and let S be a Garside family containing 1 in M . If S is
right-noetherian, then the 2-polygraph Gar2 (S) is a convergent presentation of M .

Proof. Proposition 2.4.4.4 grants that the 2-polygraph Gar2 (S) is a presen-
tation of M . Since the generating 2-cells α strictly decrease the S-length, the
2-polygraph Gar2 (S) is terminating. Thanks to Proposition 2.5.2.1, we can com-
pute its Knuth-Bendix completion in a manner described in Remark 2.2.1.2. As
shown in Subsection 2.5.2, the generating 2-cells β are added.

Note that Proposition 2.4.3.5 and Lemma 2.4.3.6, together with the assump-
tions that S contains 1 and that there is no nontrivial invertible element in M ,
yield the property of S being closed under right-mcm. By Proposition 2.4.3.5, we
know that S is closed under right divisor. With all these conditions satisfied, the
proof of Proposition 2.5.3.1 applies in a straightforward fashion. In particular, it
shows that all new critical branchings caused by the generating 2-cells β are con-
fluent. Thus, the 2-polygraph Gar2 (S) is a Knuth-Bendix completion of Garside’s
presentation Gar2 (S), which yields the desired conclusion by Theorem 2.2.1.1 and
Remark 2.2.1.2. �

Remark 2.5.3.4. Observe that Proposition 2.5.2.1, together with Proposi-
tion 2.4.4.4, immediately implies that the 2-polygraph Gar2 (S) is a terminating
presentation of M . On the other hand, the fact that Gar2 (S) is also a convergent
presentation of M has been reachable only after Proposition 2.5.3.1, which showed
that no additional generating 2-cells were required to obtain confluence.

Corollary 2.5.3.5. Let M be a left-cancellative monoid containing no non-
trivial invertible element, and let S be a Garside family containing 1 in M . If S is
right-noetherian, and if M admits right-mcms, then M admits the (3, 1)-polygraph
Gar3 (S) as a coherent convergent presentation.

Proof. Corollary 2.5.3.3 grants that Gar2 (S) is a terminating presentation of
M . As shown in the proof of Corollary 2.5.3.3, all the requirements are met for
applying Proposition 2.5.3.1, which completes the proof.

�
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2.5.4. Homotopical reduction of Garside’s presentation. The homo-
topical reduction procedure described in [26, 3.2.2] applies verbatim to the coher-
ent convergent presentation provided by Proposition 2.5.3.1 (and echoed by Corol-
lary 2.5.3.5), with respect to the collapsible part Γ which is obtained as follows.
The component Γ4 of Γ contains seven generating triple confluences whose targets
are the families C, . . . , I of generating 3-cells, with the order I > H > · · · > C. For
the sake of illustration, we recall one such generating triple confluence in the case

u v w x

×

(we refer the reader to [26, 3.2.2] for the other six generating triple
confluences). Its boundary consists of the following two parts:

uv|w|x uvw|x

u|v|w|x u|vw|x

u|v|wx u|vwx

αuv,w|x

Au,v,w|x
αu,v|w|x

u|αv,w|x

u|v|αw,x

αu,vw|x

u|αvw,x

Bu,vw,x

u|Av,w,x

u|αv,wx

βu,vw,x

and

uv|w|x uvw|x

u|v|w|x uv|wx

u|v|wx u|vwx

αuv,w|x

uv|αw,x
αu,v|w|x

=

u|v|αw,x

βuv,w,x

Hu,v,w,x

βu,v,wxαu,v|wx

u|αv,wx

βu,vw,x

Buv,w,x

Bu,v,wx

.

The target of this particular generating triple confluence is the generating 3-cell
Hu,v,w,x.

Note, however, that applying the homotopical reduction procedure from [26,
3.2.2] does not suffice to eliminate any of the generating 3-cells E′u,v,w,x, F ′u,v,w,x,y
and G′u,v,w,x,y since these particular families of generating 3-cells did not even occur
in [26, Section 3], as observed in Remark 2.5.3.2. So, we have yet to eliminate these
cells here. To this end, we consider the following generating triple confluences in
the (3, 1)-polygraph Gar3 (S).
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The boundary of our first 3-sphere of interest consists of

uv|w|x uv|w|x

uv|wx

u|v|w|x u|vw|x uvwx

u|v|wx u|vwx

B|x

uv|α

α

α|w|x

u|α|x

u|v|α

β|x

u|α
E′

u|A

u|α

α

and

uv|w|x

u|v|w|x uv|wx uvwx

u|v|wx u|vwx

uv|α
α|w|x

=

u|v|α

α

Aα|wx

u|α

α

.

The target is the generating 3-cell E′u,v,w,x.
Second generating triple confluence which we are going to use has the boundary

consisting of

uv|w|xy uv|w|xy

uv|wxy

u|v|w|xy u|vw|xy uvwx|y

u|v|wxy u|vwx|y

B|xy

uv|α

β
α|w|xy

u|α|xy

u|v|α
u|H

β|xy

u|β

F ′

u|B u|β

u|β

α|y
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and

uv|w|xy

u|v|w|xy uv|wxy uvwx|y

u|v|wxy u|vwx|y

uv|α
α|w|xy

=

u|v|α

β

Cα|wxy

u|β

α|y

.

The target is the generating 3-cell F ′u,v,w,x,y.
Finally, we construct the 3-sphere whose boundary has the following parts:

uv|w|xy uv|w|xy

uv|wx|y

u|v|w|xy u|vw|xy uvwx|y

u|v|wx|y u|vwx|y

B|xy

uv|β

α|y
α|w|xy

u|α|xy

u|v|β

β|xy

u|β

G′

u|C

u|α|y

α|y

.

and

uv|w|xy

u|v|w|xy uv|wx|y uvwx|y

u|v|wx|y u|vwx|y

uv|β
α|w|xy

=

u|v|β

α|y

A|yα|wx|y

u|α|y

α|y

.

The target is the generating 3-cell G′u,v,w,x,y.
The above mentioned component Γ4 of the collapsible part (inherited from

[26, 3.2.2]) is extended with these three freshly constructed 3-spheres. The order
relation on generating 3-cells is extended to G′ > F ′ > E′ > I > H > · · · > C.
The component Γ3 of the collapsible part contains the family B of generating 3-cells
having the generating 2-cells β as targets, with the order β > α.

The homotopical reduction of the resulting (3, 1)-polygraph of Proposition 2.5.3.1,
with respect to the collapsible part Γ, is precisely Gar3 (S). By Theorem 2.2.4.1, we
conclude that Gar3 (S) is a coherent presentation ofM . Through Corollary 2.5.3.5,
the proof of Theorem 2.5.1.4 is hereby completed.
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2.5.5. Noetherianity. Let us state an immediate corollary of Theorem 2.5.1.4,
having somewhat simpler, although more restrictive, requirements.

Corollary 2.5.5.1. Let M be a left-cancellative monoid containing no non-
trivial invertible element, and let S be a Garside family containing 1 in M . If M is
noetherian, thenM admits the (3, 1)-polygraph Gar3 (S) as a coherent presentation.

Proof. Since M is right-noetherian, so is S. By [13, Proposition II.2.40], ev-
ery left-cancellative left-noetherian monoid admits right-mcms, so M admits right-
mcms. Hence, all the conditions of Theorem 2.5.1.4 are satisfied. �

The next section demonstrates advantages of using our results in applications.
The following example, however, shows that taking a Garside family as a generating
set is not always the most practical way to get a coherent presentation.

Example 2.5.5.2. We revisit the Klein bottle monoid K+, considered in Ex-
amples 2.2.2.3 and 2.2.5.1. One of the infinitely many Garside families in K+,
none of which is finite (see [13, Example IV.2.35]), is the set of left divisors of
a2, which we denote by S. Let us check if the conditions of Theorem 2.5.1.4 are
satisfied. Note thatK+ is cancellative as it is embeddable in a group. The presenta-
tion (2.2.1) contains no ε-relation, hence K+ has no nontrivial invertible element.
Note that the left divisibility relation of K+ is a total order ([13, Figure I.6]),
which is more than necessary for admitting conditional right-lcms (and a fortiori
right-mcms). However, the sequence (abn)

∞
n=1 shows that S is not right-noetherian.

Even worse, S contains an infinite path of the generating 2-cells β, as defined in
Proposition 2.5.2.1:

b|a2 7→ b2|aba 7→ b3|ab2a 7→ · · · 7→ bn|abn−1a 7→ · · ·
Even if we took another Garside family, we would not be successful, as witnessed
by [13, Example IV.2.35]. Therefore, neither Theorem 2.5.1.4 nor its proof is
applicable to K+.

If one found a way to use a Garside family as a generating set, then they would
have an infinite number of generating 1-cells. On the other hand, by directly per-
forming the homotopical completion-reduction procedure in Examples 2.2.2.3 and
2.2.5.1, we have demonstrated that the presentation (2.2.1), which has two gener-
ating 1-cells and one generating 2-cell, is coherent. Therefore, for this particular
example, the direct application of the homotopical completion-reduction procedure
is a preferable way of reaching a coherent presentation.

2.6. Applications of Theorem 2.5.1.4

In this section, we consider applications of Theorem 2.5.1.4 to certain monoids.
In Subsections 2.6.1 and 2.6.2, we apply the theorem to monoids which are nei-
ther Artin-Tits nor Garside. In Subsection 2.6.3, we compute a finite coherent
presentation of an Artin-Tits monoid that is not of spherical type, taking a finite
Garside family (hence, different from the corresponding Coxeter group) as a gener-
ating set. Finally, we construct a coherent presentation of a dual braid monoid in
Subsection 2.6.4.

2.6.1. The free abelian monoid over an arbitrary basis. Consider the
free abelian monoid N(J) of all J-indexed sequences of nonnegative integers with
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finite support. Define

SJ =
{
g ∈ N(J)

∣∣∣∀j ∈ J, g (j) ∈ {0, 1}
}
.

If N(J) is finitely generated by SJ , that is for J = {1, 2, . . . , n}, then the set SJ
coincides with the set of divisors of the Garside element ∆n = (1, . . . , 1). Otherwise,
the monoid N(J) is neither Artin-Tits nor Garside. Nevertheless, by [13, Subsection
I.3.1], the ∆-normal decomposition results established for the free abelian monoid
Nn (which is a Garside monoid and a spherical Artin-Tits monoid) remain valid
after replacing the set of divisors of ∆ with SJ . Namely, every element of N(J)

admits a unique decomposition of the form u1| · · · |um with u1, . . . , um in SJ and
um 6= 1 such that

for all h ∈ N(J) \ {1} , h � ui+1 implies uih /∈ SJ .

Observe that SJ is a Garside family in N(J) (say, by applying Proposition 2.4.3.4,
or by recognising that the above implication defines greediness). The following
properties follow from the fact that the definition of the product in N(J) is based
on the pointwise addition of nonnegative integers: N(J) is a cancellative monoid,
it has no nontrivial invertible element, and it admits conditional right-lcms. Since
every element of N(J) has only finitely many divisors, N(J) is noetherian. So, all
the conditions of Theorem 2.5.1.4 are satisfied.

Let us describe the cells of the coherent presentation of N(J) granted by Theo-
rem 2.5.1.4. The generating 2-cells are relations αu,v : u|v ⇒ uv for u, v in SJ \ {1}
such that uv lies in S, which in this particular context means that u and v have
disjoint supports. A generating 3-cell Au,v,w is adjoined for each triple (u, v, w) of
elements of SJ \ {1} having pairwise disjoint supports.

As expected, for J = {1, 2, . . . , n}, we recover Garside’s coherent presentation of
the Artin-Tits monoid Nn recalled in Example 2.3.3.2, as well as Garside’s coherent
presentation of the Garside monoid Nn recalled in Example 2.3.6.1.

2.6.2. Infinite braids. Denote by B+
∞ the monoid of all positive braids on

infinitely many strands indexed by positive integers, as defined in [13, Subsection
I.3.1]. It is shown that B+

∞ does not admit a finite generating set. Therefore, it
is neither Artin-Tits nor Garside. However, its elements do admit decompositions
similar to the ∆-normal decomposition. Namely, put

S∞ =
⋃
n≥1

{the family of all divisors of ∆n}

where ∆n denotes the half-turn braid on n strands. In other words, S∞ consists of
all simple braids on n strands for all n ≥ 1. This is made precise in [13, Subsection
I.3.1]. Basically, B+

n is identified with its image in B+
n+1 under the homomorphism

induced by the identity map on {σ1, . . . , σn}. In that sense, B+
∞ is seen as the union

of all braid monoids B+
n . Every element of B+

∞ admits a unique decomposition of
the form u1| · · · |um with u1, . . . , um in S∞ and um 6= 1 satisfying

for all h ∈ B+
∞ \ {1} , h � ui+1 implies uih /∈ S∞.

Observe that the family S∞ is a Garside family in B+
∞ (like in the previous

subsection). Cancellation and divisibility properties, as well as the property of
having no nontrivial invertible element, are preserved from braid monoids because
the respective properties do not depend on the number of strands. The monoid is
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noetherian for the same reason as Artin-Tits monoids (Example 2.4.2.2). So, we
can apply Theorem 2.5.1.4 to construct a coherent presentation.

The generating 2-cells are relations αu,v : u|v ⇒ uv for u, v in S∞ \ {1} such
that uv lies in S∞, which in this example means that uv is a simple braid. A
generating 3-cell Au,v,w is adjoined for each triple (u, v, w) of elements of S∞ \
{1} with uv, vw, uvw lying in S∞, which here means that uv, vw and uvw are
simple braids. So, formally, each cell is constructed exactly like in the coherent
presentation provided by [26, Theorem 3.1.3] for a (finite) braid monoid, regarded
as an Artin-Tits monoid, which comes as no surprise since Theorem 2.5.1.4 is a
formal generalisation of [26, Theorem 3.1.3].

Remark 2.6.2.1. Observe the similarities between the free abelian monoid over
an infinite basis and the monoid of all positive braids on infinitely many strands.
Even though the monoids involved are quite different (for starters, the former is
abelian unlike the latter), there is a strong analogy between the normal decompo-
sitions their elements admit: Nn, N(J), the set of divisors of ∆n, and SJ behave
like B+

n , B+
∞, simple braids, and S∞, respectively. Such observations invited the

notion of Garside family, as hinted in Subsection 2.4.1.

2.6.3. Artin-Tits monoids that are not of spherical type. For an Artin-
Tits monoid B+ (W ) of spherical type, [26, Theorem 3.1.3], recalled in Subsec-
tion 2.3.3, provides a finite coherent presentation having W \ {1} as a generating
set. On the other hand, if a Coxeter group W is infinite, then [26, Theorem
3.1.3] still provides a coherent presentation but an infinite one. Recall that ev-
ery Artin-Tits monoid admits a finite Garside family (we refer the reader to [15]
for elaboration), regardless of whether the monoid is of spherical type or not. An
advantage of having Theorem 2.5.1.4 at our disposal is that we can take a finite
Garside family for a generating set in computing a coherent presentation (whereas
with [26, Theorem 3.1.3], one has to take the corresponding Coxeter group even if
it is infinite).

Let us consider the Artin-Tits monoid of type Ã2, i.e. the monoid presented by

(2.6.1) 〈σ1, σ2, σ3|σ1σ2σ1 = σ2σ1σ2, σ2σ3σ2 = σ3σ2σ3, σ3σ1σ3 = σ1σ3σ1〉+ .

By [15, Table 1 and Proposition 5.1], the smallest Garside family F in this monoid
consists of the sixteen right divisors of the elements σ3σ1σ2σ1, σ1σ2σ3σ2, and
σ2σ3σ1σ3. Namely,

F = {1, σ1, σ2, σ3, σ1σ2, σ2σ1, σ2σ3, σ3σ2, σ3σ1, σ1σ3,

σ1σ2σ1, σ2σ3σ2, σ3σ1σ3, σ3σ1σ2σ1, σ1σ2σ3σ2, σ2σ3σ1σ3}.

The Cayley graph of F can be seen in [15, Figure 1].
As observed in Corollary 2.5.1.6, all the conditions of Theorem 2.5.1.4 are

satisfied. Following Theorem 2.5.1.4, we construct a generating 2-cell u|v ⇒ uv for
u, v in F \ {1} with uv in F . This yields the following family of generating 2-cells:
three pairs of generating 2-cells of the form

ασi,σj : σi|σj ⇒ σiσj , ασj ,σi : σj |σi ⇒ σjσi,

three pairs of generating 2-cells of the form

ασi,σjσi : σi|σjσi ⇒ σiσjσi, ασj ,σiσj : σj |σiσj ⇒ σiσjσi,
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three pairs of generating 2-cells of the form

ασiσj ,σi : σiσj |σi ⇒ σiσjσi, ασjσi,σj : σjσi|σj ⇒ σiσjσi,

three generating 2-cells of the form

ασk,σiσjσi : σk|σiσjσi ⇒ σkσiσjσi,

and three pairs of generating 2-cells of the form

ασkσi,σjσi
: σkσi|σjσi ⇒ σkσiσjσi, ασkσj ,σiσj

: σkσj |σiσj ⇒ σkσiσjσi,

with i, j, k in {1, 2, 3}, and j = i+ 1 and k = j + 1 modulo 3.
We proceed to construct the generating 3-cells Au,v,w for u, v, w in F \{1} with

uv, vw, uvw lying in F . We obtain pairs of generating 3-cells of the form
σiσj |σi

σi|σj |σi σiσjσi

σi|σjσi

ασiσj ,σi

Aσi,σj ,σi

ασi,σj
|σi

σi|ασj ,σi
ασi,σjσi

σjσi|σj

σj |σi|σj σiσjσi

σj |σiσj

ασjσi,σj

Aσj ,σi,σj

ασj ,σi
|σj

σj |ασi,σj
ασj ,σiσj

and pairs of generating 3-cells of the form
σkσi|σjσi

σk|σi|σjσi σkσiσjσi

σk|σiσjσi

ασkσi,σjσi

Aσk,σi,σjσi

ασk,σi
|σjσi

σk|ασi,σjσi
ασk,σiσjσi

σkσj |σiσj

σk|σj |σiσj σkσiσjσi

σk|σiσjσi

ασkσj ,σiσj

Aσk,σj ,σiσj

ασk,σj |σiσj

σk|ασj ,σiσj
ασk,σiσjσi

with i, j and k as above.
We have thus computed the finite coherent presentation of the Artin-Tits

monoid of type Ã2, which consists of fifteen generating 1-cells, twenty-seven gener-
ating 2-cells, and twelve generating 3-cells.

Note that some of the generating 3-cells are superfluous, so let us further per-
form the homotopical reduction procedure as described in Subsection 2.2.4. Let us
construct a collapsible part Γ. There are no critical triple branchings, so we take
the empty set for Γ4. For the component Γ3, we take the Nielsen transformations
of the generating 3-cells

Aσ3,σ1,σ2σ1 , Aσ3,σ2,σ1σ2 , Aσ1,σ2,σ3σ2 , Aσ1,σ3,σ2σ3 , Aσ2,σ3,σ1σ3 , Aσ2,σ1,σ3σ1

whose respective targets are the following generating 2-cells:

ασ3σ1,σ2σ1 , ασ3σ2,σ1σ2 , ασ1σ2,σ3σ2 , ασ1σ3,σ2σ3 , ασ2σ3,σ1σ3 , ασ2σ1,σ3σ1 .

We order the generating 2-cells as follows:

ασ3σ1,σ2σ1 > ασ3σ2,σ1σ2 > ασ1σ2,σ3σ2 > ασ1σ3,σ2σ3 > ασ2σ3,σ1σ3 > ασ2σ1,σ3σ1 >

> other generating 2-cells in any order (as they are not targets in Γ3).

For the component Γ2, we take the generating 2-cells

ασ1,σ2 , ασ2,σ1 , ασ2,σ3 , ασ3,σ2 , ασ3,σ1 , ασ1,σ3 ,

ασ1,σ2σ1 , ασ2,σ3σ2 , ασ3,σ1σ3 , ασ3,σ1σ2σ1 , ασ1,σ2σ3σ2 , ασ2,σ3σ1σ3 .

Any ordering of the generating 1-cells which respects the length in F ∗ will do.
The homotopical reduction of Gar3 (F ) with respect to the collapsible part

(Γ2,Γ3, ∅) contains: a single generating 0-cell; the generating 1-cells σ1, σ2, σ3; the
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generating 2-cells ασ2,σ1σ2
, ασ3,σ2σ3

, ασ1,σ3σ1
; and no generating 3-cells. As a side

result, we have thus shown that Artin’s presentation (‘extended’ with the empty
set of generating 3-cells) of the Artin-Tits monoid of type Ã2 is coherent.

2.6.4. Dual braid monoids. Let us consider the dual braid monoid B+∗
n , as

defined in [13, Subsection I.1.3]. Its generating set consists of braids

bi,j = σi · · ·σj−2σj−1σ
−1
j−2 · · ·σ

−1
i

for 1 ≤ i < j ≤ n. They obey the following relations:

bi,jbi′,j′ = bi′,j′bi,j for [i, j] and [i′, j′] disjoint or nested,
bi,jbj,k = bj,kbi,k = bi,kbi,j for 1 ≤ i < j < k ≤ n.

The pair (B+∗
n ,∆∗n), with ∆∗n = b1,2 · · · bn−1,n, is a Garside monoid, as essentially

shown in [2] for B+∗
3 (although without using the terminology of Garside monoids)

and in [1] for the general case. Therefore, computing a coherent presentation of a
dual braid monoid does not really require Theorem 2.5.1.4 because [26, Theorem
3.3.3], recalled in Example 2.3.6.1, would suffice. To the best of our knowledge,
however, it has not been done yet, so we do it here. Let us take B+∗

4 for example.
For simplicity, we leave out the comma which separates the two indices of b.

The Garside family we consider is the set D of all (left) divisors of ∆∗4. Namely,

D = {1, b12, b23, b24, b13, b34, b14,

b12b23, b12b34, b23b34, b12b24, b23b14, b13b34, b12b23b34}.

The lattice (D,�) can be seen in [13, Figure I.4].
The requirements of Theorem 2.5.1.4 are met, as observed in Corollary 2.5.1.6.

By Theorem 2.5.1.4, we take generating 2-cells of the form u|v ⇒ uv for u, v in
D \ {1} such that uv divides ∆∗4. This yields the following family of generating
2-cells:

αb12,b23
: b12|b23 ⇒ b12b23, αb23,b34

: b23|b34 ⇒ b23b34,

αb23,b13 : b23|b13 ⇒ b12b23, αb34,b24 : b34|b24 ⇒ b23b34,

αb13,b12
: b13|b12 ⇒ b12b23, αb24,b23

: b24|b23 ⇒ b23b34,

αb12,b24 : b12|b24 ⇒ b12b24, αb13,b34 : b13|b34 ⇒ b13b34,

αb24,b14
: b24|b14 ⇒ b12b24, αb34,b14

: b34|b14 ⇒ b13b34,

αb14,b12
: b14|b12 ⇒ b12b2,4, αb14,b13

: b14|b13 ⇒ b13b34,

αb12,b34
: b12|b34 ⇒ b12b34, αb23,b14

: b23|b14 ⇒ b23b14,

αb34,b12
: b34|b12 ⇒ b12b34, αb14,b23

: b14|b23 ⇒ b23b14,
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αb12,b23b34
: b12|b23b34 ⇒ b12b23b34, αb12b23,b34

: b12b23|b34 ⇒ b12b23b34,

αb23,b13b34
: b23|b13b34 ⇒ b12b23b34, αb12b34,b24

: b12b34|b24 ⇒ b12b23b34,

αb24,b23b14
: b24|b23b14 ⇒ b12b23b34, αb23b34,b14

: b23b34|b14 ⇒ b12b23b34,

αb13,b12b34 : b13|b12b34 ⇒ b12b23b34, αb12b24,b23 : b12b2,4|b23 ⇒ b12b23b34,

αb34,b12b24
: b34|b12b24 ⇒ b12b23b34, αb23b14,b13

: b23b14|b13 ⇒ b12b23b34,

αb14,b12b23
: b14|b12b23 ⇒ b12b23b34, αb13b34,b12

: b13b34|b12 ⇒ b12b23b34.

Now we construct the generating 3-cells Au,v,w for u, v, w in D \ {1} with uv,
vw, and uvw being divisors of ∆∗4:

b12b23|b34

b12|b23|b34 b12b23b34

b12|b23b34

αb12b23,b34

Ab12,b23,b34

αb12,b23
|b34

b12|αb23,b34

αb12,b23b34

b23b34|b14

b23|b34|b14 b12b23b34

b23|b13b34

αb23b34,b14

Ab23,b34,b14

αb23,b34
|b14

b23|αb34,b14

αb23,b13b34

b12b23|b34

b23|b13|b34 b12b23b34

b23|b13b34

αb12b23,b34

Ab23,b13,b34

αb23,b13
|b34

b23|αb13,b34

αb23,b13b34

b23b34|b14

b34|b24|b14 b12b23b34

b34|b12b24

αb23b34,b14

Ab34,b24,b14

αb34,b24
|b14

b34|αb24,b14

αb34,b12b24

b12b23|b34

b13|b12|b34 b12b23b34

b13|b12b34

αb12b23,b34

Ab13,b12,b34

αb13,b12 |b34

b13|αb12,b34

αb13,b12b34

b23b34|b14

b24|b23|b14 b12b23b34

b24|b23b14

αb23b34,b14

Ab24,b23,b14

αb24,b23 |b14

b24|αb23,b14

αb24,b23b14

b12b24|b23

b12|b24|b23 b12b23b34

b12|b23b34

αb12b24,b23

Ab12,b24,b23

αb12,b24 |b23

b12|αb24,b23

αb12,b23b34

b13b34|b12

b13|b34|b12 b12b23b34

b13|b12b34

αb13b34,b12

Ab13,b34,b12

αb13,b34 |b12

b13|αb34,b12

αb13,b12b34

b12b24|b23

b24|b14|b23 b12b23b34

b24|b23b14

αb12b24,b23

Ab24,b14,b23

αb24,b14
|b23

b24|αb14,b23

αb24,b23b14

b13b34|b12

b34|b14|b12 b12b23b34

b34|b12b24

αb13b34,b12

Ab34,b14,b12

αb34,b14
|b12

b34|αb14,b12

αb34,b12b24

b12b24|b23

b14|b12|b23 b12b23b34

b14|b12b23

αb12b24,b23

Ab14,b12,b23

αb14,b12
|b23

b14|αb12,b23

αb14,b12b23

b13b34|b12

b14|b13|b12 b12b23b34

b14|b12b23

αb13b34,b12

Ab14,b13,b12

αb14,b13
|b12

b14|αb13,b12

αb14,b12b23
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b12b34|b24

b12|b34|b24 b12b23b34

b12|b23b34

αb12b34,b24

Ab12,b34,b24

αb12,b34 |b24

b12|αb34,b24

αb12,b23b34

b23b14|b13

b23|b14|b13 b12b23b34

b23|b13b34

αb23b14,b13

Ab23,b14,b13

αb23,b14 |b13

b23|αb14,b13

αb23,b13b34

b12b34|b24

b34|b12|b24 b12b23b34

b34|b12b24

αb12b34,b24

Ab34,b12,b24

αb34,b12
|b24

b34|αb12,b24

αb34,b12b24

b23b14|b13

b14|b23|b13 b12b23b34

b14|b12b23

αb23b14,b13

Ab14,b23,b13

αb14,b23
|b13

b14|αb23,b13

αb14,b12b23

.

We have thus computed the coherent presentation Gar3 (D) of the dual braid
monoid B+∗

4 , which consists of thirteen generating 1-cells, twenty-eight generating
2-cells, and sixteen generating 3-cells.

As in Subsection 2.6.3, we can further perform the homotopical reduction pro-
cedure. A quick inspection reveals that there are no critical triple branchings, so
we take the component Γ4 of the collapsible part to be the empty set. For the
component Γ3, we take the Nielsen transformations of the generating 3-cells

Ab24,b23,b14 , Ab13,b34,b12 , Ab23,b14,b13 , Ab23,b34,b14 , Ab14,b12,b23 ,

Ab34,b12,b24 , Ab13,b12,b34 , Ab23,b13,b34 , Ab12,b24,b23 , Ab12,b34,b24 , Ab12,b23,b34

whose respectively selected targets are the following generating 2-cells:

αb24,b23b14 , αb13b34,b12 , αb23b14,b13 , αb23b34,b14 , αb14,b12b23 ,

αb34,b12b24 , αb13,b12b34 , αb23,b13b34 , αb12b24,b23 , αb12b34,b24 , αb12b23,b34 .

We order the generating 2-cells as follows:

αb24,b23b14 > αb1,3b3,4,b1,2 > αb23b14,b13 > αb23b34,b14 >

> αb14,b12b23 > αb34,b12b24 > αb13,b12b34 > αb23,b13b34 >

> αb12b24,b23 > αb12b34,b24 > αb12b23,b34 > αb12,b23b34 >

> other generating 2-cells in any order (as they are not targets in Γ3).

For the component Γ2, we take the generating 2-cells

αb12,b23 , αb23,b34 , αb12,b24 , αb13,b34 , αb12,b34 , αb23,b14 , αb12,b23b34 .

Any ordering of the generating 1-cells which respects the length in D will do.
Recall that, when cells are removed from a polygraph, the boundaries of the

remaining cells are not necessarily defined anymore, in a manner of speaking. More
precisely, if a boundary contained a removed cell, then it would be ‘updated’ ac-
cording to the recursive assignment given in Subsection 2.2.4. For convenience, let
us write A′ to denote the new version of the generating 3-cell A which shares the
same index. Then, the homotopical reduction of Gar3 (D) with respect to the col-
lapsible part (Γ2,Γ3, ∅) contains: a single generating 0-cell; the generating 1-cells
b12, b23, b24, b13, b34, b14; the generating 2-cells
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αb23,b13 : b23|b13 ⇒ b12|b23, αb34,b24 : b34|b24 ⇒ b23|b34,

αb13,b12
: b13|b12 ⇒ b12|b23, αb24,b23

: b24|b23 ⇒ b23|b34,

αb24,b14
: b24|b14 ⇒ b12|b24, αb34,b14

: b34|b14 ⇒ b13|b34,

αb14,b1,2 : b14|b12 ⇒ b12|b24, αb14,b13 : b14|b13 ⇒ b13|b34,

αb34,b12
: b34|b12 ⇒ b12|b34, αb14,b23

: b14|b23 ⇒ b23|b14;

and the generating 3-cells

b23|b34|b14 b23|b13|b34

b34|b24|b14 b12|b23|b34

b34|b12|b24 b12|b34|b24

b23|αb34,b14

αb23,b13
|b34αb34,b24

|b14

b34|αb24,b14

αb34,b12
|b24

b12|αb34,b2.4

A′b34,b24,b14

b12|b24|b23 b12|b23|b34

b24|b14|b23 b23|b13|b34

b24|b23|b14 b23|b34|b14

b12|αb24,b23

αb23,b13
|b34αb24,b14

|b23

b24|αb14,b23

αb24,b23
|b14

b23|αb34,b14

A′b24,b14,b23

b13|b34|b12 b13|b12|b34

b34|b14|b12 b12|b23|b34

b34|b12|b24 b12|b34|b24

b13|αb34,b12

αb13,b12
|b34αb34,b14

|b12

b34|αb14,b12

αb34,b12
|b24

b12|αb34,b2.4

A′b34,b14,b12

b13|b34|b12 b13|b12|b34

b14|b13|b12 b12|b23|b34

b14|b12|b23 b12|b24|b23

b13|αb34,b12

αb13b34,b12
αb14,b13

|b12

b14|αb13,b12

αb14,b12
|b23

b12|αb24,b23

A′b14,b13,b12

b23|b14|b13 b23|b13|b34

b14|b23|b13 b12|b23|b34

b14|b12|b23 b12|b24|b23

b23|αb14,b13

αb23,b13
|b34αb14,b23

|b13

b14|αb23,b13

αb14,b12
|b23

b12|αb24,b23

A′b14,b23,b13
.
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A view towards further applications. A coherent presentation provides
the first dimensions of a polygraphic resolution. We would like to prove Guiraud’s
conjecture that Theorem 2.5.1.4 generalises to all dimensions: a monoid M having
a Garside family S, under certain reasonable conditions, admits the polygraphic
resolution

Gar (S) =

{
γs0···sn

∣∣∣∣ s0 · · · sn ∈ S \ {1} , s0 · · · sn
}

where γs0···sn is an n-cell. A challenge in this direction is determining boundary
maps.

Now that we have a mechanism for constructing a coherent presentation of
monoids admitting a Garside family, other examples of application are readily fea-
sible. Here, we mention two such examples.

Consider braid ribbons as defined in [13, Subsection I.3.4]. One easily checks
that all the requirements of the Theorem 2.5.1.4 would be met if the theorem was
extended from monoids to categories, so a coherent presentation of the category of
braid ribbons could be constructed. Then, a task remaining to be done would be
computing the binary products of elements of the given Garside family.

In Subsection 2.6.4, we have constructed a coherent presentation of the dual
braid monoid B+∗

4 . Our approach could be generalised to B+∗
n . To this end, one

needs to compute the binary products of divisors of ∆∗n. Non-crossing partitions
ordered by inclusion form a lattice whose size is the nth Catalan number. This
lattice is isomorphic to the Garside family of left divisors of the Garside element of
B+∗
n . Determining the corresponding relations amounts to a combinatorial task of

sorting out certain relations among partitions.





CHAPTER 3

Correspondence between factorability and
normalisation

This chapter investigates combinatorial properties of a certain class of monoids,
seen from two different viewpoints, with a goal of unifying the two. The main
contribution is providing answers to the question, left open in [13] and [16], of
determining the relation between these two approaches. The following diagram
puts it in a nutshell, with arrows denoting inclusions (and × over an arrow negat-
ing inclusion), the dashed ones being new results with the dotted one being our
hypothesis:

factorable
monoids

monoids admitting
a quad. norm.
of class (5, 4)

Chinese
monoids

monoids with
constructed convergent

presentation

monoids admitting
a quad. norm.
satisfying weak
domino rule

monoids admitting
a quad. norm.

satisfying
domino rule

monoids admitting
a quadratic
normalisation
of class (4, 3)

Heß
Ozornova

2014

× Guiraud

Dehornoy
Guiraud
2016

Dehornoy
Guiraud
2016

.

Section 3.1 fixes basic terminology to be used throughout the chapter. Sec-
tions 3.2 and 3.3 present the main characters of the play, namely, factorability
structures and quadratic normalisations, respectively. In Section 3.4, the close in-
terplay between the two is investigated.

3.1. Remarks on terminology

In the present chapter, the setting of polygraphs is not needed since no coherent
presentations are constructed here. Therefore, we are going to use a simpler ter-
minology, that of rewriting systems. A (word) rewriting system is a pair (S,R)
consisting of a set S and a binary relation R on S∗, whose elements are called
rewriting rules. An element (u, v) of R is also written as u→ v to stress the fact

65
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that it is directed. Seeing relations between words not as equalities but as rewriting
rules is a key concept of rewriting theory.

For a rewriting rule (u, v), and w,w′ in S∗, a pair (w|u|w′, w|v|w′) is called a
rewriting step. For u and v in S∗, we say that u rewrites to v if there is a finite
composable sequence of rewriting steps, such that the source of the first step of the
sequence is u and the target of the last step is v. A word v is called irreducible
with respect to R if there is no rewriting step whose source is v.

A rewriting system (S,R) is called:

• confluent if each pair of rewriting sequences starting with the same word
can be completed in such a way that the sequences eventually reach a
common result;

• normalising if every u in S∗ rewrites to at least one irreducible word;
• terminating if it admits no infinite rewriting sequence;
• convergent if it is both confluent and terminating;
• reduced (or minimal) if for every rewriting rule u → v, the word v is

irreducible with respect to R, and the word u is irreducible with respect
to R \ {(u, v)};

• strongly reduced if it is reduced and, in addition, every element of S is
irreducible;

• quadratic if the source and target of each element of R are of length 2.

The monoid presented by a rewriting system (S,R) is the quotient M of the free
monoid S∗ by the congruence relation generated by R. In a confluent rewriting
system, if a word u rewrites to an irreducible word (which is necessarily unique),
then the latter is denoted by û. If (S,R) is convergent, then the map M → S∗

defined by f 7→ û for any u such that ev (u) = f , is called the normal form
associated with the rewriting system (S,R). We remind the reader of terminology
and notation introduced in Subsection 1.2.1 on page 11.

A normal form nf for a monoid M with respect to a generating set S is called
geodesic if, for every f in M , the inequality |nf (f)| ≤ |u| holds for every S-word
u representing f , i.e. such that ev (u) = f .

Remark 3.1.0.1. If a generating set S of a monoid M is a subset of M , then
elements of S can be regarded in two ways: as length-one words in S∗, and as ele-
ments of M . When a rewriting system presenting M with respect to S is strongly
reduced, this makes no essential difference, so elements of S are denoted in the
same way, regardless of the viewpoint, relying on the context to provide the proper
interpretation. In particular, one can say that a generating set contains (or that
it does not contain) 1, the identity element of a monoid. This phrasing is the cus-
tom in the context of factorability (see [35], [34], [48]), but not in the context of
normalisation in general (where a generating set is commonly distinguished from
its image under the evaluation map, as can be seen in [16]). So, we will empha-
sise such situation by calling S a generating subset, not just a generating set, of
M . When we characterise factorable monoids in terms of quadratic normalisations
(Subsection 3.4.1), the corresponding normalisations will be eligible to share this
custom so there will be no need to emphasise it.

For technical reasons, in the rest of this chapter, the letter S will be reserved
for the following purpose.
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Convention 3.1.0.2. When the letter S is used to denote a generating set of a
monoid, it is understood that S contains no letter representing the identity element
of the monoid (i.e. no generator evaluated to 1).

On the other hand, if a generating set S is enriched, via disjoint union, with a
letter representing the identity of the considered monoid, then the resulting pointed
set (i.e. set equipped with a distinguished element, called basepoint, enjoying a
special treatment in the given context) is denoted by Se. In accordance with Re-
mark 3.1.0.1, the basepoint of Se is denoted by 1 if S is a generating subset of the
considered monoid.

To simplify the presentation, we are considering exclusively monoids, but re-
sults stated here (recalled ones as well as new ones) mostly extend to categories,
considered as monoids with partial multiplication. As a reminder that a monoid is
thought of as a monoid of endomorphisms (of an object), we tend to use letters f
and g for elements of a monoid.

3.2. Factorability structures

This section recalls the notion of factorability structure. For elaboration, the
reader is referred to [35]. Subsection 3.2.1 recollects the basic terminology. In Sub-
section 3.2.2, we recall an alternative approach to factorability through the notion
of local factorability. Certain notions are redefined in order to overcome the issues
arising from the original definition, which are pointed out in Subsection 3.2.3. Sub-
section 3.2.4 recalls the rewriting system associated with a factorability structure.

3.2.1. The definition of factorability structure.

Convention 3.2.1.1. Let us adopt the convention that elements of a finite
sequence are indexed starting from the leftmost one, as in (s1, s2, . . . , sn), thereby
not following the convention used in [35] where elements are indexed starting from
the rightmost one. The purpose is to make the notions that concern factorability
more easily comparable (in Section 3.4) with those concerning normalisation.

A pair (f, g) in M2 is called geodesic if |fg| = |f |+ |g|.
Let M be a monoid, and let S be a generating subset of M . A factorisation

map for (M,S) is a map η = (η′, η) : M →M2 satisfying the following conditions:
• for f in M \ {1}, the element η′ (f) of S is a left divisor of f , and the

element η (f) is a right complement of η′ (f) in f ;
• the pair (η′ (f) , η (f)) is geodesic;
• η maps 1, the identity element of M , to η (1) = (1, 1).

Whenever confusion is unlikely, η′ (f) and η (f) are abbreviated to f ′ and f , re-
spectively.

Example 3.2.1.2. Assume that M is a free abelian monoid generated by a
nonempty finite totally ordered set. Define η = (η′, η) : M →M2 by setting η′ (f)
to be the least left divisor of f lying in the generating set. Note that η here is
well-defined since the left cancellation property of M implies uniqueness of right
complements, so knowing η′ (f) determines η (f).

Notation 3.2.1.3. Let A be a set, and let F be a map from Al to Am. Then
the (partial) map Fi : A∗ → A∗ consists of applying F to l consecutive elements
starting from position i, i.e. to the elements at positions i, i+ 1, . . . , i+ l − 1.
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Example 3.2.1.4. For the sake of illustration, take the set A = {a, b, c} totally
ordered by a < b < c. We write <∗ for the lexicographic extension of < to A∗.
Let F : A2 → A2 map each length-two word to the <∗-minimal word obtained by
simply permuting the letters of the argument if needed. Then, we have:

c|b|a F27→ c|a|b F17→ a|c|b F27→ a|b|c.

The multiplication in M is denoted by µ : M2 → M , and µ (f, g) is often
abbreviated to f · g or fg.

Definition 3.2.1.5 ([35, Definition 2.1]). Let M be a monoid, and let S be a
generating subset of M . A factorability structure on (M,S) is a factorisation
map η : M → M2 such that, denoting the map η ◦ µ : M2 → M2 by F , for every
triple in M3, the three maps

F1F2F1F2, F2F1F2, F2F1F2F1

coincide or each map reduces the sum of the lengths of the elements of the triple.
If η : M → M2 is a factorability structure on (M,S), then the triple (M,S, η) is
called a factorable monoid.

Example 3.2.1.6. An element of an Artin-Tits monoid B+ (W ) presented by
(2.3.2) on page 32 is said to be square-free if it cannot be represented by a word
containing a square of a generator. For an element f ofM , set η′ (f) to be a maximal
square-free left divisor of f . This defines a factorability structure on B+ (W ) with
respect to the set of square-free elements, as demonstrated in [48, Section 4.3].

Example 3.2.1.7 ([34, Example 2.2.8]). Let (M,∆) be a Garside monoid (re-
called in Subsection 2.3.4 on page 34). For an element f ofM , setting η′ (f) = f∧∆
defines a factorability structure, as demonstrated in [48, Section 4.2] where a larger
class of monoids is equipped with a factorability structure.

Assume that (M,S, η) is a factorable monoid. The normal form associated
with the factorability structure η, or the η-normal form, for short, is the map
nfη : M → S∗ defined as

f 7→ η|f |−1 · · · η2η1 (f) .

Example 3.2.1.8. The map F : A2 → A2 in Example 3.2.1.4 can be regarded
as a composition η ◦ µ of the multiplication in A∗ and a factorability structure
splitting off the least letter. For f = bacabc, we get

nfη (f) = η5 · · · η2η1 (f) = (a, a, b, b, c, c) .

For a factorable monoid (M,S, η), anM -word x is said to be stable at the ith
position if Fi (x) = x; it is everywhere stable if it is stable at the ith position
for every i in {1, . . . , |x| − 1}. The normal form nfη admits the following locality
property.

Lemma 3.2.1.9 ([35, Lemma 3.2]). If (M,S, η) is a factorable monoid, then,
for every f in M , the η-normal form of f is everywhere stable.

3.2.2. Local factorability structure. There is an alternative definition of
factorability, due to Moritz Rodenhausen. In order to resolve an issue detected in
the original definition (to be addressed in the next subsection), we introduce the
following notation.
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Notation 3.2.2.1. Let A be a set, and let ϕ be a map from A2 to itself. The
composite map ϕ

−→
: A∗ → A∗ is defined as

u 7→ ϕ|u|−1 · · ·ϕ1 (u) .

Note that, in the above composition, ϕ|u|−1 is applied last; its argument is the
rightmost length-two factor of ϕ|u|−2 · · ·ϕ1 (u). In particular, if u has length 1,
then ϕ

−→
(u) = u.

Definition 3.2.2.2. Let Se be a pointed set with basepoint 1, and let ϕ be a
map from (Se)

2 to itself. The normalisation map associated with the map ϕ
is a map Nϕ from (Se)

∗ to itself, defined as follows:
(1) Nϕ of the empty word is the empty word;
(2) Nϕ of a word containing 1 equals Nϕ of the same word with 1 removed;
(3) and

Nϕ (s1, . . . , sn) :=

ϕ
−→

(s1|Nϕ (s2, . . . , sn)) if it contains no 1

Nϕ

(
ϕ
−→

(s1|Nϕ (s2, . . . , sn))
)

otherwise.

Remark 3.2.2.3. Note that, by recursion, the computation of Nϕ (s1, . . . , sn)
terminates and its length is bounded by n. Namely, all the recursive calls for Nϕ
are made on words of smaller length: directly in (2) and in the first case of (3); and
indirectly in the second case of (3) which calls for (2). The length of Nϕ (s1, . . . , sn)
is less than or equal to the length of ϕ

−→
(s1|Nϕ (s2, . . . , sn)), which is less than or

equal to the length of Nϕ (s2, . . . , sn) plus 1.

We state anew the definition of local factorability structure on (M,S), using
Definition 3.2.2.2.

Definition 3.2.2.4. Let M be a monoid, and let S be a generating subset of
M . A local factorability structure is a map ϕ from (Se)

2 to itself, having the
following properties:

(1) M admits the presentation

〈S| {(s, t) = ϕ (s, t) |s, t ∈ S}〉 ;

(2) ϕ is idempotent;
(3) ϕ (1, s) equals (s, 1) for every s in S;
(4) for every (r, s, t) in S3, the equality

ϕ1ϕ2ϕ1ϕ2 (r, s, t) = ϕ2ϕ1ϕ2 (r, s, t)

holds or ϕ2ϕ1ϕ2 (r, s, t) contains 1;
(5) the normalisation map associated with ϕ satisfies

Nϕ (r, s, t) = Nϕ (ϕ1 (r, s, t))

for every (r, s, t) in S3.

By Definition 3.2.2.2, for every Se-word v, the word Nϕ (v) contains no 1. If
we add to Nϕ (v) a string of 1’s on the right, then the result is called an extended
form of Nϕ (v). We recall a result to be used in Section 3.4.
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Lemma 3.2.2.5 ([48, Lemma 2.3.5]). Let Se be a pointed set with basepoint 1,
and let ϕ be a map from (Se)

2 to itself. If ϕ formally satisfies the second, the third
and the fourth condition of Definition 3.2.2.4, then ϕ1ϕ2ϕ1ϕ2 (r, s, t) is an extended
form of Nϕ (r, s, t) for every length-three Se-word (r, s, t).

A factorability structure is equivalent to a local factorability structure, in the
following sense.

Theorem 3.2.2.6 ([35, Theorem 3.4]).
(1) If (M,S, η) is a factorable monoid, then the restriction of the map ηµ to

(Se)
2 defines a local factorability structure on M .

(2) Conversely, one can construct a factorability structure out of a local fac-
torability structure by setting: η (1) = (1, 1); and

η (f) = (r1,ev (r2, . . . , rm)) for Nϕ (u) = (r1, r2, . . . , rm)

with u being any Se-word representing f .
(3) These constructions are inverse to each other.
(4) By this correspondence, for f in M , the η-normal form nfη (f) equals

Nϕ (u) for any Se-word u representing f .

The proof of Theorem 3.2.2.6 can be found in [48, Section 2.3].

Remark 3.2.2.7. Here are some observations about local factorability struc-
tures that will be used implicitly from now on.

• The property (3) of Theorem 3.2.2.6 implies Nϕ (s) = s for every s in S.
• For every length-two Se-word (s, t), the first element of ϕ (s, t) cannot be

equal to 1 unless the second element is equal to 1. Namely, assume the
opposite: ϕ (s, t) = (1, t′) for t′ 6= 1. Then the idempotency of ϕ gives
ϕ (1, t′) = (1, t′) which contradicts the property (3).

• Note that, by Theorem 3.2.2.6, the equality ϕ (s, t) = (1, 1) holds if, and
only if, st = 1 in M .

3.2.3. Deviation from the original definition. As Convention 3.2.1.1 hints,
the original definition of a factorisation map, which separates a right divisor, is re-
formulated in this thesis to separate a left divisor, instead. The definition of local
factorability structure is also modified.

Let us recall the original definition of a local factorability structure, in order to
justify its present modification (Definition 3.2.2.4). For simplicity, we still assume
Convention 3.1.0.2, so we do not actually copy the original verbatim, but we do
preserve its essence (as well as the convention of indexing from the right).

Here is a recollection of [35, Definition 3.3]. Let M be a monoid, and let S
be a generating subset of M . A local factorability structure on (M,S) is a map ϕ
from (Se)

2 to itself, having the following properties:
(1) M admits the presentation

〈S| {(t, s) = ϕ (t, s) |s, t ∈ S}〉 ;
(2) ϕ is idempotent;
(3) ϕ (s, 1) equals (1, s) for every s in S;
(4) for every (t, s, r) in S3, applying any ϕi to the triple ϕ2ϕ1ϕ2 (t, s, r) leaves

it unchanged, or ϕ2ϕ1ϕ2 (t, s, r) contains 1;
(5) NF (t, s, r) equals NF (ϕ1 (t, s, r)) for all (t, s, r) in S3.
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Here, the map NF from (Se)
∗ to itself is defined inductively on the length of the

word, as follows:

• NF of the empty word is the empty word;
• NF (s) equals s for all s in S;
• NF of a word containing 1 equals NF of the same word with 1 removed;
• and

NF (sn, . . . , s1) :=

{
ϕn−1 · · ·ϕ1 (NF (sn, . . . , s2) , s1) if it contains no 1

NF (ϕn−1 · · ·ϕ1 (NF (sn, . . . , s2) , s1)) otherwise.

Remark 3.2.3.1. Notice that there is a flaw in the above definition. Since ϕ
is defined on the domain (Se)

2, it is not clear what should one do when one gets
the expression of the form ϕ (s), where s is a single element of S. However, such
an expression may indeed occur if ϕ is applied just after NF has eliminated 1 and
thus shortened the word in question. For instance, take s2 = 1. Then

NF (s2, s1) = ϕ1 (NF (s2) , s1) = ϕ1 (s1) ,

which is not defined. This issue has been resolved by introducing Notation 3.2.2.1.

Remark 3.2.3.2. Note that, in [35] and [48], one the maps NF is called the
normal form. In this thesis (following [16]), however, a normal form is a map
from the presented monoid, not from the free monoid over a generating set (recall
Subsection 1.2.1 on page 11). Accordingly, we do not call the map Nϕ, which is an
analogue of NF, a normal form. Instead, we call such a syntactic transformation
(of arbitrary words to normal ones) a normalisation map (as in Definition 3.2.2.2).

3.2.4. Rewriting system associated with factorability. A rewriting sys-
tem is associated with a factorable monoid in a canonical way, as follows.

Lemma 3.2.4.1 ([35, Lemma 5.1]). Let (M,S, η) be a factorable monoid. If R
is the set of rewriting rules of the form

(s, t)→ ηµ (s, t)

for all s and t in S such that (s, t) is not stable, then (S,R) is a confluent, strongly
reduced rewriting system presenting M . Here, if η (st) = 1, then the rewriting rule
is interpreted as (s, t)→ st.

Remark 3.2.4.2. Observe that, strictly speaking, the presentation given by the
property (1) of Definition 3.2.2.4 (of local factorability structure) is not the same
as the one obtained by turning rewriting rules into equations in Lemma 3.2.4.1.
Namely, if st is in S (resp. equal to 1), then the former contains the relation
(s, t) = (st, 1) (resp. (s, t) = (1, 1)), whereas the latter has (s, t) = st (resp.
(s, t) = 1). However, one can obtain the latter from the former simply by removing
the rightmost occurrence of 1, and vice versa.

The associated rewriting system in Lemma 3.2.4.1 is not necessarily termi-
nating, even if S is finite and M is left-cancellative. The reader is referred to [35,
Appendix] for an example of a factorable monoid whose associated rewriting system
is not terminating. The following result gives sufficient conditions for the rewriting
system associated with a factorable monoid to be terminating.
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Theorem 3.2.4.3 ([35, Theorem 7.3]). Let (M,S, η) be a factorable monoid.
If the equalities

η′ (sf) = η′ (s · η′ (f)) , η (sf) = η (s · η′ (f)) · η (f)

hold for all s in S and f in M , then the associated rewriting system is terminating.

3.3. Quadratic normalisations

This section recalls the notion of quadratic normalisation. After presenting
basic notions concerning normalisation in Subsection 3.3.1, we recollect the notion
of quadratic normalisation in Subsection 3.3.2, then we focus on a particular class of
quadratic normalisations in Subsection 3.3.3. Subsection 3.3.4 recalls the rewriting
system associated with a quadratic normalisation. Subsection 3.3.5 recalls the
notion of left-weighted normalisation. For technical elaboration, see [16].

3.3.1. Normalisation and normal form. Having already hinted in the In-
troduction that a normalisation is a syntactic transformation of an arbitrary word
to a normal one, here we recall a formal definition.

Definition 3.3.1.1. Let A be a set, and let N be a map from A∗ to A∗. A
normalisation is a pair (A,N) if

(1) N is length-preserving,
(2) restriction of N to A is the identity map,
(3) the equality

N (u|v|w) = N (u|N (v) |w)

holds for all A-words u, v, w.

The map N is called a normalisation map. An A-word v such that N (v) = v
is called N-normal.

A normalisation for a monoid M is a normalisation (S,N) such that M
admits the presentation

〈S| {v = N (v) |v ∈ S∗}〉 .

Remark 3.3.1.2. Recall that the usage of S, as well as the superscript e in
Se (or the absence of it), is explained by Convention 3.1.0.2. The letter S is not
used in Definition 3.3.1.1, in order to point out that normalisation itself is a purely
syntactic notion, as opposed to the notion of normalisation for a monoid.

Example 3.3.1.3 ([16, Example 2.2]). Assume that (A,<) is a totally ordered
nonempty finite set. Let <∗ denote the lexicographic extension of < to A∗. The
image under N of an A-word is defined as the <∗-minimal word obtained by per-
muting letters of the argument. Then (A,N) is a normalisation for the free abelian
monoid over A.

Remark 3.3.1.4. Note that the definition of normalisation for a monoid M
implies that there is a nontrivial monoid homomorphism, also known as grading,
from M to the multiplicative monoid of nonnegative integers, such that the degree,
i.e. image under grading, of every s in S equals 1. Namely, set the degree of g
in M to be the common length of all the S-words representing g (which is well-
defined due to the property (1) of normalisation). Such monoids (M,S) are called
graded. In other words, M is graded with respect to a generating set S if all
S-words representing the same element of M are equal in length.
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Remark 3.3.1.5 ([16, Proposition 2.6]). In a graded monoid, a normalisation
and a normal form are just different aspects of looking at the same notion. Indeed,
given a normalisation (S,N) for a monoidM , a normal form nf forM with respect
to S is obtained by setting nf (g) = N (v) for any S-word v representing g. Con-
versely, if nf is a normal form for a graded monoid M with respect to a generating
set S, then one obtains a normalisation map by setting N (v) = nf (ev (v)). These
two correspondences are inverse to each other.

On the other hand, if a monoid (M,S) is not graded, i.e. if an element of M
may be represented by S-words of different lengths, then a new letter representing
1 can be introduced to formally preserve length. For a normalisation (A,N), we
say that an element e of A is N-neutral if the equalities

(3.3.1) N (v|e) = N (e|v) = N (v) |e
hold for every A-word v.

Let Se be a pointed set with basepoint e. We say that (Se, N) is a normali-
sation mod e for a monoid M if e is an N -neutral element of Se and M admits
the presentation

(3.3.2)
〈
Se|
{
v = N (v) |v ∈ (Se)

∗} ∪ {e = 1}
〉
.

Note that there can be at most oneN -neutral element. We write πe for the canonical
projection from (Se)

∗ onto S∗, which removes all the occurrences of e. This extends
the equivalence between normalisation and normal form from graded monoids to
monoids in general.

Proposition 3.3.1.6 ([16, Proposition 2.9]).
(1) If (Se, N) is a normalisation mod e for a monoid M , then a geodesic

normal form nf for M with respect to Se is obtained by setting nf (g) =
πe (N (v)) for any Se-word v representing g.

(2) Conversely, let nf be a geodesic normal form for a monoid M with respect
to a generating set S. Write eve for the extension of the evaluation map
ev : S∗ → M to (Se)

∗ by putting eve (e) = 1. Then a normalisation
(Se, N) mod e for M is provided by the map

N (v) = nf (eve (v)) |eq

with q denoting the number of letters e to be added in order to formally
preserve length, namely q = |v| − |nf (eve (v))|.

(3) These two correspondences are inverse to each other.

Example 3.3.1.7. For a left-cancellative monoid M with no nontrivial invert-
ible element and a Garside family Se in M , Proposition 2.4.4.1 on page 40 yields
a geodesic normal form on (M,S). Then, applying Proposition 3.3.1.6(2) yields a
normalisation

(
Se, NS

)
where, formally, Se denotes S enriched with an N -neutral

letter. This normalisation is said to be derived from the Garside family Se.
The monoid M then admits the presentation (3.3.2). Note that the definition of
the map NS here agrees with the one given in Subsection 2.4.4 on page 39.

Remark 3.3.1.8 ([16, Remark 2.10]). If a monoid (M,S) is graded and nf
is a normal form on (M,S), then there are two normalisations arising from nf,
provided by Remark 3.3.1.5 and Proposition 3.3.1.6(2), respectively. To make a
clear distinction, let us temporarily write Ne for the normalisation map of the
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latter. The normalisations (S,N) and (Se, Ne) are closely related as the map
πe ◦ Ne is identically equal to the map N ◦ πe. Therefore, it suffices to formally
consider normalisations mod e for monoids.

3.3.2. Quadratic normalisations. Let us extend Notation 3.2.1.3.

Notation 3.3.2.1. For a finite sequence of positive integers u = (i1, . . . , iq),
we denote the composite map Fiq ◦ · · · ◦ Fi1 (note that Fi1 is applied first) by Fu,
often omitting commas in u when all its components are single-digit numbers (so
there is no risk of ambiguity).

If (A,N) is a normalisation, let N denote the restriction of N to the set of all
length-two A-words.

Definition 3.3.2.2. A normalisation (A,N) is quadratic if the following two
requirements are met.

(1) An A-word v is N -normal (meaning N (v) = v) if, and only if, every
length-two factor of v is N -normal.

(2) For every A-word v, there exists a finite sequence of positions u, depending
on v, such that N (v) = Nu (v).

Example 3.3.2.3. The normalisation given in Example 3.3.1.3 is quadratic.
Indeed, a word is <∗-minimal if, and only if, its every length-two factor is <∗-
minimal; and each word can be ordered by switching pairs of adjacent letters that
are not ordered as expected.

An advantage of a quadratic normalisation is that it is completely determined
by the restriction N .

Proposition 3.3.2.4 ([16, Proposition 3.6]).
(1) If (S,N) is a quadratic normalisation for a monoid M , then N is idem-

potent and M admits the presentation〈
S|
{
s|t = N (s|t) |s, t ∈ S

}〉
.

(2) If (A,N) is a quadratic normalisation, then an element e of A is N -neutral
if, and only if, the following equalities hold for every s in A:

N (s|e) = N (e|s) = N (s) |e.

(3) If (Se, N) is a quadratic normalisation mod e for a monoid M , then N is
idempotent and M admits the presentation〈

S|
{
s|t = πe

(
N (s|t)

)
|s, t ∈ S

}〉
.

If (A,N) is a quadratic normalisation, then the image under N of an A-word
is computed by sequentially applying N to length-two factors at various positions.
For length-three words, there are only two such positions. Since N is idempotent,
it suffices to consider alternating sequences of positions. This motivates the notion
of class, which measures the complexity of normalising length-three words. For
m ≥ 0, we write 12 [m] (resp. 21 [m]) for the alternating sequence 121 . . . (resp.
212 . . .) of length m. A quadratic normalisation (A,N) is said to be of left-class
m (respectively, right-class n) if, on the set of all length-three A-words, the map
N coincides with the map N12[m] (respectively, N21[n]). A quadratic normalisation
(A,N) is of class (m,n) if it is of left-class m and of right-class n.
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Example 3.3.2.5. Let us consider the quadratic normalisation given in Exam-
ple 3.3.1.3. If A has only one element, then there is only one A-word of length 3
and it is N -normal. So, (A,N) is of class (0, 0) in this case.

If A has at least two elements, then each of the maps N121 and N212 produces
N -normal words. Namely, assuming that the word a|b|c is normal, compute N121

and N212 of the word c|b|a (which provides the worst-case scenario):

c|b|a N17→ b|c|a N27→ b|a|c N17→ a|b|c, c|b|a N27→ c|a|b N17→ a|c|b N27→ a|b|c.
Therefore, (A,N) is of class (3, 3) in this case. A smaller class cannot be obtained
in general, as witnessed by N12 (b|b|a) = b|a|b and N21 (b|a|a) = a|b|a, with a and
b being any two distinct elements of A such that a < b.

A class of a quadratic normalisation (A,N) can be characterised by relations
involving only the restriction N , as follows.

Proposition 3.3.2.6 ([16, Proposition 3.14]). A quadratic normalisation (A,N)
is

(1) of left-class m if, and only if, the following three maps coincide on A3:

N12[m], N12[m+1], N21[m+1].

(2) of right-class n if, and only if, the following three maps coincide on A3:

N21[n], N21[n+1], N12[n+1].

(3) of class (m,m) if, and only if, the map N12[m] coincides with the map
N21[m] on A3.

The minimal left-class of (A,N) is the smallest natural number m such that
(A,N) is of left-class m if such m exists, and∞ otherwise. The minimal right-class
n of (A,N) is defined analogously. Then the minimal class of (A,N) is the pair
(m,n).

Lemma 3.3.2.7 ([16, Lemma 3.13]). The minimal class of a quadratic normal-
isation is either of the form (m,n) with |m− n| ≤ 1, or (∞,∞).

For example, the minimal class of the quadratic normalisation considered in
Example 3.3.2.5 is (3, 3) if the generating set has at least two elements.

3.3.3. Quadratic normalisations of class (4, 3). The class (4, 3) has par-
ticularly nice computational properties (see [16, Section 4]), not shared by higher
classes (see [16, Example 3.23]), thanks to the diagrammatic tool called the domino
rule. Let A be a set, and let F be a map from A2 to itself. We say that the domino
rule1 is valid for F if, for all r1, r2, r′1, r′2, s0, s1, s2 in A such that F (s0|r1) = r′1|s1

and F (s1|r2) = r′2|s2, the following implication holds: if r1|r2 and r′1|s1 and r′2|s2

are fixed points of F , then so is r′1|r′2. The domino rule is expressed by the com-
mutative diagram

(3.3.3)

• • •

• • •

r′1

s0

r′2

s1 s2

r1 r2

1A more precise name would be the left domino rule (see e.g. [12]).
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where arcs denote fixed points of F : the solid ones are assumptions, and the dashed
one is the expected conclusion.

Proposition 3.3.3.1 ([16, Lemma 4.2]). A quadratic normalisation (A,N) is
of class (4, 3) if, and only if, the domino rule is valid for N .

The domino rule allows one to devise a simple universal recipe for computing
the images under a normalisation map. We recall the notation needed to express
it.

Notation 3.3.3.2. For a positive integer n, the finite sequence δn of positive
integers is inductively defined as follows:

δn :=

{
the empty sequence if n = 1

sh (δn−1) |1|2| · · · |n− 1 if n > 1,

where sh denotes the shifting map which increases every entry by 1. So, we have
δ2 = 1, δ3 = 2|1|2, δ4 = 3|2|3|1|2|3, δ5 = 4|3|4|2|3|4|1|2|3|4, etc.

For the sake of illustration, let us combine Notations 3.2.1.3 and 3.3.3.2.

Example 3.3.3.3. Let us consider an instance of the class of monoids given
in Example 3.3.1.3. Take A = {a, b, c} and a < b < c. Then, c|b|a 7→ Nδ3 (c|b|a)
consists of the following steps:

c|b|a N27→ c|a|b N17→ a|c|b N27→ a|b|c.
We observe that Nδ3 (c|b|a) is equal to N (c|b|a), meaning that the corresponding
quadratic normalisation is of right-class 3 (which agrees with Example 3.3.2.5).

Now we can formulate the aforementioned recipe for normalising arbitrarily
long words.

Proposition 3.3.3.4 ([16, Proposition 4.4]). If (A,N) is a quadratic normali-
sation of class (4, 3), then, for every positive integer n and every A-word v of length
n, we have

N (v) = Nδn (v) .

The key step in proving this proposition is the following lemma.

Lemma 3.3.3.5 ([16, Lemma 4.5]). If (A,N) is a quadratic normalisation of
class (4, 3), then, for every s in A and every N -normal A-word r1| · · · |rm, we have

N (s|r1| · · · |rm) = N1|2|···|m−1|m (s|r1| · · · |rm) .

Remark 3.3.3.6. Note, in particular, that Lemma 3.3.3.5 implies that the
leftmost letter of N (s|r1| · · · |rm) does not depend on r2, . . . , rm but only on s and
r1. We will use this observation in Subsection 3.4.2.

By Proposition 3.3.2.6(2), if (A,N) is a quadratic normalisation of class (4, 3),
then the maps N1212, N212 and N2121 coincide on A3. One of the major results of
[16] is the converse: every idempotent map satisfying such condition arises from a
quadratic normalisation of class (4, 3), in the following sense.

Proposition 3.3.3.7 ([16, Proposition 4.7]). Let A be a set, and let F be a
map from A2 to itself. If F is idempotent, and if the maps F1212, F212 and F2121

coincide on A3, then there is a quadratic normalisation (A,N) of class (4, 3) such
that the map N is identically equal to the map F .

Thus, quadratic normalisations of class (4, 3) are fully axiomatised.
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3.3.4. The rewriting system associated with a quadratic normalisa-
tion. There is a simple correspondence between quadratic normalisations and qua-
dratic rewriting systems.

Proposition 3.3.4.1 ([16, Proposition 3.7]).
(1) If (S,N) is a quadratic normalisation for a monoid M , then a quadratic,

reduced, normalising and confluent rewriting system (S,R) presenting M ,
is obtained by defining R as the set of rewriting rules of the form

s|t→ N (s|t)

for all s and t in S such that s|t is not N -normal.
(2) Conversely, if (S,R) is a quadratic, reduced, normalising and confluent

rewriting system presenting a monoid M , then (S,N) is a quadratic nor-
malisation for M , with

N (v) = v̂

for every S-word v.
(3) These two correspondences are inverse to each other.

Proposition 3.3.4.1(1) can be adapted to a case when there is an N -neutral
element. In fact, an N -neutral element does not affect termination of the associated
rewriting system.

Proposition 3.3.4.2 ([16, Proposition 3.9]).
(1) If (Se, N) is a quadratic normalisation mod e for a monoid M , then a

reduced, normalising and confluent rewriting system (S,R) presenting M ,
is obtained by defining R as the set of rewriting rules of the form

s|t→ πe
(
N (s|t)

)
for all s and t in S such that s|t is not N -normal.

(2) If the rewriting system in Proposition 3.3.4.1(1) terminates, then so does
the one in (1).

The rewriting system associated with a quadratic normalisation in Proposi-
tion 3.3.4.1 need not be terminating (see [16, Proposition 5.7]). However, it is
terminating for quadratic normalisations of class (4, 3).

Proposition 3.3.4.3 ([16, Proposition 5.4]). A rewriting system associated to a
quadratic normalisation of class (4, 3) is convergent. More precisely, every rewriting
sequence starting from an element of length n has length at most 2n − n− 1.

3.3.5. Left-weighted normalisations. Before closing this section, let us re-
call (from [16, Subsection 6.2]) a notion that we glimpsed in Lemma 2.4.4.2. A
normalisation (A,N) for a monoid M is called left-weighted if, for all s, t, s′, t′ in
A, the equality s′|t′ = N (s|t) implies the left divisibility s � s′ in M . Reminding
the reader of the notion of normalisation derived from a Garside family, defined
in Example 3.3.1.7, we recall a characterisation of such normalisations among qua-
dratic normalisations of class (4, 3).

Proposition 3.3.5.1 ([16, Proposition 6.10]). Let M be a left-cancellative
monoid M containing no nontrivial invertible element. If (Se, N) is a quadratic
normalisation mod 1 for M , then the following are equivalent.
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(1) The family Se is a Garside family in M , and the map N is identically
equal to the map Ns.

(2) The normalisation (Se, N) is of class (4, 3) and is left-weighted.

Remark 3.3.5.2. In particular, Proposition 3.3.5.1(1) means that, under given
conditions, every N -normal word r1| · · · |rm has the following property for all i < m,

for all s ∈ S and h ∈M, s � hriri+1 implies s � hri.
It is the property of being S-greedy, expressed diagrammatically mutatis mutandis
by (2.4.1) on page 38.

3.4. A correspondence between factorability structures and quadratic
normalisations in monoids

In this section, a correspondence between factorability structures and qua-
dratic normalisations is established. Subsection 3.4.1 gives a characterisation of
factorable monoids in terms of quadratic normalisations. Subsection 3.4.2 shows
that, although a quadratic normalisation corresponding to a factorable monoid is
not of class (4, 3) in general, it is so if a defining condition of local factorability
structure is strengthened in a suitable way. Finally, this strengthened definition
is shown to imply the additional assumption introduced in [35] (and recalled in
Theorem 3.2.4.3) in order to reach termination of the associated rewriting system.

3.4.1. Characterisation of factorable monoids. In this subsection, a nec-
essary and sufficient condition is given, in terms of quadratic normalisations, for
a monoid to be factorable. This is achieved through a syntactic correspondence
between a local factorability structure and the restriction of a quadratic normal-
isation map to length-two words. The property (4) of Definition 3.2.2.4 (of local
factorability structure) is going to be essential in deriving main result of the present
chapter so, for convenience, we are going to express it compactly using the domino
rule.

Definition 3.4.1.1. Let (A,N) be a quadratic normalisation with the N -neu-
tral element e. The weak domino rule is valid for N if the domino rule is valid
for N whenever none of the elements r′1, r′2, s2 of the diagram (3.3.3) equals e.

Now, we can state the main result of the current chapter.

Theorem 3.4.1.2. A monoid (M,S) is factorable if, and only if, it admits a
quadratic normalisation (N,Se) mod 1 such that the weak domino rule is valid for
N .

The rest of this subsection presents a (quite straightforward) proof, relying
on the relation between factorability structure and local factorability structure, as
stated in Theorem 3.2.2.6. First we verify that a factorability structure yields a
quadratic normalisation, rather canonically. Assume that (M,S, η) is a factorable
monoid. Since Nϕ is not length-preserving in general, it does not make a suitable
candidate for a normalisation map in the sense of Subsection 3.3.1. To repair this,
let us introduce the following notation.

Notation 3.4.1.3. Let (M,S, η) be a factorable monoid. Denote by N ′ϕ the
pointwise length-preserving extended form of Nϕ, defined as follows:

v 7→ Nϕ (v) |1q, with q = |v| − |Nϕ (v)| .
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Lemma 3.4.1.4. If (M,S, η) is a factorable monoid, then
(
Se, N ′ϕ

)
is a quadratic

normalisation mod 1 for M .

Proof. Let us check that
(
Se, N ′ϕ

)
has, mutatis mutandis, the three properties

of Definition 3.3.1.1 (of normalisation). Properties (1) and (2) are satisfied by
construction. Indeed, N ′ϕ is length-preserving and N ′ϕ (s) = s for every s in Se, by
definition. Lemma 3.2.1.9 implies the property (3), namely

N ′ϕ (u|v|w) = N ′ϕ
(
u|N ′ϕ (v) |w

)
.

We verify that the obtained normalisation
(
Se, N ′ϕ

)
is quadratic. The prop-

erty (3) of Definition 3.2.2.2 (of the normalisation map Nϕ) implies the property (2)
of Definition (3.3.2.2) (of quadratic normalisation) and, consequently, also the right-
to-left implication of the property (1) of Definition (3.3.2.2). The other direction
of the property (1) of Definition (3.3.2.2) follows from Lemma 3.2.1.9.

Finally, Lemma 3.2.4.1, together with Remark 3.2.4.2, provides a presentation
showing that

(
Se, N ′ϕ

)
is a normalisation mod 1 for M . �

We say that
(
Se, N ′ϕ

)
is the quadratic normalisation corresponding to

the factorability structure η.

Remark 3.4.1.5. A note on formality is in order before we continue. As an-
nounced by Remark 3.1.0.1, we have tried to respect the two original conventions:
of taking a generating set Se to be a subset of a factorable monoid; and of distin-
guishing Se from its image under an evaluation map arising from a normalisation.
Now, however, that we consider those quadratic normalisations (Se, N) which cor-
respond to a factorability structure, we interchangeably write e and 1 for an N -
neutral Se-letter, depending on whether we take the viewpoint of normalisation or
factorability.

Remark 3.4.1.6. Note that, by construction, the restriction N ′ϕ of N ′ϕ to
length-two words is identically equal to the local factorability structure of (M,S, η).
This fact will be often used implicitly in the rest of the present chapter.

Having obtained a quadratic normalisation, we want to determine its class.

Lemma 3.4.1.7. If (M,S, η) is a factorable monoid, then the quadratic normal-
isation corresponding to η is of class (5, 4).

Proof. Denote by ϕ the local factorability structure corresponding to η in the
sense of Theorem 3.2.2.6. If (r, s, t) is a length-three Se-word, then Lemma 3.2.2.5
says that the word N ′ϕ (r, s, t) equals the word ϕ2121 (r, s, t). We conclude that
quadratic normalisation

(
Se, N ′ϕ

)
is of right-class 4. Then Lemma 3.3.2.7 grants

the left-class 5. �

The following example demonstrates that the minimal right-class of a quadratic
normalisation corresponding to a factorability structure is not smaller than 4, in
general.

Example 3.4.1.8 ([34, Example 2.1.13]). Consider the monoid (Z,+) with
respect to the generating set {−1,+1}. The factorisation map is defined by g 7→
(sgn (g) , g − sgn (g)), where sgn : Z → {−1, 0,+1} denotes the sign function. One
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can check that this is a factorable monoid.2 Note that ϕ212 (1,−1,−1) equals
(0,−1, 0), whereas ϕ2121 (1,−1,−1) equals (−1, 0, 0). Therefore, the minimal right-
class of the corresponding quadratic normalisation is at least 4; then it is exactly
4, by Lemma 3.4.1.7.

The next example (for which the reader is referred to [35, Proposition .7])
shows that the minimal left-class of a quadratic normalisation corresponding to a
factorability structure is not smaller than 5 in general.

Example 3.4.1.9. Consider the factorable monoidM given in [35, Proposition
.7]. Computing ϕ1212 (c1, b2, a2) produces

(c1, b1, a1)
ϕ17→ (c1, b1, a1)

ϕ27→ (c1, b2, a2)
ϕ17→ (c2, b3, a2)

ϕ27→ (c2, e2, 1) ,

whereas
ϕ12121 (c1, b2, a2) = ϕ1 (c2, e2, 1) = (g2, f2, 1) .

Hence the minimal left-class of the corresponding quadratic normalisation is at least
5.

The above computation also gives

ϕ212 (c1, b1, a1) = (c2, e2, 1) ,

whereas
ϕ2121 (c1, b1, a1) = ϕ1 (c2, e2, 1) = (g2, f2, 1) .

Thus, the minimal right-class is at least 4, as expected according to Lemma 3.3.2.7.

The previous two examples witness that the estimate of class in Lemma 3.4.1.7
is as good as one can hope for. On the other hand, observe that not every qua-
dratic normalisation of class (5, 4) is corresponding to a factorability structure, as
demonstrated by the following example (adapted from [16, Example 3.15]).

Example 3.4.1.10. Let A = {a, b1, b2, b3, b4, b5}, and let R consist of the rules
abi → abi+1 for i < 5 even and bia → bi+1a for i < 5 odd. The rewriting system
(A,R) is clearly quadratic and reduced. Notice that it is also terminating because
each rewriting rule only increases the index of a letter b in a word. Furthermore, it
is confluent, as illustrated by the following diagram (recall that, by Theorem 2.1.2.1
on page 21, it suffices to investigate the critical branchings; or see [41, Theorem 0]
for the same fact expressed without using the polygraphic setting):

bi+1abj

biabj bi+1abj+1

biabj+1

.

Denote by (A,N) the quadratic normalisation associated with (A,R) by Propo-
sition 3.3.4.1. Let us determine the minimal class of (A,N). If a length-three word
does not begin and end with the letter a, then it is either N -normal or it becomes

2Technically speaking, this is a factorable group by [50, Example 3.2.2], and a weakly fac-
torable monoid. Hence, it is also a factorable monoid by [34, Proposition 2.1.28].
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N -normal in a single step. On the other hand, normalising a|b1|a takes four steps
starting from the right:

a|b1|a
(
N17→ a|b1|a

)
N27→ a|b2|a

N17→ a|b3|a
N27→ a|b4|a

N17→ a|b5|a.

Thus, the minimal class of (A,N) is (5, 4).
However, the normalisation (A,N) is not corresponding to any factorability

structure. To see this, observe that

N212 (a, b1, a) = (a, b4, a) ,

whereas
N2121 (a, b1, a) = (a, b5, a) .

Thus, N fails to admit the property (4) of Definition 3.2.2.4 (of local factorability
structure). We conclude (by Remark 3.4.1.6) that N does not correspond to a
factorability structure.

A natural question to ask is: among quadratic normalisations of class (5, 4),
what distinguishes those which do correspond to a factorability structure? Exam-
ple 3.4.1.10 suggests a candidate (by what it is lacking): simply impose the weak
domino rule upon quadratic normalisation of class (5, 4). Before testing sufficiency
of these two properties combined, let us notice that they are not independent from
each other.

Lemma 3.4.1.11. Let (A,N) be a quadratic normalisation having an N -neutral
element e. If the weak domino rule is valid for N , then (A,N) is of class (5, 4).

Proof. Let (r, s, t) be an A-word. If

N2121 (r, s, t) = N212 (r, s, t) ,

then
N (r, s, t) = N212 (r, s, t) ,

so it takes at most three steps starting with N2 to normalise (r, s, t).
Otherwise, N212 (r, s, t) contains e by assumption. Denote

(3.4.1) (a, b, c) := N212 (r, s, t) .

Case 1. If e occurs exactly once in the triple (a, b, c), then it cannot be at the
leftmost position after N1 is applied in (3.4.1). So, it has to be at the
rightmost position after the last N2 is applied in (3.4.1). In other words,
c has to be equal to e. Consequently,

(3.4.2) N (a, b, c) = N1 (a, b, c) = N2121 (r, s, t) .

Case 2. If e occurs exactly twice in the triple (a, b, c), then either a 6= e or b 6= e.
In either case, the equalities (3.4.2) hold.

Case 3. If e occurs three times in the triple (a, b, c), then clearly the equali-
ties (3.4.2) hold.

Therefore, (A,N) is of right class 4, hence of class (5, 4), by Lemma 3.3.2.7. �

The following proposition shows that adding the weak domino rule to the prop-
erties of quadratic normalisation (and thus granting class (5, 4) by Lemma 3.4.1.11),
suffices to yield factorability.
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Proposition 3.4.1.12. Let (Se, N) be a quadratic normalisation mod e for a
monoid M . If the weak domino rule is valid for N , then N is a local factorability
structure.

Proof. The following list shows that the map N has, mutatis mutandis, all
the properties of Definition 3.2.2.4 (of local factorability structure).

(1) By Proposition 3.3.2.4(3), M admits the presentation〈
S|
{
s|t = πe

(
N (s|t)

)
|s, t ∈ S

}〉
.

Although this presentation is not the same as the one in Definition 3.2.2.4,
the two are equivalent (see Remark 3.2.4.2).

(2) By the property (3) of Definition 3.3.1.1 (of normalisation), N is idempo-
tent.

(3) By Proposition 3.3.2.4(2), the equality N (e|s) = s|e holds for all s ∈ Se.
(4) This property is explicitly assumed.
(5) By Lemma 3.4.1.11, the normalisation (Se, N) is of class (5, 4). By the def-

inition of right-class 4, the N -normal word N (r, s, t) equals N2121 (r, s, t)
which further equals N12121 (r, s, t) by the definition of left-class 5. Hence,
N (r, s, t) equals

(
N ◦N1

)
(r, s, t) for all (r, s, t) in S3.

�

We have, thus, proved one direction of Theorem 3.4.1.2. The other one follows
from Remark 3.4.1.6, as the restriction to length-two words of a quadratic nor-
malisation corresponding to a factorability structure has all the properties of the
corresponding local factorability structure and, in particular, the weak domino rule
is valid. Thereby, we have completed the proof of Theorem 3.4.1.2.

The following corollary is an immediate consequence.

Corollary 3.4.1.13.
(1) Associating a factorability structure to a quadratic normalisation such that

the weak domino rule is valid, and associating a quadratic normalisation
(the weak domino rule is valid automatically) to a factorability structure,
as given above, are inverse transformations.

(2) Normal forms with respect to a factorability structure and to the corre-
sponding quadratic normalisation are the same.

(3) The rewriting systems associated with a factorability structure and the
corresponding quadratic normalisation are equivalent, the only difference
being dummy letters to preserve length in the latter.

3.4.2. Factorability in relation to quadratic normalisation of class
(4, 3). Having established a general correspondence between a factorability struc-
ture and a quadratic normalisation in the previous subsection, we are now going to
further elaborate these links in the case when the quadratic normalisation involved
is of class (4, 3). First we emphasise a particular, yet important, consequence of
Proposition 3.4.1.12.

Corollary 3.4.2.1. If (Se, N) is a quadratic normalisation of class (4, 3) mod
1 for a monoid M , then N is a local factorability structure.

Although the converse does not hold in general, it does so in the case of graded
monoids (as defined in Subsection 3.3.1).
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Lemma 3.4.2.2. If (M,S, η) is a graded factorable monoid, then (S,Nϕ) is a
quadratic normalisation of class (4, 3).

Proof. In addition to the conclusion of Lemma 3.4.1.4, observe that the prop-
erty of being of right-class 3 follows from the property (4) of Definition 3.2.2.4 (of
local factorability structure) and the assumption thatM is graded. Then the prop-
erty of being of left-class 4 follows from Lemma 3.3.2.7. �

Let us point out precisely which defining properties of quadratic normalisation
of class (4, 3) mod 1 for M do not necessarily arise from a factorability structure
on M . To put it another way, we are looking for a (not too restrictive) property
that would complement a factorability structure to a quadratic normalisation of
class (4, 3). The property (4) of Definition 3.2.2.4 (of local factorability structure)
grants the equality

(3.4.3) ϕ2121 (r, s, t) = ϕ212 (r, s, t)

only for length-three S-words (r, s, t) such that ϕ212 (r, s, t) contains no 1. On the
other hand, the right-class 3 (i.e. the domino rule) requires the equality (3.4.3)
to hold for every length-three Se-word (r, s, t), regardless of whether ϕ212 (r, s, t)
contains 1 or not. Therefore, in order for a factorability structure to induce a
quadratic normalisation of class (4, 3), it suffices to strengthen the condition (4) of
Definition 3.2.2.4, as follows.

Proposition 3.4.2.3. Let (M,S, η) be a factorable monoid. If the equality (3.4.3)
holds for each (r, s, t) in S3 such that ϕ212 (r, s, t) contains 1, then

(
Se, N ′ϕ

)
is a

quadratic normalisation of class (4, 3) mod 1 for M .

Proof. Lemma 3.4.1.4 says that
(
Se, N ′ϕ

)
is a quadratic normalisation mod 1

for M .
To obtain the class (4, 3), what remains to be shown is that the equality (3.4.3)

holds for all (r, s, t) in (Se)
3 \ S3. If t equals 1, then ϕ1 (r, s, t) equals ϕ (r, s) |1,

which is everywhere stable. If s equals 1, then ϕ21 (r, s, t) equals ϕ (r, t) |1, which is
everywhere stable. If r equals 1, then ϕ121 (r, s, t) equals ϕ212 (r, s, t) which equals
ϕ (s, t) |1, which is, again, everywhere stable. �

We have shown that a quadratic normalisation of class (4, 3) yields a factorabil-
ity structure (Corollary 3.4.2.1), but not vice versa (Examples 3.4.1.8 and 3.4.1.9,
or Theorem 3.4.1.2). However, a factorability structure does yield a quadratic nor-
malisation of class (4, 3) under a stronger condition on local factorability (Propo-
sition 3.4.2.3). Therefore, under the same condition, the rewriting system associ-
ated with a factorable monoid is terminating, by Proposition 3.3.4.3 and Corol-
lary 3.4.1.13(3).

From another point of view, recall that Theorem 3.2.4.3 ensures termination
of the rewriting system associated with a factorable monoid, under an additional
assumption on the factorisation map. It is then natural to ask what is the re-
lation between the additional condition of Proposition 3.4.2.3 and the additional
assumption of Theorem 3.2.4.3, which are both known to ensure termination of the
associated rewriting system.

In the rest of the present subsection, we investigate the relation between these
two optional properties of a factorable monoid (M,S, η): for each (r, s, t) in S3 such
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that ϕ212 (r, s, t) contains 1, the condition

(3.4.4) (ηµ)2121 (r, s, t) = (ηµ)212 (r, s, t) ;

and, for all s in S and f in M , the assumption

(3.4.5) (sf)
′

= (sf ′)
′
, sf = sf ′ · f.

Remark 3.4.2.4. Note that the assumption (3.4.5) is trivially valid in the case
where f lies in Se or in the case where (s, f) is stable.

It is already known that the assumption (3.4.5) implies the condition (3.4.4),
as follows.

Lemma 3.4.2.5 ([35, Lemma 7.1]). Let (M,S, η) be a factorable monoid. If the
additional assumption (3.4.5) is valid for all s in S and f in M , then the maps
(ηµ)212 and (ηµ)2121 coincide on M3.

Corollary 3.4.2.6. Let (M,S, η) be a factorable monoid. If the additional
assumption (3.4.5) is valid for all s in S and f in M , then the condition (3.4.4) is
satisfied for all (r, s, t) in S3.

For the reader’s convenience, we adapt the proof of Lemma 3.4.2.5 here, to
prove Corollary 3.4.2.6.

Proof. If the assumption (3.4.5) is valid for all s in S and f in M , then the
maps η1µ1 and µ2η1µ1η2 coincide on S ×M . Composing each of these two maps
with µ2 and then composing η2 with the obtained composite map, we see that the
maps η2η1µ1µ2 and η2µ2η1µ1η2µ2 coincide on S ×M ×M . Note that the map
η2η1 produces the η-normal form by definition; and that the restriction of the map
η2µ2η1µ1η2µ2 to S×S×S coincides with the map ϕ2ϕ1ϕ2. Therefore, every image
under ϕ2ϕ1ϕ2 is everywhere stable by Lemma 3.2.1.9. Thus, the condition (3.4.4)
is satisfied for all (r, s, t) in S3. �

In the opposite direction, a partial result is already known. Namely, (3.4.4)
implies (3.4.5) under certain (quite restrictive) additional requirements imposed on
both the monoid and the normalisation. The next lemma is a straightforward adap-
tation of [13, Proposition IV.1.49]; it is also hinted in the proof of [48, Corollary
7.4.5].

Remark 3.4.2.7. Relying on Theorem 3.4.1.2 and Corollary 3.4.1.13(2) in par-
ticular, we are going to abuse terminology by saying ‘the normal form’ without
specifying whether it arises from factorability or normalisation.

Lemma 3.4.2.8. Let M be a left-cancellative monoid containing no nontrivial
invertible element. If (Se, N) is a left-weighted quadratic normalisation of class
(4, 3) mod 1 for M , then the assumption (3.4.5) is valid for all s in S and f in M .

Proof. We need to show that the equalities (sf)
′

= (sf ′)
′ and sf = sf ′ · f

hold for all s in S and f in M .
By the definition of factorability structure, we have (sf ′)

′ � sf ′, and f ′ � f
hence also sf ′ � sf . The transitivity gives (sf ′)

′ � sf ′, and the assumption that
(Se, N) is left-weighted then yields (sf ′)

′ � (sf)
′.

By Corollary 3.4.1.13(2), the normal form of f has the form f ′|r2| · · · |rm.
Hence, (sf)

′ � sf = sf ′r2 · · · rm. Since (sf)
′ lies in Se and f ′|r2| · · · |rm is normal,
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we obtain (sf)
′ � sf ′ by Proposition 3.3.5.1 and Remark 3.3.5.2 (which deem this

normal form S-greedy).
Since M is a left-cancellative monoid having no nontrivial invertible element,

we conclude that (sf)
′

= (sf ′)
′. Then sf = sf ′ ·f follows from the left cancellation

property. �

We want to find out whether the condition (3.4.4) is as strong as the assump-
tion (3.4.5) in general (i.e. without all the additional requirements of the previous
lemma) or is the latter strictly stronger than the former. Let us start by considering
length-two words.

Lemma 3.4.2.9. Let (M,S, η) be a factorable monoid. If the condition (3.4.4)
is satisfied for each (r, s, t) in S3 such that ϕ212 (r, s, t) contains 1, then the as-
sumption (3.4.5) is valid for all s in S and length-two f in M .

Proof. The idea is to equate two different expressions of the normal form of
sf , in order to obtain (3.4.5). Fix arbitrary s in S and a length-two element f of
M .

First compute the η-normal form of sf , by definition:

sf
η17→
(
(sf)

′
, sf
) η27→

(
(sf)

′
, sf
′
, sf
)
.

Since the length of f equals 2, we know that f lies in S. Hence,
(
s, f ′, f

)
lies in

S3. So we have another length-three S-word evaluating to sf . By the property (4)
of Definition 3.2.2.4 (of local factorability structure) and the condition (3.4.4) of
the statement, the word (ηµ)212

(
s, f ′, f

)
is everywhere stable, hence also normal

by Lemma 3.4.1.4 and the property (1) of Definition 3.3.2.2 (of quadratic normal-
isation). Therefore, (ηµ)212

(
s, f ′, f

)
is the N ′ϕ-normal form of the evaluation of(

s, f ′, f
)
, i.e. of sf . Since computing (ηµ)212

(
s, f ′, f

)
depends on whether any 1

occurs in the process, we consider the following cases.
Case 1. If sf ′ /∈ Se, then(

s, f ′, f
) (ηµ)27→

(
s, f ′, f

) (ηµ)17→
(

(sf ′)
′
, sf ′, f

)
(ηµ)27→

(
(sf ′)

′
,
(
sf ′ · f

)′
, sf ′ · f

)
.

Comparing the result to nfη (sf) =
(

(sf)
′
, sf
′
, sf
)

yields (3.4.5), by
Corollary 3.4.1.13(2). Indeed, equating the first components of the ob-
tained normal forms gives (sf)

′
= (sf ′)

′. Equating the second and the
third components gives sf = sf ′ · f .

Case 2. If sf ′ is an element of S, then

(3.4.6)
(
s, f ′, f

) (ηµ)27→
(
s, f ′, f

) (ηµ)17→
(

(sf ′)
′
, 1, f

)
(ηµ)27→

(
(sf ′)

′
, f , 1

)
.

Again, equating the first components of the result and nfη (sf) gives
(sf)

′
= (sf ′)

′. Equating the second and the third components now gives
sf = f , but note that, in the present case, this equality is equivalent to
sf = sf ′ · f .

Finally, observe that the case sf ′ = 1 cannot occur. Namely, if sf ′ were equal to
1, then applying (ηµ)1 after (3.4.6) would yield

(
f, 1, 1

)
since f is in S, and that

would contradict the condition (3.4.4). �
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Lemma 3.4.2.9 suggests itself as the base case for an induction, which we are
going to achieve in Proposition 3.4.2.11. First we introduce some notation, in order
to simplify exposition.

Notation 3.4.2.10. If (r1, r2, . . . , rm) is the normal form of f in M , then the
product r1r2 · · · rm−1 in M is denoted by f .

Proposition 3.4.2.11. Let (M,S, η) be a factorable monoid. If the condi-
tion (3.4.4) is satisfied for each (r, s, t) in S3 such that ϕ212 (r, s, t) contains 1,
then the assumption (3.4.5) is valid for all s in S and f in M .

Proof. By Proposition 3.4.2.3, the quadratic normalisation corresponding
to the given factorability structure is of class (4, 3). Then, Remark 3.3.3.6 (on
Lemma 3.3.3.5) implies the equality (sf)

′
= (sf ′)

′ for all s in S and f in M .
We need to show that the equality sf = sf ′ ·f also holds for all s in S and f in

M . We prove this using induction on the length of f . Let P (n) be the statement:
the equality (sf)

′
= (sf ′)

′ holds for all s in S and f of length n inM . The statement
P (2) (resp. P (1)) holds by Lemma 3.4.2.9 (resp. trivially).

Let m be an integer greater than 2, and suppose that the statement P (m− 1)
holds. Fix an arbitrary s in S and f of length m inM . Since the length of f equals
m− 1, the equality sf = sf ′ · f holds by inductive hypothesis.3 Denote the normal
form of f by (r1, r2, . . . , rm). Multiplying the equality sf = sf ′ · f by rm on the
right yields

(3.4.7) sf · rm = sf ′ · f.

Hence it suffices to show that the equality sf · rm = sf holds.
Let us compute the normal form of sf and sf using Lemma 3.3.3.5. Denoting

ti|si := N (si−1|ri) for i in {2, . . . ,m− 1}, we obtain

nf
(
sf
)

= t2|t3| · · · |tm−1|sm−1

and
nf
(
sf
)

= t2|t3| · · · |tm|sm,
as displayed by the diagram

t2

s

t3

s2 s3

tm−1

sm−2

tm

sm−1 sm
r2 r3 rm−1 rm

with arcs having the same meaning as in the diagram (3.3.3). Therefore, sf =
t2t3 · · · tm−1sm−1. Multiplying by rm on the right yields

sf · rm = t2t3 · · · tm−1sm−1rm = t2t3 · · · tm−1tm = sf,

which, together with the equality (3.4.7), implies P (m). �

The results of the present subsection enable the following characterisation.

Proposition 3.4.2.12. Let (M,S, η) be a factorable monoid. Then the follow-
ing properties are equivalent.

3Statement P (1) could not serve as the base case because f in the inductive hypothesis would
not be defined, which is why we needed Lemma 3.4.2.9.
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(1) For all s in S and f in M , the equalities

(sf)
′

= (sf ′)
′
, sf = sf ′ · f

hold.
(2) For every (f, g, h) in M3, the equality

(ηµ)2121 (f, g, h) = (ηµ)212 (f, g, h)

holds.
(3) For each (r, s, t) in S3 such that ϕ212 (r, s, t) contains 1, the equality

(ηµ)2121 (r, s, t) = (ηµ)212 (r, s, t)

holds.
(4) The quadratic normalisation

(
Se, N ′ϕ

)
mod 1 for M is of class (4, 3). In

other words, the domino rule is valid for N ′ϕ.

Proof. It was already known (Lemma 3.4.2.5) that (1) implies (2), which, in
turn, clearly implies (3). The properties (3) and (4) are equivalent by the definitions
of the notions concerned. Finally, Proposition 3.4.2.11 says that (3) implies (1). �

Remark 3.4.2.13. Reminding the reader of Subsection 2.3, we point out that
applying Proposition 3.4.2.12 to the factorable monoids given in Examples 3.2.1.6
and 3.2.1.7, both having property (3) yields special cases of a normalisation pro-
vided by Proposition 3.3.5.1 when the Garside family involved is a Coxeter group
corresponding to an Artin-Tits monoid and a set of divisors of a Garside element
in a Garside monoid, respectively. The commutative diagram

factorable
monoids

monoids admitting
a quad. norm.
of class (4,3)

Artin-Tits or
Garside monoid

monoids admitting
a Garside family

Proposition 3.4.2.12

inclusion

3.2.1.6
3.2.1.7

Example
Example Proposition 3.3.5.1

summarises the point.

Before leaving this chapter, let us observe that, thanks to Theorem 3.4.1.2,
Proposition 3.4.2.12 can also be read another way, as a characterisation of monoids
admitting a quadratic normalisation of class (4, 3) among factorable monoids.

Proposition 3.4.2.14. A monoid (M,S) admits a quadratic normalisation of
class (4, 3) if, and only if, it is factorable and has any of the properties (1), (2) and
(3) of Proposition 3.4.2.12.
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Perspectives. A convergent rewriting system for a monoid gives rise to a
collapsing scheme on the bar complex of the monoid (see [6] for demonstration,
and [10] for elaboration). It thus provides a smaller complex of the same homotopy
type and, hence, computes the homology of the monoid. Somewhat surprising is the
result [35, Proposition 9.5] which constructs a collapsing scheme on the bar complex
of a factorable monoid. Although this construction is similar to the one given in [6]
and [10] for the bar complex of a monoid admitting a convergent rewriting system,
it technically circumvents a requirement for the rewriting system to be terminating.
As a result, there is a quite small complex computing the homology of factorable
monoids.

A tentative goal in the current direction is to develop effective methods for
computing homology for certain classes of monoids. We would start by using the
established correspondence between factorability structure and quadratic normal-
isation to adapt the results concerning resolutions arising from the former to the
framework of the latter. Then we would try to generalise [35, Proposition 9.5] to
monoids admitting a quadratic normalisation of class (5, 4).

Let us sketch another tentative goal. In [16, Example 5.8], it was demonstrated
that the Chinese monoid CX , defined in [9], admits a quadratic normalisation of
class (4, 4) if the generating set X has three elements. Guiraud also proved, in an
unpublished note, that CX admits a quadratic normalisation of class (5, 4) if X has
four or five elements. Encouraged by Lemma 3.4.1.7, we would use the criterion
provided by Theorem 3.4.1.2 to investigate if these Chinese monoids are factorable.



CHAPTER 4

Coherent presentations arising from class (4, 3)

In this final chapter, methods considered in Chapter 2 are further applied to a
wider class of monoids studied in Chapter 3. Namely, the homotopical completion-
reduction procedure is used to construct coherent presentations of monoids admit-
ting a quadratic normalisation of class (4, 3), which generalise the column coherent
presentations of plactic monoids. Here is an overview of relevant classes of monoids,
with arrows denoting inclusions, the dashed one being the present contribution:

monoids admitting
a quad. norm.
of class (3, 3)

monoids admitting
a quadratic
normalisation
of class (4, 3)

monoids with
finite convergent
presentation

plactic
monoids

monoids with
constructed coherent

presentation

monoids admitting
a Garside family

Cain
Gray

Malheiro
2015

Bokut
Chen
Chen
Li

2015

Hage
Malbos
2017

.

Section 4.1 recalls plactic monoids, focusing on their column coherent presen-
tation. Section 4.2 proposes a construction of coherent presentations for a class of
monoids admitting a quadratic normalisation of class (4, 3). Finally, Section 4.3
shows that this construction specialises to that for plactic monoids, given in [33].

4.1. The column coherent presentation of plactic monoids

Subsection 4.1.1 briefly recollects the notion of plactic monoid (for elaboration,
the reader is referred to [42]). In Subsection 4.1.2, we recall the notion of column
coherent presentation of a plactic monoid, introduced in [33] as an extension of the
column presentation introduced in [7].

For simplicity, juxtaposition is used to denote the product in a free monoid in
the present section.

4.1.1. Plactic monoids and Young tableaux. Throughout this section, we
assume that (A,≤) is a totally ordered finite set, also called alphabet, unless stated

89
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otherwise. The plactic monoid (of type A) over the alphabet A, here denoted by
PA, is the monoid generated by A and subject to the relations

(4.1.1) {acb = cab | a ≤ b < c} ∪ {bca = bac | a < b ≤ c} ,

called elementary Knuth transformations.
An element (a1, . . . , am) of A∗ is called a row if it is nondecreasing, that is if

a1 ≤ · · · ≤ am. Given two rows u = (a1, . . . , am) and v = (b1, . . . , bn), we say that u
dominates v, written u . v, if m ≤ n and if, for every k in {1, . . . ,m}, the relation
ak > bk holds. Relying on the context to provide distinction, here we use the same
symbol ≤ to denote two different total orders: the former occurrence represents the
usual total order on N, whereas the latter denotes the total order on A.

Every word u in A∗ can be decomposed into rows of maximal length, say
u = u1u2 · · ·uq. A word u is called a Young tableau, or simply a tableau1,
over A if every such factor, except for the last one, dominates the next one, i.e. if
u1 . u2 . · · · . uq. We write Y TA for the set of tableaux on A. A tableau u1u2 · · ·uq
can be graphically represented in a planar form, by arranging rows left-aligned and
ordered by domination, with u1 being the top row.2

Let us illustrate all these notions by means of an example.

Example 4.1.1.1. Let A = {1, 2, . . . , 100} with the usual order. The word
(2, 3, 1) is not a tableau because the first maximal-length row (2, 3) is longer than
the second one (1), so (2, 3) 7 (1). The word (1, 3, 1, 2, 3) is not a tableau because
the first element of the first maximal-length row (1, 3) is not (strictly) greater than
the first element of the second maximal row (1, 2, 3), so (1, 3) 7 (1, 2, 3). The word
(3, 2, 3, 5, 7, 1, 1, 2, 3, 5, 11, 13) is a tableau. Its planar representation is

3

2 3 5 7

1 1 2 3 5 11 13

.

An element (am, . . . , a1) of A∗ is called a column if it is (strictly) decreasing,
that is if am > · · · > a1. Note that the indices are also written in a decreasing
order. A partial order � on the set of columns in A∗ is defined as follows. Given
two columns u = (am, . . . , a1) and v = (bn, . . . , b1), we write u � v, if m ≥ n
and if, for every k in {1, . . . , n}, the relation ak ≤ bk holds. Note that, in the
planar representation of a tableau, this definition agrees with the usual meaning of
a column (e.g. in a matrix or a table).

Tableaux can be read row by row or column by column. The row (resp. column)
reading of a tableau t is the product in A∗ of all the rows (resp. columns) of t, from
top to bottom (resp. from left to right). For example, the column reading of the
tableau in Example 4.1.1.1 is (3, 2, 1, 3, 1, 5, 2, 7, 3, 5, 11, 13). The row and column
readings provide injective maps from the set of tableaux on A to the free monoid
A∗.

There is a product P : Y TA ×A→ A∗, computed as follows. Let u = u1 · · ·uq
be a tableau in A∗, and b a letter in A. Then the tableau that represents the

1As we do not consider any old tableau in this thesis.
2There is also the opposite convention, with u1 being the bottom row (see e.g. [24]).
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product ub equals

P (ub) =

{
u1 · · ·uqb if uqb is a row
P (u1 · · ·uq−1b

′)u′q otherwise

where b′ denotes the leftmost letter of uq such that b′ > b holds in A, and u′q denotes
the row obtained from uq by replacing b′ with b.

This product is iteratively extended to a product P : Y TA×A∗ → A∗. Namely,
for a tableau u and a word v = (b1, . . . , bn), the product P (uv) is calculated as

(4.1.2) P (uv) = P (P (ub1) (b2, . . . , bn)) .

Example 4.1.1.2. Let us compute P (ub), with u being the tableau given in
Example 4.1.1.1 and b being the A-letter 8. Since the A-word (1, 1, 2, 3, 5, 11, 13, 8)
is not a row, we look for the leftmost letter of (1, 1, 2, 3, 5, 11, 13) that is greater
than 8. Here, it is 11. So, we replace 11 with 8 in the last row of u to get the last
row of P (ub): (1, 1, 2, 3, 5, 8, 13). By the above recipe, we proceed to compute the
tableau which represents the product of the tableau

3

2 3 5 7

and the letter 11. Since (2, 3, 5, 7, 11) is a row, the computation stops, returning
the tableau

3

2 3 5 7 11

1 1 2 3 5 8 13

.

In particular, the product (4.1.2) allows one to assign a tableau to a word u in
A∗ by computing P (eu) with e denoting the empty tableau. The resulting tableau
is denoted by P (u).

Theorem 4.1.1.3 ([36, Theorem 6]). Let A be a totally ordered finite set. Then,
for u and v in A∗, the tableaux P (u) and P (v) are equal if, and only if, u and v
represent the same element of the plactic monoid PA. Furthermore, the product in
Y TA that is defined as

(r, s) 7→ P (r, any word represented by s)

agrees with the product in PA.

In particular, the evaluation map A∗ → PA has a section whose image consists
of all tableaux on A. Put another way, tableaux provide a normal form for PA. So,
one can obtain the normal form of any A-word u by computing P (u). Note that
the tableau representing the column reading of a tableau u is u itself ([42, Problem
5.2.4]).

We recall an important combinatorial property of tableaux, to be used in Sec-
tion 4.3. A subsequence of an A-word u is obtained by removing some letters
from u, without changing the order of the remaining letters.

Theorem 4.1.1.4 ([42, Theorem 5.1.1]). Let A be a totally ordered finite set,
a let u be an A-word. Then the number of columns in P (u) equals the maximal
length of a nondecreasing subsequence of u; and the number of rows in P (u) equals
the maximal length of a decreasing subsequence of u.
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Observe that a subsequence of a word u is not necessarily a factor of u since
a factor of u consists of neighbouring letters of u. Consequently, a nondecreasing
subsequence having the maximal length is not to be confused with a row of maximal
length. Theorem 4.1.1.4 does say, however, that the lengths in question are equal.

4.1.2. The column coherent presentation. The presentation (4.1.1) of a
plactic monoid, equipped with the so-called degree lexicographic order, can be
completed to a finite convergent presentation if the cardinality of the generating set
equals 3, but not so if the cardinality is greater than 3, as shown in [38]. However,
having extended the generating set by adjoining superfluous generators standing
for columns, one does obtain a finite convergent presentation, as demonstrated in
[4] and [7].

Let us recollect the column presentation introduced in [7]. A key lemma for
constructing the column presentation is the following.

Lemma 4.1.2.1 ([7, Lemma 3.1]). Let A be a totally ordered finite set, and let u
and v be columns in A∗ such that u � v, i.e. uv is not a tableau. Then the tableau
P (uv) has at most two columns. If, additionally, P (uv) has exactly two columns,
then the left column of P (uv) is longer than u.

Introducing a formal symbol û for a column u in A∗, denote

Col1 (A) = {û |u is a column in A∗}

and consider the 2-polygraph Col2 (A) consisting of a single generating 0-cell, the
set Col1 (A) for the set of generating 1-cells, and the generating 2-cells constructed
as follows. For every pair of generating 1-cells û and v̂ such that ûv̂ is not a tableau,
there is one generating 2-cell

ûv̂ ⇒ P (uv)

whose form depends on the number of columns in P (uv):

αu,v : ûv̂ ⇒ x̂

if P (uv) contains only one column x;

νu,v : ûv̂ ⇒ x̂ŷ

if P (uv) contains two columns, with x and y being the left and right column, re-
spectively.3 All possible cases are, thus, taken into account since, by Lemma 4.1.2.1,
the tableau P (uv) can have at most two columns.

It is shown in [7, Section 3] that Col2 (A) is a finite convergent presentation of
PA, called the column presentation.

Notation 4.1.2.2. Following Notation 3.2.1.3, we often denote by αi (resp.
νi) a 2-cell consisting of the generating 2-cell α (resp. ν) applied to letters at
positions i and i + 1, leaving other letters unchanged. This is not to be confused
with the notation αs,t (resp. νs,t) where indices denote the letters to which the
corresponding generating 2-cell is applied.

3Neither [7] nor [33] uses distinct letters to denote these two forms of arrows.
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In [33], the homotopical completion-reduction procedure was performed on
the 2-polygraph4 Col2 (A). The resulting column coherent presentation of the
plactic monoid PA is the (3, 1)-polygraph Col3 (A) that extends the 2-polygraph
Col2 (A) with the following families of generating 3-cells:5

α

Au,v,w

α1

α2 α

α2

νν1

α2

Bu,v,w

ν

Cu,v,w

να1

ν2
ν1

α2

C
(1)
u,v,w

να1

ν2 α1

α1

ν2

C
(2)
u,v,w

ν1

α2

ν2

Du,v,w

ν1ν1

ν2
ν1

ν2

ν2

D
(1)
u,v,w

ν1

ν2
ν1

ν2

ν2

D
(2)
u,v,w

ν1ν1

ν2 ν1

D
(3)
u,v,w

α2ν1

ν2
ν1

α2

α2

νν1

ν2
ν1

D
(4)
u,v,w

α2

.

For simplicity, 1-cells are left out of the diagrams. The sources of all the critical
branchings involved are length-three Col1 (A)-words having no normal length-two
factor (i.e. of which no length-two factor forms a tableau, by Proposition 4.1.1.3).
Detailed conditions can be found in [33, 3.2.1].

4.2. Coherent presentations of monoids admitting a quadratic
normalisation of class (4, 3)

This section presents the final main result of this thesis: a construction of coher-
ent presentations arising from quadratic normalisation of class (4, 3). Section 4.2.1
considers the case of graded monoids. Section 4.2.2 considers the general case, i.e.
when there is a quadratic normalisation of class (4, 3) mod e for M , with e being
an N -neutral element of S.

4.2.1. The quadratic coherent presentation: the graded case. Assume
that (S,N) is a quadratic normalisation of class (4, 3) for a monoid M . Then
Propositions 3.3.4.1(1) and 3.3.4.3 on page 77 provide a quadratic reduced conver-
gent presentation ofM . We denote this 2-polygraph by Qua′2 (S) and the generating
2-cells by

νs,t : s|t⇒ N (s|t)

4Denoted by Col2 (n) in [33], where the understood alphabet is A = {1, 2, . . . , n}.
5In [33], the fourth and the fifth generating 3-cell are respectively labeled by C and C′. We

have relabeled them here, for convenience.
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for all s and t in S such that s|t is not N -normal. Let us apply the homotopical
completion procedure to Qua′2 (S).

Critical branchings are of the form

N (r|s) |t

r|s|t

r|N (s|t)

νr,s|t

r|νs,t

where r|s|t is a length-three word, of which no length-two factor is N -normal.
This branching is confluent by the very definition of the class (4, 3). Relying on
Notation 4.1.2.2, we adjoin a generating 3-cell

r|s|t N(r|s|t)

ν2

Gr,s,t

ν1

ν2ν1

ν2
ν1

ν2

for every such length-three word r|s|t (intermediate 1-cells are left out of the di-
agram for pragmatic reasons). Let us denote the resulting (3, 1)-polygraph by
Qua′3 (S). Theorem 2.2.2.1 implies that Qua′3 (S) is a convergent coherent presen-
tation of M .

It would be convenient to perform the homotopical reduction procedure on
the (3, 1)-polygraph Qua′3 (S). Let us try to find redundant generating 3-cells by
using the particular technique, described in Subsection 2.2.5, which is successfully
applied to Garside’s coherent presentations in Subsection 2.5.4. Note that there is
no critical triple branching starting with a word of length less than 4. Consider a
critical triple branching of the form

N(q|r)|s|t

q|r|s|t q|N(r|s)|t

q|r|N(s|t)

ν1

ν2

ν3



4.2. COHERENT PRESENTATIONS FROM CLASS (4, 3) 95

where q|r|s|t is a length-four word having no N -normal length-two factor. It pro-
duces a 3-sphere Φ whose boundary has the following two parts:6

ν2

ν1

ν3

ν3

ν1

ν1

ν2

ν2

ν1

ν2

ν1

ν2

ν1 ν2

ν3
ν3

ν1

ν3

ν2

ν3

ν3

ν1

ν3

ν3 ν2 ν3

ν2

ν2

ν3

ν2

ν3

ν2

ν3

ν2

ν3

and

ν1

ν2

ν1

ν3
ν3

ν1

ν2

ν3
ν1

ν2

ν2

ν3

ν2

ν3

ν2

ν3

ν3

ν1

ν3

ν3

ν1

ν2

ν3

ν1 ν3

ν1

ν2

ν1

ν3

ν1

ν3

ν2

ν3

ν1

ν3

ν2

ν2

ν2

ν3

ν2
ν3

ν2 ν3

ν3

ν2

ν3

ν2

ν3

.

Every heptagonal 3-cell is the aforementioned generating 3-cell G, whereas
rectangular 3-cells are identities. For simplicity, we display neither 1-cells nor gen-
erating 3-cells. Observe that every generating 3-cell in the 3-sphere Φ occurs in a

6To the best of our knowledge, it was Matthieu Picantin who first did the calculation.
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nonempty context. On the other hand, in order for this generating triple confluence
to actually eliminate a generating 3-cell, that generating 3-cell ought to occur (only
once and) in an empty context. Consequently, this 3-sphere cannot eliminate any
generating 3-cell, using the technique described in Subsection 2.2.5. Furthermore,
since all the generating 3-cells affect only length-three factors and since all the
generating 2-cells preserve length (in other words, since the monoid is graded), a
generating triple confluence starting with a word of length 4 or longer cannot elim-
inate a generating 3-cell because there is always a nonempty context. Similarly, no
generating 2-cell can be eliminated in this way.

4.2.2. The quadratic coherent presentation: the general case. Now,
assume that (S,N) is a quadratic normalisation of class (4, 3) mod e for a monoid
M . Then Propositions 3.3.4.2(1) and 3.3.4.3 on page 77 provide a quadratic reduced
convergent presentation of M . We denote this 2-polygraph by Qua2 (S). Note that
there are two families of generating 2-cells in Qua2 (S). For s and t in S such that
s|t is not N -normal, there is at most one of the following two generating 2-cells:
the triangular one

as,t : s|t⇒ st = (πe ◦N) (s, t)

if st is an element of S; and the quadratic one

νs,t : s|t⇒ N (s|t)
if st is not an element of S.

Reminding the reader of Notation 4.1.2.2, let us perform the homotopical com-
pletion procedure on the 2-polygraph Qua2 (S).

Proposition 4.2.2.1. Let (S,N) be a quadratic normalisation of class (4, 3)
mod e for a monoid M . Then the convergent 2-polygraph Qua2 (S) admits, as a
homotopical completion, the (3, 1)-polygraph Qua

3
(S) that extends Qua2 (S) with

the following families of generating 3-cells, indexed by all possible elements of S\{1}
(the source of every branching is r|s|t, and the rightmost 1-cell is N (r|s|t)):

α

Ar,s,t

α1

α2 α

A′r,s,t

αα1

ν2
α1

α

ν

Br,s,t

α1

α2 ν

Cr,s,t

να1

ν2
α1

ν

Dr,s,t

να1

ν2
ν1

α2

α2

νν1

α2

Er,s,t

ν

ν2

E′r,s,t

α1

νν1

α2 ν

ν2

E′′r,s,t

ν1

α2ν1

α2 ν

α2

αν1

α2

E′′′r,s,t

α

ν2

E′′′′r,s,t

α1

αν1

α2 α
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α2

νν1

ν2
ν1

Fr,s,t

α2

α2

νν1

ν2
α1

F ′r,s,t

ν

α2

αν1

ν2
α1

F ′′r,s,t

α

ν2

Gr,s,t

ν1

ν2ν1

ν2
ν1

ν2

ν2 ν1

α2ν1

ν2
ν1

G′r,s,t

α2

ν2 α1

νν1

ν2
ν1

G′′r,s,t

α2

ν2 ν1

α2ν1

ν2
α1

G′′′r,s,t

ν

ν2 α1

νν1

ν2
α1

G′′′′r,s,t

ν

ν2 α1

αν1

ν2
α1

G′′′′′r,s,t

α

.

While some of the branchings may look similar to those in Proposition 2.5.3.1
on page 46, their completions greatly differ because, unlike the generating 2-cell β
in Proposition 2.5.3.1, the generating 2-cell ν here necessarily normalises its length-
two argument. For instance, here in a more general context, the second main case
for the critical branchings in the proof of Proposition 2.5.3.1 does not occur at all
(hence, there are no analogues of the generating 3-cells H and I here) because there
is at most one generating 2-cell νs,t for a each pair s and t. Besides, a care must
be taken here not to rely on any specific properties of Garside families.

Proof. By Propositions 3.3.4.2(1) and 3.3.4.3, the 2-polygraph Qua2 (S) is
convergent, so we can construct a Squier completion.

Let us consider all possible critical branchings. The source of a critical branch-
ing has to be a length-three word because a length-two word is the source of at most
one generating 2-cell. The elements of S \ {1} that constitute the source determine
the arrangement of the generating 2-cells α and ν occurring in (the completion of)
the branching. Note that the sources of generating 2-cells forming such a branching
have to overlap on exactly one element of S \ {1}. The following restrictions apply.

• The number of the generating 2-cells α in the upper branch must equal
the number of the generating 2-cells α in the lower branch. The reason
for this is the fact that the generating 2-cells α do not preserve length of
their arguments, while the generating 2-cells ν do.

• Each branch can have at most two generating 2-cells α. The reason for
this is that, after two generating 2-cells α, a length-three word becomes a
length-one word, i.e. an element of S and thus normal by the property (2)
of Definition 3.3.1.1 (of normalisation).
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• If two generating 2-cells α occur in a branch (upper or lower), then they
have to occur in two consecutive rewriting steps, i.e. there can be no gen-
erating 2-cell ν between them. The reason for this is that the generating
2-cell ν after the generating 2-cell α would result in a normal form.

We start by considering critical branchings consisting only of the generating
2-cells α. There is only one such critical branching for each triple (r, s, t) of elements
of S \ {1} such that rs and st lie in S:

rs|t

r|s|t

r|st

αr,s|t

r|αs,t

.

If the rst also lies in S, then the homotopical completion procedure adjoins the
generating 3-cell Ar,s,t. Otherwise, the generating 3-cell Br,s,t is adjoined.

Next we consider critical branchings containing the generating 2-cell ν. Since
the source of a branching has length 3, one of the 2-cells forming a branching
changes the leftmost two generating 1-cells of the source and the other one changes
the rightmost two. There are three distinct forms of such branchings. In order to
facilitate discussing the cases, we first display a ‘generic’ 2-sphere, that is to say
relying only on the defining properties of the class (4, 3) without specifying the
forms of the generating 2-cells involved:

r1|s1|t1 r3|s3|t3 r5|s5|t5

r|s|t
r7|s7|t7

=
r6|s6|t6

r2|s2|t2 r4|s4|t4

2 1
2

1

2

1
2

.

Here, a 2-cell denoted by i in {1, 2} consists of a yet unspecified generating 2-cell
applied to elements at positions i and i + 1, leaving an element on the possible
remaining position unchanged (recall Notation 4.1.2.2). Some of the generic letters
displayed here are obviously redundant, others may become redundant in some
specific cases. For instance, the equalities t = t1, r = r2 always hold; and, if st lies
in S, then it is interpreted as st = r1, thus making the letter s1 (and, hence, all the
odd-indexed letters s2k+1) the empty word.
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The form
rs|t = r1|t1

r|s|t

r|N(s|t) = r2|s2|t2

αr,s|t

r|νs,t

is defined under the conjunction: rs lies in S, and st does not lie in S. This condition
splits into three mutually exclusive cases yielding three families of generating 3-cells
as displayed in the following table:

r1t1 ∈ S r1t1 /∈ S
r2s2 ∈ S A′r,s,t Cr,s,t
r2s2 /∈ S ∅ Dr,s,t

.

The branching
N(r|s)|t = r1|s1|t1

r|s|t

r|st = r2|s2

νr,s|t

r|αs,t

is defined under the conjunction: rs does not lie in S, and st lies in S. This
condition splits into four disjoint cases yielding four families of generating 3-cells
as displayed in the following table:

s1t1 ∈ S s1t1 /∈ S
r2s2 ∈ S E′′′r,s,t E′′′′r,s,t
r2s2 /∈ S Er,s,t E′r,s,t if r3s3 ∈ S

E′′r,s,t if r3s3 /∈ S

.

The form
N(r|s)|t

r|s|t

r|N(s|t)

νr,s|t

r|νs,t

is defined under the condition that neither rs nor st lie in S. This condition splits
into two mutually exclusive cases depending on whether r2s2 is an element of S.
Each of these cases further splits, as shown in the following tables: for r2s2 lying
in S,

s1t1 ∈ S s1t1 /∈ S
r4t4 ∈ S F ′′r,s,t G′′′′′r,s,t

r4t4 /∈ S F ′r,s,t G′′′r,s,t if r3s3 ∈ S
G′r,s,t if r3s3 /∈ S

;
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and for r2s2 not lying in S,

s1t1 ∈ S s1t1 /∈ S
s4t4 /∈ S ∅ Gr,s,t
s4t4 ∈ S Fr,s,t G′′r,s,t if r3s3 ∈ S

G′r,s,t if r3s3 /∈ S

.

�

4.3. Specialisation to plactic monoids

This final section shows that Proposition 4.2.2.1 generalises [33, Theorem 1].
We begin with the coherent presentation Qua

3
(S) and assume additionally thatM

is the plactic monoid PA and that S is the set of columns in A∗. These additional
assumptions make conditions for certain branchings of Qua

3
(S) unattainable, re-

sulting in a simpler presentation.
To facilitate reference, we display a corollary of Theorem 4.1.1.4.

Lemma 4.3.0.1. Let A be a totally ordered finite set. Then, a word u in A∗ is
a column if, and only if, P (u) has exactly one column.

Proof. If P (u) has exactly one column, then the maximal length of nonde-
creasing subsequence of u equals 1, by Theorem 4.1.1.4. Hence, u is a column.
Conversely, if u is a column, then the tableau P (u) has exactly one column (equal
to u) by the defining computation of P (u). �

Now, we demonstrate that the column coherent presentation of the plactic
monoid is a special case of the coherent presentation Qua

3
(S).

Corollary 4.3.0.2. Let A be the set {1, . . . , n}, and let S be the set Col1 (A).
Then the (3, 1)-polygraph Qua

3
(S) coincides with the (3, 1)-polygraph Col3 (A).

Proof. The idea is that, in this particular context, for some critical branchings
of the (3, 1)-polygraph Qua

3
(S), there are no length-three words that meet the

defining requirements for the source of a branching. Therefore, such branchings
can be discarded. To facilitate the exposition, we often abuse the language and say,
for instance, the branching A of Qua

3
(S) instead of ‘the branching completion that

makes the boundary of the generating 3-cell A of the (3, 1)-polygraph Qua
3

(S)’.
If the sources of two generating 2-cells α overlap, then the normal form of the

source of the branching formed by these two generating 2-cells has to consist of
a single column. Namely, if a length-three Col1 (A)-word ûv̂ŵ is such that the
tableaux P (uv) and P (vw) consist of a single column each, then uv and vw are
columns in A∗, by Lemma 4.3.0.1. Then, by the very definition of column, uvw is a
column too. Consequently, no factor of ûv̂ŵ can be source of the generating 2-cell
ν since every factor of a column is itself a column. This discards from Qua

3
(S) the

critical branching that corresponds to the generating 3-cell B.
If any branch of a branching contains two consecutive generating 2-cells α,

then the completion of the branching can contain no generating 2-cell ν. Namely,
suppose that a length-three Col1 (A)-word ûv̂ŵ is such that the tableau P (uv)
consists of a single column and that P (P (uv)w) consists of a single column. Using
Lemma 4.3.0.1 again, we deduce that uvw is a column. The other possibility, that
the tableau P (vw) consists of a single column and that P (uP (vw)) consists of a
single column, is treated in the same fashion. Like in the previous paragraph, we
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conclude that no factor of ûv̂ŵ can be the source of the generating 2-cell ν. This
discards from Qua

3
(S) the critical branchings that correspond to the generating

3-cells A′, E′′′, E′′′′, F ′′, G′′′′′.
Since the column presentation is of class (3, 3), by [4, Subsections 4.2-4.4],

the fourth step in the upper branch is superfluous (if it exists). This immediately
discards the critical branchings which correspond to the generating 3-cells E′′ and
G′ because their fourth step in the upper branch contains the generating 2-cell α.
Removing it would make the branching unattainable since α reduces the length of
its argument.

Let u, v and w be columns in A∗, such that the tableau P (vw) consists of a
single column and that P (uv) contains two columns, say P (uv) = xy. Then, by [33,
Lemma 3], the tableau P (yw) cannot contain two columns. Consequently, there is
no Col1 (A)-word that satisfies the conditions for the branching that corresponds
to the generating 3-cell E′ in Qua

3
(S).

Let u, v and w be columns in A∗, such that the tableaux P (vw) and P (uv)
contain two columns each and, say P (vw) = xy. Then, by [33, Lemma 5], the
tableau P (ux) contains two columns. Consequently, there is no Col1 (A)-word that
satisfies the conditions for the branchings that correspond to the generating 3-cells
F ′, G′′′ and G′′′′ in Qua

3
(S).

The critical branching corresponding to the generating 3-cell G′′ cannot be
realised under current assumptions. Namely, a completion of a configuration of the
form

ν2

ν1

ν2

cannot be continued with the rewriting step α1 in the upper branch. We refer the
reader to [33, Lemma 5] for discussion.

The remaining critical branchings of Qua
3

(S) are A, C, D, E, F and G. To
conclude the proof, we need to show that these branchings specialise to all the
critical branchings of the (3, 1)-polygraph Col3 (A). One can readily observe that
the generating 3-cells A, D, E, F and G of Qua

3
(S) respectively specialise to the

generating 3-cells A, C, B, D(4) and D of Col3 (A).
It is a straightforward verification to establish that the branching that cor-

responds to the generating 3-cell C of Qua
3

(S) amounts to the branching which
corresponds to the generating 3-cell C(1) of Col3 (A). Namely, the third rewriting
step in the lower branch of C becomes superfluous as the normal form is reached af-
ter only two rewriting steps in the lower branch. For elaboration on the conditions,
see Case 1 in the proof of [33, Lemma 4].

Similarly, the branching D of Qua
3

(S) also specialises to C(1) of Col3 (A). This
time, the second rewriting step in the upper branch of D becomes superfluous as
the normal form is reached after the first step in the upper branch. For details, see
Case 2 in the proof of [33, Lemma 4].

In a similar fashion, the branching F of Qua
3

(S) also specialises to D(3) of
Col3 (A) by dropping the third rewriting step in the upper branch if the normal
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form is reached after two rewriting steps. See Case 4 in the proof of [33, Lemma
5] for conditions.

Similarly, the branching G of Qua
3

(S) also specialises to D(1) of Col3 (A)

by dropping the third rewriting step in the upper branch (recall that the fourth
rewriting step is already dropped). Details on the conditions can be found in Case
2 in the proof of [33, Lemma 5].

Finally, the branching G of Qua
3

(S) also specialises to D(2) of Col3 (A) by
dropping the third rewriting step in the lower branch. See Case 3 in the proof of
[33, Lemma 5] for details on conditions. �

Tentative steps further. The construction of a coherent presentation of a
general monoid admitting a quadratic normalisation of class (4, 3) opens two di-
rections for further research: extension and specialisation. Regarding the former,
we would like to undertake a fine study of the shapes of higher-dimensional cells
arising from quadratic normalisations of class (4, 3). This particular tentative step
is similar to the first one stated at the end of Chapter 2, but it is more general (and
also ‘more syntactical’) as it considers a larger class of monoids.

As for specialisation, we have already shown that the (3, 1)-polygraph Qua
3

(S)

specialises to the known column coherent presentation Col3 (A) of plactic monoids
of type A, constructed by Hage and Malbos [33]. Specialising the coherent presen-
tation Qua

3
(S) to coherent presentations of the plactic monoids of type C (see e.g.

[44]) seems to be a feasible goal, too (see e.g. [8] for definition of types of plactic
monoids).

We would also try specialising Qua
3

(S) to coherent presentations constructed
in Chapter 2. An obvious first attempt would be specialisation of the (3, 1)-
polygraph Qua

3
(S) to the (3, 1)-polygraph Gar3 (S). However, an obstacle is

anticipated as follows. Although the generating 2-cells α of the (3, 1)-polygraph
Qua

3
(S) do coincide with the generating 2-cells α of the (3, 1)-polygraph Gar3 (S),

there are no generating 2-cells of the (3, 1)-polygraph Qua
3

(S) that would cor-
respond to the generating 2-cells β of the (3, 1)-polygraph Gar3 (S), as remarked
after the statement of Proposition 4.2.2.1. Fortunately, the generating 2-cells β
of the (3, 1)-polygraph Gar3 (S) are removed by the homotopical reduction proce-
dure in Subsection 2.5.4, anyway. So, specialising Qua

3
(S) to the (3, 1)-polygraph

Gar3 (S), rather than to Gar3 (S), seems to be the right way to proceed.
Performing the homotopical reduction procedure on Qua

3
(S) would facilitate

that task. It is worth a try in its own right, too, as it would greatly simplify further
applications.
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