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Summary

My research focuses on control and observation problems for dynamical systems described by
forced nonlinear ordinary differential equations of the form:

ẋ = f(x, u), y = h(x),

where x ∈ Rn is the state of the plant, u ∈ Rm is a controlled or uncontrolled input, and y ∈ Rp
is the measured output. This generic description can be used to represent many physical models.
The content of this manuscript, entitled “Stabilization, regulation and observation of nonlinear
systems”, is organized in 4 chapters.

Chapter 1 describes new feedback design methodologies for incrementally stabilizing a non-
linear system. The proposed approach is based on contraction theory and the use of Riemannian
metrics to make a system contractive and incrementally input-to-state stable via feedback. Two
main control methodologies are developed: the design of infinite gain margin feedbacks and an
incremental version of the forwarding approach. The use of infinite gain margin laws is then
applied to the problem of state synchronization in networks of multi-agent systems.

Chapter 2 investigates the stabilization of systems described by the interconnection of an
ordinary differential equation with an infinite-dimensional system (which may be described in
terms of abstract operators over Hilbert spaces or more explicitly via some partial differential
equations). This chapter is mainly motivated by the use of infinite-dimensional internal models
in the context of output regulation of nonlinear systems, later developed in Chapter 3. We
also provide new sufficient and necessary conditions for the stability of semi-linear operators
and a constructive methodology based on observer design (inspired by the finite-dimensional
literature) to design strict Lyapunov functions.

Chapter 3 is devoted to the problem of output regulation of nonlinear systems, namely the
problem of tracking given references while rejecting undesired perturbations affecting the dy-
namics. We pursue an internal model approach and propose a new framework able to correctly
characterize the notion of robustness in the output regulation context. We revisit existing de-
sign methodologies based on linear and nonlinear internal models, highlighting their robust-
ness properties and showing that the property of asymptotic regulation cannot be generically
achieved via a dynamical smooth regulator with a finite dimension. We then introduce a general
framework for the design of infinite-dimensional internal model regulators for minimum-phase
systems, recovering and extending the theory of repetitive control.

Chapter 4 is devoted to the general problem of improving the performance of a given nonlin-
ear observer. To this end, we develop a number of new methodologies with a common modular-
ity property, i.e., we do not want to redesign the observer from scratch, but rather build upon the
existing one and possibly improve its performances. Furthermore, for many of these techniques,
we use a hybrid redesign approach that allows for more flexibility. In this context, we first pro-
pose a new framework based on the use of saturation and dead-zone functions with variable
adaptive thresholds to improve the steady-state performance in the presence of various types of
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measurement noise, such as impulsive ones (e.g., outliers) or persistent ones (e.g., white noise).
We then propose a general redesign framework to constrain the state of a given observer, based
on the existence of a quadratic Lyapunov function and a convexity assumption. Finally, we ex-
plore a general framework to combine various observers in a hybrid fashion. We first analyze
the case of combining two different observers, one possibly with local convergence properties
(as in the case of extended Kalman filters) and one with global ones. Then, we consider a more
general scenario in which many observers are used, using norm estimators to evaluate online
which observer is performing better.

In the conclusion, I summarize a certain numbers of works that have not been presented
in this manuscript. Finally, I propose several new research perspectives. The complete list of
my publication is given at the end of this document in a section entitled “Published papers by
Daniele Astolfi”.
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Résumé

Mes recherches se concentrent sur les problèmes de contrôle et d’observation pour les systèmes
dynamiques décrits par des équations différentielles ordinaires non linéaires forcées de la forme :

ẋ = f(x, u), y = h(x),

où x ∈ Rn est l’état du système, u ∈ Rm est une entrée contrôlée ou non contrôlée, et y ∈ Rp est
la sortie mesurée. Cette description générique peut être utilisée pour représenter de nombreux
modèles physiques. Le contenu de ce manuscrit, intitulé “Stabilisation, régulation et observation
de systèmes non linéaires”, est organisé en 4 chapitres.

Le Chapitre 1 décrit de nouvelles méthodologies de conception de rétroaction pour stabiliser
de manière incrémentale un système non linéaire. L’approche proposée est basée sur la théorie
de la contraction et l’utilisation de métriques Riemanniennes pour rendre un système contractif
et incrémentalement stable par rapport à l’entrée grâce à la rétroaction. Deux méthodologies de
contrôle principales sont développées : la conception de rétroactions avec marge de gain infinie
et une version incrémentale de l’approche de transmission. L’utilisation de lois à marge de gain
infinie est ensuite appliquée au problème de synchronisation d’état dans les réseaux de systèmes
multi-agents.

Le deuxième chapitre porte sur la stabilisation des systèmes décrits par l’interconnexion
d’une équation différentielle ordinaire avec un système de dimension infinie (qui peut être décrit
en termes d’opérateurs abstraits sur des espaces de Hilbert ou plus explicitement via certaines
équations aux dérivées partielles). Ce chapitre est principalement motivé par l’utilisation de
modèles internes de dimension infinie dans le contexte de régulation de sortie de systèmes
non linéaires, développé plus en détail dans le chapitre 3. Nous fournissons également de
nouvelles conditions suffisantes et nécessaires pour la stabilité les opérateurs semi-linéaires et
une méthodologie constructive basée sur la conception d’observateurs (inspirée de la littérature
en dimension finie) pour construire des fonctions de Lyapunov strictes.

Le Chapitre 3 est consacré au problème de régulation de sortie des systèmes non linéaires, à
savoir le problème de suivi de références données tout en rejetant les perturbations indésirables
affectant la dynamique. Nous poursuivons une approche par modèle interne et proposons un
nouveau cadre capable de caractériser correctement la notion de robustesse dans le contexte
de la régulation de sortie. Nous revisitons les méthodologies de conception existantes basées
sur des modèles internes linéaires et non linéaires, mettant en évidence leurs propriétés de
robustesse et montrant que la propriété de régulation asymptotique ne peut pas être atteinte
de manière robuste via un régulateur dynamique (suffisamment régulier) avec une dimension
finie. Nous introduisons ensuite un cadre général pour la conception de régulateurs de modèle
interne à dimension infinie pour les systèmes à phase minimale, en récupérant et étendant la
théorie du contrôle répétitif.

Le Chapitre 4 est consacré au problème d’amélioration des performances d’un observateur
non linéaire donné. À cet effet, nous développons plusieurs nouvelles méthodologies ayant une
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propriété de modularité commune, c’est-à-dire que nous ne voulons pas redessiner l’observateur
à partir de zéro, mais plutôt nous appuyer sur celui existant et éventuellement améliorer ses
performances. En outre, pour bon nombre de ces techniques, nous utilisons une approche de
re-conception hybride qui permet plus de flexibilité. Dans ce contexte, nous proposons tout
d’abord un nouveau cadre basé sur l’utilisation de fonctions de saturation et de zone morte avec
des seuils adaptatifs variables pour améliorer la performance en régime permanent en présence
de divers types de bruit de mesure, tels que les impulsions (par exemple, les valeurs aberrantes)
ou les bruits persistants (par exemple, le bruit blanc). Nous proposons ensuite un cadre général
de re-conception pour contraindre l’état d’un observateur donné, basé sur l’existence d’une fonc-
tion de Lyapunov quadratique et d’une hypothèse de convexité. Enfin, nous explorons un cadre
général pour combiner divers observateurs de manière hybride. Nous analysons d’abord le cas
de la combinaison de deux observateurs différents, l’un éventuellement avec des propriétés de
convergence locale (comme dans le cas des filtres de Kalman étendus) et l’autre avec des pro-
priétés globales. Ensuite, nous considérons un scénario plus général dans lequel de nombreux
observateurs sont utilisés, en utilisant des estimateurs de norme pour évaluer en ligne lequel
des observateurs fonctionne le mieux.

Dans la conclusion, je résume un certain nombre de travaux qui n’ont pas été présentés dans
ce manuscrit. Enfin, je propose plusieurs nouvelles perspectives de recherche. Dans l’annexe,
je résume mon Curriculm Vitæ. La liste complète de mes publications est donnée à la fin de ce
document dans une section intitulée “Articles publiés par Daniele Astolfi”.

x



Notation

R Real numbers
R≥0 Non-negative real numbers R≥ := [0,+∞)
R>0 Positive real numbers, R>0 := (0,+∞)
Z Integer numbers
N Non-negative integer numbers
C Complex numbers
|x| Standard Euclidean norm of x ∈ Rn
|x|A Given A ⊂ Rn and x ∈ Rn, |x|A := infa∈A |x− a| denotes the distance of x to A.
B Open ball of radius 1
A+B If A,B ⊂ Rn, we let A+B := {a+ b : a ∈ A, b ∈ B}
ϵA Given ϵ ∈ R and a set A ⊂ Rn, we let ϵA := {ϵa : a ∈ A}.
(x, y) Given x ∈ Rn, y ∈ Rm, we set (x, y) := (x⊤, y⊤)⊤.
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This chapter focuses on the use of contraction analysis to design feedback laws ensuring
the incremental stability properties of the solutions of a dynamical systems. Roughly speaking, a
system is incrementally stable if any two trajectories starting from different initial conditions that
are “close” remain “close” for all their time existence. If the distance between them decreases
in time, then the system is incrementally asymptotically stable (see, e.g. [7, 9, 17, 18, 69, 79,
129, 152, 174, 186, 191, 217]). Although the foundations of contraction theory date back more
than 60 years (see [88, 110] for a literature review on the topic), a lot of attention has been
put on such an approach only in more recent years, due to its use in many control problems
such as observers design [177, 219], output regulation [152], and multi-agent synchronization
[8, 11, 187]. In order to characterize the incremental properties, many different tools have
been proposed: incremental Lyapunov functions [17,18]; Finsler-Lyapunov function [79,217];
matrix measures based on both Euclidean and non-Euclidean norms [7,69,191]; weak-pairings
[69]; and Riemannian metrics conditions [9, 10, 129, 186]. Very similar properties have been
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Chapter 1. Incremental stabilization of nonlinear systems

also studied in the context of convergent theory [151, 152, 174] raising to conditions which
are mainly equivalent to those studied in the context of Riemannian metrics (also denoted as
Demidovich conditions [151]). However, few works focused on the design of a feedback making
contractive a system, see, e.g. [134, 177, 220]. In this chapter, we focus on this last problem
following a Riemannian contraction approach.

In Section 1.1, we recall some preliminary notions on Riemannian analysis. Then, in Sec-
tion 1.2 we revisit a set of sufficient conditions to establish the contractivity property of a
continuous-time nonlinear systems, in particular to guarantee a given nonlinear system to be
incrementally globally exponentially stable or incrementally input-to-state stable. These condi-
tions rely on a metric-based framework and are used then to design contractive feedback laws.
Two main classes of controllers are investigated: controllers ensuring the infinite-gain margin
property in an incremental context and feedbacks to incrementally stabilize systems possessing
a cascade structure (also denoted in the feedforward form). The first approach investigated
in Section 1.3 extends the Riccati equation and the so-called LgV conditions in a contractive
feedback. Furthermore, we provide a set of conditions based on LMI for nonlinear systems pos-
sessing a semi-linear structure with nonlinearities satisfying incrementally sector bounded or
monotonic conditions. Moreover, for the same class of systems, we formulate a new separation
principle for the output-feedback stabilization of a class of nonlinear systems based on the use of
a contractive state-feedback law in which the state is replaced by an estimate given by a contrac-
tive observer. The second approach investigated in Section 1.4 extends the forwarding design
introduced in the 90’s for nonlinear systems. We introduce a modified version of the so-called
forwarding modulo-LgV approach guaranteeing incremental stability of the overall closed-loop
system. Finally, we conclude this chapter by using the infinite gain margin law conditions in
the context of state synchronization of a network of leader-connected multi-agent systems. As
a future perspective, we show that recent numerical approaches issued from deep learning can
be employed to overcome the difficulties of finding an explicit solution to the feedback design
which relies on the solution to a partial differential inequality.

1.1 Preliminaries on Riemannian analysis

Given a vector field f : Rn → Rn and a 2-tensor P : Rn → Rn×n both C1, we indicate with
LfP (x) the Lie derivative of the tensor P along f defined as

LfP (x) := dfP (x) + P (x, t)∂f∂x (x) + ∂f
∂x

⊤(x)P (x) ,

dfP (x) := lim
h→0

P (X(x, t+ h, t)) − P (x)
h

,

where and X(x, t) is the solution of the initial value problem

∂
∂tX(x, t, ) = f(X(x, t)), X(x, 0) = x,

for all t ≥ 0. Note that LfP (x) can be equivalently expressed as

LfP (x) = lim
h→0

(I + h∂f∂x (x))⊤P (x+ hf(x))(I + h∂f∂x (x)) − P (x)
h

,

with coordinates

(LfP (x, t))i,j =
∑
k

[
2Pik

∂fk
∂xj

(x) + ∂Pij
∂xk

(x)fk(x)
]
.
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1.2. Incremental ISS

Given any two elements x1, x2 ∈ Rn, let γ : [0, 1] 7→ Rn as any C1 path such that γ(0) = x1 and
γ(1) = x2. We define the length of the curve γ in the operator norm P (x) as

ℓP (γ) :=
∫ 1

0

√
dγ

ds
(s)⊤P (γ(s))dγ

ds
(s) ds . (1.1)

The Riemannian distance between x1 and x2 is then defined as the infimum of the length among
all the possible piecewise C1 paths γ, namely

dP (x1, x2) := inf
γ

{ℓP (γ)} .

For more details on Riemannian analysis, we refer to [177] and references therein or to [176].

1.2 Incremental ISS

1.2.1 Riemannian metric conditions for δδδGES

We begin by considering autonomous nonlinear systems of the form

ẋ = f(x) (1.2)

where f : Rn → Rn is a C2 vector field. We denote by X(x0, t) the solution of system (1.2) with
initial condition x0 evaluated at time t ≥ 0. We assume existence and uniqueness of trajectories.
The define the notion of incremental stability according to the following definition.

Definition 1.1. System (1.2) is incrementally globally exponentially stable (δGES) if there exists
two strictly positive real numbers λ, k > 0 such that

|X(x1, t) −X(x2, t)| ≤ k |x1 − x2| e−λt (1.3)

for any couple of initial conditions (x1, x2) ∈ Rn × Rn and for all t ≥ 0.

Following the metric approach [10,88,129], a dynamical system of the form (1.2) is δGES if
there exists a Riemannian metric for which the mapping t 7→ X(x, t) is a contracting mapping.

Theorem 1.1. Consider system (1.2) and suppose there exist a C1 matrix function P : Rn × R →
Rn×n taking symmetric positive definite values and three real numbers p, p, ε > 0 such that the
following holds

0 ≺ pI ⪯ P (x) ⪯ pI , (1.4a)

LfP (x) ⪯ −εP (x) , (1.4b)

for all x ∈ Rn. Then the system (1.2) is δGES.

A proof can be found in [9, 129]. A converse theorem can be found in [9, Proposition IV]
in the case in which f is a globally Lipschitz vector field. Note that the lower bound in (1.4a)
is required to make sure that the whole Rn space endowed with the Riemannian metric P is
complete. Such a condition guarantees that every geodesic (i.e. the shortest curve between
(x1, x2)) can be maximally extended to R, see e.g. [177]. By Hopf-Rinow’s Theorem (see [176,
Theorem 1.1]) this implies that the metric is complete and hence that the minimum of the length
of any curve γ connecting two point (x1, x2) is actually given by the length of the geodesic at any
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Chapter 1. Incremental stabilization of nonlinear systems

time instant. Moreover, it guarantees that the Lyapunov function defined as ∥δx∥2
P := δ⊤

x P (x)δx
associated to δ̇x = ∂f

∂x (x)δx, is radially unbounded and exponentially decreasing along solutions.
The upper bound in (1.4a) is introduced for solutions to be uniformly decreasing with respect
to time and to correlate the Riemaniann distance in P to the Euclidean one in (1.3).

We remark that the incremental stability properties are preserved by a Lipschitz global dif-
feomorphism with a Lipschitz inverse.

Lemma 1.1. Suppose that system (1.2) is δGES according to Definition 1.1. Let Φ : Rn → Rn be
a globally Lipschitz diffeomorphism with globally Lipschitz inverse Ψ, namely such that for some
LΦ, LΨ > 0,

Φ(Ψ(z)) = z, (1.5a)∣∣Φ(x′) − Φ(x′′)
∣∣ ≤ LΦ

∣∣x′ − x′′∣∣ , (1.5b)∣∣Ψ(z′) − Ψ(z′′)
∣∣ ≤ LΨ

∣∣z′ − z′′∣∣ , (1.5c)

for all z, x′, x′′, z′, z′′ ∈ Rn. Consider the change of coordinates x 7→ ξ := Φ(x) so that system (1.2)
in the new coordinates reads

ξ̇ = φ(ξ) :=
∂Φ
∂x

(Ψ(ξ))f(Ψ(ξ)) . (1.6)

Then also system (1.6) is δGES.

If incremental properties are claimed using Theorem 1.1, then the construction of the metric
in the new coordinates ξ = φ(x) can be obtained using the following result.

Lemma 1.2. Consider system (1.2) and assume there exist a C1 matrix function P : Rn × R →
Rn×n taking symmetric positive definite real values, three real numbers p, p, λ > 0 such that (1.4)
holds. Let Φ : Rn → Rn be a global diffeomorphism satisfying (1.5) for some LΦ, LΨ > 0. Then,
there exist some strictly positive real numbers q, q > 0 such that the system (1.6) satisfies

0 ≺ qI ⪯ Q(ξ) ⪯ qI , (1.7a)

LφQ(ξ) ⪯ −εQ(ξ) , (1.7b)

for all ξ ∈ Rn, for all t ≥ t0, for, where Q is given by

Q(ξ) :=
(
∂Φ
∂x

(Ψ(ξ))
)−⊤

P (Ψ(ξ))
(
∂Φ
∂x

(Ψ(ξ))
)−1

. (1.8)

1.2.2 Riemannian metric conditions for δδδISS

We study now the incremental input-to-state (δISS) properties of a system of the form

ẋ = f(x) + g(x)u (1.9)

where x ∈ Rn is the state, u is an exogenous signal taking values in a compact set U ⊂ Rm,
f : Rn → Rn and g : Rn → Rn×m are C2 functions. We denote by X(x, u, t) the solution of
system (1.9) starting at initial condition x at time t with input u = u(t) and satisfying the initial
value problem

X(x, u, t) = x,

∂X

∂t
(x, u, t) = f(X(x, u, t)) + g(X(x, u, t))u.

(1.10)

We state the following definition.
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1.2. Incremental ISS

Definition 1.2. System (1.9) is incrementally input-to-state stable (δISS) with exponential decay
rate, if there exist positive real numbers k, λ, γ > 0 such that

|X(x1, u1, t) −X(x2, u2, t)| ≤ k |x1 − x2| e−λt + γ sup
s∈[0,t)

|u1(s) − u2(s)| (1.11)

for all initial conditions x1, x2 ∈ Rn and for all inputs u1, u2 taking values in U ⊂ Rm, for all t ≥ 0.

Similar to the result of Theorem 1.1, we aim to look for some metric-based sufficient condi-
tions to establish an incremental ISS property. For this, we introduce the notion of Killing vector
field1.

Definition 1.3. Given a C1 2-tensor P : Rn → Rn×n and a C1 matrix function g : Rn → Rn×m,
we say that g is a Killing vector field with respect to P if

LgiP (x) = 0, i = 1, . . . ,m, ∀x ∈ Rn, (1.12)

with gi being the i-th column of g.

The Killing Vector property implies that distances between different trajectories generated
by the vector field g(x) in the norm |·|P (x) are invariant. Basically, the signals that enter in the
directions of the vector field g do not affect the distances, in the sense that different trajectories
of the differential equation ẋ = g(x) have a distance (associated with the norm provided by P )
among them which is constant for any t ≥ 0.

Remark. Note that:

• the Killing vector property is always satisfied between two constant matrices P and G;

• for any C1 scalar vector field g : R → R, then P (x) = g−2(x) always satisfies the Killing vector
property. Indeed

LgP (x) =
∂P

∂x
(x)g(x) + 2

∂g

∂x
(x)P (x) =

∂g−2

∂x
(x)g(x) + 2

∂g

∂x
(x)g−2(x)

= −2
g′(x)
g3(x)g(x) + 2

g′(x)
g2(x) = 0 .

Based on the previous notion of Killing vector, we have the following result.

Theorem 1.2. Consider system (1.9) and suppose that g is a bounded vector field, namely there
exists a real number g > 0 such that |g(x)| ≤ g for all x ∈ Rn. If there exists a C1 matrix function
P : Rn → Rn×n taking symmetric positive definite values and three real numbers p, p, ε > 0
satisfying

0 ≺ pI ⪯ P (x) ⪯ pI, (1.13a)

LfP (x) ⪯ −εP (x), (1.13b)

LgP (x) = 0, (1.13c)

for all x ∈ Rn, then system (1.9) is δISS.
1The name “Killing vector field” takes the name after Wilhelm Killing, a German mathematician.
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Chapter 1. Incremental stabilization of nonlinear systems

Note that differently to the definition given for instance in [17], we ask here the signal
u to live in bounded compact sets. This is needed to derive the δISS condition (1.11) from
the metric-based conditions (1.13). Note however that the parameter γ doesn’t depend on the
compact set U . Furthermore, since in the following we look for metric-based conditions to obtain
the δISS property (1.11), we restrict to the case of exponential convergence e−λt. In the more
general definition considered in [17], any class-KL function can be considered. For instance,
the previous result can be easily extended to the case in which the system (1.9) is defined as

ẋ = f(x) + g(x)ρ(u)

with ρ being any function for which there exists a class-K∞ function δρ such that

|ρ(u1) − ρ(u2)| ≤ δρ(|u1 − u2|).

In such a case, γ in (1.11) becomes a class-K function.

1.2.3 Euclidean metrics and LMI conditions

Consider again system (1.2) and suppose the existence of a positive definite matrix P satisying

P
∂f

∂x
(x) + ∂f

∂x

⊤
(x)P ⪯ −εP . (1.14)

In this case, we talk of Euclidean metrics (in this case P is associated to an Euclidean norm)
and we recover the celebrated Demidovic condition, see, e.g. [151] or [69]. Furthermore, for
systems of the form

ẋ = f(x) +Bu, (1.15)

the condition (1.14) is sufficient to establish that (1.15) is δISS. This is a direct consequence
of the fact that the Killing vector condition is automatically satisfied because both P and B are
constant.

The Demidovic condition (1.14) is more conservative but often easier to verify than the
Riemannian metric condition (1.4). Nevertheless, it still remains a partial differential inequality
to be verified on an infinite number of points (i.e. for all x ∈ Rn). For certain classes of
nonlinearities however this inequality can be transformed into a (computable) Linear Matrix
Inequality. In particular, we consider semi-linear system of the form

ẋ = Ax+Gφ(ζ)
ζ = Hx

(1.16)

with ζ ∈ Rnζ and φ : Rnζ → Rnφ . In this case, condition (1.14) reads

P

[
A+M

∂φ

∂ζ
(ζ)H

]
+
[
A+M

∂φ

∂ζ
(ζ)H

]⊤
P ⪯ −νI. (1.17)

If we further assume the function φ to satisfy some sector bound or monotonic conditions, the
inequality (1.17) can be transformed into an LMI. To this end, we introduce the following two
classes of functions.

Assumption 1.1 (Incremental sector bound condition). The function φ : Rnζ → Rnφ satisfies

∂φ

∂ζ
(ζ)⊤S

[
∂φ

∂ζ
(ζ) + Ω

]
+ S⊤

[
∂φ

∂ζ
(ζ) + Ω

]⊤
S
∂φ

∂ζ
(ζ) ⪯ 0 , ∀ζ ∈ Rnζ ,

for some matrix Ω ∈ Rnφ×nζ and a symmetric positive definite matrix S ∈ Rnφ×nφ .
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1.3. Design of a contractive infinite-gain margin feedback

Proposition 1.1. Consider system (1.16) and suppose that φ satisfies Assumption 1.1. If there exist
a symmetric positive definite matrix P ∈ Rn×n and a real number µ > 0 such that the following
inequality holds [

A⊤P + PA+ µI PG−H⊤Ω⊤S
G⊤P + SΩH −2S

]
⪯ 0 ,

then system (1.16) is δGES.

Alternatively, we can suppose that the function φ satisfies an incremental monotonic condi-
tion as follows.

Assumption 1.2 (Incremental monotonic condition). The function φ : Rnφ → Rnφ satisfies

∂φ

∂ζ
(ζ) = ∂φ⊤

∂ζ
(ζ), 0 ⪯ ∂φ

∂ζ
(ζ) + ∂φ

∂ζ
(ζ)⊤ ⪯ Γ, ∀ ζ ∈ Rnφ (1.18)

where Γ ∈ Rnφ×nφ is a symmetric positive definite matrix.

Proposition 1.2. Consider system (1.16) and suppose that φ satisfies Assumption 1.2. If there exist
a symmetric positive definite matrix P ∈ Rn×n and a real number µ > 0 such that the following
inequality holds (

A⊤P + PA+ µI PG+H⊤

G⊤P +H −4Γ−1

)
⪯ 0 , (1.19)

then system (1.16) is exponentially contractive.

An interesting aspect of the approach developed from Assumption 1.2 is that the condition
(1.18) can be relaxed as

0 ⪯ ∂φ

∂ζ
(ζ) + ∂φ

∂ζ

⊤
(ζ) , ∀ζ ∈ Rnζ . (1.20)

In this case, no globally Lipschitz assumption is imposed on the mapping φ. In this case, the
matrix inequality (1.19) reads(

A⊤P + PA+ µI PG+H⊤

G⊤P +H 0

)
⪯ 0 . (1.21)

This implies that P = P⊤ ≻ 0 has to satisfy the following (passivity-like) constraints

A⊤P + PA+ µI ⪯ 0 , H⊤ = −PG .

Hence, no restriction on the slope of the nonlinearity has to be imposed provided that a part of
the LMI is replaced by an equality constraint.

1.3 Design of a contractive infinite-gain margin feedback

1.3.1 Riemannian metric conditions

1.3.1.1 Linear systems

For a linear system of the form
ẋ = Ax+Bu

y = Cx
(1.22)

7



Chapter 1. Incremental stabilization of nonlinear systems

with state x ∈ Rn, control input u ∈ Rm and measured output y ∈ Rp, we say that a feedback
of the form u = −Ky possesses the infinite-gain margin property, if the matrix (A − αBKC) is
Hurwitz for any α ∈ [1,∞). The infinite-gain margin property allows to be robust with respect
to parameter uncertainties in the input matrix B. Furthermore, it plays a fundamental role in
synchronization problems [124,179]. We state the following new set of sufficient conditions.

Lemma 1.3. Suppose there exist symmetric positive definite matrices P,Q,R and some matrices
D,E satisfying the following equations

PA+A⊤P − C⊤E⊤R−1EC +Q = 0,
PBD = C⊤E⊤.

(1.23)

Then, the feedback gain K = 1
2DR

−1E is an infinite-gain margin static output feedback law for the
triplet (A,B,C), namely A− κBKC is Hurwitz for any κ ∈ [1,∞).

We remark that condition (1.23) is slightly different from the one established in [121],
where sufficient and necessary conditions for the existence of a static output feedback stabilizing
control law are given. The conditions in [121] takes the form

PA+A⊤P − PBB⊤P + C⊤C + E⊤E = 0,
KC −B⊤P = −E,

but do not necessarily have the infinite gain margin property (except for the passivity-like case
E = 0). Clearly, the proposed inequality (1.23) is in general more restrictive than [121]. Note
that very similar conditions are stated in [19, Theorem 4]. Furthermore, for some particular
choices of the matrices B,C, the condition (1.23) recovers the following well known results.

• In the state-feedback form, i.e. for systems of the form

ẋ = Ax+Bu, y = x,

the condition (1.23) boils down to the standard ARE-based design

PA+A⊤P − PBR−1B⊤P +Q = 0,
K = 1

2R
−1B⊤P,

(1.24)

with D = I, E = B⊤P . Recall that the ARE (1.24) always admits a solution if the pair (A,B)
is stabilizable. Furthermore, the resulting controller is the solution to the associated optimal
LQR problem minimizing the cost

J =
∫ ∞

0
x⊤(t)Qx(t) + u⊤(t)Ru(t)dt.

• In the observer-feedback form, i.e. for systems of the form

ẋ = Ax+ u, y = Cx,

the condition (1.23) recovers the ARE

PA+A⊤P − C⊤R−1C +Q = 0,
K = 1

2P
−1C⊤R−1,

(1.25)

with D = P−1C⊤, E = I. The ARE (1.25) always admits a solution if (A,C) is detectable
and it is a standard solution for the design of an observer for a system of the form ẋ = Ax,
y = Cx.

8



1.3. Design of a contractive infinite-gain margin feedback

• In the static output-feedback form, i.e. for MIMO square (m = p) systems of the form

ẋ = Ax+Bu, y = Cx,

the condition (1.23) recovers the well-known passivity-based condition

PA+A⊤P − C⊤R−1C +Q = 0
PB = C⊤,

(1.26)

with D = I, E = I, and K = 1
2R

−1.

1.3.1.2 Nonlinear systems

Consider now a nonlinear system of the form

ẋ = f(x) + g(x)u
y = h(x)

(1.27)

with state x ∈ Rn, control input u ∈ Rm and measured output y ∈ Rp. The design of infinite-gain
margin laws in the context of input-affine nonlinear systems of the form (1.27) has been inves-
tigated in the context of control Lyapunov function [180, Chapter 3] and arise quite naturally in
the context of feedback design for passive systems, e.g. [125]. Here, we study an extension of
the linear case in the context of contractive feedback laws. In particular, we state the following
definition.

Definition 1.4. Consider system (1.27). We say that the C1 function ψ : Rp → Rm is a contractive
control law with infinite gain margin for system, if there exist a C1 matrix function P : Rn → Rn×n,
taking symmetric positive definite values and three real numbers p, p, ε > 0 such that, by letting

fκ(x) := f(x) + g(x)κψ(h(x)) ,

the following holds

0 ⪯ pI ⪯ P (x) ⪯ pI (1.28a)

LfκP (x) ⪯ −εP (x), (1.28b)

for all x ∈ Rn and all κ ≥ 1.

For systems which are linear in the input and in the output, namely of the form

ẋ = f(x) +Bu

y = Cx,
(1.29)

we have a direct extension of Lemma 1.3 which is based on the existence of a contractive
Euclidean metric.

Lemma 1.4. Suppose there exist symmetric positive definite matrices P,R some matrices D,E and
a real number ε > 0 satisfying the following equations

P
∂f

∂x
(x) + ∂f

∂x

⊤
(x)P − C⊤E⊤R−1EC + εP ⪯ 0,

PBD = C⊤E⊤.

(1.30)

Then, the feedback law ψ(x) = −1
2DR

−1Ey is an infinite-gain margin static output feedback law
for the system (1.29).
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We remark that with the previous feedback law we can also easily show (combining the
results of Lemma 1.4 with Theorem 1.2) that the closed-loop system

ẋ = f(x) +B
(
−1

2DR
−1Ey + d

)
y = Cx+ w

is δISS with respect to the disturbance perturbations d satisfying the so-called matching condition
[159,163] and the measurement noise w.

For the more general case of systems (1.27) and a Riemannian metric, we have three result,
extending de facto the three linear ARE-based conditions (1.24), (1.25) and (1.26). Hence, three
different cases are considered. For systems in the the state-feedback form

ẋ = f(x) + g(x)(u+ d)
y = x

(1.31)

with state x ∈ Rn control input u ∈ Rm and perturbation d ∈ Rm satisfying the matching
condition [159,163], we have the following result.

Proposition 1.3. Consider system (1.31), and suppose there exist a C1 matrix function P : Rn →
Rn × Rn taking positive definite symmetric values, a function α : Rn → Rm and real numbers
p, p̄, ε > 0 such that the following hold

0 ⪯ p̄I ⪯ P (x) ⪯ p̄I , (1.32a)

LfP (x) − P (x)g(x)R−1g⊤(x)P (x) ⪯ −εP (x) , (1.32b)

LgP (x) = 0 , (1.32c)

∂α

∂x

⊤
(x) = P (x)g(x) , (1.32d)

for all x ∈ Rn and for some positive definite symmetric matrix R ∈ Rm×m. Then, the feedback
law ψ(x) = −1

2R
−1α(x) is a contractive control law with infinite-gain margin for system (1.31).

Moreover, the closed-loop system is δISS w.r.t. d.

For systems in the observer-feedback form

ẋ = f(x) + u

y = h(x) + w
(1.33)

with state x ∈ Rn, control input u ∈ Rn, measured output y ∈ Rp and perturbation w ∈ Rp
satisfying the matching condition [159,163], we have the following conditions.

Proposition 1.4. Consider system (1.33), and suppose there exist a C1 matrix function P : Rn →
Rn×n taking positive definite symmetric values, and real numbers p, p̄, ε > 0 such that the following
hold

0 ⪯ p̄I ⪯ P (x) ⪯ p̄I , (1.34a)

LfP (x) − ∂h⊤

∂x
(x)R−1∂h

∂x
(x) ⪯ −εP (x) , (1.34b)
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for all x ∈ Rn and for some positive definite symmetric matrix R ∈ Rp×p. Moreover, suppose that
the function β : Rn → Rn×p defined as

β(x) = P−1(x)∂h
⊤

∂x
(x) (1.34c)

is a Killing vector for P (see Definition 1.3). Then, the feedback law ψ(x) = −1
2β(x)R−1y is a

contractive control law with infinite-gain margin for system (1.33). Furthermore the closed-loop
system is δISS w.r.t. w.

Finally, for systems in the static output-feedback form

ẋ = f(x) + g(x)(u+ d)
y = h(x) + w

(1.35)

with state x ∈ Rn, control input u ∈ Rp measured output y ∈ Rp, and perturbations/disturbances
d,w ∈ Rp satisfying the matching condition, we have then the following result.

Proposition 1.5. Consider system (1.35), a C1 matrix function P : Rn → Rn ×Rn taking positive
definite symmetric values and real numbers p, p̄, ε > 0 satisfying

0 ⪯ p̄I ⪯ P (x) ⪯ p̄I , (1.36a)

LfP (x) − ∂h

∂x

⊤
(x)R−1∂h

∂x
(x) ⪯ −εP (x) , (1.36b)

LgP (x) = 0 , (1.36c)

∂h

∂x

⊤
(x) = P (x)g(x) , (1.36d)

for all x ∈ Rn and for some positive definite symmetric matrix R ∈ Rp×p. Then, the feedback
law ψ(x) = −1

2R
−1h(x) is a contractive control law with infinite-gain margin for system (1.35).

Furthermore, the closed-loop system is δISS w.r.t. w, d.

1.3.2 Euclidean metrics and LMI conditions

The framework proposed in Section 1.2.3 can be applied for the design of a contractive control
law for controlled systems. Consider the following nonlinear continuous-time system:

ẋ = Ax+Gφ(Hx) +Bu (1.37)

where x ∈ Rn is the state and u ∈ Rm is the control input and φ : Rnζ → Rnφ is a C1 function
satisfying an incremntal sector bound or monotonic condition as detailed below. We are now
interested in designing a feedback law α : Rn → Rm such that the system (1.37) in closed loop
with u = α(x) is an exponential contraction. In our framework, we restrict ourselves to a specific
feedback of the form

α(x) = Kx+Nφ(Hx). (1.38)

Based on the condition (1.17), we look for gains K,N and a constant metric P ≻ 0 satisfying

P

[
A+BK + (G+BN)∂φ

∂ζ
(ζ)H

]
+
[
A+BK + (G+BN)∂φ

∂ζ
(ζ)H

]⊤
P ⪯ −µI

for all ζ ∈ Rnζ , and for some µ > 0. Under the incremental sector bound condition in Assump-
tion 1.1, the following LMI-based design can be obtained.
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Lemma 1.5. Assume that φ satisfies Assumption 1.1. If there exist a symmetric positive definite
matrix W ∈ Rn×n, two matrices Z ∈ Rm×n, N ∈ Rm×nφ and a real number ν > 0 such that the
following LMI holdsAW +WA⊤ +BZ + Z⊤B⊤ G+BN −WH⊤Ω⊤S W

(G+BN)⊤ − SΩHW −2S 0
W 0 −νI

 ⪯ 0, (1.39)

then the closed-loop system (1.37)-(1.38) is δGES with K = ZW−1 and such a N .

In case of a nonlinear function φ satisfying the incremental monotonic condition in Assump-
tion 1.2 with nφ = nζ then we have the following result.

Lemma 1.6. Assume that φ satisfies Assumption 1.2. If there exist a symmetric positive definite
matrix W ∈ Rn×n, two matrices Z ∈ Rm×n, N ∈ Rm×nφ and a real number ν > 0 such that the
following LMI holdsAW +WA⊤ +BZ + Z⊤B⊤ WH⊤ + (G+BN) W

HW + (G+BN)⊤ −4Γ−1 0
W 0 −νI

 ⪯ 0, (1.40)

then the closed-loop system (1.37)-(1.38) is δGES with K = ZW−1 and such a N .

Similarly to the considerations at the end of Section 1.2.3, if the function φ satisfies the
inequality (1.20), the LMI condition (1.40) is transformed into an equality constraint of the
form (

AW +WA⊤ +BZ + Z⊤B⊤ W
W −νI

)
≤ 0 , W > 0 ,

WH⊤ = −(G+BN) .

1.3.3 Observer design and nonlinear separation principle

The results of the previous section can be applied also in the context of observer design and
output feedback control. Consider in particular the case in which the dynamical system (1.37)
is complemented with a measured output and reads

ẋ = Ax+Bu+Gφ(Hx),
y = Cx,

(1.41)

where x ∈ Rn is the system state, u ∈ Ru is the control input and y ∈ Rp is the measured output.
Following [20], consider an observer of the form

˙̂x = Ax̂+Bu+ L(y − Cx̂) +Gφ(ζ̂),
ζ̂ = Hx̂− E(y − Cx̂) ,

(1.42)

where E,L are matrices in Rnζ×p and Rn×p respectively. In particular, differently from many
other standard design (such as Luenberger observers, Kalman like observers, high-gain observers
and so on), the observer (1.42) is characterized by the presence of a correction term inside the
nonlinear term. A sufficient condition to guarantee the convergence of the observer, namely,
that the observer trajectories converge to the plant’s trajectory is to select the matrices E and L
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1.3. Design of a contractive infinite-gain margin feedback

so that to ensure that the observer defines a uniform (with respect to y) contraction. For systems
of the form (1.41) with an observer selected as (1.42), this is achieved for instance if there exists
a positive definite matrix Q ≻ 0 such that

Q

[
A− LC +G

∂φ

∂ζ
(ζ)(H − EC)

]
+
[
A− LC +G

∂φ

∂ζ
(ζ)(H − EC)

]⊤
Q ⪯ −νI

for all ζ ∈ Rnζ , for some strictly positive real number ν > 0. Indeed, under such a condition, it
is easy to show the existence of positive real numbers (k, λ) such that

|x(t) − x̂(t)| ≤ k exp(−λt) |x(0) − x̂(0)| , ∀ t ≥ 0

for all initial conditions (x(0), x̂(0)) ∈ Rn × Rn. Similar to the results presented in the previous
section, it is possible to give sufficient conditions in the form of LMI in order to obtain construc-
tive conditions for the design of L and E. For instance, based on the sector bound condition in
Assumption 1.1, we obtain the following result.

Corollary 1.1. Assume that φ satisfies Assumption 1.1. If there exist a symmetric positive definite
matrix Q ≻ 0, two matrices R and E and a real number µ > 0 such that[

QA+A⊤ −RC − C⊤R⊤ + µI QG− (H − EC)⊤Ω⊤S
G⊤Q− SΩ(H − EC) −2S

]
⪯ 0,

then (1.42) is an exponentially contractive observer with L = Q−1R and E.

Based on monotonic nonlinearities, the same result has been obtained in [20]. In particular,
under Assumption 1.2, system (1.42) is an exponential observer for system (1.41) if there exists
a solution to the following LMI[

QA+A⊤Q−RC − C⊤R⊤ + µI (H − EC)⊤ +QG
H − EC +G⊤Q −4Γ−1

]
⪯ 0, (1.43)

with L = Q−1R. In the following we specialize such a result for a nonlinearity satisfying (1.20).

Lemma 1.7. Assume that φ satisfies Assumption 1.2. If there exist a symmetric positive definite
matrix Q ∈ Rn×n, two matrices R and E of appropriate dimensions and a real number µ > 0 such
that

QA+A⊤Q−RC − C⊤R⊤ + µI ⪯ 0
(H − EC)⊤ = −QG.

then (1.42) is an exponentially contractive observer for system (1.41) with L = Q−1R and E.

As a conclusion of this section, we establish a separation principle by showing that a globally
stabilizing output feedback law can be obtained by first designing a contractive state-feedback
law as in Section (1.3.2), and then replacing the state by an estimate provided by a contractive
observer of the form (1.42). In contrast with most of nonlinear separation principle, with the
proposed conditions one may recover standard results of linear systems in which the design of
gains of the state-feedback law and the observer output injection are independent, opposite to
results relying on time-separation scale conditions, such as [13, 22, 196]. In our case, such a
time-separation scale condition is not needed thanks to the contractivity properties. As a result,
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Chapter 1. Incremental stabilization of nonlinear systems

the observer’s convergence may be tuned independently of the feedback design. For instance,
the observer dynamics can be selected slower than the convergence of the state-feedback law, so
that to improve the overall performances in the presence of measurement noise. We recover in
this sense, the standard linear separation principle result. Furthermore, it provides constructive
methodologies verifying the general conditions in (??).

In order to state the last result of this section, consider system (1.41) coupled with an output
feedback control law of the form

u = Kx̂+Nφ(Hx̂) (1.44)

in which the estimate x̂ is provided by an observer of the form (1.42). For simplicity, we consider
only the case of functions φ satisfying the monotonic condition in Assumption 1.2, but similar
results can be extended to the case of sector bound conditions of Assumption 1.1. Now, following
the framework in [13] based on the notion of input-to-state stability (ISS), we recall that two
different paths may be followed for the design of an output feedback law:

Direct approach. An ISS property is imposed on measurement error in the state feedback law
to cope with the mismatch between x and x̂.

Indirect approach. An ISS property is imposed to cope with the observer correction term.

In our context, both cases may be pursued under an extra assumption, as shown in the following.

Theorem 1.3. Consider the system (1.41) and suppose Assumption 1.2 holds. Consider the feed-
back output law given by the observer (1.42) and control law (1.44). Suppose that the LMIs (1.40)
and (1.43) are feasible for some matrices Q,R,E,W,Z,N of appropriate dimensions and any real
number ν, µ > 0. Assume moreover that one of the following properties hold:

• the nonlinear term in the feedback (1.44) is zero (N = 0);

• the injection term inside the nonlinearity in (1.42) is zero (E = 0).

Then, the origin of the closed-loop system (1.41), (1.42), (1.44) is globally exponentially stable
with K = ZW−1, L = Q−1R, and N = 0 or E = 0.

Note that in the general case in which E ̸= 0 and N ̸= 0 no stability results can be stated a
priori. However, under additional assumptions, one might still be able to claim stability of the
closed loop by addressing the problem through a small-gain analysis. In this case, the designs of
the feedback and the observer cannot be made disjointed and typically a time-scale separation
between these dynamics is needed.

Furthermore, we remark that the output feedback law (1.42), (1.44) doesn’t ensure in gen-
eral any contractivity property for the closed-loop system (1.41), (1.42), (1.44). As a conse-
quence, if one aims at obtaining a contractive output feedback law, a more general dynamic
output feedback of the form

u = K1xc +K2y +
m∑
j=1

Njφ(HJjxc + Ejy),

ẋc = Acxc +
m∑
j=1

Mjφ(HJjxc + Ejy)

needs to be considered. By rewriting the closed-loop system in the form (1.16), LMI conditions
similar to those derived in Section 1.2.3 can be established in order to show contractivity of the
closed-loop system.
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1.4. Incremental Forwarding design for cascade systems

1.4 Incremental Forwarding design for cascade systems

In this section we study systems which can be put in the so called forwarding-form

ẋ = f(x) + g(x)u,
η̇ = Φη + v(x),

(1.45)

with x ∈ Rn, u ∈ Ru, and η ∈ Rρ. Systems of the form (1.45) may arise in a large number of
contexts. Some systems may already have a cascade structure (see, e.g., [158]); in other cases
the η-dynamics may represent the dynamics of the controller, such as in output regulation with
internal-model based (see Chapter 3.2.4); in some others, the x-dynamics may represent the
dynamics of the actuator and η the state of the controlled plant. By using a certain analogy to the
previous Section 1.3, where the well-known ARE is extended with a nonlinear PDE in the context
of metrics, we rely in this context on the Sylvester equation and a nonlinear PDE extension. To
this end, we shortly revise the linear case. This is also instrumental to the Section 2.3 where
similar ideas are employed in the context of cascade systems in which one of the two dynamics
is actually a PDE and the other is an ODE.

1.4.1 Riemannian metric conditions

1.4.1.1 Linear systems

Consider a linear system of the form

ẋ = Ax+Bu,

η̇ = Φη + Γx,
(1.46)

with x ∈ Rn, u ∈ Ru, and η ∈ Rρ. We suppose that the extended system is stabilizable2.
Furthermore, we also suppose that the matrix A is Hurwitz. Evidently, this can be obtained after
a preliminary state feedback. Then, we define the matrix M as the solution to the following
Sylvester equation

MA = ΦM + Γ (1.47)

which defining a change of coordinates of the η-dynamics of system (1.46) as

η 7→ z := η −Mx.

Such a change of coordinates is based on the fact that the x-dynamics is stable, and therefore
we characterize the solutions of z in terms of his forcing input x. As a consequence, in the new
coordinates, we obtain a decoupled system of the form

ẋ = Ax+Bu,

ż = Φz −MBu.
(1.48)

In view of the stabilizability assumption of the original systems, the pair (A,B) and (Φ,−MB)
are both stabilizable. As a consequence, we can apply the infinite-gain margin approach intro-
duced in Section 1.3 based on the ARE (1.24). Such an approach, however, doesn’t generically
provide a decoupling in term of feedback easy to extend to the nonlinear context. As a conse-
quence, we follow here a different approach. In particular, in the case in which the η-dynamics

2This can be checked by following for instance the conditions in [68].
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Chapter 1. Incremental stabilization of nonlinear systems

is conservative, i.e., PzΦ + Φ⊤Pz ⪯ 0, we can rely on the stability of A to decouple the design of
the stabilizing effects for x and z. In particular, given any Qx ⪯ 0, we can select P solution to

PxA+A⊤Px +Qx = 0,

and then design a feedback gain of the form

K = 1
2R

−1
(
B⊤ −B⊤M⊤

)(Px 0
0 Pz

)
.

Using the Lyapunov function

V (x, η) = x⊤Pxx+ (η −Mx)⊤Pz(η −Mx)

one obtains the LMI(
−Q 0
0 0

)
−
(
Px 0
0 Pz

)(
B

−MB

)
R−1

(
B⊤ −B⊤M⊤

)(Px 0
0 Pz

)
⪯ 0

showing stability of the (x, z)-dynamics. Asymptotic stability can be further established using
standard zero-state detectability arguments (ensured by the stabilizability of the original sys-
tem). Note that selecting R with a block-diagonal structure R = blckdiag(Rx, Rz), we obtain, in
the original (x, η)-coordinates, the “classical” forwarding control feedback

u = −1
2R

−1
x B⊤Pxx+ 1

2R
−1
z B⊤M⊤Pz(η −Mx),

which is also an infinite-gain margin law. Note that if we select R−1
x = 0, the resulting feedback

u = 1
2R

−1
z B⊤M⊤Pz(η −Mx)

has still the infinite-gain margin property. In this case one needs to rescale the Lyapunov function
according to the gain Rz. Furthermore, in view of the stability properties of A, it is also possible
to make a feedback which doesn’t depend on x but only on η. In particular, one can select

u = εB⊤M⊤Pzη

with ε > 0 being in this case a parameter sufficiently small. In this case we obtain a small-
gain feedback approach which is also employed in the so-called “nested-saturation” approach
[197]. Following a similar Lyapunov analysis it possible to obtain a direct extension to nonlinear
systems of the form (1.45), see, e.g. [141,158]. In the next section we show an extension in the
contractive framework.

1.4.1.2 Nonlinear systems

Consider again the nonlinear system

ẋ = f(x) + g(x)(u+ d),
η̇ = Φη + v(x),

(1.49)

with state variables x ∈ Rn, η ∈ Rρ, control input u ∈ Ru, and a perturbation d ∈ Ru satisfying
the matching condition. We aim at designing a contracting feedback law so that to make the
closed-loop system (1.49) δGES and δISS with respect to the perturbation d. To this end, we sup-
pose that the x-dynamics has been already incrementally stabilized (this is indeed a necessary
condition in order to obtain the cascade δGES). The following assumption is therefore stated.
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1.4. Incremental Forwarding design for cascade systems

Assumption 1.3. Consider system (1.49). There exist a C1 matrix function P : Rn → Rn×n taking
symmetric positive values and three positive real numbers p, p̄, ε such that the following holds for
all x ∈ Rn

0 ⪯ pI ⪯ P (x) ⪯ p̄I,

LfP (x) ⪯ −εP,
LgP (x) = 0.

Furthermore, we suppose that the η-dynamics is marginally stable.

Assumption 1.4. There exists a symmetric positive definite matrix Q = Q⊤ ≻ 0 such that QΦ +
Φ⊤Q ⪯ 0 .

Following the linear case, we define a function M : Rn → Rρ solution to the following PDE

∂M

∂x
f(x) = ΦM(x) + v(x) (1.50)

which extends the Sylvester equation (1.47). Existence of a solution to (1.50) is guaranteed if
the equilibrium of ẋ = f(x) is globally asymptotically stable and locally exponentially stable. A
detailed discussion is given in [141]. Under Assumption 1.3, such a function M always exists.
However, in order to provide more degrees of freedom for the feedback design so that to obtain
less stringent condition, we consider here a modified version of the PDE equation (1.50). In
particular, we introduce a function M : Rn → Rρ solution to the following modified PDE

∂M

∂x
f(x) = ΦM(x) + v(x) + ∆(x) (1.51)

where ∆ is an additional degree of freedom. The functions M and ∆ needs to be chosen
according to the following assumption.

Assumption 1.5. There exist three C1 functions M : Rn → Rρ, ∆ : Rn → Rρ and β : Rn → Rm,
a matrix G and a real number ε > 0 such that, for all x ∈ Rn, the functions M and ∆ are solution
to (1.51), the pair (Φ, (QG)⊤) is detectable and moreover

LgM(x) = G, (1.52a)

G
∂β

∂x
(x) = −∂∆

∂x
(x), (1.52b)

LfP (x) + P (x)g(x)∂β
∂x

(x) + ∂β⊤

∂x
(x)g⊤(x)P (x) ⪯ −εI. (1.52c)

Under the previous assumptions, we have the following result.

Theorem 1.4. Consider system (1.49) and let Assumptions 1.3, 1.4, 1.5 hold. Moreover assume
that there exists LM ≥ 0 such that∣∣∣∣∣∂M∂x (x)

∣∣∣∣∣ ≤ LM ∀x ∈ Rn. (1.53)

Then, for any gain κ > 0, the system (1.49) in closed-loop with the control law

u = κG⊤Q⊤(η −M(x)) + β(x) (1.54)

is δGES and δISS with respect to d.
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Chapter 1. Incremental stabilization of nonlinear systems

The proof of Theorem 1.4 is based on the construction of a metric for the extended system
(x, η) which satisfies the conditions of Theorem 1.1 and 1.2. Similarly to the linear case, the
metric is constructed in the modified coordinates

(x, η) 7→ (x, z) := (x, η −M(x)) .

The Lipschitz condition (1.53) is then required to satisfy the conditions of Lemma 1.2, which
ensures the preservation of the contraction properties via a nonlinear change of coordinates.

It can be noticed also that the resulting feedback (1.54) is not exactly an infinite gain margin
law because the parameter κ multiplies only the first term, but not the second. Indeed, such
a second term β is needed to compensate the term ∆ introduced by the mismatch between
the function M satisfying the exact forwarding equation (1.50) and the actually implemented
functionM which satisfies (1.51). Such a term β is compensated by the stability margin property
of the x-dynamics as ensured in (1.52c).

Finally, we note that the condition (1.52a) asks for the term LgM , i.e. the term multiplying
the control action u in the modified coordinates to be constant. This is needed because the
metric in the (x, z)-coordinates above defined is constant with respect to z, allowing the Killing
vector property to be satisfied.

When considering M = M , then the function ∆ = 0 and β = 0. In such a case, we
recover a pure extension of the linear forwarding approach presented in the previous section.
The introduction of the extra degree of freedom to choose the function M are motivated by
the condition (1.52a) which may be very stringent in some cases. Theorem 1.4 is inspired and
extends the forwarding modulo LgV approach introduced in [158].

1.4.2 Euclidean metrics and LMI-based conditions

In this section we specialize our previous results to the following class of Lipschitz systems of
the form

ẋ = Ax+Bu+ Φϑ(Hx) + d1

η̇ = Cx+Dϑ(Hx) + d2
(1.55)

where ϑ is a C1 Lipschitz function with Lipschitz constant Lϑ, namely

|ϑ(y) − ϑ(y′)| ≤ Lϑ|y − y′|, ∀ y, y′,

and d1, d2 are two perturbations. We suppose that the following assumption holds.

Assumption 1.6. There exist a constant symmetric positive definite matrix P and a real number
λ0 > 0 satisfying the inequality

PA+A⊤P + PΦ∂ϑ
∂x

(x)H +H⊤∂ϑ
⊤

∂x
(x)Φ⊤P ⪯ −2λ0I ∀x ∈ Rn .

Such an assumption is a particular case of Assumption 1.3 in which we considered a constant
Euclidean metric P , similar to what is done in Section 1.2.3. In order to provide a forwarding-
based design, we follow the previous section. In particular, instead of looking for the exact
solution M of the PDE (1.51), we look for an approximation M that is obtained by considering
only the linear terms of (1.55). Let us define the following functions and matrices

M(x) = CA−1x,

Λ := CA−1B,

N(x) := (CA−1D − Φ)ϑ(Hx),
Ψ = Λ⊤(ΛΛ⊤)−1.
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We have the following result.

Theorem 1.5. Consider system (1.55) and suppose Assumption 1.6 holds. Then, the following
holds.

• If Λ is full rank and the inequality

PBΨ(CA−1D − Φ)H +
(
Ψ(CA−1D − Φ)H

)⊤
B⊤P ⪯ 2(λ0 − λ1)

Lϑ
I, (1.56)

is satisfied for some λ1 > 0, system (1.55) in closed loop with

u = κΨ(η − CA−1x) − Ψ(CA−1D − Φ)ϑ(Hx)

is δISS with respect to d1, d2 for any κ > 0.

• If the inequality(
aPBΨ − Lϑ

a
(CA−1D − Φ)H

)(
aPBΨ − Lϑ

a
(CA−1D − Φ)H

)⊤
⪯ 2(λ0 − λ2)I

is satisfied for some λ2, a > 0, then system (1.55) in closed loop with

u = κΨη

is δISS with respect to d1, d2 for κ > 0 sufficiently small.

Note that inequality (1.56) is verified with λ1 = λ0 when CA−1D = Φ or for some λ1 < λ0
when Lϑ is sufficiently small compared to λ0.

1.5 Synchronization of multi-agent systems

As a last section of this chapter, we show how the use of infinite-gain margin laws can be used
in the context of synchronization of multi-agent systems.

1.5.1 Preliminaries on graph theory

A communication graph is described by a triplet G = {V, E ,A} in which V = {v1, v2, . . . , vN} is a
set ofN ⊂ N vertexes (or nodes), E ⊂ V×V is the set of edges ejk that models the interconnection
between the vertexes with the flow of information from vertex j to vertex k weighted by the
(k, j)-th entry akj ≥ 0 of the adjacency matrix A ∈ RN×N . We denote by L ∈ RN×N the
Laplacian matrix of the graph, defined as

ℓkj = −akj for , ℓkj =
N∑
i=1

aki for k = j,

where ℓj,k is the (j, k)-th entry of L. We denote with Ni the set of in-neighbors of node i,
i.e. the set Ni := {j ∈ {1, . . . , N} | eji ∈ E}. A time-invariant graph is said to be weakly
connected if and only if L has only one trivial eigenvalue λ1(L) = 0 and all other eigenvalues
λ2(L), . . . , λN (L) ∈ C have strictly positive real parts (see [106, Theorem 5.1]). We consider
here leader-connected undirected graphs. With leader-connected, we mean that we assume the
existence of a leader (i.e. the graph contains at least one spanning tree with the leader as a root).
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The leader is labeled (without loss of generality) as node 1 and has a set of in-neighbors that is
the empty set, i.e. N1 = ∅. In other words, no node in the network can send information to node
1. We also assume the network to be undirected, meaning that we assume communication links
to be bi-directional (i.e. eij = eji for every i, j = 2, . . . , N), except, of course, to the edges that
nodes in the network share with the leader. By considering such a graph structure, the following
property is proved in [89].

Lemma 1.8. Suppose the graph G = {V, E ,A} is undirected and leader-connected . Then the
Laplacian L can be partitioned as

L =
(

0 0
L21 L22.

)
Moreover, there exists a strictly positive real number µ > 0 such that L22 ⪰ µI

1.5.2 Distributed feedback design

Consider now network of N agents. Without loss of generality we label the leader as node 1 and
we suppose that its dynamics is defined by

ẋ1 = f(x1), x1 ∈ Rn, (1.57a)

and we suppose that it satisfies the following assumption.

Assumption 1.7. The graph G = {V, E ,A} is undirected and leader-connected. Moreover, for any
initial condition x◦

1 ∈ Rn the corresponding trajectory of (1.57a) exists for all t ≥ 0.

The dynamics of the other N − 1 nodes in the network are described as

ẋi = f(xi) + g(xi)ui, i = 2, . . . , N. (1.57b)

where xi ∈ Rn is the state of node i and ui ∈ Rm is the control action on node i. We suppose
that f, g are C2 functions and we denote the state of the entire network as

x := col(x1, . . . , xN ) ∈ RNn . (1.58)

Our synchronization objective is to design a nonlinear diffusive coupling, namely a distributed
feedback control law of the form

ui =
∑
j∈Ni

aij
[
φ(xi) − φ(xj)

]
= −

N∑
j=1

ℓijφ(xj) (1.59)

for all i = 2, . . . , N , for some C1 function φ : Rn → Rm, that stabilizes the dynamics (1.57) on
the so-called leader-synchronization manifold D defined as

D := {x ∈ RNn | xi = x1, for all i ∈ {1, . . . , N}}, (1.60)

where the states of all the agents of the network agree with the leader. In particular, we desire
that the solutions X(x◦, t) = (X1(x◦

1, t), . . . , XN (x◦
N , t)) to the closed-loop system

ẋ1 = f(x1, t)
ẋi = f(xi) − g(xi)

∑
j∈Ni

ℓijφ(xj), i = 2, . . . , N. (1.61)
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converge to the manifold D. By construction, the i-th agent uses only the information xj of its
neighborhoods j ∈ Ni and its own local information xi. Furthermore, the control action ui is
equal to zero on the synchronization manifold. In other words, when consensus is achieved, no
correction term is needed for each individual agent. As a consequence, stabilizing all the agents
on a desired equilibrium point is generally not a valid solution in such a framework.

Based on the results of Section 1.3.1.2 and in particular on Proposition 1.3, we state the
following assumptions.

Assumption 1.8. There exist a C1 matrix function P : Rn × R → Rn×n taking symmetric positive
definite values and real numbers p, p, ρ, λ > 0 such that the following holds for all x,∈ Rn

LfP (x) − ρP (x)g(x)g(x)⊤P (x) ⪯ −2λP (x) ,

pI ⪯ P (x) ⪯ pI .
(1.62)

Assumption 1.9. The matrix function g satisfies the Killing vector field property with respect to P
(see Definition 1.3), namely

LgP (x) = 0 , ∀x ∈ Rn . (1.63)

Assumption 1.10. The vector field Pg satisfies an integrability condition in the sense that, denoting
g = [g1 . . . gm], there exists a C2 function α = (α1, . . . , αm), αι : Rn × R 7→ R for ι = 1, . . . ,m,
satisfying

∂αι
∂x

(x) = gι(x)⊤P (x) , ∀x ∈ Rn . (1.64)

Based on the previous assumptions, a feedback law solving the synchronization law is estab-
lished by the following theorem.

Theorem 1.6. Consider a network G = {V, E ,A} of agents (1.57) and let Assumptions 1.7 to 1.10
hold. Then, for any κ ≥ ρ

2µ , with µ given by Lemma 1.8, the distributed state-feedback control law
(1.59) with

φ(x) = κα(x) , (1.65)

and α satisfying (1.64), solves the global synchronization problem for the network of agents given
in (1.57), namely, there exists k > 0 such that for all (x◦, t0) in RNn×R solutions of the closed-loop
system (1.61) are defined for all t ≥ 0 and moreover

|X(x◦, t)|D ≤ k exp(−λ t) |x◦|D, ∀t ≥ 0. (1.66)

The main limitation of the approach presented in the previous theorem is the complexity
of finding a metric P solving (1.62) and, at the same time, satisfying the Killing vector field
property in (1.63) and the integrability condition in (1.64). As a consequence, we provide now
a practical solution to such limitations showing that synchronization may still be obtained when
relaxing such assumptions. Note that the type of result is different in the two contexts. Indeed,
global result can still be achieved in case of an approximation of the integrability condition,
provided the control gain is not selected too large. However, only semi-global results can be
obtained when relaxing the Killing vector assumption. Instead of Assumption 1.10, consider the
following one.

Assumption 1.11. There exist a C2 function α : Rn 7→ Rm and a scalar ε > 0 such that, for
ι = 1, . . . ,m, the following holds∣∣∣∣∂αι∂x

(x) − gι(x)⊤P (x)
∣∣∣∣ ≤ ε, ∀x ∈ Rn.
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Based on the previous approximate integrability conditions, we have then the following
result.

Theorem 1.7. Consider a network G = {V, E ,A} of agents (1.57) and let Assumptions 1.7, 1.8,
1.9 and 1.11 hold. Assume moreover that there exists a real number ḡ > 0 such that |gι(x)| ≤ ḡ for
all x in Rn and ι = 1, . . . ,m. Let µ be given by Lemma 1.8 and let L̄ = maxij |ℓij | where (ℓij) is the
Laplacian matrix associated to the graph. Then, if ε in Assumption 1.11 satisfies ε ∈ [0, ε∗) with

ε∗ =
λµp

ρNL̄mp̄ḡ
,

then there exists κ∗ such that for any κ ∈ [ ρ2µ , κ
∗), the distributed state-feedback control law (1.59),

(1.65) solves the global synchronization problem for the closed-loop system (1.61).

When the equality constraint in Assumption 1.9 is replaced by an approximation, the global
synchronization may be lost. However, it is shown in the following theorem that provided |LgP |
is small enough, a semi-global result can be obtained.

Theorem 1.8. Consider a network G = {V, E ,A} of systems (1.57). Suppose Assumption 1.7, 1.8,
and 1.10 hold. Let κ ≥ ρ

µ be fixed. Assume |g(x)| ≤ ḡ for all x in Rn. Then, for each x̄ > 0 there
exist k, ε > 0 such that, if the following holds

|LgιP (x)| ≤ ε , ∀ (x, ι) ∈ Rn × {1, . . . ,m}, (1.67)

then, for all x◦ in RNn such that ∥x◦∥D ≤ x̄, the solution of (1.61) with the distributed state-
feedback control law (1.59), (1.65) is defined for all t ≥ 0 and satisfies

|X(x◦, t)|D ≤ k exp
(

−λ

3 t
)

|x◦|D , ∀t ≥ 0. (1.68)

1.5.3 Learning the controller via DDN

As mentioned in the previous section, a drawback of the proposed approach lies in the fact that
metrics may not be easy to find in the Riemannian scenario. Moreover, even when a metric
has been found, designing a control law satisfying the integrability condition (1.64) may not
be straightforward. One way to overcome such difficulties is to leverage Theorem 1.7 and
Theorem 1.8 and rely on Machine Learning tools to obtain approximate solutions. In what
follows, we combine the proposed control design with Deep Learning tools. In recent years,
Deep Neural Networks (DNNs) turned out to be effective tools for solving complex differential
equations, see, e.g., [50, 164]. As a matter of fact, multiple works began mixing learning tools
and control. Such a combined framework tackles the complexity of computing control theoretic
exact solutions by exploiting deep approximators. e.g., [D68], [109,154]. Hence, the idea is to
set up and approximately solve an optimization problem aimed at circumventing the need for
an analytic metric. Once a suitable metric has been found via a first DNN, we train a second one
to satisfy the integrability condition. To this end, we construct a neural metric as

P (x, θ′) =

P1(x, θ′) · · · Pn(x, θ′)
...

. . .
...

Pn(x, θ′) · · · Pp(x, θ′)

 ,
where p = n(n+1)

2 is the total number of entries to be learned, ϱ = (P1(x, θ′), . . . , Pp(x, θ′)) is the
output vector of the neural network DNNP : Rn×Rnθ′ 7→ Rp and θ′ ∈ Rnθ′ is the vector of DNNP
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parameters. To train the DNNP parameters, we rely on Theorem 1.7 to relax the existence of
a primitive for g(x)⊤P (x, θ′) and on Theorem 1.8 to loosen the constraint posed by the Killing
vector field property (1.63). We set up an optimization problem asking for the minimization of
the following cost function

JP (x, θ′) =
4∑
i=1

wiJi(x, θ′), Ji(x, θ′) = ln
(
max

(
ℜ
{
λΨ(Ψi)

}
, 0
)

+ 1
)
, (1.69)

being w = (w1, . . . , w4) a vector of (positive) scalar weights and λΨ being the maximum eigen-
value and Ψi defined as

Ψ1 = LfP (x, θ′) − ρP (x, θ′)g(x)g⊤(x)P (x, θ′) + εI, Ψ2 = LgP (x, θ′) − ϵI,

Ψ3 = −LgP (x, θ′) − ϵI, Ψ4 = −P (x, θ′) + pI,

where ρ, ϵ, p > 0 are positive scalars with ε > ϵ and where ℜ{λ} is the real part of the complex
number λ ∈ C. Note that each cost Ji serves the purpose of satisfying a particular condition
for the neural metric. While J1 provides a positive cost if the contraction condition (1.62) is
not satisfied, J2 and J3 encourage the boundedness of LgP , thus relaxing the Killing vector
condition (1.63), and J4 steers the solution towards positive definite matrices, see (1.62). Note
that the upperbound is always satisfied as we optimize our algorithm in a compact set X. The
natural logarithm is used as a regularization term between costs Ji. It allows the rescaling of
widely different costs to similar values and a more precise selection of their importance through
the weight vector w. In parallel to the DNNP , we train a parameter estimator outputting the
values of ρ, ε, ϵ, p. The estimator and DNNP work together, trying to minimize (1.69). Note
that if the cost reaches 0, all the contraction conditions are satisfied for the dataset and the
learned estimator outputs, hence learning can be stopped. The second step is to find a suitable
law satisfying the as best as possible the integrability condition (1.64). We train the parameters
θ′′ ∈ Rnθ′′ of the second network DNNα : Rn × Rnθ′ 7→ Rm such that

Jα(x, θ′′) =
∣∣∣∣∂DNNα

∂x
(x, θ′′) − g(x)⊤P (x, θ′)

∣∣∣∣2 (1.70)

is minimized. The full learning procedure is summarized as follows.

Algorithm 1 DNN-based controller learning

1: Input: Dataset of
(
x , f(x) , g(x) , ∂f∂x (x) , ∂g∂x(x)

)
,

DNNP ,DNNα;
2: while JP (x, θ′) ̸= 0 do
3: Train DNNP and the estimator with (1.69);
4: end while
5: Train the DNNα with (1.70);
6: Set the distributed law ui = −κ

∑N
j=1 ℓijDNNα(xj , θ′′).

Clearly, the DNNs can be trained only on a dataset D of finite size. Yet, DNNs are typically
Lipschitz-continuous functions. Hence, similarly to [212, Section IV], we provide a verifica-
tion tool via the following proposition, to assess the satisfaction of contraction conditions over
compact sets once the training is over.
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Figure 1.1: Synchronization of Lorentz’s oscillators

Proposition 1.6. Let S ⊂ Rn be an arbitrary compact set and D ⊂ Rn a set with a finite number
of elements and let r > 0 be such that

S ⊆
⋃
xi∈D

B(xi, r), B(xi, r) := {x ∈ Rn : |x− xi| < r}.

Let M : Rn → Rn×n be a Lipschitz-continuous matrix-valued function, with Lipschitz constant LM ,
taking symmetric values and such that M(xi) ⪯ −2qI for all xi ∈ D and for some q > 0. If q, r, LM
are such that q > rLM , then M(x) ⪯ −qI, ∀x ∈ S.

Proposition 1.6 implies that if the dataset is composed of a sufficiently fine grid, then the
learned properties extend to the points in between. Hence, we can obtain a valid metric over a
compact set by learning on a finite number of samples. Similar reasoning can be proposed for
the feedback law α.

The proposed algorithm has been tested in the leader-synchronization problem of a network
of N = 6 identical Lorenz attractors described by the following dynamics

ẋi,1 = a(xi,2 − xi,1) + ui

ẋi,2 = xi,1(b− xi,3) − xi,2 + (2 + sin(xi,1))ui
ẋi,3 = xi,1xi,2 − cxi,3

with xi = (xi,1, xi,2, xi,3) ∈ R3 and where a = 10, b = 28, c = 8
3 , guaranteeing the chaotic

behavior. We consider the control matrix g(x) = (1, 2 + sin(xi,1), 0) to exclude the possibility of
feedback linearizing solutions. The agents communicate with each other following the leader-
connected graph represented in Figure 1.1a. Simulations are depicted in Figure 1.1.

1.6 Conclusions and perspectives

The content of this chapter is based on the contributions [D42–D49] which motivated the Ph.D.
thesis of my Ph.D. student M. Giaccagli [87]. We investigated the design of contracting feedback
laws for nonlinear systems based on a Riemannian metric contraction approach and two main
different tools are proposed: the design of contracting infinite-gain margin laws [D43, D44]
and the incremental forwarding approach [D46–D48]. The former is well motivated by its
use in synchronization problems [D42, D49] addressed in Section 1.5, while the latter plays a
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crucial role in the context of output regulation [D43, D46–D48], as we will further investigate
in Chapter 3.

The proposed design are based on sufficient conditions but necessity has not been inves-
tigated. For instance, the Killing vector property is in general not necessary as highlighted
in Section 1.5.2. Concerning the problem of state-synchronization of multi-agent systems, we
addressed the problem of leader-connected graphs, but the theory of nonlinear system syn-
chronization still lacks of more general results (i.e. nonleader directed weighted graphs) for
which more complex analysis is needed (for instance relying on the use of edge’s Laplacian, see,
e.g. [8]).

Finally, we remark that the proposed conditions are all based on the solution to a partial
differential inequality which is in general very hard to verify with explicit solutions. As a con-
sequence, one possibility is that of employing suitable approximation of those solutions and to
restrict the solutions to semi-global (or regional) context. An example is given in Section 1.5.3
where a Deep Neural Network (DNN) is employed to learn the condition for the design of a
contractive feedback. It would be interesting to follow a similar approach in the context of
forwarding developed in Section 1.4.
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This chapter primarily focuses on developing design tools for stabilizing nonlinear couplings
of partial differential equations (PDEs) and ordinary differential equations (ODEs). Such cou-
plings may arise in various contexts, such as when actuator and/or sensor dynamics are gov-
erned by PDEs, as discussed in [119, 120]. Another case where such couplings naturally arise
is in the problem of internal model-based regulators for output regulation problems, which will
be reviewed in more detail in Chapter 3. In this case, the system to be controlled may be de-
scribed by either an ODE or a PDE, and the internal model unit can be represented by an ODE
(as in integral action controllers, e.g. [62, 127, 128, 155, 199]) or by a PDE (as in the case of
Repetitive Control, e.g. [51, 97, 213]). However, while most of the existing techniques for sta-
bilizing PDE-ODE couplings focus on linear dynamics, such as the well-celebrated backstepping
technique [41,120], few works address nonlinear dynamics.

The objective of this chapter is therefore to develop new Lyapunov-based techniques, mainly
inspired from finite-dimensional nonlinear system theory, that can be applied to the context of
stabilization of (possibly nonlinear) PDEs. After recalling a series of preliminary notions on
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Chapter 2. Stabilization of infinite dimensional systems

abstract operators, we provide in Section 2.2 a new set of sufficient and necessary conditions
that can be used to study the stability of some semi-linear systems.

Then, in Section 2.2.2, we propose a new technique for strictifying an existing weak Lya-
punov function. This approach is a direct extension of the work presented in [157], where the
Lyapunov function associated to an observer is used for strictification. In the context of PDEs,
we demonstrate how to apply this technique to general abstract linear systems, and then focus
on the particular case of the Korteweg-de-Vries (KdV) equation. For such a KdV model, we show
that the energy function can be strictified to derive an ISS Lyapunov function. Sections 2.3 and
2.4 build upon the forwarding approach discussed in Section 1.4 to design stabilization feedback
for ODE-PDE and PDE-ODE cascades, respectively. These sections, along with the tools devel-
oped in Sections 2.2-2.4, are then used to derive integral-action based feedback in two different
contexts. First, we propose an anti-windup based integral action for linear PDEs in the presence
of input saturations. The forwarding approach in Section 2.4 and the set of sufficient conditions
for the stability of semi-linear systems presented in Section 2.2 play a fundamental role. Finally,
we address the problem of designing an integral action for a KdV model with boundary control.
This is possible thanks to the existence of an ISS-Lyapunov function, as shown in Section 2.2.2.

2.1 Preliminaries on abstract operators

Given two Hilbert spaces H1 and H2, the space L(H1,H2) denotes the space of operators
bounded from H1 to H2, and L(H1) = L(H1,H1). Given a Hilbert space H, IH denotes the
identity operator. For Rn, this identity operator is given by In.

Definition 2.1. A family T = (Tt)t≥0 of operators in L(H) is a strongly continuous semigroup on
H if T0 = I, Tt+τ = TtTτ for every t, τ ≥ 0, and limt→0+ Ttv = v for all v ∈ H.

Definition 2.2. Let H be a Hilbert space. A C0-semigroup T(t) of bounded linear operators on H
is called (uniformly) exponentially stable, if there exist ν, k > 0 such that, for all t ∈ R≥0

∥T (t)∥L(H) ≤ k exp(−νt). (2.1)

Definition 2.3. An operator A : D(A) ⊂ H → H is said to be dissipative if

⟨A(w1) − A(w2), w1 − w2⟩H ≤ 0, ∀w1, w2 ∈ D(A). (2.2)

Definition 2.4. An operator A : D(A) ⊂ H → H is said to be maximal if there exists λ0 > 0 such
that (equivalently, for all λ0 > 0)

Ran(λ0IH − A) = H, (2.3)

where IH is the identity operator over the Hilbert space H, and Ran is the range operator.

Definition 2.5. An operator A : D(A) ⊂ H → H is said to be m-dissipative if it is dissipative and
maximal.

Definition 2.6. Let H and Y be two real Hilbert spaces, A : D(A) ⊂ H → H be the generator of
a strongly continuous semigroup (T(t))t≥0 and C ∈ L(X ,Y). Let ψ ∈ L(D(S), L2([0,∞); Y)) be
defined by

(ψw0)(t) = C T(t)w0, ∀w0 ∈ D(A) (2.4)

for all t ≥ 0. Then, the pair (A, C) is approximately observable in infinite-time if and only if
Kerψ = {0}.
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A straightforward implication of this definition is that, if (ψw0)(t) = 0 for all t ≥ 0, then
T(t)w0 = 0 for all t ≥ 0. Note that this definition is weaker than the one provided in [203,
Definition 6.1.1], where this property is defined for a fixed time τ .

We refer to [24,65,203] for more details and notion on abstract operators.

2.2 Stability of some semi-linear systems

Let X be a Hilbert space equipped with a scalar product ⟨·, ·⟩X , from which one can deduce a
norm ∥ · ∥X . We consider in this section semi-linear systems of the form

d
dtx = Fx+ GψL(Lx) := Fψ(x) (2.5)

in which F : D(F) ⊂ X → X is a linear operator which is an infinitesimal generator of a strongly
continuous semigroup denoted (etF )t≥0, the linear operators G ∈ L(R,X ) and L ∈ L(X ,R) are
bounded, and ψL : R → R is a function satisfying the following assumption.

Definition 2.7. Given a real number L > 0, the function ψL : R → R is a generalized saturation if
it satisfies the following properties.

1. ψL(0) = 0.

2. |ψL(s′) − ψL(s′′)| ≤ |s′ − s′′| for any s′, s′′ ∈ R.

3. sups∈R |ψL(s)| ≤ L.

In particular, ψL is a continuous globally bounded function with Lipschitz constant equal
to 1 (this value is arbitrarily and selected to one only to ease the presentation of this section).
Next, we study the solution to system (2.5). The generalized saturation function being globally
Lipschitz, applying [65, Theorem 11.1.5], the following well-posedness result follows. Note that
we refer the reader to [65, Definition 11.1.3] and [65, Definition 11.1.2] for the definitions of
mild and classical solutions, respectively.

Proposition 2.1. For any x0 ∈ X (resp. x0 ∈ D(F)), there exists a unique mild (resp. classical)
solution x ∈ C(R≥0; X ) (resp. x ∈ C1(R≥0; X ) ∩ C(R≥0;D(F)), that we will denote by x(t) :=
eFψ t(x0), to (2.5).

We study now the exponential stability of the origin of (2.5). This notion of stability is
defined as follows.

Definition 2.8. The origin is said to be globally exponentially stable for system (2.5) if there exist
positive real numbers c and λ such that ∥eFψ t(x0)∥X ≤ ce−λt∥x0∥X for all (x0, t) in X × R≥0.

It has to be noticed that in this property it is required that the positive real number c and
λ are uniform. In the following part of this section a necessary condition and two sufficient
conditions are given to obtain this global exponential stability property.

2.2.1 Necessary and sufficient conditions

We start by stating the following necessary condition in the same spirit of some other results
related to feedback stabilization with saturated control, e.g. [195, Theorem 2.2, Chapter 2.4.4]
or [93, Theorem 1], although these results are based on the existence of a quadratic Lyapunov
function (differently from the proposed proof which is based on a trajectory analysis, see [D18]).
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Proposition 2.2 (Necessary Conditions). The origin of system (2.5) is globally exponentially stable
only if the origin of d

dtx = Fx is exponentially stable.

Sufficient conditions exist to prove the asymptotic stability from separate properties on the
linear operator and on the semilinear map. In our context, we give sufficient conditions based
on Lyapunov consideration. Before presenting the next result, we provide the definition of
coercive Lyapunov functionals for linear systems, that will be used all along the sequel (see [142,
Definition 2.11] for the definition of coercive Lyapunov functionals for more general systems).

Definition 2.9. Let F : D(F) ⊂ X → X be a linear operator generating a strongly continuous
semigroup. A functional V (x) := ⟨Px, x⟩X , with P ∈ L(X ) a self-adjoint operator, is said to be a
coercive Lyapunov functional for F if there exist positive constants α and λ satisfying

α∥x∥2
X ≤ V (x) , ∀x ∈ X ,

⟨Fx,Px⟩X + ⟨Px,Fx⟩X ≤ −λ∥x∥2
X , ∀x ∈ D(F).

Inequality (2.6) and the assumption P ∈ L(X ) imply in particular that
√
V (·) is equivalent to

the usual norm ∥ · ∥X . Note that the existence of non-coercive Lyapunov functional (possibly im-
plying a non-equivalence between

√
V (·) and ∥·∥X ) is a particular feature of infinite-dimensional

systems, as discussed in [143].
In the following, two sufficient conditions for the exponential stability of the origin of systems

of the form (2.5) are stated. The first condition is based on a “small-gain control property” which
extends the result [189, Theorem 2.4] presented in the case of finite-dimensional linear systems
in the particular case in which the function ψL is a saturation function. It is a trivial extension
of the fact that exponential stability is robust to small Lipschitz perturbations in the dynamics
when there exists a coercive Lyapunov functional.

Proposition 2.3. Consider system (2.5) with the function ψL satisfying Definition 2.7. Suppose
that there exists a coercive Lyapunov functional V for F given by, for all x ∈ X , V (x) := ⟨Px, x⟩X
for some P ∈ L(X ). Then, for all bounded linear operator L : X → X satisfying ∥L∥L(X ,R) <

λ
2∥PG∥X

the origin of (2.5) is globally exponentially stable.

The second sufficient condition is based on the existence of a common coercive Lyapunov
functional between the operators F and F + GL. For the finite-dimensional case in which the
function ψL is a saturation function this result is well known, see, e.g. [173].

Proposition 2.4. Consider system (2.5) with the function ψL satisfying Definition 2.7. Suppose
there exists a common coercive Lyapunov functional V for F and F + GL, namely there exists a
functional V defined as V (x) := ⟨Px, x⟩X , for all x in X , satisfying (2.6) and

⟨Fx,Px⟩X + ⟨Px,Fx⟩X ≤ −λ∥x∥2
X

⟨(F + GL)x,Px⟩X + ⟨Px, (F + GL)x⟩X ≤ −λ∥x∥2
X

for all x ∈ D(F), for some λ > 0. Then the origin of (2.5) is globally exponentially stable.

2.2.2 Construction of ISS-Lyapunov functions via strictification

The construction of strict ISS Lyapunov function for PDEs is an important problem which is
widely open, see, e.g. [142,143]. Inspired by the recent work [157], in this section we study the
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problem of strictification of weak Lyapunov functions (which often coincide with the Energy or
L2 norm of the system) based on observers design. Consider in particular a system of the form

d
dtx(t) = Ax(t) + Bu(t)
y(t) = Cx(t),

(2.6)

where A is the generator of a C0-semigroup T(t) on a Hilbert space X , and B : Rm → X and
C : D(A) → Y are bounded operators. Given a system of the form (2.6), we study the link
between exponential stability of the semigroup generated by A and the detectability of the pair
(A, C).

To this end, associated to T(t) we consider the convolution operator on Lp(R≥0,X ), 1 ≤ p <
∞ defined by

(Gf)(t) :=
∫ t

0
T(s)f(t− s)ds. (2.7)

In [56], the operator G is called the Green operator.

Theorem 2.1. Let 1 ≤ p < ∞. The semigroup T(t) is exponentially stable if and only if the
operator G is a bounded operator from Lp(R≥0,X ) to itself.

We call (A, C) detectable, if there exists a bounded linear operator L ∈ L(Y,X ) such that
(A + LC) generates an exponentially stable semigroup. Associated to the operators C,L we
consider multiplication operators on appropriate Lp-spaces defined by

C : Lp(R≥0,X ) → Lp(R≥0,Y), f(·) 7→ Cf(·), (2.8)

L : Lp(R≥0,Y) → Lp(R≥0,X ), g(·) 7→ Lg(·), (2.9)

The following can be found in [56, Theorem 5.3].

Theorem 2.2. The following are equivalent:

1. T(t) is exponentially stable.

2. (A, C) is detectable and CG is a bounded operator from Lp(R≥0,X ) to Lp(R≥0,Y).

Another way to obtain exponential decrease of the semi-group is to follow a more direct
Lyapunov approach and to strictify the Lyapunov function. Assuming that C is a detectable
output and assuming moreover that QKC is a C- bounded operator it is possible to follow the
approach introduced in [157]. This theorem directly follows his ideas.

Theorem 2.3. Let X be a Hilbert space and A : D(A) ⊂ X → X be the infinitesimal generator of
a C0-semigroup (T(t))t≥0. Assume there exists a linear map C : D(A) 7→ Y where Y is a Banach
space such that for all φ in D(A),

⟨Aφ,Pφ⟩X + ⟨Pφ,Aφ⟩X ≤ −∥Cφ∥2
Y . (2.10)

Assume moreover that there exist K : C(D(A)) 7→ X and a bounded self adjoint operator Q : X 7→
X and a positive real number α such that

⟨(A − KC)φ,Qφ⟩X + ⟨Qφ, (A − KC)φ⟩X ≤ −∥φ∥2
X , (2.11)

and
∥QKC∥X ≤ α∥C∥Y

Then the semigroup T(t) is exponentially stable.
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Next, we gave the (rather short) proof of the previous theorem, since it has not been pub-
lished/submitted anywhere at the time of the writing of this publication. The proof has been
written in collaboration with Fabian Wirth and Vincent Andrieu.

Proof. Let ε > 0, note that

⟨Aφ, (P + εQ)φ⟩X + ⟨(P + εQ)φ,Aφ⟩X ≤
≤ − ∥Cφ∥2

Y + ε (⟨Aφ,Qφ⟩X + ⟨Qφ,Aφ⟩X )
≤ − ∥Cφ∥2

Y + ε (⟨(A − KC)φ,Qφ⟩X + ⟨Qφ, (A − KC)φ⟩X )
+ ε (⟨KCφ,Qφ⟩X + ⟨Qφ,KCφ⟩X )

≤ − ∥Cφ∥2
Y − ε∥φ∥2

X + 2ε
∣∣∣∣〈QKC

ν
φ, νφ

〉
X

∣∣∣∣ .
With Cauchy-Schwartz and Young inequality we obtain

⟨Aφ, (P + εQ)φ⟩X + ⟨(P + εQ)φ,Aφ⟩X ≤ −∥Cφ∥2
Y − ε∥φ∥2

X + 2εα∥Cφ∥Y ∥φ∥X

≤ −∥Cφ∥2
Y − ε∥φ∥2

X + εα

ν
∥Cφ∥2

Y + νεα∥φ∥X .

Hence, with ν = 2εα, it implies

⟨Aφ, (P + εQ)φ⟩X + ⟨(P + εQ)φ,Aφ⟩X ≤ −1
2∥Cφ∥2

Y − ε
(
1 − 2εα2

)
∥φ∥2

X .

Picking ε = 1
4α2 , it finally implies

⟨Aφ, (P + εQ)φ⟩X + ⟨(P + εQ)φ,Aφ⟩X ≤ −1
2∥Cφ∥2

Y − ε

2∥φ∥2
X .

Finally, exponential stability is obtained from Datko’s lemma.

From previous computations, it can be verified that the system

d
dt x̂ = Ax̂+ Bu+ K(y − Cx̂)

is an observer for system (2.6) and the estimation error x̂ − x converges exponentially to zero
for any initial condition. This can be indeed certified with the Lyapunov functional associated
to the operator Q, see (2.11).

Finally, following the proof of Theorem 2.3 we can construct a strict ISS-Lyapunov functional
for system (2.6) as

S = P + εQ, ε = 1
4α2 .

Indeed, it can be verified that there exists γ > 0 such that

⟨Aφ+ Bu,Sφ⟩X + ⟨Sφ,Aφ+ Bu⟩X ≤ −1
2∥Cφ∥2

Y − ε

4∥φ∥2
X + γ|u|2

for any φ ∈ D(A) and u ∈ Rm.
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2.2.3 An ISS-Lypaunov functional for the Korteweg-de-Vries equation

The Korteweg-de-Vries (KdV) equation is a mathematical model of waves on shallow water
surfaces, see e.g., [52] for a survey. Following the main construction of the previous section, we
study here the existence of a strict ISS-Lyapunov functional for the KdV model described by

wt(t, x) + wx(t, x) + wxxx(t, x) = u(t, x) , (t, x) ∈ R≥0 × [0, L],
w(t, 0) = w(t, L) = 0 , t ∈ R≥0,
wx(t, L) = d(t) , t ∈ R≥0,
w(0, x) = w0(x) . x ∈ [0, L],

(2.12)

where w ∈ L2(0, L) is the state and u is a distributed disturbance and d is a disturbance acting
at the boundary. A nonlinear version of the equation (2.12) is given by the model

wt(t, x) + wx(t, x) + wxxx(t, x) + w(t, x)wx(t, x) = u(t, x) , (t, x) ∈ R≥0 × [0, L],
w(t, 0) = w(t, L) = 0 , t ∈ R≥0,
wx(t, L) = d(t) , t ∈ R≥0,
w(0, x) = w0(x) . x ∈ [0, L],

(2.13)

A formal computation shows that in the absence of disturbances, namely when u = 0 and d = 0,
the time derivative of the energy E defined as

E(w) :=
∫ L

0
w(t, x)2dx (2.14)

yields along solutions to (2.12) or (2.13)

Ė(w) := d

dt

∫ L

0
w(t, x)2dx = −|wx(t, 0)|2. (2.15)

Evidently, the energy E function is not a strict Lyapunov functional but only weak (because
|wx(·, 0)| is not equivalent to the norm of |w|L2). However, it can be shown that since wx(·, 0) is
an exactly observable output as soon as L /∈ N with

N :=
{

2π
√

k2+kl+l2
3 : k, l ∈ N

}
, (2.16)

exponential stability can be further concluded. This analysis falls in the context of Section 2.2.2.
However, since the operator associated to the output wx(·, 0) is not bounded, we cannot apply
on the shelf Theorem 2.3 but we need a finer analysis. To this end, we first recall the following
result concerning the existence of solutions to the KdV equations given in [53, Theorem 9].

Proposition 2.5. For any T, L > 0, for any w0 ∈ L2(0, L), for any u ∈ L1([0, T ];L2(0, L)) and
d ∈ L2(0, T ), systems (2.13) and (2.12) admit a unique mild solution

w ∈ C0([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L)) .

The second result deals with more regular solutions, see [37, Theorem 1.3] or [64, Proposi-
tion 7]. The statement reads as follows.

Proposition 2.6. For any T, L > 0, for any w0 ∈ H3
L(0, L), for any u ∈ C1([0, T ], L2(0, L)) and

d ∈ C2([0, T ]), systems (2.13) and (2.12) admit a unique classical solution

w ∈ C(0, T ;H3(0, L)) ∩ C1(0, T ;L2(0, L)) .
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Chapter 2. Stabilization of infinite dimensional systems

Next, we state the following definition of ISS-Lyapunov functional for systems (2.13) and
(2.12).

Definition 2.10. A Fréchet differentiable function V : L2(0, L) → R is said to be an exponentially
ISS Lyapunov functional for the system (2.13) (resp. (2.12)), if there exist positive constants
α, ᾱ, α, σ1, σ2 such that:

(i) For all w ∈ L2(0, L),
α∥w∥2

L2 ≤ V (w) ≤ ᾱ∥w∥2
L2 .

(ii) The time derivative of V along the trajectories of (2.13) (resp. (2.12)) satisfies

V̇ (w) ≤ −α∥w∥2
L2 + σ1∥u∥2

L2 + σ2|d|2 ,

for any w ∈ L2(0, L), u ∈ L2(0, L) and d ∈ R. If there exists δ > 0 such that (ii) holds only if
∥w∥L2 + ∥u∥L2 + |d| ≤ 3δ then V is said to be a locally exponentially ISS Lyapunov functional for
the system (2.13).

Hence, we have the following theorem certifying the existence of a Lyapunov functional for
the KdV model.

Theorem 2.4. Suppose that L /∈ N . Then, there exists a functional W : L2(0, L) → R≥0 such
that, the function V (w) := W (w) +E(w) with E being the energy in L2-norm defined in (2.14), is

(a) an exponentially ISS Lyapunov functional for the system (2.12);

(b) a locally exponentially ISS Lyapunov functional for the system (2.13).

Moreover, the functional W is given by W (w) := ε∥Π−1(w)∥2
L2 with Π−1 being a continuous linear

operator from L2(0, L) to L2(0, L) with a continuous inverse, and ε > 0 to be chosen small enough.

The operator Π is based on the existence of an observer for the the linear KdV equation
(2.12) with y(t) = wx(t, 0) defined as the output function. Indeed, given

wt(t, x) + wx(t, x) + wxxx(t, x) = u(t, x) , (t, x) ∈ R≥0 × [0, L],
w(t, 0) = w(t, L) = 0 , t ∈ R≥0 ,
wx(t, L) = d(t) , t ∈ R≥0 ,
w(0, x) = w0(x) , x ∈ [0, L] ,
y(t) = wx(t, 0) , t ∈ R≥0 ,

(2.17)

we can define an observer with a distributed correction term of the form
ŵt(t, x) + ŵx(t, x) + ŵxxx(t, x) + κ(x)[y(t) − ŵx(t, 0)] = 0 , (t, x) ∈ R≥0 × [0, L],
ŵ(t, 0) = ŵ(t, L) = 0 , t ∈ R≥0 ,
ŵx(t, L) = 0 , t ∈ R≥0 ,
ŵ(0, x) = ŵ0(x) , x ∈ [0, L] ,

(2.18)
where κ is an output injection gain to be designed which can be obtained for instance following
standard backstepping1 approach, e.g. [41]. In particular, similar to [63, equation (1.8)], it
consists in looking for a change of coordinates

v 7→ γ := Π−1w̃ (2.19)
1With the terminology of “backstepping” according to the infinite-dimensional literature, and not to the finite-

dimensional one!
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2.3. Forwarding for ODE-PDE cascades

mapping a system of the form
vt(t, x) + vx(t, x) + vxxx(t, x) − κ(x)vx(t, 0) = 0 , (t, x) ∈ R≥0 × [0, L],
v(t, 0) = v(t, L) = vx(t, L) = 0 , t ∈ R≥0 ,
v(0, x) = v0(x) , x ∈ [0, L] ,

into an exponentially stable system of the form
γt(t, x) + γx(t, x) + γxxx(t, x) + λγ(t, x) = 0 , (t, x) ∈ R≥0 × [0, L],
γ(t, 0) = γ(t, L) = γx(t, L) = 0 , t ∈ R≥0 ,
γ(0, x) = γ0(x) , x ∈ [0, L],

with λ > 0. The function Π in (2.19) can be obtained using the Fredholm transformation

v(x) = Π(γ)(x) := γ(x) −
∫ L

0
π(x, z)γ(z)dz , ∀x ∈ [0, L],

where π is a Kernel function satisfying the following PDE
πz(x, z) + πzzz(x, z) + πx(x, z) + πxxx(x, z) − λπ(x, z) = λδ(x− z) ,
π(x, 0) = π(x, L) = 0 ,
π(L, z) = π(0, z) = 0 ,
πx(L, z) = πx(0, z) = 0 .

where (x, z) ∈ [0, L] × [0, L] and δ(x − z) denoting the Dirac measure on the diagonal of the
square [0, L] × [0, L]. Existence and uniqueness of such a PDE has been studied in [63, Lemma
2.1],

Finally, it can be shown that the function U : L2(0, L) → R≥0 defined as

U(w) := ∥Π−1(w̃)∥2
L2

is a (strict) ISS-Lyapunov functional for the error estimation error w̃ := ŵ − w with respect to
the disturbances u, d. In other words, the observer (2.18) is an ISS observer for plant (2.17)
with respect to the disturbances u, d.

2.3 Forwarding for ODE-PDE cascades

2.3.1 Exponentially stable ODE and conservative PDE

Let H be a Hilbert space equipped with a scalar product ⟨·, ·⟩H and the corresponding norm
∥ · ∥H. In this paper we are interested in the stabilization (at the origin) problem for systems
that can be described as a cascade of two systems reading as follows

d
dtz = Az +Bu, z(0) = z0

y = Cz,
d
dtw = Sw + Gy, w(0) = w0,

(2.20)

where the state component z lives in an Euclidean space Rn, w is a (possibly infinite-dimensional)
state living in the Hilbert space H, u ∈ Rm is the control input and y ∈ Rp is an interconnection
signal between the z and the w-dynamics. We suppose that S : D(S) ⊆ H → H is a (possibly
unbounded) operator, with D(S) densely defined in H. Defining H−1 as the completion of H
with respect to the norm ∥w∥−1 := ∥(βIH − S)−1w∥H, where β is in the resolvent of S, we sup-
pose that G ∈ L(Rp,H−1), i.e. G is a bounded operator from Rp to H−1. We state the following
set of assumptions.

35



Chapter 2. Stabilization of infinite dimensional systems

Assumption 2.1. The following statements hold.

• The operator S : D(S) ⊆ H → H generates a strongly continuous semigroup of contractions,
that is denoted by (T(t))t≥0 and therefore S is dissipative (see Definition 2.3).

• The matrix A is Hurwitz.

• The spectra of S and A are disjoint and nonempty.

• The operator G is infinite-time admissible for T, which means by [203, Definition 4.6.1] that the
operator2

Φt : L2([0,∞);Rp) → H−1

y 7→
∫ t

0
T(t− s)Gy(s)ds,

(2.21)

is such that for all t ≥ 0 Ran Φt ⊂ H and (∥Φt∥L(L2([0,∞);Rp),H))t≥0 is bounded.

System (2.20) can be viewed as an infinite-dimensional control system in which the z-
dynamics represent the actuator’s dynamics [77]. Another interpretation is to see thew-dynamics
as an infinite-dimensional regulator in output regulation problems, see, e.g. [149], [213]. For
this class of system we can directly extend the forwarding approach, presented in Section 1.4.
Following a similar development to the one detailed in the linear case, we introduce the operator
M : Rn → H−1 defined as solution to

MA = SM + GC, (2.22)

where S is understood as the extension of the operator S in H−1. In view of Assumption 2.1,
the solution M : Rn → H−1 to (2.22) is unique and is given by the explicit formula

M := −
∫ ∞

0
T(t)GCe−tAdt.

See, e.g., [153, Lemma 22]. Furthermore, Ran M ⊂ H. In particular, for all φ ∈ Rn, SMφ +
GCφ ∈ H. Based on the Lyapunov function

V (z, w) = z⊤Pz + ∥w − Mz∥2
H

with P solution to PA+A⊤P = −I, and by recalling that the operator S is dissipative according
to the Definition 2.3, one can derive a natural candidate control u of the form

u = −µB⊤[Pz − M∗(w − Mz)], µ > 0, (2.23)

which allows to conclude that

d
dtV (z, w) ≤ −|z|2 − µ |u|2 .

The closed-loop is then written in the more compact form

d
dtξ = F(ξ), ξ(0) = ξ0, (2.24)

where ξ = (z, w) and

F(ξ) =
[
Az − µBB⊤ (Pz − M∗(w − Mz))

Sw + GCz

]
.

2Here, the semigroup (T(t))t≥0 is the extension of the semigroup generated by S on H−1.
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2.3. Forwarding for ODE-PDE cascades

The domain D(F) of F is defined as

D(F) := {(z, w) ∈ X : Sw + GCz ∈ H},

where X := Rn×H is equipped with the norm defined by ∥(z, w)∥X = |z|+∥w∥H. The resulting
closed-loop is well-posed (i.e. its solutions exist) according to the following result.

Theorem 2.5. Suppose Assumption 2.1 is satisfied. Then, the following statements hold.

1. For every initial conditions (z0, w0) ∈ X , there exists a unique weak solution (z, w) ∈ C0(R≥0; X )
to the closed-loop system (2.24). Moreover, for all t ≥ 0,

∥(z(t), w(t))∥X ≤ ∥(z0, w0)∥X .

2. For every initial conditions (z0, w0) ∈ D(F ), there exists a unique strong solution (z, w) ∈
C1(R≥0; X ) ∩ C0(R≥0;D(F )) to the closed-loop system (2.24). Moreover, for all t ≥ 0,

∥(z(t), w(t))∥D(F ) ≤ ∥(z0, w0)∥D(F )

In order to guarantee also the stability properties of the origin of (2.24), we also need an
extra observability property.

Theorem 2.6. Suppose that Assumption 2.1 holds. Moreover, assume the following:

• (S, B⊤M∗) is approximately observable in infinite-time;

• S has compact resolvent.

Then, the origin of (2.24) is globally asymptotically stable in X , that is, for every initial condition
(z0, w0) ∈ X , the origin is globally asymptotically stable.

In the case where S is a skew-adjoint operator with compact resolvent, we have also the
following test to verify the observability condition of the pair (S, B⊤M∗) needed in the previous
theorem.

Proposition 2.7. Suppose that the following properties hold:

• The operator S is skew-adjoint with compact resolvent;

• The pair (S∗,G∗) is approximately observable in infinite-time;

• For all eigenvalue λ of S,

rank
(
A− λIn B

C 0

)
= n+ p. (2.25)

Then, the pair (S, B⊤M∗) is approximately observable in infinite-time.

The non-resonance condition (2.25) allows to guarantees the controllability of the original
system (2.20). This condition is necessary in the context of finite-dimensional systems, see,
e.g. [68]. In practice, the previous proposition corresponds to a controllability test for cascades
of ODE-PDE systems of the form (2.20) in which S is a skew-adjoint operator. The extension to
more general classes of cascades PDE-PDE systems is still a missing result in literature.

37



Chapter 2. Stabilization of infinite dimensional systems

As for the finite-dimensional case, since the first subsystem is already exponentially stable,
we highlight that the proposed feedback law (2.23) can be also modified into

u = εB⊤M∗w

by selecting ε small enough. Furthermore, the proposed design can be also directly applied to
the case of cascade in which the ODE is nonlinear and can be described as

ż = Az +B sat(u)

where sat is a generalized saturation function (e.g. any cone-bounded monotonic function), or
by a Lipschitz system in the so-called normal form

ẋ = f(x, e), ξ ∈ Rρ,
ẏ = q(x, y) + u, e ∈ R,

with z = (x, y), in which ξ represents some zero-dynamics which is incrementally ISS with
respect to y and f(0, 0) = 0, q(0, 0) = 0.

2.3.2 Scalar ODE coupled with a transport equation

As illustration of the previous results, we consider the cascade system composed by a scalar ODE
and a PDE described by a conservative transport equation, that is, the following system

ż = −az + u, t ∈ R≥0
wt(t, x) + λwx(t, x) = 0, (t, x) ∈ R≥0 × [0, 1]
w(t, 0) = w(t, 1) + cz, t ∈ R≥0
z(0) = z0, w(0, x) = w0(x), x ∈ [0, 1],

(2.26)

with a, c and λ three positive constants. It can be noticed that the (autonomous) PDE is conser-
vative, i.e. solution to

wt(t, x) + λwx(t, x) = 0, w(t, 0) = w(t, 1)

verifies
d

dt

∫ 1

0
w(t, x)2dx = 0 .

In other words, the energy is constant in time. Note that this transport equation will play a
fundamental role in the context of repetitive control (see Section 3.4) since the same equation
represents the operator associated to a delay.

Following the approach developed in the previous section, we look for a solution M to the
Sylvester equation (2.22). In the context of system (2.26), it corresponds to look for an operator
of the form

Mz := M(x)z

where M : [0, 1] → R is given as solution to

λM ′(x) = aM(x), x ∈ [0, 1]
M(0) = M(1) + c,

and is explicitly computed as

M(x) = c

1 − exp
(
a
λ

) exp
(
a

λ
x

)
.
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2.4. Forwarding for PDE-ODE cascades

Furthermore, it can be verified that the pair (S,B⊤M∗) is observable according to Definition 2.6.
In particular, M∗ is explicitly given by

M∗ : L2(0, 1) ∋ w 7→
∫ 1

0
M(x)w(x)dx ∈ R.

Recalling that B⊤ = 1, the equation B⊤M∗T(t)w0(x) for all t ≥ 0 reduces to
∫ 1

0 M(x)w(t, x)dx.
With some computations, then, one can show that the system

wt + λwx = 0, (t, x) ∈ R≥0 × [0, 1],
w(t, 0) = w(t, 1), t ∈ R≥0
w(0, x) = w0(x), x ∈ [0, 1]
y(t) =

∫ 1
0 M(x)w(t, x)dx

is approximately observable according to Definition 2.6. Since all the assumptions of Theo-
rem 2.6 are verified, it can be shown that the feedback

u = −kz + µ

∫ 1

0
M(x)(w(t, x) −M(x)z)dx

makes the origin of (2.26) asymptotically stable for any choice of k, µ > 0.

2.4 Forwarding for PDE-ODE cascades

2.4.1 Exponentially Stable PDE and conservative ODE

In this section we consider the opposite problem of what is considered in Section 2.3. In other
words, we consider a composite system composed of an exponentially stable PDE in cascade
with a conservative ODE

d
dtx(t) = Ax(t) + Bu(t), x(0) = x0
d
dtz(t) = Sz(t) +GCx(t), z(0) = z0,

(2.27)

where A : D(A) ⊂ X → X with D(A) dense in X , B ∈ L(Rm,X ), C ∈ L(D(A),Rp), S ∈ Rr×r,
and G ∈ Rr×p. The space D(A) is equipped with the usual graph norm. Therefore, the control
operator B is supposed to be bounded, while the output operator C might be unbounded. Similar
to the context of Section 2.3, we suppose that the first subsystem is already stable, while the
second is conservative. This is formally stated in the following assumption.

Assumption 2.2. The following statements hold.

• The operator A generates a strongly continuous semigroup of contractions. Moreover, there exist
a positive value µ and a self-adjoint, positive and coercive operator P ∈ L(X ) such that, for every
x ∈ D(A)

⟨PAx, x⟩X + ⟨Px,Ax⟩X ≤ −µ∥w∥2
X . (2.28)

• The pair (S,G) is controllable. Moreover there exists a symmetric positive definite matrix Q such
that QS + S⊤Q ≤ 0.

• The spectra of A and S are disjoint and non-empty.
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Chapter 2. Stabilization of infinite dimensional systems

Following the previous approach, we introduce the operator M : X → Rr, defined as the
solution of the following Sylvester equation

MA = SM +GC (2.29)

which is formally equivalent to (2.22). Invoking [153, Lemma 22], existence and uniqueness of
the solution of the previous equation is guaranteed under previous assumption. Given such an
operator M, we can now design the feedback-law for the system (2.27). Furthermore, in order
to provide a feedback law easy to implement, we look for an output-feedback design that uses
only the z variable but not x. In particular, it is given by

u := εB∗M∗Qz, (2.30)

whereQ is given by Assumption 2.2, ε is a positive constant to be chosen small enough. Denoting
the state by ξ := (w, z) and the state space by H := X × Rr, the closed-loop system therefore
reads

d
dtξ = F(ξ), ξ(0) = ξ0, (2.31)

where

F(ξ) =
[

A εBB∗M∗Q
GC S

]
,

with D(F) := D(A) × Rr. We have now the first theorem concerning the well-posedness of
system (2.31).

Theorem 2.7. Suppose Assumption 2.2 holds. Let us define ε∗ as

ε∗ := µ

∥P∥L(X )∥B∥L(Rm,X )∥M∥L(X ,Rr)|B∗M∗|
max
s∈(0,1)

√
1 − s

1 + s
s.

For every ε ∈ (0, ε∗) and for every initial conditions (x0, z0) ∈ H (resp. (x0, z0) ∈ D(F)), there
exists a unique solution (x, z) ∈ C(R≥0; H) (resp. (x, z) ∈ C1(R≥0;D(F))) to (2.31).

The previous theorem ensures the well posedness of the solutions of the system (2.27)
in closed-loop with the feedback law (2.30), provided that the parameter ε is selected small
enough. Similarly to the results of Section 2.4 In order to show the stability of the origin of the
closed-loop system (2.31), the following extra assumption is needed.

Theorem 2.8. Suppose Assumption 2.2 holds and moreover the pair (S,B∗M∗Q) is detectable3.
Then with ε∗ defined in Theorem 2.7, for every ε ∈ (0, ε∗) and for every initial conditions, (x0, z0) ∈
H, the origin of (2.31) is globally exponentially stable.

Note that the detectability of the pair (S,B∗M∗Q) can be directly checked provided that
one is able to solve the Sylvester equation (2.29), whose solution is anyway needed in order
to design the feedback law (2.30). Although such an observability condition is directly related
to the data of the problem (i.e. the operators A,B, C and the matrices S,G) via the Sylvester
equation (2.29), one may ask whether alternative conditions can be established, similarly to
the result of Proposition 2.7. An answer is given in the case in which the matrix S is skew-
symmetric, i.e. when Q in Assumption 2.2 coincides with the identity matrix. Note that this can

be always satisfied via a preliminary change of coordinates z 7→ Q
1
2 z. In such a case, we have

the following result.
3In other words, there exists L such that the matrix (S − LB∗M∗Q) is Hurwitz.
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2.4. Forwarding for PDE-ODE cascades

Proposition 2.8. Suppose that S is a skew-symmetric matrix and that the following holds

Ran
[
A − IXλ B

C 0

]
= X × Rp (2.32)

for any λ eigenvalue of S. Then, the pair (S,B∗M∗) is observable.

2.4.2 Korteweg-de Vries equation coupled with an integrator

Following the previous idea of forwarding for cascade systems, we study now the problem of
stabilizing a cascade composed y a KdV equation with an integrator. In particular, we study the
following system

wt(t, x) + wx(t, x) + wxxx(t, x) = 0 , (t, x) ∈ R≥0 × [0, L],
w(t, 0) = w(t, L) = 0 t ∈ R≥0,
wx(t, L) = u(t) , t ∈ R≥0,
w(0, x) = w0(x) . x ∈ [0, L],
ż(t) = wx(t, 0) .

(2.33)

We can compactly rewrite system (2.33), in the form (2.27) by selecting

Aw = −w′ − w′′′, B∗w = wx(L), Cw = wx(0),
D(A) = {w ∈ H3(0, L) : w(0) = w(L) = w′(L) = 0},

S = 0, G = 1,
(2.34)

and it can be noted that B (obtained from the definition of B∗) is an unbounded operator. As
a consequence, we cannot apply directly Theorem (2.8). Nevertheless, we can follow the same
reasoning to obtain a similar feedback law and study the overall closed-loop system. To this end,
we define the operator M : L2(0, L) → R as solution to the following Sylvester equation

MAw = Cw , ∀w ∈ D(A) . (2.35)

Since the strongly continuous semigroup generated by the operator A is exponentially stable,
the Sylvester equation (2.35) admits a unique solution, see [153, Lemma 22]. Moreover, since
M is a linear form, according to Riesz representation theorem [40, Theorem 4.11], the operator
M is uniquely defined as

Mw =
∫ L

0
M(x)w(x)dx.

In order to obtain an explicit solution, we write equation (2.35) in the explicit form

w′(0) = −
∫ L

0
M(x)[w′(x) + w′′′(x)]dx ∀w ∈ D(A).

Using integration by parts we obtain

w′(0) =
∫ L

0
w(x)[M ′(x) +M ′′′(x)]dx+M(0)w′′(0) −M(L)w′′(L) −M ′(0)w′(0) ,

for all w ∈ D(S). From the latter equation, we obtain the following boundary value problem
M ′′′ +M ′ = 0 ,
M(0) = M(L) = 0 ,
M ′(0) = −1 .

(2.36)
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It can be verified that the function

M : x ∈ R 7→
−2 sin(x2 ) sin(L−x

2 )
sin(L2 )

(2.37)

is a solution to (2.36). Then, using the definition of B∗, we can compute B∗M∗ as

B∗M∗ = dM(x)
dx

M(L) = −1

Finally, following (2.30) and selecting Q = 1, we obtain a feedback law of the form u = kz with
k ∈ (0, k⋆) to be chosen small enough, with k⋆ = ε∗B∗M∗, and ε∗ given by Theorem 2.7. In
particular, we obtain simply u = −εz.

2.4.3 Heat equation coupled with a linear oscillator

We consider, as illustration, the case of a linear system controlled via an actuator with dynamics
described by a heat equation [119]. In particular, for a positive integer r and (w0, z0) in L2(0, 1)×
Rr, we consider the following system

wt(t, x) − wxx(t, x) = b(x)u(t), (t, x) ∈ R≥0 × (0, 1),

ż(t) = Sz(t) +Gw(t, ℓ), t ∈ R≥0,

w(t, 0) = w(t, 1) = 0, t ∈ R≥0,

(w(0, x), z(0)) = (w0(x), z0), x ∈ (0, 1),

(2.38)

where b is in L2(0, 1) and ℓ in (0, 1) and with S = −S⊤ in Rr×r and G in Rr such that the pair
(S,G) is controllable. This system can be written in the form (2.27) by setting X := L2(0, 1) and

Aw := w′′, Bu := bu, Cw := w(ℓ),

with D(A) := {w ∈ H2(0, 1) : w(0) = w(1) = 0}. It can be verified that Assumption 2.2 is
satisfied. In particular, by selectin P = IX , it can be shown that

⟨Aw,w⟩X + ⟨w,Aw⟩X = −∥w′∥2
X .

for any w ∈ D(A). Using the Poincaré inequality, inequality (2.28) follows with µ = π. More-
over, since S is skew adjoint, its eigenvalues are on the imaginary axis, then the spectrum of A
and S is disjoint since A contains eigenvalues at the left hand side of the imaginary axis.

To apply the control law (2.30), we look for an operator M : L2(0, 1) → Rr solution to the
Sylvester equation (2.29) which in our context becomes

Mw′′ = SMw +Gw(ℓ) , ∀w ∈ D(A).

Moreover, M can be looked as an operator in integral form, i.e.

Mw =
∫ 1

0
M(x)w(x)dx,

where M : [0, 1] 7→ Rr is defined as

M(x) =
{
E1 exp(Fx)N0 , x ∈ (0, ℓ)

E1 exp(Fx)N0 + E1 exp(F (x− ℓ))Γ , x ∈ (ℓ, 1)
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where (F,G,N0, E1) are matrices respectively in R2r×2r, R2r, R2r and Rr×2r defined as

F =
[

0 Ir
S 0

]
, Γ =

[
0
G

]
, E1 =

[
Ir 0

]
,

and

N0 = −
([

E1
E1 exp(F )

])−1 [
0

−E1 exp(F (1 − ℓ))Γ

]
.

The forwarding control feedback (2.30) takes therefore the form

u(t) = −ε
(∫ 1

0
M(x)b(x)dx

)⊤
z(t).

Consider moreover the simple case in which r = 2 and S,G are given by

S :=
[

0 1
−1 0

]
, G :=

[
1 0

]
.

Due to the particular structure of the matrix S, the pair (S,B∗M∗) is observable if and only if
B∗M∗ ̸= 0. Hence, if ∫ 1

0
M(x)b(x)dx ̸= 0,

exponential stability of the closed-loop system is guaranteed.

2.5 Integral action control for PDEs

In this section we investigate the use of integral action controllers for infinite-dimensional sys-
tems, see, e.g. [62, 127, 128, 155, 199]. First, we provide a new result in the context of anti-
windup design (see, e.g. [93, 101, 173, 195]) for abstract operators. Then, we focus on the use
of integral action for the Korteweg-de Vries equation.

2.5.1 Anti-windup for linear abstract operators

In this section we consider a class of controlled linear systems with saturated control. In partic-
ular, we consider X as a Hilbert space equipped with a norm ∥ · ∥X and a scalar product ⟨·, ·⟩X .
We consider systems which are described as

d
dtx = Ax+ B satL(u) + d, y = Cx, (2.39)

in which A : D(A) ⊂ X → X is an infinitesimal generator of a C0-semigroup denoted t 7→ etA,
the operator B ∈ L(R,X ) is linear and bounded, the operator C is in4 L(D(A),R), u in R is the
control input, y in R is the measured output, d in X is an unknown constant disturbance vector,
and the saturation function satL is defined as

satL(s) :=


L if s ≥ L ,
s if |s| ≤ L ,

−L if s ≤ −L ,
(2.40)

4Since A is an infinitesimal generator of a C0-semigroup, its domain D(A) is a Hilbert space equipped with the
graph norm ∥x∥D(A) = ∥x∥X + ∥Ax∥X .
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for some L > 0. Given a constant reference yref ∈ R, we are interested in the design of a
feedback law for system (2.39) so that there exists a unique equilibrium which is exponentially
stable and

lim
t→∞

y(t) = yref , (2.41)

by means of an integral action. Note that the regulation problem could be defined without
requiring existence and uniqueness of equilibrium leading to weaker assumptions. We state
now the following set of assumptions, similarly to [199].

Assumption 2.3. The operator A generates a strongly continuous semigroup (etA)t≥0, and more-
over there exist a coercive and self-adjoint operator Q ∈ L(X) and a positive constant ν such that
for all x ∈ D(A)

⟨Ax,Qx⟩X + ⟨Qx,Ax⟩X ≤ −2ν∥x∥2
X . (2.42)

Then, following [155], we assume (up to a reparametrization) the following.

Assumption 2.4. The condition CA−1B = 1 holds.

Assumption 2.3 establishes that the semigroup generated by A is exponentially stable. It
can be shown that in order to achieve exponential stability this assumption is necessary, see of
Proposition 2.2. Note that exponential stability could be obtained without assuming coercivity of
the operator Q. However,it is not straightforward to obtain exponential stability for the closed
loop system that we study, because it is nonlinear due to the saturation operator. Following
[143], it may be possible to remove this coercivity assumption.

Assumption 2.4 could be also relaxed as CA−1B ≠ 0, corresponding to the classical non-
resonance condition (see, e.g., [D25] for the finite-dimensional case and [199] for the infinite-
dimensional case). Here we select its value set to 1 to ease the rest of the presentation.

Following classical finite-dimensional strategies, we extend the system (2.39) with an inte-
gral action [D25] and an anti-windup mechanism [93,101,173,195]. In particular, we propose
the following regulator

d
dtz = Cx− yref − µ dzL(u), u = kz, (2.43)

with z in R, µ, k positive parameters to be selected so that to ensure the solutions to the closed-
loop system (2.39), (2.43) to be exponentially stable, and the dead zone function dz defined
as

dzL(s) := s− satL(s) .

In view of the definition of the dead zone function, the extended closed-loop system (2.39),
(2.43) reads as

ξ =
(
x
z

)
, d

dtξ = Fξ + G satL(Kξ) + Γ, (2.44)

with F ,G,K defined as

F :=
(

A 0
C −µk

)
, G =

(
B
µ

)
, K =

(
0 k

)
,

and Γ = (d, yref). The state space is defined by H = X × R and it is equipped with the norm

∥ξ∥H = ∥(x, z)∥H =
√

⟨x, x⟩X + |z|2
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with the associated scalar product ⟨(x1, z1), (x2, z2)⟩H = ⟨x, x⟩X + z1z2. Moreover, we define the
domain of the operator F given by

D(F) = {(x, z) ∈ X × R : Ax ∈ X }

which is equipped with the usual graph norm.
The following result ensures that there exists a unique equilibrium point to the closed-loop

system (2.44) This existence result relies mainly on Assumption 2.4. In addition to this exis-
tence, we provide a condition ensuring that, if the perturbation d and the reference yref are
sufficiently small, then at the equilibrium the regulation objective Cx◦ = yref is satisfied, despite
the perturbation d.

Lemma 2.1. There exists a unique equilibrium point (x◦, z◦) ∈ D(F) to (2.44). In other words,
there exists a unique solution (x◦, z◦) ∈ D(F) to the following set of equations:

0 = Ax◦ + B satL(kz◦) + d
0 = Cx◦ − yref − µ dzL(kz◦) .

Moreover, let Ω ⊂ X × R be defined as

Ω = {(d, yref) ∈ X × R : |CA−1d+ yref | ≤ L}.

Then, for all (d, yref) ∈ Ω, one has Cx◦ = yref .

Given a nominal value (d, yref) and its corresponding nominal equilibrium (x◦, z◦) estal-
bished by the previous lemma, we consider now the change of coordinates

ξ =7→ ξ̃ := ξ − ξ◦ =
(
x− x◦

z − z◦

)
.

The system (2.44) reads in these new coordinates:

d
dt x̃ = Ax̃+ B[satL(kz̃ + kz◦) − satL(kz◦)]
d
dt z̃ = Cx− µ[dzL(kz̃ + kz◦) − dzL(z◦)]

or equivalently,

d
dt x̃ = F x̃+ GψL(Kx̃), ψL(Kx̃) := satL(K(x̃+ x◦)) − satL(Kx◦). (2.45)

System (2.45) is a semi-linear system of the form (2.5) considered in Section 2.2 and moreover
the function ψL so defined satisfies Definition 2.7 of generalized saturation (picking 2L instead
of L). Well-posedness of system (2.45) follows from direct application of Proposition 2.1.

As a consequence, our aim is to show that an appropriate selection of the parameters µ, k
allows to apply Proposition 2.4 in order to show that the origin of system (2.45) is globally ex-
ponentially stable. To this end, we need to introduce a new operator that will be denoted as M.
In particular, since A generates a strongly continuous semigroup which origin is exponentially
stable, it admits an inverse, A−1 which belongs to L(X , D(A)) (see e.g., [57, Theo. 2.1]). As a
consequence, C being A-bounded, the operator M = CA−1 belongs to L(X ,R). Note that such
an operator M is solution to the following equation

MAx = Cx ∀x ∈ D(A) . (2.46)

We have now the following result.
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Proposition 2.9. Suppose Assumption 2.3 and 2.4 hold. For any µ > 0 and k ∈ (0, k⋆) with k⋆

given by

k⋆ = min
{

ν

µ∥M∥2
L(X ,R)

,
ν

∥(Q + M⋆M)B∥2
L(X ,R)

}
, (2.47)

the origin of (2.45) is globally exponentially stable.

The main idea of the proof of this proposition consists in showing the existence of a common
Lyapunov functional for the operators F and for F +GK, which is the context of Proposition 2.4.
Such an operator is given by

P(x, z) =
(

Q + M⋆M −M⋆

M 1

)(
x
z

)
, (2.48)

and it is based on the forwarding approach given in Section 2.4.1.
Note that from condition (2.47) we obtain that if

µ ∈
(

0,
∥(Q+M⋆M)B∥2

L(X ,R)
∥M∥2

L(X ,R)

)
then k⋆ is independent of µ, allowing for a larger interval for the choice of k.

Finally, in view of the previous result, we state the following result which combines the result
of Proposition 2.9 with the properties of the equilibria of the closed-loop dynamics established
in Lemma 2.1. In summary, global exponential set-point regulation by means of an integral
action in the presence of input saturation is obtained, thanks to the anti wind-up design of the
regulator (2.43).

Theorem 2.9. Consider system (2.39) and suppose Assumption 2.3 and 2.4 hold. Consider the
controller (2.43) and select µ, k according to Proposition 2.9. For any d, yref ∈ Ω, with Ω defined
in Lemma 2.1, the closed-loop system (2.39), (2.43) admits a unique equilibrium (x◦, z◦) which is
globally exponentially stable and satisfies y = Cx◦ = yref .

2.5.2 Integral action for the Korteweg-de Vries equation

Consider the Korteweg-de Vries equation introduced in Section 2.2.3 and in particular the fol-
lowing linear model

wt(t, x) + wx(t, x) + wxxx(t, x) = d(x) , (t, x) ∈ R≥0 × [0, L]
w(t, 0) = w(t, L) = 0 , t ∈ R≥0
wx(t, L) = u(t) , t ∈ R≥0
w(0, x) = w0(x) , x ∈ [0, L]
y(t) = wx(t, 0) t ∈ R≥0

(2.49)

in which w ∈ L2(0, L) is the state, with L > 0, L /∈ N , with N defined in (2.16), u ∈ R
is the control input acting on the boundary conditions, d is a constant (unknown) distributed
perturbation, and y ∈ R is the output to be regulated to a desired constant value yref , namely

lim
t→∞

|y(t) − yref | = 0. (2.50)

Following the idea of adding an integral action, we consider here the regulator

ż(t) = y(t) − yref = wx(t, 0) − yref

u(t) = kz(t)
(2.51)
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where k > 0 is a positive parameter to be chosen. We define the space H := L2(0, L) × R, that
is the state space of the closed-loop system (2.49), (2.51). It is a Hilbert space as the Cartesian
product of two Hilbert spaces. Furthermore, following the notation introduced in Section 2.4.2,
the overall closed-loop system (2.49), (2.51) can be written in a compact notation as

d
dtξ = Fξ + Γ, ξ =

(
w
z

)
, Fξ =

(
−w′ − w′′′

w′(0)

)
, Γ =

(
d

−yref

)
(2.52)

with the domain of F defined as

D(F) := {(w, z) ∈ H3(0, L) × R : w(0) = w(L) = 0, w′(L) = kz} ⊂ H.

We can now show that the closed-loop system (2.52) is well posed, it admits a unique equi-
librium which is exponentially stable, and the regulation objective (2.50) is achieved when
considering sufficiently regular solutions.

Lemma 2.2. For any k ̸= 0 and (d, yref) ∈ L2(0, L) × R there exist a unique equilibrium state
(w∞, z∞) ∈ H to (2.52).

Next, we show the following well-posedness result for the closed-loop system (2.52).

Lemma 2.3. Let L /∈ N , with N defined in (2.16). There exist k⋆ > 0 such that for any k ∈
(0, k⋆), for any (d, yref) ∈ L2(0, L) × R and for any initial condition (w0, z0) ∈ H (resp. D(F)),
there exists a unique weak solution (w, z) ∈ C0(R≥0; H) (resp. strong solution in C1(R≥0; H) ∩
C0(R≥0;D(F))) to system (2.52).

Note that the proof of the previous lemma is based on the strict Lyapunov functional that we
studied in Section 2.2.3. We have the following result.

Theorem 2.10. Let L /∈ N , with N defined in (2.16). For any k ∈ (0, k⋆), with k⋆ given by
Lemma 2.3, there exist b, ν > 0, and for any (d, yref) ∈ L2(0, L) ×R there exists ξ∞ ∈ H, computed
according to Lemma 2.2, such that any solution to system (2.52) with initial condition ξ0 ∈ H
satisfies

∥ξ(t) − ξ∞∥H ≤ be−νt∥ξ0 − ξ∞∥H. (2.53)

for all t ≥ 0. Moreover, for any strong solution to (2.52), and in particular, for any ξ0 ∈ D(F), the
output y is asymptotically regulated at the reference yref , namely (2.50) is satisfied.

Note that the value of k⋆ can be computed following for instance Section 2.4.2.
Finally, thanks to the local ISS-properties of the nonlinear model studied in Section 2.2.3,

we can also show that the integral action regulator (2.51) is able to guarantee local regulation
for a nonlinear KdV equation of the form

wt(t, x) + wx(t, x) + wxxx(t, x) + w(t, x)wx(t, x) = d(x) , (t, x) ∈ R≥0 × [0, L]
w(t, 0) = w(t, L) = 0 , t ∈ R≥0
wx(t, L) = u(t) , t ∈ R≥0
w(0, x) = w0(x) , x ∈ [0, L]
y(t) = wx(t, 0) t ∈ R≥0.

(2.54)

In this case, locality has to be intended in both initial conditions and size of the perturba-
tions/references. In particular, we have the following result.
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Theorem 2.11. Consider the system (2.54) in closed-loop with (2.51) and suppose L /∈ N , with
N defined in (2.16). There exists δ and k⋆ such that, if

∥w0∥H3(0,L) + |z(0)| + |d|L2(0,L) + |yref | ≤ δ

then, for any k ∈ (0, k⋆), the following properties hold.

• The closed-loop system (2.54), (2.51) admits an equilibrium (w∞, z∞) ∈ H3(0, L) × R.

• For any initial condition (w0, z0) ∈ D(F) satisfying the previous condition the Cauchy problem
(2.54), (2.51) is well-posed in the spaceC1(0,R≥0)×

(
C([0,R≥0];H3(0, L))∩L2([0,R≥0];H4(0, L))

)
and satisfies

∥(w(t), z(t)) − (w∞, z∞)∥H ≤ be−νtδ ∀t ≥ 0

for some b, ν > 0.

• The output y is asymptotically regulated at the reference yref , namely (2.50) is satisfied.

2.6 Conclusions and perspectives

In this chapter we studied the stability and stabilization of some PDEs and PDEs-ODEs couplings.
Some sufficient and necessary conditions for the stability of some semi-linear systems have been
studied. These results have been published in [D29]. Then, inspired from the finite-dimensional
nonlinear systems literature, we proposed a tool for the strictification of Lyapunov functions,
which has been directly applied to the context of Korteweg-de-Vries equation, see [D32]. Finally,
we developed the forwarding approach in the context of ODE-PDE couplings. First, we studied
the case in which a stable ODE is put in cascade with a possibly conservative PDE, see [D52,
D53]. This tool will be used in the context of output regulation and infinite-dimensional internal-
model based regulators (see [D19]) in Section 3.4. Then, we studied the stabilization of an
exponentially stable PDE in cascade with a conservative ODE (see [D51]), as in the case of
integral action feedback developed in the subsequent Section 2.5, based on the pubications
[D18,D32].

Further extension includes the developments of the forwarding approach in the context
of more complex nonlinear PDEs, combining for instance the sufficient and necessary con-
ditions developed for semi-linear PDEs of Section 2.2. Note that inspired by the series of
works [D25, D48, D53] some preliminary results in this direction has been recently obtained
in [206]. Finally, the problem of output regulation of nonlinear abstract operators in the pres-
ence of more complex disturbances/references is also an open problem.
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The problem of rejecting or tracking asymptotically periodic1 signals is of primary impor-
tance in many applications [122, 131, 211]. Among them, robotics [112, 147], power electron-
ics [34,140] and bio-medics engineering [85,171], just to cite few. Such a problem is commonly
known in control system theory as robust output regulation, see [47,67,83], where the adjective
robust refers, in this context, to the fact that the asymptotic properties are desired to hold not
only for the nominal model of the system, but also for small perturbations of it. The solution
to the robust output regulation problem for finite-dimensional linear time-invariant systems is
accredited to Francis, Wonham and Davison who at the same time, but independently, pub-
lished their main works during the 70’s, see, e.g., [67, 83]. The proposed solution relies on the
so-called internal model principle coined by Francis and Wonham in their celebrated work [83],
stating that output regulation property is insensitive to plant parameter variations “only if the
controller utilizes feedback of the regulated variable, and incorporates in the feedback path a

1or more general stationary signals having a well defined auto-correlation in the means-square sense.
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suitably reduplicated model of the dynamic structure of the exogenous signals which the reg-
ulator is required to process”. In turns, if some overall stability properties are guaranteed, the
presence of a copy of the exogenous dynamics (also denoted as exosystem) in the regulator pro-
vides a “blocking-zero” effect on the desired regulated output at the dynamics excited by such
exogenous signals. In other words, the regulated output cannot contain any mode of the exosys-
tem if the overall trajectories are bounded. In practice, an integral action in the controller allows
to achieve zero-DC value of the regulated error, while a given oscillator at a certain frequency,
ensures the output to have zero spectral component at it [D26].

Afterwards, since the end of the 70’s, three main families of approaches have been inves-
tigated to address the problem of robust output regulation in the context of nonlinear sys-
tems: internal-model designs (trying to extend the linear paradigm), repetitive control, and
non-smooth regulators based on finite-time convergence. Concerning the last class of regula-
tors, we recall, among others, the approaches based on sliding-mode controllers [144,205] and
time-varying regulators [188]. However, since these techniques are in general non-robust with
respect to measurement noise and may suffer of implementations issues such as chattering or
unbounded variables, we don’t consider such type of designs in this work, and we focus instead
on the first two families of approaches.

From an historical point of view, after the statement of the internal model principle for linear
systems [83], the direct extension to nonlinear systems encountered many difficulties, due to
crucial observation that “internal models must not only be able to generate inputs correspond-
ing to the trajectories of the system, but also a number of higher order nonlinear deformations”,
see [103, 113, 161]. Inspired by such remark, from the end of the 80’s, many researchers ad-
dressed the output regulation problem from the “control input viewpoint”, that is, trying to
build internal model controllers able to generate all possible steady-state inputs required to
constantly keep the regulated output equal to zero, with in mind the different type of non-
linearities characterizing the nominal model of the system. Starting from simple polynomial
constructions [103, 161], more sophisticated designs were successively proposed, based on lin-
ear immersion approaches [45, 114]; adaptive techniques [1, 183]; observer designs [46, 137];
nonlinear regressions [82]; identification techniques [33]. All these works were mainly moti-
vated by the sought for a finite-dimensional regulator endowed with good asymptotic properties.
However, although robustness to parametric perturbations may be still ensured in some partic-
ular cases (see for instance [33,183]), asymptotic properties are in general not preserved when
allowing any type of (nonlinear) model deformation, as we shall prove in this chapter. From this
point of view, only integral controllers are “universally robust” to any type of (time-invariant)
C1 deformations in presence of constant perturbations/references, as shown in [156], [D25].
These robustness issues motivate also for approximate or practical regulation objectives, see for
instance recent works [31,105,135,136], [D26].

In parallel to the previous line of research, an alternative approach, denoted as repetitive
control, was independently developed at the end of the 80’s, see [97,147]. Inspired by the inter-
nal model principle, such approach paved his way on the observation that a delay system may
be viewed as a universal generator, i.e. an internal model, of periodic signals. Repetitive control
developed his own research domain by the use of delay in the feedback regulator and based its
theoretical foundation in the context of continuous-time linear systems with a stability analy-
sis that relies on frequency-domain and Nyquist criterion approaches [97], although alternative
proofs have been proposed by means of passive arguments to extend the theory to nonlinear
systems, see for instance [51]. Since only systems with zero-relative degree [51, 97] can be
stabilized in presence of a delay in the loop, researchers devoted its attention to finite-time im-
plementations in order to extend the classes of systems to which a repetitive-control scheme can
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be applied. When considering continuous-time implementations, we can identify mainly two
approaches: the use of low-pass filters (see, e.g., [97,213]), or by approximating the delay as a
finite number of linear oscillators at multiple frequencies of the one of interest, see, e.g., [86].
Recently, harmonic approaches have been also proposed in [34, 172]. With these approaches,
however, asymptotic regulation cannot be anymore achieved. It is notably that in both the
aforementioned two families of approaches (output regulation theory and repetitive control),
the underlining unifying take-away message is that, from a practical point of view, practical reg-
ulation is the correct way of addressing the problem if robustness is sought. As a matter of fact,
when looking for finite-dimensional asymptotic solutions one loose the robustness properties,
while when looking for infinite-dimensional regulators one must then face with implementation
issues which inevitably lead to some approximations (and therefore approximate regulation).

The objective of this chapter is to study the problem of robust output regulation for nonlin-
ear systems. To this end, we first investigate the notion of robustness in the context of output
regulation, by introducing a new framework which is able to precisely provide a definition of
robustness and steady-state properties. Then, we investigate the robustness properties of linear
internal models clarifying the notion of harmonic regulation in the context of periodic exosig-
nals and non-periodic one. We recall also a series of feedback designs able to guarantee the
stability of the overall closed-loop systems. These designs are mainly based on the forwarding
approaches developed in Chapter 1. The robustness properties of nonlinear internal models are
then analyzed. In particular, we focus on the design proposed in [137] and we show that such a
design cannot be robust to any C0 perturbation, and if it is robust it is necessarily linear. Next,
we provide a simple counter example showing that finite-dimensional linear internal models
cannot provide robust asymptotic regulation. These two non-robustness results motivate for
the introduction of a more general class of infinite-dimensional linear internal models which
includes and generalizes the repetitive control approach. Finally, a finite-dimensional approxi-
mation of a repetitive control scheme is analyzed, establishing a direct connection between the
framework of harmonic regulation and repetitive control approach.

3.1 The problem of robustness in output regulation

Notation

For basic concepts about topological spaces we refer to [75]. In particular, a topology τ on a
set S is a family of subsets of S satisfying: i) ∅, S ∈ τ ; ii) τ is closed under arbitrary unions;
iii) τ is closed under finite intersections. The elements of τ are called open sets. A topological
space is a pair (S, τ) in which S is a set and τ a topology on S. Given a topological space (S, τ)
and an element s ∈ S, a subset U ⊂ S is called a τ -neighborhood of s if it contains an open set
containing s. If A ⊂ S, a set U ⊂ S is called a neighborhood of A if it is a neighborhood of each
point of A. When τ is clear from the context, we simply write S in place of (S, τ). Given A ⊂ S,
the collection τA = {U ∩ A : U ∈ τ} is called the subspace topology induced by τ , and the pair
(A, τA) is said to be a topological subspace of (S, τ). With A ⊂ S, we denote by Å its interior, by A
its closure, and by K(A) the set of all its compact subsets. A directed set is a pair (A,⪯) in which
A is a set and ⪯ a preorder on A. When ⪯ is clear, we omit it and we denote (A,⪯) simply by A.
A net on S is a function from a directed set A to S. A sequence is a net with (A,⪯) = (N,≤). We
denote a net s : A → S equivalently by {sα}α∈A or just by {sα}α or {sα} when A is clear. When
S is given a topology τ , then {sα} is said to converge to a point s̄ ∈ S if for every τ -neighborhood
U of s̄ there exists ᾱU such that sα ∈ U for all α ∈ A satisfying ᾱU ⪯ α. With k ∈ N and A and
B metric spaces, we denote by Ck(A,B) the set of k-times continuously differentiable functions
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Chapter 3. Nonlinear output regulation

from A to B. In particular, C0(A,B) denotes the set of continuous functions A → B. When A
and B are clear from the context we will omit the arguments and write Ck.

3.1.1 Systems, limit sets and steady-state properties

Consider a system of the form
Σ : ξ̇ = fξ(x), (3.1)

defined on Rnξ , with nξ ∈ N. A solution to (3.1) is called maximal if it cannot be continued
further, and complete if its domain is unbounded. Given a subset Ξ ⊂ Rnξ , we denote by SΣ(Ξ)
the set of all the maximal solutions to (3.1) originating in Ξ. When Ξ = Rnξ we omit the
argument and we write SΣ. By convention we set ∅ = S(∅). We define the reachable tails of Σ
from Ξ as the sets

Rt
Σ(Ξ) :=

{
x̄ ∈ Rnξ : x̄ = x(s), x ∈ SΣ(Ξ), s ≥ t

}
obtained for t ≥ 0. The set t 7→ Rt

Σ(Ξ) is decreasing, in the sense that t1 ≥ t2 implies Rt1
Σ (Ξ) ⊂

Rt2
Σ (Ξ). Therefore, the following quantity is well defined (although possibly empty)

ΩΣ(Ξ) :=
⋂
t≥0

Rt
Σ(Ξ).

The set ΩΣ(Ξ) is called the limit set of Σ from Ξ.
We say that system Σ (3.1) is uniformly ultimately bounded from Ξ if there exist a bounded

subset K ⊂ Rnξ and a t ≥ 0 such that Rt
Σ(Ξ) ⊂ K and Rt

Σ(Ξ) ̸= ∅. We say that a set A uniformly
attracts Σ from Ξ if, for each neighborhood U of A, there exists t ≥ 0 such that Rt

Σ(Ξ) ⊂ U .
We say that A is forward invariant for Σ if R0

Σ(A) ⊂ A. The limit set ΩΣ(Ξ) has the following
properties [90, Proposition 6.26].

Proposition 3.1. Let Ξ be compact, then ΩΣ(Ξ) is closed. If fξ is continuous and Σ is uniformly
ultimately bounded from Ξ, then ΩΣ(Ξ) is nonempty, compact, uniformly attractive for Σ from Ξ,
and it is the smallest (in the sense of inclusion) closed set with this latter property. If in addition
ΩΣ(Ξ) ⊂ Ξ, then ΩΣ(Ξ) is also forward invariant.

Under the assumptions of Proposition 3.1, every complete trajectory of Σ originating in Ξ
converges asymptotically, and uniformly, to ΩΣ(Ξ), which is compact and nonempty. In view of
the uniform attractiveness of ΩΣ(Ξ) from Ξ, and in particular of the fact that it is the smallest
closed set with such property, the trajectories of Σ originating inside ΩΣ(Ξ) have the usual
interpretation as limiting trajectories of the solutions of Σ originating in Ξ. For this reason,
ΩΣ(Ξ) is also referred to as the steady-state locus of (Σ,Ξ), and the elements of SΣ(ΩΣ(Ξ)) as its
steady-state trajectories. The above discussion motivates the following definitions.

Definition 3.1 (Steady-state trajectories). Given a pair (Σ,Ξ), in which Σ is a system of the form
(3.1) and Ξ ⊂ Rnξ a set, the elements of SΣ(ΩΣ(Ξ)) are called the steady-state trajectories of
(Σ,Ξ).

For the sake of compactness, we denote by

OΣ(Ξ) := SΣ(ΩΣ(Ξ))

the set of steady-state trajectories of (Σ,Ξ).

Definition 3.2 (Steady-state property). A steady-state property P on (Σ,Ξ) is a statement P(Σ,OΣ(Ξ))
on the set of the steady-state trajectories of (Σ,Ξ). In particular, we say that the steady-state trajec-
tories of (Σ,Ξ) enjoy P (or, simply, (Σ,Ξ) enjoys P) if P(Σ,OΣ(Ξ)) holds true.
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The argument Σ in P(Σ,OΣ(Ξ)) is introduced to allow making statements about quantities
that are “system dependent”. When Σ and Ξ are clear from the context, they are omitted, and
we simply write Ω, S, and P(O) in place of ΩΣ(Ξ), SΣ(Ξ) and P(Σ,OΣ(Ξ)). Some relevant
steady-state properties are defined below.

Example 3.1 (Set-Membership Property). For a given set A ⊂ Rnξ , the set-membership property
is defined as PA := “ ∀ξ ∈ O, ∀t ∈ dom ξ, ξ(t) ∈ A ”.

Example 3.2 (Equilibrium Property). The equilibrium property is defined as Peq := “ ∀ξ ∈
O, ∀t, s ∈ dom ξ, ξ(t) = ξ(s) ”. If Peq holds, then each steady-state trajectory is constant in time.

Inspired by the output regulation literature, we are interested in linking the property P to
the asymptotic value of a regulation error e to a controlled plant. To this end, we consider now
the case of a dynamical system described by

Σp :
{
ẋp = fp(w, xp, u)
y = hp(w, xp),

(3.2)

with state xp ∈ Rnp , control input u ∈ Rnu , measured output y ∈ Rny , and exogenous signals
w ∈ Rnw generated by an exosystem

Σw : ẇ = s(w), (3.3)

interconnected with a regulator of the form

Σc :
{
ẋc = fc(xc, y),
u = hc(xc, y).

(3.4)

Furthremore, we introduce a regulated error e ∈ Rne defined as

e = he(w, xp) (3.5)

which may or may not be measured (i.e. be part of y) and it is useful to define a performance
requirement on the steady-state trajectories. In particular, we can define the following standard
examples of regulation properties which are commonly used in output regulation literature.

Example 3.3 (Regulation properties). Let Σ be obtained as the interconnection Σp,Σw,Σc of a
plant (3.2), (3.5) with an exosystem (3.3) and a controller (3.4) (in this case ξ = (w, xp, xc)).
Then

• the asymptotic regulation property limt→∞ e(t) = 0 is defined as P0 := “ ∀ξ ∈ O, ∀t ∈
dom ξ, e(t) := he(w(t), xp(t)) = 0 ”;

• the approximate regulation property lim supt→∞ |e(t)| ≤ ε is represented by the steady-state
property Pε := “ ∀ξ ∈ O, ∀t ∈ dom ξ,

∣∣he(w(t), xp(t))
∣∣ ≤ ε ”.

Example 3.4 (Zero-Mean Property). The following property, instead, characterizes a steady-state
regulation error e with null DC component, without constraining its amplitude:

PDC := “ ∀ξ ∈ O,
∫

domx
he(w(t), xp(t))dt = 0 ”.

Other more specific steady-state properties will be introduced in the forthcoming sections.
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3.1.2 Characterization of perturbations

For compactness, here and in the rest of Section 3.1, we let

x := (w, xp), (3.6a)

nx = nw + np, f(x, u) := (s(w), fp(w, xp, u)), h(x) := hp(w, xp) and we rewrite (3.2) as

Σx :
{
ẋ = f(x, u)
y = h(x). (3.6b)

System (3.6) is referred to as the extended plant. In other words, we don’t make any distinction
between the plant state x and the exosystem state w. We further let F := (f, h), and we suppose
that it belongs to a given set of functions F . For a given input u, the set of solutions of each
system (3.6) is then completely defined by the specification of a point (F,X) in the product
space F × X , being X ∈ X a set of initial conditions for (3.6), and X a subset of the power
set of Rnx . Since our aim is to study the asymptotic behavior of these solutions, Proposition 3.1
suggests to restrict the attention to the case in which F is a set of continuous functions, and X
contains only compact subsets of Rnx . Thus, from now on we assume F ⊂ C0 and X ⊂ K(Rnx).

We equip F with a topology τF , and X with a topology τX , in this way turning (F , τF ) and
(X , τX ) into topological spaces. Then, we endow the product space F × X with the product
topology τ := τF × τX , which turns (F × X , τ) itself into a topological space. The topology τ on
F ×X constitutes the basic mathematical structure that allows us to formally define the concept
of perturbation in the space F ×X . The open sets of τ , indeed, provide a formal characterization
of the qualitative meaning of “vicinity” between two different points of F × X , in the same way
as norms usually do for vectors in Rn. Different choices of τF and τX may be used to capture
different ideas of “variation” of the function F and the initialization set X (see the examples
below). We thus leave their specific choice to the user, and from now on we suppose that τF ,
τX , and thus τ , have been fixed once for all. With the topological space (F × X , τ) defined, and
with (F,X) ∈ F × X , we say that a set N ⊂ F × X is a neighborhood of (F,X) if it contains
an open set U ∈ τ containing (F,X). We then call the elements of N the N -perturbations (or
simply perturbations) of (F,X). Some examples of possible choices of τ are given below.

Example 3.5 (Hausdorff Topology). As X contains only compact sets, a natural choice for τX is
the Hausdorff topology, i.e. the topology induced by the Hausdorff distance dH, which, for each
two compact sets X, Z ∈ X , is defined as

dH(X,Z) := max
{

sup
x∈X

|x|Z , sup
z∈Z

|z|X

}
.

In this topology, a set Z is a perturbation of X if there exists ϵ > 0 such that X ⊂ Z + ϵB and
Z ⊂ X + ϵB, with ϵ that quantifies the entity of the perturbation.

Example 3.6 (Projection Topologies). In many cases, a different topology on X may be preferred.
For instance, suppose we aim to characterize variations of the sets of initial conditions involving
only the i-th component xi of the initial state x ∈ X. In this case the Hausdorff topology is not
suitable, as dH weights uniformly variations in every directions. This can be rather achieved by
letting τX be the topology generated2 by the sets

N (X, ϵ) :=
{
Z ∈ X : |zi − xi| < ϵ, ∀x ∈ X, ∀z ∈ Z

}
2That is, the smallest topology including such sets.
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obtained by letting X and ϵ range in X and (0,∞) respectively. The topology τX is not metrizable
in this case, although the function d1(X,Z) := sup(x,z)∈X×Z |xi− zi| is a semimetric on X . We also
remark that τX coincides with the initial topology3 of the projection map x 7→ xi.

Example 3.7 (Weak Ck Topology). Let P ∈ K(Rnx ×Rnu) be an arbitrarily large compact set and,
with k ∈ N, let F ⊂ Ck and define the semimetric d(k,P) on F as

d(k,P)(F,G) := max
i=0,...,k

sup
p∈P

∣∣∣F (i)(p) −G(i)(p)
∣∣∣ .

The topology τF induced by d(k,P) is called the weak Ck topology [100]. We observe that d(k,P) is
a metric on the space formed by the restrictions on P of the elements of F . The adjective “weak”
refers to the fact that we restricted the “sup” on the (pre-specified) compact set P. By making
P vary with ϵ, i.e. by considering the initial topology on F induced by the family of functions
{d(k,P)}P∈K(Rnw×Rnu ), we obtain a much finer topology called the strong Ck (or compact-open)
topology. Nevertheless, this strong version does not enjoy some useful properties (e.g. it is not
(semi-)metrizable) that its weaker version does, and hence below we will only consider the latter.

Example 3.8 (Topology of Parameters Perturbations). Let (P, τP ) be a topological space (called
the parameter space), and let F be a set of C0 functions indexed by P (i.e. F = {Fp}p∈P with
Fp ∈ C0). Then F models a family of functions that is parameterized by the parameter p ∈ P .
Typically P is a subset of an Euclidean space endowed with the subset topology τP . By construction,
there is a surjective map γ : P → F such that each F ∈ F is given by F = γ(p). We may assume
that γ is also injective (otherwise re-define P by identifying the points yielding the same F ), so as
γ is invertible. We thus define the topology of parameter perturbations τF on F to be the initial
topology of γ−1, i.e. the topology generated by the sets γ(U) for each open set U of τP . In the
relevant case in which P ⊂ Rnp for some np ∈ N, and τP is induced by any norm on Rnp , then τF
is generated by the neighborhoods

N (F, ϵ) :=
{
G ∈ F : |pF − pG| < ϵ, pG := γ−1(G)

}
for all F ∈ F and ϵ > 0, and in which pF := γ−1(F ).

Example 3.9 (Linear Perturbations). Let F be the set of linear maps. Once fixed a basis for
Rnx × Rnu and Rnx × Rny , an invertible map γ is defined that sends the matrix representation
MF ∈ R(nxw+ny)×(nxw+nu) =: P of a given F ∈ F to F itself. Then, this is a sub-case of Example
3.8, and the topology of parameter perturbations induced on F indeed coincides with the one
induced by any matrix norm on the space P of the matrix representations of F . Hence, the concept
of variation captured by the topology of parameter perturbations coincides with the usual notion of
parameter perturbations of linear systems, which is the one used in the context of structurally stable
linear regulation [44, 67, 83]. Moreover, in this case this topology also coincides with the weak C0

topology on F with respect to any compact neighborhood P of the origin.

3.1.3 Definition of a robust regulator

With nc ∈ N, fc ∈ C0(Rnc × Rny ,Rnc),hc ∈ C0(Rnc × Rny ,Rnu) and Xc ∈ K(Rnc), consider a
regulator of the form (3.4), for convenience rewritten hereafter

Σc :
{
ẋc = fc(xc, y) xc(0) ∈ Xc

u = hc(xc, y) (3.7)

3We recall that, given a family {fα}α of functions fα : A → (Bα, τBα ), with (Bα, τBα ) topological spaces, the
initial topology of fα on A is the coarsest topology for which each fα is continuous.
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and consider the interconnection between the extended plant (3.6) and the regulator (3.7),
which reads as

Σcl(F,X) :
{
ẋ = f(x, hc(xc, h(x))), x(0) ∈ X
ẋc = fc(xc, h(x)), xc(0) ∈ Xc

(3.8)

in which we made explicit the dependence of Σcl from F and X. The achievement by regulator
Σc of a given steady-state property P for the closed-loop system Σcl(F,X) is the result of two
subsequent goals:

1. Stabilization requirement: the existence of a non-empty steady state ΩΣcl(F,X)(X ×Xc) for
(3.8) satisfying the properties of Proposition 3.1.

2. Performance specification: the fulfillment of P by the closed-loop steady-state trajectories
of Σcl(F,X).

Clearly, Item 2 is of interest only if Item 1 is first ensured, as the achievement of property P is
asked to the steady-state trajectories of Σcl(F,X), which exist only if Item 1 is first addressed.

Suppose that the regulator Σc has been tuned under the assumption that the extended plant’s
data (F,X) equal a given nominal value (F ◦, X◦) ∈ F × X . Then Items 1 and 2 above for the
nominal case in which (F,X) = (F ◦, X◦) are formally captured by the following definitions.

Definition 3.3 (Nominal stability). The regulator Σc is said to be nominally stabilizing at (F ◦, X◦)
∈ F × X if the system Σcl(F ◦, X◦), given by (3.8) for (F,X) = (F ◦, X◦), is uniformly ultimately
bounded from X◦ ×Xc.

Definition 3.4 (Nominal steady-state property). The regulator Σc is said to achieve the steady-
state property P nominally at (F ◦, X◦) ∈ F ×X (or to be P-nominal) if it is nominally stabilizing
at (F ◦, X◦), and (Σcl(F ◦, X◦), X◦ ×Xc) enjoys P in the sense of Definition 3.2.

As the functions of (3.8) are continuous, then, by Proposition 3.1, a nominally stabilizing
regulator guarantees that Item 1 above is fulfilled. Therefore, Definition 3.4 is well posed. Let
now F × X be endowed with a topology τ , as detailed in Section 3.1.2, and suppose that the
same controller Σc, tuned on the nominal pair (F ◦, X◦), is applied to an extended plant (3.6)
obtained by a possibly different pair (F,X). Then, roughly speaking, the regulator Σc will be
called “robust” if the same nominal behavior expressed by Definitions 3.3 and 3.4 is maintained
if the actual (F,X) is “close-enough” (relative to τ) to (F ◦, X◦).

Definition 3.5 (Robust stability). The regulator (3.7) is said to be robustly stabilizing at (F ◦, X◦) ∈
F × X and with respect to τ if there exists a τ -neighborhood N of (F ◦, X◦) such that, for each
(F,X) ∈ N , the corresponding closed-loop system Σcl(F,X) given by (3.8) is uniformly ultimately
bounded from X ×Xc.

The τ -neighborhood N for which robust stability holds is called the robust stability neighbor-
hood of (F ◦, X◦).

Definition 3.6 (Robust steady-state property). The regulator (3.7) is said to achieve the steady-
state property P robustly at (F ◦, X◦) ∈ F ×X and with respect to τ (or to be (P, τ)-robust) if it is
robustly stabilizing at (F ◦, X◦) with respect to τ and, by letting N the robust stability neighborhood
of (F ◦, X◦), then the closed-loop system (Σcl(F,X), X × Xc) given by (3.8) enjoys P in the sense
of Definition 3.2 for each (F,X) ∈ N .

In the next section we investigate the use of regulators possessing a linear internal model
and particular choices of nominal steady-state properties.
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3.2 Regulators with linear internal models

3.2.1 Internal model design

In this section we focus on a particular class of output-feedback regulators (3.7) embedding
a linear internal model. In addition to the linear setting of [67, 83], linear internal models
have been extensively used also in the nonlinear literature (see, e.g. [44, 45, 104, 107, 183],
[D25,D26,D28].

From now on we consider an extended plant (3.6) with a regulation error (3.5), and we
assume the following.

Assumption 3.1. The regulation error e is directly measured from y, i.e. y = (e, ya) where ya ∈
Rna , na := ny − ne, is an “auxiliary output” .

Assumption 3.1 is not in principle necessary, although the slightly weaker concept of read-
ability4 of e from y is indeed necessary to achieve robust asymptotic regulation for linear sys-
tems [83, Proposition 2], [67, Condition 5 in Lemma 1]. Furthermore, we focus on “smooth
variations” of the function F = (f, h) of the extended plant (3.6). More precisely, we suppose
that F ⊂ C1 and, with X ⊂ Rnx and U ⊂ Rnu arbitrarily large compact neighborhoods, we let
P := X × U and we endow F with the subset topology τF induced by the weak C1 topology τC1

defined in Example 3.7. Regarding the initialization set, instead, we let X = K(Rnx).
Regulators embedding a linear internal model are systems of the form (3.7) in which, possi-

bly after a change of coordinates, the state xc is partitioned as

xc =
(
ηim, ηst

)
(3.9a)

with ηim ∈ Rnim and ηst ∈ Rnst , being nim, nst ∈ N such that nim + nst = nc, and with the maps
fc and hc making (3.7) read as follows

ΣLIM
c :


η̇im = Φηim + Γe
η̇st = ϕst(ηst, ηim, y)
u = hc(ηst, ηim, y).

xc(0) ∈ Xc, (3.9b)

in which Φ and Γ are linear maps such that the subsystem ηim is controllable from e, and Φ
contains the same modes that we would like to reject from e at the steady state (as precised
below). In the output regulation literature, the structure (3.9) is also said to be of the post-
processing type [D12] or [32]. The subsystem ηim is the internal model unit, and it is responsible
of generating the right feedforward control action ideally keeping e(t) = 0 at the steady state.
The subsystem ηst, instead, typically has the role of stabilizing the whole closed-loop system.
We analyse now various contexts in which the dynamics of plant and/or stabilizing dynamics ηst
are linear or nonlinear, new notions of output regulation properties and the relative robustness
properties.

3.2.2 Asymptotic regulation

3.2.2.1 Linear systems

As a first example, we consider the case of linear dynamics by reinterpreting the well known
results of robust linear output regulation in [67, 83]. In particular, we consider the case in

4The regulation error e is said to be readable from the output y, if there exists a matrix Q ∈ Rne×ny such that
e = Qy [83].
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which the nominal extended plant’s function F ◦ is linear, the nominal exosystem’s function s◦ is
marginally stable, known and unperturbed, and the canonical Linear Regulator is used [67]. In
particular, we consider a system of the form

ΣLIN
x :


ẇ = s◦w

ẋp = Apxp +Bpu+ Ppw

y = Cyxp +Qyw

e = Cexp +Qew

(3.10)

We let FL ⊂ C1 be the set of linear functions, and we suppose that F ◦ ∈ FL, and we define

F :=
{
F ∈ FL : s = s◦}. (3.11)

In other words the only variations F of F ◦ that we consider are those for which F remains
linear and S is untouched. The topology τF that we define on F is the subset C1 topology and
it coincides with the usual topology of parametric perturbations of the matrix representation of
F , see Example 3.8.

The control goal that we consider is global robust asymptotic regulation. Namely, we aim at
finding a regulator ensuring limt→∞ e(t) = 0 from every initial condition even when applied to
an extended plant whose function F slightly differs from F ◦ (although remaining in F). In the
language of this paper, we thus seek a P0-robust regulator, where

P0 := “ ∀ξ ∈ O, ∀t ∈ dom ξ, he(w(t), xp(t)) = 0 ” (3.12)

with he(w, xp = Cexp + Qew obtained from the definition of the plant’s dynamics (3.10). As
the aimed result is global in the initial conditions, we let X◦ ∈ X be arbitrary, and we let τX
be the trivial topology τX := {∅,X }. In fact, this implies that every robust regulator necessarily
achieves the objective globally in the initial conditions, since the only τX -neighborhood of X◦ is
the whole X .

It is a classical result in linear control theory, that this control objective can be guaranteed
by means of a regulator of the form

ΣLIN
c :


η̇im = Φηim + Γe
η̇st = Astηst +Bimηim +Byy

u = Kimηim +Kstηst +Kyy

(3.13)

constructed as follows [67]:

a) Xc is arbitrary (e.g. (ηim(0), ηst(0)) = 0).

b) Φ and Γ are chosen so that (Φ,Γ) is controllable and the characteristic polynomial of Φ
coincides with the minimal polynomial of s◦.

c) The matrices Ast, Bim, By,Kim,Kst,Ky are chosen to stabilize the overall closed-loop sys-
tem when w = 0. This choice is always possible under standard detectability and stabi-
lizability conditions on the plant, and provided that the following non-resonance condition
holds [67, Lemma 14]

rank
(
Ap − λI Bp
Ce 0

)
= np + ne, ∀λ ∈ σ(s◦) (3.14)

for all namely for all λ in the spectrum of s◦.
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3.2. Regulators with linear internal models

The regulator constructed in this way is known as the Linear Regulator, and it enjoys the follow-
ing robustness property.

Theorem 3.1. Consider a linear plant ΣLIN
x (3.10) interconnected with a Linear Regulator ΣLIN

c

(3.13). The Linear Regulator ΣLIM
c is (P0, τF × τX )-robust at (F ◦, X◦), with P0 defined as in

(3.12).

An intuitive argument for the formidable robustness result enunciated by Theorem 3.1 is the
following: no matter how large are the variations of F with respect to F ◦, if F remains linear,
then the closed-loop system still consists of a stable linear system driven by the same exosystem.
Therefore, the closed-loop steady-state trajectories keep oscillating at the same frequencies,
and the linear internal model of (3.9) is still able to generate the error-zeroing control action
needed in the perturbed case. This “immersion” property is at the basis of most of the existing
robustness results for nonlinear systems [32, 44, 102, 104, 108] and [D25] as we will detail in
the next sections.

3.2.2.2 Integral action

Let’s now consider the case in which the exosignals w are constant values, namely s◦ = 0 and,
as in the previous case, we suppose that the exosystem remains untouched, namely s = s◦ = 0.
In this case, w is simply a vector of constant parameters that, for the analysis of this part, can be
considered embedded in the description of a nominal function F ◦. In other words, we consider
a plant

ΣIA
p :


ẋp = fp(x, u)

y =
(
ya
e

)
=
(
ha(x)
he(x)

)
(3.15)

where the nominal values of the functions fp, hp depend on the value of w. Our objective is to
satisfy an asymptotic regulation property (3.12). Then, we allow general C1 perturbations of F ,
thus including the case in which the perturbed function F may be nonlinear. In particular, we
let X = K(Rnx) and, as in [D25] we let F be an arbitrary subset of C1. We endow X with an
arbitrary topology τX , and we let τF be the subset topology induced by the weak C1 topology
(Example 3.7) on an arbitrary compact neighborhood P ⊂ Rnx × Rnu of the origin.

Then, we consider a regulator (3.9) with Φ = 0 and Γ = I, namely of the form

ΣIA
c :


η̇im = e
η̇st = ϕst(ηst, ηim, y)
u = hc(ηst, ηim, y).

xc(0) ∈ Xc. (3.16)

We have the following results connecting output regulation and total stability.

Example 3.10 (Total stability). Suppose that (F ◦, X◦) is such that the closed-loop system (3.8)
has an equilibrium which is locally exponentially stable with a domain of attraction D including
X◦ × Xc. Let F = C1, X = K(Rnp), let τF be the weak C1 topology (Example 3.7) on a compact
set P := X × U with D ⊂ X, and let τX be the Hausdorff topology on X . Then for small enough
perturbations (F,X) of (F ◦, X◦), the system Σcl(F,X) still has an equilibrium, possibly different
from the nominal one, which is still locally exponentially stable (see, e.g. Lemma 5 in [D25]). This
is known as total stability and, in the language of this paper, it is equivalent to (Peq, τF × τX )-
robustness where Peq is the equilibrium property of Example 3.2.
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Chapter 3. Nonlinear output regulation

Theorem 3.2. Consider the plant ΣIA
p (3.15) interconnected with the integral action based reg-

ulator ΣIA
c (3.9). The regulator ΣIA

c is (P0, τF × τX )-robust at (F ◦, X◦), with P0 defined as in
(3.12).

In particular, Theorem 3.2 summarizes the basis of the well-known integral action [D25]: if
Φ = 0 in (3.9), and if the rest of regulator ensures local exponential stability of the controlled
plant when w = 0, then for small constant w(t) and small C0 (locally Lipschitz) perturbations
of the plant’s dynamics, the closed-loop system still has a stable equilibrium, and asymptotic
regulation is achieved. Nevertheless, this immersion property is hardly satisfies in a general
nonlinear setting under unstructured perturbations as we shall see in the next section.

3.2.3 Harmonic regulation

3.2.3.1 Nonlinear perturbations and (weak) periodic robustness

In this section we allow general C1 perturbations of F , thus including the case in which the
perturbed function F may be nonlinear and the perturbation affects also the exosystem map s.
In particular, we let X = K(Rnx) and, as in [D25,D26, D28], we let F be an arbitrary subset of
C1. We endow X with an arbitrary topology τX , and we let τF be the subset topology induced
by the weak C1 topology (Example 3.7) on an arbitrary compact neighborhood P ⊂ Rnx × Rnu
of the origin.

In this setting, a robustness result of the kind given in Theorem 3.1 is no more possible in
general. Nevertheless, on the lines of [D26,D28], we can show that a regulator of the kind (3.9),
embedding a suitably designed linear internal model, can still guarantee robustness of a weaker,
approximate regulation objective consisting in the rejection from e of the harmonics included in
the internal model dynamics. We treat here the periodic case in which the frequencies included
in the internal models are multiple of a fundamental one. We postpone the more general case
of arbitrary frequencies below.

As our aim is to highlight the role of the linear internal model in a nonlinear setting, we do
not restrict the possible exosystem dynamics and we do not fix the other parts of the regulator
(3.9) (i.e. the maps ϕst and hc), which unlike the previous case can be nonlinear. We rather
give a general robustness result (Theorem 3.3) which is independent from their specific choice,
provided that some basic robust stability properties hold. This permits to separate the contri-
butions of the exosystem and of the subsystems ηim and ηst of (3.9) in terms of their effect on
the steady-state trajectories of the closed-loop system. Later in the section, we support Theo-
rem 3.3 with two other results giving conditions on the exosystem and on (ϕst, hc) ensuring that
its assumptions are fulfilled.

Now consider a regulator of the form (3.9), in which Φ and Γ are chosen as follows: we first
fix an arbitrary period T > 0, and an arbitrary number No ∈ N of harmonics to reject. Then, we
choose nim, Φ and Γ in such a way that

IM-A) nim := (2No + 1)ne.

IM-B) By denoting with i the imaginary unit, the spectrum of Φ is selected as

σ(Φ) = {0} ∪
(
No⋃
k=1

{
i
2πk
T
, −i2πk

T

})

in which each eigenvalue has algebraic and geometric multiplicity ne.

IM-C) (Φ,Γ) is controllable.

60



3.2. Regulators with linear internal models

Item IM-B, in particular, implies that the unforced (i.e. with e = 0) internal model subsystem
ηim can generate all the T -periodic signals having a non-zero bias and the first No harmonics
starting from the fundamental frequency 1/T .

We now characterize the robustness properties of any regulator (3.9) embedding the internal
model defined by Items IM-A, IM-B and IM-C above, in terms of asymptotic rejection from the
steady-state regulation error e of a bias and the harmonics at frequencies k/T , k = 1, . . . , No.
For (F,X) ∈ F × X , we denote by Σcl(F,X) the closed-loop system composed by the extended
plant (3.6), with initial conditions in X, and the regulator (3.9) with the internal model unit
constructed above. We denote by ξ := (w, xp, ηim, ηst) the overall state. Then, for a given
continuous function α : R → Rm, m ∈ N, we define the Fourier coefficients

ck(α) :=
∫ T

0
α(t)e−i2πkt/Tdt

and we let
Qm
No :=

{
α : R → Rm | ck(α) = 0, k = 0, . . . , No

}
be the subspace of the functions R → Rm that have null Fourier coefficient ck(α) for all k =
0, . . . , No. Then, we define the following steady-state property

PT,weak := “ ∀ξ ∈ OΣcl(F,X)(X ×Xc), ηim is not T -periodic or e ∈ Qne
No

”. (3.17)

If ηim is not T -periodic, then Property PT,weak is always satisfied. When, however, ηim is T -
periodic, PT,weak asks that the steady-state regulation error e has zero mean value and zero
amplitude at every frequency k/T , k = 1, . . . , No. Then, with (F ◦, X◦) ∈ F × X the nominal
value of the extended plant’s data, the following result holds.

Theorem 3.3. Consider a regulator ΣLIM
c of the form (3.9), with nim, Φ and G chosen according

to Items IM-A, IM-B and IM-C. Suppose that ΣLIM
c is robustly stabilizing at (F ◦, X◦) with respect

to τX × τF . Then the regulator is (PT,weak, τX × τF )-robust at (F ◦, X◦), with PT,weak defined as in
(3.17).

Theorem 3.3 characterizes the effect of the internal model defined by Items IM-A, IM-B and
IM-C. independently on the rest of the regulator. In particular, if the remaining degrees of
freedom (nst, ϕst, hc, Xc) of (3.9) can be chosen to ensure robust stabilization of the closed-loop
system, and that the steady-state trajectories of ηim are T -periodic, then rejection from e of the
harmonics embedded in the internal model holds robustly.

We also remark that T -periodicity of the steady-state trajectories of ηim is a condition which
is also exosystem-dependent, and the ability to design (nst, ϕst, hc, Xc) to guarantee robust sta-
bilization highly depends on the particular extended plant considered. For instance, if the ex-
tended plant is linear, then (ϕst, hc) can be chosen as a simple linear stabilizer, thus reducing to
a particular case of the Linear Regulator of Section 3.2.2.1. If the extended plant is nonlinear,
instead, only few cases are covered in the literature. For instance, in [32,46,137,210] or [D12],
semiglobal solutions based on “high-gain arguments” are proposed for classes of minimum-phase
normal forms, and in [D25,D26,D28,D29,D46–D48] forwarding techniques are used for a class
of non-necessarily minimum-phase systems in general form and for “small w”. Under suitable
conditions, and if the solutions of the exosystem are T -periodic, some of these design solutions
yield regulators of the form (3.9) which are robustly stabilizing at (F ◦, X◦) and that also ensure
that ηim is T -periodic at the steady state. Therefore, they strengthen the result of Theorem 3.3
to robustness with respect to the following steady-state property

PT := “ ∀ξ ∈ OΣcl(F,X)(X ×Xc), e ∈ Qne
No

” (3.18)

which represents the “strong” version of PT,weak.
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Chapter 3. Nonlinear output regulation

3.2.3.2 Achieving strong periodic robustness

In this section, we further investigate the problem of individuating sufficient conditions under
which the claim of Theorem 3.3 may be strengthen to PT -robustness, where PT is defined in
(3.18).

First, we consider a local (in the initial conditions) result. In this case, we let F = Fw × Fp,
where Fw is a set of C1 functions Rnw → Rnw and Fp is a set of C2 functions of the form
(fp, hp), with fp : Rnw × Rnp × Rnu → Rnp and hp : Rnw × Rnp → Rny . We endow Fw with
an arbitrary topology τFw and, with X ⊂ Rnw × Rnp and U ⊂ Rnu arbitrarily large compact
neighborhoods of the respective origins, we endow Fp with the subset topology τFp induced by
the weak C2 topology on P := X × U (see Example 3.7). We then let τF := τFw × τFp . This
allows us to consider “independent variations” of s and (fp, hp), and thus to better distinguish
the assumptions on the exosystem from that on the controlled plant. Finally, we let X = K(Rnx),
and we endow it with the Hausdorff topology τX (see Example 3.5).

We look at the closed-loop system Σcl(F,X), given by interconnection between the extended
plant (3.6) and the regulator (3.9), as the cascade of the exosystem

ẇ = s(w), (3.19)

into the controlled plant

Σpc :


ẋp = fp(w, xp, hc(ηst, ηim, hp(w, xp)))
η̇im = Φηim + Γhe(w, xp)
η̇st = ϕst(ηst, ηim, hp(w, xp)).

(3.20)

Let F ◦ = (s◦, f◦
p , h

◦
p) ∈ F denote the nominal extended plant function. Then, we make the

following assumption.

Assumption 3.2. The following hold:

1. There exists a τFw -neighborhood Nw of s◦ and, for every ϵ > 0, a δ(ϵ) > 0, such that every
solution to (3.19) with s ∈ Nw and satisfying |w(0)| ≤ δ(ϵ) also satisfies |w(t)| ≤ ϵ for all
t ≥ 0. Moreover, the solutions to (3.19) with s ∈ Nw satisfy

lim
t→∞

|w(t+ T ) − w(t)| = 0

uniformly5.

2. The triple (nim,Φ,Γ) is chosen according to Items IM-A, IM-B and IM-C, Xc is compact, the
functions ϕst and hc are C2, and the system Σpc with w = 0 and with (fp, hp) = (f◦

p , h
◦
p)

nominal is locally exponentially stable with a domain of attraction including X◦
p ×Xc.

Item 1 of Assumption 3.2 consists of two parts. The first is a marginal stability requirement
on the origin of the exosystem state-space which is uniform in the perturbations of the function
s inside Nw, in the sense that the scalar nδ(ϵ) is, for fixed ϵ, the same for all s ∈ Nw. The
second requires that the solutions of the exosystem with s ∈ Nw are asymptotically T -periodic,
uniformly over compact subsets of initial conditions. Item 2, instead, requires the nominal
controlled plant (3.20) to be locally exponentially stable when w = 0. This, in turn, can be
seen as a design requirement (see Definition 3.3) for the remaining parts (nst, ϕst, hc, Xc) of the
regulator, which have to be designed to locally stabilize the plant when w = 0. Under these
assumptions, the following result holds.

5That is, if for every ϵ > 0 and every W ∈ K(Rnw ), there exists r > 0 such that every solution w to (3.19)
originating in W satisfies |w(t + T ) − w(t)| ≤ ϵ for all t ≥ r.
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3.2. Regulators with linear internal models

Proposition 3.2. Suppose that Assumption 3.2 holds. Then the regulator (3.9) is (PT , τF × τX )-
robust at (F ◦, {0}), with PT defined in (3.18).

The claim of Proposition 3.2, is local in the initial condition, meaning that the nominal
initialization set for the extended plant is X◦ = {0}. In fact, being τX the Hausdorff topology,
any element of any τX -neighborhood ofX◦ contains an open ball around the origin (see Example
3.5). In this sense, the result of Proposition 3.2 generalizes the design philosophy of [D26,D28],
in which local asymptotic stability of the controlled plant is achieved by forwarding techniques.

We consider now a non-local extension of the result of Proposition 3.2. We let F be an
arbitrary subset of C1, which we endow with the subset topology τF induced by the weak C1

topology on the compact set P := X × U, with X ⊂ Rnw × Rnp and U ⊂ Rnu arbitrarily large
compact neighborhoods of the origin. Then, we let X = K(Rnx), and we endow it with an
arbitrary topology τX . We let τ := τF × τX . With F ◦ ∈ F the nominal extended plant’s function
and X◦ ∈ X the nominal set of initial conditions, we assume the following.

Assumption 3.3. There exists τ -neighborhood N of (F ◦, X◦) such that, for each (F,X) ∈ N , the
following hold:

1. The closed-loop system (3.19)-(3.20) is uniformly ultimately bounded from X ×Xc.

2. The solutions w to (3.19) originating in W := {w ∈ Rnw : (w, xp) ∈ X} satisfy

lim
t→∞

|w(t+ T ) − w(t)| = 0

uniformly.

3. The controlled plant (3.20) is incrementally input-to-state stable in the sense of [17, Def-
inition 4.1] on X × Xc, and with respect to the input w. Namely, there exist β ∈ KL,
and ρ ∈ K such that, for every two solutions (w, xp, xc) and (w′, x′

p, x
′
c) of the closed-loop

system (3.19)-(3.20) originating in X ×Xc the following holds

|(xp(t), xc(t)) − (x′
p(t), x′

c(t))| ≤ β
(
|(xp(0), xc(0)) − (x′

p(0), x′
c(0))|, t

)
+ ρ

(
sups∈[0,t) |w(s) − w′(s)|

)
for all t ≥ 0.

Assumption 3.3 extends to a non-local setting the basic properties implied locally by the
previous Assumption 3.2. In addition to uniform ultimate boundedness of the closed-loop sys-
tem, Assumption 3.3 requires the perturbed controlled plant to satisfy a non-local incremental
input-to-state stability property with respect to the exogenous signals w [17]. We remark that
the same property can be also characterized in terms of convergent systems [174], and we refer
the reader to [17,150,152,174], [D44,D46–D48] and the references therein for control design
techniques ensuring that such property holds. Further details are given below in Section 3.2.4.

Under Assumption 3.3, the following result holds.

Proposition 3.3. Suppose that Assumptions 3.2 and 3.3 holds. Then the regulator (3.9) is (PT , τ)-
robust at (F ◦, X◦), with PT defined as in (3.18).
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Chapter 3. Nonlinear output regulation

3.2.3.3 Robustness of Arbitrary Harmonics Regulation

The results of Sections 3.2.3 and 3.2.3.2 apply to the case in which the frequencies included in
the internal model unit of (3.9) are multiple of a fundamental frequency 1/T . These results may
be extended to the case in which the frequencies to reject are arbitrary, in the context of gener-
alized Fourier coefficients. In particular, in this section we provide an extension (Theorem 3.4
below) of Theorem 3.3.

With d ∈ N, let {νk}dk=1 be the set of frequencies to be rejected from the steady-state reg-
ulation error e, and consider a regulator of the form (3.9) in which the internal model triple
(nim,Φ,Γ) is chosen as follows:

IM-A’) nim := (2d+ 1)ne.

IM-B’) The spectrum of Φ is

σ(Φ) = {0} ∪
(

d⋃
k=1

{i2πνk, −i2πνk}
)

in which each eigenvalue has algebraic and geometric multiplicity ne.

IM-C’) (Φ,Γ) is controllable.

Let, for convenience, ν0 := 0 and, for every m ∈ N and every function α : R → Rm, define
the (generalized) Fourier coefficients as

c′
k(α) := lim

T→∞

1
T

∫ T

0
α(t)e−i2πνktdt,

whenever they exist. A relevant case in which c′
k(α) exists for all k and νk is when α is almost

periodic (see, e.g., [61, Section I.3]). Then, define the sets

Lmd ′ :=
{
α : R → Rm : c′

k(α) exists ∀k = 0, . . . , d
}
,

Qm
d

′ :=
{
α ∈ Lmd ′ : c′

k(α) = 0 ∀k = 0, . . . , d
}
.

Proceeding as before, we let

Pν,weak := “ η /∈ Lnim
d

′ or e ∈ Qne
d

′ ”. (3.21)

As in Sections 3.2.3 and 3.2.3.2, we let F ⊂ C1, X = K(Rnx), τF be the subset weak C1

topology defined in Example 3.7 on an arbitrary compact subset P of Rnx × Rnu , and τX be an
arbitrary topology on X . Then, with (F ◦, X◦) ∈ F ×X the nominal value of the extended plant’s
data and the following result holds.

Theorem 3.4. Consider a regulator ΣLIM
c of the form (3.9), with (nim,Φ,Γ) chosen according to

Items IM-A’, IM-B’, and IM-C’. Suppose that ΣLIM
c is robustly stabilizing at (F ◦, X◦) with respect to

τ := τF × τX . Then the regulator is (Pν,weak, τ)-robust at (F ◦, X◦).

As in Section 3.2.3.2, stronger properties in terms of convergence can be obtained imposing
stronger stability requirements according to Definition 3.3, e.g. see Assumptions 3.2 and 3.3.
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3.2.4 Stabilizer design

In Section 3.2.1 we studied internal-model based regulators possessing a linear internal model
unit ηim dynamics, taking the form (3.9), that is

ΣLIM
c :


η̇im = Φηim + Γe
η̇st = ϕst(ηst, ηim, y)
u = hc(ηst, ηim, y).

xc(0) ∈ Xc,

in which the (linear) ηim-dynamics has the role of ensuring some steady-state properties (Defini-
tion 3.4) such as the (strong) harmonic regulation property PT defined in (3.18). In this section
we focus on the design of the stabilizer part, namely on the design of the functions ϕst, hc ensur-
ing desired stability properties for the overall closed-loop system (Definition 3.3). To this end,
in the rest of this section, we will suppose that the full plant state xp is available for feedback
design and we will focus on static state-feedback stabilizers. With this in mind, we will therefore
focus on cascade systems of the form

Σpim :


ẋp = fp(w, xp, u)
η̇im = Φηim + Γe
e = he(w, xp)
ya = x

(xp(0), ηim(0)) ∈ Xp ×Xim (3.22)

and we will for a stabilizing feedback of the form

Σst : u = hc(ηim, ya)

so that the closed-loop Σpim,Σst possesses some nominal stability properties, for instance satis-
fying the conditions of Assumption 3.2 or 3.3. In order to design the feedback hc we will focus
on the forwarding design introduced in [141]. We start by introducing the linear case.

3.2.4.1 Forwarding for linear systems

Suppose that all the dynamics in Σpim,Σst are linear. In this case, we have the following system

ΣLIN
pim :


ẋp = Apxp +Bpu+ Ppw

η̇im = Φηim + Γe
e = Cexp +Qew

ya = x

and we look for a stabilizer of the form

ΣLIN
st : u = Kstxp +Kimηim.

It can be shown that system Σpim is stabilizable under the following two conditions:

• the pair (Ap, Bp) is stabilizable;

• the non-resonance condition (3.14) holds.
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Evidently, if system ΣLIN
pim is stabilazible then any linear technique can be employed for the de-

sign of ΣLIN
st . In this section, however, we focus on the forwarding approach developed in

Section 1.4.1.1 for we know that it can be extended to the nonlinear context. Furthermore,
by following such approach, we can show a new result claiming the equivalence between non-
resonance condition (3.14) and an alternative condition which can be checked via the solution
of a Sylvester equation (which gives at the same time the design of the stabilizer). The procedure
is summarized as follows.

1. Let Kp such that the matrix (Ap +BpKp) is Hurwitz.

2. Define M as the solution to the sylvester equation

M(Ap +BpKp) = ΦM + ΓCe (3.23)

3. The matrices Kst,Kim are selected as follows

Kst = Kp − bB⊤
p P −B⊤

p M
⊤ΛM, Kim = B⊤

p M
⊤Λ, (3.24)

with b > 0 and P,Λ solution to

P (Ap +BpKp) + (Ap +BpKp)⊤P ≺ 0, ΛΦ + Φ⊤Λ = 0.

4. Check if the observability condition (Φ, B⊤
p M

⊤) is verified.

Surprisingly, the last observability condition is equivalent to the non-resonance condition (3.14)
as shown in the following proposition.

Proposition 3.4. Suppose s◦ is neutrally stable, and the pair (Ap, Bp) is stabilizable. Then, the
following sentences are equivalent.

(i) The non-resonance condition (3.14) holds.

(ii) Let Φ,Γ be selected so that (Φ,Γ) is controllable and the characteristic polynomial of Φ co-
incides with the minimal polynomial of s◦. let Kp be any matrix such that σ(Ap + BpKp) ∩
σ(Φ) = ∅ and let M be solution of (3.23). The pair (Φ, B⊤

p M
⊤, ) is observable.

As a last remark, we highlight that a (weak) Lyapunpv function is given by

V (xp, ηim) = b x⊤
p Pxp + (ηim −Mxp)⊤Λ(ηim −Mxp) .

3.2.4.2 Forwarding for harmonic regulation

First, we focus on the minimal requirements to design a stabilizer satisfying the conditions of
Assumption 3.2. To this end, we focus on plants which are described by input-affine dynamics
and we suppose that the full state xp is accessible for feedback design. In other words, we look
for a state-feedback stabilizer for the cascade-system composed by the plants dynamics xp and
the internal model unit ηim, that is

ΣLES
pim :


ẋp = fp(w, xp) + gp(w, x)u
η̇im = Φηim + Γe
e = he(w, xp)
ya = x

(xp(0), ηim(0)) ∈ Xp ×Xim (3.25)
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in which the matrices Φ,Γ have been designed following for instance IM-A’, IM-B’ and IM-C’.
In order to design a stabilizer for ΣLES

pim , we state the following assumptions, which ensures
stabilizability of the xp-dynamics and a local non-resonance condition (which in turns ensures
stabilizability of the overall cascade systems). Note that both conditions are necessary in the
context of linear systems [67].

Assumption 3.4. There exists a C2 function αp : Rnp → Rnu such that the origin of ẋp =
fp(0, xp) + gp(0, xp)αp(xp) is locally exponentially stable and asymptotically stable with a domain
of attraction Ap ⊃ Xp.

Assumption 3.5. The following non-resonance condition holds

rank

∂fp∂x (0, 0) − λI gp(0, 0)
∂he
∂x

(0, 0) 0

 = np + ne, ∀λ ∈ σ(Φ). (3.26)

Then, we can introduce the following function

M(x) := lim
t→∞

∫ t

0
exp(Φs) Γhe(φp(x⋆p, s), 0)ds (3.27)

in which φp(x⋆p, s) is the trajectory of ẋp = fp(0, xp) + gp(0, xp)αp(xp) at time s with initial
condition x⋆p at time s = 0. The following result holds.

Lemma 3.1. Under Assumption 3.4 the function M : Ap → Rnim defined in (3.27) is C2 and
solution of

∂M

∂xp
(xp)

[
fp(0, xp) + gp(0, xp)αp(xp)

]
= ΦM(xp) + Γhe(x, 0) . (3.28)

As one can note from equation (3.28), the function M so defined is the equivalent nonlinear
version of the solution to the Sylvester equation (3.23).

Then, recall that, in view of Assumption 3.4, a converse Lyapunov function (see, for instance,
[123]) can be used to establish the existence of a C1 function Vp : A → R which is positive
definite and proper on Ap and a positive definite function Wp : Ap → R quadratic around the
origin such that

∂Vp
∂xp

(xp)
[
fp(0, xp) + gp(0, xp)αp(xp)

]
≤ −Wp(xp), ∀ xp ∈ Ap . (3.29)

Finally, let ψLES : Rnim × A → Rnu be defined as

ψLES(ηim, xp) = αp(xp)−b
(
∂Vp(xp)
∂xp

gp(0, xp)
)⊤

+
(
∂M(xp)
∂xp

gp(0, xp)
)⊤

Λ(ηim −M(xp)) (3.30)

where b,Λ are degree-of-freedom that can be used to tune the performances of the control law,
with b > 0 and Λ ≻ 0 being any matrix satisfying ΛΦ+Φ⊤Λ = 0. The feedback law ψLES extends
is the nonlinear version of the linear controller (3.24) proposed for linear systems. Finally, we
have the next result.

Proposition 3.5. Under Assumptions 3.4, 3.5 there exists a C2 function hc : Rnim × Rnp → Rnu ,
defined for instance by selecting hc = ψLES as in (3.30), such that the origin of system ΣLES

pim in
closed-loop with u = hc(ηim, ya) in locally exponentially stable, when w = 0, with a domain of
attraction including Xp ×Xim. In other words, item 2 of Assumption 3.2 is satisfied.
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We remark that a (weak) Lyapunpv function is given by

V (xp, ηim) = b Vp(xp) + (ηim −Mxp)⊤Λ(ηim −Mxp) .

It is worth observing that the design of ψLES in (3.30) relies on the exact knowledge of the
function Vp,M , but alternative designs of a stabilized feedback law based on the approximation
of Vp and/or M are possible, see, for instance [141] or Section III in [D25] and references
therein.

3.2.4.3 Incremental forwarding for harmonic regulation

If stronger properties are sought, as in the context of incremental ISS properties required in
Assumption 3.3, then we need to restrict ourselves to a more particular class of systems. In
particular, consider the case in which the plants dynamics are input-to-state affine and the ex-
osignal w satisfies a matching condition, namely the cascade composed by the plant xp and
internal model unit ηim takes the form

ΣδISS
pim :


ẋp = fp(xp) + gp(x)(u+ δ(w))
η̇im = Φηim + Γe
e = he(xp) + r(w)
ya = x

(xp(0), ηim(0)) ∈ Rnp × Rnim , (3.31)

for some nonlinear smooth functions δ : Rnw → Rnu and r : Rnw → Rne . In this context,
following the conditions established in Chapter 1, the following assumptions are stated.

Assumption 3.6. There exists a C1 matrix function Pp : Rnp → Rnp ×Rnp taking positive definite
symmetric values, a function αp : Rnp → Rn and positive real numbers p, p̄, ε > 0 such that the
following hold for all xp ∈ Rnp

0 ⪯ p̄I ⪯ Pp(xp) ⪯ p̄I ,

Lf0Pp(xp) ⪯ −εP (xp) ,
LgPp(xp) = 0

with f0(xp) = fp(xp) + g(xp)αp(xp).

Note that a possible manner to satisfy the previous conditions is to look for a solution to the
following PDEs:

LfPp(xp) − Pp(xp)gp(xp)g⊤
p(xp)Pp(xp) ⪯ −εP (xp) ,

∂αp
∂xp

⊤
(xp) = Pp(xp)gp(xp),

which provides a pre-contractive feedback law u = α(xp) with the infinite-gain margin property,
as shown in Section 1.3.1.2, Lemma 1.3.

As a consequence of Assumption 3.6, the system

ẋp = fp(xp) + gp(xp)αp(xp) + gp(xp)δ (3.32)

is δISS with respect to any signal δ taking bounded values. When d = 0, the origin is globally
exponentially stable. Let consider now the function M defined in (3.27). In view of the proper-
ties of system (3.32), M is defined for all xp ∈ Rnp . In order to propagate the δISS properties to
the cascade system ΣδISS

pim the following assumption is then stated.
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Assumption 3.7. There exist a real number LM and a matrix Υ such that the function M : Rnp →
Rnim defined in (3.27) as the solution to (3.28) satisfies∣∣∣∣∣∂M∂xp (xp)

∣∣∣∣∣ ≤ LM ,
∂M

∂xp
(xp)g(xp) = Υ, ∀xp ∈ Rnp .

The first condition of Assumption 3.7 asks for a globally Lipschitz condition. Then second one
instead replaces Assumption 3.5. In practice, the local controllability ensured at the origin by the
non-resonance condition (3.26) is transformed into a uniform global controllability condition.
This can be seen by performing the change of coordinates

ηim 7→ ξim := ηim −M(xp)

which transform the the (xp, ηim)-dynamics into a system of the form

ẋp = fp(xp) + gp(xp)αp(xp) + gp(xp)[v + δ(w)]
ξ̇im = Φξim − Υ(v + δ(w)) + Γr(w).

if we set u = αp(xp) + v and we use equation (3.28). It is immediately seen that the (xp, ξim)-
dynamics are now decoupled, the xp-dynamics is δISS with respect to the new control input v
and the disturbance δ(w), and the ξim-dynamics is linear. The adjective uniform refers therefore
to the fact that the quantity ∂M

∂xp
(xp)g(xp) is constantly equal to Υ and therefore, for the ξim-

dynamics, we can look for an Euclidean metric in order to design a contractive stabilizer.
Finally, we introduce the following function ψδISS : Rnim × Rnp → Rnu defined as

ψδISS(ηim, xp) := αp(xp) + Υ⊤Λ(ηim −M(xp)) (3.33)

where Λ ≻ 0 is any matrix satisfying ΛΦ + Φ⊤Λ = 0. We can state the following result. Such
a controller is the (nonlinear) incremental version of the previous feedback laws (3.24) and
(3.30).

Proposition 3.6. Under Assumptions 3.6 and 3.7 there exists a C2 function hc : Rnim ×Rnp → Rnu ,
defined for instance by selecting hc = ψδISS as in (3.33), such that the origin of system ΣδISS

pim in
closed-loop with u = hc(ηim, ya) in incrementally input-to-state stable with respect to any bounded
signal w. In other words, item 2 of Assumption 3.3 is satisfied.

Evidently, the conditions imposed by Assumption 3.7 by the previous proposition may be
particularly stringent. Some milder conditions can be obtained following the approximated ap-
proach proposed in Theorem 1.4 where the function M is replaced by a suitable approximation
M satisfying the conditions of Assumption 3.7, and by asking the preliminary feedback αp to
satisfy a robustness requirement as in Assumption 1.5.

3.2.4.4 Incremental forwarding for Lipschitz systems

Finally, as a last part of this section, we propose a possible approach to apply the results of
Theorem 1.5 introduced in Section 1.4.2 in the considered harmonic regulation context. In
particular, consider the case in which the plant’s dynamics takes the form

fp(w, x, u) = Apxp +Npφp(Hpxp) +Bpu+ δ(w),
he(w, xp) = Cexp +Deφp(Hpxp) + r(w),

(3.34)
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where φp(s) is a scalar C1 nonlinearity with φp(0) = 0, and δ : Rnw → Rnp and r : Rnw → Rn+e

are smooth functions. The cascade (xp, ηim) reads

ΣLIP
pim :


ẋp = Apxp +Npφp(Hpxp) +Bpu+ δ(w)
η̇im = Φηim + Γe
e = Cexp +Deφp(Hpxp) + r(w)
ya = x

(xp(0), ηim(0)) ∈ Rnp × Rnim . (3.35)

For such a class of systems, we first assume that Assumption 3.6 is satisfied with respect to
some constant metric P = P⊤ ≻ 0, namely we suppose to look for a feedback law of the form
u = Kpxp satisfying

P

(
Ap +BpKp +Np

∂φp
∂xp

(Hpxp)Hp

)
+
(
Ap +BpKp +Np

∂φp
∂xp

(Hpxp)Hp

)⊤

P ⪯ −εP (3.36)

Then, let Q be defined as the following matrix parametrized by µ and ω

Q(µ, ω) :=
(

(Ap +BpKp)⊤ ⊗ I − I ⊗ Φ(ω) −C⊤
e ⊗ I

H⊤
p (µB⊤

p −N⊤
p ) ⊗ I −H⊤

p D
⊤
e ⊗ I

)
(3.37)

where Φ has been previously chosen to satisfy the requirements IM-A’ and IM-B’ and in which we
explicitly expressed the dependency on the parameter ω = (w1, . . . , wd) for some d ≥ 1. Now,
let M ⊂ R be the set parametrized by someλ ∈ R defined as

M(λ) :=
{
µ ∈ R : P

(
Ap +BpKp + (Np + µBp) ∂φ∂xp (Hpxp)Hp

)
+
(
Ap +BpKp + (Np + µBp) ∂φ∂xp (Hpxp)Hp

)⊤
P ⪯ −λI, ∀x ∈ Rn

}
.

Then the following holds.

Proposition 3.7. Consider system (3.34) and assume that inequalty (3.36) holds for some matrices
P = P⊤ ≻ 0, Kp, and for a real number ε > 0. Let Φ, d be chosen according to IM-A’ and IM-B’ as
in Section 3.2.3.3. Given ω = (ω1, . . . , ωd) with ωk = 2πνk for any k = 0, 1 . . . , d, let λ > 0 and
suppose there exists µ ∈ M(λ) such that det(Q(µ, ω)) = 0. Let M,Γ be any solution to

Q(µ, ω)
(

vec(M)
vec(Γ)

)
= 0.

If (Φ, B⊤
p M

⊤) is detectable and (Φ,Γ) is controllable, then system ΣLIP
pim in closed-loop with

u = Kpxp + κB⊤
p M

⊤Λ(ηim −Mx) + µφp(Hpxp)

with κ > 0 and Λ ≻ 0 any matrix satisfying ΛΦ + Φ⊤Λ = 0, is δISS with respect to any bounded
signal w. In other words, item 2 of Assumption 3.3 is satisfied.
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3.3 Nonlinear internal models

3.3.1 Asymptotic regulation via nonlinear internal models

In the previous sections we have shown that, for a class of nonlinear problems, a regulator
embedding a linear internal model is able to guarantee robust harmonic rejection from the
steady-state regulation error. Nevertheless, results concerning asymptotic regulation have been
only given in the linear case when s is not uncertain. In this section, we consider regulators
of a general form (3.7), in which also the internal model is allowed to be nonlinear. The only
constraints we consider are the finite-dimensionality of the state space and smoothness of the
vector fields fc and hc. This, indeed, guarantees the existence of the limit set as detailed in
Proposition 3.1.

In the context of minimum-phase single-input-single-output normal forms with unitary rel-
ative degree6, we show that, while it is true that a nonlinear regulator always exists ensuring
nominal asymptotic regulation, robust asymptotic regulation is instead impossible in the rele-
vant case of C0 ((locally Lipschitz)) perturbations. Then, we show that there exist (very simple)
systems for which there can not exist a smooth finite-dimensional regulator ensuring robust
asymptotic regulation. For simplicity, and since it represents the most general available exis-
tence result, we shall restrict the discussion to the design of [137] (recalled hereafter) in the
context of single-input-single-output minimum-phase normal forms. We remark, however, that
the same conclusions apply to the regulator in [46], [162], and [55], as well as to all their
numerous extensions.

We consider systems of the form (3.2) with ny = ne = 1, y = e, with the plant’s state xp
which admits the decomposition xp := (ζ, e), ζ ∈ Rnζ , nζ = np − 1, with (fp, hp) such that,
in certain coordinates, the plant’s equations together with the exosystem Σw in (3.3) read7 as
follows

ΣNLIM
x :


ẇ = s(w)
ζ̇ = φ(w, ζ, e)
ė = q(w, ζ, e) + u

(3.38)

with s, φ, qe satisfying the following assumption. We refer for instance to [46, 137, 162, 182],
[D19, D29, D36] and references therein for examples of control problems that can be recast in
such a form.

Assumption 3.8. The functions (s, φ, q) are C2 and there exists a compact set A ⊂ Rnw × Rnζ
which is locally asymptotically stable for the zero-dynamics

ẇ = s(w), ζ̇ = φ(w, ζ, 0)

with an open domain of attraction D ⊃ A.

We let F be the set of smooth functions F = (s, fp, hp) with the above properties and satis-
fying Assumption 3.8. Moreover, we let F ◦ ∈ F , and X◦ be any compact set such that, for some
arbitrary bounded set E ⊂ R, X◦ ⊂ D × E. Then, with P0 the asymptotic regulation property
defined in (3.12), namely

P0 := “ ∀ξ ∈ O, ∀t ∈ dom ξ, he(w(t), xp(t)) = 0 ”.
6This is done without loss of generality, since it represents the setting in which the most general results exist.
7For simplicity we restrict to the case to the case in which the input is linear in the e-dynamics, but the results

could be also generalized to the case of ė = q(w, ζ, e) + b(w, ζ, e)u with the condition b(w, ζ, e) ≥ b for all (w, ζ, e) ∈
Rnw × Rnζ × R.
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the result of [137] can be stated, in our setting, as follows.

Theorem 3.5. There always exists a finite-dimensional regulator of the form (3.7) with (fc, hc) ∈
C0 which achieves the steady-state property P0 nominally at (F ◦, X◦).

Theorem 3.5 gives an affirmative answer to the question whether or not we can always
find a regulator embedding a nonlinear internal model that can effectively ensure asymptotic
regulation in the nominal case. In general, possibly under additional assumptions, the design
of [137], as well as those of [46], [162], [55] and the related extensions, can also guarantee
semi-global or global approximate regulation property robustly (i.e. the steady-state property
Pε defined in Example 3.3), when the functions perturbations are meant in the C0 topology.

In the next section, we study the robustness properties of the regulator which is given by
Theorem 3.5. Surprisingly we will show that if such a regulator is robust in the weak C1 topology
defined in Example 3.7 then it is necessarily linear.

3.3.2 C0-robust regulators are linear

In order to study the robustness properties of nonlinear regulators, we focus in this section on
the design proposed in [137], which is, to certain extents, the more general. Similar reasoning
and results can be however obtained also with the designs proposed in [46], [162], [55].

As show in [137], a regulator which solves the asymptotic regulation problem in the sense
of Theorem 3.5 can be taken in the form

ΣNLIM
c :

{
η̇im = Fηim +Gu, ηim(0) ∈ H0

u = γ(ηim) + κ(e)
(3.39)

with ηim ∈ Rnim , nim ∈ N, H0 ⊂ Rnim compact, (F,G) ∈ Rnim×nim × Rnim , γ ∈ C(Rnim ,R) and
κ ∈ C(R,R). For the forthcoming result, we don’t need to keep separated the effects of ζ and w.
As a consequence, using the compact notation

z = (w, ζ) ∈ Rnz , nz = nw + nζ , f(z, e) = (s(w), φ(w, ζ, e)), q(z, e) = q(w, ζ, e),

the closed-loop system ΣNLIM
p -ΣNLIM

c reads

ΣNLIM
xc :


ż = f(z, e), z(0) ∈ Z0,

η̇im = Fηim +G(γ(ηim) + κ(e)), ηim(0) ∈ H0,

ė = q(z, e) + γ(ηim) + κ(e), e(0) ∈ E0.

(3.40)

We let F ⊂ C(Rnx × R,Rnx) × C(Rnx × R,R) be the set of all pairs (f, q) of locally Lipschitz
continuous functions f and q such that f satisfies Assumption 3.8. Then, the following theorem
summarizes the results of [137].

Theorem 3.6. Consider the system (3.40) under Assumption 3.8. There exists nim ∈ N and, for
every (f, q) ∈ F , and every compact subsets Z0 ⊂ D, E0 ⊂ R and H0 ⊂ Rnim , there exist a
controllable pair (F,G) ∈ Rnim×nim × Rnim×1 with F Hurwitz, γ ∈ C(Rnim ,R), κ ∈ C(R,R) with
κ(0) = 0, and τ ∈ C(Rnw ,Rnη), such that:

1. For all z ∈ A
∂τ

∂z
f(z, 0) = Fτ(z) −Gq(z, 0). (3.41)

2. γ(τ(z)) = −q(z, 0), for all z ∈ A.

72



3.3. Nonlinear internal models

3. The trajectories of the closed-loop system (3.40) are complete and equibounded.

4. The set B × {0}, where B := graph(τ |A) =
{
(z, ηim) ∈ A × Rnim : im = τ(z)

}
, is forward

invariant and attractive from Z0 ×H0 × E0 for the closed-loop system (3.40).

We now fix, once for all:

1. A nominal value (f◦, q◦) ∈ F for the plant’s functions (f, q) in ΣNLIM
xc .

2. The compact sets Z0 and E0 of the initial conditions, in such a way that 0 ∈ E0 and A◦ ⊆
Z0 ⊂ D◦ where A◦ is a compact set such that Assumption 3.8 holds when f = f◦, and D◦

is its domain of attraction.

Then, we choose nim ∈ N, H0 ⊂ Rnim compact, (F,G) ∈ Rnim×nim × Rnim×1 with F Hurwitz,
γ ∈ C(Rnim ,R), and κ ∈ C(R,R) satisfying κ(0) = 0, in such a way that the claim of Theorem 3.6
holds for the selected nominal data. Then, consider the system

Σ◦
z : ż = f◦(z, 0), z(0) ∈ Z0 (3.42)

and let O◦ := OΣ◦
z
(Z0) denote the set of steady-state trejctories of system Σ◦

z, defined according
to Section 3.1.1. Then, let τ◦ ∈ C(Rnz ,Rnη) denote a function for which the claim of Theo-
rem 3.6 holds for the nominal data (f◦, q◦) fixed previously and consider τ◦(O◦), defining the
ideal error-zeroing steady-state locus of the variable ηim of the nominal controller (3.39). We
make the following technical assumptions on γ and τ◦(O◦).

Assumption 3.9. γ is differentiable at 0, and τ◦(O◦) is star-shaped8.

Then, we have the following result concerning the robustness properties of the regulator
(3.39) in terms of C0 topology defined as in Example 3.7 and P0 properties as defined in (3.12).

Theorem 3.7. Suppose that Assumption 3.9 holds. If the regulator (3.39) is (P0, τX × τF )-robust
at (f◦, q◦) from Z0 ×H0 × E0, then γ is linear on τ◦(O◦).

Theorem 3.7 implies that, if the regulator (3.39) is robust with respect to unstructured C0

perturbations according to Example 3.7, then the restriction of its dynamics to the nominal limit
set is that of a linear system. Indeed, in the nominal closed-loop limit set, e = 0, so that γ(η) is
the only nonlinear term in (3.39), and Theorem 3.7 states that it is actually linear on τ◦(O◦).
We remark that the proof of this fact is based on the following technical lemma.

Lemma 3.2. Let n ∈ N≥1 and ϕ ∈ C(Rn,R). Suppose that ϕ is differentiable at 0, and that there
exist µ ∈ (0, 1) and a star-shaped subset S ⊂ Rn such that

ϕ(µs) = µϕ(s), ∀s ∈ S.

Then, ϕ is linear on S.

Indeed, based on the previous lemma, it suffices to consider perturbations of the form
q(z, e) = (1 + ε)q◦(z, e) for some small ε to show that by linearity then γ needs to be linear.
This, in turn, implies that the ideal steady-state control actions needed to keep the regulation
error to zero, formally given by the outputs u⋆ of the system

ż = f◦(z, 0), z(0) ∈ O◦

u⋆ = −q◦(z, 0),
8A set S ⊂ Rn, n ∈ N, is called star-shaped if x ∈ S =⇒ λx ∈ S for all λ ∈ [0, 1].
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are actually all reproducible by the linear system

η̇ = (F +GΓ)η, η(0) ∈ τ◦(O◦)
u = Γη

(3.43)

where Γ is the Jacobian matrix of γ at the origin. Since (3.43) is linear and finite-dimensional,
Theorem 3.7 extends the linear internal model principle of [83] to nonlinear systems and un-
structured perturbations. Namely, a robust regulator (in the sense of weak C0 topology of Ex-
ample 3.7) embeds a linear internal model.

In the the next section, however, we show that a linear finite-dimensional regulator of the
form (3.43) can never be robust in the C0 topology.

3.3.3 Non-asymptotic properties of finite-dimensional linear regulators

The question of whether or not robust asymptotic regulation might be ensured by a finite-
dimensional regulation has, however, a negative answer in general when perturbations are
meant in the C0 topology. In particular, we let R be the class of problems obtained with:

1. An extended plant of the form (3.2), (3.5), for some nw, np, ny, nu, ne ∈ N, satisfying As-
sumption 3.1.

2. F := (s, fp, hp) ∈ F := C0, where F is given the weak C0 topology on the compact set
P := X × U, where X ⊂ Rnx and U ⊂ Rnu are arbitrary compact neighborhoods of the
respective origin (see Example 3.7).

3. X ∈ X := K(Rnx) (nx := nw + np), where X is given an arbitrary topology τX .

Then, the following result holds.

Theorem 3.8. There exist problems in R and nominal data (F ◦, X◦) ∈ F × X for which no finite-
dimensional regulator of the form (3.7) with (fc, hc) ∈ C1 exists that achieves the steady-state
property P0 robustly at (F ◦, X◦) with respect to τF × τX .

Theorem 3.8 can be established by a simple by counterexample. In particular, we consider a
problem in R obtained with nw = 2, np = 1, ny = ne = nu = 1, X◦ = W ◦ × X◦

p , with W ◦ :=
{(0, 1)} and X◦

p ∈ K(R) any, and with the extended plant satisfying the following equations.

ẇ =
(

0 1
−1 0

)
w w(0) = (0, 1)

ẋp = w1 + u, xp(0) ∈ X◦
p

e = xp.

(3.44)

With N ∈ N, let

TN =
{
ψ : R → R : ψ(t) = α+

N∑
n=1

(
βn sin(nt) + γn cos(nt)

)
, α, βn, γn ∈ R

}
.

be the vector space of all the time signals obtained as the linear composition of N harmonics
and a bias. Then, the mapping ϕN : TN → R2N+1 defined as

ψ 7→ ϕN (ψ) := (α, β1, γ1, . . . , βN , γN )
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is an isomorphism. With ϵB(R2N+1) the ball of radius ϵ > 0 in R2N+1, we define the ball of
radius ϵ in TN as

ϵB(TN ) := ϕ−1
N

(
ϵB(R2N+1)

)
=
{
ψ ∈ TN : |ϕN (ψ)| < ϵ

}
.

Then, the following two results hold.

Proposition 3.8. Suppose that, for some N ∈ N and ϵ > 0, there exist m ∈ N, g ∈ C1(Rm,Rm),
θ : C1(Rm,R), and a system of the form

ξ̇ = g(ξ), v = θ(ξ), ξ ∈ Rm (3.45)

such that for every ψ ∈ ϵB(TN ) there exists ξ0 ∈ Rm such that the (unique) solution ξ(t) of (3.45)
originating at ξ(0) = ξ0 satisfies v(t) = θ(ξ(t)) = ψ(t) for all t ∈ R≥0. Then m ≥ 2N + 1.

Lemma 3.3. Let K ⊂ R2 be a compact set including 0. For each ϵ > 0 and each N ∈ N there exists
δ > 0 such that, for every ψ ∈ δB(TN ) there exists cψ ∈ C0(R2,R) satisfying supk∈K |cψ(k)| < ϵ
such that cψ(sin(t), cos(t)) = ψ(t).

Based on previous results, the proof of Theorem 3.8 relies then on the construction of an
ad hoc set of perturbations of F which makes impossible for the regulator to generate all the
possible corresponding steady state control actions. We remark the in all the elements of this
perturbation set, the function of the exosystem s is kept equal to the nominal value s◦. Thus,
we are conceptually in the same setting of Theorem 3.1, in which the extended plant is linear
and only the plant is perturbed, with the only difference that in this setting arbitrarily small
nonlinear perturbations are allowed.

3.4 Infinite-dimensional internal model regulators

3.4.1 Internal model design

In view of the results of previous chapter, consider now single-input single-output systems (3.2)
that can be written, under suitable change of coordinates as in (3.38), namely

ΣINF
x :


ẇ = s(w)
ζ̇ = φ(w, ζ, e)
ė = q(w, ζ, e) + u

(3.46)

in which ζ ∈ Rnζ is the state of the zero-dynamics, e ∈ R is the measured output to be regulated
to zero and u ∈ R is the control input, and w ∈ Rnw are the exosignals.

Note that we suppose that the system has unitary relative-degree between the input u and
the regulated output e. The case of higher relative degree will be addressed below. The main
idea consists in adopting a high-gain observer as shown below in Section 3.4.1.2 We state now
the following assumptions.

Assumption 3.10. Consider system (3.46). The functions φ, q are C2, the function q is globally
Lipschitz and moreover the zero-dynamics of ΣINF

p is globally incrementally ISS with respect to w
and e, namely, for any two initial conditions ζ ′(0), ζ ′′(0) ∈ Rnζ and any two pair of inputs (w′, e′)
and (w′′, e′′), the corresponding solutions ζ ′, ζ ′′ to ζ̇ = φ(w, ζ, e) satisfy

|ζ ′(t) − ζ”(t)| ≤ β(|ζ ′(0) − ζ ′′(0)|, t) + sup
s∈[0,t)]

γw(|w′(s) − w′′(s)|) + sup
s∈[0,t)]

γe(|e′(s) − e′′(s)|)

for some β ∈ KL and γw, γe ∈ K∞, for all t ≥ 0.
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We remark that Assumption 3.10 can be verified for instance under the well-known Demi-
dovich condition (see, e.g., [69,152,207])

P
∂φ

∂ζ
(w, ζ, e) + ∂φ

∂ζ

⊤
(w, ζ, e)P ⪯ −Q.

Then, consider the steady-state trajectories OΣζw of the zero-dynamics of system (3.46) when
e = 0, namely

Σζw :
{
ẇ = s(w)
ζ̇ = φ(w, ζ, 0).

(3.47)

We make the following assumption.

Assumption 3.11. There exist a skew-adjoint operator S : D(S) ⊂ H → H, with D(S) dense in H
and a (possibly unbounded) operator E ∈ L(D(S),R) such that, for any element (w◦, z◦) ∈ OΣζw
and any initial time t0 ∈ R there exist an initial condition v0 ∈ D(S) such that the function
φ(t) := −q(w◦(t), ζ◦(t), 0) satisfies for all t ≥ t0

v̇(t) = Sv(t), v(0) = v0,

Ev(t) = φ(t).

We define now the family F as a set of C2 functions such that any element f ∈ F satisfies
Assumptions (3.10) and (3.11). Then, we let τF be the the weak C1 topology (Example 3.7) on
a compact set P := X × U with D ⊂ X, and let τX be the Hausdorff topology on X .

Finally, we consider the asymptotic regulation property P0 defined in (3.12), that is, in our
context

P0 := “ ∀ξ ∈ O, ∀t ∈ dom ξ, e(t) = 0 ”. (3.12)

Based on previous assumptions, we consider now the following linear infinite-dimensional reg-
ulator

ΣINF
c :

{
η̇im = Sηim + Ge
u = −κe+ µM∗(ηim − Me)

(3.48)

where the S : D(S) ⊂ H → H is defined as in Assumption 3.11, G : L(R,H) is a bounded
operator to be chosen so that the pair (S∗,G∗) is approximately observable in infinite time (see
Definition 2.6) and M : R → H is a bounded linear operator selected as the solution to the
(infinite-dimensional) Sylvester equation

−κM = SM + G, (3.49)

and M∗ : H → R is its adjoint operator. Note that since S is a skew-symmetric operator,
for any κ > 0 the spectrum of −κ and S are disjoint and therefore the solution to (3.49) is
unique, see, e.g. [153, Lemma 22]. Also, M takes values in H as remarked in [D53]. Note that
once the internal model ηim dynamics is fixed, the design of the stabilizer part in ΣINF

c follows
from the forwarding technique developed for the stabilization of cascade ODE-PDE systems in
Section 2.3. We have now the following result.

Theorem 3.9. Suppose that Assumptions 3.10-3.11 hold and moreover suppose that the pair
(S∗,G∗) is approximately observable according to Definition 2.6. Then, there exists a κ⋆ > 0
such that, for any κ > κ⋆ and any µ > 0, the regulator ΣINF

c is (P0, τ)-robust at F ◦, X◦ for the
strong solutions9 of the closed-loop system (3.46), (3.48). In other words, the following holds.

9Actually one can also prove existence of weak solutions when asking ηim(0) ∈ H. Since the PDE is part of the
regulator, we focus in this case only to initial conditions guaranteeing existence of strong solutions.
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• For any initial condition (w(0), ζ(0), e(0), ηim(0)) ∈ W ×Rnz ×R×D(S) the closed-loop system
ΣINF
x -ΣINF

c defined in (3.46), (3.48) admits a unique strong solution (w, ζ, e, ηim) in

C1([t0,+∞);Rnw × Rnζ × R × H) ∪ C0([t0,+∞);Rnw × Rnζ × R ×D(S))

which is bounded for all t ≥ t0, namely there exists δ > 0 such that |w(t)| + |ζ(t)| + |e(t)| +
∥η(t)∥D(S) ≤ δ for all t ≥ 0.

• For any initial condition (w(0), ζ(0), e(0), ηim(0)) ∈ W × ×Rnζ × R × D(S), solutions to the
closed-loop system ΣINF

x -ΣINF
c defined in (3.46), (3.48) satisfy limt→∞ e(t) = 0.

Previous theorem establishes that the regulator (3.48) solves the global output reglation
problem for systems of the form (3.46) robustly with respect to classes of functions satisfying
Assumptions 3.10, 3.11. While Assumption 3.10 is concerned only with stability properties
of the zero-dynamics, Assumption 3.11 can be seen as more critical as it defines the class of
signals that the internal-model unit needs to generate at steady-state. As extensively discussed
in Section 3.3, Assumption 3.11 is actually quite generic and “robust”. For instance, when w
convergences to a T -periodic signal, then the signal q(w, z, 0) is also a T -periodic signal due to
the δISS properties of a the zero-dynamics (3.47). For this reason, under such an assumption, the
explicit knowledge of the functions f, q is not needed and the design is robust to any variations
of within the family F as long as the stability requirement is met.

In the next section we investigate Assumption 3.11 in the context of quasi-periodic signals
providing an explicit design for the operators S,G,M in (3.48).

3.4.1.1 Internal models for quasi-periodic signals

Suppose that the signal φ in Assumption 3.11 is quasi-periodic and can be written as

φ(t) =
N∑
i=1

φi(t), φi(t+ Ti) = φi(t), ∀t ≥ 0, (3.50)

namely as a sum of N signals in which each φi is Ti-periodic. Moreover, we suppose that the
periods Ti are incommensurable real numbers, namely Ti

Tj
is an irrational number for any pair

of i, j, i ̸= j. For N = 1, we fall in the context of repetitive control, e.g. [D19] or [208]
and references therein. A generator of τ -periodic signals can be obtained by using a transport
equation as follows:

∂tϕ(t, x) = − 1
τ ∂xϕ(t, x), ∀ (t, x) ∈ R × [0, 1],

ϕ(t, 1) = ϕ(t, 0), ∀ t ∈ R.

As a consequence, Assumption 3.11 is verified in the context of quasi-periodic signals by select-
ing the operators S, E as

Sv := −Λ∂xv, Ev := 1v(t, 1),

with D(S) = {v ∈ H : v(0) = v(1)} with H := L2([0, 1];RN ),

Λ := diag
( 1
T1
, . . .

1
TN

)
(3.51)

and with 1 being a row vector in which any element is equal to 1, namely 1 := (1, . . . , 1). In
other words, for any continuous function φ in (3.50) and any t0 ∈ R, there exists an initial
condition v(t0) = v0 such that φ(t) = Ev(t) for all t ≥ t0. Note that in this case E is an
unbounded operator.
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Then, the operators S,G and M of internal model unit (3.48) can be taken as

Sη := −Λ∂xη, Ge := B(x)e, Me := M(x)e (3.52)

with Λ defined in (3.51), B : [0, 1] → RN defined as

B(x) := col(β1 exp(T1x), . . . , βN exp(TNx)),

and M : [0, 1] → RN defined as the solution of the following two-boundary value problem

ΛM ′(x) = κM(x) +B(x),
M(0) = M(1),

corresponding to the Sylvester equation (3.49). Note that M is a column vector and its i-th
component can be explicitly computed as

Mi(x) =

 exp(κTix)M i + βi
exp(Tix)−exp(κTix)

Ti(1−κ) , κ ̸= 1,

exp(κTix)M i + xβi exp(κTix), κ = 1,

M i =


βi

Ti(1 − κ)
exp(Ti) − exp(κTi)

1 − exp(κTi)
, κ ̸= 1,

exp(κTi)
1−exp(κTi)βi, κ = 1.

(3.53)

Moreover, the adjoint M∗ of M is defined as

M∗η =
∫ 1

0
M(x)⊤η(t, x)dx.

With this notation, the internal-model regulator (3.48) takes the more explicit form

ΣQP
c :



∂tη(t, x) = −Λ∂xη(t, x) +B(x)e(t)

η(t, 1) = η(t, 0)

u(t) = −κe(t) + µ

∫ 1

0
M(x)⊤(η(t, x) −M(x)e(t))dx,

(3.54)

defined on (t, x) ∈ R × [0, 1], and with state variable η taking initial condition in L2([0, 1];RN ).
We remark that the operator G so defined (3.52) is bounded, allowing to guarantee ISS proper-
ties with respect to e. With such a choice, one can deal with systems possessing a relative degree
larger than one and add a high-gain observer (estimating the derivatives of the output e) so that
to obtain a pure output feedback design shown in the next section.

In the next lemma, we show that the pair S,G so defined satisfies the conditions of Theo-
rem 3.9.

Lemma 3.4. Let βi ̸= 0 for all i ∈ [1, . . . , N ] and let (T1, . . . , TN ), with Ti ̸= 0 for all i ∈
[1, . . . , N ] be a set of incommensurable scalars, namely Ti

Tj
is an irrational number for any pair of

i, j ∈ [1, . . . , N ], i ̸= j. Then, the pair (S∗,G∗) defined in (3.52) is approximately observable in
infinite time.

Note that the regulator so designed solves the strong asymptotic version of the robust arbi-
trary harmonics regulation problem addressed in Section 3.2.3.3 for the class of minimum-phase
systems (3.46).
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3.4.1.2 Non-unitary relative degree

We consider in this section the case of systems that have a non-unitary relative degree. In
particular, we suppose that the relative degree is r > 1 and the system reads

ΣINF,r
p :



ζ̇ = φ(w, ζ, ξ1),

ξ̇i = ξi+1, i = 1, . . . , r − 1

ξ̇r = q(w, ζ, ξ1, . . . , ξr) + u,

e = ξ1,

(3.55)

It is well known that system ΣMIN,r
p can be put into a system of the form ΣMIN

p via the following
change of coordinates

θ := ξr +
r−1∑
i=1

gr−iaiξi,

which transform system ΣMIN,r
p into

ζ̇ = φ(w, ζ, g1−rCr−1ξ)
ξ̇ = g(Ar−1 −Br−1Ka)ξ + gBr−1θ

θ̇ = ∆(w, ζ, ξ, θ) + u

e = Cr−1ξ

with the following definitions

Ai :=
(

0i−1,1 Ii−1
0 0 · · · 0

)
, Bi :=

(
0i−1,1

1

)
, Ci :=

(
1 01×i−1

)
,
Ka = (a1, . . . , ar−1),
Kb = (b1, . . . , br),

∆(w, ζ, ξ, θ) := q(w, ζ, g1−rξ1, . . . , g
−1ξr−1, θ −Kaξ) + g

r−2∑
i=1

aiξi+1 + gar−1(θ −
r−1∑
i=1

aiξi).

It can be remarked that the signal θ is not directly available but since it is a linear combination
of the output e and its r derivatives, it can be estimate via a high-gain observer [115] of the
form 

˙̂
ξi = ξ̂i + gibi(e− ξ̂1), i = 1 . . . , r − 1
˙̂
ξr = grbr(e− ξ̂1).

where g ≥ 1 is the so-called high-gain parameter and selecting

θ̂ := ξ̂r +
r−1∑
i=1

gr−iaiξ̂i.

As a consequence, collecting all together the equations, under Assumptions 3.10, 3.11, a regu-
lator for system (3.55) takes the overall form

ΣINF−HGO
c :



η̇im = Sηim + Gθ̂
η̇st = Arηst +DgKb(e− Crηst) − κBrθ̂

u = −κθ̂ + µM∗(ηim − Mθ̂)

θ̂ = ηst,r +
r−1∑
i=1

gr−iaiηst,i
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in which Dg = diag(g, . . . , gr), the parameters ai, i = 1, . . . , r−1 and bi, i = 1, . . . , r are selected
so that the following characters tic poly nominal

pa(λ) := λr−1 + ar−1λ
r−2 + · · · + a2λ+ a1

pb(λ) := λr + brλ
r−1 + · · · + b2λ+ b1

have all eigenvalues with negative real part, g, κ are high-gain parameters to be chosen large
enough and µ > 0.

3.4.2 Finite-dimensional approximation

In Section 3.4.1 we have shown that a possible approach to the problem of robust output reg-
ulation (with asymptotic steady-state properties) is to rely on the use of infinite-dimensional
regulators. Evidently, because of their infinite-dimensional nature, such controllers are not im-
plementable from a practical point of view and needs to be discretized. We talk more in general
of realization as such a discretization can be done in several different ways (e.g., time and/or
spatial discretizations). In this section, inspired by the design of Section 3.4.1.1 we focus there-
fore on the case of an infinite-dimensional regulator described by a single transport equation for
the reject/tracking of periodic signals. In particular, the regulator (3.48) has the form

ΣRC
c :



∂tη(t, x) = − 1
T ∂xη(t, x) + exp(βx)e(t)

η(t, 1) = η(t, 0)

u(t) = −κe(t) + µ

∫ 1

0
M(x)⊤(η(t, x) −M(x)e(t))dx,

(3.56)

with M : [0, 1] → R solution of the following two-boundary value problem{ 1
TM

′(x) = κM(x) + exp(βx),

M(0) = M(1).
(3.57)

An explicit solution can be computed similarly to (3.53). The controller ΣRC
c is also known as

Repetitive Controller, e.g. [51,97] and [D4,D19].
In order to discretize the infinite-dimesional dynamics in ΣRC

c , we remark that the operator
S defined as

S = ∂x,

D(S) = {η ∈ L2(0, 1) : η(0) = η(1)},

{
∂tη(t, x) = − 1

T ∂xη(t, x)
η(t, 1) = η(t, 0)

is a skew-adjoint operator whose eigenvalues lies on the imaginary axes. Furthermore they
are given by 0 ∪ {± i2ℓπ

T } for any ℓ ∈ N>0. As a consequence, a simple manner to obtain an
approximated finite-dimensional realization of S is to use the transfer function

Gno(s) = 1

s
no∏
ℓ=1

(s2 + ℓω2)
, ω = 2π

T
,

in which only the first 2no + 1 eigenvalues of the operator S are considered. In state-space
representation, the regulator ΣRC

c is then approximate as follows the form

ΣRC,no
c :

{
η̇im = Φηim + Γe
u = −κe+ µM⊤N(ηim −Me) ,

(3.58)
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where ηim = (η0, . . . , ηno) ∈ Rnim , nim = 2no+1 is the state internal model unit and the matrices
Φ, N,Γ are defined as

Φ := blckdiag
(
0,Φ1, . . . ,Φno

)
, Φℓ =

(
0 ωℓ

−ωℓ 0

)
, ωℓ = 2ℓπ

T

N = blckdiag
(
n̄0, N1, . . . , Nno

)
, Nℓ = n̄ℓ I2, ∀ ℓ = 1, . . . , no,

M = (1,M⊤
1 , . . . ,M

⊤
no)

⊤, Mℓ = (1, 0)⊤, ∀ ℓ = 1, . . . , no,

Γ = −(Φ + σI)M .

(3.59)

where n̄ℓ is a sequence of real numbers satisfying, for some N ∈ R>0,

∞∑
ℓ=0

n̄ℓ = N2 < +∞ , (3.60a)

n̄(ℓ+1) < n̄ℓ ∀ 0 ≤ ℓ , (3.60b)

ℓ n̄ℓ ≤ mn̄m ∀(ℓ,m) : 0 < m ≤ ℓ , (3.60c)

ℓ2 n̄ℓ ≤ m2 n̄m ∀(ℓ,m) : 0 ≤ ℓ ≤ m . (3.60d)

Actually, as an illustration or for more specificity, we consider the particular case

nz0 = 2,
n̄ℓ = 1

ℓ1+ϵ , ∀ ℓ ∈ N>0 ϵ ∈ (0, 1]. (3.61)

The resulting controller (3.58) is a finite-dimensional approximation of the exact infinite di-
mensional (repetitive-controller) regulator (3.56). Due to its finite-dimensional nature it cannot
guarantee asymptotic regulation, namely P0 as defined in Example 3.3

P0 := “ ∀ξ ∈ O, ∀t ∈ dom ξ, e(t) := he(w(t), xp(t)) = 0 ”.

However, due to its structure, harmonic regulation is always guaranteed, see (3.18) that we
recall here:

PT := “ ∀ξ ∈ OΣcl(F,X)(X ×Xc), e ∈ Qne
No

”. (3.18)

Actually, the regulator ΣRC,no
c in (3.58) can be also tuned to solve a even thinner approximate

objective. As a matter of fact, it can be shown that the regulator ΣRC,no
c satisfies∫ T

0
|e(t)|2dt ≤ ψ2

(no + 1)2 . (3.62)

As a consequence given a desired objective ε, one can select the dimension no of the regulator
ΣRC,no
c in order so that any steady-state trajectory of the closed-loop system (3.46), (3.58) satisfy

the following regulation objective PT,ε:

PT,ε := “ ∀ξ ∈ O, ∀t ∈ dom ξ,

∫ T

0
|he(w(t), xp(t))|2dt ≤ ε ”. (3.63)

Note that such a property is similar to the one defined Example 3.3, but now defined on the L2
norm of the regulated output and not on the L∞ norm.
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To this end, consider a plant of the form (3.46), namely namely

ΣRC,no
x :


ẇ = s(w)
ζ̇ = φ(w, ζ, e)
ė = q(w, ζ, e) + u

(3.64)

and let us state the following (strong) minimum-phase assumption.

Assumption 3.12. The functions (s, φ, q) are C2 and there exists a compact set A ⊂ Rnw × Rnζ
which is locally exponentially stable for the zero-dynamics

ẇ = s(w), ζ̇ = φ(w, ζ, 0)

with an open domain of attraction D ⊃ A.

Similarly to Section 3.2.3.2, we let F = Fw × Fp, where Fw is a set of C1 functions Rnw →
Rnw and Fp is a set of C2 functions of the form (φ, q), with φ : Rnw × Rnζ × R → Rnζ and q :
Rnw×Rnζ×R → R. We endow Fw with an arbitrary topology τFw and, with a X ⊂ Rnw×Rnζ×R
arbitrarily large compact neighborhoods of the origin satisfying X ⊂ D × R, we endow Fp with
the subset topology τFp induced by the weak C2 topology on X (see Example 3.7). Note that in
this case, due to the linearity in u we don’t consider perturbations in u but only on the functions
φ and q. We then let τF := τFw × τFp . This allows us to consider “independent variations” of
s and (φ, q), and thus to better distinguish the assumptions on the exosystem from that on the
controlled plant. The following assumption is state concerning the exosystem dynamics.

Assumption 3.13. There exists a τFw -neighborhood Nw of s◦ and, for every ϵ > 0, a δ(ϵ) > 0,
such that every solution to (3.19) with s ∈ Nw and satisfying |w(0)| ≤ δ(ϵ) also satisfies |w(t)| ≤ ϵ
for all t ≥ 0. Moreover, the solutions to (3.19) with s ∈ Nw satisfy uniformly

lim
t→∞

|w(t+ T ) − w(t)| = 0 .

Then, we let X = K(Rnx), and we endow it with the Hausdorff topology τX (see Example
3.5). Finally, we consider the regulator ΣRC,no

c defined in (3.58) which is parametrized by three
parameters: its dimension no and two gains µ, κ > 0. We consider a compact set of initial
condition E0 ⊂ Rnim parameterized by any z > 0 such that

η⊤
im(0)Nηim(0) ≤ z .

This is always possible to the choice of N which is in ℓ2. We then have the following result.

Theorem 3.10. Suppose that Assumptions 3.12 and 3.13 hold. For κ ≥ 1 large enough and
any µ > 0, the regulator (3.58) is (PT , τF × τX )-robust at (F ◦, {0}), with PT defined in (3.18),
uniformly in the parameter no. Furthermore, for any ε > 0 there exists no ∈ N large enough such
that the regulator (3.9) is (PT,ε, τF × τX )-robust at (F ◦, {0}), with PT,ε defined in (3.63).

Theorem 3.10 establishes several properties about the solutions of the closed-loop system
(3.64), (3.58). Similarly to Section 3.2.3.2, the regulator ΣRCno

c is able to guarantee harmonic
regulation of order no. The remarkable feature however is that the regulator guarantees a
domain of attraction which is uniform in the plant’s initial conditions. In other words, there
exists a κ large enough such that the set X is always included in the domain of attraction
for any number of oscillators no included in ΣRCno

c . Furthermore, the trivial initial condition
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ηim(0) = 0 coinciding with the origin, is always included in the domain of attraction of the
closed-loop system. Notably, once κ is fixed, one can vary the dimension nim of the internal
model unit without need of modifying the gain κ.

The second remarkable feature of the regulator ΣRCno
c is that by increasing the dimension

one can improve the L2 norm of the steady-state trajectory of the regulated output e. In partic-
ular, given any ε > 0 one can select a sufficiently large number of oscillators no such that (3.62)
is satisfied at steady-state. As this property is uniform, one can therefore recover

lim
no→∞

lim
t→∞

∫ t+T

t
|e(t)|2dt = 0

namely asymptotic regulation is achieved. In other words, when letting the number no go to
infinity, one recovers the exact repetitive controller ΣRC

c defined in (3.56). And this property
holds without needs of increasing κ to infinity (as one could alternatively do in a pure high-gain
feedback paradigm).

3.5 Conclusions and perspectives

The problem of robust output regulation for nonlinear systems has been investigated. First,
in Sections 3.1-3.3, we proposed a new framework able to clarify the robustness properties of
internal-model based regulators. The development of these sections is mainly based on the
articles [D37, D38], although it takes profit of many other contributions, some of them under
revision at the time of the writing of this manuscript. More in details, Section 3.2.4 is a summary
of the various design techniques proposed in the series of works [D25, D28, D46–D48], while
the first part of Section 3.3 concerning the robustness properties of nonlinear internal model
based regulators will be published in [D35]. Then, in Section 3.4, we introduced the use of
infinite-dimensional regulators for robust regulation. The first part of this section is based on
the contribution [D3] under revision at the time of writing of this manuscript and generalizes
the work on repetitive control [D19]. The content of Section 3.4.1.2 has been published in
[D4, D29], while the last part in which we establish a clear link between repetitive control and
harmonic regulation summarizes the main results from [D27,D29].

This chapter proposed a new set of results in the literature of robust output regulation. On
the one hand, we clarified the notion of robustness of linear and nonlinear internal models
proposing a detailed framework able to capture the complexity of steady-state behaviours. On
the other hand, we introduced the use of infinite dimensional regulators for nonlinear systems
clarifying the repetitive control approach vis-à-vis output regulation literature. Furthermore, we
showed that infinite dimensional internal models can potentially guarantee robust asymptotic
properties for much larger classes of exosignals, such as those that can be represented by a sum
of non-commensurable periodic signals, namely quasi-periodic ones. Although the proposed
regulators are not implementable because of their infinite-dimensional nature, they represent
a starting point for the design of large scale regulators able to achieve practical regulation in
a non-high-gain feedback paradigm. In other words, we believe that the practical objective of
approximate regulation can be obtained not by increasing a high-gain parameter but by ap-
propriately discretizing (spatially and or temporally) the infinite-dimensional regulator and by
tuning its dimension. A preliminary result, in such a direction, is proved in the context of peri-
odic signals, where we showed that a spectral decomposition based on Fourier series allows to
reduce the asymptotic L2 norm of the regulated output without need of increasing the high-gain
parameter [D29], but by increasing the numbers of eigenvalues on the imaginary axe, namely
the dimension of the internal-model regulator. A detailed study will be also dedicated to the case
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of quasi-periodic signals to better detail the results of Section 3.2.3.3 so that to characterize the
dimension of the resulting finite-dimensional regulator needed to guarantee desired asymptotic
bounds on the regulated output. It would be also interesting to study the connection of the
proposed framework with the harmonic approach recently proposed in [34, 172] based on the
use of a sliding Fourier decomposition.
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State observers are the basic instrument to detect abnormal operating conditions such as
faults or malfunctions and feed controllers when not all the state variables are accessible, [D34].
While state estimation for linear systems is a well studied topic, beginning with the seminal pa-
pers by Kalman [111] and Luenberger [132], many different approaches for nonlinear systems
are still under development. See, among others, [27, 38, 96, 115, 184], [D14, D16, D25]. How-
ever, most of these approaches focus on the convergence properties of the estimation error in
nominal conditions, that is, when the plant’s model is known perfectly and when no measure-
ment noise is affecting the outputs. Indeed, at present, few tools are available to analyze the ef-
fect of the measurement noise on the estimation error in a nonlinear context. Most of the existing
works follow a “worst-case approach” such as H∞ gains, Lyapunov bounds or input-to-state sta-
bility gains. An attempt to address high-frequency measurement noise was recently investigated
for high-gain observers [D15]. Depending on the characteristics of the measurement noise, dif-
ferent approaches may be pursued to improve the observer performances. For instance, in the
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case of output measurements affected by outliers, that is, perturbations of impulsive nature af-
fecting the measurement for a very short time, the majority of the existing methods focus on a
discrete-time representation and mainly deal with identification problems, see, e.g., [3,70,218]
and the references therein. When considering high-frequency measurement noise, a number
of high-gain approaches have been developed, see, e.g., [2, 36, 43, 198, 202], [D13, D14, D30].
These techniques, however, strongly exploit the particular structure of the observer at hand and
can be difficult to extend to other approaches. To the best of the authors’ knowledge, a gen-
eral methodology to improve the sensitivity to measurement noise applicable to a broad class of
estimators is still missing.

The objective of this chapter is therefore that of addressing the problem of improving per-
formances in observers design by proposing a series of different approaches and techniques
to overcome with different issues. Most of techniques relies on the use of hybrid systems ap-
proach [90]. Such a formalism is therefore recalled in Section 4.1. The first technique that we
propose is detailed in Section 4.2, where a stubborn and dead zone redesign approach is pro-
posed. Such a technique is based on the use of saturation/dead zone with variable thresholds
and can be applied to any observer possessing some ISS properties. Such a redesign allows to
considerably improve the performances of the original observer in the presence of impulsive or
persistent measurement noise. Then, in Section 4.3 we address the problem of constrained
state estimation. In particular, we propose a (possibly hybrid) redesign approach which allows
to constrain the state of an observer in a given convex set while preserving its performance
inside of it. Finally, the problem of uniting multiple observers is studied. In Section 4.4 we
study the particular case of combining two given observer, one possessing only local conver-
gence properties (such as an Extended Kalman Filter) with good steady-state performances, and
another one possessing global stability properties with possible poor steady-state performances
(such a high-gain observer). This framework is then further extended in Section 4.5 by allowing
to combine N observers (some of them possibly even not converging) in order to improve the
performances of a nominal given one.

4.1 Preliminaries on hybrid systems

In most parts of this chapter we will consider hybrid systems with state x ∈ X ⊆ Rnx and input
u ∈ U ⊆ Rnu in the formalism of [48], [90], in particular described by systems of the form

H :
{

ẋ = F (x, u), (x, u) ∈ C × U ,
x+ = G(x, u), (x, u) ∈ D × U , (4.1)

where C ⊆ X is the flow set, D ⊆ X is the jump set, F is the flow map and G is the jump map.
Solutions to system (4.1) are defined on hybrid time domains. A set E ⊂ R≥0 ×Z>0 is a compact
hybrid time domain if E =

⋃J
j=0([tj , tj+1], j) for some finite sequence of times 0 = t0 ≤ t1 ≤

. . . ≤ tJ+1 and it is a hybrid time domain if for all (T, J) ∈ E, E ∩ ([0, T ] × {0, 1, . . . , J}) is a
compact hybrid time domain. On each hybrid time domain we use the natural ordering relation
(t0, j0) ⪯ (t1, j1) if t0 + j0 ≤ t1 + j1. Given a hybrid time domain E, we define suptE := sup{t ∈
R≥0 : ∃ j ∈ Z≥0 such that (t, j) ∈ E}, supj E := sup{j ∈ Z≥0 : ∃ t ∈ R≥0 such that (t, j) ∈ E}. A
hybrid signal is a function defined on a hybrid time domain. A hybrid signal u : dom u → U is
called a hybrid input if u(·, j) is measurable and locally essentially bounded for each j. A hybrid
signal x : dom x → X is called a hybrid arc if x(·, j) is locally absolutely continuous for each j.
A hybrid arc x : dom x → X and a hybrid input u : dom u → U is a solution pair (x, u) to H in
if dom x = dom u, (x(0, 0), u(0, 0)) ∈ (C ∪ D) × U , and
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• for all j ∈ Z≥0 and almost all t such that (t, j) ∈ dom x, (x(t, j), u(t, j)) ∈ C × U and ẋ =
F (x(t, j), u(t, j));

• for all (t, j) ∈ dom x such that (t, j + 1) ∈ dom x, (x(t, j), u(t, j)) ∈ D × U and x(t, j + 1) =
G(x(t, j), u(t, j)).

A solution pair (x, u) to H is maximal if it cannot be extended and it is complete if dom x is
unbounded. In the sequel, each time we talk of solutions we mean maximal solutions.

Given any hybrid signal w : dom w → Rnw , we define

∥w∥∞ :=max
{

ess. sup(t,j)∈dom w\Γ(w) |w(t, j)|, sup
(t,j)∈Γ(w)

|w(t, j)|
}

where Γ(w) denotes the set of all (t, j) ∈ dom w such that (t, j + 1) ∈ dom w. By adopting
the same notation, we denote by (x, u) a solution pair, with the x-component initialized in X
and control u taking values in U , to a differential equation of the form ẋ = f(x, u), with state
x ∈ X ⊆ Rnx and input u ∈ U ⊆ Rnu . Given any continuous signal w : [0,∞) → Rnw , we define
∥w∥∞ := supt∈[0,∞) |w(t)|.

4.2 Stubborn and dead-zone redesign

In this section we introduce a systematic procedure to redesign a given observer or filter in order
to improve its performances in some noisy scenarios. We suppose that the estimator has already
been designed and it satisfies some mild, possibly local, input-to-state stability (ISS) proper-
ties [184,185]. Then, we propose two different methodologies to redesign the output injection
term, both of them preserving ISS. The first one, called stubborn redesign, was first introduced
in the context of linear systems [5, 6], and high-gain observers [D5]. It consists in adding an
adaptive saturation to the output injection error in the observer dynamics so as to reduce the
sensitivity to measurement outliers. The second one, called dead-zone redesign, generalizes the
works [59,60] for Luenberger and high-gain observers, where a “dead-zonated” output injection
with a dynamically-adapted dead band enables mitigating the effect of bounded and persistent
measurement noise. The two designs can be also combined. The novelty of these approaches
is that the saturation/dead-zone levels are not fixed but they are dynamically adjusted to ob-
tain desirable properties. For instance, the stubborn redesign well addresses the presence of
sporadic measurement outliers. The saturation threshold regulates the trimming action on the
output injection term by shrinking it to zero, thereby making the observer increasingly “stub-
born” about its current estimate [D5], [6]. In this way, possible outliers do not directly reach the
error dynamics because they are mitigated by the limiting effect of the saturation. On the other
hand, persistent estimation errors gradually cause an increase of the saturation threshold and
become increasingly important in the error dynamics, so as to guarantee ISS for the estimation
error dynamics. The same analysis is accomplished for the dead-zone redesign, i.e., by consid-
ering estimators with a dead-zonated output injection, well suited to improving the rejection of
persistent bounded measurement noise [60].

4.2.1 Problem Statement

Consider a generic nonlinear system of the form

ẋ = f(x, u) + w , y = h(x) + v , (4.2)

87



Chapter 4. Performances improvement in observers

where x ∈ Rn is the state, u ∈ Rp is a known input, y ∈ Rm is the measured output, w ∈ Rn is
some external disturbance, and v ∈ Rm represents the sensor measurement noise. For system
(4.2) we suppose to know an observer providing an asymptotic estimate x̂ of state x of the form

ż = φ(z, u) +Gκ(z, y − h(x̂)) ,
x̂ = ψ(z)

(4.3)

where z ∈ Z ⊆ Rϱ, with ϱ integer such that ϱ ≥ n, is the state of the observer, and x̂ ∈ Rn is
the estimate of x. The functions φ : Rϱ × Rp → Rϱ, κ : Rϱ × Rm → Rρ , and ψ : Rϱ → Rn are
locally Lipschitz and G is a matrix of dimension ϱ × ρ. Function κ denotes the output injection
term and is such that κ(z, 0) = 0 for all z ∈ Rϱ, which ensures that the origin is an equilibrium
point for the error dynamics in the absence of disturbances. The matrix G is a selection matrix
encompassing the fact that the output injection term κ might affect only part of the z dynamics,
as in the case of Kalman-like filters. The following assumption is then stated.

Assumption 4.1. There exist X0 ⊆ X ⊆ Rn, U ⊆ Rp, and a compact set W ⊂ Rn such that the
trajectories of (4.2), with initial conditions in X0, input u(t) ∈ U , and disturbances w(t) ∈ W for
all t ≥ 0, remain in X for all t ≥ 0.

Our redesign approach is based on conditioning the output injection term in (4.3) by way
of suitable nonlinearities comprising saturations and deadzones. These redesign methods es-
sentially perturb the output injection term κ in (4.3) in ways that are well represented by the
following version of observer (4.3) with perturbed injection

ż = φ(z, u) +Gκ(z, y − h(x̂)) +Gd ,

x̂ = ψ(z)
(4.4)

where d ∈ Rρ is a generic disturbance affecting the observer dynamics in directions matching
the input channel of κ (that is, through the same matrix G). We ask observer (4.3) to be ISS
w.r.t. the disturbances w, v affecting the plant (4.2) and w.r.t. the disturbance d acting on the
observer (4.4) according to the following property.

Property 4.1. Observer (4.3) is an ISS observer for system (4.2) on Z ⊆ Rϱ if there exist a locally
Lipschitz function V : X × Z → R≥0 satisfying V (x, z) ≥ 0 for all (x, z) ∈ X ,Z, functions
α, ᾱ ∈ K∞, a right inverse ψ−R of function ψ, namely a function satisfying

x = ψ(ψ−R(x)), ∀x ∈ X ,

compact sets V ⊂ Rm, D ⊂ Rρ, and constants κ̄, c, cv, cw, cd > 0 such that the following inequalities
hold

|G| ≤ 1, |κ(z, y1) − κ(z, y2)| ≤ κ̄|y1 − y2|, (4.5)

α(|x− ψ(z)|) ≤ V (x, z) ≤ ᾱ(|ψ−R(x) − z|), (4.6)

V̇ ≤ −cV (x, z) + cv|v| + cw|w| + cd|d|, (4.7)

for all (x, z, u, v, w, d) ∈ X × Z × U × V × W × D, and y1, y2 ∈ Rm, along the dynamics of system
(4.2) interconnected with the perturbed-injection observer (4.4).

Condition (4.5) of Property 4.1 states that function κ(z, ·) is globally Lipschitz uniformly in
z ∈ Z. Conditions (4.6) and (4.7) state that (4.4) is an asymptotic observer for system (4.2)
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and that the estimation error |x− x̂| is input-to-state stable1 w.r.t. the measurement noise v and
disturbances w, d, namely there exists β ∈ KL, ϑ ∈ K∞ such that all solutions t 7→ (x(t), z(t))
belonging to X × Z for all t ≥ 0 satisfy

|x̂(t) − x(t)| ≤ β(|ψ−R(x(0)) − z(0)|, t) + ϑ(∥v∥∞ + ∥w∥∞ + ∥d∥∞).

Motivated by [184], the above stated ISS property is coordinate-dependent when X and U are
unbounded. It is thus emphasized that guaranteeing Property 4.1 may require selecting a clever
set of coordinates. Next, we suppose that the ISS-Lyapunov function V of Property 4.1 satisfies
the following output-growth condition.

Property 4.2. There exist constants ℓ0, ℓ1, ℓv, ℓw, ℓd > 0 such that the following holds for sys-
tem (4.2), observer (4.4), and function V of Property 4.1 with x̂ = ψ(z),

|h(x) − h(x̂)| ≤ ℓ0V (x, z), (4.8a)

|D+(h(x) − h(x̂))| ≤ ℓ1V (x, z) + ℓv|v| + ℓw|w| + ℓd|d|, (4.8b)

for all (x, z) ∈ X × Z, u ∈ U and all (v, w, d) ∈ V × W × D.

Condition (4.8) requires that V , which is an ISS-Lyapunov function for the estimation error
|x− x̂|, has the same growth as the output error function |h(x)−h(x̂)|. These two properties are
verified by a large number of class of plants/observers as detailed in [D6] such as Luenberger
observers, Kalman filters, observers for input-affine systems, observers for Lipschitz systems,
observer based on the circle criterion, high-gain observers, and low-power high-gain observers,
For instance, any of the techniques proposed in [4,12,20,27,29,36,36,38,84,96,115,117,132,
165,184,202], [D4,D13,D14], enjoy these properties.

4.2.2 Stubborn Redesign

The stubborn redesign of observer (4.3) reads as

ż = φ(z, u) +Gκ(z, satσ(y − h(x̂))) ,
σ̇ = −Λσ + Θ |y − h(x̂)|cw ,
x̂ = ψ(z) ,

(4.9)

where (z, σ) ∈ Rϱ × Rm≥0 is the state of the stubborn redesigned observer and

Λ := diag(λ1, . . . , λm) > 0, Θ := diag(θ1, . . . , θm) > 0,

are design parameters. It can be noted that observer (4.9) is obtained by saturating the output
error y− h(x̂) in (4.3) with a variable saturation level σ. This level is dynamically driven by the
same output error y − h(x̂). The motivation for such a construction is that of filtering, at the
steady state, sporadic perturbations that may affect the measured output y. Since in nominal
conditions both the output error y − h(x̂) and the saturation level σ converge asymptotically
to zero, when an outlier occurs, the saturation limits its effect on the observer state z, which
is therefore less perturbed. The observer (4.9) preserves the ISS of the original observer (4.3),
according to the definitions given in Properties 4.1, 4.2.

1The reader is referred to [190] and references therein for more details about the notion of ISS and the existence
of ISS-Lyapunov functions.
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Theorem 4.1. Consider system (4.2) satisfying Assumption 4.1. Suppose observer (4.3) is an ISS
observer enjoying Properties 4.1 and 4.2. Let λi > 0, i = 1, . . . ,m be fixed. Then, there exist θ∗

i > 0,
i = 1, . . . ,m, such that, for any θi > θ∗

i , i = 1, . . . ,m, observer (4.9) is an ISS observer for system
(4.2) enjoying Properties 4.1 and 4.2.

To establish the Theorem 4.1 we used the following non-trivial ISS-Lyapunov function

Ve(x, z, σ) := V (x, z) +
m∑
i=1

(
ζiσi + (ζi + η) max{|γi| − σi, 0}

)
,

where V comes from the ISS properties of (4.3) and satisfies Properties 4.1, 4.2, and the param-
eters ζi > 0, i = 1, . . . ,m, and η > 0 have to be properly selected.

The effect of the dynamic saturation in (4.9) is that of mitigating the effect of impulsive
disturbances (outliers) of v on the estimation error x̂−x, thus improving the transient behavior,
at the cost of slowing down the convergence rate, yet still preserving the asymptotic estimation.
In the linear case, we can also show some further properties of the proposed stubborn redesign.
In particular, consider the linear system

ẋ = Ax+Bu, y = Cx+ v (4.10)

where x ∈ Rn is the state, y ∈ R is the measured output, v is the measurement noise, and (A,C)
is an observable pair. The observer for (4.10) is selected as

˙̂x = Ax̂+Bu+ L(y − Cx̂) (4.11)

where x̂ ∈ Rn is the estimate and L is such that A − LC is Hurwitz. We denote the estimation
error provided by observer (4.11) as x̃0 := x̂− x, thus obtaining

˙̃x0 = (A− LC)x̃0 + Lv . (4.12)

By following the design proposed in Theorem 4.1, we consider also the stubborn redesigned
observer

˙̂x = Ax̂+Bu+ L satσ(y − Cx̂),
σ̇ = −λσ + θ|y − Cx̂|, (4.13)

with σ ∈ R≥0, λ, θ > 0. Similarly, we denote the estimation error of observer (4.13) as x̃sat :=
x̂− x. In these coordinates, we obtain the following error dynamics

˙̃xsat = Ax̃sat + L satσ(v − Cx̃sat)
σ̇ = −λσ + θ|v − Cx̃sat| .

(4.14)

To comparatively characterize the effect of impulsive disturbances v on the two observers (4.11)
and (4.13), we model v as a piecewise constant perturbation of the form

v = δτ (t) =
{

1
τ 0 ≤ t ≤ τ,
0 t > τ.

(4.15)

where δτ (t) converges to the Dirac delta function as τ → 0+. The following result establishes
extreme improvements of the error response x̃sat over x̃0 as τ → 0+ by focusing on |x̃sat(τ)| and
|x̃0(τ)|. This is relevant because for t > τ we have δτ (t) = 0 and both observers evolve with
v = 0.
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Proposition 4.1. Consider (4.10) with A ∈ Rn×n nonsingular and denote by x̃0 and x̃sat the
solutions, respectively, to (4.12) and (4.14) with x̃0(0) = x̃sat(0) = 0, σ(0) = 0, and v given by
(4.15). As τ tends to 0+, the following holds

|x̃sat(τ)|
|x̃0(τ)| ≤ τ θ

1 + o(τ)
1 − o(τ) (4.16)

where o(τ) denotes small terms in τ r, r ≥ 1. Furthermore, for each τ ≥ 0, |x̃sat(t)| converges to
zero as τ → 0+.

While Proposition 4.1 illustrates the advantages of (4.14) versus (4.12) in terms of dynamic
response, we can also show that the static response, as measured by the disturbance-to-error DC
gain, is not worse in (4.14) when θ ≥ λ.

Proposition 4.2. Assume that A − LC is Hurwitz. For any θ ≥ λ, the disturbance-to-error DC
gains of observers (4.11) and (4.13) associated to a constant v coincide.

4.2.3 Dead-zone redesign

The dead-zone redesign of observer (4.3) reads

ż = φ(z, u) +Gκ(z,dzσ(y − h(x̂))) ,
σ̇ = −Λσ + Θ |y − h(x̂)|cw ,
x̂ = ψ(z) ,

(4.17)

where (z, σ) ∈ Rϱ × Rm≥0 is the state of the dead-zone redesigned observer and

Λ := diag(λ1, . . . , λm) > 0, Θ := diag(θ1, . . . , θm) ≥ 0,

are design parameters. Paralleling the stubborn redesign in (4.9), observer (4.17) is obtained by
“dead-zonating” the output error y − h(x̂) in (4.3) with a variable dead-zone level σ. The level
σ is driven by the same output error |y − h(x̂)|cw. From the peculiar shape of the dead-zone
function, the motivation for this redesign is that of “trimming” the effect of persistent bounded
sensor noises.

Note that, despite the presence of the dead-zone, the use of a variable threshold allows
retaining the asymptotic convergence to zero of the estimation error in nominal conditions. This
is formally stated in the next theorem, where we show that the dead-zone redesigned observer
(4.17) preserves the ISS of the original observer (4.3), according to the definitions given in
Properties 4.1, 4.2.

Theorem 4.2. Consider system (4.2) satisfying Assumption 4.1. Suppose observer (4.3) is an ISS
observer enjoying Properties 4.1 and 4.2. Let θi ≥ 0, i = 1, . . . ,m be fixed. Then, there exist λ∗

i > 0,
i = 1, . . . ,m, such that, for any λi > λ∗

i , i = 1, . . . ,m, observer (4.17) is an ISS observer for system
(4.2) enjoying Properties 4.1 and 4.2.

The Lyapunov function which is used for Theorem 4.2 takes the form

Ve(x, z, σ) := V (x, z) +
m∑
i=1

ζiσi

for some appropriate selection of the parameters ζi > 0. As for the stubborn redesign, we
analyze here the effect of a constant perturbation v(t) = v̄ for all t ≥ 0 on the redesigned
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observer (4.17) for the single-output linear case. In particular, we consider once again the
single-output linear system (4.10) where (A,C) is an observable pair, interconnected to the
linear observer (4.11), where L is such that A−LC is Hurwitz. Denoting the esimation error as
x̃0 := x̂− x, we obtain the linear error dynamics (4.12), repeated here for convenience:

˙̃x0 = (A− LC)x̃0 + Lv. (4.18)

By following the design proposed in Theorem 4.2, we consider then the dead-zone redesigned
observer

˙̂x = Ax̂+Bu+ Ldzσ(y − Cx̂)
σ̇ = −λσ + θ|y − Cx̂| (4.19)

with σ ∈ R≥0, λ > 0, θ ≥ 0. Similarly, we denote the estimation error of observer (4.19) as
x̃dz := x̂− x. In these coordinates, we obtain the error dynamics

˙̃xdz = Ax̃dz + Ldzσ(v − Cx̃dz)
σ̇ = −λσ + θ|v − Cx̃dz| .

(4.20)

We compare then the static responses, as measured by the disturbance-to-error DC gain, of the
error dynamics (4.18) and (4.20). For this, we focus on the class of triplets A,C,L such that A is
nonsingular and the gain CA−1L < 1. This condition is not overly restrictive and is enjoyed by
all triplets A,C,L such that both A and A− LC are Hurwitz, as illustrated by the next lemma.

Lemma 4.1. All the triplets (A,C,L) such that det(A − LC) det(A) > 0, satisfy CA−1L < 1, in
particular this condition holds if A and A− LC are both Hurwitz.

We may now state our main DC-gain result by establishing a desirable strict decrease of the
DC gain of (4.19) as θ is increased from 0 (in this case the dead-zone is inactive and the DC
gains are the same) to its maximum value.

Proposition 4.3. Suppose that A − LC is Hurwitz. If A is invertible and CA−1L < 1, then there
exists a class K function k̃ such that, for any λ > θ ≥ 0, the disturbance-to-error DC gains k0, kdz
of dynamics (4.18), respectively (4.20), satisfy

kdz
k0

= 1 − k̃

(
θ

λ

)
. (4.21)

Mixed design

Finally, as a conclusion of this section, we remark that an appealing feature of the parallel
previous developments of is that the corresponding redesigns preserve Properties 4.1 and 4.2.
Due to this fact, it is immediate to apply a mixed stubborn dead-zone redesign by nesting the
two approaches as follows2

ż = φ(z, u) +Gκ(z, satσS (dzσD(y − h(x̂)))) ,
σ̇S = −ΛSσS + ΘS |y − h(x̂)|cw ,
σ̇D = −ΛDσD + ΘD |y − h(x̂)|cw ,
x̂ = ψ(z) ,

(4.22)

where (z, σS , σD) ∈ Rϱ × Rm≥0 × Rm≥0 is the redesigned observer state and

ΛS := diag(λS1, . . . , λSm), ΘS := diag(θS1, . . . , θSm),
ΛD := diag(λD1, . . . , λDm), ΘD := diag(θD1, . . . , θDm),

2Evidently, we can also select κ(z, dzσS (satσD (y − h(x̂)))) in (4.22).
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with ΛS ,ΘS ,ΛD > 0 and ΘD ≥ 0 are design parameters. The mixed redesign allows achieving
both the desirable features of the saturation and dead-zone redesigns, discussed in the previous
sections, while preserving the ISS-properties of the original observer (4.3).

4.3 Constrained state estimation

In most real control applications, the state of the plant evolves in some given compact set X
describing the set of interest of the variables. However, unless the observation problem is formu-
lated as a constrained optimization problem from the start [168], the estimated state generated
by the observer could in principle leave the set X for some time, because of transient dynamics
or perturbations. These excursions outside X may be significant in terms of amplitude (e.g.
peaking phenomenon) and time, and may lead to the next issues.

• (Accuracy) When the estimate is outside X , the information provided by the observer is likely
to be inaccurate and so potentially unexploitable by the user. A typical example is the peaking
phenomenon occurring in high-gain observers [115].

• (Aberrant estimates) The state estimate may violate the physics of the plant. To give an ex-
ample, when the concentrations of Lithium-ion in the electrodes of an electrochemical battery
are estimated, e.g. [35], it may occur that the estimated concentrations generated by the ob-
server are negative for some time, which is physically impossible. This is the case in general
for positive systems (see, e.g., [76]).

• (Implementation issues) When implementing an observer on an embedded systems, we often
need to specify the range of the estimated states, and this range may be limited.

• (Destabilization) It may lead to instability in output feedback designs, see e.g. [115].

• (Existence of observer dynamics) The observer dynamics may not be well defined outside the
set X . This issue is typical when the observer is not implemented in the same coordinates of
the plant dynamics, see, e.g., [26,133], [D24,D25].

In order to solve the aforementioned problem, we propose a new paradigm based on a con-
vexity assumptions and a gradient-based algorithm, which allows to constrain the state of the
observer in a desired set while preserving its performances in terms of Lyapunov inequalities.
The proposed paradigm can be used in the context of continuous-time, discrete-time and hybrid
systems/observers.

4.3.1 Continuous-time systems

Here we consider instead a different approach based on a gradient-based algorithm under a
convexity assumption. We consider a plant modelled as

ẋ = f(t, x, u, d), y = h(t, x, u, d), (4.23)

with state x ∈ Rnx , known input u ∈ Rnu , output y ∈ Rny , and where d ∈ Rnd is an unknown
perturbation acting on the dynamics and/or the measurement, with nx, nu, ny, nd ∈ N, We
suppose that the plant state x is evolving in a compact set as precised below.

Assumption 4.2. ?? There exist subsets X0 ⊂ Rnx , U ⊂ Rnu , D ⊂ Rnd , and a compact subset
X ⊂ Rnx , such that any trajectory of P initialized in X0, with input in U and perturbation in D,
remains in X for all forward times.
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Assumption 4.3. ?? The convex hull of X is strictly included in X̂ , i.e., there exists a compact
convex set C ∈ Rnx satisfying X ⊆ C ⊂ X̂ .

Lemma 4.2. Suppose Assumption ?? holds. Then, there exist ϱ ∈ R>0, an integer nc ∈ N, and a
C1 function c : Rnx → Rnc≥0 such that, by defining

C0 := {x ∈ Rnx : c(x) = 0}, Cϱ := {x ∈ Rnx : |c(x)| ≤ ϱ},

the following holds:

a) X ⊆ C0 ⊂ Cϱ ⊂ X̂ .

b) For any i = 1, . . . , nc, the i-th component ci : Rnx → R≥0 of c is convex.

Lemma 4.3. Consider a C1 function c : Rnx → Rnc≥0 satisfying item b) of Lemma 4.2. Then, for all
(x, x̂) ∈ Rnx × Rnx such that c(x) = 0, we have

−c(x̂)⊤ dc

dx
(x̂)(x̂− x) ≤ −c(x̂)⊤c(x̂) ≤ 0 .

Possible choices of the function c are given as follows.
Polytopic approach. When the set X can be enveloped in a polytope, namely when there exist
vectors ai ∈ Rnx and scalars bi, i = 1 . . . nc, satisfying

X ⊆
nc⋂
i=1

{x ∈ Rnx : a⊤
i x ≤ bi} ⊂ X̂ ,

then the function c in Lemma 4.3 can be selected as follows

c(x) := (c1(x), . . . , ci(x), . . . , cnx(x)), ci(x) := max
{
a⊤
i x− bi, 0

}2
.

Ellipsoide approach. When the set X can be enveloped in an ellipse, namely when there exist
a positive definite matrix Q of dimension nx × nx, a scalar r > 0 and a vector x0 ∈ Rnx

X ⊆ {x ∈ Rnx : (x− x0)⊤Q(x− x0) ≤ r} ⊂ X̂ ,

then the function c cane selected as

c(x) := max
{

(x− x0)⊤Q(x− x0)
r

− 1, 0
}2

.

Next, we consider a continuous-time observer of the form

˙̂x = F (t, x̂, u, y), (4.24)

with state x̂ ∈ Rnx and suppose that system (4.23) and observer (4.24) satisfy some regularity
properties as stated in the next assumption.

Assumption 4.4. The following is satisfied:

• The function h in (4.23) is bounded in its first argument and the set Y := h(R≥0,X ,U ,D) is
compact.

• The function F is bounded on R≥0 × X̂ × U × Y.
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• The solutions of (4.24) exist forward in time for any initial condition x̂(0) ∈ X , any input u in
U and any output y of system (4.24), i.e. no finite-escape time phenomenon is possible.

Furthermore, we assume that the observer (4.24) has been designed so that the following
assumption is verified.

Assumption 4.5. There exist a (possibly time varying) known matrix P (t) = P (t)⊤ > 0, differen-
tiable in t, real numbers λ̄ > λ > 0, and a function βc : R≥0 × Rnx × Rnx × Rnu × Rnd → R, such
that, by defining

V (t, x, x̂) := (x̂− x)⊤P (t)(x̂− x), (4.25)

the following is satisfied
λ|x− x̂|2 ≤ V (t, x, x̂) ≤ λ̄|x− x̂|2
LFV (t, x, x̂, u, d) ≤ βc

(
t, x, x̂, u, d

) (4.26)

for all (t, x, x̂, u, d) ∈ R≥0 × X × Rnx × U × D, with

F(t, x, x̂, u, d) := (1, f(t, x, u, d), F (t, x̂, u, h(t, x, u, d))).

Assumption 4.5 characterizes the performances of observer (4.24) in terms of the function V
and the supply rate βc. For instance, for an exponentially stable observer which is input-to-state
stable (ISS) with respect to the perturbation, the function βc in (4.26) is typically of the form
βc(t, x, x̂, u, d

)
= −ρcV (t, x, x̂) +αc(|d|), with ρc > 0 and αc ∈ K. In this case, V is the Lyapunov

function associated to the estimation error x− x̂ and ρc is the convergence rate. Note that, when
the matrix P is constant, λ̄ and λ correspond to the maximum and minimum eigenvalues of
P , respectively. Assumption 4.5 covers a large class of observers for the design of O in (4.24),
such as linear Luenberger observers [132], high-gain nonlinear observers [115], [D14], observer
designs based on linear parameter-varying-like techniques or the circle criterion, e.g., [20,221],
Kalman filters [111] and Kalman-like observers [28,29] with a time-varying P . The objective of
constrained estimation with preservation of performances is defined as follows.

Problem 4.1. Design a map Fm : R × Rnx × Rnu × Rny such that the following holds.

1. For any initial condition (x(0), x̂(0)) ∈ X0 × X , any input in U and perturbation in D, the
corresponding trajectory of the modified observer

˙̂x = Fm(t, x̂, u, y) (4.27)

remains in X̂ for all t ≥ 0.

2. The Lyapunov function (4.25) satisfies

LFmV (t, x, x̂, u, d) ≤ βc
(
t, x, x̂, u, d

)
(4.28)

for any (t, x, x̂, u, d) ∈ R≥0 × X × X̂ × U × D, with βc coming from Assumption 4.5 and

Fm(t, x, x̂, u, d) := (1, f(t, x, u, d), Fm(t, x̂, u, h(t, x, u, d))) .

Hence, by solving Problem 4.1, the state estimate generated by observer Om remains in set
X̂ and property (4.26) is preserved for Om as desired. To this end, we modify the dynamics of
observer (4.24) as follow

Fm(t, x̂, u, y) := F (t, x̂, u, y) +M(t, x̂) (4.29)
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where function M is defined by

M(t, x̂) := −γcP (t)−1 dc

dx
(x̂)⊤c(x̂) (4.30)

with c defined in Lemma 4.2, P given by Assumption 4.5, and γc ∈ R>0 a parameter to be
chosen large enough. Note that the knowledge of the supply rate βc is not needed for the design
of Fm in (4.29).

Theorem 4.3. Suppose Assumptions 4.4 and 4.5 hold and that δmin. Then, there exists γ⋆c ≥ 0
such that, for any γc > γ⋆c , Problem 4.1 is solved with Fm defined in (4.29), (4.30).

The role of γc in (4.30) is to correct the vector field F when the latter becomes too large
and makes the estimate leave the set X . To do that, we have to select a constant gain γc whose
magnitude is large enough with respect to the maximal norm of F on the boundary of Cϱ.
This bound may be subject to some conservatism and in practice γc can be adapted online to
compensate for the “current” value of F , by taking for instance

γc(t, x̂, u, y) := 2λ|F (t, x̂, u, y)|
max

{∣∣∣ dcdx(x̂)⊤c(x̂)
∣∣∣ , δmin

}
for any (t, x̂, u, y) ∈ R × Rnx × U × Y.

Note that the correction term M defined in (4.30) may also be interpreted as an element of
the normal cone to the level set of c in the metric defined by P (t), thus suggesting a link with
the projected dynamics used in [98] for constant metric P .

4.3.2 Discrete-time and hybrid approaches

The previous approach can be used also for different classes of dynamical systems, namely for
discrete-time systems and for hybrid systems. For instance, consider a system of the form

xk+1 = g(k, xk, uk, dk), yk = h(k, xk, uk, dk), (4.31)

and an observer given by
x̂k+1 = G(k, x̂k, uk, yk) (4.32)

with G : R≥0 × Rnx × U × Rny → Rnx , under the following assumption.

Assumption 4.6. There exist a (possibly time-varying) known matrix Pk = P⊤
k > 0 for all k ∈ N,

real numbers λ̄ > λ > 0 and a continuous function βd : N × Rnx × Rnx × Rnu × Rnd → R≥0, such
that, by defining

Vk(x, x̂) := (x̂− x)⊤Pk(x̂− x),

the following inequalities hold for all (k, x, x̂, u, d) ∈ N × X × Rnx × U × D

λ|x̂− x|2 ≤ Vk(x, x̂) ≤ λ̄|x̂− x|2 ,
Vk+1(xk+1, x̂k+1) ≤ βd

(
k, x, x̂, u, d

)
with the compact notation xk+1 := g(k, x, u, d), x̂k+1 := G(k, x̂, u, h(k, x, u, d)).
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X̂max

Cϱ

X̂

x̂k,1

ψk+1,θ+1

Figure 4.1: Refining strategy (4.34) with (4.36), starting from x̂k,1 = G(k, x̂k, uk, yk). Dash-
dotted blue ellipses: Lyapunov level sets of Vk+1. Red ellipsoid: Cϱ. Green polygon: X̂ . Dotted
black ellipse: X̂max, a compact set where the solution is proved to remain. Dashed black line:
path of x̂k,i+1 = ψk,i(x̂k,i), i = 1, . . . , θ.

Similarly to the continuous-time case, it is possible to redesign the function G so that to
constrain the state x̂, at each instant time k ∈ N, inside the desired set C. However, differently
from the previous continuous-time case, we do not modify the dynamics of (4.32) by adding a
term to the map G. Instead, we build Gm by composition of the map G given in (4.32) with a
(possibly multi-valued) time-varying map ψk+1 : Rnx ⇒ Rnx , namely

Gm(k, ·) := ψk+1 ◦G(k, ·) , (4.33)

with the map ψk+1 computed as

ψk+1 = ψk+1,θ ◦ · · · ◦ ψk+1,1 , (4.34)

for some θ > 1, where each composition represents a numerical step. This implicitly requires
that between any “discrete” times, we are allowed to carry out an algorithm involving several
computations. In the context of sampled-data systems, this means that the digital controller is
fast enough with respect to the sampling frequency.

Similarly to the continuous time case, we introduce then the map Mk+1 : Rnx → Rnx defined
by

Mk+1(x̂) := −γdP−1
k+1

dc

dx
(x̂)⊤c(x̂) , (4.35)

with Pk being a positive definite matrix given by a quadratic Lyapunov function for the nominal
observer, c given by Lemma 4.2 and γd a strictly positive scalar to be chosen small enough, this
time, contrarily to the continuous-time case in which the parameter γc has to be chosen large
enough.

The redesign thus consists in correcting the state estimateG(k, x̂k, uk, yk) with the mapMk+1
as long as the estimate is outside Cϱ, namely the function ψk+1,i in (4.34) are selected as

ψk+1,i(x̂) =
{
x̂+Mk+1(x̂) if x̂ ∈ Rnx \ Cϱ
x̂ otherwise

(4.36)

for all i = 1 . . . θ and all k ∈ N. As it can be noted by the expression of Mk+1, the correction
(4.36) uses the gradient of the convex map c, namely −dc/dx, to bring x̂ back to X̂ along level
sets of Vk+1. The recursive algorithm (4.34) stops when we cross Cϱ. This strategy is depicted
in Figure 4.1. Note that this could not be achieved in one iteration because γd needs to be
sufficiently small to ensure that Vk+1 decreases, thus justifying the θ steps.
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To sum up, one can show the existence of a γ⋆d small enough, such that, if θ is large enough,
namely if we apply enough multi-steps according to (4.35), then the modified observer (4.33),
(4.34), (4.36) preserves the guaranteed convergence properties of Assumption 4.6 and further-
more x̂ lives in the set C at all discrete time instants k ∈ N. Note that one can modify the function
ψk+1,i to be outer-semicontinuous in order to guarantee robustness with respect to numerical
errors.

Finally, we remark that the previous discrete-time approach can be used also for continuous-
time observers so that to obtain a hybrid redesign, namely an overall hybrid observer with flow
and jump maps. Similarly, given a hybrid systems and a hybrid observers, both continuous-time
(i.e. flow) and discrete-time (i.e. jump) redesign can be employed.

4.4 Uniting observers

When designing an observer for a dynamical system, we first of all want to ensure that the
produced state estimate converges towards the plant state as time grows. We also desire to
ensure the following key properties:

(a) (domain of attraction) the convergence should be guaranteed irrespectively of the observer
initialization;

(b) (convergence speed) a certain convergence rate should be required for the observer to
rapidly generate accurate estimates of the state;

(c) (model robustness) the estimate needs to be accurate even in presence of model uncertain-
ties;

(d) (sensitivity to noise) the quality of the estimation should not be too sensitive to measure-
ment noise.

It is very difficult, if not impossible3, to address all these requirements at the same time, in
particular when dealing with nonlinear finite-dimensional systems. Hence, the observer design
often results in a trade-off between some of the properties listed above. The objective of this
section is therefore to propose a framework to combine two given observers in order to obtain a
uniting observer inheriting the “good features” of each of them.

4.4.1 Problem statement

We consider nonlinear systems of the form

ẋ = f(x, u) , y = h(x,w) , (4.37)

where x ∈ X ⊆ Rnx is the state, u ∈ U ⊆ Rnu is a known input, y ∈ Rny is the measured output,
and w ∈ W ⊆ Rnw represents an unknown measurement noise, with nx, nu, ny, nw ∈ Z>0. The
sets X ,U ,W are closed, the functions f, h are locally Lipschitz, and the signals corresponding to
u and w in (4.37) are defined for all positive times, Lebesgue measurable and locally essentially
bounded. We assume that we know two observers for system (4.37). One is referred to as the
local observer, and the other one as the global observer. The local observer is the one we want to
use when the estimation error is small, while the global observer guarantees that the estimation
error becomes eventually sufficiently small for any possible initialization. The state variables

3Fundamental limitations arise, see [181] in the context of linear systems.

98



4.4. Uniting observers

and the functions related to those observers will be indexed respectively with 0 (local) and 1
(global).

The dynamics of the local observer is described by

ζ̇0 = φ0(ζ0, u, y), x̂0 = ϑ0(ζ0), ŷ0 = h(x̂0, 0), (4.38)

where ζ0 ∈ Z0 ⊆ Rn0 is the observer state, n0 ∈ Z>0 is the observer dimension satisfying4

n0 ≥ nx, and x̂0 ∈ Rnx is the estimate of x. The set Z0 is closed and the functions φ0, ϑ0 are
assumed to be locally Lipschitz. Loosely speaking, observer (4.38) is local and asymptotic in the
sense that if the initial estimation error |x(0)−x̂0(0)| is small enough, then convergence of the es-
timation error in absence of measurement noise is guaranteed, namely limt→∞ |x(t) − x̂(t)| = 0.
This property is rigorously stated in Section 4.4.2. Although any observer which has global (or
semiglobal) convergence properties satisfy this condition, local observers are of particular inter-
est because they are often easy to design and they usually possess good robustness properties in
presence of (small) measurement noise. A typical example is the extended Kalman filter (EKF)
or its variations, see e.g., [38,96,117,170].

The global observer for system (4.37) is of the form

ζ̇1 = φ1(ζ1, u, y), x̂1 = ϑ1(ζ1), ŷ1 = h(x̂1, 0), (4.39)

where ζ1 ∈ Z1 ⊆ Rn1 is the observer state, n1 ∈ Z>0 is the observer dimension satisfying
n1 ≥ nx (similarly to (4.38)), and x̂1 ∈ Rnx is the estimate of x. The set Z1 is closed and the
functions φ1, ϑ1 are assumed to be locally Lipschitz. Examples of global observers can be found
in [20,115,185,221], [D25] for n1 = nx and in [12,25,74], [D14,D16,D65] for n1 > nx.

The main idea of this work is to combine observers (4.38) and (4.39) in order to benefit
from the advantages of each of them. To address this problem, we aim at designing a hybrid
observer of the general form below, based on (4.38) and (4.39),

ξ̇ = F (ξ, u, y), ξ ∈ C,
ξ+ = G(ξ, u, y), ξ ∈ D,
x̂ = H(ξ),

(4.40)

where ξ ∈ Rnξ is the observer state, nξ ∈ Z>0, C ⊆ Rnξ and D ⊆ Rnξ are closed set, and x̂ is the
estimate of x. As a result, system (4.37) and observer (4.40) lead to the overall hybrid system
below

ẋ = f(x, u)
ξ̇ = F (ξ, u, y)

}
(x, ξ, u, w) ∈ X × C × U × W,

x+ = x
ξ+ = G(ξ, u, y)

}
(x, ξ, u, w) ∈ X × D × U × W,

x̂ = H(ξ)
y = h(x,w) .

(4.41)

Note that (u,w) needs to be defined on hybrid time domains in (4.41). With some abuse of no-
tation, we consider u and w that are defined in such way that their values agree with (u(t), w(t))
during flows, do not change during jumps, and their hybrid time domains correspond to that of
(x, ξ).

Our objective is to construct (4.40) to solve the problem stated next.

4We do not consider reduced order observers, namely observers with n0 < nx, though all the forthcoming results
can be adapted to cover this case.
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Definition 4.1 (Uniting observer). The observer (4.40) solves the uniting problem for system
(4.37) if the following holds.

(a) (Completeness of solutions and finite number of jumps) Any (maximal) solution pair ((x, ξ),
(u,w)) to (4.41) is complete and satisfies

sup
t

dom(x, ξ) = +∞, sup
j

dom(x, ξ) < ∞.

(b) (Global convergence) There exists γ ∈ K such that any solution pair ((x, ξ), (u,w)) to (4.41)
satisfies

lim sup
t+j→∞

|x(t, j) − x̂(t, j)| ≤ γ(∥w∥∞). (4.42)

(c) (Local behaviour) There exists a set B ⊆ X ×(C∪D) such that any solution pair ((x, ξ), (u,w))
to (4.41) with (x(0, 0), ξ(0, 0)) ∈ B, has hybrid time domain [0,∞)×{0}, and x̂(t, 0) = x̂0(t)
for all t ∈ [0,∞), where x̂0 is a solution to (4.37), (4.38).

Item (a) of Definition 4.1 means that the solutions of the hybrid observer (4.40) are com-
plete, that no Zeno behaviour can occur and that switches stop in finite time. Item (b) of
Definition 4.1 ensures that the estimation error has an asymptotic gain property with respect to
the measurement noise with a global domain of attraction5. When there is no noise, i.e. w = 0,
the global asymptotic convergence of the estimation error x − x̂ is ensured. Finally, item (c)
guarantees that only the local observer (4.38) is used if observer (4.40) is initialized in such
way that (x, ξ) is in the set B at the initial time.

The rationale of the scheme we construct in the following is illustrated in Figure 4.2. We
want to use the global observer (4.39) during transients, when the estimation error is large.
Then, when |x̂1−x| is small enough, we reset the variables of the local observer (4.38) according
to the estimate x̂1 provided by the global observer. Afterwards, we let the local observer run.
This switching mechanism cannot be implemented in open loop, i.e. based on time only, for
robustness reasons. We want a supervisor mechanism, which is able to switch between the
two observers in order to cope with possible wrong initializations or large disturbances w, as
depicted in Figure 4.3. This mechanism therefore needs to rely on |x̂0 −x| and |x̂1 −x|, but these
quantities are not accessible since we do not know x. Inspired by [118, 160], we use instead
estimates of these values based on the measured output y and the estimated outputs ŷ0, ŷ1, that
is a norm-estimator. To this end, a certain number of assumptions will be established in the
following.

4.4.2 Assumptions

First of all, we suppose that the dynamics of system (4.37) and observers (4.38) and (4.39) are
well posed in the sense that solutions are defined for all t ≥ 0.

Assumption 4.7. The following holds.

1. For any initial condition (x(0), ζ0(0), ζ1(0)) ∈ X × Z0 × Z1, and any input (u,w) taking
values in U × W, any corresponding solution pair to (4.37), (4.38), (4.39) is unique, defined
on [0,∞), and (x(t), ζ0(t), ζ1(t)) ∈ X × Z0 × Z1 for all t ∈ [0,∞).

2. There exists a function Θ : Rn1 → Rn0 such that Θ(ζ1) ∈ Z0 and ϑ1(ζ1) = ϑ0(Θ(ζ1)) for all
ζ1 ∈ Z1, where ϑ0, ϑ1 come from (4.38) and (4.39), respectively.

5Global with respect to the domain of definition of system (4.41), that is X × (C ∪ D).
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x(t)

x̂1(t)

x̂0(t)

t

Figure 4.2: Strategy to unite local and global observers: when the estimate is far from the
current state we use the global observer; then, when the estimate of the global observer is
close enough to the actual trajectory of the plant, we activate the local observer initialized at
the estimate given by the global observer. Blue line: trajectory x(t) of system (4.37). Dotted
red line: trajectory x̂1(t) of global observer (4.39). Dotted green line: trajectory x̂0(t) of local
observer (4.38).

plant
y, u

local
observer

global
observer

x̂0

x̂1

x̂
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Figure 4.3: Hybrid scheme to unite local observer (4.38) and global observer (4.39).

Item (i) of Assumption 4.7 states that the trajectories of the system (4.37) and of the ob-
servers (4.38), (4.39) are well defined and lie in the sets X ,Z0,Z1 for all times. Function Θ in
item (ii) of Assumption 4.7 is needed to map the global observer variable ζ1 to the local observer
variable ζ0, which is essential when the local observer is activated. In particular, when this oc-
curs, we will take ζ+

0 = Θ(ζ1). Hence, since Θ(ζ1) ∈ Z0 for any ζ1 ∈ Z1, we are sure that the
reset value of ζ0 lies in Z0, as required. Moreover, item (ii) ensures also that x̂+

0 = x̂1. When the
dimensions of the observers coincide and their dynamics are expressed in the same coordinates,
Θ is simply the identity map.

The next assumption formalizes the properties of local observer (4.38).

Assumption 4.8 (Local observer). There exist a continuous function V0 : X × Z0 → R≥0, γ0 ∈ K,
and ε′

0 > ε0 > 0, such that the following holds.

1. (Local convergence) Any solution pair ((x, ζ0), (u,w)) to (4.37), (4.38), with initial condition
such that V0(x(0), ζ0(0)) ≤ ε′

0, satisfies lim supt→∞ |x(t) − x̂0(t)| ≤ γ0(∥w∥∞).

2. (Invariance property) Any solution pair ((x, ζ0), (u,w)) to (4.37), (4.38), with initial condi-
tion such that V0(x(0), ζ0(0)) ≤ ε0, satisfies V0(x(t), ζ0(t)) ≤ ε0 for all t ∈ [0,∞).

The function V0 is used to characterize the domain of attraction of local observer (4.38),
which contains the set {(x, ζ0) : V0(x, ζ0) ≤ ε′

0}, see item (i) of Assumption 4.8. On the other
hand, when the initial estimation error satisfies V0(x(0), ζ0(0)) ≤ ε′

0, then it has an asymptotic
gain property with respect to the measurement noise w, and converges asymptotically to zero
when w(t) = 0 for all t ≥ 0, since γ0(0) = 0, according to item (i) of Assumption 4.8. Function V0
typically corresponds to the Lyapunov function that is used to prove the convergence of the local
observer and satisfies α0(|x− x̂0|) ≤ V (x, ζ0) for some α0 ∈ K. According to this interpretation,
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{(x, ζ0) : V0(x, ζ0) ≤ ε0} can be viewed as an invariant Lyapunov level set of size ε0, see item (ii)
of Assumption 4.8. In general the values of ε′

0, ε0 depend on the maximum allowed magnitude
of the measurement noise, namely on supw∈W |w|.

In the next assumption we suppose that function V0, evaluated along the solutions to (4.37),
(4.38), can be overestimated by a dynamical system (a norm estimator). The latter will be
essential to detect when to activate the local observer.

Assumption 4.9 (Estimator of V0). There exist a continuous function ρ0 : Rny × Rny → R≥0
satisfying ρ0(y, y) = 0 for any y ∈ Rny , β0 ∈ KL, a0, b0, c0 > 0 and v0 ≥ 0, such that, under
Assumption 4.8, the following holds.

1. Any solution pair ((x, ζ0), (u,w)) to (4.37), (4.38), satisfies

V0(x(t), ζ0(t)) ≤ a0z0(t) + β0(V0(x(0), ζ0(0)) + z0(0), t) + v0

for all t ≥ 0, where z0 is the solution starting from z0(0) ∈ R≥0 to

ż0 = −b0 z0 + ρ0(y, ŷ0). (4.43)

2. The function ρ0 satisfies

sup
{
ρ0(y, ŷ0) : (x, ζ0) ∈ X × Z0, V0(x, ζ0) ≤ ε0, w ∈ W

}
≤ b0c0,

where y = h(x,w) and ŷ0 = h(ϑ0(ζ0), 0).

3. ε0 ≤ a0c0 < ε′
0 − v0.

Assumption 4.9 states that function V0 can be overestimated via the dynamical system (4.43),
which is called in the following as a norm estimator, to be consistent with the terminology coined
in [118]. In particular, in view of item (i) of Assumption 4.9, and the fact that β0 ∈ KL, the
state z0 asymptotically provides an upper bound of V0, up to the constant v0. The norm estimator
(4.43) can thus be used to detect whether the state of the local observer (4.38) is in the domain
of attraction V0(x, ζ0) ≤ ε′

0, established by Assumption 4.8. For this, note that if (x(t), ζ0(t))
satisfies V0(x(t), ζ0(t)) ≤ ε0 for all t ≥ 0, then, in view of (4.43) and item (ii) of Assumption 4.9,
we obtain limt→∞ z0(t) ≤ c0, which implies, in view of items (i) and (iii) of Assumption 4.9
and the properties of β0, that lim supt→∞ V0(x(t), ζ0(t)) ≤ a0c0 + v0 < ε′

0. In other words,
any solution (x, ζ0) satisfying z0 ≤ c0 for a large enough amount of time ensures that the local
observer is asymptotically converging to the plant state, up to the perturbing term due to w, see
item (i) of Assumption 4.8.

Item (i) of Assumption 4.9 is always satisfied when the system is uniformly observable (see,
e.g., [84]), namely when a global asymptotic observer exists, as shown in [36]. If there exist
ϱ0, ψ0 ∈ K such that the function V0 satisfies, along any solution to (4.37), (4.38), the following
differential inequality

V̇0 ≤ −b0V0 + ϱ0(|y − ŷ0|) + ψ0(|w|), (4.44)

then, item (i) of Assumption 4.9 is verified by selecting any ρ0 such that ρ0(s1, s2) ≥ ϱ0(|s1 −s2|)
for all s1, s2 ∈ Rny and v0 = b−1

0 supw∈W ψ0(|w|). To see this, it suffices to apply the comparison
principle to the following differential inequality obtained by subtracting (4.43) to (4.44)

V̇0 − ż ≤ −b0(V0 − z0) + ϱ0(|y − ŷ0|) − ρ0(y, ŷ0) + ψ0(|w|)
≤ −b0(V0 − z0) + b0v0 .
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Item (ii) of Assumption 4.9 is then satisfied by properly selecting the constant a0, c0. Note that
the constant v0 ≥ 0 is a bias introduced by the measurement noise. When the noise is not
present, we have in general v0 = 0; however, if it is too large, item (iii) of Assumption 4.9 may
not be satisfied. This means that our results are, in general, valid for “small” noise. Depending
on the design of the observer, the function ϱ0 in (4.44) may be a degree of freedom or imposed
by the structure of V0.

In the next assumption, we define the properties of the global observer (4.39).

Assumption 4.10 (Global observer). There exist a continuous function V1 : X × Z1 → R≥0 and
ε1 > 0 such that, any solution pair ((x, ζ1), (u,w)) to (4.37), (4.39), satisfies

lim sup
t→∞

V1(x(t), ζ1(t)) < ε1.

The function V1 is used to characterize the asymptotic behaviour of the global observer.
Typically, the function V1 is the Lyapunov function constructed to show the convergence of
the global observer and satisfies α1(|x − x̂1|) ≤ V1(x, ζ1) for some α1 ∈ K∞. In this case, ε1
characterizes the ultimate bound of the estimation error of (4.39) and depends, in general on
the magnitude of the measurement noise, namely on supw∈W |w|. When w = 0, the value of
ε1 depends on the properties of the observer (4.39) and may be selected arbitrarily small if
the observer is asymptotically convergent. The next assumption states that function V1 can be
overestimated by a dynamical system.

Assumption 4.11 (Estimator of V1). There exist a continuous function ρ1 : Rny × Rny → R≥0,
a1, b1, c1, ε

′
1 > 0, and v1 ≥ 0, such that, under Assumption 4.10, the following holds.

1. Any solution pair ((x, ζ1), (u,w)) to (4.37), (4.39), satisfies

V1(x(t), ζ1(t)) ≤ a1z1(t) + β1(V1(x(0), ζ1(0)) + z1(0), t) + v1

for all t ∈ [0,∞), where z1 is the solution starting from z1(0) ∈ R≥0 to

ż1 = −b1 z1 + ρ1(y, ŷ1). (4.45)

2. The function ρ1 satisfies

sup{ρ1(y, ŷ1) : (x, ζ1) ∈ X × Z1, V1(x, ζ1) ≤ ε1, w ∈ W} ≤ b1c1,

where y = h(x,w) and ŷ1 = h(ϑ1(ζ1), 0).

3. ε1 ≤ a1c1 < ε′
1 − v1.

Finally, for the approach to work, we need the ultimate bound of the estimation error pro-
vided by global observer (4.39) to be included in the basin of attraction of local observer (4.38).
This condition is reffered to as a switching condition.

Assumption 4.12 (Switching condition). For any (x, ζ1) ∈ X × Z1 satisfying V1(x, ζ1) ≤ ε′
1, then

V0(x,Θ(ζ1)) ≤ ε0, where Θ is defined in the Standing Assumption, V0, ε0 in Assumption 4.8, V1 in
Assumption 4.10 and ε′

1 in Assumption 4.11.

Assumption 4.12 requires that {(x, ζ1) : V1(x, ζ1) ≤ ε′
1} is included in {(x, ζ0) : V0(x, ζ0) ≤

ε0}, when ζ0 = Θ(ζ1), as depicted in Figure 4.4. Recall that, in view of Assumption 4.10, solu-
tions to (4.37), (4.39) enters in the set {(x, ζ1) : V1(x, ζ1) ≤ ε′

1}. Moreover, this can be detected
via the norm estimator (4.45), see Assumption 4.11. As a consequence, Assumption 4.12 guar-
antees that, after a sufficient long amount of time, we can reset ζ+

0 = Θ(ζ1), with Θ defined in
the Standing Assumption, in order to guarantee asymptotic convergence of the local observer
(4.38), see item (i) of Assumption 4.8.
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ε′
0
ε0

ε′
1

Figure 4.4: Switching condition of Assumption 4.12. Dashed green line: level sets of V0(x, ζ0).
Red line: level sets of V1(x, ζ1).

4.4.3 Main result

The overall hybrid observer consists of six components: local observer (4.38), global observer
(4.39), norm estimators (4.43), (4.45), a temporal regularization τ , which may be added to
prevent undesired consecutive jumps, and a logic variable q taking values in {0, 1} defining
which state estimate, x̂0 or x̂1, we need to use. In particular, we design the following hybrid
observer

ζ̇0 = (1 − q)φ0(ζ0, u, y)
ζ̇1 = φ1(ζ1, u, y)
ż0 = (1 − q)(−b0z0 + ρ0(y, ŷ0))
ż1 = −b1z1 + ρ1(y, ŷ1)
τ̇ = q
q̇ = 0


ξ ∈ C (4.46a)

ζ+
0 = qΘ(ζ1) + (1 − q) ζ0
ζ+

1 = ζ1
z+

0 = 0
z+

1 = z1
τ+ = 0
q+ = 1 − q


ξ ∈ D (4.46b)

x̂ = (1 − q)x̂0 + q x̂1 , (4.46c)

in which we use the definitions of x̂0, x̂1, ŷ0 and ŷ1, given in (4.38), (4.39). The overall state
ξ ∈ O ⊆ Rnξ , with O := Z0 × Z1 × R4 and nξ := n0 + n1 + 4, is therefore defined as

ξ := (ζ0, ζ1, z0, z1, τ, q) ∈ Rnξ = Rn0 × Rn1 × R4. (4.47a)

The sets C ∪ D ⊆ O are defined as C := C0 ∪ C1 and D := D0 ∪ D1, with

C0 :=
{
ξ ∈ O : z0 ∈ [0, c′

0], z1 ∈ [0,∞), τ ∈ [0,∞), q = 0
}
,

C1 :=
{
ξ ∈ O : z0 = 0,

(
z1 ∈ [c′

1,∞) or τ ∈ [0, T ]
)
, q = 1

}
,

D0 :=
{
ξ ∈ O : z0 ∈ [c′

0,∞), z1 ∈ [0,∞), τ ∈ [0,∞), q = 0
}
,

D1 :=
{
ξ ∈ O : z0 = 0, z1 ∈ [0, c′

1], τ ∈ [T,∞), q = 1
}
,

(4.47b)

where c′
0, c

′
1 > 0 are design parameters to be properly chosen. According to the definition of the

set C, the parameter T is used to enforce a minimum amount of time T of flow after a jump when
it is taken strictly positive, when flowing in the set C1 defined in (4.47b). Note that according to
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the definition of (4.46), we can use the compact notation (4.40) by defining F,G,H as

F (ξ, u, y) :=
(
(1 − q)φ0(ζ0, u, y), φ1(ζ1, u, y), (4.47c)

(1 − q)(−b0z0 + ρ0(y, h(ϑ0(ζ0), 0)),

− b1z1 + ρ1(y, h(ϑ1(ζ1), 0)), q, 0
)
,

G(ξ, u, y) :=
(
qΘ(ζ1) + (1 − q) ζ0, ζ1, 0, z1, 0, 1 − q

)
, (4.47d)

H(ξ) := (1 − q)ϑ0(ζ0) + qϑ1(ζ1). (4.47e)

The proposed hybrid observer (4.46) has two different operating modes. When q = 1, we use
global observer (4.39). Thanks to the norm estimator (4.45), we can detect when the estimate
x̂1 is close enough to the true value of the estimated state x. The temporal regularization τ
imposes to use global observer for at least a T units of (continuous) time. This allows to avoid
unnecessary multiple consecutive jumps in the scheme (4.46) and to always enforce a flow after
a jump when T > 0. When q = 0, the estimate is given by the local observer. A wrong behaviour
of the local observer, namely when its estimate is not converging to the trajectory of the plant,
is detected when the state of norm estimator z0 becomes too large. In this case, a jump is
imposed and we change the operating mode. Note that, when q = 0, global observer (4.39) is
still used as a “safeguard”. In particular, since the state of global observer (4.39) is never reset,
after a time large enough, we know that its estimate always satisfies the bounds in item (i) of
Assumption 4.11. As a result, unwanted behaviours, such as infinitely many switches in absence
of measurement noise, are avoided.

Theorem 4.4. Suppose Assumptions 4.8 to 4.12 hold. Let T ∈ [0,∞), c′
0 ∈ (c0, c

′′
0) with c′′

0 =
ε′

0−v0
a0

, and c′
1 ∈ (c1, c

′′
1), with c′′

1 = ε′
1−v1
a1

, where a0, a1, c0, c1, ε
′
0, ε

′
1, v0, v1 are given in Assumptions

4.7-4.12. Then the hybrid observer (4.40), with ξ, F,G,H, C,D chosen as in (4.47), solves the
uniting problem with γ = γ0 and

B := {(x, ξ) ∈ X × O : V0(x, ζ0) ≤ ε0, z0 ∈ [0, c0], z1 ∈ [0,∞), τ ∈ [0,∞), q = 0},

where γ0, V0 are given by Assumption 4.8.

Note that the choice of c′
0, c

′
1 in the statement of the theorem is always feasible since a0c0 <

ε′
0 − v0 in view of item (iii) of Assumption 4.9, and a1c1 < ε′

1 − v1 in view of item (iii) of
Assumption 4.11.

The conditions of Theorem 4.4 typically require the noise w to be small, as already men-
tioned. When a large measurement noise is considered, some of the previous assumptions may
no longer hold. However, as long as the behaviour of the global observer is well defined, and
finite escape time of the local observer do not occur, the scheme proposed in (4.47) guarantees
completeness of solutions. It may happen, however, that infinitely many switches occur as the
local observer fails to converge and the global observer moves persistently back and forth from
the set {(x, ζ1) : V1(x, ζ1) ≤ ε′

1}.

4.5 Multi-observers approach

In the previous section we have shown how to combine two given observer in order to try to
take advantage of both good properties. Here, we propose a generalization of this approach by
extending the idea of using multiple observers in parallel. In particular, we present a flexible
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and general observer design methodology based on supervisory multi-observer ideas that can
be used to address various trade-offs between robustness to modeling errors and measurement
noise, and convergence speed. The starting point that we propose is the knowledge of a nominal
observer, which ensures that the associated state estimation error system satisfies an ISS property
with respect to measurement noise and disturbances. Then, we construct a multi-observer,
composed of the nominal observer and additional dynamical systems, all together called modes,
that have the same structure as the nominal observer, but different gains. The number of modes
and the associated gains can be freely assigned (no specific stability/convergence property is
required). Because the gains are different, each mode exhibits different properties in terms of
speed of convergence and robustness to measurement noise. We run all modes in parallel and we
evaluate their estimation performance in terms of a quadratic cost using monitoring variables.
These monitoring variables extend the idea developed in the context of uniting two observers.
In practice, we use a norm estimator which is however driven not only by the estimation output
error but also by the energy correlated to correction gain. Based on these running costs (i.e.,
monitoring variables), we design then a switching rule that selects, at any time instant, the
mode which is providing the best performance. When a new mode is selected, the other ones
may reset or not their current state estimate (and their monitoring variable) to it.

4.5.1 Problem statement

We consider the plant model
ẋ = fp(x, u, v)
y = h(x,w),

(4.48)

where x ∈ Rnx is the state to be estimated, u ∈ Rnu is the measured input, y ∈ Rny is the
measured output, v ∈ Rnv is an unknown disturbance input and w ∈ Rnw is an unknown
measurement noise, with nx, ny ∈ Z>0 and nu, nv, nw ∈ Z≥0. The input signal u : R≥0 → Rnu ,
the unknown disturbance input v : R≥0 → Rnv and the measurement noise w : R≥0 → Rnw are
such that u ∈ LU , v ∈ LV and w ∈ LW for closed sets U ⊆ Rnu , V ⊆ Rnv and W ⊆ Rnw . We
consider a nominal observer for system (4.48) of the form

˙̂x1 = fo(x̂1, u, L1(y − ŷ1))
ŷ1 = h(x̂1, 0),

(4.49)

where x̂1 ∈ Rnx is the state estimate, ŷ1 ∈ Rny is the output estimate and L1 ∈ RnL1 ×ny is the
observer output injection gain with nL1 ∈ Z>0. We define the estimation error as e1 := x− x̂1 ∈
Rnx and introduce a perturbed version of the error dynamics, following from (4.48) and (4.49),
as

ė1 = fp(x, u, v) − fo(x̂1, u, L1(y − ŷ1) + d)
=: f̃(e1, x, u, v, w, d)

(4.50)

where d ∈ RnL1 represents an additive perturbation on the output injection term L1(y − ŷ1).
Similarly to Section 4.2, the following two assumptions are made.

Assumption 4.13. There exist α,α,ψ1, ψ2 ∈ K∞, α ∈ R>0, γ ∈ R≥0 and V : Rnx → R≥0
continuously differentiable, such that the following hold

α(|e1|) ≤ V (e1) ≤ α(|e1|)〈
∇V (e1), f̃(e1, x, u, v, w, d)

〉
≤ −αV (e1) + ψ1(|v|) + ψ2(|w|) + γ|d|2,

for all x ∈ Rnx , e1 ∈ Rnx , d ∈ RnL1 , u ∈ U , v ∈ V, w ∈ W.
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Assumption 4.14. There exist δ1, δ2 ∈ R>0 such that for all x, x′ ∈ Rnx , w,w′ ∈ W,

|h(x,w) − h(x′, w′)|2 ≤ δ1V (x− x′) + δ2|w − w′|2,

where V comes from Assumption 4.13.

As detailed in Section 4.2, Assumption 4.13 implies that the estimation error is II, namely
the existence of β ∈ KL and ρ ∈ K∞ such that, any solution (x, e1) to systems (4.48) and (4.50)
verifies

|e1(t)| ≤ β(|e1(0)|, t) + ρ(|v|[0,t] + |w|[0,t] + |d|[0,t]).

for all t ∈ dom(x, e1), and for any u ∈ LU , v ∈ LV , w ∈ LW and d ∈ LRnL1 . The previ-
ous bound provides a desirable robust stability property of the estimation error associated to
observer (4.49).

4.5.2 Hybrid estimation scheme

The hybrid estimation scheme we propose consists of the following elements, see Fig. 4.5:

• nominal observer given in (4.49);

• N additional dynamical systems of the form (4.49) but with a different output injection gain,
where N ∈ Z>0. Each of these systems, as well as the nominal observer, is called mode for the
sake of convenience;

• N+1 monitoring variables used to evaluate the performance of each mode of the multi-
observer;

• a selection criterion, that switches between the state estimates produced by the different modes
exploiting the performance knowledge given by the monitoring variables;

• a reset rule, that defines how the estimation scheme may be updated when the selected mode
switches.

The extra N ∈ Z>0 additional mode takes the form

˙̂xk = fo(x̂k, u, Lk(y − ŷk))
ŷk = h(x̂k, 0),

(4.51)

where x̂k ∈ Rnx is the kth mode state estimate, ŷk ∈ Rny is the kth mode output and Lk ∈
RnL1 ×ny is its gain. For these N observers (4.51) we don’t require/assume any ISS-property
(i.e. the could be potentially unstable). For simplicity we consider constant gains, but selecting
time-varying gains Lk(t) would be a possible choice, provided the gains are uniformly bounded.

Given the N + 1 modes, our goal is now to find a way to select the “best” between them,
namely the one providing a better estimate, possibly improving the estimation given by the
nominal observer (4.49). Ideally, the criterion used to evaluate the performance of each mode
would depend on the estimation errors ek = x − x̂k, with k ∈ {1, . . . , N + 1}. However, since
the state x is unknown, ek is unknown and any performance criterion involving ek would not be
implementable. As a consequence, we rely on the knowledge of the output y and the estimated
outputs ŷk for k ∈ {1, . . . , N + 1}. In particular, inspired by [214], in order to evaluate the
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Figure 4.5: Block diagram representing the system architecture with η := (η1, . . . ηN+1), x̂ :=
(x̂1, . . . , x̂N+1).

performance of each mode, we introduce the N + 1 monitoring variables ηk ∈ R≥0 for any
k ∈ {1, . . . , N + 1}, with dynamics given by

η̇k = −νηk + (y − ŷk)⊤(Λ1 + L⊤
k Λ2Lk)(y − ŷk)

=: g(ηk, Lk, y, ŷk),
(4.52)

with Λ1,Λ2 being semi-positive definite with at least one of them positive definite and ν ∈ (0, α]
a design parameter, where α comes from Assumption 4.13. The term (y − ŷk)⊤Λ1(y − ŷk) in
(4.52) is related to the output estimation error, while (y−ŷk)⊤L⊤

k Λ2Lk(y−ŷk) takes into account
the correction effort of the observer, also called latency in [214]. Note that the monitoring
variable ηk in (4.52) for all k ∈ {1 . . . , N + 1} is implementable since we have access to the
output y and all the estimated outputs ŷk at all time instants. The monitoring variables ηk, with
k ∈ {1, . . . , N+1}, provide evaluations of the performance of all the modes of the multi-observer.
Indeed, by integrating (4.52) between time 0 and t ∈ R≥0, we obtain for any k ∈ {1, . . . , N + 1}

ηk(t) = e−νtηk(0) +
∫ t

0
e−ν(t−τ)

(
(y(τ) − ŷk(τ))⊤(Λ1 + L⊤

k Λ2Lk)(y(τ) − ŷk(τ))
)
dτ (4.53)

for any initial condition ηk(0) ∈ R≥0, for any y, ŷk ∈ LRny , and any t ≥ 0. The previous equation
defines a finite-horizon discounted cost that depends on the output estimation error.

Based on the monitoring variables ηk, with k ∈ {1, . . . , N + 1}, we define a criterion to
select the state estimate to look at. We use a signal σ : R≥0 → {1, . . . , N + 1} for this purpose,
and we denote the selected state estimate mode x̂σ and the associated monitoring variable
ησ. The criterion consists in selecting the mode with the minimal monitoring variable, which
implies minimizing the cost (4.53) over the modes k ∈ {1, . . . , N + 1}. When several modes
produce the same minimum monitoring variable at a given time, we select the mode, between
the ones with the minimum monitoring variables, with the smaller derivative of ηk (which is
given by g(ηk, Lk, y, ŷk) from (4.52)). Moreover, if two or more modes have the same minimum

108



4.5. Multi-observers approach

monitoring variable and the same minimum derivative of the monitoring variable, then the
proposed technique selects randomly one of them. As a consequence, we switch the selected
mode only when there exists k ∈ {1, . . . , N + 1} \ {σ} such that ηk ≤ ησ. In that way, at the
initial time t0 = 0, we take

σ(0) ∈ argmin
k∈Π

(g(ηk(0), Lk, y(0), ŷk(0)))

where η := {η1, . . . , ηN+1} and

Π(η) := argmin
k∈{1,...,N+1}\{σ}

ηk

for all η ∈ RN+1
≥0 . Then, σ is kept constant, i.e., σ̇(t) = 0 for all t ∈ (0, t1), with

t1 := inf{t ≥ 0 : ∃k ∈ {1, . . . , N + 1} \ {σ(t)} such that ηk(t) ≤ ησ(t)(t)}.

At time t1, we switch the selected mode according to

σ(t+1 ) ∈ argmin
k∈Π

(g(ηk(t1), Lk, y(t1), ŷk(t1))).

We repeat these steps iteratively and we denote with ti ∈ R≥0, i ∈ Z>0 the ith time when the
selected mode changes (if it exists), i.e.,

ti := inf{t ≥ ti−1 : ∃k ∈ {1, . . . , N + 1} \ {σ(t)} such that ηk(t) ≤ ησ(t)(t)}.

Consequently, for all i ∈ Z>0, σ̇(t) = 0 for all t ∈ (ti−1, ti) and

σ(t+i ) ∈ argmin
k∈Π

(g(ηk(ti), Lk, y(ti), ŷk(ti))). (4.54)

Note that the choice of ηk(0) is an extra degree of freedom that can be used to initially penalize
the modes when there is a prior knowledge of which mode should be initially selected, as done
in [D60] in the context of Li-Ion batteries. Conversely, in the case where there is no prior
knowledge on which mode should be chosen at the beginning, all ηk, with k ∈ {1, . . . , N + 1},
can be initialized at the same value such that the term e−νtηk(0) in (4.53) is irrelevant for the
minimization.

When a switching occurs, i.e., when a different mode is selected, we propose two different
options to update the hybrid estimation scheme. The first one, called without resets, consists
in only updating σ, and consequently, we only switch the state estimate we are looking at.
Conversely, the second option, called with resets, consists in not only switching the mode that is
considered, but also resetting the state estimates and the monitoring variables of all the modes
k ∈ {2, . . . , N+1} to the updated x̂σ and ησ, respectively. The state estimate and the monitoring
variable of the nominal observer (4.49), corresponding to mode 1, are never reset.

To avoid infinitely fast switching, we introduce a regularization parameter ε ∈ R>0. In
particular, when a switch of the selected mode occurs, the value of monitoring variables ηk, with
k ∈ {2, . . . , N + 1} \ {σ}, is increased by ε, both in the case without and with resets. The idea
is to penalize the unselected modes and to allow the selected one to run for some amount of
time before a new switch occurs. We use the parameter r ∈ {0, 1} to determine which option
is selected, where r = 0 corresponds to the case without resets, while r = 1 corresponds to the
case where the resets are implemented. When a switch of the considered mode occurs, the state
estimate x̂k of the kth mode is defined as, at a switching time ti ∈ R≥0,

x̂1(t+i ) := x̂1(ti) (4.55)
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and, for all k ∈ {2, . . . , N + 1},

x̂k(t+i ) ∈ ℓ̂k(x̂(ti), η(ti), Lk, y(ti), ŷk(ti)), (4.56)

where x̂ := (x̂1, . . . , x̂N+1), η = (η1, . . . , ηN+1) and

ℓ̂k(x̂(ti), η(ti), Lk, y(ti), ŷk(ti)) :=
{(1 − r)x̂k(ti) + rx̂k⋆(ti) : k⋆ ∈ argmin

j∈Π
(g(ηk(ti), Lk, y(ti), ŷk(ti)))}.

Similarly, at a switching time ti ∈ R≥0, the monitoring variables are defined as,

η1(t+i ) := η1(ti), (4.57)

ησ(t+i ) := ησ(ti) (4.58)

and, for all k ∈ {2, . . . , N + 1} \ {σ},

ηk(t+i ) = pk(η(ti)), (4.59)

where ε ∈ R>0 and pk(η) := (1 − r)ηk + rηk⋆ + ε with ηk⋆ = min
j∈{1,...,N+1}\{σ}

ηj .

Note that, if the monitoring variables of more than one mode have the same value and it is
the minimum between all the ηk, with k ∈ {1, . . . , N + 1}, then, from (4.56), the modes may
be reset with different state estimates. We can already note that, with the proposed technique,
ησ(t)(t) ≤ η1(t) for all t ≥ 0, both in the case without and with resets. Therefore, the estimation
performance of the proposed hybrid multi-observer is always not worse than the performance
of the nominal one according to the monitoring variables that we consider.

Finally, note that the state estimate x̂σ of the hybrid multi-observer is subject to jumps and
therefore it can be discontinuous, which may not be suitable in some applications. Therefore, it
is possible to add a filtered version of x̂σ, denoted x̂f , whose dynamics between two successive
switching instants is

˙̂xσ = −ζx̂f + ζx̂σ

where ζ > 0 is an additional design parameter and, x̂f does not change at switching times
ti ∈ R≥0, i.e., x̂f (t+i ) = x̂f (ti).

4.5.3 Main result

To proceed with the analysis of the hybrid estimation scheme presented so far, we model the
overall system as a hybrid system of the form of [90], where a jump corresponds to a switch of
the selected mode and a possible reset. We define the overall state as

q := (x, x̂1, . . . , x̂N+1, η1, . . . , ηN+1, σ) ∈ Q := Rnx × R(N+1)nx × RN+1
≥0 × {1, . . . , N + 1},

and we obtain the hybrid system{
q̇ = F (q, u, v, w), q ∈ C
q+ ∈ G(q), q ∈ D,

(4.60)

where flow map is defined as, for any q ∈ C, u ∈ U , v ∈ V and w ∈ W, from (4.48), (4.49),
(4.51), (4.52),

F := (fp, fo,1, . . . , fo,N+1, g1, . . . , gN+1, 0)
G := (x, x̂1, ℓ̂2 . . . , ℓ̂N+1, η1, p2, . . . , pN+1, argmin

k∈Π
gk)

110



4.5. Multi-observers approach

with the short notation fo,k = fo(x̂k, u, Lk(y − yk)), gk = g(ηk, Lk, y, yk), ℓ̂k = ℓ̂k(x̂, η, Lk, y, ŷk)
and pk = pk(η), where Π(q) = argmin

k∈{1,...,N+1}\{σ}
ηk for all q ∈ D, k ∈ {1, . . . , N + 1}.

Furthermore, the flow and jump sets C and D in (4.60) are defined as

C := {q ∈ Q : ∀k ∈ {1, . . . , N + 1} ηk ≥ ησ}, (4.61)

D := {q ∈ Q : ∃k ∈ {1, . . . , N + 1} \ {σ} ηk ≤ ησ}. (4.62)

Theorem 4.5. Consider system (4.60)-(4.62) and suppose Assumptions 4.13-4.14 hold. Then
there exist βU ∈ KL and γU ∈ K∞ such that for any input u ∈ LU , disturbance input v ∈ LV and
measurement noise w ∈ LW , any solution q satisfies

|(e1(t, j), η1(t, j), eσ(t, j), ησ(t, j))| ≤ βU (|(e(0, 0), η(0, 0))|, t) + γU (|v|[0,t] + |w|[0,t]) (4.63)

for all (t, j) ∈ dom q, with e := (e1, . . . , eN+1) and η := (η1, . . . , ηN+1). Furthermore, solutions to
(4.60)-(4.62) have the following properties:

• no Zeno-behaviour may occour;

• if any maximal solution to (4.48) with u in LU , v in LV and w in LW is complete, so is any
maximal solution to system (4.60)-(4.62);

• if the set V and W are compact then system (4.60)-(4.62) has a uniform semiglobal average
dewll-time.

Theorem 4.5 guarantees a two-measure input-to-state stability property [49]. The proof is
based on the Lyapunov function

U(q) := c1(aV (e1) + η1) + c2 max
k∈{1,...,N+1}

{bV (ek) − ηk, 0} + c3 max{ησ − η1, 0}.

In particular, (4.63) ensures that e1, η1, eσ and ησ converge to a neighborhood of the origin,
whose “size” depend on the L∞ norm of v and w. Note that we do not guarantee any stability
property for the modes k ̸= σ, but this is not needed for the convergence of the hybrid observer
estimation error eσ. Hence, the convergence of the estimated state vector of the selected mode
is guaranteed by Theorem 4.5.

We recall that with the proposed technique we have ησ(t,j)(t, j) ≤ η1(t, j) for all (t, j) ∈
dom q, for any solution q to (4.60)-(4.62) with inputs u ∈ LU , v ∈ LV and w ∈ LW , both in
the case without and with resets. Therefore, the estimation performance of the proposed hybrid
multi-observer are always not worse than the performance of the nominal one according to the
monitoring variables we consider.

The variable ησ is a performance variable that considers the “best” mode among the N + 1
at any time instant: this is an instantaneous performance, which ignores the past behavior in
terms of the monitoring variable. For this reason, to evaluate the performance of the proposed
hybrid multi-observer, we also propose the following cost, for any solution q to (4.60)-(4.62)
with inputs u ∈ LU , v ∈ LV and w ∈ LW ,

Jσ(t,j)(t, j) :=
j∑
i=0

(∫ ti+1

ti

ησ(s,i)(s, i) ds
)
, ∀ (t, j) ∈ dom q , (4.64)

with 0 = t0 ≤ t1 ≤ · · · ≤ tj+1 = t satisfying

dom q ∩ ([0, t] × {0, 1, . . . , j}) =
j⋃
i=0

[ti, ti+1] × {i}.
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Similarly, we define the performance cost of the nominal observer as

J1(t, j) :=
j∑
i=0

(∫ ti+1

ti

η1(s, i) ds
)
, ∀ (t, j) ∈ dom q , (4.65)

with 0 = t0 ≤ t1 ≤ · · · ≤ tj+1 = t satisfying

dom q ∩ ([0, t] × {0, 1, . . . , j}) =
j⋃
i=0

[ti, ti+1] × {i}.

In the next theorem we prove, that the proposed hybrid scheme in strictly improves the perfor-
mance J1 in (4.65), under some conditions on the gain selection and on the initial conditions of
the modes of the multi-observer and monitoring variables.

Theorem 4.6. Consider system (4.60)-(4.62) under Assumptions 4.13-4.14 and suppose that
maximal solutions are complete. Let q be a maximal solution with inputs u ∈ LU , v ∈ LV and
w ∈ LW and for which the initial conditions of the monitoring variables are all the same, namely
ηk(0, 0) = η0 for all k ∈ {1, . . . , N + 1} for some η0 ∈ R. Then, for any (t, j) ∈ dom q,

Jσ(t,j)(t, j) ≤ J1(t, j),

with Jσ and J1 defined in (4.64) and (4.65), respectively. Moreover, if there exists (t⋆, j⋆) ∈ dom q
such that

ησ(t⋆,j⋆)(t⋆, j⋆) < η1(t⋆, j⋆), (4.66)

then there exists j⋆
′ ≥ j⋆ such that Jσ(t,j)(t, j) < J1(t, j) for all (t, j) ≥ (t⋆, j⋆′), with (t, j) ∈

dom q.

Theorem 4.6 shows that, if the condition in (4.66) holds, then the cost of the proposed
hybrid multi-observer Jσ is strictly smaller than the one of the nominal observer J1 and thus, the
estimation performance in terms of costs Jσ and J1 is strictly improved. In the next theorem, we
give the conditions to guarantee that (4.66) is satisfied and consequently, from Theorem 4.6, that
the estimation performance is strictly improved with the hybrid multi-observer (4.60)-(4.62).

Theorem 4.7. Consider system (4.60)-(4.62) with Λ2 being positive definite, and suppose As-
sumptions 4.13-4.14 hold and that maximal solutions are complete. Select the gains Lk, with k ∈
{2, . . . , N+1}, in (4.51) such that there exists k⋆ ∈ {2, . . . , N+1} satisfying L⊤

k⋆Λ2Lk⋆ < L⊤
1 Λ2L1.

Let q be a maximal solution with inputs u ∈ LU , v ∈ LV and w ∈ LW and initial condition q(0, 0)
satisfying the following properties.

1. x̂k(0, 0) = x̂0 for all k ∈ {1, . . . , N + 1} for some x̂0 ∈ Rnx .

2. ηk(0, 0) = η0 for all k ∈ {1, . . . , N + 1} for some η0 ∈ R.

3. ŷk(0, 0) ̸= y(0, 0) for all k ∈ {1, . . . , N + 1}.

Then, there exists (t⋆, j⋆) ∈ dom q such that ησ(t⋆,j⋆)(t⋆, j⋆) < η1(t⋆, j⋆).

Note that, the conditions in items (i) and (ii) of Theorem 4.7 can always be ensured by
designing the same initial condition for the state estimate and monitoring variables for all the
modes. Moreover, condition in item (iii) is verified almost everywhere (it is a set of null mea-
sure).

We also acknowledge that we state the performance improvement with respect to costs J1
and Jσ, and that it would be interesting to state properties for a cost, which involves the state
estimation errors e1 and eσ. This is a challenging question that we will address in future works.
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4.6 Conclusions and perspectives

In this chapter we proposed a series of tools for the performances improvement of given non-
linear observers. The underlying common approach is to try to redesign the given observer
with modular techniques that doesn’t destroy the original design. The first proposed technique
is the stubborn/dead zone redesign approach explained in Section 4.2, mainly based on the
article [D6]. The case study of stubborn high-gain observer has been published in [D11]. Fur-
thermore, the technique is working not only for pure estimation but also for output-feedback
stabilization, see [D64]. Similar results in the context of multi-agent synchronization have been
proposed in [D40] [D41]. Section 4.3 is devoted to the problem of constrained state estima-
tion. Based on a convex assumption, three different redesign approaches has been proposed: a
continuous-one, a discrete-time and a hybrid one. The case of discrete-time redesign for discrete-
time observers has been published in the conference paper [D7], while the general theory has
been given in [D8]. We remark that the preliminary idea have been already published in [D24]
and [D25]. Finally, the problem of uniting multiple observers is studied. The problem of com-
bining a local observer with a global one via hybrid technique has been detailed in Section 4.4.
This section is based on the papers [D21] and [D22]. Then, the case of combining multiple
observers has been addressed in Section 4.5. The content is based on the papers [D56,D57]. We
remark that this observer has been also analyzed in the context of electrochemical lithium-ion
battery model in [D60], but the results are omitted for space reasons.

Overall, we proposed a series of innovative approaches to improve the performances of a
given observer. The general framework of multi-observer, developed during the Ph.D. thesis of
E. Petri, is very promising and only a preliminary step, because many open questions still re-
main. The more crucial is probably to understand how one can optimize a cost in the estimation
error while not actually measuring it, and how the proposed cost (based on the output estima-
tion error and the output injection term) relates to it. Moreover, motivated by the existence of
a Lyapunov function for the overall scheme, we proposed a selection mechanism based on indi-
vidual running costs, but this is only one possible choice as many others may be envisioned. For
instance, taking inspiration from fault detection techniques, one could average the estimations
and discard the farest ones. Similarly, the use of the proposed multi-observer scheme in output
feedback control is an open question.
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5.1 Some other contributions

In this section, I list some works that have not been presented in this manuscript.

Output regulation for networked control systems. In the series of works [D10,D23] I started
analyzing the robustness properties of internal model based regulators under network con-
straints, such as sampling and scheduling. Following an emulation approach, we first supposed
that a regulator is designed for the nominal continuous-time systems. Then, the robustness
properties for the resulting networked control systems have been studied, identifying the cases
in which asymptotic regulation can be still achieved. Withing the framework of hybrid formal-
ism, linear [D23] and nonlinear systems [D10] have been addressed.

Multi-agent synchronization via robust nonlinear internal model design. In the article
[D39] I studied the problem of consensus of a network of heterogeneous nonlinear agents on
a family of different desired trajectories generated by an uncertain leader. We designed a set
of local reference generators and local controllers which guarantees that the agents achieve
consensus robustly on all possible trajectories inside this family. The design of the local reference
generators is based on the possibility to express the trajectory of the leader as a nonlinear
regression law which is parametrized by some constant unknown parameters. This work is
based on the use of nonlinear regressors introduced in [82].

Output regulation in practical applications. As detailed in Chapter 3, a possible approach
to solve the problem of output regulation is to first design a linear internal model unit and then
stabilize the feedback via the forwarding approach, see, for instance, [D25] in the context of
integral action controllers, and [D26,D28] for harmonic regulation. In the series of works [D33,
D61–D63,D67] we experimentally these approaches. In particular, we applied an integral action
controller in the context of DC/DC converters [D33] relying on the total stability result provided
in the appendix of [D25]. Then, we applied the forwarding based approach in the context of
heat exchangers [D67] and power-flow controllers [D62,D63]. Finally, the harmonic regulation
/ repetitive control scheme has been investigated in the context mechanical ventilation problems
[D61].

Learning for harmonic regulation. One of the main drawbacks of the harmonic regulation
framework proposed in Chapter 3, is that such a technique strongly relies on the knowledge of
the periodicity of the exogenous signals, which may be unknown or uncertain in many cases.
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Following the framework of [D26, D28] In the work [D50] we investigated the use of iterative
learning approaches to identify frequencies and solve therefore an harmonic regulation problem.

Reinforcement Learning Policies with local LQR guarantees for Nonlinear Discrete-Time
Systems. In the context of the Ph.D. thesis of S. Zoboli, we studied the use of Reinforcement
Learning (RL) techniques in feedback design. In the work [D68] we addressed the problem of
controller for discrete-time nonlinear systems. First, we supposed to know the linearized model
of a given system around the desired equilibrium and an LQR local controller is selected. Then,
we tried to enlarge the domain of attraction of such a local controller via learning methodolo-
gies. In particular, we employed an RL algorithm to learn a controller which locally matches
the desired LQR one. The proposed approach enhances the capabilities of the linear controller
by learning to operate outside its domain of attraction while maintaining its local properties.
Although no theoretical guarantees can be given, we obtained excellent numerical results.

Total stability of discrete-time systems. In the context of the Ph.D. thesis of S. Zoboli, we
proposed the discrete-time parallel of total stability results for continuous-time nonlinear system
established in [D25]. This result, published in [D69], enables the analysis of robustness proper-
ties via simple model difference in the discrete-time context. First, we studied how existence of
equilibria for a nominal model transfers to sufficiently similar ones. Then, we provide results on
the propagation of stability guarantees to perturbed systems. Finally, we relate such properties
to the constant output regulation problem by motivating the use of discrete-time integral action
in discrete-time nonlinear systems.

Survey on observers design. In the work [D34], we conducted a literature survey on the
design of observers for continuous-time nonlinear systems, reviewing more than 200 references.
Although the survey does not provide any new results in itself, it reorganizes existing research
in a systematic manner and sheds light on the main results regarding the correlation between
observer design and the observability properties of the observed system.

High-gain observers design. In the context of nonlinear system theory, high-gain observers re-
ceived a lot of attention for their tunability property (i.e. the fact that the speed of convergence
can be arbitrarily made fast) and their use in output-feedback stabilization, see, e.g. [115].
These observers, however, suffer from a certain number of drawbacks: sensitivity to high-
frequency measurement noise, peaking phenomenon, and bad conditioning in implementation.
For these reasons, their use in practical application is still quite limited. In this context, since
the beginning of my Ph.D. I contributed to this field with a certain number of works.

In the work [D15], we characterized the steady-state behaviour of an observer in the pres-
ence of high-frequency measurement noise, providing bound which depends on the frequency of
the noise. The methodology is strongly inspired from output regulation literature. In particular,
the noise is modeled as the solution to an autonomous system and the steady-state behaviour
is characterized by analyzing the so-called regulator equations. Similar ideas have been used in
the context of moment matching [21].

The main contribution in this field is surely the design of a new class of observers denoted as
“low-power high-gain observers”, see [D14,D16,D17,D65]. The main idea behind this design is
to construct an interconnected cascade of n−1 high-gain observers of dimension 2 to observe the
state of a system (in the standard observability canonical form) of dimension n [D14,D65]. The
dimension of the overall observer is 2n−2 but, thanks to the fact that the relative degree between
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the measurement noise and each component estimate is in general larger than 2, the sensitivity
to high-frequency measurement noise is vastly improved. The proposed observer preserves the
tunability property and moreover the high-gain parameter is powered up to 2 regardless the
dimension of the observed state (contrarily to standard high-gain observers in which the high-
gain parameter is powered up to n). This, in turns, allows to have parameters which are better
numerically conditioned. Finally, thanks to the use of saturations, the peaking phenomenon can
be drastically improved [D16,D17]. In the article [D54] we also proposed an adaptation law for
the high-gain parameter extending standard results in high-gain observers [15]. The low-power
technique has been also used in the context of output feedback stabilization [D9, D66] and
output regulation in the design of nonlinear internal models [D11, D36] extending the design
proposed in [46]. Finally, taking inspiration from the main message that low-pass filters in the
loop may improve the sensitivity to measurement noise, alternative constructions in the context
of high-gain observers have been proposed in [D13,D30].

Design of local observers. In the article [D20] we proposed a new framework for the design
of local asymptotic observers, with arbitrarily fast rate of convergence, for autonomous non-
linear systems that are not in observability canonical form. The proposed methodology does
not require the knowledge of the inverse of the observability map. Such a goal is pursued by
coupling a high-gain observer with a system that is able to locally dynamically invert the observ-
ability map. The latter can be implemented by using the inverse of the observability map, thus
recovering a Newton-like algorithm, or its transpose, thus recovering a gradient-like algorithm.

Design of global observers for non-Lipschitz systems. In the article [D1, D2], we proposed
a new methodology for designing observers for nonlinear systems in a lower-triangular form
with globally linearly bounded nonlinearities that may be non-Lipschitz and do not satisfy any
homogeneity constraint. This extends the design proposed in [14] based on homogeneity condi-
tions. Our proposed construction combines the structure of low-power high-gain observers with
sliding-mode observer correction gains to guarantee global convergence of the estimation error
in finite-time, with gains that depend only on the parameters of the incremental affine bound
of the nonlinearities. We also introduce a new ”small-gain”-like theorem for non-Lipschitz Lya-
punov functions to prove the main results

Event-triggered observers. In the articles [D58, D59], developed in the Ph.D. thesis of E.
Petri, we proposed a new methodology to design a decentralized event-triggered nonlinear ob-
server. In particular, we investigate the scenario where a perturbed nonlinear system transmits
its output measurements to a remote observer via a packet-based communication network. The
sensors are grouped into N nodes and each of these nodes decides when its measured data
is transmitted over the network independently. Each sensor is supposed to be “smart” in the
sense that it is equipped with some (small) computational power, implementing a simple dy-
namic event-triggered algorithm. In such a way, we obtain accurate state estimates, while only
sporadically using the communication network.

Use of DNN in KKL obserers. In the article [D55] we investgiated the use of deep neural
networks (DNN) in Kazantzis-Kravaris-Luenberger (KKL) observer for non-autonomous multi-
output discrete-time nonlinear systems. In particular, the KKL design is based on the knowledge
of a mapping that transforms a nonlinear dynamics into a stable linear system modulo an output
injection. However, such a mapping is difficult to compute and its numerical approximation may
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be badly conditioned during the transient phase. To overcome these issues, we proposed an al-
gorithm based on ensemble learning techniques to improve the numerical approximation of the
mapping and its extension in the transient phase. This ensures a good asymptotic convergence
of the observer and avoids peaking phenomena. In this article we tested the proposed algorithm
in high-dimensional and multi-input-multi-output examples.

5.2 Perspectives

Finally, based on the content of this dissertation, I list here a certain number of open problems
and perspectives for my future works.

Design of kkk-contractive feedbacks. Chapter 1 is devoted to the design of stabilizing feedback
ensuring contractivity properties of the overall closed-loop systems. In recent years, a new
notion of contraction, denoted as k-contraction, has been introduced for nonlinear systems [145,
216]. Similarly to the notion of contraction, defining a (contractivity) property on distances
between trajectories, the notion of k-contraction define a contractivity property on k-surfaces
(or k-volumes). For instance, in case of a 2-contractivity property, any surface is supposed
to converge to zero, although some trajectories may actually diverge. However, for bounded
trajectories of a 2-contractive system, limit cycles are excluded, i.e. these trajectories necessarily
converge to equilibria [216]. Such a property is provides less guarantees than 1-contractivity
but it is nevertheless of particular interest for integral action control: on any of such equilibria,
output regulation is achieved. Most of existing works in k-contraction theory focus on the
analysis, and the problem of feedback design ensuring k-contractivity properties is mainly open,
e.g. [216]. The main limitation is related to the measure matrix and k-compounds that hardly
applies for design [66,216]. We believe that a methodology to overcome existing limitation is to
combine the Riemannian contraction [186] approach with p-dominance (which is however well
developed only for Euclidean metrics), [80,81] horizontal contraction [79,215], and transverse
exponential stability [10]. Following this idea we submitted some preliminary results [D70].

Infinite dimensional and large scale internal models for output regulation. Section 3.4 in-
troduces a new paradigm of infinite-dimensional regulators based on the preliminary work [D3],
which opens however a certain number of theoretical and practical questions. The internal
model unit that we proposed cover the case of signals which are reproducible by a finite num-
ber of non-commensurable periodic functions, but other classes of signals may be envisioned.
The (incremental) stabilization of cascade composed by a (possibly multi-input multi-output)
input-affine nonlinear ODE and a PDE is also an open axe of research, since in Section 3.4
only the case of minimum-phase systems has been addressed. Furthermore, semi-global results
should be also investigated. Then, many open questions concerns the discretization of such
a infinite-dimensional systems. For the case of repetitive controllers, we showed that a har-
monic approximation may recover the asymptotic properties of the exact repetitive controller,
but other discretization approaches are possible, e.g. [99, 201]. As a matter of fact, the prob-
lem of reducing the dimension of a given large scale (possibily infinite dimensional) model
has been addressed by many researchers in many different fields [94], such as finite-element
methods [169], model reduction theory [21, 178], spectral approaches [91, 209] polynomial
approximations [23], Galerking methods [91], τ -models and so on [148]. The peculiarity and
the challenge of such a study is however is that we would like to approximate an infinite di-
mensional internal model with a large-scale one while preserving some asymptotic properties
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on the solutions. In the preliminary work [D31], we compared some τ -methods, that is, the
harmonic approximation (based on a Fourier decomposition), and two polynomial approxima-
tions based respectively on Legendre polynomials (which can be shown to be equivalent to a
Padè approximation) and a Chebyshev polynomials. The resulting harmonic model seems to
be the most promising one. Finally, last but not least, in the context of repetitive control it is
usually assumed to have the perfect knowledge of the period of signals. In the absence of such
a knowledge, alternative routes need to be explored, such as the use of (continuous-time or
hybrid) adaptive techniques, e.g. [31,138,139,183,192], [D50]. The theory of adaptive infinite
dimensional internal models is surely another interesting open research direction, see, e.g. [1].

Contraction and cooperative output regulation of bilinear systems. During my research
career, I had the opportunity to practically apply some of the output regulation techniques that
I developed. This included works on heat exchangers [D67], power converters [D62, D63],
and mechanical ventilation [D61]. Despite these promising results, much work still needs to
be done. Indeed, in the context of heat exchangers and power converters, only integral-action
based regulators have been tested while the use of more general internal model based regulator
has still not employed. One of the main difficulties comes from the fact that both applications can
be described by a bilinear model and this make the feedback design particularly challenging. As
a matter of fact, it is worth noticing that, although the bilinear systems representation is quite
general (as remarked in [78] “any control-affine system with finite dimensional observation
space may be immersed in a bilinear systems”), the control theory of bilinear systems is not very
much developed. In literature we can find works on controllability [116], stabilization [16, 54,
95, 130] and observer design (see, for instance, [30, 39] and Section V in [D34]). However,
when looking for some more complex control problems the literature is scarce. We can cite
some results about tracking control and reject of constant perturbations [58,92], and few works
addressing the problem of output feedback stabilization [16,42,175,200]. But for more general
output regulation and synchronization of multi-agent systems problems there are almost no
results (see, e.g. [126, 204]). As a consequence, driven by the control problem heat exchanger
networks [D67], I would like to develop a general framework for the design of distributed
internal model based regulators (also denoted in literature as cooperative output regulation
[71, 72, 193, 194]) for the control of networks of bilinear systems. To this end, developing new
design methodologies to make a bilinear system contractive via feedback is crucial. One key
element could be focusing on positive systems [73, 76, 167] and using non-Euclidean norms
such as the ℓ∞ or ℓ1 norm [69]. For instance, the theory of a Riemannian weak pairing based on
a distance function of the type |

∫ 1
0 p

⊤(x)∂f∂x (x)dx| is still missing, to the best of my knowledge

Multi-observers for performance improvements. The flexibility of the multi observers frame-
work developed in Section 4.5 opens up a range of fascinating, important research directions.
First, we currently do not have a systematic methodology to design the observer gains Li for the
additional modes and this will need to be developed. In this context, one possible approach is
the off-line tuning of the additional observer gains taking advantage of the fact that the estima-
tion error x− x̂ is known on simulations off-line. Dynamic programming tools can be exploited
for that. Then, the obtained gains will be used to run on-line this time the hybrid multi-observer
scheme to select the best designed gains according to the measured input and output. An al-
ternative, which will also be explored, will be, instead of tuning the gains off-line and picking
the best one on-line, to adopt a fully on-line approach where the observers gains values are no
longer fixed but adjusted to further improve the considered on-line cost function. This approach
is more challenging but may lead to better estimation performance. Second, the considered cost
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functions involve only the output estimation error, whereas our ultimate goal is to improve a
cost, which involves the state estimation error that is unknown on-line. It would be interestin
to use Lyapunov characterizations of observability and detectability properties of the system to
make these connections. Third, Kazantsis-Kravaris-Luenberger (KKL) observers [12] are cur-
rently escaping our theory, and we will aim at developing tuning strategies for such observers.
The motivation to consider KKL observers comes from their simple structure (essentially lin-
ear filters), while the require nonlinear transformation to change the systems coordinates can
be learned and the nonlinearities can be learned via offline training phases with deep learn-
ing methods [D55] [109, 146, 166]. Also, it would be relevant to propose a design framework,
which allows to consider observers with a different structure, like extended Kalman filters with
high gain observers, to make the best out of each of them. Finally, I would like also to inves-
tigate to what extent the proposed scheme can be used to improve the performance of a given
observer-based controller, which is largely unexplored in the literature precisely because of the
lack of tools to tune observers while preserving their convergence properties.
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