
HAL Id: tel-04179276
https://hal.science/tel-04179276

Submitted on 9 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

An exegesis of transcendental syntax
Boris Eng

To cite this version:
Boris Eng. An exegesis of transcendental syntax: A journey into the logical machinery. Logic in
Computer Science [cs.LO]. Université Sorbonne Paris Nord, 2023. English. �NNT : �. �tel-04179276�

https://hal.science/tel-04179276
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Laboratoire d’Informatique de Paris Nord (LIPN) – Université Sorbonne Paris Nord

An Exegesis of Transcendental Syntax
A journey into the logical machinery

Thèse de doctorat pour le diplôme de
Docteur en informatique de l’Université Sorbonne Paris Nord

K 6 k

Boris Eng

Thèse soutenue le 20 juin 2023 devant le jury composé de :

Thomas Seiller CNRS – Université Sorbonne Paris Nord Directeur de thèse
Damiano Mazza CNRS – Université Sorbonne Paris Nord Co-directeur de thèse
Lionel Vaux Aix-Marseille Université Rapporteur
Lorenzo Tortora de Falco Università Roma Tre Rapporteur
Claudia Faggian CNRS – Université Sorbonne Paris Cité Examinatrice
Jean-Baptiste Joinet Université Lyon III Président du jury

Octobre 2019 – Juin 2023

2

Abstract

This thesis provides a clarification of Girard’s recent work entitled “transcendental syntax”. Gi-
rard suggests a reorganisation and a reinterpretation of concepts of mathematical logic coming
from his previous works on linear logic, proof-nets, ludics and geometry of interaction. Unlike the
approaches of semantic explanations based on the linguistic nature of logical entities and their
evaluation, transcendental syntax suggests to start from the notion of computation as primitive
in order to reconstruct mathematical logic, by starting with the proof-nets of linear logic. The
Curry-Howard correspondence, now well-known among theoretical computer scientists, already
established a formal correspondence between logic and computation. However, the links between
logic and computation are still unclear. Are they two faces of the same thing? Are they different
but intersecting notions? Or are they completely distinct? This thesis agrees with the last point
of view: one is antique and almost mystical, the other is rather modern and pragmatic. In order
to understand their differences and their role, transcendental syntax proposes a radical point of
view: no primitive notion of mathematical proof, truth or formula is assumed. Only computa-
tion, through the model of computation called “stellar resolution” in this thesis, constitutes the
elementary bricks from which logical concepts will be shaped. This model of computation, close
to logic programming, uses asynchronous and very free mechanisms of term unification. The
main problem that this thesis tackles is that Girard’s proposal is rather informal and cryptic.
A big objective is to clarify and to provide formal definitions. A particular effort is put in the
accessibility of these ideas by suggesting a journey through the old and elementary roots of logic
and computation to later reach the most modern works. Girard’s works will then be put into
context in both a historical and technical ways. The model of stellar resolution will be formally
defined, illustrated and commented. The thesis concludes with a technical contributions realised
with Thomas Seiller: a new interpretation of the multiplicative fragment of linear logic and a
sketch of how it could be extended.

Résumé

Cette thèse apporte un éclaircissement sur le travail récent de Jean-Yves Girard intitulé “syntaxe
transcendantale”. Girard propose une réorganisation et une relecture des concepts de la logique
mathématique venant de ses travaux précédents sur la logique linéaire, les réseaux de preuve,
la ludique et la géométrie de l’interaction. À l’inverse des approches d’explications sémantiques
reposant sur le caractère linguistique des entités logiques et leur évaluation, la syntaxe tran-
scendantale propose de partir de la notion de calcul comme primitive afin de reconstruire la
logique mathématique, en commençant par les réseaux de preuves de la logique linéaire. La cor-
respondance de Curry-Howard, maintenant connue dans la recherche en informatique théorique,
établissait déjà une correspondance formelle entre logique et calcul. Cependant, les liens entre
logique et calcul sont encore mal compris. Sont-ils deux facettes de la même notion ? Deux
notions différentes qui s’intersectent ? Ou alors deux choses complètement distinctes ? Cette
thèse est en accord avec le dernier point de vue : l’une est antique et presque mystique, l’autre
est plutôt moderne et pragmatique. Pour comprendre leurs différences et leur rôle, la syntaxe

3

transcendantale propose un point de vue radical : aucune notion primitive de preuve mathé-
matique, de vérité ou de formule n’est supposée. Seul le calcul, à travers un modèle de calcul,
appelé “résolution stellaire” dans cette thèse, constitue le matériau élémentaire à travers lequel
s’incarnent les concepts logiques. Ce modèle de calcul, proche de la programmation logique,
utilise des mécanismes asynchrones et très libres d’unification de termes. Le principal problème
auquel s’attaque cette thèse est que la proposition de Girard est plutôt informelle et cryptique.
Un grand objectif est donc de clarifier et de proposer des définitions formelles. Un effort par-
ticulier est mis dans l’accessibilité de ces idées en proposant un voyage à travers les racines les
plus vieilles et élémentaires de la logique et du calcul pour arriver aux questionnements les plus
modernes. Les travaux de Girard seront ainsi historiquement et techniquement contextualisés.
Le modèle de résolution stellaire sera formellement défini, illustré et commenté. La thèse se con-
clut par une contribution technique réalisée avec Thomas Seiller : une nouvelle interprétation
du fragment multiplicatif de la logique linéaire et une esquisse de comment elle pourrait être
étendue.

Preface

Source: https://abstrusegoose.com/206.

What led to the existence of this document

When I began to learn computer programming for the first time, it was not especially out
of intellectual curiosity or the (direct) consequence of some influence. What I wanted
was very simple: to make video games. At the end of high school, I decided that I
wanted to do computer programming because I enjoyed it (note that I was not aware
of the existence of academic research in computer science and thought computer science
was mostly about programming). I later became fascinated by how computation could
be related to the “human mind”. If I remember correctly, my first (superficial) interests
were computational linguistics and computational neurosciences. How come that the

https://abstrusegoose.com/206

5

same things which make video games could be related to human thinking and language?
My questions led me to Jérémy Ledent (student at École Normale Supérieure de Lyon
at that time) and this was how I discovered the “Curry-Howard correspondence”; a
formal correspondence in theoretical computer science relating computer programming
and mathematical logic. This correspondence guided me for the following years as I
was convinced that it was one of the current most important and overlooked scientific
subjects. All my internships were chosen in order to pursue the understanding of this
topic.

At one point, Jérémy mentioned Girard’s book “The blind spot”, which was apparently
not a recommended course about logic. I tried to read it and decided that I wanted to
work on linear logic (without even seriously knowing what it was really about).

At the end of university, I considered that computational complexity and Girard’s “ge-
ometry of interaction” were the most profound subjects relating logic and computation.
The only person I knew who was working on both (and that Paul-André Melliès sug-
gested to me) was Thomas Seiller. Thomas proposed several subjects on computational
complexity but I felt confident with none of them (I had a weak background in mathe-
matics). He then suggested either to work on the “transcendental syntax” (Girard’s most
recent work) or linear dependent types. I chose transcendental syntax as I was more
interested in fundamental questions. I actually did not know much about the transcen-
dental syntax, barely read about it and could not understand a single paragraph that
Girard wrote about it. For that reason, I never thought that it was worth considering
and initially focussed on the geometry of interaction and computational complexity.

The design of this document

This long thesis has a chronological structure designed for the exploration of the roots
of logic and computation and how they have led to Girard’s transcendental syntax. We
start from the premises of logic and computation that I associate with the intuition of
space and time. I dare to start from the most natural intuitions of logic with Aristotle.
Motivated by a search for a contextualisation of modern works in computer science, I
then suggest to travel through time with the development of formal logic until Girard’s
linear logic. This logic, generally understood as a logic of resources or actions, is thought
to be more primitive than the intuitive conception we had of logic in the 20th century.
It seems to me that linear logic has not been adopted enough in the world-wide study of
logic: it often appears that there are seminars of mainstream logic not mentioning linear
logic at all. For that reason, I wrote most of what I know about linear logic in the simplest
way I could. I mainly focus on intuition and pedagogy, forgetting technical details. I
then tried to provide a simple presentation of Girard’s geometry of interaction, a work
of Girard which has only been partially accepted in the field of linear logic. At the end,
this whole logico-computational journey should lead to a better understanding of the

6

transcendental syntax, which I consider the most conceptually mature (but technically
immature) understanding of logic.

This thesis is qualified as “exegesis” mainly because that is how Lionel Vaux called my
work with Thomas Seiller and I thought that it was a very accurate description since
Girard’s works are known to be very cryptic.

This thesis has been written with the following points in mind:

• completeness, justifying the length of the document. During my PhD thesis, I
have met various people interested in Girard’s recent ideas without being especially
invested in the mathematics related to it. I found it necessary to provide resources
so that the document would be as much accessible and self-sufficient as possible,
even for philosophers or curious minds. I tried to provide a lot of external references
as well for people willing to learn more;

• pedagogy, because I remarked that what was problematic in Girard’s recent works
was not really their technical difficulty but the lack of pedagogy and efficient
communication. In particular, I tried to put efforts in the bridge between geometry
of interaction (which is already known in the field of linear logic and some parts
of theoretical computer science) and transcendental syntax;

• accessibility, as I initially wanted to write this document in French (my mother
tongue, that I prefer over English) but after receiving few messages from non-
French speakers interested in the transcendental syntax, I decided to write it in
English instead;

• entertainment (probably odd for a PhD thesis), as I wanted to write something
interesting and thought-provoking. For that reason, I included a lot of unknown or
forgotten (mainly historical) facts. In most sections, a “discussion” part is included
at the end in order to suggest non-technical comments on what has been written
in the section.

How to read

Only the two first chapters are (almost) independent. The other chapters should be
read in order until the end but not necessary from the beginning. Depending on your
knowledge , you can choose to start from a specific point until the end.

All technical prerequisites are given at the end of this document, in the appendix.

Have a nice read!

Boris Eng.

Acknowledgements (in French)

Mon travail de thèse est le fruit d’un long parcours fait de rencontres et d’interactions.
Cette partie de ma thèse est dédiée aux personnes qui m’ont apporté plus qu’elles ne le
pensent et aux personnes qui ont indirectement contribué à ma thèse.

Je remercie mes directeurs de thèse Thomas Seiller et Damiano Mazza, que j’admirais
déjà scientifiquement. Ils ont tous deux été successivement mes encadrants de stage
de recherche en première et seconde année de master. Ils m’ont permis de satisfaire ma
curiosité avec une grande liberté sur des sujets dont je ne savais en fait pas grand-chose.

Je remercie mes rapporteurs Lionel Vaux et Lorenzo Tortora de Falco pour leur exigence
concernant la qualité technique de ma thèse et leur relecture particulièrement attentive
et approfondie de mon manuscrit.

Je remercie les autres membres de mon jury: Jean-Baptiste Joinet pour son intérêt
sincère envers mon sujet de thèse et Claudia Faggian pour ses conseils durant ma thèse.
Claudia a notamment influencé mon choix de rediriger mon manuscrit en avance avec
un parcours en largeur à moment où je ne savais pas où situer mon sujet. Un conseil
que j’ai probablement poussé à l’extrême.

k

Je souhaite maintenant remercier, dans l’ordre chronologique, les personnes qui m’ont
construit scientifiquement jusqu’à ma soutenance de thèse.

Ces premiers remerciements vont vers Monsieur Blot, mon professeur de mathématiques
en terminale au lycée Dorian (filière technologique). Il a été le premier enseignant à croire
en moi alors que j’avais toujours été un étudiant très moyen. Il avait remarqué et suivi
mon intérêt pour la programmation mais aussi éveillé mon intérêt pour l’informatique
théorique.

Je remercie Kostia Chardonnet, un de mes camarades de lycée qui m’a accompagné dans
la programmation et mon humour le plus absurde. Je lui dois mon admission en DUT
Informatique. Nous avons le point commun étonnant d’avoir suivi, ensemble, le même
parcours jusqu’au doctorat en informatique théorique.

Je remercie Jérémy Ledent, rencontré par hasard sur un forum de programmation (mais
jamais rencontré en personne !), qui a énormément guidé le lycéen naïf que j’étais et qui

8

m’a fait découvrir la recherche en informatique théorique et la passionnante correspon-
dance de Curry-Howard. Il a influencé ma décision de poursuivre mes études en licence
puis au Master de Recherche Parisien en Informatique (MPRI).

Je remercie Yannis Juglaret et Cătălin Hrițcu (qui était son directeur de thèse), qui m’ont
très bien accueilli à l’Inria de Paris dans l’équipe Prosecco pour un stage avec l’assistant
de preuve Coq en fin de DUT Informatique. Ils ont été tous deux particulièrement
investis dans la confirmation de mon intérêt pour la recherche scientifique et ont été un
moteur dans mon parcours.

Je remercie Michele Pagani et Delia Kesner qui m’ont accueilli en stage de L3 informa-
tique sur la logique linéaire, sujet sur lequel je voulais travailler sans vraiment savoir de
quoi il s’agissait. Ce stage m’a confronté à un mélange entre formalités techniques et
théories abstraites qui est nécessaire dans la recherche en informatique théorique.

Je remercie Olivier Laurent (que je n’ai en fait jamais rencontré et qui ne me connaît
probablement que de nom) qui a répondu, par e-mail, à mes questions techniques de la
L3 Informatique jusqu’au doctorat (probablement sans le remarquer). J’ai toujours été
impressionné et inspiré par son sens du détail et de la précision.

Je remercie Tito que j’ai considéré comme mon “grand-frère scientifique”. Il m’a guidé
en master et en thèse sur la logique linéaire, la géométrie de l’interaction et bien d’autres
sujets de l’informatique théorique voire du monde académique en général.

Je remercie toutes les personnes qui ont accepté d’échanger avec moi concernant ma thèse
: Matteo Acclavio, Benjamin Hellouin, Mccolm Gregory et Natasha Jonoska, Alexander
Leitsch, Carlos Olarte, Félix Castro, Paolo Pistone, Arnaud Valence, Aleksey Gonus,
François-René Rideau alias Fare (qui influencera la suite de mon parcours), Rémi Nollet
ainsi que d’autres anonymes et personnes extérieures au monde académique.

Mes derniers remerciements vont au groupe de travail ReFL (Réflexions sur les Fonde-
ments de la Logique, et initialement “nouvelle église girardienne” puis “cercle transcen-
dantaliste”) que j’ai co-fondé avec Davide Barbarossa, Valentin Maestracci et Pablo
Donato. Parmi les contributeurs principaux de ReFL figurent : Adrien Ragot, Am-
broise Lafont, Baptiste Chanus, Jérémy Hervé, Kostia Chardonnet, Julien Marquet,
Paul Séjourné, Sidney Congard, Tito et Xavier Denis. Ils m’ont tous permis de sortir de
ma solitude de scientifique mais m’ont aussi apporté une grande stimulation intellectuelle
: de nombreux passages de mon manuscrit viennent en fait de conversations avec des
membres de ReFL. J’ai trouvé dans ReFL des personnes à la pensée profonde, sceptique
et audacieuse. Parmi ces membres, Pablo Donato et Paul Séjourné ont particulièrement
suivi mes réflexions sur la syntaxe transcendantale et j’ai beaucoup échangé avec eux
sur les idées les plus expérimentales et spéculatives.

Contents

Preface 4

Acknowledgements (in French) 7

1 Logical traditions 16
1 The experience of regularity . 16
2 Logical dreams and mathematical realisations of reasoning 20
3 Paradoxes and the jails of the Format . 23
4 The location of certainty: the mind or the paper? 25
5 Syntax and semantics / Language and reality 27
6 Propositional calculus . 30
7 Predicate calculus . 33
8 Second-order logic . 36
9 Natural deduction . 38

– Intuitionistic natural deduction . 39
– Classical natural deduction . 44
– Proof reduction . 44

10 Sequent calculus . 46
– Classical sequent calculus . 46

11 Monolateral sequent calculus . 50
– Cut-elimination procedure . 52

12 Discussion: doubting traditions . 55

2 Computational panorama 60
13 The experience of procedurality . 60
14 Realisation of machines . 64
15 Computation as functional process . 66

– The notion of function . 66
– Functional foundations for logic . 68
– Mathematical functions as a model of computation 70
– The notion of (simple) type . 73

16 Computation as state machine . 75
– The mathematician-machine . 75
– A bit of hacking with Turing machines 78
– Undecidable problems . 80
– Towards programming . 81

Contents 10

17 Computation as tiling construction . 83
18 Computation as flow of information . 86
19 Discussion: a single materialisation of computation? 89

3 Linking logic and computation 92
20 The different traditions of logic and computation 92
21 Curry-Howard-Lambek correspondence . 94

– Natural deduction and Lambda-calculi 94
– The functional interpretation of classical logic 97
– The functional interpretation of quantification 98

22 Realisability . 99
– Kleene realisability . 99
– Krivine realisability . 101
– Reconstruction of simple types . 103

23 Logic programming . 103
– Reasoning with programs . 103
– Normal forms . 104
– First-order resolution . 107
– Reasoning with Horn clauses . 109

24 Discussion: the limits of the proof-program correspondence 110

4 Linear logic 115
25 The emergence of linear logic . 115
26 Seizing the means of production . 116
27 Classical linear logic sequent calculus . 119

– Multiplicative fragment . 120
– Neutral elements . 123
– Additive fragment . 123
– Exponential fragment . 126

28 Some applications and intuitive interpretations 129
29 Proof-structures and proof-nets . 131

– Multiplicative unit-free proof-nets . 133
– Multiplicative unit proof-nets . 139
– Additive proof-nets . 140
– Exponential proof-nets . 142

30 Correctness criteria . 145
– Girard’s long trip criterion . 146
– Danos-Regnier criterion for MLL+MIX 151
– Criteria for multiplicative units . 154
– Criteria for additive proof-structures 155
– Criteria for exponential proof-structures 156

31 Discussion: the structure of normative constraints 156

Contents 11

5 The geometry of interaction 159
32 Towards a geometry of interaction . 159
33 Multiplicative proofs with permutations 160

– Long-trip criterion with cyclic permutations 162
– General interaction of permutation and cut-elimination 164
– Interpretation of types/formulas . 167

34 Infinitary extension towards full linear logic 170
35 Danos and Regnier’s algebra of paths for MLL 175

– Paths in a proof-structure . 175
– Weight of a multiplicative path . 176

36 Token machine for the geometry of interaction 179
37 Alternative approaches . 182

– Flows and wirings . 182
– Seiller’s interaction graphs . 185
– Proofs as partitions of a set . 187
– Ludics . 191

38 Discussion: new insights on the notion of proof 193

6 Towards a transcendental syntax 197
39 Learning from the past . 198
40 The logical avant-gardism of computer science 204
41 A new architecture for logic . 207
42 Analytic space / Answers . 208

– Constat and performance . 208
– The chosen one: stellar resolution . 209

43 Synthetic space / Questions . 211
– Usage / Curry typing . 211
– Usine / Church typing . 212
– Adequacy and certainty / Cut-elimination 214
– Towards a justification of logical rules 215

44 Derealism / Animism . 216
– Logic and computation entangled . 216
– Globality and locality in logical systems 217
– Apodictics / First-order . 219
– Epidictics / Second-order . 219
– An original proposal: epidictic and apodictic models of computation 220

45 Illustration: Transcendental Syntax applied to lambda-calculus 221
46 Discussion: is it a right understanding of logic? 222

7 Stellar resolution 224
47 Intuition behind stellar resolution . 225
48 Stars and constellations . 227
49 Abstract execution . 230

– Evaluation of diagrams . 231

Contents 12

– Execution of constellations . 243
– The dynamics of subjective rays . 244

50 Concrete execution . 247
51 Interactive execution . 250
52 Difference with Girard’s stars and constellations 258
53 Discussion: comparison with other notions 259

8 Illustrating stellar resolution 262
54 Flows, wirings and graphs . 262
55 Encoding of logic programs with Horn clauses 265
56 State machines . 267

– Non-deterministic finite automata (NFA) 267
– Non-deterministic pushdown automata (NPDA) 270
– Finite sequential transducers (NFST) 271
– Non-deterministic Turing machines (NTM) 272

57 More advanced machines . 275
– Alternating Turing machines (ATM) 275
– Non-deterministic finite tree automata (NFTA) 278
– Krivine Abstract Machine (KAM) with call/cc 280

58 Generalised circuits . 282
59 Tile systems with the abstract tile assembly model 285
60 Discussion: a common language for classical computation? 287

9 Properties of execution for objective constellations 292
61 Computability of stellar resolution . 292
62 Classes of constellations . 293

– (Non-)Terminating constellations . 293
– Graph-structural classification of constellations 294

63 Stellar transformations . 298
64 Partial pre-execution and confluence . 299
65 Discussion: the sufficient conditions for logical emergence 303

10 Stellar interpretation of multiplicative linear logic 304
66 Proofs as constellations . 304
67 Simulation of cut-elimination . 307
68 Simulation of Danos-Regnier correctness test 314
69 Construction of multiplicative formulas . 322

– Usine interpretation . 323
– Usage interpretation . 327

70 Soundness and completeness . 331
– Adequacy between Usine and Usage 331
– A complete model of MLL+MIX . 333
– A complete model of MLL . 337

71 The case of multiplicative units . 338

Contents 13

72 Discussion: what is a multiplicative proof? 340

11 Interpretation of intuitionistic implication 342
73 MLL with intuitionistic implication (MLL2I) 342

– MLL2I sequent calculus . 343
– MLL2I proof-structures . 344

74 Simulation of cut-elimination . 347
75 Girard’s original correctness criterion . 351
76 Discussion: what is a non-linear proof? . 355

12 Apodictic experiments 357
77 Logical constants . 357

– Objective constant . 358
– Subjective constant . 360
– Shape specification . 361
– Order 0 multiplicative linear logic . 362

78 Expansional connectives . 362
79 Visibility and non-classical truth . 364
80 System-free arithmetic on relative numbers 368
81 Discussion: anarchy . 369

13 Epidictic experiments 371
82 Genericity of proof-structures . 371
83 Usage interpretation of second-order linear logic 373
84 Usine in the case of predicate calculus: a sketch 375
85 Discussion: the theory of epidictic architectures 378

Conclusion 380
86 Summary and contributions . 380
87 Horizons . 381
88 Limits of the current presentation of transcendental syntax 387

A Mathematical conventions 389
A.1 General notations . 389
A.2 Set theory . 390
A.3 Language theory . 392

B Term unification 394
B.1 Elementary definitions . 394
B.2 Unification algorithm . 398

C Graph theory 402
C.1 Non-directed hypergraphs . 402
C.2 Directed hypergraphs . 405
C.3 Special cases of hypergraphs . 407

Contents 14

D Transcendental aesthetics 410

Contents 15

“ Tout commence en mystique et tout finit en politique.
– Charles Péguy (Notre Jeunesse) ”

Chapter 1

Logical traditions

In this chapter, instead of exposing the usual folklore of logic, I suggest a personal reading
of the Western tradition of mathematical logic. This revision of logic is deeply influenced
by modern works on Girard’s linear logic and its connexions with computation. Despite
these rather technical inspirations, I would like this chapter to be very accessible but I
also wrote it so that it can be interesting for people who already received an education
on formal logic.

I start with a historical background coming from a personal little investigation. My
reference for the formal presentations of logic is Hedman’s introduction to logic [Hed04].
I decided to modify a bit the usual definitions and notations according to my personal
taste.

1 The experience of regularity

This section is inspired by Paolo Pistone’s great presentation (in French) “Aristote et l’électricien
: le branchement des idées” for Treize Minutes Marseille and Alain Lecomte’s course on philos-
ophy of language.

§1.1 We all have a vague idea of what logic is, as if it was either hard-wired in our brain or
part of nature itself. Imagine that I say:

“All humans are mortal” and “all Greeks are human”, hence “all Greeks are mortal”.

“All humans are mortal” and “all French are human”, hence “all French are mortal”.

“All unicorns are cool” and “all turtles are unicorns”, hence all “turtles are cool”.

§1.2 These three sentences produce new knowledge from two premises (preceding the word
“hence”). In the first two statements, we can feel that the words “Greek” and “French”
are interchangeable and unimportant. No matter what word we replace these words
with, the statement seems to hold. If we look at the more extreme third sentence,

Chapter 1 Logical traditions 17

Code Name Constructor
A Universality All S are P
E Existence Some S are P
I Negative universality No S are P
O Negative existence Some S are not P

Figure 1.1: Types of assertion in Aristotelian syllogisms.

the subjects and properties (called predicates) are replaced by pure nonsense and the
whole sentence still makes sense. In each case, the two premises are only hypothetically
considered valid but are not necessarily valid themselves. What matters is whether or
not the conclusion follows from the two premises, hence validity is actually independent
from our understanding of words or of any external reference. This is what we call
deductive reasoning. These statements go without saying and we would simply say “it’s
logical!” to justify them.

§1.3 Notice that the three sentences above have the same shape, hence exhibiting some regu-
larities in the production of knowledge. They are instance of a pattern. The concepts can
be replaced by generic symbols, hence only the spatial arrangement of concepts matters
and not the concepts themselves. We obtain the following more general statement:

“All M are P” and “all S are M”, therefore “all S are P”.

§1.4 Aristotle’s syllogism. The letter “M” stands for major premise, “P” for predicate
(a property of a subject) and “S” for subject. This type of deductive reasoning having
two premises and a unique conclusion is what Aristotle called a syllogism in his work
Prior Analytics (part of the Organon), during Ancient Greece. By analysing all the
possible syllogisms constructible with the assertions of Figure 1.1, it is possible to create
categories of logical patterns. At the time of Aristotle 19 valid types1 of syllogisms
were extracted from 256 logical combinations. In particular, our syllogism above has
been given the mnemonic name2 of BARBARA for the three occurrences of universal
assertions (code A in Figure 1.1).

§1.5 Deduction does not come from nowhere. How can such rules exist and how can they
produce valid knowledge? A modern hint would be that assertions such as “All M are P”
are usable entities with an input and an output allowing connexion with other assertions.
It is a machine producing P from M. In order to prove “all S are P”, we connect the
two premises seen as tools: I have “S” and know that it leads to “M” (second premise),
itself leading to “P” (first premise). It is illustrated by the path of Figure 1.2 between
the two occurrences of “P”. This gives a spatial criterion for logical correctness.

1Leibniz added up to 25 types in his De arte combinatoria (1666).
2Mnemonic names and the notations A,E, I and O were given by medieval scholars [KKPS82] (as-

sociated with what we call scholasticism). The idea was to associate syllogisms with Latin names
(Barbara, Cesare, Darii, Barbari, ...) so that vowels correspond to types of assertion.

Chapter 1 Logical traditions 18

“All M are P” and “all S are M”, therefore “all S are P”.

Figure 1.2: Path in the reasoning of an instance of syllogism.

Name Constructor Modern notation
Conditional If A then B A⇒ B, A ⊃ B, A→ B
Disjunction Either A or B (but not both) A ∨B, A+B
Conjunction A and B A ∧B, A ·B
Negation not A ¬A, A

Figure 1.3: Logical connectives in stoic logic where A and B are assertibles.

§1.6 Stoic logic. Still in Ancient Greece, the stoics [GW04, Volume I] (and Chrysippus
in particular) developed a different (and more modular) point of view on logic where a
whole sentence such as “it’s raining today” is a single object called assertible. Assertibles
are either true or false and can be connected with logical connectives presented in Fig-
ure 1.3. In this case, the focus is not on the structure of reasoning but on the treatment
and preservation of truth during the evaluation of a sentence. For instance, given two
assertibles A and B, if A is true but B is false then “A and B” must be false. It sug-
gests that logical validity is ruled by some mechanisms underlying logical connectives.
Reasoning then relies on five indemonstrable arguments given in Figure 1.4.

§1.7 Although the study of logic can take several form, in the two cases described above
(Aristotelian logic and stoic logic), logic takes place in the very specific and concrete
space of language. Logic was thought to be about what could be expressed with written
or spoken words. During Ancient Greece, syllogism was correlated with discussion,
public speaking and the art of persuasion. If there are valid ways of reasoning, there are
also wrong ways known as (logical) fallacies, which can be used on purpose to trick or
convince people (about skills or politics for instance). Such wrong arguments look like
valid ones but exploit the ambiguity of consequence:

“A better product is usually more expensive” and “this product is expensive”,

Name Constructor
Modus ponens (A implies B) and A, therefore B
Modus tollens (A implies B) and not B, therefore not A
Conjunctive syllogism Not (both A and B) and A, therefore not B
Modus tollendo ponens (Either A or B) and not A, therefore B
Modus ponendo tollens (Either A or B) and B, therefore not A

Figure 1.4: Indemonstrable arguments in stoic logic.

Chapter 1 Logical traditions 19

therefore “it must be of a better quality”.

§1.8 Using this argument, I can make you buy something at an unfair price. The art of “unreal
wisdom” which was criticised during Ancient Greece is usually called sophism3. In “On
Sophistical Refutations” (part of the Organon), Aristotle described several categories of
fallacies and how to react to it. The list has later been developed several times by several
authors [BC06, Sch31] and is now considered as a sort of intellectual self-defence4.

§1.9 Medieval logic. Something I have rarely seen mentioned in logic is the medieval
world5 [GW04, Volume II]. Medieval schools were mainly interested in the study of
Aristotle’s syllogisms as if they were sort of multiplication tables we learn by heart (each
valid syllogism is associated with a mnemonic Latin name). Medieval works on logic in-
cludes additional linguistic features such as plurality, tense and modality in the context
of Aristotelian logic or theories about terms and predicates [Rea02, Spa02, Knu99]. Suc-
ceeding Greek’s Dialectic (the discourse between several opponents wishing to establish
truth through valid arguments, thus relating logic and dialogue) was considered part of
logic in medieval schools [Abe06]. But beside this Aristotelian legacy, medieval logic
was not void of innovation: interestingly, the first proof of the principle of explosion6 is
attributed to a French logician of the 12th century named William of Soissons [Mar86].
This principle states that from a contradiction such that “A and not A”, it is possible
to infer any statement, which should sound very surprising.

§1.10 It is generally agreed that Western logic mainly originates from Aristotle, stoics and
medieval schools. However, something we do not always realise is that, despite the
objective appearance of logic, our understanding of it is strongly influenced by seemingly
insignificant things such as culture and geography. Indian logic [GW04, Volume I] (itself
correlated with Buddhist logic [Fac83]) and Chinese logic [Chm09] (with the School of
Names) were especially old forms of logic which were developed independently of Greek
logic. In particular, Indian logic later had a direct influence on Western logic between
the 18th and 19th century [Col58]. Something else which is notable is that Arabic logic
[Bla98, Res64] had early forms of syllogisms which actually influenced Islamic law and
theology, but also had an early access to Greek logic through Arabic translations, even
before the Christian scholars of medieval schools. This led to Avicenna’s alternative to
Aristotelian logic including novelties such as temporal modalities [Res12]. Despite all
those traditions of logic, this thesis will only be another brick in the story of Western
logic, but I believe that it would be very nice to study old alternative traditions of logic
in the light of the modern works that I will present in this thesis.

3Although it originally referred to the teaching of eloquence and the art of persuasion.
4Especially on social networks. Unfortunately, debates do not only evolve in the logical dimension.
5Which suffers from a lot of unfortunate prejudices.
6Although it seems to have been rejected at first [Mar86].

Chapter 1 Logical traditions 20

Syllogism Boolean equation
All A is B AB = B or A(1−B) = 0
No A is B AB = 0
Some A is B V = AB
Some A is not B V = A(1−B)

Figure 2.1: Algebraisation of Aristotle’s syllogisms. Saying that all A is B is the same
as saying that the concept of being both A and B is the same as the concept
B (inclusion of A within B), written AB = B, or equivalently that being A
but not B is a nonsense (A(1−B) = 0). Saying that no A is B is the same as
saying that being both A and B is a nonsense (AB = 0). Saying that some A
is B is the same as saying that there is some concept V equal to the concept
of being both A and B. This works if concepts are non-empty (which is also
the case in Aristotle’s point of view). From these interpretations, it is then
easy to understand the last syllogism.

2 Logical dreams and mathematical realisations of reasoning

§2.1 Between the 17th and 18th century, Gottfried Leibniz was a prominent scientific figure
which contributed to several fields such as mathematics, philosophy, theology, ethics
and more. However, it seems that his works on logic did not attract much attention
at his time. For that reason, it is often considered that he foresaw the future develop-
ments of formal logic. Leibniz had the very ambitious project of designing a universal
symbolic language called characteristica universalis [Jae96], which would be relevant for
any rational discussions whether it be in metaphysics, physics, mathematics, music, or
even everyday life conversations. Such a language would be based on an alphabet of
human thoughts [WGRO93] which constitute rational thinking. Although this idea has
been mentioned several times by Leibniz, it seems that it has never fully flourished and
has even be considered too naive by its creator7. This great ambition resuscitated again
after Leibniz, during the 19th century with a different philosophy.

§2.2 Algebraic logic. Still in this idea of a calculus of logic, the English mathematician
George Boole initiated an algebraisation of logic8 in “The Laws of thought” which aimed
at giving a mathematical foundation to Aristotle’s logic which would be simple and as
close as possible to “high school algebra”9 [Bur00]. In his algebra of logic, variables
x, y, z, ... represent classes or concepts over which we use arithmetic operations +,−,×
and a symbol = for equality. The intersection of concepts is written x × y or xy. This
allows to express the fact that “good man” is the intersection of “good” and “man”. In
particular, logic has to satisfy xx = x (which can also be written x2 = x), illustrating

7According to an informal discussion with David Rabouin, Leibniz himself later considered this universal
alphabet to be probably impossible to realise.

8Which is actually different from what we call Boolean algebra today.
9Which I never studied in high school.

Chapter 1 Logical traditions 21

the fact that being “good and good” is the same as being “good”. Remark that the
only numbers satisfying this equation are 0 (0 × 0 = 0) and 1 (1 × 1 = 1), which is
coherent with the truth values false (concept of emptiness) and true (concept of the
whole universe). Boole was able to represent Aristotle’s assertions in this system: “all x
are y” becomes xy = x (all things such are both x and y are also x, hence the concept of
x is contained in y) and “no x is y” becomes xy = 0 (it is impossible to be both x and
y). Other syllogisms are presented in Figure 2.1. Interestingly, Aristotle’s A (universal)
statements looks like sort of functions taking A and producing B by associating a new
“category” to a given individual coming from a given category. As for E statements,
they are like pairs (A,B) reuniting an individual and the category it is part of. This
intuition will actually be essential in modern developments of logic such as (dependent)
type theory. Finally notice that subjects and predicates are of the same kind (unlike
Aristotelian’s syllogisms which distinguishes the two)10.

§2.3 In this “algebraic period” [Boc61], several mathematicians such as Ernst Schröder, Au-
gustus De Morgan, Hugh MacColl, Charles Sanders Peirce and John Venn contributed
to the establishment of relations between an algebraic presentation of logic and other
fields such as set theory, order theory or lattice theory. Works on algebraic logic were
updated, extended and developed actively in that direction. At this time, Indian philos-
ophy started to have an influence on Western scholars (especially English): Aristotelian
logic and Indian logic were compared with the conclusion that they were not equiva-
lent [Gan13]. De Morgan himself was also aware of Indian logic and even mentioned it
explicitly:

“ The two races which have founded the mathematics, those of the Sanskrit
and Greek languages, have been the two which have independently formed
systems of logic.

– Augustus De Morgan [DM60] ”
§2.4 Ideography. Following these first mathematical presentations of logic and Leibniz’s

initial ideal of a universal language11, Gottlob Frege invented a graphical language for
logical sentences called Begriffsschrift12 [F+79] (1879) or ideography in English. The
construction of sentences is presented in Figure 2.2. Frege wanted it to be what Leibniz
hoped for: a sort of microscope allowing the analysis of the relations between concepts.
I would personally call it the “circuits of thought”. This graphical language for logic
constitutes the first known occurrence of universal quantification (expressing “for all” in
logical sentences) with bounded variables. Something which is a bit less known is that
10Actually, this shared space for subjects and predicates is unusual. Even in more modern formal logic

(including dependent type theory), they are usually distinguished.
11Although Frege places himself in Leibniz’s scientific lineage, it seems that Frege’s philosophy does not

reflect Leibniz’s philosophy. This relation to Leibniz apparently produced an exaggerated image of
Leibniz as a logicist. See David Rabouin’s works for more details.

12I was very fascinated by it when I started to learn logic.

Chapter 1 Logical traditions 22

Name Frege’s Begriffsschrift Modern notation
Assertion A A
Negation A ¬A
Tautology A |= A
Contradiction 6|= A
Equality (6= logical equivalence) A ≡ B A = B
Universal quantification x P (x) ∀x.P (x)
Conditional B

A

A⇒ B

x P (x)

P (x)

|= ∀x.P (x)⇒ P (x)

Figure 2.2: Sentences written in Frege’s Begriffsschrift. The representation of the for-
mula ∀x.P (x) ⇒ P (x) stated as a tautology is presented at the end as an
example. A tautology is a statement which is always true whatever the con-
tent of its subformulas. A contradiction is always false.

Peirce13 actually invented independently a graphical language called existential graphs
[Pei79], which includes both universal and existential (“there exists”) quantifications.
Both these systems are anticipations of what we call predicate calculus or first-order
logic [Fer01] in today’s mathematical logic and which is now standard.

§2.5 Frege’s calculus. Frege does not content himself only with a contemplative graphical
language for logical sentences. In his article on Begriffsschrift [F+79, §6], he already pre-
sented how to write inferences by stacking formulas. However, in order to do inferences,
we need rules of inference to know what can follow from what, and we also need hypothe-
ses left unproven (at the top on the inference). These statements are called axioms. Frege
justifies them informally by their self-evidence and how they appear in the practice of
mathematics. For instance, this is how Frege justifies the axiom A⇒ (B ⇒ A):

“ This is evident, since A cannot at the same time be denied and affirmed.
We can also express the judgment in words thus, ”If a proposition A holds,
then it also holds in case an arbitrary proposition B holds”. Let A, for
example, stand for the proposition that the sum of the angles of the triangle
A BC is two right angles, and B for the proposition that the angle ABC is
a right angle. Then we obtain the judgment ”If the sum of the angles of the
triangle A BC is two right angles, this also holds in case the angle A BC is
a right angle.

– Gottlob Frege [F+79, §14] ”
Another notable axiom is the statement c = c stating that all statements are equal
13You can ask Pablo Donato about it, he likes to talk about Peirce.

Chapter 1 Logical traditions 23

to themselves (because they refer to the same concept). All statements which are not
axioms are inferred by using the following inference rules (in modern notations):

� Modus ponens. From A and A⇒ B, we can infer B;

� Generalisation. From A ⇒ P (x) where x does not occur in A, we can infer A ⇒
∀x.P (x).

§2.6 Formal consideration of linguistic features led to several new notations for logic. It is not
so clear how these notations were introduced, how they have been propagated and how
they evolved. The most common notations have already been presented in Figure 1.3.
Hence, a sentence such as “Either A is true or it is not” would be written A ∨ ¬A.
The quantified formulas of Frege are written ∀x.A for “for all x, A holds” and ∃x.A for
“there exists some x such that A holds”, although these notations were introduced by
different people at different times. Properties are expressed with predicate symbols which
are used like function symbols. For instance, we write P (t) to say that the property P
holds for some term t and it produces a statement which is either true or false. Frege
also had a notion now called second-order quantification [F+79, §27] which corresponds
to a quantification over predicates or formulas (which are predicates with no argument).
For instance, ∀A.A ∨ ¬A would be a second-order formula.

§2.7 Logicism. Frege’s philosophical project is called logicism. Logicism’s hope was to
reduce some (or if possible, all) parts of mathematics (especially arithmetic) to logic,
which is understood as “pure relations between concepts”. This cold-hearted point of
view sees logic as connexions between evidences. It attracted a great attention from
mathematicians such as Giuseppe Peano, Richard Dedekind and Alfred NorthWhitehead
which became active contributors but it is usually considered that the project has been
mainly carried by Bertrand Russell. Logicism is also related to analytic philosophy which
studies philosophy with an emphasis on linguistics and the use of mathematical tools.

§2.8 Logic turned into syntax. At this point, logic is defined as if humans were somehow able
to experience logic and materialise intuitions of it into syntactic objects. Unfortunately,
this approach is far from being trouble-free. What logicians have done was trying to
frame the practice of mathematics into syntax. We will see that mathematical practice
is not so obedient and can escape from the jails we design.

3 Paradoxes and the jails of the Format

§3.1 An antinomy is a mutual incompatibility between two rules. It is probably the most
pathological phenomenon in logic. Several antinomies began to appear when trying to
capture some parts of mathematics with formal logic. An early appearance of antinomy,
even before these considerations is the Burali-Forti14 paradox (1897) which came to the

14It’s actually one person and not two.

Chapter 1 Logical traditions 24

conclusion that a naive formalisation of set theory leads to antinomies [BF97]. This
paradox15 concerns a generalisation of numbers called ordinals. Assuming the existence
of a set of all ordinals leads to the existence of an ordinal greater than itself, which is
absurd. It is thought that Cantor, considered as the inventor of set theory, was informally
aware of this fact.

§3.2 The most famous example of antinomy is probably Russell’s paradox [Rus03, Chapter
X] which can be seen as a simpler version of the Burali-Forti paradox (it seems that
it has even been suggested by Burali-Forti himself). We write x ∈ y to formalise the
fact that the entity x is contained in the entity y and x 6∈ y when it is not the case.
Sets can be written extensively as a collection of elements, such as {1, 3, 7}. We can for
instance write 1 ∈ {1, 3, 7}, 2 6∈ {1, 3, 7} or even {1} ∈ {{2}, {1}} (if we would like to
base mathematics on set theory, then numbers have to be encoded as sets). It is then
technically possible to write x 6∈ x (although it seems absurd, it holds for the set {1} as
we do not have {1} ∈ {1}). Now, it is possible to collect all such elements not containing
themselves, written y = {x | x 6∈ x}, to be read “the set of x such that x 6∈ x”. The
contradiction appears when we are trying to ask the forbidden question “Does y contain
itself?” written ‘‘y ∈ y′′. If y ∈ y holds, then y is part of the sets which do not contain
themselves by definition of y. It is contradictory! Then y 6∈ y must hold. However,
if it is the case, it should have been be part of the collection of sets not containing
themselves. Which is also contradictory with our hypothesis... This formulation of set
theory is known as naive set theory.

§3.3 An immediate and natural solution to that antinomy, provided very early by Russell
himself in his The principles of mathematics (1903), which has been then developed
with Whitehead in Principia Mathematica (1910), is to say that our definitions were
too permissive and that we need to put constraints on them. It makes sense because
such contradictions do not reflect the practice of mathematics. These different ways of
constraining the use of syntactic entities (typically, forcing categories to prevent some
syntactic manipulations or inferences) led to different branches of logic with their own
culture and practices.

§3.4 Type theory. This solution suggested by Russell corresponds to what is now called
type theory. We classify entities so that unexpected uses are prevented. In this approach,
the root of evil is the notion of impredicative definition. The Russell’s paradox contains a
vicious circle related to self-reference. The variable x in {x | x 6∈ x} is a generic variable
referring to the set of all sets, including itself. In order to avoid this illicit contact,
Russell classified the entities of set theory with a hierarchy of types so that some entities
cannot interact which each other. Russell’s idea was to design a hierarchy of levels so
that, when writing x ∈ y, x must be at level n and y at level n+1. It is then impossible
to write x ∈ x because x cannot be both at level n and n+1. Another way to understand
this approach is that Russell’s paradox can also be understood as the fact that there is

15As Girard exposed very often in his writings, we could say antinomy instead since it is a contradiction
with the definitions and not something simply “out of dogma” as the name suggests.

Chapter 1 Logical traditions 25

no set of all sets. This hierarchy of levels actually has a consequence on mathematical
definitions since several definitions are impredicative but used without problems (such
as the definition of greatest lower bound) but also because the use of predicate becomes
limited by our restrictions (we do not have access of all predicates anymore). Several
attempts at having a more nuanced approach to those constraints came later, such as
Russell’s ramified hierarchy motivated by a fear of these vicious cycles rather than the
initial need to avoid a leakage caused by antinomies.

§3.5 Axiomatic. Another solution for a logical foundations of set theory is to rely on
axioms (cf. Paragraph 2.5) to clearly express what is allowed or not, which is indeed
a quite military solution16. Axiomatic systems existed for a long time (e.g. Euclid’s
axioms for geometry) but they were given a greater importance at the time of the crisis
of mathematical foundations. Also as early as Russell (1908), Ernst Zermelo suggested
an axiomatic theory for set theory known as Z which has later been extended to ZF,
then to the so-called ZFC axiomatic system. By choosing axioms in a clever way and
on which mathematicians agree, it is possible to produce a trustworthy foundation for
set theory and some (if not all) parts of mathematics. For instance, the first axiom is
the axiom of extensionality, written ∀x.∀y.(∀z.(z ∈ x⇔ z ∈ y))⇒ (x = y) with modern
notations of formal logic. It means that if two sets contain the same elements, then they
are equal. The use of axioms forbids unwanted statements such as Russell’s paradox.
Adding more axioms allows to express more complex mathematical theory but coherence
of the new set of axioms must be ensured. Actually, although axiomatic is interesting
for foundational purposes, it barely affects mathematical practice.

4 The location of certainty: the mind or the paper?

§4.1 The appearance of paradoxes challenged the logicist project of capturing parts of (or
all) mathematics with formal logic. This period of the early 20th century, known as the
foundational crisis of mathematics, gave rise to metamathematics which is the study of
mathematics by using mathematical methods. Two important schools of thought (both
opposing the previous logicist project) appeared during this crisis: the formalists (often
represented by Hilbert) and the intuitionists (often represented by Brouwer). Those
two schools of thought, together with logicism, represented by Russell, were the most
important schools of logic at that time.

§4.2 One thing on which those two schools of thought did not agree was the nature of mathe-
matics and the location of certainty. Logicism is often associated with semantic realism
which considers an external reality of mathematical meaning, independent from us and
to which we can refer. For instance x = y when x and y “refer to the same meaning”.
Intuitionism and formalism are two rivals opposing logicism and returning to Kant’s
seeking for an immanent logical meaning. A way to understand the difference between

16As often pointed out by Girard.

Chapter 1 Logical traditions 26

formalism and intuitionism is to ask whether the nature of mathematics is to be found
in our mind or our paper.

§4.3 Intuitionism. For intuitionists, mathematics is a purely mental activity; a production
of the human mind [BP84, Chapter 2]. Language is used as a way to communicate
mental constructions. Certainty lies in what is accessible by the human mind and which
can be constructed and communicated. Although innocent, this conception of logic
has important consequences such as the doubt of some logical statements which were
considered valid. Typically, the excluded middle “A or not A” which states that any
statement is either true of false. If we are able to prove that A is false (by assuming it
and showing that it leads to a contradiction), A must be true. In the particular case of
existential statements “either there exists x such that P or there is no x such that P” for
a property P , it happens that using the excluded middle allows us to infer the existence of
some mathematical entities although they are mentally out of reach: we cannot construct
them and yet we assert their existence. What we need is an explicit construct that we
call an existential witness which is an intelligible proof of existence. This leads to serious
doubts about all statements logically equivalent to the excluded middle. This divides
logic into two categories: intuitionistic logic excluding these statements and classical
logic which allows them.

§4.4 Formalism. Hilbert thought of logic as a formula game. His approach is more proce-
dural and perhaps more conventionalist. All philosophical questions aside, mathematical
practice mainly involves syntactic operations related to “fixed rules known to all mathe-
maticians” [BP84, Chapter 3]. Certainty lies in the purity of syntax (the paper, in some
sense). The idea of Hilbert’s programme was to prove and verify statements by finite and
mechanical means17. In formalism, there is no strong reason to reject the problematic
classical statements which were rejected by intuitionism. These statements are part of
mathematical practice. What is important are not the statements but the methods of
proofs and then mathematics becomes a “combinatorial game” [BP84, Chapter 3]. Con-
tradiction can be represented with a symbol ⊥. Formalists are then especially interested
in the property of coherence stating that we cannot produce the symbol ⊥ with a given
system. In some sense, formalists’ logic is only about syntax and conventions.

§4.5 Proof systems. Frege’s calculus of Paragraph 2.5 constitutes an example of proof
system which is able to prove statements from previously assumed statements. Proof
systems are the key for the Hilbertian ideal of a finite and mechanical verification of
statements. Logic would then be procedural and bureaucratic. In its modern form, using
modern notations for formulas instead of Frege’s Begriffsschrift, Frege’s calculus is called
Hilbert system. A proof becomes a mathematical object which can be studied by itself.
It is simply defined as a sequence of formulas following some given rules and which starts
with a given set of axioms. It is also possible to begin with more axioms depending on
the mathematical theory we would like to consider (which also allows for hypothetical

17In particular, he also had the ambition of reducing infinitary mathematics to finitary ones (one can
argue that in some cases infinitary reasoning is not necessary).

Chapter 1 Logical traditions 27

Line Statement Justification
1 ((A⇒ ((A⇒ A)⇒ A))⇒ ((A⇒ (A⇒ A))⇒ (A⇒ A))) by A1

2 A⇒ ((A⇒ A)⇒ A) by A2

3 (A⇒ (A⇒ A))⇒ (A⇒ A) by MD(1,2)
4 A⇒ (A⇒ A) by A1

5 A⇒ A by MD(3, 4)

Figure 4.1: Proof of A⇒ A from the two axioms A1 := A⇒ (B ⇒ A) and A2 := (A⇒
(B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C)) together with the modus ponens (MD)
as only rule (from A and A ⇒ B, we can infer B). These rules are taken
from a proof system called H1 which is presented in a course of Stony Brook
University (https://www3.cs.stonybrook.edu/~cse541/chapter8.pdf).

statements assumed to be true). An example of a proof of (A ⇒ A) from a minimal
set of axioms and rules is given in Figure 4.1. Representing mathematical proofs as
mathematical objects allows for an analysis of reasoning but also allows results about
proofs themselves (cf. Paragraph 4.1 for metamathematics). Several proof systems have
been developed afterwards such as Gentzen’s natural deduction and sequent calculus
[Gen35a, Gen35b]. As we will see later in this thesis, proof systems became essential for
their connexion with (typed) programming in computer science.

5 Syntax and semantics / Language and reality

§5.1 A dominant point of view in today’s logic is to explain the logical activity by a separation
between syntax (what we write) and semantics (what we mean). In a lot of beginner
books or in university courses, logical systems are presented from their syntax then from
their semantics. It became so systematic that it is now quite cliché. When I studied
logic, I identified mathematical logic and logic in general but we should keep in mind
that mathematical logic is one possible implementation of logic which is dependent of
some traditions and history. Hence, mathematical logic is a part of logic, far from a
definitive answer to the (philosophical) nature of logic. This dominant conception of
mathematical logic assumes a direct access to reality (semantics) by language (syntax)
but also an identification of reality with some mathematical semantic theories (typically,
truth interpretation).

§5.2 It is possible to do logic both in the syntax and the semantic world. In the syntax,
we typically have proof systems and axiomatic systems. We have formulas and infer
other formulas according to some given rules. We write Γ `S A when A can be inferred
from a set of formulas Γ = {B1, ..., Bn} in some system S. We can write `S A when
A is provable without any assumptions (for instance simply from the axioms of S). In
semantics, we are interested in the meaning of symbols by evaluating expressions. For
instance, the expression A ∨ ¬A where A is true can be evaluated to the truth value 1

https://www3.cs.stonybrook.edu/~cse541/chapter8.pdf

Chapter 1 Logical traditions 28

(representing truth). The evaluation gives value of the whole expression by computing
the truth value of its components. We write Γ |= A when the truth of formulas in Γ
implies the truth of A. We simply write |= A when A is a tautology (vacuously true for
any truth value of its components). Mathematical theorems correspond to tautologies.
Several semantic theories with more complex mathematical interpretations also exist
such as having three truth values, theory of all possible worlds (Kripke semantics) etc.

§5.3 Soundness and Completeness. Now that we can do logic in two different worlds, we
need results about the correspondence between them: that the logic of syntax exactly
corresponds to what we mathematically mean.

• The first property we usually require is soundness which states that Γ `S A implies
Γ |= A or in other words that our procedural system of symbols is correct (sound)
w.r.t. our conception of meaning.

• The second property is completeness which says that Γ |= A implies Γ `S A, or in
other words that all what we mean is faithfully captured by syntactic operations.

These properties appear in a lot (if not most) papers about logic. As for the consistency
property of Paragraph 4.4, it is indeed a syntactic property: the fact that we cannot
infer a special symbol ⊥ representing contradiction, or more formally 6`S ⊥.

§5.4 First incompleteness. Despite the ambitions of formalism and logicism, it is con-
sidered that Gödel’s incompleteness theorems [Göd31] made these two projects almost
obsolete. There are often confusions about what Gödel’s theorems really say. The infor-
mal idea is that Gödel’s result is a sophisticated version of the liar paradox (explicitly
mentioned by Gödel). In natural language, we can assert that “the statement X is false”.
In the space of all statements which can replace X, there is... the previous statement
itself! We obtain “this statement is false”. If it is true then it is contradictory because it
says it is false. But if it is false then it is consistent with what the statement says, then
it must be true. There is a mismatch between the external commentary on sentences
and the meaning associated with syntactic expressions.

§5.5 I refer to Smith’s book for more technical details [Smi13]. To give more context, there
was hopes at giving logical foundations to arithmetic for natural numbers. Peano’s arith-
metic was an attempt at providing a finite set of axioms from which all valid arithmetic
statements would be inferred. Let T be a set of axioms capturing arithmetic. By only
using natural numbers, it is possible to encode various statements. For instance, it is
known that there is a bijection between N and N × N, hence natural numbers can en-
code pair of natural numbers. With this idea of encoding, Gödel managed to construct
a statement GT of T stating “GT is unprovable in T”. Gödel’s first incompleteness
theorem is the following:

1. neither GT nor ¬GT are provable in T . Hence, there exist statements for which
provability is impossible to decide with a finite and mechanical procedure. This
ends Hilbert’s formalist ambition;

Chapter 1 Logical traditions 29

2. if T is consistent then GT is true (the contradiction ⊥ cannot follow from the rules
of T).

If we assume T to be consistent, then GT is true (2) but not provable (1). Hence there
exists at least one statement in T which is true and not provable. This exhibit a gap
between truth and provability. In some sense, T is incomplete (hence the term “incom-
pleteness”). But more than incomplete, it is incompletable (to quote Smith) because
providing T is expressive enough to express arithmetic, it is always possible to construct
such unprovable formulas even if we extend it with more axioms. Although it sounds
serious, it mostly affects the logical foundations of arithmetic and not mathematical
practice (since we usually do not end up with those weird problematic statements).

§5.6 Second incompleteness. We write CT for “T is consistent”. The second condition of
Gödel’s first incompleteness theorem says that CT implies GT . The reasoning behind
the proof of the implication CT ⇒ GT can actually be encoded in arithmetic. It appears
that CT ⇒ GT is provable in T (by using arguments we do not detail but which are given
by Smith [Smi13]). When T is assumed to be consistent, then by the second condition
of Gödel’s first incompleteness, GT cannot be proven. It follows by CT ⇒ GT , that CT

cannot be proven as well, otherwise we would be able to prove GT (notice that this does
not affect the provability of the implication). Gödel’s second incompleteness theorem is
a corollary coming from this reasoning, which says that if T is consistent then it cannot
prove its own consistency (the statement CT). This is again a barrier against the total,
mechanical and finitistic justification of mathematics hoped by formalists.

§5.7 Gödel’s hierarchy. It would be exaggerated to say that this is the end of formal-
ism. If Hilbert’s ideal cannot be fully realised, some parts of it can still be saved. Even
though the consistency of a formal system cannot be shown inside it (if it is expressive
enough), it can be shown in stronger systems. There is a hierarchy of systems: we say
that T < T ′ when the consistency of T can be shown in T ′. It is then possible to design
several variant of arithmetic or axiomatic theories and form a whole hierarchy of formal
systems. Reverse mathematics, founded by Harvey Friedman [Fri75, Fri76], searches for
the sufficient axioms to express some mathematical theories (it is a reverse approach in
the sense that it starts from mathematical practice to reach axioms instead of starting
from given axioms). From this new approach, it is possible to study the mathemat-
ics which are “finitistically” meaningful or reducible to finite mathematics [Sim88]. In
particular, a system known as PRA (Primitive Recursive Arithmetic) embodies all of
finitistic mathematics [Tai81].

§5.8 This is the end of this historical introduction. Now, I suggest formal presentations
of the ideas described until now. These presentations are strongly influenced by my
own education on logic. I start from a modern formalisation of stoic logic known as
propositional calculus and extend it to obtain richer logical systems. Then proof systems
for these systems are formally presented.

Chapter 1 Logical traditions 30

6 Propositional calculus

§6.1 The propositional calculus can be understood as turning stoic logic (cf. Paragraph 1.6)
into a system of symbols. We fix a set Atoms of atomic statements called atoms (these
are stoics’ assertibles), written with lower case letters a, b, c, d etc. From propositions, it
is possible to construct more complex statements called formulas or propositions:

• if a ∈ Atoms, then a is a formula;

� Example of sentence: “the sky is blue”.

• if A is a formula, then ¬A is a formula (negation);

� Example of sentence: “the sky is not blue”.

• if A and B are formulas, then A ∧B is a formula (conjunction);

� Example of sentence: “the sky is blue and the grass is green”.

• if A and B are formulas, then A ∨B is a formula (inclusive18 disjunction);

� Example of sentence: “the sky is blue or the grass is green” (both can be true).

• if A and B are formulas, then A⇒ B is a formula (implication).

� Example of sentence: “if the glass falls then it breaks”.

§6.2 This description of formulas is often compactly described by what computer scientists
call a grammar (cf. Appendix A.3), defining how a formula (written A or B) can be
constructed:

A,B ::= a | ¬A | A ∧B | A ∨B | A⇒ B (Formulas)
where a is an atom.

§6.3 The problem now is that formulas such as ¬A∨B, A⇒ B ⇒ C orA∨B∧C are ambiguous
and can be read in different non-equivalent ways. It is then common to proceed to a
militarisation of syntax by specifying exactly what string of characters are considered
well-formed formulas. We will simply allow to put parentheses around connectives to
write clearer presentations of formulas and define priorities between connectives:

• If A and B are formulas, then (¬A), (A ∧B), (A ∨B) and (A⇒ B) are formulas.

• The order of priority is: ¬,∧,∨,⇒ (for instance ¬A∨B is equivalent to (¬A)∨B).

• Binary connectives are right-associative, meaning that A ⇒ B ⇒ C is equivalent
to A⇒ (B ⇒ C) and idem for the connectives ∧ and ∨.

18Stoics’ original “or” connective was exclusive, meaning that only one statement has to be true and not
both. With the inclusive disjunction, both can be true.

Chapter 1 Logical traditions 31

A B ¬A A ∧B A ∨B A⇒ B

0 0 1 0 0 1
0 1 0 1 1
1 0 0 0 1 0
1 1 1 1 1

Figure 6.1: Truth table defining the values of ¬A,A∧B,A∨B and A⇒ B with respects
to the value of A and B.

§6.4 Now that we have symbols, we have to interpret them (and thus define their semantics).
A proposition is expected to be either true or false (respectively represented by the
numbers 1 and 0). Formulas are evaluated by a function J·K providing the meaning of
symbols. For instance, if both a and b are true, we expect a ∧ b to be true as well.
Let Ω : Atoms → {0, 1} be a function called valuation associating a truth value to
propositions.

§6.5 Definition (Interpretation of propositional formulas). We define the interpretation
of a formula with respects to its components as follows:

• JaKΩ = Ω(a) with a ∈ Atoms (we directly access the truth value of the atom);

• J¬AKΩ = 1− JAKΩ (the value is inversed);

• JA ∧BKΩ = min(JAKΩ, JBKΩ) (true only when both values are true);

• JA ∨BKΩ = max(JAKΩ, JBKΩ) (only false when everything is false);

• JA⇒ BKΩ = J¬(A ∧ ¬B)KΩ.
§6.6 There is an alternative way to describe the meaning of formulas called truth tables (Fig-

ure 6.1). It is a mechanical way to compute the truth of a formula from the truth values
of its components. However, if you have n variables in a formula A, then you need 2n

steps to compute JAKΩ. If you have only 8 variables, it is already 256 steps! Fortunately,
there are now several ways to evaluate formulas more efficiently for a computer (SAT
solvers).

§6.7 Implication. The case of implication has to be made clear because it looks quite
mysterious (and very confusing for beginners). The intended meaning for A⇒ B is that
it is a law of causality from A to B. It is expected that A ⇒ B is false only when this
causality is violated. If both A and B are true then the causality holds. If A is false then
it does not violate the fact that A being true must implies the truth of B follows. The
only possible violation of causality is that A is false but B is true. Hence, the meaning
of A⇒ B is that it is impossible to have both A true and B false, which can be written
as the incompatibility ¬(A ∧ ¬B).

Chapter 1 Logical traditions 32

§6.8 From this simple presentation of logic, it is possible to exhibit some interesting equiv-
alences appearing in logic (for instance, the fact that ¬¬A is equivalent to A, which
should not be too surprising):

� Involution of negation. J¬¬AKΩ = 1− (1− JAKΩ) = 1− 1 + JAKΩ = JAKΩ;
� De Morgan law I. J¬(A ∨B)KΩ = 1− max(JAKΩ, JBKΩ) = min(1− JAKΩ, 1− JBKΩ) =

min(J¬AKΩ, J¬BKΩ) = J¬A ∧ ¬BKΩ;
� De Morgan law II. J¬(A∧B)KΩ = 1− min(JAKΩ, JBKΩ) = max(1− JAKΩ, 1− JBKΩ) =

max(J¬AKΩ, J¬BKΩ) = J¬A ∨ ¬BKΩ;
� Commutativity. JA ∧BKΩ = JB ∧AKΩ (and same for ∨);

� Associativity. J(A ∧B) ∧ CKΩ = JA ∧ (B ∧ C)KΩ (and same for ∨);

� Contraposition. JA⇒ BKΩ = J¬B ⇒ ¬AKΩ;
§6.9 A question which naturally comes to mind is “do we capture all possible functions on

truth values?” How can we express more complex formulas such as exclusive disjunction
or equivalence between formulas? Actually, our system is already powerful enough to
speak about any combination of truth we wish. For instance, we could also define:

� Exclusive disjunction. A⊕B := (A ∨B) ∧ ¬(A ∧B);

� Equivalence. A⇔ B := (A⇒ B) ∧ (B ⇒ A).

§6.10 Restricting connectives to few ones (for instance negation and conjunction) is sufficient
to retrieve the other connectives. Such set of connectives are said to be functionally
complete. Here are some examples of functionally complete sets of connectives:

• From {¬,∧}: A ∨B := ¬(¬A ∧ ¬B) and A⇒ B := ¬(A ∧ ¬B);

• From {¬,∨}: A ∧B := ¬(¬A ∨ ¬B) and A⇒ B := ¬A ∨B;

• From {¬,⇒}: A ∧B := ¬(A⇒ ¬B) and A ∨B := ¬A⇒ B.

It is even possible to have a unique connective: {↑} is functionally complete for A ↑ B :=
¬(A ∧ B) ≡ ¬A ∨ ¬B called “Scheffer stroke”. Such functions are usually attributed to
Henry M. Sheffer in 1913 [Sch65] although Peirce19 had similar (unpublished) results in
1880.

§6.11 Formulas true for any valuations are called tautologies, theorems or valid formulas, and
the ones which are always false are called antilogies or contradictions. For instance, it
is easy to check with a truth table that a ⇒ a or ¬¬a ⇔ a are tautologies, and that
¬(a⇒ a) which is equivalent to ¬a∧ a is an antilogy. In particular, a⇒ a which states
that a statement implies itself, is equivalent to ¬a∨a stating that any statement is either
true of false. We write |= A when A is a tautology and 6|= A when it is not (note that it
does not necessarily mean that it is an antilogy).

19It seems that Peirce independently anticipated a lot of things.

Chapter 1 Logical traditions 33

§6.12 If 6|= A, then we must have some valuation which makes the formula A false. This
corresponds to the idea of counter-example. To show that a statement is not true, we
have to provide a situation for which it is false. For instance, 6|= a ⇒ b because if a is
true but b is false, it makes the whole formula a⇒ b false.

§6.13 Tautologies are actually generic statements which are true whatever the truth values we
put on the atoms. Actually, for that reason, it is even possible to replace atoms by any
formula and it would still hold. Mathematically speaking, if |= A then |= A{a := B}
where a is an atom of A and A{a := B} is A after replacing all occurrences of a by
some formula B. This is called the substitution lemma. This shows that there is a slight
confusion about the generic nature of tautologies. Although we state tautologies about
specific atoms, they actually holds for any statements replacing the atoms. This idea of
genericity will only be clear later, in second-order logic.

§6.14 Logical constants. A common extension of the propositional calculus is to turn the
truth values into constants of the language of formulas itself. We consider two constants
1 (true) and 0 (false) such that J1KΩ = 1 and J0KΩ = 0 for any Ω. Truth values behaves
like neutral elements: we have JA ∨ 0KΩ = JAKΩ and JA ∧ 1KΩ = JAKΩ. This allows
to consider closed formulas which are independent of an interpretation of variables and
which can be interpreted as such.

7 Predicate calculus

§7.1 Predicate calculus is the logic underlying Frege’s Begriffsschrift (cf. Paragraph 2.4) and
it embodies the paradigm of Frege’s philosophy in the sense that we distinguish a class
of individuals represented by terms with which we associate a meaning in some given
universe. For instance, the symbol a may represent Aristotle and f(a) may refer to
Aristotle’s father. We then reason about properties on individuals with symbol called
predicates associated with a boolean function. For instance, we can define a predicate H
to represent the property of being human, which returns either true or false when given
an individual as argument. The formula H(a) then expresses the fact that Aristotle is
a human.

§7.2 Definition (Relational signature). A relational signature is a tuple R = (V, PR, F, ar)
where (V, F, ar) is a signature (cf. Appendix B) and PR is a set of function symbols
called predicate symbols such that ar is defined on PR] F .

§7.3 Definition (Formula of predicate calculus). Let R = (V, PR, F, ar) be a relational
signature. Formulas are defined by the following grammar where t1, ..., tn are terms
(cf. Appendix B), P ∈ PR is a predicate symbol such that ar(P) = n and x ∈ V is a
variable:

A,B ::= P (t1, ..., tn) | ¬A | A ∧B | A ∨B | A⇒ B | ∀x.A | ∃x.A (Formulas)

Chapter 1 Logical traditions 34

§7.4 Example. The term f(a) presented above can be defined in a signature S = (V, F, ar)
where V = ∅, F = {f, a}, ar(f) = 1 and ar(a) = 0. The formula H(a)⇒ H(f(a)) is
defined on relational signature R = (V, PR, F, ar) where V = ∅, PR = {P}, F = {f},
ar(H) = 1, ar(f) = 1 and ar(a) = 0.

§7.5 Because of the presence of variables, it can happen that a variable is not related to a
quantifier such as in ∀x.P (x, y). Such variables are said to be free. It is still possible
to interpret these formulas by providing an interpretation of free variables but to keep
things simple, we will simply exclude formulas containing free variables. Such formulas
are called closed formulas.

§7.6 Definition (Free variables and closed formulas). Let A be a formula. We define
inductively the set fv(A) of its free variables:

fv(P (t1, ..., tn)) =
n∪

i=1

vars(ti) fv(¬A) = fv(A) fv(A ∧B) = fv(A) ∪ fv(B)

fv(A ∨B) = fv(A) ∪ fv(B) fv(A⇒ B) = fv(A) ∪ fv(B)

fv(∀x.A) = fv(A)− {x} fv(∃x.A) = fv(A)− {x}

We say that A is closed when fv(A) = ∅.

§7.7 What we do in predicate calculus is turning some linguistic features into symbols in
a more articulate way than in propositional calculus. For instance, the expression “all
flowers are beautiful” would be represented by a single atom in propositional calculus but
could be represented by the more accurate ∀x.F (x) ⇒ B(x) in predicate logic. Reality
is thought to be accessed by putting into words what we can express by language.
Accordingly to Frege’s philosophy, symbols refer to some reality. This is represented by
the notion of structure which interprets symbols in a specific universe (e.g. the universe
of numbers, humans etc).

§7.8 Definition (Structure). Let R = (V, PR, F, ar) be a relational signature. An R-
structure S (or simply a structure when the signature is implicit) is a tuple (U, I)
where U is a non-empty set of elements called the universe (or domain) and I is an
interpretation function defined on PR] F such that it associates a function I(f) :
Un → U for function symbols f ∈ F such that ar(f) = n and a relation I(P) : Un →
{0, 1} for predicate symbols P ∈ PR such that ar(P) = n.

§7.9 Example. The atom H(a) can be interpreted in the structure S = (U, I) where
U = {Aristotle, Plato, Rock} and the interpretation is defined by I(a) = Aristotle
and I(H)(x) = 1 when x ∈ {Aristotle, Plato} and 0 otherwise. It can also be
interpreted in a structure S′ = (U ′, I ′) where U ′ = N, I ′(a) = 0 and I ′(H) is the
parity predicate.

Chapter 1 Logical traditions 35

§7.10 We usually consider formulas implicitly closed since they are the only ones which will
be considered in our definitions.

§7.11 Definition (Interpretation of closed formulas). The interpretation of a closed formu-
las w.r.t. a structure S = (U, I) is defined as follows:

• JP (t1, ..., tn)KS = I(P)(I(t1), ..., I(tn));

• J∀x.AKS = mint∈U J{x := t}AKS ;
• J∃x.AKS = maxt∈U J{x := t}AKS ;
• the other connectives are defined as in propositional logic.

We require that {x := t}A is A for which all occurrences of x are replaced by a term
t.

§7.12 Remark. We have J∀x.AKS = J¬(∃x.¬A)KS and J∃x.AKS = J¬(∀x.¬A)KS .
§7.13 We write M |= A for a structure M and a formula A when JAKM = 1 and say that

M is a model of A. In case it is not a model of A, we simply write M 6|= A. For
instance, given the model M of the previous example, we have M |= H(a) becauseJH(a)KM = I(H)(I(a)) = I(H)(Aristotle) = 1. If for a given formula A, there exists
a model M such that M |= A, we say that A is satisfiable. If there exists M such that
M 6|= A, we say that A has a counter-model. As in propositional calculus, a formula of
predicate calculus is a tautology or valid when M |= A for any model M , which can be
written |= A.

§7.14 Equality. The equality predicate which is essential in mathematics becomes a mere
binary predicate = which is true if and only if the inputs correspond to identical objects
in a given structure, i.e. |= Ja = bKS for S = (U, I) when I(a) = I(b). It shows that
equality in syntax is just the reflection of equality in semantics. It is fair to ask whether
it is a right definition or not considering how important equality is in mathematics. Is it
right to define it simply as a symbol like other ones? It looks like we are only delegating
the problem of equality in syntax to the implicit equality of semantics.

§7.15 Do quantifiers really add something more than propositional calculus? Universal quan-
tification can naturally be seen as a n-ary conjunction over the n elements of a struc-
ture. For instance, the formula ∀x.P (x) can be encoded by the formula

∧n
i=1 P (ai) for a

structure of n elements a1, ..., an. This poses no problem for the finite case and the two
formulas are equivalent. However, for the case of infinite models, we have to switch to
infinitary propositional logic [Moo97] instead. Even in this case, universal quantification
and infinitary conjunction are different. For instance, the formula

∧∞
i=1 P (ai) only has

infinite models for constants a1, a2, ..., but ∀x.P (x) can be true in finite models as well
as infinite models. Predicate calculus actually subsumes propositional calculus. If we
remove quantifiers and restrict predicates to the nullary case only (no argument), we
exactly obtain propositional calculus. Universes must also be restricted to the set {0, 1}
so that structures corresponds to a truth interpretation.

Chapter 1 Logical traditions 36

§7.16 Empty models. Let us now discuss about a small but important detail: the exclusion
of non-empty models. Actually, this is a technical requirement. Consider an empty
model M∅ = (∅, I). If we have a universal formula ∀x.P (x), it states that P is true for
all x in the model. But what happens if the model is empty? It is usually considered
that M∅ |= ∀x.P (x). This can be justified by the fact that 1 is the neutral elements for
∧ or that it is impossible to find an element of the model for which JP (x)KM∅ = 0 which
would contradict the formula. In particular, we have M∅ 6|= (∀x.P (x)) ⇒ (∃x.P (x))
because the premise is true but not the conclusion. The problem is that this formula is
actually provable in usual proof systems (in syntax). This makes the correctness formula
false in this case. The usual (ad-hoc) solution is simply to forbid the empty model. This
choice does not seem to be philosophically justified.

8 Second-order logic

§8.1 It happens in the practice of mathematics that we need to quantify over predicates.
For instance the formula ∃P.P (a) states that there is some predicate P which holds for
the constant a. Since unary predicates can be seen as set of individuals (for which the
predicate holds), extending quantification to predicates corresponds to quantifying over
sets, which is strictly stronger than predicate calculus. In Tarskian terms, set theory
can be chosen as a metalanguage for second-order logic (but other semantic theory can
be chosen as well).

§8.2 Second-order logic20 corresponds to predicate calculus extended to quantification over
predicates. It has also been introduced by Frege who introduced the expression of second-
order (“zweiter Ordnung” in German) [Fre82, §53]. When considering the restriction to
the propositional case (using nullary predicates), the quantification applies on proposi-
tions and the atomic formulas correspond to variables. For this reason we use a notation
of variable in the following definition of the second-order formulas.

§8.3 The formulas of second-order logic are defined by the following grammar:

A,B ::= Xi(t1, ..., tn) | ¬A | A ∧B | ∀x.A | ∀Xi.A (Formulas)

where Xi is a predicate symbol, t1, ..., tn are terms and i ∈ N. It is sufficient to restrict
the formulas to universal quantification since existential quantification can be retrieved
by Remark 7.12. In the same fashion, the set of connectives {¬,∧} is functionally
complete (cf. Paragraph 6.10) and is thus sufficient to express ∨ or ⇒.

§8.4 For the interpretation of closed second-order formulas, we extend interpretation of pred-
icate calculus (cf. Definition 7.11) to an interpretation of predicate symbols by sets (the

20I remember a presentation where Gilles Dowek (jokingly) said that he did not know what second-order
logic was since he did not understand what first-order logic was.

Chapter 1 Logical traditions 37

set of all terms for which the represented property holds). However, as we saw in Sec-
tion 3, invoking the set of all sets is problematic. Either some properties cannot be
represented or we have to choose another foundation (using type theory for instance).
We leave all these foundational discussions aside.

§8.5 Example. In second-order logic, the predicate even corresponding to even natural
numbers is interpreted by the set of all even natural numbers {n | ∃k ∈ N, n = 2k}.

§8.6 Definition (Interpretation of closed second-order formulas). The interpretation of a
closed second-order formula w.r.t. a structure S = (U, I) is defined as follows:

• J∀Xi.AKS = minP J{Xi := P}AKS where P is a predicate, and

• other connectives are interpreted in the same way as for predicate calculus.

§8.7 Indiscernibility principle. Second-order logic enjoys a different (and more interesting
notion of equality). Instead of a simple binary predicate, equality can be defined with
the following second-order formula:

a = b is defined as ∀X.X(a)↔ X(b)

meaning that a and b are considered equal when they cannot be distinguished for all
properties, or in other words, that all property satisfied by a are satisfied for b and
vice-versa. This is usually attributed to Leibniz and even called Leibniz’s law for that
reason:

• the implication (a = b) ⇒
(
∀X.X(a) ↔ X(b)

)
is known as indiscernibility of

identities and is trivial21 (replace a by b or the converse and you obtain the identity
A⇔ A);

• the converse implication
(
∀X.X(a) ↔ X(b)

)
⇒ (a = b) is more controversial

because of whether or not it is a sufficient principle of individuation. Distinguishing
individuals strongly depends on what we mean by property. Are we considering
all possible properties? If so, then we are implicitly invoking the forbidden set of
all sets. If not, how are we choosing our properties? As Girard remarked [Gir18b,
Section 2.1], in a = a, one symbol is on the left and the other on the right but no
predicate takes spatial position into account. Is it considered logically irrelevant?
Why?

In fact, Leibniz’s notion of indiscernibility was a metaphysical concept which had nothing
to do with formal logic and the correspondence with Leibniz’s original thought may be
exaggerated. For that reason, I choose to not call this logical principle Leibniz’s law but
indiscernability principle instead.

21In its philosophical forms, it is rejected by Peter Geach who consider a notion of relative equality.

Chapter 1 Logical traditions 38

§8.8 Peano arithmetic. Peano arithmetic which has often been discussed in the context
of formal logic is naturally expressed as a second-order theory. All axioms except the
last one are statements of predicate calculus. The last axiom expresses induction over
natural numbers, which allows to prove a general statement P for all natural numbers
only from the base case P (0) and the propagation P (n)⇒ P (n+1). In other words, we
have:

∀X.
(
X(0) ∧ (∀n.X(n)⇒ X(n+ 1))

)
⇒ ∀n.X(n)

We call PA2 Peano arithmetic with second-order induction. A consequence of Gödel’s
incompleteness theorem is that second-order logic cannot be both sound and complete
since it can express Peano arithmetic. However, these properties are valid for predicate
calculus which also enjoys additional properties (e.g. compactness theorem). For that
reason, the last axiom is often replaced by infinitely many axioms of predicate calculus
for each predicate P (countably many):(

P (0) ∧ (∀n.P (n)⇒ P (n+ 1))
)
⇒ ∀n.P (n)

Peano arithmetic with this infinite axiom scheme is called PA. Since there are countably
many predicates in predicate calculus and uncountably many ones in second-order logic,
PA2 is theoretically more expressive than PA (some second-order predicate cannot be
represented in predicate calculus). However this has no serious effect in practice.

§8.9 Although full second-order logic is too powerful, it is possible to have alternative weaker
semantics for which we can retrieve properties we wish for. Reverse mathematics (cf.
Paragraph 5.7), for instance, studies subsystems of PA2. For more details about the
power and problems related to second-order logic, we refer to Väänänen’s article on
second-order logic [Vää19].

§8.10 It is possible to consider even stronger extensions of logic such as higher-order logic
which quantifies over nested sets of arbitrary depth instead of simply sets of elements as
in second-order logic. In particular, mathematics using quantification over general sets
should be expressed in higher-order logic as predicate calculus is not sufficient.

9 Natural deduction

§9.1 In the following sections, I will only mention Gentzen’s natural deduction and sequent
calculus since they are the most relevant proof systems for this thesis. The idea is
that we would like to represent a proof of a statement as a mathematical object. In
Figure 4.1, proofs are sequences of operations following some rules but a more structural
representation are trees since some rules can create several branches (the modus ponens
referring to two previous assumptions). This section is inspired by Olivier Laurent’s
great course notes on proof theory (https://perso.ens-lyon.fr/olivier.laurent/
thdem11.pdf).

https://perso.ens-lyon.fr/olivier.laurent/thdem11.pdf
https://perso.ens-lyon.fr/olivier.laurent/thdem11.pdf

Chapter 1 Logical traditions 39

...
A

...
B ∧i

A ∧B

...
A ∧B ∧e1
A

...
A ∧B ∧e2
B

[A]x...
B ⇒ i(x)

A⇒ B

...
A⇒ B

...
A ⇒e

B

...
A ∨i1

A ∨B

...
B ∨i2

A ∨B

...
A ∨B

[A]x...
C

[B]x...
C ∨e(x)

C

...
⊥ ⊥e
A

>i
>

...
A ∀i
∀x.A

...
∀x.A ∀e

{x := t}A

...
{x := t}A

∃i
∃x.A

...
∃x.A

[A]x...
C ∃e(x)

C

Figure 9.1: Rules of intuitionistic natural deduction (NJ). We require that x is not free
in any hypothesis of the rule ∀i and that x is not free in neither C nor any hy-
pothesis for the rule ∃e. These requirements avoid weird behaviours related
to variables such as identifying the reference of two variables which were pre-
viously pointing at different things. The expression [A]x corresponds to an
infinite supply of occurrences of an assumed formula A. These assumptions
have to be justified by specifying which rule introduced them. The x in [A]x
refers to a rule identified by a label x. A rule can be linked to any num-
ber of assumptions (including 0). These assumptions are called discharged
assumptions.

§9.2 We will only focus on logic without second or higher-order quantification because this is
how proof systems are usually introduced.

Intuitionistic natural deduction

§9.3 Natural deduction has been introduced by Gentzen [Gen35a] as an alternative to ax-
iomatic systems which would be more natural. Such a system should look like as much
as possible as the “natural rules of logic”. The formulas we consider are defined by the
following grammar:

A,B ::= Xi | > | ⊥ | A ∧B | A ∨B | A⇒ B | ∀x.A | ∃x.A i ∈ N

where > and ⊥ corresponds to constants for truth and contradiction. Rules are written
several premise formulas on the top of a conclusion formula, separated by a horizontal
line. The rules of natural deduction are presented in Figure 9.1. The rules are divided
into two classes: introduction rules and elimination rules. An intuitive way to understand
this separation is that introduction rules correspond to defining or constructing a logical

Chapter 1 Logical traditions 40

[A ∨B]1

[A]2 ∨i2
B ∨A

[B]3 ∨i2
B ∨A

∨e(2, 3)
B ∨A ⇒ i(1)

(A ∨B)⇒ (B ∨A)

Figure 9.2: A proof of (A ∨B)⇒ (B ∨ A) in natural deduction. The application of the
rule ⇒ i(1) needs to justify that there is some A ∨ B above which would
imply B∨A. The 1 shows that we found the required formula in the formula
supply [A ∨B]1 of identifier 1.

symbol (if you have A and B, you can construct A∧B) and elimination rules define the
use of logical symbols (if you have A∧B then you can extract either A or B). The rule
⇒e corresponds to the so-called modus ponens and show how we can use an implication.

§9.4 Defined negation. Remark that there is no rule for the negation ¬A. This is because
the negation can be defined by ¬A := A ⇒ ⊥. It is then sufficient to have rules for
implication and contradiction. If we want to explicitly give the rules for negation (which
would be redundant), we would have an introduction rule reaching ⊥ from [A] and
inferring ¬A, and an elimination rule producing ⊥ from A and ¬A.

§9.5 I comment the rules of NJ (cf. Figure 9.1).

• For ∧, we can either construct a pair or destruct it by extracting a component;

• The rule ⇒ i allows to infer A ⇒ B when you can reach B with some A existing
somewhere above, and⇒e is the modus ponens which allows to use an implication
A⇒ B providing you can feed it with an argument A;

• The rules ∨i1 and ∨i2 make a statement more confusing22 by encapsulating it in a
more general structure so that they can be treated in a uniform way. For instance,
a proof of A and B would be treated as the same entity A∨B, thus hiding if it was
a proof of A or B. The rule ∨e corresponds to case analysis. If we have proven
A ∨ B then we can look at the possible case: either A or B is true but we do not
know which one. If both lead to the same conclusion C then C can be inferred
from the whole reasoning;

• The rule ⊥e, corresponding to the explosion principle (cf. Paragraph 1.9), says
that from a contradiction, anything can be said23;

• The rule >i introduces a statement considered trivially provable;

22Why would we do that, logically speaking? This rule will later be justified by its connexion with
programming.

23I give a brief explanation because people often find it confusing. Assume A and ¬A are true. Then
A∨B must be true since A is true in particular. But since ¬A is true (and hence A false), it follows
that B must be true.

Chapter 1 Logical traditions 41

• The rule ∀i says that a statement can be generalised. The rule ∀e says that a
general statement can be instantiated to a more specific case;

• The rule ∃i says that if we have a witness t for some formula A then there exists
some x (which is t) such that A holds for it (it is similar to the introduction of
∨). The rule ∃e which is a bit more confusing behaves exactly like a generalised
∨e rule.

§9.6 Proofs are trees constructed with those rules such that their leaves are formulas corre-
sponding to assumptions. An example of proof is given in Figure 9.2. In particular, the
formula A alone (written [A]x for some x) is a proof by itself because it corresponds to
assuming A, then having to prove A, which is trivial24. We can finally remark that the
only axiom that natural deduction allows is the identity A⇒ A.

§9.7 When trying to construct a proof, there are two strategies which imply two different
reading of rules. The bottom-up method starts from the conclusion and use rules from
the bottom until reaching justified hypotheses only. It is especially natural for impli-
cations since the goal tells what hypothesis you need to introduce. This strategy is
also called goal-directed. The other strategy uses a top-down reading of rules (it is also
probably the most natural for mathematicians). We start from assumptions and try to
reach a wanted goal. We then have to guess what hypotheses are necessary.

§9.8 Although this system is called “natural”, it is not exactly natural in the sense that it does
not reflect the practice of mathematicians. Look at the rule ∨i1. What mathematician
would prove A then forget that he proved A by making it a proof of A ∨ B? The
same problem happens with ∃i. We actually lose information with these operations.
We can also observe a duality between rules such as the elimination of conjunction and
the introduction disjunction or the elimination and introduction of the universal and
existential quantifiers. Those rules are not so innocent since they are what we call
irreversible rules. When we wish to prove A ∨ B in a bottom-up strategy and choose
either A or B, we can do a mistake and obtain an unprovable goal. The same phenomena
happens with ∃i when choosing a wrong existential witness t. The provability is not
preserved in a bottom-up use of rules. Moreover, the elimination for these connectives
also has a quite weird shape. If we look at the rule ∨e in Figure 9.1, the “flow of
reasoning” seems bended: there is a path ending on A ∨ B then continuing to the
conclusion C and going up to the hypotheses [A]x and [B]x which are the connectives
subject to the formula A ∨ B on which the rule is focussing. This detour looks like a
compensation for the inability to produce A and B on the bottom (which would break
the shape of tree) because of the rigid distinction between hypothesis and conclusion.

24When I learned logic for the first time, I was very confused by these discharged assumptions. I
thought that since you could start from any assumption without justification, anything could be
trivially proven. You want to prove A? Well take a node A and it is done! But actually, either
you have unjustified assumptions and they represent hypotheses in the context of an hypothetical
reasoning, or assumptions are justified which means they have been correctly introduced by some
rule

Chapter 1 Logical traditions 42

ax
A ` A

Γ ` A ∆ ` B ∧i
Γ,∆ ` A ∧B

Γ ` A ∧B ∧e1
Γ ` A

Γ ` A ∧B ∧e2
Γ ` B

Γ ` A ∨i1
Γ ` A ∨B

Γ ` B ∨i2
Γ ` A ∨B

Γ ` A ∨B ∆1, A ` C ∆2, B ` C ∨e
Γ,∆1,∆2 ` C

Γ, A ` B
⇒ i

Γ ` A⇒ B

Γ ` A⇒ B ∆ ` A ⇒e
Γ,∆ ` B

Γ ` ⊥ ⊥e
Γ ` A

>i
` >

Γ ` A ∀i
Γ ` ∀x.A

Γ ` ∀x.A ∀e
Γ ` {x := t}A

Γ ` {x := t}A
∃i

Γ ` ∃x.A
Γ ` ∃x.A ∆, A ` C

∃e
Γ,∆ ` C

Γ ` A
wL

Γ, B ` A
Γ, B,B ` A

cL
Γ, B ` A

Γ ` A
exL

σ(Γ) ` A

Figure 9.3: Rules of intuitionistic natural deduction (NJ). We require x 6∈ fv(Γ) for ∀i
and x 6∈ fv(∆ ∪ {C}) for ∃e. The expression σ(Γ) is the permutation of the
order of the formulas in Γ given by some function σ.

A1, ..., An...
B

⇝
...

A1, ..., An ` B

Figure 9.4: Shape shifting from the vertical and horizontal (sequents) presentations of
rules. Inspired by a picture I once saw in a presentation of Elaine Pimentel.

§9.9 Sequents. If you try to prove some statements by yourself, you will probably find
that the rules are not very handy to write proof trees. Consider that you want to prove
(A ∨ B) ⇒ (B ∨ A) as in Figure 9.2. Either you start from the top and assume A ∨ B
and try to reach B ∨ A, which is not very convenient when you want to write a tree
(from the root to the leaves) or you start from the bottom but then you have to keep
somewhere that you assumed A ∨ B. We will see that it is even less convenient when
considering classical logic. Another style of rules also suggested by Gentzen [Gen35a] is
to use sequents which are expressions Γ ` A where Γ := {A1, ..., An} is a set of formulas
representing hypotheses. This expression asserts that from Γ, it is possible to infer A. It
is expected to have the same meaning as the formula (A1∧ ...∧An)⇒ A. The rules now
handle sequents instead of formulas. By doing so, we can keep track of the hypotheses at
the left of the symbol ` (called “turnstile”). This change of proofs’ shape is illustrated
in Figure 9.4. The rules for natural deduction in a sequent presentation are given in
Figure 9.3. You can compare the two set of rules to convince yourself that they have the
same meaning. As expected, the rule ⇒ i only introduce the premise on the left part
of `. Now, since the assumptions are now located in the left part of ` and not leaves
anymore, we need another terminal rule which is the axiom A ` A (as we said before
in Paragraph 9.6, the identity is the only axiom considered). Because of this change we
also need to represent the fact that we can use as many occurrences of a hypothesis as
we want (this corresponds to the fact that a rule can be linked with several occurrences

Chapter 1 Logical traditions 43

¬¬A dne
A

Γ ` ∆, A,B
∨im

Γ ` ∆, A ∨B
Γ ` ∆, A ∨B

∨em
Γ ` ∆, A,B

Γ ` ∆
wR

Γ ` ∆, A

Γ ` ∆, A,A
cR

Γ ` ∆, A

Γ ` ∆
exR

Γ ` σ(∆)

Figure 9.5: Additional rules of classical natural deduction (NK) for the two presentations
(the first rule for the presentation without sequents and the others for the
presentation with sequents). As for exL, the use of exR is usually implicit.

[¬(A ∨ ¬A)]1

[¬(A ∨ ¬A)]1

[A]2 ∨i1
A ∨ ¬A

⇒e
⊥ ⇒ i(2)
¬A ∨i2

A ∨ ¬A
⇒e

⊥ ⇒ i(1)
¬¬(A ∨ ¬A)

dne
A ∨ ¬A

ax
A ` A

wR
A ` A,⊥

⇒ i
` A,¬A

∨im
` A ∨ ¬A

Figure 9.6: Proof of excluded middle for the two presentations of natural deduction
(without and with sequents). Recall that we write ¬A for A ⇒ ⊥. Look
at how it is much more complicated without sequent where it is not natural
to write multiple conclusions. In the left proof, remark that we come back
again to the goal A∨¬A but together with the hypothesis ¬(A∨¬A) which
makes it provable.

of a discharged assumption). For that reason, the structural rules wL (left weakening)
and cL (left contraction) are introduced. We also have a rule exL which exchanges the
order of formulas (if we want to be very formal) but its use is usually left implicit.

§9.10 Structural rules. The weakening rule can be interpreted as making the goal “weaker”
by adding useless hypotheses. In a bottom-up reading, it corresponds to erasing useless
information when trying to prove a statement. The contraction corresponds to identi-
fying two copies of a formula (top-down) or duplicating formulas (bottom-up). These
operations are very common and natural: when trying to prove a statement, it happens
that some information are not relevant or that we use several times the same hypothesis.
This happens when proving the sequents A,B ` A and A ` A ∧A.

Chapter 1 Logical traditions 44

Classical natural deduction

§9.11 We presented a system for intuitionistic logic, a logic rejecting classical rules such as the
excluded middle A∨¬A (cf. Paragraph 4.3). If we try to give a derivation of ` A∨¬A,
then we have to prove either A or B, which is impossible for a generic statement A we
know nothing about. It is still possible to get the classical statements back:

• in the original notation without sequent, we can add a rule called double-negation
elimination which infer A from ¬¬A (which is equivalent to the excluded middle).
It is also possible to simply add an axiomatic rule for the excluded middle;

• in the notation with sequent, we allow multiple conclusions and the meaning of a
sequent A1, ..., An ` B1, ..., Bm is (A1 ∧ ... ∧ An) ⇒ (B1 ∨ ... ∨ Bm). In order to
prove the excluded middle, we must consider an alternative (but equivalent) rule
∨im for disjunction which infers Γ ` A ∨B from Γ ` A,B.

This yields a system of classical natural deduction (NK). The additional rules to add for
classical logic are given in Figure 9.5 and a proof excluded middle for the two presenta-
tions of NJ is given in Figure 9.6.

§9.12 But what changed by adding these rules? If we look at Figure 9.6, the rule dne over
a formula A (with conclusion ¬¬A) allows the introduction of several occurrences of A
so that the proof can keep going without “loss of information” (if we use ∨i, it forces
us to prove either A or ¬A and we lose the possibility to use the other). Similarly, for
the sequent presentation, the new rules allow an occurrence of A to be introduced as a
hypothesis. Classical logic is related to the ability to save a goal for later and switch to
another goal, or to retract during an attempt to prove a statement25.

§9.13 This ability to introduce hypotheses can actually be simulated in intuitionistic logic as
well by considering Gödel’s double-negation translation. Even though the excluded mid-
dle A ∨ ¬A is not provable, it appears that its double-negated version ¬¬(A ∨ ¬A) is
provable in intuitionistic logic. The first proof of Figure 9.6 corresponds to an intuition-
istic proof of ¬¬(A ∨ ¬A).

Proof reduction

§9.14 In natural deduction, if we introduce a connective then eliminate it, we obtain a redun-
dancy since it is the same as just introducing it (as if we were computing n+ 1− 1). It
should then be possible to eliminate such redundancies in order to obtain a simpler and
irreducible final proof called the normal form of a proof. However, it is not so simple to

25This idea has been illustrated by Wadler’s story of the Devil of excluded middle. The devil suggests
an offer: (a) either he gives you a billion dollars (b) or anything you wish provided you give him a
billion dollars. He chooses (b). You try to get a billion dollars after few years but then the Devil
changes his choice and say that he chooses (a) instead and gives you a billion dollars.

Chapter 1 Logical traditions 45

...
A1

...
A2 ∧i

A1 ∧A2 ∧ek
Ak

⇝
...
Ak

...
Ak ∨ik

A1 ∨A2

[A1]x...
C

[A2]x...
C
∨e(x)

C

⇝

...
Ak...
C

[A]x...
B ⇒ i(x)

A⇒ B

...
A ⇒e

B

⇝

...
A...
B

...
A ∀i
∀x.A ∀e

{x := t}A

⇝
...

{x := t}A

...
{x := t}A

∃i
∃x.A

[A]x...
B ∃e(x)

B

⇝

...
{x := t}A

...
B

Figure 9.7: Proof reduction for NJ (presentation without sequent) with k ∈ {1, 2}.

...
A ∨B

[A]x...
C ⇒ D

[B]x...
C ⇒ D ∨e(x)

C ⇒ D

...
C ⇒e

D

⇝ ...
A ∨B

[A]x...
C ⇒ D

...
C ⇒e

D

[B]x...
C ⇒ D

...
C ⇒e

D ∨e(x)
D

Figure 9.8: Example of commutative case of reduction for the rules ∨e/⇒e of NJ.

do these proof reductions26. Reduction rules for NJ are given in Figure 9.7. The case
of ∧ corresponds to extracting a component from a pair we constructed. In the case of
⇒, the proof is replaced by of proof of A but instead of coming from the assumption
[A]x, it comes from the proof of A on the right. All assumptions [A]x are then replaced
by a proof of A: we have a substitution of proofs which multiply the size of the proof
by the number of occurrences of [A]x. In the case of ∀, we know that A holds for some
possible variables x so we generalise it into ∀x.A but then specialise it with some term t.
We can reduce this to a proof of {x := t}A which takes the proof of A and replaces its
occurrences of variables x by t. The other rules behaves in the same ways as the rules
previously described.

§9.15 There exists more subtle cases of reduction which does not correspond to redundancies
introduced with an elimination rule following and introduction rule. They correspond
to exchange of rules and are called commutation cases for that reason. An example of
reduction for a commutative case is presented in Figure 9.8. The (problematic) rules
26Although it is called reduction, it is possible for the normal form to be bigger.

Chapter 1 Logical traditions 46

concerned by these commutative cases are the irreversible rules ∨e, ∃e and ⊥e.

§9.16 Links with computation. Although this procedure of proof reduction looks innocent,
it has deep connexions with computation as we will see later in this thesis. The reduction
rule for ∧ corresponds to constructing a pair and extracting a component out of it. The
reduction for ⇒ corresponds to activating a function by inlining, by copying its code
and pasting it in the place of all the corresponding function calls. This will establish a
formal correspondence between (intuitionistic) proof and (functional typed) programs,
presented later in this thesis.

10 Sequent calculus

Classical sequent calculus

§10.1 Gentzen’s original goal was to establish consistency results for number theory but it
seems that natural deduction was not very convenient for that purpose. For that rea-
son, he introduced another proof system called classical sequent calculus (LK). In this
system we also have rules handling sequents but instead of introduction and elimination
rules, we only have introduction rules but which introduce formulas either on the left
(as hypothesis) or on the right (as conclusion) of the symbol `. Sequent calculus has
redundancies since several sequent calculus proofs can correspond to a single natural
deduction proof. As we will see, sequent calculus proofs allow a more fine-grained anal-
ysis of reasoning. As for the sequent presentation of NJ, a restriction of conclusion to a
single formula yields intuitionistic sequent calculus (LJ). The rules of LK are presented
in Figure 10.1a. As for natural deduction, we have identity rules (although one is added)
and structural rules. Logical rules are divided into two equivalent variants: additive and
multiplicative rules.

§10.2 Additive and multiplicative rules. Additive (marked with a) and multiplicative
rules (marked with m) are two variants of the same logical concept. If we look at ∧Rm

and ∧Ra in bottom-up reading, the former splits its contexts and the latter shares its
contexts. Since structural rules (which are the same as for natural deduction) allow the
erasure and duplication formulas, the two variants can be shown to be equivalent. This
equivalence is illustrated by an example in Figure 10.3. This distinction emphasises the
point of view of formulas as resources which is essential in linear logic. Duplicating
formulas ensures that we will not have a shortage of resources and erasing formulas
ensures that we get rid of superfluous information so that we can reach the axiom
A ` A. In strictly linear logic which see formulas as limited resources, structural rules are
forbidden27 and multiplicative and additive rules become truly distinct logical concepts
with their own handling of formulas, seen as resources.

27But allowed with more control in full linear logic.

Chapter 1 Logical traditions 47

axm
A ` A

Γ1 ` A,∆1 Γ2, A ` ∆2 cutm
Γ1,Γ2 ` ∆1,∆2

axa
Γ, A ` A,∆

Γ ` A,∆ Γ, A ` ∆
cuta

Γ ` ∆

(a) Multiplicative and additive identity rules.

Γ ` ∆ ex
σ(Γ) ` σ′(∆)

Γ ` ∆
wL

Γ, A ` ∆

Γ, A,A ` ∆
cL

Γ, A ` ∆

Γ ` ∆
wR

Γ ` ∆, A

Γ ` ∆, A,A
cR

Γ ` ∆, A

(b) Structural rules.

Γ ` A,∆
¬L

Γ,¬A ` ∆

Γ, A ` ∆
¬R

Γ ` ¬A,∆

(c) Rules for negation.

Γ, A,B ` ∆
∧Lm

Γ, A ∧B ` ∆

Γ1 ` A,∆1 Γ2 ` B,∆2 ∧Rm

Γ1,Γ2 ` A ∧B,∆1,∆2

Γ1, A ` ∆1 Γ2, B ` ∆2 ∨Lm

Γ1,Γ2, A ∨B ` ∆1,∆2

Γ ` A,B,∆
∨Rm

Γ ` A ∨B,∆
Γ1 ` A,∆1 Γ2, B ` ∆2 ⇒Lm

Γ1,Γ2, A⇒ B ` ∆1,∆2

Γ, A ` B,∆
⇒Rm

Γ ` A⇒ B,∆

>Rm

` >
⊥Lm

⊥ `
Γ ` ∆ >Lm

Γ,> ` ∆

Γ ` ∆ ⊥Rm

Γ ` ⊥,∆

(d) Multiplicative logical rules.

Γ, A ` ∆
∧La

1
Γ, A ∧B ` ∆

Γ, B ` ∆
∧La

2
Γ, A ∧B ` ∆

Γ ` A,∆ Γ ` B,∆
∧Ra

Γ ` A ∧B,∆
Γ, A ` ∆ Γ, B ` ∆

∨La

Γ, A ∨B ` ∆

Γ ` A,∆
∨Ra

1
Γ ` A ∨B,∆

Γ ` B,∆
∨Ra

2
Γ ` A ∨B,∆

Γ ` A,∆ Γ, B ` ∆
⇒La

Γ, A⇒ B ` ∆

Γ, A ` ∆
⇒Ra

1
Γ ` A⇒ B,∆

Γ ` B,∆
⇒Ra

2
Γ ` A⇒ B,∆

⊥La

Γ,⊥ ` ∆
>Ra

Γ ` >,∆

(e) Additive logical rules.

Γ, A ` ∆
∃L

Γ, ∃x.A ` ∆

Γ ` {x := t}A,∆
∃R

Γ ` ∃x.A,∆
Γ, {x := t}A ` ∆

∀L
Γ, ∀x.A ` ∆

Γ ` A,∆
∀R

Γ ` ∀x.A,∆

(f) Rules for quantifiers. We require x 6∈ fv(Γ) for ∀R and ∃L.

Figure 10.1: Rules of classical sequent calculus (LK).

Chapter 1 Logical traditions 48

Γ ` A,∆
⊥Lm

⊥ `
⇒Lm

Γ,¬A ` ∆

Γ, A ` ∆
⊥Rm

Γ, A ` ⊥,∆
⇒Rm

Γ ` ¬A,∆

Figure 10.2: Simulation of negation rules with other LK rules.

` Γ, A ` Γ, B
∧m

` Γ,Γ, A ∧B
c

` Γ, A ∧B
(a) Simulation of ∧a with ∧m.

` Γ, A
w

` Γ,∆, A

` ∆, B
w

` Γ,∆, B
∧a

` Γ,∆, A ∧B
(b) Simulation of ∧m with ∧a.

Figure 10.3: Equivalence between additive and multiplicative conjunction. The double
line represents multiple applications of a same rule.

§10.3 I comment the interesting rules of LK (cf. Figure 10.1). It is mostly the rules of “prob-
lematic” connectives such as ∨ and ∃ that change. The rules for ∧ and ∀ are the same
as in natural deduction.

• Notice the presence of a new rule: the cut rule. The cut rule takes its name from
the fact that, in a top-down reading, the formula A disappears during inference in
order to connect two goals. The meaning of this rule is that if A is proven in some
context (left sequent) and that can be used in another context (right sequent),
then we can continue the proof in the composition of these two contexts by using
A. Hence, the cut is a shortcut using A as a bridge in reasoning. This can also be
understood as the use of a lemma A in a bottom-up reading.

• The rules for negation ¬ can be confusing. They can actually be defined with
¬A := A ⇒ ⊥ and other LK rules as shown in Figure 10.2 (hence they are
redundant). The rule ¬L says that if you can prove A among other alternative
goals ∆, then it is valid to turn A into an hypothesis ¬A. If A was a provable goal,
then the provability is given by contradiction, and otherwise a goal of ∆ must be
provable by validity of the disjunction. As for ¬R, if a goal is provable with A
as hypothesis, then it is valid to turn A into a goal ¬A := A ⇒ ⊥ which would
introduce a hypothesis A and an unprovable goal ⊥ (but it does not matter since
∆ was provable by itself);

• For the rule ∨La, remark that it is nicer than ∨e because A∨B is allowed to appear
on the bottom sequent (since it is introduced on the left and not eliminated from the
top). Hence, we can do the same reasoning without “bending” the structure of the
rule as for ∨e. The multiplicative variant ∨Rm corresponds to classical disjunction
which keeps the two goals available (hence removing the need for “data saving”).

• The rule ∃La is similar to ∨La. If you can prove your goal with a generic A then
you should be able to prove it with the fact that there is some x such that A holds;

Chapter 1 Logical traditions 49

• The rule ⇒Lm still is modus ponens but in another form. If you are able to prove
A in some context and know that B is the key argument to prove your goal ∆,
then you know that A⇒ B is a relevant tool to infer ∆.

• The rule ⊥La corresponds to the explosion principle. If you have ⊥ as hypothesis
then your statement is vacuously proven.

§10.4 Subformula property. It appears that proofs of a sequent Γ ` ∆ only use subfor-
mulas occurring in Γ ∪ ∆ except when the cut rule is present. This property is called
subformula property28. The meaning of this property is rather profound: it means that
everything we need is already there. A proof enjoying the subformula property does not
rely on something else than subformulas of its conclusion. There is no need to summon
something external to the proof (in our intuition or culture of mathematics for instance).

§10.5 Cut-elimination theorem. Gentzen’s showed that the cut rule, representing the use
of lemma in mathematical practice was in fact... useless. It can be eliminated, exactly
like the redundancies of natural deduction. The proof of the cut-elimination theorem
(also called Hauptsatz) gives rise to a procedure of proof reduction. Let us now mention
why sequent calculus is interesting regarding semantic results. If there is a proof of
⊥, then there must be a cut-free proof of ⊥ (by cut-elimination). However, there is
no cut-free proof of ⊥ because of the subformula property (which is a key tool for the
cut-elimination theorem) and because no rule introduces ⊥. It follows that there cannot
be a proof of ⊥, which is the consistency property. We do not give the reduction rules
since they are quite complicated. A simplification of LK will be presented later, in which
reduction rules are way simpler.

§10.6 Symmetry. Notice how LK rules enjoy a very beautiful symmetry. The origin of this
symmetry is the separation between left and right introduction rules. The rules ¬L and
¬R show that the symbol ` acts as an inversion of point of view. This is due to involution
of negation occurring in classical logic: we have A = ¬¬A (we can transfer a formula on
the left then on the right or vice-versa and obtain the formula we started with). This
duality is appears in the left/right distinction of rules. The rule ∧Rm and ∨Lm have
the same operational behaviour except that the former works on the right and the latter
on the left. Logical operations behave exactly like how our movements are reproduced
by a mirror. A conjunction on the left is a disjunction on the right and vice-versa. The
same phenomena occurs with the other rules of the pair ∧/∨ and ∀/∃. It shows that it is
technically possible to just put every formulas on the right with negation and forget half
the rules we presented. This symmetry was not present in NJ because NJ enjoys a top-
bottom symmetry. In Figure 9.1, look at how the elimination rules for ∧ are upside-down
versions of the introduction rules for ∨. However, as mentioned in Paragraph 9.8, this
symmetry is not natural for elimination rules since we cannot produce two conclusions A

28It does not hold for NJ since some rules such as the elimination of disjunction ∨e can introduce
formulas which are not necessarily subformulas of C. For instance, if C is always provable (e.g.
D ⇒ D) then any formulas can take the place of A and B, including formulas more complex than C.

Chapter 1 Logical traditions 50

ax
` A⊥, A

` Γ, A ` ∆,¬A
cutm

` Γ,∆

` Γ, A,A
c

` Γ, A

` Γ w
` Γ, A

` Γ, A ` ∆, B
∧m

` Γ,∆, A ∧B
` Γ, A ` Γ, B

∧a
` Γ, A ∧B

` Γ, A,B
∨m

` Γ, A ∨B
` Γ, A

∨a1` Γ, A ∨B
` Γ, B

∨a2` Γ, A ∨B
` Γ, A

∀
` Γ, ∀x.A

` Γ, {x := t}A
∃

` Γ, ∃x.A

>m

` >
` Γ ⊥m

` Γ,⊥
>a

` Γ,>

Figure 11.1: (Right) Monolateral rules of classical sequent calculus (LK). We require
x 6∈ fv(Γ) for ∀. I choose to exclude the additive axiom rule because we
will not need it.

ax
` ¬A,A

ax
` ¬B,B

ax
` ¬C,C

∧m
` B ∧ ¬C,¬B,C

∧m
` A ∧ (B ∧ ¬C),¬A,¬B,C

∨m
` A ∧ (B ∧ ¬C),¬A,¬B ∨ C

∨m
` A ∧ (B ∧ ¬C),¬A ∨ (¬B ∨ C)

∨m
` (A ∧ (B ∧ ¬C)) ∨ (¬A ∨ (¬B ∨ C))

Figure 11.2: Proof of ((A ∧ B)⇒ C)⇒ (A⇒ (B ⇒ C)) in (right) monolateral sequent
calculus. If we push negations, the formula becomes ¬((A∧B)⇒ C)∨(A⇒
(B ⇒ C)) = ¬(¬(A ∧B) ∨ C) ∨ (¬A ∨ (¬B ∨ C)) = (¬(¬A ∨ ¬B) ∧ ¬C) ∨
¬A ∨ ¬B ∨ C = (A ∧B ∧ ¬C) ∨ ¬A ∨ ¬B ∨ C.

and B (which would break to shape of tree) and have to bend the rule with an auxiliary
formula C.

11 Monolateral sequent calculus

§11.1 The logical space of interaction. Thanks to the nice symmetries of LK and the fact
that the symbol ` acts like a mirror, it is possible to forget one side and just consider
the other as suggested in Paragraph 10.6. If we take the remark seriously, this yields a
monolateral sequent calculus. The rules of this new system are presented in Figure 11.1.
Although it is possible to only consider formulas on the left, we usually consider formulas
on the right. We obtain a unique rule for each connective and consider a multiplicative
cut which is more standard. Sequents are therefore collections of formulas ` Γ. Working
on this new calculus has few interesting consequences:

Chapter 1 Logical traditions 51

• there is no rule for negation (because no way to go the left of ` anymore) and
negation only appears on atomic formulas by pushing the negation with double-
negation elimination (¬¬A ⇝ A) and De Morgan’s laws. The set of formulas
becomes:

A,B ::= Xi | ¬Xi | A ∧B | A ∨B | ∀x.A | ∃x.A i ∈ N;

• a sequent is a sort of space of interaction where atomic formulas interact with their
negation by the axiom rule;

• there is no distinction between a negated conclusion and a hypothesis. Input
hypotheses can then be seen as demand for a formula and the axiom rule connects
supply and demand;

• the implication A ⇒ B must be defined as ¬A ∨ B since there is no hypotheses
anymore.

I give an example of proof of monolateral sequent calculus in Figure 11.2.

§11.2 A simpler analysis of sequent calculus. Thanks to this monolateral version, it is
possible to provide a simple interpretation of rules and logical principles.

� Implication If we look at A ⇒ B = ¬A ∨ B, the bottom-up reading of the rule ∨m
gives ` ¬A,B which can be understood as the demand for A with B waiting in
the space of interactions.

� Cut rule The cut rule joins two spaces of interaction along compatible formulas. It is
similar as plugging a male cable with a female cable in electronics.

� Conjunction Multiplicative conjunction splits by distributing its interaction context
whereas additive conjunction shares it. They are both equivalent thanks to struc-
tural rules.

� Disjunction Multiplicative disjunction A ∨ B keeps A and B separated but living in
the same space of interaction whereas additive disjunction only keeps one side and
deletes the other. They are both equivalent thanks to structural rules.

� Neutral elements The constant > corresponds to having a trivial goal and the con-
stant ⊥ corresponds to having an unprovable goal which can be discarded.

§11.3 Comparing natural deduction and sequent calculus. Something I find very
instructive is how natural deduction rules can be translated into sequent calculus. First,
introduction rules are exactly the same (nothing surprising) and only elimination rules
are translated. Some cases of translation are presented in Figure 11.3. First, remark
that a cut always appears. If elimination rules symbolise the use of a symbol, then cuts
are also related to use. Actually, sequent calculus concentrates all the use of symbols in
the cut rules and everything else is definition (introduction of symbols). Recall that cuts
represent the use of a lemma, then sequent calculus turns the use of symbols into the use

Chapter 1 Logical traditions 52

Γ ` A ∧B ∧e1
Γ ` A

⇝ Γ ` A ∧B

ax
A ` A ∧La

1
A ∧B ` A cutm

Γ ` A

Γ ` A ∨B ∆1, A ` C ∆2, B ` C ∨e
Γ,∆1,∆2 ` C

⇝
Γ ` A ∨B

∆1, A ` C
wL

∆1,∆2, A ` C

∆2, B ` C
wL

∆1,∆2, B ` C ∨La
1

∆1,∆2, A ∨B ` C cutm
Γ1,∆1,∆2 ` C

Γ ` A⇒ B ∆ ` A ⇒e
Γ,∆ ` B ⇝ Γ ` A⇒ B

∆ ` A
ax

B ` B ⇒Lm

∆, A⇒ B ` B
cutm

Γ,∆ ` B

Figure 11.3: Translation of the rules ∧e1 and ⇒ e of NJ (sequent presentation) into
sequent calculus proofs. The double line represents multiple applications of
a same rule.

of lemmas. The left premise of the cut defines/introduces a symbol and the right premise
is a lemma explaining how that symbol is able to prove our goal. Sequent calculus is often
said to be analytic: it decomposes the steps of natural deduction into more elementary
operations. In particular, a natural deduction proof potentially corresponds to several
different sequent calculus proofs29 (permuting the order of rules for instance) while there
are not so many possible choices in natural deduction proofs.

Cut-elimination procedure

§11.4 In natural deduction, we are interested in removing redundancies coming from the elim-
ination of previously introduced symbols. In sequent calculus, we only have introduc-
tions, hence these redundancies disappear. However, as we have seen in the previous
translation of NJ into LJ (cf. Figure 11.3), elimination rules introduce cuts, hence the
elimination of redundancies becomes the elimination of cuts. But more than that, con-
sistently with the fact that redundancies somehow turned into uses of lemmas (which
are essentially implications), cut-elimination will naturally looks like the elimination of
redundancy for implication: lemmas will be inlined, i.e. their call is replaced by their
proof, similarly to how convenient mathematical notations can be replaced by their more
primitive definition. Cut-elimination is a procedure of explicitation. The main cases of
cut-elimination are presented in Figure 11.4. A very intuitive computational explanation
of these reduction rules can be given:

• the elimination ax/cut is an annihilation occurring when an axiom rule interacts
with a cut rule, leaving only the other premise of the cut which was unrelated to
the interaction;

29For that reason, natural deduction is seen as a quotient over sequent calculus proofs.

Chapter 1 Logical traditions 53

ax
` ¬A,A ` A,Γ

cutm
` A,Γ

⇝ ` A,Γ

` Γ, A ` ∆, B
∧m

` Γ,∆, A ∧B
` Ξ,¬A,¬B

∨m
` Ξ,¬A ∨ ¬B

cutm
` Γ,∆,Ξ

⇝ ` Γ, A

` ∆, B ` Ξ,¬A,¬B
cutm

` ∆,Ξ,¬A
cutm

` Γ,∆,Ξ

` Γ, A1 ` Γ, A2 ∧a
` Γ, A1 ∧A2

` ∆,¬Ak ∨ak` ∆,¬A1 ∨ ¬A2 cutm
` Γ,∆

⇝ ` Γ, Ak ` ∆,¬Ak cutm
` Γ,∆

` Γ, A
∀

` Γ, ∀x.A
` ∆,¬{x := t}A

∃
` ∆, ∃x.¬A

cutm
` Γ,∆

⇝ ` Γ, {x := t}A ` ∆,¬{x := t}A
cutm

` Γ,∆

Figure 11.4: Main cases of cut-elimination for the (right) monolateral sequent calculus.

` Γ, B, C ` Γ1, A, C, ∧a
` Γ, A ∧B,C ` ∆,¬C

cutm
` Γ,∆, A ∧B

⇝

` Γ, B, C ` ∆,¬C
cutm

` Γ,∆, A

` Γ, A, C ` ∆,¬C
cutm

` Γ,∆, B
∧a

` Γ,∆, A ∧B

Figure 11.5: An example of commutation case in cut-elimination for LK.

• the elimination ∧m/∨m is a rewiring on the premises: the left and right premises
respectively interact with each other through an application of cut rule;

• the elimination ∧a/∧a corresponds to a choice. Two parallel possibilities are on
the left and a selector is given on the right of the cut rule;

• the elimination ∀/∃ corresponds to shifting the interaction between general state-
ments to specific cases.

§11.5 In sequent calculus (independently from NJ’s translation), most cases of cut-elimination
are commutations. They occur in case a cut is applied on a formula which is not intro-
duced by the last rule. For instance, in Figure 11.5, the cut rule is applied on C but
it is A ∧ B which has been introduced in the left sequent. It intuitively corresponds to
an interaction at distance, and which can be resolved by pushing the cuts up so that a
direct interaction can be done, as if the interaction was obtruded.

§11.6 There are several ways to eliminate cuts and we just suggested one set of rules among
others. The idea is always the same: suggesting another proof derivation with the
same premises (possibly with duplications or unused premises) and the same conclusion.
The reduced proof has to be “simpler”. Some sets of cut-elimination rules are “better”

Chapter 1 Logical traditions 54

than others for some properties. An important property is termination which states
that applying the rules will ultimately ends on an irreducible cut-free proof. Another
property is confluence with states that when there are two ways to reduce a proof,
they ultimately ends on the same irreducible cut-free proof. This usually fails with LK
for the typical cut-elimination rules but it is possible to hack sequent calculus so to
get the desired properties. If you want more about confluence in sequent calculus, I
wrote a blog article with Farzad Jafarrahmani (https://prooftheory.blog/2021/09/
23/confluence-in-the-sequent-calculus/).

§11.7 Difference between implication and turnstile. What is the difference between `
and⇒? Did not we say that they had the same meaning? Are we just adding superfluous
notations? The expression A ` B could be written A⇒ B. It is semantically the same.
However, sequent calculus would not exist anymore (not in this form at least) as ` is a
horizontal materialisation of the vertical distinction between hypothesis and conclusion
occurring in natural deduction. This distinction is of a procedural nature, rooted in the
dynamics of the action of deduction. The symbol ` is part of the inference system or
the “machine” while A ⇒ B is just a syntactic object handled by the system which is
moved back and forth. This difference can be observed in LK rules Figure 10.1. The
rule ⇒ Rm (which is the same as ⇒ i in natural deduction) shows that it is possible
to freeze the current reasoning A ` B and turn it into a static and handleable token
A⇒ B. Moreover, cut-elimination (which holds all the computational dynamics of logic)
only applies on sequents by annihilating formulas in two interacting sequents while the
implication A ⇒ B is only a resource which is added to this inference machine like
adding an ingredient to a cooking pot. You can think of it as taking a photo: an instant
is captured into something we can exchange, throw away or even duplicate. You can
find a small discussion on this subject in Barbarossa’s PhD thesis [Bar21, Section 5.3]
(he is very fascinated by this distinction).

§11.8 What about second-order?. Second-order logic has not been mentioned in the pre-
vious technical chapters. If we would like to work with second-order logic, it is sufficient
to reuse the rules for first-order quantification and replace the first-order variable by a
second-order one. It works correctly when considering the syntactic part of logic but
is a bit more complicated and awkward if we would like to consider its relation with
a semantic interpretation. Moreover, it appears that we lose analyticity (sub-formula
property).

§11.9 Returning to axiomatic. If you still want to retrieve an axiomatic system using
Gentzen’s systems (which would betray his original goal), it is possible to a consider a
theory T (set of axioms). We then have additional axiom rules `T Γ, A for A ∈ T .

https://prooftheory.blog/2021/09/23/confluence-in-the-sequent-calculus/
https://prooftheory.blog/2021/09/23/confluence-in-the-sequent-calculus/

Chapter 1 Logical traditions 55

12 Discussion: doubting traditions

§12.1 I presented the big lines of what I call traditions of logic. However, some other people
speak another “logical dialect”: they will say that their tradition of logic is model theory
(that I did not mention much since it is not my field of expertise) or computability theory.
Keep in mind that I am deeply influenced by my background of computer scientist.

§12.2 The formal vessel of logic emerged from empirical phenomena such as the experience of
regularities; the fact that some phenomena we are able to describe by language have a
consistent shape which can be freed from contingent information. Aristotle’s logic was
more concerned about the shape of reasoning while Stoic’s logic was interested in the
decomposition of statements. This already shows that there are several ways to formally
capture the logical activity. And yet, we tend to take our formalisation of logic for
granted. What makes our encapsulation of logic right? The explanation of the convenient
syntax/semantics separation is that it is correct when the syntactic operations we defined
conform to the semantics, i.e. the meaning we expect. Gödel’s incompleteness shows that
mismatches can occur between syntax and semantics30. This seems unsatisfying. On the
top of that, semantics is basically just another syntax in an upper level, judging another
lower-level syntax by a procedure of evaluation. To quote Girard’s [Gir07, Section 5.1]
cliché (and rather brutal) remark, such semantic explanations sound rather silly when
we think about it: A ∧ B is true when the interpretation of A and B is 1 (being true).
This shows how semantics mirrors syntax. Then, what justifies semantics apart from
our hermetic and unintelligible intuitions? After all, where does our intuitions on logic
even come from? With this semantic justification, we are not able to justify what we
are doing unless we say that it is how the laws of nature are but then we are stuck with
a definitive and limited answer about what logic is.

§12.3 The role of intuition. Any tradition should be doubted but their systematic rejection
in a sort of tabula rasa is too extreme. We should ask ourselves if this logical folklore
has a reason to be, if it can be justified at all. It makes no sense to get rid of traditions
only because they are traditions (even when they are perpetuated without serious self-
questioning). All these developments of logic are not a bunch of nonsense. They led to
the developments of various practical tools and ideas now used in computer science. But
even without this utilitarian point of view on logic, we feel that it is meaningful even if
we cannot put words on it. Moreover, foundational issues actually barely affect mathe-
matical practice. It is still impressive how natural deduction and sequent calculus, with
their beautiful structures and properties, mainly emerged from rather vague intuitions
about logic. I believe that our vague intuitions and our prejudices are still essential after
all, even though logic is often seen as cold, exact and void of any feeling. Obviously, it is
an error to take our intuition for reality as if logic was the circuits of reality, hard-coded
in our brain, which we are somehow fully conscious of. Our vague intuitions, either right
or wrong still guide us pretty well providing we learn to tame them.
30If completeness is the fact that syntax is correct with respects to semantics, then incompleteness is

the fact that it is not; that some parts of syntax exist without conforming to semantics.

Chapter 1 Logical traditions 56

A tonk i
A tonk B

A tonk B tonk e
B

A tonk i
A tonk B tonk e

B

Figure 12.1: Natural deduction rules for tonk and a proof containing a redundancy. This
proof can infer everything we want from any statement. Is it logical? If
not, then why?

§12.4 The search for justifications. The culprit is the evaluative nature of semantics. To
evaluate logical objects means that we already have in mind how they should be and
what they should mean. If an external and explanation of logic apparently cannot be
found31, it may be possible to look for an internal explanation instead. But how can
syntax explains itself? At a first glance, it makes absolutely no sense at all. The question
of justification of logic has already been discussed by several philosophers. Regarding
natural deduction, Arthur Prior [Ste61] asked why would not it be possible to consider
a new connective “tonk” with the introduction rule of ∨ and the elimination rule of ∧.
We would then be able to prove any statement (cf. Figure 12.1). We can conclude, like
Prior did, that inference rules by themselves are not able to provide any logical meaning.
Nuel Belnap [Bel62] and Michael Dummett [Dum91] thought that not all combinations
of rules were “meaning-constituting”. The rules has to follow some constraints. Gentzen
(although it was mainly studied by Dummett) introduced the term of “harmony” to
describe the property of those inference rules which are meaning-constituting. The ideal
objective would be to formalise Wittgenstein’s [Wit10] famous slogan “meaning is use”
implying that the procedural operations done on logical symbols are sufficient to convey
their meaning: we would then reach our internal explanation.

§12.5 We already saw in the presentation of natural deduction that elimination rules intuitively
correspond to the use of symbols. Then the possibility of reducing a redundancy might
mean that the use of a symbol is sound, that it is possible to do something out of it (while
preserving hypotheses and conclusion). Harmony is then probably related to a balance
between introduction rule (definitions) and elimination rules (use of definitions). This
idea gives an utilitarian and computational meaning to logical symbols. For instance,
the meaning of conjunction would be its computational ability to construct pairs and
extract its components. But then, our question reduces to “what proof reductions steps
are valid?”. It is possible to hack the system so that our tonk connective can be reduced
(for instance with a reduction similar to the case of ⇒ in Figure 9.7). In this thesis
I show that a more satisfying answer is possible, providing we work in another logical
architecture. If the subjective evaluative aspect of semantics asserting objectivity is
faulty, then we shall go beyond evaluation. The key is to consider mutual interaction
from which meaning will emerge.

§12.6 Doubts about the unicity and plurality of logic. In this chapter, I presented

31Unless we are able to directly communicate with God.

Chapter 1 Logical traditions 57

classical and intuitionistic logic. But when we think about it, is logic not unique? When
we say “it’s logical!” in our everyday life, to what logic do we refer to? Do not we refer
to a unique logic? I now expose a personal and speculative point of view (which may be
completely wrong) I have about the nature of classical and intuitionistic logic:

• classical logic can be reduced to a single connective A ↑ B := ¬(A ∧ B) called
Scheffer’s stroke. This connective basically express the incompatibility of two for-
mulas w.r.t. to truth values; they cannot be true at the same time. Negation
corresponds to the fact that a formula is incompatible with itself: ¬A := A ↑ A.
For the disjunction, it is false only when both inputs are false. This can naturally
be expressed as the incompatibility A ∨ B := ¬A ↑ ¬B. Similarly, implication
is the incompatibility between a true assumption and a false conclusion. Hence,
we have A ⇒ B := A ↑ ¬B (as already explained in Paragraph 6.7). As for the
fundamental equivalence A ≡ ¬¬A, it is justified by the fact that the incompat-
ibility of ¬A and ¬A is consistent with A. However, classical logic is not a mere
calculus of incompatibility between individuals. If it is about incompatibility then
it should be a manichean incompatibility: the excluded middle A ∨ ¬A, says that
anything is either true or false and it is expressed by the incompatibility A ↑ ¬A
between A and its alter ego ¬A. The world is divided into two hermetic categories:
whoever is not with me is against me32. Girard’s alternative definition [Gir18b,
Section 1.2] of the excluded middle (A ≡ B) ∨ (B ≡ C) ∨ (C ≡ A) accentuates
this social segregation: among 3 propositions, two must be equivalent, you have
no other choice. Although I do not investigate it, it is even possible to consider a
logical system with Scheffer’s stroke [Ten79]. Finally, what is a classical proof ? Is
classical provability simply asserting/resolving (in)compatibilities?

• In intuitionistic logic, the implication A ⇒ B is primitive and cannot be defined
by ¬A ∨ B since the translation actually relies on classical axioms. Intuitionism
cannot be reduced to incompatibility. Forgetting A ∨ ¬A is like forgetting that
some statements are incompatible as if we could not be sure about it. Instead,
this limitation has the very nice property of forcing the unique conclusion formula
to be justified/constructed: the limitation becomes an ability, a requirement for
more information. This makes intuitionism about functionality: we focus, not on
incompatibility but on the process or actions leading to some result. Intuitionistic
logic can then be seen as actually stronger than classical logic in some sense since
classical axioms can be encoded (cf. Paragraph 9.12). This surprising encoding
seems related to the fact that functionality may be able to encode a space of
incompatibility, as shown in the natural deduction proof on Figure 9.6 which is
completed with two functional operations: saving the data ¬(A ∨ ¬A) (which is
only possible with the wrapping of double negation) then loading it afterwards in
the rightmost branch.

§12.7 Doubts about the elementary logical operations. A reasonable doubt about logic

32Which is apparently something shared by both Jesus and antifascist activists.

Chapter 1 Logical traditions 58

is whether these natural notions of conjunction, disjunction, negation, implication and
quantification constitute the bedrock of logic. Or can logical operations can be decom-
posed to reveal more primitive constructions? Girard’s linear logic [Gir87a] shows that
the implication A ⇒ B can actually be decomposed as !A ⊸ B where !A represent a
potentially infinite amount of A and A⊸ B is a linear implication using its argument
exactly once as if it was a limited resource. This offers a point of view of logic as re-
sources handling. Moreover, if logic is related to natural language at all, it is fair to ask
whether it is possible to represent other aspects of natural language (such as references,
indexicals etc) without resorting to ad-hoc constructions (such as temporal modalities
but what is ad-hoc, by the way?).

§12.8 Doubts about predicate calculus. As already remarked by Girard [Gir18b, Section
1], predicate calculus (cf. Section 7) is not a so natural extension of propositional calculus.
A class of individual, distinct from logical entities, is introduced. They cannot hold a
truth value but refer to some entity in a given universe. It is not clear what logically
justifies such a distinct category apart from our own point of view (or prejudice in
Girardian terms) on what logic should be. Another suspicious point is the exclusion of
empty model (cf. Paragraph 7.16) which seems ad-hoc. Finally, equality is treated as a
mere binary predicate but should not equality be a more fundamental notion?

§12.9 Doubts about the undoubtable. Finally, Girard dares to doubt about the most
elementary things: the logical identity A⇒ A and the equality a = a. Doubting about
such things (which were often considered axioms) makes no sense for most logicians
and mathematicians. However, Girard suggests the idea that they actually reflect some
preconceptions of logic [Gir18b, Section 2].

• For A ⇒ A, the idea is that it reflects Frege’s philosophy of denotation. The
two occurrences of A refer to the same entity. However, such paradigm is not
sufficient to explain some phenomena occurring in sequent calculus such as the
distinction between ⇒ and ` (cf. Paragraph 11.7). We have to take into account
the cold aspect of sequent calculus and consider that it speaks about actions on
some locations. It then appears that the two occurrences of A are two distinct
entities at different locations but which are related. This is similar to how printers
can copy a sheet of paper. The two sheets of paper are distinct but we can verify
that one has the same content as the other: identity becomes something one has
to prove. This will be more explicit when introducing Girard’s proof-nets and
transcendental syntax;

• as for a = a, in the same fashion, the two occurrences of a are thought to refer
to the same entity in a given universe. If we consider second-order equality (cf.
Paragraph 8.7), in order to prove a = a, we would have to prove X(a) ⇔ X(a)
for any X but this is trivial since X(a) ⇒ X(a) by identity. However, as Girard
pointed out, some properties are implicitly forbidden such as the fact of “being on
the right” which indeed distinguishes the two occurrences of a. Ironically, it is as

Chapter 1 Logical traditions 59

if the “licit properties” were the ones satisfying our preconceptions about equality,
hence making equality trivial.

§12.10 A criticism of Truth and Reality. Everything being either true or false is a very
natural statement but if we take formal logic as presented in this chapter and forget
the metaphysical connexion between truth values (just symbols) and the philosophical
concept of truth, then what distinguishes 0 and 1? What makes 1 more virtuous than
0? They are distinguished because we choose that some statements are true (typically,
axioms). But is truth a matter of choice when I say that 1+ 1 = 2 is true and 1+ 1 6= 2
is not? There is an idea33 that axioms could be proven instead of simply given. But even
with this idea, absoluteness of truth cannot be found. Computer science could probably
give answers, for instance by saying that what is true is what can be computationally
materialised, i.e. what corresponds to some material reality (computation being the
ground of reality). If we step back from all our logical formalities, our formal conception
of logic presupposes a specific shape of reality. However, some parts of computational
reality are not captured by neither classical nor intuitionistic logic (as pointed out by
Girard in his commentary on Turing [TGBB95, Chapter 3] and the beginning of his
geometry of interaction project [Gir89b]).

• Chemical equations such as 2H2 + O2 7→ 2H2O consumes matter. But these
equations abstract from details such as time or the environment so that what is
kept is only the relation between concepts. Both classical and intuitionistic logic
violates chemical principles as A⇒ A∧A (matter can be produced out of nowhere).
Should we say that chemical reactions are not logical?

• In the same fashion, banks do a lot of operations which have to keep a certain
consistency so that clients do not suddenly obtain or loose money by mistake.
However, money is also an entity which can be consumed. Can we say that it has
nothing to do with logic?

• Databases are able to store data such as clients registered in a bank. It is possible
to update, add or remove data. However, if two data A and B are related in
the database, either we have the truth of the statement expressing this relation
(classical world) or a constructive proof of it (intuitionistic world). But in both
cases, truth and provability are static and eternal properties which never die. What
is true, is true forever (mathematical truth). How to treat the removal or update
of data? But can we say that databases are simply not logical?

Girard’s linear logic shows that it is possible to consider a logic of resources, thus giving
a formal logical account to these ideas34 but his last project of transcendental syntax,
presented in this thesis, shows that it is not the last answer yet.

33Already there at the time of Leibniz, according to David Rabouin.
34Actually, it is an a posteriori justification of linear logic. He discovered linear logic first in another

context then tried to justify how interesting it actually was.

Chapter 2

Computational panorama

After all this logical history of conflicts, ideals and failures, I would like to tell a whole
new story: the story of computation. Like logic, computation is a natural phenomenon
which has always “been there”. But it is only recently that it took a great importance.
Unlike logic, it is a bit (only a bit) more clear what computation is about. Computation
in its mature form also came way later. An amusing fact that computer scientists like
to tell is that the theory of computation (and computers) existed way before comput-
ers themselves. Those computers being everywhere nowadays, it shows how of a great
importance the study of computation is.

I start with few historical facts about computation then present the main classes of
models of computation. Most definitions are inspired from Sipser’s introduction to the
theory of computation [Sip06]. This chapter sometimes refers to the previous chapter
about logical foundations and is thus not completely independent.

13 The experience of procedurality

My main reference for this section is Dowek’s book “Les métamorphoses du calcul” (in French).

§13.1 We only need time to realise an order in the succession of events. We sometimes are
subject to some events. We are sometimes responsible of some events. We are sometimes
also responsible of some events to which we are subject, or in other words: we can make
some events happen. A typical example are methods described by a list of actions. It
can be a cooking recipe or a method to solve a specific problem. Such methods can be
shared so that other people can reproduce it, so there is a social aspect to it. It can be
more or less precise and sensitive to an environment. For instance, for a cooking recipe,
we may give more details about ingredients or leave the choice free. Those methods are
called algorithms1.

1Term thought to be derived from Al-Khwârizmî’s name (a Persian mathematician) but the reality
seems more nuanced than that, as stated by McLarty [McL08] (himself quoting Theseus Logic’s
website): “The term algorithm was not, apparently, a commonly used mathematical term in America
or Europe before Markov, a Russian, introduced it. None of the other investigators, Herbrand and

Chapter 2 Computational panorama 61

§13.2 A common example of an old algorithm2 is Euclid’s algorithm which is the method
computing the greatest common divisor of two integers. For instance, the set of common
divisors of 36 and 30 is {1, 2, 3, 6} and the greatest is 6. Euclid’s method is defined by
the following steps for two positive integers a and b:

1. if b = 0 then the result is a;

2. otherwise, we compute the remainder r of the integer division a ÷ b and do the
step 1 again with a := b and b := r.

We apply this algorithm on the inputs a := 36 and b := 30:

• the remainder of 36÷ 30 is r = 6 since 36 = 30× 1 + 6;

• we have a := 30 and b := 6. The remainder of 30÷ 6 is r = 0 since 30 = 6× 5+ 0;

• we have a := 6 and b := 0. Since b = 0, the final result is 6.

Algorithms are often related to the practice of mathematics as they provide a way to
solve problems. However, notice that algorithms are actually sensitive to a context: I
do not explain the method to do the integer division a ÷ b. You are free to choose any
method you want providing it does what it should do. It is similar to not giving too
many details about the tools in a cooking recipe, you just have to find something which
does the job. In the case of the integer division ÷, your choice has to follow a particular
specification implicitly given by the algorithm which defines what we mean by “integer
division”.

§13.3 Logically speaking, algorithms provide an alternative way to prove mathematical state-
ments. When having an existential statement ∃x.P (x), I need to find some element
x that satisfies the property P . It is possible to prove it only by using logical means
without ever knowing what that x looks like. But it is also possible to construct that
x, called existential witness. Those constructions give rise to what we call constructive
proofs. On the other hand, non-constructive proofs usually occur when using proof by
contradiction (or equivalent rules such as the excluded middle). Proof by contradiction
says that whenever you need to prove some statement A, you can virtually assume it to
be wrong (assume ¬A) and show that it leads to a contradiction only to infer at the end
that A must be true (and that our initial assumption was impossible). By doing so, we
do not construct an actual proof of A but take a sort of logical detour. This is connected
to the ideas of intuitionistic logic (cf. Paragraph 4.3): proofs in intuitionistic logic corre-
spond to constructive proofs and algorithms seems to be a way to construct such proofs.

Gödel, Post, Turing or Church used the term. The term however caught on very quickly in the
computing community.”. Al-Khwârizmî’s name indeed produced terms similar to “algorithm” but it
initially referred to algebraic/numerical systems.

2It has to be noted that although Euclid’s algorithm is already a relatively old notion of computation,
computational methods were not uncommon. I have heard from a presentation of Gilles Dowek in
the Château de Goutelas (Summer 2022) that reasoning was exclusively computational before the
Ancient Greeks.

Chapter 2 Computational panorama 62

Those ideas of algorithms and constructive proofs were developed independently until
the middle of the 20th century.

§13.4 Similarly to logic, the theory of algorithms has been seriously developed rather late;
around the 20th century when predicate calculus (cf. Section 7) was rising. But unlike
logic which was studied since at least since the Ancient Greek, the theory of algorithms
is a rather recent subject which took a great importance from its connexions with formal
logic. Using predicate calculus, it is possible to represent mathematical statements with
logical formulas. In particular, Euclid’s algorithm is a way to prove the statement “c is
the greatest common divisor of a and b” which can be represented by the atomic formula
GCD(a, b, c) or equivalently, by the formula gcd(a, b) = c where GCD is a predicate and
gcd is a function giving the greatest common divisor of two inputs. Algorithms become
procedural ways to prove logical statements. Several other algorithms were developed
to prove logical statements for arithmetic (or a fragment of arithmetic). For instance,
Presburger developed a method to prove arithmetical statements for integers without
multiplication.

§13.5 Decision problem. Given the procedural philosophy of formalists (cf. Paragraph 4.4),
it is not surprising that questions between logic and algorithms were explicitly mentioned
by Hilbert. Hilbert’s decision problem3 asks for a mechanical and effective procedure
to solve statements of predicate calculus. This method should always terminate with
an answer in finite time. If such method exists, then mathematics (thought to be fully
expressible in formal logic at this time) could be mechanised. Logic and mathematics
would then be reduced to pure computation. More generally, given a function f taking
a formula as input and answering either true (1) or false (0) is there a mechanical way
to compute this function? This can also be generalised to any mathematical function.
The main problem is that no mature notion of computation existed at that time.

§13.6 Computation. Alonzo Church and Alan Turing both independently came up (around
the 30s) with a formalisation of computation, now called model of computation. Their
answer was apparently influenced by Gödel’s incompleteness theorems Paragraph 5.4.

• Church’s proposal, is the λ-calculus [Chu32], a model of computation correspond-
ing to a sort of realisation of mathematical functions. It is the ancestor of functional
programming. It works with a functional language expliciting the relation between
input x and output f(x) for a function f ;

• Turing’s model is the famous Turing machine [Tur36] which formalises the intuitive
idea of a mathematician writing on a piece of paper. Symbols can be written on
paper depending on what is read on that same paper and the pencil can move
either to the left or the right. To correctly model theoretical computation, we
assume that we will never run out of paper. This is the ancestor of imperative
programming where programs are sequences of instructions doing a specific task.

3Entscheidungsproblem in German.

Chapter 2 Computational panorama 63

Both models have been shown to be equivalent for functions over rational numbers. A
function which can be computed in finite time by an expression of λ-calculus or a Turing
machine is said to be computable. A formula A is decidable when its associated function
returning its truth value f(A) ∈ {0, 1} is decidable. A lot of models of computation have
been considered but the most powerful ones (Herbrand-Gödel’s equations and Kleene’s
recursive functions) were all shown to be equivalent to Church and Turing’s proposal.
This defines a space of computable functions. Models equivalent to Turing machines are
called Turing-complete.

§13.7 Church’s thesis. Until now, no model of computation has been shown to be stronger
than Turing-complete models in the sense that there would be a problem solved by some
model but not by a Turing-complete one. This is Church’s thesis (a term introduced
by Kleene who was one of Church’s students), also called Church-Turing thesis. Two
notions are identified: Turing-complete models and the vague and intuitive notion of
computation. This thesis (which is not a theorem) asserts that Turing-complete defines
the notion of computation. Two versions of Church’s thesis can actually be distinguished:

• the physical variant asserts that Turing-completeness captures the intuitive of com-
putation by a physical system, hence it captures the concept of natural computa-
tion;

• the psychological variant asserts that Turing-completeness captures what is com-
putable by the human mind, hence it captures the concept of mental computation.

The two variants are not necessarily equivalent depending on whether Nature computes
more than humans or the opposite. This is the subject of a debate between Longo and
Dowek known as the Longo-Dowek controversy explained in Yannis Hausberg’s PhD
thesis (not completed yet as I am writing this thesis). Other interesting related references
are Longo and Paul’s papers [LP11, PL09].

§13.8 Partial recursive functions. Still in the 30s, Kleene constructed (from works of
Gödel and Herbrand) a mathematical theory of computable functions (which can be
implemented by “effective procedures” such as λ-calculus and Turing machines). These
functions, called partial recursive functions or (µ-recursive functions), are constructed
from the following primitive functions:

• constant functions Constkn(x1, ..., xk) = n;

• successor function Succ(x) = x+ 1;

• projection functions Πk
i (x1, ..., xk) = xi

and closed under the following operations:

• n-ary function composition f ◦ (g1, ..., gn) = h where:

h(x1, ..., xk) = f(g1(x1, ..., xk), ..., gn(x1, ..., xk))

Chapter 2 Computational panorama 64

• primitive recursion defined on functions base and ind by:

Rec(base, ind)(0, x1, ..., xk) = base(x1, ..., xk);

Rec(base, ind)(Succ(x), x1, ..., xk) = ind(x, Rec(base, ind)(x, x1, ..., xk), x1, ..., xk);

• minimisation operator µ defined on a function f by:

µ(f)(x1, ..., xk) = a such that f(a, x1, ..., xk) = 0

and f(i, x1, ..., xn) > 0 otherwise.

The minimisation operator searches for the smallest natural number for which the in-
put function f returns 0 on it. In case there is no such argument, it is not defined.
The implementation of minimisation corresponds to a procedure which searches with a
counter (initialised to 0) on the first argument of f and which loops by incrementing its
counter until finding the right a cancelling the function. Functions without minimisa-
tion are called primitive recursive functions and are only implemented by terminating
procedures. This corresponds to a weaker form of potentially looping procedures.

§13.9 Undecidability. Unfortunately, the answer to Hilbert quest for mechanised mathe-
matics is negative. It is impossible to always provide an answer for any logical statement
of predicate calculus. This can also be formalised by the fact that we cannot provide
a constructive proof of ∀X.X ∨ ¬X (corresponding to the excluded middle) because we
would need to either construct a proof of X or a proof of ¬X, which is impossible with-
out any information about X. But this can be decidable for some specific choice of X.
In terms of Turing machine, it can be shown that some problems are impossible to solve
by a finite succession of steps. In particular, the famous Halting problem asks for a way
to tell whether or not a given Turing machine will halt (only by looking at how it is
constructed and without simulating it). It is possible to show (and we do in a dedicated
section of this chapter) that assuming the existence of a Turing machine deciding this
problem leads to a contradiction. Undecidability can be seen as a consequence of Can-
tor’s diagonal method. Since Gödel’s incompleteness (cf. Paragraph 5.4) is also related
to this method, undecidability can be seen as a computational version of incompleteness:
it expresses the gap between a program/machine and its result, the former cannot be
reduced to the latter (since an answer may not come at all depending on inputs).

14 Realisation of machines

§14.1 The story of machines is a parallel story. There are methods that we can share and
use but executing them can require an important amount of time or work. Tools has
always been made all around the world to reduce the workload of people and increase
the efficiency of work for various activities (including very early forms of programmable

Chapter 2 Computational panorama 65

machines for music [Koe01]). But what about purely mental operations? Can we auto-
matically reproduce some operations occurring in our mind such as arithmetic calcula-
tion?

§14.2 Pascal’s calculator. In the Western world, it is considered that Blaise Pascal, a French
scientist, was the first to design a mechanical calculator called the Pascaline [Pas97]. This
machine was required by his father who was a tax commissioner. Important calculations
can take a lot of time and such a machine would be indeed very useful, especially in
scientific professions. Pascal’s calculator had wheel to write the digit of input numbers.
His machine could do basic arithmetic operations such as addition and subtraction with a
carry mechanism. Unfortunately, it seems that because of social relations with craftsmen
and other factors of his time, Pascal could not expand his project and only 20 machines
were constructor over 10 years [Mou88].

§14.3 Calculus Ratiocinator. Several different machines were designed after Pascal such as
Gottfried Leibniz or Thomas de Colmar’s calculators. But let us focus on Leibniz’s idea.
In his “De arte combinatoria” (1666), he imagined a machine (or algorithm) which could
determine whether a sentence, expressed in an idealised language called characterisca
universalis, was true or false. Such a machine, called calculus ratiocinator, would be able
to answer everything, any philosophical or scientific question. A famous quote of Louis
Couturat illustrate this idea:

“ Pour résoudre une question ou terminer une controverse, les adversaires
n’auront qu’à prendre la plume, en s’adjoignant au besoin un ami comme
arbitre, et à dire : « Calculons ! »

– Louis Couturat ”
meaning that two persons discussing would only need to compute in order to conclude
the conversation. A common caricature is that Leibniz’s idea corresponds more or less to
Hilbert’s ideal of mechanised mathematics (cf. Paragraph 4.4). However, it seems that
Leibniz idea was more nuanced and that he later considered himself that those ideas
were too naive and probably impossible to realise (see David Rabouin’s works).

§14.4 Babbage’s engine. To tell the story briefly, Charles Babbage, a British inventor,
remarked that some minor errors were present in calculus tables. These human errors
are usually caused by unawareness. Inspired by Pascal’s engine and his own knowledge of
logarithm table, he presented in 1821, the difference engine for the purpose of computing
polynomials. However, for mechanical reasons, it has never been completed. Another
machine, the analytical engine is even closer to today’s computer. It is designed for
more general purposes, and would include arithmetic operations, conditional branching,
memory and loops, making it Turing-complete a century before Turing. But again,
Babbage was ahead of his time’s technology and his machine could not be completed

Chapter 2 Computational panorama 66

4. His machine would be theoretically be fed with “punched cards” with holes encoding
instructions to execute. This is indeed a form of program.

§14.5 Lovelace’s implication. His engine has been developed jointly with Ada Lovelace, with
whom he was corresponding. Ada Lovelace was a countess who received a mathematical
education and who was able to interact with great scientists of her time. She called her
approach “poetical science”, probably in reference to her mathematician mother and her
poet father. Lovelace was very interested in Babbage’s analytical engine and it is thought
that she had a great vision of the potential of these machines [FF03]. Babbage’s himself
was fascinated by her mathematical skills. She was especially known for her contribution
to the analytical engine with a program computing Bernoulli numbers. Today, she is
often considered as the first programmer5.

15 Computation as functional process

My personal reference for this chapter is Hammache’s PhD thesis (in French) [Ham21, Chapter
4]. A lot of historical information of this section are more or less translated summaries of parts
of Hammache’s thesis.

Now, I suggest to dive into the λ-calculus, one of the most important models of compu-
tation. The λ-calculus comes from logical considerations and from philosophical ques-
tioning about the notion of function.

The notion of function

§15.1 A very natural way to approach computation is to start from (mathematical) functions.
Functions are often defined as associations of two values (input and output). A first
intuition of computation is then to give a concrete realisation which simulates this asso-
ciation. But since we are still in mathematics and not in concrete physical realisations,
it is not clear what is a satisfying set of steps mechanically simulating a function.

§15.2 Frege, in his ideal of meaning, developed the notion of function together with some other
authors such as Schönfinkel. Although functions were already widely used by mathe-
maticians, definitions of function were neither satisfying nor accurate for Frege. A first
characteristic of functions is to distinguish their argument (input) and result (output)
but the point was to understand what could be an argument and what could be a result.
Frege wanted to enrich logic with a more mature idea of function, probably because it

4It even inspired sci-fi novels such as William Gibson and Bruce Sterling’s “The Difference Engine”
which imagines a world in which Babbage was able to realise and popularise his inventions.

5Although there are actually historical contestations showing that Babbage was actually the first pro-
grammer (see Doron Swade’s affirmations) and controversies about how much Lovelace played a role
in “programs” for analytical engine. I cannot tell who is wrong or right but this is a rather convenient
myth today.

Chapter 2 Computational panorama 67

would materialise his personal philosophy. In Frege’s philosophy, logic was about rela-
tions between “pure” concepts. In his mind, a concept was a function returning a truth
value and a relation was a binary function returning a truth value. He distinguished a
hierarchy of concepts so that a concept of first level is a function from a class of “objects”
to a truth value.

§15.3 The common notation for functions was f(x) = y, expressing the product or result y of
a function f when applied to an input x. We can then plug a value as input and obtain
a result: f(a) = {x := a}y where {x := a}y is a replacement of x by a in y. However, as
remarked by Frege, it only expresses the result of the function, hence what the function
does: we have a black box producing y from x. We have no mean to express what the
function is, independently of any use of it and of any argument. Frege wanted to find
the essence of functions, and for that reason, he introduced a notation called course-of-
values. The function f defined by f(x) = x+ 2 can be represented by the distinguished
expression ,

α(α+2). The application of the function ,
α(f(α)) (representing a function f)

to an argument c is seen as an intersection written c∩ ,
α(f(α)) = f(c). We now have two

expressions, one to refer to the result produced by a function and another one referring
to the function itself.

§15.4 Schönfinkel had the ambition of reducing logic to the mechanisms of functions and even-
tually establishing a “calculus of functions” [Sch24]. It was already remarked in logic
that most connectives were superfluous and could be defined by a small set of connec-
tives (cf. Paragraph 6.10). For instance, Whitehead and Russell wanted a reduction
to negation and conjunction, and Frege to negation and implication. However, Schef-
fer6 showed that it was possible to consider a unique connective A | B := ¬(A ∧ B)
(sometimes written A ↑ B) which would define all the others. Schönfinkel wanted to
extend this idea to predicate calculus. It was already known that every predicate cal-
culus formulas could be turned into a formula ∀x1...∀xn.A for a quantifier-free formula
A. All Schönfinkel needed to do was to get rid of universal quantification. A natural
solution was to extend Sheffer’s stroke with a variable in order to define the formula
f(x) |x g(x) := ∀x.f(x) | g(x). But the variable x is not even so essential. We can forget
it since A |x B expressed the incompatibility between two predicates (written with a
notation of function), independently of the variable x itself. Hence, he introduced the
functional notation Ufg := f(x) |x g(x) and was led to introduce other such functions
like Ix = x or Sfgx = fx(gx). These expressions are now known as “combinators” and
they later have been developed by Haskell Curry around 1930.

§15.5 Remark that in Schönfinkel’s expression Ufg, we have an occurrence of function tak-
ing another function as argument. It is also technically possible to consider functions
returning other functions. Nowadays, it is known as the idea that functions of several
arguments can be represented by unary functions only7. The idea is that a function

6Although it was already present in Peirce’s works [Ham21, Section 4.3.1]. Peirce again!
7This feature is usually called curryfication but it seems that there are reasons to call it fregeing since

the idea was originally introduced by Frege [AK12, Chapter 3].

Chapter 2 Computational panorama 68

f : (x, y) 7→ a of two arguments can be represented as a unary function f ′ : x 7→ (y 7→ a)
returning another unary function g : y 7→ a as a result.

Functional foundations for logic

§15.6 In 1932, Alonzo Church [Chu32] was interested in alternative foundations for logic which
would be more satisfying than Russell’s type theory and Zermelo’s axiomatic theory.
Instead of set theory, he was interested in functions as a basis for logical foundations8.
Church had a representation of functions which could both represent the function itself
and their application to arguments. The function f(x) = x+2 was written λx.x+2 and
its application to the argument 2 (corresponding to f(2) = 4) was written (λx.x+ 2) 2
which could be reduced to {x := 2}(x + 2). Such an expression is called λ-abstraction.
Everything can be considered a function providing we have a mature notion of function.
Using λ-abstractions, the mechanisms linking the input and the output of a function are
explicited by reducible syntactic expressions taking into account the notion of function
application within the system itself 9.

§15.7 Church then designed a logical system where all logical constructions are unary functions.
The grammar of Church’s formulas is the following:

M,N ::= x | λx.M |M N | Π | Σ | & |∼| ι | A

where x is a variable and both A and ι are special operators we will not talk about.
The application M N will sometimes be written MN We leave parentheses implicit
and application is considered left-associative, i.e. M1M2M3 = (M1M2)M3. We also
write λx.λy.M or even λxy.M for λx.(λy.M). Remark that predicates are replaced by
functions (this is consistent with Frege’s idea of concepts/predicates as functions). The
symbols Π,Σ are respectively the universal and existential quantification and the symbols
& and ∼ are respectively the conjunction and negation. A very important construction
in the function application MN which corresponds to M(N) in mathematics. Remark
the unusual presentation of connectives. This is due to the fact that connectives are
primitive unary functions. For instance, the formula A ∧ B would be written (&A)B
representing a function & applied to a first argument A and returning a function to
which we feed a second argument B. The main reduction rule called β-reduction is the
following:

(λx.M)N ⇝β {x :=M}N

For instance, we have ∨ := λx.λy. ∼ ((&(∼x))(∼y)) which corresponds to the disjunc-
tion and (∨A)B ⇝β ∼((&(∼A))(∼B)) for some formulas A and B.

8The use of a calculus of functions to solve foundational problems was apparently not considered by
Schönfinkel.

9In modern programming we sometimes talk about nameless functions and see Church language as
programming with mathematical functions

Chapter 2 Computational panorama 69

§15.8 Around the same period, Haskell Curry was also interested in a functional point of view
on the foundations of logic. He introduced combinatory logic which can be seen as a
further development of Schönfinkel’s calculus of functions. Curry wanted to develop what
he called an Urlogik, a sort of proto-logic which would precede any logical construction.
Another interest of Curry was to study the notion of substitution which had not been
clearly formalised although widely used, sometimes implicitly (by Frege and Russell in
particular). Combinators are constants representing functions without explicit bound
variables (unlike the x attached to λ and ∀), and are associated with a reduction rule.
Curry considered the following combinators:

• Bxyz ⇝ x(yz);

• Cxyz ⇝ (xz)y;

• Kxy ⇝ x;

• Wxy ⇝ xyy.

It is possible to retrieve Schönfinkel’s combinators with I := SKK = WK and S :=
B(B(BW)C)(BB). In particular, S was thought to be counter-intuitive and Curry
provided a decomposition with more intuitive combinators. It appears that combinatory
logic is equivalent to λ-calculus:

• not so surprisingly, combinators can be easily represented with λ-terms;

• more surprisingly, any computable function can be represented with only the com-
binators S,K and I.

Chris Barker showed (around 2000) that it was possible to consider only one combinator
ι [Bar01] defined by ι := λf.((fS)K) such that the SKI combinators could be defined
with I := ιι, K := ι(ι(ιι)) and S := ι(ι(ι(ιι))).

§15.9 Paradoxes. It has quickly been remarked that Church’s system was inconsistent and
that a paradox similar to Russell’s one is present Section 3. It is possible to construct the
expression λf. ∼ (ff) which will be sometimes true or false depending on its argument
(Church considered his language a logic and hence any statement could be either true
or false). But even weirder, it is possible to feed it with... itself and obtain R := (λf. ∼
(ff))(λf. ∼(ff)). Now we obtain the following reductions:

R ⇝β ∼((λf. ∼(ff))(λf. ∼(ff))) = ∼R

∼R ⇝β ∼∼R ≡ R

The last reduction relies on the equivalence ¬¬A ≡ A that Church allowed. The main
problem of Church’s logic is not the presence of this paradox itself but the requirement
that formulas must be either true or false. The expressions already have a computational
meaning independent of any logical meaning. Unlike Church, Curry did not necessarily
want to get rid of paradoxes at any cost. His Urlogik was more permissive and he thought

Chapter 2 Computational panorama 70

disj (is_zero 1) (neg (is_zero 1))

= cond (is_zero 1) true (neg (is_zero 1))

= (λc.λx.λy.cxy) (is_zero 1) true (neg (is_zero 1))

⇝β ({c := is_zero 1}(λx.λy.cxy)) true (neg (is_zero 1))

= (λx.λy.(is_zero 1)xy) true (neg (is_zero 1))

⇝∗β (is_zero 1) true (neg (is_zero 1))

⇝∗β false true (neg (is_zero 1))

⇝∗β neg (is_zero 1)

⇝∗β neg false

= (λx.cond x false true) false

⇝β {x := false}(cond x false true)

= cond false false true

⇝∗β false false true

⇝∗β true

Figure 15.1: Example of computation of the truth value of the statement “either 1 is null
or it is not”

that it could be interesting to study systems containing paradoxes and the meaning of
those paradoxes.

Mathematical functions as a model of computation

§15.10 Lambda-calculus. Forgetting the functional point of view of logic, we can consider
Church’s system as a model of computation now known as (pure or untyped) λ-calculus.
The expressions are called λ-terms and are defined by the following grammar:

M,N ::= x | λx.M |MN (Lambda-terms)

And the only reduction rule, as expected, is still the β-reduction10:

(λx.M)N ⇝β {x :=M}N

10Although other rules are often considered, this is the most important rule.

Chapter 2 Computational panorama 71

We say that two terms M and N are β-equivalent, written M ≡β N when there is a
sequence of terms M0 = M,M1, ...,Mn,Mn+1 = N such that either Mi ⇝β Mi+1 or
Mi+1 ⇝β Mi. We write M ⇝∗β N when M can be reduced in zero or at least one step
to N . When we have M ⇝β N and N is irreducible then we say that N is a normal
form of M . This model of computation is very powerful since it has been shown that
it is expressive enough to expressive all the computable functions. It is also powerful
for its simplicity: it only needs three constructors and a single reduction rule. Here are
some common example of terms:

• the identity function λx.x;

• the left and right projection λx.λy.x and λx.λy.y;

• λx.xx;

• (λx.xx)(λx.xx) which reduces into itself.

It is also possible to encode boolean operators or natural numbers so that the reductions
behaves as expected:

• the truth value 0 is represented by true := λx.λy.x;

• the truth value f is represented by false := λx.λy.y;

• conditionals are represented by cond := λc.λx.λy.cxy (c will be a truth value seen
as a selector selecting either x or y);

• negation is represented by neg := λx.cond x false true;

• conjunction is represented by conj := λx.λy.cond x y false;

• disjunction is represented by disj := λx.λy.cond x true y;

• the natural number n is represented by n := λs.λz.snz where sn corresponds to n
successive applications of s (representing the successor function over the variable
z representing zero);

• the function is_zero := λn.n (λx.false) true which returns true if its input is
0 and false otherwise.

A simple example of computation with λ-terms is (λx.λy.y) (λx.x) (λx.x) ⇝β ({x :=
λx.x}(λy.y)) (λx.x) = (λy.y) (λx.x)⇝ {y := λx.x}y = λx.x. A more complex example
of detailed computation is given in Figure 15.1.

§15.11 Conflicts of names. There is a small technical and often neglected (and also often
painful to treat) detail to take into account with λ-terms. In the expression λx.M ,
the variable x is bound in M , meaning that all occurrences of x appearing in M are
virtually linked to λx. This is similar to the mathematical function f(x) = M . When
an argument is provided, all those occurrences of x are replaced. But in λ-calculus, it
is technically possible to use several occurrences of a variable which are unrelated. For
instance, in λx.M(λx.N), the first x is bound in M only and the second one in N only.

Chapter 2 Computational panorama 72

Moreover, names are not so relevant since λx.x is equivalent to λy.y. There are two
classical solutions to avoid conflicts of variables:

• to use a rule called α-conversion which allows to rename bound variables. This
rule (which defines an equivalence relation called α-equivalence) is defined by:

λx.M ≡α λy.{x := y}M

for any variable y. We would then have λx.M(λx.N) ≡α λx.M(λy.{x := y}N)
and λx.x ≡α λy.y;

• another solution suggested by De Bruijn11 is to use relative indexes. Instead of
variable names and λx, we would have natural numbers and a nameless λ. Natural
numbers, called De Bruijn indexes, refer to the distance (to the left) of the λ symbol
they are linked to. For instance, λx.M(λx.N) would be rewritten λM ′(λN ′). Any
1 in N ′ is linked to the second λ and any 2 is linked to the first λ. The left
projection λx.λy.x would simply be written λλ2. Note that when we say that these
indexes refers to a distance, we are not speaking about literal distance in terms
of characters but in term of scope. For instance, in the term λ(λ1(λ1))(λ21), the
index 2 actually refers to the first λ.

§15.12 It is possible to consider recursion in λ-calculus (which can be seen as a way to loop in
a program by calling itself) by using fixpoint operators. A fixpoint of a function f in
mathematics is a value c such that f(c) = c. Fixpoint operators of λ-calculus are λ-
terms fix such that fix F reduces to F . A common fixpoint operator is the Y operator
defined by:

Y := λf.(λx.f(xx))(λx.f(xx))

which can be used to define the factorial function f(x) = x! =
∏x

i=2 i. The template
for any recursive function is to define a function λf.λn.M where f will correspond to
the recursive call (which is a necessary trick since we cannot refer to the function being
defined), n is the argument of the function and M is the body of the function. For the
factorial function, we have

F := λf.λn.cond (is_zero n) 1 (f (n− 1)).

We assume the existence of a subtraction operator on N such that 0− 1 = 0. We define
fact := Y F and we have the following reduction:

fact = Y F ⇝β (λx.F (xx))(λx.F (xx))

⇝β F ((λx.F (xx))(λx.F (xx)))) = F (Y F) = F fact

11There are a lot of confusions about how to pronounce this name. I suggest that you listen to the
pronunciation at least one.

Chapter 2 Computational panorama 73

The notion of (simple) type

§15.13 Type theories have been introduced in logic mainly for the purpose of avoiding paradoxes
making logical systems contradictory. Russell and Whitehead in particular contributed
to the developments of these theories (cf. Paragraph 3.4). Since Church’s system was
originally a logical system, type theory can be applied to it. According to Hammache
[Ham21, Section 9.1.1], Church wanted to keep the computational power of his system
so he did not introduce typed λ-calculus for the only purpose of avoiding paradoxes.
He especially wanted to constrain the space of λ-terms to a relevant subset such as the
subset of normalisable terms. Church’s type theory is a theory of control of computation.

§15.14 Church’s original type theory [Chu40] has the following grammar of types:

α, β ::= ι | o | αβ (Types)

where ι is the type of individuals, o is the type of propositions and αβ is the type of
functions from the type β to the type α (a function type applied to an argument type).
Types are directly integrated within λ-terms with the following grammar:

Mα, Nα ::= x | λxβ .Mα | (MN)α (Terms)

where λxβ .Mα is of type αβ, and in (MN)α, M is of type αβ and N of type β. The
reduction now takes types into account:

(λxβ .Mα)αβNα ⇝β {x := N}Mβ

Notice that types have a functional notations, exactly like λ-terms. It suggest the idea
that types themselves can behave like functions as well. This elementary type system,
now known as simple types is sufficient to exclude unwanted terms. For instance, the
term λx.xx cannot be typed:

• it has to be of type αβ because it is a function. We have the partial typing
λxβ .(xx)α;

• having (xx)α implies that we must have the left x of type αα′ and the right x of
type α′;

• however, a same variable x cannot be both of type α′ and αα′, this is contradictory.

This term was not so innocent anyway, since it can form (λx.xx)(λx.xx) which is known
to normalise into itself and hence corresponding to an infinite loop.

§15.15 Application in linguistics. This is rather anecdotal in this thesis but I just would like
to mention that Church’s original type theory has applications in linguistics. Montague
grammar for instance, makes use of λ-calculus and higher order predicate calculus to
express meaning in natural language. A verb phrase (VP) such as “The man is walking”

Chapter 2 Computational panorama 74

var
Γ, x : A ` x : A

Γ, x : A `M : B
abs

Γ ` λx.M : A→ B

Γ `M : A→ B Γ ` N : A app
Γ `MN : B

Figure 15.2: Typing rules for simply typed λ-calculus.

var
x : α, y : β ` x : α

abs
x : α ` λy.x : β → α

abs
` λx.λy.x : α→ β → α

Figure 15.3: Typing derivation for a λ-term.

for instance is of type ι→ o, it takes a subject (the man) and turns it into a proposition.
It shows that types can also speak about the behaviour of computational entities.

§15.16 Curry considers untyped λ-terms as independent from types. We write M : A for a type
M of type A. Types are written A,B and atomic type variables α, β are considered
instead of ι and o. We have the following grammar for types:

A,B ::= α, β, ... | A→ B (Terms)

To still represent the fact that typed λ-terms cannot exist without types, the construction
of terms have to be constructed by some rules. These rules use the notation of sequents
of Paragraph 9.9. A sequent is an expression asserting the type of an expression. The
sequent Γ `M : A says that the termM is of type A for a context or typing environment
Γ made of type assertions x1 : A1, ..., xn : An. The typing rules are given in Figure 15.2.
Using typing rules, it is possible to construct trees exactly like we do in proof theory.
The typing derivation of Figure 15.3 guarantees that λx.λy.x can be attached to the
type α→ β → α.

§15.17 Types can be seen as constraints over computation so to prevent some behaviours from
happening, but they also express a computational behaviour. A type derivation is a
very important object since it acts like a certificate for a computational behaviour. The
existence of such a certificate ensures that our computational object will have a specific
behaviour and not another unexpected one. After Church, a lot of type systems have
been developed in order to capture other behaviours. For instance, intersection types
are able to give several types to terms so that the x in λx.xx (which terminates) can
be typed with the intersection 〈A→ B,A〉 because it acts both as a function and as an
argument. It is also possible to extend λ-calculus with other constructions such as pairs
(M,N) : A×B with M : A and N : B.

Chapter 2 Computational panorama 75

010 ␣ ␣

state=q; read=0; write=1; move=right

. ⇝ 110 ␣ ␣

state=q′

.

Figure 16.1: Transition in a tape for a Turing machine.

16 Computation as state machine

My references for this section are Petzold’s book “The annotated Turing”12 (which is a commen-
tary on Turing’s seminal paper) and Sipser’s introduction to the theory of computation [Sip06]
for formal definitions.

The mathematician-machine

§16.1 Alan Turing is without doubt one of the most famous figures of computer science. During
his youth, it seems that Turing was fascinated by machines and more especially with
their relation to the human mind [Pet08, Chapter 4]. Already interested in science as
a young student, Russell’s work on mathematical logic caught his interest very early.
Hilbert’s decision problem came to him through a course of Maxwell Herman Alexander
Newman that he took in 1935. At this time, the idea of mechanical process did not refer
to machines. This is after this course that he began to work on Hilbert’s problem. He
tried to design a machine which would reproduce the steps done by a mathematician. His
machine could compute numbers in binary form (only with 0 and 1) but also well-known
mathematical constants such as π and e. More than that, he also designed a universal
machine able to simulate the operations of another machine, exactly like how a program
(such as a compiler) would read another program in today’s programming. Turing was
an independent researcher in the beginning13, which is probably part of why he came up
with this unusual solution. Church already published about this problem at this time
but his works were very connected to the literature, unlike Turing. This interests led to
a collaboration with Church himself who became his PhD advisor.

§16.2 To quote Turing himself, his machines [Tur36] (now called Turing machines) consist of
a “tape” (representing a piece of paper) divided into sections called “squares”. Each
square can bear a symbol, and the machine can read the square of a tape and move
to the left or to the right. Turing says that a square read by the machine is a scanned
square which is the only square the machine is aware of. The design was motivated
by the use of machines (e.g. computing numbers). A machine can be in a specific state

12One of the first books about computer science I have read!
13According to Petzold’s book, he even reinvented the binomial theory and developed his own notation

for calculus.

Chapter 2 Computational panorama 76

Configuration Behaviour
State Symbol read Symbol written Movement New state
q 0 1 right q′

q′ 0 1 left q
q′ 1 0 right q′′

...

Figure 16.2: Transition table for a Turing machine.

qa q0

start

q1 qr

q2

q3

$→ $, r

a→ a, r
$→ $, r

b→ b, r
$→ $, r

a→ a, l
b→ b, l
$→ $, l

a
→
$,

r

b→
$, r

b→
$, l

a
→
$,

l

␣→ ␣, s

␣→ ␣, s

␣→ ␣, s ␣→ ␣, r

Figure 16.3: State graph of a Turing machine recognising the language of words with as
many a as b.

called m-configuration (or simply state) which is a classification of situations the machine
can be in. An intuitive example of states are the two or three colours of traffic lights.
The machine goes from an m-configuration to another one depending on what symbol
is read. Then, a symbol is written and the machine moves left or right. An example of
move is given in Figure 16.1. The machines move accordingly to a transition table such
as the table of Figure 16.2.

§16.3 Turing wanted to compute numbers and he had in mind sequences of digits such as π
or the decimals of 1÷ 3. Interestingly, he wanted his machines to compute forever and
distinguished two classes of machines: circular machines which get stuck and the others
are circle-free. Although very powerful, Turing did not provide a lot of relevant examples
illustrating the computational power of his machines.

§16.4 We now give a modern definition of non-deterministic Turing machine (NTM) with more

Chapter 2 Computational panorama 77

modern definitions and notations. Modern Turing machines can be either deterministic
or non-deterministic. Deterministic ones have only one possible transition at every step,
so no choices are possible whereas non-deterministic machines have several choices of
transition. Turing machines can be used for two purposes (which differ from Turing’s
original machines):

• accepting or rejecting an input word, and then the machine is seen as a recogniser
of a language;

• computing a mathematical function by stopping with a result left on the tape
(which is closer to what Turing had in mind). In the case of partial functions, the
machine is expected to loop on undefined inputs.

Our definition will include special states qa and qr, respectively representing the state
of acceptation and the state of rejection. Moreover, unlike Turing, we will be especially
interested in machine computing mathematical functions in finite time instead of printing
a sequence of digits. Looping will usually be seen as an ill behaviour. We refer to
Appendix A.3 for technical definitions of language theory used in this section.

§16.5 A non-deterministic Turing machine is a tupleM = (Q,Γ,∆, q0, qa, qr) where Q is the set
of states, Γ is the alphabet of the tape (cf. Appendix A.3),∆ : Q×Γε → P(Q×Γε×{l, r})
is the transition function (which can be written as a transition table as in Figure 16.2),
q0 is the initial state, Γε := Γ ∪ {ε} and finally, qa and qr 6= qa are respectively the
state of acceptation and rejection. We require that ∆(qa, c) = ∅ and ∆(qr, c) = ∅ for
all c ∈ Γε. We assume the existence of a symbol ␣ ∈ Γ representing the emptiness. An
example of state graph of a Turing machine is illustrated in Figure 16.3. Vertices are
states and arrows represent transitions.

§16.6 A configuration14 is a triple (l, q, r) where q ∈ Q and l, r are tapes (sequence of characters
in Γ). Configurations represent the position of the head of the machine on the tape and
the associated state. We say that a configuration C leads to C ′ when moving the head in
C accordingly to ∆ leads to C ′. A word w = c1...cn is accepted byM , writtenM(w) = 1,
when there is an accepting sequence of configurations C1, ..., Cn such that:

1. C1 = (␣, q0, w);

2. Ci leads to Ci+1;

3. Cn = (l, qa, r) for some l and r.

If the last configuration has a state qr instead, we say that M rejects w, which is written
M(w) = 0. WhenM loops infinitely on w by never reaching a final state for any sequence
of configuration, we write M(w) =∞. We require that an NTM necessarily ends on qa
or qr when it stops. For instance, the Turing machine of Figure 16.3 accepts aabb but
rejects aba. The machine is designed so to accept all words having as many a as b.

14Note that this is different from what Turing called configuration (a state).

Chapter 2 Computational panorama 78

4
3 9
2 5 8
1 2 4 7
0 0 1 3 6 . . .

0 1 2 3 4 5 6

Figure 16.4: Encoding of pair of natural numbers with natural numbers.

§16.7 A lot of extensions can be designed such as considering several heads, several tapes,
tapes infinite and only one side, etc. But most interesting variants have been shown
to be equivalent, which sounds very surprising. It shows how robust the class of com-
putable functions is. This emphasises the fact that Turing machines capture the notion
of effective procedure and is the right choice to define the class of computable functions.
Surprisingly, Turing machines are able to simulate Church’s λ-calculus and the converse
holds as well!

§16.8 Automata theory. Turing machines can be weakened to produce what we call au-
tomata [Sip06, Part One]. The weakest form of commonly studied automata are finite
automata which linearly consume their input and have no memory. Finite automata
recognise a subset of recursive languages called regular languages. They can be extended
to pushdown automata having a stack as memory (a sequence of stacked elements on
which we can either extract the top element or add new elements over it) and recognis-
ing context-free languages. Considering several types of machines allows to consider a
whole hierarchy of classes of languages called Chomsky hierarchy.

A bit of hacking with Turing machines

§16.9 Coding. For someone not used to Turing machines (or even programming), it looks
very cumbersome to solve problems. How can Turing machines solve problems about
logical formulas or mathematical expressions? The idea is to encode inputs in a repre-
sentation easy for a Turing machine to work with. Actually, even a binary language only
consisting of the symbols 0 or 1 is sufficient. More generally, most objects of interest can
be turned into natural numbers. There are known bijections between the set of natural
numbers N and the set of pairs of natural numbers N×N = N2. This allows to represent
a pair (n,m) as a single natural number #(n,m) ∈ N. The idea is that we can construct
an array with N as vertical and horizontal axis (cf. Figure 16.4). By enumerating natural
numbers on the diagonal, it is possible to associate a unique natural numbers with any
pair (n,m) ∈ N2. By convention, the first component corresponds to the horizontal axis
and the second one corresponds to the vertical one. If we focus on #(x, 0), we remark
that we must enumerate all natural numbers from 0 to x. At the first diagonal, we have
enumerated 1 number (only 0), then 1 + 2 at the second diagonal and so on. Hence

Chapter 2 Computational panorama 79

0 . 1 2 9 2 7 ...
0 . 9 5 1 2 7 ...
0 . 8 2 2 2 9 ...
0 . 1 8 0 8 1 ...
0 . 1 0 2 5 3 ...
...

Figure 16.5: Attempt at enumerating all real numbers in the interval [0, 1] ⊆ R.

#(x, 0) = 1+2+ ...+x = x(x+1)
2 . Now, what happens when we go y steps up in the ver-

tical axis? What we do is basically doing y steps on the right in order to select the right
diagonal to traverse, then increase by y to represent the upward traversal of the diagonal.
We obtain #(x, y) = #(x+ y, 0) + y = (x+y)(x+y+1)

2 + y. The idea can be generalised to
any tuples with the recursive definition #(n1, ..., nk) := #(...#(#(n1, n2), n3), ..., nk) by
iterating the encoding of pairs. Since these are bijections, a machine can decode inputs
in a unique way.

§16.10 Universality and simulation. If most objects of interest can be encoded as numbers,
so can be Turing machine themselves. Sets can be encoded as tuples and since a machine
M is a tuple, it can be encoded itself as a number #M . It is then perfectly possible
to consider machines taking other machines as input or even outputting a machine as
result. In particular, it is possible to design what we call a universal Turing machine
which is a Turing machine able to read the encoding of a machine as input (or its code
in modern terms15) and simulate it by reproducing exactly the steps it would have done.
More formally, if we have a universal machine U , then U(#M,w) =M(w).

§16.11 Even more than objects and machines, it is possible to turn problems into set of num-
bers containing their solution. For instance, if #w is the encoding of a word into a
natural number, then the problem of telling if two words are equal becomes the set
E := {#(#w1,#w2) | w1 = wn} ⊆ N. Decidable problems become recursive sets, i.e.
sets A for which the (total) characteristic function χA such that χA(x) = 1 when x ∈ A
and χA(x) = 0 otherwise can be implemented by a terminating Turing machine. For
instance, it is not difficult to design a Turing machine recognising the language E. It
would be a machine accepting two equal input words. A weaker class of sets are re-
cursively enumerable sets corresponding to sets which can be enumerated by a Turing
machine. A way to formalise this is that recursively enumerable sets are sets E for which
there exists a partial function f of domain E which can be implemented by a Turing
machine.

§16.12 Cantor’s diagonalisation method. By using simulation and encoding, it is possible
to do some little hacks on Turing machines. Using Cantor’s diagonalisation method it is
possible to infer the inexistence of some machines. Originally, Cantor’s diagonalisation

15This is not so impressive in programming: it is what compilers and interpreters do.

Chapter 2 Computational panorama 80

is a way to prove that R is uncountable, i.e. that there is no bijection between N and
R. It is sufficient to consider the interval [0, 1] ⊆ R. The idea is to try to enumerate all
these real numbers as in Figure 16.5, then show that it is always possible to construct
a real number not in this enumeration (although it is initially thought to be complete).
This problematic natural number x is constructed as follows: makes the first decimal
different from the first decimal of the sequence (for instance 2 is different from 1, do the
same for the second decimal (for instance 2 is different from 9. At this point we have
0.22. We can do the same for every decimal: the n-th decimal of x should be different
from the n-th decimal of the n-th number of the sequence. We indeed obtain a real
number theoretically not in the enumeration.

§16.13 The set of Turing machines is countable (hence bijective to N) because they can be
encoded as natural numbers and the set of all languages is uncountable, because in
particular, the set of all infinite sequences of digits in uncountable (by Cantor’s previous
proof that R is not bijective to N). Since the set of all languages cannot be put into
correspondence with corresponding Turing machines recognising them, there must be
some languages which cannot be recognised by Turing machines. This is a first interesting
result which can be interpreted as the fact that some problems cannot be computationally
solved (you can find more details in Sipser’s introduction to the theory of computation
[Sip06]). Now, it is interesting to exhibit such problems.

Undecidable problems

§16.14 Halting problem. Now, I introduce the so-called halting problem16, showing that
some problems are impossible to solve with a Turing machine. The halting problem
asserts that “there is a machine M such that for any machine N , M(#N) = 1 when N
halts andM(#N) = 0 when it does not”. We can define a weird machineD (for diagonal,
in reference to Cantor’s diagonalisation method) taking the encoding of a machine M
as input:

D(#M) =

{
∞ when M(#M) = 1
1 otherwise

where we implicitly make use of a machine checking if a machine loops on an input.
This machines D loops for every machine accepting itself. The input of D ranges over
the set of all machines. In particular, D itself is a machine of this set (it is similar to
what happens in Russell’s paradox). What happens when we would like to know the
forbidden answer of D(#D)?

D(#D) =

{
∞ when D(#D) = 1
1 otherwise

Assume that D(#D) = 1 then by the definition of D... D(#D) loops. Now, if D(#D)
loops, by the definition of D, D(#D) = 1. This is contradictory. Hence, it is impossible
16Term apparently introduced by Davis [Dav58].

Chapter 2 Computational panorama 81

to tell if a machine will loop on an input (which was the only assumption). A variant of
this problem called acceptation problem has exactly the same structure except that we
replace halting is replaced by rejection of the input. You can find more details in Sipser’s
book [Sip06, Section 4.2] about how diagonalisation plays a role in this construction.

§16.15 Post’s correspondence problem. Undecidability can also occur in very natural prob-
lems independent of Turing machines such as in Emil Post’s correspondence problem
(PCP) [Pos46]. Dominos are pair words w1

w2
. Given a list (ordered sequences) of dominos

L = v1
w1
, ..., vn

wn
, the top words and bottom words form new words v1...vn and w1...wn by

concatenation. If v1...vn = w1...wn then we say that L is a match. Post’s problem asks
whether a given set of dominos can produce a list (with possible repetitions of dominos
coming from the set) which is a match. For instance, Sipser’s [Sip06, Section 5.2] ex-
ample of match is { b

ca ,
a
ab ,

ca
a ,

abc
c } which can produce the list a

ab ,
b
ca ,

ca
a ,

a
ab ,

abc
c . However,

{abcab ,
ca
a ,

acc
ba } cannot produce a match. This problem is known to be undecidable.

§16.16 Busy Beaver. A funny undecidable problems introduced by Radò [Rad62] is formulated
as a game. Given a number of state n and the alphabet {0, 1}, you have to design a
terminating Turing machine which outputs as many 1 symbols as possible. The winning
machine with the largest input is called BB-n. The problem of verifying if an input
machine M is a BB-n for some n is undecidable.

Towards programming

§16.17 Post machines. I recommend Liesbeth De Mol’s works for more details about Post’s
contributions. Although it is the name of Turing that is often mentioned as the “inventor
of computer science”, in the same year as Turing (1936), Emil Post actually designed a
Turing-complete model of computation independently [Pos36]. His model of computation
works with a two-way infinite sequence of spaces and boxes which be either marked or
unmarked. A “worker” operates on one box at a time accordingly to a given ordered
finite sequence of instructions17. The instructions which can be used are the following:

• marking the current box;

• erasing the mark in the current box;

• moving the current box to the right;

• moving the current box to the left.

Since the notion of recursiveness (which characterises the computable) already existed,
Emil Post already conjectured that his model of computation was equivalent to it, which
would make his model Turing-complete. It is also possible to think of several extensions
such as using several distinct ways to mark boxes or extending the primitive instructions.

17He almost invented Amazon’s logistics before computer science even existed.

Chapter 2 Computational panorama 82

2
3
2

1
2
4
1

3

(a) Horizontal connexion.

2
3
2

1

2
4
1

3

(b) Vertical connexion.

2
3
2

1

2
4
1

3

2
3
2

1
2
3
2

1

2
4
1

3

(c) More complex tiling.

Figure 17.1: Tiling with two wang tiles.

§16.18 Wang machines. In 1954, Hao Wang, a philosopher and mathematician introduced18

B-machines which are equivalent to Turing machines and close to Post machines [Wan57].
His paper also contained extensions such as the W -machine allowing an erasure instruc-
tion. His B-machines have a binary infinite tape and the following set of instructions:

• →: move right;

• ←: move left;

• ∗: print ∗ (a mark) on the current square

• Cn: if the current square is marked then jump to the instruction n;

• E: erase the mark of the current square (only for W-machines).

This is often considered as the first presentation of Turing machines which is closer to
today’s programming. A program is an ordered sequence of pairs (k, I) where k ∈ N is
a line number and I is one of instruction described above. For instance, {(1, ∗), (2,→
), (3, C2), (4,→), (5,←)} is a program.

§16.19 Today, various sort of programming languages exist to automate operations on a com-
puter. A computer has several type of memories such as volatile memory (which is
used for temporary operations) and non-volatile memory (mostly used for permanent
storage). Programming languages allow to write programs executing tasks which ma-
nipulate the memory or other features of computers. These languages can be imperative
like the sequence instructions of Post and Wang machines and they can be functional be
extending the λ-calculus by the realisation of a mathematical function. They can also
be both or coming from completely different traditions of computation. Programming
opened a whole new fascinating field of interesting way to automate operations in very
different ways.

Chapter 2 Computational panorama 83

17 Computation as tiling construction

§17.1 After his Wang machines, Wang introduced a new model of computation: Wang tiles.
It is a puzzle-like model which is very different from the previous models presented.
It works by placing some pieces next to each other following some conditions in order
to obtain a more complex construction. It is what happens with dominos. Dominos
are objects having two sides which both contain a number between 1 and 6 (included).
Dominos are put on a surface with two sides next to each other only when they hold
exactly the same number. Wang tiles generalise this idea with a square of four sides
(north, south, east, west) containing a colour (or equivalently a natural number). These
tiles are then put on the plane Z2 (or equivalently a grid graph, cf. Appendix C). From a
given set of tiles T , we can construct tilings with occurrences of tiles in T . An illustration
in Figure 17.1 presents different connexions of Wang tiles.

§17.2 Wang tiles. More formally, a tile type can be formalised by a tuple ti = (siw, s
i
e, s

i
s, s

i
n)

for i in a finite set of indexes I. The components correspond to the four sides of the
tile. A function col ∈ N associates a natural number of a side. For instance, the two
tile types used in Figure 17.1 are (s1w, s1e, s1s, s1n) with col(s1w) = 2, col(s1e) = 2, col(s1n) =
1, col(s1s) = 3 and (s2w, s

2
e, s

2
s, s

2
n) with col(s2w) = 2, col(s2e) = 1, col(s2n) = 3, col(s2s) = 4.

Instead of the plane Z2, we consider subgraph of square grid graphs with corresponds
to connected subgraphs of the cartesian product G × G′ of two linear graphs (cf. Ap-
pendix C). Vertices are associated with a coordinate (x, y) ∈ Z2. Given a set of tile types
T , a tiling is a subgraph of square grid graph Gα = (V,E, end) together with a (possibly
partial) function α : V → T associating a tile type α(v) to vertices of Gα. For each
tiling, we require that two vertices v and v′ respectively of coordinates (x, y) and (x′, y′)
and of tiles α(v) = (siw, s

i
e, s

i
s, s

i
n) and α(v′) = (sjw, s

j
e, s

j
s, s

j
n) for i 6= j are adjacent when:

• if v is on the left of v′ (x = x′ − 1 and y = y′), then col(sie) = col(sjw);

• if v is on the right of v′ (x = x′ + 1 and y = y′), then col(siw) = col(sje);

• if v is above v′ (x = x′ and y = y′ + 1), then col(sis) = col(sjn);

• if v is below v′ (x = x′ and y = y′ + 1), then col(sis) = col(sjn).

§17.3 Domino problem. Wang’s domino problem asks for a way to determine if a given set
of tile types is able to produce infinite tilings able to fill all the plane Z2. In 1966, Robert
Berger, one of Wang’s student, gave a negative answer [Ber66]. He defined a translation
from Turing machines to Wang tiles so that if the machine loops then the corresponding
set of tile types tiles the plane Z2. Since the Halting problem is known to be undecidable
(cf. Paragraph 16.14), it must be impossible to tell if a tile set is able to tile the plane.

18The idea has been presented to the ACM in 1954 although the corresponding paper has been published
in 1957.

Chapter 2 Computational panorama 84

N2

W 2

O1

W 2W 2

O1

W 2W 2

N2

O1

N2

. . .

...Z1

O1Z1

O1

O1

glue type strength

Figure 17.2: Illustration of an assembly in an aTAM. Assume we are at temperature
τ = 2. We can connect a new tile to an assembly because the glue types
match and the sum of strengths involved is 1 + 1 ≥ τ .

§17.4 Another notion of interest for people working on Wang tiles is aperiodicity. A periodic
tiling with a repeated pattern. Soon after Wang introduced his tiles, he conjectured
that if a finite set of tiles can tile the plane, then there must be a periodic tiling as well.
This is what led to his Domino problem and to Berger’s negative answer. But another
observation of Berger shows that there must be a finite set of tiles which can tile the
plane aperiodically (hence without repeated pattern), which sounds very surprising. A
quest of some researchers was to found such a finite set of tiles and actually several have
been found (some being smaller than others) [CI96, JR15]. It has been shown in 2015
that a set of 11 tiles was the smallest possible.

§17.5 There are known links between tile systems, logic and automata [Tho91]. One link often
presented is that set of Wang tiles induce transducers [CI96, JR15]. A transducers is a
sequential state machine consuming an input word and writing symbols in an output.
From the transducer corresponding to a set of Wang tiles it is then possible to reason
about properties of (a)periodicity of tilings.

§17.6 Wang tiles are indeed a rather unusual way to compute and yet Berger implicitly showed
that it was Turing-complete. Actually, such tile-based computation, although not so
natural, found applications in biology where asynchronous communication between in-
dependent biological agents is a common thing. It seems that crystal formation, for
instance, follows mechanisms of tilings for complex structures. In the remaining parts of
this section, we will focus on DNA computing [See82]. In DNA computing, DNA strands
can be used to compute in different ways with models we will present. DNA comput-
ing, although almost inexistent in my field of study, seems underestimated. Biological
operations in general can be very long to compute (we have to wait for the end of a
biological/chemical reaction but it has the advantage of being massively parallel) and
rather cheap.

§17.7 Abstract Tile Assembly Model. A first model of DNA computing is the abstract
tile assembly model (aTAM) [Win98, Pat14] which is an extension of Wang tiles. We
refer to Lathrop et al. [LLS09] for more details19. Tiles ti = (siw, s

i
e, s

i
s, s

i
n) are defined in

19However, we use a variant without seed assembly σ because it is more natural in our case.

Chapter 2 Computational panorama 85

t1h1

h2

h3

t2

op(h2)
h4

Figure 17.3: Tiling of flexible tiles connected by two complementary flexible arms.

the same way as for Wang tiles. Colours are called glue types and are usually represented
by constants instead of natural numbers. Given a set of glue types G, we have a function
str : G→ N+ providing the strength of a glue type.

Tiles live in an environment having a temperature which is a natural number τ ∈ N∗.
The idea is that the temperature is a threshold of cooperation: a connexion involving
several tiles happen only if the sum of strengths of the sides involved in the connexion
is at least τ .

A tile assembly system (TAS) is a pair T = (T, τ) where T is a set of tile types and
τ ∈ N∗ is the temperature of T .

Given a set of tile types T , a T -configuration is a partial function α : Z2 → T pasting
tiles to the plane. It is associated with a connected square grid graph Gα = (dom(α), E)
with an edge between two vertices representing tiles ti, tj with i 6= j when gid = gjd′ for
d = op(d′) where op is the involution defined by op(e) = w and op(n) = s.

We say that α is τ -stable if it is impossible to cut EGα into two parts such that it breaks
bonds of total strength at least τ . In other words, it means that a new tile can be added
to a T -configuration only if the total strength value of its bonding is at least τ .

A T -assembly for τ is a T -configuration which is τ -stable. Given a TAS T = (T, τ),
we write A□[T] for the set of all T -assemblies for τ which are connected and maximal
(impossible to extend with more tiles of a given set of tile types). An example of tiling
is given in Figure 17.2.

In particular, the case of τ = 1 is called non-cooperative since any compatible tiles can
be connected independently of others without regards to any global constraints.

§17.8 Flexible tiles. Another (less known) model of computation of interest is the model
of flexible tiles introduced by Nataša Jonoska [JM05] which is able to encode “planar“
models (also known as rigid tile systems20) such as Wang tiles [JM06]. This model is used
for what we call DNA computing with branched junction molecules [EMJP19, Section
2]. The idea is to consider tiles with flexible arms with no constraint with planarity,
similarly to cables which can be plugged with each other when complementary. An
example of flexible tiling is illustrated in Figure 17.3.

20I once asked Jonoska why are we even doing DNA computation with rigid tiles since it intuitively
seems more natural to use flexible tiles. Her answer was that it was experimentally easier to have
control over rigid tile systems than over flexible tile systems.

Chapter 2 Computational panorama 86

Again, the terminology changes. Glue types are called sticky-ends and sticky-end types
identify sticky-ends (which correspond to sort of detached part of a DNA strand) having
an identical sequence of nucleotides.

We define a Watson-Crick complementarity as an involution21 op : H → H. We assume
that op(h) 6= h 6= op(op(h)). Two sticky-end types h and h′ can be connected when
op(h) = h′.

Given a set of sticky-end types H and a Watson-Crick complementarity for H, we define
a port bonding system (PBS) by a pair (H, op).

§17.9 Jonoska, McColm and Staninska’s choice [JMS11, Section 2.2] is to model flexible tiles
with star-like graphs but I suggest an alternative (and more limited) definition that I
personally prefer. A tile type is a multiset of sticky-end types and a pot type is a multiset
of tile types.

For a given PBS (H, op), the dependency multigraph D[P] of a pot type P defined with
H is a multigraph (V,E, ℓ) where the set of vertices is V := P and there is an edge e
between two tile types for every pair (p, p′) of complementary sticky-end types inside
them w.r.t. the involution op so that ℓ(e) = (p, p′) is an edge-labelling function.

A complex (tiling) is a label-preserving graph homomorphism α : Gα → D[P] from a
non-empty finite connected multigraph Gα. The vertices v of Gα are (flexible) tiles of
type α(v).

§17.10 The properties of interest for a given pot type P are the following:

• a complex α is stable if Gα has no complementary pair of free (unconnected) sticky-
ends in P (which correspond to occurrences of sticky-end types of Gα not involved
in any edge label);

• a complex α is complete if Gα has no free sticky-ends at all.

A use of flexible tiles is to provide sort of generators of graphs. It is then interesting to
study which class of graphs can be generated by which set of flexible tiles.

18 Computation as flow of information

§18.1 It is possible to compute with what we call circuits which are directed acyclic graphs
(DAG) in which information flows from (usually binary) some inputs to a unique input.
In 1937, Claude Shannon have shown in his master thesis [Sha38] that Boolean algebra
(which is a more mathematical formulation of Boole’s original logic presented in Para-
graph 2.2) could be used to simplify electronic machines of his time. This led to the
construction of digital circuits. Since the History of circuits is a bit unclear and mixed
with engineering and technologic developments, I will focus on technical and modern

21A function f such that f(f(x)) = x.

Chapter 2 Computational panorama 87

x1 x2 x3

s s s

∧

∧

¬ ¬ ¬

∨

∨

∨

c

Figure 18.1: Boolean circuit computing (x1 ∧ x2) ∧ x3 ⇒ x1 ∧ (x2 ∧ x3) ≡ ¬((x1 ∧ x2) ∧
x3) ∨ (x1 ∧ (x2 ∧ x3)) ≡ ((¬x1 ∨ ¬x2) ∨ ¬x3) ∨ (x1 ∧ (x2 ∧ x3)).

mathematical definitions of circuits. Formal definitions can be found in general pur-
pose books mentioning complexity theory22 such as Sipser’s book [Sip06][Section 9.3] or
Arora-Barak’s book [AB09, Chapter 6]. I suggest a variant of these definitions here.

§18.2 We start with boolean circuits. The general idea is that boolean circuits are acyclic
directed graphs showing how to produce a single output from a certain number of inputs
(either constant or variables) by using logical operations called gates (disjunction, con-
junction, negation or even more depending on the definitions). We provide a definition
using the notion of sharing which allows to share the value of an input.

§18.3 A boolean circuit is a tuple C = (V,E, in, out, ℓ) where (V,E, in, out) is a directed
acyclic graph and the function ℓ : V → {xi, 0, 1,∧,∨,¬, s, c} is a labelling function
where xi for i ∈ N is a variable, s corresponds to a sharing operation and c to a
conclusion. The value valΩ(v) associated with a vertex v ∈ V is defined inductively
as follows by using the usual definitions of boolean functions and an interpretation of
variables Ω : {xi}i∈N → {0, 1}:

▷ if ℓ(v) ∈ {xi}i∈N, in(v) = ∅ and |out(v)| = 1, we have valΩ(v) := Ω(v);

▷ if ℓ(v) ∈ {0, 1}, in(v) = ∅ and |out(v)| = 1, we have valΩ(v) := ℓ(v);

22Circuits are subject of a great interest in complexity theory.

Chapter 2 Computational panorama 88

▷ if ℓ(v) = s, in(v) = {v′} and |out(v)| = 2, we have valΩ(v) := valΩ(v′);

▷ if ℓ(v) = ¬, in(v) = {v′} and |out(v)| = 1, we have valΩ(v) := |valΩ(v′)− 1|;

▷ if ℓ(v) = ∧, in(v) = {v1, v2} and |out(v)| = 1,
we have valΩ(v) := min(valΩ(v1), valΩ(v2));

▷ if ℓ(v) = ∨, in(v) = {v1, v2} and |out(v)| = 1,
we have valΩ(v) := max(valΩ(v1), valΩ(v2));

▷ if ℓ(v) = c, in(v) = {v′} and |out(v)| = 0, we have valΩ(v) := valΩ(v′)

with the global condition that there is a unique v ∈ V such that ℓ(v) = c. If a vertex
does not follow the above conditions, then the circuit is not well-formed. The evaluation
of a circuit is defined by valΩ(C) := valΩ(v) such that v ∈ V and ℓ(v) = c. Such a
vertex v represents the unique conclusion of the circuit.

§18.4 Figure 18.1 illustrates an example of circuit which is always true whatever the inputs
we choose since the associated formula is a tautology (cf. Paragraph 6.11). Notice how
the sharing gate allows to duplicate the value of an input. This makes boolean circuits
different from the truth interpretation of formulas (cf. Definition 6.5) since the values
of all occurrences of a variable has to be computed. Moreover, sharing is not limited to
variables and hence allows for efficient representations of propositional formulas.

§18.5 Circuit families. In terms of computability, boolean circuits implement total boolean
functions {0, 1}n → {0, 1} for n inputs. However, Turing machines can compute for
any input size. The only way to compute any input size with circuits is to consider
circuit families which are set of circuits (Ci)i∈N for Ck a circuit of k inputs. Such
families are actually problematic: they are theoretically able to decide any language
including the language associated with the halting problem (Turing machines implement
partial functions). It looks miraculous but there is actually no way to give a concrete
construction of such sets in the first place, hence this is an inaccessible miracle. The
usual compromise is to consider uniform circuit families which are circuit families which
can effectively and efficiently (several definitions can be considered) be constructed by
a Turing machine.

§18.6 Arithmetic circuits. Boolean circuits can be generalised to arithmetic circuits by
considering any field K (instead of {0, 1}) and operations on it such as addition or
multiplication. This allows to compute finite polynomials

∑n
k=0 akx

k for some constants
ak ∈ K (instead of boolean expressions). Circuits of any kind always have a shape of
graph and only the mechanisms underlying gate changes. In particular, nothing prevents
us to have more sophisticated functions or mechanisms for gates.

Chapter 2 Computational panorama 89

19 Discussion: a single materialisation of computation?

§19.1 Models of computation discussed here are “standard” ones. We are interested in classical,
deterministic and finitely described models of computation. We thus choose to exclude
models implementing quantum, probabilistic or analogue computation.

§19.2 Let us give a look at all these models from a more synthetic point of view. Some questions
of interest to me are the following:

• what do these models have in common?

• cannot we have a single canonical representation of computation which would sub-
sume all the models presented?

Plurality of representations is obviously of great importance since they materialise dif-
ferent practices coming from different computational cultures. However, I believe that
these models can still be reunited and that there is something fundamental in how a lot
of models of computation work.

§19.3 It seems to me that the models presented in this chapter are all about propagation of
information propagated in a structure, thus directly generalising circuits:

• Turing machines but also automata can be represented as state graphs. A run on
an input can be seen as propagating a configuration (state of memory and current
character read) which is altered at each transition;

• tile systems can be replaced by dependency graphs D and the flow traversing it is a
graph-shaped exploration of D representing a tiling construction (Paragraph 17.8).
The data propagated and altered corresponds to information about the location
of tiles in a particular geometry of space. For instance, in the case of planar tiling
in Z2, tiles are associated with 2D coordinates;

• it is more subtle for functional computation such as λ-calculus but works on the
geometry of interaction [Gir89a, DR95] show that λ-terms can be represented by
proof-structures [Dan90, Chapter 11] (which are graphs) and reduction of terms
can be represented by an exploration of proof-structures [AL95, DR99].

This is an idea shared by Thomas Seiller who represents models of computation by a
space of configurations and primitive operations as monoid actions on that space [Sei20b,
Section A]. It is then possible to define a universal space of computation on which features
of models of computation (which define their identity) can be described as constraints
over that space. For instance, if automata are seen as tile sets of transitions, choosing the
right shape of tile can enforce sequentiality of runs (seen as linear tiling constructions).
This shows how sequential computation can be understood as a constraint over a parallel
and asynchronous model (tile systems).

§19.4 In order to properly define what would be a “universal” language of computation, fun-
damental questions about computation have to be answered first:

Chapter 2 Computational panorama 90

• what it is that we compute?

• what is a program?

• what is computation?

• what is an algorithm?

In modern terminology, a program is a computational entity which can be executed to
produce a result. This process of execution is known as computation and an algorithm
is simply a method which can be implemented by a program. However, it makes sense
to search for more general and precise definitions.

§19.5 My (probably vague for some people) answer is that what is computed are answers to
questions. When we compute we usually have a goal in mind (why would we compute
otherwise?) and we are looking for an adequacy between the expression of that goal and
the answer provided. A program corresponds to a construction in the space of answers
(without context when it is not put against some goal). This answer can be constructed
in an awkward manner, in such a way that it is not clear to us. But it can be explicited
by a procedure23. This happens when we design a method to construct the answer.
If the question is “4435241325 × 975746544 =?” (which is the kind of question a child
would ask), the answer 4327671394674730800 does not come to mind instinctively. We
usually construct a way to answer the question, which is indeed a sort of program (the
method for multiplication we learn at school). Then we use the method to show that
it leads to the answer: this is the execution (or computation) of our program. But the
answer was already located in the composite object made of a program plugged to some
inputs. It was just implicit. If execution is aborted without completion then it means
that I was not able to explain how to get the answer. Lack of sound execution means
lack of explanation. If the question is the expression of a goal then we can say that it is
an algorithm. Algorithms are way to express what we would like to compute, they are
sort of specifications. They are deeply related to logic which can be understood as a tool
to formulate questions or in other words, constructions in a space of questions.

§19.6 These ideas are consistent with Seiller’s more formal proposition (at least for computa-
tion and programs at the time of this thesis) that:

• computation correspond to dynamical systems (physical world);

• programs correspond to actions on a state space (computational world);

• algorithms correspond to specifications (mathematical/logical world).

23It reminds me of the beginning of Saint-Exupéry’s “The Little Prince”. The narrator tells a story
about a child drawing of an elephant inside a boa but it looks like a hat in the point of view of adults.
It is then possible to make the drawing more obvious by adding colours, adding eyes, making the boa
transparent so that we can actually see the elephant.

Chapter 2 Computational panorama 91

§19.7 In this thesis, I will present a finitist candidate for “universal” computation24. The
idea is to define a chaotic space of computation in which computational features such
as synchronicity, sequentiality and direction of computation (which are less “chaotic”
form of computation) are constraints on it. Moreover, we would like to minimise as
much as possible “external intervention” in computation. Such a language would be
autonomous or autarkic. For instance, in the case of boolean circuits, the evaluation
function would be implemented at the same level as circuits themselves and not as an
external procedure. In the case of tile systems, geometric constraints would be expressed
in the same language as tiles themselves.

24It has to be noted that we are not looking for the universal model of computation but only a candidate
or an attempt. It is basically the same but it sounds more modest.

Chapter 3

Linking logic and computation

Logic and Computation have been presented independently in the two previous chapters.
In this chapter, several links between them are introduced.

The link between logic and computation (and more precisely the Curry-Howard corre-
spondence) is actually what made me study logic and led me to my current researches.
This link is extremely fascinating and yet not so surprising after diving into details.
What is fascinating is that the abstract and philosophical (I dare to say mystical) logic
is related to down-to-earth and concrete computation, but also the possibility to explain
and justify logic in concrete terms.

20 The different traditions of logic and computation

§20.1 According to Dale Miller’s lecture notes1 “Proof theory, proof search, and logic program-
ming”, two approaches can be distinguished in order to link logic and computation.

• Computation-as-model represents computation with structures of predicate calcu-
lus (cf. Definition 7.8) and logical statements are used as tools to express properties
over computation. Hence, computation and logic are distinct but related notions.
This is what happens in model checking [BK08]: a system is represented by an
automaton or more generally by a transition system represented some structure
M and logic can express facts about the (un)reachability of some states. Given a
formula A, it is satisfied by M when M |= A (cf. Paragraph 7.13);

• Computation-as-deduction makes syntactic elements of logic coincide with compu-
tation. Hence computation and logic are partially identified. It is itself divided
into two approaches depending on what we consider as computation. There are
two approaches:

– proof normalisation in which computation coincides with proof reduction (cf.
Section 9) or cut-elimination (cf. Paragraph 10.5) for a given proof. We have
a proof-program which is already there and we only have to reduce it;

1http://www.lix.polytechnique.fr/Labo/Dale.Miller/mpri/ln2021-v3.pdf

http://www.lix.polytechnique.fr/Labo/Dale.Miller/mpri/ln2021-v3.pdf

Chapter 3 Linking logic and computation 93

Computation
Model

Transition
system

Formula Logic
is represented by specifies expresses

(a) Computation-as-model: computation and logic are distinguished notions. Logic is used to
state properties about the representation of a computational system.

Proof π

⇝∗

Proof π1

⇝∗

Proof π2

⇝∗ . . .

Computation / Proof reduction

(b) Computation-as-deduction (proof normalisation): we start from a whole given proof and
reduce it with cut-elimination or proof reduction. Sequents are part of programs.

...
Γ ` ∆ (Goal)

⇝∗
...

Γ′ ` ∆′

Γ ` ∆

⇝∗
...

Γ1 ` ∆1 Γ2 ` ∆2

Γ′ ` ∆′

Γ ` ∆

⇝∗ . . .

Computation / Proof construction

(c) Computation-as-deduction (proof search): we start from a sequent and try to prove it with
strategies. Sequents represent states during a computational process.

Figure 20.1: The different traditions of linking logic and computation.

Chapter 3 Linking logic and computation 94

– proof search in which computation coincides with proof search (the process
of automatically searching the proof of a given sequent). The proof itself is
the result of the computation and it has to be constructed. The expression
“computation as proof search” has been explicitly mentioned in Jean-Marc
Andreoli’s works in 1992 [And92].

§20.2 The different links between logic and computation are illustrated in Figure 20.1. In
this chapter, only computation as deduction is explained in details (because I am more
familiar with it, and otherwise this manuscript would be even longer than it already is).

21 Curry-Howard-Lambek correspondence

Natural deduction and Lambda-calculi

§21.1 Brouwer-Heyting-Kolmogorov. The Brouwer-Heyting-Kolmogorov (BHK) inter-
pretation is an attempt at giving an informal definition of what a (constructive) proof
should be. It has been introduced by Brouwer and his student Heyting but also in-
dependently by Kolmogorov. Unlike the truth interpretation of classical logic which is
empty of information because of its reference to an external semantics of truth (are you
always satisfied by a yes or no to your questions?), the BHK interpretation explain how
to actually construct a proof (thus providing the why of provable statements).

• A proof of A ∧B is a pair (a, b) where a is a proof of A and b a proof of B;

• A proof of A ∨B is either a pair (0, a) where a is a proof of A or (1, b) with b is a
proof of B (the value 0 and 1 indicates whether it is a proof of A or B);

• A proof of A ⇒ B is a process/function/construction turning a proof of A into a
proof of B;

• There is no proof of ⊥;

• The special element () is the unique proof of >;

• A proof of ∀x ∈ U.A is a function from u ∈ U to a proof of A;

• A proof of ∃x ∈ U.A is a pair (t, a) where t is a term (witness) and a a proof of A
(certificate validating the witness).

As for atomic proofs, they are assumed to be given. The important point is that proofs
of implication are functions. This is because proving that A leads to B can be seen as
having a method to reach B from A. But what sort of function is it? This ambiguity
is actually precious because it can be any kind of function (or process). In particular,
Kleene had in mind computable functions.

Chapter 3 Linking logic and computation 95

var
Γ, x : A ` x : A

Γ, x : A `M : B
abs

Γ ` λx.M : A→ B

Γ `M : A→ B Γ ` N : A app
Γ `MN : B

ax
Γ, A ` A

Γ, A ` B
⇒i

Γ ` A⇒ B

Γ ` A⇒ B Γ ` A ⇒e
Γ ` B

Figure 21.1: Correspondence between typing rule (simply typed λ-calculus) and logical
rules (intuitionistic natural deduction).

§21.2 Lambda-terms as proofs. A possible choice of functional and computable objects to
instanciate the BHK interpretation are simply typed λ-terms (cf. Section 15). A proof
of A ⇒ B becomes a term λx.M where x is a proof of A and M is a proof of B. This
requirement exactly corresponds to the typing rule of function type in simply typed
λ-calculus (cf. Figure 15.2). If we erase terms, we exactly obtain the natural deduction
rule for implication (in sequent presentation). It shows that proving a statement A is
the same as constructing a term of type A. Although a correspondence has already
been remarked by Curry [Cur34] between combinatory logic and Hilbert (Frege) proof
system, it is Howard [How80] who published the formal presentation of a proof-program
correspondence for the λ-calculus. We give again the corresponding rules in Figure 21.1
in order to make the link even more obvious.

§21.3 The correspondence matches so well that modus ponens naturally corresponds to the
application of function (but not their execution) and proof reduction corresponds to
the reduction of terms. The correspondence is in both objects and their dynamics.
Recall that proof reduction for ⇒ corresponds to having an introduction of implication
followed by its elimination, then reducing the initial proof to a new proof of B where the
occurrences of A assumed in the proof of A ⇒ B are replaced by the proof of A which
has been fed to the implication by the elimination rule ⇒e (cf. Figure 9.7). In terms
of λ-calculus, this exactly corresponds the β-reduction (λx.M)N ⇝β M [x := N] which
the requirement that everything is well-typed w.r.t. simple types.

§21.4 This formal correspondence is called Curry-Howard-Lambek (CHL) correspondence (or
simply Curry-Howard). As Philip Wadler said2, this correspondence is not limited to
those systems and it shows that some ideas have been discovered twice independently:
once by a logician (usually the first) and once by a computer scientist. We have that:

• Church’s simply typed λ-calculus corresponds to natural deduction for minimal
logic, which is intuitionistic logic restricted to ⇒ as only connective (no negation
as well);

• λ-calculus can be extended with more types and constructions illustrated in Fig-
ure 21.2:

2In his “Proposition as type” talk (https://www.youtube.com/watch?v=IOiZatlZtGU)

https://www.youtube.com/watch?v=IOiZatlZtGU

Chapter 3 Linking logic and computation 96

Γ ` a : A ∆ ` b : B ×
Γ,∆ ` (a, b) : A×B

Γ ` (a, b) : A×B
π1

Γ ` a : A

Γ ` A×B
π2

Γ ` b : B
Γ ` a : A in1

Γ ` (0, a) : A+B

Γ ` b : B in2
Γ ` (1, b) : A+B

Γ ` x : ⊥ ⊥
Γ ` x : A

>
` () : >

Γ ` e : A+B ∆1, fa : A ` C ∆2, fb : B ` C ∨e
Γ,∆1,∆2 ` match(e, fa, fb) : C

Figure 21.2: Extended rules for typed λ-calculus. The proof reduction for × corresponds
to an application of projection and the proof reduction for + corresponds to
the application of pattern matching (which can be seen as the implication
of a condition).

Natural deduction Typed λ-calculus
Formula Type

Implication A⇒ B Function type A→ B
Sequent Γ ` A Typing assertion Γ ` t : A
Logical rule Term constructor

Proof Typed λ-term
Proof reduction Term reduction
Irreducible proof Result

Proving Programming (constructing a program)
Conjunction A ∧B Product type A×B

Conjunction introduction Pair construction
Conjunction elimination Par projection π1(x1, x2) = xi

Disjunction A ∨B Sum type A+B
Disjunction introduction Sum type construction
Disjunction elimination Pattern matching

Top > Unit type
Bottom ⊥ Empty type

Second-order universal quantification Polymorphic type

Figure 21.3: Curry-Howard-Lambek correspondence between natural deduction and
typed λ-calculus.

Chapter 3 Linking logic and computation 97

Γ, x : A→ ⊥ `M : ⊥
S

Γ ` Sx.M : A

Γ, A→ ⊥ ` ⊥
dne

Γ ` A

– an empty type ⊥ and a unit type > only having () as term;

– pairs (a, b) of type A × B are projections allowing to extract a component
(their typing rules exactly correspond to the rules of conjunction);

– sum (i, x) of type A + B with either i = 0 and x : A or i = 1 and x : B
(its typing rules correspond to the introduction of disjunction). This dives
two types into the same abstract type. The proof-term (i, x) is often written
ιi(x) and is called injection. A typical example is the type Maybe(A) := A+>
which may be of type A or nothing. This allows to represent partial functions;

– pattern matching which analyses a sum type and provide a result for each
case. This corresponds to disjunction elimination.

• Polymorphic λ-calculus (where terms can have a generic type, e.g. λx.x : ∀X.X ⇒
X) corresponds to System F which is second-order logic (cf. Section 8) without
first-order quantification (it can also be called pure second-order logic);

• System T which is a computational system featuring built-in constants for natural
numbers and booleans, together with primitive recursion (always terminating),
corresponds to first-order Peano arithmetic (PA).

We obtain a big correspondence illustrated in Figure 21.3. The CHL correspondence is
still an active subject of research at the time of this thesis. We refer to Sørensen and
Urzyczyn’s lectures for more details [SU06].

§21.5 Perhaps the most important consequence is the reunion of two communities: proof
theorists and type theorists. Ideas can be shared and a common language emerges. Ideas
appearing in one field can be implemented in the other. In particular, this cultural fusion
can be made concrete with category theory (usually attributed to Joachim Lambek).

The functional interpretation of classical logic

§21.6 The CHL correspondence was initially about constructive proofs because they are the
ones which can materialise a (computational) process. For that reason, since classical is
not constructive, it has been assumed that no computational correspondence existed for
it.

§21.7 If we look at a classical proof in NK (for instance the one in Figure 9.6), we clearly
see that something happens. The proof still shows something. By using the rule of
double-negation elimination, what we do is making a formula A storable (in a bottom-
up reading): no operation can be done with A but ¬¬A can introduce the hypothesis

Chapter 3 Linking logic and computation 98

¬A. We can then extend the CHL correspondence with a new term Sx.M with the rule
of Section 21 which looks like the abstraction (abs) typing rule for λ-calculus. We then
need more reduction rules not presented here but which can be found in the literature
[SU06, Section 8.4].

§21.8 Continuation-passing style programming. The first hint of a CHL correspondence
for classical logic has been accidentally3 discovered by Timothy G. Griffin [Gri89] (who
actually worked on another subject) by remarking a relation between Peirce’s law ((P ⇒
Q) ⇒ P) ⇒ P (which is a classical axiom) and an operation in the programming
language Scheme known as call/cc (call with current continuation). This operator
allows to save the current context and load it later.

§21.9 Since there exists several ways to express classical logic (depending on what axiom your
choose or by allowing several conclusions), we can obtain several different computational
systems for classical logic. In particular, Parigot’s λµ-calculus [Par92] uses a multi-
conclusion sequent calculus and Krivine’s machine uses Peirce’s law.

The functional interpretation of quantification

§21.10 The BHK interpretation (cf. Paragraph 21.1) features rather a satisfying interpretation
of quantifiers. Remark that quantifiers are functions and pairs depending over some
alogical entity: individuals. Because quantifiers hold a computational behaviour, it is
not so surprising that first-order quantifiers also enjoy a CHL correspondence.

§21.11 Dependent type. A type system which illustrates this dependency is the theory of de-
pendent types [SU06, Chapter 10] which has been introduced independently of Howard’s
paper. It has originally been implemented in languages such as De Bruijn’s Automath4

for the verification of formal proofs using computers. It is common in mathematics to
work with restricted objects depending on a parameter. For instance, we could have a
type Str(n) of strings of n ∈ N characters and a type Vect(n) of vectors of size n ∈ N.

§21.12 The theory of dependent types can be expressed in a calculus called λP in which only
universal quantification is implemented. There are several categories of objects:

• λ-terms M,N ::= x | λxA.M |MN ;

• dependent types A,B ::= α | ∀xA.B | AM which can be of a certain kind κ and
α is an atomic type (implication A → B is defined by ∀xA.B where x does not
appear free in A);

• kinds κ ::= ∗ | ΠxA.κ where ∗ represents the class of all types.

3According to what I have heard.
4One of the first direct application of the Curry-Howard correspondence.

Chapter 3 Linking logic and computation 99

Remark that we have a functional behaviour at the level of terms, types and kinds.
Kinds are sort of types over types: types A are of a certain kind κ, which is written
A : κ. We could define Str := Πnint.∗ and construct Str(n) : ∗ with the rules of [SU06,
Section 10.2]. It is then possible to construct a term fillZero : ∀nint.Str(n) which
constructs a string of n characters 0. Of course, we also need more reduction rules to
apply arguments to types and not only the β-reduction which only applies to terms.
As for existential types ∃x.A, they correspond to a pair (x,A) of a term and a type,
expressing a dependency between x and A.

§21.13 Another precious idea appearing in Martin-Löf’s intuitionistic type theory [MLS84] di-
rectly and explicitly implements the CHL correspondence. Terms are seen as proofs
and we write M ∈ A to express the fact that M is of type A, or that M is a proof
of the formula A (an ambiguity allowed by the CHL correspondence). This allows to
mix functional programming and proving; an essential feature of proof assistants such
as Coq. If we would like to prove some goal ` A ⇒ B, then it is sufficient to construct
a term (program) taking an input of type A and producing any input of type B. For
instance, if we had a type Nat of natural numbers then the representation of the function
succ(n) = n+ 1 in λ-calculus would be a proof of Nat⇒ Nat. More than proving with
programs, it is also possible to construct programs from a proof, thus producing certified
programs which are ensured to have the behaviour we wish for.

§21.14 How these results show how rich the CHL correspondence is. It can be applied for
real-world situations and is still an active field of research with several branches and
subcultures. It is not limited to natural deduction: we even have several term assign-
ments to sequent calculus [SU06, Section 7.4] or construction of inductive types such as
N which is defined by self-reference.

22 Realisability

My personal reference for this section is Etienne Miquey’s PhD thesis [Miq17]. Other useful
references on the subject are Lionel Rieg’s PhD thesis [Rie14] and Alexandre Miquel’s HdR
thesis [Miq09].

Kleene realisability

§22.1 BHK interpretation (cf. Paragraph 21.1) is very generic and can be instantiated by
other objects, not only computable functions or λ-terms. In realisability, instead of
proofs, more general objects called realisers are considered.

§22.2 Realisability interpretation. We write t ⊩ A when t is a realiser of A (or that A is
realised by t). One of Kleene’s idea was to interpret intuitionistic formulas by encoding
(cf. Paragraph 16.9) partial recursive functions (cf. Paragraph 13.8) by natural numbers

Chapter 3 Linking logic and computation 100

(he uses Gödel’s encoding in particular). We write φ(n,m) for the application of the
function represented by n to the argument represented by m. We write #(n,m) for the
encoding of pairs (cf. Paragraph 16.9). We obtain the following variant of BHK:

• nothing realises ⊥;

• 0 ⊩ >;

• #(n,m) ⊩ A ∧B when n ⊩ A and m ⊩ B;

• #(i, n) ⊩ A ∨B when either i = 0 and n ⊩ A or i = 1 and m ⊩ B;

• n ⊩ A⇒ B when for all m ⊩ A, we have φ(n,m) ⊩ B.

§22.3 Type theory and Realisability. A question that quickly comes to mind (and it is
what I thought too in the beginning) is how it differs from typing as in typed λ-calculus.

• type theory is about using syntactic rules to verify the type of a term. It is about
verifying the shape or structure of a term in order to ensure that it will behave
well;

• realisability is about associating computational entities to formulas or giving com-
putational representatives for formulas. Realisability is more abstract and com-
putational as we can see in the definition of n ⊩ A ⇒ B which tests a function
against all possible arguments. The realisation of implication is more about the
behaviour of a function than its structure.

Actually, realisability generalises typing. This is represented by a property called ade-
quacy formalised by the implication t : A =⇒ t ⊩ A where t : A is the fact that t has
type A. This can be understood as having the computational behaviour stated by A
when having the structure of A. Interestingly, because this is a computation association
and not an inference about structure, nothing forbids contradictory, unprovable and un-
decidable formulas to be realised. It happens that some programs have a computational
behaviour which is sound without fitting typing rules. Because of that it is undecidable
in general to tell whether we have t ⊩ A for a given realiser t and a formula A. According
to Alexandre Miquel5, in type theory, we are interested in correctness w.r.t. rules/typing
and in realisability to correctness w.r.t. execution.

§22.4 The interpretation can be extended to first-order intuitionistic logic, called Heyting
Arithmetic (HA). By the CHL correspondence, it corresponds to a computational sys-
tem for primitive recursive functions called System T (attributed to Gödel), which can
be presented as a variant of λ-calculus. Realisability gives tools to reason about the re-
lationship between logic and computation. In particular, it is even possible to attribute
a computational content to the axioms of HA. The choice of a realiser can be rather

5https://www.fing.edu.uy/~amiquel/realiz21/kleene.pdf

https://www.fing.edu.uy/~amiquel/realiz21/kleene.pdf

Chapter 3 Linking logic and computation 101

arbitrary providing that it is computationally consistent. For instance, we can have the
following realisation of axiom of HA:

λx.λy.λz.z ⊩ ∀x.∀y.(s(x) = s(y)⇒ x = y).

Some common properties which can be proven with the help of the realisability inter-
pretation are the following:

� Soundness if `HA A then there exists t such that t ⊩ A;

� Consistency 6`HA ⊥ (proven by the fact that ⊥ cannot be realised).

But, what about classical logic?

Krivine realisability

§22.5 An attempt of extending the interpretation to classical logic is given by Jean-Louis
Krivine [KCHM09]. Krivine realisability is a complete reformulation of the theory of
realisability [Miq17, Section 3.1.2] and has the ambition of giving a computational in-
terpretation of important axiomatic systems such as ZFC axioms for set theory (cf.
Paragraph 3.5). The extension to classical logic is related to the classical CHL corre-
spondence using the call/cc operator (cf. Paragraph 21.8).

§22.6 Lambda-calculus with continuations. I will give an alternative definitions. A for-
mula or type A can be seen as a set of realisers |A|. Krivine’s realisers are λ-terms
extended with continuations in a system called λc-calculus. Terms are executed w.r.t. a
context or environment taking the form of a stack.

M,N ::= x | λx.M |MN | kπ | cc (Terms)

π ::= α |M · π (Stacks)

where α is a stack constant coming from a set of stack constant. It is also possible to
consider more instructions beside cc for terms. Notice that the constant kπ is associated
with a whole stack. This will be used to store a context to load it later during the
computation.

§22.7 Krivine machine. What is executed is not a term alone but a term in the context of
a stack. We write M ⋆ π for a connexion between a term and a stack. Such connexions
are called processes and are written with variables p and q. The execution of a process
is done by a Krivine Abstract Machine (KAM) which has 4 transition rules:

Push MN ⋆ π ⇝ M ⋆N · π (argument is postponed)
Grab λx.M ⋆ N · π ⇝ {x := N}M (function application)
Save cc ·M · π ⇝ M ⋆ kπ · π (the context is saved)
Restore kπ ⋆ M · π′ ⇝ M ⋆ π (the context is loaded)

Chapter 3 Linking logic and computation 102

We write ⇝∗ for the reflexitive-transitive closure of ⇝ (corresponding to multiple steps
of reduction).

§22.8 Example. (λxy.x)z ⋆ ε
push⇝ λxy.x ⋆ z

grab⇝ λy.x{x := z} ⋆ ε = λy.z ⋆ ε.

§22.9 We now would like to study computational interpretations of classical logic by realis-
ability. We write Λ for the set of all λc-terms and Π for the set of all stacks. The idea is
to oppose terms and stacks such that stacks are sort of opponents for terms. The inter-
pretation is then parametrised by a way to assert whether a term and a stack interact
correctly.

§22.10 Definition (Pole). A pole is a chosen set ‚ ⊆ Λ × Π which is closed under anti-
evaluation, i.e. both p⇝∗ p′ and p′ ∈‚ implies p ∈‚ for all processes p, p′ ∈ Λ×Π.

§22.11 The requirement of anti-evaluation ensures that membership to the pole is sound w.r.t.
execution by the steps of the KAM.

§22.12 Test interpretation. Given a pole ‚, a termM and a stack π, the fact thatM⋆π ∈‚
formalises the fact that M and π interact correctly. It is then possible to see stacks as
sort of tests that terms have to pass in order to be part of a some formula. For instance,
consider that we have a set of stack ‖A‖ associated with a formula A. Then the set of
all M such that M ⋆ π for all π ∈ ‖A‖ defines the realisers of the formula A.

§22.13 Orthogonality. Given a pole ‚, it is possible to define an orthogonality relation be-
tween terms and stacks: we have M ⊥ π if and only if M ⋆π ∈‚. It is then possible to
define the orthogonal of sets of terms and stacks:

� For set of terms S⊥ := {π ∈ Π | ∀M ∈ S.M⊥π};

� For set of stacks S⊥ := {M ∈ Λ | ∀π ∈ S.M⊥π}.

Such orthogonality relations are usually symmetric and is an alternative definition of
“good interaction” or “passing a test”.

§22.14 Behaviour. Once an orthogonality relation is fixed, what will usually correspond to
formula are behaviours which are set of terms S such that S = S⊥⊥. Although this
definition seems abstract, it can be understood as a “closure by interaction”. Another
equivalent definition is that S is a behaviour when there is some set Tests(S) such that
S = Tests(S)⊥, which can be understood as S being testable or characterised by a set
of tests.

§22.15 Using these definitions, it is then possible to give a computational interpretation of
classical second-order Peano arithmetic (which was Krivine’s initial goal) [Miq17, Defi-
nition 3.8]. It shows how realisability interpretation have the power to reconstruct logical
systems from choosing a computational system and a right definition of pole.

Chapter 3 Linking logic and computation 103

Reconstruction of simple types

§22.16 By using similar ideas, it is possible to consider simpler reconstructions. An interpre-
tation of Colin Riba’s “Strong Normalization as Safe Interaction” paper [Rib07] is that
typed λ-calculus (a logical system) is reconstructed from untyped λ-calculus (a purely
computational system without types).

§22.17 We consider the usual untyped λ-calculus with another notion of context (instead of
stacks):

M,N ::= x | λx.M |MN set Λ (Terms)
E[] ::= [] | E[]M |ME[] set E (Contexts)

with E[M] defined by E[] where [] is replaced by M . A context is a λ-term with holes
and we expect it to be filled by another term. It can also be seen as an incomplete term.

§22.18 We can define a pole ‚ defined by the set of all strongly normalising terms (all paths
of reduction terminate). It is then possible to reconstruct simple types from the orthog-
onality relation associated with ‚ by an interpretation J·K:

• JαK := ‚ (which is shown to be a behaviour by Riba [Rib07, Proposition 4.6]);

• JA⇒ BK := (JAK · JBK⊥)⊥
where for A ⊆ Λ and B ⊆ E , A ·B is defined by A ·B := {E

[
[]M

]
|M ∈ A,E[] ∈ B}.

§22.19 This result shows that type systems are not necessarily primitive notions and can be in
some sense justified by computation (although Riba does not state it like that). The
reconstruction with strongly normalising terms as basis is not the only solution. Riba also
shows that there exist alternative definitions [Rib07, Section 6] and that both conjunction
and disjunction can be defined as well.

23 Logic programming

Reasoning with programs

§23.1 Predicate calculus is very convenient to express statements of natural language. For
instance, the fact that my brother and I have the same mother can be represented by
the formula mother(i) = mother(brother(i)) where i is a constant (or nullary function
symbol) representing me. We can also express the fact that some brothers have a different
father by the formula ∃p.∃p′.(brother(p) = p′) ∧ ¬(father(p) = father(p′)).

§23.2 Kowalski’s paper “Predicate logic as programming language” [Kow74] shows that predi-
cate calculus can be seen as a programming language for symbolic reasoning. Not in the
CHL sense that proofs correspond to programs but in the sense that:

Chapter 3 Linking logic and computation 104

add(0, Y, Y).
add(s(X), Y, s(Z)) :- add(X, Y, Z).
?add(s(s(0)), s(s(0)), R).

Figure 23.1: Example of logic program computing unary addition. The last line is the
query.

• a set of assumed formulas can be seen as a database of facts or a knowledge base;

• formulas of predicate calculus can be seen as goals, questions or queries;

• formulas (A1 ∧ ... ∧An)⇒ B can be seen as inference rules, that is, ways to infer
a fact B from facts A1, ..., An.

In particular, formulas representing questions can contain free variables and answers will
not be truth values but terms replacing variables which are consistent with the facts.

§23.3 An example of logic program computing unary addition is given in Figure 23.1 where
B :- A stands for A ⇒ B (if you wish to conclude B then you have to justify A). A
standard representation of natural numbers is to use unary numbers: a natural number is
either 0 or the successor or a natural number, which can be represented by the application
of a symbol s over another natural number. A natural number is then a sequence of
application of s over 0. The expression add(X,Y, Z) is a ternary predicate expressing
the fact that X + Y = Z. The first expression says that 0 + Y = Y for any Y and the
second expression that if X + Y = Z then (X + 1) + Y = Z + 1. The query asks for
the result of the sum 2+2. The next sections are dedicated to formalising this symbolic
reasoning and providing ways to answer queries.

§23.4 Terms are used to represent statements. In particular, we are interested in solving
equations t ?

= u between terms by searching for terms replacing variables such that it
would make t and u equals. Equations between terms is usually attributed to Robinson
[R+65] but Herbrand [Her30] already studied term unification before in the context of
his investigations on mathematical equations and proof theory.

§23.5 We recall elementary definitions of term unification [Her30] in Appendix B. We refer the
reader to the article of Lassez et al. [LMM88] for more details which are often omitted
in the literature or Baader et al. [BN98] for a broader view. We use uppercase letters
such as X,Y, Z for variables and lowercase letters a, b, c, f, g and h for function symbols.

Normal forms

§23.6 Now that we have ways to construct sentences, we could simply use predicate calculus
but it is not convenient enough to use it as it is. It has a lot of of logical rules whereas
what we wish for is simply an interaction between queries and clauses (either facts or

Chapter 3 Linking logic and computation 105

((A⇒ B)⇒ A)⇒ A translation of implication
⇝ ¬(¬(¬A ∨B) ∨A) ∨A use De Morgan laws
⇝ (¬¬(¬A ∨B) ∧ ¬A) ∨A ¬¬-elimination
⇝ ((¬A ∨B) ∧ ¬A) ∨A distribute ∨
⇝ ((¬A ∨B) ∨A) ∧ (¬A ∨A) remove superflous parentheses
⇝ (¬A ∨B ∨A) ∧ (¬A ∨A)

Figure 23.2: Transformation of Peirce law to its conjunctive normal form (CNF). Notice
that two occurrences of excluded middle appear in conjunction (the B is
not essential).

inference rules producing new goals). This section introduces ways to transform formulas
in other more convenient forms.

§23.7 Conjunctive normal form. A simple transformation which can be done in proposi-
tional calculus is to transform formulas in conjunctions of disjunctions [HR04, Section
1.5.2]. This can be done with the following operation over formulas:

• translate all symbols (such as ⇒) into formulas of the functionally complete set
{¬,∧,∨} for instance with:

– A⇔ B ⇝ (A⇒ B) ∧ (B ⇒ A);

– A⇒ B ⇝ ¬A ∨B;

• first push all negations to atomic formulas with De Morgan laws and double-
negation elimination:

– ¬¬A⇝ A;

– ¬(A ∧B)⇝ ¬A ∨ ¬B;

– ¬(A ∨B)⇝ ¬A ∧ ¬B;

• distribute disjunctions everywhere with:

– A ∨ (B ∧ C)⇝ (A ∨B) ∧ (A ∨ C);

– (B ∧ C) ∨A⇝ (B ∨A) ∧ (C ∨A).

• remove superfluous parentheses if you want, so that it is easier to read.

§23.8 Formulas in conjunctive normal form (CNF) have the uniform shape (A1
1∨...∨A1

n1
)∧...∧

(Am
1 ∨ ...∨Am

nm
) where the disjunctions are called (disjunctive) clauses and conjunctions

can be seen as collection of clauses. This can be presented in a more friendly way:
as multisets (cf. Appendix A.2) of clauses. We write clauses [A1, ..., An] instead of
A1∨...∨An and multiset of clauses with a sum notation C1+...+Cn instead of C1∧...∧Cn.
An example of transformation of a formula into its CNF is given in Figure 23.2. The

Chapter 3 Linking logic and computation 106

alternative notation for that example would be [¬A,B,A]+[¬A,A]. It is also possible to
transform formulas into disjunctive normal forms (DNF) corresponding to disjunctions
of conjunctions.

§23.9 Prenex normal form. Now that we are able to normalise formulas of propositional
calculus, we have to treat quantifiers to extend the normalisation to predicate calculus.
What is usually done is to push all quantifiers to the front of the formula. We then
obtain what we call a prenex normal form (PNF) [Hed04, Section 3.2.1]. This can be
done with the following transformations:

• first translate the formula into an equivalent formula of {∀, ∃,¬,∧,∨};

• apply (∀x.A) ∧B ⇝ (∀x.A ∧B) and (∀x.A) ∨B ⇝ (∀x.A ∨B) everywhere;

• apply (∃x.A) ∧B ⇝ (∃x.A ∧B) and (∃x.A) ∨B ⇝ (∃x.A ∨B) everywhere;

• apply ¬∃x.A⇝ ∀x.¬A and ¬∀x.A⇝ ∃x.¬A everywhere.

The first two rules only hold when B is independent from A, i.e. the variable x is not
free in B. If it happens to be the case, the variable bound x in A can be renamed so
that it is not in conflict with the free variable x in B. If we combine PNF with CNF
then we can obtain a prenex conjunctive normal form (PCNF) Q1x1...Qnxn.C1+ ...+Cn

where Ci is a disjunctive clause and Qi ∈ {∀, ∃}.

§23.10 Skolem normal form. It is also possible to do even more by eliminating existential
quantification. This transformation is known as skolemisation (or Herbrandisation if we
remove universal quantification). A formula which is skolemised is said to be in skolem
normal form (SNF) [Hed04, Section 3.2.2]. The idea is that whenever we have a universal
quantification preceding an existential one as in ∀x.∃y.A, it is the same as saying that
there is a function f turning x into the “right” y which satisfies the formula. Existential
quantification can then be removed by explicitly introducing a new function symbol f
corresponding to that function. For instance, consider the formula ∀n.∃m.n < m stating
that for all natural number n, there is a greater natural number m. We know that
the function successor s takes a natural number n and produces its successor n < s(n).
Hence the formula can be rewritten ∀n.n < s(n). Without expliciting what the function
is, giving a universe or a model of the formula, the two formulas are logically equivalent
and this is what matters anyway.

§23.11 Skolemisation is applied over a formulaQ1x1...Qnxn.C1+...+Cn in PCNF by successively
selecting an existential quantifier from left to right until the last one.

• if the selected ∃ has no universal quantifier preceding it, then

∃x.A⇝ {x := c}A

where c is a fresh constant not appearing in A;

Chapter 3 Linking logic and computation 107

Γ ∪ {P (t1, ..., tn)} ∆ ∪ {¬P (u1, ..., un)} Res
θ(Γ ∪∆)

Figure 23.3: Robinson’s resolution rule. The substitution θ is defined as the solu-
tion of the equation underlying the two interacting atoms, that is θ :=

solutionP(
∪n

k=1{ti
?
= αui}). We require that the two clauses are indepen-

dent: there is a renaming α making all variables of ∆ ∪ {¬P (u1, ..., un)}
disjoint from variables of Γ ∪ {P (t1, ..., tn)} (hence θ is an α-unifier).

• if the selected ∃ has n consecutive universal quantifiers preceding it, then

∀x1...∀xn.∃x.A⇝ ∀x1...∀xn.{x := f(x1, ..., xn)}A

where f is a new function symbol not appearing in A, which depends upon
x1, ..., xn.

§23.12 By combining all these transformations we can obtain a normal form for formula of
predicates calculus. All formulas can be rewritten as a formula ∀x1...xn.A where A has
no quantifiers and is in CNF. Universal quantifiers can even be hidden and the variables
x1, ..., xn occurring in A will be simply considered generic.

First-order resolution

§23.13 With the rise of computers, methods of automated reasoning began to appear. In par-
ticular, the DP algorithm (which has been extended to the DPLL algorithm6) developed
by Davis and Putnam [DP60] provided a way to check if a propositional formula in CNF
was satisfiable.

§23.14 The idea of the DP(LL) algorithm is to construct a partial truth valuation and extend
it while keeping consistency. It is more efficient than naive brute force search which
would try all possibilities. It appears that all satisfiability algorithms have the same
complexity: in the worst-case performance, their number of steps is exponential in the
size of their input7. What is meant by “keeping consistency” is that, for instance, if we
had a clause [A] then we can remove all occurrences of ¬A in other clauses since both A
and ¬A cannot hold at the same time. More generally, it is possible to deduce a general
rule producing C ∨D from A ∨ C and ¬A ∨D. This is known as the resolution rule.

6The DPLL algorithm was one of the first things I studied on my own. For some reasons, I was
fascinated by it and the fact that computers could solve logical problems. I believe that implementing
satisfiability algorithms is a good exercise. If you are interested in implementing automated reasoning
algorithms then I think Harrison’s “Handbook of Practical Logic and Automated Reasoning” [Har09]
is a good reference.

7There a lot of optimisation giving a number of steps lesser than 2n for an input of size n but it is still
very close. For instance, 2n/2 < 2n.

Chapter 3 Linking logic and computation 108

[A,B]

[¬A,C] [¬C]
Res

[¬A]
Res

[B]

[¬B,D] [¬D]
Res

[¬B]
Res

⊥

Figure 23.4: Resolution tree for the refutation of [A,B] + [¬A,C] + [¬B,D] + [¬C] +
[¬D] with the resolution rule. Example taken from Hedman’s book [Hed04,
Example 3.29].

§23.15 Resolution rule. Robinson suggested an algorithm focussing on resolution [R+65] as
a way to refute statements of predicate calculus. Resolution can be seen as a logical
rule over formulas in normal form (cf. Figure 23.3). In this context, predicate calculus
has been so normalised to the extreme that the resolution rule is self-sufficient and no
other logical rules are needed8. The empty set of clause is written ⊥ and corresponds
to a contradiction. The goal is to construct a resolution tree to infer ⊥ with a given
set of clauses, by reusing as many occurrences of clauses as we want. The meaning
of the resolution rule is that it produces a consensus between two clauses by resolving
contradictions.

§23.16 Independence of clauses. Notice that in Figure 23.3, there is an additional require-
ment of independence between the two clauses being connected. This is due to the fact
that ∀x.A ∧ B is equivalent to (∀x.A) ∧ (∀x.B). Hence each clause can have its own
local bound variables. Without this requirement, we would not be able to infer bot from
[P (a, x)] + [¬P (x, b)] since they share a variable which cannot be instantiated to both
a and b. However, these two clauses are contradictory since they represent the formula
∀x.P (a, x)∧¬P (x, b) ≡ (∀x.P (a, x))∧(∀x.¬P (x, b)) where ∀x.P (a, x) can be instantiated
to P (a, b) and ∀x.¬P (x, b) to ¬P (a, b) which is contradictory with P (a, b).

§23.17 An example of resolution tree is given in Figure 23.4. If a set of clauses is inconsistent
then there must be a resolution tree inferring ⊥ from its clauses. Similarly to reasoning
by contradiction, if we would like to show that a formula A is consequence of a set of
clauses C1 + ...+Cn, then it is sufficient to provide a refutation of C1 + ...+Cn + [¬A]
(assuming that A is false leads to a contradiction).

§23.18 Actually, if we are interested in the logical meaning of resolution, then the resolution
rule alone is not exactly sufficient. If we consider the set of clauses [A,B] + [¬A,¬B],
although inconsistent, it will never reach the empty clause ¬. Additional rules such as
“factoring” or other logical simplifications have to be considered. Since this is a minor
technical detail that will not be used in this thesis, we choose to ignore it.

§23.19 Resolution trees are constructed from top to bottom. Their construction is non-trivial.
It is as if we were only using the cut rule in sequent calculus. For that reason, it is not

8Notice that it is actually an instance of monolateral cut rule (cf. Figure 11.1).

Chapter 3 Linking logic and computation 109

clear at all how we should apply the resolution rule: it is possible to get stuck or to loop
although there was a good series of choices leading to ⊥ (when it is possible to infer
it). This is related to the fact that the satisfiability of formulas for predicate calculus
is undecidable. Hence refutation is subject to the same problem since refuting ¬A is
equivalent to showing satisfiability of A.

§23.20 Logic programming is based on the resolution principle. However, strategies and con-
straints have to be designed in order to have a practical use of it. For instance, it is
usually not necessary to consider multiple conclusions when reasoning. It is sufficient to
consider implications (A1 ∧ ... ∧An)⇒ B as shown in Section 23.

Reasoning with Horn clauses

§23.21 Horn clauses [Hor51, Tär77] are type of clauses which are easier to use for practical
applications. They correspond to clauses with at most one positive literal (without
negation). For instance [¬A,B,C] is not a Horn clause but [¬A,¬B,C] is. The intuition
is that such clauses correspond to implications “if ... then ...” of the shape (A1 ∧ ... ∧
An)⇒ B because

(A1 ∧ ... ∧An)⇒ B ≡ ¬(A1 ∧ ... ∧An) ∨B ≡ ¬A1 ∨ ... ∨ ¬An ∨B.

We will sometimes write the more convenient sequent notation A1, ..., An ` B where
A1, ..., An, B are atoms instead9.

§23.22 It is possible to distinguish three classes of Horn clauses. Clauses

• ` A with one positive atom and no negative ones, called facts (they are assumed);

• A1, ..., An ` A with exactly one positive atom, called inference rules;

• A1, ..., An ` with no positive atom, called queries.

These classes correspond to the three kind of elements we needed for logic programming
(cf. Section 23). The idea is that a query P (t) ` corresponds to a clause [¬P (t)] which
can interact either directly with a unifiable fact ` P (u) or a unifiable conclusion P (u) of
an inference rule A1, ..., An ` P (u). In the latter case, we need to answer the new query
A1, ..., An `.

§23.23 SLD-resolution. In order to reason with a computer, several resolution strategies have
been designed [KK71]. The SLD-resolution is a strategy which selects a clause (usually in
a query) and makes it successively interact with other clauses linearly in order to produce
a new resulting clause (called resolvent). SLD stands for selective-linear-definite. It is
also possible to enrich set of clauses with an order so that a query will connect to the
first matching clause, as in the logic programming language Prolog [CR96].

9Remark that Horn clauses in sequent notation correspond to intuitionistic sequents.

Chapter 3 Linking logic and computation 110

[¬Add(s(s(0)), s(s(0)), R)] [Add(s(X), Y, s(Z)),¬Add(X,Y, Z)]

[¬Add(s(0), s(s(0)), Z)] [Add(s(X ′), Y ′, s(Z ′)),¬Add(X ′, Y ′, Z ′)]

[¬Add(0, s(s(0)), Z ′)] [Add(0, Y ′′, Y ′′)]

⊥

X = s(0), Y = s(s(0)), R = s(Z)

X ′ = 0, Y ′ = s(s(0)), Z = s(Z ′)

Y ′′ = s(s(0)), Z ′ = Y ′′

Figure 23.5: Answer of the query 2 + 2 ` for unary addition with Horn clauses and
SLD-resolution. When reaching ⊥, we can read the result located in R by
unifying the values of variables. We have Z ′ = Y ′′ = s(s(0)), hence Z =
s(s(s(0))). And since R = s(Z), we finally have the result R = s(s(s(s(0)))),
meaning that 2 + 2 = 4.

§23.24 An example of application of SLD-resolution is given in Figure 23.5. Answers are given
by finding a consistent term replacing free variables of the query. There can be several
answers for all the free variables of the query or no answer at all. The answer can just
be ”Yes” if there is no free variable and we are just trying to justify a query seen as a
goal.

§23.25 Logic programming had a huge impact during the rise of computer science as several
various resolution systems have been built [Lei12, Sic76, Kow75]. It also led to variants of
logic programming such as answer set programming (ASP) [Gel08, EIK09] or disjunctive
logic programming [LRM91, Min94]. After declining for a long time, it is coming back
again with recent works such as Andreoli’s [And92] work or Miller’s works [Mil21] relating
proof theory (with applications to linear logic) and logic programming.

24 Discussion: the limits of the proof-program correspondence

Although it is not related to what I present in this section, some notes of Laurent Regnier (which
I find very interesting) discuss the limits of the CHL correspondence10.

§24.1 The strict meaning of CHL. Remark that, stricly speaking, not all logical and
computational systems are concerned by CHL.

• Only logical systems enjoying a cut-elimination theorem are considered. It is not
the case of all logical systems. A dynamics of proofs is needed because otherwise

10https://www.i2m.univ-amu.fr/perso/laurent.regnier/articles/ch.pdf

https://www.i2m.univ-amu.fr/perso/laurent.regnier/articles/ch.pdf

Chapter 3 Linking logic and computation 111

we would not be able to execute the corresponding programs11.

• Usually, typed functional systems are considered. Untyped λ-calculus can produce
contradictions (cf. Paragraph 15.9) and is rejected from the correspondence for
that reason. It is not “logical”.

It is a very specific correspondence which cannot be (yet?) extended to all logic and
computation. I would like to stress this point: the CHL correspondence is a historical
coincidence. Actually we do not learn so much apart that two communities were doing
more or less the same thing with different vocabulary and methods. More pessimistic: it
may even mean that we were not able to distinguish the notion of computation from the
notion of logic. They are densely mixed together and we are more and more confused
with the meaning of the objects we work with. What logic and computation are is still
unclear at this point.

§24.2 It seems to me that there are currently three main understanding of the link between
logic and computation. I illustrate these points of view in Figure 24.1.

• The first understanding in Figure 24.1a corresponds to the famous (and exagger-
ated) slogan “proving is programming” which is full of hopes, as if computer science
colonised logic and tried to civilise it. However, we were not able to completely
merge two cultures, thus obtaining a sort of fake multiculturalism.

– The C language, Java, Turing machines, Wang tiles, Babbage’s engines are
computational but are they logical?

– When I discuss with people and use logical arguments, when I am thinking,
when I am doing mathematics, I am probably logical but do I always compute?
With the classical meaning of computation?

Even if the answers to the previous questions were affirmative, it does not necessar-
ily mean that logic and computation are the same but only that they are difficult
to distinguish from our point of view. They could be two distinct (but difficult to
separate) dimensions of reality.

• The point of view in Figure 24.1b is what I thought to be true at the beginning
of my PhD thesis. In this point of view, the CHL correspondence is only an
intersection between the notion of logic and computation. A perfect point where
they match. This might be because logic and computation are about a lot of
different things but they both have a common part speaking about the process
of construction to reach a syntactic goal and an evaluation from the implicit to
the explicit. But, under which basis can we judge that Turing machines are not

11This is probably more profound than we think. I once had a discussion with Paul Séjourné and we
reached the conclusion that if cut-elimination (or proof reduction) is a procedure from the implicit
to the explicit, it is a sort of explanation. What cannot be executed cannot be explained. Logical
systems without execution are hence transcendent in some sense. This is related to my reflection in
Section 19.

Chapter 3 Linking logic and computation 112

Logic = Computation

CHL

(a) CHL is the tip of an iceberg hiding
a uniform logico-computational space.
Proving is programming.

Logic Computation

CHL

(b) CHL is the intersection between logic
and computation. Some logics are not
computational and some models of com-
putation are not logical (Turing ma-
chines).

Logic Computation

CHL Proof search Model theory

(c) It is all about point of view, representations and models. We can identify some parts of one
to some parts of the other. Logic and computation are distinct entities which can be related.

Figure 24.1: Three nuances of Curry-Howard-Lambek (CHL). There are, of course, other
points of view such as logic subsumed by computation or the converse. Since
these point of view does not seem to have serious foundations, I decided to
exclude them.

Chapter 3 Linking logic and computation 113

logical? If we consider an intersection, it looks like we already assumed a sharp
distinction between logic and computation in the first place.

• While the two first points of view are like atheism and theism, the third point of
view illustrated in Figure 24.1c is more nuanced but still unclear about what logic
and computation are. We know that there are two notions that we constructed
and, depending on the point of view, we have different ways to relate them (cor-
responding to the three points of view given in the introduction of this chapter).

§24.3 I personally believe that suggesting a sharp and refined understanding of both logic and
computation is essential in order to progress in the right direction for two reasons:

• in the computational world, there exists some barriers, especially in complexity
theory where there are great difficulties at separating complexity classes. Those
difficulties may be related to a lack of understanding of the nature of logic and
computation. In particular, logic already has a role as a constraint (implicit com-
putational complexity) or descriptor (descriptive complexity) of complexity classes;

• in the logical world, there are philosophical motivations in the understanding of
the nature of reasoning but also of the relationship between thought, language and
reality. In particular, computation (which can be thought as more concrete and
down-to-earth) seems to be able to reach an explanation and a justification for
reasoning.

§24.4 In this thesis, I defend another understanding of the relation between logic and compu-
tation which is closer to the point of view in Figure 24.1c while being consistent with
the two previous points of view as well. According to me:

• computation may be about time/dynamics and logic about space/shape (logic
regulates the space in which computation flows);

• models of computation are “logical” (probably a very controversial statement);

• logic and computation are completely distinct entities but which are strongly re-
lated and so densely mixed that we naturally work with logico-computational hy-
brid objects most of the time;

• CHL and proof search are two instances of such intertwined mix between logic and
computation. In particular, they may both live in the same space;

• the computation-as-model subsumes the two kinds of computation-as-deduction;

• it is possible to separate the logical part from the computational part of a hybrid
logico-computational entity.

§24.5 This point of view is based on Jean-Yves Girard’s transcendental syntax programme. In
order to explain what it is, we need to first start from linear logic and its developments.
My point of view on logic and computation changed many times during my PhD thesis
and this is what I would like to share in this dissertation. However, I do not have Girard’s

Chapter 3 Linking logic and computation 114

confidence nor his pretension so I would like to make clear that I am fully aware that it
is only a suggestion that I find interesting and not the final solution. There are probably
still a lot of blind spots in my understanding of logic. What I suggest are mostly potential
directions and inspirations.

Chapter 4

Linear logic

Linear logic has been introduced by Jean-Yves Girard [Gir87a]. I will not present the
history of linear logic in details as I do not know it very well and I do not think it is very
important for this thesis. Hence, I will simply present a short summary and introduce
linear logic directly from the sequent calculus. Historical notes can be found in Girard’s
seminal paper [Gir87a, Section V].

25 The emergence of linear logic

§25.1 During the rise of the Curry-Howard-Lambek correspondence, there was interests in the
denotational semantics of λ-calculus where λ-terms enjoy a mathematical interpretation
defining their meaning. If Λ is the set of all λ-terms then we need a spaceD of denotations
(mathematical meaning) and an interpretation function J·K : Λ → D. Now, if λ-terms
are interpreted by functions D → D, we have the usual paradox of set theory since it
would lead to D ' D → D. We must then restrict the space of functions. Dana Scott’s
[Sco82] solution was to use domains and continuous function.

§25.2 Girard (who was working on functional interpretations and cut-elimination for second-
order arithmetic) independently worked on alternative semantics by choosing category
theory to interpret λ-terms by normal functors [Gir88]. This is in this context that a
decomposition of the intuitionistic disjunction A∨B := !A⊕!B was discovered. It is only
later that this decomposition has been translated into simplified interpretations such as
Girard’s coherence semantics [Gir87a, Section 3] and a decomposition of intuitionistic
implication A ⇒ B := !A ⊸ B has been introduced. At that time, two types of
semantics for the λ-calculus were studied:

• qualitative semantics studying the relationship between input and output (domains,
Scott semantics, coherence spaces);

• quantitative semantics such as Girard’s normal functors which takes into account
occurrences and how much a portion of data of the output is used in the output. It
can eventually feature coefficients which are useful for probabilistic considerations.

Chapter 4 Linear logic 116

§25.3 Although linear logic and all its main developments are usually attributed to Girard,
several prefigurations or independent (accidental) definitions of (parts of) linear logic
deserve to be mentioned:

• the modal logic S4 reasoning on possibility and necessity (introduced by Clarence
Irving Lewis) [FY19];

• Lambek calculus studying the syntax of natural languages (introduced by Joachim
Lambek) [Pen92];

• ∗-autonomous (star autonomous) categories (introduced by Michael Barr) [Bar91].

26 Seizing the means of production

§26.1 The removal of logical principles can teach a lot and sometimes even adds more than
the design of new rules. In intuitionistic logic, the removal of classical principles (either
classical rule or constraining the space of conclusions) adds a straightforward construc-
tivity and a direct connexion with typed λ-calculus. Structural rules (contraction and
weakening) have already been mentioned in Paragraph 9.10. They make provability and
truth eternal because we can do these operations as much as we want as if we had an
infinite supply of formulas. But what happens if we forbid these rules and stop this
machine of unlimited truth?

§26.2 Substructural logics. The removal of structural rules yields several interesting logical
systems called substructural logics [Res02]:

• (strict or strictly) linear logic which forbids all structural rules and formulas are
seen as limited resources. In particular, the implication ⇒ becomes the linear
implication⊸ which uses its argument exactly once. It is linear for several reasons
but a simple explanation is that linear implication represent functions linearly
consuming their input (n inputs induce n consumptions);

• affine logic where the affine implication ⊸ uses its argument at most once, hence
weakening is allowed on the hypothesis. It means that it is fine to erase formulas
but we cannot have more than what we already have;

• relevance logic which requires a real causality between the hypothesis and the
conclusion: weakening is not possible on the hypothesis but contraction is. We
cannot have A ∧B⊸ B because B is not a direct consequence of A.

§26.3 If we apply this to the typing of λ-calculus, then strict linear logic is a type system for
λ-terms with abstractions λa.t where a occurs only once in t. The β-reduction (λa.t)u⇝
{a := u}t only replaces a unique occurrence of a by u. Among λ-abstractions which are
already linear, we can find λa.a and, if we allow pairs: λa.λb.(a, b) and λa.λb.(b, a).
As for affine logic, we have the two terms λa.λb.a and λa.λb.b because they erase one

Chapter 4 Linear logic 117

argument. As far as I know, relevance logic is not as studied as linear and affine logic in
the context of the λ-calculus.

§26.4 Additive and multiplicative operations. This chapter will be focussed on linear
logic only. Something remarkable happens when we forbid all logical rules. As stated
in Paragraph 10.2, multiplicative and additive rules1 of linear logic are equivalent but it
is only thanks to structural rules. If we forbid structural rules then additive and multi-
plicative rules are different operations giving rise to different connectives. In particular,
in Figure 10.3, in a bottom-up reading, ∧m splits its context and ∧a shares it. These
two rules are two different ways of handling formulas seen as resources and they both
deserve their own connective.

• For conjunction, ∧a yields & (with) and ∧m yields ⊗ (tensor);

• For disjunction, ∨a yields ⊕ (plus) and ∨m yields ` (par).

This decomposition also applies to neutral elements.

• For the truth constant, >a yields > (top) which is neutral for & and >m yields 1
(one) which is neutral for ⊗;

• For the falsity constant, ⊥m yields ⊥ (bottom) which is neutral for ` and we have
a new constant 0 (zero) which is neutral for ⊕ corresponding to an additive ⊥
(note that it has no rule).

The removal of structural rules revealed new connectives underlying the usual logical
connectives, as if we opened the clock of logic to look at its mechanisms.

§26.5 Linear negation. The linear negation (or orthogonal, or dual) of a formula A is written
A⊥ which have several pronunciations depending on your preferences: A orthogonal, A
dual, A perp2. We have just defined strict linear logic by just taking classical monolateral
sequent calculus (cf. Section 11) and removing structural rules. Negation is not affected
by this removal. Linear negation is still involutive, i.e. we have A ≡ A⊥⊥ and De Morgan
laws still hold for linear logic. In a more general setting (for instance bilateral sequent
calculus), linear implication can be defined with A⊸ B := A⊥`B. Linear equivalence
A ≡ B can be defined with (A⊸ B)⊗ (B⊸ A).

§26.6 From prohibition to regulation. Forbidding structural rules is too severe and the
logical system we obtain is too weak. We would like to have the power of classical and
intuitionistic logical back while keeping the distinct operators of additive and multi-
plicative rules. In linear logic, it is possible to decompose the intuitionistic implication
A⇒ B into !A⊸ B where:

1The terminology “additive” and “multiplicative” comes from interpretation of linear logic where for-
mulas are associated with sets: |A ⊗ B| = |A| × |B| and |A&B| = |A| + |B| (which makes the term
“exponential” even more relevant). Such interpretations can be found in introduction to coherent
spaces [Gir87a, Section 3] (note that this is not the original presentation of linear logic).

2If you say this one, you have very bad taste.

Chapter 4 Linear logic 118

1

⊥

>

0

(a) Nullary case.

⊗

`

&

⊕

(b) Binary case.

!

?

∀

∃

(c) Infinitary case.

•

•

•

•

neg
ati
on

ex
po

ne
nt
ia
l!

neg
ati
on

exponential?

(d) How to read.

Figure 26.1: Relations between linear logic connectives.

• ⊸ is a linear implication using its argument exactly once,

• !A (called “of course”) corresponds to a potentially infinite supply of A in the world
of hypotheses, and

• ?A (called “why not”) is the negation of ! and corresponds to a potentially infinite
demand of A in the world of conclusions.

Although it is not possible to prove A ⊸ (A ⊗ A) because A is used twice and ⊸ is
linear, it is possible to prove !A⊸ (A⊗ A)3. Note that because !A is on the left hand-
side of⊸, it becomes ?A⊥ in monolateral sequent calculus. The connectives ! and ? are
called exponential modalities or simply exponentials. They will be explained later after
formally introducing a sequent calculus for linear logic.

§26.7 These exponential modalities are one way among others to reintroduce the infinite po-
tential of provability. However, it is also possible to consider other ways to restrict
duplication and erasure to have a finer control over formulas seen as resources. These
variant of regulations are also related to computational complexity [Gir98, Laf04].

§26.8 Exponentials ! and ? correspond to infinitary cases for ⊗ and ` respectively. This is
illustrated by the two equivalences !A ≡ !A⊗ !A and ?A ≡ ?A` ?B. Quantifiers ∀ and
∃ correspond to infinitary cases for & and ⊕ respectively. This is because they are both
known to generalise conjunction and disjunction but which one, now that we have several
ones? Universal quantification does not feature a “context splitting” so it must be &. As
for existential quantification, in a bottom-up reading, its rule chooses a unique candidate
for existential witness, which corresponds to the destructive intuitionistic choice of ⊕
(∨a). Does multiplicative quantification make sense? I do not know.

3People learning linear logic (including me) tend to think that this was how linear logic was introduced
but this is not exact. It seems that the decomposition of intuitionistic disjunction A ∨ B = !A⊕ !B
has been clearly stated first [Gir87a, Section V.1] and the decomposition of implication has been
introduced and propagated for pedagogical purposes [Gir87a, Section IV].

Chapter 4 Linear logic 119

A,B = Xi | X⊥i | A⊗B | A`B i ∈ N (FMLL)

A,B = Xi | X⊥i | A⊗B | A`B | A&B | A⊕B i ∈ N (FMALL)

A,B = Xi | X⊥i | A⊗B | A`B | !A | ?A i ∈ N (FMELL)

A,B = Xi | X⊥i | A⊗B | A`B | A&B | A⊕B | !A | ?A i ∈ N (FLL)

Figure 27.1: Formulas of linear logic.

§26.9 We obtain the relations between connectives illustrated in Figure 26.1 (taken from Olivier
Laurent’s course notes4). Linear negation relates connectives with:

(A⊗B)⊥ = A⊥ `B⊥ (A`B)⊥ = A⊥ ⊗B⊥ 1⊥ = ⊥ ⊥⊥ = 1

(A&B)⊥ = A⊥ ⊕B⊥ (A⊕B)⊥ = A⊥ &B⊥ >⊥ = 0 0⊥ = >

(!A)⊥ = ?A⊥ (?A)⊥ = !A⊥ (∀x.A)⊥ = ∃x.A⊥ (∃x.A)⊥ = ∀x.A⊥

and exponentials relate connectives with:

!(A&B) ≡ !A⊗ !B ?(A⊕B) ≡ ?A` ?B !> ≡ 1 ?0 ≡ ⊥

More relations can be found in Lafont’s “Linear Logic Pages” [Laf99]. The reason
exponentials are called exponentials is because they act like exponentials on numbers. If
we interpret ⊗ by × and & by + then, the equivalence !(A&B) ≡ !A⊗ !B corresponds
to ea+b = eaeb.

§26.10 The forgotten case of exchange. Technically speaking, the exchange rule is a struc-
tural rule as well. However it will not be covered at all in this thesis and the exchange
rule will always be considered implicitly (it can be made explicit when needed). Remov-
ing the exchange rule leads to non-commutative linear logic where the order of arguments
of binary connectives is relevant. It is not widely studied in linear logic but it has been
studied by Abrusci [Abr91, AR99]. It is also related to linguistics where order matters
as in Lambek’s works on categorical grammars.

27 Classical linear logic sequent calculus

§27.1 Linear logic is usually introduced with several fragments, each having their own charac-
teristics. Some fragments are also studied on their own. The grammar of formulas for
the main fragments of linear logic are presented in Figure 27.1. We exclude first-order
and second-order quantification because the rules are the same as in classical logic.

4https://perso.ens-lyon.fr/olivier.laurent/thdem11.pdf

Chapter 4 Linear logic 120

ax
` A,A⊥

` Γ, A ` ∆, A⊥
cut

` Γ,∆

` Γ, A ` ∆, B
⊗

` Γ,∆, A⊗B
` Γ, A,B `
` Γ, A`B

(a) Multiplicative Linear Logic.

` Γ, A ` Γ, B
&

` Γ, A&B

` Γ, Ai ⊕i` Γ, A1 ⊕A2

(b) Additive rules.

` Γ w
` Γ, ?A

` Γ, A
d

` Γ, ?A

` Γ, ?A, ?A
c

` Γ, ?A
` ?Γ, A

!
` ?Γ, !A

(c) Exponential rules.

1
` 1

` Γ ⊥
` Γ,⊥

>
` Γ,>

(d) Neutral elements.

Figure 27.2: Full Linear Logic (LL)

• Multiplicative linear logic (MLL) is the simplest fragment and treats the most
elementary operations of reasoning such as the linear implication⊸.

• Multiplicative-Additive linear logic (MALL) is an extension of MLL with opera-
tions managing choices during the process of proving. Purely additive linear logic
(ALL) is sometimes studied by itself as well.

• Multiplicative-Exponential linear logic (MELL) is an extension of MLL which al-
lows the duplication and erasure of formulas seen as resources.

Full linear logic (LL) corresponds to a system allowing all these principles. For a fragment
C of linear logic, we will write Cu for the extension of C with units (neutral elements).
For instance, MLL with units is MLLu and its set of formulas is FMLLu .

Multiplicative fragment

§27.2 The sequent rules of MLL are presented in Figure 27.2a. MLL reveal a very simple sym-
metry and interaction in logic but also in computation. The relation with programming
is nicely explained by Curien in his article “Symmetry and interactivity in programming”
[Cur03]. If A is seen as a supply of limited resource then A⊥ can be interpreted as a
demand of this resource. The axiom rule can then be interpreted as meeting offer and
demand: we consume what we have. It is very similar to the supply/demand of classical
monolateral sequent calculus (cf. Section 11) except that in linear logic, resources are
limited and consumed.

Chapter 4 Linear logic 121

ax
` A,A⊥ ` A,Γ

cut
` A,Γ

⇝ ` A,Γ

` Γ, A ` ∆, B
⊗

` Γ,∆, A⊗B
` Ξ, A⊥, B⊥ `
` Ξ, A⊥ `B⊥

cut
` Γ,∆,Ξ

⇝ ` Γ, A

` ∆, B ` Ξ, A⊥, B⊥
cut

` ∆,Ξ, A⊥
cut

` Γ,∆,Ξ

(a) Multiplicative fragment. Just a rewiring.

` Γ, A1 ` Γ, A2 &
` Γ, A1 &A2

` ∆, A⊥k ⊕k
` ∆, A⊥1 ⊕A⊥2 cut

` Γ,∆

⇝ ` Γ, Ak ` ∆, A⊥k cut
` Γ,∆

(b) Additive fragment. Allows choices.

` ?Γ, A
!

` ?Γ, !A
` ∆ w

` ∆, ?A⊥
cut

` ?Γ,∆
⇝ ` ∆ w

` ?Γ,∆

` ?Γ, A
!

` ?Γ, !A
` ∆, A⊥

d
` ∆, ?A⊥

cut
` ?Γ,∆

⇝ ` ?Γ, A ` ∆, A⊥
cut

` ?Γ,∆

` ?Γ, A
!

` ?Γ, !A
` ∆, ?A⊥, ?A⊥

c
` ∆, ?A⊥

cut
` ?Γ,∆

⇝
` ?Γ, A

!
` ?Γ, !A

` ?Γ, A
!

` ?Γ, !A ` ∆, ?A⊥, ?A⊥
cut

` ?Γ,∆, ?A⊥
cut

` ?Γ, ?Γ,∆
c

` ?Γ,∆

` ?Γ, A
!

` ?Γ, !A
` ?∆, ?A⊥, B

!
` ?∆, ?A⊥, !B

cut
` ?Γ, ?∆, !B

⇝

` ?Γ, A
!

` ?Γ, !A ` ?∆, ?A⊥, B
cut

` ?Γ, ?∆, B
!

` ?Γ, ?∆, !B

(c) Exponential fragment. Applies operations (duplication, erasure, linearisation) on a box
containing A.

1
` 1

` Γ ⊥
` Γ,⊥

cut
` Γ

⇝ ` Γ

(d) Neutral elements. Please tell me what it means because I do not know.

Figure 27.3: Main cut-elimination cases for linear logic.

Chapter 4 Linear logic 122

ax
` X1, X

⊥
1

ax
` X2, X

⊥
2 ⊗

` X1 ⊗X2, X
⊥
1 , X

⊥
2 `

` X1 ⊗X2, X
⊥
1 `X⊥2

ax
` X⊥1 , X1 `
` X⊥1 `X1

ax
` X1, X

⊥
1

ax
` X1, X

⊥
1 ⊗

` X⊥1 , X1 ⊗X⊥1 , X1 cut
` X⊥1 , X1

Figure 27.4: Examples of proofs in multiplicative linear logic.

§27.3 Cut-elimination cases are presented in Figure 27.3. They are the same as for classi-
cal sequent calculus and also enjoy the same computational interpretation. The cut-
elimination between ` and ⊗ is simply a rewiring of interaction (the left premises and
right premises are connected together).

§27.4 MLL alone is sufficient as a linear type systems for λ-calculus as it is able to express
the linear implication A ⊸ B = A⊥ ` B. In particular, the linear modus ponens
is purely multiplicative. But if we do not limit types to implications, then it is also
possible to interpret pairs (a, b) : X1 ⊗X2. Even though the usual encoding of booleans
are the affine terms λa.λb.a and λa.λb.b, it is possible to define linear booleans with
λa.λb.(a, b) : X1 ⊸ X1 ⊸ X1 ⊗ X1 and λa.λb.(b, a) : X1 ⊸ X1 ⊸ X1 ⊗ X1. Linear
booleans are used to relate boolean circuits and proofs of MLL [Ter04].

§27.5 Note on booleans. The difference between the usual affine booleans and linear
booleans is that boolean in MLL cannot be erased. Moreover, to keep computation
linear, we have to keep some garbage, i.e. useless parts which will not be erased but
ensure that we are in a linear world. The advantage is that linear booleans enjoy a more
convenient interpretation of exclusive disjunction (XOR) [MT15, MT03]. Recently, Lê
Thành Dũng Nguyễn (aka “Tito”) also introduced a non-commutative linear type for
booleans [Ngu21, Section 7.2].

§27.6 An example of proof in MLL is given in Figure 27.4. The first proof is a proof of
(X1 ⊗ X2) ⊸ (X1 ⊗ X2) which can be seen as the linear λ-term λ(a, b).(a, b). The
second proof is more subtle. It corresponds to a type derivation for the typing sequent
b : X1 ` (λa.a)b : X1 where b is a free variable of type X1 (which becomes X⊥1 by duality
of monolateral sequent calculus). The left branch of the cut represents the function
(λa.a) : X1 ⊸ X1 = X⊥1 ` X1 ≡ X1 ` X⊥1 . The connective ⊗ connects the argument
b : X⊥1 together with an output of type X1.

§27.7 Non-idempotent intersection types. There exists alternative ways to type terms.
Another way is given by intersection types which type terms with conjunction of types
A ∧ B called intersection types [DC18]. The difference is that, instead of the compu-
tational interpretation with pairs, the expression ` M : A ∧ B says that M has two
types or two behaviours. For instance, the term λx.xx is not typable with the usual
simple types because x is used both as a function x : α → β but also as an argument

Chapter 4 Linear logic 123

x : α of a function of type α → β. However, it cannot have both types since α → β
cannot be unified with α. Nonetheless, it can be typed in intersection type systems
with ` λx.xx : α ∧ (α → α) → α taking into account the two behaviours of x. In the
non-idempotent case, we have that A∧A is not equivalent to A, hence intersections are
seen as collections of resources, exactly as in linear logic. Actually, ∧ corresponds to ⊗
in this case. The advantage of non-idempotent types systems is that they can capture
strong normalisation (termination) of terms but consequently, type checking becomes
undecidable (otherwise we would be able to solve the Halting problem described in Para-
graph 16.14). Intersection types can also be used for considerations on computational
complexity as in Mazza’s works [Maz17, Section 3.3.5].

Neutral elements

§27.8 The rules for neutral elements (also called units) are presented in Figure 27.2d. The
constants 1 and > are two sort of trivial statements (one without context and the other
possibly within a context). The constant ⊥ is an “acceptable error” which can be
discarded. It represents an unprovable goal but other paths can be taken in Γ. Remark
that if Γ = ∅ then we can be stuck with ⊥. The constant 0 has no rule and represents a
“fatal error”.

§27.9 Cut-elimination for neutral elements is presented in Figure 27.3d. Because 0 is a fatal
error, it cannot interact by cut-elimination. There is a rule for the interaction between
1 and ⊥ but I do not know how to give an interesting interpretation of it so you can just
look at it without comment.

Additive fragment

§27.10 The additive rules are presented in Figure 27.2b. As in monolateral sequent calculus,
they express binary non-deterministic choices. The formula A & B can be understood
as a superposition (passive choice) between a proof of A and a proof of B requiring the
same context Γ and proofs of A⊕B are binary selectors (active choice).

§27.11 In MALL, it is possible to have another encoding of booleans which is closer to usual
(functional) programming. A boolean is either a constant True or a constant False,
which can be represent by the type Bool := 1 ⊕ 1. The proofs of Bool are either a
left selection (representing True) or a right selection (representing False). The constants
True and False are hence represented by proofs, accordingly to the CHL correspondence.
They should not be confused with constants 0, 1,>,⊥ which are types/formulas and not
proofs. False is an object which can be used (for instance in conditions) whereas ⊥ and
0 are types/formulas representing two sort of errors.

Chapter 4 Linear logic 124

` Γ, A,⊥ ` Γ, A,⊥
&

` Γ, A,⊥&⊥
` 1 ⊕1` 1⊕ 1

cut
` Γ, A

⇝ ` Γ, A,⊥ ` 1
cut

` Γ, A
⇝ ` Γ, A

Figure 27.5: Example of proof using additive connectives. It represents the use of a
condition. The formula A represents the output of the condition. The
point is that the two branches of the rule & can be two different proofs
(terms) of the same sequent.

§27.12 If we look at cut-elimination for additive connectives in Figure 27.3b, we can see that
depending on whether the proof of A⊥1 ⊕ A⊥2 is a left (⊕1) or right selection (⊕2), it
will only select one side of & and erase the other. Conditions can be represented with
the connective &. However, the correspondence is not so exact. Consider a condition
if b then x else y applied to true. The result should be x. This situation is rep-
resented by a cut-elimination between the condition and the boolean value. However,
cut-elimination produces a new cut between the boolean value and the selected branch.
If we assume that the two branches are of type A1 and A2, the result our interaction
cannot be of type A1 because it would disappear after its interaction with A⊥1 . Only the
contexts Γ and ∆ remain. Therefore, it we would like to encode conditions, the connec-
tive & must link two occurrences of ⊥ artificially added in the encoding of the condition,
so that it annihilates the constant 1 of the encoding of booleans. This is illustrated in
Figure 27.5. Remark that the & connective now links those two occurrences of ⊥ instead
of the terms of the two branches of the condition. The condition must then have two
branches of same type A.

§27.13 Comment on linear equivalence. In Paragraph 26.5, we defined the linear equiva-
lence A ≡ B as (A⊸ B) ⊗ (B ⊸ A). However, there is an alternative definition with
(A⊸ B)& (B⊸ A). In a lot of cases, these definitions are equivalent because the rule
for ⊗ and & are equivalent in an empty context. They both prove either ` A & B or
` A⊗ B from ` A and ` B. There is no problem when equivalence is considered alone
(for formulas A ≡ B for any A and B). However, when equivalence is negated (typically
when it appears on the left of a linear implication), then depending on the chosen def-
inition, we obtain either (A⊸ B)⊥ ⊕ (B ⊸ A)⊥ or (A⊸ B)⊥ ` (B ⊸ A)⊥ which do
not have the same behaviour since ` keep premises in the same space of interaction and
⊕ makes an exclusive choice. For instance, if we consider the transitivity of equivalence
(A ≡ B) ⊗ (B ≡ C) ⊸ (A ≡ C), it is provable for ⊗ but not for &. This example is
illustrated in Figure 27.6.

Chapter 4 Linear logic 125

ax
` A,A⊥

ax
` B,B⊥

ax
` C,C⊥

⊗
` B⊥, B ⊗ C⊥, C

⊗
` A ⊗ B⊥, B ⊗ C⊥, A⊥, C `
` A⊗B⊥, B ⊗ C⊥, A⊥ ` C

ax
` A,A⊥

ax
` B,B⊥

ax
` C,C⊥

⊗
` B,C ⊗ B⊥, C⊥

⊗
` B ⊗ A⊥, C ⊗B⊥, C⊥, A `
` B ⊗A⊥, C ⊗B⊥, C⊥ ` A

⊗
` A⊗B⊥, B ⊗A⊥, B ⊗ C⊥, C ⊗B⊥, A ≡ C `

` A 6≡ B,B 6≡ C,A ≡ C
`

` (A 6≡ B) ` (B 6≡ C) ` (A ≡ B)

(a) Linear equivalence A ≡ B defined by (A ⊸ B) ⊗ (B ⊸ A). Nonequivalence A 6≡ B is
(A⊗B⊥)` (B ⊗A⊥).

? ?
` (A⊗B⊥)⊕ (B ⊗A⊥), (B ⊗ C⊥)⊕ (C ⊗B⊥), A ≡ C `

` (A 6≡ B) ` (B 6≡ C) ` (A ≡ B)

(b) Linear equivalence A ≡ B defined by (A ⊸ B) & (B ⊸ A). Nonequivalence A 6≡ B is
(A ⊗ B⊥) ⊕ (B ⊗ A⊥). We have two choices, either we use ⊗ and split with A ⊸ C and
C ⊸ A. But no matter how we distribute the context, we will never be able to join A and
C. The other choice is to use the rule ⊕k but by doing so, we lose precious information. The
sequent is unprovable. It would have worked if we could duplicate the context so as not to
lose information.

Figure 27.6: We give two proofs of the transitivity of linear equivalence: (A ≡ B)⊗(B ≡
C)⊸ (A ≡ C) with different definitions of equivalence.

Chapter 4 Linear logic 126

Exponential fragment

§27.14 The rules for exponentials are presented in Figure 27.2c. Only connectives prefixed by
the connective “?” can be duplicated or erased. The rule “d” is called dereliction5. From
a bottom-up reading, it corresponds to linearising a formula so that duplication and
erasure does not apply any more. From a top-down reading, it makes a linear formula
non-linear. The most mysterious rule is the rule “!” called promotion. This rule wraps a
linear formula with the connective !, but this is only possible when the context is fully
non-linear. This connective is better understood when looking at cut-elimination.

§27.15 The cut-elimination steps for exponentials are presented in Figure 27.3c. I know they
look scary but they are actually very intuitive. The rule ! on !A constructs a sort of box
encapsulating A in a non-linear context. This box can then interact with a non-linear
formula:

• in a w/! interaction, the box is erased;

• in a d/! interaction, the box is opened and its content A interact with the linearised
formula A⊥;

• in a c/! interaction, the box is duplicated6;

• in a !/! interaction, what happens is more spectacular. This is a commutation case
where two ! are related but do not interact directly. One wishes to interact with
something deeper in the proof. For that reason, one box enters inside the other
one.

§27.16 Intuitionistic and classical translations. Intuitionistic logic can be defined from
linear logic. There are two translations introduced by Girard.

• JXiK = Xi and JA ⇒ BK = !JAK ⊸ JBK (the original translation which gave rise
to linear logic). Non-linearity applies on the argument;

• JXiK = !X and !(JAK ⊸ JBK). Non-linearity applies on the whole implica-
tion/function.

It is possible to define a translation for classical logic by choosing the right combinations
of ! and ? to wrap formulas (which are known as q-translation and t-translation for the
systems LKQ and LKT [DJS95]) or using the formalism of polarised linear logic [LR03].

5According to the dictionary it means “failing to do what you should do”. In French, it is a literary
word referring to a state of moral abandon or loneliness.

6Because of this duplication, we can think that cut-elimination will not terminate but it actually
does. It is sufficient to find a measure which decreases during cut-elimination. Methods for proof of
termination can be found in the literature [BN98, Chapter 5].

Chapter 4 Linear logic 127

·

?

!

!? ?!

?!?

!?!

Figure 27.7: The lattice of exponentials modalities. The dot · represents the absence of
modality.

§27.17 Exponentials can be used to reconstruct a type system for simply typed λ-calculus
(since linear logic decomposes intuitionistic logic). A type assertion Γ `M : A becomes
` ?Γ⊥, A. The idea is that boxes represent arguments (the N in (λx.M)N). When
applying the β-reduction which replaces all x in M by N , several types of operation can
be done. The term N can be erased (if x does not appear in M) and it can also be
duplicated (if several occurrences of x appear in M). It may also be possible to imagine
other logical operations by thinking about what computational operation we would like
to apply on an argument. By using λ-calculus, it is also possible to give an interpretation
to the two intuitionistic translations. They correspond to two evaluation strategies for β-
reduction known as “call-by-name” and “call-by-value” evaluation [MOTW99, Wad03].
The first evaluates functions first and the second the arguments first.

§27.18 Hybrid calculi for linear logic. The interpretation of simply typed λ-calculus cor-
responds to a restricted (intuitionistic) subset of MELL where we only consider non-
linearity but it is also possible to construct a λ-calculus mixing both linearity and
non-linearity [ABCJ98, ACJ97]. It is also possible to find a presentation and several
extensions in Mazza’s HdR thesis [Maz17, Section 1.1.2].

§27.19 The lattice of linear modalities. Not all combinations of exponential connectives
such as !!!A or ?!??A can be distinguished. If the formula !A is interpreted as a potentially
infinite supply of A then it is not so surprising that we have !!A ≡ !A (this is proven
in Figure 27.8a). A combination of ! and ? is called a modality. In his PhD thesis,
Joinet remarks that for any modalities µ, we have !A ⊸ µA and µA ⊸ ?A [Joi93,
Section 5.2]. This induces an order over modalities. From that, he deduces a lattice of
exponential modalities and distinguishes 7 equivalence classes presented in Figure 27.7.
As a corollary, we have that all modalities are idempotent: for any modality µ, µA ≡
µµA. This has later been presented by Schellinx as well in his PhD thesis [Sch94, Section
1.1]. Similar facts also appeared independently in modal logic (especially S4) [FY19].

§27.20 Examples of proofs in MELL are presented in Figure 27.8. The third example in Fig-

Chapter 4 Linear logic 128

ax
` A⊥, A

d
` ?? A⊥, A

!
` ??A⊥, ! A `
` ??A⊥ ` !A

ax
` A⊥, A

d
` ? A⊥, A

!
` ?A⊥, !! A `
` ?A⊥ ` !!A

⊗
` !!A ≡ !A

(a) Proof that limitlessness of limitlessness is limitlessness.

ax
` A⊥, A

⊕1
` A⊥ ⊕ B⊥, A

d
` ? (A⊥ ⊕B⊥), A

!
` ?(A⊥ ⊕B⊥), ! A

ax
` B⊥, B

⊕2
` A⊥ ⊕ B⊥, B

d
` ? (A⊥ ⊕B⊥), B

!
` ?(A⊥ ⊕B⊥), ! B

⊗
` ?(A⊥ ⊕B⊥), ?(A⊥ ⊕B⊥), !A ⊗ !B

c
` ? (A⊥ ⊕B⊥), !A⊗ !B `
` ?(A⊥ ⊕B⊥) ` (!A⊗ !B)

ax
` A⊥, A

d
` ? A⊥, A

w
` ?A⊥, ? B⊥, A

ax
` B⊥, B

d
` ? B⊥, B

w
` ? A⊥, ?B⊥, B

&
` ?A⊥, ?B⊥, A & B

!
` ?A⊥, ?B⊥, ! (A&B) `
` ?A⊥ ` ?B⊥, !(A&B) `
` (?A⊥ ` ?B⊥) ` !(A&B)

⊗
` !(A&B) ≡ !A⊗ !B

(b) Proof that exponentials link the additive and multiplicative conjunction.

ax
` X⊥1 , X1 `
` X⊥1 `X1

ax
` X1, X

⊥
1 d

` X1, ?X⊥1 !
` !X1, ?X⊥1

ax
` X1, X

⊥
1 ⊗

` ?X⊥1 , !X1 ⊗X⊥1 , X1 cut
` ?X⊥1 , X1

(c) Type derivation for (λx.x)y in MELL.

Figure 27.8: Examples of proofs in multiplicative-exponential linear logic.

Chapter 4 Linear logic 129

` Γ, ??A
dig

` Γ, ?A
` Γ, A

f !
` ?Γ, !A

` ?Γ, A
f !

` ??Γ, !A
dig

` ?Γ, !A

Figure 27.9: Rules for digging and functorial promotion (also called weak promotion).
A proof that promotion can be derived from digging and functorial box is
given.

` Γ, A, n..., A
mux(n)

` Γ, ?A
` Γ, A

mux(1)
` Γ, ?A

` Γ mux(0)
` Γ, ?A

` Γ, ?A, ?A
mux(2)

` Γ, ??A
dig

` Γ, ?A

Figure 27.10: Rules for multiplexing and derivation of other structural rules.

ure 27.8c is the exponential version of the type derivation of the linear term (λa.a)b
in Figure 27.4. Remark that the argument is put in a box. If we had a contraction
or weakening on the side of the function (` rule on the left), then it would trigger a
duplication or erasure of the argument inside the box (! rule on the right).

§27.21 Alternative exponentials. Several variant of exponential rules exist. For instance,
the digging and functorial promotion rules in Figure 27.9 can replace the promotion
rule. These rules are useful for categorical interpretations or in implicit computational
complexity using linear logic (especially light linear logics [Gir98] such as ELL and SLL).
It is also possible to consider a multiplexing rule splitting ?A by duplicating it into n
linearised copies. We obtain the following equivalences of rules:

• promotion ' functorial promotion + digging;

• dereliction + weakening ' multiplexing.

28 Some applications and intuitive interpretations

§28.1 Logic of resources. The most straightforward interpretation is that linear logic is a
logic of limited resources and control over resources. It seems that it has generated a
quite important hype of “linear typing” in (functional) programming [Wad90] with im-
plementations in Haskell or Rust. It is consistent with functional languages’ philosophy
of strong typing7 where we would like to prevent unwanted behaviours of a program.

7I remember that during a course of compilers, Yann-Régis Gianas told us that there was a sort of
duality between weakly typed languages such as Python who consider that programmers know what
they are doing and should be free to do so (for instance condition returning objects of different types
in the two branches) and strongly typed languages such as OCaml where programmers are considered
dumb so the system limits what they can do so that they will not unintentionally break something

Chapter 4 Linear logic 130

Linear types can ensure that some data will never be duplicated or erased, and they
could be used to represent “read-only” operations which can guarantee the safety of
data. Typically, money is also a limited resource which can be regulated. It may be
possible to use linear types to verify economic operations, as suggested by some vague
applications to blockchain technologies [Mer15].

§28.2 Still in this interpretation of a logic of resources, biology, chemistry and physics also
work with consumable entities. The chemical reactions mentioned in Paragraph 12.10
are linear. In the chemical equation 2H2+O2 7→ 2H2O, the relation 7→ can be rewritten
with ⊸ to signify that the same amount of input resources is found in the output:
nothing is lost, nothing is created. However I am not aware of important works in that
direction. As for biology, there exists few works relating biological systems and linear
logic systems [dMDF+20, DFLO19, Des16].

§28.3 Logic and games. Logic has been related to the idea of game in several ways by several
authors such as Gentzen, Lorenzen (in his “Logik und Agon”) and Hintikka. Proving a
statement can be seen as a dialogue between a prover and someone to convince. Hintikka
imagines a language game between us and the “nature” [HS97]. This dialogue becomes
even more explicit with linear logic.

• The connective & can be interpreted as a passive choice from “our side”. Its rules
shows that we can consume all the resources Γ to produce either A or B and it will
works in the two cases. The formula A ` B is a way to express the fact that we
wish to keep A and B in the same space of interaction. Both & and ` are risk-free
moves for “us”. They have no influence on provability.

• The connective ⊗ is an active choice since we have to choose how to split the
context. It is the same for ⊕ where we can either choose the left or right premise.
However, these choices are not risk-free. We can make wrong choices. In some
sense, it is the “nature” who chooses where provability is hidden.

We remark that & and ` are reversible. They are called negative (passive) connectives.
As for ⊕ and ⊗, they are irreversible. They are called positive (active) connectives.
These two classes of connectives are related by negation which can be seen as a change
of point of view: “we” becomes “they” and vice-versa.

§28.4 Cut-elimination can then be interpreted as actually triggering a dialogue or a sort of
battle in a game:

• in a `/⊗ cut-elimination, a player (`) suggests two arguments A and B waiting
in its space of interaction as a sort of question and the other player (⊗) creates
two threads in order to answer A and B;

somewhere. It was told in the tone of a joke but I think that it was actually very profound (and
almost political).

Chapter 4 Linear logic 131

• in a &/⊕ cut-elimination, a player (&) suggests two options by proposing the other
player to either play against ` Γ, A or ` Γ, B. Then, the other player (⊕) makes a
choice.

In the context of linear logic, a game semantics has been proposed by several authors but
we can cite Blass [Bla92] and Abramsky [AJ94] among others. True/provable formulas
will correspond to players having a “winning strategy”. In the simple case of axioms, a
player of A⊥ ` A is expected to win against A ⊗ A⊥. This interpretation with games
makes linear logic a logic of actions as well as a logic of resources.

§28.5 In Girard’s ludics [Gir01], synthetic rules are considered: there is only one positive rule
and one negative rule. In this particular case, dialogue can be infinite and a player wins
when the other abandon with a special axiomatic rule called “Daimon” which proves
anything. Ludics is used as a tool in the analysis of dialogues as explained in Fouquéré
et al. “Mathématique du dialogue” (French book) and has been recently applied in the
analysis of dialogues with schizophrenic individuals [FPQ21].

§28.6 Processes and sessions. An early interpretation was also that linear logic was a logic
of interaction [Abr16, Chapter 5]. In programming, concurrent programming studies
the (usually asynchronous) interaction between independent agents which transmit in-
formation locally. Some languages such as the π-calculus [iln90] are dedicated to such
systems of communication. Another form of communication are sessions. It happens
that a (web) client communicate with a server by opening a session. During this ses-
sion, several messages will be transmitted. At the end the session is closed. It appears
that linear logic is able to type processes [Abr94] and sessions [Wad12]. This leads to
an extension of the CHL correspondence with proofs as processes and formulas as ses-
sion/process types. By using realisability theory (cf. Section 22), Emmanuel Beffara
has suggested attempts at reconstructing linear logic from π-calculus. This realisability
interpretation allows to use linear logic as a tool to study the behaviour of processes
[Bef06].

§28.7 Logic programming and linear logic. In the previous interpretations of linear logic
with games, multiplicative and additive linear logic are classified into reversible and
irreversible connectives. A consequence is that rules of reversible connectives can always
been applied before any irreversible rules. From this fact, Jean-Marc Andreoli [And92]
developed the idea of focussing. It is possible to consider strategies of proof by alternating
between reversible and irreversible rules. This gave rise to several applications of linear
logic to logic programming. More information can be found in Dale Miller’s survey
[Mil95].

29 Proof-structures and proof-nets

§29.1 Until now, only sequent calculus for linear logic has been mentioned. But what about
natural deduction? The advantage of natural deduction is that it is a quotient on

Chapter 4 Linear logic 132

ax
` A⊥, A

ax
` B⊥, B

⊗
` A⊥, A ⊗ B⊥, B

ax
` C⊥, C

⊗
` A⊥, A⊗B⊥, B ⊗ C⊥, C `
` A⊗B⊥, B ⊗ C⊥, A⊥ ` C `

` (A⊗B⊥) ` (B ⊗ C⊥), A⊥ ` C `
` ((A⊗B⊥)` (B ⊗ C⊥)) ` (A⊥ ` C)

ax
` A⊥, A

ax
` B⊥, B

ax
` C⊥, C

⊗
` B⊥, B ⊗ C⊥, C

⊗
` A⊥, A ⊗ B⊥, B ⊗ C⊥, C `
` A⊗B⊥, B ⊗ C⊥, A⊥ ` C `

` (A⊗B⊥) ` (B ⊗ C⊥), A⊥ ` C `
` ((A⊗B⊥)` (B ⊗ C⊥)) ` (A⊥ ` C)

Figure 29.1: Two sequent calculus proofs of linear logic equivalent up to permutation of
rules.

...
A

...
B ⊗i

A⊗B

...
A⊗B

[A]
...
C

[B]
...
C ⊗e

C

Figure 29.2: Natural deduction rules for tensor.

sequent calculus proofs: a single natural deduction proof potentially corresponds to
several sequent calculus proofs. In Figure 29.1, we have two proofs of a same sequent.
They only differ by the order of ⊗ rules. One can be applied before the other without
risking to lose provability. The same thing occurs if we permute ` rules.

§29.2 As remarked by Girard [Gir11a, Section 11.1.5], it is possible to define a natural deduc-
tion for linear logic. The introduction and elimination rules for tensor are presented in
Figure 29.2. The introduction rule is natural and not surprising. The elimination rule,
on the other side, is not sufficient at all. It suffers from the same problem as for the
rule ∨e and will lead to complications although tensor is a very basic connective with
a simple behaviour. In linear logic, negation is involutive and inputs can be seen as
negated formula. Hence, because of the morphologic constraint of natural deduction,
[A] and [B] are sort of wannabe negated conclusion formulas but an artificial bending
through C appears instead. For that reason, we can do better by choosing a structure
of proofs which is a not tree-shaped stacking of rules. We have to find another way to
capture the essence of proofs by providing a syntactic format in which proofs can express
everything that have to say8.

8In the same fashion, Japanese square watermelons are grown in square boxes in order to obtain a
square shape. This shape is more convenient to cut or to carry. More generally, you can think of
the process of dwarfing in plants or animals. Another (sadder) example that I have learnt recently is
that goldfishes growing in a fish bowl are subject to a painful dwarfing.

Chapter 4 Linear logic 133

ax
` A⊥ , A

ax
` B⊥ , B

⊗
` A⊥, A ⊗ B⊥, B

ax
` C⊥ , C

⊗
` A⊥, A⊗B⊥, B ⊗ C⊥, C `
` A⊗B⊥, B ⊗ C⊥, A⊥ ` C `

` (A⊗B⊥) ` (B ⊗ C⊥), A⊥ ` C `
` ((A⊗B⊥)` (B ⊗ C⊥)) ` (A⊥ ` C)

ax
` A⊥ , A

ax
` B⊥ , B

ax
` C⊥ , C

⊗
` B⊥, B ⊗ C⊥, C

⊗
` A⊥, A ⊗ B⊥, B ⊗ C⊥, C `
` A⊗B⊥, B ⊗ C⊥, A⊥ ` C `

` (A⊗B⊥) ` (B ⊗ C⊥), A⊥ ` C `
` ((A⊗B⊥)` (B ⊗ C⊥)) ` (A⊥ ` C)

Figure 29.3: Underlying formula graphs of the proofs of Figure 29.1.

` Γ, A,B,C,D `
` Γ, A,B,C ` D `
` Γ, A ` B,C `D

↔

` Γ, A,B,C,D `
` Γ, A ` B,C,D `
` Γ, A`B,C ` D

Figure 29.4: Commutation rule for `. It states the equivalence of two proofs up to
permutation of rules.

Multiplicative unit-free proof-nets

§29.3 The skeleton of the essence of proofs. If we look at the two previous sequent calculus
proofs of Figure 29.3, we remark that ` splits two formulas kept in the same space of
interaction and ⊗ distributes two formulas in disjoint spaces of interaction. By following
how rules do these operations, it is possible to construct a graph linking formulas. Each
node A ⊗ B (respectively A ` B) or the graph are connected to A and B in the top.
The two proofs (which are equivalent up to permutation of rules) have the same graph.
These graphs are then appropriate candidate for the essence of proofs where (almost) all
superfluous information is removed. This ability to quotient proofs which are equivalent
for wrong reasons is often called canonicity. Translation of proofs to such graphs should
be invariant up to commutation rules such as the one presented in Figure 29.4. Sequent
calculus proofs can then be seen as sequential recipes (algorithms?) to construct those
graphs that Girard called a “parallel syntax” for proof theory [Gir96]. Those graphs are
called proof-nets and they only make explicit how formulas are structurally related in a
proof.

§29.4 Before introducing proof-nets, we introduce proof-structures which is the format in which
proofs will now live9. They are purely computational and alogical graphs linking formu-
las. In the same spirit as Girard’s ludics [Gir01], “only location matters” at this point.
The idea is that when considering the structure of proofs, formulas are nothing more

9If you have read my previous footnote on dwarfing of goldfishes, we now have an aquarium.

Chapter 4 Linear logic 134

ax

Axiom

cut

Cut

⊗

Tensor

`

Par

(a) Links/constructors of proof-structures as hyperedges.

ax

cut

ax/cut⇝

⊗ `

cut

⊗/⇝̀ cut
cut

(b) Cut-elimination reductions. The ax/cut case is a graph contraction and ⊗/` is a
rewiring.

Figure 29.5: Multiplicative proof-structures.

Chapter 4 Linear logic 135

than decorative labels which can be forgotten. In this syntax, proof-structures are de-
fined with directed hypergraphs constructed with the hyperedges of Figure 29.5a. These
hyperedges are the elementary bricks of proofs. Definitions of hypergraphs are formally
given in Appendix C.

§29.5 Definition (Proof-structure). A proof-structure is defined by S = (V,E, in, out, ℓE)
where (V,E, in, out) is a ordered directed hypergraph (cf. Appendix C) and ℓE : E →
{⊗,`, ax, cut} is a labelling map on hyperedges. A proof-structure is subject to these
additional constraints:

• hyperedges satisfy the arities and labelling constraints shown in Figure 29.5a;

• each vertex must be the target of exactly one hyperedge, and the source of at
most one hyperedge;

• cut hyperedges must connect either:

– the conclusion of a ` hyperedge with the conclusion of a ⊗ hyperedge, or

– two atoms.

§29.6 Notation (Axioms and cuts). Let S be a proof-structure. We define its set of ax-
ioms hyperedges: Ax(S) := {e | e ∈ E, ℓE(e) = ax}, and its set of cut hyperedges:
Cuts(S) := {e | e ∈ E, ℓE(e) = cut}.

§29.7 Convention (Left and right sources). For practical purposes, the sources of hyper-
edges are ordered, and “left” and “right” sources are considered since there are never
more than two; illustrations in Figure 29.5a implicitly represent the left (resp. right)
source on the left (resp. right).

For a proof-structure S and a hyperedge e of S:

• if ℓE(e) = ax and out(e) = (u, v), we define ←e := u and →e := v for the left and
right conclusion of e;

• if ℓE(e) ∈ {cut,⊗,`} and in(e) = (u, v), we define ←e := u and →e := v for the
left and right premise of e.

§29.8 Notation (Conclusions and atoms). The conclusions of S are defined by the set
Concl(S) = {v ∈ V | there is no e ∈ E such that v ∈ in(e)}. Similarly, the atoms
of S are defined by the set Atoms(S) = {v ∈ V | ∃e ∈ Ax(S) such that v ∈ out(e)}.
They are conclusions of axiom hyperedges.

§29.9 The cut-elimination procedure (corresponding to program execution) is defined with
two graph-rewriting rules in Figure 29.5b. Cut-elimination is made even more natural in
proof-structures; the case ax/cut is a graph contraction identifying two atomic formulas
and the case ⊗/` makes explicit the idea of rewiring. An example of proof-structure
and its full cut-elimination is illustrated in Figure 29.6 and a formal definition of cut-
elimination is given below.

Chapter 4 Linear logic 136

1 2

`
7

3 64 5

⊗

8

cut

ax ax ax

⊗/⇝̀
1 2 3 64 5

cut

cut

ax ax ax

⊗/⇝̀ 3 2 65

cut

ax ax
⊗/⇝̀

3 6

ax

Figure 29.6: Cut-elimination for a proof-structure.

` Γ ` ∆ mix
` Γ,∆

ax
` X⊥1 , X1

ax
` X⊥2 , X2 mix

` X⊥1 , X⊥2 , X1, X2 `
` X⊥1 ` X⊥2 , X1, X2 `
` X⊥1 `X⊥2 , X1 ` X2

Figure 29.7: The MIX rule of MLL+MIX sequent calculus and an example of a sequent
calculus proof of A⊗B⊸ A`B which is not provable in MLL.

§29.10 Definition (MLL cut-elimination). Let S := (V,E, in, out, ℓE) be an MLL proof-
structure with a cut ecut ∈ E such that in(ecut) = (v1, v2) with both v1 and v2 being
conclusions of some hyperedges e1 and e2.

� Left axiom If ℓE(e1) = ax for i ∈ {1, 2} and out(e1) = (v0, v1), then the elimination
of ecut is a new proof-structure S ′ := (V ′, E′, in, out′, ℓE) such that V ′ := V −
{v1, v2}, E′ := E − {ecut, e1} and finally, out′(e′) = v0 for any e′ such that
out(e′) = v2 and out′(x) = out(x) otherwise for any other x ∈ E.

� Right axiom We have a similar case for ℓE(e2) = ax which correspond to the pre-
vious case in which we exchange e1 (and v1) for e2 (and v2).

� Multiplicative Assume we have ℓE(e1) = ` and ℓE(e2) = ⊗ (or the converse)
with in(e1) = (u1, u2) and in(e2) = (w1, w2). The elimination of ecut is a
new proof-structure S ′ := (V ′, E′, in′, out, ℓE) with V ′ := V − {v1, v2}, E′ :=
(E−{ecut, e1, e2})∪{e1cut, e

2
cut} and finally, in′(eicut) = (vi, wi) for i ∈ {1, 2} and

in′(x) = in(x) otherwise for any other x ∈ E.

§29.11 There exists a remarkable extension of MLL with a rule called MIX (cf. Figure 29.7),
initially studied by Fleury and Rétoré [FR94]. This rule corresponds to the axiom
scheme A ⊗ B ⊸ A ` B and constitutes, together with the other rules of MLL, a new
proof system called MLL+MIX. Beside this new rule, MLL+MIX works with the same

Chapter 4 Linear logic 137

formulas as MLL. In particular, all MLL sequent calculus proofs are MLL+MIX sequent
calculus proofs as well.

§29.12 We now would like to define the underlying proof-structure of an MLL+MIX sequent
calculus proof, exactly as informally done in Figure 29.3. In order to do so, we define a
labelling of the vertices of proof-structures (for which labels correspond to formulas) in
order to make proof-structures look like actual proofs. By doing so, we already implicitly
give a little bit of meaning to the purely computational proof-structures.

§29.13 Definition (Labelled proof-structure). A labelled proof-structure is a tuple

S = (V,E, in, out, ℓV , ℓE)

where (V,E, in, out, ℓE) is a proof-structure and ℓV : V → FMLL is a function labelling
vertices of V by formulas.

We write ` S : Γ with a set of formula Γ := {ℓV (v) | v ∈ Concl(S)} in order to specify
the formulas associated with the conclusions of S.

§29.14 In Figure 29.8, we define a translation J·K from MLL+MIX sequent calculus derivations
to labelled proof-structures. Notice that this translation is not surjective, and that
some proof-structures do not represent sequent calculus proofs. This is tackled by the
correctness criterion, which characterises those proof-structures that do translate sequent
calculus proofs through structural properties and which are considered “correct”. but for
the time being, we give a preliminary definition of proof-net, the proof-structures coming
from sequent calculus proofs. The relationship between proof-structures, proof-nets and
sequent calculus proofs is illustrated in Figure 29.9.

§29.15 The MIX rule corresponds to allowing disjoint union of proof-structures as being “cor-
rect”. Although not “logical” (i.e. not coming from MLL sequent calculus which decom-
poses intuitionistic and classical logic), MLL+MIX proofs keep interesting computational
properties which naturally appear in various models of linear logic such as coherence
spaces [Gir87a, Chapter 4].

§29.16 Definition (MLL and MLL+MIX proof-nets). An MLL (resp. MLL+MIX) proof-
net is a proof-structure S for which there exists an MLL (resp. MLL+MIX) sequent
calculus proof π such that S = JπK.

§29.17 Once we get out of the multiplicative paradise, things are less simple. Even today, the
theory of proof-nets suffer from a lot of various problems when trying to extend to other
fragments of linear logic. In the next sections, I mention other fragments of linear logic
with some being less detailed than others. Units and additives are rather considered
problematic but exponential proof-nets are fine although not perfect. When designing
extensions of proof-nets we have to think about the following points:

Chapter 4 Linear logic 138

ax
` A,A⊥ →J·K

A A⊥

ax

π1...
` Γ, A

π2...
` ∆, A⊥

cut
` Γ,∆

→J·K
Jπ1K Jπ2K
Γ ∆A A⊥

cut

π...
` Γ, A,B `
` Γ, A`B

→J·K
JπK

ΓA B

`
A`B

π1...
` Γ, A

π2...
` ∆, B

⊗
` Γ,∆, A⊗B

→J·K
Jπ1K Jπ2K
Γ ∆A B

⊗

A⊗B

π1...
` Γ

π2...
` ∆ mix

` Γ,∆

→J·K Jπ1K Jπ2K
Γ ∆

Figure 29.8: Translation of MLL+MIX sequent calculus proofs into labelled proof-
structures.

Proof-structures

Proof-netsSequent calculus proofs J·K

Figure 29.9: Proof-structures are general structures in which proof-nets can be defined
as special cases coming from the translation of sequent calculus proofs.
Correctness criteria are ways to tell if a proof-structure is correct, i.e. cor-
responds to a proof-net independently of sequent calculus proofs.

Chapter 4 Linear logic 139

� Loss of canonicity proof-nets are meant to capture the essence of proofs. In particu-
lar, it has to enjoy a good canonicity by providing a synthetic syntax for proofs.
This is usually handled by considering “commutation rules” transforming sequent
calculus proofs into equivalent proofs up to exchange of rules [HH16, Section 1].
Other equivalences of proofs can be considered as well but translation into proof-
structures have to be invariant under these equivalences;

� Simulation of cut-elimination proof-structures must be able to faithfully simulate
cut-elimination as it is done in the sequent calculus. This is not always the case
because sequent calculus is often subject to some implicit operations which leave
some unwanted parts or residuals in the cut-elimination of proof-structures (for
instance the cut-elimination &/⊕k hides an erasure of either ` Γ, A1 or ` Γ, A2);

� Effective correctness criterion we must be able to computationally check if a proof-
structure is correct, i.e. it is the translation of a sequent calculus proof. This means
that we are able to characterise a fragment of linear logic.

� Ad-hoc extensions With all the previous points, it can happen that some ad-hoc
technical and unnatural changes are made to proof-nets. Proof-nets should be able
to provide an analysis of sequent calculus proofs for linear logic and if possible,
of mathematical logic in general. The design of proof-nets should not get lost in
laborious technicalities for the sole sake of making things work10 (although it can
indeed be theoretically interesting to develop further extensions).

Multiplicative unit proof-nets

§29.18 The links and cut-elimination of multiplicative proof-structures are presented in Fig-
ure 29.10. The extension of the translation of sequent calculus proofs to proof-structures
is straightforward. The proof of ` 1 becomes the link for 1 and the proof of ` Γ,⊥ be-
comes the link for ⊥ coming attached to a proof-net corresponding to Γ. If this ⊥
interacts with a link 1, then only the context Γ associated with ⊥ is left.

§29.19 Forgotten dependency. Notice that there is no way to tell what context Γ a ⊥ link
is attached with, although ⊥ constants are always in the same sequent as a context Γ in
sequent calculus. At this point it is not a problem since we only consider cut-elimination
but correctness will be problematic as we will see later.

Chapter 4 Linear logic 140

1

One

⊥

Bottom

(a) Links/constructors of multiplicative units.

1 ⊥

cut

1/⊥⇝

(b) Cut-elimination reductions. The two constants are erased when interacting.

Figure 29.10: Multiplicative unit proof-structures.

Additive proof-nets

§29.20 There are several different designs of additive proof-nets. The particularity of additive
proof-nets is that the formula A&B has to share a same context Γ for its to premises A
and B (cf. Figure 27.2b). As for the cut-elimination (cf. Figure 29.11b), a branch of the
& rule is selected but other one is erased. Problems regarding the different presentation
of MALL proof-nets are presented in one of Marc Bagnol’s notes11.

§29.21 Additive boxes. The solution of additive boxes [Gir96, Section 1.1] (I personally like
Gimenez’s PhD thesis for an accessible explanation of additive boxes [Gim09, Chapter 4])
is presented in Figure 29.11. The connective & is handled with a box having two disjoint
parts. Each premise is wired in its own side. In the rule of &, a context Γ is duplicated in
two premise sequents ` Γ, A and ` Γ, B, in the case of proof-structures a proof-structure
corresponding to Γ is duplicated and located in each side of the corresponding & box.
Its conclusions can go outside the box to interact with other proof-structures. When a
& box interacts with a selector ⊕k, it opens one corresponding side of the box (left for
⊕1 and right for ⊕2) and destructs the other.

§29.22 A return to sequentiality. Additive boxes work quite well. If we are not too demand-
ing, we can be satisfied and even use them as such as in Gimenez’s PhD thesis [Gim09].
There are also reasons to not be satisfied:

10When people learn computer programming for the first time, they tend to think that a working
program is sufficient. However, a program’s life is not set in stone. People will read the code, want
to change it for various reasons, or use it as a tool for another purpose. Therefore, programs should
not only be working but also workable.

11https://www.normalesup.org/~bagnol/notes/additifs.pdf

https://www.normalesup.org/~bagnol/notes/additifs.pdf

Chapter 4 Linear logic 141

&

.

With (additive box)

⊕1

Plus left

⊕2

Plus right

(a) Links/constructors of additive proof-structures.

S1 S2

&

SΓ SΓ

S

⊕k

cut

&/⊕k⇝

Sk SΓ

S

cut
(b) Cut-elimination reductions. The selection triggers a box opening of either the left or

right part of the additive box and erase the other.

Figure 29.11: Additive proof-structures with additive boxes.

` Γ, A, C ` Γ, A,D
&

` Γ, A, C & D

` Γ, B, C ` Γ, B,D
&

` Γ, B, C & D
&

` Γ, A & B,C &D

↔
` Γ, A, C ` Γ, B, C

&
` Γ, A & B,C

` Γ, A,D ` Γ, B,D
&

` Γ, A & B,D
&

` Γ, A&B,C & D

Figure 29.12: Example of commutation rule for &. It states the equivalence of two proofs
up to permutation of rules.

Chapter 4 Linear logic 142

• the context Γ is duplicated although it could be truly shared (and thus exist in
uniquely one copy) and

• a global erasure occurs during cut-elimination (hence a rather external mechanism),
as if there was an implicit human intervention. But do we need it to speak about
logic? Cannot it be made explicit?;

• Similarly, the two contexts SΓ in the left and right part have to be the same. This
is a quite strong requirement for alogical objects. Maybe proof-structures are not
so alogical after all;

• using boxes is a return to sequentiality. A part of a proof-structure is frozen and
handled as a whole with some implicit and global operations. Actually, sequent
calculus can be seen as having proof-nets where all links are boxes [Gir96, Section
1.1]. By using boxes (and thus introducing sequentiality), we can lose canonicity
if we translate proofs such as the ones in Figure 29.12. With additive boxes, we
would have one additive box duplicated inside the other and two different proof-
nets. This can however be handled by adding more external congruence rules.

These are not necessarily problems but it is fair to not be satisfied and ask for better.
If we have sequent calculus in mind, it may be fine but if we have bigger ambitions for
a foundational theory of logic, it is difficult to be satisfied.

§29.23 Boolean weights. If we wish to get rid of boxes, another early solution is to use weights
[Gir96, Section 1.4] where links are attached to a variable in a boolean algebra. It is
then possible to identify the left and right premise/context of a & link and to act on it.
This idea has been developed and modified by several authors such as Girard himself
with monomial weights [Gir96, Section 1.4] or Laurent and Maieli [LM08].

§29.24 Additive slices. Another solution is to use additive slices [Gir96, Section A.1.6] by
considering a proof of ` Γ, A&B as a sum of two independent proofs of ` Γ, A and
` Γ, B. A MALL proof-net is then a sum of all its slices, as if we made explicit all the
“additive universes” for each choice with & (think of representing a non-deterministic
Turing machine as a sum of deterministic machines for all possible choices). The problem
is that we obtain very big proofs: if the proof-structure is cut-free then it can have 2n

slices for n the number of & connective. This idea has been developed by Hugues and Van
Glabbeek [HVG03]. Another more recent solution is Heijltjes and Hugues’ conflict nets
[HH16] which is able to obtain a local canonicity (invariance under “local” commutation
rules).

Exponential proof-nets

§29.25 Exponential boxes. The most natural translation of MELL proofs uses exponential
boxes [Gue04, Section 3] presented in Figure 29.13. The use of boxes is rather faithful
because in the sequent calculus, the promotion rule ! could already be seen as a box

Chapter 4 Linear logic 143

!

. . .

Promotion

w

Weakening

d

Dereliction

c

Contraction

(a) Links/constructors of exponential proof-structures.

S

!

S?Γ w

cut

!/w⇝

w

S?Γ

S

!

S?Γ

S ′

d

cut

!/d⇝
S S?Γ

S ′

cut

S

!

S?Γ

SL SR

c

cut

!/c⇝

S

!

S?Γ S

!

S?Γ SL SR

c

cut
cut

S1

!

S?Γ S2

!

S?∆

cut

!/!⇝
S1

!

S?ΓS2

!

S?∆

cut

(b) Cut-elimination reductions. Notice that there are a lot of global operations related to
contexts.

Figure 29.13: Exponential proof-structures with exponential boxes.

Chapter 4 Linear logic 144

n∈N. . .

?

?-link

?

Weakening

?

Dereliction

?

Contraction

Figure 29.14: Generalised links for structural rules.

on which some operations could be done. The context ?Γ of the promotion rule is
represented by links going out of a box without passing by the ! link. The conclusion
of such links are called auxiliary conclusions passing through auxiliary doors of a box.
The cut-elimination reductions of Figure 29.13b correspond to the erasure, opening,
duplication and insertion of a box (in case a box interacts with an auxiliary conclusion
of another box). For the !/w cut-elimination, what remains is a weakening link for each
conclusions appearing in the proof-structure S?Γ, exactly as in the corresponding sequent
calculus cut-elimination.

§29.26 Generalised structural rules. A problem with this formulation of structural rules is
that it is possible to construct arbitrary binary trees by using contractions. By using two
contraction links, it is possible to construct two different trees having the same behaviour.
This is a loss of canonicity. A solution is to use reduction rules to merge structural rules
as in Di Cosmo and Kesner’s works [DCK97, Section 4], to define congruences rules
on proof-structures or to use Danos and Regnier’s generalised structural rules [Gue04,
Section 4.3]. Danos and Regnier’s links come from the fact that structural rules can be
seen as the instance of a same rule (cf. Figure 29.14) similarly to the multiplexing rule of
Paragraph 27.21. If only have one n-ary ? link which is always merging with the others
connected to it and pushed out of boxes. This recover the canonicity lost by the original
structural rules.

§29.27 Lambda-calculus. Since MELL is where the typed λ-calculus can be expressed, it is
natural that we can also obtain a translation of typed λ-terms into proof-nets [Dan90,
Reg92, Gue04]. More surprisingly, it is also possible to define untyped λ-calculus directly
with proof-structures (and not proof-nets) since they are alogical (actually not exactly)
[Dan90, Section 11]. This simulation is based on the translation of intuitionistic logic
into linear logic. Regarding encodings of classical logic, it is possible to find encoding
of λµ-calculus in proof-nets in Olivier Laurent’s works [Lau03, Lau99]. Proof-nets are
also able to provide a canonical presentation of λ-terms. Regnier shows that a subtle
equivalence on terms known as σ-equivalence can be simulated by the elimination of
some multiplicative cuts [Reg94]. This is also presented in English in Olivier Laurent’s
works [Lau03, Definition 11]. It is also possible to encode more sophisticated functional
languages such as PCF [Gim09, Section 5.4].

Chapter 4 Linear logic 145

§29.28 Explicit substitutions. In the context of λ-calculus, exponential boxes actually enjoy
a computational interpretation by themselves: they correspond to explicit substitutions
[ACCL91, Ros96]. In λ-calculus, the β-reduction is defined by (λx.M)N ⇝ {x := N}M
which is an external operation. However, it can make sense to have explicit substitutions
set in the syntax of terms. Such substitutions can be moved, erased, opened, duplicated
freely. This exactly correspond to exponential boxes which allow to manipulate a frozen
section of a proof/program. Works in that direction have been led by Delia Kesner and
Beniamino Accattoli [Acc18, DCKP03, DCK97].

§29.29 Box-free approaches and optimal reduction. In λ-calculus, when we have a redex
(λx.M)N , it happens that N is duplicated several times (the same thing occurs with
exponential boxes). However, this duplication is useless: it is sufficient for the part of
M requiring N to access to a unique copy of N , which correspond to a sharing of N .
Lévy formalised this notion in his PhD thesis [Lév78] and defined a notion of optimal
reduction for λ-calculus. This is only more than ten years later that Lamping came up
with an algorithm for optimal reduction [Lam89] which accidentally corresponded to a
box-free approach to proof-nets which features sharing [GAL92b]. Even more surprising,
this approach is actually related [GAL92a] to Girard’s geometry of interaction [Gir89a]
which develops the ideas of linear logic (it is presented in the next chapter). The story
and techniques of optimal reduction are told in Guerrini’s survey [Gue04, Chapter 5].

30 Correctness criteria

§30.1 Proof-structures are almost free of logical meaning. We have two hyperedges⊗ and` but
it is only a matter of labels. Nothing truly differentiates them although they correspond
to different logical operations in sequent calculus and have to be distinguished. For that
reasons, correctness criteria have been developed. They are method asserting whether
a proof-structure corresponds to a proof-net. There exists a lot of various correctness
criteria for a lot of fragments of linear logic, the most simple and standard being the
Danos-Regnier correctness criterion. More information about other correctness criteria
can be found in Marc Bagnol, Amina Doumane and Alexis Saurin’s “On the dependencies
of logical rules” [BDS15] and in Lutz Straßburger “Proof Nets and the Identity of Proofs”
[Str06, Section 2.5]. In this chapter, I first introduce Girard’s long trips criterion then
Danos-Regnier correctness.

§30.2 A proof-structure is logically correct when it is possible to define a labelling such that it
corresponds to a proof-net (which is itself the translation of a sequent calculus proof).
In particular, a proof-structure can correspond to several proof-nets depending on the
labelling we choose.

§30.3 Definition (MLL-certification and MLL+MIX-certification). A proof-structure S =
(V,E, in, out, ℓE) is MLL-certifiable (resp. MLL+MIX-certifiable) with ` A1, ..., An

Chapter 4 Linear logic 146

Formulas of proof-structures seen as

Figure 30.1: Ports and information flow of a binary connective.

(a) Case of an axiom. (b) Case of a cut.
(c) Case of a conclusion

formula.

Figure 30.2: Flow of information inside an axiom, a cut and a conclusion.

when there exists a vertex-labelling function ℓV such that (V,E, in, out, ℓV , ℓE) is an
MLL (resp. MLL+MIX) proof-net.

When there exists ` A1, ..., An such that S is MLL(+MIX)-certifiable with ` A1, ..., An

then we simply say that S is MLL(+MIX)-certifiable.

Girard’s long trip criterion

§30.4 Sequentialisation. The original and first criterion is Girard’s long trips criterion
[Gir87a, Section 2.2] for multiplicative proof-structures. The goal is to recover sequen-
tiality back from a proof-structure and produce a sequent calculus proof. This process
is known as sequentialisation theorem. Girard imagined a sequential, continuous and
circular path exploring all formulas of a proof-structures. Those correct paths are called
long trips and the incorrect ones are called short trips. All connectives can be seen as
boxes with input and output ports. It is then possible to travel from the bottom to the
top or the converse (cf. Figure 30.1). If we have a long trip, it would be possible to
extract a sequential application of rules and the path corresponds to the contour of the
sequent calculus proof. In order to define how to traverse a proof-structure, we have to
take into account that ` and ⊗ have different behaviour and should not be traversed in
the same way.

§30.5 Case of axioms, cuts and conclusions. The most basic cases of traversal are pre-
sented in Figure 30.2. They are very natural and there is nothing special about it.

§30.6 Case of tensor. The translation of sequent calculus proofs into proof-structures in
Figure 29.8 shows that a correct tensor connects two disjoint proof-nets. It follows that
when exploring from a tensor conclusion A ⊗ B, we have to fully explore one premise,
going back then exploring the other and returning to A ⊗ B. Figure 30.3a shows that
there is only two ways to that. These two choices of paths are called switchings. We have

Chapter 4 Linear logic 147

⊗L ⊗R

(a) Flow of information in a tensor hyperedge.

`L `R

(b) Flow of information in a par hyperedge.

Figure 30.3: Flow of information in binary connectives.

⊗L ⊗R

Figure 30.4: Example of situation where ⊗L succeeds but ⊗R fails. Based on a proof-
structure construction from ` (A⊗B)⊗(A⊥⊗B⊥). The exact construction
with other boxes is left implicit and we only look at how ports are related.

Chapter 4 Linear logic 148

Figure 30.5: Reunion of formulas in an axiom. We obtain two short trips.

two switchings: ⊗L exploring the left premise first and ⊗R exploring the right premise
first. Because the tensor splits in two disjoint components, switchings have to reunite
the two branches in order to hope for a full connected traversal (long trip). An example
is given in Figure 30.4 where for a same situation, ⊗L forms a long trip (success) but
⊗R forms three short trips (failure). This example can be obtained by constructing a
proof-structure from the syntax tree of the sequent ` (A⊗B)⊗ (A⊥ ⊗B⊥).

§30.7 Case of par. For the ` rule, this is the opposite situation. In Figure 29.8, we see
that a ` link connects two formulas in a same connected component. Switchings must
then splits the two premises to avoid short trips. We obtain the two ways of traverse
the proof-structure in Figure 30.3b. Without splitting, we would reunite two already
connected formula and form a short trip, as shown in the reunion of conclusion of axiom
in Figure 30.5. From the sequent ` (A ` B) ⊗ (B⊥ ` A⊥), it is possible to construct a
situation where there is a long trip for a switching and not for another. This is illustrated
in Figure 30.6.

§30.8 Definition (Girard switching). Let ⊗(S) and `(S) respectively be the set of all ⊗
and ` hyperedges in a proof-structure S. A (Girard) switching is a total function φ
defined as the union of two functions:

• φ⊗ : ⊗(S)→ {⊗L,⊗R};

• φ` : `(S)→ {`L,`R}.

A switching of a proof-structure is hence a selection of a choice of traversal for any ⊗
and ` hyperedges.

§30.9 Definition (Switching flow graph). Let S be a proof-structure and φ be a Girard
switching. The switching flow graph Sφ associated with φ is a directed multigraph
(V,E, in, out) where V := V S and E follows the rules of flow of information given in

Chapter 4 Linear logic 149

`L `L

(a) Presence of a long trip.

`L `R

(b) No long trip but two short trips.

Figure 30.6: Situation where a switching fails and the other succeed. Based on a proof-
structure construction from ` (A ` B) ⊗ (B⊥ ` A⊥). A tensor is hidden
below so you can just imagine that some construction is linking the two `
conclusions.

Chapter 4 Linear logic 150

Figure 30.2, Figure 30.3b and Figure 30.3a. We use the notation u e7→ v of Appendix C
for directed edges.

� Axiom if we have e ∈ Ax(S) such that out(e) = (u, v), then there are two edges
u

e17→ v and v e27→ u;

� Cut it is similar for cuts;

� Conclusion for any conclusion v, we have a loop v e7→ v;

� Tensor if we have ℓE(e) = ⊗ with out(e) = v and in(e) = (vl, vr), there are two
cases:

• if φ(e) = ⊗L, then we have edges v e17→ vl, vl
e27→ vr and vr

e37→ v;

• if φ(e) = ⊗R, then we have edges v e17→ vr, vr
e27→ vl and vl

e37→ v;

� Par there are two cases for each v conclusion of an ` hyperedge e with left premise
vl and right premise vr:

• if φ(e) = `L, then we have edges v e17→ vl, vl
e27→ v and vr

e37→ vr;

• if φ(e) = `R, then we have edges v e17→ vr, vr
e27→ v and vl

e37→ vl.

§30.10 Definition (Trips). A trip in a switching flow graph Sφ is a directed path in Sφ. It
is a long trip if it is an Eulerian circuit (a path traversing all edges exactly once and
returning to its starting point). Otherwise, it is a short trip.

§30.11 Theorem (Girard correctness). A proof-structure S is MLL-certifiable if and only if
S has no short trip for any switching of S.

Proof. A proof based on combinatorial arguments can be found in Girard’s papers
[Gir87a, Section 2.1][Gir11a, Section 11.3.3].

§30.12 Question, answer and communication. An intuition given by Girard about these
trips [Gir11a, Section III.4.1] is that they correspond to the flow of questions and answers.
Consider a function application λx.M : A → B with an argument N : A, yielding the
β-reduction (λx.M)N ⇝β {x := N}M . The occurrences xi : A of x can be seen as
questions asking for values of type A. The occurrences Ni : A of N are then seen as
answers. This interaction between inputs and outputs, or questions and answers can be
understood through a notion of communication. Imagine a sequential communication
exploring a proof-structure. We explore M and end on the question x1. We go out and
look for the answer N1, then go back in M to find the next question and so on. The
same idea appears for long trips criterion: there is a communication between axioms
and the rest of the proof-structure (on which a switching has been applied). This dual
communication between axioms and the rest of the switching flow graph will be made
explicit in the next chapter about the geometry of interaction.

Chapter 4 Linear logic 151

ax
cut

⊗L ⊗R `L `R

Figure 30.7: Undirected current flowing inside a proof-structure.

1 2

⊗

3

ax

(a) Correctness hypergraph corresponding
to an axiom connected to a tensor (cf.
Figure 30.5). We have a cycle.

1 2

`L

5

3 4

`R

6

ax
ax

(b) Correctness hypergraph corresponding
to the failure of Figure 30.6 where two
short trips appear. We have two con-
nected components. If we had `L on
the right, then it would succeed.

Figure 30.8: Two failing correctness hypergraphs.

Danos-Regnier criterion for MLL+MIX

§30.13 The Danos-Regnier correctness criterion is a simplification of Girard’s long trips crite-
rion. Consider the long trip criterion. Instead of looking at paths of a flow of information
inside a proof-structures, we simply look at the structure of the flow of information. For-
get the directions of the current and see the boxes with ports as simple nodes. We obtain
the undirected flow graph of Figure 30.7.

• The two switchings for ⊗ correspond to two three-way channels of communication.
Since they have the same structure, they are identified and there is no need for a
switching of ⊗ any more.

Proof-structure Switching 1 Switching 2 Proof-net

1 2

⊗

5

3 4

`
6

ax ax

1 2

⊗

5

3 4

`L

6

ax ax

1 2

⊗

5

3 4

`R

6

ax ax

A B

⊗

A⊗B

A⊥ B⊥

`
A⊥ `B⊥

ax ax

Figure 30.9: A proof-structure, all its switching hypergraphs and a possible labelling
corresponding to a proof-net.

Chapter 4 Linear logic 152

• The two switchings for ` correspond to disconnecting one premise for each ` link.

If long trips are about directed graphs then Danos-Regnier correctness is about hyper-
graphs induced by trips. It follows that it is sufficient to consider a disconnexion of
one premise for each ` link directly on a proof-structure and construct a correctness
hypergraph. In particular, it is possible to show that all correctness hypergraphs for a
proof-structure S is connected and acyclic (a tree) if and only if S has no short trip for
any switching. In particular, all short trips induce either more than one connected com-
ponent or a cycle. To illustrate this fact, two correctness hypergraphs corresponding to
failure of finding a long trip are illustrated in Figure 30.8. An example of correct proof-
structure is presented in Figure 30.9 together with its two only correctness hypergraphs
and a possible corresponding proof-net.

§30.14 Since the Danos-Regnier correctness criterion is very standard in linear logic, we provide
more formal definitions which will be used later in this thesis. We define the correctness
hypergraphs associated with a proof-structure S as undirected copies of S with one
source of each `-labelled hyperedge removed. The Danos-Regnier criterion states that a
proof-structure is an MLL proof-net if and only if all its correctness hypergraphs are all
connected and acyclic. Since the idea of logical correctness is purely structural as well,
our definitions still deal with unlabelled proof-structures.

§30.15 Notation. Given a proof-structure S = (V,E, in, out, ℓE), we write `(S) the subset
P ⊆ E of `-labelled edges, i.e. `(S) = {e ∈ E | ℓE(e) = `}.

§30.16 Definition (Correctness hypergraph). Let

S = (V,E, in, out, ℓE)

be a proof-structure. A (Danos-Regnier) switching is a map φ : `(S) → {`L,`R}.
Its associated correctness hypergraph is the undirected hypergraph with labelled hy-
peredges Sφ = (V,E′, end, ℓE′) induced by the switching φ which is defined with:

• end(e) = {u} where u =
←
e when e ∈ `(S) and φ(e) = `L;

• end(e) = {u} where u =
→
e when e ∈ `(S) and φ(e) = `R;

• end(e) = in(e) ∪ out(e) in all other cases.

The labelling ℓE′ is defined by ℓE′(e) = φ(e) when e ∈ `(S) and ℓE′(e) = ℓE(e)
otherwise.

§30.17 Theorem (Danos-Regnier correctness). A proof-structure S is MLL-certifiable if and
only if it is MLL+MIX-certifiable and Sφ is connected for all switching φ.

Proof. Proven in Danos and Regnier’s “The structure of multiplicatives” [DR89, Theo-
rem 4].

Chapter 4 Linear logic 153

Left switching Right switching

Natural deduction

A⊥...
B ⊸

A⊥⊸ B

B⊥...
A ⊸

B⊥⊸ A

Proof-structures

A B

`R

A`B

A B

`L

A`B

Figure 30.10: Switching for `L seen from the point of view of natural deduction. The
premise A⊥ and B⊥ become conclusions A and B in monolateral sequent
calculus and proof-nets.

§30.18 Once we defined Danos-Regnier correctness criterion for MLL, the correctness criterion
for MLL+MIX is not so far from that. Since MLL+MIX proof-nets allow disjoint union
of MLL-certifiable proof-nets, it is sufficient to only consider acyclicity of correctness
hypergraphs.

§30.19 Theorem (MLL+MIX correctness). A proof-structure S is MLL+MIX-certifiable if
and only if Sφ is acyclic for all switching φ.

Proof. Proven in Fleury and Retoré’s seminal paper [FR94, Theorem 4.7 and 4.8].

§30.20 Danos-Regnier can be puzzling when we are introduced to correctness criterion without
intuitive explanations. Why do we need to disconnect either the left or right premise
for each ` link? This is mainly because of combinatorial considerations about sequent
calculus rules as explained previously. However, in the “Blind Spot” [Gir11a, Section
11.3.2], Girard suggests an intuitive explanation to this switching: we would like to
extract/distinguish a tree-shaped structure from the proof-structure and obtain a well-
defined natural deduction proof for linear logic (as cumbersome it would be). The
formula A`B is equivalent to both A⊥⊸ B and B⊥⊸ A (thanks to the commutativity
of `). The switching then corresponds to a choice of natural deduction writing.

• If A ` B is written A⊥ ⊸ B then we have a premise reaching the conclusion B
from the top in order to construct A⊥ ⊸ B. However, as we saw, premise A are

Chapter 4 Linear logic 154

ax
` A⊥, A `
` A⊥ `A ⊥
` ⊥, A⊥ `A

1
` 1 ⊥
` ⊥, 1

ax
` A⊥, A

⊥
` ⊥, A⊥, A

cut
` ⊥, A⊥, A

Figure 30.11: Example of MLLu proof with a ⊥ constant.

⊥ ax

(a) Jump to axiom.

⊥ 1

(b) Jump to 1.

Figure 30.12: Jumps in MLLu for ⊥. In the two case, we have connected and acyclic
graphs.

negated conclusions A⊥ and negated premises A⊥ must be positive conclusions A.
Hence it means that a (virtual) conclusion A is linked to B to construct A⊥⊸ B.
This is what happens with the switching `R.

• The other case of B⊥⊸ A is similar.

To make it clearer, the two situations are illustrated in Figure 30.10. The structure is
correct when we have a tree in the two cases (since natural deduction proofs are trees).

§30.21 In the next sections, extensions of the multiplicative criterion to other fragments of
linear logic are explained. Once again, we are leaving the multiplicative paradise. All
extensions below are based on Danos-Regnier correctness since it is standard and simpler
than Girard’s long trips.

Criteria for multiplicative units

§30.22 Multiplicative units introduce two links 1 and ⊥ (cf. Figure 29.10). The unary link 1
corresponds to an axiom (because its rule terminates a proof) and it causes no problem
for correctness. The constant 1 is typically introduced alone in its own branch, with a
tensor for instance. Since there is no switching for ⊗, the correctness of a proof-structure
with 1 will depend on the correctness of the rest of the proof-structure, without 1.

§30.23 As for ⊥, it is where things get problematic. A constant ⊥ comes together with a context
Γ to which it can be attached or independent. Examples are given in Figure 30.11. Such
proofs could be equivalently use ` rules (` ⊥, A⊥, A is equivalent to ` ⊥`A⊥ `A). If
⊥ is disconnected or if we consider a switching `L or `R disconnecting it, then we lose
connectedness which was essential for multiplicative correctness. But a ⊥ in a correct
proof is always related to a correct context Γ and we would like to recover this. A

Chapter 4 Linear logic 155

⊥ 1 ⊥ ax

cut

1/⊥⇝ ⊥ ax

Figure 30.13: Cut-elimination with jumps does not preserve Danos-Regnier correctness.
The initial proof-structure is correct but not its cut-elimination.

S1 Sn. . .

. . .

S

⇝
ax

. . .

Figure 30.14: Transformation from boxes to generalised axioms.

solution is to use jumps [Gir96, Appendix A.2] which are artificial links relating each
⊥ to a correct context. A correct context must always contain at least one constant
1 or an axiom. It is then sufficient to link occurrences of ⊥ to any 1 or axiom. Two
examples of jumps are given in Figure 30.12. A MLLu proof with jumps is correct when
it is connected and acyclic (the Danos-Regnier correctness criterion is preserved).

§30.24 A problem with jumps is whether they are part of proof-structures themselves or some-
thing added when verifying correctness. In the first case, cut-elimination can erase the
target of jumps as in Figure 30.13. We have to recreate a jump for the ⊥ links. This is
rather complicated and unnatural. In the two cases, we have a sort of implicit external
human intervention.

§30.25 As for MLL+MIX with units, the links 1 and ⊥ cannot create cycles, hence any correct
proof-structures with 1 and ⊥ added will yields a correct proof-structure with the usual
MLL+MIX correctness criterion. If we consider MLL+MIX and not MLL then there is
nothing to change for the verification correctness (no jumps).

Criteria for additive proof-structures

§30.26 Assume we use additive boxes (cf. Figure 29.11) to represent MALL proofs. Boxes are
frozen part of a proof. It is sufficient to hide the content of boxes and see boxes are
generalised axioms and check for multiplicative correctness (cf. Figure 30.14). Then the
content of each box should be correct as well. This generalised axiom is an hyperedge
connecting all conclusions of the boxes (the conclusion of the box and the conclusions of
the contexts associated with the box).

Chapter 4 Linear logic 156

§30.27 In more recent representations of additive proof-structures, it is possible to find other
correctness criteria [HVG03, HH16].

Criteria for exponential proof-structures

§30.28 Correctness for MELL (cf. Figure 29.13) is similar to correctness for multiplicative units
and additive boxes:

• boxes are seen as generalised axiom and multiplicative correctness is checked in
that context then locally for the content of each box;

• the only problematic structural rule is weakening which acts exactly like ⊥ (cf.
Section 30). Hence either we must consider MELL+MIX or jumps.

§30.29 We have previously seen that it was possible to encode untyped λ-terms with proof-
structures (cf. Paragraph 29.27). MELL correctness then corresponds to choosing a
type assertion Γ ` M : A and typechecking a term M , i.e. verifying if M can be typed
with A in the typing context Γ.

31 Discussion: the structure of normative constraints

§31.1 So, what linear logic and proof-net theory teach us about the nature of logic? Linear logic
teaches to beware the appearance. The logical notions which are naturally accessible to
our intuition such as disjunction (∨), conjunction (∧) or implication (⇒) can hide subtle
mechanisms. It is possible to provide an analysis of existing logical notions such as the
implication A⇒ B. It does not mean that if we “opened the black box” of implication,
we would find linear logic providing new black boxes waiting to be opened, as if we had
reductionist Matryoshka dolls. Linear logic should probably be understood as a tool to
analyse our practice of logic. In particular, it may be possible to construct even more
refined tools.

§31.2 From linear logic sequent calculus proofs, it is possible to characterise a bit more the
essence of proofs by considering proof-nets. A problem is: what the essence of proof
even is? In what direction should we go to extract this essence of proof? Technical
considerations tell us that the essence of proofs corresponds to a notion of canonicity,
i.e. of invariance under some equivalences on sequent calculus proofs. However, devel-
opments in proof-net theory seem to tell us that logic lives beyond sequent calculus and
that this relative canonicity is probably not sufficient if we are interested in foundational
questions.

§31.3 Are correctness criteria useless. When looking back at the history of linear logic and
the introduction of proof-nets, a question may come to our mind: what is the purpose
of correctness criteria? Why would we even want to check whether a proof-structure,

Chapter 4 Linear logic 157

Axioms/Program

Switching/Test 1

Axioms/Program

Switching/Test n. . .

Type/Formula/Specification

Figure 31.1: Correctness criterion as a way to test axioms (the computational essence of
proofs). The interaction between axioms and test can be certified by either
Girard’s long trip criterion or the Danos-Regnier criterion.

a purely computational entity correspond to a proof-net? Cannot we simply work with
proof-nets as primitive objects directly? What is all this nonsense? The translation of
sequent calculus proofs into proof-structures even yields an inductive definition of proof-
nets. Correctness criterion are not even really used in practice. Moreover even if it had
a practical use, it does not even work well for full linear logic.

§31.4 Correctness criteria as exit doors. Correctness criteria are more interesting from
a conceptual (not to say philosophical) point of view. They allow us to be conscious
of the format we are in. They make us realise that something concrete and material
regulate the logical entities we work with and their use. They exhibit the shape of
logical constraints. Starting from proof-structures is actually a first step towards the
dangerous computational and alogical world. We are testing the waters and there may
be something beyond our format:

• what about starting from an even more general model of computation to go beyond
proof-structures?

• if Danos-Regnier correctness is a way among others to test computational entities,
what about considering other ways to test?

§31.5 Correctness as testing. Figure 31.1 shows that correctness hypergraphs can be seen
as axiom links connected to a bottom part entirely definable from a sequent with a
switching (since it corresponds to a switching applied to the syntax tree of a sequent).

• Axioms can be seen as a sort of program. They are invariant in the testing with
switching hypergraphs. They hold the computational content of proofs.

• Switching hypergraphs can be seen as tests. A set of tests correspond to a specifi-
cation.

Chapter 4 Linear logic 158

It is similar to how programs are tested against several tests in order to check whether
they have an expected behaviour or satisfy some specification. It makes logical correct-
ness closer to the program testing of software engineering.

§31.6 Making it explicit. The theory of proof-nets suffers from several technical problems.
Although a lot of them have been more or less solved, a question remains. What are we
looking for? Are we satisfied? Is this the end of the history of logic?

• Logical correctness remains an external operation done on proof-structures. Hence
logic is still explained by us. If we wish to understand logic more, we have to be
able to reach an internal explanation without any “human intervention”.

• This implicit human intervention is actually very present. In correctness for mul-
tiplicative units, jumps can be seen as an external intervention.

• Another philosophically problematic point is that additive, exponentials and mul-
tiplicative units hides global operation dependent on a logical system, which makes
proof-structures not so alogical. For instance: the two equal contexts of additive
boxes can be seen as a hidden regulation.

Girard’s following quote at the end of the Blind Spot12 (2011) summarises his opinion
on these problems:

“ Sequentialisation is not a dogma, it is a tool, which enabled one to find
the procedural contents of nets; [...] But, on the whole, one has nothing
against the idea of non-sequentialisable nets, as long as one can manipulate
them: the ultimate meaning of logic is this ability to manipulate.

– Jean-Yves Girard [Gir87a, Section 11.C.5] ”
This explains why Girard will later abandon the developments of original proof-nets
to look for alternative spaces where linear logic can be expressed. In particular, he will
strive for a more complete explicitation of those hidden assumptions of logical definitions
where everything is syntax, including external and global operations.

§31.7 This is nothing but abstract and vague intuitions. This is only starting from Girard’s
transcendental syntax that these intuitions will be meaningful. But before reaching this
point, the next destination is Girard’s geometry of interaction.

12I recently learned that there are actually at least three different versions of it.

Chapter 5

The geometry of interaction

32 Towards a geometry of interaction

§32.1 Quickly following proof-nets, Girard introduced what he called a geometrical semantics
of computation1 by starting from the multiplicative case [Gir87b]. With such a name,
anyone would wonder if it is still about logic.

§32.2 In his paper “Multiplicatives”, Girard remarks that proof-nets have something of a ge-
ometrical nature. We can actually forget formulas, connectives, everything and study
proof-nets (and hence linear logic) only in terms of paths and shapes. This leads to
a study of purely mathematical characterisations of proof-nets. Logic is not primitive
but reconstructed from a notion of interaction corresponding to the now central cut-
elimination procedure. He used simple permutations on natural number as a basis for
proof-structures and was able to interpret MLL sequent calculus rules. This paper has
later been developed by Danos and Regnier [DR89].

§32.3 It is only couple of years later that his new project has been presented under the name of
“Geometry of Interaction” [Gir89b] (GoI) (a very confusing but cool name again). In this
paper, he exposes his point of view on several topic of computer science and logic such
as logic programming, denotational semantics and linear logic. What is striking is that
this paper contains rather strong philosophical and conceptual insights. In particular, a
very pragmatic point of view on linear logic is developed:

• MLL rules can be informally pictured with cables (cf. Figure 32.1). The connectives
` and ⊗ are two boxes in which the current flows differently;

• types/formulas are program specifications;

• a dynamic conception of meaning is defended;

• Girard opposes reductionism (which he associates with static interpretations of
logic) and subjectivism (which he associates with bureaucracy, syntactic heavi-
ness), and hence takes a philosophical position;

1It seems that he was not yet too allergic to the word “semantics” at that time.

Chapter 5 The geometry of interaction 160

A⊥ A

(a) Axiom as extension cord.
Γ . . .

A
. . .∆

A⊥

(b) Cut as plugging.

(c) Cut on an axiom.

Figure 32.1: MLL identity rules with cables.

• vague links with physics or quantum computation are imagined at the end.

§32.4 What we now call “geometry of interaction” usually differ from Girard’s original moti-
vations. It usually refers to:

• abstract machine exploring proof-nets or typed λ-terms (encoded as proof-nets)
[DR99, AL95];

• categorical semantics taking dynamics into account [HS06].

But in this thesis, “geometry of interaction” refers to Girard’s original programme. Some
works more faithful to Girard’s original motivation exist. Thomas Seiller studied Girard’s
original geometry of interaction in his PhD thesis [Sei12b]. A categorical presentation
can also be found in Etienne Duchesne’s PhD thesis [Duc09].

§32.5 In Girard’s original programme, the theory of proof-structure is seen from the point
of view of paths. Even more than the order of applications of logical rules, we forget
almost everything: formulas, connectives, logical rules... Only paths are remaining. Cut-
elimination is a computational procedure on paths and correctness criterion are criterion
on paths. This opens the interpretation of linear logic to several models of paths.

33 Multiplicative proofs with permutations

This section is inspired by Seiller’s master thesis 2 and PhD thesis [Sei12b] from which some
definitions are taken but explained in a different way.

2https://www.seiller.org/documents/pfnhyp.pdf

https://www.seiller.org/documents/pfnhyp.pdf

Chapter 5 The geometry of interaction 161

`L `L

⇝ 1 2 3 4

1 2 3 4

(a) Correct proof-structure. There is a long trip 2− 3− 1− 4− 1− 3− 2.

`L `R

⇝ 1 2 3 4

1 2 3 4

(b) Incorrect proof-structure. There are two short trips 1− 4− 1 and 2− 3− 2.

Figure 33.1: Permutations associated with the two switchings of Figure 30.6.

Proof-structures

Proof-nets

Permutations

Vehicles

Tests

Figure 33.2: Shifting proof-net theory to permutation theory.

Chapter 5 The geometry of interaction 162

§33.1 From the end of the previous section, we have seen that switching flow graphs and
correctness hypergraphs can be divided into two disjoint parts: the vehicle (top, axioms)
and a test (bottom, syntax forest of sequent). The rough idea is that if we look at the
long trip criterion for a proof-structure for a given switching flow graph Sφ, paths do an
alternation between vehicle and test. This decomposition is illustrated in Figure 33.2. If
we only keep the mathematical content of the long trip criterion, both the vehicle and the
test correspond to permutations over atomic formulas (represented by natural numbers
standing for addresses of physical locations in the proof-structure). An example of
translation of the paths of a proof-structure for two switchings (coming from Figure 30.6)
into permutations is given in Figure 33.1.

§33.2 Let X = {1, ..., n} ⊆ N+ be a finite sequence of stricly positive natural numbers repre-
senting atomic formulas in a proof. A permutation is a bijection σ : X → X. It associates
with each elements of X a unique other element of X. An association can be written
x 7→ y when we have a permutation σ such that σ(x) = y (and σ−1(y) = x). A permu-

tation σ can then be written {x1 7→ y1, ..., xn 7→ yn} or
[
x1 ... xn
y1 ... xn

]
when σ(xi) = yi.

The association should be read from top to bottom in its matrix presentation.

§33.3 From the trips of a switching hypergraph Sφ with a given switching φ, it is possible
to extract two permutations σax and σφ corresponding to the axioms of S and to Sφ
respectively. We enumerate each boxes corresponding to the n atomic formulas and
obtain a sequence of natural numbers X = {1, ..., n}.

• The permutation σax : X → X is constructed by adding an association n 7→ m
when there is a directed path from n to m from the top.

• The permutation σφ : X → X is constructed by adding an association n 7→ m
when there is a directed path from n to m from the bottom.

For instance, the two permutations in Figure 33.1a can respectively be represented by[
1 2 3 4
4 3 2 1

]
,
[
1 2 3 4
3 2 1 4

]
and the two permutations in Figure 33.1b by

[
1 2 3 4
4 3 2 1

]
and

[
1 2 3 4
4 2 3 1

]
.

Long-trip criterion with cyclic permutations

§33.4 Cyclic permutations. The point is now to characterise the long trip criterion only
from permutations (which mean nothing in particular). Permutations can be composed
like any functions. For instance, if we compose the two previous permutations σ :=[
1 2 3 4
4 3 2 1

]
and τ :=

[
1 2 3 4
3 2 1 4

]
, it is possible to plug the associations vertically

with σ over τ to construct the sequence of associations 1 7→ 4 7→ 4, 2 7→ 3 7→ 1,

Chapter 5 The geometry of interaction 163

3 7→ 2 7→ 2 and 4 7→ 1 7→ 3, written

1 2 3 4
4 3 2 1
4 1 2 3

. This induces a new permutation

τ ◦ σ =

[
1 2 3 4
4 1 2 3

]
. Composition is often written τσ instead of τ ◦ σ.

We say that a permutation σ : X → X is cyclic when for σ0(1) 6= σ1(1) 6= ... 6= σ|X|−1(1)
with 1 ∈ X. It means that starting from 1, if we move one step by following σ, we end
on a different location (atomic formula), if we move one step further, we end again a
location different from the previous and so on until we do |X|− 1 moves which would be
sufficient to traverse all natural numbers. It means that the permutation when composed
with itself forms one big cycle (you should be able to see how it is related to long trips)
by alternating between the two components of the composition.

§33.5 If permutations are represented as in Figure 33.1, then to check if τσ is cyclic, we can
merge the two corresponding graphs along identical natural numbers. We start from 1.
One application of τσ correspond to moving one step along the edges. If we are able to
always reach different numbers in 3 steps then we must have reached all the locations.

• If σ := σax and τ := σφ are extracted from the correct proof-structure of Fig-
ure 33.1a, then it appears that τσ is cyclic because we have:
(τσ)0(1) = 1, (τσ)1(1) = 4, (τσ)2(1) = 3 and (τσ)3(1) = 2.

• As for the two permutations of Figure 33.1b, we can see why their composition
is not cyclic. If σ is the composition of the two permutations extracted from the
proof-structure, then σ0(1) = 1, σ1(1) = 4 and σ2(1) = 4 which is a short trip.

§33.6 Decomposition of permutation. Any permutation can be decomposed into a com-
position of circular permutations with disjoint domains. Each circular permutation is
closed under reachability by association of a permutation. This gives an alternative nota-
tion for permutation where (x1x2...xn) corresponds to a circular sequence of associations

x1 7→ x2 7→ ... 7→ xn. For instance (132) is the permutation
[
1 2 3
3 1 2

]
(1 gives 3 which

gives 2 then 1 back again). The permutation
[
1 2 3 4
4 3 2 1

]
can be rewritten (14)(23)

and
[
1 2 3 4
3 2 1 4

]
can be rewritten (13)(2)(4). We have that τσ is cyclic when its de-

composition is a unique cyclic permutation (corresponding to a long trip). Otherwise,
each components of the decomposition correspond to a short trip.

§33.7 Orthogonality. We are now able to mathematically express the long trip criterion. We
say that two permutations τ and σ are orthogonal, written τ ⊥ σ, when τσ is cyclic.
Orthogonality is symmetric since permutations are bijective and τσ can be rewritten
σ−1(στ)σ [Gir87b, Section 2.3].

Chapter 5 The geometry of interaction 164

1 2

`
7

3 64 5

⊗

8

cut

ax ax ax

⊗/⇝̀
1 2 3 64 5

cut

cut

ax ax ax

⊗/`
⇝∗

3 6

ax

Figure 33.3: Cut-elimination for a proof-structure. We have the two following per-

mutations: σax :=

[
1 2 3 4 5 6
2 1 4 3 6 5

]
= (12)(34)(56) and σcut :=[

1 2 4 5
4 5 1 2

]
= (14)(25).

§33.8 Theorem. A proof-structure S is MLL-certifiable if and only if for all switchings φ
of S, we have σφ ⊥ σax where σax and σφ respectively correspond to the permutation
associated with the axioms of S and the switching hypergraph Sφ.

General interaction of permutation and cut-elimination

§33.9 The verification of the cyclicity of a permutation τσ corresponds to a sort of interaction
between two permutations. It works as if we connected two permutations to look at all
the possible alternating paths induced. But cut-elimination is also a sort of interaction
between axioms and cuts since multiplicative cuts are way to reorganise atomic formulas
by rewiring or contraction.

§33.10 Cut-elimination can also be studied only from the notion of paths. A normal form
makes explicit the shortcuts between input/output atomic formulas given by cuts. For
instance, in Figure 33.3, the normal form connects 3 and 6. This normal form tells
us that if we start from the input point 3, it is possible to reach 6 by following the
rules of cut-elimination. Cuts also induce a permutation σcut on atomic formulas with
the rewiring obtained by eliminating all multiplicative cuts ⊗/`. In Figure 33.3, the

permutation corresponding to cuts is σcut :=

[
1 2 4 5
4 5 1 2

]
. The difference between

verifying the long trip criterion and cut-elimination is that switching are full connexions
between atomic formulas, represented by total permutations whereas cut-elimination
only partially (potentially totally) connects atomic formulas. In the latter case, we must
consider permutations over a subset of atoms.

§33.11 Plugging. Let σ : X ∪ Y → X ∪ Y and τ : Y ∪ Z → Y ∪ Z be two permutations with
X,Y, Z sequences of natural numbers over N+ and X∩Z = ∅. The two permutations can
be decomposed with disjoint partial injections (we keep the notation of permutations)
relating subsets of their domain. We write σ[E,F] : E → F for such bijections. We
obtain:

• the decomposition σ = σ[X,X] + σ[Y,X] + σ[X,Y] + σ[Y,Y];

Chapter 5 The geometry of interaction 165

σ
X

Y

X

Y

τ
Y

Z

Y

Z

' Ex(τ, σ)
X

Z

X

Z

Figure 33.4: Interaction between two permutations σ : X ∪ Y → X ∪ Y and τ : Y ∪
Z → Y ∪ Z with X ∩ Z = ∅ as the computation of a new permutation
Ex(τ, σ) : X ∪ Z → X ∪ Z which is defined only if we can always go out of
the loop. The inputs are on the left and the outputs on the right.

• the decomposition τ = τ[X,X] + τ[Y,X] + τ[X,Y] + τ[Y,Y]

where σ + σ′ : X ∪ X ′ → Y ∪ Y ′ =
[
x1 ... xn y1 ... yn
x′1 ... x′n y′1 ... y′n

]
when σ : X → X ′ =[

x1 ... xn
x′1 ... x′n

]
and σ : Y → Y ′ =

[
y1 ... yn
y′1 ... y′n

]
. To define the plugging (or interaction)

Ex(τ, σ) between σ and τ , we define a (potentially infinite) path starting either from
X or Z to either X or Z by traversing the place of interaction Y (potentially several
times). We obtain the following definition of plugging:

Ex(τ, σ) := Ex(τ, σ)[X,X] + Ex(τ, σ)[X,Z] + Ex(τ, σ)[Z,X] + Ex(τ, σ)[Z,Z] with

Ex(τ, σ)[X,X] := σ[X,X] +
∞∑
k=0

σ[X,Y]τ[Y,Y]

(
σ[Y,Y]τ[Y,Y]

)k
σ[Y,X];

Ex(τ, σ)[Z,X] :=
∞∑
k=0

σ[X,Y]

(
τ[Y,Y]σ[Y,Y]

)k
τ[Y,Z];

Ex(τ, σ)[X,Z] :=

∞∑
k=0

τ[Z,Y]

(
σ[Y,Y]τ[Y,Y]

)k
σ[Y,X];

Ex(τ, σ)[Z,Z] := τ[Z,Z] +

∞∑
k=0

τ[Z,Y]σ[Y,Y]

(
τ[Y,Y]σ[Y,Y]

)k
τ[Y,Z].

This new permutation Ex(τ, σ) may not always be defined (it is not when there are in-
finitely many paths). The process underlying the construction of Ex(τ, σ) is illustrated
in Figure 33.4. The formula corresponding to σ :: τ is also known as the execution for-
mula. I comment Ex(τ, σ)[X,X] (and the other permutations follow the same reasoning).
It either goes directly from X to X in one step or goes to Y through σ[Y,X] then goes

Chapter 5 The geometry of interaction 166

σ
X

Y

X

Y

τY Y

' Ex(τ, σ)X X

Figure 33.5: Interaction between two permutations σ : X∪Y → X∪Y and τ : Y → Y as
the computation of a new permutation Ex(τ, σ) : X → X which is defined
only if we can always go out of the loop. The inputs are on the left and the
outputs on the right. The box τ is often omitted and replaced by a loop
from Y to Y in the box σ.

several times in a (potentially infinite) loop from X to itself to finally exit by X.

§33.12 Plugging (simplified). In the above definition, X and Z correspond to the atoms of
two disjoint proofs which are not related by cuts. For instance, in Figure 33.3, we would
have X = ∅ and Z = {3, 6}. The atoms which interact are Y = {1, 2, 4, 5}. However,
our definition is too general. It is sufficient to set Z := ∅ at put all atoms unrelated to
cuts in X. This is because the connexion between two disjoint proofs can be seen as
an interaction happening within a single proof (i.e. you either see the proof-structure of
Figure 33.3 as connecting two proofs by a cut or see it as a unique proof, as a whole).
In this case we obtain the simplified version of plugging between σ : X ∪ Y → X ∪ Y
(axioms with some atoms unrelated to cuts in X) and τ : Y → Y (cuts):

Ex(τ, σ) = Ex(τ, σ)[X,X].

This situation of simplified plugging corresponds to the illustration of Figure 33.5 which
simplifies Figure 33.4.

§33.13 We illustrate plugging with the proof-structure of Figure 33.3. We have

Ex(σcut, σax) := σax[X,X] +

∞∑
k=0

σax[X,Y]σcut[Y,Y]

(
σax[Y,Y]σcut[Y,Y]

)k
σax[Y,X]

with X = {3, 6} and Y = {1, 2, 4, 5}. There is direct association from X to X in one
step hence σax[X,X] = ∅ (paths of length 1). Now we compute the formula for different
values of k.

� Case k = 0 (paths of length 3 from X to X): we have

σax[X,Y]σcut[Y,Y]σax[Y,X]

Chapter 5 The geometry of interaction 167

= ∅ ◦
[
4 5
1 2

]
◦
[
3 6
4 5

]
= ∅ (undefined);

� Case k = 1 (paths of length 5 from X to X): we have

σax[X,Y]σcut[Y,Y]

(
σax[Y,Y]σcut[Y,Y]

)
σax[Y,X]

=

[
5 4
6 3

]
◦
[
2 1
5 4

]
◦
[
1 2
2 1

]
◦
[
4 5
1 2

]
◦
[
3 6
4 5

]
;

Remark that since we are alternating between axioms and cuts, only paths of odd length
are considered. We see that there is a path of length 5 between 3 and 6, meaning that
the proof-structure has a normal form.

§33.14 Correctness with general plugging. By using this more general definition of plug-
ging, it is possible to characterise long trip correctness. The execution Ex(τ, σ) computes
maximal alternating paths from inputs/outputs. The idea is to turn a long trip into a
maximal path. This is what Seiller did with his interaction graphs using graphs instead
of permutations [Sei12a]. It is sufficient to distinguish an edge (representing an asso-
ciation in a permutation) and consider a maximal path between the two disconnected
vertices. The advantage of expressing orthogonality with execution is that a lot of results
are usually free such that the adjunction property which ensure a correct interpretation
of linear logic and the possibility to define a categorical model (∗-autonomous category).

§33.15 Proof-structures are now fully characterised by vehicles corresponding to links between
atoms. The orthogonality relation ⊥ formalises the fact that a vehicle (or program)
passes a test. A permutation is hence MLL-certifiable (logically correct) when it passes
all the tests for a given set of tests corresponding to a sequent ` Γ. It remains to define
the set of tests corresponding to a sequent.

Interpretation of types/formulas

§33.16 Remark that in the world of permutations, there is no difference between vehicles and
tests, they are of same nature. In particular, set of axioms (which can be seen as a
type defined as a set of programs) opposes set of tests (which can be seen as way to
assert that a program is of some type). We can construct arbitrary set of tests or
vehicles by putting permutations in a set. Let A be such a set. We define its orthogonal
A⊥ := {σ | ∀τ ∈ A, τ ⊥ σ}. Given a permutation σ, it is possible to say that it
passes all the tests of a set A by writing σ ∈ A⊥. Not all sets will correspond to MLL
formulas/types. The good sets are called behaviours and are closed by biorthogonal.
The following definitions are very similar to realisability interpretations (cf. Section 22).
An even more similar and notable work is Beffara’s realisability interpretation used to

Chapter 5 The geometry of interaction 168

speak about concurrent computation and linear logic [Bef06]. His approache differs from
the fact that he starts from process calculi but the same techniques are used. Beffara’s
work can be seen as an alternative interpretation of linear logic.

§33.17 Definition (Behaviour). A set of permutations A is a behaviour when A = A⊥⊥.

§33.18 Behaviours corresponds to MLL formulas (in which linear negation is involutive). An
intuitive way to understand this requirement is through the alternative equivalent defi-
nition.

§33.19 Proposition. Let A be set of permutations. We have that A is a behaviour if and
only if there exists a set of permutations B such that A = B⊥.

Proof. The proof can be found in the literature [JS21, Proposition 15].

§33.20 This alternative definitions tells us that A is a behaviour when there is a set of tests
B fully characterising A. In particular, all elements of A pass the tests of B. In other
word, a behaviour is set of testable permutations. The idea is now to construct behaviours
corresponding to all MLL formulas.

§33.21 As we have seen in the previous chapter, the proof-nets of A⊗B join two disjoint proof-
nets (cf. Figure 29.8). It is then natural to define the tensor as a disjoint union of set of
permutations. Moreover, the switchings for ⊗ (cf. Figure 30.3a) correspond to reunion
of switching flow graphs. The only way to be orthogonal to them (by forming a long
trip) is having two disjoint switching flow graphs (otherwise we would have short trips).

§33.22 Definition (Support of set of permutations). Let A be a set of permutations. If all
permutations σ ∈ A are defined on a same set X, then X is called the support of A.
The support of A is written dom(A).

§33.23 Definition (Tensor). Let A and B be two behaviours with disjoint support, i.e.
dom(A) ∩ dom(B) = ∅. We define their tensor as a new behaviour:

A⊗ B := {σA + σB | σA ∈ A, σB ∈ B}⊥⊥.

§33.24 The double orthogonality in the definition is there to ensure that A⊗B is a behaviour.
Depending on the chosen orthogonality relation, it is not always the case. If we already
have a behaviour, i.e. A⊗B = {σA+σB | σA ∈ A, σB ∈ B}, then we say that the tensor
satisfies the property of internal completeness.

§33.25 Finally, ` is defined by the orthogonal of ⊗. The tests correspond to disjoint unions of
switching flow graphs waiting to be reunited. The proofs of A`B then reunites a proof
of A with a proof of B. We finally also obtain a definition of linear implication.

Chapter 5 The geometry of interaction 169

§33.26 Definition (Par). Let A and B be two behaviours with disjoint support. We define
the new behaviour:

A ` B := (A⊥ ⊗ B⊥)⊥.

§33.27 Definition (Linear implication). Let A and B be two behaviours with disjoint sup-
port. We define the new behaviour:

A⊸ B := A⊥ ` B.

§33.28 Comparison with realisability interpretation. This interpretation of linear logic
matches with realisability interpretations in Section 22 (especially Krivine’s classical
realisability). The difference is that we are starting from permutations instead of λ-
terms, there is no duality between λ-terms (programs) and stacks (tests) since they
both are permutations in the GoI, and finally we are reconstructing multiplicative linear
logic instead of classical logic. The pole is implicit in our case but could have been
made explicit by defining orthogonality from execution. It is also possible to have an
alternative definition of linear implication which would be closer to the definition of
realisability.

§33.29 Proposition. Let A and B be two behaviours with disjoint support. We have:

A⊸ B = {σF | ∀σA ∈ A, Ex(σF , σA) ∈ B}.

Proof. This is easily proven by using the adjunction property which is obtained by defin-
ing orthogonality from execution [Sei12a, Definition 26].

§33.30 Generalised multiplicatives. As illustrated in Figure 33.2, even though proof-
net theory can be simulated with permutations, permutations are even more general
than proof-structures. It is possible to construct permutations and make them interact
without representing proof-structures. In particular, it is possible to define sets of tests
not corresponding to MLL types and to obtain generalised formulas [Gir87b, Section 3].
A typical example is to mix tests coming from different formulas (by exchanging some
` and ⊗) because tests coming from MLL sequents are usually uniform. In some cases,
the corresponding set of tests can have a non-empty orthogonal, meaning that it can be
instantiated to actual proofs called non-sequentialisable since they do not correspond to
sequent calculus proofs. However, the purpose of such generalised multiplicatives living
outside usual MLL was not clear. It has been investigated later by Acclavio and Maieli
by using partitions instead of permutations [AM20].

§33.31 What about Danos-Regnier correctness?. Since permutations are about binary
links and that the test for tensor in Danos-Regnier correctness is a ternary edge (hy-
peredge), the interpretation of proofs with permutation can naturally express long trips
but not Danos-Regnier switching hypergraphs. Other solutions will be proposed in the
next sections (cf. Section 37). The transcendental syntax, which is the subject of this

Chapter 5 The geometry of interaction 170

thesis will also be a solution where both long trips and Danos-Regnier correctness can
be expressed. However, it is still possible to characterise MLL+MIX in another way
[NS19, Theorem 42] by using acyclicity for orthogonality, which can be expressed with
nilpotency of the interaction between two permutations.

§33.32 A paradigm of uniform interaction. More than a new interpretation of proof-nets,
the GoI provides a paradigm in which proofs and tests are computationally interactive
entities of same kind. In particular, the cut is a way to put two entities in conflict
and cut-elimination is a way to trigger an interaction. The interpretation of types as
behaviours provides a way to speak about the computational behaviour of logical entities
depending of how they interact with other objects. This idea of paradigm of interaction
has been discussed by Abramsky [Abr16, Section 5].

§33.33 Communication without understanding. The notion of “communication without
understanding” is a recurrent idea in Girard’s papers. It appeared since the first paper on
GoI [Gir89a, Section V.2] and served as a motivation until his project of transcendental
syntax, succeeding the GoI. The idea is that when two logical entities Φ and Ψ interact
(permutations or operators representing proof-nets), they are connected by points of
reference (for instance a cut between A⊥`B⊥ and A⊗B) making them able to react in
a generic way through their “interface”. However, this communication is done without
understanding since what happens in one entity is independent from the other entity.
The computational reaction is only dependent on the points of reference which connects
Φ and Ψ. Actually, we could change names or substitute the atoms Xi by more complex
proof-nets in Φ, Ψ would not be aware of that private change and still react in the same
way. As Girard explains, it is as if Φ and Ψ corresponded to an internal language of
thoughts for two persons (their consciousness?). These two persons have an illusion of
mutual understanding through points of reference allowing a consensus, but those points
are treated generically from each person’s point of view. For instance, two persons talk
about “democracy” or left/right in politics but although they can recognise the words
and react to it, they will both treat the word depending on their own point of view or
understanding.

34 Infinitary extension towards full linear logic

§34.1 This idea of representing proofs by permutations has been extended to MELL in Girard’s
first official technical paper on the GoI [Gir89a]. This is the first paper of a series of six
papers. Atomic formulas can now be duplicated or erased, hence there can be infinitely
many copies of one atomic formula. We need to extend our interpretation to something
which would look like permutations (or matrices since permutations induce matrices)
over an infinite countable space. A natural3 solution has been suggested by Girard.
There are a lot of equivalent formulation of this solutions which can be found in Girard’s

3Apparently it is natural for mathematicians.

Chapter 5 The geometry of interaction 171

article on GoI [Gir89a], Seiller PhD thesis [Sei12b, Section 4.1], one of Shirahata’s article
[Shi03, Section 3] or Duchesne’s PhD thesis [Duc09]. This is due to the fact that the
interpretation works in very “large” spaces but not all the power of these spaces is
used. It is then sufficient to consider simpler interpretations. In Girard’s terms [Gir11a,
Section 19.3.10], his solution is basically a “preposterous dressing of a theory of the partial
permutations of N”.

§34.2 A canonical solution4 is to consider operators on the Banach space B(H) of bounded
operator on the Hilbert space H := l2(N). This provides a sort of generalised algebra
of matrices. Objects of H are infinite sequences of complex numbers indexed by natural
numbers z = (zi)i∈N = (z1, z2, ...) such that

∑∞
i=0 zizi <∞ where a+ ib = a− ib. These

sequences will represent atomic formulas in a proof-structure. The norm of z is defined
‖z‖ :=

√∑∞
i=0 zizi. Operators u (which are used to represent proofs by generalising finite

permutations) are linear transformation5 on H such that sup{‖u(z)‖ such that ‖z‖ = 1}
is finite. Given two sequences x = (xi)i∈N and y = (yi)i∈N, it is possible to define their
scalar product 〈x, y〉 =

∑∞
i=0 xiyi. From this scalar product, we can define an adjoint

operation u 7→ u∗ such that 〈u(x), y〉 = 〈x, u∗(y)〉. You do not have to understand what
that means6.

§34.3 We now have a lot of tools from this large space for linear logic. The most important
elements we need is:

• a way to internalise H⊕H into H, yielding H⊕H ' H in order to interpret binary
multiplicative connectives;

• an internalisation yielding H ⊗ H ' H in order to interpret copies of atoms (for
exponentials).

As explained by Seiller [Sei12b, Section 4.1], it is sufficient to use bijections on natural
numbers yielding N×N ' N and N+N ' N because a separation of the space of indices
is sufficient to separate H.

§34.4 Interpretation of binary connectives. The internalisation of direct sum takes the
form of two operators7 l : H → H and r : H → H (more precisely, partial isometries).
Which are ways to project elements of H to either the left or right part of a splitted space
H⊕H, exactly like the rule ⊕ of linear logic. We require that they satisfy l∗r = r∗l = 0
and l∗l = r∗r = 1 where 0 and 1 are respectively the null and identity operators which
are guaranteed to exist. The point is that l and r can be composed to encode paths
(as operators) in a proof-structure where l means “go down left” and r means “go down
right”. The adjoint provides dual operations l∗ for “going up left” and r∗ for “going up
right”. In particular, the equation l∗l = r∗r = 1 is consistent with `/⊗ cut-elimination:

4According to Girard, it took him one year to achieve the extension to exponentials.
5A mapping u : H → H such that u(x + y) = u(x) + u(y) and u(kz) = ku(z) for k ∈ C (the set of

complex numbers).
6Because neither I do.
7Originally named p and q.

Chapter 5 The geometry of interaction 172

going down from a premise of a direction d (left or right) then going up in the premise
of same direction d as in Figure 33.3 (the path has to be reversed to follow operator
composition). As for l∗r = r∗l = 0, it means that it is invalid to not be consistent with
the chosen direction of premise because such paths are not preserved by cut-elimination
and the composition of operator is hence cancelling.

§34.5 It is possible to represent operators by matrices generalising the matrices associated with
finite permutations. In MLL with finite permutations, boolean coefficient are sufficient:
we have a coefficient 1 when there is an association i 7→ j in the permutation where i
is the index of rows (source) and j the index of columns(target). The coefficient is 0
otherwise. An axiom link between two atoms 1 and 2 is represented by the permutation[
1 2
2 1

]
which corresponds to the square matrix

(
0 1
1 0

)
. As for cuts, they are represented

with symmetric matrices since they are two-way linking of formulas. This corresponds
to partial symmetries in Banach spaces. More generally, proofs can be represented by
matrices of operators (recall that 0 and 1 are operators as well). Instead of the presence
of a link, it is possible to encode the path with the partial isometries p and q, relatively to
a conclusion. Operators can also be interpreted by more compact big matrices featuring
information about cuts [Shi03, Section 3.4]. Concrete examples of matrices can be found
in Pistone’s works [Pis15].

§34.6 Interpretation of exponentials. The internalisation of tensor product provides a
tensorisation of operators u⊗v such that (u⊗v)(x⊗y) = ux⊗vy allowing to attach (by
pairing) and stack information. The rough idea is that it allows to add more information
(that Girard calls “message space” [Gir11a, Section 19.3.5]) to paths in order to specify
what I call a copy identifier which says whether we have a left or right copy (for the
two branches of contraction link). The promotion turns an operator u (corresponding
to a proof) into 1 ⊗ u (corresponding to a proof in an exponential box) where 1 is the
location of a potential copy identifier. Weakening is handled by adding 0 coefficient for
a new atom in the matrix of a proof. Contraction is handled with operators x⊗ 1 where
x ∈ {l, r, l∗, r∗} to specify that we are either entering or exiting a left or right copy of
an atom (without altering the multiplicative part on the right). This is explained in
Shirahata’s paper [Shi03, Section 3.7].

§34.7 Feedback equation and execution. In the same fashion as in Figure 33.4, it is
possible to define an equation in terms of operators for which the solution corresponds
to the cut-elimination of a proof. This equation is called feedback equation [Gir06].
Imagine that we have an operator u : H ⊕ H′ → H ⊕ H′ representing axioms such that
u(x⊕ y) = x′ ⊕ y′ for some x′ and y′ (it is the box of σ in Figure 33.4) and an operator
v : H′⊕H′′ → H′⊕H′′ representing another set of axioms such that v(y′⊕ z) = y⊕ z′ for
some z′ (it corresponds to the box of τ in Figure 33.4). We obtain the following feedback

Chapter 5 The geometry of interaction 173

equation system:

u(x⊕ y) = x′ ⊕ y′

v(y′ ⊕ z) = y⊕ z′

As in Paragraph 33.12, the equation can be simplified and we obtain:

u(x⊕ y) = x′ ⊕ y′

σ(y′) = y

where σ is the partial symmetry associated with cuts. Similarly to the right picture of
Figure 33.5, when it has a solution, the equation induces an operator w : H → H such
that w(x) = x′. This operator is defined by the execution formula:

Ex(u, σ) := (1− σ2)u(1− σu)−1(1− σ2).

The expression u(1−σu)−1 is a fancy way to write
∑∞

k=0 u(σu)
k = u+uσu+uσuσu+ ...

which is the sum of all possible alternation between axioms and cuts. The expression
is an operator algebraic version of the simplified plugging of Paragraph 33.12. The
expression (1−σ2) is a way to filter the result in order to keep paths starting outside the
space of cuts and terminating outside of cuts (so that we indeed represent a maximal
path between two inputs/outputs). As explained by Shirahata [Shi03, 3.6], σ2 is an
operator projecting inputs into either the other side of the cut or 0. If (σ2)(x) = y 6= 0,
then there is a cut between x and y. The operator 1−σ2 projects its inputs to themselves
if they are not part of cuts (which is equivalent to applying the identity operator doing
nothing) or 0 (which would cancel the whole path).

§34.8 Orthogonality by nilpotency. It appears that the execution formula is not always
defined (the intuition is that it can loop) but it is defined when σu is nilpotent8, i.e. there
exists k ∈ N such that (σu)k = 0. This ensures that there is a point where the infinite
sum

∑∞
k=0 u(σu)

k can stop. This naturally defines an orthogonality relation between
operators (without even trying to characterise a specific correctness criterion). We say
that two operators u and v are orthogonal, written u ⊥ v, when uv is nilpotent. From this
orthogonality relation (which is directly based on execution this time, unlike our original
definition with cyclicity of finite permutations), it is possible to interpret formulas/types
as set of operators, exactly as in Section 33. It has later been established that nilpotency
is related to acyclicity of graphs, which characterises MLL+MIX correctness (and not
MLL) [NS19, Theorem 42].

§34.9 A mathematisation of algorithms. Following this first technical paper on the GoI,
Girard introduced a second paper [Gir16b] with more ambitions:

8Actually, as Seiller explained, weak nilpotency is sufficient [Sei12b, §4.1.17].

Chapter 5 The geometry of interaction 174

“ This paper is the main piece a general program of mathematisation of
algorithmics, called geometry of interaction. We would like to define inde-
pendently of any concrete machine, any extant language, the mathematical
notion of an algorithm.

– Jean-Yves Girard ”
The geometry of interaction is no more meant to be a mathematical explanation of
linear logic or of proof-nets but a step towards the redefinition of the relation between
logic and computation. Because the execution formula is able to mathematically ex-
press the computation appearing in logic independently of any computational system,
Girard defines an algorithm by a pair of operators (u, σ) which can be executed with
Ex(u, σ). In order to consider more general computation, Girard wanted to represent un-
typed λ-calculus by studying more general solutions of the feedback equation using weak
nilpotency [Sei12b, §4.1.17] instead of nilpotency. The difficult is then to find a setting
where this works because 1 − σu (appearing in the execution formula) is not invertible
in general (and we need it to be invertible because the execution formula is defined by
(1 − σ2)u(1 − σu)−1(1 − σ2)) under the assumption of weak nilpotency. It seems that
this project of mathematisation of algorithms has been postponed but recently restored
by Seiller and Naibo.

§34.10 From operators to logic. In his third paper on GoI [Gir95], Girard introduced a
new simplified interpretation by comparing his execution formula with the execution of
logic programs (cf. Section 23). In particular, he tries to extend the interpretation to
MALL. Since this topic deserves its own section (in the context of this thesis), it will be
presented later in Section 37. The fourth paper [Gir06] is dedicated to a study of the
feedback equation and its solutions [Sei12b, §4.2.6]. Finally, the fifth paper [Gir11b] will
take into account an explicit consideration of the notion of address or location. Solutions
of the feedback equation are extended with the notion of determinant of a matrix in
which the execution formula appears under the assumption of invertibility of 1 − σu
[Sei12b, §4.2.7]. Shifts to new mathematical frameworks such as Type II Von Neumann
algebras will also be considered in order to keep the interpretation of logic (especially
exponentials) with a generalised notion of determinant (Fuglede-Kadison determinant).
Philosophically speaking, the approach is novel and explicitly stated in the abstract of
the fourth paper:

“ the equation was essentially studied for those Hilbert space operators com-
ing from actual logical proofs. In this paper, we take the opposite viewpoint,
on the arguable basis that operator algebra is more primitive than logic: we
study the general feedback equation of Geometry of Interaction”.

– Jean-Yves Girard ”
In the abstract of the fifth paper, the claim is even stronger:

Chapter 5 The geometry of interaction 175

1 2

`
7

g h

k

3 64 5

⊗

8

i j

l

cut
m n

ax
a b

ax
c d

ax
fe

Figure 35.1: Proof-structure with labelled edges over an alphabet Σ of letters.

“ Geometry of Interaction (GoI) reacts against the absence of any satis-
factory explanation for logic. The usual one is that of a symbolic calculus
of truth values, which supposes that truth values pre-exist and formulas as
well. [...] The aim of GoI is therefore to find a space where truth, commut-
ing diagrams, etc. are no longer primitive and where dynamical processes
(proof-search, rewriting, a.k.a. normalisation) are primitive.

– Jean-Yves Girard ”
35 Danos and Regnier’s algebra of paths for MLL

§35.1 Danos and Regnier suggested a very accessible reformulation of Girard’s GoI in their
paper “Proof-nets and the Hilbert space” [DR95]. This approach directly applies the
novelties of the GoI to original proof-nets. We are, again, interested in characterising
the paths in proof-nets but more especially the persistent paths which are preserved by
cut-elimination. These paths are the essence of proof-nets. An algebra L∗ is defined
to express weight on paths represented by words over {1, l, r, l∗, r∗}. If paths are not
preserved, their corresponding weight will be cancelled. This is a simplified version of
Girard’s partial isometries l and r.

Paths in a proof-structure

§35.2 We consider proof-structures (V,E, in, out, ℓE) extended with a labelling of edges. Since
we defined proof-structures as hypergraphs, we have to consider a bijective labelling
ℓp : V × E → Σ where Σ is a fixed alphabet of edge identifier. We write ℓ instead of ℓp
when the labelling being used is obvious. An example of such labelled proof-structure is
given in Figure 35.1.

Chapter 5 The geometry of interaction 176

§35.3 Definition (Path). Let S be a proof-structure extended with a labelling ℓp : V ×E →
Σ for some Σ. A path of S is a finite word over (Σ∪ΣR)∗ where ΣR := {xR | x ∈ Σ}.
The symbol aR ∈ ΣR represents the reverted edge associated with a. In particular, it
defines an involution (·)R such that (aR)R = a and (ab)R = bRaR.

If pi = a1...an is a path then we must have that ak and ak+1 are adjacent, i.e. if
ℓ−1p (ak) = (v, e) and ℓ−1p (ak+1) = (v′, e′) then either v = v′ or e = e′.

§35.4 Example. An example of path from 1 to 6 in Figure 35.1 is gkmnRjReRf (read from
left to right).

§35.5 Danos and Regnier distinguished several classes of paths in order to represent good and
ill-behaving paths [DR95, Section 2.2]. A path is

• non-bouncing if it does not contain aRa for any a (it does not retract his choice
by going back in the previous point);

• non-twisting if it does not contain aR1 a2 with a1 and a2 distinct premises of a same
link (it does not go from one premise to another);

• straight if it is non-bouncing and non-twisting (the good paths we want).

§35.6 Example. The path gkmnRjReRf of the previous example for the proof-structure
in Figure 35.1 is straight. An example of bouncing path from 7 to 7 is kRgRg. An
example of twisting path from 8 to 8 is lRiRj.

Weight of a multiplicative path

§35.7 In this section, we associate weights with paths. These weights are words over

{1, l, r, l∗, r∗}

specifying which are the direction taken in binary connectives. In particular, we would
like to follow the rules of multiplicative cut-elimination: preserved paths are the one
consistent with directions by going down left (respectively right), going through the cut,
and going up left (respectively right) on the other side. We first define the algebraic
language of those weights.

§35.8 Definition (Involutive monoid L∗). Let L∗ be the involutive monoida generated by
{l, r, 0} and the following equations:

0x = x0 = 0 l∗r = r∗l = 0 l∗l = r∗r = 1
aMonoid with a set E, an associative multiplication operator · with neutral element 1 and an invo-

lution (·)∗ : E → E such that x∗∗ = x, 0∗ = 0 and (xy)∗ = y∗x∗.

Chapter 5 The geometry of interaction 177

§35.9 Definition (Regular path). A path ρ in a proof-structure S is regular if and only if
ω(ρ) 6= 0 [DR95, Definition 4].

§35.10 Regular paths correspond to the paths which are not cancelled by the algebra of weight
L∗, hence which are valid w.r.t. multiplicative cut-elimination. We now associate weights
with paths.

§35.11 Definition (Weight association). Let ρ = a1...an be path in a proof-structure S. The
weight ω(ρ) associated with ρ is defined by ω(an)...ω(a1) where the weight ω(a) of a
label a such that ℓ−1p (a) = (v, e) is defined as follows:

• if a ∈ ΣR, then ω(a) := ω(aR)∗;

• if v is the left premise of e with ℓE(e) ∈ {⊗,`}, then ω(a) = l;

• if v is the right premise of e with ℓE(e) ∈ {⊗,`}, then ω(a) = r;

• ω(a) = 1 otherwise.

Notice that the path is reversed. This is because of a technical detail: the natural
reading order for paths is from left to right but algebraic composition is read from
right to left.

§35.12 Example. In the proof-structure of Figure 35.1, we have:

• an illegal staight path cRdilnmRkRhRbRagkmnRlRjReRf from 3 to 6, of weight

ω(feRjRlRnRmkgabRhRkRmRnlidcR) = r∗lr∗l = 00 = 0;

• a legal regular straight path cRdilnmRkRgRaRbhkmnRlRjReRf from 3 to 6,
of weight

ω(feRjRlRnRmkhbaRgRkRmRnlidcR) = r∗rl∗l = 11 = 1 6= 0.

§35.13 Definition (Execution formula). The execution of a proof-structure S is defined by

Ex(S) :=
∑

ρ∈Straight(S)

ω(ρ)

where Straight(S) are the straight paths from conclusion to conclusion (hence max-
imal paths). This assumes that we have a disjoint union + extending our algebra of
weights.

§35.14 Example. Let S be the proof-structure in Figure 35.1. We have Ex(S) = 1 + 1 (two
valid paths).

§35.15 As shown in Danos and Regnier’s paper, the execution computes all straight and persis-
tent (equivalently, regular) paths which are the paths preserved by cut-elimination.

Chapter 5 The geometry of interaction 178

...

w

d

`

!

w

cut

ax

!/w⇝
...

Figure 35.2: Valid path (traversing the ` link) erased during cut-elimination for MELL
proof-structures.

§35.16 Theorem. Let ρ ∈ Straight(S) for a proof-structure S. We have that ρ is regular
if and only if ρ is persistent (not formally defined here).

Proof. Proven in Danos and Regnier’s paper [DR95, Theorem 14].

§35.17 The case of exponentials. The difficult is to treat the behaviour of paths for boxes and
structural rules. It has been investigated by Danos and Regnier [DR95] but I believe
that it is better understood from the point of view of the token machine (also called
Interactive Abstract Machine or IAM) [Lau01]. I only sketch the basic idea and do no
develop more. We consider generalised ?-links as in Figure 29.14.

• Paths ending with a weakening link are not considered by the execution which only
keeps paths from conclusion to conclusion.

• The only thing we require from dereliction links is that if go out of it from the top
through a cut, we have to go to a box. And conversely, if we entering it from the
bottom, we have to be coming from a box. We have to keep an information telling
whether we are in an exponential path.

• Since boxes can be duplicated, we have to be able to tell which box we are talking
about. In particular, depending on whether we are coming from the left or right
premise of a contraction link, we are speaking about two distinct copies of a same
box. A way to do that is to lift edge labels a into a tensor 1 ⊗ a (as in Girard’s
algebraic GoI). Then we can compose 1⊗ a by k ⊗ 1 to get k ⊗ a with k ∈ {l, r}
telling that we are either speaking about the left or right copy of a potential box.
We have imbricate boxes by tensoring again: 1⊗ a 7→ 1⊗ (1⊗ a).

§35.18 No exact preservation of exponential paths. I expose a little problem regarding
the GoI in the context of exponentials9. The GoI studies cut-elimination only by con-
sidering set of paths to characterise proofs. However, in proof-net theory (which tries

9I thank Olivier Laurent who told me about this.

Chapter 5 The geometry of interaction 179

to mimic sequent calculus), some paths are valid but not preserved by cut-elimination.
There are three sort of exponential paths:

1. the ones entering the box by the ! link and going out through it. These paths are
preserved and there are not problems about it;

2. the ones entering the box the ! link but go out through an auxiliary door (the
context ?Γ of an exponential box). In this case10, paths are preserved in an al-
ternative presentation of exponentials replacing the promotion rule by two rules:
digging and functorial promotion (cf. Paragraph 27.21);

3. the most problematic paths are the one entering a box by an auxiliary door and
going out from an auxiliary door. If the box containing this path interacts with
a weakening, the path is erased even though it did not directly interact with the
weakening and was valid. This is a collateral damage illustrated in Figure 35.2.
The problem is that the GoI does not see that and it will appear in the result of
the execution. In the other cases (dereliction and contraction) there should not be
any problem.

This shows that the GoI is unable to exactly capture the behaviour of proof-nets only
by considering paths. For that reason, approaches based on GoI often forbid ?A formula
in the conclusion of a sequent since they may correspond to formulas going out of a
box without passing through a ! link. It is also possible to simply exclude weakening
links. But this is not necessarily a problem since these junk residuals can simply be
ignored. Another solution is to shift to the paradigm of intuitionistic game semantics
where sequents Γ ` A has a distinguished output. This limits the space of path and it
is then impossible to enter and exit by an auxiliary door for the same path.

36 Token machine for the geometry of interaction

§36.1 Studying cut-elimination only from the exploration of paths in a proof-structure has for
consequence that the graph rewriting of proof-structure is not necessary: the execution
of proofs and programs can be done by a process of exploration of a structure. In
particular, it is possible to reduce λ-terms without syntactic transformation. Actual
duplication is not necessary as well. This suggests ideas of sharing used in optimal
reduction for λ-calculus (cf. Paragraph 29.29). The GoI also constitutes a tool for the
study of dynamical processes occurring in logic.

§36.2 Since typed λ-terms can be encoded with proof-nets (and untyped λ-terms by proof-
structures), it is possible to provide an execution of λ-terms by a computation of paths
in the corresponding structure [AL95, DR99]. In order to make it implementable and

10According to a discussion I had with Olivier Laurent.

Chapter 5 The geometry of interaction 180

u v

ax

(⊼, u, π)
u v

ax

(⊻, v, π)⇝ax

u v

cut

(⊻, u, π)

u v

cut

(⊼, v, π)⇝cut

u v

�

w

(⊻, u, π)

u v

�

w

(⊻, w, l · π)⇝l

u v

�

w

(⊻, u, π)

u v

�

w

(⊻, w, r · π)⇝r

Figure 36.1: Transition rules of the IAM for MLL. For each transition c ⇝x c′, the
reverse transition c′ ⇝−1x c is valid as well with reversed directions for c and
c’. The binary link � corresponds to either ` or ⊗.

closer to computer science, this execution is usually defined by a token machine11 which
is a machine exploring a proof-structure and collection information during its travel
[Lau01]. This machine is often called Interaction Abstract Machine (IAM). I describe
the IAM for the multiplicative case.

§36.3 Let S = (V,E, in, out, ℓE) be a proof-structure. A configuration is a tuple (d, v, π) where
d ∈ {⊼,⊻} is the direction of the current state, v ∈ V the current vertex the machine is
reading and π is a stack defined by the grammar π ::= ∅ | l · π | r · π. A configuration
is initial when it is (⊼, x, ∅) where x ∈ V is a conclusion of S. It is final when it is
(⊻, x, ∅) where x ∈ V is a conclusion of S. The IAM is defined by reversible transition
rules between configurations given in Figure 36.1. Directions can be reversed with an
involutive operation (·)R such that ⊼R = ⊻ and ⊻R = ⊼. For each transition (d, v, π)⇝x

(d′, v′, π′), there is an additional reverse transition (d′R, v′, π′) ⇝−1x (dR, v, π). A run is
11This use of the GoI is so famous that if you mention the GoI, a lot of people (if not most) who heard

about it will say something like “Oh you’re talking about the token machine?”. I think it is not
exaggerated to say that this application replaced Girard’s original definitions and motivations.

Chapter 5 The geometry of interaction 181

1 2

`
7

3 64 5

⊗

8

cut

ax ax ax

(⊼, 3, ∅)⇝ (⊻, 4, ∅)⇝ (⊻, 4, ∅)⇝ (⊻, 8, l)⇝ (⊼, 7, l)⇝ (⊼, 1, ∅)

⇝ (⊻, 2, ∅)⇝ (⊻, 7, r)⇝ (⊼, 8, r)⇝ (⊼, 5, ∅)⇝ (⊻, 6, ∅).

Figure 36.2: Example of run from 3 to 6 with the IAM.

a sequence of transitions from an initial to a final one. We write ⇝ for ⇝ax ∪ ⇝cut

∪ ⇝l ∪ ⇝r ∪ ⇝−1ax ∪ ⇝−1cut ∪ ⇝−1l ∪ ⇝−1r and ⇝∗ for the reflexive transitive closure of
⇝.

The rules for binary connectives presented push symbols and reverse rules pop symbols.
The idea is that the combination of push and pop will cancel l∗l and r∗r so to reproduce
the algebra L∗. An example of run is given in Figure 36.2.

§36.4 Machine for exponentials. A machine for full linear logic can be found in Olivier
Laurent’s works [Lau01]. The idea of exponentials is that we add transitions for boxes,
auxiliary doors and structural rules. During transitions, we have to keep the exponential
box (relatively to boxes) we are in and an identifier of copy so that we speak about the
right copy of a box. To give a simplified and incomplete idea of Laurent’s IAM, we can
add two stacks δ for the exponential depth and σ for exponential information. We have
two injections left : N→ N and right : N→ N such that img(left) ∩ img(right) = ∅.

• If we go down on a dereliction, we have (⊻, x, π, δ, σ) ⇝ (⊻, x′, π, δ, 0 · σ). We add
a special symbol 0 to specify that we are in an exponential path and expecting a
box. The reverse transition pop the symbol because we have finished to explore a
box and the machine exit the exponential zone created by the dereliction.

• A path ending on a weakening link will never be valid as it will never reach a final
configuration.

• If we go down on the left premise of a contraction, we have (⊻, x, π, δ, i · σ) ⇝
(⊻, x′, π, δ, left(i) · σ). We have a symbol i meaning that we are in an exponential
path and we split the index i to say that we are targetting the left copy of a
potential box.

• If it the same for the right premise: (⊻, x, π, δ, i · σ)⇝ (⊻, x′, π, δ, right(i) · σ).

Chapter 5 The geometry of interaction 182

• If we enter a box from the bottom of a ! link, we have (⊼, x, π, δ, i ·σ)⇝ (⊼, x′, π, i ·
δ, σ) meaning that we have an exponential identifier that we push on δ to say that
we enter a box (are that the machine enters in the next depth).

• If we go out of a box but through an auxiliary door and not through the ! link of
the box, we have (⊻, x, π, i ·δ, j ·σ)⇝ (⊼, x′, π, δ,#(i, j) ·σ) where #(i, j) ∈ N is an
encoding of the pair (i, j) as a natural number (as in Paragraph 16.9). We remove
a depth (because we exit a box) but change the “signature” of the exponential
path by saying that we are in an exponential path identifier by the box i and the
exponential path j.

§36.5 Machine for lambda-terms. Although λ-terms can be encoded as proof-structures,
their translation always have a specific shape. It is possible to directly define a machine
for λ-terms with more synthetic transitions. In particular, a transition for λ-terms
corresponds to several transitions of the IAM. Such machines work by distinguishing
a context and a part of the term which is read. And the syntax tree of the term is
explored. It is possible to find definitions of that in Mazza’s HdR thesis [Maz17, Section
3.3.4] (machine itself inspired by some notes of Accattoli and Dal Lago, according to
Mazza).

§36.6 Space-efficient computation. Schöpp designed a type system capturing computation
in logarithmic space, together with a related realisability interpretation inspired by the
GoI [Sch06]. The idea later reappeared in the context of functional programming for
sub-linear space with Dal Lago and Schöpp [LS10]. Using the GoI for λ-calculus has the
particularity of executing by analysis of a static structure (the structure of the term).
This seems space-efficient but the complexity is hidden in how the machine is treated
(in particular, the data accumulated in stacks).

37 Alternative approaches

§37.1 We have already seen that there are several ways to approach the ideas proposed by
the GoI. With operator algebras, with persistent paths of a proof-structure or with an
abstract machine exploring a proof-structure. In this section I present notable alternative
to these ideas. I present reformulations of the GoI with their own formalisms and
problems but also related but not directly connected topics such as ludics.

Flows and wirings

§37.2 In his third paper about GoI, Girard propose a new presentation of his algebraic GoI by
using ideas coming from term unification logic programming (cf. Section 23):

Chapter 5 The geometry of interaction 183

“ Geometry of interaction is most naturally handled by means of C∗-
algebras; this yields surely more elegant proofs, but it obscures the concrete
interpretation. So we prefer to follow a down to earth description of the
interpretation. An unexpected feature will help us : the C∗-algebras used can
in fact be interpreted in terms of logic programming, since the basic operators
are very elementary PROLOG programs, and composition is resolution!

– Jean-Yves Girard [Gir95, Section 1.8] ”
Hence, he remarked that what he was doing with operator algebra only used a small
portion of the power of operator algebra. The interpretation of logic could equivalently
be done with mechanisms of term unification similar to the ones of logic programming.

§37.3 Dialects (idioms). A novelty of this third paper is that Girard tries to extend his
interpretation to MALL with what he calls dialects [Gir95, Section 1.6] (later renamed
idiom). The idea is, similarly to the interpretation of exponentials, operators of a Hilbert
space H are extended with an additional space of information H⊗H′ where H′ is a dialect,
meant to be private. This is inspired by Girard’s communication without understanding
(cf. Paragraph 33.33) where logical entities have their own internal and private language.
Technically speaking, the point is that we would like to superpose a proof of ` Γ, A and
a proof of ` Γ, B to obtain a proof of ` Γ, A & B. This is done by linking the two
occurrences of proofs of ` Γ to, a dialect associated with A and a dialect associated with
B respectively. In case we have a proof of ` A ⊕ B coming from a proof of ` A, the
proof of ` Γ associated with A will react correctly to it but the interaction fails for the
other.

§37.4 Apart from this interpretation of MALL that I do not detail, this third paper allows
the study of the GoI only from term unification by interpreting links by flows and
proof-structures by wirings. These notions have been developed by Bagnol [Bag14] and
Aubert [AB14, AS16b, AS16a]. Since it will be useful for the understanding of the rest
of this thesis, I formally introduce these new objects. I refer to the chapter on logic
programming for basic definitions about term unification (cf. Section 23). We fix a
signature S for terms.

§37.5 Definition (Flow). A flow f is a pair of terms (t, u), written t ↼ u, such that
varst = varsu (there exists relaxation with varst ⊆ varsu).

It is possible to compose two flows t ↼ u and v ↼ w by a product using term
unification:

(t ↼ u)(v ↼ w) := θαt ↼ θw

where θ = solution{αu ?
= v} for a renaming α such that varsαu ∩ varsv = ∅.

The requirement of the renaming makes the two flows’ variables independent: their
variables are bound the flow they are in. We write f ≈α g for two flows equivalent up

Chapter 5 The geometry of interaction 184

to renaming.

§37.6 Example. (X ↼ f(X))(f(g(X)) ↼ X) ≈α (X ↼ f(X))(f(g(X ′)) ↼ X ′) = θX ↼
θX ′ = g(X ′)↼ X ′ with the most general unifier θ = {X 7→ g(X ′)}.

§37.7 Definition (Wiring). A wiring F is a set (or multiset or formal sum depending on
the definitions) of flows.

The product of two wirings F and G is defined by:

FG :=
∪

f∈F,g∈G
{fg when it is defined}.

We distinguish an absorbing wiring 0 such that 0F = F0 = 0 for any wiring 0. The
identity wiring 1F is the set of flows t ↼ t for all terms t appearing in F .

§37.8 Flows represent the directed flow of information, as in Girard’s long trips. The idea
of the interpretation in modern presentation12 is that an atom v of a proof-structure
is represented as a term v(X). For instance, an axiom between u and v becomes the
wiring {u(X) ↼ v(X), v(X) ↼ u(X)}. We will write such two-way flows as a single
expression u(X) ⇋ v(X) := {u(X) ↼ v(X), v(X) ↼ u(X)}. A product (u(X) ⇋
v(X))(u′(X) ⇋ v′(X)) then corresponds to a composition of path. Switching flow
graphs can be represented as well and it is then possible to formulate Girard’s correctness
criterion.

§37.9 The variable X is not necessary for MLL (we could simply work with constants) but it
is useful for extensions to exponentials. The idea is that if we have a term u(X) then
it can be splitted into two terms u(l(X)) and u(r(X)). This corresponds to a use of
contraction rule for atoms. If something wants to match terms of form u(t), for instance
some v(t′) through a cut v(X) ⇋ u(X), then it has to re-used in order to match both
u(l(X)) and u(r(X)).

§37.10 Let F be the wiring associated with the test of switching φ, and G be the wiring asso-
ciated with the axioms of S. We have that S is correct w.r.t. long trips if there exists a
k ∈ N such that (GF)k = 1FG (which corresponds to the condition of cyclicity).

§37.11 Definition (Execution of a wiring). A wiring F interacting with a wiring G can be
executed with an execution formula:

Ex(F,G) := (1−G2)F

∞∑
k=0

GF (1−G2)

12Which has actually never been clearly written but since the idea is used in transcendental syntax
(which has a very similar interpretation), we will explain it directly in the next chapters instead of
developing the interpretation with flows. References about flows can be found in Bagnol or Baillot’s
works [Bag14, BP99].

Chapter 5 The geometry of interaction 185

where (1 − G2) is the usual filtering of Paragraph 34.7 which has to be defined (this
could be done by an algebraic way exactly as in Paragraph 34.7).

§37.12 Unary Horn clauses. The link with logic programs comes from the fact that a flow
t ↼ u may be seen as a Horn clause P (t) ` P (u) for a superficial predicate P wrapping
all terms of flows. The resolution rule (which can be seen as a cut-rule) connects the
output of one clause to the input of another one. From P (t) ` P (u) and P (v) ` P (w),
we get P (θt) ` P (θw) where θ = solution{αu ?

= v}. This is exactly the composition of
flows. A whole program (set of clauses) then becomes a wiring. The execution formula
corresponds to inferring all possible clauses from a given set of clauses, similarly to how
we compute the answers of a query in logic programming.

Seiller’s interaction graphs

§37.13 Permutations over natural numbers can be represented by graphs. If we take this analogy
seriously, then we can actually define the GoI by using interactive graphs which are
connected along identical addresses. These graphs, introduced by Seiller [Sei16b] are a
very convenient way to present the GoI on which various notions of graph theory can
be applied. In particular, the execution is simply a computation of maximal alternating
paths.

§37.14 For instance, we present the permutations of Figure 33.1a as a plugging between inter-
action graphs in Figure 37.1. We can then compute all maximal paths. All the ideas of
GoI will then be about analysis and extension of these interactive graphs.

§37.15 Definition (Graph plugging). Let G = (V,EG) and H = (V ′, EH) be two graphs.
Their plugging is defined by a graph G□H = (V ∪ V ′, EG] EH) and a colouring
function δ : EG] EH → {0, 1} such that δ(e) = 0 when e ∈ EG and δ(e) = 1 when
e ∈ EH . This makes the edges of EG distinct from the edges of EH .

§37.16 Definition (Alternating paths). Let G = (V,E) be a graph. An alternating path in G
is a sequence of edges (ei)0≤i≤n for some n such that δ(ei) 6= δ(ei+1) for 0 ≤ i ≤ n−1.

§37.17 Weighted interaction graphs. Given a graph G = (V,E), it is possible to add
weights to edges with a function ω : E → Ω where Ω is a monoid of weights with
multiplication · and neutral element ε. The weight ω(ρ) of a path ρ = (e1, ..., en) in G
is then given by e1 · ... · en. By using these weights, we can analyse interaction graphs
in a finer way. What we are interested in is weight of cycles which can help us recover
the long trip criterion or various other orthogonality relations in a very generic way.
Seiller defines the quantification of cycles between two graphs F and G as a functionJF,GK := ∑

ρ∈Cycles(F,G)m(ω(ρ)) for a function m : Ω → R+ ∪ {∞}. We then have to
choose a wise weighting function and a function m to have the interpretation we want.
Notice that converging and diverging cycles are distinguished.

Chapter 5 The geometry of interaction 186

1 2 3 4
⇝

(a) Correct proof-structure.

1 2 3 4 ⇝

(b) Incorrect proof-structure.

Figure 37.1: Connexion of interaction graphs and their execution.

Chapter 5 The geometry of interaction 187

§37.18 Interpretation of MLL proofs. Proofs are interpreted by projects a = (a,A) where
a ∈ R+ is the wager, that is a primitive weight associated with the project and A is a
weighted graph (representing the proof-structure). We can then measure the interaction
between two projects a = (a,A) and b = (b,B) with 〈〈a, b〉〉 := a + b + JA,BK. Seiller
defines his orthogonality relation as a ⊥ b when 〈〈a, b〉〉 6∈ {0,∞}. Then the usual
definition of types inspired by classical realisability can be done.

§37.19 Genericity of interaction graphs. The theory of interaction graphs has the advantage
to be able to express various orthogonality relations (hence correctness criteria) in a
same framework by using generic tools such as quantification of cycles and measure of
interaction.

• By choosing m(x) = ∞ in the quantification of cycles, one obtains orthogonality
by nilpotency;

• By choosing m(x) = −log(1−x) one obtains Girard’s orthogonality relation based
on determinants.

Seiller is also able to express a property called trefoil property [Sei16a, Section 2.2]
which generalises the adjunction property. This property guarantees that we have a
sound model of MLL. Categorical interpretations with ∗-autonomous categories can be
constructed as well [Sei12a, Section 3].

§37.20 Graphings. Seiller later generalised interaction graphs to graphings [Sei17]. Graphings
generalise both usual finite graphs for MLL and Girard’s use of operator algebras for full
linear logic. Instead of directed edges between vertices (points), we have (measurable)
maps over subsets of some (measure) space. This makes plugging more complex but give
a very general framework to speak about cycles and paths. Graphings are expressive
enough to naturally define various models of computation such as automata and Turing
machines [Sei18] by actions over spaces of states or configurations.

Proofs as partitions of a set

§37.21 Permutations are very convenient if we consider the long trips criterion but it is not
natural for Danos-Regnier correctness which focus on the undirected structure of cor-
rectness and not its directed flows of information. An alternative to permutations using
partitions of a set has been mentioned by Danos and Regnier [DR89] and later been de-
veloped by Acclavio and Maieli [AM20, MP05]. Partitions are able to naturally represent
Danos-Regnier correctness hypergraphs.

§37.22 Definition (Partition). Let X = {1, ..., n} be a finite sequence of natural numbers.
A partition P over X is a set of sets P = {E1, ..., Ek} such that for 1 ≤ i ≤ k, Ei ⊆ X
and:

• ∅ 6∈ P ;

Chapter 5 The geometry of interaction 188

1 2

⊗

5

3 4

`L

6

1 2

⊗

5

3 4

`R

6

Figure 37.2: Example of partitions associated with Danos-Regnier tests. The first cor-
rectness hypergraph corresponds to the partition {{1, 2, r5}, {3, r6}, {4}}
and the second to {{1, 2, r5}, {3}, {4, r6}}.

• all sets are disjoints, i.e. for all i 6= j, Ei ∩ Ej = ∅;

• the reunion of all sets constitutes X, i.e.
∪

E∈P E = X.

§37.23 For instance, if we have X = {1, 2, 3, 4}, then some partitions of X are {{1, 2, 3, 4}},
{{1, 2}, {3, 4}} and {{1, 2}, {3}, {4}}. You can think of it as cutting a cake representing
X as you wish. You can make bigger slices if you want.

§37.24 Interpretation of vehicles. Vehicles are symmetric permutations over two natural
numbers. They can be represented by partitions of binary set over a set of atoms X
(notice that the direction is irrelevant for axioms). For instance, the two vehicles of
Figure 33.1 are both represented by {{1, 4}, {2, 3}}. As for the vehicle of Figure 35.1, it
is represented by the partition {{1, 2}, {3, 4}, {5, 6}}.

• Not any partition corresponds to a permutation: the partition {{1, 2, 3}, {4}, {5}}
cannot be represented by a permutation;

• Conversely, it is possible to construct permutations such as
[
1 2 3
2 3 1

]
which cannot

be represented by partitions.

The approaches are then concurrent and non-equivalent.

§37.25 Interpretation of tests. I use a variant of Acclavio and Maieli’s pointed partitions
[AM20, Definition 30] (sketched by Girard [Gir16b, Appendix A.1]) which I find more
convenient to explain notions which will appear later in this thesis. A correctness hy-
pergraph can be seen as a way to create a partition of the set of atoms. Tensor links will
reunite atoms with ⊗ and the two switchings for ` are two different ways to separate
atoms. Tests then induce several connected components. The partition associated with
a test Sφ of switching φ is given by Pφ := {E1, ..., Ek} where E1, ..., Ek are uniquely
associated with connected components C1, ..., Ck of Sφ and e ∈ Ei when e is an atom
in Ci. Moreover, each Ei is extended with a special value rj for all conclusion j ap-
pearing in Ci. Examples of partitions for Danos-Regnier tests are given in Figure 37.2.
The additional values rj are called roots and they guarantee that we faithfully represent
correctness hypergraphs by specifying where conclusions are located.

Chapter 5 The geometry of interaction 189

{1, 3} {2, 4}

{1, 2, r5} {3, r6} {4}

{1, 3} {2, 4}

{1, 2, r5} {3} {4, r6}

(a) Correct proof-structure.
{1, 2} {3, 4}

{1, 2, r5} {3, r6} {4}

{1, 2} {3, 4}

{1, 2, r5} {3} {4, r6}

(b) Incorrect proof-structure.

Figure 37.3: Example of connexions of partitions corresponding to correctness hyper-
graphs.

1 2 3 4

`L

6

⊗

5

1 2 3 4

`L

6

⊗

5

Figure 37.4: Example of tests for a non-sequentialisable MLL formula.

§37.26 It is possible to recover full correctness hypergraphs by connecting a vehicle with a
test. Since vehicles and tests are independent entities in the GoI, we must patch things
together by constructing a graph with edges linking identical atoms. If we connect the
two tests of Figure 37.2 together with a same vehicle {{1, 3}, {2, 4}}, then we obtain the
two connexions of partitions illustrated in Figure 37.3a.

§37.27 Definition (Connexion of partitions). The connexion of two partitions P and Q of
a same set X ⊆ N is defined by a graph G(P,Q) = (P]Q,E) where vertices are the
sets of P and Q, and there is an edge between EP ∈ P and EQ ∈ Q for each elements
of EP ∩ EQ.

§37.28 Definition (Orthogonality). We say that two partitions P and Q are orthogonal,
written P ⊥ Q, when G(P,Q) is a tree containing all roots (or a forest if we are
interested in MLL+MIX correctness).

§37.29 The fact that graphs of Figure 37.3a are trees means that the vehicle {{1, 3}, {2, 4}}
passes the two tests and can be typed with a sequent ` A⊥ ` B⊥, A ⊗ B (from which
the tests can be deduced). However, if we plug the tests to another vehicle such that
{{1, 2}, {3, 4}} as in Figure 37.3b, then we obtain two connected component and a cycle.
It means that the vehicle does not pass the tests.

§37.30 Interpretation of types. Types are constructed as in the GoI with permutations (cf.
Section 33) except that we translate Danos-Regnier correctness hypergraphs instead of

Chapter 5 The geometry of interaction 190

` X1 ` X2, X3 ⊗
` X1 ⊗X2, X3 `
` (X1 ⊗X2)`X3

⇝
` X1 ` X2, X3

R1
` F (X1, X2, X3)

` X1, X3 ` X2 ⊗
` X1 ⊗X2, X3 `
` (X1 ⊗X2)`X3

⇝
` X1, X3 ` X2

R2
` F (X1, X2, X3)

Figure 37.5: Generalised rules corresponding to two ways for splitting atoms from `
(X1 ⊗X2)`X3 for the generalised connective F .

Girard’s switching flow graphs. As in Paragraph 33.30, it is also possible to construct
generalisations of MLL formulas. An example proposed by Acclavio and Maieli (which
initially comes from Girard and which has been reformulated by Danos and Regnier) is
the following set of partitions (we omit roots but it does not matter):

G := {{1, 3}, {2}, {4}} and {{2, 4}, {1}, {3}}

which is a set of tests that cannot be expressed by ` and ⊗. It can be seen as taking the
two tests of Figure 37.4 which is hybrid and cannot come from the same proof-structure.
However, they do yields an orthogonal:

{{1, 2}, {3, 4}} and {{2, 3}, {4, 1}} = G⊥

which can be considered as vehicles of type G.

§37.31 Interpretation of connectives. It is possible to directly interpret connectives instead
of formulas [Gir87b, Section 3]. It could have been defined with permutations but I find
it more explicit with partitions. A multiplicative connective is defined by a parametrised
expression F (1, ..., n) where 1, ..., n represent occurrences of atoms (in natural order
from left to right). Connectives are seen as collections of ways to split occurrences of
atoms. Each splitting yields a generalised rule for that connective as illustrated in Fig-
ure 37.5. These generalised rules naturally yield partitions by how they split atoms.
In Figure 37.5, the rule R1 yields {{1}, {2, 3}} and the rule R2 yields {{1, 2}, {3}}.
Connectives (including non-sequentialisable ones) are then associated with set of parti-
tions (hence pre-behaviours). In particular, the two usual binary connectives ` and ⊗
are orthogonal special cases: `(1, 2) :=

{
{{1, 2}}

}
and ⊗(1, 2) :=

{
{{1}, {2}}

}
, which

correspond to reuniting and separating atoms.

§37.32 Cut-elimination. As far as I know, cut-elimination has never been expressed directly
on partitions but it is possible to represent cuts exactly as for axioms. Examples of vehi-
cles P (top) and cuts Q (bottom) interacting are given in Figure 37.6. Cut-elimination
is defined as a graph rewriting procedure starting from G(P,Q) which contracts edges

Chapter 5 The geometry of interaction 191

{1, 2} {3, 4} {5, 6}

{1, 2} {3, 4}

{1, 2} {3, 4} {5, 6}

{1, 4} {2, 5}

Figure 37.6: Example of cuts interacting with vehicles.

A[k,1] ` ∆1 . . . A[k,nk] ` ∆[nk] (+,k)
` (A⊥[1,1] ⊗ ...⊗A

⊥
[1,n1]

)⊕ ...⊕ (A⊥[m,1] ⊗ ...⊗A
⊥
[m,nm]),∆

A[1,1], ..., A[1,n1] ` ∆ . . . A[m,1], ..., A[m,nm] ` ∆
(-)

(A⊥[1,1] ⊗ ...⊗A
⊥
[1,n1]

)⊕ ...⊕ (A⊥[m,1] ⊗ ...⊗A
⊥
[m,nm]) ` ∆

Figure 37.7: Synthetic rules for linear logic. The use of negation ensures that we alternate
between positive and negative formulas. For the positive rule (+, k), in a
bottom-up reading, we choose the k-th tensor of formulas (with 1 ≤ k ≤ m)
and split it. We have ∆ = ∆1] ...] ∆nk

. For the negative rule (−),
(which corresponds to a sequence of & over clauses of ` but on the left),
from a bottom-up reading, all sequences of tensors of formulas are proven
independently with a shared context ∆ and all formulas of these sequences
are put into the same space of interaction.

and remove the associated values in the two connected sets. However, it is not very easy
nor interesting to define, so I omit the formal definition. In Girard’s transcendental, a
more convenient model extending partitions will be defined with a formal definition of
cut-elimination.

Ludics

§37.33 Ludics has been imagined by Girard during his project of GoI in a the two-part paper
“The meaning of logical rules” [Gir99, Gir00]. It has then be clearly defined in his
paper “Locus Solum” [Gir01]. To quote Seiller [Sei12b, §4.2.1], if the GoI is seen as an
abstraction of proof-nets removing as many superfluous details as possible, then ludics is
the same but starting directly from sequent calculus instead. I choose to briefly present
ludics because I find it interesting by itself and because it actually inspired Girard for
his fifth paper on GoI where the notion of location takes an important role. It also
contributed to the philosophy of the GoI and Girard’s transcendental syntax which
came after. For more details, an introduction to both linear logic and ludics has been
proposed by Curien in two parts [Cur05a, Cur05b].

§37.34 Focalisation. Ludics is related to the idea of logic-as-game (cf. Paragraph 28.3). A
sequent calculus proof is seen as a sequence of moves between two opponents and only
one wins. It sounds fine except that the two players are not very explicit. Starting

Chapter 5 The geometry of interaction 192

@
` Γ

. . . ξ.i ` ∆i . . .
(+, ξ, I)

` ∆, ξ

. . . ξ.I ` ∆I . . .
(−, ξ,R)

ξ ` ∆

Figure 37.8: Rules of ludics. We have i ∈ I a set of indexes, I ∈ R and ∆I ⊆ ∆.
The symbol ξ represents the subject of the rule (which will be splitted into
sublocations).

ξ.1 ` α ξ.2 ` β
(+, ξ, {1, 2})

` ξ, α, β, γ
ξ.{1, 2} ` α, β ξ.{1, 3} ` α

(−, ξ, {{1, 2}, {1, 3}})
ξ ` α, β, γ

(+, ξ.2.{1, 2}, ∅)
` ξ.2.{1, 2}

@
` ξ.2.{3}, α

(−, ξ.2, {{1, 2}, {3}})
ξ.2 ` α

@
` ξ.3.{7}

(−, ξ.3, {{7}})
ξ.3 `

(+, ξ, {2, 3})
` ξ, α

Figure 37.9: Example of application of rules in ludics. In the application of (+, ξ, {1, 2})
and (−, ξ, {{1, 2}, {1, 3}}), notice that the distribution of context is free. It
is possible to simulate a weakening by providing a partial set of addresses
for the positive rule so that we run out of addresses and are not being able
to place every formula in a branch. As for the negative rule, it happens
because all contexts of branches ∆I must be included in ∆ but they do not
have to be disjoint. So it is possible to forget some locations such as γ. As
for the last example, notice that we run out of addresses in the application
of (+, ξ.2.{1, 2}, ∅).

from linear logic, we have already seen that connectives could be divided into positive
(irreversible) and negative (reversible) connectives such that proving can be seen as
applying all negative rules then positive rules. This idea initially comes from Andreoli
[And92]. A proof is said to be focalised when it is an alternation between sequences of
only positive or only negative rules. This yields a logical system called hypersequentialised
sequent calculus [And92, Gir99]. The two players are therefore represented by positive
and negative application of rules.

§37.35 Synthetic rules. In ludics, we consider synthetic rules (that I present in a bilateral
fashion): one positive rule generalising ⊗ and ⊕ and one negative rule generalising `
and & (cf. Figure 37.7). Starting from that, ludics try to abstract from all the logical
content to obtain interaction between alogical entities (exactly like proof-structures,
permutations or partitions). We could use a monolateral definition of synthetic rules
with ` and & for the negative rule but it would make the two rules structurally similar
whereas the bilateral version exhibit structural differences as shown below.

§37.36 Only location matters. Now forget everything you assume about logic. Forget formu-

Chapter 5 The geometry of interaction 193

las. Sequent calculus rules are only about sequential manipulation of addresses. What
we have done is dividing a formula into several disjoint locations. Even forget the sacred
axiom rule which says that two locations are related. It is then only possible to copy
from a A location to another A′ which is a sort of axiom but impossible to say that
two locations refer to the same thing13. Because axioms are forbidden, proofs have now
infinite height. But because we can always splits the current context into sublocations,
proofs also have infinite width. If the interaction between two proofs by cut is a game or
a dialogue then we have the possibility to never finish. A proof is completed either with
a rule (@) called Daimon so that a player can abandon and stop, or if it cannot split
any more. Proofs are called designs and use the rules of Figure 37.8. Simple examples
of applications of rules taken from Seiller’s master thesis14 are given in Figure 37.9.

§37.37 Chronicles and interaction. A technical problem occurs: since the distribution of
context is free, it is possible that two proofs only differ from how they manage their
context. However, there is no way to distinguish these proofs by interaction. For that
reason, we instead use chronicles which are trees of rule application satisfying some
conditions such that the alternation between positive and negative rules or the subject
of rules being all distinct. The interaction (representing cut-elimination) between two
designs with root of opposite polarity is given by a maximal alternating path (as in GoI)
between them. This path represents a dialogue or play between the two designs.

§37.38 Reconstruction of formulas. Formulas can be reconstructed in the usual way (cf.
Section 33) by considering set of designs as pre-behaviours. Correct formulas correspond
to behaviours. We usually want interaction to be terminating, hence two designs are
orthogonal when their interaction terminates.

§37.39 Ludics has been developed by Basaldella and Faggian to include exponentials [BF11].
Quatrini and Lecomte developed applications to linguistics [LQ09] (especially in the
context of pragmatics) which have been presented in books such as Lecomte’s “Meaning,
logic and ludics” [Lec11] or Fouquéré et al.’s “Mathématique du dialogue”. One recent
work of interest is Fouquéré, Pinto and Quatrini’s studies of dialogue with schizophrenic
persons using ludics [FPQ21]. Finally, Terui has proposed a computational variant of
ludics [Ter11] which could serve as a tool to analyse automata theory and computational
complexity.

38 Discussion: new insights on the notion of proof

§38.1 So, what GoI says about reasoning? First, that linear logic can be understood from very
basic operations: connecting locations in space. Axioms and cuts are about plugging
wires (cf. Figure 32.1). Of course, it is much more complicated beyond MLL but the
intuition is still there.
13The same idea appears in game semantics with copycat strategies.
14https://www.seiller.org/documents/ludique.pdf

https://www.seiller.org/documents/ludique.pdf

Chapter 5 The geometry of interaction 194

§38.2 An old and serious problem of formal logic was the problem of justification of logic (cf.
Paragraph 12.4). A common solution was to resort to external explanations such as
models or languages commenting logic. But what we were doing was delegating ex-
planation of logical syntax to... another logical syntax. But what justifies the latter?
Probably another syntax. If we are not concerned with foundations of logic, this can be
enough. The BHK interpretation (cf. Paragraph 21.1) and relations between computa-
tion and logic in general provide alternative computational explanations: we have ways
to construct logical objects and use them. This already tells us that reasoning is about
constructing tools and using them. However, these tools have to be justified. In the
CHL correspondence, although logical entities have a computational ground, the shape
of proofs is still decided by a sort of book of “what proofs should look like”. Of course, it
is possible to use external mathematical tools and discover linear logic, then proof-nets.
But how far can this reductionist approach go? Going from one book to another gives
us new tools but does not necessarily enlighten us about the foundations of logic.

§38.3 A uniform space of interaction. In realisability interpretation (cf. Section 22), we
can ground logic on almost anything providing it works. But in its original presen-
tation, it still suffers from the conceptual problems described above: the objects are
constructed but not justified apart from a priori normativity. Formulas represent com-
putational behaviours. The case of classical realisability (cf. Section 22) is especially
interesting because it puts λ-terms against stacks. Terms are justified by stacks and
stacks are justified by terms in a dual and symmetric interaction. Hence, two classes of
constructions are mutually justified. This suggests that logical syntax could justified by
another logical syntax itself justified by the first syntax, hence “closing the space” and
preventing the infinite loop of external semantic explanations.

§38.4 The GoI (which is not a reductionist approach but a true change of format as in classical
realisability) offers a uniform space for linear logic where interacting objects are of same
kind and same degree of freedom in their construction and interaction. In Girardian
terms, this is a monist approach instead of a dualist one. We do not assume any separa-
tion between two interacting classes of computational entities but study the interaction
occurring within the same space of computation.

§38.5 The monist approach can be seen as an ideal for an interpretation of Schütte’s com-
pleteness proof [Sch56, BT09] in which a statement either has a proof or else a partial
aborted proof can yield a counter model15. In the GoI, this counter model is turned
into a pre-proof, exactly as proofs themselves. Meaning that we can construct both a
pre-proof of A and a pre-proof of its negation A⊥ and making them interact in GoI.

§38.6 A general method. The idea of GoI is generic. We start from a model of computation
such as:

• finite permutations;

15Note that it looks like the term “monism” for logic arose with ludics.

Chapter 5 The geometry of interaction 195

• finite matrices;

• operators in some algebra;

• wirings (made of flows);

• interaction graphs and graphings;

• designs (in ludics);

• partitions of a set

and use a realisability interpretation for linear logic. This interpretation is related to a
categorical model known as double glueing with biorthogonality [HS03]. They all have
in common that they can natively express linear objects as wires linking points (except
for ludics which is directly related to the sequent calculus, considered as already correct
w.r.t. proof-net theory). We then have more of less sophisticated mechanisms to handle
exponentials. The common point between these interpretations is that they see proofs
as sort of paths/networks (except for ludics). It is then natural to consider alternative
or exotic models of paths to generalise the notion of logic.

§38.7 The existentialist hell. In Girard’s papers, essentialism in logic refers to the ap-
proach of assuming types as primitive constructions and then programs are constructions
following some typing rules. This is also known as Church typing in reference to Alonzo
Church. It is the opposite of existentialism (or Curry typing) where types are constructed
after programs. The GoI, ludics and classical realisability can be seen as existentialist
approaches whereas usual approaches of logic are essentialist (type theory, model theory,
truth interpretations, ...). The advantage of existentialism is that we are able to provide
a type to any program whereas essentialist approaches can only construct programs from
some given types (for instance, λx.xx is excluded as a type in simply typed λ-calculus).
There is nevertheless a problem with existentialism: undecidability (cf. Paragraph 22.3).
We are not always able to type a given program Φ. In terms of realisability or GoI, this
is due to the potentially infinite set of tests orthogonal to a program. In order to assert
if Φ ∈ B⊥ for some set of tests B, Φ would have to pass infinitely many tests. We are
not able to name things. As if we understood the concept of cat perfectly and studied
it from all possible perspectives but could not even tell whether we had a cat in front of
us16. Imagine if I was explaining the meaning of a word with all its possible contexts.
The solution is to take inspiration from proof-nets where correctness is certified in an
effective way with correctness criteria. This gives a finite definition by showing how our
objects are shaped; what I like to call a pictorial semantics.

§38.8 A space of decomposition. What the GoI does is not opposing proof-nets or proof-
structure against other objects as in classical realisability. Surprisingly, it rather shows
that a proof-structure can already been seen as a connexion between two distinct and

16This occurred several times in the history of science (not for cats). For instance, researchers in biology
were familiar with works related to living beings but are still having difficulties to properly define
what a living being even is.

Chapter 5 The geometry of interaction 196

dual parts: the vehicle (top, axioms) and a test (bottom, syntax tree of sequent). This
decomposition is not innocent because it says that the objects we were manipulating
actually feature a computational and a logical part. It is because we have a monism
instead of a dualism. The computational content of MLL proofs lies only on axioms
since the ax/cut elimination identifies some atoms and the `/⊗ cut-elimination only
re-organises the connexions later pushed to the top. Moreover, proof-structures can be
seen as pre-typed since the bottom part specifies constraints on axioms. It opens the idea
that we can speak of programs and tests independently in the context logic and study
how they are related. In this point of view on logic, we do not manipulate “proofs”
but computational entities (vehicle) relatively to some objects materialising normative
constraints over computation (tests).

§38.9 Internalising correctness. In proof-net theory, we start from proof-structures as
general computational objects and discriminate correct ones by an external method by
considering alterations of ` nodes (for the Danos-Regnier correctness). One achievement
of the GoI is putting both proof-nets and what makes them correct in the same space of
interaction. Hence what makes proofs correct is internal to them. This offers a solution
to the problem of justifying logical correctness. However, once a computational entity
is certified by some finite set of tests (Danos-Regnier tests for instance), how can we tell
that it will behave as expected, i.e. that the tests are sufficient? This is one important
subject of the transcendental syntax introduced in the next chapter.

Chapter 6

Towards a transcendental syntax

The transcendental syntax (TS) is a series of four papers recently introduced by Girard
as a natural successor for the geometry of interaction. It is a complete re-structuration
of logic from computation and not an extension of the Curry-Howard-Lambek correspon-
dence which merges scientific practices. It is meant to be a philosophical and technical
search for fully internal and finitist explanations of logic. It offers new tools for the
analysis and criticism of logical notions by providing a new point of view on logic, com-
putation and their relations by taking inspiration from a lot of topics such as classical
realisability, logic programming and developments of linear logic (mainly geometry of
interaction and proof-nets). It can be understood as a sort of critical theory for logic.

Ideas of TS has been scattered for a long time in Girard’s writings.

• In the end of the chapter about proof-nets in his “Blind Spot” [Gir11a, Section
11.C.5], he writes:

“ Sequentialisation is not a dogma, it is a tool, which enabled one to
find the procedural contents of nets; [...] But, on the whole, one has
nothing against the idea of non-sequentialisable nets, as long as one
can manipulate them : the ultimate meaning of logic is this ability to
manipulate.

– Jean-Yves Girard ”
This emphasizes the idea of logic as exit doors stated in Paragraph 31.4.

• In the fifth paper on GoI, Girard remarks that negation internalises normative
constraints:

“ For instance, formulas do no proceed from the sky; they proceed
from their own operationality. What can be internalised by means of
the negation, which thus takes in charge logical normativity: before

Chapter 6 Towards a transcendental syntax 198

refuting, negation forbids.

– Jean-Yves Girard ”
• The recurrent idea of communication (cf. Paragraph 33.33) which is materialised

with flows (cf. Section 37) will be a key point of the computational foundation of
TS.

The first papers which can be as pre-figurations of TS are Girard’s “Geometry of In-
teraction VI: a blueprint for transcendental syntax” [Gir13a] and the paper associated
with his invited talk “Three lightings of logic” [Gir13b]. Technically speaking, the TS
proposes:

• a philosophical and conceptual developments of ideas coming from the GoI, proof-
nets and ludics;

• a Turing-complete computational basis for logic which I call “stellar resolution”;

• a reconstruction of linear logic from stellar resolution (inspired by his works on
GoI);

• a new architecture of the logical activity;

• a new definition of first and second-order logic;

• new connectives for linear logic;

• an attempt at giving a better explanation of what happens in innocent operations
such as using a deduction rule;

• an opening to new investigations about truth and the normative constraints of
logical systems.

These novelties are only partially explored in this thesis.

39 Learning from the past

I recommend Michele Abrusci and Paolo Pistone’s paper [AP14] on the Kantian nature of the TS
project for a precise and statement of problems occurring in formal logic, the potential solutions
offered by the TS and a description of its philosophical ambitions.

§39.1 Linguistic turn. In Abrusci and Pistone’s paper, two main characteristics of mathe-
matical logic are mentioned [AP14, Section 2], which are primitive definitions:

“ The necessity to provide, in advance to the definition of “a logic”, a
formal description of the syntactic devices to be used within such a definition
(i.e. a definition of what is to be considered a formal language and a formal

Chapter 6 Towards a transcendental syntax 199

system). ”
and linguistic explanations:

“ The fact that the rules and axioms which constitute, within a formal sys-
tem, “the logic”under consideration, have to be validated by reference to
an interpretation, that is, a function assigning specific values, belonging to a
certain mathematical structure, to linguistic entities, so that the interpreta-
tions of those rules and axioms result in transformations preserving some of

those semantic values (typically, truth). ”
This implies that primitive and rigorous manipulation of syntactic objects coming from
a shared conception of logic is a necessary condition for any logical discussion. Hence,
logic would be purely based on linguistic practices. But even more than that: it implies
an impossibility of analysing logic itself as it always escape any attempt. In particular,
Pistone has mentioned [Pis15] former Wittgenstein’s idea that “it takes rules to justify
the application of rules”, making any explanation of logic circular.

§39.2 Geometric/morphologic turn. TS (technically based on GoI) can be seen as an
answer to these points. GoI and proof-nets already provided answers but only TS clearly
states interpretations and refinements of the technical advancements of GoI.

1. The GoI shows that it is not necessary to start from logical definitions to speak
about logic. It is possible to start from a computational basis (permutations,
operators, graphs, ...) to reconstruct logical objects. However, it is only in TS
that this idea of reconstructing logic is pushed to the extreme, by trying to justify
points that the GoI did not treat such as the axiom rule, equality, finite verification,
Danos-Regnier correctness and more that will be explained in this chapter.

2. Proof-nets show that logical objects can be justified by shape. Given a compu-
tational object, correctness criteria provide objects (correctness graphs) able to
characterise the “shape of logical objects” (indeed with respects to our practice
of logic in sequent calculus). However, this operation is still external (tests not
expressed as proof-structures). In the GoI, tests and vehicles are objects of the
same kind which are able to internally explain logic. However, this explanation is
only partial and a lot are still yet to be justified in logic (as explained in the first
point).

§39.3 A pictorial semantics. The lesson is that if we trap formal logic into a linguistic
world, any linguistic object is necessarily explained by another linguistic object. Think
of a dictionary in which everything is defined by words which are themselves explained
by other words. Ultimately, either the explanation is circular or we have to stop with
some words left unexplained and simply assumed because we “know and understand the

Chapter 6 Towards a transcendental syntax 200

words”. A way to get out of this trap is to provide a pictorial explanation. You want
to understand what a tree is? Forget your dictionary, I will show you few represen-
tative trees. This is what TS does by using morphologic explanations [Gir18a, Section
1.1.2]: the logical has a specific shape which can be made explicit by correctness criteria.
Speaking about shapes breaks the separation between syntax and (external) semantics.
This is because some classes of shapes (trees in forests) are already naturally present
in our perception of reality that logical discussions are even possible (speaking about
trees). Surprisingly, this looks like a return to... Aristotle (cf. Section 1) and (ironically)
to a form of... essentialism (but a more refined one).

§39.4 Archeofuturism. TS is not a rupture with the past erasing previous conceptions of
logic. We have to forget as much as possible what we know about logic but still with
traditional logic in mind:

“ Even if we want to construct logic from scratch, this can only be a recon-
struction, which means that we roughly know what we are aiming at. For an
obvious reason, by the way: logic is a very healthy activity, which only suffers
from a metaphysical, prejudiced, approach, that of analytic philosophy.

– Jean-Yves Girard [Gir17, Section 1.6] ”
Girard’s first objective in TS was to reconstruct logic from a more mature version of
proof-net:

“ The general task is to reconstruct logic [...]. Which amounts basically at
finding the definite version of proof-nets.

– Jean-Yves Girard [Gir17, Section 1.6] ”
The idea is to justify some parts of tradition instead of totally denying it or suggesting
new cultures of logic totally replacing the previous ones. The future of logic would
then be constructed upon justified vestiges of the past and old intuitions (which led to
traditions).

§39.5 The blind spot of logic. In his course “The Blind Spot”, Girard explains the title
which reflects his own philosophy of logic:

“ About the title: it is while revising the text (Summer 2005) that I noticed
the recurrence of the expression ’blind spot’. The blind spot, this is what one
does not (is not) see(n), and one does not even know that one does not see

it. – Jean-Yves Girard ”

Chapter 6 Towards a transcendental syntax 201

It simply means “beware the appearance”. The logical concepts directly accessible to
our intuitions hide a lot of mechanisms. We cannot content ourselves with simple ex-
planations and justifications which would hide all the complexity of logic. In order to
analyse the different blind spots of the past, Girard defines several levels called hells
[Gir11c, Section 1.2]. Lower the level is, the more we see. In particular, you will remark
that what changes is the complexity of the space of answers.

§39.6 Girard’s hells: level -1 (alethic). Formulas are sort of questions for which proofs are
answers. The level -1 corresponds to truth interpretations, modalities and models. The
answer to a question is either yes (true) or no (false). We do not have more information.
Proofs of A ∨ B coming from A or coming from B are not distinguished. They all
have the same purpose of leading to the truth of A ∨ B. All we have to do is to follow
definitions of what being true means. This level is sensitive to incompleteness where a
mismatch between truth and provability occurs.

§39.7 Girard’s hells: level -2 (functional). We add the “why” to the answer. Answers are
subject to constructions (categorical interpretations, CHL correspondence, intuitionistic
logic) but this construction still follow some rules of “good practices” with a zoology of
constructions. It is like having allowed and disallowed correctness tests and computa-
tional objects. Proofs are distinguished by their structure: a proof of A∨B coming from
A is different from a proof coming from B. They correspond to two different programs
(left and right injection) which do not behave in the same way. This is also at this level
that we find Kleene realisability and similar realisability interpretation (although they
are more free in the choice of computational basis, logic is still constrained).

§39.8 Girard’s hells: level -3 (interactive). We add the “how” to the answer. The answer
is explained by all its possible interactions. Answers are proofs in the orthogonal of a
set of tests associated with the question-formula (the negation/orthogonality is seen as
an exchange of players in game semantics). At this level, we have game semantics (cf.
Paragraph 28.3), Krivine realisability (cf. Section 22) and some approaches of GoI in
which logic is primitive (interaction abstract machine). Some criteria make our objects
correct and they define the notion of provability of a formula:

• winning strategies in game semantics;

• proof-likeness in Krivine realisability (that a term t does not contain a continuation
constant kπ);

• correctness criteria for a given formula in the GoI,

but these conditions still follow the rules of a given logical system and we cannot go
outside of it.

§39.9 Girard’s hells: level -4 (deontic). This deontic1 level makes explicit what makes
possible the answer in a lawless world; what are its conditions of possibility. The root of

1Relative to duty and obligations.

Chapter 6 Towards a transcendental syntax 202

Level Answers Instance

-1 (alethic) true/false model theory
truth interpretations

-2 (functional/static) functions
category theory

CHL correspondence
Kleene realisability

-3 (interactive/dynamic) strategies
logical paths/tests

game semantics
Krivine realisability

interaction abstract machine

-4 (deontic) justified alogical paths
justified alogical tests

ludics
geometry of interaction

graphings
transcendental syntax

Figure 39.1: Girard’s hells.

possibility is taken to be of computational and structural nature. Nothing is assumed,
not even the axiom rule relating two occurrences of atoms. Not even the notion of
occurrence itself. Every physical point of a proof is nothing but a location void of
meaning. In this level, we make explicit all the logical constraints which were implicit
in the previous levels. In particular, the use of logical rules assumes that the shape of
our objects induces some expected behaviour by computational interaction. In order to
obtain the previous levels, we have to reconstruct logical rules. In this level, we have the
GoI in general and ludics but the transcendental syntax is the ideal instance of it.

§39.10 Girard’s four hells are summarised in Figure 39.1.

§39.11 The phantom of transparency. After the idea of “blind spot”, the idea of trans-
parency constitutes Girard’s next thesis [Gir16a]. According to Girard, what directed
logic (especially around the crisis of mathematical foundations) was the wish for abso-
lute transparency; the ability to see, know and understand everything through x-rays
of knowledge. The wish of a transparent world with no secrets, that Girard associates
with a dogmatic consideration of science (scientism). Science, by its wish for extreme
rationalisation is trapped into systems as if we could only go from a chapel to another.
By trapping ourselves into locked systems of thoughts, we leave no space for intuition2

and doubts3. Girard claims that all works on logic until today show that absolute
transparency in logic is not possible (in particular because of incompleteness and unde-
cidability). It is impossible to directly access reality from immediate perceptions. The
access to reality has to be subject to a construction made intelligible to us.

2What the mystical had the most, while being the polar opposite of reason.
3Some (often social and political) systems of thought leave almost no space to doubts or incomplete

data, to the point that some causes and consequences are almost logically derived. For instance, the
materialistic world view seeing capitalism as the root of all evil and problems. Another example is
the very structured world view of some conspiracy theories.

Chapter 6 Towards a transcendental syntax 203

§39.12 Soft scepticism. The refusal of absolute transparency leads to an unavoidable scep-
ticism. However, this scepticism has to be measured. In TS, the approach is to start
from as less assumptions as possible and try to justify what we could already do. In
the case of proof-nets, we consider links between points without any meaning. It is even
more radical than proof-structures which are implicitly typed/pre-constrained (cf. Para-
graph 38.8). On the top of that, in order to fully recover (at least) MLL proof-structures,
we must add explicit constraints such as the fact that axioms link dual occurrences. We
will also be led to a bit of controversial revisionism by questioning the most elementary
things and rethink foundations.

• What is a proof? What is a formula?

• What is truth? What is provability?

• What is a logical rule? What allows us to use logical rules?

• What is a program? What is an algorithm?

• What is the purpose of logic?

• Why does A⇒ A?

• Why does a = a?

• ...

This scepticism which can sound extreme is still limited since we cannot doubt of every-
thing (otherwise we would do nothing and just wait for our death).

§39.13 The search for internal explanations. TS searches for internal explanations. Such
explanations have already been found in the GoI (cf. Section 38) but an old (unintended)
pre-figuration that Girard especially likes comes from Herbrand [Her30] works on predi-
cate calculus and unification. The idea is better understood from herbrandisation which
is dual to skolemisation (cf. Paragraph 23.10) by eliminating occurrences of existential
quantifiers preceding a universal quantifier. We write A[x1, ..., xn] and t[x1, ..., xn] for
a formula A and a term t containing variables x1, ..., xn. The idea is that the formula
∃y.∀x.A[x, y] can be proven by selecting some y := t such that A[x, t] holds for any x.
However, this t cannot depend upon x because ∀x comes after ∃y. There is, however, a
dependency between quantifiers. This can be written by an equation x = f(y) = f(t).
The point is that if t contains x (which is written t[x]), then we have the unsolvable
equation x = f(t[x]). The meaning of quantifiers is given by internal dependencies,
without any reference to an external semantics. TS will be based on this idea applied
to a new version of proof-nets.

§39.14 No direct access to reality. TS assumes no direct access to reality (in contrary
to semantic realism). In particular, in the GoI, logic has always been defined from a
choice of model of computation: permutation, partition, graphs, operators etc. Logic

Chapter 6 Towards a transcendental syntax 204

is always accessed through a subjective medium4 providing an access to reality. There
are indeed better choices but no absolute and definitive choice5. It is only from a given
representation of reality that some patterns and structures will be distinguished and
define the logical. On the technical side, TS begins by choosing an appropriate model of
computation on which logic would be based. Since Girard uses a lot of inspiration coming
from proof-nets, this model should feature the elementary mechanics of proof-structures
while being as “large” as possible.

40 The logical avant-gardism of computer science

§40.1 In TS, we are not exactly looking for connexions with computer science but rather
inspirations and roots within computer science. Girard shows (in some recent papers
but more especially in his book “Le fantôme de la transparence” [Gir16a]) several times
that simple ideas coming from computer science are enlightening for logic. I would like
to develop and make explicit how. I personally believe that logic has a lot of things to
learn from computer science and programming in general, even from the most elementary
and practical notions6. This section emphasizes the idea of logic as tool (or Organon in
Aristotelian terms).

§40.2 The procedural content of logic. First, from a computational point of view, it is
possible to distinguish notions which are not distinguished by semantical explanations
[Gir16a, Appendix B.2]. As explained in Paragraph 11.7, ` A⇒ B and A ` B have the
same semantics but computationally speaking, A⇒ B can be seen as a frozen function
made of symbols. It can be erased or duplicated like any data, as if we were handling the
code of a program instead of the program itself. However, A ` B, makes the function
participate as a program. It puts the data of the function in the space of interaction
of a sequent which can be subject to cuts and cut-elimination. The formula A ⇒ B is
therefore of a static nature whereas A ` B is a of a dynamic nature. In the GoI, the
meaning of an object is given by its possible interactions.

§40.3 Radical inclusivity. In traditional logic and type theory, we tend to reject some ob-
jects because they are not “logical”. Similarly to Curry’s Urlogik (cf. Paragraph 15.8)
which accepts paradoxes, there is less rejection in computer science. In programming,
we have viruses which are self-duplicating malicious programs. Servers are finitely de-
scribed programs which never terminate but are still essential7. While we are thinking
about whether there are several or only one single logic, programming admits several

4This may be related to Kant’s transcendental subject but I do not have enough philosophical knowledge
to tell more.

5I asked Girard why the model of stars and constellation that he uses was the best analytic space and
he told me that this was because there was nothing simpler. Apparently, he tried several things and
it was the most natural formulation.

6Funnily, it was originally the converse. At the time of the CHL correspondence, logical ideas were
discovered several years before their computational counterpart.

7Jean-Baptiste Joinet would probably say that there are “queer” λ-terms escaping type systems.

Chapter 6 Towards a transcendental syntax 205

(sometimes weird) languages with their own characteristics, use and culture even though
it seems there is only one notion of classical computation (an idea reinforced by the
Church-Turing thesis). There are programs (compilers and interpreters) translating one
language to another.

§40.4 Test of programs. In realisability and the GoI, the term of “test” is used to describe
the computational opponents of programs. It makes even more sense with proof-nets
where Danos-Regnier correctness hypergraphs (or Girard’s switching flow graphs) are
finite and effective ways to tell if a given set of axioms has a sound behaviour w.r.t.
cut-elimination, i.e. that it is correct. This idea of test can be explored from the point
of view of computer science. In software engineering, there are several tools to test
programs. For instance;

• in unit testing, a portion of a program (typically a function used in a bigger pro-
gram) is tested as an independent part. Typically by using representative cases
for a partition of the domain (possible inputs);

• in black-box testing, a program is tested without having any knowledge of how the
program is implemented or how it works. It is similar to tests on living beings such
as psychology tests, laboratory tests on animals, Turing tests or Voight-Kampff
tests in the movie Blade Runner;

• in white-box testing, we are aware of how the program being tested in shaped. It
is similar to how circuits are tested;

• it is also possible to test the security of a software (for instance in destructive
testing) by attacking it. We can check if a software is sensitive to some types of
attack or if it behaves well in case of true failure. For instance, code injection is a
type of attack exploiting a vulnerability of a program in order to inject unwanted
instructions which will be executed8.

§40.5 File format. The concept of format is essential in the philosophy of TS and can be easily
understood from computer files [Gir16a, Section II.3]. For Girard, logic is a formatting
of raw data which guarantees that logical entities will have a specific shape and interact
as expected. It is exactly the same for computer files. We have raw data (which can
be represented with binary or hexadecimal digits) and files can be associated with file
extension (.pdf, .exe, .png or .jpg). File extensions indicate that a file containing raw
data is organised in a particular way. For instance, picture files are mostly represented
by a matrix of codes for the colour of each pixel of the picture. Pictures having the
.png extension can represent transparent pixels while .jpg cannot. There are also
extensions for the programming language of a source code. A file with .c extension is
written in the C language and will not behave well when given to an interpreter for the
Haskell language. Proof-structures are examples of raw data and correctness criteria

8I like to see Gödel’s first incompleteness theorem as a sort of code injection on an arithmetic system.
We take advantage of the freedom of arithmetic expression to inject Gödel’s formula which, when
interpreted, leads to a contradiction.

Chapter 6 Towards a transcendental syntax 206

are examples of formats for proof-nets. Proof-structures can be given the extension
.proofnet when it passes the tests of some sequent.

§40.6 Hidden files. In a computer, some files are hidden. The reason is simple: we do not
need to see them but it is possible to see them if we really want. These files typically
contain configurations read by some software. They are important for the architecture
of the system but not necessarily for us. According to Girard [Gir20a, Section 1.3], these
hidden files exist in logic and can be revealed (however, since no direct access to reality
is assumed, this is only a representation accessed by cognition and not the hidden files).
For existence, the contradiction 0 of linear logic is usually thought to be empty (it has
no proofs) but in the TS, it has a computational content. This is not so surprising if
we consider that it is possible to interact with erroneous programs. This idea is directly
related to Girard’s “blind spot”. In his fourth paper on TS [Gir20a], Girard roots his
notion of truth in the idea of visibility. Are true the objects which are visible.

§40.7 Modules and libraries. In his recent unpublished papers, Girard compares logical
systems to bunkers [Gir19, Section 2]. The reason is that in a logical system, we es-
tablished fixed ways to do things correctly. Different logical systems lives separately
like hermetic clubs. One formula true in a system can be false in another and we avoid
mixing systems to avoid inconsistency. According to Girard, logic should be more like
modules in programming [Gir20b, Section 1.3]. In a same programming language, it is
possible to import files containing several functions. These files are called libraries or
modules. For instance, if we would like to use mathematical functions in the C language,
we can write #include <math.h>. It is also possible to do partial importations. If we
apply the idea to logic, it is like importing connectives from different logical systems and
using them in a same context (a sort of “logical ecumenism”9).

§40.8 Reverse engineering. Reverse engineering corresponds to the process of opening up
and dissecting a system to understand how it is functioning. It is typically used in
software and electronic engineering but can be applied to other fields as well. For in-
stance, it is possible to disassemble programs by translating the content of an executable
program to an assembly language (a low-level language). By using this assembly rep-
resentation of the program, it is possible to track some mechanisms and behaviours in
order to partially understand the whole architecture of the software. It is then possible
to modify or enhance some parts as we wish. It is a reverse approach in the sense that,
usually, we first design the architecture of a system then implement it but in the case of
reverse engineering, the system is already there and we would like to infer its underlying
architecture. I personally like to see TS as a reverse engineering of logic10.

9Expression suggested by Jean-Baptiste Joinet.
10We can also say deconstruction.

Chapter 6 Towards a transcendental syntax 207

Analytic / Brut Synthetic / Formatted

A posteriori / Explicit Constat Usine

A priori / Implicit Performance Usage

Figure 41.1: Cognitive knitting of the transcendental syntax.

41 A new architecture for logic

All alternative references for this section are unfortunately in French. I recommend Girard’s
book “Le fantôme de la transparence” [Gir16a] (I think we ironically have to understand the
TS first before understanding what Girard says in this book) and Sidney Congard’s unpublished
paper “La logique face à l’arbitraire” [Con22] which explains in simple terms the project and
architecture of TS.

§41.1 TS suggests a new architecture to understand logic in light of computation. This archi-
tecture, called cognitive knitting by Girard, is apparently of Kantian inspiration11. This
knitting is made of four interrelated categories (given in Figure 41.1) in which logic is
about answering questions.

• The analytic is a world of lawless computation. This is where answers are expressed
and where proofs/programs are shaped (only in their structure and not in their
meaning). We can express “yes” or “no” but without context. It is objective.

• The synthetic corresponds to logic which has the role of formatting computation. It
is where questions (formulas) are shaped by formatting answers (giving a context
to computational objects to yield a proof). We provide a context for which words
such as “yes” or “no” are answers to a question. It is subjective.

• These two categories are either a posteriori (explicit) or a priori (implicit). The
correspondence with Kant12 is that the explicit (a posteriori) depends on experience
because we need a method to reach it from the implicit, while the implicit (a priori)
does not depends on experience. I can construct a program out of my mind but I
need the process of execution to reach the result.

Unlike Kant’s epistemology in which “analytic” and “synthetic” are characteristics of
assertions, in TS, they refer to spaces of objects (answers and questions) which can be
realised in mathematics. In the following sections, we explain this cognitive knitting in
details.

11I cannot tell how serious this is since I have never read a single line of Kant (but it seems that Girard
neither, see https://www.youtube.com/watch?v=f7sT0J74pHI#t=3m18s).

12Probably. Because I have never read Kant.

https://www.youtube.com/watch?v=f7sT0J74pHI#t=3m18s

Chapter 6 Towards a transcendental syntax 208

42 Analytic space / Answers

§42.1 It can be intriguing that TS is introduced from the notion of answer instead of ques-
tions, because to have answers we must have questions first. How and what can we
answer otherwise? Is it only provocation? Is it only an expression of anti-conformism?
Not really13. Starting from answers is justified by the wish to justify logic from as less
assumptions as possible. We would like to define a lawless and objective world of compu-
tation where logic does not exist. An anchor to all discussions. Starting from questions
would mean that we already assume a format in which questions are expressed (a logical
system for instance). Then the space of answers would necessarily be limited because of
this constraint.

§42.2 Answers are objective because not engaged in a meaningful context. When I say “yes”
or “no”, it means nothing without a context. If I have a sound confirming an operation
(coming from a machine for instance) and isolate it from its context, it is just a raw
sound but if it happens after I do something on my computer or any other machine, it
can mean something. Since “yes” and “no” are very limited answers, we would like the
largest space of answers as possible. In particular, answers should be reducible to more
explicit answers (similarly to the explicitation occurring in explanations).

§42.3 A model of computation has to be chosen for this space of answers. However, it is
possible to describe Girard’s architecture independently of this choice. We write A
for the analytic space which is a countable space of objects Φ,Ψ called computational
objects/entities14 (a term that I used a lot but which is only made clear here). The
analytic space is understood from two categories: the Constat and the Performance
which characterise requirements for the objects of A.

Constat and performance

§42.4 Constat (result). In the analytic space A, we must have objects corresponding to
(final) results. Those results, called Constats are just there. Nothing happens with
them. They are explicit (nothing is hidden). In the category of Constat, symbols can
only be accumulated. Girard compares it with typewriters in which symbols can only
be added without being subject to any dynamics (such as erasure or duplication). In
the λ-calculus, it corresponds to terms in normal form which cannot be reduced. For
instance λx.x or simply x.

§42.5 Performance (dynamics). The category of Performance corresponds to pairs (Φ,Ψ)
with Φ,Ψ ∈ A. Two objects can interact by execution (defined in A) and produce a new
object Ex(Φ,Ψ) ∈ A. For instance, if we encoded circuits, Φ would be the structure of a
circuit and Ψ its evaluation function (turned into an interactive object of A). Objects of

13Probably a little bit actually.
14They are sometimes called “epistate” in Girard’s terminology [Gir11c].

Chapter 6 Towards a transcendental syntax 209

the Performance are implicit since we need a method to extract the content they hide.
Performance corresponds to reducible objects such as redexes of λ-calculus of the form
(λx.M)N evaluated into {x := N}M by β-reduction. Girard compares it with computer
keyboards which can do unexpected things such as launching a program.

§42.6 Similarly to the λ-calculus, we can choose to not execute a reducible term. It means
that any performative object can be seen as a Constat in the case we are not interested
in evaluating it. Girard uses the analogy of a cheque (or bill) which can be used to pay
something but which can also be exposed on a wall (in reference to Paul Erdős’ cheques).
Hence, in A, we should be able to make some parts impossible to reduce or to make more
explicit: there is an end to the explicit.

§42.7 Separating Constat and Performance. What links Performance and Constat is the
notion of execution reducing objects of the former to objects of the latter. It is a way
to go from the implicit to the explicit. But what separates them is undecidability (cf.
Paragraph 13.9) which can be reformulated as follows: Performance cannot be reduced
to Constat. We cannot always foresee what will happen if a function interacts with an
input. The computation could be undefined or looping.

The chosen one: stellar resolution

§42.8 There are several possible choices of model of computation. We could start from any
Turing-complete (or even stronger) model of computation. But we cannot choose any
model. We have to choose something as close as possible to proof-nets (which is consid-
ered as the right notion of proof by Girard but which as to be improved). This model
should be:

• self-executing with local interaction so that we do not assume an external way to
execute our computational objects. As Girard says, everything is on the table,
including the table itself. We want to make every computational mechanisms
explicit. For instance, if we had boolean circuits, the evaluation function would
be implemented as well and explicitly interacting with the circuit itself. Such
mechanisms of self-interaction appear in tile systems (cf. Section 17). The untyped
linear λ-calculus could be a good candidate but because β-reduction is an external
procedure and that we require self-interaction, it is not satisfying enough. We
could argue that the execution is a global and external computational procedure
but the point is that we would like our objects to perform a computation when
locally plugged to each other;

• partially executable by preventing computation on some parts of our objects. In
λ-calculus, weak strategies choose to not execute under abstractions: M in λx.M
is not executed. In programming in general, it is useless to execute the inside of a
function when it is not used;

Chapter 6 Towards a transcendental syntax 210

GoI TS

Correctness criterion Long trips Danos-Regnier

Minimal model (MLL) Permutations Partitions

Nature of tests Directed graphs Hypergraphs

Unification model Flows Stellar resolution

Seiller’s models Graphings ?

Figure 42.1: Comparison between GoI and TS.

• expressing computation by reducible links between addresses so to interpret proof-
structures and cut-elimination but also the idea of sending messages across a struc-
ture (as in the token machine for the GoI). This is also something which appears
in automata theory in general where automata can be described as links between
states in which messages are sent. This can also be related to concurrent compu-
tation with processes;

• as less constrained as possible and hence the model of computation should be
untyped and be able to be “very free”. We cannot choose something like the
simply typed λ-calculus for instance. A possible interpretation is that the analytic
space contains at least all computable functions. Ideally, it is non-deterministic,
symmetric (no distinction between input or output which is a constraint), parallel
and asynchronous (order in sequential computation can be seen as a constraint).

§42.9 The model considered by Girard [Gir89a] is a variant of flows and wirings (cf. Section 37)
made of stars and constellations. I call this model of computation “stellar resolution” for
its similarity with usual first-order resolution (cf. Section 23). Flows are binary directed
expressions and stars are n-ary undirected flows. If flows are sort of unification-based
directed graphs then stars are unification-based hypergraphs. Flows can naturally ex-
press Girard’s long trips and stars can naturally express Danos-Regnier correctness. At
a technical level, this makes TS a GoI for Danos-Regnier correctness. This difference
between the two approaches are described in Figure 42.1. Notice that there is cur-
rently no equivalent to Seiller’s graphings [Sei17] in the TS but we could imagine sort
of hypergraphings.

§42.10 We leave the proper definition of stellar resolution for the next chapter and keep on with
the description of Girard’s architecture independently of a choice of model of computa-
tion.

Chapter 6 Towards a transcendental syntax 211

43 Synthetic space / Questions

§43.1 The synthetic space is where questions are formulated, where everything takes its mean-
ing. It is the logical language. If my answers were “yes” or “no” then I can formulate
questions such that “Are you a man?” or “Are you a woman?”. If the space of answers is
large enough, we can even express more or less convincing proofs coming together with
the answer. The activity of logic will revolve around the adequacy between questions
and answers. Question should also be able to interact: if I have a positive answer to
“Does A implies B?” and a positive answer to the question A then I should be able to
produce an answer for the question B (this corresponds to the modus ponens).

§43.2 The synthetic is meant to format (or to give a format) to the analytic. A way to do
that is to classify objects of A by grouping them into sets. We write S for the countable
synthetic space made of sets A,B ⊆ A called pre-formulas15.

§43.3 There exists two ways to give meaning to objects of A: Usine (factory) and Usage (the
use). They respectively correspond to a variant of Church and Curry typing in the
context of TS.

§43.4 Choice of point of view. In the synthetic, we have to choose symmetric orthogonality
relations ⊥ ⊆ A × A formalising a compatibility between two objects of A in order to
express that their interaction is sound. The soundness of interaction is subjective, it can
be chosen freely. In particular, different choices lead to different logical interpretations.
This orthogonality relation can be understood as a point of view on computational
interaction.

Usage / Curry typing

§43.5 Usage corresponds to meaning as use. The meaning of Φ ∈ A is given by all its partners
of interaction. It is like defining a word by all the contexts it can appear in. How do
you know that you have a DVD player in front of you? Bring all the possible compatible
DVD and insert them in the DVD player. If everything works fine then you do have a
DVD player.

§43.6 It corresponds to Krivine realisability (cf. Section 22) and to the GoI interpretation
(cf. Chapter 5). Given a pre-formula A, we can define all its partner of interaction by
another pre-formula A⊥ := {Φ ∈ A | ∀Φ′ ∈ A,Φ ⊥ Φ′} which can be understood as a set
of tests for A. To check whether Φ is in the class A (DVD players for instance), then
we have to test it against all elements of A⊥ (DVD). We are then interested in formulas
(or behaviours) which are pre-formulas A such that A = A⊥⊥. Equivalently, it means
that there exists some B such that A = B⊥, meaning that A is fully characterised by a
set of tests B, or that A is testable. In the case of behaviours, A⊥ are tests for A and A

15Or sometimes dichologies in Girard’s terminology [Gir11c].

Chapter 6 Towards a transcendental syntax 212

are tests for A⊥. It is only a matter of point of view: a DVD can be tested by the set of
all DVD players. This interpretation has been formally implemented in Section 33 and
can be generalised by starting from any model of computation. Usage is an existential
(Curry) way to type objects because types (essences) come after the object being typed
(existence).

§43.7 Ideal concepts. In Usage, it is possible to define concepts by interaction and yield
other concepts by orthogonality. It is in Girard’s Usage that the tensor product of two
formulas A⊗B, its dual A`B := (A⊥⊗B⊥)⊥ or the linear implication A⊸ B := A⊥`B
are defined “by interaction”. However, these notions are idealised concepts of tensor, par
and implication. The possibility of having infinite tests makes formulas sort of god-given
concepts which are perfectly defined and inferred from pure reason. However, this is also
what makes them too powerful and unpracticable.

§43.8 It is in Usage that elimination rules of natural deduction are justified. Typically, the
modus ponens is seen as an interaction between Φ ∈ A⊸ B and Ψ ∈ A. It is possible
to prove that under the right conditions, we have Ex(Φ,Ψ) ∈ B for any Φ ∈ A⊸ B and
Ψ ∈ A. Elimination rules are justified by their use, accordingly to old intuitions which
are now made explicit (cf. Paragraph 12.4). See Pistone’s works for more about how
Girard’s approach can serve as a justification of logical rules [Pis15].

§43.9 The existentialist hell (again). The problem (already stated in Paragraph 38.7) is
that we cannot pass infinitely many tests in practice. It makes no sense to bring all
possible compatible DVD to say that I indeed have a DVD player in front of me. It
is like certifying a car in a factory by making it interact with all possible use cases
including driving it forever to ensure that customers will be able to do the same. But
how can you even sell such a product? It would not even get out of the factory. In the
real world, we have no choice but to use definitions corresponding to a partial view of
the object. We need decidability to be able to put words over things. If we are only
interested in inferences on perfect, abstract and universal ideals, then we do not even
need the orthogonality relation to be computable.

Usine / Church typing

§43.10 The solution to the previous problem of infinite testing is to limit tests to a wisely chosen
finite sampling. This is the meaning as finite testing corresponding to Girard’s Usine
which is the main novelty of TS. It is like testing a DVD player with a chosen set of
representative DVD or to apply some sufficient tests to a car. Such partial view on an
object correspond to partial definitions which allow to actually name and qualify the
object we manipulate. However this notion of definition should not be understood as
a linguistical definition but as a recognition of shape, which is independent of language
(otherwise we would return to the problems stated in Paragraph 39.1).

Chapter 6 Towards a transcendental syntax 213

§43.11 Such finite testing typically appear in vaccines. The choice of tests is either too strict
(and we miss some use cases) or too lax (and we may accept many irrelevant use cases).
Either vaccines get too much time and efforts to be validated or we kill some people
by mistake (but in the first case some may die as well). Another illustration is chem-
ical/biological testing. For instance, in allergy tests, we put a patient in contact with
some allergen and wait for reactions. This is also similar to how tests for viruses or
pregnancy tests work. It is acceptable to use several orthogonality relations in case we
are expecting different sort of outputs.

§43.12 Once we have a method for effective testing, it is possible to certify objects like how
we certify a vaccine or a car which passes all our tests. Common examples of our
everyday life (especially in France) are various labels attached to products such as “BPA-
free”, “Agriculture biologique”, “Made in France”, “Origine France Garantie”. We trust
some tests of our everyday life without always understanding what they are about. In
particular, the “Made in France” label is rather lax and makes us think that our product
is entirely made in France while it only has to be partially made in France. In the case
of proof-nets, a proof-structure is certified with a label “Proof-net” when it passes all
the tests corresponding to a given sequent.

§43.13 We define a type as a syntactic expression A (representing a type label) associated with
a finite set of tests Tests(A) and fix a decidable orthogonality relation ⊥. We say that
Φ ∈ A is of type A, written Φ : A, when Φ ∈ Tests(A)⊥. Type checking (verifying
whether Φ : A for a given A) can then be done in an effective way. It is an essentialist
(Church) typing because types (essences) are defined before the objects being tested
(existence). However, this is not plain essentialism because in TS, types will be justified:
there will be some proof that the set of tests is sufficient to ensure that it is part of
a corresponding formula. In terms of programming: that the tests are sufficient to
guarantee the expected computational behaviour. Plain essentialism would correspond
to certifying a vaccine but without verifying if the tests ensure that it will work well.
We just have to trust our intuition. This is why I sometimes compare it with a sort of
modern or rational essentialism. In proof-nets, type labels correspond to sequents. From
a switching on a sequent ` Γ, it is possible to infer a set of tests (Danos-Regnier tests
for instance) Tests(` Γ) such that if Φ is a set of axioms, Φ ∈ Tests(` Γ)⊥ implies that
Φ is a set of axioms for a proof-net of conclusion ` Γ.

§43.14 Partial approximation of an ideal. Another illustration of Usine that I especially
like16 is the design of... a chair (yes). When we design a chair, we have in mind all the
possible (idealised) positions and use of the chair. But it is impossible to capture them
all. All we can do is approximating it as much as possible. The best designers are the
ones who can perceive the most accurately those use cases. Formally speaking, tests

16Which comes from a discussion I had with Paul Séjourné after he made me watch a video about
Charlotte Perriand’s work on modern design and architecture (I was not expecting that it could be
related to logic).

Chapter 6 Towards a transcendental syntax 214

of Usine are usually approximations of behaviours of Usage. If we have a behaviour A,
then we would like to find a finite set of tests B such that B⊥ ⊆ A.

§43.15 In defence of prejudice. My personal interpretation is that Usine is a place where
we can express the structure of our prejudices. By prejudices, I mean intuition or un-
verified belief, which is directly accessible from immediate perception. Those prejudices
can then be justified and confirmed (or considered too inaccurate). Tests usually come
from a generic structuration of our experience and perceptions. In programming, when
designing tests or specifications (or simply writing a program), we are trying to pro-
duce a material structuration of a mental representation. Although prejudices can be
socially shared (like prejudices thought to come from ignorance), in our case, they have
a computational form allowing (more or less certain) checking and confirmation. Usine
corresponds to an awareness of the structure of our own prejudices.

Adequacy and certainty / Cut-elimination

§43.16 Adequacy is what links Usine and Usage. It may sound exaggerated but adequacy is
the heart of the rational: the justification of our prejudices or the fact that the shape of
our objects (given by the tests of Usine) guarantee their use (Usage). It is what conveys
certainty. If I design a chair, then it would be (in some sense) irrational to design a chair
far from any possible use. For instance a chair with spikes. Modern art or fashion, in
particular, is often playing with the irrational by materialising it. It seems to me that
what is rational is justified beliefs (where defining “justified” is the job of logic).

§43.17 In logic, adequacy corresponds to the cut-elimination theorem (which may sound very
surprising). The idea is that in TS, Φ ⊥ Ψ formalises and identifies two notions:

• that Φ passes the test Ψ;

• that the interaction (cut-elimination) between Φ and Ψ representing vehicles of
proof-structures behaves as expected.

This is because tests are seen as computational objects of the same kind as vehicles (sim-
ilarly to the GoI interpretation). We obtain a new interpretation of the cut-elimination
theorem. Assume that vehicles and tests are interpreted in a subspace P ⊆ A. The
cut-elimination theorem says that for all Φ,Ψ ∈ P, Φ ⊥ Ψ (their interaction by cut-
elimination behaves well). This is not true in general (since vehicles are more general
than proof-structures for which cut-elimination can be ill-behaving). This is where log-
ical correctness appears: for all Φ,Ψ ∈ P, if there exists ` Γ and ` Γ⊥ such that
Φ ∈ Tests(` Γ)⊥ and Ψ ∈ Tests(` Γ⊥)⊥ (they are correct and dual), then Φ ⊥ Ψ. In
terms of proof-structures, if two proof-structures are dual and correct (they correspond
to proof-nets) by passing correctness tests of some dual sequent then their interaction is
sound.

“If objects have the right shape, they will behave well.”

Chapter 6 Towards a transcendental syntax 215

§43.18 Relating answers and questions. Usine and Usage correspond to two ways to tell
whether an object is an answer to a question. However, only the adequacy justifies this
relation by providing an effective verification that it corresponds to an approximation of
an ideal. Notice a little change of terminology: in the GoI, ludics and game semantics,
answers and questions are terms related to positive and negative connectives but in TS,
they correspond to computation and logic. It seems to me that the two contexts are not
related and that the terms “answers” and “questions” are too inaccurate in the situation
of positive and negative connectives which rather corresponds to an interactive dialogue
alternating between expectations and assertions.

§43.19 Separating Usine and Usage. In case we have a cut-elimination theorem, we are able
to express an absolute certainty. However, some good logical systems do not enjoy a
cut-elimination theorem. In that case, we have a gap between Usine and Usage meaning
that Usine is never able to perfectly reach Usage. According to Girard, this limitation
corresponds to Gödel’s incompleteness theorems (cf. Paragraph 5.4) corresponding to
the logical version of undecidability. Our choice of effective tests in Usine leads either
to a lack of consistency or a lack of completeness (it is either too strict or too lax). We
cannot always capture all use cases of logical objects with finite and effectively checkable
definitions. To illustrate this fact, think of trying to define a musical notation for all
possible sounds. A good (French) article explaining the gap between Usine and Usage in
my opinion is the first section of Regnier’s “Les limites de la correspondance de Curry-
Howard”17.

§43.20 Reasonable certainty. Formal systems not enjoying a cut-elimination theorem intro-
duce some doubts. However, as Girard claims, certainty can still be reasonable in some
cases. For instance, it is exaggerated to doubt of the foundations of mathematics. A
huge number of theories have been established and used without any foundational fears.
Mathematics lies on a solid ground even though it is not absolutely certain. The more
we do mathematics, the more doubts disappear (but doubts will always remain) [Gir16a,
Envoi: le doute].

Towards a justification of logical rules

§43.21 We would like to justify the rules of natural deduction. As explained in Paragraph 11.3,
introduction rules correspond to definitions of symbols (how they are shaped) and elim-
ination rules to use of symbols (how they interact). A prowess of sequent calculus is to
reorganise this relationship between definition and use: all logical rules are introduction
rules (either to the left or the right of ` but in the monolateral case, it is sufficient to
consider only the right). We then have the cut rule which materialise the use. This
is made explicit in the translation of natural deduction into sequent calculus (cf. Fig-
ure 11.3) where translating elimination rules reveals an interaction by cut between two
proofs.

17https://www.i2m.univ-amu.fr/perso/laurent.regnier/articles/ch.pdf

https://www.i2m.univ-amu.fr/perso/laurent.regnier/articles/ch.pdf

Chapter 6 Towards a transcendental syntax 216

§43.22 This distinction between definition (cut-free proofs) and use (cut between proofs) coin-
cides with Usine and Usage respectively. Sequent calculus rules can be analysed from
proof-nets which focus on the structure of proofs and how formulas are related indepen-
dently of the sequential application of rules.

• Usine will yield a translation of cut-free proof-nets. In this case, we are interested
in how logical objects are shaped/defined independently of how they interact with
other objects. It is the very principle of factories.

• Usage will yield a notion of interaction between cut-free proofs. Given two cut-free
proofs, they can interact by using cuts which are sort of adapters linking points of
the two proofs so that they can agree on common references.

44 Derealism / Animism

§44.1 In Girard’s terminology, the term derealism (but also animism) refers to a subtle in-
tertwining between computation (analytic/object) and logic (synthetic/subject) which
is always present in the study of logic and computation. An ambition of TS is to go
beyond this asymmetric distinction.

Logic and computation entangled

§44.2 I claim that most objects manipulated in the context of logic and computation (especially
in the CHL correspondence) are hybrid objects with a computational and a logical part.
In Section 38, I explained that the GoI was able to separate the computational (vehicle)
from the logical (test) content of a proof. Ultimately, the vehicle itself is a sort of test
for tests so the roles of test and tested is symmetric and interchangeable. Nonetheless,
we are still able to make this distinction.

§44.3 If we look at the CHL correspondence, the correspondence between natural deduction
and λ-calculus is not a link between logic and computation but an identification of logico-
computational hybrid objects. Since proof-nets are able to encode typed λ-terms, it is
possible to analyse λ-terms by separating their computational core (vehicle) from their
logical core (what makes the shape of the term, influencing its computational behaviour).
Similarly, proof-nets come from sequent calculus proofs which analyse natural deductions
proofs. Proofs in proof-systems are then both of a computational (interaction) and logical
nature (shape).

§44.4 If we want to be more radical, then untyped λ-calculus is actually already implicitly
logical because it treats computation in the context of specific shapes (the structure of
λ-terms). These shapes are sort of primitive constraints for computation. This is not
so surprising since we were able to split not only proof-nets but also proof-structures
which encodes untyped λ-terms. However, cut-elimination (ax/cut), corresponding to

Chapter 6 Towards a transcendental syntax 217

...
A

...
B ∧i

A ∧B

...
A ∨B

[A]
...

C

[B]
...

C ∨e
C

Figure 44.1: Local (left) and global (right) natural deduction rules.

the execution of terms, is very primitive: as shown in the GoI (cf. Chapter 5), it is
only about reducing links by identifying points (atoms of proof-structures), which can
also be understood as sending messages or making a current flow. I do not count `/⊗
or other logical cut-elimination cases because they are not purely computational but
logical as they only reorganise links by specifying right paths for messages, hence enforce
a structure for the computational current. They are implicitly part of tests (hence
the logical part of proof-structures). Proof-structures are also logical because of their
specific shape which makes the computational current flow in a specific way during
cut-elimination.

§44.5 From the radical statement above, we obtain hints about the nature of logic and com-
putation:

• computation is physical. It is about current freely flowing, the process of sending
information without any constraint. It is related to time;

• logic is structural. It is about primitive or constructed paths in which the current
of computation flow. It is related to space.

This makes the analytic space a bit logical but it is not a problem since it is meant to be
an “anchor” space where any shape can be constructed (a playground for computational
constructions). The synthetic space then associates some shapes with a name or a use.

§44.6 When manipulating syntactic objects (in mathematics for instance), both space and time
naturally enter in the play together because they have to be materialised by a shape
and are subject to (usually sequential) syntactic transformations (which need time). I
conjecture that this is why those logico-computational hybrid objects naturally appear
everywhere. Logic and computation are constantly and naturally mixed together and
derealism studies how the various mixes occur in syntax.

Globality and locality in logical systems

§44.7 Mathematical logic historically mixed global and local operations. A lot of entities are
generic without being defined as such. For instance, theorems of propositional calculus
(cf. Section 6) such as a ⇒ a are generic. They have the same interpretation for any
valuation of a. Actually, it could be rewritten as a second-order formula: ∀X.X ⇒ X.
Propositional calculus implicitly uses second-order quantification.

Chapter 6 Towards a transcendental syntax 218

§44.8 In natural deduction, some rules are constructed in a local way by juxtaposition of
objects already there. Figure 44.1 presents an example of local and global rule. The
introduction ∧i is a typical local rule. We have A and B and put them next to each
other to construct an expression A ∧ B. Some other rules are global or generic such as
the elimination rule ∨e. The elements A ∨ B, A and B are the elements already there
but C is a generic formula. Any formula C can be chosen.

§44.9 Subformula property and internal explanations. These generic elements such
as the C in ∨e or the X in ∀X invoke the huge space of all propositions. However,
we cannot tell only from proofs or formulas what this space is made of. This space
is externally formatted: this is what we mean by logical system. Therefore, generic
statement implicitly refer to a system. This is related to the subformula property (cf.
Paragraph 10.4). This property is a condition for internal explanation. It is preserved
by local rule but not by global rules which summon something external. We obtain the
following correspondences:

Global = Generic = External Local = Specific = Internal

In particular, by only considering local rules without any genericity, we have a fully
internal explanation of logic which can be expressed out of any system. This is what
Girard calls system-free logic [Gir20a].

§44.10 This reference to external structures can be found in the second-order equality defining
a = b as ∀X.X(a) ⇔ X(b) (cf. Paragraph 8.7). The variable X refers to the set of all
properties. A recurring criticism of Girard is that X cannot refer to properties such
as “being on the left of =” or “being on the right =” which would distinguish between
the two occurrences of a in a = a and lead to a 6= a. But from what basis are we
considering those properties logically wrong? An ambition of TS is to make explicit this
structuration of the space of all propositions which is assumed in logical systems. This
does not contradict “traditional logic” but relativise it by opening it to many choices of
formatting the space of all formulas.

§44.11 From all these considerations, Girard adds to TS a distinction between:

• apodictic18 (first-order logic) in which all rules are local and no reference to external
systems exist. It is system-free. We can find connectives such as ⊗,`,⊸ and
limited exponentials;

• epidictic (second-order logic) in which we are summoning of the space of all propo-
sitions which has to be formatted by a logical system. We can find connectives
such as ⊕,&, ∀, ∃, neutral elements and full exponentials ! and ? (because of the
global behaviour of boxes). It appears that ⊕,&, !, ? and neutral elements can be
expressed with ∀, ∃ and first-order connectives.

18That Girard compares with anarchy because it works without a system.

Chapter 6 Towards a transcendental syntax 219

Note that first-order logic usually means predicate calculus. Girard actually suggests
a change of terminology which can be confusing: first-order and second-order logic in
TS do not correspond to usual predicate calculus and second-order logic. In particular,
because of its genericity, predicate calculus itself is subsumed in Girard’s second-order
logic (epidictic).

§44.12 The distinction between apodictic and epidictic is close to the distinction between nature
and culture19. In apodictic, logic is emerging, natural and self-organising. It is where
cut-elimination and adequacy are not problematic and where absolute certainty can be
expressed. The epidictic is man-made and has to be wisely designed. Certainty is not
absolute in this case but only reasonable at best.

Apodictics / First-order

§44.13 The difficulty of apodictics is to find it. If most logical objects we have are actually
epidictic, then what can be apodictic? According to Girard, the only place where apod-
ictics is clearly expressed is in proof-nets. If we take proof-nets without considering the
generic nature of atoms/variables, they are indeed purely structural objects. It is only
by external considerations that atoms can be replaced by other formula and hence by
other proof-nets in the corresponding proof-net. This makes proof-structures indepen-
dent from any logical system providing we forget genericity.

§44.14 In his fourth paper on TS [Gir20a], Girard defines a formula フ (“fu”) for first-order
atoms. By using it, it is possible to establish a purely apodictic fragment of TS. In the
same paper, Girard develops an apodictic fragment of TS and suggest notions of truth
together with proofs of some axioms of Peano arithmetic.

§44.15 How is absolute certainty possible?. Good question. Because we cannot be sure
of anything, right? It seems to me that what we mean by absolute certainty is that in
the apodictic Usine, there are finitely many tests, orthogonality is computable and the
adequacy is simple enough to only rely on simple combinatorics without even relying on
parts of mathematics sensitive to incompleteness [Gir17, Section 4.4]. One can argue
that it is exaggerated to speak about “absoluteness”. Absolute certainty in Girard’s
terminology is a very reliable certainty.

Epidictics / Second-order

§44.16 Epidictics, because of its implicit external summoning of a system, is harder to justify.
In his third article on TS, Girard proposed a way to define epidictics in TS. The struc-
turation of the space of all propositions mentioned above is called epidictic architecture.
It can be defined in both Usine and Usage.

19This nice illustration comes from a discussion I had with Pablo Donato.

Chapter 6 Towards a transcendental syntax 220

§44.17 Case of Usage. The epidictic architecture for Usage is defined by considering a
subspace E ⊆ S. The set E has to be closed under a set of connectives {C1, ..., Cn},
orthogonal, bi-orthogonal, cut and have to satisfy other essential properties which will
be stated later in the thesis and which depends on what we want. Epidictic requires
constraints representing the characteristics of the system considered. For instance, in the
case of MLL, we can consider a closure under ⊗ so that for any A and B, A⊗B ∈ E and
A⊥ ∈ E (which defines the` connective): we are closing the space of questions. Although
this looks like a limitation, this is what allows generic reasoning (we know what tools and
shapes are available). As for quantifiers, they are interpreted with infinite intersection
and union of formulas.

§44.18 Case of Usine: universal case. In the case of Usine, we have to consider finite tests
for second-order quantifiers (which can generate other second-order connectives). In the
case of ∀X.A, we have to ask a computational object to pass generic tests for all possible
cases of formula that X can range over. For instance, in the case of MLL, we have the
following generic tests obtained by taking Tests(` A) and replacing X and X⊥:

• X := • and X⊥ := •;

• X := • ⊗ • and X⊥ := •` •;
• X := •` • and X⊥ := • ⊗ •

where • represents an atomic formula (this will be clearer when defining the actual
interpretation in stellar resolution later in this thesis).

§44.19 Case of Usine: existential case. For ∃X.A, we have to design tests but it is
impossible to foresee what the existential witness will look like. However, in proof
theory, the existential witness comes with the proof. This is where the derealist approach
is exploited: testing is usually opposing a computational object Φ against a test Ψ.
However, the computational object now comes with a test ΨT (called mould) for the
existential witness T . We then test the union Φ]ΨT against Ψ.

§44.20 Difference between synthetics and epidictic. Epidictic is indeed a formatting of
computational objects. But then, how does it differ from synthetics? Synthetics is
defined with a point of view (orthogonality) and tests (which can be finite or infinite).
Epidictics is about meaning where synthetics is not sufficient. Typically, how to express
that we “link dual atoms”? We need a human intervention to distinguish atoms and
their dual and add the constraint that they must be linked in axioms.

An original proposal: epidictic and apodictic models of computation

§44.21 Remember that I claim that models of computation are actually logical. If the analytic
space A is the space of answers, then enforcing specific shapes and handling of objects of
A has consequence over the synthetic/logical space S. If we start from the lawless world
of A and try to define an automata or a circuit, we must define a starting point (initial

Chapter 6 Towards a transcendental syntax 221

state or inputs) and describe how information flow in the structure (synchronised doors
for circuits and linear run for automata). It makes models of computation restrictions
over the space of information flows within a structure.

§44.22 An interesting idea which will be illustrated later in this thesis, is to first find what
all classical models of computation have in common and then understand what makes
their identity. I claim that we can distinguish between apodictic and epidictic models of
computation.

§44.23 Apodictic models of computation are those which are self-organising and autonomous.
Typically, tile systems such as Wang tiles are self-interacting objects with no external
control. They only interact locally w.r.t. their primitive structures (colours on edges).
Other examples such as the asbtract tile assembly model with cooperating tiles (used in
DNA computing) will be presented in this thesis.

§44.24 Epidictic models of computation are those who need human intervention or external
control. Typically, in a lawless world, we could start from the final state and loop
eternally without consuming a word. There is a right path to take and we have to
enforce it to lawless objects of A. This control over computation can be related to
focussing in linear logic (cf. Paragraph 28.7).

§44.25 An interesting question is whether external control can always be internalised, i.e. is
epidictic reducible to apodictic. My conjecture is that the answer is negative. But it is
still interesting to study those cases in which control can be internalised (it is the case
of “cooperative” tile systems).

45 Illustration: Transcendental Syntax applied to lambda-calculus

§45.1 The architecture of TS is not made for the λ-calculus but we can try to apply it to
λ-terms in order to illustrate the ideas of this chapter20.

§45.2 Analytic of lambda-calculus. For the analytic space, we can either choose Krivine’s
λc-terms and stacks (cf. Section 22) or Riba’s λ-terms and contexts (cf. Section 22). I
choose Riba’s interpretation leading to simple types. We have A := Λ ∪ E. Constat is
the set of all normal terms extended with contexts. Performance are redexes and we
consider β-reduction with any strategy. Note that TS splits λ-terms themselves into
vehicle and tests in a homogeneous monist space.

§45.3 Synthetic of lambda-calculus. Usage corresponds to Riba’s realisability interpre-
tation which can reconstruct simple types as behaviours. Although simple types are
constructed, the interpretation is open to more types by choosing another orthogonality

20This is something Pablo Donato wanted to see because he wanted to find a better way to explain and
communicate ideas of TS without depending on Girard’s formalisms. It would also be a way to makes
TS more acceptable in front of the community of logic in computer science.

Chapter 6 Towards a transcendental syntax 222

Raw Formatted

Explicit

Implicit

Constat

Performance

Usine

Usage

Execution

A
dequacy

U
ndecidability

Incom
pleteness

Space

Time

Tes
tin
g

Figure 46.1: Relations between the four cases of Girard’s cognitive knitting.

relation. Usine defines tests by finite sets of either terms or contexts. However, is it
always possible to guarantee membership in a type by a finite set of tests? How to
finitely check whether M ∈ α⇒ β for some primitive types α and β? Moreover, in TS,
contexts should be testable as well: everything should be justified. It seems that this
space of testing is rather weak: it looks like the interpretation is not able to characterise
a lot of interesting computational behaviours.

§45.4 Apodictic and Epidictic of lambda-calculus. We can now imagine what the apo-
dictic fragment of our TS interpretation of λ-calculus would look like. The idea of the
epidictic is to restrict A. We could for instance restrict to linear λ-terms by allowing only
terms having exactly one occurrence of their argument. However, this does not translate
in the synthetic space S: we cannot restrict the set of all behaviours so to obtain linear
logic because interaction between terms and contexts is not expressive enough.

46 Discussion: is it a right understanding of logic?

§46.1 A fair question I encountered about TS is “why should we believe it is the right way to
understand logic?”. The TS is not meant to be the right answer to the foundation of
logic. It does not even assume the possibility to directly access to the “true” content
of logic but only to access a representation of it through a subjective medium (a choice
of model of computation) as explained in Paragraph 39.14. However, it provides an
interesting and different way to look at logic and computation.

§46.2 Solid foundations. The architecture of TS is grounded on two unavoidable limits:

• undecidability splitting analytics by separating Constat and Performance;

• incompleteness splitting synthetics by separating Usine and Usage.

Chapter 6 Towards a transcendental syntax 223

The four cases of the cognitive knitting are also linked with well-known central notions:

• execution linking Constat and Performance;

• cut-elimination linking Usine and Usage.

These relations are illustrated in Figure 46.1. It shows that TS lies on cold and down-
to-earth facts and not abstract ideals. On the technical side, TS is based on GoI which
succeed a series of analysis from natural deduction to proof-nets. In TS, one still wish
for as much conservativity as possible by rescuing as many concepts and results of
mathematical logic (but not necessarily all). Hence, TS is more about reorganising the
notions we already know and putting order in mathematical logic.

§46.3 The three layers of logic and computation. Explanations of how logic works in
transcendental syntax do not need an infinite hierarchy of semantic level as in the usual
linguistic spiral. Here we only have three layers:

• the analytic space A;

• the synthetic space S which constraints the space of answers;

• a choosen epidictic architecture which constraints the space of questions (we choose
what questions can be asked).

The epidictic architecture is a sort of meta-level above the relationship between analytic
(object) and synthetic (subject) in logic. Although the expression “meta” is taboo
in Girard’s papers, it is not always problematic. We can, for instance, speak about
metapolitics without any problem. The problem with the theory of metalogic is that
we were barely touching what logic was really about. Metalogic did not say a lot of
things about the mechanisms of logic. Hence, although we can argue that transcendental
syntax still lives in some (mathematical, combinatorial or syntactical) metatheory, it is
something we can tolerate. In the same fashion, computer scientists can build tools
(programs), make them work and check whether they fit some specification (with a
reasonable degree of reliability) without ending in a conceptual maze.

§46.4 In the next chapter, I formally present the stellar resolution which serves as a computa-
tional ground for TS. The chapter will be followed by a chapter thoroughly demonstrating
the computational expressivity and power of stellar resolution in order to show that it
is a model of computation of interest by itself.

Chapter 7

Stellar resolution

I refer to Appendix B for definitions related to term unification. These definitions are necessary
to understand the definitions of this chapter.

Stellar resolution is the model of computation used as a computational ground for tran-
scendental syntax. It can be understood from several different points of view:

• it is a n-ary generalisation of Girard’s model of flows and wirings (cf. Section 37);

• it is a flexible tile system (cf. Section 17) based on term unification and Robinson’s
resolution (cf. Section 23);

• it is an extension of Robinson’s resolution with disjunctive clauses (cf. Section 23)
(on which logic programming is based);

• in a more conceptual way, it is a model of computation describing computation as
pieces of information flowing inside a graph-like structure.

As we will see, stellar resolution actually generalises several models of computation
such as: automata, circuits, logic programs, functional programs (by their translation
to proof-nets), tile systems and more. I named it “stellar resolution” in reference to
Girard’s terminology of stars and constellations and for its link with usual first-order
resolution1. At the end of the chapter, comparisons with ideas of logic programming are
made.

The idea is that objects of stellar resolution will encode proof-structures. The inter-
pretation is similar to the one of flows and wirings but the difference is that whereas
flows are able to represent the long trip correctness criterion, stellar resolution naturally
interprets the Danos-Regnier correctness criterion.

1But the main reason is because the name sounds pretty cool.

Chapter 7 Stellar resolution 225

ϕ1X

+f(X)

−h(Z,X)

(a) Lone star. Poor guy has no friend.

ϕ1X

+f(X)

−h(Z,X)

ϕ2

−f(g(Y))
+g(h(Y, Y))

(b) The star finds a partner and interact with it. They form a finite diagram. They communicate
through dual rays.

ϕ1X

+f(X)

−h(Z,X)

ϕ2

−f(g(Y))
+g(h(Y, Y))

ϕ3

+h(a, b)
−g(X)

(c) Another star is added to the diagram. The diagram gets bigger.

Figure 47.1: Connexion of stars.

47 Intuition behind stellar resolution

§47.1 In this section, I present the informal intuition behind the model of stellar resolution.
The intuition can be understood from several ways depending on your background (as
stated in the introduction). You may see it as logic programming, flexible tile system
or extension of flows in GoI. Formal definitions are given in the next section. It is
necessary to have knowledge on term unification (cf. Appendix B) and graph theory (cf.
Appendix C) to understand this chapter.

§47.2 Figure 47.1a illustrates a star, which is a sort of flexible tile holding terms. It can also
be written as a non-ordered finite sequence of terms [X,+f(X),−h(Z,X)] where some
function symbols are polarised (in {+,−}) or not. Several stars form a constellation.
In a constellation, stars can interact by connecting to each other along dual rays as in
Figure 47.1b. Dual rays are those rays which are polarised with opposite polarity (+
against −) and which are unifiable up to renaming (what I call α-unification), considering
the compatibility relation ¨ between potentially polarised function symbols. Connecting
stars along rays allows to construct tilings called diagrams. As shown in Figure 47.1c it

Chapter 7 Stellar resolution 226

[g(X),+a(X),−b(X)]

[−a(f(Y)),+c(Y)]

(a) Step 1: we have two stars connected along two rays in a diagram.

[g(X),+a(X),−b(X)]

[−a(f(Y)),+c(Y)]

θ = {X 7→ f(Y)}

(b) Step 2: we choose a link to contract and compute the solution associated with its equation.

[g(X),−b(X),+c(Y)]

(c) Step 3: the two stars interact by merging and erasing the rays related to the link.

[g(f(Y)),−b(f(Y)),+c(Y)]

(d) Step 4: the solution θ of the link is propagated to the resulting star.

Figure 47.2: Evaluation of diagrams by resolution. The two terms +a(X) and −a(f(Y))
are dual and then can be connected to form a diagram.

is possible to construct bigger diagrams involving more stars. We are usually interested
in connected and saturated diagrams which are diagrams which cannot be extended by
connecting more stars to the diagram.

§47.3 Dynamics. Now that we have diagrams, it is possible to evaluate them by an edge
contraction merging stars by annihilating the connected rays and propagating the solu-
tion of their equation to other rays. The steps of this evaluation are presented with an
example in Figure 47.2. The execution of a constellation evaluates all possible connected
and saturated diagrams. It is a generalisation of the execution of wirings.

§47.4 It is possible to imagine two ways of executing constellations. One we just described
which constructs tilings and evaluates them. It has an abstract version which is more of a
denotational nature and does not say how to construct tilings (they just mathematically
pop out) and a concrete version which iteratively constructs diagrams. Another way
called interactive execution starts from some stars and successively adds stars which di-
rectly interact on the fly with the available stars. It can be implemented more easily and

Chapter 7 Stellar resolution 227

is more faithful to classical computation but do not exactly correspond to the previous
natural notion of execution.

48 Stars and constellations

§48.1 Tiles are called stars and their flexible arms are rays. A tile set is called a constellation.
Rays can contain special polarised function symbols analogous to the colours of Wang
tiles. For instance, +f and −f are two dual terms. We expect terms such as +c(f(X)),
f(X), Y , +d(X,−e) and +c(f(+f(X), Y)) to be rays.

§48.2 Definition (Polarised signature). A polarised signature is a tuple

P = (V, F, ar,¨, b·c)
where (V, F, ar,¨) is a signature (cf. Appendix B). The set F is defined as a partition
F+]F−]F0 defining presence (polarity + and −) or absence (polarity 0) of polarities
over symbols. Function symbols of F+]F− are said to be coloured (or polarised) and
those of F0 are uncoloured (or neutral).

The underlying symbol of a function symbol is defined by a function b·c : F → F0

satisfying the following requirements:

• f = bfc for f ∈ F0;

• the restriction of b·c to F+ (resp. F−) is bijective, hence every neutral element
of polarity 0 has a positive and negative version.

We define two maps attaching polarities to function symbols:

• + : F0 → F+;

• − : F0 → F−;

such that + and − are inverse of b·c, i.e. for all r, we have b+rc = r and b−rc = r.

Finally, the compatibility relation ¨ is defined by c ¨ d if and only if bcc = bdc and
one of the following requirements hold:

• c ∈ F+ and d ∈ F−;

• c ∈ F− and d ∈ F+;

• c ∈ F0 and d ∈ F0

§48.3 Definition (Opposite). We first define the opposite op(f) of a function symbol. If
f ∈ F0 then op(f) = f . If f ∈ F+ then op(f) = −bfc and if f ∈ F− then op(f) =
+bfc.

Chapter 7 Stellar resolution 228

We define the opposite op(r) of a polarised ray r by:

op(c(r1, ..., rn)) = op(c)(op(r1), ..., op(rn)).

§48.4 Example. Let P = (V, F, ar,¨, b·c) be a polarised signature with V = {X} and
F = F0]F+]F− such that F0 = {c, d}, F+ = {+c,+d} and F− = {−c,+d} (we omit
arity). We have +c ¨ −c and +d ¨ −d.

§48.5 Convention. We assume the existence of a polarised signature P = (V, F, ar,¨, b·c)
unless we explicitly use a specific one.

§48.6 Internal colours. Unlike the simplified description of the previous section, rays are
not simply defined as terms with a polarity as prefix. For the interpretation of simple
fragments of linear logic such as MLL, it is sufficient to consider polarised terms which
indeed correspond to first-order atoms but if we are interested in interpreting Girard’s
second-order logic (epidictics), then rays with internal colours must be used [Gir18b,
Section 4.1] (making it far more complicated than the dynamics of logic programming).
The intuition is that rays with internal colours will be used for the interpretation of
moulds (cf. Paragraph 44.19). Because these two class of rays are both used in different
context, we will explicitly distinguish them.

§48.7 Definition (Rays). A ray on a signature P = (V, F, ar,¨, b·c) is a term r ∈ Term(P)
constructed with variables in V and function symbols in F .

A ray r is coloured if it contains a colour and it is uncoloured otherwise.

The underlying term of a ray is defined inductively as follows:

bXc = X bc(r1, ..., rn)c = bcc(br1c, ..., brnc)

with x ∈ V and c ∈ F .

Let r be a ray. It is either:

• objective if it is either uncoloured or it is a coloured ray r = c(r1, ..., rn) such c
is coloured and r1, ..., rn are uncoloured. They correspond to uncoloured terms
prefixed by a colour;

• or subjective otherwise, if it is a coloured ray r = f(r1, ..., rn) such that at least
one ray of {r1, ..., rn} is coloured.

§48.8 Definition (Set of colours of a ray). The set of colours appearing in a ray is defined
by:

• colours(t) = ∅ if t is uncoloured;

• colours(c(r1, ..., rk)) = {c} ∪
(∪

1≤i≤k colours(ri)
)
if c ∈ F+] F− and k ∈ N;

Chapter 7 Stellar resolution 229

ϕ

−c1(t11, ..., t1n)
. . .

−ck(tk1, ..., tkm)

+d1(u
1
1, ..., u

1
n′)

. . .

+dk′(u
k′
1 , ..., u

k′
m′)

v1 . . . vl

Figure 48.1: Objective star with rays seen as either input, output or unpolarised.

• colours(f(r1, ..., rk)) =
(∪

1≤i≤k colours(ri)
)
otherwise.

§48.9 Example. Examples of objective rays are: +c(X), f(X,Y) and −d(h(X)). Examples
of subjective rays are f(X,+h(Z)), +c(+d,−c(Y)) and +c(−d(+h(X,Y))). We have
colours(+c(−d(+h(X,Y)))) = {+c,−d,+h}.

§48.10 Definition (Star). A star ϕ over a polarised signature P is a finite indexed family
(cf. Appendix A.2) of rays (Term(P), Iϕ, ϕ[·]). The set of variables appearing in ϕ is
defined by vars(ϕ) :=

∪
i∈Iϕ vars(ϕ[i]). For convenience, stars will be written as an

unordered sequence [r1, ..., rn].

The empty star is written [] and is defined by the set of indexes I[] = ∅.

Let ϕ = [r1, ..., rn] be a star. It is either:

• objective if r1, ..., rn are objective;

• subjective if r1, ..., rn are subjectivea;

• or animistb otherwise (it has a least one objective and one subjective ray).

The shape of objective stars in illustrated in Figure 48.1.
aI asked Girard what was the point of internal colours and he answered me “Ça ne sert à rien du

tout” which means (in French) that it was totally useless. He then told me that he just needed
a trick so to make sublocations of subjective rays subjective as well. My point of view is that it
adds more combinatorics to express truth and meaning. In particular, correct proofs require a
clear separation between fully subjective and fully objective stars.

bBecause it mixes object and subject.

§48.11 Definition (Substitution applied on a star). Let θ be a substitution (cf. Appendix B)
and ϕ a star. The application of θ on ϕ is defined by a star θϕ with Iθϕ := Iϕ and
(θϕ)[i] = θϕ[i].

§48.12 Definition (Alpha-equivalence of stars). We say that two stars ϕ1 and ϕ2 are α-
equivalent, written ϕ1 ≈α ϕ2, when there exists a renaming α (cf. Appendix B) such
that ϕ1 = αϕ2.

§48.13 In this thesis, stars will be considered up to α-equivalence. We therefore define Star(P)
as the set of all stars over a polarised signature P, quotiented by ≈α.

Chapter 7 Stellar resolution 230

§48.14 Definition (Constellation). A constellation Φ is a countable indexed family of stars
(Star(P), IΦ,Φ[·]) with a possibly infinite set of indexes IΦ. For convenience, a finite
constellation will be written as a sum of stars Φ = ϕ1 + ...+ ϕn.

We define the set of rays of a constellation Φ by IdRays(Φ) = {(i, j) | i ∈ IΦ, j ∈ IΦ[i]}
(we keep track of the instance of star from which rays come) and ±IdRays(Φ) := {r ∈
IdRays(Φ) | r is coloured} by its restriction to coloured rays.

The empty constellation is written ∅ and is defined by I∅ = ∅.

§48.15 Constellations are meant to be sort of programs. As in logic programming (e.g. Prolog)
or functional programming (e.g. λ-calculus), variables will be considered bound to their
star (which can be seen as sort of declarations), hence the two x in [+f(x)] + [−f(x), y]
are unrelated. This is similar to how the two x in the λ-term λx.(λx.M) are different.

§48.16 Now that all the elementary objects of the stellar resolution are defined, we give a very
standard encoding of natural numbers which will be useful.

§48.17 Definition (Encoding of natural numbers). We define the function symbol n for a
natural number n ∈ N by 0 = 0 and n+ 1 = s(n) for a unary symbol s and a constant
0.

§48.18 Example. We give examples of finite and infinite constellations:

• Φ+
N := [+add(0, Y, Y)]+[−add(X,Y, Z),+add(s(X), Y, s(Z))] (logic program for

addition);

• Φn+m
N := Φ+

N + [−add(n,m,R), R] (query for the computation of n+m);

• ΦN is defined by IΦN = N and ΦN[i] := [−nat(i),+nat(i+ 1)] (infinite chain)

over the signature defined by the variables V = {X,Y, Z,R}, the symbols F =
{+add,−add, add,+nat,−nat, nat, s, 0}, ar(add) = 3, ar(nat) = ar(s) = 1, ar(0) =
0. The constellation Φn+m

N corresponds to the following Horn clauses [Tär77] where
Add(X,Y, Z) states that X + Y = Z:

Add(0, Y, Y) and Add(X,Y, Z)⇒ Add(s(X), Y, s(Z)).

49 Abstract execution

§49.1 The first method of computation constructs tilings and evaluate them. In order to do
so, we first construct a dependency graph showing how rays can be linked. Diagrams
are extracted from this dependency graph by unfolding loops by using hypergraph ho-
momorphisms. This method is purely mathematical and not effective. It does not say
how to actually construct diagrams. In particular, it is always defined. Even when there
are infinitely many diagrams, they do not appear at all in the result. The method is not

Chapter 7 Stellar resolution 231

q0start q1 q2

1 0

0
1

1

0

1 0 1 0 0

Figure 49.1: Example of finite deterministic automaton with a mapping from a word
graph to its state graph.

bothered by actual infinity. It makes abstract execution something of a denotational
nature, similar to the denotational semantics of programming languages interpreting
programs as mathematical objects.

Evaluation of diagrams

§49.2 We are now interested in the formation of diagrams which correspond to tilings of stars
(without any planarity constraints). Unlike tilings with Wang tiles or flexible tiles, it is
possible to evaluate these diagrams by an edge contraction using Robinson’s resolution
rule (cf. Section 23).

§49.3 We first define the dependency graph of a constellation which defines the allowed con-
nexions between stars along dual rays. A diagram corresponds to an actual plugging of
stars along dual rays, following those allowed connexions. The edges linking stars will
induce an equation between terms and the whole diagram will induce a unification prob-
lem. The evaluation of a diagram will correspond to solving its associated unification
problem and producing a new star.

§49.4 In order to approach this idea more intuitively, we explain a common occurrence of it in
automata theory. A finite deterministic automaton is a machine reading an input word
character by character. It starts from an initial state and moves from a state to another
accordingly to the current character it reads. If it ends on the final state, it accepts the
input word. Otherwise, it rejects the input. An example of automaton of final state q2
is given in Figure 49.1 (on the top with vertices q0, q1, q2). A word can be represented
as a linear graph (on the bottom with vertices 1, 0, 1, 0 and 0) and finally, the reading
of a word can be represented as a mapping from characters to states (links between the
word graph and the state graph).

Chapter 7 Stellar resolution 232

§49.5 The state graph of the automaton shows the allowed transitions (where loop can appear)
and the word graph can be seen as tiling of states or a traversal of graph which follows
those allowed transitions (sometimes by unfolding loops).

§49.6 Our diagrams generalise this idea. The state graph corresponds to a dependency graph
and the word graph corresponds to a diagram. The difference is that a dynamics of
term unification is present in our dependency graphs and diagrams can be any graph,
not necessarily limited to the linear case as for automata. Mathematically speaking, a
diagram will be associated with a graph homomorphism between a graph (representing
the tiling) and the dependency graph, exactly like how word graphs are related to state
graphs in automata theory.

§49.7 Definition (Duality between rays). Two polarised rays r and r′ are dual or matchable
written r ▷◁ r′, when r and r′ are α-unifiable (with the compatibility relation ¨ for
rays).

§49.8 Proposition. The relation ▷◁ is symmetric but anti-reflexive and anti-transitive.

Proof. Symmetry follows from the symmetry of α-unifiability (cf. Lemma B.1.14). We
show the two other statements.

• We cannot have r ▷◁ r since r and r have same polarities and two function symbols
of same polarity cannot be compatible by ¨.

• Assume that r1 ▷◁ r2 and r2 ▷◁ r3. It means that r1 and r2 are of opposite polarities
and so are r2 and r3. Since there are only two polarities (+ and −), r1 and r3
must have same polarities. Hence they cannot be dual (by definition of ¨).

§49.9 Example. We have +c(X) ▷◁ −c(0) and −d(X) ▷◁ +d(f(X)) but not +c(X) ▷◁ f(Y)
(presence of unpolarised ray), +c(X) ▷◁ −d(X) (different head symbol), +c(X) ▷◁
+c(f(Y)) (polarities are not opposite) nor +c(f(X)) ▷◁ −c(g(Y)) (terms are not α-
unifiable).

§49.10 Definition (Dependency graph). The dependency graph of a constellation Φ w.r.t. a
set of colours C ⊆ F+] F− is a multigraph (cf. Definition C.3.1)

D[Φ;C] := (V,E, end)

where:

• V := IΦ (the indexes of stars in Φ);

• edges between two stars of index i and i′ are unordered pairs {(i, j), (i′, j′)} such
that for r := Φ[i][j] and r′ := Φ[i′][j′]:

Chapter 7 Stellar resolution 233

ϕ1 ϕ2 ϕ3 R
+add(0, Y, Y) ▷◁ −add(X,Y, Z)

−add(X,Y, Z) ▷◁ +add(s(X), Y, s(Z))

+add(s(X), Y, s(Z)) ▷◁ −add(n,m,R)

(a) Dependency graph of Φn+m
N when n > 0.

n1 n2 . . .−nat(0)
−nat(1) ▷◁ +nat(1) −nat(2) ▷◁ +nat(2)

(b) Dependency graph of ΦN.

Figure 49.2: Examples of dependency graphs for constellations of Example 48.18.

ϕ1 ϕ2 ϕ3 R
+add(0, Y, Y)

?
= −add(X,Y, Z) +add(s(X), Y, s(Z))

?
= −add(2, 2, R)

(a) 0 recursive call.

ϕ1 ϕ2

ϕ2 ϕ3 R

+add(0, Y, Y)
?
= −add(X,Y, Z)

+add(s(X), Y, s(Z))
?
= −add(X,Y, Z)

+add(s(X), Y, s(Z))
?
= −add(2, 2, R)

(b) 1 recursive call.

ϕ1 ϕ2

ϕ2

ϕ2 ϕ3 R

+add(0, Y, Y)
?
= −add(X,Y, Z)

+add(s(X), Y, s(Z))
?
= −add(X,Y, Z)

+add(s(X), Y, s(Z))
?
= −add(X,Y, Z)

+add(s(X), Y, s(Z))
?
= −add(2, 2, R)

(c) 2 recursive calls.

Figure 49.3: Examples of diagrams for the constellation Φ2+2
N . The number of occur-

rences of ϕ2 corresponds to the number of recursive calls. They correspond
to unfolding of the loop of Figure 49.2 corresponding to the possibility of
recursive call.

Chapter 7 Stellar resolution 234

– r ▷◁ r′ and

– colours(r) ∪ colours(r′) ⊆ C;

• end({(i, j), (i′, j′)}) = {i, i′}.

We simply write D[Φ] when links for all colours appearing in Φ are considered, i.e.
when C = F+] F−.

§49.11 Example. Two examples of dependency graphs for the two constellations Φn+m
N and

ΦN of Example 48.18 are presented in Figure 49.2.

§49.12 Definition (Adjacent of a ray). Let Φ be a constellation and D[Φ;C] = (V,E, end)
its dependency graph w.r.t. a set of colours C ⊆ F+]F−. The set of rays adjacent to
some given ray index (i, j) of Φ is defined by:

adjCΦ(i, j) := {(i
′, j′) | ∃e ∈ E, e = {(i, j), (i′, j′)}}.

§49.13 Definition (Degree of a ray). Let Φ be a constellation and D[Φ;C] = (V,E, end) its
dependency graph w.r.t. a set of colours C ⊆ F+] F−. The degree of a ray (i, j) is
defined by degCΦ(i, j) := |adjCΦ(i, j)|. We simply write degΦ when the set of colours is
omitted.

§49.14 Definition (Free, deterministic and branching rays). Let Φ be a constellation and
C ⊆ F+] F− a set of colours. We say that a ray r of Φ is:

• free if degCΦ(r) = 0;

• deterministic if degCΦ(r) = 1;

• branching if degCΦ(r) > 1;

• co-branching if there is some branching ray r′ ∈ adjCΦ(r).

§49.15 Remark. Unpolarised rays f ∈ F0 are always free but polarised rays can be free as
well if it has no dual rays in the constellation it is in.

§49.16 Definition (Diagram). A C-diagram (or simply diagram when C = F+] F−) over
a set of colours C ⊆ F+] F− and a constellation Φ of dependency graph D[Φ;C] :=
(VD, ED, endD) is a pair (Gδ, δ) where δ is hypergraph homomorphism (cf. Defini-
tion C.1.12) extended with other functions described below

δ : Gδ → D[Φ;C]

from a non-empty finite connected multigraph Gδ = (Vδ, Eδ, endδ). The homomor-
phism δ is made of:

• a map δ : Vδ → VD between vertices;

• a map δ : Eδ → ED between edges;

Chapter 7 Stellar resolution 235

1

2

(Φ[0],+c(X)) ▷◁ (Φ[0],−c(X))

Φ[0]

(Φ[0],+c(X)) ▷◁ (Φ[0],−c(X))

Figure 49.4: Technical remark about the definition of diagram. On the left we have a
diagram which is associated with a dependency graph on the right. Since we
only have the information of a link from a star to itself in the dependency
graph, we cannot infer the membership of rays in the diagram.

• for all v ∈ Vδ, an injection δv : Neigh(v) → IdRays(δ(v)) associating edges
incident to v in Neigh(v) := {e ∈ Eδ | v ∈ end(e)} to a ray of δ(v) such that:

– for all e ∈ Eδ, (δ(v), δv(e)) ∈ end(δ(e)) (it is coherent w.r.t. δ) and

– for all v, v′ ∈ Vδ and e ∈ Eδ such that end(e) = {v, v′}, we have δv(e) 6=
δv′(e) ensuring that all selected rays are distinct (in particular, it implies
that a same ray cannot be connected to other rays since it appears only
once).

The graph Gδ is considered up to renaming of the vertices and edges and for conve-
nience, we will often consider V ⊆ N in practice.

§49.17 Example. An example of three diagrams for the constellation Φ2+2
N (which is an

instance of the constellation Φn+m
N of Example 48.18) is given in Figure 49.3.

§49.18 Remark. The most natural definition of dependency graph and diagram uses undi-
rected edges because edges represent equations linking rays. Since edges make ex-
plicit which star the rays come from, there is usually no ambiguity. However, in
the case of loops, a problematic ambiguity occurs: when unfolding a loop by link-
ing a star with one of its copies in a diagram, we do not know which rays is related
to the link. Consider the constellation Φ := [+c(X),−c(X)] made of a unique star
Φ[0] := [+c(X),−c(X)]. The problem is illustrated in Figure 49.4. The dependency
graph is made of a link from Φ[0] to itself. When constructing a diagram of size 2
(for instance), we have two occurrences of Φ[0] but the membership of rays are not
distinguished. There are two possibilities: either +c(X) is coming from the first in-
stance or from the second instance. Although in this case it is not really a problem
(the result will be the same), it shows that considering undirected edges does not
give a faithful interpretation of the graphical and intuitive presentation of the model,
which may be problematic in some cases. Hence, two directions (for each rays of the
associated equation) must be distinguished. If we really want a problematic case, we
can consider the constellation [+a(f(X)),−a(X),+b(X)] + [−b(X)]. There is a loop
between −a(X) and +a(f(X)) in the first star. But if it linked to a copy of itself then
to −b(X), depending on if it is linked through −a(X) or −a(f(X)) we may (or not)

Chapter 7 Stellar resolution 236

D[Φ;C]

H ⊆ Gδ′

Gδ

δ′

δ

φ
'

(a) Saturation expressed with graph
homomorphisms.

v

(b) We have δ v δ′ when δ′ is an ex-
tension of δ with further links and
possibly repetitions of stars. Both
follow the connexions of a depen-
dency graph D[Φ;C].

Figure 49.5: Order v on diagrams representing an idea of saturation.

transmit f(X) to −b(X) by unification. This explains the need for injections δv for
all vertices v of a diagram. It explicitly shows what rays we are referring to.

§49.19 In order to make definitions more accurate, we must state when two diagrams are equiv-
alent. Otherwise, there are confusions because of the fact that the names of vertices in
diagrams can be freely changed. Intuitively, diagram equivalence should be related to
tiling equivalence. Two diagrams should be equivalent when they refer to an equivalent
tiling of stars in a given constellation.

§49.20 Definition (Diagram equivalence). Let (Gδ, δ) and (Gδ′ , δ
′) be two diagrams. They

are equivalent, written δ ' δ′, when Gδ ' Gδ′ with a graph isomorphism φ such that
δ = δ′ ◦ φ.

§49.21 Notation (Free rays and closed diagrams). Given a C-diagram (Gδ, δ) of a constel-
lation Φ with Gδ = (Vδ, Eδ, endδ), we define its multiset (cf. Appendix A.2) of free
(unconnected) rays free(δ) ⊆ IdRays(Φ) by:

free(δ) := multiset{r ∈ IdRays(Φ) | degCΦ(r) = 0}.

If free(δ) = ∅, we say that δ is closed.

§49.22 We usually would like diagrams to be impossible to extend by connecting more stars,
which corresponds to a notion of saturation. In terms of tiling it is understood as the
construction of the largest constructible tiling with occurrences of tiles from a given tile
set and in terms of programming, it corresponds to a complete computation to be done.

§49.23 Definition (Saturated diagram). We define a binary relation v (illustrated in Fig-
ure 49.5) on C-diagrams over a constellation Φ by: δ v δ′ if there exists an isomor-
phism φ from a graph H ⊆ Gδ′ to Gδ such that δ = δ′ ◦ φ. A maximal C-diagram
w.r.t. v is called saturated.

Chapter 7 Stellar resolution 237

§49.24 Proposition. The relation v is a preorder.

Proof. We have δ v δ by taking the subgraph Gδ ⊆ Gδ. The isomorphism φ is the
identity function so we trivially have δ = δ ◦ φ.

Assume we have δ1 v δ2 and δ2 v δ3. Hence, we have isomorphisms φ1,2 : (H2 ⊆ Gδ2) '
Gδ1 and φ2,3 : (H3 ⊆ Gδ3) ' Gδ2 such that δ1 = δ2 ◦ φ1,2 and δ2 = δ3 ◦ φ2,3. We can
construct an isomorphism φ1,2 ◦φ2,3 such that δ1 = δ3 ◦φ and Gδ3 is indeed an extension
of Gδ1 following the connexions of the same dependency graph.

§49.25 Links in a diagram have an underlying equation. It follows that a whole diagram is
associated with a unification problem. A minor but important technical problem is that
variables appearing in a constellation Φ are meant to be bound to their star. Hence,
before evaluating, we must rename variables so to mark their membership to a star of
Φ. Fortunately, it is possible to define a canonical renaming by using the star indexes
IΩ.

§49.26 Convention. Assume that the signature P contains a fresh symbol xv for each v ∈ V
such that all xv are pairwise distinct.

§49.27 Definition (Underlying equation and problem). Let (Gδ, δ) be a C-diagram of a
constellation Φ with Gδ = (Vδ, Eδ, endδ). By Convention 49.26, all vertices x ∈ V
induce a family of renamings αv(x) = xv for any variable x.

The underlying equation of an edge e ∈ Eδ such that endδ(e) = {v, v′} and δ(e) =
{(i, j), (i′, j′)} is defined by

eq(e) := αvbΦ[i][j]c
?
= αv′bΦ[i′][j′]c

and the underlying problem of δ is defined by

Prob(δ) = {eq(e) | e ∈ Eδ}.

Underlying problems are considered up to α-equivalence. In particular, the choice of
renaming function is not relevant but variables should be distinguished when they
come from two distinct stars.

§49.28 In Girard’s original paper [Gir17, Section 2.3], the evaluation of diagrams is defined
as an edge contraction. An edge e between two stars ϕ and ϕ′ contains an equation
which is resolved and then the associated solution is propagated to both ϕ and ϕ′. The
two connected rays associated with e are finally destructed in the process. It reminds
of chemical interactions but also of how information is propagated and organised in a
network. This process can fail in presence of errors during the execution of a unification
algorithm. This corresponds exactly to Robinson’s resolution (cf. Section 23) and it
generalises the composition of flows (cf. Section 37).

Chapter 7 Stellar resolution 238

ϕ1 ϕ2

ϕ′2 ϕ3 R

+add(0, Y1, Y1)
?
= −add(X2, Y2, Z2)

+add(s(X2), Y2, s(Z2))
?
= −add(X ′2, Y ′2 , Z ′2) +add(s(X ′2), Y

′
2 , s(Z

′
2))

?
= −add(2, 2, R)

(a) Correct diagram computing 2 + 2 (1 recursion) with the ray R visible.

ϕ1,2 ϕ′2 ϕ3 R
+add(s(0), Y1, s(Y1))

?
= −add(X ′2, Y ′2 , Z ′2) +add(s(X ′2), Y

′
2 , s(Z

′
2))

?
= −add(2, 2, R)

(b) Fusion of ϕ1 and ϕ2 with θ := {X2 7→ 0, Y2 7→ Y1, Z2 7→ Y1}.

ϕ1,2,2′ ϕ3 R
+add(2, Y1, s(s(Y1)))

?
= −add(2, 2, R)

(c) Fusion of ϕ1,2 and ϕ′2 with θ := {X ′
2 7→ s(0), Y ′

2 7→ Y1, Z
′
2 7→ s(Y1)}

ϕ1,2,2′,3 4

(d) Fusion of the two remaining stars with θ := {R 7→ 4}.

Figure 49.6: Fusion of the diagram from Figure 49.3b.

ϕ
r

ϕ′
r′r1

. . .

rn

r′1
. . .

r′m

⇝ ψ

θr1
. . .

θrn

θr′1
. . .

θr′m

Figure 49.7: Illustration of a step of fusion where θ is the principal unifier of the under-
lying unification problem of the pair of rays (r, r′). The fusion of the two
stars ϕ and ϕ′ along the rays r and r′ produces a new star ψ.

§49.29 We define this step-by-step procedure of diagram contraction based on an operation of
fusion, but also an alternative of evaluation called actualisation which can simulate steps
of fusion by evaluating a diagram by solving the whole unification problem associated.
It is similar to how small step evaluation differs from big step evaluation in the theory
of programming languages [Ama16, Section 1.1].

§49.30 Definition (Fusion). Let ϕ1 := ϕ′1]{r1} and ϕ2 := ϕ′2]{r2} be two stars. We define

their fusion ϕ1
j,j′

▽ ϕ2 by θϕ′1] θϕ′2 where ϕ1[j] ▷◁ ϕ2[j′] and θ := solution{ϕ1[j]
?
=

ϕ2[j
′]}.

We write ϕ1
j,j′

▽ α ϕ2 for the renaming of variables of both ϕ1 and ϕ2 to make them
distinct followed by their fusion.

We simply write ϕ1▽ϕ2 (and ϕ1▽α ϕ2) without indexes above when there is a unique

Chapter 7 Stellar resolution 239

possible choice of index and we choose to leave them implicit. Fusion is illustrated in
Figure 49.7.

§49.31 Example. Assume we have two stars ϕ+NR := [−add(X,Y, Z),+add(s(X), Y, s(Z))]
and ϕ2+2

Q := [−add(2, 2, R), R] indexed by natural numbers corresponding to their
position. We have:

ϕ+NR
1,0
▽ ϕ2+2

Q := [−add(1, 2, Z), s(Z)].

ϕ+NR
1,0
▽α (ϕ+NR

1,0
▽α ϕ

2+2
Q) := [−add(0, 2, Z ′), s(s(Z ′))].

§49.32 Lemma (Associativity of fusion). Let ϕ1, ϕ2 and ϕ3 be stars. We have

ϕ1
i,j
▽ (ϕ2

i′,j′

▽ ϕ3) ≈α (ϕ1
i,j
▽ ϕ2)

i′,j′

▽ ϕ3,

if we assume that all these fusions succeed.

Proof. It does not matter if some stars or all are the same. In case some stars are the
same, we will have to reduce loops but in the end, what matters are only the equations
involved and loops only add equations with identical variables, i.e. we have t ?

= u such
that variables of t may appear in u because we are in the same star. We can consider
without loss of generality that all stars are distinct. Assume we have three stars:

ϕ1 := [u1, ..., un, r1], ϕ2 := [v1, ..., vm, r2, r
′
2], ϕ3 := [s1, ..., sk, r3]

with ϕ1[i] = r1, ϕ2[j] = r2, ϕ2[i
′] = r′2 and ϕ3[j′] = r3.

Assume that rays are uniquely connected and that we have:

• θ := solution{r1
?
= r2}, θ′ := solution{r′2

?
= r3};

• ψ := solution{θ′r1
?
= θ′r2}, ψ′ := solution{θr′2

?
= θr3}.

If we try to apply the steps of fusion, we have:

• ϕ1
i,j
▽ (ϕ2

i′,j′

▽ ϕ3) = ϕ1
i,j
▽ [θ′v1, ..., θ

′vm, θ
′s1, ..., θ

′sk, θ
′r1, θ

′r2]
= [ψθ′u1, ..., ψθ

′un, ψθ
′v1, ..., ψθ

′vm, ψθ
′s1, ..., ψθ

′sk];

• (ϕ1
i,j
▽ ϕ2)

i′,j′

▽ ϕ3 = [θu1, ..., θun, θv1, ..., θvm, θr
′
2, θr3]

i′,j′

▽ ϕ3
= [ψ′θu1, ..., ψ

′θun, ψ
′θv1, ..., ψ

′θvm, ψ
′θs1, ..., ψ

′θsk].

We can think about how the subsitutions are constructed. Both substitutions can be
constructed from the same set of equations {r1

?
= r2, r

′
2

?
= r3}. The substitution ψθ′ is

constructed by solving the equations of r′2
?
= r3 first then the equations of r1

?
= r2. The

substitution ψ′θ is obtained by reversing the order: first the equations of r1
?
= r2 are

Chapter 7 Stellar resolution 240

solved then the ones of r′2
?
= r3. By Theorem B.2.6, we can solve the equations in any

order and obtain the same solution up to renaming. Hence ψθ′ and ψ′θ have the same
action on terms up to renaming.

Remark that there is no need to consider failure because one failure is expected to make
the whole diagram collapse.

§49.33 Definition (Diagram contraction). The operation of diagram contraction over a C-
diagram (Gδ, δ) for C ⊆ F−] F+ with:

• Gδ := (Vδ, Eδ, endδ);

• D[Φ;C] = (VD, ED, endD)

is defined as a graph rewriting of Gδ along some edge e ∈ Eδ such that end(e) = {v, v′}
(possibly with v = v′) and δ(e) = {(i, j), (i′, j′)} (possibly with i = i′), which updates
the homomorphism δ : Gδ → D[Φ;C]. It produces a new diagram

e
▽(Gδ, δ) = (G′δ, δ

′)
with G′δ := (Vδ′ , Eδ′ , endδ′) and δ′ : Gδ′ → D[Φ′;C], defined as follows:

• Assume v 6= v′. We want to do an edge contraction between two different
vertices. We remove v, v′ and their incident edges and replace them by a new
vertex w inheriting their previous bonds, i.e. Vδ′ := Vδ − {v, v′} ∪ {w} and for
e1, ..., en ∈ Eδ with endδ(ei) = {vi, v} and for e′1, ..., e′m ∈ Eδ with endδ(e′i) =
{v′i, v′} we have Eδ′ := (Eδ−{e, e1, ..., en, e′1, ..., e′m})∪

∪n
i=1{gi}∪

∪m
i=1{g′i} such

that endδ′(gi) = (vi, w) and endδ′(g′i) = (v′i, w). In the other cases, we have
endδ′(x) = endδ(x);

We adapt the homomorphism to the previous change.

– Φ′ is defined by IΦ′ := IΦ − {i, i′}, and Φ′[iw] := αvΦ[i]
j,j′

▽ αv′Φ[i
′] for

some fresh iw 6∈ IΦ and Φ′[k] := Φ[k] otherwise, where αu comes from
Definition 49.27;

– δ′(w) = iw and δ′(x) = δ(x) otherwise;

– if ei = {(δ(vi), ji), (−, j′i)} then δ′(gi) = {(δ(vi), ji), (iw, j′i)} and if e′i =
{(δ(v′i), ji), (−, j′i)} then δ′(g′i) = {(δ(v′i), ji), (iw, j′i)}.

• Assume v = v′. We want to do an edge contraction linking one same vertex.
We have Vδ′ := Vδ and Eδ′ := Eδ − {e}. We have δ′(x) = δ(x) (but δ′(e) is
not defined anymore). Almost nothing changes except that we remove the edge
e and the only star δ(v) = δ(v′) is updated. The constellation Φ is defined by
IΦ′ := IΦ such that Φ[δ(v)] is a star ϕ such that Iϕ := θ(Iδ(v) − {j, j′}) with
ϕ[j′′] = θΦ[δ(v)][j′′] for all j′′ ∈ Iϕ for θ the solution of eq(e).

Chapter 7 Stellar resolution 241

We write (Gδ, δ) ⇝e (Gδ′ , δ
′) when (Gδ′ , δ

′) =
e
▽(Gδ, δ) along the edge e, and write

(Gδ, δ)⇝n (Gδ′ , δ
′) when there is a series n ≥ 0 of steps such that (Gδ, δ)⇝e1 ...⇝en

(Gδ′ , δ
′) for some edges e1, ..., en. We leave the edge e implicit when obvious or not

important and we can write ⇝∗ instead of ⇝n when the number of steps is implicit.

§49.34 Definition (Correct diagrams and their actualisation). A C-diagram (Gδ, δ) of a
constellation Φ is correct if Prob(δ) has a solution.

The actualisation of a correct diagram (Gδ, δ) is the star ⇓ δ defined by I⇓ δ := free(δ)
such that (⇓ δ)[(i, j)] = (ψ ◦ θ)(Φ[i][j]), where ψ := solution(Prob(δ)) and θ :=
αv1◦...◦αvn with V Gδ = {v1, ..., vn} is the composition of renamings of Definition 49.27.

§49.35 Lemma (Termination of diagram contraction). If (Gδ, δ) is correct then there exists
(Gδ′ , δ

′) such that (Gδ, δ)⇝∗ (Gδ′ , δ
′) and there is no (Gδ′′ , δ

′′) such that (Gδ′ , δ
′)⇝∗

(Gδ′′ , δ
′′).

Proof. By Theorem B.2.3 and the fact that fusion always succeed for correct diagrams,
since (Gδ, δ) is correct, the underlying unification problem only has solvable equations
and hence there exists a full execution or the algorithm.

§49.36 Corollary (Confluence of diagram contraction). For some diagrams (Gδ, δ), (Gδ1 , δ1)
and (Gδ2 , δ2), if (Gδ, δ) ⇝∗ (Gδ1 , δ1) and (Gδ, δ) ⇝∗ (Gδ2 , δ21) then there exists
(Gδ′ , δ

′) such that (Gδ1 , δ1)⇝∗ (Gδ′ , δ
′) and (Gδ2 , δ2)⇝∗ (Gδ′ , δ

′).

Proof. By the associativity of fusion (cf. Lemma 49.32), and the fact that diagram con-
traction is a step of fusion inside the graph of a diagram, we can infer that we have com-
mutation of diagram contraction, i.e. (Gδ1 , δ1)⇝e D ⇝e′ (Gδ2 , δ2) = (Gδ1 , δ1)⇝e′ D ⇝e

(Gδ2 , δ2) for some diagram D. From this result, we have local confluence of diagram con-
traction. Together with the termination of diagram contraction (cf. Lemma 49.35), it is
possible to use the so-called Newman’s lemma [BN98, Lemma 2.7.2] to infer the conflu-
ence of diagram contraction (actually the diamond property which is equivalent).

§49.37 Lemma. If (Gδ, δ)⇝e (Gδ′ , δ
′) then ⇓(Gδ, δ) = ⇓(Gδ′ , δ

′).

Proof. Assume (Gδ, δ) ⇝e (Gδ′ , δ
′) with e = {(v, j), (v′, j′)} and (Gδ, δ) is defined over

a constellation Φ. There are two cases.

• Assume v 6= v′. We have done an edge contraction on Gδ where two vertices
merged into one vertex w such that Φ[δ(w)] := αvΦ[δ(v)]

j,j′

▽ αv′Φ[δ(v
′)]. It terms

of equations, what we have done is computing θ := solution{αvΦ[δ(v)][j]
?
=

αv′Φ[δ(v
′)][j′]} and applying it on the merge of the two interacting stars δ(v) and

δ(v′). The only difference between (Gδ, δ) and (Gδ′ , δ
′) is this one equation eq(e)

Chapter 7 Stellar resolution 242

ϕ1 + . . .+ ϕn

Constellation Φ

ϕ1
ϕ2 ϕ3. . .

ϕn

D[Φ]

ϕ1
ϕ3. . .

ϕn

CSatDiags(Φ)

...
ϕ1

ϕ1 ϕ1. . .

ϕ2

ψ1

...

ψm

AEx(Φ)

list
dependencies

⇝

list
diagrams

⇝

evaluate
diagrams

⇝

Figure 49.8: Illustration of the execution of a finite and strongly normalising constella-
tion.

which has been solved. If we translate this situation in terms of equation solving,
it corresponds to the transition between P ∪ {eq(e)} and P ∪ P ′ such that

→
P ′ = θ

where P contains the other equations of (Gδ, δ). In particular, by confluence of the
unification algorithm (cf. Theorem B.2.4), equations can be solved in any order
and we would end up on the same result in any case. It follows that actualisation
can first solve eq(e) and the remaining equations are the ones of (Gδ′ , δ

′).

• Assume v = v′. The reasoning is the same and an equation is still solved except
that we have a connexion between two rays of a same star instead of a fusion
between two occurrences of stars.

§49.38 Theorem (Relation between diagram contraction and actualisation). For all correct
diagram (Gδ, δ) such that Gδ := (Vδ, Eδ, endδ), we have (Gδ, δ)⇝|Eδ | ⇓(Gδ, δ).

Proof. By induction on n = |Eδ|. If n = 0 then we have 0 links and (Gδ, δ) reduces
to itself in 0 step, which corresponds to ⇓(Gδ, δ). For the inductive case, we have
n = n′ + 1 and we assume that (Gδ′ , δ

′)⇝n′ ⇓(Gδ′ , δ
′) and show (Gδ, δ)⇝n′+1 ⇓(Gδ, δ)

or equivalently (Gδ, δ) ⇝ (Gδ′ , δ
′) ⇝n′ ⇓(Gδ, δ) for some (Gδ′ , δ

′). By Lemma 49.37,
if (Gδ, δ) ⇝ (Gδ′ , δ

′), we must have ⇓(Gδ, δ) = ⇓(Gδ′ , δ
′). It means that solving the

equations for δ and δ′ ultimately leads to the same result. Hence, by substitution on
the induction hypothesis, we have (Gδ′ , δ

′) ⇝n′ ⇓(Gδ, δ). Therefore, (Gδ, δ) ⇝n′+1

⇓(Gδ, δ).

§49.39 Remark. The actualisation of diagrams corresponds to a single star because diagrams
are connected.

Chapter 7 Stellar resolution 243

Execution of constellations

§49.40 The (abstract) execution of a constellation Φ consists in computing all the correct satu-
rated diagrams of Φ and actualising them. This process is illustrated in Figure 49.8.

§49.41 Notation (Set of correct saturated diagrams). We write SatDiagsC(Φ) for the set
of all saturated diagrams obtained from D[Φ;C] for a constellation Φ and a set of
colours C ⊆ F . We omit the set of colours and simply write SatDiags(Φ) when C is
all colours of F .

We write CSatDiagsC(Φ) for the set of all diagrams in SatDiagsC(Φ) which are cor-
rect.

§49.42 Definition (Execution and normal form). The execution or normal form of a con-
stellation Φ w.r.t. a set of colours C ⊆ F is defined by AExC(Φ) := ⇓ CSatDiagsC(Φ),
where

⇓ CSatDiagsC(Φ) := {⇓ δ | δ ∈ CSatDiagsC(Φ)}.

We write AEx(Φ) when all colours in Φ participate in the execution.

§49.43 We define an operation of concealing which violently mutes the constellation by removing
stars containing polarised rays, thus forbidding any communication with other stars.

§49.44 Definition (Concealing). Let Φ be a constellation. The concealing of Φ is the con-
stellation Φ defined by I Φ := {i ∈ IΦ | ϕ := Φ[i], ∀j ∈ Iϕ, ϕ[j] is uncoloured}.

§49.45 We define an operation of noise filtering of a constellation which removes the empty stars
which are irrelevant since they cannot be connected. However, they still are valuable for
quantitative analyses as we will see in the interpretation of MLL.

§49.46 Definition (Noise filtering). Let Φ be a constellation. The noise filtering of Φ is the
constellation ♭Φ := {i ∈ IΦ | Φ[i] 6= []}.

§49.47 The plurality of diagrams is related to the several parallel choices for branching rays
(but branching rays do not necessarily yield several diagrams). The execution is defined
as if we were considering all possible choices at once. It is not a problem because in logic
programming for instance, inferences coming from a given query can lead to several
answers and we are usually interested in all possible answers.

§49.48 It is possible to recover the notion of choice by simply picking a star of the normal form
of a constellation. This is not very natural since we have to compute all possibilities
before making the choice. It is however sufficient for abstract execution which is purely
mathematical.

Chapter 7 Stellar resolution 244

§49.49 Definition (Non-deterministic choice). Let Φ be a constellation. A non-deterministic
choice over Φ is defined by a constellation picki(Φ) := Φ[i] where i ∈ IAEx(Φ). We
simply write pick(Φ) when we do not want to specify the index of the selected star.

The dynamics of subjective rays

§49.50 Something which has barely been mentioned is the case of internal polarities, the main
feature making our model different from original resolution. There are two important
characteristics of the introduction of internal polarities:

1. they introduce new polarised rays during execution. For instance, in

[−f(+g(X))] + [X,+f(X)],

if we connect the two stars along −f(+g(X)) and +f(X), we obtain [+g(X)]. We
transformed an unpolarised ray X into a new polarised ray +g(X);

2. they introduce mechanisms of synchronisation. In the previous example, if we want
to interact/communicate with +g(X) we must first making +f and −f interact.
This is reminiscent of the use of semaphores in programming.

§49.51 Now, how does our abstract execution react in presence of internal polarities? The
first point previously mentioned is problematic because diagrams are fixed structures.
Once you construct a diagram connecting +f with −f , you cannot see that there is an
interaction available with +g(X) providing we unlock it by first interacting with the
colour ±f . We could change definitions and make execution conscious of that but that
would be complicated and probably unnecessary. What internal polarities do is that even
after fully executing a constellation, there may be new connexions left. For instance in:

[−f(+g(X))] + [X,+f(X)] + [−g(X),+f(X), a]

we can make two diagrams over the colour ±f and the whole constellation has the normal
form [+g(X)] + [−g(+g(X)), a]. This constellation can be executed again but its stars
should be extended with stars of the initial constellation which has been lost during the
first execution. We see that [+g(X)] can be connected with [−g(+g(X)), a], leading to
[a] but also with [−g(X),+f(X), a] and in that case we obtain [+f(X), a] which can be
extended with [−f(+g(X))], leading to [a]. We obtain [a]+ [a] which is the “real normal
form”. We can then handle internal polarities with repeated execution corresponding to
several sequential layers in computation (as in imperative programming or any sequential
model of computation).

§49.52 Definition (Iterated and hyper execution). Let Φ and Ψ be constellations and C ⊆

Chapter 7 Stellar resolution 245

F+]F− a set of colours. We define its iterated execution by the following constellation:

AEx0Φ,C(Ψ) = Ψ AEx1Φ,C(Ψ) = AExC(Ψ)

AExn+1
Φ,C (Ψ) = AExC(Ψ′] AExnΦ,C(Ψ)) for n > 1

where Ψ′ is the constellation made of stars of Φ which are matchable with the stars
of AExnΦ,C(Ψ).

The hyper execution of Φ is a constellation AEx∞C (Φ) := AExkΦ,C(Φ) which is defined
when there exists some k ∈ N such that AExkΦ,C(Φ) = AExk+1

Φ,C (Φ).

§49.53 Example. For the constellation

Φ := [−f(+g(X))] + [X,+f(X)] + [−g(X),+f(X), a],

we have AEx1Φ,C(Φ) = [+g(X)]+[−g(+g(X)), a] and AEx∞C (Φ) = AEx2Φ,C(Φ) = [a]+[a].

§49.54 Proposition (Objective full evaluation). Let (Gδ, δ) be a C-diagram for a constella-
tion Φ such that all stars are objective. There is no pair of matchable rays in ⇓(Gδ, δ).

Proof. First, free(δ) contains no pair of matchable rays, by definition. The only way to
produce pairs of matchable rays is to have an equation {X 7→ s} in Prob(δ) replacing a
variable X by some subjective ray s. However, since all stars are objective and equations
do not consider head polarities by definition of b·c, it follows that there is no such
equation. Therefore, there cannot be pair of matchable rays in ⇓(Gδ, δ).

§49.55 Corollary (Idempotence of abstract execution). For any constellation Φ and set of
colours C ⊆ F+] F−, if Φ has only objective stars then AExC(AExC(Φ)) = AExC(Φ).

Proof. By Proposition 49.54, since abstraction execution is made of the actualisation
of all saturated and correct diagrams and that those diagrams do not have pairs of
matchable rays, each star of AExC(Φ) has no pair of matchable rays. It remains to show
that there are no pair of matchable rays between the distinct stars. If we had Φ[i][j] ▷◁
Φ[i′][j′] with i 6= i′ then those two rays could have been connected and form a same
diagram and are thus not free in (Gδ, δ). It follows that no diagram can be constructed
from AExC(Φ) if all stars are objective. Therefore, AExC(AExC(Φ)) = AExC(Φ).

§49.56 Proposition (Idempotence barrier). For any constellation Φ and set of colours C ⊆
F+] F−, if AEx∞C (Φ) = AExkC(Φ) for some k ∈ N then for all l ∈ N, AExk+1+l

C (Φ) =

AExk+l
C (Φ).

Proof. Assume we have AEx∞C (Φ) = AExkC(Φ). We know by the definition of AEx∞C (Φ)

that AExk+1
C (Φ)

H
= AExkC(Φ). By induction on l.

Chapter 7 Stellar resolution 246

� Base case If l = 0 then we have AExk+1+0
C (Φ) = AExk+1

C (Φ)
H
= AExkC(Φ) = AExk+0

C (Φ).

� Inductive case Now assume l = l′ + 1 and AExk+1+l′

C (Φ) = AExk+l′

C (Φ) (induction
hypothesis). By definition and by using the induction hypothesis, we have

AExk+1+l
C (Φ) = AExk+1+l′+1

C (Φ) = AExC(AExk+1+l′

C (Φ))
IH
= AExC(AExk+l′

C (Φ))

= AExk+l′+1
C (Φ) = AExk+l

C (Φ).

§49.57 Although execution is always idempotent for objective constellations, we have seen in
the previous example that it can be lost in presence of subjective rays. If there is a point
in repeated execution where we reach idempotence then hyperexecution is idempotent
(it is similar to the nilpotency property in GoI).

§49.58 Corollary (Idempotence of hyper execution). For any constellation Φ and set of
colours C ⊆ F+]F−, if AEx∞C (Φ) = AExkC(Φ) for some k ∈ N then AEx∞C (AEx∞C (Φ)) =
AEx∞C (Φ).

Proof. By hypothesis, we have AEx∞C (Φ) = AExkC(Φ) for some k ∈ N. Hence we have to
prove AExkC(AExkC(Φ)) = AExkC(Φ). By induction on k.

� Base case If k = 0 then AEx0C(AEx0C(Φ)) = AEx0C(Φ) = Φ.

� Induction case Assume k = k′+1 and AExk′C (AExk′C (Φ)) = AExk′C (Φ) (induction hypoth-
esis). We have AExkC(AExkC(Φ)) = AEx2C(AExk′C (AExk′C (Φ)))

IH
= AEx2C(AExk′C (Φ)) =

AEx(CAExk
′+1

C (Φ)) = AEx(CAExkC(Φ)) = AExk+1
C (Φ). By Proposition 49.56 with

l := 0, it is equal to AExkC(Φ) which is what we were looking for.

§49.59 I leave a small open question: is there always a k ∈ N such that AEx∞(Φ) for any
constellation Φ or if there is a constellation always leaving new pairs of matchable rays
after abstract execution (by using the dynamics of internal colours).

§49.60 Hyper execution is not necessarily defined. It is possible that after abstract execution,
there are always pairs of matchable rays. Hence, it is possible to never reach a normal
form.

§49.61 Example. Consider the following constellation:

Φ := [X,+f(X)] + [−f(−g(X)),−g(X)] + [+g(X),+g(X), a].

The two stars [X,+f(X)] and [−f(−g(X)),−g(X)] (which can be connected) are

Chapter 7 Stellar resolution 247

duplicated in order to satisfy the rays of [+g(X),+g(X), a]. After abstract execution,
we obtain [−g(X),−g(X), a] + [−g(X),−g(X), a]. However, these stars can also be
connected to [X,+f(X)]+ [−f(−g(X)),−g(X)] from Φ. Applying abstract execution
again will create more occurrences of [−g(X),−g(X), a].

50 Concrete execution

§50.1 In his first paper on TS, Girard already defined an effective way to execute constellations
[Gir17, Section 2.3] by giving a method to construct diagrams. However, it was only
valid for the deterministic case with tree-shaped diagrams, which is very simple. In the
deterministic case, all rays are uniquely linked. The general idea is to find an iterative
way to construct the saturated and correct diagrams of abstract execution. We extend
Girard’s idea to branching rays in which a ray can be dual to several other rays.

§50.2 Definition (Construction space). A construction space is an expression

Φ `C ∆ | Ψ

where C ⊆ F+] F− is a set of colours, i ∈ N, Φ and Ψ are constellations and ∆
is a set of diagrams where two diagrams are identified by diagram equivalence (cf.
Definition 49.20). We write ` for `F+⊎F− .

§50.3 The idea is that Φ ` ∆ | Ψ represents a state during the process of the construction
of all diagrams for Φ (which is the constellation we would like to execute). The set ∆
is the set of all diagrams being constructed incrementally. Finally, the constellation Ψ
will contain the normal form of Φ at the end. When diagrams are saturated, they are
evaluated by actualisation and put in Ψ when correct or are simply discarded.

§50.4 Definition (Diagram extension). Let (G, δ) be a C-diagram of a constellation Φ for a
set of colours C ⊆ F+]F− with G := (V,E, end). We define two operations extending
diagrams with a new edge (both illustrated in Figure 50.1):

� Internal extension (G, δ)
(v,j)
⊕ in (v′, j′) with v, v′ ∈ V and (δ(v), j), (δ(v′), j′) ∈

±IdRays(Φ) only defined when

• (δ(v′), j′) ∈ adjCΦ(δ(v), j) and

• (δ(v), j) ∈ free(G, δ),

which defines a new diagram (G′, δ′) such that G′ := (V,E′, end′) with:

• E′ := E ∪ {e} for a fresh e;

• end′(e) = {v, v′} and end′(x) = end(x) otherwise;

• δ′(e) = {(δ(v), j), (δ(v′), j′)} and δ′(x) = δ(x) otherwise.

Chapter 7 Stellar resolution 248

v1 v2

e

(a) Internal extension with an edge e of a diagram with vertices v1, v2.

v1 v2

v′

e

(b) External extension with an edge e of a diagram with vertices v1, v2. A new vertex v′ is added
for a new occurrence of star of the constellation.

Figure 50.1: Diagram extensions.

This operation connects two rays of a same diagram together.

� External extension (G, δ)
(v,j)
⊕ out (i

′, j′) with v, v′ ∈ V and

(δ(v), j), (i′, j′) ∈ ±IdRays(Φ)

only defined when

• (i′, j′) ∈ adjCΦ(δ(v), j) and

• (δ(v), j) ∈ free(G, δ),

which defines a new diagram (G′, δ′) such that G′ := (V ′, E′, end′) with:

• V ′ := V ∪ {v′} for a fresh v;

• E′ := E ∪ {e} for a fresh e;

• end′(e) = {v, v′} and end′(x) = end(x) otherwise;

• δ(v′) = i′, δ′(e) = {(δ(v), j), (i′, j′)} and δ′(x) = δ(x) otherwise.

This operation connects a ray of the diagram (G, δ) with a new occurrence of
star from the constellation Φ.

§50.5 Definition (Stellar construction). Let Φ `C ∆|Ψ be a construction space. A step of
stellar construction takes all diagrams in ∆ and extend it with:

(Φ `C ∆ | Ψ)⇝ (Φ `C ∆′ | Ψ′)

where:

Chapter 7 Stellar resolution 249

• if SatDiags(∆) is the set of saturated diagrams in ∆ then

Ψ′ := Φ′] ⇓ SatDiags(∆);

• for all (G, δ) ∈ ∆ − SatDiags(∆) such that G := (V,E, end), we select non-
deterministically a ray (i, j) ∈ Iδ(v) ∩ free(G, δ) for some v ∈ V ;

• for all (i′, j′) ∈ adjCΦ(i, j), we have (G, δ)
(i,j)
⊕ out (i

′, j′) ∈ ∆′;

• for all (δ(v′), j′) ∈ adjCΦ(i, j) such that v ∈ V and (δ(v′), j) ∈ free(G, δ), we

have (G, δ)
(i,j)
⊕ in (δ(v

′), j′) ∈ ∆′.

As usual, we write ⇝∗ for the reflexive transitive closure of ⇝.

§50.6 Definition (Concrete execution). Let Φ be a constellation. Its concrete execution is
defined by a constellation CExC(Φ) such that

(Φ `C (G1, δ1), ..., (Gn, δn) | ∅)⇝∗ (Φ `C ∅ | CExC(Φ))

and:

1. for i ∈ IΦ with 1 ≤ i ≤ n, (Gi, δi) where Gi := (Vi, Ei, endi) is a diagram
containing only the star Φ[i], i.e. V := {vi}, δ(vi) = i and E := ∅;

2. no step of stellar construction can be applied on (Φ `C ∅ | CExC(Φ)) (we say
that the construction space is in normal form).

§50.7 Theorem (Equivalence between abstract and concrete execution). Let Φ be a con-
stellation and C ⊆ F+] F− be a set of colours. When CExC(Φ) is defined, we have
AExC(Φ) = CExC(Φ).

Proof. If CExC(Φ) is defined then (Φ `C (G1, δ1), ..., (Gn, δn) | ∅)⇝∗ (Φ `C ∅ | CExC(Φ))
with Φ `C ∅ | CExC(Φ) in normal form. We show that for construction space (Φ `C ∆′ |
Ψ′) occurring during concrete execution, ∆′ contains all diagrams of Φ with n edges, Ψ′
all actualisation of saturated diagrams of Φ with n− 1 edges for n the number of steps
done starting from the initial construction space. By induction on n.

� Base case Assume n = 0. We have the initial construction space. By definition, the
diagrams of ∆′ are all diagrams of 0 edge. There is no saturated diagram of size
−1 hence we have Ψ′ := ∅;

� Induction case Assume n = n′ + 1. Assume we have (Φ `C ∆′ | Ψ′) with ∆′ contain-
ing diagrams of n′ edges and Ψ′ actualisation of saturated diagrams of n′−1 edges.
We have one more step and obtain (Φ `C ∆′′ | Ψ′′). By definition of stellar con-
struction, ∆′′ extends diagrams of ∆′ (which contains all diagrams of n′ edges) by
an edge (either by connecting two vertices/stars of the diagram or adding another

Chapter 7 Stellar resolution 250

occurrence of star from Φ), hence ∆′′ contains all diagrams of n′+1 edges. Again,
by definition of stellar construction, a step actualise all saturated diagrams of ∆′
and put them in Ψ′′ which hence contains all actualisation of saturated diagrams
of n′ − 1 + 1 = n′ edges.

§50.8 Remark. Concrete execution is only defined when the construction of diagrams is
terminating. Hence, concrete execution is weaker than abstract execution in some
sense since abstract execution can compute infinite constellations and is always de-
fined. Concrete execution only produces finite constellations.

51 Interactive execution

§51.1 When Girard presented stellar resolution (which was simply called “stars and constel-
lations”), his execution was something along the lines of concrete execution. Concrete
execution (in the deterministic case) is thus Girard’s original notion of execution. How-
ever, although concrete execution is rather intuitive and natural, it is only few months
before my PhD defence that I defined it in my manuscript. When I first worked with
Thomas Seiller on stellar resolution, we only worked with abstract execution because it
was sufficient2. Since the beginning, I wanted to build something of a more computa-
tional fashion and I tried to implement it in Haskell3. This is what is presented in the
section under the name of “interactive execution”. Oddly enough, it is also few months
before my defence that is has been properly and formally defined.

§51.2 The idea is not so different from concrete execution. Instead of constructing diagrams
incrementally, we directly construct the actualisation of diagrams incrementally, by mak-
ing stars interact by fusion “on the fly”. The big difference is that we lose the structure
of graph and in particular we are not able to distinguish two stars which came from the
same diagram (as in concrete execution which identifies diagrams up to isomorphism).
Interactive execution hence considers different execution traces in which diagrams are
not incrementally constructed in the same order. This is a sort of directed version of
concrete execution. The drawback is that we may end up with a lot of redundancies
in the normal form but we can cope with that by selecting the right initial stars and
not necessarily all stars of the constellation we would like to execute. Typically, if we
implemented an automata, we would choose the subconstellation representing the initial
state.

2It also seems that this choice was influenced by Thomas Seiller’s mathematical taste. He liked the
presentation of diagrams as graph homomorphism.

3I called the program “Large Star Collider”. I’m currently working on another implementation in
OCaml instead (because I wanted to practice OCaml).

Chapter 7 Stellar resolution 251

1

3 2

4

(a) A particular diagram with 4 vertices corresponding to stars linked by 4 edges representing
links between rays of those stars.

1

2 3

3 4 2 4

4 3 4 2

4

3 2

1 2 3 1

2 1 1 3

4

3 2 2

2 4 2 1 4 1

4 2 1 2 1 4

4

3 2 2

2 4 2 1 4 1

4 2 1 2 1 4

Figure 51.1: A diagram and 4 ways to construct it by iteratively adding edges.

§51.3 Definition (Interactive configuration). An interactive configuration is an expression

Φ `C Ψ

where Φ and Ψ are constellations, and C ⊆ F+] F− is a set of colours. We write `
instead of `C when C = F+] F−.

The constellation Φ is called reference constellation and Ψ is called interaction space.

§51.4 In an interactive configuration Φ `C Ψ, the reference constellation Φ corresponds to
the constellation we would like to execute and the interaction space Ψ corresponds
to a space where stars will interact in order to construct the result (corresponding to
partial evaluations of diagrams). Interaction configurations can be transformed by some
rules corresponding to the iterative construction of diagrams. Those transformations are
dependent on a selected ray. The goal is to trigger interaction with other rays until no
interaction is possible anymore in the interaction configuration (this corresponds to the
property of saturation for diagrams).

§51.5 It may technically be possible to filter out the superfluous stars in the normal form by
using arguments from combinatorics. We need to make all stars of the constellation
initial (hence we start with Φ `C Φ) and for all possible diagrams we need to think
about how many ways/order a diagram can be constructed from, by iteratively adding
edges. An example of diagram with 4 ways to construct it is given in Figure 51.1.

§51.6 Definition (Set of matchable rays). Let Φ be a constellation, C ⊆ F+] F− a set
of colours and r any ray. We define the set of rays identifiers matchable with r in Φ

Chapter 7 Stellar resolution 252

w.r.t. C by:

matCΦ(r) := {(i, j) ∈ ±IdRays(Φ) | r ▷◁ Φ[i][j], colours(r) ∪ colours(Φ[i][j]) ⊆ C}.

As usual, we simply write matΦ(r) when C = F+] F−.

§51.7 Definition (Self-interaction). Let Φ[i] be a star of a constellation Φ with i ∈ IΦ. We
define the self-interaction

j,j′

▷ Φ[i] of Φ[i] along the rays j and j′ as the star ϕ such that
Iϕ := θ(IΦ[i] − {j, j′}) with θ the solution of {Φ[i][j] ?

= Φ[i][j′]}.

§51.8 Example. Assume rays are indexed by natural numbers corresponding to their po-
sition in stars. We have that

0,1
▷ [+f(X),−f(g(X))] is undefined and

0,1
▷ [+c(X),−c(X), a] = [a].

§51.9 Definition (Stellar interaction). We define stellar interaction for an interactive con-
figuration Φ `C Ψ w.r.t. some set of colours C ⊆ F+]F−. Stellar interaction depends
of some selected ray (i, j) ∈ ±IdRays(Ψ). We set Ψ := Ψ′ + Ψ[i], hence the selected
ray is Ψ[i][j].

We have the following transition step:

Φ `C Ψ′ +Ψ[i]

(i,j)⇝ Φ ` Ψ′ +
∑

(ik,jk)∈matCΦ (Ψ[i][j])

Ψ[i]
j,jk▽ Φ[ik]

+
∑

(i,jk)∈matC
Ψ[i]

(Ψ[i][j])

j,jk
▷ Ψ[i]

where:

• the first sum corresponds to all possible ways to interact with a new occurrence
of star Φ[ik] from Φ along a free ray Ψ[i][j] of Φ[i] which is matchable with some
Φ[ik][jk];

• the second sum corresponds to all possible ways to connect two free matchable
rays in the same star Ψ[i] (representing a partial diagram being constructed).

When a unification error occurs for ψ
k,k′

▽ ψ′ or
k,k′

▷ ψ then they disappears from the
interaction space. We write ⇝∗ for the reflexive transitive closure of ⇝. We say that
Φ `C Ψ is in normal form when no step of stellar interaction can be applied anymore.

Chapter 7 Stellar resolution 253

§51.10 Definition (Interactive execution). Let Φ a constellation and C ⊆ F+] F− a set of
colours. We define its interactive execution w.r.t. an initial subconstellation Ψ of Φ
by a constellation IExC(Φ,Ψ) such that Φ `C Ψ⇝∗ IExC(Φ,Ψ) and IExC(Φ,Ψ) is in
normal form. We write IExC(Φ) for IExC(Φ,Φ).

§51.11 Example (Logic program for addition). We have

Φ2+2
N := [

(0,0)

+add(0, Y, Y)] + [
(1,0)

−add(X,Y, Z),
(1,1)

+add(s(X), Y, s(Z))] + [
(2,0)

−add(2, 2, R),
(2,1)

R]

with stars and rays indexed the natural indexing with natural numbers corresponding
to their position. We put indexes on the top of rays to make things clearer.

• We compute IExC(Φ2+2
N , [

(0,0)

−add(2, 2, R),
(0,1)

R]) by first selecting the ray (0, 0) of
the interaction space.

Step Ψ[i][j] Configuration matCΦ matCΨ[i]

0 (0, 0) Φ2+2
N ` [−add(2, 2, R), R] {(1, 1)} ∅

1 (0, 0) Φ2+2
N ` [−add(s(0), 2, Z), s(Z)] {(1, 1)} ∅

2 (0, 0) Φ2+2
N ` [−add(0, 2, Z), s(s(Z))] {(0, 0)} ∅

3 Φ2+2
N ` [4] ∅ ∅

– Step 0 : we only have the query. It is matchable with a ray of the recursion
star. We apply a step of fusion;

– Step 1 : we can only use the recursion star again (only matchable ray is
(1, 1) from Φ);

– Step 2 : the remaining star is only matchable with (0, 0) in Φ, we apply a
last step of fusion.

Remark that after “peeling” the query, we actually remove the potential non-
determinism. When we reach 0 as first argument in the query, there is only one
matchable ray which is [+add(0, Y, Y)].

• Interestingly, if we start from the wrong initial constellation (or consider Φ2+2
N `

Φ2+2
N), we may end up with an unwanted computational behaviour.

Chapter 7 Stellar resolution 254

Step Ψ[i][j] Configuration matCΦ matCΨ[i]

0 (0, 0) Φ2+2
N ` [+add(0, Y, Y)] {(1, 0)} ∅

1 (0, 0) Φ2+2
N ` [+add(s(0), Z, s(Z))] {(1, 0)} ∅

2 (0, 0) Φ2+2
N ` [+add(2, Z, Z + 2)] {(1, 0), (2, 0)} ∅

3 (0, 0) Φ2+2
N ` [+add(3, Z, Z + 3)] + [4] {(1, 0)} ∅

...
...

...
...

...

K+1 (0, 0) Φ2+2
N ` [+add(K,Z,Z +K)] + [4] {(1, 0)} ∅

This is not so surprising since there are infinitely many saturated diagrams which
can be constructed but only one correct. Interactive execution has to compute
all diagrams iteratively.

§51.12 Observation (Logic programs). The observation is that in order to correctly execute
programs, we need control over the interactive execution of stellar resolution. This
corresponds to the fact that Prolog uses SLD-resolution which is a controlled version
of Robinson’s original resolution. In particular, the interactive configuration must
only have the query in its interaction space.

§51.13 Remark. In an interactive configuration Φ `C Ψ, the reference constellation Φ is
non-linear (infinite supply of stars) and the interaction space Ψ is linear (stars are
linearly consumed). This is reminiscent of intuitionistic sequents !Γ `C ∆ in linear
logic.

§51.14 Example (Basic sanity check). In this example we look at non-trivial constellations
to make sure that our interpretation works as expected.

• The constellation Φ := [
(0,0)

−a(X),
(0,1)

+a(X)] has infinitely many saturated correct
circular closed diagrams all actualising to [].

Step Φ[i][j] Configuration matCΦ matCΨ[i]

0 (0, 0) Φ ` [−a(X),+a(X)] {(0, 1)} {(0, 1)}

1 (0, 0) Φ ` [−a(X),+a(X)] + [] {(0, 1)} {(0, 1)}

2 (0, 0) Φ ` [−a(X),+a(X)] + [] + [] {(0, 1)} {(0, 1)}
...

...
...

...

K (0, 0) Φ ` [−a(X),+a(X)] + [] + K...+ [] {(0, 1)} {(0, 1)}

Chapter 7 Stellar resolution 255

• We have

Φ := [
(0,0)

X ,
(0,1)

+a(X)] + [
(1,0)

−a(1),
(1,1)

+b(1)] + [
(2,0)

−a(0),
(2,1)

+b(0)] + [
(3,0)

−b(1),
(3,1)

−b(0)]

which should have for normal form [0, 1] + [1, 0].

Step Ψ[i][j] Configuration matCΦ matCΨ[i]

0 (0, 1) Φ ` [X,+a(X)] {(1, 0), (2, 0)} ∅

1 (0, 1) Φ ` [0,+b(0)] + [1,+b(1)] {(3, 1)} ∅

2 (0, 1) Φ ` [0,−b(1)] + [1,+b(1)] {(1, 1)} ∅

3 (1, 1) Φ ` [0,−a(1)] + [1,+b(1)] {(3, 0)} ∅

4 (1, 1) Φ ` [0,−a(1)] + [1,−b(0)] {(2, 1)} ∅

5 (0, 1) Φ ` [0,−a(1)] + [1,−a(0)] {(0, 1)} ∅

6 (1, 1) Φ ` [0, 1] + [1,−a(0)] {(0, 1)} ∅

7 Φ ` [0, 1] + [1, 0] ∅ ∅

• If we reduce deterministic links in the previous example, we obtain the con-
stellation Φ := [X,−a(X)] + [+a(0),+a(1)]. What happens if we start from
Φ[1][0]?

Step Ψ[i][j] Configuration matCΦ matCΨ[i]

0 (0, 1) Φ ` [+a(0),+a(1)] {(0, 1)} ∅

1 (0, 0) Φ ` [+a(0), 1] + [0,+a(1)] {(0, 0)} ∅

2 (1, 1) Φ ` [0, 1] + [0,+a(1)] {(0, 0)} ∅

3 (1, 1) Φ ` [0, 1] + [0, 1] ∅ ∅

• Consider the constellation [
(0,0)

+a(0)] + [
(1,0)

+a(1)] + [
(2,0)

X ,
(2,1)

−a(X),
(2,2)

−b(X)] + [
(3,0)

+b(0)] +

[
(4,0)

+b(1)] with normal form [0] + [1].

Step Ψ[i][j] Configuration matCΦ matCΨ[i]

0 (0, 0) Φ ` [+a(0)] {(2, 2)} ∅

1 (0, 1) Φ ` [0,−b(0)] + [1,−b(1)] {(3, 0)} ∅

2 (1, 1) Φ ` [0] + [1,−b(1)] {(4, 0)} ∅

3 Φ ` [0] + [1] ∅ ∅

Chapter 7 Stellar resolution 256

§51.15 Lemma (Diagram extension by interaction). Let (G, δ) be a C-diagram for a con-
stellation Φ. We have:

• ⇓
(
(G, δ)

(v,j)
⊕ in (v

′, j′)
)
= ⇓(G, δ)

j,j′

▽ Φ[δ(v′)];

• ⇓
(
(G, δ)

(v,j)
⊕ out (i

′, j′)
)
=

j,j′

▷ ⇓(G, δ).

Proof. By Theorem 49.38, a full contraction of a diagram can lead to the same result as
its actualisation. We can then treat the evaluation of diagrams with diagram contraction.
Consider the full contraction of the extended diagram. By the confluence of diagram
contraction (cf. Corollary 49.36), it is possible to contract all edges except the edge e
linking the ray index j and j′ without any effect on the result. At the end we contract e.
This exactly corresponds to the computation of ⇓(G, δ)

j,j′

▽ Φ[δ(v′)] for external extension
and

j,j′

▷ ⇓(G, δ) for internal extension.

§51.16 Theorem (Relation between concrete and interactive execution). Let Φ be a constel-
lation and C ⊆ F+] F− be a set of colours. If CExC(Φ) is defined, then

IExC(Φ) ≈α CExC(Φ)] Φ

where Φ′ only contains occurrences (possibly none) of stars of CExC(Φ).

Proof. If CExC(Φ) is defined then (Φ `C (G1, δ1), ..., (Gn, δn) | ∅)⇝n (Φ `C ∅ | CExC(Φ))
with Φ `C ∅ | CExC(Φ) in normal form for some n ∈ N. By induction on n we show that
for all construction spaces (Φ `C ∆ | Ψ) occurring during the concrete execution of Φ,
we have a sequence of stellar interaction steps (Φ `C Φ)⇝∗ (Φ `C ⇓∆]Ψ).

� Base case Assume n = 0. We start from the initial construction space (Φ `C
(G1, δ1), ..., (Gn, δn) | ∅). We do 0 step of stellar interaction and have Φ `C Φ.
We indeed have Φ := ⇓∆] ∅ since ∆ is the set of all diagrams of 0 edges (corre-
sponding to the stars of Φ).

� Induction case Assume n = n′ + 1 for some n′. We reached some construction space
Φ `C ∆n′ | Ψn′ after n′ steps and know that it can be simulated by a sequence
of steps of stellar interaction (Φ `C Φ) ⇝∗ (Φ `C ⇓∆n′] Ψn′). We add a new
step of concrete execution and obtain Φ `C ∆n′+1 | Ψn′+1. We show that we
can extend our interactive execution in order to obtain Φ `C ⇓∆n′+1]Ψn′+1. By
Lemma 51.15, what stellar interaction does on (Φ `C ⇓∆n′]Ψn′) is basically com-
puting the application of external and internal extensions of diagrams all in ∆n′ ,
producing ∆n′+1. Since some stars cannot be extended because they correspond
to the saturated diagram of ∆n′ . When they are reunited with Ψn′ (corresponding
to actualisations of saturated diagrams in concrete execution), we obtain Φn′+1.

Chapter 7 Stellar resolution 257

Since stellar interaction does not identify stars coming from equivalent diagrams (unlike
concrete execution), we must have several duplicate stars corresponding to actualisation
of equivalent diagrams, corresponding to the constellation Φ′.

§51.17 The case of internal polarities. Interactive execution does not behave like abstract
or concrete execution. Interactive execution construct diagrams dynamically and in an
iterative way. Hence, we do not work with diagrams as fixed and immutable structures
as with abstract execution. A consequence is that interactive polarities can work with
subjective constellations without the need for repeated executions. Even if we create po-
larised rays by “unlocking” internal polarities, it is possible to make those new unlocked
rays interact. However, the strategy we defined is not sufficient, as we will see in the
next example.

§51.18 Example. We try to execute the constellation

Φ := [
(0,0)

−f(+g(X))] + [
(1,0)

X ,
(1,1)

+f(X)] + [
(2,0)

−g(X),
(2,1)

+f(X),
(2,2)
a]

which contains internal polarities.

Step Ψ[i][j] Configuration matCΦ matCΨ[i]

0 (0, 0) Φ ` [−f(+g(X))] {(1, 1), (2, 1)} ∅

1 (0, 0) Φ ` [+g(X)] + [−g(+g(X)), a] {(2, 0)} ∅

2 (0, 0) Φ ` [+f(X), a] + [−g(+g(X)), a] {(0, 0)} ∅

3 Φ ` [a] + [−g(+g(X)), a] ∅ ∅

The problem appears at the second step. The ray +g(X) has been extracted from
−f(+g(X)) and can interact with the ray −g(X). This was not possible with abstract
and concrete execution. However, this does not faithfully simulate hyperexecution
since we could not connect [+g(X)] with [−g(+g(X)), a], which corresponds to the
reunion of two evaluated diagrams. In the previous example, we thus have a ray
[−g(+g(X)), a] left although it should have been eliminated. A simple solution is
to allow the interaction between two stars of the interaction space. This shows that
non-trivial considerations have to be made in order to handle internal polarities.

§51.19 About the design of interactive execution. When I first defined interactive ex-
ecution, I actually tried to make it match exactly with abstract execution by adding
information on rays such as a unique occurrence identifier and the origin of rays (from
which star of the initial constellation it comes from). The point was to identify stars
coming from the same diagram constructed in a different way. However, we could always
find counter-example and in the end the best way was to... keep the whole structure of
diagram in memory. This is actually what splitted interactive execution and what led
to the definition of concrete execution which came later.

Chapter 7 Stellar resolution 258

§51.20 Execution trace in interactive execution. If we compute Φ ` Φ we may compute
several equivalent diagrams but they will lead to several occurrence of a same star. The
reason is that those diagrams are not constructed in the same order. Although it may be
seen as a technical drawback, it can be seen as a feature: we can put “directionality” in
computation by choosing initial stars to start with. The strategy is usually to do a wise
selection of exactly one star and one ray to start with for each connected component of
the constellation we would like to execute. Some choice will lead to a well-defined result
and other may lead to infinite loops.

52 Difference with Girard’s stars and constellations

§52.1 The stellar resolution defined in this chapter is not exactly Girard’s original model of
stars and constellations defined in his sixth paper on GoI [Gir13a] and first paper on TS
[Gir17]. Thomas Seiller and I designed some changes to make it more general but also
to solve some technical problems and errors which occurred in formal definitions of the
interpretation of MLL (that Girard did not formally established).

§52.2 Restriction to uniform stars. In Girard’s original definition, rays of stars have some
specific restrictions:

• they must have exactly the same variables. For instance [X,+c(X)] is a correct
star but not [f(X,Y),+c(X)]. This requirement is sufficient for MLL and is much
simpler to study but it is later relaxed in order to treat exponentials [Gir16b];

• they must be pairwise non-matchable in order to avoid loops (cycles of size > 1 are
still allowed). It simplifies a lot of things but in order to have more expressivity
(so that we can interpret logic programs and other things), we choose to remove
this requirement.

§52.3 Constellations as indexed families instead of sets. In Girard’s original definition,
constellations are sets. Similarly to Wang tiles, it is actually sufficient to consider sets
because stars of a given constellation can be duplicated in diagrams anyway. However,
in our stellar resolution, we are not interested in diagrams themselves (which corre-
spond to tilings) but in their evaluation. If two diagrams δ and δ′ of a constellation Φ
are both evaluated to a same star ϕ then we would like ϕ to appear in AEx(Φ) to keep
the quantitative information that two different diagrams produced ϕ. Another differ-
ence is that the several occurrences of a same star actually matter in a constellation
because two distinct diagrams can be constructed from the dependency graph. We have
AEx([X,+c(X)]+ [−c(X)]) = [X] but AEx([X,+c(X)]+ [−c(X)]+ [−c(X)]) = [X]+ [X].
It is not clear whether this feature is wanted or not but we leave it in our model.

§52.4 Removal of the empty star. Girard does not consider valid the empty star [] because
it cannot be connected to another star. However, we choose to allow it because it still
gives information: it comes from a correct diagram which had no free rays. But can

Chapter 7 Stellar resolution 259

still recover Girard’s execution by using the operator ♭ (cf. Definition 49.46) on the
normal form to remove the empty star. This is useful when we do not want superfluous
information.

§52.5 Restriction to tree-like diagrams. Girard only considers tree-like diagrams because
they are sufficient to interpret logic. However, we choose to allow cyclic diagrams since
they allow to express tile systems (tilings can be circular). We will see that it is also
necessary to correctly interpret MLL proofs in an effective way (and that Girard’s original
definition is not exactly sufficient).

§52.6 Different handling of maximality of diagrams. As in the GoI, we need to consider
maximal paths. In Girard’s original definition, all possible connected tree-like diagrams
are considered (without requirement of saturation). In a second step, all stars containing
coloured rays are erased because coloured rays in the normal forms are considered as
signs of incomplete computation. This forces diagrams to add as many stars as possible
to fill the holes opened by coloured rays, thus only evaluations of maximal diagrams are
considered. For more generality and to link the model with Seiller’s works on interaction
graphs [Sei16b], we allow coloured rays in the normal form (in exchange of a notion of
saturation). This allows to compose executed constellations. Girard’s execution can still
be recovered by using the operator (cf. Definition 49.44).

53 Discussion: comparison with other notions

§53.1 A question that I received several times is “is not stellar resolution exactly logic pro-
gramming?”. Actually, if we remove some technical features such as internal colours or
unpolarised rays, our model exactly corresponds to the semantics of first-order resolu-
tion with disjunctive clauses (cf. Section 23). But as far as I know, all models based on
this semantics of term unification usually put control over it (SLD-resolution) or make
the model subject to a logical interpretation whereas our model is purely computational,
without any reference to any logic (Robinson’s resolution makes the expressions coincide
with classical predicate calculus). Stellar resolution is unique and I believe the reason
is simple: who would need something so complicated and chaotic? We usually design a
model of computation a practical need but in Girard’s case, he was looking for a very
flexible model in which he could express generalised proof-nets. We can still try to com-
pare our model to other approaches in the field of logic programming and automated
reasoning.

§53.2 Original first-order resolution. The closest model which comes to mind is simply
Robinson’s resolution logic. We use almost identical objects. We add unpolarised rays
(but we can actually simulate it by using unused special predicate symbols). In reso-
lution, we are usually interested in the reachability of the empty clause ([] in our case)
representing a contradiction. In the stellar resolution, it does not have any meaning

Chapter 7 Stellar resolution 260

and we use objects as query-free logic programs. Moreover, usual resolution is lim-
ited to tree derivations (corresponding to tree-like diagrams) whereas stellar resolution
allows cyclic diagrams in order to simulate tile systems. There are graph-based mod-
els [Sic76, Kow75, EO91] which are very similar to stellar resolution but they are still
different for the reasons mentioned above.

§53.3 Horn clauses and logic programming. In logic programming, we are usually inter-
ested in answering a query (or several queries) represented by a first-order atom (such
as in Prolog, for instance). In order to answer the query, logic programming uses a
backward reasoning by going up from the unique conclusion to the premises. Stellar
resolution is naturally query-free (although queries can be simulated, there is no such
distinguished objects). In particular, we can have several outputs and we do not dis-
tinguish between input and output. For instance, if we have a star representing an
implication A ⇒ B, then we can connect a star to the output and only the input will
survive. This does not make sense in logic programming because a direction from inputs
to outputs is enforced in inference.

§53.4 Stable model semantics. There are several languages based on stable model semantics
such as disjunctive logic programming [Min94, LRM91] itself based on a subset of Prolog
called Datalog. The notion of stable model is also the basis of answer set programming
(ASP) [Gel08, EIK09]. In these languages, a primitive handling of logical negation is
used whereas we want our model to be purely computational, without any reference to
logic.

§53.5 Resolution operator. In appearance, execution is very similar to the resolution op-
erator [Lei12, Chapter 3] which is analogous to the consequence operator [DEGV01,
Section 2.2] of logic programming. This operator computes a full inference from a given
set of clauses. The difference is that we allow cyclic diagrams which makes our model
closer to the construction of tilings in tile systems. As we later show when interpreting
logic programs, allowing cyclic diagrams still preserves the interpretation of Horn clauses
since cyclic diagrams are often wrong for logic programs: for the constellation Φn+m

N of
Example 48.18, a loop can be constructed with

[−add(X,Y, Z),+add(s(X), Y, s(Z))],

leading to the equation X ?
= s(X) which has no solution.

§53.6 Lafont’s interaction nets. A remark I received is that stellar resolution may be
equivalent to Lafont’s interaction nets [Laf89] which are known to generalise proof-nets
(and even proof-structures) [Laf95] and which can be simplified into a minimal set of
interaction combinators [Laf97]. I admit that stellar resolution is indeed very close to
interaction nets. I personally believe that stellar resolution can nicely encode interaction
nets4, however I have never been able to figure out how close these models were. If we

4This is something I investigated a little bit with Julien Marquet but we never reached a conclusion.

Chapter 7 Stellar resolution 261

consider stars with internal colours then as far as I know there is no equivalent. Moreover,
everything can interact in interaction nets whereas stellar resolution features unpolarised
rays which cannot interact. But if we consider the objective polarised fragment of stellar
resolution, it seems to me that it already contains non-trivial elements which cannot be
represented by interaction nets which are purely based on structural graph rewriting.
Typically, in stellar resolution, we have equation solving which passes simple messages
based on first-order terms. Anyway, I think it can be interesting to connect our model
to Lafont’s nets.

§53.7 Generalised token machines. There exists several extensions of the IAM for GoI (cf.
Section 36). For instance, Dal Lago, Tanaka and Yoshimizu defined a token machine
for Mazza’s multiport interaction combinators (a variant of the interaction combinators
mentioned above) [DLTY17]. We can also mention Castellan and Clairambault’s “Multi-
token Geometry of Interaction” [CC23]. Another recent work which can be mentioned is
Chardonnet, Valiron and Vilmart work on ZX-calculus, a graph-based model for quan-
tum computing [CVV21]. Their machine can be related to the concrete or interactive
execution of stellar resolution but I currently do not know how similar these models are.
It is likely that ZX-calculus can be expressed purely from term unification over more
sophisticated equations with complex coefficients (instead of graph rewriting or a token
machine) but I do not know why one would do that.

Chapter 8

Illustrating stellar resolution

§53.8 It is breaktime. In this chapter, we play with stars and constellations in order to encode
several models of computation. It demonstrates the expressivity and computational
power of stellar resolution. Most models of computation only need objective stars.

§53.9 The encodings show that stellar resolution can naturally express the main classes of
models of computation given in Chapter 2:

• state machines (including Turing machines);

• λ-calculi (from their translation to proof-nets) – this will come later, during the
interpretation of linear logic;

• tile systems (Wang tiles but also the abstract tile assembly model appearing in
Paragraph 17.7);

• logic programs (with Horn clauses);

• generalised circuits (subsuming boolean and arithmetic circuits).

§53.10 In this chapter we focus on interactive execution instead of abstract or concrete exe-
cution because concrete execution is closer to the real behaviour of classical models of
computation. In some cases, we use abstract (or concrete) execution because it is more
convenient (for instance for tile systems).

54 Flows, wirings and graphs

§54.1 We start with the encoding of flows and wirings (defined in Section 37) since they are
very close to stellar resolution: stars are n-ary symmetric flows.

§54.2 The main problem with the encoding of flows is that flows are asymmetric objects. The
composition of two flows t ↼ u and v ↼ w only connects u and v. In the meantime,
even though we can use binary stars with polarities representing input and output, stars
are natively symmetric. In the case of stars, t can be connected to u or even v. In
order to encode the composition of flows, we have to restrict the possible connexions by
distinguishing input and output.

Chapter 8 Illustrating stellar resolution 263

§54.3 We fix a polarised signature F = (V, F, ar,¨, b·c) for which we require the existence of
colours −S,+S,−T,+T ∈ C and function symbols S, T . The symbol S stands for source
and T for target.

§54.4 Definition (Translation of flows and wirings). Let t ↼ u be a flow. Its translation
into a star is defined by (t ↼ u)⋆ := [S(t), T (u)].

The translation extends to wirings F by F⋆ :=
∑

f∈F f
⋆.

§54.5 We could now treat [S(t), T (u)] as a flow t ↼ u and define composition exactly like
the composition of flows. However, this is not very interesting. We are simply giving
an alias to flows, an alternative notation but do not even use the mechanisms of stellar
resolution. Another solution is to use the execution of stellar resolution to reproduce
the composition of flows. However, because stars are symmetric and flows asymmetric,
we need to play with polarities with external definitions (this is all we can do).

§54.6 Definition (Lateralisation). We define two colouring functions µl and µr called lat-
eralisations, defined by:

µllat[S(t), T (u)] := [−S(t), T (u)] and µrlat[S(t), T (u)] := [S(t),+T (u)].

§54.7 Now remark that even if we lateralise (t ↼ u)⋆ and (v ↼ w)⋆ respectively to the right
and to the left, we would obtain [S(t),+T (u)] and [−S(v), T (w)] which means that only
+T (u) and −S(v) can interact. However, since they do not share the same colour, we
need an intermediate star [−T (X),+S(X)] linking the two star. This star behaves like
a cut in linear logic and execution becomes cut-elimination.

§54.8 Theorem (Simulation of composition and product). Let f and g be flows. We have:

1. (fg)⋆ = AEx(µrlat(f
⋆) + µllat(g

⋆) + [−T (X),+S(X)]) and

2. (FG)⋆ = AEx(µllat(F
⋆)] µrlat(G

⋆) + [−T (X),+S(X)]).

Proof. By definition, if we have f = t ↼ u and g = v ↼ w, then fg = θt ↼ θw where
θ := solution{u ?

= v}. By the translation of flows, we have (fg)⋆ = (θt ↼ θw)⋆ =
[S(θt), T (θw)]. As for the right-hand side of the equality, we obtain

AEx
(
µrlat(f

⋆) + µllat(g
⋆) + [−T (X),+S(X)]

)
= AEx([S(t),+T (u)] + [−S(V), T (W)] + [−T (X),+S(X)]).

The third star [−T (X),+S(X)] will connect the two other stars and we obtain the
normal form [S(θt), T (θw)]. As for the product of wirings, we have (FG)⋆ = {(fg)⋆ |
f ∈ F, g ∈ G, fg is defined} by definition and

AEx(µllat(F
⋆)] µrlat(G

⋆) + [−T (X),+S(X)])

Chapter 8 Illustrating stellar resolution 264

= {AEx
(
µrlat(f

⋆) + µllat(g
⋆) + [−T (X),+S(X)]

)
| f ∈ F, g ∈ G, fg is defined}.

We conclude with the simulation of flow composition proved above.

§54.9 Example. We have
(
(X ↼ f(X))(Y ↼ h(Y))

)⋆
= [S(X), T (h(f(X))] which is also

equal to AEx
(
[S(X),+T (f(X))] + [−S(Y), T (h(Y))] + [−T (X),+S(X)]

)
.

§54.10 When interpreting proof-nets or encoding bidirectional automata as in Aubert and Bag-
nol’s works [AB14], “biflows” t ⇋ u := (t ⇋ u) + (u ⇋ t) are used instead in order
to encode undirected edges in a graph (simple flows represent directed edges). Such
biflows are translated into a constellation (t⇋ u)⋆ = [S(t), T (u)] + [S(u), T (t)] (by the
definition above). In case of a path

(
(t ⇋ u)(t′ ⇋ u′)

)
(t′′ ⇋ u′′) such that u in only

matchable with t′, θu′ only with t′′ where θ := solution{u ?
= t′}, the composition will

be computed in stellar resolution as follows:

AEx
(
[S(t),+T (u)] + [S(u),+T (t)] + [−S(t′), T (u′)] + [−S(u′), T (t′)]

)
= [S(θt), T (θu′)] + [S(θu′), T (θt)] = (θt⇋ θu′)⋆

AEx
(
[S(θt),+T (θu′)] + [S(θu′),+T (θt)] + [−S(t′′), T (u′′)] + [−S(u′′), T (t′′)]

)
= [S(ψθu′), T (ψt′′)] + [S(ψt′′), T (ψθu′)] = (ψθu′ ⇋ ψt′′)⋆

where ψ := solution{θu′ ?
= t′′}. Actually, with such use of flows, it is sufficient to

use a simpler translation where biflows are translated into binary stars because of the
introduction of symmetry.

§54.11 Definition (Encoding of biflows). Let t ⇋ u be a biflow. Its encoding is defined by
(t⇋ u)9 := [+F (t),+F (u)].

§54.12 We need to use a star [−F (x),−F (x)] as a bridge between biflows. The previous com-
putation becomes:

AEx
(
[+F (t),+F (u)] + [+F (u′),+F (t′)] + [+F (u′′),+F (t′′)] + [−F (X),−F (X)]

)
= [+F (ψθu′),+F (ψt′′)] =

((
(t⇋ u)(t′ ⇋ u′)

)
(t′′ ⇋ u′′)

)9
.

By using these ideas, it is easy to derive an encoding of graphs where edges are repre-
sented by binary stars since this was the initial purpose of flows.

Chapter 8 Illustrating stellar resolution 265

55 Encoding of logic programs with Horn clauses

§55.1 A natural illustration of the computational power of the stellar resolution is the encoding
of logic programs since the stellar resolution directly generalises Robinson’s first-order
resolution which corresponds to the core of logic programming.

§55.2 First, it is possible to do programming with predicate calculus [Kow74]. It is then
known that formulas of predicate calculus can be normalised so that formulas are
represented only by conjunctions of disjunctions (called clauses) with only universal
quantifiers appearing as prefix [Hed04, Section 3.2]. Formulas are then of the shape
∀x1, ..., xn.(A1

1 ∨ ...∨A1
n)∧ ...∧ (Am

1 ∨ ...∨Am
k) where every Ax

y is an atomic formula and
where quantification is usually hidden. We use those normalised formulas of predicate
calculus with at most one positive (without negation) atom in each clause. Such nor-
malised formulas called Horn clauses represent sequents Γ ` A for a set of hypotheses Γ
(cf. Section 23).

§55.3 A fact is a closed (variable-free) first-order formula. Several facts form a knowledge base.
We have rules which can be used to infer new facts from the available ones and thus
expend the knowledge base. Rules are often represented as implications A1, ..., An ` B
called Horn clauses [Hor51, Tär77]. A query asks if it is possible to infer a given fact
from the knowledge base and is itself represented as a fact symbolising a goal. A logic
program is a multiset of rules and facts.

§55.4 The translation is direct. We use the use the polarities to distinguish between hypothesis
and conclusion (or input and output). The translation of a fact is defined by

P (t1, ..., tn)
⋆ := [+P (t1, ..., tn)].

For a rule, the translation is defined by:

(
∧mi=1 P1(t

i
1, ..., t

i
n) ` Q(u1, ..., uk)

)⋆
:= (

m∪
i=1

{−P1(t
i
1, ..., t

i
n)}) ∪ {+Q(u1, ..., uk)}.

Finally, for a query, we have:

(?P (t1, ..., tn))
⋆ := [−P (t1, ..., tn), R1, ..., Rm]

with {R1, ..., Rm} =
∪n

i=1 vars(ti) which represents the information we would like to
make visible in the output (see Example 48.18 where [−add(n,m, r), r] is the query). A
logic program P :=

⊎n
i=1{Ci} becomes P⋆ :=

∪n
i=1{C

⋆
i }.

§55.5 The set of answers for a query q on a program P is defined by a set of substitutions
Aq

P = {θ1, ..., θk} such that for all θ ∈ Aq
P , we have θq logically satisfied by P , written

P ⊨ θq. The answers are usually computed by iteratively applying the resolution rule
between q and all possible C ∈ P until either no variables remain in q or the resolution

Chapter 8 Illustrating stellar resolution 266

rule is no more applicable. We refer to definitions of the SLD-resolution itself derived
from Kowalski’s SL-resolution [Kow74, KK71] for more details about the computation
of answers.

§55.6 Theorem (Simulation of logic programs). Let P be a logic program with query q
and P⋆ and q⋆ be their translation. For n > 0 and |P | > 0, if ♭IEx(P⋆, q⋆) =
θ1ϕ1 + ...+ θnϕn for some θi is the answer of the query q then P ⊨ θiq.

Proof. The proof relies on the fact that

 ♭IEx(P⋆, q⋆)

exactly implements SLD-resolution [Kow74, KK71] which is known to be sound and
complete for Horn clauses (cf. Section 23).

1. SLD-resolution selects a clause to be resolved. It corresponds to the query. This
clause is fixed, meaning that we can mark it with a label “to be resolved”. The
execution ♭IEx(P⋆, q⋆) computes a normal form for P⋆ ` q⋆ and in particular
all fusion must applies to q⋆ with corresponds to the selected clause;

2. SLD-resolution make the marked clause linearly interact with clauses of P . Simi-
larly, interactive execution make the only polarised ray of q⋆ interact with match-
able rays of stars in P⋆. The same rule of interaction is used: resolution corre-
sponds to fusion. The obtained clause is still marked as query;

3. In case of non-determinism, the marked clause is duplicated and interact with
several clauses which are all marked as new queries and we have P⋆ ` q⋆1 +...+q⋆n ;

4. We repeat the procedure on each obtained marked clause qi until we reach a fact.
In this case, we end up with a substitution for the variables of the marked clause
corresponding to the solution. If a marked clause cannot interact anymore without
being resolved, it is erased. This is done by our operator .

Additionally, we have to ensure that our relaxation to cyclic diagrams do not cause
problems. In logic programming, we usually require that the rays of a star have exactly
the same variables (all variables are bound). Because of this restriction, cycles in depen-
dencies graphs of logic programs, when reduced to a loop on a single star, either involve
equations of the shape t ?

= t or equations of the type X ?
= f(X). In the former case,

if the associated rule is binary, i.e. of the shape A ` B, we obtain the empty star []
which is irrelevant in the computation and removed by the operator ♭. If the rule is not
binary, e.g. of the shape A1, A2, ..., An ` B, the equation t ?

= t associated with the loop is
erased because it has no effect on the computation. In the latter case of the ill-behaving
equation X ?

= f(X), the whole diagram is incorrect and ignored in the output.

Chapter 8 Illustrating stellar resolution 267

§55.7 Remark (Absence of solution). The previous theorem assumed the existence of at
least one solution for the query. If there are no solution at all for the query, then we
obtain ♭IEx(P⋆, q⋆) = ∅. However we cannot say that we have P 6|= θiq. In logic
programming, we usually work with the “closed-world assumption”, meaning that the
absence of knowledge (P does not satisfy the query) entails the falsity of a clause.

§55.8 Remark. There are additional features which could be added. We could also add
rays x · X where x is a constant representing the variable X in order to keep the
name of variable in the output. We would finally obtain a normal form made of stars
ϕi =

∪k
i=1{xi · ri} such that ϕi corresponds to some θ ∈ Aq

P . By doing so, which value
corresponds to which variable in the solution (as in Prolog).

56 State machines

§56.1 Definitions of automata and Turing machines are taken from Sipser’s introduction to the
theory of computation [Sip06].

Non-deterministic finite automata (NFA)

Let Σ be an alphabet and w ∈ Σ∗ a word on some alphabet Σ. A non-deterministic
automaton (NFA) on Σ is a tuple A = (Σ, Q,Q0,∆, F) where Q is the set of states, Q0

and F ⊆ Q are respectively the set of initial and final states, and ∆ : Q × Σε → P(Q)
is the transition function where Σε := Σ∪ {ε}. The purpose of automata is to recognise
languages by applying the transition function on the initial state and reaching either a
final or non-final state.

A partial run in A is a sequence of states (q0, ..., qn) such that q0 ∈ Q0 and qi+1 ∈
∆(qi, ci+1) for 0 ≤ i ≤ n− 1. A partial run (q0, ..., qn) is a full run (or simply run) when
we also have qn ∈ QF .

We say that A accepts w ∈ Σ∗ from a state q, written A(w, q) = 1, when it has a full run
starting with q. Otherwise, it is rejected and A(w, q) = 0. We define A(w) := A(w, q0)
for q0 the initial state of A and say that A accepts or rejects w. The language of A is
defined by L(A) = {w | A(w) = 1}.

Links between tile systems and automata have already been studied [Tho91] but stellar
resolution provides a framework where it is especially natural to express various classes
of automata by simulating a linear run in a graph. Notice that it is possible to encode
directed graphs by translating edges (e, e′) by binary stars [−g(e),+g(e′)]. It is then
possible to encode an NFA by first encoding its state graph then extending the rays so
that the fusion triggers a flow of information. The final state will contain a dummy
unpolarised ray accept so that the existence of a visible output in the normal form will

Chapter 8 Illustrating stellar resolution 268

correspond to the acceptation a word. A similar approach has been studied with the
model of flows [AB14, ABS16] where pointer machines are encoded.

§56.2 Definition (Encoding of words). If w = c1...cn is a word (cf. Appendix A.3) over
some alphabet Σ then w⋆ = [+i(c1 · ... · cn · ε)] with a constant ε and the binary
function symbol · which is considered right-associative, i.e. a · b · c = a · (b · c).

§56.3 Definition (Encoding of non-deterministic automata). Let A = (Σ, Q,Q0,∆, F) be
an NFA. Its encoding is defined by A⋆ such that:

• for each q0 ∈ Q0, we have [−i(W),+a(W, q0)];

• for each qf ∈ F , we have [−a(ε, qf), accept];

• for each q ∈ Q and if c ∈ Σε and for each q′ ∈ ∆(q, c),

– if c = ε, we have [−a(W, q),+a(W, q′)] (also known as epsilon transition);

– otherwise, we have [−a(W, q),+a(W, q′)].

§56.4 Lemma (Simulation of transitions). Let w be a word and A be an NFA. If ∆(c, q) =
{q1, ..., qn} then A⋆ ` [+a(c · w, q)]⇝ A⋆ `

∑n
i=1[+a(w, qi)].

Proof. Assume that we have ∆(c, q) = {q1, ..., qn} and A⋆ ` [+a(c · w, q)]. By the
encoding of NFA, we must have stars

∑n
i=1[−a(c ·W, q),+a(W, qi)] in A⋆ representing

the transitions qi ∈ ∆(c, q). These are the only stars which are matchable with [+a(c ·
w, q)]. By using a step of interactive execution, we obtain A⋆ ` [+a(c · w, q)] ⇝ A⋆ `∑n

i=1[+a(w, qi)] since [−a(c ·W, q),+a(W, qi)] ▽ [+a(c · w, q)] = [+a(w, qi)].

§56.5 Theorem (Simulation of non-deterministic finite automata). Let w be a word and A
be an NFA. We have:

1. if A(w) = 1, then [accept] ∈ IEx(A⋆, w⋆);

2. if A(w) = 0, then [accept] 6∈ IEx(A⋆, w⋆);

Proof. We show the two statements.

1. Assume A(w) = 1. It means that there is a run ρ := (q0, ..., qn) from the initial state
q0 to qn ∈ F . Since there is bijection between states of ρ and symbols of w, we have
w = w0...wn. We have to compute IEx(A⋆, w⋆). We start from A⋆ ` [+i(w)].
By interacting with the initial star [−i(w),+a(w, q0)], we obtain A⋆ ` [+a(w, q0)].
By using n times Lemma 56.4, for each transition qi+1 ∈ ∆(wi, qi), interactive
execution will produce A⋆ ` [+a(wi+1 ·...·wn ·ε, qi+1)]. By using the last transition
qn ∈ ∆(cn−1, qn−1), we obtain A⋆ ` [+a(ε, qn)] which can interact with the final
star [−a(ε, qn), accept]. We then have an occurrence of [accept] on the right of
` and other stars which did not reached the final state are erased by . The star

Chapter 8 Illustrating stellar resolution 269

q0start q1 q2

0, 1

0 0

A⋆ = [−i(W),+a(W, q0)] + [−a(ϵ, q2), accept] + [−a(0 ·W, q0),+a(W, q0)]+

[−a(1 ·W, q0),+a(W, q0)] + [−a(0 ·W, q0),+a(W, q1)] + [−a(0 ·W, q1),+a(W, q2)]

Figure 56.1: An NFA accepting words finishing by 00 and its translation in stellar reso-
lution. We have IEx(A⋆, [+i(0 · 0 · 0 · ε)]) = [accept].

[accept] cannot interact because its only ray is unpolarised. It follows that it must
be part of the normal form and [accept] ∈ IEx(A⋆, w⋆).

We have to check that cyclic diagrams do not cause problems. Transitions are
encoded as binary stars, hence a cyclic diagram is necessarily closed and will reduce
into a loop on a binary star. This kind of loop involves an equation of the form
c ·W ?

= W (because of the linear consumption of the input), which is impossible
to solve. Such diagrams will be excluded in the computation of the normal form.

2. Assume A(w) = 0. It means that all runs are partial runs ρ := (q0, ..., qn)
where qn 6∈ F . Since there is bijection between states of ρ and symbols of w,
we have w = w0...wn. By Lemma 56.4, these runs correspond to transitions
A⋆ ` [+a(w, q0)]⇝∗ A⋆ ` [+a(w, qn)]. Because of the operator , such polarised
stars are erased. Hence, the normal form must be empty, i.e. IEx(A⋆, w⋆) = ∅
and in particular [accept] 6∈ IEx(A⋆, w⋆).

§56.6 Remark (Incomplete path). Remark that in the case A(w) = 0 of Lemma 56.4,
partial runs lead to polarised stars which cannot interact anymore (or diagrams with
polarised free rays). We could keep those incomplete paths but we choose to make
them invisible by using the operator .

§56.7 Different encodings of words are also possible. For instance, in Aubert and Bagnol’s
works [AB14, ABS16], characters are encoded with flows forming a cyclic chain of α-
unifiable terms which interact with the encoding of the state graph of an automaton.
This defines a representation of logspace computation where the input is explored with
pointers.

§56.8 Definition (Logspace words [AB14]). Let w = c1..., cn be a word together with dis-
tinct constants p0, p1, ..., pn where pi represents a position in w. The encoding of w is

Chapter 8 Illustrating stellar resolution 270

defined by:

wLOG⋆ := (⋆ • r •X • (p0 • Y)⇋ c1 • l •X • (p1 • Y))9

+
n−1∑
i=1

(ci • r •X • (pi • Y)⇋ ci+1 • l •X • (pi+1 • Y))9

+(cn • r •X • (pn • Y)⇋ ⋆ • l •X • (p0 • Y))9

where l, r are constants and • is a binary symbol considered right-associative, i.e.
t • u • v := t • (u • v).

Non-deterministic pushdown automata (NPDA)

§56.9 A non-deterministic pushdown automaton is an NFA with a stack defined as a tuple
P = (Q,Σ,Γ,∆, Q0, $, F) where Q is the set of states, Σ the alphabet of the input, Γ
the alpabet of the stack, Q0 ⊆ Q the set of initial states, F ⊆ Q the set of final states,
$ ∈ Γ is the initial stack symbol and ∆ : Q × Σε × Γε → P(Q × Γε) is the transition
function.

§56.10 We say that P accepts w = c1...cn ∈ Σ∗, written P (w) = 1, when there exists q0, ..., qn ∈
Q and s0, ..., sn ∈ Γ∗ such that q0 ∈ Q0, s0 = ε, qn ∈ F and for 0 ≤ i ≤ n − 1, we have
(qi+1, b) ∈ ∆(qi, ci+1, a) where si = a · t and si+1 = b · t for some a, b ∈ Γε and t ∈ Γ∗.
In particular, if a = ε, then b is just added on the stack and if b = ϵ then we simply
pop a. Otherwise, we replace the symbol a by b on the top of the stack. Otherwise, w
is rejected by P , which is written P (w) = 0.

§56.11 Definition (Encoding of non-deterministic pushdown automata). The encoding of a
NPDA P = (Q,Σ,Γ,∆, Q0, $, F) is defined by P⋆ such that:

• for each q0 ∈ Q0, we have [−i(W),+p(W, q0, $)];

• for each qf ∈ F , we have [−p(ε, qf , S), accept];

• for each q ∈ Q, c ∈ Σε and for each (q′, b) ∈ ∆(q, c, a) such that a, b ∈ Γε, we
have:

– [−p(c ·W, q, S),+p(W, q′, S)] when a = ε and b = ε;

– [−p(c ·W, q, S),+p(W, q′, b · S)] when a = ε and b 6= ε;

– [−p(c ·W, q, a · S),+p(w, q′, S)] when a 6= ε and b = ε;

– [−p(c ·W, q, a · S),+p(w, q′, b · S)] when a 6= ε and b 6= ε.

If c = ε, as for NFA, it disappears from the interpretation and we have simply
W instead of ε ·W in the above four cases.

Chapter 8 Illustrating stellar resolution 271

§56.12 Lemma (Stack management). Let P be a NPDA and w be a word. If ∆(q, c, a) =
{(q1, b1), ..., (qn, bn)}, then for any term s representing a stack:

1. P⋆ ` [+p(q, c · w, s)]⇝ P⋆ `
∑n

i=1[+p(qi, w, s)] when a = ε and b = ε;

2. P⋆ ` [+p(q, c · w, b · s)]⇝ P⋆ `
∑n

i=1[+p(qi, w, s)] when a = ε and b 6= ε;

3. P⋆ ` [+p(q, c · w, a · s)]⇝ P⋆ `
∑n

i=1[+p(qi, w, s)] when a 6= ε and b = ε;

4. P⋆ ` [+p(q, c · w, a · s)]⇝ P⋆ `
∑n

i=1[+p(qi, w, b · s)] when a 6= ε and b 6= ε.

Proof. The proof follows from matchability and case analysis of the encoding of NPDA.
We only look at the last case and the other ones are similar. Assume a 6= ε and b 6= ε. We
have P⋆ ` [+p(q, c ·w, a ·s)]. It can interact with stars [−p(q, c ·W,a ·S),+p(qi,W, b ·S)]
encoding the transitions (qi, bi) ∈ ∆(q, c, a). By fusion, we have:

[+p(q, c · w, a · s)] ▽ [−p(q, c ·W,a · S),+p(qi,W, b · S)] = +p(qi, w, b · s).

Hence, we obtain P⋆ `
∑n

i=1[+p(qi, w, b · s)], as expected.

§56.13 Theorem (Simulation of non-deterministic pushdown automata). Let P be a NPDA
and w be a word. We have:

1. if P (w) = 1, then [accept] ∈ IEx(P⋆, w⋆);

2. if P (w) = 0, then [accept] 6∈ IEx(P⋆, w⋆).

Proof. The proof follows exactly the same idea as in Theorem 56.5. NPDA are NFA
extended with a stack, hence it only remains to show that the treatment of the stack is
sound. This follows from Lemma 56.12.

§56.14 An example of pushdown automata recognising the language {0n1n | n ≥ 0} is illustrated
in Figure 56.2.

Finite sequential transducers (NFST)

§56.15 Transducers are automata which can output symbols at each transition. When reaching
a final state, a whole word is produced. The idea of the encoding is simple: we use a
stack as in the encoding of NPDA and simply output this stack in the final state with
an unpolarised variable replacing accept.

§56.16 A finite sequential transducer is defined as a tuple T = (Σ,Γ, Q,Q0,∆, F) corresponding
to an NFA (Σ, Q,Q0,∆, F) extended with a language of output Γ and a transition
function ∆ : Q× Σε → P(Q× Γε).

Chapter 8 Illustrating stellar resolution 272

q0start q1 q2

0, ε→ 0

1, 0→ ε

1, 0→ ε

ε, $→ ε

P⋆ = [−i(W),+p(W, q0, $)] + [−p(ϵ, q3, $), accept]+

[−p(0 ·W, q0, S),+p(W, q0, 0 · S)] + [−p(1 ·W, q0, 0 · S),+p(W, q1, S)]+

[−p(1 ·W, q1, 0 · S),+p(W, q1, S)] + [−p(W, q1, $),+p(W, q2, $)]

Figure 56.2: A transition a, b→ c means that we read a and replace b on the stack by c.
The idea is to add 0 on the stack for each 0 read on the input then decrease
by the same number for each 1 read. If we reach the initial stack symbol $,
then we necessarily have as many 0s as 1s.

§56.17 Definition (Encoding of non-deterministic finite sequential transducers). Let T =
(Σ,Γ, Q,Q0,∆, F) be an NFST. Its encoding is defined by A⋆ such that:

• for each q0 ∈ Q0, we have [−i(W),+f(W, q0, ε)];

• for each qf ∈ F , we have [−f(ε, qf , S), S];

• for each q ∈ Q and if c ∈ Σε and c′ ∈ Γε and for each (q′, c′) ∈ ∆(q, c), we have:

[−f(c ·W, q, S),+f(W, q′, c′ · S)].

If c = ε, the transition is translated into [−f(W, q, S),+f(W, q′, c′ ·S)]. If c′ = ε
then we have S instead of ε · S.

§56.18 It is possible to extend even more the encoding of transducers, by using two stacks
which explores the input by going to the left or to the right, thus obtaining 2-way
transducers [BC18]. But instead of exploring this idea, we will use these two stacks
for the interpretation of Turing machines in order to assert the Turing completeness of
stellar resolution.

Non-deterministic Turing machines (NTM)

§56.19 Non-deterministic Turing machines (NTM) have been defined in Paragraph 16.5. For
the encoding, we use the facts that Turing machines can be represented with two stacks
in order to represent the left and right part of a tape. A move of the head will be
represented as a manipulation of stack.

§56.20 We use terms m(L,Q,X,R) where L and R are the left and right part of the tape
relatively to the current position of the head. The variables Q and X respectively

Chapter 8 Illustrating stellar resolution 273

represent the current state and symbol read by the head. We implicitly consider the
symbol • as left-associative (hence a • b • c = (a • b) • c) and ◦ right-associative (hence
a ◦ b ◦ c = a ◦ (b ◦ c)) so that it looks like we are traversing a tape.

§56.21 Convention (New encoding of words). For technical reasons, Turing machines use
the same encoding of words as before but with · replaced by ◦ (but the priority does
not change). This is because at the beginning of the machine, the word is loaded on
the right-hand tape.

§56.22 Definition (Encoding of non-deterministic Turing machines). The encoding of an
NTM M = (Q,Γ,∆, q0, qa, qr) is defined by a constellation M⋆ such that:

• q0 is translated into [−i(C ◦W),+m(␣, q0, C,W)] + [−i(␣),+m(␣, q0, ␣, ␣)];

• qa is translated into [−m(L, qa, X,R), accept];

• qr is translated into [−m(L, qr, X,R), reject];

• for each q ∈ Q and c ∈ Γ␣ such that (q′, c′, d) ∈ ∆(q, c):

– if d = l (going left) then we have [−m(L •X, q, c, R),+m(L, q′, X, c′ ◦R)];

– if d = r (going right) then we have [−m(L, q, c,X ◦R),+m(L•c′, q′, X,R)];

– if d = s (staying still) then we have [−m(L, q, c, R),+m(L, q′, c′, R)];

• we add two additional “memory allocation stars”:

[−m(␣, Q,C,R),+m(␣ • ␣, Q,C,R)] + [−m(L,Q,C, ␣),+m(L,Q,C, ␣ ◦ ␣)].

§56.23 The two last stars are used to dynamically allocate space on the tape when necessary
(similarly to malloc() in the C language). Instead of considering Turing machines as
word acceptors, it is also possible to output the content of the tape and hence compute
functions by translating qa into [−m(L, qa, X,R), accept(L,X,R)].

§56.24 Lemma (Simulation of transitions). Let M be an NTM and w be a word. If

(q′, c′, d) ∈ ∆(q, c),

then:

• if d = l, then M⋆ ` [−m(l • a, q, c, r)]⇝M⋆ ` [+m(l, q′, a, c′ ◦ r)];

• if d = r, then M⋆ ` [−m(l, q, c, a ◦ r)]⇝M⋆ ` [+m(l • c′, q′, a, r)];

• if d = s, then M⋆ ` [−m(l, q, c, r)]⇝M⋆ ` [+m(l, q′, c′, r)].

Proof. As for Theorem 56.13, this follows from a case analysis and from term unification.
We only do the first case and the other cases are similar. Assume that we have d = l and

Chapter 8 Illustrating stellar resolution 274

M⋆ ` [−m(l • a, q, c, r)]. It can interact with [−m(L •X, q, c, R),+m(L, q′, X, c′ ◦ R)].
By fusion, we obtain [+m(l, q′, a, c′ ◦ r)].

§56.25 Theorem (Simulation of non-deterministic Turing machines). Let M be an NTM
and w be a word. We have:

1. if M(w) = 1, then M⋆ ` w⋆ ⇝∗ M⋆ ` Ψ with [accept] ∈ Ψ;

2. if M(w) = 0, then M⋆ ` w⋆ ⇝∗ M⋆ ` Ψ with [reject] ∈ Ψ;

3. if M(w) =∞ and M⋆ ` w⋆ ⇝∗ M⋆ ` Ψ then [accept], [reject] 6∈ Ψ.

Proof. The proof is similar to the proof of Theorem 56.5. We show the two statements.

1. Assume M(w) = 1. We must have a sequence of configurations ρ := (C0, ..., Cn)
such that Cn = (l, q0, r) and Cn = (l′, qa, r

′) for some l, l′, r and r′. We start from
M⋆ ` w⋆. The star w⋆ can interact with the initial star and we obtain either
[+m(␣, q0, c, w)] for some word c ◦ w or [+m(␣, q0, ␣, ␣)] depending on if w 6= ε
or w = ε. By Lemma 56.24, we can simulate the transitions of M . Each time
there is a memory shortage, i.e. when we have M⋆ ` [+m(␣, q′, c′, r′)] and the
next transition goes right, or M⋆ ` [+m(l′, q′, c′, ␣)] and the next transition goes
left, we need to allocate memory with the special memory allocation stars of the
encoding. Without loss of generality, we only look at the case of right direction. We
have [+m(␣, q′, c′, r′)] which is matchable with [−m(␣, Q,C,R),+m(␣•␣, Q,C,R)].
By fusion, we obtain [+m(␣ • ␣, q′, c′, r′)]. We can then interact with the star
encoding the next transition as in Lemma 56.24. By repeating this operation for
all configurations of ρ, we will introduce duplications for non-deterministic choices.
Eventually, since M(w) = 1, we should reach [accept] which cannot interact, as
in the proof of Theorem 56.5.

2. AssumeM(w) = 0. This case is similar to the previous case since both are different
class of halting states.

3. AssumeM(w) =∞. The reasoning is the same as for Theorem 56.5. All sequences
of configuration do not reach neither qa nor qr. By simulating sequences of config-
urations with interactive execution, we can never reach [accept] nor [reject].

We have to check that cyclic diagrams cause no problems. Since Turing machines only
use binary polarised stars, all cyclic diagrams must be closed. Consider such a cyclic
diagram. If it is incorrect, then it does not appear in the normal form. In case it is
correct, it represents a trivially infinite loop during the execution of the machine such as
[−m(L, q, c, R),+m(L, q, c, R)]. This diagram has no effect on the presence or absence
of [accept] or [reject] in the normal form.

§56.26 Remark (Bounded memory allocation). Remark that it is impossible to allocate too
much memory because the allocation stars require that we have a tape equal to ␣.

Chapter 8 Illustrating stellar resolution 275

Otherwise, we would have infinitely many diagrams for all the possible amount of
space allocation and no encoding of Turing machine would be strongly normalising.

§56.27 An example of Turing machine and its encoding is given in Figure 56.3. Although
we have shown an example of deterministic Turing machine, it is easy to see how the
non-deterministic case works. We can have several choices so that a same transition can
match with several transitions. This will necessarily yield several diagrams corresponding
to different runs. The whole machine accepts the input when at least one run accepts
the word.

57 More advanced machines

Alternating Turing machines (ATM)

§57.1 Alternating Turing machines are Turing machines with two classes of states: existential
(∨) and universal (∧) states. We use a function class : Q→ {∨,∧} in order to associate
a class with states.

§57.2 The acceptation is slightly modified: in order for an ATM M to accept a word w (with
the usual notation M(w) ∈ {1, 0,∞}), we require that in the computation tree of M ,
all children of ∧ nodes are accepting paths and at least one of the children of ∨ paths
is accepting. The idea is that universal states compute in parallel. More formally, by
using the notation used for automata, M(w, q) = 1 when:

• if class(q) = ∨, then there exists a sequence of configurations (C1, ..., Cn) with
C1 = (c, q, w) for some c which is accepting (as for NTM);

• if class(q) = ∧, then all sequences of configurations (C1, ..., Cn) with C1 = (c, q, w)
for some c are accepting.

We have M(w) = 1 when for all state q of M , we have M(w, q) = 1. Rejection is similar
but with qr instead of qa. The case of NTM is a special case where all states are of type
∨ (because non-determinism only requires one path to succeed).

§57.3 In order to reproduce the computation of an ATM M on a word w, we need a trick for
the treatment of ∧ states. Instead of using the non-determinism of constellations which
would induce several parallel diagrams, a ∧ state q ∈ Q of n > 1 outputs should be
represented by a star of n outputs (polarity +) so that all paths from q are part of the
same diagram. Since in our definition of NTM, all paths terminate either on accept
or reject, it is sufficient to require that if M(w) = 1, then Ex(M⋆ + w⋆) contains at
least one star [accept, k..., accept] for k ≥ 1. Otherwise, if there is at least one reject,
it means that some paths from a ∧ state has been rejected or that no paths of ∨ states
are accepting.

Chapter 8 Illustrating stellar resolution 276

qa q0

start

q1 qr

q2

q3

$→ $, r

a→ a, r
$→ $, r

b→ b, r
$→ $, r

a→ a, l
b→ b, l
$→ $, l

a
→
$,

r

b→
$, r

b→
$, l

a
→
$,

l

␣→ ␣, s

␣→ ␣, s

␣→ ␣, s ␣→ ␣, r

M⋆ = [−i(C ◦W),+m(␣, q0, C,W)] + [−i(␣),+m(␣, q0, ␣, ␣)]+
[−m(L, q0, ␣, R),+m(L, qa, ␣, R)] + [−m(L, q2, ␣, R),+m(L, qr, ␣, R)]+

[−m(L, q0, $, C ◦R),+m(L • $, q0, C,R)] + [−m(L, q2, $, C ◦R),+m(L • $, q2, C,R)]+
[−m(L, q0, a, C ◦R),+m(L • $, q2, C,R)] + [−m(L, q2, a, C ◦R),+m(L • a, q2, C,R)]+
[−m(L, q0, b, C ◦R),+m(L • $, q3, C,R)] + [−m(L • C, q2, b, R),+m(L, q1, C, $ ◦R)]+

[−m(L, q1, ␣, C ◦R),+m(L • ␣, q0, C,R)] + [−m(L, q3, ␣, R),+m(L, qr, ␣, R)]+
[−m(L • C, q1, $, R),+m(L, q1, C, $ ◦R)] + [−m(L, q3, $, C ◦R),+m(L • $, q3, C,R)]+
[−m(L • C, q1, a, R),+m(L, q1, C, a ◦R)] + [−m(L • C, q3, a, R),+m(L, q1, C, $ ◦R)]+
[−m(L • C, q1, b, R),+m(L, q1, C, b ◦R)] + [−m(L, q3, b, C ◦R),+m(L • b, q3, C,R)]+

[−m(L, qa, X,R), accept] + [−m(L, qr, X,R), reject]+
[−m(␣, Q,C,R),+m(␣ • ␣, Q,C,R)] + [−m(L,Q,C, ␣),+m(L,Q,C, ␣ ◦ ␣)]

Figure 56.3: A Turing machine accepting words containing as many symbols a as symbols
b where a→ b, d from a state q to q′ corresponds to a transition ∆(q, a) =
(q′, b, d). When computing IEx(M⋆, a⋆), we plug the input with the correct
initial star and obtain [+m(␣, q0, a, ␣)]. No star can be connected, hence we
have to connect to the right allocation star and obtain [+m(␣, q0, a, ␣ ◦ ␣)].
We can use the star corresponding to a→ $, r and obtain [+m(␣•$, q2, ␣, ␣)].
Since we read ␣, we the use star corresponding to the transition ␣ → ␣, s
and obtain [+m(␣ • $, qr, ␣, ␣)]. We can only use the star corresponding to
qr and obtain [reject]. If we had a character b next to a, we would reach
[accept].

Chapter 8 Illustrating stellar resolution 277

§57.4 Definition (Encoding of alternating Turing machines). The encoding of an ATM
M = (Q,Γ,∆, q0, qa, qr, class) is defined by a constellation M⋆ such that:

• q0, qa and qr are translated as in Definition 56.22.

• for each q ∈ Q and c ∈ Γε such that (q′, c′, d) ∈ ∆(q, c):

– if class(q′) = ∨, we have the star given in Definition 56.22;

– if class(q′) = ∧, then for qi, ci, di such that (qi, ci, di) ∈ ∆(q′, c′) for all c′
with 1 ≤ i ≤ k, we have:

∗ [−m(L•X, q′, c′, R),+m(L, q1, X, c1 ◦R), k...,+m(L, qk, X, ck ◦R)] when
di = l;

∗ [−m(L, q′, c′, X ◦R),+m(L•c1, q1, X,R), k...,+m(L•ck, qk, X,R)] when
di = l.

If c = ε or c′ = ε, then we do not write them in the stack as for Turing machines.

• we add two additional stars for memory allocation:

[−m(␣, q, c, R),+m(␣ • ␣, q, c, R)] + [−m(L, q, c, ␣),+m(L, q, c, ␣ ◦ ␣)].

§57.5 Theorem (Simulation of alternating Turing machines). Let M be an ATM and w a
word. For k > 0, we have:

1. if M(w) = 1, then M⋆ ` w⋆ ⇝∗ M⋆ ` Ψ with [accept, k..., accept] ∈ Ψ;

2. if M(w) = 0, then M⋆ ` w⋆ ⇝∗ M⋆ ` Ψ with [reject, k..., reject] ∈ Ψ.

Proof. The proof follows the same idea as Theorem 56.25 since ATM are extensions
of NTM. It remains to show that the behaviour associated with the types of states is
correctly simulated. The case of ∨ states is identical to the behaviour of regular states in
NTM. We show the first statement for M(w) = 1 with w = c ◦w′ for some c and w′ (the
case with w = ε is similar to the one with Turing machines in Theorem 56.25). The case
of M(w) = 0 is similar since these are both halting cases. Assume M(w) = 1. We show
that for any universal state, interactive execution produces a star [accept, n..., accept]
for some n.

We start from the interactive configuration M⋆ ` w⋆. It will interact with the ini-
tial state and we obtain M⋆ ` w⋆ ⇝ M⋆ ` [+m(␣, q0, c, w)]. Assume we have a
non-deterministic transition to states q1, ..., qn, s1, ..., sm such that class(qi) = ∨ and
class(si) = ∧.

• For all (qi, ci, di) ∈ ∆(q0, c), a copy of [+m(␣, q0, c, w)] interacts with the star asso-
ciated with the transition, as in Theorem 56.25. We obtain

∑n
i=1[+m(li, qi, c

′
i, ri)]

in the normal form with a choice of li, c′i and ri consistent with the translation of
Turing machines into constellations.

Chapter 8 Illustrating stellar resolution 278

• Without loss of generality, we consider the left case for directions di = l. For all
(si, ci, di) ∈ ∆(q0, c), a copy of [+m(␣, q0, c, w)] interacts with the star [−m(L •
X, q0, c, R),+m(L, s1, c1, X ◦R), m...,+m(L, sm, cm, X ◦R)]. We have

ϕ := [+m(␣, s1, c1, c ◦ w), k...,+m(␣, qm, ck, c ◦ w)]

in the normal form.

We finally obtain the stellar interaction:

M⋆ ` [+m(␣, q0, c, w)]⇝M⋆ `
n∑

i=1

[+m(li, qi, c
′
i, ri)] + ϕ

We can apply more transitions (either to existential or universal states) by trigering
interaction between a selected ray on the right of ` and stars associated with next
transitions. During interactive execution we have interaction spacesM⋆ `

∑n
i=1 ϕi such

that the ϕi are either stars [+m(l′, q′, c′, r′)] for some l′, q′, c′ and r′ or stars

[+m(l′1, q
′
1, c
′
1, r
′
1),

k...,+m(l′n, q
′
n, c
′
n, r
′
n)]

for some l′i, q′i, c′i and r′i. By the proof of Theorem 56.25, each time a state reach the
accepting state qa, its corresponding ray is replaced by the unpolarised ray accept. If
we obtain a star [accept, n..., accept] it means that all children of an universal state are
accepting for one possible non-deterministic path.

§57.6 Remark that ATM are, structurally speaking, not so far from regular constellations. In
stellar resolution, we have non-deterministic choices with several rays matchable with
one single ray and branching with multiple rays in a star matchable which rays of other
stars. The first situation generalises ∨ states and the second one ∧ states. This may
be coherent with known results regarding the linear relation between the complexity of
logic programs and ATM [Sha84].

Non-deterministic finite tree automata (NFTA)

§57.7 The previous automata we described recognise words. In this section, we consider au-
tomata which recognise trees [CDG+97]. By recognising trees, we can work on complex
data types such as boolean formulas or arithmetic expressions for instance. In the lit-
erature, we usually have two types of NFTA: bottom-up NFTA which read the leaves
and infer new states by going up and top-down NFTA which starts from the root and
associate states with children. Since constellations deal with terms, we can naturally en-
code trees by using function symbols for nodes, which leads to an encoding of top-down
NFTA.

Chapter 8 Illustrating stellar resolution 279

[−ta(X, or(not(1), 1)), accept] + [+ta(q0, 0)] + [+ta(q1, 1)]+

[−ta(qa, Ta),+ta(qmax(a,b), or(Ta, Tb))] + [−ta(qa, Ta),+ta(q1−a, not(Ta))]

Figure 57.1: Constellation recognising trees correspond to true boolean formulas. In this
example, it takes an instance of excluded middle as input.

§57.8 Formally, a top-down NFTA is a tuple T = (Q,F, ar, Q0,∆) where Q is the set of
states, F is a set of function symbols, ar : F → N associates an arity with function
symbols, Q0 ⊆ Q is the set of initial states and ∆ is a set of transition rules of the
form q(f(x1, ..., xn)) → f(q1(x1), ..., qn(xn)) for f ∈ F , ar(f) = n, q, q1, ..., qn ∈ Q and
x1, ..., xn variables. An input tree t is accepted, written T (t) = 1, when it can be fully
traversed by the transition rules by starting from a state q ∈ Q0. Otherwise, it is rejected
and we write T (t) = 0.

§57.9 Definition (Syntactic encoding of trees). Let t be a tree. We define its encoding t⋆
inductively by:

• X when t is a leaf x;

• f(t⋆1 , ..., t
⋆
n) when t is a node containing a symbol f with n children t1, ..., tn.

§57.10 Definition (Encoding of top-down tree automata). Let T = (Q,F, ar, Q0,∆) be a
top-down NFTA. The encoding of T is a constellation T⋆ defined as follows:

• for each q0 ∈ Q0, we have [−i(T),+ta(q0, T)];

• for each q(f(x1, ..., xn))→ f(q1(x1), ..., qn(xn)) ∈ ∆, we have a constellation

[−ta(q, f(X1, ..., Xn)),+ta(q1, X1)] + ...+ [−ta(q, f(X1, ..., Xn)),+ta(qn, Xn)];

and for each leaf x, we add the following star: [−ta(q,X), accept].

§57.11 Theorem (Simulation of top-down tree automata). Let t be a tree and T be a top-
down NFTA. We have Ex(T⋆ + t⋆) 6= ∅ if and only if T (w) = 1.

Proof. The simulation follows the same idea as for automata (cf. Theorem 56.5). Instead
of a consumption of word, we have a decomposition of tree which has the same role.

§57.12 Interestingly, bottom-up NFTA are encoded in the same way but with reversed polar-
ities: we start from leaves and go up to the root. Moreover, since we start with all
the leaves, we need final states instead of initial ones. Instead of deconstructing trees,
we are constructing trees. An example of what would be constellation corresponding

Chapter 8 Illustrating stellar resolution 280

to a bottom-up tree automaton recognising true booleans formulas is illustrated in Fig-
ure 57.1. By using these ideas, it is also possible to extend the previous models to trees
instead of words.

Krivine Abstract Machine (KAM) with call/cc

§57.13 The Krivine Abstract Machine (KAM) has already been defined in Section 22. I ran-
domly had the idea to encode it into constellations but I am not very confident about the
details. In this section, I only give the definitions without establishing any simulation
result.

§57.14 The encoding of the λc-terms corresponds to an encoding of their syntax tree. We
use the binding of variables already present in stellar resolution in order to create
bound variables in λ-terms. We obtain a sort of λ-calculus with independent explicit
substitutions [ACCL91]. The idea is that stars representing terms will be of shape
[−i(n1, X1), ...,−i(nm, Xm), t] where t is the encoding of a λc-term, ni are identifier of
variables and Xi are variables of stellar resolution appearing in t.

§57.15 To make things simple, we consider that variables under some scope of a λ do not
appear under another scope: there is no possible capture of variables. We can obtain
this situation by simply renaming bound variables in a term. I tried to take scopes
into account so that it would work for any λ-term but it was horrible to define and too
technical to be understandable.

§57.16 Definition (Encoding of processes). We write Vλ for the set of variables of λc-calculus
and define a bijection σ : Vλ → N between variables of λc-calculus and natural numbers
and a bijection ν : Vλ → V between variables of λc-calculus and variables of stellar
resolution. First, we associate a term with λc-terms and stacks:

x• := ν(x) (λx.M)• := l(σ(x),M•) (MN)• := a(M•, N•) cc• := cc

k•π := s(π•) ε• := ε (M · π)• :=M• · π•

The encoding of λc-terms and stacks is defined as follows with an index α ∈ N asso-
ciated with terms in order to construct their syntax tree:

x⋆α := [−i(σ(x), ν(x)),+Tα(x•)] (Y 6= ν(x))

(λx.M)⋆α :=M⋆
α·0 + [−Tα·0(X),+Tα(l(σ(x), X))]

(MN)⋆α :=M⋆
α·0 +N⋆α·1 + [−Tα·0(X),−Tα·1(Y),+Tα(a(X,Y))]

cc⋆α := [+Tα(cc•)] (kπ)
⋆
α := [+Tα(k•π)] π⋆ := [+S(π•)]

Chapter 8 Illustrating stellar resolution 281

Finally, processes M ⋆ π are constructed with a star

(M ⋆ π)⋆ := Ex
(
M⋆

ε + π⋆ + [−Tε(X),−S(Y),+P (X ⋆ Y)]
)

connecting terms and stacks where ⋆ is a binary infix symbol and ε · α = α and ε is
not written when alone. Since it will never be composed, we do not define priorities
for ⋆.

§57.17 Example. We have (λx.x)⋆ = [−i(0, X),+T0(X)]+ [−T0(x),+T (l(0, x))] which nor-
malises into [−i(0, X),+T (l(0, X))]. Notice that the ray −i(0, X) acts as an explicit
substitution bound to X. When providing [+i(0, u)] for some term u, the two stars
merge and we obtain [+T (l(0, u)] which indeed corresponds to a substitution. The
process of β-reduction can be simulated with a star

[−Tα(a(l(n,X), u)),+Tα(X)] + [+i(n, u)]

which destructs a pattern of redex and produce a new term with the body of the
function in which all occurrences of variables of identifier n are replaced by u thanks
to the substitution star [+i(n, u)].

§57.18 Lemma. Let t be a λc-term. We have:

Ex(M⋆
α) = [−i(σ(x1), ν(x1)), ...,−i(σ(xn), ν(xn)),+Tα(M•)]

for x1, ..., xn the variables in M .

Proof. The translation of λc-term is designed so to gives the encoding of their syntax
tree. The only remaining free rays are the rays −i(n, x) (for each variables appearing in
the term) which corresponds to explicit substitutions [x := ·] waiting for a value, and a
ray +T (M•) where M• is a representation of the λc-term being constructed.

§57.19 Definition (Encoding of Krivine Abstract Machines). The KAM is encoded as the
constellation K⋆ made of the following stars:

[−P (a(M,N) ⋆ π),+P (M ⋆N · π)] (Push)
[− P (l(X,M) ⋆ N · π),+P (M ⋆ π),+i(X,N)] (Grab)
[− P (cc ⋆ M · π),+P (M ⋆ kπ · π)] (Save)
[− P (kπ ⋆ M · π′),+P (M ⋆ π)] (Restore)

§57.20 Example. We would to evaluate (λxy.x)z. We start from the construction of the
λc-term given by Lemma 57.18. It produces the star:

[−i(0, X),−i(1, Y),−i(2, Z),+T (a(l(0, l(1, X)), Z))].

Chapter 8 Illustrating stellar resolution 282

When put together with an empty stack to form a process and we obtain:

[−i(0, X),−i(1, Y),−i(2, Z),+P (a(l(0, l(1, X)), Z) ⋆ ε)].

By fusion with the push star then the grab star, we obtain:

push⇝ [−i(0, X),−i(1, Y),−i(2, Z),+P (l(0, l(1, X)) ⋆ Z · ε)]

grab⇝ [−i(1, Y),−i(2, Z),+P (l(1, Z) ⋆ ε)]

= [−i(1, Y),−i(2, Z),+P ((λy.z)• ⋆ ε)]

58 Generalised circuits

§58.1 Boolean circuits have been introduced in Section 18. However, in this section, we do
not directly encode boolean circuits but suggest a notion of generalised circuits. These
circuits are acyclic and connected hypergraph structures in which information flows from
inputs to a unique output and in which hyperedges are able to perform function calls
from a semantics called module. This subsumes boolean circuits, arithmetic circuits but
also opens the model of atypical circuits (or other variants with several outputs or other
weird models we can imagine).

§58.2 Definition (Module). A module is a tuple (X,L, ar, J·K) where X is a set of values,
L is a set of labels, ar : L → N × N a function associating an input-output arity to
labels and J·K associates with any label l ∈ L a computable total function Xn → Xm

such that ar(l) = (n,m).

§58.3 Example. Boolean circuits are constructed with the module (X,L, ar, J·K) with:
• X := {0, 1} and V := {xi, i ∈ N};

• L := {0, 1, xi ∈ V, s,¬,∧,∨, c};

• ar(b) = (0, 1) for b ∈ {0, 1} and JbK = b;

• ar(s) = (1, 2) and JsK(x) = (x, x);

• ar(¬) = (1, 1) and J¬K(x) = 1− x;

• ar(∧) = (2, 1) and J∧K(x, y) = min(x, y);

• ar(∨) = (2, 1) and J∨K(x, y) = max(x, y);

• ar(c) = (1, 0) and JcK(x) is undefined.

Chapter 8 Illustrating stellar resolution 283

§58.4 Definition (Generalised circuit). A generalised circuit is a tuple (C,M, κ) of:

• an acyclic and connected hypergraph C = (V,E, in, out) where elements of V
are called ports and elements of E are called gates;

• a module M = (X,L, ar, J·K);
• the total function κ : E → L associates a label with each gate e ∈ E. We require

that |in(e)| = n and |out(e)| = m when ar(κ(e)) = (n,m).

There exists some special gates:

• output gates e such that out(e) = ∅;

• input gates e such that in(e) = ∅.

We require that a generalised circuit has at least one input gate and a unique output
gate.

§58.5 Definition (Evaluation of generalised circuits). Let (C,M, κ) be a generalised circuit
with C = (V,E, in, out) and M = (X,L, ar, J·K). Its evaluation is given by a function
val such that val(C) ∈ X. It is defined as follows, where o is the only output gate of
C:

• val(C) := val(o);

• if e ∈ E is an input gate then val(e) = JeK;
• for all e such that in(e) = {i1, ..., in} with parents {ek ∈ E | ik ∈ out(ek)}, we

have val(e) = Jκ(e)K(val(e1), ..., val(en)).

§58.6 Example. A boolean circuit is any generalised circuit using constructors of Exam-
ple 58.3. It is easy to extend the interpretation to arithmetic circuits by changing the
module and replacing boolean functions by computable arithmetic functions. Con-
junction is replaced by multiplication and disjunction by addition. Theoretically, we
are not limited to computable functions but using computable functions guarantees
that the circuit can be realised in stellar resolution.

§58.7 Imperative programs. If we allow loops and define ways to handle them, it might
be possible to also represent imperative programs by considering the structure of the
execution flow graph of a program and then passing states containing a memory (repre-
senting as a matrix over {0, 1} for instance). We are also able to do function calls since
functions are attached to constructors. I do not investigate this idea here.

§58.8 Definition (Encoding of generalised circuits and modules). Let (C,M, κ) be a gen-
eralised circuit with C = (V,E, in, out) and M = (X,L, ar, J·K). We translate C
into a constellation C⋆ :=

∑
e∈E e

⋆. Assume that in(e) = {i1, ..., in} and out(e) =

Chapter 8 Illustrating stellar resolution 284

{o1, ..., om}. The translation of e is defined by a star

e⋆ :=

−i1(X1), ..., −in(Xn),
−κ(e)(X1, ..., Xn, Y1, ..., Ym),

+o1(Y1), ..., +om(Ym)

 .
If e is a conclusion gate, then we add unpolarised rays Y1, ..., Ym to output the result
and remove the function call −κ(e)(X1, ..., Xn, Y1, ..., Ym).

For all label l ∈ L such that ar(l) = (n,m), we define a star l⋆ by any star such
that IEx(l⋆, [−l(a1, ..., an, Y1, ..., Ym), Y1, ..., Ym]) = [b1, ..., bm] and JlK(a1, ..., an) =
(b1, ..., bm).

The module M is translated into the constellation M⋆ :=
∑

l∈L l
⋆.

§58.9 Example. It is possible to design a circuit for excluded middle with 1 as input:

[−1(X),+c0(X)] + [−c0(X),−s(X,Y, Z),+c1(Y),+c2(Z)]

+[−c1(X),−¬(X,R),+c3(R)]+[−c2(X),−c3(Y),−∧(X,Y,R),+c4(R)]+[−c4(R), R].

We need the constellation module:

[+1(1)] + [+s(X,X,X)] + [+¬(1, 0)] + [+¬(0, 1)]

+[+ ∧ (1, X,X)] + [+ ∧ (0, X, 0)]

Remark that unused parts of the module can remain in the normal form except if we
use the operator , as for automata.

§58.10 Notice that generalised circuits are purely structural waiting for some “function defini-
tions”. We have to plug its constellation with a module giving the semantics of gates.
It shows that stellar resolution computes by internalising external procedures. In some
sense, the syntax interacts with the semantics by expliciting hidden procedures.

§58.11 Variables. It is possible to hijack the encoding of generalised circuits in stellar resolution
in order to express satisfiability of boolean expressions. If we do not use constants, then
some variables will wait for a value. For any input ray −cx(X) which is free in the
dependency graph of the constellation, we can add a star ϕx := [−i(X) + cx(X)] for
variables. We can add stars

∑
b∈X [+i(b)] so that ϕx will face a non-deterministic choice

for all values The execution of the whole constellation will produce several stars for each
combinations of inputs. It is also possible to add a variant of conclusion star [−cx(1), ok]
with an explicit constant in order to ask for satisfiability of the circuit. If the output is
1 then we obtain the unpolarised star [ok]. By using such constellations it is possible to
express the NP-complete satisfiability problem.

Chapter 8 Illustrating stellar resolution 285

§58.12 Example. It is possible to design a circuit for excluded middle with unknown boolean
inputs:

[−i(X),+c0(X)] + [−c0(X),−s(X,Y, Z),+c1(Y),+c2(Z)]

+[−c1(X),−¬(X,R),+c3(R)]+[−c2(X),−c3(Y),−∧(X,Y,R),+c4(R)]+[−c4(R), R].

We then add [+i(1)] + [+i(0)] in the module and these two stars can be linked with
[−i(X),+c0(X)]. We will then obtain one result for all possible combinations of value.
The presence of one star [ok] indicates that the corresponding formula is satisfiable.
For n inputs, the presence of 2n occurrences of [ok] indicates that we have a tautology.

§58.13 When considering such circuits with input variables, we can plug value stars as in the
previous example to fill values. We then obtain several circuits without input variables.
It is then sufficient to consider generalised circuits without input variables.

§58.14 Theorem (Simulation of generalised circuits). Let (C,M, κ) be a generalised circuit
without input variables. We have AEx(C⋆]M⋆) = [val(C)].

Proof. Assume C := (V,E, in, out) and that we have a hyperedge e which is incident
to another hyperedge e′ through a vertex v. This situation is translated by stars ϕ ∪
{+cx(X1, ..., Xn)} and ϕ′∪{−cy(Y1, ..., Yn)} for variables Xi and Yi. By applying fusion,
we have θϕ ∪ θϕ′ with θ the solution of the equation induced by the rays we connected.
We can apply execution on all stars of C⋆ first (this is later justified with the partial
pre-execution lemma of Lemma 64.9) and we obtain a star [−f1(...), ...,−fk(...), r] where
fi corresponds to unsolved function call waiting for an interaction withM⋆, and r is the
only unpolarised ray corresponding to the only conclusion of C. Now, if implementations
of functions in M⋆ are indeed correct (consistently with Definition 58.8), then when the
remaining star interacts with M⋆, we must obtain [φ(C)]. All unused stars of M⋆ are
erased by the operator .

59 Tile systems with the abstract tile assembly model

§59.1 In this section, I choose to only encode the abstract tile assembly model (aTAM) men-
tioned and defined in Paragraph 17.7. Other tile systems can easily be encoded. For
instance, Wang tiles’ encoding can be directly inferred from the encoding of aTAM and
flexible tiles correspond to stars with polarised ray of nullary colour (hence a polarised
constant).

§59.2 We suggest an encoding of the aTAM in N2 instead of Z2 which is more natural but not
less powerful since it is known that N2 ' Z2 and also because we are able to compute
any computable function (since we previously encoded Turing machines).

Chapter 8 Illustrating stellar resolution 286

§59.3 Definition (Encoding of tiles). Tile types ti = (giw, g
i
e, g

i
s, g

i
n) are encoded by a star

t⋆i : −
•
h(gl(giw)(X), X, Y), −•v(gl(gis)(Y), X, Y),

+
◦
h(gl(gie)(s(X)), s(X), Y), +

◦
v(gl(gin)(s(U)), X, s(Y))

where gl(g)(X) := g(X) · str(g) for str(g) ∈ N.

We define the translation of a set of tile types T as the constellation T⋆ :=
∑

ti∈T t
⋆
i .

§59.4 The symbols h (horizontal) and v (vertical) represent axis of connexion. The key point
of the encoding is that because of the dots • and ◦, tiles have to use an intermediate
star to check whether a connexion is allowed.

§59.5 Definition (Environment constellation). The environment constellation for a tem-
perature τ ∈ N\{0} is defined by Φτ

env :=

[+temp(τ)] +

+
•
v(g1(X1) ·N1, X1, Y1), −

◦
v(g2(X3) ·N2, X3, Y3),

+
•
h(g3(X5) ·N3, X5, Y5), −

◦
h(g4(X7) ·N4, X7, Y7),

−◦v(g1(X2) ·N1, X2, Y2), +
•
v(g2(X4) ·N2, X4, Y4),

−
◦
h(g3(X6) ·N3, X6, Y6), +

•
h(g4(X8) ·N4, X8, Y8),

−add(N1, N2, R1), −add(N3, N4, R2),
−add(R1, R2, R),−geq(R, T, 1),−temp(T)

+[−•v(g(X) ·0, X, Y)]+[+

◦
v(g(X) ·0, X, Y)]+[−

•
h(g(X) ·0, X, Y)]+[+

◦
h(g(X) ·0, X, Y)]

+[+
◦
v(g(X) ·0, X, Y)]+[−•v(g(X) ·0, X, Y)]+[+

◦
h(g(X) ·0, X, Y)]+[−

•
h(g(X) ·0, X, Y)]

+[+geq(0, 0, 1)] + [+geq(s(X), s(Y), R),−geq(X,Y,R)] + [+geq(s(X), 0, 0)]+

[+geq(0, s(Y), 0)] + [+add(0, Y, Y)] + [−add(X,Y, Z),+add(s(X), Y, s(Z))]

§59.6 Theorem (Simulation of the aTAM). Let T = (T, τ) be a TAS. We have

CSatDiags(T⋆ +Φτ
env) ' A□[T].

Proof. It is sufficient to show that the computation of CSatDiags(T⋆ + Φτ
env) behaves

like the construction of tilings in aTAM.

Direct connexions between tiles without using Φτ
env is forbidden because of the symbols

◦ and •. Notice that the colours v and h force the connexions to be on the same axis in
order to follow the geometric restriction of tiling in a plane. The tiles are designed so
that a plugging increment a coordinate X or Y depending on the position/axis of the
side. The purpose of this feature is to simulate a shifting of tile on a plane so that two
tiles cannot connect on two sides at the same time.

Chapter 8 Illustrating stellar resolution 287

Because of the symbols ◦ and •, we have to use the constellation Φτ
env as an intermediate

for the connexion of two tile sides. We consider a tile ti ∈ dom(α). We start with t⋆i .
Assume ti can be connected to k other tiles in dom(α). They can only be connected
through Φτ

env by their connectable sides. Their glue type and strength for the connected
sides have to match because of the shared variables for opposite sides in Φτ

env. All other
unused sides of the connector star will be plugged by the unary stars used as fillers. By
using principles of logic programming, the diagram can only be correct and saturated if
the sum of connected sides of ti is greater or equal to τ (note that the filled unused sides
add 0 to the sum). The stars sing symbols add and geq are common logic programs,
hence their correctness is assumed.

Since all ti ∈ dom(α) satisfy the above property, the two operations have the same dynam-
ics. Moreover, each tile corresponds exactly to a star and each of its sides corresponds to
a ray and we have a structural isomorphism between tiles and their translation. It fol-
lows that we have a bijection between the set of non-empty finite assemblies constructible
from T at temperature τ and CSatDiags(T⋆ +Φτ

env).

§59.7 Encoding of Wang tiles. Wang tiles can be recovered by considering the case of
non-cooperative tiles with temperature τ = 1 [MW17], considering all strengths to be 0
and removing the environment constellation. Glue types then correspond to colours of
Wang tiles. This works because like Wang tiles, tiles of aTAM are also bricks placed on
a plane.

60 Discussion: a common language for classical computation?

§60.1 In this chapter, I presented the encoding of a lot of different models of computation.
However, when I talk about it to other people, they often say “but your model is Turing-
complete so it’s not very surprising. Any Turing-complete model can do the same”. But
do all encodings have the same value? Intuition tells us that no: encoding λ-calculus
into proof-nets seems more interesting that encoding λ-calculus with Turing machines.
But why? I am not sure about that... How to differentiate an encoding which reveals
more about the computational mechanisms of an object and another one which is only
superfluous bureaucracy? Even though I do not have answer, I would like to write about
several remarkable points appearing in the encodings I defined. I believe that it can
potentially raise interesting questions about classical computation.

§60.2 What models of computation share. As discussed in Section 19, it seems to me that
the main models of computation are all about basic information flowing inside a discrete
structure (typically a graph or a hypergraph). This is the elementary mechanism that
stellar resolution implements. Constellations are about basic information (expressed
with terms) moving between points in a network.

Chapter 8 Illustrating stellar resolution 288

• With Horn clauses, a path of inference trying to justify a query then several state-
ment traverse the knowledge base of a logic program.

• In automata theory, we have information about states transferred from one state
to another. Typical data exchanged are the different stacks of information such as
information about how many characters are remaining in the input or information
needed to start the next transition.

• In boolean and arithmetic circuits, data such as numbers or booleans moves from
inputs to the unique output. During the traversal of the circuit, these data are
altered by some functions (e.g. boolean gates).

• In tile systems it is more subtle but geometric information about position and the
structure of space (coordinates in a plane) are exchanged between tiles.

• Finally, with the GoI (cf. Chapter 5), we have seen with the token machine and
the long trip criterion that we could travel inside a proof-structure by following
some rules in order to express cut-elimination and logical correctness.

This idea of basic information flowing inside a structure is very primitive. It seems to
generalise most classical models of computation without serious rise of complexity or un-
natural hacks. A similar idea has been developed with (labelled) transition systems used
in model checking [BK08, Chapter 2]. Compared to other similar models, stellar resolu-
tion has the advantage of being self-sufficient, without the need for external procedures.
It only uses term unification which is triggered when making two stars interact.

§60.3 Automata as constellations with stacks. I remarked a small but funny thing about
the encoding of automata in stellar resolution. Notice that our encoding of words is
simply a stack of characters and that consuming a character (by using a star [−a(c ·
w),+a(w)]) is the dual operation of adding a character (by using a star [−a(w),+a(c ·
w)]). In stellar resolution, these operations only differ by the polarity of terms and the
direction of computation (given by the initial and final state). We obtain three types of
stacks: strictly decreasing (SD), strictly increasing (SI) and arbitrary (A) which can be
both increasing or decreasing. The difference between NFA and NPDA are the number
of stacks they use and how these stack are used: SD-stack for NFA and both an SD-stack
and an A-stack for NPDA.

§60.4 Using an additional SI-stack and replacing accept by the content of this new stack
can actually naturally lead to transducers which have the additional feature of writing
symbols. By assembling stacks of different types of stacks over the encoding of a graph,
we obtain the most common state machines (Figure 60.1). It seems to me that it is also
possible to manipulate collapsible pushdown automata [HMOS08] which manipulate
higher order stacks (stacks of stacks). Since stacks in stellar resolution are terms (made
by composition function symbols to stack symbols), they can be manipulated as any
other terms.

Chapter 8 Illustrating stellar resolution 289

Automata Stacks to add
Input Output Auxiliary stack

NFA SD
NPDA SD A
NFST SI

2-way NFST 2 × A SI
NTM 2 × A

n-tape NTM 2 × A 2(n− 1) × A
NTM with output 2 × A

Figure 60.1: Characterisation of automata by number and types of stacks.

§60.5 We have a very general characterisation of the different sorts of automata in the stellar
resolution. However, in order to consider more complex extensions of automata such
as alternating Turing machines, tree automata or other features, adding stacks is not
sufficient any more: we need more sophisticated changes.

§60.6 Seiller’s graphings as another computational basis. Seiller has similar ideas with
his graphings which are able to represent automata by actions on state spaces [Sei18].
The idea seems so general that Seiller uses graphings to represent models of computation
in a more mathematical and generic way. From this idea, he hopes to give a mathemat-
ical definition to the notion of algorithm which would correspond to a specification for
graphings. However, the notion is still unclear and no works in that direction have been
published yet, at the time of this thesis.

§60.7 Are models of computation logical. The encodings presented in this chapter are
formatting of constellations. We are constraining constellations by giving some paths
that execution must take. The shapes of terms also limit the potential of execution. To
take an elementary example, what would we do to characterise constellations representing
finite automata? Automata must contain the star [+i(W),+a(W, q0)] (exactly once), the
star [−a(ε), accept] (exactly once) then only stars of the shape [−a(c ·W, q),+a(W, q′)]
representing transitions with some symbol c and states q, q′. We then require that the
corresponding dependency graph is connected. Given a constellation Φ in the wild,
how do we determine if it is an automata? Probably by using tests (cf. Chapter 6),
as with correctness criteria for linear logic (although no tests for automata have been
defined in this thesis). I believe that this makes all models of computation as “logical”
as mathematical proofs. In particular, it is not so surprising that computer science and
proof theory converged in the CHL correspondence Section 21 since they share similar
practices of mixing the computational (object) and the logical (subject).

§60.8 Regulation of computation. I claim that models of computation are logical because
their shape are characterised by some chosen tests. However, this is not even sufficient.
A “human intervention” seems to be needed in a lot of models of computation. Circuits,
for instance, usually compute from inputs to the output. However, constellations seem

Chapter 8 Illustrating stellar resolution 290

to operate an asynchronous and parallel computation. There is no explicit direction of
computation nor initial point (inputs). If we are not interested in implementations (for
instance by using abstract execution), then there is no impact on the result. A solution
that I implemented in this chapter is to use interactive execution by only selecting stars
representing initial states on the right of ` in interaction spaces. This is sufficient for
automata but not for circuits. Imagine that we are starting from the conclusion instead of
inputs in a circuit. When reaching the term associated with a function call, for instance
− ∨ (X,Y,R), we need to non-deterministically test all choices of rays + ∨ (..., ..., ...).
However, if we start from the inputs, it is possible to fix some values and limit the
possible choices (erasure of non-determinism). Actually, if we would like to perfectly
reproduce the computation of circuits, we need synchronisation and a computation layer
by layer. All this shows that strategies must be considered for real-world computation
(as in λ-calculus in which a lot of strategies are studied). I now claim that:

Model of computation = Stellar resolution + Logic + Strategy
Computational object = Constellation + Correctness tests + Regulated computation

A lot of models of computation already assume a strategy which affects the complexity of
their operations. A possible solution which I did not explored is to use internal polarities
to simulate synchronisation of execution.

§60.9 Anarchy and authority. We have seen that an external control is needed so that we
faithfully reproduce the behaviour of existing models of computation. However, this is
not the case of all models. This corresponds to Girard’s apodictic and epidictic described
in Section 44.

• Apodictic models of computation are typically tile systems which are sometimes
qualified as natural computation. Computation does not need any external control
or human intervention by choosing where to start and how to proceed. Inter-
estingly, the aTAM (cf. Section 59) features self-cooperation without the need of
external control. We have an “intermediate-free” or “permissionless”1 computa-
tion2. Computation is autonomous in these models and freed from any query to
external procedures, structures of systems.

• Epidictic models contain circuits or logic programs in which computation has to
be done in a certain way. We have to “educate” computation. However, what is
the nature of those strategies? Can strategies always be implemented by terms or
constellations so that we internalise this seemingly external control (as for aTAM)?
For instance, those strategies would be checked by tests and we would have that
“strategies=logic”. It seems possible in some cases by finding alternative and more
sophisticated encodings but I do not believe it is always possible. For automata

1Similarly to decentralised blockchain technologies, whereas banking systems are centralised with in-
termediates. Both have their advantages and drawbacks.

2Which can be considered a requirement for Girard’s ideal of analytic space (cf. Section 42).

Chapter 8 Illustrating stellar resolution 291

with interactive execution for instance, the arbitrary choice of initial states (al-
though it may be simulated by using internal polarities).

I currently have no idea about how to implement strategies in a satisfying and generic
way but I believe this is a serious and interesting problem which is in consistent with the
idea that TS reveals implicit operations. Moreover, these considerations has an effect
on computational complexity.

Chapter 9

Properties of execution for objective
constellations

In this section, we present few things which can be said about constellations, their
structure and their behaviour. By convention, we Ex is written, we can mean either AEx
or IEx.

We focus on objective constellations since they are the ones which are studied and used
the most in this thesis.

61 Computability of stellar resolution

§61.1 In this section, a few results about execution are detailed. First, our model is Turing-
complete, which is not too surprising since it is very close to logic programming which
is itself known to be Turing-complete (especially by considering Horn clauses [Hor51,
Tär77]) but also able to simulate the aTAM which is also Turing-complete [Win98,
Section 3.2.5][Woo15, Section 2].

§61.2 Proposition (Turing-completeness). Stellar resolution is Turing-complete.

Proof. Consequence of Theorem 56.25. Although we can encode Turing machines, stel-
lar resolution (with abstract execution) is actually “stronger” but for wrong reasons:
the ability to compute infinite normal forms. In particular, it is possible to construct
infinite non-uniform families of boolean circuits (cf. Section 58) which are known to be
theoretically able to decide any language but without concrete implementation of how
such families work (for that reason, we usually require families to be uniform, i.e. that
they can be generated by a Turing machine). This is not a problem since we are usually
interested in finite constellations and finite normal forms. Moreover, stellar resolution
with concrete execution is not affected by this problem.

§61.3 It is possible to construct decider-constellations corresponding to a computable function
f : Nk → N on natural numbers (or boolean deciders f : Nk → {0, 1}). We already have
an encoding of natural numbers in Definition 48.17. Let Φ be a constellation. We say

Chapter 9 Properties of execution for objective constellations 293

that Φ computes a function f : Nk → N when Ex(Φ + [+i(n1, ..., nk)]) = [f(n1, ..., fk)].
In case of a function f returning a boolean (or a natural number of {0, 1}), we say that
Φ accepts [+i(n1, ..., nk)] in case Ex(Φ + [+i(n1, ..., nk)]) = [1] and we say that it rejects
when Ex(Φ + [+i(n1, ..., nk)]) = [0] (as in automata theory). We say that Φ recognises
the set of constellations:

L(Φ) := {[+i(n1, ..., nk)] | Φ recognises [+i(n1, ..., nk)]}.

As explained in Paragraph 16.9, we can encode most interesting classical datatypes with
natural numbers.

62 Classes of constellations

(Non-)Terminating constellations

§62.1 The most remarkable behaviour of constellations is (non-)termination of execution.
There exists actually two notions of termination which are distinguished by concrete
execution.

§62.2 Definition (Visible normalisation). A constellation Φ is visibly normalising w.r.t. to
a set of colours C ⊆ F when AExC(Φ) is finite, written |AExC(Φ)| < ∞ or sometimes
|CSatDiagsC(Φ)| <∞.

§62.3 Definition (Strong normalisation). A constellation Φ is strongly normalisinga w.r.t.
to a set of colours C ⊆ F+] F− when IExC(Φ) terminates.

aThe term comes from λ-calculus in which strongly normalisation is the termination of all possible
paths of reduction.

§62.4 The difference is clear in the constellation [−c(X),+c(f(X))]. With abstract execu-
tion, we will have AEx([−c(X),+c(f(X))]) = ∅ because it is impossible to construct a
saturated diagram. All diagrams will be infinite chains linking −c(X) with +c(f(X)).
Any cyclic diagram would connect −c(X) with +c(f(X)) where the two occurrences of
X refer to the same variable but such diagram are incorrect because {X ?

= f(X)} has
not solution. The visible output is finite. However, with concrete execution, we would
have an infinite loop always introducing new occurrences of the star. There is no way
to terminate since it is impossible to tell when to stop. Strong normalisation subsumes
visible normalisation.

§62.5 Black holes. The previous example can be generalised to what I call a black hole.
The feature we are looking for with black holes is their ability to erase a given connected
constellation (or connected component of a constellation) Φ. If ϕ is a black hole then we
want to obtain Ex(Φ+ ϕ) = ∅. However, there is no generic black hole: they necessarily
depends on the shape of Φ.

Chapter 9 Properties of execution for objective constellations 294

• With abstract execution, a typical black hole is to choose a star

[r,−w(X),+w(f(X))]

where r ▷◁ r′ for r′ a ray of Φ. All diagram of Φ connected to [r,−w(X),+w(f(X))]
will never be saturated because it is always to possible to add an occurrence of
[r,−w(X),+w(f(X))] and extend the diagram as we wish.

• With concrete execution, the previous black hole yields an infinite loop but not
really the erasure we expect. There are several solutions such as embedding exe-
cution with an operator such as as for the interpretation of automata (cf. Sec-
tion 56). We will introduce specific solutions when needed (for the interpretation
of weakening in linear logic).

§62.6 What distinguishes terminating constellations from other constellations? It looks like
cycles in dependency graphs are related to loops in concrete execution. Cyclic constella-
tions can be non-terminating but also terminating (the logic program for unary addition
in Example 48.18). A first intuition comes from rewriting theory and the theory of
functional languages [BN98, Chapter 5]. A rewriting system is terminating when all
sequences of applications of rewriting rules are decreasing w.r.t. some (usually polyno-
mial) measure of the initial term. In other words, termination occurs in converging
cycles consuming terms of a star.

§62.7 I give a typical example inspired from the consumption of words with finite automata.
We have a star [+a(0 ·0 ·0 ·ε)] meant to be consumed by a loop [−a(0 ·W),+a(W)]. The
loop, by itself, is not terminating because we can repeat it as many times as we want. It
can be connected with itself to produce [−a(0·0·W),+a(W)], [−a(0·0·0·W),+a(W)] and
so on. It is has not way to know when to stop, as in black holes. However, it is productive:
the negative ray can be cancelled by a star. In particular, [−a(0 · 0 · 0 ·W),+a(W)] can
terminate by interaction with [+a(0 · 0 · 0 · ε)] and produce +a(ε). Remark that the
constant ε forbids any possible additional looping (as if we had linearised the term1).
This idea of loop stopped by a ray is the same idea as in recursion/induction where a
base case in needed.

Graph-structural classification of constellations

§62.8 The shape of D[Φ;C] for a constellation Φ contains a lot of information about ExC(Φ).
By observing the shape of constellations (as in Chapter 8 for instance), we observe that
only cycles make iteration/loops possible and that the plurality of diagrams is caused
by branching rays. Since the relationship between the structure of D[Φ;C] and the
computational behaviour of ExC(Φ) is a bit complex, we suggest a few structural classes
of constellations and establish theorems which will be useful to reason with constellations.

1This is what is actually used for the interpretation of dereliction in linear logic.

Chapter 9 Properties of execution for objective constellations 295

§62.9 Definition (Properties of constellation). Let Φ be a constellation,

D[Φ;C] = (V,E, end)

be its dependency graph over a set of colours C ⊆ F+] F−. We say that Φ is:

• finite if IΦ is finite (and so are V and E) and it is infinite otherwise;

• exact if for all e ∈ E we have e = {(i, j), (i′, j′)} such that bΦ[i][j]c is α-equivalent
to bΦ[i′][j′]c;

• acyclic when D[Φ;C] is acyclic and otherwise it is cyclic;

• connected when D[Φ;C] is connected and otherwise it is disconnected;

• branching if it has some branching rays. There are two sub-classes of branching
constellations. We say that Φ is:

– non-deterministic if |CSatDiagsC(Φ)| > 1;

– replicating if |CSatDiagsC(Φ)| = 1.

• deterministic is there is no branching rays.

All the definitions can be naturally parametrised with a set of colours C ⊆ F+] F−.

§62.10 A few words on replication and non-determinism. Replication is a duplication
occurring in a same diagram. Non-determinism is also a duplication but splitting di-
agrams. The two are not so different because they come from the same operation of
duplication. The only difference is that the two diagrams can be joined in the case of
replication but not in the case of non-determinism. We could talk about linkable and
non-linkable duplication instead. Replication is like having two choices but realising that
one choice links to the other: it is then an illusionary choice2.

§62.11 Example. We illustrate the properties defined above.

• The constellation Φn+m
N of Example 48.18 is connected, cyclic and branching

(non-deterministic). The middle star handles recursion but the construction of
diagrams can either continue or exit the loop.

• [+a(X),+a(X)] + [−a(X),−a(X), X] is exact, connected, cyclic and branching
(non-deterministic).

• [X,−c(X)] + [+c(f(Y))] + [+c(g(Y))] is acyclic, connected and branching (non-
deterministic).

• [+a(l),+a(r)]+[+b(l),+b(r)]+[−a(X),−b(X)] is connected, cyclic and branch-
ing (replicating but not non-deterministic). Two choices are possible for the

2I got this idea from a discussion with Valentin Maestracci.

Chapter 9 Properties of execution for objective constellations 296

negative rays but all the stars can appear in the same diagram by duplicating
[−a(X),−b(X)] and connecting the l (resp. r) together.

All these constellations are finite.

§62.12 Proposition. If a constellation Φ with D[Φ;C] := (VD, ED, endD) is finite and acyclic
w.r.t. C ⊆ F+] F− then for all diagram (Gδ, δ) such that Gδ := (Vδ, Eδ, endδ) and
δ : Dδ → D[Φ;C], we have that δ is injective.

Proof. Assume that for v, v′ ∈ Dδ, δ(v) = δ(v′). We have to show v = v′, meaning that
v and v′ do not correspond to two occurrences of a same star in D[Φ;C]. Assume by
contradiction that v 6= v′. The only way to have v 6= v′ while preserving the adjacency
relation (which is required by the definition of diagram, which is a multigraph homo-
morphism) is to have a path ρ from v to v′ such that δ(ρ) is a path from δ(v) = δ(v′) to
itself. However, this contradicts the acyclicity of Φ.

§62.13 Corollary (Termination of acyclic constellations). If a constellation Φ with

D[Φ;C] := (VD, ED, endD)

is finite and acyclic w.r.t. C ⊆ F+] F− then |CSatDiagsC(Φ)| <∞.

Proof. Assume Φ is finite and acyclic. By Proposition 62.12, vertices of diagrams are
uniquely taken from VD and since stars have finitely many rays which must be uniquely
connected, there are finitely many edges. There are only finitely many graphs we can
construct with finitely many vertices and edges and in particular CSatDiagsC(Φ) is
finite.

§62.14 Lemma (Exactness). Let Φ be a constellation which is exact w.r.t. a set of colours
C ⊆ F+] F−. We have SatDiagsC(Φ) = CSatDiagsC(Φ).

Proof. Let Φ be an exact constellation and (Gδ, δ) ∈ SatDiagsC(Φ) one of its diagrams.
We already have CSatDiagsC(Φ) ⊆ SatDiagsC(Φ) by definition. It remains to show
that we have SatDiagsC(Φ) ⊆ CSatDiagsC(Φ) by showing that (Gδ, δ) is correct. Since
Φ is correct, all the n equations associated with edges of D[Φ;C] are equations ti

?
= ui

for 1 ≤ i ≤ n such that ti is α-equivalent to ui, meaning that any solution of {ti
?
= ui}

must a renaming α. We have to show that {t1
?
= u1, ..., tn

?
= un} has a solution. If we

solve all equations independently, we obtain subproblems with only variables. The only
rule which applies is “replace rule” (cf. Theorem B.2.4). We finally show that this rule
never fails when we only have variables. Assume we have a unification problem P with
only variables. If we replace X by Y , either X 6∈ P and nothing happens or X ∈ P and
all occurrences of X are replaced by Y . We obtain either equations Y ?

= Y which can

Chapter 9 Properties of execution for objective constellations 297

be removed by the “clear rule” or equations X ?
= Z with X 6= Z and in this case there

is no problem.

§62.15 Definition. Let Φ be a constellation. It is called perfect when it is finite, connected,
exact, acyclic and deterministic.

§62.16 Lemma (Perfection). If a constellation Φ is perfect then it has a unique saturated
diagram which is correct.

Proof. By Corollary 62.13, we know that Φ has finitely many saturated correct diagrams.
By induction on the number n of edges in D[Φ].

� Base case If n = 0 then Φ must be made of a unique star Φ[i], otherwise it would not
be connected. We have a unique diagram (Gδ, δ) with Gδ := (V,E, end), V := {v},
E := ∅ and δ(v) = i. This diagram is correct and we have ⇓(Gδ, δ) = Φ[i];

� Induction Assume we have a perfect constellation Φ′ with dependency graph D[Φ′] :=
(V ′, E′, end′) with |E′| = n′ a unique diagram (G′δ, δ

′). We now consider a bigger
constellation Φ with D[Φ] := (V,E, end) and |E| = |E′|+1. We necessarily added
a new star Φ[j], hence Φ := Φ′ + Φ[j]. Since Φ′ is connected, j is connected to
the unique connected component of D[Φ′]. Since Φ is deterministic then Φ[j] has
been linked to a free polarised ray of Φ′. The unique diagram (Gδ, δ) of Φ′ (given
by induction hypothesis) can be extended with Φ[j] and by fusion we still obtain
a unique bigger saturated diagram (Gδ, δ). Since Φ′ and Φ are both exact, it
guarantees the correctness of (Gδ, δ).

§62.17 Lemma (Independence of connected components). Let Φ be a constellation and
D[Φ;C] be its dependency graph for a set of colours C ⊆ F+] F−. We define K
as the set of connected components of D[Φ;C] and for all k ∈ K, we define Φk as the
restriction of Φ to the stars in K. We have AExC(Φ) =

⊎
k∈K AExC(Φk).

Proof. Consider a diagram (Gδ, δ) such that Gδ := (Vδ, Eδ, endδ) and δ : Dδ → D[Φ;C].
In the proof of Proposition 62.12, we have seen that diagrams preserve reachability of ver-
tices because they preserve the adjacency relation of multigraphs. It follows that for all
v, v′ ∈ Vδ, if there is no path from δ(v) to δ(v′), then there cannot be a path from v to v′.
Since diagrams are connected, they must have a connected component of D[Φ;C] as im-
age. Therefore, CSatDiagsC(Φ) =

∪
k∈K CSatDiagsC(Φk). Since execution is the actual-

isation of all correct saturated diagrams, it follows that AExC(Φ) =
⊎

k∈K AExC(Φk).

§62.18 Corollary (Independence of isolated stars). Let Φ be a constellation and D[Φ;C] be
its dependency graph for a set of colours C ⊆ F+] F−. For each star index i ∈ IΦ
such that i is isolated (no adjacent vertex) in D[Φ;C], there is i′ ∈ IAExC(Φ) such that

Chapter 9 Properties of execution for objective constellations 298

AExC(Φ)[i′] = Φ[i′].

Proof. By Lemma 62.17, in the particular case where we have a connected component
Φl (with l ∈ K) made of a unique isolated star Φ[i], if Φ = Φ′ + Φ[i] then we would
have AExC(Φ′ + Φ[i]) =

(⊎
k∈K−{l} AExC(Φk)

)
+ AExC(Φl) =

(⊎
k∈K−{l} AExC(Φk)

)
+

AExC(Φ[i]) =
(⊎

k∈K−{l} AExC(Φk)
)
+ Φ[i] because the execution of a star is a star (no

diagram can be constructed). In particular, if i′ is the index of Φ[i] in the normal form,
we have AExC(Φ)[i′] = Φ[i′].

63 Stellar transformations

§63.1 From the definition of concrete execution (cf. Section 50), we can remark that it is
possible to reduce all deterministic links without any impact on the normal form. This
corresponds to a sort of pre-normalisation of constellations. It is then possible to only
consider constellations without such links. We would only lose convenience or clarity
because constellations would be more compact.

§63.2 Definition (Stellar compression and compact constellations). Let Φ be a constellation
and C ⊆ F+]F− be a set of colours. Its compression compress(Φ) is the constellation
obtained by the following procedure:

• identify deterministic rays Φ[i][j] in D[Φ;C] such that adjCΦ(i, j) = {(i′, j′)} and
Φ[i][j] is also deterministic;

• for each such ray r, we transform Φ := Φ′ +Φ[i] into Φ′ +Φ[i]
j,j′

▽ Φ[i′].

We say that a constellation Φ is compact when compress(Φ) = Φ.

§63.3 Example. For the constellation

Φ := [−1(X),+4(X)] + [−2(X)] + [−4(X),−3(X),+5(X)] + [−5(X), 5(X)],

we have compress(Φ) = [−1(X),−3(X), 5(X)] + [−2(X)].

§63.4 There are other operations which we could think of but that we will not be interested
in here. For instance, we could think about splitting non-deterministic constellations
into several deterministic ones (we make choices explicit with several slices of a same
constellation). We could also think about unfolding loops. For instance, for the logic
program Φ2+2

N , we could explicitly create a chain of stars unfolding the query so that
the constellation is no longer cyclic. This is similar to how we would unfold loops in
imperative programming.

Chapter 9 Properties of execution for objective constellations 299

Φ = [X,+c(X)] + [−c(l ·X)] [−c(r ·X)] = Φ′

(a) We have Ex{c}(Φ) = [l·X] and Ex{c}(Ex{c}(Φ)]Φ′) = [−c(r·X)]+[l·X], but Ex{c}(Φ]Φ′) =
[l ·X]+[r ·X] which is different. Notice that both [−c(l ·X)] and [−c(r ·X)] need [X,+c(X)]
but when executing Φ, Φ′ cannot be connected to it anymore.

Φ = [X,+c(X)] + [−c(X), a] [−c(X), b] = Φ′

(b) We have Ex{c}(Φ) = [X, a] and Ex{c}(Ex{c}(Φ)]Φ′) = [−c(X), b]+[X, a], but Ex{c}(Φ]Φ′) =
[X, a] + [X, b] which is different.

Φ = [−f(+g(X))] + [X,+f(X)] [−g(X),+f(X), a] = Φ′

(c) We have Ex{f}(Φ) = [+g(X)] and Ex{g}(Ex{f}(Φ)]Φ′) = [+f(X), a], but Ex{f,g}(Φ]Φ′) = []
(no saturated diagrams) which is different.

Figure 64.1: Counter-examples for partial pre-execution.

64 Partial pre-execution and confluence

§64.1 An important result is the possibility of partial execution by only reducing rays of some
colours on some constellations first then the others without any effect on the normal
form, i.e. that ExC∪D(ExD(Φ)] Φ′) = ExC∪D(Φ] Φ′) for some set of colours C and D.
However, this is not valid in general as presented in Figure 64.1. The problem is that
stars from two distinct constellations want to access a same ray and an execution of a
constellation may erase some potential connexions which were present and required by
another constellation. This problem is reminiscent of the idea of mutual exclusion in
concurrent programming [Dij01]. Also notice that in Figure 64.1c, internal colours add
even more complexity: some rays may indirectly access internal colours. Direct access
occurs once the internal colour has been “unlocked” by a star extracting it. I choose to
omit the case of subjective constellations in this thesis.

§64.2 This property of partial pre-execution is necessary in order to obtain a result of confluence
and associativity of execution which are necessary for the definition of linear logic as
explained at the end of this chapter. We need to design a precondition for which these
properties are valid and from which it is possible to express linear logic.

§64.3 There are several possible choices depending on how demanding we want to be. A simple
choice is to reason on the accessibility of rays in a dependency graph. We do not want a
ray to be accessible from two different constellations such that one is pre-executed before

Chapter 9 Properties of execution for objective constellations 300

−f(X) X +f(X) −g(X) +f(X)

a

Figure 64.2: Example of interaction map for the constellation Φ] Φ′ of Figure 64.1c
where the internal ray is replaced by a variable X.

the other. For instance, in Figure 64.1, the ray [+c(X)] is accessible both from Φ and
Φ′.

§64.4 Definition (Interaction map). Let C ⊆ F+] F− be a set of colours. The interaction
map IMC(Φ) of a constellation Φ over C is a graph (V,E) defined with:

• V := {(i, j) ∈ ±IdRays(Φ) | colours(Φ[i][j]) ⊆ C};

• {(i, j), (i′, j′)} ∈ E when:

– Φ[i][j] and Φ[i][j′] are linked in D[Φ;C];

– or i = i′ (in order to travel from one star to another).

§64.5 An example of interaction map is given in Figure 64.2.

§64.6 Observation (Idea for the case of subjective rays). In order to consider subjective
rays, an idea I had was to consider matchability between subrays in the interaction
map in order to anticipate the possibility of connexion with internal colours.

§64.7 Definition (Shared rays). We define the set of rays shared the constellations

Φ1, ...,Φn

w.r.t. a set of colours C ⊆ F+] F− as the set:

⋒C(Φ1, ...,Φn) := {(
n∑

i=1

Φi)[i][j] |

(

n∑
i=1

Φi)[i][j] is reachable from some Φi[k][l]for all 1 ≤ i ≤ n in IMC(Φ)

with a non-empty path}.

We omit the set of colour when we consider all colours.

Chapter 9 Properties of execution for objective constellations 301

ExD(Φ)] Φ′

ExD(Φ)⇐=

ExC∪D(Φ] Φ′)

Figure 64.3: Partial execution acts as a partial diagram contraction, which is only possi-
ble when Φ and Φ′ do not act on a same variable. The “blow-up” obtained
by inverting execution preserves the connexions between rays.

§64.8 Example. In Figure 64.1, we have ⋒(Φ,Φ′) = {+c(X)} in the two first examples and
⋒(Φ,Φ′) = {−f(X)} in the third one.

§64.9 Lemma (Partial pre-execution). Let Φ and Φ′ be constellations and C,D ⊆ F+]F−
be sets of colours such that ⋒C∪D(Φ,Φ′) = ∅. We have ExC∪D(ExD(Φ)] Φ′) =
ExC∪D(Φ] Φ′).

Proof. We show the existence of an isomorphism φ between CSatDiagsC∪D(ExD(Φ)]Φ′)
and CSatDiagsC∪D(Φ] Φ′). Assume we have a diagram

(GPE , δPE) ∈ CSatDiagsC∪D(ExD(Φ)] Φ′)

with GPE := (V PE , EPE , endPE), where PE stands for “partial execution” because a
subconstellation is executed first. The goal is to associate (GPE , δPE) with a diagram
φ(GPE , δPE) ∈ CSatDiagsC∪D(Φ] Φ′) and to show that φ is an isomorphism.

The idea, illustrated in Figure 64.3, is that (GPE , δPE) (on the left) can be decomposed
into two parts:

• vertices v ∈ V PE such that δC∪D(v) = k, representing stars ExD(Φ)[k] (in blue);

• vertices v ∈ V PE such that δC∪D(v) = j, representing stars Φ′[j] with:

– edges EΦ′ ⊆ EPE linking stars of Φ′ together (in red);

– edges EΦ,Φ′ ⊆ EPE linking stars of Φ′ with stars ExD(Φ)[k] (in red);

The stars ExD(Φ)[k] come from diagrams (GD
k , δ

D
k) ∈ CSatDiagsD(Φ), i.e. there are

diagrams (GD
k , δ

D
k) ∈ CSatDiagsD(Φ) such that ⇓(GD

k , δ
D
k) = ExD(Φ)[k], because these

stars are part of the execution of Φ, by definition of the abstract execution ExD := AExD.
We can perform a “star expansion” (right diagram in Figure 64.3) on ExD(Φ)[k] by
replacing it with its corresponding diagram (GD

k , δ
D
k). In some sense, we are reversing

execution. The isomorphism φ associates (GPE , δPE) with a new diagram φ(GPE , δPE)

Chapter 9 Properties of execution for objective constellations 302

corresponding to (GPE , δPE) where this operation of star expansion has been applied
on stars ExD(Φ)[k] for all k. This operation works as follows:

1. we start from our diagram (GPE , δPE) and apply the same procedure on all stars
ExD(Φ)[k] = [r1, ..., rn] (blue circles on the left);

2. by definition of abstract execution, the star ExD(Φ)[k] must come from some ac-
tualised diagram ⇓(GD

k , δ
D
k) such that each ray ri corresponds to a ray δ(v)[ik];

3. we can construct a new diagram φ(GPE , δPE) (on the right) by taking (GPE , δPE),
removing the vertex u such that δ(u) = ExD(Φ)[k] and adding the subgraph GD

k .
We then extend δPE with δDk .

4. The links between rays ri and rays of Φ′ with colour in C (on the left) are then
replaced by links between rays ri and rays δ(v)[ik] (on the right).

5. By our hypothesis ⋒C∪D(Φ,Φ′) = ∅, the stars of Φ and of Φ′ cannot interfere
by acting on a same ray of a same star. It follows that the actualisation of di-
agrams (GD

k , δ
D
k) preserve the links between rays ri and rays δ(v)[ik]. In other

words, the execution of blue diagrams are independent from the rest of the dia-
gram φ(GPE , δPE). Without this precondition, some connexions could disappear
(as in Figure 64.1) and we would not preserve all connexions allowing this inversion
of execution.

We obtain diagrams φ(GδDk
, δDk) corresponding to diagrams (GδDk

, δDk) extended with
stars of Φ′ in exactly the same way as how ϕDk can be connected with Φ′. We have
φ(δDk) ∈ CSatDiagsC∪D(Φ] Φ′) since it connects stars of both Φ and Φ′.

It remains to show that φ is invertible so that we have an isomorphism between

CSatDiagsC∪D(ExD(Φ)] Φ′)

and
CSatDiagsC∪D(Φ] Φ′).

Assume we have
(Gδ′ , δ

′) ∈ CSatDiagsC∪D(Φ] Φ′).

We would like to define φ−1(Gδ′ , δ
′). By the confluence of diagram reduction (cf. Corol-

lary 49.36), we can apply fusion first on the stars coming from Φ using colours in
D and then on the colours in C. By doing so, we obtain a diagram φ−1(Gδ′ , δ

′) ∈
CSatDiagsC∪D(ExD(Φ)] Φ′). We have φ(φ−1(δ)) = δ and φ−1(φ(δ)) = δ because of
the relationship between stars ExD(Φ)[k] and the diagrams (GδDk

, δDk) they come from.
Actualising then expanding or the converse is equivalent to the identity homomorphism
φid(G, δ) = (G, δ), by design.

Chapter 9 Properties of execution for objective constellations 303

§64.10 Theorem (Confluence). For any constellation Φ, and C,D ⊆ F+] F− two disjoint
sets of colours, we have ExD(ExC(Φ)) = ExC∪D(Φ) = ExC(ExD(Φ)).

Proof. By Lemma 64.9 with Φ′ := ∅ (in this case we trivially have ⋒C∪D(Φ, ∅) = ∅
which is the required precondition) we have ExC∪D(ExD(Φ)) = ExC∪D(Φ). Since ExD(Φ)
already applies fusion on all pairs of rays of colour in D and there is nothing left of colour
D in ExC∪D, we have ExC∪D(ExD(Φ)) = ExC(ExD(Φ)), hence ExC(ExD(Φ)) = ExC∪D(Φ).
Since C∪D = D∪C, we also have ExC∪D(Φ) = ExD∪C(Φ). By using again Lemma 64.9,
we finally obtain ExD∪C(Φ) = ExD(ExC(Φ)).

65 Discussion: the sufficient conditions for logical emergence

§65.1 Properties which are necessary to define (linear) logic as we know it do not naturally
appear in stellar resolution which is very chaotic. It is then necessary to consider only
constellations in some specific cases. Again, this characterisation of “logical constella-
tions” may be characterised by tests (represented by constellations), consistently with
the philosophy of transcendental syntax, as we will see later.

§65.2 The first necessary condition for (linear) logic is the idea of mutual exclusion previously
defined. This condition led to confluence results. Why are they necessary? We will later
see that confluence leads to associativity of execution, itself leading to a logical property
called adjunction.

§65.3 Adjunction. Although already mentioned in Girard’s writing [Gir11a, Section 14.2.1]
and made explicit by Seiller [Sei12a, Section 2], the adjunction property is a necessary
condition for the reconstruction of linear logic. The adjunction property is related to
adjunctions in category theory. This property defines linear implication. In Seiller’s
work it is used as a way to prove that linear implication A⊸ B := A⊥ ` B defined by
realisability interpretation has a functional behaviour, i.e. in the case of stellar resolution,
that:

A⊸ B = {Φ | Ψ ∈ A, Ex(Φ]Ψ) ∈ B}.

§65.4 Trefoil property. Seiller shows that the adjunction could be generalised by a property
called trefoil property [Sei16a, Section 2.2]. This property is more general but sufficient
for the definition of linear logic. For that reason, it will be used in the interpretation of
linear logic in this thesis. This trefoil property is often the consequence of associativity
of binary execution which comes itself from confluence. Both only hold under some
conditions as explained above.

§65.5 The understanding of these necessary conditions is part of transcendental syntax and has
yet to be explored. In particular, in his paper “La syntaxe Transcendantale, manifeste”
[Gir11c, Section 2.4.3], Girard explicitly mentions that epidictic architectures must be
closed by adjunction (cf. Paragraph 44.17).

Chapter 10

Stellar interpretation of multiplicative linear
logic

In this chapter, we interpret linear logic with stellar resolution to provide a technical
illustration of transcendental syntax. We start with multiplicative linear logic (MLL).

66 Proofs as constellations

§66.1 The representation of MLL proofs is not very surprising: it directly follows the GoI
interpretation of proofs as finite permutations but with terms instead. Actually, it is
simply a variant of the interpretation with flows. However, a difference with flows is
that we have a little trick with the representation of cuts and that we are able to express
Danos-Regnier correctness.

§66.2 Convention (Basis of representation). In order to encode proof-structures, we fix
a basis of representation which is a polarised signature B := (V, F, ar,¨, b·c) with
any set of variables such that X ∈ V , function symbols F := F0] F+] F− with
F := {l, r, ·} ∪

∪
u∈U{u}, F+ :=

∪
u∈U{+u} and F− :=

∪
u∈U{−u} for U a set of

elements which be used to represent vertices of proof-structures (we can set U := N).
We have ar(u) = 1 for all u ∈ U , ar(·) = 2 and ar(l) = ar(r) = 0. The symbol · is
considered right-associative, i.e. t · u · v := t · (u · v).

§66.3 Similarly to unlabelled proof-structures, constellations are purely “locative”: only “phys-
ical locations” appearing in a proof-structure S are translated, without giving any serious
meaning to labels. We would like to associate a unique address in Term(B) with atoms
v ∈ Atoms(S) of a proof-structure S. The address of v will be a term v′(t) where t is a
path encoded as a sequence of l (left) and r (right) symbols representing the direction
to follow in S to get from the conclusion v′ ∈ Concl(S) to the atom v. In other words,
we are hard-coding the structure of proof-structures directly in axioms.

§66.4 For convenience, we suggest an inductive definition of proof-structures based on their
underlying hypergraph. It is from this inductive representation that address of atoms in
a proof-structure will be defined.

Chapter 10 Stellar interpretation of multiplicative linear logic 305

.

`
0

r

. . . 3 . . .1 2

⊗l

0(r · l ·X)

3(X)

Figure 66.1: Addressing of the atoms 1 and 3 in a proof-structure relatively to the con-
clusion they come from. Since the first instruction to reach 1 from 0 is to
go right, the outermost symbol of the address of 0 should be r.

§66.5 Remark (Inductive definition of proof-structures). A proof-structure with only one
hyperedge is necessarily an axiom with two conclusions, written Axu,v. Then a proof-
structure S with n hyperedges is either built from the union of two proof-structures,
with respectively k and n− k hyperedges (written S1]S2), or from a proof-structure
with n− 1 hyperedges extended by either a ⊗, `, or cut hyperedge on two of its con-
clusions u (left) and v (right). Those latter proof-structures are written Tensu,v(S ′),
Paru,v(S ′) and Cutu,v(S ′).

§66.6 Definition (Vertex above another one). A vertex v is above another vertex u, written
in a proof-structure if there exists a directed path from v to u going through only ⊗
and ` hyperedges.

§66.7 Definition (Address of an atom). We define the path address pAddrS(v) of an atom
v in a proof-structure S inductively (cf. Remark 66.5):

• if S ∈ {Axv,∗, Ax∗,v} then pAddrS(v) = X;

• if S = S1] S2 and v ∈ V Si then pAddrS(v) = pAddrSi(v);

• if S ∈ {Parv′,∗(S ′), Tensv′,∗(S ′)} then pAddrS(v) = l · pAddrS′(v) with v being
a conclusion such that v is above v′;

• if S ∈ {Par∗,v′(S ′), Tens∗,v′(S ′)} then pAddrS(v) = r · pAddrS′(v) with v being
a conclusion such that v is above v′;

• pAddrS(v) = pAddrS′(v) otherwise.

The path address to v is uniquely defined w.r.t. to a conclusion c ∈ Concl(S ′) where
S ′ is S without cuts, i.e. ES′ = ES\Cuts(S) and the rest of S is defined as in S ′.

The address of v is then defined as the term addrS(v) := c(pAddrS(v)).

Chapter 10 Stellar interpretation of multiplicative linear logic 306

§66.8 Example. Figure 66.1 illustrates the idea of addressing of atoms. The address of
the atom 1 in Figure 66.2 is 7(l ·X) because it is reachable from the conclusion 7 by
going to the left premise and the address of the atom 3 is 3(X) because it is directly
reachable.

§66.9 Proposition. Let S be a proof-structure. For all v, v′ ∈ Atoms(S) such that v 6= v′,
we have that addrS(v) 6= addrS(v′), meaning that all atoms have pairwise distinct
addresses.

Proof. By definition, all vertices of S are distinct, and in particular all conclusions are.
Assume v is reachable from a conclusion c ∈ Concl(S) but not from another conclusion
c′ ∈ Concl(S) such that c 6= c′ whereas v′ is reachable from c′ but not c. The address of
v is of shape c(...) whereas the address of v′ is of shape c′(...), making the two addresses
different. Now assume they both are reachable from the set conclusion c. We have that
addrS(v) is of shape c(t) and addrS(v′) of shape c(t′) for some t and t′. The terms t
and t′ are made of sequences of symbols l and r depending on if the atom is reachable
by going on the left or the right of a ` or ⊗ hyperedge (which have two inputs). If the
two atoms v and v′ are reached with exactly the same path then they must be identical
atoms, which contradicts the hypothesis v 6= v′. Hence, they must have a different path
and t 6= t′. It follows that c(t) 6= c(t′) and addrS(v) 6= addrS(v′).

§66.10 Definition (Set of addresses). We define the set of addresses as a set Addrx(S)
containing terms addrS(v) for any v, i.e. it is the countable set of all terms of the
form c(f1 · ... · fn ·X) where c ∈ Concl(S) and fi ∈ {l, r}.

§66.11 Definition (Translation of the computational content of a proof). The vehicle and
the cuts of a proof-structure S are respectively defined by the following constellations:

Φax
S :=

∑
e∈Ax(S)

[µ(addrS(
←
e)), µ(addrS(

→
e))], Φcut

S :=
∑

e∈Cuts(S)

[−←e (X),−→e (X)].

such that µ(c(t)) = +c(t) when c =
←
e or c =

→
e for some e ∈ Cuts(S) (it is related

to a cut) and µ(x) = x otherwise. We define the computational content of S as the
constellation Φ

comp
S := Φax

S] Φcut
S .

§66.12 Example. An example of proof-structure translated into a constellation is given in
Figure 66.2. Notice that the cut star can interact with the atoms of root 7 and 8. The
trick mentioned in the introduction is that we have only one cut star, exactly as in
proof-structures but it will duplicate during execution to connect to sub-formulas.

Chapter 10 Stellar interpretation of multiplicative linear logic 307

1 2

`
7

3 64 5

⊗

8

cut

ax ax ax

Figure 66.2: The above proof-structure is interpreted by the constellation [+7(l ·
X),+7(r ·X)] + [3(X),+8(l ·X)] + [+8(r ·X), 6(X)] + [−7(X),−8(X)].

67 Simulation of cut-elimination

§67.1 Cut-elimination in stellar resolution makes the vehicle interact with cuts by execution.
Remark that the shape of proof-structures is directly embedded in the addresses of atoms
of the vehicle. The consequence is that cut-elimination is nothing more than a process of
contraction / transfer of information by resolution of addresses / conflicts. In particular,
it shows that the ax/cut case of cut-elimination is the only “true” case of cut-elimination.
The multiplicative case ⊗/` purely depends on the shape of objects we are evaluating,
and is therefore of a logical nature (in the sense of transcendental syntax).

§67.2 The idea is simply to execute the translation of the vehicle and cuts of a proof-structure.
However, execution does not perfectly match the steps of cut-elimination. We start by
looking at examples of execution of such constellations representing proof-structures.
We expect diagrams to correspond to maximal paths from two ends of a proof-structure
alternating between vehicle and cuts.

§67.3 Example (Correct cut-elimination). We have the following reduction S ⇝∗ S ′ of
proof-structure:

1 2

`
7

3 64 5

⊗

8

cut

ax ax ax

⇝∗
3 6

ax

As shown in Figure 66.2, the proof-structure S is translated into Φ
comp
S =

[+7(l ·X),+7(r ·X)] + [3(X),+8(l ·X)] + [+8(r ·X), 6(X)] + [−7(X),−8(X)].

Chapter 10 Stellar interpretation of multiplicative linear logic 308

The ray −7(X) can match either +7(l ·X) or +7(r ·X) and it is the same for 8(X).
In order to satisfy these requirements of α-unification, the cut star must be duplicated
and each occurrence of cut must connect rays with the same address, i.e. the path
addresses l ·X together and not l ·X with r ·X. We obtain the following diagram:

ax1 ax2 ax3

cut1 cut2

3(X) 6(X)

7(l ·X
1) ?=

7(X
4)

7(r ·X1) ?
= 7(X5)

8(X
5
)
?
=
8(r
·X3

)

8(X
4
)
?
=
8(l
·X2

)

By case analysis, it is easy to check that it is the only possible diagram. Since the
α-unification is trivial, it is simply a graph contraction doing no more than renamings
and we get AEx(Φcomp

S) = [3(X), 6(X)] = AEx(Φcomp
S′).

If we were considering this proof-structure obtained after one step of multiplicative
cut-elimination:

1 2 3 64 5

cut

cut

ax ax ax

then the translation of axioms would be

[+1(X),+2(X)] + [3(X),+4(X)] + [+5(X), 6(X)].

Remark that a re-addressing of atoms occurs that the execution of constellations do
not consider. Hence, execution do not faithfully and exactly simulate cut-elimination
steps but it simulates full cut-elimination properly.

§67.4 In the previous example, although two occurrences of cuts appear in diagrams, exactly
like how cuts are duplicated when eliminating ⊗/` cuts in proof-structures. However,
it is the actualisation of those diagrams that are considered. Actually, if we had other
⊗ and ` hyperedges above the vertices 1, 2, 4 or 5 of Example 67.3, execution of stellar
resolution would duplicate and contract the cuts for all possible pairs of atoms without
leaving intermediate cuts. It does not care about the structure of proof-structures since
it is embedded as addresses of atoms themselves, they do not obstruct evaluation. I now
present an example where cut-elimination should fail.

Chapter 10 Stellar interpretation of multiplicative linear logic 309

§67.5 Example (Incorrect cut-elimination). We have the following reduction S ⇝∗ S ′ of
proof-structure:

1 2

`
5

3 4

⊗

6

cut

ax ax

⇝∗ 1 2 3 4

cut
cut

ax ax

The proof-structure S is translated into Φ
comp
S :=

[+5(l ·X),+6(l ·X)] + [+5(r ·X),+6(r ·X)] + [−5(X),−6(X)]

with the following dependency graph D[Φ
comp
S]:

ax1 ax2

cut1 cut2

−5(X) ▷◁ +5(l ·X)
+6(l ·X) ▷◁ −6(X)

−5(X) ▷◁ +5(r ·X)
+6(r ·X) ▷◁ −6(X)

The cycles in D[Φ
comp
S] can be unfolded and it yields infinitely many saturated correct

diagrams, all actualising into []. We have AEx(Φcomp
S) =

∑∞
i=1[] = AEx(Φcomp

S′).

§67.6 In order to prove what we simulate correctly cut-elimination with execution of constel-
lations, we will need to consider structural equivalences of constellations because there
is an implicit re-addressing of atoms, as shown in Example 67.3.

§67.7 Definition (Structurally equivalent constellations). We say that two constellations Φ
and Φ′ are structurally equivalent w.r.t. two sets of colours C and D, written Φ 'C,D

S

Φ′, when there is a bijection φ : IΦ → IΦ′ such that |IΦ[i]| = |Iφ(Φ[i])| for all i ∈ IΦ. It
is extended on rays and we require that Φ[i][j] ▷◁ Φ[i′][j′] if and only if φ(Φ[i][j]) ▷◁
φ(Φ[i′][j′]) for all i ∈ IΦ and j ∈ IΦ[i].

§67.8 Example. For instance [X,+f(X)] + [−f(a)] and [Y,−g(Y)] + [+g(h(X,X))] are
structurally equivalent constellation. None of them are structurally equivalent to
[+f(X)] + [−f(a)].

Chapter 10 Stellar interpretation of multiplicative linear logic 310

v0 v1 v2

...
R′

ecut

ax

⇝
v0 = v2

...
R′

(a) Case of an ax/cut cut with v0 not connected to a cut.

v′0 v0 v1 v2

...
R2

...
R1

ecute′cut

ax

⇝ v′0 v0 = v2

...
R1

...
R2

e′cut

(b) Case of an ax/cut cut with v0 connected to a cut.

←
v1

→
v1

`
v1

←
v2

→
v2

⊗

v2

R′...
...

...
...

ecut

⇝ ←
v1

→
v1

←
v2

→
v2

R′
...

...
...

...

e1cut
e2cut

(c) Case of an ax/cut cut with v0 connected to a cut.

Figure 67.1: Illustration of the simulation of cut-elimination. We have R on the left-
hand side and S on the right-hand side.

Chapter 10 Stellar interpretation of multiplicative linear logic 311

§67.9 Lemma (Simulation of cut-elimination). Let R := (V,E, in, out, ℓE) be a proof-
structure. If R⇝ S by eliminating ecut, then AEx(Φcomp

R) 'S AEx(Φcomp
S).

Proof. We show that we have ⇓ CSatDiags(Φcomp
R) ' ⇓ CSatDiags(Φcomp

S). By definition
of proof-structures, we must have in(ecut) = (v1, v2) for v1, v2 ∈ V . Those vertices must
be conclusions of some hyperedges e1, e2 ∈ E. By case analysis on ℓE(e1) and ℓE(e2).
The cases are illustrated in Figure 67.1.

� Ax/cut case Assume ecut is an ax/cut cut with ℓE(e1) = ax such that out(e1) =
(v0, v1). There are two cases depending on if v0 is related to another cut (which
influences the presence of polarity in the translation of v0).

• Assume v0 is not related to a cut. This case is illustrated in Figure 67.1a.
We have that v2 must be conclusion of some proof-structure R′ by defini-
tion of proof-structure (it cannot be related to a cut because cuts only relate
premises). After cut-elimination, we expect to obtain R′ in which v0 is iden-
tified with v2 (we can replace v2 by v0 for instance).

In Φ
comp
R , we have an axiom [v0(X),+v1(X)], a cut [−v1(X),−v2(X)], and

Φ
comp
R′ in which there are rays +v2(t1), ..., +v2(tn) for all atoms reachable

from the conclusion v2 (by the translation of proof-structures). Those latter
rays must be part of some star ϕi := [+v2(ti), ri] for some ray ri by definition
(because only axioms and cuts are translated, and they become binary stars).
We then expect Φcomp

S to be Φcomp
R′ {v2(ti) := v0(ti)}, in which {v2(ti) := v0(ti)}

means that the rays +v2(ti) are replaced by v0(ti).

We reason on all diagrams (Gδ, δ) of Φcomp
R which include ecut and e1 (which

is an axiom), i.e. if Gδ := (Vδ, Eδ, endδ) then there are some adjacent vertices
u, u′ ∈ Vδ such that δ(u) = [v0(X),+v1(X)] and δ(u′) = [−v1(X),−v2(X)].
By confluence of diagram contraction (cf. Corollary 49.36), we can con-
tract edges in any order. We contract the link between u and u′ and ob-
tain (by fusion) a new star [v0(X),−v2(X)], i.e. (Gδ, δ) ⇝ (Gδ′ , δ

′) with
Gδ′ := (Vδ′ , Eδ′ , endδ′), w ∈ Vδ′ and δ′(w) corresponding to [v0(X),−v2(X)].
This star [v0(X),−v2(X)] is linked to the stars ϕi of Φcomp

R′ . By contracting
this latter edge, we obtain

∑n
i=1[v0(ti), ri] in a diagram (Gδ′′ , δ

′′) such that
(Gδ′ , δ

′) ⇝ (Gδ′′ , δ
′′). All other edges of (Gδ′′ , δ

′′) and all other diagrams are
exactly constructed from edges of D[Φ

comp
S]. It follows that Φ

comp
R and Φ

comp
S

have the same diagrams, and in particular the same correct and saturated
diagrams, i.e. ⇓ CSatDiags(Φcomp

R) ' ⇓ CSatDiags(Φcomp
S).

• Now assume v0 is subject to a cut e′cut ∈ Cuts(R) such that out(e′cut) =
(v′0, v0) for some v′0 conclusion of a sub-proof-structure R0. This case is illus-
trated in Figure 67.1b. The vertex v′0 is conclusion of some proof-structure
R1 and the vertex v2 is conclusion of some proof-structure R2. After cut-
elimination, we obtain the cut e′cut between v′0 and v0 which is identified with
v2.

Chapter 10 Stellar interpretation of multiplicative linear logic 312

A difference with the previous case is that the vertex v0 is translated into
+v0(X) since it is subject to a cut. We have that Φ

comp
R contains an axiom

[+v0(X),+v1(X)], two cuts [−v′0(X),−v0(X)] + [−v1(X),−v2(X)], the con-
stellation Φ

comp
R1

with rays +v′0(u1), ..., +v′0(um) for all atoms reachable from
v′0 and the constellation Φ

comp
R2

with rays +v2(t1), ..., +v2(tn) for all atoms
reachable from v2. As in the previous case, those rays +v2(ti) must be part of
some star ϕi := [+v2(ti), ri] for some ray ri. After cut-elimination, we expect
Φ

comp
S to be Φ

comp
R1
] Φ

comp
R2
{+v2(ti) := +v0(ti)}+ [−v′0(X),−v0(X)].

We apply exactly the same reasoning and the same diagram contractions are
in the previous case and obtain a diagram (Gδ′′ , δ

′′) except that instead of
having stars ϕi := [v0(ti), ri], we have stars ϕ′i := [+v0(ti), ri]. We obtain
exactly Φ

comp
R1
]Φcomp
R2
{+v2(ti) := +v0(ti)}+[−v′0(X),−v0(X)]. All extensions

or other diagrams are those of Φcomp
S . It follows that Φcomp

R and Φ
comp
S have the

same diagrams.

Assume ecut is an ax/cut cut with ℓE(e1) = ax such that out(e1) = (v0, v1). There
are two cases depending on if v0 is related to another cut (which influences the
presence of polarity in the translation of v0).

� Par/tensor case Assume ecut is a `/⊗ cut with ℓE(e1) = ` and ℓE(e2) = ⊗ with
in(e1) = (

←
v1,
→
v1) and in(e2) = (

←
v2,
→
v2). This case is illustrated in Figure 67.1c.

The vertices ←v1,
→
v1,

←
v2, and

→
v2 are conclusion of some proof-structure R′. The

resulting proof-structure after cut-elimination is S := (V ′, E′, in′, out′, ℓ′E) where
V ′ = V − {v1, v2}, E′ = (E − {ecut}) ∪ {e1cut, e

2
cut} (we duplicated the cut ecut)

such that in′(e1cut) = (
←
e1,
←
e2), in′(e2cut) = (

→
e1,
→
e2) with in′(x) = in(x) otherwise

and out′(x) = out(x).

We have that Φ
comp
R corresponds to Φ

comp
R′ + [−v1(X),−v2(X)]. The constellation

Φ
comp
R′ contains rays +v1(l · ti), +v1(r · ui), +v2(l · vi) and +v2(r ·wi) respectively

coming from stars ϕ1i := [+v1(l · ti), r1i], ϕ2i := [+v1(r ·ui), r2i], ϕ3i := [+v2(l ·vi), r3i]
and ϕ4i := [+v1(r · ti), r4i] (by definition of proof-structure). The constellation
Φ

comp
S obtained after cut-elimination should be Φcomp

R′ in which all terms +v1(l · ti),
+v1(r · ui), +v2(l · vi), +v2(r · wi) are respectively replaced by +

←
v1(t), +

→
v1(t),

+
←
v2(t) and +

→
v2(t). We also have the cuts [−←v1(X),−←v2(X)] + [−→v1(X),−→v2(X)].

Because of this replacement of function symbol, we cannot expect to have exactly
Φ

comp
S after executing Φ

comp
R . We can only expect structural equivalence by 'S . We

hence show that the diagrams of Φcomp
R and those of Φcomp

S are equal up to a change
of symbols.

We reason on the diagrams of Φcomp
R which contain the cut [−v1(X),−v2(X)] and

the stars ϕki for i ∈ {1, 2, 3, 4}. It is possible to construct two diagrams (G1
δ , δ1)

and (G2
δ , δ2) defined by G1

δ := (V1, E1, end1) and G2
δ := (V2, E2, end2) with:

Chapter 10 Stellar interpretation of multiplicative linear logic 313

• some u, u′ ∈ V1 with δ(u) = δ(u′) = [−v1(X),−v2(X)], some u1i , u3i ∈ V1 with
δ(uki) corresponding to ϕki and edges e1i , e3i ∈ E1 with end1(e1i) = {u, e1i } and
end1(e3i) = {u′, e3i }.

• some u, u′ ∈ V2 with δ(u) = δ(u′) = [−v1(X),−v2(X)], some u2i , u4i ∈ V1 with
δ(uki) corresponding to ϕki and edges e2i , e4i ∈ E2 with end2(e2i) = {u, e2i } and
end2(e4i) = {u′, e4i }.

Notice that we duplicated the cut into two vertices u and u′ in order to satisfy the
given constraints of term unification. The homomorphisms δ1 and δ2 are defined
in the unique possible way. Those diagrams can be reunited or not depending on
the other rays in R′. We do not even need to do diagram contractions. We update
δ(u) and δ(u′) in both diagrams so that δ(u) and δ(u′) respectively correspond to
[−←v1(X),−←v2(X)] and [−→v1(X),−→v2(X)]. In order to preserve the links induced
by edges, we must replaced +v1(l · ti), +v1(r · ui), +v2(l · vi), +v2(r · wi) by
+
←
v1(t), +

→
v1(t), +

←
v2(t) and +

→
v2(t) respectively. We obtain exactly diagrams which

could be constructed in Φ
comp
S . All other edges must come from Φ

comp
R′ . It follows

that all extensions of (Gk
δ , δk) with k ∈ {1, 2} or other diagrams not relating the

edges and vertices of R previously mentioned must be constructed with edges of
Φ

comp
R′ in both Φ

comp
R and Φ

comp
S . It follows that they both have the same diagrams

and hence the same correct and saturated diagrams (up to renaming of target
stars for δ1 and δ2 while preserving connexions between rays). We finally have
⇓ CSatDiags(Φcomp

R) ' ⇓ CSatDiags(Φcomp
S).

§67.10 Theorem (Simulation of reduction for proof-nets). For an MLL+MIX proof-net R
such that R⇝∗ S with S in normal form, we have AEx(Φcomp

R) 'S Φax
S .

Proof. By induction on the number n of steps of cut-elimination.

� Base case Assume n = 0. It means that R is already in normal form (R ⇝0 R).
Hence it has no cut and we trivially have Φ

comp
R = Φax

R , hence AEx(Φcomp
R) =

AEx(Φax
R) = Φax

R .

� Induction case Assume n = n′ + 1. By induction hypothesis, if R ⇝n′ S then
AEx(Φcomp

R) = Φax
S . We have to show that if we have R0 ⇝ R ⇝n′ S then

AEx(Φcomp
R0

) = Φax
S . By Lemma 67.9 and R0 ⇝ R, we have AEx(Φcomp

R0
) 'S

AEx(Φcomp
R). By R ⇝n′ S and the induction hypothesis, we have AEx(Φcomp

R) =
Φax
S . By transitivity of equality (up to the structural equivalence 'S), we have

AEx(Φcomp
R0

) 'S AEx(Φcomp
R) = Φax

S .

Chapter 10 Stellar interpretation of multiplicative linear logic 314

68 Simulation of Danos-Regnier correctness test

§68.1 The simulation of Danos-Regnier correctness is a direct translation of the approach of
proofs as partitions of a set (cf. Section 37). Danos-Regnier tests (correctness hyper-
graphs without axioms) are translated by a constellation which simply reproduces the
hypergraph structure of the test. In particular, it has no dynamics and is just designed
to be plugged to a vehicle. For instance, the 3-ary tensor link relating two inputs u, v to
one output w becomes a 3-ary star [−u(X),−v(X),+w(X)]. We translate conclusions
of the whole proof-structure by uncoloured rays.

§68.2 To make tests more readable, they will sometimes be written as blocks with inputs
(rays of polarity −) above and outputs below (rays of polarity +). For instance,

[−u(X),−v(X),+w(X)] becomes
[
−u(X), −v(X)

+w(X)

]
. Links are then connected like

tiles or bricks, as in sequent calculus.

§68.3 Definition (MLL test). Let S be a proof-structure and φ one of its switchings. The
test associated with Sφ is the constellation defined by

Φφ
S := Φcut

S]
∑

v∈V Sφ

v⋆.

where the translation v⋆ of a vertex v conclusion of an hyperedge e is defined as
follows:

• if ℓE(e) = ax then v⋆ =

[
−addrS(v)
+v(X)

]
;

• if ℓE(e) = `L and in(e) = (u,w) then v⋆ =

[
−u(X)
+v(X)

]
+

[
−w(X)

]
;

• if ℓE(e) = `R and in(e) = (u,w) then v⋆ =

[
−u(X)

]
+

[
−w(X)
+v(X)

]
;

• if ℓE(e) = ⊗ and in(e) = (u,w) then v⋆ =

[
−u(X), −w(X)

+v(X)

]
;

• if v ∈ Concl(S) then v⋆ =

[
−v(X)
v(X)

]
.

§68.4 Tests for a proof-structure S are actually designed so that D[Φφ
S] is isomorphic to

Sφ without axioms, as illustrated in Figure 68.1. The point is that when construct-
ing the union of a vehicle with a test, we obtain a constellation with a dependency
graph structurally corresponding to a Danos-Regnier correctness hypergraph (cf. Def-
inition 30.16). However, there is a minor technical problem. Imagine that we have a

Chapter 10 Stellar interpretation of multiplicative linear logic 315

ϕ1 ϕ2 ϕ3 ϕ4

−5(l ·X) −5(r ·X) −6(l ·X) −6(r ·X)

ϕ⊗ ϕ∅ ϕ`R

ϕc1 ϕc2

5(X) 6(X)

+
1(X

)
▷◁ −

1(X
) −2

(X
)
▷◁
+
2(
X
)

+
3(X

)
▷◁
−
3(X

) −
4(
X
)
▷◁
+
4(
X
)

+5(X) ▷◁ −5(X) +6(X) ▷◁ −6(X)

Figure 68.1: Dependency graph of the constellation corresponding to Switching 2 in Fig-
ure 30.9.

vehicle [+3(l ·X),+3(r ·X)] corresponding to a ` on two atoms, and a test correspond-
ing to a switching `L with [−3(l ·X),+1(X)] + [−3(r ·X),+2(X)] + [−1(X),+3(X)] +
[−2(X)]+ [−3(X), 3(X)]. The problem is that the conclusion [−3(X), 3(X)] can techni-
cally interfere and connect with the vehicle. We only want the stars [−3(l ·X),+1(X)]
and [−3(r ·X),+2(X)] to connect with atoms of the vehicle.

§68.5 Girard’s solution is to use different colours to distinguish terms coming from the vehicle
and terms coming from tests. We can do that by wrapping addresses +u(t) and −u(t)
with a colour +v and −v to obtain +v(+u(t)) and −v(−u(t)). With these wrapped
addresses, the other rays of the test cannot interact with the vehicle.

§68.6 I find this solution too cumbersome to write so I choose to pre-execute tests to obtain
compact tests exactly translating partitions over the set of atoms, as in Section 37.
Such compact tests are made of stars for each connected components linking inputs for
atoms to unpolarised outputs corresponding to conclusions. In other words, the internal
structure of tests does not matter, what is important is only the visible interface of
tests and their organisation in terms of reunion/separation. For instance, the test of
Figure 68.1 simply becomes:[

−5(l ·X) − 5(r ·X)
5(X)

]
+

[
−6(l ·X)

]
+

[
−6(r ·X)

6(X)

]
.

§68.7 The idea of the simulation of logical correctness is that we would like to make tests
interact with a fully positively polarised vehicle to reproduce a Danos-Regnier cor-
rectness hypergraph (more precisely, the interaction between two partitions as in Sec-
tion 37). In stellar resolution, testing is done with execution and we would like to obtain
[v1(X), ..., vn(X)] with Concl(S) = {v1, ..., vn}, ensuring all conclusions can be reached

Chapter 10 Stellar interpretation of multiplicative linear logic 316

1 2

⊗

3

ax

[+3(l ·X),+3(r ·X)] + [−3(l ·X),+1(X)] + [−3(r ·X),+2(X)]
[−1(X),−2(X),+3(X)] + [−3(X), 3(X)]

Figure 68.2: Incorrect correctness hypergraph for a proof-structure S and its translation.
Notice that the cycle is turned into a computational cycle (a loop in a
program).

(several connected components induce several stars in the normal form) only once (cycles
are designed to produce several vi(X)), hence the associated correctness hypergraph Φφ

S
is connected and acyclic as required by correctness criteria for MLL.

§68.8 Example. If we consider the test:[
−5(l ·X) − 5(r ·X)

5(X)

]
+

[
−6(l ·X)

]
+

[
−6(r ·X)

6(X)

]
of Figure 68.1, we can plug it by union of constellation with the vehicle [+5(l·X),+6(l·
X)] + [+5(r ·X),+6(r ·X)] and obtain:

[+5(l ·X),+6(l ·X)] + [+5(r ·X),+6(r ·X)]+[
−5(l ·X) − 5(r ·X)

5(X)

]
+

[
−6(l ·X)

]
+

[
−6(r ·X)

6(X)

]
.

The first star [+5(l ·X),+6(l ·X)] reunites the two first blocks and we obtain:

[+5(r ·X),+6(r ·X)] +

[
−5(r ·X)

5(X)

]
+

[
−6(r ·X)

6(X)

]
.

The star [+5(r ·X),+6(r ·X)] of the vehicle reunites the two last blocks of the test and
we obtain [5(X), 6(X)]. If the vehicle is “too small” or “too big”, it leaves unpolarised
ray either in the test or in the vehicle. If we had a star [+5(l ·X),+5(r ·X)] in the
vehicle, it would form a cycle with the first block. This cycle yields infinitely many
stars [5(X)]+ [5(X)]+ ... by unfolding the cycle to construct as many cyclic diagrams
as we wish.

§68.9 The need for visible incorrectness. Before expressing logical correctness in stellar
resolution, I would like to mention an interesting error in Girard’s original definition.
In his original paper [Gir17, Section 2.3], Girard forbids cyclic diagrams and the empty
star. However, if we accept his definition, cyclic proof-structures S will be reduced
into the empty constellation ∅. But if we put such proof-structure next to a correct
proof-structure R, we have that S]R is correct. This not what we want.

Chapter 10 Stellar interpretation of multiplicative linear logic 317

ax ϕ2 ϕ⊗ ϕ1

axϕ2ϕ⊗ϕ1

ϕc1

ϕc2

3(X9)

3(X10)

3(r ·X1)
?
= 3(r ·X2) 2(X2)

?
= 2(X3) 1(X3)

?
= 1(X4)

3(l ·X3)
?
= 3(l ·X5)

2(r ·X6)
?
= 2(r ·X5)2(X7)

?
= 2(X6)1(X8)

?
= 1(X7)

3(l ·X9)
?
= 3(l ·X8)

3(X7)
?
= 3(X10)

3(X9)
?
= 3(X3)

Figure 68.3: Example of a correct and saturated cyclic diagram for the constellation from
Figure 68.2 actualising into [3(X9), 3(X10)]. The cycle can be extended
infinitely many times by adding copies of three stars of the constellation.

§68.10 I give more details about this problem. We write AEx[RT] for the execution restricted to
tree-shaped diagrams used by Girard which applies the operator and ♭. If we consider
the correctness hypergraph of Figure 68.2, infinitely many diagrams can be constructed
because of the loop in its dependency graph (an example of loop unfolding is given in
Figure 68.3) but all the corresponding diagrams have free polarised rays. Such diagrams
are erased by the operator . Therefore, AEx[RT](Φax

S] Φφ
S) = ∅.

§68.11 The solution adopted in this thesis is to make incorrect proofs visible in the normal form.
Our definition of execution makes this possible. Cycles yield cyclic diagrams, which are
accepted. Since proof-structures are always translated into constellations with trivial
equations, such diagrams can always be extended into cyclic diagrams which will be
evaluated into infinitely many stars (as in Figure 68.3). This makes incorrectness visible
in the output of execution.

§68.12 This problem is actually not new and already existed in previous GoI models. For
instance, in Seiller’s works, it was necessary to be able to detect cycles. The problem
has been solved with a notion of wager which is a value associated with proofs indicating
the presence of cycles but we were able to simulate this idea by modifying the notion of
execution instead.

§68.13 We can now finally state the Danos-Regnier correctness criterion in stellar resolution.

§68.14 Proposition. If a connected multiplicative correctness hypergraph Sφ has no con-
clusion then it is cyclic.

Chapter 10 Stellar interpretation of multiplicative linear logic 318

Proof. Since Sφ has no conclusion, all vertices are source of exactly one hyperedge. By
the definition of proof-structure, all vertices are target of exactly one hyperedge. Hence,
all vertices have a degree at least 2. Assume there is no cycle. Since the hypergraph is
connected, it must be tree-shaped. It follows that there is at least one leaf, i.e. a vertex
of degree 1 which is incident to only one edge. However, this contradicts the fact that
all vertices have a degree at least 2.

§68.15 Definition (Full head polarisation). Let Φ be a constellation defined in a coloured
signature (V, F, ar,¨, b·c). Its full head polarisation is a constellation

+
Φ defined by

I+
Φ
:= IΦ,

+
Φ[i] := Φ[i] and:

• Φ[i][j] = f(r1, ..., rk) then,
+
Φ[i][j] := +f(r1, ..., rk);

• Φ[i][j] = −c(r1, ..., rk) then,
+
Φ[i][j] := +c(r1, ..., rk);

• Φ[i][j] = +c(r1, ..., rk) then,
+
Φ[i][j] := +c(r1, ..., rk)

where F = F0] F−] F+, {f, c} ⊆ F0, −c ∈ F− and +c ∈ F+.

§68.16 Definition. If Φ := [1(X),+2(X)] + [+3(X),+4(X)] then
+
Φ := [+1(X),+2(X)] +

[+3(X),+4(X)].

§68.17 Lemma (Structural equivalence of correctness hypergraphs). Let Sφ := (V,E, end, ℓ)
be a correctness hypergraph for a switching φ and let

D[
+

Φax
S] AEx(Φφ

S)] := (VD, ED, endD)

be the dependency graph of its translation using Definition 69.15. There is a bijection
ρ : V → VD preserving adjacency.

Proof. First, a way to understand the connexions in D[
+
Φax
S] AEx(Φφ

S)] is that they have

the same connexions as D[
+
Φax
S]Φ

φ
S] except that rays of

+
Φax
S cannot be connected to rays

of Φφ
S except for the rays −addrS(v).

Let v ∈ V be a vertex representing a formula. Assume it is a conclusion of an hyperedge
e ∈ E (it is always the case by definition of proof-structure). If ℓ(e) ∈ {ax,⊗} or
e ∈ Concl(S) then ρ(v) := v⋆ (cf. Definition 69.15). If ℓ(e) = `L (resp. ℓ(e) = `R) then
ρ(v) is the left (resp. right) star of v⋆. Assume we have v and v′ adjacent. A case analysis
of all possible situations of adjacency shows that ρ preserves adjacency. Moreover, ρ
associates vertices in a unique way. Without loss of generality, we consider the case of
v ∈ V conclusion of a hyperedge e ∈ E with ℓ(e) = ⊗ with a premise v′ ∈ V conclusion of

Chapter 10 Stellar interpretation of multiplicative linear logic 319

an axiom. Hence we have end(e) = {v, v′, w} for some w ∈ V . The vertices v and v′ will
be translated into some star [−addrS(v′),+v′(X)] and [−v′(X),−w(X),+v(X)]. The
two stars can be linked along the rays +v′(X) and −v′(X) making them adjacent.

§68.18 Corollary. Let Sφ be a correctness hypergraph for a switching φ and let D[Φφ
S] be

the dependency graph of its translation by Definition 69.15.

We have that Sφ is connected or acyclic if and only
+
Φax
S] AEx(Φφ

S) is.

Proof. By Lemma 68.17, since we have a bijection ρ preserving adjacency, we also pre-
serve reachability and paths in the test. It follows that the set of cycles and connected
components in

+
Φax
S] AEx(Φφ

S) is isomorphic to the cycles and connected components of

D[
+
Φax
S] AEx(Φφ

S)].

§68.19 Theorem (Stellar correctness criterion). A proof-structure S such that Concl(S) =
{v1, ..., vn} is MLL-certifiable (cf. Definition 30.3) if and only if for all switchings φ,
we have:

AEx(
+

Φax
S] AEx(Φφ

S)) = [v1(X), ..., vn(X)].

Proof. We show two implications.

� (⇒) Assume S is MLL-certifiable. Then there exists a vertex labelling ℓ making S an
MLL proof-net. By the Danos-Regnier correctness criterion (cf. Theorem 30.17),
it means that for all switching φ of S, we have a correctness hypergraph Sφ which
is connected and acyclic. By Corollary 68.18,

+
Φax
S] AEx(Φφ

S) must be connected
and acyclic as well. In Definition 69.15, we see that all connexions in tests are
between rays of identical underlying terms and that all rays are deterministic,
making them perfect in the sense of Definition 62.15. It follows that

+
Φax
S]AEx(Φφ

S)
is perfect. By the perfection lemma (cf. Lemma 62.16), we have a unique diagram.
It is then sufficient to use a compression strategy as in Definition 63.2, i.e. we
directly apply fusion between stars of the constellation. By pre-execution of Φφ

S
we obtain a compact test translating the partition interpretation of Section 37.
What axioms and cuts do is simply merging some blocks of the test together. The
only rays left in the actualisation of the only diagram of

+
Φax
S] AEx(Φφ

S) are the
unpolarised conclusions of the test, that is v1(X), ..., vn(X). We obtain the normal
form [v1(X), ..., vn(X)].

� (⇐) Assume AEx(
+
Φax
S] AEx(Φφ

S)) = [v1(X), ..., vn(X)]. Assume by contradiction that
Sφ has at least two connected components. Assume that a component has no
conclusion (because of cuts). Then, by Proposition 68.14, there is a cycle yielding
infinitely many closed diagrams normalising into the empty star []. Hence, all

Chapter 10 Stellar interpretation of multiplicative linear logic 320

connected components must have free rays corresponding to conclusions. By the
independence of connected component (cf. Lemma 62.17), we can independently
execute each connected component. Since they correspond to deterministic and
exact subconstellations, the normalisation produces the constellation ϕ1+...+ϕk for
the k connected components. It contradicts the hypothesis that we normalise into
a single star. Therefore, Sφ must be connected. Now, assume by contradiction that
Sφ is cyclic. The cycle can either yield a closed diagram actualising into the empty
star [] or pass through a conclusion and produce infinitely many stars containing
conclusion rays. In both case, the normalisation is different from [v1(X), ..., vn(X)],
contradicting the hypothesis. Therefore, Sφ must also be acyclic. This proves that
Sφ must be a tree for any switching φ, i.e. that S is MLL-certifiable.

§68.20 The following corollary extends the logical correctness to MLL+MIX and suggests a
more general variant which also captures MLL.

§68.21 Corollary. Let S be a proof-structure and Φ :=
+
Φax
S] Ex(Φφ

S) be the constellation
corresponding to the correctness hypergraph Sφ for some switching φ. We have:

• Sφ is acyclic ⇔ D[Φ] is acyclic ⇔ |Ex(Φ)| <∞;

• Sφ is connected and acyclic ⇔ D[Φ] is a deterministic tree ⇔ |Ex(Φ)| = 1;

• Sφ is connected and acyclic⇔ Φ normalises into the star of its uncoloured rays.

Proof. The first equivalence of each point are direct consequences of Corollary 68.18. It
only remains to show the last equivalences.

• If D[Φ] is acyclic, then by Corollary 62.13, |Ex(Φ)| < ∞ because Φ is finite. Now
assume that |Ex(Φ)| <∞. The proof of Theorem 68.19 shows that the presence of
cycles in correctness hypergraphs is linked to the generation of infinitely many cor-
rect saturated diagrams. Hence it cannot be both cyclic and strongly normalising
and has to be acyclic.

• We start from the previous point and consider the additional property of connect-
edness. If D[Φ] is also connected, then by perfection of Φ (cf. Definition 62.15),
there is a single star in the normal form. Conversely, if Φ normalises into a sin-
gle star, its dependency graph must be both connected and acyclic, otherwise we
would end up with either several stars (cf. Theorem 68.19) or infinitely many cor-
rect saturated diagrams (since cycles are related to non-termination as stated in
the previous point).

• The third case corresponds to an alternative characterisation of correct proof-
structures. Assume Sφ is connected and acyclic. Then D[Φ] is a deterministic tree
by the previous point. By definition, uncoloured rays are the only free rays in Φ.

Chapter 10 Stellar interpretation of multiplicative linear logic 321

Since Φ is exact, it must produce a unique diagram corresponding to the cover
tree of D[Φ]. By definition, such a diagram reduces into the star of its free rays,
hence the star of its uncoloured rays. Now, assume Φ normalises into the star of
its uncoloured rays. The reasoning is the same as for the previous point.

§68.22 The problem of tests with cuts. There is a problem with cuts. Imagine that we
have the proof-structure of Figure 66.2. Its executed test for `L is the constellation:[

−7(l ·X),−8(l ·X),−8(r ·X)
]
+

[
−7(l ·X)

]
+

[
−3(X)
3(X)

]
+

[
−6(X)
6(X)

]
.

But if we execute the constellation corresponding to this proof-structure in order to
simulate cut-elimination, we obtain a constellation [3(X), 6(X)] representing the normal
form after cut-elimination. When fully polarised with [+3(X),+6(X)] in order to test
it for MLL correctness, it cannot even pass the test above. Hence, the fact of passing a
test is not preserved by reduction as if we were reducing a λ-term t into u, could assert
t : A but not u : A (no preservation of typing, also called “subject reduction”).

§68.23 Conversely, imagine that we have the following tests for axioms:[
+3(X)
3(X)

]
+

[
+6(X)
6(X)

]
.

It works for [3(X), 6(X)] but not for the vehicle of the proof of Figure 66.2. As if a
test for ` A,A⊥ could not validate proof-structures containing cuts. It is like having to
evaluate a λ-term of type ` A⊸ A in order to even typecheck it and say that it behaves
like an identity function. If the term is very big then it makes no sense to do that to
simply associate a type. Imagine pushing a car to its limits in order to say that it can
work as expected and that it is ready to be sold.

§68.24 However, this problem should not be seen as a limitation or a design defect. Consistently
with the philosophy of transcendental syntax and the distinction between Usine and
Usage, correctness tests should be applied on cut-free proof-structures only. It is only
after that we can guarantee with more or less certainty that our cut-free objects will
interact correctly by cut.

§68.25 Separating program (tested) and specification (test). A remark that I got several
times is “you are trying to relate correctness criteria with program testing but your test
is actually dependent of the program (vehicle)”. Yes, this is true. If you look at the
definition of test in Definition 68.3, the translation of atoms in the test uses addresses of
atoms in axioms. It is as if we were designing specific specifications for each programs
instead of generic ones. Actually, the problem is that program (vehicle) and test are
intertwined in proof-structures (as explained in Section 44). It is possible to define

Chapter 10 Stellar interpretation of multiplicative linear logic 322

tests directly from a sequent (corresponding to a specification), hence independently of
a proof-structure (program) as we will see in the next section (Usine interpretation).

§68.26 Finiteness of correctness checking. Despite all the previous “marketing” of finite-
ness of reasoning in Chapter 6, we can see that in our definitions, cut-elimination and
correctness checking can loop if we try to implement it with concrete or interactive
execution. Loops in proof-structures always involve equations between terms contain-
ing common variables. For instance, ϕ := [+1(X),+2(X)] + [−1(X),−2(X), 3(X)] can
be reduced to ϕ′ := [+2(X),−2(X), 3(X)]. In ϕ, the connexion between +1(X) and
−1(X) makes variables distinct (by α-unification). However, in ϕ′, the connexion be-
tween +2(X) and −2(X) involve exactly the same variable because they are part of
the same star. It means that loops can be detected by looking for equations involving
exactly the same variables. It is up to us to make such diagrams incorrect. We can
also, like Girard, choose to consider only tree-shaped diagrams but Thomas Seiller and
I wanted something more flexible (also because it is computationally more expressive as
illustrated in Chapter 8).

69 Construction of multiplicative formulas

§69.1 As explained in Section 43, formulas should be defined as sets of constellations w.r.t. an
orthogonality relation between constellations. In this section, I present the Usine and
Usage interpretation of formulas in the case of stellar resolution.

§69.2 Corollary 68.21 suggests three orthogonality relations we call ⊥fin, ⊥1 and ⊥R but others
can be designed depending on what we want.

§69.3 Convention. In this section, we write Ex for AEx.

§69.4 Definition (Orthogonality). We define binary relations of orthogonality between two
constellations Φ1 and Φ2 w.r.t. a set of colours C ⊆ F+] F−:

• Φ1 ⊥fin
C Φ2 when |ExC(Φ1] Φ2)| <∞;

• Φ1 ⊥1
C Φ2 when |AExC(Φ1] Φ2)| = 1;

• Φ1 ⊥R
C Φ2 when ExC(Φ1] Φ2) = {Roots(Φ1] Φ2)} where Roots(Φ) is the star

of uncoloured rays in Φ.

The orthogonal of a set of constellations A is defined by:

A⊥C := {Φ | ∀Φ′ ∈ A,Φ ⊥C Φ′}

for a relation of orthogonality ⊥.

Chapter 10 Stellar interpretation of multiplicative linear logic 323

§69.5 The orthogonality ⊥R will be our favourite since it is very close to the correctness
criterion used in stellar resolution. In particular, it forces a full connexion between
vehicle and test, as in the proof-as-partitions approach. The other criteria are more
lax. In particular, it is possible to have constellations which do not correspond to proof-
structures in the orthogonal of tests. It can however be seen as a feature as well1.

§69.6 In order to allow typing for partial evaluations, the orthogonality relation ⊥C has to
be parametrised by a set of colours C but we omit this parameter when considering all
colours in F .

§69.7 The orthogonality ⊥fin will define a fully complete model of MLL+MIX, while ⊥1 and
⊥R (which captures more directly the correctness criterion for MLL) will define a fully
complete model of MLL. However, those notions of orthogonality share most of the
properties needed, and we therefore use the generic notation ⊥ in the following to state
results valid for all of them.

§69.8 Lemma (Invariance of orthogonality under execution). Let Φ and Φ′ be constellations
such that ⋒C(Φ,Φ′) = ∅ for a set of colours C ⊆ F+] F−. We have Φ ⊥C Φ′ if and
only if ExC(Φ) ⊥C Φ′ for ⊥C∈ {⊥1

C ,⊥fin
C ,⊥R

C}.

Proof. These relations are satisfied when P (ExC(Φ] Φ′)) is satisfied for some property
P . By the lemma of partial pre-execution (cf. Lemma 64.9), we have ExC(ExC(Φ)]Φ′) =
ExC(Φ]Φ′). Hence we have P (ExC(Φ]Φ′)) if and only if P (ExC(ExC(Φ)]Φ′)), meaning
that we have Φ ⊥C Φ′ if and only if ExC(Φ) ⊥ Φ′.

§69.9 Remark. This does not invalidate the problem presented in Paragraph 68.22 despite
the appearance because if we had cuts in Φ, then both cuts and a test Φ′ would want
to connect with rays of Φ. This contradicts the precondition ⋒C(Φ,Φ′) = ∅.

Usine interpretation

§69.10 In this section, we construct formulas by generalising logical correctness. In the Usine
interpretation, we are interested in effective verification. I refer to Section 43 for the
philosophy of Usine.

§69.11 Definition (Type label). A type (label) is an object A associated to a finite set of
constellations Tests(A) called its tests. We say that a constellation Φ is of type A
w.r.t. ⊥ if and only if Φ ∈ Tests(A)⊥.

1I believe this is the opinion of Thomas Seiller.

Chapter 10 Stellar interpretation of multiplicative linear logic 324

§69.12 Type labels appear in model checking [BK08]: given an automata Φ (or labelled transi-
tion system), we would like to know whether it satisfies a specification S (often written
as a formula of a logic called LTL or CTL). It is then possible to check if Φ satisfies S
by turning ¬S into an automaton Φ¬S and verifying if L(Φ)∩L(Φ¬S) = ∅, by analysing
paths of the state graph of the automaton [HR04, Section 3.6.3]. This is similar to
how we turn a sequent ` Γ into a set of tests (defined as constellations) allowing us to
label/certify a constellation as a proof of A. Moreover, the Danos-Regnier’s tests can
also be considered as proofs of A⊥.

§69.13 The purpose of having finite set of tests is to make type checking computable. However,
this only happens under some conditions such as the orthogonality relation being de-
cidable. Even under these conditions, it is possible to “trick” tests so to create infinite
loops and make effective type checking impossible. It shows that we need to consider
testing w.r.t. a specific class of objects (for instance the universe of proof-structures) so
to prevent such tricks to happen, consistently with the idea of epidictics explained in
Section 44. In this restricted case, orthogonality is decidable as we can check for the
presence of cycles in dependency graphs in finite time.

§69.14 The definition of orthogonality and interactive testing leads to a reformulation of cor-
rectness criterion, showing that MLL sequents define type labels by themselves, in-
dependently of a proof-structure. This is based on the fact that the bottom part of
proof-structure corresponds to the syntax tree of a sequent which is already a sort of
pre-typing constraining cut-elimination. By constructing a syntax hypergraph from a
sequent, Definition 68.3 can be used.

§69.15 Definition (Test of a sequent). Let ` Γ be a sequent of MLL where Γ ⊆ FMLL and
all variables are distinct. We define the syntax tree of an MLL formula A inductively:

• ST (Xi) and ST (X⊥i) are vertices labelled by Xi and X⊥i respectively;

• ST (A⊗ B) is an hyperedge labelled by ⊗ linking the conclusion of ST (A) and
ST (B) as sources and having a vertex labelled by A⊗B as target;

• ST (A` B) is an hyperedge labelled by ` linking the conclusion of ST (A) and
ST (B) as sources and having a vertex labelled by A`B as target.

The syntax hypergraph ST (` Γ) of ` Γ is defined as the hypergraph disjoint union of
all ST (Ai) for Ai ∈ Γ. A switching (cf. Definition 30.16) φ still applies on ST (` Γ)
as for correction hypergraphs. We write ST (` Γ)φ for the switching φ applied on the
syntax hypergraph ST (` Γ).

The test associated with the sequent ` Γ and the switching φ is defined as the con-
stellation Test(` Γ)φ such that ITest(⊢Γ)φ := V ST (⊢Γ)φ (it is indexed by vertices of the
syntax tree) and Test(` Γ)φ[v] := v⋆.

The set of tests associated with the sequent ` Γ is defined by Tests(` Γ) := {Test(`
Γ)φ | φ is a switching of ST (` Γ)}.

Chapter 10 Stellar interpretation of multiplicative linear logic 325

1 2 3 4
ax ax

X1 X2

⊗

X1 ⊗X2

X⊥1 X⊥2

`R

X⊥1 `X⊥2

Figure 69.1: We expect this proof-structure to be able to pass any test of Tests(` X1⊗
X2, X

⊥
1 `X⊥2). However, since the function symbols used in tests are not

compatible with the ones of the proof-structure, we need a conversion of
function symbols to allow interaction.

§69.16 Example. We give the compact (executed) form of tests coming from some sequents
with a given switching:

Tests(` A,A⊥)φ :=

[
−A(X)
A(X)

]
+

[
−A⊥(X)
A⊥(X)

]
;

Tests(` A⊥ `B⊥, A⊗B)φ (φ(`) = `L) :=[
−A⊥(X)

(A⊥ `B⊥)(X)

]
+

[
−B⊥(X)

]
+

[
−A(X),−B(X)
(A⊗B)(X)

]
;

Tests(` A⊥ `B⊥, A⊗B)φ (φ(`) = `R) :=[
−A⊥(X)

]
+

[
−B⊥(X)

(A⊥ `B⊥)(X)

]
+

[
−A(X),−B(X)
(A⊗B)(X)

]
.

§69.17 We defined MLL sequents as type labels in the sense of Definition 69.11. However, there
is a minor technical problem: arbitrary constellations may not match with the tests we
defined because of a difference of function symbols, as illustrated in Figure 69.1.

§69.18 A solution is to use binary stars to rename some rays and allow a connexion. This
corresponds to a sort of generalised cut allowing a trivial connexion between two rays.
I call these stars adapters in reference to adapter cables (for instance HDMI to VGA or
USB-C to USB-A).

§69.19 Definition (Adapter). Let Φ be a constellation. An adapter for Φ is a star [r, r′]
where op(r) and op(r′) are polarised rays of Φ such that op(r) 6▷◁ op(r′) (hence we
artificially link two rays which could not be linked by using a star [r, r′]).

§69.20 Notice that the translation of atomic formulas in Definition 69.15 actually corresponds
to adapters between a vehicle and a test, hence tests were already independent of ve-
hicles but hardwired adapters were linking vehicle and test in a proof-structure. This
dependency is only artificial and appears when considering proof-structures as an entity
which cannot be decomposed. This is the difference between soldered switches in key-
boards and hot-swappable switches which can be replaced. In Figure 68.1 for instance,

Chapter 10 Stellar interpretation of multiplicative linear logic 326

the negative rays on the top are residuals of adapters which enforces a connexion with
the vehicle.

“Transcendental syntax’s Usine is proof-net theory without soldering components.”

§69.21 Proposition (Correspondence between proof-structure tests and sequent tests). Let
S be a cut-free proof-structure. For all switching φ of S, there exists an MLL sequent
` Γ and a constellation of adapters Φ such that Ex(Φφ

S) = Ex(Test(` Γ)φ] Φ).

Proof. The constellation Φφ
S corresponds to the syntax forest of a sequent with ex-

actly one premise removed for each ` vertex. Hence, it naturally induces a sequent
` ∆ and we define Γ := ∆. The constellation Test(` Γ)φ structurally corresponds
to Φφ

S without the upper rays −ui(ti) which allows connexion with the vehicle Φax
S .

Apart from that, they both use the same translation function (·)⋆ on vertices for cor-
rectness hypergraphs. Assume we have a star [−v(t),+w(X)] translating the atom w
linked to some star [−w(X), ...] in Test(` Γ)φ. During the execution, they will merge
into [−v(t), ...]. However, it is possible to construct Φ so to reproduce this step with
an adapter [−v(t),+A(X)] (by definition, the star [−A(x), ...] which is isomorphic to
[−w(x), ...] must be present in Φφ

S). Moreover, because of the structural equivalence be-
tween the two constellations, they only differ by conjugation. It is then possible to extend
Φ so that Test(` Γ)φ is turned exactly into Φφ

S . It follows that the two constellations
must have the same normal form.

§69.22 Definition (Typing). We say that a constellation Φ is of type ` Γ, written ` Φ : Γ
when Φ ∈ Ex(Φφ

⊢Γ] Φµ)
⊥ for a set of adapters Φµ and all switchings φ of ` Γ.

§69.23 Proposition (Reformulation of logical correctness). A cut-free proof-structure S is
MLL-certifiable if and only if there exists a sequent ` Γ and a constellation of adapters
Φ such that `

+
Φax
S : Γ with ⊥ ∈ {⊥1,⊥R}. The same statement holds for MLL+MIX

w.r.t. ⊥fin.

Proof. By Proposition 69.21, there exist some sequent ` Γ such that Φφ
S is simulated by

Φ]Test(` Γ)φ for some constellation of adapters Φ. By invariance of orthogonality under

execution (cf. Lemma 69.8), this connexion is equivalent to a connexion between
+
Φax
S

and Φφ
S . The orthogonality

+
Φax
S ∈ Tests(` Γ)⊥ and the same statement for MLL+MIX

(w.r.t. ⊥fin) both hold by a direct consequence of Corollary 68.21.

§69.24 Example. From the sequent ` A,A⊥, we can generate the only test
[
−A(X)
A(X)

]
+[

−A⊥(X)
A⊥(X)

]
. It can be plugged to the vehicle [+1(X),+2(X)] by using the adapters

[−1(X),+A(X)] + [−2(X),+A⊥(X)]. The normal form of the whole constellation is

Chapter 10 Stellar interpretation of multiplicative linear logic 327

[A(X), A⊥(X)], as expected.

§69.25 The shape of vehicles. Notice that in our interpretation, there is no assumption of
the shape of vehicles. We are interested in constellations orthogonal to all tests of a
given sequent. Consider the orthogonality ⊥R. If we have the two tests of Tests(`
A⊥`B⊥, A⊗B) given in Example 69.16, it can be linked to the expected vehicle (with
adapters applied):

[+(A⊥ `B⊥)(l ·X),+(A⊗B)(l ·X)] + [+(A⊥ `B⊥)(r ·X),+(A⊗B)(r ·X)]

but this also logically wrong vehicle would pass the test as well:

[+(A⊥ `B⊥)(l ·X),+(A⊗B)(r ·X)] + [+(A⊥ `B⊥)(r ·X),+(A⊗B)(l ·X)].

It means that we need another restriction to say that we would like to link “dual atoms”.
These additional restrictions are not explored here because they corresponds to second-
order considerations (epidictics).

§69.26 However, independently of sequents, there are some correct shapes of vehicles that we
wish for and which can be made explicit. We say that those correctly shaped vehicles
are well-formed. They are the ones which will be put against tests of sequents.

§69.27 Definition (Well-formed vehicle). Let Φ be a constellation defined in a coloured
signature (V, F, ar,¨, b·c) with F := F0] F+] F−. It is a well-formed vehicle if it is:

1. finite;

2. only made of binary stars [fi(ti), fj(tj)];

3. all rays are disjoint, i.e. not α-unifiable (this is actually a condition that Girard
required for constellations in general [Gir17]);

4. for each fk, we have fk ∈ F+] F0;

5. there is at least one fk such that fk ∈ F+;

6. all tk are stacks of directions constructed in the following grammar:

t ::= X | l · t | r ·X.

Usage interpretation

§69.28 I refer to Section 43 for more details about the philosophy of Girard’s Usage. Constella-
tions are grouped into arbitrary sets called pre-behaviours, giving rise a notion of formula
and behaviours will correspond to actual formulas of linear logic.

Chapter 10 Stellar interpretation of multiplicative linear logic 328

§69.29 Definition (Pre-behaviour). A pre-behaviour A is a set of constellations.

§69.30 Definition (Behaviour). A pre-behaviour A is a behaviour when there exists a pre-
behaviour B such that A = B⊥.

§69.31 Lemma (Invariance of typing under execution). Let Φ be a constellation and A a
behaviour such that ⋒C(Φ,Φ′) = ∅ for all Φ′ ∈ A⊥. We have Φ ∈ A if and only if
ExC(Φ) ∈ A.

Proof. If A is a behaviour then A = A⊥⊥, meaning that A is characterised by some tests
A⊥. Hence we have to show that Φ ⊥C Φ′ such that ⋒C(Φ,Φ′) = ∅ for any Φ′ ∈ A⊥
if and only if Ex(Φ) ⊥C Φ′. This is the consequence of the invariance of orthogonality
under execution (cf. Lemma 69.8).

§69.32 Proposition (Bi-orthogonal closure). A pre-behaviour A is a behaviour if and only
if A = A⊥⊥.

Proof. The proof can be found in the literature [JS21, Proposition 15].

§69.33 Definition (Disjointness of behaviours). Let A and B be two behaviours and a set
of colours C ⊆ F+]F−. They are disjoint when for all ΦA ∈ A and ΦB ∈ B, we have
⋒C(ΦA,ΦB) = ∅.

§69.34 When two behaviours A and B are disjoint, for any pair of constellations ΦA ∈ A and
ΦB ∈ B, there is no path from one constellation to the other in D[ΦA] ΦB].

§69.35 Definition (Pre-tensor). Let A and B be disjoint pre-behaviours. We define their
pre-tensor by A� B = {Φ1] Φ2 | Φ1 ∈ A,Φ2 ∈ B}.

§69.36 Definition (Tensor). Let A and B be disjoint behaviours. We define their tensor by

A⊗ B = (A� B)⊥⊥.

§69.37 The pre-tensor is the natural definition of tensor product pairing constellations of two
pre-behaviours. The real tensor product adds a bi-orthogonal closure (·)⊥⊥ in order
to ensure that we get a behaviour (it is not necessarily the case without the closure,
depending on the orthogonality we consider). It is indeed a generalisation of the usual
tensor because, depending on the orthogonality relation, its orthogonal can contain way
more than what we expect from proof-structures because of the huge space of objects
provided by stellar resolution. In case A�B = A⊗B, we say that internal completeness
holds for tensor.

Chapter 10 Stellar interpretation of multiplicative linear logic 329

Φ1 = [X,+c(X)]

[−c(l ·X)] = Φ2

[−c(r ·X)] = Φ3

Figure 69.2: Counter-example of non-associativity which is variant of Figure 64.1. We
have Ex{c}(Φ1] Φ2) = [l · X] and Ex{c}(Ex{c}(Φ1] Φ2)] Φ3) = [−c(r ·
X)] + [l ·X], but Ex{c}(Φ1] Ex{c}(Φ2] Φ3)) = [−c(l ·X)] + [r ·X] which
is different.

§69.38 Proposition (Commutativity and associativity of tensor). Given A,B,C pairwise
disjoint behaviours, we have (1) A⊗ B = B⊗A and (2) A⊗ (B⊗C) = (A⊗ B)⊗C.

Proof. (1) By the definition of tensor, we have Φ1]Φ2 ∈ A⊗B when Φ1]Φ2 ∈ {Φ1]Φ2 |
Φ1 ∈ A,Φ2 ∈ B}⊥⊥. We also have Φ2] Φ1 ∈ B ⊗ A. But since Φ1] Φ2 = Φ2] Φ1 by
commutativity of multiset disjoint union, we obtain A ⊗ B = B ⊗ A. (2) In the same
fashion, by using the associativity of multiset disjoint union, we obtain A ⊗ (B ⊗ C) =
(A⊗ B)⊗ C.

§69.39 The other connectives are then defined by interactive testing, e.g. the elements of A`B
are the elements passing the tests of A⊥⊗B⊥. This is why we can speak about interactive
types.

§69.40 Definition (Par and linear implication). Let A,B be disjoint behaviours. We define:

A ` B = (A⊥ ⊗ B⊥)⊥ and A⊸ B = A⊥ ` B.

§69.41 Remark (Implicit exchange). The commutativity and associativity of⊗ are preserved
for `: we have A ` B = (A⊥ ⊗ B⊥)⊥ = (B⊥ ⊗ A⊥)⊥ = B ` A. This corresponds to
the fact that the exchange rule is implicit in linear logic.

§69.42 In Figure 69.2, we can see that associativity fails when execution is treated as a binary
operator on constellations. As in partial pre-execution (cf. Section 64), we need a re-
striction on the interaction between constellations. A technical precondition is defined
for the associativity, and trefoil property [Sei16a, Theorem 40] is stated as a corollary
(cf. Section 65).

§69.43 Theorem (Associativity of (pairwise) execution). Choose a set of colours C ⊆ F+]
F−. For constellations Φ1,Φ2 and Φ3 such that ⋒C(Φ1,Φ2,Φ3) = ∅, we have:

ExC(Φ1] ExC(Φ2] Φ3)) = ExC(ExC(Φ1] Φ2)] Φ3).

Chapter 10 Stellar interpretation of multiplicative linear logic 330

Proof. Assume we have ⋒C(Φ1,Φ2,Φ3) = ∅. Hence, by definition, no ray is shared by
the three constellations. Let P (i, j), be the set of paths reaching (Φ1] Φ2] Φ3)[i][j] in
D[Φ1] Φ2] Φ3;A]. By the previous statement, these paths traverse at most two con-
stellations in {Φ1,Φ2,Φ3}. By using the reasoning of the proof of partial pre-execution
(cf. Lemma 64.9), the paths P (i, j) traversing Φ2 and Φ3 can be reduced with no ef-
fect on other connexions (since no rays are shared). Hence, the stars of Φ1 can con-
nect to the stars of ExC(Φ2] Φ3) in the same way as in Φ2] Φ3. It follows that
ExC(Φ1] ExC(Φ2] Φ3)) = ExC(Φ1] Φ2] Φ3). By the same reasoning, we also have
ExC(ExC(Φ1] Φ2)] Φ3) = ExC(Φ1] Φ2] Φ3), hence execution is associative.

§69.44 Theorem (Trefoil Property for execution-based orthogonality). Let C ⊆ F+] F−
be a set of colours. For constellations Φ1,Φ2,Φ3 and for i, j, k ∈ {1, 2, 3} such that
⋒C(Φ1,Φ2,Φ3) = ∅, we have:

Φ1 ⊥C ExC(Φ2] Φ3) if and only if ExC(Φ1] Φ2) ⊥C Φ3.

Proof. Assume that P is a property corresponding to the orthogonality relation ⊥ based
on execution, i.e. we have Φ1 ⊥C Φ2 if and only if P (ExC(Φ1]Φ2)). The statement can be
rewritten as follows: P (ExC(Φ1]ExC(Φ2]Φ3))) if and only if P (ExC(ExC(Φ1]Φ2)]Φ3)).
This is a direct consequence of the associativity (cf. Theorem 69.43).

§69.45 It is then possible to recover the adjunction property that the trefoil property generalises
(cf. Section 65).

§69.46 Corollary (Adjunction). Choose a set of colours C ⊆ F+]F−. For all constellations
Φf , Φa and Φb such that ⋒C(Φa,Φb) = ∅, we have:

Φf ⊥C Φa] Φb if and only if ExC(Φf] Φa) ⊥C Φb.

Proof. By symmetry of orthogonality relations and invariance of orthogonality under
execution (cf. Lemma 69.8), we have Φf ⊥C Φa]Φb if and only if Φf ⊥C ExC(Φa]Φb).
In order to conclude with the trefoil property, it remains to show the precondition, i.e.
that we have ⋒C(Φf ,Φa,Φb) = ∅. We assumed ⋒C(Φa,Φb) = ∅, meaning that no variable
were shared by both Φa and Φb. It follows that a variable cannot be shared by Φf ,Φa

and Φb at the same time because otherwise, it would be shared by Φa and Φb as well.

§69.47 As explained in Section 65, the adjunction allows to show that the behaviour A ⊸ B
corresponding to linear implication has a functional behaviour. This is a necessary
condition for the definition of linear logic.

Chapter 10 Stellar interpretation of multiplicative linear logic 331

§69.48 Proposition (Alternative linear implication). Let A,B be two disjoint behaviours.
We have A⊸ B = {Φf | ∀ Φa ∈ A, Ex(Φf] Φa) ∈ B}.

Proof. By Definition 69.40, we have A⊸ B = (A⊗B⊥)⊥. We have Φf ∈ A⊸ B if and
only if for all Φa ∈ A, Ex(Φf]Φa) ∈ B. Since B is a behaviour, by Definition 69.30, there
exists Φb′ ∈ B⊥ such that Ex(Φf] Φa)⊥Φb′ . By the adjunction (cf. Corollary 69.46),
Φf⊥(Φa] Φb′), hence Φf ∈ (A ⊗ B⊥)⊥. The proof only relies on equivalences hence a
bi-inclusion is proved.

70 Soundness and completeness

§70.1 In this section:

• Girard’s adequacy between Usine and Usage presented in Section 43 is formalised;

• more classic results such as soundness and completeness w.r.t. proof-net theory are
presented.

Adequacy between Usine and Usage

§70.2 In this subsection, our favourite orthogonality relation which will be mentioned is ⊥R

which require that the normal form is the star of roots (unpolarised rays) coming from
the two interacting constellations.

§70.3 As explained in Section 43, in transcendental syntax, the process of execution is able
to express both cut-elimination and correctness testing. What changes is the shape of
objects which interact:

• with cut-elimination, two vehicles interact;

• with correctness testing, a vehicle and a (compact) test interact.

The orthogonality relation ⊥R formalises the two situations. We already know how it
captures MLL correctness but it also works for cut-elimination. What is a “correct”
interaction by cut-elimination? When the two vehicles Φ and Φ′ interacting only leave
the star of uncoloured rays which were not related to cuts (that all rays related to cuts
have been eliminated), in other words when Φ ⊥R Φ′. In the same fashion of mixing
correctness and cut-elimination, plugging two vehicles by axiomatic cuts can be seen as
plugging a vehicle and a sort of test (which coincides with another vehicle) by using cuts
as adapters as shown in Figure 70.1.

Chapter 10 Stellar interpretation of multiplicative linear logic 332

1 2 3 64 5

cut
cut

ax ax ax

⇝
1 2

3 6

4 5

ax Vehicle (tested)

Adapters

Test of axiom

(a) Proof-structure view.

[+1(X),+2(X)]+[3(X),+4(X)]+[+5(X),6(X)]

[−1(X),−4(X)] + [−2(X),+5(X)]

⇝

[+1(X),+2(X)][
−1(X)
+4(X)

]
+

[
−2(X)
+5(X)

]
[
−4(X)
3(X)

]
+

[
−5(X)
6(X)

]
(b) Constellation view in cut-elimination style (left) and block style for correctness testing (right).

Figure 70.1: Cut-elimination between two vehicles (on the left) seen as testing (on the
right). Exactly as for testing, we expect to obtain the roots by execution.
The cuts correspond to adapters. We see that the cut-elimination corre-
sponding to testing an axiom against the only test of ` A,A⊥. The free
rays explicitly becomes roots of the test.

§70.4 The meaning of cut-elimination. Cut-elimination can then be reformulated. Its
meaning is that every interaction between vehicles is valid (normalises into the star of
roots). More formally: for all well-formed vehicles Φ,Φ′, we have Φ ⊥R Φ. This is not
always the case. A trivial example is to consider a case where cut-elimination fails (cf.
Example 67.5). The two proof-structures interacting are indeed well-formed but we do
not normalise into the star of roots. This is where correctness tests are needed.

§70.5 Theorem (Multiplicative adequacy). Let Φ and Φ′ be two well-formed vehicles. If

`
+
Φ : Γ and

+

Φ′ : Γ⊥, then Φ ⊥R Φ′] Ψ where Ψ is a constellation of fully negative
adapters (representing cuts).

Proof. This is another formulation of Theorem 67.10.

§70.6 Adequacy corresponds to a relation between Usine and Usage because the shape of ob-
jects given by Usine tests guarantees the use of objects (behaving like proof-structures).
More precisely, Usine tests are also related to Usage’s behaviours because if ` Φ : Γ
then, Φ ∈ J` ΓK, meaning that a constellation passing the tests of ` Γ behaves like an
object of the idealised type J` ΓK. This implies that Tests(` Γ)⊥ ⊆ J` ΓK.

Chapter 10 Stellar interpretation of multiplicative linear logic 333

A complete model of MLL+MIX

§70.7 We can also choose to prove more traditional properties of soundness and complete-
ness w.r.t. proof-structures. This shows that we correctly captured the behaviour of
proof-structures, their cut-elimination and their correctness. We start by associating a
behaviour to formulas.

§70.8 Formula labels are interpreted by behaviours where distinct behaviours are associated
with occurrences of variables by a function called basis of interpretation. Following
previous works of Seiller [Sei12a, Definition 46], the behaviours corresponding to formula
labels are localised formulas: they are defined using the same grammar as MLL formulas,
except that variables are of the form Xi(t), where t is a term (here representing the path
address described in Definition 66.7) used to distinguish occurrences of a same atomic
formula Xi. Two behaviours Xi(t) and Xi(u) with t 6= u represent the same atom at
different locations and should correspond to the same behaviour modulo application of
an adapter.

§70.9 Definition (Basis of interpretation). A basis of interpretation is a function Ω produc-
ing a behaviour Ω(A, i, t) when given a formula A ∈ FMLL, a natural number i (index
of occurrence) and a term t ∈ Addrx(S) (cf. Definition 66.7). A basis of interpre-
tation has to satisfy the condition that Ex

(
Ω(A, i, t) + [+A(t),+B(u)]

)
= Ω(B, j, u)

when i = j and otherwise Ω(A, i, t) and Ω(B, j, u) are disjoint, such that A + ϕ =
{Φ+ ϕ | Φ ∈ A} for a behaviour A and a star ϕ.

§70.10 Definition (Interpretation of MLL formulas). Given a basis of interpretation Ω, a
formula C representing the conclusion of a sequent, and an MLL formula occurrence
A identified by a unique unary function symbol A(X) (cf. Definition 66.7). We define
the interpretation JA, tKΩ along Ω and a term t (encoding the address of A w.r.t. a
conclusion C) inductively:

• JC,Xi, tKΩ = Ω(C, i, t);

• JC,X⊥i , tKΩ = Ω(C, i, t)⊥;

• JC,A⊗B, tKΩ = JC,A, l · tKΩ ⊗ JC,B, r · tKΩ;
• JC,A`B, tKΩ = JC,A, l · tKΩ ` JC,B, r · tKΩ.

We write JCK for JC,C,XK and extend the interpretation to sequents with:

J` C1, ..., CnKΩ := JC1KΩ ` ...` JCnKΩ.
§70.11 Remark. The interpretation of an axiom under an basis of interpretation Ω is defined

by J` X1, X
⊥
1 KΩ = JX1KΩ ` JX⊥1 K = Ω(X1, 1, X)` Ω(X⊥1 , 1, X)⊥.

§70.12 We prove soundness and completeness for MLL+MIX. Theorem 68.19 shows that asking
for a strongly normalising union between vehicle and test corresponds to MLL+MIX

Chapter 10 Stellar interpretation of multiplicative linear logic 334

correctness. This is the key ingredient in the proof of completeness. In this section, we
consider the orthogonality ⊥fin exclusively.

§70.13 Instead of the usual soundness property, we prove an extension called full soundness
[Sei12a, Theorem 55] which takes cut-elimination into account. In terms of the ade-
quacy used in realisability interpretations, proving the soundness property corresponds
to showing that ` Φ : Γ implies J` ΓKΩ for some basis of interpretation Ω, except that
for ` Φ : Γ we only consider constellations coming from proof-nets.

§70.14 Lemma. Let A,B be MLL formulas, Γ = C1, ..., Cn,∆ = D1, ..., Dm be sets of MLL
formulas and Ω be a basis of interpretation. We have (J` ΓKΩ ` JAKΩ) ⊗ (J` ∆KΩ `JBKΩ) ⊆ J` ΓKΩ ` J` ∆KΩ ` JA⊗BKΩ.

Proof. The idea is to show (JC⊥1 ⊗ ...⊗C⊥n KΩ⊸ JAKΩ)⊗ (JD⊥1 ⊗ ...⊗D⊥mKΩ⊸ JBKΩ) ⊆
(JC⊥1 ⊗ ... ⊗ C⊥n KΩ ⊗ JD⊥1 ⊗ ... ⊗ D⊥mKΩ) ⊸ JA ⊗ BKΩ which is equivalent to (JCKΩ ⊸JAKΩ) ⊗ (JDKΩ ⊸ JBKΩ) ⊆ (JCKΩ ⊗ JDKΩ) ⊸ JA ⊗ BKΩ for C := C⊥1 ⊗ ... ⊗ C⊥n
and D := D⊥1 ⊗ ... ⊗ D⊥m. Assume we have two functions ΦC,A ∈ JCKΩ ⊸ JAKΩ and
ΦD,B ∈ JDKΩ ⊸ JBKΩ. We can construct their disjoint union ΦC,A] ΦD,B ∈ (JCKΩ ⊸JAKΩ)⊗ (JDKΩ⊸ JBKΩ). If we provide to ΦC,A]ΦD,B an argument Φ ∈ JCKΩ ⊗ JDKΩ,
then since C and D are disjoint, each function ΦC,A and ΦD,B will take their argument
separately and produce Φ′ ∈ JA ⊗ BKΩ. Therefore, ΦC,A] ΦD,B ∈ (JCKΩ ⊗ JDKΩ) ⊸JA⊗BKΩ.

§70.15 Lemma. If A is a pre-behaviour then A⊥ 6= ∅.

Proof. Any constellation with only uncoloured rays strongly normalise with any constel-
lation so it is always part of the orthogonal of a pre-behaviour.

§70.16 Lemma. If A is a behaviour and Φ ∈ A then |Ex(Φ)| <∞.

Proof. Assume we have a behaviour A and a constellation Φ ∈ A. By definition of
behaviour, we have A = A⊥⊥. By Lemma 70.15 there must be some Φ′ ∈ A⊥ such that
Φ] Φ′ is strongly normalising. Assume Φ is not strongly normalising. Then, Φ can
produce infinitely many saturated correct diagrams. Such diagrams cannot be extended
with stars of Φ′ in Φ]Φ′ because they are in disjoint union, hence these infinitely many
saturated diagrams are preserved and Φ] Φ′ cannot be strongly normalising, which is
contradictory. Therefore, Φ must be strongly normalising.

§70.17 Theorem (Full soundness for MLL+MIX). Let ` S : Γ be an MLL+MIX proof-net
and Ω a basis of interpretation. We have Ex(Φcomp

S) ∈ J` ΓKΩ.
Proof. We start with the case of cut-free proofs normalising into themselves. The proof
is done by induction on the proof-net structure of S.

Chapter 10 Stellar interpretation of multiplicative linear logic 335

• Assume we have ` S : Xi, X
⊥
i . We would like to show that Φax

S ∈ JXiKΩ`JX⊥i KΩ =JXi, Xi, XKΩ ` JX⊥i , Xi, XK⊥Ω = Ω(Xi, i,X) ` Ω(X⊥i , i,X)⊥ =
(
Ω(Xi, i,X)⊥ ⊗

Ω(X⊥i , i,X)
)⊥. Let Φ1] Φ2 ∈ Ω(Xi, i,X)⊥ ⊗ Ω(X⊥i , i,X) with Φ1 ∈ Ω(Xi, i,X)⊥

and Φ2 ∈ Ω(X⊥i , i,X). It is sufficient to show that |Ex(Φ1] Φ2] Φax
S)| < ∞, i.e.

that the axiom strongly normalises with its tests. By Definition 70.9 since we have
Φax
S = [+Xi(X),+X⊥i (X)], we have Ex(Φax

S]Φ2) ∈ Ω(Xi, i,X) which is orthogonal
to Φ1. By orthogonality, it follows that |Ex(Φ1] Ex(Φ2] Φax

S))| < ∞. Now, by
definition of tensor,

• Assume we have ` S : Γ,∆, A ⊗ B coming from ` S1 : Γ, A and ` S2 : ∆, B. We
have to show Φax

S ∈ J` ΓKΩ ` J` ∆KΩ ` JA ⊗ BKΩ. By induction hypothesis, we
have Φax

S1 ∈ J` Γ, AKΩ = J` ΓKΩ ` JAKΩ and Φax
S2 ∈ J` ∆, BKΩ = J` ∆KΩ ` JBKΩ.

By a conjugation µ such that Φax
S1 and Φax

S2 are made distinct, we can relocate the
atoms and obtain a constellation Φµ ∈ (J` ΓKΩ ` JAKΩ) ⊗ (J` ∆KΩ ` JBKΩ) such
that Φµ = µ(Φax

S1)] Φax
S2 . Now, by the definition of tensor for proof-structures, we

have a preservation of axioms and Φax
S equivalent to Φµ up to conjugation (and this

conjugation could be chosen for µ). By Lemma 70.14, we have (J` ΓKΩ`JAKΩ)⊗(J`
∆KΩ`JBKΩ) ⊆ J` ΓKΩ`J` ∆KΩ`JA⊗BKΩ, hence Φax

S ∈ J` ΓKΩ`J` ∆KΩ`JA⊗BKΩ.
• Assume we have ` S : Γ, A ` B coming from ` S ′ : Γ, A,B. We would like to

show that Φax
S ∈ J` ΓKΩ ` JAKΩ ` JBKΩ. This directly follows from the induction

hypothesis and the fact that we have J` Γ, A,BKΩ = J` ΓKΩ ` JAKΩ ` JBKΩ by
definition.

• Assume we have ` S : Γ,∆ coming from ` S1 : Γ and ` S2 : ∆ (by using the
MIX rule). We have to show Φax

S ∈ J` ΓKΩ ` J` ∆KΩ knowing that the induction
hypothesis states that Φax

S1 ∈ J` ΓKΩ and Φax
S2 ∈ J` ∆KΩ. Since the MIX rule only

places two proofs next to each other, we have Φax
S = Φax

S1] Φax
S2 by definition. By

definition of tensor, we have Φax
S ∈ J` ΓKΩ ⊗ J` ∆KΩ. It remains to show that

A ⊗ B ⊆ A ` B in general, which would imply Φax
S ∈ J` ΓKΩ ` J` ∆KΩ. We

have A ` B ⊆ (A⊥ ⊗ B⊥)⊥, hence we have to show that A ⊗ B ⊆ (A⊥ ⊗ B⊥)⊥.
Let Φ1] Φ2 ∈ A ⊗ B and Φ′1] Φ′2 ∈ A⊥ ⊗ B⊥. We know that Φ1 ⊥ Φ′1 and
Φ2 ⊥ Φ′2. We have Φ1] Φ2 ⊥ Φ′1] Φ′2, i.e. that Φ1] Φ2] Φ′1] Φ′2 is strongly
normalising. In particular, we cannot have a crossed infinite interaction between
Φ1 and Φ′2 or between Φ2 and Φ′1 because otherwise one constellation would have to
not be strongly normalising (because a strongly normalising constellation produces
finitely many saturated diagrams which cannot be extended so to make an infinite
execution) but this would contradict Lemma 70.16.

If the proof has cuts, then by Theorem 67.10, we can execute its translation (a constel-
lation) so that the normal form corresponds to the normal form of the proof. This proof
is necessarily cut-free, hence the case of cut-free proofs also applies to this case.

§70.18 Lemma. Let Ω be a basis of interpretation and ` Γ an MLL sequent. Then, we have
Tests(` Γ) ⊆ J` ΓK⊥fin

Ω .

Chapter 10 Stellar interpretation of multiplicative linear logic 336

Proof. Assume we have Test(` Γ)φ ∈ Tests(` Γ) for a switching φ of ` Γ. The proof
is done by induction on ` Γ.

• If Γ = {A1, ..., An} where the Ai are formulas Xi or X⊥i , then there is a sin-
gle switching φ. Because typing is invariant under execution, we can consider a
simplification of tests by fusion Ex(Test(` Γ)φ) =

∑n
i=1[−Ai(ti), Ai(X)] where ti

is the expected encoding of the address of the atom Ai. We would like to show
that Test(` Γ)φ ∈ J` A1, ..., AnK⊥Ω = JA1, A1, t1K⊥Ω ⊗ ... ⊗ JAn, An, tnK⊥Ω . We show
that [−Ai(ti), Ai(X)] ∈ JAi, Ai, tiK⊥Ω . Let Φi ∈ JAi, Ai, tiKΩ. Because JAi, Ai, tiKΩ
is a behaviour, we can use Lemma 70.16 and infer that |Ex(Φi)| < ∞. Adding
[−Ai(ti), Ai(X)] to a strongly normalising constellation cannot cause divergence,
hence we must have [−Ai(ti), Ai(X)] ⊥ Φi and [−Ai(ti), Ai(X)] ∈ JAi, Ai, tiK⊥Ω .
Now, since Test(` Γ)φ is made of a disjoint union of constellations of JAi, Ai, tiK⊥Ω ,
it follows that Test(` Γ)φ ∈ J` A1, ..., AnK⊥Ω .

• If ` Γ is ` ∆, A ` B, then a switching φ of ` ∆, A ` B is a switching φ̄ of
` ∆, A,B extended with a left or right selection of premise between A and B,
both linked by a ` connective. By the induction hypothesis, we have Test(`
∆, A,B)φ̄ ∈ J` ∆, A,BKΩ = J` ∆KΩ ` JAKΩ ` JBKΩ and we would like to show
that Test(` ∆, A`B)φ ∈ J` ∆, A`BKΩ = J` ∆KΩ ` JA`BKΩ = J` ∆KΩ ` JA`
B,A, l·XK`JA`B,B, r·XKΩ. The constellation Test(` ∆, A,B)φ̄ uses terms A(t)
and B(u) but when we add a ` link between A and B, these terms are relocated
relatively to the conclusion A`B and we obtain (A`B)(l · t) and (A`B)(r · u).
Since they only differ by a conjugation, the two tests will react in the same way with
respects to strong normalisation, i.e. Test(` ∆, A,B)φ̄ ∈ (J` ∆K⊥Ω⊗JAK⊥Ω⊗JBK⊥Ω)⊥
implies Test(` ∆, A`B)φ ∈ (J` ∆K⊥Ω ⊗ JA`BK⊥Ω)⊥.

• If ` Γ is ` ∆, A ⊗ B, a switching of ` Γ is a switching of ` ∆, A,B extended
to the additional ⊗ connective linking A and B, and Test(` ∆, A ⊗ B)φ can be
defined from Test(` ∆, A,B)φ by removing the uncoloured rays A(x) and B(x),
and adding new stars [−A(X),−B(X),+(A⊗B)(X)]+[−(A⊗B)(X), (A⊗B)(X)].
One can show that J` ∆, A⊗BKΩ is generated (in the sense of bi-orthogonal closure)
by a pre-behaviour E, i.e. that J` ∆, A ⊗ BKΩ = E⊥⊥ for some E, similarly to
how A ⊗ B is generated by a bi-orthogonal closure on the pre-tensor A � B (cf.
Definition 69.35). In this pre-behaviour E, the rays coming fromA are disjoint from
the rays coming from B (because of the requirement of exclusion of interaction). By
using the induction hypothesis Tests(` ∆, A,B) ⊆ J` ∆, A,BK⊥fin

Ω , this shows the
result since this implies that Test(` ∆, A⊗B)φ ∈ E⊥fin and Test(` ∆, A⊗B)φ ∈
E⊥⊥⊥ = J` ∆, A ⊗ BK⊥Ω since it is known that X⊥ = X⊥⊥⊥ in general for any
pre-behaviour X [JS21, Corollary 9].

§70.19 Definition (Proof-like constellation). The syntax tree ST (` Γ) of a sequent induces
a set of rays by Definition 66.7 by computing the address of each atom in ST (` Γ).

Chapter 10 Stellar interpretation of multiplicative linear logic 337

We note this set ♯Γ. A constellation Φ is proof-like w.r.t. an MLL sequent ` Γ if it is
well-formed and IdRaysΦ = ♯Γ.

§70.20 Example. A constellation which is proof-like w.r.t. ` X⊥1 `X⊥2 , X1 ⊗X2 is

[+(X⊥1 `X⊥2)(l ·X),+(X1 ⊗X2)(l ·X)] + [+(X⊥1 `X⊥2)(r ·X),+(X1 ⊗X2)(r ·X)].

However, even the wrong linking

[+(X⊥1 `X⊥2)(l ·X),+(X⊥1 `X⊥2)(r ·X)] + [+(X1 ⊗X2)(l ·X),+(X1 ⊗X2)(r ·X)]

is proof-like as well.

§70.21 Theorem (Completeness for MLL+MIX). If a constellation Φ ∈ J` ΓKΩ is proof-like
w.r.t. ` Γ, then there exists an MLL+MIX proof-net ` S : Γ such that Φ = Φax

S .

Proof. A proof-like constellation Φ ∈ J` ΓKΩ can always be considered as the interpre-
tation of a proof-structure with only axioms; we can then construct a proof-structure S
by considering the union of the latter with ST (` Γ) by placing the axioms on the right
places in ST (` Γ) (at this point, the linking can still be wrong). Since Φ ∈ J` ΓKΩ we
can use Lemma 70.18 and infer that for all switchings φ of ` Γ (equivalently, of S),
Test(` Γ)φ = Φφ

S ⊥ Φ, excluding “wrong linking”. By Corollary 68.21, it follows that S
is acyclic, i.e. satisfies the correctness criterion for MLL+MIX. Therefore, S must be a
proof-net of vehicle Φ.

A complete model of MLL

§70.22 The soundness property actually holds for MLL with the same arguments as for the
previous section whether we use ⊥1 or ⊥R as orthogonality relation. In this section, we
only mean ⊥1 or ⊥R whenever ⊥ is written.

§70.23 Theorem (Full soundness for MLL). Let ` S : Γ be an MLL proof-net and Ω a basis
of interpretation. We have Ex(Φcomp

S) ∈ J` ΓKΩ.
Proof. The idea of the proof is exactly the same as for Theorem 70.17. The only differ-
ence is in the axiom case. We need to show that Ex(Φ1]Φ2]Φax

S) = Roots(Φ1]Φ2]Φax
S)

(respectively, |Ex(Φ1] Φ2] Φax
S)| = 1). However, the properties of the basis of inter-

pretation ensures that Φ2] Φax
S will be orthogonal to Φ1. Hence Ex(Φ1] Φ2] Φax

S) =
Roots(Φ1] Φ2] Φax

S) (respectively, |Ex(Φ1] Φ2] Φax
S)| = 1).

§70.24 The proof of Lemma 70.18 which is essential for the completeness property does not
hold anymore because of a minor technical problem. This is because a general sequent
` A1, ..., An for Ai being atomic formulas is used for the base case. This is valid for

Chapter 10 Stellar interpretation of multiplicative linear logic 338

MLL+MIX proof-nets since we only require acyclicity when testing with the switchings.
However, this is not a correct base case for MLL proof-nets which are more demanding by
requiring connectedness. We need to start from a single axiom and therefore, induction
could be done on the MLL sequent calculus instead by considering provable formulas
in MLL. This would be sufficient to get a completeness result. However, instead of
restricting to correct formulas, which would identify J` ΓKΩ and a subset of Tests(` Γ)⊥

corresponding to proof-structures, it is sufficient to identify J` ΓKΩ and Tests(` Γ)⊥

directly. We would then have to prove Tests(` Γ) ⊆ Tests(` Γ)⊥⊥ which is always true
in general [JS21, Proposition 7]. We do so by considering a notion of strict interpretation.

§70.25 Definition (Strict interpretations). We define the two strict interpretations for a
given basis of interpretation Ω and an MLL sequent ` Γ:

〈〈` Γ〉〉1Ω = Tests(` Γ)⊥
1 and 〈〈` Γ〉〉RΩ = Tests(` Γ)⊥

R
.

§70.26 Theorem (Completeness for MLL). If a constellation Φ ∈ 〈〈` Γ〉〉RΩ (respectively
Φ ∈ 〈〈` Γ〉〉1Ω) is proof-like w.r.t. a provable sequent ` Γ of MLL, then there exists an
MLL proof-net ` S : Γ such that Φ = Φax

S .

Proof. The proof begins like the proof of completeness for multiplicative linear logic
extended with the MIX rule (cf. Theorem 70.21) and reach the construction of a proof-
structure with axioms translated into Φ. Now, Φ ∈ 〈〈` Γ〉〉RΩ (respectively Φ ∈ 〈〈`
Γ〉〉1Ω) implies that, in particular, Φ passes the Danos-Regnier correctness test for MLL
(byCorollary 68.21). Therefore, the proof-structure we constructed must be correct.

§70.27 Notice that if we have a constellation Φ ∈ 〈〈` Γ〉〉XΩ for some Ω, MLL sequent ` Γ and
X ∈ {1, R}, its Danos-Regnier tests Φ1, ...,Φn are constellations of (〈〈` Γ〉〉XΩ)⊥. This
formalises the intuition in proof-nets that tests are sort of proofs of the dual.

71 The case of multiplicative units

§71.1 Until now, I ignored neutral elements because they were problematic but it is still possible
to say few (speculative) things about them.

§71.2 We try to look for behaviours corresponding to neutral elements for ⊗ and ` respectively.
It is possible to define a pre-behaviour ‚ called a pole (cf. Section 22) such that Φ ⊥ Φ′

if and only if Ex(Φ] Φ′) ∈‚ for an execution-based orthogonality ⊥ and ‚ must be
closed under anti-evaluation (cf. Section 22), i.e. if Φ ∈‚ and Ex(Φ′) = Φ, then Φ′ ∈‚.
For instance, if we consider ⊥R, then ‚ is the set of all constellations normalising into
a single uncoloured star. The pole will be useful for a definition of neutral elements.

Chapter 10 Stellar interpretation of multiplicative linear logic 339

§71.3 A natural choice of behaviour for the neutral element of ⊗ w.r.t. ⊥R is the pre-behaviour
{∅} only containing the empty constellation since Φ] ∅ = Φ for any constellation Φ.
Fortunately, it is a behaviour.

§71.4 Proposition. The pre-behaviour {∅} is a behaviour.

Proof. A constellation of {∅}⊥ must self-normalise into the set of its roots since ∅ has
not effect when in interaction with another constellation. We have {∅}⊥ =‚. Now, a
constellation Φ ∈‚⊥ is a constellation such that when it interacts with a constellation
Φ′ ∈‚⊥, we have Ex(Φ] Φ′) ∈‚. We can theoretically imagine that Φ has rays linked
to Φ but this is impossible because Φ′ is self-normalising into an element of ‚ by con-
structing a saturated diagram which cannot be extended and which must be present in
the normal form. Actually, Φ must be the empty constellation because otherwise we
would get more than the star of roots. Therefore, ‚⊥= {∅}⊥⊥ = {∅}.

§71.5 Definition (One). We define the behaviour 1 := {∅} =‚⊥.
§71.6 Proposition. We have A⊗ 1 = A for any behaviour A.

Proof. By definition, we have A ⊗ 1 = {ΦA] ∅ | ΦA ∈ A}⊥⊥ = {ΦA | ΦA ∈ A}⊥⊥ =
A⊥⊥ = A.

§71.7 As for bottom, as usual in linear logic, we define it as 1⊥ =‚.

§71.8 Proposition. The pre-behaviour 1⊥ = {∅}⊥ =‚ is a behaviour.

Proof. Since it is known that A⊥ = A⊥⊥⊥ for any behaviour A [JS21, Corollary 9], it
follows that 1⊥ (and thus {∅}⊥) is a behaviour.

§71.9 Definition (Bottom). We define the behaviour ‹ := 1⊥.

§71.10 Proposition. We have A `‹ = A for any behaviour A when considering ⊥R.

Proof. We have A ` ‹ = (A⊥ ⊗ ‹⊥)⊥ = (A⊥ ⊗ {∅}⊥⊥)⊥ = (A⊥ ⊗ {∅})⊥ = A⊥⊥ = A
(since A is a behaviour).

Chapter 10 Stellar interpretation of multiplicative linear logic 340

§71.11 Proposition. We have A⊥ = A⊸ ‹ for any behaviour A when considering ⊥R.

Proof. We have A ⊸ ‹ = A⊥ ` ‹. Since ‹ is a neutral element for `, it follows that
A⊥ `‹ = A⊥.

§71.12 We defined interactive types for units which correspond to idealised neutral elements
(Usage). Now, considering a constellation Φ in the wild, are we able to effectively tell
whether it is in 1 (respectively ‹) or not (Usine).

§71.13 We consider ⊥R. In order to tell if Φ ∈ ‹, we can use the fact that ‹ = {∅}⊥. Hence, it is
sufficient to consider the set of tests {∅}. When testing Φ against the empty constellation
∅, if we have Φ ⊥ ∅ then Φ ∈ ‹. As for 1, we just need to be able to tell if Φ = ∅. This
can be done with any constellation of 1⊥ = ‹.

§71.14 This provides a notion of correct constellations for multiplicative units. However, al-
though they fulfil their role as constellations having the behaviour of neutral elements for
multiplicative connectives, it is not quite the real thing as they do not exactly correspond
to the units of proof-nets. In particular, if we look at the rule for ⊥, the constant ⊥ is
introduced in a given context Γ to which it is dependent. Hence, it will be disconnected
when considering a switching in a correct proof-structure. This breaks the connected-
ness condition of the Danos-Regnier correctness criterion. The usual hack is to consider
jumps (cf. Section 30) between ⊥ nodes and either axioms or 1 nodes to represent the
dependency between ⊥ and its context. Girard’s idea [Gir18a, Section 2.1.1] is to encode
multiplicative units in second order linear logic because of this non-local dependency (cf.
Section 44).

72 Discussion: what is a multiplicative proof?

§72.1 We consider the orthogonality ⊥R. Correctness tests characterise the shape of proofs
and testing is done by checking if all stars collapse to a single star of uncoloured rays
by edge contraction. If we look at the test for ⊗, it is a 3-ary star with two inputs and
one output. It forces any constellation interacting with it to be made of two disjoint
connected components. In other words, the test for ⊗ reunites proof-structures. As
for `, the two tests `L and `R are made of two disjoint parts. They separates proof-
structures. It seems that MLL proofs are about how some primitive data are organised
in terms of reunion/separation.

§72.2 Typically, if we have an axiom (which is also an identity function) [+1(X),+2(X)], then
it is possible to connect it with [+3(X)] by using a cut [−1(X),−3(X)] and obtain
[+2(X)]. But we could also connect it with the cut [−2(X),−3(X)]. This emphasizes
the equality A ⊸ B = B⊥ ⊸ A⊥ of linear logic. But there are some other things we
can notice:

Chapter 10 Stellar interpretation of multiplicative linear logic 341

• whether we have a proof of X⊥1 ` X1 or A⊥ ` A1 for any multiplicative formula
A, their translation is not so different: it is materialised by some binary star [r, r′]
where r and r′ are as complex (in their internal structure) as A is;

• the difference between X⊥1 and X1 looks rather artificial in stellar resolution. Both
are translated into two different rays. It does not mean that negation does not
exist but that it seems to be an external consideration over constellations.

All these remarks about the translation of multiplicative proofs constitute an analysis
of MLL through stellar resolution.

§72.3 Real multiplicatives. Actually, we did not even get “real” multiplicative proof-
structures since multiplicative proof-structures are known to be generic objects in which
atomic formulas (which are variables) can be replaced by more complex formulas. Origi-
nal MLL proof-structures are polymorphic. This shows that we need to add more struc-
ture over our interpretation but this is the role of Girard’s epidictics. The multiplicatives
we got are sort of “first-order” multiplicatives free of external considerations.

§72.4 Hidden duplication in MLL proof-structures. In the geometry of interaction, what
we do is representing MLL proofs by permutations over a set of atoms (dots, natural
numbers, ...) where cuts are represented by partial injections linking some atoms. If we
wanted to translate this situation into stellar resolution, we would only need constants.
But this is not how it works in real proof-structures. In proof-net theory, the situation
is more sophisticated: cuts are not links between atoms but links between conclusion
or whole proof-structures, then cuts are duplicated and distributed to atoms. In our
stellar interpretation of MLL proofs, this is done by internalising the complex shape of
proof-structure directly into terms of rays, then in order to have the cut distributed to
its two left premises and two right premises, we must use variables. This shows that
technically speaking, MLL proof-net theory is not exactly duplication-free: it hides some
non-linear behaviours directly related to how terms of the translation are designed (do
we use constants? do we use variables? etc).

Chapter 11

Interpretation of intuitionistic implication

The interpretation of exponentials follows ideas already presented in Section 37. The
idea is that we are looking for mechanisms of duplication and erasure in the model of
computation itself (stellar resolution in our case). Formulas corresponding to the expo-
nentials of linear logic are then specifications for these primitive behaviours: correctness
tests (in the case of Usine) or behaviours (in the case of Usage). Richer computational
behaviours related to duplication and erasure can then lead to alternative exponentials.
In stellar resolution, duplication occurs when a ray (for instance +c(X)) is matchable
with several other rays (for instance −c(1) and −c(2)). Diagrams will duplicate stars to
satisfy the constraints.

Instead of defining full exponentials as in MELL, Girard chooses to restrict the interpre-
tation to intuitionistic implication [Gir17, Section 5], hence ? and ! only appear in ?A`B
and !A⊗B. New binary exponential connectives A⋉B := ?A`B and A<B := !A⊗B are
introduced for that purpose. We could equivalently consider intuitionistic implication
A⇒ B and its dual (A⇒ B)⊥ instead.

This restriction is consistent with Girard’s point of view (cf. Section 44) that full expo-
nentials and multiplicative neutral elements are second-order constructions since from
the formula 1 it is possible to define ! with !A := A < 1. Despite this restriction, intu-
itionistic implication is sufficient to interpret simply typed λ-calculus.

In this chapter, I do not detail the interpretation as much as for MLL. In particular, no
result of soundness or completeness are stated.

73 MLL with intuitionistic implication (MLL2I)

§73.1 The logic MLL2I defined in this section is simply MELL (cf. Section 27) with a different
notation. Hence, there is no need to define cut-elimination for sequent calculus. We can
simply unfold the notation and we work on MELL.

Chapter 11 Interpretation of intuitionistic implication 343

` Γ,∆, A ` Γ′,∆′, A⊥
cut

` Γ,Γ′,∆,∆′

` Γ,∆, A ` Γ′,∆′, B
⊗

` Γ,Γ′,∆,∆′, A⊗B
` Γ,∆, A,B `
` Γ,∆, A`B

ax
` A,A⊥

` Γ,∆
w

` Γ,∆, A

` Γ,∆, A
d

` Γ,∆, A

` Γ,∆, A,A
c

` Γ,∆, A

` ∆, A ` Γ′,∆′, B <
` Γ′,∆,∆′, A<B

` Γ,∆, A,B
⋉

` Γ,∆, A⋉B

Figure 73.1: Multiplicative linear logic with intuitionistic implication (MLL2I).

MLL2I sequent calculus

§73.2 The connective ?A is written A and it only applies to formulas at top-level, i.e. on whole
conclusions of the sequent and not subformulas. Exponentials connectives are ways to
handle these underlined formulas.

§73.3 Definition (MLL2I pre-formulas). We define the set of pre-formulas Fpre
MLL2I of MLL2I

inductively by the following grammar:

C,D = Xi | X⊥i | C ⊗D | C `D | C <D | C ⋉D (i ∈ N)

§73.4 Definition (MLL2I formulas). We define the set of formulas FMLL2I of 2MLL induc-
tively by the following grammar for C ∈ Fpre

MLL2I:

A,B = C | C

§73.5 The rules of MLL2I, shown in Figure 73.1 are derived from the restriction of MELL to
the intuitionistic implication. Notice that the promotion rule is implicit because in the< rule, the left premise is ` ∆, A which corresponds to ` ?∆, !A. In case we have a cut
between a formula A⊥ := ?B⊥ (for some B) and another formula A, it is implicit that
A := !B. It is as if promotion was only accessible from <.

§73.6 Definition (Translation back to MELL formulas). We define a translation of a MLL2I
formula A into a corresponding MELL formulas bAc. If A is a pre-formula C then
bAc := bCcpre. If A is an underlined pre-formula C then bAc := ?bCcpre.

The translation of a pre-formula is defined by:

bXicpre := Xi bX⊥i cpre := X⊥i bC ⊗Dcpre := bCcpre ⊗ bDcpre

bC `Dcpre := bCcpre ` bDcpre bC ⋉Dcpre := ?bCcpre ` bDcpre

Chapter 11 Interpretation of intuitionistic implication 344

` ∆1, A ` Γ′1,∆1
′, B <

` Γ′1,∆1,∆1
′, A<B

` Γ2,∆2, A
⊥, B⊥

⋉
` Γ2,∆2, A

⊥ ⋉B⊥
cut

` Γ′1,∆1,∆1
′,Γ2,∆2

⇝ ` ∆1, A

` Γ′1,∆1
′, B ` Γ2,∆2, A

⊥, B⊥
cut

` Γ′1,∆1
′,Γ2,∆2, A

⊥

cut
` Γ′1,∆1,∆1

′,Γ2,∆2

` Γ1,∆1
w

` Γ1,∆1, A
⊥ ` ∆2, A

cut
Γ1,∆1,∆2

⇝
` Γ1,∆1

w
` Γ1,∆1,∆2, A

` Γ1,∆1, A
⊥

d
` Γ1,∆1, A

⊥ ` ∆2, A
cut

` Γ1,∆1,∆2

⇝ ` Γ1,∆1, A
⊥ ` ∆2, A

cut
` Γ1,∆1,∆2

` Γ1,∆1, A
⊥, A⊥

c
` Γ1,∆1, A

⊥ ` ∆2, A
cut

` Γ1,∆1,∆2

⇝

` Γ1,∆1, A
⊥, A⊥ ` ∆2, A

cut
` Γ1,∆1,∆2, A

⊥ ` ∆2, A
cut

` Γ1,∆1,∆2,∆2
c

` Γ1,∆1,∆2

(a) Cut-elimination for MLL2I

bC <Dcpre := !bCcpre ⊗ bDcpre.

§73.7 The cut-elimination rules for MLL2I, shown in Figure 73.2a are similar to usual expo-
nential rules. In order to apply cut-elimination on a MLL2I sequent proof, we have to
replaced all formulas A by bAc and apply the usual rules of MELL. It is easy to show
that this replacement preserves validity of the proof.

MLL2I proof-structures

§73.8 The constructors for MLL2I proof-structures are given in Figure 73.3. The difference
with the usual presentation with boxes is that we will have links between the left premise
of < and other vertices of the proof-structure. These links represent the dependency
between a box and its isolated sub-proof-structures of the context (the context ∆ on the
top of the sequent calculus rule for <). Remark that it is not useful to link vertices which
are already reachable from the left premise of < since it is already explicit that those
vertices are in a box. An exemple of MLL2I proof-structure with such dependencies is
given in Figure 73.4.

§73.9 Definition (MLL2I proof-structure). An MLL2I proof-structure is defined by

S = (V,E, in, out, ℓE , dep)

Chapter 11 Interpretation of intuitionistic implication 345

w

Weakening

d

Dereliction

c

Contraction

⋉

Left-exponential par

<
Left-exponential tensor

Figure 73.3: MLL2I proof-structures hyperedge constructors.

9 100

1 2

d

⋉

7

3 64 5<
8

cut

ax ax

ax ax

Figure 73.4: Example of MLL2I proof-structure with dependencies.

Chapter 11 Interpretation of intuitionistic implication 346

where (V,E, in, out) is a ordered directed hypergraph (cf. Appendix C),

ℓE : E → {⊗,`, ax, cut,⋉,<, w, d, c}
is a labelling map on hyperedges and dep : V → P(V) associates vertices with left
premises of a < hyperedge (it represents dependencies) A proof-structure is subject
to these additional constraints:

• hyperedges satisfy the arities and labelling constraints shown in Figure 73.3;

• each vertex must be the target of exactly one hyperedge, and the source of at
most one hyperedge;

• cut hyperedges must connect either:

– the conclusion of a ` hyperedge with the conclusion of a ⊗ hyperedge, or

– the conclusion of a ⋉ hyperedge with the conclusion of a < hyperedge, or

– two atoms.

§73.10 Definition (Exponential box). Let S := (V,E, in, out, ℓE , dep) be an MLL2I proof-
structure. We define the (exponential) box of a vertex by an injective function box :
V → P(V)×P(E) associating to each left premise v of a < hyperedge (there is some
e such that out(e) = v and ℓE(e) = <) a sub-proof-structure corresponding to all the
vertices and edges connected (by non-oriented paths) to v and all vertices of dep(v).

§73.11 Convention. MLL2I proof-structures follow the same conventions and notations as
in MLL proof-structures. In particular, ⋉ and < hyperedges are structurally identical
to ` and ⊗ hyperedges. Labelled proof-structures are also defined in the same way.

§73.12 Definition (MLL2I cut-elimination). Let S := (V,E, in, out, ℓE , dep) be an MLL2I
proof-structure with a cut ecut ∈ E such that in(ecut) = (v1, v2) with both v1 and
v2 being conclusions of some hyperedges e1 and e2 such that ℓE(e1) = (u1, u2) and
ℓE(e2) = (w1, w2). Assume u1 is conclusion of some hyperedge e⋉ and that we have
box(w1) = (Vb, Eb). There are several cases depending on ℓE(e⋉).

� Weakening Assume ℓE(e⋉) = w with in(e⋉) = ∅. We erase w1, all its parents and
dependent vertices. The elimination of ecut is a new proof-structure

S ′ := (V ′, E′, in′, out, ℓE , dep′)

with V ′ := V − {v1, v2, u1, w1} − Vb, E′ := (E − {ecut, e1, e2, e⋉} − Eb) ∪ {e′cut},
in′(e′cut) = (v2, w2) and in′(x) = in(x) otherwise, dep′ is dep with its domain
restricted to dom(dep)− dep(w1).

� Dereliction Assume ℓE(e⋉) = d with in(e⋉) = vd. We remove the dependencies of

Chapter 11 Interpretation of intuitionistic implication 347

w1. The elimination of ecut is a new proof-structure

S ′ := (V ′, E′, in′, out, ℓE , dep′)

with V ′ := V − {v1, v2}, E′ := (E − {ecut, e1, e2, e⋉}) ∪ {e1cut, e
2
cut}, in′(e1cut) =

(vd, w1), in′(e2cut) = (v2, w2) and in′(x) = in(x) otherwise, dep′ is dep with its
domain restricted to dom(dep)− dep(w1).

� Contraction Assume ℓE(e⋉) = c with in(e⋉) = (v1c , v
2
c). We duplicate the depen-

dencies. The elimination of ecut is a new proof-structure

S ′ := (V ′, E′, in′, out′, ℓ′E , dep′)

with V ′ := (V − {v1, v2}) ∪ σ(Vb ∪ {w1}) with σ renaming vertices with fresh
names, E′ := (E − {ecut, e1, e2, e⋉} − σ(Eb)) ∪ {e1,1cut, e

1,2
cut, e

2
cut} with σ renaming

edges with fresh names, in′(e1,1cut) = (v1c , w1), in′(e1,2cut) = (v2c , σ(w1)), in′(e2cut) =
(v2, w2) and in′(x) = in(x) otherwise, dep′(σ(w1)) = σ(dep(w1)) and dep′(x) =
dep(x) otherwise and out′ defined as expected.

74 Simulation of cut-elimination

§74.1 Mechanisms of duplication and erasure are already present in stellar resolution. It is
similar to the fact that, in biology, we are observing and speaking about cell division.

§74.2 Definition (Exponential basis of representation). The multiplicative basis of rep-
resentation B = (V, F, ar, b·c) is extended with a binary function symbol • ∈ F
with ar(•) = 2, considered left associative, i.e. t • u • v := (t • u) • v, variables
Yi ∈ V for i ∈ N representing boxes and three constants w, c, d ∈ F such that
ar(w) = ar(c) = ar(d) = 0. The symbol · has priority over •, i.e. t · u • v := (t · u) • v
and t • u · v := t • (u · v).

§74.3 Remark (Inductive definition of MLL2I proof-structures). The inductive definition
of proof-structure (cf. Remark 66.5) is extended with the two new connectives ⋉ and<. We write ETensu,v(S) (resp. EParu,v(S)) for a proof-structure S linked by < (resp.
⋉) hyperedge with premises u and v.

In the same fashion, we introduce inductive constructions for structural rules: W(S)
(nullary), Du(S) (unary) and Cu,v(S) (binary).

§74.4 The idea is that given a multiplicative address u(t) of a well-formed vehicle, it can be
turned into a non-linear address with u(t • Y) for some fresh variable Y . The right part
of • contains exponential information. It can then interact by cut with several copies of
a same atom: v(t • (l · Y)) and v′(t • (r · Y ′)).

Chapter 11 Interpretation of intuitionistic implication 348

§74.5 Definition (Address of an atom). We define the path address pAddrS(v) of an atom
v in a proof-structure S inductively (cf. Remark 66.5):

• if S ∈ {Axv,∗, Ax∗,v, W(S ′)} then pAddrS(v) = X;

• if S = Dv(S ′) then pAddrS(v) = pAddrS′(v) • d;

• if S = Cw′
1,w

′
2(S ′) and pAddrS′(wi) = t • u for i ∈ {1, 2} then pAddrS(w1) =

t • (l ·u) and pAddrS(w2) = t • (r ·u) such that w′i is a conclusion with wi above
w′i;

• if S = S1] S2 and v ∈ V Si then pAddrS(v) = pAddrSi(v);

• if S ∈ {Parv′,∗(S ′), Tensv,∗(S ′), EParv′,∗(S ′)} then pAddrS(v) = l · pAddrS′(v)
such that v′ is a conclusion with v above v′;

• if S ∈ {Par∗,v′(S ′), Tens∗,v′(S ′), EPar∗,v(S ′)} then pAddrS(v) = r · pAddrS′(v)
such that v′ is a conclusion with v above v′;

• if S = ETensw′
1,w

′
2(S ′), then for a fresh variable Yi ∈ V (representing a box),

– pAddrS(w1) = (l · pAddrS′(w1)) • Yi;

– pAddrS(w2) = (r · pAddrS′(w2)) • Yi;

– we update the path address of all u ∈ box(wi) from pAddrS′(u) = t • u to
(t • u) • Yi

such that w′i is a conclusion with wi above w′i.

• pAddrS(v) = pAddrS′(v) otherwise.

The path address to v is uniquely defined w.r.t. to a conclusion c ∈ Concl(S ′) where
S ′ is S without cuts, i.e. ES′ = ES\Cuts(S) and the rest of S is defined as in S ′.

There are two cases depending on if v is dependent (there is some vertex u such that
v ∈ box(u)) or not.

• Assume that v is independent. The address of v is then defined as the term
addrS(v) := c(pAddrS(v)).

• If there is some u such that v ∈ box(u), then the address of v is then defined as
the term addrS(v) := pAddrS(u){X := pAddrS(v)}.

§74.6 Box/dependencies in stellar resolution. The trick which simulates exponential
boxes (or dependencies in the case of MLL2I) is that translation of proof-structures will
be designed so that cut between a ⋉ and a < hyperedge will apply a cut between the
left premise of ⋉ and the left premise of < together will all its dependencies, all thanks
to term unification. Hence, all connexions (and thus operations) described by the left
premise of ⋉ (erasure, duplication, dereliction or more) are locally applied to all elements
of an exponential box (arguments of functions).

Chapter 11 Interpretation of intuitionistic implication 349

§74.7 Erasure in stellar resolution. Whenever a weakening is linked to the left premise
of < by a cut, the box of this atom must be erased. Now, how to erase stars in a
constellation? There exists two translations of weakening nodes. Girard’s one and mine.

• Girard’s solution is to not translate weakened atoms. Whenever a cut is connected
to where the weakening link should be, since there is a hole with a polarised free
ray which cannot be filled, it triggers the erasure of the diagram. We can reproduce
this behaviour by using the operator , as explained in Paragraph 52.6. We can
choose to do that but then our execution becomes less flexible (this not necessarily
a problem);

• my personal solution is to translate weakened atoms u by a star (known as “black-
hole” in my thesis):

[+u(t),+ω(X),−ω(f(X))]

where t is the path address of u and ω is a fresh symbol not appearing in the
translation of the whole proof-structure. It triggers an infinite loop for any diagram
connected to it and hence it becomes impossible to construct a saturated diagram.
I do not claim that this is necessarily a better solution. A problem is that we
introduce infinity but we can argue that such loops can be easily detected by
modifying concrete or interactive execution.

Let v be a weakened atom in a proof-structure S. We write v⋆ its corresponding trans-
lation (either nothing or the star with black hole). In this thesis, I choose to use my
solution, hence:

v⋆ := [addrS(v),+ω(X),−ω(f(X))]

where ω does not appear in the translation of S.

§74.8 Definition (Weakened atoms). Let S := (V,E, in, out, ℓE , dep) be a MLL2I proof-
structure. Its set of weakened atoms is defined by Weak(S) := {u⋆ | ∃e ∈ E.ℓ(e) =
w, out(e) = u}.

§74.9 Definition (Translation of the computational content of a proof). The vehicle and
the cuts of a MLL2I proof-structure S are respectively defined by the following con-
stellations:

Φax
S :=

∑
e∈Ax(S)

[µ(addrS(
←
e)), µ(addrS(

→
e))] +

∑
u∈Weak(S)

v⋆,

Φcut
S :=

∑
e∈Cuts(S)

[−←e (X),−→e (X)].

such that µ(c(t)) = +c(t) when c =
←
e or c =

→
e for some e ∈ Cuts(S) (it is related

to a cut) and µ(x) = x otherwise. We define the computational content of S as the
constellation Φ

comp
S := Φax

S] Φcut
S .

Chapter 11 Interpretation of intuitionistic implication 350

1

d

3 2

⋉

4

ax

⇝ [+4(l ·X • d),+4(r ·X)]

(a) Proof-structure representing the translation of the identity function of λ-calculus.

w

1

d

3 2

⋉

5 4

⋉

10

6 87 9<
11

cut

ax

ax ax ⇝

[+10(l ·X),+ω(X),−ω(f(X))]+
[+10(r · l ·X • d),+10(r · r ·X)]+
[+6(X • Y0),+11(l ·X • Y0)]+
[+11(r ·X),+8(X)]+
[−10(X),−11(X)]

(b) Proof-structure representing the translation of the left projection function λxy.x of λ-calculus.

Figure 74.1: Examples of translations of MLL2I proof-structures. With Girard’s transla-
tion, we would not have [+10(l ·X),+ω(X),−ω(f(X))] and +11(l ·X •Y0)
would be linked to nothing through the cut [−10(X),−11(X)].

Chapter 11 Interpretation of intuitionistic implication 351

§74.10 Examples of MLL2I proof-structures and their translation in stellar resolution are given
in Figure 74.1. As for MLL, the idea is to execute interpretation of proof-structures in
order to simulate their cut-elimination.

§74.11 Theorem (Simulation of MLL2I cut-elimination). For an MLL2I proof-net R such
that R⇝∗ S with S in normal form, we have AEx(Φcomp

R) 'S Φax
S .

Proof. We sketch the proof without giving details. All multiplicative cases have already
been treated in the stellar interpretation of MLL (cf. Lemma 67.9). The only new cut case
for MLL2I corresponds to a cut between⋉ and<. It makes the left premises interact with
the right ones as in a ⊗/` cut-elimination. The right premises are multiplicative cases so
we focus on the interaction between the left premises which connects boxes/dependencies
with structural rules.

• If the left premise of ⋉ is conclusion of a weakening link w, then it is translated with
a black hole which prevents any rays +v(l · ti •Yi) coming from the left premise of< (because of the path through the cut) to construct a saturated diagram. Hence
all these stars are erased in the normal form. Those rays are exactly the translation
of vertices of the box associated with the left premise of <.

• If the left premise of ⋉ correspond to derelicted atoms +u(ti•d) with interacts with
left premises −v(wj •Yj) of < such that ti ▷◁ wj , then variables Yj are replaced by
d, linearising all rays −v(wj • Yj). Hence, all potential of duplication given by the
variable Yj is cancelled with the constant l. This corresponds to a box opening.

• Finally, if the left premise of ⋉ corresponds to n copies +u1(t•u1), ...,+un(t•un),
then they all match with the left premises +v1(w • Y1), ...,+vm(w • Ym) of < such
that t ▷◁ w. This triggers duplications of all the vi which are considered as part
of the same box. Each +vi(w • Yi) is duplicated into +v1(w • u1), ...,+vn(w • un)
where the ui are copy identifiers induced by trees of contraction.

§74.12 Example. If we take the proof-structure of Figure 74.1b, the left premise of < will be
entirely erased by a weakening link. Then the axiom between 1 and 2 will be connected
to the output axiom between 9 and 8. The proof-structure encodes the term (λx.λy.y)z
reducing into λy.y. As expected, the normal form of the proof structure is the axiom
between 1 and 3 where 1 is made non-linear with dereliction.

75 Girard’s original correctness criterion

§75.1 In the last paper of geometry of interaction [Gir13a], Girard suggested a correctness
criterion for the interpretation of MLL2I in stellar resolution. In the first paper of
transcendental syntax [Gir17, Section 5], he updated his criterion to a simpler criterion
with switchings (as in Danos-Regnier correctness).

Chapter 11 Interpretation of intuitionistic implication 352

§75.2 This correctness criterion cannot be expressed directly with proof-structures (at least
without changing the definition of proof-structures) since it deeply relies on mechanisms
of stellar resolution. Moreover, I choose to not give a notion of MLL2I proof-net and
consider MLL2I proof-structures as independent from the usual theory of linear logic.
Hence we are not trying to simulate a specific correctness criterion. I simply describe
Girard’s correctness and informally explain its purpose. No adequacy result is stated
but Girard sketched a proof in his paper [Gir17, Section 5.7].

§75.3 Definition (MLL2I switching). Let S be a MLL2I proof-structure. A MLL2I switch-
ing is defined as a MLL switching φ extended with φ(e) ∈ {<X ,<l} when ℓ(e) = <
and φ(e) ∈ {⋉L,⋉R} when ℓ(e) = ⋉.

§75.4 Definition (MLL2I test). Let S be a MLL2I proof-structure and φ one of its switch-
ings. The test associated with Sφ is the constellation defined by

Φφ
S := Φcut

S]
∑

v∈V Sφ

v⋆.

We define the translation v⋆ of a vertex v conclusion of an hyperedge e as follows:

• if v is conclusion of a d hyperedge of input itself below some e such that ℓ(e) = ax,
then

v⋆ =

[
−addrS(v)
+v(X • Y)

]
;

• if ℓE(e) = <X and in(e) = (u,w) then v⋆ =

[
−u(X •X), −w(X)

+v(X)

]
;

• if ℓE(e) = <l and in(e) = (u,w) then v⋆ =

[
−u(X • l), −w(X)

+v(X)

]
;

• if ℓE(e) = ⋉L and in(e) = (u,w) then

v⋆ =

[
−u(X • Y)
+v(X • Y)

]
+

[
−w(X),−∞(X)

+∞(X)

]
;

• if ℓE(e) = ⋉R and in(e) = (u,w) then

v⋆ =

[
−u(X • Y)

]
+

[
−u(X ′ • Y ′)

]
+

[
−w(X)
+v(X)

]
where the star [−u(X ′ • Y ′)] is not used when X ′ can be instantiated exactly to
X, meaning that it is replaced by exactly the variable X (name of variables are
taken into account, unlike usual).

The other cases are the same as for the multiplicative case (cf. Definition 68.3).

Chapter 11 Interpretation of intuitionistic implication 353

§75.5 Similarly to the multiplicative case, we require that the interaction Ex(
+
Φax
S] Ex(Φφ

S))
between a vehicle and a MLL2I test produces the star of roots [v1(X), ..., vn(X)] where
{v1, ..., vn} ⊆ Concl(S). We require that v1, ..., vn correspond to all linear conclusions
not having addresses of the shape X • ui for some ui. My understanding of Girard’s
restriction is that we allow underlined conclusions in sequents but such conclusions can
be erased or duplicated an arbitrary number of times and we cannot require a specific
number of copies. Therefore, no conditions are required for non-linear conclusions.

§75.6 Left-exponential tensor case. The purpose of the two tests for < is to check that
the terms used have the right shape: we need that the left input is a non-linear atom of
address t •Y where Y does not appear in t. A non-linear atom r := +u(t • v) passes the
two tests <X and <l when t matches with X and v with both X and l. First, t must
be variable because otherwise, in the two tests, it would be connected to the variable X
of −u(X • X) and −u(X • l) which propagates a term to the conclusion which makes
impossible to obtain all roots of the form u′(X). Hence we have r = +u(X ′ • v). We
must have the matchings v ▷◁ X (hence v ▷◁ X ′ and X ′ ▷◁ X) and v ▷◁ l. The only way
to have v ▷◁ l is that either v = l or v is a variable.

• If v = l then when r = +u(X ′ • l) connected to −u(X •X) of the test of <X , the
constant l is propagated and we produce an output +u′(l) which prevents us to
obtain the exact star of roots as normal form. Therefore, we cannot have v = l.

• If v = Y , then we have r = +u(X ′ • Y). In the test <l, it has to match with
−u(X •l). Hence Y = l. If X ′ = Y then, again, the constant l will be propagated
to a conclusion. Finally, Y must be a variable different from X ′.

§75.7 Left-exponential par case (right switching). The test ⋉R is very similar to the
test `R. The difference is that we would like to cancel n ∈ N copies of non-linear
atoms of the form +u(ti • ui). We would like to ensure that all ti are variables (the
ui can be exponential copy identifiers). Girard’s trick is to take the actual name of
variables into account and to consider coherent constellations (which are introduced
in his second paper on transcendental syntax [Gir16b] and not introduced here) which
excludes some substitutions between stars. In our definition of test, this is expressed in
the side condition of ⋉R. Girard’s trick enforces ti to be exactly X.

• Imagine that all ti are X. Then the test ⋉R behaves in the same way as a test `R

because X ′ can be instantiated to X and hence the star [−u(X ′ • Y ′)] cannot be
used.

• If one ti is different from X then X ′ cannot be instantiated to X and the two stars
[−u(X • Y)] and [−u(X ′ • Y ′)] are used. This duplicates the star +u(ti • ui) twice
which alters the normal form which is expected to be the exact star of roots.

Personally, I do not like the trick used but I never took the time to think about another
solution.

Chapter 11 Interpretation of intuitionistic implication 354

u1, ..., un w

⋉L

v

Case 1

cut

u1, ..., un w

⋉L

v

Case 2

Figure 75.1: Two possible situations for the switching ⋉L.

§75.8 Left-exponential par case (left switching). The test ⋉L is more subtle. Girard
requires that ⋉L is cancelling, meaning that any interaction with it normalises into
the empty constellation ∅ (this is the main point which cannot really be represented
with usual proof-structures and which takes advantage of the mechanisms of stellar
resolution). The problem is that the current flows through the left premise but the left
premise, which is non-linear, can be erased or duplicated. I changed Girard’s definition
by adding a black hole so that it is consistent with the execution I defined. Girard’s
original definition can be found in his paper [Gir17, Section 5.5]. The effect of the

black hole is that any stars reaching
[
−w(X),−∞(X)

+∞(X)

]
will never be able to form a

saturated diagram. The two possible situations are given in Figure 75.1.

� Case 1 The star corresponding to ⋉L is connected to all (possible none) the copies
of atoms u1, ..., un. Assume one of these atoms has a path leading to v by a cut.
We obtain a cycle and infinitely many correct diagrams. Execution is not strongly
normalising in this case. Hence, the proof-structure is not correct.

� Case 2 Assume we do not have the cycle of Case 1 and that some atoms among
u1, ..., un possibly have a path reaching an atom of w. If we wish to keep connect-
edness then all stars must be connected. Because of the star

[−w(X),+∞(X),−∞(X)]

of ⋉L, all stars connected to an atom of w (actually the whole constellation) will
be erased because unable to produce a saturated diagram. The normal form is ∅.

By using the trick of black hole (Girard simply leaves a free polarised ray which destructs
the whole diagram with the operator , cf. Paragraph 62.5), we are able to keep con-
nectedness (which was the main problems of exponentials). In particular, if there is no
ui, in Case 2 the black hole still erases everything and in Case 1, we loose connectedness
since w is isolated.

§75.9 Example (Correct proof-structures). The proof-structure representing the identity
function in Section 74 has two switchings ⋉L and ⋉R for its only ⋉ link.

Chapter 11 Interpretation of intuitionistic implication 355

• The first test (right switching) is:[
−4(l ·X • d)
+3(X • Y)

]
+

[
−4(r ·X)
+2(X)

]
+

[
−3(X • Y)

]
+

[
−3(X ′ • Y ′)

]
+

[
−2(X)
+4(X)

]
+[

−4(X)
4(X)

]
.

The test is executed into:[
−4(l ·X • d)

]
+

[
−4(r ·X)

4(X)

]
.

We connected to the vehicle [+4(l ·X • d),+4(r ·X)] of Section 74, we obtain
[4(X)], as expected.

• the second test (left switching) is:[
−4(l ·X • d)
+3(X • Y)

]
+

[
−4(r ·X)
+2(X)

]
+

[
−3(X • Y)
+4(X • Y)

]
+

[
−2(X),−∞(X)

+∞(X)

]
+[

−4(X)
4(X)

]
.

It reduces into: [
−4(l ·X • d)

4(X)

]
+

[
−4(r ·X),−∞(X)

+∞(X)

]
.

When connected to the vehicle [+4(l ·X •d),+4(r ·X)] of Section 74, we obtain
a connected constellation which normalises into ∅ because of the black hole using
the symbol ∞. This cancels the test, as expected.

76 Discussion: what is a non-linear proof?

§76.1 Non-linear proofs are proofs which are able to erase or duplicate some logical entities
such as occurrences of labels representing formulas in sequent calculus. In proof-net
theory, it would correspond to the duplication and erasure of some sub-proof-structures.

§76.2 When expressing duplication and erasure in stellar resolution, we have very general and
alogical notions which can be used. Duplication is expressed by the fact that a ray can

Chapter 11 Interpretation of intuitionistic implication 356

be required by several other matchable rays. For instance, if we can have a ray −1(X)
compatible with two rays +1(l) and +1(r). The execution will duplicate +1(X) to
satisfy the two constraints. Now, what is exponential linear logic in regards to those
“natural/primitive” non-linear mechanisms?

§76.3 It appears that exponentials (at least the intuitionistic implication) can be seen as a
way to format those non-linear mechanisms. It is one way to behave non-linearly. We
already knew that we could obtain several non-linear logics by changing the exponential
rules of linear logic (to obtain soft linear logic or elementary linear logic for instance)
but we can now even go outside of any primitive logical system. The only limit is the
primitive computational mechanisms we consider.

§76.4 By formatting, I mean choosing a specific shape for objects. The rays we considered in
the chapter are very specific: they have the shape c(t·u). This allows for the consideration
of nested boxes. But we could also consider alternative non-linear formatting which could
not (at least not naturally) exist if we were starting from linear logic as a primitive notion.

Chapter 12

Apodictic experiments

Now that we defined a few interpretations of proof-structures within stellar resolution,
we will dive even more into the peculiarities of transcendental syntax. In this chapter,
we explore the apodictic fragment of linear logic which is linear logic “with no external
constraints” or “without system”. I refer to Section 44 for conceptual explanations about
what Girard means by first-order logic (apodictic).

In apodictic linear logic, we are no more interested in reproducing known objects. We
are trying to do (linear) logic with stellar resolution as elementary material by designing
constellations and tests which define non-primitive logical concepts.

In his recent unpublished papers, Girard used the expression of “system-free logic”
[Gir19, Gir20b]. But in what sense is all this “system-free”? A remark I often en-
countered is that linear logic is no more “system-free” than other systems: it is itself a
logical system. This is indeed correct. Linear logic is a logical system since we suggested
an interpretation of it into stellar resolution in the previous chapters but in transcen-
dental syntax it is possible to speak about linear logic with no reference to a system.
In particular, there is no notion of logical atomic variable, no primitive connectives and
many connectives can co-exist1.

Everything in this chapter is my own interpretation of Girard’s ideas. I sometimes
choose to change the original presentation according to my liking and understanding.
Everything in this chapter is experimental since no true and complete development of
these ideas has been suggested yet.

77 Logical constants

§77.1 According to Girard, proof-structures correspond to the first occurrence of first-order
logic in his works. Proof-structures were initially defined with logical atoms as leaves.
These atoms are substitutable objects which are all bound to a name. All atoms of

1This is similar to the notion of function/procedure coming from modules/libraries in programming.
It happens that some imported programs are incompatible but it may also be possible to make them
compatible with a bit of hacking (you can also think of LaTeX packages as Girard himself does).

Chapter 12 Apodictic experiments 358

same name can be replaced by a same proof-structure. In particular, proof-nets remain
correct under substitution. But this replacement of variables is an external consideration
of proof-structures. Proof-structures by themselves can be handled without substitutable
atoms like non-generic objects (such as natural numbers). By doing so, we necessarily
focus on the individuality of logical objects, independently of their generic meaning (usual
logical objects are representatives of a class instead of individuals).

§77.2 In the stellar interpretation of proof-structures, atoms are simply translated as rays with
nothing special about them. Because proof-structures can be handled as it is, with atoms
which are simply points in space, Girard designed atomic formulas/behaviours to give
a first-order status to these points. In the approach Girard calls morphologism [Gir18a,
Section 1.1.2] (cf. Paragraph 39.2), formulas capture the shape of objects. There exists
two natural constants we can imagine:

• フ (fu) which contains atomic constellations with a single objective polarised ray
and

• ヲ (wo) which contains atomic constellations with a single subjective polarised ray.

Combinations of these constants will characterise proof-structures. For instance,フ⊗フ
will be the type of proof-structures of shape [r] + [r′] where r and r′ are objective rays.
There is no restriction over unpolarised rays (roots).

§77.3 Remark. Because our variables were not substitutable in our previous stellar inter-
pretation of MLL, we actually defined “apodictic MLL” or “system-free MLL” and
not the “real” MLL coming from the MLL sequent calculusa.

aYes, after all these pages and more than 3 years of thesis, I did not even interpreted MLL, the
simplest fragment of linear logic.

Objective constant

§77.4 The idea (which has been imagined in Girard’s second paper on transcendental syntax
[Gir16b, Appendix A.3]) is to reproduce the behaviour of interactive partitions (cf.
Section 37) in which only shape matters, not the semantic content. We would like to
see rays as points and stars as sets of points. Points of two constellations can be linked
bijectively and we expect the connexion to form a connected and acyclic graph. The
logical constant corresponds to a single point. It can only be connected to another single
point, hence it is self-dual, which is usually contradictory if we interpret orthogonality
as a logical negation.

§77.5 We need to distinguish between objective and subjective points but also between linear
and non-linear points. These principles did not exist with partitions but since they exist
in stellar resolution, we would like to take them into account. In particular, we need
adapters to connect rays of same class. Typically, it makes no sense in proof-net theory
to connect a linear point with a non-linear one (although not recommended, it is still

Chapter 12 Apodictic experiments 359

possible in our case). In the definition below, I suggest a classification of rays. I tried
several naive definitions but none were satisfying so the right definition of an apodictic
fragment of linear logic is still open.

§77.6 Definition (Ray order). The order of a polarised ray r is given by its number of
distinct variables ord(r) := |vars(r)|.

§77.7 Example. The ray +1 is of order 0, the ray +1(X) of order 1 and +1(X •Y) of order
2.

§77.8 Remark. My previous interpretation of the weakening rule produces rays of order 1
but it should not be a problem to add a variable to make them of order 2 without
affecting their computational behaviour.

§77.9 We first focus on rays of order 0 which are actually sufficient for MLL although we
actually used rays of order 1. Rays of order 0 directly translate the interpretation of
MLL into finite permutations and partitions over set of natural numbers.

§77.10 Definition (Regular adapter). Let [r, s] be an adapter of a constellation Φ. It is
regular if:

• it is non-animist (cf. Definition 48.10), i.e. r and s are either both subjective or
both objective;

• ord(r) = ord(s).

§77.11 Definition (Structural orthogonality). Two constellations Φ and Φ′ are structurally
orthogonal, written Φ ⊥S Φ′ when Φ ⊥R Φ′]Φµ where Φµ is a constellation of regular
adapters linking rays of Φ to rays of Φ′, and | ± IdRaysΦ| = | ± IdRaysΦ′|.

§77.12 In the case we interpret MLL with rays of order 1, the last requirement ensures that we
do not end up in weird situations not corresponding to proof-structures, such as the star
[+1(X)] being orthogonal to the star [−1(l ·X),−1(r ·X), 3(X)] not having the shape
of a test for atoms: the ray +1(X) is required by two rays −1(l ·X) and −1(r ·X), and
it triggers a duplication leading to the expected normal form 3(X). In other words, rays
(which can be seen as ports) of the two constellations should match in a bijective way.
Moreover, it faithfully translates the interpretation of MLL with partitions of a set.

§77.13 Definition (Fu). We define the following pre-behaviour called fu:

フ = {{[r, r1, ..., rk]} |

ord(r) = 0, r is polarised and objective, and all ri are uncoloured}.

Chapter 12 Apodictic experiments 360

§77.14 Proposition. The pre-behaviour フ is a self-dual behaviour, i.e. フ =フ⊥ =フ⊥⊥.

Proof. Thanks to the condition of non-animism, all rays considered here must be objec-
tive because non-animist adapters preserve the class of rays. Consider a constellation
Φ := [r, r1, ..., rk] ∈ フ. We try to characterise the shape of constellations Φ′ in フ⊥.
By definition of ⊥S , Φ′ must have a single coloured ray r′. If there are other stars,
they must be uncoloured and Φ] Φµ] Φ′ with the right constellation of adapters Φµ

cannot normalise into a single star as needed for ⊥S . Hence Φ′ only contains a single
star ϕ′ containing r′. This star ϕ′ can contain as many uncoloured rays as possible and
Φ] Φµ] Φ′ would still normalise into the star of uncoloured rays. Hence, Φ′ must be
of the form [r′, r′1, ..., r

′
l] for r′1, ..., r′l uncoloured. It follows that Φ′ ∈ フ. But since it

fully characterises フ⊥, we have フ =フ⊥. Since フ =フ⊥ we have (フ⊥)⊥ =フ⊥ =フ,
proving that フ is a behaviour.

Subjective constant

§77.15 The logical constant ヲ which is similar to フ except that it contains a subjective ray
instead of an objective one.

§77.16 Definition (Wo). We define the following pre-behaviour called wo:

ヲ = {{[r, r1, ..., rk]} |

ord(r) = 0, r is polarised and subjective, and all ri are uncoloured}.

§77.17 Proposition. The pre-behaviour ヲ is a self-dual behaviour, i.e. ヲ =ヲ⊥ =ヲ⊥⊥.

Proof. Same proof as for フ (cf. Proposition 77.14).

§77.18 In his French unpublished paper “La logique 2.0” [Gir18a], Girard suggests to define

a test for ヲ with the brick
[
−ヲ(−l ·X)
ヲ(X)

]
which forces the orthogonal to have an

internal colour. However, since I define ヲ as atomic constellation with ray of order 0,

the corresponding test has to be
[
−ヲ(−l)
ヲ

]
.

§77.19 Example. Formulas only using フ yield objective stars. If we only use ヲ, we have
subjective stars. A typical case of animism is フ`ヲ which can be instantiated with
[+1,+2(+c)] where [+1] ∈フ and [+2(+c)] ∈ヲ.

Chapter 12 Apodictic experiments 361

Shape specification

§77.20 The purpose of logical constants is to specify the shape of proofs. Behaviours only using
フ and ヲ as atoms show how the constellations they type must be shaped.

§77.21 Full tensor. A big problem we now face is that the tensor does not work anymore on
the constantsフ andヲ because they are not disjoint with themselves and hence cannot
be combined with the connective ⊗. It is still possible to design a new tensor which
behaves as expected. I choose to keep the same symbol to make notations simpler. This
tensor is always defined for any constellation.

§77.22 Definition (Full tensor). Let A and B be two behaviours (not necessarily disjoint).
We define the full tensor by the following behaviour:

A⊗ B := {ΦA] ΦB | ΦA ∈ A,ΦB ∈ B,ΦA 6▷◁ ΦB}⊥⊥

where ΦA 6▷◁ ΦB means that for all rays rA in ΦA and rB in ΦB, rA 6▷◁ rB.

§77.23 Proposition (Apodictic internal completeness). Let A and B be two closed be-
haviours only using フ and ヲ as atoms. We have that

A⊗ B = {ΦA] ΦB | ΦA ∈ A,ΦB ∈ B,ΦA 6▷◁ ΦB}.

Proof. We consider ΦA] ΦB ∈ {ΦA] ΦB | ΦA ∈ A,ΦB ∈ B,ΦA 6▷◁ ΦB} where ΦA and
ΦB have disjoint rays. By the definition of ⊥S , a constellation Φ ∈ {ΦA] ΦB | ΦA ∈
A,ΦB ∈ B,ΦA 6▷◁ ΦB}⊥ must link rays of ΦA] ΦB so to have a tree by making bridges
between ΦA and ΦB. In particular, ΦA] ΦB has the same number of polarised rays
as Φ. If we try to characterise the shape of elements of A ⊗ B from that, we obtain
the constellations separating back Φ in order to obtain disjoint components Φ′A and Φ′B,
hence exactly the elements of ΦA] ΦB ∈ {ΦA] ΦB | ΦA ∈ A,ΦB ∈ B,ΦA 6▷◁ ΦB}.

§77.24 The other connectives ` and⊸ are defined as usual (cf. Section 69).

§77.25 Example. We have the following constellations together with their shape in proof-net
theory:

� Atom of proof-structure [+1] ∈フ;

� Axiom [+1,+2] ∈ (フ⊗フ)⊥ =フ`フ;

� Test for axiom [−1, 1] + [−2, 2] ∈フ⊗フ;

� Switching par left [−1, 1] + [−2] ∈フ⊗フ;

� Switching par right [−1] + [−2, 2] ∈フ⊗フ;

� Tensor proof-structure [+1] + [+2] ∈フ⊗フ.

Chapter 12 Apodictic experiments 362

§77.26 Using the canonical basis of interpretation Ωフ(A, i, t) = フ, it is possible to interpret
all MLL formulas by multiplicative combinations of フ. All MLL sequents using フ are
inhabited. It is then sufficient to use combinations of フ to speak about constellations
in a handy way without caring about the specific terms we use. Given a behaviour
written withフ andヲ, it is possible to extract a proof-structure (like how we synthesize
circuits or programs from specifications) by an arbitrary selection of terms satisfying the
conditions of ⊥S .

§77.27 Implication and par. Remark that we have フ⊸ フ = フ `フ, however this is not
true that A⊸ B = A ` B in general if we have complex formulas A,B 6∈ {フ,ヲ} since
negation exchanges ⊗ and `.

Order 0 multiplicative linear logic

§77.28 Because MLL could already be treated with natural numbers, it is sufficient to define
MLL tests with rays of order 0. It is even more natural to do so.

§77.29 Definition (0rder 0 MLL test). Since we are system-free, we define tests directly on
switched formulas (cf. Definition 69.15), independently of proof-structures.

• (A⊗B)⋆ =

[
−A, −B
+(A⊗B)

]
;

• (A`L B)⋆ =

[
−A

+(A`B)

]
+

[
−B

]
;

• (A`R B)⋆ =

[
−A

]
+

[
−B

+(A`B)

]
.

The definition is then extended to switched sequents with:

(` A1, ..., An)
⋆ :=

n∑
i=1

(A⋆i +

[
−Ai

Ai

]
).

§77.30 Non-linear atoms. Non-linear atoms used in exponentials can be constructed with <
and ⋉. For instance, if we have フ<フ then the left premise is turned into a non-linear
atom of order 2 of a type written !フ. The formula !!フ is of order 3 and so on.

78 Expansional connectives

§78.1 In his unpublished paper “La logique 2.0” [Gir18a], Girard imagined alternative expo-
nentials called expansionals. Because we are system-free, we are able to freely design
connectives by designing tests with constellations. By characterising mechanisms of du-
plication in stellar resolution, it is then possible to obtain exponential connectives which

Chapter 12 Apodictic experiments 363

could not exist in proof-net theory. In particular, it is possible to imagine several ways
to regulate duplication and obtain various sort of exponentials which may be connected
to computational complexity. I only give the Usine interpretation (with formula labels
and finite tests).

§78.2 Unlike exponentials, these new connectives handle duplication but only for atoms of
order 1, while exponentials treat atoms of order ≥ 2. The idea is that from a ray +c(X)
of order 1, it is possible to duplicate it by requiring it with two rays −c(l · X) and
−c(r ·X). However, this way of duplicating is weaker than exponentials since we cannot
consider nested boxes.

§78.3 Girard’s expansionals are dual unary connectives ↓A and ↑A which can only be used
together with multiplicative connectives, as with < and ⋉ (cf. Chapter 11). We have
the two new constructions of formulas:

� Node replication ↓A⊗B;

� Node co-replication ↑A`B.

It is then possible to define a new sort of implication called insinuation:

A↣ B := ↓A⊸ B = ↑A⊥ `B.

§78.4 Definition (Expansional switching). We extend the notion of switching with the two
following cases:

φ(↑) ∈ {↑L, ↑R} and φ(↓) ∈ {↓f, ↓g}.

§78.5 Definition (Expansional test). We define tests directly on switched formulas (cf.
Definition 69.15), independently of proof-structures.

• (↓A⊗B)⋆ =

[
−A(X), −B
+(↓A⊗B)

]
;

• (↑LA`B)⋆ =

[
−A(X)

+(↑A`B)

]
+

[
−B,−∞(X)

+∞(X)

]
;

• (↑RA`B)⋆ =

[
−A(X)

]
+

[
−B

+(↑A`B)

]
.

§78.6 The test for ↓ requires that the left premise of ↓A⊗B is of order 1. The test ↑L allows
for a non-linear behaviour of the left premise and ↑R is the same as `R. My tests
are different from Girard’s tests [Gir18a, Section 2.1.3] because I distinguish between
several orders of rays. It is possible that my definition of expansional does not match
with Girard’s but I will not provide a further exploration of the subject.

Chapter 12 Apodictic experiments 364

§78.7 As we already did previously in Chapter 10, MLL can be defined with rays of order 1.
In particular, although permutations and partitions for MLL are more naturally defined
with rays of order 0, usual proof-structures are more natural with rays of order 1 because
it is the variable X which allows the duplication of cuts. It shows that even in MLL, an
elementary duplication occurs.

§78.8 Remark about our definition of apodictic in regards to exponentials. There
is a problem with the presentation of apodictic linear logic I suggest in this chapter.
Because I connect rays of same order, derelicted atoms (coming from the left premise of
⋉) and non-linear atoms corresponding to the output of a box (left premise of <) are
technically incompatible. I have no satisfying solution for that. We could say that all
terms of address t•u are of same order and hence both a derelicted and other non-linear
atoms would be of same order. But this we would give too much credit to the symbol
•. All this does not really matter since I simply want to present the idea so that it can
be developed. It does not need to be perfect.

79 Visibility and non-classical truth

§79.1 Without diving into philosophical questions, what is truth? Girard suggested to char-
acterise truth with two technical conditions. It is a predicate over formulas such that:

• there is a special behaviour 0 which is not true;

• it is preserved by execution (cut-elimination).

We can agree or disagree for philosophical reasons but this is still a way to start discus-
sions in formal logic.

§79.2 Classical truth. Girard’s truth is a property of constellations before even being a
property of formulas. A classical way to define truth is to say that a constellation Φ
is true when it passes some given tests (typically Danos-Regnier tests). Hence, truth
depends on some subjective tests but also on what it means to be a “correct proof”.
Truth matches with provability providing we have a mature definition of proof. We say
that a behaviour (representing a formula) is true when it contains a true constellation.
Correctness criteria, even the weirdest one we can design, yield different notions of
truth. We can say that truth is related to the objective relation between an entity and
a specification, which although subjective, serves a purpose or represents the expression
of a will.

§79.3 Non-classical truth. Whereas there is a classical way to define truth, there is also
non-classical ways which challenge common sense. In his fourth paper on transcendental
syntax [Gir20a], Girard suggested a notion of truth called visibility which implements
the intuition of hidden and visible files (cf. Paragraph 40.6). But how to design a notion
of truth? We should make clear what we absolutely want to make true and false (and
the interesting part is to leave some gap on which there is no restriction). Typically,

Chapter 12 Apodictic experiments 365

we would like constellations of binary stars to be true since they correspond to axioms
and we would like a special behaviour 0 to be false. The constant 0 is defined by using
subjective rays which have a role in epidictics.

§79.4 Epidictic and visibility. As explained in Section 44, Girard’s second-order logic uses
a vehicle together with a mould for existential witnesses. The vehicle is defined with
objective rays whereas the mould is defined with subjective ones. Given a constellation “in
the wild”, it is correct when it has no animist star: the objective and subjective part can
be separated. To be consistent with this interpretation, we would like to make animist
star a reason for falsity. Girard chose to base visibility on the Euler-Poincaré invariant
which is a necessary condition for Danos-Regnier correctness but not a sufficient one2.

§79.5 Proposition (Euler-Poincaré invariant). Let (V,E) be a bipartite multigraph (cf.
Appendix C). If |Cy| is the number of minimal cycles and |CC| is the number of
connected components, then we have |V | − |E|+ |Cy| − |CC| = 0.

§79.6 Since we are interested in trees, we have |CC| = 1 and |Cy| = 0. We can divide V into
V1 and V2 since it is bipartite. Hence:

2(|V1|+ |V2| − |E|) = 2|V1|+ 2|V2| − 2|E| = (2|V1| − |E|) + (2|V2| − |E|) = 2.

§79.7 Considering that constellations corresponding to proof-structures and tests are related
to partitions, the above equations induce a weight on objective constellations. A weight
for subjective rays is designed in order to be consistent with our notion of truth.

§79.8 Definition (Weight of a star). The weight of a star ϕ with objective rays oi and
subjective rays sj is defined by:

• ω([o1, ..., on]) := 2− n when it is fully objective, and

• ω([o1, ..., on, s1, ..., sm]) := −n otherwise.

§79.9 Definition (Weight of a constellation). The weight of a constellation Φ is defined by:

ω(ϕ1 + ...+ ϕn) :=

n∑
i=0

ω(ϕi).

2It is not clear why he chose this invariant in particular but my current understanding is that: it
satisfies the conditions of truth and it is odd enough. It also seems that he developed this truth
notion to express Peano arithmetic in apodictic linear logic so this may be his original purpose. I
once asked him why he did things like that and told him (probably impolitely) that is seemed rather
arbitrary for something related to the foundations of logic. I don’t know if I hurt his feelings but he
ironically told me that Tarski was probably better since he calls true what is true.

Chapter 12 Apodictic experiments 366

ω(フ) := 1 ω(ヲ) := 0 ω(A⊗ B) := ω(A) + ω(B)

ω(A⊥) := 2− ω(A) ω(A⊸ B) := ω(B)− ω(A)

ω(A ` B) := ω(A) + ω(B) (if both A and B contain ヲ)

ω(A ` B) := ω(A) + ω(B)− 2 (otherwise)

ω(A ⋉ B) := ω(A ` B) ω(A< B) := ω(A⊗ B)

Figure 79.1: Weights of behaviours.

§79.10 Example. For instance, for a constellation Φ ∈ フ ⊗ フ, we would have ω(Φ) =
2×2−2 = 2 and ω(Ψ) = 2×1−2 = 0 for Ψ ∈フ`フ. By the Euler-Poincaré invariant,
it is then expected that the sum of the weight of two orthogonal constellations is 2.

§79.11 Definition (Weight of a behaviour). We define the weight of a behaviour A as the
maximal weight of its constellations: ω(A) := max{ω(Φ) | Φ ∈ A}.

§79.12 We obtain the weights of Figure 79.1 for behaviours. Now that we have a notion of
weight, it is possible to define a behaviour 0 which is invisible (false). Interestingly, 0
is not empty, unlike the usual denotational interpretations where 0 is empty because it
has no proofs. We have constellations but none are correct. In particular, this gives an
interactional content to contradictions.

§79.13 Definition (Zero). The behaviour zero is defined by 0 := (フ`ヲ)<ヲ.

§79.14 We can finally define visibility then prove that it corresponds to a notion of truth by
satisfying the conditions given in the introduction of this section.

§79.15 Definition (Visibility). A constellation Φ is visible (true) when ω(Φ) ≥ 0. The
definition is extended to behaviours by saying that a behaviour A is visible when
ω(A) ≥ 0.

§79.16 Remark that, as expected, constellations of binary stars are visible because all binary
objective stars are of weight 0 and the sum of all weights of the constellation is still 0.
As for animist stars, by definition they have a weight at most −1. For every additional
objective ray, the weight is lowered. For instance: ω(フ`ヲ) = −1, ω(フ`フ`ヲ) = −2
and ω(フ ` フ ` フ ` ヲ) = −3. Oddly enough, it is possible to make an animist
constellation visible by using a tensor with visible constellations. For instance, we have
ω((フ `ヲ) ⊗フ) = 0. We can also remark that all formulas using only ヲ are always
visible.

Chapter 12 Apodictic experiments 367

§79.17 Proposition. Visibility defines a truth notion: 0 is invisible and it is closed under
cut-elimination for proof-structures.

Proof. We have ω(0) = ω((フ`ヲ)<ヲ) = ω(フ`ヲ)+ω(ヲ) = ω(フ`ヲ) = ω(フ`ヲ) =
ω(フ)+ω(ヲ)− 2 = 1− 2 = −1 < 0. Notice that it is the presence of animist star which
makes 0 invisible. As for cut-elimination, consider that we have Φ made of binary
stars only (since proof-structures are translated only with binary stars). We then have
ω(Φ) = 0, meaning that Φ is visible. However, cut-elimination only reunites binary stars
and hence preserves binarity. We have ω(AEx(Φ)) = 0 which makes AEx(Φ) visible.

§79.18 Now that we defined the additive contradiction 0, it is possible to define the additive
constant top by duality.

§79.19 Definition (Top). The behaviour top is defined by > := 0⊥ = (フ⊗ヲ)⋉ヲ.

§79.20 Proposition. > is visible.

Proof. We have ω((フ⊗ヲ)⋉ヲ) = ω(フ⊗ヲ)+ω(ヲ) = ω(フ⊗ヲ) = ω(フ)+ω(ヲ) =
ω(フ) = 1. Hence > is visible.

§79.21 To be sure that we defined additive constants in the right way, we should check that
they correspond to neutral elements for the additive connectives ⊕ and & but since they
are defined in second-order, we leave these definitions unverified.

§79.22 We define a notation for tensor and par of logical constants [Gir20a, Section 4.1]. This
definition will be useful to make explicit the weirdness of this notion of truth.

§79.23 Definition (Fu sequence). We define フn for n ∈ Z by:

• フ when n = 1;

• フ⊗フn−1 when n > 1;

• フ`フn+1 when n < 1.

§79.24 Definition (Wo sequence). We define ヲn for n ∈ N by:

• ヲ when n = 0;

• フn ⊗ヲ otherwise.

§79.25 As presented in the fourth paper of transcendental syntax [Gir20a, Section 4.3], Fig-
ure 79.2 illustrates a “truth table” with counter-intuitive truth values.

Chapter 12 Apodictic experiments 368

A B A⊗ B A ` B A⊥
1 1 0 1
0 1 1 0

Figure 79.2: Odd cases of non-classical truth. The value 1 represents visibility and 0
invisibility.

� Case of tensor If we have A := ヲ ` ヲ (which is not visible since ω(フ ` フ) =
0 + 0− 2 = −2) and B :=フ⊗フ (which is visible since ω(フ⊗フ) = 1 + 1 = 2),
then we have ω(A⊗ B) = −2 + 2 = 0 ≥ 0 hence A⊗ B is visible.

� Case of par As for `, we have フ0 = フ `フ of weight 0 (visible) but フ0 `フ0 of
weight 0 + 0− 2 = −2 is invisible. However, if we have A :=フ−1 =フ`フ`フ
(weight −1) which is invisible and B :=フ1 =フ (weight 2) which is visible, then
A ` B is of weight −1 + 2− 2 = −1, hence invisible.

� Case of dual Finally, for the orthogonal, if we have A := フ0 = フ `フ (visible),
then A⊥ = フ ⊗フ = フ2, which is visible as well. Hence, orthogonality does not
exchange visibility although it satisfies the condition of truth we wish for.

80 System-free arithmetic on relative numbers

§80.1 It is possible to define relative numbers as behaviours by using the logical constants.

§80.2 Definition (Encoding of relative numbers). Given p ∈ Z, we define its encoding by
a behaviour JpK such that:

• J0K :=ヲ;

• JpK :=フp ⊗ヲ when p > 0;

• JpK :=フp+2 `ヲ when p < 0.

§80.3 Example. We have J−1K := フ `ヲ, > = J−1K ⇒ J0K and 0 = >⊥ = J−1K < J0K.
Also remark that J−nK = JnK⊥.

§80.4 We present some properties which will be useful to reason about this interpretation of
relative numbers.

§80.5 Proposition. The following statement holds:

1. A ≡ フω(A) (this implies that ω(JpK) = p, i.e. encoded number is reflected in
weight of encoding). The notation ≡ is used for linear equivalence;

2. フm ⊗ヲn ≡ヲm+n with m,n > 0;

Chapter 12 Apodictic experiments 369

Regulator

Object Certified object

(a) Centralisation
Freely interacting objects

Meaning layer (synthetics)

External control (epidictics)

(b) Decentralisation

Figure 81.1: Models of regulation for computational objects.

3. フn+2 `ヲ ≡ヲn with n < 0 (negative integers are equivalent to some ヲn);

4. フm ⊗フn ≡ フm+n, フm `フn ≡ フm+n−2 and フ⊥n ≡ フ2−n (combinations of
フ can be contracted);

5. ヲm ⊗ヲn ≡ ヲm `ヲn ≡ ヲm+n and ヲ⊥n ≡ ヲ−n (combinations of ヲ can be
contracted);

6. フn and ヲn are invisible for n < 0.

Proof. Stated in Girard’s fourth paper on transcendental syntax [Gir20a, Section 4].

§80.6 Arithmetic operations. By relying on the properties of Proposition 80.5, it is possible
to do elementary arithmetic operations on relative numbers:

• the constant フ corresponds to J1K;
• Jn+ 1K ≡フ⊗ JnK corresponds to the successor function;

• Jn− 1K ≡フ⊸ JnK corresponds to the predecessor function;

• Jn+mK ≡ JnK⊗ JmK corresponds to addition;

• Jn−mK ≡ JnK⊥ ` JmK = JnK⊸ JmK corresponds to subtraction.

§80.7 Example. Equivalences are inferred from the properties of Proposition 80.5.

• J2 + 3K = J2K⊗ J3K = (フ⊗フ⊗ヲ)⊗ (フ⊗フ⊗フ⊗ヲ) ≡ヲ2 ⊗ヲ3 ≡ヲ5 ≡
フ⊗フ⊗フ⊗フ⊗フ⊗ヲ = J5K.

• J2− 3K = J2K⊥ ` J3K = (フ⊗フ⊗ヲ)⊥ ` (フ⊗フ⊗フ⊗ヲ) = (フ`フ`ヲ)`
(フ⊗フ⊗フ⊗ヲ) ≡ヲ−2 `ヲ3 ≡ヲ1 ≡フ`ヲ = J−1K.

81 Discussion: anarchy

§81.1 Apodictics is a state where computational objects express logic without the need for ex-
ternal regulation or control. However, this does not mean that external control should

Chapter 12 Apodictic experiments 370

be excluded: it becomes a choice, something put over what is unregulated. This makes
system-free formalisms such as apodictic transcendental syntax (Figure 81.1a) necessar-
ily more flexible than system-bounded formalisms such as usual logical systems (Fig-
ure 81.1b). Personally, the apodictic part of logic reminds me of decentralised systems
(typically, decentralised communication or cryptocurrencies).

§81.2 Is apodictics sufficient. Apodictics is about decentralised logic. Constellations live
their live and the synthetics describes their behaviour with formulas or label them with
tests. But is is sufficient to speak about logic? I do not have an answer. I believe that it
may be sufficient but not satisfying. If logic is about an analysis and study of interaction
then we first need a space of interacting entities then the ability to put words on it (the
synthetics). But it is not all that matters. Typically, as imagined in Section 60, external
control may be related to efficiency for computational power (algorithmic optimisation)
but probably also for human readability and workability (tell me if I am wrong if I say
that natural deduction is more convenient than reasoning with stellar resolution).

§81.3 Epidictics is exactly what apodictics lacks to express natural deduction. But adding
epidictics is not exactly a “return to the outdated traditions”. Instead, it is a layer
over a space of freely interacting computational objects with freedom at the bottom and
authority at the top.

Chapter 13

Epidictic experiments

Epidictics, discussed in Section 44, is the part of logic which is generic/substitutable.
For instance, in proof-structures, atoms correspond to variables which can be replaced
by other proof-structures. There is currently no true theory of epidictics in the context
of transcendental syntax. However, it is possible to sketch and think about some ideas
already presented by Girard [Gir18b].

82 Genericity of proof-structures

§82.1 Variables. Two things have to be distinguished. First, the proof-structures we defined
in stellar resolution are apodictic. They are self-sufficient objects with formula leaves
which are simply translated as rays such as +1 for an atom 1. There is nothing special
about such rays. But it is not exactly the proof-structures which are defined in the
usual theory of proof-nets (or even proofs in proof theory) which are more complex. We
usually require that atoms are substitutable, which means that atoms should actually be
seen as variables which are universally quantified. Hence, to speak about usual proofs,
we must think about an interpretation of quantifiers.

§82.2 For conceptual reasons explained in the third article of transcendental syntax [Gir18b,
Section 5.1], alternative rules for quantifiers are considered. These rules should declare
variables and then rules only manipulate variables which are declared1. In particular, it

1Some people think that Girard attributes this trick to himself but this does not seem to be the case.
He is probably aware that such hacks already existed but he rarely quote other people in his recent
papers.

β1, ..., βn, α ` Γ, A
∀

β1, ..., βn ` Γ, ∀α.A
β1, ..., βn ` Γ, {α := σ}A

∃
β1, ..., βn ` Γ, ∃α.A

Figure 82.1: Rules for quantifiers with declared variables. The left part of the sequent
contains variables which are declared. We must have varsσ ⊆ {β1, ..., βn}
in ∃ and α 6∈ varsΓ in ∀.

Chapter 13 Epidictic experiments 372

is not allowed to use a variable as a mathematical entity by itself which is assumed to
exist and have a content2. The rules for quantifiers are given in Figure 82.1.

§82.3 Universal quantification. In order to express the fact that a variable is generic, it
must fit into the picture for any shape it can take. In the third article on transcendental
syntax [Gir18b, Section 5.3], Girard suggests a definition in the case of MLL. A variable α
is subject to three switchings ∀id, ∀⊗ and ∀` for all the shapes α and its dual can have:
that is, either an irreducible atom, a par or a tensor. Since it seems that we cannot
distinguish between an atom and its negation, it is considered in the transcendental
syntax that it must be a “human” choice (in the first paper of transcendental syntax,
Girard even propose switchings with tests in order to enforce the presence of duality). By
imposing dual atoms, we say that cuts (for instance) cannot connect any atoms but that
we want some specific connexions. We will hence have adapters allowing the connexion
of these three ∀ tests with atoms and their dual.

§82.4 Existential quantifiers. A proof of existential formula turns a sequent ` Γ, {α := σ}A
(where α is a variable and σ a term) into a sequent ` Γ, ∃α.A. If we try to deconstruct
such a proof, we obtain three parts: the specification ` Γ, ∃α.A which we want to prove,
the proof itself which corresponds to a computational entity and the existential witness
σ located in the proof. These three components are translated into: a set of tests, a
vehicle containing the computational content of σ and another set of tests for σ. The
existential witness (which cannot be inferred from the formula alone) comes with the
vehicle together with its own tests. The materialisation of these tests for existential
witness in stellar resolution is called mould. They are “pre-integrated” tests checking
that the existential witness has the right shape.

§82.5 When translating application of existential rules in transcendental syntax, we must also
handle the substitution used in the premise. This is done by a hack which encodes sort
of explicit substitutions in stellar resolution [Gir18b, Section 5.2].

§82.6 Encoding of terms. As for the encoding of terms needed to represent existential
witnesses. Girard’s solution is to encode terms by multiplicative combinations ofフ and
equality between terms by linear equivalence. Applications of functions such as f(a)
will be treated as a pair (f, a). We then require that the encoding is injective so that
f(t) = f(u) implies t = u. Actually, there are several solutions providing it satisfies the
previous requirement. It does not matter which solution we choose since it is only a
matter of representation3.

2This is actually what is done in some programming languages such as the C language. Variables are
first declared (they exist) then defined (we give them a value).

3As if we had the choice between a binary or hexadecimal encoding of integers.

Chapter 13 Epidictic experiments 373

83 Usage interpretation of second-order linear logic

§83.1 In the Usage interpretation, we are interested in the formation of behaviours. As in
usual realisability interpretations, quantifiers can be handled by infinite unions and
intersections (in Usage, we do not fear infinity). We allow variables X,Y, Z, ... to appear
in behaviours. A behaviour is valid only when it contains no variables. It is then possible
to substitute a behaviour variable X for a behaviour T.

§83.2 Definition (Epidictic architecture). An epidictic architecture is a countable set of
behaviours E closed by a given set of connectives C, by adjunction and by composition,
that is:

• for all ∗ ∈ C of arity n and A1, ...,An ∈ E, we have ∗(A1, ...,An) ∈ E where
∗(A1, ...,An) is the application of the n-ary connective ∗ with premises A1, ...,An;

• for all F,A,B ∈ E, we have F ⊥ A⊗ B = F(A) ⊥ B where

F(A) = {Ex(ΦF] ΦA) | ΦF ∈ F,ΦA ∈ A};

• if A⊸ B ∈ E and A ∈ E, then B ∈ E.

We may need other conditions to obtain a satisfying definition but we will limit our-
selves to those as we will not dive into the details.

§83.3 The definitions for universal and existential quantification are defined in Girard’s fourth
paper on transcendental syntax [Gir20a, Section 5.2].

§83.4 Definition (Behaviour for universal quantification). Let E be an epidictic architec-
ture. The behaviour ∀X.A is defined by:

∀X.A :=
∩
T∈E
{X := T}A

§83.5 Definition (Behaviour for existential quantification). Let E be an epidictic architec-
ture. The behaviour ∃X.A is defined by:

∃X.A :=
(∪

T∈E
{X := T}A

)⊥⊥
§83.6 Notice that we do not require a closure by bi-orthogonality. However, for the existential

quantification which uses a union, we will need a closure as for the tensor of behaviours.

§83.7 Once we have quantifiers, it is possible to encode the part of logic we did not have in the
previous chapters. This encoding has already been mentioned by Girard in the context
of System F [Gir11a, Section 12.B.2]. These encodings are also extended (but unproven)

Chapter 13 Epidictic experiments 374

to neutral elements in Lafont’s “Linear logic pages” [Laf99]. In Girard’s recent paper,
an encoding of full exponentials is also suggested from neutral elements [Gir17, Section
5.1].

§83.8 Additive connectives. The additive connectives which have been ignored until now
can be encoded with second-order quantifiers. We start from the connective ⊕ corre-
sponding to the intuitionistic ∨ in natural deduction. An informal way to think about
how the encoding should look like, is to think about what specification ⊕ should satisfy
or how its behaviour (use) may be described. If we look at the rule ∨E (cf. Figure 9.3),
it says that for any C, if A leads to C and B leads to C then we should obtain C. This
can be described by the second-order formula ∀C (A ⊸ C) ⇒ (B ⊸ C) ⇒ C. We
obtain the following encoding of additive connectives using behaviours A and B:

A⊕ B := ∀C. (A⊸ C)⇒ (A⊸ C)⇒ C A & B := (A⊥ ⊕ B⊥)⊥

§83.9 Additive neutral elements. The additive neutral elements can be encoded by the
following behaviours:

0 := ∀X.X > := ∃X.X.

If we consider that 0 represents contradiction and > absolute evidence, then ∃X.X
expressed the existence of a provable statement, i.e. of the possibility of an evidence. As
for 0, in usual semantics, we usually do not want everything to be provable4, hence it is
interpreted by the absurd statement that every statement is provable.

§83.10 Full exponentials. In this thesis, we only defined limited exponentials corresponding
to the intuitionistic arrow ⇒ and its linear negation. If we would like to define full
exponential modalities ! and ? in order to recover the full power of linear logic, then it
is possible to use second-order quantifiers together with ⇒ as follows:

!A := ∀X. (A⇒ X)⊸ X ?A := (!A)⊥.

The formula ∀X. (A⇒ X)⊸ X expressed the fact that A can freely be subject to a non-
linear behaviour (duplication and erasure) in any context of the epidictic architecture
considered.

§83.11 Multiplicative neutral elements. There is a known encoding of multiplicative neutral
elements based on exponentials and additive neutral elements:

1 := !> ⊥ := ?0.

4Note that I consider “usual logic” in this case since we are in the epidictics. In the transcendental
syntax, when free from any logical system, “being provable” corresponds to the ability to materialise
a statement by the constellations of some behaviour. This is usually not a problem.

Chapter 13 Epidictic experiments 375

A

∀x.A

Universal

{x := t}A

∃x.A

Existential

(a) Links for quantifiers.

A

∀x.A

{x := t}A⊥

∃x.A⊥

cut

⇝

{x := t}A {x := t}A⊥

cut

(b) Cut-elimination.

Figure 84.1: Proof-nets of predicate calculus. They are mentioned in Girard’s blind spot
[Gir11a, Section 11.C.3] and one of his article on quantifiers for linear logic
[Gir91].

84 Usine in the case of predicate calculus: a sketch

§84.1 Unfortunately, no serious development of the Usine interpretation for second-order logic
has been given yet. In order to illustrate the interpretation of quantifiers, Girard suggests
to look at predicate calculus instead which is (interestingly) interpreted as a restriction
of second-order logic [Gir18b, Section 5] (Recall that in the transcendental syntax, “first”
and “second” order are different from usual first and second-order logic).

§84.2 In the third article of transcendental syntax [Gir18b], Girard states a conceptual problem
with first-order individuals, which are objects of the universe on which some properties
apply. For instance, natural numbers, persons, programs etc. The problem is that
nothing justify their existence: they purely come from our intuitive perception of logic.
They exist because they allow us to express what we have in mind (which can indeed be
satisfying enough depending on what we do).

§84.3 As mentioned by Girard, when considering first-order proof-nets (cf. Figure 84.1), predi-
cates such as P and individuals such as t in ∀x.A and P (t) play no role, computationally
speaking. Actually, we could even remove predicates and individuals and only con-
sider formulas. In other words, it is sufficient to consider everything as a property or
statement. In transcendental syntax, since behaviours are considered, properties corre-
sponding to individuals would express what kind of individual they are and this would
be materialised by constellations corresponding to instance of that individual. An in-
dividual f(a) would be a specification saying “I am f(a)” and instead of a property
P (f(a)) saying “the individual f(a) has the property P” we would have a statement
saying “I’m an individual satisfying property P”. To have becomes “to be”. Predicates
simply appear as an artificial way to manage allowed and forbidden interactions: social
segregation again.

§84.4 Quantification of predicate calculus. We end up with a restriction of second-order
logic in which quantification is restricted to a specific epidictic architecture encoding
the set of all terms considered in a given universe. Hence, when considering tests for

Chapter 13 Epidictic experiments 376

the universal quantification ∀x.A, the shape of x is expected to be of a specific shape
corresponding to an encoding of term. The same idea applies to existential witnesses.

§84.5 Encoding of terms. A constant is of type フ. But in order to encode a function
symbol f , we must be able to encode pairs of symbols. The term f(a) then corresponds
to the encoding of (f, a). This encoding has to be injective, meaning that whenever
f(a) = f(b) then a = b must follow. Girard suggested [Gir18b, Section 2.4] the following
encoding inspired by set theory5:

< T,U >⋆:= (T ` U)⊗ (T ` T ` U).

§84.6 Encoding of variables. As for variables they should be handled with explicit substi-
tutions [Gir18b, Section 5.2]. A variable α is treated with a ray α(X) (the X which is
variable of stellar resolution should not be mistaken for a variable of predicate calculus).
Variables occur either positively or negatively. Typically, when a variable α appears in
the premise of an implication A ⊸ B, then since A ⊸ B is implicitly A⊥ ` B hence
A and the variable α appearing inside are negated (recall that terms are interpreted
by formulas). We hence have addresses α(t) and α⊥(t) for a variable α and its linear
negation α⊥. In order to relate variables with a formula, Girard design addresses so that
α and α⊥ are sort of left and right branches of a formula ∀α.A in which they appear.
We then have three sort of addresses:

• α(x) := (∀α.A)(l ·X) referring to positive occurrences of α in ∀α.A;

• α⊥(x) := (∀α.A)(r ·X) referring to negative occurrences of α in ∀α.A;

• (∀α.A)(c ·X) referring to the formula ∀α.A itself (as for the interpretation of MLL
atoms).

These definitions are also extended to existential quantification. For instance, in the
formula ∀α.P (α)⊸ P (c), we expect that both P (α) and P (c) are multiplicative formulas
with their own sub-addresses. We will have axioms with rays (∀α.P (α)⊸ P (c))(t) where
t an address referring to either an atom (as usual) or a variable of a term. In order to
represent an explicit substitution [α := σ] where σ is a term, it is possible to design
a star which can interact with the rays encoding a variable and replace them by rays
encoding σ (such explicit substitutions can then be seen as constellations of adapters).

§84.7 Equality. An important predicate of predicate calculus is equality identifying individ-
uals. Since everything boils down to formulas (there are no individuals), then equality
between individuals (which are represented by multiplicative propositions) naturally be-
comes the linear equivalence ≡. A famous criticism of Girard [Gir18b, Section 2] about
the equality of predicate calculus, in its second-order form (cf. Paragraph 8.7), presup-
poses a specific space of properties, i.e. an implicit epidictic architecture. Indeed, when
we say that x = x when the two occurrences of x have the same properties, that is

5In set theory, the pair (x, y) can be represented by {{x}, {x, y}}.

Chapter 13 Epidictic experiments 377

Object Vehicle Mould B Mould B⊥

Subject Test for ` Γ, ∃X.A
1(X) . . . n(X)

Y1 . . . Ym X1 . . . Xk X⊥1
. . . X⊥l

Figure 84.2: Vehicle and mould tested against a test for an existential formula. The
conclusions of the test are 1, ..., n. Variables Yi can be either positive (a
variable Zi) or negative (a variable Z⊥i) and variables Xi, X

⊥
i are occur-

rences of X and X⊥.

P (x) ⇒ P (x) for any predicate P , this looks absolutely trivial. However, imagine that
we are in a computer in which the two copies of x used are located in two different places
in the computer memory. It is common in programming to have variables at different
addresses but with an equivalent content. A property of computers which would distin-
guish the two copies of x is to say that P is “being located at address α”. This property
is excluded because we consider that logic does not live in the computer world but in
a logical world we made up. But it is actually reasonable to consider such properties
as we always do in computer science. Hence, in the transcendental syntax, no epidictic
architecture is assumed but if we need one (to consider the usual “logical properties”)
then we must make it explicit.

§84.8 The mould. A mould is a constellation-test specifying existential witnesses. If we look
at the existential rule ∃ in Figure 82.1, we see that the existential witness σ is subject to a
substitution {α := σ} replacing a variable α. Because variables appear either positively
or negatively, so does the mould. Several choices of mould are possible. If B is the
formula we associate with σ then the mould consists of tests for B and for B⊥ that I
call Tests(B) and Tests(B⊥). Positive occurrences α will be linked to Tests(B) and
negative occurrences α⊥ to Tests(B⊥).

§84.9 As explained before, what is now tested against a specification/set of tests is not simply
a vehicle (computational entity) but a mix of a vehicle together with a mould: the tested
comes with its own certificate. We then need to check the vehicle and its mould passes
the tests. It is like checking tickets for a concert; some tickets can be fake but still be
considered valid. Given a mix of a vehicle with its mould, there is no guarantee that the
two parts of the mould are negation of each other. We have two requirements:

1. the tested must present a clear separation between vehicle (fully objective) and
mould (fully subjective), what Girard calls an épure;

2. two parts of the mould should be distinguished, each being the negation of the
other.

Chapter 13 Epidictic experiments 378

A way to ensure that the two parts of the mould are negation of each other, a natural
solution is to try to connect them with cuts and show a cut-elimination theorem. Al-
though it should work in some cases with the right epidictic architecture, it is known
that it is unprovable in general. The whole conception of the mould in the existential
rule is illustrated in Figure 84.2.

85 Discussion: the theory of epidictic architectures

§85.1 In this chapter, I sketched how quantification could be developed in transcendental
syntax in order to express second order logic and predicate calculus. However, we still
have no true theory of epidictics. It is not even clear what such a theory should be. But
it should at least provide a way to characterise what a generic proof-structure is. We are
in a free space of construction where it is possible to build proof-structures what it can be
useful to limit the space to those proof-structures so to make generic reasoning possible:
since the world is limited, I can know what are the possible shape of the unknown.

§85.2 A return to...the meta?. If analytics and synthetics are respectively matter (where
we construct programs) and meaning (where we construct formulas) then epidictics
(formatting synthetics) should be the space we construct logical languages or logical
systems. It is then a sort of meta-language except that unlike previous meta-languages for
logic, its purpose is not to justify but to limit the potential for efficiency. Transcendental
syntax works with only 3 layers (analytics, synthetics, epidictics) without the need for
an infinite hierarchy of semantics. Apodictics is simply the absence of the third layer.

§85.3 In my opinion, a way to tackle this question is to ask ourselves how we would implement
transcendental syntax on a computer. Imagine that we have a programming language
in which we can define constellations. It is also possible to freely design and build tests
in order to work with proof and type checking. It is possible to mix tests from different
logics. However, we sometimes would like to work with a specific logic and enable generic
reasoning but also in order to build tests automatically from a notion of formula, among
other things. But we also would like to tell what is a proof-structure is, that a vehicle
has to be made in a specific way: with binary stars of pairwise disjoint terms which are
either polarised with + or unpolarised. We need a way to express such structural and
interactional constraints over constellations in a convenient and generic way.

§85.4 A theory of social control. It can be even trickier if we add models of computation
on the top. I believe that epidictics should be able to answer questions such as “what
is an automata?” (interactionally and structurally speaking). Remark that structure
is deeply related to interaction/computational behaviour. Interactions of an object are
limited by its structure and structure puts control over interaction. For instance, we
could put some structural layer over constellations so that execution of automata will
necessarily start on initial states and do computation in the “right direction”. We could
forbid some interactions to happen for instance in circuits so that we first compute all

Chapter 13 Epidictic experiments 379

inputs before computing the output of gates. Such characterisations are what allows for
generic reasoning. Although epidictics may look like an axiomatic theory of constraints,
it is not exactly the case. The behaviour we force over the objects are only the behaviour
we wish for because of some purpose in some system. It is a sort of ethics. We want our
objects to behave in a specific way but they are free to interact in other ways when put
against constellations outside of the system. Epidictics is a “guide” for computationals
objects and not a system of constraints. Moreover, we can also change epidictics (or
even remove it) without changing objects like how we can change a political regime.

§85.5 Design plans. Something I have in mind is that a potential epidictic language should
probably be able to design “representative objects” from which constellations of a system
are instantiated (it can be done with an homomorphism like how we extract diagrams
from a dependency graph, in this case we would extract dependency graphs from an
epidictic representative). Since only some specific constellations can be created, it in-
duces a limitation of synthetics: only some behaviours can be considered, thus forming
a logic. For instance, an epidictics which only allows typed polymorphic λ-terms to be
created could be able to express natural deduction. It is like those design plans used
to construct some objects or buildings. We need concepts and ways to produce those
concepts. For instance, in the case of MLL proof-structures, the primitive concepts are
axioms and formulas.

§85.6 About type judgements. As mentioned in the last part of the third article of tran-
scendental syntax [Gir18b, Section 6.2], epidictics implicitly appears in Martin-Löf type
theory (MLTT). In type theory, we usually have statements about types themselves. We
have rules saying that 0 : N (the term 0 is of type N, the type of natural numbers) and
if n : N then s(n) : N. Now, we also have a rule concluding with N : Type, i.e. that N is
a valid type. For conjunction, we say that if A : Type and B : Type then A ∧B : Type.
This looks like a structuration of epidictics. One possible task for transcendental syn-
tax is to give a clearer status for those type assertions in the light of the Usine/Usage
interpretation and the computational justification of logical rules.

§85.7 Girard finally concludes with the following sentence describing the current status of
epidictics: “At the present moment, epidictics is but a name on a blank area of the
logical charts; hence a sort of new frontier for logic.” [Gir18b, Section 6.2].

Conclusion

86 Summary and contributions

§86.1 I would say that the main purpose of this thesis was to fill the gap between logic as it is
today and the latest developments in linear logic. The gap was big. The Curry-Howard
correspondence established a formal correspondence between logic and computation.
However, the developments of computer science, although recent, went very fast. Maybe
even too fast for logic. Logic has a lot of catch up and transcendental syntax is one of
the first bricks for something bigger.

§86.2 Contextualisation. The first notable thing this thesis provides is contextualisation.
Transcendental syntax does not come out of nowhere. It is part of a long story of people
and ideas. In this thesis, it has been put in context and is seen as the natural successor
of Girard’s geometry of interaction (itself being a successor of the theory of proof-nets).
It is also connected to known fields such as (classical) realisability (with ideas already
explored by Colin Riba and Emmanuel Beffara) or the broad field of program testing.
I had to reconstruct the story behind transcendental syntax so that it becomes more
natural and accessible. As for the philosophical side, transcendental syntax can be seen
as an answer to old questions regarding the justification of logical rules (something
already mentioned by Paolo Pistone) that I explained in Paragraph 12.4. Actually, the
geometry of interaction alone could serve as a satisfying answer but the transcendental
syntax goes further by introducing finiteness of the conditions of possibility of reasoning
but also a focus on the primitive shape of objects (which extends the Church-style typing
of λ-calculus).

§86.3 Illustration. There is a big chapter (cf. Chapter 8) dedicated to the illustration of
stellar resolution, the model of computation behind transcendental syntax. Automata,
logic programs, tile systems and models of circuits are illustrated with simulation proofs
and examples. I believe these illustrations to be more than mere encodings since they
are very faithful to the original computational mechanisms of these models. Stellar
resolution computes by resolving structured relations of constraints creating a sort of
flow of information. This can be seen as a very elementary and primitive mechanism
which underlies most (if not all) models of classical computation (cf. end of Chapter 8).

§86.4 Formalisation. The main contribution of this thesis is that it is the first formalisation
of transcendental syntax:

Chapter 13 Epidictic experiments 381

• stellar resolution is formalised (cf. Chapter 7) and properties (cf. Chapter 9) about
it are proven (in particular properties of confluence which are essential);

• several ways to execute constellations are defined (cf. Section 49, Section 50 and
Section 51) and in particular, interactive execution can lead to natural implemen-
tations of stellar resolution;

• a model of MLL is given in Chapter 10, inspired by the treatment of multiplicatives
in the geometry of interaction (cf. Chapter 5);

• simulation of cut-elimination and of the Danos-Regnier correctness criterion are
proven (cf. Section 68);

• classical results such as completeness and soundness of several models of MLL are
stated (cf. Section 70).

§86.5 Extensions. Few ideas of transcendental syntax which have been sketched by Girard
are interpreted and extended. Although it is still informal, it is meant to be a possible
inspiration for future works extending the initial formalisation of transcendental syntax
given in this thesis. In particular, I give my own interpretation of Girard’s apodictic (cf.
Chapter 12) and epidictic (cf. Chapter 13) which are very vague notions. On a more
technical side, I give a basis for a formal definition of exponentials (cf. Chapter 11) in
transcendental syntax, which allows the possibility of defining “alternative exponentials”
such as Girard’s expansionals (cf. Section 78).

87 Horizons

§87.1 When reading Girard’s original articles on transcendental syntax, it may be difficult to
understand what can be created out of it. The project may look rather shallow for some
people. In this section, I expose several ideas of possible future works that I imagined
without having the opportunity to develop them.

§87.2 Remaining unsolved technical problems. There are few completely technical prob-
lems left in this thesis, which could be solved but were not because of a lack of time or
the presence of other priorities:

• there is no proper treatment of subjective rays. As shown in this thesis, internal
polarities adds a complex behaviour to constellations. In particular, some unpo-
larised ray can become polarised. A proper treatment should include use cases
for subjective rays together with an extended formal definition of execution and
examples;

• as stated in Section 51, interactive execution with an interactive configuration Φ `
Φ of reference constellation equal to its initial interaction space produce duplicates
but the exact number of duplicates has not been characterised. The answer to
this question (which is apparently a non-trivial problem on graphs) may allow us

Chapter 13 Epidictic experiments 382

to filter out duplicates and identify interactive and concrete execution (the latter
being able to exactly simulate abstract execution);

• links with logic programming have not been properly defined although briefly dis-
cussed in Section 53. Execution is related to the resolution operator and stellar
resolution is related to the semantics of logic programs (which attracted a lot of
hype in the 90s). No formal links have been established. Interestingly, there are
works of Wolfgang Bibel6 such as the “connection method” [Bib13] which has been
related to proof-structures with Bertram Fronhöfer’s paper in honour of Wolfgang
Bibel [Fro00]. There may also be things to say about constraint programming
(stellar resolution is a system of constraints) and Andrew’s refutation by matings
[And76];

• there is not yet any alternative definition for λ-calculus with stellar resolution.
When I talked about transcendental syntax with Lionel Vaux, he told me that
it would be interesting to have a definition of untyped λ-calculus without going
through an encoding using proof-structures. I tried to encode the Krivine Abstract
Machine in Section 57 but I did not prove that the encoding is faithful and correctly
simulate it. When I tried, I was under the impression that it was possible to define
λ-calculus directly by encoding its term graph and using the mechanisms of stellar
resolution (variable and constants) to simulate explicit substitutions;

• there is no computationally faithful definition of circuits in stellar resolution (cf.
Section 58). Circuits (for instance boolean circuits) compute from inputs to out-
puts. In particular, the result of a gate can only be computed when its two inputs
are defined. However, nothing specify this synchronised flow of computation in
constellations. I thought of something like associating elements of an ordered set
to rays but it was not a very natural thing to do (moreover, regular constellations
become special case of those extended constellations with ordered rays);

• there is no complexity analysis for constellations. Some answers may be found in
works on the complexity of logic programs [DEGV01]. The complexity of term
unification is already well-documented but the execution of constellations raise
new questions of complexity. In particular, the shape of terms in constellations
has a direct influence on complexity. There may be formal links between class of
shapes and complexity classes;

• there is no termination analysis for constellations. I tried to use works in pro-
gramming logic [NGSKDS07] to state results but I omitted it since it was not
complete nor useful for the results of this thesis. The idea was to use an analy-
sis of dependency graphs to assert whether a constellation is terminating or not.
The argument would rely on usual termination proofs of term rewriting theory
[BN98, Section 2.3] by looking for size-decreasing cycles, a technique also used in
functional programming [LJBA01];

6Who is explicitly mentioned in several recent articles on deep inference [GG07, Brü04, Gug].

Chapter 13 Epidictic experiments 383

• in Section 63, I defined some ideas of “stellar compression” in order to minimise
constellations. However, since constellations can be seen as generalised automata,
it may be possible to define more advanced simplification techniques and have a
notion of “minimal constellation” w.r.t. some behaviour;

• there is a lack of proofs regarding exponentials in stellar resolution and a lack
of evidences regarding the ability of stellar resolution to define interesting exotic
exponentials (Girard’s expansional are only sketched from Girard’s original pre-
sentation);

• although I tried to explain Girard’s notion of truth in Section 79, there is currently
no serious purpose for it and there is no technical use case for an “axiom-free” Peano
arithmetic. It is mostly interesting for philosophical purposes but may find some
applications if one explores the subject;

• the interpretation of predicate calculus has only been roughly sketched in Sec-
tion 84 and there is still a lot of work to do in order to achieve a full formalisation
of it.

§87.3 Extensions of stellar resolution. Since the beginning of my thesis, Thomas Seiller
and I thought about extending stellar resolution with coefficients (something already
present in Seiller’s work on interaction graphs and graphings). Personally, I had chemical
reactions and Markov chains in mind and even tried to generalise stellar resolution using
chemical models (without succeeding). Constellations can be seen as atoms or molecules
interacting with each other to produce a reaction. After discussing with Seiller, we
remarked that there was two possible distinct extensions:

• putting coefficients on stars. Fusion between stars then applies a monoid multi-
plication on coefficients. We would then have stars and constellations weighted
in some given monoid. It corresponds to a generalisation of Seiller’s weights on
interaction graphs [Sei12a]. Girard also had similar ideas in his second article on
transcendental syntax [Gir16b];

• another idea was to put coefficients on the edges of dependency graphs so that the
sum of coefficients related to a ray is equal to 1. The point is that for each ray,
there is some probability to connect to another specific ray. This is reminiscent of
chemical reactions. In that case, coefficients are associated with pairs of rays.

The two extensions are actually compatible and generalise the stellar resolution defined
in this thesis.

§87.4 A new version of proof-nets. An idea of Seiller was to use ideas of transcendental
syntax to develop a sort of correction of proof-nets which would overcome the known
problems of the theory of proof-nets (regarding local and global mechanisms appearing
with exponentials and additives). It is true that it is not completely clear what a
“good” proof-net should be. I personally do not support this direction since I believe
that constellations are the next form of proof-nets and that they are what proof-nets

Chapter 13 Epidictic experiments 384

should be (one may say that I am avoiding the problem). Hence, stellar resolution
should define logic by themselves without trying to look for connexions or updates of
the original theory of proof-nets (which may be forgotten).

§87.5 Parallel and concurrent computation. Stellar resolution is an asynchronous and
parallel model of computation. Parallel computation for term unification is a subject
which has been explored quite a lot [HM89, Sib05, Kit91, VS84], probably because of
the hype around logic programming in the 90s. An interesting direction is to connect
stellar resolution to known works in parallel and concurrent computation. During my
thesis, I had two ideas in mind which were left without conclusion:

• with Julien Marquet, we tried to think about an encoding of Lafont’s interaction
nets and in particular interaction combinators;

• with Félix Castro, we tried to think about an encoding of π-calculus. I wanted
stellar resolution to replace process calculi by seeing how it could simulate some
of them. However, it was less trivial than expected because of the name handling
of π-calculus.

Both these ideas were not worth the time and efforts and I had other priorities so nothing
has been realised so far. There are also subjective rays that I believe to be connected
to synchronised computation and mechanisms of concurrent programming but I was
never able to reach a conclusion (mostly because this consideration came very late in
my thesis).

§87.6 Generalised token machine. One well-known application of the geometry of inter-
action is the token machine or interaction abstract machine (cf. Section 36). Since
transcendental syntax extends and generalise the geometry of interaction, it is a natural
direction to look for a generalised token machine. There are already such generalised
machines in the literature [CC23, DLTY17, CVV21] but no link has been established so
far. The idea of a generalised token machine is something which appeared very early
in my thesis but which has finally been replaced by concrete and interactive execution
(which came way later). The idea of what I called the “stellar machine” is that depen-
dency graphs could be seen as an automaton. We put “tokens” (associated with a family,
in order to represent the different diagrams being constructed) which travel through the
dependency graph. At each step, a unification problem is solved by adding equations
related to the traversed edges. A lot of non-trivial mechanisms have to be considered:
non-determinism, colliding tokens/families etc. It seems to me that the treatment of
those mechanisms may be similar to what is done in Chardonnet’s works [CVV21].

§87.7 Verified computation. Transcendental syntax connects logic with the program testing
of computer science. Correctness tests are seen as analysing the shape of constellations in
order to assert that they have some computational behaviour. Although it makes sense, I
never gave examples of verified computation. One could think of properties on automata
or circuits, for instance. Automata would be encoded as constellations but also tests
enduring that an automaton is part of some class of automata. Automata themselves

Chapter 13 Epidictic experiments 385

can be seen as finite tests asserting the membership of words in some language. There
might also be connexion with model checking since constellations can be seen as sort of
labelled transition systems.

§87.8 Discrete complex systems and dynamical systems. Seiller and I independently
remarked that stellar resolution could be seen as a sort of tile system. I discovered
Wang tiles at a summer school for young researchers in computer science (EJCIM)
and Seiller had already heard about abstract tile assembly models before. At some
point, while learning about tile systems, I had the hope of generalising stellar resolution
with discrete dynamical systems (I tried to discuss with Benjamin Hellouin but without
success) or models of complex system theory. It was very vague but I wanted to know
if notions such as chaos and attractors had some sort of logical meaning. I did not have
the mathematical background to seriously consider this direction.

§87.9 Ludics. This is something which I almost completely omitted in this thesis. Ludics
can be seen as a abstraction of sequent calculus whereas geometry of interaction is an
abstraction of proof-structures. In an informal with Seiller, we discussed about encoding
ludics with stellar resolution so that transcendental syntax would subsumes both ludics
and geometry of interaction. An idea was to put an order on constellations to internalise
the sequentialisation of logical rules. This may be related to my idea of order and
synchronisation for subjective rays. Moreover, I also discussed with Carlos Olarte and
he told me that the control of constellations in epidictic (which may also be related to
synchronisation/order in computation) reminded him of focalisation which appears in
ludics but also in proof-search for linear logic.

§87.10 Deep inference. Deep inference [Gug, Brü04, GG07] is a very recent theory of logic
which provides an abstraction of sequent calculus which is distinct from both ludics and
geometry of interaction. It is an alternative new culture of logic. There is currently no
research about how deep inference is different or close to transcendental syntax. After
discussing with Pablo Donato and Adrien Ragot about the link between deep inference
and transcendental syntax, I was under the (vague) impression that sequent calculi could
be seen as recipes for the construction/generation of constellations/programs.

§87.11 Descriptive complexity. Connexions between transcendental syntax and computa-
tional complexity is really something I would like to see as I believe complexity problems
are related to logic (once we have a more mature notion of logic – in my opinion logic
is related to the shape of things and their computational potential). There are already
works connecting ideas of geometry of interaction with implicit computational complex-
ity (ICC) [Sei20a, BP99, AS16b] and transcendental syntax may provide results in this
direction. However, I also hope for a new reading of descriptive complexity since types
(either from the Usine or Usage point of view) have a descriptive function. They as-
sert some computational potentiality. Can we characterise computational complexity
classes by tests/behaviours? Constellations which can be typed in predicate calculus
and second-order logic (and thus have a specific shape) would theoretically correspond
to programs of complexity class P and NP [Imm12, Imm86].

Chapter 13 Epidictic experiments 386

§87.12 The nature of programs and algorithms. There is an article of Gurevich which
asks what is an algorithm [Gur12]. Although seemingly innocent, this is a rather pro-
found question. There is currently no satisfying formal definition of algorithm or even
of a program. Thomas Seiller already discussed this matter several times in few talks.
The subject also led to the ANR project “La géométrie des algorithmes” (GoA) coor-
dinated by Alberto Naibo. Seiller tries to answer the question with his graphings but
I believe the question could also be tackled only with stellar resolution which captures
classical computation pretty well. As discussed in Section 19, algorithms may be seen
as specifications. In our cases, it corresponds a Usine interpretation (since we would like
finite checking that the programs is an implementation of some algorithm). Now, what
is a sequential algorithm? I do not have an answer but I believe that we should have
some sort of “sequential formulas” satisfied by sequential programs. Instead of extending
the notion of test or program/constellation with ad-hoc external constructions, I rather
believe in extending the “shapes” of constellations (plurality of individuals), so that it
generalises the stellar resolution of this thesis.

§87.13 Open proof assistant. An idea which I find exciting but also vague for the moment.
Proof assistants such as Coq relies on one specific system, for instance the calculus of
inductive constructions which corresponds to some λ-calculus. No matter how convenient
or inconvenient it is, we are limited to one logic and one model of computation to
encode properties and models of computation (automata, circuits, programs etc). Using
transcendental syntax, the core is minimal and boils down to the unification algorithm
which is well-known and simple. Everything else is constructed within the language
itself. In particular, typing, which is essential in proof assistants, is given by tests. A logic
generates tests with formula labels (representing properties to be shown). Hence, several
logic can coexist. Logical systems become sort of libraries/modules as in programming.
Proving is not bound to a specific logic such as intuitionistic logic. Certainty relies on
tests known/proven to be adequate (this cannot be directly proven in the system itself).
Whether such an “open” proof assistant is good or not is still an open question. One
may argue that functional systems are sufficient/convenient for most purposes. Anyway,
potential proof assistants based on stellar resolution should not be understood as a
potential replacement of other proof assistants but as another type of proof assistant.

§87.14 Epidictic language as a script language for macros. The epidictic is what allows
stellar resolution to constructs closed systems. Such closed systems makes reasoning
more efficient and “axiomatic” but also makes possible quantification (since the world is
closed, I can make assumption of the shape of the possible objects on which I quantify).
Typically, imagine that you would like to work with λ-calculus in stellar resolution. It
would be too tedious and prone to errors to write the corresponding constellations and
tests for each formulas each time. It actually took me a long time to figure out what
could be a concrete realisation of Girard’s epidictic. It is only late in my thesis that I
considered that it could be... a macro system. The primitive system is stellar resolution
which is very flexible and everything else is just syntactic sugar with complex macros.
For instance, we would have a way to construct formulas as syntactic labels but also

Chapter 13 Epidictic experiments 387

macros to inductively associate formulas with test-constellations.

§87.15 A realist thesis?. I am not a philosopher at all and have absolutely no background in
philosophy but during my thesis I had the hope that transcendental syntax would raise
insights regarding scientific/semantic realism and essentialism in logic. If an “existen-
tialist” approach to logic (as Girard calls it) consists in forgetting all primitive definitions
so that types/formulas would be reconstructed from computational individuals, then it
looks like transcendental syntax is a bit more than just an existentialist approach to
logic. Transcendental syntax adds a Usine interpretation which was not present in lu-
dics nor geometry of interaction. This interpretation shows that “the primitive shapes
of things matters” and in particular that it is possible to anticipate the behaviour of
individuals from their shape. I might be mistaking but it seems to me that the shape (of
computational objects) becomes a primitive essence in this case. However, we know that
behaviours cannot always be fully characterised by finite tests, hence this anticipation is
indeed limited. There is also the problem of whether mathematical (or logical) entities
exist in an external reality, independently of us. It seems to me that computational
monist testing is a process of “reality-discovery” producing responses which are then
interpreted/formatted by us. Although the medium of interaction (whether it is stel-
lar resolution or something else) is relative/chosen, syntactic interactions occurring in
mathematics says things about how reality is structured. This may explain the relevance
of mathematics over the “real world” (and in particular the fact that mathematics says
things about physics, thus allowing us to construct reliable bridges or reliable programs).

88 Limits of the current presentation of transcendental syntax

§88.1 A too open theory. Transcendental syntax is like a computational sandbox for logic.
It is an alternative point of view on logic (like deep inference). Because it is so free, it also
lacks direction. As shown in the previous section, there is a lot of potential applications
but it remains to filter out the most interesting and relevant ones. Transcendental syntax
is still a very speculative and experimental subject for the moment.

§88.2 Complexity issues. Concrete execution which is the implementable version of abstract
execution (the more “semantical” or “denotational” way to evaluate constellations) has a
horrible complexity. We constantly have to compute graph isomorphism which is known
to be a difficult problem. We have no choice but to exclude concrete execution from
real-world applications. Only interactive execution (which could be refined into a token
machine) is left. Although no complexity results have been stated, it seems that the com-
plexity of constellations representing some computational objects (automata, circuits, ...)
is faithful to the original complexity of the model. All additional complexity added with
constellations correspond to term unifications. Another problem of complexity related
to logic is that the most natural correctness criterion is the Danos-Regnier correctness
which is known to have an exponential complexity (there are 2n tests for n par hyper-
edges). It is currently not known if other more efficient correctness criterion can be

Chapter 13 Epidictic experiments 388

easily and efficiently implemented in stellar resolution. It may be the case that adding
an “epidictic layer” makes computation more efficient (we only look at external opaque
interactions without considering the underlying micro-computational mechanisms – this
is the point of axiomatic theories).

§88.3 Limitation to classical computation. The presentation of transcendental syntax
in this thesis is obviously limited to classical computation. However, this is not an
absolute limitation of transcendental syntax itself. Constellations could be extended
with coefficients in order to interpret probabilistic or quantum computation (Chardonnet
uses a token machine with complex coefficients). However, it is unsure that doing so
would provide an interesting non-classical model of computation (when compared to
models which purpose is to be relevant for non-classical computation).

§88.4 Another blind spot. As explained by Girard in the end of his third article on tran-
scendental syntax [Gir18b], transcendental syntax still cannot give a “transcendental”
status to type judgement appearing in (Martin-Löf) type theory. Moreover, there are
also new works such as the so-called Homotopic Type Theory (HTT) with a new treat-
ment of equality. There is also deep inference. Although all these theories speak about
logic, they looks distinct from transcendental syntax. For the time being, transcenden-
tal syntax is not able to provide comments, analysis nor comparisons. Transcendental
syntax, at least in its current form, does not look as universal as some would like it to
be.

§88.5 A materialist conception of logic. After discussing with Baptiste Chanus and other
people about transcendental syntax, Baptiste stated that despite the appearances of
transcendental syntax and the hope of some people to see something more fundamental
or universal than other conceptions of logic, transcendental syntax was, after all, a
computational point of view of logic, hence a logical paradigm among other ones. It
is true that transcendental syntax is deeply dependent of some material entities of a
computational nature and that it does not take into account the social nature of the
logical activity. In transcendental syntax, there is a strong belief that computation
explains the whole logical activity. Whether it is right or wrong, this is out of my field
of expertise. But if you still want to hear about my current belief, the natural and social
aspect of logic may not be incompatible. There is the natural layer of stellar resolution,
on which logical constructions can be made then the social/cultural layer correspond to
the epidictic which corresponds to systems put over stellar resolution.

Appendix A

Mathematical conventions

A.1 General notations

� Definition (:=) and equality (=) I write A := B when A is defined as B. It should
not be mistaken with the equality A = B saying that A and B are already defined
and equal. It is similar to the difference between = (affectation) and == (boolean
equality) in some programming languages such as the C language.

� Confer/conferatur (cf.) Used as reference to another thing (latin). For instance “cf.
A” means that we can refer to A in case we want more information.

� Domain of a function Let f : A → B a function over sets. We define dom(f) := A,
called the domain of f .

� Exempli gratia (e.g.) For example (latin).

� Id est (i.e.) That is (latin).

� Images of a function Let f : A → B a function over sets. We define img(f) := B,
called the set of images of f .

� Projections Let p = (a1, ..., an) be a tuple. We define πi(p) = ai as the i-nth projection
of p.

� Respectively (resp.)

� Sequence By sequence, I mean a tuple (a1, ..., an) but more generally, it is defined as
an indexed family indexed by natural numbvers (see Appendix A.2 below).

� With respects to (w.r.t.)

Appendix A Mathematical conventions 390

A.2 Set theory

Elementary set theory
§A.2.1 Definition (Cartesian product). The cartesian product of two sets A and B is defined

by A×B := {(a, b) | a ∈ A, b ∈ B}.

§A.2.2 Definition (Disjoint sets). Two sets A and B are disjoint if and only if A ∩B = ∅.

§A.2.3 Definition (Disjoint union). Let A and B be two sets. Their disjoint union is defined
by the set A]B := {(a, 0) | a ∈ A} ∪ {(b, 1) | b ∈ B}.

§A.2.4 Example. Let A = {a, b, c} and B = {c, d}. We have

A]B = {(a, 0), (b, 0), (c, 0), (c, 1), (d, 1)}.

Notice that the element c ∈ A is distinguished from the element c ∈ B by their
associated index i ∈ {0, 1}.

When two sets are disjoint, we can omit the indexes 0 and 1 in their disjoint union since
there is no ambiguity.

§A.2.5 Definition (Powerset). The powerset of a set S is defined by P(S) := {S′ | S′ ⊆ S}.

§A.2.6 Definition (Function application on sets). Let f : S → S′ be a function over two
sets S and S′. If S = {a1, ..., an} then the application of f on S is defined by f(S) =
{f(a1), ..., f(an)}.

§A.2.7 Definition (Predicate associated to a set). Let P (x1, ..., xn) be a predicate with vari-
ables x1, ..., xn.

§A.2.8 Definition (Generalised union). We define a generalised iterative union by
n∪

i=n

:= ∅
n∪

i=k

Ei := Ek ∪
n∪

i=k+1

Ei when (k < n)

for sets Ek, ..., En, a counter i starting with i = k and stopping at i = n.

We also define the alternative notations:
∪

k≤i≤nEi :=
∪n

i=k Ei.

Let P (x, S) be a predicate over a variable x and a set S (x ∈ S and S′ ⊆ S are
such predicates), and E an expression denoting a set where the variable x occurs. We
define the following expression of generalised union over a predicate P (x, S) on E:∪

P (x,∅)

E := ∅
∪

P (x,{e}∪S)

E := {x := e}E ∪
∪

P (x,S)

E

Appendix A Mathematical conventions 391

We define the following notation for repeated generalised unions:

A∪
B1,...,Bn

E :=

A∪
B1

....

A∪
Bn

E

Multisets

A multiset is a set in which a same element can appear several times. It is defined by
a set and a map relating each elements of the set to its number of occurrence (called
multiplicity).

§A.2.9 Definition (Multiset). A multiset is a pair (S, nbOcc) of a set S and a total function
nbOcc : S → N.

We use the notation [a1, ..., an] for finite multisets in which repetitions explictly appear.

§A.2.10 Example. Let S := {a, b, c}. We can define the multiset (S, nbOcc) such that
nbOcc(a) = 1, nbOcc(b) = 2 and nbOcc(c) = 3. This multiset can be written
[a, b, b, c, c, c].

§A.2.11 Definition (Multiset induced by a set). Let S be a set. It induces a multiset
multiset(S) := (S, nbOcc) with nbOcc(e) = 1 for all e ∈ S.

§A.2.12 Definition (Multiset union). Let (A, nbOccA) and (B, nbOccB) be two multisets.
Their union A ∪B is defined by the multiset (A ∪B, nbOccA∪B) such that

nbOccA∪B(e) = nbOccA(e) + nbOccB(e).

§A.2.13 Example. If we have two multisets A = [a, b, b] and B = [b, b], then their union is
({a, b}, nbOccA∪B) with nbOccA∪B(a) = 1 and nbOccA∪B(b) = 4. The union can be
written [a, b, b, b, b].

Indexed families

Indexed families is an alternative definition for ordered multisets which I find more
convenient. Instead of associating elements to a multiplicity, we start from a set of
indexes and associate an element to each index.

§A.2.14 Definition (Indexed family). An indexed family over I is given by a tuple (S, I, get)
of a set S, a set of indexes I and an index function get : I → S.

Indexed families with natural numbers as set of indexes correspond to sequences in
mathematics and to arrays in programming.

Appendix A Mathematical conventions 392

§A.2.15 Example. We define an indexed family (S, I, get) with S = {a, b}, N = {0, 1, 2, 3}
and get(0) = a, get(1) = a, get(2) = b, get(3) = a. It corresponds to the array[
0 1 2 3
a a b a

]
where positions are given on the top with the corresponding integer

index and the associated element on the bottom.

§A.2.16 Notation. Let φ = (S, I, get) be an indexed family. To make the notation closer to
arrays in programming, we define the notation φ[i] := get(i) for i ∈ I.

§A.2.17 Definition (Disjoint union of indexed families). Let φ1 = (S1, I1, get1) and φ2 =
(S2, I2, get2) be two indexed families. Their disjoint union φ1] φ2 is the indexed
family (S1] S2, Iφ1] Iφ2 , get1] get2) with get1] get2 : Iφ1] Iφ2 → S1] S2 defined
by (get1] get2)(i) = getk(i) when i ∈ Iφk

and k ∈ {1, 2}.

A.3 Language theory
§A.3.1 Definition (Alphabet and word). An alphabet is a set of elements called symbols. A

word over an alphabet Σ is an ordered sequence of symbols of Σ.

There is a distinguished symbol ε called empty symbol.

We often omit parentheses when writing words, i.e. we write abc instead of (a, b, c).

§A.3.2 Example. If Σ = {a, b, c} then a, aaaaa, acccb, aaabab are words over Σ.

§A.3.3 Definition. The concatenation of words is defined as follows:

• ε · w := w and w · ε := w;

• (a1, ..., an) · (b1, ..., bm) := (a1, ..., an, b1, ..., bm).

§A.3.4 Definition (Kleene closure). Let Σ be an alphabet, its Kleene closure written Σ∗ is
the set satisfying the following requirements:

• ε ∈ Σ∗

• if c ∈ Σ, then c ∈ Σ∗;

• if w ∈ Σ∗ and w′ ∈ Σ∗ then w · w′ ∈ Σ∗;

§A.3.5 Example. If Σ = {a, b, c} then {ε, a, b, c, aa, bb, cc, aaa, bbb, ccc, aba, abc, bac} ⊂ Σ∗.

§A.3.6 Definition (Notation). Let a1, ..., an be symbols of some alphabet Σ. The set of
notations over the notation generators a1, ..., an is the set N satisfying the following
requirements:

• {a1, ..., an} ⊂ N ;

Appendix A Mathematical conventions 393

• if a ∈ N and x ∈ N then a′ ∈ N , ax ∈ N and ax ∈ N .

§A.3.7 Example. The set of notations over {a} contains a, a′, a′′, a′′′, a1, a2, a3, a1, a2 and a3.

§A.3.8 Definition (Backus-Naur Form grammars). The expression

A1, ..., An ::= B1 | ... | Bm set C (D)

corresponds to a notation for Backus-Naur Form (BNF) grammars. It says that the
category or type called D, denoted by the set C, has elements represented by symbols
A1, ..., An and constructed from one of the expressions in B1, ..., Bn (the vertical bar
| is then a disjunction of cases). The denotation D can be omitted.

We consider that all symbols of the set of notations over {A1, ..., An} can be used to
represent elements of the set C.

It happens that some Ai occurs in some Bi and in this case, we have an inductive type.

§A.3.9 Example. Some typical examples are booleans, natural numbers, lists (parametrised
by another type for elements) and trees (parametrised by another type for the content
of nodes):

a, b, c ::= 0 | 1 set Bool (Booleans)
n,m, k, l ::= 0 | s(n) set Nat (Natural numbers)

l ::= [] | e :: l with e ∈ A set List[A] (Lists)
t, t1, t2 ::= ∅ | (t1, e, t2) with e ∈ A set Tree[A] (Trees)

Appendix B

Term unification

§B.0.1 Terms are used to represent statements. In this section, we are interested in solving
equations t ?

= u between terms by searching for a way to replace variables by other
terms in order to make t and u equal. Equations between terms are usually attributed
to Robinson [R+65] but Herbrand [Her30] already studied term unification before in the
context of his investigations on mathematical equations and proof theory.

§B.0.2 We refer the reader to the article of Lassez et al. [LMM88] for more details which are
often omitted in the literature or Baader et al. [BN98] for a broader view.

B.1 Elementary definitions

§B.1.1 In this appendix I use a generalisation of term unification which is in not standard. In
my definition of unification, I consider a binary relation ¨ over function symbols which
tells us when two symbols are compatible. This will allows us to be more general when
considering equations between terms.

§B.1.2 Definition (Signature). A signature S = (V, F, ar,¨) consists of a countable set V of
variables, a countable set F of function symbols whose arities are given by ar : F → N
and a binary relation ¨: F × F .

§B.1.3 Convention. In usual term unification theory and this appendix, we consider that
f ¨ g if and only if f = g.

§B.1.4 Definition (First-order terms). The set of (first-order) terms Term(S) over a signature
S = (V, F, ar,¨) is inductively defined by the following grammar:

a, b, c, d, t, u, v, w ::=

| X

| f(t1, ..., tn)

for X ∈ V, f ∈ F, ar(f) = n set Term(S) (Terms)

Appendix B Term unification 395

§B.1.5 Definition (Set of variables). The set of variables of a term is defined inductively as
follows:

vars(X) = {X} (forX ∈ V) vars(f(t1, ..., tn)) =
∪

1≤i≤n
vars(ti)

§B.1.6 Example. Let S := (V, F, ar,¨) be a signature such that V = {X,Y }, F = {c, f, g}
and ar(c) = 0, ar(f) = 1, ar(g) = 2. We can construct the following terms (among
others): c,X, Y, Z, f(c), f(X), g(c, c), g(X,Y), f(g(c, c)), g(f(X), f(f(Y))).

§B.1.7 Definition (Substitution). A substitution is a function θ : V → Term(S). Substitu-
tions are extended from variables to terms by

θ(f(u1, ..., uk)) = f(θ(u1), ..., θ(uk)).

The application θ(t) of a substitution θ on a term t can also be written θt. Substitu-
tions will sometimes we explicitly written with a list of associations {X1 7→ t1, ..., Xn 7→
tn} and sometimes simply {X := t} if there is only one association.

A renaming is a substitution α such that α(X) ∈ V for all X ∈ V and such that it
is bijective. In particular, renamings are invertible and the inverse of a renaming α is
written α−1.

From two substitutions θ1, θ2, we can construct their composition θ1 ◦ θ2 such that
(θ1 ◦ θ2)t = θ1(θ2(t)). The composition is associative [LMM88, Corollary 6]. It is then
possible to write θ1θ2θ3 for either (θ1 ◦ θ2) ◦ θ3 or θ1 ◦ (θ2 ◦ θ3).

§B.1.8 Example. Let θ := {X 7→ c, Y 7→ c} and ψ := {X 7→ f(Y), Y 7→ g(c, c)}. We
have θf(X) = f(θX) = f(c), ψg(X,Y) = g(ψX,ψY) = g(f(Y), g(c, c)) (subsitutions
replace simultaneously and not sequentially, hence there is no clash between the two
occurrences of Y) and (θ◦ψ)g(X,Y) = g((θ◦ψ)X, (θ◦ψ)Y) = g((θ◦ψ)X, (θ◦ψ)Y) =
g(θf(Y), θg(c, c)) = g(f(c), g(c, c)).

§B.1.9 Definition (Equation and unification problem). An equation is an unordered pair
t

?
= u of terms in Term(S).

A unification problem or simply problem is a set of equations {t1
?
= u1, ..., tn

?
= un}.

A solution or unifier for a problem P is a substitution θ such that for all t ?
= u ∈ P ,

θt = θu. In this case, we say that the terms t and u are unifiable and that θ.

§B.1.10 Example. The problem {f(X, f(Y))
?
= f(g(c, c), Z)} has for solution θ := {X 7→

g(c, c), Z 7→ f(Y)}. The problems {f(X)
?
= g(c, c)} and {X ?

= f(X)} have no solution.

Appendix B Term unification 396

§B.1.11 Definition (Alpha-equivalence). Two terms t and u are α-equivalent, written t ≈α u,
if there exists a renaming α such that t = α(u).

§B.1.12 Definition (Alpha-unification). An α-unifier for a problem P = {ti
?
= ui}1≤i≤n

is a pair (θ, α) of a substitution θ and a renaming α such that θ is a solution for
{ti

?
= αui}1≤i≤n. Two terms t and u are α-unifiable if there exists an α-unifier for

{t ?
= u}.

§B.1.13 Example. A typical example is the problem {X ?
= f(X)} which has no unifier but

has an α-unifier. A possible α-unifier is (θ, α) with θ := {X 7→ f(c), X ′ 7→ c} and
α := {X 7→ X ′}. We have θX = f(c) and θαf(X) = θf(X ′) = f(c) = θX.

§B.1.14 Lemma (Symmetry of α-unifiability). Let t and u be two terms. We have that
{t ?

= u} has an α-unifier if and only if {u ?
= t} has one.

Proof. To say that {t ?
= u} has an α-unifier means that there is some (θ, α) with θ a

substitution and α a renaming such that θt = θαu, meaning that t and u only differ by
a renaming. We only show one implication and the other is similar. Assume θt = θαu
(hypothesis H) for some (θ, α). We define θ′ := θα and would like to obtain θ′α′t = θ′u
for some α′. We already know that θt = θαu, hence we need to cancel the renaming α
which is part of θ′. We define α′ := α−1. We finally have θ′α′t = θαα−1t = θt

H
= θαu =

θ′u (we used the fact that composition is associative, as stated in Definition B.1.7).

§B.1.15 These definitions define a preorder on terms. A term t is lesser than another term u
when it is more specialised or less general. In terms of substitutions, it means that t can
be obtained by instantiating the variables of u with other terms.

§B.1.16 Definition (Generality relation on terms). We define the following relation: given
t, u two terms, t � u if and only if there exists a substitution θ such that t = θu.

§B.1.17 Proposition. The relation � defines a preorder.

Proof. Let t be a term. If θ is the identity substitution, we have t = θt. Let t1, t2, t3
be terms. Assume t1 = θat2 and t2 = θbt3. We can compose the two substitutions and
obtain θa ◦ θb. We have (θa ◦ θb)t3 = θa(θbt3) = θat2 = t1.

§B.1.18 The definition of α-unification comes from a simplification of Aubert and Bagnol’s defi-
nition of matching [AB14, Definition 6] itself appearing in Girard’s definitions [Gir13b,
Section 1.1.2]. However, since matching already exists with a different definition in the
literature, a different name is chosen. In the proposition below, the two variants are
shown to be equivalent.

Appendix B Term unification 397

§B.1.19 Proposition. Two terms t1 and t2 are α-unifiable if and only if there exists two
renamings α1 and α2 such that α1t1 and α2t2 are unifiable and that vars(α1t1) ∩
vars(α2t2) = ∅.

Proof. (⇒) Assume that t1 and t2 are α-unifiable. Hence, we have θαt1 = θt2 for
some (θ, α). We have to find ψ, α1 and α2 such that ψα1t1 = ψα2t2 and vars(α1t1) ∩
vars(α2t2) = ∅. We define α2 := α. Providing there are enough variable symbols, it is
possible to design α1 so that α1(X) 6∈ vars(α2t2) for all X ∈ vars(t1), i.e. img(α1) ∩
vars(t2) = ∅. We then have vars(α1t1) ∩ vars(α2t2) = ∅. Now, α1t1

?
= α2t2 only

differ from t1
?
= αt2 by the fact that some variables of t1 have been changed by α1. We

can define ψ so that it reverses the effect of α1 without affecting α2t2. Hence, we have
ψ := θ ◦ α−11 . It has no effect on α2t2 because we assumed that img(α1) ∩ vars(t2) = ∅.
(⇐) Assume that there exists two renamings α1 and α2 such that α1t1 and α2t2 are
unifiable and that vars(α1t1) ∩ vars(α2t2) = ∅. We have θα1t1 = θα2t2 for some θ.
We can define the substitution ψ := θ ◦ α2 and the renaming α := α−12 ◦ α1 such that
ψαt1 = θα2α

−1
2 α1t1 = θα1t1 = θα2t2 = ψt2. This shows that t1 and t2 are α-unifiable

with (ψ, α).

§B.1.20 It is also possible to define a relation ≤ on substitutions instead of terms. This relation is
well-known as a preorder in the literature [BN98, Definition 4.5.1]. Its intuitive meaning
is that θ ≤ ψ is ψ is “more general” than θ.

§B.1.21 Definition (Generality relation on substitutions). Let θ and ψ be two substitutions.
We define the relation ≤ such that θ ≤ ψ when there exists a substitution σ such that
ψ = σθ.

§B.1.22 The problem of deciding if a solution to a given problem P exists is known to be de-
cidable. Moreover, there exists a maximal solution solutionP w.r.t. the preorder �
on substitutions, which is unique up to renaming. Several algorithms were designed to
compute the unique solution when it exists, such that the Martelli-Montanari unification
algorithm [MM82].

§B.1.23 Definition (Solved form). A unification problem P = {ti
?
= ui}1≤i≤n is in solved

form if:

• for 1 ≤ i ≤ n, ti is a variable Xi ∈ V and

• no Xi appears in the right-hand side of an equation, i.e.

{Xi}1≤i≤n ∩
n∪

j=1

vars(tj) = ∅.

Appendix B Term unification 398

The underlying substitution of P is defined by
→
P := {Xi 7→ ti}1≤i≤n.

B.2 Unification algorithm
§B.2.1 Definition (Rules for Martelli-Montanari algorithm). The Martelli-Montanari algo-

rithm is defined by a binary relation ⇝ (in infix notation) over unification problems.
It is defined as follows:

� Clear P ∪ {t ?
= t} c⇝ P ;

� Open P ∪ {f(t1, ..., tn)
?
= g(u1, ..., un)}

op⇝ P ∪ {t1
?
= u1, ..., tn

?
= un} when f ¨ g;

� Orient P ∪ {t ?
= X} or⇝ P ∪ {X ?

= t} with t 6∈ vars(t);

� Replace P ∪ {X ?
= t} r(X)⇝ {X 7→ t}P ∪ {X ?

= t}
with X ∈ vars(P) and X 6∈ vars(t).

We simply write ⇝ when the rule is left implicit and we write ⇝∗ for the reflexive
transitive closure of ⇝.

§B.2.2 Definition (Martelli-Montanari execution). A (Martelli-Montanari) (partial) execu-
tion is a non-empty finite sequence of ρ = (P1, ..., Pn+1) of unification problems such
that Pi ⇝ Pi+1 for 1 ≤ i ≤ n. The execution ρ is:

• successful if Pn+1 is in solved form;

• unsuccessful if Pn+1 is not in solved form;

• full if there is no P such that Pn+1 ⇝ P .

§B.2.3 Theorem (Correctness and termination of unification algorithm). There exists a full
execution ρ = (P1, ..., Pn) with Pn in solved form if and only if P1 has a solution.
Otherwise, ρ is unsuccessful.

Proof. Proven in Lassez’s article [LMM88, Theorem 3.1]. Other proofs are found in
Baader and Nipkow’s book [BN98, Lemma 4.6.5 & Lemma 4.6.7 & Lemma 4.6.10].

§B.2.4 Theorem (Confluence of the unification algorithm). Let ρ = (P1, ..., Pn) be an execu-
tion starting from a solvable problem P1. There exists an extension ρ′ = (Q1, ..., Qm)
such that ρ · ρ′ := (P1, ..., Pn, Q1, ..., Qm) is successful.

Proof. This corresponds to a result of confluence in rewriting systems [BN98, Definition
2.1.3]. By Theorem B.2.3, we already know that the rewriting system associated to the
Martelli-Montanari algorithm is terminating. In addition to this fact, we can use New-
man’s lemma [BN98, Lemma 2.7.2] by showing that the relation ⇝ is locally confluent

Appendix B Term unification 399

(cf. [BN98, Lemma 2.7.1]) in order to show that it is confluent. Let P be a unification
problem. We consider all the possible divergences of choices induced by the rules of
Definition B.2.1.

� Case of clear rule Let P be a problem and x a rule such that P x⇝ P ′. We have
P ∪ {t ?

= t} c⇝ P
x⇝ P ′ and P ∪ {t ?

= t} x⇝ P ′ ∪ {t ?
= t} c⇝ P ′.

� Case of open rule Let P be a problem and x a rule such that P x⇝ P ′. We have

P ∪ {f(t1, ..., tn)
?
= f(u1, ..., un)}

op⇝ P ∪ {t1
?
= u1, ..., tn

?
= un}

x⇝ P ′ ∪ {t1
?
= u1, ..., tn

?
= un}

and

P ∪ {f(t1, ..., tn)
?
= f(u1, ..., un)}

x⇝ P ′ ∪ {f(t1, ..., tn)
?
= f(u1, ..., un)}

op⇝ P ′ ∪ {t1
?
= u1, ..., tn

?
= un}.

� Case of orient rule Let P be a problem and x a rule such that P x⇝ P ′. We have
P ∪ {t ?

= X} or⇝ P ∪ {X ?
= t} x⇝ P ′ ∪ {X ?

= t} and P ∪ {t ?
= X} x⇝ P ′ ∪ {t ?

= X} op⇝
P ′ ∪ {X ?

= t}.

� Case of replace Let P be a problem and x a rule such that P x⇝ P ′. We reason by
case on x. For more clarity, we write θ for the substitution {X 7→ t}.

� Clear We have P ∪ {u ?
= u,X

?
= t} c⇝ P ∪ {X ?

= t} r(X)⇝ θP ∪ {X ?
= t} and

P ∪ {u ?
= u,X

?
= t} r(X)⇝ θP ∪ {θu ?

= θu,X
?
= t} c⇝ θP ∪ {X ?

= t}.

� Open We have
P ∪ {f(t1, ..., tn)

?
= f(u1, ..., un), X

?
= t}

op⇝ P ∪ {t1
?
= u1, ..., tn

?
= un, X

?
= t}

r(X)⇝ θP ∪ {θt1
?
= θu1, ..., θtn

?
= θun, X

?
= t}

and

P ∪ {f(t1, ..., tn)
?
= f(u1, ..., un), X

?
= t}

r(X)⇝ θP ∪ {θf(t1, ..., tn)
?
= θf(u1, ..., un), X

?
= t}

= θP ∪ {f(θt1, ..., θtn)
?
= f(θu1, ..., θun), X

?
= t}

op⇝ θP ∪ {θt1
?
= θu1, ..., θtn

?
= θun, X

?
= t}.

Appendix B Term unification 400

� Orient Assume that we have a term u which is not a variable. We have P ∪
{u ?

= Y,X
?
= t} or⇝ P ∪ {Y ?

= u,X
?
= t} r(X)⇝ θP ∪ {θY ?

= θu,X
?
= t} and

P ∪ {u ?
= Y,X

?
= t} r(X)⇝ θP ∪ {θu ?

= θY,X
?
= t} or⇝ θP ∪ {θY ?

= θu,X
?
= t}.

The orient rule in the second reduction works because the substitution θ does
not change the nature of Y and u. The first is still a variable and the second
still not a variable.

� Replace There are two cases. We write ψ for the substitution {Y 7→ u}.

• Assume that X = Y . We have

P ∪ {Y ?
= u,X

?
= t}

r(X)⇝ θP ∪ {θY ?
= θu,X

?
= t}

= θP ∪ {t ?
= θu,X

?
= t}

and

P ∪ {Y ?
= u,X

?
= t}

r(Y)⇝ ψP ∪ {ψX ?
= ψt, Y

?
= u}

= ψP ∪ {u ?
= ψt, Y

?
= u}.

It is then obvious that t ?
= u and u ?

= u

• Assume that X 6= Y . We define ψ′ := {Y 7→ θu} and θ′ := {X 7→ ψt}.
We have

P ∪ {Y ?
= u,X

?
= t}

r(X)⇝ θP ∪ {Y ?
= θu,X

?
= t}

r(Y)⇝ ψ′θP ∪ {X ?
= ψ′t, Y

?
= θu}

and

P ∪ {Y ?
= u,X

?
= t}

r(Y)⇝ ψP ∪ {X ?
= ψt, Y

?
= u}

r(X)⇝ θ′ψP ∪ {Y ?
= θ′u,X

?
= ψt}.

§B.2.5 Corollary. Let ρ = (P1, ..., Pn) be an execution starting from a solvable problem P1.
There exists an extension ρ′ = (Q1, ..., Qm) such that ρ · ρ′ := (P1, ..., Pn, Q1, ..., Qm)
is successful.

Appendix B Term unification 401

Proof. By correctness and termination of the unification algorithm (cf. Theorem B.2.3),
since P1 is solvable, there exists an execution from P1 ⇝∗ Pf . Assume that we already
started the execution with some arbitrary but valid steps (P1, ..., Pn). By confluence of
the unification algorithm (cf. Theorem B.2.4)

§B.2.6 Theorem (Unicity of solution). If ρ = (P1, ..., Pn) is a full execution starting from a
solvable problem P1, then

→
Pn is the unique solution of P1 modulo ≈α.

Proof. Indirectly proven in Lassez’s article [LMM88, Theorem 3.17]. The original state-
ment says that any solvable problem P has a unique solution modulo≈α but the Martelli-
Montanari algorithm computes such a solution by correctness of the algorithm.

§B.2.7 Corollary (Execution lifting). Let (P, P1, ..., Pn) be an execution. For all P ′ such
that P ⊆ P ′, there exists an execution (P ′, P ′1, ..., P

′
n) such that Pi ⊆ P ′i for 1 ≤ i ≤ n.

Proof. By confluence of the unification algorithm (cf. Theorem B.2.4), all paths of ex-
ecution ultimately lead to a unique result modulo ≈α. We decompose P ′ into P ∪ P ′′
(since it contains P). It is possible to focus only on the equation in P without impact
on the result. We can then construct the execution P ∪ P ′′ ⇝ P1 ∪ P ′′ ⇝∗ Pn ∪ P ′′
corresponding to the execution P ′ ⇝ P ′1 ⇝∗ P ′n.

Appendix C

Graph theory

C.1 Non-directed hypergraphs

Intuitively, hypergraphs are points in space called vertices such that some of them are
linked together with hyperedges. An example of hypergraph is given in Figure C.1.1.
Vertices are written vi and hyperedges ei for i ∈ N.

§C.1.1 Definition (Hypergraph). A hypergraph H is a tuple (V,E, end) of a set V of ele-
ments called vertices, a set E of elements called hyperedges and a function end : E →
P(V) mapping hyperedges to their associated endpoints sets, such that end(e) 6= ∅ for
all e ∈ E.

§C.1.2 Example. The formal definition of the hypergraph illustrated in Figure C.1.1 is given
by a tuple H = (V,E, end) such that V = {v1, v2, v3, v4, v5, v6, v7}, E = {e1, e2, e3, e4}
and end(e1) = {v1, v2, v3}, end(e2) = {v2, v3}, end(e3) = {v3, v5, v6}, end(e4) = {v4}.

§C.1.3 Definition (Properties of hypergraphs). Let H = (V,E, end) be a hypergraph.

• The order of H is defined by |V |;

• The size of H is defined by |E|;

• The rank of H, written rank(H), is the maximal cardinality appearing in E, i.e.
max{|end(e)| such that e ∈ E}.

§C.1.4 Definition (Adjacency and incidence). Let H = (V,E, end) be a hypergraph. Two
vertices x, y ∈ V are adjacent when there exists e ∈ E such that x, y ∈ end(e).

Two hyperedges e, e′ ∈ E are incident when end(e) ∩ end(e′) 6= ∅.

§C.1.5 Example. In Figure C.1.1, v1 and v2 are adjacent because v1, v2 ∈ end(e1). The
hyperedges e1 and e2 are incident because end(e1) ∩ end(e2) = {v2, v3}. However, v1
and v4 are not adjacent since no hyperedge link them and, e1 and e4 are not incident
because they do not link common vertices.

Appendix C Graph theory 403

v1

v2
v3

v4

v5
v6

v7

e1
e2

e3e4

Figure C.1.1: Example of hypergraph taken from a StackExchange post: https://tex.
stackexchange.com/questions/1175/drawing-a-hypergraph.

§C.1.6 Definition (Simple hypergraph). A hypergraph H = (V,E, end) is simple when for
all e, e′ ∈ E such that end(e) ⊆ end(e′), we have i = j.

§C.1.7 Example. The hypergraph of Figure C.1.1 is not simple because end(e2) ⊆ end(e1)
and e1 6= e2. The point is to remove redundant links. Since e1 already links v2 and v3
together, it is possible to forget the hyperedge e2.

§C.1.8 Definition (Path). Let H = (V,E, end) be a hypergraph. A path ρ in H from v1 ∈ V
to vn+1 ∈ V is an alternate sequence of vertices and hyperedges

ρ = (v1, e1, v2, e2, ..., vn, en, vn+1)

where:

• the vi are pairwise distinct with the exception of the pair (v1, vn+1), i.e. we can
have v1 = vn+1;

• the ei are all distinct;

• for all 1 ≤ i ≤ n, we have vi, vi+1 ∈ end(ei).

The length of the path is |ρ| = n. If x1 = xn+1, then ρ is called a cycle.

§C.1.9 Example. A possible path in the hypergraph of Figure C.1.1 from v1 to v3 is

ρ := (v1, e1, v2, e2, v3).

A possible cycle (which is a loop) is (v4).

https://tex.stackexchange.com/questions/1175/drawing-a-hypergraph
https://tex.stackexchange.com/questions/1175/drawing-a-hypergraph

Appendix C Graph theory 404

§C.1.10 Definition (Cyclicity). A hypergraph containing at least one cycle is called cyclic.
Otherwise (if is has no cycles), it is acyclic.

There exists several notions of acyclicity (α-acyclicity and β-acyclicity for instance) but
we will not need them in this thesis.

§C.1.11 Definition (Connectedness). A hypergraph H = (V,E, end) is connected when there
is a path between all pairs of vertices in V . Otherwise, it is disconnected.

§C.1.12 Definition (Hypergraph homomorphism). A homomorphism f between two hyper-
graphs H = (VH , EH , endH) and H ′ = (VH′ , EH′ , endH′) is given by the two following
underlying maps with same name:

• f : VH → VH′ (the vertex map) and

• f : EH → EH′ (the edge map)

such that f(endH(e)) = endH′(f(e)) for all e ∈ EH , i.e. it maps adjacent vertices to
adjacent vertices.

§C.1.13 Definition (Injectivity and surjectivity of homomorphisms). Let f : H → H ′ be a
hypergraph homomorphism. It is:

• injective (or an injection) when its underlying maps are injective, i.e. f(x) =
f(x′) implies x = x′ for x, x′ edges or vertices of H;

• surjective (or a surjection) when its underlying maps are surjective, i.e. for every
y (edge or vertex of H ′), there is some x that generates it, i.e. there is some x
such that f(x) = y.

§C.1.14 Definition (Hypergraph isomorphism). Let f be a hypergraph homomorphism be-
tween two hypergraph homomorphism H and H ′. It is a hypergraph isomorphism if
and only if its underlying maps are bijective, i.e. both injective and surjective. We
then say that H and H ′ are isomorphic, written H ' H ′.

Since the underlying maps of an isomorphism are bijective, it induces an inverse isomor-
phism in the same way that bijections induce inverse functions.

§C.1.15 Proposition. A hypergraph homomorphism f between two hypergraphs

H = (VH , EH , endH) and H ′ = (VH′ , EH′ , endH′)

is an isomorphism if and only if there exists a bijection f−1 such that f ◦ f−1 =
f−1 ◦ f = idH where idH is the identity morphism over H defined by the two identity
maps f : VH → VH such that f(v) = v and f : EH → EH such that f(e) = e.

Appendix C Graph theory 405

v1

v2
v3

v4

v5
v6

v7

e1
e2

e3e4

f−→
v′1

v′3

v′4

v′5
v′6

e′1

e′3e′4

Figure C.1.2: A hypergraph homomorphism f relating two hypergraphs such that
f(v1) = f(v2) = v′1, f(v3) = v′3, f(v4) = f(v7) = v′4, f(v5) = v′5,
f(v6) = v′6, f(e1) = f(e2) = e′1, f(e3) = e′3 and f(e4) = e′4.

§C.1.16 Example. A hypergraph homomorphism is illustrated in Figure C.1.2. It makes the
hyperedge e2 linking v2 and v3 disappear by merging it with e1. We have f(ende2) =
f({v2, v3}) = {v′1, v′3} = end(e′1) = end(f(e2)). The isolated vertex v7 also disappears.

In the case of an isomorphisms, we expect H and f(H) to be structurally equivalent.
The typical example maps a hypergraph to the same graph up to renaming of vertices
and hyperedges.

C.2 Directed hypergraphs

It is possible to consider directions in hypergraphs by considering that hyperedges have
inputs and outputs.

§C.2.1 Definition (Directed hypergraph). A directed hypergraph is a tuple

H = (V,E, in, out)

where V is the set of vertices, E the set of hyperedges (called hyperarcs) and the two
functions in : E → P(V) and out : E → P(V) are respectively the set of inputs and
outputs associated to the hyperarc e.

Remark that we allow hyperarcs with no input or no output (for a hyperarc e, we may
have in(e) = ∅ or out(e) = ∅).

§C.2.2 Definition (Directed path). Let H = (V,E, in, out) be a directed hypergraph. A
path ρ in H from v1 ∈ V to vn+1 ∈ V is an alternate sequence of vertices and
hyperedges

ρ = (v1, e1, v2, e2, ..., vn, en, vn+1)

Appendix C Graph theory 406

v1

v2
v3

v4

v5

e1
e2

e3

Figure C.2.1: Test.

where:

• the vi are pairwise distinct with the exception of the pair (v1, vn+1), i.e. we can
have v1 = vn+1;

• the ei are all distinct;

• for all 1 ≤ i ≤ n, we have vi ∈ in(ei) and vi+1 ∈ out(ei+1).

The length of the path is |ρ| = n. If v1 = vn+1, then ρ is called a circuit (or n-circuit
if we want to make the length explicit).

It is possible to recover undirected graphs by considering symmetric directions.

§C.2.3 Definition (Symmetric hypergraph). Let H = (V,E, in, out) be a directed hyper-
graph. It is symmetric if for each vertices v, v′, there are two hyperedges e, e′ such
that v ∈ in(e), v′ ∈ out(e), v′ ∈ in(e) and v ∈ out(e).

A hypergraph can also be given an orientation which should be understood as a strict
direction, i.e. edges go in one specific direction without leaving the possibility of going
back.

§C.2.4 Definition (Oriented hypergraph). A directed hypergraph is oriented when it con-
tains no symmetry, i.e. there is no vertices v, v′ and edges e, e′ such that v ∈ in(e),
v′ ∈ out(e), v′ ∈ in(e) and v ∈ out(e).

§C.2.5 Example. In Figure C.2.1, we have an example of directed hypergraph

H = (V,E, in, out)

such that V = {v1, v2, v3, v4} and E = {e1, e2, e3} with:

• in(e1) = {v2} and out(e1) = {v1};

• in(e2) = {v3, v5} and out(e2) = {v4};

• in(e3) = ∅ and out(e3) = {v3}.

Directed hypergraph homomorphisms must preserve inputs and ouputs.

Appendix C Graph theory 407

§C.2.6 Definition (Directed hypergraph homomorphism). A homomorphism f between two
directed hypergraphsH = (V,E, inH , outH) andH ′ = (VH′ , EH′ , inH′ , outH′) is given
by the two following maps with same name:

• f : VH → VH′ (the vertex map) and

• f : EH → EH′ (the edge map)

such that f(inH(e)) = inH′(f(e)) and f(outH(e)) = outH′(f(e)) for all e ∈ EH , i.e.
the functions f maps components (vertices and hyperarcs) of H to components of H ′
by preserving the linking of vertices by hyperarcs.

It is sometimes useful to consider an order in inputs and outputs by extending directed
hypergraphs to ordered directed hypergraphs.

§C.2.7 Definition (Ordered directed hypergraph). An ordered directed hypergraph H =
(V,E, in, out,≤) is a directed hypergraph (V,E, in, out) extended with an order re-
lation ≤ over V × V .

§C.2.8 Notation. We write {u1, ..., un}
e7→ {v1, ..., vm} for an hyperedge e such that in(e) =

{u1, ..., un} and out(e) = {v1, ..., vm}.

In case inputs and outputs are ordered (when we have an ordered hypergraph), then
we write [u1, ..., un]

e7→ [v1, ..., vm] instead.

C.3 Special cases of hypergraphs

Multigraphs and graphs
§C.3.1 Definition (Multigraph). A multigraph is a hypergraph H such that rank(H) ≤ 2

(hyperedges only link two vertices or are loops over a vertex). Hyperedges are called
edges in the case of a multigraph.

§C.3.2 Definition (Graph). A loop in a hypergraph H = (V,E, end) is an edge e such that
|end(e)| = 1. A graph is a simple multigraph H without loop.

§C.3.3 Example. An example of multigraph is illustrated in Figure C.3.1a and an example
of graph is illustrated in Figure C.3.1b. The lines between vertices are edges. For
instance, in Figure C.3.1a, v1 and v5 are linked by some hyperedge e such that end(e) =
{v1, v5}, and v2 is connected to itself by a loop, which is a hyperedge e′ such that
end(e′) = {v2}.

In the directed case, we simply write arrows instead of lines between vertices.

Appendix C Graph theory 408

v1

v2
v3

v4

v5
v6

v7

(a) Example of (connected) multigraph.

v1

v2
v3

v4

v5
v6

v7

(b) Example of (connected) graph.

Figure C.3.1: Example of special cases of hypergraph.

§C.3.4 Notation. We write u e7→ v for a directed edge e such that in(e) = u and out(e) = v.

Bipartite multigraph

A bipartite multigraph is a multigraph in which the set of vertices can be divided into
two disjoint parts such that all edges link an element from one part to the other.

§C.3.5 Definition (Bipartite multigraph). A bipartite multigraph G = (V,E, end) is a multi-
graph (V,E) such that V = V1] V2 and for each e ∈ E, we have end(e) = {v1, v2}
such that v1 ∈ V1 and v2 ∈ V2.

Square grid graph
§C.3.6 Definition (Line graph). A line graph or path graph is a graph G = (V,E, end) where

V is an ordered sequence of vertices [v1, ..., vn] with n ≥ 1 and E is an ordered sequence
of edges [e1, ..., en−1] such that vi, vi+1 ∈ end(ei).

§C.3.7 Definition (Cartesian product of graphs). Let

G = (VG,HG, endG) and G′ = (VG′ ,HG′ , endG′)

be two graphs. Their cartesian product is the graph G□G′ = (VG□G′ , EG□G′ , endG□G′)
such that VG□G′ = VG×VG′ and two vertices (u, v) and (u′, v′) are adjacent when either
u = u′ and v is adjacent to v′, or v = v′ and u is adjacent to u′.

§C.3.8 Definition (Square grid graph). Let G be a line graph of size n. The associated grid
graph is given by the graph product G□G.

Appendix C Graph theory 409

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0 1 2 30 1 2 30 1 2 30 1 2 3

(a) Two line/path graphs.

(0, 0)

(0, 1)

(0, 2)

(0, 3)

(1, 0)

(1, 1)

(1, 2)

(1, 3)

(2, 0)

(2, 1)

(2, 2)

(2, 3)

(3, 0)

(3, 1)

(3, 2)

(3, 3)

(b) Result of the product of the two line
graphs: a square grid graph.

Figure C.3.2: Example of square grid graph.

An example of line graph and grid graph is given in Figure C.3.2. Grid graphs can be
used to represent a finite subset of a set E2 and more typically, the plane Z2.

Appendix D

Transcendental aesthetics

In this section, I propose to revisit Kant’s transcendental aesthetics in light of Girard’s
transcendental syntax. You will find a sequence of pictorial entities accessible through
the pure intuition of (pixel) space and (waste of) time. It could be made into an NFT
collection but I will freely share these pieces of art instead. It is inspired by Girard’s
“pure waste of paper” [Gir01, Appendix A]. This section itself may be seen as a pure
waste of paper as well.

[+a(X),+b(X)]

Identity.
[−a(X), a(X)] + [−b(X), b(X)]

Test for identity.

Appendix D Transcendental aesthetics 411

[−ω(X),+ω(f(X))]

Black hole.

[+a(X),+b(X)] + [−c(X),−d(X)] + [+e(X),−f(X)]

Adapters.

[+nat(0)] + [−nat(X),+nat(s(X))] + [−nat(X), nat(X)]

Natural numbers.

Appendix D Transcendental aesthetics 412

[+a(X),+b(X)] +
[−a(X),−b(X), 1]

Rhizome.

[+a(+b(t))] + [−a(X), X]

True digging.

[...,+a(X)] + [−a(X),−b(X)] + [+b(X), ...]

Mutual understanding.

The Holy Quaternity of Logic.

Appendix D Transcendental aesthetics 413

The Synthetic Compass.

Appendix D Transcendental aesthetics 414

J Menu de Maestracci j

-10% de réduction pour les chercheurs en informatique théorique

Entrée – 4€

Pâtes salées avant ébullition ou
Salade de connecteurs Broccoli (sauce à la Tarski) ou

Camembert mou à la Frege

Plat – 14€

Viande au feu classique (à la moutarde de montre) ou
Steak tartare linéaire (⋆ spécialité du chef)

Dessert (sorbet sémantique) – 5€

Parfum poire ou
Parfum poire+vanille+lait ou
Sorbet chaud à la tortue ou

Sorbet de petit salé aux lentilles

Boissons – Gratuit
(à volonté avec carte de fidélité sinon un seul service)

Bière 1L
Vin 1L

Maestracci’s menu.

Appendix D Transcendental aesthetics 415

• Pâtes salées avant ébullition : “Le fantôme de la transparence”;

• Salade de connecteurs Broccoli : “On the meaning of logical rules I : syntax vs.
semantics”;

• Camembert mou à la Frege : “Proofs and Types”;

• Moutarde de montre : “Mustard watches, an integrated approach to time and food”;

• Viande au feu classique : “Shrodinger’s cut”;

• Steak tartare linéaire : “Shrodinger’s cut”;

• Sorbet sémantique : “La syntaxe transcendantale, un manifeste”.

References for Maestracci’s menu.

Appendix D Transcendental aesthetics 416

Vulcan forging the Thunderbolts of Jupiter (Rubens)

References

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: a mod-
ern approach. Cambridge University Press, 2009. doi:10.1017/
CBO9780511804090.

[AB14] Clément Aubert and Marc Bagnol. Unification and logarithmic space.
In Rewriting and Typed Lambda Calculi, pages 77–92. Springer, 2014.
doi:10.1007/978-3-319-08918-8_6.

[ABCJ98] David Albrecht, Frank A. Bäuerle, John N. Crossley, and John S. Jeavons.
Curry-Howard terms for linear logic, volume 61. Springer, 1998. URL:
http://www.jstor.org/stable/20016001.

[Abe06] Paul Abelson. The seven liberal arts: A study in mediaeval culture. Teach-
ers’ College, Columbia University, 1906.

[Abr91] V. Michele Abrusci. Phase semantics and sequent calculus for pure non-
commutative classical linear propositional logic. The Journal of Symbolic
Logic, 56(4):1403–1451, 1991. doi:10.2307/2275485.

[Abr94] Samson Abramsky. Proofs as processes. Theoretical Computer
Science, 135(1):5–9, 1994. URL: https://www.sciencedirect.com/
science/article/pii/0304397594001030, doi:https://doi.org/10.
1016/0304-3975(94)00103-0.

[Abr16] Samson Abramsky. Information, processes and games. Philosophy of
Information, 2016. URL: https://arxiv.org/abs/1604.02603, doi:10.
48550/arXiv.1604.02603.

[ABS16] Clément Aubert, Marc Bagnol, and Thomas Seiller. Unary resolution:
Characterizing PTIME. In International Conference on Foundations of
Software Science and Computation Structures, pages 373–389. Springer,
2016. doi:10.1007/978-3-662-49630-5_22.

[Acc18] Beniamino Accattoli. Proof nets and the linear substitution calculus. In
International Colloquium on Theoretical Aspects of Computing, pages 37–
61. Springer, 2018. doi:10.1007/978-3-030-02508-3_3.

[ACCL91] Martin Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques
Lévy. Explicit substitutions. Journal of functional program-
ming, 1(4):375–416, 1991. URL: https://www.cambridge.org/

https://doi.org/10.1017/CBO9780511804090
https://doi.org/10.1017/CBO9780511804090
https://doi.org/10.1007/978-3-319-08918-8_6
http://www.jstor.org/stable/20016001
https://doi.org/10.2307/2275485
https://www.sciencedirect.com/science/article/pii/0304397594001030
https://www.sciencedirect.com/science/article/pii/0304397594001030
https://doi.org/https://doi.org/10.1016/0304-3975(94)00103-0
https://doi.org/https://doi.org/10.1016/0304-3975(94)00103-0
https://arxiv.org/abs/1604.02603
https://doi.org/10.48550/arXiv.1604.02603
https://doi.org/10.48550/arXiv.1604.02603
https://doi.org/10.1007/978-3-662-49630-5_22
https://doi.org/10.1007/978-3-030-02508-3_3
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/explicit-substitutions/C1B1AFAE8F34C953C1B2DF3C2D4C2125

References 418

core/journals/journal-of-functional-programming/article/
explicit-substitutions/C1B1AFAE8F34C953C1B2DF3C2D4C2125,
doi:10.1017/S0956796800000186.

[ACJ97] David Albrecht, John N Crossley, and John S. Jeavons. New
Curry-Howard terms for full linear logic. Theoretical com-
puter science, 185(2):217–235, 1997. URL: https://www.
sciencedirect.com/science/article/pii/S0304397597000443,
doi:10.1016/S0304-3975(97)00044-3.

[AJ94] Samson Abramsky and Radha Jagadeesan. Games and full completeness
for multiplicative linear logic. The Journal of Symbolic Logic, 59(2):543–
574, 1994. doi:10.2307/2275407.

[AK12] Jesse Alama and Johannes Korbmacher. The lambda calculus. 2012. URL:
https://plato.stanford.edu/entries/lambda-calculus/.

[AL95] Andrea Asperti and Cosimo Laneve. Paths, computations and la-
bels in the λ-calculus. Theoretical Computer Science, 142(2):277–297,
1995. URL: https://www.sciencedirect.com/science/article/pii/
0304397594002797, doi:10.1016/0304-3975(94)00279-7.

[AM20] Matteo Acclavio and Roberto Maieli. Generalized connectives for mul-
tiplicative linear logic. In 28th EACSL Annual Conference on Com-
puter Science Logic (CSL 2020). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2020. URL: https://drops.dagstuhl.de/opus/volltexte/
2020/11649/, doi:10.4230/LIPIcs.CSL.2020.6.

[Ama16] Roberto Amadio. Operational methods in semantics. 2016. URL: https:
//hal.science/cel-01422101v2/.

[And76] Andrews. Refutations by matings. IEEE transactions on computers,
100(8):801–807, 1976. URL: https://ieeexplore.ieee.org/document/
1674698, doi:10.1109/TC.1976.1674698.

[And92] Jean-Marc Andreoli. Logic programming with focusing proofs in linear
logic. Journal of logic and computation, 2(3):297–347, 1992. doi:doi.
org/10.1093/logcom/2.3.297.

[AP14] V. Michele Abrusci and Paolo Pistone. On transcendental syntax: A
kantian program for logic? 2014. URL: https://www.academia.edu/
10495057/On_Trascendental_syntax_a_Kantian_program_for_logic.

[AR99] V. Michele Abrusci and Paul Ruet. Non-commutative logic I: the mul-
tiplicative fragment. Annals of pure and applied logic, 101(1):29–64,
1999. URL: https://www.sciencedirect.com/science/article/pii/
S0168007299000147, doi:10.1016/S0168-0072(99)00014-7.

https://www.cambridge.org/core/journals/journal-of-functional-programming/article/explicit-substitutions/C1B1AFAE8F34C953C1B2DF3C2D4C2125
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/explicit-substitutions/C1B1AFAE8F34C953C1B2DF3C2D4C2125
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/explicit-substitutions/C1B1AFAE8F34C953C1B2DF3C2D4C2125
https://doi.org/10.1017/S0956796800000186
https://www.sciencedirect.com/science/article/pii/S0304397597000443
https://www.sciencedirect.com/science/article/pii/S0304397597000443
https://doi.org/10.1016/S0304-3975(97)00044-3
https://doi.org/10.2307/2275407
https://plato.stanford.edu/entries/lambda-calculus/
https://www.sciencedirect.com/science/article/pii/0304397594002797
https://www.sciencedirect.com/science/article/pii/0304397594002797
https://doi.org/10.1016/0304-3975(94)00279-7
https://drops.dagstuhl.de/opus/volltexte/2020/11649/
https://drops.dagstuhl.de/opus/volltexte/2020/11649/
https://doi.org/10.4230/LIPIcs.CSL.2020.6
https://hal.science/cel-01422101v2/
https://hal.science/cel-01422101v2/
https://ieeexplore.ieee.org/document/1674698
https://ieeexplore.ieee.org/document/1674698
https://doi.org/10.1109/TC.1976.1674698
https://doi.org/doi.org/10.1093/logcom/2.3.297
https://doi.org/doi.org/10.1093/logcom/2.3.297
https://www.academia.edu/10495057/On_Trascendental_syntax_a_Kantian_program_for_logic
https://www.academia.edu/10495057/On_Trascendental_syntax_a_Kantian_program_for_logic
https://www.sciencedirect.com/science/article/pii/S0168007299000147
https://www.sciencedirect.com/science/article/pii/S0168007299000147
https://doi.org/10.1016/S0168-0072(99)00014-7

References 419

[AS16a] Clément Aubert and Thomas Seiller. Characterizing co-NL by a
group action. Mathematical Structures in Computer Science, 26(4):606–
638, 2016. URL: https://hal.science/hal-01005705/, doi:10.1017/
S0960129514000267.

[AS16b] Clément Aubert and Thomas Seiller. Logarithmic space and permuta-
tions. Information and Computation, 248:2–21, 2016. URL: https://www.
sciencedirect.com/science/article/pii/S0890540115001364, doi:
10.1016/j.ic.2014.01.018.

[Bag14] Marc Bagnol. On the resolution semiring. PhD thesis, Aix-Marseille
Université, 2014. URL: https://www.normalesup.org/~bagnol/phd/
these_screen.pdf.

[Bar91] Michael Barr. *-autonomous categories and linear logic. Mathemati-
cal Structures in Computer Science, 1(2):159–178, 1991. doi:10.1017/
S0960129500001274.

[Bar01] Chris Barker. Iota and Jot: the simplest languages? The Eso-
teric Programming Languages Webring, 2001. URL: http://semarch.
linguistics.fas.nyu.edu/barker/Iota/.

[Bar21] Davide Barbarossa. Towards a resource based approximation theory of
programs. PhD thesis, Université Sorbonne Paris Nord, 2021. URL:
https://theses.hal.science/tel-03886068v1.

[BC06] Normand Baillargeon and Charb. Petit cours d’autodéfense intellectuelle.
Lux, 2006.

[BC18] Mikołaj Bojańczyk and Wojciech Czerwiński. Automata toolbox. 2018.

[BDS15] Marc Bagnol, Amina Doumane, and Alexis Saurin. On the dependencies
of logical rules. In International Conference on Foundations of Software
Science and Computation Structures, pages 436–450. Springer, 2015. doi:
10.1007/978-3-662-46678-0_28.

[Bef06] Emmanuel Beffara. A concurrent model for linear logic. Electronic Notes
in Theoretical Computer Science, 155:147–168, 2006. URL: https://www.
sciencedirect.com/science/article/pii/S1571066106001927, doi:
10.1016/j.entcs.2005.11.055.

[Bel62] Nuel D. Belnap. Tonk, plonk and plink. Analysis, 22(6):130–134, 1962.
doi:10.2307/3326862.

[Ber66] Robert Berger. The undecidability of the domino problem. American
Mathematical Soc., 1966. doi:10.1090/MEMO/0066.

[BF97] Cesare Burali-Forti. Una questione sui numeri transfiniti. Rendiconti del
Circolo Matematico di Palermo (1884-1940), 11(1):154–164, 1897. doi:
10.1007/BF03015911.

https://hal.science/hal-01005705/
https://doi.org/10.1017/S0960129514000267
https://doi.org/10.1017/S0960129514000267
https://www.sciencedirect.com/science/article/pii/S0890540115001364
https://www.sciencedirect.com/science/article/pii/S0890540115001364
https://doi.org/10.1016/j.ic.2014.01.018
https://doi.org/10.1016/j.ic.2014.01.018
https://www.normalesup.org/~bagnol/phd/these_screen.pdf
https://www.normalesup.org/~bagnol/phd/these_screen.pdf
https://doi.org/10.1017/S0960129500001274
https://doi.org/10.1017/S0960129500001274
http://semarch.linguistics.fas.nyu.edu/barker/Iota/
http://semarch.linguistics.fas.nyu.edu/barker/Iota/
https://theses.hal.science/tel-03886068v1
https://doi.org/10.1007/978-3-662-46678-0_28
https://doi.org/10.1007/978-3-662-46678-0_28
https://www.sciencedirect.com/science/article/pii/S1571066106001927
https://www.sciencedirect.com/science/article/pii/S1571066106001927
https://doi.org/10.1016/j.entcs.2005.11.055
https://doi.org/10.1016/j.entcs.2005.11.055
https://doi.org/10.2307/3326862
https://doi.org/10.1090/MEMO/0066
https://doi.org/10.1007/BF03015911
https://doi.org/10.1007/BF03015911

References 420

[BF11] Michele Basaldella and Claudia Faggian. Ludics with repetitions (expo-
nentials, interactive types and completeness). Logical Methods in Com-
puter Science, 7, 2011. URL: https://lmcs.episciences.org/1095,
doi:10.2168/LMCS-7(2:13)2011.

[Bib13] Wolfgang Bibel. Automated theorem proving. Springer Science & Business
Media, 2013. doi:10.1007/978-3-322-90102-6.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking.
MIT press, 2008.

[Bla92] Andreas Blass. A game semantics for linear logic. Annals of
Pure and Applied logic, 56(1-3):183–220, 1992. URL: https://www.
sciencedirect.com/science/article/pii/0168007292900739, doi:
10.1016/0168-0072(92)90073-9.

[Bla98] Deborah L. Black. Logic in Islamic philosophy. Routledge Encyclopedia of
Philosophy, 5:706–13, 1998. doi:10.4324/9780415249126-H017-1.

[BN98] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge
university press, 1998. doi:10.1017/CBO9781139172752.

[Boc61] Józef Maria Bochenski. A history of formal logic. University of
Notre Dame Press, 1961. URL: https://circulosemiotico.files.
wordpress.com/2012/10/historyofformall00boch.pdf.

[BP84] Paul Benacerraf and Hilary Putnam. Philosophy of mathematics: Selected
readings. Cambridge University Press, 1984.

[BP99] Patrick Baillot and Marco Pedicini. Elementary complexity and geom-
etry of interaction. In Jean-Yves Girard, editor, Typed Lambda Calculi
and Applications, pages 25–33, Berlin, Heidelberg, 1999. Springer Berlin
Heidelberg.

[Brü04] Kai Brünnler. Deep inference and symmetry in classical proofs. Lo-
gos Verlag Berlin, 2004. URL: https://iccl.inf.tu-dresden.de/web/
Phdthesis3005/en.

[BT09] Michele Basaldella and Kazushige Terui. On the meaning of logical com-
pleteness. In International Conference on Typed Lambda Calculi and Ap-
plications, pages 50–64. Springer, 2009. URL: https://arxiv.org/abs/
1011.1625, doi:10.48550/arXiv.1011.1625.

[Bur00] Stanley Burris. The laws of Boole’s thought. Preprint, 2000.

[CC23] Simon Castellan and Pierre Clairambault. The geometry of causality:
Multi-token geometry of interaction and its causal unfolding. Proceed-
ings of the ACM on Programming Languages, 7(POPL):689–717, 2023.
URL: https://dl.acm.org/doi/abs/10.1145/3571217, doi:10.1145/
3571217.

https://lmcs.episciences.org/1095
https://doi.org/10.2168/LMCS-7(2:13)2011
https://doi.org/10.1007/978-3-322-90102-6
https://www.sciencedirect.com/science/article/pii/0168007292900739
https://www.sciencedirect.com/science/article/pii/0168007292900739
https://doi.org/10.1016/0168-0072(92)90073-9
https://doi.org/10.1016/0168-0072(92)90073-9
https://doi.org/10.4324/9780415249126-H017-1
https://doi.org/10.1017/CBO9781139172752
https://circulosemiotico.files.wordpress.com/2012/10/historyofformall00boch.pdf
https://circulosemiotico.files.wordpress.com/2012/10/historyofformall00boch.pdf
https://iccl.inf.tu-dresden.de/web/Phdthesis3005/en
https://iccl.inf.tu-dresden.de/web/Phdthesis3005/en
https://arxiv.org/abs/1011.1625
https://arxiv.org/abs/1011.1625
https://doi.org/10.48550/arXiv.1011.1625
https://dl.acm.org/doi/abs/10.1145/3571217
https://doi.org/10.1145/3571217
https://doi.org/10.1145/3571217

References 421

[CDG+97] Hubert Comon, Max Dauchet, Remi Gilleron, Florent Jacquemard, Denis
Lugiez, Christof Löding, Sophie Tison, and Marc Tommasi. Tree automata
techniques and applications. Available online since, 1997. URL: https:
//inria.hal.science/hal-03367725.

[Chm09] Janusz Chmielewski. Language and Logic in Ancient China: Collected
Papers on the Chinese Language and Logic. Warsaw: PAN, 2009.

[Chu32] Alonzo Church. A set of postulates for the foundation of logic. Annals
of mathematics, pages 346–366, 1932. URL: https://www.jstor.org/
stable/1968337, doi:10.2307/1968337.

[Chu40] Alonzo Church. A formulation of the simple theory of types. The journal
of symbolic logic, 5(2):56–68, 1940. doi:10.2307/2266170.

[CI96] Karel Culik II. An aperiodic set of 13 Wang tiles. Dis-
crete Mathematics, 160(1-3):245–251, 1996. URL: https://www.
sciencedirect.com/science/article/pii/S0012365X96001185, doi:
10.1016/S0012-365X(96)00118-5.

[Col58] Henry Thomas Colebrooke. Essays on the Religion and Philosophy of the
Hindus. Williams and Norgate, 1858.

[Con22] Sidney Congard. La logique face à l’arbitraire. 2022. URL: https://hal.
science/hal-03689001/.

[CR96] Alain Colmerauer and Philippe Roussel. The birth of Prolog. In History
of Programming Languages—II, page 331–367. Association for Computing
Machinery, New York, NY, USA, 1996. URL: https://dl.acm.org/doi/
10.1145/234286.1057820, doi:10.1145/234286.1057820.

[Cur34] Haskell B. Curry. Functionality in combinatory logic. Proceedings
of the National Academy of Sciences of the United States of Amer-
ica, 20(11):584, 1934. URL: https://www.pnas.org/doi/pdf/10.1073/
pnas.20.11.584, doi:10.1073/pnas.20.11.584.

[Cur03] Pierre-Louis Curien. Symmetry and interactivity in programming. Bul-
letin of Symbolic Logic, pages 169–180, 2003. URL: https://www.jstor.
org/stable/3094788.

[Cur05a] Pierre-Louis Curien. Introduction to linear logic and ludics, part I. arXiv
preprint cs/0501035, 2005. URL: https://arxiv.org/abs/cs/0501035,
doi:10.48550/arXiv.cs/0501035.

[Cur05b] Pierre-Louis Curien. Introduction to linear logic and ludics, part II. arXiv
preprint cs/0501039, 2005. URL: https://arxiv.org/abs/cs/0501039,
doi:10.48550/arXiv.cs/0501039.

https://inria.hal.science/hal-03367725
https://inria.hal.science/hal-03367725
https://www.jstor.org/stable/1968337
https://www.jstor.org/stable/1968337
https://doi.org/10.2307/1968337
https://doi.org/10.2307/2266170
https://www.sciencedirect.com/science/article/pii/S0012365X96001185
https://www.sciencedirect.com/science/article/pii/S0012365X96001185
https://doi.org/10.1016/S0012-365X(96)00118-5
https://doi.org/10.1016/S0012-365X(96)00118-5
https://hal.science/hal-03689001/
https://hal.science/hal-03689001/
https://dl.acm.org/doi/10.1145/234286.1057820
https://dl.acm.org/doi/10.1145/234286.1057820
https://doi.org/10.1145/234286.1057820
https://www.pnas.org/doi/pdf/10.1073/pnas.20.11.584
https://www.pnas.org/doi/pdf/10.1073/pnas.20.11.584
https://doi.org/10.1073/pnas.20.11.584
https://www.jstor.org/stable/3094788
https://www.jstor.org/stable/3094788
https://arxiv.org/abs/cs/0501035
https://doi.org/10.48550/arXiv.cs/0501035
https://arxiv.org/abs/cs/0501039
https://doi.org/10.48550/arXiv.cs/0501039

References 422

[CVV21] Kostia Chardonnet, Benoît Valiron, and Renaud Vilmart. Geome-
try of Interaction for ZX-Diagrams. In Filippo Bonchi and Simon J.
Puglisi, editors, 46th International Symposium on Mathematical Foun-
dations of Computer Science (MFCS 2021), volume 202 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 30:1–30:16,
Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für In-
formatik. URL: https://drops.dagstuhl.de/opus/volltexte/2021/
14470, doi:10.4230/LIPIcs.MFCS.2021.30.

[Dan90] Vincent Danos. La Logique Linéaire appliquée à l’étude de divers pro-
cessus de normalisation (principalement du Lambda-calcul). PhD thesis,
Paris 7, 1990. URL: https://perso.ens-lyon.fr/pierre.lescanne/
PUBLICATIONS/DanosPhD.pdf.

[Dav58] Martin Davis. Computability and Unsolvability. 1982 ed, 1958. doi:
10.2307/2273892.

[DC18] Daniel De Carvalho. Execution time of λ-terms via denotational semantics
and intersection types. Mathematical Structures in Computer Science,
28(7):1169–1203, 2018. URL: https://arxiv.org/abs/0905.4251, doi:
10.48550/arXiv.0905.4251.

[DCK97] Roberto Di Cosmo and Delia Kesner. Strong normalization of explicit
substitutions via cut elimination in proof nets. In Proceedings of Twelfth
Annual IEEE Symposium on Logic in Computer Science, pages 35–46.
IEEE, 1997. URL: https://ieeexplore.ieee.org/document/614927,
doi:10.1109/LICS.1997.614927.

[DCKP03] Roberto Di Cosmo, Delia Kesner, and Emmanuel Polonovski. Proof nets
and explicit substitutions. Mathematical Structures in Computer Science,
13(3):409, 2003. doi:10.1017/S0960129502003791.

[DEGV01] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov.
Complexity and expressive power of logic programming. ACM Comput.
Surv., 33(3):374–425, sep 2001. doi:10.1145/502807.502810.

[Des16] Joëlle Despeyroux. (mathematical) logic for systems biology.
In Computational Methods in Systems Biology, 2016. URL:
https://www.semanticscholar.org/paper/(Mathematical)
-Logic-for-Systems-Biology-(Invited-Despeyroux/
c4789e2f981ae3ad82f565cb3964993efccf5fe1, doi:10.1007/
978-3-319-45177-0_1.

[DFLO19] Joëlle Despeyroux, Amy Felty, Pietro Liò, and Carlos Olarte. A logical
framework for modelling breast cancer progression. In Madalena Chaves
and Manuel A. Martins, editors, Molecular Logic and Computational Syn-
thetic Biology, pages 121–141, Cham, 2019. Springer International Pub-
lishing. doi:10.1007/978-3-030-19432-1_8.

https://drops.dagstuhl.de/opus/volltexte/2021/14470
https://drops.dagstuhl.de/opus/volltexte/2021/14470
https://doi.org/10.4230/LIPIcs.MFCS.2021.30
https://perso.ens-lyon.fr/pierre.lescanne/PUBLICATIONS/DanosPhD.pdf
https://perso.ens-lyon.fr/pierre.lescanne/PUBLICATIONS/DanosPhD.pdf
https://doi.org/10.2307/2273892
https://doi.org/10.2307/2273892
https://arxiv.org/abs/0905.4251
https://doi.org/10.48550/arXiv.0905.4251
https://doi.org/10.48550/arXiv.0905.4251
https://ieeexplore.ieee.org/document/614927
https://doi.org/10.1109/LICS.1997.614927
https://doi.org/10.1017/S0960129502003791
https://doi.org/10.1145/502807.502810
https://www.semanticscholar.org/paper/(Mathematical)-Logic-for-Systems-Biology-(Invited-Despeyroux/c4789e2f981ae3ad82f565cb3964993efccf5fe1
https://www.semanticscholar.org/paper/(Mathematical)-Logic-for-Systems-Biology-(Invited-Despeyroux/c4789e2f981ae3ad82f565cb3964993efccf5fe1
https://www.semanticscholar.org/paper/(Mathematical)-Logic-for-Systems-Biology-(Invited-Despeyroux/c4789e2f981ae3ad82f565cb3964993efccf5fe1
https://doi.org/10.1007/978-3-319-45177-0_1
https://doi.org/10.1007/978-3-319-45177-0_1
https://doi.org/10.1007/978-3-030-19432-1_8

References 423

[Dij01] Edsger W. Dijkstra. Solution of a problem in concurrent programming
control. In Pioneers and Their Contributions to Software Engineering,
pages 289–294. Springer, 2001. doi:10.1145/365559.365617.

[DJS95] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. Lkq and
LKT: sequent calculi for second order logic based upon dual linear decom-
positions of classical implication. Advances in Linear Logic, 222:211–224,
1995. URL: https://www.semanticscholar.org/paper/LKQ-and-LKT%
3A-sequent-calculi-for-second-order-logic-Danos-Joinet/
20fb476610426c30608714e984a451cc1108c659.

[DLTY17] Ugo Dal Lago, Ryo Tanaka, and Akira Yoshimizu. The geometry of con-
current interaction: Handling multiple ports by way of multiple tokens. In
2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), pages 1–12. IEEE, 2017. URL: https://www.computer.org/
csdl/proceedings-article/lics/2017/08005112/12OmNwE9Ozy, doi:
10.1109/LICS.2017.8005112.

[DM60] Augustus De Morgan. Syllabus of a proposed system of logic. Walton and
Maberly, 1860.

[dMDF+20] Elisabetta de Maria, Joelle Despeyroux, Amy Felty, Pietro Lió, Carlos
Olarte, and Abdorrahim Bahrami. Computational logic for biomedicine
and neurosciences. ArXiV, 2020. URL: https://arxiv.org/abs/2007.
07571, doi:10.48550/arXiv.2007.07571.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for
quantification theory. Journal of the ACM (JACM), 7(3):201–215,
1960. URL: https://dl.acm.org/doi/10.1145/321033.321034, doi:
10.1145/321033.321034.

[DR89] Vincent Danos and Laurent Regnier. The structure of multiplicatives.
Archive for Mathematical logic, 28(3):181–203, 1989. doi:10.1007/
BF01622878.

[DR95] Vincent Danos and Laurent Regnier. Proof-nets and the hilbert space.
In Jean-Yves Girard, Yves Lafont, and LaurentEditors Regnier, editors,
Advances in Linear Logic, London Mathematical Society Lecture Note
Series, page 307–328. Cambridge University Press, 1995. doi:10.1017/
CBO9780511629150.016.

[DR99] Vincent Danos and Laurent Regnier. Reversible, irreversible and
optimal λ-machines. Theoretical Computer Science, 227(1-2):79–97,
1999. URL: https://www.sciencedirect.com/science/article/pii/
S0304397599000493, doi:10.1016/S0304-3975(99)00049-3.

https://doi.org/10.1145/365559.365617
https://www.semanticscholar.org/paper/LKQ-and-LKT%3A-sequent-calculi-for-second-order-logic-Danos-Joinet/20fb476610426c30608714e984a451cc1108c659
https://www.semanticscholar.org/paper/LKQ-and-LKT%3A-sequent-calculi-for-second-order-logic-Danos-Joinet/20fb476610426c30608714e984a451cc1108c659
https://www.semanticscholar.org/paper/LKQ-and-LKT%3A-sequent-calculi-for-second-order-logic-Danos-Joinet/20fb476610426c30608714e984a451cc1108c659
https://www.computer.org/csdl/proceedings-article/lics/2017/08005112/12OmNwE9Ozy
https://www.computer.org/csdl/proceedings-article/lics/2017/08005112/12OmNwE9Ozy
https://doi.org/10.1109/LICS.2017.8005112
https://doi.org/10.1109/LICS.2017.8005112
https://arxiv.org/abs/2007.07571
https://arxiv.org/abs/2007.07571
https://doi.org/10.48550/arXiv.2007.07571
https://dl.acm.org/doi/10.1145/321033.321034
https://doi.org/10.1145/321033.321034
https://doi.org/10.1145/321033.321034
https://doi.org/10.1007/BF01622878
https://doi.org/10.1007/BF01622878
https://doi.org/10.1017/CBO9780511629150.016
https://doi.org/10.1017/CBO9780511629150.016
https://www.sciencedirect.com/science/article/pii/S0304397599000493
https://www.sciencedirect.com/science/article/pii/S0304397599000493
https://doi.org/10.1016/S0304-3975(99)00049-3

References 424

[Duc09] Etienne Duchesne. La localisation en logique: géométrie de l’interaction
et sémantique dénotationnelle. PhD thesis, Université Aix-Marseille II,
2009. URL: https://www.theses.fr/2009AIX22080.

[Dum91] Michael Dummett. The logical basis of metaphysics. Harvard university
press, 1991.

[EIK09] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. An-
swer set programming: A primer. In Reasoning Web Interna-
tional Summer School, pages 40–110. Springer, 2009. doi:10.1007/
978-3-642-03754-2_2.

[EMJP19] Joanna Ellis-Monaghan, Nataša Jonoska, and Greta Pangborn. Tile-
based DNA nanostructures: mathematical design and problem encod-
ing. Algebraic and Combinatorial Computational Biology, pages 35–
60, 2019. URL: https://www.sciencedirect.com/science/article/
abs/pii/B9780128140666000027, doi:10.1016/B978-0-12-814066-6.
00002-7.

[EO91] Norbert Eisinger and Hans Jürgen Ohlbach. Deduction systems based
on resolution. 1991. URL: https://uir.unisa.ac.za/handle/10500/
24123.

[F+79] Gottlob Frege et al. Begriffsschrift, a formula language, modeled upon
that of arithmetic, for pure thought. From Frege to Gödel: A source book
in mathematical logic, 1931:1–82, 1879.

[Fac83] R. Lance Factor. What is the” logic” in buddhist logic? Philosophy East
and West, 33(2):183–188, 1983. URL: https://www.jstor.org/stable/
1399101, doi:10.2307/1399101.

[Fer01] José Ferreirós. The road to modern logic—an interpretation. Bulletin of
Symbolic Logic, 7(4):441–484, 2001. doi:10.2307/2687794.

[FF03] John Fuegi and Jo Francis. Lovelace & Babbage and the creation of
the 1843’notes’. IEEE Annals of the History of Computing, 25(4):16–26,
2003. URL: https://ieeexplore.ieee.org/document/1253887, doi:
10.1109/MAHC.2003.1253887.

[FPQ21] Christophe Fouqueré, Jean-Jacques Pinto, and Myriam Quatrini. In-
coherences in dialogues and their formalization focus on dialogues with
schizophrenic individuals. In (In) coherence of Discourse, pages 91–115.
Springer, 2021. URL: https://sorbonne-paris-nord.hal.science/
hal-03660353/, doi:10.1007/978-3-030-71434-5_5.

[FR94] Arnaud Fleury and Christian Retoré. The mix rule. Mathematical
Structures in Computer Science, 4(2):273–285, 1994. doi:10.1017/
S0960129500000451.

https://www.theses.fr/2009AIX22080
https://doi.org/10.1007/978-3-642-03754-2_2
https://doi.org/10.1007/978-3-642-03754-2_2
https://www.sciencedirect.com/science/article/abs/pii/B9780128140666000027
https://www.sciencedirect.com/science/article/abs/pii/B9780128140666000027
https://doi.org/10.1016/B978-0-12-814066-6.00002-7
https://doi.org/10.1016/B978-0-12-814066-6.00002-7
https://uir.unisa.ac.za/handle/10500/24123
https://uir.unisa.ac.za/handle/10500/24123
https://www.jstor.org/stable/1399101
https://www.jstor.org/stable/1399101
https://doi.org/10.2307/1399101
https://doi.org/10.2307/2687794
https://ieeexplore.ieee.org/document/1253887
https://doi.org/10.1109/MAHC.2003.1253887
https://doi.org/10.1109/MAHC.2003.1253887
https://sorbonne-paris-nord.hal.science/hal-03660353/
https://sorbonne-paris-nord.hal.science/hal-03660353/
https://doi.org/10.1007/978-3-030-71434-5_5
https://doi.org/10.1017/S0960129500000451
https://doi.org/10.1017/S0960129500000451

References 425

[Fre82] Gottlob Frege. Ueber die wiffenfchaftliche Berechtigung einer Begriffs-
fchrift. Zeitschrift für philosophie und philosophische Kritik: vormals
Fichte-Ulricische Zeitschrift, 81:48, 1882.

[Fri75] Harvey Friedman. Some systems of second order arithmetic and their use.
In Proceedings of the international congress of mathematicians (Vancou-
ver, BC, 1974), volume 1, pages 235–242, 1975.

[Fri76] Harvey M. Friedman. Systems on second order arithmetic with restricted
induction I, II. J. Symb. Logic, 41:557–559, 1976.

[Fro00] Bertram Fronhöfer. Proof structures and matrix graphs. Intellectics and
Computational Logic: Papers in Honor of Wolfgang Bibel, pages 159–173,
2000. doi:10.1007/978-94-015-9383-0_10.

[FY19] Yosuke Fukuda and Akira Yoshimizu. A linear-logical reconstruction of
intuitionistic modal logic S4. ArXiV, 2019. URL: https://arxiv.org/
abs/1904.10605, doi:10.48550/arXiv.1904.10605.

[GAL92a] Georges Gonthier, Martín Abadi, and Jean-Jacques Lévy. The geometry
of optimal lambda reduction. In Proceedings of the 19th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
15–26, 1992. URL: https://dl.acm.org/doi/abs/10.1145/143165.
143172, doi:10.1145/143165.143172.

[GAL92b] Georges Gonthier, Martín Abadi, and Jean-Jacques Lévy. Linear logic
without boxes. In [1992] Proceedings of the Seventh Annual IEEE
Symposium on Logic in Computer Science, pages 223–234, 1992. doi:
10.1109/LICS.1992.185535.

[Gan13] Jonardon Ganeri. The philosophy of the Hindus: On the Nyāya and
Vaiśesika systems (1824). In Indian Logic, pages 34–66. Routledge, 2013.

[Gel08] Michael Gelfond. Answer sets. In Frank van Harmelen, Vladimir Lifs-
chitz, and Bruce Porter, editors, Handbook of Knowledge Representation,
volume 3 of Foundations of Artificial Intelligence, pages 285–316. Elsevier,
2008. URL: https://www.sciencedirect.com/science/article/pii/
S1574652607030076, doi:https://doi.org/10.1016/S1574-6526(07)
03007-6.

[Gen35a] Gerhard Gentzen. Untersuchungen über das logische Schließen. I. Math-
ematische zeitschrift, 39(1):176–210, 1935.

[Gen35b] Gerhard Gentzen. Untersuchungen über das logische Schließen. II. Math-
ematische Zeitschrift, 39(1):405–431, 1935. doi:10.1007/BF01201363.

[GG07] Alessio Guglielmi and Tom Gundersen. Normalisation control in deep
inference via atomic flows. ArXiV, 2007. URL: https://arxiv.org/
abs/0709.1205, doi:10.48550/arXiv.0709.1205.

https://doi.org/10.1007/978-94-015-9383-0_10
https://arxiv.org/abs/1904.10605
https://arxiv.org/abs/1904.10605
https://doi.org/10.48550/arXiv.1904.10605
https://dl.acm.org/doi/abs/10.1145/143165.143172
https://dl.acm.org/doi/abs/10.1145/143165.143172
https://doi.org/10.1145/143165.143172
https://doi.org/10.1109/LICS.1992.185535
https://doi.org/10.1109/LICS.1992.185535
https://www.sciencedirect.com/science/article/pii/S1574652607030076
https://www.sciencedirect.com/science/article/pii/S1574652607030076
https://doi.org/https://doi.org/10.1016/S1574-6526(07)03007-6
https://doi.org/https://doi.org/10.1016/S1574-6526(07)03007-6
https://doi.org/10.1007/BF01201363
https://arxiv.org/abs/0709.1205
https://arxiv.org/abs/0709.1205
https://doi.org/10.48550/arXiv.0709.1205

References 426

[Gim09] Stéphane Gimenez. Programmer, calculer et raisonner avec les réseaux de
la logique linéaire. PhD thesis, Université Paris-Diderot-Paris VII, 2009.
URL: https://theses.hal.science/tel-00629013/.

[Gir87a] Jean-Yves Girard. Linear logic. Theoretical computer science, 50(1):1–
101, 1987. URL: https://www.sciencedirect.com/science/article/
pii/0304397587900454, doi:10.1016/0304-3975(87)90045-4.

[Gir87b] Jean-Yves Girard. Multiplicatives. In G. Lolli, editor, Logic and Computer
Science: New Trends and Applications, pages 11–34. Rosenberg & Sellier,
1987.

[Gir88] Jean-Yves Girard. Normal functors, power series and λ-calculus. Annals
of Pure and Applied Logic, 37(2):129–177, 1988. URL: https://www.
sciencedirect.com/science/article/pii/0168007288900255, doi:
https://doi.org/10.1016/0168-0072(88)90025-5.

[Gir89a] Jean-Yves Girard. Geometry of interaction I: interpretation of sys-
tem F. In Studies in Logic and the Foundations of Mathematics,
volume 127, pages 221–260. Elsevier, 1989. URL: https://www.
sciencedirect.com/science/article/abs/pii/S0049237X08702714,
doi:10.1016/S0049-237X(08)70271-4.

[Gir89b] Jean-Yves Girard. Towards a geometry of interaction. Contemporary
Mathematics, 92(69-108):6, 1989.

[Gir91] Jean-Yves Girard. Quantifiers in linear logic II. Nuovi problemi della
logica e della filosofia della scienza, 2:1, 1991.

[Gir95] Jean-Yves Girard. Geometry of interaction III: Accommodating the ad-
ditives. In Proceedings of the Workshop on Advances in Linear Logic,
page 329–389, USA, 1995. Cambridge University Press. URL: https:
//girard.perso.math.cnrs.fr/GOI3.pdf.

[Gir96] Jean-Yves Girard. Proof-nets: the parallel syntax for proof-theory, chap-
ter 4, pages 95–123. Routledge, 1996. URL: https://girard.perso.
math.cnrs.fr/Proofnets.pdf.

[Gir98] Jean-Yves Girard. Light linear logic. Information and Computa-
tion, 143(2):175–204, 1998. URL: https://www.sciencedirect.
com/science/article/pii/S0890540198927006, doi:https:
//doi.org/10.1006/inco.1998.2700.

[Gir99] Jean-Yves Girard. On the meaning of logical rules I: syntax ver-
sus semantics. In Computational logic, pages 215–272. Springer, 1999.
URL: https://girard.perso.math.cnrs.fr/meaning1.pdf, doi:10.
1007/978-3-642-58622-4_7.

https://theses.hal.science/tel-00629013/
https://www.sciencedirect.com/science/article/pii/0304397587900454
https://www.sciencedirect.com/science/article/pii/0304397587900454
https://doi.org/10.1016/0304-3975(87)90045-4
https://www.sciencedirect.com/science/article/pii/0168007288900255
https://www.sciencedirect.com/science/article/pii/0168007288900255
https://doi.org/https://doi.org/10.1016/0168-0072(88)90025-5
https://doi.org/https://doi.org/10.1016/0168-0072(88)90025-5
https://www.sciencedirect.com/science/article/abs/pii/S0049237X08702714
https://www.sciencedirect.com/science/article/abs/pii/S0049237X08702714
https://doi.org/10.1016/S0049-237X(08)70271-4
https://girard.perso.math.cnrs.fr/GOI3.pdf
https://girard.perso.math.cnrs.fr/GOI3.pdf
https://girard.perso.math.cnrs.fr/Proofnets.pdf
https://girard.perso.math.cnrs.fr/Proofnets.pdf
https://www.sciencedirect.com/science/article/pii/S0890540198927006
https://www.sciencedirect.com/science/article/pii/S0890540198927006
https://doi.org/https://doi.org/10.1006/inco.1998.2700
https://doi.org/https://doi.org/10.1006/inco.1998.2700
https://girard.perso.math.cnrs.fr/meaning1.pdf
https://doi.org/10.1007/978-3-642-58622-4_7
https://doi.org/10.1007/978-3-642-58622-4_7

References 427

[Gir00] Jean-Yves Girard. On the meaning of logical rules II: multiplicatives and
additives. NATO ASI Series F Computer and Systems Sciences, 175:183–
212, 2000. URL: https://girard.perso.math.cnrs.fr/meaning2.pdf.

[Gir01] Jean-Yves Girard. Locus solum: From the rules of logic to the logic
of rules. Mathematical structures in computer science, 11(3):301, 2001.
doi:10.1017/S096012950100336X.

[Gir06] Jean-Yves Girard. Geometry of interaction IV: the feedback equation.
In Viggo Stoltenberg-Hansen and JoukoEditors Väänänen, editors, Logic
Colloquium ’03, Lecture Notes in Logic, page 76–117. Cambridge Univer-
sity Press, 2006. doi:10.1017/9781316755785.006.

[Gir07] Jean-Yves Girard. Truth, modality and intersubjectivity. Mathematical
structures in computer science, 17(6):1153–1167, 2007. doi:10.1017/
S0960129507006342.

[Gir11a] Jean-Yves Girard. The Blind Spot: lectures on logic. European Mathe-
matical Society, 2011.

[Gir11b] Jean-Yves Girard. Geometry of interaction V: logic in the hy-
perfinite factor. Theoretical Computer Science, 412(20):1860–1883,
2011. URL: https://www.sciencedirect.com/science/article/pii/
S0304397510007073, doi:10.1016/j.tcs.2010.12.016.

[Gir11c] Jean-Yves Girard. La syntaxe transcendantale, manifeste. 2011. URL:
https://girard.perso.math.cnrs.fr/syntran.pdf.

[Gir13a] Jean-Yves Girard. Geometry of interaction VI: a blueprint for transcen-
dental syntax. 2013.

[Gir13b] Jean-Yves Girard. Three lightings of logic (invited talk). In Computer
Science Logic 2013 (CSL 2013). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2013. URL: https://drops.dagstuhl.de/opus/volltexte/
2013/4185/, doi:10.4230/LIPIcs.CSL.2013.11.

[Gir16a] Jean-Yves Girard. Le fantôme de la transparence. Éditions Allia Paris,
2016.

[Gir16b] Jean-Yves Girard. Transcendental syntax II: non-deterministic case. 2016.
URL: https://girard.perso.math.cnrs.fr/trsy2.pdf.

[Gir17] Jean-Yves Girard. Transcendental syntax I: deterministic case.
Mathematical Structures in Computer Science, 27(5):827–849,
2017. URL: https://girard.perso.math.cnrs.fr/trsy1.pdf,
doi:10.1017/S0960129515000407.

[Gir18a] Jean-Yves Girard. La logique 2.0. 2018. URL: https://girard.perso.
math.cnrs.fr/logique2.0.pdf.

https://girard.perso.math.cnrs.fr/meaning2.pdf
https://doi.org/10.1017/S096012950100336X
https://doi.org/10.1017/9781316755785.006
https://doi.org/10.1017/S0960129507006342
https://doi.org/10.1017/S0960129507006342
https://www.sciencedirect.com/science/article/pii/S0304397510007073
https://www.sciencedirect.com/science/article/pii/S0304397510007073
https://doi.org/10.1016/j.tcs.2010.12.016
https://girard.perso.math.cnrs.fr/syntran.pdf
https://drops.dagstuhl.de/opus/volltexte/2013/4185/
https://drops.dagstuhl.de/opus/volltexte/2013/4185/
https://doi.org/10.4230/LIPIcs.CSL.2013.11
https://girard.perso.math.cnrs.fr/trsy2.pdf
https://girard.perso.math.cnrs.fr/trsy1.pdf
https://doi.org/10.1017/S0960129515000407
https://girard.perso.math.cnrs.fr/logique2.0.pdf
https://girard.perso.math.cnrs.fr/logique2.0.pdf

References 428

[Gir18b] Jean-Yves Girard. Transcendental syntax III: equality. 2018. URL: https:
//girard.perso.math.cnrs.fr/trsy3.pdf.

[Gir19] Jean-Yves Girard. Un tract anti-système. 2019. URL: https://girard.
perso.math.cnrs.fr/systeme.pdf.

[Gir20a] Jean-Yves Girard. Transcendental Syntax IV: Logic Without Systems,
pages 17–36. Springer International Publishing, Cham, 2020. doi:10.
1007/978-3-030-62077-6_2.

[Gir20b] Jean-Yves Girard. Un tract anti-système II: le monstre de Gila. 2020.
URL: https://girard.perso.math.cnrs.fr/gila.pdf.

[Göd31] Kurt Gödel. Über formal unentscheidbare sätze der Principia Mathemat-
ica und verwandter Systeme I. Monatshefte für mathematik und physik,
38(1):173–198, 1931. doi:10.1007/BF01700692.

[Gri89] Timothy G. Griffin. A formulae-as-type notion of control. In Proceed-
ings of the 17th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 47–58, 1989. URL: https://dl.acm.org/
doi/pdf/10.1145/96709.96714, doi:10.1145/96709.96714.

[Gue04] Stefano Guerrini. Proof nets and the lambda-calculus. Linear logic in
computer science, pages 65–118, 2004. doi:10.1017/CBO9780511550850.
003.

[Gug] Alessio Guglielmi. Deep inference and the calculus of structures. URL:
https://people.bath.ac.uk/ag248/p/CalcStrPR.pdf.

[Gur12] Yuri Gurevich. What is an algorithm? In SOFSEM 2012: Theory and
Practice of Computer Science: 38th Conference on Current Trends in
Theory and Practice of Computer Science, Spindleruv Mlyn, Czech Re-
public, January 21-27, 2012. Proceedings 38, pages 31–42. Springer, 2012.
doi:10.1007/978-3-642-27660-6_3.

[GW04] Dov M. Gabbay and John Hayden Woods. Handbook of the History of
Logic, volume 2009. Elsevier North-Holland, 2004.

[Ham21] Wendy Hammache. Contrôle du calcul et limites du sens: fonctions,
computation et types de G. Frege à A. Church. PhD thesis, Univer-
sité Lyon III, 2021. URL: https://scd-resnum.univ-lyon3.fr/out/
theses/2021_out_hammache_w.pdf.

[Har09] John Harrison. Handbook of practical logic and automated reasoning. Cam-
bridge University Press, 2009. URL: 10.1017/CBO9780511576430.

[Hed04] Shawn Hedman. A First Course in Logic: An introduction to model theory,
proof theory, computability, and complexity, volume 1. OUP Oxford, 2004.
doi:10.1093/oso/9780198529804.001.0001.

https://girard.perso.math.cnrs.fr/trsy3.pdf
https://girard.perso.math.cnrs.fr/trsy3.pdf
https://girard.perso.math.cnrs.fr/systeme.pdf
https://girard.perso.math.cnrs.fr/systeme.pdf
https://doi.org/10.1007/978-3-030-62077-6_2
https://doi.org/10.1007/978-3-030-62077-6_2
https://girard.perso.math.cnrs.fr/gila.pdf
https://doi.org/10.1007/BF01700692
https://dl.acm.org/doi/pdf/10.1145/96709.96714
https://dl.acm.org/doi/pdf/10.1145/96709.96714
https://doi.org/10.1145/96709.96714
https://doi.org/10.1017/CBO9780511550850.003
https://doi.org/10.1017/CBO9780511550850.003
https://people.bath.ac.uk/ag248/p/CalcStrPR.pdf
https://doi.org/10.1007/978-3-642-27660-6_3
https://scd-resnum.univ-lyon3.fr/out/theses/2021_out_hammache_w.pdf
https://scd-resnum.univ-lyon3.fr/out/theses/2021_out_hammache_w.pdf
10.1017/CBO9780511576430
https://doi.org/10.1093/oso/9780198529804.001.0001

References 429

[Her30] Jacques Herbrand. Recherches sur la théorie de la démonstration. PhD
thesis, Université de Paris, 1930. URL: https://eudml.org/doc/192791.

[HH16] Dominic Hughes and Willem Heijltjes. Conflict nets: Efficient locally
canonical MALL proof nets. In 2016 31st Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), pages 1–10, 2016. URL: https:
//ieeexplore.ieee.org/document/8576483.

[HM89] Jochen Hager and Martin Moser. An approach to parallel unification
using transputers. In GWAI-89 13th German Workshop on Artificial In-
telligence: Eringerfeld, 18.–22. September 1989, pages 83–91. Springer,
1989. URL: 10.1007/978-3-642-75100-4_10.

[HMOS08] Matthew Hague, Andrzej S. Murawski, C. H. Luke Ong, and Olivier Serre.
Collapsible pushdown automata and recursion schemes. In 2008 23rd
Annual IEEE Symposium on Logic in Computer Science, pages 452–461.
IEEE, 2008. URL: https://ieeexplore.ieee.org/document/4557934,
doi:10.1109/LICS.2008.34.

[Hor51] Alfred Horn. On sentences which are true of direct unions of algebras.
The Journal of Symbolic Logic, 16(1):14–21, 1951. URL: https://www.
jstor.org/stable/2268661.

[How80] William A. Howard. The formulae-as-types notion of construction. To
HB Curry: essays on combinatory logic, lambda calculus and formalism,
44:479–490, 1980.

[HR04] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and
reasoning about systems. Cambridge university press, 2004.

[HS97] Jaakko Hintikka and Gabriel Sandu. Game-theoretical semantics.
In Handbook of logic and language, pages 361–410. Elsevier, 1997.
URL: https://www.sciencedirect.com/science/article/abs/pii/
B9780444817143500096, doi:10.1016/B978-044481714-3/50009-6.

[HS03] Martin Hyland and Andrea Schalk. Glueing and orthogonality for
models of linear logic. Theoretical computer science, 294(1-2):183–231,
2003. URL: https://www.sciencedirect.com/science/article/pii/
S0304397501002419, doi:10.1016/S0304-3975(01)00241-9.

[HS06] Esfandiar Haghverdi and Philip Scott. A categorical model for the ge-
ometry of interaction. Theoretical Computer Science, 350(2-3):252–274,
2006. URL: https://www.sciencedirect.com/science/article/pii/
S0304397505006808, doi:10.1016/j.tcs.2005.10.028.

[HVG03] D. Hughes and R. Van Glabbeek. Proof nets for unit-free multiplicative-
additive linear logic (extended abstract). In 18th Annual IEEE Sym-
posium of Logic in Computer Science, 2003. Proceedings., pages 1–10,

https://eudml.org/doc/192791
https://ieeexplore.ieee.org/document/8576483
https://ieeexplore.ieee.org/document/8576483
10.1007/978-3-642-75100-4_10
https://ieeexplore.ieee.org/document/4557934
https://doi.org/10.1109/LICS.2008.34
https://www.jstor.org/stable/2268661
https://www.jstor.org/stable/2268661
https://www.sciencedirect.com/science/article/abs/pii/B9780444817143500096
https://www.sciencedirect.com/science/article/abs/pii/B9780444817143500096
https://doi.org/10.1016/B978-044481714-3/50009-6
https://www.sciencedirect.com/science/article/pii/S0304397501002419
https://www.sciencedirect.com/science/article/pii/S0304397501002419
https://doi.org/10.1016/S0304-3975(01)00241-9
https://www.sciencedirect.com/science/article/pii/S0304397505006808
https://www.sciencedirect.com/science/article/pii/S0304397505006808
https://doi.org/10.1016/j.tcs.2005.10.028

References 430

2003. URL: https://ieeexplore.ieee.org/document/1210039, doi:
10.1109/LICS.2003.1210039.

[iln90] Robin ilner. Functions as processes, pages 167–180. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 1990. doi:10.1007/BFb0032030.

[Imm86] Neil Immerman. Relational queries computable in polynomial time. In-
formation and Control, 68(1):86 – 104, 1986. doi:https://doi.org/10.
1016/S0019-9958(86)80029-8.

[Imm12] Neil Immerman. Descriptive complexity. Springer Science & Business
Media, 2012. doi:10.1007/978-1-4612-0539-5.

[Jae96] Peter Jaenecke. Elementary principles for representing knowledge. KO
KNOWLEDGE ORGANIZATION, 23(2):88–102, 1996. URL: https://
kr.org/proceedings/KR-1991-proceedings-scanned.pdf.

[JM05] Nataša Jonoska and Gregory L. McColm. A computational model for self-
assembling flexible tiles. In International Conference on Unconventional
Computation, pages 142–156. Springer, 2005. doi:10.1007/11560319_14.

[JM06] Nataša Jonoska and Gregory L. McColm. Flexible versus rigid tile assem-
bly. In International Conference on Unconventional Computation, pages
139–151. Springer, 2006. URL: https://link.springer.com/chapter/
10.1007/11839132_12, doi:10.1007/11839132_12.

[JMS11] Natasha Jonoska, Gregory L. McColm, and Ana Staninska. On stoichiom-
etry for the assembly of flexible tile DNA complexes. Natural Computing,
10(3):1121–1141, 2011. doi:10.1007/s11047-009-9169-1.

[Joi93] Jean-Baptiste Joinet. Etude de la normalisation du calcul des séquents
classique à travers la logique linéaire. PhD thesis, Paris 7, 1993. URL:
https://www.theses.fr/1993PA077066.

[JR15] Emmanuel Jeandel and Michael Rao. An aperiodic set of 11 Wang
tiles. ArXiV, 2015. URL: https://arxiv.org/abs/1506.06492, doi:
10.48550/arXiv.1506.06492.

[JS21] Jean-Baptiste Joinet and Thomas Seiller. From abstraction and indis-
cernibility to classification and types: revisiting Hermann Weyl’s the-
ory of ideal elements. Kagaku tetsugaku, 53(2):65–93, 2021. URL:
https://hal.science/hal-03128018v1/document.

[KCHM09] Jean-Louis Krivine, Pierre-Louis Curien, Hugo Herbelin, and Paul-André
Melliès. Interactive models of computation and program behavior.
Panorama et Synthèses, 27, 2009.

https://ieeexplore.ieee.org/document/1210039
https://doi.org/10.1109/LICS.2003.1210039
https://doi.org/10.1109/LICS.2003.1210039
https://doi.org/10.1007/BFb0032030
https://doi.org/https://doi.org/10.1016/S0019-9958(86)80029-8
https://doi.org/https://doi.org/10.1016/S0019-9958(86)80029-8
https://doi.org/10.1007/978-1-4612-0539-5
https://kr.org/proceedings/KR-1991-proceedings-scanned.pdf
https://kr.org/proceedings/KR-1991-proceedings-scanned.pdf
https://doi.org/10.1007/11560319_14
https://link.springer.com/chapter/10.1007/11839132_12
https://link.springer.com/chapter/10.1007/11839132_12
https://doi.org/10.1007/11839132_12
https://doi.org/10.1007/s11047-009-9169-1
https://www.theses.fr/1993PA077066
https://arxiv.org/abs/1506.06492
https://doi.org/10.48550/arXiv.1506.06492
https://doi.org/10.48550/arXiv.1506.06492
https://hal.science/hal-03128018v1/document

References 431

[Kit91] Hiroaki Kitano. Unification algorithms for massively parallel computers.
In Proceedings of the Second International Workshop on Parsing Tech-
nologies, pages 172–181. IEEE, 1991. URL: https://ieeexplore.ieee.
org/document/77189, doi:10.1109/PARBSE.1990.77189.

[KK71] Robert Kowalski and Donald Kuehner. Linear resolution with se-
lection function. Artificial Intelligence, 2(3-4):227–260, 1971. URL:
https://www.sciencedirect.com/science/article/abs/pii/
0004370271900129, doi:10.1016/0004-3702(71)90012-9.

[KKPS82] Norman Kretzmann, Anthony Kenny, Jan Pinborg, and Eleonore Stump.
The Cambridge history of later medieval philosophy: from the rediscovery
of Aristotle to the disintegration of scholasticism, 1100-1600. Cambridge
University Press, 1982. doi:10.1017/CHOL9780521226059.

[Knu99] Simo Knuuttila. Medieval theories of modality. 1999. URL: https:
//plato.stanford.edu/entries/modality-medieval/.

[Koe01] Teun Koetsier. On the prehistory of programmable machines: musical
automata, looms, calculators. Mechanism and Machine theory, 36(5):589–
603, 2001.

[Kow74] Robert Kowalski. Predicate logic as programming language. In IFIP
congress, volume 74, pages 569–544, 1974. URL: https://www-public.
imtbs-tsp.eu/~gibson/Teaching/Teaching-ReadingMaterial/
Kowalski74.pdf.

[Kow75] Robert Kowalski. A proof procedure using connection graphs. J. ACM,
22(4):572–595, oct 1975. URL: https://dl.acm.org/doi/10.1145/
321906.321919, doi:10.1145/321906.321919.

[Laf89] Yves Lafont. Interaction nets. In Proceedings of the 17th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
95–108. ACM, 1989. URL: https://dl.acm.org/doi/10.1145/96709.
96718, doi:10.1145/96709.96718.

[Laf95] Yves Lafont. From proof nets to interaction nets, page 225–248. London
Mathematical Society Lecture Note Series. Cambridge University Press,
1995. doi:10.1017/CBO9780511629150.012.

[Laf97] Yves Lafont. Interaction combinators. Information and Computation,
137(1):69–101, 1997. URL: https://www.sciencedirect.com/science/
article/pii/S0890540197926432, doi:10.1006/inco.1997.2643.

[Laf99] Yves Lafont. Linear logic pages. 1999. URL: http://iml.univ-mrs.fr/
~lafont/pub/llpages.pdf.

https://ieeexplore.ieee.org/document/77189
https://ieeexplore.ieee.org/document/77189
https://doi.org/10.1109/PARBSE.1990.77189
https://www.sciencedirect.com/science/article/abs/pii/0004370271900129
https://www.sciencedirect.com/science/article/abs/pii/0004370271900129
https://doi.org/10.1016/0004-3702(71)90012-9
https://doi.org/10.1017/CHOL9780521226059
https://plato.stanford.edu/entries/modality-medieval/
https://plato.stanford.edu/entries/modality-medieval/
https://www-public.imtbs-tsp.eu/~gibson/Teaching/Teaching-ReadingMaterial/Kowalski74.pdf
https://www-public.imtbs-tsp.eu/~gibson/Teaching/Teaching-ReadingMaterial/Kowalski74.pdf
https://www-public.imtbs-tsp.eu/~gibson/Teaching/Teaching-ReadingMaterial/Kowalski74.pdf
https://dl.acm.org/doi/10.1145/321906.321919
https://dl.acm.org/doi/10.1145/321906.321919
https://doi.org/10.1145/321906.321919
https://dl.acm.org/doi/10.1145/96709.96718
https://dl.acm.org/doi/10.1145/96709.96718
https://doi.org/10.1145/96709.96718
https://doi.org/10.1017/CBO9780511629150.012
https://www.sciencedirect.com/science/article/pii/S0890540197926432
https://www.sciencedirect.com/science/article/pii/S0890540197926432
https://doi.org/10.1006/inco.1997.2643
http://iml.univ-mrs.fr/~lafont/pub/llpages.pdf
http://iml.univ-mrs.fr/~lafont/pub/llpages.pdf

References 432

[Laf04] Yves Lafont. Soft linear logic and polynomial time. Theoretical computer
science, 318(1-2):163–180, 2004. URL: https://www.sciencedirect.
com/science/article/pii/S0304397503005231, doi:10.1016/j.tcs.
2003.10.018.

[Lam89] John Lamping. An algorithm for optimal lambda calculus reduction. In
Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages, pages 16–30, 1989. URL: https://dl.
acm.org/doi/pdf/10.1145/96709.96711, doi:10.1145/96709.96711.

[Lau99] Olivier Laurent. Polarized proof-nets: proof-nets for LC. In International
Conference on Typed Lambda Calculi and Applications, pages 213–227.
Springer, 1999. doi:10.1007/3-540-48959-2_16.

[Lau01] Olivier Laurent. A token machine for full geometry of interaction. In In-
ternational Conference on Typed Lambda Calculi and Applications, pages
283–297. Springer, 2001. doi:10.1007/3-540-45413-6_23.

[Lau03] Olivier Laurent. Polarized proof-nets and λµ-calculus. Theoreti-
cal Computer Science, 290(1):161–188, 2003. URL: https://www.
sciencedirect.com/science/article/pii/S0304397501002973, doi:
10.1016/S0304-3975(01)00297-3.

[Lec11] Alain Lecomte. Meaning, logic and ludics. World Scientific, 2011. doi:
10.1142/p670.

[Lei12] Alexander Leitsch. The resolution calculus. Springer Science & Business
Media, 2012. doi:10.1007/978-3-642-60605-2.

[Lév78] Jean-Jacques Lévy. Réductions correctes et optimales dans le lambda-
calcul. PhD thesis, Université Paris VII, 1978.

[LJBA01] Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-
change principle for program termination. In Proceedings of the 28th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 81–92, 2001. doi:10.1145/360204.360210.

[LLS09] James I. Lathrop, Jack H. Lutz, and Scott M. Summers. Strict self-
assembly of discrete Sierpinski triangles. Theoretical Computer Sci-
ence, 410(4-5):384–405, 2009. URL: https://www.sciencedirect.
com/science/article/pii/S030439750800724X, doi:10.1016/j.tcs.
2008.09.062.

[LM08] Olivier Laurent and Roberto Maieli. Cut elimination for monomial MALL
proof nets. In 2008 23rd Annual IEEE Symposium on Logic in Computer
Science, pages 486–497. IEEE, 2008. URL: https://ieeexplore.ieee.
org/document/4557937, doi:10.1109/LICS.2008.31.

https://www.sciencedirect.com/science/article/pii/S0304397503005231
https://www.sciencedirect.com/science/article/pii/S0304397503005231
https://doi.org/10.1016/j.tcs.2003.10.018
https://doi.org/10.1016/j.tcs.2003.10.018
https://dl.acm.org/doi/pdf/10.1145/96709.96711
https://dl.acm.org/doi/pdf/10.1145/96709.96711
https://doi.org/10.1145/96709.96711
https://doi.org/10.1007/3-540-48959-2_16
https://doi.org/10.1007/3-540-45413-6_23
https://www.sciencedirect.com/science/article/pii/S0304397501002973
https://www.sciencedirect.com/science/article/pii/S0304397501002973
https://doi.org/10.1016/S0304-3975(01)00297-3
https://doi.org/10.1016/S0304-3975(01)00297-3
https://doi.org/10.1142/p670
https://doi.org/10.1142/p670
https://doi.org/10.1007/978-3-642-60605-2
https://doi.org/10.1145/360204.360210
https://www.sciencedirect.com/science/article/pii/S030439750800724X
https://www.sciencedirect.com/science/article/pii/S030439750800724X
https://doi.org/10.1016/j.tcs.2008.09.062
https://doi.org/10.1016/j.tcs.2008.09.062
https://ieeexplore.ieee.org/document/4557937
https://ieeexplore.ieee.org/document/4557937
https://doi.org/10.1109/LICS.2008.31

References 433

[LMM88] J-L. Lassez, Michael J. Maher, and Kim Marriott. Unification revisited. In
Foundations of logic and functional programming, pages 67–113. Springer,
1988. doi:10.1007/3-540-19129-1_4.

[LP11] Giuseppe Longo and Thierry Paul. The mathematics of computing be-
tween logic and physics. In Computability in Context: Computation
and Logic in the Real World, pages 243–273. World Scientific, 2011.
doi:10.1142/9781848162778_0007.

[LQ09] Alain Lecomte and Myriam Quatrini. Ludics and its applications to
natural language semantics. In International Workshop on Logic, Lan-
guage, Information, and Computation, pages 242–255. Springer, 2009.
doi:10.1007/978-3-642-02261-6_20.

[LR03] Olivier Laurent and Laurent Regnier. About translations of classi-
cal logic into polarized linear logic. In 18th Annual IEEE Sympo-
sium of Logic in Computer Science, 2003. Proceedings., pages 11–20.
IEEE, 2003. URL: https://ieeexplore.ieee.org/document/1210040,
doi:10.1109/LICS.2003.1210040.

[LRM91] Jorge Lobo, Arcot Rajasekar, and Jack Minker. Semantics of horn and
disjunctive logic programs. Theoretical Computer Science, 86(1):93–106,
1991. URL: https://www.sciencedirect.com/science/article/pii/
030439759190006N, doi:10.1016/0304-3975(91)90006-N.

[LS10] Ugo Dal Lago and Ulrich Schöpp. Functional programming in sublinear
space. In European Symposium on Programming, pages 205–225. Springer,
2010. doi:10.1007/978-3-642-11957-6_12.

[Mar86] Christopher J. Martin. William’s machine. The Journal of Philosophy,
83(10):564–572, 1986. URL: http://www.jstor.org/stable/2026432,
doi:10.2307/2026432.

[Maz17] Damiano Mazza. Polyadic Approximations in Logic and Computation
(Habilitation thesis). PhD thesis, Université Paris 13, 2017. URL: https:
//www.lipn.fr/~mazza/papers/Habilitation.pdf.

[McL08] Colin McLarty. Theology and its discontents: the origin myth of modern
mathematics. wersja April, 15:2008, 2008.

[Mer15] Lucius Gregory Meredith. Linear types can change the blockchain. arXiv
preprint arXiv:1506.01001, 2015. URL: https://arxiv.org/abs/1506.
01001, doi:10.48550/arXiv.1506.01001.

[Mil95] Dale Miller. A survey of linear logic programming. Computational Logic:
The Newsletter of the European Network of Excellence in Computational
Logic, 2(2):63–67, 1995. URL: https://www.lix.polytechnique.fr/
Labo/Dale.Miller/papers/ComputNet95/llsurvey.html.

https://doi.org/10.1007/3-540-19129-1_4
https://doi.org/10.1142/9781848162778_0007
https://doi.org/10.1007/978-3-642-02261-6_20
https://ieeexplore.ieee.org/document/1210040
https://doi.org/10.1109/LICS.2003.1210040
https://www.sciencedirect.com/science/article/pii/030439759190006N
https://www.sciencedirect.com/science/article/pii/030439759190006N
https://doi.org/10.1016/0304-3975(91)90006-N
https://doi.org/10.1007/978-3-642-11957-6_12
http://www.jstor.org/stable/2026432
https://doi.org/10.2307/2026432
https://www.lipn.fr/~mazza/papers/Habilitation.pdf
https://www.lipn.fr/~mazza/papers/Habilitation.pdf
https://arxiv.org/abs/1506.01001
https://arxiv.org/abs/1506.01001
https://doi.org/10.48550/arXiv.1506.01001
https://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/ComputNet95/llsurvey.html
https://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/ComputNet95/llsurvey.html

References 434

[Mil21] Dale Miller. A survey of the proof-theoretic foundations of logic pro-
gramming. Theory and Practice of Logic Programming, pages 1–
46, 2021. URL: https://arxiv.org/abs/2109.01483, doi:10.1017/
S1471068421000533.

[Min94] Jack Minker. Overview of disjunctive logic programming. Annals of Math-
ematics and Artificial Intelligence, 12(1-2):1–24, 1994. doi:10.1007/
BF01530759.

[Miq09] Alexandre Miquel. De la formalisation des preuves à l’extraction de pro-
grammes. HdR thesis, Université Paris, 7, 2009.

[Miq17] Étienne Miquey. Classical realizability and side-effects. PhD the-
sis, Université Sorbonne Paris Cité-Université Paris Diderot (Paris 7),
2017. URL: https://www.i2m.univ-amu.fr/perso/etienne.miquey/
these/these.pdf.

[MLS84] Per Martin-Löf and Giovanni Sambin. Intuitionistic type theory, volume 9.
Bibliopolis Naples, 1984.

[MM82] Alberto Martelli and Ugo Montanari. An efficient unification algorithm.
ACM Transactions on Programming Languages and Systems (TOPLAS),
4(2):258–282, 1982. URL: https://dl.acm.org/doi/10.1145/357162.
357169, doi:10.1145/357162.357169.

[Moo97] Gregory H. Moore. The prehistory of infinitary logic: 1885–1955. In
Structures and Norms in Science, pages 105–123. Springer, 1997. doi:
10.1007/978-94-017-0538-7_7.

[MOTW99] John Maraist, Martin Odersky, David N. Turner, and Philip Wadler. Call-
by-name, call-by-value, call-by-need and the linear lambda calculus. The-
oretical Computer Science, 228(1-2):175–210, 1999. URL: https://www.
sciencedirect.com/science/article/pii/S1571066104000222, doi:
10.1016/S1571-0661(04)00022-2.

[Mou88] Guy Mourlevat. Les machines arithmétiques de Blaise Pascal, volume 51.
Académie des sciences, lettres, arts, 1988.

[MP05] Roberto Maieli and Quintijn Puite. Modularity of proof-nets.
Archive for Mathematical Logic, 44(2):167–193, 2005. doi:10.1007/
s00153-004-0242-2.

[MT03] Harry G. Mairson and Kazushige Terui. On the computational complex-
ity of cut-elimination in linear logic. In Italian Conference on Theo-
retical Computer Science, pages 23–36. Springer, 2003. doi:10.1007/
978-3-540-45208-9_4.

https://arxiv.org/abs/2109.01483
https://doi.org/10.1017/S1471068421000533
https://doi.org/10.1017/S1471068421000533
https://doi.org/10.1007/BF01530759
https://doi.org/10.1007/BF01530759
https://www.i2m.univ-amu.fr/perso/etienne.miquey/these/these.pdf
https://www.i2m.univ-amu.fr/perso/etienne.miquey/these/these.pdf
https://dl.acm.org/doi/10.1145/357162.357169
https://dl.acm.org/doi/10.1145/357162.357169
https://doi.org/10.1145/357162.357169
https://doi.org/10.1007/978-94-017-0538-7_7
https://doi.org/10.1007/978-94-017-0538-7_7
https://www.sciencedirect.com/science/article/pii/S1571066104000222
https://www.sciencedirect.com/science/article/pii/S1571066104000222
https://doi.org/10.1016/S1571-0661(04)00022-2
https://doi.org/10.1016/S1571-0661(04)00022-2
https://doi.org/10.1007/s00153-004-0242-2
https://doi.org/10.1007/s00153-004-0242-2
https://doi.org/10.1007/978-3-540-45208-9_4
https://doi.org/10.1007/978-3-540-45208-9_4

References 435

[MT15] Damiano Mazza and Kazushige Terui. Parsimonious types and non-
uniform computation. In International Colloquium on Automata, Lan-
guages, and Programming, pages 350–361. Springer, 2015. doi:10.1007/
978-3-662-47666-6_28.

[MW17] Pierre-Étienne Meunier and Damien Woods. The non-cooperative tile
assembly model is not intrinsically universal or capable of bounded
turing machine simulation. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, pages 328–341, 2017.
URL: https://dl.acm.org/doi/10.1145/3055399.3055446, doi:10.
1145/3055399.3055446.

[NGSKDS07] Manh Thang Nguyen, Jürgen Giesl, Peter Schneider-Kamp, and Danny
De Schreye. Termination analysis of logic programs based on depen-
dency graphs. In International Symposium on Logic-based Program Syn-
thesis and Transformation, pages 8–22. Springer, 2007. doi:10.1007/
978-3-540-78769-3_2.

[Ngu21] Lê Thành Dũng Nguyễn. Towards a resource based approximation theory
of programs. PhD thesis, Université Sorbonne Paris Nord, 2021. URL:
https://theses.hal.science/tel-04132636v1/document.

[NS19] Lê Thành Dũng Nguyen and Thomas Seiller. Coherent interaction
graphs. ArXiV, 2019. URL: https://arxiv.org/abs/1904.06849, doi:
10.48550/arXiv.1904.06849.

[Par92] Michel Parigot. λµ-calculus: an algorithmic interpretation of classical
natural deduction. In International Conference on Logic for Programming
Artificial Intelligence and Reasoning, pages 190–201. Springer, 1992. doi:
10.1007/BFb0013061.

[Pas97] Blaise Pascal. Machine d’arithmétique. Modern Logic, 7(1):56–66, 1997.

[Pat14] Matthew J. Patitz. An introduction to tile-based self-assembly and a
survey of recent results. Natural Computing, 13(2):195–224, 2014. doi:
10.1007/s11047-013-9379-4.

[Pei79] Charles S. Peirce. On junctures and fractures in logic. Writings of Charles
S. Peirce, 1884:391, 1879. URL: https://www.jstor.org/stable/j.
ctt16gz8j1.

[Pen92] Mati Pentus. Equivalent types in Lambek calcu-
lus and linear logic. Mian Prepublication Series,
1992. URL: https://www.semanticscholar.org/paper/
Equivalent-Types-in-Lambek-Calculus-and-Linear-Pentus-Series/
c8e6b6789cad6675bc73ac0a98c1014814feb90c.

https://doi.org/10.1007/978-3-662-47666-6_28
https://doi.org/10.1007/978-3-662-47666-6_28
https://dl.acm.org/doi/10.1145/3055399.3055446
https://doi.org/10.1145/3055399.3055446
https://doi.org/10.1145/3055399.3055446
https://doi.org/10.1007/978-3-540-78769-3_2
https://doi.org/10.1007/978-3-540-78769-3_2
https://theses.hal.science/tel-04132636v1/document
https://arxiv.org/abs/1904.06849
https://doi.org/10.48550/arXiv.1904.06849
https://doi.org/10.48550/arXiv.1904.06849
https://doi.org/10.1007/BFb0013061
https://doi.org/10.1007/BFb0013061
https://doi.org/10.1007/s11047-013-9379-4
https://doi.org/10.1007/s11047-013-9379-4
https://www.jstor.org/stable/j.ctt16gz8j1
https://www.jstor.org/stable/j.ctt16gz8j1
https://www.semanticscholar.org/paper/Equivalent-Types-in-Lambek-Calculus-and-Linear-Pentus-Series/c8e6b6789cad6675bc73ac0a98c1014814feb90c
https://www.semanticscholar.org/paper/Equivalent-Types-in-Lambek-Calculus-and-Linear-Pentus-Series/c8e6b6789cad6675bc73ac0a98c1014814feb90c
https://www.semanticscholar.org/paper/Equivalent-Types-in-Lambek-Calculus-and-Linear-Pentus-Series/c8e6b6789cad6675bc73ac0a98c1014814feb90c

References 436

[Pet08] Charles Petzold. The annotated Turing: a guided tour through Alan Tur-
ing’s historic paper on computability and the Turing machine. Wiley
Publishing, 2008.

[Pis15] Paolo Pistone. Rule-following and the limits of formalization: Wittgen-
stein’s considerations through the lens of logic. In From Logic to Practice,
pages 91–110. Springer, 2015. doi:10.1007/978-3-319-10434-8_6.

[PL09] Thierry Paul and Giuseppe Longo. Le monde et le calcul: réflexions
sur calculabilité, mathématiques et physique. In Logique & Interaction:
Géométrie de la cognition, Actes du colloque et école thématique du CNRS”
Logique, Sciences, Philosophie”a Cerisy, Hermann, 2009.

[Pos36] Emil L. Post. Finite combinatory processes—formulation 1. The journal
of symbolic logic, 1(3):103–105, 1936. doi:https://doi.org/10.2307/
2269031.

[Pos46] Emil L. Post. A variant of a recursively unsolvable prob-
lem. Bulletin of the American Mathematical Society, 52(4):264–
268, 1946. URL: https://www.ams.org/journals/bull/1946-52-04/
S0002-9904-1946-08555-9/S0002-9904-1946-08555-9.pdf, doi:10.
1090/S0002-9904-1946-08555-9.

[R+65] John Alan Robinson et al. A machine-oriented logic based on the resolu-
tion principle. Journal of the ACM, 12(1):23–41, 1965. URL: https://dl.
acm.org/doi/10.1145/321250.321253, doi:10.1145/321250.321253.

[Rad62] Tibor Rado. On non-computable functions. Bell System Technical Jour-
nal, 41(3):877–884, 1962. doi:10.1002/j.1538-7305.1962.tb00480.x.

[Rea02] Stephen Read. Medieval theories: properties of terms. 2002. URL: https:
//plato.stanford.edu/entries/medieval-terms/.

[Reg92] Laurent Regnier. Lambda-calcul et réseaux. PhD thesis, Université Paris
7, 1992. URL: https://www.theses.fr/1992PA077165.

[Reg94] Laurent Regnier. Une équivalence sur les lambda-termes. Theoret-
ical Computer Science, 126(2):281–292, 1994. URL: https://www.
sciencedirect.com/science/article/pii/0304397594900124, doi:
10.1016/0304-3975(94)90012-4.

[Res64] Nicholas Rescher. Studies in the history of arabic logic. Revue
Philosophique de Louvain, 76:669–670, 1964. doi:10.2307/2217894.

[Res02] Greg Restall. An introduction to substructural logics. Routledge, 2002.

[Res12] Nicholas Rescher. Temporal modalities in Arabic logic, vol-
ume 2. Springer Science & Business Media, 2012. URL:
https://link.springer.com/book/10.1007/978-94-010-3523-1,
doi:10.1007/978-94-010-3523-1.

https://doi.org/10.1007/978-3-319-10434-8_6
https://doi.org/https://doi.org/10.2307/2269031
https://doi.org/https://doi.org/10.2307/2269031
https://www.ams.org/journals/bull/1946-52-04/S0002-9904-1946-08555-9/S0002-9904-1946-08555-9.pdf
https://www.ams.org/journals/bull/1946-52-04/S0002-9904-1946-08555-9/S0002-9904-1946-08555-9.pdf
https://doi.org/10.1090/S0002-9904-1946-08555-9
https://doi.org/10.1090/S0002-9904-1946-08555-9
https://dl.acm.org/doi/10.1145/321250.321253
https://dl.acm.org/doi/10.1145/321250.321253
https://doi.org/10.1145/321250.321253
https://doi.org/10.1002/j.1538-7305.1962.tb00480.x
https://plato.stanford.edu/entries/medieval-terms/
https://plato.stanford.edu/entries/medieval-terms/
https://www.theses.fr/1992PA077165
https://www.sciencedirect.com/science/article/pii/0304397594900124
https://www.sciencedirect.com/science/article/pii/0304397594900124
https://doi.org/10.1016/0304-3975(94)90012-4
https://doi.org/10.1016/0304-3975(94)90012-4
https://doi.org/10.2307/2217894
https://link.springer.com/book/10.1007/978-94-010-3523-1
https://doi.org/10.1007/978-94-010-3523-1

References 437

[Rib07] Colin Riba. Strong normalization as safe interaction. In 22nd
Annual IEEE Symposium on Logic in Computer Science (LICS
2007), pages 13–22. IEEE, 2007. URL: https://www.computer.org/
csdl/proceedings-article/lics/2007/29080013/12OmNxWui8x, doi:
10.1109/LICS.2007.46.

[Rie14] Lionel Rieg. On forcing and classical realizability. PhD thesis, Ecole
normale supérieure de lyon-ENS LYON, 2014. URL: https://theses.
hal.science/tel-01061442/PDF/RIEG_Lionel_2014_These.pdf.

[Ros96] Kristoffer H. Rose. Explicit substitution: tutorial & survey. Com-
puter Science Department, 1996. doi:https://www.researchgate.net/
publication/228386201_Explicit_substitution_tutorial_survey.

[Rus03] Bertrand Russell. The principles of mathematics. Public Domain, 1903.
URL: https://people.umass.edu/klement/pom/.

[Sch31] Arthur Schopenhauer. Eristische Dialektik: Die Kunst, Recht zu Behalten.
Kein & Aber Verlag, 1831.

[Sch24] Moses Schönfinkel. Über die bausteine der mathematischen Logik. Math-
ematische annalen, 92(3):305–316, 1924. doi:10.1007/BF01448013.

[Sch56] Kurt Schütte. Ein system des verknüpfenden schliessens. Archiv für
mathematische Logik und Grundlagenforschung, 2(2):55–67, 1956. doi:
10.1007/BF01969991.

[Sch65] Thomas W. Scharle. Axiomatization of propositional calculus
with Sheffer functors. Notre Dame Journal of Formal Logic,
6(3):209–217, 1965. URL: https://projecteuclid.org/journals/
notre-dame-journal-of-formal-logic/volume-6/issue-3/
Axiomatization-of-propositional-calculus-with-Sheffer-functors/
10.1305/ndjfl/1093958259.full, doi:10.1305/ndjfl/1093958259.

[Sch94] Harold Schellinx. The noble art of linear decorating. University of Ams-
terdam, 1994.

[Sch06] Ulrich Schöpp. Space-efficient computation by interaction. In Interna-
tional Workshop on Computer Science Logic, pages 606–621. Springer,
2006. doi:10.1007/11874683_40.

[Sco82] Dana Scott. Domains for denotational semantics. In International
Colloquium on Automata, Languages, and Programming, pages
577–610. Springer, 1982. URL: https://www.researchgate.net/
publication/220897586_Domains_for_Denotational_Semantics,
doi:10.1007/BFb0012801.

https://www.computer.org/csdl/proceedings-article/lics/2007/29080013/12OmNxWui8x
https://www.computer.org/csdl/proceedings-article/lics/2007/29080013/12OmNxWui8x
https://doi.org/10.1109/LICS.2007.46
https://doi.org/10.1109/LICS.2007.46
https://theses.hal.science/tel-01061442/PDF/RIEG_Lionel_2014_These.pdf
https://theses.hal.science/tel-01061442/PDF/RIEG_Lionel_2014_These.pdf
https://doi.org/https://www.researchgate.net/publication/228386201_Explicit_substitution_tutorial_survey
https://doi.org/https://www.researchgate.net/publication/228386201_Explicit_substitution_tutorial_survey
https://people.umass.edu/klement/pom/
https://doi.org/10.1007/BF01448013
https://doi.org/10.1007/BF01969991
https://doi.org/10.1007/BF01969991
https://projecteuclid.org/journals/notre-dame-journal-of-formal-logic/volume-6/issue-3/Axiomatization-of-propositional-calculus-with-Sheffer-functors/10.1305/ndjfl/1093958259.full
https://projecteuclid.org/journals/notre-dame-journal-of-formal-logic/volume-6/issue-3/Axiomatization-of-propositional-calculus-with-Sheffer-functors/10.1305/ndjfl/1093958259.full
https://projecteuclid.org/journals/notre-dame-journal-of-formal-logic/volume-6/issue-3/Axiomatization-of-propositional-calculus-with-Sheffer-functors/10.1305/ndjfl/1093958259.full
https://projecteuclid.org/journals/notre-dame-journal-of-formal-logic/volume-6/issue-3/Axiomatization-of-propositional-calculus-with-Sheffer-functors/10.1305/ndjfl/1093958259.full
https://doi.org/10.1305/ndjfl/1093958259
https://doi.org/10.1007/11874683_40
https://www.researchgate.net/publication/220897586_Domains_for_Denotational_Semantics
https://www.researchgate.net/publication/220897586_Domains_for_Denotational_Semantics
https://doi.org/10.1007/BFb0012801

References 438

[See82] Nadrian C. Seeman. Nucleic acid junctions and lattices. Journal
of theoretical biology, 99(2):237–247, 1982. URL: https://www.
sciencedirect.com/science/article/abs/pii/0022519382900029,
doi:10.1016/0022-5193(82)90002-9.

[Sei12a] Thomas Seiller. Interaction graphs: multiplicatives. Annals of Pure
and Applied Logic, 163(12):1808–1837, 2012. URL: https://www.
sciencedirect.com/science/article/pii/S0168007212000759, doi:
10.1016/j.apal.2012.04.005.

[Sei12b] Thomas Seiller. Logique dans le facteur hyperfini: géometrie de
l’interaction et complexité. PhD thesis, Aix-Marseille Université, 2012.
URL: https://theses.hal.science/tel-00768403/.

[Sei16a] Thomas Seiller. Interaction graphs: additives. Annals of Pure
and Applied Logic, 167(2):95–154, 2016. URL: https://www.
sciencedirect.com/science/article/pii/S0168007215000998, doi:
10.1016/j.apal.2015.10.001.

[Sei16b] Thomas Seiller. Interaction graphs: Full linear logic. In 2016 31st An-
nual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages
1–10. IEEE, 2016. URL: https://dl.acm.org/doi/10.1145/2933575.
2934568, doi:10.1145/2933575.2934568.

[Sei17] Thomas Seiller. Interaction graphs: Graphings. Annals of Pure
and Applied Logic, 168(2):278–320, 2017. URL: https://www.
sciencedirect.com/science/article/pii/S0168007216301300, doi:
10.1016/j.apal.2016.10.007.

[Sei18] Thomas Seiller. Interaction graphs: Non-deterministic automata. ACM
Transactions on Computational Logic (TOCL), 19(3):1–24, 2018. doi:
10.1145/3226594.

[Sei20a] Thomas Seiller. Probabilistic complexity classes through semantics.
ArXiV, 2020. URL: https://arxiv.org/abs/2002.00009, doi:10.
48550/arXiv.2002.00009.

[Sei20b] Thomas Seiller. Zeta functions and the (linear) logic of Markov pro-
cesses. ArXiV, 2020. URL: https://arxiv.org/abs/2001.11906, doi:
10.48550/arXiv.2001.11906.

[Sha38] Claude E. Shannon. A symbolic analysis of relay and switching circuits.
Electrical Engineering, 57(12):713–723, 1938. doi:10.1109/T-AIEE.
1938.5057767.

[Sha84] Ehud Y. Shapiro. Alternation and the computational complexity
of logic programs. The Journal of Logic Programming, 1(1):19–33,
1984. URL: https://www.sciencedirect.com/science/article/pii/
0743106684900219, doi:10.1016/0743-1066(84)90021-9.

https://www.sciencedirect.com/science/article/abs/pii/0022519382900029
https://www.sciencedirect.com/science/article/abs/pii/0022519382900029
https://doi.org/10.1016/0022-5193(82)90002-9
https://www.sciencedirect.com/science/article/pii/S0168007212000759
https://www.sciencedirect.com/science/article/pii/S0168007212000759
https://doi.org/10.1016/j.apal.2012.04.005
https://doi.org/10.1016/j.apal.2012.04.005
https://theses.hal.science/tel-00768403/
https://www.sciencedirect.com/science/article/pii/S0168007215000998
https://www.sciencedirect.com/science/article/pii/S0168007215000998
https://doi.org/10.1016/j.apal.2015.10.001
https://doi.org/10.1016/j.apal.2015.10.001
https://dl.acm.org/doi/10.1145/2933575.2934568
https://dl.acm.org/doi/10.1145/2933575.2934568
https://doi.org/10.1145/2933575.2934568
https://www.sciencedirect.com/science/article/pii/S0168007216301300
https://www.sciencedirect.com/science/article/pii/S0168007216301300
https://doi.org/10.1016/j.apal.2016.10.007
https://doi.org/10.1016/j.apal.2016.10.007
https://doi.org/10.1145/3226594
https://doi.org/10.1145/3226594
https://arxiv.org/abs/2002.00009
https://doi.org/10.48550/arXiv.2002.00009
https://doi.org/10.48550/arXiv.2002.00009
https://arxiv.org/abs/2001.11906
https://doi.org/10.48550/arXiv.2001.11906
https://doi.org/10.48550/arXiv.2001.11906
https://doi.org/10.1109/T-AIEE.1938.5057767
https://doi.org/10.1109/T-AIEE.1938.5057767
https://www.sciencedirect.com/science/article/pii/0743106684900219
https://www.sciencedirect.com/science/article/pii/0743106684900219
https://doi.org/10.1016/0743-1066(84)90021-9

References 439

[Shi03] Masaru Shirahata. Geometry of interaction explained (algebra, logic
and geometry in informatics). 数理解析研究所講究録, 1318:160–187,
2003. URL: https://www.kurims.kyoto-u.ac.jp/~hassei/algi-13/
kokyuroku/19_shirahata.pdf.

[Sib05] Fadi N. Sibai. Parallel unification: Theory and implementations. In Par-
allelization in Inference Systems: International Workshop Dagstuhl Cas-
tle, Germany, December 17–18, 1990 Proceedings, pages 51–81. Springer,
2005. doi:https://doi.org/10.1007/3-540-55425-4_3.

[Sic76] Sharon Sickel. A search technique for clause interconnectivity graphs.
IEEE Transactions on Computers, pages 823–835, 1976. URL:
https://ieeexplore.ieee.org/document/1674701, doi:10.1109/TC.
1976.1674701.

[Sim88] Stephen G. Simpson. Partial realizations of Hilbert’s program. The Jour-
nal of Symbolic Logic, 53(2):349–363, 1988. doi:10.2307/2274508.

[Sip06] Michael Sipser. Introduction to the Theory of Computation (second edi-
tion). Thomsom, 2006.

[Smi13] Peter Smith. An introduction to Gödel’s theorems. Cambridge University
Press, 2013. URL: https://www.logicmatters.net/resources/pdfs/
godelbook/GodelBookLM.pdf, doi:10.1017/CBO9781139149105.

[Spa02] Paul Vincent Spade. Thoughts, words and things: An introduction to late
mediaeval logic and semantic theory. Copyright by Paul Vincent Spade,
10:2009, 2002. URL: http://pvspade.com/Logic/docs/thoughts1_1a.
pdf.

[Ste61] J. T. Stevenson. Roundabout the runabout inference-ticket. Analysis,
21(6):124–128, 1961. URL: http://www.jstor.org/stable/3326421.

[Str06] Lutz Straßburger. Proof nets and the identity of proofs. ArXiV, 2006.
URL: https://arxiv.org/abs/cs/0610123, doi:10.48550/arXiv.cs/
0610123.

[SU06] Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-
Howard isomorphism. Elsevier, 2006.

[Tai81] William W. Tait. Finitism. The Journal of Philosophy, 78(9):524–546,
1981. doi:10.2307/2026089.

[Tär77] Sten-Åke Tärnlund. Horn clause computability. BIT Numerical Mathe-
matics, 17(2):215–226, 1977. doi:10.1007/BF01932293.

[Ten79] Neil Tennant. La barre de Scheffer dans la logique des séquents et des
syllogismes. Logique et Analyse, 22(88):505–514, 1979. URL: http://
www.jstor.org/stable/44085164.

https://www.kurims.kyoto-u.ac.jp/~hassei/algi-13/kokyuroku/19_shirahata.pdf
https://www.kurims.kyoto-u.ac.jp/~hassei/algi-13/kokyuroku/19_shirahata.pdf
https://doi.org/https://doi.org/10.1007/3-540-55425-4_3
https://ieeexplore.ieee.org/document/1674701
https://doi.org/10.1109/TC.1976.1674701
https://doi.org/10.1109/TC.1976.1674701
https://doi.org/10.2307/2274508
https://www.logicmatters.net/resources/pdfs/godelbook/GodelBookLM.pdf
https://www.logicmatters.net/resources/pdfs/godelbook/GodelBookLM.pdf
https://doi.org/10.1017/CBO9781139149105
http://pvspade.com/Logic/docs/thoughts1_1a.pdf
http://pvspade.com/Logic/docs/thoughts1_1a.pdf
http://www.jstor.org/stable/3326421
https://arxiv.org/abs/cs/0610123
https://doi.org/10.48550/arXiv.cs/0610123
https://doi.org/10.48550/arXiv.cs/0610123
https://doi.org/10.2307/2026089
https://doi.org/10.1007/BF01932293
http://www.jstor.org/stable/44085164
http://www.jstor.org/stable/44085164

References 440

[Ter04] Kazushige Terui. Proof nets and boolean circuits. In Proceedings of the
19th Annual IEEE Symposium on Logic in Computer Science, 2004., pages
182–191. IEEE, 2004. URL: https://ieeexplore.ieee.org/document/
1319612, doi:10.1109/LICS.2004.1319612.

[Ter11] Kazushige Terui. Computational ludics. Theoretical Computer Sci-
ence, 412(20):2048–2071, 2011. URL: https://www.sciencedirect.
com/science/article/pii/S0304397510007176, doi:10.1016/j.tcs.
2010.12.026.

[TGBB95] Alan Mathison Turing, Jean-Yves Girard, Julien Basch, and Patrice Blan-
chard. La machine de Turing. Editions du seuil, 1995.

[Tho91] Wolfgang Thomas. On logics, tilings, and automata. In International
Colloquium on Automata, Languages, and Programming, pages 441–454.
Springer, 1991. doi:10.1007/3-540-54233-7_154.

[Tur36] Alan Mathison Turing. On computable numbers, with an application
to the Entscheidungsproblem. J. of Math, 58(345-363):5, 1936. doi:
10.1112/plms/s2-42.1.230.

[Vää19] Jouko Väänänen. Second-order and higher-order logic. 2019. URL: https:
//plato.stanford.edu/entries/logic-higher-order/.

[VS84] Jeffrey Scott Vitter and Roger A. Simons. Parallel algorithms for uni-
fication and other complete problems in P. In Proceedings of the 1984
Annual Conference of the ACM on The Fifth Generation Challenge, ACM
’84, page 75–84, New York, NY, USA, 1984. Association for Computing
Machinery. doi:10.1145/800171.809607.

[Wad90] Philip Wadler. Linear types can change the world! In Programming
concepts and methods, volume 3, page 5, 1990. URL: https://www.
semanticscholar.org/paper/Linear-Types-can-Change-the-World!
-Wadler/24c850390fba27fc6f3241cb34ce7bc6f3765627.

[Wad03] Philip Wadler. Call-by-value is dual to call-by-name. SIGPLAN Not.,
38(9):189–201, aug 2003. doi:10.1145/944746.944723.

[Wad12] Philip Wadler. Propositions as sessions. ACM SIGPLAN Notices,
47(9):273–286, 2012. doi:10.1145/2398856.2364568.

[Wan57] Hao Wang. A variant to Turing’s theory of computing machines. Journal
of the ACM (JACM), 4(1):63–92, 1957. URL: https://dl.acm.org/doi/
pdf/10.1145/320856.320867, doi:10.1145/320856.320867.

[WGRO93] Anna Wierzbicka, Richard A. Geiger, and Brygida Rudzka-Ostyn. The
alphabet of human thoughts. Conceptualizations and Mental Processing
in Language, 3:23, 1993. doi:10.1515/9783110857108.23.

https://ieeexplore.ieee.org/document/1319612
https://ieeexplore.ieee.org/document/1319612
https://doi.org/10.1109/LICS.2004.1319612
https://www.sciencedirect.com/science/article/pii/S0304397510007176
https://www.sciencedirect.com/science/article/pii/S0304397510007176
https://doi.org/10.1016/j.tcs.2010.12.026
https://doi.org/10.1016/j.tcs.2010.12.026
https://doi.org/10.1007/3-540-54233-7_154
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://plato.stanford.edu/entries/logic-higher-order/
https://plato.stanford.edu/entries/logic-higher-order/
https://doi.org/10.1145/800171.809607
https://www.semanticscholar.org/paper/Linear-Types-can-Change-the-World!-Wadler/24c850390fba27fc6f3241cb34ce7bc6f3765627
https://www.semanticscholar.org/paper/Linear-Types-can-Change-the-World!-Wadler/24c850390fba27fc6f3241cb34ce7bc6f3765627
https://www.semanticscholar.org/paper/Linear-Types-can-Change-the-World!-Wadler/24c850390fba27fc6f3241cb34ce7bc6f3765627
https://doi.org/10.1145/944746.944723
https://doi.org/10.1145/2398856.2364568
https://dl.acm.org/doi/pdf/10.1145/320856.320867
https://dl.acm.org/doi/pdf/10.1145/320856.320867
https://doi.org/10.1145/320856.320867
https://doi.org/10.1515/9783110857108.23

References 441

[Win98] Erik Winfree. Algorithmic self-assembly of DNA. PhD thesis, California
Institute of Technology, 1998. URL: https://thesis.library.caltech.
edu/1866/.

[Wit10] Ludwig Wittgenstein. Philosophical investigations. John Wiley & Sons,
2010.

[Woo15] Damien Woods. Intrinsic universality and the computational power
of self-assembly. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 373(2046):20140214,
2015. URL: https://royalsocietypublishing.org/doi/10.1098/
rsta.2014.0214, doi:10.1098/rsta.2014.0214.

https://thesis.library.caltech.edu/1866/
https://thesis.library.caltech.edu/1866/
https://royalsocietypublishing.org/doi/10.1098/rsta.2014.0214
https://royalsocietypublishing.org/doi/10.1098/rsta.2014.0214
https://doi.org/10.1098/rsta.2014.0214

	Preface
	Acknowledgements (in French)
	Logical traditions
	The experience of regularity
	Logical dreams and mathematical realisations of reasoning
	Paradoxes and the jails of the Format
	The location of certainty: the mind or the paper?
	Syntax and semantics / Language and reality
	Propositional calculus
	Predicate calculus
	Second-order logic
	Natural deduction
	 – Intuitionistic natural deduction
	 – Classical natural deduction
	 – Proof reduction

	Sequent calculus
	 – Classical sequent calculus

	Monolateral sequent calculus
	 – Cut-elimination procedure

	Discussion: doubting traditions

	Computational panorama
	The experience of procedurality
	Realisation of machines
	Computation as functional process
	 – The notion of function
	 – Functional foundations for logic
	 – Mathematical functions as a model of computation
	 – The notion of (simple) type

	Computation as state machine
	 – The mathematician-machine
	 – A bit of hacking with Turing machines
	 – Undecidable problems
	 – Towards programming

	Computation as tiling construction
	Computation as flow of information
	Discussion: a single materialisation of computation?

	Linking logic and computation
	The different traditions of logic and computation
	Curry-Howard-Lambek correspondence
	 – Natural deduction and Lambda-calculi
	 – The functional interpretation of classical logic
	 – The functional interpretation of quantification

	Realisability
	 – Kleene realisability
	 – Krivine realisability
	 – Reconstruction of simple types

	Logic programming
	 – Reasoning with programs
	 – Normal forms
	 – First-order resolution
	 – Reasoning with Horn clauses

	Discussion: the limits of the proof-program correspondence

	Linear logic
	The emergence of linear logic
	Seizing the means of production
	Classical linear logic sequent calculus
	 – Multiplicative fragment
	 – Neutral elements
	 – Additive fragment
	 – Exponential fragment

	Some applications and intuitive interpretations
	Proof-structures and proof-nets
	 – Multiplicative unit-free proof-nets
	 – Multiplicative unit proof-nets
	 – Additive proof-nets
	 – Exponential proof-nets

	Correctness criteria
	 – Girard's long trip criterion
	 – Danos-Regnier criterion for MLL+MIX
	 – Criteria for multiplicative units
	 – Criteria for additive proof-structures
	 – Criteria for exponential proof-structures

	Discussion: the structure of normative constraints

	The geometry of interaction
	Towards a geometry of interaction
	Multiplicative proofs with permutations
	 – Long-trip criterion with cyclic permutations
	 – General interaction of permutation and cut-elimination
	 – Interpretation of types/formulas

	Infinitary extension towards full linear logic
	Danos and Regnier's algebra of paths for MLL
	 – Paths in a proof-structure
	 – Weight of a multiplicative path

	Token machine for the geometry of interaction
	Alternative approaches
	 – Flows and wirings
	 – Seiller's interaction graphs
	 – Proofs as partitions of a set
	 – Ludics

	Discussion: new insights on the notion of proof

	Towards a transcendental syntax
	Learning from the past
	The logical avant-gardism of computer science
	A new architecture for logic
	Analytic space / Answers
	 – Constat and performance
	 – The chosen one: stellar resolution

	Synthetic space / Questions
	 – Usage / Curry typing
	 – Usine / Church typing
	 – Adequacy and certainty / Cut-elimination
	 – Towards a justification of logical rules

	Derealism / Animism
	 – Logic and computation entangled
	 – Globality and locality in logical systems
	 – Apodictics / First-order
	 – Epidictics / Second-order
	 – An original proposal: epidictic and apodictic models of computation

	Illustration: Transcendental Syntax applied to lambda-calculus
	Discussion: is it a right understanding of logic?

	Stellar resolution
	Intuition behind stellar resolution
	Stars and constellations
	Abstract execution
	 – Evaluation of diagrams
	 – Execution of constellations
	 – The dynamics of subjective rays

	Concrete execution
	Interactive execution
	Difference with Girard's stars and constellations
	Discussion: comparison with other notions

	Illustrating stellar resolution
	Flows, wirings and graphs
	Encoding of logic programs with Horn clauses
	State machines
	 – Non-deterministic finite automata (NFA)
	 – Non-deterministic pushdown automata (NPDA)
	 – Finite sequential transducers (NFST)
	 – Non-deterministic Turing machines (NTM)

	More advanced machines
	 – Alternating Turing machines (ATM)
	 – Non-deterministic finite tree automata (NFTA)
	 – Krivine Abstract Machine (KAM) with call/cc

	Generalised circuits
	Tile systems with the abstract tile assembly model
	Discussion: a common language for classical computation?

	Properties of execution for objective constellations
	Computability of stellar resolution
	Classes of constellations
	 – (Non-)Terminating constellations
	 – Graph-structural classification of constellations

	Stellar transformations
	Partial pre-execution and confluence
	Discussion: the sufficient conditions for logical emergence

	Stellar interpretation of multiplicative linear logic
	Proofs as constellations
	Simulation of cut-elimination
	Simulation of Danos-Regnier correctness test
	Construction of multiplicative formulas
	 – Usine interpretation
	 – Usage interpretation

	Soundness and completeness
	 – Adequacy between Usine and Usage
	 – A complete model of MLL+MIX
	 – A complete model of MLL

	The case of multiplicative units
	Discussion: what is a multiplicative proof?

	Interpretation of intuitionistic implication
	MLL with intuitionistic implication (MLL2I)
	 – MLL2I sequent calculus
	 – MLL2I proof-structures

	Simulation of cut-elimination
	Girard's original correctness criterion
	Discussion: what is a non-linear proof?

	Apodictic experiments
	Logical constants
	 – Objective constant
	 – Subjective constant
	 – Shape specification
	 – Order 0 multiplicative linear logic

	Expansional connectives
	Visibility and non-classical truth
	System-free arithmetic on relative numbers
	Discussion: anarchy

	Epidictic experiments
	Genericity of proof-structures
	Usage interpretation of second-order linear logic
	Usine in the case of predicate calculus: a sketch
	Discussion: the theory of epidictic architectures

	Conclusion
	Summary and contributions
	Horizons
	Limits of the current presentation of transcendental syntax

	Mathematical conventions
	General notations
	Set theory
	Language theory

	Term unification
	Elementary definitions
	Unification algorithm

	Graph theory
	Non-directed hypergraphs
	Directed hypergraphs
	Special cases of hypergraphs

	Transcendental aesthetics

