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Abstrakt: Tato prace se zabyva teoretickou analyzou a numerickou realizaci diskretizovanych kon-
taktnich tloh s Coulombovym tfenim. Nejprve je pomoci pevnébodového piistupu provedena
analyza diskretizovanych 3D statickych kontaktnich tloh s izotropnim a ortotropnim Coulombovym
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koeficienty tfeni reprezentované omezenymi kladnymi spojitymi funkcemi. Pokud jsou tyto funkce
navic lipschitzovsky spojité a horni meze jejich hodnot spolu s jejich moduly lipschitzovskosti jsou
dostatecné malé, je zarucena jednoznacnost tohoto feSeni. Déle jsou v ptipadé 2D statickych kon-
taktnich uloh s izotropnim Coulombovym tfenim a koeficientem nezévislym na feSeni studovany
vlastnosti feSeni parametrizovanych koeficientem tfeni nebo vektorem zatizeni. S pomoci dvou
variant véty o implicitnich funkcich jsou ustaveny podmimky, za nichz existuje lokdalni lipschi-
tzovskd vétev Feseni na okoli daného referenéniho bodu. Nésledné je navrzen algoritmus po ¢astech
hladké kontinuace, ktery ndm umozinuje sledovat takové vétvé feseni numericky. Na zavér je uve-
dena dobfe formulovana prostorovéd semidiskretizace dynamickych kontaktnich tdloh s izotropnim
Coulombovym tfenim, kde koeficient nezavisi na feseni.
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Abstract: This thesis deals with theoretical analysis and numerical realization of discretized con-
tact problems with Coulomb friction. First, discretized 3D static contact problems with isotropic
and orthotropic Coulomb friction and solution-dependent coefficients of friction are analyzed by
means of the fixed-point approach. Existence of at least one solution is established for coefficients
of friction represented by positive, bounded and continuous functions. If these functions are in
addition Lipschitz continuous and upper bounds of their values together with their Lipschitz mod-
uli are sufficiently small, uniqueness of the solution is guaranteed. Second, properties of solutions
parametrized by the coefficient of friction or the load vector are studied in the case of discrete 2D
static contact problems with isotropic Coulomb friction and coefficient independent of the solution.
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Notation

General

Vectors, matrices and tensors will be denoted by bold letters. If a constant ¢ will
depend on parameters py, ..., ps, this will be indicated by writing ¢(py, . .., ps)-

Vectors, matrices
R, , R_: sets of non-negative and non-positive real numbers, respectively.
R?, R”: sets of all vectors in R with non-negative and non-positive components,

respectively.
u-v = (u,v) =), wiv; scalar product of vectors u = (u;), v = (v;) € R".
|u| = (u,u)"/?: BEuclidean norm in R™.

|t = max;—1 _ »|u;|: max-norm in R™.

M": set of all real square matrices of order n.

M2 ={A € M"| det A > 0}.

I, identity matrix of order n. (For brevity, we shall sometimes omit the subscript

| Al = sup,o([|Av]|/[|v]]): matrix norm in M".

A: B =) ic,;biy: Frobenius product of matrices A = (a;;), B = (b;;) €
M™.

Cof A: cofactor matrix of the matrix A (Cof A = (det A)A~7 if A is invertible).

M™™: set of all m-by-n matrices.

0,,,,: m-by-n zero matrix (besides 0,1, the n-dimensional zero vector will be
written simply 0 as well).

Sets
G- closure of a set G.
G: interior of a set G.
0G: boundary of a set G.
Ng: normal cone of a set G.
|G|: number of elements of a set G.
diam(G) = sup{||lz — y||| z,y € G}: diameter of a set G C R".

Differential calculus
In what follows, GG is an open subset of R".
ol f
DY = ———
/ Ox(* - - - 0xon
derivatives of a function f: G C R®" — R with o = (o) € N™.

, |l = a3 + -+ + a,: multi-index notation for partial
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Vi) - (52

zecd.
Vfz) = (gf (53)) € M™": gradient of a vector-valued function f : G C
R" — R™ at ¢ € G.
. _ doij , _ .
dive(z) = ( Z 6_953(32)) € R"™: divergence of a tensor field o = (0y;) : G C
1<j<n 7Y
R - M" at & € G (here and in what follows, we mean by a tensor a second-
order tensor and we identify the set of all such tensors with the set M™).
f'(x;y): directional derivative of a function f : G C R"” — R™ at the point
x € G in the direction y € R™.
df: Clarke sub-differential of a real-valued Lipschitz continuous function f.
Of: generalized Jacobian of a vector-valued Lipschitz continuous function f.

. . 2
f(t,x) = %—{(t, x), f(t,x) = aa—t{(t, x): the first and the second time derivative

of a function f: (0,7) x G — R™ at (t,z) € (0,T7) xG,T >0, G C R"™
Function spaces
Pi(G): space of all polynomial functions from G C R™ into R of degree up to k.

C(@), C*(G): space of all continuous and k-times continuously differentiable
functions from G' C R" into R.

Let G C R"™ be open.
LP(G): space of all measurable functions v : G — R such that ||v]|¢,c < 400,
where

(53)) € R™: gradient of a real-valued function f: G C R” — R at

[vllop.c = (JglvlP da)t? if 1 <p<oo,
P esssupyeq|v(x)| if p = oo.

WkP(G) = {v € LP(G)| D* € LP(G), V|a| < k}: the Sobolev space equipped

with the norm:

[0k = (Jo Djaqer Dv[P dae) 7P if 1 < p < oo,
" maxX|q|<k | Dl|o,00,c if p = oo.

HY(G) = WH2(G), [[vllke = [vlrac-

(u, )k = Z D®uD*v dzx: scalar product of functions u,v € H*(G).
e
la| <k
If X(G) stands for a space of real-valued functions defined over G, X(G;R™)
and X (G;M™), or shortly X (G), denote the spaces of vector-valued or tensor-valued



Notation 3

mappings whose components belong to X(G), for example,

LP(G;R™) = L¥(G) =
WHP(G;M™) = WP (G) =

v = (v;) | v € LP(G)},
o = (Uij) | Oij c WkVP(G)}‘

The associated norms are denoted by the same symbols, for example,

1/ .
ol g = § Crsisnlillipe) ™ i1 <p <o,
P, maxi <i<m||Villo.co.c if p = oo,

Let X be a Banach space and 7" > 0.

C1(0,T; X): Bochner space of continuously differentiable abstract functions from
[0, 7] into X.

H'(0,T; X) Sobolev-Bochner space on [0, T].

Elasticity

Continuous Setting

Q C R" (n = 2,3): reference configuration of an elastic body. In what follows,
we shall always assume that €2 is a bounded domain with a Lipschitz boundary
02 which contains three disjoint, (relatively) open subsets I'p, I'y and I'c so
that 0€) = fD U fN U fc.

u: displacement field.

o(u): stress tensor corresponding to u.

e(u) = 1/2(Vu + Vul): linearized strain tensor.

A the fourth-order elasticity tensor.

f: density of volume forces.

h: density of surface tractions.

Z coefficient of friction.

& = Diag(.%1, %3): matrix of friction coefficients .#; and %, in the case of
orthotropic friction.

p: mass density.

v: unit outward normal vector along 0f2.

u,, = w - v: normal component of the displacement vector on 0f2.

o,(u) = o(u)v - v: normal component of the stress vector o (u)r on 0S2.

Let n =2 and 7 be a unit tangent vector along I'c (orthonormal to v).
u, = u - 7: tangential displacement on I'¢.
o,(u) = (o(u)v) - T: tangential stress on [.
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Let n = 3 and 71(x) and 7T9(x) be two unit vectors from the tangent plane to
I'c at @ such that the triplet {v(x),T1(x), T2(x)} forms a local orthonormal basis
in R? for any x € I.

w; = (Ur1,Ur2), Ur;; = w- T tangential displacement on I'c.

o.(u) = (0;1(u),0.2(u)), 0,; = o(u)v - T;: tangential stress on I'c.

Discrete Setting

n.: number of degrees of freedom for displacements.

ne: number of nodes on I'w corresponding to the degrees of freedom for displace-
ments.

u: vector of degrees of freedom of the discretized displacement.

A, Ao discrete normal and tangential Lagrange multipliers, respectively.

A € M": stiffness matrix.

B,, B, € M"™: matrices representing the linear mappings which associate
with a displacement field its normal and tangential component on the contact
zone, respectively.

f: load vector.

& vector characterizing the distribution of the coefficient of friction.

M € M™=: mass matrix.



Introduction

Contact problems describing behaviour of a system of loaded deformable bodies
which may come into mutual contact have been of permanent interest in a few last
decades. It is well-known that besides non-penetration conditions, one often has to
take into account the influence of friction on contacting zones to get a more realistic
model. The most classical model of friction is given by the local Coulomb law of
friction. Although its formulation is quite simple, the model of contact problems
with Coulomb friction has not been completely understood yet.

In the framework of static linearized elasticity, which the first three chapters of
this thesis are mainly devoted to, the first existence result for the continuous problem
was obtained in [48] for a coefficient of friction .# independent of the solution.
Later, the existence analysis was extended to coefficients which may depend on
the solution itself (see [16] and the references therein). Typically, existence of a
solution is guaranteed provided that .# is sufficiently small (with additional technical
assumptions on the regularity of data). More recently, it has been proved in [52] that
if the solution possesses a certain property, .-% is small enough and does not depend
on the solution, the solution is unique. On the other hand, some examples of non-
unique solutions are known for large .# ([30, 31]).

Properties of appropriate finite-element discretizations of the problems discussed
above are somewhat more explored. It was shown in [21] that at least one solution
exists for . belonging to a large class of coefficients. Moreover, this solution was
shown to be unique if the values of .# are small enough. In [33], existence of a
solution was obtained in quite general cases when .% depends on the solution. Nev-
ertheless, the bound on the values of .%# ensuring uniqueness of the solution in [21] is
mesh-dependent, and it vanishes when the norm of the finite-element partition tends
to zero. Even for models with very small number of degrees of freedom, multiple
solutions exist and structure of solutions is relatively complicated ([35, 29]). For
models with high number of degrees of freedom, bifurcations of solutions have been
detected numerically ([25]). In addition, it was observed in these cases that a small
change of .% leads to a dramatical change of the solution.

From this point of view, study of local behaviour of solutions seems to be promis-
ing. However, as far as we know, the only results of local character have been present-
ed in [32], where existence of local Lipschitz continuous branches of discrete solutions
parametrized by .# was established under the assumption that .# is constant.

In the case of elastodynamic contact problems, which we shall focus in the last
chapter of this thesis on, some theoretical analysis is also established (see [16]).
Nevertheless, we shall confine here to the issue concerning satisfactory approximation
of these problems, which seems to be involved as well. Indeed, several strategies for



Introduction 6

constructing numerical schemes that are as much as possible stable and respect
the contact constraint have already been proposed in the literature. In [8, 20],
energy dissipative numerical schemes were built by impliciting the contact force.
However, the drawback of this method is that the kinetic energy of contacting finite-
element nodes is canceled at each impact. On the other hand, energy conserving
schemes introduced in [40, 41, 28] either lead to spurious oscillations on the contact
boundary or allow a small interpenetration. Even though energy conserving schemes
with a penalized contact condition were constructed in ([1, 26, 28]), these still evoke
important oscillations of the normal stress. In this context, it was early detected that
the key point is satisfaction of the complementarity condition between the velocity
and contact pressure in the normal direction, the so-called persistency condition
([34, 40, 1]). But a compromise has to be made between satisfaction of this condition
and the non-penetration one.

A common point of all these works is that they are focused on finding a good
time discretization scheme. However, in [38] and [53], it has been shown that it
is rather obtaining a well-posed and regular spatially semi-discrete problem that
allows for stable schemes (see also [19, 27] for further developments). The spatial
semi-discretizations proposed there allow use of any reasonable time discretization
scheme whereas almost all time discretization schemes are unstable with the standard
spatial finite-element semi-discretization. Nevertheless, these works are focused on
elastodynamic contact without friction.

In Chapter 1 of this thesis, we generalize the existence and uniqueness results from
[21] to discretized three-dimensional (3D) static contact problems with isotropic and
orthotropic Coulomb friction in which coefficients of friction depend on the solution.
In Chapter 2, we extend the local analysis from [32] to discrete two-dimensional
(2D) static contact problems with Coulomb friction where the coefficient .# depends
on the spatial variable and we establish also existence of local Lipschitz continuous
branches of solutions parametrized by loading in this case. To follow such solution
branches, parametrized either by .# or the loading, numerically, we propose an
appropriate continuation algorithm and we present its application to 2D quasi-static
contact problems in large deformations in Chapter 3. Chapter 4 concerns a spatial
well-posed semi-discretization for dynamic contact problems with Coulomb friction,
which is based on the mass redistribution method ([38]).



1 3D Static Problems with
Solution-Dependent Coefficients of
Friction

The aim of this chapter is to study discretized 3D contact problems with orthotropic
Coulomb friction in which both coefficients of friction in the directions of the prin-
cipal axes of orthotropy depend on the magnitudes of the tangential components of
contact displacement. The Signorini-type problem is considered, that is, the contact
problem between an elastic body and a rigid foundation. As a special case, analysis
of problems with isotropic Coulomb friction and a solution-dependent coefficient of
friction is attained. The results have been published in [24]. The case of isotropic
friction itself was previously studied in [45].

This chapter consists of three sections. In Section 1.1, continuous setting of both
problems with orthotropic and isotropic Coulomb friction is presented. A weak solu-
tion to the more general problem with orthotropic Coulomb friction is then defined
in two ways: as a solution to an implicit variational inequality and as a fixed point
of an auxiliary mapping ®. The discretized form of the problem is then based on
an appropriate discretization of ® (Section 1.2). Section 1.3 presents existence and
uniqueness analysis of the discretized problem. We show that at least one solution ex-
ists for any positive, bounded and continuous coefficients of friction. Assuming that
the coefficients are in addition Lipschitz continuous, we prove that the discretization
of ® is Lipschitz continuous as well. The estimate of its Lipschitz modulus is derived
in terms of the bound %, on the values of the friction coefficient matrix %, the
bound L on the Lipschitz moduli of the components of %, the condition number
of &# and the mesh norms of the respective finite-element meshes used to build the
discretized model. If Z,,« and L are sufficiently small (expressed in terms of the
mesh norms), then it is proved that the solution of the discretized problem is unique.

1.1 Problem Formulation

Let us consider a body whose reference configuration is represented by a bounded
domain € C R? with a Lipschitz boundary 9. Let I'p, I'y and Iz be three disjoint,
(relatively) open subsets of 9€) such that 9Q = I'p U Ty U T and the areas of I'p
and ['c are positive. The body is fixed on I'p, surface tractions of density h act on
I'y while a rigid foundation unilaterally supports the body along I'c. For the sake
of simplicity of our presentation, we shall assume that the rigid foundation is flat
and there is no gap between it and ['o, that is, I'c is a part of a hyper-plane (see
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Figure 1.1: Geometry of the problem

Fig. 1.1). In addition, volume forces of density f are applied to €. Our aim is to
find an equilibrium state of the body.

Confining ourselves to the framework of linearized elasticity, we seek the dis-
placement vector u : Q — R? satisfying the following partial differential equation
and boundary conditions:

(equilibrium equation)

—divo(u) = f inQ, (1.1)
where
(Hook’s law)
o(u) = Ae(u) in (1.2)
(boundary condition of place)
u=0 onlp, (1.3)

(boundary condition of traction)
o(u)v =h only, (1.4)
(unilateral condition)

u, <0, o,(u) <0, wu,0,(u)=0 onlg. (1.5)

Here, o (u) is a stress tensor, e(u) = 1/2(Vu+ Vu?) is the linearized strain tensor,
and A is the fourth-order elasticity tensor. Further, v is the unit outward normal
vector along 09, and u, = uw-v, 0,(u) = o(u)v - v stand for the normal component
of the displacement vector u and the stress vector o (u)v, respectively.

The introduced problem has to be supplied by a frictional condition on the contact
zone. Here, we shall use the local orthotropic Coulomb friction law. To this end,
let 71 and 75 be principal axes of orthotropic friction on the tangent plane to I'c
such that the triplet {v(x),71(x), To(x)} forms a local orthonormal basis in R3
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for any * € I'c. By u,, o.(u) we denote the vectors whose components are the
coordinates of u, o (u)v with respect to 71 and 7, that is, w, = (ur1,ur2), o, (u) =
(0;1(w),000(w)) with u,; = u-71;, 0., = o(u)v -7, i = 1,2. Finally, let .%; and %,
be coefficients of friction in the directions 71 and 75, respectively, which may depend
on the magnitudes of u,; and u,5 on I'c, that is, % = Fi(x, |u.1(x)|, |ur2(x)|),
x €lg, =12 We set

F (@, [ur ()], [ur(2)])

_ (F(@, [ura (@), [urs(2)]) 0 -
_( 0 %(w,\UT,l(w)I,\uTz(w)l))’ cle

(we shall write also & (|ur1], |ur2|) for short). The orthotropic Coulomb friction law
with a solution-dependent matrix of friction coefficients reads as follows:

u(x) =0 = ||F (z,0,0)0,(z,u(x)
ur(x) #0 = F -z, |ury ()], [ur2(@))o-(z, u(@

)
F (@, [ura(®)], [uro(@)ur ()
1 (@, |ura (@)], |uro(@) u-(2)]

Remark 1.1. If %, coincides with .%,, orthotropic friction reduces to isotropic one,
which can be described by one coefficient % := %, = %,. The isotropic Coulomb
law of friction with a solution-dependent coefficient of friction then reads as follows:

) < —ou(z,u(z)), =clo,
| )

(1.6)

=o0,(x,u(x)) x e I¢.

ur(2) =0 = |o-(z, u(@))]| < —F(,0,0)0,(x,u(z)), =¢clp,
ur(x) #0 = o-(z,u(z)) . (17)

, x€cle.
[ur ()]

= 7 (@, |ura ()], [uro(2)])0y (2, u(T))

Let us note that in this case, it is reasonable to assume that the coefficient of
friction .%# depends on the Euclidean norm of u, on I'¢, that is,

T (@, ura(@)], lura(@)]) = F (@, (Jura (@) + [urz(@))?), zelo, (18

for some .% defined on I'c x R,

The classical formulation of our problem is represented by (1.1)—(1.6). To give
the weak one, we introduce the following spaces and sets:

Vi={ve H(Q)|v=0a.. onTp},
V =VxVxYV,
K ={veV|v, <0ae onlg},
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X ={pecl*)Ty)|IveV:p=uvae onlg},
X, ={pe *(Ig)|Iv eV : p=u,ae. onlg},
X ={peX,|p>0ae onlg},
X, ={pc L*To)|3v eV :p= vl |vra|) ae. on ¢},

and endow X, with the norm

lelx, = inf ol

v,=¢ on ['o

By X! we shall denote the (topological) dual of X, and (.,.), will be used for the
corresponding duality pairing.

Furthermore, we shall assume that f € L*(Q), h € L*(Ty), and A = (a;)
with a;m € L®(Q), i,j,k,1 = 1,2,3, satisfies the usual symmetry and ellipticity
conditions

aijkl = aj,-kl = aklij a.e. in Q, \V/i,j, k’,l == 17 2, 3, (1 9)
Jag>0: AE£:€>apf: € ae inQ, VEecM3 £=¢". ‘

We shall also suppose that
the mapping « — (71(x), T2(x)) belongs to W' (I'; RY), (1.10)

and the coefficients of friction .%#; and .%; are positive, continuous and bounded:

F; e CTe xR, i=1,2,
(ToxR), i } (1.11)

0 < Zi(®,€) < Fnax, Vwelp, VEERY, i=1,2,

where 0 < Z .« 18 given.

The weak formulation of (1.1)—(1.6) is given by the following implicit variational
inequality:

Find u € K such that
a(u,v —u) — (o, (), [|[F (|ur|, [ur])v- )y (Z)
+ (ou(u), [F (lural, [ur2))ur )y > v —u), VveK,

where

a(u,v) = /Q.As(u) :e(v) de, u,veV,

E(v):/f-vdac%—/ h-vdS, veV.
Q Ty
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Owing to (1.9) and Korn’s inequality, a is a symmetric bilinear form that is
V -elliptic and continuous on V' x V:

Ja>0: a(v,v)>alv|ig, VveV, (1.12)
AM >0: |a(u,v)| < Mulolv|ie VYu,veV. (1.13)

Remark 1.2. In the case of the model with isotropic Coulomb’s law of friction (1.7),
the coefficient of friction .# (= %, = %) may even vanish, and the assumption
(1.11) can be replaced by

FeCTexRY), 0<F(x,€) < Fpax, VT €l VEERL (1.14)

in all the results established in this chapter. If we consider in addition (1.8) (the co-
efficient of friction depending on ||u. ||), this is obviously guaranteed by the following
assumption:

FeCloxRy), 0<.%(x,8) < Fuax, Vxelo, VEER,.

Remark 1.3. If w is smooth enough, then applying Green’s formula to (£?), we recov-
er (1.1)—(1.6). Let us notice, however, that to make sense of the duality terms in (),
one needs an additional smoothness of u, & and the mapping « — (71(x), T2(x)),
x € T, ensuring that || & (|u, 1], |ur2|)v-|| € X, for any v € V' (see [16]). To over-
come this difficulty, we shall suppose that o,(u) € L?(T¢) in what follows. Then
the duality pairing (.,.), can be replaced by the L?(T'¢)-scalar product (.,.)or., SO
(1.10) and (1.11) are sufficient.

Below, we introduce a fixed-point formulation of (&), on which the finite-element
discretization will be based. To start with, we associate with any ¢ = (¢1,p2) €
X4, g € L3 (I) the following auziliary problem:

Find u = u(p1, @2, 9) € K such that

CL(’LL,'U - u) +j(¢17 902797'07') - j(@l,gﬁg,g,’uq—) Z E(’U - ’U,), ('@(9017 90279))
VveK.

Here,

j(()p17902797v‘r) = (97 ”9(()017%02>'UTH)0,F07 (9017()02) S X7‘+7 g € Li(FC)v S V7

and L% (I'c) stands for the set of all non-negative functions from L*(I¢).

Problem (Z(p1,p2,9)) is a weak formulation of a contact problem with or-
thotropic friction of Tresca type and the fized matrix & (1, p2) of friction coef-
ficients. The existence of a unique solution is guaranteed for any (¢1,92) € Xy,
g € L2 (T.) due to the equivalence of this problem to a convex minimization problem
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(see [17, Chapter II]). This enables us to define the mapping ® : X4 x L3 (Tv) —
X, x X, by

@(@1,@2,9) = (|UT,1|7 |u7',2|) _Ou(u))u (@1,@2) S XT+7 g € Li—(rc)7

where u solves (2 (1, p2,9)) and o, (u) is the corresponding normal contact stress.
By comparing problems () and (£ (1, 2, g)), it is readily seen that if the triplet
(|tural, [tr2], —0w(w)) is a fixed point of ® in X, x L2 (I'v), then w is a solution to
(2).

Let (¢1,92) € X4 and g € L3 (I'v) be fixed and A, be the cone of non-negative
elements in X :

A, ={peX | (), >0 Ve X, }

To release the unilateral constraint u € K, we introduce the following mized formu-
lation of (Z(p1,2,9)):

Find (u, \,) = (u(p1, 92, 9), Au(@1, 92, 9)) € V x A, such that

a(u,v —u) + j(p1, 2,9, v7) — j(¢1, 2, 9, ur)
>lv—u)—(A\,v, —u),, YveEV,
</~1’I/ - )\I/’U’I/>V S O, v,ul/ € AV'

(A (p1,02,9))

It is known that (.Z(¢1, 2, ¢9)) has a unique solution for any (p1,p2) € X4, g €
L2 (I'c). Moreover, u solves (Z(¢1,¢2,9)) and A\, = —o,(u) as follows from the
Green formula ([2]). This gives an equivalent expression for the mapping ®:

(1, 92,9) = (Jural, [ur2l, ), Ve, 92) € Xy, Vg € L3 (I0) (1.15)

with (u, A,) being the solution of (. (1, p2,9)).

1.2 Finite-Element Discretization

This section deals with an approximation of problem (&), which is based on a fixed-
point formulation for an appropriate discretization of the mapping ®. This is done
with the aid of (1.15) and a mixed finite-element discretization of (. (1, @2, 9)).

Let V", L be the following polynomial Lagrange finite-element spaces corre-
sponding to some partitions 72 and 91{{ of  and T, respectively:

V= {o" € OQ) [v" |1 € Pr,(T), VT € Z3 & v" =0 on T'p},
"= {u" € L*(To) | 4" % € P,(R), VR € Zill}.

Here, K1 > 1, Ky > 0 are integers and h, H stand for the norms of the partitions
T and %g , respectively. Only what we suppose at this moment is that Z is
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compatible with the decomposition of 02 into I'p, I'y and I'c. In general, %IC{
is different from ﬂﬂh\fc, but the case when they equal each other is not excluded.
Further, we set

V=V x Vi v

X"={g" e C(Te)|3v" e VI oM =" on Te},
X! ={p" e X"|¢" >0 on I},

A =" e LP | " > 0on Te}.

Clearly, V" and A will serve as natural approximations of V' and A, respec-
tively. In what follows, we shall suppose that the following condition is satisfied:

(W el” & (0", =0, VoheV" = =0 (1.16)

This makes it possible to endow the spaces L and X" x X" x L with the following
(mesh-dependent) norms:

H h
HIUHH*,hiz sup w
ozonevi (0" [lo
Il h i llnscmsen = 1ot )l + il

Remark 1.4. Let us briefly mention two examples of the discretizations posited above.

(FEl) %Ig - %h‘fc’ K2 = Kl, LH = Xh.
Condition (1.16) is always satisfied.

(FE2) K; =1, Ky = 0.

In this case, (1.16) is fulfilled provided that the ratio H/h is sufficiently large,
that is, the partition ! is coarser than J'|r,, (see [22]).

For (o, b, g™) € X" x X x A given, we introduce the following discretization
of problem (. (¢1, 2, 9)):

Find (u", \) = (u" (¢}, 04, g™), \E (o, o5, ™)) )
cVhx A,{{ such that
a(u",v" —u") + (et o, g™ vt — (el el gt ul) (M (0, 05, g™))
> (o —u) — N " —u)or., Vo' e VI
(uf — )\fauﬁ)O,Fc <0, Vel )

By reformulating (5,1 (¢, ¢4, g)) as a saddle-point problem, condition (1.16)
ensures that (., (0%, 4, g")) has a unique solution (u”, \¥) for any (¢}, o4, g'7) €
X" x Xh x A (see [17, Chapter VI)).
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Furthermore, by inserting pff := 0,2\ into the second inequality of problem
(M (o, 08, g™)), it is readily seen that

N wor, =0 & up e KM= {v" € VM (1), 0))ore <0, V| € AT},
Therefore, u” solves the following variational inequality (confer (2 (1, ¢2,9))):

Find u" = u"(¢!, ¢}, ") € K" such that

a(u”, v" —u) + (et ot g™ o) — (P el gt ul) (P (e, b, ™))

> ((v" —uh), Vo' e KM,

Notice that K" is an external approximation of K, that is, K"¥ ¢ K. On the
other hand, A is an internal approximation of A,,.

Next, we define a discretization of ®. Let rj, : H'(I'v) — X" be a linear interpo-
lation operator preserving positivity:

(pe H'(Ic) & ¢ >0ae onlpy) = rpe X! (1.17)
and possessing the following approximation property:
ElcTh >0: “90 - ThSOHO,FC < CTthcHSOHLFCJ VQO S Hl(FC> N X7 (118)

where hr, := maxp, pan diam(F). With such 7, at hand, we introduce the mapping
C

Ppp o X x X AT — X0 x Xh o A by

np (0l 0h, g™) = (ruful |, rulul o, AT,

where (u”, \) solves (M, (%, o, g™)).

Definition 1.1. Any couple (u”, A7) € V" x Al is called a solution of the dis-
cretized contact problem with orthotropic Coulomb friction and solution-dependent
coefficients of friction if (rp|ul |, rp|ul o], Af) is a fixed point of @y, that is, (u", A])
solves (M (rnlul |, mhlul o], A1)

1.3 Theoretical Analysis of the Discretized Prob-
lem
We shall establish existence as well as uniqueness of a solution to the discretized

problem introduced in the previous section. In addition, we shall investigate, how
the uniqueness result depends on the size of the problem.
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1.3.1 Existence Result

The existence of a discrete solution will be done by using fixed-point arguments.
First, we state two auxiliary results, the first one being a minor modification of
Lemma 3.3 in [43]. Recall that &, = (§,1,&2) with &, =& -7, 1 =1,2.

Lemma 1.1. If ¢ € HY(To) N X then || € HY(To) N X and

1M re < 1€]1re-
Lemma 1.2. If (1.10) is satisfied, then & € H'(Tg;R?) for any € € H'(I'¢; R?)
and there exists a constant ¢, > 0 such that
1€ lure < crll€lhre, V&€ H (T RY).

Proof. Since I'¢ is supposed to be a flat part of 02, we may assume without loss
of generality that T C R? x {0} (otherwise, one can introduce an appropriate
orthonormal transformation of coordinates). The proof is then straightforward. [J

With these results at our disposal, we shall show by using the Brouwer fixed-point
theorem that &,y has at least one fixed point in the set

C (R, Ro) = {1, o5, 1) € X x XU AT |1 (o1, ¢5) llore < Ra&e ||| < R}
for appropriate Ry, Ry > 0.

Lemma 1.3. Let (1.9)-(1.11) be satisfied. Then there exist Ry, Ro > 0 such that
@y maps X" x X x AT into €(Ri, R,).

Proof. Let (¢}, @b, g") € X x X! x Al be given and (u”", M) be the solution to
(M (O, 5, g™)). Inserting v" := 0,2u” € K" into (Ppu (e, b, g™)), we get

a(u’, u") + j(p1, o5, g™ ul) = ((u"), (1.19)
which together with the non-negativeness of j implies that

.
[u[lr,0 < ﬂ—geQ. (1.20)

Here ||.||..q stands for the dual norm in (H'(€2))’ and « is the constant from (1.12).
Invoking (1.18), Lemmas 1.1 and 1.2,

1rnfuz ol valuz o) llore

< gl = fuzy | rnl o

— [l oD llo.re + I(uly ], [l 5D lo.xe
< enhr [ (uly | Jul 5D e + 1w o

< enhrg [l + [l llors < enerhrg U1 + " flor
< (chaeryer + 1)l

< (0 e+ 1)||u"|10, (1.21)

inv

0,I'c
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where ¢2) is the norm of the trace mapping from H 1(Q) into L*(09) and cmV

the constant from the inverse inequality between the H'(I'c) and L*(I;)-norms for
functions belonging to the finite-dimensional space X" x X" x X"

L0)

19" |1 < V' € X' x XM x X" (1.22)

In view of (1.20) and (1.21), the radius R; is of the form

iy (el CruCr + 1)

Rl Rl( l(ivo 7C7’huc§r)7cT7a7£) =

€]l
Furthermore, one can see from (5 (0%, @5, g")) and (1.19) that
a(u", ") +j(1, ¢, g™ 07) 2 60" = (N up)ore, Vo' e V.
Introducing the subspace
Vi ={v"eV"|v"=0o0nTg},
one obtains
a(u” v") = (") — (AT M), Vo' e VI
from which, (1.13) and (1.20),

(>‘ ) )OFC E( h) CL( h7 h) ( h h
v Uw)ole _ v < 1+—M)£*, Vol e VI 1.23
[0 ]l1.0 [v"]l1.0 o €l ° (1.23)

To complete the proof, one may assume without loss of generality that [ C R?x {0}
(otherwise, one can introduce an orthonormal transformation & : R?* — R? such that
O0(T¢) € R? x {0} and proceed with Ov") and set

V= {v" = (v oh o) e VIl =0l = 0in Q) ¢ VI

Then
/\H )\H h
H)‘rflu*ﬁ = sup ( ) u)O,FC sup ( v 7:3)0:FC
0£vheVh [v"]]1,0  0tvhevh vz ]]1.0
_ sup <)\VH7 V)O,Fc sup ()‘1{{’ u)O,Fc
orvhevy V' lLe T openevy VM0

From this and (1.23), one can take

M
Ry = Ro(M, , () := (1 + E> 1€1]+.-
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Remark 1.5. Let us notice that at this moment the partitions .7 and ;! are fixed

and the constants ¢,, and =% in (1.18) and (1.22) may depend on h. Later on, we
shall consider .7 and 7! as elements of systems {75}, {7}, h, H — 0+, and
we shall formulate conditions on these systems under which the constants do not

depend on h.

Lemma 1.4. The mapping ®py is continuous in X" x X" x A¥ provided that (1.9)-
(1.11) are satisfied.

Proof. Let (o, ob® gfk) (oh b g7y € Xm x X" x AH |k € N, be such that
Rk  _hk : .
(901 7902 7ng> - (SoiLagpgagH) m Xh X Xh X LH7 k — +OO,

and (u* A#) be the solutions to (m(p1F, b, g™)):

a(“’h’ku vh - uh7k) + ](90111’]67 90]217]67 gHJCu U?) - j((p?kv @g’k; gH,k, ’u’frl’k)

> f(vh — uh7k) — (Af*,vﬁ - Uﬁ’k)oyrc, Vol e VR

() = N ore <0, Vil € AL

v ) —

As we know from the proof of the previous lemma, both sequences {u*} and {1k}
are bounded. Thus, one can find {u"*} C {u*}, {\TR} C {A\T#} and " € V",
M e A such that

uth sl in VAR N g T oo,

Let v" € V" and pff € A be arbitrarily chosen. Taking into account the
equivalences of all norms in the finite-dimensional spaces involved, one can easily
verify that

a(u"™, vt — ™) — f(v" — ™)+ (N0 — o
ase a(u v" —u") — (" —u") + N —u)or,

v 124
.o hky  hki  Hk ..k o bk bk Hkpo, o bk
Jer™ o™ g ul) — gl eyt g ult)

l—+o00 . .
—>—> ](@?,ng,gH,UiD_](SD?,SOS,QH,Uﬁ),

H Hk, , hk =+ H H _h
(/LV - )‘y y Uy, )O,Fc ? (,UV - )\V auu)O,Fca

which shows that (u”, \) solves (i (¢%, o4, g™)). Since this problem admits a
unique solution, the original sequences {1} and {\Z*} tend to u” and M.

Furthermore, from the positivity preserving assumption (1.17) and the linearity
of rp,, it is readily seen that

(U] = )| < rpfulf —uly| on Te, i=1,2, k € N.
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Therefore, arguing as in (1.21), one gets
hok hok
[ (rnluzy s raluza]) = (ralup | raluf 2D llore
hok hok
< N (raluzy — |yl — o)) llore
< (¢, e+ D[ —ulig, keN, (1.24)
and the limit passage k — +oo completes the proof. O

We have arrived at the following existence result.

Theorem 1.1. If (1.9)-(1.11) are fulfilled, then the discretized problem given by
Definition 1.1 has at least one solution.

1.3.2 Uniqueness Result

Applying the Banach fixed-point theorem, even uniqueness of the discrete solution
can be ensured. Nevertheless, to establish the Lipschitz continuity of ®,y, we shall
need an additional assumption on &, namely

dL >0:
|.Fi(x, &) — Fi(x,&)| < L||E —&||, Vxecle, VEEC ]Ri, i=1,2. (1.25)

We start with a useful technical result. The matrix norm ||.|| is induced by the
Euclidean vector norm here and in what follows.

Lemma 1.5. If & satisfies (1.11) and (1.25), then it holds for any u", a" € V"
and any (1, %), (P1,¢4) € X x X1 that

I1F (o1, en)azll = 1 (01, e )urll — (1F (@1, en)az || — 1 (), @5)ur )|
< L2+ 6(F) (o1, ¢3) — (21, 85) | g — az]| onTe, (1.26)

where

. -1 _ ma’x{f/\l(wv 6)7 ﬁg(ﬂ% €>}
K(F) = fgrlzllf(w,ﬁ)ﬂ | (2, &)l = P min{ 71 (z, £), Pa(x, €)}
£eR% £eR?

Proof. For x € I'c, uh,uh € V" and (¢}, oh), (o8, @h) € X x X" given, set

= g (x),

@ = (p1,92) = (v1(@), 23()), P = (1,92) = (91 (2), 73 ()

u; (),

T
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and define the function h := GoFo H : R — R with H : R — R? F : R? — R?
and G : R? — R introduced as follows:

H(r)=¢+r(p—¢), rek,

(ﬁl(wvglvéé)?y?(m7517£2)) ifOSél?&Q?
(yl(wafho)wg.?(wafbo)) 1f€2<0§£17
(,951(:13,0,52),,952(58,0,52)) if 51 <0 S 527
(ﬁl(a:,(),()),ﬁg(:c,o,())) if §17§2 < 07
G(&1,&2) = ||Diag(&y, §o)ul| — [|[Diag(&r, §2)ull,  (§1,6) € R?.

Obviously, A is Lipschitz continuous in R and the left-hand side of (1.26) at the point
x equals |h(1) — h(0)]. From the Lebourg mean-value theorem, it follows that there
exists 7 € (0, 1) such that

F(€17€2) = (F1<€17£2>7F2(£1,fg)) =

h(1) — h(0) € Oh(7),
where Oh denotes the Clarke sub-differential of i (see [11, Chapter 2]). So it suffices
to estimate |6| for any 6 € Oh(r) and any r € (0, 1) fixed.

As both H and G are continuously differentiable, Chain Rule II for the Clarke
sub-differential Oh and the chain rule for 9(Go F') viewed as the generalized Jacobian
imply that

Oh(r) C (VH(r))"0(G o F)(H(r)),
0(G o F)(H(r)) = (8F (H(r)))" VG(F(H(r)))
with @F standing for the generalized Jacobian of F'. Thus, any 6 € 0h(r) is of the
form
0=(VH(r)" Z"VG(F(H(r)))
for some Z = (%! 22) € OF (H(r)).
Suppose first that w,w # 0. If it is so then
(VH(r))"Z" = (1 — &1)211 + (02 — B2) 212, (01 — P1) 221 + (02 — B2)220),
(€1, G2) VG(&1, &)
_ Diag(gla 52)1]’ } Diag(Ch CQ)’E’ _ Diag(&h 52)11’ ) Diag(Ch C2>u
| Diag(&1, &2)ull IDiag (&1, &2)ull

and consequently,
_ Au-Bu Au-Bu

0 — it
|Aul | Aul

with

A := Diag(Fi(p+1(p— @), Fa(@+r(e — @),
B = Diag((gpl — ¢1)z11 + (2 — P2) 212, (1 — P1) 221 + (2 — 952>Z22)'
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Clearly,

Aﬁ-B(ﬁ—u)‘ Aﬁ-Bu_Aﬁ~Bu‘ ‘A(ﬁ—u)~Bu
| Au |Au] [Au [ Aul

In virtue of the inequality ||u|| < ||A™'||||Aw| and the fact that both A and B are
diagonal matrices, one has

0] <

‘ =: 81+ S2 + S3.

[ Au) (Bl —wl _
< _
_[(Au Bu(|Aul - [Aal)| _ |Aul|B] lul | Au — Au] A7
[AufAu] | [ Au] fu]
< IBI Al — ] | A7 < 5() | B] 2w — 3],
B(u—u)- Au ~

= < — .

o= | P A < B -

Furthermore, let z; denote the ith row vector of Z. Then ||z;|| < L because z; €
OF;(H(r)) and the Lipschitz modulus of Fj is less than or equal to L by (1.25). Thus,

= ; < <
1Bl = max{[(p1 = ¢1)zi + (92 — P2)zel} < maxizill o — @l < Ll — &ll.

Combining the previous estimates, we get

0] < L2+ s(F))lle — ol [[u—ul]. (1.27)
To complete the assertion, let u = 0 # w. In this case,
Au - Bu
o= [ar| < 1Bl -0l < Llle - @l Ja - .
| Al
that is, (1.27) holds as well and so it is for u = 0. O

Remark 1.6. In the case of isotropic friction with non-vanishing coefficient of friction
Z, one has k(&) = 1 and the previous result leads to

17 (61, ea)arll = |7 (), en)ulll = (17 (21, @2 )azll — |7 (81, &2)uzl))]
< 3LI|(¢Y, %) — (@1, @) || luf — @l|| on Te
for any u”, uh € V" and any (¢%, oh), (¢4, o8) € X! x X! provided that (1.25) is
satisfied. Nevertheless, the estimate can be easily improved in this case. Indeed,
7 (1, en)arll = |7 (1 en)ulll = (17 (21, @5 )ap]l — |7 (81, @5)url))]
= |7 (o1, o) (Il = lluzll) — Z (&), @) (]l — [luz )]
S LH(()O}lL?(pg) - (@17@2)” HuT - 'U;:LH on PC'
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In addition, this shows that the coefficient .# is allowed to vanish.
Furthermore, let us mention that in the case of (1.8), (1.25) holds under the
following assumption:

IL>0: |[F(x,&)—F (28| <LIc—¢&|, Vaeely, VEEER,.

Proposition 1.1. Let (1.9)—(1.11) and (1.25) be satisfied. For any Ry, Ry > 0, ®pg
is Lipschitz continuous in € (Ry, Rs):

Jer, e > 00 [[Prm (@), 05, ™) — @un(@l, @5, ™) xnxxnxrn
Fmax | L(2+ K(F)) h _h
< max{ c1, R } , O, , Do
\/ﬁ 1 \/m 2412 ”(901 ¥2,9 ) (901 902 )HthXhXLH

V(@?,@g,g ) (9017@27 ) € Cg(Rl?RQ) (128)

Proof. For (47, ¢%,g™), (&1 @S,QH) € €(Ry, Ry), denote by (u", \[), (u", \]]) the
solutlons to (%hg(w ,gp’g Yy and (M, (@Y, @8, g)), respectively. Inserting v :=
ah ¢ K" and v" := u" € K" into (Pu(oh, ok, g™)) and (Pu(@h, @5, g'7)),
respectively, we have

a(u”, w" —u") + (ot o5, g7 al) — (e, b, g™ ul)

>
a(@", u" —a") + (@), @b, g ul) — (), 25, 5" al) >
Summing both inequalities and using (1.12), we arrive at
allu® — a7,
a(u" — ", u" —ah)
(et o5, g™ al) — (et o, g™ ul) + (@), 25, g, ul) — (el @5, g al)
= (9", IF (1 o)y — I (o1, e5)utll) o 1
— (" & (@, p)alll — [ F (@) @)urll) o,
= (9" = g | (o1 en)ar| = |1 F (1 on)upl) o,
+ (g7 IIF (A1 e)al|| — | (@1, 5 )ul|
~(IZ (g1, ¢)ar] — 1 (1 @)url)) o
=: 5] + S9. (1.29)

<
<

The first term can be estimated as follows:

81 S ||gH - gH 1 90}21>’a’¢ - ‘?(SO}IL? (P}Ql)uﬁu HO,FC
= 19" = g™ lloxe [ (o1, e5) (@) — ul)lore < Fmaxllg™ = 5 [lore 2" — "o

Fnax (0,-1/2) (2)1 .1
Cim Cir 1.30
\/ﬁ inv t Hg ( )

< 7"

*,h”ah —Uu
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where c( ) is the norm of the trace mapping from H'(Q) into L*(09) and 012 4

mv
the constant from the equivalence of the respective norms in the ﬁnlte—dlmensmnal
space L
(0,-1/2)

I o < 220

Further, from the previous lemma,

vt e L (1.31)

s2 < L2+ K(F)NT" oo || 117, ¢5) — (&1, @)l 1wy — a2l ||, r,
< L2+ 5(F)) 7" loro [u" — @ [locorell (1, 93) — (&1, 23)llore.

Due to the equivalence of norms in X" x X" x X" namely

(OO)
14" o,00r0 < e " loare, Vo'e XM x XM x X" (1.32)

=

> 0, and the continuity of the trace mapping from H*'(Q)

into L*(9€2), whose norm is denoted by céf)

(00

with an appropriate cmV

, one obtains

(00) (4)

_ G _
[u® = @"{Jo.core < "= lu — @10
hr..
Using (1.31) once again, we get
0-1/2) 0.-1/2)
HgH < Zinv ||§H|l*,h S inv RQ,

VH
making use of the definition of € (R;, Ry). Therefore

VH

L2+ K(F)) 0,-1/2) (o o )
53 < — 22 D D Ry (8, 0h) — (1, @) "l (1.33)
hr, H
The inequality (1.29) together with (1.30) and (1.33) implies that
Ju" — a1 0
Z, L(2 + k(&))
< max~ o H>|< + &R h’ hy 7h’7h
SN g™ = g™l By 2|l(07 03) — (@7, P5)

Lirﬁx~ L(Q—i-fi(y)) }H(W’fa@;vg ) — (@0, &%, G || xnsxr

< max{
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with
(0,—1/2) (2)
= (0, o2 )
«
(0,—1/2) (o0) (4)
&y = 62( fgv—1/2)7cl(§\<;)7 53)7 ) — Ciny inv Ctr '
«
Following the steps in (1.24), one can see that
(rafu o ralu o)) = (ralal |l ol ore < eff (el emer + 1)||ut — @10

Finally, the last components of ®,5 are treated similarly as in the proof of Lem-
ma 1.3. The relations

a('u,h,vh) = K(vh) ()\f, V)(),Fc, Vol e VSL,
V4

a(ihv h): (vh) ()\II,{’ V)O,FC7 V’UhGVéL
give
T =X olor, = a(@" —u", o), Vo' e VI,
||>\H_5\H|| = sup (AH )‘1{]7 V)O,Fc < Sup (AH )‘1{{7 I/)OaFC
A [v"[]1,0 T ophevi [v" 10
_p h .k
ala” —u", v B
= sup ULV vt a g
orohevy V"o
Thus, setting
cr = er(coy P e o d? er, M) = (e () enyen + 1) + M) 2y,

e = ealcqp e e e el e en Ma) = (e (e en e 1) + M)és,

mv

we have

H(I)hH(SOiLﬂOza ) thH(SO179027 )||thxthH
= [l | ralult o) = (raltl o | el o) lore + A = Al [l s
< (e (e erer +1) + M) [u — "1 g
Fnax L2+ kK
§max{ \/ﬁch (\/—(»CQRQ}”(SOMQO% ) (90179027 )HXhXthLH

]

Taking R; and Ry from Lemma 1.3, we obtain the following uniqueness result.
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Theorem 1.2. If (1.9)-(1.11) and (1.25) are satisfied with sufficiently small Fax
and L, then the solution of our problem in the sense of Definition 1.1 is unique. In
addition, it solves (Mynu (@Y, o4, g™)) where the triplet (o, o5, g") € X x X" x AH
15 the limit of the sequence generated by the method of successive approximations:

Let (07, ¢5°, ") € X! x X" x Al be given;

for k=0,1,... set
(e oy ™ gt = @ ()", 05", g™
for any choice of (10, b gH0) € Xhx Xhox A

Proof. Consider Ry and Ry given by Lemma 1.3. In view of (1.28), @5,y is contractive
in €(Ry, Ry) for Z . and L small enough. The assertion now follows from the
Banach fixed-point theorem. [l

So far, we have assumed that the partitions Jg' and Ji{ are fixed and the

(0-1/2)  (L0) (o)

constants ¢, 7, ¢, and ¢,, may eventually depend on h and H. In what
follows, we present sufficient conditions under which these constants do not depend
on the mesh norms. To this end we shall consider systems of partitions {7} and

{7} for h, H — 0+. We shall suppose that

(i) {735} and {4}, h, H — 0+, are regular systems of partitions of Tc: that
satisfy the so-called inverse assumption ([9, (3.2.28))]);

(ii) the Babugka-Brezzi condition is satisfied for (V" L¥):

H . h
38 >0: sup —W Uy Jore

h Z ﬁ”:uHH*,ch \V/,LLH S LH, Vh,H — O+,
0#vheVh [v" |10

where ||.||«r. is the dual norm in X, (recall that the duality pairing between
X, and X/ is realized by the L?(Tz)-scalar product in the discretized case):

(MH>%0)0,1“
|1 lre = sup ~————C

. optel H—0+4;
0#£peX, HLPHXV

(iii) the interpolation operator 7y, is such that ¢,, in (1.18) does not depend on hr,.

From (ii), it is readily seen that

Bl llvre < Ml < Nl

which means that the mesh dependent norm |.||., can be replaced by the dual
norm ||.||.r. in all the previous estimates. In addition, taking (i) into account, the
constants from the inverse inequalities (1.22), (1.31) and (1.32) are independent of
hr.,H (see [9]). For this reason, neither Ry, Ry from Lemma 1.3, nor ¢y, ¢y from
Proposition 1.1 depend on hr,, H.

wre, Vpt e L Vh H — 0+,




13D Static Problems with Solution-Dependent Coefficients of Friction25

Remark 1.7. Let (i)—(iii) hold and k(&) be bounded. To guarantee the uniqueness
of the discrete solutions for h, H — 0+, we need the parameters %, and L to
decay at least as fast as v H and . /hr. H, respectively.

Following Remark 1.6, if one considers isotropic friction, one can replace the
assumption (1.11) by (1.14) to obtain an estimate analogous to (1.28) with 1 instead
of the term (2+ k(&)). This ensures that the given conditions on the decay of F .
and L remain valid under the satisfaction of (1.14), (1.25) and (i)—(iii) in this case.
In particular, if .# does not depend on u, that is, L = 0, the classical result from
[21] is recovered.

At the end of this section, let us briefly comment on the satisfaction of (ii) and
(iii). It is shown in [3] that the Babuska-Brezzi condition is satisfied for (FE1) if
K, = Ky = 1. In the case of (FE2), it is satisfied provided that the ratio H/h is
sufficiently large and the auxiliary linear elasticity problem:

Find w, € V such that
a(wy,v) = (u,v,),, YveV

is regular in the following sense: there exists € > 0 such that for every p € X/ N
H~Y2+(T}), the solution w, belongs to H'**(Q)) and

|wpll14en < cle)||pll=1/2+4er0

holds with a constant ¢(¢) depending solely on e (see [22]).

To give an example of the interpolation operator ry, satisfying (1.17) and (1.18)
with the constant ¢,, independent of hr,, we suppose that I'c is polygonal and TenTh
is either empty or a union of non-degenerate segments, that is, containing no isolated
points. Moreover, let {%h\fc}, h — 0+, be a regular system of triangulations of
Tc such that any two triangles from Z)h\fc are either disjoint, or have a vertex
or a whole side in common. If we still suppose that {72} is compatible with the
decomposition of 02 into I'p, I'y and I'c then we can take the following Clément
interpolation operator [12] (with K; = 1)!:

Let {x;}1<i<n, be the set of all contact nodes of ZJ, that is, the nodes of ZJ!
lying on o'\ Tp, and {(; }1<i<n, be the corresponding Courant basis of X". For each
i € {1,...,n.}, denote the support of p; by A; and define 7; : L2(4A;) — Py(4;) by

(@)= a7 [ 05, @€ A pe 1A

n fact, the approximation property (1.18) is shown in [12] assuming that either TcNIp =0
or the whole relative boundary of I'c belongs to I'p. However, the same argumentation is valid also
for the case considered here.
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where S(4;) stands for the area of A;. Then r, is defined as follows:

me =Y (mp) (@), @ € LX(Tc).

1<i<ne

Conclusion

This chapter has been devoted to the existence and uniqueness analysis of solutions
to discretized contact problems with orthotropic and isotropic Coulomb friction and
coefficients of friction depending on the magnitude of the tangential contact displace-
ments. The discrete solutions have been defined as fixed points of a mapping acting
on the contact part of the boundary. It has been shown that at least one solution
exists for coefficients of friction represented by positive, bounded and continuous
functions (which may even vanish for isotropic Coulomb friction). Uniqueness of the
solution has been guaranteed provided that these functions are in addition Lipschitz
continuous and upper bounds of their values together with their Lipschitz moduli
are small enough. As a consequence we have obtained a justification of the method
of successive approximations, which is widely used in numerical simulations of con-
tact problems (for its application to problems with solution-dependent coefficients
of friction, see [45, 24]).

Unfortunately, the bounds guaranteeing the uniqueness of the discretized solution
are mesh-dependent and they have to decay in an appropriate rate depending on the
mesh norms. This dependency can be understood in two ways:

e If the matrix & is fixed then passing from coarser to finer meshes, one may
loose unicity of the approximate solution.

o If finite-element meshes are fixed, then setting &, := {&, £ > 0, one can find
&t > 0 such that the discretized model has a unique solution for £ < &5 and
eventually multiple solutions if & > &.;. This behaviour has been observed in
computations ([25]).



2 2D Static Problems

Unlike in the previous chapter, we focus mainly on local behaviour of solutions in
the present chapter. For this purpose, we restrict ourselves to a discrete 2D Signorini
problem with isotropic Coulomb friction and a coefficient of friction depending solely
on the spatial variable. The forthcoming results are accepted for publication in [44].

Our exposition is organized as follows: In Sections 2.1 and 2.2, the studied discrete
formulation is introduced. At the beginning of Section 2.3, it is proved, in accordance
with the previous chapter, that the considered problem admits always a solution,
which is unique provided that the values of .# are below some sufficiently small
bound % ,.x. The remaining part of Section 2.3 then deals with qualitative analysis
of the solutions. First, we regard the solutions as a function of .# and we show that
this function is Lipschitz continuous with respect to all coefficients whose values are
bounded by Z.x. To get results of local character, we reformulate our problem
as a system of generalized equations and we use a corresponding variant of the
implicit-function theorem. We shall see that there exist local Lipschitz continuous
branches of solutions parametrized by .% around some reference point if there are
local Lipschitz continuous branches of solutions parametrized by the load vector f
around this point. For this reason, we shall consider the solutions to be a function of
f for .# fixed thereafter. Again, we show that this function is Lipschitz continuous
provided that the values of .# are lower than .#,,,,. Further, we reformulate our
problem as a system of piecewise differentiable equations and we use a version of
the implicit-function theorem corresponding to this case. In this way, we arrive
at a condition which ensures existence of local Lipschitz continuous branches of
solutions with respect to f. Finally, Section 2.4 illustrates our general approach on
an elementary example whose solution structure is known analytically.

2.1 Problem Formulation

The classical formulation of the problems considered in this chapter consists of the
following partial differential equation and boundary conditions:

—divo(u)=f inQ,
o(u) = Ag(u) in Q,

u=0 onlp,
o(u)y =h on Ty,
u, <0, o,(u) <0, wu,0,(u)=0 onlg,

27
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ur(x) =0 = |or(z, u(z))| < —F ()0, (z, u(z)),
u, () xcle.

ur(x) #0 = or(w,u(z)) = ﬁ(w)au(w,U(w))m,

The notation is the same as in the previous chapter. The only change is that 2
is a bounded, Lipschitz domain in R? and the tangential displacement u, and the
tangential contact stress o, on I'c are defined by u, = uw-7 and 0, (u) = (o(u)v)- T,
where T is a unit tangent vector along I'c, in this case.

To present the weak formulation of this problem, we introduce the following
spaces and set:

Vi ={ve H(Q)|v=0ae onIp},

K ={veV|v, <0ae onl¢g},

X, ={Ce *To)|FveV: (=uv,ae onlg}
X, ={Ce*Ty)|3veV:(=uv ae onlg}

and denote the (topological) duals of X,, X, by X/, X’ and the corresponding
duality pairings by (.,.),, and (.,.),. Moreover, we set

a(u,v) := /Q.Ae(u) : e(v) de, u,veV,

((v) :—/f-'vda:—i—/ h-vdS, veV.
Q Ty
The primal variational formulation reads as follows:

Find u € K such that

a(u,v —u) — (Fo,(u), |v;| — |u]), > l(v—u), YvelkK. } (#)

Similarly as in the previous chapter, we consider an equivalent mixed variational
formulation of the problem. In this case, it involves two Lagrange multipliers — not
only the one releasing the unilateral constraint but also another one regularizing the
non-smooth frictional term:

Find (u,\,, \;) € V x A, x A.(F,—),) such that
a(u,v) =L(v) + (A, v)y + (A, 0r),, YV EV, (A)
(o — Aoty + (e — Arur)r >0, V(p, ptr) € Ay X A(F,—=)N).

Here, the Lagrange multiplier sets A, and A,(.%#,—)\,) are defined by

A, ={w € X, | {p,v,), >0, Vv e K},
Ar( T =N) = A{r € X | (e, vr)r = (=F A, o)y <0, Vo € V]
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and A, and \; represent o,(u) and o, (u) on I'c, respectively.

In this chapter, we shall study the following discrete problem with Coulomb
friction coming from a discretization of problem (.#) (an example of an appropriate
finite-element discretization is exhibited in the next section):

Find (u,A,, A;) € R™ x A, x A (&, —A,) such that
(Au,v) = (f,v) + (A, B,v) + (A, B;v), VveR"™,
(1, — A, Byu) + (p, — Ar, Bru) 20,

Vi, 1) € Ay X A (F,—N).

(M(f,F))

In order to simplify notation, we use the same symbols for algebraic variables as for
the corresponding continuous functions. By (.,.) we denote the scalar product, by
A € M" n,, being the number of degrees of freedom of displacements, the stiffness
matrix, which is supposed to be symmetric positive definite:

(i) A= AT,

2.1
(i) Ja>0: (Av,v)>a|v|? VveR™. } (21)

The matrices B,, B, € M ™ where n, is the number of nodes on I'c corresponding
to the degrees of freedom for displacements, represent the linear mappings associating
with a displacement vector its normal and tangential component on the contact zone,
respectively. Hence, we assume that

(j) the Euclidean norm of each row vector of B, B, is equal to one,

(jj) each column of B,, B, contains at most one nonzero element, (2.2)

(7)) Bom, + Bip, =0 <= (p,, p1,) = (0,0) € R*™.
Note that (jjj) holds if and only if there exists 8 > 0 such that

(IJ’I/7 BVU) + (IJ’T7 BTU)
sup
0#veRr ]l

> Bl (s o)l ¥ (1, 1) € R2 (2.3)

Further, &# = (.%;) € Rl characterizes distribution of the coefficient of friction,
f € R™ stands for the load vector and

A, = R",
AT(y7g) = {I'LT = (/’LT,i) € R" ’ |,u‘r,i’ < gz\zgza Vi= 17 s 7”0}7 gc Ric

In a similar way as in Chapter 1, we shall employ an equivalent fixed-point
formulation of (M(f,%#)) at the beginning of our theoretical analysis. For this
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o)
I'c

T I rigid foundation

Figure 2.1: Special geometry considered in the example of discretization

reason, we associate with any g € R’}® fixed the auxiliary problem:

Find (u,A,, A;) € R™ x A, X A (&, g) such that
(Au,v) = (f,v) + (A, B,v) + (A, B;v), YveR"™,
(1, — A, Byu) + (1, — Ar, Bru) >0,

V(1) €Ay X A (F, g).

(M(f,Z,9))

Again, (M(f,&#,g)) corresponds to a contact problem with given friction and
applying results from [17, Chapter VI|, one can verify that it has a unique solution
for any g € R}* provided that (2.1) and (2.2) are satisfied. Hence, one can introduce
the mapping ® : R™ x R’ x R* = R’ by

(D(f,f7g) ==y, (2'4)

where A, is the second component of the solution to (M(f,#,g)).
It is readily seen that the triplet (u, A,, A;) solves (M(f,F)) iff it is a solution
of ( M(f,Z,—X,)), that is, —A, is a fixed point of ®(f, F,.):

O(f,F, —A)=—-A,.

2.2 An Example of Finite-Element Discretization

For better understanding, we shall describe in this section an example of discretiza-
tion of (.#) leading to problem (M(f,#)) posited in the previous section. This
example has been already presented in [39]. For simplicity, we assume here that
F € C(T¢) and the coordinate system is chosen so that v = (0, —1) and 7 = (1,0)
along ['c (see Fig. 2.1).

Let .7, be a partition of € that is compatible with the decomposition of 9 into
I'p, I'y and T'c and V" be the following polynomial Lagrange finite-element space of
degree K > 1:

Vh={" e C(Q) V"1 € Px(T), YT € F & v" =0 on I'p}.
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We set
Vi =Vixvh
K" :={v"c V| (y,) <0, Vi=1,...,n.},
Xbo={"eCTy)|3v" e V": (" =v" on ¢},
Ay = {p € X¢ | G, v)ore 20, Vo' € K'Y},
AR(F, XY 1= {pdt € X | (v )ore — (— A ru(F 1 Dore <0, Vo' € VA,

T

where {y, }1<i<n, is the set of all nodes on I'c corresponding to the degrees of freedom
of V" and 7, denotes the Lagrange interpolation operator into X2.
Then the approximation of (.#') reads as follows:
Find (u", \', M) € V" x A" x AM(#, —\") such that

v T

a(uha vh) = g(vh) + (Agvv{j)ofc + (/\27 vﬁ)U,Fc7 vvh € Vh7

(Mﬁ - AZU;}/L)O,% + (/Ji.l - )\?, U?)OIC > 07
Y (ty: 117) € Ay X AZ(F, X)),

(A1)

For obtaining the algebraic formulation, let {@;}1<i<n, /2 be the set of all nodes
corresponding to the degrees of freedom of V", {¢i}1<i<n. 2 be the set of shape
functions of V" such that

(bi(mj):(sij; i,jzl,...,nu/Q,
and {@,}1<i<n, be the set of the shape functions of V" of the form
o [(050) iTi=2i—1,
C(0,0;) ifi=2j,

Further, let © : {1,...,n.} — {1,...,1,/2} be the mapping linking the local and
global numeration of the nodes on I'c so that

J=1,...,n4/2.

yi:m@(i)a izl?"'anm
and {n; }1<i<n, be the set of the shape functions of X2 of the form
i = Pe6)|g,-

We introduce the algebraic representatives v € R™, pu. € R" of arbitrary
v e V' b € X[ as follows:

v = (v;) such that v" = Z v, (2.5)

1<i<ng

pe = (nei), o = (e mi)ore- (2.6)
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It is worth mentioning that unlike the representative v of v", p is not the com-
monly used representative of u% consisting of its coordinates with respect to the
corresponding finite-element basis. Though, the mapping uf +— po defined in this
way is an isomorphism between X2 and R"™. Indeed, if one defines

B = (Bij) €M™, Bij := (n;,1;)010,
fic = (fici) € R™ such that p¢s = > ficm;
1<i<nc

then the matrix B is regular as it is the Gram matrix of the basis functions 1y, ..., 7.,
the mapping u% +— fi. is the commonly used isomorphism between X2 and R and

Hci = (7% Z ﬁajﬁj) = (BI]’C)M =10,
, 0.Tc
1<j<ne
Moreover, we set
=) eR™, fi:=Ue,), F = (F) eR™, F;:= F(yy),
A= {p, € R [ph € A}, A&, -A) = {p, € R |uT e Aﬁ( 7, A},
where pl, u, At € X2 are the functions represented by m,, ., A, € R™ according

o (2.6), respectively. Obviously, the expressions of the Lagrange multiplier sets
introduced in this way can be simplified as follows:

AV = {l’l’u € R" ’ (/.LZ,T]Z‘)OIC S O, Vi= 1, Ce ,nc} = Rﬁc,
AF =2 = { e € R oore + (N Y2 Zolelwdlm),

1<i<ne e
<0, Vol e Vh}
= {MT € R" ’ |/LT,]‘| S —gj)\y,j, V] = ]., ce ,nc}. (28)

To see the last equality, consider g, € R" from the set in (2.7) and j € {1,...,n.}.
Taking v" € V" with v = (u",n;)0r.n; in (2.7), one obtains

2.7)

(213 r0 + (N F NI m3)ore ), <0,
w7+ Tl g < 0.
On the other hand, any u" € X2 represented by . from (2.8) satisfies

(. bore = (ke D wblwm), = Do vhwdies <= X ()]

1<i<ne ’ 1<i<ne 1<i<ne

= (N X Fwlhiln) . vote VI

1<i<ne e
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Finally, we define

A = (Ay) € M™, = a(g, ¢ )s B, = (B,;;) € M""™ B, ;; := =),
B, = (B.;;) € M" n"> Brij = 020(i)-1,
so that
(B,v); =v"(y,), (Bv),=v"y,), Vo'eV" i=1,. n.
Due to our special geometry,
hoh

(1, vy )ore = (Mﬁ:( Z Uiq&i)”)o,l“c = Z Uz(ﬂw Z 52@(])1771) e

1<i<nag 1<i<nq, 1<j<n,

= Z V; Z By,jiﬂy,j = [,I,V,BV'U)7 VMV € XC? V’Uh S Vh,

1<i<n,  1<j<nc

(1l v8)ore = (“27( > Uiqji)T)orc: 2 <MT’ 2 S 1’mj)o,rc

1<i<ny, ’ 1<i<ng 1<j<ne

- Z i Z BT,jiMﬂj = (l*l‘-r’BTv)a V,UT € XC? Vo' e V.

1<i<n.  1<j<nc

All in all, the algebraic transcription of (.#},) is exactly (M(f,%F)).

2.3 Theoretical Analysis of the Discrete Problem

As a preparation for the analysis of (M(f, %)), we shall study the discrete problem
(M(f,&,g)) with given friction first. Let f € R™ and &#,g € R} be given
and (u,A,,A;) be the unique solution of (M(f,&#,g)). From the inequality in
(M(f,%#,g)) and the definitions of A,, A.(Z,g), it follows that

A, B,u)=0 & we K:={veR™|B,v <0},
AoBau)= it (p.Bau)=— Y FglBal,

A (&,
1 €A (ZF.9) 1Sien,

where the inequality B,v < 0 means that (B,v); <0 for any i = 1,...,n.. Thus,
taking the equation in (M(f,&,g)) with v := v — u, one can easﬂy Verify that
solves the following variational inequality:

Find v € K such that
(Au,v —u) + Z 9@%(’(37”)1" - ’(Bfu)il) > (f,v—u), (P(f,Z.9))

1<i<ne

Vv e K.
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The next two lemmas summarize some other useful properties of the problem
with given friction. Recall that |.|| stands for the Euclidean vector norm as well as
for the corresponding matrix norm and ||.||» denotes the max-norm for vectors. The
mapping ¢ was defined by (2.4).

Lemma 2.1. Let (2.1) and (2.2) be satisfied. Then for any f € R™ and any
F.g € R, the following estimates hold for the solution (u, Ay, ;) of (M(Ff,F,g)):

lull < ==, (2.9)
(A, AP < 17 (H + 1), (2.10)

where [ is the constant from (2.3).
Proof. Inserting v := 0 € K into (P(f,%,g)), one gets

—(Au,u) = Y Figil(B-u)| > —(f,u).

1<i<n,

Using (2.1), one has

allul* < (Au,u) + Y Figl(Brw)i| < (f,u) < [ fll]lul,

which yields (2.9). To prove (2.10), we employ the equation in (M(f,#,g)):
(A, Byo) + (A7, Byv) = (Au,v) — (f,v) < [[A]l[lullllv] + [ fllllv]l, VveR™.
This, (2.3) and (2.9) lead to
A, B,v)+ (A, Brv
Bl A < sup Qe Brt)t (n Brv)

0FveRn ]l

< llaful + 11 < 4l g,

]

It is worth mentioning that both bounds (2.9) and (2.10) are independent of Z#
and g.

Lemma 2.2. Assume that (2.1), (2.2) hold and f € R™, 9,?,9,@ € Rfc. Let
(u, Ay, Ar), (@, Ay, A) be the solutions to (M(f,#,g)) and (M(f,ZF,q)), respec-
tively. Then

ol < Zlepg gy 9l gy 2.1)
N RN [ VY [
O e PR TR L L IERE)
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In particular, if F = ZF then

Al oo
af

that is, ®(f,&,.) is Lipschitz continuous in R’*.

1A =Xl < lg — gll, (2.13)

Proof. Inserting v :=u € K in (P(f,%#,9)) and v:=u € K in (P(f,&,g)), we

have

(Au,u—u)+ Y Fgi(|(Bra)| - |(Bru)il) > (f @ —u),

1<i<ne

(Aw,u—a)+ Y Zg(|(Bru)il - |(Bra)l) = (f u—a).

1<i<n,e

Summing both inequalities and using (2.1) and (2.2), we arrive at

aflu — alf?
< (A(a—u),a—u) < Z (Fig9i — Zigi) (|(Brw)i| — |(Bru),|)
1<i<n,
< > 1 Filg - )l|(Bra - Bu)| + Y |(Fi — )3l |(Bra — Byu),|
1<i<n,e 1<i<n,e

< 1#l<llg - gllla — u| + |# - Flxlgllla —u].

which leads to (2.11). B

The difference between the equalities in (M(f,#,g)) and (M(f,&,g)) results
in
(A=A, Byo) + (Ar = Ar, Bro) = (A(u—a),v) < |All|lu—zu|[v], VveR™
From this and (2.3), it follows that

(A = Av, BLv) + (A, — X, B,v)

Bl = A, Ar = A < sup < lAllllw —ul,
0AveRmu v
which together with (2.11) completes the proof. ]

Let

ul| <R}, R>0.

The following theorem guarantees existence and under an additional assumption also

uniqueness of the fixed points characterizing the solutions of the discrete contact
problem with Coulomb friction (M(f,F)).
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Theorem 2.1. Suppose that (2.1) and (2.2) are satisfied. For any f € R™ and
any F € R, there ezists at least one fized point of the mapping ®(f, F,.). All the
fized points are contained in B, (R) with R = ||f||/8- (|| All/a+1). In addition, the
fized point is unique provided that ||&F ||« < af/[All.

Proof. Making use of Lemmas 2.1 and 2.2, this follows from the Brouwer and the
Banach fixed-point theorems. O]

Corollary 2.1. Let (2.1) and (2.2) be satisfied. For any &F € R, ||F|lw <
aB/|All, and any f € R™, (M(f,&)) has a unique solution (w,A,, A;). In ad-
dition, —X, = g where g € R is the limit of the following method of successive
approximations:

Let g° € R”¢ be arbitrarily chosen;

for k=0,1,... set
gt =0(f,F.g").
Confining ourselves to & such that ||&F|e < Fnax for an arbitrary . €
[0,a8/||Al|), we shall show that the solution of the contact problem with Coulomb

friction is a Lipschitz continuous function of & . For this purpose, we define a
mapping 75 : R’* — R" x R™ x R" for a fired f € R™ by

n of
S (F) = (u, A\, A), F R, ||F|x < TA]"
where (u, A, A;) is the unique solution to (M(f,F)).

Theorem 2.2. Let (2.1) and (2.2) be satisfied and let f € R™ be arbitrary. Then
for any Fanax € [0, af/||A||) there exists v > 0 such that

|75(F) = (PN <NEF = Flloo, VE,F €RE, [Flloos [|F oo < Finax:

Proof. For given Fi.x € [0,a8/||A]|) and F . F € R with || F ||, | | < Finaxs
let (u, Ay, A;) = S5 (F), (u, A, A;) := S (&F). Further, let {g*} and {g"} be
sequences such that

g’ = g° € R’ are arbitrarily chosen so that ||g°|| < 171l (” | + 1), (2.14)
a
gk+1 = ¢(f7§’gk>7 gk+1 = (b(f797gk)7 k:1727"'

From Corollary 2.1, we know

lim g" = —X,, lim g"=—-\,.

k—o0 k—o0
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First, (2.12) and (2.14) give

T =1y 0y Z 0 1Alllg°| g
lg” —g'll =[12(F.#.9") - &£, F. )l < = IF = Flle

LALIF1 (1Al 1 _ ;
<EE (o H)IF - Fla=dF - Fl (215

with ¢ := [|A|||| fII/(aB?) - (JJA]|/a + 1). From (2.10), (2.12) and (2.15), it follows:
lg® —g*ll = |®(f, #.9") — ©(f. F.g")|

All|Z _ A
< IAllZ] Ig" 1H+H Hllg ||”9 Z..

af
<qlg"—g'll +CII9—9|IOO < (cq+0)||9 — Z |,

where ¢ := Pnax||Al|/(af) < 1 by assumption. Thus by induction,

16" — g < | F - Fll +dllg" — G|
<e|F - Fllow +alct+cqg+- +cd"HF - Fllso

Letting £ — oo, we obtain

A = Al < (2.16)

Taking (2.11) with g := —X, and g := —X,, using (2.16) and Theorem 2.1, we see
that

F A
W, 5+ 2oy g

(e s s

Finally, (2.12) with g := —\, and g := —\, together with Theorem 2.1 and (2.16)
ensures

lu—af <

I = Al < glld = Al + ]l F - Fllw <

]

In what follows, we shall focus on local behaviour of solutions to the discrete
contact problems with Coulomb friction. To this end, we restrict ourselves to & with
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positive components solely. On the other hand, no upper bounds will be imposed,
that is, & will belong to the set .« defined by

of ={F cR"™

Fi >0, VZ:L,TLC}

Furthermore, we introduce alternative formulation of the discrete problems with
given and Coulomb friction in which the Lagrange multiplier set A.(.) does not

depend on & .
Let & € &7, g € R'* be given and set

A (g) ={p, e R™||ps| < g, Vi=1,...,n.}.

As an alternative to (M(f,#,g)), a mixed formulation of the problem with given
friction reads as follows:

Find (u, A, A;) € R™ x A, x A,(g) such that

(Au,v) = (f,v) + (A, B,v) + (FA;,B,v), VveR"™

(1, — A, Bou) + (F(p, — A7), Bru) > 0,

v(l"'l/?lJ’T) € AV X AT(Q))

where F = F (&) := Diag(.%1,..., %,.) € M".

Clearly, the triplet (w,A,,A;) solves (M*(f, &, g)) iff (u,A,, FA;) is a solu-
tion of (M(f,#,g)). Hence, the existence and the uniqueness of the solution to
(M*(f,&,g)) is still guaranteed.

In the same spirit, we rewrite the discrete contact problem with Coulomb friction
as follows:

(M*(f,#,9))

Find (u,A,, A;) € R™ x A, x A (=) such that
(Au,v) = (f,v) + (A, B,v) + (FA;,B,v), YveR"™,
(1, — Aos Byw) + (F(a, — Ar), Brw) > 0,

V(ty, 1t,) € Ay X A (=)

(M (f, &)

Due to the one-to-one correspondence between the solutions to (M*(f,#)) and
(M(f,&)), the existence and uniqueness results remain valid.

Next, we derive another equivalent formulation of the contact problem with
Coulomb friction. Let f € R™ be fized and let (u,\,, A;) be the corresponding
solution of (M*(f,&)). The inequality in (M*(f,&)) can be replaced by

—B,u € Np, (X)) and —FB;u € No (-x,)(Ar),

where Np, (¢t), Na,(-x,)(p) denote the normal cones of A, and A.(—X,) at p € R",
respectively. Consequently, the solution of (M*(f,&#)) can be characterized as a
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solution to the following system of generalized equations:

Find y € R™*?" guch that } (2.17)

0c Cy(ZF,y) +Qy),

where Cy : o x RMwH2me — Rrut2ie gpd Q : R™wt2me = R™ 2" gre the single-valued
continuously differentiable function and the set-valued mapping defined by

A -BY -B'F\ [u f
Ci(ZF,y)=| B, 0 0 A =o],
FB. 0 0 A, 0
0
Qly):=| Na(A) |,

Na,(=x) (A7)
Fcd, y:=(u A, RwTe
respectively.
Interpreting % as a perturbation parameter and following the technique used in

[4], we shall analyse this system according to [55] (see also [15]):
Let Z#° € & be a reference point and let y° € R™*2% be such that

0cCrZF°y")+QY°).

Let us define the multi-valued mappings .7 : & = R™*?"% and Xy : R™" =
R7ut2nc by

’jf*(g) — {y € Rnu+2nc
D(€) = {y e R

0 Ci(&F y)+Qy)}, & e, (2.18)

£ € Ci(Z° )+ V,Cr(Z° ")y —v°) + Qy)},
£ c Rnu+2nc7

where V,C;(ZF°,y°) stands for the gradient of Cy with respect to y at (F°,y°).
In other words, .7 (&) is the solution set of (2.17) for a given coefficient F € &/
and the load vector f € R™. Furthermore, X ¢(&) is the solution set to a perturbed
generalized equation obtained by partial linearization of C¢(&,y) in (2.17) with
respect to the second variable around the reference point (F°, y°).

The following generalization of the implicit-function theorem holds ([15, Theo-
rem 5.1]).

Theorem 2.3. Assume that there exist: a single-valued Lipschitz continuous func-
tion ¢y from a neighbourhood W of 0 € RPut2ne jnto R™+2ne gnd a neighbourhood
Y of y° such that

65(0)=9° and  ¢p(€) =Tp(E)NY, VEeW.
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Then there exist neighbourhoods U and Y of F° and y°, respectively, and a single-
valued Lipschitz continuous map op : U — Y with

o F) =y’  and  op(F)=SF(F)NY, VF U

Let us mention that if @ = 0, the single-valuedness of X ¢ in a neighbourhood
of 0 in the assumption of the previous theorem corresponds to the non-singularity
of V,C; (£, y°). Hence, Theorem 2.3 is a generalization of the classical implicit-
function theorem.

Next, we analyse the assumptions of the stated theorem. Obviously, X () with
€:=(¢,,€,,¢& ) € Rt is the set of all y = (u, A, \;) satisfying

0=Au— B'\, - BIF\, - f - €,
0€ B,u—£&,+ Na, (A, (2.19)
0€ F'B.u—& + Na.a)(A),

where F* = F°(£°) := Diag(.#{,...,.%. ). Substitution

=u(5,) ()
w . =Uu— fOBT 57_ s
where ( B

B, )+ denotes the Moore-Penrose pseudo-inverse of ( T]?ET), leads to the
following transformation of (2.19) provided that (2.2) is fulfilled:

0=Aw - B\, —-BTF'\, - f+ A B, \" (& —&
— v\ T T j:OBT €T w? 220
0 € B,w+ N, (\), (2.20)

0e fﬂBTw + NAT(—AV)(AT)-
Indeed,

Bw\_ (B, \ _ (B B, B, \" (&
FBw) \FB.)Y \#B,)" \#B,)\#B,) \¢.
. Bl/u_€1/
T \F'Bu-¢, )

Comparing (2.20) with (2.17), one can readily seen that the triplet (w, A, A;)
satisfies (2.20) iff it is a solution to (2.17) with the coefficient Z#° and a new load

vector &,
n
A (§)
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being a perturbation of f. That is,
(w, A, \;) € 5’5}(?0),

where .7 (F?) is defined by (2.18) with f := & and &F := F°.
To summarize the result, we now introduce for a fired # € & the set-valued
mapping Sj : R™ = R"=2" by

S3(F) = {y € RMur

0€Cs(ZF.y)+Qy)}, feR™

Theorem 2.4. Let us suppose that (2.2) is valid and Sz, has a local Lipschitz
continuous branch containing y° in a vicinity of f € R™, that is, there exist: a

single-valued Lipschitz continuous function @go from a neighbourhood O of f into
R *2 and a neighbourhood Y of y° such that

O and  pgo(€)) = Spl€)NY, VE €O0.

vzo(f) =y

Then there are neighbourhoods U, Y of F°, y°, respectively, and a single-valued
Lipschitz continuous function op : U — Y satisfying

op(F°) =y° and op(F)=SF(F)NY, VF el

Proof. One can easily verify the assumptions of Theorem 2.3 for

&) =po(s-a () (8)ve)+ (#5.) (&)

T

with some sufficiently small neighbourhood W of 0 € Rm«+2nc, O

The previous theorem says that the analysis of local dependence of solutions to
the discrete contact problem with Coulomb friction on & can be converted to the
analysis of local dependence of the solutions on f. For this reason, we shall focus
on the study of the set-valued mapping f — Sz(f), f € R™, for F € & fized
hereafter.

To start with, using the same technique as in the proof of Lemma 2.2, one can
get the following auxiliary result.
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Lemma 2.3. Let (2.1) and (2.2) be satisfied and let F = (F;) € . f e
and g,g € Rl be arbitrary. If one denotes the unique solutions of (M*(f,#,q)),
(M*(f, F g)) by (w, A, X;) and (@, A, \,), respectively, then

ZF || _
fu—al < L - pi 12y g (2.21)
A|l|lZ || _
A, —A||<ﬂ(“ ”+1)||f i+ A g g, (222)
_ A A& _
= Al o ()i = g B gy gy 2

where Fpin 1= Min_y . F;.

.....

Next, we shall suppose for a moment that all components of the fixed # € &
are strictly bounded by af/||A|| from above, that is, # € % with

af

0<% < ——,
Al

= {5? € R™

Vz’zl,...,nc}.

Then S is single-valued on R™ for any such & according to Corollary 2.1. Owing
to the previous lemma, it can be proved in a similar way as in Theorem 2.2 that Sz
is even Lipschitz continuous on R™.

Theorem 2.5. Assume that (2.1) and (2.2) are satisfied and F € B is arbitrary
but fized. Then there exists 4z > 0 such that

195 (£) = Sz (H) < 4= f = £I. V£, feR™

From here, we arrive as an illustration of application of Theorem 2.4 at a result,
which is analogous to Theorem 2.2.

Corollary 2.2. Let (2.1) and (2.2) hold and let f € R™ be arbitrary but fized.
Then S5 s locally Lipschitz continuous in 9, that is, for any FO € A there exist
a neighbourhood U C B of F° and ~vgo > 0 such that

175 (F) = F (P < 920llF = Fll, VF,F €U

At the rest of this section, we shall suppose again that # € .o/, i.e. no upper
bounds on & are imposed. Our aim is to analyse the mapping f — Sz (f), f €
R™ for such & fixed with the aid of the implicit-function theorem for piecewise
differentiable functions presented in [56] (see also Appendix).

For this purpose, we formulate the discrete contact problem with Coulomb friction
as a system of non-smooth equations. Let r > 0 be an arbitrary parameter and
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feR™ Ify = (uA, ) € Sz(f), that is, (u, A, X;) solves (M*(f,F)), the
inequality in (M*(f,&#)) multiplied by (—r) gives:
(My,i - )\l/,i)<<AI/ - TBvu)i - )\l/,i) S 07 1= 17 sy Ny vl"’y S A'I/J (2 24)
([LTJ‘ _)\T,i)<<AT_TBTu)i _>\~r,i) S 0, 7 = 1,...,”0, Vl,l,T c AT(_AV). .

Since A, € A, and A, € A, (—A,), the equivalent expression of (2.24) is
A,, = PAV()\V — TB,,’U,), AT = PAT(—AV)(}‘T — TBT’U,>.

Here, Py, : R™ — A, and Pj_(_,) : R"™ — R" are vector functions with the
components

(Pa,)i(p) = Pr_(1i), 1=1,...,nc p € R™

Posag () if A <0,
(PAT —Av )Z(#’) = S . ’ v = ]-7 sy Ney BE Rnc?
( : _‘P[_)\u,iy)\u,i] (MZ) if )‘V,i > 0,

where Pr_, P_¢ g stand for the projections of R onto R_ and [—(, (], ( > 0, respec-
tively. It is readily seen that P, is the projection of R™ onto A, and Pa_(_y,) is
the projection of R™ onto A,(—A,) whenever A, € A,,.

Let H : R x RMut2re s Rut2ne he defined by

Au — BZAV - sz:k'r - f
%<'f’ y) = AV o PAu(AV - TBVU’) y Y= ('U:, >\V7 AT) S R?’Lu-&—an.
Ar = Pa (-x)(Ar = rBru)

Then for any f € R™, y € Sz(f) if and only if y solves the following problem:

H(Fy) =0 (229)

We shall view this problem as an equation parametrized by f and we shall verify
the assumptions of the above mentioned implicit-function theorem. First, we shall
demonstrate that H a piecewise differentiable function. Obviously, it is continuous.
Moreover, let (f°,4°) € R™ x R*ut2re 40 .= (4% AY A?)) be an arbitrarily chosen
vector. To construct a set of selection functions for H at (f°,y°), we introduce in a
similar way as in [5] the following index sets (see Fig. 2.2):

By ={ie{l,....n}| (/\0 —rB,u’); <0},

Find y € R™*?" such that }

Ry" ={ic{l,....n} |\ —rB,u’); >0},
I"(y°) =i e {1,...,n.} | (A} —rB,u’); = 0},
IF(y") = {ie {l,....n} [ (A = rBru®); < =\,
I-(y°) ={ie{l,....n}|(\) = rBu®); > |\),},
L(y") = {i e {1,....n}[|(A] = rBru’)i| < |>\ il}
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0 0
Avi Avi T
A2 = rBru®);| < XD

A\ —rBLu0); >0

(A2 —rBruf); > A0 |
(2 —rBrul); < —|20 | ’ T

(B,ul); A2 — rBrud);
A\ —rBLu%); =0

()\g —rB,u%); <0
102 = rBu®);] < AO,,|

()\2 —rB,u%); =20

v,

()\9_ —rB,u%); = 7)\8”3

Figure 2.2: Partitions corresponding to the index sets

(¥") :={ie{l,...;n} (N —=rBu’); = A},

(y°) == {ie {L,...,n} |\ = rBul); = -2},
J (") ={ie{l,....n}| A, <0},

(y"):={ie {1,...,nc}|/\gvi:0},

(¥°) =={ie{l,...,n |\, >0}

Remark 2.1. To interpret the sets defined above, let us suppose for a moment that
y° solves (2.25) with the load vector f°. Then

i€ I3(y’) < (Bu’);=0& \); <0 (strong contact),
iell(y’) < (B,u’);<0&\); =0 (no contact),

ieIY(y’) <= (Bau');=X),=0 (weak contact).
Analogously,
ieIf(Y) = (Bu"); >0& N, =\, (slip)
S )

i€ I-(y") = (Bu) <0& A\, = -\, P

i€ IX(y°’) <= (B,u’); =0& [X),| <—)\), (strong stick),
i€ (Y’) = (Bau')i=0& A\, =\, :

o0 0 0 o (weak stick).

i€l (yY) = (Byu);=0& )\, =\,

Let 1Y~ C I¥(y°), It C I*"(y°) and ¥~ C I (y°) be arbitrary sets. For
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such sets, we shall denote
I o IO\ T2, T D () \ T, 1 1 () \ 1
Furthermore, we shall associate with them the sets

T TTT)

= {(fy) € B X R
(A, —rB,u); <0, Viel', (A, —rByu); >0, VieI"", (2.26)
(A —rByu); > \,;, Vi€ I“’++ (A —7Byu); <\, Vie IV,
(A —rByu); < =X\, Vie I, (A, —rByu); > —\,;, Vie [V}

IV AN

and the functions H
are defined by

: R x RPut2re 5 RMut2re whose components

Jw— Iw++ Jv——

HE T y) = (Au— BIA, —BTFA — f);, i=1,....n. (227

e pwtt e r(Byu); ifie I3(y°)ulv,
M (fy) = { A( ) i IBE?;(); U I (2.28)
Hiv ol ()
(r(Bu); if i€ (I(y*) VI uL—)nJ (y°)
U= 0 J%y’),
2 —rByu); ifie (IE(y°)UIrt—ul»=H)nJt(y")
B U(IE+ NI 0 J0(y0)), (2.29)
(A=) ifi € LF(y°) U (L nJ (y") Uy nJ (y")
U N IrT N J%y0),
(Ar + )i if i € I7(y) U (L~ " N J(y°) U (L nJ*H(y?))
\ U(I»=*t N I1vn Jo(y%).

Then one can easily verify that there exists a neighbourhood W of (£°,4°) such
that:

(CSAN A o

((F,y),
V(f,y) € W ({(F°,y0)} +aW ),

Now, consider all possible combinations of I~ C I¥(y°), I*** C I**(y") and
I~ C I (y°) and their total number denote by n,. One obtains the collections IT

H(f, y) =
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and {HWY, ..., H™)} of subsets of R™ x R™+2% and functions from R x R w+2ne
into R™*27 respectively:
V€ NI C IN(y'), I C I (y?), I C I (") :
= W(ny’wﬂ’wﬁ), (2.30)
Vie{l, .. on} 30T C LYY, T C (), T C I (Y°)
HO) = HETETLETT) iy Roe x Rret2ne(2.31)

From the construction, it immediately follows that there exists a neighbourhood W
of (f°,y°) such that:

Vroell 3. € {1,...,ns}:
H(f,y)=H") (f.y), Y(fy9)eWn{(f2 9"} +7). (2.32)

This implies that H is a continuous selection of HW, ..., H ™) and consequently a
piecewise differentiable function in some sufficiently small neighbourhood of (£°, y°).
Let us note that if y° is such that I (y°) = I**(y°) = ¥~ (¢°) = 0, then n, = 1,
7= {R™ x R™+27} and HY = H in some neighbourhood of (£°,4°), that is, H
is even differentiable therein. Otherwise, we claim that II is a conical subdivision of
R x RPut2ne,
Indeed, let 7 = &1 7)€ 11 be given. Let us introduce the functions
O {1 Oy = 1),
w—+,.0
0y WL IOy~ 1),
w—,. 0
Oy W {1 (O = ()
such that
VieIl(y") 3j € {L.. "} e () =
Vie " (y?) 35 € {1, 120} e @) =i,
Vie I () 3j e (L. 1L ()} O V() =i
where || stands for the cardinality of a set I. With the aid of these functions, we
. ) Iw++ Jv—— w(,,0 w0 w— (.0
define the matrix B% 1717 7) e MY @O @O (0] 2nut2ne |y

[ R s s I (01, (=7Bo)is (In.)i; 01,) if i€ 1Y,
J . (Ol,nua (TBI/)N (_ITLc)i7 017nc) le € ];U+7

- w O - . 'll)
i=0W WG =1, 1P, (2.33)
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B¢

J

PN AN s N (01,s (rBr)is (In)i, (—1n,,);)  ifie I¥TH,
. (01 N3 T‘BT> ( Inc)iy (Inc)z) if ¢ c ]:_U—i__,

(
(—

i= O WG 1O, = 1O + L, IO + [T (y0)], (2.34)
(—r
(rB

eI (01 T B.);, (I,.):, (In)z) ifie I,
’ . (01 N ) ) ( ne )iv <_Inc)l) ifie€ I:-U_+7
. P~ (y° . w w
i=0y" WG — 1) - 11 (),
J= 1O+ 1O+ 1, L O+ 12 ()] + 11 (6], (2.35)
Here B; denotes the ith row vector of a matrix B, 0,,, stands for the m-by-n zero

matrix and I,, represents the identity matrix of order n.
Then we have

N e e {(f,y) € R x RMu+2ne

BW TN <f) < 0}, (2.36)
y) S
where the inequality is understood componentwise. This shows that 7(/» /7 P

is a polyhedral cone with vertex at 0 € R™ x R™™2"%_ By the assumption (2.2),
B TETUETT) g full row-rank matrix and one can find a vector (f,y) € R™ x

Rut2ne with B(I;U_’HJH’I;U“)(g) < 0. Hence, the dimension of the linear hull of

AT T equals (21, + 2n.).

The union of all cones in II covers R™ x R™=*2% a5 we consider all possible
choices of I~ I"** and I~ ~. Finally, the intersection of any two cones m =
W(I;%’I;UH’I;U"), 7= g TR e 11 takes the form
N7 ={(f,y) € R™ x R+

(A, —rB,u); =0, Vi (I nI*")u I niv),
i <0, Viel* " NnI", (A, —rByu); >0, Vie I*" NI,
Aoi, Vi€ (I AT ) u (I n e,
Mg, Vi€ IVt n et
Ao, Vi€ I vt
= N\, Vie (I NI HuIrtnr),
N\, Vie I nIv
Ay Vi€ IV NI

>
Bl

|
N
o
3
2

|

IV IA

Whenever m and 7 are distinct, at least one of the sets I})~, I** or I'"~ does
not coincide with ¥~ I¥** %=~ respectively, and the set above forms a common
proper face of both cones.
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Next, let n; denote the dimension of the lineality space of II. According to
the assumptions of the previously mentioned implicit-function theorem for piecewise
differentiable equations, either 2n, + 2n. — n; < 1 needs to be satisfied or there has
to exist a number k € {2,...,2n, + 2n. — n;} such that the kth branching number
of IT does not exceed 2k.

The lineality space of any cone 7 = 7 17" 177"

{<f 1Y) € R x Riwt2ne | BUST T (5) —o}

) € II is the subspace

with BE 0T ¢ VI @OIHET @O @) 20u+2ne defined by (2.33)-(2.35)
(confer (2.36)). The full row rank of any BT
anteed by (2.2) yields that the dimension of the lineality space of and
of I1, as well) is equal to (2n,+2n.— (| 1Y (y°) |+ 14T (y°)|+[I¥~ (y)])). Consequently,
the condition 2n.,, +2n.—n; < 1 is equivalent to | I (y")|+|I1** (y°)|+|I¥~ (y°)| < 1.
If it is not satisfied, we assert that the other condition holds with & = 2. Indeed,
the 2°¢ branching number of II is the maximal number of cones in II containing a
common face of dimension (2n, + 2n. — 2). Having in mind (2.2) and (2.26) with
(2.30), each such face can be written as

{(f.y) € R x Rm*2n
A —rBu); =0, Vie I (A, —rB,u); <0, Vie I" \ I",

A —rB,u); >0, Vie I\ I (A, —rB,u); = \,;, Vie I

A —rBow); > Ay, Vi € I\ 1970 (A, — rBouw); < Ay, Vi€ 197\ [9%0,
A —rBou)i =N\, Vi€ I" (A, —rByu); < =)\, Vie I\ 1¥7°,
(A —rBu); > =\, Vi€ [¥ ! \ 170}

) under consideration guar-
SN EaRNEa (

for some I¥~, [¥ C I¥(y"), [0, [0 C 19T (y°) and 19—, [¥7° C I¥~(y°) with
| 190 4| I#+9) 4 | I¥~0| = 2. From this, it easily follows that the 2"¢ branching number
of II is equal to 4.

To conclude, the following two theorems are valid (confer Theorem 4.2.2 and
Proposition 4.2.2 in [56]).

Theorem 2.6. Let (2.2) be valid and (f°,9°) € R x Rmt2ne pe g vector with
H(f', y°) = 0. If all matrices VyHY (£0,4°), j =1,...,n,, where HY are given
by (2.31) have the same non-vanishing determinant sign then

1. the equation H(f,y) = 0 determines an zmplzczt PC-function at (f°,y°),
that s, there exist neighbourhoods O, Y of £°, y°, respectively, and a PC*-
function pg : O — Y such that

ez(f)=vy" and  os(f)=Sz(f)NY, YfeO;
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2. the implicit functions determined by the equations ’H(j)(f,y) =0 forj =
1,...,n, form a collection of selection functions for oz at f°;

3. for every ¢ € R™ the identity £ = gpfg(fo; ¢) holds if and only if € satisfies
the piecewise linear equation H'((£°,y°); (¢,€)) = 0.

Theorem 2.7. Suppose that the assumptions of the previous theorem are satisfied
and ¢ € R™ s arbitrary.

1. Then there exists a cone m € Il such that

C In On Ny +2n
) u u47 u (& 2.
(0nins) € (Gt gy witFg) e 297
with j. being given by (2.32).
2. The inclusion (2.37) holds if and only if

¢
<—(Vy%“”><f°,y0>>lvfwjﬂ)(fo,y%c) e

3. If ¢ satisfies (2.37) then

e (2 ¢) = — (VR (£2,4%) 7 VA (2,400,

where g is the implicit PC*-function determined by the equation H(f,y) = 0
at (f°,9°).

Applying Corollary 4.1.1 in [56], which states that every piecewise differentiable
function is locally Lipschitz continuous, we get the following consequence of Theo-
rems 2.4 and 2.6.

Corollary 2.3. If (2.2) holds and F € <7, (f°,y°) € R™ x R™*+2"% qre such that
the assumptions of Theorem 2.6 are fulfilled then there are neighbourhoods U,Y of
ZF ., y°, respectively, and a single-valued Lipschitz continuous function op U =Y
satisfying

op(F)=y"  and  op(€s) = FH(EF)NY, VEz U

It is worth mentioning that the assertion of the previous corollary generalizes
Theorem 1 in [32], which concerns discrete contact problems with Coulomb friction
and a coefficient of friction represented by one real. Moreover, the latter result has
been obtained from the version of the implicit-function theorem dealing with Clarke’s
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gradient and one has to handle with generally infinite number of matrices included
in the respective generalized Jacobian to verify its assumptions.

At the end of this section, we shall analyse the cases when the assumption con-
cerning determinant signs in Theorem 2.6 is not satisfied.

1. There exists an index j € {1,...,ns} such that

HI(f°,4°) =0, (2.38)
rank(V,HY) = ny +2n, — 1, 1 > 1. (2.39)

Here, we denote Vy’H(j) = Vy’H(j)(fO,yo) because HY, j=1,...,n,, are affine
functions. .
From (2.27)-(2.29) and (2.31), it is readily seen that V,HY satisfies

(Vy H) = (A, (—=B)i, (~BIF)), i=1,...,n,
(Vy HY )T € {((rB.)s, Orn, 01)s Oty (I)is 000) ), i=1,... 0.,
(Vy %SZMCM)T S {((TBr)zw 01, Ol,nc)> ((_rBT)iv 01, (QInc)z')7
(0100, (=L)i, (In)i), (01, ()i, (In)i) ), i=1,... 7.

Recall that B; stands for the ith row vector of the matrix B.
Taking into account that HY is affine, (2.38) is equivalent to

fO
V,HIy’ = | 0,..

Ccy

Onl

Ccy

Making use of (2.2), one can eliminate 2n,. columns with the aid of the last 2n. rows
of the matrix Vy’H(j ) and one can arrive at an equivalent system of the type

0
Hy' — of H— gu H, € Mo, (2.40)
Yy = Ne,1 ) - vl Hl/7HT c ]Mlnc,nu-"-an7 ’
0,1 H,

where the rows of the matrix (g”) are linearly independent not only to each other

but also to the rows of H,. This and (2.39) yield that rank(H,,) = n, —[. Moreover,
the system in (2.40) is solvable if and only if f° is contained in the range of H,.
Therefore, (2.38) and (2.39) restrict f° to some (n, — [)-dimensional subspace of
R™,

Since the number of all possible selection functions of H is finite, the considered
situation occurs generally only for (f°,4°) such that f° is from a union of some
lower-dimensional subspaces of R™.
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2. Two or more selection functions with nonsingular Jacobians are active at
(£°,4°) satisfying H(f°,y°) = 0. , ,

Taking one such selection function, say H, it follows that HY(f°,y°) = 0,
that is,

V,HIy" = [0, ] . (2.41)

In addition to this, [I*(y°) U I*T(y°) U I*~(y")| > 1 (which means that at least
one contact node is in weak contact or weak stick) and the following (|7¥(y°)| +
[T F(y?)| + | I*~ (y°)|) conditions have to be satisfied:

(AY —rB,u’); =0, Vie IY(yY),
(A —=rBu’); =X, Viel' (y"), (2.42)
Vie I (y).

(AY = rBu’); = =\,

Notice that if i; € I2(y%) N I*T(y°) N I*~(y°) then the (n, + i1)th equation
in (2.41) is A}, = 0, which together with the two conditions from the second and
the third line of (2.42) for 4y yields only two linearly independent equations with
respect to y°. Furthermore, if 4; € I*(y%) N I¥*(y°) N I¥~(y") then the (n + i;)th
equation in (2.41) and the equation from the first line of (2.42) for i; are equivalent
to )\372-1 = (B,u);, = 0, which added to the two conditions from the second and the
third line of (2.42) for i; leads only to three linearly independent equations. As a
consequence, we can leave out one of the equations in the second or the third line of

(2.42) for any such i, and (2.42) reduces in this way to a system of [ equations with
L= 117y + 112 @O+ 1 () = (") UL (") N I () N (y7) = 1.

This system extended by (2.41) can be transformed similarly as in the previous case
into an equivalent system of the form

0 H
f “ H Mnu,nu—&-%c H. H Mnc,nu—&-%c
1 v u ) vy T )
o |0 H, € €
Hy’ = . H= , I
0p.1 H; H, c M""wt2ne,
01 H,

HV . .
in which the rows of the matrix (HT) are linearly independent to each other and

S

also to the rows of H,,.

Arguing in the same way as previously, one can show that (2.41) and (2.42)
confine f° to some subspace of R™ of dimension (n, — [) and that the set of all
F° corresponding to this case forms a union of some lower-dimensional subspaces of
R™ again.

We get the following remark.
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Remark 2.2. Let (2.2). All vectors (f°,4°) € R™ x R+ with H(f° y°) =
0 which do not satisfy the assumption on determinant sign of the Jacobians in
Theorem 2.6 are such that y° € Si( F%) with f° being an element from a union of
subspaces of dimension strictly lower than n,,.

2.4 An Elementary Example

This section presents an elementary contact problem involving a single linear trian-
gular finite element depicted in Fig. 2.3. This example is taken from [32] and it is
nothing else than a special case of the model studied in [35].

Denoting w := (u,, u,) and f := (f,, f;), an alternative of the projection formu-
lation (2.25) of the corresponding discrete problem reads as follows:

Find y := (uy, ur, Ay, \r) € R* such that
aty — buT - >\V - fI/
. —bu, + au, — A\ — f;
H(y) = A — Ploog)(N — 1)
Ar = P[—ﬁlz\u\,ﬁ\,\y”(/\T — ru,)

(2.43)

o O OO

where the constants a := (A + 3u)/2 and b := (A + p)/2 depend on the Lamé
coefficients A\, u > 0 characterizing the considered homogeneous, isotropic material
of the body.

We shall derive exact solutions of this problem by considering all possible situ-
ations that may occur in the last two equations of (2.43). Note that each of these
situations will correspond to a particular contact mode.

(i) Let A\, = 0, that is, let there be no contact forces between the body and the
rigid foundation. Then the fourth equation in (2.43) implies that A, = 0.

Dirichlet
condition

linear
finite
element

rigid foundation

Figure 2.3: Geometry of the elementary example
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(i)

(iv)

Substituting the values of A\, and A, into the first and the second equation in
(2.43), one obtains a system of two linear equations with the solution

_af,+bf _afr+bf,

Uy = —F—5—, Uy = .
az — b2’ a2 — b2

In addition, taking into account that A, = 0, it is readily seen from the third
equation in (2.43) that u, < 0 so that

afy +bfr <0.

Suppose that A\, < 0 and u, = 0, that is, there is a strong contact with a stick
between the body and the rigid foundation. Consequently, u,, = 0 by the third
equation in (2.43), and the first and the second equation in (2.43) yield

)\1/ - _fl/7 )\T = _fr-

Since A\, < 0 and the fourth equation in (2.43) implies that .Z X, < A, <
—F )\, one has

fu>07 _ﬁfl/ngggfy'

Consider A\, < 0, u, > 0, that is, a strong contact with a positive slip. Then
u, = 0, A\, = Z )\, from the third and the fourth equation in (2.43), and the
first and the second equation in (2.43) give

f‘r_yfu __afu+bf7'
a+bF  a+bF

T Y v

From the conditions A\, < 0 and u, > 0, it follows that

af, +bf. >0, f.—Ff, >0.

If A\, < 0and u, < 0, which corresponds to a strong contact with a negative slip,
then u, = 0, A, = =%\, and the first two equations in (2.43) are equivalent

to
_buT - )\V = flM
(a—bF)u, = fr + T fo } (2.44)

By assuming .# # a/b, this system has a unique solution

LA Fh el
- a—bF R

T
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whose constraints are

<ﬁ<%&afVerfTZO&fT+9’fV<O&fuZO>

v (34’>%&af,,+bf7§0&f7+,§5f,,>0&fVEO).

If # = a/b then (2.44) is solvable if and only if
fo4 FL =0
and its solutions form the set
{(urs, \) €R*| N, = —bu, — f,, ur € R},
Due to the conditions A, < 0 and u, < 0, u, has to satisfy

—€<u7<0.

From this,
fo > 0.

To summarize the results, introduce the linear functions S : R? x R, — R,
i =1,2,3, and the (generally) multi-valued function S¥ : R? x R, = R* by

af, +bf, bf, +af,
SO, 7) = (L0 Mt als
SOf, F):=(0,0, —f,, —f,), feR: FecR,,

(3) (g = Fh  afu+bfr  af,+bf: ,
SO(f.7) = (0. Tzt S PR ) FERN T ER,,
(((0 fo+Ff,  af,+bfr _af, +bf,

{¢ -7 a—b7 7 a—b7 )}

iffeR?,yem\{%},

0, o), feR? ZeR,,

SH(f, F) = {(uu,uT,)\V,)\T) e R?

Uy = 07 _% <ur < 07 )‘u = _(fu+bu’r)a >\T = y(fu"‘buﬂ-)}

if feR2 .7 = %
Moreover, for .# € R, , define the sets

p(l)(a@) = {f e R?*|af, +bf. <0},
p(z)(f) = {f6R2|fu207 _yfunggyfVL
pO(F) = {f e R?|af, +bf, > 0, f — Ff, >0},

(g = | ERIS 20, afy +bf- >0, fr +Ff, <0} i
’ C {f R, 20, af, +bfr <0, fr+Ff, >0} i

[0, a/b],

t.7 ¢
t.7 € (a/b,+00).
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Observe that only p™M(.#) does not depend on .%. One can easily verify that
SO(f,.F) solves (2.43) for f € p(F), F € Ry, i=1,2,3, and SW(f,.F) is a set
of solutions to (2.43) for f € p(#) and .# € R, which is single-point whenever
F #a/b.

Denote by p(;) the interior of pf;), i=1,...,4. It is readily seen that p©® (%) is
disjoint with p (%), i # 3, for any .# € R,. Hence, the structure of the whole
solution set to (2.43) is given by the mutual position of p(.#), i = 1,2,4, which
depends on the magnitude of .%. Three cases can be distinguished.

F € [0,a/b)

Suppose first that .# > 0. Then the system {pM(.F), p@ (F), p®(F), oW (F)}
defines a partition of R?, that is,

4
R =| Jp(F) and pO(F)npO(F) =0, Vij=1,...4,i#]

i=1
(see Fig. 2.4). Moreover,
SO(f,7)=8V(f,F), Vfedp(F)nopV(F), Vi,j=1,... 4

Thus, (2.43) has a unique solution for any f € R?.

Figure 2.4: Structure of the solutions for 0 < % < a/b with the corresponding
decomposition of R? into the sets p{V (.F)
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Figure 2.5: Structure of the

Figure 2.6: Structure of the

solutions for .# > a/b

solutions for .# = a/b

o () PP (F)
P ()
- -1 0 1 2
fo
oM (F)
Fro () P (F)
o (F)
-2 -1 0 1
fv
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If # =0 then p@(F) = pB®(F) N pW(F) and the partition of R? is realized by
{pW(F), p®(F)), (4)(97) } The solution is again unique in R?.
Consequently, if F € [0,a/b) then (2.43) has a unique solution for any f € R?.
F >afb
In this case, p®(F) = pM(F) N p?(F) and its interior is non-empty (see
Fig. 2.5). It is easy to verify that there exists a unique solution to (2.43) if f belongs

to (R?\ p(F))U{0}, there are two solutions on Op(F)\ {0} and three solutions
in pD(F).
F =afb
This is the limit case, in which p™® (F)) = pM(F)Np? (F) is the ray emanating
from the origin and separating p™"(.#) and p® () (see Fig. 2.6). If f € (R%\
pW(F))U {0}, there exists a unique solution to (2.43). For f € p™(Z))\ {0}, the
continuous branch SW(f,.F) of solutions connects SV (f, F) and SP(f, F).

From this analysis, we see that the solution of (2.43) is a PC'-function of # €
[0,a/b) for an arbitrary f € R? fixed. Therefore, it is Lipschitz continuous with
respect to .7 in [0, Pnax) for any Fnax € [0,a/b). On the other hand, we have proved
the uniqueness as well as the Llpschltz continuity of the solutions with respect to
F for Z in [0, Znax] With Fnax € [0,a8/||A||) in Section 2.3. In this particular
example, one has af/||A|| = (a — b)/(a + b), which is strictly less than a/b. Since
the situation concerning the Lipschitz continuity with respect to f is analogous, one
can see that the general bounds derived before are pessimistic.

Nevertheless, this example shows that unicity of solutions depends not only on
Z but also on f. Even if one takes .%# so large that there are non-unique solutions
for some f, for the same .# there exist still such f that the corresponding solution
is unique. Furthermore, one can verify that in this example, Theorem 2.6 guarantees
local uniqueness of solutions precisely except the cases where it is actually lost.
Hence, the presented local approach seems to be better suited for studying behaviour
of solutions than the global one, which does not take into account the influence of
f eR

Finally, let us mention that if one introduces selection functions HOY R of
the PC'-function H given by (2.43) in an analogous way as in (2.31), each mapping
(f,F) — SO(F,.Z), i = 1,...,4, defined above is nothing else than a mapping
associating (f,.#) with the solution set (eventually single-point) of the equation
HY(y) = 0 for some particular H. Since HWY, ..., H") are piecewise linear
functions of the load vector f, the structure of solutions to (2.43) as a function of
f is quite simple. On the other hand, dependence of the solutions on the coefficient
Z is substantially more complicated, as exhibited in [32]. This confirms the benefits
obtained by Theorem 2.4, which transforms the analysis of solutions with respect to
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% into the analysis of the solutions with respect to f.

Conclusion

Theoretical analysis of discrete 2D contact problems with Coulomb friction in which
the coefficient of friction & is assumed to be a vector has been presented in this
chapter. The existence result has been obtained for any coefficient # whereas to
get the (global) uniqueness one, one needs the norm of & to be sufficiently small.
Moreover, the unique solution has been shown to be a Lipschitz continuous function
of & as well as of the load vector f. Local analysis of potentially non-unique solutions
has been based on two different but equivalent formulations of the problem — the
first one has consisted of generalized equations, the second one of piecewise smooth
equations. From the first formulation, we have seen that the study of local behaviour
of solutions as a function of # can be deduced from the study of local behaviour of
the solutions as a function of f. From the second one, we have concluded that the
solutions are locally unique and Lipschitz continuous with respect to f if particular
Jacobian matrices depending on the contact status of the solutions have the same
non-vanishing determinant sign. Results determining directional derivatives to these
local Lipschitz continuous branches have been also achieved. Further, it has been
proved that the set of f where the existence of such branches is not guaranteed is
“small”. In the end, benefits of the proposed local approach have been suggested on
a simple example.



3 Numerical Continuation of 2D Static
Problems

In the previous chapter, we have considered solutions of discrete 2D static problems
parametrized by the coefficient & and the load vector f and we have guaranteed
that there exist local Lipschitz continuous branches of solutions with respect to these
parameters. The aim of this chapter is twofold. Firstly, to develop a piecewise smooth
variant of the Moore-Penrose continuation algorithm for capturing such solution
branches numerically; secondly, to introduce quasi-static contact problems in finite
deformations and to apply our method for computing incremental solutions that
come from their discretization.

The chapter is organized as follows: In Section 3.1, the algorithm of our continu-
ation technique is described for discrete static contact problems parametrized by one
scalar parameter. More precisely, we consider these problems in the form of a sys-
tem of piecewise differentiable equations and we adapt the classical Moore-Penrose
numerical continuation for smooth functions to this case. In Section 3.2, we present
a model of quasi-static contact problems in nonlinear elasticity. After introducing
the classical formulation, we derive a weak one, taking into account the particular
constitutive law considered. Full discretization of the weak formulation leads to a se-
quence of algebraic incremental problems. We show that these are piecewise smooth
in vicinity of some appropriate points, which allows us to apply the proposed vari-
ant of numerical continuation for solving the problems. Finally, we present some
numerical results.

3.1 Description of the Method

In light of the previous chapter, a formulation of discrete 2D static problems can be
written as the following system of non-smooth equations (confer (2.25)):

Find y € R™"" such that
H(y) =0,
where H : R™ut2me — RMut2ne jg defined by
Au— BTN, - B'X\, — f
H(y> = A, — Py, (Ay — TBV’U,) . Y= (u’ A, A‘r) € Rnut2ne,
Ar = Pa,(#x,)(Ar —rBru)

29
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Here, » > 0 is a fixed parameter and the components of P, : R" — A, and
Py (#x,) : R"™ — R" are introduced as follows:

(Pa,)i(p) :== Pr_(ps), i=1,...,n. p € R"™, (3.1)

P«?Mum—«?z)\m (/14) if )\u,z’ <0,
(Paoa))i(p) = § 77 .
_P[—yiku,w%ku,i](:ui) if >\u,z’ >0,

i=1,...,n. p € R, (3.2)

with Pr_, P_¢ being the projections of R onto R_ and [—(, (], { > 0, respectively.
Recall that & € R* represents the coefficient of friction.

In what follows, we shall suppose that the mapping H depends on an additional
scalar parameter so that H : R™#*2m x [ — R™«*27 |  R. A natural candidate
for the parametrization is the load f when we are given a smooth loading path
v €I~ f(y) € R™. In this case, H becomes

Au— BJX, — BIX, — f(7)
H(y) = A, — Pp, (A, —7rBu) ;Y= (u, A, A, y) € RMF20e i [
Ar = Py #x,)(Ar —rBru)

We may take also a smooth path v € I — ZF(v) € Rl* and

Au—BI)\, - B'X\, - f
H(y) = A, — Py, (A, —rB,u) ,
Ar = Pr#n) (Ar = 7Bru)

y = (u, A, A, 7y) € R™T2e 5 [ (3.3)

Another possibility might be parametrization of a non-homogeneous Dirichlet con-
dition (see the next section).

For definiteness, we shall consider the case (3.3), that is, the parametrization via
the coefficient of friction. (As we shall see, adaptation to the other cases will be
straightforward.) We are lead to the following problem:

(3.4)

Find y € R™ 2" x | such that
H(y) = 0.

On the basis of Section 2.3, it is readily seen that H is a piecewise differentiable
function. Moreover, Theorem 2.2 and Corollary 2.3 establish the existence of (local)
Lipschitz continuous branches of solutions to (3.4). Our present objective is to trace
the solution curves numerically, using path-following (continuation) techniques.

Classical continuation techniques require # in (3.4) to be smooth. Next, we shall
show how such techniques can be adapted to our non-smooth case. In particular,
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Dty

Figure 3.1: Necessity of a good prediction

we shall modify the Moore-Penrose continuation, which is presented, for instance, in
[14] (see also appendix). This procedure is a predictor-corrector type method.

In the Newton-like correction step, it suffices to use the piecewise smooth Newton
method (7.2.14 Algorithm in [18]) instead of the smooth one. In other words, the
gradient VH is replaced by the gradient of one of its active selection functions if
necessary.

On the other hand, a modification of the prediction step needs to be more so-
phisticated. Indeed, if one takes an initial approximation of a new point ¥y, of the
form

YO =Y + hktk, (35)

where t;, is determined from the directional derivative of H as

the continuation may fail when approaching a point of non-differentiability on the
solution curve. It is caused by the fact that the Newton correction is only locally
convergent and one has to take a suitable initial approximation to reach its zone of
convergence (see Fig. 3.1 for illustration). In the sequel, we shall propose a special
approach for passing through such points.

Recall that the non-differentiability of H is caused by the functions

Y — )\y - PAV(AU - TB,/'U;), Y= )\‘r - PAT(f(v)Ay)(AT - TBtu)v

to which selection functions with the following components can be associated (confer
(2.28) and (2.29)):
Y= T(Buu)ia Y — /\V,i

and

Yy — T(B'ru)ia y — (2)‘7 - TBTu)i’ y — >\T,i - ngi('y>)\l/,i7 y — )\T,i +yz(7)>\u,u
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i=1,...,n. respectively. We define the so-called test functions 6, = (0,1, ...,01,,) :
Rrut2re 5 [ 5 R" [ =1,2,3, by

91,i(y) = (A, —rByu);,
02,i(y) = (AT - TBTu)i - gi(V)Ay,iy
93,i(y) = ()\T - TBTu)i + j\z(f}/))\u,z

forany i =1,...,n. y = (u, A\, A;,7y) € R™uT2"e x [

Clearly, there is a one-to-one correspondence between signs of the components
of 81(y), 02(y) and 03(y) and the selection functions for H which are active at y.
(Possible zero components indicate that more than one selection function is active.)
Suppose for a moment that y € R™*2% x [ is a point where only one selection
function is active, that is, all components of the test functions are nonzero there.
Assembling the signs of the test functions into a 3-by-n. array in such a way that
the {th row corresponds to 0;(y), | = 1,2, 3, we see that every selection function for
H can be represented by a 3-by-n. array and this representation is unique.

Let y, be a current point which is close to a point y of non-differentiability of
H as illustrated in Fig. 3.1. Assume that exactly two selection functions H ) and
H2) are active at y and there exists a piecewise smooth curve of solutions passing
through y which consists of two smooth branches belonging to the solution sets to
H(y) = 0 and H?(y) = 0. Supposing that y, is a root of H), we shall
describe how to reach the unknown smooth branch of the curve corresponding to
/H(iz)(y) -0

As explained before, one of the test functions, say 6;, has a zero component at
Yy, say the mth one, and this component changes its sign when passing through y.
Continuity of 6; ensures that 6;,,(y;) is close to zero. If we consider the 3-by-n.
array representing H ), then changing the sign corresponding to 01.m, we obtain the
representative of the selection function H?), hence the form of H itself. This
leads us to the following choice of the vector t; for (3.5):

VH (y ), =0, |t = 1.
In the end, direction of this vector is selected so that

OLm(Yr) (VO (yy), t) <0

as our aim is to traverse the set {y € R™ 2" x [ |6, ,,(y) = 0} (see Fig. 3.2). Recall
that (.,.) stands for the scalar product.

Let us note that the expounded procedure can be also applied when the point of
non-differentiability y is met exactly, that is, y, = y. Nevertheless, this situation is
highly improbable.

On the basis of the above considerations, we arrive at the following algorithm.
By I3(Y;) we denote the active index set at Y.
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Figure 3.2: Determination of the direction of the new “tangent” vector

Algorithm 3.1. (Piecewise smooth variant of the Moore-Penrose continuation)

Data: 575/ > 07 ﬁmin S 17 hmax Z hinit Z hmin > 07 hinc > 1> hdec > 07 jmax 2
Jinr > 0 and y, € R x [ ¢, € R 21Tl gatisfying:

[H(yo)ll <&, H'(ypito) =0, |ltofl = 1.
Step 1: Set hg := hinit, k := 0.
Step 2: Set ngec := 0.
Step 3 (prediction): Set Yo : =y, + hity, To := ti, j := 0.

Step 4 (correction): Select an index i; in I3(Y;) and set:

- (). 2-() 0= ()

T:=B'R, T, =

S|~

ey

Y=Y, - B'Q.

Step 5: If ||H(Y +1)| < e and | Y11 — Y| <€, go to Step 7.

Step 6: If j < jax, set j := 7+ 1 and go to Step 4. Otherwise, go to Step 8.
Step 7: If (T)11,tk) > Vmin, s€t Yppq = Yi1, teyr := Tj11 and go to Step 10.
Step 8: If hy > huyn, set by := max{hgechk, Pmin }, Ndec := Ndec + 1 and go to Step 3.

Step 9: According to a component 6;,,(y;), | = 1,2,3, m = 1,...,n,, close to 0,
select a function H which is likely to be active in a vicinity of y . and compute
the vector t; satisfying

VH (y )t =0, |t =1
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and
Orom (Y1) (VOim(yy), tr) < 0.
Set hy := hyy and go to Step 2.

Step 10: Set

min{hinchka hmax} if ] < jthr and Ndec = 07
hiy1 = :
hy, otherwise

and k :=k + 1, go to Step 2.

Here ¢ and & are convergence tolerances, Nuyin, Amax and A i the minimal,
maximal and initial step length, respectively, and hi,., hgec are the scale factors
for adjustment of the step length. Further, j,.x stands for the maximal number
of corrections allowed and nge. denotes the number of the step length reductions of
hy for the current value of k. The parameter 9,,;, serves for controlling changes of
direction between the tangents at two consecutive points.

In Step 8, the current step length is shortened in the case of non-convergence
of the corrections or too large deviation between the newly computed tangent and
the previous one, which is tested in Step 7. Step 10 defines the step length for the
prediction in the next iteration. The new step length hp,, can be larger than hy
only if the number of corrections (Step 4) does not exceed ji,, given a priori and
ngec = 0. These parts of the routine together with the prediction and the corrections
are taken from the classical Moore-Penrose continuation. Step 9 is added for handling
the situations when the corrections do not lead to a new point even for h = hy,.
Making use of the test functions defined above, one determines a new “tangent”
vector for the prediction here and then returns to the classical part of the procedure.

Remark 3.1. (i) One can use this algorithm to pass through points where more than
two selection functions are active, as well. In this case, however, more components of
the test functions are close to zero and one has to decide between more possibilities
how to choose a new selection function when “switching” between different smooth
branches.

(ii) In a similar way as one tests changes of direction between any two consecutive
tangents t; and ¢, 1, one can also monitor changes of the signs of components of 6;,
[ =1,2,3, in order to control transitions through points of non-differentiability.

3.2 Application to Quasi-Static Problems

Before we present an application of the numerical continuation described above for
solving quasi-static contact problems in large deformations, we shall formulate briefly
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rigid foundation

Figure 3.3: Geometry of the problem

these problems. For a thorough introduction to nonlinear elasticity, we refer the
reader to [10].

3.2.1 Problem Formulation

We shall consider a contact problem between a 2D homogeneous elastic body and
a rigid foundation represented by the half-plane {x = (z;,75) € R?, |z < 0}. For
simplicity, we shall not deal with a self-contact of the body. Let us mention, however,
that this would be also possible (see, for instance, [10, Section 5.6]).

The classical formulation of our problem reads as follows:

Find w : [0,7] x Q — R? such that det(I + Vu) > 01in [0,7] x Q and )
—div[(I + Vu)o(I + Vu)|=f in (0,T) xQ,

u=wup on (0,7)x I'p,

(I+Vu)o(I+Vur=h on(0,T)x Ly,

(t,x) +g(x) >0, Tyt ,z v) >0,

(us(t, ) + g(2))Ta(t,x,v) =0 on (0,T) x I,

Uz

i(t,e) =0 = |Ti(t,z,v)| < ZTy(t,x,v) on (0,T) x I¢,
u1<t7w)

(
11 (t T t :—J\T t _
w(t,x) #0 = Ti(t,z,v) F 2(,:c,1/)|u1<t7w)‘

on (0,7) x I,

u(0,z) = u’(x) in Q. )

Besides the familiar notation, 7" > 0 determines the time interval of interest, I
denotes the identity matrix, and & (I + Vu) is the second Piola-Kirchhoff stress
tensor related to the Cauchy stress tensor o (I + Vu) by

&(F) = (det F)F'o(F)FT, FeM, (3.7)

where M2 stands for the set of all 2-by-2 matrices with a positive determinant.
Further, T'(t,z,v) = (11(t,z,v), T5(t, z, v)),

T(t,x,v) = (I +Vu(t,z))oI + Vu(t,z))v, (3.8)
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represents the first Piola-Kirchhoff stress vector, up : (0,7)xIp — R? u’: Q — R?
are known displacements and g denotes the vertical gap between the rigid foundation
and the body in the reference configuration (Fig. 3.3).

Here and in what follows, we assume that .# > 0 is constant and the applied
forces f and h are independent of the time ¢ and of the particular deformation of the
body. Moreover, & (I + Vu) = (6(I + Vu))1<; <5 is given by the following planar
approximation of a 3D hyperelastic constitutive law with a stored energy function
W Mi — R:

A A F 0
(0(F))i<ij<2 = (6'(F))i<ij<2, F' = (01 ) il> , FeM?,
where
N / N / aW ’ , T / 3

In particular, we consider the Ciarlet-Geymonat model:

d
W(C") =atrC' + btr Cof C' + cdet C' — §logdet C' +e,
a,b,c,d >0, e € R, C' € M2,

that is,
&' (F') = (2a + 2btr C')I — 2bC" + (2cdet C' — d)C'™!, C' = FTF', F' e M2,

with Cof C’ being the cofactor matrix of the matrix C’ (Cof C’ = (det C")C'~ " if
C' is invertible). One can easily verify that in this case,

o(F) = (2a+2b(tr C+1))I—2bC+2¢ Cof C—dC~', C =FT'F, F e M2, (3.9)

with

022 —021 C(11 C112 2
Cof C = C = e Mz.
© (_012 Cll ) ’ <021 022) >

To interpret the boundary conditions on I'c in (3.6), we consider ¢t € (0,7") fixed
and suppose that the deformation ¢ = td + u, where ¢d is the identity mapping,
is sufficiently smooth so that ¢(t,Q) C R? is a bounded domain with a Lipschitz
continuous boundary and d¢(t, Q) = ¢(t, 992) (for an example of sufficient regularity,
see Exercise 1.10 and Theorem 1.2-8 in [10]). Then a unit outward normal vector
v¥# can be defined almost everywhere along dp(t,2) and one has

Ve, z) v

v¥ = ,
IVe(t,z)~Ty|

x e le.
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-

x

Figure 3.4: Contact with the rigid foundation

(Recall that Ve = I + Vu is required to be regular in [0, 7] x Q in (3.6).)

Taking € I'c such that both v and v¥ are well defined and making use of
(3.7) and (3.8), one obtains the following expression for the Cauchy stress vector
T(t,z,v?):

T(t, x, I/‘P) = O'(VSO(t, CL'))I/‘P
1 N
—dﬁVw@wMVwmmynwV¢@ﬂWﬂV¢WwDV
_ 1 7
 det Vo(t, z)|Ve(t, ) Tv||

(t,z,v).

Hence, it is readily seen that the boundary conditions at @ lead to the following two
mutually exclusive cases:
Case (i):
us(t, ) + g(x) >0, Ttz v¥)=0.
This means that there is no contact with the rigid foundation and no surface force

at the point.
Case (ii):

u2(t7w)+g<w) :07 TQ(I‘J,.’B,V‘P) 207
u1<t,w) =0 = ]Tl(t,:c,u“")] < LgZTQ(t,.’B,VLP),
ul(taw)

ul(tam)%o = Tl(t,il,',l/ga):—ﬂTQ(t,w,ch)'u t$)|
1\4

This corresponds to a contact with the rigid foundation which obeys the Coulomb
law of friction in the deformed configuration (see Fig. 3.4).

Before we present a weak formulation of the problem, we shall establish some
properties of the mapping & given by (3.9). We start with analysis of the mapping
[': M2 — M? defined by

rce)=c', ceM.
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Let us recall that M2 stands for the open set of all 2-by-2 matrices with a positive
determinant and the matrix norm ||.|| is induced by the Euclidean vector norm.

Lemma 3.1. The mapping T is continuously differentiable on M2 with
I'(C)E=-C 'EC™', VCeM, VE M. (3.10)
Moreover, for any R > 0, there exist ¢1(R),c2(R) > 0 such that
I(C+D)™" = C| < aa(R)||DIl, 1

VCeM?, |CY'| <R, VDeM |D|< 5F

I(C+D)"'E(C+D) "' —C'DC'| < co(R)|D| | E||,

(3.11)

1
VC eM:, |C'| <R, ¥YDeM |D|< SR VE € M* (3.12)
Proof. For any C € M2 and any D € M? with [|C'||||D|| < 1,
(I+C'D)'=I-C'D+) (-C'D)’,
i>2

(C+D)'=I+C'D)'Cc'=Cc'-C'DC'+) (-C'D)C™",

1>2

which yields (3.10). Furthermore, (3.11) follows from

I(C+ D) —c7H <)y _Ic DI Ic| < 211C %D,

i>1

VC eM2, VD e M, |C7|||D] <

N | —

and (3.12), ensuring the continuity of I"(.), is a direct consequence of (3.11). O

Lemma 3.2. Let the mapping & M2 — M2 be given by (3.9) and Ry, Ry > 0 be
arbitrary. Then o o is continuously differentiable on M2, and there exist c3(Ry, Rs),
cs(R1, Ra), ¢s(Ry, Ry), m(Ry, Ry) > 0 such that for any F € M2 with |F| < Ry,
IF~] < R,

HM;—FHH < es(Ry, Ro)| H|| VH € M2, (3.13)
Hag rieH 970yl < e RGN,

VG c M?, |G| <7(Ry,Ry), VH € M?,

H O(F+G)o(F + G) gy (F&(F
I(F +G) OF

VG € M?, |G| <7(Ri,Ry), VH € M?.  (3.14)

>>HH < e5(Ry, Ro)| G| H].
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Proof. Let us define the mapping & : M2 — M? by
a(C) = (2a +2b(tr C + 1))I — 2bC +2cCof C —dC™', C € M2,

so that & (F) = &(FTF). In view of (3.10),

ag(g) E = 2b(tr E)I — 2bE + 2¢Cof E + dC~'EC™
and all the estimates result from the chain rule, (3.11) and (3.12). O

We are now at the point of introducing the weak formulation. Let p > 4, ¢ > 1
be such that 1/p+1/¢g < 1. We set

V=W (Q),

V=V xV,
Xp:={¢CecL*Ty)|3veV:{=vae onlp},
Xe ={Ce*T¢)|3v eV :(=uvae onlgl,

by X}, Xi and (., )rp, (., .)r. we denote the duals of Xp, X and the corresponding
duality pairings, and we define

A, = {w € X& | {w,v)r. >0, Vo eV, v <0ae. on g},
A (F ) = {pr € X/C | <,U7'7U>Fc + (T ‘UDFC <0, VveV}, wel,

A(w;v) = /(I+ Vw)o(I + Vw) : Vo de,
Q

l(v) ::/Qf-vdac%—/F h-vdS,

where & is given by (3.9).

We shall assume that f € L'(Q2), h € L'(Ty), up € H'(0,T; Xp) and u® € V
in what follows. If it is so, /(v) is well defined for any v € V as Q is bounded and
the Sobolev imbedding theorem ensures that W?(Q2) ¢ C(Q). Moreover, Hélder’s
inequality implies that

C1C2(3Cs € Ll(Q), Vi, G, (s, Ca € LP(Q),
GG e L), VG e LP(Q), V& e LYQ),

from which it can be easily deduced that A(w;wv) is well defined for any v,w € V
whenever (I + Vw)™! € LI(Q).
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The weak formulation of (3.6) can be written as follows:

Find w € H'(0,T; V), Ap € H(0,T; X},), A\, A\ € H'(0,T; X}) with )
(I +Vu(t))™' € LYQ), M\ (t) € Ay, A\ (t) € A (F N, (1)) ae. in (0,7)
such that det(I + Vu(t)) > 0 a.e. in Q for a.a. t € (0,7,

u(0) = u’ a.e. in Q and
A(u(t);v) = £(v) + (Ap(t), v)r, + (A(1), —v2)re + (A7 (1), 1)1, (A)
Vv eV ae in (0,7),

(p, w(t))r, = (kp, up(t))r,, Ypp € Xp ae in (0,7),

(o, — A (1), —u2(t) — g)r,. >0, VYV, €A, ae. in (0,7),

(r — Ar(t),u1(t))r. >0, Yy, € A(FA (1) ae. in (0,7). )

Let us point out that if a solution u of (3.6) belongs to C'(0,T; C*(Q)) then
it solves (.#). Indeed, let t € (0,T) be fixed. Since (I + Vu(t)) € C'(Q) and
(I + Vu(t,z)) € M2 for any ¢ € Q according to (3.6), the continuous differ-
entiability of the mappings I" and o guaranteed by Lemmas 3.1 and 3.2 implies
(I+Vu(t)™,o(I+Vu(t) € CHQ). This allows us to use the Green formula and
to recover () in the standard manner with Ap being the restriction of the first
Piola-Kirchhoff stress vector T' to I'p and A, A; being the restrictions of —Tg and
T to T, respectively. As (I+ Vu(t))~"is in C1(Q), it is a fortiori in LY(Q) for any
q=1

Next, we present full discretization of the weak formulation. We start with semi-
discretization in space. Although computations will be performed on a non-polygonal
reference configuration with isoparametric finite elements in the next subsection, we
restrict ourselves to the case when Q is a polygon for the ease of exposition here.

Let 7, be a triangulation of Q that is compatible with the decomposition of 9
into ['p, I'y and I'c. In a similar way as in Section 2.2, we define

V=" e C(Q) V"1 € P(T), VT € %},

Vi=vhx V"

Xt .={¢"eCTp)|3v" e V': ¢"=v" onTp},

Xh={"eCTy)|3v" e V": " =v" on T},

A=l e XB | (it 0™ or, >0, VO e VI ot (y,) <0, Vi=1,...,n.},
AN F ) =y € XE| (10" ore + (F s ralv"ore <0, Yo' € VI, € Ay,

where {y,}1<i<n. is the set of nodes on Iz corresponding to the degrees of freedom
of V" and rj, denotes the Lagrange interpolation operator into X2.
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We suppose that we have some approximation u? € H'(0,T; X5), u"® € V" of
wp and u®, respectively, and set ¢" := r,g. Moreover, let us mention that we shall
consider below that I'p NI = (. In this case, there exists a constant 8 > 0 such
that

Sup (l’l’?)a vh)O,FD + (:uw UQ)O I'c + (:uﬁ? U{L)OIC

0LvheVh v p.0
> B(lbllers + pbllre + 180 re), Yl € X, Vb, pl € X,

where ||.||«rp, and ||.||«r. stand for the dual norms in X, and X[, respectively.
The spatial semi-discretization of (.#) can be introduced as follows:

Find w" € H*(0,T; V"), N, € H'(0,T; X)), A\l A e HY0,T; X2) )
with A(¢) € A, \2(t) € A (F A1) ae. in (0,T)
such that det(I + Vu'(t)) > 0in Q for a.a. t € (0,7),
u”(0) = ™ in Q and

A (£); 0") = 60") + (N (8), 0oy + (L), oo (M)

+ N\ @), v or,, Vo' e V" oae in (0,7),

(WD, u"()or, = (Bhs ub(t))ory, Vpp € Xpy ae. in (0,T),
PN, —ub(#) — ¢")or. >0, Ve A ae in (0,7),

(i = AX(t), 4 (D)ore 20, Vup € AL(FX(E)) ae. in (0,T).

Vs

The condition det(I + Vu”(t)) > 0 in Q means that det(I + Vu"(t)) > 0in T for
any T € J,. As we know, this ensures that (I + Vu"(t))™'|, € C(T) for any
T € . Thus, (I +Vu'(t))™! € LIY(Q) for any ¢ > 1 and the term A(u"(t);v") is
well defined for any v" € V.

Let us mention, however, that we shall omit the orientation preserving condi-
tion det(I + Vu”(t)) > 0in Q hereafter for it is verified a posteriori in practical
computations.

We shall derive algebraic formulation of (.#},), following Section 2.2. Still de-
noting the sets of the shape functions of V" and X% by {d; h1<i<n, and {n;h1<i<n,,
respectively, and the mapping linking the local and global numeration of the nodes
on I'c by ©, we shall denote the finite-element basis of X}, by {£;}1<i<np,, and in
addition to the algebraic representatives of v" € V" and pl € X% defined by (2.5)
and (2.6), we introduce the representative p,, € R"> of ub € X} as

l’l’D = (,U/D,’L) Such that H}b - Z MD,’LE@

1<i<np
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Further, we set
a(v) = (a;(v)) € R™, a;(v) = A(Z1§jgnu Uj¢j§ ¢z)7
Bp = (Bp,i;) € M"”"™, Bp ;= (&, ®;)orp
B, = (Bu,ij) € M" "™ B, = —020(),
B, = (B,;;) e M""™ B, = 020/(i)—1,j+
.f - (fl) € Rnu? fl = g(d)z)?
up(t) = (up,(t)) € R™, up,(t) == (up(t),&)or,, t€(0,7T),
g=(g) €R™, g;:=g"(y,)
A, = R",
A(Fp,) ={p, e R ||pri| < —Fpp;, YVi=1,...,n.}, p, €A,
We obtain the following problem:
Find w € HY(0,T;R™), Ap € HY(0,T;R"), A,, A\, € H'(0,T;R"™) )
with A, (t) € Ay, A-(t) € A (FA(t)) ae. in (0,7T)
such that u(0) = u’ in Q and
a(u(t)) = f + Bhap(t) + BIA(t) + BIA(t) ae. in (0,7), (M)

Bpu(t) =up(t) ae. in (0,7),
(e, —A(t),B,u(t) —g) >0, Vpu,eA, ae in (0,7),
(n, — A (t),B.u(t)) >0, Yu, €A (FA(t) ae. in (0,7T).

Time discretization of this problem is done by dividing the interval [0,7] uni-
formly into ng subintervals, setting At := T/np, t, := kAt, k = 0,1,...,np, and
approximating the derivative w by the backward difference. We arrive at the se-

quence of the following incremental problems for £ =0,... , ny — 1:

Find u*™ € R AEH e R"2 AEFL e A, MM e A (ZAET) such that )

a(u) = £+ BIA + BIA 4 BIA,
Bpu 't = up(tp),

(k, — AL Bout —g) >0, Vp, €A,
1
(uT — N (Bt - Bfuk)) >0, Vp, €A (FAH
or equivalently

Find y**! = (w1, MG AR XL ¢ Rrwtno$2ne guch that

Hi(y*) =0, } (Mis1)
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where Hjyq : Rietnot2ne y Rrutnot2ne jg introduced by

a(u) — f — BoAp — BI)\, — BT ),

. Bpu — up(ti1)
Hinly) = A, — Po, (A, —ra(B,u — g)) ’
AT - PAT(<?AV)(AT - é(BTu - BT’u'k))

y = (u,Ap, A, X)) € Rmetnot2ne (3 15)

r,a > 0 are fixed parameters and Pa,, Pa, (#x,) are defined by (3.1) and (3.2).

Let us recall that in fact, we are seeking such solutions y*** of (M) for which
the orientation preserving condition det (I +> i< i< u?“V(]bj) > 0 is satisfied in .
The following result establishes differentiability property of the nonlinear mapping
a : R™ — R™ at the corresponding vectors u*+1.

Proposition 3.1. For any w € R™ with
det(I+ Y, 0, wiV;) >0 in (3.16)

there exists an open neighbourhood U C R™ of w in which a is continuously differ-
entiable.

Proof. Leti € {1,...,n,} and w € R™ satisfying (3.16) be arbitrarily chosen. With
regard to the equality

ai(’w):/Q(I+ZlSjSNijV¢j)3'(I+lejgnuijqu):Vd)ida:,

a natural candidate for a}(w) is the linear mapping L(w;.) defined by

) — 8((I + Zlgjgnu ij(ﬁj)fT(I + Zlgjgnu ij¢j))
L(w;v) := /Q I+ cjcn, WiV P;)
: (Zlgjgnu Ujv¢j) : Vo, de.

We shall prove that L(w;.) is really a differential of a; at w first.
Since for any j € {1,...,n,} and any T € 7}, the basis function ¢; restricted

to T is in C'(T), the restrictions of Ve, (I + 1, w;V¢;) on T are in C(T).
Moreover, in virtue of Lemma 3.1 and the assumption guaranteeing that det (I +
Y i<i<ng w;Ve,;) >0in T, (I+ Y i<i<ng ijqu)_l‘T belongs to C(T), as well.
Therefore, there exist constants cg, R1, Ry > 0 such that for any @ € €,

(Zlgjgnuﬂvﬁbj(m)HQ)
(I + 1 cjen, WiV (@)]| < Riy [[(T+ 450, ijqu(w))_lH < Ry. (3.17)

1/2
/SCGJ
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Obviously, there is also a constant ¢; > 0 such that
[F: Gl <c|FI|Gl, YF,GeM.
From (3.13), it then follows that
|L(w;v)| < c3(Ry, Ry)cicy meas(Q)||v]], Vv e R™,

that is, L(w;.) is continuous.
Furthermore, the Taylor-MacLaurin formula implies that for any v € R™ and

any x € () there exists ¥, ., € (0, 1) satisfying
(T4 e, (W +0) V() o (T + 3 i (W +v;) V() : Vb, ()

_(I + Zlgjgnu ij¢j(:c))3'(I + Z1§j§nu wjv¢j(m)) :Vo,(x)

(I + X cjen, (W + Do) V()0 (T + X1, (W) + U 0v;) V()

8([ + Z1§j§nu (w; + ﬁvvxvj)quj(m))
: (Z1§jgnu Ujv¢j(m)) Vo, (x).

In light of (3.14),

|ai(w + v) — a;(w) — L(w; v)
/ (a((I 3z en, (W + Vo))V o (T4 iy (W + Vo av;) V)
Q O(I + Zlgjgnu(wj + ﬁv,wvj)Vqﬁj)
(I 1ejen i V)T (L4 i, ij¢j))>
I+ cicn, WiV O,)
'(Zlngnu v V;) : Vo da
r(Ry, Rg)7

Ce

< ¢s5(Ry, Ry)cier meas(Q)||v]|?, Yo € R™, ||jv| <

which verifies that a}(w) = L(w;.).
Finally, we shall show that a}(.) is continuous on the set

Izl < o}
— 2R,
Taking any z € U — {w} and any x € Q, one has
(T + 31y (w5 + 2)) Vb ()]
<+ ey, 0, V@) ||+ |1y, 5 Vs (@) < R+ oo =2 By

U:={w}+ {Z € R
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and from (3.11) one gets
H(I + Zl<]<nu<wj + 25 Vd’ ) H

< H I+ Zl<]<nu wav¢ H + c1(Ry) ||Zl<]<nu ZJV¢ (x )H
S RQ + % = RQ.

Another application of (3.14) yields
lai(w + z + s)v — a(w + z)v|
/ <6((I + D <, (Wi + 25+ Sj)v¢j)é-(1 + X i<icn, (Wi + 25 + 5;)V;))
o oI + D i<jemy (Wi + 2 + s;)V ;)
B 8(([ + Zlgjgnu (w; + Zj)V(ﬁj)é'(I + Z1gj§nu(wj + Zj)v¢j))>
(9(I + Z1§j§nu (w; + Zj)v¢j)

'(Zlgjgnu v;V,): Vo, dx

< os(Ry, Ry)cger meas(Q) ]| v,

T(Rl, RQ

VzeU—{w}, VseR™, |s| < ), Vv e R"™,

and the proof is complete. ]

Combining this proposition together with the analysis in Section 2.3, one can see
that the mapping H, 1 is piecewise differentiable on the open set

{(w Ap, A, Ay) € R™F0H20e [ det(T+ 50, u; Vi) > 0 in Q.

This justifies use of the piecewise smooth Newton method with a line search for
solving (My41) (see [18, Chapter 7], [39]). Nevertheless, as we shall see in the next
subsection, one can encounter situations where this method is not able to find any so-
lution. For this reason, we propose here an adaptation of the numerical continuation
described in the previous section.

To this end, we take a linear path
k, k+1(

YyER— u v) :=up(ty) +v(up(tpr1) — up(ty))
and define Hy, jy1 : Rrutnot2netl _ Rrutnpt2ne pyy
a(u) — f — BLoAp — BIA, — B,
Bpu —up"™" (7)
A, — Pp, (A, —ra(B,u — g)) '
A — Pa_(7a,)(Ar — 5 (Bru — B uF))

y = (u,Ap, A, Ar,7) € Rutnp+2ne+1

Hip1(y) =



3 Numerical Continuation of 2D Static Problems 76

Observe that on the one hand, (w1, A5 AFFL AR solves (M) if and only if
Hi o (W X5 N AR 1) = 0. On the other hand, one can easily verify that
Hipor (uF, A5 N5 N5 0) = 0.

This leads us to the following possibility of numerical realization of (M, ): Tak-
ing (u®, )\IB, )\I;, )\i, 0) as a starting point, we shall apply the numerical continuation
for tracing the solution set of the system:

Find y € Rmwtmo2netl gych that
Hir1(y) =0,

until we reach a point from the set R no+2ne » 11,
An attentive reader has surely noticed that it may be not so easy to compute a
tangent £ at the initial point yht = (w®, A%, A5 A% 0) from the equation

/H;cxﬂ(ng% tg“) =0

(confer the initialization of Algorithm 3.1). Indeed, more selection functions for
Hi p+1 may be active at y’é“. To see this, consider that u* is such that the jth
node is sliding. Then |\f .| = —Z X% . whereas the corresponding components of the
second and the third test function in the (k4 1)th time step take the following form:

r
At J

r
— E(BT’U, — BT'U/k))] + ﬁ/\yd.

9§,j<y) = (AT
el?f,j(y) = (/\T

(BT’U, — BT’U;k)) tg;)\,jjj,

Therefore, one of them vanishes necessarily at y'{j“ .

To be precise, we determine the vector t’g“ in our computations simply as a

solution of the system '
VH e =0,

where the selection function ’H,(;)k 41 for Hy 41 is determined from the 3-by-n. array

obtained from the values of 85 '(yk™) and @5 '(yk™) instead of 85(yE™!) and
0% (yE+Y), that is, from the values

057 Wit = (A = (Bou' — Bout™h) - AL,
o5 (k) = (M — Ait(BTuk — B.ufh) + FL

for j=1,...,n.
Nevertheless, let us note that for the same reason, one may face difficulties also
when using the piecewise smooth Newton method and taking the solution from the
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previous time step as the initial approximation. Since the function H,; defined by
(3.15) may not be smooth at this initial point, it is not clear at all due to rounding
errors which gradient will be selected in the first iteration of each time step. This may
cause the method not to converge in some cases although the initial approximation
is not far away from the actual solution.

3.2.2 Numerical Experiments

To illustrate usefulness of the proposed continuation technique, we present here an
example coming from a technical practise. First of all, we solved it with the piecewise
smooth Newton method with a line search, which showed to be, however, short in
some situations as we shall see later on.

The reference configuration of the elastic body is represented by a rectangle
with “rounded corners” whose length and height are 20 mm and 10 mm, respectively
(Fig. 3.5). The body is unilaterally supported from its lower side and loaded via the
following Dirichlet condition imposed on its upper side:

—0.4¢ )

up(t,x) = ( "1.1-10-5
(13800(t — 1.1-107°),—0.4) if ¢ >1.1-107%,

ift <1.1-1075,
T < FD-

The body and surface forces are neglected, that is, f =0, h = 0. The coefficient of
friction . is chosen to be 1 and we set u’ = 0 in . The coefficients a, b, ¢, d in
the constitutive law (3.9) are determined as follows:
4] w0 A pu+o A
_ cC = — + -

a=ptg, 5 1 5 5 TH

where
A = 4000 N/mm?, = 120N/mm?, § = —180 N/mm?.

X

Figure 3.5: Reference configuration of the example with the unstructured finite-
element mesh of the body
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[soparametric P, finite elements are used for the spatial semi-discretization and At =
1075 s is taken for the discretization in time. The programme for performing the
tests employs the finite element library GetFEM++ [54].

If one solves the example on the uniform finite-element mesh depicted in Fig. 3.5,
one can compute a sequence of solutions by the piecewise smooth Newton method
with a line search till the time ¢ = 0.00051 s (for the corresponding deformed body, see
Fig. 3.6 and its zoom in the lower right-hand corner on the left of Fig. 3.7). However,
this method does not converge in the next time step. Even if one diminishes the time
step length At, there still exists some threshold where it stops converging. This is
why we used the numerical continuation here. The obtained solution curve of the
auxiliary problem is illustrated in Fig. 3.8(a) by the vertical displacement of a node
which rebounds from the rigid foundation in course of the continuation. Notice that
this curve explains the limited behaviour of the Newton method. Since it folds up,
there is always a discontinuity of the solutions in time whatever small the time step
is (Fig. 3.7)!

Further, we had to apply the continuation method once more for solving the
problem for the time ¢ = 0.00061s (Figs. 3.8(b) and 3.9). In this case, the con-

Figure 3.6: Deformed body in time ¢ = 0.00051s coloured by the values of the
corresponding Von Mises stress in N/mm?

800
600
400

200

Figure 3.7: Jump of the solution between ¢t = 0.00051 s (on the left) and ¢ = 0.00052 s
(on the right)
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0 0.2 0.4 0.6 0.8 1

fy
(a) Auxiliary problem Hs1 52(y) =0

0.3F
0.25}
0.2}
015}
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—-0.05¢
_0‘1,

-15 -10 -5 0

v

(b) Auxiliary problem Heo61(y) =0

Figure 3.8: Vertical displacement of the node with the coordinates (18.9695 mm,
0.250673 mm) in the reference configuration in course of the continuations; the start-

ing points are denoted by crosses

1500

1000

500

Figure 3.9: Jump of the solution between ¢t = 0.0006s (on the left) and ¢t = 0.00061 s

(on the right)

1000
800
600
400
200

Figure 3.10: Deformed body in time ¢t = 0.0007 s
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tinuation parameter vy was far below zero in course of the continuation, and the
resulting jump of the solution is larger than the previous one (there is even a small
self-interpenetration of the body in ¢t = 0.00061s). Besides, both turning points of
the solution curve are non-smooth. Despite it all, the method works well.

Let us mention that from ¢ = 0 up to ¢ = 0.00069s, the body is stuck to the
foundation by its lower right-hand corner. It starts sliding with its entire volume by
t =0.0007s (Fig. 3.10).

Next, we repeated the same experiment with a mesh once locally refined in its
lower right-hand corner. In this case, we needed to continue two times — for ¢ =
0.00053 s and t = 0.00056s. It is a bit curious that in the first case, we were not able
to find any point with v > 0 near the starting point of the continuation. Nevertheless,
we arrived at a wanted point with v =1 in the end (Figs. 3.11 and 3.12).

In the second case, we got a circular solution curve, for a change (Fig. 3.13(a)).
For this reason, we tried to continue between ¢ = 0.00054s and t = 0.00056s in-

-0.42F
-0.43}
-0.44(

Uz
-0.45(
-0.46
-0.47}

—0.48(

-25 -2 -15 -1 -05 0 05 1
g

Figure 3.11: Vertical displacement of the node with the coordinates (19.4044 mm,
0.576046 mm) in the reference configuration in course of the continuation of the
auxiliary problem Hso53(y) =0

1200
1000
800
600
400
200

Figure 3.12: Jump of the solution between ¢ = 0.00052s (on the left) and ¢ =
0.00053s (on the right)
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-0.4055¢+ E -0.35¢
-0.406} ] -0.4r
U2 Uz
-0.4065( ~045¢
-0.5
-0.407¢

-0.55¢

-0.4075! ‘ : : J : : :

-0.5 0 0.5 1 -0.5 0 0.5 1
Y Y
(a) Auxiliary problem Hss 56(y) =0 (b) Auxiliary problem Hs4 56(y) =0

Figure 3.13: Vertical displacement of the node with the coordinates (19.4044 mm,
0.576046 mm) in the reference configuration in course of the continuations

Figure 3.14: Jump of the solution between ¢ = 0.00055s (on the left) and ¢t =
0.00056's (on the right)

stead of t = 0.00055s and ¢ = 0.00056s with the starting point chosen as y3° :=
(w®, A%, X% A5 0.5). We arrived at a point with v = 1 in this way and, fortunate-
ly, this point showed to give a good initial approximation for the Newton method in
t =0.00056s (Figs. 3.13(b) and 3.14).

We observed in this experiment that the Newton method itself had difficulties
several times since the body started to slide with its entire volume. Moreover, its
first iterations seemed to be unstable. This confirms the discussion at the end of
Subsection 3.2.1.

We resolved the same experiment also with a mesh two times locally refined in
its lower right-hand corner. The only remarkable change was that the structure of
solutions was a little more complicated and we had to use the continuation more
times. For an example, see Figs. 3.15 and 3.16.

The experiments presented so far were computed when refining the mesh while
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-0.52}
Uz

-0.54|

-0.56

-0.58- : : : : : -
-12 -10 -8 -6 -4 -2 0

Figure 3.15: Vertical displacement of the node with the coordinates (19.4044 mm,
0.576046 mm) in the reference configuration in course of the continuation of the
auxiliary problem Hsg59(y) = 0

1500

N 3000
X
1000 20.5 7‘\ 2000
1000
L - L ) 0 ), p
20 20.5 21 21.5 22 20 20.5 21 21.5 22
X X

Figure 3.16: Jump of the solution between ¢ = 0.00058s (on the left) and ¢ =
0.00059 s (on the right)

Figure 3.17: Vertical displacement of the node with the coordinates (19.4044 mm,
0.576046 mm) in the reference configuration for different time step lengths
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keeping the time step length At fixed. It is worth mentioning that no significant
changes occur when, conversely, At tends to zero and the mesh is fixed. In fact, the
solutions will converge as illustrated in Fig. 3.17 on the mesh once locally refined
(observe the two jumps in the interval (0.0005,0.0006) described above).

Conclusion

Using standard numerical methods (the Newton method, the method of successive
approximations...), one is able to obtain some solution of contact problems with
friction without any further information on existence of other solutions. One may face
even situations when the standard solvers are not capable of finding any solution at
all. This is why we have developed a piecewise smooth variant of the Moore-Penrose
continuation, which allows us to follow branches of solutions parametrized by the
coefficient of friction &, the load vector f, etc. (Section 3.1). In comparison with
the classical Moore-Penrose continuation for smooth (differentiable) problems, we
have had to do some modifications in the prediction step to provide for transitions
through points of non-differentiability. In Section 3.2, we have introduced quasi-
static contact problems in large deformations and their discretization leading to a
sequence of incremental problems. We have explained a possible application of the
proposed continuation technique for solving these incremental problems and on one
example from technical practise, we have demonstrated advantages of this approach
in comparison with the Newton method.



4 Spatial Semi-Discretization of Dynamic
Problems

The purpose of this chapter is to present a well-posed spatial semi-discretization of
dynamic contact problems with isotropic Coulomb friction, making use of the so-
called mass redistribution method. This method was introduced in [38] for treating
a contact condition in numerical realization of dynamic contact problems without
friction. One might think that the strategy developed there is directly applicable
to a friction condition as well. However, we shall see hereafter that this does not
provide the well-posedness result and therefore a strategy adapted to the friction
condition is needed. Let us recall in this context that the main difficulty for the
unilateral contact condition is that the spatial semi-discretization by finite-element
method naturally adds a mass on the nodes of the contact boundary. On the other
hand, in [51] and [50], it was shown that adding a mass on the contact boundary
regularizes the tangential friction problem and prevents the occurrence of multiple
solutions in elastodynamics!

The method proposed here is to apply the mass redistribution method only on
the unilateral contact condition not on the friction one. We show that in this case,
the problem semi-discretized in space reduces to a differential inclusion with a unique
Lipschitz continuous solution (not to a measure differential inclusion as in the stan-
dard semi-discretization). For the sake of simplicity, we limit ourselves to the frame-
work of linearized elasticity. However, the same kind of difficulties exists for large
deformation problems and a similar strategy can be applied. The results have been
published in [46].

The outline of this chapter is the following: In Section 4.1, we present a classi-
cal finite-element spatial semi-discretization of elastodynamic contact problems with
friction. In Section 4.2, we propose an application of the mass redistribution method,
namely, to use it only on the normal component. The well-posedness of the obtained
semi-discrete problem is proved in Section 4.3. Finally, an elementary example de-
scribed in Section 4.4 shows that the well-posedness of the fully discrete problem
cannot be attained when the mass redistribution method is applied both to contact
and friction conditions.

84
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4.1 A Classical Spatial Semi-Discretization

Dynamic contact problems with Coulomb friction consist in finding the displacement
field w : [0, 7] x Q — R? satisfying

pu — divo(u)

u, <0,

o,(u) <0,

u-(t, ) =0 = |o,(z,u(t,z))| < —Fo,(x,u(t,x)),

u(t,x) #0 = o, (x,u(t,x)) = Fo

u(0, ) = u’(x),

v, u(t

—f i (0,T)xQ,
o(u) = ( ) in (0,T) x &,
=0 on (0,7)xI'p,
o(u ) =h on (0,7) xI'y,
u,o,(uw) =0 on (0,7) x I,
) U, (t, ) on (0,7T) x I'¢,
(1)
w(0,z) = v’(xz) in Q,

where T" > 0 determines the time interval of interest, p is the mass density and
u, u denote the first and the second time derivative of w, respectively. Further,

u?, v°

: 0 — R? are given initial displacement and velocity fields, respectively. For

simplicity, we confine ourselves to a 2D case where the loads f and h do not depend
on the time ¢ and the coefficient of friction .%# is represented by a non-negative real.
Using the Green formula, this problem is formally equivalent to

Find w:[0,7] - V with w,u: [0,7] - V, \,
Ar [0, 7] — XL with A (t) € A (
w) = (w) +

(pt(t), w)oo + alu(t),

<:u1/ - >‘V<t)7 ul/(t)>l/ Z 07

<:uT - )‘T(t)a uT(t)>T > 07

u(0) =u’,  u(0) =",
where

Vi i={wc H(Q)|w=0ae onIp},

1 [0,T] — A,

F,(t)) a.e. in (0,T) such that
<AV(t)7 wl/>l/ + <)\T(t>7wT>T7

VweV ae. in (0,7),

Vi, €A, ae in (0,7),

Vi, € A (F

A (1)) ae. in (0,7),

X, ={pe *ITg)|Fw eV : ¢ =w, a.e. on g},
X, ={pe *Tg)|F3w eV : ¢ =w, ae. on g},
A, ={w € X | {p,w,), >0, Vw eV, w, <0ae. onlg},

A (F ) = {pu, € X; | (s wr)r + (F i, [wr]), <0, Vw € V1§,

fy € Ay,
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a(v,w) = /QAE(U) re(w)de, v,weV,

K(w)::/f~'wd:c—|—/ h-wdS, weV
Q I'n

and (.,.),, (.,.), stand for the duality pairings between X, and X/, X, and X,
respectively.
A spatial finite-element semi-discretization of (.#) leads to the following problem
(for more details see Section 2.2):
Find w: [0, 7] = R™, A, : [0,T] = A, A, :[0,T] — R"™ )
with A (t) € A, (ZA,(t)) a.e. in (0,7T) such that
Mii(t) + Au(t) = f + BIX,(t) + BIX,(t) ae. in (0,7T),
(e, —A(t),Byu(t)) >0, VYp,eA, ae in (0,7),
(o, — A (1), Bya(t) >0, Vp, e A(FA()) ae in (0,7,
w(0) =u’,  u(0) ="

Vs

As in the previous chapters, we use the same symbols for algebraic variables as for the
corresponding continuous functions. Besides the notation introduced in Section 2.1,
M € M™ stands for the mass matrix, u° and v° are the vectors of degrees of
freedom of the discretized initial displacement and velocity fields, respectively, and

A, = R",
A (Fp,) ={p, eR™||pri| < —Fpp, Yi=1,....,n}, mw, €A,
We assume that both A and M are symmetric positive definite:

(i) A= AT,

(i) (Aw,w) >0, VYw e R"™\ {0}, } (4.1)
() M=M",

(i) (Mw,w) >0, YweR™\ {0} } (4.2)

and the rows B, ;, B.; of B,, B, € M">" are mutually orthonormal:
(BVJ;,BVJ') :5ij; (BT,i7BT,j) :5ij7 (Bu,i7BT,j) :O, \V/Z,] = 1,...,nc. (43)
Note that from (4.3), it immediately follows that there exists 5 > 0 such that

B, , B;
(0 Bow) + (. Byw)
ottt ool

> Bl (o), Y (12, ) € R (4.4)

Problem (M) can be viewed as a measure differential inclusion (see [47, 49]). It
is ill-posed unless an impact law is added on each contact node. Even in this case,
the solutions have a very low regularity.
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4.2 The Mass Redistribution Method

The analysis presented in [38] highlights the fact that the main cause of ill-posedness
of (M) is due to the inertia of finite-element nodes on the contact boundary. It is
proposed a method that consists in the redistribution of the mass near the contact
boundary. This technique ensures well-posedness of the semi-discrete problem and
transforms the measure differential inclusion corresponding to (M) into a regular
Lipschitz continuous ordinary differential equation, which can be approximated by
any reasonable difference scheme.

It is worth mentioning that the singular dynamic method introduced in [53] for
unilateral conditions is more general than the mass redistribution method. However,
we use here the latter one. The reason is that we need a differentiated treatment of
unilateral and friction conditions, which would be more difficult to obtain with the
singular dynamic method.

Let N :=span{B,,...,B,,.} and N'* denote the subspace of R™ spanned by
B, ; and its orthogonal complement, respectively. We shall consider the redistributed
mass matrix M, € M™ satisfying (confer (4.2)):

(J) M’/‘ = MZ>
(ij) Ker M, = N, (4.5)
(Gij) (M,w, w) >0, VweN"\{0},

that is, being symmetric positive semi-definite with the kernel equal to A/. In [38], a
simple algorithm is proposed to build the redistributed mass matrix preserving the
main characteristics of the mass matrix (total mass, center of gravity and moments
of inertia).

Using the decomposition w(t) = wuprs(t) + upn(t), upnr(t) € N+, upn(t) € N, of
the displacement vector for any time ¢ and replacing M with M, problem (M)
becomes

Find ups @ [0,T] = N+ up 2 [0,7] = N, A, :[0,T] = A, )
A [0, 7] — R™ with A-(t) € A-(FA,(t)) a.e. in (0,T) such that
M iy (1) + A(ups () +up(t) = F+ BIX(t) + BIX (1)
a.e. in (0,7), (M,)
(, — A(t), Byun(t)) >0, VYp, €A, ae in (0,7),
(o, — A:(t), Briap(t) >0, VYV, € A (FA () ae. in (0,7),
upt(0) = ulr, Upne(0) =08,

/

where u?\/ » ”?\/ . are the projections of the initial values of the displacement and
velocity vectors into N1, respectively. Since the constraints in A, as well as in
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A (F A, (t)) are separated, it is possible to express the unilateral contact and friction
conditions in an equivalent way (see [39], for instance) and rewrite the problem as
follows:
Find wups : [0,T] = N5 up - [0,T] = N, Ay, A2 [0,T] — R™ )
such that
Mty (t) + A(ups (t) + up(t))

=f+ Z Mi(t) By + Z Ai(t)Br; ace. in (0,7), (M)

1<i<ne 1<i<n,

M\i(t) € Ng_ (BT (t)), Vi=1,...,n. ae. in (0,7),
Ari(t) € FA it )Sgn( Taee(t)), Vi=1,...,n. ae. in (0,7),
up (0) = ulL, uNl(O):vﬁ]w, J

where Ng_ denotes the normal cone of R_ and the multifunction Sgn : R = R is the
sub-differential of the function r — |r|, that is,

Sgn(r) _ m lf T # O,
[—1,1] ifr=0.

4.3 Well-Posedness Result

In this section, we shall establish the well-posedness of problem (M,). First, owing
0 (4.3) and (4.5), the first three variables of any (ua.r,un, Ay, A;) solving (M)
have to satisfy

uns(t) €N, un(t) €N, V<)6Ay,
(Alupe () + un(t), w) = (f,w) + (A (), Byw), Yw e N, (4.6)
(u,,—M)BuN(t))zO, \w,,eA

for almost all t € (0,7"). From here, uy and A, are uniquely determined by w1 as
states the following assertion.

Lemma 4.1. Let (4.1) and (4.3) be satisfied and f € R™ be arbitrary. Then there
exist unique functions g, : Nt — N and g, : N* — A, such that the triplet

(1t (8), (), M (0)) with wac(t) = gy (ans (1)), Ay i= galtnes (1)), satisfies (4.6)
for any up(t) € Nt and any t € [0,T]. Moreover, the functions g, and g, are
Lipschitz continuous:

3L, Ly >0: | g,(w) — g;(w)| < Lijjw —wl|, Yw,weN* i=12 (4.7)
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Proof. In fact, it suffices to analyze the static problem:
Find (@, ) = (@ (a2 ), A (Gips)) € N x A, such that
(Awy, w) = (f — Ay, w) + (A, Bow), YVweN, (4.8)
(/*l’y - S\V,B,,’U,N) >0, vl’l’y €A,

for wy. € N+t given. It is readily seen that this problem is equivalent to finding a
saddle-point (@, A,) of the Lagrangian

1
X(w,u,,) = §(Aw7w) - (f - A’&'vaw) - (/J'w Buw)v (w7/-1'u) € R™ x Rnca
on N x A,. Since A is supposed to be positive definite and
/J’V’Blfw /"l’lnBVw n
Bl < sup HoBrw) o ) Yy, cR™
0A£wER"w [wl o wen  [wl|

due to (4.3), where 3 is the constant from (4.4), problem (4.8) possesses a unique
solution for any @, € N*, which depends Lipschitz continuously on the data ..
(see [17] and eventually the technique of the proof of Lemma 2.2). This yields the
existence, the uniqueness and the Lipschitz continuity of the functions g, and g,. [

From the other side, if (ua1, upr, Ay, Ar) solves (M!) then

(Mt (t), ’w) + (A(UNL (t) + un(t)), w) )
( Z Ari(t) B”,w> Vw e Nt ae. in (0,7),
1<i<nc (49)
AT,i(t) S g\/\yvz(t) SgH(BZ:Z'U,NL (t))u Vi= ]., ..., a.e. in (07 T),
up i (0) = ulr, Upn(0) =of.L. )

By substituting the inclusion for A;;(¢) into the equality and taking wp(t) :=
g1 (ups(t)), Ai(t) == g2i(ups(t)) according to Lemma 4.1, this becomes
(M ity (), w) € (f — Aupe(t) — Agy(up (1)), w)

+ ( Z F ga.i(ups( ))Sgn(BziuNL (t))Bm-,w),
1<i<nc (4.10)

Yw € N+ a.e. in (0,7),
’U,NJ_<0):'UJ?\/L, T:LNJ_(O)ZU’(,)V’L. )

3\

Lemma 4.2. Let (4.1), (4.3) and (4.5) be fulfilled and f € R™, ul.. v, € N'* be
arbitrary. Then there exists a unique Lipschitz continuous function wpr : [0, T] —
NL with diy. € LY0, T;R™) solving (4.10).
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Proof. Introducing the matrix P € M™", i1 :== dim N'*, columns of which form an
orthonormal basis of N'*, any vector w € N'* can be represented by w € R™ with

w=P'w, w=PP'w=Pw

and (4.10) is equivalent to

(M a(t), w) € (F — Aut) - g, (a(t)), ) w
(X Zaa) sen(BLa(t) Brw).

Vw e R" ae. in (0,7),

M,=P'M,P, A=P'AP, g,(a(t))=P"Ag,(Pu(t)),
9,(u(t)) = (G2:(u(t)) = go(Pa(t), uw=Pluy., @’ =Pul., f=P'Ff,
BT’Z':PTBT’Z', izl,...,nc

With regard to (4.5), this can be written as

a(t) e MI'[F — Aa() - + Y Fge(a(t) Sen(B, ju(t)) B,

1<i<n,
a.e. in (0,7),
uw(0) =, u(0) =P,
and by denoting v := Mi/Qﬁ, oY = Mi/QPT’U?\/J_, this leads to the following differ-

ential inclusion of the first order:

(40)) & | 0217 - Aa) - g,(@) o
+ Y cicn, FGo(a(t) Sen(BL, M, *o(1)) B,

-~

(4.11)
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with the multifunction F' : R?*® = R?" defined by

F(z):= | M;"?[f — Az, — g,(z1) ,
_ =T =
+ Zlgignc F §a,i(21) Sgn(BT,iMr 1/2Z2)Bm‘}
z=(z1,22) € R, (4.12)
and y° := (a°, 0°).
Obviously, F is upper semi-continuous, that is, F~!(<) is closed whenever & C
R? is closed, and F(z) is a closed convex set for each z € R*". Furthermore, there
exists ¢ > 0 such that

|F(2)]| = sup{llw]| |w € F(2)} < c(l+|lz]) V=zeR™ (4.13)
Indeed,
) r _
IE@ < 13, [I)? + 1| F — Az1 - g1(21)

_ _ _ 1/2
+ Y Fgoulz1) Sen(BL,M; 1/2z2)Bm-H2}

1<i<n,

Cr—1/2 " 1 _
<M H[HZ2H2+ (£ + ALz + llga(z0)]

_r o _ 1/2
+| Y Failz1)Sen(B; M, 1/2z2)Bm‘H)2}

1<i<n,e

First,

1<i<n, 1<i<n,

in virtue of the orthonormality of B, ; and the definition of the mapping Sgn. Second,
making use of (4.7) and of the form of P, we have

lg1(z1)|l = |1P* Agy(Pz1)|| < || Allllg: (Pz1)]l
g1 (Pz1)[l = llg:(PO)[| < Ly[|P(21 = 0)| = Lal[z1]],

consequently
191 (z)[ < [|All([lg, (0)[| + Laflz )

and in a similar way one can verify that

192(Z0)[] < [lg2(0)[| + Lal|z ]|
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Hence,

IF(2)| < 1M, (2202 + (171 + [ Al z1 ] + Al (lg:(0) ]| + La]lz1])
+ 7 (|lg2(0)]| + Lallza]))*] %,

from which the expression for the constant ¢ in (4.13) follows. Therefore, Theorem 5.1
in [13] guarantees that (4.11) has an absolutely continuous solution y in [0, 7] for
any y° € R?" that is, a function y : [0, 7] — R?" with ¢ € L'(0, T; R*") satisfying

y(t) =y + /Oty(s) ds forallt €[0,7] and y(t) € F(y(t)) a.e. in (0,7).

This gives the existence part of the assertion. To prove the uniqueness, it suffices
to show that F' is one-sided Lipschitz (see for instance Theorem 10.4 in [13]), that
is,

JKeR: (F(2')— F(2%),2' = 2?) < K||z' — 2°||?, V=z' 2% ¢ R*™™
From the definition of F,
(F(z") — F(2%),2' — 2°)
:(M;l/Q(zé—ZQ — 27)
+ (M ”2<gl<z1> e

+ (M;1/2 Z f/\(gu(z

1<i<ne

+ (M 2 A(22 - 21), 2 — 22)
Z

22— )

)
Y Sen(B!, M 2))

)
)
— =T v pr—1/2 —
_927"(2’%) Sgn(BT,iMr / Z%))BT,D Zé - z§>
=: 81+ So + S3 + S4.

Clearly,
51 < | M|t = 220 s < | MVPA| 2 - 22
and
/201 = _
s < IV, ?)191(22) — gy (zD)[l]12" — 22|

1/2 Cr—1/2
< |M )| Alllg, (P2}) — gy (P2IllIz" = 2%]| < Li| M, || A2 — 22

by (4.7). Furthermore,
si= Y F(gilz}) Sen(BL,M, " *2}) - g,.:(23) Sgn(B M, *23))
1<i<n,

—r—1/2 = —r—1/2 &=
((M;"*B.;,2}) — (M. "*B.,,23)).

T
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Hence, by fixing ¢ and setting
pr=gailz1), PPi=gaa(2Y), ¢ = Bf,iM;lmz%? ¢ = BZiM;l/nga
the 7th summand of s, takes the form
F(p' Sen(q') — p* Sen(¢*))(¢' — ¢*).
The definition of A, implies p*, p? < 0. We claim that in this case
(p' Sgn(q") — p*Sgn(e®))(a" — ¢*) < Ip" = P*lla" — ¢’ (4.14)

Indeed, for ¢ € Sgn(¢') and £ € Sgn(q?) we get

P'C =) (¢ — ) = ' —p'E+p'E =) (" — ¢*) < (' —p*)E(d" — &)

due to monotonicity of the multifunction Sgn. And of course, (4.14) can be deduced
from

(r' = p")eld" — @) < |p* = plla" — &*|-
Applying this together with the Cauchy-Schwarz inequality and (4.7), we get

54 < F Z |G2,i(21) — ?2,1‘('23)”3;]\_4;1/2% - B:iMr_l/Qz%‘

1<i<ne

_ _ ——1/2 —r—1/2
< Z|y(2) — G (2| B- M V2 (2 — 22)|| < Z Lo M, 2|20 — 22|12
All in all, the one-sided Lipschitz property of F' is verified. [l

On the basis of the previous two lemmas we arrive at the announced well-
posedness result.

Theorem 4.1. Let f € R™, ul,,, v\ € N+ be arbitrary. If (4.1), (4.3) and (4.5)
are satisfied then there exist a unique Lipschitz continuous function uy. : [0,T] —
N with diyr € LY0,T;R™) and unique functions wy : [0, 7] — N, A, : [0,T] —
A, and A, : [0,T] — R™ such that the quadruplet (upo,wpr, Ay, Ay) solves (M,.).
In addition, uy, N, are Lipschitz continuous in [0,T] and X, € L>=(0,T;R").

Proof. The existence and uniqueness as well as the Lipschitz continuity of w1 and
uy, A, are ensured by Lemmas 4.2 and 4.1, respectively. Consequently, the existence
of A, is readily seen from the relation between (4.9) and (4.10). If (wuprs, upr, Ay, AL)
and (w1, upr, Ay, A2) were two solutions to (M,.) then

(AL(t) — Ai(t), B,w) =0, Yw € R™ a.e. in (0,7)
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by the first equation in (M,) and

BIAL ) — A2 < sup e = A, Brw)

=0 a.e. in (0,7)
0weR [[wll

in virtue of (4.4). In a similar way, one also shows that A, € L>(0,T;R") from the
Lipschitz continuity of A, and the second inclusion of (M.). O

Remark 4.1. Tt is readily seen that this theorem remains valid when the coefficient of
friction is represented by an arbitrary vector from R’ as in Chapter 2. Invoking the
results from [13] for non-autonomous differential inclusions, one can generalize the
well-posedness result to problems with a load vector which is a Lipschitz continuous
function of time. Finally, the analysis can be extended to 3D problems since its key
point is the monotonicity of the multifunction Sgn. For the 3D problems, the friction
condition can be expressed by means of the sub-differential of the function r — ||7]|,
which is also monotonic. This allows to arrive at an analogous relation to (4.14).

At the end of this section, we shall take a closer look at a fully discrete problem.
First, we shall examine its well-posedness. For definiteness, we shall consider time
discretization by the midpoint rule, however, the analysis will be similar for other
standard difference methods.

Following Chapter 6 in [37], we divide the interval [0, 7] uniformly into ny subin-
tervals and set At := T/nr and t; = kAt, k = 1/2,3/2,...,nr — 1/2. Adapting

the midpoint scheme to problem (M,.), we seek the approximations uf\;ll / 2, 'vi;ll / 2,

’U,ﬁj\?l/Q, Al]f+1/2 and Af_—H/z of UNL (tk+1/2), 'l.l,NL (tk+1/2), U/\/(tk+1/2)7 Au<tk+1/2) and
Ar(try1/2), respectively, for k = 0,...,np — 1 such that

k+1/2 k+1/2 k+1/2 A
w0 e N ul [P e N AR e A, NP2 € AT,

k
u/\;ll _Uf\u k4172
A e
v — v k+1/2 k+1/2
MO A ) = f 4 BIXTU 4 BIX,

(1, = A2 B ) >0, v, €A,
(B, = A2 B2 > 00 W e A (FAEF?),

where k41 k k41 k
k12 | Upl T UKo o2 Uyl T Uyt

R
Fixing k and arguing in the same way as in the study of the semi-discrete problem,

one can see that uf\fl/Q = gl(ui;llﬂ) and AFH/2 — gz(ui;fﬂ), where g, and g, are
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given by Lemma 4.1. Consequently, one arrives at the following discretization of
(4.11):

k41 _ 0k k+1 k
vy —v vty ) (4.15)

A S
with F defined exactly by (4.12).
Let us introduce the multi-valued map G : R*® = R?" as G := G, + G5, where
G1: R?™ = R?™ and G, : R*™ — R?*" are the following:

y+y” a
5 )—y", yeR

1
Gi(y) := 3y~ AtF(

1 _
Go(y) == §y7 y € R*".

Then (4.15) is nothing but
G(y"™) > 0. (4.16)

Now, take an arbitrarily fixed At < 1/K, where K > 0 is a constant from the
one-sided Lipschitz property of F. Clearly,
(Gi(y) — G1(¥).y — ¥)

(

1 _ _

Q(y -Y,y—y) — 2At<F(
1 K _

> (554t lly-gl* =0, vy, gerR”,

y+y’“)_F(@+y’“) y+y’“_y+y"”>
2 AT 2

that is, Gy is monotone. Moreover, it is vaguely continuous and G;(y) is closed
convex for all y € R*™. Hence, GG; is maximal monotone according to [6]. Since G
is obviously a continuous, coercive, monotone mapping which maps bounded sets of
R*" into bounded sets of R?", Theorem 1 in [7] guarantees that there exists at least
one y**1 solving (4.16). By the strict monotonicity of G, such y*+1 i

is unique.
. . . k+1/2  k+1/2  k+1/2
From this and Lemma 4.1, the existence and uniqueness of u N+ L/ , v N+ L/ ,u /\;r /

and AF1/2 follows. Finally, )\f_“/ % can be treated in an analogous way as in the
proof of Theorem 4.1.

Moreover, convergence of a quite general class of difference methods can be es-
tablished (for a fixed mesh) in view of the results in [42], for instance. Indeed,
if one constructs a sequence of piecewise linear continuous interpolants of the grid
functions (¢, ...,y"T) on the basis of an appropriate discretization of (4.11), all
the interpolants are Lipschitz continuous with the same Lipschitz constant and the
sequence is guaranteed to converge uniformly to the unique solution y of (4.11) for
ny — +00. From here, uniform convergence of the corresponding approximations of
the components w1, uy and A, of the solution of (M,) easily follows.
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Remark 4.2. For most of the classical difference schemes, the fully discrete problem
is also ensured to be well-posed provided that the time step is sufficiently small.
Moreover, the sequences of piecewise linear continuous interpolants of the grid func-
tions (ufr,. .., uNf ), (uls, ..., uif) and (A),...,Ap") converge uniformly to wy-,
uyn and A,.

4.4 An Elementary Example

This section concerns the mass redistribution method for the dynamic case of the
elementary contact problem studied in Section 2.4. The aim is to show that an
undifferentiated treatment of the contact and friction conditions may lead to an
ill-posedness of the fully discrete problem whatever the length of the time step is.
Denoting the lengths of the sides of the considered triangle by I, I and v/2l (confer
Fig. 2.3), we obtain the following formulation of the dynamic elementary problem in
inclusions:
Find w : [0,7] — R* \,, A\, : [0,7] — R such that )
Ma(t) + Au(t) = f(t) + BLA(t) + BIX(t) ae. in (0,7),
A1) € Ne_(Buu(t) ae. in (0,7).
A (1) € ﬁ)\ (t) Sgn ( ()) a.e. in (0,7),
) =

u(0) = u(0

where
2 0 )\—5-23” _)\_.5&
M= 1o2 | A=\ Xy s | Be=(10), B-=(0 1).
12 2 2

Here p > 0 is constant, A, u > 0 are the Lamé coefficients and f is assumed to
depend on t.

Obviously, the mass redistribution method consists in replacing the matrix M
by M, := (" 0 ) with m,,m,; > 0. The time discretisation will be done by the
midpoint scheme considered already at the end of the previous section. In the case
of general mass redistribution, we seek u*+%/2 v**1/2 ¢ R? and A,, A\, € R for

k=0,...,ny — 1 such that

uftt — ok _ phtL/2 \
At ’
oF L _ ok bt1/2 T\ k+1/2 Ty k+1/2
M,,,T —I—A'U/ = f(tk+1/2)+By)\u _I_BT)\T ? (417)
A2 € Np (Butt?),
N2 e ZZ\EF2 Son (B ok T2,
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where At :=T/nr, tp := kAt, k=1/2,3/2,...,np — 1/2, and

k+1 k
k12 _ U tu
2

k+1 k
Rt U O

v 2

v (4.18)

From the first equation in (4.17) and (4.18), one can express v*+/2 and v**! as

At At
which inserted into (4.17) leads to

o2 — 2 uft/2 _ i’u,k, vt = i'u,k“/2 - i’U:k — ", (4.19)

At At

4 ~k+1/2
(A_tzMr+A)ukH/2:f +1/

—A? € Ng_(B,ut'7?),

+ BT+ BINT?,

2
N2 ¢ gz \k+1/2 Sgn(EBT(ukH/Q _ uk))

with
A k412

f

Finally, we consider the decomposition

4 2
= + — M, u* + —M, v
f(tk+1/2) el N U

. . . ~d A
u' = (u,ur), f=(0f 1)

and denote

4 A+ 3 A p 4 A+ 3p
a <At2m + 5 ) & AtQm + 7

In each time step we obtain the following problem:
Find (uft/2 of /2 \e+1/2 \k+1/2) ¢ R* such that
GUI;H/Q _ bu§+1/2 _ ff+1/2 + )\I;Jrl/Z’
—bul’erl/2 + cuf*’l/2 = ffH/Q + /\fH/Q, (4.20)
CARFLYZ ¢ N (R Y2,

MNF1/2 e ZNRFL2 Sn (uh /2 — /b,

T

/

after resolution of which the values of u**!, and v**! are determined by (4.18) and
(4.19).

Exact solutions of problem (4.20) for an arbitrary & € {0,...,ny — 1} can be
derived in the same way as those of problem (2.43). In a similar way as in Section 2.4,
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we introduce the linear functions S,g?rl/g ' R?2x R, — R* i =1,2,3, and the set-

valued mapping S 2x Ry = R* by

k+1/2

( 3 L Cfu+bf7' af7+bf,,
Sk+1/2(fvy) '_( CLC—bZ ’ ac_bQ )

S,gi)l/z(f,ﬁ) = (O, uk, —(fy + buk), cuf — fT), f e R? ZF € R,,

3 .
Slg+)1/2<f, F) =

om) FcR? 7 cR,,

feR: Z cR,,

(0, -~ Ff, _ny+bfT §ny+bfT>7 ;

c+bF = c+bF c+bF
( AT O\Al/ AV bA‘r Az/ bA‘r
{th'+ff7_f# + f7ﬁﬁf+-f>}
c— b c— b c—bF

if}eR{?e]&\{g},

(4)
St /2(

Kh>

T = {(uy,uT,Ay,A ) €R

=0, _é <u, < UE, Ay = _(fu+buT)a Ar = <gs(fu_‘_bu’r)}

ﬁ}eR{ﬁ:%

and for . € R, define the sets

pﬁyﬂ F) = {f e R*|cf, +bf, <0},
pl(f—i)—l/Q( 7) = {f € R? | fu > —buﬁ, (c— b?)ulj — Z
oo (F) = {F € R?|ef, +bf, >0, f, > (c+bF
{F €R2|f, > —buk, cf, +bf >0
if 7 €[0,c/b],
{f€R2’fuZ—bulﬁ, Cfu+bf7§07 fTZ (C_byﬁiﬁ_yfu}
if 7 € (¢/b, +0).

4
Ptia(F) =

k ~k+1/2 ;
Again, Sli+1/2(f H/Z,f) solves (4.20) for f 2 p,(;il/z(ﬂ), F e Ry, i =
~k
1,2,3, and S,Ei)l/Q(f ,F) is the set of solutions of (4.20) for f 2 e ,0,(:{21/2(9),
Z# € R,. For this reason, the structure of the solution set to (4.20) depends on the

mutual position of p,(:jrl /2(ﬂ ), which depend on the magnitude of .%#

If # € ]0,¢/b) then the interiors /)1(31 /o(:F) are mutually disjoint for all 1 <14 < 4
k+1/2

k+1/2

€ R? (see Fig. 4.1; we visualize
here only the component AbrL/2 , which determines uniquely the other components

of the solution). If # > ¢/b then pgﬁlm(a@) = p&)lﬂ(ﬁ) N P£2+)1/2(35) and its

and (4.20) has a unique solution for any f
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Net/2 N fr
0
culf,*
...... 1/ |
B : ok f'rjL / ";431/2(9)\
—bu!; T —buﬁ N
fhri/2 fo

Figure 4.1: Structure of the solutions for .% € (0, ¢/b)

/\k+1/2 . B B fr N
v e p(3) (?)
0 k+1/2
(2)
cuk Prt1/2(F)
1
Py 2 (F)
fk+1/2 (4)
. - T Pl 1/2(5")
k ﬁ
—b’U# clr —‘bu’C
fht1/2 . fu

Figure 4.2: Structure of the solutions for .# € (¢/b, +00)

k+1/2 i

Av pl(jzl 2(F)

0
cuk- Py /2 (F)
1
Py 2 (F)

....... K112 b
i (F)

_buﬁ —buk
fEt1/2 o

Figure 4.3: Structure of the solutions for % = ¢/b
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interior is non-empty. In this case, there exists a unique solution of the problem if

fk+1/2 € (R?\ pl(ﬁlﬂ(gf)) U {(=bu*, cuk)}, there are two solutions on 8pk+1/2(9) \

{(=buF, cu®)} and three solutions in p,(gllﬂ( #) (Fig. 4.2). Finally, if # = c¢/b,

pl(ﬁl 1o(F) = 91(3421 p(F)N /)1(31 1o(:#) is a half-line and there exists a unique solution

of (4.20) for }'k+1/2 € (RZ\pﬁl/Q(ﬁ))U{( bu¥, cu¥)} whereas the continuous branch

S,gi)lm(}'kﬂﬂ F) of solutions connects Sk+1/2(f +1/ F) and Sk+1/2(f kL F) for
~k+1/2
P e p(P) \ (bl cub)} (Fig. 4.3).

Now take the redistrlbuted mass matrix M, such that m, = 0 and m, > 0, that
s, (4.5) is fulfilled. Then, for any .# > 0 given, one can find Aty > 0 satisfying

4 A+3
T—"__M

¢C_ Az
[_):tT>§’ VAtE(O,Ato)
2
and the analysis above ensures the unique solvability of (4.20) for any f k2 € R?

and any At € (0,Aty). (Of course, this follows directly from the well-posedness
result established in the previous section.)

On the contrary, consider M, with m, = m, = 0, which corresponds to the
total elimination of the mass from the contact zone. If the coefficient .# is larger

than (A + 3u)/(A+ p) = ¢/b, one can always find }’kH/Q such that (4.20) possesses
multiple solutions whatever small At is. Hence, the well-posedness is not reached in
this case.

Conclusion

We have adapted the mass redistribution method for elastodynamic contact prob-
lems with friction in this chapter. The proposed strategy, which is to apply the mass
redistribution only on the normal component corresponding to the contact condition,
allows to transform the semi-discrete problem into a regular one-sided Lipschitz dif-
ferential inclusion. The advantage is that any reasonable time discretization scheme
is then convergent, at least for a fixed mesh. Moreover, the fully discrete problem
is also well-posed for a sufficiently small time step. The simple example described
in Section 4.4 has shown that this is not the case when the mass redistribution is
applied on both the contact and friction conditions. To add, let us note that in [46],
a numerical test has been performed for demonstrating that the proposed strategy
leads to stable time discretization schemes.



Conclusions

The aim of this thesis was to analyze discretizations of contact problems with
Coulomb friction theoretically and to propose algorithms for their numerical re-
alization, making use of the obtained theoretical results.

First, we have studied discretized 3D elastostatic contact problems with or-
thotropic and isotropic Coulomb friction and solution-dependent coefficients of fric-
tion (Chapter 1). We have guaranteed existence of at least one solution for a large
class of coefficients. In addition, we have ensured that the solution is unique pro-
vided that the coefficients are Lipschitz continuous and their upper bounds as well
as Lipschitz moduli are lower than some critical values. Unfortunately, these critical
values have been shown to vanish when norms of the corresponding finite-element
meshes tend to zero. As a consequence, the uniqueness result does not provide any
information for larger coefficients.

To understand better the structure of discrete solutions, we have analyzed condi-
tions guaranteeing the existence of local Lipschitz continuous branches of solutions
as functions of the coefficient of friction and the load vector in the case of 2D static
contact problems with isotropic Coulomb friction and a coefficient represented by
a vector independent of the solution. This has been done in Chapter 2 by using
variants of the implicit-function theorem for generalized equations and piecewise dif-
ferentiable equations. Moreover, we have described in details a structure of solutions
of an example with very small number of degrees of freedom, which can be solved
analitically “by hand”.

To trace the solution branches and eventually to capture multiple solutions of
problems studied in Chapter 2 numerically, we have considered these problems writ-
ten as a system of non-smooth equations parametrized by one scalar parameter and
we have proposed a variant of a path-following algorithm adapted to the piecewise
differentiable character of this system (Chapter 3). We have then successfully tested
the algorithm in large deformation problems.

In the last chapter, we have focused on approximation of elastodynamic contact
problems with isotropic Coulomb friction and a coefficient independent of the solu-
tion. Making use of the mass redistribution method, we have introduced a well-posed
semi-discretization of these problems, which shows to be essential for obtaining sta-
ble numerical schemes. We have restricted ourselves to 2D problems, nevertheless,
the extension to the 3D case is straightforward.
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A Piecewise Differentiable Functions

For the sake of completeness, we give here a brief introduction to the theory of
piecewise differentiable functions. The exposition is extracted from [56].

We start with some basic notions. Let 7 := {& € R" | Bx < 0}, where B € M™"
and the inequality has to be understood componentwise, be a polyhedral cone with
vertex at 0 € R™. Recall that the dimension of 7 is defined as the dimension of its
linear hull and nonempty faces of © can be represented as the sets

{xeR"|Bx=0,Viel Bjx <0, Vje{l,....,m}\I}

for some index set I € Z(B,0), where

1(B,0)
—={Ic{l,....m}|3zeR" :Bx=0,Viel Bjo<0, Vjec{l,...,m}\I}

([56, Proposition 2.1.3]). Here B; is the ith row vector of the matrix B. A nonempty
face of m which does not coincide with 7 is called a proper face. Further, the lineality
space of 7 is the linear subspace {x € R" | Bx = 0}.

A finite collection II of convex polyhedral cones in R" is called a conical subdivi-
sion of a polyhedral cone p C R™ if

1. all polyhedral cones in II are subsets of p;
2. the dimension of the cones in II coincides with the dimension of p;
3. the union of all cones in II covers p;

4. the intersection of any two distinct cones in II is either empty or a common
proper face of both cones.

It holds that if II is a conical subdivision of a polyhedral cone then all polyhedral
cones m € II have the same lineality space ([56, Proposition 2.2.4]). Hence the
lineality space of 11 is introduced as the common lineality space of the polyhedral
cones in II.

The kth branching number of a conical subdivision II of a polyhedral cone p is
defined as the maximal number of cones in II containing a common face of dimension
(dim p — k), where k € {1,...,dimp — n;} and n, is the dimension of the lineality
space of II.

Finally, let U be a subset of R™ and let HD) U = R™ 7 =1,...,n, be a
collection of continuous functions. A function H : U — R™ is said to be a continuous
selection of the functions HW, ..., H™) on the set O C U if it is continuous on O
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and H(z) € {HY(x),...,H")(x)} for every € O. A function H : U — R™
defined on an open set U C R" is called a PC'"-function for some r € {1,2,... }Uococ if
for every 2° € U, there exist an open neighbourhood O C U of £° and C"-functions
HD . H™) . O = R™ for some ny such that A is a continuous selection of
HDY .. H"™) on O. The functions HY) : O — R™, J =1,...,n, are termed
selection functions for H at x° in this case. The set

I(x) = {je{l,...,n}|HD (") = H(z’)}

is known as the active indez set and the selection functions HY, J € Iy(x), are said
to be active selection functions at x°. PC'-functions are also called piecewise dif-
ferentiable functions. The directional derivative of H at the point @ in the direction
€ is denoted by H'(x; €).

Theorem A.1 ([56, Theorem 4.2.2]). Let U C R™ x R™ be open, H : U — R™ be
a PC"-function and let (x°,y°) € U be a point with H(x y°) = 0. Further, let
HY  H™) O = R™ be a collection of selection functions for H at (x°,9y°) €
O C U and 1l be a conical subdivision of R™ x R™ with a lineality space of dimension

ny. ]f

1. for every m € II, there exists an index j. € {1,...,n:} such that H(z,y) =
HY (2, y) for every (x,y) € ON ({(x°,4°)} +7);

2. either n +m — n; < 1 or there exists a number k € {2,...,n+m —n;} such
that the kth branching number of 11 does not exceed 2k;

3. all matrices Vy’H(j’T)(wo, y%), m € 11, have the same non-vanishing determinant
stgn
then

1. the equation H(x,y) = 0 determines an implicit PC"-function y(x) at the
point (x°,y°);

2. the implicit functions yU=)(x) determined by the equations HU™ (x,y) = 0,
m € II, form a collection of selection functions for the PC"-function y(x) at
0
x”;
3. for every ¢ € R™, the identity &€ = y'(x%;¢) holds if and only if & satisfies the
piecewise linear equation H'((x°, y°); (¢, €)) = 0.

Theorem A.2 ([56, Proposition 4.2.2]). Suppose that the assumptions of the previ-
ous theorem are satisfied and ¢ € R" is arbitrary.
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1. Then there exists a cone m € 11 such that
C In On,m
(Om,l C\WAHI@,y?) VR (20,y0) " (a.1)
2. The inclusion (A.1) holds if and only if
. C_l . c .
—(VyHU (2,y°)) " Vo HY) (2°,3°)¢

3. If ¢ satisfies (A.1), then

y'(2%¢) = —(VyHU (2, 9") " Ve HU (2, )¢



B The Moore-Penrose Continuation

Referring to [14], we present here briefly the classical Moore-Penrose continuation
method.

Let H : R*" — R” n a positive integer, be a smooth function. The aim of
numerical continuation is to approximate the solution set of the equation H(y) = 0.
More precisely, following a chosen branch of solutions, one computes a sequence of
consecutive points y,, k = 1,2, ..., satisfying ||H(y,)|| < ¢ for a given € > 0.

To describe the Moore-Penrose continuation, we suppose that we have found a
point y, satisfying the chosen tolerance criterion. We also suppose that we have a
unit tangent vector £y at y,:

VH(y,)te =0, |ti] = 1.

The next point is calculated in two steps — prediction and correction.
In the prediction, an initial approximation Yy of the new point is given by

YO = yk + hk’tka

where hy > 0 is a step size. Its choice will be discussed later on.

The correction consists of a Newton-like procedure, which leads not only to the
point y,.; but also to the corresponding tangent vector #;,,. The algorithm is the
following.

Algorithm B.1. (Moore-Penrose continuation)

Step 1: Set T := ¢, j := 0.

Step 2: Set:
_ (VH(Y)) _ (VHY)T; _ (H(Y))
mo= (V). me (THO) e (M),
. T
T=T,-B 'R, T ,:=—,
’ T

Y=Y, - B'Q.

Step 3: If |H(Y;11)|| <eand [|[Y;11 = Y| <€, set yp oy =Y, tpsr := Ty,
else if 7 < Jmax, set j := 7+ 1 and go to Step 2.

Here ¢/ > 0 is a convergence tolerance and j,.x > 0 is the maximal number of
corrections allowed.
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Finally, the step size hyy;1 in the next prediction depends on convergence of this
Newton correction. Denoting the number of iterations needed by j, it is selected as

haechr  if not converged,
hi+1 = § hinchy  if converged and j < jipr,

hy, otherwise,

where 0 < hgee < 1 < hine as well as 0 < i < Jmax are experimentally determined
constants. At the beginning, one sets hy = hy,; for some hyy > 0.

Remark B.1. More precisely, finding the couple (YjH,T) in the jth step of Algo-
rithm B.1 corresponds to computing one iteration of the Newton method applied to
the equation H;(Y,T) = 0, where H; : R"™! x R"*! — R™"*! x R"™! is defined by

H(Y)
(T)"(Y - Y))
VHY)T |
(T;)"'T — (T;)"T;

H,(Y.T)= (Y,T) € R*! x R™.

Furthermore, one can easily verify that the auxiliary vector T can be equivalently

calculated as
R = ((1)) , T:=B'R.
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