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Introduction 

This Habilitation is about machine learning in situated interaction. Machine learning 
is a field of research, a technology boosting innovation, the representation of 
resource exploitation (data, labour, energy), and the algorithms bringing artificial 
intelligence to ‘life’. Situated interaction is the recognition that technology is not 
detached from its development, deployment and uses context, and it is part of a 
network of interdependencies between actors and users. 

Given the extent to which machine learning has become part of our digital 
ecosystems, and our collective imagination, notably through the ambiguous use of 
artificial intelligence, our interactions with this technology have become complex 
and troubling. By “our”, I mean different actors. First, I mean the users of systems 
embedding machine learning. These users are not machine learning savvy. They can 
be experts in their domain or maintain a practice of some sort. Users can be artists, 
scientists, activists, domain experts and laypeople. Second, I mean developers, 
engineers and scientists working on machine learning and artificial intelligence 
algorithms and infrastructures, either in public institutions or private corporations. 
These actors deal with increasingly complex networks of computation and data, 
triggering increasing questions about moral and ethical values. Third, I mean 
researchers, including me, studying machine learning in various research fields. 
These actors may consider machine learning as an object of study, or involve 
machine learning in their scientific practice. With regard to these actors, of which 
we are one, it is needed to ask what characterises our interaction with machine 
learning. Have we identified the entire space of possibilities? Do we have a point of 
view to put forward in a socio-technical context where machine learning is 
omnipresent? Do we have a responsibility as researchers vis-à-vis these technologies 
to which we contribute? How to integrate these questions into a research program 
focused on the design, development and study of interactive systems integrating 
machine learning? 

This manuscript is an academic text that stands at the intersection of Human-
Computer Interaction, Design Research, and Science and Technology Studies. Its 
HCI anchorage comes from the object of study: I am not simply interested in the 
machine learning technique, nor in the psychology of users, but in the phenomena 
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generated by the method in interaction with the practice. Its anchorage in Design 
Research comes from the methodologies used and the resulting epistemology: I am 
interested in creating knowledge through the design of interactive systems and their 
integration into the field. These can have a utilitarian or speculative function. Finally, 
its anchorage in science and technology studies comes from the contextual framing 
I would like to give to my research: I choose to extract my discourse from the 
applicative contributions but to focus on the cultural, social and political 
consequences of working with machine learning in various application domains, 
and, as we will see, especially in the creative and artistic disciplines. 

Finally, since I will unfold a standpoint about machine learning from my research 
experience conducted in various sociocultural contexts, I would like to position 
myself. I was born in France, in the northern countryside. I am a tenured researcher 
at the National Centre for Scientific Research (CNRS), physically located at the 
Institute of Intelligent Systems and Robotics, part of Sorbonne Université in Paris. I 
situate my research within the field of Human-Computer Interaction. I have a 
background in applied mathematics and hold a PhD in Computer Music. I worked 
in (and was a consultant for) a start-up company in London as a senior researcher, 
designing deep-learning methods for audio.  

Structure of the manuscript 

I have chosen to articulate my position on machine learning in interaction from three 
interrelated perspectives: as a tool, material, and cultural object. As such, I have also 
selected specific research projects conducted with PhD students, post-doctoral 
researchers and colleagues that allowed me to construct a narrative across these three 
themes. Through this selection process, some of my previous research projects will 
therefore not appear in this manuscript, but this is not to diminish their importance 
in the construction of my position as a researcher and, thus, my argument along this 
manuscript and my future research project, which I will outline in the general 
discussion of the manuscript. 

The three perspectives on machine learning in interaction structure this manuscript 
into three parts. Each Part is organised as follows. I will start by situating machine 
learning within the context of the theme, and I will then present my work that 
illustrates, explains and questions this perspective. The selected works from y 
research are called foci in the text. 

In Part 1, I consider machine learning as a tool, the most apparent perspective given 
its use in the computer science and robotics communities: a technique made to 
perform a well-defined task. In this Part, I propose to analyse the following 
questions: What does it mean to consider machine learning as a tool, in the same 
way as a physical tool that one would usually handle? And, what are the limitations 
arising from such a machine learning perspective? I propose to start with theoretical 
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works on tool use, from the field of cognitive science to human-computer 
interaction. These works will highlight that tool use implies situated actions, which 
means actions performed in response to some contextual changes due to the previous 
actions performed and due to prior decisions made. These actions underlying the use 
of a given tool are not entirely determined before a task is performed with that tool. 

As a result, we can observe situations where a tool is re-purposed according to the 
context, which means that a tool is used in a way that was not originally intended. I 
argue in this first Part that this also applies to machine learning. Machine learning 
can be considered a tool only when it is also situated. I am presenting two foci to 
illustrate my point. First, I describe some of my work using machine learning as a 
tool for inquiry in studies of human perception. Second, I present previous studies 
where machine learning is a creative tool in music performance. The creative use of 
machine learning shows the limit of this perspective and calls for an ampler view of 
machine learning in interaction. 

In Part 2, I propose an alternative and broader view of machine learning beyond its 
use as a tool. This new perspective allows me to explain interaction phenomena when 
machine learning algorithms are designed to achieve a given task. In these cases, the 
technology is not fixed, and the technology evolves through the design stages and 
prompts the exploration of various algorithmic behaviours. In this Part, machine 
learning is presented as a material. I show the theoretical elements that characterise 
digital materiality, a notion stemming from the community of Design Research and 
Human-Computer Interaction. I argue that working with this material, akin to craft, 
is ubiquitous with machine learning, even in the machine learning research 
community. 

Moreover, highlighted in a creative context, machine learning also has a material 
expression that helps to understand the basis on which a material is chosen for 
inclusion in the creative process. Appropriating the material expression of machine 
learning is, however, not easy and requires crafting the data and the model. I 
illustrate this in two foci. The first takes up the research work in the creative 
community and explicitly highlights the elements that constitute the materiality of 
this technology. The second presents work in pedagogy where the materiality of 
machine learning is put forward to transmit with greater ease the underlying 
concepts of this technology to novice audiences. This research shows that the work 
of the material, a craft, is at the heart of the interaction with machine learning but 
is not perceived as such by specific communities who emphasise the automatism of 
the underlying algorithms, increasing the opacity of the developed technology and 
its material expression. These points raise epistemological and cultural questions that 
constitute the trope of the following Part.   

In Part 3, interactions with machine learning are considered from the perspective of 
the cultural and political object. The work of artists and creatives with machine 
learning has brought to light an additional phenomenon in the interaction with this 
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technology that has to do with its cultural agentivity, which is in tension with the 
positions of the artists who use it. Through ambiguous terminology related to 
artificial intelligence, and already present in terms of machine learning, the 
technology has been promoted using a normative view of how intelligence and 
artificiality are understood. This view is part of a dominant discourse that polarises 
what is natural, as opposed to artificial, what is an object, as opposed to a subject. 
In this Part, I articulate and highlight how this discourse can be deconstructed to 
imagine more exciting and rich narratives related to the interactions with machine 
learning. In particular, I explore this alternative narrative through artistic practice 
that helps to imagine new perspectives on technology, free from the epistemological 
framing of machine learning research. As a first focus, I return to the work presented 
in the previous Part, where visual artists use machine learning in their practice. I 
show how they make this dominant culture in machine learning and artificial 
intelligence explicit and discuss its limitations. As a second focus, I present an artistic 
performance that I contributed to that questions the role of artificial intelligence in 
contemporary algorithmic societies and how this role prompts violent behaviours. 

Finally, I conclude this manuscript by presenting conclusions of this research work. 
This Part indicates the link between the three perspectives that define the 
abovementioned parts. The fact that I have created three parts separates them into 
three independent points of view; however, they are, by definition, interdependent. 
In conclusion, I propose highlighting how this work and reasoning defines rich and 
interdisciplinary research directions shaping my future research project.  

Few technical things to know about machine learning 

Before starting the first part of this manuscript, this section aims to give the necessary 
elements to understand the main notions behind the term machine learning in this 
manuscript. Readers who are already familiar with the technique can skip this 
section. 

I start with a working definition. Machine learning is a set of techniques designed to 
extract patterns from data sets (which can be of any type, such as images, sounds, 
text or tabular data) according to an objective given a priori. Objectives may be to 
classify input data into categories, to predict values associated with input data, to 
find the most similar input data and group them together, to synthesize new data 
based on the input data, among some examples. 

If, for instance, the aim is to assign a category (a label) to a given input data (for 
example, an image), a machine learning algorithm will identify what in the data 
relates to the provided labels. What is identified depends on the method chosen. For 
example, convolutional neural networks will identify spatial features at different 
scales (from local to global) related to the label. This task is called classification, and 
to achieve it, a classification algorithm is trained on examples of pairs of data inputs 
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and their corresponding labels (for instance, pair of images and tags). Since the 
algorithm has access to the description of each element in the dataset (through labels 
for example), this task is a supervised learning task. The labels associated with each 
image in the training set entirely condition the information the algorithm will extract 
from data inputs (for instance, images). 

Once the patterns have been identified, a machine learning algorithm could perform 
inference which means taking as input a data point that the algorithm has not used 
for training and inferring likelihoods over a set of possible categories (or labels). 
Figure 1 (left) illustrates this task, where the dataset comprises images of paintings 
with their authors. The classification will be useful in this manuscript in the creative 
context where we will be interested in the recognition of gestures in real time for the 
interactive control of sounds. 

 

          

Figure 1. Illustration of machine learning tasks. On the left panel, the figure illustrates classification, an example 
of a supervised machine learning task. On the right panel, the figure illustrates generation, an example of an 
unsupervised machine learning task.  

 

Machine learning algorithms are, therefore, data-driven computational techniques 
and various objectives are used to define machine learning tasks based on a given 
dataset. As we saw before, one goal can be to assign a label to an input. Another 
goal can be to provide a value to a given input, for instance, an estimation of the 
price for each painting. This task is called regression. Regression algorithms are 
trained beforehand on datasets, including examples of data and their corresponding 
output values. Their task is to learn the function from the input to these values, with 
the task to be as close as possible to the ones provided in the training set. Like 
classification, regression is a supervised learning task. As for classification, regression 
will be used, in this manuscript, to make the link between input motion data and 
output sound control parameters. 
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Now, one can provide the model with a data set without supervision (labels or 
associated values). In this case, the objective is to learn how to synthesise new data 
that looks like the input data. This task is called generation, a form 
of unsupervised learning (depicted in Figure 1 (right)). A generation task will be 
important in this manuscript when I present artists’ work with machine learning, 
especially in visual arts. At the heart of generative machine learning models is an 
abstract space (sometimes called latent space or distribution space). In the case of 
image generation, each point in the latent space corresponds to an image generation. 
A “point” can be described abstractly by coordinate values in multidimensional 
space. Navigating through this space generates a series of images that interpolate, 
and to some extent extrapolate, the images used for training. 

I presented three machine learning tasks (classification, regression, and generation) 
which correspond to three objectives given to the algorithm and a dataset. However, 
there are many other possible tasks: clustering, detection, transcription, translation, 
or probability estimation. In addition, I presented machine learning paradigms that 
rely on fixed datasets, including or not supervision signals. Another type of 
learning, reinforcement learning, works through interactions with an environment. 
In this paradigm, the algorithm implements an agent to perform actions in an 
environment that will affect this environment. The agent observes these effects. If 
they are positive (positive rewards), the action taken was appropriate, knowing the 
agent’s current state. But, the action taken was not the right choice if they were 
negative (i.e. negative rewards or no rewards). By exploiting the rewarding actions 
and exploring those that have never been used, an algorithm can learn a policy, a 
strategy that would tell which action to take depending on the agent’s state.  
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Tool 

Generally, a tool allows us to act upon our environment to achieve a desired goal. A 
tool could be anything: an object, a device, a computer program, a word, or an 
expression. What makes it a tool is the function we attribute to it by using it to act 
on things in our environment. From this perspective, machine learning algorithms 
can also be seen as tools used to act in an environment composed of digital objects 
such as data. They are used to classify digital objects, associate them with other 
objects, or generate new objects. The questions are: What does it mean to consider 
machine learning as a tool in the same way as a physical tool that one would usually 
handle? And, what are the limitations arising from such a machine learning 
perspective? 

The perspective of machine learning as a tool was predominant in the research I 
conducted at the end of my PhD at IRCAM in 2012 and during my first positions as 
a post-doctoral researcher. I saw machine learning algorithms as tools, which 
strongly influenced how they were subsequently integrated into my research and how 
they affected that research and forced an epistemology. I propose to begin by 
recalling this period of my academic work to contextualise the approach taken in 
this chapter. I then present a set of theoretical notions and contributions to 
understanding digital tools and their use. From there, I propose to illustrate the 
perspective of machine learning as a tool through two scientific projects involving 
the study of human perception, followed by the presentation of projects using 
machine learning as a creative tool for music creation. Reflecting on the status of 
technology in this set of previous works allows me to draw positive lessons in the 
context of human-computer interaction, as well as to point out that the narrow view 
of technology-as-a-tool is too limited to fully capture the relationship between 
researchers, other stakeholders, and technology in practice. 

A preamble on the study of gesture-sound relationships 

In 2012, I completed my PhD in computer music at IRCAM in Paris. During my 
doctoral work, I investigated the relationships between sounds and movements. The 
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scenario, from the beginning of the introduction of my PhD, describing the main 
objective of the work, was as follows:  

“Let us imagine the situation where we listen to a piece of music. We 
sensitively experience the sound, which arouses sensations, emotions, 
memories, etc. While listening, we start to move our arms to the music, 
like a conductor, but without mimicking the gestures of the orchestra. 
Ours are personal, not codified; our intentions are diverse. Let's imagine 
now that as we listen and move along during this listening, the music 
becomes played by our movements. That is, the movements take control 
of the music. This does not simplify or impoverish the music. It becomes 
alive.”  

On the one hand, I wanted to understand better which movements people associate 
with sounds while listening to them. If I perform a movement while listening to the 
sound of a wave, am I gesturally imitating the wave? On the other hand, I wanted 
to use these fundamental results to steer the design of gesture-to-sound mappings 
that could be integrated into musical performances and new musical instruments 
mediated by technology. Through this approach, called mapping-through-
listening (Caramiaux, Françoise, et al., 2014), I developed a method that brings back 
the perception–action loop as a fundamental design principle. One could build 
gesture-sound interactions that capture personal experiences of sounds and the 
imaginary associated with sounds.  

Embodied music cognition provided a theoretical framework for studying listening 
in a musical context and the link between music perception and human actions 
(Leman, 2007). Machine learning provided us with the required tools to realise such 
scenarios. Gesture-sound interaction design scenarios are usually best defined from 
high-level gesture and acoustic descriptions, which cannot generally be easily 
programmed with other techniques. Machine learning techniques allow one to set 
the gesture–sound relationships from examples. The listening step allows for 
collecting training data to feed a gesture classification or gesture-to-sound regression 
model. After training, the system could use the gesture data as input for the models 
and synthesise sounds accordingly. That is how ML became an important asset in 
my research agenda (which will be further detailed in the following sections).  

This research was also facilitated by the technological context in which it was rooted. 
First, the 2010s were an exciting time for those experimenting with movement-based 
interaction in the creative domain. It was when several companies released 
affordable movement-capture systems, primarily designed for video gaming but 
more largely usable as controllers in various ways. For instance, Nintendo released 
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the Wii Remote1 (2006-2017), capturing movement rotations and dynamics. 
Microsoft released the Kinect2 (2010-), which captures the positions of a silhouette’s 
skeleton from video cameras. A Canadian start-up, Thalmic, released the Myo 
Armband (2013-2018), allowing for gesture recognition through muscle activations. 
Finally, a last example was Leap Motion Inc. which released the leap capture system 
(2012-2019) capturing hand movements with high fidelity. These technologies 
enabled the design of many creative scenarios, such as the ones we were interested 
in at IRCAM: controlling sounds through body movements. But they were also 
valuable assets for experimental research on human movement. We could perform 
motion capture in less controlled settings (than the lab) and study movement 
responses to sound in various contexts.  

Second, it was an exciting time for those interested in applied machine learning. Few 
of us were applying this technology in movement-based interactive performance, but 
there was a growing interest within the community of creative computing and HCI. 
The deep learning breakthrough was around the corner, and machine Learning 
research was already very active. In our work, we borrowed models from other 
fields. We were typically interested in probabilistic models such as Hidden Markov 
Models (HMMs) and Gaussian Mixture Models (GMMs) because that was used in 
temporal sequence modelling such as speech.  

In summary, through affordable movement capture systems, we were able to capture 
data, and this data represented the behaviour that we wanted to study and use in 
our interactive system. Machine Learning became the centre of our attention as a 
tool to make sense of these data.  

Contextualising tools in digital technology 

In the previous section, I presented the personal trajectory that led me to the use of 
machine learning as a tool to build gesture-sound interactions and perform 
movement analysis. I propose further articulating the notion of tool and tool use to 
understand how they apply to digital objects such as machine learning components 
(data, models, parameters, etc.). Therefore, this section aims to step back from the 
specific application of musical interaction and to ground the analysis of machine 
learning as a tool in fundamental research on tool and tool use.  

                                                

 

 

1 https://en.wikipedia.org/wiki/Wii_Remote  
2 https://en.wikipedia.org/wiki/Kinect  
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In this section, I will particularly emphasise the notion of tool use to understand the 
tool in interaction with the person using it and with the objects to which it is applied. 

Tool use: From cognitive science to HCI 

In human and animal cognition research, using tools mediates the interaction 
between the tool user and the environment. The environment is usually considered 
what is ‘outside’ the user’s body, which does not necessarily mean beyond the body’s 
physical limits. Tool use, therefore, engages the manipulation of some objects that 
have an action upon other objects or organisms in the environment (the elements on 
which a tool can act are diverse and can cover a wide range of things from microbes 
to buildings through digital information). In the physical world, these interactions 
can take the form of physical alteration of the environment, such as hitting a surface 
with a hammer held in one hand. The alteration is felt by the person handling the 
tool, for example, through a resistance felt by the hand to the contact of the hammer 
with the surface.  

Tool use traditionally refers to manipulating hand-held objects. Consider the use of 
Japanese saws in manufacturing wood joints, for instance. Think of the scalpel in a 
surgeon’s hands when operating. Regularly using such tools makes them feel like 
they are an extension of the body. In that sense, Gibson wrote: 

“When in use, a tool is a sort of extension of the hand, almost an 
attachment to it or a part of the user’s own body, and thus is no longer a 
part of the environment of the user. But when not in use, the tool is simply 
a detached object of the environment, graspable and portable, to be sure, 
but nevertheless external to the observer” (Gibson, 1979), pp.35.  

This property of body extension through tool use extends our perception and 
cognition as it has been developed in embodied cognition (Noë, 2004; Kirsh, 2013). 
In embodied cognition, how agents communicate, infer concepts from elements 
perceived in the world, and reason about these elements, are body-dependent (Lakoff 
and Johnson, 2008; Varela, Thompson and Rosch, 2017). Furthermore, tools that 
agents have learned to use can become an extension of the body and, therefore, may 
constrain and inform the creation of concepts stemming from the agent acting within 
an environment.   

Having introduced these concepts, we can observe that tool use remains related to 
hand-held objects operating on external objects. However, this view greatly restricts 
the spectrum of what tools can be. According to this view, digital tools cannot be 
considered as such because they are not tangible objects that can be manipulated 
directly. Digital tools may be buttons on an interface, sliders, documents, numbers, 
video streams, algorithms, etc. By nature, these tools are not tangible and cannot be 
taken in hands per se, as physical tools can. They can, however, be manipulated to 
some extent and they can be combined to create more complex tools. In response to 
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this problem, the definition of tool use has recently been extended to include the case 
where a tool is not directly manipulated and, therefore, is not simply a “detached 
object”. To that end, St Amant and Horton have proposed to define tool use as 
follows:  

“the exertion of control over a freely manipulable external object (the 
tool) with the goal of (1) altering the physical properties of another object, 
substance, surface or medium (the target, which may be the tool user or 
another organism) via a dynamic mechanical interaction, or (2) mediating 
the flow of information between the tool user and the environment or 
other organisms in the environment” (St Amant and Horton, 2008).  

These concepts have been of vast influence in designing user interfaces where 
analogies with the physical world help users interact with digital objects such as files, 
menus, data tables, or images. Furthermore, interaction styles establish how users 
interact with these digital objects. A notorious example is direct manipulation, where 
objects support actions on themselves and offer immediate, usually continuous, 
feedback to users while they perform the actions. Such interaction style can give the 
users the sense of manipulation as they would have done in the physical world, 
minimising the learning curve. Going beyond direct manipulation, Jacob and 
colleagues have proposed the concept of reality-based interaction where designing 
interaction with the digital object would rely on naïve physics and environment 
awareness and skill from users (Jacob et al., 2008). Both of these approaches, 
however, do not allow for leveraging the computational capacity of technology, 
which may involve behaviours unrelated to what we experience in the physical 
world. 

One example is copying and pasting, which is not an action that a tool can perform 
in the physical world as easily as in the virtual world3. More advanced computations, 
such as the ones at play in machine learning (clustering or loss optimisation, for 
instance), do not have a direct analogy in the physical world either. Leveraging both 
experiences in the physical and digital worlds, Jetter and colleagues (Jetter, Reiterer 
and Geyer, 2014) proposed the notion of blended interaction as a framework to 
understand when users perceive a user interface as “natural” (or not). However, a 
limitation resides in the fact that searching for naturalness in the user interface, such 
as minimising the learning curve or increasing the adoption of a given system, is 
often irrelevant. Many physical objects we use in the physical world may also be 

                                                

 

 

3  
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“unnatural” (we could think of a violin, for instance), which makes this concept not 
really useful. 

Finally, the concept of tool use has found an echo in HCI through the notion of 
instrumental interaction, as introduced by Beaudouin-Lafon (Beaudouin-Lafon, 
2000; Beaudouin-Lafon and Mackay, 2018). The main idea is to focus on domain 
objects, which can be text, data, or images, and design instruments acting on those 
objects. Instruments can be activated or selected by users and can become 
themselves domain objects on which other instruments could act, pretty much as a 
tool in the physical world (e.g. a knife) can become the object on which a tool is 
acting (e.g. sharpening machine). Interestingly, the concept of instruments does not 
involve the notion of naturalness or intuitiveness. It could be intuitive if the 
instrument implements an analogy from the physical world, but it could also be 
abstract and adapted to some domain-specific, such as machine learning.   

(Re-)purposing digital tools 

When situated, tools in the physical world may be interchangeable if they share the 
same mechanical properties useful to achieve a task. For instance, if I have to drive 
a nail into a piece of wood, and I do not have a hammer in my possession, but I 
happen to be surrounded by stone, I can use a large enough stone as a tool for this 
task. Does this analogy apply to digital tools?  

In the context of Miguel Renom’s doctoral thesis (Renom, 2022), which I co-
supervised with Michel Beaudouin-Lafon, we studied the extent to which the 
principles of human tool use can be unfolded to understand digital tool use. In 
particular, we based our research on the technical reasoning hypothesis (Osiurak et 
al., 2009), which posits that humans engage in physical tool use by reasoning about 
mechanical interactions among objects. For instance, if someone would like to cut 
an apple in half, the action of cutting is made possible by using a tool whose 
mechanical properties are hard and sharp, because they know that, on the contrary, 
a critical mechanical property of an apple is its softness. Therefore, a sharp object in 
contact with an object would cut it. This process of matching object properties with 
technical principles is what technical reasoning describes (Osiurak, Jarry and Le 
Gall, 2010). Therefore, any object can become a tool as long as its mechanical 
properties match the objective one is aiming at. And by modelling the use of objects 
as tools based on their abstract properties, this theory explains how tools can be re-
purposed beyond their assigned function.  

In a work led by Miguel (Renom, Caramiaux and Beaudouin-Lafon, 2022), we 
studied the relevance of technical reasoning to digital tool use. In other words, we 
wanted to observe if people, when asked to perform a given task in a digital 
environment (in this case a text editing environment, see Figure 2), could use tools 
that may not be usual for the task at hand but which have the “mechanical” 
properties to allow them to achieve it. In this work, people will have to use an 
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unusual tool-object association for the task, i.e. they will have to repurpose the 
digital tools to the task at hand.  

The task was to indent the first sentence of the paragraph with the length indicated 
by the guideline. A rather simple task in any common text editing software. The 
interesting part of the study was to incrementally deactivate the commands that were 
used to achieve the task. For instance, if a user would use the space bar to indent the 
text, in the next trial, the space bar was deactivated and they had to find another 
option. This process was repeated until they gave up. Our goal was to observe if 
people manage to re-purpose digital tools, the same way one would do in a physical 
environment, and to correlate people’s capacity to do so with creativity traits and 
expertise in text editing.  

We found that creativity enhances the re-purposing performance of participants, 
meaning that creative people are more prompt to reason about objects beyond their 
assigned functions but based on their “mechanical” properties. This work was then 
extended to introduce interaction knowledge as the “mechanical” knowledge of 
digital environments (Renom, Caramiaux and Beaudouin-Lafon, 2023). In this 
work, although people were prepared to interact with a certain type of digital object 
(text or image), they showed that they could adapt the tools according to the task 
(and thus how the environment reacted to their actions), even if some clung to their 
habits. 

 

 

Figure 2 Description of the digital environment. On the left, the editor is in its initial state. On the right, the goal 
state shows the indentation of the first sentence of the paragraph with the length indicated by the guideline. 
Image adapted from the article (Renom, Caramiaux and Beaudouin-Lafon, 2022).  

 

These theoretical works help us understand the way we reason with tools: the way 
we can sometimes adapt tools to our own objectives, or the way we can sometimes 
lock ourselves into using a few tools that we are used to practising, even if they are 
not the best for the task at hand. On the one hand, the latter can refer to functional 
fixedness (Duncker and Lees, 1945), bias from knowledge of the assigned functions 
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of tools when facing a novel task requiring the creative use of a familiar object. On 
the other hand, it can also positively refer to our ability to develop skills with a tool 
that alleviates its inherent limitations.  

In addition, these works helped us to understand that, even if people could plan to 
perform a certain sequence of actions to perform a task in a digital environment, the 
imposed constraints would make them change their strategy. In other words, the use 
of tools is situated in the context of the environment we developed, and situated, 
also, within the experimental context of the study. 

“the position to be taken – and the one that I will adopt here – could be 
that, however planned, purposeful actions are inevitably situated actions.” 
(Suchman, 1987) 

In this quote taken from the foreword of her book on situated actions, Lucy 
Suchman challenges that we can plan actions beforehand, out of context. On the 
contrary, by situated, she wants to emphasise that these actions are taken in the 
context of concrete circumstances. Even if, in order to achieve a specific objective, a 
plan of action to be carried out is put in place, the concrete effects of these actions, 
when carried out, will lead to an adaptation of these actions, not to a modification 
first of the plan and then of the actions. Similarly, what we found illustrates’ 
Suchman situated knowledge principle in digital tools and their use. In carrying out 
a task involving a series of actions with some given tools, it will be inevitable to 
change the pattern of actions as the task unfolds, as circumstances and constraints 
dictate. 

Summary 

This section provides the foundation to interpret how machine learning refers to a 
tool in the works I am about to present. The first contention of this chapter is that 
machine learning algorithms become tools when situated, which is related to people’s 
ability to re-purpose these tools to suit their objectives in relation to the objects to 
which the tools apply. Therefore, I believe that machine learning methods cannot 
refer to tools when used on decontextualized objects, such as fixed benchmark 
datasets. They become tools when situated and, therefore, when an algorithm is 
thought of as a means of responding to the circumstances and constraints arising 
from completing a task in a given context.   

Focus ● Metric learning as a tool for inquiry 

Machine learning tasks such as recognition, clustering, or regression, can help 
advance scientific knowledge by providing a way to analyse high-dimensional data 
and therefore provide new insights on fundamental questions, e.g. in the field of 
neuroscience (Kell et al., 2018; Richards et al., 2019).  
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In this first focus, I illustrate the way I used machine learning as a tool for inquiry in 
scientific research. I will present two examples taken from my own research. The 
two examples use the same tool, which is a metric learning algorithm, in two 
unrelated problems: understand music perception from sound similarity measures 
and study motor learning through human annotations of the similarity between 
learners' movements and target movements. Figure 3 illustrates the general problem 
of these examples. In these two examples, a scientific question about perception is 
described by a stimulus and measures of stimulus similarity. A metric learning 
process aims to mimic this similarity measure and thereby provide information about 
the mechanisms of perception.  

The objective of the first focus is to show how the same tool has been designed for 
a given problem and re-purposed for a second problem.  

 

 

Figure 3 General description of the two examples involving metric learning as a tool for scientific inquiry. In 
these two examples, a perception question is described by a stimulus and measures of similarity. A metric 
learning process intends to mimic this measure of similarity and through this, provides insights into the 
mechanisms of perception.  

 

Learning metrics to reveal the perception of musical instrument timbre 

In 2016-2017, I was a Marie Skłodowská-Curie research fellow at McGill 
University, joint between the Department of Music and the Department of 
Psychology. Etienne Thoret, a post-doctoral researcher in the same department, with 
Philippe Depalle and Steve McAdams, both professors in Music Technology, were 
working on musical instrument timbre perception. Steve McAdams had recently 
gathered a collection of 17 datasets including sounds and perceptual dissimilarity 
measures obtained experimentally from historical studies, conducted between 1977 
and 2016. These datasets were comprising a wide range of sound stimuli and 
dissimilarity measures, ranging from recorded notes to synthesized and hybrid 
musical sounds. 
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Having in hand this rich corpus, the objective was to investigate if we could apply 
metric learning to mimic human dissimilarity perception and thereby extract 
knowledge that helped us to better understand timbre perception.  

My intention in this section is not to get into the details of the study, nor into the 
technical aspects of the algorithm used (the interested reader could refer to the 
corresponding Nature Human Behaviour article (Thoret et al., 2021)), but rather to 
give a sense of how we use the algorithmic tool for this problem.  

First of all, let us place the project in its scientific context on the perception of timbre. 
The human auditory system processes acoustic information through several levels of 
increasing complexity. At the first levels, transformations of the physical vibrations 
into neural activity conveyed by the peripheral auditory system are reasonably well 
known (Moore, 2012). However, nonlinear transformations carried out at higher 
cortical levels are less understood, especially when considering the perception of 
complex and rich sounds such as those from musical instruments. Musical 
instrument sounds have perceptually salient properties such as loudness (perceived 
energy), pitch (perceived frequency), and timbre (related to their “sound quality”). 
Although the first two properties are well understood, the timbre of musical 
instrument sounds remains complex and ill-defined (Siedenburg and McAdams, 
2017). The fundamental question is: Wherein lies the difference between the sounds 
produced by two musical instruments playing the same pitch at the same loudness?  

The standard methodology of timbre perception studies involves participants 
(listeners) that are asked to rate the dissimilarity between pairs of sounds from which 
relevant perceptual dimensions of a timbre space can be extracted. This data-driven 
approach is typically using Multidimensional Scaling (MDS). MDS produces a low-
dimensional parametric space (typically with two or three dimensions) in which 
sounds are assigned coordinates, and the distances between sounds within this lower-
dimensional space reflect their perceptual dissimilarities. Relevant dimensions of 
these timbre spaces are then correlated with audio descriptors computed from the 
sound signal, enabling a psychoacoustic interpretation of musical timbre perception. 
Based on this approach, previous works have found that two descriptors best explain 
the dissimilarity measures as projected by MDS: the attack time and the spectral 
centroid, which can be thought of as the brightness of the sound (see for instance 
(Krumhansl, 1989; McAdams et al., 1995)).  

However, this approach suffers from severe limitations that are explained in the 
article (Thoret et al., 2021). One important limitation is that by reducing timbre 
spaces to two main dimensions, the subtle differences between musical instrument 
timbres are lost. Our question, therefore, became: Can we find a tool operating in a 
more complex, high-dimensional sound space, in which the subtleties of musical 
timbre lie, such as mimicking human dissimilarity measures?  

With Etienne, we designed a distance that assigns a weight to each dimension, based 
on the Mahalanobis distance. This approach was not new: we borrowed a distance 
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metrics used in a previous paper on the musical timbre representation (Patil et al., 
2012). In this, the machine learning method was used to perform sound 
classification. In our case, we wanted to use the distance metric between sounds to 
mimic perceptual dissimilarity rather than the perceptual classification of sounds. 
Therefore, we had to adapt the learning objective to our aim. We used a correlation 
coefficient between the distances computed with the metric and the perceptual 
dissimilarity values provided experimentally. If the correlation is high, the metric 
behaves in the same way as the perceptual dissimilarities. The learning procedure 
was to adapt the weights of the distance such as maximizing this correlation, and 
therefore, fitting human perceptual distance. The dimensions with a higher weight 
are those that are considered to be less used in perceptual sound dissimilarity.  

Putting the tool into practice followed a conventional machine learning workflow: 
running many training-testing trials while varying the parameters used. For instance, 
we could change the weights’ initial values, affecting convergence. We could change 
the number of iterations in the optimization procedure, which affects performance 
and the time needed to obtain the results (that directly impacts the number of tests 
we can practically do). All these parameters shaped our tool. Finding the right set of 
parameters was eventually the most time-consuming part of the project, and when 
to stop shaping our tool was not planned. We decided to stop when we thought we 
could not go higher than a given performance (a global correlation between the 
computed dissimilarities and the perceptual dissimilarities). At this moment, we 
could use the tool to answer the research questions, and the resulting scientific 
contributions of this research project were significant for the field of timbre 
perception. 

Interestingly, developing the tool used to achieve this inquiry certainly took more 
time in the project than interpreting the results on timbre perception. Undoubtedly, 
the development of the tool made us understand the data more in-depth than if we 
were using an off-the-shelf technique. However, none of these aspects was made 
apparent in the final paper. 

Re-purposing metric learning to investigate motor learning  

The past project made me think that metric learning in the context of understanding 
human perception is an intriguing tool that would be worth exploring further. As 
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part of ANR4-funded projects, ARCOL5 and ELEMENT6, focusing on movement 
learning facilitated by technology, I proposed to explore the same methodology in a 
different context. Borrowing the terminology related to tool use introduced in the 
first sections of this chapter, I proposed to re-purpose the metric learning tool to 
investigate another problem of human perception. This work was led by Antoine 
Loriette, post-doctoral researcher on the project, and supervised by Frédéric 
Bevilacqua and myself. I refer the interested reader to the paper to find all the 
necessary details about this work (Loriette et al., 2023). 

As above, I propose to begin by placing the project in its scientific context on motor 
skill learning. Motor skill learning is defined as the ability to perform a movement 
better, according to some given criteria such as speed or accuracy, in comparison to 
a reference movement (Wolpert, Ghahramani and Flanagan, 2001; Schmidt et al., 
2018). Metrics used to assess motor learning usually rely on error-rates or movement 
variability measures (Shmuelof, Krakauer and Mazzoni, 2012). However, such 
measures do not necessarily reflect the way humans perceive movement 
improvements: people might instead focus on specific movement features or 
aggregate several criteria established qualitatively. The goal was to use perception-
driven metric learning in order to describe human perception of movement 
improvement during motor learning or adaptation processes. In other words, we 
propose to collect movement dissimilarity measures from participants observing 
movements and use metric learning on movement data in order to mimic the 
collected dissimilarity measures.  

This approach was not totally new in the field of movement perception. For body 
pose and movement perception, metric learning has been applied with human 
comparison of still images from datasets containing skeleton data. Harada et al. 
(Harada et al., 2004) optimised the correlation between a weighted sum of joint 
distances and human ratings to show that wrist, neck and head were the most 
important joints for explaining body pose similarity. Marinoiu et al. (Marinoiu, 
Papava and Sminchisescu, 2016) derived a metric from data (using Relevant 
Component Analysis) using the way humans reproduced poses they had seen on 
videos before analysing how it differed from standard Euclidean distance. As 
movement is dynamic, previous work also looked at ways to take movement 
temporal structure into account. Krüger et al. (Krüger et al., 2011) explored the 

                                                

 

 

4 ANR stands for French National Agency for Research (Agence Nationale de la Recherche 
in French) 
5 ARCOL is an individual ANR-funded project https://arcol.isir.upmc.fr/  
6 ELEMENT is collaborative ANR-funded project between IRCAM, Université Paris-Saclay 
and Sorbonne Université https://element-project.ircam.fr/  
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effect of different input features on the correlation of a Dynamic Time Warping 
(DTW) metric (representing the cost of temporal alignment between two examples), 
with similarity ratings produced by humans based on videos. However, metric 
learning was not investigated in the context motor learning.  

We base our research on an existing dataset, which was initially collected to study 
how users learn long gesture sequences from videos, over several days (Liu et al., 
2022). In other words, we had the stimuli but we were lacking the dissimilarity 
measures, contrary to the previous project. We collected the measures in an 
experimental setting among the authors of the paper. Then we set out to learn a 
distance metric on human movements that maximises the correlation with human 
annotations. The goal was to transfer the tool, and the related practice, from one 
study (presented above) to another. Not that we could seamlessly take the code from 
project 1 and apply it to the data from project 2, but the metric learning approach 
has been successfully re-purposed from a timbre perception problem to a human 
movement perception problem. The generic machine learning algorithm used became 
a tool because it was situated in the scientific context of human perception study. 

Focus ● Machine learning as a creative design tool 

I started this chapter by recalling the research agenda I was carrying out at the end 
of my PhD and pursued after that at Goldsmiths College, University of London. I 
carried out this research in labs where computing systems meet creative practices. 
Such a research environment gathers academics from different backgrounds, such as 
computer science, music, social sciences and artists whose practices vary widely from 
each other. In this context, the research culture does not emphasize technical 
innovations but does focus on what a given technical tool could bring to the creation 
and art making. Artistic and creative practices engage with technological objects and 
tools from a different perspective that can create an epistemology and innovations. 
By doing so, technological objects can be used in ways that were not obvious initially. 
Like a tangible object or a tool that can be re-purposed in a physical world, 
technological objects can also be re-purposed to alternative objectives situated within 
various contexts, creating new opportunities for reflection, understanding and 
innovation. 
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Figure 4. Atau Tanaka performs live with biosensors and gesture-based recognition systems used to control 
sounds in real time.  (Photo: Martin Delaney) 

 

In this second focus, I am focusing on machine learning as a design tool in a creative 
context, with a particular focus on my research around motion-sound interaction 
design. Here machine learning is used to create interactions from examples: by 
providing gestural inputs and desired associated outputs, machine learning models 
can create the program to map inputs to outputs. The machine learning tools used 
in this research were gesture recognition systems situated in artistic performance and 
installations. 

 

Creating movement-based musical interactions from examples  

The design of motion-based interactions using machine learning in the creative 
context relies on creating such interactions from data examples rather than 
programming. Machine learning algorithms are inductive machines that can generate 
a program from data inputs and some given specifications that will configure the 
task at the end (classification, regression, or clustering). In other words, it is a tool 
to build computer programs without explicitly writing the program but rather by 
providing data examples illustrating the task that the program should achieve. The 
main idea is to teach a computer (or any computational system like a robot) to 
perform specific tasks by demonstrating how to perform these tasks. A human user 
typically provides demonstrations (sometimes called an operator in the context of 
human-robot interaction). Figure 5 presents the conceptual difference between an 
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inductive machine (allowed by machine learning) and a hypothetic-deductive 
machine, more conventionally used in programming.  

 

 

Figure 5. Hypothetic-deductive machine (left): both inputs and the program are provided to the machine which 
computes the outputs. Inductive machine (right): both inputs and outputs are provided to the machine which 
computes (or “learns”) the program. This figure is adaptive from (Cardon, Cointet and Mazières, 2018), courtesy 
of the authors.  

 

This approach, called programming-by-examples, or sometimes programming-by-
demonstration, has a long history in Human-Computer Interaction (Halbert, 1984; 
Lieberman, 2001) and Human-Robot Interaction (Billard et al., 2008; Calinon, 
2009). In particular, programming by demonstration has found significant resonance 
in human-robot interaction, where an operator can program a robotic arm by 
manipulating it or demonstrating the task at hand. Programming such robotic arms, 
which have many dependent actuators, is tedious, and showing how to do the task 
has, therefore, many advantages. In this context, many recent approaches use 
machine learning at their core (Billard et al., 2008; Argall et al., 2009; Hussein et 
al., 2017; Ravichandar et al., 2020)7.  

The idea of programming a system by demonstrating what it has to do or how it has 
to behave has made its way into interaction design, supporting creative and artistic 
practices, because non-experts in machine learning could realise their own designs 
by the mean of demonstrations. During her PhD, Rebecca Fiebrink formalised using 
supervised learning for designing data-driven interactions with sounds (Fiebrink, 
2011). One of her seminal work goals was to make supervised learning algorithms 
usable tools for computer music practitioners, helping them work efficiently (where 
the notion of efficiency is often subjectively assessed) and enabling new forms of 
art through these systems. One of the key findings of this research has been to show 
the importance of user interactions and the non-utilitarian assessment of artist-users 
of machine learning models. In other words, artists will use data and machine 

                                                

 

 

7 For instance, one can demonstrate a trajectory that the robotic arms must follow. A model 
of this trajectory can then be built and used by the robot, for instance, using Hidden Markov 
Models (HMM) or any sequence modelling technique (Lee and Xu, 1996). 
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learning models to achieve their creative goals, often through exploration and 
iteration. Then, assessing such models through accuracy and 
other objective measures computed on benchmark datasets, as is usually done in 
machine learning research, is insufficient for models deployed in creative practices 
(and other application domains involving open-ended design objectives). The way 
artists will qualitatively assess the model, depending on their own purposes, can be 
as important as the model’s accuracy.  

Together with Rebecca Fiebrink, we further formalized the approach in a co-
authored book chapter entitled “The Machine Learning Algorithm as Music Creative 
Tool” (Fiebrink and Caramiaux, 2018), providing examples of musical instrument 
making that make use of the machine learning-based inductive design process 
described above. Starting with the presentation of Machine Learning tasks, we 
exposed machine learning as an interface, highlighting the importance of 
understanding user interactions with this interface. In addition, we highlighted the 
affordances offered by machine learning algorithms, i.e. the actions that users may 
perceive as allowed when interacting with these algorithms, which is particularly 
interesting when designing motion-based interactions through this technology. 

Jules Françoise has formalised the use of machine learning algorithms more 
specifically to infer movement-sound interaction from examples in his doctoral work 
(Françoise, 2015) and in later work on motion-sound mapping through 
interaction (Françoise and Bevilacqua, 2018). These works are part of a larger set of 
works which include: (Bevilacqua et al., 2009; Fiebrink, Cook and Trueman, 2011; 
Françoise et al., 2014; Gillian and Paradiso, 2014; Bullock and Momeni, 2015; Visi 
and Tanaka, 2021). The approach relying on machine learning inference is 
particularly suitable for the design of movement-based interaction with sounds. First, 
movements are not easily ‘expressible’ in computational terms (Höök, 2010; Rivière 
et al., 2018; Gillies, 2019): what features to choose in order to describe body 
movements? how to compute these features for real-time music performance? A 
machine learning algorithm could extract these salient features from examples of 
movements. Second, artists, musicians and performers do not necessarily have the 
technical knowledge to implement such interactions on a computer. Artists and 
creatives may prefer to use known (or their own) content (images, sounds, texts, etc.) 
instead of trying to break the barrier of learning a programming language in order 
to explore a system that is meant to support their practice. Finally, the creative 
process involved in building musical interactions is evolving, non-stationary, and 
iterative. The exploration through iterative processes is typically what creates 
meaning and knowledge in art making. Implemented relationships between 
movements and sounds must therefore not be fixed and static but rather adaptable 
and malleable.  
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Gesture recognition 

Figure 6 illustrates the general scenario where movement-sound examples are 
provided to a machine learning algorithm that induces the relationships between 
both modalities. This process is typically occurring in real-time while interacting 
with the system. Machine learning by demonstration in movement-based interaction 
includes various machine learning approaches (from classification to regression). 
Here, I am using the specific example of gesture recognition to illustrate an 
implementation of machine learning as a creative design tool in the context of music 
performance. The general technical objective was to propose an algorithm to 
recognise gestures during a performance (musical or dance) and to associate these 
gestures with composed sound treatments: recognised gestures could trigger sounds, 
and gestural execution could continuously process sounds. 

 

 

 

Figure 6 General interaction scenario in the use of machine learning as a design tool for movement-based 
interaction. A performer or an artist is listening to sounds while moving. The system learns the mapping between 
the executed movements and the sounds. The performer can then re-interpret the sounds with variations of 
their movements.  

 

At the time of this research, previous works had developed toolkits in addition to 
more conceptual works on programming by demonstration through machine 
learning (Fiebrink and Cook, 2010; Gillian and Paradiso, 2014; Bullock and 
Momeni, 2015). These toolkits involved algorithms that were designed to recognise 
gestures as static objects (e.g. postures). Such algorithms were, however, not able to 
model the temporal structure of gestural execution and movement qualities, and 
therefore not able to take into account the dynamics of body movements that convey 
expressivity and emotions (Pelachaud, 2009). Frédéric Bevilacqua proposed in 2009 
a tool that goes beyond static gesture recognition. This tool was able to recognise 
and temporally follow a gesture by modelling its temporal structure. The tool was 
called Gesture Follower (Bevilacqua et al., 2009).  
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I am focusing on the Gesture Follower because it plays an important role in my own 
research at that time (detailed below) and because it illustrates the way gesture 
recognition translates from algorithm to tool. Technically, the gesture follower was 
trained by providing one gesture example per gesture class to recognise, which made 
it trainable quickly and in real-time. Once each class has been defined through its 
example, a new gesture could be executed and the algorithm provides real-time 
recognition information in addition to a time progression value that indicated where 
in the recognised model the current observation of the executed gesture 
corresponded. In other words, the gesture follower could follow the performed 
gesture on the basis of the example provided.  

By recognising and following the gestures performed by the musicians, a composer 
could compose synthesized sounds associated with the performance, an augmented 
score. Florence Baschet used the tool in her piece called StreicherKreis involving a 
string quartet (Figure 7 right) where each instrumentalist’s gesture was captured 
using a worn inertial sensor Figure 7 left). This model has then been used in various 
music pieces (Kimura et al., 2012) or dance installations (Bermudez et al., 2011; 
Bevilacqua, Schnell and Alaoui, 2011). The gesture follower has been a success in 
that it has enabled new forms of interaction through continuous, real-time tracking 
of gestures, which have been of interest in several examples of artistic work. In this 
sense, the gesture follower has become, in its context of use, a tool that some artists 
have been able to apply to the various objects (“gesture” data), in order to achieve 
an artistic intention.  

 

 

Figure 7 Pictures from ‘StreicherKreis’ by Florence Baschet. On the left, the inertial sensor is placed on the 
performers’ wrists. On the right, is a picture of the quartet interpreting the piece. (Pictures courtesy of IRCAM). 

 

Besides recognising and following a gesture in real-time, previous gesture recognition 
algorithms could not leverage complex variations of executed gestures. In 
collaboration with Nicola Montecchio, I developed an extension of the Gesture 
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Follower that can recognise gestures in real-time as well as their variations during 
execution. For instance, the algorithm would be able to recognise the gesture that is 
being performed and estimate if it is being performed slower, faster, or with more 
amplitude. The objective was to augment the gesture follower by affording 
additional expressive controls in interaction.  

We called this algorithm Gesture Variation Follower algorithm (GVF) (Caramiaux, 
Montecchio, et al., 2014) as a way to mark the lineage with the Gesture Follower 
developed by Frédéric Bevilacqua (Bevilacqua et al., 2009) and presented above. 
Technically, the algorithm used a different approach than the gesture follower. It 
implemented an algorithm which allowed to sample a given number of possible 
variations of the current gesture. The number of possible variations was arbitrary 
(for instance 1000). This number was a parameter of the model that regulated the 
speed at which the algorithm could adapt to gesture variations. By estimating 
possible variations in real-time, the algorithm could recognise gesture invariant to 
these variations. In other words, the estimation of the variations was initially 
intended only to improve the performance of the algorithm. Eventually, they became 
in practice the key output features of the algorithm as the algorithm could output 
the likelihood of the current template under a given variation, and the values of the 
variation features (for instance speed, amplitudes, orientation, …).  

Gesture recognition in design practice  

The development of GVF was in principle an academic success: it achieved better 
performance than the state-of-the-art and has been consequently published and 
released as a software library. But can it perform the role it has been assigned in 
practice?  

During my post-doctoral research at Goldsmiths College in 2015, I was involved in 
the supervision of Alessandro Altavilla’s PhD thesis, with Professor Atau Tanaka. 
Together, we developed the idea of using GVF as a tool that enables designers to 
build rapid prototypes of gesture-sound interactions, without requiring technical 
skills. Designers could train the model on-the-fly and choose which sound 
parameters to control with the estimated gesture variations. We imagined a 
workshop where participants, primarily designers, would start from sounds from 
their own everyday experiences, as a way to trigger design ideas and rich movement-
based interactions. These sounds would then be taken as objects to interact with. 
Designers would have to find movements to manipulate these sonorous objects. In 
order to make such a movement-to-sound interaction design process possible, we use 
GVF. I describe briefly the outcomes of this research below and more details can be 
found in the dedicated published article (Caramiaux et al., 2015).  

We designed and conducted a series of participatory design workshops that focus on 
participants’ memory and direct experience of sound in the everyday. We used a two-
phase structure, Ideation followed by Realization, as a way to move from the 
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description of an affective experience to the elaboration of a functioning interactive 
sound prototype. I will specifically focus on the Realization phase here, to illustrate 
how the machine learning-based tool GVF was used by participants during the 
workshops. In the realization phase, each breakout group chose one scenario from 
their group to be developed into a functioning prototype. They first created a 
realizable interaction scenario by storyboarding it, describing actions, sounds and 
interactions. They then recorded or searched online databases for sounds that 
approximated the sound they wanted to work with from their own personal 
experience. With this, they authored a movement/sound interaction using our 
hardware/software toolkit. The toolkit included gesture sensors and software tools 
for motion data processing, mappings and sound synthesis (Caramiaux et al., 2022). 
Despite the potential difficulty of working with interactive sound software, the high-
level abstractions and workflow of our software toolkit were generally well 
understood by the participants. During all the workshops, the participants were 
highly independent and asked for help from us only when they wanted a software 
feature that was not included in the toolkit, for instance, a sound synthesis engine 
such as sine wave generator. This was facilitated by the modular architecture of the 
toolkit and also by working in breakout groups (Figure 8 left).  

 

 

Figure 8 Pictures from the workshops “Form Follows Sound” where participants had to imagine gestural 
interactions with sounds from the everyday life, and realise these interactions using the gesture recognition tool 
called GVF. 

 

During the workshop, participants were mostly using machine learning to perform 
gesture recognition among a set of self-defined gesture classes. The algorithm was 
used as a label-producing tool operating on the input data streamed from the sensors. 
Limitations and constraints of such a tool arise from the difficulty to assess the 
gestures taken as inputs to the algorithm. In other words, the tool was operating on 
an ill-defined object (gesture), from the perspective of the participants. In that sense, 
participants were tactful in working around the limitations and constraints of the 
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technology. For example, in one prototype, participants transformed the physical 
space, creating an obstacle course to walk through to more clearly send distinct foot 
gestures and slowing down the user’s walk to aid the GVF module (performing the 
gesture recognition) of the toolkit in distinguishing gestures to trigger different floor 
crackling sounds (Figure 8 right). In this way, input gestures were constrained in 
order to be handled by the gesture recognition system.  

Note that this lack of transparency in the properties of gesture-objects to be handled 
by the gesture recognition system made the participants iterating on them. In other 
words, the recognition algorithm became a tool for participants to reflect on the 
gestures taken as templates. By iterating on the definition of these templates, they 
incrementally defined more appropriate gestures for the type of interaction they were 
envisioning8.  

Discussion 

This chapter addresses the use of machine learning algorithms as tools to achieve 
pre-defined tasks on data objects. Like tools that inhabit our everyday life, 
algorithms can also be seen as tools in their own right, although their actions impact 
digital objects instead of physical ones. Algorithms act on data, and their actions are 
transformative because they usually change the state of the objects to which they are 
applied. In addition, algorithms can be re-purposed in the same way as a 
conventional (physical) tool when the actions performed with it are not initially 
associated with that tool. 

I chose to present two foci from my own research. I considered machine learning 
algorithms as tools in two contexts: used to conduct a data-driven investigation of 
human perception in music and movement learning, and to build interactive systems, 
creating bridges between movement and sound spaces and applied to interaction 
design. In the first case, the objects were sound representations and similarity 
measures. Such a tool aimed to take sound representations as input and generate 
estimates that resembled similarity measures. As when using a bubble level to set up 
planar elements with respect to a reference, we adapted the representations (by 
learning weights on their dimensions) to be faithful to a perceptual reference. In the 
second case, the objects were data streams representing gestural executions during a 
live performance, and the tool had to associate classes to them as well as variations 

                                                

 

 

8 In the next chapter, I will go further in the consideration of machine learning as a design 
material, by detailing the notion of materiality of digital information, often seen as 
immaterial.   
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from a reference gesture representing the class. When to classify an input gesture was 
dictated by a scenario (or a score in the case of music performance).  

When all you have is gesture recognition, everything looks like a gesture 

During my stay at Goldsmiths College, University of London, I started to collaborate 
on an artistic project with artist and PhD student Marco Donnarumma. Marco’s 
practice involves body performance where music, light and technology are assembled 
together with body movements in a composition that redefined body configurations. 
As part of his practice, Marco developed a muscle sensor capturing the mechanical 
activity of the muscle  (Donnarumma, 2011). The goal of our collaboration was to 
involve real-time gesture recognition in his piece, where gestures were internal (as a 
manifestation of muscle activity) as opposed to external (as a manifestation of 
visually perceivable body movements).  

We began by experimenting with his sensors, capturing the mechanical activity of 
the muscle. We organised sessions of data capture and post-analysis, but it became 
quickly clear that the data captured dynamic transitions between muscle 
contractions and the resulting trajectories calculated by gesture recognition system 
did not make sense. We added a second sensor based on a different technology 
(electromyogram (EMG)), which measures the electrical discharges activating the 
muscle. Here a new problem emerged, following Donnarumma’s feedback about the 
resulting movement-sound interaction: controlling EMG trajectories was not 
aesthetically convincing, for it could not allow a highly dynamic mode of interaction, 
one of our main musical goals. Therefore, there was no reason to use gesture 
recognition. Based on this failure in using gesture recognition, we started exploring 
the design of a computational music system that would not be tied to conventional 
mapping techniques, but instead would reflect, through sound, levels of effort 
intensity, movement abruptness and degree of complexity of particular body 
configurations (a more thorough description of our collaboration can be read in a 
dedicated article (Caramiaux and Donnarumma, 2021)). The terminology also 
changed: “configuration” was preferred to “gesture”.  

This story highlights that the technological tool we were forcing ourselves to use 
with physiological data did not work as intended. The gestures we aimed to recognise 
were challenging the algorithm’s capacity and failing the use of the algorithm in the 
piece. This failure made us understand that what we considered as gestures (from 
the performance perspective) were not gestures (from the technology perspective). 
There was a semantic gap between the objects handled by the tools and the objects 
involved in the performance. 
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Figure 9 Corpus Nil by Marco Donnarumma, an interactive piece on which I collaborated with the artist on 
capturing gesture expressivity from bio-signals. Levels of effort intensity, movement abruptness and degree of 
complexity of particular body configurations were translated into sounds and lights during the performance.  

 

What does it tell us about machine learning algorithms as tools in this context? When 
all you have is gesture recognition, does everything look like a gesture? First, once 
built, there seems to be a process by which a tool detaches from the human intentions 
and values it has stemmed from. This process of detachment creates an object that 
has the appearance of the whole, embodied by its function. The tool is a “pure 
assembly of matter, devoid of any real meaning, and having only a utility”, as put 
by Simondon (Simondon, 1980). And the extent of this function is not questioned. 
If this tool allows recognising gestures from data stream input, it is its function. I can 
take it for granted and use it. We know that this approach is not always valid, 
especially when we are both the creator and the user, but there is always a desire to 
follow this path.  

Where does the problem lie then? On the one hand, it is due to our understanding 
of the properties of the objects on which a tool is applied, which was explained under 
the notion of technical reasoning above. Understanding the compatibility of the 
“mechanical” properties of the tool and the object to which the tool applies may 
require training and explanations. On the other hand, I would say that in the very 
specific and niche case of the projects I presented above, it has been partially driven 
by my personal will to show that the tool I have created is generic enough to be used 
in art-making and, more generally, in the design of movement-based interactive 
systems. It is what I call the creator’s bias, where it is harder to accept failures than 
to believe in magic.  
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The forgotten materiality  

The perspective highlighted in this chapter regarding machine learning algorithms as 
tools is surely the most common one when dealing with this technology. The way 
this technology is designed to achieve tasks reveals a utilitarian view of this 
technology, where performance, as computed by accuracies, is what the algorithm 
should maximise. A machine learning algorithm should perform classification with 
the highest performance possible, and the same for regression or generation. When 
does it become a tool? What do we make of the process put in place to build the tool 
and the decisions made while building it?  

During the first project, we spent a large amount of time adapting the tool to the 
problem. We had to understand how to deal with high-dimensional objects in a 
reasonable amount of time. We had to deal with overfitting (the model learns too 
much, which means basically noise), or underfitting (the model does not learn much). 
The design of the tool was instructive to understand the objects of study, and 
iterating on the design made us get closer to these objects and be able to slowly create 
a discourse about them. Importantly, we needed to understand when to end the 
design phase of the tool and use it for its intended overall purpose. This question of 
when stopping the improvement of a tool is fundamental and difficult. And I think 
it does not respond to prescribed criteria, given in advance, but to arbitrary decisions 
made in view of the circumstances of a given context. Has a higher correlation been 
achieved compared to the baseline? Has the model been trained to recognise gestures 
satisfactorily for the performance’s needs?  

This process describes the forgotten materiality and culture of technology that, 
altogether, made up the tool of inquiry. However, in the final paper, we reported the 
final results as is tradition, and we set aside the design aspects. When he was a PhD 
student in psychology and cognitive science working on sound perception and 
affordances (whether people could hear the property and material of struck wood 
and metal), Bill Gaver wrote:  

“Writing up the study, I used the canonical structure for reporting 
experiments. I set the scene both theoretically and in terms of related 
work, using that to motivate a set of hypotheses, describing my methods, 
stimuli and procedure, and then reported the data and discussed how they 
reflected on my initial hypotheses. What I did not do—of course!—was 
talk about all the work done to achieve the final data set: the shopping I 
did in specialist hardwood stores, the improvising of foam mounts that 
would let the bars sound when struck, the ways I tried to get participants 
to listen to the right things, and so on. Instead, I told the story the way I 
had been taught, as a linear narrative from theory to experiment to data 
and back to theory, in which each step was logically connected to the 
previous ones and to those that followed.” (Gaver, 2014) 
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The forgotten materiality and culture occult the staging created in order to achieve 
scientific results. The way results are reported about the use of machine learning as 
a tool may be too often seen as a “linear narrative from theory to experiment to data 
and back to the theory”. But the narrative is usually not linear.  

In the second focus I presented, we were deliberately within a non-linear narrative 
from research question to results. Tools were made to explore and create. Here the 
tension was too high, we felt that the tool alone could not explain the phenomena 
observed in practice (either in workshops or performance). The gesture recognition 
algorithms that we presented remain tools but there were also used to explore 
gestural possibilities and body configurations. The goal of recognising gestures is 
blurred with other goals, more exploratory, less focused on (model) performance, 
and more prone to serendipity. The objectives were more “nebulous”, as Gaver put 
it when talking about his research-through-design project (Gaver, 2014). Creative 
practice with technology makes clear that technological objects need to be 
understood beyond the notion of tools, and embrace their materiality.  

In this manuscript, I want to tell a more complete story about how technology has 
contemporary modes, and the tool is only one of these modes. 
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Material 

In 2012, the machine learning community experienced an event that challenged its 
beliefs. A team led by Geoffrey Hinton from the University of Toronto presented a 
method at one of the leading conferences in the field that showed performance 
dramatically better than anything that had existed before and beyond anything the 
community had imagined possible. On an image classification task, where the goal 
is to predict the correct class to assign to an image among 1000 classes, the approach 
obtained an error rate of 15%, while the best results obtained by others so far were 
26% error (Krizhevsky, Sutskever and Hinton, 2012). Such a difference is a 
qualitative gap in this scientific domain, where improvements are more likely to be 
counted in tenths of a percent. The proposed method used a neural network 
architecture, which was not innovative for the machine learning community and had 
already been proposed several years earlier (LeCun and Bengio, 1995). But its 
presentation at the conference marked the birth of Deep Learning for the world. 
When this story was related and analysed by Dominique Cardon and colleagues from 
the point of view of the sociology of science and technology, they reported the 
comments of researchers in the field. In one of these interviews, conducted with a 
pioneer of deep learning in France (anonymous in the paper), we can read: 

“The thing they did was to remove all the feature extraction and take the 
raw image. The guys who did that with Hinton are crazy because it's one 
thing to reproduce, but to go like that and explore! They made systems of 
a complexity that we didn't imagine, and they were able to make them 
work. You take a paper from these people; you look at it, I'm scared, I'm 
too old! The guys talk to you as if they were almost programming. They 
don't make a description with three equations that make sense to me. But 
in 5 lines, they're going to describe a hypercomplex thing. So, that means 
that he made an architecture in which he put 100 elements together, and 
for each one, you have ten possible choices to link them. He played with 
that to make it work. He's a hacker; it's a hacker's job.” (translated from 
the French version presented in  (Cardon, Cointet and Mazières, 2018)) 

When reading this quote from Cardon’s paper, I thought that what Hinton’s students 
have achieved could be considered technological and design innovations. Neural 
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Networks (especially Convolutional Neural Networks used in the method proposed 
by Hinton’s team) were well-known in the field. They achieved a technological 
innovation to make such a model architecture work at scale through graphics 
processing units and programming mastery. But in addition, they achieved design 
innovation by using the existing pieces (neural layers, training mechanisms, …) as 
material to build something that works. They assembled the pieces by intuition, 
technical skills, and exploration of hundreds of iterations until finding the 
configuration that would give good results, hopefully better than the state-of-the-
art. 

Eventually, machine learning (and deep learning) has extended far beyond the 
research community in machine learning. But how this technology is used remains 
unchanged: the datasets shape the behaviour of the model, the model is assembled 
from unitary elements (layers, activation functions, etc.) in such a way as to make it 
more expressive, and finally, a decision has to be taken on when to end the training. 
In this chapter, I describe how these elements constitute the materiality of machine 
learning and how this materiality becomes explicit when one (engineer, designer, 
researcher, artist, laypeople) becomes involved in the training process. 

I illustrate this point through the work I have done as supervisor of Téo Sanchez’s 
doctoral work and as a collaborator of Hugo Scurto while they were doing their 
PhD. 

Material Expression of Machine Learning 

Digital information is often seen as an entity without materiality. What we see on 
the screen, or what we think occurs behind it, feels intangible and immaterial, as 
opposed to elements in the physical world that we can touch, grasp or displace. But, 
since we are able to design and build things with digital information (e.g. through 
programming), it seems reasonable to imagine that the notion of materiality extends 
to things within the digital world, especially to machine learning.  

In HCI research, the community has brought the concept of materials and materiality 
to the foreground, providing definitions and properties of the digital (or 
computational) materiality (Redström, 2005; Vallgårda and Redström, 2007; 
Vallgårda and Sokoler, 2010), building frameworks and methodologies of 
practice (Gross, Bardzell and Bardzell, 2014; Wiberg, 2014; Giaccardi and Karana, 
2015), or understanding digital materiality through the feminist theory lens (Fors, 
2011). Building on this work in HCI, in this section, I will review the concepts of 
digital materiality and, in particular, highlight the idea of material expression that 
has been discussed for digital material. My goal is to extrude the digital materiality 
of machine learning, in particular in the context of design and creation.  
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Digital materiality 

There are at least two ways to articulate digital materiality. One approach is to 
consider the materiality of digital information in terms of the infrastructures that 
create and sustain it. This has been documented in science and technique studies, 
where previous research has looked at what lies behind the scene in terms of the 
invisible human labour (Denis and Pontille, 2012), the process of digitization 
(Camus and Vinck, 2019), and the infrastructures at play (Star, 1999). Digital 
materiality is pipes, cables, standards, protocols, machines, and labour. The 
interaction between operators and matters shapes digital information over 
interlocking operating chains. This view of digital materiality as components of 
underlying infrastructures helps to ground digital information in reality, as opposed 
to an idealistic viewpoint, which promotes the digital as an abstract entity devoid of 
materiality. And this process helps highlight the various relationships between socio-
economical groups, technical substrates, and services. 

In the specific context of machine learning, and artificial intelligence (AI), Kate 
Crawford explores such a perspective in her book “Atlas of AI” (Crawford, 2021). 
The author discusses the several elements in play for machine learning to exist, such 
as the rare minerals at the core of the batteries and screens of computing systems 
like mobile phones structuring the infrastructural grid. Or the electricity consumed 
to power these computation resources within the grid. In joint work with researcher 
Vladan Joler, they proposed a visualization of these infrastructures and 
interdependencies called the Anatomy of an AI system. The result is a high-
definition visual artwork (see Figure 10) that depicts the anatomy map of the 
infrastructure underlying AI (through the specific example of Amazon Echo): human 
labour, data, and planetary resources.  
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Figure 10.  Anatomy of an AI by Kate Crawford and Vladan Joler. Courtesy of the artists. High-resolution version 
of the map can be found at https://anatomyof.ai/img/ai-anatomy-map.pdf  

 

A second approach to understanding digital materiality can be from a design 
perspective: in a digital environment, materiality relates to the things that can be 
used to make stuff9. This view imparts materiality to the entities created of digital 
information (computer programs, data, algorithms, graphical interfaces, etc.) used 
to build new digital entities. Digital materiality is embodied in many ways: it can be 
combined with physical material to create heterogenous artefacts (an automatic gate 
can be seen as a composite material where a moving physical part is operated by an 
electronic and digital part), or it can be embodied in ‘purely’ digital artefacts 
(visualisation tools can be seen as a digital artefact created through digital materiality 
made of data, algorithms, and graphical components). Furthermore, digital 
materiality can be envisaged at a different scale of “granularity”: from bits that can 
be composed and wired to computational abstractions that can be programmed 
graphically (Max/MSP for music or Scratch for pedagogy are good examples) 
through hardware building blocks that can be assembled (Arduino is an example). It 
is this view that I will detail and illustrate in this chapter. In particular, the 

                                                

 

 

9 Here, I am using Ingold’s informal way of defining material (Ingold, 2007) to provide an 
immediate sense of what I mean by digital materiality from a design perspective. Further 
details on materials will be provided in the following section.  
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consideration of digital materiality through digital entities that constitute and 
construct it follows a set of recent research in HCI and Design Research.  

Explicitly assigning material attributes to digital entities enriches interaction design 
practice and theory. First, digital entities are not only tools but materials that can 
lead to developing a dedicated practice. Highlighting digital materiality by making 
digital information material, for instance (e.g. through visualisation), fosters design 
inspiration because one can see and feel what we can do with this material, as 
mentioned in (Sundström et al., 2011). Vallgårda and Redström (Vallgårda and 
Redström, 2007) add that computational materiality needs to be part of a composite 
with other materials (e.g. physical material) to be useful for design: “a computer is 
a material, but also that its computational property, in its raw form, is difficult (if 
not impossible) to exploit. The conclusion was that the computer needed to be part 
of a composite with other materials to become useful in design.” Through the idea 
of computational composites, the authors aim to introduce new material properties 
“to introduce the ability of digital computations together with tensile properties, 
optical properties, electrical properties, thermal properties and insulation, acoustic 
properties, deformations, deterioration, appearance and so forth.”.  

Second, digital entities are not detached from the social and economic environment, 
and considering the materiality of digital information helps highlight sociocultural 
values, and personal meanings, embedded in the design of digital artefacts (Jung and 
Stolterman, 2012), “materiality is […] about the relationship between people (user) 
and the material artifact in terms of how it is used out in the world.” 

In line with this research, recent papers have started to write about “machine 
learning as design material” (Dove et al., 2017; Yang, 2018; Benjamin et al., 2021). 
The perspective adopted is that of designers of new interactions and applications, 
for whom shaping a rich user experience is one of their main objectives. Therefore, 
machine learning is seen as a way to create innovative and rich user experiences (UX) 
and user interfaces (UI). The advent of new machine learning methods, capable of 
performing more complex tasks on actual data (such as images and sounds), is a 
boon to innovation in user experience design. As some commentators have put it, 
“AI is the new UI”10 (where AI refers to artificial intelligence, with machine learning 
at its core). But, beyond promises and communication strategies, a shared finding of 
this research is that UX design with machine learning remains difficult (Dove et al., 
2017; Holmquist, 2017; Yang et al., 2018). These articles have highlighted the 
challenge of working with machine learning in this context because designers 
struggle to understand what this technology is capable of. UX/UI designs are 

                                                

 

 

10 https://www.fastcompany.com/3047199/apple-finally-learns-ai-is-the-new-ui  
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constrained by available data that are hard to get or to build and whose quality is 
challenging to assess. Moreover, even if designers know what machine learning is 
capable of, it is hardly possible to explain why and how machine learning does it, 
and it can manifest unexpected behaviours. Moreover, in real-world applications, it 
is still difficult to leverage the cost of a machine learning feature (in terms of data, 
computations, and development work) over the innovation gain that the feature will 
bring (Yildirim et al., 2022).  

The story described at the beginning of this chapter, where researchers assembled 
deep learning materials to create an algorithm capable of recognising images with 
great accuracy, is a challenging scenario to achieve. The elements defining the 
materiality of machine learning are data, model parts, parameterisation, 
performance criteria, visualisations, and computational infrastructure. However, the 
design process leads to describing machine learning with abstractions that are not 
immediately related to the computational material. But it seems to me essential to 
understand this material beyond its usefulness in the processing chain and in 
particular the aesthetic and experiential natures of the chosen machine learning 
materials before assembling its elements to produce innovative user experience and 
user interfaces. 

Material expressions 

Ingold defines materials as “the stuff that things are made of” (Ingold, 2007). And, 
in the absence of a further definition, Ingold writes that:  

“a rough inventory might begin with something like the following, taken 
from the list of contents from Henry Hodges’s excellent little book 
Artefacts (Hodges, 1964): pottery; glazes; glass and enamels; copper and 
copper alloys; iron and steel; gold, silver, lead and mercury; stone; wood; 
fibres and threads; textiles and baskets; hides and leather; antler, bone, 
horn and ivory; dyes, pigments and paints; adhesives; some other 
materials”.  

In this text fragment, Ingold lists several materials that speak to us through their 
properties because we have a direct relationship with them as they are used in many 
artefacts we manipulate daily. Although we may not learn the physics of materials, 
we experience them. Pottery is usually intricate (after being fired) but breakable if it 
falls on a hard floor. Wood is a relatively soft material that can be carved easily with 
hand-held tools. Glass is transparent and retains liquids, while several textiles are 
flexible and can be worn. The physical properties of materials are engaged in the 
design process: they are intrinsically related to the final function of an artefact. 
Undeniably, designers will pay particular attention to the properties of the material 
used to ensure specific mechanical characteristics of the created artefact. 
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But, design practice tends to also pay particular attention to the material 
expressions beyond the material properties themselves. I define material expressions 
as the distinctive features (in terms of aesthetics, culture or physical characteristic) 
that identify material and that will be put forward in the creation of the artefact. 
Let’s take the example of designers and artists working with ceramics. They will 
choose a specific clay and glazes because they know that when fired in the kiln, their 
alliance will result in a desired expression of the selected materials. This expression 
can be revealed in terms of colours, asperities, etc. 

The notion of material expression emphasises that the material communicates with 
its environment and primarily with the designer working with it. This 
communication is fundamental in the design practice. Designers are trained to try 
ideas with different materials to achieve their goals. The process is iterative and 
exploratory, involving one or several materials, not all used to create the final 
artefact. For instance, they may use paper to rapidly prototype or clay to model a 
form before deciding on its final material. In return, the material talks back to the 
designer, revealing limitations and surprises and allowing the formation of new 
ideas. This conversation between the maker and the material used to make is what 
Schön called reflection in action and reflection on action (Schön, 1983). Reflection 
in action means that a practitioner discovers an idea by doing and at the point of 
rendering it. And reflection on action means that a practitioner steps back to assess 
what they have made as they plan their next design move. Therefore, the material 
expressions enable this conversation between the maker and the material.  

If we now look at the practice of designing interactions involving digital material, 
could we achieve such a reflecting conversation with a material made of bits? What 
would be the material expression of digital information? Characterising the 
expressions of such a material is a challenging task because, in the first place, it is 
the basis for a diversity of digital entities which would themselves have specific 
expressions. It results that material expressions of technology may be felt as 
nonexistent. But Johan Redström proposes that this expression is hidden rather than 
absent:  

“Another reason for thinking further about the idea that the material 
expressions of technology are hidden rather than non-existent is that early 
examples of technology, particularly before devices are working perfectly, 
often have very strong expressions in themselves. In the early days of radio 
and television, for instance, signal transmission and reception were 
‘expressed’ as noise and distortion of sound and image.” (Redström, 
2005) 

What is highlighted here is that the material expression of technology, as illustrated 
by the presence of noise in radio sound, tends to be erased by technological advances. 
Image and sound transmissions are improving, trying to avoid any kind of 
interference and offering higher quality. However, while technologists tend to erase 
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the expressions of digital material under the necessity of progress, artists and 
designers are well aware of this expression and use it in their creations. So is the 
general public: when users apply sepia effects to photos to give them a warm and 
old-fashioned expression, there is a re-enactment of a vanished technological 
material expression. 

Does machine learning also have a material expression? In many ways, it does, and 
the most straightforward way to see it is to consider generative models. In this 
context, the observation made above about the fact that continuous progress tends 
to erase the artefacts of previous versions also applies to machine learning.  For 
example, Figure 11 depicts the evolution of image generation using a specific 
generative model developed in computer vision called Generative Adversarial 
Network (GAN), proposed in 2014 (Goodfellow et al., 2014). Over the years, 
several authors have brought “improvements” to the model, such as generating more 
realistic and larger images. However, one can ask if the 2014 version of GAN was 
not more convincing from a designer’s point of view, searching for the expression of 
the material than the 2018 version providing a photorealistic image that seems to be 
found on someone’s internet profile page. In this example, quality assessment is 
driven by the need to reach “realistic” image generation. However, realism may feel 
less expressive.  

 

 

Figure 11. Evolution of the quality of Generative Adversarial Networks (GAN) from 2014 (the year of its 
invention) and 2018. Image adapted from (Cheng et al., 2020) 

 

What then constitutes the material expression of machine learning? From the 
previous example with GAN, the material term of this technology is illustrated by 
the generated images and depends firstly on the images used to train the model (black 
and white, low-resolution or high-resolution photos, etc.), secondly on the ability of 
the model to be able to represent the information present in the input information 
(notably via its architecture and parameters), thirdly on the loss function which 
would guide the model towards the relevant information to focus on, and finally on 
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the training itself involving decisions on stopping, quality and performance. As a 
designer, the question may not be what performance in the accuracy percentage I 
would like to obtain but what quality, in terms of expression of the technology 
involved, I would like to get.  

Importantly, what makes these design materials explicit is their action during the 
development of the system, i.e. during learning. In a design and creative context, I 
argue that learning provides access to the materiality of machine learning and the 
expression of that materiality. To consider machine learning as a design material is 
to consider the interaction with the learning process of a machine learning model. 
This is well illustrated in the creative and artistic field, where artists develop 
interactive approaches to take advantage of learning. I will go into this in more 
detail, but first, I propose to emphasise the notion of interactivity. 

Enabling Materiality through Interactivity  

Similarly to working with tangible materials in a design process, working with 
machine learning elements implies enabling a high level of interactivity between the 
designers and these elements. As opposed to the scenario mentioned in the 
introduction of this chapter, such interactivity is usually limited for the designers and 
other end-users without expertise in machine learning. These people do not usually 
have access to the data used to train a model, the model’s parameters, or other means 
allowing them to shape the system’s behaviour. Saleema Amershi and colleagues 
described this point as follows (Amershi et al., 2014):  

“The applied Machine Learning workflow often involves long and 
complex iterations. The process starts with data provided by domain 
experts or specifically collected for the target application. Machine 
learning practitioners then work with domain experts to identify features 
to represent the data. Next, the practitioners experiment with different 
machine learning algorithms, iteratively tuning parameters, tweaking 
features, and sometimes collecting more data to improve target 
performance metrics. Results are then further examined both by 
practitioners and domain experts to inform the subsequent iteration. At 
the end of this long cycle, the model is updated in several ways and can be 
drastically different from the previous iteration. Furthermore, this 
iterative exploration of the model space is primarily driven by the machine 
learning practitioners, who rely on their understanding of machine 
learning techniques to make informed model updates in each iteration.”  

I consider that this status quo, where the machine learning experts are those who 
have access to the information provided to the model, and thus to the framework 
imposed on the system delimiting what it can or cannot understand, limits the 
potential for design, creation and learning (without mentioning the political 
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implications of such a status quo, which will be further discussed in the following 
chapter). Providing interactivity to a vast panel of users has the power to expand this 
potential.  

Looking into the literature on Human-Computer Interaction, several authors have 
investigated ways to enable interactivity with machine learning, where the elements 
of the machine learning pipeline are exposed to the users (machine learning experts, 
domain experts, or laypeople), allowing them to act upon the training phase of a 
learning algorithm (Ware et al., 2001; Fails and Olsen Jr, 2003; Amershi et al., 2014; 
Gillies et al., 2016; Dudley and Kristensson, 2018). As put in (Amershi et al., 2014): 
“In contrast [to conventional ML workflows], model updates in interactive machine 
learning are more rapid (the model gets updated in response to user input), focused 
(only a particular aspect of the model is updated), and incremental (the magnitude 
of the update is small; the model does not change drastically with a single update). 
This allows users to interactively examine the impact of their actions and adapt 
subsequent inputs to obtain desired behaviours.”  

I illustrate the interaction workflows described in this quote in Figure 12. The figure 
depicts the interaction between users and a machine learning-based system without 
the mediation of an expert. It shows examples of inputs provided by users and 
examples of feedback returned by the model. This representation also highlights the 
interweaving of usage, development and testing processes, characterizing the 
interactive machine learning paradigm. Users can use the system, test it and re-train 
seamlessly by adapting the data inputs and starting model training when they see fit.  

 

 

Figure 12. Interactivity in Machine Learning: users (not necessarily knowledgeable in ML and computer science) 
are engaged in the learning loop. Figure adapted from (Amershi et al., 2014) 
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Such a paradigm’s objectives were not initially linked to exposing machine learning 
materiality to designers and artists. A large body of previous work has found this 
approach to be a way of building more robust models than using fixed benchmark 
datasets, taking advantage of user expertise and insights through appropriate 
interaction techniques and visualisations(Talbot et al., 2009; Wallace et al., 2012; 
Berg et al., 2019). Previous research has shown that it allows helping users (typically 
users who are experts in a domain) to efficiently convey expert knowledge to the 
system (Holzinger, 2016), which can have a critical impact in high-stake applications 
(for instance, in the medical field), but also for communities of practice and 
knowledge sharing specific expertise. Shaping the model behaviour through data and 
model edition also enables the personalisation of technology to a user’s particular 
needs (Fiebrink, Cook and Trueman, 2011) or helps users better understand the 
caveats and strengths of a machine learning pipeline (Hohman et al., 2020).  

In light of what I have presented before on the notion of materiality in design and 
creative processes, I see the development of such interactivity with the machine 
learning pipeline as a method of uncovering this materiality in the context of machine 
learning-embedded design. Enabling such a level of interactivity transforms machine 
learning elements into materials that one can manipulate, assemble, modify, or 
replace to discover and explore innovative ways to use this technology. Although 
rarely stated in terms of materiality, there are existing works that emphasise 
interactivity with the objective of exploration and discovery, in particular in the 
creative and artistic domains (Fiebrink, 2011; Françoise, 2015; Scurto and Fiebrink, 
2016; Scurto et al., 2021; Visi and Tanaka, 2021). The previous chapter introduced 
some of these works focusing on the “tool mode” of machine learning. But, beyond 
the tool, I want to emphasise that the materiality of the technology is made apparent 
in these works through the enhancement of interactivity. The interactive machine 
learning paradigm, allowing for short cycles of interaction between actions and 
returns, establishes what we can call a conversation between the designer and the 
materials constituting the machine learning pipeline in a manner very similar to that 
evoked by Schön (Schön, 1983). This conversation allows the designer to discover 
an idea by exploring the capabilities of a model or a dataset and allows for 
downstream reflection to make the right design decisions based on the actions taken. 
In the following of this chapter, we will see that this possibility of conversation is 
not only theoretical and is applied to different tasks, starting from the artistic field 
and continuing with pedagogy and technology democratisation. 

Focus ● Material for creative and artistic practices 

In the previous chapter, I presented machine learning as a tool in a creative and 
artistic context. Machine learning was used to design movement-to-sound 
interactions iteratively, with application examples in interaction design and artistic 
performance. Eventually, I showed the limitations of this tool-oriented perspective. 
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While remaining in an artistic and creative context, I suggest emphasising the case 
where the algorithm is perceived less for the task it can accomplish than for its use 
as a material in the creative process and the expression it conveys. In the resulting 
practice, artists actively participate in the processes constituting a machine learning 
pipeline. They find ways to orient the model to their needs and aesthetics and escape 
the technology determinism inferred by off-the-shelf models and pipelines. 

I present two cases from my own research. We designed a system to assist 
exploration and sound creation in the first case. The originality is to use the 
machine’s learning mechanisms as an interface for exploration, exposing the 
consequences of each user action on the model and thus its materiality. In the second, 
we interviewed visual artists whose practice involves machine learning-based 
generative models. The analysis of these interviews shed light on the materiality of 
machine learning in a very pragmatic way, including how to curate datasets and 
shape model training. 

Creative exploration through data-driven insights  

The first example I focus on is the design of an interactive machine-learning system 
that could support human creative exploration through data-driven insights 
provided by users. This work stems from the doctoral thesis of Hugo Scurto (Scurto 
et al., 2021), on which I collaborated, where we addressed this question in the 
specific application domain of sound design.  

In sound design, practitioners typically face the challenge of exploring high-
dimensional, parametric sound spaces through complex interfaces, including many 
controls on the sound synthesis engine. Although this formulation could sound like 
a search for a problem-solving technological solution (and a creative one), the project 
started with hardly a technology but a type of machine learning. We were interested 
in exploring reinforcement learning, a machine learning paradigm where an artificial 
agent learns by performing actions within the sound space and receives rewards 
(sound designer’s preferences) accordingly. In other words, an agent would start a 
random exploration of the sound space, incrementally receive positive or negative 
feedback about its current progression, and converge towards the zone the designer 
is interested in. Figure 13 depicts the interface of the prototype used in the study, 
where participants could provide several types of data-driven insights: positive or 
negative feedback on the trajectory taken by the agent in the sound space, positive 
or negative feedback on the zone in general, examples of parameter configuration 
desirable, etc.  
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Figure 13 Co-Explorer Interface (image adapted from (Scurto et al., 2021)). On the top left, the interface depicts 
the user feedback controls (such as ‘like’ or ‘don’t like’, or ‘change zone’). At the top centre, a user could 
manipulate directly the parameters structuring the design space. At the bottom, a timeline shows the 
progression of the learning phase and depicts the previous interactions (e.g. a green bar refers to positive 
feedback from the user).  

 

We were interested in the strategies sound designers devised to achieve interesting 
sounds, their experience of the system and how it might be integrated into their 
practice. From a methodological point of view, we proposed a design approach 
centred on expert sound designers. This method allowed us to conceptualise 
exploration in this context by analysing the preferences provided by the designers on 
the system's behaviour, as well as their qualitative feedback on their experience. This 
was done through workshops including 12 professional users (Figure 14, left). 
Participants ranged from sound designers, composers, musicians and artists to music 
researchers and teachers. The workshop was divided into two tasks: (1) explore to 
discover and (2) explore to create. In the first task, sound designers had to shape the 
model by discovering the design space and producing 5 sounds they liked. In the 
second task, sound designers had 4 images to create a sound for each image through 
the same interface. Figure 14 (right) shows one participant performing the second 
task with the four images next to him. Group discussion was carried out at the end 
of the workshop to let participants exchange views on parameter space exploration.  

 

 

 

Figure 14 Images of the workshops conducted for the evaluation of the co-explorer (adapted from the journal 
article (Scurto et al., 2021)).  
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From the elicited experience of the users, we were able to assess the suitability of the 
proposed interaction for the discovery task (finding 5 sounds in the design space). 
For this task, three participants wished that the system reacted more quickly to 
feedback concerning the task: “I would really like to feel the contribution of the 
agent, but I couldn’t”, one participant said. Also, another participant highlighted the 
difficulties in giving evaluative feedback in the considered task: “without a context, 
I find it hard”, he analysed. Despite this, all participants wished to spend more time 
teaching the system by carefully customising the parameter space with user feedback. 
For example, five participants wanted to slow the speed of the agent during 
autonomous exploration to be able to give more precise guidance feedback. And 
three participants wanted to express more material-oriented feedback: “There, I am 
going to guide you about the colour of the spectrum. [...] There, I’m going to guide 
you about, I don’t know, the harmonic richness of the sound, that kind of stuff...”, 
one participant imagined. 

We were also able to assess the suitability of the proposed interaction for the creative 
task (having set an objective through images) and the usage they could make in their 
practice when dealing with real commissions. Indeed, all participants were able to 
describe additional features for the system to be usable in their real-world 
professional work environments. For instance, sound designers mentioned 
connecting the model to other sound spaces, memory transfer from one space to 
another, multiple agent memory management or data exportation. Half of the 
participants were enthusiastic about exploiting the temporal trajectories as actual 
artefacts of their creation. For instance, a participant said, “What I would find super 
interesting is to be able to select the sequences corresponding to certain parameter 
evolution or playing modes. [...] Selecting and memorising this evolution would be 
great, rather than just a small sonic fragment”. In general, they found using the 
system for the creative task more relevant than for the discovery task. They 
appreciated that the creative process did not rely on analysing the design space (the 
parameters defining the structure of this space) but instead relied on listening. 

These results highlight the potential of using machine learning processes as an 
interface to enable the exploration (and exploitation) of the materiality of ML in a 
creative task. In this case, sound designers had few agencies on the model itself but 
could focus on providing the model with data-driven insights to craft its behaviour. 
This approach was successful in general. And, while ML materiality was not elicited 
by sound designers, which is not surprising given that they were not familiar with 
such a task (and ML in general), their approach was indeed to consider some features 
of the learning mechanisms (e.g. model temporal trajectories) as material for design. 
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Crafting data and models in artistic practices 

The second example takes a step back from a particular system and looks at an 
artistic practice of machine learning, particularly the use of generative models in the 
visual arts. 

Let me first give some examples of artists and artworks that illustrate this ongoing 
and ever-dynamic practice. In visual arts, Video work by Memo Akten explores how 
images generated by deep learning models trained on large data sets push us to reflect 
on our collective representations of the world (Akten, Fiebrink and Grierson, 2019). 
Memo Akten was one of the first artists to use deep generative models in “all 
watched over by machines of loving grace” (Akten, 2015), together with Mike Tyka 
(Mordvintsev, Olah and Tyka, 2015; Tyka, 2015). Both used the Deepdream 
algorithm, which conveys a strong expression recognisable among many generative 
algorithms (see Figure 15, showing artwork by Mike Tyka).  

 

 

Figure 15. “Ground still state of God’s original brigade” by Mike Tyka. Neural net, Archival print, 60"x48", SOLD. 
2016. Photo courtesy of the artist Mike Tyka. Title generated by LSTM by Ross Goodwin.  

 

Artist Anna Ridler has explored crafting datasets by collecting thousands of pictures 
of tulips that have been annotated manually and then used to train a generative 
model (Ridler, 2018). The painting-like images by Mario Klingemann show the 
virtuosity, expressiveness and aesthetic sense that deep learning can generate, as 
shown in Memory of Passerby I (Klingemann, 2018). Robbie Barrat uses a deep 
generative model to create outfits from past fashion shows (Balenciaga) and plays 
with the absence of any contextual awareness of the functions of clothes, such as 
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whether a bag is “worn” or whether it differs in function from a background plant 
(Barrat, 2018). Sofia Crespo combines deep learning technology and biologically 
inspired productions, as seen in the piece “This Jellyfish Does Not Exist” (Crespo, 
2020), shown in Figure 16. As a final example, Helena Sarin works on patterns 
found in nature and computational patterns. Her piece “leaves of manifold” is a 
book reporting two years-long work of training generative models on datasets of 
photos of flowering pear leaves, maple, and sweetgum leaves (Sarin, 2021)11. Sofian 
Audry has recently compiled this practice in a book (Audry, 2021). 

 

 

Figure 16. "This Jellyfish does not Exist" by Sofia Crespo, 2020. Photos courtesy of the artist. 

 

Given that machine learning is designed as a technology to solve particular 
classification or content generation problems, how have artists been able to develop 
a practice with it? What is its specificity, and what perspective does this give on the 
technological object? To address these questions, and in particular to extract the 
materials used by artists in their creative workflow with machine learning, I recently 
conducted, in collaboration with Sarah Fdili Alaoui12, a series of interviews of world-
renown artists who pioneered the use of machine learning (the deep generative model 
in particular) in visual arts. We explore how machine learning shapes its creative 
endeavour through an interview study with five visual artists. The study not only 
sheds light on these particular uses of machine learning in art but also on critical 

                                                

 

 

11 This list is far from exhaustive, but it would be beyond the scope of this manuscript to 
describe the work of every visual artist using ML and AI. Here is a complementary list of 
artists: Daniel Ambrosi, Refik Anadol, Tega Brain, Sofia Crespo, Jake Elwes, Kyle 
McDonald, David Young. 
12 Although the study and analysis were done in collaboration with Sarah Fdili Alaoui, some 
of the interviews and transcripts were done with the help of Téo Sanchez and Siba Siddique.  



51 
 
 

 

aspects of how machine learning challenges notions of control and aesthetics, which 
led them to consider this technology as a creative material.  

The five artists were as follows (and a sample of their artworks is depicted in Figure 
17). Memo Akten is an artist, experimental filmmaker, musician and computer 
scientist. He works with emerging technologies and computation as a medium to 
create images, sounds, films, large-scale responsive installations and 
performances. Jake Elwes is a media artist. Their recent works explore their research 
into machine learning and artificial intelligence. Their practice looks for poetry and 
narrative in the success and failures of these systems while also investigating and 
questioning the code and ethics behind them. Mario Klingemann is an artist who 
uses algorithms and artificial intelligence to create and study systems. He is 
particularly interested in human perception of art and creativity, researching 
methods in which machines can augment or emulate these processes. Kyle 
McDonald is an artist crafting interactive installations, sneaky interventions, playful 
websites, workshops, and toolkits for other artists working with code. He explores 
possibilities of new technologies: to understand how they affect society, to misuse 
them, and build alternative futures, aiming to share a laugh, spark curiosity, create 
confusion, and share spaces with magical vibes. Anna Ridler is an artist and 
researcher who works with systems of knowledge and how technologies are 
developed to better understand the world. She is particularly interested in 
measurement and quantification and how this relates to the natural world. Her 
process often involves working with collections of information or data, particularly 
datasets, to create a new and unusual narrative. 

 



52 
 
 

 

 

Figure 17 Examples of artworks by each of the five artists interviewed in this article: A. Journey through the 
layers of the mind by Memo Akten [Photo Courtesy: Memo Akten], showing the poetry of what is happening 
inside the algorithm; B. CUSP by Jake Elwes [Photo Courtesy: Jake Elwes] where the machine learns qualities of 
different marsh birds; C. Decontamination Chamber by Mario Klingemann [Photo Courtesy: Mario Klingemann] 
showing machine ‘learning’ bodies and identities in order to reveal blurred shapes and colours; D. Discrete 
Figures by ELEVENPLAY, Rhizomatiks Research, MIKIKO, Daito Manabe, Motoi Ishibashi, and Kyle McDonald 
[Photo Courtesy: Kyle McDonald] explores the interrelationships between the performing arts and machine 
learning; E. Mosaic Virus by Anna Ridler [Photo Courtesy: Anna Ridler] shows a grid of continually evolving AI-
generated tulips in bloom, bringing together ideas around capitalism, value, and collapse from different points 
in history.  

 

We conducted interviews and analysed their transcripts in the methodological 
tradition of thematic analysis (Braun and Clarke, 2006). From this analysis, we have 
highlighted the importance of crafting in each artist’s creative process. Crafting 
appears at different levels of the machine learning process such as the way to handle 
model training or building a training dataset. Working with AI is approached by 
artists through a concrete experience of the algorithm’s behaviours rather than a 
theoretical understanding of its capabilities. Kyle McDonald said: “It starts with a 
technique, with the technology. And I kind of manipulate and explore that tech until 
I find something that is compelling to me, something that has a story that I’m 
interested in sharing or [...] that I want to pull back for other people as well.”  
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Therefore, starting from the technology’s experience rather than its analytical 
understanding is essential in the artists’ practice. This learning-by-doing approach 
leads them to develop specific skills related to the algorithms used. These skills do 
not refer to the ability to build better models in the sense of AI research (better 
accuracy, better data efficiency). Instead, they refer to the ability to better predict the 
system’s behaviour so that it is more in line with their expectations. In other words, 
it is an ability to work with these materials for their expression. This specific set of 
skills is those of crafting, in the sense that artists favour a direct relationship with 
the algorithmic and data material (Torres, 2019). Mario Klingemann gave an 
example of crafting a model by understanding its behaviour when training an image 
generation model: “I usually never wait until the end, I constantly watch it, and while 
waiting, I learn about the process too [...]. After a few hours, I look at it and try to 
estimate if this goes where I want this to go”. 

Crafting also appears in how datasets are built to train a deep learning model. Anna 
Ridler makes an explicit link between the act of crafting and the creation of the 
training set, as opposed to the design of the algorithm: “I actually think that there 
are a lot of parallels between craft vs art and dataset vs algorithmic output. I think 
there are a couple of things like the relation between craft which is anonymous and 
less well regarded, and how it’s repetitive versus art. And when you see dataset [...], 
the datasets are anonymous, and nobody talks or speaks about them. They are there, 
and people use them.” In her work, crafting occurs explicitly when collecting and 
building the training set but also while training a model. Working with ML implies 
favouring the process over the outcome because it is difficult to anticipate the result 
of a specific model with a particular dataset. As Anna Ridler said, “I try to use it 
both as a process and a material”. 

In conclusion, artists invent new workflows. Despite being bound by what an AI-
based system necessitates to process data, artists are finding freedom in curating the 
data, avoiding standardised measures of success and tweaking conventional steps of 
the process to get the desired outcome. They escape technology determinism that 
would impose an aesthetic on the produced artwork and criticise the trend of 
machine learning to normalise rather than diversify (see (Caramiaux and Fdili 
Alaoui, 2022) for more details).  

The artists we interviewed built expertise from years of tweaking and playing with 
models. Although they do not have the technical backgrounds to invent ML 
algorithms that contribute to AI research, their experience in tweaking parameters 
and training models give them an acute expertise and sense of what the systems allow 
them to do and how to create a desired artefact out of it. The notion of crafting is 
critical here. Artists are engaged with the media through a close relationship with 
data and algorithmic material.  
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Focus ● Material for pedagogy and democratization 

The second focus in this section on the materiality of machine learning is about 
pedagogy and the democratisation of technology. Understanding the concepts 
underlying machine learning, or having more agency in developing machine learning 
systems, implies the need to provide interactions that encourage exploration (of 
models, data, outcomes). Exploration means iterations between users’ actions and 
system feedback. Users need to discover the capacity of a model by trying out 
expected and unexpected input data or by acting on the model itself and re-iterating 
their tests. Therefore, what I have described above in how artists work with this 
machine learning can be transferred for the benefit of pedagogy and the 
democratisation of this technology in general. Focusing on the materiality of 
machine learning, as opposed to the final tasks, could thus help people to approach 
this technology and build an experiential knowledge of it. 

In this section, I will articulate this perspective through Téo Sanchez’s doctoral work, 
which I supervised with Wendy Mackay, investigating how novices teach machine 
learning algorithms. In this case, the model does not change, and newcomers 
discover its material expression interactively and shape it through data curation. 
Then I will present how this work led to creating a software solution, together with 
Jules Françoise and Téo Sanchez, that enables the design of interactive workflows 
with machine learning pipelines. This software was the basis for Teo’s PhD work 
and was also used as a pedagogy for teaching interactive machine learning in 
graduate courses. 

Novices’ interaction with machine learning 

The project originated from a collaboration with the Association Traces, a think-
and-do, non-profit group based in Paris interested in science, its communication and 
its relationship with society. I had started a discussion with Traces shortly before 
this project, intending to take my research outside the lab and work with a different 
audience. In particular, I wanted to work with an audience with a diverse ML culture 
than the one that university students might have. At this time, Traces organised 
workshops and virtual sessions addressing a wide range of scientific topics for the 
general public. We (Traces, Téo Sanchez and myself) were interested in what 
“teaching an AI” might entail, including the concepts and values people might 
convey. This curiosity was the starting point of the collaboration. 

Therefore, the interactive scenario involves teaching a model through data curation, 
which means deciding which data to use for training (or not). In this scenario, users 
have a direct experience of the effect of their data on model learning. This formalism, 
known as machine teaching, was at the core of Téo Sanchez’s doctoral work, which 
investigated how novices in machine learning could handle the task of teaching a 
model some visual concepts (Sanchez, 2022). The objectives of this research were to 
highlight the strategies put in place by novice users to teach concepts to an algorithm, 
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to understand the knowledge they would acquire about ML through the act of model 
teaching, and to propose guidelines for helping the design of ML model development 
for a broader audience (tech democratisation) and designing through data material.  

Our collaboration with Traces started with a workshop conducted at 
the TurFu festival in Caen and then through an online session of science outreach 
organised on the Twitch streaming platform (see Figure 18). The Twitch platform's 
live session was used as a pilot study to address our research questions. During this 
online session, people could try out the system and provide feedback in the chat. At 
both events, we proposed an application that allows people to train a classification 
model to recognise hand-drawn pictures using the computer mouse or trackpad. 

  

 

Figure 18 Pictures from the workshop during the TurFu Festival (on the left) and the Twitch session (on the right).  

 

Three critical requirements steered the design of the application: (1) People should 
be able to produce their data to teach the system; (2) People should receive immediate 
feedback about the model’s predictions and uncertainty; and (3) People should be 
able to use the application anywhere (without our intervention) and efficiently. 

With the first requirement, we aim to involve users in generating and curating 
training examples. We use drawn sketches as inputs because sketching is a fairly 
common activity for people, and drawings are personal. Second, people need to be 
able to interpret the model’s predictions, so we provide feedback on the recognised 
class but also how well this class is identified (or how confused the prediction is 
concerning the other classes). In addition, the model’s predictions always embed 
uncertainty, which is also essential to convey to the users, especially the ambiguity 
of the predictions among the available classes. Third, our goal was to inspect novice 
users’ real-world use of the system. As such, we brought particular attention to 
designing an application that can run online in any web browser that is easy to use.  
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Figure 19 Interface of the sketch-based recognition application developed to study novices’ ability to teach a 
deep learning model to recognise drawn sketches. The screenshot is adapted from the publication (Sanchez et 
al., 2021). 

 

The implementation of the scenario is illustrated in Figure 19 and was built using 
Marcelle (Françoise, Caramiaux and Sanchez, 2021) (more details are provided 
below). The left-side panel is dedicated to inputs. It exposes a white canvas where 
users can sketch drawings with the mouse. The right-side panel is dedicated to 
prediction, training and data visualisation. The workflow is as follows. The user 
draws a line (“sketch input”) and releases the mouse button. Predictions are 
automatically updated (chart bars), as well as the prediction uncertainty (gauge). The 
user also receives feedback on the predicted label (drop-down menu below the 
indicator). If the user wants to correct the prediction, they can click on the drop-
down menu, select the correct label, and then click on the button to update the 
training set and start training. Transfer learning makes model training fast (a few 
seconds)13. Once the training is done, the newly trained model automatically updates 
the prediction and uncertainty. The user can also choose not to add the drawing to 
the training set and keep adding elements to their drawings, inspecting the changes 
in predictions and uncertainty.  

After the Twitch session, we chose to run further one-to-one sessions with 
participants, novices in ML and computer science. In each session, we use a think-

                                                

 

 

13 Transfer learning is based here on the use of a pre-trained model (MobileNet (Howard et 
al., 2017)), which is used to extract well-calibrated features from a given image. The 
classification model trained in the application is the correspondence between the features 
provided by this model and the classes. 
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aloud protocol, a standard method for participants to describe what they are doing 
while they are doing it. In this way, we can interpret their actions on the data and 
the model qualitatively, using their terminology. The teaching task was similar to the 
Twitch workshop, teaching a classification algorithm from scratch to recognise 
hand-made drawings. The publication reports detailed results about novices’ 
strategies and their understanding of machine learning. I would like to focus here on 
the results that I find interesting to reinterpret through the lens of ML materiality. 

 

 

Figure 20. Examples of drawings provided by participants during the teaching task. 

 

Data curation made participants explore the learning ability of the classification 
model, and this exploration was made possible through the immediate prediction for 
each drawing and the interactive model training. Through analysing the explanations 
provided while doing the task, we found that participants made explicit the 
properties of the data material. More precisely, they mentioned several properties 
that we divided into three categories: properties related to the representation of a 
drawn concept (shape, infilling, relief, etc.); properties related to the execution of a 
drawn concept (gesture); and properties related to the operations that would be 
relevant to apply to a drawn concept (translation, duplication, size, etc.). What I 
found interesting in this finding about materiality is that images, as graphical objects, 
have properties. Still, their situated use as a material applied to building a 
classification model alters (or enriches) the properties usually associated with images. 
For instance, “gesture” or “duplication” are properties that are not commonly 
associated with images.  

In fact, images have properties that allow them to represent a concept, and people 
can operationally use them to create an image corresponding to the desired concept. 
But the agency of the image is the result of its interaction with the classification 
model and the person who interprets the model knowledge and infers the actions to 
do on the images. Suppose we interpret this finding through the lens of the Actor-
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Network Theory (Latour, 1987). In that case, the images’ agency is the effect of the 
network within which the images are situated, a network made (among other 
entities) of the deep learning model, the enabled interactivity, and the teacher.  

Composing machine learning materials 

nabling interactivity with machine learning requires software solutions to mediate 
the interaction. These solutions have often been proposed according to the domain 
of applications or practice. Machine learning developers and researchers use tools to 
visualise their models’ behaviour. Artists and designers use high-level solutions with 
hidden underlying learning mechanisms. This leads creative people with technical 
skills to create tools ad-hoc to their practice. I describe here a contribution of my 
research in this direction, which helps designers and creatives highlight this 
technology’s materiality and work with it in their practice.  

In collaboration with Jules Françoise and Téo Sanchez, we have initiated the 
development of a software library that allows designers and machine learning 
practitioners to compose interactions with machine learning pipelines and build 
dedicated interfaces for a wide range of users. In this section, I describe the library, 
called Marcelle, and then discuss its link with the materiality of machine learning 
technology. A full description of the library can be found in the published article 
(Françoise, Caramiaux and Sanchez, 2021). 

We propose an architecture model that illustrates the way interactivity with machine 
learning materials has been thought of in the design of Marcelle. The model is based 
on five design principles enabling composing interactions with pipelines, and I 
describe three of them: components, custom workflows and composable interfaces. 

First, we implemented a component-based architecture. Building interactive machine 
learning applications requires assembling interactions to facilitate the manipulation 
of machine learning objects. These objects of interest are highly heterogeneous and 
relate to various activities, as seen in the previous example reported above: curating 
data, training a model, deciding when to stop training, or changing the model’s 
parameters. Therefore, users must operate upon various machine learning materials: 
data, algorithms, parameters, models, predictions, and explanations. The idea of the 
proposed architecture was to conceive building blocks for designing interactions that 
are components embedding data, computation, and interaction. Components enable 
granular interaction with specific elements of the machine learning pipeline. They 
can be flexibly composed to form higher-level interactions and workflows that 
support a wide range of activities. Components can typically be data sources (e.g. 
capturing images from a webcam, uploading files, recording user sketches as 
presented in Téo’s work), data structures (e.g. a dataset used to store training 
examples), visualisations (e.g. to navigate through a dataset or to visualise 
predictions), computations (e.g. model training or prediction), or a combination. To 
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enable feedback and interaction, most components should also provide a graphical 
user interface that can be displayed on demand.  

Second, we implemented customizable workflows. While in a typical machine 
learning setup, the workflow for training and testing might be standardized, enabling 
interactivity on machine learning pipelines involving custom workflows where the 
user can trigger various types of processing. For instance, a user can stop model 
training and add an image to a given class, automatically restarting training. It is 
essential to let developers create custom pipelines specifying complex relationships 
between the user’s actions (e.g. capturing a new instance) and the resulting 
processing (e.g. adding it to a dataset, training a model, or updating predictions). 
Reactivity is critical to handle diverse workflows where streams of events of 
heterogeneous nature must be interconnected: streams of images, predictions, or 
parameters. Components operate streams of events and react to their changes. 
Altered streams of events outside components provide a powerful means for 
customizing the processing chain within machine learning pipelines. 

Third, we implemented composable interfaces. Workflows encompass two main 
facets: the specification of reactive pipelines describing the relationships between 
various objects and actions, as described in the previous section, and the visual 
arrangement of components in the end-user interface. In their review of user interface 
design for interactive machine learning, (Dudley and Kristensson, 2018) underline 
that while common elements exist, the creation of interactive machine learning 
interfaces varies considerably according to the data and application. The proposed 
component specification includes an optional view allowing for visualization and 
enabling user interactions. However, how views are used in an application (e.g. 
where and when they are displayed) should not affect the logical relationships 
between components defined using reactive pipelines. We propose that components 
appear on demand. In practice, this means that multiple views could potentially be 
used to interact with the same components constituting the machine learning 
pipeline.  

Marcelle allows us to build applications that enact various interactions with machine 
learning materials, such as data, parameters, model types, tasks, learning processes, 
and model explainers. Figure 21 depicts a mosaic of applications that are running 
online14. Each application is conceived as a set of components that structure the 
machine learning pipeline, and these components are linked together to shape the 
behaviour of the pipeline. Inputs can include webcam images, drawings, uploaded 
images, tabular data, and movement data.   

                                                

 

 

14 https://demos.marcelle.dev  
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Figure 21 Mosaic of applications designed and implemented using Marcelle. These applications have various 
types of input data, visualisations and machine learning tasks. 

 

Together with Jules Françoise, we teach Interactive Machine Learning as a graduate 
course. During this class, students build a scenario allowing the end-user (a designer, 
a domain expert, a creative practitioner, or a machine learning developer) to act on 
the elements of the machine learning pipeline to achieve a task contextualised in their 
practice. For instance, a scenario can help an application designer (novice in machine 
learning) build a robust model with limited but curated data. 

To realise their scenario, students must investigate existing research and applications 
that address a similar use case. From there, they produce a mock-up of their scenario 
that will serve as a reference for the implementation. The implementation is realised 
using Marcelle. We observed that students use existing examples and demos to build 
their projects. By copying and pasting pieces of code, they efficiently create 
prototypes of their scenario. Each piece of code is often linked to interactive concepts 
between components of the machine learning pipeline: for instance, the code 
describes a new image from the webcam turned into an instance of a dataset and 
sent to a model for prediction.   

 

 

 

This code fragment describes the example described above. The goal is not to teach 
how to read this code. Instead, I want to illustrate how Marcelle allows working 
efficiently with elements of the machine learning pipeline through code reuse of 
behaviours. Code reuse enables users to think of their scenarios from a high-level 
perspective. Ultimately, this malleability of the programming practice provides a 
sense of crafting machine learning materiality.  
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Discussion 

In the previous Part, the creative and artistic context showed the limitations of seeing 
machine learning technology as a tool. In particular, it made apparent how machine 
learning is crafted before becoming a stabilised tool used in practice. Here we 
proposed a perspective where we think of interaction design with machine learning 
as assemblages between its constitutive elements, such as data, models, or 
visualisations. These assemblages were made possible by enabling the materiality of 
the technology. I grounded this view in the past and ongoing research on digital 
materiality in design research and human-computer interaction. I also showed that 
machine learning materiality is enabled through interactivity.  

This position was illustrated with two foci from my research, conducted with PhD 
students, post-doctoral researchers and collaborators. As a first focus, I took the case 
of machine learning as creative design material in sound design and visual art-
making. I explicitly showed how interactive training through human feedback can 
be used to explore and create sounds in a high-dimensional sound space. The 
importance is then given to the trajectory the algorithm takes in the learning process 
rather than the final model obtained. This was further investigated through 
interviews of visual artists using machine learning in their practice. Materiality 
became explicit in data curation, model training (and the decision made when 
stopping the model’s training), serendipity in the outcomes, and the acquisition of 
experiential skills of machine learning (as opposed to technical skills).  

As a second focus, I took the case of pedagogy, in particular, providing novices with 
interactive machine learning systems performing image classification, which they can 
train according to their own success criterion. By allowing interactivity with the 
algorithm’s training phase, we made the machine learning materiality apparent to 
the participants who could develop strategies, through data curation mainly, to 
shape the model’s behaviour. We showed that images acquired agency due to their 
interaction with the classification model and the person who interprets the model 
knowledge and infers the actions to do on the images. The agency of the material is 
the effect of the situated context made of its different actors. Such systems used in 
the research were built with a software library that allowed compositing interactive 
machine learning pipelines and tailored interfaces. The library implements several 
machine learning and visualisation components that can be linked and interacted 
with, producing a malleability in developing machine learning systems and 
applications.  

The learning process: an interface for machine learning materiality 

The common thread in the work I have presented in this Part has been to consider 
users (artists or novices) in interaction with the learning mechanisms of the 
algorithms. Considering machine learning as a material (or a set of materials) means 
that the person interacting with this material must deal with the changes due to the 
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algorithm’s learning. These changes orient the subsequent actions performed by this 
person. Sound designers send their preferences to the algorithm to steer towards the 
zone of interest in the sound space. Novices vary their sketches in such a way that 
they can explore the blind spots of the model. Visual artists are literarily watching 
the model training to understand it and decide how to influence it in the way they 
are interested. 

The actions taken by users during the learning process are therefore situated within 
the interactive learning procedure. What does this imply in terms of machine learning 
materiality? First, I argue that this materiality is exposed to the users during this 
situated interaction because users can experience the properties of the different 
materials of machine learning through their influence on the model’s behaviour (and, 
therefore, the system they are building). Second, I believe that this also exposes the 
agency of this material. As discussed above, within the project of machine teaching 
of a sketch recognition system, the agency of sketch results from its contextualisation 
as an image used to train a neural network-based recognition algorithm by a novice 
in machine learning in the situation of experimental research practice. In other 
words, human and material agencies are redrawn in context or reconfigured 
(Suchman, 2007). 

Studying interactions between users and the machine learning process also creates 
epistemological difficulties. While in machine learning research, a novel algorithm is 
assessed through fixed benchmark datasets, the assessment of a machine learning 
algorithm in interaction cannot be dissociated from user interaction. User actions 
and machine learning changes are interdependent. In the first study presented, sound 
designers guided a reinforcement learning-based algorithm within a parametric 
sound space. This example shows that the most interesting phenomena resulting 
from the interaction between sound designers and the artificial agent are occurring 
in the exploration of the sound space mediated by the optimisation mechanisms used 
by the algorithm under the hood. The model cannot be assessed in isolation, and the 
user’s actions depend on the algorithm changes. However, this might not be what 
one expects from a machine learning system, often seen as a problem solver. When 
we submitted this work to one of the leading journals in the field of HCI, we received 
the following review:  

“The paper does not provide proof that training the Reinforcement 
Learning-agent produces meaningful policies. For instance, a perceptual 
comparison between the sounds produced from random parameters and 
the parameters suggested by participant-guided policies could have been 
conducted at the end of the workshop. I understand that policy learning 
is not the focus of this work but showing proof that users successfully 
guided the agent towards the desired goal would definitely strengthen the 
paper.”    
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Indeed, in the study, we let sound designers train a model without caring about the 
produced policy. But what would a “trained” model mean in this case? And more 
fundamentally, when can we consider that we should stop training a model? I have 
started to discuss this point in the previous Part. Here the question becomes more 
pressing as we are explicitly looking at the interaction with the learning mechanisms. 
In the different projects I have mentioned, very few eventually considered the trained 
model.  

The hidden craft 

I began this chapter by recalling the history of the deep learning breakthrough 
through the presentation of a seminal paper at a machine learning conference in 
2012. Taken from an article in the sociology of science and technology by 
Dominique Cardon and colleagues (Cardon, Cointet and Mazières, 2018), this story 
was used to highlight both the technical and design innovation behind the 
breakthrough. In addition, the purpose of starting with this story was to show the 
ubiquity of the practice of craft in machine learning and this outside of creative and 
artistic contexts. Machine learning practice in technical fields is heavily based on 
iterative processes, trial-and-error, and intuition, which lead to conversations with 
digital materiality. However, it is not presented as such. The notion of craft is rarely 
put forward in the community, where we can find specific cases related to particular 
machine learning problems, such as crafting adversarial examples in deep learning 
security (Papernot et al., 2016). In general, the notion of craft is hampered by a 
discourse of machine learning that emphasises the automatic and autonomous nature 
of this technology, disembodied from its socio-technical context of development. 

Visual artist Anna Ridler criticises this posture that hides craft over something 
nobler. We mentioned in the text the way she discussed the distinction between craft 
and art-making and the distinction between dataset creation and model design. 
When talking about the piece she did that required the annotation of thousands of 
pictures of tulips, she said:  

“Yes, I took 10,000 pictures of tulips. I labelled them as well. It’s insane, 
it’s driven me crazy, but it’s also like, one of the things through the process 
of doing it. […] It reminded me of the early computing history in the 1940s 
[…] You’ve got all of these hidden histories: a lot of the early programmers 
were women and did the calculations by hand and as it became more 
professionalized it became a more male industry, but [earlier] it was a 
heavily feminized industry of lots of women doing very boring jobs by.” 

 

In summary, the point I would like to make here is that the materiality of machine 
learning and the crafting of these technologies that it underpins is, in fact, a practice 
that exists beyond the creative and artistic contexts. These contexts allow us to 
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expose such materiality and crafting practice. But, although these practices may 
exist, they are often hidden at the expense of a dominant discourse that reflects a 
culture and politics, which I propose to analyse in the following lines. 
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Culture 

“Caterpillars extract nutrients which are then converted into butterflies. 
People have extracted billions of nuggets of understanding and GPT-415 is 

humanity’s butterfly”  
Geoffrey Hinton’s Tweet, March 14th, 2023 

 

 

In recent years, I have been involved in several European endeavours to investigate 
the opportunities, challenges and risks of using artificial intelligence in the creative 
and cultural sectors. Artificial intelligence, technically implemented as a set of 
machine learning techniques, has entered the sectors of music, visual arts, fashion, 
museum and cultural heritages, film, publishing and writing, and architecture. It is 
used in content generation, forecasting, artist identification, assisting decision-
makers, personalisation and customer services with the following objectives: 
reducing cost, improving decision-making, engaging the audience or inspiring 
creation. Artificial intelligence has become needed in the face of the increasing 
digitisation of cultural artefacts. As a result, cultural and artistic actors are torn 
between the desire to experiment with this technology within their practice and the 
desire to avoid the pitfall of techno-positivism that would not correspond to their 
needs and habits. 

The formal outcome of this collective effort has been to deliver white papers and 
cultural policy recommendations. In these reports, we have captured the problems 
that artificial intelligence could address and the need for stakeholders to have a say 
in how this technology should be used in their sector, if at all. We had many informal 
discussions on machine learning and artificial intelligence from a cultural 

                                                

 

 

15 GPT-4 (Generative Pre-Trained Transformer 4) is a multimodal language model developed 
by OpenAI.  
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perspective. I attended meetings between researchers, archivists, artists, art and 
museum curators and activists. During these meetings, I could hear a generally 
critical tone, not necessarily about the technology itself but its cultural representation 
within mainstream media, which was (and still is) presenting artificial intelligence in 
normative ways. As an illustration, if I were doing a simple web search with the 
keyword ‘artificial intelligence’ on my laptop computer, I would obtain the result 
reported in Figure 22, showing a consistent representation of the term as humanoid 
robots, typically surrounded by a blue background contributing to the 
decontextualisation of artificial intelligence (no here and now). The results were 
similar if I used the keyword ‘machine learning’. During these meetings, we discussed 
pragmatically the de-mystification of artificial intelligence, which involved the 
diversification of representations of the technology through alternative cultural 
references to humanoid robots.  

 

 

Figure 22. Web search results from the query "artificial intelligence" on a popular engine. 

 

In the previous chapters of this manuscript, I presented machine learning as a tool 
performing a task and then as a material used to design the tool, instrument or 
application. I have shown machines capable of learning things or classifying 
concepts. However, I have not discussed what terms like “learning” or tasks like 
“classifying concepts” can trigger as imaginary for the user. And I have not 
highlighted how these imaginaries are also shaped by those who develop the 
technology. In this chapter, I articulate a cultural perspective on machine learning 
(and artificial intelligence) regarding the references taken by the “machine learning 
makers” to communicate about this technology. I argue that this view is prescriptive 
and normative and propose deconstructing it to imagine alternative interactions with 
this technology. I highlight examples of these alternative interactions through artistic 
stances on the subject. 
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A normative standpoint 

Machine learning algorithms are data-driven. These algorithms rely on data 
collections and often annotated descriptions of these data that are culturally and 
politically imbued content (Pasquale, 2015; O’neil, 2017; Eubanks, 2018; Noble, 
2018; Benjamin, 2020; Crawford, 2021). Take the example of image recognition 
tasks. Images are the visual representation of a concept, which will be annotated to 
be described with words. The way images are collected (the socio-cultural and socio-
political contexts of data collection, often performed by companies through little-
qualified and low-paid labour (Tubaro and Casilli, 2019)) and the terms used to 
describe its content are necessarily subject to biases due to the situated context within 
which this process is performed.  

However, the cultural representation of machine learning does not convey the idea 
of a situated technology whose weaknesses and biases are acknowledged. On the 
contrary, machine learning communicates a normative standpoint, which I can 
summarise as more rational and faster than humans. And this is reinforced by the 
ambiguity of the terminology through the use of ‘artificial intelligence’. My position 
is to challenge a normative viewpoint communicated as technological determinism. 
Machine learning deserves its successes and the imaginary that goes with it, i.e. its 
vision and fantasy. However, it becomes problematic when one viewpoint becomes 
dominant. 

In this section, I start by presenting the twist in terminology between machine 
learning and artificial intelligence. This will lead me to present the ideology of 
artificial intelligence as a disembodied and rational intelligent agent. This ideology 
is reinforced by its immersion in cultural codes such as games and creativity.  

Terminological twist and anxieties 

Over the last decade, there has been a shift in terminology from machine learning to 
artificial intelligence. While the former is usually associated with the technique able 
to extract structure from data and makes a prediction based on it, the latter is multi-
faceted and does not only refer to the underlying technologies involved. The former 
remains within academic disciplines interested in creating techniques able to perform 
more complex tasks better, finding ways to interact efficiently with it, or exploiting 
its discursive power. The latter spreads over academia, industry and culture through 
media such as images, films, and articles. In a recent article, Meredith Whittaker 
recalls the deep learning breakthrough that occurred in 2012 (that I also highlighted 
in the introduction to the second chapter of this manuscript) and the change in 
terminology that followed (Whittaker, 2021). She wrote:  

“The year 2012 showed the commercial potential of supervised machine 
learning and the power of the term AI as a marketing hook. Tech 
companies quickly (re)branded machine learning and other data-
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dependent approaches as AI, framing them as the product of 
breakthrough scientific innovation. Companies acquired labs and start-
ups, and worked to pitch AI as a multitool of efficiency and precision, 
suitable for nearly any purpose across countless domains.” 

Artificial intelligence, as a term, is not new but was invented after the second world 
war. And it is grounded in a large body of cultural and artistic works, especially 
literary works of science fiction. Western culture imagined very early on other types 
of intelligence and how human-made techniques can automate the tasks we have to 
do. In a recent UNESCO report (Kulesz, 2018), Kulesz mentioned that in the Iliad, 
“there were mentions of automatic tripods, fashioned by the god Hephaestus to 
carry out his tasks”. More recently, creating artificial life was shown in famous 
works such as Metropolis, Frankenstein and Terminator. The word Robot comes 
from the play R.U.R (Rossum’s Universal Robots) by the Czech writer Karel 
Čapek, where robots mean slaves, rebelling against humans at the end of the piece.  

In the way it is communicated for marketing purposes, the term artificial intelligence 
conveys an image that goes beyond the one of a significant technological 
breakthrough but intends to highlight humanity’s power over nature (including 
humanity itself). If humans can build machines that are more intelligent than 
themselves, it means that they dominate nature. Knowledge and Science bring us to 
this state of affairs, where a machine can now compete with humans in many fields 
and is pitched as “suitable for nearly any purpose across countless domains” 
(Whittaker, 2021). 

This terminology twist from machine learning to artificial intelligence brings anxiety 
to observers and researchers. While machine learning, although technical, seemed 
better defined, artificial intelligence remains deliberately vague. This has been 
commented upon in relation to a related concept, algorithms, in the anthropology of 
science and technology. In his article “Algorithms as culture”, Nick Seaver writes 
that algorithms, which were seen as well-defined by humanities scholars, were in fact 
“something of a modern myth” (Barocas, Hood and Ziewitz, 2013), “to which great 
importance and power are ascribed, but whose properties are ill-defined” (Seaver, 
2017). The algorithms in question referred to technological solutions deployed by 
large companies capable of processing large amounts of data and producing a service 
in return. That is to say, something quite close to what we call artificial intelligence 
in this Part.  

Seaver writes that humanist scholars studying algorithms might not have understood 
what algorithms are because this concept, through its ambiguous terminology, has 
somehow slipped through their fingers. This ambiguity in terminology can 
create anxieties for researchers about dealing with a concept that is initially thought 
to be well described but ultimately not. In his view, these terminological anxieties 
are an essential characteristic of critical algorithm studies: “it is because 
terminological anxieties are first and foremost anxieties about the boundaries of 
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disciplinary jurisdiction, and critical algorithm studies are, essentially, founded in a 
disciplinary transgression.” Then it becomes interesting not to provide a general 
definition of this terminology but to study its existence in various communities of 
practice.  

In a simple analogy, it is also fruitful to study its existence and enactments in various 
communities of practice. So, how is artificial intelligence enacted in machine learning 
and artificial intelligence research communities, the communities that are technically 
contributing to it?  

The ideology of artificial intelligence 

In the machine learning research community, artificial intelligence means designing 
and implementing algorithms capable of simulating human intelligence in terms of 
perception or decision-making. This definition is helpful in that we understand that 
we are talking about something that is evaluated against human capabilities (further 
detailed below) and that we are talking about something that is computational. 

With this in mind, I would like to discuss the terms. Intelligence is a broad concept, 
which is likely to find a different definition depending on the social group within 
which this notion takes shape. Furthermore, the term artificial is also problematic. 
Understood as technical, through machines, this term is constructed in opposition to 
what is considered natural. However, what is natural intelligence? Isn’t the observed 
or designated intelligence in someone also the result of social and material 
interactions with the environment? My position here is to argue that the culture of 
machine learning, through the term artificial intelligence, does not explore the 
complexity and diversity of the concept behind “intelligence” and “artificiality” but 
takes the disembodied form of efficient, rational thinking. 

To illustrate this point, let’s focus on games. Games, such as chess or go, often 
culturally associated with the figure of the genius, have been often considered 
benchmarks for human intelligence and, as such, are the basis for the assumption 
that if machines can beat humans on this field, machines are on the path to exhibiting 
‘artificial intelligence’. As Crawford said, “Unlike everyday life, games offer a closed 
world with defined parameters and clear victory conditions. The historical roots of 
AI in World War II stemmed from military-funded research in signal processing and 
optimization that sought to simplify the world, rendering it more like a strategy 
game” (Crawford, 2021), p.213.  

This culture has been perpetuated until now. A first and famous example that 
occurred before the deep learning breakthrough was the win of Deep Blue in 1997 
against the world’s best chess player Garry Kasparov. Then, DeepMind, a private 
company owned by Google, focused its communication on the fact that it is 
developing artificial intelligence technologies capable of competing with (and 
beating) humans (even the world’s best players) at games. They initially focused their 
strategy on combining the power of deep learning and reinforcement learning. As a 
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result, they achieved several breakthroughs showing above-human performance in 
Atari (Mnih et al., 2015) and Go game (Silver et al., 2016, 2017). In the film 
retracing the story of AlphaGo, the software based on reinforcement learning that 
won against one the best Go players in the world, the firm’s CEO says: “The number 
of combinations of the [Go] board is more than the number of atoms in the universe. 
So even if you took all the computers in the world and ran them for a million years, 
that wouldn’t be enough computing power to calculate all the possible variations. If 
you ask a great Go player why they played a particular move, sometimes they just 
tell you it felt right.” Therefore, creating an algorithm capable of playing Go is 
perceived as going beyond a technical feat, which amounts to constructing an 
algorithm that will not try all combinations but will react in the best way to a 
particular situation. Such an algorithm, if possible, is imbued with intuition.  

However, these games are based on logic, bounded by possibilities, evolving in a 
finite world free from complex interactions. Note that I do not underestimate the 
conceptual and technical progress of the research carried out by the DeepMind 
teams, research that has had significant consequences in other fields, such as 
bioinformatics (Jumper et al., 2021). My goal is to highlight and bring a critique of 
a dominant culture of artificial intelligence as it is highlighted here: a form of 
disembodied rational intelligence.  

In this sense, I am joining similar critiques that can be found among other researchers 
and commentators (Broussard, 2018; Crawford, 2021)). In particular, I am taking a 
quote by Neville-Neil highlighting the fact that intelligence could not be solely 
understood as disembodied: 

“We have had nearly 50 years of human/computer competition in the 
game of chess, but does this mean that any of those computers are 
intelligent? No, it does not, for two reasons. The first is that chess is not 
a test of intelligence; it is the test of a particular skill or the skill of playing 
chess. If I could beat a Grandmaster at chess and yet not be able to hand 
you the salt at the table when asked, would I be intelligent?” (Neville-
Neil, 2020), pp.247 

This culture carries a cognitive ideology of artificial intelligence as strategic 
engineering. I am using the term ideology on purpose to emphasise the predefine 
character of the prism through which intelligence is analysed and assigned to an 
artificial being.  

Creativity and the unexpectedness 

In the example of Go introduced previously, the moves designated as creatives were 
those to which the observers (and players) paid the most attention: they were waiting 
that the algorithm would make unexpected moves because such moves would be 
perceived as a sign of intelligence. As Lee Sedol, the professional Go player who lost 



71 
 
 

 

against DeepMind’s algorithm, said: “I thought AlphaGo was based on probability 
calculation and that it was merely a machine. But when I saw this move, I changed 
my mind. Surely, AlphaGo is creative.”  

Creativity and art-making are among the characteristics that are often considered 
exclusive to the human species. It is, therefore, hardly surprising that creativity and 
art-making have been taken up as an additional challenging benchmark for machine 
learning and artificial intelligence methods in human’s quest to compete with nature 
(understood as what is there but beyond the socio-cultural constructions of human 
beings). The machine learning research community and companies have quickly 
placed a strategic focus on creative applications. As an example in visual arts, when 
the first artistic experiments with neural networks appeared, particularly when using 
the Inceptionism algorithm (Mordvintsev, Olah and Tyka, 2015), companies such 
as Google set up exhibitions and artist residencies. Companies pushed and 
incentivised the cultural appropriation of the technologies they were developing. 

Several creative and artistic projects have involved machine learning algorithms in 
the process. However, when mainstream culture has picked them up through online 
media, podcasts or television, they have often been communicated by the 
terminological twist described above, i.e. celebrating the victory of artificial 
intelligence over human creativity and artistic creation. This was the case in many 
creative and cultural sectors16, for which, in these mainstream media, we could read 
“the first {painting/movie/song} created by an AI”.  

In cinema, the short movie “Sunspring” screenplay was generated (and curated) 
thanks to the text generation algorithm written by Ross Goodwin. It was not 
surprising to see it communicated as “a short science fiction movie written entirely 
by AI”17. The music album “Hello World”, released in 2018 in France, has been 
composed using Flow Machines, a set of tools that generate musical arrangements. 
The album was then recorded in a studio and curated by SKYGEE, a (human) 
composer, and communicated as the first music album composed with artificial 
intelligence18. More recently, in 2022, the cover image of a general public magazine 
was made using a text-to-image generative algorithm (Dall-E2 based on Dall-E 
(Aditya et al., 2021)) and announced as the first magazine cover made by artificial 
intelligence. The magazine went even further by crediting the generative algorithm 

                                                

 

 

16 In 2019, I co-edited a white paper for a European institution on the implication of machine 
learning technologies in the creative and cultural sectors with Fabien Lotte and Joost Geurts. 
We could show their ubiquity and the challenges they pose (Caramiaux et al., 2019). 
17 https://arstechnica.com/gaming/2021/05/an-ai-wrote-this-movie-and-its-strangely-moving/  
18 https://www.helloworldalbum.net/  
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in its title as the creator of the cover: “The World’s Smartest Artificial Intelligence 
Just Made Its First Magazine Cover”19. 

I have given three examples, taken among a wide range of cultural artefacts where 
machine learning was involved in their creation but communicated by mainstream 
media in a way that highlights artificial intelligence as a provocation against humans. 
This communication shows that artificial intelligence is now intelligent enough to 
create artwork and fast enough to do it. This narrative is similar to the one conveyed 
in the cultural realm of games, such as go or chess, described in the previous section. 
We can read in it an intention to put us (humans) in competition with technology 
and to challenge us on our identity as humans endowed with intelligence and 
creativity. We can read that our intelligence and creativity may not be so unique and 
could be replicated. 

But, the challenger remains an entity that is never defined and perceived as 
disembodied, immaterial and super-intelligent (according to the axes of efficiency 
and performance).  

Summary 

I have tried in this section to articulate the dominant perspective of what artificial 
intelligence, boosted by underlying data-driven machine learning techniques, 
conveys. I used the word ‘perspective’ in this summary but used the term ’ideology’ 
previously. The word ‘ideology’ might feel strong, but I think it conveys the fact that 
the dominant view is based on beliefs that are not meant to be put into question. 
These beliefs are constituted of a set of results on understanding human intelligence 
and a conception of the artificial. I acknowledge this standpoint and consider it one 
way to see artificial intelligence. But, as we shall see, there is no one truth, no matter 
how well it is communicated. The problem arises when one view is promulgated as 
the norm. As result, is there only one way to conceive our interaction with artificial 
intelligence? In what follows, I propose to deconstruct this norm to provide a vision 
where a diversity of standpoints coexist, and I focus on the domain of HCI, which 
seems to me to be the appropriate domain to provide a framework and operational 
tools to implement these alternative perspectives, with the help of artists and other 
actors from the cultural sectors.  

                                                

 

 

19 https://www.cosmopolitan.com/lifestyle/a40314356/dall-e-2-artificial-intelligence-cover/  
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Deconstructing the normative standpoint 

The main argument of the previous section is to show that, through a terminological 
twist, where machine learning becomes artificial intelligence, we enter a cultural 
realm dominated by disembodied rational intellect and the opposition between 
artificial and natural. This narrow but dominant view of the matter is problematic 
in many ways I am describing here, taking as theoretical foundations previous works 
in feminist theory and social inquiry of science and technology. Based on these 
theoretical foundations, I am refocusing the issue of machine learning as a 
disembodied form of knowledge promoting objectivity from the perspective of 
Human-Computer Interaction to rethink interactions with technology.  

When culture meets nature  

“I would like to insist on the embodied nature of all vision and so reclaim 
the sensory system that has been used to signify a leap out of the marked 
body and into a conquering gaze from nowhere. This is the gaze that 
mythically inscribes all the marked bodies, that makes the unmarked 
category claim the power to see and not be seen, to represent while 
escaping representation. This gaze signifies the unmarked positions of 
Man and White, one of the many nasty tones of the word ‘objectivity’ to 
feminist ears in scientific and technological, late-industrial, militarized, 
racist, and male-dominant societies, that is, here, in the belly of the 
monster, in the United States in the late 1980s. I would like a doctrine of 
embodied objectivity that accommodates paradoxical and critical feminist 
science projects: Feminist objectivity means quite simply situated 
knowledges.” (Haraway, 1988), pp. 581 

In this text fragment from her essay “Situated Knowledges: The Science Question in 
Feminism and the Privilege of Partial Perspective”, Donna Haraway rejects the idea 
of objectivity in science that would lead to ‘universal truths’, brought by 
disembodied scientists looking at decontextualized facts. In this idea of objectivity, 
there is the myth of purity, where objects of interest are detached from the scientist’s 
subjectivity, the influence of the social forces in the laboratory, or the political 
context within which the science is enacted. Objectivity is seen as a means of 
hierarchizing knowledge by separating what belongs to nature (beyond humans) and 
culture (within humans), the object from the subject, the individual from the group, 
and other equivalent binarities. 

In contrast, knowledge is situated and embedded in social and political contexts. 
And this also applies to technological knowledge and innovation. Haraway’s famous 
figure of the Cyborg (Haraway, 1985) brings forward the idea of an entity that 
cannot be assigned to a category and transcends polarized views (artificial-natural, 
female-male, etc.). To this view, objectivity is seen as a reductionism, a simplification 
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designed to maintain existing power relations by those whose values and interests 
are aligned with the conditions of objectivity (typically white, Western-cultured 
men). 

The concept of objectivity, as highlighted by Haraway, has also been rejected by 
other humanists of science and feminist theorists of science, more or less at the same 
time. Bruno Latour also underlined the danger of the idea of purity in science, which 
is said to be exempt from the context in which its practice takes place (Latour, 1984). 
For him, the scientific practice is a staging between the scientists and the studied 
objects, mediated by instruments and techniques (Latour, 1987). There is no such 
thing as Science (with capital S) as an objective inquiry for truth. The scientific 
practice has its own mode of existence (Latour, 2012), meaning its mode of veracity, 
depending on its condition of development in the laboratory or the field, just as other 
fields have their mode of veracity (such as justice or politics, for example). And the 
problem arises when one mode of veracity becomes hegemonic and encroaches on 
the others, for example, when the scientific mode of veracity becomes synonymous 
with truth by the facts it studies and wants to apply them to politics or justice, for 
example (Latour, 2012). 

Karen Barad, in her famous book “Meeting the Universe Halfway” (Barad, 2007), 
explores the concept of diffraction, introduced by Haraway, that rejects the idea of 
one truth but emphasises that several approaches, texts, or traditions need to be 
dialogically read “through one another”. Her book’s title is evocative: it is not a 
question of discovering an objective and immutable nature but of finding it halfway, 
where our instruments lead us and where nature reveals itself. The phenomenon 
resulting from their meeting (or intra-action) is the source of knowledge. Beyond 
these examples, a large body of work addresses this and related issues concerning 
the state of knowledge and practice, where different perspectives and the 
intersections between these perspectives from social, cultural, economic or political 
groups need to be taken into account (Crenshaw, 1989). 

Returning to artificial intelligence, I aim to deconstruct the dominant standpoint 
described above with the help of these theories. As promulgated within the 
community that technically contributes to its development, this technology takes the 
form of a disembodied authority. This posture is similar to that attributed to science 
and challenged by sociologists and feminist theorists, whose point of view has been 
briefly introduced above. Artificial intelligence, as is often said, is presented as an 
immaterial and disembodied entity: it is not made of matter. It has no tangible, 
visible form in the physical world. And artificial intelligence was a long time seen 
(and sometimes still) as neutral because of technical. The theoretical literature 
presented above helps us to deconstruct a normative view that is too often 
promulgated in specific communities of research practice related to machine 
learning. The problem is not that this community focuses on technical aspects of the 
technology. Technological research, innovation and development have their 
own mode of existence (to borrow Latour’s words) that leads to knowledge creation. 
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The problem begins when an ideology is put forward and alienates other 
standpoints. 

So, why is the culture of disembodied, decontextualised artificial intelligence 
problematic? First, it conveys that there is only one way to conceive artificial 
intelligence and machine learning, based on an enormous amount of aggregated 
knowledge through data scraped from the Internet without curation and little 
moderation. This point of view is part of an economic and political agenda where 
data are resources, as is the computing power offered by clusters of computers, and 
where machine learning is envisaged as an instrument to exploit these resources. This 
view is proposed by corporations who have built their business models based on an 
ecosystem and infrastructures that make them the only ones with the computing and 
data resources to effectively develop machine learning. 

Second, and related to the first point, this culture of artificial intelligence de facto 
excludes any other kind of “intelligence” or “artificiality”. There are many ways of 
looking at intelligence and artificiality, which can foster alternative practices that 
promote efficiency, rationality, performance and competition. Diversity in visions 
can lead to implementing an alternative design for the technology. These alternative 
views may come from marginalised groups and various communities of practice. One 
of these is artists with whom I have worked and to whom I will return in more detail 
later in this chapter. As Harding showed (Harding, 2004), any production of 
knowledge and technology that is detached from a marginalised, or less represented, 
community’s daily experience is more compatible with a group whose needs are 
already met, as opposed to disadvantaged groups, for whom these needs have not 
been met. Indeed, the involvement of communities of practice and marginalised 
groups will surely redistribute the cards in the design, architecture and deployment 
of this technology. 

The standpoint of Human-Computer Interaction 

Since the field of Human-Computer Interaction is interested in phenomena related 
to when human users and technology meet, the area is in a position to help explore 
alternative views and interaction design principles between human users and 
machine learning.  

As a matter of fact, HCI has enriched the set of possible interactions that humans 
can have with machines beyond an objective, cognitivist view of interaction that 
marks the first wave of HCI (Bødker, 2006). In the field’s history, third-wave HCI 
has shown the rise of embodiment in interaction design (Dourish, 2001), promoting 
body-driven methodologies as opposed to rationality-driven ones (Höök, 2018). 
Third-wave HCI also showed the rise of affective computing (Picard, 2000), which 
makes a significant place for emotions in interaction, and user experience (McCarthy 
and Wright, 2004). In other words, the field of HCI has embraced other perspectives 
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where interactions are co-constructed between the users acting in the environment 
and the things with which they interact.  

In this context, the feminist theory of science has made its way to HCI with authors 
such as Bardzell (Bardzell, 2010; Bardzell and Bardzell, 2011; Rode, 2011). Shaowen 
Bardzell wrote (Bardzell, 2010):  

“As computers increasingly become a part of everyday life for ever 
increasing populations in the world—from the rise of domestic computing 
in the West to the rise of ICTs for developing countries—the stakes have 
never been higher. Digital interactions mediate people’s relationships with 
friends and loved ones, with society, and with culture itself. As we aspire 
to develop more pervasive, ubiquitous, and universal technologies, we 
inevitably also must engage in the increasing moral and intellectual 
complexity of our professional activities.”  

The goal of the feminist agenda in HCI is to design interactive systems that enable 
agency, equity, empowerment, social justice, and diversity. It prompts the need for 
socio-technical theory in HCI (to escape the utilitarian view of social science and 
ethnography as a way to generate implications for design (Dourish, 2006)). The 
theoretical groundings come from feminist theories of science such as the works of 
Donna Haraway (Haraway, 1985, 1988), Karen Barad (Barad, 2003, 2007), Sandra 
Harding (Harding, 2004), or Judith Butler (Butler, 2002) (among others).  

Feminist theories and methodologies have given rise to a rich body of research in 
design and interaction design, an exhaustive list of which is beyond the scope of this 
manuscript. As cherry-picked examples, feminist theories in HCI led to address 
questions regarding women’s health (Talhouk et al., 2016), the gender-related 
binarity embedded in the technological infrastructure (Spiel, 2021), or intersectional 
studies on race and gender (Schlesinger, Edwards and Grinter, 2017). This has led 
to a rethinking of HCI in terms of a new wave of entanglements between humans 
and technological beings, where we, as HCI researchers, no longer design 
computational systems that are interactive but we design interactions with systems 
that are entangled with our individual and social lives but are invisible, immaterial, 
and intelligent (Comber, Lampinen and Haapoja, 2019; Frauenberger, 2020). 
However, this last point of view seems to take for granted that intelligent 
infrastructures are themselves objectified, leaving little space for a co-construction 
with the users of these. AI infrastructures are spreading but they are not immutable.  

Feminist theory of science has emerged in opposition to the culture promulgated by 
research and innovation in machine learning technologies. This culture, which I 
highlighted in the previous sections, gave rise to several systems that demonstrated 
racist, sexist, and discriminatory biases against marginalised communities, to which 
there was a need for a theoretical and methodological response. In particular, in 
algorithm fairness and transparency, intersecting research in machine learning and 
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social science and humanities, questions about the position of marginalised 
communities regarding machine learning technology are critical (Hanna et al., 
2020). Strategies have been to organise events in conferences, discussing, for 
instance, the positionality of machine learning, similarly that one has their own 
partial view (Kaeser-Chen et al., 2020). The authors wrote: “Every perspective has 
its limits – there is no view from nowhere. Without an awareness of positionality, 
the current debate on bias in machine learning is quite limited: adding more data to 
the set cannot remove bias”. In a recent study, Klumbytė and colleagues went further 
and organised workshops where students in ML and HCI were invited to think 
through the lens of critical algorithm studies and feminist theories about machine 
learning and artificial intelligence (Klumbytė, Draude and Taylor, 2022). In general, 
the movement is still in its infancy. In my work, in collaboration with Hugo Scurto 
and Frédéric Bevilacqua, we initiated the formalisation of diffractive methods to 
inform art practice with machine learning (Scurto, Caramiaux and Bevilacqua, 
2021).  

Summary 

Seminal works in the feminist theory of science and science and technology studies 
provided the grounding to rethink our interactions with machine learning in a way 
that allows meeting halfway with the technology. HCI and related fields at the 
intersection with machine learning have recently involved these critical concepts in 
operationalizable actions. I want to enrich this work by promoting artistic practice 
and research-creation as a means to further this agenda. In particular, I first give the 
floor to artists working with artificial intelligence to understand their perspective on 
this technology and how they move away from a dominant culture emanating from 
the field. Second, I am presenting an artwork I made in collaboration with a Berlin-
based artist collective. This dance-theatre piece features humans and non-humans, 
including artificial intelligence. It deals with the inherent entanglements between 
species and the resulting violence and empathy, reflecting current issues in Western 
society. 

Focus ● What are AI artists saying about AI?  

This focus examines cultural issues related to machine learning from the perspective 
of artistic creation. I choose to focus on artistic practice because it allows for an 
alternative view to the conventional narrative put forward by the actors of the 
technology, and in the case of machine learning, by the community contributing to 
it technically. Being freed from the normative constraints of research in this field 
opens up new readings of technology, questioning its rational, disembodied and 
exploitative nature. 

Machine learning, or artificial intelligence, can become an object of artistic interest. 
For example, Hito Steyerl developed the visual and spatial installation “This is the 
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Future”, a speculative future represented by plants or animal forms generated by a 
machine learning based algorithm. The artwork also criticises humanity’s desire to 
control what is yet to come. Another example is the work “G5” by Rocio Berenguer, 
where representatives of the 5 types of entities on earth (vegetal, mineral, animal, 
human, and artificial) are meeting to address fundamental questions of living 
together. In my work in collaboration with artists Marco Donnarumma and 
Margherita Pevere, we explored AI as an actor in the performance, which will be 
further detailed in the next section. 

 

 

Figure 23. "G5" by Rocio Berenguer, describes an imaginary meeting between a representative from the five 
species on earth: mineral, vegetal, animal, human, and artificial. Photo courtesy of the artist.  

 

Machine learning can be used in creative and artistic practice as a tool, a material 
and a cultural object. In the previous chapter, I presented a work conducted with 
Sarah Fdili Alaoui (Caramiaux and Fdili Alaoui, 2022), in which we interviewed five 
world-renowned visual artists about their use of machine learning in their creative 
process, with a focus on how artists highlighted the materiality of this technology. 
The second part of the findings of this study focused on the politics behind the use 
of machine learning in the artists’ work and how they are aware of and make these 
explicit. I propose to present the second part of these results in this chapter, echoing 
the above theoretical elements on questioning a normative discourse of artificial 
intelligence, leading to technological determinism, which was seen as disembodied 
and objective. 

As a reminder, the five artists that we interviewed were: Memo Akten, Mario 
Klingemann, Anna Ridler, Jake Elwes and Kyle Mcdonald. A snapshot of their work 
is reported in Figure 17. At the time of the interviews, most of these artists were 
using a widely used generative machine learning model called Generative Adversarial 
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Networks (or GAN) (Goodfellow et al., 2014), which was state of the art in 
generative models from 2014 to around 2020 (Creswell et al., 2018). Two were 
residents at the Google Arts & Culture Institute in Paris. 

I mentioned in the introduction of this section that artists have the freedom to escape 
from the values of artificial intelligence research culture. From our interviews, the 
artists expressed that they do not abide by the epistemological values dominant in 
artificial intelligence technology and are defined by the constraints, goals and 
standards of researchers, engineers and big corporations. Even if they use the same 
computational methods (such as GANs), they express their freedom from the 
underlying constraints resulting from AI culture’s values, such as accuracy, 
productivity and performance. 

For instance, Anna Ridler opposed the epistemological values of AI research by 
reconciling the distinction that has been made between data and model, particularly 
the distribution of visibility and power between the ones developing the models and 
the ones producing the datasets:  

“In all of the big scientific papers that come out (ICML, NeurIPS, etc.) the 
scientists are known but the person who put together the datasets [or 
created the labels] is not known. The datasets are anonymous, and nobody 
talks or speaks about them, they just sit there and people use them. [...] I 
think there could be something interesting to unpack and explore there.” 

The field of machine learning has very few examples of datasets whose authors have 
been acknowledged. One example is ImageNet (Deng et al., 2009), which has 
enabled the development of deep learning and has brought forward underlying 
critical problems with large datasets, such as the temptation of cumulating always 
more data, computational construction of meaning and making part of the 
underlying work invisible (Denton et al., 2021). While scientific progress in AI 
constrains the evaluation of the models on specific datasets, the artists grant 
themselves the freedom to choose the data to use, avoiding the standardised 
mappings between content and annotations. Mario Klingemann pointed out this by 
saying: “I can use materials that they [research scientists] might not be able to use. 
For example, when I collect training data, I do really just pick anything. And if you 
are doing scientific research, you are limited to ImageNet, for instance.” In other 
words, AI then conveys a different meaning: it is no longer a model that has to 
achieve the highest performance on fixed standardised tasks but a material fused 
with data, producing meaning and representations for artists and audiences.  

Second, the power dynamics existing when working with artificial intelligence are 
concrete and made clear by the artists. Artists expressed that crafting AI is a 
challenging and exclusive task that only some can access, either for lack of skills or 
computational power. In AI research, we typically witness that the models are 
released. Still, the data are not, and the artist may not have access to enough 
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computational power to train the models anyways. In this context, Kyle Mcdonald 
reported that the main challenge is to make these technologies more inclusive: 
“sometimes that means taking something very complex and technical and sharing it 
with other people in a way that gives them access to something they wouldn’t have 
access to otherwise. Sometimes that means tool building. Sometimes that means 
storytelling in a way that gives you like a direct experience of something that’s 
happening behind the scenes.” According to him, making AI more inclusive is 
particularly challenging because the design of this technology is on purpose 
“opaque”, reinforcing how the power of understanding and developing them is 
retained among the few researchers and corporations that release them. In his words:  

“They’re designed generally to, like I said, reinforce power rather than 
question power. And they resist our attempts to open them up actually. 
[...] there’s just certain kinds of curtains we cannot pull back. You know, 
we can kind of see what’s on the surface and like dissect that a little bit. 
But then at some point we hit a wall. We can’t look inside Google, we 
can’t look inside Facebook. We can’t look at their algorithms. We can 
maybe read the research papers that they publish sometimes because it 
turns out that the current iteration of machine learning, which is deep 
learning, has been very open about the research process. But even when 
we read those papers, like ultimately, we don’t have access to the data that 
they use, we don’t have access to the computing resources that they use.” 

Not having all the ingredients leading to the creation of the final tool is a way to 
keep some mystery about the system’s capabilities, to put forward a discourse 
centred on magic rather than practical explanation, and a lesson centred on ideology 
rather than materialism. 

Third, and finally, we found that the artists engage with ethical questions regarding 
their responsibility regarding how they use AI, which does not obviously occur with 
other technology. For instance, Jake Elwes said, “it’s your responsibility [as an artist] 
to not necessarily explain the technology, getting people to think slightly deeper of 
what this stuff is capable of, and convey a bit of a message about it”. This does not 
mean an artwork produced with machine learning must convey a message about the 
technology. But the status of AI in Western culture is such that the use of this type 
of technology will surely trigger an emotional response in the audience. Jake Elwes 
expressed regret for the specific use of “AI to kind of bamboozle the public”. His 
way of using it ethically is by being “very honest about it [AI] because I think there 
is far too much miscommunication around it [AI]”. 

As mentioned in the previous sections, AI has been widely used in the (mainstream) 
media and the academic world to refer to a wide variety of techniques but rather 
specific values. These definitions and scope delimitations have an inherent ethical 
agenda. For example, in the previous section, I mentioned the arbitrary binarity 
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between nature and culture and between artificial and natural intelligence. Kyle 
Mcdonald shared his thought on that:  

“There’s the obvious understanding of what artificial is, a kind of artificial 
as opposed to natural, that we have a sort of natural intelligence in 
humans. I don’t find that to be a super helpful distinction personally 
because of the fact that I see intelligence as very collective and hybrid itself. 
[...] What do you call a crowd of people working together? Is that a 
natural intelligence or is it kind of artificially created out of their 
relationships? I’m not sure. [...] I think that there’s also artificial for me 
ties back to a very long history of basically anybody in power abusing 
their power to diminish those that they deem kind of lesser. [...] this idea 
of distinguishing between the natural and artificial, for me, it connects to 
other kinds of classifications that have been used to reinforce power. And 
that’s disturbing to me. I think we have to be careful about using those 
kinds of terms.”  

This quote illustrated what I mentioned early in this chapter about the alternative 
views of “intelligence” and “artificiality”. These alternative views help reflect on 
technology and culture. The artists acknowledge that working with artificial 
intelligence is not neutral. This inspires them to develop a critical discourse in their 
artworks about the politics and ethical pitfalls behind this specific technology. As a 
technology fundamentally designed to analyse massive amounts of data, there has 
been a high incentive for surveillance applications. In the piece entitled “Learning to 
See: Hello World!” Memo Akten involved elements of reflection on the link between 
artificial intelligence and surveillance. The work uses a CCTV camera that captures 
images of the exhibition hall. It then feeds the artificial intelligence model that 
ultimately recreates a vision based on what it has learned to see, cf. Figure 24 (left). 
In “Exhausting a Crowd”, Kyle Mcdonald explicitly involves crowd surveillance, 
where an online audience is invited to tag human activity from CCTV images from 
a public space, cf. Figure 24 (right). 

 

 

Figure 24. (left panel) “Learning to See: Hello World!”, 2017, by Memo Akten [Photo Courtesy: Memo Akten]; 
(right panel) “Exhausting a Crowd”, 2015, by Kyle McDonald [Photo Courtesy: Kyle McDonald] 
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In conclusion, by analysing these artists’ practices, I have highlighted how political 
issues related to artificial intelligence are made explicit. Through different forms of 
art, the artists question the dominant position of the algorithm over the data. The 
algorithm is compared to the art, while data is compared to craft and hidden. This 
dichotomy keeps the technologies developed opaque, which leads to a disembodied 
technology that escapes us. This is also made clear by artists who question the notion 
of artificiality as opposed to the natural. This change in discourse is, therefore, there, 
but still not made apparent enough. Importantly, these views are then enacted into 
artworks conveying alternative experiences and narratives.  

Focus ● Humane Methods 

This second focus examines the question of artificial intelligence as a cultural and 
political object in an artistic performance that I developed in collaboration with 
artists from the Berlin-based Fronte Vacuo collective20. Humane Methods, a dance-
theatre production, involves human and non-human performers, including artificial 
intelligence. The piece was initiated in 2019 and premiered in 2022.  

Through the presentation of the Humane Methods and the process of its creation, I 
seek to show how the play enacts a performative realisation of the theoretical aspects 
mentioned above, including the critique of a disembodied technology, the power 
relations between human and non-human entities, and the critique of the arbitrary 
separation between natural and artificial, object and subject, and individual and 
group.  

Research-creation methodology 

Humane Methods is a dance-theatre production that began with a long-term 
collaboration with artist Marco Donnarumma with whom I have already worked on 
a piece presented in the first chapter of this manuscript. Humane Methods inherits 
from these past collaborations, where machine learning, involved in both works, 
evolved from a tool to perform gesture recognition to a political object, an actor of 
the performance. Elements of this evolution were described in a dedicated article 

                                                

 

 

20 Fronte Vacuo is a collective of artists based in Berlin, Germany. Like a fungus, then, Fronte 
Vacuo started growing underground, soon ramifying itself through an extended network of 
artists and researchers with diverse backgrounds and interests, ranging from stage design, 
wearable sculpture, engineering, architecture, computer science, cultural studies, curatorial 
practices and cultural production. http://frontevacuo.com  
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(Caramiaux and Donnarumma, 2021), where we implemented a research-creation 
methodology.  

Research-creation is an interdisciplinary methodology where artistic practice 
intersects with experimental research practice to provide new insights on topics of 
inquiry (Springgay, Irwin and Kind, 2005). A particularity of the method involves 
an experimental procedure that cannot be determined in advance and usually relies 
on speculations. Sarah Truman discusses research-creation as “situated 
speculations” (Truman, 2023), where an artist-researcher speculates about aimed 
potentialities that unfold during the creation process while being situated in the 
larger context unique to the researcher through their subjective positionality. 
Similarly, Erin Manning highlights that research-creation involves being 
“speculatively pragmatic” (Manning, 2016), which means being interested in “the 
pragmatic force of the conditions of the here and now, while simultaneously 
remaining oriented to the as-yet-unknown”.  

Therefore, in research-creation, we start with ideas and speculations but we avoid 
setting up fully planned objectives. The researcher’s positionality (their 
“situatedness”) is part of the research practice, which means that the researcher is 
not investigating the object of interest from a detached perspective (the objective 
vision criticized by Haraway and other theorists in science and technology studies). 
Still, the researcher is part of the investigation (so does their subjectivity). Research-
creation represents a relevant framework for exploring art and science coupling, for 
it generates knowledge from action, self-reflection and empirical experimentation 
(Biggs, 2004).  

Research-creation has been used in human-computer interaction, where art practice 
intersects with computer science and social science. In this sense, research-creation 
is intrinsically linked to art-led research, research-through practice, and 
performance-led research. One of the objectives of implementing such methods in 
HCI is to leverage the creative nature of artists to study alternative use of 
technologies. As Steve Benford put it: “artists’ uses of emerging technologies are 
often highly innovative and unusual, stretching the technology in unforeseen ways, 
highlighting new design values and approaches that are sometimes contrary to 
received wisdom in HCI (e.g., ambiguity or discomfort […]), and opening up new 
areas of application.” (Benford et al., 2013).  

Using art-making as the drive of the research inquiry allows for studying alternative 
uses of technology that would not have been made apparent otherwise, leading to 
new knowledge in HCI. The methodology has found an echo in dance performances 
by conducting interviews of artists on stage as well as members of the audience (Fdili 
Alaoui, 2019; Correia et al., 2021), showing emergent relationships between dance, 
media and interaction as well as the tensions and negotiations that emerged from 
integrating technology in art. In music performances involving machine learning 
technology, Fiebrink and Sonami have reflected on their long-term researcher-artist 
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relationship through mutual interviews, highlighting how machine learning became 
part of the artist’s practice in a way that was not predictable (Fiebrink and Sonami, 
2020). In my research, I have used a research-creation approach to document and 
reflect on the use of machine learning in music making and performance (Caramiaux 
and Donnarumma, 2021), through my collaboration with Marco Donnarumma, 
which I detail below.  

Creation, production, termination 

The Humane Methods project is a collaborative endeavour that involves, aside from 
the collaboration between myself and artist Marco Donnarumma, a shared 
authorship between Margherita Pevere and video artist Andrea Familari, who form 
the Fronte Vaccuo collective. In particular, the artistic concept for the piece was 
jointly created by Pevere and Donnarumma and then furthered through close 
collaboration with the others like myself. I collaborated with the collective from the 
initial idea in 2019, the design of the machine learning software and research, until 
the premiere in 202221. The original idea of the creative work was to work on the 
violence generated by the polarisation of opinions in the social and political spheres, 
accentuated by the increasing part played by algorithmic methods in our access to 
and communication of information. The play is set in the context of our 
contemporary Western societies, in which we grew up and were educated. 

The play initially involved two performers dressed in grey cloth. These performers 
were not talking and started in a world not identifiable in space and time. The world 
was filled with vegetal, organic forms and cables. The piece included an additional 
presence embodied on stage through lights and sounds. In the background, an 
algorithm we built controlled these two media. This initial version of the algorithm 
was desperately trying to optimise a function that had no meaning. By trial and error, 
the algorithm slowly converges to the solution before being reset at a specific 
interval. 

In June 2019, we had the opportunity to collect subjective feedback from the 
audience during an open rehearsal at the Centre des Arts Enghien les Bains (CDA). 
Our encounter with the audience in France was significant, for it allowed us to open 
our aesthetics and research to a general public, most of whom had little or no 
familiarity with the ongoing project or our previous works. We found that several 

                                                

 

 

21 I should mention that the COVID-19 pandemic has slowed down the creation and 
production process. In fact, this period was very difficult for artists worldwide. In France and 
Germany, Culture was one of the last sectors considered by the governments. Several theatre 
and concert venues, but also museums, remained closed for months after the end of the first 
lockdown.   
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spectators did not realise that music and light were driven by an algorithm. This 
feedback confirmed our intuition about the challenges of making artificial 
intelligence perceivable to a public audience. Our algorithm only manifests indirectly 
through lights and music without a physical embodiment. But this was a choice we 
made to reinforce our critical stand on the impact of artificial intelligence in society; 
this technology is pervasive and ubiquitous while simultaneously invisible and 
implicit, integrated seamlessly as they are in institutional structures and interpersonal 
lives. “Our AI” was designed with this in mind and is therefore omnipresent and 
unobservable.  

As a second step, the Humane Methods project expands into a series of dance-theatre 
artworks: ΔNFANG, ℧R, ΣXHALE, δISSOLUTION. Each one is called a rhizome 
of the Humane Methods project, which follows the initial task of exploring the 
multi-layered nature of today’s violence in our societies. The communicated project 
description was that “the project departs from the assumption that through the 
physical and psychological brutalization of people and non-human beings, the 
combination of digital technologies and the capitalistic urge has driven the natural 
ecosystem towards impending destruction. The project then aims to dissect the 
violence of algorithmic societies, where power structures, knowledge creation, and 
normative criteria become means of manipulation.”  

I will focus on ΣXHALE, the ‘rhizome’ in which I have been the most involved. The 
piece starts with an ecosystem of catharsis, a biome not meant to be situated in time 
and space, similar to the play’s first version. But now, the audience sits in 
greenhouses, creating a physical separation between their space and the world of the 
piece (Figure 25 shows a part of the stage with the greenhouses in the background). 
The greenhouses are made of transparent and semi-transparent materials, which 
allow the audience to see what is happening outside. And it will allow performers to 
interact with the audience during the unfolding of the piece.  
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Figure 25. Picture of the scenography before the beginning of the performance. The audience is sitting in the 
greenhouses and watching the performance through the transparent windows. The stage is filled with organic 
shapes, cables, and plants.  

 

Outside, the stage is filled with human and non-human beings, including plant 
specimens and fungi growing on costumes, uncompleted or destroyed architectural 
structures, and silicon-based beings – such as artificial intelligence algorithms 
running on computers and visualised on screens. Six human performers are on stage, 
dressed in grey cloth, and their faces are initially hidden. They move slowly among 
cables and organic forms. 

From the original version of the piece, we kept the structure in loops, where 
performers repeat some actions to learn what the world is made of. At the beginning 
of each loop, they return from where they come from. At the end of each loop, they 
reach a point always further. Conceptually, each loop involves humans who dictate 
instructions through actions, and algorithms pick up instructions and repeat them in 
their own way. The other living things suffer instructions and capital increases. Then 
it repeats: humans dictate, algorithms repeat, living things suffer, and capital 
increases. It is an intricate network of relations, entanglements, a continuous loop of 
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actions and consequences, where everyone has a responsibility (humans and non-
humans).  

 

   

Figure 26. Photo courtesy of Giada Spera. Picture from a live performance of Humane Methods at Romaeuropa 
Festival. Portrayed is one of the iterations of the ritual at the core of the performance. It is possible to observe 
in detail the lighting generated by the AI. 

 

In the piece, the overwhelming authority of humans is put into question. They try to 
dictate but feel dictated from the audience’s perspective. Seedlings, fungi and custom-
made artificial intelligence software (<dmb>) are co-creators. <dmb>, the “AI 
performer”, orchestrates rhythm, music and lights in response to the actions of the 
other performers. This new version of the algorithm sees through video cameras that 
are sometimes fixed and sometimes hand-held by performers. The algorithm learns 
what it sees and reconstructs it endlessly in a “brute force” way. The results are 
projected onto screens (see Figure 25 (left)) dispatched in the greenhouses. 

ΣXHALE puts into question the viewpoint of the audience. Placed in the greenhouse, 
the audience feels safe and detached from this world that it does not understand but 
whose violence is perceived. As the loops continue, the performers interact with the 
audience through the semi-transparent windows. The audience, which initially had 
an outside view of the stage, is now part of it. During the performances, we saw 
people engaged and affected by these interactions and others trying to avoid them. 
The audience had to think about their position in this world of violence and ritual. 
But, a striking moment is when the piece ends. The greenhouses open while the 
performance continues, slowly but unchanged. The audience is free to leave. And so, 
there is no clear ending. There is a continuity between the moment of the 
performance and the moment of their reality outside. There is no moment for 
applause, so there is no clear break between fiction and reality. The audience leaves 
still feeling the experience of the play. This is a vital element of the piece that clarifies 
this idea of a continuous interplay between entities and situations. Polarities are 
erased. 
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Discussion 

This chapter addresses the perspective of machine learning as a cultural object, which 
means the representations technology takes on when it is removed from its purely 
technical character. I am talking about visual representations, as illustrated at the 
beginning of this chapter, but also, and especially, conceptual ones. First, machine 
learning took the form of a broader concept termed ‘artificial intelligence’. Ill-defined 
and culturally loaded, the term triggers cultural imaginations borrowed from a 
Western history of science and technology: a disembodied, rational, efficient agent 
in competition with humans. The problem I tried to highlight is that this view 
alienates others, and there is a lack of constructive discourse on its underlying beliefs. 

To explore fruitful ways to interact with machine learning, and artificial intelligence, 
I proposed deconstructing the dominant standpoint through the feminist theory of 
science and previous related work in science and technology studies. This theoretical 
work helps bring a perspective where polarisation and binarities are avoided to give 
space to mutual and transformative agencies between the different actors situated in 
their context. The idea is not to consider artificial intelligence as this disembodied 
and rational entity that competes with us but as an alternative form of intelligence 
in an alternative form of materiality. 

In this endeavour, I believe that creative and artistic approaches give a fruitful voice, 
which I showed through the testimonies of visual artists on their use of artificial 
intelligence, as well as through a dance-theatre piece on which I collaborated 
criticising the power taken by artificial intelligence in our Western algorithmic 
society and depicting how it is part of a network of entangled entities (humans and 
non-humans). This is a personal reflection and an academic work in progress that I 
wish to nourish and pursue, as explained in the future perspectives at the end of this 
manuscript.  

Some critics and answers  

The task of highlighting the cultural and political tenants of technology exposes, by 
rebound effect, my subjectivity and cultural baggage that allows me to hold this 
discourse. The exercise is, therefore, risky and can lead to critics. Here I present some 
of the critics, gathered through feedback, and propose a response. 

For some readers, the call to deconstruct the dominant view of artificial intelligence 
might seem idealistic. I am aware that part of the problem with the widespread view 
of artificial intelligence, as described above, stems from marketing strategies related 
to corporate objectives for developing and exploiting this technology. And proposing 
to deconstruct their communication of artificial intelligence will not change it. 
However, this deconstruction can inspire other actors, such as those in the creative 
and cultural sectors, and help them imagine different perspectives, applications and 
designs using artificial intelligence. The products of these sectors may help demystify 
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and decolonise artificial intelligence and, in turn, affect the communication of the 
leading players in the machine learning field. Peter Drucker said, “culture eats 
strategy at breakfast”. This saying refers to innovation and entrepreneurship strategy 
but can, in my opinion, be applied here to illustrate that culture here enables artificial 
intelligence adoption. Note that culture refers here to what Simondon defines as “a 
basis of meaning, means of expression, justifications and forms. A culture establishes 
a regulating communication between those who possess it” (Simondon, 1980). 
Eventually, there is a cultural battle between AI corporations, pushing their agenda, 
and a local, diversified, dynamic, and non-structured counter-power made of people 
and creative and cultural actors. 

Second, to emphasize the disembodied nature of artificial intelligence technology, I 
presented examples of techniques used in games and creativity without mentioning 
the fact that, behind the scene, there was a myriad of people operating the various 
levers of the machine learning pipeline to make them work (engineers, designers, 
scientists, experts, marketers, policymakers, micro-workers, and more). Artificial 
intelligence is, therefore, not detached from human actions and agency. However, 
the argument I intended to make was not to say that artificial intelligence requires 
human labour. We actually know it does. In the AlphaGo movie, there is particular 
care to demonstrate the team’s collective effort, including their anxiety a few days 
before the match, as the algorithm did not look as good as expected. Still, they had 
no time to run any more training sessions. The film did an excellent job of showing 
the collective human emotion during the construction of this entity. We know that 
artificial intelligence is, eventually, a collective human effort (with its apparent 
inequalities). The narrative is that collective human effort creates machines able to 
compete and overcome their creators. And what remains is the outcome of this effort. 
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Conclusions 

“Not a given, it’s ongoingly and actively constituted and reproduced.”  
Lucy Suchman 

 

Machine learning is widely discussed in many academic fields and beyond academia. 
So, why did we need another text on the matter? Because machine learning lacks 
articulated perspectives as a situated object in interactions with people, 
infrastructures, and contexts of development and use. Machine learning is 
“ongoingly and actively constituted”, to use Suchman’s words, due to these 
heterogeneous situated interactions. Whether it is used to perform a data analysis 
task by scientists in the context of an experimental study; used by an artist to build 
a body-based musical instrument in rehearsal rooms or live on stage; used to reflect 
on our contemporary societies by a humanist scholar; or used to build a state-of-the-
art image classification model by a machine learning expert; machine learning is in 
interaction with people, within a context situated in time and space. Then its use in 
any project is subject to neither neutral nor obvious decisions. One of the 
contributions of this Habilitation was to make this point explicit through theory and 
focused examples, contextualised in Human-Computer Interaction, and shed light 
on what it means to say that machine learning is “used”.    

Three contemporary views 

I chose to focus my Habilitation on machine learning in interaction to have the 
opportunity to bring together three views: that of a tool, a material, and a cultural 
(and political) object. Like many decisions, this one is motivated by a subjective 
position linked to my research object and the context of my research practice. 

Working with machine learning as a tool has advantages, as I have shown in studies 
of human perception or in the movement-sound interaction design, where machine 
learning was used for gesture recognition. The process starts by isolating a problem 
and then formalising it in a way compatible with the tasks handled by the machine 
learning algorithms. However, this view obscures other rich phenomena in the 
interaction, especially during exploration and hesitation in the tool’s design. This is 



91 
 
 

 

demonstrated in creative and artistic applications, where iterative processes are 
critical. Looking at it as a design material helped me enrich the picture. The tool now 
has a materiality that can be used as such. Machine learning can be crafted, its 
crafting practice can be described and analysed, and its expressiveness as a material 
can be exhibited. But, the decisions made while using the machine learning tool or 
while crafting this material are imbued with the cultural representation we 
(designers, artists, scientists) had of the technology. The terminology used plays a 
critical role, as well as the vision and fantasy triggered by what is feasible with this 
technology. Considering the representations machine learning conveys and its 
associated values make it possible to complete the analysis. 

Having said that, I wish to add that these perspectives (tool, material and culture) 
were not born with this manuscript. These perspectives have existed heterogeneously 
and fragmentedly in the fields of human-computer interaction, design research and 
the literature on science and technology studies. As I mentioned in the first part of 
this manuscript, machine learning users often refer to technology as a tool to help 
them perform tasks, whether functional or creative. Indeed, in the art world, it is not 
uncommon for an artist to compare generative algorithms to a new tool, augmenting 
the possibilities of a medium, such as a computer. Similarly, several academics have 
written about machine learning as a design material in design research, particularly 
intending to create interactions that enhance the user experience. In a recent event 
addressing the use of artificial intelligence in the cultural and creative sectors, a 
theme that I have been involved in over the past years, a researcher in AI Ethics was 
giving a talk with the following structure: AI as an instrument, AI as an 
infrastructure, AI as an ideology. The similarity with the chosen perspectives in this 
manuscript was striking, even if the content was, for her, about law and justice. 

Being situated in these different socio-cultural and socio-economic research contexts, 
I am also inspired by and infused by this previous work. Here I participate in this 
effort by combining the tool, the material and the cultural object in the same text 
and putting them into interaction. I presented these three perspectives in three 
separate chapters of this manuscript. But this was not motivated by the desire to 
separate them. Their separation was artificial insofar as it was staged to show the 
interdependencies between the first and the second, the second and the third and the 
first and the third. These perspectives are contemporary and not separable.  

Future perspectives 

My research activity so far has primarily focused on studying and developing 
machine learning-based systems to support creativity, human learning and pedagogy. 
However, more recently, I have been increasingly attentive to considering the social, 
political and cultural framework of academic research projects involving machine 
learning. A first reason was to avoid the pitfall of carrying an uninteresting and 
dangerous normative discourse, as illustrated in the third Part of this manuscript. A 
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second reason was to guide the design and evaluation of systems to reflect a scientific 
approach that promotes people’s agency, equity, empowerment, social justice and 
diversity. 

This interest has taken shape through ongoing research projects. These projects 
increasingly involve collaborative settings and situated interactions. For example, we 
recently explored how a group of users collaboratively taught an image classification 
system in a project led by Behnoosh Mohammadzadeh and supervised by Jules 
Françoise, Michelle Gouiffès and myself. In this preliminary study, the task was to 
train a system to recognise dance styles from images. Each participant could upload 
images through a web application, train a classification model locally and then share 
the data and the model with the rest of the group. Participants could also share 
insights with their collaborators via a chat. The application worked online, accessible 
from a phone, tablet or computer, whether at home, on the move or at work. 
Participants’ data were secured. Figure 27 depicts a snapshot of the application that 
we developed in the context of this research project. 

 

 

Figure 27. Screenshot of the application developed by Behnoosh Mohammadzadeh and Jules Françoise in the 
context of the project investigating collaborative teaching strategies of an image-based classification system.  

 

What do we expect to achieve with this work? We believe that inspecting 
collaborative strategies developed by the participants can have significant impacts. 
First, collaborative teaching can help mitigate bias in machine learning-based 
systems. Having multiple ‘machine teachers’ helps bring diverse opinions to a topic 
and develop a plan to reduce biases. These strategies could subsequently be 
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operationalised in other contexts and at other scales. Second, collaborative teaching 
can help generate knowledge about the application domain (here, dance) and the 
underlying technologies. The critical element in this type of application, and which 
has come up throughout this manuscript, is users' access to the different stages of 
machine learning, particularly the learning loop. 

A second example I would like to report is an ongoing project with Necker Hospital 
in Paris. In this project, we design and develop an application to assist tracheal 
intubation in the context of pediatric surgery. The project involves developing an 
application that relies on clinical data to make a recommendation dedicated to the 
anaesthetist. The anaesthetist can consult this recommendation and correct it if 
needed, continuously feeding the database. The surgeons and the anaesthetists can 
train the model. Interpretable indicators need to be implemented to help them decide 
when and how to train the model. That being said, our approach in this project was 
not to deliver a solution where machine learning becomes a problem solver. We are 
trying to co-construct the infrastructure with the actors of the field (surgeons and 
anaesthetists), which implies understanding the socio-technical framework of 
deployment. 

These two projects illustrate what my research programme will look like. I am 
willing to implement a programme structured on the study of situated interactions 
with machine learning and artificial intelligence technologies, involving multiple 
actors through various application areas. I will ensure to strengthen this effort by 
the theoretical means of critical concepts inspired by feminist theorists and science 
and technology studies. These means will help me to develop methodologies that 
consider the positionalities of human and non-human stakeholders, including 
environmental considerations. These methodologies will lead to concrete design 
actions and software implementations that reflect, as best I can, this approach and 
intention. 

 

Figure 28. Illustration of the socio-technical and socio-cultural networks involving data-driven machine learning 
technology.  
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