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Presentation

My research works are centered on infinite dimensional differential geometry
and analysis, including its possible ramifications. There are many ways to get an
infinite dimensional object: algebraic (e.g. by various -infinite- series), via analysis
(e.g. by topological completion) or via probability (e.g. via cylindrical measures).
These approaches all have applications. Mostly, function spaces, their duals and
operator algebras furnish the basic tools to define geometric objects. In this field
of research, motivating examples are themselves carried from applied problems, in
particular the theory of (nonlinear) partial differential equations (PDEs) or the
first and second quantizations in quantum physics. For example, algebraic infi-
nite dimensional groups apply in the theory of integrable systems and symmetries,
topological completion is a key tool in numerical methods for solving partial dif-
ferential equations, and the probabilistic approach of partial differential equations
relies in stochastic PDEs while the Feynman-Kac formula expresses a solution of
the Schrödinger equation in terms of an integral over an infinite dimensional space.
Other numerous examples in analysis and geometry, such as the meaning of the
renormalized tangent bundle in the stochatstic geometry on the path space and the
correspondence between classical, statistical, first and second quantized mechanics
raise difficult and still unsolved conceptual or technical problems which cannot be
all considered in only one lifetime.

Even more, in any of the suitable approaches for infinite dimensional analysis
or geometry, the intuitions modeled from finite dimensional examples have served
in early times to generalize by the same approaches the finite dimensional objects
to infinite dimensional settings, and have failed quite quickly on purely infinite
dimensional effects. Indeed, infinite dimensional objects carry so many technical
difficulties that one often needs to bypass direct generalization of finite dimen-
sional techniques in order to get efficient results. One famous example is Kuiper’s
contractibility theorem [K1965], which implies that any Hilbert vector bundle is
parallelizable, while Fredholm bundles can be non trivial. Again actually, Kuiper’s
result still represents in the opinion of some non-specialists (who are fewer an fewer,
very fortunately) the “proof” that infinite dimensional geometry is purely formal,
since no obstruction can occur, whereas it only indicates that the setting of Hilbert
manifolds cannot catch and express all the possible “infinite dimensional features”.

The problem of the setting is a big problem, and is not solved yet. This leads to
necessary heuristic parts in applications. This is in particular true in physics. These
heuristic parts need not to be understood as failures but as open questions, just
like Feynman integrals which produced numerous results before being rigorously
defined in an unified way. We expose these problems and considerations in the first
chapter of this text, which has to be understood as a necessary introduction to the
spirit and the settings in which I have worked during all these years.
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4 PRESENTATION

In a so wide range of open questions and unknowns, I have then to more precise
where my efforts have been concentrated. Instead of trying to define and develop
general settings, in the spirit of Omori [Om1997], Neeb [Nee2007], Kriegl and
Michor [KM2000] or Chen, Souriau and Iglesias [Sou1985, IZ2013], since I did
not (and still do not) have their deep insight, I tried to consider only restricted
examples and problems on which I feel that I understand clearly the importance
and the key features that make them important. This lead me naturally to the
following open questions:

(1) The Ambrose-Singer theorem [AS1953, Lich1956] describes the Lie alge-
bra of the holonomy group of a connection. In terms of integrable systems,
it shows
• if a system is formally integrable (which is equivalent to a zero curva-

ture condition), then it is globally integrable in a convex domain (ie
there exists a global solution) and well-posed (i.e. with continuous
or smooth dependence on the initial conditions).
• if a system is not formally integrable, it measures the obstruction for

obtaining a global solution.
Moreover, the finite dimensional Ambrose-Singer theorem is (almost) equiv-
alent to the Frobenius theorem. For all these reasons, it was important
to extend it to infinite dimensional settings as far as possible.

(2) From the problem of the Ambrose Singer theorem, we get the problem of
the existence of an exponential map on an infinite dimensional Lie group,
as a necessary tool for the construction of the holonomy group. The
question fo the existence of an exponential map is also crucial in many
infinite dimensional linear first order equations. In the existing literature,
authors often wanted to show that infinite dimensional Lie groups have an
exponential map, which we did too in some examples, but no-one showed,
to our knowledge, that the exponential maps do not exist in some examples
of interest, which we performed for two examples.

(3) Neighbor to the first two points we can find:
• the theory of geometric invariants for infinite dimensional principal

bundles, which was the central topic of my PhD thesis, that tries to
show that some bundles are not trivial. The first known example of
such invariant comes from the index of Fredholm operators, which
I adapted (mostly in my PhD thesis) on loop groups by the use
of spectral properties and so-called renormalized traces of pseudo-
differential operators. These approaches are motivated by the study
of a class of line bundles called determinant bundles, in heuristic link
with the theory of Feynman integrals. It was then natural to extend
the search for geometric invariants to other infinite dimensional Lie
groups and principal bundles.
• The study of the Kadomtsev-Petviashvili (KP) hierarchy, an infinite

dimensional integrable system which is not only derived from the so-
called KP equation (also called 2d-KdV equation), and not only a
hierarchy of equations from which we can derive integrals of the mo-
tion and special solutions for KP, KdV, Gelfand-Dickey, Boussinesq
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equations, but which is also linked with the determinant bundles al-
ready mentioned, and from more recent results has connexions with
Hodge theory and combinatorics of triangulations.
The integration of the KP hierarchy was purely algebraic, based on
formal Lie groups on which a mild application of the theory of r-
matrices was the more serious way to prove existence and uniqueness
of the solutions while a heuristic link with an Ambrose-Singer like
approach was already mentioned in the literature. It was then natural
to try to clarify the geometric aspects of this algebraic integration,
both in the classical settings and in some generalized versions of this
hierarchy, concentrating my efforts on differential geometry related
to the system with in mind the problem of well-posedness.
• The theory of symmetries of PDEs, well developed for so-called pro-

jectable symmetries, i.e. symmetries inherited from the finite di-
mensional space on which the functions, solutions of the PDE, are
defined. Symmetries and their dual counterpart, the integrals of the
motion, basically, play an important role in solving difficult equa-
tions by reducing the set of possible solutions, or deducing a class of
solutions from a trivial one. But actually, while the theory of sym-
metries for (full, strong) solutions of PDEs is well-developped, the
same approach cannot be performed for weak solutions, which ap-
pear non-trivially in the context of equations of hydrodynamic type.
It was then natural to propose a geometric framework for the study
of weak solutions.

(4) In the three last points, one important class of operators is the class of
pseudodifferential operators (PDOs), formal or non-formal. Another class
of operators of interest remain on groups of diffeomorphisms. In these
two classes of operators, and their “generalizations”, we find a central
topic, which then has to be studied in its own right. I developed groups
of Fourier-integral operators, called Diff−pseudodifferential operators,
that gather these two classes of examples, and studied their geometric
properties.

(5) Finally, I also considered one side problem to Feynman’s integral formula:
the existence (or not) of an infinite dimensional Lebesgue measure and
its normalizations. It was already knwon that such a “measure” did not
have well-suited properties for an efficient use in quantum physics, then I
proposed two approaches:
• define a class of infinite dimensional integrals which mimick the Monte-

carlo method, obtaining means instead of measures. Generalizing
this approach by replacing the Dirac measures of the Monte-Carlo
method by suitable sequences of probabilities, I got a notmalized
infinite dimensional Lebesque-like mean.
• considering more precisely the space of connections of a principal

bundle and the Whitney discretization through triangulations, which
classically defines infinite dimensional integrals, I proposed to dis-
cretize connections through their holonomy instead, in the spirit of
quantum gravity approaches. This lead to unexpected developments
in decision theory.
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In view of the various topics present in this text, I feel necessary to give more
precise background, with a selection of relevant references, in (in principle short)
introductory parts of each chapter, for the ease of the reader and for better reading
of separate chapters.

Some notes on non-presented works

Cited but non-presented, my published works developed for my PhD thesis are
under the references [21, 22, 23]. Due to the late publication of [23] (4 years after
the completion of the PhD thesis), there is one application of the presented article
[1], developed just after the thesis, which is mentioned in [23]. A short description
of this application is given in the introductory notes of Chapter 6.

There are also three other classes of works which I do not wish to present.

• Prepublished but unpublished works [33, 34, 35]: Some of them can be
discussed in the “open problems” disseminated in the text, but they are
not strictly speaking well-established works since not yet published after
a peer-review process.

• Works in topics related to applications of mathematics, that contain (to
my opinion) not enough mathematical background to be suitable for a
habilitation thesis in mathematics [27, 30, 32]

• Works on diffeologies and Frölicher spaces [24, 25, 26, 28, 29, 31]. These
two settings for generalized differential geometry and related topics consist
in novel and easy approaches of differential geometry without atlas. They
have been developed since the 80’s but the actual envolved mathematical
community is mostly specialized on their theoretical aspects, still under
development. My own contributions on diffeologies and Frölicher spaces
are poor compared with those of full specialists. Therefore, I only keep
for this exposition results where the envolved diffeologies and Frölicher
spaces are easy to understand for non-specialists (i.e. encode “natural
differentiation”).

Organization of the habilitation thesis

The presented works are referenced as the items from [1] to [20] in the bibliog-
raphy. Results are re-organized according to selected topics of interest, therefore,
one article can be cited at several places in the exposition. As announced, Chapter
one is dedicated to methodological and preliminary considerations.

• Contents of Chapter 2
The intuitive idea of the formal implicit function theorem present in my PhD

thesis was that, in the ILB setting [Om1997] for the Nash-Moser inverse functions
theorem (see e.g. [KM2000, Om1997]), the additional uniform norm estimates
assumed in the hypothesis could be replaced by mild considerations on the functions
considered. At this time, differentiation on a non open domain (which is not a sub
submanifold), along the lines of e.g. [KM2000], was too exotic for me. Many
years later a groundbreaking idea came: the control on the domain of the implicit
functions must be deduced from the framework. This lead to an infinite dimensional
implicit functions theorem with additional norm estimates [17] and some of its
consequences: the related inverse functions theorem [17] and the related Frobenius
theorem [18].
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This re-examination of the classical proofs of inverse theorems came in a more
general context: the global framework of numerical schemes that are used in the
field of numerical analysis in order to determine approximate solutions of functional
equations, and in particular PDEs. The notion of well-posedness is generalized to
the notion of smooth differential schemes [18] where “smoothness” is considered
in a generalized context adapted to the problem and where initial conditions are
only part of the data on which smootness is established. Natural definitions for
symmetries of weak solutions are also given. In the same reference, the (classical)
finite elements method for the Dirichlet problem is shown to be smooth on the bor-
der function and on the sequence of triangulations chosen, in a way where smooth
dependence of both exact and approximated solutions is obtained.

• Contents of Chapter 3 It presents results in the direction of integration the-
ory, in particular integration on infinite dimensional spaces. I gave the definition
of normalized infinite dimensional integrals as means which are limits of Dirac
measures [5, 8] as well as the existence of a non-trivial (normalized) Lebesgue
mean which differs from the existing ones [8].With this approach the main results
presented is the following: On any Hilbert space H, there exists a translation invari-
ant, scale invariant mean, defined on a domain which contains cylindrical functions,
called Lebesgue mean.
• Contents of Chapter 4 An infinite dimensional group is called regular if it

admits an exponential map. The theory of regularity of infinite dimensional Lie
groups gathered the efforts of top researchers since the 70’s till now, from Omori,
Milnor and Ratiu to Neeb and Michor among others. My contributions in this
field are more humble. I showed non-regularity of the (diffeological Lie) group
of diffeomorphisms of an open manifold equipped with the C∞−compact open
topology [12]. With E.Reyes [16], we showed non-regularity of the (locally convex)
group of invertible elements of R((X)), and as a consequence, non regularity of the
group of invertible (maybe unbounded) formal pseudo-differential operators.

Then I describe the groups of operators generated by pseudo-differential oper-
ators (formal or non formal, bounded or unbounded) and by diffeomorphisms. Fol-
lowing [6, 19] I investigate their relationship with the restricted linear group group
GLres [PS1988] as well as their intrinsic structure. More precisely, I showed regu-
larity (i.e. existence and smoothness of the exponential maps) of groups of bounded
Diff(M)−pseudodifferential operators, when M is a boundaryless compact mani-
fold [6]. They are subgroups of GLres (defined along the lines of [PS1988]) when
M = S1 and considering only orientation preserving diffeomorphisms and bounded
PDOs, but they are not Lie subgroups of GLres [19].

Finally, the need of an infinite dimensional Ambrose-Singer theorem raised
many times in the literature, see e.g. [Fr1988-1, Fr1988-2, Pen1970]. A first re-
sult came in [Vas1978] assuming strong restrictions that enable the application of
a global Banach Frobenius theorem on a Banach principal bundle, while [KM2000]
showed an analogous result in the c∞ setting for flat connections and regular struc-
ture groups. The last result suggested that only integrability of the holonomy Lie
algebra is necessary to prove the Ambrose-Singer theorem. This is the result that
I got first in the context of Fréchet principal bundles in [1], and it was completed
in [4] in order to consider more general contexts. In these works, the holonomy
algebra is spanned by curvature elements (Ambrose-Singer theorem) but the word
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”spanned” depends on the category of Lie groups considered, while the holonomy
group is the smallest group to which a reduction theorem of the prescribed connec-
tion applies. These groups can be considered intuitively as “completions” of the
holonomy group classically generated by horizontal paths.

• Contents of Chapter 5 The quantum gravity approach of Yang-Mills action
functional considers holonomies along the edges of a triangulation instead of con-
nections. Curvatures read as holonomies of a loop. I precised in [13] the formal
description present in e.g. [RV2014] by giving a rigorous procedure to discretize a
connection along its holonomies, and made some remarks on possible integrals on
the space of connections and on the expression of the Yang-Mills action functional.
This work still has to be developed.

During the first investigations that led to [13] I have been invited to participate
to [27, 9] to precise technical (i.e. mathematical) aspects, work where I discovered
operations research and decision theory through the lights of pairwise comparisons.
The first evidence to me was that pairwise comparisons coincide exactly with the
holonomy of paths in quantum gravity, inconsistency coincides with non-trivial cur-
vature, and some so-called inconsistency indicators are Yang-Mills type functionals.
These remarks, announced in [11] have developed to the globalized work [14] where
(quantum gravity) Yang-Mills fields appear as an interdisciplinary topic. In this
work, I generalize pairwise comparisons to coefficients in a group, and I describe
basic mathematical aspects of this framework.

• Contents of Chapter 6 Algebras of non-formal classical (maybe unbounded)
pseudo-differential operators (PDOs) carry a family of linear functionals, called
(ζ−)renormalized traces, that extend the trace of trace-class operators. These
traces are present in the Radul cocycle, which stands formally as a non formal
realization of the Kravchenko-Khesin cocycle. After clarifying the relations of these
cocycles with the Schwinger cocycle [21], the sign of the Dirac operator over S1

appears as a way to describe a rigorous correnspondence between these cocyles,
first for multiplication operators [22], for unbounded classical PDOs [2], and for
non-classical PDOs [3].

Groups of bounded classical PDOs can serve as a structure group for frame
bundles over manifolds of smooth maps [21, 23] while groups of Diff(M)−PDOs,
appear naturally in the geometry of spaces of non-parametrized embeddings [6].
Both of them enable a non-trivial Chern-Weil theory [6, 19] and the second class
of examples enjoy surprising properties enhancing renormalized traces [19].

When considering unbounded operators, the same constructions are valid and
groups of boundedDiff(M)−pseudodifferential operators are generalized Lie groups.
On these groups for M = S1, ζ-renormalized traces enable to generalize the for-
mula of the Hermitian metric of groups of matrices (a, b) 7→ tr(ab∗) to get pseudo-
Hermitian metrics on groups of Diff(S1)−pseudodifferential operators. These
metrics have interesting properties, such as the existence of pseudo-Hermitian con-
nections with curvature with values in smoothing operators. For these metrics, mul-
tiplication operators and vector fields are isotropic, and for one of these “smooth-
ing” connections, the first Chern from is in the cohomology class of the Schwinger
cocycle [19].
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• Contents of Chapter 7 My works concerned two types of KP hierarchies: the
standard one, and a new deformed KP hierarchy, obtained from the usual one by
an adequate time scaling. In the second one, I first showed how the Ambrose-Singer
theorem fits with formal integrability [4]. Then, the same approach is applied in a
colloboration with E.G. Reyes and A.Eslami Rad [10, 16], where the main result
states well-posedness of KP hierarchy by re-analyzing Mulase’s bicross product of
groups. In [10], more abstract algebras of operators are considered for “general-
ized” KP hierarchies which are shown to be well-posed. Part of these results is
summarized in [15]. Finally, in [20] that presents the results of a collaboration
with V. Rubtsov, we extend the KP hierarchy by the study of a new integrable
almost complex structure derived from the sign of the Dirac operator over S1. The
same results of well-posedness are stated in most cases considered.





CHAPTER 1

Some preliminary considerations

1. Mathematical physics: heuristics as a dialectic approach

Mathematical physics often appear as a hybrid topic between two distinct dis-
ciplines: physics and mathematics, which have their own motivations and ways of
thinking.

• Physics intend to describe the physical world, and to predict physical
effects. Most quantities have ther significance only on one part of the (still
non unified) theories, and mathematical concepts appear as a language
to encode physics in modelizations. This modelling is sometimes based
on rigorous mathematical constructions. In that case, the consequences
of the mathematical properties of the model enable to test its accuracy
through experiments. When modelling is not rigorously based, it intends
to describe heuristically a physical realm. The heuristical computation
rules are then confirmed by the experiments.

• Mathematics are based on a chosen logical framework, described by a
coherent finite system of axioms. These axioms intend to encode facts
which are obviously true. Heuristic considerations lead to conjectures,
which have to be proved to be true or false by logical arguments. By
Gödel’s incompleteness theorem, a finite set of axioms cannot make de-
cidable all possible statements. Moreover, some axioms can be questioned.
One of the most famous examples of such a questioned statement remains
the axiom of choice. Other controversies appear on the accuracy of non
standard analysis.

Let us illustrate now how these different ways of thinking arise in three examples.

(1) The set of rational numbers Q, considered as describing the real world by
e.g. Plato, has been completed to R and to p−adic fields. Concentrating
on R, it is basically represented by the “real line” which looks like a
“physical” line. Real numbers encode classical mechanics. However,
• in mathematics, one can give a name (i.e. a denomination with a

word made of a finite sequence of letters in a finite alphabet) to only
a countable set of real numbers,
• in physics, the Heisenberg uncertainty principle and quantum grav-

ity theory (see e.g [RV2014])seem to contradict the space time con-
tinuum hypothesis at a critical scale, in terms of modelization of
observables in the phase space.
• besides these restrictions, non-standard analysis has itself enlarged

real numbers with infinitesimals with success in simplifying some
proofs in mathematical analysis and in giving rigorous descriptions
of standard objects, see e.g. [AFKHKL1986].

11



12 1. SOME PRELIMINARY CONSIDERATIONS

(2) The Adler symplectic structure on formal pseudo-differential operators
FCl(R,C) is derived from the Adler residue [Ad1979]

res :
∑
n<N

an∂
n ∈ FCl(R,C) 7→

∫
a−1

is not well-defined for any smooth partial symbol a−1 ∈ C∞(R,C) but only
for integrable ones. This integral is then a formal integral, with classical
properties of the (well-defined, Riemann) integral. This formula becomes
rigorous changing R to S1, and the Wodzicki residue [Wod1984] is of-
ten proposed as an extension of the Adler residue for pseudo-differential
operators acting on smooth functions on a smooth compact boundary-
less manifold M, while this generalization is not straightforward even for
M = S1 as analyzed in [20].

(3) The Feynman-Kac integral

f 7→ 1

Z(S)

∫
H

e−iSfDλ

is certainly one of the most famous heuristic formulas in physics from the
twentieth century which leads to various non-equivalent rigourous defini-
tions, see e.g. [AHKM2005, Fu2017]. In this expression:
• Dλ is a “heuristic” (translation invariant) infinite dimensional mea-

sure on the Hilbert space H. Such a “product measure” exists, but
has very few measurable sets [Bak1991, Bak2004] with finite non-
zero measure.
• The “normalization term” Z(S) =

∫
H
s−iSDλ stands as the (heuris-

tic) total mass of H.
• The total formula stands as a mean value formula, and is understood

this way for heuristic calculations in mathematical physics, see e.g.
[KW2009] for an example leading to knot invariants.

In these chosen examples, there does not appear an opposition, but a dialectic,
between heuristics and mathematical rigor. The minimal requirement in mathemat-
ics is to identify where heuristics are, and one difficult task of the mathematician
is to get a way to describe rigourously what heuristics describe brightfully.

2. From Hilbert manifolds to diffeological spaces and Gelfand’s formal
geometry

The description of spaces of mappings between two C∞, finite dimensional
manifolds M and N is known since Riemann’s inaugural lecture, and the notion
of infinite dimensional manifold has been developped actually around the most
proeminent examples arising from physics:

• mapping spaces, jets spaces etc...
• manifolds of metrics

and concerning infinite dimensional Lie groups:

• loop and current groups
• groups of diffeomorphisms
• groups of symmetries (of ODEs, PDEs etc...)
• groups of operators (bounded or unbounded), groups of the units of alge-

bras.
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The tentatives to generalize the finite dimensional settings have been devel-
opped starting from the most easy settings, that is, the settings nearest from the
finite dimensions. There are two:

- direct limits of finite dimensional manifolds. This approach is useful mostly
in probability theory [Bog2010], in frameworks linked with cylindrical measures
(e.g. Wiener measure) and also linked with the theory of Fredholm operators (see
e.g. [Kub2020] for a basic review on spectral theory), since lim−→n∈N∗Mn(R) is a

dense subgroup of the ideal of compact operators acting on a real Hilbert space.
- Strong Hilbert manifolds, which carry structures that are very similar to finite

dimensional manifolds: Riemannian metrics, existence of smooth partitions of the
unit, existence of Gaussian measures among others.

However, these ”nice structures” fail to describe the detailed structure of many
objects. For example, a strong Hilbert manifold is parallelizable [K1965]. Another
example relies on the group of diffeomorphisms of a compact boundaryless manifold
which does not carry any strong Riemannian metric as a ILH Lie group [Om1997].
The same way, groups of bounded operators on a Hilbert space carry a natural
Banach norm, but no such natural Hilbert norm. Thus, the first ”nice” settings
leads to consider also

• Banach manifolds, which e.g. no longer carry strong Riemannian metrics,
nor C∞ partition of the unit [Bou]

• Fréchet manifolds, which carry no ”canonical” structure Lie group, on
which many authors consider additional structures of projective limits of
Banach or Hilbert spaces [Om1997].

As one can see we have a classical logical effect: less properties enable to deal
with more examples, but with less technical abilities. Therefore, one can investigate
two opposite but complementary viewpoints:

• one considers only Fréchet spaces which have a prescribed structure pro-
jective limit of Banach or Hilbert spaces. This idea was first developped
by Omori [Om1997] motivated by the example of groups of diffeomor-
phisms, and has been recently re-investigated in [DGV2015]. With this
approach, one can deal, more or less superficially for applications, with the
most popular examples of infinite dimensional manifolds arising in math-
ematical physics: mapping spaces, groups of diffeomorphisms, spaces of
exterior forms and connections etc. over a compact boundaryless mani-
fold. One can refer to [KW2009] for an overview of classical applications
in this field.

• One can also generalize the framework once again in order to be able to
consider all necessary objects such as e.g. the bundle of frames. Indeed,
analyzing deeply the works [GV1997, DGV2015] for generalized frame
bundles as well as in [Om1997] for so-called generalized Lie groups, there
appears topological Lie groups, where one can differentiate, but which
carry no atlas. Let us mention that, apparently, this is not, in these two
cases, a lack of knowledge to build an adequate atlas, but that this is
impossible to find one. The same question rose in [24] (work not pre-
sented in this habilitation) which led us to consider diffeological spaces
[Sou1985, IZ1985, IZ2013]. The question of a ”ground” minimal set-
ting for infinite dimensional geometry is then raised, and our ”candidate”
is diffeological spaces, as in [Nee2007] while many generalizations of
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the notion of differentiability have been developped (for a sample non-
exhaustive list with references, see [BS2017, page 243]). We quote the
opinion given by Neeb in [Nee2007]: diffeological spaces are, by some as-
pects, too general to be useful in any case, especially for applications, and
very often one needs stronger settings. On one hand, this is completely
true from the viewpoint of K.H. Neeb’s work, who intends to develop re-
sults about pure settings for geometry and topology of infinite dimensional
groups. On the other hand, following an approach represented in our ref-
erences by the book of Khesin and Wendt [KW2009], one can focuse on
examples and applications ignoring sometimes some technicalities in their
description, refering if necessary to Gelfand’s formal geometry [GK1971].

The choice of the adequate minimal setting for differentiability, and hence for dif-
ferential geometry is the reason for the study [BH2011], where various generalized
settings for differential geometry are considered. We have to recognize honestly
that the use of a setting such as diffeologies appears as necessary in order to work
safely in some circumstences. From this viewpoint, diffeological spaces offer a very
easy-to-use setting, coherent with classical differential objects. The category of
diffeological spaces contains all the other categories described before which are sub-
categories. In the rest of the text, the setting considered will change, depending
on the ”strongest” setting which enables to deal with a situation or another. Even
if our opinion is much more positive about diffeologies, maybe because diffeologies
already helped us to deal with geometric objects, we agree with [Nee2007] that
there is no adequate universal setting for such objects, at least at the actual state
of knowledge. We recall the ”tower” of categories in which we shall work:

finite dimensional manifolds [KN63-69, Olv1993]
⇓

Hilbert manifolds [Bou, Lan1985]
⇓

Banach manifolds [Bou]
⇓

Fréchet manifolds, ILB manifolds [DGV2015, Om1997]
⇓

locally convex manifolds (not necessarily locally complete) [Nee2007, section I.1]
⇓

c∞manifolds [KM2000]
⇓

Frölicher spaces [FK1988, KM2000]
⇓

diffeological spaces [IZ2013]

The two last settings are actually the less known (and the most general). They do
not assume the presence of an atlas. This is exactly the same idea as Gelfand’s
formal geometry [GK1971], or so-called “smoothness in non-open domains” in
[KM2000]: consider ”reasonable” smooth objects in difficult settings. Our choice
for diffeologies and Frölicher spaces is also the choice of works such as [Can2015,
Can2020] in quantum physics and [We2021] in shape analysis.

In the presented works hereafter, diffeologies and Frölicher spaces ap-
pear in parts of the statements and results. They are here only technical
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tools, used to talk rigorously about smooth objects such as Frölicher alge-
bras (with smooth operations and inversion), diffeological and Frölicher
Lie groups (with smooth multiplication, inversion, and Lie algebra) etc.
but nowhere the presented work carry novelty about these theoretical
settings. They are only considered as a necessary technical features to
get rigorous statements and proofs.

In view of the relative novelty of these two last notions, we feel the need to
recall basic definitions for the reader who is a beginner in diffeologies. We begin
with the notion of a diffeological space:

Definition 1.1. Let X be a set.
• A p-parametrization of dimension p on X is a map from an open subset O of
Rp to X.
• A diffeology on X is a set P of parametrizations on X such that:

- For each p ∈ N, any constant map Rp → X is in P;
- For each arbitrary set of indexes I and family {fi : Oi → X}i∈I of compatible

maps that extend to a map f :
⋃
i∈I Oi → X, if {fi : Oi → X}i∈I ⊂ P, then f ∈ P.

- For each f ∈ P, f : O ⊂ Rp → X, and g : O′ ⊂ Rq → O, in which g is a
smooth map (in the usual sense) from an open set O′ ⊂ Rq to O, we have f ◦g ∈ P.

If P is a diffeology on X, then (X,P) is called a diffeological space and, if
(X,P) and (X ′,P ′) are two diffeological spaces, a map f : X → X ′ is smooth if
and only if f ◦ P ⊂ P ′.

The notion of a diffeological space is due to J.M. Souriau, see [Sou1985], and
[IZ2013] for a contemporary point of view. Of particular interest to us is the
following subcategory of the category of diffeological spaces.

Definition 1.2. A Frölicher space is a triple (X,F , C) such that
- C is a set of paths R→ X,
- F is the set of functions from X to R, such that a function f : X → R is in

F if and only if for any c ∈ C, f ◦ c ∈ C∞(R,R);
- A path c : R → X is in C (i.e. is a contour) if and only if for any f ∈ F ,

f ◦ c ∈ C∞(R,R).

If (X,F , C) and (X ′,F ′, C′) are two Frölicher spaces, a map f : X → X ′ is
smooth if and only if F ′ ◦ f ◦ C ⊂ C∞(R,R).

This definition first appeared in [FK1988]; we use terminology borrowed from
Kriegl and Michor’s book [KM2000]. A short comparison of the notions of diffeo-
logical and Frölicher spaces is in [24]; the reader can also see [4, 16, Wa2012] for
extended, but not so long, expositions. In particular, it is explained in [16] that
Frölicher and Gateaux smoothness are the same notion if we restrict ourselves to a
Fréchet context. We refer to [15] for an overview of the necessary notions in this
document.





CHAPTER 2

On infinite dimensional inverse theorems and
numerical schemes

In order to prove the existence of charts and atlases on submanifolds, one of
the main tools rely on the well-known implicit functions theorem, for submanifolds
defined by an implicit condition of the type F (x) = 0. Such equations arise in
almost all fields of mathematics and specially in the class of partial differential
equations (PDE). Both for implicit functions and for PDEs, many proofs rely on
a contraction principle, or on the use of compactness, and in almost any situation,
on the construction of a sequence that converges to a solution of the equation
considered. Let us precise a little more:

• Results that are called inverse theorems, namely the inverse function the-
orem, the implicit functions theorem, the Frobenius theorem, are equiva-
lent statements in Banach spaces assuming presence of topological com-
plements to closed vector subspaces, see [Pen1970] (for example, on re-
flexive Banach spaces). In this context, the essential proofs are based
on a contractive map which build up the solution as a fixed point. The
control of solution(s) is then given by additional estimates on a differen-
tial. Estimates are also crucial in the Nash-Moser theorem [Ham1984]
which serves in the proof of the existence and uniqueness of several PDEs,
and stands as motivating point for the construction of ILB manifolds
[Om1997] which includes diffeomorphisms groups.

• Among the numerous methods for solving PDEs, principally because of
our own lack of knowledge in a wider range of methods, we concentrated on
the classical finite elements method which relies on a fixed triangulation,
a covering of the domain considered by simplexes isomorphic to

(2.1) ∆n =
{

(x0, ..., xn) ∈ Rn+1
+ |x0 + ...+ xn = 1

}
and refining the triangulation by triangulating each copy of ∆n, the se-
quence of approximate solutions converge to the exact solution of the PDE
considered, see e.g. [BS1994].

In our contributions to this very wide topic, we will analyse firstly a first order
finite elements method (Galerkin method), and an ILB implicit functions theorem
with weakened hypothesis.

1. On the space of triangulations of a manifold, based on [7, 18]

As we just mentioned, the base triangulation is always fixed in numerical meth-
ods. However, one can precise better the differential structures that remain implicit
(and assumed natural) in many geometric applications of triangulation, see e.g.
[Wh1957, Dup1978] and primarily exhibited in [CW2014-2]. Nevertheless, we

17
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will expose here how the space of triangulations a smooth manifold M carries itself
a Frölicher structure. Part of the presented results have been recently performed
independently by other authors in [HL2020], from a perspective based on numer-
ical analysis and hence less geometric. We wish to highlight the smooth structures
inherited from the space of triangulations of a smooth manifold, and consider the
refinement map of a mesh of triangulations as a smooth map on the space os trian-
gulations. This is exposed in [18] as a final version of this work, with preliminary
results given in [7]. For this, we need to refine very basic notions, for a fixed
n−dimensional manifold M possibly with boundary.

Definition 2.1. A smooth triangulation of M is a family τ = (τi)i∈I where
I ⊂ N is a set of indexes, finite or infinite, each τi is a smooth map ∆n →M, and
such that:

(1) ∀i ∈ I, τi is a (smooth) embedding, i.e. a smooth injective map such that
(τi)∗ (P(∆n)) is also the subset diffeology of τi(∆n) as a subset of M.

(2)
⋃
i∈I τi(∆n) = M. (covering)

(3) ∀(i, j) ∈ I2, τi(∆n)∩τj(∆n) ⊂ τi(∂∆n)∩τj(∂∆n). (intersection along the
borders)

(4) ∀(i, j) ∈ I2 such that Di,j = τi(∆n) ∩ τj(∆n) 6= ∅, for each (n − 1)-face

F of Di,j , the “transition maps” “τ−1
j ◦ τ ′′i : τ−1

i (F )→ τ−1
j (F ) are affine

maps.

Under these conditions, we equip the triangulated manifold (M, τ) with a
Frölicher structure (FI , CI), generated by the smooth maps τi that encode the natu-
ral differentiation inherited from the maybe infinite cartesian product C∞(∆n,M)I .
Maps in FI can be intuitively identified as some piecewise smooth maps M → R,
which are of class C0 along the (n − 1)−skeleton of the triangulation. We have
proved also that CI ⊂ P∞(M). Some characteristic elements of CI can be under-
stood as paths which are smooth (in the classical sense) on the interiors of the
domains of the simplexes of the triangulation, and that fulfill some more restrictive
conditions while crossing transerversaly the (n− 1)−skeleton of the triangulation,
such as the vanishing of their infinite jet.

Remark 2.2. While trying to define a Frölicher structure from a triangulation,
one could also consider

CI,0 =
{
γ ∈ C0(R,M) | ∀i ∈ I, ∀f ∈ C∞c (φi(∆n),R), f ◦ γ ∈ C∞(R,R)

}
where C∞c (φi(∆n),R) stands for compactly supported smooth functions M → R
with support in φi(∆n). Then define

F ′I = {f : M → R | f ◦ CI,0 ∈ C∞(R,R)}
and

C′I = {C : R→M | F ′I ◦ c ∈ C∞(R,R)} .
We get here another construction, but which does not understand as smooth maps
M → R the maps δk mentionned in next sections.

Now, let us fix the set of indexes I and fix a so-called model triangulation
τ. This terminology is justified by two ideas:

• Anticipating next constructions, this model triangulation τ will serve at
defining a sequence of refined triangulations. This is our “starting trian-
gulation” for the refinement procedure in the finite elements method.
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• Changing τ into g ◦ τ, where g is a diffeomorphism, we get another model
triangulation, which has merely the same properties as τ. But each “start-
ing” trinagulation cannot be obtained by transforming a fixed triangula-
tion by using a diffeomorphism. For example, on the 2-sphere, a tetrahe-
dral triangulation τ1 and an octahedral triangulation τ2 separately gen-
erate two sequences of refined triangulations, and there is a topological
obstruction for changing τ1 into τ2 by the action of a diffeomorphism of
the sphere. This leads to an open problem: classify triangulations with
respect to the action of groups of diffeomorphisms, in other words, de-
scribe the orbits (and their topology) of the group of diffeomorphisms
acing on the space of triangulations.

We denote by Tτ the set of triangulations τ ′ of M such that the corresponding
(n− 1)−skeletons are diffeomorphic to the (n− 1)−skeleton of τ (in the Frölicher
category). The set Tτ contains, but is not reduced to, the orbit of τ by the action
of the group of diffeomorphisms.

Definition 2.3. Since Tτ ⊂ C∞(∆n,M)I , we can equip Tτ with the subset
Frölicher structure, in other words, the Frölicher structure on Tτ whose generating
family of contours C are the contours in C∞(∆n,M)I which lie in Tτ .

Therefore it is possible to define classical methods of refinement of triangula-
tions as a map

µ : T → T .

Theorem 2.4. [18] The map µ : T → T is smooth.

Therefore generating a sequence of triangulations adapted toH1
0−approximation

can be reformulated the following way:

Definition 2.5. Let τ ∈ T . We define the µ−refined sequence of triangulations
µN(τ) = (τn)n∈N by {

τ0 = τ
τn+1 = µ(τn)

Proposition 2.6. [18] The map

µN : T → T N

is smooth (with T N equipped with the infinite product Frölicher structure).

In the case of the Dirichlet problem, we consider a subspace of Tτ .
Let Ω be a bounded connected open subset of Rn, and assume that the border

∂Ω = Ω̄− Ω is a polyhedra. Since Rn is a vector space, we can consider the space
of affine triangulations:

AffTτ = {τ ′ ∈ Tτ |∀i, τ ′i is (the restriction to ∆n of) an affine map } .

We define AffT from AffTτ the same way we defined T from Tτ , via disjoint
union. We equip Aff(Tτ ) and Aff(T ) with their subset diffeology. We use here
the obvious notations for the index i of a simplex in a triangulation anf for the
coordinate xj in a simplex..

Theorem 2.7. Let

c : R→ Aff(Tτ )
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be a path on Aff(Tτ ). Then

c is smooth ⇔ ∀(i, j) ∈ I × Nn+1, t 7→ xj(c(t)i) is smooth.

This construction is recovered in [HL2020].

Proposition 2.8. Let µ be a fixed affine triangulation of ∆n. The map µN

restricts to a smooth map from the set of affine triangulations of Ω to the set of
sequences of affine triangulations of Ω.

2. On the way to the geometry of numerical schemes, based on [18]

Let X and Z be a (LCTVS) and let Y be Fréchet spaces.

• Assume that the inclusion map X → Y is smooth.
• Let us consider the space of Cauchy sequences C(X,Y ) that are Cauchy

sequences in X with respect to the uniform structure on Y.

Then following [18] it is possible to encode smoothness of the limit and of each
evaluation map (un)N 7→ un on C(X,Y ) by a diffeology called Cauchy diffeology.
Let Q be a diffeological space of parameters.

Definition 2.9. A smooth functional equation is defined by a smooth map
F : X ×Q→ Z and by the condition

(2.2) F (u, q) = 0

The set NumF (Y ) of Y−smooth numerical schemes is the set of smooth maps

x : Q→ C(X,Y )

such that, if x(q) = (xn)n∈N ∈ NumF (Y )(q) ⊂ C(X,Y ) for q ∈ Q,
lim

n→+∞
F (xn, q) = 0.

We call the image space

SY (F ) =

{(
lim

n→+∞
x

)
∈ C∞(Q,Y ) |x ∈ NumF (Y )

}
the space of Q−parametrized solutions of (2.2) with respect to NumF (Y ).

Remark 2.10. In the definition of the space SY (F ), we consider the image of
NumF (Y ) with respect to the limit map. This means that, for a fixed parameter
q ∈ Q, the space of Y−solutions to F (., q) = 0 is SY (F )(q).

This setting fits with many numerical methods, especially those that envolve
fixed point (and in particular gradient) methods in producing weak solutions. Since
smooth dependence on the parameters is ensured, a notion of (smooth) symmetries
can be derived by extension of the classical notions of symmetries. In this setting
the approach described in e.g. [Olv1993] provides some restricted class symmetries
(called projectable symmetries), see e.g. [Vin2013]. We proposed an extension of
them in [18] by considering the full group of diffeomorphisms of the set of solu-
tions. This proposal even if abstract, has the particular advantage to set a maximal
framework for symmetries of solutions of any kind, weak or strong, while projectable
symmetries are naturally included in our setting.

Open problem: Compare this setting with so-called approximate symmetries in
e.g. [SGO2021] and in references therein, and with the very recent work [CvS2021].
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Indeed, weak solutions are limits of approximate solutions and their inter-related
construction suggests that their geometric properties can be compared. Actually,
the intrinsic geometry of solutions of PDEs has to be clarified in most cases, exspe-
cially for weak and approximate ones. Some interesting situations, from the view-
point of weak solutions, are given in [18] including paradoxal solutions of fluid
equations from [dLS2009, dLS2010, dLS2012, Vil2006, Sche1993, Shn1997,
Shn2000], and the recent review [dLS2021] as well as the example [PS2021] show
both the wide variety of interesting examples and the non-triviality of geometric
problems here raised.

3. Smoothness of the finite elements method based on [18]

One classical way to solve the Dirichlet problem is to approximate u by a
sequence (un)n∈N in the Sobolev space H1

0 (Ω,R) which converges to u for the
H1

0−convergence by the (degree 1) finite elements method, see e.g. [BS1994].
For this, based on a triangulation τ0 with 0−vertices (s0

k)k∈K0
, where K0 is an

adequate set of indexes, and we consider the H1
0−orthogonal family

(
δ
s
(0)
k

)
k∈K0

of

continuous, piecewise affine maps on each interior domain of triangulation, defined
by

δ
s
(0)
k

(s
(0)
j ) = δj,k (Kronecker symbol).

With this setting, u0 is a linear combination of
(
δ
s
(0)
k

)
k∈K0

such that

∀k ∈ K0,
(

∆u0, δs(0)
k

)
H−1×H1

0

=
(
f, δ

s
(0)
k

)
L2

.

With a sequence of affine triangulations (τn)n∈N defined as before on a suitable
domain Ω of Rn, we wish to establish smoothness of the family of maps δ defined
before with respect to the underlying triangulation (with the notations of the first
section).

Theorem 2.11. [18] Let τ ∈ T . The map

δ : Tτ →
(
H1

0 ∩ C0(Ω)
)I

is smooth.

Now, let us fix µ a triangulation of ∆n, then under midl conditions µ defines
refinement sheme in T , by dividing simplexes of the initial triangulation, which
introduces, for each τ ∈ T , a sequence τn, and a family of functions δτn .

Theorem 2.12. [18] The map (τ ′0, f) ∈ T ×C∞(Ω,R) 7→ (un)n∈N is a smooth
H1

0− numerical scheme for the Dirichlet problem.

In other words, ∀n ∈ N, the approximate solution un, piecewise affine on τn,
depends smoothly on τ0 and f, while we alrealy know that the solution u = limun
does not depend on τ0 and depends smoothly on f.

Open problem: The Dirichlet problem is a toy example compared with the full
range of applications of finite elements methods. Applications of the smooth struc-
ture of the space of triangulations are in progress for shape analysis problems.
Well-posedness of other related problems of discretization via triangulation, such
as Whitney discretization of connections on a trivial principal bundle [Wh1957],
can be considered.
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4. New lights on implicit functions and related results, based on [17, 18]

We set the following notations, following [Om1997]: Let E = (Ei)i∈N and F =
(Fi)i∈N be two sequences of Banach spaces, decreasing for inclusion and with dense
embedding, called ILB vector spaces (ILB for Inverse Limit of Banach), i.e. ∀i >
j,Ei ⊂ Ej and Fi ⊂ Fj , with smooth inclusion and density, and set E∞ =

⋂
i∈NEi,

F∞ =
⋂
i∈N Fi with projective limit topology. Let O0 be an open neighborhood of

(0; 0) in E0 × F0, let O = (Oi)i∈I with Oi = O0 ∩ (Ei × Fi), for i ∈ N ∪ {∞}.

Theorem 2.13. [17, Theorem 2.2] There exists a non-empty domain D∞ ⊂
U∞, possibly non-open in U∞, and a function

u∞ : D∞ → V∞

such that
∀x ∈ D∞, f∞(x;u∞(x)) = 0.

Moreover, there exists a sequence (ci)i∈N ∈ (R∗+)N and a Banach space Bf∞ such
that

• Bf∞ ⊂ E∞ (as a subset)
• the canonical inclusion map Bf∞ ↪→ E∞ is continuous

which is the domain of the following norm (and endowed with it):

||x||f∞ = sup

{
||xi||
ci
|i ∈ N

}
.

Then D∞ contains B, the unit ball (of radius 1 centered at 0) of Bf∞ .

In [17], the question of the regularity of the implicit function is left open,
because the domain D∞ is not a priori open in O∞. Moreover, the presence of
the Banach space Bf∞ suggests that the properties of the implicit function u∞
may depend on the properties of the function f∞ under consideration. This lack
of regularity induces a critical breakdown in generalizing the classical proof of the
Frobenius theorem to this setting. We fill this gap in the sequel, by completing
the proof of Theorem 2.13 from [18] using the Cauchy diffeology, under the light
of numerical schemes.

Theorem 2.14. [18] Let

fi : Oi → Fi, i ∈ N ∪ {∞}
be a family of maps, let u∞ the implicit function defined on the domain D∞, as in
Theorem 2.13. Then, there exists a domain D such that B ⊂ D ⊂ D∞ such that
the function u∞ is smooth for the subset diffeology of D.

The same way, we can state the corresponding Frobenius theorem, denoting by
L(E,F ) the space of bounded linear maps between two Banach spaces E and F :

Theorem 2.15. [18]
Let

fi : Oi → L(Ei, Fi), i ∈ N
be a collection of smooth maps satisfying the following condition:

i > j ⇒ fj |Oi = fi

and such that,
∀(x, y) ∈ Oi,∀a, b ∈ Ei
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(D1fi(x, y)(a)(b) + (D2fi(x, y))(fi(x, y)(a))(b) =

(D1fi(x, y)(b)(a) + (D2fi(x, y))(fi(x, y)(b))(a).

Then, ∀(x0, y0) ∈ O∞, there exists a diffeological subspace D of O∞ that con-
tains (x0, y0) and a smooth map J : D → F∞ such that

∀(x, y) ∈ D, D1J(x, y) = fi(x, J(x, y))

and, if Dx0
is the connected component of (x0, y0) in {(x, y) ∈ D |x = x0},

Ji(x0, .) = IdDx0
.

Moreover, there exists a sequence (ci)i∈N ∈ (R∗+)N and a Banach space Bf∞ such
that

• Bf∞ ⊂ E∞ × F∞ (as a subset)
• the canonical inclusion map Bf∞ ↪→ E∞ × F∞ is continuous

which is the domain of the following norm (and endowed with it):

||x||f∞ = sup

{
||x||Ei×Fi

ci
|i ∈ N

}
.

Then D∞ contains B, the unit ball (of radius 1 centered at 0) of Bf∞ .

Open problem: There exists many extended versions of implicit functions theo-
rems, and among them the version in [HN1971] based on bornologies. Natural
bornologies defined by diffeologies may give new clues and new ways to get smooth
implicit functions.





CHAPTER 3

Contributions to infinite dimensional integrals and
means

Let (X,µ) be a measured space. Following [Pat1988], [Pes2006], let us fix a
vector subspace F ⊂ L∞(X,µ) such that 1X ∈ F . A mean on F is a linear map
φ : F → C such that φ(1X) = 1. Alternately, if (X, d) is a metric space, given
F ⊂ C0

b (X) (space of continuous bounded maps), a mean on F is a linear map
φ : F → C such that φ(1X) = 1. These two terminologies come from the basic
example where µ is a Borel probability measure on a compact metric space (X, d),
for which the mean of a continuous integrable map f is its expectation value∫

X

fdµ,

and can be approximated by sequences of barycenters of Dirac measures via Monte
Carlo methods. For functions on infinite dimensional spaces derived from Feynman-
Kac formulas, normalized integrals of the type

1

Z(S)

∫
fe−iSdλ,

where

Z(S) =

∫
e−iSdλ,

and where dλ is a formal infinite dimensional Lebesgue measure and S is an ac-
tion functional, need to be defined rigourously, which is actually performed by
vaious non-equivalent ways, among which Fresnel oscillatory integrals [AB1994,
AHKM2005, Fu2017] are the most known of us. Underlying these formulas,
we identify here the problem of the extension of the definition of an integral to
infinite dimensional spaces. This problem has been independently addressed in
[AM2016, MS2016, AM2018] for non-necessarily normalized integrals while the
results [5, 8] presented hereafter intend to describe normalized linear functionals
extending the notion of integral of functions defined on infinite dimensional spaces.

1. Means spanned by probability measures, based on [5, 8]

Let X be a complete metric space and let C0
b (X) be the space of bounded

K−valued continuous maps on X. We note by P(X) the space of Borel probability
measures on X. Let us first set V = K. When X is a compact metric space, it
is well-known that P(X) is a convex set with extremal points the Dirac measures.
one can generalize this construction for non compact, maybe infinite dimensional
spaces, by producing this way means. More precisely:
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• A K−probability mean is a linear map τ : Dτ ⊂ C0
b (X) → K which is

defined as the limit of barycenters with K−weights of a sequence of Borel
probability measures on X, i.e.

∃(µn, αn)n∈N ∈ (P(X)×K)N,∀m ∈ N∗,{
m∑
n=0

αn 6= 0

}
∧

{
∀f ∈ C0

b (X), τ(f) = lim
m→+∞

1∑m
n=0 αn

(
m∑
n=0

αnµn(f)

)}
.

• Following [5], a K−Dirac mean is a linear map τ : Dτ ⊂ C0
b (X) → K

which is defined as the limit of barycenters with K−weights of a sequence
of Dirac measures on X,

∃(xn, αn)n∈N ∈ (X ×K)N,∀m ∈ N∗,{
m∑
n=0

αn 6= 0

}
∧

{
∀f ∈ C0

b (X), τ(f) = lim
m→+∞

1∑m
n=0 αn

(
m∑
n=0

αnδxn(f)

)}
.

.
We note by P̃MK(X) the space of K−probability means, by PMK(X) the set

of probability means τ such that Dτ = C0
b (X), by P̃M

+

R (X) the means τ obtained
by a sequence (αn)n∈N ∈ R∗+ and we set

PM+
R (X) = PMC(X) ∩ P̃M

+

R (X).

We note by D̃MK(X), DMK(X), D̃M
+

R (X), DM+
R (X) the sets of Dirac means

corresponding respectively to P̃MK(X), PMK(X), P̃M
+

R (X), PM+
R (X)

Definition 3.1. [8] Let X = (Xn)N be an exhaustive sequence of compact
subsets of nonzero finite measure in a mm-space (X, d, µ). Let

µn =
1

µ(Xn)
1Xnµ.

Let f : X → C be a map such that for each n ∈ N, the restriction of f to Xn is
µn−integrable. Then, the mean value of f with respect to the family X is

WMV X (f) = lim
n→+∞

∫
Xn

fdµn

if the limit exists.

Definition 3.2. [8] Let X = (Xn, τn)n∈N be a sequence of probability spaces
such that

- ∀n ∈ N, Xn is a metric space.
- ∀n ∈ N, Xn ⊂ Xn+1, and the topology of Xn+1 restricted to Xn cöıncides with

the topology of Xn.

- ∀n ∈ N, τn ∈ P̃MC(Xn). Then, we define, for the maps f defined on
⋃
n∈NXn,

if ∀n ∈ N, f|Xn ∈ Dτn and if the limit converges,

LMX(f) = lim
n→+∞

τn(f)

called limit mean of f with respect to X.
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Following [Gr1997] and [Pes2006], a space with metric and measure, or
a metric measured space (mm-space for short) is a triple (X, d, µ) where (X, d)
is a metric space and µ is a probability measure on the Borel algebra on X.

Let A ⊂ X, let ε > 0. We note by

Aε = {x ∈ X|d(A, x) < ε}.

In the sequel, we shall assume that

∀n ∈ N, Xn ⊂ Xn+1

with continuous injection. Notice that we do not assume that dn is the restriction of
dn+1 hich allows us some freedom on metric requirements. The technical necessary
condition is the following: let n ∈ N and let Bn+1 be a Borel subset of Xn+1. Then
Bn+1 ∩ Xn is a Borel subset of Xn. We have here a priori a class of limit means
following the terminology of Definition 3.2. Let us quote first the classical (and
historical) example of a Levy family see e.g. [Gr1997], section 3 1

2 .19, which gives
an example of mean value:

The Levy family of spheres and the concentration phenomenon
Let us consider the seuquence of inclusions

S1 ⊂ S2 ⊂ ... ⊂ Sn ⊂ Sn+1... ⊂ S∞ =

∞⋃
n=1

Sn

equipped with the classical Euclid (or Hilbert) distance and (except for S∞) the
normalized spherical measure µ (we drop the index for the measure in sake of clear
notations). Then, for any R−valued 1-Lipschitz function on S∞, there exists a ∈ R
such that:

∀ε > 0, µ {x ∈ Sn|||f(x)− a|| > ε} < 2e−
(n−1)ε2

2 .

In a more intuitive formulation, one can say that any 1-Lipschitz function
concentrates around a real vaule a with respect to µ. We leave the reader with
the reference [Gr1997] for more on the metric geometry of this example. We can
reformulate:

Proposition 3.3. [8] Let X = (Sn; ||.||;µ)n∈N∗ . Then for any 1-Lipschitz
function f defined on S∞, and with the notations used before,

LMX (f) = a.

Remark 3.4 (Lévy families induced by Lebesgue measures). [8] Let m,n ∈
(N∗)2. Take Km ⊂ ‘Rn. For each m ∈ N∗, we equip Km with the usual distance d
induced by Rn and with the probability measure

µn =
1Kn
λ(Kn)

λ.

Setting K = (Km, d, µm)m∈N∗ , we get that K is a Lévy family, but there is no
concentration property.
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2. Limit means and infinite dimensional integrals, based on [8]

This definition intends to fit with the procedure of integration of cylindrical
functions in Hilbert spaces. This enables to analyze two well-known classes of
infinite dimensional integrals.

• Daniell integral [8] consists in intergation with respect to the infinite
dimensional product probability measure over [0; 1]N. Then, adequate se-
quences for the Monte Carlo method are those whose push-forward on
[0; 1]k are also adequate for this method. The condition on the sequence
(xn) is that for each k ∈ N, the push-forwards of the sequences (Pk(xn))
on [0; 1]k fit with the desired conditions: the sequence (Pk(xn)) is a
Monte Carlo sequence for the cube [0; 1]k equipped with the (trace of)
the Lebesgue measure. It is well-known that such a sequence (xn) exists,
through e.g. the powers of π:

∀n ∈ N∗, xn = (nπl+1 − int(nπl+1))l∈N ∈ [0; 1]N,

where int(x) is the integer part of the real number x. Thus, Daniell in-
tegral appears by its definition as a limit mean for the sequence (Xn)N∗

defined by Xn = [0; 1]n, equipped with the classical Lebesque measure.
But Daniell integral appears also as a Dirac mean which domain contains
cylindrical functions.

• Fresnel integrals: Let Φ ∈ C∞(Rn,R) be a fixed function. Following
[ET1984] (see e.g. [AHKM2005, AM2005, Dui1974]), we define:

Definition 3.5. Let f be a measurable function on Rn. Let ϕ ∈ S(Rn)
be a weight function such that ϕ(0) = 1. if the limit

lim
ε→0

∫
Rn
eiΦ(x)f(x)ϕ(εx)dx

exists and is independent of the fixed function ϕ, then this limit is called
oscillatory integral of f with respect to Φ, noted∫ o

Rn
eiΦ(x)f(x)dx.

The choice Φ(x) = i
2h |x|

2 is of particular interest, and is known un-
der the name of Fresnel integral. This choice gives us a mean, up to

normalization by a factor (2iπh)−
d
2 , and can be generalized to a Hilbert

space H the following way:

Definition 3.6. A Borel measurable function f : H → C is called
h− integrable in the sense of Fresnel is for each increasing sequence of
projectors (Pn)n∈N such that limn→+∞ Pn = IdH, the finite dimensional
approximations of the oscillatory integrals of f{∫ o

ImPn

e
i

2h |Pn(x)|2f(Pn(x))d(Pn(x))

}{∫ o

ImPn

e
i

2h |Pn(x)|2d(Pn(x))

}−1

are well-defined and the limit as n→ +∞ does not depend on the sequence
(Pn)n∈N. In this case, it is called infinite dimensional Fresnel integral of
f and noted ∫ o

H
e
i

2h |x|
2

f(x)d(x).
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The invariance under the choices of the map ϕ and the projections
Pn is assumed mostly to enable stronger analysis on these objects, which
intend to be useful to describe physical quantities and hence can be ma-
nipulated in applications where one sometimes works “with no fear on the
mathematical rigor” in calculations. But we can also remark, following
[8] that:

– for functions f defined on Rn, the map

f 7→
∫ o

Rn
eiΦ(x)f(x)dx ∈ P̃MC(Rn),

– the map

f 7→ lim
n→+∞

∫ o

Rn
eiΦ(x)f(x)dx

is a limit mean through the sequence R ⊂ ... ⊂ Rn ⊂ Rn+1 ⊂ ... ⊂ H.
The limit mean obtained is got through the classical trick of cylindrical
functions, which we shall also use in the sequel. But we have no way to
define some adequate sequence of Dirac means which could approximate
the oscillatory integral, even in the finite dimensional case actually.

Open problem: In the space D of sequences (dn) of Dirac means, for which lim dnf
exists for a family F of test functions f , there is a natural relation of equivalence

(dn) ∼ (d′n)⇔ ∀f ∈ F , lim dnf = lim d′nf.

When X is a compact metric space and when F = C0(X,R), the quotient space is
exactly the space of Radon measures.

In any of these situations, the quotient

D → D/ ∼
has geometric or topological properties that are unknown, only a sketch of adequate
diffeology for its study is given in [18]. The same question of geometric proper-
ties can be raised for the framework for infinite dimensional (cylindrical) integrals
described in [AM2016].

3. Infinite products and normalized infinite dimensional Lebesgue
measure following [8]

It is almost straightforward to extend means to an infinite product by the pro-
cedure of cylindrical functions. The same way, one can define admissible domains
on the infinite product by generalizing open dense subsets [8]. This leads to the
following applications.

3.1. Application: the mean value on marked infinite configurations.
Let X be a locally compact and paracompact manifold, orientable, and let µ be a
measure on X induced by a volume form. In the following, we have either

- if X is compact, setting x0 ∈ X, and following [FH2001],

Γ = {(un)n∈N ∈ XN| limun = x0 and ∀(n,m) ∈ N2, n 6= m⇒ un 6= um}
- if X is not compact, setting (Kn)n∈N an exhaustive sequence of compact

subspaces of X,

OΓ = {(un)n∈N ∈ XN|∀p ∈ N, |{un;n ∈ N} ∩Kp| < +∞ and
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∀(n,m) ∈ N2, n 6= m⇒ un 6= um}
The first setting was first defined by Ismaginov, Vershik, Gel’fand and Graev, see
e.g. [Ism1996] for a recent reference, and the second one has been extensively
studied by Albeverio, Daletskii, Kondratiev, Lytvynov, see e.g. [AKLU2000].
Alternatively, Γ can be seen as a set of countable sums of Dirac measures equipped
with the topology of vague convergence.

For the following, we also need the set of ordered finite k−configurations:

OΓk = {(u1, ..., uk) ∈ Xk|∀(n,m) ∈ N2, (1 ≤ n < m ≤ k)⇒ (un 6= um)}

OΓ is an admissible domain in XN in the sense there exists an increasing sequence
of “admissible subsets”on which OΓ can be “assimilated almost everywhere”to a
cartesian product, see [8] for the details. We then define, for a bounded cylindrical
function f,

WMV Uµ (f).

More precisely, the normalization sequence U on OΓ is induced from the normal-
ization sequence on XN. This implies heuristically that cylindrical functions with a
weak mean value with respect to U are in a sense small perturbations of functions
on XN. This is why we can modify the sequence U on OΓ in the following way: let
ϕ : R+ → R∗+ be a function such that limx→+∞ ϕ = 0. Then, if f is a cylindrical
function on OΓ, we set

Unϕ = Un − {(xi)1≤i≤n|∃(i, j) such that i < j ∧ d(xi, xj) < ϕ(n)}.

3.2. Normalized infinite dimensional Lebesgue integral.

Definition 3.7. A normalized Fréchet space is a pair (F,H), where

(1) F is a Fréchet space,
(2) H is a Hilbert space,
(3) F ⊂ H and
(4) F is dense in H.

Another way to understand this definition is the following: we choose a pre-
Hilbert norm on the Fréchet space F. Then, H is the completion of F.

Definition 3.8. Let V be a complete locally convex topological vector space.
A function f : F → V is cylindrical if there exists Ff , a finite dimensional affine
subspace of F, for which, if π is the orthogonal projection, π : F → Ff such that

∀x ∈ F, f(x) = f ◦ π(x).

Proposition 3.9. Let (fn)n∈N be a sequence of cylindrical functions. There
exists an unique sequence (Ffn)n∈N increasing for ⊂, for which ∀m ∈ N,, Ffm is
the minimal affine space for which

∀n ≤ m, fn ◦ πm = fn.

Let f be a bounded function which is the uniform limit of a sequence of cylindri-
cal functions (fn)n∈N. Here, an orthonormal basis (ek)k∈N is obtained by induction,
completing at each step an orthonormal basis of Ffn by an orthonormal basis of
Ffn+1

. Thus we can identify F with a subset D of RN which is invariant under
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change of a finite number of coordinates. This qualifies it as admissible for any set
of renormalization procedures in RN . We note by

WMVλ(f)

the weak mean value here constructed, which stand for a normalized infinite di-
mensional Lebesgue integral, generalizing to an infinite product the Levy family
in Remark 3.4. This mean value does not depend on the sequence (fn)n∈N only
once the sequence (Ffn)n∈N is fixed. In other words, two sequences (fn)n∈N
and (f ′n)n∈N which converge uniformly to f a priori lead to the same mean value
if Ffn = Ff ′n (maybe up to re-indexation). From heuristic calculations, it seems to
come from the choice of the renormalization procedure, which is dependent on the
basis chosen, more than from the sequence (Ffn)n∈N.

We notice in [8] three types of invariance for WMVλ :

(1) Scale invariance: Let α ∈ N∗. Let f be a function on an infinite dimen-
sional vector space F with mean value. Let fα : x ∈ F 7→ f(αx). Then fα
has a mean value and

WMVλ(fα) = WMVλ(f).

(2) Translation invariance: Let v ∈ F. Let f be a function on F with mean
value. Let fv : x ∈ F 7→ f(x+ v). Then fv has a mean value and

WMVλ(fv) = WMVλ(f).

(3) Invariance under the orthogonal (or unitary) group: Let UF be the group
of unitary operators of H which restricts to a bounded map F → F
together with its inverse. Let u ∈ UF . Let f be a map with mean value.
Then f ◦ u has a mean value and

WMVλ(f ◦ u) = WMVλ(f).

These three fundamental properties qualifies WMVλ to be called normalized
generalization of a Lebesgue measure. This construction is very heuristically a
normalization of the classical infinite dimensional Lebesgue measure [Bak1991,
Bak2004] for which:

- the Hilbert cube is of measure 1;
- its dilatations are of measure +∞;
- its homothetic contractions are of measure 0. By its lack of increasing sequence

of bounded subsets covering R∞, its normalized version had to be made before
passing to the cylindrical limit. Let us now give an application of our ”normalized
Lebesgue integral” on a Hilbert space. We also have to mention the work [MS2016]
which is to our knowledge the first paper to follow the approach that we initiated
on infinite dimensional Lebesgue integration. For the authors,

Definition 3.10. (intuitive translation of the definition in [MS2016]) Let
S(E) be some class of infinitely differentiable complex functions on the locally con-
vex topological vector space E. Assume also that S(E), which is assumed stable
under composition by translations, is equipped with a topology which makes differ-
entiation and composition with a translation differentiable. Then any translation-
invariant ν ∈ S′(E) is called Lebesgue-Feynman measure.
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Open problem: The normalized infinite dimensional Lebesgue integral has clearly
to be studied under the lights of [MS2016] on the one hand, and of [AM2016] on
the other hand .

3.3. Application: Lebesgue integral on spaces of n-differential forms
and Hodge theory. Let M be a finite dimensional manifold quipped with a
Riemannian metric g and the corresponding Laplace-Beltrami operator ∆, and
with finite dimensional de Rham cohomology space H∗(M,R). One of the standard
results of Hodge theory is the onto and one-to-one map between H∗(M,R) and the
space of L2−harmonic forms H made by integration over simplexes:

I : H → H∗(M,R)

α 7→ I(α)

where

I(α) : s simplex 7→ I(α)(s) =

∫
s

α.

We have assumed here that the simplex has the order of the harmonic form. This
is mathematically coherent stating

∫
s
α = 0 if s and α do not have the same order.

Let λ be the Lebesgue measure on H with respect to the scalar product induced
by the L2−scalar product. Let U = (Un)n∈N be the sequence of Euclidian balls
centered at 0 such that, for each n ∈ N, the ball Un is of radius n.

Proposition 3.11. [8] Assume that H∗(M,R) is finite dimensional. Let s be
a simplex. Let

ϕs =
|I(.)(s)|

1 + |I(.)(s)|
.

The cohomology class of s is null if and only if

WMV Uλ (ϕs) = 0.

The map s 7→WMV Uλ (ϕs) is a {0; 1}− valued map.
Moreover, the map ϕs extends to a cylindrical function on L2−forms, and hence

the construction described above applies to this extension map.



CHAPTER 4

Contributions to infinite dimensional Lie groups
and principal bundles

Let us review few definitions in order to fix the necessary vocabulary. For this,
we have the very difficult task to summarize investigations led during decades by
Omori, Milnor, Ratiu, and then Michor, Neeb, Glöckner among others, without
going too deeply into not necessary detailed descriptions and refined properties
but sketching the key ideas existing in other works by other authors in order to
motivate applications of our results. Passing from finite dimensional settings to
infinite dimensional ones, there are, among others, fundamental properties which
are difficult to state for the geometry of groups:

• Enlargibility: Given a Lie algebra g, does there exist a Lig group G with
Lie algebra g? If so, g is called enlargible. Non-enlargible Lie algebras
are known since [vEK1964, Om1981]. For example, the Lie algebra of
smooth vector fields V ect(M) over a non-compact, paracompact manifold
M. This Lie algebra stands heuristically as the Lie algebra of groups of
diffeomorphisms (see the “euristique” [Arn1966, section 9]), but consid-
ering more rigourously these groups, the groups of diffeomorphisms of a
non-compact manifold can be endowed with very various topologies which
lead naturally to different deduced Lie algebras that are all subalgebras
of V ect(M). In order to finish with technical difficulties of the setting of
the group of diffeomorphisms, we have to mention that this group (and
its various topologies) was one of Souriau’s motivations to define so-called
“groupes différentiels” which became the actual diffeological Lie groups.

• Integrability: Given G a Lie group with Lie algebra g, given g1 a Lie
subalgebra of g (in a terminology to be precised depending on the category
of Lie groups considered), does there exist G1 a Lie subgroup of G with
Lie algebra g1? If so, g1 is called integrable in G. Non-integrable Lie
algebras are known also from Omori’s pioneering work, and investigated
by many authors, see e.g. [Nee2007] since then.

• Regularity: Given G a Lie group with Lie algebra g, the group is called
regular if there exists an exponential map

Exp : C∞([0; 1], g)→ C∞([0, 1], G)

which, roughly speaking, integrates the differential equation on logarith-
mic derivatives

(4.1)
dg(t)

dt
g(t)−1 = v(t).

Pragmatic conditions to integrate this equation are gathered in the con-
ditions for Omori regularity [Om1997] while an extended notion which

33
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avoid technical conditions for the integration of equation (4.1) are given in
the c∞−setting [KM2000]. Other related works in various contexts are
e.g. [Rob1997, Lesl2003] and a non-exhaustive review on this notion is
given in [Nee2007].

In order to deal with infinite dimensional generalizations of principal bundles, better
is to gather these three properties on the structure group and on the Lie algebras
considered. This happens in the category of Banach principal bundles. Moreover, in
the c∞−setting, when the structure group is regular, the basic theory of connections
is quite similar to the one known in the finite dimensional setting, once one has fixed
the regular Lie group which serves as a structure group following the discussion in
[23], see details in [KM2000].

We have now finished the panoramic view which can serve as a backdrop
for the exposition of our work.

1. On regular Frölicher Lie groups, based on [4, 12, 15, 16]

The following definitions are first given in [4] and in [15], based on the obser-
vation and results of [Lesl2003] in the context of diffeologies.

Definition 4.1. [4] A Frölicher Lie group G with Lie algebra g is called reg-
ular if and only if there is a smooth map

Exp : C∞([0; 1], g)→ C∞([0, 1], G)

such that g(t) = Exp(v(t)) is the unique solution of the differential equation

(4.2)

{
g(0) = e
dg(t)
dt g(t)−1 = v(t)

We define the exponential function as follows:

exp : g → G

v 7→ exp(v) = g(1) ,

where g is the image by Exp of the constant path v.

Definition 4.2. [4] Let (V,F , C) be a Frölicher vector space, i.e. a vector
space V equipped with a Frölicher structure compatible with vector space addition
and scalar multiplication. The space (V,F , C) is regular if there is a smooth map∫ (.)

0

: C∞([0; 1];V )→ C∞([0; 1], V )

such that
∫ (.)

0
v = u if and only if u is the unique solution of the differential equation{

u(0) = 0
u′(t) = v(t)

.

Definition 4.3. [15] Let G be a Frölicher Lie group with Lie algebra g. Then,
G is regular with regular Lie algebra or fully regular if both G and g are
regular in the sense of definitions 4.1 and 4.2 respectively.

This definition fits with the terminology of fully regular Lie group due to
E. Reyes while writing [15].
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Theorem 4.4. [4], inspired from the remarks of [Rob1997]. Let G be a regular
Frölicher Lie group with Lie algebra g. Let g1 be a Lie subalgebra of g, and set
G1 = Exp(C∞([0; 1]; g1))(1). If AdG1∪G−1

1
(g1) = g1,

i.e. ∀g ∈ Exp(C∞([0; 1]; g1))(1),∀v ∈ g1, Adgv ∈ g1 and Adg−1v ∈ g1,

then G1 is a Frölicher subgroup of G.

The following example fits with the so-called “structure group” of an ILB mani-
fold GL∞ =

⋂
n∈NGL(En) where (En)N is an ILB chain. Omori calls it “topological

group with natural differentiation” [Om1997] certainly by lack of adequate setting.
This example also arises in [GV1997, DGV2015] and is treated as a topological
group in these references.

Example 4.5. [4] Let (Gn)n∈N be a sequence of Banach Lie groups increasing
for ⊃ (that is, Gn+1 ⊆ Gn for n ∈ N), and such that the inclusions are Lie group
morphisms. Let G =

⋂
n∈NGn. Then, G is a Frölicher regular Lie group with

regular Lie algebra g =
⋂
n∈N gn.

Theorem 4.6. [4] Let (An)n∈N∗ be a sequence of complete locally convex (Frölicher)
vector spaces which are regular, equipped with a graded smooth multiplication oper-
ation on

⊕
n∈N∗ An, i.e. a multiplication such that for each n,m ∈ N∗, An.Am ⊂

An+m is smooth with respect to the corresponding Frölicher structures. Let us define
the (non unital) algebra of formal series:

A =

{∑
n∈N∗

an|∀n ∈ N∗, an ∈ An

}
,

equipped with the Frölicher structure of the infinite product.
Then, the set

1 +A =

{
1 +

∑
n∈N∗

an|∀n ∈ N∗, an ∈ An

}
is a Frölicher Lie group with regular Frölicher Lie algebra A.

Moreover, the exponential map defines a smooth bijection A → 1 +A.

Notation: for each u ∈ A, we note by [u]n the An-component of u.

Theorem 4.7. [4] Let

1 −→ K
i−→ G

p−→ H −→ 1

be an exact sequence of Frölicher Lie groups, such that there is a smooth section
s : H → G, and such that the trace diffeology from G on i(K) coincides with
the push-forward diffeology from K to i(K). We consider also the corresponding
sequence of Lie algebras

0 −→ k
i′−→ g

p−→ h −→ 0.

Then,

• The Lie algebras k and h are regular if and only if the Lie algebra g is
regular;

• The Frölicher Lie groups K and H are regular if and only if the Frölicher
Lie group G is regular.
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The question:

Does there exist any non regular Lie group in the sense of Omori ?

is natural and is raised e.g. in [KM2000]. Let us comment more this question.
There are actually many groups for which we cannot prove the existence, or the
non existence, of the exponential map.

There are groups of units of a (“nice”) algebra, modelled on a complete, Mackey
complete, locally convex topological vector space, which are proved to be regular
[Gl2002] see also [GN2012] for refined results and open questions. Let us now
exhibit a Lie group, modelled on a locally convex topological vector space, which
is not Omori-regular, from [16].

R((X))∗ is an open subset of R((X)), and multiplication and inversion are
smooth. As a consequence, R((X))∗ is a Lie group modelled on a locally convex
topological vector space. This gives the following theorem:

Theorem 4.8. [16] R((X))∗ is not regular in the sense of Omori.

From this example, the substutition map X 7→ ∂−1 embeds the commutative
R((X)) = R((∂−1)) in algebras of formal pseudo-differential operators. This enables
to state

Theorem 4.9. [16] The group of the invertible formal pseudodifferential oper-
ators is not regular.

The second example of non-regular group is historically the first one that we
exhibited in a preprint of 2011, published in [12]. Our first contribution is centered
on what was one motivating examples for the definition of diffeologies, that we treat
here as a Frölicher Lie group. Let us consider

Diff+(]0; 1[) =

{
f ∈ C∞(]0; 1[, ]0; 1[) | lim

0+
f = 0, lim

1−
f = 1 and f ′ > 0

}
equipped with its functionnal diffeology, is not actually a Lie group because there is
no known atlas on it. This functional diffeology is the nebulae diffeology associated
to the smooth compact-open topology, which assumes uniform convergence on any
compact subspace of ]0; 1[ of derivatives at any order.

Theorem 4.10. [12] The Frölicher Lie group Diff+(]0; 1[) is non regular in
the sense of definition 4.1.

and as a consequence, we get the same result for Diff(M), when M is a con-
nected, non compact manifold, and when Diff(M) is equipped with the compact-
open topology.

Theorem 4.11. [12] The Frölicher Lie group Diff(M) is non regular in the
sense of definition 4.1.

Remark 4.12. These results are in apparent contradiction with the results in
[KM2000, KMR2015, GN2017] which state that a group of diffeomorphisms
of some example of non compact manifold is regular. This is where we have to
mention that the topology is important when considering the group of diffeomor-
phisms. In [KM2000], the C∞ Whitney topology is considered. In [KMR2015],
exotic choices of model spaces. In [GN2017], the open manifold M is a convexe,
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relatively compact subset of an Euclidian space. In each of these works, the “as-
ymptotic” or “border” control of the diffeomorphisms is intrisically present in the
chosen topology. This is not the case in the topology that we chose in [12], which
may explain the difference between the results obtained. This topology is very clas-
sical (see e.g. [Hir1976] where it is given the name of “weak topology”) which
justifies the geometric study of the infinite dimensional group here produced.

Open question: After the investigations on regular semi-direct products, the fol-
lowing open question on bicross products of two groups G and H, i.e. when neither
G nor H are normal subgroups of the full group that they generate along the lines
of the description of [Maj1995], denoted by G ./ H, is quite natural:

If G and H are regular, is G ./ H regular?

and, as a related investigation:

If g and h are enlargible, is g ./ h enlargible?

Open question:On the topologies and the geometries of Diff(M): Finite config-
urations [FH2001] and infinite configurations [AKLU2000, ADL2001] appears
as a useful phase space for representations of Diff(M) [Ism1996] and the various
topologies of Diff(M) may be classified by their “push forward” topology on finite
and infinite configurations. Regularity, depending on the topology of Diff(M),
may also be classified this way.

2. Diff(M)−pseudodifferential operators: a restricted class of Fourier
integral operators

We now consider a smooth, boundaryless, compact Riemannian manifold M.
The algebra DO(M), graded by the order, is a subalgebra of the algebra of classical
pseudo-differential operators Cl(M) which contains some trace-class operators on
L2(M,R). An exposition of basic facts on pseudo-differential operators defined on a
vector bundle E →M can be found in [Gil1984] for definition of pseudo-differential
operators and of their order, (local) definition of symbols and spectral properties.
We assume known the definition of the algebra of pseudo-differential operators
PDO(M,E), classical pseudo-differential operators Cl(M,E). When the vector
bundle E is assumed trivial, i.e. E = M × V or E = M ×Kp with K = R or C, we
use the notation Cl(M,V ) or Cl(M,Kp) instead of Cl(M,E). A global symbolic
calculus has been described by two authors in [BK1969], [Wid1980], where we can
see how the geometry of the base manifold M furnishes an obstruction to generalize
local formulas of composition and inversion of symbols.

Notations. We note by PDO(M,C) (resp. PDOo(M,C), resp. Cl(M,C)) the
space of pseudo-differential operators (resp. pseudo-differential operators of order
o, resp. classical pseudo-differential operators) acting on smooth sections of E, and
by Clo(M,C) = PDOo(S1,C)∩Cl(S1,C) the space of classical pseudo-differential
operators of order o. If we set PDO−∞(M,C) =

⋂
o∈Z PDO

o(M,C), we notice
that it is a two-sided ideal of PDO(M,C), and we define the quotient algebra of
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formal PDOs:

FPDO(M,C) = PDO(M,C)/PDO−∞(M,C),

with analogous notations with script F for other algebras of PDOs. With the
notations that we have set before, a scalar Fourier-integral operator of order o is
an operator

A : C∞(M,C)→ C∞(M,C)

such that, for any smooth partitions of the unit (si)I indexed by a finite set I,
∀(i, j) ∈ I2,

Ak,j(f) =

∫
supp(sj)

e−iφ(x,ξ)σk,j(x, ξ) ˆ(sj .f)(ξ)dξ(4.3)

where σk,j ∈ C∞(supp(sj)×R,C) satisfies classical estimates on symbols of PDOs
and where, on any domain U of a chart on M ,

φ(x, ξ) : T ∗U − U ≈ U × RdimM − {0} → R
is a smooth map, positively homogeneous of degree 1 fiberwise and such that

det

(
∂2φ

∂x∂ξ

)
6= 0.

Such a map is called phase function. (In these formulas, the maps are read on local
charts but we preferred to only mention this aspect and not to give heavier formulas
and notations) Notice that, in order to define an operator A, the choice of ϕ and
σk,l is not a priori unique for general Fourier integral operators. Let E = S1 × Ck
be a trivial smooth vector bundle over S1. An operator acting on C∞(M,Cn) is
Fourier integral operator (resp. a pseudo-differential operator) if it can be viewed
as a (n × n)-matrix of Fourier integral operators with same phase function (resp.
scalar pseudo-differential operators).

The topological structures can be derived both from symbols and from ker-
nels, as we have quoted before but principally because there is the exact sequence
described below with slice. At the level of units of these sets, i.e. of groups
of invertible operators, the existence of the slice is also crucial. In the papers
[ARS1986-1, ARS1986-2, OMY1, OMY2, OMYK3, OMYK4, OMYK5,
OMYK6, OMYK7, OMYK8, RS1981], the group of invertible Fourier integral
operators receives first a structure of topological group, with in addition a differ-
entiable structure, e.g. a Frölicher structure, which recognized as a structure of
generalized Lie group, see e.g. [Om1997].

We have to say that, with the actual state of knowledge, using [KM2000], we
can give a manifold structure (in the convenient setting described by Kriegl and
Michor or in the category of Frölicher spaces following [4]) to the corresponding Lie
groups.

Remark 4.13. In [ARS1986-1, ARS1986-2, OMY1, OMY2, OMYK3,
OMYK4, OMYK5, OMYK6, OMYK7, OMYK8, RS1981], the group K
considered is the group of 1-positively homogeneous symplectomorphisms Diffω(T ∗M−
M) where ω is the canonical symplectic form on the cotangent bundle. The local
section considered enables to build up the phase function of a Fourier integral op-
erator from such a symplectic diffeomorphism inside a neighborhood of IdM . There
is a priori no reason to restrict the constructions to classical pseudo-differential
operators of order 0, and have groups to Fourier integral operators with symbols in
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wider classes. This remark appears important to us because the authors cited before
restricted themselves to classical symbols, and principaly to bounded operators.

2.1. PDO(M,E), Aut(E), Diff(M) and a restricted class of FIOs, based
on [6, 19]. We get now to another group:

Theorem 4.14. [6] Let H be a regular Lie group of pseudo-differential operators
acting on smooth sections of a trivial bundle E ∼ V ×M →M. The group Diff(M)
acts smoothly on C∞(M,V ), and is assumed to act smoothly on H by adjoint action.
If H is stable under the Diff(M)−adjoint action, then there exists a corresponding
regular Lie group G of Fourier integral operators through the exact sequence:

0→ H → G→ Diff(M)→ 0.

If H is a Frölicher (resp. a Fréchet) Lie group, then G is a Frölicher (resp. a
Fréchet) Lie group.

Remark 4.15. [6] The pseudo-differential operators can be classical, log-polyhomogeneous,
or anything else. Applying the formulas of “changes of coordinates” (which can be
understood as adjoint actions of diffeomorphisms) of e.g. [Gil1984], one easily gets
the result.

Remark 4.16. [6] The composition operator

f ∈ C∞(M,E) 7→ f ◦ g,
for g ∈ C∞(M,M), is a linear operator with distributional kernel

Kg(x, y) = δg(x),y ∈ D′(M ×M)

where δ is the Dirac distribution. This is never the kernel of a pseudo-differental
operator, unless g = IdM , since the kernel of a pseudo-differential operator must
be smooth off-diagonal [Di1968].

Open problem : One can compare the condition “H is stable by the Diff(M)-
adjoint action” with similar results of [ARS1986-1, ARS1986-2, BK1969, Om1997]
e.g. replacing g ∈ Diff(M) by a symplectic diffeomorphism g ∈ Diffω(T ∗M−M).
In [6], the group under consideration seems different. However, a Fourier inte-
gral operator does not have a unique phase function [Ho1971]. Some restricted
classed of such operators are already considered in the literature under the name of
G−pseudo-differential operators, see e.g.[SavSt2013], but the groups considered
are discrete (amenable) groups of diffeomorphisms. All these classes have to be
compared.

Definition 4.17. [6] Let M be a compact manifold and E be a (finite rank)
trivial vector bundle over M. We define

FIODiff (M,E) = {A ∈ FIO(M,E)|φA(x, ξ) = g(x).ξ; g ∈ Diff(M)} .

The subset of invertible operators FIO∗Diff (M,E) is obviously a group, that
decomposes as

0→ PDO∗(M,E)→ FIO∗Diff (M,E)→ Diff(M)→ 0

with global smooth section

g ∈ Diff(M) 7→ (f ∈ C∞(S1, E) 7→ f ◦ g).

Hence, Theorem 4.14 applies trivially to the following context:
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Proposition 4.18. [6] Let FCl0,∗Diff (M,E) be the set of operators A ∈ FIO∗Diff (M,E)
such that A has a 0-order classical symbol. Then we get the exact sequence:

0→ Cl0,∗(M,E)→ FCl0;∗
Diff (M,E)→ Diff(M)→ 0

and FCl0,∗Diff (M,E) is a regular Frölicher Lie group, with Lie algebra isomorphic,

as a vector space, to Cl0(M,E)⊕ V ect(M).

This setting can be extended to a trivial complex vector bundle E → M. We
remark that the group Diff(M) cannot be recovered in this group of operators.
On a non trivial bundle E, let us consider the group of bundle automorphism
Aut(E). The gauge group, which can be identified with the gourp of invertible
0−ordre differential operators DO0∗(M,E) is naturally embedded in Aut(E) and
the bundle projection E →M induces a group projection π : Aut(E)→ Diff(M).
Therefore we get a short exact sequence

0→ DO0,∗(M,E)→ Aut(E)→ Diff(M)→ 0.

Moreover, there exists a local slice U ⊂ Diff(M) → Aut(E), where U is a
C0−open neighborhood on IdM , which shows that Aut(E) is a regular Fréchet
Lie group [ACMM1989]. Therefore, the smallest group spanned by PDO∗(M,E)
and Aut(E) is such that:

• the projection E → M induces a map Aut(E) → Diff(M) with kernel
DO0(M,E) = Aut(E) ∩ PDO(M,E)
• AdAut(E)(PDO(M,E)) = PDO(M,E)

therefore we can consider the space of operators on C∞(M,E)

FIO∗Diff (M,E) = Aut(E) ◦ PDO∗(M,E).

According to [6], the map

(B,A) ∈ Aut(E)× PDO∗(M,E) 7→ π(B) ∈ Diff(M)

induces a “phase map”

π̃ : FIO∗Diff (M,E)→ Diff(M).

Theorem 4.19. [6] There is a short exact sequence of groups :

0→ PDO∗(M,E)→ FIO∗Diff (M,E)→ Diff(M)→ 0

and, if H ⊂ PDO∗(M,E) is a regular Fréchet or Frölicher Lie group of operators
that contains the gauge group of E, if K is a regular Fréchet or Frölicher Lie sub-
group of Diff(M) such that there exists a local section K → Aut(E), the subgroup
G = K ◦H of FIO∗Diff (M,E) is a regular Fréchet Lie group from the short exact
sequence:

0→ H → G→ K → 0.

A similar defnition is given in [Pay2013] in order to motivate the study of
Chern-Weil forms for connections with curvature valued in unbounded (first order
pseudodifferential) operators. However, the full development of these groups are
results of our own to our knowledge.
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2.2. Formal and non-formal Diff(S1)−pseudodifferential operators,
based on [19]. Now we present a restricted class of groups of Fourier integral oper-
ators which we will callDiff+(S1)-pseudodifferential operators following [6]. These
groups appear as central extensions of Diff+(S1) by groups of (often bounded)
pseudodifferential operators. Using odd class PDOs, we define the following group:

Definition 4.20. The group FCl0,∗Diff(S1),odd(S
1, V ) is the regular Fréchet Lie

group G obtained in Theorem 4.19 with H = Cl0,∗odd(S
1, V ), the group of invertible,

bounded and odd class pseudodifferential operators (in the Kontsevich and Vishik
terminology)

Following [6], we remark that operators A in this group can be understood as

operators in Cl0,∗odd(S
1, V ) twisted by diffeomorphisms, this is,

(4.4) A = B ◦ g
for unique g ∈ Diff(S1) and unique B ∈ Cl0,∗odd(S1, V ), and also that its Lie algebra
is isomorphic as a vector space to Cl0odd(S

1, V ) ⊕ V ect(S1), in which V ect(S1) is
the space of smooth vector fields on S1.

Now we note that the group Diff(S1) decomposes into two connected com-
ponents Diff(S1) = Diff+(S1) ∪Diff−(S1), where the connected component of
the identity, Diff+(S1), is the group of orientation preserving diffeomorphisms of
S1. We make the following definition:

Definition 4.21. The group FCl0,∗Diff+(S1),odd(S
1, V ) is the regular Fréchet Lie

group of all operators in FCl0,∗Diff(S1),odd(S
1, V ) whose phase diffeomorphisms lie

in the group Diff+(S1).

Let us describe additional structures of decompositions that arise only when
M = S1.

Theorem 4.22. [19, 34] There is a short exact sequence of Lie groups:

1→ Cl−1,∗
odd (S1, V )→ FCl0,∗Diff+(S1),odd(S

1, V )→ DO0(S1, V ) oDiff+(S1)→ 1,

where Cl−1,∗
odd (S1, V ) is the group od invertible classical PDOs that are equal to Id

up to an operator of order −1.

Let us summarize our constructions. The descriptionsemi-direct product of
Fréchet Lie groups

FCl0,∗Diff+(S1),odd(S
1, V ) = Cl0,∗odd(S

1, V ) oDiff+(S1)

can be completed by the following diagram in which vertical and horizontal lines
are short exact sequences of Lie groups:

1 1
↓ ↓

1 → Cl−1,∗
odd (S1, V ) → Cl0,∗odd(S

1, V ) → DO0,∗(S1, V ) → 1
‖ ↓ ↓

1 → Cl−1,∗
odd (S1, V ) → FCl0,∗Diff+(S1),odd(S

1, V ) → DO0,∗(S1, V ) oDiff+(S1) → 1

↓ ↓
Diff+(S1) = Diff+(S1)

↓ ↓
1 1



424. CONTRIBUTIONS TO INFINITE DIMENSIONAL LIE GROUPS AND PRINCIPAL BUNDLES

The corresponding diagram of Lie algebras, all of them embedded in Clodd(S
1, V )

is:

0 0
↓ ↓

0 → Cl−1
odd(S

1, V ) → Cl0odd(S
1, V ) → DO0(S1, V ) → 0

‖ ↓ ↓
0 → Cl−1

odd(S
1, V ) → Cl0odd(S

1, V ) o V ect(S1) → DO0(S1, V ) o V ect(S1) → 0
↓ ↓

V ect(S1) = V ect(S1)
↓ ↓
0 0

After this long description of new groups, let us gather notations for groups of
(non-formal) Diff(S1)−pseudodifferential operators from [19].

Definition 4.23. (1) The group FCl∗Diff(S1)(S
1, V ) is the infinite di-

mensional group defined by

FCl∗Diff(S1)(S
1, V ) =

{
A = B ◦ g |B ∈ Cl∗(S1, V ) and g ∈ Diff(S1)

}
.

(2) The group FCl0,∗Diff(S1)(S
1, V ) is the infinite dimensional group defined by

FCl0,∗Diff(S1)(S
1, V ) =

{
A = B ◦ g |B ∈ Cl0,∗(S1, V ) and g ∈ Diff(S1)

}
.

(3) The group FCl∗Diff(S1),odd(S
1, V ) is the infinite dimensional group defined

by

FCl∗Diff(S1),odd(S
1, V ) =

{
A = B ◦ g |B ∈ Cl∗odd(S1, V ) and g ∈ Diff(S1)

}
.

(4) The group FCl0,∗Diff(S1),odd(S
1, V ) is the infinite dimensional group defined

by

FCl0,∗Diff(S1),odd(S
1, V ) =

{
A = B ◦ g |B ∈ Cl0,∗odd(S

1, V ) and g ∈ Diff(S1)
}
.

Remark 4.24. The decomposition A = B ◦ g is unique [6], and the diffeomor-
phism appears as the phase of the Fourier integral operator.

Remark 4.25. the group Diff(S1) decomposes into two connected components
Diff(S1) = Diff+(S1)∪Diff−(S1) , where the connected component of the iden-
tity, Diff+(S1), is the group of orientation preserving diffeomorphisms of S1. By
the way, we can replace Diff(S1) by Diff+(S1) in the previous definition.

Definition 4.26. [19] Let (A,A′) ∈ (FCl∗Diff(S1)(S
1, V ))2, with A = B ◦ g

and A′ = B′ ◦ g′ as before. Then

A ≡ A′ ⇔
{

g = g′

B −B′ ∈ Cl−∞(S1, V )

The set of equivalence classes with respect to ≡ is noted as FFCl∗Diff(S1)(S
1, V )

and is called the set of formal Diff(S1)−pseudodifferential operators.

The same spaces of formal operators can be constructed using orientation-
preserving diffeomorphisms of S1, odd class pseudodifferential operators and so
on. We do not feel the need to give here redundant constructions, and obvious
notations.
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Theorem 4.27. Let

G =
{
A ∈ Cl0;∗(S1, V ) |A = Id+B, B ∈ Cl−∞(S1, V )

}
.

Then

• G C FCl∗Diff(S1)(S
1, V ),

• given (A,A′) ∈ FCl∗Diff(S1)(S
1, V )2,

A ≡ A′ ⇔ AA′−1 ∈ G
which implies that

FFCl∗Diff(S1)(S
1, V ) = FCl∗Diff(S1)(S

1, V )/G.

By the way, FFCl∗Diff(S1)(S
1, V ) is a group. Moreover,

(4.5) FFCl∗Diff(S1)(S
1, V ) = FCl∗(S1, V ) oDiff(S1).

We have the following commutative diagram:

(4.6)

1 1
↓ ↓

1 → G → Cl∗(S1, V ) → FCl∗(S1, V ) → 1
‖ ↓ ↓

1 → G → FCl∗Diff(S1)(S
1, V ) → FFCl∗Diff(S1)(S

1, V ) → 1

↓ ↓
Diff(S1) = Diff(S1)
↓ ↓
1 1

The three squares commute, the two horizontal lines are short exact sequences as
well as the central culumn.

Proposition 4.28. [19] There is a natural structure of infinite dimensional
Lie group on FFCl∗Diff(S1)(S

1, V ), and its Lie algebra (defined by germs of smooth

paths) reads as
FCl(S1, V ) o V ect(S1).

Open problem: Study the cohomology of Cl(S1, V ) o V ect(S1) compared with

the cohomology of FCl(S1, V )o V ect(S1), that heuriscically can be deduced from
the cohomology of each lie algebra. Make the same investigations with odd class
PDOs. Associated investigations have been performed in e.g. [LP2007] but still
have to be completed. One technical difficulty remains on the non existence of any
local slice FCl(S1, V )→ Cl(S1, V ) which is well-explained in [Di1968].

3. GLres and its subgroups of Fourier-integral operators

This section is based on [19] which extends the remarks made in [6]. Let us
now turn to the Lie group of bounded operators described in [PS1988]:

GLres(S
1,Ck) = {u ∈ GL(L2(S1,Ck)) such that [ε(D), u] is Hilbert-Schmidt }

with Lie algebra

L(S1,Ck) = {u ∈ L(L2(S1,Ck)) such that [ε(D), u] is Hilbert-Schmidt }.

Proposition 4.29. [6, Theorem 25-26] FCl0,∗Diff+(S1)(S
1,Ck) ⊂ GLres(S1,Ck)
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Let us now give a new light on an old result present in [PS1988] from a topo-
logical viewpoint, expressed by remarks but not stated clearly in the mathematical
litterature to our knowledge. We propose here an approach for the proof, more
easy and much more fast, and adapted to our approach of (maybe generalized)
differentiability prior to topological considerations.

Lemma 4.30. [19] The injection map Diff+(S1) ↪→ GLres(S
1,Ck) is not dif-

ferentiable.

From this Lemma, the next theorem is straightforward:

Theorem 4.31. [19] The injection maps FCl0,∗Diff+(S1)(S
1,Ck) ↪→ GLres(S

1,Ck)

and DO0,∗(S1,Ck) oDiff+(S1) ↪→ GLres(S
1,Ck) are not differentiable.

Open problem: Cl(S1, V ) o V ect(S1) is a potentially interesting candidate to
replace GLres, in particular for constructions related to the determinant bundle
[PS1988] and KdV equation [SW1985]. An open problem consists in classifying
all line bundles over this new group.

4. Ambrose-Singer theorem on infinite dimensional principal bundles
based on [1, 4]

The construction of (locally trivializable) infinite dimensional principal bun-
dles of frames (as they are described e.g. in [23]) can lead, for example in the
setting of ILB manifolds, to structure groups that are not infinite dimensional Lie
groups modelled on locally convex topological vector spaces, but only Frölicher Lie
groups. These groups are typically of the kind of those described in Example 4.5,
see [GV1997] for more details. From another viewpoint, even starting from a
“rather nice” connection on a principal bundle with regular structure group, the
classical construction of the holonomy group by path-lifting leads to a holonomy
group with structure that a priori carries no atlas except in particular classes of
connections in [Vas1978] in the context of Banach principal bundles. Indeed, the
application of any Fröbenius type theorem that mimick the proofs of Ambrose and
Singer [AS1953] are far away from the actual state of knowledge. The question
of the construction of the holonomy group is quoted in [Pen1970, Fr1988-2] and
has a partial answer for flat connections in the c∞−setting in [KM2000] (which
inspired [1]).

Let p ∈ P and γ a smooth path in P starting at p, defined on [0; 1]. Let
Hγ(t) = γ(t)g(t) where g(t) ∈ C∞([0; 1]; g) is a path satisfying the differential
equation: {

θ (∂tHγ(t)) = 0
Hγ(0) = γ(0)

The first line of the definition is equivalent to the differential equation g−1(t)∂tg(t) =
−θ(∂tγ(t)) which is integrable, and the second to the initial condition g(0) = eG.
The map H(.) defines what [IZ1987] calls a diffeological connection and what [4]
calls path lifting. This enables us to consider the holonomy group of the connec-
tion. Notice that a straightforward adaptation of the arguments of [Lich1956]
shows that the holonomy group is invariant (up to conjugation) under the choice
of the basepoint p. Now, we assume that dim(M) ≥ 2. We fix a connection θ on P.
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Definition 4.32. Let α ∈ Ω(P ; g) be a G−invariant form. Let ∇α = dα −
1
2 [θ, α] be the horizontal derivative of α. We set

Ω = ∇θ
the curvature of θ.

We now turn to reduction of the structure group. A preliminary version, avail-
able with (“classical” Fréchet) manifold settings was already given in [1].

Theorem 4.33. [4] We assume that G1 and G are regular Frölicher groups
with regular Lie algebras g1 and g. Let ρ : G1 7→ G be an injective morphism of Lie
groups. If there exists a connection θ on P , with curvature Ω, such that, for any
smooth 1-parameter family Hct of horizontal paths starting at p, for any smooth
vector fields X,Y in M ,

s, t ∈ [0, 1]2 → ΩHct(s)(X,Y )(4.7)

is a smooth g1-valued map (for the g1− diffeology), and if M is simply connected,
then the structure group G of P reduces to G1, and the connection θ also reduces.

We can now state the announced Ambrose-Singer theorem, using the terminol-
ogy of [Rob1997] for the classification of groups by properties of the exponential
maps:

Theorem 4.34. [4], partly from [1]. Let P be a principal bundle of basis M with
regular Frölicher structure group G with regular Lie algebra g. Let θ be a connection
on P .

(1) For each p ∈ P, the holonomy group HLp is a diffeological subgroup of G,
which does not depend on the choice of p up to conjugation.

(2) There exists a second holonomy group Hred, H ⊂ Hred, which is the
smallest structure group for which there is a subbundle P ′ to which θ
reduces. Its Lie algebra is spanned by the curvature elements, i.e. it is the
smallest integrable Lie algebra which contains the curvature elements.

(3) If G is a Lie group (in the classical sense) of type I or II, there is a
(minimal) closed Lie subgroup H̄red (in the classical sense) such that
Hred ⊂ H̄red, whose Lie algebra is the closure in g of the Lie algebra of
Hred. H̄red is the smallest closed Lie subgroup of G among the structure
groups of closed sub-bundles P̄ ′ of P to which θ reduces.

From [4] again, we have the following:

Proposition 4.35. If the connection θ is flat and if M is connected and simply
connected, then , for any path γ starting at p ∈ P, the map

γ 7→ Hγ(1)

depends only on π(γ(1)) ∈ M and defines a global smooth section M → P. There-
fore, P = M ×G.





CHAPTER 5

Contributions to simplicial gauge theories and
decision theory

Quantum gravity theories [RV2014] both quantize space and time and ignore
the continuum limit. In their approach, connections are heuristiccally difference op-
erators (from the viewpoint of affine connections) or holonomy elements (from the
viewpoint of principal connections). The problem of discretization of connections
is a problem that goes back a long way in time before investigations in quantum
gravity. In the quantized approach, one way to define the Feynman integral over
the space of connections is the use of a finite element method for discretizing con-
nections, inspired by [Wh1957], see e.g. [AHKM2005, AZ1990, SSSA2000].
This standard discretization procedure leads to several technical problems and
the convergence of integrals in the space of connections for e.g. Yang-Mills or
Chern-Simons theories require heuristic gauge reductions generically called gauge
fixing. The problem of gauge fixing in gauge theories is of fundamental impor-
tance for explicit calculations, before or after the quantization procedure, see e.g.
[AZ1990, Re1997, Hah2004, Lim2012, HCR2015] for a non-exhaustive list
of references. This approach works quite well for abelian gauge theories, but a
well-chosen gauge-fixing actually produces with many difficulties some explicit re-
sults. Moreover, the invariance under gauge fixing is actually partially justified
with heuristic arguments.

For all these reasons it is fully justified to search for discretization schemes that
give alternate approaches to [Wh1957]. The one proposed in [RV2014] is here rig-
orously described, and has lead to unexpected developments in the field of decision
theory, on astandard object defined as follows. A pairwise comparisons ma-
trix is a square matrix A with R∗+−coefficients, such that ∀i, aii = 1 and such that

ai,j = a−1
j,i . We note by PC(R∗+) the space of pairwise comparisons matrices, and by

PCn(R∗+) the space of n×n-pairwise comparisons matrices. Such matrices are used
in information theory, with various applications: complex networks (they are used in
wireless networks for example, see e.g. [LLA2012]), decision (analysis of situations
in e.g. nuclear or military projects, see e.g. [CrW1985]), medecine (symptomatic
analysis, psychology), management (see e.g. [CdAS2010, KKL2014]), economy,
Brain modelization [27] etc... The use of these matrices do not envolve the clas-
sical algebraic structures on spaces of matrices, because they are understood as
“tables” of scores when comparing states, objects or individuals. The coefficient
ai,j compares the i-th state with the j-th state, which explains more clearly the

rule ai,j = a−1
j,i . A pairwise comparisons matrix is called consistent if and only if

∀(i, j, k), ai,jaj,k = ai,k, and one of the goals of applications is more to minimize,

47
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in some sense, inconsistency, than to obtain strict consistency. In order to evalu-
ate inconsistency, one uses inconsistency indicators, which are mostly Saaty’s
[Saa1977] and Koczkodaj’s [Ko1993].

The link that we now describe in more details is new, after the preliminary
work [Y1999] that links gauge theories with foreign exchange markets.

1. A new discretization scheme for gauge theories based on [13]

The present approach of discretization is based on the following paradigm: the
convergence of the discretization for a fixed connection must be preserved, as
well as gauge covariance of the curvature in the discretization scheme.

Let π : P → M be a principal bundle of connected Riemannian base, with
structure group G, equipped with a prescribed triangulation or cubification τ. The
canonical maps induced by π on relevant objects will be also noted by π in the
sequel when it carries no ambiguity. The nodes of this triangulation or cubification
are assumed indexed by N, noted by (sn)N (the manifold M can be non compact).
Recall that, for a fixed index i1, ...in, St(si1 , ...sin) is the domain described by the
simplexes or the cubes with nodes si. We note by C the space of connections on P.
Let θ ∈ C. Fixing s0 as a basepoint and p0 ∈ π−1(s0),

(1) Let

j = min {i ∈ N∗|si ∈ St(s0)} .
We define g0,j = 1 and pj the endpoint of the horizontal path over [s0, sj ]
with starting point p0. Let I2 = {0; j}.

(2) Assume that In exists, and that,
• ∀i ∈ In, we have constructed pi ∈ π−1(si) and
• ∀(i, j) ∈ I2

n, with i < j, gi,j is the holonomy of [si, sj ], starting at
pi, i.e. pj .gi,j is the endpoint of the horizontal path over [si, sj ] with
starting point pi.

Let

j = min {i ∈ N− In|si ∈ St(sk; k ∈ In)} .
We define
• k = min{i ∈ In|si ∈ St(sj)} and let pj the endpoint of the horizontal

path over [si, sj ] starting at pi.
• for i ∈ In, gi,j is defined such as pj .gi,j is the endpoint of [si, sj ]

starting at pi.
• In+1 = In ∪ {j}.

The discretization thus describes the holonomy of the connection along the 1-
vertices. We have a first sequence (pn)N which stands as a slice of the pull-back
((sn)N)

∗
P and if K1 is the 1-skeleton of τ, the family (gi,j)i<j , expresses holonomy

elements of the connection θ on the vertices of K1. The holonomy of a smooth
path γ, for a fixed connection, can be approximated by the discretized holonomies
computed along a piecewise smooth path along the vertices of the triangulation,
close enough to γ. In the sequel, we note by |σ| the length (resp. n−dimensinal the
Haussdorf volume) of the 1-vertex (resp. the n−simplex or n−cube) σ. Comparing
to Whitney’s discretization [Wh1957], this scheme does not depend on any exterior
trivialization of the principal bundle P. In the sequel, we work with triangulations
but the same can be done for cubifications. These discretizations are used to define
the new discrete analogs of connections and curvature. Let (τn) be a sequence
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of triangulations of M such that τn ⊂ τn+1 (subtriangulations) and such that the
length of 1-vertices converge uniformly to 0. Then, for fixed s ∈ τn ⊂ ... ⊂ τn+p ⊂ ...,
we have the following

• Let X be a germ of a path γ : t → P on P at the parameter t = 0 such
that π(γ) = σn is a 1-vertex of τn for n large enough, and we assume with
no loss of generality in the sequel that γ is parametrized by arc-length of
τn. Then π(γ[0;|σn+p|]) = σn+p, for p ∈ N, and

θ(X) = lim
p→+∞

g(p)− I
|σp|

where gp ∈ G is defined by γ(|σn+p|) = Hγ(0)σn+p(|σn+p|).gp ∈ P.
• Let X,Y be germs of paths γ0, γ1 : t → P on P at the parameter t =

0, with γ(0) = γ′(0), such that there exists a 2-simplex σn ∈ τn for n
large enough, where γ and γ′ project on 1-simplexes of ∂σn, and we also
assume arc-length parametrisation as in the previous item. Then ∂σn+p is
a piecewise smooth loop parametrized by arc-length, staring from π(γ(0))
along π(γ), and ending along π(γ′). Then we have

Ω(X,Y ) = C lim
p→+∞

Holγ(0)∂σn+p(|∂σn+p|)− I
|σp|

,

where C is a constant.
• These two items correspond heuristically to a directional derivative of the

holonomy at the continuum limit.

Open problems: in the proposed approach, the “natural” continuum limit of the
quantized model does not involve cylindrical functions on a vector space of connec-
tion forms equipped with a Lebesgue measure, but cylindrical functions defined on
products of unimodular groups aquipped with their Haar measure. Even if there
exists an obvious conceptual link between Haar measure and Lebesgue measure, the
two cylindrical approximations that are produced are not a priori equivalent. We
conclude this presentation conjecturing that the gauge anomalies which can appear
in classical discretized models may find an expression in this measure defect.

2. Pairwise comparisons in decision making as a discrete Yang-Mills
theory, based on [9, 11, 14]

2.1. Changing the comparisons structure to arbitrary groups. Classi-
caly, the comparisons coefficients are ai,j are scaling coefficients. This means that,if
the PC matrix A is consistent, given a state sk, we can recover all the other states
sj by something assimilated to scalar mutiplication:

sj = aj,ksk.

In other words, even if the states sj are driven by more complex rules, we reduce
them to a “score” or an “evaluation” in R∗+. The states sj have to belong to a more
complex state space S, and in order to have pairwise comparisons, a straightforard
study shows that we define matrices with coefficients in a group [14]. Let I be a
set of indexes and let (k,+, ., |.|)be a field with absolute value and Vk a normed
k−vector space.
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Definition 5.1. [11] Let (G, .) be a group. A pairwise comparisons matrix
is a matrix

A = (ai,j)(i,j)∈I2

such that

(1) ∀(i, j) ∈ I2, ai,j ∈ G.
(2) ∀(i, j) ∈ I2, aj,i = a−1

i,j .

(3) ai,i = 1G.

We note by PCI(G) the set of pairwise comparisons matrices indexed by I and
with coefficients in G. When G is not abelian, there are two notions of inconsistency
covariantly or contravariantly consistent, which corresponds merely to left or right
actions. The two notions are dual [14]. Contravariant consistency appears in the
geometric realization of PCI(G) via the holonomy of a connection on a simplex ∆ :

Proposition 5.2. [11] If G is exponential, the map

Ω1(∆, g) → { PC matrices }
θ 7→ the holonomy matrix

is onto.

We note by CPCI(G) the set of consistent PC-matrices.

Definition 5.3. A (non normalized, non covariant) inconsistency map is a
map

ii : PCI(G)→ Vk

such that ii(A) = 0 if A is consistent. Moreover, we say that ii is faithful if
ii(A) = 0 implies that A is consistent.

In [9], we give arguments to consider only normalized inconsistency maps
called inconsistency indicators.

The main feature in applying this setting will be twofold,and these two points
are far to be systematically solved with the present work:

- define a comparisons group G for which we can get at least one comparison
coefficient ai,j between two states si and sj (which means that the G−action needs
to be transitive),

- evaluate (and compute!) inconsistency, if possible generalizing the R∗+-setting,
in a proper way to get safe decision making. This second point is linked with
multiscale analysis.

Examples from [14] highlight these features, such as when G is a matrix group
GLn and when G is an affine group. In this second example for G, we find appli-
cations to modelization of perspective and error in tunnel building.

2.2. Algebraic properties, gauge group and generalization to graphs.
The whole section is based on the work [14]

Proposition 5.4. Any morphism of group a : G → G′ extends to a map
ā : PCI(G)→ PCI(G

′) by action on the coefficients, and:

• If A ∈ PCI(G) is consistent, then ā(A) ∈ PCI(G′)is consistent.
• If Ker(a) = {eG}, then A ∈ PCI(G) is consistent, if and only if ā(A) ∈
PCI(G

′)
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We call GI the gauge group of G. Then we get the following actions:

• a left action L : GI × PCI(G) → PCI(G) defined, for (gi)I ∈ GI and
(ai,j)I2 ∈ PCI(G) by

L(gi)I ((ai,j)I2) = (bi,j)I2

with

bi,j =


1 if i = j

giai,j if i < j
ai,jg

−1
j if i > j

• a right action R : PCI(G) × GI → PCI(G) defined, for (gi)I ∈ GI and
(ai,j)I2 ∈ PCI(G) by

R(gi)I ((ai,j)I2) = (bi,j)I2

with

bi,j =


1 if i = j

ai,jgj if i < j
g−1
i ai,j if i > j

• an adjoint action

Ad(gi)I = L(gi)I ◦R(gi)
−1
I

= R(gi)
−1
I
◦ L(gi)I

• a coadjoint action

((ai,j)I2 , (gi)I) 7→ Ad(gi)
−1
I
.

Theorem 5.5. Consistent PC-matrices are the orbits of the PC-matrix (1)I2

with respect to the adjoint action.

After remarking that L and R are effective actions, we have the following:

Theorem 5.6. If I = N3, any orbit for the left action intersects CPC3(G). If
card(I) > 3, there exists orbits for the left action which do not intersect CPCI(G).

Let us now turn to other properties inconsistency maps.

Definition 5.7. Let ii be an inconsistency map. It is called:

• normalized if ∀A ∈ PCI(G), ||ii(A)|| ≤ 1.
• Ad-invariant if ∀A ∈ PCI(G),∀g ∈ GI , ii (Adg(A)) = ii(A)
• norm invariant if ||ii(.)||is Ad-invariant.

According to [KoSzy2015], we give now the following definition:

Definition 5.8. An inconsistency indicator ii on PCI(G) is a faithful, nor-
malized inconsistency map with values in R+ such that there exists an inconsistency
map ii3 on PC3(G) that defines ii by the following formula

ii(A) = sup {ii3(B) B ⊂ A; B ∈ PC3(G)} .
We remark here that since ii is faithful, it is in particular (trivially)Ad−invariant

on CPCI(G), but we do not require it to be Ad−invariant. Moreover, with such
a definition, to show that ii is Ad−invariant, it is sufficient to show that ii3 is
Ad−invariant. However, we give the example driven by Koczkodaj’s approach.
This is already proved that Kii3 generates an inconsistency indicator [KoSzy2015]
and we complete this result by the following property:

Proposition 5.9. Let n ≥ 3. Koczkodaj’s inconsistency maps Kii3 and Kiin
generate is Ad−invariant inconsistency maps on PCn(R∗+).
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2.3. Geometric aspects. We already mentionned the correspondence with
holonomy. This correspondence is exaclty the one described in section 1.

Theorem 5.10. [14] If G is a compact exponential finite dimensional Lie group,
then for each (g̃i)i∈I ∈ GI , there exists g ∈ C∞(∆, G) such that g(si) = gi. More-
over, for any contravariant PC matrix A which is the holonomy matrix of a connec-
tion θ, then Ad(g̃i)i∈I (A) is the holonomy matrix of the connection g−1dg+Adg−1θ.

The gauge group also appears as a discretization of the classical gauge group of
a trivial principal bundle. We consider in this section a family of states (si)I such
that any si cannot be a priori compared directly with any other sj . This leads us
to consider a graph ΓI linking the elements which can be compared. For example,
in the previous sections, ΓI was the 1−skeleton of the simplex. For simplicity, we
assume that ΓI is a connected graph, and that at most one vertex connects any two
states si and sj . We note this (oriented) vertex by < si, sj >, and the comparison
coefficient by ai,j . By the way, we get a pairwise comparisons matrix A indexed by
I with “holes” (with virtual 0−coefficient) when a vertex does not exist, and for
which a−1

j,i = ai,j .
Let us summarize the main correspondences that we have highlighted:

discrete Yang-Mills formalism Pairwise Comparisons (PC)

connection PC matrix

flat connection consistent PC matrix

curvature = loop holonomy inconsistency

classical Yang-Mills functional quadratic average of inconsistency
on triads

“sup” Yang-Mills functional Koczkodaj’s inconsistency indicator

2.3.1. Hierarchyless comparisons, “hearsay” evaluation and holonomy on a graph
[14]. In this model, the comparison between two states si and sj can be performed
by any path between si and sj of any length. This model modelize the propagation
of rumours, where validation of information is based on hearsay results. With this
approach, the capacity of propagation of an evaluation is not controlled. We note
by

< si1 , ..., sik >=< si1 , si2 > ∨...∨ < sik−1
, sik >

the composition of paths along vertices. By analogy with the holonomy of a con-
nection, we define:

Definition 5.11. Let s = si and s′ = sj be two states and let

Hs,s′ =
{
ai,i2 ...aik−1,i| < s, si2 , ..., sik−1

, s′ > is a path from s to s′
}
.

We note by Hs the set Hs,s.
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By the way, we get the following properties, usual for classical holonomy and
with easy proof:

Proposition 5.12. (1) Let s be a state, then Hs is a subgroup of G. We
call it holonomy group at s.

(2) Let s and s′ be two states. Then Hs and Hs′ are conjugate subgroups of
G.

(3)

Hsi,sj = ai,j .Hsj = Hsi .ai,j .

Definition 5.13. The PC matrix A on the graph ΓI is consistent if and only
if there exists a state s such that Hs = {1}.

2.3.2. Ranking the trustworthiness of indirect comparisons. The main problem
with hierarchiless comparisons of two states s and s′ is that paths of any length
give comparison coefficients which cannot be distinguished. An indirect comparison,
given by a path with 3 vertices, has the same status as a comparison involving a
path with 100 vertices. This is why we need to introduce a grading on Hs,s′ called
order. This terminology will be justified by the propositions thereafter.

Definition 5.14. Let s and s′ be two states.

• Let γ be a path on ΓI from s to s′. The length of γ, noted by l(γ), is the
number of vertices of γ, and by H(γ) its holonomy.

• Let h ∈ Hs,s′ . The order of h is defined as

ord(h) = min {l(γ) |H(γ) = h} .

As a trivial consequence of the triangular equality, and as a justification of the
terminology, we have:

Proposition 5.15. Let s, s′ a,d s′′ three states. Let (h, h′) ∈ Hs,s′ × Hs′,s′′ .
Then

ord(hh′) ≤ ord(h) + ord(h′).

Left action, right action and adjoint action of GI extend straightway to PC-
matices on ΓI setting

∀g ∈ G, g.0 = 0.g = 0.

Adapting the proof of Theorem 5.5 we get:

Theorem 5.16. Let A = (ai,j)(i,j)∈I2 be a PC matrix on Γ Then A is consistent

if and only if there exists (λi) ∈ GI such that

ai,j = λ−1
i λj

when ai,j 6= 0.

2.3.3. Inconsistency maps ranked by trustworthiness [14]. Let A be a PC ma-
trix on ΓI . Inconsistency will be given here by the holonomy of a loop. Let us recall
that a trivial holonomy of a loop < si1 , si2 , ..., sik , si1 > implies that

ai1,ik
(
ai1,i2 ...aik−1,ik

)−1
= 1.

The principle of ranking inconsistency with loop lengthgives the following:



54 5. CONTRIBUTIONS TO SIMPLICIAL GAUGE THEORIES AND DECISION THEORY

Definition 5.17. Let F : G → R+ be a map such that I(1) = 0. Let s be a
basepoint on ΓI . The ranked Koczkodaj’s inconsistency map associated to F
the map

KiiN =
∑
n∈N

anX
n

where
an = sup {F (H(γ)) |γ is a loop at s and l(γ) = n} .

One can easily see that an generalize Kiin, and KiiN is a R[[X]]−valued in-
consistency map.

2.3.4. Holonomy versus distance. This section is based on [14]. In this section,
G = R∗+. Setting

ki,j = |log(ai,j)|
we get another matrix, that we define as the distance matrix

K = (ki,j)(i,j)∈I2 .

Notice that, if the coefficients of this matrix satisfy the triangle inequality ∀(i, j, l) ∈
I3, ki,l ≤ ki,j + kj,l, we get a curvature matrix for metric spaces [Gr1997]. Due to
the absolute value, we have the following:

Proposition 5.18. Let K be a non zero distance matrix on ∆n. Let N be
the number of non zero coefficients in K. Then N is even and there exist 2N/2

corresponding PC matrices.

Therefore, we have the following results:

Proposition 5.19. Let K be the distance matrix on ∆n associated to a con-
sistent PC matrix A, which is assumed to be non zero. Let N ′ be the number of
coefficients ki,i+1 which are non zero. Then there exists 2N

′
consistent PC matrices

built with the coefficients ki,i+1, but only 2 consistent ones, A and its transposition.

Open problem: The basic evaluation of inconsistency in pairwise comparisons
[KoSza2010] seems to be less efficient than holonomy evaluation. A common
technical feature between the two approaches stems in potential analysis and La-
grangian theory. Such an approach still has to be developped, in order for example
to include this part of decision theory as a part of quantum physics.

Back to inconsistency, the work led by physicists on discretized QFT may then
apply to information theory. But we highlight the following features:

• What would be the meaning in information theory of the partition func-
tion? of the continuum limit?

• What other geometric quantities than holonomy could be adapted for
information theory?

• Can there appear other ”good” inconsistency indicators from physics?
Can Feynman integration give an ”ideal” approach to many-criteria deci-
sion?

• Can physics apply directly to image processing through inconsistency? to
faces/symbols recognition? to shape analysis?



CHAPTER 6

Pseudo-differential, Fourier integral operators
with applications to geometry

We now deal with non-formal pseudo-differential operators and Fourier integral
operators. These operators have also applications and we focuse on some applica-
tions to the geometry of infinite dimensional manifolds.

1. On ζ−renormalized traces

E is equipped this an Hermitian products < ., . >, which induces the following
L2-inner product on sections of E:

∀u, v ∈ C∞(S1, E), (u, v)L2 =

∫
S1

< u(x), v(x) > dx,

where dx is the Riemannian volume.

Definition 6.1. [Pay2012, Sco2010] Q is a weight of order s > 0 on E if
and only if Q is a classical, elliptic, admissible pseudo-differential operator acting
on smooth sections of E, with an admissible spectrum.

Recall that, under these assumptions, the weightQ has a real discrete spectrum,
and that all its eigenspaces are finite dimensional. For such a weight Q of order
q, one can define the complex powers of Q [See1967], see e.g. [21, Le1998,
Asa2000, Pay2001, Sco2010]. The powers Q−s of the weight Q are defined for
Re(s) > 0 using with a contour integral,

Q−s =

∫
Γ

λs(Q− λId)−1dλ,

where Γ is an “angular” contour around the spectrum of Q. Let A be a log-
polyhomogeneous pseudo-differential operator. The map ζ(A,Q, s) = s ∈ C 7→
tr (AQ−s) ∈ C , defined for Re(s) large, extends on C to a meromorphic function
with a pole at 0 ([Le1998]). When A is classical, ζ(A,Q, .) has a simple pole
at 0 with residue 1

q resA, where res is the Wodzicki residue ([Wod1984], see also

[Ka1989]). Notice that the Wodzicki residue mimicks the Adler trace [Ad1979]
on formal symbols.

Definition 6.2. trQA = limz→0(tr(AQ−z)− 1
qz resA).

If A is trace class, trQ(A) = tr(A). The functional trQ is of course not a trace
on Cl(M,E). Notice also that, if A and Q are pseudo-differential operators acting
on sections on a real vector bundle E, they also act on E ⊗ C. Before giving our
new developments, we need the following statements which are not so well applied
in various contexts

55
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•Development presented in the PhD thesis and published in [21, 23], and hence not
presented for as new results for the habilitation:

The Wodzicki residue res and the renormalized traces trQ have to be understood
as functional defined on pseudo-differential operators acting on E ⊗ C. In order to
compute trQ[A,B] and to differentiate trQA, in the topology of classical pseudo-
differential operators, we need the following ([21] and references therein):

Proposition 6.3. [21]
(i) Given two (classical) pseudo-differential operators A and B, given a weight

Q,

(6.1) trQ[A,B] = −1

q
res(A[B, logQ]).

(ii) Given a differentiable family At of pseudo-differential operators, given a differ-
entiable family Qt of weights of constant order q,

(6.2)
d

dt

(
trQtAt

)
= trQt

(
d

dt
At

)
− 1

q
res

(
At(

d

dt
logQt)

)
.

The following ”covariance” property of trQ ([21], [Pay2001]) will be useful to
define renormalized traces on bundles of operators,

Proposition 6.4. Under the previous notations, if C is a classical elliptic

injective operator of order 0, trC
−1QC

(
C−1AC

)
is well-defined and equals trQA.

We moreover have specific properties for weighted traces of a more restricted
class of pseudo-differential operators (see [KV1994],[KV1995],[21]), called odd
class pseudo-differential operators following [KV1994, KV1995] :

Definition 6.5. A classical pseudo-differential operator A is called odd class
if and only if

∀n ∈ Z,∀(x, ξ) ∈ T ∗M,σn(A)(x,−ξ) = (−1)nσn(A)(x, ξ).

We note this class Clodd.

Such a definition is consistent for pseudo-differential operators on smooth sec-
tions of vector bundles, and applying the local formula for Wodzicki residue, one
can prove:

Proposition 6.6. [21]
If M is an odd dimensional manifold, A and Q lie in the odd class, then f(s) =

tr(AQ−s) has no pole at s = 0. Moreover, if A and B are odd class pseudo-
differential operators, trQ ([A,B]) = 0 and trQA does not depend on Q.

This trace was first defined in the papers [KV1994] and [KV1995] by Kon-
tesevich and Vishik. We remark that it is in particular a trace on DO(M,E) when
M is odd-dimensional.

Let us now describe a class of operators which is, in some sense, complementary
to odd class:

Definition 6.7. [23]
A classical pseudo-differential operator A is called even class if and only if
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∀n ∈ Z,∀(x, ξ) ∈ T ∗M,σn(A)(x,−ξ) = (−1)n+1σn(A)(x, ξ).

We note this class Cleven.

We precised that Cleven and Clodd are ”in some sense” complementary because
these are not supplementary vector spaces: Clodd ∩ Cleven = Cl−∞.

Proposition 6.8. [23]
Cleven ◦ Clodd = Clodd ◦ Cleven = Cleven and
Cleven ◦ Cleven = Clodd ◦ Clodd = Clodd.

Now, following [23], we explore properties of trQ on Lie brackets.

Definition 6.9. Let E be a vector bundle over M, Q a weight and a ∈ Z. We
define :

AQa = {B ∈ Cl(M,E); [B, logQ] ∈ Cla(M,E)}.

Theorem 6.10. [23]
(i) AQa ∩ Cl0(M,E) is an subalgebra of Cl(M,E) with unit.

(ii) Let B ∈ Ell∗(M,E), B−1AQa B = AB
−1QB

a .

(iii) Let A ∈ Clb(M,E), and B ∈ AQ−dimM−b−1, then trQ[A,B] = 0.

(iv) For a < −dimM2 , AQa ∩Cl
−dimM

2 (M,E) is an algebra on which the renormalized
trace is a trace (i.e. vanishes on the brackets).

We now produce non trivial examples of operators that are in AQa when Q is
scalar, and secondly we give a formula for some non vanishing renormalized traces
of a bracket.

Proposition 6.11. [23]
Let Q be a scalar weight on C∞0 (M,V ). Then

Cla+1(M,V ) ⊂ AQa .
Consequently,

(1) let B be a classical pseudo-differential operator of order b. Then [B, logQ]
is a classical pseudo-differential operator of order b− 1.

(2) if ord(A) + ord(B) = −dimM, trQ[A,B] = 0.
(3) when M = S1, if A and B are classical pseudo-differential operators, if A

is compact and B is of order 0, trQ[A,B] = 0.
(4) Let Q be a scalar weight on C∞0 (M,V ), and A, B two pseudo-differential

operators of orders a and b on C∞0 (M,V ), such that a+ b = −m+ 1 (m
= dim M). Then

trQ[A,B] = −1

q
res (A[B, logQ]) = − 1

q(2π)n

∫
M

∫
|ξ|=1

tr(σa(A)σb−1([B, logQ])).

Let Q be a weight, the non-traciality of trQ defined a non-vanishing cocycle
(which is a coboundary in Hochschild cohomology) express as:

(A,B) ∈ (Cl(M,E))2 7→ cQ(A,B) = trQ[A,B],

whiich is proportionnal to res(A[B, logQ]). This cocycle is a generalization to non
formal pseudo-differential operators of the Kravchenko-Khesin-Radul cocycle

(a, b) ∈ (FCl(S1,C))2 7→ cKKR(a, b) =

∫
S1

(σ−1 (a[b, logξ]))ξ=1 dx.
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We notice that cKKR is not a coboundary [KK1991]. The two other cocycles that
I would like to mention are due to a splitting: we need for this a sign operator ε,
i.e. an operator such that ε2 = Id, see e.g. [Mick1989]. The classical case is when
E is a Clifford bundle over M , and ε is the sign of the Dirac operator [Mick1994],
generalizing the classical M = S1 see e.g. [PS1988]. These works were motivated
by [RSF1985, SW1985, MR1988, Mick1988]. The splitting of L2(M,E) is
given by the two eigenvalues −1 and 1 of ε (the kernel of the Dirac operator is
arbitrarily associated to the −1 or 1 eigenspace). Let us note by H− and H+,
respectively, these two eigenspaces. The operators A considered split blockwise

A =

(
A++ A−+

A+− A−−

)
under the decomposition L2(M,E) = H+ ⊕ H− = H. Defining the Banach Lie
group

GLres = {A ∈ GL(H)|[ε, A] is Hilbert-Schmidt}
= {A ∈ GL(H)|A+− and A−+ are Hilbert-Schmidt} ,

with Lie algebra

Lres = {A ∈ L(H)|[ε, A] is Hilbert-Schmidt}
= {A ∈ L(H)|A+− and A−+ are Hilbert-Schmidt}

one can define [SW1985, PS1988, Mick1989], for (A,B) ∈ (Lres)
2:

λ(A,B) = tr ([A++, B++]− [A,B]++)

and the Schwinger cocycle [Sch1959]:

cS(A,B) = tr (ε[ε, A][ε, B]) .

These two cocycles are proportional and non trivial, and they naturally restrict to
Lres ∩ Cl(M,E) [21].

1.1. A property, based on [6]. Let us now explore the action of Diff(M)
and of Aut(E) on trQ(A).For this, we get:

Lemma 6.12. [6] Let a ∈ Z. Let A ∈ Cla(M,E) and let Q be a weight on E.
Let B be an operator on C∞(M,E) such that

(1) AdB(Cla(M,E)) ⊂ Cla(M,E)
(2) AdBQ is a weight of the same order as Q

Then

• res(AdBA) = res(A)
• trAdBQ(AdBA) = trQ(A).

The properties 1,2 are true in particular for operators B ∈ Aut(E).

1.2. Some cocycles on PDO(M,E), based on [2, 3]. If one wants to extend
this construction of the index or of the Schwinger cocycle to unbounded operators,
one has to find a (non unitary) subalgebra I in the algebra of operatorsA considered
such that

- I2 is a set of trace-class operators
- [A, I] ⊂ I.
Considering A = PDO(M,E), a natural choice for I is the ideal Cl−∞(M,E)

[3]. But in that case, except when intrinsic geometric structures enable to find a
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sign operator (e.g. from a Dirac operator), it seems to be difficult to remain in an
algebra of pseudo-differential operators. More precisely:

Proposition 6.13. [3] When E = M×C, If ε ∈ Cl0(M,C), ε = Id or ε = −Id
up to a finite rank operator.

Moreover,

Proposition 6.14. [3] The Schwinger cocycle cS on
(
Cl(S1,C)⊗n

)
res

related

to the sign operator ε = (ε(D))⊗n, where ε(D) is defined in the section M = S1, is
a non trivial cocycle.

These results hae been obtained after those treating of the special case M = S1,
principally given in [2] and completed in [3].

Open question: We notice that Cl((S1)n,C) 6=
(
Cl(S1,C)⊗n

)
, and the question of

an adequate choice of ”maximal” natural algebra of operators for the Schwinger
cocycle is still open when M 6= S1. The same question arise in [BFR2018] where
higher dimensional Kravchenko-Khesin cocycles are investigated. A natural, but
trivial, extension on Diff(M)−pseudo-differential operators is given in [6], inter-
esting results being for M = S1.

2. Specializing M = S1 : a digression in algebraic structures, based on
[2, 6, 20]

The operator D = −iDx splits C∞(S1,Ck) into three spaces :
- its kernel E0, made of constant maps
- E+, the vector space spanned by eigenvectors related to positive eigenvalues
- E−, the vector space spanned by eigenvectors related to negative eigenvalues.

The following elementary result will be useful for the sequel, see [22] for the proof,
and e.g. [23, 3]:

Lemma 6.15. (i) σ(D) = ξ
(ii) σ(|D|) = |ξ| where |D| = σ

(∫
Γ
λ1/2(∆− λId)−1dλ

)
, with ∆ = −D2

x.

(iii) σ(D|D|−1) = ξ
|ξ| , where D|D|−1 = |D|−1D is the sign of D, since |D||E0

=

IdE0 .
(iv) Let pE+

(resp. pE−) be the projection on E+ (resp. E−), then σ(pE+
) =

1
2 (Id+ ξ

|ξ| ) and σ(pE−) = 1
2 (Id− ξ

|ξ| ).

Let us now define two ideals of the algebra FPDO, that we call FPDO+ and
FPDO−, such that FPDO = FPDO+⊕FPDO−. This decomposition is implicit
in [Ka1989], section 4.4., p. 216, for classical pseudo-differential operators and
we furnish the explicit description given in [22], extended to the whole algebra of
(maybe non formal, non classical) pseudo-differential symbols here.

Definition 6.16. Let σ be a symbol (maybe non formal). Then, we define, for
ξ ∈ T ∗S1 − S1,

σ+(ξ) =

{
σ(ξ) if ξ > 0
0 if ξ < 0

and σ−(ξ) =

{
0 if ξ > 0
σ(ξ) if ξ < 0.

At the level of formal symbols, we also define the projections: p+(σ) = σ+ and
p−(σ) = σ− .
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The maps p+ : FPDO(S1,Ck)→ FPDO(S1,Ck) and p− : FPDO(S1,Ck)→
FPDO(S1,Ck) are clearly algebra morphisms that leave the order invariant and
are also projections (since multiplication on formal symbols is expressed in terms
of pointwise multiplication of tensors).

Definition 6.17. We define FPDO+(S1,Ck) = Im(p+) = Ker(p−) and
FPDO−(S1,Ck) = Im(p−) = Ker(p+).

Since p+ is a projection, we have the splitting

FPDO(S1,Ck) = FPDO+(S1,Ck)⊕FPDO−(S1,Ck).

Let us give another characterization of p+ and p−. Looking more precisely at the
formal symbols of pE+

and pE− computed in Lemma 6.15, we observe that

σ(pE+
) =

{
1 if ξ > 0
0 if ξ < 0

and σ(pE−) =

{
0 if ξ > 0
1 if ξ < 0

.

In particular, we have that Dα
xσ(pE+), Dα

ξ σ(pE+), Dα
xσ(pE−), Dα

ξ σ(pE−) vanish
for α > 0. From this, we have the following result:

Proposition 6.18. [22] Let a ∈ FPDO(S1,Ck). p+(a) = σ(pE+) ◦ a = a ◦
σ(pE+) and p−(a) = σ(pE−) ◦ a = a ◦ σ(pE−).

We then remind that if V = Cn and use the notations

DO(S1, V ) =
⋃
o∈N

 ∑
0≤k≤o

ak∂
k

 , IO(S1, V ) =

∑
k≤−1

ak∂
k


we get also the vector space decomposition

ΨDO(S1, V ) = DO(S1, V )⊕ IO(S1, V ).(6.3)

such that any (matrix) order k pseudo-differential operator A =
∑k
i=−∞ ai∂

i is

splitted in two components A = AD + AS with AD =
∑k
i=0 ai∂

i and AS =∑−1
i=−∞ ai∂

i. The Adler trace [Ad1979] defined by

Tr : A =
∑
k≤o

ak∂
k 7→

∫
S1

tr(a−1)

is the only non trivial trace on ΨDO(S1, V ). Morover, see e.g. [EKRRR1995]
and [KZ1995],

Theorem 6.19. (ΨDO(S1, V ), IO(S1, V ), DO(S1, V ), T r) is a Manin triple.

The Wodzicki residue ([Wod1984], see e.g. [Ka1989]) is usually known as
an “extension” of the Adler trace to FCl(S1, V ) and hence to Cl(S1, V ). For the
sake of deeper insight, we need to precise that the space of traces on FCl(S1, V )
is 2-dimensional, generated by two functionals:

res+ : A 7→
∫
S1

σ−1(A)(x, 1)|dx|

and

res− : A 7→
∫
S1

tr(σ−1(A))(x,−1)|dx|.

The functionals res± are the only non-vanishing traces on FCl±(S1, V ) (up to a
scalar factor) and are vanishing on FCl∓(S1, V ). The (classical) Wodzicki residue
reads as res = res+ + res−.
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2.1. Radul, Schwinger and index cocycle on PDO(S1, E). Let π : E →
S1 be a non trivial real vector bundle over S1 of rank k.

Proposition 6.20. [6] Let ∇ be a Riemannian covariant derivative on the
bundle E → S1 and let ∇dt be the associated first order differential operator, given

by the covariant derivative evaluated at the unit vector field over S1. We modify
the operator ∇dt into an injective operator D = ∇

dt + pker ∇dt
, where pker ∇dt

is the L2

orthogonal projection on ker∇dt ⊂ C
∞(S1, E) ⊂ L2(S1, E), and we set

ε(∇) = D ◦ |D|−1
.

Then the formal symbol of ε(∇) is iξ
|ξ|.

Proposition 6.21. [2, 3, 6] For each A ∈ PDO(S1, E), [A, ε(∇)] ∈ PDO−∞(S1;E).

The fiber bundle T ∗S1 − S1 has two connected components and the phase
function is positively homogeneous, so that we can make the same procedure as in
the case of the symbols. The main results gradually discovered in [23, 3, 6] are now
gathered. Here, ε(∇) is not a sign operator, but an operator such that ε(∇)2 = Id
up to a smoothing operator. :

Theorem 6.22. [2, 3, 6] For any A ∈ PDO(S1, E), [A, ε(∇)] ∈ PDO−∞(S1, E).
Consequently,

c∇s : A,B ∈ PDO(S1, E) 7→ 1

2
tr (ε(∇)[ε(∇), A][ε(∇), B])

is a well-defined R-valued 2-cocycle on PDO(S1, E). Moreover, c∇s is non trivial
on any Lie algebra A such that C∞(S1,R) ⊂ A ⊂ PDO(S1, E).

2.2. From ΨDO(S1, V ) to FCl(S1, V ) based on [20]. There exists a decom-
position FCl+(S1, V ) = FCl+,D(S1, V )⊕FCl+,S(S1, V ) and another FCl−(S1, V ) =
FCl−,D(S1, V )⊕FCl−,S(S1, V ), and setting

FClD(S1, V ) = FCl+,D(S1, V )⊕FCl−,D(S1, V ),

FClS(S1, V ) = FCl+,S(S1, V )⊕FCl−,S(S1, V ),

we get the vector space decomposition analogous to (6.3):

FCl(S1, V ) = FClD(S1, V )⊕FClS(S1, V ),

Let us consider the decomposition

FCl(S1, V ) = FClodd(S1, V ) + FCleven(S1, V ),

that we equip with the classical Lie bracket [., .] or with [., .]ε(D) = 1
2 ([ε(D) ◦ ., .] + [., ε(D) ◦ .])

and with the bilinear form (A,B) = res(AB).

Theorem 6.23. [20] res(AB) is a bilinear, non degenerate, symmetric and
invariant form for both brackets, and FClodd(S1, V ) as well as FCleo(S1, V ) are
isotropic vector spaces. Moreover,

• for [., .], FClodd(S1, V ) is a Lie algebra
• for [., .]ε(D), FCleven(S1, V ) is a Lie algebra.
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2.3. Extension of the classical Manin triple to FCl(S1, V ) based on
[20]. Because the partial symbol σ−1(A) of an operator A ∈ ΨDO(S1, V ) is skew-
symmetric in the ξ−variable, res is vanishing on ΨDO(S1, V ) = FClodd(S1, V ), so
that it is superficial to state that the Wodzicki residue is “simply” the extension of
the Adler trace. However the two linear functionals already described, namely

A ∈ FCl(S1, V ) 7→
∑
k∈Z

σk(A)(x, 1)∂k

and
A ∈ FCl(S1, V ) 7→

∑
k∈Z

σk(A)(x,−1)∂k,

identity res+ and res− respectively with Tr. By the way, we can state:

Theorem 6.24. We have three Manin triples:

(FCl+(S1, V ),FCl+,S(S1, V ),FCl+,D(S1, V ), res+),

(FCl−(S1, V ),FCl−,S(S1, V ),FCl−,D(S1, V ), res−)

and
(FCl(S1, V ),FClS(S1, V ),FClD(S1, V ), res).

2.4. Injecting ΨDO(S1,K) in FCl(S1,K).. We already mentionned the iden-
tification of ΨDO(S1,K) with FClodd(S1,C). We claim here that this identification
can be generalized to

Φodd,λ :
∑
k∈Z

ak

(
d

dx

)k
∈ ΨDO(S1,K) 7→

∑
k∈Z

ak

(
λ
d

dx

)k
∈ FClodd(S1,C).

Similar to this identification, we have other injections for λ ∈ R∗ :

Φε(D),λ :
∑
k∈Z

ak

(
d

dx

)k
∈ ΨDO(S1,K) 7→

∑
k∈Z

ak

(
λε(D)

d

dx

)k
∈ FCl(S1,K), and

Φλ,µ :
∑
k∈Z

ak

(
d

dx

)k
∈ ΨDO(S1,K) 7→

∑
k∈Z

ak

(
λk
(
d

dx

)k
+

+ µk
(
d

dx

)k
−

)
∈ FCl(S1,K)

for (λ, µ) ∈ C2\{(0; 0)}, with unusual convention 0k = 0 ∀k ∈ Z.

Remark 6.25. Φ1,1 = Φee and Φ1,−1 = Φε(D),1.

Remark 6.26. ImΦ1,0 = FCl+(S1,K) and Φ1,0 is a isomorphism of alge-
bras from ΨDO(S1,K) to FCl+(S1,K). The same way, Φ0,1 identifies the algebras
ΨDO(S1,K) and FCl−(S1,K).

Remark 6.27. Wa have also to say that the maps Φλ,µ are not algebra mor-
phisms unless (λ, µ) ∈ {(1; 0), (0; 1), (1; 1)}. For example, let λ ∈ C−{0; 1}. the map
Φλ,0 pushes forward the multiplication on ΨDO(S1,K) to a deformed composition

∗k on FCl+(S1,K) that reads as σ(A) ∗k σ(B) =
∑
α∈N

(−i)α
α!.kαD

α
xσ(A)Dα

ξ σ(B).

From our previous remarks, we get:

Theorem 6.28. The map

Φ1,0 × Φ0,1 : ΨDO(S1,K)2 → FCl+(S1,K)×FCl−(S1,K) = FCl(S1,K)

is an isomorphism of algebra.
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We also remark a new subalgebra of FCl(S1,K) :

Definition 6.29. Let FClε(S1,K) be the image of Φε(D),1 in FCl(S1,K).

We have the obvious identification FClε(S1,K) = C∞(S1,K)((i|D|−1)) as a
vector space.

2.5. An integrable almost complex struxture on FCl(S1,C) based on
[20]. Let

iε(D) =

(
d

dx

)
.|D|−1 = |D|−1.

(
d

dx

)
.

We define the operator J1 = iε(D) ◦ (.) on FCl(S1, V ).

Theorem 6.30. The operator J1 defines an integrable almost complex struc-
ture on FCl(S1, V ).FCl(S1, V ) = ΨDO(S1, V ) ⊗ C as a real algebra, identifying
FClodd(S1, V ) with ΨDO(S1, V ) (real part) and FCleven(S1, V ) with iΨDO(S1, V )
(imaginary part).

Open problem: study the obstruction of extending the almost complex structure

J1 from FCl(S1, V ) to Cl(S1, V ).

3. Renormalized extension of the Hilbert-Schmidt Hermitian metric,
based on [19]

The vector space Cl−1(S1, V ) is a space of Hilbert-Schmidt operators. As
a subspace, Cl−1(S1, V ) inherits a Hermitian metric from the classical Hilbert-
Schmidt inner product. The renormalized trace tr∆ extends the classical trace tr
of trace class operators to a smooth linear functional on Cl(S1, V ). We investigate
here the possible (maybe naive) extension of the classical Hilbert-Schmidt inner
product to Cl(S1, V ) via tr∆.

3.1. Extension of the Hilbert-Schmidt metric to FCl.. Let (zk)k∈Z is
the Fourier L2−orthonormal basis. Let us recall that there exists an ambiguity on
ε(D) concerning its action on z0, which can be, or not, in the kernel of p+, or in the
eigenspace of the eigenvalue 1 or −1. Depending on each of these three possibilities
respectively, we set ε(k) as the eigenvalue of ε(D) at the eigenvector zk.

Lemma 6.31. Let X = u d
dx , Y = v d

dx be two vector fields over S1, and let

a, b ∈ C∞(S1,C). Then

(1)

tr∆(ab̄) = 0

(2)

tr∆(XY ∗) = 0

(3)

tr∆(Xa) = tr∆(aX) = 0

Theorem 6.32. [19] The Hilbert-Schmidt definite positive Hermitian product

(A,B)HS = tr (AB∗)

which is positive, definite metric on Cl−1(S1, V ) extends:

• to a Hermitian, non degenerate form on Cl(S1, V ) by (A,B) 7→ (A,B)∆ =
tr∆(AB∗)
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• to a Hermitian, non degenerate form on Clodd(S
1, V ) by (A,B) 7→ (A,B)∆ =

tr∆(AB∗)
• to a (R−) bilinear, symmetric non degenerate form on Cl(S1, V )⊕V ect(S1)

by (A,B) 7→ Re(A,B)∆ = Re
(
tr∆(AB∗)

)
where A = a + u, B = b + v,

with (a, b) ∈ Cl(S1, V ) and (u, v) ∈ V ect(S1).

Remark 6.33. We remark that (., .)∆ is bilinear, non degenerate but not pos-
itive. Indeed, from relation (1) of Lemma 6.31, C∞(S1,Mn(C)) is an isotropic
Lie subalgebra for (., .)∆ which proves that this R−bilinear symmetric form is not
positive.

From the Lie algebra Cl(S1, V ) ⊕ V ect(S1), we then span by right-invariant
action of FCl∗(S1, V ) on TFCl∗(S1, V ) a right-invariant pseudo-metric. For this
goal, the Lie algebra elements are identified as infinitesimal paths, and actions and
Lie brackets are those derived from the coadjoint action (and right-Lie bracket)
of FCl∗(S1, V ) on Cl(S1, V ) ⊕ V ect(S1), while we consider the trivial mapping
defined by the sum Cl(S1, V )⊕ V ect(S1)→ Cl(S1, V ) = Cl(S1, V ) + V ect(S1) in
order to compute Re(.; .)∆. The same constructions hold for the pseudo-Hermitian
metric (.; .)∆ on Cl∗(S1, V ).

Definition 6.34. Let A ∈ FCl0,∗(S1, V ) and let a ∈ Cl0(S1, V ) ⊕ V ect(S1).
We note by RA(a) the (right-)action by composition

RA(a) = a ◦A.

Then, identifying TAFCl
0,∗(S1, V ) with RA

(
Cl0(S1, V )⊕ V ect(S1)

)
we set a smooth

pseudo-Riemannian metric on TFCl0,∗(S1, V ) by defining for

(a, b) ∈
(
Cl0(S1, V )⊕ V ect(S1)

)2
,

and hence for (RA(a), RA(b)) ∈
(
TAFCl

0,∗(S1, V )
)2
,

(RA(a), RA(b))∆,A = (a, b)∆.

3.2. On bounded odd class Diff(S1)−pseudo-differential operators.
Let us finish our remarks with the group of (L2−)bounded even-evenDiff(S1)−pseudo-
differential operators. Its Lie algebra

Cl0odd(S
1, V ) o V ect(S1)

also reads as

Cl−1
odd(S

1, V )⊕DO0(S1, V )⊕ (V ect(S1)⊗ IdV ).

and the pseudo-Riemannian product Re(., .)∆ decomposes blockwise as Re(., .)HS ∗ ∗
∗ 0 0
∗ 0 0

 ,

where Re(., .)HS = Re ((., .)HS) is the scalar product derived from the Hilbert-
Schmidt Hermitian product (., .)HS .
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4. In search of pseudo-Hermitian connections for (., .)∆ based on [19]

There exists some difficulties in describing the whole space of connection 1-
forms Ω1(FClDiff(S1)(S

1, V ), Cl(S1, V ) o V ect(S1)). Indeed the space of smooth

linear maps acting on Cl(S1, V ) is actually not well-understood to our knowledge.
Finding an adjoint for ad and for (., .)∆ fails apparently due to the non-traciality
of tr∆ (and surprisingly not due to the lack of the classical arguments envolving
strong metrics). We consider here a class of connections where this smooth linear
endomorphism is defined by composition by a smoothing operator. The resulting
technical simplifications enables us to get pseudo-Hermitian connections for (., .)∆.
Most of them can be easily adapted to get pseudo-Riemannian connections for
Re(., .)∆.

4.1. A class of connections. Let us define now, for w ∈ Cl(S1, V ) such that
∀(a, b) ∈ Cl(S1, V ),

Θw
a b = b[a,w].

The curvature of Θw reads as

ΩΘw(a, b)c = [wbw, a]− [waw, b] + [wa,wb]− [wb, aw]− [[b, a]w]

for (a, b) ∈ FCl(S1, V ). Let us analyze the connection Θw with w = iε(D).

Theorem 6.35. Θiε(D) is a Cl−∞(S1, V )−valued connection.

4.2. Pseudo-Hermitian connections associated with a skew-adjoint
pseudodifferential operator. Let w ∈ Cl(S1, V ) such that w∗ = −w. For exam-
ple, one can consider the example w = iε(D).

Lemma 6.36. ∀a ∈ Cl(S1, V ), ∀w ∈ Cl(S1, V ) such that w∗ = −w, Θw
a∗ is the

adjoint of Θs
a for (., .)∆

Let us now analyze

(a, b) ∈ Cl(S1,C)2 7→ θwa b = b[a− a∗, w] = (Θw
a −Θw

a∗)(b).

Theorem 6.37. θw is the connection 1-form of a pseudo-Hermitian connection
of (., .)∆. Moreover,

θiε(D) is Cl−∞(S1, V )−valued as Θiε(D) is.

4.3. On another class Cl−∞(S1, V )−connections. Motivated by the previ-
ous example of Cl−∞(S1, V ), let us now give families of Cl−∞(S1, V )−connections
which a priori do not include the connections θiε(D) and Θiε(D). Let us define now,
for s ∈ Cl−∞ and ∀(a, b) ∈ Cl(S1, V ),

Θs,l
a b = sas∗b,

Θs,r
a b = bsas∗,

and
Θs,[]
a b = [sas∗, b] .

Let us describe here their associated class of pseudo-Riemannian connections for
(., .)∆ along the lines of the previous section. Let s ∈ Cl−∞(S1, V ) be a smoothing
operator. Let a, b ∈ Cl(S1, V )2 and let

θs,[]a b = Θs,[]
a b−Θ

s,[]
a∗ b = [s(a− a∗)s∗, b] ,

θs,la = Θs,l
a b−Θs,l

a∗b = s(a− a∗)s∗b,
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and
θs,ra = Θs,r

a b−Θs,r
a∗ b = bs(a− a∗)s∗.

Lemma 6.38. ∀a ∈ Cl(S1, V ), ∀s ∈ Cl−∞(S1, V ),

• Θs,l
a∗ is the adjoint of Θs,l

a for (., .)∆

• Θs,r
a∗ is the adjoint of Θs,l

a for (., .)∆

• Θ
s,[]
a∗ is the adjoint of Θs,l

a for (., .)∆

Theorem 6.39. Then θs,[], θs,l and θs,r, define three right-invariant pseudo-
Hermitian connections on FCl(S1, V ).

Open problem: Determine the geodesic equations of these connections, determine
the corresponding dynamical systems that one can deduce, and determine families of
one parameter families of connections that link these systems. These “homotopies”
can exibit or not symmetry breakings.

4.4. The Schwinger cocycle and the connection Θiε. Let us make the
two following remarks

Proposition 6.40. Let (a, b) ∈ Cl(S1, V ) o V ect(S1). Then

cs(a, b) = −itr∆(Θiε
a b) = tr∆(Θiε

a Θiε
b ε(D)).

Remark 6.41. When defining a smoothing connection θ on Cl(S1, V )oV ect(S1),
we define a map with values on the first component of the product Cl(S1, V ) ×
V ect(S1).

Theorem 6.42. The Schwinger cocycle cs has the same cohomology class as

ciε1 : (a, b) ∈ Cl(S1, V )2 7→ 1

2
tr∆

(
Ωiε(a, b)ε(D)

)
where Ωiε is the curvature of Θiε.

Open problem: Determine the cohomology classes that can be obtained this way,

by connections with Cl−∞−valued curvatures, and implement an adequate holo-
nomy bundle with suitable (maybe generalized) geometric structures. A partial an-
swer is given in the non-presented (because non-published and only pre-published)
work [35], that has to be generalized both for other classes of connections, and for
changing S1 for a higher dimensional manifold M.

4.5. On odd class Diff(S1)−pseudo-differential operators. Considering
now

Cl∗odd(S
1, V ) oDiff(S1),

we remark that the renormalized trace tr∆ is tracial on its Lie algebra Clodd(S
1, V )o

V ect(S1), i.e.
∀(a, b) ∈ Clodd(S1, V ), tr∆([a, b]) = 0

(representing Clodd(S
1, V )oV ect(S1) in Clodd(S

1, V ) as in the rest of the text).This
enables to state the following property:

Proposition 6.43. ∀a ∈ Clodd(S1, V ), the adjoint map

ada : b 7→ adab = [b, a]

has an adjoint map for (., .)∆ given by

ad∗a = ada∗ .
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As a consequence, applying the arguments of [Fr1988-2] and especially those
leading to [Fr1988-2, Proposition 1.7] to right-invariant vector fields on FClodd,Diff(S1)(S

1, V ),
we get:

Theorem 6.44. The pseudo-Riemannian metric Re(., .)∆ admits a unique pseudo-
Riemannian, torsion-free (i.e. Levi-Civita) connection ∇∆ that reads as

∇∆
a b =

1

2
(adab− ada∗b− adb∗a)

Open problem: For a weak (pseudo-)metric in e.g. such a general framework,
determine, depending on the chosen structure group, if there exist a torsion free
(pseudo-)Riemannian or Hermitian connection.

5. Manifolds of mappings and embeddings

Let M be a compact boundaryless manifold and let N be a finite dimensional
Riemannian manifold. The basic structure of manifolds of maps C∞(M,N) is
known since [Ee1966]. For f ∈ C∞(M,N), the tangent space TfC

∞(M,N) =
γ(M,f∗TN) and the L2− exponential map can be described pointwise, by the way,
one can define a frame bundle over C∞(M,N) defined by 0−order differential oper-
ators. The space of embeddings Emb(M,N) is an open submanifold of C∞(M,N).
On these spaces, we have to mention works from us (presented in our PhD thesis and
hence not presented for as works for the habilitation evaluation) and others, which
started with Freed’s and Paycha’s works [Fr1988-1, Fr1988-2, Pay2001] on the
development of Chern-Weil forms on mapping spaces. These construction were mo-
tivated by [RSF1985, BR1987-1, BR1987-2], where anomalies are identified as
kind of extension of a Chern form ”trΩ”, where tr needs to be understood only as a
chosen summation over a. well-chosen orthonormal basis. This ”well-chosen” sum-
mation has been interpreted, following the ideas of [Pay2001, Mick1994], see e.g.
[Ism1996], as a renormalized trace trQ for Q = ∆. More precisely, re-interpreting
and extending some results [Fr1988-2],

Theorem 6.45. [21] Let G be a semi-simple compact Lie group, let C∞b (S1, G)
be the based loop group equipped with the almost complex structure J = D/|D|, and
let ω the Kähler form of the based loop group. Then

tr∆(Ω1,0) = −iω,
where Ω1,0 is the holomorphic part of the H1/2−Levi-Civita connection, associated
to the H1/2-metric (∆1/2., .)L2

.

This theorem has been extended:

Theorem 6.46. [23] With the same notations, if θ is a connection on C∞b (S1, G)
such that, read on left-invariant frames, ∀X ∈ C∞b (S1, g, ) θX ∈ adX +Cl−1(S1, g),
then the associated Chern form

tr(Ω1,0)

is closed and it has the same cohomology class as −iω.
Let us make two comments before going to other results:

• Freed’s results in [Fr1988-1] only extend the contruction of the first Chern
form tr(Ω) when Ω is trace-class, which is not the case here since Ω1,0

lies in the Dixmier ideal L1,∞ in Freed’s framework [Fr1988-2] or in
Cl−1(S1, g) in the framework of [21].
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• With the infinite dimensional Ambrose-Singer theorem 4.34, and espe-
cially the part stated in [1], we have a principal bundle over

C∞b (S1, G)C,

modelled on
GL2 ∩ Cl0(S1, g),

which is shown to be non trivial since its first Chern form has a non trivial
cohomology class. This is a deep contrast with Kuiper’s triviality results
[K1965] for U(H)−principal bundles, when H is a Hilbert space.

Around this central example, natural questions raised:

• What happens passing to C∞(M,N)? This is mostly the aim of [23].
There are many cases when direct investigations on the properties of fields
of weights cannot conclude if the obtained Chern-Weil forms are closed or
not, and if this they are closed, when they belong to the same cohomology
class. For example, the first Chern form of the H1−Levi-Civita connection
on C∞b (S1 × S1, u(n)) is shown to vanish, bu with no comparison result
with other Cl−1,∗−connections. The best result that one can state is the
following, adapted from [23]:

Proposition 6.47. If M is compact aand if N is parallelizable, if Q
is a diagonal weight, then the Chern-Weil forms trQ(Ωk) lie in the same
cohomology class for Cl−m,∗−connections.

We have similar results with odd class operators:

Proposition 6.48. In M is compact and odd-dimensional, if Q is an
odd-class weight, then then the Chern-Weil forms trQ(Ωk) lie in the same

cohomology class for Cl0,∗odd−connections.

But these two results only enables one to get vanishing characteristic
classes, or characteristic classes with undetermined cohomology class.

• Can one choose other ”traces”? If one requires the traciality property
tr[A,B] = 0, the only trace on Cl(M,C) is the Wodzicki residue [Wod1984]
when dimM > 1, with a quite similar situation for dimM = 1 with a
Wodzicki residue derived from two Adler traces [Wod1984, Ka1989], as
suggested before with the splitting FCl(S1,C) = FCl+(S1,C)⊕FCl−(S1,C).
An investigation of the situation with the Wodzicki residue, initiated in
[23] where we showed that the Chern-Weil forms are trivial for C∞(M,N),
and extended in [MRT2014] (without citing [23]) to Chern-Simons forms,
revealed potential applications. For bounded operators, the only traces
on Cl0 are spanned by the Wodzicki residue and the leading symbol trace
[LP2007]. This means that there is no tracial extension of the classical
trace of trace-class operators on these algebras and all the traces vanish
on trace-class operators. However, the discussion of the previous point is
far from finished since some interesting traces can appear when restricting
the considered structure groups.

Another manifold of interest is the space of embeddings, see e.g. [BF1981].
The group of diffeomorphisms of M , Diff(M), acts smoothly and on the right on
Emb(M,N), by composition. Moreover,

B(M,N) = Emb(M,N)/Diff(M)
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is a smooth manifold [BF1981, KM2000], and π : Emb(M,N) → B(M,N) is a
principal bundle with structure group Diff(M) (see [KM2000, Mo2008]). Let
us now precise the vertical tangent space and a normal vector space of the orbits
of Diff(M) on Emb(M,N). TfPEmb(M,N), the tangent space at f , is identified
with the space of smooth sections of f∗TN , which is the pull-back of TN by f .
Let Nf be the normal space to f(M) with respect to the metric (., .) on N . For
any x ∈ M , Tf(x)N = Tf(x)f(M) ⊕N f(M). Hence, denoting f∗Nf the pull back
of Nf by f , we have that

C∞(f∗TN) = C∞(TM)⊕ f∗Nf .
Moreover, for any volume form dx on M , if

< ., . >: X,Y ∈ C∞(f∗TN) 7→< X,Y >=

∫
M

(X(x), Y (x))dx

is a L2-inner product on C∞(f∗TN), this splitting is orthogonal for < ., . >. We
get here a fundamental difference between the inclusion Emb(M,N) ⊂ C∞(M,N),
where the model space of the type C∞(f∗TN), and Emb(M,N) as a Diff(M)−
principal bundle: sections of the vertical tangent vector bundle read as order 1
differential operators, where as the operators acting on the normal vector bundle
reads as 0−order differential operators, just like the structure group of TC∞(M,N).

Now, let f ∈ Emb(M,N) and let us consider the map

ΦU,f : (f, v,X) ∈ TU ∼ (1− p)TU ⊕ pTU 7→ Ξf (v).expDiff(M)(X) ∈ Emb(M,N).

This map gives a local (fiberwise) trivialization of the principal bundles Emb(M,N)→
B(M,N) following [HV2004, KM2000, Mo2008], and we see that the changes
of local trivializations have Aut(N ) as a structure group.

If M is oriented, we note by Diff+(M) the group of orientation preserving
diffeomorphisms and we have

Diff(M)

Diff+(M)
= Z2.

Then, defining

B+(M,N) =
Emb(M,N)

Diff+(M)

we get that B+(M,N) is a 2-cover of B(M,N).

5.1. On the structures of spaces of embeddings, based on [6]. Forgot-
ten in [GBV2014], one can consider also based embeddings. By taking basepoints
x0 ∈M and y0 ∈ N, we define the principal bundle of based embeddings.

Proposition 6.49. [6] Let Embb(M,N) = {f ∈ Emb(M,N)|f(x0) = y0}. Let

Diffb(M) = {g ∈ Diff(M)|g(x0) = x0} and Diffb,+(M) = Diffb(M)∩Diff+(M).

Let

Bb(M,N) = Embb(M,N)/Diffb(M,N) and Bb,+(M,N) = Embb(M,N)/Diffb,+(M,N).

Then Embb(M,N) is a principal bundle with base Bb(M,N) (resp. Bb,+(M,N))
and with structure group Diffb(M) (resp. Diffb,+(M))

This completes [GBV2014], where structure groups such as volume preserving
diffeomorphisms Diffµ(M) were considered to build the quotient Bµ(M,N) =
Emb(M,N)/Diffµ(M).
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5.2. Chern forms in infinite dimensional geometry.
5.2.1. Chern forms in infinite dimensional setting, based on [6]. Surprisingly,

the development of Chern-Weil forms using the full space of (adequate) polynomials,
tstead of the ones derived from the standard polynomials tr(Ak), was not present
in the literature till [6]. This remark is fundamental because, followin a remark
given by C. Roger, there can exist, on infinite dimentional Lie algebras, other types
of polynomials. Let us then sketch the general description of Chern-Weil forms.

Let P be a principal bundle, of basis M and with structure group G. Let g be
the Lie algebra of G. Recall that G acts on P , and also on P × g by the action
((p, v), g) ∈ (P × g) × G 7→ (p.g, Adg−1(v)) ∈ (P × g). Let AdP = P×Adg =
(P × g)/G be the adjoint bundle of P , of basis M and of typical fiber g, and let
AdkP = (AdP )×k be the product bundle, of basis M and of typical fiber g×k.

Definition 6.50. Let k in N∗. We define Polk(P ), the set of smooth maps
AdkP → C that are k-linear and symmetric on each fiber, equivalently as the set of
smooth maps P × gk → C that are k-linear symmetric in the second variable and
G-invariants with respect to the natural coadjoint action of G on gk.

Let Pol(P ) =
⊕

k∈N∗Pol(P ).

Let C(P ) be the set of connections on P . For any θ ∈ C(P ), we denote, only
for this section, by F (θ) its curvature and ∇θ (or ∇ when it carries no ambiguity)
its covariant derivation. Given an algebra A, In this section, we study the maps,
for k ∈ N∗,

Ch : C(P )×Polk(P ) → Ω2k(M,C)

(θ, f) 7→ Alt(f(F (θ), ..., F (θ)))

where Alt denotes the skew-symmetric part of the form. Notice that, in the case
of the finite dimensional matrix groups Gln with Lie algebra gln, the set Pol(P )
is generated by the polynomials A ∈ gln 7→ tr(Ak), for k ∈ 0, ..., n. This leads
to classical definition of Chern forms, see e.g. [KN63-69]. However, in the case
of infinite dimensional structure groups, most situations are still unknown and we
do not know how to define a set of generators for Pol(P ). Moreover, since the
usual trace tr of matrices is satisfies the ”trace property” tr[A,B] = 0 ∀(A,B) ∈
Mn(C), the classical constructions of Chern forms, and the related proofs, are
deeply simplified compared to what follows. We must also say that we have been
surprised to find nowhere the following material, proved in [6].

Theorem 6.51. [6] Let f ∈ Pol(P ) for which there exists θ ∈ C(P ) such that
[∇θ, f ] = 0. We shall note this set of polynomials by Polreg(P ). Then, the map

Chf : θ ∈ C(P ) 7→ Chf (θ) = Ch(θ, f) ∈ Ω∗(P,C)

takes values into closed forms on P . Moreover,
(i) it is vanishing on vertical vectors and defines a closed form on M .
(ii) the cohomology class of this form does not depend on the choice of the

chosen connexion θ on P .
Moreover, ∀(θ, f) ∈ C(P )×Polreg(P ), [∇θ, f ] = 0.

Proposition 6.52. [6] Let φ : gk → C be a k−linear, symmetric, Ad−invariant
form. Let f : P × gk → C be the map induced by φ by the formula: f(x, g) = φ(g).
Then f ∈ Polreg.
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The problem of these infinite dimensional Chern forms was first raised by Freed
[Fr1988-1, Fr1988-2] where the connections considered whereGlp connections, i.e.
with curvature valued in the Schatten ideal Lp = {A ∈ L(H)| |A|p is trace class } .

5.2.2. Application to Emb(M,N). Mimicking the approach of [23], the coho-
mology classes of Chern-Weil forms should give rise to homotopy invariants. Ap-
plying Theorem 6.51, we get:

Theorem 6.53. [6] The Chern-Weil forms Chf is a H∗(B(M,N))−valued
invariant of the homotopy class of an embedding, ∀k ∈ N∗.

When M = S1, Emb(S1, N) is the space of (parametrized) smooth knots on N ,
and B(S1, N) is the space of non parametrized knots. Its connected components are
the homotopy classes of the knots, through classical results of differential topology,
see e.g. [Hir1976]. We now apply the material of the previous section to manifolds
of embeddings. For this, we can define invariant polynomials of the type

A 7→ λ(Ak) ∈ Polkreg,

where λ = trQ for a well-chosen weight Q. Let us give the following example when
M is odd-dimensional: the Kontsevich and Vishik trace [KV1994, KV1995] is a
renormalized trace for which trQ([A,B]) = 0 for each differential operator A,B and
does not depend on the weight chosen in the odd class. For example, one can choose
Q = Id+∇∗∇, where ∇ is a connection induced on Nf by the Riemannian metric,
as described in [23]. It is an order 2 injective elliptic differential operator (in the
odd class), and the coadjoint action of Aut(Nf ) will give rise to another order 2
injective elliptic differential operator [Gil1984]. When Q = Id + ∇∗∇, this only
changes ∇ into another connection on E. Thus, φ(A, ..., A) = trQ(Ak) ∈ Polreg.
Let us now consider a connected component of B(M,N), i.e. a homotopy class of
an embedding among the space of embeddings. Following [6],

Theorem 6.54. Let M be an odd dimensional boundaryless nanifold and let
Q = Id+∇∗∇ on N . The polynomial

φ : A 7→ trQ(Ak)

is Diff(M)−invariant, and gives rise to an invariant of non oriented knots, i.e. a
Chern form on the base manifold

B(S1, N) = Emb(M,N)/Diff(M)

Open problem: Prove that these Chern-Weil forms give rise to non-vanishing
characteristic classes. This problem seems related with the work [MP2007] which
is more or less heuristically linked with FCl0,∗− connections in [Pay2013]. The
full link between these two settings still needs to be clarified, even if intuitionistic
arguments given both in [Pay2013] and in [6] show that there are big similitudes
between the two independently devolopped settings.





CHAPTER 7

Contributions to the theory of KP hierarchies

Let R be an algebra of functions equipped with a derivation ∂. For us, R =
C∞(S1,K) with K = R,C and H, and ∂ = d

dx . Let T = {tn}n∈N∗ be an infi-
nite set of formal (time) variables and let us consider the algebra of formal series
ΨDO(S1,K)[[T ]] with infinite set of formal variables t1, t2, · with T−valuation val
defined by valT (tn) = n [Mu1984]. One can extend naturally on ΨDO(S1,K)[[T ]]
the notion of smoothness from the same notion on ΨDO(S1,K), see [ER2013] for
a more complete description. The Kadomtsev-Petviashvili (KP) hierarchy reads

(7.1)
dL

dtk
=
[
(Lk)D, L

]
, k ≥ 1 ,

with initial condition L(0) = L0 ∈ ∂ + Ψ−1(R), where the subscrit (.)D means the
algebraic canonical projection

ΨDO(S1,K)[[T ]] = (ΨDO−1(S1,K)⊕DO(S1,K))[[T ]]→ DO(S1,K)[[T ]]

. The dependent variable L is chosen to be of the form L = ∂ +
∑
α≤−1 uα∂

α ∈
Ψ1(S1,K)[[T ]] . A standard reference on (7.1) is L.A. Dickey’s treatise [Dic2003],
see also [KZ1995, Mu1984, Mu1983, RS1981] as well as [Mick1989, PS1988,
SW1985, Ue1985, Wan1983, Wan1984] for a link with infinite dimensional
geometric structures (determinant bundles, restricted linear group GLres) and with
non linear partial differential equations such as KdV, Boussinesq, KP equations.
The KP hierarchy produces a formal solution to all these systems, under mild
assumptions on the initial conditions and constraints. It can be derived from the
search of isospectral deformations of diferential operators, in link with the so-called
Gelfand-Dickey hierarchy, and it recently appeared in various contexts such as
Hodge theory and combinatorics.

In order to solve the KP hierarchy, we need the following groups (see e.g. [16]
for a latest adaptation of Mulase’s construction [Mu1984, Mu1983]):

Ḡ = 1 + ΨDO−1(S1,K)[[T ]],

Ψ̂ =

{
P =

∑
α∈Z

aα ∂
α ∈ Ψ(S1,K)[[T ]] : ∃N ∈ N, valT (aα) >α→+∞ Cα−N and P |t=0 ∈ 1 + ΨDO−1(S1,K)

}
and

D̂ =

{
P =

∑
α∈Z

aα ∂
α : P ∈ Ψ̂ and aα = 0 for α < 0

}
.

We have a matched pair Ψ̂ = Ḡ ./ D̂. The same constructions apply in various
settings, see e.g. [Dem1995-1, Dem1995-2, Ku2000, McI2011], and all are
envolved with purely algebraic arguments in contrast with our work.

73



74 7. CONTRIBUTIONS TO THE THEORY OF KP HIERARCHIES

1. Smoothness of Mulase decomposition and well-posedness of the KP
hierarchy, based on [10, 15, 16]

When algebras of functions R = C∞(S1,K) are Fréchet algebras, a natural
notion of differentiability occurs, making addition, multiplication and differentia-
tion smooth. By the way, considering addition and multiplication in ΨDO(S1,K),
one can say that addition and multiplication in ΨDO(S1,K) by understanding,
under this terminology, that, if A =

∑
n∈Z an∂

n and B =
∑
n∈Z bn∂

n, setting
A+B = C =

∑
n∈Z cn∂

n and AB = D =
∑
n∈Z dn∂

n the map

((an)n∈Z, (bn)n∈Z) 7→ ((cn)n∈Z, (dn)n∈Z)

is smooth in the relevant infinite product, encoded into diffeological concepts in
[10, 15, 16] where a fully rigorous framework for smoothness on these objects
is described and used. Again following [10], the same smoothness properties can
be described for any differential unital algebra (A, ∂), but in this general setting,
diffeologies seem to be an essential tool. Let us describe more precisely the setting.
Let A∗ be the group of invertible elements (or, units) of A. Let ξ be a formal
variable not in A. The algebra of symbols over A is the vector space

Ψξ(A) =

{
Pξ =

∑
ν∈Z

aν ξ
ν | aν ∈ A , aν = 0 for ν � 0

}
equipped with the associative multiplication ◦ given by

(7.2) Pξ ◦Qξ =
∑
k≥0

1

k!

∂kPξ
∂ξk

∂kQξ ,

with the prescription that multiplication on the right hand side of (7.2) is standard
multiplication of Laurent series in ξ with coefficients in A, see [Dic2003]. The
algebra A is included in Ψξ(A). The algebra of formal pseudodifferential operators
over A is the vector space

Ψ(A) =

{
P =

∑
ν∈Z

aν ∂
ν | aν ∈ A , aν = 0 for ν � 0

}
equipped with the unique multiplication which makes the map

∑
ν∈Z aν ξ

ν 7→∑
ν∈Z aν ∂

ν an algebra homomorphism. The algebra Ψ(A) is associative but not
commutative. It becomes a Lie algebra over K if we define, as usual,

(7.3) [P,Q] = P Q−QP .

The order of P 6= 0 ∈ Ψ(A), P =
∑
ν∈Z aν ∂

ν , is N if aN 6= 0 and aν = 0 for all
ν > N . If P is of order N , the coefficient aN is called the leading term or principal
symbol of P . We note by ΨN (A) the vector space of pseudodifferential operators P
as above satisfying k > N ⇒ ak = 0. We note

ΨN (A) = {a ∈ Ψ(A) | ∀m > N, am = 0} .
The special case of Ψ0(A) is of particular interest, since it is an algebra. Adapting
the notations used in the previous subsection, we write Ψ0,∗(A) for its group of
units, i.e. the group of invertible elements of Ψ0(A). We assume now that the
algebra A is a Frölicher algebra, and that therefore addition, scalar multiplication
and multiplication are smooth, and that inversion is a smooth operation on A∗, in
which A∗ is equipped with the subset Frölicher structure. We also assume that the
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derivation ∂ is smooth. Then, identifying a formal operator P ∈ Ψ(A) with its
sequence of partial symbols, we conclude that Ψ(A), as a linear subspace of AZ,
carries a natural Frölicher structure. We obtain:

Proposition 7.1. [10] Ψ(A) is a Frölicher algebra.

Now let us assume that A∗ is a Frölicher Lie group with Lie algebra gA, and
that A is an integral Frölicher vector space. Our Theorems 4.6 and 4.7 imply the
following two results:

Lemma 7.2. [10] 1 + Ψ−1(A) is a regular Frölicher Lie group with regular Lie
algebra Ψ−1(A).

Theorem 7.3. [10] There exists a short exact sequence of groups:

1 −→ 1 + Ψ−1(A) −→ Ψ0,∗(A) −→ A∗ −→ 1

such that:

(1) The injection 1 + Ψ−1(A)→ Ψ0,∗(A) is smooth.
(2) The principal symbol map Ψ0,∗(A) → A∗ is smooth and it has a global

section which is the restriction to A∗ of the canonical inclusion A →
Ψ0(A).

As a consequence, A∗ is a fully regular Frölicher Lie group if and only if Ψ0,∗(A)
is a fully regular Frölicher Lie group with Lie algebra gA ⊕Ψ−1(A).

Open problem: It is natural to wonder if we can extend Theorem 7.3 to the full
algebra Ψ(A), and to the Frölicher Lie group Ψ(A)∗ separately.

• On one hand, in [16], for A = R, we get that Ψ(A) ∼ R((X)) is the
Lie algebra of a non-regular Lie group, which shows that the problem of
enlargibility of Ψ(A) cannot be solved by finding an underlying regular
Frölicher Lie group.

• The group Ψ(A)∗ has formally two candidates as Lie algebras. The first
one is a Lie subalgebra of Ψ(A) which has to be determined depend-
ing certainly on gA and the other one yields a formal correspondence
with the group by a formal exponential described in e.g. [KW2009] for
A = C∞(R). In each of these more or less formal settings, the exact se-
quence envolving the group 1 + Ψ−1(A) does not seem so straightforward
to generalize.

1.1. Smoothness of Mulase decomposition and refinements. We can
generalize our foregoing discussion. We hope this generalization will be of use, for
instance, in the development of p-adic KP theory. Our basic idea is to replace
algebras of power series by general algebras equipped with non-archimidean valua-
tions. We only present the main points of this generalization and we refer to [10]
for details. Let A be an associative (but not necessarily commutative!) K–algebra
with unit 1, in which K is an arbitrary field of characteristic zero. We assume
that A is a diffeological algebra and that A is equipped with a smooth derivation
D. We consider Ψ(A) as in the previous subsection, but instead of assuming that
A is an algebra of series, we equip it with a valuation, adapting an idea from
[Dem1995-1, Dem1995-2]. A valuation allows us to equip A with a topology.
For α ∈ Z and x0 ∈ A we set

Vα(x0) = {x ∈ A : σ(x− x0) > α} ;
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we easily see that for each x0 ∈ A, the collection {Vα(x0)}α∈Z is a basis of neigh-
borhoods for a first countable Hausdorff topology on A. It is a classical fact that
this topology is metrizable: we define the absolute value classicaly and if we set
d(x, y) = |x − y| we obtain a metric d on A and the metric topology coincides
with the topology introduced above. Very importantly, in this topology the sets
Vα(x0) coincide with the balls {x ∈ A : |x| < cα}, and are both open and closed. A
becomes a topological algebra and D a continuous derivation. We also remark that
compatibility of derivation and valuation implies that |D(a)| ≤ |a| for all a ∈ A.

Now we let Â be the completion of the metric space (A, d), and we extend D to

a continuous derivation on Â. We continue denoting the extension of the absolute
value on A by | · |, and the extension of the continuous derivation on A by D.

In the previous subsection we used Frölicher algebras and obtained Frölicher
structures on spaces of (regularized) formal pseudodifferential operators. It turns
out that, because of the presence of quotients, the use of diffeologies is more natural
than the use of Frölicher spaces, since the latter structure does not pass so easily to
quotients and carry some problems of non-reflexivity (for a definition of reflexivity
in diffeological spaces, see [Wa2012]). At the present level of generality, we proceed
as follows, after [10]:

For all p ∈ Z, the quotient vector space projection πp : A → A/Ap , in which

Ap = {a ∈ A : σ(a) ≥ p}, extends to Â in the following way: for â ∈ Â, we set
πp(â) = a + Ap if and only if σ(a) = σ̂(â) and σ̂(a − â) ≥ p. It is possible to find
such an a ∈ A because of standard properties of valuations, as explained in [10].

Definition 7.4. We equip the quotients A/Ap with their quotient diffeology.

The completion Â is equipped with the pull-back diffeology with respect to the family
of maps {πp; p ∈ Z} (see [IZ2013, p. 32]). The valuation σ of A is called a
diffeological valuation if and only if the diffeology of A is the pull-back of the
diffeology of Â and all plots are continuous in the valuation topologies of A and Â.

We assume that A and Â are equipped with diffeological valuations σ and σ̂,
and that D is smooth with respect to the product diffeology on Â, which implies
that its restriction to A is also smooth. The spaces of formal pseudodifferential and
differential operators of infinite order now become:

Definition 7.5. [10] The space of formal pseudodifferential and differential

operators of infinite order are, respectively, Ψ̂(Â) and D̂Â , in which

Ψ̂(Â) =

{
P =

∑
α∈Z

aαD
α | aα ∈ Â and ∃AP , BP ∈ R+ and MP , NP , LP ∈ Z+ so that

MP ≥ NP , |aα| <
AP

α−NP
∀ α > MP , and |aα| < BP ∀ α < −LP

}
(7.4)

and

(7.5) D̂Â =

{
P =

∑
α∈Z

aαD
α | P ∈ Ψ̂(Â) and aα = 0 for α < 0

}
.

The definition of the absolute value | · | implies that Â is contained in Ψ̂(Â)

and, as a by-product, we note that our assumptions on A and Â imply that Ψ̂(Â)

and D̂(Â) are diffeological spaces.
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Lemma 7.6. [10] The space Ψ̂(Â) has an algebra structure and D̂Â is a sub-

algebra of Ψ̂(Â). Moreover, if Â is a diffeological K-algebra, Ψ̂(Â) and D̂Â are
diffeological K-algebras.

Now we construct groups. There exist two standard structures associated to
the valuation σ̂ on Â. The subring OÂ = {a ∈ Â : σ̂(a) ≥ 0}, and the two-sided
ideal PÂ = {a ∈ OÂ : σ̂(a) > 0}. If A is a diffeological algebra, these algebraic
constructions carry natural underlying diffeologies. Since we can check that the
derivation D on Â is compatible with σ̂, we have D(PÂ) ⊂ PÂ ; it follows that the
derivation D is well-defined on the quotient ring OÂ/PÂ . We let π : OÂ → OÂ/PÂ
be the canonical projection. Since A is a diffeological algebra, the map π is smooth.

The set GÂ = 1 + IOÂ/PÂ is a multiplicative group (see [Dem1995-2]), and

a diffeological group according to Theorem 4.6. For P =
∑
ν∈Z aνD

ν ∈ Ψ̂(OÂ) we
set π(P ) =

∑
ν∈Z π(aν)Dν .

Definition 7.7. We define the spaces

(7.6) Ψ̂(Â)× = {P ∈ Ψ̂(OÂ) | π(P ) ∈ GÂ}

and

(7.7) D̂×
Â

= {P ∈ D̂OÂ | π(P ) = 1} .

Proposition 7.8. The space Ψ̂(Â)× is a group: each element P in Ψ̂(Â)× has
an inverse of the form

P−1 =
∑
n≥0

(1− P )n .

In addition, the space D̂×
Â

is a subgroup of Ψ̂(Â)×.

We can prove the following result on smoothness, see [10].

Proposition 7.9. The group G(Ψ(Â)) := Ψ̂(Â)× is a diffeological Lie group

with Lie algebra Ψ(OÂ); the group G+(DÂ) := D̂×
Â

is a diffeological Lie group with

Lie algebra DOÂ ; the group G−(IÂ) := 1 +IOÂ is a diffeological Lie group with Lie
algebra IOÂ . Moreover, the exponential map

exp : P ∈ IOÂ 7→
∑
n∈N

(sP )n

n!
∈ G−(IÂ)

is one-to-one and onto, with inverse the classical logarithmic series log, and both
exp and log are smooth. As a consequence, the inversion in smooth in G−(IÂ).

Let us now specialize to A = C∞(S1,R) as in [15, 16],

Theorem 7.10. The following algebras are Frölicher algebras:

(1) At ; (2) Ψ(At) ; (3) Ψ̂(At) ; (4) D̂At .

Theorem 7.11. (1) D̂×At is a Frölicher group.

(2) GR = 1 + Ψ−1(R) and GAt = 1 + Ψ−1(At) are Frölicher Lie groups.

(3) G(Ψ̂(At)) is a Frölicher group.
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We stress the fact that we have not stated the existence of an exponential
map. In fact, it seems difficult to show the existence of the exponential map on

Ψ̂(At), and very difficult to determine the tangent space T1G(Ψ̂(At)); even more,

it is difficult to differentiate the possible adjoint action of G(Ψ̂(At)) on it. Most

of the difficulties come from the very general definition of Ψ̂(At). This is why we

construct a Frölicher subalgebra Ψ(At) ⊂ Ψ̂(At) as follows:

Definition 7.12. The regularized space of formal pseudo-differential and dif-
ferential operators of infinite order are, respectively, Ψ(At) and DAt , in which

(7.8) Ψ(At) =

{∑
α∈Z

aα ∂
α ∈ Ψ̂(At) | valt(aα) ≥ α

}
and

(7.9) DAt =

{
P =

∑
α∈Z

aα ∂
α | P ∈ Ψ(At) and aα = 0 for α < 0

}
.

In addition, we define

(7.10) G(Ψ(At)) = {P ∈ Ψ(At) | P |t=0 ∈ GAt}
and

(7.11) D×At = {P ∈ DA | P |t=0 = 1} ,

and we can prove, see [16], that G(Ψ(At)) and D×At are fully regular Frölicher Lie
groups.

1.2. Well-posedness of the KP hierarchy. The following result gives a
synthesied statement of the main result of [16] and of [10] both on the KP hierarchy
(7.1), by considering two approaches of “smoothness”

(1) In the general setting of [10], smoothness is only with respect toA−coefficients
of pseudodifferential operators, and the field of scalars is assumed to be
equipped with the discrete topology (and discrete diffeology). this is clas-
sically what is needed to take safe limits in the ultrametric completions,

(2) In the classical setting of [16], when A = C∞(S1,R) principally and
extended to A = C∞(S1,R)N in the same reference, the smoothness is
understood with respect to A and with respect to the variable (t1, t2, ...) ∈
R∞ =

⋃
n∈N Rn.

It states smooth dependence on the initial conditions and on the values t1, t2, ...
which justifies the terminology of well-posedness.

Theorem 7.13. [16] Consider the KP hierarchy 7.1 with initial condition
L(0) = L0. Then,

(1) There exists a pair (S, Y ) ∈ Ĝ× D̂ (resp. ∈ Ḡ×D ) such that the unique
solution to Equation (7.1) with L|t=0 = L0 is L(t1, t2, · · · ) = Y L0 Y

−1 =
SL0S

−1.
(2) The pair (S, Y ) is uniquely determined by the smooth decomposition prob-

lem

exp

(∑
k∈N

τkL
k
0

)
= S−1Y

and the solution L depends smoothly on the initial condition L0.
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(3) The solution operator L is smoothly dependent on the initial value L0.

Remark 7.14. One may notice in [16] two proofs of Theorem 7.13. In the
first proof of the third item of this Theorem, and more generally the first proof
of this theorem; is inspired by Reyman and Semenov-Tian-Shansky approach to
integrability via R-matrices and factorization theorems, see for instance [Per1990,
Section 1.12, Theorem 7]. However, our result is not exactly an instance of the
Reyman–Semenov-Tian-Shansky theory since in this paper we are not considering
the hamiltonian content of Equation (7.12). What we are observing here is that
techniques appropriated for the study of integrability of Hamiltonian systems can be
adapted to prove well-posedness of the interesting equation (7.1). As in Mulase’s
papers [Mu1984, Mu1983], the crucial point of the proof is the existence of a
factorization of an infinite-dimensional Lie group, and not the possible hamiltonian
character of the equation being investigated.

Open question: sequences of approximation, pseudo-differential operators, Hamil-
tonnians and unstable solutions.

Initiated in [16], the procedure that consists in replacing non smooth func-
tions by approximating sequences of smooth functions enable to enlarge the theory
of non-smooth symbols initiated in [BR1984], see e.g. [Marsch1998], to symbols
which approximation sequence converge in function spaces which are not embedded
in C0. This embedding is the technical limitation of the actual theory. The classical
results on pseuo-differential operators, such as boundedness, norm estimates, kernel
analysis, spectral theory, then need to be analyzed in this generalized context, with
in mind the main application of this theory which is the analysis of PDEs. Among
these PDEs, the hamiltonnian equations can generalize straight way, again along
the lines of the ideas announced in [16], replacing the usual C−valued non de-
generate pairing on regular polynomials on DO(M) by a C[[z]]−valued pairing for
hamiltonnians of the equation extended to approximation sequences. Thus first in-
tegrals of the (generalized) motion are C[[z]]-valued functionals, which convergence
may intuitively depend on the stability of the solutions.

2. A scaling for the KP hierarchy and the h−KP hierarchy, based on [4]

We make the following definition, along the lines of the theory developed in [4]
for formal pseudo-differential operators:

Definition 7.15. Let h be a formal parameter. The set of odd formal class
h−pseudo-differential operators is the set of formal series

ΨDOh(S1, V ) =

{∑
n∈N

anh
n | an ∈ ΨDOn(S1, V )

}
.

We state the following result on the structure of ΨDOh(S1, V ):

Theorem 7.16. The set ΨDOh(S1, V ) is a Fréchet algebra, and its group of
units given by

ΨDO∗h(S1, V ) =

{∑
n∈N

anh
n | an ∈ ΨDOn(S1, V ), a0 ∈ ΨDO0,∗(S1, V )

}
,

is a regular Fréchet Lie group.
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This result is mostly an application of Theorem 4.6. Decomposition L =
LS + LD, LS ∈ ΨDO−1(S1, V ), LD ∈ DO1(S1, V ) valid on ΨDO(S1, V ) extends
straightforwardly to the algebra ΨDOh(S1, V ). We now introduce the h−KP hier-
archy with non-formal pseudo-differential operators. Let us assume that t1, t2, · · · , tn, · · · ,
are an infinite number of different formal variables. Then, again adapting work car-
ried out in [4], we make the following definition:

Definition 7.17. Let S0 ∈ Cl−1,∗
odd (S1, V ) and let L0 = S0(h d

dx )S−1
0 . We say

that an operator

L(t1, t2, · · · ) ∈ ΨDOh(S1, V )[[ht1, ..., h
ntn...]]

satisfies the h−deformed KP hierarchy if and only if

(7.12)

{
L(0) = L0
d
dtn

L = [(Ln)D, L] .

We recall from [4] that the h−KP hierarchy is obtained from the classical KP
hierarchy by means of the h−scaling{

tn 7→ hntn
d
dx 7→ h d

dx

,

and we also recall that formal series in t1, · · · , tn, · · · can be also understood as
smooth functions on the algebraic sum

T =
⊕
n∈N∗

(Rtn)

for the product topology and product Frölicher structure, see [4]. Now we solve the
initial value problem for (7.12).

Theorem 7.18. Let Uh = exp
(∑

n∈N∗ h
ntn(L0)n

)
∈ Clh(S1, V ). Then:

• There exists a unique pair (S, Y ) such that
(1) Uh = S−1Y,
(2) Y ∈ ΨDO∗h(S1, V )D
(3) S ∈ ΨDO∗h(S1, V ) and S − 1 ∈ Clh,odd(S1, V )S .

Moreover, the map

(S0, t1, ..., tn, ...) ∈ Cl0,∗odd(S
1, V )× T 7→ (Uh, Y ) ∈ (ΨDO∗h(S1, V ))2

is smooth.
• The operator L ∈ ΨDOh(S1, V )[[ht1, ..., h

ntn...]] given by L = SL0S
−1 =

Y L0Y
−1, is the unique solution to the hierarchy of equations

(7.13)

{
d
dtn

L = [(Ln)D(t), L(t)] = − [(Ln)S(t), L(t)]

L(0) = L0
,

in which the operators in this infinite system are understood as formal
operators and A 7→ (A)D means projection into the space of differential
operators, obtained by cutting the part of negative order along the lines of
e.g. [Mu1984], and which corresponds to the projection A 7→ AD already
defined on non formal, odd class pseudo-differential operators.
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Definition 7.19. In what follows, valh denotes standard valuation of h series.
Let

Ψh(R) =

{∑
α∈Z

aα∂
α ∈ Ψ(R)[[h]] | valh(aα) ≥ α

}
,

GΨh(R) =

{∑
α∈Z

aα∂
α ∈ Ψh(R) | a0 = 1 + b0, valh(b0) ≥ 1

}
,

GR,h =
{
A ∈ GΨh(R) | A = 1 +B, B ∈ Ψ−1(R)[[h]]

}
,

Dh(R) =

{∑
α∈Z

aα∂
α ∈ Ψh(R) | aα = 0 if α < 0 and a0 = 1 + b0, valh(b0) ≥ 1

}
.

The next Lemma is proved in [4]; a shorter proof appears in [16].

Lemma 7.20. Ψh(R) is a Frölicher algebra, an integral Lie algebra, and the
groups GΨh(R), GR,h and Dh(R) are regular Frölicher Lie groups with Lie algebras
given respectively by:

gΨh(R) =

{∑
α∈Z

aα∂
α ∈ Ψh(R) | valh(a0) ≥ 1

}
,

gR,h = Ψ−1(R)[[h]] ,

and

dh(R) =

{∑
α∈Z

aα∂
α ∈ Dh(R) | a0 = 0 if α < 0 valh(a0) ≥ 1

}
.

Theorem 7.21. [16] Mulase decomposition holds for W ∈ GΨh(R), S ∈ GR,h
and Y ∈ Dh(R) and, in particular, with T = ∪n∈NRn, R = C∞(T,C∞(S1,R)) =
C∞(T × S1,R) and ∂ = d

dx on S1, recovering [4]. The map U 7→ (S, Y ) is smooth.

3. The KP hierarchy on an extended class of formal Pseudo-differential
operators based on [20]

The algebra of operators that we intend to use in this section is the algebra of
formal classical pseudo-differential operators FCl(S1,Kn) that are obtained from
classical pseudo-differential operators acting on smooth sections of the trivial vector
bundle S1 × Kn over S1, for K = C or H, see e.g. [Gil1984, Pay2012]. The key
properties of ε(D) = D|D|−1 = |D|−1D that we use in our constructions are:

• the formal operator ε(D) ∈ FCl(S1,Kn) commutes with any formal op-
erator A ∈ FCl(S1,Kn),

• ε(D)2 = Id
• the composition on the left A 7→ ε(D)◦A is an endomorphism of the alge-

bra FCl(S1,Kn), which restricts to a bijective map from ΨDO(S1,Kn) =
FClodd(S1,Kn) to an algebraic complement in FCl(S1,Kn) noted as
FCleven(S1,Kn) following the terminology of [Sco2010]

• the restriction of the Wodzicki residue to ΨDO(S1,Kn) = FClodd(S1,Kn),
which is similar to but not equal to the Adler functional, is vanishing.

We have already stated the following:
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• The space FCl(S1,Kn) splits in various ways: one is derived from the
splitting of T ∗S1−S1 into two connected components , the splitting with
respect to ΨDO(S1,Kn) as a subalgebra , and the extension of the split-
ting related to the classical Manin triple on ΨDO(S1,Kn) to FCl(S1,Kn).

• The operator ε(D) is in the center of FCl(S1,Kn). It generates then a
polarized Lie bracket using it as a r−matrix and an integrable almost
complex structure on FCl(S1,Kn).

These technical features enables us to state the announced main results of this
section: existence and uniqueness of solutions of the KP hierarchy with various
initial conditions (section 3.1) and KP hierarchy with complex powers (section
3.2).

3.1. Multiple classical KP hierarchies on FCl(S1,K). The (classical) KP
hierarchy on ΨDO(S1,K) can then push-forward on FCl-classes of operators by
various ways.

Push-Forward via Φλ,µ maps. Let K = C or H. For each choice of (λ, µ) ∈
C2\{0; 0} identifies d

dx ∈ ΨDO(S1,K) with an operator in FCl(S1,K) with the
same algebraic properties.

Notation: ∂λ,µ = Φλ,µ
(
d
dx

)
and FClλ,µ(S1,K) = ImΦλ,µ.

Then we can develop the KP hierarchy on FClλ,µ(S1,K). We first remark
that, since each map Φλ,µ is a degree 0 morphism of filtered algebras, each push-
forward of the unique solotion L of the KP hierachy (7.1) generates a solution of
the corresponding equation in FCl(S1,K) which reads the same way:

dL

dtk
=
[
(Lk)D, L

]
, k ≥ 1 ,

where solutions operators now belong to FCl1(S1,K)[[T ]] and where each initial
value Φλ,µ(L0) ∈ ∂λ,µ+FCl−1

λ,µ(S1,K) with obvious extension of notations. There-

fore, for any initial value L0 ∈ ΨDO(S1,K), we get a family of operators

Lλ,µ ∈ FCl1λ,µ(S1,K)[[T ]] ⊂ FCl1(S1,K)[[T ]]

parametrized by the complex parameters λ and µ chosen as before, which satisfies
the KP hierarchy in FCl(S1,K) and with initial values Φλ,µ(L0).

Existence, uniqueness and well-posedness of the KP system in FCl(S1,K)..
We adapt here the r−matrix approach for the construction of the solutions, along
the lines of [10] with the following specific choices:

• The algebra of smooth coefficients for formal pseudo-differential operators
is R = C∞(S1,Mn(K)) ⊕ ε(D)C∞(S1,Mn(K)) with multiplication rules
inherited from Cl(S1,Kn).

• The differential operator is ∂ = d
dx .

Proposition 7.22. ΨDO(R) = FCl(S1,Kn) and there is an identification of
the Manin triples (ΨDO(R), DO(R), IO(R)) with (FCl(S1,Kn),FClD(S1,Kn),FClS(S1,Kn)).

Hence, applying the main result of [RS1981] completed, for well-posedness, by
[10, Theorem 4.1] or by [16, Theorem 4.1] whenR = C∞(S1,K) = M1(C∞(S1,K))
is a commutative algebra, we can state the following:
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Proposition 7.23. The Kadomtsev-Petviashvili (KP) hierarchy (7.1) on ΨDO(R)
(resp. FCl(S1,Kn)) with initial condition L(0) = L0 ∈ ∂ + ΨDO−1(R) (resp.
∈ ∂ + FCl−1(S1,Kn)) satisfies Theorem 7.13.

Remark 7.24. We have used here, intrinsically, the integrable almost complex
structure J1. Indeed, R = C∞(S1,Mn(K)) + J1C

∞(S1,Mn(K)) is an algebra.

Remark 7.25. There exists another way to justify Proposition 7.23. One can
use alternatively the splitting

FCl(S1,Kn) = FCl+(S1,Kn)⊕FCl−(S1,Kn).

Then Equation (7.1) on FCl(S1,Kn) splits into two independent equations, sim-
ilar to Equation (7.1) on FCl±(S1,Kn). Through the identification maps Φ1,0

and Φ0,1 of FCl±(S1,Kn) with ΨDO(S1,Kn), we get existence, uniqueness and
well-posedness for Equation (7.1) on FCl(S1,Kn) with initaial value L0 ∈ ∂ +
FCl−1(S1,Kn).

From this last remark, we can generalize the identification procedure, changing
the maps Φee, Φ1,0 and Φ0,1 by the family of maps Φλ,µ.

Theorem 7.26. Let (λ, µ) ∈ (C∗)2. Then the KP equation (7.1) in FCl(S1,Kn)
with initial value L0 ∈ ∂λ,µ + FCl−1(S1,Kn) has an unique solution L in ∂λ,µ +
FCl−1(S1,Kn)[[T ]] and the problem is well-posed: the solution L depends smoothly
on L0.

Twisted KP hierarchy. Let us now change the standard multiplication on
FCl(S1,K) by (A,B) 7→ εAB where ε = ε(D) or aε(D) for any a ∈ C∗. Since ε(D)
commutes with any element of FCl(S1,K) for the standard multiplication, this
new multiplication defines a new algebra structure on FCl(S1,K). When necessary
we note by ◦ the standard multiplication, and by ◦ε the twisted one. Associated to
this multiplication, we get the deformed Lie bracket [., .]ε. Then we get again and
equation similar to (7.1)

(7.14)
dL

dtk
=
[
εk−1(Lk)D, L

]
ε

= εk
[
(Lk)D, L

]
, k ≥ 1 ,

where powers in this equation are taken with respect to ◦.

Theorem 7.27. The Let L0 such that L0 ∈ ∂λ,µ+FCl−1(S1,Kn), with (λ, µ) ∈
(C∗)2. Then the ε−KP hierarchy (7.14) with initial value L0 has an unique solution.
Moreover, the problem is well-posed.

3.2. KP hierarchies with complex powers. We finally extend all the con-
structions of the last section to complex powers, along the lines of [EKRRR1995].
Let K = C or H. We consider an operator L0 of complex order α such that

(7.15) L0 ∈
(
d

dx

)α
+ FClα−1(S1,K)

or

(7.16) L0 ∈ |D|α + FClα−1(S1,K)

For each setting (7.15) and (7.16), we define the complex KP hierarchy on FClα(S1,K)
by

(7.17)
dL

dtk
=
[
(Lk/α)D, L

]
ε

= −
[
(Lk)S , L

]
, k ≥ 1 ,
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where Lk/α = exp
(
k
α logL

)
and the solution L ∈ FClα(S1,K)[[T ]].

Theorem 7.28. The KP hierarchy (7.17) with initial value L0 defined along
the lines of (7.15) or (7.16) has an unique solution in FClα(S1,K)[[T ]]. Moreover,
the prblem is well-posed.

Open question: The extension of the KP hierarchy from FCl(S1,C) to Cl(S1,C)

is a non trivial open problem, due to the lack of local slice FCl(S1,C)→ Cl(S1,C)
in the short exact sequence

0→ Cl−∞(S1,C)→ Cl(S1,C)→ FCl(S1,C)→ 0.
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[HN1971] Hoghe-Nlend, H.; Théorie des bornologies et applications Lect. Notes in Math. 273
(1971)
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of Fourier integral operatorson a Riemannian manifold Tokyo J. Math. 4, no 2, 221-253

(1981)

[OMYK3] Omori, H; Maeda, Y; Yoshioka, A.; Kobayashi, O.; On regular Fréchet Lie groups III;
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