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The principal goal of this thesis is to use the framework of polygraphs for a fine study of the shapes of higher-dimensional cells (of dimension 3, and implicitly of dimension 4) arising from quadratic normalisations appearing in combinatorial group theory. The thesis proposes a construction of coherent presentations for a class of monoids admitting a right-noetherian Garside family. Thereby, it presents a unifying generalisation of two distinct extensions of Deligne's original construction of coherent presentations of spherical Artin-Tits monoids, given by Gaussent, Guiraud and Malbos: to general Artin-Tits monoids and to Garside monoids.

Furthermore, correspondences are established between the notion of quadratic normalisation and the notion of factorability structure. Namely, factorable monoids are characterised in the axiomatic setting of quadratic normalisations. Additionally, quadratic normalisations of class (4, 3) are characterised in terms of factorability structures and a condition ensuring the termination of the associated rewriting system.

Moreover, a coherent presentation of monoids admitting quadratic normalisation of class (4, 3) is constructed and specialised to the already known column coherent presentation of plactic monoids of type A, constructed by Hage and Malbos.

Titre : Normalisations quadratiques et présentations cohérentes de monoïdes

Résumé : Le but principal de cette thèse est d'utiliser le cadre des polygraphes pour une étude fine des formes des cellules de dimension supérieure (de dimension 3, et implicitement de dimension 4) provenant des normalisations quadratiques apparaissant en théorie combinatoire des groupes. La thèse propose une construction de présentations cohérentes pour une classe de monoïdes admettant une famille de Garside noethérienne à droite. Ainsi, elle présente une généralisation unificatrice de deux extensions distinctes de la construction originale de Deligne de présentations cohérentes de monoïdes d'Artin-Tits sphériques, données par Gaussent, Guiraud et Malbos : aux monoïdes d'Artin-Tits quelconques, et aux monoïdes de Garside. En outre, des correspondances sont établies entre la notion de normalisation quadratique et la notion de structure de factorabilité. Les monoïdes factorisables sont caractérisés dans le cadre axiomatique des normalisations quadratiques. En outre, les normalisations quadratiques de classe (4, 3) sont caractérisées en termes de structures de factorabilité et d'une condition garantissant la terminaison du système de réécriture associé.

De plus, on construit une présentation cohérente des monoïdes admettant une normalisation quadratique de classe [START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF][START_REF] Bödigheimer | Factorable groups and their homology, Cohomology of finite groups: interactions and applications[END_REF], qui généralise la présentation cohérente construite par Hage et Malbos pour les monoïdes plaxiques de type A à l'aide de la présentation colonne.
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Introduction (français)

Les monoïdes figurent parmi les structures algébriques de base. Il s'agit d'ensembles non vides dotés d'une opération binaire associative et d'un élément identité bilatéral. Les monoïdes sont donc plus généraux que les groupes, car les éléments des monoïdes ne sont pas tenus d'être inversibles. Il existe une autre façon de considérer les monoïdes, à savoir comme des catégories ayant un seul objet, les éléments d'un monoïde correspondant aux flèches d'une catégorie.

Si S est un ensemble, le monoïde libre engendré par S est l'ensemble de toutes les séquences finies (ou mots) d'éléments de S, avec la concaténation comme opération du monoïde, et la séquence vide comme élément identité. Tous les monoïdes ne sont pas libres, car il peut exister des relations non triviales entre les éléments. Cependant, tout monoïde est une image homomorphe (ou un quotient) d'un monoïde libre. Cela permet de présenter un monoïde par un ensemble de générateurs et un ensemble de relations génératrices.

En remontant d'une dimension, on constate qu'il peut aussi y avoir des relations entre les relations, et ainsi de suite. Le cadre des polygraphes permet de garder une trace de toutes ces informations. Les polygraphes nous permettent également d'appliquer des transformations homotopiques à une présentation, afin d'obtenir une présentation du même monoïde mais possédant certaines propriétés.

L'un des attributs souhaitables d'une présentation est la convergence. Elle permet de résoudre le problème du mot (décider si deux représentants dans le quotient représentent bien le même élément du monoïde). Une propriété qui nous intéresse particulièrement est la cohérence.

Le but principal de cette thèse est d'utiliser le cadre des polygraphes pour une étude fine des formes des cellules de dimension supérieure (de dimension 3, et implicitement de dimension 4) provenant des normalisations quadratiques apparaissant en théorie combinatoire des groupes. La thèse propose une construction de présentations cohérentes pour une classe de monoïdes admettant une famille de Garside noethérienne à droite. Ainsi, elle présente une généralisation unificatrice de deux extensions distinctes de la construction originale de Deligne de présentations cohérentes de monoïdes d'Artin-Tits sphériques, données par Gaussent, Guiraud et Malbos : aux monoïdes d'Artin-Tits quelconques, et aux monoïdes de Garside. De plus, on construit une présentation cohérente des monoïdes admettant une normalisation quadratique de classe [START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF][START_REF] Bödigheimer | Factorable groups and their homology, Cohomology of finite groups: interactions and applications[END_REF], qui généralise la présentation cohérente construite par Hage et Malbos pour les monoïdes plaxiques de type A à l'aide de la présentation colonne. En outre, des correspondances sont établies entre la notion de normalisation quadratique (développée en France, notamment par Dehornoy) et la notion de structure de factorabilité (développée en Allemagne, notamment par Bödigheimer, dans le but d'utiliser des formes normales appropriées pour comprendre l'homologie des groupes). Les monoïdes factorisables sont caractérisés dans le cadre axiomatique des normalisations quadratiques. En outre, les normalisations quadratiques de classe (4, 3) sont caractérisées en termes de structures de factorabilité et d'une condition garantissant la terminaison du système de réécriture associé.

Voici un aperçu des classes de monoïdes pertinentes, avec des flèches indiquant les inclusions, les flèches en pointillé « dash » étant notre contribution et les flèches en pointillé « dots » étant notre hypothèse : .

Schéma de la thèse

Brèves notes historiques. Nous préparons le terrain en donnant un très bref aperçu historique des sujets étudiés.

Ce que l'on appelle aujourd'hui la théorie de Garside a commencé avec les travaux de Garside sur les monoïdes de tresses dans les années 1960. Garside [START_REF] Garside | The braid group and other groups[END_REF] a étudié les propriétés arithmétiques des groupes de tresses. Il a résolu le problème du mot et le problème de conjugaison pour les groupes de tresses en introduisant des monoïdes de tresses. Il a montré que la présentation d'Artin définit le monoïde des mots positifs dans le groupe des tresses. Il a notamment prouvé que le monoïde tressé B + n est simplifiable à gauche, et que deux éléments quelconques de B + n admettent un plus petit multiple commun. Il a également introduit l'élément de Garside (qu'il a appelé mot fondamental) d'un monoïde de tresses.

Les observations de Garside pour les monoïdes de tresses ont été généralisées aux monoïdes d'Artin-Tits (de type) sphériques par Brieskorn et Saito [START_REF] Brieskorn | Artin-Gruppen und Coxeter-Gruppen[END_REF] et par Deligne [START_REF] Deligne | Les immeubles des groupes de tresses généralisés[END_REF].

La forme normale dite gloutonne a été introduite pour la première fois pour les monoïdes de tresses dans les années 1980, sur la base des observations de Garside (voir [START_REF] Dehornoy | Foundations of Garside theory[END_REF]Introduction] pour les références). Le développement s'est poursuivi en France, où Dehornoy et Paris [START_REF] Dehornoy | Gaussian groups and Garside groups, two generalisations of Artin groups[END_REF] ont introduit les monoïdes de Garside afin d'abstraire les propriétés qui établissent l'existence de la forme normale gloutonne. Ensuite, Dehornoy, Digne et Michel [START_REF] Dehornoy | Garside families[END_REF] ont généralisé les monoïdes de Garside à des catégories admettant des familles de Garside. Par exemple, un groupe de Coxeter constitue une famille de Garside dans le monoïde d'Artin-Tits correspondant. De plus, Dehornoy, Dyer et Hohlweg [START_REF] Dehornoy | Garside families in Artin-Tits monoids and low elements in Coxeter groups[END_REF] ont montré que tout monoïde Artin-Tits admet une famille de Garside finie (même si le groupe de Coxeter correspondant est infini). Un développement approfondi de la notion de famille de Garside se trouve dans la monographie [START_REF] Dehornoy | Foundations of Garside theory[END_REF].

Deligne [START_REF] Deligne | Action du groupe des tresses sur une catégorie[END_REF] a étudié les actions faibles des monoïdes d'Artin-Tits sur les catégories. Il a prouvé que pour définir une action faible d'un monoïde d'Artin-Tits sphérique, il suffit de considèrer des endofuncteurs pour chaque élément du groupe de Coxeter correspondant (c'est-à-dire qu'il n'est pas nécessaire de le faire pour chaque élément du monoïde). Cette définition alternative est basée sur ce qui est maintenant appelé la présentation de Garside des monoïdes d'Artin-Tits. Deligne a explicitement donné la présentation de Garside pour les monoïdes d'Artin-Tits sphériques. Michel [START_REF] Michel | A note on words in braid monoids[END_REF] a étendu cette présentation à tous les monoïdes d'Artin-Tits. Gaussent, Guiraud et Malbos [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF] ont prouvé que le résultat de Deligne est équivalent à l'affirmation que les monoïdes d'Artin-Tits sphériques admettent une présentation cohérente particulière, appelée présentation cohérente de Garside. Dans ce cadre, ils ont utilisé une complétion-réduction homotopique en s'appuyant sur les travaux de Squier [START_REF] Squier | A finiteness condition for rewriting systems[END_REF] et de Brown [START_REF] Brown | The geometry of rewriting systems: a proof of the Anick-Groves-Squier theorem[END_REF], et ont étendu le résultat de Deligne à l'ensemble de tous les monoïdes d'Artin-Tits, ainsi qu'aux monoïdes de Garside. La procédure de complétion-réduction homotopique a également été appliquée avec succès aux monoïdes plaxiques et chinois dans [START_REF] Guiraud | A homotopical completion procedure with applications to coherence of monoids[END_REF], ce qui donne des présentations cohérentes. Ceci suggère que les familles de Garside ne fournissent pas, en fin de compte, le cadre le plus général pour les formes normales gloutonnes. La notion de normalisation quadratique, introduite par Dehornoy et Guiraud [START_REF] Dehornoy | Quadratic normalization in monoids[END_REF] (influencés par Krammer [START_REF] Krammer | An asymmetric generalisation of Artin monoids[END_REF]), semble remplir ce rôle car elle généralise, dans le même cadre axiomatique, deux classes bien connues de normalisations : celles issues des systèmes de réécriture quadratiques, telles qu'étudiées dans [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF] pour les monoïdes Artin-Tits, et dans [START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF] et [START_REF] Cain | Finite Gröbner-Shirshov bases for Plactic algebras and biautomatic structures for Plactic monoids[END_REF] pour les monoïdes plaxiques; et celles qui découlent de familles de Garside, comme cela a été étudié dans [START_REF] Dehornoy | Foundations of Garside theory[END_REF]. Nous renvoyons le lecteur à l'étude [START_REF] Dehornoy | Garside and quadratic normalisation: a survey[END_REF] pour une vue d'ensemble des extensions successives de la forme normale gloutonne, des monoïdes de tresses aux monoïdes admettant des normalisations quadratiques pondérées à gauche.

Pendant ce temps, en Allemagne, Bödigheimer et ses collaborateurs ont mis au point la notion de structure de factorabilité, introduite par Wang [START_REF] Wang | Homology computations for mapping class groups[END_REF] et Heß [START_REF] Heß | Factorable monoids: resolutions and homology via discrete Morse theory[END_REF] sur les monoïdes et les catégories comme une extension de la définition de structure de factorabilité sur les groupes introduite par Bödigheimer [START_REF] Bödigheimer | Factorable groups and their homology, Cohomology of finite groups: interactions and applications[END_REF] et Visy [START_REF] Visy | Factorable groups and their homology[END_REF]. Leur motivation était d'abstraire la structure, découverte dans les groupes symétriques, qui assure l'existence d'une forme normale permettant de réduire le complexe « bar » associé à un complexe comportant beaucoup moins de cellules et permettant de calculer l'homologie de la structure en question. Cette réduction est obtenue grâce à la théorie des « schémas de contraction », qui a été introduite dans un contexte topologique par Brown [START_REF] Brown | The geometry of rewriting systems: a proof of the Anick-Groves-Squier theorem[END_REF], élaborée pour l'algèbre par Cohen [START_REF] Daniel | String rewriting and homology of monoids[END_REF], et redécouverte (sous le nom de théorie de Morse discrète) par Forman [START_REF] Forman | Morse theory for cell complexes[END_REF]. L'idée est d'établir, pour chaque entier positif n, une correspondance entre une classe de n-cellules dites redondantes et une classe de (n + 1)-cellules dites « contractiles » d'une manière telle que l'élimination des cellules appariées préserve le type d'homotopie.

Structure des chapitres. La thèse se compose de quatre chapitres : Le chapitre 1 est une introduction, et les autres chapitres sont structurés comme suit.

Le chapitre 2 présente les résultats de [START_REF] Curien | Coherent presentations of monoids with a right-noetherian Garside family[END_REF], un travail réalisé conjointement avec Pierre-Louis Curien et Yves Guiraud. Par rapport à l'article, les préliminaires sont ici plus élaborés et, dans la mesure du possible, exprimés en termes de catégories plutôt que de monoïdes. De nouveaux détails sont ajoutés, par exemple l'exemple des monoïdes de tresses doubles. Le chapitre commence par fixer une terminologie issue du cadre des polygraphes; les transformations homotopiques sont l'objet d'une attention particulière. La notion clé de présentation cohérente est rappelée de [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF] et illustrée par des exemples. La méthode principale, à savoir la procédure de complétion-réduction homotopique, est décrite sur les cas déjà connus des monoïdes d'Artin-Tits et des monoïdes de Garside. Une autre notion clé, celle de famille de Garside, est rappelée.

Enfin, le principal résultat de ce chapitre est donné. Nous montrons comment construire des présentations cohérentes de monoïdes simplifiables à gauche, admettant une famille de Garside noethérienne à droite ainsi que les multiples communs minimaux à droite, et ne contenant aucun élément inversible non trivial. Nous résolvons ainsi la question d'une généralisation commune aux deux extensions distinctes, données dans [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF], du résultat original de Deligne pour les monoïdes Artin-Tits sphériques : aux monoïdes d'Artin-Tits généraux, et aux monoïdes de Garside. Nous appliquons nos résultats à certains monoïdes qui ne sont ni d'Artin-Tits ni de Garside. Un autre avantage de nos résultats est que nous pouvons prendre une famille de Garside finie pour ensemble de générateurs pour calculer une présentation cohérente des monoïdes d'Artin-Tits, alors qu'auparavant il fallait prendre le groupe de Coxeter correspondant, même s'il était infini.

Le chapitre 3 présente les résultats de [START_REF] Ðurić | Correspondence between factorability and normalisation in monoids[END_REF], un travail supervisé par Viktoriya Ozornova. Par rapport à [START_REF] Ðurić | Correspondence between factorability and normalisation in monoids[END_REF], nous expliquons ici les principales notions plus en détail et fournissons davantage d'exemples pour les illustrer. La notion de structure de factorabilité dans les monoïdes est rappelée, principalement à partir de [START_REF] Heß | Factorability, string rewriting and discrete Morse theory[END_REF]. La définition de la factorabilité locale est légèrement corrigée. Ensuite, des notions et des résultats sur les normalisations quadratiques dans les monoïdes sont rappelées de [START_REF] Dehornoy | Quadratic normalization in monoids[END_REF]. Après avoir posé les préliminaires, notre contribution est présentée.

Nous répondons à la question, laissée ouverte dans [START_REF] Dehornoy | Foundations of Garside theory[END_REF] et [START_REF] Dehornoy | Quadratic normalization in monoids[END_REF], de déterminer un lien entre les structures de factorisation et les normalisations quadratiques, malgré des origines et des motivations différentes pour ces deux notions. Plus concrètement, nous caractérisons les monoïdes factorisables dans le cadre axiomatique des normalisations quadratiques en tant que monoïdes admettant une normalisation quadratique satisfaisant une condition plus forte que la classe [START_REF] Brieskorn | Artin-Gruppen und Coxeter-Gruppen[END_REF][START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF] mais plus faible que la classe [START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF][START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF]. Ici, la notion de classe est un paramètre évaluant la complexité de la normalisation de mots de longueur trois. Nous caractérisons également la classe (4, 3) en termes de structures de factorabilité et d'une condition garantissant la terminaison du système de réécriture associé.

Introduction

A monoid is one of the basic algebraic structures. It is a nonempty set equipped with an associative binary operation and a two-sided identity element. Monoids are more general than groups, which have an additional requirement that all elements are invertible. There is another way of looking at monoids, namely as categories having a single object, with elements of a monoid corresponding to arrows of a category.

For a set S, the free monoid generated by S is the set of all finite sequences (or words) of elements of S, with concatenation as the monoid operation, and the empty sequence as the identity element. Not every monoid is free as there can be some nontrivial relations among elements. However, every monoid is a homomorphic image (or a quotient) of a free monoid. This enables a presentation of a monoid by a generating set and a set of generating relations.

Climbing one dimension up, one observes that there can also be some relations among relations, and so on. A way to keep track of all this information is provided by the framework of polygraphs. Another benefit of using polygraphs is that they allow us to apply homotopical transformations to a presentation, in order to obtain a presentation of the same monoid but enjoying some preferable qualities.

One of the desirable attributes of a presentation is called convergence. It grants some very favourable computational properties, e.g. solvable word problem. A quality of a presentation, that we are particularly interested in, is a homotopical one called coherence.

The principal goal of this thesis is to use the framework of polygraphs for a fine study of the shapes of higher-dimensional cells (of dimension 3 and implicitly of dimension 4) arising from quadratic normalisations appearing in combinatorial group theory. The thesis proposes a construction of coherent presentations for a class of monoids admitting a right-noetherian Garside family. Thereby, it presents a unifying generalisation of two distinct extensions of Deligne's original construction of coherent presentations of spherical Artin-Tits monoids, given by Gaussent, Guiraud and Malbos: to general Artin-Tits monoids and to Garside monoids. In addition, a coherent presentation of monoids admitting quadratic normalisation of class (4, 3) is constructed and specialised to the already known column coherent presentation of plactic monoids of type A, constructed by Hage and Malbos. Furthermore, correspondences are established between the notion of quadratic normalisation (developed in France, notably by Dehornoy) and the notion of factorability structure (developed by mathematicians in Germany led by Bödigheimer, with the goal of using suitable normal forms to understand group homology). Namely, factorable monoids are characterised in the axiomatic setting of quadratic normalisation. Additionally, quadratic normalisations of class [START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF][START_REF] Bödigheimer | Factorable groups and their homology, Cohomology of finite groups: interactions and applications[END_REF] are characterised in Here is an overview of relevant classes of monoids, with arrows denoting inclusions, the dashed ones being the present contribution with the dotted one being our hypothesis: .

In this introductory chapter, we recall the main notions, but not necessarily in their full formality. Namely, technical definitions will not be given before chapters in which they are actually needed. Some new results are recollected, again not in a manner more technical than convenient.

The structure of the introduction is 'homomorphic' to the structure of the thesis. Namely, Section 1.1 provides a brief historical overview and a structural outline, whereas Sections 1.2, 1.3 and 1.4 respectively present Chapters 2, 3 and 4.

1.1. Thesis outline 1.1.1. Brief historical notes. We set up the stage by giving a very brief historical overview of the subjects investigated.

What is now called Garside theory has started with the work of Garside on braid monoids in the 1960s. Garside [START_REF] Garside | The braid group and other groups[END_REF] investigated arithmetic properties of braid groups. He solved the word problem and the conjugacy problem for braid groups by introducing braid monoids. He showed that Artin's presentation defines the monoid of positive words in a braid group. Among other things, he proved that the braid monoid B + n is left-cancellative and that each pair of elements of B + n admits a least common multiple. He also introduced the Garside element (he called it the fundamental word) of a braid monoid. Garside's observations for braid monoids were generalised to spherical Artin-Tits monoids by Brieskorn and Saito [START_REF] Brieskorn | Artin-Gruppen und Coxeter-Gruppen[END_REF] and by Deligne [START_REF] Deligne | Les immeubles des groupes de tresses généralisés[END_REF].

The greedy normal form was first introduced for braid monoids in the 1980s, based on Garside's observations (see [START_REF] Dehornoy | Foundations of Garside theory[END_REF]Introduction] for references). The development continued in France, where Dehornoy and Paris [START_REF] Dehornoy | Gaussian groups and Garside groups, two generalisations of Artin groups[END_REF] introduced Garside monoids in order to abstract properties which establish the existence of the greedy normal form. Then, Dehornoy, Digne and Michel [START_REF] Dehornoy | Garside families[END_REF] further generalised Garside monoids to categories admitting Garside families. For example, a Coxeter group constitutes a Garside family in the corresponding Artin-Tits monoid. Moreover, Dehornoy, Dyer and Hohlweg [START_REF] Dehornoy | Garside families in Artin-Tits monoids and low elements in Coxeter groups[END_REF] showed that every Artin-Tits monoid admits a finite Garside family (even if the corresponding Coxeter group is infinite). A thorough development of the notion of Garside family can be found in the monograph [START_REF] Dehornoy | Foundations of Garside theory[END_REF].

Deligne [START_REF] Deligne | Action du groupe des tresses sur une catégorie[END_REF] studied weak actions of Artin-Tits monoids on categories. He proved that to define a weak action of a spherical Artin-Tits monoid, it suffices to consider endofunctors for every element of the corresponding Coxeter group (i.e. it is not necessary to do it for every element of the monoid). This alternative definition is based on what is now called Garside's presentation of Artin-Tits monoids. Deligne explicitly gave Garside's presentation of spherical Artin-Tits monoids. Michel [START_REF] Michel | A note on words in braid monoids[END_REF] extended this presentation to all Artin-Tits monoids. Gaussent, Guiraud and Malbos [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF] proved that Deligne's result is equivalent to saying that spherical Artin-Tits monoids admit a particular coherent presentation, called Garside's coherent presentation. In this framework, they used the homotopical completion-reduction procedure, relying on the work of Squier [START_REF] Squier | A finiteness condition for rewriting systems[END_REF] and Brown [START_REF] Brown | The geometry of rewriting systems: a proof of the Anick-Groves-Squier theorem[END_REF], to extend the result to all Artin-Tits monoids and also to Garside monoids.

The homotopical completion-reduction procedure was also successfully applied to plactic and Chinese monoids in [START_REF] Guiraud | A homotopical completion procedure with applications to coherence of monoids[END_REF], yielding coherent presentations. This suggested that Garside families did not provide, after all, an ultimate generalisation of the greedy normal form. The notion of quadratic normalisation, introduced by Dehornoy and Guiraud [START_REF] Dehornoy | Quadratic normalization in monoids[END_REF] (influenced by Krammer [START_REF] Krammer | An asymmetric generalisation of Artin monoids[END_REF]), seems to succeed in this task, as it generalises, under the same axiomatic setting, two well-known classes of normalisations: those arising from quadratic rewriting systems, as studied in [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF] for Artin-Tits monoids, and in [START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF] and [START_REF] Cain | Finite Gröbner-Shirshov bases for Plactic algebras and biautomatic structures for Plactic monoids[END_REF] for plactic monoids; and those arising from Garside families, as investigated in [START_REF] Dehornoy | Foundations of Garside theory[END_REF]. We refer the reader to the survey [START_REF] Dehornoy | Garside and quadratic normalisation: a survey[END_REF] for an overview of the successive extensions of the greedy normal form from braid monoids to monoids admitting left-weighted quadratic normalisations of class [START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF][START_REF] Bödigheimer | Factorable groups and their homology, Cohomology of finite groups: interactions and applications[END_REF].

Meanwhile in Germany, Bödigheimer and his collaborators developed the notion of factorability structure, introduced by Wang [START_REF] Wang | Homology computations for mapping class groups[END_REF] and Heß [START_REF] Heß | Factorable monoids: resolutions and homology via discrete Morse theory[END_REF] on monoids and categories as an extension of the definition of factorability structure on groups introduced by Bödigheimer [START_REF] Bödigheimer | Factorable groups and their homology, Cohomology of finite groups: interactions and applications[END_REF] and Visy [START_REF] Visy | Factorable groups and their homology[END_REF]. Their motivation was to abstract the structure, discovered in symmetric groups, which ensures the existence of a normal form allowing a reduction of the bar complex to a complex having considerably fewer cells, computing the homology of the structure in question. This reduction is 1. INTRODUCTION achieved using the theory of collapsing schemes, which was introduced in a topological flavour by Brown [START_REF] Brown | The geometry of rewriting systems: a proof of the Anick-Groves-Squier theorem[END_REF], elaborated for the algebraic setting by Cohen [START_REF] Daniel | String rewriting and homology of monoids[END_REF], and rediscovered (under the name of discrete Morse theory) by Forman [START_REF] Forman | Morse theory for cell complexes[END_REF]. The idea is to establish, for every nonnegative integer n, a matching between a class of n-cells called redundant and a class of (n + 1)-cells called collapsible in such a way that collapsing matched pairs preserves the homotopy type.

1.1.2. Structure of chapters. The thesis consists of four chapters: the present Chapter 1 is introductory, and the other chapters are structured as follows.

Chapter 2 reports on the results of [START_REF] Curien | Coherent presentations of monoids with a right-noetherian Garside family[END_REF], a joint work with Pierre-Louis Curien and Yves Guiraud. Compared to the article, preliminaries here are elaborated and, where possible, expressed in terms of categories rather than monoids. New details are added, e.g. the example of dual braid monoids. The chapter starts by fixing some terminology from the framework of polygraphs, of which homotopical transformations are given a particular attention. The key notion of coherent presentation is recalled from [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF] and illustrated by means of examples. The main method, namely, the homotopical completion-reduction procedure, is described and demonstrated using the known applications to Artin-Tits monoids and Garside monoids.

Another key notion, that of Garside family, is recalled.

Finally, the principal result of the chapter is given. Namely, we show how to construct coherent presentations of left-cancellative monoids admitting a rightnoetherian Garside family and minimal common right multiples, and containing no nontrivial invertible element. Thereby, we resolve the question of finding a common generalisation to the two distinct extensions, given in [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF], of Deligne's original construction of coherent presentations of spherical Artin-Tits monoids: to general Artin-Tits monoids and to Garside monoids. The results are applied to some monoids that are neither Artin-Tits nor Garside. Another benefit of is that we can take a finite Garside family for a generating set in computing a coherent presentation of Artin-Tits monoids, whereas before one could only take the corresponding Coxeter group even if it was infinite.

Chapter 3 presents the results of [START_REF] Ðurić | Correspondence between factorability and normalisation in monoids[END_REF], a work supervised by Viktoriya Ozornova. In comparison to [START_REF] Ðurić | Correspondence between factorability and normalisation in monoids[END_REF], this thesis explains the main notions in greater detail and provides more examples to illustrate them. Definitions and results concerning factorability structures in monoids are recollected, mostly from [START_REF] Heß | Factorability, string rewriting and discrete Morse theory[END_REF]. Definition of local factorability is slightly corrected. Then, notions and results about quadratic normalisations for monoids are recalled from [START_REF] Dehornoy | Quadratic normalization in monoids[END_REF]. After the preliminaries are set, new results are presented.

We answer the question, left open in [START_REF] Dehornoy | Foundations of Garside theory[END_REF] and [START_REF] Dehornoy | Quadratic normalization in monoids[END_REF], of determining a connection between factorability structures and quadratic normalisations, despite different origins and motivations for these two notions. More concretely, factorable monoids are characterised in the axiomatic setting of quadratic normalisations as monoids admitting a quadratic normalisation satisfying a condition stronger than the class [START_REF] Brieskorn | Artin-Gruppen und Coxeter-Gruppen[END_REF][START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF] yet weaker than the class [START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF][START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF]. Here, the notion of class is a parameter evaluating the complexity of normalising length-three words. We also characterise the class (4, 3) in terms of factorability structures and a condition ensuring the termination of the associated rewriting system, and we prove an equivalence between the two known such conditions.

Chapter 4 begins by giving some preliminaries on plactic monoids with a special emphasis on their column presentation, introduced by Cain, Gray and Malheiro in [START_REF] Cain | Finite Gröbner-Shirshov bases for Plactic algebras and biautomatic structures for Plactic monoids[END_REF]. Then some new results are provided, namely, a coherent presentation of monoids admitting a quadratic normalisation of class (4, 3), with no further restrictions. It is then shown that the constructed coherent presentation specialises to the already known column coherent presentation of plactic monoids of type A, constructed by Hage and Malbos in [START_REF] Hage | Knuth's coherent presentations of plactic monoids of type A[END_REF].

Coherent presentations and greedy normal form

Subsection 1.2.1 fixes basic terminology and notation to be used throughout the thesis. Subsections 1.2.2 and 1.2.4 recall coherent presentations and Garside families, respectively. In Subsection 1.2.3, notions concerning rewriting are recollected. Subsection 1.2.5 presents new results.

1.2.1. Basic terminology and notation. If S is a set, then S * denotes the free monoid over S. Elements of S and S * are called S-letters and S-words, respectively. So, an S-word is a finite sequence of S-letters, e.g. (s 1 , . . . , s n ). In the broader context of categories, words are generalised to paths of composable morphisms. The prefix S-is sometimes left out when the considered generating set is evident from the context.

The product in S * of two words u and v is denoted by u|v. A letter is customarily identified with the single-letter word consisting of that letter. Accordingly, a word (s 1 , . . . , s n ) can be written as the product (in S * ) of its letters:

s 1 | • • • |s n .
A monoid M is said to be generated by a set S, and elements of S are called generators of M , which is often written as (M, S), if M is a homomorphic image of the free monoid S * . Such a homomorphism is called an evaluation map and denoted by ev : S * → M . A normal form for M with respect to S is a set-theoretic section, denoted by nf, of the evaluation map. To rephrase it, a normal form maps elements of M to distinguished representative words in S * . An S-word s

1 | • • • |s n is called a decomposition of an element g of M if the equality s 1 • • • s n = f holds in M . An S-
word u is said to be a factor of an S-word v if there exist S-words w and w satisfying wuw = v.

The length of u in S * is denoted by |u|. For an element f of M , the minimal Slength of an S-word representing f is denoted by |f |. The same notation will be used for other length functions when they are introduced, but the proper interpretation will always be evident from the context (besides, all the length functions in this thesis concur with each other).

Coherent presentations of monoids.

A monoid can be presented by a generating set and a set of generating relations between words over the generating set. A coherent presentation of a monoid consists of a generating set, a set of generating relations and, in addition, a set of generating relations among relations, by means of which each two parallel relations can be 'transformed' into each other.

The notion of coherent presentation is closely related to other known notions: 2-syzygies for presentations of groups (see e.g. [START_REF] Loday | Homotopical syzygies, Une dégustation topologique [Topological morsels[END_REF]); polygraphic resolutions of monoids, introduced by Métayer in [START_REF] Métayer | Resolutions by polygraphs[END_REF], from which abelian resolutions can be deduced; cofibrant approximations in the canonical model structure on 2-categories, given by Lack in [START_REF] Lack | A Quillen model structure for 2-categories[END_REF], [START_REF] Lack | A Quillen model structure for bicategories[END_REF]; weak actions of Artin-Tits monoids on categories, investigated by Deligne in [START_REF] Deligne | Action du groupe des tresses sur une catégorie[END_REF]. Coherent presentations are also studied in [START_REF] Elias | Diagrammatics for Coxeter groups and their braid groups[END_REF], under the name 3-presentations. Motivation and context for the notion of coherent presentation are briefly recalled in Subsection 2.1.5.

The construction of coherent presentations of spherical Artin-Tits monoids has been extended in [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF] in two disjoint directions: to general Artin-Tits monoids and to Garside monoids. This has been done using methods from rewriting theory and Squier's work.

1.2.3. Rewriting methods. Generating relations, when considered directed from left to right (as ordered pairs), provide rewriting rules, which, together with the corresponding generating set, constitute a rewriting system. In the framework of higher rewriting, the notion of coherent presentation can be described topologically by saying that relations among relations fill all the spheres formed by two parallel rewriting paths.

A presentation is called terminating if there is no infinite rewriting sequence. It is called confluent if each pair of distinct rewriting sequences starting from the same word can be completed in such a way that the sequences eventually lead to a common result: The generator E of the relations among relations is added. The homotopical completion-reduction procedure has three stages. Firstly, the Knuth-Bendix completion procedure enriches a terminating presentation to a convergent one by adding a (not necessarily finite) number of generating relations in order to make every critical branching confluent. Secondly, the Squier completion procedure adjoins generating relations among relations, thus providing a coherent presentation of the monoid admitting the original presentation. Thirdly, the homotopical reduction procedure removes extra relations (among relations). These homotopical transformations of presentations having certain properties are depicted in the following diagram (and recollected in Section 2. During the homotopical completion procedure, superfluous relations (among relations) may be adjoined. The homotopical reduction procedure provides a systematic way to eliminate them by recursively removing pairs (ρ, C) of redundant and collapsible generating cells, as illustrated by the following diagram (and explained in Subsection 2.2.4):

* * ρ C C E E reduces to * * E E .
1.2.4. Garside families. A Garside family in a monoid is a generating family, not minimal in general, but ensuring the existence of the greedy normal form.

The greedy normal form is simple (the language of normal words is regular) and easily computed (there are simple incremental methods, thanks to the diagrammatic tool called the domino rule) as it has favourable locality properties (recalled in Subsection 1.3.2).

INTRODUCTION

Assume that S is a subfamily S of a left-cancellative (meaning that f g = f g implies g = g ) monoid M having no nontrivial invertible element. A length-two S-word r 1 |r 2 is said to be S-greedy if, for all s in S and h in M , commutativity of the following diagram without the dashed arrow implies the existence of a dashed arrow making the square (and thus also the triangle) commute:

• • • • • s h r 1 r 2 .
A longer S-word is S-greedy if all of its length-two factors are S-greedy. A Garside family in M is a subfamily S such that, for every element of M , there exists an S-greedy word representing it. A precise definition is recalled in Section 2.4.

1.2.5. Attaining coherence. One of the main results presented in this thesis is a unification of the two above-mentioned results of [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF] in the same generalisation. Namely, we apply the homotopical completion-reduction procedure to compute coherent presentations for a certain class of monoids admitting a Garside family. We take the following two main steps.

(1) First, we use the fact that, for every left-cancellative monoid M with no nontrivial invertible element and every This results in Theorem 2.5.1.4, the main result of Chapter 2, of which we give here a weaker but simpler version (Corollary 2.5.5.1).

Theorem. Let M be a left-cancellative noetherian monoid containing no nontrivial invertible element. If S is a Garside family containing 1 in M , then M admits the coherent presentation Gar 3 (S) which extends Gar 2 (S) with the following set of generating relations among relations:

uv|w u|v|w uvw u|vw α uv,w A u,v,w α u,v |w u|α v,w α u,vw
for each triple (u, v, w) of elements of S \ {1} such that uv, vw and uvw lie in S.

Note that A u,v,w can be read as a relation among relations ensuring associativity. We reach Gar 3 (S) by applying the homotopical completion-reduction procedure to the presentation Gar 2 (S).

In Section 2.6, the result is used to compute coherent presentations of some monoids which are neither Artin-Tits nor Garside and to construct a finite coherent presentation of the Artin-Tits monoid of type A 2 , taking a finite generating set. In some cases, homotopical reduction can be carried further. As a matter of fact, that is how we prove (in Subsection 2.6.3) that Artin's presentation of the Artin-Tits monoid of type A 2 is coherent (with the empty set of generating relations among relations).

We mainly consider monoids because that is where our present applications lie, but the approach presented here can be extended to categories, viewed as monoids with partial multiplication. To prepare the grounds for potential more general applications in future, we therefore prefer to state preliminaries in terms of categories.

Factorability and normalisation

The notions of factorability and normalisation are recalled in Subsections 1.3.1 and 1.3.2, respectively. Subsection 1.3.3 reports on new results. 1.3.1. The idea of factorability. For a monoid M and its generating set S, the idea of factorability is to determine a way to split off a generator from an element of the monoid. The goal is to ensure the existence of a normal form, obtained by recursively factorising, that would yield a favourable bijection in the bar complex, in order to collapse superfluous cells (as recalled in Subsection 1.1.1).

Before we go any further, let us recall the seminal example given by the symmetric group S n and its generating set consisting of all transpositions, proved to be factorable in [START_REF] Visy | Factorable groups and their homology[END_REF]. Let σ be a nontrivial permutation in S n and j the largest value in {1, . . . , n} that is not fixed by σ. Then the generator j, σ -1 (j) is split off. In the remainder of σ, the value j is fixed, which guarantees termination of the process. We illustrate this using a concrete permutation (note that we multiply permutations from left to right): A desired factorisation is achieved by the notion of factorability structure, which consists of a factorisation map η = (η , η) : M → M 2 subject to several axioms ensuring, in particular, a compatibility with the multiplication µ : M 2 → M in the monoid. In a manner of speaking, η acts on an element f of M by splitting off, in a suitable way, a generator η (f ).

For every factorability structure, there is an associated rewriting system having rules of the form (r, s) → η • µ (r, s). This rewriting system is confluent but it is not necessarily terminating. However, termination is obtained under the additional assumption that, for all s in S and f in M , the following equalities hold:

(1.3.1) η (sf ) = η (s • η (f )) , η (sf ) = η (s • η (f )) • η (f ) . 1.3.2.
The idea of quadratic normalisations. As hinted in Subsection 1.1.1, quadratic normalisations in monoids generalise, in the same axiomatic framework, two well-known classes of normalisations: those arising from quadratic rewriting systems (notably, those associated with plactic monoids); and those arising from Garside families, resulting from successive generalisations of the greedy normal form in braid monoids. So, quadratic normalisations provide an extension past Garside families of the greedy normal form. One of the advantages of this step further is that certain monoids that are not even left-cancellative, e.g. plactic monoids, become eligible.

Assume that a monoid is generated by a set S. By a normalisation, we mean a syntactic transformation of an arbitrary word over S to a 'canonical' one, called normal. Quadratic normalisations admit the following locality properties: a word is normal if, and only if, its length-two factors are normal; and the procedure of transforming a word into a normal form consists of a finite sequence of rewriting steps, each of which transforms a length-two factor.

The notion of class of a quadratic normalisation is defined in order to measure the complexity of normalising length-three words. The class (m, n) means that every length-three word admits at most m rewriting steps starting from the left and at most n rewriting steps starting from the right.

The class (4, 3) is explored in great detail in [START_REF] Dehornoy | Quadratic normalization in monoids[END_REF] as it exhibits exceptionally favourable computational properties, mainly thanks to the following diagrammatic characterisation called the domino rule. If the solid arcs connect normal length-two words in the diagram

(1.3.2) • • • • • •
of elements of S, then so does the dashed arc. In particular, the rewriting system associated with a quadratic normalisation of class (4, 3) is always terminating.

A correspondence between factorability and normalisation.

The main result here answers the question, mentioned in [START_REF] Dehornoy | Foundations of Garside theory[END_REF] and [START_REF] Dehornoy | Quadratic normalization in monoids[END_REF], of determining the relation between the two approaches to combinatorial properties of a certain class of monoids: factorability and normalisation.

A correspondence is established between factorability structures and quadratic normalisations for monoids, despite the different origins and motivations for these two notions. By a correspondence, we mean maps in both directions between appropriate subclasses, which are inverse to each other up to technicalities, and moreover this bijection is compatible with the associated rewriting systems.

Since the rewriting system associated with a factorability structure is not necessarily terminating, whereas the rewriting system associated with a quadratic normalisation of class (4, 3) is always terminating, it was known that a quadratic normalisation corresponding to a factorability structure is not necessarily of class [START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF][START_REF] Bödigheimer | Factorable groups and their homology, Cohomology of finite groups: interactions and applications[END_REF]. It is shown here that a quadratic normalisation corresponding to a factorability structure is always of class [START_REF] Brieskorn | Artin-Gruppen und Coxeter-Gruppen[END_REF][START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF] and not smaller in general. A necessary and sufficient condition is given for a quadratic normalisation of class [START_REF] Brieskorn | Artin-Gruppen und Coxeter-Gruppen[END_REF][START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF] to correspond to a factorability structure.

Theorem. A monoid is factorable if, and only if, it admits a quadratic normalisation such that the domino rule holds for a diagram (1.3.2) whenever 1 does not occur in the upper or the right side (of the displayed rectangle).

Thereby, factorable monoids are characterised in terms of quadratic normalisations, thus adding another important family of monoids to those unified under the axiomatic framework of quadratic normalisations.

In particular, a quadratic normalisation of class (4, 3) always yields a factorability structure, but not vice versa. However, the converse does hold under the stronger condition described as follows. Consider the map F := η • µ from the set M 2 to itself, with µ : M 2 → M denoting the multiplication in M . Denote by F 1 (resp. F 2 ) the application of F to the first two elements (resp. the second and the third element) of a triple in M 3 . In general, a factorability structure ensures the equality

F 1 F 2 F 1 F 2 (r, s, t) = F 2 F 1 F 2 (r, s, t)
for each triple (r, s, t) in S 3 such that F 2 F 1 F 2 (r, s, t) contains no 1. The stronger condition states that this equality holds for every (r, s, t) in S 3 . Since this condition is implied by the class (4, 3), quadratic normalisations of class (4, 3) are characterised in terms of factorability structures.

Furthermore, it is shown that this stronger condition is equivalent to the aforementioned additional assumption (1.3.1) which is known to grant termination of the rewriting system associated with a factorability structure. Simply put, the class (4, 3) equals factorability plus termination.

One of the benefits of the established correspondence between factorability structures and quadratic normalisations is that it provides a way of importing the results concerning homology, derived from the former (see e.g. [START_REF] Visy | Factorable groups and their homology[END_REF], [START_REF] Wang | Homology computations for mapping class groups[END_REF], [START_REF] Heß | Factorability, string rewriting and discrete Morse theory[END_REF]) to the framework of the latter, with the hope of generalising those results to higher classes. This is one of the potential further steps in the present direction of research. Since a quadratic normalisation of class (4, 3) always yields a convergent rewriting system, a Squier completion of the corresponding presentation can be computed. Conveniently, several important families of monoids do admit such a normalisation: monoids admitting a Garside family and plactic monoids, to name a few. Therefore, obtaining results about monoids admitting quadratic normalisation of class (4, 3) provides a fortiori results about those specific classes of monoids. This is precisely what is done in Chapter 4.

Namely, we construct a coherent presentation of a general monoid admitting a quadratic normalisation of class (4, 3). Then we show that this construction specialises to the column coherent presentation of plactic monoids of type A, constructed by Hage and Malbos [START_REF] Hage | Knuth's coherent presentations of plactic monoids of type A[END_REF].
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Section 2.1 recalls the framework of polygraphs, in which the notion of coherent presentation of a category is defined. In Section 2.2, the main method, namely the homotopical completion-reduction procedure, is recalled. Section 2.3 recollects some known applications of this method, which will later turn out to be special cases of our main result. Section 2.4 briefly recollects relevant facts about Garside families. Section 2.5, reports on new results. Finally, some applications are presented in Section 2.6.

Presentations of categories by polygraphs

In this section, we briefly recall the notions concerning polygraphic presentations of monoids (of which a technical elaboration can be found in [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF]). Basic terminology is given in Subsection 2.1.1. Some basic notions of polygraphic rewriting theory are recollected in Subsection 2.1.2. The notion of coherent presentation of a monoid is recalled in Subsection 2.1.3 and technically elaborated in Subsection 2.1.4.

Throughout the present article, 2-categories and 3-categories are always assumed to be strict (see e.g. [START_REF] Guiraud | Polygraphs of finite derivation type[END_REF]Section 2]).

2.1.1. Presentations by 2-polygraphs. The framework of polygraphs encompasses (in the same globular object) words, rewriting rules, and homotopical properties of a rewriting system. Polygraphs provide a generalisation of a presentation of a monoid by generators and relations to the higher categories that are free up to codimension 1.

A polygraph is a higher-dimensional generalisation of a graph. Recall that a (directed) graph is a pair (X 0 , X 1 ) of sets, together with two maps, called the source and target, from X 1 to X 0 . A 0-polygraph (X 0 ) is a set. A 1-polygraph (X 0 , X 1 ) is a graph. The free category generated by a 1-polygraph (X 0 , X 1 ), denoted by X * 1 , contains: X 0 as the set of objects, and paths (freely concatenated elements of X 1 ) between objects as morphisms. A 2-polygraph is a triple X = (X 0 , X 1 , X 2 ), where (X 0 , X 1 ) is a 1-polygraph and X 2 is a set of 1-spheres, i.e. pairs of parallel paths, in X * 1 . Elements of X k are called generating k-cells. In diagrams, distinct arrows are used to denote generating k-cells for low k: →, ⇒, for k equal to 1, 2 and 3, respectively.

For a 2-polygraph X, the category presented by X, denoted by X = X * 1 /X 2 , is obtained by factoring out generating 2-cells, regarded as relations among 1-cells of X * 1 . For a category C , a presentation of C is a 2-polygraph X such that C is isomorphic to X. In the case where category is a monoid, which we are mainly interested in, X 0 is a singleton so each pair of paths in X * 1 forms a 1-sphere, and X * 1 is the free monoid generated by the set X 1 .

Example 2.1.1.1 (The standard presentation). Let C be a category. The standard presentation of C is the 2-polygraph Std 2 (C ) consisting of:

• one generating 0-cell x for every 0-cell x of C ;

• one generating 1-cell u : x → y for every 1-cell u : x → y of C ;

• one generating 2-cell γ u,v : u v ⇒ uv for every pair of composable 1-cells u and v of C ; • one generating 2-cell ι x : 1 x ⇒ 1 x for every 0-cell x of C . Here, 1 x denotes the empty path (consisting of zero generating 1-cells) from x to x. By contrast, 1 x is the path of length 1, consisting of the generating 1-cell (of Std 2 (C )) associated with the identity of x in C .

2.1.2. Rewriting properties of 2-polygraphs. Let X be a 2-polygraph. Generating 2-cells of X are called rewriting rules. The free 2-category over X, denoted by

X * 2 = X * 1 [X 2 ]
, is obtained by adjoining to X * 1 all the formal compositions of elements of X 2 , treated as formal 2-cells. Standard notions from rewriting theory naturally translate into the framework of polygraphs. A rewriting step of a 2-polygraph X is a 2-cell of the free category X * 2 that contains a single generating 2-cell of X, here considered as a transformation of its source into its target. So, a rewriting step has a shape

• • • • w u v α w
where α : u ⇒ v is a generating 2-cell of X, and w and w are 1-cells of X * 2 , and every 0-cell involved is denoted by •.

Let u and v be 1-cells of X * 2 . We say that u rewrites to v if there is a finite composable sequence of rewriting steps, such that the source of the first step of the sequence is u and the target of the last step is v. A 1-cell v is reduced if there is no rewriting step whose source is v.

A termination order on X is a well-founded order relation ≤ on parallel 1-cells of X * 2 having the following properties:

• the compositions by 1-cells of X * 2 are strictly monotone in both arguments, i.e. ≤ is compatible with the composition of 1-cells;

• for every generating 2-cell α of X, the strict inequality t (α) < s (α) holds.

A 2-polygraph X is terminating if it has no infinite sequence of rewriting steps. Admitting a termination order is equivalent to being terminating (in a terminating polygraph, a termination order is generated by putting u > v for each pair of 1-cells u and v such that u rewrites to v).

A branching of a 2-polygraph X is a two-element multiset {α, β} of sequences of rewriting steps of X * 2 having the same source, called the source of the branching. If α and β are rewriting steps, then a branching {α, β} is called local. A local branching is trivial if it has one of the following two shapes: {α, α}, or {αv, uβ} for u = s (α) and v = s (β). Local branchings can be compared by the order generated by the relations {α, β} {wαw , wβw } given for every local branching {α, β} and all possible 1-cells w and w of X * 2 . A minimal nontrivial local branching is called critical. A branching {α, β} is confluent if α and β can be expanded into sequences having the same target. A 2-polygraph X is confluent (resp. locally confluent, resp. critically confluent) if all its branchings (resp. local branchings, resp. critical branchings) are confluent. If a 2-polygraph is terminating and confluent, then it is said to be convergent. A convergent 2-polygraph X is called a convergent presentation of any category isomorphic to X. In that case, for every 1-cell u of X * , there is a unique reduced word, denoted by u, to which u rewrites.

The following theorem states that two basic results of rewriting theory concerning confluence, called Newman's lemma [START_REF] Maxwell | On theories with a combinatorial definition of "equivalence[END_REF]Theorem 3] and the critical branchings theorem respectively, are also valid for polygraphs. This presentation admits the following termination order: comparing the lengths of words, then (i.e. if words are equal in length) applying, from left to right, the lexicographic order induced by a < b < c. Hence, it is terminating. 

X 2 = X * 1 (X 2 )
, is constructed by adjoining to X * 1 all the formal compositions of elements of X 2 and formal inverses of elements of X 2 , and then factoring out the compositions of elements with their corresponding inverses. A (3, 1)-polygraph is a quadruple X = (X 0 , X 1 , X 2 , X 3 ), where (X 0 , X 1 , X 2 ) is a 2-polygraph and X 3 is a set of 2-spheres, i.e. pairs of parallel paths of 2-cells, in X 2 . For a (3, 1)-polygraph X, the free (3, 1)-category over X, denoted by X 3 = X 2 (X 3 ), is constructed by adjoining to X 2 all the formal compositions of elements of X 3 and formal inverses of elements of X 3 , and then factoring out the compositions of elements with their corresponding inverses. A (3, 1)-polygraph is called convergent if its underlying 2-polygraph is convergent. The category presented by a (3, 1)-polygraph X is again X, the category presented by its underlying 2-polygraph.

An extended presentation of a monoid M is a (3, 1)-polygraph X such that M is isomorphic to X. Definition 2.1.3.1. A coherent presentation of a monoid M is an extended presentation (X 0 , X 1 , X 2 , X 3 ) of M such that factoring out elements of X 3 leaves only trivial 2-spheres (where the parallel paths are equal).

For example, presentations of the free abelian monoid N 3 and the Klein bottle monoid in Subsection 1.2.3, obtained by Squier completion, are coherent. For simplicity, the single generating 0-cell is sometimes left out of a presentation of a monoid.

2.1.4. Cellular extensions of higher categories. An n-category is called an (n, p)-category if its k-cells are invertible for all k > p. For a k-cell f of an n-category C , the identity (k + 1)-cell and the i-source and i-target of f are respectively denoted by 1 f and s i (f ) and t i (f ); the subscript i is dropped if i = k -1. If t i (f ) = s i (g), that is if f and g are i-composable k-cells, then their i-composite is denoted by f i g; abbreviated to f g if i = 0. When 1 f (resp. the identity of 1 f , etc.) is composed with cells of dimension k + 1 (resp. k + 2, etc.), it is denoted by f , for simplicity.

For k ≥ 1, two k-cells are called parallel if they have a common source and a common target. Any two 0-cells are considered parallel. An (ordered) pair of parallel k-cells in an n-category is called a k-sphere. The source and target of a k-sphere γ = (f, g) are k-cells f and g, respectively, which is written as s (γ) = f and t (γ) = g. For a k-cell γ of C , the (k -1)-sphere (s (γ) , t (γ)) is called the boundary of γ.

For a set Γ and an n-category C , a map from Γ to the set of n-spheres of C is called a cellular extension of C . Usually, we identify elements of Γ with their images and say that Γ is a cellular extension of C . A cellular extension of C can be interpreted as a set of directed relations between parallel n-cells. Identifying the n-cells s (γ) and t (γ) for every n-sphere γ of Γ, produces the quotient n-category C /Γ. A cellular extension of C can also be interpreted as a set of formal (n + 1)-cells, filling the n-spheres of C . For an n-category C and a cellular extension Γ, one constructs the free (n + 1)-category generated by Γ over C , denoted by C [Γ], by adjoining to C all the formal compositions of elements of Γ, treated as formal (n + 1)-cells. Similarly, for an (n, 1)-category C and its cellular extension Γ, one constructs the free (n + 1, 1)-category generated by Γ over C , denoted by C (Γ), as the quotient C (Γ) = C Γ, Γ / Inv (Γ), where Γ denotes the cellular extension obtained by reversing directions (i.e. switching components) of spheres in Γ, and Inv (Γ) denotes the cellular extension of C Γ, Γ consisting of (n + 2)-cells χ n χ → 1 t(χ) and χ n χ → 1 s(χ) for every (n + 1)-cell χ in Γ.

That is why, in Section 2.1.3, the free 2-category over a 2-polygraph X and the free (2, 1)-category over X are denoted respectively by

X * 2 = X * 1 [X 2 ] and X 2 = X * 1 (X 2 )
. Technically, that is how they are, in fact, defined. In formal terms, a (3, 1)-polygraph is a quadruple X = (X 0 , X 1 , X 2 , X 3 ), where (X 0 , X 1 , X 2 ) is a 2-polygraph and X 3 is a cellular extension of X 2 . Hence, the free (3, 1)-category X 3 over (3, 1)-polygraph X and the (2, 1)-category presented by X are denoted (technically, defined) respectively by X 3 = X 2 (X 3 ) and X = X 2 /X 3 . The category presented by a (3, 1)-polygraph X is again X, the category presented by its underlying 2-polygraph.

An extended presentation of C is a (3, 1)-polygraph X such that C is isomorphic to X.

An acyclic cellular extension of an n-category C is a cellular extension Γ of C such that all the n-spheres of the quotient n-category C /Γ are of the form (f, f ) or, equivalently, such that, for every n-sphere γ of C , there is an (n + 1)-cell whose boundary is γ in the (n + 1)-category C (Γ).

Definition 2.1.4.1. A coherent presentation of a category C is an ex- tended presentation (X 0 , X 1 , X 2 , X 3 ) of C such that X 3 is an acyclic cellular ex- tension of X 2 .
Note that this definition agrees with the one for monoids (given in the previous subsection), seen as categories having a single object. 
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The generating 3-cell A u,v,w is adjoined for each triple (u, v, w) of 1-cells of C such that the pairs (u, v) and (v, w) are composable; the generating 3-cell L u and R u are adjoined for each 1-cell u of C . The resulting (3, 1)-polygraph, denoted by Std 3 (C ), is called the standard coherent presentation of C (see [START_REF] Guiraud | Rewriting methods in higher algebra[END_REF]Subsection 3.3.3] for the explanation why Std 3 (C ) is, indeed, a coherent presentation).

2.1.5. Motivation for coherent presentations. Coherent presentations generalise 2-syzygies for presentations of groups. They also form the first dimensions of polygraphic resolutions of monoids. The notion of coherent presentation is also closely connected with other two known notions: weak actions of Artin-Tits monoids on categories, and cofibrant approximations of 2-categories. In what follows, we are going to briefly recall the last.

Assume that C and D are 2-categories. A 2-functor G : D → C is called a weak equivalence if there exists a pseudofunctor (i.e. a 2-functor preserving composition and identities of 1-cells only up to 2-isomorphism; see [26, 5.1.1])

F : C → D such that GF is isomorphic to 1 C and F G is isomorphic to 1 D . A 2-category D is called cofibrant if its underlying 1-category is free. A 2-category D is called a cofibrant approximation of a category C if D is cofibrant
and if there exists a weak equivalence D → C . The next theorem displays the close relation between coherent presentations of categories and their cofibrant approximations. Recall that X denotes the (2, 1)-category presented by X.

Theorem ([26, Theorem 1.3.1]). Let C be a category, and let X be an extended presentation of C . Then X is a coherent presentation of C if, and only if, X is a cofibrant approximation of C (viewed as a 2-category).

A strict action of a monoid M on a category C is a morphism of monoids F : M → End (C ). A weak action of M on C replaces the morphism equalities F (f g) = F (f ) F (g) and F (1 M ) = 1 C with natural isomorphisms satisfying coherence relations. Pseudofunctors generalise weak actions of monoids on categories. A consequence of the next theorem is that the Deligne's result [START_REF] Deligne | Action du groupe des tresses sur une catégorie[END_REF]Theorem 1.5] is equivalent to saying that [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF]Theorem 3.1.3] holds for Artin-Tits monoids of spherical type.

Theorem ( [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF]Theorem 5.1.6]). Let C be a category, and let X be an extended presentation of C . Then X is a coherent presentation of C if, and only if, for every 2-category D, the category of pseudofunctors from C to D and the category of 2-functors from X to D are equivalent, and this equivalence is natural in D.

Homotopical transformations of polygraphs

This section elaborates the diagram (1.2.1), by recalling the notion of homotopical completion-reduction, introduced in [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF]. Subsection 2.2.1 recollects the Knuth-Bendix completion procedure, which transforms a terminating 2-polygraph into a convergent one. Subsection 2.2.2 describes the Squier completion procedure, which upgrades a convergent 2-polygraph to a convergent coherent (3, 1)-polygraph. Subsection 2.2.3 recollects the basic transformations one can perform on a polygraph without changing the presented category. In Subsection 2.2.4, we recall the homotopical reduction procedure, which turns a coherent (3, 1)-polygraph into a coherent one having fewer generating cells. Finally, Subsection 2.2.5 describes a particular method for obtaining a homotopical reduction in the case when the starting coherent (3, 1)-polygraph is also convergent.

Knuth-Bendix completion.

Starting with a terminating 2-polygraph X equipped with a total termination order ≤, the Knuth-Bendix completion procedure adjoins generating 2-cells aiming to produce a convergent 2-polygraph that presents the category presented by X. It works by iteratively examining all the critical branchings and adjoining a new generating 2-cell whenever the branching is not already confluent. Namely, for a critical branching {α, β},

if t (α) > t (β) (resp. t (β) > t (α)), then a generating 2-cell γ : t (α) ⇒ t (β) (resp. γ : t (β) ⇒ t (α)
) is adjoined, thus forcing the confluence of the branching:

t (α) t (α) * t (β) t (β) γ α β .
If new critical branchings are created by adjoining additional generating 2-cells, then confluence of such critical branchings is also examined. For details, see [31, 3.2.1]. This procedure is not guaranteed to terminate. In fact, its termination depends on the chosen termination order (see [START_REF] David | Word processing in groups[END_REF]Example 6.3.1]). If it does terminate, then the result is a convergent 2-polygraph. Otherwise, it produces an increasing sequence of 2-polygraphs, and the result is the union of all members of this sequence. Either way, the result is called a Knuth-Bendix completion of X.

Note that different orders of examining critical branchings may result in different 2-polygraphs.

Theorem 2.2.1.1 ([31, Theorem 3.2.2]). If X is a 2-polygraph equipped with a total termination order, then every Knuth-Bendix completion of X is a convergent presentation of the category X.

Remark 2.2.1.2. The Knuth-Bendix completion procedure, as described above, requires not only termination, but also a specification a total termination order, to be able to orient the generating 2-cells which are added and to be able to maintain the termination during the completion. There is an alternative approach. Namely, we can orient the newly added generating 2-cells 'manually', according to our inspiration, and verify after each addition in an ad hoc manner whether we maintain a terminating presentation, without having defined a total order beforehand. Therefore, we can invoke Theorem 2.2.1.1 even if we do not provide a total termination order in advance, as long as we are able to ensure termination after each addition of a generating 2-cell (we shall do this in the proof of Proposition 2.5.3.1).

Squier completion.

A family of generating confluences of a convergent 2-polygraph X is a cellular extension of X 2 containing, for every critical branching {α, β} of X, exactly one 3-cell A:

* * * * α A A α β β
where the rewriting sequences α and β are completing α and β, respectively, in such a way that they eventually reach the same target (such α and β exist by the assumption of confluence), with all the 1-cells involved denoted by * .

A Squier completion of a convergent 2-polygraph X is a (3, 1)-polygraph, with X as underlying 2-polygraph, whose generating 3-cells form a family of generating confluences of X. The following result is due to Squier ([49, Theorem 5.2]); we state a version in terms of polygraphs and higher-dimensional categories proved in [START_REF] Guiraud | Polygraphs of finite derivation type[END_REF].

Theorem 2.2.2.1 ([31, Theorem 4.3.2]). If X is a convergent 2-polygraph, then every Squier completion of X is an acyclic cellular extension of X 2 .
In particular, if X is a convergent presentation of a monoid M , then every Squier completion of X is a convergent coherent presentation of M . Theorem 2.2.2.1 is extended to higher-dimensional polygraphs in [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF]Proposition 4.3.4].

Let X be a terminating 2-polygraph equipped with a total termination order ≤. A homotopical completion of X is a Squier completion of a Knuth-Bendix completion of X. We have seen that the Knuth-Bendix completion procedure enriches a terminating 2-polygraph to a convergent one and that a Squier completion of a convergent 2-polygraph X is a coherent presentation of X. These two transformations can be performed consecutively. They can also be performed simultaneously (see [26, 2.2.4]). Either way, the result is called a homotopical completion of X. Theorem 2.2.2.1 has the following consequence.

Theorem 2.2.2.2. Let C be a category, and let X be a 2-polygraph. If X is a terminating presentation of C , then every homotopical completion of X is a coherent convergent presentation of C . Convention 2.2.2.4. For simplicity, we mostly leave implicit the orientation of the 3-cells in the diagrams. We only label the corresponding area with the name of a 3-cell. The convention is that the source and target of a 3-cell are the upper and lower path, respectively, of the sphere bounding the area, unless explicitly stated otherwise.

Tietze transformations and Tietze equivalence.

Polygraphs allow one to treat presentations of categories homotopically. This subsection recalls a framework for homotopical transformations of (3, 1)-polygraphs, established in [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF], formalising the idea of collapsing scheme introduced in [START_REF] Brown | The geometry of rewriting systems: a proof of the Anick-Groves-Squier theorem[END_REF]. We will use it to formally describe the homotopical reduction procedure in Subsection 2.2.4.

Let X be a (3, 1)-polygraph. A generating 2-cell (resp. generating 3-cell, resp. 3-sphere) α of X is called collapsible if it meets the following two requirements:

• the target of α is a generating 1-cell (resp. 2-cell, resp. 3-cell) of X,

• the source of α is a 1-cell (resp. 2-cell, resp. 3-cell) of the free (3, 1)-category over X \ {t (α)}. The target of a collapsible cell is said to be redundant.

The following six operations are called elementary Tietze transformations of X:

• simultaneous adjunction or elimination of a redundant generating 1-cell v and a collapsible 2-cell α : u ⇒ v, • simultaneous adjunction or elimination of a redundant generating 2-cell β and a collapsible 3-cell A : α β, • simultaneous adjunction or elimination of a redundant generating 3-cell B such that there is a collapsible 3-sphere whose target is B. Formally, these transformations define 3-functors with domain X 3 (see [26, 2.1.1]). A Tietze transformation is a composition of elementary Tietze transformations.

Two (3, 1)-polygraphs are said to be Tietze-equivalent if they satisfy the following two conditions:

• the 1-categories they present are isomorphic,

• the (2, 1)-categories they present are equivalent. Consequently, Tietze-equivalent (3, 1)-polygraphs have the same 0-cells (up to a bijection), and two coherent presentations of the same category are Tietze-equivalent.

It is easily shown that two (3, 1)-polygraphs related by a Tietze transformation are Tietze-equivalent. Namely, it suffices to verify that every one of the six elementary Tietze transformations preserves Tietze equivalence. Furthermore, Tietze transformations preserve the property of being coherent, which we formally state for future reference. An elementary Nielsen transformation on a (3, 1)-polygraph X is any of the following operations:

• replacement of a 2-cell or a 3-cell with its formal inverse;

• replacement of a 3-cell A : α β with * * * * * α χ χ χ β χ A A
where χ and χ are 2-cells of X 3 , and all the 1-cells involved are denoted by * . Elementary Nielsen transformations are Tietze transformations (see [26, 2.1.4]). Therefore, they preserve presented 1-categories, equivalence of presented (2, 1)-categories and homotopy type of (3, 1)-polygraphs (see [26, 2.1.4]). In particular, they transform a coherent presentation of a category C into another coherent presentation of C . A Nielsen transformation is a composition of elementary ones. In the homotopical completion-reduction procedure, Nielsen transformations are often performed implicitly for convenience.

Homotopical reduction.

A coherent presentation obtained by the homotopical completion procedure is not necessarily minimal, in the sense that it may contain superfluous cells. The homotopical reduction procedure aims to remove such superfluous cells by performing a series of elementary collapses, analogous to that used by Brown in [START_REF] Brown | The geometry of rewriting systems: a proof of the Anick-Groves-Squier theorem[END_REF]. In the present terminology, these are Tietze transformations (up to Nielsen transformations).

For a

(3, 1)-polygraph X = (X 0 , X 1 , X 2 , X 3 ), a collapsible part of X is a triple Γ = (Γ 2 , Γ 3 , Γ 4 )
where Γ 2 , Γ 3 , Γ 4 respectively denote families of generating 2-cells of X, generating 3-cells of X, 3-spheres of X 3 , such that the following requirements are met:

• every γ of every Γ k is collapsible (possibly up to a Nielsen transformation);

• no γ of Γ k is the target of an element of Γ k+1 ;

• there exist well-founded order relations on X 1 , X 2 and X 3 such that, for every γ in every Γ k , the target of γ is strictly greater than every generating (k -1)-cell that occurs in the source of γ . Here, we say that a generating 1-cell (resp. 2-cell, resp.

3-cell) x occurs in a 1-cell (resp. 2-cell, resp. 3-cell) γ of X 3 if it occurs in a minimal-length decomposition of γ into generating 1-cells (resp. 2-cells, resp. 3-cells).
The result of the homotopical reduction of X with respect to Γ is the

(3, 1)-polygraph X/Γ = (X 0 , X 1 \ t (Γ 2 ) , X 2 \ t (Γ 3 ) , X 3 \ t (Γ 4 )) .
Sources and targets are given by π Γ • s and π Γ • t, where π Γ is the 3-functor from X to (X/Γ) given by the recursive formula

π Γ (x) =      π Γ (s (γ)) if x = t (γ) for γ in Γ 1 πΓ(s(x)) if x in Γ x otherwise.
Such a Tietze transformation of a (3, 1)-polygraph is called the homotopical reduction procedure.

Let X be a terminating 2-polygraph, with a termination order ≤. A homotopical completion-reduction of X is a (3, 1)-polygraph, obtained as a homotopical reduction, with respect to a collapsible part, of a homotopical completion of X. Proposition 2.2.3.1 and Theorem 2.2.2.1 imply the following result. Theorem 2.2.4.1. If X is a terminating 2-polygraph presenting a category C , then every homotopical completion-reduction of X is a coherent presentation of C .

A special case of reduction.

We have just recalled the definition of a generic collapsible part of a (3, 1)-polygraph X. For the applications considered here, however, it is practical to also recall a particular technique, given in [26, Subsection 3.2], to construct a collapsible part in the case where X is convergent and coherent. A local triple branching is a three-element multiset {α, β, γ} of rewriting steps having a common source:

v u w x α β γ .
A local triple branching is trivial if two of its elements are equal or if one of its elements forms branchings of the type {αv, uβ}, for u = s (α) and v = s (β), with the other two. In a manner analogous to the case of local branchings, local triple branchings can be ordered by 'inclusion', and a minimal nontrivial local triple branching is called critical.

Let X be a convergent and coherent (3, 1)-polygraph. A generating triple confluence of X is a 3-sphere Φ whose boundary consists of the following two parts:

v x u w u x v α C C γ α β γ β C β A B A γ A α and v x u w u x v α C α B γ α B γ A β C γ B γ A α .
Here, {α, β, γ} is a critical triple branching, and the other cells are obtained in the following way. Consider the branching {α, β}: use confluence to get the 2-cells α C and β C ; then use coherence to get the 3-cell C. Similarly, treat the branchings {β, γ} and {α, γ}. Then, consider the branching {α C , α B }: use convergence to get the 2-cells γ and β which have the 1-cell u as their common target; then use coherence to get the 3-cell A . Treat the branching {γ B 1 β , γ A } similarly. Finally, use coherence to get the 3-cell B .

The boundary of the 3-sphere Φ consist of generating 3-cells of X in context. They have the shape zF z where F is a generating 3-cell and z and z are 1-cells. If one of the generating 3-cells, say F , occurs only once (in the boundary of Φ) and in an empty context (meaning z = z = 1), then Φ provides a definition of F in terms of the other 3-cells involved. Thus, the 3-sphere Φ is collapsible, up to a Nielsen transformation (transforming Φ into a 3-sphere having F as target). The component Γ 4 of a collapsible part can be constructed by iteratively examining all the critical triple branchings and taking the collapsible 3-spheres, detected as described above.

After constructing Γ 4 , proceed to construct Γ 3 in the following way. For every 3-cell D of X 3 , consider its source and target, which are 1-composites of rewriting steps zδz , where δ is a generating 2-cell and z and z are 1-cells. If any such δ occurs only once and with z = z = 1, then D is collapsible (up to a Nielsen transformation). Iteratively examining all the 3-cells and taking the ones such as D, the component Γ 3 of a collapsible part can be constructed. Finally, Γ 2 is constructed by iteratively taking 2-cells whose source or target consists of a single generating 1-cell occurring only once in the boundary.

We illustrate this technique by means of an example. Hence the component Γ 4 of the collapsible part contains the 3-sphere Φ which has the generating 3-cell B as target (recall that we implicitly perform a Nielsen transformation when needed). By the definition of collapsible part, we also need to provide a well-founded order relation on the set of generating 3-cells, such that, for every 3-sphere γ in Γ 4 , the target of γ is strictly greater than every generating 3-cell that occurs in the source of γ. So, we put B > A. Proceeding as described above, we examine the remaining 3-cells and construct the component Γ 3 out of those 3-cells whose boundary contains a generating 2-cell occurring only once. There is only one generating 3-cell left, namely A, and the generating 2-cell β appears only once in the boundary of A. So, Γ 3 contains A, and we order the set of generating 2-cells by setting β > α. The component Γ 2 is empty because there is no 2-cell whose source or target consists of a single generating 1-cell appearing only once in the boundary.

Therefore, after performing the homotopical reduction procedure with respect to the collapsible part (∅, Γ 3 , Γ 4 ), we are left with the presentation

a, b bab α ⇒ a ∅ ,
which is thus coherent by Theorem 2.2.4.1. Having a coherent presentation X with the empty set of generating 3-cells means that any two parallel rewriting paths represent the same 2-cell in X 3 .

Note that the homotopical reduction procedure, in general, does not preserve convergence because it can remove generating 2-cells that enabled confluence, as witnessed by the previous example.

Garside's coherent presentations of Artin-Tits and Garside monoids

In this section, we recollect some results of [26, Section 3], namely two instances of application of the homotopical completion-reduction procedure. We shall revisit these examples in Subsection 2.5.1 since the theorems of [26, Section 3] are special cases of the main result in the present chapter. Note that the homotopical completion-reduction procedure was also applied to other examples (see [START_REF] Guiraud | A homotopical completion procedure with applications to coherence of monoids[END_REF] for plactic and Chinese monoids).

Divisibility in categories.

First, let us adopt a terminology concerning divisibility in categories. Since categories here are regarded as generalisations of monoids, morphisms will henceforth be called elements of a category (following [13, Subsection II.1.1]). A category C is left-cancellative (resp. right-cancellative) if, for all f , g and g in C , the equality f g = f g (resp. gf = g f ) implies the equality g = g . A category is cancellative if it is both left-cancellative and rightcancellative.

An element f of a category C is said to be a left divisor of g in C , and g is said to be a right multiple of f , denoted by f g, if there is an element f in C such that f f = g. If, additionally, f is not invertible, then divisibility is called proper, and written as f ≺ g.

If C is a left-cancellative category and f g holds in C , then there is a unique element f in C such that f f = g. Here, f is called the right complement of f in g.

For an element h of a left-cancellative category C and a subfamily S of C (i.e. family of elements of C ), we say that h is a greatest common left divisor, or leftgcd, (resp. least common right multiple, or right-lcm) of S if h s (resp. s h) holds for all s in S and if every element of C that is a left divisor (resp. right multiple) of all s in S is also a left divisor (resp. right multiple) of h. Left-gcds and right-lcms are unique up to multiplication by an invertible element.

A (proper) right divisor, a left-lcm and a right-gcd are defined similarly. We say that a left-cancellative category C admits conditional right-lcms if each pair of elements having a common right multiple has a right-lcm. 

σ 1 , . . . , σ n-1 | σ i σ j σ i = σ j σ i σ j , |i -j| ≥ 2; σ i σ j = σ j σ i , |i -j| = 1 .
By definition, braid monoids are Artin-Tits monoids. The Coxeter group corresponding to the braid monoid B + n is the symmetric group S n . So, braid monoids are Artin-Tits monoids of spherical type.

Garside's coherent presentation of Artin-Tits monoids.

The monoid B + (W ) admits another presentation (see [START_REF] Geck | Characters of finite Coxeter groups and Iwahori-Hecke algebras[END_REF]Proposition 4.1.3]). Garside's presentation (see [46, Section 1]) of an Artin-Tits monoid B + (W ), seen as a 2-polygraph and denoted by Gar 2 (W ), has a single generating 0-cell, elements of W \ {1} as generating 1-cells, and a generating 2-cell α u,v : u|v ⇒ uv for each pair (u, v) of elements of W \ {1} such that |uv| = |u| + |v| holds. Here, u|v denotes the product in W * , whereas uv denotes the product in M . Note that the number of generating 1-cells in Garside's presentation of an Artin-Tits monoid is finite if, and only if, the Artin-Tits monoid is of spherical type.

Remark 2.3.3.1. In this thesis, the letters u, v and w are commonly used to denote words over a generating set (i.e. 1-cells). However, in the present subsection, these letters are actually used to denote only elements of a generating set (i.e. generating 1-cells). The reason for this is the fact that elements of a Coxeter group, which form a generating set for Garside's presentation, are themselves words over a generating set for Artin's presentation (2.3.2). For consistency, we shall extend this practice to the rest of the present section. Now, let us recall the seminal example of application of the homotopical completion-reduction procedure. (1) M is a cancellative monoid;

(2) there is a map λ : M → N such that λ (f g) ≥ λ (f ) + λ (g) holds for all f and g in M , and λ (f ) = 0 implies f = 1; (3) each pair of elements has a left-gcd, a right-gcd, a left-lcm and a right-lcm; (4) there is an element ∆ in M , called the Garside element, such that the left and the right divisors of ∆ coincide and they generate M ; (5) the family of all divisors of ∆ is finite.

Observe that the second condition implies that M has no nontrivial (here meaning different from 1) invertible element. Namely,

λ (1) = λ (1 • 1) ≥ λ (1) + λ (1) implies λ (1) = 0, whence f g = 1 implies 0 ≥ λ (f ) + λ (g) which further implies f = g = 1.
Consequently, a left-gcd is unique in a Garside monoid. We write f ∧ g for the leftgcd of f and g. For a (left) divisor f of ∆, we write ∂ (f ) for the right complement of f in ∆.

Example 2.3.4.1. The class of Garside monoids includes Artin-Tits monoids of spherical type (see [START_REF] Dehornoy | Gaussian groups and Garside groups, two generalisations of Artin groups[END_REF]) and, consequently, braid monoids (see [START_REF] Brieskorn | Artin-Gruppen und Coxeter-Gruppen[END_REF]).

• In the free abelian monoid (N n , +), the Garside element is ∆ n = (1, . . . , 1).

• For the braid monoid B + n , the Garside element ∆ n (called the half-turn braid) is defined inductively:

∆ 1 = 1, ∆ 2 = σ 1 , ∆ n = ∆ n-1 σ n-1 • • • σ 1 for n ≥ 2. Divisors of ∆ n are called simple braids.
Dual braid monoids (to be recalled in Subsection 2.6.4) make another important family of Garside monoids.

For more examples, see [13, Examples I.2.7 and I.2.8].

2.3.5. Greedy decomposition. As mentioned in Subsection 1.1.1, Garside monoids were introduced in order to axiomatise the greedy normal form that was observed in braid monoids. In a Garside monoid (M, ∆), a word

u 1 | • • • |u m , with u 1 , . . . , u m being divisors of ∆, is said to be ∆-normal if, for all i < m, (2.3.4) for all h ∈ M \ {1} , h u i+1 implies u i h ∆,
and it is said to be strict if, additionally, u m is not equal to 1.

A (strict) ∆-normal decomposition of g in M is a (strict) ∆-normal word representing g with respect to the generating set consisting of all divisors of ∆. Note that the strict ∆-normal decomposition of 1 is the empty word. Let us examine how to compute a ∆-normal decomposition of g in M represented by a length-two word u|v that is not ∆-normal. Notice that, in the length-two case, the condition (2.3.4) translates to ∂ (u) ∧ v = 1. Indeed, u|v is ∆-normal if, and only if, there is no nontrivial left divisor h of v such that uh is a divisor of ∆ (or, equivalently, h ∂ (u)). Hence, a procedure can be established to find a ∆-normal decomposition of g, as follows. If there is a nontrivial left divisor For a strict ∆-normal decomposition, one further distinguishes two cases:

h of v such that h ∂ (u), then ∂ (u) ∧ v is nontrivial too. A ∆-normal form of g is obtained
• ∂ (u) ∧ v = v,
in which case v is equal to 1, and u = uv is returned as a length-one strict ∆-normal decomposition of g;

• ∂ (u) ∧ v properly divides v, in which case u |v is a strict ∆-normal de- composition of g.
The condition (2.3.4) says that u i is the maximal divisor of ∆ that left-divides u i u i+1 • • • u m (hence this decomposition is called greedy, a term to be formally recalled in Subsection 2.4.3), as illustrated by the following simple example.

Example 2.3.5.1. Let us compute a strict ∆ 3 -normal decomposition of the element g = (2, 1, 3) of the free abelian monoid

N 3 . The maximal divisor of ∆ that left-divides g is ∆ 3 . The right complement of ∆ 3 in g is (1, 0, 2). The maximal divisor of ∆ that left-divides (1, 0, 2) is (1, 0, 1). The right complement of ∆ 3 in g is (0, 0, 1)
, which is a divisor of ∆. The decomposition, therefore, is complete. Denoting the generators (1, 0, 0), (0, 1, 0) and (0, 0, 1) of N 3 by a, b and c, respectively, gives a 2 bc 3 = abc|ac|c.

The main idea is that the finite lattice formed by divisors of ∆ reveals the structure of the entire Garside monoid, as expressed by the following result. We refer the reader to [12, Subsection 2.2] for an overview of the computational properties of the ∆-normal form.

2.3.6. Garside's coherent presentation of Garside monoids. Garside's presentation of a Garside monoid M is the 2-polygraph Gar 2 (M ), having divisors of ∆ other than 1 as generating 1-cells and a generating 2-cell α u,v : u|v ⇒ uv whenever the condition ∂ (u) ∧ v = v is satisfied. 1 Here, u|v denotes the product in the free monoid over the set of proper divisors of ∆, whereas uv denotes the product in M . It is easily verified that Gar 2 (M ) is, indeed, a presentation of M , because uv is the strict (we leave out the 1 from uv|1) ∆-normal form of u|v if, and only if, the condition

∂ (u) ∧ v = v holds.
Having noticed in the previous subsection that, in the case of a length-two word u|v, the condition (2.3.4) of being ∆-normal amounts to ∂ (u) ∧ v = 1 , we can take the condition ∂ (u) ∧ v = v here to mean 'as far as possible from being ∆-normal'.

Example 2.3.6.1. We want to describe the extended presentation Gar 3 (M ), which is introduced in [26, 3.3.2]. 2 To that end, we are going to reformulate the condition ∂ (u) ∧ v = v in a suitable way, in order to generalise it to three elements. Let us first notice that the condition ∂ (u) ∧ v = v is equivalent to saying that v is a left divisor of ∂ (u). In other words, there is an element w in M such that vw = ∂ (u). By definition of ∂ (u), this means that uvw = ∆, so uv and w are divisors of ∆. This reformulation allows us to extend the given condition to a greater number of elements. Let Gar 

Garside families

The present section briefly recollects the basic notions and results concerning Garside families (for technical elaboration, see the monograph [START_REF] Dehornoy | Foundations of Garside theory[END_REF]).

2.4.1. Motivation for Garside family. Introducing Garside monoids generalised spherical Artin-Tits monoids (and a fortiori braid monoids) and axiomatised properties allowing the greedy decomposition. Shortly afterwards, a further extension was invited by the examples that were not Garside monoids but whose elements nevertheless admitted decompositions similar to the ∆-normal decomposition (provided by Proposition 2.3.5.2).

Free abelian monoids over infinite basis, infinite braids, the Klein bottle group, ribbon categories, among others, fail to fit in the frame of Garside monoids, yet they do grant decompositions structurally identical to the greedy decomposition. Such examples suggested seeking more general requirements which a subfamily of 1 There is a typo in [26, 3.3.2], where it is written

∂ (u) ∧ v = 1 instead of ∂ (u) ∧ v = v.
2 Conditions for the generating 3-cells of Gar 3 (M ) are omitted in [26, 3.3.2].

a category has to meet in order to guarantee the existence of a decomposition such as the ∆-normal decomposition.

Some of these examples will be recollected in Section 2.6 and more can be found in [13, A subfamily S of a left-cancellative category C is said to be closed under right comultiple if every common right multiple of two elements s and t of S (if there is any) is a right multiple of a common right multiple of s and t that lies in S.

For f and g in a category C , a minimal common right multiple, or right-mcm, of f and g is a right multiple h of f and g, such that no proper left divisor of h is a common right multiple of f and g. A category C admits right-mcms if, for all f and g of C , every common right multiple of f and g is a right multiple of some rightmcm of f and g. Observe that, in a left-cancellative category admitting conditional right-lcms, the notions of a right-mcm and right-lcm coincide. Let us state a rather basic observation about right-mcm in a left-cancellative monoid, which we will use in one step of the main proof in Subsection 2.5.3. The following lemma is similar to [START_REF] Heß | Factorability, string rewriting and discrete Morse theory[END_REF]Lemma 11.24], which deals with lcms, whereas here it suffices to consider mcms, under weaker assumptions.

Lemma 2.4.2.1. Let M be a left-cancellative monoid. If v is a right-mcm of v 1 and v 2 in M , then uv is a right-mcm of uv 1 and uv 2 for every u in M .

Proof. Let x 1 and x 2 denote the right complements in v of v 1 and v 2 , respectively. Note that uv is a common right multiple of uv 1 and uv 2 , namely, uv 1 x 1 = uv = uv 2 x 2 . Assume that there is a common right multiple f of uv 1 and uv 2 such that f is a proper left divisor of uv . Then there exist elements f 1 , f 2 and a non-invertible element g in M satisfying uv 1 f 1 = f = uv 2 f 2 and f g = uv . By the left cancellation property, the equations

uv k f k g = uv yield v k f k g = v for k in {1, 2}. Thus we obtain the common right multiple v 1 f 1 = v 2 f 2 of v 1 and v 2 ,
which is a proper left divisor of v . This contradicts the fact that v is a right-mcm of v 1 and v 2 . Therefore, uv is a right-mcm of uv 1 and uv 2 .

Relying on [13, • Proper division, left or right, strictly reduces the length of an element of an Artin-Tits monoid. Therefore, no element admits an infinite number of divisors, so Artin-Tits monoids are noetherian. • Garside monoids are noetherian by definition (thanks to the map λ : M → N). • For an example of a monoid that is right-noetherian but not noetherian, we refer to reader to the lifted omega monoid given in [13, Exercises II.14 and IV.46].

Garside families.

In this subsection, we recollect the definition and some basic properties of the all-important notion of Garside family, which provides a way of extending the notion of greedy decomposition beyond Garside monoids.

For a subfamily S of a left-cancellative small category C , a C -path

f 1 | • • • |f m is said to be S-greedy if, for all i < m, (2.4.1)
for all s ∈ S and h ∈ C , s hf i f i+1 implies s hf i .

This property can be expressed diagrammatically as follows. Commutativity of the diagram

• • • • • s h f i f i+1
without the dashed arrow implies the existence of a dashed arrow making the square (and thus also the triangle) commute. The arc joining f i and f i+1 denotes greediness.

By definition, a path of length 0 or 1 is S-greedy for any subfamily S. The following result observes an immediate but important consequence of the definition of S-greedy C -path.

Lemma 2.4.3.1 ([14, Lemma 2.12]). Let S be a subfamily of a left-cancellative category

C . If a C -path f 1 | • • • |f m is S-greedy, then the length-two C -path f 1 |f 2 • • • f m is S-greedy, as well.
Proof. Suppose that s hf 1 (f 2 • • • f m ) for some s in S and h in C . The idea is to use associativity to group together all factors except the last two, then to use the fact that the remaining pair is S-greedy. Namely, s (hf

1 f 2 • • • f m-2 ) f m-1 f m implies s (hf 1 f 2 • • • f m-2 ) f m-1 .
We repeat this process until we get s (h)

f 1 f 2 which implies s hf 1 . Therefore, f 1 |f 2 • • • f m is S-greedy. Let C × denote the family of all invertible elements of C . For a subfamily S of C , a C -path r 1 | • • • |r m is said to be S-normal if it is S-greedy and if, moreover, r 1 , . . . , r m lie in SC × ∪ C × . An S-normal path r 1 | • • • |r m is called strict if, addi- tionally, r 1 , . . . , r m-1 lie in S \ C × and r m lies in in SC × \ C × .
In (other) words, an S-normal path is strict if all its components are non-invertible and if all, except possibly the last one, lie in S.

An S-normal decomposition of

f in C is an S-normal path r 1 | • • • |r m such that f = r 1 • • • r m holds in C .
In general, an S-normal decomposition of an element is not unique. Nevertheless, the number of non-invertible letters is the same in all S-normal decompositions of f (see [START_REF] Dehornoy | Garside families[END_REF]Proposition 2.11] or [13, Proposition III.1.25] for exposition). This motivates the following notion. For a subfamily S of a left-cancellative category C and an element f of C admitting at least one Snormal decomposition, the S-length of f is defined as the common number of noninvertible letters in all S-normal decompositions of f . The next subsection will show that the S-length concurs with the length in monoids, as given in Subsection 1.2.1 on page 11 (and, in particular, with the lengths in Coxeter groups and Artin-Tits monoids, mentioned in Subsection 2.3.2). Definition 2.4.3.2. A subfamily S of a left-cancellative small category C is called a Garside family in C if every element of C admits an S-normal decomposition.

Since every left-cancellative category C is a Garside family in itself (for every f in C , simply take the length-one word f as a C -normal decomposition of f ), we are interested only in proper (meaning other than C itself) Garside families.

Example 2.4.3.3.

• The Coxeter group W corresponding to a Artin-Tits monoid B + (W ) is a, possibly infinite, Garside family in B + (W ). • Every Artin-Tits monoid admits a finite Garside family (see [START_REF] Dehornoy | Garside families in Artin-Tits monoids and low elements in Coxeter groups[END_REF]). In the case of an Artin-Tits monoid of spherical type, a finite Garside family is given by the corresponding Coxeter group. In the particular case of a braid monoid, the family of all simple braids is a Garside family. Proposition 2.4.3.5 ([14, Proposition 3.9]). Let C be a left-cancellative category. A subfamily S of C is a Garside family if, and only if, the following conditions are satisfied:

• SC × ∪ C × generates C ,
• it is closed under right comultiple and right divisor,

• and evaluation of every non-invertible length-two word over SC × ∪ C × admits a ≺-maximal left divisor in S.

Let us recall another result to be used in Subsection 2.5.3.

Lemma 2.4.3.6 ([13, Lemma IV.2.24]). Let C be a left-cancellative category. If C admits right-mcms, then, for every subfamily S of C , the following are equivalent.

• The family S is closed under right comultiple.

• The family SC × ∪ C × is closed under right-mcm, i.e. if f and g lie in SC × ∪ C × , then so does every right-mcm of f and g. ). Let M be a left-cancellative monoid containing no nontrivial invertible element, and let S be a Garside family in M . Then, for every S-word v, there exists a unique S-normal word N S (v) that represents the same element as v and has the same length as v.

Observe that, consequently, the S-length agrees with the length (for monoids) given in Subsection 1.2.1 on page 11.

For a Garside family S in a left-cancellative monoid M with no nontrivial invertible element, the normalisation map derived from the Garside family S is the length-preserving map N S : S * → S * which assigns to each v in S * \ {1} the S-normal decomposition of the element of M represented by v; and N S (1) = 1. It is well defined due to Proposition 2.4.4.1. The following result provides an important property of S-normal decomposition. It is a straightforward extension of [16, Lemma 6.9], which deals with length-two S-words, to all S-words. Lemma 2.4.4.2. Let M be a left-cancellative monoid having no nontrivial invertible element, and let S be a Garside family in M . Then, for every word v in S * , the leftmost letter of v is a left divisor of the leftmost letter of N S (v).

Proof. Let r 1 | • • • |r m be the word N S (v). Since v and r 1 |r 2 • • • r m evaluate to the same element of M , the leftmost letter of v is a left divisor of r 1 (r 2 • • • r m ). By Lemma 2.4.3.1, the length-two M -word r 1 |r 2 • • • r m is S-greedy.
Hence, the desired conclusion follows.

A property granted by Lemma 2.4.4.2, but limited to S-words of length 2, is called left-weightedness and will be revisited in a more general framework in Subsection 3.3.5.

A Garside family yields a presentation in the following sense.

Proposition 2.4.4.3 ([16, Proposition 6.17] or [START_REF] Guiraud | Rewriting methods in higher algebra[END_REF]Corollary 6.6.4]). Let M be a left-cancellative monoid containing no nontrivial invertible element, and let S be a Garside family in M . Then M admits, as a convergent presentation, the 2-polygraph that contains a single generating 0-cell, one generating 1-cell for each element of S \ {1}, and one generating 2-cell of the form

(2.4.2)
s|t ⇒ the strict S-normal decomposition of s|t for each pair s, t in S \ {1} such that s|t is not S-normal. In particular, every Artin-Tits monoid admits a finite convergent presentation.

A Garside family also induces a 'smaller' presentation, beside the one provided by Proposition 2.4.4.3, which will be instrumental in deriving a main result in the next section. The following proposition is an adaptation of [16, Proposition 6.15] using [16, Proposition 6.10].

Proposition 2.4.4.4. Let M be a left-cancellative monoid containing no nontrivial invertible element, and let S be a Garside family containing 1 in M . Then M admits, as a presentation, the 2-polygraph Gar 2 (S) that contains a single generating 0-cell, one generating 1-cell for each element of S \ {1}, and one generating 2-cell of the form (2.4.3) s|t ⇒ st for each pair s, t in S \ {1} such that the product st in M lies in S.

Proof. Proposition 2.4.4.3 grants a presentation of M in terms of S by the relations (2.4.2). In this paragraph, we want to show that the relations (2.4.3) are included in the relations (2.4.2). If s and t in S \ {1} are such that st lies in S \ {1}, then the strict S-normal decomposition of s|t is st. Otherwise, st = 1 holds and the strict S-normal decomposition of s|t is 1. In both cases, the strict S-normal decomposition of s|t is st. Hence, the relations (2.4.3) Example 2.4.4.5. Garside's presentation Gar 2 (W ) of an Artin-Tits monoid B + (W ) is an instance of a Garside's presentation Gar 2 (S) with respect to a Garside family S. Indeed, the Artin-Tits monoid B + (W ) is a cancellative monoid (see [START_REF] Brieskorn | Artin-Gruppen und Coxeter-Gruppen[END_REF]) with no nontrivial invertible element, and the Coxeter group W is a Garside family containing 1. Hence, B + (W ) meets all the requirements of Proposition 2.4.4.4, which, for this particular Garside family as input for S, produces precisely Garside's presentation Gar 2 (W ).

Example 2.4.4.6. Garside's presentation Gar 2 (M ) of a Garside monoid M is another instance of a Garside's presentation with respect to a Garside family S. Namely, a Garside monoid is cancellative, by definition. Note that the property (2) of Garside monoid implies that it has no nontrivial invertible element. All the divisors of ∆ form a Garside family containing 1. Hence, M meets all the requirements of Proposition 2.4.4.4, which, for this particular Garside family as input for S, produces precisely Garside's presentation Gar 2 (M ).

Coherent presentations from Garside families

Having recalled necessary notions and results in previous sections, in this section we present new results. Subsection 2.5.1 gives the statement and sketches a proof of Theorem 2.5.1.4, a main result in the present chapter, which gives a construction of coherent presentations for a class of monoids admitting a Garside family, thus providing a unifying generalisation of theorems recalled in Examples 2.3.3.2 and 2.3.6.1 concerning Artin-Tits and Garside monoids, respectively. Subsections 2.5.2, 2.5.3 and 2.5.4 aim to prove Theorem 2.5.1.4 by respectively providing termination, homotopical completion and homotopical reduction, starting with Garside's presentation Gar 2 (S). In Subsection 2.5.5, the necessity of noetherianity is illustrated by means of example.

For the rest of this chapter, we shall resume the practice observed in Remark 2.3.3.1 of using the letters u, v, w to denote generators rather than words.

2.5.1. Main statement and sketch of proof. In this subsection, we adapt some notation from [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF] and set a suitable noetherianity condition. Then we state Theorem 2.5.1.4.

Let M be a monoid generated by a set S containing 1. We define the notations u v and u v × , as follows. Given two elements u and v of S \ {1}, write:

u v ⇐⇒ uv ∈ S, u v × ⇐⇒ uv / ∈ S.
The notation extends to a greater number of elements. For three elements u, v, w in S, we write u v w if both conditions u v and v w hold. The case u v w splits into two mutually exclusive subcases: 

u v w ⇐⇒ u v
A u,v,w α u,v |w u|α v,w α u,vw
for each triple (u, v, w) of elements of S \ {1} such that u v w .

Remark 2.5.1.1. Note that the 2-polygraph Gar 2 (S) is not a presentation of M , in general. Consequently, since Gar 3 (S) is an extended presentation of a monoid presented by Gar 2 (S), it is not necessarily an extended presentation of M . Proposition 2.4.4.4 gives sufficient conditions for Gar 2 (S) to be a presentation of M , thus making Gar 3 (S) an extended presentation of M .

To formulate the main result, we need a restriction of right noetherianity to a Garside family. Definition 2.5.1.2. A Garside family S in a left-cancellative monoid M is said to be right-noetherian if for every s in S, every increasing sequence of proper left divisors in S of s with respect to proper left divisibility is finite. 3 Example 2.5.1.3. Every Garside family in a right-noetherian left-cancellative monoid M is right-noetherian. In Subsection 2.5.5, we shall see an example of a Garside family that is not right-noetherian. Now, we state the main result of this chapter.

Theorem 2.5.1.4. Let M be a left-cancellative monoid containing no nontrivial invertible element, and let S be a Garside family containing 1 in M . If S is right-noetherian, and if M admits right-mcms, then M admits the (3, 1)-polygraph Gar 3 (S) as a coherent presentation.

Remark 2.5.1.5. Results of [13, Subsection IV.2.2] enable us to rephrase Theorem 2.5.1.4 by referring to a right-noetherian monoid rather than just a rightnoetherian Garside family. However, we prefer the above formulation since it agrees better with the rather formal construction of a homotopical completion which we will give in Subsection 2.5.3.

Before we proceed to prove the theorem, let us show that it gives a common generalisation of the two distinct directions of extension, given in [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF], of Deligne's result [START_REF] Deligne | Action du groupe des tresses sur une catégorie[END_REF]Theorem 1.5]. 3 Technically, we can drop the condition that the family S is Garside and relax the finiteness condition by considering only such sequences with every quotient (of a member of the sequence by its predecessor) also lying in S. However, for simplicity, we already assume that S is Garside family (since that will be the case in applications, anyway), so the quotients automatically lie in S due to the closure under right divisor.

Proof. If we restrict the conditions u v and u v w to the case of a Garside monoid (M, ∆), with divisors of ∆ making a Garside family S, then we get precisely our equivalent reformulation, given in Example 2.3.6.1, of the conditions stated in [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF]Subsection 3.3]. Literally, the condition u v w then says that uv is a divisor of ∆. Garside monoids are cancellative by definition. Note that the property (2) of a Garside monoid (see Subsection 2.3.4) implies noetherianity as well as the fact that there is no nontrivial invertible element. They also admit right-mcms: in fact, they admit right-lcms (by definition).

The following diagram summarises key steps of the proof of Theorem 2.5.1.4 and thus motivates the next three subsections which together contain the proof. In Subsection 2.5.3, a Squier completion of the polygraph Gar 2 (S) is computed formally, under certain assumptions on the monoid. The resulting (3, 1)-polygraph is denoted by Gar 3 (S). It is then shown that this construction applies to a terminating presentation of the monoid M given in the statement of Theorem 2.5.1.4 and produces a coherent convergent presentation Gar 3 (S).

Finally, in Subsection 2.5.4, a homotopical reduction of Gar 3 (S) is computed resulting in the (3, 1)-polygraph Gar 3 (S) as a coherent presentation of M .

Attaining termination.

In this subsection, we ensure that a certain presentation, denoted by Gar 2 (S), is terminating. This presentation will arise naturally (in the next subsection) as a result of applying the Knuth-Bendix completion procedure to Garside's presentation Gar 2 (S). Hence the motivation for the formal definition of the 2-polygraph Gar 2 (S) here.

Let M be a monoid generated by a subset S containing 1. Observe that the 2-polygraph Gar 2 (S) has exactly one critical branching for all u, v and w of S \ {1} such that u v w holds:

uv|w u|v|w u|vw α u,v |w u|α v,w
.

If the subcase u v w holds, then the branching is already confluent. Otherwise u v w × holds, and the branching requires a new generating 2-cell to reach confluence, so the generating 2-cell β u,v,w : u|vw ⇒ uv|w is adjoined. We write Gar 2 (S) for the 2-polygraph that contains a single generating 0-cell, one generating 1-cell for every element of S \ {1}, and the generating 2-cells

α u,v : u|v ⇒ uv, u, v ∈ S \ {1} , u v, β u,v,w : u|vw ⇒ uv|w, u, v, w ∈ S \ {1} , u v w × .
To show that the 2-polygraph Gar 2 (S), under certain conditions, is a Knuth-Bendix completion of the 2-polygraph Gar 2 (S), we need to ensure two things: a way to maintain a terminating presentation in the sense of Remark 2.2.1.2, and a demonstration that all new critical branchings caused by the generating 2-cells β are confluent. These are respectively given by Proposition 2.5.2.1, and the proof of Proposition 2.5.3.1.

Proposition 2.5.2.1. Let M be a left-cancellative monoid containing no nontrivial invertible element, and let S be a Garside family containing 1 in M . If S is right-noetherian, then the 2-polygraph Gar 2 (S) is terminating.

Proof. Let us first adopt some notation, to facilitate exposition. For an S-word x, we write h (x) for the leftmost letter of x, and t (x) for the word obtained from x by removing the letter h (x). For a generating 2-cell χ, a χ-step is a rewriting step in which the generating 2-cell is χ, and χ i is a χ-step

• • • • z x y χ z ,
where z is an S-word of length i -1. For an infinite sequence of positive integers

i 1 |i 2 | • • • , we denote the path • • • • χ i2 • χ i1 by χ i1|i2|••• .
Having introduced the needed notation, we proceed to prove the proposition. Suppose that there is an infinite rewriting path. Note that an α-step strictly reduces the (S \ {1})-length of a word. So, in every rewriting path, there can be only finitely many of the generating 2-cells α. Hence, there is no loss in generality if we consider only β-steps. Namely, we can simply consider an infinite path after the last αstep is applied and we are left with an infinite path composed out of β-steps only. Suppose, then, that there is an infinite rewriting path consisting of β-steps. Let β i1|i2|••• be such a path having source x of minimal (S \ {1})-length. Note that |x|, the length of x, is at least 2.

The minimality assumption about |x| implies that the number 1 occurs infinitely many times in the sequence i 1 |i 2 | • • • . In other words, infinitely many generating 2-cells β of the path modify letters at the leftmost position. Indeed, if the number 1 occurred only finitely many times in i 1 |i 2 | • • • , then, denoting the last occurrence of 1 by i q , we would have an infinite path of β-steps β iq+1-1|iq+2-1|••• , starting at the word t β i1|i2|•••|iq (x) , whose (S \ {1})-length would equal |x| -1. But that would contradict the minimality assumption about |x|. Therefore, the number 1 occurs infinitely many times in the sequence i Let x (m) denote the mth word in the path β i1|i2|••• , i.e. the source of the step β im . Notice that the leftmost letter of a word is modified by the step β im if, and only if, i m equals 1. In this case, the modification is such that the current leftmost letter h x (m) is a proper left divisor of the next leftmost letter h x (m+1) , and the corresponding complement lies in S \ {1} by the definition of the generating 2-cell β. In formal terms, (2.5.1)

1 |i 2 | • • • . We write i c1 |i c2 | • • •
h x (m+1) = h x (m) if i m = 1, h x (m) u m for some u m ∈ S \ {1} if i m = 1.
Let r denote the leftmost letter of the S-normal form of x. Notice that all the words in the path β i1|i2|••• have the same evaluation in M and that, consequently, the equality N S (x) = N S x (m) holds for all m by the definition of N S . Hence, Lemma 2.4.4.2 implies that h x (m) is a left divisor of r for all m.

Consider the sequence (2.5.2)

h x (cp) ∞ p=1
of elements of S that divide r. Observe that, by (2.5.1), we have h x (cp+1) = h x (cp) u cp . Since u cp lies in S \ {1} and there is no nontrivial invertible element, h x (cp) is a proper left divisor of h x (cp+1) . Therefore, the existence of the sequence (2.5.2) contradicts the fact that the Garside family S is right-noetherian. We conclude that the 2-polygraph Gar 2 (S) is terminating.

Homotopical completion of Garside's presentation.

In this subsection, we enrich Garside's presentation to reach a coherent convergent presentation. First we compute purely formally, in Proposition 2.5.3.1, a homotopical completion of a terminating presentation of a monoid satisfying certain conditions, but not presumed to have a proper Garside family. Then we show, in Corollary 2.5.3.5, that this provides a coherent convergent presentation of a left-cancellative monoid containing no nontrivial invertible element, admitting right-mcms and a rightnoetherian Garside family containing 1.

Proposition 2.5.3.1. Let M be a left-cancellative monoid admitting rightmcms, and let S be a subfamily of M . Assume that S is closed under right-mcm and right divisor, and assume that the 2-polygraph Gar 2 (S) is a terminating presentation of M . Then M admits, as a coherent convergent presentation, the (3, 1)polygraph Gar 3 (S) which extends Gar 2 (S) with the following twelve families of generating 3-cells, indexed by all possible elements of S \ {1} (i.e. for which all the generating 2-cells involved are defined): .

The meanings of the 1-cells (i.e. words) x 1 , x 2 , y and x, y which appear respectively in the definitions of the generating 3-cells I and H, are as follows. Since v 1 and v 2 have the common right multiple v 1 w 1 = v 2 w 2 , they also have a right-mcm. The words x 1 and x 2 are the right complements of v 1 and v 2 , respectively, in their rightmcm. The word y is the right complement of v 1 x 1 = v 2 x 2 in v 1 w 1 = v 2 w 2 . If either x 1 or x 2 is equal to 1, then the other one is simply denoted by x (in the generating 3-cell H).

The structure of the following proof closely resembles that of the proof of [26, Proposition 3.2.1], but we need to devise more general arguments to assure favourable properties in a more general context.

Proof. Termination of the 2-polygraph Gar 2 (S) is assumed, so we can perform a relaxed version of the Knuth-Bendix completion procedure, as described in Remark 2.2.1.2, simultaneously with the Squier completion procedure. It will turn out that all critical branchings are confluent. Accordingly, only a Squier completion will be actually computed, i.e. no further 2-generating cells will be added.

Let us first consider critical branchings consisting only of the generating 2-cells α. There is only one such critical branching for each triple (u, v, w) of elements of S \ {1} satisfying u v w :

uv|w u|v|w u|vw α u,v |w u|α v,w .
If the subcase u v w holds, then the branching is already confluent, so the homotopical completion procedure adjoins only the generating 3-cell A u,v,w . If u v w × holds, then the branching is again confluent, so the generating 3-cell B u,v,w is adjoined.

Let us now consider critical branchings containing the generating 2-cell β. The sources of 2-cells forming such a branching can either overlap on one element of S \ {1} or be equal, as the lengths in (S \ {1})

* of the sources of the generating 2-cells α and β equal 2. We consider the two cases accordingly.

For the first case (when the overlap is of length 1, i.e. the source of branching is of length 3), the proof of [26, Proposition 3.2.1] applies here to a certain extent. The source of a branching has length 3, as a word in (S \ {1})

* . One of the 2-cells which form a branching, changes the leftmost two generating 1-cells of the source, and the other one changes the rightmost two. There are three distinct forms of such branchings, which we discuss in the following three paragraphs. yielding the generating 3-cells F u,v,w,x,y and F u,v,w,x,y , respectively; the latter splits into

u v w x y × × × × × and u v w x y × × × ×
yielding the generating 3-cells G u,v,w,x,y and G u,v,w,x,y , respectively.

We have thus considered the first case. The second case (when the source of branching is of length 2), is going to be considered in greater detail because this is where new justifications are needed. Assume that the two generating 2-cells which generate a critical branching have the same source. One of these two generating 2-cells has to be β (otherwise, the branching is trivial). Therefore, the source has to have a form u|v 1 w 1 satisfying the condition u v 1 w 1 × . Since the generating 2-cells α are not defined under this condition, the other generating 2-cell also has to be β. The only way for the generating 2-cells β with the same source u|v 1 w 1 to form a critical branching is for v 1 w 1 to have another decomposition

v 1 w 1 = v 2 w 2 such that u v 2 w 2 ×
. Then the branching is as follows:

uv 1 |w 1 u|v 1 w 1 = u|v 2 w 2 uv 2 |w 2 β u,v1,w1 β u,v2,w2
.

Let us invoke the assumed property of M admitting right-mcms. Since v 1 and v 2 have a common right multiple, namely v 1 w 1 = v 2 w 2 , they also have a right-mcm, say v . Since S is closed under right-mcm by assumption, v lies in S. By the left cancellation property which grants the uniqueness of right complements, we define x 1 and x 2 as the right complements in v of v 1 and v 2 , respectively. Since S is closed under right divisor, x 1 and x 2 are elements of S. We also define y as the right complement of v in v 1 w 1 = v 2 w 2 . Note that y lies in S as a right divisor of v 1 w 1 which lies in S. Uniqueness of the right complements of v 1 and v 2 in v 1 w 1 and v 2 w 2 , respectively, yields w 1 = x 1 y and w 2 = x 2 y. To sum up, the diagram

• • • • • w 1 x 1 v 1 v v 2 y x 2 w 2
commutes (with • denoting the unique 0-cell). Furthermore, the equality w k = x k y, the fact that v lies in S, and the condition v k w k together imply v k x k y for k in {1, 2}.

We have only shown that x 1 , x 2 and y are elements of S. In order to construct the generating 3-cell I u,v1,w1,v2,w2 , let us verify that all the generating 1-cells involved are, indeed, elements of S \ {1}. First we demonstrate that y cannot be equal to 1. Suppose the opposite. Then the condition u v 1 w 1

× reduces to u v 1 x 1 × .
On the other hand, uv is a right-mcm of uv 1 and uv 2 by Lemma 2.4.2.1. Since S is closed under right-mcm, uv lies in S, which contradicts the condition u v 1 x 1 × . Thus, we deduce that y is not equal to 1.

Note that if x 1 and x 2 were both equal to 1, then the branching {β u,v1,w1 , β u,v2,w2 } would be trivial. So, at most one of the 1-cells x 1 and x 2 can be equal to 1. If x 2 is equal to 1, then the generating 3-cell H u,v,x,y is constructed, with v := v 1 and x := x 1 . Similarly, if x 1 is equal to 1, the generating 3-cell H u,v,x,y is constructed, with v := v 2 and x := x 2 . Finally, if neither x 1 nor x 2 is equal to 1, then the generating 3-cell I u,v1,w1,v2,w2 is adjoined. By Theorem 2.2.2.2, the constructed (3, 1)-polygraph Gar 3 (S) is a coherent convergent presentation of M . The rest of this subsection is made up of remarks and corollaries of Proposition 2.5.3.1.

Remark 2.5.3.2. Notice that Proposition 2.5.3.1 gives three new families of generating 3-cells (namely, E , F and G ) that were not a part of the [26, Proposition 3.2.1], an analogous result for Artin-Tits monoids. The reason for this is that the Garside families considered in [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF] for Artin-Tits monoids and Garside monoids are closed under left and right divisors, whereas a family S in Proposition 2.5.3.1 is only closed under right divisor (like a Garside family in general). Consequently, certain conjunctions of conditions, discussed in the proof of Proposition 2.5.3.1, could not be satisfied in the setting of Artin-Tits monoids. For instance, here we consider the possibility of uvwx lying in S under the condition that uvw is not an element of S, to construct the generating 3-cell E . In an Artin-Tits monoid, on the other hand, if uvwx lies in S then so does uvw due to closure under left divisor. Note that Proposition 2.4.3.5 and Lemma 2.4.3.6, together with the assumptions that S contains 1 and that there is no nontrivial invertible element in M , yield the property of S being closed under right-mcm. By Proposition 2.4.3.5, we know that S is closed under right divisor. With all these conditions satisfied, the proof of Proposition 2.5.3.1 applies in a straightforward fashion. In particular, it shows that all new critical branchings caused by the generating 2-cells β are confluent. Thus, the 2-polygraph Gar 2 (S) is a Knuth-Bendix completion of Garside's presentation Gar 2 (S), which yields the desired conclusion by Theorem 2.2.1.1 and Remark 2.2.1.2.

Remark 2.5.3.4. Observe that Proposition 2.5.2.1, together with Proposition 2.4.4.4, immediately implies that the 2-polygraph Gar 2 (S) is a terminating presentation of M . On the other hand, the fact that Gar 2 (S) is also a convergent presentation of M has been reachable only after Proposition 2.5.3.1, which showed that no additional generating 2-cells were required to obtain confluence. 

β uv,w,x H u,v,w,x β u,v,wx α u,v |wx u|α v,wx β u,vw,x B uv,w,x B u,v,wx .
The target of this particular generating triple confluence is the generating 3-cell H u,v,w,x .

Note, however, that applying the homotopical reduction procedure from [26, 3.2.2] does not suffice to eliminate any of the generating 3-cells E u,v,w,x , F u,v,w,x,y and G u,v,w,x,y since these particular families of generating 3-cells did not even occur in [26, Section 3], as observed in Remark 2.5.3.2. So, we have yet to eliminate these cells here. To this end, we consider the following generating triple confluences in the (3, 1)-polygraph Gar 3 (S). The homotopical reduction of the resulting (3, 1)-polygraph of Proposition 2.5.3.1, with respect to the collapsible part Γ, is precisely Gar 3 (S). By Theorem 2.2.4.1, we conclude that Gar 3 (S) is a coherent presentation of M . Through Corollary 2.5.3.5, the proof of Theorem 2.5.1.4 is hereby completed. Proof. Since M is right-noetherian, so is S. By [13, Proposition II.2.40], every left-cancellative left-noetherian monoid admits right-mcms, so M admits rightmcms. Hence, all the conditions of Theorem 2.5.1.4 are satisfied.

The next section demonstrates advantages of using our results in applications.

The following example, however, shows that taking a Garside family as a generating set is not always the most practical way to get a coherent presentation.

Example 2.5.5.2. We revisit the Klein bottle monoid K + , considered in Examples 2.2.2.3 and 2.2.5.1. One of the infinitely many Garside families in K + , none of which is finite (see [13, Example IV.2.35]), is the set of left divisors of a 2 , which we denote by S. Let us check if the conditions of Theorem 2.5.1.4 are satisfied. Note that K + is cancellative as it is embeddable in a group. The presentation (2.2.1) contains no ε-relation, hence K + has no nontrivial invertible element. Note that the left divisibility relation of K + is a total order ([13, Figure I.6]), which is more than necessary for admitting conditional right-lcms (and a fortiori right-mcms). However, the sequence (ab n ) ∞ n=1 shows that S is not right-noetherian. Even worse, S contains an infinite path of the generating 2-cells β, as defined in Proposition 2.5.2.1:

b|a 2 → b 2 |aba → b 3 |ab 2 a → • • • → b n |ab n-1 a → • • •
Even if we took another Garside family, we would not be successful, as witnessed by [START_REF] Dehornoy | Foundations of Garside theory[END_REF]Example IV.2.35]. Therefore, neither Theorem 2.5.1.4 nor its proof is applicable to K + .

If one found a way to use a Garside family as a generating set, then they would have an infinite number of generating 1-cells. On the other hand, by directly performing the homotopical completion-reduction procedure in Examples 2.2.2.3 and 2.2.5.1, we have demonstrated that the presentation (2.2.1), which has two generating 1-cells and one generating 2-cell, is coherent. Therefore, for this particular example, the direct application of the homotopical completion-reduction procedure is a preferable way of reaching a coherent presentation.

Applications of Theorem 2.5.1.4

In this section, we consider applications of Theorem 2.5.1.4 to certain monoids. In Subsections 2.6.1 and 2.6.2, we apply the theorem to monoids which are neither Artin-Tits nor Garside. In Subsection 2.6.3, we compute a finite coherent presentation of an Artin-Tits monoid that is not of spherical type, taking a finite Garside family (hence, different from the corresponding Coxeter group) as a generating set. Finally, we construct a coherent presentation of a dual braid monoid in Subsection 2.6.4.

2.6.1. The free abelian monoid over an arbitrary basis. Consider the free abelian monoid N (J) of all J-indexed sequences of nonnegative integers with finite support. Define

S J = g ∈ N (J) ∀j ∈ J, g (j) ∈ {0, 1} .
If N (J) is finitely generated by S J , that is for J = {1, 2, . . . , n}, then the set S J coincides with the set of divisors of the Garside element ∆ n = (1, . . . , 1). Otherwise, the monoid N (J) is neither Artin-Tits nor Garside. Nevertheless, by [START_REF] Dehornoy | Foundations of Garside theory[END_REF]Subsection I.3.1], the ∆-normal decomposition results established for the free abelian monoid N n (which is a Garside monoid and a spherical Artin-Tits monoid) remain valid after replacing the set of divisors of ∆ with S J . Namely, every element of N (J) admits a unique decomposition of the form

u 1 | • • • |u m with u 1 , . . . , u m in S J and u m = 1 such that for all h ∈ N (J) \ {1} , h u i+1 implies u i h / ∈ S J .
Observe that S J is a Garside family in N (J) (say, by applying Proposition 2.4.3.4, or by recognising that the above implication defines greediness). The following properties follow from the fact that the definition of the product in N (J) is based on the pointwise addition of nonnegative integers: N (J) is a cancellative monoid, it has no nontrivial invertible element, and it admits conditional right-lcms. Since every element of N (J) has only finitely many divisors, N (J) is noetherian. So, all the conditions of Theorem 2.5.1.4 are satisfied.

Let us describe the cells of the coherent presentation of N (J) granted by Theorem 2.5.1.4. The generating 2-cells are relations α u,v : u|v ⇒ uv for u, v in S J \ {1} such that uv lies in S, which in this particular context means that u and v have disjoint supports. A generating 3-cell A u,v,w is adjoined for each triple (u, v, w) of elements of S J \ {1} having pairwise disjoint supports.

As expected, for J = {1, 2, . . . , n}, we recover Garside's coherent presentation of the Artin-Tits monoid N n recalled in Example 2.3.3.2, as well as Garside's coherent presentation of the Garside monoid N n recalled in Example 2.3.6.1.

Infinite braids. Denote by B +

∞ the monoid of all positive braids on infinitely many strands indexed by positive integers, as defined in [START_REF] Dehornoy | Foundations of Garside theory[END_REF]Subsection I.3.1]. It is shown that B + ∞ does not admit a finite generating set. Therefore, it is neither Artin-Tits nor Garside. However, its elements do admit decompositions similar to the ∆-normal decomposition. Namely, put

S ∞ = n≥1 {the family of all divisors of ∆ n }
where ∆ n denotes the half-turn braid on n strands. In other words, S ∞ consists of all simple braids on n strands for all n ≥ 1. This is made precise in [START_REF] Dehornoy | Foundations of Garside theory[END_REF]Subsection I.3.1]. Basically, B + n is identified with its image in B + n+1 under the homomorphism induced by the identity map on {σ 1 , . . . , σ n }. In that sense, B + ∞ is seen as the union of all braid monoids B + n . Every element of B + ∞ admits a unique decomposition of the form

u 1 | • • • |u m with u 1 , . . . , u m in S ∞ and u m = 1 satisfying for all h ∈ B + ∞ \ {1} , h u i+1 implies u i h / ∈ S ∞ .
Observe that the family S ∞ is a Garside family in B + ∞ (like in the previous subsection). Cancellation and divisibility properties, as well as the property of having no nontrivial invertible element, are preserved from braid monoids because the respective properties do not depend on the number of strands. The monoid is noetherian for the same reason as Artin-Tits monoids (Example 2.4.2.2). So, we can apply Theorem 2.5.1.4 to construct a coherent presentation.

The generating 2-cells are relations α u,v : u|v ⇒ uv for u, v in S ∞ \ {1} such that uv lies in S ∞ , which in this example means that uv is a simple braid. A generating 3-cell A u,v,w is adjoined for each triple (u, v, w) of elements of S ∞ \ {1} with uv, vw, uvw lying in S ∞ , which here means that uv, vw and uvw are simple braids. So, formally, each cell is constructed exactly like in the coherent presentation provided by [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF]Theorem 3.1.3] for a (finite) braid monoid, regarded as an Artin-Tits monoid, which comes as no surprise since Theorem 2.5.1.4 is a formal generalisation of [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF]Theorem 3.1.3].

Remark 2.6.2.1. Observe the similarities between the free abelian monoid over an infinite basis and the monoid of all positive braids on infinitely many strands. Even though the monoids involved are quite different (for starters, the former is abelian unlike the latter), there is a strong analogy between the normal decompositions their elements admit: N n , N (J) , the set of divisors of ∆ n , and S J behave like B + n , B + ∞ , simple braids, and S ∞ , respectively. Such observations invited the notion of Garside family, as hinted in Subsection 2.4.1.

2.6.3. Artin-Tits monoids that are not of spherical type. For an Artin-Tits monoid B + (W ) of spherical type, [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF]Theorem 3.1.3], recalled in Subsection 2.3.3, provides a finite coherent presentation having W \ {1} as a generating set. On the other hand, if a Coxeter group W is infinite, then [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF]Theorem 3.1.3] still provides a coherent presentation but an infinite one. Recall that every Artin-Tits monoid admits a finite Garside family (we refer the reader to [START_REF] Dehornoy | Garside families in Artin-Tits monoids and low elements in Coxeter groups[END_REF] for elaboration), regardless of whether the monoid is of spherical type or not. An advantage of having Theorem 2.5.1.4 at our disposal is that we can take a finite Garside family for a generating set in computing a coherent presentation (whereas with [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF]Theorem 3.1.3], one has to take the corresponding Coxeter group even if it is infinite).

Let us consider the Artin-Tits monoid of type A 2 , i.e. the monoid presented by (2.6.1)

σ 1 , σ 2 , σ 3 |σ 1 σ 2 σ 1 = σ 2 σ 1 σ 2 , σ 2 σ 3 σ 2 = σ 3 σ 2 σ 3 , σ 3 σ 1 σ 3 = σ 1 σ 3 σ 1 + .
By [15, Table 1 and Proposition 5.1], the smallest Garside family F in this monoid consists of the sixteen right divisors of the elements σ 3 σ 1 σ 2 σ 1 , σ 1 σ 2 σ 3 σ 2 , and σ 2 σ 3 σ 1 σ 3 . Namely,

F = {1, σ 1 , σ 2 , σ 3 , σ 1 σ 2 , σ 2 σ 1 , σ 2 σ 3 , σ 3 σ 2 , σ 3 σ 1 , σ 1 σ 3 , σ 1 σ 2 σ 1 , σ 2 σ 3 σ 2 , σ 3 σ 1 σ 3 , σ 3 σ 1 σ 2 σ 1 , σ 1 σ 2 σ 3 σ 2 , σ 2 σ 3 σ 1 σ 3 }.
The Cayley graph of F can be seen in [15, Figure 1]. As observed in Corollary 2.5.1.6, all the conditions of Theorem 2.5.1.4 are satisfied. Following Theorem 2.5.1.4, we construct a generating 2-cell u|v ⇒ uv for u, v in F \ {1} with uv in F . This yields the following family of generating 2-cells: three pairs of generating 2-cells of the form

α σi,σj : σ i |σ j ⇒ σ i σ j , α σj ,σi : σ j |σ i ⇒ σ j σ i ,
three pairs of generating 2-cells of the form α σi,σj σi :

σ i |σ j σ i ⇒ σ i σ j σ i , α σj ,σiσj : σ j |σ i σ j ⇒ σ i σ j σ i ,
three pairs of generating 2-cells of the form α σiσj ,σi : σ i σ j |σ i ⇒ σ i σ j σ i , α σj σi,σj : σ j σ i |σ j ⇒ σ i σ j σ i , three generating 2-cells of the form

α σ k ,σiσj σi : σ k |σ i σ j σ i ⇒ σ k σ i σ j σ i ,
and three pairs of generating 2-cells of the form

α σ k σi,σj σi : σ k σ i |σ j σ i ⇒ σ k σ i σ j σ i , α σ k σj ,σiσj : σ k σ j |σ i σ j ⇒ σ k σ i σ j σ i ,
with i, j, k in {1, 2, 3}, and j = i + 1 and k = j + 1 modulo 3.

We proceed to construct the generating 3-cells A u,v,w for u, v, w in F \ {1} with uv, vw, uvw lying in F . We obtain pairs of generating 3-cells of the form

σ i σ j |σ i σ i |σ j |σ i σ i σ j σ i σ i |σ j σ i α σiσj ,σi A σi,σj ,σi α σi,σj |σ i σ i |α σj ,σi α σi,σj σi σ j σ i |σ j σ j |σ i |σ j σ i σ j σ i σ j |σ i σ j α σj σi,σj A σj ,σi,σj α σj ,σi |σ j σ j |α σi,σj α σj ,σiσj
and pairs of generating 3-cells of the form

σ k σ i |σ j σ i σ k |σ i |σ j σ i σ k σ i σ j σ i σ k |σ i σ j σ i α σ k σi,σj σi A σ k ,σi,σj σi α σ k ,σi |σ j σ i σ k |α σi,σj σi α σ k ,σiσj σi σ k σ j |σ i σ j σ k |σ j |σ i σ j σ k σ i σ j σ i σ k |σ i σ j σ i α σ k σj ,σiσj A σ k ,σj ,σiσj α σ k ,σj |σ i σ j σ k |α σj ,σiσj α σ k ,σiσj σi
with i, j and k as above.

We have thus computed the finite coherent presentation of the Artin-Tits monoid of type A 2 , which consists of fifteen generating 1-cells, twenty-seven generating 2-cells, and twelve generating 3-cells.

Note that some of the generating 3-cells are superfluous, so let us further perform the homotopical reduction procedure as described in Subsection 2.2.4. Let us construct a collapsible part Γ. There are no critical triple branchings, so we take the empty set for Γ 4 . For the component Γ 3 , we take the Nielsen transformations of the generating 3-cells A σ3,σ1,σ2σ1 , A σ3,σ2,σ1σ2 , A σ1,σ2,σ3σ2 , A σ1,σ3,σ2σ3 , A σ2,σ3,σ1σ3 , A σ2,σ1,σ3σ1 whose respective targets are the following generating 2-cells:

α σ3σ1,σ2σ1 , α σ3σ2,σ1σ2 , α σ1σ2,σ3σ2 , α σ1σ3,σ2σ3 , α σ2σ3,σ1σ3 , α σ2σ1,σ3σ1 .
We order the generating 2-cells as follows:

α σ3σ1,σ2σ1 > α σ3σ2,σ1σ2 > α σ1σ2,σ3σ2 > α σ1σ3,σ2σ3 > α σ2σ3,σ1σ3 > α σ2σ1,σ3σ1 >
> other generating 2-cells in any order (as they are not targets in Γ 3 ).

For the component Γ 2 , we take the generating 2-cells α σ1,σ2 , α σ2,σ1 , α σ2,σ3 , α σ3,σ2 , α σ3,σ1 , α σ1,σ3 , α σ1,σ2σ1 , α σ2,σ3σ2 , α σ3,σ1σ3 , α σ3,σ1σ2σ1 , α σ1,σ2σ3σ2 , α σ2,σ3σ1σ3 .

Any ordering of the generating 1-cells which respects the length in F * will do.

The homotopical reduction of Gar 3 (F ) with respect to the collapsible part (Γ 2 , Γ 3 , ∅) contains: a single generating 0-cell; the generating 1-cells σ 1 , σ 2 , σ 3 ; the generating 2-cells α σ2,σ1σ2 , α σ3,σ2σ3 , α σ1,σ3σ1 ; and no generating 3-cells. As a side result, we have thus shown that Artin's presentation ('extended' with the empty set of generating 3-cells) of the Artin-Tits monoid of type A 2 is coherent. 

i,j = σ i • • • σ j-2 σ j-1 σ -1 j-2 • • • σ -1 i for 1 ≤ i < j ≤ n.
They obey the following relations:

b i,j b i ,j = b i ,j b i,j for [i, j] and [i , j ] disjoint or nested, b i,j b j,k = b j,k b i,k = b i,k b i,j for 1 ≤ i < j < k ≤ n.
The pair

(B + * n , ∆ * n ), with ∆ * n = b 1,2 • • • b n-1,n
, is a Garside monoid, as essentially shown in [START_REF] Birman | A new approach to the word problem in the braid groups[END_REF] for B + * 3 (although without using the terminology of Garside monoids) and in [START_REF] Bessis | The dual braid monoid[END_REF] for the general case. Therefore, computing a coherent presentation of a dual braid monoid does not really require Theorem 2. .

We have thus computed the coherent presentation Gar 3 (D) of the dual braid monoid B + * 4 , which consists of thirteen generating 1-cells, twenty-eight generating 2-cells, and sixteen generating 3-cells.

As in Subsection 2.6.3, we can further perform the homotopical reduction procedure. A quick inspection reveals that there are no critical triple branchings, so we take the component Γ 4 of the collapsible part to be the empty set. For the component Γ 3 , we take the Nielsen transformations of the generating 3-cells

A b24,b23,b14 , A b13,b34,b12 , A b23,b14,b13 , A b23,b34,b14 , A b14,b12,b23 , A b34,b12,b24 , A b13,b12,b34 , A b23,b13,b34 , A b12,b24,b23 , A b12,b34,b24 , A b12,b23,b34
whose respectively selected targets are the following generating 2-cells: α b24,b23b14 , α b13b34,b12 , α b23b14,b13 , α b23b34,b14 , α b14,b12b23 , α b34,b12b24 , α b13,b12b34 , α b23,b13b34 , α b12b24,b23 , α b12b34,b24 , α b12b23,b34 .

We order the generating 2-cells as follows:

α b24,b23b14 > α b1,3b3,4,b1,2 > α b23b14,b13 > α b23b34,b14 > > α b14,b12b23 > α b34,b12b24 > α b13,b12b34 > α b23,b13b34 > > α b12b24,b23 > α b12b34,b24 > α b12b23,b34 > α b12,b23b34 >
> other generating 2-cells in any order (as they are not targets in Γ 3 ).

For the component Γ 2 , we take the generating 2-cells α b12,b23 , α b23,b34 , α b12,b24 , α b13,b34 , α b12,b34 , α b23,b14 , α b12,b23b34 .

Any ordering of the generating 1-cells which respects the length in D will do.

Recall that, when cells are removed from a polygraph, the boundaries of the remaining cells are not necessarily defined anymore, in a manner of speaking. More precisely, if a boundary contained a removed cell, then it would be 'updated' according to the recursive assignment given in Subsection 2. A b14,b23,b13 .

A view towards further applications. A coherent presentation provides the first dimensions of a polygraphic resolution. We would like to prove Guiraud's conjecture that Theorem 2.5.1.4 generalises to all dimensions: a monoid M having a Garside family S, under certain reasonable conditions, admits the polygraphic resolution Consider braid ribbons as defined in [START_REF] Dehornoy | Foundations of Garside theory[END_REF]Subsection I.3.4]. One easily checks that all the requirements of the Theorem 2.5.1.4 would be met if the theorem was extended from monoids to categories, so a coherent presentation of the category of braid ribbons could be constructed. Then, a task remaining to be done would be computing the binary products of elements of the given Garside family.

Gar (S) = γ s0•••sn s 0 • • • s n ∈ S \ {1} , s 0 • • • s n where γ s0•••sn is an n-cell. A challenge
In Subsection 2.6.4, we have constructed a coherent presentation of the dual braid monoid B + * 4 . Our approach could be generalised to B + * n . To this end, one needs to compute the binary products of divisors of ∆ * n . Non-crossing partitions ordered by inclusion form a lattice whose size is the nth Catalan number. This lattice is isomorphic to the Garside family of left divisors of the Garside element of B + * n . Determining the corresponding relations amounts to a combinatorial task of sorting out certain relations among partitions.

CHAPTER 3

Correspondence between factorability and normalisation

This chapter investigates combinatorial properties of a certain class of monoids, seen from two different viewpoints, with a goal of unifying the two. The main contribution is providing answers to the question, left open in [START_REF] Dehornoy | Foundations of Garside theory[END_REF] and [START_REF] Dehornoy | Quadratic normalization in monoids[END_REF], of determining the relation between these two approaches. The following diagram puts it in a nutshell, with arrows denoting inclusions (and × over an arrow negating inclusion), the dashed ones being new results with the dotted one being our hypothesis: .

Section 3.1 fixes basic terminology to be used throughout the chapter. Sections 3.2 and 3.3 present the main characters of the play, namely, factorability structures and quadratic normalisations, respectively. In Section 3.4, the close interplay between the two is investigated.

Remarks on terminology

In the present chapter, the setting of polygraphs is not needed since no coherent presentations are constructed here. Therefore, we are going to use a simpler terminology, that of rewriting systems. A (word) rewriting system is a pair (S, R) consisting of a set S and a binary relation R on S * , whose elements are called rewriting rules. An element (u, v) of R is also written as u → v to stress the fact that it is directed. Seeing relations between words not as equalities but as rewriting rules is a key concept of rewriting theory.

For a rewriting rule (u, v), and w, w in S * , a pair (w|u|w , w|v|w ) is called a rewriting step. For u and v in S * , we say that u rewrites to v if there is a finite composable sequence of rewriting steps, such that the source of the first step of the sequence is u and the target of the last step is v. A word v is called irreducible with respect to R if there is no rewriting step whose source is v.

A rewriting system (S, R) is called:

• confluent if each pair of rewriting sequences starting with the same word can be completed in such a way that the sequences eventually reach a common result; • normalising if every u in S * rewrites to at least one irreducible word; • terminating if it admits no infinite rewriting sequence;

• convergent if it is both confluent and terminating;

• reduced (or minimal) if for every rewriting rule u → v, the word v is irreducible with respect to R, and the word u is irreducible with respect to R \ {(u, v)}; • strongly reduced if it is reduced and, in addition, every element of S is irreducible; • quadratic if the source and target of each element of R are of length 2.

The monoid presented by a rewriting system (S, R) is the quotient M of the free monoid S * by the congruence relation generated by R. In a confluent rewriting system, if a word u rewrites to an irreducible word (which is necessarily unique), then the latter is denoted by u. If (S, R) is convergent, then the map M → S * defined by f → u for any u such that ev (u) = f , is called the normal form associated with the rewriting system (S, R). We remind the reader of terminology and notation introduced in Subsection 1.2.1 on page 11.

A normal form nf for a monoid M with respect to a generating set S is called geodesic if, for every f in M , the inequality |nf (f )| ≤ |u| holds for every S-word u representing f , i.e. such that ev (u) = f . Remark 3.1.0.1. If a generating set S of a monoid M is a subset of M , then elements of S can be regarded in two ways: as length-one words in S * , and as elements of M . When a rewriting system presenting M with respect to S is strongly reduced, this makes no essential difference, so elements of S are denoted in the same way, regardless of the viewpoint, relying on the context to provide the proper interpretation. In particular, one can say that a generating set contains (or that it does not contain) 1, the identity element of a monoid. This phrasing is the custom in the context of factorability (see [START_REF] Heß | Factorability, string rewriting and discrete Morse theory[END_REF], [START_REF] Heß | Factorable monoids: resolutions and homology via discrete Morse theory[END_REF], [START_REF] Ozornova | Factorability, discrete Morse theory, and a reformulation of K(π, 1)-conjecture[END_REF]), but not in the context of normalisation in general (where a generating set is commonly distinguished from its image under the evaluation map, as can be seen in [START_REF] Dehornoy | Quadratic normalization in monoids[END_REF]). So, we will emphasise such situation by calling S a generating subset, not just a generating set, of M . When we characterise factorable monoids in terms of quadratic normalisations (Subsection 3.4.1), the corresponding normalisations will be eligible to share this custom so there will be no need to emphasise it.

For technical reasons, in the rest of this chapter, the letter S will be reserved for the following purpose. Convention 3.1.0.2. When the letter S is used to denote a generating set of a monoid, it is understood that S contains no letter representing the identity element of the monoid (i.e. no generator evaluated to 1).

On the other hand, if a generating set S is enriched, via disjoint union, with a letter representing the identity of the considered monoid, then the resulting pointed set (i.e. set equipped with a distinguished element, called basepoint, enjoying a special treatment in the given context) is denoted by S e . In accordance with Remark 3.1.0.1, the basepoint of S e is denoted by 1 if S is a generating subset of the considered monoid.

To simplify the presentation, we are considering exclusively monoids, but results stated here (recalled ones as well as new ones) mostly extend to categories, considered as monoids with partial multiplication. As a reminder that a monoid is thought of as a monoid of endomorphisms (of an object), we tend to use letters f and g for elements of a monoid.

Factorability structures

This section recalls the notion of factorability structure. For elaboration, the reader is referred to [START_REF] Heß | Factorability, string rewriting and discrete Morse theory[END_REF]. Subsection 3.2.1 recollects the basic terminology. In Subsection 3.2.2, we recall an alternative approach to factorability through the notion of local factorability. Certain notions are redefined in order to overcome the issues arising from the original definition, which are pointed out in Subsection 3.2.3. Subsection 3.2.4 recalls the rewriting system associated with a factorability structure.

The definition of factorability structure.

Convention 3.2.1.1. Let us adopt the convention that elements of a finite sequence are indexed starting from the leftmost one, as in (s 1 , s 2 , . . . , s n ), thereby not following the convention used in [START_REF] Heß | Factorability, string rewriting and discrete Morse theory[END_REF] where elements are indexed starting from the rightmost one. The purpose is to make the notions that concern factorability more easily comparable (in Section 3.4) with those concerning normalisation.

A pair (f, g) in M 2 is called geodesic if |f g| = |f | + |g|.
Let M be a monoid, and let S be a generating subset of M . A factorisation map for (M, S) is a map η = (η , η) : M → M 2 satisfying the following conditions:

• for f in M \ {1}, the element η (f ) of S is a left divisor of f , and the element η

(f ) is a right complement of η (f ) in f ; • the pair (η (f ) , η (f )) is geodesic; • η maps 1, the identity element of M , to η (1) = (1, 1).
Whenever confusion is unlikely, η (f ) and η (f ) are abbreviated to f and f , respectively.

Example 3.2.1.2. Assume that M is a free abelian monoid generated by a nonempty finite totally ordered set. Define η = (η , η) : M → M 2 by setting η (f ) to be the least left divisor of f lying in the generating set. Note that η here is well-defined since the left cancellation property of M implies uniqueness of right complements, so knowing η (f ) determines η (f ). Notation 3.2.1.3. Let A be a set, and let F be a map from A l to A m . Then the (partial) map F i : A * → A * consists of applying F to l consecutive elements starting from position i, i.e. to the elements at positions i, i + 1, . . . , i + l -1.

Example 3.2.1.4. For the sake of illustration, take the set A = {a, b, c} totally ordered by a < b < c. We write < * for the lexicographic extension of < to A * . Let F : A 2 → A 2 map each length-two word to the < * -minimal word obtained by simply permuting the letters of the argument if needed. Then, we have:

c|b|a F2 → c|a|b F1 → a|c|b F2 → a|b|c.
The multiplication in M is denoted by µ : M 2 → M , and µ (f, g) is often abbreviated to f • g or f g. Definition 3.2.1.5 ([35, Definition 2.1]). Let M be a monoid, and let S be a generating subset of M . A factorability structure on (M, S) is a factorisation map η : M → M 2 such that, denoting the map η • µ : M 2 → M 2 by F , for every triple in M 3 , the three maps

F 1 F 2 F 1 F 2 , F 2 F 1 F 2 , F 2 F 1 F 2 F 1
coincide or each map reduces the sum of the lengths of the elements of the triple. If η : M → M 2 is a factorability structure on (M, S), then the triple (M, S, η) is called a factorable monoid.

Example 3.2.1.6. An element of an Artin-Tits monoid B + (W ) presented by (2.3.2) on page 32 is said to be square-free if it cannot be represented by a word containing a square of a generator. For an element f of M , set η (f ) to be a maximal square-free left divisor of f . This defines a factorability structure on B + (W ) with respect to the set of square-free elements, as demonstrated in [48, Assume that (M, S, η) is a factorable monoid. The normal form associated with the factorability structure η, or the η-normal form, for short, is the map

nf η : M → S * defined as f → η |f |-1 • • • η 2 η 1 (f ) .
Example 3.2.1.8. The map F : A 2 → A 2 in Example 3.2.1.4 can be regarded as a composition η • µ of the multiplication in A * and a factorability structure splitting off the least letter. For f = bacabc, we get ,a,b,b,c,c) .

nf η (f ) = η 5 • • • η 2 η 1 (f ) = (a
For a factorable monoid (M, S, η), an M -word x is said to be stable at the ith position if F i (x) = x; it is everywhere stable if it is stable at the ith position for every i in {1, . . . , |x| -1}. The normal form nf η admits the following locality property.

Lemma 3.2.1.9 ([35, Lemma 3.2]). If (M, S, η) is a factorable monoid, then, for every f in M , the η-normal form of f is everywhere stable.

Local factorability structure.

There is an alternative definition of factorability, due to Moritz Rodenhausen. In order to resolve an issue detected in the original definition (to be addressed in the next subsection), we introduce the following notation. Lemma 3.2.2.5 ([48, Lemma 2.3.5]). Let S e be a pointed set with basepoint 1, and let ϕ be a map from (S e ) 2 to itself. If ϕ formally satisfies the second, the third and the fourth condition of Definition 3.2.2.4, then ϕ 1 ϕ 2 ϕ 1 ϕ 2 (r, s, t) is an extended form of N ϕ (r, s, t) for every length-three S e -word (r, s, t).

A factorability structure is equivalent to a local factorability structure, in the following sense. (1) If (M, S, η) is a factorable monoid, then the restriction of the map ηµ to (S e ) 2 defines a local factorability structure on M . (2) Conversely, one can construct a factorability structure out of a local factorability structure by setting: η (1) = (1, 1); and

η (f ) = (r 1 , ev (r 2 , . . . , r m )) for N ϕ (u) = (r 1 , r 2 , . . . , r m )
with u being any S e -word representing f . (3) These constructions are inverse to each other. (4) By this correspondence, for f in M , the η-normal form nf η (f ) equals N ϕ (u) for any S e -word u representing f .

The proof of Theorem 3.2.2.6 can be found in [48, Section

Here are some observations about local factorability structures that will be used implicitly from now on.

• The property (3) of Theorem 3.2.2.6 implies N ϕ (s) = s for every s in S.

• For every length-two S e -word (s, t), the first element of ϕ (s, t) cannot be equal to 1 unless the second element is equal to 1. Namely, assume the opposite: ϕ (s, t) = (1, t ) for t = 1. Then the idempotency of ϕ gives ϕ (1, t ) = (1, t ) which contradicts the property (3). • Note that, by Theorem 3.2.2.6, the equality ϕ (s, t) = (1, 1) holds if, and only if, st = 1 in M .

3.2.3. Deviation from the original definition. As Convention 3.2.1.1 hints, the original definition of a factorisation map, which separates a right divisor, is reformulated in this thesis to separate a left divisor, instead. The definition of local factorability structure is also modified.

Let us recall the original definition of a local factorability structure, in order to justify its present modification (Definition 3.2.2.4). For simplicity, we still assume Convention 3.1.0.2, so we do not actually copy the original verbatim, but we do preserve its essence (as well as the convention of indexing from the right).

Here is a recollection of [START_REF] Heß | Factorability, string rewriting and discrete Morse theory[END_REF]Definition 3.3]. Let M be a monoid, and let S be a generating subset of M . A local factorability structure on (M, S) is a map ϕ from (S e ) 2 to itself, having the following properties:

(1) M admits the presentation

S| {(t, s) = ϕ (t, s) |s, t ∈ S} ;
(2) ϕ is idempotent;

(3) ϕ (s, 1) equals (1, s) for every s in S;

(4) for every (t, s, r) in S 3 , applying any ϕ i to the triple ϕ 2 ϕ 1 ϕ 2 (t, s, r) leaves it unchanged, or ϕ 2 ϕ 1 ϕ 2 (t, s, r) contains 1; (5) NF (t, s, r) equals NF (ϕ 1 (t, s, r)) for all (t, s, r) in S 3 . Theorem 3.2. 4.3 ([35,Theorem 7.3]). Let (M, S, η) be a factorable monoid. If the equalities

η (sf ) = η (s • η (f )) , η (sf ) = η (s • η (f )) • η (f )
hold for all s in S and f in M , then the associated rewriting system is terminating.

Quadratic normalisations

This section recalls the notion of quadratic normalisation. After presenting basic notions concerning normalisation in Subsection 3.3.1, we recollect the notion of quadratic normalisation in Subsection 3.3.2, then we focus on a particular class of quadratic normalisations in Subsection 3.3.3. Subsection 3.3.4 recalls the rewriting system associated with a quadratic normalisation. Subsection 3.3.5 recalls the notion of left-weighted normalisation. For technical elaboration, see [START_REF] Dehornoy | Quadratic normalization in monoids[END_REF].

Normalisation and normal form.

Having already hinted in the Introduction that a normalisation is a syntactic transformation of an arbitrary word to a normal one, here we recall a formal definition. Definition 3.3.1.1. Let A be a set, and let N be a map from

A * to A * . A normalisation is a pair (A, N ) if (1) N is length-preserving, (2) 
restriction of N to A is the identity map,

the equality N (u|v|w) = N (u|N (v) |w) holds for all A-words u, v, w.

The map N is called a normalisation map. An A-word v such that N (v) = v is called N -normal.
A normalisation for a monoid M is a normalisation (S, N ) such that M admits the presentation

S| {v = N (v) |v ∈ S * } . Remark 3.3.1.2.
Recall that the usage of S, as well as the superscript e in S e (or the absence of it), is explained by Convention 3.1.0.2. The letter S is not used in Definition 3.3.1.1, in order to point out that normalisation itself is a purely syntactic notion, as opposed to the notion of normalisation for a monoid.

Example 3.3.1.3 ([16, Example 2.2]
). Assume that (A, <) is a totally ordered nonempty finite set. Let < * denote the lexicographic extension of < to A * . The image under N of an A-word is defined as the < * -minimal word obtained by permuting letters of the argument. Then (A, N ) is a normalisation for the free abelian monoid over A. Remark 3.3.1.4. Note that the definition of normalisation for a monoid M implies that there is a nontrivial monoid homomorphism, also known as grading, from M to the multiplicative monoid of nonnegative integers, such that the degree, i.e. image under grading, of every s in S equals 1. Namely, set the degree of g in M to be the common length of all the S-words representing g (which is welldefined due to the property (1) of normalisation). Such monoids (M, S) are called graded. In other words, M is graded with respect to a generating set S if all S-words representing the same element of M are equal in length.

Remark 3.3.1.5 ([16, Proposition 2.6]). In a graded monoid, a normalisation and a normal form are just different aspects of looking at the same notion. Indeed, given a normalisation (S, N ) for a monoid M , a normal form nf for M with respect to S is obtained by setting nf (g) = N (v) for any S-word v representing g. Conversely, if nf is a normal form for a graded monoid M with respect to a generating set S, then one obtains a normalisation map by setting N (v) = nf (ev (v)). These two correspondences are inverse to each other.

On the other hand, if a monoid (M, S) is not graded, i.e. if an element of M may be represented by S-words of different lengths, then a new letter representing 1 can be introduced to formally preserve length. For a normalisation (A, N ), we say that an element e of A is N -neutral if the equalities

(3.3.1) N (v|e) = N (e|v) = N (v) |e
hold for every A-word v.

Let S e be a pointed set with basepoint e. We say that (S e , N ) is a normalisation mod e for a monoid M if e is an N -neutral element of S e and M admits the presentation

(3.3.2) S e | v = N (v) |v ∈ (S e ) * ∪ {e = 1} .
Note that there can be at most one N -neutral element. We write π e for the canonical projection from (S e ) * onto S * , which removes all the occurrences of e. This extends the equivalence between normalisation and normal form from graded monoids to monoids in general. Proposition 3.3.1.6 ([16, Proposition 2.9]).

(1) If (S e , N ) is a normalisation mod e for a monoid M , then a geodesic normal form nf for M with respect to S e is obtained by setting nf (g) = π e (N (v)) for any S e -word v representing g. (2) Conversely, let nf be a geodesic normal form for a monoid M with respect to a generating set S. Write ev e for the extension of the evaluation map ev : S * → M to (S e ) * by putting ev e (e) = 1. Then a normalisation (S e , N ) mod e for M is provided by the map N (v) = nf (ev e (v)) |e q with q denoting the number of letters e to be added in order to formally preserve length, namely q = |v| -|nf (ev e (v))|.

(3) These two correspondences are inverse to each other. Notation 3.3.2.1. For a finite sequence of positive integers u = (i 1 , . . . , i q ), we denote the composite map F iq • • • • • F i1 (note that F i1 is applied first) by F u , often omitting commas in u when all its components are single-digit numbers (so there is no risk of ambiguity).

If (A, N ) is a normalisation, let N denote the restriction of N to the set of all length-two A-words. Definition 3.3.2.2. A normalisation (A, N ) is quadratic if the following two requirements are met.

(1) An A-word v is N -normal (meaning N (v) = v) if, and only if, every length-two factor of v is N -normal.

(2) For every A-word v, there exists a finite sequence of positions u, depending on v, such that N (v) = N u (v).

Example 3.3.2.3. The normalisation given in Example 3.3.1.3 is quadratic. Indeed, a word is < * -minimal if, and only if, its every length-two factor is < *minimal; and each word can be ordered by switching pairs of adjacent letters that are not ordered as expected.

An advantage of a quadratic normalisation is that it is completely determined by the restriction N . (1) If (S, N ) is a quadratic normalisation for a monoid M , then N is idempotent and M admits the presentation

S| s|t = N (s|t) |s, t ∈ S .
(2) If (A, N ) is a quadratic normalisation, then an element e of A is N -neutral if, and only if, the following equalities hold for every s in A:

N (s|e) = N (e|s) = N (s) |e.
(3) If (S e , N ) is a quadratic normalisation mod e for a monoid M , then N is idempotent and M admits the presentation

S| s|t = π e N (s|t) |s, t ∈ S .
If (A, N ) is a quadratic normalisation, then the image under N of an A-word is computed by sequentially applying N to length-two factors at various positions. For length-three words, there are only two such positions. Since N is idempotent, it suffices to consider alternating sequences of positions. This motivates the notion of class, which measures the complexity of normalising length-three words. For m ≥ 0, we write If A has at least two elements, then each of the maps N 121 and N 212 produces N -normal words. Namely, assuming that the word a|b|c is normal, compute N 121 and N 212 of the word c|b|a (which provides the worst-case scenario):

c|b|a N 1 → b|c|a N 2 → b|a|c N 1 → a|b|c, c|b|a N 2 → c|a|b N 1 → a|c|b N 2 → a|b|c.
Therefore, (A, N ) is of class [START_REF] Bödigheimer | Factorable groups and their homology, Cohomology of finite groups: interactions and applications[END_REF][START_REF] Bödigheimer | Factorable groups and their homology, Cohomology of finite groups: interactions and applications[END_REF] (2) of right-class n if, and only if, the following three maps coincide on A 3 : For example, the minimal class of the quadratic normalisation considered in Example 3.3.2.5 is (3, 3) if the generating set has at least two elements. [START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF][START_REF] Bödigheimer | Factorable groups and their homology, Cohomology of finite groups: interactions and applications[END_REF]. The class (4, 3) has particularly nice computational properties (see [START_REF] Dehornoy | Quadratic normalization in monoids[END_REF]Section 4]), not shared by higher classes (see [START_REF] Dehornoy | Quadratic normalization in monoids[END_REF]Example 3.23]), thanks to the diagrammatic tool called the domino rule. Let A be a set, and let F be a map from A 2 to itself. We say that the domino rule1 is valid for F if, for all r 1 , r 2 , r 1 , r 2 , s 0 , s 1 , s 2 in A such that F (s 0 |r 1 ) = r 1 |s 1 and F (s 1 |r 2 ) = r 2 |s 2 , the following implication holds: if r 1 |r 2 and r 1 |s 1 and r 2 |s 2 are fixed points of F , then so is r 1 |r 2 . The domino rule is expressed by the commutative diagram

N 21[n] , N 21[n+1] , N 12[n+1] . (3) 

Quadratic normalisations of class

(3.3.3) • • • • • • r 1 s 0 r 2 s 1 s 2 r 1 r 2
where arcs denote fixed points of F : the solid ones are assumptions, and the dashed one is the expected conclusion. The domino rule allows one to devise a simple universal recipe for computing the images under a normalisation map. We recall the notation needed to express it.

Notation 3.3.3.2. For a positive integer n, the finite sequence δ n of positive integers is inductively defined as follows:

δ n := the empty sequence if n = 1 sh (δ n-1 ) |1|2| • • • |n -1 if n > 1,
where sh denotes the shifting map which increases every entry by 1. So, we have

δ 2 = 1, δ 3 = 2|1|2, δ 4 = 3|2|3|1|2|3, δ 5 = 4|3|4|2|3|4|1|2|3|4, etc.
For the sake of illustration, let us combine Notations 3. 

c|b|a N 2 → c|a|b N 1 → a|c|b N 2 → a|b|c.
We observe that N δ3 (c|b|a) is equal to N (c|b|a), meaning that the corresponding quadratic normalisation is of right-class 3 (which agrees with Example 3.3.2.5). Now we can formulate the aforementioned recipe for normalising arbitrarily long words. The key step in proving this proposition is the following lemma. 

N (s|r 1 | • • • |r m ) = N 1|2|•••|m-1|m (s|r 1 | • • • |r m ) .
Remark 3.3.3.6. Note, in particular, that Lemma 3.3.3.5 implies that the leftmost letter of N (s|r 1 | • • • |r m ) does not depend on r 2 , . . . , r m but only on s and r 1 . We will use this observation in Subsection 3.4.2. By Proposition 3.3.2.6(2), if (A, N ) is a quadratic normalisation of class (4, 3), then the maps N 1212 , N 212 and N 2121 coincide on A 3 . One of the major results of [START_REF] Dehornoy | Quadratic normalization in monoids[END_REF] is the converse: every idempotent map satisfying such condition arises from a quadratic normalisation of class (4, 3), in the following sense. Proposition 3.3.3.7 ([16,Proposition 4.7]). Let A be a set, and let F be a map from A 2 to itself. If F is idempotent, and if the maps F 1212 , F 212 and F 2121 coincide on A 3 , then there is a quadratic normalisation (A, N ) of class (4, 3) such that the map N is identically equal to the map F . Thus, quadratic normalisations of class (4, 3) are fully axiomatised. (1) If (S, N ) is a quadratic normalisation for a monoid M , then a quadratic, reduced, normalising and confluent rewriting system (S, R) presenting M , is obtained by defining R as the set of rewriting rules of the form

s|t → N (s|t)
for all s and t in S such that s|t is not N -normal.

(2) Conversely, if (S, R) is a quadratic, reduced, normalising and confluent rewriting system presenting a monoid M , then (S, N ) is a quadratic normalisation for M , with

N (v) = v
for every S-word v.

(3) These two correspondences are inverse to each other. Proposition 3.3.4.1(1) can be adapted to a case when there is an N -neutral element. In fact, an N -neutral element does not affect termination of the associated rewriting system. Proposition 3.3.4.2 ([16, Proposition 3.9]).

(1) If (S e , N ) is a quadratic normalisation mod e for a monoid M , then a reduced, normalising and confluent rewriting system (S, R) presenting M , is obtained by defining R as the set of rewriting rules of the form s|t → π e N (s|t)

for all s and t in S such that s|t is not N -normal.

(2) If the rewriting system in Proposition 3.3.4.1(1) terminates, then so does the one in (1).

The rewriting system associated with a quadratic normalisation in Proposition 3.3.4.1 need not be terminating (see [START_REF] Dehornoy | Quadratic normalization in monoids[END_REF]Proposition 5.7]). However, it is terminating for quadratic normalisations of class (4, 3). 

A correspondence between factorability structures and quadratic normalisations in monoids

In this section, a correspondence between factorability structures and quadratic normalisations is established. Subsection 3.4.1 gives a characterisation of factorable monoids in terms of quadratic normalisations. Subsection 3.4.2 shows that, although a quadratic normalisation corresponding to a factorable monoid is not of class (4, 3) in general, it is so if a defining condition of local factorability structure is strengthened in a suitable way. Finally, this strengthened definition is shown to imply the additional assumption introduced in [START_REF] Heß | Factorability, string rewriting and discrete Morse theory[END_REF] (and recalled in Theorem 3.2.4.3) in order to reach termination of the associated rewriting system.

3.4.1. Characterisation of factorable monoids. In this subsection, a necessary and sufficient condition is given, in terms of quadratic normalisations, for a monoid to be factorable. This is achieved through a syntactic correspondence between a local factorability structure and the restriction of a quadratic normalisation map to length-two words. The property (4) of Definition 3.2.2.4 (of local factorability structure) is going to be essential in deriving main result of the present chapter so, for convenience, we are going to express it compactly using the domino rule. The rest of this subsection presents a (quite straightforward) proof, relying on the relation between factorability structure and local factorability structure, as stated in Theorem 3.2.2.6. First we verify that a factorability structure yields a quadratic normalisation, rather canonically. Assume that (M, S, η) is a factorable monoid. Since N ϕ is not length-preserving in general, it does not make a suitable candidate for a normalisation map in the sense of Subsection 3.3.1. To repair this, let us introduce the following notation. Notation 3.4.1.3. Let (M, S, η) be a factorable monoid. Denote by N ϕ the pointwise length-preserving extended form of N ϕ , defined as follows: Proof. Let us check that S e , N ϕ has, mutatis mutandis, the three properties of Definition 3.3.1.1 (of normalisation). Properties (1) and ( 2) are satisfied by construction. Indeed, N ϕ is length-preserving and N ϕ (s) = s for every s in S e , by definition. Lemma 3.2.1.9 implies the property (3), namely

v → N ϕ (v) |1 q , with q = |v| -|N ϕ (v)| .
N ϕ (u|v|w) = N ϕ u|N ϕ (v) |w .
We verify that the obtained normalisation S e , N ϕ is quadratic. The property [START_REF] Bödigheimer | Factorable groups and their homology, Cohomology of finite groups: interactions and applications[END_REF] We say that S e , N ϕ is the quadratic normalisation corresponding to the factorability structure η.

Remark 3.4.1.5. A note on formality is in order before we continue. As announced by Remark 3.1.0.1, we have tried to respect the two original conventions: of taking a generating set S e to be a subset of a factorable monoid; and of distinguishing S e from its image under an evaluation map arising from a normalisation. Now, however, that we consider those quadratic normalisations (S e , N ) which correspond to a factorability structure, we interchangeably write e and 1 for an Nneutral S e -letter, depending on whether we take the viewpoint of normalisation or factorability.

Remark 3.4.1.6. Note that, by construction, the restriction N ϕ of N ϕ to length-two words is identically equal to the local factorability structure of (M, S, η). This fact will be often used implicitly in the rest of the present chapter.

Having obtained a quadratic normalisation, we want to determine its class. Lemma 3.4.1.7. If (M, S, η) is a factorable monoid, then the quadratic normalisation corresponding to η is of class [START_REF] Brieskorn | Artin-Gruppen und Coxeter-Gruppen[END_REF][START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF].

Proof. Denote by ϕ the local factorability structure corresponding to η in the sense of Theorem 3.2.2.6. If (r, s, t) is a length-three S e -word, then Lemma 3.2.2.5 says that the word N ϕ (r, s, t) equals the word ϕ 2121 (r, s, t). We conclude that quadratic normalisation S e , N ϕ is of right-class 4. Then Lemma 3.3.2.7 grants the left-class 5.

The following example demonstrates that the minimal right-class of a quadratic normalisation corresponding to a factorability structure is not smaller than 4, in general.

Example 3.4. 1.8 ([34,Example 2.1.13]). Consider the monoid (Z, +) with respect to the generating set {-1, +1}. The factorisation map is defined by g → (sgn (g) , g -sgn (g)), where sgn : Z → {-1, 0, +1} denotes the sign function. One can check that this is a factorable monoid. 2 Note that ϕ 212 (1, -1, -1) equals (0, -1, 0), whereas ϕ 2121 (1, -1, -1) equals (-1, 0, 0). Therefore, the minimal rightclass of the corresponding quadratic normalisation is at least 4; then it is exactly 4, by Lemma 3.4.1.7.

The next example (for which the reader is referred to [START_REF] Heß | Factorability, string rewriting and discrete Morse theory[END_REF]Proposition .7]) shows that the minimal left-class of a quadratic normalisation corresponding to a factorability structure is not smaller than 5 in general. 

(c 1 , b 1 , a 1 ) ϕ1 → (c 1 , b 1 , a 1 ) ϕ2 → (c 1 , b 2 , a 2 ) ϕ1 → (c 2 , b 3 , a 2 ) ϕ2 → (c 2 , e 2 , 1) , whereas ϕ 12121 (c 1 , b 2 , a 2 ) = ϕ 1 (c 2 , e 2 , 1) = (g 2 , f 2 , 1) .
Hence the minimal left-class of the corresponding quadratic normalisation is at least 5.

The above computation also gives

ϕ 212 (c 1 , b 1 , a 1 ) = (c 2 , e 2 , 1) , whereas ϕ 2121 (c 1 , b 1 , a 1 ) = ϕ 1 (c 2 , e 2 , 1) = (g 2 , f 2 , 1) .
Thus, the minimal right-class is at least 4, as expected according to Lemma 3.3.2.7.

The previous two examples witness that the estimate of class in Lemma 3.4.1.7 is as good as one can hope for. On the other hand, observe that not every quadratic normalisation of class [START_REF] Brieskorn | Artin-Gruppen und Coxeter-Gruppen[END_REF][START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF] is corresponding to a factorability structure, as demonstrated by the following example (adapted from [START_REF] Dehornoy | Quadratic normalization in monoids[END_REF]Example 3.15]). .

Denote by (A, N ) the quadratic normalisation associated with (A, R) by Proposition 3.3.4.1. Let us determine the minimal class of (A, N ). If a length-three word does not begin and end with the letter a, then it is either N -normal or it becomes N -normal in a single step. On the other hand, normalising a|b 1 |a takes four steps starting from the right:

a|b 1 |a N 1 → a|b 1 |a N 2 → a|b 2 |a N 1 → a|b 3 |a N2 → a|b 4 |a N1 → a|b 5 |a.
Thus, the minimal class of (A, N ) is [START_REF] Brieskorn | Artin-Gruppen und Coxeter-Gruppen[END_REF][START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF].

However, the normalisation (A, N ) is not corresponding to any factorability structure. To see this, observe that A natural question to ask is: among quadratic normalisations of class [START_REF] Brieskorn | Artin-Gruppen und Coxeter-Gruppen[END_REF][START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF], what distinguishes those which do correspond to a factorability structure? Example 3.4.1.10 suggests a candidate (by what it is lacking): simply impose the weak domino rule upon quadratic normalisation of class [START_REF] Brieskorn | Artin-Gruppen und Coxeter-Gruppen[END_REF][START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF]. Before testing sufficiency of these two properties combined, let us notice that they are not independent from each other. Let us point out precisely which defining properties of quadratic normalisation of class (4, 3) mod 1 for M do not necessarily arise from a factorability structure on M . To put it another way, we are looking for a (not too restrictive) property that would complement a factorability structure to a quadratic normalisation of class [START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF][START_REF] Bödigheimer | Factorable groups and their homology, Cohomology of finite groups: interactions and applications[END_REF] To obtain the class [START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF][START_REF] Bödigheimer | Factorable groups and their homology, Cohomology of finite groups: interactions and applications[END_REF], what remains to be shown is that the equality (3.4.3) holds for all (r, s, t) in (S e )

3 \ S 3 . If t equals 1, then ϕ 1 (r, s, t) equals ϕ (r, s) |1, which is everywhere stable. If s equals 1, then ϕ 21 (r, s, t) equals ϕ (r, t) |1, which is everywhere stable. If r equals 1, then ϕ 121 (r, s, t) equals ϕ 212 (r, s, t) which equals ϕ (s, t) |1, which is, again, everywhere stable.

We have shown that a quadratic normalisation of class (4, 3) yields a factorability structure (Corollary 3.4.2.1), but not vice versa (Examples 3.4.1.8 and 3.4.1.9, or Theorem 3.4.1.2). However, a factorability structure does yield a quadratic normalisation of class (4, 3) under a stronger condition on local factorability (Proposition 3.4.2.3). Therefore, under the same condition, the rewriting system associated with a factorable monoid is terminating, by Proposition 3.3.4.3 and Corollary 3.4.1.13 [START_REF] Bödigheimer | Factorable groups and their homology, Cohomology of finite groups: interactions and applications[END_REF].

From another point of view, recall that Theorem 3.2.4.3 ensures termination of the rewriting system associated with a factorable monoid, under an additional assumption on the factorisation map. It is then natural to ask what is the relation between the additional condition of Proposition 3.4.2.3 and the additional assumption of Theorem 3.2.4.3, which are both known to ensure termination of the associated rewriting system.

In the rest of the present subsection, we investigate the relation between these two optional properties of a factorable monoid (M, S, η): for each (r, s, t) in S 3 such we obtain (sf )

sf by Proposition 3.3.5.1 and Remark 3.3.5.2 (which deem this normal form S-greedy).

Since M is a left-cancellative monoid having no nontrivial invertible element, we conclude that (sf ) = (sf ) . Then sf = sf • f follows from the left cancellation property.

We want to find out whether the condition (3.4.4) is as strong as the assumption (3.4.5) in general (i.e. without all the additional requirements of the previous lemma) or is the latter strictly stronger than the former. Let us start by considering length-two words.

Lemma 3.4.2.9. Let (M, S, η) be a factorable monoid. If the condition (3.4.4) is satisfied for each (r, s, t) in S 3 such that ϕ 212 (r, s, t) contains 1, then the assumption (3.4.5) is valid for all s in S and length-two f in M .

Proof. The idea is to equate two different expressions of the normal form of sf , in order to obtain (3.4.5). Fix arbitrary s in S and a length-two element f of M .

First compute the η-normal form of sf , by definition:

sf η1 → (sf ) , sf η2 → (sf ) , sf , sf .
Since the length of f equals 2, we know that f lies in S. 

ηµ) 2 → s, f , f (ηµ) 1 → (sf ) , sf , f (ηµ) 2 → (sf ) , sf • f , sf • f . ( 
Comparing the result to nf η (sf ) = (sf ) , sf , sf yields (3.4.5), by Corollary 3.4.1.13 [START_REF] Birman | A new approach to the word problem in the braid groups[END_REF]. Indeed, equating the first components of the obtained normal forms gives (sf ) = (sf ) . Equating the second and the third components gives sf

= sf • f . Case 2. If sf is an element of S, then (3.4.6) s, f , f (ηµ) 2 → s, f , f (ηµ) 1 → (sf ) , 1, f (ηµ) 2 → (sf ) , f , 1 .
Again, equating the first components of the result and nf η (sf ) gives (sf ) = (sf ) . Equating the second and the third components now gives sf = f , but note that, in the present case, this equality is equivalent to sf = sf • f .

Finally, observe that the case sf = 1 cannot occur. Namely, if sf were equal to 1, then applying (ηµ) 1 after (3.4.6) would yield f , 1, 1 since f is in S, and that would contradict the condition (3.4.4).

Lemma 3.4.2.9 suggests itself as the base case for an induction, which we are going to achieve in Proposition 3.4.2.11. First we introduce some notation, in order to simplify exposition. We need to show that the equality sf = sf • f also holds for all s in S and f in M . We prove this using induction on the length of f . Let P (n) be the statement: the equality (sf ) = (sf ) holds for all s in S and f of length n in M . The statement P (2) (resp. P (1)) holds by Lemma 3.4.2.9 (resp. trivially).

Let m be an integer greater than 2, and suppose that the statement P (m -1) holds. Fix an arbitrary s in S and f of length m in M . Since the length of f equals m -1, the equality sf = sf • f holds by inductive hypothesis. 3 Denote the normal form of f by (r 1 , r 2 , . . . , r m ). Multiplying the equality sf = sf • f by r m on the right yields

(3.4.7) sf • r m = sf • f .
Hence it suffices to show that the equality sf • r m = sf holds. Let us compute the normal form of sf and sf using Lemma 3.3.3.5. Denoting t i |s i := N (s i-1 |r i ) for i in {2, . . . , m -1}, we obtain

nf sf = t 2 |t 3 | • • • |t m-1 |s m-1 and nf sf = t 2 |t 3 | • • • |t m |s m , as displayed by the diagram t 2 s t 3 s 2 s 3 t m-1 s m-2 t m s m-1 s m r 2 r 3 r m-1 r m
with arcs having the same meaning as in the diagram (3.3.3). Therefore, sf =

t 2 t 3 • • • t m-1 s m-1 .
Multiplying by r m on the right yields

sf • r m = t 2 t 3 • • • t m-1 s m-1 r m = t 2 t 3 • • • t m-1 t m = sf ,
which, together with the equality (3.4.7), implies P (m).

The results of the present subsection enable the following characterisation.

Proposition 3.4.2.12. Let (M, S, η) be a factorable monoid. Then the following properties are equivalent. 3 Statement P (1) could not serve as the base case because f in the inductive hypothesis would not be defined, which is why we needed Lemma 3.4.2.9.

(1) For all s in S and f in M , the equalities

(sf ) = (sf ) , sf = sf • f hold.
(2) For every (f, g, h) in M 3 , the equality 2) and (3) of Proposition 3.4.2.12.

(ηµ) 2121 (f, g, h) = (ηµ) 212 (f, g, h) holds. ( 3 
Perspectives. A convergent rewriting system for a monoid gives rise to a collapsing scheme on the bar complex of the monoid (see [START_REF] Brown | The geometry of rewriting systems: a proof of the Anick-Groves-Squier theorem[END_REF] for demonstration, and [START_REF] Daniel | String rewriting and homology of monoids[END_REF] for elaboration). It thus provides a smaller complex of the same homotopy type and, hence, computes the homology of the monoid. Somewhat surprising is the result [35, Proposition 9.5] which constructs a collapsing scheme on the bar complex of a factorable monoid. Although this construction is similar to the one given in [START_REF] Brown | The geometry of rewriting systems: a proof of the Anick-Groves-Squier theorem[END_REF] and [START_REF] Daniel | String rewriting and homology of monoids[END_REF] for the bar complex of a monoid admitting a convergent rewriting system, it technically circumvents a requirement for the rewriting system to be terminating. As a result, there is a quite small complex computing the homology of factorable monoids.

A tentative goal in the current direction is to develop effective methods for computing homology for certain classes of monoids. We would start by using the established correspondence between factorability structure and quadratic normalisation to adapt the results concerning resolutions arising from the former to the framework of the latter. Then we would try to generalise [START_REF] Heß | Factorability, string rewriting and discrete Morse theory[END_REF]Proposition 9.5] to monoids admitting a quadratic normalisation of class [START_REF] Brieskorn | Artin-Gruppen und Coxeter-Gruppen[END_REF][START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF].

Let us sketch another tentative goal. In [START_REF] Dehornoy | Quadratic normalization in monoids[END_REF]Example 5.8], it was demonstrated that the Chinese monoid C X , defined in [START_REF] Cassaigne | The Chinese monoid, Interant[END_REF], admits a quadratic normalisation of class (4, 4) if the generating set X has three elements. Guiraud also proved, in an unpublished note, that C X admits a quadratic normalisation of class [START_REF] Brieskorn | Artin-Gruppen und Coxeter-Gruppen[END_REF][START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF] .

Section 4.1 recalls plactic monoids, focusing on their column coherent presentation. Section 4.2 proposes a construction of coherent presentations for a class of monoids admitting a quadratic normalisation of class (4, 3). Finally, Section 4.3 shows that this construction specialises to that for plactic monoids, given in [START_REF] Hage | Knuth's coherent presentations of plactic monoids of type A[END_REF].

The column coherent presentation of plactic monoids

Subsection 4.1.1 briefly recollects the notion of plactic monoid (for elaboration, the reader is referred to [START_REF] Lascoux | The plactic monoid[END_REF]). In Subsection 4.1.2, we recall the notion of column coherent presentation of a plactic monoid, introduced in [START_REF] Hage | Knuth's coherent presentations of plactic monoids of type A[END_REF] as an extension of the column presentation introduced in [START_REF] Cain | Finite Gröbner-Shirshov bases for Plactic algebras and biautomatic structures for Plactic monoids[END_REF].

For simplicity, juxtaposition is used to denote the product in a free monoid in the present section.

4.1.1. Plactic monoids and Young tableaux. Throughout this section, we assume that (A, ≤) is a totally ordered finite set, also called alphabet, unless stated otherwise. The plactic monoid (of type A) over the alphabet A, here denoted by P A , is the monoid generated by A and subject to the relations

(4.1.1) {acb = cab | a ≤ b < c} ∪ {bca = bac | a < b ≤ c} , called elementary Knuth transformations. An element (a 1 , . . . , a m ) of A * is called a row if it is nondecreasing, that is if a 1 ≤ • • • ≤ a m .
Given two rows u = (a 1 , . . . , a m ) and v = (b 1 , . . . , b n ), we say that u dominates v, written u v, if m ≤ n and if, for every k in {1, . . . , m}, the relation a k > b k holds. Relying on the context to provide distinction, here we use the same symbol ≤ to denote two different total orders: the former occurrence represents the usual total order on N, whereas the latter denotes the total order on A.

Every word u in A * can be decomposed into rows of maximal length, say u = u 1 u 2 • • • u q . A word u is called a Young tableau, or simply a tableau 1 , over A if every such factor, except for the last one, dominates the next one, i.e. if u 1 u 2 • • • u q . We write Y T A for the set of tableaux on A. A tableau u 1 u 2 • • • u q can be graphically represented in a planar form, by arranging rows left-aligned and ordered by domination, with u 1 being the top row. 2 Let us illustrate all these notions by means of an example.

Example 4.1.1.1. Let A = {1, 2, . . . , 100} with the usual order. The word (2, 3, 1) is not a tableau because the first maximal-length row (2, 3) is longer than the second one (1), so (2, 3) (1). The word (1, 3, 1, 2, 3) is not a tableau because the first element of the first maximal-length row (1, 3) is not (strictly) greater than the first element of the second maximal row (1, 2, 3), so (1, 3) (1, 2, 3). The word (3, 2, 3, 5, 7, 1, 1, 2, 3, 5, 11, 13) is a tableau. Its planar representation is An element (a m , . . . , a 1 ) of A * is called a column if it is (strictly) decreasing, that is if a m > • • • > a 1 . Note that the indices are also written in a decreasing order. A partial order on the set of columns in A * is defined as follows. Given two columns u = (a m , . . . , a 1 ) and v = (b n , . . . , b 1 ), we write u v, if m ≥ n and if, for every k in {1, . . . , n}, the relation a k ≤ b k holds. Note that, in the planar representation of a tableau, this definition agrees with the usual meaning of a column (e.g. in a matrix or a table).

Tableaux can be read row by row or column by column. The row (resp. column) reading of a tableau t is the product in A * of all the rows (resp. columns) of t, from top to bottom (resp. from left to right). For example, the column reading of the tableau in Example 4.1.1.1 is (3, 2, 1, 3, 1, 5, 2, 7, 3, 5, 11, 13). The row and column readings provide injective maps from the set of tableaux on A to the free monoid A * .

There is a product P : Y T A × A → A * , computed as follows. Let u = u 1 • • • u q be a tableau in A * , and b a letter in A. Then the tableau that represents the 1 As we do not consider any old tableau in this thesis. 2 There is also the opposite convention, with u 1 being the bottom row (see e.g. [START_REF] Fulton | London Mathematical Society Student Texts, With applications to representation theory and geometry[END_REF]).

product ub equals

P (ub) = u 1 • • • u q b if u q b is a row P (u 1 • • • u q-1 b ) u q otherwise
where b denotes the leftmost letter of u q such that b > b holds in A, and u q denotes the row obtained from u q by replacing b with b.

This product is iteratively extended to a product P : Y T A × A * → A * . Namely, for a tableau u and a word v = (b 1 , . . . , b n ), the product P (uv) is calculated as is not a row, we look for the leftmost letter of (1, 1, 2, 3, 5, 11, 13) that is greater than 8. Here, it is 11. So, we replace 11 with 8 in the last row of u to get the last row of P (ub): (1, 1, 2, 3, 5, 8, 13). By the above recipe, we proceed to compute the tableau which represents the product of the tableau .

In particular, the product (4.1.2) allows one to assign a tableau to a word u in A * by computing P (eu) with e denoting the empty tableau. The resulting tableau is denoted by P (u).

Theorem 4. 1.1.3 ([36,Theorem 6]). Let A be a totally ordered finite set. Then, for u and v in A * , the tableaux P (u) and P (v) are equal if, and only if, u and v represent the same element of the plactic monoid P A . Furthermore, the product in Y T A that is defined as (r, s) → P (r, any word represented by s) agrees with the product in P A .

In particular, the evaluation map A * → P A has a section whose image consists of all tableaux on A. Put another way, tableaux provide a normal form for P A . So, one can obtain the normal form of any A-word u by computing P (u). Note that the tableau representing the column reading of a tableau u is u itself ([42, Problem 5.2.4]).

We recall an important combinatorial property of tableaux, to be used in Section 4.3. A subsequence of an A-word u is obtained by removing some letters from u, without changing the order of the remaining letters. 

]).

Let A be a totally ordered finite set, a let u be an A-word. Then the number of columns in P (u) equals the maximal length of a nondecreasing subsequence of u; and the number of rows in P (u) equals the maximal length of a decreasing subsequence of u.

Observe that a subsequence of a word u is not necessarily a factor of u since a factor of u consists of neighbouring letters of u. Consequently, a nondecreasing subsequence having the maximal length is not to be confused with a row of maximal length. Theorem 4.1.1.4 does say, however, that the lengths in question are equal.

4.1.2. The column coherent presentation. The presentation (4.1.1) of a plactic monoid, equipped with the so-called degree lexicographic order, can be completed to a finite convergent presentation if the cardinality of the generating set equals 3, but not so if the cardinality is greater than 3, as shown in [START_REF] Kubat | Gröbner-Shirshov bases for plactic algebras[END_REF]. However, having extended the generating set by adjoining superfluous generators standing for columns, one does obtain a finite convergent presentation, as demonstrated in [START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF] and [START_REF] Cain | Finite Gröbner-Shirshov bases for Plactic algebras and biautomatic structures for Plactic monoids[END_REF].

Let us recollect the column presentation introduced in [START_REF] Cain | Finite Gröbner-Shirshov bases for Plactic algebras and biautomatic structures for Plactic monoids[END_REF]. A key lemma for constructing the column presentation is the following. Lemma 4.1.2.1 ([7, Lemma 3.1]). Let A be a totally ordered finite set, and let u and v be columns in A * such that u v, i.e. uv is not a tableau. Then the tableau P (uv) has at most two columns. If, additionally, P (uv) has exactly two columns, then the left column of P (uv) is longer than u.

Introducing a formal symbol u for a column u in A * , denote

Col 1 (A) = { u | u is a column in A * }
and consider the 2-polygraph Col 2 (A) consisting of a single generating 0-cell, the set Col 1 (A) for the set of generating 1-cells, and the generating 2-cells constructed as follows. For every pair of generating 1-cells u and v such that u v is not a tableau, there is one generating 2-cell u v ⇒ P (uv) whose form depends on the number of columns in P (uv): α u,v : u v ⇒ x if P (uv) contains only one column x; ν u,v : u v ⇒ x y if P (uv) contains two columns, with x and y being the left and right column, respectively. 3 All possible cases are, thus, taken into account since, by Lemma 4.1.2.1, the tableau P (uv) can have at most two columns.

It is shown in [7, Section 3] that Col 2 (A) is a finite convergent presentation of P A , called the column presentation. Notation 4.1.2.2. Following Notation 3.2.1.3, we often denote by α i (resp. ν i ) a 2-cell consisting of the generating 2-cell α (resp. ν) applied to letters at positions i and i + 1, leaving other letters unchanged. This is not to be confused with the notation α s,t (resp. ν s,t ) where indices denote the letters to which the corresponding generating 2-cell is applied.

In [START_REF] Hage | Knuth's coherent presentations of plactic monoids of type A[END_REF], the homotopical completion-reduction procedure was performed on the 2-polygraph 4 Col 2 (A). The resulting column coherent presentation of the plactic monoid P A is the (3, 1)-polygraph Col 3 (A) that extends the 2-polygraph Col 2 (A) with the following families of generating 3-cells:

5 α A u,v,w α 1 α 2 α α 2 ν ν 1 α 2 B u,v,w ν C u,v,w ν α 1 ν 2 ν 1 α 2 C (1) u,v,w ν α 1 ν 2 α 1 α 1 ν 2 C (2) u,v,w ν 1 α 2 ν 2 D u,v,w ν 1 ν 1 ν 2 ν 1 ν 2 ν 2 D (1) u,v,w ν 1 ν 2 ν 1 ν 2 ν 2 D (2) u,v,w ν 1 ν 1 ν 2 ν 1 D (3) u,v,w α 2 ν 1 ν 2 ν 1 α 2 α 2 ν ν 1 ν 2 ν 1 D (4) u,v,w α 2 
.

For simplicity, 1-cells are left out of the diagrams. The sources of all the critical branchings involved are length-three Col 1 (A)-words having no normal length-two factor (i.e. of which no length-two factor forms a tableau, by Proposition 4.1.1.3). Detailed conditions can be found in [33, 3.2.1].

Coherent presentations of monoids admitting a quadratic normalisation of class (4, 3)

This section presents the final main result of this thesis: a construction of coherent presentations arising from quadratic normalisation of class (4, 3). Section 4.2.1 considers the case of graded monoids. Section 4.2.2 considers the general case, i.e. when there is a quadratic normalisation of class (4, 3) mod e for M , with e being an N -neutral element of S. 4 Denoted by Col 2 (n) in [START_REF] Hage | Knuth's coherent presentations of plactic monoids of type A[END_REF], where the understood alphabet is A = {1, 2, . . . , n}. 5 In [START_REF] Hage | Knuth's coherent presentations of plactic monoids of type A[END_REF], the fourth and the fifth generating It would be convenient to perform the homotopical reduction procedure on the (3, 1)-polygraph Qua 3 (S). Let us try to find redundant generating 3-cells by using the particular technique, described in Subsection 2.2.5, which is successfully applied to Garside's coherent presentations in Subsection 2.5.4. Note that there is no critical triple branching starting with a word of length less than 4. .

Every heptagonal 3-cell is the aforementioned generating 3-cell G, whereas rectangular 3-cells are identities. For simplicity, we display neither 1-cells nor generating 3-cells. Observe that every generating 3-cell in the 3-sphere Φ occurs in a nonempty context. On the other hand, in order for this generating triple confluence to actually eliminate a generating 3-cell, that generating 3-cell ought to occur (only once and) in an empty context. Consequently, this 3-sphere cannot eliminate any generating 3-cell, using the technique described in Subsection 2.2.5. Furthermore, since all the generating 3-cells affect only length-three factors and since all the generating 2-cells preserve length (in other words, since the monoid is graded), a generating triple confluence starting with a word of length 4 or longer cannot eliminate a generating 3-cell because there is always a nonempty context. Similarly, no generating 2-cell can be eliminated in this way. 4.2.2. The quadratic coherent presentation: the general case. Now, assume that (S, N ) is a quadratic normalisation of class (4, 3) mod e for a monoid M . Then Propositions 3.3.4.2(1) and 3.3.4.3 on page 77 provide a quadratic reduced convergent presentation of M . We denote this 2-polygraph by Qua 2 (S). Note that there are two families of generating 2-cells in Qua 2 (S). For s and t in S such that s|t is not N -normal, there is at most one of the following two generating 2-cells: the triangular one a s,t : s|t ⇒ st = (π e • N ) (s, t) if st is an element of S; and the quadratic one ν s,t : s|t ⇒ N (s|t) if st is not an element of S.

Reminding the reader of Notation 4.1.2.2, let us perform the homotopical completion procedure on the 2-polygraph Qua 2 (S). While some of the branchings may look similar to those in Proposition 2.5.3.1 on page 46, their completions greatly differ because, unlike the generating 2-cell β in Proposition 2.5.3.1, the generating 2-cell ν here necessarily normalises its lengthtwo argument. For instance, here in a more general context, the second main case for the critical branchings in the proof of Proposition 2.5.3.1 does not occur at all (hence, there are no analogues of the generating 3-cells H and I here) because there is at most one generating 2-cell ν s,t for a each pair s and t. Besides, a care must be taken here not to rely on any specific properties of Garside families.

Proof. By Propositions 3.3.4.2(1) and 3.3.4.3, the 2-polygraph Qua 2 (S) is convergent, so we can construct a Squier completion.

Let us consider all possible critical branchings. The source of a critical branching has to be a length-three word because a length-two word is the source of at most one generating 2-cell. The elements of S \ {1} that constitute the source determine the arrangement of the generating 2-cells α and ν occurring in (the completion of) the branching. Note that the sources of generating 2-cells forming such a branching have to overlap on exactly one element of S \ {1}. The following restrictions apply.

• The number of the generating 2-cells α in the upper branch must equal the number of the generating 2-cells α in the lower branch. The reason for this is the fact that the generating 2-cells α do not preserve length of their arguments, while the generating 2-cells ν do. • Each branch can have at most two generating 2-cells α. The reason for this is that, after two generating 2-cells α, a length-three word becomes a length-one word, i.e. an element of S and thus normal by the property (2) of Definition 3.3.1.1 (of normalisation).

• If two generating 2-cells α occur in a branch (upper or lower), then they have to occur in two consecutive rewriting steps, i.e. there can be no generating 2-cell ν between them. The reason for this is that the generating 2-cell ν after the generating 2-cell α would result in a normal form.

We start by considering critical branchings consisting only of the generating 2-cells α. There is only one such critical branching for each triple (r, s, t) of elements of S \ {1} such that rs and st lie in S: If the rst also lies in S, then the homotopical completion procedure adjoins the generating 3-cell A r,s,t . Otherwise, the generating 3-cell B r,s,t is adjoined.

Next we consider critical branchings containing the generating 2-cell ν. Since the source of a branching has length 3, one of the 2-cells forming a branching changes the leftmost two generating 1-cells of the source and the other one changes the rightmost two. There are three distinct forms of such branchings. In order to facilitate discussing the cases, we first display a 'generic' 2-sphere, that is to say relying only on the defining properties of the class (4, 3) without specifying the forms of the generating 2-cells involved: Here, a 2-cell denoted by i in {1, 2} consists of a yet unspecified generating 2-cell applied to elements at positions i and i + 1, leaving an element on the possible remaining position unchanged (recall Notation 4.1.2.2). Some of the generic letters displayed here are obviously redundant, others may become redundant in some specific cases. For instance, the equalities t = t 1 , r = r 2 always hold; and, if st lies in S, then it is interpreted as st = r 1 , thus making the letter s 1 (and, hence, all the odd-indexed letters s 2k+1 ) the empty word. is defined under the conjunction: rs lies in S, and st does not lie in S. This condition splits into three mutually exclusive cases yielding three families of generating 3-cells as displayed in the following table: conclude that no factor of u v w can be the source of the generating 2-cell ν. This discards from Qua 3 (S) the critical branchings that correspond to the generating 3-cells A , E , E , F , G . Since the column presentation is of class [START_REF] Bödigheimer | Factorable groups and their homology, Cohomology of finite groups: interactions and applications[END_REF][START_REF] Bödigheimer | Factorable groups and their homology, Cohomology of finite groups: interactions and applications[END_REF], by [4, Subsections 4.2-4.4], the fourth step in the upper branch is superfluous (if it exists). This immediately discards the critical branchings which correspond to the generating 3-cells E and G because their fourth step in the upper branch contains the generating 2-cell α. Removing it would make the branching unattainable since α reduces the length of its argument.

r 1 t 1 ∈ S r
Let u, v and w be columns in A * , such that the tableau P (vw) consists of a single column and that P (uv) contains two columns, say P (uv) = xy. Then, by [START_REF] Hage | Knuth's coherent presentations of plactic monoids of type A[END_REF]Lemma 3], the tableau P (yw) cannot contain two columns. Consequently, there is no Col 1 (A)-word that satisfies the conditions for the branching that corresponds to the generating 3-cell E in Qua 3 (S).

Let u, v and w be columns in A * , such that the tableaux P (vw) and P (uv) contain two columns each and, say P (vw) = xy. Then, by [START_REF] Hage | Knuth's coherent presentations of plactic monoids of type A[END_REF]Lemma 5], the tableau P (ux) contains two columns. Consequently, there is no Col 1 (A)-word that satisfies the conditions for the branchings that correspond to the generating 3-cells F , G and G in Qua 3 (S).

The critical branching corresponding to the generating 3-cell G cannot be realised under current assumptions. Namely, a completion of a configuration of the form ν 2 ν 1 ν 2 cannot be continued with the rewriting step α 1 in the upper branch. We refer the reader to [START_REF] Hage | Knuth's coherent presentations of plactic monoids of type A[END_REF]Lemma 5] for discussion.

The remaining critical branchings of Qua 3 (S) are A, C, D, E, F and G. To conclude the proof, we need to show that these branchings specialise to all the critical branchings of the (3, 1)-polygraph Col 3 (A). One can readily observe that the generating 3-cells A, D, E, F and G of Qua 3 (S) respectively specialise to the generating 3-cells A, C, B, D (4) and D of Col 3 (A).

It is a straightforward verification to establish that the branching that corresponds to the generating 3-cell C of Qua 3 (S) amounts to the branching which corresponds to the generating 3-cell C (1) of Col 3 (A). Namely, the third rewriting step in the lower branch of C becomes superfluous as the normal form is reached after only two rewriting steps in the lower branch. For elaboration on the conditions, see Case 1 in the proof of [START_REF] Hage | Knuth's coherent presentations of plactic monoids of type A[END_REF]Lemma 4].

Similarly, the branching D of Qua 3 (S) also specialises to C (1) of Col 3 (A). This time, the second rewriting step in the upper branch of D becomes superfluous as the normal form is reached after the first step in the upper branch. For details, see Case 2 in the proof of [START_REF] Hage | Knuth's coherent presentations of plactic monoids of type A[END_REF]Lemma 4].

In a similar fashion, the branching F of Qua 3 (S) also specialises to D (3) of Col 3 (A) by dropping the third rewriting step in the upper branch if the normal form is reached after two rewriting steps. See Case 4 in the proof of [START_REF] Hage | Knuth's coherent presentations of plactic monoids of type A[END_REF]Lemma 5] for conditions.

Similarly, the branching G of Qua 3 (S) also specialises to D (1) of Col 3 (A) by dropping the third rewriting step in the upper branch (recall that the fourth rewriting step is already dropped). Details on the conditions can be found in Case 2 in the proof of [START_REF] Hage | Knuth's coherent presentations of plactic monoids of type A[END_REF]Lemma 5].

Finally, the branching G of Qua 3 (S) also specialises to D (2) of Col 3 (A) by dropping the third rewriting step in the lower branch. See Case 3 in the proof of [START_REF] Hage | Knuth's coherent presentations of plactic monoids of type A[END_REF]Lemma 5] for details on conditions.

Tentative steps further. The construction of a coherent presentation of a general monoid admitting a quadratic normalisation of class (4, 3) opens two directions for further research: extension and specialisation. Regarding the former, we would like to undertake a fine study of the shapes of higher-dimensional cells arising from quadratic normalisations of class [START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF][START_REF] Bödigheimer | Factorable groups and their homology, Cohomology of finite groups: interactions and applications[END_REF]. This particular tentative step is similar to the first one stated at the end of Chapter 2, but it is more general (and also 'more syntactical') as it considers a larger class of monoids.

As for specialisation, we have already shown that the (3, 1)-polygraph Qua 3 (S) specialises to the known column coherent presentation Col 3 (A) of plactic monoids of type A, constructed by Hage and Malbos [START_REF] Hage | Knuth's coherent presentations of plactic monoids of type A[END_REF]. Specialising the coherent presentation Qua 3 (S) to coherent presentations of the plactic monoids of type C (see e.g. [START_REF] Meha | Coherence for plactic monoids via rewriting theory and crystal structures[END_REF]) seems to be a feasible goal, too (see e.g. [START_REF] Cain | Crystal monoids & crystal bases: rewriting systems and biautomatic structures for plactic monoids of types An, Bn, Cn, Dn, and G 2[END_REF] for definition of types of plactic monoids).

We would also try specialising Qua 3 (S) to coherent presentations constructed in Chapter 2. An obvious first attempt would be specialisation of the (3, 1)polygraph Qua 3 (S) to the (3, 1)-polygraph Gar 3 (S). However, an obstacle is anticipated as follows. Although the generating 2-cells α of the (3, 1)-polygraph Qua 3 (S) do coincide with the generating 2-cells α of the (3, 1)-polygraph Gar 3 (S), there are no generating 2-cells of the (3, 1)-polygraph Qua 3 (S) that would correspond to the generating 2-cells β of the (3, 1)-polygraph Gar 3 (S), as remarked after the statement of Proposition 4.2.2.1. Fortunately, the generating 2-cells β of the (3, 1)-polygraph Gar 3 (S) are removed by the homotopical reduction procedure in Subsection 2.5.4, anyway. So, specialising Qua 3 (S) to the (3, 1)-polygraph Gar 3 (S), rather than to Gar 3 (S), seems to be the right way to proceed.

Performing the homotopical reduction procedure on Qua 3 (S) would facilitate that task. It is worth a try in its own right, too, as it would greatly simplify further applications.

  terms of factorability structures and a condition ensuring the termination of the associated rewriting system.

.

  Let us illustrate the first two stages by giving a preview of Example 2.2.2.3. Consider the following presentation of the Klein bottle monoid:a, b bab α → a, baa β → aab .There are exactly two critical branchings: {αab, baα} and {αaa, baβ}. Both branchings are confluent. The Squier completion procedure adjoins the generators A and B of the relations among relations. Here are the shapes of A and B:

4 .

 4 Coherent presentations from class[START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF][START_REF] Bödigheimer | Factorable groups and their homology, Cohomology of finite groups: interactions and applications[END_REF] 
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 2142 The standard coherent presentation). Recalling the standard presentation in Example 2.1.1.1, let us extend it with the generating 3
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 22232 Klein bottle monoid). Let us consider the Klein bottle monoid K + , as defined in[START_REF] Dehornoy | Foundations of Garside theory[END_REF] Subsection I.3.2]. It has the following presentation:(2.2.1) a, b | bab = a .The name comes from the fact that K + is the submonoid generated by a and b of the fundamental group of the Klein bottle generated by a and b, subject to the relation bab = a.Let us apply the homotopical completion procedure to the presentation (2.2.1), which consists of the generating 1-cells a and b, and the single generating 2-cell α : bab ⇒ a. Let us adopt the following termination order: comparing the lengths of words, then applying, from left to right, the lexicographic order induced by a < b if words have the same length. For instance, b < aa < ab. The only critical branching is {αab, baα}, with source babab. The homotopical completion procedure adjoins the generating 2-cell β : baa ⇒ aab and the generating 3-cell A, thereby granting convergence and coherence, respectively. The generating 2-cell β causes only one new critical branching, namely {αaa, baβ} with source babaa, which is confluent, hence only the generating 3-cell B is adjoined. Diagrammatically, the generating 3-cells have the shapes as follows: we have thus obtained a convergent coherent presentation of the Klein bottle monoid, having two generating 1-cells, two generating 2-cells, and two generating 3-cells: a, b bab α ⇒ a, baa β ⇒ aab A, B .

Proposition 2 .

 2 2.3.1 ([26, Theorem 2.1.3]). If a (3, 1)-polygraph X is a coherent presentation of a category C , and if there exists a Tietze transformation from X to a (3, 1)-polygraph Y , then Y is a coherent presentation of C .
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 2251 Let us perform the homotopical reduction procedure on the homotopical completion of the Klein bottle monoid, computed in Example 2.2.2.3. We construct a collapsible part Γ = (Γ 2 , Γ 3 , Γ 4 ). There is only one critical triple branching, namely {αabab, baαab, babaα}. It yields the generating triple confluence Φ whose boundary consists of the following two parts (we display the generating 3-cells A and B differently now, to make the generating triple confluence more evident):

Example 2 .

 2 3.3.2. Let Gar 3 (W ) denote the extended presentation of B + (W ) obtained by adjoining to Gar 2 (W ) a generating 3-cell uv|w u|v|w uvw u|vw α uv,w A u,v,w α u,v |w u|α v,w α u,vw for each triple (u, v, w) of elements of W \{1} such that the equalities |uv| = |u|+|v|, |vw| = |v| + |w| and |uvw| = |u| + |v| + |w| hold. By [26, Theorem 3.1.3], the (3, 1)-polygraph Gar 3 (W ) is a homotopical completion-reduction of Gar 2 (W ) so, by Theorem 2.2.4.1, it is a coherent presentation of B + (W ). The (3, 1)-polygraph Gar 3 (W ) is called Garside's coherent presentation of the Artin-Tits monoid B + (W ).
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 34 Garside monoids. Recall that a Garside monoid (see[13, Definition I.2.1]) is a pair (M, ∆) such that the following conditions are satisfied:

  in a single step by replacing u and v respectively with u = u (∂ (u) ∧ v) and the right complement v of ∂ (u) ∧ v in v. Thus we have rewritten u|v to u |v , which is ∆-normal. This step is called local sliding in [27, Subsection 2.2] as (∂ (u) ∧ v) 'slides' from v to u.

Proposition 2 .

 2 3.5.2 ([12, Proposition 2.4]). If (M, ∆) is a Garside monoid, then every g in M admits a unique strict ∆-normal decomposition.

  3 (M ) denote the extended presentation of M obtained by adjoining to Gar 2 (M ) a generating 3-cell uv|w u|v|w uvw u|vw α uv,w A u,v,w α u,v |w u|α v,w α u,vw for each triple (u, v, w) of divisors of ∆, not equal to 1, such that uv, vw and uvw are divisors of ∆. By [26, Theorem 3.3.3], Gar 3 (M ) is a homotopical completionreduction of Gar 2 (M ) so, by Theorem 2.2.4.1, it is a coherent presentation of M .

Proposition 2 .

 2 4.3.4 ([14, Proposition 3.1] or[START_REF] Dehornoy | Foundations of Garside theory[END_REF] Proposition III.1.39]). A subfamily S of a left-cancellative category C is a Garside family if, and only if, the following conjunction holds: SC × ∪ C × generates C and every length-two word over SC × ∪ C × admits an S-normal decomposition.We recall another characterisation of Garside family, which we will invoke in Subsection 2.5.3. More characterisations of Garside families can be found in [14, Subsetion 3.2] or [13, Subsection IV.1.2].

2. 4 . 4 .

 44 Special case of left-cancellative monoids with no nontrivial invertible element. In the case of a left-cancellative monoid M having no nontrivial invertible element, the normality conditions simplify to the following. For a subfamily S of M , an M -word r 1 | • • • |r m is called S-normal if it is S-greedy and if, moreover, all r 1 , . . . , r m lie in S. An S-normal word r 1 | • • • |r m is strict if, additionally, r m = 1. Therefore, under the given restrictions, the existence of an S-normal form implies the existence of a strict one. Furthermore, by[START_REF] Dehornoy | Garside and quadratic normalisation: a survey[END_REF] Lemma 3.5], every element admits at most one strict S-normal decomposition. Proposition 2.4.4.1[START_REF] Dehornoy | Garside and quadratic normalisation: a survey[END_REF] Proposition 3.10]

  4.3) relation. Indeed, being a right divisor of s in S, the element r also lies in S by Proposition 2.4.3.5. Multiplying the equality sr = s by t on the right yields srt = s t = st. Then the left cancellation property of M implies rt = t, which is a (2.4.3) relation. Therefore, the relation s|t = s|r|t = s |t follows from the relations s|r = s and r|t = t.The 2-polygraph Gar 2 (S) is called Garside's presentation of M , with respect to Garside family S. We study it in the next section. Here, let us just observe that it extends Garside's presentation of Artin-Tits monoids, recalled in Subsection 2.3.3.

  w and uvw ∈ S , u v w × ⇐⇒ u v w and uvw / ∈ S . Let us formally redefine symbols Gar 2 and Gar 3 in a more general context, as follows. The 2-polygraph Gar 2 (S) contains: a single generating 0-cell; one generating 1-cell for every element of S \ {1}; one generating 2-cell of the form α u,v : u|v ⇒ uv for each pair (u, v) of elements of S \ {1} such that u v holds. Here, u|v denotes the product in S * , whereas uv denotes the product in M . The (3, 1)-polygraph Gar 3 (S) is consisting of the 2-polygraph Gar 2 (S) and the generating 3-cells of the form uv|w u|v|w uvw u|vw α uv,w

Corollary 2 .

 2 5.1.6 ([26, Theorem 3.1.3]). For every Coxeter group W , the Artin-Tits monoid B + (W ) admits Gar 3 (W ) as a coherent presentation. Proof. Let us restrict the conditions u v and u v w , defined in the beginning of the current subsection, to the case of the Artin-Tits monoid B + (W ), with the Coxeter group W as a Garside family S. Observe that, for u, v in W \ {1}, the condition u v amounts to the condition |uv| = |u|+|v| given in Example 2.3.3.2 (see Matsumoto's lemma, e.g. [13, Corollary IX.1.11]). Accordingly, the condition u v w becomes the conjunction of u v and v w and |uvw| = |u| + |v| + |w|. Recall from Section 2.3 that Artin-Tits monoids are cancellative and noetherian (Example 2.4.2.2), and that they contain no nontrivial invertible element. Note that they also admit right-mcms: in fact, they admit conditional right-lcms ([5, Proposition 4.1]). Consequently, Theorem 2.5.1.4 specialises to [26, Theorem 3.1.3] when a monoid considered is Artin-Tits with Coxeter group as a Garside family. Similarly, one shows that Theorem 2.5.1.4 specialises to [26, Theorem 3.3.3] when a monoid considered is Garside with S being the set of divisors of the Garside element. Corollary 2.5.1.7 ([26, Theorem 3.3.3]). Every Garside monoid M admits Gar 3 (M ) as a coherent presentation.

Gar 3 2 ,

 32 Garside's presentation Gar 2 (S) of M is extended with the generating 2-cells β, which results in a terminating presentation Gar 2 (S). In fact, Gar 2 (S) is a convergent presentation, namely a Knuth-Bendix completion of Gar 2 (S). The proof of confluence of Gar 2 (S) is postponed until Subsection 2.5.3, but looking ahead prompts us to begin Subsection 2.5.2 with a formal definition of the 2-polygraph Gar 2 (S).

  for the constant subsequence of the sequence i 1 |i 2 | • • • taking all the members whose value equals 1. To be specific, denote by c 1 the least d such that i d = 1; and, for all p in N, denote by c p+1 the least d such that the conditions d > c p and i d = 1 hold.

Fw 1 = u|v 2 w 2 uv 1 x 1 |y = uv 2 x 2 |y uv 2

 122 x α uv,wx β u,v,w |x u|α vw,x E u,v,w,x u,v,w,x,y uv|α w,xy β u,v,w |xy u|β vw,x,y β u,v,wx |y uv|α wx,y uv|w|xy uv|wxy u|vw|xy uvwx|y u|vwx|y uv|α w,xy β uv,wx,y β u,v,w |xy u|β vw,x,y F u,v,w,x,y α u,vwx |y uv|w|xy u|vw|xy uv|wx|y u|vwx|y uv|β w,x,y G u,v,w,x,y β u,v,w |xy u|β vw,x,y β u,v,wx |y uv|w|xy uv|wx|y u|vw|xy uvwx|y u|vwx|y uv|β w,x,y α uv,wx |y β u,v,w |xy u|β vw,x,y G u,v,w,x,y α u,vwx |y uv|xy u|vxy uvx|y H u,v,x,y β uv,x,y β u,v,xy β u,vx,y uv 1 |w 1 = uv 1 |x 1 y u|v 1 |w 2 = uv 2 |x 2 y β uv1,x1,y I u,v1,w1,v2,w2 β u,v1,w1 β u,v2,w2 β uv2,x2,y

×

  generating 3-cells C u,v,w,x and D u,v,w,x by the homotopical completion procedure. The branching uv|w|x u|vw|x u|vwx β u,v,w |x u|α vw,x is defined when u v w x × . This conjunction splits into two disjoint possibilities producing respectively the generating 3-cells E u,v,w,x and E u,v,w,x . The form uv|w|xy u|vw|xy u|vwx|y β u,v,w |xy u|β vw,x,y is defined under the condition u v w x y

Corollary 2 . 5 . 3 . 3 .

 2533 Let M be a left-cancellative monoid containing no nontrivial invertible element, and let S be a Garside family containing1 in M . If S is right-noetherian, then the 2-polygraph Gar 2 (S) is a convergent presentation of M .Proof. Proposition 2.4.4.4 grants that the 2-polygraph Gar 2 (S) is a presentation of M . Since the generating 2-cells α strictly decrease the S-length, the 2-polygraph Gar 2 (S) is terminating. Thanks to Proposition 2.5.2.1, we can compute its Knuth-Bendix completion in a manner described in Remark 2.2.1.2. As shown in Subsection 2.5.2, the generating 2-cells β are added.

Corollary 2 . 5 . 3 . 5 .

 2535 Let M be a left-cancellative monoid containing no nontrivial invertible element, and let S be a Garside family containing 1 in M . If S is right-noetherian, and if M admits right-mcms, then M admits the (3, 1)-polygraph Gar 3 (S) as a coherent convergent presentation.Proof. Corollary 2.5.3.3 grants that Gar 2 (S) is a terminating presentation of M . As shown in the proof of Corollary 2.5.3.3, all the requirements are met for applying Proposition 2.5.3.1, which completes the proof.
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 54 Homotopical reduction of Garside's presentation. The homotopical reduction procedure described in[26, 3.2.2] applies verbatim to the coherent convergent presentation provided by Proposition 2.5.3.1 (and echoed by Corollary 2.5.3.5), with respect to the collapsible part Γ which is obtained as follows. The component Γ 4 of Γ contains seven generating triple confluences whose targets are the families C, . . . , I of generating 3-cells, with the order I > H > • • • > C. For the sake of illustration, we recall one such generating triple confluence in the case u v w x × (we refer the reader to [26, 3.2.2] for the other six generating triple confluences). Its boundary consists of the following two parts: |x A u,v,w |x α u,v |w|x u|α v,w |x u|v|α w,x α u,vw |x u|α vw,x B u,vw,x u|A v,w,x u|α v,wx β u,vw,x

The boundary of our first 3 -...

 3 sphere of interest consists ofThe target is the generating 3-cell E u,v,w,x .Second generating triple confluence which we are going to use has the boundary consisting ofThe target is the generating 3-cell F u,v,w,x,y .Finally, we construct the 3-sphere whose boundary has the following parts:The target is the generating 3-cell G u,v,w,x,y . The above mentioned component Γ 4 of the collapsible part (inherited from [26, 3.2.2]) is extended with these three freshly constructed 3-spheres. The order relation on generating3-cells is extended to G > F > E > I > H > • • • > C.The component Γ 3 of the collapsible part contains the family B of generating 3-cells having the generating 2-cells β as targets, with the order β > α.

2. 5 . 5 .

 55 Noetherianity. Let us state an immediate corollary of Theorem 2.5.1.4, having somewhat simpler, although more restrictive, requirements.Corollary 2.5.5.1. Let M be a left-cancellative monoid containing no nontrivial invertible element, and let S be a Garside family containing 1 in M . If M is noetherian, then M admits the (3, 1)-polygraph Gar 3 (S) as a coherent presentation.
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 64 Dual braid monoids. Let us consider the dual braid monoid B + * n , as defined in [13, Subsection I.1.3]. Its generating set consists of braids b

b 12 b 23 |b 34 b 23 |b 13 |b 34 b 12 b 23 b 34 b 23 |b 13 b 34 αb 23 b 34 |b 14 b 34 |b 24 |b 14 b 12 b 23 b 34 b 34 |b 12 b 24 αb 12 b 23 |b 34 b 13 |b 12 |b 34 b 12 b 23 b 34 b 13 |b 12 b 34 αb 23 b 34 |b 14 b 24 |b 23 |b 14 b 12 b 23 b 34 b 24 |b 23 b 14 αb 12 b 24 |b 23 b 12 |b 24 |b 23 b 12 b 23 b 34 b 12 |b 23 b 34 α 23 b 12 |α b24,b23 α b12,b23b34 b 13 b 34 |b 12 b 13 |b 34 |b 12 b 12 b 23 b 34 b 13 |b 12 b 34 α 12 b 13 |α b34,b12 α b13,b12b34 b 12 b 24 |b 23 b 24 |b 14 |b 23 b 12 b 23 b 34 b 24 |b 23 b 14 αb 13 b 34 |b 12 b 34 |b 14 |b 12 b 12 b 23 b 34 b 34 |b 12 b 24 αb 12 b 24 |b 23 b 14 |b 12 |b 23 b 12 b 23 b 34 b 14 |b 12 b 23 αb 13 b 34 |b 12 b 14 |b 13 |b 12 b 12 b 23 b 34 b 14 |b 12 b 23 αb 12 b 34 |b 24 b 12 |b 34 |b 24 b 12 b 23 b 34 b 12 |b 23 b 34 αb 23 b 14 |b 13 b 23 |b 14 |b 13 b 12 b 23 b 34 b 23 |b 13 b 34 αb 12 b 34 |b 24 b 34 |b 12 |b 24 b 12 b 23 b 34 b 34 |b 12 b 24 αb 23 b 14 |b 13 b 14 |b 23 |b 13 b 12 b 23 b 34 b 14 |b 12 b 23 α

 3434341434243434341434142334342312343412233414123424233423123423243434133434243424133423 5.1.4 because [26, Theorem 3.3.3], recalled in Example 2.3.6.1, would suffice. To the best of our knowledge, however, it has not been done yet, so we do it here. Let us take B + * 4 for example. For simplicity, we leave out the comma which separates the two indices of b. The Garside family we consider is the set D of all (left) divisors of ∆ * 4 . Namely, D = {1, b 12 , b 23 , b 24 , b 13 , b 34 , b 14 , b 12 b 23 , b 12 b 34 , b 23 b 34 , b 12 b 24 , b 23 b 14 , b 13 b 34 , b 12 b 23 b 34 }. The lattice (D, ) can be seen in [13, Figure I.4]. The requirements of Theorem 2.5.1.4 are met, as observed in Corollary 2.5.1.6. By Theorem 2.5.1.4, we take generating 2-cells of the form u|v ⇒ uv for u, v in D \ {1} such that uv divides ∆ * 4 . This yields the following family of generating 2-cells: α b12,b23 : b 12 |b 23 ⇒ b 12 b 23 , α b23,b34 : b 23 |b 34 ⇒ b 23 b 34 , α b23,b13 : b 23 |b 13 ⇒ b 12 b 23 , α b34,b24 : b 34 |b 24 ⇒ b 23 b 34 , α b13,b12 : b 13 |b 12 ⇒ b 12 b 23 , α b24,b23 : b 24 |b 23 ⇒ b 23 b 34 , α b12,b24 : b 12 |b 24 ⇒ b 12 b 24 , α b13,b34 : b 13 |b 34 ⇒ b 13 b 34 , α b24,b14 : b 24 |b 14 ⇒ b 12 b 24 , α b34,b14 : b 34 |b 14 ⇒ b 13 b 34 , α b14,b12 : b 14 |b 12 ⇒ b 12 b 2,4 , α b14,b13 : b 14 |b 13 ⇒ b 13 b 34 , α b12,b34 : b 12 |b 34 ⇒ b 12 b 34 , α b23,b14 : b 23 |b 14 ⇒ b 23 b 14 , α b34,b12 : b 34 |b 12 ⇒ b 12 b 34 , α b14,b23 : b 14 |b 23 ⇒ b 23 b 14 , α b12,b23b34 : b 12 |b 23 b 34 ⇒ b 12 b 23 b 34 , α b12b23,b34 : b 12 b 23 |b 34 ⇒ b 12 b 23 b 34 , α b23,b13b34 : b 23 |b 13 b 34 ⇒ b 12 b 23 b 34 , α b12b34,b24 : b 12 b 34 |b 24 ⇒ b 12 b 23 b 34 , α b24,b23b14 : b 24 |b 23 b 14 ⇒ b 12 b 23 b 34 , α b23b34,b14 : b 23 b 34 |b 14 ⇒ b 12 b 23 b 34 , α b13,b12b34 : b 13 |b 12 b 34 ⇒ b 12 b 23 b 34 , α b12b24,b23 : b 12 b 2,4 |b 23 ⇒ b 12 b 23 b 34 , α b34,b12b24 : b 34 |b 12 b 24 ⇒ b 12 b 23 b 34 , α b23b14,b13 : b 23 b 14 |b 13 ⇒ b 12 b 23 b 34 , α b14,b12b23 : b 14 |b 12 b 23 ⇒ b 12 b 23 b 34 , α b13b34,b12 : b 13 b 34 |b 12 ⇒ b 12 b 23 b 34 . Now we construct the generating 3-cells A u,v,w for u, v, w in D \ {1} with uv, vw, and uvw being divisors of ∆ * 4 : b 12 b 23 |b 34 b 12 |b 23 |b 34 b 12 b 23 b 34 b 12 |b 23 b 34 α b12b23,b34 A b12,b23,b34 α b12,b23 |b 34 b 12 |α b23,b34 α b12,b23b34 b 23 b 34 |b 14 b 23 |b 34 |b 14 b 12 b 23 b 34 b 23 |b 13 b 34 α b23b34,b14A b23,b34,b14 α b23,b34 |b 14 b 23 |α b34,b14 α b23,b13b34 b12b23,b34 A b23,b13,b34 α b23,b13 |b 34 b 23 |α b13,b34 α b23,b13b34 b23b34,b14 A b34,b24,b14 α b34,b24 |b 14 b 34 |α b24,b14 α b34,b12b24 b12b23,b34 A b13,b12,b34 α b13,b12 |b 34 b 13 |α b12,b34 α b13,b12b34 b23b34,b14 A b24,b23,b14 α b24,b23 |b 14 b 24 |α b23,b14 α b24,b23b14 b12b24,b23 A b12,b24,b23 α b12,b24 |b b13b34,b12 A b13,b34,b12 α b13,b34 |b b12b24,b23 A b24,b14,b23 α b24,b14 |b 23 b 24 |α b14,b23 α b24,b23b14 b13b34,b12 A b34,b14,b12 α b34,b14 |b 12 b 34 |α b14,b12 α b34,b12b24 b12b24,b23 A b14,b12,b23 α b14,b12 |b 23 b 14 |α b12,b23 α b14,b12b23 b13b34,b12 A b14,b13,b12 α b14,b13 |b 12 b 14 |α b13,b12 α b14,b12b23 b12b34,b24 A b12,b34,b24 α b12,b34 |b 24 b 12 |α b34,b24 α b12,b23b34 b23b14,b13 A b23,b14,b13 α b23,b14 |b 13 b 23 |α b14,b13 α b23,b13b34 b12b34,b24 A b34,b12,b24 α b34,b12 |b 24 b 34 |α b12,b24 α b34,b12b24 b23b14,b13 A b14,b23,b13 α b14,b23 |b 13 b 14 |α b23,b13 α b14,b12b23

2 . 4 .

 24 For convenience, let us write A to denote the new version of the generating 3-cell A which shares the same index. Then, the homotopical reduction of Gar 3 (D) with respect to the collapsible part (Γ 2 , Γ 3 , ∅) contains: a single generating 0-cell; the generating 1-cells b 12 , b 23 , b 24 , b 13 , b 34 , b 14 ; the generating 2-cells α b23,b13 : b 23 |b 13 ⇒ b 12 |b 23 , α b34,b24 : b 34 |b 24 ⇒ b 23 |b 34 , α b13,b12 : b 13 |b 12 ⇒ b 12 |b 23 , α b24,b23 : b 24 |b 23 ⇒ b

  Section 4.3]. Example 3.2.1.7 ([34, Example 2.2.8]). Let (M, ∆) be a Garside monoid (recalled in Subsection 2.3.4 on page 34). For an element f of M , setting η (f ) = f ∧∆ defines a factorability structure, as demonstrated in [48, Section 4.2] where a larger class of monoids is equipped with a factorability structure.

Theorem 3 .

 3 2.2.6 ([35, Theorem 3.4]).

Example 3 . 3 . 1 . 7 .

 3317 For a left-cancellative monoid M with no nontrivial invertible element and a Garside family S e in M , Proposition 2.4.4.1 on page 40 yields a geodesic normal form on (M, S). Then, applying Proposition 3.3.1.6(2) yields a normalisation S e , N S where, formally, S e denotes S enriched with an N -neutral letter. This normalisation is said to be derived from the Garside family S e . The monoid M then admits the presentation (3.3.2). Note that the definition of the map N S here agrees with the one given in Subsection 2.4.4 on page 39. Remark 3.3.1.8 ([16, Remark 2.10]). If a monoid (M, S) is graded and nf is a normal form on (M, S), then there are two normalisations arising from nf, provided by Remark 3.3.1.5 and Proposition 3.3.1.6(2), respectively. To make a clear distinction, let us temporarily write N e for the normalisation map of the latter. The normalisations (S, N ) and (S e , N e ) are closely related as the map π e • N e is identically equal to the map N • π e . Therefore, it suffices to formally consider normalisations mod e for monoids.

3. 3 . 2 .

 32 Quadratic normalisations. Let us extend Notation 3.2.1.3.

Proposition 3 .

 3 3.2.4 ([16, Proposition 3.6]).

  12 [m] (resp. 21 [m]) for the alternating sequence 121 . . . (resp. 212 . . .) of length m. A quadratic normalisation (A, N ) is said to be of left-class m (respectively, right-class n) if, on the set of all length-three A-words, the map N coincides with the map N 12[m] (respectively, N 21[n] ). A quadratic normalisation (A, N ) is of class (m, n) if it is of left-class m and of right-class n. Example 3.3.2.5. Let us consider the quadratic normalisation given in Example 3.3.1.3. If A has only one element, then there is only one A-word of length 3 and it is N -normal. So, (A, N ) is of class (0, 0) in this case.

  in this case. A smaller class cannot be obtained in general, as witnessed by N 12 (b|b|a) = b|a|b and N 21 (b|a|a) = a|b|a, with a and b being any two distinct elements of A such that a < b. A class of a quadratic normalisation (A, N ) can be characterised by relations involving only the restriction N , as follows. Proposition 3.3.2.6 ([16, Proposition 3.14]). A quadratic normalisation (A, N ) is (1) of left-class m if, and only if, the following three maps coincide on A 3 : N 12[m] , N 12[m+1] , N 21[m+1] .

3 .

 3 of class (m, m) if, and only if, the map N 12[m] coincides with the map N 21[m] on A The minimal left-class of (A, N ) is the smallest natural number m such that (A, N ) is of left-class m if such m exists, and ∞ otherwise. The minimal right-class n of (A, N ) is defined analogously. Then the minimal class of (A, N ) is the pair (m, n). Lemma 3.3.2.7 ([16, Lemma 3.13]). The minimal class of a quadratic normalisation is either of the form (m, n) with |m -n| ≤ 1, or (∞, ∞).

Proposition 3 . 3 . 3 . 1 ([ 16 ,

 333116 Lemma 4.2]). A quadratic normalisation (A, N ) is of class (4, 3) if, and only if, the domino rule is valid for N .

  2.1.3 and 3.3.3.2. Example 3.3.3.3. Let us consider an instance of the class of monoids given in Example 3.3.1.3. Take A = {a, b, c} and a < b < c. Then, c|b|a → N δ3 (c|b|a) consists of the following steps:

Proposition 3 .

 3 3.3.4 ([16, Proposition 4.4]). If (A, N ) is a quadratic normalisation of class (4, 3), then, for every positive integer n and every A-word v of length n, we have N (v) = N δn (v) .

Lemma 3 .

 3 3.3.5 ([16, Lemma 4.5]). If (A, N ) is a quadratic normalisation of class (4, 3), then, for every s in A and every N -normal A-word r 1 | • • • |r m , we have

3. 3 . 4 .

 34 The rewriting system associated with a quadratic normalisation. There is a simple correspondence between quadratic normalisations and quadratic rewriting systems. Proposition 3.3.4.1 ([16, Proposition 3.7]).

Proposition 3 .

 3 3.4.3 ([16, Proposition 5.4]). A rewriting system associated to a quadratic normalisation of class (4, 3) is convergent. More precisely, every rewriting sequence starting from an element of length n has length at most 2 n -n -1.

3. 3 . 5 .

 35 Left-weighted normalisations. Before closing this section, let us recall (from [16, Subsection 6.2]) a notion that we glimpsed in Lemma 2.4.4.2. A normalisation (A, N ) for a monoid M is called left-weighted if, for all s, t, s , t in A, the equality s |t = N (s|t) implies the left divisibility s s in M . Reminding the reader of the notion of normalisation derived from a Garside family, defined in Example 3.3.1.7, we recall a characterisation of such normalisations among quadratic normalisations of class (4, 3). Proposition 3.3.5.1 ([16, Proposition 6.10]). Let M be a left-cancellative monoid M containing no nontrivial invertible element. If (S e , N ) is a quadratic normalisation mod 1 for M , then the following are equivalent.

( 1 )

 1 The family S e is a Garside family in M , and the map N is identically equal to the map N s .(2) The normalisation (S e , N ) is of class (4, 3) and is left-weighted.Remark 3.3.5.2. In particular, Proposition 3.3.5.1(1) means that, under given conditions, every N -normal word r 1 | • • • |r m has the following property for all i < m, for all s ∈ S and h ∈ M, s hr i r i+1 implies s hr i .It is the property of being S-greedy, expressed diagrammatically mutatis mutandis by (2.4.1) on page 38.

Definition 3 .

 3 4.1.1. Let (A, N ) be a quadratic normalisation with the N -neutral element e. The weak domino rule is valid for N if the domino rule is valid for N whenever none of the elements r 1 , r 2 , s 2 of the diagram (3.3.3) equals e. Now, we can state the main result of the current chapter. Theorem 3.4.1.2. A monoid (M, S) is factorable if, and only if, it admits a quadratic normalisation (N, S e ) mod 1 such that the weak domino rule is valid for N .

Lemma 3 . 4 . 1 . 4 .

 3414 If (M, S, η) is a factorable monoid, then S e , N ϕ is a quadratic normalisation mod 1 for M .

Example 3 . 4 . 1 . 9 .

 3419 Consider the factorable monoid M given in [35, Proposition .7]. Computing ϕ 1212 (c 1 , b 2 , a 2 ) produces

Example 3 .

 3 4.1.10. Let A = {a, b 1 , b 2 , b 3 , b 4 , b 5 }, and let R consist of the rules ab i → ab i+1 for i < 5 even and b i a → b i+1 a for i < 5 odd. The rewriting system (A, R) is clearly quadratic and reduced. Notice that it is also terminating because each rewriting rule only increases the index of a letter b in a word. Furthermore, it is confluent, as illustrated by the following diagram (recall that, by Theorem 2.1.2.1 on page 21, it suffices to investigate the critical branchings; or see [41, Theorem 0] for the same fact expressed without using the polygraphic setting): b i+1 ab j b i ab j b i+1 ab j+1 b i ab j+1

N

  212 (a, b 1 , a) = (a, b 4 , a) , whereas N 2121 (a, b 1 , a) = (a, b 5 , a) .Thus, N fails to admit the property (4) of Definition 3.2.2.4 (of local factorability structure). We conclude (by Remark 3.4.1.6) that N does not correspond to a factorability structure.

Lemma 3 . 4 . 1 . 11 .Case 2 .

 341112 Let (A, N ) be a quadratic normalisation having an N -neutral element e. If the weak domino rule is valid for N , then (A, N ) is of class[START_REF] Brieskorn | Artin-Gruppen und Coxeter-Gruppen[END_REF][START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF].Proof. Let (r, s, t) be an A-word. IfN 2121 (r, s, t) = N 212 (r, s, t) , then N (r, s, t) = N 212 (r, s, t) ,so it takes at most three steps starting with N 2 to normalise (r, s, t). Otherwise, N 212 (r, s, t) contains e by assumption. Denote (3.4.1) (a, b, c) := N 212 (r, s, t) . Case 1. If e occurs exactly once in the triple (a, b, c), then it cannot be at the leftmost position after N 1 is applied in (3.4.1). So, it has to be at the rightmost position after the last N 2 is applied in (3.4.1). In other words, c has to be equal to e. Consequently, (3.4.2) N (a, b, c) = N 1 (a, b, c) = N 2121 (r, s, t) . If e occurs exactly twice in the triple (a, b, c), then either a = e or b = e. In either case, the equalities (3.4.2) hold. Case 3. If e occurs three times in the triple (a, b, c), then clearly the equalities (3.4.2) hold. Therefore, (A, N ) is of right class 4, hence of class (5, 4), by Lemma 3.3.2.7. The following proposition shows that adding the weak domino rule to the properties of quadratic normalisation (and thus granting class (5, 4) by Lemma 3.4.1.11), suffices to yield factorability. Lemma 3.4.2.2. If (M, S, η) is a graded factorable monoid, then (S, N ϕ ) is a quadratic normalisation of class (4, 3). Proof. In addition to the conclusion of Lemma 3.4.1.4, observe that the property of being of right-class 3 follows from the property (4) of Definition 3.2.2.4 (of local factorability structure) and the assumption that M is graded. Then the property of being of left-class 4 follows from Lemma 3.3.2.7.

Notation 3 .

 3 4.2.10. If (r 1 , r 2 , . . . , r m ) is the normal form of f in M , then the product r 1 r 2 • • • r m-1 in M is denoted by f . Proposition 3.4.2.11. Let (M, S, η) be a factorable monoid. If the condition (3.4.4) is satisfied for each (r, s, t) in S 3 such that ϕ 212 (r, s, t) contains 1, then the assumption (3.4.5) is valid for all s in S and f in M . Proof. By Proposition 3.4.2.3, the quadratic normalisation corresponding to the given factorability structure is of class (4, 3). Then, Remark 3.3.3.6 (on Lemma 3.3.3.5) implies the equality (sf ) = (sf ) for all s in S and f in M .

( 4 .

 4 1.2) P (uv) = P (P (ub 1 ) (b 2 , . . . , b n )) .Example 4.1.1.2. Let us compute P (ub), with u being the tableau given in Example 4.1.1.1 and b being the A-letter 8. Since the A-word (1, 1, 2, 3, 5, 11, 13, 8)

3 2 3 5 7 and the letter 11 . 3 2

 37113 Since[START_REF] Birman | A new approach to the word problem in the braid groups[END_REF][START_REF] Bödigheimer | Factorable groups and their homology, Cohomology of finite groups: interactions and applications[END_REF][START_REF] Brieskorn | Artin-Gruppen und Coxeter-Gruppen[END_REF][START_REF] Cain | Finite Gröbner-Shirshov bases for Plactic algebras and biautomatic structures for Plactic monoids[END_REF][START_REF] Curien | Coherent presentations of monoids with a right-noetherian Garside family[END_REF] is a row, the computation stops, returning the tableau

Theorem 4 .

 4 1.1.4 ([42, Theorem 5.1.1

4. 2 . 1 .

 21 The quadratic coherent presentation: the graded case. Assume that (S, N ) is a quadratic normalisation of class (4, 3) for a monoid M . Then Propositions 3.3.4.1(1) and 3.3.4.3 on page 77 provide a quadratic reduced convergent presentation of M . We denote this 2-polygraph by Qua 2 (S) and the generating 2-cells by ν s,t : s|t ⇒ N (s|t)

3 where

 3 q|r|s|t is a length-four word having no N -normal length-two factor. It produces a 3-sphere Φ whose boundary has the following two parts:

Proposition 4 . 2 . 2 . 1 .

 4221 Let (S, N ) be a quadratic normalisation of class (4, 3) mod e for a monoid M . Then the convergent 2-polygraph Qua 2 (S) admits, as a homotopical completion, the (3, 1)-polygraph Qua 3 (S) that extends Qua 2 (S) with the following families of generating 3-cells, indexed by all possible elements of S\{1} (the source of every branching is r|s|t, and the rightmost 1-cell is N (r|s|t)): α A r,s,t

r 1 |s 1 |t 1 r 3 |s 3 |t 3 r 5 |s 5 |t 5 r|s|t r 7 |s 7 |t 7 = r 6 |s 6 |t 6 r 2 |s 2 |t 2 r 4 |s 4 |t 4

 5764 

The form rs|t = r 1 |t 1 r|s|tr|N (s|t) = r 2 |s 2 |t 2 α

 12 r,s |t r|ν s,t

  2.3.2. Coxeter groups and Artin-Tits monoids. For elements s and t of a set S, the element st Note that a Coxeter group can admit several generating sets, but we always assume that such a set is fixed and totally ordered. One defines the length |u| of an element u in W as the minimal length of an S-word needed to represent the element u, which is consistent with the definition of length (in monoids) given in Subsection 1.2.1 on page 11. The relations in (2.3.1), This presentation is called Artin's presentation of an Artin-Tits monoid. The Coxeter group W corresponding to an Artin-Tits monoid B + (W ) is obtained by adding an involution s 2 = 1 for each generator s in (2.3.2). Since all the relations in B + (W ) are length-preserving, one can naturally define the length of an element of B + (W ) as the length of any S-word representing it. By Matsumoto's lemma ([START_REF] Dehornoy | Foundations of Garside theory[END_REF] Corollary IX.1.11] or [28, Theorem 1.2.2]), two minimal-length expressions (as products of elements of S) for an element in W can be obtained from one another by braid relations alone, hence they represent the same element in B + (W ). Therefore, the canonical projection map π : B + (W ) → W has a canonical set-theoretic section σ : W → B + (W ). The image of σ consists of all the elements of the monoid B + (W ) whose length is preserved by π. To simplify notation, we often identify elements of im (σ) with their images under π. An Artin-Tits monoid is said to be of spherical type, or spherical for short, if its corresponding Coxeter group is finite.Artin-Tits monoids are cancellative (see[START_REF] Brieskorn | Artin-Gruppen und Coxeter-Gruppen[END_REF] Proposition 2.3]). Furthermore, if we regard w in W as an element of B + (W ), by the canonical embedding provided by Matsumoto's lemma, then an equality uv = w in B + (W ) implies that both u and v are elements of W , which further implies that the condition |uv| = |u| + |v| holds. of the paths u and v is the empty path and the other one is not. By [13, Lemma II.1.42], if a presentation of a category C contains no ε-relation, then C contains no nontrivial invertible element. Note that a braid relation is not an ε-relation. Hence, an Artin-Tits monoid has no nontrivial invertible element.

	Example 2.3.2.1.	
	S and subject to relations
	(2.3.1)	s 2 = 1, st

m of the free monoid S * is defined inductively by st 0 = 1 and st m+1 = s ts m . A Coxeter group W is a group generated by a finite set mst = ts mst s, t ∈ S with (m st ) s,t∈S being a symmetric matrix whose entries are positive integers or ∞ (here, m st = ∞ means that there is no given relation between s and t) and whose diagonal entries are all equal to 1. other than the involutions, are called braid relations. The Artin-Tits monoid B + (W ) corresponding to a Coxeter group W is the monoid presented by (2.3.2) S | { st mst = ts mst | s, t ∈ S} . Artin-Tits monoids admit conditional right-lcms (see [5, Proposition 4.1]). In a presentation of a category, a relation u = v is called an ε-relation if one • Every free abelian monoid on a finite set is an Artin-Tits monoid because commutativity relations are braid relations. It is of spherical type because making generators involutive results in a finite Coxeter group. • The braid monoid B + n on n strands is the monoid presented by (2.3.3)

  Section I.3]. 2.4.2. Right-mcms. Let C be a left-cancellative category and, let S be a subfamily of C . The left-divisibility relation is a preorder of elements; it is an order if, and only if, C has no nontrivial invertible element.

  Propositions II.2.28 and II.2.29], we say that a left-cancellative category C is left-noetherian (resp. right-noetherian) if for every g in C , every increasing sequence of right (resp. left) divisors of g with respect to proper right divisibility (resp. left divisibility) is finite. A left-cancellative category C is noetherian if it is both left-noetherian and right-noetherian.

	Example 2.4.2.2.

  • Every Garside monoid (M, ∆) has a finite Garside family given by the family of all divisors of ∆ (see [14, Proposition 2.18] or [13, Proposition III.1.43]). More examples will be presented in Section 2.6. The following proposition gives a simple characterisation of a Garside family.

  are included in the relations (2.4.2). Conversely, let us show that each relation (2.4.2), with s and t in S \{1}, follows from a finite number of relations (2.4.3). Assume that s and t lie in S \ {1} and let s |t := N S (s|t). If t = 1 holds, then s = st, which is a (2.4.3) relation, so the result is true in this case. Otherwise, Lemma 2.4.4.2 implies that there exists r in M , satisfying sr = s , which is a (2.

  23 |b 34 , α b24,b14 : b 24 |b 14 ⇒ b 12 |b 24 , α b34,b14 : b 34 |b 14 ⇒ b 13 |b 34 , α b14,b1,2 : b 14 |b 12 ⇒ b 12 |b 24 , α b14,b13 : b 14 |b 13 ⇒ b 13 |b 34 , α b34,b12 : b 34 |b 12 ⇒ b 12 |b 34 , α b14,b23 : b 14 |b 23 ⇒ b 23 |b 14 ; and the generating 3-cells b 23 |b 34 |b 14 b 23 |b 13 |b 34 b 34 |b 24 |b 14 b 12 |b 23 |b 34 b 34 |b 12 |b 24 b 12 |b 34 |b 24 12 |b 24 |b 23 b 12 |b 23 |b 34 b 24 |b 14 |b 23 b 23 |b 13 |b 34 b 24 |b 23 |b 14 b 23 |b 34 |b 14 13 |b 34 |b 12 b 13 |b 12 |b 34 b 34 |b 14 |b 12 b 12 |b 23 |b 34 b 34 |b 12 |b 24 b 12 |b 34 |b 24 13 |b 34 |b 12 b 13 |b 12 |b 34 b 14 |b 13 |b 12 b 12 |b 23 |b 34 b 14 |b 12 |b 23 b 12 |b 24 |b 23 23 |b 14 |b 13 b 23 |b 13 |b 34 b 14 |b 23 |b 13 b 12 |b 23 |b 34 b 14 |b 12 |b 23 b 12 |b 24 |b 23

	b 23 |α b34,b14	
	α b34,b24 |b 14	α b23,b13 |b 34
	A b34,b24,b14	
	b 34 |α b24,b14	b 12 |α b34,b2.4
	α b34,b12 |b 24	
	b 12 |α b24,b23	
	α b24,b14 |b 23	α b23,b13 |b 34
	A b24,b14,b23	
	b 24 |α b14,b23	b 23 |α b34,b14
	α b24,b23 |b 14	
	b 13 |α b34,b12	
	α b34,b14 |b 12	α b13,b12 |b 34
	A b34,b14,b12	
	b 34 |α b14,b12	b 12 |α b34,b2.4
	α b34,b12 |b 24	
	b 13 |α b34,b12	
	α b14,b13 |b 12	α b13b34,b12
	A b14,b13,b12	
	b 14 |α b13,b12	b 12 |α b24,b23
	α b14,b12 |b 23	
	b 23 |α b14,b13	
	α b14,b23 |b 13	α b23,b13 |b 34
	b 14 |α b23,b13	b 12 |α b24,b23
	α b14,b12 |b 23	

b b b b

  in this direction is determining boundary maps. Now that we have a mechanism for constructing a coherent presentation of monoids admitting a Garside family, other examples of application are readily feasible. Here, we mention two such examples.

  of Definition 3.2.2.2 (of the normalisation map N ϕ ) implies the property (2) of Definition (3.3.2.2) (of quadratic normalisation) and, consequently, also the rightto-left implication of the property (1) of Definition (3.3.2.2). The other direction of the property (1) of Definition (3.3.2.2) follows from Lemma 3.2.1.9. Finally, Lemma 3.2.4.1, together with Remark 3.2.4.2, provides a presentation showing that S e , N ϕ is a normalisation mod 1 for M .

  . The property (4) of Definition 3.2.2.4 (of local factorability structure) If the equality (3.4.3) holds for each (r, s, t) in S 3 such that ϕ 212 (r, s, t) contains 1, then S e , N ϕ is a quadratic normalisation of class (4, 3) mod 1 for M . Proof. Lemma 3.4.1.4 says that S e , N ϕ is a quadratic normalisation mod 1 for M .

	grants the equality	
	(3.4.3)	ϕ

2121 (r, s, t) = ϕ 212 (r, s, t) only for length-three S-words (r, s, t) such that ϕ 212 (r, s, t) contains no 1. On the other hand, the right-class 3 (i.e. the domino rule) requires the equality (3.4.3) to hold for every length-three S e -word (r, s, t), regardless of whether ϕ 212 (r, s, t) contains 1 or not. Therefore, in order for a factorability structure to induce a quadratic normalisation of class (4, 3), it suffices to strengthen the condition (4) of Definition 3.2.2.4, as follows.

Proposition 3.4.2.3. Let (M, S, η) be a factorable monoid.

  ) For each (r, s, t) in S 3 such that ϕ 212 (r, s, t) contains 1, the equality (ηµ) 2121 (r, s, t) = (ηµ) 212 (r, s, t) The quadratic normalisation S e , N ϕ mod 1 for M is of class[START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF][START_REF] Bödigheimer | Factorable groups and their homology, Cohomology of finite groups: interactions and applications[END_REF]. In other words, the domino rule is valid for N ϕ .Proof. It was already known (Lemma 3.4.2.5) that (1) implies (2), which, in turn, clearly implies (3). The properties (3) and (4) are equivalent by the definitions of the notions concerned. Finally, Proposition 3.4.2.11 says that (3) implies (1). Remark 3.4.2.13. Reminding the reader of Subsection 2.3, we point out that applying Proposition 3.4.2.12 to the factorable monoids given in Examples 3.2.1.6 and 3.2.1.7, both having property (3) yields special cases of a normalisation provided by Proposition 3.3.5.1 when the Garside family involved is a Coxeter group corresponding to an Artin-Tits monoid and a set of divisors of a Garside element in a Garside monoid, respectively. The commutative diagram Proposition 3.4.2.14. A monoid (M, S) admits a quadratic normalisation of class (4, 3) if, and only if, it is factorable and has any of the properties (1), (
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	Artin-Tits or		monoids admitting
	Garside monoid	inclusion	a Garside family
	summarises the point.	
	Before leaving this chapter, let us observe that, thanks to Theorem 3.4.1.2,
	Proposition 3.4.2.12 can also be read another way, as a characterisation of monoids
	admitting a quadratic normalisation of class (4, 3) among factorable monoids.

  if X has four or five elements. Encouraged by Lemma 3.4.1.7, we would use the criterion provided by Theorem 3.4.1.2 to investigate if these Chinese monoids are factorable.In this final chapter, methods considered in Chapter 2 are further applied to a wider class of monoids studied in Chapter 3. Namely, the homotopical completionreduction procedure is used to construct coherent presentations of monoids admitting a quadratic normalisation of class (4, 3), which generalise the column coherent presentations of plactic monoids. Here is an overview of relevant classes of monoids, with arrows denoting inclusions, the dashed one being the present contribution:
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	Bokut			
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	Li	Gray	presentation	
	2015	Malheiro		
		2015		
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  3-cell are respectively labeled by C and C . We have relabeled them here, for convenience.for all s and t in S such that s|t is not N -normal. Let us apply the homotopical completion procedure to Qua 2 (S).where r|s|t is a length-three word, of which no length-two factor is N -normal. This branching is confluent by the very definition of the class (4, 3). Relying on Notation 4.1.2.2, we adjoin a generating 3-cell for every such length-three word r|s|t (intermediate 1-cells are left out of the diagram for pragmatic reasons). Let us denote the resulting (3, 1)-polygraph by Qua 3 (S). Theorem 2.2.2.1 implies that Qua 3 (S) is a convergent coherent presentation of M .

	Critical branchings are of the form	
	ν r,s |t		N (r|s) |t
	r|s|t		
	r|ν s,t		r|N (s|t)
	ν 2	ν 1
	ν 1			ν 2
	r|s|t	G r,s,t	N (r|s|t)
	ν 2	ν 1		ν 2

  1 t 1 / ∈ S r 2 s 2 ∈ S A r,s,t C r,s,t r 2 s 2 / This condition splits into four disjoint cases yielding four families of generating 3-cells as displayed in the following table: E r,s,t if r 3 s 3 ∈ S E r,s,t if r 3 s 3 / ∈ S . is defined under the condition that neither rs nor st lie in S. This condition splits into two mutually exclusive cases depending on whether r 2 s 2 is an element of S. Each of these cases further splits, as shown in the following tables: for r 2 s 2 lying in S, s 1 t 1 ∈ S s 1 t 1 / ∈ S r 4 t 4 ∈ S F r,s,t G r,s,t r 4 t 4 / ∈ S F r,s,t G r,s,t if r 3 s 3 ∈ S G r,s,t if r 3 s 3 / ∈ S

		∈ S	∅	D r,s,t
		s 1 t 1 ∈ S	s 1 t 1 / ∈ S
	r 2 s 2 ∈ S	E r,s,t		E r,s,t
	r 2 s 2 / ∈ S	E r,s,t	
	The form		
		ν r,s |t		N (r|s)|t
		r|s|t	
		r|ν s,t		r|N (s|t)
				;

.

The branching

N (r|s)|t = r 1 |s 1 |t 1 r|s|t r|st = r 2 |s 2 ν r,s |t r|α s,t

is defined under the conjunction: rs does not lie in S, and st lies in S.

In a confluent presentation, one can safely follow the directions given by L. P. Berra, 'When you come to a fork in the road, take it.'

COHERENT PRESENTATIONS ARISING FROM GARSIDE FAMILIES

CORRESPONDENCE BETWEEN FACTORABILITY AND NORMALISATION

A more precise name would be the left domino rule (see e.g.[START_REF] Dehornoy | Garside and quadratic normalisation: a survey[END_REF]).

Technically speaking, this is a factorable group by[START_REF] Visy | Factorable groups and their homology[END_REF] Example 

3.2.2], and a weakly factorable monoid. Hence, it is also a factorable monoid by[START_REF] Heß | Factorable monoids: resolutions and homology via discrete Morse theory[END_REF] Proposition 2.1.28].

COHERENT PRESENTATIONS ARISING FROM CLASS[START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF][START_REF] Bödigheimer | Factorable groups and their homology, Cohomology of finite groups: interactions and applications[END_REF] 

Neither[START_REF] Cain | Finite Gröbner-Shirshov bases for Plactic algebras and biautomatic structures for Plactic monoids[END_REF] nor[START_REF] Hage | Knuth's coherent presentations of plactic monoids of type A[END_REF] uses distinct letters to denote these two forms of arrows.

To the best of our knowledge, it was Matthieu Picantin who first did the calculation.
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Notation 3.2.2.1. Let A be a set, and let ϕ be a map from A 2 to itself. The composite map ϕ -→ : A * → A * is defined as

Note that, in the above composition, ϕ |u|-1 is applied last; its argument is the rightmost length-two factor of ϕ |u|-2 • • • ϕ 1 (u). In particular, if u has length 1, then ϕ -→ (u) = u.

Definition 3.2.2.2. Let S e be a pointed set with basepoint 1, and let ϕ be a map from (S e ) 2 to itself. The normalisation map associated with the map ϕ is a map N ϕ from (S e )

* to itself, defined as follows:

(1) N ϕ of the empty word is the empty word;

(2) N ϕ of a word containing 1 equals N ϕ of the same word with 1 removed;

(3) and

Remark 3.2.2.3. Note that, by recursion, the computation of N ϕ (s 1 , . . . , s n ) terminates and its length is bounded by n. Namely, all the recursive calls for N ϕ are made on words of smaller length: directly in [START_REF] Birman | A new approach to the word problem in the braid groups[END_REF] and in the first case of (3); and indirectly in the second case of (3) which calls for [START_REF] Birman | A new approach to the word problem in the braid groups[END_REF]. The length of N ϕ (s 1 , . . . , s n ) is less than or equal to the length of ϕ -→ (s 1 |N ϕ (s 2 , . . . , s n )), which is less than or equal to the length of N ϕ (s 2 , . . . , s n ) plus 1.

We state anew the definition of local factorability structure on (M, S), using Definition 3.2.2.2. Definition 3.2.2.4. Let M be a monoid, and let S be a generating subset of M . A local factorability structure is a map ϕ from (S e ) 2 to itself, having the following properties:

(1) M admits the presentation

(2) ϕ is idempotent;

(3) ϕ (1, s) equals (s, 1) for every s in S; (4) for every (r, s, t) in S 3 , the equality

holds or ϕ 2 ϕ 1 ϕ 2 (r, s, t) contains 1;

(5) the normalisation map associated with ϕ satisfies

for every (r, s, t) in S 3 . By Definition 3.2.2.2, for every S e -word v, the word N ϕ (v) contains no 1. If we add to N ϕ (v) a string of 1's on the right, then the result is called an extended form of N ϕ (v). We recall a result to be used in Section 3.4.

Here, the map NF from (S e ) * to itself is defined inductively on the length of the word, as follows:

• NF of the empty word is the empty word; • NF (s) equals s for all s in S;

• NF of a word containing 1 equals NF of the same word with 1 removed; • and

Remark 3.2.3.1. Notice that there is a flaw in the above definition. Since ϕ is defined on the domain (S e ) 2 , it is not clear what should one do when one gets the expression of the form ϕ (s), where s is a single element of S. However, such an expression may indeed occur if ϕ is applied just after NF has eliminated 1 and thus shortened the word in question. For instance, take s 2 = 1. Then NF (s 2 , s 1 ) = ϕ 1 (NF (s 2 ) , s 1 ) = ϕ 1 (s 1 ) , which is not defined. This issue has been resolved by introducing Notation 3.2.2.1.

Remark 3.2.3.2. Note that, in [START_REF] Heß | Factorability, string rewriting and discrete Morse theory[END_REF] and [START_REF] Ozornova | Factorability, discrete Morse theory, and a reformulation of K(π, 1)-conjecture[END_REF], one the maps NF is called the normal form. In this thesis (following [START_REF] Dehornoy | Quadratic normalization in monoids[END_REF]), however, a normal form is a map from the presented monoid, not from the free monoid over a generating set (recall Subsection 1.2.1 on page 11). Accordingly, we do not call the map N ϕ , which is an analogue of NF, a normal form. Instead, we call such a syntactic transformation (of arbitrary words to normal ones) a normalisation map (as in Definition 3.2.2.2).

Rewriting system associated with factorability.

A rewriting system is associated with a factorable monoid in a canonical way, as follows.

Lemma 3.2.4.1 ([35, Lemma 5.1]). Let (M, S, η) be a factorable monoid. If R is the set of rewriting rules of the form

for all s and t in S such that (s, t) is not stable, then (S, R) is a confluent, strongly reduced rewriting system presenting M . Here, if η (st) = 1, then the rewriting rule is interpreted as (s, t) → st. Remark 3.2.4.2. Observe that, strictly speaking, the presentation given by the property (1) of Definition 3.2.2.4 (of local factorability structure) is not the same as the one obtained by turning rewriting rules into equations in Lemma 3.2.4.1. Namely, if st is in S (resp. equal to 1), then the former contains the relation (s, t) = (st, 1) (resp. (s, t) = (1, 1)), whereas the latter has (s, t) = st (resp. (s, t) = 1). However, one can obtain the latter from the former simply by removing the rightmost occurrence of 1, and vice versa. The associated rewriting system in Lemma 3.2.4.1 is not necessarily terminating, even if S is finite and M is left-cancellative. The reader is referred to [START_REF] Heß | Factorability, string rewriting and discrete Morse theory[END_REF]Appendix] for an example of a factorable monoid whose associated rewriting system is not terminating. The following result gives sufficient conditions for the rewriting system associated with a factorable monoid to be terminating. Proposition 3.4.1.12. Let (S e , N ) be a quadratic normalisation mod e for a monoid M . If the weak domino rule is valid for N , then N is a local factorability structure.

Proof. The following list shows that the map N has, mutatis mutandis, all the properties of Definition 3.2.2.4 (of local factorability structure).

(1) By Proposition 3.3.2.4(3), M admits the presentation

Although this presentation is not the same as the one in Definition 3. We have, thus, proved one direction of Theorem 3.4.1.2. The other one follows from Remark 3.4.1.6, as the restriction to length-two words of a quadratic normalisation corresponding to a factorability structure has all the properties of the corresponding local factorability structure and, in particular, the weak domino rule is valid. Thereby, we have completed the proof of Theorem 3.4.1.2.

The following corollary is an immediate consequence.

Corollary 3.4.1.13.

(1) Associating a factorability structure to a quadratic normalisation such that the weak domino rule is valid, and associating a quadratic normalisation (the weak domino rule is valid automatically) to a factorability structure, as given above, are inverse transformations. (2) Normal forms with respect to a factorability structure and to the corresponding quadratic normalisation are the same. (3) The rewriting systems associated with a factorability structure and the corresponding quadratic normalisation are equivalent, the only difference being dummy letters to preserve length in the latter.

Factorability in relation to quadratic normalisation of class (4, 3).

Having established a general correspondence between a factorability structure and a quadratic normalisation in the previous subsection, we are now going to further elaborate these links in the case when the quadratic normalisation involved is of class (4, 3). First we emphasise a particular, yet important, consequence of Proposition 3.4.1.12. Although the converse does not hold in general, it does so in the case of graded monoids (as defined in Subsection 3.3.1). that ϕ 212 (r, s, t) contains 1, the condition For the reader's convenience, we adapt the proof of Lemma 3.4.2.5 here, to prove Corollary 3.4.2.6.

Proof. If the assumption (3.4.5) is valid for all s in S and f in M , then the maps η 1 µ 1 and µ 2 η 1 µ 1 η 2 coincide on S × M . Composing each of these two maps with µ 2 and then composing η 2 with the obtained composite map, we see that the maps η 2 η 1 µ 1 µ 2 and η 2 µ 2 η 1 µ 1 η 2 µ 2 coincide on S × M × M . Note that the map η 2 η 1 produces the η-normal form by definition; and that the restriction of the map η 2 µ 2 η 1 µ 1 η 2 µ 2 to S × S × S coincides with the map ϕ 2 ϕ 1 ϕ 2 . Therefore, every image under ϕ 2 ϕ 1 ϕ 2 is everywhere stable by Lemma 3.2.1.9. Thus, the condition (3.4.4) is satisfied for all (r, s, t) in S 3 .

In the opposite direction, a partial result is already known. Namely, (3.4.4) implies (3.4.5) under certain (quite restrictive) additional requirements imposed on both the monoid and the normalisation. The next lemma is a straightforward adaptation of [START_REF] Dehornoy | Foundations of Garside theory[END_REF]Proposition IV.1.49]; it is also hinted in the proof of [ . We begin with the coherent presentation Qua 3 (S) and assume additionally that M is the plactic monoid P A and that S is the set of columns in A * . These additional assumptions make conditions for certain branchings of Qua 3 (S) unattainable, resulting in a simpler presentation.

To facilitate reference, we display a corollary of Theorem 4.1.1.4.

Lemma 4.3.0.1. Let A be a totally ordered finite set. Then, a word u in A * is a column if, and only if, P (u) has exactly one column.

Proof. If P (u) has exactly one column, then the maximal length of nondecreasing subsequence of u equals 1, by Theorem 4.1.1.4. Hence, u is a column. Conversely, if u is a column, then the tableau P (u) has exactly one column (equal to u) by the defining computation of P (u). Now, we demonstrate that the column coherent presentation of the plactic monoid is a special case of the coherent presentation Qua 3 (S). Proof. The idea is that, in this particular context, for some critical branchings of the (3, 1)-polygraph Qua 3 (S), there are no length-three words that meet the defining requirements for the source of a branching. Therefore, such branchings can be discarded. To facilitate the exposition, we often abuse the language and say, for instance, the branching A of Qua 3 (S) instead of 'the branching completion that makes the boundary of the generating 3-cell A of the (3, 1)-polygraph Qua 3 (S)'.

If the sources of two generating 2-cells α overlap, then the normal form of the source of the branching formed by these two generating 2-cells has to consist of a single column. Namely, if a length-three Col 1 (A)-word u v w is such that the tableaux P (uv) and P (vw) consist of a single column each, then uv and vw are columns in A * , by Lemma 4.3.0.1. Then, by the very definition of column, uvw is a column too. Consequently, no factor of u v w can be source of the generating 2-cell ν since every factor of a column is itself a column. This discards from Qua 3 (S) the critical branching that corresponds to the generating 3-cell B.

If any branch of a branching contains two consecutive generating 2-cells α, then the completion of the branching can contain no generating 2-cell ν. Namely, suppose that a length-three Col 1 (A)-word u v w is such that the tableau P (uv) consists of a single column and that P (P (uv) w) consists of a single column. Using Lemma 4.3.0.1 again, we deduce that uvw is a column. The other possibility, that the tableau P (vw) consists of a single column and that P (uP (vw)) consists of a single column, is treated in the same fashion. Like in the previous paragraph, we