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This document is a resume of my research works carried out over these last fifteen years, from automn 2007
to automn 2022. On the one hand, this period covers my PhD thesis performed at Institut Jean Le Rond
d’Alembert at University Pierre et Marie Curie over the years 2007-2011 (as a PhD student, then as lecturer
or ”ATER”), under the supervision of Professors Jean-Baptiste Leblond and Jean-Michel Bergheau, and in
collaboration with the company ESI Group. On the other hand, the remaining eleven years were spent in the
nice town of Nantes, at Ecole Centrale de Nantes at Institut de recherche en génie civil et mécanique (or in
short, laboratory GeM). I came first to Nantes after my PhD as a post-doc, working with Professor Guillaume
Racineux in the research team devoted to Materials and processes, then stayed in the same laboratory as
assistant professor from automn 2012, which position I still hold. I joined at that time the research team
”Modeling and simulation”, especially working with professor Laurent Stainier.

During this large period, my research activities have mainly revolve around coupled thermo-mechanical phe-
nomena occurring in metallic structures. I work on their modeling, on the development and/or the improvement
of numerical methods providing approximations for the solution of these models, and on engineering applications
in which these couplings appear naturally and whose numerical simulation requires the use of these advanced
numerical methods. My research works are conducted on a broad scientific and technical spectrum, covering
certain areas of theoretical mechanics and mathematics, computational mechanics and computer science, but
also industrial technologies and processes.

My activities related to the modeling and numerical simulations follow an approach that consist in studying
on the one hand a class of mathematical problems, whose solutions are generally useful in the description of
some aspects of a given engineering problem of interest, and on the other hand its potential approximations
mimicking various aspects of the solution, living in a reduced space or not. Some slow processes of diffusive
nature have been studied, essentially governed by elliptic and parabolic equations and whose solutions are
smooth, as well as faster ones linked to impacts on structure, which may involve hyperbolic equations whose
solutions may not be smooth.

Although my contributions are mainly related to the modeling and computational areas, yet I had the
pleasure to carry out a few contributions in experimental testing by either designing some new experiments
by myself with the help of colleagues, or by participating or even following from afar experiments carried out
by them. Although not in the majority, these activities had an important influence for me and especially on
my modeling and computational activities. It helped me understand better what relationship recorded signals
and simulated data can have, especially to what extent recorded signals can be usable to calibrate models, or
to what extent simulated data can have a physical relevance. A last aspect of these works pertains to their
relationship (even sometimes from very far) with very practical problems in mechanical engineering found in
industrial technologies, such as material processing, assemblies of structures and so on. Since the beginning of
my early studies, I had always the pleasure starting with some of such actual engineering problems associated
with manufacturing or forming processes, from which aspects related to the process itself, the modeling of
particular key phenomena involved in that process, and the numerical strategy followed for solving the model
can be extracted and studied.

At last, this document has been written in a concise manner, and only describe and order the main ideas
proposed during these last fifteen years, the details can be found within the papers and are not expanded here.

Autumn 2022, Thomas Heuzé
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Introduction

0.1 On the interest of thermo-mechanical phenomena in solids

The study of coupled thermo-mechanical phenomena is a very old scientific topic, but still of much interest.
Actually, it represents one instance among many others of multiphysic problems. The field of multiphysics is
a branch of physics whose object is to couple at least two physical systems, each being governed by its own
principles of evolution or equilibrium, such as balance laws or constitutive equations [106]. Many engineering
problems as well as many physical phenomena can only be described correctly by coupling areas of physics that
have historically been developed and taught separately. Certain physical phenomena indeed involve exchanges
of energies that the history of science has classified into different types within different subfields of the physical
sciences. These problems require on the one hand a good understanding of each physics governing the phenom-
ena in presence, but especially an analysis of their coupling mechanisms, to propose relevant modelings, capable
of describing these observed phenomena. The difficulty raised by such systems lies in that nonlinearities and
the interaction between its different components often results in complexities. Coupled systems are systems
whose behavior is driven by the interaction of functionally distinct components. Within that scope, the coupling
between thermal and mechanical effects is widespread, and this is why it is still a very active research topic.
The motion of the body combines with the generation and the flow of heat within it in such a way that a mutual
influence between both components occur. In solid mechanics, such coupling can occur in different types of ma-
terials like metals or polymers, and through various mechanisms: temperature-dependence of elastic or inelastic
properties, heating from dissipative micro-mechanisms, thermal softening (i.e. a thermally-induced reduction
of the yield stress) eventually triggering thermally-induced deformation patterns such as shear banding, phase
change and so on. Although much has been done in the study of thermo-mechanical phenomena in solids, and
maybe some might think at first glance that everything or almost has been done in that domain, one could still
mention at least three basic reasons supporting the idea that much remains to be developed in that research
area.

First, it has interests related to many practical problems in engineering sciences, in which both thermal
and mechanical phenomena may be coupled to each other. Applications may be linked to some well-known
problems in mechanical engineering, especially related to the mechanical industry. Forging or casting processes,
sheet metal forming like dreep drawing, joining heterogeneous structures through various technologies such as
welding represent only a few examples of processes that rely on the exploitation of an external source of energy
(it may be a mechanical or a thermal one) in order to process the matter in a desired way. But new processes
involving coupled thermo-mechanical phenomena continue to be regularly proposed, as for instance additive
manufacturing processes during which the material and the structure may be manufactured simultaneously.
Applications may also be linked to sustainability of mechanical objects, especially to external loads like high-
velocity impact which occurs during ballistic penetration. Other applications can also be found, for instance in
the domain of energy. Without exhaustivity, some examples can be mentioned such as the design of materials
with particular microstructures for heat storage or guidance purposes, or for the design of electrical batteries
by describing the processes of charge and discharge in electrodes thanks to the analogy between heat transfer
and diffusion of species.

Second, thermo-mechanics (and more generally multiphysic problems) has brought many mathematical mod-
elings and computational methods of various complexities, whose developements are still very active. Although
the basic isothermal split procedure [44] is now implemented in every finite element commercial codes to treat a
basic class of coupled thermo-mechanical problems, novel formulations and associated computational methods
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continue to be proposed which may be better suited, either for the numerical simulation of some particular
applications which may require to account for some special coupling effect, for improving the accuracy and
robustness of algorithms, or simply from the mathematical viewpoint. Regarding the latter, one good example
is the use of the variational calculus [8] which has brought a very convenient and sound modeling framework,
and allows in turn to naturally define efficient and consistent computational methods. The application of such
approach to non-linear dissipative thermo-mechanical problems in the work of Yang et al. [72] represented an
important step forward in this regard, providing thermodynamically consistent and numerically efficient con-
stitutive updates, as well as a correct computation of the non-constant partition of plastic work into heat and
stored energy [61]. Such variational framework calls for further developments, for instance towards gradient-
enhanced theories [127, 136], or within the context of high-velocity impacts [174]. A second example pertains to
thermo-mechanical multi-scale analyses which also represent a great challenge, in order to derive accurate mod-
els at higher scales while accounting for the microstructure, and to analyse the effective influence of microscopic
features on the macroscopic response. Especially, investigating how local thermo-mechanical effects translate at
a higher scale, the identification of enriched continua, and the definition of computationally efficient upscaling
methods [161, 67] notably for non-linear problems have not yet finished to be explored. As a third example,
one could also mention that the modeling of thermal effects has historically been made considering the temper-
ature as the main thermal unknown, because it is a measurable quantity. This has led to solve thermal effects
via the heat equation and to design constitutive updates driven by the temperature. However, formulations
considering different primal unknowns have started to emerge recently for various reasons. The entropy may be
preferred, especially in the context of large strain thermally-coupled fast transient dynamics [165], or to design
unconditionally stable thermo-mechanical splitting schemes [39]. Others based on the conservation of the total
energy are better suited when shocks occur, and can also be used to build dedicated constitutive updates [174].

Third, the validation of numerical simulations of various thermo-mechanical processes against experiments
raises the question of the experimental characterization of these processes, and of technologies dedicated to
acquiring experimental data. As a first example, much work was devoted to performing experimental energy
balance, whatever at low [32] or high [57] strain rate, and determining the fractions of energy which are
stored or dissipated as heat, as initially estimated in the pioneering works of Taylor and Quinney [4], and
reviewed for instance in [22]. Various experimental testing apparatus were designed to this end, especially
including thermal measurement through infrared thermography [49]. Though thermal cameras are now known
to give quite accurate measurements for quasi-static processes when looking at plane surfaces, they are still
too slow to envisage truly dynamic processes even though some attempts were performed in that direction
[110]. Hence, infrared thermography is rather achieved through pyrometers which allows to get one (or few)
point(s) of measurement, and whose setup is always delicate since it involves to handle parabolic mirrors
[81, 84, 102]. Besides its intrinsic interest, such experimental energy balance also represent a discriminating
criterion for building constitutive models, or any evolution laws describing dissipative processes which should
correctly balance stored and dissipated energies. However, dedicated paths remain to be drawn in order to
perform such balance in complex problems, as for instance interface problems at lower scales, in the presence
of fractures, welded interface, spalling or fragmentation. Another example lies in the investigation at lower
scales of the relation between thermally-induced mechanisms of change of microstructure and its mechanical
loading conditions, especially in the dynamic context when strong waves propagate. Such investigation require
dedicated experimental apparatus as well as highly accurate means of measurements, which can profit from
ultra-high speed imaging techniques [169] for instance. As an opening, various new methods of acquiring
thermal data begin to be developed, such as in-depth thermal measurement [162], or simultaneous temperature
and strain measurements via thermographic phosphor coupled Digital Image Correlation [166] rather infra-red
measurement, which ultimately will profit to calibration, characterization testing and energy balance purposes.

0.2 Thermo-mechanical systems across various time scales
In this manuscript, we will talk about a thermo-mechanical system as a general view of a material or an
immaterial object within which both thermal and mechanical phenomena occur and interact with each other.
It could just as well be a (sub)part of an experimental device or a continuous or discrete modeling of an
arbitrary domain. In the latter case, a system will consist of several entities (or fields here) whose interaction
and evolutions are governed by a set of equations. However, only systems lying in the field of solid mechanics
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will be of interest in this manuscript.
These thermo-mechanical systems can be conveniently ordered according to the various time scales at which

deformation may occur, or rather their inverse resulting in some equivalent average strain rate. Figure 1 is
partly extracted from [60] and shows a simple and rough classification of some particular regimes of loading
over a tenth of orders of magnitude of such average strain rate, which ranges from creep to ultra high strain rate.
Each of these regimes can be associated available experimental techniques, which permit to test the mechanical
response of materials at these strain rates. In regard to the above, some mechanical processes can also be
affected to special sub-ranges of strain rate. A few of them will be of interest in the present work, whether they
occur in quasi-static regime, at intermediate level (e.g. Friction Stir Welding), or at high or even very high
strain rate (e.g. Hopkinson bars, electrohydraulic or electromagnetic pulse forming technologies).

1
τ

∼ ε̇ (s−1)10−6 10−4 10−2 100 102 104 106

Regime

Testing
devices

Processes
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Load frames
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plate impact
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Friction Stir
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Cutting

Electro-
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forming,
magnetic
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inertia forces neglectable inertia forces important

Figure 1: Strain rate regimes, and associated experimental techniques and processes.

An even more summary classification can also be established at first glance, tagging thermo-mechanical
systems as being ’slow’ or ’fast’ ones. Slow thermo-mechanical systems will be considered as those for which
mechanical inertia effects can be neglected. Usually, these systems involve quasi-static deformation process and
are of diffusive nature, more precisely they include thermal (or mass) diffusion. Although the diffusion can be
transient, the associated characteristic times are still very long, and compatible with those of the deformation
process. Conversely, fast thermo-mechanical systems will be considered as those for which mechanical inertia
effects cannot be neglected, and are of great importance. Depending on the time scale of phenomena involved
in the envisaged applications and on their chosen description, diffusion and viscosities may be included in the
modeling or not. For these applications implying impact loadings, adiabatic conditions are generally retained,
and thermal diffusion can be neglected with respect to transient phenomena.

Such distinction between ’slow’ and ’fast’ systems may appear a bit sketchy at first glance, but it is also moti-
vated by the strongly different mathematical nature of the respective modelings, and therefore of computational
methods which will be involved. Indeed, the former involve parabolic or elliptic partial differential equations,
whose solutions are smooth. For the latter, the presence of mechanical inertia effects implies the occurrence
of new physical phenomena, and the choice of a method of time-stepping for the mechanics. Even more, when
impacts occur on the structure, the modeling involve hyperbolic equations, whose solutions are of wave type,
which can be continuous or not. In addition, since the deformation is fast, heat has no sufficient time to evacuate
through thermal diffusion such that the assumption of adiabaticity becomes valid. Well-suited computational
methods for these systems are therefore strongly different from those employed for slow processes.

0.3 A few contributions and approach followed
Obviously, the present works do not aim at embracing and treat all these regimes. Rather, a few contributions
carried out over the years, treating some special topics here and there will be briefly presented, which can
eventually be associated with some particular regime. Transverse to the above classified regimes, another grid
of lecture of the present works can be provided through the introduction of a few topics associated with particular
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methods of analysis, types of formulations or applications which can be listed here. They were the purpose of
some studies that provided at their time of publication some novel contributions to the literature.

The first one is the exploitation of the variational calculus for coupled problems. Besides many interests
which we will come back to later in Chapter 1, such framework allows to naturally make emerge consistent
computational aspects from the modeling. For slow systems, such approach was applied for the coupling between
diffusion processes and mechanics. This was the case for thermo-mechanically coupled problems exploiting
variational h-adaption methods for both thermal and mechanical effects during the PhD thesis of Rohit Pethe,
of for problems of transient diffusion of species, eventually coupled with electricity for application to Lithium-
Ion batteries during the PhD thesis of Jorge de Anda Salazar. Such framework can also be exploited for fast
thermo-mechanical systems, especially when coupled with conservative formulations in fast transient dynamics,
then changing the temperature for the internal energy density as an input variable.

The second topic concerns the definition of efficient computational approaches for multi-scale analysis of
transient diffusion systems coupled quasi-static mechanics, i.e. avoiding FE2 approaches which are too much
computationally intensive. Especially, this was the purpose of the PhD thesis of Abdullah Waseem, in which
model order reduction of numerical homogenization was performed for linear problems within the special regime
of relaxed separation of scales. Besides drastically reducing the computational cost, the main interest of such
approach lies in the definition of some enriched continua at the macroscale, embedding only a limited number
enrichment variables accounting for local transient effects. Such generalized formulations may also eventually
be integrated within a variational framework.

A third one pertains to take advantage of conservative formulations in computational fast transient solid
dynamics. Although much more popular in Computational Fluid Dynamics (CFD) than in Computational
Structural Dynamics (CSD), yet these conservative formulations present a set of interests with respect to
more conventional approaches (i.e. displacement-based Galerkin approaches) used in solid mechanics. Various
existing numerical schemes developed at first in the context of CFD can be naturally adapted to fast tran-
sient solid dynamics problems (various finite volumes schemes, (space-)discontinuous Galerkin finite elements)
providing non-oscillatory approximations, and mimicking at the discrete level mathematical properties of the
continuous system. Especially, various aspects of the approximation of the exact solution can be investigated,
like capturing nonlinear waves such as shocks, plastic waves which can be continous or discontinuous, or the
entropy-positiveness of schemes. Another issue related to the above for fast transient problems is the numerical
approximation of the kinematics of solid bodies undergoing large strains, especially in a Lagrangian context.
This was the starting point for the development of a numerical scheme that would combine a non-oscillatory
high order approximation of the solution to particle-based methods. Such work actually led to the Discontinuous
Galerkin Material Point Method (DGMPM), which was the topic of the PhD theses of Adrien Renaud and of
Alaa Lakiss.

A last one is associated with the study of mechanical processes dedicated to the assembly or the disassembly
of heterogeneous structures. This part of my research appears as the most applied one as it is related to
very practical engineering problems and technologies. However, on the one hand coupled thermo-mechanical
phenomena are widespread in such mechanical processes which makes it a great playground, and on the other
hand they also often serve for motivating the development of more fondamental works in thermo-mechanics.
These processes appear as one instance among many others to make a direct connection between sciences and
technologies, and to stay connected to scientific colleagues doing experiments, or even to participate. For
example, I got interested during my PhD thesis in the process of Friction Stir Spot Welding, which consists in
creating a spot weld between two superimposed sheets by penetration of a tool in rotation within the matter.
On the one hand, a fully implicit monolithic thermo-mechanically coupled fluid/solid solver was developed in
a commercial finite element code in an Arbitrary Lagrangian Eulerian context. On the other hand, dedicated
experimental setups were developed. Another example pertains to high pulsed power technologies which consist
of releasing a certain amount of (electrical) energy in a given medium in a very short time, and exploiting its
effects. Both electromagnetic and electrohydraulic technologies were the purpose of some collaborations with
Professor Guillaume Racineux, for which contributions were focused on the developments of theses processes
for special geometrical configurations (i.e. rather experimental), and on the development of simple analytical
solutions modeling some particular effects, although more refined numerical simulations are expected to come
later and developed with the aforementioned methods of analysis.
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0.4. OUTLINE OF THE MANUSCRIPT

0.4 Outline of the manuscript
For the sake of convenience and conciseness, the present manuscript is essentially organized around two chapters
gathering works associated with slow and fast systems respectively. However, the above particular methods of
analysis, types of formulations or applications will be found within the two chapters, and applied to the study
of different kinds of systems.

A third and last chapter is dedicated to the description of some on-going works and outlooks of these first
works. Again, this document has been written in order to be remain concise and give an ordered overview of
my research works, hence only the main ideas are described, the details can be found within the papers and are
not expanded here.
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Chapter 1

Slow thermo-mechanical systems

1.1 Basics of variational calculus for transient heat transfer coupled
mechanics

Variational principles have played a major role in mechanics (see e.g. [8]), and still continue to bring a sound
framework which fosters strong advances in that domain. In short, one can say they consist in formulating a
problem as the optimization of a scalar functional, as it is the case in elastostatics with the therorem of potential
energy for instance. Although popular principles such as Hamilton’s least action one only works for conservative
systems, other principles were developed for dissipative systems, as it is the case for diffusion problems [118],
limit analysis [132] or fracture mechanics [77] for instance. Variational approaches were found to provide many
advantages with respect to the classical ”vectorial’s mechanics” obtained from Newton’s laws of motion.

The first one is essentially mathematic. Since it relies on convex analysis and on the optimization of scalar
functionals on manifolds, the study of the existence and uniqueness of solutions can be analyzed, especially for
hyperelastic-based large strains problems for instance [24]. Its elegance also arises from being able to gather the
complete dynamics of a system into a scalar functional, whose optimal point yields the governing equations.

The second kind of advantages are physical ones. First, the functional usually has a physical significance
since it is often a quantity related to some energy or power, which are additive quantities. Next, it provides an
interesting framework to build models for coupled problems. The modeler can directly work on the form of the
functional, from which bulk and surface local equations naturally follow from stationarity conditions.

The third one is related to computational aspects. Indeed, from continuous principles, discrete incremental
variational principles can be derived at different orders of approximation (though not always in a straightfor-
ward manner), for which the traditional solvers basically developed for optimization problems with or without
constraints can be reused at profit. But many other advantages also appear at the discrete level. For instance,
since the existence of a variational principle is linked to a certain symmetry in the problem at hand, it is inher-
ited at the discrete level and translates as the symmetry of the Hessian matrix, hence leading to a reduction of
the computational cost. It also provides a natural error indicator thanks to the minimum/maximum nature of
the optimal point of the functional by comparison of its values for different meshes. For coupled problems, these
discrete principles define a convenient framework for the design of partitioned, staggered algorithms from the
monolithic system. Also, these algorithms can sometimes be reinterpreted as (bloc-)preconditioners applied to
the monolithic system, eventually leading to reuse existing codes, then coupled in a convenient and consistent
way.

For coupled thermo-mechanical problems, the variational formulations of the coupled thermo-elastic and
thermo-visco-elastic problems have been extensively investigated (see e.g. [10, 11, 17, 15, 34]). But formulations
for coupled thermo-mechanical problems involving non-linear dissipative behaviour, such as thermo-elasto-visco-
plasticity have been more recently introduced in the work of Yang, Stainier and Ortiz [72] on the basis of a
first isothermal version [56], then exploited [98, 92] and summarized in [111]. Such variational principle of
course relies on the framework of Generalized Standard Materials [23], which allows to conveniently describe
the constitutive model via the definition of a thermodynamic potential and a dissipation pseudo-potential,
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which should satisfy some mathematical constraints to ensure the second principle of thermodynamics and
the uniqueness of the solution of the problem. But besides this, this principle relied on the one hand on the
introduction of a two-field thermal formulation (an external temperature T , appearing in the heat equation, and
an internal temperature θ obtained through a state law), whose equality is enforced as an internal constraint
in the constitutive model, and relaxed in state laws. On the other hand, a time dilatation of dissipative rate
processes appearing in the dissipation pseudo-potential is considered via a change of time variable (called time
rescaling by these authors), assumed to be a function of both equilibrium and current temperatures

t = f(T, θ)t′,

but here enforced to match at equilibrium, i.e. f(T, T ) = 1. The integration factor f(T, θ) is then identified as
f = T/θ, so that to recover the requisite symmetry of the weak form. The obtained multi-field variational formu-
lation also presents the interest of allowing a separate optimization with respect to local and global quantities,
hence being consistent at the discrete level with standard finite element codes, separating the local time-discrete
constitutive update performed pointwise at the integration points, from the solution of an incremental boundary
value problem giving the unknown deformation mapping and external temperature on a mesh. Since most of
the time, Helmholtz’s free energy density W is a convex function of the displacement field u, and concave with
respect to the temperature T , the discrete solution fields are obtained from the saddle point of an incremental
functional:

{u, T}n+1 = arg inf
un+1

sup
Tn+1

I(un+1, Tn+1).

The incremental functional I(un+1, Tn+1) is sought in such a way that it approximates the integral of its
continuous counterpart over the time increment ∆t = tn+1 − tn, and reads here as:

I(un+1, Tn+1) =
∫

Ω0

[
Wn+1(Fn+1, Tn+1; Fn, Tn,Zn)−∆t

〈
χ

(
−∇T

T
; F(τ), T (τ),Z(τ)

)〉]
dV

+
∫

Ω0

[
∆t ρrn+1 ln Tn+1

Tn
− ρbn+1 ·∆u

]
dV −

∫
∂tΩ0

t̄n+1 ·∆uda−
∫
∂QΩ0

∆t Q̄n+1 ln Tn+1

Tn
da,

(1.1)

where χ denotes the heat conduction potential, and Wn+1 is obtained from a local optimization with respect
to the set of internal variables Zn+1

Wn+1(Fn+1, Tn+1; Fn, Tn,Zn) = inf
Zn+1

I (Fn+1, Tn+1,Zn+1; Fn, Tn,Zn), (1.2)

where the local incremental functional In+1 is defined by

In+1(Fn+1, Tn+1,Zn+1; Fn, Tn,Zn) = W (Fn+1, Tn+1,Zn+1)−Wn + ηn∆T

+ ∆t
〈
φ

(
Tn+1

Tn

∆F
∆t ,

Tn+1

Tn

∆Z
∆t ; F(τ), T (τ),Z(τ)

)〉
, (1.3)

provided brackets 〈•〉 denote a consistent average value of the quantity (•) over the time increment [98], φ is
the dissipation pseudo-potential and η the entropy density. The minimization (1.2) is also called variational
constitutive update, which permits to solve the set of discrete constitutive equations through that of an opti-
mization problem. Notice that the discrete (local) potential (1.3) yields a semi-implicit time integration scheme
here, since the entropy density is evaluated at time tn.

An extension of this work to non-associated evolutions equations, especially to non-linear kinematic hard-
ening, and to any yield function being positively homogeneous of degree one was then proposed by Mosler and
co-workers [93, 123, 119], following former works developed in the isothermal setting by these authors [89, 90,
100]. The potentially non-associative evolution equations are a priori enforced by employing a suitable parame-
terization of the flow rule and the evolution equations using pseudo-stresses, yielding eventually an unconstrained
optimization problem. It is shown the consistency of such parameterization in the thermo-mechanical setting
requires the initial yield stress to depend on the equilibrium temperature. Besides, the continuous variational
problem is approximated by a fully-implicit time integration scheme [93].
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Besides, being thermodynamically consistent, these approaches allow to correctly model and compute the
non-constant partition of plastic work into heat and stored energy [61, 92, 93, 123], in contrast with empirical
approaches inspired by the pioneering work of Taylor and Quinney [4], and followed in some other works [44].

1.2 Variational h-adaption for thermo-mechanical problems

As already mentioned, variational formulations can also be used to define variationally consistent h-adaption
techniques for the optimization of the mesh size. Such approach was first proposed by Mosler and Ortiz for
quasi-static isothermal dissipative mechanics problems in [73, 83], but then extended to other applications such
as phase field approach to model fracture [148]. Such approach profits from the known convexity of the optimal
point of the functional to drive the mesh adaption. More precisely, this is the comparison of the values of
a functional computed on two different meshes which permits to drive the mesh adaption, leading to a sort
of relative measure of the error. This is why it is rather called an error indicator, since it does not require
any error estimates and associated (usually costly) reconstruction step of admissible fields. Also, it naturally
works for non-linear problems without adding any additional complexities with respect to linear ones. However,
finding a mesh which minimizes globally (if a minimum is considered) the value of the functional is a problem of
combinatorial complexity, meaning that for each value of number of nodes, several meshes with different values
of the functional are possible. Hence, an infinite number of choices of number of nodes are possible.

Practically speaking, a greedy approach is usually followed by means of an iterative procedure, and the mesh
is divided into patches of elements taking advantage of the additive property of the functional (which is generally
an energy-like quantity). During the iterative procedure, each patch may be refined or unrefined given a local
adaption technique, and is the purpose of a local solution and evaluation of the functional, while fixing the value
of the primal field on the patch boundary. The relative improvement (or not) of the functional on each patch
leads to that the refined (or unrefined) patch is kept (or not) at the current iteration. Once all patches have been
updated, a global solution is computed on the updated mesh, and the algorithm can go for the next iteration.
The local treatment of mesh adaption on patches also allows to avoid complex remapping procedures of internal
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(a) The identified boundary edge AB leads to that the patch consisting of the single element DAB is bisected.

A B

CD

E

B

C

A

D

E

F

G

(b) The edge identified is AC, shared by triangles ACD and ACB. The segment AC is the longest edge for the triangle
ACD but not for the triangle ACB. Edge AB is the longest edge of both triangles ACB and AEB, and hence is the
terminal longest edge in LEPP so that it should first be bisected. Then the edge AC is bisected which is now the terminal
longest edge in LEPP.

Figure 1.1: Various local refinement techniques: (a) single edge bisection, (b) Longest Edge
Propagation Path (LEPP). Extracted from [154].
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variables, which are generally costly and numerically diffusive. In practice, nearest-neighbor interpolations is
used assuming a constant distribution of internal variables over elementary cells consisting of the intersection
between Voronöı cells and triangular elements.

Patches are usually refined either using a single edge bisection technique [73], or Rivara’s Longest Edge
Propagation Path (LEPP) algorithm [54, 53], as shown in Figure 1.1. The former generally yields anisotropic
meshes, and elongated elements, but which are consistent with the physics approximated on the mesh since the
geometry of these elements is driven by the variational principle. The latter enforces a constraint on the element
aspect ratio, yielding a constrained optimization problem. This is why the latter generally leads to higher con-
verged values of the functional (for a minimal point) than those obtained with the single edge bisection technique.

(a) time step 1. (b) time step 8.

(c) time step 24. (d) time step 40.

Figure 1.2: Temperature field on adapted meshes at different times. Extracted from [150].

The purpose of the PhD thesis of Rohit Pethe, which I co-supervised with Laurent Stainier, was to extend
such approach to coupled thermo-mechanical problems taking advantage of the variational formulation intro-
duced in [72], which couples transient thermal heat transfer to quasi-static dissipative mechanics. On the one
hand, the transientness of phenomena now implies to correctly handle both mesh refinement and coarsening at
each time step. Figure 1.2 illustrates this, and shows the temperature field on the adapted meshes computed at
different times for a simple purely transient thermal test case consisting of a sharp heat source rotating about
the center of a square computational domain. The mesh coarsening upstream from the heat source appears as
efficient as the mesh refinement where the heat source is located. Still regarding purely transient heat transfer
problems, one interesting result demonstrated in [150] showed that half of the square of the H1 norm of the
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interpolation error equals the difference in the incremental variational potential, namely

1
2‖θ̄ − θ̄h ‖

2
1 = I(θ̄)− I(θ̄h),

where θ̄ denotes some dimensionless temperature and θ̄h its approximation, hence making a direct connection
between variational approaches and gradient based error indicators. On the other hand, the thermo-mechanical
coupling is treated via a staggered algorithm and uses different meshes for the two different fields. The sequen-
tial adaption of different meshes allows to capture different scales and spatial resolutions of the different fields.
However, handling both temperature and displacement fields in a staggered way on different meshes required
some adaption of the previous works. Especially, the solution of each physics can be ordered differently within
a time step according to the strength of the coupling, and various split (isothermal or adiabatic [39]) can be
considered. Algorithm 1.2.1 summarizes the strategy followed in the case where the mechanical problem is
solved before the thermal one during a given time step.

Algorithm 1.2.1 (Staggered computation and adaption of meshes)
Provided the solutions (un, Tn,Zn) defined on their respective meshes at time tn,

1. Solve the mechanical problem
while convergence is not obtained, iterate on k such that

(i) Adapt the mechanical mesh on each patch.

(ii) Find u(k)
n+1 minimizing (1.1).

(iii) Update Z(k)
n+1 at each Gauss point of the mechanical mesh by minimizing the local functional

I (F(k)
n+1, Tn,Z

(k)
n+1; Fn,Zn) (1.3)

2. Solve the thermal problem
while convergence is not obtained, iterate on k such that

(i) Adapt the thermal mesh on each patch.

(ii) Find T (k)
n+1 by maximizing (1.1).

(iii) Update Z(k)
n+1 at each Gauss point of the thermal mesh by minimizing the local functional

I (Fn+1, T
(k)
n+1,Z

(k)
n+1; Fn, Tn,Zn) (1.3)

Such staggered approach combined with two meshes requires to transfer some informations from one mesh to
another during one time step. For nodal fields, this transfer consists of a simple interpolation of fields to the
Gauss points of the other mesh. For variables defined at integration points, the process consists in finding the
closest integration point in the other mesh and the values are inherited. These developments were implemented
in the home-made library ZorgLib [168] written in C++.

Figure 1.3 shows an illustration of a coupled thermo-mechanical simulation of shear banding occurring in a
hat shaped specimen (here made of an α−titanium). Shear banding is triggered by thermal softening, modelled
here with the constitutive model validated in [92]. Optimal thermal and mechanical meshes are obtained via
Rivara’s LEPP mesh adaption technique, an isothermal split, and P1 finite elements. Those two meshes look
quite different, the mechanical one being much more refined due to stronger gradients.

Another illustration is shown in Figure 1.4 associated with a simplified linear friction welding test case.
This process allows to weld two parts put in contact with a given pressure, then rubbed against each other.
The numerical simulation is here carried out with simplified equivalent boundary conditions (prescribed heat
flux and tractions). Figures 1.4a and 1.4b show the computed effective stress and temperature fields on their
respective adapted (deformed and undeformed) meshes.
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(a) Zoom on the final adapted mechanical mesh with map
of the equivalent plastic strain.

(b) Zoom on the final adapted thermal mesh with map of
the temperature.

Figure 1.3: Shear banding in a hat shaped specimen. Extracted from [154].

(a) Magnitude of the stress field shown on the deformed
mechanical mesh at the final time step.

(b) Temperature field shown on the undeformed thermal
mesh at the final time step.

Figure 1.4: Simplified linear friction welding test case. Extracted from [154].

1.3 Variational formulation of transient diffusion problems
Thanks to an existing strong analogy between heat and species transfer known for a while [1], developments
already performed in thermo-mechanics (and especially variational principles) may be adapted to the coupling
between transient diffusion of species and quasi-static mechanics.

Such analogy is of primal importance because the coupling between diffusion of species and mechanics is
involved in many engineering applications. To only list a few of them, one can for instance cite problems linked
to ion transport, like lithium-ion electrical batteries which are now everywhere in our society. The cyclic process
of lithiation and delithiation occurring within electrodes during the charge and discharge steps is due to the
diffusion of lithium-ions within active particles making them swelling and hence generating stresses within the
medium, which in turn affects the flux of species. This cyclic loading leads to cracks and eventually to a loss of
contact with the matrix, which gradually results in a capacity loss and a failure of the battery. Another example
pertains to the diffusion of water in biological tissues. In the context of tissue reconstruction of intervertebral
discs, some hydrogels can be used as replacement material for degraded Nucleus Pulposus (see e.g. [101, 114]).
These hydrogels are formed of a cross-linked polymer chains network within which small solvent molecules can
diffuse without being dissolved. This generates large volume changes of the gel, as well as elastic swelling
deformations and associated stresses.
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It is a common practice when using Fick’s laws [1] to solve for the concentration c of a given species and,
if needed, compute the chemical potential µ afterwards through a constitutive law like mass action laws. Such
procedure appears as a post-process relation, which describes a system where the chemical potential does not
affect its behavior, although the chemical potential may play a major role and especially that of driving force
for transport in irreversible processes. Especially, this variable may become essential if we are interested in the
solution of coupled problems, like diffusion coupled mechanics for instance, or if we want to derive a variational
principle for transient diffusion, eventually embedding a coupling with another physics, from which efficient
computational approaches may follow. It is easy to see that the weak forms of the heat equation or of the
balance of species expressed as a function of the concentration do not derive from the stationarity of any po-
tential. Such procedure can only eventually be made in the discrete setting once a time-stepping scheme has
been used. As already shown in [72, Section 3.1], a variational principle of the transient heat transfer prob-
lem involves (at least) two fields, hence by analogy the transient diffusion of species also requires a multi-field
modeling. But, even if we only consider diffusion (and therefore a uniphysics system), the interesting point is
that such multi-field modeling opens the path to explore multiphysic problems, which also involves several fields.

In that framework, the purpose of the PhD thesis of Jorge de Anda Salazar was to propose some developments
regarding variational principles for coupled problems, and especially those embedding diffusion processes, but
also to push the effort forward by studying various algorithmic strategies which could naturally follow from
these continuous formulations. His PhD thesis was the purpose of a collaboration between Centrale Nantes
(with advisors Laurent Stainier and I) and the Technical University of Munich in Germany within the research
group of Wolfgang Wall, and took place within the context of the EMJD-SEED (Simulation in Engineering and
Entrepreneurship Development) funding program, financed by the European Commission. His work focuses on
a phenomenological approach at the macro-level that avoids the complexities of advanced averaging theories.
Multi-scale approach of such problem was rather addressed in the PhD thesis of Abdullah Waseem, whose
summary is performed in Section 1.4. One important work regarding the derivation of variational principles
for diffusion problems was made by Miehe et al. [118], who proposed a dedicated variational framework for the
coupling between large strain hyperelasticity and Cahn-Hilliard-type diffusion of species. Incremental principles
are also derived and exploited up to the finite element implementation, which takes advantage of the inherent
symmetry of operators obtained from the variational structure of the system. However, it is interesting to observe
that Miehe et al. [118] derived a multi-field variational principle for diffusion coupled mechanics following
an integration process. More precisely, the combination of the definition of the variational derivative1 and
balance equations combined with constitutive ones allows him to identify the first variations of his potential (the
Euler-Lagrange equations), and hence to obtain it by integration, resorting to a so-called generalized Legendre
transform. If we momentarily set aside both mechanical and chemical micro-forces contributions appearing in
his derivations, the latter being associated with Cahn-Hilliard-type diffusion of species, he obtains a two-field
variational principle to describe standard diffusion, involving both the chemical potential and the concentration
rate. Observe also that such principle is completely analog to that derived for heat transfer in [72, Section 3.1],
provided the entropy density is the analog of the concentration, and the temperature is that of the chemical
potential.

1.3.1 An approach based on Onsager’s energy rate
The approach followed in the PhD thesis of Jorge de Anda Salazar is quite different, although it also allows to
recover among others the same two-field variational principle. The starting point comes with the introduction
of Onsager’s energy rate [5]:

Π0[ċ, j] :=
∫
τ

[∫
Ω

(
Ė(c) + χ∗(j, c)

)
dV +

∫
∂µΩ

µ̄(j · n)da
]
dt (1.4)

where E and χ∗ denote the internal energy density and the dual dissipation pseudo-potential, j the flux of
species, n the outward unit normal and µ̄ a known value of the chemical potential defined at the Dirichlet
boundary ∂µΩ. Due to the dissipation pseudo-potential, the integral Π0 is a path-dependent quantity which

1The variational derivative is defined as δyf(y,∇y) = ∂yf(y,∇y) − Div[∂∇yf(y,∇y)].
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depends on the history of fields c(x, t) and j(x, t). The evolution of the system can be obtained by optimizing
Onsager’s energy rate (1.4), provided this optimum satisfies the balance of species and associated Neumann
boundary condition. This leads to the following constrained optimization problem

{ċ, j} = arg inf
ċ,j

Π0 subject to
{
ċ+∇ · j− r = 0 ∀x ∈ Ω
j̄ − j · n = 0 ∀x ∈ ∂jΩ

(1.5)

where constraints are enforced through Lagrange multipliers, from which a set of variational principles are
derived. Without going into details which can be found in [163], such approach presents several interests. First,
it allows to identify what quantities are hidden behind Lagrange multipliers (here the opposite of the chemical
potential). Second, it allows to show that the flux of species j is conjugate to the opposite of the chemical
potential gradient, i.e. −∇µ ≡ g. Third, the conjugate function χ∗ is identified as the dissipation pseudo-
potential needed to enforce the second principle of thermodynamics in the model. The latter highly contrasts
with the explicit dependence defined by Fick’s first law j(c). A 3-field variational formulation whose solution
fields are {j, ċ, µ}

{j, ċ, µ} = arg inf
ċ, j

sup
µ

Π3[j, ċ, µ]

naturally follows from the solution of Problem (1.5), whose Euler-Lagrange equations allows to recover balance
equations and conjugacy relationships through both the internal energy density E and dual dissipation pseudo-
potential χ∗. This 3-field variational principle clearly shows that (at least) three main ingredients are required to
derive a variational principle for diffusion-type systems: conjugate variables, existence of energy-like potentials
and system’s constraints. A reduction of the number of independent fields can then be operated by introducing
the primal dissipation pseudo-potential through its Legendre transform

χ(g, c) = sup
j

{
g · j− χ∗(j, c)

}
yielding the reduced optimization problem

{ċ, µ} = arg inf
ċ

sup
µ

Π2[ċ, µ],

which is identical to that found by Miehe et al. [118]. However, operating such reduction leads to loose some
informations, especially the relationship between the Lagrange multipliers and the chemical potential, and the
conjugacy between the flux of species and the opposite of the chemical potential gradient. Especially, the latter
should be defined and supplemented to the Euler-Lagrange equations to provide the same strong form, and this
is also what was done in [118]. However, the 2-field formulation still appears to provide the best compromise
between complexity and generality, especially in the discrete setting since it allows for treating transient diffusion
problems with a minimal number of independent fields that are scalar quantities. In contrast, the 3-field
formulation would increase the computational cost, with numerical advantages that remain to be made clear. A
further reduction leading to a 1-field variational formulation can even be performed by introducing the Legendre
transform of the internal energy density. However, this one is shown to be only compatible with steady-state
diffusion processes, and is thus of less interest. Notice also that such procedure based on Onsager’s energy rate
can also be applied to gradient-extended diffusion theories, and especially that of Cahn-Hilliard, though not
published yet at the time being. One 4-field variational formulation {ċ, j,k, µ} can be derived, where k here
stands for the micro-force traction vector, two 3-field formulations {ċ,k, µ} and {ċ, j, µ} respectively, introducing
Legendre transforms of the dissipation pseudo-potential with respect to different fields, and then several 2-field
ones, showing that much work remains to be developed in that domain.

1.3.2 Solution strategies in the discrete setting
From these developments in the continuous setting, various solution strategies of the diffusion problem were
studied in the PhD thesis of Jorge de Anda Salazar. Generally, computational aspects derived from variational
approaches follow an incremental format, especially various incremental functionals yielding fully or semi-
implicit time discretizations may be introduced [163], which approximate the continuous time integral over a
time step. Such approach does not proceed in applying a given time-stepping scheme to a set of governing
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equations of a system, but rather in proposing a discrete incremental functional that will satisfy the consistency
conditions. The latters ensure that the continuous expression of the functional is retrieved by the discrete
one as the time step goes to zero, and that discrete Euler-Lagrange equations will also converge towards their
continuous counterparts. Focusing on the 2-field variational formulation of the diffusion problem, a nodal
finite element approximation was performed for the chemical potential while the concentration was discretized
at integration points since its gradient is not involved in governing equations of the system. A Newton-type
approach can be followed for the numerical solution. The residual is obtained from the first discrete variation,
while the Hessian (symmetric) matrix is obtained from the second one. Such strategy is called monolithic since
the two fields are solved simultaneously. Figure 1.5 shows an illustration of a one-dimensional flow of species
within an insulated cavity made of a composite medium that consists of a few inclusions within a matrix.

Figure 1.5: One-dimensional flow of species within an insulated cavity made of a composite
medium. Extracted from [163].

However, different numerical strategies can be followed to solve the monolithic system. Especially, various
partitioned schemes can be set up, thus introducing a split of the system into several blocks associated with
fields. These are sometimes called mild or loose algorithmic coupling algorithms, yet used for solving strongly
coupled systems, and aim at making the solution of the coupled system easier through that of smaller blocks
of equations. Blocks are then solved through successive stages in an asynchronous manner, and may be linked
to each other through some hierarchy during the iterative process, especially for nested approaches. Regarding
the 2-field variational formulation of the diffusion problem, two different splits can be introduced. The latters
are defined by introducing some explicit dependencies between the two fields during the first stage of these split
algorithms, namely c(µ) and µ(c), respectively giving the c− splitting and µ−splitting
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c−splitting
µ̂ = arg sup

µ
Π[µ, c(µ)]

ĉ = arg inf
c

Π[c; µ̂]

µ−splitting
ĉ = arg inf

c
Π[c, µ(c)]

µ̂ = arg sup
µ

Π[µ; ĉ]

where the semi-colon denotes a parametric dependence of the functional to the first optimized field during the
second stage. Such explicit dependence brings a new term in the variation computed during the first stage,
i.e. δcΠ ∂c

∂µ for the c− splitting for instance, which is the starting point of various solution strategies. The first
solution strategy consists in considering that this term does not vanish, which implies that the concentration c
actually changes (i.e. δcΠ[µ, c(µ)] 6= 0) during the first stage defined by δµΠ[µ, c(µ)] = 0, though not optimal
yet. The second stage thus serve as a corrector for the concentration, while the chemical potential µ remains
unchanged. Such approach is consistent with a staggered strategy, which basically consists of a succession of
solutions of iterative-blocks with no feedback, keeping fixed the degrees of freedom associated with one field
while solving for the other. However, since the residual of this first stage is changed with respect to that obtained
with a Newton method, this leads to consider a slight modification of the system solved. More precisely, one can
show it amounts to add some artificial concentration (for the c− splitting) within the equivalent discrete strong
equations. A second strategy amounts to consider that the additional term vanishes, which necessarily implies
that the concentration does not vary during the first stage δcΠ[µ, c(µ)] = 0. Therefore, for each variation
applied on µ, the concentration c must at least be an approximated optimal solution. In essence, for each
iteration performed on µ, an approximate solution of c should be computed iteratively. This leads to follow a
nested strategy involving nested loops on both c and µ, which consists in iterating on the lowest hierarchy block
(actually c for the c−splitting) at a given iteration of the highest one (i.e. µ).

One interesting feature of the above partitioned strategies is that they directly result in physically-based
block-preconditionings. More precisely, the staggered strategy results in a multiplicative preconditioner, where
both the residual and the matrix are changed with respect to the monolithic system of equations, while the nested
strategy can be identified as an additive preconditioner (only the matrix is changed, not the residual) provided a
null space condition is satisfied. In other words, while it is not a trivial task to propose efficient preconditioners
on a purely numerical basis for coupled problems to speed up the solution process, variational approaches
provide an interesting framework for the development of consistent physically-based preconditioners for coupled
systems through the definition of partitioned numerical strategies. This is achieved via the introduction of
explicit dependencies between fields the functional depends on, which allows to make a connection between
variational approaches and linear algebra via row (block) operations.

1.3.3 Extension to the electro-chemical coupling
The work performed by Jorge de Anda Salazar in his PhD thesis regarding multi-field variational principles
and associated algorithmic solution strategies established for diffusion of species can be extended to any type of
diffusive process. Especially, an extension to electro-chemical processes was investigated which couples diffusion
of species to electricity, with application to lithium-ion battery cell. The balance of species is now supplemented
with the balance of electric charge. The coupled system then yields a 4-field variational principle [143] written
on fields {(ρ̇, φ), (ċk, µk)}, where ρ stands for the electric charge density, φ is the electric potential, and (ċk, µk)
the concentration rate and the chemical potential of the kth species. A reduced 3-field formulation {µ, ċ, φ}
can eventually be obtained by resorting to the so-called electro-neutrality condition assumed to be valid within
the electrolyte (i.e. ∇ · i = 0, where i is the current density). From several available and known constitutive
equations relating the flux of species, the current density, the electric potential and chemical quantities2, a
generic form of dissipation pseudo-potential yielding linear relationships between thermodynamic fluxes and
forces was identified, especially being consistent with Onsager’s symmetry conditions [3]. An extension of the
aforementioned electro-chemical coupled system can be obtained if we consider a domain consisting of both
electrode and electrolyte. These are joined by an interface which is usually the purpose of a charge transfer
kinetics, governed by an interface equation such as the widely used Butler-Volmer current density model [104,
135]. Considering such domain provides an additional electro-chemical coupling at the level of the electrode-
electrolyte interface, in addition to that already occurring within the bulk of the electrolyte. The Butler-Volmer

2especially those of Nernst-Planck, Stefan-Maxwell and Ion transport models.
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Figure 1.6: Numerical simulation on a one-dimensional mesh of the electrode-electrolyte
composite system, with electro-chemical bulk coupling and Butler-Volmer interface equation.

equation can be embedded within the variational formulation through the definition of an interface functional
ΠΓBV . The functional describing the electro-chemical response of the lithium-ion battery now consists of the
sum of electrolyte (el), electrode (ed) and interface (ΓBV ) contributions

{(ċel, µel, φel), (ċed, µed, φed)} = arg inf
(µel,φel,µed,φed)

sup
(ċel,ċed)

Π[ċk, µk, φ]

with Π[ċk, µk, φ] = Πel[ċel, µel, φel] + Πed[ċed, µed, φed] + ΠΓBV [ċel, µel, φel, ċed, µed, φed]

where eventually a decoupling between chemical (ċed, µed) and electrical φed quantities can be operated within
the electrode. Notice also that partitioned schemes can also be derived for the coupled electro-chemical system.
Figure 1.6 shows an illustration of a such coupling through a simple numerical simulation performed on a
one-dimensional mesh of the response of an electrode-electrolyte composite domain when submitted to initial
gradients of chemical and electric potentials. Several profiles of fields are superposed on the graphs and show
their time evolutions.

1.4 Multi-scale transient diffusion and coupled mechanics problems
For materials with a complex heterogeneous microstructure, some well-known diffusion field theories such as
Fick’s one may not be sufficient to describe the macroscopic diffusion response. Following a phenomenological
approach as depicted in the previous section consisting in proposing mathematical forms of potentials, then
calibrating them either on numerical or experimental data, is not always an easy task. This is especially the
case when the material properties of the various constituents of the microstructure are very different. To this
end, the identification of macroscopic continuum theories through multi-scale approaches has been the purpose
of a number of methods of analysis to describe diffusive transport in heterogeneous media. These approaches
usually require the solution of a boundary value problem defined on a Representative Volume Element (RVE) of
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the microstructure in order to identify effective parameters to be used at the macroscale. However, most of these
approaches in homogenization assume a quasi-static regime at the microscale, meaning that a net decoupling
is assumed to hold between the loading characteristic time and the diffusion characteristic times of the various
constituents of the microstructure. However, such a full separation of scales is sometimes not completely achieved
for some materials under particular loading conditions. This is especially the case when there is a high contrast
between the diffusivities of the phases, which may lead to that the diffusion through the slow phase induces a
memory effect at the macroscopic scale. Microscopic transient effects may be particularly relevant for problems
of diffusion of species, as compared to heat conduction problems, as the diffusion coefficients between the phases
can vary by several orders of magnitude. For instance, the inclusion/matrix ratio of diffusion properties within
an electrode of a lithium-ion battery can be of the order of 105 [144]. In these conditions, and according to
the loading characteristic time, a homogenenized modeling in quasi-static regime may not give the expected
accuracy of the macroscopic response if transient effects at not accounted for at the microscale.

Analytical or semi-analytical approaches have been designed for the homogenization of transient heat transfer
problems [27, 29]. Especially, it has been showed how local transient effets within the slower phase translates into
memory effects at the macroscale [99]. Recent works also proposed semi-analytical approaches to get estimates of
the effective transient diffusion response of slow inclusions of arbitrary geometries [133, 144]. On another side,
computational homogenization approaches have become much popular upscaling techniques, from which the
effective behaviour is computed numerically by solving a boundary value problem on a Representative Volume
Element of the microstructure at each integration point of a macroscale analysis [86]. The main interest lies in
that it can handle non-linear constitutive models and general microstructures, but at the price of a dramatically
high computational cost associated with solving large-scale boundary value problems, as the method does not
provide expressions of the effective behaviour in closed-form. Recent works introduced Computational Transient
Homogenization (CTH) techniques, either for linear elastodynamics [109], or for transient heat transfer problems
[88, 131], hence all phases can be accounted for in the transient homogenization, and not only the slower one
as it is the case with semi-analytical methods. However, these transient computational techniques turn out
to be more costly than quasi-static ones, since at each time step and for each Gauss point of the macroscopic
mesh, a microscopic finite element solution is performed on an elementary cell over the current time step, which
permits to get by averaging the macroscopic flux and internal energy for heat transfer for instance. Furthermore,
depending on the homogenization level, CTH can become even more costly than a direct numerical solution
performed on the microstructured body. So CTH does not completely makes the problem of the computational
cost go away in transient homogenization.

1.4.1 Model order reduction based on mode synthesis for computational homog-
enization of transient diffusion problems

In that context, the purpose of the PhD thesis of Abdullah Waseem was to propose efficient numerical methods in
order to simulate the transient diffusion of species in heterogeneous materials with much less computational effort
than with computational transient homogenization or with direct numerical simulation. His PhD thesis was the
purpose of a collaboration between Centrale Nantes (with advisors Laurent Stainier and I) and the Eindhoven
University of Technology in the Netherlands, with advisors Varvara Kouznetsova and Marc Geers. This PhD
thesis also took place within the context of the EMJD-SEED (Simulation in Engineering and Entrepreneurship
Development) funding program, financed by the European Commission.

For transient multi-scale analysis, the downscaling and upscaling procedures show some differences with
respect to quasi-static ones. A classical first order Taylor’s approximation of the primal field (e.g. the chemical
potential µ for the diffusion of species, or the temperature difference θ for heat transfer problems) is usually
performed for the downscaling, but is here added some fluctuations µ̃ to account for the local transient effects

µ(x̄,x, t) = µ̄(x̄, t) + ∇̄µ̄ · (x− x̄) + µ̃(x̄,x, t),

where quantities with a bar on top refer to macroscopic ones. The average of these fluctuations and of their
gradient over the elementeray cell should vanish (i.e. 〈µ̃〉 = 0 and 〈∇µ̃〉 = 0), which is a consequence of that
macroscopic quantities and their gradient are enforced to equal the average of their microscopic counterparts.
The upscaling is performed by equating the virtual power (per unit volume) at a given macroscopic point x̄ to
the volume average of the virtual power at the microscale, including transient contributions. This weak equality
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yields generalized Hill-Mandel conditions, as shown in [131, 160] in the context of heat transfer. In the context
of the diffusion of species, these conditions read

j̄ = 〈j− ċ(x− x̄)〉 = 1
V

∫
∂Ω
jn(x− x̄)da (1.6)

˙̄c = 〈ċ〉 = − 1
V

∫
∂Ω
jnda (1.7)

giving the averaged, macroscopic flux of species j̄ and concentration rate ˙̄c. Observe that these quantities can
be computed by only knowing the normal outward flux jn at the boundary of the microscopic domain, whose
computation is therefore the purpose of a subsequent model order reduction technique.

The computational approach followed in the work of A. Waseem was based on a model order reduction
technique already experienced in the context of linear elastodynamics [128], and here extended to transient
diffusion problems. The methodology followed relied on two main assumptions. The first one is the introduction
of a so-called regime of relaxed separation of scales. Indeed, such regime appears as some intermediate one since
it considers that local transient effects may occur within the inclusion, but not within the matrix. Therefore,
this regime is characterized by some specific material properties, a fast matrix within which the steady state
is reached almost instantaneously, and slow inclusions where diffusion takes time to proceed. Such regime is
defined as

T ∼ ti >> tm

where the characteristic times (T, ti, tm) are associated with the loading and diffusion within the inclusion and
the matrix respectively. The second assumption this work relies on considers only a linear material response
of the constituents of the microstructure. Such linearity can then be exploited separating the Initial Boundary
Value Problem (IBVP) defined at the microscale into steady state and transient ones (see e.g. [6]). This split
is valid as long as surface conditions of the IBVP are time-independent. This is why it is only compatible with
the regime of relaxed separation of scales, within which transient effects are not expected to occur within the
matrix, which also occupies the boundary of the elementary cell. Such approach is also found in sub-structuring
techniques like that of Craig-Bampton [20]. Sub-structuring involves the division of a whole system into smaller
sub-structures with connected boundaries, where the latters should not experience any transient effects that
would provide a stiffer approximation [128]. In the context of computational homogenization, each microscopic
domain attached to a macroscopic material point is assumed to be a substructure attached to the macroscopic
domain.

An elementary cell consisting of inclusions embedded within a matrix is first discretized with finite elements.
Once the mesh nodes have been divided into tied and retained ones, the discrete solution is decomposed into
the sum of microscopic steady-state and transient contributions. The steady-state contribution is obtained by
performing a static condensation or Guyan reduction, expressing the response of free nodes as a direct function
of prescribed ones. The description of the transient contribution profits from that any parabolic system has
natural solutions decaying exponentially in time, which yields some eigenvalue-like problem, well-known in
thermal analysis for instance [105]. The associated eigenvalues α(k) are then interpreted as the inverse of
characteristic times (i.e. τ (k) = 2π/α(k)). The transient contribution to the solution field is thus expressed as a
linear combination of eigenvectors Φ(k) through variables η(k), the latter being solution of a system of uncoupled
Ordinary Differential Equations (ODE). At this stage, no reduction of the number of degrees of freedom has
been performed, only the format of description of the solution has been changed. But by selecting only a
limited number of eigenvectors, especially associated with the most influent decay times, a drastic reduction
of the amount of degrees of freedom can be operated, and hence of the computational cost. Such approach
amounts to make a mode synthesis for diffusion type problems, as the one performed by Craig-Bampton for
linear elastodynamics [20]. It means that only a few enrichment variables η(k) now allow to account to transient
effects at the microscale. Figure 1.7 shows an illustration of modes extracted from such decomposition for an
elementary cell consisting of a circular inclusion centered in a square matrix. The mode synthesis carried out
thus amounts to replace a numerical model fully discretized with finite elements at the microscale with thousands
of coupled degrees of freedom, by a reduced one consisting of only a few degrees of freedom (∼ 6), solution of a
set of decoupled ODEs with a forcing right hand side once the superposition of both steady-state and transient
contributions has been performed. Given the time evolution of a macroscopic loading, these ODEs can be
solved with any discrete time-stepping method. Since the normal reaction flux jn can be explicitly expressed
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Figure 1.7: Solution decomposition into steady-state and transient contributions. Only a
few transient modes are sufficient to provide a sufficiently accurate approximation of the
solution.

Microscale – Numerical Examples

Loading conditions: µ = µmaxsin (ωt) , ∇µ = (∇µ)maxsin (ωt) , ω = 2
Microscopic chemical potential Field: µ = µss + µtr (non-dimensional)

6= + = ∼

SSH: Steady State Homogenization (does not capture the response completely) [8]
RTH: Reduced Transient Homogenization (proposed method)
CTH: Conventional Transient Homogenization (expensive method) [3]

[8] İ. Özdemir, W. A. M. Brekelmans, and M. G. D. Geers. “FE2 computational homogenization for the thermo-mechanical analysis of
heterogeneous solids”. In: Computer Methods in Applied Mechanics and Engineering 198.3-4 (2008), pp. 602–613
[3] F. Larsson, K. Runesson, and F. Su. “Variationally consistent computational homogenization of transient heat flow”. In: International Journal for
Numerical Methods in Engineering 81.13 (2010), pp. 1659–1686
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Figure 1.8: Maps of the dimensionless chemical potential computed on an elementary cell
consisting of a circular inclusion centered in a square matrix, submitted to a macroscopic
harmonic loading. Three cases are considered: (i) steady-state (SSH), (ii) transient fully-
resolved with finite elements (CTH), and (iii) transient with the reduced model (RTH).

as a function of these enrichment variables, and of macroscopic quantities, the upscaling conditions (1.6) and
(1.10) allow to get the expressions of the macroscopic mass flux and concentration rate in a closed-form.

Figure 1.8 shows maps of the dimensionless microscopic chemical potential, computed with the different
approaches on a simple elementary cell consisting of circular inclusion centered in a square matrix. This cell
is submitted to harmonic loading, both on the chemical potential and its gradient. Clearly, the transient
solution is much different from the quasi-static one, while the reduced model (RTH) permits to get a very close
solution to a fully-discrete finite element approach at a much lower computational cost. Figure 1.9 shows the
time evolutions of the macroscopic quantities, from which it can be seen that transient homogenization has a
significant influence on the capacitance of the system, much more than on the flux of species.

1.4.2 Two-scale analysis of transient diffusion problems through a homogenized
enriched continuum

One great interest of the proposed approach is that an enriched continuum formulation has been substituted
to a more classical homogenized medium through model reduction. Such formulation consists of the balance of
species, constitutive equations for the macroscopic mass flux and the concentration rate, and a set of decoupled
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Microscale – Numerical Examples

Macroscopic Quantities:
� RTH captures correctly the CTH response at micro and macro scales.
� SSH provides erroneous results in transient regimes on the macroscopic concentration rate.
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Figure 1.9: Dimensionless time evolutions of the macroscopic flux of species and concen-
tration rate, computed from (i) steady-state (SSH), (ii) transient fully-resolved with finite
elements (CTH), and (iii) transient with the reduced model (RTH) solutions.

ODEs written on the enrichment variables which drive their time evolutions:

˙̄c = −∇̄ · j̄ (1.8)
− j̄ = aT η̇ + B · ∇̄µ̄+ c ˙̄µ+ C · ∇̄ ˙̄µ (1.9)
˙̄c = aT η̇ + e · ∇̄µ̄+ f ˙̄µ+ f · ∇̄ ˙̄µ (1.10)
η̇ = −αη − V (dT ˙̄µ+ aT · ∇̄ ˙̄µ) (1.11)

Mode synthesis in a computational framework has thus allowed to overcome two drawbacks of computational
homogenization. On the one hand, it has permitted to drastically reduce the computational cost, thus making
such approach affordable. On the other hand, it has provided a closed-form modeling of the effective behaviour,
through the form of an enriched continuum embedding only a few well chosen enrichment variables, solution
of ODEs. Such formulation is then compatible with a two-stage solution procedure. First, an offline stage
will amount to pre-compute the coefficients (a,B, c,C, . . .) appearing in the enriched formulation (1.8)-(1.11).
Those coefficients depends on both static and transient modes retained in the approximation of the microscopic
fields, which in turn depend on finite element matrices associated with the mesh of the elementary cell. Second,
an online stage during which both the enrichment variables η and the primal field of the diffusion problem
(actually the chemical potential µ) are solved together on the macroscopic mesh.

Two solution methods using finite elements have been proposed [171] to handle both the enrichment variables
and the chemical potential on the macroscopic mesh. The first one is a multi-field finite element implementation,
associated with a multi-field weak form of Equations (1.8) and (1.11). A nodal finite element approximation is
then performed on the macroscopic mesh for both types of fields. Once discretized in space by finite elements,
and in time by an Euler Backward finite difference time scheme, a coupled system of equations is obtained,
solved on the nodal values of the macroscopic chemical potential and those of the enrichment variables. One
drawback of this approach lies in the number of equations this system consists of. If M is the number of
nodes of the mesh, the number of unknowns are M(1 + Nq) where Nq is the number of enrichment variables,
generally of the order of 6. In addition, the matrix is not symmetric, which requires an LU factorization which
is more costly. The latter is a direct consequence to that the present multi-field weak form has not been derived
from any variational principle. However, recasting the present enriched continuum formulation (1.8)-(1.11)
within a variational framework is clearly a very interesting issue to address in the future, as it would permit
to recover a symmetric matrix and hence decrease the computational cost. A second solution method proposes
to treat the enrichement variables as internal ones. If we assume these enrichment variables as discretized
with piecewise constant shape functions, they can be condensed to eliminate them from the previous multi-field
discrete system. Such approach is now compatible with a single-field weak form of the balance of species (1.8),
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Macroscale – Numerical Examples

Increasing macroscopic mesh size.

DNS chemical potential µ.

Computed using nelx1 × nelx2 = 50 × 5 =⇒ h = 1

Computed using nelx1 × nelx2 = 30 × 3 =⇒ h = 2.77

Computed using nelx1 × nelx2 = 10 × 1 =⇒ h = 25

h = No. of UC in DNS
No. of gp in Homog. Domain
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Figure 1.10: Maps of the dimensionless chemical potential computed on several macroscopic
meshes of a rectangular computational domain. Comparison is performed with a DNS
simulation.

within which the macroscopic constitutive equations (1.9)-(1.10) are introduced. This is supplemented with a
time discretization of ODEs (1.11). A basic backward Euler scheme can eventually be chosen, which is first
order accurate, or better a second order accurate exponential-based time integrator, as already used in the
context of viscoelasticity for instance [71]. A linear system of only M equations written on nodal values of the
macroscopic chemical potential is obtained. This system profits from a symmetric matrix now, and its solution
is alternated with the integration of the enrichment variables at integration points at each time step. However,
the only drawback of this approach lies in that the right hand side needs to assemble the contribution of the
previous time step due to the elimination, which has appeared to be time consuming.

Figure 1.10 shows some numerical illustrations of maps of the dimensionless chemical potential computed
on several macroscopic meshes of a rectangular computational domain. Several homogenization levels3 are thus
achieved, and a good agreement is shown between the homogenized solution and that obtained from a Direct
Numerical Simulation (DNS). Figure 1.11 shows a plot of the relative error of the macroscopic concentration rate
as a function of the homogenization level. Clearly, a very good accuracy of homogenized solutions is achieved
with respect to the CTH one. At last, Figure 1.12 shows the associated CPU time. The two homogenized
numerical solutions (computed with the two finite element implementations) lie at two orders of magnitude
below that of CTH, which is a severe reduction of the computational cost. The internal-variable finite element
implementation appears slightly more costly than the multi-field one. Most of its cost is due to the element-
level calculations and the assembly of the internal flux vector appearing at the right hand side of the system
of linear equations. Figure 1.12 also shows that the CTH solution can even get more costly than the DNS for
homogenization levels close to unity.

1.4.3 Extension to the coupling between transient diffusion and mechanics
During his PhD thesis, Abdullah Waseem also extended the model order reduction based on mode synthesis for
computational homogenization to the coupling between transient diffusion and mechanics [161]. The mechanics

3The homogenization level is defined as the ratio of the number of unit cells within the geometrical domain to the number of
integration points the macroscopic mesh consists of.
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Figure 1.11: Relative error of the
macroscopic concentration rate ε =
‖ ˙̄c−〈ċ〉‖
‖〈ċ〉‖ as a function of the homoge-

nization level, computed for the dif-
ferent solution approaches.
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Figure 1.12: CPU time plotted as
a function of the homogenization
level, computed for the different so-
lution approaches.

is here considered as quasi-static, providing the following decoupling of characteristic times

T ∼ ti >> tm ∼ tmech

where tmech = ε : ε̇ denotes the characteristic time associated with the deformation process. The key ingredient
this extension relies on pertains to the modeling of the coupling between the diffusion and mechanical processes,
and in particular the associated choice of the energy density function or potential. Both Helmholtz’s free energy
density ψ(c, ε) or its dual potential ψ∗(µ, ε) obtained by a Legendre transform are available possibilities

ψ(c, ε) → (c, ε) formulation
ψ∗(µ, ε) → (µ, ε) formulation

leading to the definition of different primal unknown to describe the diffusion in addition to the strain ε.
However, a quick look to the coupled systems of equations derived in both cases

(c, ε) formulation

∇ · [M ·∇(Λ(c− c0) + S : ε)] = ċ

∇ · [C : ε+ S(c− c0)] = 0

(µ, ε) formulation

∇ · (M ·∇µ) + S : ε̇
Λ = µ̇

Λ

∇ ·
[(

C− S ⊗ SΛ

)
: ε+ µS

Λ

]
= 0

shows that the divergence of the gradient of the strain ε appears in the balance of species associated with
the (c, ε) formulation, which after integration by part in a weak formulation would require a C1 continuity of
the finite element approximation of the displacement field. Such approximation is not standard and therefore
not convenient. Rather, the strain rate directly appears in the balance of species associated with the (µ, ε)
formulation, then only requiring standard C0 continuity of the finite element approximation of the displacement
field. In essence, the (µ, ε) formulation resembles much to the classical Fourier-based linear thermoelasticity,
where the balance of species is here the analog of the heat equation, the chemical potential is the analog of
the temperature increase, and the concentration is the analog of the entropy density. The strain rate also
appears in the heat equation, but with a minus sign to make the temperature decrease as the volume increases.
Consistently with the discussion carried out in Section 1.3 around variational principles for transient diffusion
problems, the chemical potential plays the role of a driving force which is better suited than the concentration
to describe the coupling with other physics, and especially here mechanics.
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Figure 1.13: Transient modes selected, showing the maps of the dimensionless chemical
potential plotted on the deformed geometry (scaled with a factor five). Extracted from
[161].
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Figure 1.14: Maps of the dimensionless chemical potential (top row) and hydrostatic stress
(bottom row), computed with both fully resolved and reduced order model, as well as error
maps of both fields. Extracted from [161].

Following the same path than for pure diffusion, a first order homogenization is performed on both the
chemical potential and the displacement fields, including fluctuations associated with transient effects at the
microscale. Upscaling conditions are also derived for both physics, equating virtual powers at both micro and
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macroscales, which were already derived by Kaessmair and Steinmann [139] who made a conventional transient
homogenization in chemo-mechanics. Next, the model reduction process essentially follows the same lines than
those already explained for pure diffusion, and can be found in [161]. One interesting point though can be
observed on the transient contributions of the displacement fields, which is deduced up to a pre-multiplying
finite element matrix from that of the chemical potential, the latter being defined via the chosen transient
modes. An enriched continuum is also obtained, gathering macroscopic balance and constitutive equations
for both diffusion and mechanical component, supplemented with a small set of uncoupled ODE written on
enrichment variables, whose right hand side now consists of both chemical and mechanical contributions.

As an illustrative example, an elementary cell consisting of few non-ordered inclusion is considered, and
submitted to an a priori known harmonic macroscopic loading on the chemical potential and its gradient. Such
cell may eventually represent a cathode-electrolyte system of a lithium-Ion battery with active particles. The
offline stage first consists in pre-computing coefficients of the enriched continuum, and especially a few transient
modes as shown in Figure 1.13, which are selected according to a scalar quantity weighting coefficients of the
forcing term of ODEs which the enrichment variables are solution. Next, the set of uncoupled ODE is integrated
in time given a macroscopic loading, from which the microscopic fields can be reconstructed. Figure 1.14 shows
maps of both the dimensionless chemical potential (top row) and hydrostatic stress (bottom row) are shown at
a given time, and computed with both fully resolved and reduced order model. A very good agreement can be
observed, especially as shown by the associated error maps.

1.4.4 One route among others for non-linear problems
The model order reduction presented so far in Section 1.4, applied to computational homogenization during
the PhD of A. Waseem, relied among other things on the linear material response of the constituents of the
microstructure. The exploitation of this linearity has allowed to perform an additive split of the solution
between steady-state and transient contributions. However, such split does not hold anymore if a non-linear
material response is considered for the different phases, and another strategy should be followed. Besides, one
difficulty associated with the non-linear case is that the effective macroscopic response is not always amenable
to a closed-form.

One interesting idea output from the model order reduction based on mode synthesis in the linear case is
the efficiency of the obtained computing method if we pre-compute and store once for all some intrinsic feature
of the system. This took the form of static and transient modes, then of various coefficients of the enriched
continuum. But these quantities could be use and reuse at profit during the computation at the macroscale.
This is what was lacking to traditional computational homogenization techniques, in which the solutions of a
microscale problem are not reused in any way. One way to extend the model order reduction framework to non-
linear problems, while recycling the microscopic solutions is to follow an approach using data sets. Following the
one introduced by Kirchdoerfer and Ortiz [126], it consists in replacing the constitutive equations, translating
into mathematics the constitutive response of a material, by a data set gathering a discrete collection of material
responses. The latter are assumed to be known data, either from experiments or from numerical simulations.
When no closed-form modeling of the effective macroscopic response is available, one interest in using data sets
lies in that one solution of a microscale problem can be reused at a different time step, or at another location
of the computational domain. The associated computational cost stems only from the data search operation.

However, the cornerstone of such approach lies in the design of the data set. Especially, if this approach
is expected to be competitive with respect to Computational Transient Homogenization, the step of data
search should be much cheaper than the computation of a finite element solution at the microscale. One
crucial question raised thus concerns the quantities that should be stored within the data set, especially if the
constitutive response depends on the history. One solution would be to store all time steps of all fields of the
microscopic solution obtained from one loading path, and redo the same for all possible loading paths. But
this would yield a huge data set, and searching within it would be quite costly, hence decreasing the efficiency
of this approach. Another solution is to introduce a set of history variable, which avoids to search within a
too large data set. Here comes the interest of using a model order reduction technique, eventually leading to
an enriched continuum, allowing the natural emergence of a finite set of enrichment variables. On the one
hand, using such reduced model allows to make the construction of the data set computationally reasonable,
by generating efficiently the effective macroscopic responses of the microscopic system. Eventually, adaptative
methods can be designed to enrich the data base on-the-fly during the online stage. On the other hand, a data
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set of moderate size, containing just a few history variable emerging from the reduced model, permits a fast
step of data search.

These ideas have allowed to design a procedure called data-driven reduced homogenization [172], which con-
sists of three steps. The first one consists of the construction of a reduced model of the microscale system, which
allows to make emerge just a few enrichment variables and obtain the effective macroscopic response at a low
computational cost. The second step is associated with the data generation, which involves the solution of many
microscale problems for given loading paths. This step is crucial because the data set should be sufficiently rich
in order to be able to provide an accurate effective macroscopic response to the solver at the macroscale. It
raises the question of the set of loading paths that should considered. In a sense, the data set actually ’learns’
the subspace of the effective macroscopic non-linear response (provided by the reduced model) which is required
by the macroscopic solver in order to provide a compatible and equilibrated macroscopic solution. The third
step is the data search, which will be efficient if and only if few enrichment variables allow to account for history
or transient effects at the microscale.

Although designed for a priori non-linear problems, such approach was at first applied to linear transient
diffusion problems, for which a reduced model was developed. Therefore for such problem, the data set consists
of all quantities involved in its description, plus their rate

D = {z∗ = (µ∗, µ̇∗,g∗, ġ∗; c∗, ċ∗, j∗;η∗, η̇∗} ,

except the rate of the flux of species, and recall that g ≡ −∇µ. Next, a distance d(z, z∗) = |z− z∗| should be
defined between a state satisfying the set of compatibility, balance and boundary equations, and a state lying
in the data set. Usually, an L2 norm is chosen

|z| =
[

1
2
(
C1µ

2 + C2µ̇
2 + C3g2 + C4ġ2 + C4η

2 + C6η̇
2 + C7c

2 + C8ċ
2 + C9j2

)] 1
2

and a set of coefficients Cα are introduced to weight the contribution of each quantity. These coefficients are
here to define a dimensionally-consistent distance. Normally they are tuned according to the importance of
each term, but of course no unique definition of the distance and of these weighting coefficients exist. Indeed,
by applying approaches based on data sets, we are led to apply the law of large numbers, which says here that
in the limit of an infinitely rich data set, the definition of the distance function and the tuning of weighting
coefficients have no influence on the solution found.

The initial boundary value problem is then formulated as the following optimization problem

inf
z∈En+1

inf
z∗∈D

d(z, z∗)

This double minimization problem is a combination of continuous and discrete optimization problems, and it
has a combinatorial complexity. Usually, a two-stage staggered solution scheme is adopted, which consists, at
some iteration k of a given time step, to first compute an equilibrated state from a known point of the data set,
and then to search in the data set the closest point to the new equilibrated point obtained, namely

(i) zk+1
n+1 = PEn+1(z∗n+1)k

(ii) (z∗n+1)k+1 = PDzk+1
n+1,

where PEn+1 and PD denote the projectors to spaces En+1 and D respectively. This process continues up to
convergence. Notice that the projector of the first step is obtained by writing a Lagrangian functional consisting
of the distance augmented by the discrete residual of the balance of species enforced to vanish through some
Lagrange multiplier:

δLn+1 = 0, with Ln+1 = d(zn+1, z∗n+1) + λn+1R(zn+1).

The obtained discrete Euler-Lagrange equations, and their combination lead to that two linear systems of
equations should be solved to get the solution. The first one is written on the chemical potential, the other on
the Lagrange multiplier.
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Figure 1.15: Input data applied to the reduced model, obtained by the post-processing
of the solution of the enriched continuum at each integration point of a one-dimensional
macroscopic mesh, when submitted to a ramp loading.
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Figure 1.16: Macroscopic quantities output from the reduced model, stored within the data
set together with input data.
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Figure 1.17: Time evolutions of the relative error of the chemical potential and of macro-
scopic quantities, computed with noisy and noiseless data sets.
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As an illustration for validation purpose of the data-driven solver, Figure 1.15 shows the loading conditions
(µ,g)(t) which are applied to the reduced model in order to generate the data base. These input data are
here obtained by the post-processing of the solution of the enriched continuum at each integration point of a
one-dimensional macroscopic mesh, when submitted to a ramp loading. Once applied to the reduced model,
Figure 1.16 shows the response of the reduced model through the macroscopic output data, which together
with input data, allow to fill the data set. No prominent history effect appears in the relation between the
flux of species and g. But a non-Fickian behaviour appears on the capacitance part. Especially, since only
one enrichment variable was here found sufficient to describe transient microscopic effects, the 3D graph clearly
shows the different loading and relaxation paths, which can be departed thanks to the enrichment variable.

When the data set is filled with the reference solution (obtained from the enriched continuum), the data-
driven solver permits to recover it on the macroscopic mesh with a quite good accuracy. It can be viewed as a
sort of consistency test, checking the numerical error carried out by the two-stage staggered solution scheme,
which has been fed with the perfect data set. However, when the reference solution is not known, the data
set should be filled with data obtained from carefully designed loading paths. Even more than that, the data
can be noisy if they are obtained from experiments. Figure 1.17 shows a comparison of the time evolutions of
macroscopic quantities when computed with a noiseless data set DR and a noisy one D̃R, obtained by adding
some white Gaussian noise. Although measured, their evolutions is clearly sensitive to the addition of such
noise, as also seen on the time evolution of the relative error of the chemical potential.

In this work, a first attempt to define a framework for reduced numerical homogenization to treat non-linear
problems was made by combining an approach based on data sets and an a priori known reduced model of
the microscale system. Although it was only applied to transient linear problems to profit from the previously
developed solver, the application of such framework to true non-linear problems requires to address the question
of the definition of a well-suited reduced basis in such case. A discussion of this outlook is addressed in Section
3.2.
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Chapter 2

Fast thermo-mechanical systems

2.1 Exploiting velocity effects

Among the current major societal challenges is, among other things, the reduction of energy and resources
employed everyday. This is especially the case of the production processes, or of the transports, for which such
reduction would also lead to a reduction of costs and of process emissions. One approach followed so far by the
manufacturing industries is to make a lightweight design of their products, that is either increasing the use of
lightweight materials in structures or using lighter hybrid components. For instance, steel tends to be replaced
when possible by lighter materials, such as aluminium alloys or fiber-reinforced composites (FRC). Or, when
possible, hybrid structures metal/composite may advantageously replace full-steel structures, as for instance
for ballistic protection purpose in light vehicules. However, to widen their use some major technical issues
are faced. Firstly, assembling dissimilar materials/structures becomes then widespread in every industrial
product, but it is also a major issue due to the dissimilarities in physical, thermal and chemical properties.
Avoiding additional fixing components (for mechanical joining technologies), difficulties due to material melting
and heating into the joined parts for Resistance Spot Welding (RSW) or more generally fusion based thermal
technologies, or the formation of brittle InterMetallic Compounds (IMCs), constitute the major challenges to
make successful these assemblies. Hence, solid state thermo-mechanical processes such as Friction Stir Welding
have become popular though it still poses problems for dissimilar structures. Secondly, these materials are
often associated with limited processing properties (e.g. machinability or formability). This is why forming
and machining technologies reach their limits in terms of feasibility (ductile failure, chip geometry, tolerances)
and profitability. It thus needs considerable effort involved in process, tools and machines to become efficient in
manufacturing complex components. Thirdly, from the industrial viewpoint any joining process should respond
to at least four criteria: (1) mass production (high performance, high productivity and relatively low cost); (2)
ability to not disturb the organisation of assembly lines (automation), (3) ability to not disturb the design (spot
welding); and (4) versatility to justify its material and human investment (acquiring of technical and scientific
skills for industrial control of the technology). The same process must thus be able to produce the Al to Al, Al
to galvanized steel and Al assemblies or galvanized steel to FRC.

Exploiting velocity effects has been shown to offer many opportunities [96] for different processing aspects
in areas such as manufacturing, dynamics of structures, or assembling lightweight dissimilar materials. For
instance, an improvement of the processing limits is observed on forming limit curves obtained in dynamics for
aluminum [46] or even steel [69] thin sheets, when compared to quasi-static situations. A reduction of the ’struc-
tural’ elastic springback of parts is also observed in that context, as well as a decrease of wrinkling. Dynamic
bonding (or welding) is also made possible for materials known to be difficult to weld (especially aluminium
alloys) with more classical technologies (and especially fusion-based welding processes), hence addressing in-
dustrial issues related to dissimilar assemblies. These velocity effects can be triggered after the generation of a
short pulse or impact on a structure, or via a dynamic cyclic loading, deforming the medium and propagating
different kinds of waves within it according to the magnitude of the applied pressure. On the one hand, materials
submitted to high strain rates are known to exhibit a quite different constitutive response than in quasi-statics.
For instance, an increasing flow stress is observed as a function of the strain rate [35, 76] for various metallic
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alloys, of when strongly stirred it can behave as a pasty fluid. On the other hand, an impact on a structure
will generate waves propagating in the medium a quite different mechanical field than the one that would be
obtained in quasi-statics. An easy and academic example of this can be shown on an elastic sphere under inner
pressure. Indeed, its well-known solution in quasi-static yields radial and hoop stress components of different
signs and varying as 1/r3, while in dynamic these components share the same sign and vary as 1/r [75]. These
dynamic effects thus permit to play differently with the geometry of a structure in order to achieve a given
objective. Both items contribute to what are generally called ’velocity effects’, whose benefits can among others
be observed on the forming limit curves of metallic alloys.

These velocity effects can be implemented via various technologies. The use of Laser, high pulsed power
technologies, or explosives represent a non-exhaustive list of means allowing to generate dynamic loadings,
whose effects can then be exploited to fulfill a dedicated objective. Notice also that some of these technologies
can either be used for material processing or for dynamic testing purposes, as shown in Figure 1. In the latter
case, the objective is rather to identify some strain-rate dependent constitutive response.

In that context, my research works in this area have focused on several points. First, some interest has been
devoted to the study, the numerical simulation and eventually the development of some dynamic assembly or
forming processes. Associated contributions are summarized in Section 2.2. Especially, I got interested during
my PhD thesis by a variant of the Friction Stir Welding process, whose contributions are described in Section
2.2.1. Next, I was introduced to high pulsed power technologies working with Professor Guillaume Racineux,
which were the purpose of some contributions summarized in Section 2.2.2. Second, I was also interested in
experimental material dynamic testing techniques, since a good knowledge of the thermo-mechanical response
of the material is required on a wide range of strain rate to accurately predict the strength of structures or to
master the feasibility of forming processes. Some works related to an experimental system designed to obtain the
material constitutive response at very high strain rate is summarized in Section 2.3. Third, research works were
also devoted to the modeling and computational aspects of fast transient thermo-mechanical processes, which
occur after impacts on structures, as for instance during high speed forming processes. These contributions are
summarized in Section 2.4.

2.2 Material processing at high strain rates

2.2.1 Friction Stir Spot Welding (FSSW)
Friction Stir Spot Welding is a solid state welding process, derived from Friction Stir Welding, and introduced
in the 2000s by the car manufacturer Mazda [63]. It consists in creating a spot weld between two superimposed
sheets by penetration of a rotating tool, composed of a pin and a shoulder, into the material. A sketch of the
principle is shown in Figure 2.1. The heating generated by friction as well as the motion of the material driven in
the vicinity of the tool allow a mixture ensuring the solidarity of the parts to be joined after cooling. This process
of welding in the solid state and without filler metal is particularly interesting for carrying out the assembly
of non-ferrous metals such as aluminum or copper alloys, reputed to be poorly weldable with conventional
processes. Such process was aimed in the 2000s at being competitive with respect to the widespread process
of resistance spot welding, to perform spot welds in the automotive industry, due to its high productivity and
relatively low required input of energy.

2.2.1.1 Modeling fluid/solid coupling for high temperature assembly processes

As the rotating tool penetrates the upper sheet, the stirred and hence softened material below the tool becomes
mushy. From the modeling viewpoint, Lagrangian approaches hardly simulate such problem due to the high level
of deformation involved, generating mesh entanglement, requiring remeshing, costly and diffusive remapping
steps of internal variables, and do not profit from the evanescent memory of the stirred matter. On another side,
Eulerian approaches require dedicated techniques to track the boundaries. In that context, the purpose of my
PhD thesis was to develop a numerical framework dedicated to the numerical simulation of welding processes
in which a subdomain undergoing both a high level of deformation and high strain rates coexists with another
one following a more classical solid behaviour. Friction Stir Spot Welding was thus representing a first step
before arc welding processes. This PhD took place between University Pierre et Marie Curie in Paris, the Ecole
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Nationale d’Ingénieurs de Saint-Étienne (ENISE), and the company ESI Group (located in the center of Lyon),
under the supervision of professors Jean-Baptiste Leblond and Jean-Michel Bergheau.

In these works, an Arbitrary-Lagrangian-Eulerian (ALE) approach allows to decouple the motion of the
matter from that of the mesh only in the stirred area, so that several rotations of the tool can be more easily
simulated while following the boundaries of the welded sheets. A more classical updated Lagrangian description
[58] is followed in the solid area. In addition to the different description of the kinematics in the two subdomains,
different constitutive modelings were considered. Indeed, the mushy state of the matter in the stirred area invite
to consider an incompressible viscous fluid constitutive response. Usually, a Norton-Hoff flow rule is considered
for such constitutive response. The solid subdomain is described with a constitutive response depending on
the history of the loading path. Here, a formalism based on a hypoelastic-plastic constitutive response [58]
is followed. This type of approach based on a fluid/solid coupling provides a correct local description of the
mechanical constitutive response while relying on relevant kinematic descriptions of the two subdomains of
the structure [94]. More generally, the purpose of the proposed approach was to unify usual numerical mod-
elings of welding processes, which historically focused either on the modeling of the process itself (the molten
pool in the case of fusion welding processes) or on the induced consequences, i.e. residual stresses and distortions.

Figure 2.1: Sketch of the principle
of Friction Stir Spot Welding, with
both stirred and solid areas.
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Figure 2.2: Mixed P1+/P1 (or
MINI-)finite element, applied with a
monolithic thermo-mechanical cou-
pling.

The P1+/P1 finite element, also called MINI-element [31], was used for the spatial discretization. The
approximation P1+ is related to that of the velocity field, enriched with degrees of freedom linked to an
additional internal node located at the barycenter of the element (see Figure 2.2), which is associated a bubble
function. This element is compatible with multi-field formulations, and usually allows to enforce an internal
constraint related to the total or partial incompressibility of the medium. In this work, this enriched tetrahedral
finite element ensures here the continuity of temperature, pressure and velocity fields. A thermo-mechanical
multi-field finite element formulation consisting of the weak forms of the heat equation, the balance of linear
momentum, and of the internal constraint relative to each subdomain was derived with this finite element.
The total incompressibility is enforced weakly in the fluid area, while only the plastic one is enforced in the
solid subdomain. Appropriate heat sources are accounted for in both fluid and solid areas, associated with the
respective mechanical dissipations. The mechanical inertia terms are neglected in the solid area since it deforms
in a quasi-static manner, while they are important in the fluid one. At last, convection terms appear in the fluid
area in addition to inertia ones due the ALE description of the kinematics, both on the thermal and mechanical
equations. The semi-discrete system of equations thus read

Mq̇ +
{

f conv

0

}
+ f int = f ext (2.1)

where convection forces only appear in the fluid area, M is some generalized mass matrix, q is the vector of
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degrees of freedom
qT = {T v p b},

and b are the degrees of freedom of the bubble node, homogeneous to some velocity. Notice that the formulations
in both fluid and solid areas are expressed in term of temperature, velocity and pressure degrees of freedom,
which permits to make naturally compatible the assembly of elemental quantities of those areas. In order to
provide a stable approximation to System (2.1) as the Peclet number increases, a Petrov-Galerkin method [28]
is applied on thermal equations. However, since low Reynolds numbers are expected in the fluid area, a simple
Galerkin method is used for mechanical equations. Furthermore, since the bubble function vanishes on the
element boundary, the degrees of freedom of the bubble node b are internal to the element and are usually
eliminated to save some computational cost by reducing the size of the system to be solved. However, the pres-
ence of rates in System (2.1) prevents this straighforward elimination. Such elimination was here made easy by
assuming that the bubble acceleration is roughly equal to the average of those of vertex nodes, making vanishing
the rates of the bubble degrees of freedom. Such approximation was anyway generating a lower numerical error
than the subsequent lumping of the mass matrix. Indeed, the former restricts the acceleration to be linear on
the element, while the latter enforces it to be constant per element. Finally, the semi-discrete system (2.1) is
discretized in time with an implicit Euler time-stepping, and is linearized with a Newton-Raphson method at
each time step. Then, a monolithic solution of the resulting linear system of equations is performed at each New-
ton iteration on degrees of freedom lying at vertex nodes (i.e. temperature, velocity, pressure) up to convergence.

The developments related to the formulations in the fluid and solid areas were implemented in the commercial
finite element code SYSWELD [74], developed by the company ESI Group, which is dedicated to the numerical
simulation of welding processes. These two formulations were first validated separately, and were the purpose of
the development of analytical solutions related to a toy problem: the Couette viscometer. First, an extension of
its well-known steady-state solution to the laminar flow of incompressible fluids with inertia effects and thermo-
mechanical coupling was addressed in [87, 117], and served for the validation of the fluid formulation. Second,
an extension was considered to solid-type elastic–plastic and thermo-elastic–plastic von Mises materials, both
in small and large strains [116], and was used for the validation of the solid formulation. The latter case was
obtained in the formalism of hypoelastic-plastic models, and reusing the solution developed for small strains by
(i) replacing the tangential displacement uθ by the curved arc length swept l, and (ii) neglecting the additional
terms associated with the objective time derivative.

For the sake of simplicity, but also to satisfy some constraints of the code architecture, the elements of the
mesh were defined as being either fluid or solid, which leads to that the fluid/solid interface passes through
the faces between the elements. As the interface propagates during the simulation, elements can change of
formulation. The simplest criterion for that is to define an averaged transition temperature set by the user,
above which a transition from solid to fluid is performed, and below which the converse operates. Both the test
on a transition temperature and the mesh updating procedure linked to the ALE description are performed at
convergence. During the iterations at a given time step, the residual is computed based on the distribution of
constitutive responses over elements defined at the previous time step. In the fluid area, it is computed with
respect to the geometry updated at the previous time step, while the updated geometry at each iteration is
considered in the solid area (updated Lagrangian). Such explicit updating procedure in the fluid area is here to
ease the convergence. The update of the geometry is based on the computation of the mesh velocity, different
from that of the material. On the outer boundary (actually the bead formed close to the plunging tool), it is
defined as the normal component of the material one, normals at vertex nodes being computed by a weighted
average of those of surface elements. Next, within the fluid area, nodes are replaced iteratively as evenly as
possible by a basic barycentric positioning technique.

A simplified numerical simulation of the early stages of the plunge step of a cylindrical tool of circular
cross-section into a monobloc structure is shown in Figures 2.3, 2.4 and 2.5. Especially, Figure 2.3 shows the
time evolution of the fluid/solid interface, which propagates upon heating. At first relatively spread around the
tool plunge, the velocity norm then increases significantly within the fluid area as it grows, as shown in Figure
2.4c. As soon as a fluid area appears, all the deformation focuses within it, leading to an elastic springback
of the surrounding solid area. Finally, Figure 2.5 shows the time evolution of the Mises norm of the stresses
during the simulation. During the plunge step, the tool creates stresses in the area where he presses, but these
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(b) t = 0.42 s.
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(c) t = 0.437 s.

Figure 2.3: Isotherm associated with the fluid/solid interface at different times. Extracted
from [94].

(a) t = 0.01 s. (b) t = 0.42 s. (c) t = 0.436 s.

Figure 2.4: Maps of the norm of the material velocity at different times. Extracted from
[94].

(a) t = 0.01 s. (b) t = 0.42 s. (c) t = 0.436 s.

Figure 2.5: Maps of the Mises norm of the stresses at different times. Extracted from [94].

stresses drop as the solid is transformed into a fluid. The maximal stresses are then reached in the solid area in
the vicinity of the fluid/solid interface.

2.2.1.2 Experimental setups for FSSW

I got also the opportunity during my PhD works to carry out some experimental investigations of Friction Stir
Spot Welding, at the production center of ENISE in Saint-Étienne. The global context of these experiments
were on the one hand to analyze and better understand the mechanisms governing this process, and on the
other hand to get macroscopic experimental data permitting the calibration of the numerical simulations. More
precisely, these experiments were focused on the analysis on the influence of experimental boundary conditions
upon the measured axial force and torque during the process, and on the quality of the weld. To this end,
two experimental setups were designed, manufactured and mounted on a four-component force sensor. Their
purpose was to study the difference induced by C-frame-like (as implemented in production lines) or plane
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boundary conditions at the bottom of the lower sheet. Sheets of 2 mm thickness in AA 2024 aluminium alloy
were considered. Figure 2.6 shows some pictures of the welding operation, of the weld, and of a cut of the axial
stop setup, the latter aiming at mimicking C-frame boundary conditions.

Figure 2.6: FSSW experiments, cut of the weld, and cut of a setup.
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(a) Ω = 750 rpm
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(b) Ω = 1000 rpm
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(c) Ω = 1500 rpm
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(d) Ω = 2000 rpm

Figure 2.7: Comparison of axial force and torque measured with both setups, for various
rotational speeds. Extracted from [95].

Figure 2.7 shows a comparison between axial force and torque curves obtained for various roational speed of
the spindle with both setups designed. A significant difference between force and torque maxima values appears
between both positioning and clamping conditions. Whatever the rotational speed value, the maximum values
of the axial force and torque are greater with the plane setup, which leads to that the specimen is more rigidly
clamped, and can deform less.
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2.2.2 High-pulsed power technologies
The basic principle of high-pulsed power technologies consists in releasing a certain amount of energy in a
given medium in a very short time to generate a high power, and exploiting its effects. For convenience
purpose, such energy is usually stored in an electric form, especially within a set of electrical capacitors. Various
implementations of this basic principle yield particular technologies, amongst which the electromagnetic and
electro-hydraulic ones, which are explained below.

2.2.2.1 Electromagnetic technology

The electromagnetic technology consists in releasing the electrical energy stored in capacitors within a coil or
any kind of inductors. Following electromagnetic laws, eddy currents are generated in any electrically conductive
media placed in the vicinity of the coil, hence generating repulsive Lorentz forces which can then be exploited, to
form the matter, crimp or weld assemblies. This technology presents several advantages with respect to classical
low speed processes, among which contact-free force application, process repeatability, and small duration can
be cited. Although these technologies share some features with the explosive technology, they are more easy to
handle/industrialize and involve lower pressure levels while they still benefit from processing dynamically, and
does not expel any smoke or fume. This technology is actually a very old one, since we can trace it back to the
1920s [2]. Although it was used routinely in the late 1950s and early 1960s, the details of the physics were known
but could not be computed effectively [55]. This is why a new gain of industrial interest for this technology has
re-emerged in the late 1990s, and essentially in the 2000s with the emergence of strong computational methods,
the increase of the computation power, and the marketing of dedicated commercial codes.

The École Centrale de Nantes has been hosting since the late 1970s a research activity dedicated to high
pulsed power technologies. First carried out under the leadership of professor Maurice Leroy, this activity was
pursued by professor Guillaume Racineux since the late 2000s, with whom I worked during my post-doc, and
still continue. In that context, I had the opportunity to bring some contributions to his activities since my
post-doc. They pertain either to some computational aspects of the problem, or to the analysis of dynamic
phenomena of interest occurring with some particular experimental configurations via the definition of simplified
modelings, which often leads to analytical solutions.

From the industrial viewpoint, the implementation of electromagnetic forming processes requires to deter-
mine and optimize many process parameters, which can be either related to the geometry of the forming device
(geometries of the part and the coil) or related to the generation of the pulsed currents. These parameters are
of primal importance to achieve the proper geometry of the formed part. Usual optimization procedures are
often quite costly since this iterative process requires many assessments of the cost function, whose evaluation
yields a computationally intensive direct analysis. In this context, a first contribution to this topic has been
performed via the definition of a numerical tool dedicated to the optimization of the design of an electromag-
netic compression device, focusing first only on the electromagnetic problem [125]. The objective was to take
advantage of the Proper Generalized Decomposition (PGD) [85] to build a numerical chart, which can then
serves to perform an optimization at a very low computational cost of this compression device. Great scientific
interest and effort have been devoted to the development of PGD in the 2000s and 2010s, which has proved to
be particularly effective to reduce the complexity of some particular problems exhibiting high dimensions, and
circumvent the so-called ’curse of dimensionality’. The PGD enables a parametric resolution of some partial
differential equation by introducing optimization parameters as extra-coordinates of the problem, and builds a
tensor product approximation basis (or approximation of low rank format) in order to decouple the numerical
integration of a high dimensional model in each dimension. Indeed, working with functions of one variable
leads to that the computational cost scales linearly with the number of dimensions of the problem, and no
more exponentially as for mesh-based methods like finite elements. Consequently, the evaluation of the cost
function does not require a costly direct analysis anymore, the computational effort being previously provided
upstream of the optimization step. The latter just reduces to a simple post-processing of the multidimensional
numerical solution, and can be done in real time on light computing devices. PGD has been shown to be quite
effective for parameter-dependent parabolic and elliptic linear problems, although extensions have been studied
for non-linear and dynamic ones. For electromagnetic forming applications, the ’quasi-static’ assumption of
computational electromagnetism holds, meaning that the frequencies of eddy currents are quite low. This re-
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sults in a linear parabolic equation written on the magnetic vector potential a. More precisely, an axisymmetric
geometrical configuration shown in Figure 2.8 was considered, neglecting the helicity of the coil windings.

z

Ωair

a = 0

∂a
∂n

= 0

a
=

0

a
=

0

Ωwp
Ωcoil

l1 l2 l3 l4 l5

Figure 2.8: Radial parameterization of the electromagnetic compression device

The resulting scalar partial differential equation is thus written on the hoop component a of the magnetic
vector potential as

σ
∂a

∂t
= 1
µ

(
∂2a

∂r2 + 1
r

∂a

∂r
− a

r2 + ∂2a

∂z2

)
+ j0, (2.2)

where σ, µ j0 refer to the electrical conductivity, the magnetic permeability of the medium, and the source
current density respectively. Observe that the elliptic term in Equation (2.2) reads different than that of the
heat equation for instance, which comes from the double curl operator simplified for axisymmetrical problems.
The PGD solution procedure is based on a greedy algorithm and proceeds by successive enrichments. Provided
the solution at enrichment step n is known, the solution at enrichment step n+ 1 is sought in a separate form
as

an+1 = an + T (t)R(r)Z(z)
m∏
i=1

Xi(xi) (2.3)

where (x1, . . . , xm) refer to m additional coordinates, and T (t), R(r), Z(z), Xi(xi) (1 ≤ i ≤ m) the a priori
unknown enrichment functions. The solution at step n+ 1 is obtained by introducing the approximation (2.3)
within the multidimensional weak form of Equation (2.2), and choosing test functions alternatively associated
with each enrichment function the approximation (2.3) consists of. The so-called residual minimization approach
[91] is then followed to compute the enrichment functions at step n + 1. As shown in [125], the additional
parameters in that context can be chosen as being the angular frequency ω and the decay time τ of the
applied current density j0 (being a damped sinusoid) appearing as a source term of Equation (2.2), which is
useful to design the generator. But a parametric modeling of the geometry is also possible by considering the
computational domain as a multi-layered structure, the thicknesses of all layers being accounted as optimization
parameters and introduced as extra-coordinates. The keypoint to perform such parametric analysis stems from
the finding of appropriate changes of variables so that a separated form of the solution be kept, allowing to
preserve the efficiency of the PGD solver. Here, the domain associated with the radial coordinate Ωr is thus
mapped on a fixed parent domain for each layer, to which the coordinate sj is associated, so that:

Ωr =
m⋃
j=1

Ωsj =

0,
m∑
j=1

sj
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The following change of variable is thus defined in each layer of the structure:

r(s, l1, . . . , lm) =
∑
p<j

lp + lj(s− (j − 1)); j − 1 ≤ s ≤ j

where lj stands for the current thickness of layer j.

(a) l3 = 2 · 10−3m (b) l3 = 7 · 10−3m

Figure 2.9: Lorentz body forces (N.m−3) as a function of the gap (l3) between the workpiece
and the coil. Extracted from [125].
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Figure 2.10: Lorentz body forces (N.m−3) applied on the workpiece as a function of thick-
nesses l2 and l3. Extracted from [125].

Figure 2.8 shows the parameterization of the geometry of the computational domain. Next, Figure 2.9 shows
the maps of the magnitude of Lorentz body forces generated on the device components at its first peak in time,
for the two extremal cases of the gap value (l3) between the workpiece and the coil windings. The results suggest
as expected that their magnitude is greater when the gap is smaller. The parametric numerical solution also
allows to better visualize the evolution of the Lorentz forces magnitude applied either on the workpiece or on
the coil as a function of the thicknesses of the various layers. Especially, Figure 2.10 shows the evolution of these
forces applied on the workpiece (at the first current peak) when varying its thickness l2 (Figure 2.10a) and the
gap magnitude l3 (Figure 2.10b). As previously stated, the smaller l3, the greater the magnitude of body forces
reached in the workpiece. Conversely, since eddy currents only flow within a skin depth, the thickness l2 does
not seem at a first glance to have any signficative influence on body forces generated. Provided the parametric
numerical solution (2.3) has been computed offline, the (online) computation of one instance of values of the
parameters only involves the recombination of those enrichment functions (or ’modes’), which is a very cheap
operation. Hence the evaluation of the cost function at each iteration of the optimization procedure can be
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performed at a low computational cost. For instance, a brute force approach was used in [125] (hence without
any intelligence) in order to find the maximal compression force over the domain of feasability.

The electromagnetic technology also allows to provide various geometrical configurations, which depart
from the classical axisymmetric compression or expansion devices. This is especially the case of electromagnetic
flanging, whose purpose is to bend a narrow strip at the edge of a metal sheet along a straight or curved line.
Such technology may be of interest for the aeronautical industry for instance, which traditionally manufactures
many components made of lightweight alloys of small and medium sizes by flexforming. However, the major
difficulties to succeed in electromagnetic flanging is to master the geometrical tolerances of the formed part.
Two major challenges must be met with the electromagnetic pulse technology. Firstly, a special electromagnetic
inductor should be designed according to the geometry of the flange of interest. Its geometry should account for
some desired spatial distribution of Lorentz forces, which should hence lead to a particular kinematics of bending
of the flange. Secondly, a dedicated die should also be designed, which will give the final geometry of the flange.
Such context was thus the purpose of a second contribution to the topic of electromagnetic processes. The
objective of this contribution was to design a set of experiments (i) to enlighten issues related to the occurrence
of some geometrical defects encountered in the formed flange, (ii) propose some physically-based explanations
and (iii) propose some solutions to address these issues. A significant illustration of this work can be shown on
the straight flange, which is the simplest geometry to be first considered for analysing, understanding and then
correct the main defect issues occurring during the forming operation.

(a) Top view

(b) Side view

Figure 2.11: First experiment: forming a
straight flange with a non-optimized in-
ductor, recorded with high speed camera
(52000 frames per seconds). Extracted
from [159].

(a) Top view

(b) Side view

Figure 2.12: Second exper-
iment: forming a straight
flange with an optimized in-
ductor, recorded with high
speed camera (45000 frames
per seconds). Extracted
from [159].

A first experiment of flanging is carried out on a sheet made of Aluminium alloy 1050 onto a die in steel,
with a basic geometry of inductor (actually a U-shaped one). Figure 2.11 shows a sequence of pictures obtained
with high speed cameras, in top and side views recorded at 52000 frames per seconds. Such experiment allows
to observe that almost all the possible defects appear on the flange if no particular care is devoted to the design
of the geometry of the inductor. Non-uniform bending, defects of straightness and flatness, plastic hinge, as well
as a non-mastered rebound on the die occur. However, if the design of the inductor now includes the path (and
the streamlines) of eddy currents flowing in the sheet, the fact that sufficient Lorentz forces should be applied
at the corner of the flange so that its extremities also rotate properly about the fillet of the die, then better
results can be obtained. This is the purpose of the second experiment, whose sequence of pictures is shown in
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Figure 2.12. The flange is now bent much more uniformly compared to the first experiment, it does not exhibit
any significant defect as previously, although a rebound is still observed in picture 7 in Figure 2.12b. An analog
work can be performed on curved flanges, which essentially requires to pay attention to the particular path of
unrolling the flange onto the die so that no area of compression occurs that would make the flange buckle, and
hence generates wrinklings.

Regarding the rebound of the flange onto the die, a very simple one-dimensional model considering planar
impacts between two bodies A and B allows to easily show that it is due to an unfavorable material impedance
ratio between the flange and the die [159]. Using the method of characteristics, a closed-form solution can be
obtained, either in the elastic or hydrodynamic regimes, but whose conclusions agree on the rebound. Whatever
the material impedance (denoted Zi, i = A,B) ratio between bodies A and B, a rebound occurs after the impact,
either after one wave round-trip in the body A if ZA < ZB , or after that the transmitted pressure waves to
the body B have been reflected into tensile ones via the right free boundary if ZA > ZB . From a practical
viewpoint, the rebound is solved via a die compensation angle.

Figure 2.13: AA1050
formed part. Extracted
from [159].

Electromagnetic flanging [8]

.. to aeronautical components
Experiments and numerical simulation Validation

[8] C.T. Sow et al. “Electromagnetic flanging : from elementary geometries to aeronautical components”. In : International Journal of Material Forming 13 (2020), p. 423-443

6Figure 2.14: Superposition of the computed
(in blue) and measured (in red) deformed
shapes. Extracted from [159].

Although electromagnetic flanging of elementary geometries can be reasonably optimized in an experimental
way (based on a trial and error analysis), much work remains to be provided to go for industrial components.
Figure 2.13 shows a model aeronautical part consisting of several straight and curved flanges, formed simulta-
neously via a dedicated single inductor. Figure 2.14 shows superposed computed and experimental deformed
shapes. The former is obtained with the dedicated module for electromagnetic forming of the commercial finite
element code LS-DYNA, while the latter is obtained by scanning 3D. Though a correct qualitative superposition
can be observed at first glance, the local examination of flanges reveals that significant defects of straightness,
flatness and perpendicularity of the straight flanges is predicted by the simulation, more than those measured on
the experimental part, although the latter also contains defects. The raised difficulty here is due to electromag-
netic interactions between eddy currents in the different subareas of the part and the coil. Defects can appear
that were not observed in each elementary experiment. The numerical simulation becomes then mandatory to
predict and better understand these interactions. However, the fully resolved 3D numerical simulations carried
out with commercial finite element codes require a prohibitive computational cost, and are then hardly usable
in an optimization loop. Rather, a large place remains to be investigated here to design simplified and much
more efficient modelings and computational methods, integrable in optimization processes.

The electromagnetic technology also allows to assemble dissimilar components, either bi-metallic assemblies
[153], or even more recently hybrid structures like polymer composites to metals [167]. However, this technology
may also be able to disassemble those dissimilar assemblies, which would open the door to their recycling, or that
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would be useful to change a defective part, serving as a consumable for instance. The same technology would thus
allow to bond and debond thin laminate structures. This idea is the purpose of a recent contribution lying within
the context of the on-going PhD thesis of Benoit Lagain. This contribution aims at evaluating by analytical
considerations whether or not it would be possible to use the magnetic pulse technology for disassembling
laminate structures [175], without significantly damaging the debonded layers. The study involves a simple
one-dimensional model in linear elastodynamics of a laminate consisting of three stacked elastic, homogeneous
and isotropic layers, infinite in transverse directions, submitted to a continuous square sinus pulse applied on one
of its face. It is solved with the method of characteristics for various configurations, in order to span the domain
of feasability of an optimisation problem, whose purpose is to maximise the interfacial tensile stress between the
first two layers with respect to layer thicknesses and acoustic impedances. One interesting feature exhibited by
this optimization problem is that, after a set of assumptions, it naturally admits a decoupling between unknowns
associated with the geometry, and those associated with the material wave impedances. Such decoupling holds
in the sense that a two-stage staggered solution procedure of the optimization problem is naturally obtained
with respect to those two subsets of unknowns. Such staggered solution scheme is reminescent of approximate
partitioned schemes investigated for transient diffusion problems in Section 1.3.2, but is here performed without
any modeling error. It is shown analytically that a single optimal solution exists, which is defined for a 2-layer
laminate, consisting of an interfacial tensile stress of twice the maximum applied pressure asympotically reached
as ZA

ZB
→ 0. These promising results are the starting point of on-going developments of an experimental device

able to disassemble multi-material assemblies which are thicker than a centimeter, as they can be found in light
weight armouring plates, including a composite material on ceramic coating or on a metallic plate for instance.

2.2.2.2 Electro-hydraulic technology

In the family of high pulsed power technologies, the electro-hydraulic one can be traced back to at least the
1960s [18]. It consists in discharging the electrical energy stored in a series of capacitors between two electrodes
immersed in a water tank. This discharge creates a plasma that generates a primary shock wave and secondary
pressure waves, which can then be exploited. This technology presents several interests as it may also be applied
for metallic materials that are not necessarily electrically conductive, it is contact-free since here water is used
as a support medium for transmitting pressure waves, and it processes dynamically. One contribution to that
technology was made within the framework of the PhD thesis of Cheikh Tidiane Sow [142], which I co-supervised
with Guillaume Racineux, whose purpose was to develop an experimental device to perform dynamic crimping
of a metallic tubes within a ring with the electro-hydraulic technology, with applications to some aeronautical
components. The proposed system consists of three stages, as shown in Figure 2.15 [177]. First, the discharging
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The tubes have an outer diameter 𝐷𝐷𝑒𝑒 = 28 mm, a thickness 𝑒𝑒 = 1.5 mm and a length 
𝐿𝐿 = 60 mm. The rings have an outer diameter 𝐷𝐷𝑟𝑟𝑒𝑒 = 43 mm, an inner diameter 𝐷𝐷𝑟𝑟𝑖𝑖 =
28 mm and a length 𝐿𝐿𝑟𝑟 = 23 mm. 

2.2 Pulsed Current Generator 

The pulse generator used is a 50 kJ, developed at Ecole Centrale Nantes with the 
following characteristics: 

𝐶𝐶𝐺𝐺𝑒𝑒𝐺𝐺 = 408 µF; 𝐿𝐿𝐺𝐺𝑒𝑒𝐺𝐺 = 0.1 µH; 𝑅𝑅𝐺𝐺𝑒𝑒𝐺𝐺 = 3 mΩ; 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 15 kV; 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 = 500 kA 

with 𝐶𝐶𝐺𝐺𝑒𝑒𝐺𝐺, 𝐿𝐿𝐺𝐺𝑒𝑒𝐺𝐺, 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 denote respectively the capacity, the inductance and the maximum 
discharged current of the generator. 
The highest limit for the discharge energy is hence fixed at 16 kJ so that the discharge 
current does not exceed 80% of the maximum allowable current for the generator: 

𝐼𝐼𝑜𝑜𝑜𝑜𝑒𝑒𝑟𝑟𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝐺𝐺 𝑚𝑚𝑚𝑚𝑚𝑚 = 0.8 × 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 = 400 kA 

2.3 Crimping System 

In this study, we developed an original electrohydraulic crimping system. This 
system is made up of three subsystems (Fig. 1): (1-2) an electro-hydraulic waves generator 
which generates high amplitude pressure waves in water; (3a – 3b) a pulse shaper and (4) a 
crimping probe including openings, which is placed in the tube to be crimped. Depending 
on the desired crimping conditions (strain rate), we designed two pulse shapers to conduct 
and amplify pressure waves. An acoustic pulse shaper allows amplifying the primary shock 
wave while a mechanical pulse shaper allows filtering the shock wave and amplifying the 
secondary waves. 

 
Figure 1: Electrohydraulic crimping system 

Figure 2.15: Electro-hydraulic crimping system. Extracted from [158].

tank is where the discharge occurs between the two electrodes, and pressure waves are generated. Second, the
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3 Results and discussion 

3.1 Pressure measurement 

Fig. 5 shows the evolution of the pressure signal, measured at the output of the probe 
during a test at 8 kJ for an inter-electrode distance of 2.5 mm using the device shown in 
Fig. 3 with the acoustic pulse shaper. This signal is characteristic of a confined electro-
hydraulic discharge. A shock wave is observed first and then secondary waves. The shock 
wave, with an amplitude of 3200 bars, arrives around 300 µs after the start of the discharge 
at the measuring point, while the first secondary wave, with amplitude of less than 300 
bars, arrives 2000 µs after the start of the discharge at the measuring point. These 
secondary waves result from the oscillations of the vapor bubble (Gilles Touya, 2003). 
 

 
Figure 5 : Pressure signal with acoustic pulse shaper 

Fig. 6 shows the evolution of the pressure signal, measured at the output of the 
probe during a test at 8 kJ for an inter-electrode distance of 2.5 mm using the device shown 
in Fig. 3 with the mechanical pulse shaper. We do not observe a shock wave but only what 
appears to be an image of the secondary waves emitted by the wave generator. The first 
pressure wave arrives at the measuring point 760 µs after the start of discharge and has an 
amplitude of 1680 bars. The mechanical pulse shaper therefore acts as a low pass filter. 
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Figure 6 : Pressure signal with mechanical pulse shaper 

Figure 2.16: Pressure signals with acoustic
(top) and mechanical (bottom) pulse shapers.
Extracted from [158].

9th International Conference on High Speed Forming – 2021 
 
 

  

• With the mechanical pulse shaper, it can be noticed that the smaller the launching 
clearance is, the better the crimp is. In order to qualify these assemblies and 
assess the potential of this technology (reduction of elastic return at high strain 
rate), it will be necessary to compare these results with those obtained by quasi-
static hydraulic crimping. 
 

For a better understanding of the difficulties observed with the acoustic pulse shaper, 
it will be necessary to carry out numerical simulations. In fact, it is likely that a rebound of 
the tube in the ring will take place in this configuration. This is all the more likely that the 
tube and the ring have the same acoustic impedances (Sow et al., 2020). Moreover, it 
should be noted that the fact of having chosen identical materials for the tube and the ring 
is the worst case from a crimping point of view (Maxwell, 1943). 
 

 
Figure 8 : Evolution of pullout force as a function of measured pressure 

4 Conclusions 

In this study, we propose an original way to crimp a tube at high strain rate in a ring 
by electrohydraulic discharge. In order to exploit either the primary shock wave or the 
secondary waves, two systems are proposed. These systems, called pulse shaper, work to 
amplify the pressure waves and guide them inside the crimp tube. The work carried out 
shows that the strain rates are in the order of 102 s-1 with the mechanical pulse shaper 
(MPS) and 103 s-1 with the acoustic pulse shaper (APS). Crimping tests have demonstrated 
the ability of the crimping process with MPS to join small dimension 316L tubes into rings 
of the same material. The use of APS does not allow assembly. Complementary work must 
be carried out to compare the quality of assemblies produced dynamically compared to 

Figure 2.17: Evolution
of the pullout force as
a function of the mea-
sured pressure. Ex-
tracted from [158].

pulse shaper aims at transmitting and shaping the input dynamic signal as wished. Depending on the desired
crimping conditions (strain rate), two pulse shapers were designed. An acoustic pulse shaper aims at amplifying
the primary shock wave, while a mechanical pulse shaper allows to filter the shock wave and take advantage
of the secondary waves. Third, a probe with gills permits to transmit the pressure wave to the inner surface
of the tube to expand it. Figure 2.16 shows the time evolutions of the pressure measured at the output of the
probe during a test at 8 kJ for an inter-electrode distance of 2.5 mm, using both acoustic and mechanical pulse
shapers. The former clearly amplifies the primary shock wave, while the latter smoothes the signal and acts as
a low pass filter. Figure 2.17 shows the evolution of the pullout force as a function of the measured pressure
resulting from some crimping experiments performed on 316L steel assemblies. The mechanical pulse shaper
permits to assemble with lower pressures than those reached with the acoustic one, the latter still requiring
further work of development.

2.3 Experimental testing at high strain rates through direct impact
Hopkinson bar device

Some of the aforementioned technologies profits from the so-called velocity effects to process the matter. Espe-
cially, during these operations the material is deformed at high strain rate. Typical average strain rates reached
in electromagnetic forming are of the order of 103s−1 [97, 159]. Those reached with the electro-hydraulic tech-
nology are of the orders of 102s−1 and 103s−1 with the mechanical and acoustic pulse shapers respectively
[158]. However, the electromagnetic technology is also interesting for welding, giving the so-called magnetic
pulse welding technics. In the latter case, a significantly higher amount of electrical energy should be stored
within the capacitors in order to get a higher impact velocity (peaks of the order of 500-600 m.s−1) that will
permit to achieve a safe weld. In the later case, the material may be deformed at higher average strain rates,
which are rather of the order of 104s−1. Therefore, a good knowledge of the thermo-mechanical constitutive
response of the material is required on a wide range of strain rate to master the feasibility of these high speed
forming processes. Those constitutive responses will then feed particular database, or serve for the calibration
of particular constitutive models which will then be used in numerical simulations.

Typical high strain rate experiments covering this range of strain rate are performed with the conventional
Split Hopkinson Pressure Bar (SHPB) system, or compression Kolsky bar [7]. However, it is known to admit a
truly upper bound of average strain rate of about 104 s−1 [52], which is a litte bit short for qualifying magnetic
pulse welding. Besides, it is also known from the literature that the (increasing) evolution of the flow stress
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measured with such experimental mean for strain rate sensitive metallic materials as a function of the average
strain rate starts to exhibit a sort of rise in the range [104, 105] s−1 (e.g. see [76]). Although of interest, the
latter is usually not so easy to qualify since it lies between ranges of validity of conventional Kolsky bars (up
to 104 s−1) and pressure-shear plate impact (starting from 105 s−1). The extension of the range of strain rate
covered by Kolsky bars can be performed either by scaling down the size of the specimen and consequently that
of the entire device, or by dispensing with the limit on the stress of the incident bar by removing it. Both have
yielded the miniaturized Hopkinson bar [26] and Direct-Impact (DI) [21] devices respectively. Both approaches
have been shown to achieve very high strain rates (up to 105 s−1 sometimes), although each of them presents
necessarily some limits, require a specific design, and rely on some assumptions. For instance, the miniaturized
system is limited by friction or by the strain gauge length, which acts as a low-pass filter. The direct impact
system allows a higher velocity of the striker and hence a higher average strain rate in the specimen since
the input bar has been removed. However, additional difficulties also arise in the deduction of the material
constitutive response. Especially, the achievement of the force equilibrium is also usually assumed, and is used
to compute the stress. However, it cannot be checked anymore. Besides, alternative techniques are requested
to complete the deduction of the strain and the strain rate in the specimen.

In this context, the purpose of the PhD thesis of Xiaoli Guo was to design and set-up a direct impact
Hopkinson device of reduced size (although not miniaturized) as used in the very high strain rate testing. The
objective was to reach the expected levels of strain and strain rate (∼ 104 s−1), while enforcing as long as
possible the basic assumptions required to deduce explicitly the stress-strain curve of the specimen. Her PhD
thesis was co-supervised by Guillaume Racineux and I, and was also a framework for a collaboration with
Professor Ramzi Othman.

A first contribution was performed on the design of such device [115]. Indeed, the design of conventional
SHPB device often relies on a set of empirical confinement equations used in order to fulfill the required
assumptions. These constraints are usually classified as system design and experimental design [80]. The former
involves the determination of three important length ratios, independent to the specific experiment carried out,
while the latter determines the specimen dimensions, the length and the impact velocity of the projectile to
deform the specimen in such a way that a given strain rate be reached at a given level of strain. However,
although they allow to restrict the range of possibilities, additional constraints built on a physical basis permit
to clarify and complete these empirical bounds. Moreover, the design process should be adapted to the design of
a direct impact Hopkinson system of interest here. Without exhaustivity and details, the additional constraint
pertain to the conservation of energy, dispersion properties of bars or to bounds linked to buckling and one-
dimensional propagation of waves. In this contribution, the design of a direct impact system has been shown
to be solution of an optimization problem submitted to equality (h(x) = 0) and inequality (G(x) ≤ 0) type
constraints of the form

min
x
f(x) ; G(x) ≤ 0 ; h(x) = 0

whose unknown vector x consists of the length lp of the projectile and its impact velocity vp, the dimensions of
the specimen (ls, φs), and these of the bar (lb, φb):

x = {lp, vp;φs, ls;φb, lb},

and where the cost function f(x) is defined as the absolute error of the difference between the predicted average
strain rate ε̇s(x) and the target one ε̇sobj :

f(x) =
∣∣ε̇s(x)− ε̇sobj

∣∣ (2.4)

Figure 2.18 shows a sketch of all equality and inequality-type constraints applied on and relating the components
of the direct-impact Hopkinson device. A systematic iterative procedure is then introduced to solve this design
problem [115] for testing materials like Ti-6Al-4V titanium alloy at strain rates between 5000 and 30,000 s−1,
by the selection of various ranges of specimen length, length and impact velocity of the projectile.

The absence of the incident bar in the direct impact device rises some difficulties in the post-process of
the tests to deduce the stress-strain curve. A first difficulty is linked to that the classical equations derived to
deduce the strain rate and thus the strain in the specimen for an SHPB do not work any more in the case of the
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Objective
* Expected strain rate

Specimen
* Second ratio of system design (Eq. (9.4))
* Allowable range of strain (Eq. (9.9))

Projectile
* Bounds on lp (Eq. (9.9))

Bar & gauges
* First ratio of system design
(Eq. (9.2))
* Buckling (Eq. (9.14))

* Lower bound on lb (Eq. (9.20))

* Experimental design
* Energy conservation (Eq. (9.12))
* Wave reflexions in specimen (Eq. (9.13))

* Third ratio of system design (Eq.
(9.6))
* Minimum strain in the bar (Eq. (9.19))
* Plasticity criterion (Eq. (9.16))
* Frequency criterion (Eq. (9.34))

Figure 1: Constraints applied on and relating the components of the direct-impact Hopkinson device

1

Figure 2.18: Constraints applied on and relating the components of the direct-impact Hop-
kinson device. Extracted from [138].

direct-impact tests. More precisely, the calculation of the strain and strain rate in a direct impact device comes
down to approach the velocity of the projectile/specimen interface during the contact, either by an additional
measurement or by deduction techniques. In the PhD thesis of Xiaoli Guo, two laser diodes with photodiodes
were used to measure the impact velocity of the projectile vp, the average strain rate in the specimen could thus
be evaluated from Gorham’s work [42] as

ε̇s = −
vp + Ap+Ab

Ap
cbεb(t)

ls
, (2.5)

where Ap, Ab are the cross-sections of the projectile and the bar, cb the sound speed in the bar and εb(t) the
strain measured by the strain gauge mounted on the output bar. Equation (2.5) also served to compute the
predicted average strain rate of the cost function (2.4) in the design process. However, the direct-impact experi-
ments were also equipped with a high-speed camera, which permitted to perform a tracking of the displacement
of the projectile/specimen interface uin(t) and that of the specimen/bar interface uout(t), as shown in Figure
2.19. Figure 2.20 shows a comparison of both average strain and strain rate obtained either from image pro-

0µs 11.1µs 22.2µs 33.3µs 44.4µs

bar

projectile

Figure 2.19: Specimen deformation capture by the high-speed camera during the test T4.
Extracted from [121].

cessing or from Gorham’s formula (2.5). Clearly, the two methods fit well only during one wave round trip
within the projectile, also called the characteristic time, after which Equation (2.5) is clearly not valid anymore.
This is a consequence of that Equation (2.5) has been built assuming the force equilibrium in the specimen. A
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Figure 2.20: Strain rate and strain calculated in the direct-impact tests by different manner
for test T4. Extracted from [121].

second difficulty of direct impact device is thus that the force equilibrium cannot be checked anymore within
the specimen. On the one hand, the force equilibrium takes some time (a few wave round trips) to be achieved
within the specimen. On the other hand, the return at the projectile/specimen interface of the wave reflected
at the back of the projectile cancels the force equilibrium in the specimen, and hence makes Equation (2.5) not
applicable. A limit of validity of explicit post-process for direct impact devices is thus reached when no sufficient
wave round trips are achieved within the specimen during one occurring within the projectile. This is especially
the case as the length of the projectile decreases, which goes with a higher impact velocity of the projectile
in order to reach higher strain rates within the specimen. With the direct impact device designed in the PhD
of Xiaoli Guo, this limit was found at about 2 · 104s−1, above which the length of the projectile and the as-
sociated characteristic time did not permit to deform sufficiently the specimen to get a usable stress-strain curve.

One way among others to improve the assessment of the mechanical response at very high strain rate with
direct impact experiments is to carry out an inverse analysis involving a dynamic numerical simulation, which is
the purpose of large sections of literature. A constitutive model is hence postulated to describe the behaviour of
the tested material, whose parameters are identified so that some given quantities extracted from the numerical
simulation fit experimental data. This approach has been applied in [121, 115], minimizing the Euclidean norm
of the difference between the simulated strain εsim(x, t) and the recorded one εexp(t) over a given time duration.
A basic Johnson-Cook constitutive model [30] was assumed, and calibrated for Ti-6Al-4V alloy within the range
of strain rate ε̇ ∈ [4500, 18500]s−1, with numerical simulation carried out with the finite element code ABAQUS.

Thereby, inverse analyses allow to get an image of what could be the constitutive response of a material
through the assumption of a constitutive model, and permits here to overcome the limits of the ’explicit’ post-
processing provided by Gorham’s formula (2.5), by accounting for the local inertia effects within a numerical
simulation. However, such inverse analysis usually raises a mountain of questions about its validity and the
identified parameters. Without exhaustivity, issues can be raised related to the chosen constitutive model, cost
function, uniqueness of the solution, minimization algorithm, but also about the numerical simulations carried
out through the constitutive update algorithm, the time integrator, the spatial discretization, the thermo-
mechanical coupling and so on. As such, the derivation of a well-derived explicit post-processing is preferable,
when it is possible, with respect to inverse analysis in the sense that it is much more efficient and may yield
a constitutive response which is not biased by any constitutive equations. Significant improvements have been
recently introduced via image-based reconstruction of the stress field using full-field measurements techniques,
with various approaches [147, 151], but which however require at least a planar surface to be valid.
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2.4 Numerical simulation of impacts on dissipative solid media

2.4.1 Motivations
The numerical simulations of impacts on dissipative solids are of great importance in fast transient solid dy-
namics, especially in engineering applications such as crash-proof design, or high speed forming processes as
introduced in Section 2.2.2. Various types of numerical simulations can be built up according to the desired
objective. High resolution numerical simulations represent one such type, and are usually dedicated to the fine
modeling of special effects and to their accurate representation and understanding. In this case, numerical sim-
ulations aim at rewriting the film of loading undergone by any material point, while freeing from any numerical
disturbance that might impair the understanding of some physical phenomena of interest. Here, engineering
applications involving impacts on structures are mainly modeled by hyperbolic initial boundary value prob-
lems, whose solutions consist of both continuous and discontinuous waves. For dissipative solid media, these
waves also propagate large strains and irreversible phenomena (plastic strains, damage, cracks and so on). The
accurate capturing of both wave fronts and propagation of irreversible phenomena is of primal importance in
order to be able to relate the history of wave paths in the medium to its residual fields once the steady state is
achieved.

The numerical simulation of impacts on dissipative solids, or what is also called Computational Struc-
tural Dynamics (CSD), has been and is again mainly performed with a Lagrangian formulation coupled to a
displacement-based Galerkin approach [58], which is implemented in most industrial codes. The latter is based
on the weak form of the conservation of linear momentum (actually the principle of virtual works), where the
primary variable is the displacement hence yielding a second order equation in time. The classical finite element
method is widely used for its spatial discretization using low order (i.e. first and second) interpolation, preferred
for computational workload convenience, and coupled with explicit time integrators dedicated for second order
equations such as the centered differences or Newmark finite difference schemes. This approach has been made
popular since the finite element method enables an easy management of non-linear partial differential equa-
tions, especially for solid-type media for which history-dependent constitutive equations can be implemented
by means of appropriate integration algorithms [71], and internal variables are stored at integration points in
each element.

However, according to the phenomena the numerical simulation is expected to capture, such approach may
present a series of shortcomings, which may prevent to fulfill the aforementioned objectives. A first one follows
from that such approach inevitably introduces high frequency noise in the solution field in the vicinity of sharp
spatial gradients. This prevents a correct capturing of discontinuous wave fronts and hence a good understanding
of the relationship between wave paths and the residual state of the medium. Since the centered differences
in time (for instance) provides a linear scheme for the displacement (in the sense of [112]), coupled to linear
finite element shape functions providing a second-order accurate displacement approximation, this effect follows
from Godunov’s theorem [64] which says that monotone linear schemes are at most of order one. To address
these spurious oscillations, artificial viscosities may be added, following for instance the old technology of von
Neumann [9] or subsequent ones as reviewed in [40]. However, user-defined coefficients are not always easy to
properly tune for a given application, resulting in diffusive behaviour in areas of the computational domain
that do not need it, and a less oscillatory although not clean solution in the vicinity of discontinuous wave
fronts. An illustration of the effects of oscillatory solutions is shown in Figure 2.21, following from the bounce
problem occurring in electromagnetic flanging introduced in Section 2.2.2.1. A very simple one-dimensional
model is considered which consists of a projectile (medium A, actually made of aluminium alloy) impacting a
semi-infinite medium (medium B, made of steel), both following an elastic-plastic constitutive response with an
isotropic linear hardening. Right after the impact (see Figure 2.21a), a finite element solution computed here
without any additional viscosity exhibits strong numerical oscillations, and predicts a profile of longitudinal
plastic strain which seems to decrease up to the interface. However, the analytical solution is known for that
problem, at least for the first instants, and is piecewise constant. The predicted trend for the plastic strain by
finite elements had therefore no physical content. Once the simulation is run until bounce occurs (see Figure
2.21b), the profile of the plastic strain computed by finite elements does not help relating the paths of plastic
waves to the residual state of the medium, especially a piecewise constant profile would be expected. However,
it is possible to provide non-oscillatory approximations of the solution, using numerical schemes as the one
introduced in [130], but others would work also. Then, the various plateau in the profile of plastic strain clearly
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Figure 2.21: Comparison of various solutions at early instants (a) and rebound time (b) of
a one-dimensional projectile (A) impacting a semi-infinite medium (B), both following an
elastic-plastic constitutive response, in the case ZA < ZB .

Second, displacement-based Galerkin approaches lead to that derived variables (i.e. strains and stresses)
converge at one order less than the primary variables (i.e. displacements). However the former are often or pri-
mary interest, and this yields further refinement to reach a given level of error. Third, some displacement-based
Galerkin approaches (as they are implemented in commercial codes) may have thermodynamic consistency prob-
lems. The weak form of the conservation of linear momentum is generally supplemented with the heat equation
in structural codes for coupled thermo-mechanical problems, in which heat conduction effects are classically
neglected with respect to transient ones, hence following the assumption of local adiabaticity. Thermodynamic
consistency is not always properly ensured because the heat equation is generally solved (i) neglecting various
thermo-mechanical couplings such thermoelastic and thermoplastic ones, and (ii) accounting for a constant
Taylor-Quinney coefficient [4] (generally set at 0.9 or another close value) while it is actually not. Next, these
codes are not well-suited for shock-capturing, since there is no well-defined Rankine-Hugoniot jump conditions
associated with the heat equation. They are rather replaced by hydrocodes for this type of applications, for
which the local balance of internal energy is integrated in time. However, since their focus is made on the
thermo-mechanical coupling of the hydrostatic part of the constitutive response through an equation of state,
those related to the deviatoric component is often disregarded (see e.g. [40]), or treated in an uncoupled (or
time-explicit) way. Besides, enforcing the conservation of the total energy is not always straightforward, and
may require some unusual definition, such as a discrete expression of the kinetic energy which may become
negative (see [40, Section 2.7.2]). Related to the same issue, hypoelastic-plastic constitutive models are gener-
ally employed in commercial codes to describe the constitutive (partly irreversible) response of the structural
part. However, hypoelasticity is not thermodynamically consistent, more precisely it is not true elasticity (re-
versibility) since a loading cycle performed on an infinitesimal element does not yield a vanishing mechanical
dissipation. Morever, an objective time derivative necessarily goes with hypoelasticity which has to be chosen
among an infinite amount of them, each of them yielding a different modeling in the sense that different stress
levels will be achieved for one loading path. Usually, the Jaumann one is selected (for the sake of ease of im-
plementation with respect to that of Green-Naghdi, see e.g. [40, Section 2.6.2]) which has already been shown
to give oscillating shear stresses in a pure shear test as strains become large [37]. But worst, these constitutive
models yields partial differential equations which are hyperbolic only conditionally [38], and give discontinuity
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equations across shocks which are mathematically not well-posed [78], and hence yields wrong discrete shock
speeds in the moderate range of velocities.

In that context, I was interested in a research topic whose purpose is to build numerical approximations
permitting to correctly capture both continuous and discontinuous waves in dissipative solids undergoing large
strains. In fast solid dynamics, besides the classification performed on time scales (or strain rate) shown in
Figure 1, problems can also be classified according to the level of pressure involved. The problems of interest in
these works will range from low to moderate levels of pressure, disregarding solids under high pressure for which
the hydrodynamic approximation holds [75] and behave as compressible fluids. The interest here is focused on
problems for which the shear strength is still of great importance, while the description of the increase of the
pressure may eventually require a dedicated (convex) equation of state which can thus generate shock waves.
More specifically, I have so far been interested in three different aspects of such kind of numerical simulations.

The first one is related to the quality of the approximation achieved by different numerical schemes of differ-
ent aspects of the analytical solution, such as the capturing of different types of non-linear waves. Especially,
the approximation should be high-order accurate in smooth areas, and non-oscillatory in the vicinity of dis-
continuities (such as shocks). One interest was particularly dedicated to correctly capture both continuous or
discontinuous plastic waves, from which the residual state of the medium follows once the equilibrium has been
reached.

The second aspect is linked to the thermodynamic consistency of both the formulation of the problem and
its approximation. The least that can be required from these numerical simulations is to properly enforce the
balance of energy as well as the second principle of thermodynamics, which is not always as easy as expected. As
a part of this aspect, a contribution was made through a thermodynamically-consistent (variational) constitutive
update.

The third and last aspect is linked to the numerical approximation of the kinematics, which addresses the
issues of the description of large strains in such problems. A Lagrangian viewpoint has been adopted here, and
a contribution coupling a particle-based method to a shock-capturing approximation has been made. Although
the contribution has for the moment essentially focused on the approximation, it encompasses the ability to
handle truly very large strains provided further works will be performed in the future.

2.4.2 On the interest of conservative formulations for computational fast transient
solid dynamics

Following usual practices in Computational Fluid Dynamics (CFD) [64, 112], the system of hyperbolic equations
governing the motion of dissipative solids can also be rewritten in conservative formulations. The governing
equations are rewritten as a system of conservation laws, which is first order in time and embodies the divergence
of a particular flux. In computational Structural Dynamics, these kinds of formulations are more recent than
displacement-based (second order) Galerkin ones, and follow from the works of Plohr and Sharp [36], and of
Trangenstein and Collela [38]. Under the adiabaticity conditions, without any source terms and considering the
total Lagrangian description, one possible formulation among others of such system reads

∂U

∂t
+ DIV F = 0 (2.6)

where the material divergence DIV is computed with respect to initial coordinates X, and the vector of conserved
variables U and the fluxes F are defined as

U =

ρ0v
F
E

 ; F =

 −P
−v⊗ 1
−PT · v

 . (2.7)

The first equation is still the conservation of linear momentum, but whose main unknown is now the linear
momentum density p = ρ0v. Depending on the authors, the strain (rate) can be derived from a discrete
gradient operator applied to the velocity field over a polygonal cell. For instance, this is the case in [108]
following an updated Lagrangian description, which is similar to what has been done in Section 2.2.1.1 in
the finite element context. But System (2.6) may also encompass some geometrical conservation laws and
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therefore define a multi-field formulation. The second equation of System (2.6) expresses here the geometrical
compatibility between the rate of the deformation gradient Ḟ and the velocity field. However, this multi-field
formulation also goes here with the following (involution) constraint

CURL F = 0, (2.8)

which may require special care in the discrete setting. System (2.6) can be extended if required with conser-
vation laws written on the complementary minors of the deformation, as shown in the work of Bonet, Gil and
co-workers [164, 165]. These minors consist of the deformation gradient F, its cofactor H and the jacobian
determinant J . Such extended system of conservation laws is then naturally compatible with polyconvex hyper-
elastic constitutive models. At last, the third equation of System (2.6) is the conservation of the total energy,
or first principle of thermodynamics, where the density of the total energy density is defined by summing those
of the internal energy and the kinetic energy, such that E = E + ρ0v2

2 .

A first obvious interest in writing the governing equations in conservative form such as System (2.6) lies in
that it naturally reduces to the Rankine-Hugoniot jump conditions across any discontinuity of fields

S[U] = [F] ·N, (2.9)

where N is the material normal of the discontinuity surface moving at speed S, and [•] denotes the jump of the
quantity (•) across the discontinuity, such that [•] = (•)+ − (•)−. Clearly, the discretization of System (2.6)
with any conservative numerical scheme [64] will ensure that the right shock speeds will be computed, since
conditions (2.9) will be correctly approximated. Actually, the two first discontinuity equations in Equation
(2.9) (linear momentum’s jump conditions and Hadamard’s compatibility conditions) will also be satisfied by a
classical displacement-based Galerkin approach. However, the third one associated with the conservation of the
total energy has no equivalent counterpart that could be written with the heat equation. In hydrocodes, the
balance of internal energy is solved locally (usually at each integration point), but its discontinuity equation
is already a linear combination of all Rankine-Hugoniot jump conditions (2.9). In addition, depending on the
particular discrete scheme employed, it does not necessarily yield the analog of the discontinuity equations
associated with the total energy. This is mainly due to that velocities are defined at half-time step in a centered
difference scheme (discretizing in time a second order equation), while both internal energy density and stresses
are defined at each time step. Particular non-trivial discrete treatment (especially of the kinetic energy as
already said) may be required to ensure the conservation of the total energy (see [40, Sections 2.7.2 to 2.7.4]).
Second, the writing of the conservation of the total energy in System (2.6) will enforce by definition and in a
straightforward manner a proper energy balance in the discrete setting, and ensure that no energy is wasted.
The numerical dissipation of the scheme will contribute to the growth of the entropy, in addition to its physical
contribution. Third, once discretized in space the semi-discrete equations associated with System (2.6) can
profit from any family of time integrator for first order ordinary differential equations. In particular, the family
of explicit Runge-Kutta time integrators is one example among others. This avoids second order time integrator
like Newmark or other dissipative ones. Fourth, when writing a multi-field formulation such as System (2.6),
all unknowns contained within the vector of conserved variables U will converge in the discrete setting at the
same convergence rate, hence strains (then stresses) will here converge at the same rate than the velocities. The
price to pay for that are (i) a larger set of conservation laws, but that does not yield a dramatic increase of
computational cost since the time integration is usually made explicit, and (ii) handling the involution constraint
(2.8). Next, conservative formulations profit from a well-developed literature on hyperbolic equations for its
mathematical analysis [64, 112]. Especially, the hyperbolicity of System (2.6) can be directly linked to the
strong ellipticity (or rank-1 convexity) of the hyperelastic energy density ψ (see e.g. [79, 48, 124])

∂2ψ

∂Fiα∂Fiβ
NαNβmimj > 0 ∀N,m ∈ R3; N,m 6= 0.

At last, the conservative system (2.6) can be discretized in space with any type of known dedicated scheme.
Especially, it is naturally compatible with all shock-capturing numerical methods providing high-order accurate
non-linear and non-oscillatory approximations of the solution field. Among others, on can cite finite volume
methods coupled with the Total Variation Diminishing (TVD) [64, 112, 107] or ADER-WENO [173] technolo-
gies, discontinuous Galerkin approaches (Runge-Kutta-based ones [62] or ADER-WENO [152]). Classical finite
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elements can also be used, provided stabilization (actually upwinding) is made thanks to a Petrov-Galerkin
method [120, 164]. Or if large strains are involved, conservative particle-based methods [165, 141] can also be
used at profit.

As a final remark, notice that the two first equations of System (2.6) (namely the conservation of linear
momentum and the geometrical compatibility conditions) can be derived from a variational formulation, taking
the stationarity of an action integral (actually Hamilton’s principle) formed with a constrained Lagrangian
functional, assuming a hyperelastic constitutive response and the conservation of the entropy. The combination
of the latters with the conservation of linear momentum yields the conservation of the total energy (actually the
third equation of System (2.6)). Therefore the latter does not directly derive from an Euler-Lagrange equation
of a variational formulation. Some analog derivation is shown in the Eulerian framework in [103]. For dissipative
processes, the entropy production rate is defined so that to be positive and so that the conservation of total
energy is still satisfied. Section 2.4.5 shows a variational formulation of thermo-mechanical constitutive update
consistent with that.

2.4.3 Quality of the numerical approximation of plastic waves

A first set of contributions to this research topic has been dedicated to the study of the quality of the numerical
approximation of plastic waves that could be provided by shock-capturing numerical methods. Indeed, the
history of the propagation of plastic strains in a medium and its relation with the residual state is of primary
importance for instance in high-speed forming of assembling processes. More precisely, the questions addressed
were (i) to test and apply various shock-capturing technologies to elastic-plastic solids submitted to impacts,
(ii) qualify what actual benefit they bring with respect to displacement-based Galerkin approaches regarding
the capturing of plastic waves and the computed plastic strains, and eventually (iii) propose adaptations or
extensions of some known schemes to improve the approximation of plastic waves. For the sake of simplicity,
but also to perform an easier comparison with displacement-based Galerkin approaches, this first set of contri-
butions was performed within the geometrical linearized framework and the isothermal setting.

2.4.3.1 Rate-independent elastoplasticity

A first aspect of study has been first devoted to the approximation of plastic waves when generated by rate-
independent elastic-plastic constitutive models. Two finite volume technologies were used to this end. A first
one is based on the high order wave-propagation algorithm or Flux Difference Splitting method of Leveque [64],
which falls within the family of upwind cell-centered finite volume schemes. It relies on the split of interface
numerical fluxes into fluctuations, which in turn are decomposed into wave contributions. Such decomposition
amounts to solve a Riemann problem at each interface with a known number of waves. A higher order of
accuracy is achieved by adding second order numerical fluxes, which are limited based on the Total Variation
Diminishing (TVD) technology. Without going into details, the idea is to meet both high order of accuracy in
smooth regions and a high resolution of discontinuity without any spurious oscillations where discontinuities
arise in the solution. The latter is enforced by introducing a controlled amount of numerical viscosity locally
through a non-linear approximation (actually limiters), so that to adapt to the local regularity of the solution.
To carry out elastic-plastic numerical simulations with this technology, the most common solution consists in
following a two-stage procedure. The first stage amounts to solve (explicitly) over the time step the discrete
equations (both in space and time) associated with System (2.6) considering a purely elastic evolution, especially
considering an elastic Riemann solver. The second stage then consists in projecting the obtained elastic trial
stresses onto the yield locus, with any well-suited algorithm (see e.g. [71]), hence following what was initially
proposed by Wilkins [16]. Although quite efficient, this approach applies limiters to the sole elastic waves. The
plastic waves are not included in the Riemann solver, but emerge in the solution from the projection of elastic
trial stresses onto the yield locus. It results in that the elastic precursors are well captured in very few cells,
while the approximation of discontinuous plastic waves (if a linear hardening is considered) are smeared over
twice as much cells. This is so even though the Courant number is set at one since the elastic precursor travels
faster. Although overshoot of plastic strains are avoided, displacement-based Galerkin approaches do better and
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solve plastic discontinuities with a lower number of cells. However, this approach behaves better in more general
cases for which plastic waves are simple waves (for non-linear hardenings or non plane wave propagation).

Another possible solution for elastic-plastic numerical simulations is to also apply limiters to plastic waves,
which should hence be included in an approximate Riemann solver. Such approximate elastic-plastic Riemann
solver can easily be developed for problems involving a one-dimensional propagation of plane waves [130]. The
(discontinuous) elastic waves are added additional left and/or right discontinuous plastic ones, according to
the yield condition computed in both adjacent grid cells from the elastic trial stresses computed at a given
interface. It results an impressive efficiency, as shown in Figure 2.21. Such approach can also be applied
in order to approximate continuous plastic waves (resulting from a non-linear hardening) with an approximate
elastic-plastic Riemann solver including discontinuous ones, considering either isotropic or kinematic hardenings
(or both) [130]. However, the main drawback of this approach lies in that it is not generalizable in a straight-
forward manner to multi-dimensional stress states. In that case, the types of plastic waves occurring (and hence
the loading path) also depend on the loading case, and are hence not known a priori for building an approximate
Riemann solver. For the thin-walled tube problem, Lin and Ballman [45] overtook this difficulty by defining
elementary stress paths from Clifton’s results [19]. Those paths can be used in order to relate some guessed
stationary state of the Riemann problem to its initial conditions through the waves involved and hence to deduce
the wave pattern. By iteratively following that procedure until convergence, the Riemann problem can be solved.
However, no generalization of such procedure exist for an any multi-dimensional stress state. In his PhD thesis,
Adrien Renaud (co-advised by Laurent Stainier and I) made a contribution in that direction, the purpose of
which was the determination of the loading paths followed inside plastic simple waves involved in two-dimensional
elastic-plastic media [155, 140]. The long term idea is to identify and relate wave structures to loading paths in
two-dimensional elastic-plastic media, and propose some iterative procedure analog to that of Lin and Ballman
[45]. In this contribution, the characteristic analysis was addressed in a unique framework for both plane strain
and plane stress cases, some properties of the loading paths for several cases were demonstrated from integral
curves, then some loading paths were studied through numerical integration of characteristic equations. Basic
results of Clifton [19] were retrieved for the thin-walled tube problem. But various other (and rather unusual)
loading paths were also shown to occur within fast or slow plastic simple waves, either for plane stress or for
plane strain cases.

One way to improve the capturing of discontinuous plastic waves while avoiding the design of elastic-plastic
Riemann solvers is to consider multiple projections of trial elastic stresses onto the yield locus per time step.
This can be made possible using multi-step numerical schemes. This idea was tested on the simplest (and very
old) numerical scheme that can be found in this family, the Lax-Wendroff scheme [12]. On the one hand, it
belongs to the class of centered schemes [112], so that no Riemann solver is required. On the other hand,
its Richtmyer two-step implementation [14] allows to perform the projection of the elastic trial stresses onto
the yield locus twice per time step. Two formulations of the Lax-Wendroff scheme were proposed [145] for its
extension to the computation of elastic-plastic solids, respectively denoted as ’STRAIN’ and ’STRESS’ ones.
These follow from the definition of the unknown vector which consists either of the strain or stress components
in addition to the velocity ones according to the chosen formulation. The ’STRAIN’ formulation is based on
the system of conservation laws, and the integration of the elastic-plastic constitutive equations is performed
twice per time step, first at nodes at mid-time step, then cellwise at the end of the time step. The ’STRESS’
formulation is based on the quasi-linear form written in stresses, which can only be derived in the small strain
framework since elastic-plastic compliances naturally appear. It amounts, for its first step, to solve a small
system of equations at nodes to update the stresses nodewise, provided some effective elastic-plastic compliance
moduli. Then, the stress update is performed cellwise during the Richtmyer second step and still accounts for
the yield threshold. At last, the plastic strains and internal variables are updated iteratively by adjusting the
elastic convex so that the updated stress state lies on its boundary, consistently with the plastic flow rule and
hardening laws. Figure 2.22 shows a example of a partial impact on a plane, and a comparison between all
numerical solutions. Two projections per time step improve the capture of the plastic wave with respect to a
single one, and amounts to more or less fit the finite element solution, however with a little bit less noise as seen
in Figure 2.22a. Other examples like dynamic ratchetting simulated with the Armstrong-Frederick non-linear
kinematic hardening also allows to show the possibilities of the proposed approach.
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(a) Isovalues of the stress component σ22 (b) Isovalues of the cumulated plastic strain p
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Figure 2.22: Comparison at time t = 1.88 × 10−4 seconds of the Lax-Wendroff solutions
(’stress’ and ’strain’ formulations), an elastic Lax-Wendroff solution projected onto the
yield locus and a finite element solution. Extracted from [145].

2.4.3.2 Rate-dependent elastoviscoplasticity

A second aspect of study pertains to the approximation of the propagation of inelastic strains when generated
by rate-dependent elastic-viscoplastic constitutive models. One possible way among others to write the governing
equations of an elastic–viscoplastic system is to write its quasi-linear form, including stresses in the unknown
vector Q, which is still only possible in the small strains framework. A system of balance laws appears, including
a source term S(Q)

∂Q

∂t
+ Bi

∂Q

∂xi
= S(Q), (2.10)
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defined from the plastic flow rule which can be identified as a relaxation operator

S(Q) = R(Q)
τ

; ∂R(Q)
∂f

< 0,

with τ is the relaxation time or stiffness parameter. The relaxation term R(Q) ≡ R(f(Q)) is actually a
decreasing function of the yield function f(Q), such that a relaxation of the state of the system can occur
towards its equilibrium associated with the yield condition f = 0. The elastic-viscoplastic system can thus be
identified to a relaxation system, that is a system of hyperbolic conservation laws with relaxation, to which
a large literature is devoted [33, 47]. In particular, one can show that in the asymptotic limit τ → 0, the
relaxation system (2.10) tends to an equilibrium system, consisting of a system of conservation laws (so without
source term) of lower size. Here, an elastic–viscoplastic system tends asymtotically towards rate-independent
plasticity for the limit case of vanishing viscosity, or equivalently here for a vanishing relaxation time.

Since irreversible viscoplastic effects only occur in the source term of System (2.10), the homogeneous part
of the system of balance laws is governed by the sole elastic part of the elastic–viscoplastic behavior, meaning
that any information in an elastic-viscoplastic system and in particular irreversible processes propagate along
elastic characteristic curves. Only elastic characteristics exists, however characteristic equations now embed
dissipative term linked to the viscoplastic flow rule [75].

The viscoplastic relaxation system (2.10) can be solved by means of fractional-step splitting methods, as
for instance the first order accurate Godunov’s splitting or the second order accurate Strang’s one [112]. The
convection (or homogeneous) part of System (2.10) is solved with the flux-difference splitting formalism. The
latter is here extended to bidimensional non-uniform quadrilateral meshes, for which the computation of first
order terms follow their classical derivation for these unstructured meshes, while second order terms are com-
puted based on a limitation of waves which accounts for the different orientations between the current and
upwind edges (see [137]). Next, the other step of the splitting method consists in solving a set of ODEs, with
the source of (2.10) as a right hand side. One way to study rate-independent elastic-plastic systems is then to
solve System (2.10) with a very small relaxation time τ . However, the relaxation is said to be stiff when the
relaxation time τ is small compared to the time scale determined by the characteristic speeds of the system
and some appropriate length scales. Practically speaking, one wants that the time step ∆t is prescribed by
the convection part of System (2.10) through the CFL condition, and not by its source term, which amounts
to solve the latter on an underresolved time grid (τ << ∆t). Therefore, particular implicit time integra-
tor especially satisfying the L-stability condition should be used, as for instance the implicit Euler one. But
other families of time integrators like implicit-explicit IMEX Runge-Kutta schemes [68] allow to define high
order schemes using an explicit time discretization for the convection part and an implicit (the DIRK one for
instance) one for the relaxation operator. Other approaches like ADER-WENO schemes [152] are also available.

Figure 2.23 shows an example of a sudden velocity loading and unloading of a heterogeneous volume con-
sisting of a an elastic-viscoplastic inclusion of circular cross-section centered within a square elastic matrix.
Chaboche’s viscoplastic constitutive flow rule and Prager’s linear kinematic hardening are used in the inclusion.
Figure 2.23 shows a comparison between an explicit finite element solution and the finite volume one, once the
prescribed velocity step has almost crossed the length of the matrix. We see comparable results, but with much
fewer spurious numerical oscillations in the finite volume solution thanks to limiters.

2.4.4 Lagrangian conservative particle-based methods for large strains
As the strength of impacts applied on dissipative solids increases as well as their duration (leading to an increased
impulsion), problems related to the numerical approximation of the kinematics soon appear as large strains
occur. Lagrangian approaches consider the mesh as sticked onto the matter. Indeed following the matter as
it deforms appears natural and efficient to handle history-dependent constitutive response and apply boundary
conditions. However, as the strain increases the method is less efficient and accurate when the elements are
highly distorted or entangled so that re-meshing techniques, as well as costly and diffusive projection steps must
be employed. Such problem will appear whatever the chosen type of formulation (i.e. displacement-based or
conservative formulations) or approximation (continuous Galerkin finite elements, discontinuous Galerkin finite
elements, finite volumes) as soon as the grid sticks to the matter. These issues can be avoided by using an
Eulerian approach, i.e. a spatial description of the motion, computing on a fixed mesh. Dramatically large
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Figure 2.23: Normal stress σ11 and cumulated viscoplastic strains εeq at time 3.12 × 10−7

seconds, computed with finite elements (bottom-half domain) and finite volumes (top-half
domain). Superposed plots are made along the symmetry line. Extracted from [137].

amounts of distortions can then be very easily simulated (see e.g. [122]). However, issues then arise on the
one hand from the approximation of interfaces, which require dedicated tracking techniques and may eventually
be valid for the sole very early instants of the simulation [122], and on the other hand diffusive convection
steps are required in order to transport internal variables on the mesh. Alternatively, Arbitrary Lagrangian
Eulerian (ALE) methods [58] aim at meeting advantages of both approaches while freeing themselves of their
respective limits by distinguishing the motion of the mesh from that of the material points. However, they also
combine their drawback since this type of strategy requires re-meshing or re-zoning procedures, stabilization
(or upwinding) due to the appearance of convection terms, and diffusive projection steps of internal variables
for solid media. Notice that the ALE approach presented in Section 2.2.1.1 took advantage of a fluid-type
instantaneous constitutive response precisely to avoid such projection step.

Alternatively, mesh-free methods discretize a spatial domain by means of a collection of points that are
given a support allowing them to interact with each other. A wide variety of such methods were introduced
such as the Smoothed-Particle Hydrodynamics or the Element-Free Galerkin [51]. However, on the one hand
these methods have their own problems (prescribing boundary conditions or others), and on the other hand
their approximations were not developed for shock-capturing purpose, and give quite poor results as shown in
[82].

2.4.4.1 The Discontinuous Galerkin Material Point Method

One interesting combination of all the above approaches would (i) allow to dissociate the motion of material
particles from that of the computation grid, (ii) but in a lighter way than ALE approaches, and whose ap-
proximation would be of (iii) arbitrary high order and (iv) adapted for shock-capturing purpose. The two first
points were already met by the Material Point Method (MPM) introduced in the 1990s [50] for solid mechanics
problems. This method comes from the family of Particle-In-Cell methods (PIC) [13] developed in the 1960s,
which consider particles carrying the fields of a problem that move in a computational mesh. The underlying
grid is used in order to compute an approximate solution (and especially gradients) that is projected and stored
at particles. Hence, one of its main advantage is that the background mesh can be discarded at each time step
and re-constructed for computational convenience. The application of PIC to solid mechanics led to the MPM
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in which the constitutive equations are managed at particles. As a result, MPM can be seen as a mesh-free
extension of FEM with quadrature points moving in elements, which could also be viewed as a certain way to
achieve a combined Euler-Lagrange approach. However, it is well-known that PIC exhibits numerical dissipa-
tion that can be reduced at the cost of spurious oscillations [41]. However, the MPM could be improved by
considering a discontinuous Galerkin approximation supported by the grid mesh, which would allow to meet
the two above last points.

In that context, the purpose of the PhD thesis of Adrien Renaud [140] has been to develop the Discontinuous
Galerkin Material Point Method (DGMPM), coupling the two aforementioned frameworks. It aims at enabling
an accurate wave path tracking in solid media undergoing large strains. The DGMPM is here derived within
the large strains framework with a total Lagrangian approach, in such a way that material particles are defined
in the initial configuration, as the grid also does. On the one hand, it naturally couples with hyperelastic-based
constitutive responses as shown in [141], and on the other hand it permits to avoid the well-known grid-crossing
instabilities [65] as material particles cross an interface between two elements. The DGMPM takes advantage of
the weak form of the conservative formulation (2.6) written elementwise (although considered in the isothermal
setting at first), whose integrals are computed with a particle-based quadrature, following in that the original
MPM, which is based on a pointwise approximation of the initial mass density and the definition of specific
quantities

U = ρ0Ū ; Fα = ρ0F̄α

ρ0(X) =
Np∑
p=1

mpδ(Xp −X)

which allow to change integrals into a sum over contributions associated to each material point lying within a
grid cell

Np∑
p=1

mp

[
∂Ū

∂t
V− F̄α

∂V

∂Xα

]∣∣∣∣
X=Xp

+
∫
∂Ωe

(F ·N)dΓ = 0 ∀V. (2.11)

Interface fluxes appearing in Equation (2.11) are computed from approximate Riemann solvers. Only one
Riemann problem is defined per interface by averaging nodal values of each side. Riemann problems are defined
from the quasi-linear form associated with System (2.6), hence including stresses as part of an unknown vector
QT =

[
PT ,vT

]
. Interface fluxes are then computed by a simple assembly

F∗N = ∂FN
∂Q

Q∗,

from the steady solution Q∗ of the Riemann problem. Besides, only contact waves are accounted for in the
characteristic structure of the approximate Riemann solver to make its solution more efficient. Once the
discontinuous Galerkin approximation [62] has been introduced in (2.11), the obtained semi-discrete equations
can be discretized in time either by an explicit forward Euler algorithm or by a second order explicit Runge-Kutta
scheme.

From all quantities known at material points p = 1, . . . , Nmp at time tn, the computation over a time step
starts by some convective phase consisting of the projection of both conserved Ū

n

p and auxiliary Q̄
n

p specific
quantities to the nodes of the grid i = 1, . . . , Nn. This is achieved through Shepard’s functions (or Moving
Least Square at order zero, see e.g. [51]), inherited from the original MPM. Next, volumic and surface discrete
fluxes are computed, the latter involving the solution of approximate Riemann problems at each mesh interface.
The solution is advanced in time explicitly on the grid Ū

n+1
i , and then mapped back to material points. The

back mapping is here performed by a simple interpolation involving the finite element shape functions defined
on the grid, which amounts to follow the PIC [13]. Knowing the updated deformation gradient from Ū

n+1
p (see

Equation (2.7)), a constitutive update allows to compute stresses Pn+1
p and internal variables Zn+1

p at material
point p, and to build the updated specific auxiliary vector Q̄

n+1
p . Especially, a variational constitutive update

[56] is used in [157] for hyperelastic-plastic constitutive models based on a hyperelasticity of Hencky. Once the
state of material points has been updated, the grid can be discarded if required, before a next time step.
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Figure 2.24 shows an example of comparison of numerical solutions obtained with the DGMPM (1 and 4
ppc (ppc stands for particles per cell)) coupled to a forward Euler explicit time integration, explicit FEM and
MPM (1ppc) on a test case close to the LAser Shock Adhesive Test (LASAT) [66]. An overall correct agreement
is observed between the solutions. The DGMPM appears sligthly more diffusive than FEM and MPM, which
are clearly more noisy.

Figure 2.24: Comparison of the normal stress component P11 computed with various nu-
merical solutions on a LASAT-like test [66].

The stability but also the numerical diffusion (as shown in Figure 2.24) of the DGMPM highly depends on
the number and the distribution of particles inside the computational grid. The derivation of stability conditions
for the DGMPM is then crucial in order to fully exploit (later) the arbitrariness of the grid. Especially, stability
conditions allows to (i) ensure the stability of the scheme while minimizing the numerical diffusion; (ii) adapt the
Courant number when the grid is reconstructed; (iii) adapt the grid so that a given CFL condition is satisfied.
Provided linear finite element shape functions, stability conditions of the DGMPM have been studied on a scalar
linear advection equation. A first analysis carried out in the one-dimensional case coupled to a forward Euler
explicit time integration [141] has allowed to write the discrete update equation of the form

Q̄n+1
α = f(Q̄nµ) µ = 1, . . . , P.

The obtained scheme equations depends on the Courant number a∆t/∆x, a being the celerity, and on the
position of materials points within the grid mesh. Next, a von Neumann linear (A-) stability analysis allows to
study the consequences of various positions and numbers of material points in a cell onto the critical time step.
As a special case, considering only one particle per cell allows to recover the well-known first order accurate
upwind scheme, or Godunov’s scheme [112], for which the maximum Courant number can reach unity. Increas-
ing the number of material points per cell leads to a decrease of the maximum Courant number, whose various
configurations are studied in [141]. Actually, the DGMPM in this version will be first order accurate, whatever
the number of particles per cell and their relative positions. The latter will only have an influence on the amount
of numerical diffusion and on the critical time step. This stability analysis was then extended to a second-order
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Runge-Kutta (RK2) explicit time integrator for one-dimensional problems, and to two-dimensional problems
coupled to a forward Euler explicit time integration in [156]. Various configurations (number/positions) were
studied assuming the distribution of particles is the same in every cells of the computational grid, and allow
to draw some trend of evolution of CFL. Especially, the RK2 time discretization provides higher critical CFL
to the DGMPM. Moreover, for both the forward Euler and the RK2 time integrators, moving all the particles
upstream (resp. downstream) leads to less restrictive (resp. more restrictive) stability conditions. In addition,
for distributions of particles satisfying the symmetry with respect to the cell centers, the RK2 algorithm yields
the optimal CFL number, whereas it is not the case for the forward Euler. Similar results have been emphasized
for two-dimensional problems.

The developments of the first version of the DGMPM has focused on the construction of its approximation
for low order of accuracy. Although the arbitrariness of the polynomial order provided by the discontinuous
Galerkin framework has not been exploited so far since only linear finite element shape function were considered,
the first study permitted to study limit cases of low order approximation of the method, and the associated
consequences of the number of particles and their positions on stability conditions. Next, it is of real interest
to extend the method to truly high order of approximation. This is the purpose of the on-going PhD thesis
of Alaa Lakiss, which is a collaboration between the Lebanon International University (with advisors Mikael
Tannous and Bakri Abdul-Hay) and Centrale Nantes (with advisors Laurent Stainier and I). Several issues
should be overcomed to extend the first-order DGMPM to high order approximations. First, the low regularity
of Shepard’s functions inherited from the MPM used to make the projection of quantities from particles to
grid prevents to increase the level of accuracy of the DGMPM. Second, the reverse projection from the grid to
particles using PIC is too much diffusive, and should be improved, especially its coupling with limiters would
be relevant. Third, the material points-based numerical integration generates too much error and cannot be
afforded to increase the order of accuracy. Last but not least, the crucial point the method should meet to
address history-dependent constitutive models is to ensure that internal variables always lie at material points,
in order to avoid diffusive projection steps of the loading history. Unfortunately, explicit Runge-Kutta-type
integrators cannot satisfy this last condition. For instance, the second stage of a RK2 requires the computation
of the stresses at mid-time step at nodes, which would require somehow a projection of internal variables to
grid nodes.

The extension of the first-order DGMPM to arbitrary high-order accurate approximations is performed by
adapting the ADER (Arbitrary high order schemes using DERivatives) approach [152] to the particular spatial
discretization of the DGMPM. To put it in short and without going into details, the ADER approach amounts
to make a time integration of System (2.6) through some Gauss time-quadrature. An approximate solution
is then provided to each sub-instants the quadrature needs by the construction at each time step of a space-
time approximation of the solution defined on Ωe × [tn, tn+1]. The latter can be obtained from a dedicated
time discontinuous Galerkin approach formulated on a space-time slab Ωe × [tn, tn+1] (see [152]). The ADER
method can thus be thought as a predictor-corrector approach. The work of Alaa Lakiss brings two novelties
to the DGMPM. First, the degrees of freedom of the ADER-predictor fields are now defined at material points
(and not at interpolation points as for ADER-DGFEM, see [152]), hence the computation of the constitutive
response of the material is ensured to be always performed at these material points. Internal variables are
never changed of geometrical support [176]. Second, Shepard’s functions are replaced by a Moving Least Square
(MLS) approximation (see e.g. [51]) for the projection of quantities from particles to integration points for the
numerical integration of integrals of the weak form. The order of the MLS approximation is of arbitrary order
of accuracy, the latter should therefore be chosen in a consistent manner with the polynomial order of both the
ADER space-time predictor and the discontinuous Galerkin approximation lying on the grid. Thanks to the
total Lagrangian framework of the formulation, both the discontinuous Galerkin approximation and the particle
to grid mapping are computed once for all at the beginning of the computation, until the grid is discarded.

Figure 2.25 shows a comparison of the normal stress component σ11 computed with various numerical
solutions on a test case consisting of a normal velocity prescribed on the right side of a multi-holed medium
following a hyperlastic neo-Hookean constitutive response. Second order accurate solutions in both space and
time are computed with TVD-RK2 DGFEM, ADER-DGFEM and ADER-DGMPM, ’S1’ denoting bilinear
shape functions and ’T1’ a linear approximation over the time step. The post-process is performed pointwise
either at interpolation points (Gauss-Legendre ones here) or at material points. A good agreement is observed

63



2.4. NUMERICAL SIMULATION OF IMPACTS ON DISSIPATIVE SOLID MEDIA

between the three solutions.

Figure 2.25: Comparison of the normal stress component σ11 computed with various numer-
ical solutions on a multi-holed medium submitted to a normal velocity loading on its right
side, of continuous time profile. Extracted from [176].

2.4.4.2 Conservative Smooth Particle Hydrodynamic (SPH)

The approximation of some well-known mesh-free methods developed in the 1980s and the 1990s are still
the topic of adaption for shock-capturing purpose. This is especially the case also of the Smooth Particle
Hydrodynamics (SPH) method [25, 43], which has been the purpose of intense developements over several
decades, then tested and extended for shock problems [59]. However, it is still the object until recently of much
work in that direction [113, 134, 170]. Although these works were much devoted to fluid mechanics problems,
some extension based on some enlargement of the conservative formulation (2.6) was proposed by Lee et al.
[146] for isothermal solid mechanics problems. Its extension to the case of large strain thermo-elasticity was the
purpose of a joint collaboration between the Swansea college of enginerring (involving Chun Hean Lee, Antonio
Gil and Javier Bonet) and Centrale Nantes (Laurent Stainier and I). One subpart of the PhD work of Ataollah
Ghavamian has been devoted to the extension to large strain thermo-elasticity of an entropy-stable Smooth
Particle Hydrodynamics algorithm [165], whose contribution was mainly supported by the Swansea team. A total
Lagrangian conservative multi-field formulation {p,F,H, J,E} coupled to a polyconvex hyperelastic constitutive
response and a Mie-Grüneisen equation of state was considered. The conservative SPH relies on the weak form
of the conservative multi-field formulation, and its discretization uses a corrected kernel approximation. The
scheme is stabilized solving approximate Riemann problems between particles, and is integrated in time with a
basic second-order accurate explicit TVD Runge-Kutta time integrator. Comparison was successfully performed
with respect to a node-centered finite volume method.

2.4.5 A variational formulation of thermo-mechanical constitutive update for hy-
perbolic conservation laws

The conservative formulation (2.6) can be of interest to carry out thermo-mechanical numerical simulations
in solid mechanics related to areas of applications already covered by both structural codes and hydrocodes.
Indeed, it permits to easily ensure the conservation of the total energy, and can be coupled with quite various
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kinds of approximations for both continuous and discontinuous solutions. However, the definition of the vector
of conserved quantities (2.7) leads to that the constitutive update should therefore be driven from updated
values of some strain measure (F) and the internal energy density E as input data. The same situation already
applies for Lagrangian hydrocodes [40]. However depending on the particular code (see e.g. [129, Chapter
6] or [70, Chapter 18]), the thermo-mechanical coupling of both deviatoric and hydrostatic components of
the stresses may be computed in an uncoupled way. More precisely, fixed point iterations are performed on
the internal energy density to compute the updated pressure, while accounting for already updated deviatoric
stresses through some constitutive update embedding plasticity. Eulerian formulations may also often consider
that only the hydrostatic contribution of the internal energy density depends on the entropy density (see e.g.
[122, 149]).

As already mentioned in Section 1.1, the variational framework has allowed to build variational constitu-
tive updates [56] which are numerically efficient and thermodynamically consistent. The thermo-mechanically
coupled variational constitutive updates developed first by Yang et al. [72], then by Mosler and co-workers
[93, 123], both rely on a formulation using displacements and temperature fields on a mesh, since they were
developed in order to be couplable with structural codes. In addition, they also both rely on a two-field tem-
perature formulation (an external temperature T appearing in the heat equation, and an internal temperature
θ obtained through a state law). The idea of the contribution [174] was to propose one extension of these varia-
tional constitutive updates so that (i) it is couplable with the conservative formulation (2.6) and therefore with
any conservative scheme, (ii) thermo-mechanical coupling can be naturally accounted for on both hydrostatic
(through an equation of state or not) and deviatoric (for thermal softening) components of the stresses. Notice
that it is therefore also compatible with more traditional Lagrangian (displacement-based) hydrocodes thanks
to its input variables.

The variational formulation of the thermo-mechanical local constitutive problem in the continuous setting
is based on a Lagrangian functional consisting on the one hand of the functional already introduced in [72],
and on the other hand on the residual of the rate of the Legendre transform of Helmholtz’s free energy density
W (F, T,Z), enforced to vanish through a Lagrange multiplier:

L(q̇, λ; q) = Ė − T η̇ + φ(Ḟ, Ż; F,Z, T ) + λ
d

dt
(Tη +W (F, T,Z)− E) (2.12)

where the following state vector q = {E,F, η,Z, T} has been introduced, which is assumed to be known and
fixed here, λ denotes the Lagrange multiplier, η the entropy density and Z a set of internal variables. Provided
both the rate of deformation gradient Ḟ and the rate of internal energy density Ė are given and known from
the set of conservation laws (2.6), the optimization problem reads

W = stat
η̇,Ṫ ,λ

inf
Ż

L(q̇, λ; q) (2.13)

where the variable with respect to which the stationarity conditions are computed are the rate of entropy density
η̇, the temperature rate Ṫ , the Lagrange multiplier λ, and the rate of internal variables Ż. The Euler-Lagrange
equations associated with the optimization problem (2.13) allow to get the definition of the entropy, the evolution
equations of internal variables and a Lagrange multiplier equal to unity. Substitution of the Lagrange multiplier
within the functional (2.12) would permit to retrieve that used in [111], however the whole point of this work is
to keep this Lagrange multiplier as an independent unknown since the input known data are {Ḟ, Ė}. Notice that
this variational formulation does not require the two-field temperature formulation of [72, 93, 123] anymore,
which becomes useless. In the discrete setting, an incremental functional I(qn+1, λn+1; qn) is sought in such a
way that it approximates the integral of the Lagrangian functional L (2.12) over the time increment ∆t:

I(qn+1, λn+1; qn) = ∆E − Tn∆η + ∆tφ
(

∆F
∆t ,

∆Z
∆t ; Fn+α,Zn+α, Tn+α

)
+ λn+1∆(Tη +W (F, T,Z)− E)

yielding a semi-implicit incremental variational update

Wn+1 = stat
(η,T,λ)n+1

inf
Zn+1

I(qn+1, λn+1; qn).

The stationarity with respect to the entropy density gives the updated value of the Lagrange multiplier

λn+1 = Tn
Tn+1

,
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which is not equal to unity anymore, but is close to it. Such ratio is reminescent of that introduced in former
versions of variational constitutive update in thermo-mechanics [72, 93, 123] (especially see Equations (1.1)
and (1.3)), but is introduced in a different manner here, and brings some consistent approximations within the
discrete Euler-Lagrange equations, as well as in the computation of the reversible part of stresses.

Next, an application to thermo-hyperelastic-viscoplastic solid media is proposed, following the parameter-
ization of the flow rule direction based on pseudo-stresses introduced in the work of Mosler and co-workers
[89, 100, 90]. For a fully isotropic medium (both elastically and plastically) with a sole isotropic hardening,
the discrete Euler-Lagrange equations amount to solve a non-linear system of three scalar equations on the
unknown vector q = {T,∆λ, ψ}, where ∆λ stands for the increment of the plastic multiplier, and ψ is an angle
following from the parameterization of pseudo-stresses on spherical coordinates, see [100]. Although the input
data of the variational constitutive update are {F, E}n+1, the solution process is performed in particular on
the temperature T , which permits to use all well-known and already developed thermo-mechanically coupled
constitutive models formulated with Helmholtz’s free energy density W (F, T,Z). The physical content and
the types of thermo-mechanical couplings acouunted for in the modeling can thus be directly enforced on the
definition of the various contributions to the expression of Helmholtz’s free energy density since its Legendre
transform is solved numerically. This is the case for instance for the hydrostatic contribution (yielding an equa-
tion of state for the pressure) as well as for deviatoric contribution including plasticity and thermal softening
effects. Furthermore, the non-linear system of equations written on the unknown vector q was solved in a

Figure 2.26: Comparison of the numerical solutions computed with the finite volume method
(FVM) and the finite element method (FEM). Maps on the left part show the temperature
fields computed with the two methods. Graphs on the right part show the superposed plots
for the two solutions of the temperature and of the longitudinal stress component σ11, both
plotted along the symmetry line. Extracted from [174].

monolithic manner in [174]. However, partitioned schemes can also be derived from that system, analog to those
introduced in the context of diffusion (see Section 1.3.2), that would permit to ease the solution process. But
these partitioned schemes would therefore be consistent with a variational framework, and even define some
particular consistent physically-based block-preconditioner applied to the monolithic system, which is not the
case of integration algorithms already implemented in hydrocodes [70].

Figure 2.26 shows the comparison of two numerical solutions on the same test case than that shown in Figure
2.23. The simulations are here carried out with a thermo-elastic-viscoplastic inclusion (following a Johnson-
Cook flow rule [30]) embedded in a thermoelastic matrix, both in small strains. A first solution is obtained
with the Flux-Difference Splitting scheme (FVM) coupled to the proposed variational constitutive update. The
second solution is computed with the the finite element method (FEM) with Q1 finite elements, coupled with
an explicit central difference time integrator, and to a variational constitutive update driven in both strain ε
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Figure 2.27: Maps of the cumulated plastic strain and the temperature plotted in the current
configuration of the multi-holed elementary cell at time t = 1.4 × 10−5 seconds, computed
with the finite volume method (FVM) and the finite element method (FEM). Extracted
from [174].

and temperature T [168]. The details of such formulation can be found in [111]. A good correlation can be seen
between the two solutions, up to spurious numerical oscillations occurring in the finite element solution which
are removed from the finite volume one thanks to limiters.

Figure 2.27 shows a comparison between finite volume and finite element solutions on the multi-holed test
case, involving here large strains. The comparison is here essentially qualitative since hyperelastic laws are
different, in addition to the spatial and time discretizations, the constitutive update and the handling of quasi-
incompressibility. But a correct comparison can be observed up to that FVM predicts higher temperatures and
lower cumulated plastic strain than those given by the FEM.

2.4.6 Software aspects
The numerical methods involved in Section 2.4 (except Section 2.4.4.2) were the purpose of the development
of a home-made library called HypLib, dedicated to the numerical simulation of two-dimensional hyperbolic
problems. The main objective of this library is to be as modular as possible in order to make compatible all
hyperbolic systems with all available numerical schemes for comparison purpose. More precisely, the objective
is to ease the implementation of a new set of equations, immediately compatible with all discretizations, or the
implementation of a new scheme, compatible with all sets of equations. This library has been written in an
oriented-object manner, using the langage Python, and takes advantage of all the associated packages and li-
braries this langage allows to profit. Unfortunately, such modularity is obtained at the price of a computationally
less efficient library.

Meshes are performed with the free software Gmsh, and the viewing operation of the post-processing is done
with Paraview. All other pre-processing, computation, and post-processing operations are coded within the
library. The library has approximately 25,000 lines of codes of definitions of objects and functions, and a large
set of test cases which gather approximately 150,000 lines of codes. These test cases are of primal importance
and serve on the one hand for validating elementary aspects of the solution while implementing a new features,
involving usually very few degrees of freedom, and on the other hand for running more complex simulations
on structures. A small sketch of the architecture of the library is given below, giving an idea of implemented
functionalities as well as the categories in which several classes are defined:
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∗ Hyperbolic conservation laws: Euler equations, conservative system (2.6) in both small and large strains,
including or not the equation on the total energy.

∗ Parabolic systems: transient heat transfer, ’quasi-static’ electromagnetism in potential form.

∗ Constitutive models: (hyper-)elasticity, (hyper-)elasto(visco)plasticity in both small and large strains, in a
variational framework or not, and thermo-mechanically coupled or not; a few equations of states; available
coupling with the library of constitutive equations MatLib [168].

∗ Numerical schemes: time discretizations (explicit and implicit time-stepping), space discretizations (fi-
nite volumes, continuous and discontinuous Galerkin finite elements, Material Point Method), space-time
discretization (ADER predictor), splitting schemes to treat source terms.

∗ Riemann solvers: both exact and approximate ones.

∗ Utilities: Computation supports, material points, meshes, exports to Paraview.

As all library supporting research developments, it is still in current evolution. Its purpose is also to
constitute a digital platform for the common developments with collaborators, and PhD students.
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Chapter 3

Conclusions and perspectives

3.1 Conclusions
This document has presented a (hopefully) concise resume of my research works carried out over the years, from
my PhD thesis up to now. The manuscript has focused on the presentation and the ordering of the main ideas
of contributions performed over those years, while avoiding to go into the details which can be found in the
associated papers.

The objects of analysis in these works have pertained to some coupled systems. Primarily, the coupling
between thermal and mechanical effects has been studied in various scenarios. In a sense, these works allowed
me to take a (very) short walk through the large class of thermo-mechanical problems and their applications,
which have been ordered for convenience in this manuscript according to the characteristic time at which
the deformation process occurs. Diffusion-type processes, whatever related to heat transfer or diffusion of
species, as well as fast transient dynamics were the purpose of a set of contributions. However, other kinds of
coupling like the one between thermo-mechanics and electromagnetism has also been of interest, especially for
applications related to electromagnetic forming processes, although related computational aspects are rather
parts of perspectives.

These works have been carried out by employing various methods of analysis. First, regarding the model-
ing and computational aspects, methods associated with variational calculus, conservative formulations, and
multi-scale analysis (to just cite a few) have been employed to treat various coupled systems, ranging from slow
and diffusive coupled mechanics systems to fast transient solid dynamics. These methods of analysis are usu-
ally well-suited mathematically, and yield or are easily connected with consistent approximations: incremental
variational principles, shock-capturing methods, model order reduction through various approaches. The study
of both slow and fast thermo-mechanical systems may sometimes share some common method of analysis, as it
was the case with variational calculus. The variational constitutive updates connected with a set of conservation
laws for fast transient dynamics was inspired from works previously developed for slow systems. Second, follow-
ing those developed during my PhD thesis, the development (when possible) of analytical solutions is of great
interest since they provide much valuable informations. On the one hand, they may serve for the validation of
some approximation, as it was the case for fluid and solid enriched finite elements, or for the computation of
(visco-)plastic or hyperelastic waves. On the other hand, a closed-form solution of simplified modelings can be
used for the understanding a particular phenomenon, or for restricting the range of possibilities when designing
magnetic pulse disassembly for instance. Third, although less numerous, experimental approaches have also
been followed and were the purpose of various collaborations. They were applied either for high strain rate
testing with Hopkinson bars, or for dynamic material processing encompassing Friction Stir Spot Welding and
high pulsed power processes.

Practically speaking, the contributions brought by these works can be summarized as follows:

1. the development of the modeling and/or computational aspects of transient diffusion coupled quasi-static
mechanics via multi-field variational approaches. A first instance pertains to the implementation of vari-
ational h-adaption methods for thermo-mechanical problems during the PhD thesis of Rohit Pethe, each
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physics being associated its own mesh, with applications to linear friction welding or the generation of
shear band by thermal softening in a hat-shaped test specimen. A second example follows from the PhD
thesis of Jorge de Anda Salazar with variational approaches applied to transient diffusion of species. More
specifically, the main contributions of this PhD are (i) an original way of deriving multi-field variational
principles based on Onsager’s principle, (ii) the derivation of partitioned schemes through the introduc-
tion of explicit dependencies between the various fields during the computation of stationary points then
reinterpreted as consistent physically-based block-preconditionners, (iii) the extension of the variational
approach to the electrochemical coupling and its illustration on a cathode-electrolyte system of a lithium-
ion electrical battery.

2. the development of efficient computational approaches for multi-scale analysis of transient diffusion sys-
tems coupled mechanics, especially the content of the PhD thesis of Abdullah Waseem. The definition of
reduced models for numerical homogenization allowed on the one hand to dramatically reduce the compu-
tational cost provided an assumed regime of relaxed separation of scales and a linear constitutive response
of constituents, and on the other hand to define enriched continua at the macroscale, embedding only a
limited number enrichment variables accounting for local transient effects, easing the two-scale solution
process. Illustrations were also performed on a cathode-electrolyte system of a lithium-ion battery with
active particles, simulating their swelling and shrinking through diffusion of species. An opening of former
works to a framework encompassing non-linear constitutive responses was also carried out through the
definition of a so-called data-driven reduced homogenization.

3. the analysis and the development of mechanical processes dedicated to the assembly or the disassembly
of heterogeneous structures. Contributions in this area were related on the one hand to Friction Stir
Spot Welding during my PhD thesis, through the development of a fully implicit monolithic thermo-
mechanically coupled fluid/solid solver in an Arbitrary Lagrangian Eulerian context plus some experimen-
tal devices. On the other hand, some research actions were pursued around high pulsed power technologies,
and more specifically via the electromagnetic and electro-hydraulic technologies. Contributions are (i) the
development of a reduced order modeling of eddy current equations for an electromagnetic compression
device, (ii) the analysis of electromagnetic flanging, (iii) an opening towards the electromagnetic disas-
sembly of laminate hybrid structures via an analytical solution, and (iv) the design of an electro-hydraulic
crimping device for dynamic ring/tube assemblies.

4. the development of means for experimental testing at high strain rates. The purpose of the PhD thesis of
Xiaoli Guo was to design a direct impact Hopkinson device of reduced size, devoted to testing compression
specimen at strain rates of the order of 104s−1, in order to qualify the constitutive responses of some
metallic alloys in those ranges, with applications to magnetic pulse welding technologies.

5. the exploitation and the development of the framework defined by conservative formulations for computa-
tional fast solid dynamics. These formulations widely used in Computational Fluid Dynamics are very
little used and known in the community of solid mechanics, mainly only within a niche market related
to shock-capturing simulations. However, their interest can be wider than that since they allow to unify
into a well-posed mathematical framework coupled thermo-mechanical analyses in solid mechanics related
to areas of applications already covered by both structural codes and hydrocodes. Contributions in that
domain were related to

i. the exploitation and the extension of existing shock-capturing methods for the approximation of
plastic waves,

ii. the completion of the thermodynamic consistency of the approach by introducing a variational princi-
ple and an associated constitutive update whose input data is the internal energy density in addition
to a strain measure, which perfectly couples with the solution of the conservation of the total energy
embedded in the framework of conservative formulations, or with existing hydro-codes (i.e. solving
the balance of internal energy),

iii. the proposition of Lagrangian conservative particle-based shock-capturing methods dedicated to large
strains problems, especially the development of first versions of the Discontinuous Galerkin Material
Point Method (DGMPM), but also a collaboration with Swansea university regarding the conservative
Smooth Particle Hydrodynamics (SPH) method.
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3.2 A few perspectives
Natural extensions of previous works are associated with diffusive systems, conservative formulations for fast
solid dynamics, and dynamic assembly processes.

Diffusive systems coupled mechanics Works carried out on diffusive systems reported in Chapter 1 took
advantage from both phenomenological approach at the macroscopic level and advanced averaging theories,
which constitute two complementary approaches to address the modeling and numerical simulation of these
systems. The two above approaches admit many further areas of investigation. Especially, they are expected to
be extended to the coupling with dissipative effects in mechanics, but also with other physics (electrical, thermal
effects). They can both profit from variational calculus, in order to build well-posed modelings of multi-field
and multi-physic problems, as well as naturally derive consistent and efficient computational methods. At last,
the reduced order modeling for multi-scale problems should readily be extended to embody various kinds of
non-linearities, such as a non-linear diffusion response, or a non-linear response of the mechanical part (large
strains, plasticity, micro-cracks developed at the microscale). A first attempt based on data-driven reduced
homogenization has been presented in Section 1.4.4, which appears as one route among others for such extension.
However, the challenge of this extension lies in the extraction of a reduced bases set, since an eigenvalue problem
is not at hand in the non-linear case.

Conservative formulations and shock-capturing schemes Further developments of the research topic
associated with fast transient solid dynamics (summarized in Section 2.4) may follow two main areas of inves-
tigation.

A first area of investigation pertains to the Discontinuous Galerkin Material Point Method (DGMPM),
whose development is very far from being fixed. Generally speaking, its development revolves around (i) the
development of its approximation, (ii) its coupling with various physics, and (iii) the development and the
exploitation of its capabilities of adaptivity. So far, only a few items of point (i) have been addressed, although
many features of its approximation are still lacking and are parts of perspectives. The point (ii) involves various
couplings with other systems of equations like different physics, which may be of interest for several applications.
Its extension to coupled thermo-mechanics can profit from developments shown in Section 2.4.5. Further, a
coupling with electromagnetism would permit to connect with applications of electromagnetic forming (see
Sections 2.2.2.1 and 3.2), taking advantage of the arbitrary grid as a geometrical support for the approximation
of electromagnetic equations in their eddy current formulation. The last point (iii) regarding the capabilities of
adaptivity of the method has even not started to be addressed so far. The DGMPM should indeed be able to
combine p-adaption, and h-adaption taking advantage of the arbitrary grid. But the combination of both should
yield ppc-adaption (ppc stands for particle per cell), since there is a one-to-one relation between the number of
particle per cell, the local order of approximation, and the type and order of the numerical integration.

A second area of investigation is associated with the exploitation of variational calculus for fast transient
solid dynamics. Various extensions of the coupled variational principle recalled in Section 2.4.5 are envisaged.
Especially its mechanical content can be enriched, for instance accounting for non-linear kinematic hardening
as initiated by Mosler [90] in another framework, or accounting for other physical phenomena. Next, there
would be a great interest in finding a unified functional, gathering both non-rate and rate-type variational prin-
ciples, whose Euler-Lagrange equations would yield both conservation laws (2.6) and (dissipative) constitutive
equations.

Dynamic assembly processes Mechanical processes dedicated to the assembly or the disassembly of het-
erogeneous structures appears as a great playground for the study of thermo-mechanical systems. A first area
of investigation pertains to the exploitation of their principles. Considering high pulse power processes, many
new geometrical configurations or functions dedicated to particular industrial applications can be proposed.
For instance, the on-going PhD thesis of Benoit Lagain aims at performing both magnetic pulse assembly and
disassembly of hybrid metal/composite structures. The exploitation of high pulse power technolgies may allow
to perform in the future strong advances in dynamic assembly or disassembly of hybrid structures, of various
geometries and related to various industrial applications.
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A second area of investigation is associated with a better understanding of some (thermo-mechanical) physical
phenomena occurring at fine scale, and to try to relate them to macroscopic process parameters. Indeed various
phenomena occur at fine scale during Magnetic Pulse Welding (MPW), like jetting, wavy pattern and so
on, which yet known in principle still require more experimental data and informations on their magnitude,
triggering effects or chronology of events. They especially require quantitative in situ observations at very fine
space and time scales, in order to better understand the role of interface phenomena with the welded joint,
and establish what precise relationship can be drawn between the electromagnetic loading, the path of waves in
the structure, the propagated mechanical states and the modification of the interface geometry. Besides, these
observations should not only be kinematical ones, but conducting local energy balance at these scales could
allow to better understand thermally-induced mechanisms of change of microstructure.

A third area of investigation is to propose various kinds of modeling of all or part of these processes. Three
types of relevant modelings and/or simulations can be associated with these processes. The first one consists in
defining simple modelings, usually one-dimensional, which admit analytical solutions, and whose purpose is to
explain one particular phenomenon, or to find a range for its occurrence by restricting the range of possibilities.
These solutions are usually much valuable, and allow to better orientate the subsequent research work. The
last last example pertains to finding electromagnetic disassembly conditions [175]. However, others related
to oblique impacts and associated shear instability of an interface may be of interest in the future. Second,
at the opposite of the previous light models, high-resolution numerical simulations of impacts on dissipative
solids may be required to relate the history of wave paths to the residual state, while considering more complex
geometries and physical content. This is the purpose of the on-going development of numerical methods based
on conservative formulations (see Section 2.4). Provided this approach is much more computationally intensive
than the former one, it should only be applied to describe well-defined objectives, such as these related to the
second area of investigation. A third kind of approach can involve simplified modelings via the definition of
homogenized equivalent media in dynamics. Indeed, the welding occurs at some microscopic scale close to the
interface, while the overall motion can be observed at a macroscopic one, leading to a multi-scale problem.
An efficient description could indeed take advantage of the construction of homogeneous equivalent media to
address such interface two-scale problem while preventing huge computational cost.
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[125] Thomas Heuzé, Adrien Leygue, and Guillaume Racineux. “Parametric modeling of an electromagnetic
compression device with the proper generalized decomposition.” In: International Journal of Material
Forming 9.1 (2016), pp. 101–113.

[126] T. Kirchdoerfer and M. Ortiz. “Data-driven computational mechanics.” In: Computer Methods in Applied
Mechanics and Engineering 304 (2016), pp. 81–101.

[127] Quoc-Son Nguyen. “Quasi-static responses and variational principles in gradient plasticity.” In: Journal
of the Mechanics and Physics of Solids 97 (2016), pp. 156–167.

[128] A. Sridhar, V. G. Kouznetsova, and M. G. D. Geers. “Homogenization of locally resonant acoustic
metamaterials towards an emergent enriched continuum.” In: Computational Mechanics 57.3 (2016),
pp. 423–435.

[129] Xiong Zhang, Zhen Chen, and Yan Liu. The material point method: a continuum-based particle method
for extreme loading cases. Academic Press, 2016.
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of École Centrale de Nantes, 2018.

[143] Jorge de Anda Salazar. “Development of variational models & algorithmic strategies for coupled prob-
lems.” Available at https://hal.archives-ouvertes.fr/tel-02944072. PhD thesis of École Centrale de Nantes,
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[176] Alaa Lakiss, Thomas Heuzé, Mikhael Tannous, and Laurent Stainier. “ADER Discontinuous Galerkin
Material Point Method.” In: submitted to International Journal for Numerical Methods in Engineering
(2023).

82



CHAPTER 3. CONCLUSIONS AND PERSPECTIVES
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