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Résumeé

Cette these s’attele principalement au probleme de réalisation des espaces de Besov et Sobolev
homogenes sur ’espace entier et certains demi-espaces. Ce probléme de réalisation des espaces de
fonctions apparait naturellement lors de I’étude du caractere bien posé global en temps et des
problémes de régularité de certaines équations paraboliques dans les domaines non-bornés. Les
constructions proposées dans cette these étendent celles initiées par Bahouri, Chemin, Danchin,
Hieber, Mucha et Tolksdorf au cours de différents articles et monographies. On passera en revue
principalement les résultats de densité, d’interpolation réelle et complexe, ainsi que les résultats
de trace sur le bord. Une difficulté majeure vient du fait que certains des espaces vectoriels
normés considérés ne peuvent pas étre complets, ni complétés, au risque de ne plus étre constitués
d’éléments identifiables a des distributions.

Le manque de complétude pour certains espaces requiert alors une nouvelle construction des
outils afin de pouvoir exploiter la théorie des opérateurs et en particulier la régularité maximale
parabolique globale en temps dans les espaces de Lebesgue. Une reconstruction de la théorie
de l'interpolation et des opérateurs homogenes a été effectuée par Danchin, Hieber, Mucha et
Tolksdorf, afin d’obtenir dans ce cadre des estimées globales en temps pour une régularité maximale
du type Da Prato-Grisvard pour des équations paraboliques issues d’opérateurs sectoriels injectifs,
non-inversibles. On se sert de ce cadre afin d’établir un nouveau type de régularité maximale
globale en temps, avec une estimation de trace adaptée, ou I’on remplace I'espace de Lebesgue en
temps par un espace de Sobolev homogene.

La théorie revisitée de l'interpolation et des opérateurs homogenes en combinaison avec notre
construction des espaces homogenes et leurs propriétés sont appliqués a I’étude du Laplacien de
Hodge sur le demi-espace plat en dimension arbitraire. On déduit de cette analyse la décomposition
de Hodge/Helmholtz, pour tout degré de formes différentielles, des espaces de Sobolev et Besov
homogenes qui se trouvent étre essentiellement optimale du point de vue de la régularité. En
outre, cela nous permet de déduire de nombreux résultats de régularité maximale pour divers
systémes d’évolution de Stokes ou Maxwell assujettis a diverses conditions au bord. Ceux-ci
peuvent étre d’un intérét certain en mécanique des fluides et en électromagnétisme.

Enfin, on se concentrera sur la construction et la réalisation des espaces de fonctions homogenes
sur les ouverts qui sont des épigraphes de fonctions uniformément lipschitziennes a valeurs réelles.
On proposera également une construction des espaces homogenes sur le bord, ainsi qu’un théoreme
de trace essentiellement optimal du point de vue de la régularité avec des estimées homogenes du
point de vue des normes.

Mots clés : Espaces de Sobolev homogenes, Espaces de Besov homogenes, Traces, Régularité
maximale, Décomposition de Hodge, Systeme d’évolution de Stokes



Abstract

This thesis is mainly concerned with the problem of realization of homogeneous Besov and
Sobolev spaces on the whole space, and some half-spaces. This problem of realization of function
spaces appears naturally when studying the global well-posedness in-time and the regularity
problems of some parabolic equations in unbounded domains. The constructions proposed in
this thesis extend those initiated by Bahouri, Chemin, Danchin, Hieber, Mucha and Tolksdorf in
various articles and monographs. We mainly review the density, real and complex interpolation
results, as well as some results for traces on the boundary. A major difficulty comes from the fact
that some considered normed vector spaces cannot be complete, nor be completed at the risk of
not being constituted of elements identifiable with distributions.

The lack of completeness for some spaces requires then a new construction of the tools in order
to be able to exploit the operator theory, in particular for the trace estimates in the case of
global-in-time parabolic maximal regularity for Lebesgue spaces. A reconstruction of the theory
of interpolation and homogeneous operators has been carried out by Danchin, Hieber, Mucha
and Tolksdorf, in order to obtain global-in-time estimates for maximal regularity of the Da Prato-
Grisvard type for parabolic equations arising from injective, non-invertible sectorial operators.
We use this framework to establish a new type of global-in-time maximal regularity results, with
adapted trace estimates, where we replace the Lebesgue space in time by a homogeneous Sobolev
space.

The revisited theory of interpolation and homogeneous operators in combination with our
construction of homogeneous spaces and their properties are applied to the study of the Hodge
Laplacian on the flat upper half-space in arbitrary dimension. From this analysis, we derive the
Hodge/Helmholtz decomposition, for any degree of differential forms, of homogeneous Sobolev
and Besov spaces which is essentially optimal from the regularity viewpoint. Moreover, it also
allows us to deduce many parabolic maximal regularity results for various Stokes or Maxwell
evolutionary systems subject to various boundary conditions with global-in-time estimates. Those
results may be of interest in fluid mechanics and electromagnetism.

Finally, we also focus on the construction and realization of homogeneous function spaces on
the open sets given by epigraphs of uniformly Lipschitz real-valued functions. We also propose
a construction of homogeneous function spaces on the boundary, as well as a trace theorem
essentially optimal from the point of view of regularity with homogeneous estimates from the
point of view of norms.

Keywords: Homogeneous Sobolev spaces, Homogeneous Besov spaces, Traces, Maximal regular-
ity, Hodge decomposition, Evolutionary Stokes system
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Introduction

En Francais
A I'origine

Un certain nombre d’équations aux dérivées partielles non-linéaires décrivant une évolution
temporelle peuvent étre écrites sous la forme d’une partie parabolique linéaire et d’un terme
non-linéaire. L’intérét de telles équations provient du fait qu’elles soient issues de disciplines
appliquées telles que la physique, la chimie, ou encore la biologie.

L’une des plus importantes d’entre elles servira de support pour nous guider au cours de
Iintroduction des problémes soulevés et (partiellement) résolus dans cette these. Il s’agit des

équations de Navier-Stokes décrivant 1’évolution des champs de vitesses pour un fluide homogene
incompressible

Ou—Au+Vp = —(u-V)u, on(0,T)x9Q,
dive = 0, on (0,T) x Q, (NSE)
U(O) = U

d’inconnue (u,p) : (0,7) x @ — R™ x R, ou 2 est un ouvert de R" (avec éventuellement un
jeu de conditions au bord pour fermer le systéme (NSE)), T € (0, 4+00], u est la vitesse du fluide
considéré, p la pression du systeme, et ug : @ — R™ un champ de vitesse initial donné vérifiant
div ug = 0. La condition dite de divergence nulle div v = 0 traduit ici I'incompressibilité et
Ihomogénéité du fluide. On incitera le lecteur & consulter [Lem16, Chapters 1, 2 & 3] pour plus
de contexte historique et physique autour du systéme (NSE) dans le cas Q = R™.

Si l'on s’intéresse au caractére bien posé global en temps de (NSE), i.e. T' = 400, il est alors
naturel d’essayer de déterminer un espace de fonctions adapté pour le choix de la donnée initiale
ug, disons pour que l'on ait un controle global en temps sur (J;u, Au) dans LI(R,4, LP(£2)) avec
p,q € (1,400). On peut également traiter cette question dans le cadre d’un probléme de Cauchy
linéaire abstrait

(ACP)

Ou(t) + Au(t) = f(t), 0 <t < o0,
u(0) = wp dans X. ’

ou A est un opérateur raisonnable générateur d’un semi-groupe fortement continu et uniformément
borné (e_tA)t>0 sur un espace de Banach X. Le probleme étant linéaire, on peut pour l'instant
supposer f = 0 et vérifier que l'espace moralement induit par la (semi-)norme

+ d 1 + 1
o0 B 1 _ t q o0 _ q
o= (0Pl ) = ([ e o)

-(/ +°°<at<e—tAuo>X>th);

semble étre un candidat naturel, pour lequel on a méme ¢ — e~*4ug est continue & valeurs dans

Da(l— é, q). Plus généralement, cela nous amene & considérer les espaces moralement induits
par les (semi-)normes

1
+oo 3 B dt q
lellssom = ([ @ lac el ) o ge sl @D

Le cas particulier de A = —A sur X = LP(R") est trés bien documenté et connu, voir par exemple
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[BCD11, Theorem 2.34], on a, pour 8 € (0,1), p,q € [1, +o<],

1
+oo B dt q
||v@_A(e,q>=(/(J (t 9||Aemv||muan>>qt) ~paaton [0l o (0.2)

ol B;,q(R”) est Pespace de Besov homogene défini par exemple dans [BCD11, Chapitre 2], [BL76,
Chapter 6, Section 6.3], [Tri83, Chapter 5]. Le lecteur qui n’est pas familier avec les espaces de
Besov, en particulier ceux homogeénes, peut se raccrocher a 1’égalité BS)Q(R") = H*(R") avec
(semi-)norme équivalente [[v|y. gy = [(=A)2v[|2gn), et pour s =1 [Vl gny = IVVlL2@n)-

Par I’équivalence de normes (0.2), il parait naturel de nommer la famille d’espaces vectoriels
qui émergent de la famille de (semi-)normes données dans (0.1) espaces de Besov adaptés a
l’opérateur A. Lorsque A est un opérateur sectoriel, inversible ou injectif, une caractérisation
simple a été donnée grace l'interpolation réelle, plus exactement

121l 1 (6,q) ~0.0 120l x,p Ay o

°

ot D(A) correspond & la complétion du domaine D(A) pour la norme ||A-|x. Lorsque A est
inversible, on mentionne que D(A) = D(A) avec équivalence des normes. Ce fait a été grandement
revu dans la littérature, par exemple par Haase [Haa06, Chapter 6] ou encore Lunardi [Lunl8,
Chapter 6]. Cela permet souvent de décrire complétement Iespace lorsque le domaine de A a
lui-méme une description convenable. On mentionne également le récent travail de Batty et Chen
[BC20] qui reprend la construction d’une fagon plus générale pour les opérateurs sectoriels en
donnant un certain nombre de caractérisations équivalentes, par exemple de type Littlewood-Paley,
ainsi qu’une longue liste non-exhaustive de propriétés complémentaires.

Une description effective des espaces de fonctions adaptés lorsque 'opérateur A a une forme
explicite a aussi été largement étudié dans la littérature. Le cas des opérateurs elliptiques sous-
forme divergence sur les espaces LP s’est vu porter une attention toute particuliere. On citera
par exemple, sous ’hypothese d’estimées Gaussiennes et de Poisson sur le noyau du semi-groupe
engendré, les travaux de Bui, Duong et Yan [BDY12] et de Cao et Grygor’yan [CG20] ou la
coincidence avec des espaces de Besov classiques est également établie dans certains cas. Sous des
hypotheses plus générales, la coincidence est montrée pour des espaces ’assez proches’ de L? dans
le monographe par Amenta et Auscher [AA18, Chapter 5].

Problémes émergeant : la réalisation des espaces homogénes

L’apparition d’espaces de Besov homogenes (0.2) pour le choix conditions initiales, pose la
question du choix de réalisation de ces espaces, si I’on souhaite revenir a 1’étude du probleme
non-linéaire (NSE) pour 2 = R™.

En effet, la construction des espaces de Sobolev et Besov homogenes est faite usuellement,
[BL76, Chapter 6, Section 6.3], [Tri83, Chapter 5], & partir de 'espace des distributions tempérées
quotienté par les polynomes §'(R") / Clz] afin d’en faire des espaces vectoriels normés. Il n’aura
pas échappé au lecteur attentif que les normes homogenes, par exemple ||-||ps (Rnys D€ séparent
pas les polyndmes, et donc ne sont pas réellement des normes sur 8'(R™). Cela pose un probléme
pour définir la non-linéarité de (NSE).

Pour [u], [v] € 8'(R") /(C[x] , et u+ Pv+ @Q € 8'(R™) deux représentants de [u] et [v],

(w+P)-V)(0+Q) = (u+ P)-V)(v+Q) =[(P~ P)-V]vo+[u-V](Q-Q)
+(P-V)Q—(P-V)Q.
De 14, sous réserve d'une loi de (para-)produits qui ait du sens, bien que (P-V)Q — (P-V)Q soit

un polyndme, ce n’est pas le cas de [(P — P) - V]v + [u- V](Q — Q) de telle sorte que le produit
dépend du choix des représentants !

16



Table des matiéres

Une autre possibilité serait de compléter naivement la classe de Schwartz pour la norme
homogene qui nous intéresse. Cette construction a le défaut de produire des éléments qui peuvent
ne plus étre des distributions. On peut vérifier par exemple que

C(R") ¢ H#(R").

A . . . . ’1 72 T o s
Cela empéche a priori d'identifier les éléments de Hz (R™) (en tant que complétion) comme étant
des distributions. Ce phénomene est celui de la divergence infrarouge relatant les problemes de
convergences pour les basses fréquences au sens de Fourier.
Ainsi, pour une réalisation des espaces homogenes, nous ne pouvons choisir que deux parmi
trois des propriétés suivantes
(i) des espaces dont les éléments sont des distributions, en un sens raisonnable ;
(7i) des lois produits bien définies ;
(#ii) des espaces tous complets.

Pour le traitement d’équations aux dérivées partielles non-linéaires, on choisit d’abandonner la
complétude pour tous les espaces de fonctions homogenes. C’est ce choix qui a été retenu par
Bahouri, Chemin et Danchin dans leur livre [BCD11]. Leur idée a été de considérer un sous-espace
des distributions tempérées 8'(R™) qui ne contient pas les polyndmes. L’espace en question, parfois
appelé espaces des distributions homogénes de Chemin, est donné par

8l (R") = {u € 8'(R")

VO € CZ(R"), [©(AD)ull,o (gn) * oo 0}'

ot O(A\D) = F~1O(\)F, avec T la transformée de Fourier. Dans leur livre [BCD11, Chapter 2],
Bahouri, Chemin et Danchin se sont surtout attelés a la construction des espaces de Besov
homogenes

B, ,R"), s€R,p,qcll,+o0],

pour lesquels ils ont montré, [BCD11, Theorem 2.25], qu’ils étaient complets si et seulement si
n n
{5<] ou {qzletsé]
p p

La construction a été ensuite étendue aux espaces de Besov sur le demi-espace R} par Danchin
et Mucha [DM09; DM15], puis par Danchin, Hieber, Mucha et Tolksdorf [DHMT21] aux espaces
de Sobolev homogenes a indices de régularité entiers et positifs H™? sur R” et R%, pour m € N,
p € (1,400). Ces constructions d’espaces homogeénes ont été un atout central pour le caractere
bien posés de certaines équations de mécanique des fluides qui généralisent les équations de
Navier-Stokes (NSE) dans [DM09; DM15; DHMT?21]. Il aura fallu d’ailleurs attendre [DHMT21]
pour les premiers vrais résultats de densité, de traces et d’interpolation pour ces espaces.

Objectif 1 Etendre et synthétiser la construction et les propriétés des espaces de Sobolev et
Besov homogénes initiés par Bahouri, Chemin, Danchin, Hieber, Mucha et Tolksdorf sur R™ et
R? : résultats de densité, de traces et d’interpolation pour les espaces

Hs’p(R’}r), B;q(Ri), seR, pe(l,+0),q € [1,+00].

Le Chapitre 2 y sera dédié.
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Réajustement : espaces de fonctions pour les données initiales et la
régularité maximale

Le nouveau choix de réalisation des espaces de Sobolev et Besov homogenes a pour conséquence
que les outils développés par Haase dans [Haa06] pour obtenir I’équivalence des normes (0.3) avec
Pégalité des espaces, ne sont plus adaptés. Par exemple, dans le cas du laplacien sur LP(R™), nous
ne pouvons plus nous servir de la complétion pour obtenir D(A) = H2?(R™).

Deux remarques, cependant : dans un premier temps, l'interpolation réelle d’espaces vectoriels
normés non nécessairement complets a bien un sens, on pourra consulter [BL76, Chapter 3].
Dans un second temps, le probleme de complétion pour construire le domaine homogene D(A)
n’intervient que lorsque opérateur A n’est pas inversible sur X. Dans le cas ou A est inversible,
D(A) et D(A) coincident avec équivalence des normes.

Danchin, Hieber, Mucha et Tolksdorf ont revu la théorie de 'interpolation et des opérateurs
homogeénes de Haase [Haa06, Chapter 6] dans [DHMT21, Chapter 2]. Leur approche permet de
considérer des domaines homogéenes D(A) non-complets, sous quelques hypotheses et considérations
techniques supplémentaires,; souvent vérifiées dans la pratique, de sorte que (0.3) reste valide.

On dit que lopérateur A admet la propriété de régularité maximale parabolique L4 (globale
en temps) sur Y, lorsque pour ug = 0, ¢ € [1,4+o0], f € LI(R4,Y), (ACP) admet une unique
solution u € C°(R,,Y), telle que

[(Oeu, Au)|lLar, vy Sqv,a [ fllLee, v)- (0.4)

Danchin, Hieber, Mucha et Tolksdorf ont alors pu montrer, dans ce cadre, [DHMT21, Theo-
rem 2.20], lorsque 'on a Y = D 4(6,q), ¢ € [1,+0), 6 € (0, %), et ug € Da(0+1— %,q), alors
(ACP) admet une unique solution u € C)(R, Da(0+1— %, q)), telle que

||UHLoo(R+,®A(9+17%,q)) + [ (Oeu, AU)‘|Lq(R+,®A(9,q)) Sa.0,4 ||f||Lq(R+,95A(9’q)) + ||“O||95A(9+17%,q)-
(0.5)

L’opérateur A, lorsqu’il est injectif, a en particulier la propriété de régularité maximale L9 sur
@A(t‘), q), pour tout ¢ € [1,+00), 8 € (0, %) Le résultat était déja connu lorsque A est inversible
depuis le travail de Da Prato et Grisvard [DG75, Théoreme 4.15].

La propriété de la régularité maximale LY (0.4) pour A sur Y = X est cependant une question
bien plus compliquée. Une réponse définitive a été apportée par Weis [Wei01] qui caractérise
totalement de tels opérateurs, sous la condition que I’espace de Banach X ait la propriété dite
UMD, qui sont les opérateurs R-sectoriels ; on se réferera par exemple & [DHP03; KW04 ; PS16]
pour plus d’informations. Il est également nécessaire d’avoir dans ce cas ¢ € (1, +00).

Lorsque A a la propriété de régularité maximale LI sur X, ¢ € (1,400), pour ug € @A(l — %7 q),
f € LY(Ry, X), alors (ACP) admet une unique solution u vérifiant ¢ — u(t) —e~*4ug € CO(R,, X),
et telle que

1(Beu, Au)l[Lage,,x) Sa,a [ fllLagey,x) + lluollg , a1 - (0.6)

On notera cependant que (0.6) souffre de sa comparaison avec (0.5), out ’on a un contréle sur u

comme fonction continue et bornée en temps. Le résultat est connu lorsque A est inversible, on

pourra par exemple consulter [Ama95, Chapter 4, Theorem 4.10.2]. On aimerait également savoir
si 'on a 'inégalité

||“HLOO(R+,9"3A(1—5,q)) Saa 10, Au)|lLaw, x) (0.7)

lorsque A est seulement injectif.
Certains travaux récents mettent en jeu le transfert de régularité en espaces via des estimées
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aux dérivées mixtes du type

1000)° A" Pullua@, x) Saa (@ew, Aoz, x), B €[0,1],

pour traiter des problémes non-linéaires proches de (NSE), par exemple le travail de Brandolese
et Monniaux [BM21] pour le systéme de Boussinesq.

On pourrait vouloir augmenter ce jeu sur la régularité en espace-temps pour gagner un peu en
souplesse dans les estimations, en proposant de remplacer L¢ dans (0.4) par un espace de Sobolev
homogene H*%, pour ¢ € (1,400), € (-1 + %, %) Voir [Pru02; PS16] pour plus d’informations
concernant les estimations aux dérivées mixtes, et la régularité maximale (inhomogene) Sobolev
en temps.

Si on peut remplacer LY par H®4, il resterait alors & savoir par quoi remplacer I'espace

Da(1-1,q) dans (0.6) et (0.7).

Objectif 2 Prouver qu’une classe pas trop restrictive d’opérateurs injectifs qui admettent la
propriété régularité mazimale LY sur X un Banach UMD, admettent également la propriété
régularité mazimale H*4, pour ¢ € (1,+00), a € (=1 + %, LY. Pour un tel opérateur A, on

q
voudrait montrer dans ce cas
||“|‘Loo(R+7-bA(a+1_%,q)) Sag.a (O, AU)Hqu(RJr,X) SAg.a Hf||Ha«Q(R+,X) + ||U0||®A(a+1_%7q)-

Le Chapitre 3 y sera dédié, et contiendra une présentation synthétique de la théorie de l’interpola-
tion et des opérateurs homogénes revisitée par Danchin, Hieber, Mucha et Tolksdorf [DHMT21,
Chapter 2].

Retour : le systeme de Stokes et la décomposition de Helmholtz

Nous avons été quelque peu négligents. En effet, nous avons introduit 1’étude d’un probleme de
Cauchy abstrait (ACP), a partir de (NSE), en traitant du Laplacien sur R™. Cependant, le terme
de pression p est également une inconnue du probléme qui ne semble pas apparaitre lors de la
mise en forme en un probleme de Cauchy abstrait.

Il se trouve qu’en fait, quand © = R", le probléme (NSE) peut-étre réécrit sous la forme

Ou—Au = —Pl(u-V)u], on(0,T)xR",
divu = 0, on (0,T) x R™, (NSE")
u(0) = wo .

ou P est le projecteur de Leray sur les fonctions a divergence nulles sur R™ au sens des distributions.
Cela motive en particulier I’étude de ’équation de la chaleur comme exemple principal lorsque
) = R"™. Ceci est possible puisque 'opérateur P commute avec le Laplacien sur R, et qu’il est
donné par la formule

§-3f(6)
€12

induisant un opérateur linéaire borné,

Pf =5 |6 FFE) - ¢l teRY,  fel’RM,CV),

P: LP(R",C") — LE(R") := {u € LP(R",C") | div u = 0}, p € (1,400)
induisant lui-méme une décomposition topologique appelée décomposition de Helmholtz
LP(R",C") = LE(R™) @ VHLP(R",C),  p€ (1,+00).
Ce n’est en général pas possible de se ramener a I’équation de la chaleur si 'on veut traiter

(NSE) avec un domaine & bord Q C R™ avec des conditions au bord (nécessaires pour fermer le
systéme).
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Avant de continuer, on se doit de faire une clarification sur ce qu’est le projecteur de Leray sur
un ouvert €2 de R™. Dans ce cadre, le projecteur de Leray est I'unique projecteur orthogonal

Po i LA(Q,C") — L2(Q) := {u € Co(0, O [divu =0} 7.

Lorsque p € (1,+00) et p # 2, la question de la bornitude de Pg sur L? & valeurs dans LY (en
gardant la méme définition pour L2) n’a rien d’automatique, comme exhibé dans [Bog86]. Lorsque
1 < p < 400 et que  est raisonnable, voir par exemple [Soh01, Lemma 2.5.3] pour p = 2, on a la
description exacte

L2(Q) ={ueclP(Q,C")|divu=0& u-v,, =0},

ol u - V), est une trace prise au sens faible et v est le vecteur unitaire normal au bord de 2. Le
caractéere borné de Pg sur LP a été étudié dans de nombreux contextes. On pourra consulter par
exemple [FMM98 ; SS92] pour les domaines bornés & bord C! et Lipschitz.

Ainsi, lors de la présence d’une frontiere et d’un jeu de conditions au bord, on doit considérer
les conditions au bord et la condition d’incompressibilité div « = 0 dans les espaces de fonctions
en jeu pour définir 'opérateur qui remplace le Laplacien. Cela permet de considérer la pression
p (plus précisément son gradient) comme un multiplicateur de Lagrange. Un tel opérateur est
appelé un opérateur de Stokes.

Pour (NSE) avec condition au bord de Dirichlet sur le demi-espace R’} , 'opérateur a introduire
qui remplace —A dans (NSE’) est

D, (Ap) = L5 (RY) NHY?(RY) N HAP(RY)
AD = PRi (—A)U,

appelé opérateur de Stokes-Dirichlet. Pour une fonction u € D,(Ap), rien n’assure a priori que
IP’Rzu € H(l)’p (R?}). Plus généralement, étant donné un jeu de conditions au bord, il n’y a priori
aucune raison que le projecteur de Leray commute avec le laplacien avec les mémes conditions au
bord. Pour une revue des différents opérateurs Stokes avec conditions au bord, on renvoie a la
revue sur le sujet faite par Monniaux et Shen [MS18].
Il est connu, voir [Galll, Remark I11.1.2], que Pry est borné sur LP(R’}) pour tout p € (1,400).
On souléve les deux points suivants :

(i) Pour des questions de régularité concernant (NSE) et des systémes similaires, il pourrait
étre intéressant de savoir si IP)Ri est borné sur les espaces

H*P(R,C"), By (R}, C"), s €R, pe (1,+00),q € [1,+00].

Ce résultat est connu dans le cas des espaces de Besov homogeénes pour s € (=1 + =, +),
[DM09, Lemma 1].

(ii) Pour Q C R? borné et lipschitzien, en suivant par exemple [MS18, Section 4], il est connu
que le laplacien dit de Hodge, donné par

D(Ay) = {u € L3(Q,C?) | curl u, div u, curl curl u — Vdiv u € L*(Q,C?),
&u-v,, =0, v xcurly,, =0}

—Agyu := curl curl u — Vdiv u,
est "compatible" avec le projecteur de Leray au sens ou il vérifie

PaD(A) € D(Ay),
]PQ(—A'H)U = —AyPqu, u e D(AH)

20



Table des matiéres

Pour un champ de vecteurs tridimensionnel régulier w : Q — C3, curl w est défini par
curl w = (g, w3 — OgaWa, Og w1 — gy W3, Oy, Wy — Oy, W1).

En supposant que 1’on puisse donner un sens a I'inverse au laplacien de Hodge, on tire moralement
Iégalité

Pov = v+ Vdiv (—Ay) v

et dans ce cas le couple (A, Pg) sur Q reproduit le comportement de (A, Pgn) sur R™. L’opérateur
Ay = —AyPq est Popérateur de Stokes avec conditions au bord de Hodge, aussi appelé opérateur
de Hodge-Stokes.

En dimension 3, les actions conjointes du projecteur de Leray et du laplacien de Hodge semblent
préserver certaines caractéristiques géométriques, dont il n’est pas rendu compte en dimensions
supérieures. Par exemple, il est particuliérement approprié d’étudier (NSE) dans sa forme utilisant
la vorticité puisque

Aqu = curl (curl u), u € PaD(Ay).

Il se trouve qu’il est certainement possible d’extrapoler ces propriétés géométriques en dimension
supérieure grace aux formes différentielles comme mis en avant dans [MM18] sur les ouverts
lipschitziens, le formalisme permettant de généraliser naturellement 'opérateur curl. Cela permet
également de considérer des systémes de magnetohydrodynamique en dimension arbitraire [Mon21 ;
Den22].

Si sur les espaces

H*P(R},C") s€ (—1+1/p,1/p), p € (1,+00),

Popérateur —Ay; géneére un semi-groupe analytique, et PRi est bien défini borné. En considérant
les normes données par (0.1) :

1
||v||@s,gﬁ(9,q></0 (t" 9||Aﬂemwﬁs,pm>>qt) L0€(0,1), pq e 1,400,

I’action de ]P)Ri serait aussi bornée pour ces normes, de sorte que ’on obtient un espace de données
initiales pour (NSE) avec conditions au bord de Hodge généralisées. On profite dans ce cas de la
régularité maximale de Da Prato-Grisvard (0.5). Si le laplacien de Hodge —Ay a la propriété de
régularité maximale LY sur Hs’p(R’_f_), on profiterait d’une régularité maximale H®?(H5?) globale
en temps pour 'opérateur de Hodge-Stokes Ay,.

Objectif 3 Montrer qu’en toute dimension n > 2, quitte d considérer des sous espaces fermeés,
le projecteur de Leray ]P)Ri est borné sur les espaces

H*P(R},C"), BS (R},C"), se€(—1+1/p,2+1/p),p € (1,+00),q € [1,+00].

et que pour ces mémes espaces le laplacien de Hodge — Ay admet la propriété de régularité mazimale
LY (pour le méme q). On voudra plutdt introduire les mémes espaces de formes différentielles et
vérifier les propriétés correspondantes.

1l s’agit de ’objectif du Chapitre 4.

Au-dela : vers les frontiéres lipschitziennes

Il est intéressant de savoir si on peut étendre les résultats sur le laplacien de Hodge et la
bornitude du projecteur de Leray, a des espaces de fonctions homogeénes sur des ouverts plus
irréguliers que le demi-espace R} . Une généralisation naturelle est celle d’'un demi-espace donné
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par I’épigraphe d’une fonction uniformément lipschitzienne sur R”~! & valeurs dans R, aussi
appelé ouvert spécial Lipschitz qu’on désignera par ) ici.

Une construction/réalisation des espaces homogeénes sur les ouverts spéciaux Lipschitz, contenant
méme des outils adaptés, comme les opérateurs potentiels ou de correction de Bogovskii, a été faite
par Costabel, M¢Intosh et Taggart dans [CMT13]. Cependant, cette construction est faite "modulo
les polyndémes", cela empéche donc de I'exploiter pour le traitement de problémes non-linéaires,
et laisse également peu clair le sens des traces sur la frontiere de 1'ouvert.

La construction sur R™ établie dans le Chapitre 2 offre la possibilité d’étre stable par composition
(possiblement par un difféomorphisme ou une transformation bi-Lipschitzienne). Cela permet de
transférer une partie des propriétés juste par changement de carte globale pour peu qu’on puisse
préserver les estimées homogenes.

En général, la preuve du théoreme de trace avec régularité optimale dans le cas des espaces
inhomogenes est fastidieuse sur les ouverts, en particulier lipschitziens. Il existe cependant quelques
preuves simples pour les espaces de Sobolev de type L2

[l © HI(Q) — H73(0Q), s € (1/2,3/2)

dans les papiers de Costabel et Ding [Cos88; Din96], en utilisant des espaces avec une régularité
anisotrope. On va montrer que cette stratégie, moralement simple, est toujours valable pour les
espaces de Sobolev et Besov homogenes plus généraux, mais demande plus de technologie.

Objectif 4 Etendre et synthétiser la construction et les propriétés des espaces de Sobolev et
Besov homogénes sur RY} initiés dans le Chapitre 2 aux ouverts Q spéciauz Lipschitz : résultats
de densité et d’interpolation pour les espaces

H2(Q), B,(0), 5 €R,p € (1,400),4 € [1,-+oc].

Construire les espaces homogénes correspondants sur la frontiére 02 et montrer dans ce cadre le
théoréme de trace optimal

i . Ls_1
[loe @ H?P(Q), B;’Q(Q) — By " (0), se(1/p,14+1/p),p€ (1,40), g € [1,400].
1l s’agit du but du Chapitre 5 qui cloture cette these.

Un dernier commentaire : Les constructions sur R’ et les ouverts spéciaux Lipschitz
) sont traitées séparément a cause de plusieurs obstructions techniques pour les opérateurs
d’extensions. De plus, la construction pour les ouverts spéciaux Lipschitz utilise certains résultats
de la construction sur le demi-espace, mais aussi des outils développés dans le Chapitre 3.
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In English
At the origin

Numerous nonlinear partial differential equations describing temporal evolution can be written
in the form of a linear parabolic part and a nonlinear term. The interest in such equations arises
from the fact that they originate from applied disciplines such as physics, chemistry, and biology.

One of the most important of these equations will serve as guide through the introduction of
the problems raised and (partially) solved in this thesis. These are the Navier-Stokes equations,
which describe the evolution of velocity fields for a homogeneous, incompressible fluid

Ou—Au+Vp = —(u-V)u, on (0,T)x9Q,
divue = 0, on (0,7) x Q, (NSE)
u(0) = wo .

with unknown (u,p) : (0,7) x 2 — R™ x R, where 2 is an open set in R™ (possibly with a set of
boundary conditions to close the system (NSE)), T' € (0, +00], u is the velocity of the considered
fluid, p is the pressure of the system, and uy : £ — R™ is a given initial velocity field satisfying
div ug = 0.

The condition known as zero divergence, div u = 0, expresses the incompressibility and
homogeneity of the fluid. The reader is encouraged to refer to [Lem16, Chapters 1, 2, & 3] for
more historical and physical context surrounding the system (NSE) in the case of Q = R"™.

If we are interested in the global-in-time well-posedness of (NSE), i.e. T' = +o0, it is natural to
try to determine a suitable function space for the choice of the initial data ug, such that we have
global time control on (Jyu, Au) in LY(Ry,LP(Q)) with p,q € (1, 400). This question can also be
addressed in the framework of an abstract linear Cauchy problem

{atu(t)+Au(t)= f(), 0 <t <oo, (ACP)

u(0) = wp in X.

where A is a reasonable operator generating a strongly continuous and uniformly bounded
semigroup (e*tA)@O on a Banach space X. Since the problem is linear, we can assume f = 0 for
now and verify that the space morally induced by the (semi-)norm

T (=) 4 —tA de\ # oo —tA z
L O A e e O L R A Ry

-(/ +Oo<at<e—tf“uo>x>th)é

seems to be a natural candidate, for which we even have ¢t — e *4uq continuous with values

in D a(l— é, q). More generally, this leads us to consider the spaces morally induced by the
(semi-)norms

e tA dt\
lellssom = ([ @ lac el ) b ge sl 0
The case of A = —A on X = LP(R"), this is very well documented and known, see for instance

[BCD11, Theorem 2.34], we have, for 6 € (0,1), p,q € [1, +o0],

1
+oo B dt q
ol so0= ([ 1A 0lho@n)? ) ~pann ol oy (0.9)

where B;q (R™) is the homogeneous Besov space defined for example in [BCD11, Chapter 2],
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[BL76, Chapter 6, Section 6.3], [Tri83, Chapter 5]. The reader who is not familiar with Besov

spaces, especially homogeneous ones, can rely on the equality B;Q(R") = H*(R") with equivalent

(semi-)norm [v[|ggs(gny := [(=A)2vl|r2(gn), and for s =1, [Vl gny = IVVllL2@n)-

By the equivalence of norms (0.9), it seems natural to name the family of vector spaces that
emerge from the family of (semi-)norms given in (0.8) Besov spaces adapted to the operator
A. When A is a sectorial, invertible or injective operator, a simple characterization has been given
thanks to real interpolation, more precisely

12l 0.0y ~o0 121l .y, (0.10)

o

where D(A) corresponds to the completion of the domain D(A) for the norm [|A-||x. When
A is invertible, it is mentioned that D(A) = D(A) with norm equivalence. This fact has been
extensively reviewed in the literature, for example by Haase [Haa06, Chapter 6] or Lunardi [Lun18,
Chapter 6]. This often allows for a complete description of the space when the domain of A itself
has a suitable description. We also mention the recent work of Batty and Chen [BC20] which
revisits the construction in a more general way for sectorial operators by giving a number of
equivalent characterizations, such as Littlewood-Paley type, as well as a non-exhaustive list of
complementary properties.

An effective description of adapted function spaces when the operator A has an explicit form
has also been widely investigated in the literature. The case of elliptic operators in divergence
form on LP spaces has received particular attention. For example, under the assumptions of
Gaussian or Poisson estimates on the kernel of the generated semigroup, the works of Bui, Duong
and Yan [BDY12] and Cao and Grygor’yan [CG20] establish coincidence with classical Besov
spaces in some cases. Under more general assumptions, coincidence is shown for spaces that are
“close enough” to L? in the monograph by Amenta and Auscher [AA18, Chapter 5].

Emerging problems : realization of homogeneous functions spaces

The appearance of homogeneous Besov spaces (0.9) for the choice of initial conditions raises
the question of the choice of realization of these spaces, if one wishes to return to the study of
the nonlinear problem (NSE) for Q = R"™.

Indeed, the construction of homogeneous Sobolev and Besov spaces as it is usually done, [BL76,
Chapter 6, Section 6.3], [Tri83, Chapter 5], is based on the space of tempered distributions

quotiented by polynomials 8'(R™) / Clz]» in order to make them normed vector spaces. The
attentive reader will have noticed that homogeneous (semi-)norms, for instance |||y (gn), do not

separate polynomials, and therefore are not truly norms on 8'(R™). This induces a problem for
defining nonlinearities such as the one in (NSE).

For [u], [v] € 8'(R") /(Cm yand u+ Pv+ Q,u+ P,v+ Q € 8'(R") two representatives of [u]
and [v], we have

(u+P)-V)v+Q) = (u+P)-V)v+Q)=[(P—P) - Vlv+[u-V](Q—Q)
+(P-V)Q— (P-V)Q.

Therefore, subject to a (para-)product law that makes sense, although (P - V)Q — (P - V)Q is a
polynomial, this is not the case for [(P — P) - V]v + [u - V](Q — Q) so that the product depends
on the choice of representatives !

Another possibility would be to naively complete the Schwartz class with respect to the
homogeneous norm we want to consider. This construction has the disadvantage of producing
elements that may no longer be distributions. For example, one can check that

C2(R") ¢ H™2(R").
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This prevents us, a priori, from identifying elements of H= (R™) (as a completion) as distributions.
This phenomenon is known as infrared divergence and relates to convergence problems for low
frequencies in the sense of Fourier.

Thus, for a realization of homogeneous function spaces, we can only choose two out of the
following three properties :

(i) spaces whose elements are distributions, in a reasonable sense ;
(ii) well-defined product laws;
(i#i) all spaces are complete.

For the treatment of nonlinear partial differential equations, we choose to give up completeness
for all homogeneous function spaces. This choice was made by Bahouri, Chemin, and Danchin
in their book [BCD11]. Their idea instead was to consider a subspace of tempered distributions
8'(R™) that does not contain polynomials. The space in question, sometimes called Chemin’s
space of homogeneous distributions, is defined by

I ny .__ /(Ton

VO € C°(R"), ||®()\®)uHLm(Rn) — 0} )

where O(AD) = F~1O(\)F, with F denoting the Fourier transform. In their book [BCD11,
Chapter 2], Bahouri, Chemin, and Danchin focused mainly on the construction of homogeneous
Besov spaces

B? (R™), seR,p,qe]ll,+o0],

p.q

for which they proved, [BCD11, Theorem 2.25], that those spaces are complete if and only if
[s<n} or [qzlandsgn
p p

The construction was then extended to homogeneous Besov spaces on the half-space R’
by Danchin and Mucha [DM09; DM15], and then by Danchin, Hieber, Mucha, and Tolksdorf
[DHMT?21] to homogeneous Sobolev spaces with integer and positive regularity indices H™P on
R™ and R, for m € N, p € (1, +00). These constructions of homogeneous function spaces have
been a central tool for the global-in-time well-posedness of certain fluid mechanics equations
that generalize the Navier-Stokes equations (NSE) in [DM09; DM15; DHMT21]. In fact, it was
necessary to wait until [DHMT21] for the first real results on density, traces, and interpolation
for such realizations of homogeneous function spaces.

Goal 1 To extend and summarize the construction and properties of homogeneous Sobolev and
Besov spaces initiated by Bahouri, Chemin, Danchin, Hieber, Mucha, and Tolksdorf on R™ and
R% :including density results, and traces and interpolation for the spaces

H*P(R}), By ,(R}), s €R, pe (1,+00),q € [1,+00].

This is the goal of Chapter 2.
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Reajustement : function spaces for initial datas and maximal regularity

The new realization of homogeneous Sobolev and Besov spaces has the consequence that the
tools developed by Haase in [Haa06] to obtain the equivalence of norms (0.3) with equality of
spaces are no longer adapted. For example, in the case of the Laplacian on LP(R™), we can no
longer use completion to obtain D(A) = H2P(R™).

Two remarks, however : firstly, real interpolation of normed vector spaces that are not necessarily
complete does make sense, as can be found in [BL76, Chapter 3]. Secondly, the completion problem
for constructing the homogeneous domain D(A) only arises when the operator A is not invertible
on X. When A is invertible, D(A) and D(A) coincide with equivalent norms.

Danchin, Hieber, Mucha, and Tolksdorf reviewed the theory of interpolation and homogeneous
operators of Haase [Haa06, Chapter 6] in [DHMT21, Chapter 2]|. Their approach allows for the
consideration of non-complete homogeneous domains D(/i), under certain additional technical
assumptions and considerations, often satisfied in practice, so that (0.10) remains valid.

We say that the operator A has the parabolic (global-in-time) L9-maximal regularity property
on Y, when for uy =0, ¢ € [1,+00], f € L4(R,,Y), (ACP) has a unique solution u € CO(R,,Y),
such that

||(3tU,AU)||L«(R+,Y) §q,Y,A ||f||L‘1(R+,Y)- (0-11)

Danchin, Hieber, Mucha, and Tolksdorf were then able to show in this framework, [DHMT21,
Theorem 2.20], that for Y = D 4(6,q), q € [1,+00), 8 € (0, %), and ug € Dy (0 +1— %,q% (ACP)
admits a unique solution u € C)(R., Da(0+1— %, q)), such that

||uHL0°(R+7®A(9+17%$q)) + [|(9eu, Au)HL‘?(R+,®A(9$q)) Sq.0.4 ||f||Lq(R+,95A(9,q)) + ||U0||95A(9+17%,q)-
(0.12)

The operator A, when injective, has in particular the (global-in-time) L9-maximal regularity
property on @A(G, q), for all ¢ € [1,+00) and 6 € (0, %) This result was already known when A
is invertible, from the work of Da Prato and Grisvard [DG75, Theorem 4.15].

The question of the L4-maximal regularity property (0.11) for A on Y = X is, however, much
more involved. A definitive answer was provided by Weis [Wei0O1], who fully characterizes such
operators, under the condition that the Banach space X has the so-called UMD property, as
being the R-sectorial operators. For more informations and broader review, see for instance
[DHPO03 ; KW04 ; PS16]. It is also necessary to have ¢ € (1,+00) in this case.

When A has the property of L9-maximal regularity on X, ¢ € (1, +00), for ug € @A(l — %, q)
and f € LY(R,, X), we have that (ACP) admits a unique solution u satisfying t +— u(t) —e~*4ug €
CO(R4, X) and

10w, Aoy, x) Sa,a 1 llLeeyx) + lluolls o1 - (0.13)
However, we should notice that (0.13) suffers from its comparison with (0.12), where we have
a control on u as a continuous and bounded function with respect to the time variable. The
result is known when A is invertible, and one can consult, for example, [Ama95, Chapter 4,
Theorem 4.10.2]. It would also be interesting to know whether one has the inequality
Foll e e a2y St 1(Out Aw) e, x) (0.14)
whenever A is only injective.

Some recent works involve the transfer of regularity space-time via mixed derivative estimates
of the form.

10)° A Pullraw, x) Saoa (O, Au)||Lae, x), B €10,1],
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to deal with nonlinear problems similar to (NSE), such as the work of Brandolese and Monniaux
[BM21] on the Boussinesq system.

One may want to improve the range of space-time regularity by proposing for example to
replace L? in (0.11) with a homogeneous Sobolev space H*, for ¢ € (1, +00), o € (=1 + é, %), in
order to gain some flexibility in the estimates. See [Pru02; PS16] for more information on mixed
derivative estimates and (inhomogeneous) Sobolev maximal regularity.

If we can replace LY by H4, then the question remains of the space we have to use in order to
replace the space D4 (1 — %, q) with in (0.13) and (0.14).

Goal 2 Prove that a not-too-restrictive class of injective operators that have the L?-mazimal
regularity property on a UMD Banach space X also have the H*9-mazximal regularity property,
whenever q € (1,4+00), « € (—=1+ é, %) For such an operator A, we aim to show in this case that

ol e e 2,01y St @0t A0 e, ) S 1 oy )+ Nolli s sr 2 -

Chapter 3 will be dedicated to this, and will contain a brief presentation of the interpolation
theory and homogeneous operators revisited by Danchin, Hieber, Mucha, and Tolksdorf [DHMT21,
Chapter 2J.

Coming back : the Stokes system and the Helmholtz decomposition

We have been somewhat neglectful. Indeed, we introduced the study of an abstract Cauchy
problem (ACP), based on (NSE), by dealing with the Laplacian on R™. However, the pressure
term p is also an unknown of the problem that does not seem to appear when formatting it into
an abstract Cauchy problem.

It turns out that when Q = R™, the problem (NSE) can be rewritten in the form

Ou—Au = —Pl(u-V)u], on (0,T)xR"
divu = 0, on (0,7) x R™, (NSE?)
w(0) = wg .

where P is the Leray projector onto the functions with zero divergence on R™ in the sense of
distributions. This motivates in particular the study of the heat equation as a main example
when = R™. This is possible since P commutes with the Laplacian on R”, as it is defined by
the formula

Bf =51 |e s 5F(6) - 5'?;(5)5 . feR",  feL®MCY),

inducing a bounded linear operator
P: LP(R",C") — LE(R") := {u € LP(R",C") | div u = 0}, p € (1,400)
inducing itself a topological decomposition called the Helmholtz decomposition
LP(R",C") = LE(R") @ VHLP(R",C),  p€ (1,+00).

In general, it is not possible to reduce (NSE) to the heat equation when dealing with a domain
with boundary 2 C R™ and boundary conditions (necessary to close the system).

Before continuing, we must clarify what the Leray projector is on an open set 2 of R™. In this
context, the Leray projector is defined as the unique orthogonal projector

Po i LA(Q,C") — L2(Q) = {u € Co(0,Cn) [divu =0} 7,

When p € (1,4+00) and p # 2, the question of the boundedness of Pg on L? with values in L?
(keeping the same definition for L2) is not automatic, as exhibited in [Bog86]. When 1 < p < 400

27



Table des matiéres

and () is reasonable, see for example [Soh01, Lemma 2.5.3] for p = 2, we have the exact description
L2(Q) ={ueclP(Q,C")|divu=0& u-v,, =0},

where u - vjgq is given as the weak partial trace on the boundary, with v being the unit normal
vector on the boundary of 2. The boundedness of Pg on LP has been studied in many contexts.
See, for example, [FMM98 ; SS92] for bounded domains with C! and Lipschitz boundary.

Thus, in the presence of a boundary and a set of boundary conditions, we must consider the
boundary conditions and the incompressibility condition div u = 0 in the involved function spaces
that are considered to define the corresponding operator which replaces the Laplacian. This allows
us to consider the pressure p (more precisely, its gradient) as a Lagrange multiplier. Such an
operator is called a Stokes operator.

For example, in the case of the operator for (NSE) with Dirichlet boundary conditions on the
half-space R, the operator to be introduced that replaces —A in (NSE’) is

Dy(Ap) = LE(RL) N Hy" (R} ) N HA(RY)
AD = ]P)]Ri (—A)U,
called the Stokes-Dirichlet operator. For a function v € D, (Ap), there is no guarantee a priori
that ]P’Riu € H(l)’p (R™). More generally, given a set of boundary conditions, there is a priori no
reason for the Leray projector to commute with the Laplacian with the same boundary conditions.
For a survey on various Stokes operators with boundary conditions, we refer to the review on the
topic by Monniaux and Shen [MS18].

It is known, see [Galll, Remark IIL.1.2], that Pgy is bounded on LP(RY}) for all p € (1, +00).
We raise the two following points :

(i) For regularity questions related to (NSE) and similar systems, it could be interesting to
know whether IP’RQ is bounded on the function spaces

HS7P(R17(C7L>7 B;»Q(R17Cn)7 s € R7 p € (1,+OO),C] € [1’ +OO]

The result is known for in the case of Besov spaces s € (—1 + %, ;1)), [DMO09, Lemma 1].

(ii) For © C R3, following [MS18, Section 4], it is known that the Laplacian, named the Hodge
Laplacian, given by

D(Ay) = {u € L*(Q,C%) | curl u, div u, curl curl u — Vdiv u € L*(Q,C?),
&u-v,, =0, v xcurlyp,, =0}

—Ayu := curl curl u — Vdiv u,
is “compatible” with the Leray projector in the sense that it satisfies

]P)QD(A"H) C D(A'H),
PQ(*AH)U = —AyPqu, u e D(AH)

For a regular three-dimensional vector field w : Q — C3, curl w is defined by
curl w = (Op, w3 — Op W, Op w1 — Oy W3, O Wo — Oy w1).

assuming that we can give a meaning to the inverse of the Hodge Laplacian, we can derive the
following identity :

Pov = v+ Vdiv (—Ay) v

and in this case, the pair (A, Pg) on Q reproduces the behavior of (A, Pg-) on R™. The operator
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Ay = —AyPq is the Stokes operator with Hodge boundary conditions, also known as the
Hodge-Stokes operator.

In dimension 3, the combined actions of the Leray projector and the Hodge Laplacian seem
to preserve certain geometric features, which are not accounted for in higher dimensions. For
example, it is particularly suitable to investigate (NSE) in vorticity form since

Ayu = curl (curl u), u € PaD(Ay).

It turns out that it is certainly possible to extrapolate these geometric properties to higher
dimensions using differential forms as highlighted in [MM18] on Lipschitz domains, the formalism
allowing for a natural generalization of the curl operator. This also allows for the consideration
of magnetohydrodynamic systems in arbitrary dimensions [Mon21 ; Den22].

If on the function spaces

H*P(R},C") s € (—1+1/p,1/p), p € (1,400),

the operator —Ay, generates an analytic semigroup, and IP’]M is well-defined and bounded,
considering the norms given by (0.8) :

1
dt ¢
H“”(Ri))tlt> , 0 € (0’ 1)> p,q € [1,+OO],

+oo A
. — 1-6 tAy
||U||gy_viH (0,9) </0 (7| Ape S|

we obtain that the action of Pg» would also be bounded for these norms. Therefore, we obtain an
initial data space for (NSE) with generalized Hodge boundary conditions (due to the arbitrary
dimension). In this case, we could benefit from the maximal regularity of Da Prato-Grisvard (0.12).
Moreover, if the Hodge Laplacian —Ay; has the L%-maximal regularity property on H*P(R" ), we
would benefit from a global-in-time maximal regularity Hf’q(H;’p ) for the Hodge-Stokes operator
Ay .

Goal 3 To show that in any dimension n = 2, possibly up to consider some closed subspaces, the
Leray projector IE”Ri is bounded on the spaces

Hs’p(Riv(Cn)v B;’q(Ri,Cn% s € (_1 + 1/]7,2 + 1/p)7 pe (]-7+OO)7q € [17"’_00]7

and that for these same spaces, the Hodge Laplacian —Ay; has the LY-mazximal reqularity property
(for the same q). We will introduce the corresponding spaces of differential forms instead, and
verify the corresponding properties.

This is the goal of the Chapter 4.

Beyond : towards Lipschitz boundaries

It is interesting to know whether the results for the Hodge Laplacian and the boundedness of
the Leray projector can be extended to homogeneous functions spaces on domains that are more
irregular than the half-space R’}. An example of a natural generalization would be a half-space
given by the epigraph of a uniformly Lipschitz function on R®~! with values in R, also called a
special Lipschitz domain denoted by €2 here.

A construction/realization of homogeneous spaces on special Lipschitz open sets, containing
even adapted tools, such as potential operators or Bogovskil operators, was made by Costabel,
M¢Intosh and Taggart in [CMT13]. However, this construction is made “modulo polynomials”,
which prevents it from being exploited for the treatment of nonlinear problems, and the meaning
of traces on the boundary of the domain was left unclear.

The construction on R™ established in Chapter 2 offers the possibility of being stable by
composition (possibly by a diffeomorphism, or a bi-Lipschitz transformation). This allows for the
transfer of some properties just by a change of global chart as long as homogeneous estimates can
be preserved.
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In general, proving the trace theorem with optimal regularity in the case of inhomogeneous
spaces is tedious on open sets, especially the ones with Lipschitz boundary. However, there are
some simple proofs for Sobolev spaces of type L?

[lo © HI(Q) — H73(0Q), s € (1/2,3/2)

in the papers of Costabel and Ding [Cos88; Din96], using function spaces with anisotropic
regularity. We will show that this strategy, which is conceptually simple, is still valid for more
general homogeneous Sobolev and Besov spaces but requires more technology.

Goal 4 Extend and synthesize the construction and properties of homogeneous Sobolev and Besov
spaces on R} initiated in Chapter 2 to special Lipschitz open sets Q : density and interpolation
results for spaces

H*7(Q), BS ,(Q), s€eR,pe(l,+00), g€ [1,+0d].

To construct the corresponding homogeneous spaces on the boundary 02 and prove the optimal
trace theorem in this context

. . Ls—1
[loe @ H?P(Q), B;’q(Q) — By 4" (0), se(1/p,14+1/p),p€ (1,40), g € [1,400].
This is the goal of Chapter 5, and it concludes this dissertation.

One final comment : The constructions on R and special Lipschitz open sets € are treated
separately due to several technical obstructions for extension operators. Moreover, the construction
for special Lipschitz open sets uses some results from the construction on the half-space, as well
as tools developed in Chapter 3.
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Résumé du chapitre.

Ce chapitre est dédié a 'introduction des notations, définitions et propositions concernant les
principaux concepts et outils qui seront utilisés tout au long de cette these.

On présente dans un premier temps les principaux concepts de la théorie de 'interpolation réelle
et complexe d’espaces vectoriels normés. Celle-ci est au coeur de tous les chapitres du manuscrit.

Dans un second temps, on présente les bonnes définitions et les principaux résultats issus de
la théorie des opérateurs (bi-)sectoriels sur un espace de Banach. Bien que les outils présentés
dans cette partie soient utilisés en filigrane dans tous les chapitres de la these, ils n’interviennent
réellement qu’au cours des chapitres 3 et 4.

On prend soin de préciser ici que l'introduction de ces outils n’est pas compléte, de fagon
volontaire, afin d’avoir une présentation aussi claire et concise que possible. Par exemple, nous
n’introduisons pas la notion de calculs fonctionnel abstrait sur un espace de Banach pour
introduire le cas particulier du calcul fonctionnel holormorphe pour les opérateurs (bi-
)sectoriels, on renvoie le lecteur intéressé au livre de Haase [Haa06, Chapter 1], ou la these
d’Egert [Egel5, Chapter 3, Section 3.1]. Nous n’introduisons pas non plus la notion de catégories,
ou de foncteurs qui permettent une bonne formalisation de certains résultats en théorie de
Iinterpolation en toute généralité, pas nécessaire ici. Le lecteur intéressé est invité a consulter la
synthése trés compréhensible dans la these d’Egert [Egel5, Chapter 1, Section 1.3.1] ainsi que les
références qui s’y trouvent.

Summary of the chapter.

This chapter is dedicated to the introduction of notations, definitions and propositions concer-
ning the main concepts and tools that will be used throughout this thesis.

First, the main concepts of the theory of real and complex interpolation of normed vector
spaces are presented. This theory is at the heart of all the chapters of the manuscript.

In a second part, we present the good definitions and the main results from the theory of
(bi-)sectorial operators on a Banach space. Although the tools presented in this part are used in
all the chapters of the thesis, they really intervene only during the chapters 3 and 4.
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1 Tools and general concepts — 1 Notations and definitions

We take care to specify here, that the introduction of these tools is not complete, in a voluntary
way, in order to have a presentation as clear and concise as possible. For example, we do not
introduce the notion of abstract functional calculus on a Banach space to introduce the
particular case of the holormorphic functional calculus for (bi-)sectoral operators, we refer the
interested reader to Haase’s book [Haa06, Chapter 1], or Egert’s dissertation [Egel5, Chapter 3,
Section 3.1].

We do not introduce either the notion of categories, or of functors which allows a good
formalization of some results from interpolation theory at the highest level of generality, not
necessary here. The interested reader is invited to consult the very comprehensive synthesis in
Egert’s thesis [Egel5, Chapter 1, Section 1.3.1] and the references therein.

1 Notations and definitions

Throughout this dissertation the dimension will be n > 2, and N will be the set of non-negative
integers, Z denotes the set of integers. The notation R stands for the field of real numbers, C for
the field of complex numbers. We also define C* := C\ {0}. The symbols R and < are respectively
the real part and imaginary part operators from C to R. We denote by C the set of complex
numbers with non-negative real parts, and R} = [0, 400) the set of non-negative real numbers.
The set C is the set of complex numbers with positive real part.

The upper half-space of the vector space R™ is given by R} := R"! x (0,+00). For z € C™,
with m > 1 an integer, |z| is the Euclidean norm of z, and if w € C™, z - W is the standard inner
product between z and w, satisfying z - Z = |2|? with Z the component-wise complex conjugate of
z. For a,b € R with a < b, we write [a,b] := [a,b] N Z.

For x € R", the (open) ball centered in = of radius r > 0, is given by

B(z,r):={yeR"||lz—y| <7}

For two real numbers A, B € R, A <, ;. B means that there exists a constant C > 0 depending
on a,b,c such that A < CB. When both A <, B and B Sgp,c A are true, we simply write
A ~4pc B. When the number of indices is overloaded, we allow ourselves to write A 522{ B
instead of A Sapede r B-

Denote by $(R™, C) the space of complex valued Schwartz functions, and 8’ (R™, C) its topological
dual called the space of tempered distributions. The Fourier transform on 8'(R™,C) is written F,
and is pointwise defined for any f € L'(R", C) by

FfE€) = | flx)e ™ dx, & €R™
]Rn

Additionally, for p € [1 + oo, we write p’ = ;25 its Hélder conjugate.

For any m € N, the map V™ : §'(R",C) — 8'(R*,C"") is defined as V"u := (0%U)|a|=m-
We denote by V/ and A’ respectively the gradient and the Laplacian on R"~! identified with the
n — 1 first components of R™, i.e. V' = (8p,,...,0p,_,) and A" =02 +...+02 .

When Q is an open set of R, C°(£, C) is the set of smooth compactly supported function in
Q, and D’'(Q,C) is its topological dual. For p € [1, +00), LP(2, C) is the normed vector space of
complex valued (Lebesgue-) measurable functions whose p-th power is integrable with respect to
the Lebesgue measure, §(€, C) (resp. C2°(€2, C)) stands for functions which are restrictions on
of elements of §(R™, C) (resp. C°(R™, C)). Unless the contrary is explicitly stated, we will always
identify LP(Q2,C) (resp. C°(2,C)) as the subspace of function in L?(R™, C) (resp. C°(R™,C))
supported in € through the extension by 0 outside 2. L>°(Q, C) stands for the space of essentially
bounded (Lebesgue-) measurable functions.

For s e R, p € [1,4+00), ¢(Z,C) denotes for the normed vector space of p-summable sequences
of complexes numbers with respect to the counting measure 2¥*Pdk ; ¢2°(Z,C) is the space of
complex-valued sequences (x,)rez such that (2¥%z;)ez is bounded. More generally, when X is
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1 Tools and general concepts — 2 Real and complex interpolation of normed vector spaces

a Banach space, for p € [1,400], one may also consider L? (€2, X) which stands for the space of
(Bochner-)measurable functions u : @ — X, such that ¢t — ||u(t)||x € LP(9,R), similarly one
may consider ¢2(Z, X). Finally, C°(Q, X) stands for the space of continuous functions on Q C R"
with values in X. The subspace C)(R, X) consists of uniformly bounded continuous functions
and C)(R, X) is the set of continuous functions that vanish at infinity. For C € {C° C), C§,C>},
we set C(Q, X) to be the set of continuous functions on 2 which are restrictions of elements that
belongs to C(R™, X).

For 2 an open set of R™, we say that € is a special Lipschitz domain, if there exists, up to a
rotation, a globally Lipschitz function ¢ : R"~! — R, such that

Q={(,r,) ER" ' xRz, > ¢(z') }.

In other words, a special Lipschitz domain of R™ is the epigraph of a real valued Lipschitz function
defined on R* 1.

2 Real and complex interpolation of normed vector spaces

Interpolation theory is the heart of the matter of the present dissertation. We will focus on two
different kinds of interpolation, the real and the complex one. For our presentation, we are going
to gather definition and main properties and theorems from [BL76] and [Lun18].

Let (X, ||[x) and (Y,|-|y-) be two complex normed vector spaces. We write X — Y if X
embeds continuously in Y.

We will assume through this whole section, there is a common Hausdorff topological vector
space 3, such that XY C 3. In this case, X NY and X + Y are normed vector spaces with their
canonical norms

12l xy = max (2]l x, [[z]y) and [z xy = (Ly)ig)f(m zllx + [lyllv]-

r=x+Yy

Such a couple (X,Y) is called an interpolation couple.
The main idea of interpolation theory is deeply related to the following general problem.

Problem 1.1 Given two interpolation couples (Xo,Ys) and (X1,Y1), and T linear operator from
Xo+ Yy to X1 4+ Y7 such that

(i) T is bounded,
(i) 1),, = Zo — Z1 is well-defined and bounded for Z € {X,Y}.
Provided normed vector spaces Zj, j €{0,1}, such that

X;NY; = Z;— X; +Y;, 5 €{0,1},

when is the operator T : Zy — Zy still well-defined and bounded ?

While the Problem 1.1 has a very general setting, one of the first results that motivated
such investigation goes back to Riesz-Thorin’s Theorem, [Tho48|, and Marcinkiewicz’s Theorem,
[Mar39; Zygh6], where Xg, Yy, X1,Y) were given (weak-)Lebesgue spaces.

2.1 Real interpolation

Before we continue, we recall that up to now, no completeness assumption is made on
either X or Y.

Definition 1.2 One can define the K-functional of z € X + Y, for any ¢t > 0 by

K(t,2,X,Y) = inf t .
( 2 ) ) (x,y)ngXY,(”xHX + Hy”Y)
z=x+y
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1 Tools and general concepts — 2 Real and complex interpolation of normed vector spaces

This allows us to construct, for any 6 € (0,1), ¢ € [1,+00], the real interpolation spaces between
X and Y with indexes 6, q as

(X,Y)pq = {x eX+Y ‘ t—s 0K (t,2,X,Y) € LI(R,) } ,
where LI(R,) := LI((0, +00),dt/t). We may also define

(X,Y)s = {x eX+Y ‘ te—s 0K (t,2, X,Y) € CO(Ry) } .
They are all normed vector spaces with respect to their natural norm

2]l xv),, =t =t P Ktz X,Y)||lLaw,) and [[2]lxv), = 2] (xy)p-

Proposition 1.3 ( [BL76, Theorems 3.4.1 & 3.4.2] ) Let 6 € (0,1), and p,q € [1,+00). It
holds that,

(i) if X =Y, then (X,Y)g, = X with equivalence of norms,
(it) if X andY are complete, then so are (X,Y ), and (X,Y)g,

(iii) if p < q, one has continuous embedding
XY < (X,Y)op = (X, )og = (X,Y)g = (X,Y)go0 = X +Y,
() if p < +o0, X NY is dense in (X,Y)gp,
(v) the closure of X NY in (X,Y )00 is the space (X,Y)g.
And in this case one can answer to Problem 1.1, by the following theorem.

Theorem 1.4 ( [Lunl8, Theorem 1.6] ) Let (Xo, X;) and (Yp, Y1) be two interpolation couple.
For 6 € (0,1), p € [1,400], we write Zy := (Zo, Z1)o,p, Zo := (Zo, Z1)g, for Z € {X,Y}.
Let T : Xo 4+ X1 — Yy + Y7 be a linear operator, and we assume that

ﬂ ZXj—>Y3'7

Xy

is well-defined and bounded for j € {0,1}.
Then for all 6 € (0,1), p € [1,+00], we have that T| , is bounded from Xg to Y} with bound
6

1-6 9
1Tl xz vy <Nl xo 5w, 1T, Sy,

The conclusion still holds with (Xg,Yy) instead of (X5°,Yy*).

When the real interpolation spaces are complete, one has stability under the reiteration of the
real interpolation procedure, in the sense of the next theorem.

Theorem 1.5 ( Reiteration theorem [BL76, Theorem 3.5.3] ) Let n,6y,0; € (0,1), 6y #
61, po,p1 € [1,+0], and set

0 .= (1 777)00 +nb, € (0,1)

We assume that, for j = 0,1, (X,Y )y, ,, is a Banach space.
Then for all p € [1,+00], so is (X,Y)sp, and one has

(X, Y)Go,po’ (X’ Y)91,p1)n7p = (X, Y)9,P7
with equivalence of norms.

We can also recover dual spaces under additional conditions, that are satisfied in many standard
applications.
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1 Tools and general concepts — 2 Real and complex interpolation of normed vector spaces

Theorem 1.6 ( Duality theorem [BL76, Theorem 3.7.1] ) Let 6 € (0,1), p € [1,400),
and assume that X and Y are Banach spaces such that X NY is dense in both X and Y .
Then, we have

(X’ Y)Ie,p = (XI’Y/)O,IJU and (va)é = (X/7Yl>9,17
with equivalence of norms.

There are few other real interpolation methods called either the J-method or the Trace method,
but those require the considered normed vector spaces to be complete in order to make sense
of their involved quantities. This is really inconvenient for us, since we want to deal with non-
complete normed vector spaces. However, when the considered spaces are complete, those methods
are known to be equivalent with the K-method presented here. See for instance [BL76, Chapter 3,
Section 3.12], [Tri78, Section 1.8], [Lunl8, Chapter 1, Section 1.2] for the trace method, and
[BL76, Chapter 3, Section 3.2], [Tri78, Section 1.6] for the J-method.

2.2 Fundamental examples : real interpolation

We exhibit here some fundamental examples of explicit computations of real interpolation
spaces that are of paramount importance throughout this dissertation.

Theorem 1.7 ( [BL76, Theorem 5.6.1] ) Let po,p1 € [1,+00], so,$1 € R, such that so # s1.
Let E be a Banach space. If we set for 6 € (0,1)

S = (1 — 9)50 + Os1,
then for all p € [1,+00], we have

(ﬁs}g (Zv E)v E‘gi (Z> E))9,p = é’;(Z, E)

with equivalence of norms.

Theorem 1.8 ( [Tri78, Theorem, Section 1.18.4] ) Let po,p1 € [1,+0), and (Q, u) be a
sigma-finite measure space. We assume that X and Y are Banach spaces. If we set for 6 € (0,1)

L -nt el
p Po b1

then we have
(LPO (Qv Hy X)> L~ (Q, M, Y))9,p = LP(Q7 M, (Xv Y)G,;D)
with equivalence of norms.

Corollary 1.9 Let p € [1,40), qo,q1 € [1,4+0], s0,81 € R, such that sg # s1, (Q,pu) be a
sigma-finite measure space and E a Banach space. For 6 € (0,1), if we set

s:=(1—=60)sy+ 0s1,
then for all q € [1,400], we have
(L7, 1, 035 (Z, E)), L7 (Q, 43} (Z, E), ), = L3(Z, L7 (Q, 1, E))
with equivalence of norms.

Proof. — First, if p = ¢, by Theorem 1.8 and Fubini-Tonelli, we obtain that

(Lp(Qnu'vggg(Zﬂ E)),LP(Q7LL,€(£ (ZvE)))gp = LP(Q, pu, (Z, E)) = L(Z,LP (2 pi, E)).
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1 Tools and general concepts — 2 Real and complex interpolation of normed vector spaces

Now, for g # p, we decompose 6 := (1—n)8y+nb; for some 0y, 61,1 € (0,1), so that the reiteration
theorem, Theorem 1.5, and above equality yield

(L2 (9 033 (2, ), LP(Q 1, €8 (2, E))) | = (02, (2 L2 (R E)). 02, (Z,LP (s, E))),

where 5; = (1 —0;)so + 051 for j = 0,1. Thus, Theorem 1.7 gives

(LP(Q’ My 833 (Z’ E))a Lp(Qv Hs egi (Zv E)))gﬂ = gt(llfn)goJrngl (Z7 Lp(Qv Hs E))

which concludes the proof since (1 — )3y +n51 = (1 — 6)sg + 0s1 = s by construction. [ |

2.3 Complex interpolation

From now and until the end of the current section, we assume that X and Y are complex
Banach spaces, so that in particular X NY and X + Y are complete too. We consider F(X,Y)
the set of all continuous functions f : S — X + Y, S being the strip of complex numbers whose
real part is between 0 and 1, with f holomorphic in S, and such that

t— f(it) € CY(R, X) and ¢+ f(1+it) € CY(R,Y).

We can endow the space F(X,Y) with the norm

1l .y, = max (sup LGt L sup £(1 + it)ly) ,
teR teR

which makes F(X,Y) a Banach space since it is a closed subspace of C°(S, X +Y).
Definition 1.10 For 6 € (0, 1), the normed vector space given by

(X, Y]p={f(0)| f€F(X,Y)},

HJCH[X,Y]Q = feFi(n)gy), ||f||F(X,Y) J

f(0)=z
is a Banach space called the complex interpolation space between X and Y associated with 6.

The definition is motivated by the Phragmen-Lindelof inequality.
Lemma 1.11 Let Z be a complex Banach space, For all f € F(Z,Z), and all z € S

1£()]lz < max (sup LFGt) ] sup [1F(1 + mnz) |
teR teR

In particular, for all g e F(X,)Y) CF(X +Y, X +Y),

l9(2)[|x+y < max <Sup l9(@t)|lx » sup [lg(1 + if)ly) :
teR teR

Proposition 1.12 ( [Lunl8, Lemma 2.2, Proposition 2.4] ) Let 6 € (0,1). It holds that,
(i) if X =Y, then [X,Y]p = X with equality of norms,

(ii) one has a continuous embedding
XNY 5 [X, Y] X 4,

(ii7) the set X NY is dense in [X,Y]s.

We also have an answer to Problem 1.1 in the complex interpolation theory. The result is even
more general, called Stein’s interpolation theorem.
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Theorem 1.13 ( [Lunl8, Theorem 2.7] ) Let (Xo, X1) and (Yo, Y1) be two interpolation couples
of Banach spaces. For 0 € (0,1), we write Zyg) := [Zo, Z1]o, for Z € {X,Y}.
Let (T7) o5 be family of linear operators from Xo N Xy to Yo + Y1, such that

(i) for all x € Xo N X1, z — T,z is holomorphic in the interior of S and bounded with values
i’ﬂ YQ —|— Yl,

(it) forj € {0,1}, z € XoN X1, t — Tjyux is continuous from R to Yj,
(iii) there exist Mo, My > 0, such that, for j € {0,1},

||Tj+it.’l,'||yj < Mj”xHXj; r€e XoNXy, teR.

Then for all 6 € (0,1), Ty extends uniquely to a bounded linear operator from Xg to Yig with
bound

1-6 7 10
HTQHX[G]%Y[H] g]\40 My .

In fact, we can modify the theorem in a way that we get rid of the condition of completeness
when Xy = X; = F. This is somewhat important since we aim to carry interpolation theory for
non-complete spaces.

Theorem 1.14 Let E be a complex normed vector space and (Yy, Y1) be an interpolation couple
of Banach spaces. For § € (0,1), we write Yig) := [Yo, Y1]g. Let D be a dense subspace of E. Let
(T,) ,c5 be family of linear operators from D to Yy + Y1, such that

(i) for all x € D, z — T,x is holomorphic in the interior of S with values in Yy + Y7,
(it) for j € {0,1}, z € D, t — Tj1yx is continuous from R to Y},
(iii) there exist Mo, My > 0, such that, for j € {0,1},

[T 4iexlly, < Mj|lz|s, €D, teR.
Then for all 0 € (0,1), Tp extends uniquely to a bounded linear operator from E to Yig with bound
-0
Tl vy < MOMY

We also have a reiteration and a duality theorem.

Theorem 1.15 ( Reiteration theorem [BL76, Theorem 4.6.1] ) Letn, 00,601 € (0,1), 6y #
01, and set

0:= (1 —77)90 +nb, € (0,1)

We assume that X NY is dense in X, Y and [X,Y]y,, for j =0,1.
Then, one has

HX’ Ybov [X’ Y]el]n = [X7 Y]97
with equivalence of norms.

Theorem 1.16 ( Duality theorem [BL76, Corollary 4.5.2] ) Let 6§ € (0,1), p € [1,+00),
and assume that X NY is dense in both X and Y, and that either X orY is reflexive.
Then, we have

[Xv Y]IG = [X/7Y,]9

with equivalence of norms.
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2.4 Fundamental examples : complex interpolation

We exhibit here some fundamental examples of explicit computations of complex interpolation
spaces that are of paramount importance throughout this dissertation.

Theorem 1.17 ( [BL76, Theorem 5.6.3] ) Let po,p1 € [1,+0], so,51 € R. If we set for

0 €(0,1),
() =0n(o g)o(od)

(65 (2, X), 681(Z, Y )o = £(Z, (X, Y]o)

sy

then, we have

with equivalence of norms.

Theorem 1.18 ( [Tri78, Theorem, Section 1.18.4] ) Let pg,p1 € [1,+00), and (2, 1) be a
sigma-finite measure space. If we set for 6 € (0,1),

L -pt el
p Po b1

then we have
[LP0(€2, p, X), L (€2, 1, Y)]g = LP(Q, u, [X, Y]o)
with equivalence of norms.

Corollary 1.19 Let pg,p1 € [1,40), go,q1 € [1,+00], s0,51 € R, (Q,u) be a sigma-finite
measure space. For 0 € (0,1), if we set

11 1 1 1 1
<Saa> = (179) (5077) +9 (5177) ’
P q Po qo P1 q1

[LPO(Q, p, £33(Z, X)), L7 (Q, 1, 3 (Z,Y))] 5 = LP(Q, 1, €1(Z, [ X, Y]p))
[€30(Z, 17 (Q, p, X)), €8 (Z, L7 (Q, 1, Y))] , = CH(Z, 1P (Q, 11, [ X, Y ]g))

then, we have

with equivalence of norms.

Thanks to the fact that for all a,b > 0, 6 € [0,1],
a+a 7% < (a+ b)0a1_9 < 20(a + al_ebe) ,

and since for ¢ € [1,400], sp,$1 € R, 6 € (0,1), with s := (1 —8)sg+6s1, we have with equivalence
of norms

09 (Z) N E4(Z) = £9(Z, (2107 + 289 dR) = £9(Z, (25200 4 2bmia)Phson(i=0)gp),

by the mean of [Tri78, Theorem, Section 1.18.5], dealing in particular with complex interpolation
of weighted /¢ spaces, we obtain

Proposition 1.20 Let g € [1,400), so,51 € R, consider a complex Banach space E, and for
0 € (0,1), we introduce s := (1 — )sg + 0s1. The following equality holds with equivalence of
norms

(64, (Z, E), t4,(Z, E) N U5, (Z, E)lo = €3,(Z, E) N t{(Z, E) .
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The result still holds with N instead of Z.

2.5 Retractions

We present here a useful and powerful argument to compute concrete real and complex
interpolation spaces, when one can realize an interpolation couple of normed vector spaces as some
subspace of another one. This procedure is called the retraction-corectraction argument. Its
name comes from the abstract Category theoretic arguments one can use to build interpolation
theory, see for instance [BL76, Sections 2.1 & 6.4], [Tri78, Section 1.2] and [Egel5, Section 1.3.1]
for a more recent short and self-contained review.

Theorem 1.21 ( [Tri78, Theorem, Section 1.2.4] ) Let (Xo, X1) and (Yo,Y1) be two in-
terpolation couples, and let

R:Y9+YT —Xog+ X1 and € : Xo+ X1 — Yo+ 1

be two bounded linear operators such that RE = Ix,4+x,, i.e. € is as right bounded inverse for fR.
Then for all 6 € (0,1), p € [1,+0oc], one has

(Xo,X1)o,p = R(Y0, Y1)e,p.

The result still holds, replacing (-,-)ap by (-, -)o-
Furthermore, if (Xo,X1) and (Yy, Y1) are two interpolation couples of complex Banach spaces,
then the result still holds for [-, ], instead of (-,-)o,p-

In actual applications of this dissertation, one may usually not apply these results straight
forward for technical reasons, and have to reproduce the retraction-coretraction arguments
manually. But, one has to keep Theorem 1.21 in mind through this whole thesis.

3 Sectorial and bi-sectorial operators on Banach spaces

When one comes to study some linear elliptic partial differential equation with its associated
linear elliptic operator A, we are generally concerned by the well-posedness, the regularity theory,
and the existence of an evolution operator for its parabolic counterpart with the associated
well-posedness and regularity theory.

The well-posedness and the regularity theory for the given elliptic and parabolic problems
morally reduce to look for a good meaning and a precise description of the operators

A>, e, a,z €C,

in other words we want to take functions of (unbounded) operators, in a way that respects the
formalism of resolvents written as (Al — A)~!, with )\ in some subset of C.

It turns out that the class of sectorial operator is precisely a class of operators that allows
to consider such objects, and that most of the elliptic operators considered in the literature are
indeed sectorial.

Therefore, this section will be dedicated to a short review of the properties of sectorial and
bisectorial operators on a Banach space and their properties by the point of view of the holomorphic
functional calculus.

Our presentation will closely follow [Haa06, Chapters 2-5] and [Egel5, Chapter 3]. In this
dissertation, mainly in Chapters 3 and 4, we have a focus on some sectorial operators. Hence,
the statements in the current section will be given with priority to sectorial operators, while
corresponding one for bisectorial operators are also available and mentioned. A pure treatment of
bisectorial operators is achieved with explicit proofs in [Egel5, Chapter 3].

For an alternative presentation for the case of strongly continuous semigroups and fractional
powers of sectorial operators, there are a lot of references available, see for instance Pazy’s book
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[Paz83] or the monograph written by Arendt, Batty, Hieber and Neubrander [ABHN11, Chapter 3].
We warn the reader that Pazy’s book has generally the global assumption that considered sectorial

operators are invertible. This is not the case in general : consider —A on L?(R") with domain
H2(R"™).

3.1 Generalities

We introduce the following subsets of the complex plane

Y, ={2zeC" : |arg(z)| < p}, if p € (0,7),

. 7r
Sy = (=2,)UX,, if ue (0, 5),
we also define ¥ := (0, +00), Sp := R, and later we also consider iw and Fu their closure.
The set X, is the open sector with vertex 0 and opening angle 2;; symmetric around the
positive real axis. Similarly, S), is the corresponding bisector.

Definition 1.22 A closed linear operator (D(A), A) on complex valued Banach space X is said
to be w-sectorial, if for a fixed w € [0, 7), both conditions are satisfied

(i) o(A) C ¥, where o(A) stands for the spectrum of A

(it) For all u € (w, ), sup/\ec\qu)\()\I —A) Y xox < 4o0.

Similarly, (D(A), A) is said to be w-bisectorial, for a fixed w € (0, §), if 0(A) C S, and for all
pe (w %), sup/\ec\@”)\()\l —A)7Yxox < +oo.

An important result is the fact that sectorial operators on a reflexive Banach space X are
always densely defined. The next proposition is of paramount importance and is useful in many
ways such as, for instance, approximation of some elements of X by elements of D(AF) N R(AF).

Proposition 1.23 ( [Egel5, Proposition 3.2.2] ) Let (D(A), A) be a bisectorial operator
on a Banach space X. Then the following assertions hold.

(i) If k € N, and x € D(A), then

lim (it)*(it1+ A) %z =2z and tl&n AF(itl + A)~Fz = 0.

t—+oo

(1) If k € N, and = € R(A), then
lim (it)*(it] + A) %z = 0 and lim A*(itl + A)*z = 2.
t—0 t—0

In particular, N(A) NR(A) = {0}, so that X = R(A) implies that A is injective.

(iii) For every k € N, D(A*) NR(AF) is dense in D(A) NR(A).

(iv) If X is reflexive, then A is densely defined and induces a topological decomposition

X =N(A) @& R(A).

The result still holds if (D(A), A) is a sectorial operator, replacing i by 1.

3.2 Holomorphic functional calculus

For Q) C C an open set, H>(Q) stands for the set of bounded holomorphic functions on €.
For p € [0, 7), we denote by H§®(X,,), the set of holomorphic functions f : ¥, — C, such
that there exist C, s > 0 with

|2I°

< .
Vz e Elh |f(Z)| = Cl+ |Z|25
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Both vector spaces H3®(X,,) and H* () are algebras, called respectively the algebra of regularly
decaying, resp. bounded, holomorphic functions on X, resp. €.

For (D(A), A) an w-sectorial operator on a Banach space X with w € [0,7), given p € (w, )
then f € H§°(X,), and v € (w, i), we define a bounded linear operator f(A) on X by the mean
of the convergent Cauchy integral

f(A4) = = f(2)(zI — A)dz. (1.1)

2T Jax,
Here, 0%, the boundary of ¥, surrounds o(A) counterclockwise, given by oriented curves
3ZV = —RJ’_B“/ D R+67iu.

The integral in (1.1) actually makes sense and is absolutely convergent, since f € H§*(X,)
ensures that f € L1(%,, 921,

2|

Finally, provided a,b € C, and g(2) := f(2) + a(1+ 2)"! + b for all z € ¥, we have

geEE,) =HFE)az—(1+2) HaC
and we can extend the definition of the functional calculus as follows
g(A) := f(A) +a(l+ A)~' + bl

This is the Dunford-Riesz holomorphic functional calculus for sectorial operators, and £(X,) is
the Dunford-Riesz class.

Similarly, one may have similar consideration with f € H§°(S,) for u € [0, 5), and S, replacing
¥, with 0 <w < v < p < § whenever (D(A), A) is w-bisectorial. The Dunford Riesz class is built
the same way with (i + 2z)~! instead of (1 + z)~!

We provide here the fundamental result known as M°Intosh’s approximation theorem which
was proved during the proof of [McI86, Theorem, Section 7, p.222-223], see [Haa06, Chapter 5,
Section 5.2] or [Egels, Theorem 3.3.9] for more recent and detailed proofs.

Theorem 1.24 (MC¢Intosh’s approximation) Let (D(A), A) be an w-sectorial operator on a
Banach space X with w € [0,7), and for ¢ € (w,m), let f € HF(Z,) such that

+oo
[t
0

Then, for all x € D(A) NR(A),

/ftAx——HU

b——+o0

The result also holds for bisectorial operators.

Definition 1.25 Let (D(A), A) be an injective w-(bi)sectorial operator with w € [0,7) (resp.

[0,%)). For p € (w,7) (resp. (w,3)) we say that A admits a bounded (or H*(X,)- (resp.

H>(S,)-)) holomorphic functional calculus on X (of angle p), if there exists a constant K,
such that for all f € H>*(X,) (resp. H*(S,)), we have that

1f (A x-x < Kull fllues (1.2)
We replace X, by S, in (1.2) for the bisectorial case.

The above definition is meaningful. Indeed, since (D(A), A) is assumed to be injective, the
operator (D(A) N R(A), (I + A)2A~1)) is well-defined and closed on X. So if one writes for
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feH®(Z,),

z 22 22
0= 1O = B, sex,,

with g € H§°(X,), one has, a priori, an unbounded closed operator (D(f(A)), f(A)) on X, with
D(A) NR(A) C D(f(A)).

One can perform a similar argument for bisectorial operators, replacing (1 + z) and (I + A)
respectively by (i + z) and (il 4+ A).

The question about bounded holomorphic functional calculus can be reduced to the behavior of
the Hg°-functional calculus, which is a consequence of the convergence result [MclI86, Theorem,
Section 5].

Theorem 1.26 ( [Egel5, Corollary 3.3.6] ) Let (D(A), A) be an w-sectorial operator with
w € [0,7) on a Banach space X, with dense range and dense domain. Let u € (w, ).
If there exists K,, > 0, such that for all f € HF(X,,)

[f(A)lIx-x < KullfllLe(s,)s

then the H*®-functional calculus of same angle p for A is bounded with the same bound.
The result still holds for bisectorial operators up to appropriate modifications.

We end up the presentation of bounded holomorphic functional calculus with standard applica-
tion in the case of self-adjoint operators on a Hilbert space, which is a consequence of [McI86,
Theorem, Section 8] and [Haa06, Propositions C.4.2 & C.4.3], see also [Egel5, Section 3.4].

Proposition 1.27 Let (D(A), A) be an injective self-adjoint operator on a Hilbert space H.
Then (D(A), A) is 0-bisectorial with the resolvent estimate

1
-1
) s < Sin(0)|

sup H)\()\IfA K

)\G(C\gg

0e€(0,-)

T
2
and has H*(S,,)-functional calculus for all p € (0, %).

If moreover (D(A), A) is non-negative, i.e. (Au, uyg > 0 for all u € D(A), then it is also
0-sectorial with the resolvent estimate

1 s

J— _1 R —
sup H)\()\I A) ||H—>H<|cos(0)|’

AEC\Zp
and has H®(X,,)-functional calculus for all p € (0, 7).

Interesting and fundamental applications to illustrate those results will show up in next sections
and chapters, mainly the Hodge-Dirac operator D = d + ¢ and the ((negative) Hodge) Laplacian
—A = D2

We notice that in general, proving boundedness of holomorphic functional calculus for a given
(concrete) (bi)sectorial operator on a Banach space X may be tedious. Usual techniques require
starting from a Hilbert space H, for which one may realize the (bi)sectorial operator on it with a
bounded holomorphic functional calculus provided by [McI86, Theorem, Section 8].

From this point, the goal will be to try to extrapolate the estimates up to the desired Banach
space X via (extra)interpolation and perturbation argument when X, H are interior points of
a same complex interpolation scale. In this case, the results are often carried over by (possibly
vector-valued) Harmonic Analysis techniques.

For instance, in the case of elliptic operators on LP spaces : M°Intosh and Monniaux performed
the argument for the Hodge-Dirac operators and the Hodge Laplacian on LP for bounded Lipschitz
domains [MM18], Blunck and Kuntsmann gave sufficient conditions to extrapolate the bounded
holomorphic functional calculus for elliptic operator in divergence form [BKO03].
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3.3 Fractional powers, bounded imaginary powers

The construction of the positive iterated powers of a (bi)sectorial operator, as Proposition 1.23
told us, does not pose any difficulty. When the operator is sectorial, one can easily extend the
construction to complex powers with positive real part thanks to the Dunford-Riesz functional
calculus.

For a € C%, m € N such that oo < m, we can write for z € C\ (—o0,0],

ZO/,
(I+2)m
where z¢ is defined by the mean of the complex logarithm on its principal branch. Then for

(D(A), A) an w-sectorial operator on a Banach space X, since fo.m € HF*(X,), p € (w,m), we
can define the closed operator (D(A®), A%*) with D(A™) C D(A%), writing

S0 — (1 + Z)m = (1 + Z)mfa,m(z)a

A% = T4+ A)" fo.m(A).
Fractional powers of sectorial operators behave as expected in many ways.

Proposition 1.28 ( [Haa06, Propositions 3.1.1, 3.1.2, 3.1.9] ) Let (D(A),A) be an w-
sectorial operator on a Banach space X, with w € [0,7). Let a, 3 € C% and ¢ > 0. Then the
following assertion hold.
(i) The law of exponents AP = A*AP s satisfied. In particular, the fractional powers of A
coincides with the usual powers of A if a € N.
(ii) If Ra < RB, then D(AP) C D(A®). If in addition A is densely defined, then D(AP) is dense
in D(A%).
(iii) Let v € Cy, such that either Ry > 0, or v =0. If Ry < RB < Ra, for 6 = gfé:ﬁz € (0,1),
one has for all x € D(A%),

1A% x <o A7 2|l% || A%l -

(iv) It holds N(A) = N(A®) and if A is invertible so is A*.
(v) One has the equality D(A%) = D((A 4 €)*) with equivalence of graph norms, and for all
x € D(A%)

(A+4¢e)* —— A%x.
E—>O+

(vi) If « € (0, T), then the operator (D(A%), A%) is (a - w)-sectorial on X.

It is more difficult to give an appropriate definition of fractional powers in the case of bisectorial
operators. The difficulty arise from the absence of a branch of the logarithm on a bisector that
allows the compatibility with usual powers of the operator. The raised issue could be partially
bypassed, considering for oo € C7, the pseudo fractional powers of A,

[A]~ = (A?)%.

Since A2 is a sectorial operator, see the discussions at the beginning and the end of [Egel5,
Sections 3.2.4 & 3.2.5], the properties are then carried over by Proposition 1.28. We summarize
with the following proposition.

Proposition 1.29 Let (D(A), A) be an w-bisectorial operator on a Banach space X, with w €
[0,%). For a € (0,%), the operator (D([A]*), [A]*) is (a - w)-sectorial on X.

In practice, it is of manifest interest to obtain a description for the domain of the fractional
powers of a sectorial operator. Under some circumstances, this is possible for a specific class of
sectorial operators, the so called BIP class, where BIP stands for Bounded Imaginary Powers.
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For s € R*, using the principal branch of the logarithm on C\ (—o0,0], we may write for
z €3y, 1 e [0,m),

_ SlHis (14 52
2" = I U ) Jitis2(2)

(14 2)?
(1+2)2 =2 '

Since fi44s,2 € H§°(X,), the next definition is then meaningful.

Definition 1.30 We say that a densely defined, injective, sectorial operator (D(A), A) on a
Banach space X has bounded imaginary powers (BIP) of type 04 € [0,+o00], if A® is a
bounded operator linear on X for all s € R, and we have

04 = inf {w >0 supe_w““l”AisHXaX < +OO} .

seR

The description of the domains of fractional powers for an operator that has BIP arise from
the computation of the associated complex interpolation space. It follows from the two results
[Haa06, Proposition 3.5.5 & Theorem 6.6.9)].

Theorem 1.31 Let (D(A), A) be a densely defined operator on X such as it has BIP. Let

a, 8,7 € Cy, such that Ra < Ry < RfB, and set § = ;ﬁg:gg € (0,1). We have

[D(A%), D(A7)] = D(A7),
whenever, either a = 0 or Ra > 0.

Another important fact : sectorial operators that have BIP of type § < 7 play an important
role in the theory of evolution equation, mainly well-posedness and regularity for inhomogeneous
Cauchy problems, we refer to Chapter 3 for more details.

3.4 Bounded holomorphic semigroups

For (D(A), A) an unbounded closed operator on X, one may want to solve the abstract ordinary
differential equation

{ Ou(t) + Au(t) = 0,¢> 0,
uw(0) = wu € X.

Therefore, we are looking for building the linear flow map T = (T'(t))¢>0 that should behave
morally as (e '4);>0, i.e. such that

(i) one has Tug € CO(Ry, X), and T(0)ug = ug, for all ug € X,
(i7) for all t € Ry, T'(¢) is a bounded linear operator on X, and for all s > 0,

T(t+s)=Tt)T(s),
(iii) for all t > 0, ug € X, one has T'(t)ug € D(A), and Tug € C*((0, +00), X), with
O (T (t)ug) = —AT (t)uo.

When it exists, such family T of bounded linear operators is called the strongly continuous
semigroup of bounded linear operators on X with (negative) generator (D(A), A). For
simplicity, we prefer to call it the C°-semigroup generated by (negative) A.

It turns out that such family is well-defined when (D(A), A) is an w-sectorial operator on X,
with w € [0, §), thanks to the Dunford-Riesz holmorphic functional calculus. Indeed, for all ¢ > 0,
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the operator (D(A),tA) is sectorial of the same angle, with the same resolvent bound. Since one
has for all z € X,

1 1 1
—z __ -z —
¢ —<e 1+z)+1+z g(z)—|—1+z
with g € H(E4), ¢ € [0, §), we can define for all ¢ > 0
T(t) == e ™= g(tA) + (I+tA) "L

This construction yields even a uniformly bounded C°-semigroup.

One can even go a bit further, extending the construction on a sector near the half-line. Indeed,
for ¢ € [0, 5 —w), one can check that (D(A),e? A) is an (w+ ¢)-sectorial operator with w+¢ < %.
The Dunford-Riesz holomorphic functional calculus still apply, and we get the uniformly bounded
families of operators

(T(2))zesz_,_.Ufo}s for all € € (0, T_ w).
P w—e 2

The next result summarize the main expected properties of such bounded holomorphic
semigroup generated by a sectorial operator, and even more. The original statement comes from
[Haa06, Proposition 3.4.1], one may also see [ABHN11, Proposition 3.7.2].

Proposition 1.32 Let (D(A), A) be an w-sectorial operator on a Banach space X, withw € [0, T).
We set

T(z) :=e 7?4, forallz € ¥z _,.
The following assertions hold :

(i) For all ¢ € (w, %), (T(z))zeg%wu{o} is a family of uniformly bounded operators such that

T)=1 and T(z+2)=T()T(") forallzz €%z ,U{0}.

(ii) If x € D(A), then for each v € (0,5 — w),

T(z)r ——x and T(z)a — 0
[z|—0 |z| =400
larg(2)| < larg(2)| <

(i) If x € X, then T(z)x € D(A"™), for all z € ¥z, n € N, and the map z — T(2)x is
holomorphic on Xz _, with derivatives of order k € N,

TW (2)x = (—A)*T(2)x  forall z € Yz _y.

(iv) The identity

AL+ A)~ ! = /%o e MT(t) dt

0

holds true for all A € Xz
(v) Fora € Cy, 2 € Bz _4, with ¢ € (w, 5), one has
1
[A“T(2)[x >x SAd.a P

The appearance of point (v) is a consequence of the fact that z — 2%e™* € H§*(Xy), ¢ € [0, 7).
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When a C%-semigroup (T'(t));>0 on a Banach space X satisfies the point (v) for a = 1, and
t € (0,+00), we say that (7'(t))>0 is a bounded analytic C°-semigroup. When it occurs, then
one can find that its generator (D(A), A) is an w-sectorial operator on X for some w € [0, 7), and
Proposition 1.32 applies. See [ABHN11, Theorem 3.7.19] for more details.

One can also use the semigroup generated by a sectorial operator to recover fractional powers
of the said generator, thanks to MIntosh’s approximation Theorem 1.24.

Proposition 1.33 Let (D(A), A) be an w-sectorial operator on a Banach space X, withw € [0, T).
Let a € C, such that 0 < Ra < 1. The following assertions hold.
(i) For all x € D(A®%),

« 1 e l—-a pl—a _—tA jqa dt 1 e —« —tA
A = ————— YA T YT A — = ——— t7“Ae P dt
r(l—a) /o t I1l—a«) Jy

hold true.
(ii) If (D(A), A) is injective, for all x € R(A%),

1 oo
A % = —/ tYe Ay g
L(a) Jo 13

holds true.

A lot of other representation formulas are available for fractional powers of sectorial operators,
called generally Balakrishnan representation formulas. See for instance [Haa06, Proposition 3.1.12],
[Lunl18, Chapter 4], [ABHN11, Chapter 3, Section 3.8], [BC20, Chapter 2] and the references

therein.
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Résumé du chapitre

Dans ce chapitre, nous proposons une construction d’espaces de Sobolev homogénes d’ordre
fractionnaire sur R™ et R"}. Cette construction compléte la construction d’espaces de Besov
homogenes sur 8} (R™) commencée par Bahouri, Chemin et Danchin sur R”. Nous étendrons
également le traitement effectué par Danchin et Mucha sur R” | et la construction d’espaces de
Sobolev homogenes d’ordre entier commencée par Danchin, Hieber, Mucha et Tolksdorf sur R™ et
R%.

Les propriétés d’interpolation réelle et complexe, de dualité et de densité sont discutées. Les
résultats de traces sont également revus. Notre approche repose principalement sur la théorie
de l'interpolation exposée dans la Section 2 du précédent Chapitre 1, et donne des preuves plus
simples de certains résultats précédemment connus dans le cas des espaces de Besov.

Le manque de complétude sur toute I’échelle conduira a considérer des intersection d’espaces
des estimations découplées pour contourner ce probleme.

Comme applications standards et simples, nous traitons les problémes des laplaciens de Dirichlet
et de Neumann dans ces espaces de fonctions homogenes qui seront utiles dans le Chapitre 4.

Summary of the chapter

In this chapter, we propose a construction of homogeneous Sobolev spaces of fractional order
on R™ and R”}. This construction completes the construction of homogeneous Besov spaces on
85, (R™) started by Bahouri, Chemin and Danchin on R™. We will also extend the treatment done
by Danchin and Mucha on R”, and the construction of homogeneous Sobolev spaces of integer
orders started by Danchin, Hieber, Mucha and Tolksdorf on R™ and R’}.
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Properties of real and complex interpolation, duality, and density are discussed. Trace results
are also reviewed. Our approach relies mostly on interpolation theory exposed in Section 2 of
previous Chapter 1, and yields simpler proofs of some already known results in the case of Besov
spaces.

The lack of completeness on the whole scale will lead to consideration of intersection spaces
with decoupled estimates to circumvent this issue.

As standard and simple applications, we treat the problems of Dirichlet and Neumann Laplacians
in these homogeneous functions spaces that are going to be useful in the later Chapter 4.

1 Introduction

We want to give an appropriate construction of homogeneous Sobolev spaces as subspaces
of tempered distributions instead of a quotient space of distributions by polynomials. This
construction is motivated by the fact that one would make sense of (para)products laws, stability
under global diffeomorphism, or to look at boundary conditions, and therefore traces, when one
restrict those spaces on a domain. This could be somewhat difficult if we work with tempered
distributions up to a polynomial. Indeed, it is not clear that one can perform previous operations

in a way that does not depend on a choice of a representative u+P € 8'(R") of [u] € 8'(R") /(C[x] .

This is inconvenient when it comes to study non-linear partial differential equations, or partial
differential equations on a domain with boundary conditions. However, the interested reader could
consult, for instance [BL76, Chapter 6, Section 6.3], [Tri78, Chapter 5], or [Saw18, Chapter 2,
Section 2.4] for such a construction.

To circumvent those issues, the idea of Bahouri, Chemin and Danchin in [BCD11, Chapter 2]
was to introduce a subspace of 8'(R™) such that we get rid of polynomials, see [BCD11, Examples,
p.23]. The aforementioned subspace of 8'(R") is

8. (R") := {u e 8'(R")

¥6 € C(R"), |00®)ull ery 5 0]

where O(AD) = F~1O(\-)TF, with F denoting the Fourier transform. The condition of uniform
convergence for low frequencies in the definition above ensures that for u € 8}, (R™), the series

Z A]‘U

<0

converges in L°(R™), and then, by [BCD11, Proposition 2.14], the following equality holds in
S'(R™)

u = Z Aju,
JEZ
where (A;)jez is the homogeneous Littlewood-Paley decomposition on R”. With 8} (R") as an
ambient space, Bahouri, Chemin and Danchin gave a construction of homogeneous Besov spaces

B;q(Rn) which are complete whenever (s, p,q) € R x (1, +00) x [1, +00] satisfies

[s<n} or [qzlandsgn].
p p

Later, this has also led Danchin and Mucha to consider homogeneous Besov spaces on R’} and on
exterior domains, see [DM09; DM15], and Danchin, Hieber, Mucha and Tolksdorf [DHMT21] to
consider homogeneous Sobolev spaces H™? on R and R%, for m € N, p € (1,400). Each iteration
led to various important applications in fluid dynamics, such as Navier-Stokes equations with
variable density in [DM09; DM15], or free boundary problems as in [DHMT21]. This highlights

48



2 Homogeneous Sobolev and Besov spaces on the whole and the half-space. — 2 Homogeneous
function spaces on the whole space

the needs of stability under global diffeomorphism, and (para)product laws that do not rely on a
choice of a representative up to a polynomial.

We want to summarize, complete and extend the given construction of Besov spaces in [BCD11,
Chapter 2] and the one of homogeneous Sobolev spaces started in [DHMT21, Chapter 3]. We are
going to discuss in Section 2 their construction and usual properties, especially their behavior
through complex and real interpolation. The whole space case is treated first, then the case of
the half-space will follow.

Due to the lack of completeness, for homogeneous Sobolev (and Besov) spaces with high
regularity exponents, one will need to consider intersection spaces HsoPo 0 Hs1P1 | with either,
H*0P0 or H*'P1 known to be complete (i.e. s; < n/p;). Therefore, one will have to check
boundedness of operators with decoupled estimates.

In Section 5, we will review the meaning of traces on the boundary. As an application, in
Section 6, we treat the well-posedness of Neumann and Dirichlet Laplacians on the half-space
with fine enough behavior of solutions. The "fine enough behavior" have to be understood in the
sense that the decay to 0 at infinity is given a very precise sense.

2 Homogeneous function spaces on the whole space

All the function spaces considered here are scalar complex valued. Hence, to alleviate notations
during this whole section, we will write L?(2) instead of LP(Q, C), and similarly for any other
function spaces : we drop the arrival space C.

2.1 Definition and usual properties

To deal with Besov spaces on the whole space, we need to introduce Littlewood-Paley decom-
position given by ¢ € C(R™), radial, real-valued, non-negative, such that

e supp ¢ C B(0,4/3);
b ¢\B(o,3/4) =1;
so we define the following functions for any j € Z for all £ € R",
9;(€) == ¢(277¢), ¥;(§) = ¢;(£/2) — ¢;(8),
and the family (1;);ecz has the following properties
o supp(¢;) C {€ € R™[3- 2772 < [¢| <2H3/3};

o VEERM\{0}, 3 () — 1.

j=—M N,M—+o00

Such a family (¢, (¢j);ez) is called a Littlewood-Paley family. Now, we consider the two following
families of operators associated with their Fourier multipliers :

e The homogeneous family of Littlewood-Paley dyadic decomposition operators (A;);ez,
where

Aj =TT,

e The inhomogeneous family of Littlewood-Paley dyadic decomposition operators (Ay)kez,
where

A_q:=F 197,

Ay, = Ay, for any k > 0, and Ay := 0 for any k < —2.
e The low frequency cut-off operators (Sj) jez, given for all j € Z by

S;=F 1,7
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One may notice, as a direct application of Young’s inequality for the convolution, that they are
all uniformly bounded families of operators on L?(R™), p € [1, 4+o0].
Both family of operators lead for s € R, p,¢q € [1,4+c0], u € 8 (R™) to the following quantities,

_ ks _ is || A
lullg, @y = (|25 1Akl ez),,  and Jullg, g = || 1Azl ez

0a(2) ta(z)’

respectively named the inhomogeneous and homogeneous Besov norms, but the homogeneous
norm is not really a norm since [lullg. () = 0 does not imply that u = 0. Thus, following
p,q
[BCD11, Chapter 2] and [DHMT21, Chapter 3], we introduce a subspace of tempered distributions
such that |-[|g: (gay IS point-separating, say
pP,q

8l (R") = {u € 8'(R")

VO € CER"), |0AD)ul e gny ——— 0},

A— 400
where for A > 0, O(AD)u = F~1O(\-)Fu. Notice that 8} (R™) does not contain any polynomials,
and for any p € [1,4+00), LP(R™) C 8§}, (R™).

One can also define the following quantities called the inhomogeneous and homogeneous Sobolev
spaces’ potential norms

fronany 1= || D(—A)2 Ayl

JEZ

[ul

Hergn) = [|(T= ) 3u gy and [ul Lr (&)’

where (—A)? is understood on u € 8}, (R™) by the action on its dyadic decomposition, i.e.
(—A)2 Aju = F7HE — [E]°TAu(9)),

which gives a family of C* functions with at most polynomial growth. Thanks to [DHMT21,
Lemma 3.3, Definition 3.4],

> (—A)EAju e 8, (RY)
JEZL

holds for all u € 8}, (R"), whenever s € [0, +00).
When u € 8} (R™) and Zjez(_A)%Aj“ € 8, (R™), for s € R, one will simply write without
distinction,

(—A)Fu=) (~A)FAu € 8, (R"),
JEZ

which is somewhat consistent in this case with the fact that (—A)2Aju = Aj(=A)3u, j € Z.
Hence, for any p,q € [1,4+00], s € R, we define

e the inhomogeneous and homogeneous Sobolev (Bessel and Riesz potential) spaces,
P (R?) = {w € 8'(R™) | fullgonuny < +00 }, BP®R) = { € 8, (R™) | ullgo oy < +00 } 5
e and the inhomogeneous and homogeneous Besov spaces,
Bs (R") = {u €S/ (R) | [Jully, (ge) < +00 } B (RY) = {u € 8,(R™) | ull, (gn) < +00 } ,

which are all normed vector spaces. We also introduce the following closures
‘ SR 25 o 2 s n
BZ,OO(R") = 8§(R") B oo B o B;’OO(R") = 3o(R™) B oo (1)

Notice that the following equalities holds with equivalence of norms for s > 0, p € (1, +00),
q € [1,+o0],

LP(R") NH*P(R") = H*P(R") and LP(R") N B; ,(R") = B (R™),
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see [BL76, Theorem 6.3.2] for more details.

The treatment of homogeneous Besov spaces BZ)Q(R"), s € R, p,q € [1,400], defined on 8}, (R™)
has been done in an extensive manner in [BCD11, Chapter 2]. However, the corresponding
construction for homogeneous Sobolev spaces H*?(R™), s € R, p € (1,400) has only been done
in the case (p, s) € ({2}, R) U ((1,4+o0),N). See [BCD11, Chapter 1] for the case p = 2, [DHMT21,
Chapter 3] for the case s € N.

We first mention the following equivalences of norms.

Proposition 2.1 Foralls € R, p € (1,400), g € [1,400], m € N, and all u € 8}, (R"),

n
> ozl
k=1

Hs,p(Rn) ~s,m,p,n ||vmuHHs,p(Rn) ~s,m,p,n ||’LL| Hs+7n,p(R‘n,)7 (21)

n
ZH6;7;U||B;{Z(R71) ~s,m,p,n ||VmUHB;;7q(Rn) ~s,m,p,n ||“HB;§”L(R")7 (2.2)
J=1

where (2.1) is a direct consequence of the proof [DHMT21, Proposition 3.7], and (2.2) a consequence
of [BCD11, Lemma 2.1].
The following subspace of Schwartz functions, say

S8o(R™) :={u € §(R™) |0 ¢ supp (Ff) },

is a nice dense subspace in many cases, to be more precise
Proposition 2.2 For allp € (1,4+00), q € [1,+00), s € R, 8o(R") is dense in LP(R™), H¥P(R™),
H*P(R"), B, ,(R") and B; ,(R").

Proof. — The result for LP(R™) and B;AR") is known respectively from [DHMT21, Lemma 2.6]

and [BCD11, Proposition 2.27]. The case of H*P?(R") is carried over by the case LP(R"). Let
s€R, pe(1,+00), and u € H*P(R™). Then let us introduce

f:=(-A)2u € LP(R"),

so from the L? case there exists (fx)ken C So(R™) such that fr — f in LP(R™). Now, for all
k € N we set ug, := (—A)72 fj, € §o(R™), it follows

o= ke oy = (=030 = (A ey oy = I = Fillppny 0.

The inhomogeneous spaces LP(R"), H*?(R"), and B, ,(R™) are all complete for all p, ¢ € [1, +oc],
s € R, but in this setting homogeneous spaces are no longer always complete (see [BCD11,
Proposition 1.34, Remark 2.26]). Indeed, it can be shown (see [BCD11, Theorem 2.25]) that
homogeneous Besov spaces B;,  (R") are complete whenever (s,p,q) € R x (1,+400) x [1,+00]
satisfies

n n
s<—| or |[g=1lands<—|, Cs.p.q)
s<tor | : (Cona

From now, and until the end of this paper, we write (Cs ;) for the statement (Cs p ). Similarly,
we show H*P(R") is complete whenever (C, ) is satisfied, see Proposition 2.4 below.

To prove completeness for our homogeneous Sobolev spaces, we have to check validity of Sobolev
embeddings in our setting, manually. (Therefore, completeness of homogeneous Sobolev spaces is
not known at this stage.)

such that

Slw

Proposition 2.3 Let p,q € (1,+00), s € (0,n),
11
q P
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We have dense embeddings,

[ullLa ) Sn.spa [ullirsn @ny, Yu € HPP(R™),

[ellig-s.a(mny Snspa llullLr@n), Vo € LP(R™).

Proof. — Let us first recall, the fact for all f € S§(R"), s € (0,n), we have that (—A)~2 f € C*(R")
with at most polynomial growth, in particular if f € §o(R™), we have (—A)~2 f € §(R") and

the Hardy-Littlewood-Sobolev inequality, see [Gral4b, Section 1.2, Theorem 1.2.3], states that

for ¢ such that é = % — 2, we have

1(=2) 29l o) Snspa 19llLony s V9 € So(R™) € S(R™).

Therefore, by density of §p(R™) in L?(R™), see above Proposition 2.2, and completeness of L4(R"™),
there exists a unique v € LI(R™), such that if (fz)een C So(R™) converge to f € LP(R™), we
obtain

(—A)"5f 2y,
{—+o00

then necessarily for all k € Z, the following convergence holds in LZ(R"™) then in particular in
8'(R™)

(—A)igAkfg Eam— Ak’U.
L—+o00
Hence, for all ¢ € S(R™),
((=A)"2Akfe,0) = (Apfo, (D) F[Ap_1 + Ay + Apya]o)

so that

(=8)75Akfe, 6) - (Buf, (=8) HAkor + Akt Apa)o) = (—2) T2 Axf, 9).
Consequently, we deduce that (—=A)~5A,f = Agv in 8'(R™), and since v € LI(R™) C 8}, (R"),

v=> Aju=>(-A)2A;f € LY(R") C §},(R"),
JEZ JEZ
which give the full meaning of the Hardy-Littlewood-Sobolev inequality in our setting ¢.e.,
=2l gy = Il ey Smsng [llrny, Ve € LP(R™).

Now if u € H*P(R"), (—A)3u € LP(R™) C 8} (R™), and u € 8}, (R™), so it follows, for all k € Z,
that the next chain of equalities must hold pointwise,
Aku = Ak[Ak,1 + Ak + Ak+1]u
= F T FARF T F[Ap—1 + Ap + Appa]u
. k+1 .
=FHETFAL | D FTHEF A
j=k—1

where we notice the property AkA] = 0, whenever |j —k| > 2, so that 3"*1|f|’59’Ak3"’1|§\33"Aj =
0. Thus, it comes,

Apu=F e FAL(—A) 3w,

52



2 Homogeneous Sobolev and Besov spaces on the whole and the half-space. — 2 Homogeneous
function spaces on the whole space

then in 8'(R™),

(~A) H(-A)fu= 3 T TA(-A) =Y Agu=u.

keZ kEZ

wle

The function (—A)2u is in LP(R™) so one can apply the freshly adapted Hardy-Littlewood-Sobolev
inequality to it and obtain that

||u||L‘1(]R“) Snspag |l Hep (R7) *

Proposition 2.4 Let s € R, p € (1,400), then Hs’p(R”) is a Banach space whenever exponents
satisfy (Csp) (i.e. when s < 3).

Proof. — For s € R, p € (1, 400) satisfying s < %, the case s = 0 is already done since LP(R") is
complete. Hence, we have to treat cases s <0, s € (0, 7).
(i) The case s € (0, 2).
Now, let us consider a Cauchy sequence (vg)reny C HeP(R"), we deduce from Proposition 2.3
both that (vg)zen is a Cauchy sequence in L4(R™), and ((—A)2vy)ren is a Cauchy sequence
in LP(R™). Thus, by completeness, there exists a unique couple (v, w) € LI(R™) x LP(R"),
such that

v = vkllgaany + l0 = (=A) 2 vel gy T O

In particular, we have that v,w € 8 (R™) and by continuity, for all j € Z
(=A):Aju = Ajw
so that, we have the following equalities in &' (R™)
(A=Y (AP Aju=> Aw=uw,
JET JEZ

hence (—A)Zv = w € LP(R™), which means exactly that v € H*?(R"), then H*?(R") is
complete.

(ii) The case s < 0. )
Let (vi)ken C H*P(R™) be a Cauchy sequence in H*P(R"™), by completeness of L”(R"™),
there exists a unique w € L?(R™), such that,

[|w— (-A)2 0.

”kHLp(Rn) k_>+oo>

In particular, we get that w € 8} (R™). Applying [DHMT21, Lemma 3.3], we have that
(—=A)~2w € 8, (R™). Then by construction v := (—A)~ 2w € H*P(R"), and

o = vellger@ny ———0

k——+oo

so that H*P(R™) is complete. [ |

A direct consequence of it is the following corollary

Corollary 2.5 Letp € (1,+00), s € R, if (Cs ) is satisfied then

(-=A)z : H*P(R") — LP(R")

s an isometric isomorphism of Banach spaces.
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Remark 2.6 In particular, H*?(R") is a reflexive Banach space, for all p € (1, +00), 5 < n/p.

According to [BL76, Section 6.4], for all s € R, p,q € (1, +00) x [1, +oo], H*?(R") and B;,  (R")
are both complete, and moreover they are reflexive when ¢ # 1, +00, and we have
(H>P(R™))" =H"*" (R"), (B, ,(R"))" = B,*, (R"),
(Bpoo(R™))" =B.% (R"), (By 1 (R"))" =B, (R").

p’, p’,00

We introduce via the next lemma the equivalent homogeneous Triebel-Lizorkin norm, which
is somewhat important to carry over effortless usual results like the action of real and complex
interpolation on our homogeneous function spaces.

Lemma 2.7 Foralls € R, p € (1,4+00), let us introduce the following quantity for allu € 8 (R™),

. — JSA ap)
Il ey = 127 Ajudsezlla|, gy
Then ||| L&) s an equivalent norm on H*?(R"), i.c. for all u € 8 (R"),

[l

i, @n) ~pms Ul @) -

This is a very well known result, based on extensive use of Khintchine’s inequality (LP(R™) square
estimates) and the Hérmander-Mikhlin Fourier multiplier theorem, but we need a proof for our
specific setting, see for instance [Tri92, Remark 3, p.25] and [Gral4a, Proposition 6.1.2] for the
case of 8'(R™) when s = 0.

Proof. — Step 1t fullzo s~ ey 1 € S}(RY)
To show the inequality ||u||F212(Rn) Spon [ullis gy w € 8, (R™), we can assume that u € LP(R")
otherwise [[ul[po (gn) < 400 is always true.
p

So if u € LP(R”), we may consider (£2, 1) to be a probability space, and for (ex)rez to be a
family of independent identically distributed random variables such that for all k € Z,

pller = 1)) = nlfee = 1)) = 5.

One deduce from Khintchine’s inequality, see for instance either [MS13, Lemma 5.5], [KWO04,
Section I, Lemma 2.2] or [Gralda, Appendix C], that

[y o~ [ [ 1@ u@) du(w) do
P,2 Rn [9) jGZ

~ [ ] 3o dodte

where the last estimate comes from an application of Fubini-Tonelli’s theorem. Hence, it suffices
to investigate the LP-boundedness of the following random Fourier multiplier operator, defined
for almost all w € €,

T(w) =Y ejw)a,,

JEZ
whose Fourier symbol is given by the function K (w), such that for all £ € R™,

K(w)(&) =) ei(w)p(277¢).

JEL
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It is not difficult to see that one can make a partition R™ into annulus of size |£| ~ 27, j € Z, to
check that for all £ € N, £ € R™ \ {0},

1
VR (@)(E)] Sn. G

where the implicit constant does not depend on w. Therefore, one may apply Hérmander-Mikhlin’s
Fourier multiplier Theorem to deduce that T'(w) is bounded on L? and admits a uniform bound
with respect to w, and use the fact that p(2) =1 to obtain,

Thus, we have obtained [|ul|po L&) Spon tllp s gny, for all uw € 83 (R™).
P,
Now, to prove [ully,gn) Spn ||uHF212(Rn), u € 8}, (R™), we are going to argue by duality. Let

u € 8}, (R"), and v € $§(R™). We can decompose the action of u on v as

( 0)gn =D <Aju, A1+ A+ Aja]o)g,

JEL

so that by LP(¢2)-L?'(£2) Hélder’s inequality, we obtain

[ 0| < Nl ooy [ 10851+ & + Apalodsez] s ||, -
< 3lullen oy Iolg0,_ ey
One may apply the previous estimate [[v[|go (gn) Sprn [[V]lpr gey, to deduce
p’.2

|<U’ ’U>Rn Spon ”uHF%Q(R") ”vHLp’(R") :

Therefore, taking the supremum on v € 8(R") such that [|v[,r gy < 1, yields

”uHLP(R”) Sein HUHFg,Q(Rn)-

Step 2 : s, ey ~pin [0l ey 0 € (B, 5 70
The proof starts similarly, introducing the following random Fourier multiplier operator

To(w) = 30 25 (—A) b (),
J€Z
from which one fairly obtains, for all v € 8} (R"),

HH(2j‘9(—A)_%Ajv)jeZ||42(Z)HLp(Rﬂ) ~pns [[Vllnegny -

Now, if u € 8}, (R™), we can assume that u € H*?(R™) otherwise ||ul|;. L(®n) S 00 is always true.
One may plug v = (—A)3u = zjez(—A)%Aju, to obtain first, from (—A)3Aju = A;(—A)3u,

1127 Asu)sezlle @)l p gy Ko Illes s -

For the reverse estimate, similarly, provided u € 8} (R™), we can assume that ||u||;- L@y < 00
p,
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otherwise ||ul|yj..»(gn) < +00 is always true. The Fatou lemma yields

H IA; u‘ < liminf H )gAju’
Lp(R™) N~>+oo Lr(R™)
Jel- NN]]
1
. i b
,-Sp;n,s Jl\lflg_lt,_rgg (H Z |2] Aj'u,|2)
j€[-N,N] Lr(R™)

+27WNVEDA L vy ullee ey + 2(N+1)S||AN+1U||LP(]R")>
Sponss ||u||F;2(R“)'

This, shows that ||u]

fop (R7) 18 finite, which ends the proof. [ ]
One may use it to obtain interpolation inequalities,

Lemma 2.8 Let pg,p1 € (1,4+0), So,s1 € R, we set

() =00 (k) ()

For all u € 8, (R™), we have

[l

Hs:» (R™) SPO,PhSo,Shn HU'| HéO Po(R™) ”u‘ Hs1:P1(R?)"

Proof. — For u € 8}, (R™), as a direct consequence of Hélder’s inequality, we have

2 2 2

SURFEAuP | < [ D20 A ul? > 1200 Ajul?

JEZ jez JET

Thus, one may take the LP-norm of the above inequality, and use again Hoélder’s inequality, so
that

LP(R”) HU| g0 (Rn

lullgs sy < || 127 Agu)seallizdy 12 Agu)sealliags | ulfer ey

Lemma 2.9 Let p; € (1,+00), s; € R, for j € {0,1}. If (Csy po) 5 satisfied then H=Po(R™) N
Hs1P1(R™) is a Banach space for which 8o(R™) is dense in it.

Proof. — The completeness is straightforward. Concerning the claim about density, we follow the
proof of [BCD11, Proposition 2.27] with minor modifications, in order to adapt it to our setting.

For u € H*Po(R™) N H*»*1(R™), and fixed £ > 0, for k € {0 1} there exists N € N such that
forall N > N

l[u— U’NHHSkka ®n) <&

Here, for any K € N,

l7l<K

For M € [N + 1,400[, R > 0, provided © ¢ C2°(R™), real valued, supported in B(0,2), such
that ©,,,, =1, and O := O(-/R), we introduce

u%7M = (I - S,M)[@R’LLN].
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Since AkuN =0, k< —M —1, we have S,MuN =0, then
ey —ug = (= 5-00)[(Or — Dug].

If one sets my, := max(0, |si] + 2), since 0 ¢ supp ?(u% 2 — Ux) by construction, we apply
[BL76, Theorem 6.3.2] and decreasing embedding of inhomogeneous Sobolev spaces to deduce

HuRIéf,M - u1\7| Hek Pk (R™) «SM,Sk,;Dk Hu]}\?]’M - u]\?HH"k’Pk (R™)

Susipe [(T=S-m)[(Or = Dug]llamirr @)

SMsepr I[(Or — Dug][lame e (R™)-
Since one may check that ug € H™*P+(R") for k € {0,1}, by dominated convergence theorem it
follows that

Hsk,pk (R"’) S 0

R
Juft gl S

Thus, for R > 0 big enough, we have for k € {0, 1}

lu— ug’M| fresopi (Rn) < 2€-

The proof ends here since u% € So(R™). [ ]

2.2 Interpolation, duality, embeddings

We recall also the usual interpolation properties,

[HSO,PO (]Rn)7 HS1,P1 (Rn)]G — Hs,pe (Rn), (B;?qo (]Rn)7 B;}ql (Rn))aq — B;,q(Rn),
(HP(R™), HP(R™))g,q = By o (R™), [Byo 4 (R"), By o, (R™)]e = By, 4, (R"),

whenever (po, qo), (p1,q1), (p,q) € [1,4+0]?(p # 1, +00, when dealing with Sobolev (Riesz poten-
tial) spaces), 6 € (0,1), sg # s1 two real numbers, such that

1 1 1 1 1 1
(Sau) = (1_6) (‘9077) +9<8177)7
Do 4o Po 4o P11 q1

see [BL76, Theorem 6.4.5]. A similar statement is available for our 8} -realization of homogeneous
function spaces homogeneous function spaces.

Theorem 2.10 Let (po, p1,P,q, q0,q1) € (1,+00)3 x [1,+00]3, s, 81 € R, such that sg # s1, and

for 0 € (0,1) let
(3,1’1) —(1-06) (80,1’1) n (sl,l’l) _
Po qo Po 4o P1 @1

Assuming (Csy p) (resp. (Csyp.q0))s we get the following
(HP(R™), H P (R"))g,q = (B}, (R™), Byly, (R))oq = Bj ,(R"). (2:3)
If moreover (Csy p,) and (Cs, p,) are true then also is (Cs p,) and
oo (), o (R = FOwe (), 2.4
and similarly if (Csy.po.qo) oA (Csy py.q1) are satisfied then (Cs p,.q,) S also satisfied and
B35 40 (R™), B}t 4, (R™)]e = By, 4, (R"). (2.5)

Po,q0 P1,91 Ppo,qe
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Proof. — Step 1 : Let us deal with the real interpolation identity (2:3). Let us consider first the
case of Sobolev spaces, with u € H*P(R™) + H**"P(R"). For (a,b) € H*-P(R™) x H**?(R"), such
that u = a + b, by Lemma 2.7 we have

(Aju)jez = (Aja)jez + (Ajb)jez € LP(R™, 2 (Z)) + LP(R™, £2 (Z)).

Therefore, by the definition of the K-functional and Lemma 2.7, for ¢ > 0,

F;?z (R™) +t || b|

K(ta (Aju)jezv Lp(Rna Ego (Z))v Lp(Rn7é§1 (Z))) < ||CL| F;}2(R")
<

psossin (1@l ge0.0 @y FEIOl a1 (-

We then take the infimum on an all such pairs (a, b),

K(t, (Aju)jez, LP (R, £2,(2)), L7 (R, £2,(Z))) Sposo,sr.n K (8,0, HOP(R™), HVP(R™)).  (2.6)

» sy

Now, we want to prove the reverse estimate. Since (Aju);ez € LP(R™, (2 (Z)) + LP(R", 2 (Z)),
let (A, B) € LP(R", (2 (Z)) x LP(R™, ¢ (Z)) such that

(Aju)jez = A+ B. (2.7)

For (w;) ez C 8'(R™), say, for simplicity, with finite support in the discrete variable, we define
the map

—+o0
S((wy)jez) =Y Ajlwj1 +wj +wjl, (2.8)
j=—0o0
and satisfies for v € 8} (R")
S((Ajv)jez) = v.
By Lemma 2.7 and [Gralda, Proposition 6.1.4], one can check that

> LP(R™, 2 (Z)) — H*P(R™) (2.9)

’» s

is well-defined and bounded since (Cs, ,) is satisfied. Now, we apply X to (2.7) to deduce from
Y(Aju)jez = u € 8, (R"), and £A € H*0P(R") C 8} (R"), that

YB =u—%Ac 8§ (R").
By the mean of [Gralda, Proposition 6.1.4], we obtain

I=B]

e, @ = [(8EB)jezllir@n 2, @) Spavn | Bllir@nz, @)- (2.10)

Hence, by Lemma 2.7, B is an element of H*P(R"). Therefore by the definition of the K-
functional, the boundedness properties of X, Lemma 2.7 and [Gralda, Proposition 6.1.4], for
t>0,

HSqu(R7L)+t||iB|

K(t,u, HOP(R™), HP(R™)) < ||2A] 1.7 (R7)
<

poso,sin [AllLe@e 2 @) + I Bllr @ ez (2))-

Thus, let us take the infimum on all such pairs (A4, B), and invoke (2.6) to obtain for all ¢ > 0,
and all u € H5P(R™) + H51P(R™),

K(t, (Aju)jez, LP(R", €2 (2)), L (R, £2,(Z))) ~p,sa,sr.n K (80, HOP(R™), HUP(R™)). (2.11)

rvsy
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By Corollary 1.9, we recall that we have the real interpolation identity
(LP(R", €2, (2)), LP(R", €2, (Z)))o.q = L2(Z, L7 (R™)). (2.12)

Thus, up to multiply the estimate (2.11) by t=? and taking its L{-norm, it can be turned into

lullss @ny = 1(A5u)jezller@z,ie @) ~p.so.snom [(Aj0) ezl we @ 2 @) L0 @2, @)
~p;s0,51,0,n ”uH(HSOvP(R"),HslvP(R"))@,q'

Therefore (2.3) is proved. 3
Step 2 : For p € (1,+00), ¢ € [1,400] and s € R such that (Cs ;) is satisfied, for ¥ introduced
in (2.8), we want to show the boundedness of

S 0YZ,LP(R™)) — B (R™).

Let (u;)jez € L4(Z,LP(R™)) with finite support with respect to the discrete variable, by the
real interpolation identity (2.12), it holds that, for some fixed sy < s < s1,

(uj)jez € LP(R", 5, (Z)) + LP(R", 5, (Z)).

Let (a,b) € LP(R",¢2 (Z)) x LP(R™, ¢2 (Z)), such that (u;)jez = a+ b. Up to restrict a and b

»¥so 1vs1 ~
to the discrete support of (u;);ez, denoting those restriction by respectively @ and b, we obtain

(uj)jez = a+b.
Therefore, by finite support of @ and b in the discrete variable and by Lemma 2.7,
Ya € HP(R™) and Xb € H*VP(R"),
so that
$(uy)jez € 0P (R™) 4 T (RY).

Hence, by the definition of the K-functional, Lemma 2.7 and the boundedness properties of %
(2.9) and (2.10),

K (t, S(uj)jez, HOP(R"), HUP(R")) Sposo,sen 120

20, () TH|Zb] o1, (e
Sp.so.sn [1@lLe@n ez @) FEblLe @e.e2 (2))
Sposo.sin llallLe@n,ez @) FEblLe@n ez 2))-

Now, one can take the infimum on all such pairs (a, b), to deduce that for all ¢t > 0,

K (t,5(uj) jez, 0P (R"), HVP(R)) Spososnn K (8, (0)jez, LP(R", 62, (2)), LP(R", €2, (Z))).

Multiplying this estimate by ¢t~¢ then taking the L{-norm, thanks to (2.3) and (2.12), yield the
estimate

15(u;)jez]

Bs (&) Sposo.snom [[(W)jezlles e @)

Then, the map % extends uniquely to a bounded map whenever (Cs,p.q) 1s satisfied and g < +o0.
For the case ¢ = +00 when (C; p q) is satisfied, ¢.e. when s < n/p is satisfied, the result follows
in fact directly from the Step 1.
In fact, the above manual real interpolation procedure was only needed to reach the endpoint

couple (By/P(R™), £%, (Z,LP(R™)).
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Step 3 : For the real interpolation identity (2.3) in the case of Besov spaces, by the previous
Step 2, the proof presented in Step 1 is still valid if we replace (H#®o-P, H*»P) and the condition
(Cso.p) By (B9, By, ) with the condition (Cs, p.¢)-

Step 4 : As in the proof of [BL76, Theorem 6.4.5], being aware of Theorem 1.21, we can claim,
thanks to previous steps, that

o thanks to its definition, for all s € R, p € (1,+00), q € [1, +00], when (Cs ) is satisfied,
B, ,(R")is a retraction of ¢4(Z,LP(R™)) on S;L(R”)Nthrough the homogeneous Littlewood-
Paley decomposition (A;),ez, and projection map X;

o similarly, due to Lemma 2.7, for all s € R, p € (1,+00), when (C; ;) is satisfied Hs’p(R")
is a retraction of LP(R",(2(Z)) on 8} (R") through the homogeneous Littlewood-Paley
decomposition (A;),ez, and projection map X.

Thus, one may apply Theorem 1.21, with Corollary 1.19 for complex interpolation of Besov spaces
and Corollary 1.9 for complex interpolation of Sobolev spaces, to obtain respectively (2.5) and
(2.4).

The completeness assumption is necessary in the case of complex interpolation, since one can
not provide in general an appropriate sense of holomorphic functions (then of the definition of
complex interpolation spaces) in non-complete normed vector spaces. |

Proposition 2.11 For any s € R, p € (1,+00),
Hs? x H*? — C

(u,v) — > <Aju, Aj/v>Rn
li—3"1<1

defines a continuous bilinear functional on Hs?(R™) x H=*F (R™). Denote by V=* the set of
functions v € S(R™) NH™*P (R") such that ||v|p-..r gny < 1. If u € 8, (R™), then we have

lul

fep(Rn) —  SUP /‘<U’U>R""
veEY TSP

Moreover, if (Cs p) is satisfied, H*P(R") is reflexive and we have
(HP (R")) = HP(R").

Proof. — For simplicity, we will first work with the norm provided by the Lemma 2.7, by
equivalence of norms, the result will remain true. Let (u,v) € H*?(R™) x H=*? (R™), the LP(¢?)-
L (¢?) Holder’s inequality gives,

’H(?_js[Ag‘—l +A; + AJ‘HJU)J‘EZsz(m’

’<U7U>Rn‘ < ||U| F;z(R“) L7’ (R™)

s|+1 . ,
< (2 +1) ||u||F;2(R") ||U||F;,f‘2(Rn) :
Now, we know that it is a well-defined quantity, we can compute

<’(L, U>]Rn = Z <Aju, Aj/U>Rn

l7—3'1<1

= Y (-2 Aju, (-A)2A),,
li—3'I<1
= {(=A)2u, (—A)"20)

R"

Hence, Holder’s inequality gives

() | < Nullgzo.m ey 10l 3007 eny
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which can be turned effortless into

sup , ’<u’v>Rn| < Hu||H5,p(Rn)~
veEV TSP

This also proves the continuous embedding H*?(R") < (H~*#'(R"))". For the reverse inequality,
but not the reverse embedding, from LP — LP duality, by density of 8¢(R™), we have

[/ F— o {(=A)3u, ), | = o [(u,w) g | < v;ui];:p/ |(u, 0) g |-
llollpr <1 lwlly—s,pr <1

In particular, the embedding H»(R™) < (H=**' (R"))’ always holds and is isometric. .
Now, assume that (Cs ;) holds. We recall that Remark 2.6 yields the reflexivity of H*P(R™).
Let U € (H=** (R™))’, we have

‘<U, (_A)%U>| < ||U||(H—5vp/(]R"))'||UHLP’(]R")7 v € 8o(R™).

Since the space 8o(R™) is dense in LY (R™), we deduce there exists a unique function w € L?(R™)
such that,

<(~],v> = (w, (—A)_%v>Rn, v e §(R").

Thus u := (—A)~ 3w € H*?(R™) by Corollary 2.5, and yields that H*P(R") < (H~*? (R™))’ is
surjective. |

Proposition 2.12 For any s € R, p € (1,4+00), q € [1,+00],
By, xB,5, —C

(u,v) — > <Aju,Aj/v>Rn
l7—3"1<1

defines a continuous bilinear functional on B;Q(R") X B;ffq, (R"). Denote by Q" the set of
functions v € $(R™) N B;,‘fq/ (R™) such that |[v]lg-s gny < 1. Ifu € 8}, (R™), then we have

||uHBS (R™) Sp,s,n sup |<U7U>Rn .
o UEQ;’S,Q’

Moreover, if —n/p’ < s < n/p is satisfied and q € (1, +0o0] then
(B, (R™) =B, (R") and (By*, (R™) = B, (R").
The space B;q(R") is reflexive whenever both (Cs,4) and g # 1,400 are satisfied.

Proof. — The first part of the claim is just [BCD11, Proposition 2.29]. The claimed part about
reflexivity and duality follows directly from the application of Theorem 1.6 and of Theorem 2.10
and Proposition 2.11. [ |

We recall that Besov spaces satisfy usual Sobolev-Lebesgue spaces embeddings, say,

Proposition 2.13 ( [BCD11, Proposition 2.39] ) Letp,q € [1,400], s € (0,n), such that

SRR
Sl

1
q
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The following estimates hold

||U‘HL‘1(]R") SH,S,ZD’Q ||U| B;’T(]R"y vu € Bz,r(Rn)) (S [17(]];
||UHB;ST(RH) Snspeg [UllLe ey, Yu € LP(R™), r € [q, +o0],
”u”LP(R”) gn,s,p ”u”Bg,T(Rny Yu € Bg,r(Rn)7 S [1,min(27p)],

[l | (ny Snosp [ulleeny, Yu € LP(R?), v & [max(2, p), +o0].

Moreover, if p is finite, we also have Bp;’l(]R”) — CY(R™) and, each embedding is dense whenever
p,q and r are finite.

We also have a Sobolev-Besov multiplier result, which is useful for the construction of ho-
mogeneous Sobolev and Besov space on domains. The first presentation of this result in the
inhomogeneous setting is due to Strichartz [Str67, Chapter II, Corollary 3.7], one may also check
[JK95, Proposition 3.5].

Proposition 2.14 For all p € (1,+00), for all s € [07%), for all w € H¥P(R™), we have
Ignu € H¥P(R™) with estimate
||]lRiu| Hs,p(Rn) Ss,p,n ||u| Hs,p(]Rn).

We are going to use it to prove a straightforward generalization. The next result was known
but only stated for homogeneous Besov spaces up to now, see e.g. [DM09, Appendix].

Proposition 2.15 Forallp € (1,+00), g € [1,400], for all s € (—1+ %, %), for all u € H*P(R™)
(resp. B;q(R")),

1k iy Semn lullieoey (resp. [rnulli, gy Sopn lulls, g )

The same results still hold with (H,B) instead of (H,B).

Proof. — We start from the result stated in the inhomogeneous case Proposition 2.14, which
states the following in the case of the upper half-space, for all p € (1,+00), for all s € [0, =), for

1
P
all u € H*P(R™)

[1rn vllasr®n) Sspm [[ullmer@n),

If s = 0, there is nothing to achieve since HO?(R") = H%?(R") = LP(R") with equality of norms.
Now for s > 0, by the equivalence of norms, we obtain

e ullie®e) + (1R Ullpge s ®e) Sspm llue @) + [[ullgee @n)-

Plugging uy := u(A-) in the above inequality, provided A is a positive real number, since one has
Ign (A-)ux = Igruy, we obtain that

AT Tryullir@e) + A7 ey tllige s ey Sspm A7 [ullie@e) + A7F ulligengn)-

n

Thus one may divide by A*”», and then as A tends to infinity, we deduce

”1R1u| Is.p(Rn) Ss,pn ”uHHSvP(R”)'

Therefore, the result follows by density argument.

The result for s € (—1+ %, 0) is a consequence of duality and density using the duality bracket
defined on 8p(R™) x §¢(R™).

The Besov space case follows by real interpolation. |
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3 Function spaces on the upper half-space

3.1 Function spaces on domains by restriction
Let s € R, p € (1,+00), ¢ € [1,400] and € an open set of R”. For any X € {BS , B H*? H*P},

P47 Pp,g)
we define
X(Q) = X(R")jq,
with the quotient norm |[jul[x(q) := iI%f : [|%||x - A direct consequence from the definition of
GeX(R™),
U)o =u.

those spaces is the density of 8¢(2) C 8§(2) in each of them, when 8§¢(R") C §(R™) is dense in
their counterpart on the whole space. The completeness and reflexivity are also carried over when
their counterpart on R™ are respectively complete and reflexive. We can also define

Xo(92) := {u e X(R"™) ’ supp u C ﬁ} ,

with its natural induced norm [jul|x, () := [|u[/x®n). We always have the canonical continuous
injection,

Since there is a natural embedding 8'(R™) — D’(£2), we also have the inclusion
X(Q) C D'(Q),

where we recall that D'(2) = (C2°(€Q2))’ is the topological vector space of distributions on €.
If X and Y are different function spaces

« if one has a continuous embedding,
Y(R™) — X(R™).
A direct consequence of the definition is that
Y(Q) — X(Q),

and, similarly with Xy and Y.

o We write [X N Y](2) the restriction of X(R™) NY(R™) to £, in general there is nothing to
ensure more than

X NY](Q) — X(Q)NY(Q).

The results corresponding to those obtained for the whole space R™ in the previous section are
usually carried over by the existence of an appropriate extension operator

€ : 8'(Q) — 8'(RY),

bounded from X(€) to X(R™).
By mean of Theorem 2.10, as for [DHMT21, Proposition 3.22], the definition of function spaces
by restriction yields the next result.

Lemma 2.16 Let (p,q,qo,q1) € (1,+00) x [1,+0c0]?, 59,51 € R, such that sg < s1, and set

s:=(1—0)sg+ 0s;.
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If (Csy.p) is satisfied, we have continuous embeddings

B () < (H*F(Q), H* 7 () q, (2.13)

B 4.0(Q) < (Hy" (), Hg""(2))g.q; (2.14)

Similarly if (Csy.p.qo) 5 satisfied, we also have

By () <= (B, (2), Byl (D)o,q, (2.15)
B;,q,O(Q) « (B]S)?qo,O(Q)’ B;}Q1,0(Q))97Q' (216)

Proof. — For embeddings (2.13) and (2.15), one may follow the first part of the proof of [DHMT21,
Proposition 3.22].

The third embedding (2.14), (the fourth one (2.16) can be treated similarly) is straightforward
since,

(H5°7 (), Hy' 7 (2))o,g < (HOP(R"), HVP(R™))gq = Bj 4 (R™).

By definition, f € (H3"?(Q),H§'*(Q))gq C Hy"P() 4+ Hg" (), hence supp f C Q and we
deduce f € B (). |

P,q,0

In this Chapter, we are particularly concerned by the case 2 = R’;.

3.2 Quick overview of inhomogeneous function spaces on (bent)
half-spaces

For a suitable extension operator in the case of inhomogeneous function spaces on a (special)
Lipschitz domain (in particular the upper half-space R ), a notable approach was achieved by
Stein in [Ste70, Chapter VI, Section 3], for Sobolev spaces with non-negative index, and Besov
spaces of positive index of regularity (this follows by real interpolation). A full and definitive result
for the inhomogeneous case on Lipschitz domains, and even in a more general case (allowing p, ¢
to be less than 1 considering the whole Besov and Triebel-Lizorkin scales), was given by Rychkov
in [Ryc99]. In this paper the extension operator Rychkov provided is known to be universal and
to cover even negative regularity index.

The extension operator provided by Rychkov can be used to prove, thanks to [BL76, Theo-
rem 6.4.2], if (h,b) € {(H,B), (Ho,B..0)},

(7070 (€0), ™ P (Q)]o = 5>77(Q2), (6%, (), b3ly, (0))e.q = b} (),

Pp>q0 7 UPq1 p,q

(6% (), 507 (2))0.q = b} 4(€2), (650,40 (1): 051 4, (D)o = b, 4, (2),

whenever (po, qo), (p1,q1), (p,q) € [1,+<)?(p # 1, +00, when dealing with Sobolev (Bessel poten-
tial) spaces), 6 € (0,1), so # s1 two real numbers, such that

1 1 1 1 1 1
(87 N ) = (1 _9) <SO77) +9 <5175 ) .
Po qo Po 9o P11 q1

A nice property is that the local description of the boundary yields the following density results,
for all p € (1,+00), g € [1,+00), s € R,

Hy?(2) = C2(@' "™, and By,0(2) = C2(@) "5,

One may check [JK95, Section 2] for the treatment of Sobolev spaces case. The Besov spaces
case follows by interpolation argument, see [BL76, Theorem 3.4.2]. As a direct consequence, one
has from [JK95, Proposition 2.9] and [BL76, Theorem 3.7.1], that for all s € R, p € (1, +00),
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q €[1,400),

(HO(9)) =H7™ (@), (B},,() = By 0(9),
(Bpg.0(2)" =B, % ().

And finally, thanks to a modified version of Proposition 2.15, we also have a particular case of
equality of Sobolev spaces, with equivalent norms, for all p € (1,400), ¢ € [1,4+00], s € (—1+ %, %),
HO(0) = B3 (), B, () = By, 0(0).

The interested reader may also found an explicit and way more general (and still valid, for
the most part of it, in the case of a special Lipschitz domain, and in particular for the upper
half-space) treatment for bounded Lipschitz domains in the work of Kalton, Mayboroda and
Mitrea [KMMO07], where the Triebel-Lizorkin scale, including Hardy spaces, and other endpoint
function spaces are also treated.

We also mention that a more recent elementary, geometric and accessible exposition is available
in the book of Leoni [Leo23, Chapters 8 & 11]. It deals with inhomogeneous Sobolev-Slobodeckij
spaces W*P(Q), which coincides with usual Sobolev spaces when s € Z, and with diagonal Besov
spaces By (©2) when s € R\ Z. The case of indices s € [0, 1] is treated in the case of Lipschitz
domains, and s € [0,m + 1] in the case where 2 is a C"™! domain.

All the results presented above will be used without being mentioned and are assumed to be
well known to the reader.

3.3 Homogeneous function spaces on R

One may expect to recover similar results for the scale of homogeneous Sobolev and Besov as
the one mentioned in the subsection 3.2. However, due to the setting involving the use of 8 (R™),
we have a lack of completeness so that one can no longer use complex interpolation theory and
density argument on the whole scale to provide boundedness of linear operators. A first approach
we could have in mind is that one would expect Rychkov’s extension operator to preserve 8}, say
E(8,(R%)) C 8, (R™) with homogeneous estimates, which is not known yet.

However, if we consider a more naive extension operator like by reflection around the boundary,
as in [DHMT?21, Chapter 3], a certain amount of results remains true, up to consider index
s> -1+ ]%, provided p € (1,+00). This is what we are going to achieve here : this subsection
is devoted to proofs of usual results on homogeneous Sobolev and Besov spaces on R”}. To be
more clear, we are going to show via the previously mentioned extension-restriction operators,
few duality arguments, and interpolation theory, that we still have :

o Expected density results : Propositions 2.25, 2.26, Lemma 2.32 and Corollaries 2.29
and 2.34.
For p € (1,40), g € [1,400), s > -1+ 1%, when (Cs,p o) is satisfied,

H5P(RY) = C@®) ™7 | and B3, o(RY) = O (@D 1#at™ |

;4,0
We need to make clear now that this is not a definition but a consequence from the
definition written at the beginning of Section 3.

o Expected duality results : Propositions 2.28 and 2.40.

For all p € (1,400), g € (1,+00], s > -1+ %, when (Cs p q) is satisfied,

(P (RY)) =157 (R2), (B2, (RL)) = B, 0(RY),

(7 (RY)) =T (RY), (B, o(RY)) = By, (RY).

o Expected interpolation results : Propositions 2.39 and 2.33.
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If (h7 b) € {(H7B)7 (HO7B~,>,O)}5 with (panO)a (p13q1)> (p’ Q> € (1’+OO) X [1’—’_00]7 0 € (07 1)a
sj,8>—1+1/p;, j €{0,1}, with s > —1 4 1/p, where sq, s1, s are three real numbers, so

that one can set
1 1 1 1 1 1
(Saa) = (176) <5057> +0<5177>7
Po 4o Po 9o P1 ¢1

such that (Cs ) is satisfied. Then, one has

[hooPo (RL), B 7L (R )] = H5Pe(RL), (B3, (RR), b31, (R%))g,q = b5, (R™),

(5P (RY), 5P (R ))o.q = by o(RE),  [050 0 (R, B30 o (R )]o = by, 4, (RY).

Note that, due to Proposition 2.15, we have already checked that following equalities of
homogeneous Sobolev and Besov spaces remains true, with equivalent norms, for all p € (1, +00),
g€ l,4o0],s€(-1+ %, %),

HOP(RY) = 37 (RY), B 4(RL) = B 4 o(RY).

Some already existing density and boundedness results in Besov spaces presented here are
already known, but redone here differently giving some minor improvements with regard to
[DHMT21, Chapter 3], allowing sometimes to deal sometimes with s > —1 + % or ¢ = +00. Some
other results, despite being well known in the construction of usual Sobolev and Besov spaces,
are quite new due to the ambient framework. This leads to some new proofs in a different spirit
than the ones already available in the literature.

This subsection contains 3 subparts : the first one is about extension-restriction and density
results for our homogeneous Sobolev spaces, from which for the second, we are going to build
corresponding ones for Besov spaces, via some ersatz of real interpolation procedure. Both will be
used to build the third subpart, which concerns effective interpolation results for our homogeneous
Sobolev and Besov spaces.

We start proving the boundedness of extension operators defined by higher order reflection
principle but for homogeneous Sobolev spaces with fractional index of regularity. This is done as
in [DHMT21, Lemma 3.15, Proposition 3.19] for homogeneous Besov spaces only.

Proposition 2.17 For m € N, there exists a linear extension operator E, depending on m, such
that for all p € (1,400), =1+ % <s<m+1+ %, so that if either,

e S 2 0 and u S Hs,p(Ri) 5
e se(-1+21 1) andu e HoP(RY)

we have
Eu =u
M
A

with the estimate

[Eu|

i) Spommn Nle g -

In particular, E : HSP(R%) — H*P(R") extends uniquely to a bounded operator whenever (Cs )
1s satisfied.

Proof. — As in [DHMT21, Lemma 3.15], let us introduce the higher order reflection operator E,
defined for all measurable function u : R} — C by

_ [ ul@) ,if z € R,

Eu(z) = { Yiooju(z’, — ) if x € RP\RY.
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where, as in [DHMT21, Lemma 3.15], * = (z1,...,%n_1,%,) = (z/,7,) € R*7! x R, and
(@j)jefo,mg is such that E maps C™-functions on R’} to C™-functions on R™. This is indeed true
since «, j € [0,m], is chosen so that it satisfies for all k € [0, m],

m _1 K
> () @t

=0

By construction, the operator E also maps boundedly H*?(R"}) to H*?P(R") for all k € [0,m +1].
The boundedness of the operator E from H*?(R’) to H*P(R") for all s € [0,m + 1] follows from
complex interpolation.

Notice also that Proposition 2.15 and the formulation, given for z € R™,

m

Bu(r) = [Lag ul(z) + 3 o [Legul (', — 22)
=0

implies that E : H*P(R'L) — H*?(R") is bounded for all s € (=1 + £, 1).
Now for p € (1,400), s € [0,m+ 1+ %), s — % ¢ N, u e H*P(R?), E : HP(R?) — H*P(R"),
we can choose ¢ € N such that s — £ € (-1 + zl)’ %) so that
6£kEu = E[@ﬁgu], provided & € [[1,n — 1],
m

14
01, Bu =B, u=3"a; (73%) o, ule’, ~ ).
7=0

Jj+1 Zn Jj+

For the same reasons as in the beginning of the present proof, E() maps H*? (R%) to H*P(R™) for
all s € [0, m—£+1], and H*P(R" ) to H*P(R™) for s € (=1+1/p,1/p), thanks to Proposition 2.15.
From the fact that 8£7,u € H*=4P(R7), we deduce

n—1 n
¢ 0) ot ¢
[[Eul Hs:2(R?) ~Ep,n leaz_,.EuIIHs—e,W) + HE( mm“”ﬁs—w(n@w Ss.tpmm Z||azju||ﬁs—w(n@")-
Jj=1 Jj=1

(2.17)
To be more synthetic, we have obtained

[[Eul

He.»(R™) Sp.knm ||u||Hs,p(]R1)7

so that E : H*P(R) — H*P(R") is bounded on the subspace H*?(R" ), in particular it extends
uniquely to a bounded linear operator on whole H*?(R"') when it is complete, i.e. s < %, this

follows from the fact that §(R7) € H*P(R") is dense in H*?(R™).
It remains to cover cases when s — % € [0,m]. To do so, we want to reproduce the above

1 1
procedure, proving first that E (resp. E(), £ € [1,m]) is bounded from H»"*(R%) to Hr*(R™),
via some complex interpolation scheme.

Now let po,p1 € (1,+0), p1 < n, 6 € (0,1). Consider u € [LPO(Ri),HLpl (R%)]g. Let f €
F(LPo(RY), HlP1 (R)), such that f(#) = u, it follows from the above considerations that Ef €
F(LPo(R™), H'P1 (R™)). Thus, from Theorem 2.10, one has

Ef(0) € H*P(R"), where (9, ;) =(1-9) (o, plo> +6 <1, pll> .
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So u = Ef(é‘)|Ri € H?P(R") with the norm estimate

HUHHM(]M) Smipin ||UH[LP0(R1)7H1=P1 (R%)]a

which is a direct consequence of the definition of restriction space, the equivalence of the complex
interpolation norm (2.4) from Theorem 2.10, the definition of the complex interpolation norm,
and then of the boundedness of E from L?°(R") to LP°(R"}) and from H'*1 (R™) to H'P*(R").

Now, if v € H?» (R?}), by definition of restriction spaces there exists U € HO» (R™), such that
1
Uh«i =u, and §||U||H9wP(R”) < ||u||H9wP(R1) < HU”H‘%P(R")'

By Theorem 2.10, there exists f € F/(LP° (R™), HLP1 (R™)) such that f(#) = U, we deduce

f()gn € F(LP(RY),HYPH(RY)), so u = f(0),, € [LF(R}),HP1 (R’ )]y with the following
+

estimate which is a direct consequence of the definition of function spaces by restriction, and

complex interpolation spaces,

lan

HUH[LPO(Ri),Hlvm(Ri)]e S HUHHGaP(Ri)'

Hence, homogeneous (Riesz potential) Sobolev spaces on the half-space are still a complex
interpolation scale provided that p € (1,+00), s € [0, 1], (Cs ;) being satisfied, so the boundedness
of E : HY?(R") — H%P?(R") follows by interpolation.

In particular, E : H*?(R"?) — H*?(R") is bounded for all s € (—1 + %, %] Hence, the result
has been proved for s — % = 0. The same result is obtained for E(*), provided ¢ € [1,m].

Now, let p € (1,400), s — % € [1,m], for u € H*?(R"%), we have Eu € H*P(R"), V‘Eu €
He—tP(R™), s — £ = %, so that, similarly as in (2.17),

[[Eul

Hs,p(Rn) 55,p,n7€ Hu||HS’P(R1)'

Therefore, we have obtained the desired estimate and can conclude about the boundedness of E
via density argument whenever (C; p) is satisfied. n

In the proof of Proposition 2.17, we used boundedness of derivatives, i.e. for all p € (1, +00),
s € R, u e H*P(RY}), m € N,

19"l iy S [l (2.18)

The above estimate is a direct consequence of definition of function spaces by restriction and can
be turned into an equivalence under some additional assumptions.

Proposition 2.18 Letp € (1,400), k € [1, 4+, s>k —1+ %, for all w € H>P(R7),

n
Z”a];juHHkk,p(Rg) ~s,k,p,n ||Vku|

=1

He—kp(R7) ~s.kp.n [[ul Hep(R7)

In particular, |[V*-|

He—k.p(R™) and Z?:1Ha§j'

whenever (Cs_y p) s satisfied.

s kop (R?) provide equivalent norms on Hs’p(Rﬁ),

Proof. — Let us prove it, for k¥ = 1, the higher order case can be achieved similarly. Consider
p € (1,400), s> %, for u € H*P(R"} ), we have Eu € H*P(R"™), where E is an extension operator

provided by Proposition 2.17 (for some big enough m > 1), VEu € H5~1P(R"), with s—1 > —1—«—%.
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. —c
We can write on R}

0, Eu = E[0;,u], provided ¢ € [1,n — 1], and 9,, Eu = Zaj (j_Tl1) O, u(x', —En).

Jj=0

Hence, we can use definition of restriction space, apply Proposition 2.1, and boundedness of E,
since m is large enough, to obtain,

a7 (R™) Sspon [[VEu

lul

fowme) < [[Eul fro- 1o (&n) Sspmm | Vllfs-10 @)

Therefore by (2.18), the equivalence of norms on H®? (R}) holds by density when (Cs—g,p) is
true. n

The next proposition is about identifying intersection of homogeneous Sobolev spaces on R,
and give a dense subspace. As we can see later, this will help for real interpolation.

Proposition 2.19 Let p; € (1,+00), s, > —1+ p%_, J € {0,1}, if (Csy.po) s satisfied then the
following equality of vector spaces holds with equivalence of norms

Hso:Po (Rﬁ) N Hs1-P1 (Ri) _ [H307P0 N Hsl’pl](Ri).
In particular, H50Po (Ri)ﬂHsl’pl (R%) is a Banach space which admits 8o(R'.) as a dense subspace.

Proof. — Let p € (1,4+00), s0,51 € R, such that (Cs,p,). By definition of restriction spaces
and Lemma 2.9, [H*>Po 0 H**P1](R" ) is complete and admits 8o(R" ) as a dense subspace. The
following continuous embedding also holds by definition,

[HS0:Po N Hsl’pl](Rﬁ) s Hoo-Po (R%)N H1P (R%).
Hence, it suffices to prove the reverse one. To do so, let us choose ¢ € N such that (Cs,_¢,p,) is
satisfied, and s;1 — ¢ > —1 + p%, then choosing E from Proposition 2.17 with m + 1 + p%_ > 54,

j € {0,1} (m big enough), for all j € [1,n], and all u € H*o-Po(R?) N H*P1(R% ), Eu makes sense
in H®0-Po(R™), then in 8}, (R™), and one may use an estimate similar to (2.17), to deduce

n—1

n
> 0% Bulliger —eon oy = DB, ulliges —eoon oy + IBO8; tlliger —em @y S2h e llizer on ey
k=1 k=1

The above operator E(¥) is given via the identity 0% E = E©9! . Hence, it follows that for all
u € Hso-po (Ri) N 1P (Rﬁ)’

[Eu|

n
f50-70 (Rn) T ZHaﬁkEuHHm%m ®) Seororme 1l freovo (k7 ) T HUHHSLM(M)-
k=1

In particular, since Eu € 8} (R™), and by uniqueness of representation of a,fj,j Eu in 8'(R™), we

deduce from Proposition 2.1 that Eu € Heo:Po (R™) N Ho 171 (R™).
Thus v € [H%Po N H*P1(RY ), and by definition of restriction spaces,

. Po,p1,n
Hs1:P1(R"™) Sso,sl,m,é ||U|

Hu”[HsomomHSLm}(Ri) < ||Eu| 0.0 (R™) + HEU| He0-20 (R7}) + Hu| Hepy (R )

This proves the claim. |

So one can deduce the following corollary, which allows separate homogeneous estimates for
intersection of homogeneous Sobolev spaces on R’} . Since the estimates below are decoupled, it
provides an ersatz of extension-restriction operators for homogeneous Sobolev spaces of higher
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order, thanks to the taken intersection yielding a complete space. For instance, this will be of use
to circumvent the lack of completeness when we will want to (real-)interpolate between a "higher"
order homogeneous Sobolev space, and one that is known to be complete.

Corollary 2.20 Let p; € (1,400), s; > —1+ ]%, Jj € {0,1}, such that (Csyp,) s satisfied,

consider m € N such that s; <m +1+ p%_, and the extension operator E given by Proposition
2.17.

Then for all u € H*Po(R") N H*P1(R"), we have Eu € H%?i(R"), j € {0,1}, with the
estimate

[[Eul

%5 P35 (R) Ssyppmon 1llges e (R7)"

Corollary 2.20 and the proof of Proposition 2.18 lead to

Corollary 2.21 Let p; € (1,+00), m; € [1,+0c[, s; > m; — 1 + pi]_, Jj € {0,1}, such that
(Csy—mo.po) s satisfied. Then for all u € HooPo(R™) N Hs1P1(RY),

n
Z”ag;juHHSrmr"(M) ~s; g |V Ul ggs-m g (R) ~simg,pj,n [ellfges v R} -
k=1

Since one may also be interested into Sobolev spaces with 0-boundary condition, we introduce
a projection operator that allows to deal with the interpolation property, and to recover, later on,
some appropriate density results.
Lemma 2.22 Letp € (1,+00), s € R, m € N, such that —1 + % <s<m-+1+ %, then there

exists a bounded projection Py, depending on m, such that it maps H*>?(R™) to Hy?(R").
If either

e s>0anduecH*P(R");
e se(—-1+ %, %) and u € HSP(R"™) ;
we have the estimate

[ Poul

Hs?(R7) Ssomapon (Ul Hep(R7)

In particular, Py extends uniquely to a bounded projection from H®P(R™) to Hg’p(Rfﬁ) whenever
(Cs,p) 1s satisfied.

Proof. — Let p € (1,400), s > -1+ 11;, m € N, such that s <m + 1+ %. Then we consider the
operator E given by Proposition 2.17, but we modify it into an operator E~, for any measurable
function v : R® — C, we set for almost every = € R”

u(x) ,ifz e R”,

Eu(z) := { E;H:O aju(z’, —jgf:'l) Jif x e R®\ R™.

Hence for any measurable function u : R®" — C, we set for almost every x € R",
Pou:=u—E" [Ignu].

The fact that P§ = Py is clear by definition, and we have PoH*?(R") C Hy”(R%), and that
PO\HW(W) = I. The boundedness properties, as claimed, follow from Proposition 2.15 and
o

Proposition 2.17. |
As well as the extension operator given by higher order reflection principle, the projection
operator on "O-boundary condition" homogeneous Sobolev spaces satisfies the homogeneous

estimates on intersection spaces. The proof is a direct consequence of Proposition 2.19 and its
formula introduced in the proof of Lemma 2.22.
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Corollary 2.23 Letp; € (1,4+00), 5; > —1—&—%, Jj€{0,1}, m € N, such that (Cs, p,) s satisfied
and s; <m+1+ p%_, and consider the projection operator Py given by Lemma 2.22.

Then for all u € HoPo(R™) N H*P1(R"), we have Pou € Hy " (RY), j € {0,1}, with the
estimate

[Poul

£1975 (&) Ssg.mopan |[Ullgeses gny-
We still have Sobolev embeddings by definition of function spaces by restriction.

Proposition 2.24 Let p,q € (1,+00), s € [0,n), such that

We have the estimates

Ber (g ) VU € H*P(RT), (2.19)

HU”L‘I(Ri) Sn,s,p»q ||u|

||uHHJS"I(R1) 5"15710711 HUHLP(RQ), Yu € LP(R:L_), (2-20)
for which each underlying embedding is dense.

Proof. — First, let us recall the Hardy-Littlewood-Sobolev inequality from Proposition 2.3, which
says that

[ullfi-s.0ny Snspog 1UllLe@n), Yu € LP(R™).

Hence, the embedding (2.20) is a direct consequence of plugging @, the extension to the whole
R™ of u € LP(RY).

The embedding (2.19) is a direct consequence of Proposition 2.3 and function spaces defined
by restriction. Indeed, for u € H®? (R?), we have for any extension U € H*?(R") C LI(R"™) such
that u = U‘Ri € L9(R?) the estimate

lulla@n) < 1Ulluo®n) Sspiam 1Ullgss@n)-

Looking at the infimum on all such U gives the result. o .
The density for the first embedding follows from the fact that 8o(R’) C H*P(R"} ) is dense in
L?(R"). The density in the second case, follows from the canonical embedding,

LP(RY) < Hy (R} < Hy “I(RY),
which turn, by duality into embeddings,
HO (RY) < (1 *(RY)) < L (RY).
In particular, the following is a dense embedding
(Hy~"(RY))" — L7 (RY)
hence by reflexivity, the one below also is
LP(R}) < Hy *(R}). u

Now, all the ingredients are there in order to build the main usual density result for our
0-boundary conditions homogeneous Sobolev spaces.

Proposition 2.25 For allp € (1,400), s € (—ﬁ, %), the space C°(R?}) is dense in Hg»%Ri)_
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Proof. — First, let s € [0,n). Let p € (1, +00), such that (C;,,) is true, and consider u € Hy?(R? ).
In particular, we have u € H*P(R™). Hence, there exists (ug)reny C H*P(R™) such that
up —— u in H*P(R"™).
k—+oo

Thus, it follows from Lemma 2.22, that (Poug)ren C Hy?(R) C HyP(R™) converge to Pou = u
in H*P(R™). For € > 0, there exists some kg, such that for all k& > kg, we have

lu — Poug| HP(RT) <e.

Now, we use density of C3°(R’) in Hy”(R") to assert that there exists w € CZ°(R"}) so that,

[Pour — w| HYP(RT) < [[Pous — wHHS’p(Ri) <Ee.

This proves the density of C2°(R) in Hy”(R? ), since

lu = w]

HZ,P(Ri) < HU’ — PO'U;]C‘ Hg,p(Ri) + ||POUk — ’U)l Hg,p(Ri) < 2¢.

Now let us consider s € (0, 77), u € Hy *"(R%), applying Proposition 2.24, for ¢ > 0 there

exists a function v € LY(R?), (with = ) such that,

1 s
q n
l|lu— ””Hgs”’(Ri) <e.

But recalling that C2°(R"}) is dense in LY(R" ), there exists w € C°(R"}) such that
llo— w”HO*SvP(Ri) Snspg 10— wilLe@r) Snspa &
so the triangle inequality gives
flu— w”HSSvp(Ri) Sns,pig &
which conclude the proof since w € CZ (R’ ). |

Proposition 2.26 Let p; € (1,+00), s; >0, j € {0,1}, such that (Cs, p,) is satisfied. The space
C®(R7) is dense in HGP°(R) N Hy P (R7).

Proof. — It suffices to reproduce the first part of the proof of above Proposition 2.25 by the mean
of Corollary 2.23. ]

Corollary 2.27 For allp € (1,4+00), s€ (—1+ %, %),
HyP(R) = H*P(RY).
In particular, CF(R") is dense in Hs’p(Ri) for same range of indices.

Proof. — This is a direct consequence of the definition of restriction spaces and Proposition 2.15,
the density result follows from Proposition 2.25. [ |

Proposition 2.28 Letp € (1,40), s € (—ﬁ, %), we have

(H*P(RY)) = Hy > (R) and (Hy"(RY)) = H™*7 (R?).
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Proof. — First, consider s € (=7, %), let ® € Hgs’pl (RY) C H—*'(R™), then using definition of

restriction spaces, the following map defines a linear functional on Hs’p(Ri),

u—> <<I>,1]>Rn,

where @ is any extension of u, and notice that the action of ® does not depend on the choice
of such extension of u. Indeed, if U € H*P(R") is another extension of u, we obtain that
w:=U —a € Hy?(R™"). Tt follows from Proposition 2.25 that w is a strong limit in Hj?(R% ") of
a sequence of functions (wy)ken C Cf(@c) so that, passing to the limit, in the duality bracket,
we obtain

(2, V)gn —(2,8), = (B, 0)g, = 0.

This gives a well-defined continuous injective map

™ (RY) — (7))
{ " <<I>,7>Ri , (2.21)

Now, let ¥ € (H*?(R"))/, for all u € H*?(R"), since Ipnu = u, we may write,
<\1]7u> = <\I]7 1R16>7

for any extension @ € H*P(R™) of u, hence as a direct consequence of the definition of restriction
space Ipp ¥ € (H*P(R")) = H~*F (R"), so Ipn U € H,*7 (R"). The following map is well-
defined continuous and injective

for(RY)) s Hyo (BT
(o g =
+

Both maps (2.21) and (2.22) are even isometric, and we obtain,
(i (1)) = i1, (RY),

which was the first statement. The second statement follows from duality and reflexivity exchanging
roles of involved exponents. |

The next result aim to carry over density in intersection spaces to transfer itself as a density
result in their real interpolation spaces.

Corollary 2.29 Let p € (1,400), —n/p’ < so < s1 < n/p, i.e., such that (C_s, ) and (Cs, p)
are both satisfied. ) )
The space C°(R%) is dense in HY*P (R ) N HY P (R7).

Proof. — Let p € (1,400), —n/p’ < so < s1 < n/p. There are three subcases, 0 < sg < s1,
so <0< s1,and sg < 51 <0.
The case 0 < sg < s1 follows the lines of Proposition 2.25 thanks to Corollary 2.23.
The case sy < 0 < s1, can be done via duality argument as in Proposition 2.25 for the negative
1 20 the following embeddings are true

index of regularity. Let us consider % =5
H 7*09(RT) — LY(RY) NHGWP(RY) — Hy"P(R'}) N HPP(RY) < HyMP(RY).

One may dualize it to deduce

H—SLI)/ (Ri) o (Hgo,p(Ri) N thp(Ri))/ N HSO—s1,q/ (Ri)
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We deduce that the last embedding is dense, since (H{*”(R™) N H§'?(R"))’ contains H—*#' (R)
via canonical embedding, so that by duality and reflexivity of all involved spaces, the following
embedding is dense :

H81—SO,Q(R1> N H(S)O»P(sz N H(S)l»P(Ri).

Since C°(R") — Hg'**9(R"}) is dense, the result follows.
We end the proof claiming that the third case sy < s; < 0 can be done similarly via duality
and reflexivity arguments. |

We are done with properties of homogeneous Sobolev spaces. We continue with a real interpola-
tion embedding lemma, that allows us to transfer all nice properties, like boundedness of extension
and projection operators, from homogeneous Sobolev spaces to homogeneous Besov spaces. The
strategy is to use Lemma 2.16 to obtain boundedness of some operators on a sufficiently wide range
of indices on Besov spaces via some sort of interpolation method, without the exact description
of the interpolation space, see below.

Corollary 2.30 Letp € (1,+00),q € [1,+00], s > =1+ %, m € N, such that s <m+1+ %. Let
us consider the extension operator E (resp. Py) given by Proposition 2.17 (resp. Lemma 2.22).
If either

e s>0andueB; (R}) (resp. u € B; (R"));
e se(—1+ %, 1%) and u € By (RY) (resp. u € B;, (R"));

we have the estimate

([Eul

B: (R") Ssmpn [|ul B: (R7) - (resp. || Poul Bs ,(R™) Ssmpn [|ul Bs (R") - )
In particular, E (resp. Py) is a bounded operator from B;q(Ri) to B;AR”) (resp. from B;q(R”)

to B;q,O(Rm) whenever (Cspq) s satisfied.

Proof. — Let p € (1,+00),q € [1,+), s > —1 + zlz’ m € N, such that s <m + 1+ % Without
loss of generality, it suffices to prove the result for the operator E, since we have the identity
Py =1—E"[Lg~], as written in the proof of Lemma 2.22.

The boundedness of E on B;yq(]R") for (p,q) € (1,+00) x [1,400], s € (=1 + %, %) is again a
direct consequence of Proposition 2.15.

It remains to prove boundedness for s >
scheme.

Let u € By (R}), 6 € (0,1) such that s, = s, where 51 € (s,m + 1+ 7). One has

%. To do so, we proceed via a manual real interpolation
u € (LP(R%),H*P(R%))g,q — (LP(R7Y), HP(R))g,q C LP(R) + H™P(RY).
Hence, for a € LP(R"}), b € Hsl’p(Ri) such that f = a + b, we can deduce that
b=u—-acB, (R})+L(RY) CLP(RY),
so that b € LP(R?) N H**?(R") = H*P(R") thanks to Proposition 2.19. Hence, Eu = Ea + Eb,

with Ea € LP(R"), Eb € H*»P(R’ ), with the homogeneous estimates provided by Proposition 2.17.
Then Euy,, = u, and we have estimates
+

K (t,Eu, LP(R™), H*"P(R")) < [|[Ea|lLo@n) + tIED|lgernmny Spomon lallLe@n) + 10l rer o g -

Hence, taking infimum on all such functions a and b, and multiplying by ¢t~¢ leads to

tieK(ta Euv Lp(Rn)v HSl’p(Rn)) 51’,3781777« tieK(ta u, LP(R:L_), HSl’p(Rﬁ))a

74



2 Homogeneous Sobolev and Besov spaces on the whole and the half-space. — 3 Function spaces
on the upper half-space

so one may take the LI-norm of above inequality and use (2.13) from Lemma 2.16 to deduce that

<

[[Eul B3 (R") ~oP,5:q:n ||u||B;7q(Ri)'

If ¢ < +o0, then By  (R"}) is dense in Bf,’ 4(R), so that the conclusion holds by density whenever
(Cs,p,q) 1s satisfied.

If ¢ = 400, and (Cs p,q) is satisfied, necessarily s < 2. We introduce € := E[lg» ] which is
bounded, thanks to the above step, seen as an operator

& B;{qj (R") — B;{qj (R™),

provided so < s < s1 < 7, and ¢; € [1,00), j € {0,1}. Thus, by real interpolation argument,
thanks to Theorem 2.10, for all U € B;’OO(R"), we have

1EUss _@ny Spsam 1Ullss _ @ny-

In particular, for all u € B; @®7%),and all U € B; oo (R™) such that U}, = u, we have
’ ’ 4+

[Eullg, _@ny Spos.an 1Ulss _@n)-

Hence, taking the infimum on all such functions U gives the result when ¢ = +o00 and (Cs p q) is
satisfied. |

Proposition 2.31 Let p,q € [1,+0], s € (0,n), such that
1
p

Sl

q

We have the following estimates,

lullurcen) Separ Il g Yo € By, (B, v € [L]
”u“B;io(Ri) ,Sn,s,p,q,r ||'UJ||LP(]R1), Yu S LP(RT_:_), re [q,+oo],
sy S lllig ey Yo € BY(RE), r € [Lmin2,p)],

lullgy ) Swsr [0llogey), Vi € LPRL), 7 € [max(2,p), +oc].

Moreover, we also have B;l(Ri) — CY(RY), whenever p is finite.

Proof. — Each embedding is a direct consequence of the definition of each space and the corres-
ponding ones on R", see Proposition 2.13. |

Lemma 2.32 Let p € (1,400), q € [1,+00) and s > 0. The function space C(R"}) is dense in
By, 0(R}) whenever (Cs ;) is satisfied.

Proof. — As in the proof of Proposition 2.25, in the case of non negative index : by a successive
approximations scheme, we use density of By  (R") in B,  (R"), to approximate functions in

B, o(R7). Then the boundedness of Py on Bj (R ), and the density of CZ°(R%) in BS , o(R%)
yields the result. |

Proposition 2.33 Let (po,p1,p,q) € (1,4+00)3 x [1,400], 89,51 € R, such that so < s1, let
(ha b) € {(HvB)v (HO;B-,-,O)}} and set

(k)0 (o) eferd)

(0]
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If either one of the following assertions is satisfied,
(i) q € [1,+00), 5 > ~1+ -, j € {0,1};
(it) q € [1,4+00], s; > -1+ p%_, and (Cs; p,) is satisfied, j € {0,1} ;

If po =p1 =p and (Cspq) is satisfied, the following equality is true with equivalence of norms
(507 (), 6 (R g = B30 (RD). (223)
If (Csy.po) and (Cs, p,) are true then also is (Csp,) and
(b7 (RY), 57 (R )lo = b™™ (RY). (2.24)

Proof. — We start noticing that (2.24) only makes sense under assertion (7).
Step 1 : We prove first (2.24) and (2.23) under assertion (7).
It suffices to assert that {h®0»o(R™), h*1P1(R?)} is a retraction of {H%0»o(R™), F*1P1(R™)},
thanks to Theorem 1.21. Indeed, both retractions are given by

E : H*%Pi(R}) — H*? (R") and Rgn : H*Pi (R") — H*Pi (RY}),
v Hy P (RT) — H%P/(R™) and Py : HY P9 (R") — Hy/ ™7 (R7).

Here, RRi and ¢ stand respectively for the restriction and the canonical injection operator.
Boundedness and range of E and Py provided by Lemma 2.22 and Corollary 2.30 lead to (2.24)
and (2.23) under assertion (7).

Step 2 : We prove (2.23) under assertion (7).

Step 2.1 : (h,b) = (H,B).
Thanks to Lemma 2.16, we have continuous embedding,

B o (RT) < (HOP(RY), H P (RY))g 4. (2.25)
Let us prove the reverse embedding,
B} o(RY) = (HOP(RY), HVP(RT))o,q-

Without loss of generality, we can assume s; > %. Let f € SO(M) - B; (R}, it follows that f €
(HeoP(R7), Ho1P(R™))g o C HoOP(RT) + H*1P(R™). Thus, for all (a,b) € HP(R?) x HP(R?Y)
such that f = a + b, we have,

b=f—ac (8(R7)+HP(RY))NHP(RY).

In particular, we have a € H*?(R) and b € H*?(R") N H“”l’p(Rﬁ_). Hence, we can introduce
F := Ea + Eb, where F,, = f, Ea € H*?(R") and Eb € H*P(R") N H**'P(R"), with the
+

estimates, given by Corollary 2.20,

[Eal

ity Soompon Il ey 0 1EDier gy Sor i [Blligero e

Then, one may bound the K-functional of F, for ¢ > 0,

H-"laP(]R") 55]’7]77” ||a|

K(t, F,H*?(R"), H* P (R")) < ||Eq]

freo»(rn) Tt ED] for(rn) + U0l ferr )
Taking the infimum over all such functions a and b, we obtain
K(t, FH®P(R"), BV P (R")) Ss,pon K (8 f,HOP(RE), HOP(RY)),

from which we obtain, after multiplying by t~%, taking the LZ-norm with respect to ¢, and applying
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Theorem 2.10,
11

Finally, thanks to the first embedding (2.25), we have

By ,(R7) < HF”B;’q(Rn) Ss.pn ||fH(Hsovl’(Ri),HShP(Ri))g,q'

”f”B;’q(Ri) ~p,s,n ||fH(HSO,p(Ri),HSLP(Ri))M7 Vf e 30(@)-

Since ¢ < +00, we can conclude by density of 8§o(R") in both B;yq(Ri) and in the interpolation
space (H*P(R" ), H*1'P(R" ))g,,. The density argument for the later one is carried over by Lemma
2.9 and Proposition 1.3. .
Step 2.2 : C°(R?%) is dense in By, o, provided =1+ 1 <5 < 2, p € (1,400), ¢ € [1, +00).
Thanks to the above Step 1, one may find —1+ X < 59 < s < 51 < %, 6 € (0,1) such that, as a
consequence of Proposition 1.3, we have the following dense embedding,
HeOP(RY) NHVP(RY) — (H*P(RY), H*P(RY ), = By ,(RY) = By, o(RY).

p,q,

The equality in the above line is a direct consequence of Proposition 2.15. In this case, the density

of C2°(R") is a straightforward application of Corollary 2.29 by successive approximations.
Step 2.3 : (h,b) = (Hp,B. . o).

Thanks to Lemma 2.16, we have continuous embedding,

(HG"P(RY), Hy P (RY))o.g — B} o (RY).

We are going to prove the reverse embedding,

(5" (RY), HG' P (RY))o,q + By 4 0(RY).

Again, without loss of generality we can assume s; > %, otherwise one can go back to the Step

1. Let us consider u € CZ(R"), then, u belongs to H*?(R") + H**?(R"). In particular for
(a,b) € HoP(R™) x H**P(R"), such that u = a + b we have

b=u—a€ (CX(RY)+HOPR™)) NHP(R™).

in particular we have a € H®?(R") and b € Heo?(R™) N Hflvp(]R"). Consequently, we have
u = Pou = Poa + Pob, with Poa € HP(R}) and Pob € H*"(R%) N H VP (R?), with the
estimates

H;l’p(Ri) Sslamvpvn ||b‘

[Poal

307 (R7) Ssompon lla] Hso:7(R") and [ Pob| 512 (R

thanks to Corollary 2.23. Thus, one may follow the lines of the step 2.1, to obtain for all
u e C2(RY),

HUHBZ,q,o(Ri) ~s,pn ||u||(Hg°”’(R1),HSI‘p(Ri))g,q'

Again, one can conclude via density arguments since ¢ < 400, and C°(R’) is dense in B;,q,O(Ri)
thanks to the Step 2.2 and Lemma 2.32.

The Step 2.2 in the above proof can be turned more formally into,

Corollary 2.34 Letp € (1,400), g € [1,+00], s € (—1+ %, %) Then the following equality holds
with equivalence of norms,
Bs (R%) =B o(RY).

p,q,

Moreover, the space CX(RY) is dense whenever q¢ < +o0.
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From general interpolation theory, we are able to deduce the following,

Corollary 2.35 Letp € (1,+00), s > —1+ 1/p, such that (Csp0o) is satisfied.
e The space C°(R") is weak™ dense in B;’M’O(Ri).

e The space 8o(R'Y) is weak® dense in B;OO(R?_).

Proof. — The Theorem 1.6 with the remark at the end of its proof in combination with Lemma 2.29,
with the use of Proposition 1.3, and Proposition 2.33 imply that, for some —141/p < s9 < s < s1,
with 6 € (0, 1), such that s = (1 — 0)sp + 0s1, we have the following strongly dense embedding,

CZ®(RY) < Hy""(R%) N Hy P (R}) < (Hg""(R}), H P (R ))a,
and the following weak™ dense embedding
(Hg""(R%), Ho" P (R))g — (HP(RY), Hg" " (R%))g = (He" " (R}), Hg' P (R} ))g,00 = By o 0(RY),

so that the result follows. We mention that (-, ) is the real interpolation functor asking the
K-functional to decay at infinity and near the origin. )
The same argument apply for the weak® density of 8o(R’) in Bj (R%}). |

We state below the Besov analogue of Corollary 2.23, Lemma 2.9 and Proposition 2.19, for
which the proofs are similar and left to the reader.

Lemma 2.36 Let p; € (1,+00), ¢; € [1,400], 5, > -1+ i, j € {0,1}, m € N, such that
J

(Cso.po.qo) 18 satisfied and s; < m + 1+ -

o5 and consider the extension operator E given by
J

Proposition 2.17. . . '
Then for all u € B  (RY) N Bt (R}), we have Eu € Byl o (R™), j € {0,1}, with the
estimate

”EUHBZ;qJ (Rn) ~5S5,Mp,n HU’HBP;W ®R7)"

The same result holds replacing (E, By} ¢, (R™), Byl 4, (R™)) by (Po, By).q, (R™), B;;quyo(R’_f_)), where
Py is the projection operator given in Lemma 2.22.

Proposition 2.37 Let p; € (1,+0), ¢; € [1,+], j € {0,1}, —1 —l—% < 89 < 81, such that
(Csy.,po.q0) % satisfied. Then the following equality of vector spaces holds with equivalence of norms

B J(RT)NB (RY) =B, nB J(R]).

Po,qo0 P1,91 Po,q0

In particular, Bzgm (R7) N B;ﬁ,m (R%) is a Banach space, and it admits So(R'}) as a dense

subspace whenever q; < +o0, j € {0,1}.
Similarly, the following equality with equivalence of norms holds for all s > 0, q € [1, +0o0],

LP(R%) N B;q(Rz) =B (RY).
With direct consequence similar to Corollary 2.21 :
Corollary 2.38 Let p; € (1,400), g; € [1,400] m; € [1,400[, s; >m; — 1+ —, j € {0,1},

1
P
such that (Cs, pg.qo) 5 satisfied. For allu € B0  NBit  J(RY),

V™ ul

Lsj—mj N o wll 55 .
B;é‘qT](Ri) 83,T5,P551 || |Bp_Jj,q]~(R1)

Above Proposition 2.37 also implies the expected interpolation result for Besov spaces, for
which the proof is similar to the one of Proposition 2.33 and left again to the reader.

78
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Proposition 2.39 Let (po,p1,p,4,q0,q1) € (1,+00)3 x [1,+00]3, 50,51 € R, such that sg < s1,
and let b € {B,B. .o}, and set

1 1 1 1 1 1
(Saa) = (1_0) <5057) +9 <5157) .
Po qo Po qo P11 q1

such that the following assertion is satisfied,
e 5, >—1+ p%.’ Jj €40,1}, and (Csy py,q0) %S true;

Then if po = p1 = p, and (Csp,q) 15 satisfied, the following equality holds with equivalence of
norms

(652, (RY), 0374, (R ))o,g = B, (RY).

If (Csy.po.q0) and (Csy py.q1) are true then also is (Cs p,.q,) and with equivalence of norms,

650 00 (REL), B33, (R )]0 = 65, (RE).

Po,90 ?TP1,q1
We finish stating a duality result for homogeneous Besov spaces on the half-space.

Proposition 2.40 Let p € (1,+00), ¢ € (1,+00], s > =1+ L, if (Cs,,) is satisfied then the

following isomorphisms hold :

(B, o(R1)) =B; (R}) and (B,°, (R1)) =B; , o(R}).
Proof. — We only prove (B;,fq, (R1)) = Bz,%O(RSﬁ), the other equality can be shown similarly.
First let ¢ < +o00, and choose u € B;q’O(RQ‘_), it follows that « induce a linear form on B;,‘fq, (R%),

v — <u, 17>Rn

where ¥ € B;,Sq,(]R”) is any extension of v € B;,sq,(Ri). If one choose v’ to be any other

extension of v, we have that o —v’ € B;,fq,’o(Rﬁ). Since C°(R% ) is dense in B3, o(R™), see either

4,0
Lemma 2.32 or Corollary 2.34, for (ux)ren C C°(R’}) converging to u, we have

lm (g, 0 —v")p, =0

(u, 0 —v")p, = L m

due to the fact that R} NR™ = (). Thus, the map does not depend on the choice of the extension
but is entirely and uniquely determined by uw. We have the continuous canonical embedding

Bs

p,q,O(Ri) — (B;’?q’ (Ri))l

In fact, the same result holds for ¢ = 400 : the space C°(R ) is sequentially weak* dense in
By .0(R}) by Corollary 2.35. .

For the reverse embedding, if U € (B’ (R"}))’, it induces a continuous linear functional on
B;,‘fq/(R”) by the mean of

v — <U, 1R16> ,

where again ¢ € B;,‘fq, (R™) is any extension of v € B;,‘fq,(]R’_f_). Thus, 1g-U € (B;,‘fq,(R”))’ and
by Proposition 2.12 there exists a unique u € B;q(R”) such that, for all v € B;,fq, (R™),

(U, 1rn 0) = (U, T)gn-

Finally, if we test with & € C2°(R™), it shows that supp u C R}, then u € BZ,q,O(Ri) which close

the proof. |
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4 Additional results, notations and some remarks

4.1 Miscellaneous results

We state here few results that will be useful in later parts.

Complex interpolation for intersection of homogeneous Besov spaces

Corollary 2.41 Letp € [1,+00], ¢ € [1,4+0), s; € R, j € {0,1} such that (Csyp.q) is satisfied.
Then for 6 € (0,1), let’s introduce s :== (1 — 0)sg + 0s1. Then the following equality holds with
equivalence for norms

[B;?q(Rn)7 B;?q(Rn) N B;?q(Rn)]G = stv?q(Rn) N B;’q(R") :

Proof. — Both function spaces B;?q (R™), and B;?q (R™)N B;}q (R™) are complete normed vector
spaces, see [BCD11, Theorem 2.25]. .
Now, we apply Theorem 1.21 and Proposition 1.20, claiming that, for all s € R, B; ,(R") is a

retraction of £4(Z, L?(R™)) through the homogeneous Littlewood-Paley decomposition (A;);cz.M

Estimates for the Poisson semigroup
Lemma 2.42 Let s >0, a > 0 and p,q € [1,+0o0]?. For all u € 8}, (R"),

1
||U||Bg,;S(Rn) ~p,s,an,g Ht — Hts(*A)ie%(*A)zU||LP(RH)||LZ(R+) .

Proof. — Tt suffices to show the result for « = 0. But in this case, the proof is straightforward
the same as the one of [BCD11, Theorem 2.34] for the heat semigroup. |

The following result was already proven in the case of homogeneous Besov spaces only. It is
extended here to the case of homogeneous Sobolev spaces, see for instance [DM09, Lemma 2].

Proposition 2.43 Letp € (1,400), q € [1,+00]. The map
T: fr— (2 2,) — e_””"(_A/)jf(x’)

is such that

(i) Given s =0, for oll f € Bpp(]R” HAB,,” (]R"_l), we have

ITf]

feney) Son Il g

Ls—1
In particular, T extends uniquely to a bounded linear operator T : B;p" (R*1) —
H*P(R?) whenever (Cs,p) is satisfied.

(ii) Given s> 0, for all f € B, 2 (R" 1) N B, ,” (R"), we have

ITf]

By (&) Sspn Hfl

5—7

P (Rn— 1)

1
In particular, T extends uniquely to a bounded linear operator T : B, pg’ (R —

Bz,q(Ri) whenever (Cspq) is satisfied.
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L1
Proof. — Point (i) : For p € (1,+00), let’s consider f € B, 7 (R"~!). We apply Lemma 2.42 to

obtain,
+o0 5
—xz, (—A") v
Tlngeny = ([ 12 sy )

oo And P at\®
= </0 (tPHe t( A)2f||LP(R"1)) t)

Sen 11l -

B P(Rn 1) ’

We continue noticing that for all f € 8, (R 1), m EN,ONTf=(-ANITf=T(-A")% f and
Tf € 8, (R" 1), thus if f € Bpp (RPN Byp * (R”fl) we may apply previous inequality to
obtain,
IT F iz oy ~pman 10T T Flloqy) + I1(=A")E Tflluozy)
~pn,m HT(*A')%fHLP(Ri)

m— =

Bl P @y

L1 om—1
So that for all m € N, all f € B, s (R""1)NB,, " (R 1),

1T fllemr@®y) Sponm 11, -1 . A1

prg (R P P P (R )

Thus, by complex interpolation and Corollary 2.41, for all s > 0, all f € Bp,p (R 1NB,, (]R”fl),

ITf e ey Spons 171 -2 . Hfl 5 :
( +) p,n,S prg(R (Rn 1)

Hence, thanks to Proposition 2.19, H*?(R") = LP(R™) N HSvP(Ri),

1T fllLe ) + 1T f]

. <
Hop(RT) SPn.s ||f||].3;§ - Ny

Therefore, if A € 2, we can consider fy is the dilation by factor A of f, so that plugging f\
instead of f in above inequality, and checking the fact that T'fx = (T'f), we obtain

AT fllee@n) + A" 7 I flligowgny Spins A7 ||f||B7% AT IIfH

(Rnfl) P(]Rn 1) ’

One may divide above inequality by A*” 7, so as A tends to infinity, it yields

1T flligsr ey Spinss 111

‘5,,

By, (R*—1) '

So that the result holds by density whenever (Cs ,) is satisfied.
Point () : Now let ¢ € [1,+0c], since for all s > 0, all f € B, 2 (R*1)NB,," (R"1),

ITf]

S, < —_ =
werta) Soma W AWy

Hence, by real interpolation, using [Haa06, Proposition B.2.7] instead of Corollary 2.41, we obtain
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L1 Le—1
that for all s > 0 all f € B, 2 (R" 1) NB,," (R"1),

ITf]

.8

s m) S .
B; ,(R) Sp.n.s ”f”ra,jé sy /] 5 F

Then the same dilation procedure as before, yields

1751, ) Sponss 1]

.8

_1 3
Bp‘qp (Rn—l)

which again allows concluding via a density argument if ¢ < +o00 and (Cs p,4) is satisfied. The
case ¢ = +00, when (C; p 4) is satisfied, follows from real interpolation with the last estimate. H

Proposition 2.43 can be self-improved as

Corollary 2.44 Let p; € (1,400), g; € [1,+00), j € {0,1}. The map
L1
T : fr— |(2 xn) = e (TAD2 £ (1)

is such that

(i) Let s; >0, j € {0,1}, such that (Cs, p,) is satisfied. For all f € [Bzz;?’ N B;i;fﬁl}(R”*I),
we have

1T f]

H®iPi (R) Sspm LS| i . J€40,1} .

PjPj

Lso—L s —L
(ii) Lets; >0, j € {0,1}, such that (Csy py.qo) i satisfied. For all f € [Bpg o ﬂB;l,qfl](R”_l),
we have

IT7]

'y < ]
Bp_Jivqj (RT) ~SP" Hf” '57‘%7'(]1{7171) I {07 1} '

Pj,d;

4.2 Operators on Sobolev and Besov spaces

We introduce domains for an operator A acting on Sobolev or Besov spaces, denoting

e D5(A) (resp. D;(A)) its domain on H*? (resp. H*P)

e D7 ,(A) (resp. D7 ,(A)) its domain on Bf , (resp. Bj ,);

e D,(A) = Dg(A) = DS(A) its domain on LP.
Similarly, Nj(A), N,  (A) will stand for its nullspace on H*? and B, ,
given respectively by R (A) and R  (A). We replace N and R by N and R for their corresponding
sets on homogeneous function spaces.

If the operator A has different realizations depending on various function spaces and on the
considered open set, we may write its domain D(A, Q), and similarly for its nullspace N and range
space R. We omit the open set {2 if there is no possible confusion.

and range spaces will be

4.3 Non-exhaustivity of the construction

The goal of presenting here a definitive construction of homogeneous Sobolev and Besov spaces
on the half-space is certainly not reached :

e The way arguments are done Section 3 always requires a ground function space to intersect
with so that it ensures we deal with restriction of elements of 8} (R™), e.g. see the proof of
Proposition 2.19. Hence, with this kind of methods, obtaining more general results like an
exhaustive description of dual spaces of homogeneous Besov and Sobolev spaces on R} in
the non-complete case seems to be difficult to reach.
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o A related problem is that the extension operator we use is not general enough and disallow
to cover too much negative index of regularity in case of homogeneous function spaces.
It would be of interest to know if one can also recover non-complete positive index
independently, without using intersection or density tricks. As mentioned at the beginning
of this section, to know if one can construct an operator similar to Rychkov’s extension
operator, from [Ryc99], £ such that £(8},(R7)) C 8}, (R™) with homogeneous estimates
would be a sufficiently powerful result to overcome such troubles.

o Other definitions are possible for 8} (R™). We have chosen here the one with the strongest
convergence for the sum of low frequencies to continue the work started in [BCDI11,
Chapter 2] and [DHMT21, Chapter 3]. The choice of possible definitions and their functional
analytic consequences on Besov spaces’ construction are reviewed by Cobb in [Cob21,
Appendix]| and [Cob22].

Not to further burden the actual presentation, we just mention that one could also investigate
spaces such as

Bs o (R%) and B o(R%).

p

For those spaces, the space SO(M) is dense in the first one by construction, and we can show
that C2°(R?" ) is dense in the second one, and both may be recovered from interpolation of other
appropriate homogeneous Sobolev and Besov spaces. We can also prove corresponding duality
and traces results. Details are left to the interested reader.

5 On traces of functions

Dealing with function spaces on domains implies that one may need to investigate the meaning
of traces on the boundary if those exist, i.e. to see in our setting if the trace operator

Yo iU — u‘mi

still has the expected behavior on Hs’p(Rﬁ) and B; o(R}). In fact, in the complete case, it behaves
as in the case of inhomogeneous function spaces.

The idea here is to give some appropriate trace theorems for homogeneous Sobolev and Besov
spaces. It seems there is no trace theorem for homogeneous function spaces in the literature, except
maybe [Jaw78], but in this case corresponding results were obtained in a different framework.

5.1 On inhomogeneous function spaces.

We discuss first about the usual well known trace theorem on R™ with trace on R"~1 x {0} in
the inhomogeneous case, the result is a rewritten weaker version adapted to our context.

Theorem 2.45 ([BL76, Theorem 6.6.1] ) Let p € (1,40), g € [1,4+], s € (%,—l—oo), and
consider the following operator

then following statements are true :

_1
(i) the trace operator vo : H*P(R™) —» B, " (R"1) is a bounded surjection, in particular for
all w € H*P(R™),

s-1 Ss.pan ||UHHS=P(R")§

u
ol
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1
(ii) the trace operator o : By  (R™) — B,.," (R"~1) is a bounded surjection, in particular for
all v € By (R™),

Sspma Ul

lvoul .
B

p,q

1 s ny;
E(Rn—l) Bqu(R )

1
(iii) the trace operator v : B} | (R") — LP(R™"') is a bounded surjection, in particular for

1
all u € B}, (R"),

ol Sl 3

Moreover the trace operator vy admits a linear right bounded inverse Ext in cases (i) and (ii).

Remark 2.46 One also mentions [Sch10, Theorems 2.2 & 2.10], [JW84, Sections V-VII], which
give different proofs of the trace theorem. Notice that in [Sch10, Theorems 2.2 & 2.10] and [Saw18,
Theorems 4.47, 4.48] the right bounded inverse they give is not linear but covers case (iii).

Proof. — We only give the proof for the right bounded inverse. The idea here is to complete
the approach given in [BL76, Exercices 25, 26, p.166] to recover the full range of exponents
since (%, 1] were missing. To do so let p € (1,4+0), s > %, and m € N such that s <m + 1+ %
Consider y € C3°(R) such that supp x C [-1,1], 0 < x < 1 and x(0) = 1.

We introduce the following operator,

+ i f= {(x',xn) = X(wn)e‘”"(A')%f(x/)] '

-1 -1
Since By j (R"1) = LP(R"1) + B, j (R 1), see [BL76 Theorem 2.7.1, Theorem 6.3. 2] we can
apply Lemma 2.42, so that for all f = a+b € B, } (R" 1), where (a,b) € LP(R" 1) x Bm, (R*1),

1
P

o0
L A e e

1
+oo N Ak pdt >
-(/ Qwuuwt<ﬁﬂfumw1g ‘)
1 1 + pd 1
’ 1 P 0 t P
< </ ||e—t<—A)za|§p(Rm)dt> +</ (tp|e —ANz b Lo (- 1)> t)
0

S lalloeny + Il g

thus, one may take the infimum on all such pair (a,b) to obtain,

||'C+fHLp(]R") ~Sp,n [/ "

Bpp (R"™1)

Now, we can use the higher order reflection extension operator E introduced in the proof of
Proposition 2.17 to define £ := EL, . Thus, due to the above boundedness properties, it follows
that

I£F Lo @y Spomm 14 Fllio@ny Spn 111

_1 .
Bp,p (R4

It has been proved, see [BL76, Exercises 25, 26, p.166], that £ also satisfies, for all f €

84



2 Homogeneous Sobolev and Besov spaces on the whole and the half-space. — 5 On traces of
functions

k—L1
3

Bp,p (Rn_l)v

127 ey S Wl

for all 1 < k < m + 1. Finally, the result follows by complex and real interpolation, and Ext = £
is the desired right bounded inverse. |

Remark 2.47 In the above proof, the extension operator from the boundary to the whole space
depends on some fixed regularity degree, which make it non-universal. If one wants an universal
extension operator from the boundary to the whole space, one may replace the use of E from the
proof of Proposition 2.17 by the use of Stein’s extension operator on the half-space, check [Ste70,
Section VI, Theorem 5’].

Corollary 2.48 Letp € (1,400), ¢ € [1,40), s € (%, +00), we have continuous embeddings :
(i) BOP(R) = €, (R By (R )
(i1) B} o(R") = CF.,, (R By (R"))
(ii}) By (R") = O, (RLP(R"))
(iv) By o(R") = CY, (R, Byt (R") — weak”).
Proof. — We only check validity of the embedding
HP(R") = CF ,, (R, By, (R™).

Let uw € H*P(R"™), for t > 0, for almost every x = (2/,z,) € R", we introduce ui(z’, x,) :=
u(a’, x, + t), we have uy € H¥P(R™), and by Theorem 2.45,

[vout| S_%(an) Sposin HUHHS*"(R”)’
p,p
[0 (ue — u)| Bs_%(Rnfl) Spson llue — “”HS*”(R")'
p,p

Therefore, by strong continuity of translation in Lebesgue spaces, then in Sobolev spaces, we
obtain

Iro(ue =)l .1 Sposon [ue = ul

1 Hs.p(Rn) —— 0.
prpp (Rn—l) ( ) t—0

1
Hence, u € C} (R,B,,” (R"1)), with the estimate,

Ht = Jlu(, 1) Spos.n lulles gn)-

sl
Bp,pp (R’n,—l) ‘LOO (R)

Finally, one can approximate u by Schwartz functions to deduce
1
u € Cf,, (R, By," (R™)).

One may perform a similar proof for all other cases, and one may check [Gui91b, Proposition 1.9]
for the continuity of translation in Besov spaces, one may also use a density and an interpolation
argument. |
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5.2 On homogeneous function spaces.

Theorem 2.49 Letp € (1,40), g € [1,+0], s € (%,—l—oo), then for (h,b) € {(H,B), (H,B)},
we consider the trace operator

Yo : ur— u(-,0).
The following assertions are true.

(i) For all u € H*P(R"), we have u € CJ , (R4, by,” (R"™1)), with the estimate

[l Ss.pn lulloer@n);

s— L
Lez (R by 7 (R71))

In particular, the trace operator extends uniquely to a bounded linear operator
. . S*l
Yo @ HYP(RY) — By,," (R*)
whenever (Cs ) is satisfied, and the following continuous embedding holds

s_1
p

H*P(RY) < CQ 4, Ry, Byp” (R ).

1
ii) For allu € B2 (R"), we have u € CY . (R4, by " (R"1)), with the estimate
P\t 0,2, P,q

[l

s

-1 Ssopn Ul
Li‘; (R+fbp,qp (R7171))

65,0 (R

In particular, the trace operator extends uniquely to a bounded linear operator

1
Yo @ By (RY) — By (R"1)
whenever (Cs . q) is satisfied, and the following continuous embedding holds

1
s— 1
P

By (R1) < Cf . (R, Bpg” (R™)).

If ¢ = 400, the result still holds with uniform boundedness and weak™ continuity only.

(iii) For all u € B;,/f(Ri), we have v € CJ, (Ry,LP(R™™1)), with the estimate

lullz @y rr@e=1) Sspm [ullgirgn);

In particular, the trace operator extends uniquely to a bounded linear operator

o : ByP(RY) — LP(R™Y)
and the following continuous embedding holds
B (RY) = O, (Ry, LP(R").

Moreover,
(a) If (h,b) = (H,B), the trace operator vo admits a linear right bounded inverse Extrn in
cases (i) and ().
(b) If (h,b) = (H,B), the trace operator vy admits a linear right bounded inverse Extg, in
cases (i) and (ii).
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Proof. — We cut the proof in several steps.

Step 1 : The case (h,b) = (H, B).

The result is a direct consequence of Corollary 2.45, and the definition of functions space by
restriction.

One choose Extgn = L introduced in the proof of Theorem 2.45 which satisfies the desired
boundedness properties.

Step 2.1 : The case (h, b) = (H, B). Boundedness of the trace operator.

We only achieve the case () other ones can be done similarly. From the Step 1, and for fixed
p € (1,+00), g € [1,+00], s > %, and u € B  (R%), we have

Hu” SP,S n HUH s—1 Ss,p,n ”uHB;;)q(]Riy

o1 ,
Lo, (Ry By o7 (R71)) Lo, (Ry B, P (RT1)

Tn Tn

Thus, one may use the fact that B , (R'}) = L”(RK)HB‘;)(J(R’;), which comes from Proposition 2.37,
to obtain

[l .

S u ny + ||u
Lgil(R+,Bp ~S8,P,1,q || ||LP(R+) || ‘

;%(Rn—l)) B;q(Ri)

So that, by a dilation argument, replacing u, by uy := u(\-), for A € 2N,

AT

< - ’ s— .
L (R%prq% (Rn-1y) DSP AT ||UHLP(]R1) AT Hu||B;q(R1)'

Hence, we can divide by A*~% on both sides and pass to the limit A — 400,

Jul Sopma lullp; @)

_1
Lo (Ry B, .7 (Rn-1))

Therefore, if ¢ < +00, and (Cs ;) is satisfied, the embedding

. — es—L1
B} o(R}) = Cg,, (Rt,Bpg" (R"))

holds by density. If ¢ = 400, and (Cs p 4) is satisfied, the result follows from real interpolation.
Step 2.2 : The case (h,b) = (H,B) Boundedness of the extension operator.
The operator T’ given by Proposition 2.43 is an appropriate extension operator which satisfies
the desired boundedness properties. Thus mﬂm := T behaves as expected. |

A raised question is about what happens when we want to deal with intersection of homogeneous
Sobolev and Besov spaces.

Proposition 2.50 Let p € (1,4+0), ¢ € [1,+00), —1 —Q—% < 89 < % < 81, and 8 € (0,1) such
that

1
- = (1 —9)50 + 0s1.
p

Then,
. . si—1
(i) For all u € H*P(R?) N H*1P(R™), we have you € By ¥ (R™1), with the estimate

1-6
et sl

S [[ul
sp—% ~S80,81,P,M u

u
Ivoul 53 gy

0
He1.7(R7) + ”uHHSlvP(Rx)'

We also have,

||70u| -2 550,81,17,71 HUHHSLP(RQL_) ’

Bp’p P (]Rn—l)
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. . s1—1
1) For all u € B2° (R”)N B3 (RY), we have you € B, 7 (R*! , with the estimate
P,g\ T+ p,g\ T+ p,q

roull -1 Seosmm [ullgz0 (Rn)HUI @y T lulls

51 (Rn .
Bp,q :D(]Rn—l)

We also have,

S [[ul
s1—% ~Nso,81,p,m || U

I7ou|
By, 7 (R"1)

Byl (RY)S
(iii) For allu € B;?OO R%)N ]'3;}00 (R%), we have you € LP(R™™1), with the estimate

H'YOUHLP Rn—1) Sso,s1 D, ||U|

0
20 (Rn)”u” o (R

Proof. — We only start proving the point (i), and claim that point (%) can be achieved in a
similar manner. We start noticing, the following continuous embedding,

. . . . L1 3
By, (RY) N By, (RY) < (B9, (R}), By, (R7)o = By (RY) S LP(R™Y).

Here, ¢ is the canonical embedding obtained via standard interpolation theory, and the last
embedding via the trace operator is a direct consequence of Theorem 2.49, and everything can be
turned into the following inequality,

”'YOUHLP(R” 1) 580 s1,p,m HU|

2 el g s Vo € Bty (RE) N B3 (R,

Again, from Theorem 2.49 we obtain for all u € 8o(R%),

<

SS1,p,m (|l

||70U| 517 (En-1) Bl (R%)*

L1 1
Then one may sum both inequality, notice that LP(R*~1) N B,., * (R*~!) = B,., ” (R"~!) and
use the density argument provided by Proposition 2.37 so that each estimate holds. |

Remark 2.51 As in Theorem 2.49, above Proposition 2.50 could be turned into a C&wn-
embedding in the appropriate Besov space.

Proposition 2.52 Let p; € (1,+00), q; € [1,400), s; > 1/p;, j € {0,1}, such that (Csy p,)
(resp. (Csy.po.q0)) @5 satisfied. Then,

1
J

(i) For allu € [H#-Po NH*UP1|(RY), we have you € Bpjvmj (R"=Y), j € {0,1}, with the estimate

< Siips .
INEIN 2D P (R

PjiPj

ij%
(ii) For allu € [ng . Bf,i ) (R), we have you € Bp,.q (R"™1), j € {0,1}, with the estimate

Seppin |
_Sj*% ~S8j,Pj,M
J 1)

[voul (R")
pj,(lj ]Rn—

Remark 2.53 Corollary 2.44 yields the ontoness of the trace operator on intersection spaces
given by above Proposition 2.52.

Lemma 2.54 Let p; € (1,+00), s € (1/pj, 1+ 1/p;), j € {0,1} such that (Cs, p,) is satisfied.
For all u € [H*>Po NH**P1[(RY, C) such that u),,, =0, the extension @ to R™ by 0, satisfies
+

@ € [Hy"™ N Hy"™|(R%, C)
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with the estimate

%3P (R ) je{0,1}.

1%5 P35 (R™) Spjysj,n |

The result still holds replacing H%?i by Byl 4., q; € [1,+00], j € {0,1} assuming that (Csy po.q0)
is satisfied.

Proof. — Let u € [Hy"" N Hy"™](R%,C) such that u,, = 0, then for all ¢ € [H!=%75 N
+

8](R™,C™), we have
/ Vu-¢= f/ div (¢) u
¥ ¥
So that introducing the extensions by 0 to R™, @& and %,
/ Vu-¢ = Vu ¢——/ div(qﬁ)u:—/ div (¢) @ = (Vii, ¢)pg,.-
Therefore, for all ¢ € [H'~%*5 0 §](R", C"),
[ Vu- 9= (Vo)

Hence Vu = Vi in 8'(R™,C™). Thus, by Propositions 2.11 and 2.15, we deduce that

IV

Spj n,s; ||¢|| 1-3;.9) (RH)HVUHHsj—ij (R7)

[(Va, §)g | <UDl meym

i (R™) TR R

Spj’nssj ||¢||H1*Sj,103 (R™) ||uHHsj”’j (RL‘_)

One may conclude thanks to Proposition 2.11, and Corollary 2.21. The case of Besov spaces
follows the same lines. |

The following corollary is then immediate

Corollary 2.55 Let p; € (1,4+00), s; € (1/p;,14+1/p;), j € {0,1} such that (Cs, p,) is satisfied.
We have the following canonical isomorphism of Banach spaces

{U, c [Hsmpo N H51,p1](Rn ) |u\aRn 0} ~ [ HsoPo HSI’pl}(Ri, (C)

The result still holds replacing H%?i by Byl 4., q; € [1,+00], j € {0,1} assuming that (Csy po.q0)
is satisfied.

6 Applications : the Dirichlet and Neumann Laplacians on the
half-space

Before starting the analysis of Dirichlet and Neumann Laplacians on the half space, we introduce
two appropriate extension operators. We denote E 7, for J € {D, N}, the extension operator
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defined for any measurable function u on R, for almost every z = (2/,z,) € R" ™' x Ry :

EDU(ZITI,!L‘”) — U(.Z‘/,xn) ) lf (Jj/’xn) c Rn—i ¥ R,
—u(z!, —xy,) if (¢, 2,) € RPE X R* ;
u(x/’xn) , if (xl,.%‘n) c R”_l % R-‘rv

Enu(z',z,) = {

u(x', —xy,) if (2, 2,) € RPL x R*.

Obviously, for J € {D,N}, s € (=1 +1/p,1/p), p € (1,+00), the Proposition 2.15 leads to
boundedness of

By : HYP(R") — H*P(R™). (2.26)

The same result holds replacing H5® by either H5?, B; 4, or even by B;q, q € [1,+0o0].

We are going to use the properties of Laplacian acting on the whole space to build resolvent
estimates for both the the Dirichlet and the Neumann Laplacian. Usual Dirichlet and Neumann
Laplacians are the operators (D(A ), —A7), for J € {D, N}, where the subscript D (resp. N)
stands for the Dirichlet (resp. Neumann) Laplacian, with, for p € (1, 4+00),

D,(Ap) = {u € H'?(R",C) \ Au € L(RY,C) and u,,, = o} :
—0

D, (Ay) = {u € H'?(R",C) \ Au € LP(R™,C) and D, } .
+
For J € {D,N}, and all u € D, (A z),
—Agu:= —Au.

When p = 2, one can also realize both Dirichlet and Neumann Laplacians by the mean of
densely defined, symmetric, accretive, continuous, closed, sesquilinear forms on L2 (R%,C), for

J €{D,N},

az : Da(az)? 3 (u,v) — Vu - Vv (2.27)

R}

with Do(ap) = H(R?, C), Da(an) = HY(R, C), so that it is easy to see, and well-known, that
both, the Neumann and Dirichlet Laplacians, are closed, densely defined, non-negative self-adjoint
operators on L?(R%, C), see [Ouh05, Chapter 1, Section 1.2]. We can be even more precise.

Proposition 2.56 Provided J € {D,N}, the operator (Da(A7),—A7) is an injective non-
negative self-adjoint and 0-sectorial operator on LQ(RQL_, C).
Moreover, the following hold

(i) Da(Ayg) is a closed subspace of H*(R?,C) ;
(ii) Provided pu € [0,7), for A€ £, f € L2(R%,C), then u:= (Xl — Ay)~Lf satisfies

IMlullz@ny + M2Vl @) + [1Vulliz@n) Snp lf ez 5
(iii) The following resolvent identity holds for all p € [0,7), A € 5, f € L*(R%,C),
EgAL=Ag)" ' f =M —-A)"Esf.
Remark 2.57 For u : R} — C, we set

aj = [Eju]

lrn
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for J € {D,N}. We notice that in D'(R",C),

Oz, lun] = [0z, ulp and Oy, [p)] = [0, U] zr-

Proof. — One may use self-adjointness and (2.27) which gives, by standard Hilbertian theory,
the following resolvent estimate

AlllullLz@n) + (A2 [ Vulliz@n) + [[Aullizy) Spllfllee@n),

where u := (A\L— Agz)7Lf, f € L2(R?,C), A € X, p € [0, 7).
Now, for fixed f € L%(R"},C), A € 5, p € [0,7), we consider u := (A\I - Az)~! f. Assuming
J =N, we have for ¢ € §(R",C),

<ENU’ _A¢>R" = <“7 _A¢>R1 + <ﬂ/\fv _A¢>Rg
= (Vu, v¢>m +(u, V¢ - en>aR¢ = (in, Vo - eﬂ>aR2

—

(Vs V') + ([0 ], 02, 0) g

Since IR} = OR" = R"~! x {0}, with traces UN|pen = U|ypn » We deduce <u|aw ,Vo- e">8]R" —
- ¥ + +

<11N|8Ri , Vo - en>0R1 = 0. Then, thanks to Remark 2.57 and the boundary condition on u, i.e.

O, U| e = 0, we have
+

—~

(Exu, =A¢)p, = (Vu, Vo), + ([V'uly, V'é)gn + <@D’aﬂﬂw¢>m
= (~ B B)gy + (N ) + (02, )
- <aznu7 ¢>8]R1 - <mD’ ¢>8R’j
= <EN[—AU], ¢>R"'

Thus, —AEnu = Ex[—Au] in 8'(R™,C). One may reproduce above calculations for 7 = D. So
for 7 € {D,N}, Ezu is a solution of

AU — AU = Ef.

We have E7f € L2(R",C). By uniqueness of the solution provided in R", we necessarily have
U = E 7u, which can be written as

EsM—Ag)" ' f=(l-A)"Esf.

Thus one deduces point (7), from the definition of function spaces by restriction, (i) follows,
and finally setting A = 1 in point (i) yields (7). |

We want to show some sharp regularity results on the Dirichlet an Neumann resolvent problems,
on the scale of inhomogeneous and homogeneous Sobolev and Besov spaces. To do so, we introduce
their corresponding domains on each space. Provided p € (1,+00) s € (=1 +1/p, 1+ 1/p), if is
satisfied (Csp) :

DS (Ap) = { w € [Hy? NH1P)(R™, C) ‘ Au € Hy? (R, C) and u,,, =0 } C H3P (R, C),
D (A) = { u € [H*? N 1P| (RT, C) ‘ Au € H™ (R}, C) and Oy, = o} C H*P(R, C).

We can also consider their domains on inhomogeneous Sobolev and Besov spaces, as well as
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Bs ,) and finally (D

homogeneous spaces, replacing (D;,Hs’p) by either (D7, H*?), (D; p,q’BZ,q)
provided ¢ € [1,+0o0], and (Cs ) is satisfied.

It is then not difficult to see that the Dirichlet and Neumann Laplacians are well defined
unbounded closed linear operators, densely defined, if ¢ € [1,+00) in the case of inhomogeneous
and homogeneous Besov spaces. If ¢ = +00, the domain of the Dirichlet (resp. Neumann) Laplacian

is only known to be weak* dense in Bj o (resp. in B;, ) and B;S),oo,o (resp. BZ’OO).

Proposition 2.58 Let p,p € (1,+), q,§ € [1,4+00], s € (-1 + %,1 + %), s # 1/p, a €
(-1+ %,1 + %), a# 1/p, and X € ¥, provided p € [0, 7). We assume that (Csp), and we let

fe Hg’p(Ri,(C). Let us consider the resolvent Dirichlet problem with homogeneous boundary
condition :

Au—Au = f, inRY,
=0, onJR}. (DL

Ul on
‘8{&1

The problem (DLy) admits a unique solution u € [Hy? N Hs+2P|(R?, C) with the estimate

<

[A[flul HoP(R?) ~SPsS,1 Hf”Hw(Rf;)-

ey + N H IVl g, + (920
If moreover a # 1/p and f € HyP(R?,C), then we also have u € [H*P NH*T2P|(R%, C) with
the corresponding estimate

1
Al pqany + N EIllen ey + 19200y S 1 itesqan-

The result still holds replacing (H*? HsT2P HeP HOT2P) by (BS  BSH2 B

Hat2
p.> Bg » B33 Bs g ) whenever
(Cs,p.q) s satisfied.

Remark 2.59 e For this specific Proposition 2.58, we have excluded the cases s = 1/p and

a = 1/p. Both require to introduce, e.g. in case of Sobolev spaces, the homogeneous counterpart

of the Lions-Magenes Sobolev space H(l)(/)q’q (R%), q € {p,p}. See for instance [LM72, Chapter 1,

Theorem 11.7] for the inhomogeneous space in the case g = 2.

e We bring to the attention of the reader that (C, ;) is NEVER assumed, only (Cs ;) is. This
is in order to echo the principle of decoupled estimates in intersection spaces when one wants
to deal with higher regularities involving some non-complete spaces. All the results below are
following the same principle.

Proof. — Provided p € (1,400), and firstly that s € (=1 + 1/p,1/p), for f € H“"*”(Ri, C), since
one is aware of (2.26), which follows from Proposition 2.15, one has for U := (\I — A)"'Ep f

U]

1
frea®n) T [AIZ[|VU]

fen(en) + I VAU

HsP(R™) Spins.u 1£] Hep(R7 )"

Thus, by definition of function space by restriction, we set u := U|,, which satisfies
+

[Alllul

1
i) AV ullgep @) + IVl i @) Spms | lliger @),

then the map f — [(AL - A)"'Epf],, is a bounded map on H*?(R?,C). Everything goes
+

similarly for H*? (R’ , C). One may check, as in the proof of Proposition 2.56, and by a limiting
argument, given the density of [L2 N H*P|(R?%,C) in H*P(R"}, C), that v,,, =0, and
+

Au— Au = f in R,

Again, as in the proof of Proposition 2.56, one may check that any solution u to the above
resolvent Dirichlet problem necessarily satisfies Epu = (A — A)"'Epf.
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Now if s € (1/p,1+ 1/p), f € [Hy~ " N Hy?|(R?,C) then we have, thanks to previous
considerations, U := (Al — A)"'Epf € H*~1?(R",C). It suffices to show that U € H*?(R", C),
which is true. Indeed, we have

AT

Hs:»(R7) Ssmﬂuu ‘)‘|HVU|

Sspno ||VEDfHHS*1’P(R”)

n
Ssmmw Z Hawk EDf|
k=1

Hsfl,p(Rn)

Hsfl,p(Rn)-

Since equalities 0, Epf = EpOy, f, k € [1,n—1] and 0., Epf = Ex 0y, f occur in 8'(R", C), we
deduce

[Alllul

ier () S MUl @ny Ssopinon (1 lizso gy -
One may proceed similarly as before to obtain the full estimate

Al

1
frep(re) T (A2 ([ Vul

2
few@n) T IV Ulgsn@ny Sps [ llisw@n)-
Thus the estimates still hold by density for all f € Hy?(R%), s € (=1 +1/p,1+ 1/p), s # 1/p,
whenever (Cs ;) is satisfied.

The H*P-estimate for f € [Hy” N Hy?](R") can be obtained the same way, whenever (C; ;) is
satisfied. .

The case of Besov spaces B o can be achieved via similar argument for ¢ < +oo, the case
g = +oo0 is obtained via real interpolation. The case of the Bgﬁ,o—es‘cimate for f € B;,q,o N B%,q,o
can be done as above. |

The proof for the Neumann resolvent problem in the proposition below is fairly similar to the
proof of Proposition 2.58, a complex interpolation argument allows values s = 1/p and oo = 1/p.

Proposition 2.60 Let p,p € (1,40), ¢,4 € [1,+00], s € (-1 + %, 1+ %), ae(—-1+ %, 1+ %)
and X € %, provided i € [0,7). We assume that (Cs,), and we let f € H*P(R",C). Let us
consider the resolvent Neumann problem with homogeneous boundary condition :

A—Au =f, inRY,
{ o)y =0, on IR}, (NLy)
+
The problem (N'Ly) admits a unique solution u € [H*? N H*+2P|(R%, C) with the estimate

He P (R?) Spinsu | f]

Al

1
He7(R7) + (A2 [Vl He.7 (R7) + [Vl He? (R

If moreover f € H¥P(R",C), then we also have u € [H*P NH**2P|(R%, C) with the correspon-
ding estimate

1
|)‘|||UHH0<@(R1) + A2 HquHaﬁ(Ri) + ||V2UHH(%5(R1) Shm.onn Hf||H°¢vﬁ(R1)‘

The result still holds replacing (HS?, Hst2p HeP Ho+2P) by (BS  BSH2 B

Sa+2
P9’ pq p,EPBﬁ,d ) whenever
(Cs,p.q) 1s satisfied.

Proposition 2.61 Let p,p € (1,+0), q,G € [1,+0], s € (-1 + %,—i—oo), a€ (-1+ %,—l—oo)
. s4o—1
such that (Csy2,p) is satisfied. For f € H*P(R",C), g € pr ?(R"1,C), let us consider the
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Dirichlet problem with inhomogeneous boundary condition :

—-Au =f, inR%,
Ulpgn =9, OM ORY .

The problem (DLy) admits a unique solution u such that

. _ .ga2_1
we HP2P(RY C) € ), (Ry,Byy ?(R™L,C))

with the estimate

[l Lot Sewn V20l @y Spon.s [1]

. comimny gl ae s
Lo (R By, P (RP1)) Hor(RY) HgHBif’l’

(Rn—l)‘
. - at2—1
If moreover f € H*P(R},C) and g € BZ; P(R"1,C) then the solution u also satisfies
u € HOF2P(R™ C) with the corresponding estimate

||V2UHHM(R¢) Shina Hf||Hmﬁ(R1) + HgHB”L%

PP

(Rn—l) ’

. . Cs4o 1 R o aq2-1
The result still holds if we replace both (H*P HT2P, Bpj;z ?) and (H*P HY2P Bo+? 7Y by

' ) D
. i pst2—1 . Cad2 pat2—1 . .
By B2 Bpg ) and (BS 4, B5 7B 7) whenever (Coya,p4) is satisfied, ¢ < +00.

P4 P,q
If ¢ = +o0, everything still holds except x,, — u(-,x,) is no more strongly continuous but only

) . . opst2—L
weak® continuous with values in B, *(R"~1 C).

Proof. — Let p € (1,+00), s > —1+41/p, such that (Cs12 ;) is satisfied. Then for f € Hs’p(Rﬁ,(C),

g4 1
g€ B;,:, ?(R"~1,C) we can write the problem (DLg) as an evolution problem in the z,, variable,

—02 u—ANu =f, inR"!x(0,400),
u(-,0) =g, onR"L
Thanks to [ABHN11, Theorem 3.8.3], considering the semigroup (e‘x"(_A/)l/Q)zn>o and its

mapping properties given by Proposition 2.43 and Theorem 2.49, if f = 0, above problem admits
— . 21
unique solution u € C87mn (R4, Bls,:, ?(R"~1,C)). Thus, by linearity, we also have uniqueness of

. . = BST2- g . . . .
the solution u in 08@" (R4, B;,p ?(R"=1,C)) for non-identically zero function f. Therefore, it

suffices to construct a solution. _
Since f € H*P(R",C), by definition, there exists F' € H*P(R", C) such that
FlRi = f, and ||f||HSvP(]R1) ~ 1 F e gy -

Let v := (—A)"'F € H**2P(R",C), we also have

||U||Hs+2,p(uan) Ssom [1F] Hs»(R7) Ssom If] Hep(R7) *

So it suffices to prove the result for w € HS“’p(R’_}_, C), such that

—Aw =0, inR"!x(0,+0c0),
=g, onR" 1,

w
lomn

L pnst2— . . .
where § € B, ”(R""! C) can be scen as g — v(-,0). But such a w exists and is unique thanks
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to Proposition 2.43 and [ABHN11, Theorem 3.8.3], and satisfies

[0

. < P
Het2.2(R7) ~OP;7,8 ||g||BZ;27%(R"*1) .

Now, we can set u := v + w which is a solution of (DLy), and the triangle inequality leads to

||U||Hs+2,p(m) < ||U\|Hs+2w(m) + ||w||Hs+2=p(R1)

Spons (V] Hs+2.p(R7) + ||g||BS+2_%(]R”—1) +[Jv(, O)H}.3s+2—l
b,p

pp P (Rn—l)

Spin.s ||f||HS~p(R1) + gl BSH_%(R"—l)
;P

which was the desired bound. ) _

The Besov spaces case for (f,g) € By (R}, C) x Bfgjf_l/p(R”*l,(C), whenever (Cs42,p.4) is
satisfied, follows the same lines as before, except when ¢ = 400 where the uniqueness argument
can only be checked in a weak sense since (e‘x"(_Al)w)zn;o is only weak® continuous in
BIS)JFOZ*l/P(Rn—l (C).

Now, if we assume that f € [H*? NH*?}(R",C) and g € [322271/’9 032;271/’3] (R"=1,C), then
with the same notations as above, by Proposition 2.52, we have

v=(~A)"'F  [[I**2P A HOF2P) (R, C) and o(-,0) € B3E2 1P nBOE*VP )R C).
From this, one may reproduce the estimates as above to obtain

||v2u||Hwﬁ(R1) Sk Hf”HQJﬁ(]Ri) + HQHBaw—%

ety
s (BT

The case of intersection of Besov spaces follows the same lines. |

We state the same result for the corresponding Neumann problem, for which the proof is very
close.

Proposition 2.62 Let p,p € (1,40), ¢, € [1,+00], s € (-1 + %,—&—oo), a€(-1+ %,—&-oo),
. Csr1—1
such that (Csy2,p) is satisfied. For f € H*P(R",C), g € Bpjgl P(R"1,C), let us consider the

Neumann problem with inhomogeneous boundary condition :

—Au = f7 in Ri;
&,umi =g, onJR}.

(NLo)

The problem (N'Ly) admits a unique solution u such that

. - . _1
we PR, C) Y, (Ry, By 7 (R™,C))

with the estimate

] s42-1 Sspin ||V2u|

- n <
e ber(ay) Spme IS

Hs’p(Ri) + HgHB:f:f%(Rn—l).

If moreover [ € Ho"ﬁ(Ri,C) and g € Bg;liz(Rnfl,C) then the solution u also satisfies

u € Hot2P(R%, C) with the corresponding estimate

Il ) Somer Wiy + il jorg
D,P

. . . 1—-1 . 21 . . . 1—-1 . 21
The result still holds, replacing (F°7, =422 By ' By ) by (B B2, Byl 7, By 7)
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_1
P

ST . a+l . . . 1—-1
and (H*P HY+2P Bg’ﬁ ) by (BS 5 Bg:gz, B;:; ?) whenever (Csy2,p.q) s satisfied and ¢ < +00.

If ¢ = 400, everything still holds except x,, — u(-, xy) is no more strongly continuous but only

, . S t2m 3
weak* continuous with values in Bp oo *(R"1,C).

Similar results but with proofs in a different spirit are available in [DM15, Chapter 3].
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Résumeé du chapitre

Ce chapitre est principalement consacré a la preuve de la régularité maximale H en temps pour
une classe d’opérateurs sectoriels injectifs, mais non inversibles, sur un espace de Banach UMD
X, a condition que g € (1,+00) et @ € (=14 1/¢,1/q). Nous prouvons également I’estimation
de trace correspondante, de sorte que la solution du probleme de Cauchy abstrait canonique
est continue avec des valeurs dans un espace de trace non nécessairement complet. Ceci est fait
afin de préserver la possibilité d’utiliser des réalisations d’espaces de fonctions homogenes pour
traiter des équations paraboliques non-linéaires (avec une partie linéaire) dans un cadre abstrait
approprié.

Ce “nouveau type” (pas tant que ¢a en fait) de régularité maximale offre de nouvelles perspec-
tives pour améliorer la flexibilité du caratére bien posé global en temps de certaines équations
paraboliques et a été principalement inspiré par les travaux de Priiss et Simonett [PS16, Cha-
pitres 3 & 4], Danchin, Hieber, Mucha et Tolksdorf [DHMT21, Chapitre 2] et Brandolese et
Monniaux [BM21].

Afin de mettre notre résultat en perspective, nous fournissons également un court état de 'art
de la régularité maximale L9 qui inclut quelques avancées récentes telles que la théorie revisitée
des opérateurs homogenes et de I'interpolation par Danchin, Hieber, Mucha et Tolksdorf. Cette
théorie sera utilisée pour construire I’espace de traces approprié, a partir du quel nous voulons
choisir les données initiales, et pour lequel la solution de notre probleme de Cauchy abstrait sera
continue en temps.

L’estimation de trace établie dans le théoreme principal, Théoréme 3.21, sera fondamentale
dans le dernier Chapitre 5.
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3 Global-in-time maximal regularity — 1 Introduction

Les principaux outils qui seront employés au cours de ce chapitre seront ceux introduits dans
la Section 3 du Chapitre 1.

Summary of the chapter

This chapter is mainly concerned by the proof of H*9%-maximal regularity for a class of
injective, but not invertible, sectorial operators on a UMD Banach space X, provided ¢ € (1, +00),
a € (—141/q,1/q). We also prove the corresponding trace estimate, so that the solution to the
canonical abstract Cauchy problem is continuous with values in a not necessarily complete trace
space. This is done in order to capture the possibility to reach the use of meaningful realizations
of homogeneous function spaces to deal with non-linear parabolic equations (with a linear part)
with an appropriate abstract framework.

This “new kind” (not that much actually) of maximal regularity offers a new perspective to
improve flexibility for global-in-time well-posedness of some parabolic equations and was mainly
inspired by the works of Priiss and Simonett [PS16, Chapters 3 & 4], Danchin, Hieber, Mucha
and Tolksdorf [DHMT21, Chapter 2] and Brandolese and Monniaux [BM21].

In order to put our result in perspective, we also provide a short review on L?-maximal regularity
which includes some recent advances such as the revisited homogeneous operator and interpolation
theory by Danchin, Hieber, Mucha and Tolksdorf. This theory is used to build the appropriate
trace space, from which we want to choose the initial data, and the solution of our abstract
Cauchy problem to be continuous in time.

The trace estimate inherited in the main theorem, Theorem 3.21, will be central in the last
Chapter 5.

The main tools of this chapter are the ones introduced in Section 3 of Chapter 1.

1 Introduction

Before, we start this chapter, we introduce the definition of Banach spaces with the UMD

property.
We say that a Banach space (X, ||-||x) has the Unconditional Martingale Differences
(UMD) property if the Hilbert transform H, defined by

Hf(z) := ip.v./ﬂ{gf(_y)ydy, (f € 8(R,X), x €R)

yields a bounded linear operator on L2(R, X).
Where, we (re-)introduce temporarily for the current chapter

So(R, X) := {u € §(R, X) | supp(Fu) is compact, 0 ¢ supp(Fu) } .

For more details about UMD Banach spaces, see [HYNVW16, Chapters 4 & 5, Theorem 5.1.1],
those Banach spaces being also called sometimes Banach spaces of class H7T (for Hilbert Trans-
form), see e.g.[PS16, Chapters 3 & 4].

1.1 Motivations and interests
1.1.1 The example of the Laplacian on R"

The L9-maximal regularity is a very powerful and fundamental tool for the study of a wide
range parabolic partial differential equations, that comes mainly from physics, geometry, or
chemistry.

The usual theory built for sectorial operators on UMD Banach have been widely investigated.
However, when it comes to look where the solution of the abstract Cauchy problem lies as a
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continuous function of time, we have to restrict ourselves either to control in finite time, or to ask
the operator to be invertible.

For instance, let us take a look at the scalar heat equation on R™, for T' € (0, +0o0], ug € 8'(R™),
f € Lie([0,T), 8 (R™)),

{ Owu(t) — Au(t) = f(t),0<t <T, (HE)

The standard theory, see e.g. [Ama95, Remark 4.10.9], [PS16, Theorem 3.5.5], tells us that provided
f e L([0,T],LP(R™)), ug € Bf,;lz/q(R"), T < 400, p,q € (1,400), the Cauchy problem (HE)
admits a unique solution v € H-4([0, T], LP(R™)) N L4([0, T], H*?(R™)) c C°([0,T7, B?,IJQ/‘I(R"))
which satisfies the estimates

||u||L°°([0,T]7B2:12/‘1) Sn,Paq,T ”(uv Oyu, AU)HLLI([O,T],LP) Sm,p,q,T Hf”LQ([o’T],Lp) + HUQ”Bi:Iz/q.

In these estimates, implicit constants are dependent of 7" and blow up as T goes to infinity. It is
in fact even worse than that : one cannot expect a global-in-time estimate of this type. Indeed,
such a control on the term ||u(|rq([0,4+00),Lp) Would imply that the Laplacian A is invertible on
LP(R™), see for instance [CL86, Section 2] or [PS16, Corollary 3.5.3], which is known to be false.

However, when f € LY(Ry,LP(R™)), ug € Bf,;f/q(R”), there is still a unique solution u to
(HE) such that d;u, Au € LY(R;,LP(R")) and u € CY(R, Bf,;lz/q(R”)) with the global-in-time
estimate

ullp e g, 2279y Snpia 1Bt Au) Lo, Lr) Snpa 1fl[La ey + luollgz—2e (3.1)

This result is well known, but while the right-hand side estimate of (3.1) arises from the usual
theory when ug = 0, see e.g., [Haa06, Proposition 8.3.4, Corollary 9.3.12], this is however not
the case for the left hand side trace estimate and to obtain the space from which we choose
the initial data ug, see for instance [BCD11, Theorem 2.34]. A reason is that the usual theory
for traces in maximal regularity will only produce an inhomogeneous Besov space, which is not
suitable : it makes us lose again the uniform control with respect to time on the left-hand side part
of (3.1). The same kind of issue would happen for other injective, but non-invertible, sectorial
operators. We further hope we have convinced the reader that the general theory cannot be
applied for global-in-time estimate for the very well-known Cauchy problem (HE) which is a
sufficiently important issue.

1.1.2 On the choice of function spaces.

When it comes to the study of actual partial differential equations, it would be interesting to
play with integrability, decay-in-time, or even with some Sobolev regularity in-time of possible
solutions for the linear part of the problem. A wide development of the theory of power-weighted
fractional Sobolev-in-time maximal regularity is made and applied, and can be found in [PS16,
Sections 3.2, 3.4 & 3.5]. Priiss and Simonett gave the complete construction of maximal regularity
results for spaces of the type Hi:g(ﬂ&., X), a €10,1], u € (1/¢,1], which stands for the space of
measurable functions u such that

t— t' M u(t) € HYY (Ry, X).

Here, Hf”g coincides with the standard Sobolev space with zero boundary condition. The applica-
tions to general quasilinear parabolic partial differential equations of the L{-maximal regularity
have also been extensively reviewed in [KPW10; LPW14].

We also mention [Pru02] which contains a treatment of fractional Sobolev in-time maximal
regularity theory as well as a review of mixed derivative estimates. It was recently used, for
instance, in [BM21] for the study of the Boussinesq system where mixed derivative estimates were
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their main tool in the usual L?-maximal regularity setting.

However, both of the previous treatments do not allow, again, global-in-time estimates for
injective, but not invertible, operators such as the Laplacian on R™. This is where our idea comes
from in order to keep the possibility of playing the Sobolev in-time regularity : we want to show
global-in-time homogeneous H*9-maximal regularity for non-zero initial data, with a trace
estimate similar to the one in (3.1), ¢ € (1,4+00), @« € (-1 +1/q,1/q).

Danchin, Hieber, Mucha and Tolksdorf, in [DHMT21, Chapter 2], provide global-in-time
estimates for injective, but not invertible, operators in the framework of the Da Prato-Grisvard
L9-maximal regularity. Let us motivate here their idea of homogeneous interpolation and operator
theory for injective sectorial operators from an other point of view. Indeed, in the previous
example for the heat equation, if we set X, = L? A = —A, D,(A) = H*P, the Besov space used
as trace space is given by the real interpolation space

B?;quq = (XPaDP(A))lfé,qa
and this follows from the general trace theory. See e.g., [Lunl8, Section 1.2], [PS16, Section 3.4]
or [MV14, Section 4] for even fancier and more general function spaces.

Their idea is to say that the homogeneous Besov space yielding the homogeneous estimate (3.1)
would be given by

B12),_qz/q = (va DP(A))l—%,q’
where, here, Dp(fl) = H?? which is also, at least morally, the closure of D,(A) under the (semi-)
norm ||A-||x, ~pn [|[V?||Lr. And this is exactly the kind of construction achieved in [DHMT21,
Chapter 2] for abstract sectorial operators, in order to obtain a global-in-time Da Prato-Grisvard
L9-maximal regularity theorem. Moreover, such a construction avoids the need of completeness
for D(A) which is fundamental in the scope of the treatment of some non-linear partial differential
equations with global-in-time estimates. Indeed, realization of homogeneous functions spaces that
are usually employed are not necessarily complete on their whole scale, see for instance what we
have done in the previous Chapter 2 and the references therein. We notice that the possible lack
of completeness of D(A) implies that the resulting real interpolation space (X, D(A))g’q is not
necessarily complete either, but this is somewhat mandatory to deal with actual non-linear or
boundary value problems.

Those issues concerning the completion also prevent the use of standard homogeneous operator
and interpolation theory started in [Haa06, Chapter 6, Sections 6.3 & 6.4], then extended in
[HHKO6], requiring in the end to work with D(A) as a complete space.

We notice that the recent work [ALV23] does not apply in our setting to obtain the desired
trace estimate. There are two reasons : D(A) is not an actual completion, and their work do not
take in consideration homogeneous fractional Sobolev scale for the time variable.

1.2 Road map of the current chapter

In Section 3 : we provide a short construction of the homogeneous Sobolev spaces we need.
In order to achieve this, we will need to assume that the Banach space X still has the UMD
property. This is to ensure that we have a suitable definition of Ho"q(RJr, X), since we will need
some complex interpolation theory requiring bounded imaginary powers for the time derivative,
see e.g., [LMV18, Theorems 6.7 & 6.8].

Before that, in Section 2, we give a review of the current state of standard L4-maximal regularity
with global-in-time estimates : the treatment will be made first on UMD Banach spaces X. A
second part is dedicated to a review of the homogeneous operator and interpolation theory
revisited by Danchin, Hieber, Mucha and Tolksdorf, with its application to Da Prato-Girsvard
L9-maximal regularity.

Section 4 is devoted to our main result about H*?-maximal regularity for some injective

o

sectorial operators, with trace estimate in the possibly non-complete space (X,D(A)); 41 4
o

100
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Before proving the main result Theorem 3.21, one has to prove that the quantities involved to
solve the Cauchy problem are in fact well-defined, which is the goal of the first subpart.

2 Short state of the art for L¢-maximal regularity

We are going to recall here few facts about L?-maximal regularity (¢ € (1,400)) on UMD Banach
spaces. We will also deal with the L?-maximal regularity provided by the Da Prato-Grisvard
theory in both versions : inhomogeneous and homogeneous, both allowing under appropriate
circumstance ¢ = 1, 400, allowing also to get rid of the UMD property on X.

2.1 Review for the usual L?-maximal regularity

First, let us consider (D(A), A) a densely defined closed operator on a Banach space X. It is
known, see [ABHN11, Theorem 3.7.11], that the two following assertions are equivalent :
(i) A is w-sectorial on X, with w € [0,7) ;

(ii) —A generates a bounded holomorphic Co-semigroup on X, denoted by (e t4);>0.

Thus, provided that A is w-sectorial on X for some w € [0, §), for T € (0, +o0c], we look at the
following abstract Cauchy problem,

(ACP)

{ Owu(t) + Au(t) = f(t),0<t<T,
u(0) = wuo. ’

where f € LL ((0,T),X), ug € Y, Y being some normed vector space depending on X and D(A).

And it turns out, see [ABHN11, Proposition 3.1.16], that in our case for ug € X, f €
LY((0,7T), X), integral solutions v € C°([0,T), X) for (ACP) is unique, also called the mild
solution of (ACP) and given by

t
u(t) = e ug +/ et r(s)ds, 0<t<T.
0

The question is : for a given ¢ € [1, +00], can we find an appropriate space Y (depending on X,
D(A) and possibly ¢), such that if up € Y and f € L9((0,7),X), then (ACP) admits a unique
solution u, satisfying dyu, Au € L2((0,T), X), with norm control

1(Qeu, Au)|La(0,1),x) Sq.a IfllLaco.m).x) + [lwolly ?

The problem (ACP) being linear, we introduce two related subproblems :
o (ACPY) stands for (ACP) with f =0,
o (ACPy) stands for (ACP) with ug = 0,

recalling that according to basic Co-semigroup theory, u = 0 is the unique solution of (ACP}).
Hence, if (ACP) admits a solution, such solution is unique due to linearity so that it suffices to
treat separately both problem (ACP?) and (ACPy).

e For the (ACP?) problem, we introduce two quantities for v € X + D(A4),

+o0 dt %
10l 0.q) = ( / (10| Ae tAan)qt) and [[0]1,0.0) = lollx + Nol o1
where 6 € (0,1), g € [1,+00]. This leads to the construction of the vector space

Da(8,q) = {v e X[|vlls,,q < +oo}
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The vector space D 4(, ¢) is known to be a Banach space under the norm ||-||p , (9,4) and moreover
it satisfies the following equality with equivalence of norms

DA(97 Q) = (X7 D(A))Q,qv (32)

see [Haa06, Theorem 6.2.9]. If moreover, 0 € p(A) it has been proved, [Haa06, Corollary 6.5.5],
that [[-[|4, g, and |[[p,(6,¢) are two equivalent norms on D4(6, q).

By definition, for all ug € Da(1 —1/q,q), for t — u(t) = e~*4uqy the solution of (ACP?), we
have

lull oo @, B4 (1-1/0,0)) Saa [0cullLa@,,x) = [AullLa@, . x) = luolls , (1-1/4,q)

and we also have, for all T' > 0,

ullLee @y, Da(1-1/0.0)) Saua 10l A-1/g.9) a0d [[ullLeo,1),x) Sq.a T luollx-
If moreover, 0 € p(A), then
ullLa ey, x) Sq.a lluollx-

e For the (ACPy) problem, the question is much more delicate. In fact, the solution u to
(ACPy) is formally given by the Duhamel formula

t
u(t) = / e =945 (s)ds, t > 0, (3.3)
0
and since, Oyu = —Au + f, it suffices to know whether
HAU||L‘1(R+,X) SeA ||fHL‘1(R+,X)~ (3.4)

This leads to the following definition :

Definition 3.1 The operator A is said to have the L?-maximal regularity property on X if
the solution u given by (3.3) satisfies the above estimate (3.4).

Let us remark that the case of finite time 7" > 0 with the corresponding estimate can be easily
deduced by (3.4) applied to f, the extension of f to Ry by 0, and the uniqueness of (ACPy).

It has been proved by Coulhon and Lamberton [CL86], that the property of the L4-maximal
regularity does not depend on ¢ € (1,00). See also [dSim64] for the first version of this result in
the Hilbertian-valued case.

Coulhon and Lamberton also showed, see [CL86, Theorem 5.1], that the UMD property is a
necessary condition for the Poisson semigroup to have the L?-maximal regularity property. The
canonical example, provided p € (1, +00), is that X = LP(2) is a UMD space and so are its closed
subspaces, see for instance [HYNVW16, Propositions 4.2.15 & 4.2.17].

The following fact proved by Kalton and Lancien [KLO0O] : for each non-Hilbertian Banach
lattice, there exists a sectorial operator such that (3.4) fails.

However, for UMD Banach spaces, a full and definitive characterization of operators that satisfy
L%-maximal regularity property has been proved by Weis [Wei01, Theorem 4.2]. One may also
check [KW04, Theorem 1.11], [DHP03, Theorem 4.4] for other proofs and more details about
R-boundedness and its equivalence with L?-maximal regularity for sectorial operators on a UMD
Banach space.

In practice, we rather use other results such has the Dore-Venni Theorem, [DV87, Theorem 2.1],
which asserts that the boundedness of imaginary powers of A with type 64 < 7 is a sufficient
condition to recover L¢-maximal regularity for ¢ € (1, +00). We mention [Haa06, Corollary 9.3.12]
for the same result that does not require invertibility of A. In particular, the bounded holomorphic
functional calculus of A is a sufficient condition to recover L4-maximal regularity with ¢ € (1, +00).
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We may combine all results for (ACP?) and (ACPy) to state the following well-known L9-
maximal regularity theorem, where we only state it with the sufficient condition of BIP for
convenience.

Theorem 3.2 Let w € [0,7), (D(A), A) an w-sectorial operator on a UMD Banach space X .
Assume that A has BIP of type 04 < 5.

Let g € (1,400) and T € (0,400]. For f € L1((0,T),X), up € Da(l —1/q,q), the problem
(ACP) admits a unique solution u such that Oyu, Au € L1((0,T), X) with the estimate

1Oy, Au)|[Lao,r),x) Sasq 1 fllLagory,x) + 1wl (1-1/4,q)- (3.5)

In addition, for all T, < T, T, < +00, we have u € C°([0,T%),Da(l —1/q,q)) NLI((0,T%), X)
with the estimates

lullee (0,7.1, D4 (1=1/0,0)) Sa,q,1. 1 fllLaco,m.),x) + ol DA (1-1/g,9)» (3.6)
1
wllLaco,7.).x) Saq (Tell fllLaco,r.).x) + T4 [luollx)- (3.7)
If moreover 0 € p(A), we also have
llullLeo,11,x) Sawg I fllLeco,r),x) + lluollx- (3.8)

so that (3.6) holds with uniform constant with respect to T, hence remains true for T, = 4o0.

We comment the appearance of (3.6) : it is a consequence of the trace theory for initial data in
L4-maximal regularity which is itself a consequence of interpolation theory, see [Ama95, Chapter 4,
Theorem 4.10.2], see also [Lun18, Corollary 1.14]. The appearance of (3.8) comes from invertibility
of A, so that it suffices to apply (3.4).

However, the approach used to obtain Theorem 3.2 prevents L! and L>°-maximal regularity on
X. Moreover, the UMD property requires the space X to be at least reflexive, which is not the
case for all spaces that are of use in partial differential equations (one may think about endpoint

Besov spaces like B} ; and B; ., or even the space of continuous bounded functions CY).

2.2 Revisited homogeneous operator and interpolation theory and
global-in-time estimate for the Da Prato-Grisvard [.?-maximal regularity

To overcome such difficulties, we present a theorem due to Da Prato and Grisvard [DG75],
where the idea was to replace X by D4 (6, q), and look for LI-maximal regularity property on it
instead of X, allowing ¢ = 1.

Theorem 3.3 ( [DG75, Theorem 4.15] ) Letw € [0,5), (D(A), A) an w-sectorial operator
on a Banach space X. Let q € [1,400), 6 € (0, %), Oy:=0+1—-1/q, and let T € (0, +00).
For f € L9((0,T),D4(0,q)) and ug € D4(0y,q), the problem (ACP) admits a unique mild
solution
CAS Cg([ovTLDA(G(Z?q)))
such that Oyu, Au € LI((0,T),D4(0,q)) with the estimates

[ullLee (0,77,D A(8g.0)) SA,0.0,7 [1(Ostt; AW)[[La((0,7),D 4 (0,0)) SA.0,0,7 1 ILa(0,7),D4(0.0)) T U0llDA(6,0)-
(3.9)

If moreover 0 € p(A), (3.9) still holds with uniform constant with respect to T, allowing T = +00.

This Da Prato-Grisvard theorem does not have global in time estimate if 0 ¢ p(A), as was the
case for the estimate (3.5) of Theorem 3.2. The estimate (3.5) is uniform in time : this is due to
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the fact that the estimate is homogeneous. This key point was captured in the work of Danchin,
Hieber, Mucha and Tolksdorf [DHMT21, Chapter 2] to build an homogeneous version of the
Da Prato-Grivard theorem for injective sectorial operators under some additional assumptions on
A. We are going to present briefly their construction.

Assumption 3.4 The operator (D(A), A) is injective on X, and there exists a normed vector
space (Y, ||-|ly), such that for all x € D(A),

1Az ~ ]y -

The idea is to construct an homogeneous version of A denoted A, defining first its domain
D(A) ={y €Y [3(xn)nen CD(A), [ly — znlly njoo 0}

o

Then, for all y € D(A),

/iy = lim Ax,.

n—-+oo

Constructed this way, the operator A is then injective on D(A). We notice that D(A) is a normed
vector space, but not necessarily complete. We also need the existence of a Hausdorff topological
vector space Z, such that X,Y C Z, and to consider the following assumption

Assumption 3.5 The operator (D(A), A) and the normed vector space Y are such that

X ND(A) = D(4).

As a consequence of all above assumptions, we can extend naturally, see [DHMT21, Remark 2.7],
(e7*)4>0 to a Co-semigroup,

e X +D(A) — X +D(A) , t >0,

o

by the mean of the following formula for all (zg,a0) € X x D(A), t > 0,

t
e_tA(l‘o + ao) = e_tA.To + (ao — / e_TA/clao dT) . (3.10)
0

o

and so that for up € X + D(A), and fixed ¢, the value above does not depend on the choice of
decomposition ug = xg + ag, see [DHMT21, Proposition 2.6].

°

Moreover, for all ug = zg+ag € X+D(A), it is straight forward to see from (3.10) and [DHMT21,
Proposition 2.6], that t — e~*4uy is strongly differentiable at any order with continuous derivatives
on (0, +00) taking its values in X. For k € [1,4oo[, t > 0, by analyticity of the semigroup

(—00)* (e~ ) (t) = ARe gy + AFte A dgg = AP Ae M uy € D(A) C X.
From there, one can fully make sense of the following vector space,
Dal,q) = {v € X +D(A) | Iollp, 0.q) < +oo} .

Similarly to what happens for D 4(6, q) in (3.2), it has been proved in [DHMT21, Proposition 2.12],
that the following equality holds with equivalence of norms,

o o

Da(0,q) = (X,D(A))g.q- (3.11)

However, the lack of completeness for D(A) implies that D (0, q) is not necessarily complete. This
has consequences on how to consider the forcing term f in (ACP), choosing f € L4((0,T), D 4(0, q))
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instead of f € L1((0,T),D4(6,q)) to avoid definition issues, the latter choice being possible when
Da(6,q) is a Banach space.

Theorem 3.6 ([DHMT21, Theorem 2.20]) Letw € [0, %), (D(A), A) an w-sectorial operator
on a Banach space X such that Assumptions (3.4) and (3.5) are satisfied. Let q¢ € [1,400),
6 € (0, %), 0,:=0+1—1/q, and let T € (0, +o0].

For f € L4((0,T7),D4(0,q)) and uy € @A(Gq,q), the problem (ACP) admits a unique mild
solution

u € Cg([oa T)a 'bA(QQa q))7
such that dyu, Au € LI((0,T),DA(6,q)) with estimates,

lellyoe 0,717,540 00,00y + 106t Al 0,7),9 4 0.01) S 1 lkaqo,m), D000y F 100l 4 6,00
(3.12)

In case ¢ = +oo, we assume in addition that ug € D(A?) and then for each 6 € (0, 1),

1w, Au)HLOO([O,T],’bA(G,oo)) Sa.a [ fllLe 0,00, 04 0.00)) + HAUOH'J"JA(G,OO)'

3 Vector-valued Sobolev spaces in a UMD Banach space and
the time derivative

3.1 Banach valued Bessel and Riesz potential Sobolev spaces

This subsection is devoted to few reminders on Bessel potential spaces on the whole line with
values in a Banach space X which is known to be UMD. This will be based on the constructions
provided by [MV12; LMV18] and [HvNVW16, Chapter 5, Section 5.6], see also the references
therein. From the properties we are going to gather about Bessel potential Sobolev spaces, we will
be able give a simple construction of homogeneous (Riesz potential) Sobolev spaces with values in
X, for regularity index near 0. Namely, we will focus on the regularity index o € (—1+1/¢,1/q)
when ¢ € (1, 4+00).

We chose to investigate the Sobolev space on the one the half-line for which we won’t have
additional compatibility conditions at 0. Notice that the condition on the regularity index is
also here in order to avoid troubles of definition. Indeed, the definition of homogeneous function
spaces for regularity exponents beyond 1/q is not clear and a choice of realization have to be done,
even in the scalar case. Such choice implies generally the loss of one, or more, usual and useful
properties, like either the loss of distribution theory, the loss of completeness on the whole scale,
or the loss of pointwise/meaningful (para-)products (in the scalar case, X = C). See for instance
in the previous Chapter 2 and [Tri83; BL76; BCD11; DHMT21; Sawl8] and the references
therein for various constructions and addressed issues in the scalar-valued case.

From there and until the end of this chapter, we assume that X has the UMD property. We
recall that such space X is necessarily reflexive.

Definition 3.7 For ¢ € (1,400), a € R, we define the vector space
H*(R,X) = {ue8 R X)|1-02)2uecL!(R, X)}
with its associated norm
HUHH‘W(R,X) = I(I— ai)%u||L‘1(R,X)~
Here, (I — 92)% have to be understood as the usual Fourier multiplier operator.

Proposition 3.8 Let g € (1,400), a € R, the following properties are true :
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(i) H*9(R, X) is a reflexive Banach space with
(H™(R, X))* = H™ 7 (R, X*) ;

(it) So(R,X) is a dense subspace of HV9(R, X) ;
(ii1) Provided o > 0, for all u € 8'(R, X),

l[ullrea e, x) ~ag.x lullLee,x) + ||(—5§)%u||Lq(R,X) ;
(iv) Provided o € [0,1/q), 1 = % —a, for allu € H*(R, X),

|, x) Sangox 11(—02) 2 ullLa, x) ;
(v) Provided a € (—1+1/q,1/q), for all u € H*4(R, X),
TR, ullea®,x) Seng.x Ul|Ha (R, x) -

Proof. — Point (i) is standard. Point (7)) is a direct consequence of the corresponding results
for a = 0, see [Haa06, Lemma E.5.2]. Point (%) is just [LMV18, Lemma 4.2]. Point (%) follows
from [MV12, Corollary 1.4], point (%i) and a dilation argument. Point (v) is just [LMV18,
Theorem 4.1]. [ |

For g € (1,400), a € (—00,1/q), thanks to the points (%), (ii) and (%) from the Proposition 3.8,
we introduce the quantity

ull o, x) = 1(=02) Fullrace, x),
one can consider the completion
Ha’q(R, X) — m”'“ﬁmq(mx)

so that the next definition is meaningful.
Definition 3.9 For ¢ € (1,+00), o < 1/q, we define the vector spaces
(i) for a >0, % ::%fa,
HYYR,X) = {uel (R X)|(-92)?ue LYR,X) },
(ii) for a <0,
H*(R,X) = {ue H*(R,X)|(-02)ue LR, X) },
with their associated norm
ull oo @, x) = 1(=02) Ftllae,x)-
Here, (—92)% have to be understood as the usual Fourier multiplier operator.

Similarly, we obtain the following collection of properties.

Proposition 3.10 Let g € (1,+00), a < 1/q, the following properties are true :
(i) for B € R, such that a4+ B < 1/q,

(=02)

is an isomorphism of Banach spaces;

B
2

c HOPP (R, X)) — HYY(R, X)
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(ii) H9(R, X) is reflexive, and whenever o € (—1 +1/q,1/q),
(HY(R, X))* = H™ 7 (R, X*) ;

(iii) So(R,X) is a dense subspace of H*(R, X) ;
(v) provided a € [0,1/q), L = % —a, for allu e H*(R, X), v € L" (R, X),

[ellur . x) Sevax [[llige e x),

||v||H—~>fz’(R,X) Sa,q,X ”'U”LT’(]R,X) ;
(v) provided a € (=14 1/q,1/q), for all u € H*(R, X),
”1R+u“Hawq(R,X) Sa,q.X ”uHHa:q(R,X)'

Proof. — Point (iii) follows from the definition. Point (%) is straightforward by density of 8o(R, X).
Point (7¢) is a direct consequence of the corresponding results for v = 0, thanks to the point (7).
Point (iv) follows from the definition, the corresponding point in Proposition 3.8 and a duality
argument provided by the previous point (). Point (v) follows from points (i7) and (v) in
Proposition 3.8 and a dilation argument when « > 0. The case o < 0 follows by duality thanks
to the current point (7). [ |

Let us start the construction of corresponding function spaces on the half-line.

Definition 3.11 Let g € (1,+00),« € R, h € {H,H} We assume assume moreover that o < 1/q
when h = H. We define by restriction, in the sense of distributions, the normed vector space

h* (R4, X) = h* (R, X)

|1R+ :

This is a Banach space with respect to the quotient norm

||UH @q(Ry, X = inf ||UH @a(R,X)-
pra@ex) = I, Um0
Ueh™ (R, X).

Proposition 3.12 Let ¢ € (1,+0), a € R, h € {H,H}. We assume moreover that oo < 1/q
when h = H. The following properties hold :

(i) HY*U(Ry, X) is a reflexive Banach space, for which 8y(R, X)W+ is a dense subspace ;

(it) provided o € (—1+1/q,1/q), for all uw € h*1(Ry, X), the extension of u to the whole line
by 0 denoted by @ yields an element of h*4(R, X)

[@llges @, x) ~agx [lullges@y x)
(iii) provided o € [0,1/q), L = % —a, for allu € h*9(R,, X), v e L™ (Ry, X),

ullr @y, x) Saax lullgear,,x)

HU||h*an’(R+,X) Seva.X Hv||LT’(R+,X) ’

(i) for all a € (—1+1/q,1/q), the subspace C°(Ry, X) is dense in h*9(Ry, X) ;
(v) whenever a € (=1+1/q,1/q),

(h*9(Ry, X))* = b7 (Ry, X7) ;
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(vi) provided o € [0,1/q), for all w € H*(Ry, X),
lullLe ey, x) + lullfoa@w, x) ~aax lulaeae,,x)

Proof. — Point (i) follows from the definition of function spaces by restriction, and the properties
for their counterparts on R. The point (%) is a direct consequence of point (v) from both
Propositions 3.8 and 3.10. Point (%) follows from the definition of function spaces by restriction
and the corresponding result in Propositions 3.8 and 3.10.

The point (iv) for a < 0 follows from point (i) and (7) : indeed, both yields that L" (R4, X)
is dense in H*4(R,, X), therefore it suffices to approximate functions in L" (R, X') by ones in
C® (R4, X). For a > 0, the inhomogeneous case is known to be true, see for instance [LMV18,
Proposition 6.4]. The case of homogeneous function space follows since by (%), and by construction,
H*9(R,, X) embeds continuously and densely in H*9(R_, X).

For the point (v), one may use the (iv) and the case & = 0 in order to reproduce the proof as
in the scalar case, e.g., one may reproduce the proof of Proposition 2.28.

Finally, the point (vi) can be proved by the mean of current point (i) and the point (iii) from
Proposition 3.8. |

The next lemma is nothing but the Hardy-Sobolev inequality in the vector-valued setting with
homogeneous estimate. Its proof is left to the reader and use a complex interpolation argument
allowed by [LMV18, Theorem 6.7], then dilation and density arguments by the mean of the points
(iv) and (vi) of Proposition 3.12.

Lemma 3.13 Let g € (1,+00), a € [0,1/q). For all u € H*% (R, X) the following inequality
holds

u(r)
T o Savaq ”uHHaﬂ(RJr,X)'

LRy, X)

3.2 The derivative on the half-line.

We will not discuss here the construction and properties of inhomogeneous Bessel potential
spaces H*P(R, X) for s € R, p € (1,+00) and the meaning of traces at 0. Therefore as in the
previous subsection, we refer to [MV12; LMV18; SSS12] for more details.

We recall that one may define the unbounded operator % on LY(R4, X), also denoted by 0,
with domain,

Dy(8;) := Hy? (R4, X) := {f € YR+, X) |9, f € LI(Ry, X), f(0) = 0}.

Then, thanks to [DV87, Theorem 3.1] (see also [Haa06, Sections 8.4, 8.5], [LMV18, Theorem 6.8]
[PSlG Theorem 4.3.14]), & is an injective sectorial operator on LI(Ry, X) which admits
bounded imaginary powers, satisfying, for all s € R

1(01) ZS‘’L<z(11§+,)()—>m(ua+ x) Sex (14 #edlel,

implying that (9;)%, a € [0,1], is injective with domain Hy?(Ry, X), a # %, see [LMV18,
Theorems 6.7 & 6.8], and we have an isomorphism, provided o € (=14 1/¢,1/q),

(0, : HYY(Ry, X) — LY(Ry, X). (3.13)

For g € (0,1), a € [8,1], « # 1/q, v € | B, ], the following representation formula holds for all
[ € (9)PHy (R, X),

-8 — 1 ' 1 T=B () dr
@710 = 75 / T 0 ) dne > (3.14)

t—71)=7

108



3 Global-in-time maximal regularity — 3 Vector-valued Sobolev spaces in a UMD Banach space
and the time derivative

The above formula remains true for f € H“_ﬂ’q(R+, X), provided o, — 8 < 1/q.
Similarly, the “dual” operator —%, with domain D,(—9;) := HY9(R;, X), is an injective
sectorial operator on L4(Ry, X) which admits bounded imaginary powers. For all s € R

H(_at)isHL(I(R.,_,X)—)L‘I(]R_,_,X) Sax (L+s%)edll,

which also implies injectivity of (—d;)%, a € [0, 1], with domain H*?(R,, X).
For aw € (=14 1/q,1/q), we still have an isomorphism

(=0 : HY9(Ry, X) — LY(Ry, X). (3.15)

For 8 € (0,1), a € [B,1], v € [B,q], the following representation formula holds for all
f e (o) H IRy, X),

+oo
(00710 = 1 / s (0 0 (3.16)

The above formula remains true for f € H*54(R_, X), provided o, — 8 < 1/g.
We specify that both formulas (3.14) and (3.16) are direct consequences of Proposition 1.33.
More details about the functional analytic properties of operators 0; and —0J; can also be
found in [PS16, Section 3.2] and [LMV18, Section 6], where the case of (power-)weighted, but
inhomogeneous, Sobolev spaces have been widely treated.

3.3 A comment for homogeneous Sobolev spaces and the time derivative
on a finite interval

We finish this section with a discussion about Sobolev space on [0,T], T > 0, and the related
derivative operators. On can define those space similarly.

Definition 3.14 Let g € (1,+0), —1+1/g < a < 1/q when b = H. We define by restriction, in
the sense of distributions, the normed vector space

ha,q([07 T}v X) = h"(R, X)

|[0.T]‘

with the induced quotient norm.
But since ]l[O,T] =1gr, — ]].(O’+Oo)(' —T), we obtain

Proposition 3.15 Let g € (1,+00), « € (—1+1/q,1/q). The following properties hold :
(i) H*4([0,T], X) is a reflexive Banach space, for which So(R, X) 0.z
(i) for all u € H*9([0,T), X), the extension of u to the whole line denoted , is such that

is a dense subspace ;

1l o0 ey x) + lE R, x) Sasqx,7 1llge o7, x)-

(iii) H*([0,T), X) = H*4([0,T), X) with equivalence of norms (depending on T).

From there, and in particular from point (ii) of Proposition 3.15, one may expect that the
theory on the half line will carry over the behavior on [0,7] up to extend the elements by 0,
or up to the multiplication by 1o 7). And this is indeed, what actually happens for 9; and —0,
according to [Haa06, Section 8.5].
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4 The global-in-time H*?-maximal regularity with
homogeneous trace estimate

Now, we go back to L?-maximal regularity on a UMD Banach space X. We are going to state
few minor improvements of above results, the first one is about global-in-time estimates when the
initial data wug lies in the homogeneous space @A(G, q), provided 6 € (0,1), g € (1, +00).

A second goal is to obtain a H*%maximal regularity result as a variation of above Theorem 3.2
where we take the advantage of [Pru02, Proposition 2.4], and the isomorphism properties (3.13)
and (3.15). Our proof for the corresponding homogeneous trace estimates is mainly inspired by
techniques from the proofs of [DHMT21, Lemma 2.19, Theorem 2.20], see also [PS16, Section 3.4]
for similar estimates proven similarly.

4.1 About mild solutions in the context of homogeneous operator theory

In the literature, it seems difficult to have a clear and definitive mention of what would be
the exact meaning of a mild solution of (ACP) in the context of homogeneous functions spaces
with respect to the space variable (here the roles are played by D(A) and D 4(0, q)). Here is an
attempt.

Definition 3.16 Let w € [0, §), (D(A), A) an w-sectorial operator on a Banach space X, such
that it satisfies Assumptions (3.4) and (3.5). . .
Let T € (0, +00], f € L},.([0,T), X) and ug € X +D(A). We say that u : [0,7) — X + D(A)
is a homogeneous-mild solution of (ACP) if
(i) ue CY[0,7), X +D(A)),
(i3) v(t) := u(t) — e tuy € X, for all t € [0,T),
(iii) v € C)([0,T), X) is a mild solution of (ACPy) in the classical sense, i.e. for all t € [0,T),

/Ot v(s)ds € D(A),
and
v(t)+A/0tv(s)ds_/Otf(s)ds in X.

Proposition 3.17 Letw € [0, 3), (D(A), A) an w-sectorial operator on a UMD Banach space
X, such that it satisfies Assumptions (3.4) and (3.5). Let T € (0,+oc], f € Li ([0,T), X) and

loc

o

ug € X + D(A)
The problem (ACP) admits at most one homogeneous-mild solution.

Proof. — Let u; and uy be two homogeneous-mild solutions to (ACP). Then, we set for all ¢ > 0,
V(t) i=uy(t) —uz(t) = (u1(t) — e Hug) — (ua(t) — et uyp). It follows that V is a mild solution
of (ACPY) in the classical sense. Hence, uniqueness provided by [ABHN11, Proposition 3.1.16]
yields V =0 in X. |

4.2 Preliminary lemmas

First, we state a Lemma for the problem (ACP?), about homogeneous fractional Sobolev
in-time estimates for initial data ug € D 4(0,q), ¢ € (1,400), 6 € (0,1).

Lemma 3.18 Let w € [0, %), (D(A), A) an w-sectorial operator on a UMD Banach space X,
such that it satisfies Assumptions (3.4) and (3.5). Let g € (1,4+00), a« € (=1 +1/q,1/q).
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For allug € Da(1+ o —1/q,q), we have
t e Ae"Hug € ARy, X) N LY, (R, X)
with the estimates

_ S _4A
1t = ¢ Ae™ g llna, x) = U0l 5, (14a-1/0.0):
s _ya
| Ae 2 “0||Ha,q(R+,X) Sq.a.4 ||u0||®A(1+a71/q,q)-

Proof. — We just have to prove the estimate in Sobolev space. The equality of norms is straight-
forward by definition of the D4(1 4+ o — 1/¢, ¢)-norm.

Step 1 : The case o = 0 is straightforward.

Step 2 : The case a € (0,1/q). For ug € Da(1+a—1/q,q), one can write uy = xg + ag, where

(z0,a0) € X x D(A). By [DHMT21, Proposition 2.6], the following equality holds in X, for all
t>0,

Ae Ay = Ae Mz + et Aay.

Therefore, thanks to the representation formulae (3.16), and integral formulations for fractional
powers of A, we have for all £ > 0,

A% Ae g = A%(Ae Mg + e_tA/iao)

= Ao gy + A% Aag

1 teo .
I(1—a) /t (1 —t)> (A% + Ae” " Aag) dr

(=0, 1A%~ Oz + Ae 4 Aag](t)
(—0,)* AAe™ D) (t)
(=00 [Ae™ o) (2).

So that, by the isomorphism property (3.15), we have
S (VA S (VA
1Ae™ O 0 |l o e, x) ~aq 1A% Ae™ Yooz, x) -
From there, we obtain

+oo d 7

N 10 o T\
1A Ae=O g | Loge, ) = ( | wanie Auo||x>q7)
0

1
+oo 1_ o T dT a
Sona ([ 03l 57T )
0

Sq,a,A Hu0||®A(1+a71/lI,‘I)'

Our last set of inequalities follows from the analyticity of the semigroup (e7*4);~0 on X and the
fact that one can write for all 7 > 0,

P

AAe My = A% T4 Ae 3N, (3.17)

Step 3 : The case a € (—1 + 1/¢,0). We play with the integral representations like (3.16) and
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fractional powers of A, so that as in the Step 2, we should be able to write for ¢ > 0,
o +m o
(—0,)*[Ae O ug)(t) = / (=8, ) [Ae=Ohug)(r) dr
t
+oo . d
= / TAHO‘Ae*TAuO—T .
¢ T

Notice that the last integral can be understood as an improper Riemann integral, so that it gives
a measurable function with values in X.

Therefore, we can bound, thanks to the Fatou Lemma and then to the analyticity of the
semigroup (we use the same trick (3.17)),

q
dt

q +oo
< liminf
LRy, x) M7reeJo

oo oo . dr\*?
< / ( / |TA1+aAe_TAu0X> at
0 t T
+oo +oo - dr\? dt
Spon | (té / TanAezAuonxT) dt
0 ¢ T t

Finally, by the mean of Hardy’s inequality [Haa06, Lemma 6.2.6], we conclude

q —+oo
g8 _t q dt
Spaa [ (£701Ae ullx)" G
Lo (R, X) 0 t

< q
~q,o,A ||uOH®A(1+a71/q7q).

T

“+o00 d M
o _ T o _ dr
Htl—>/ T A Ae™ Ay — / T A Aem Ay —
t t T

+oo . dr
Ht — / TATY Ao T Ay —
t 7—

|
Now, the next lemma ensures that the maximal regularity operator applied to a Sobolev in-time
function, with negative regularity, still yields an actual measurable function with values in X.

Lemma 3.19 Letw € [0, 3), (D(A), A) an w-sectorial operator on a UMD Banach space X, and
let g € (1,+00), a € [0,1/q).
For f € H*(R,, X), the following holds for all T > 0,

t
ti—>/ e~ =4 §(5)ds € CO([0, T], X)
0
with the estimate

t
t— / e~ =94 1(5) ds
0

SA,a,q Tirest/a Hf||Ha,q(R+7X) .
Le=([0,77,X)

Moreover, if A has the L9-mazimal regularity property, the results still holds for a € (—14+1/4,0).

Proof. — Step 1 : For a =0, g € (1,400). Let f € L4(R;, X). By uniform boundedness of the
semigroup (e7*4);>0 on X and Hélder’s inequality yield

/t e_(t_s)Af(s) ds

0

< d
XNA/O 1£(3)]]x ds

Sa 7V fllago,n r)
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The supremum on ¢ € [0, 7] yields the estimate

Sa Tl_l/q||fHLq(R+,X)~
Lo ([0,7],X)

t
tl—>/ e~ =94 1(5) ds
0

Continuity in-time follows from the dominated convergence theorem.
Step 2 : For a € (0,1/q), f € H*%(R, X), for L = % — a, we have f € L"(Ry, X) by Sobolev
embeddings. Therefore, by the Step 1,

Sa TV f
Lo ([0,T],X)

SA,anq T1+a_1/q||fHHﬂ=4(]R+,X)'

Lr (R ,X)

¢
t'—>/ e~ =94 1(s)ds
0

Step 3 : Let v € (—141/¢,0), f € H*9(R, X) and assume that A has the maximal regularity
property. First, by commutation properties for resolvents of 9; and A, one can write
Qe+ A) T = (0) 7100 + A)HB) S
= (3) 7O = (30) 7T A + A)TH )

So that setting f@ := (9;)*f and u® := (9; + A)~1 f, by the representation formula (3.14), we
end up with the following expression for ¢ > 0

@+ A7 10 = [ as = g [ o) - u o)) as

Young’s inequality for the convolution, then the triangle inequality yield

t
t|—>/ e~ =94 1(5)ds
0

1 (0% « «
< Ti+a) [t =t o,y 1f* — Au[lLary,x)

Lo ([0,T],X)
T1+a—1/q

< £ Ne @y x) + 1 Au Lo, x)) -
r(1+a)(aq'+1)%( (7. ) (2. ))

From there, we recall that we have assumed the L9-maximal regularity property, so that, by the
isomorphism property (3.13),

Saag TV f Loz, x)

t
t|—>/ e~ =94 1(s)ds
0

Lee([0,T1,X)

SA,anq T1+a_1/q||fHHa,q(R+,X)- u

Corollary 3.20 Letw € [0, %), (D(A), A) an w-sectorial operator on a UMD Banach space X,
and let q € (1,+00), a €[0,1/q).
For f € H*(R,, X), the following holds for all T > 0,

t s /te_(t_s)Af(s) ds € C°[0,T),Da(1 +a —1/q,q))
0
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with the estimates, for all T > 0,

t
tes / (=4 f(5)ds S LTVl ) (3.18)
0

Loo([0,T],Da(1+a—1/q,q9))

Sz‘ha,q Hf||Ha,q(R+7x)~ (3.19)
Lo Ry, Da(1+a~1/4,0))

t
t»—)/ e~ =941 (5) ds
0

Proof. — Thanks to Lemma 3.19, it suffices to prove the estimate (3.19).
Step 1 : First we assume o = 0 and f € LY{(R;, X), we may extend f to R by setting f(¢) :=0
for t < 0. Similarly to what has been done in [DHMT21, Lemma 2.19], we can bound

:/0+00 <T; A/Ote_(TJrs)Af(t—s)dsHX>daT

NAq ( ||f(ts)||de>da
( /Ilft—s ||de> ar

-l-/o (T /T ||f(t—s)||de>qO:_T.

We can apply Hardy’s inequalities, see [Haa06, Lemma 6.2.6], to obtain

’ /te_SAf(t—s)ds
0

Step 2 :Fora e (0,1/q), f € H*(R,, X), by Sobolev embeddings, we have f € L"(R, X),
so that by the Step 1, for all T > 0 :

/t e At —s)ds
0

Da(1-1/q,9)

NA)q

Q=

q

too dr
Saq [ EHAE= 0T S U lage,

Da(1-1/q,9)
"= 1"aq a )

t— /te_SAf(t— s)ds € C°([0,T),Da(1 —1/r,7)) .
0

So that it is well-defined. Let t > 0, by [DHMT21, Lemma 2.15], we have
+00 t g
~ag / T1+%7Oé Qe—TA / e—(t—s)Af(s) dSH g
0 0 X

(1)
Since d; and A have commuting resolvents, we have

q

/t e Af(t—s)ds
0

Da(l+a—1/q,q)

(O +A)~" = (9) (0 + A) (D).

Therefore, setting f* := (9;)“f € LY(R, X) (up to consider, again, the extension of f* (not f) to
the whole line by 0), we can use the representation formula (3.14), to obtain

+o00 t 1 u qd
(I) Noc,q/ it / ﬁ/ Age_(T+(“_s))Af”‘(8)dsduH =
0 o (t—u) 0 x| T
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From there, we can use the triangle inequality, and we can write, provided 0 < s < u < ¢,

AZe—(rHu—s)A _ A1+aefWAAlfa67%Aef(";S)A,

so that, by analyticity of the semigroup (e~*4)

(I) Sa,q,A/ ( %// e e 1 ))Ha”fa(s)nxdsdu)q(f.

du = L =25, it follows that

ooy [t s o da
() S | ( | &= (t—S)deS) “.

We can reproduce the use of Hardy’s inequalities [Haa06, Lemma 6.2.6] as in the Step 1, to obtain

/W 1_a/+w e x| T <y 1770 T
o\ g x| Sa 1M, ) Sea I e, x -

One may also prove the continuity in-time by a density argument and the estimate (3.18). M

t>0 on X, and the Fubini-Tonelli theorem, we have

Again by Fubini-Tonelli, and since f = u)1 ol e 13))1+a

4.3 The main result

Theorem 3.21 Letw € [0,5), (D(A), A) an w-sectorial operator on a UMD Banach space X,
such that it satisfies Assumptions (3.4) and (3.5). Let ¢ € (1,400), a € (-1 +1/q,1/q) and
assume that one of the two following conditions is satisfied

(i) a >0 and A has the Li-mazximal reqularity property,

(ii) a <0 and A has BIP on X of type 04 < 3.

Let T € (0,400]. For f € H*9((0,T),X), ug € Da(1+a—1/q,q), the problem (ACP) admits
a unique mild solution u € C([0,T),Da(1 + a —1/q,q)) such that dyu, Au € H*1((0,T), X)
with estimate

Hu”Loo([o,T],ﬂbA(1+a_1/q,q)) Saga (O, AU)HHQ=4((O,T),X) SAg.a Hf”Hw((o,T),X) + ||U0||®A(1+a_1/q,q)-
(3.20)

Moreover, if A admits BIP on X of type 04 < T, for f € H*((0,T),X), ug € Da(1+a—1/q,q)
and all g € 10,1],

H(*@)kﬂAﬁU”Ha.q((o,T),X) SA,gqa Hf||Ha,q((o,T),X) + ||u0||'bA(1+ozfl/q,q)' (3.21)

Remark 3.22 e In Theorem 3.21, assumptions (3.4) and (3.5) are assumed here in order to
ensure that D (60, q) is a well-defined, even if not complete, normed vector space.

e If up = 0, the estimate (3.21) remains valid if we replace the operator (—d;)'=7 by (8;)'~"

e If one asks instead the initial data ug to be in the smaller, but complete, space D 4(6, q) then
one can drop assumptions (3.4) and (3.5), and the estimate (3.20) still holds. However, one loose
the possibility to compute the corresponding equivalent norm by the mean of real interpolation
(3.11).

e The assumption (ii) is probably not necessary for the case o < 0. However, it is not clear in
this case how to prove the left-hand side of the estimate (3.20). Indeed, our approach requires
considering the action of A'*®, see the Step 3 in the proof.
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Proof (of Theorem 3.21). — Let q € (1,400), a € (=1 + 1/¢,1,¢q). Throughout this proof, and
without loss of generality, we assume T = +o0.

Step 1 : The H*%maximal regularity estimate, for ug = 0, f € H*9(R, X). Mixed derivatives
estimates.

We recall that A has the L9-maximal regularity property.

Now, we use the fact 9; and A have their resolvent that commutes with each other, we have

(O + At = (8,) (0 + A) 1 (9y)™.
This equality and the isomorphism property of (9;) (3.13) yield
H(atuvAu)HHaﬂ(RJr,X) Sag.a Hf”qu(Dh,X) :

And for the same reasons, from the L-setting, if A has BIP on X of type 64 < 7, by [Pru02,
Proposition 2.4] for all g € [0, 1], we have

1) A ul oo, ) Sage 1 leo@, x)- (3.22)
This estimate will be useful later.
Concerning the estimate (3.21) (with ug € Da(1 4+ o« — 1/q,q)), it suffices to assume that the

right-hand side of (3.20) holds. Indeed, in this case it suffices to apply Theorem 1.14, to the
holomorphic families (of operators)

(€= (=91 2 A%(0, + A) Noemy<r  and (G (=) 2 A% e ()] ocnia) <

provided 5 € (0,1) is fixed. The proof of the boundedness is then carried over by (3.20) and BIP
of A and of —0; respectively. Details are left to the reader.

Step 2 : The trace estimate when « € [0,1/¢). Let ug € Da(1+a —1/q,q), f € H* (R, X).
The solution u must be given for all ¢ > 0, by

u(t) = e g + /t e Af(t—s)ds.
0

Corollary 3.20 tells us that
ue Ry, Da(l+a—1/q,9)),

with the estimate
Hu||L0°(R+7®A(1+a71/q,q)) SAqa ||f||Ha»q(R+,X) + ”UO”@A(Haq/q’qy

Since f = dyu + Au and e~ *Aug = u(t) — fot e A f(t — s)ds, for all t > 0, the triangle inequality

leads to
1
+00 P da a
O A e+ ( [ (T IAulx )
q 1
di q
X g '

T A/ e~ Tm)Af(5) ds
0

||u||Loo(R+,®A(1+a—1/q,q)) SAga

A/OT(iSAf(TS)dS

Thus, by the Hardy-Sobolev inequality, Lemma 3.13, we obtain

ull e s D4 (140 1/0,00) SAa.all(Octt AW o0z, x) + . :
He*d(Ry, X)
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Now, we may apply the result from the Step 1 to the last term, by the triangle inequality, since
f = 0su + Au, we deduce

HU”Loo(R+,®A(1+a_1/q,q)) SA,q,aH(atuvAU)HHM(&,X) + ||fHH‘¥>'1(R+,X)

Sa.g.all(Oru, Au)llge.q e, x)-

Step 3 : The trace estimate when o € (=1 + 1/¢,0). Let f € H*(R,, X).
By Lemma 3.19, we have

t
tl—>/ e (=94 f(s)ds € CO(Ry, X) .
0

However, for ¢,7 > 0,

t t4+7 r
eiTA/ e" =94 1(s)ds = / e (TH=)Ar(5)ds — / e~ T4 f(s 4 1) ds.
0 0 0

So that if we set v = (9; + A)~'f, ve = (8; + A) 7 [f(- +t)], we obtain for t,7 > 0
e TAu(t) = v(t + 1) — v (7).

Therefore, by analyticity of the semigroup (e~74),0, and the triangle inequality, we obtain for
t >0,

105, 1ra1/g.) Seaa IATOC+ )L, x) + 1A 0| lLae, x)-

We can now apply (3.22) with 8 = 1 + «, and use the translation invariance of Sobolev norms,
yielding

||/U(t)H®A(1+a71/q’q) Sa,q.A ||f||Ha,q(R+,X)-
Now, for u = e~ 4wy + v, provided ug € @A(l +a—1/q,q), we deduce

ulloe @y D2 (1+a—1/0.0)) Sevaa Ifllfrea @y ) + lolld 4 (1 4am1/g.0)

Again, to obtain the left-hand side of (3.20), as in the previous Step 2, it suffices to estimate ug
inD A(l4+ a —1/q,g)-norm. However, such estimate may involve the action of fractional powers
of A on e~ "4y, for which the meaning is not clear when uy € D A(0,q). To circumvent this issue,
we use the fact that D(A) is dense in D4 (1 + o — 1/q, q) by [DHMT21, Lemma 2.10]. Thus, let
(u0.n)nen be a sequence in D(A) which converges to ug in D4 (1 + a — 1/¢,q). We set for all
n €N u, = e_(')Auo’n + 0.

By analyticity of the semigroup (e~74)

>0, and by the identity
(=0:)" [Aun — Av](7) = (=0,)*[Ae™ Mg p](r) = A% T ug p,

we are able to deduce that

1
+o0 q

B 1. A adr
e A G T

+oo %
Soat ( / ||A1+“eTAuo,n||§dv)
0

<onn ([ o) A, An](r) e )

1
q
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Finally, we can use the isomorphism property (3.15) and the triangle inequality to obtain

a0l s 1ty St 1Al o, ) + 140 gz, )

SaaA [Aunllgesm, x) + 1 fllgeaw, x)

Sea.a [|(Octin, Aun)||pes(r, x) -
The proof ends here since one can pass to the limit as n goes to infinity.

It remains to prove the continuity in time with values in D 4(1 4 o — 1/q, q) which follows from
a density argument !. ]

1. No need of completeness here, since the involved limits are already constructed.
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5 A treasure map to reach L%-maximal regularities in concrete
cases

Here, (D2(A), A) is a differential operator induced by a continuous, densely defined, closed,
accretive, sesquilinear form on (possibly a closed subspace of) L2(Q, CM), Q ¢ R", M € N. For
simplicity, one may have in mind that, for some m € N, the form domain is a closed subset of
H™(Q, CM) with equivalence of norms (usually m = 1).

When an arrow indicates towards a (homogeneous) domain of a fractional power, it means it is
expected we are able to compute/describe it explicitly. Sometimes additional knowledge maybe
necessary, such as the Kato square-root property. For the Kato square-root property in the case
of second order elliptic operators in divergence form with rough coefficients, the reader could
consult [Aus07] for = R", and [Egel5, Chapter 5] and [Egel8, Theorem 1.2] for the case of
mixed boundary conditions when €2 is bounded with minimal regularity on the boundary.
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Résumeé du chapitre

Ce chapitre s’intéresse a la décomposition de Hodge pour tous les degrés de formes différentielles
sur l'espace entier R™ et le demi-espace R’} sur différentes familles d’espace de fonctions, a savoir
les espaces de Besov et de Sobolev homogenes et inhomogenes, HsP, B;’q, H*P et Bj ,, pour tout
p € (1,+00), =14+ 1/p < s < 1/p. Le calcul fonctionnel holomorphe borné, et d’autres propriétés
analytiques fonctionnelles, des laplaciens de Hodge sont également étudiés dans le demi-espace,
et donnent des résultats similaires pour les opérateurs de Hodge-Stokes et d’autres opérateurs
apparentés via la décomposition de Hodge qui est prouvée.

En conséquence, la théorie des opérateurs homogenes et de I'interpolation revisitée par Danchin,
Hieber, Mucha et Tolksdorf appliquée aux espaces de fonctions homogenes soumis a certaines
conditions au bord est appliquée et conduit a divers résultats de régularité maximale avec des
estimations globales en temps qui pourraient étre utiles en dynamique des fluides. De plus, le
lien entre le laplacien de Hodge et la décomposition de Hodge nous permettra méme d’énoncer
la décomposition de Hodge pour des espaces de Sobolev et de Besov d’ordre supérieur avec des
conditions de compatibilité supplémentaires, pour un indice de régularité s € (—1+1/p,2+ 1/p).
Afin de donner un sens a toutes ces propriétés dans les espaces de fonctions désirés, nous donnons
également un sens approprié aux traces partielles sur le bord.

La stratégie globale est de réaliser les opérateurs de Hodge-Dirac et les laplaciens de Hodge
simultanément et indépendamment sur chaque espace de fonctions, puis de prouver et d’extrapoler
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les propriétés de régularité sur L? aux autres familles d’espaces de fonctions. A partir de 13, on peut
alors prouver le caractére borné de la projection de Hodge-Leray P lorsque s € (=14 1/p,1/p).

Apres l'extrapolation des propriétés de régularité, nous sommes capables de découpler les
valeurs au bord en des valeurs au bord homogeénes de Dirichlet et de Neumann. A partir de 14,
nous pouvons utiliser les résultats de la Section 6, du Chapitre 2, pour appliquer la théorie des
opérateurs et de l'interpolation homogenes pour chaque opérateur sur tous les espaces considérés
et ensuite étendre le caractére borné de P pour s € (—=1+1/p,2 + 1/p).

La principale difficulté provient de 'impossibilité de “voir directement” les valeurs au bord
lorsqu’on travaille avec la réalisation homogene de 'opérateur.

Summary of the chapter

This chapter is concerned by the Hodge decomposition for any degree of differential forms is
investigated on the whole space R™ and the half space R’} on different scale of functions space
namely homogeneous and inhomogeneous Besov and Sobolev space, H5?, Bz’q, H*P and Bj ,
for all p € (1,4+00) ,—1+1/p < s < 1/p. The bounded holomorphic functional calculus, and
other functional analytic properties, of Hodge Laplacians is also investigated in the half space,
and yields similar results for Hodge-Stokes and other related operators via the proven Hodge
decomposition.

As consequences, the homogeneous operator and interpolation theory revisited by Danchin,
Hieber, Mucha and Tolksdorf applied to homogeneous function spaces subject to boundary
conditions is applied and leads to various maximal regularity results with global-in-time estimates
that could be of use in fluid dynamics. Moreover, the bond between the Hodge Laplacian and the
Hodge decomposition even enable us to state the Hodge decomposition for higher order Sobolev and
Besov spaces with additional compatibility conditions, for regularity index s € (—=1+1/p,2+1/p).
In order to make sense of all those properties in desired function spaces, we also give appropriate
meaning of partial traces on the boundary.

The overall strategy is to realize Hodge-Dirac operators and Hodge Laplacians simultaneously
and independently on each space, then prove and extrapolate regularity properties on L? to other
scales of function spaces. From this point one can then prove the boundedness of the Hodge-Leray
projection P when s € (=14 1/p,1/p).

After the extrapolation of regularity, we are able to decouplate boundary values into ho-
mogeneous Dirichlet and Neumann boundary values. From this point, we are able to use the
results in Section 6, from Chapter 2, to perform the homogeneous operator and interpolation
theory for each operator on all the relevant spaces and then extend the boundedness of P for
se(=1+1/p,2+1/p).

The main difficulty arises from the impossibility to “see directly” the boundary values when
one deal with the homogeneous realization of the operator.

1 Introduction
1.1 One Laplacian to rule (almost) them all : the differential form formalism
and the Hodge decomposition

The study of incompressible fluid dynamics, and in particular the treatment of Navier-Stokes
equations, relies mostly on the Helmholtz decomposition of vector fields in appropriate function
spaces. The Helmholtz decomposition of vector field v : Q@ — C", is given by a vector field
v :  — C™ and and a function ¢ : £ — C, such that

u=7v+Vq and div v =0 ( with possibly v-v),, = 0).

This point is central since incompressibility condition for the velocity of a fluid u is carried over
by the condition div u = 0.
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In the interest of the Navier-Stokes and related equations, one wants the above decomposition
to hold topologically in an appropriate normed vector space of functions! with uniqueness (up to
a constant for ¢). It is indeed true in L2(§2, C"), since P, the usual Helmholtz-Leray projector on
divergence free vector fields with null tangential trace at the boundary, i.e. such that

P: L*(Q,C") — L2(Q) = {u e L*(,C") | divu =0, u-v,, =0},

is well-defined, linear, bounded and unique by construction of the orthogonal projector on a
closed subspace of an Hilbert space, here L2(Q) C L2(2,C"). It gives the classical orthogonal
and topological Helmholtz decomposition, see [Soh01, Chapter 2, Section 2.5],

2 ny _ T2 S TSN Y
L°(Q,C") =L (Q) ® VHL2(Q,C),

for any (bounded) Lipschitz domain €, see [Soh01, Lemma 2.5.3]. Here H:2(€2, C) is the standard
L2-Sobolev space of order 1 on €.

The L2-theory for the Helmholtz decomposition on a domain £ relies mostly on pure Hilbertian
operator theory. However, the question about the LP-theory, p # 2, i.e., to know if

LP(Q,C") = LE(Q)@VHLP(Q, C), (4.1)

(or even the Sobolev or Besov counterpart) is actually a harder question, which falls generally
in the field of harmonic analysis. The underlying range of Lebesgue and Sobolev exponents for
which such decomposition holds will generally depend on the regularity of the boundary and the
geometry of the domain ).

The L? setting has been widely studied, we mention the work of Fabes, Mendez and Mitrea,
[FMM98, Theorem 12.2], where the result has been proven for bounded Lipschitz domains :
(4.1) holds whenever p € (3/2 —£,3 4+ €). The work of Sohr and Simader [SS92, Theorem 1.4]
yields (4.1) for C! bounded and exterior domains, allowing p € (1, 400). For general unbounded
domains, when p # 2, the decomposition (4.1) may fail : see the counterexample by Bogovskil
[Bog86, Section 2]. Tolksdorf has shown in his PhD dissertation [Tol17, Theorem 5.1.10] that
(4.1) is true for all p € ((2211) — &, (22f1) + ¢), provided €2 is a special Lipschitz domain, € > 0
depending on 2. We also mention the works of Farwig, Kozono and Sohr where the decomposition
is investigated in a more exotic setting in [FKS05; FKS07] for general uniformly C! unbounded
domains.

Our interest here is the case of the half-space R, where the Helmholtz is mainly known to
be true on LP(R?,C") for all p € (1,400), see [Galll, Remark II1.1.2] : we aim to generalize
this result to the scale of inhomogeneous, and homogeneous Sobolev and Besov spaces on the
half-space. To be more precise, we want to investigate decompositions of the type

H*P(R?,C") = HP(R},C") @ VHs+Lp (R, Cn), (4.2)

and similarly for Besov spaces, and their inhomogeneous counterparts, provided s € R, p €
(1, 400).

In the scale of inhomogeneous and homogeneous Besov and Sobolev spaces on bounded and
exterior C>! domains the Helmholtz decomposition was shown by Fujiwara and Yamazaki [FY07,
Theorem 3.1] : the Helmholtz decomposition holds on H*?(©2,C") and B;  (22,C"), p € (1, +00),
s € (=1+1/p,1/p), q € [1,4+x], even allowing p = 1,400 in case of Besov spaces. We also
mention the work of Monniaux and Mitrea [MMO0S8, Proposition 2.16] on bounded Lipschitz
domains, where the result is shown to hold true for (inhomogeneous) Sobolev spaces that lie near
the family (HS’2)|S‘<1/2.

It has been notified in several works, e.g., see [GHT13, Introduction], [MS18, Section 4], that

1. From here the divergence will be understood in the distributional sense.
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the following Laplace operator acting on vector fields,
—Ay = —Au = curl curl u — Vdiv u, and [u-v),, =0, v x curl u,, = 0] (4.3)

called the ? Hodge Laplacian, has a strong bond with, and respects, the Helmholtz decomposition
in the sense that for all u in the domain of above Laplacian, Pu also lies in, and we have

—PAu = curl curl u = —APu, and [Pu-v),, =0, v x curl Py, = 0].

Therefore, since the Hodge Laplacian and the Helmholtz-Leray projector seem to copy the
corresponding behavior of the whole space, it seems reasonable to infer that

P =1+ Vdiv(-Ay) !, (4.4)

where div drives a boundary condition v - Ulyg = 0.
But, the above use of curl operators restricts us to the three dimensional case. We can avoid
such trouble, by the mean of the differential forms formalism, so that (4.3) becomes

—Ayu = —Au=d*d+dd*u = (d +d*)*u, and [v suj,, =0, v 2 duy,, = 0] (4.5)

where d : A¥ — A*T! ig the exterior derivative, defined on the complexified exterior algebra of
R*, A=A"®A'@...®» A", and satisfies d> = 0. The operator d* : A¥ — A¥~1 is the formal
dual operator of d, satisfying also (d*)? = 0 so that on R?, we can make the identifications

dj,, =curl,d,, =V,

d’ . =curl, df = —div,
[a2 [a1

Vi =v-0,va0,. =vx0.

The curl operator drives a boundary condition v X uj,, = 0.

Notice this definition still makes sense for differential forms of any degree, in arbitrary dimension.
One would check that (4.5) reduce to the Neumann Laplacian in the case of 0-forms identified
with scalar-valued functions.

Going back to the case of vector fields, instead of (4.4), the above formalism and the fact that
d and d* are nilpotent, and then commutes (at least formally) with A, we may infer the next
formula, similar to the one mentioned in [ACDHO04, Section 5] :

P=1-dd*(—Ay) ' =T—d(=Ay) 2d*(—Ay) V2 (4.6)

Under the use of the differential forms formalism, the desired Helmholtz decomposition (4.2)
becomes, for k € [0,n] different degrees of differential forms,

HP(RY, A*) = Hyg (R'E, AY) @ dHs+1o (R, ART) (4.7)

which is called the Hodge decomposition instead of the Helmholtz decomposition. Here, the
space H{Z(R, AF) stands for k-differential forms u whose coefficients lies in H*?(R",C), and
such that d*u =0, and v s, = 0.

+

The Hodge decomposition for differential forms is treated by Schwartz [Sch95, Theorem 2.4.2,
Theorem 2.4.14] on smooth compact Riemannian manifold M with smooth boundary, where the
decomposition is stated on H*P(M), k € N, p € (1, +oc). For the case of  a bounded Lipschitz
domains of R™, we refer to the work of Monniaux and M°Intosh [MM18, Theorem 4.3, Theorem 7.1]
where the Hodge decomposition is proved to be true on LP(£2, A) for all p € ((2211) —&, (23T_L1) +e)

where € > 0 depends on (). The bounded holomorphic functional calculus of the Hodge Laplacian

2. In fact, this is ¢ Hodge Laplacian, the one with tangential boundary conditions, we do not make the
distinction here for introductory purposes.
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is also proved for the same range of indices. One may also consult the work of Mitrea and
Monniaux, and Hofmann, Mitrea and Monniaux, [MMO09a; HMM11], for the treatment of
the Hodge Laplacian on bounded Lipschitz domains of compact Riemannian manifolds, where
functional analytic properties like analyticity of the generated semigroup, or boundedness of
associated Riesz transforms are investigated.

One may wonder about the superficiality of proving an identity like (4.7) for general differential
forms, instead of vector fields (differential forms of degree 1,n — 1) only. In fact, the differential
forms formalism has shown its efficiency, allowing to treat some partial differential equations
initially restricted to the three-dimensional setting in arbitrary dimension. See for instance
[Mon21 ; Den22], where the magnetohydrodynamical (MHD) system is treated, so that either
the triplet A', A%, A3 or the triplet A"~3, A2 A"! are involved. Indeed, the magnetic field is
in fact not an effective vector field but a 2-form, identified, when n = 3, with a vector field. We
also mention that reformulation using differential forms for this kind of system allows looking at
vorticity-like formulation of the Navier-Stokes (and related) equations, it is also purely intrinsic
so that one can perform a similar treatment on manifolds.

To reach our goal, the idea will be to prove that the formula (4.6) holds on L*(R"}, A), yielding
an operator for which we can also prove its boundedness on Sobolev and Besov spaces, so that
we are able to obtain

Theorem 4.1 (see Theorem 4.40 & Corollary 4.51) Letp € (1,4+00), s € (=14 1/p,1/p),
and let k € [0,n]. It holds that
(i) The (generalized) Helmholtz-Leray projector P : Hs’p(Ri,Ak) — Hf”g(Rﬁ,Ak) is well-
defined and bounded. Moreover, the following identity is true
P=1-d(—Ay) 2d*"(-Ay)" 2.
(it) The following Hodge decomposition holds
HoP (R, AF) = HPP (R, AF) @ HEP(RY, AF).

Moreover, the result remains true if we replace
e H5P by B;q, q€l,+o00];
. (H,B) by (H,B).
The symbol X, stands for the range of I — P in X.*

The way we reach Theorem 4.1 through intermediate results and proofs is so that we recover
many properties of the Hodge Laplacian as well as its bounded holomorphic functional calculus on
Sobolev and Besov spaces almost for free. This is due to the particular structure of the boundary
of R”, and the properties of the Laplacian on the whole space R™. This, above Theorem 4.1, and
the fact that one can define the Hodge-Stokes operator as

u € DIS)(AH) = ]P’D;(AH) and Ayu := —Ayu = d*du,
will yield automatically

Theorem 4.2 (see Theorem 4.42) Let p € (1,+00), s € (=1 +1/p,1/p). For all p € (0,7),
the operator Ay admits a bounded (H*(X,)-)holomorphic functional calculus on HyZ(R'Y, A).
Moreover, the result remains true if we replace

o HP by B3, q € [1,+00];

. (H,B) by (H,B).

3. The subscript (or exponent in case of Besov spaces) v is a legacy of the writing of G spaces as spaces of
gradients of scalar functions in the case of vector fields.
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We mention that our strategy is not morally so different from the one presented in [GHT13,
Beginning of Section 4], identifying some Neumann and Dirichlet boundary conditions on various
components. However, the treatment of boundary value is done in a more careful way, adapted
with the scale of homogeneous function spaces, thanks to a weak-strong correspondence of (partial)
traces by the mean of appropriate results in the Section 2.3.1.

1.2 Global-in-time estimates in L.-maximal regularity : the role of
homogeneous function spaces and their interpolation

Another tool which is central in the study of parabolic equations and also for a large class of
fluid dynamics problems is the L¢-maximal regularity.

The general problem of global in time L?-maximal regularity is : for a closed operator (D(A), A)
on a Banach space X, let us consider the evolution equation

{atu(t)+Au(t)= f(#),t € (0,+00), (4.8)

u(0) = 0.
Provided ¢ € [1,4o0] and f € LI((0, +00), X ), can we solve uniquely (4.8), with a priori estimate

([ (O, Au)|La((0,400),x) S [1fILa((0,400),x) 7

We are particularly concerned in this dissertation for the case where A is a Stokes operator on
a suitable function space.

It has been shown in many cases that Stokes operators satisfy the L%-maximal regularity on
L2(§2), for various class of open sets § for p,q € (1,+00), with various boundary conditions
and this has been widely used to treat various fluid dynamics problems, mainly Navier-Stokes
equations. See for instance [GS91; Toll8; TW20; MMO09b; Monl3; Mon21; HM13; HNPS16;
Hie20].

A major issue is that one cannot reach in general global-in-time L' or L>°-maximal regularity
estimates, which is of paramount importance to reach several endpoint spaces. However, for
q = 1 such maximal regularity estimates have been shown for several non-invertible operators and
were of major importance to achieve existence in critical function spaces for some fluid dynamic
problems like global well-posedness of Navier-Stokes equations, even for inhomogeneous flows, or
free boundary problems, see for instance [Che99; DM09; DM15; OS16; 0S21; 0S22].

While the work of Ogawa and Shimizu [0S22] provides a powerful framework for many
applications, we are mainly restricted to a specific class of second order elliptic operator with
“smooth enough” coeflicients. A different and more abstract approach was brought by the recent
work of Danchin, Hieber, Mucha and Tolksdorf presented in the previous Chapter 3, where the
idea was to give an homogeneous version of the Da Prato-Grisvard theorem [DG75, Theorem 4.15],
Theorem 3.6 which holds with implicit constant uniform with respect to the time variable even
when 0 € o(A). But further assumptions have to be made, mainly the injectivity of A on X.
Their idea is to replace the use of the real interpolation space Y,/ = (X,D(A))g,q by

o

(Xa D(A))G,q
where D(A) is called the homogeneous domain of A and stands morally for the closure of D(A)
with respect to the (semi-)norm || A-||x. Such kind of investigation was already made in Haase’s
book [Haa06, Chapter 6] where the completion is considered instead of the closure.

If one applies the homogeneous interpolation and then the homogeneous Da Prato-Grisvard
theorem as done in [DHMT21, Chapters 2, 3 & 4], choosing X C LP(R"}) to be a closed subspace,
(D(A), A) an injective elliptic differential operator equal to its principal part, with D(A) to be a
closed subset of H*™P(R% ), it would lead to L%(B?ﬁ“a)-maximal regularity results with 6 € (0, 1).
Proceeding this way disallow to obtain L{ (B ;) or L} (B )-maximal regularity results, for a < 0.
Our idea is to replace the use of L?(R) as a ground space by H*?(R"), with p € (1,+00),
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s € (—1+1/p,1/p), so that we may expect to realize A on H*?(R") with domain
D(A) c H*P(R%) N H 2P (RY).

Therefore, for s € (=1 + 1/p,1/p) and 6 € (0,1), it seems reasonable to expect L} (B;ﬁzme)—
maximal regularity results, and then recover maximal regularity for some non-positive index of
regularity.

To reach such realizations of A on homogeneous Sobolev spaces of fractional order on the whole
space or on the half-space, we are going to use the construction started [DHMT21, Chapter 3],
and continued in the previous Chapter 2. The Section 2.3.1 contains the required informations
about the precise meaning of partial traces in such function spaces to ensure that one can realize
operators with boundary conditions on H5® (R%), provided s € (=14 1/p,1/p), see also Chapter
2 for usual traces results. We will also provide additional tools that will be useful to compute
homogeneous interpolation spaces in presence of boundary conditions, as in Section 3.

In our case, considering first the Hodge Laplacian, then the Hodge-Stokes operator, we are able
to apply Danchin, Hieber, Mucha and Tolksdorf’s homogeneous Da Prato-Grisvard Theorem 3.6,
as well as the usual L?-maximal regularity for UMD Banach spaces or Theorem 3.21, to reach
various maximal regularity results as the next one.

Theorem 4.3 (see Theorems 4.54, 4.55, 4.56 & 4.59) Let p € (1,+0), g € [1,+), s €
(=1+1/p,1/p+2/q), s,s+2—2/q ¢ N—i—%, such that (Cs1o-2/4,p.q) 15 satisfied and let T' € (0, 4-00].

o . s—20 . . . .
For any f € LY((0,T), B;:;H(Ri,A)), ug € BELH" (R}, A), there exists a unique mild solution

2524
we CY[0,T), B, 7 (R, A)) to
Ou—Au = f, on (0,T) x R%,
d*u = 0, on (0,T) x R,
) va dumi = 0, on (0,T) x ORY, (HSS)
VU, = 0, on (0,T) x ORY,
+ 2
u(0) = wp, inBpy 7(RT,A),

with the estimate

U 2
[ IILOC([QT] 23 @)

1UP,q

2
+ ||(8th \ u)”Lq((O,T),B;q(Ri)) Sp,qysyn ”f”L‘?((O,T),B;q(Ri)) + Hu0||l'3i+qk%(R1) :

In the case ¢ = 400, if we assume in addition ug € D;(A%{), we have

2
1@ss Vo) [ 0,718 gy Sposon 1 e o,m0,85, - rnyy + Aol e -

2 Hodge Laplacians, Hodge decomposition and
Hodge-Stokes operators

This section is dedicated to the study of Hodge Laplacians, the Hodge decomposition and
Hodge-Stokes operators, on Sobolev and Besov spaces on R™ and R} .

We first introduce here the formalism of differential forms in the Euclidean setting. Resolvent
estimates for the Hodge Laplacian and Hodge-Stokes like operators on the whole space follow from
standard Fourier and Harmonic analysis, from which we deduce the related Hodge decomposition
on R™ as well as the boundedness of holomorphic functional calculus for each operator.

4. For introductory purpose, the notations here are either not precise enough or quite redundant. For instance,
the condition d*u = 0 already implies the boundary condition v Ulgan = 0.
+
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Secondly, we are going to give all corresponding similar results for the Hodge Laplacians, the
Hodge decomposition and Hodge-Stokes operators on the half-space R’} . Those results are going
to be built from what happens on the whole space R™, mimicking the behavior of Dirichlet and
Neumann Laplacians on the half-space, see the Section 6 of previous Chapter 2.

2.1 Differential forms on Euclidean space, and corresponding function
spaces

Here 2 stands for a domain of R” with at least, if not empty, Lipschitz boundary. The open
set © will be specified later on to be either, the whole space R™ or the half-space R’. Recall
briefly that OR"™ = 0, and R = R™~! x {0}. We also recall that the outer normal unit at OR’.
is v = —ey,, where (ex)pe[1,n] is the canonical basis of R™, identified with its dual basis denoted
by (dzk)keqi,n]» where dzg(e;) = Ly (4), (k,7) € [1,n].

Following [MM18; Mon21], we introduce the ezterior derivative d := VA =Y} _, 9y, e/ and
the interior derivative (or coderivative) 6 := =V = —>"}'_, Oy, ¢, acting on differential forms
on a domain  C R", i.e. acting on functions defined on 2 which take value the complexified
exterior algebra A = A’ @ A @ --- @ A™ of R". We allow us a slight abuse of notation : here we
do not distinguish vectors of R™, vector fields, and 1-differential forms.

We also recall that for k € [0,n], u € A* can be uniquely determined by (ur) ez € c(*) such
that

u= E uydxy,

Iezk

where ZF = {(¢;)jep.xp € [1,n]" | €; < £j41}, with |Z}F| = (}), and u; and dx; stands respectively
for wg,e,...0, and dxg, A dxg, A... A dxg, whenever I = (4;);cq14]-

One may also notice that such representation of k-differential forms with increasing index is
possible due to symmetry properties (i.e., dxy A day = — dag A day for all &, £ € [1,n]).

In particular, remark that A ~ C, the space of complex scalars, and more generally AF ~ (C(:),
so that A ~ C2". We also set A* = {0} if £ < 0 or £ > n.
On the exterior algebra A, the basic operations are

(i) the exterior product A : A¥ x A¢ — AFHE
(ii) the interior product L : AF x A — AF=F
(iii) the Hodge star operator % : A® — A"~¢,
(iv) the inner product (-,-) : A* x A* — C.
Ifae A',u € A and v € A1 then

(a A u,v) = (u, av).

For more details, we refer to, e.g., [AMO04, Section 2] and [CM10, Section 3], noting that both
these papers contain some historical background (and being careful that ¢ has the opposite sign
in [AMO04]). One may also consult [Do 94] for an introduction from the Euclidean setting point
of view, and [Jos11, Section 1-3] for basic and usual properties in the more general Riemannian
setting . We recall the relation between d and d via the Hodge star operator :

xou = (—1)%d(+u) and xdu=(—1)""15(xu) for an (-form w.

5. Notice that the Riemannian setting presented by Jost deals with compact manifold, but a lot of computations
remain true in their full generality, due to local behavior of each operation (Hodge star operator, exterior and
interior products etc.)
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In dimension n = 3, this gives (see [CM10]) for a vector a € R? identified with a 1-form
e w scalar, interpreted as 0 -form : a A u = ua, a_u =0;
e wu scalar, interpreted as 3 -form : a Au =0, auu = ua;
e w vector, interpreted as 1 -form : a Au=a X u, asu =a - u;
e u vector, interpreted as 2 -form : a Au=a-u, asu = —a X u.

From now and until the end of the present paper, if p € (1,+00), ¢ € [1,+00], s € R, k € [0,7n]
and X* € {H*?, H*P, BS . B5 1}, then X*(Q, AF) stands for k-differential forms whose coefficients
lie in X*(Q), i.e. X*(Q, A¥) ~ XS(Q,(C(Z)). One may also consider similarly X3§(€2, A¥).

Operators d and ¢ are differential operators such that d> =dod =0 and 6> =6 0d = 0, and
each of them are bounded seen as linear operators X*(Q,A) — X5~ 1(Q, A).

We recall the following integration by parts formula, for all u,v € $(€, A),

/Q<du,v> = /Q<u,5’u> Jr/aﬂ(u,qu) do, (4.9)
/Q<6u,v> = /Q<u,dv> + /89<u,1/ Av) do, (4.10)

which are true since we are in the Euclidean setting and where v is the outward normal identified
as a 1-form. More generally, for all T' € D’ (2, A¥) ~ D’(Q,C(z)), k € [0,n], we define

<dT; ¢>Q = <T7 6¢>Q for all ¢ € C?(Q,Ak""l),
(0T, 1), := (T, dy),, for all ¢ € O (Q, AF1).

In particular, one may see those operators as unbounded ones and introduce their respective
domains on LP(Q, A¥), k € [0,n], denoted by D,(d, A*) and D, (8, A¥) defined as

Dy (d, A*) := {u € LP(Q, A¥) | du € LP(Q,A*+1) } and D, (6, A%) == {u € LP(Q,A%) | du € LP(Q,A*1) }.

We can introduce their corresponding counterparts on homogeneous Sobolev spaces scales,
I')Z(d7 A*) on H*P, the same goes for inhomogeneous Sobolev spaces D;(d, A¥) on H*P. The same
goes with the interior derivative ¢ instead of d. One may proceed in a similar fashion, considering
their domains on inhomogeneous and homogeneous Besov spaces.
As an exact sequence of (densely defined but not necessarily closed) unbounded operators, we
get :
d A — XH(QA?) — . — XS(QAY) — XS(Q,A") — 0
0 A — — XH(QAY) —— XS(QA") ¢ .

3
In dimension n = 3, one can specialize, by the mean of the identification A* ~ (C(k), as

d : X(Q0 5 xX(cd) o xsck) % Xs(Q,C) — 0
0 + X35(,0) & xs0,c3) & xX5(0,03) £ X(Q,C) 4.

A very important feature is that, arbitrary dimension n, the operator d restricted to its action
on D'(2, AY), with value in D’(£2, A?), and § restricted to its action on D’(2, A"~1), with value
in D’(2, A"~2), are fair consistent generalizations of the curl operator on R?. Since in dimension
n higher than 4, n — 1 # 2, we also have to distinguish their dual operators : the operator d
restricted to its action on D’(2, A"~?) and the operator § restricted to its action on D’(£2, A?)
which are fair consistent generalizations of the dual operator ‘curl (usually fully identified with
the curl) on R3.
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We can use (4.9) and (4.10) to consider the adjoints of d and ¢ in the sense of maximal adjoint
operators in the Hilbert space L2(£, A), so that we will see later, e.g. Lemma 4.18, that they have
the following exact description of their domains

Do(d*, AF) = {u € Do(6,A%) |voup,, =0} and  Do(6%,A%) = {u € Da(d, A¥) [V Any,, =0}
One can also see those adjoints operators through the following L2-closures of unbounded operators,
(Da(d*, A%),d*) = (C2(Q,AF),8)  and  (D2(0%,A%),8%) = (C(Q, AF), d).

Definition 4.4 (i) The Hodge-Dirac operator on 2 with normal boundary conditions
is defined as

D, =6 +54.

Its square denoted by —Ay , := D2 = §*§+36*, is called the (negative) Hodge Laplacian
with relative boundary conditions (also called generalized Dirichlet boundary
conditions)

v AU, =0, and v A du,, = 0.

The restriction to scalar functions u :  — AY gives —Ayg yu = 66*u = —Apu, where
—Ap is the Dirichlet Laplacian.

(ii) The Hodge-Dirac operator on 2 with tangential boundary conditions is defined as
Dt = d + d* .

Its square denoted by —Ag, ¢ := D? = dd* +d*d, is called the (negative) Hodge Laplacian
with absolute boundary conditions (also called generalized Neumann boundary
conditions)

vau,, =0,and v sduj,, =0.
loe ) loa

The restriction to scalar functions u : Q@ — A® gives —Ay u = d*du = —Aru, where
—A s is the Neumann Laplacian.

Notations 4.5 When it does not matter (9, D., —Ay ) stand either for (6, Dn, —Ay ) or (d, Dy, —Aqyt),
just writing

—Ay = D? = 90* +0%0.

Remark 4.6 Let’s make two independent remarks :

o We recall here that, if  C R? is an open set with, say at least, Lipschitz boundary, one
has formally for u with value in A' ~ C? or A% ~ C3,

—Agynu = —Aygu = curl curl uw — Vdiv u
with either one of the following couple of boundary conditions
[u- V), =0, v xcurl up,, =0] or [uxv,, =0, (div u)

— 0].

Voq

e In the case of 2 = R", notice that no boundary value comes in, hence d* = ¢, 6* = d, so
that

D. =D, =D¢=(d+9) and — Ay =—Ayn= Ay =(d+6)? =ddj+dd.
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Definition 4.7 (i) The (bounded) orthogonal projector defined on L2(2, A¥) onto Ny(d*, A¥)
is denoted by P and called the generalized Helmholtz-Leray (or Leray) projector.

(ii) The (bounded) orthogonal projector defined on L2(Q2, A¥) onto Ny(d, A¥) is denoted by Q.

(iii) For p € (1,+00), s € R and k € [0,n], we say that H®?(Q, AF) admits a Hodge de-
composition if (Dj(d,A¥),d), (D5(6, A¥),6) and their respective adjoints are closable
and

HoP(Q, AF) = N3 (0, A%) @ R3 (0%, AF), (993)
Bsin AR * Ak
= R3(0, AF) @ N3 (0", A"),

holds in the topological sense. We keep the same definition of the Hodge decomposi-
tion on other function spaces replacing (H*?,D;,R;,N7) by either (I;Is’p,f)f,,f'{]'["’)71§12'°’,)7
(B .. D5 4 RS N5 ), or even by (BS ., D3 R, N5 ), with ¢ € [1,+00].

One can notice that in the case of vector fields (identified with 1-forms, 4.e., L2(Q, A') ~ L2(Q, C")),
we can identify P as the usual Helmholtz-Leray projector on divergence free vector fields with
null tangential trace at the boundary

P: L*(Q,C") — L2(Q) = {u e L*(,C") | divu=0,u-v,, =0}

It gives the following classical orthogonal, topological, Hodge decomposition, see [Soh01, Chapter 2,
Section 2.5],

L2(,C") = L2(Q) & VI(Q,C)

for any sufficiently reasonable domains 2, say for instance with uniformly Lipschitz boundary,
see [Soh01, Lemma 2.5.3].

Before investigating the Hodge decomposition and the functional analytic properties of the
Hodge Laplacian on differential forms on function spaces in R’}, we want to know a bit more
about the whole space case. The next subsection devoted to the whole space, we gather well
known facts and results which lack explicit references in the literature to the best of author’s
knowledge.

2.2 The case of the whole space

On the whole space R™ the action of the Laplacian and the Hodge decomposition for vector
fields is well known in the literature on usual spaces as Lebesgue spaces LP(R™, C"), p € (1, 400),
and so is the case of inhomogeneous and homogeneous Sobolev and Besov spaces. Our main goal
here is to extend and summarize those results with the formalism of differential forms.

To do so, we introduce an extension of the Fourier transform to differential forms whose
coefficients lie in the space of complex valued Schwartz functions §(R™, C), or in the space of
tempered distribution 8'(R™, C).

e For all u € L}'(R?, AF) ~ LI(R",(C(Z))7 k € [0,n], we define
Fu:= Y Fuydé € CY(R", AF).

Iezk

Hence, as in the scalar valued case, the Fourier transform F induces a topological automor-
phism of §(R", AF) ~ S(R”,C(Z))_

e For k € [0,n], we write 8'(R™, AF) := (§(R", A¥)) ~ S’OR”,(C(Z)). Similarly, the Fourier
transform F is an automorphism of 8'(R™, A¥).
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e For all T € §'(R™, A¥), k € [0,n], we define
(AT, ¢) g, := (T, 66)y,, for all ¢ € S(R™, A*1),
(6T, ) g, = (T, dip)p, for all i € S(R", A*1).

The following lemma is straightforward and fundamental for our analysis.

Lemma 4.8 For all u € 8(R™, A¥), k € [0,n], for all £ € R",
Fldul(§) = i€ ATFul€) and  F[Ful() = —i€ 5 Fu(©).
Remark 4.9 This is somewhat consistent, when n = 3, with formulas like
Fleurl u](€) = i& x Fu(¢) and F[div u](€) = i€ - Fu(€), u € $(R?,C?), ¢ € R,
From there, the identity for all differential forms u of degree k, and all vector v € R™,
vA(vau)+vo(vAu) = v u,

with the use of Lemma 4.8 yields with Remark 4.6 that, for all u € 8'(R"™, A¥), k € [0, n],

Fl=Apu](§) = F(6d + do)u](€) = i€ A (=i 2 Fu(€)) + —i€ 1 (i€ A Fu(€)) = [¢[* - Fu(§)
= F[=Aul (&)

Hence, the Hodge Laplacian on the whole space is nothing but the scalar Laplacian applied
separately to each component of a differential form so that its properties are carried over by the
scalar Laplacian. We state then a very well known result adapted to our setting.

Theorem 4.10 Letp,p € (1,400), ¢, € [1,+0], s,a € R, and k € [0,n]. The Hodge Laplacian
s an injective operator on S;L(R”,Ak), and satisfies the following properties

(i) For f € 8, (R™, A¥), consider the problem
—Au=f inR".

a) If f € [H>P N Ho"ﬁ](R’ZAk)J and (Csyo,p) is satisfied, then there exists a unique
solution u € [H*T2P N H+2P|(R™, A¥) with the estimates,

<

[ddul fte () Spomes (1]

fre.p(eey T [10du]

o) Spns 1720 fro 2n):

1482l . ey + 16Ul p1a pmny Spima IV ullges@ny Spma I1f s @n)-
In particular, —A : [H5+2P 0 HOT2P)(R?, AF) — [H*? 0 H*P|(R™, AF) is an iso-
morphism of Banach spaces.
- - TS, To,p TTs+2, Too+2,5 oS o hs+2 pat2
b) The result still holds if we replace (H*P, H*P H*F2P H*+2P) by (By |, BS ., B2 BIT").
i) Forpe[0,m), AeX,, f€ ,A®), consider the problem
i) F 0,7), €D, §'(R™, A* der the probl

Au—Au=jf inR".

a) If f € HSP(R™, A¥), and (Cs p) is satisfied, then above resolvent problem admits a
unique solution u € [H*P N H*+2P|(R™, A*) with the estimates,

Ao gy + A1 |Vl
[A[2[I(d + 6)ul

Hs,p(Rn) + ||v2u|
froor®n) T 140Ul gep ey + [|0du]

Hs.» (R7) 5p,n,s,u ||f| Hs:»(R")?

Hs-P(R™) Spnsai [1f] Hs-p (Rn)*

In particular, \I — A : [H®P N HsT2P|(R"™, AF) — HSP(R™, A¥) is an isomorphism
of Banach spaces.
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Furthermore, the result still holds, replacing (HS?, H5? 0 Hst2P) by (HSP, H5T2P)

without any restriction on (s, p).
b) If (Csp.q) is satisfied, then the above result still holds replacing (H>?, H5P N Hot2P)

by (B; . By, N BZ:ZQ), or even by (B;,q,B;:ZQ) without any restriction on (s,p,q).

(iii) For any p € (0,7), the operator —A admits a bounded (or H*(%,,)-)holormophic functional
calculus on function spaces : [H*P NH*P|(R™, A¥), (Cy ) being is satisfied, BS  (R™, A¥),
(Cs.p,q) being satisfied, and on both HP(R™, A*) and B ,(R™, A*) without any restriction
on (s,p,q)-

Proof. — Step 1 : the scalar Laplacian is injective on 8} (R",C). For f € 8'(R",C), let u,
v € 8} (R™, C), such that

V¢ € §(R™,C), <u, —A¢>Rn =(f, ¢>Rn = <U, —A¢>>Rn.
Therefore, it follows that w := u — v € 8}, (R", C) satisfies
V¢ € 8(R",C), (w, —A¢)y, = 0.
Hence, one may apply the Fourier transform, to obtain

Vo € 8(R"™,C), (Fw, [>T ¢),, =0,

so in particular, for test function in the form ¢ := F {W} , with ¢ € C*(R™ \ {0}, C) (notice that
one can see that F {%} € §(R™,C)), we deduce

Following the proof of [DHMT21, Lemma 3.6], we conclude that w = 0 (since w € 8'(R",C) and
81, (R™, C) does not contain any polynomial), so u = v in §'(R", C).

Step 2 : For the point (%), it suffices to follow [DM15, Lemma 3.1.1].

For the point (i), see [ABHN11, Example 3.7.6, Theorem 3.7.11].

For the point (%), the result on L?(R™ C) is a consequence of a more general one which is
[Haa06, Proposition 8.3.4]. [ ]

Similarly, thanks again to standard Fourier analysis, we can introduce appropriate differential
form-valued version of Riesz transforms for the Hodge Laplacian. Their boundedness on appropriate
function spaces are again carried over by their scalar analogue, and a direct consequence is an
explicit formula for our generalized Leray projector P on R™.

To do so, we notice that one can write associated Fourier symbols, thanks to Lemma 4.8, to
obtain

d(=A)"F =D Rpee A and  §(—A)72 =Y Ryey o
k=1 k=1

where for k € [1,n], Ry is the k-th Riesz transform on R™ given by the Fourier symbol £ —

i‘%‘, which is well known to be bounded on LP(R",C), 1 < p < 400, see [Ste70, Chapter 2,

Theorem 1 & Chapter 3, Section 1]. Therefore, the next proposition follows naturally.

Proposition 4.11 Let p,p € (1,400), q,G € [1,+0], s, € R, and let k € [0,n]. The operators
d(=A)"2, §(—=A)" %, d6(—A)"! and 6d(—A)

are all well-defined bounded linear operators,
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e On [H*? NHP|(R™, A), and on [B;”q N B%@](R", A), (Cs,p.q) being satisfied, with decoupled
estimates,

1Tl

xs&n) and || Tullxa@n) Spaa [ullxe@ny, ue [XTNXYR", AF),

e (&) Sponas [|u

where the operator T is any of the above operators, and (X®,X*) e {(H>?, H*P), (B;yq, ng)}
e On H*P(R™,A), and on B; (R",A), without any restriction on (s,p,q).
Moreover, the following identity holds
(A(—=A)"F +6(-A)"2)? =1.
Theorem 4.12 Let p € (1,400), g € [1,400], s € R, and let k € [0,n]. The following hold
(1) The following equality is true, whenever (Cs p) is satisfied,

H“|HS~P(R<”)
’

\T S n Ak s n
N2 (d, R™, AF) = R (d, R", AF)

and still holds replacing d by 9.

(ii) The (generalized) Helmholtz-Leray projector P : H*P(R™, AF) — N;((?, R™, AF) is well-
defined and bounded when (Cs p) is satisfied. Moreover, the following identity is true

P=1-d(—A)"1.
(iii) The following Hodge decomposition holds whenever (Cs,,) is satisfied,
HoP(R?, AF) = N3 (8, R™, AF) @ N (d,R", A").

Everything above still holds replacing (Hs’p,N‘;,R;) by either (B;)q,N;q,R;)q), (Cs,p.q) being

satisfied, (H*P, N7, R;) or (B; ,,N5 . Ry ) without any restriction on (s,p,q).

In case of Besov spaces with ¢ = 400, the density result of point (i) only holds in the weak® sense.

Remark 4.13 On Al-valued functions identified with vector fields one recover the usual well
known formula, i.e.

P=1+V(-A)'div.
Proof. — Step 1 : The orthogonal projector PP is originally defined only as an operator
P : L2(R", AF) — Ny (6,R", A¥).
We claim that P is equal to the operator formally given by
P:=T1-d(-A)"%s.

The proof is standard, and works as in the case of vector fields, and then is left to the reader.
Step 2 : Previous step and Proposition 4.11 give that P is bounded HeP(R™, AF).
For u € H*P(R", AF), v € 8§(R™), we regularize with the resolvent, to compute

<Pu, dv>Rn = )\ILI& <u, dv>]Rn - <d()\l — A)"ou, dv>Rn
= /\ILI& (u, dv>Rn — (u, (AL - A)_ldédv>Rn
= ,\IE& (u, dv>Rn — {u, AL - A)_l(—A)dv>Rn
= <u,dv>]Rn — <u, dv>Rn =0.
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Hence ]P’I.{“’VP(R”7 AF) C Nf,(é, R™, A¥), and we even have P

P

=1, so that

(5,R™,AK)
PH*?(R", AF) = N3 (6, R", A¥).

Similarly, [I — P]HS7P(R", AF) C Ng(dﬂ[@ﬂ AF), and [I - P] = I, which comes from

Ixes (. rm Ak
N$ (d,R™,AK)

[—Plu= lim dAI— A)"1ou, ue H¥P(R™, A).

)\*}04_
. =———————Illgsr@n
This also gives N (d, R™, A¥) = Rs(d, R", A¥) e
The proof is straightforward the same for other function spaces. |

2.3 The case of the half-space R’
2.3.1 Interlude : about partial traces on the boundary

We state here a trace theorem for generalized normal and tangential traces of differential forms.
The general case for vector fields in inhomogeneous function spaces is well-known, also is the
differential form in the inhomogeneous case for bounded Lipschitz subdomains of a Riemannian
manifold, see [MMS08, Section 4] and references therein.

We recall that v = —e, is the outer normal unit at the boundary oR’} .

Theorem 4.14 Letp € (1,+0), g € [1,+0], s € (-1 + %7 %) and let k € [0,n].
s 1
(i) For allu € D (6, R, A¥). Then there exists a unique function v _uj,,, € By," (R"™H AFTL)
+

called the generalized tangential trace, such that

/Rn_1<““'mi"1"am1> :/]R

for all @ € H=57' (R, A), with the estimates

(1, D) —/R (5u, ¥) (4.11)

n n
+ +

||l/—'u|aRn H s—d S,p,s,n ||u|

s, n ou
* B, (R ey + 100

Hs,p(]Ri).

The same result holds with the corresponding estimate, for u € D;(d,Ri,Ak) we have a

1
partial trace v Auy,,, € B;,p” (R"=1 AF*+1) called the generalized normal trace, satisfying
St

the identity
/]Rnfl <V /\ ulaRi ’ \IJ|61R1> - /R

s—1
(ii) For allu € Dy, (9, R%, A®) we have v su,, € Bpo” (R"™1, A*=1), such that formula (4.11)
’ +

holds for all ¥ € B;T;, (R}, A). Moreover, we have the estimates

(du, ) — /]R (u, 6). (4.12)

n n
+ +

1V 2 u)pn |

< n n
" Bp,_q% (Rn—1y P lullg ey + ll0ulls; , &s)-

The same results holds with the corresponding estimate, for u € ng’q(d,Ri,Ak) we have a

1
partial trace v Auy,,, € B,.," (R"=1 AF+Y) such that (4.12) is satisfied.
+
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(iii) For allu € BST (R, A¥), we have

_1
voudvAu) € B;Zl PR AR @ AR

|are1

with the estimate

||(VJU@V/\U)\3R1”B5+1J Sy llul Byl ()

E(Rn—l)

and everything still hold with H**1? instead of B5E!, when q = p.
Theorem 4.15 Let p € (1,+0), g € [1,+0], s € (-1 + %7 %) and let k € [0,n].
(i) For allu € D;(& R™, AF),

1
o If s <0, then there exists a unique function v su,,,, € B;pp (R™=1, A¥=1) such that
+

the formula (4.11) holds for all U € H=5#' (R}, A), with the estimate

Sposn [l

||VJU|BR" s

-1 Ts,p(RT Y] | E—
teyL? @) e (e + 110Ul en )

€ ("p—;l, %), there exists a unique function v 4 Ujgrn €

. [fs>0,f0r%=%
B;T% (R"1, AF=1) | such that the formula (4.11) holds for all U € HY" (R7, AR
with the estimate

A
n

He? (R™) + [|6ul

[Py Srps U]

BT (R ey

The same result, up to appropriate changes, still holds for u € D]S,(d,RQL_,Ak) with partial
trace v A uj,,, satisfying the formula (4.12).
+
(ii) For allu € D;’q(& R", AF),

_1
o If s <0, there exists a unique v Ju,_, € B;qp (R"=1, Ak=1) such that the formula
+

(4.11) holds for all ¥ € [S "B, »|(R%, A*~1 @ A1), with the estimates

[[v u‘aki HBSJ Sposm llul Bs ,(R7) + | oul Bs  (R7)"
P,

qP (Rn—l)

1
e Ifs>0,fort= %—% € (%, %), there exists a unique U g €B;/ SR AR,
1

or any sufficiently small € > 0, with = — = = =, such that the formula (4.11) holds
f i l Il 0 hi = h that the f la (4 hold

n

for all ¥ € [N B;t;](Rﬁ,A) with the estimate

Spsimae (|l

HVJUMRK B._l

I
q

¢ jn1) B  R2) T [|dul Bs  (R7)"

1
. . —=—€ _ —
o If s =0, there exists a unique v Juj,, € Brg (R A1) where L = % .
+

for any sufficiently small & > 0, such that the formula (4.11) holds for all U
[SNBLSI(RY, A), with the estimates

£
n’
€

v 4 Uomn ”B;f’s(w—l) Sposimae ||U||Bqu(m) + ||5U||Bqu(m)-

The same result, up to appropriate changes, still holds for u € D;,q(d,Rﬁ,Ak) with partial
trace v A uy,,, satisfying the formula (4.12).
¥
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(iti) For all u € [BZ’q N B;:‘(‘Il](Ri, A®), if ¢ # 400, we have

1
s+1—;

voudvAu) €Bpg "RV AMT @ AR

|8R1
with the estimate

I su@ Al g

Sposn ”uH[B;’an;t}l](Ri);
and everything still hold with (H>? H*T1P) instead of (st),q’ Bf,fql), when q = p.
If ¢ = 400, we have

(viud®vAu) e LP(R™1 AR~ @ AFFL)

lozn
with the corresponding estimate.

Remark 4.16 The proof of Theorem 4.14 in case of inhomogeneous function spaces follows
straightforward the same proof provided for corresponding results in [MMS08, Section 4] and is
somewhat sharp.

Notice that Theorem 4.15 is certainly not sharp, and investigation of sharp range for partial
traces could be of great interest in the treatment of inhomogeneous boundary value problems in
homogeneous function spaces.

Proof. — Without loss of generality, we only investigate the case of tangential traces v Ly own -

. 1
Step 1.1 : Proof of (i), for s < 0. For u € D (6, R, A¥), for all ¢ € B;,m,(R"_l,Ak_l), and

U e Hi-s7 (R7, AF~1) such that W, .. =1, we can define the following functional,
+

Ky (U) 1= /]R

First, the map (u, ¥) + £, (¥) is well-defined and bilinear on D3 (6, R, A*) x HI==" (R, A+~1),
i.e., in particular only depends on the boundary value ¥ of W. It is straightforward from duality
that,

(1, D) — /]R (6u, T,

n n
+ +

|6u (O)] Ss.pon ||U||HSVP(R1) d‘PHHf&P’(Ri) + [|dul He»(R7) \IIHH*S’P’(R];)

S [l 1@l ooty + 100y 19 i

S Il ) 12 st ) + 160 e | e e

Ss.pm ([l He-P(R%) + [[0u] Hw(m))||‘I’||Hlfs,p’(m)v

where above inequalities follows from H—**' (R%) — H—sr' (R%), H-s2' (R%) — HL-s#' (R%),
since —1 + % < 5 <0, then from H'~%?' R%) — H—s?' (R%).
Now, if we have Wy, U, € H!=5P (Ri,Akil) such that Wy, ., = ¥g,., = ¥, we introduce
+ ¥

Ug=V; -0, € Hé_s’p,(Rﬁ,Ak_l). Therefore, let’s consider (P)ren C C?(Ri,Ak_l) such that,
@), —— o in Hy P (R, AR,
k k——+oco 0 1 Ho ( + )

We can deduce,

koo B <u, d‘bk> - \/" <5u, ©k> = 0.
+ +

Fu(U1) — Ky (U2) = Ky (Tg) = lim [/R
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Thus, the following equality occurs, where we also consider the extension operator EXtRi from
Theorem 2.45,

Ru(Y) == ”u(EXtRi ® 1) = Ku(P),
and with the estimate, also obtained from Theorem 2.45,

R ()] Sspn (Il

Fioop (BT + ||du| Hs’p(Ri))||w||B%_i(R"71).

p’

1
By duality, there exists a unique function depending linearly on u, v sy, oxy € B;,p” (RP=1 AF—L))

such that (4.11) holds.

To guarantee that the representation formula makes sense, one may use the usual integration
by parts formula with u, ¥ € 8(Rﬁ7_ﬁ7 A).

Step 1.2 : Proof of (i), for s > 0. For the same assumption on u, and ¥ as before, everything
works similarly except the way we bounded bilinearly (u,¥) — k,(¥) on D;(&, R, A*) x
H'=# (R, A*1). For r € (1, +00) such that 1 = zl) — £ we deduce from Sobolev embeddings
and duality that

|Fu ()] Sspm [l

Hs,p(Ri)Hd‘I’HHfs,p’(Ri) + H5u||LT(Rf;)H‘I’HLr'(R1)

Srespm Ul Hs,p(R¢)||‘I’||H1m’(R1) + ”(SUHHSJ?(RQ)”\IJ”HLT'(]RK)

Srys,pn (flul He P (R?) + [|ou] Hs,p(Ri))||‘I'||H1wf/(1R1)~
Thus everything goes similarly.

Step 2.1 : Proof of (ii), for s < 0, is very similar to the one of the above Step 1.1.

Step 2.2 : Proof of (i), for s > 0, is somewhat similar to the one of Step 1.2 but needs further
explanations. We use Sobolev embeddings, and generalized Holder inequalities using Lorentz

spaces, B | (R7) < L™9(R?), B, ,(R?) < L™ (R%) < B * (R, for € > 0,

K (D)] Ss,pm [l

Bs ,(R) \d‘I’HB;,jq,(M) + [16ul|pragn) |‘1/||Lw,q/(m)

/Sr,s,p,n Hu||]'3§q(R1)||d\I/||Lr"q’(Ri) + [|dul B;ﬁq(Ri)”\Ij”L“wq'(Ri)

Srspn (U] Bs ,(R%) + (|6l B;,q(Ri))”\P”B;Tz,(Ri)'

Step 2.3 : Proof of (ii), for s = 0 is shown via similar Sobolev embeddings arguments and is
left to the reader.

Step 3 : Proof of (i), follows from Proposition 2.52, with explicit representation formula for
any suitable k-differential forms w :

k
v ulami = —Cn “Iami =(-1) Z Upyty.. by 1n(0)dae, Ao Adxg,
1< <. <bp—1<n

=(-1)F Z up (-, 0)dep.

k—1
ek !

A similar treatment yields the same conclusion for the boundary term v Ay, , so that one ends
+
the proof here. [ |

Remark 4.17 Let’s make further comments about the estimates used in above proof of Theorem
4.15, in particular the ones used in Step 2.2.
We recall that from Sobolev embeddings, see Proposition 2.31, for 0 < sp < s < 81 < 1/p,
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ro,71,p € (1,4+00), 1/r; = 1/p — s;/n, and appropriate ¢; € [1,400] we have
By, (R}) — L9(RY), je{0,1}.
If (s,1/r) = (1 — 0)(s0,1/r0) + 0(s1,1/71), by real interpolation, for ¢ € [1,4+00] we obtain,
B)o(RY) = (Bl (RY), Bylg, (RY))e,g — (L7 (RY), L™ (RY))g,q = L7(RY).
And one may proceed similarly for the reverse embedding,
L™ (RY) = B,* (RY).

For more details about Lorentz spaces and their interpolation, one could consult [Lunl8,
Section 1, Examples 1.10, 1.11 & 1.27] and [BL76, Chapter 5, Section 5.3].

2.3.2 L2-theory for Hodge Laplacians and the Hodge decomposition

The following lemma is fundamental for the analysis of the L? theory of the Hodge Laplacian
when one has an explicit access to the boundary, and moreover several proofs presented here do
not depend on the open set €, here Q = R, and remain valid as long as integration by parts
formulas (4.9) and (4.10) and partial traces results for vector fields are available.

Lemma 4.18 Let k € [0,n]. We set
Do(3,R%, A%) := {u € Do(6,R%,A%) v 4 Uy = 0},
Do(d, R}, AF) == {u € Do(d, R}, AF) |v A Uy = 0}.
The operator (Dg(dJR’LAk),d) is an unbounded densely defined closed operator, with adjoint
(Da(d*, RY, AFH), %) = (Do(8, RY, APH), 0). (4.13)
Similarly, (Da(9, Ri,Ak), 0) is an unbounded densely defined closed operator, with adjoint
(D2 (6%, R, AP 1), 8%) = (D2(d, R, A7), d). (4.14)

Proof. — Closedness and the fact that both are densely defined is straightforward. We just prove
the duality identity (4.13), the proof of (4.14) is similar. Let u € Dy(8, R, A¥), then for all
v E SO(M, AF), we can use Theorem 4.14, to obtain that

<11, 5u>R1 = <d11, U>Ri'

Thus, by Cauchy-Schwarz inequality

‘<dv,u>R1’ < ||5U||L2(]R<1 UHL?(Ri)'

Hence, v — (dv, u), extends uniquely to a bounded linear functional on L?(R”, A¥), so that,
¥

necessarily (D2 (8, R", A¥),§) C (Do(d*, R, AFFL), d*).
For the reverse inclusion, let v € Da(d*,R7, AR for all v € Day(d, R?%, A¥), we have

d* ={(d .
(v, U>R1 (dv, U>R1
In particular, for v € C°(R", A¥), it yields that

<v,d*u>]Ri = <dv,u>]Ri = <v,6u>Ri.
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Hence, d*u = du in D’(RQ,A’“), then in LQ(IRi,A’“)7 so that for all v € Dao(d, Ri,Ak),

<v, 5U>R1 = <dv, u>R1.

From above equality, we apply Theorem 4.14 to check v s v, =0 and deduce
+

(Dao(d*, R, AT, d*) € (Do(3,RY, AR, 5),
the proof being therefore complete. ]
In particular, since (D2(d*,R7, A¥),d*) and (D2(6,R%, A¥),§) are closed operators, both
N2 (6, R, A*) and No(d*,R", A")

are closed subspaces of L? (R%, AF). Thus, the following orthogonal projection are well-defined
and bounded

P : L2(R"%, AF) — Np(d*,R?, A%),  [I—P] : L2(R?, A*) — Ry(d, R, AF),
Q : LZ(R:LJAIC) — NQ((;’RiaAk)? [IiQ} : Lz(RiaAk) —>R2(5*7R’17Ak)5

which induce topological Hodge decomposition

LR, A%) = Ra(d B AF) & Na(d", R}, A%), (5%2)
— Ra(0", R, AF) & N (6, R, AF).
Lemma 4.19 For k € [0,n], the following Hodge-Dirac operators
(Dao(Dy, RY, AF), Dy) = (Do (d, RY, A¥) N Dy (d*, R, A¥), d + d¥),
(D2(Dy, R, AF), Dy) = (Do(6*, R, AF) N Do (6, R, AF), 6% +6),
are both densely defined closed operators on L2 (R7, AF).

Proof. — Let (uj)jen C Do(d, R, A*) N Do(d*,R7%, A¥), and (u,v) € L*(R7,A*) x L2(R%, A)
such that it satisfies
uj —u and Dy —— v in L*(R7}).
j—4o0 J—r+oo
By the Hodge decomposition, there exists a unique couple (vg,v1) € Ra(d, R, A) x Na(d*, R, A)

such that v = vo + v;. Since u; goes to v in Lz(RQ‘_, AF), by continuity of involved projectors, and
uniqueness of decomposition, it follows that

du; — Vo and d*u; — U1 in Lz(Rn)
J j T
j—4o00 j—4oo

But (u;)jen converge to u in L*(R7, A¥), so in particular in distributional sense, thus necessarily
(vo,v1) = (du,d*u) and v = D, i.e., (D2(Dy, R, A¥), Dy) is closed on L2(R%, A*). The proof
ends here since one can reproduce all above arguments for (Dy(Dy,R7, AF), Dy). |

Proposition 4.20 The Hodge-Dirac operator (D2(D.,R%,A),D.) is an injective self-adjoint
0-bisectorial operator on L*(R'}, A) so that it satisfies the following bound, for all 6 € (0, )

1
sin(6)

Vi e C\ S, ||pu(pl + D,)*1HL2(R1)_>L2(R1) < (4.15)
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Moreover, it admits a bounded (H>(Sp)-)functional calculus on L2(R™, A) with bound 1, i.e., for
all f € H>(Sp), u € L*(R%, A),

||f(D-)u||L2(R1) < ”fHLOO(Sg) ||U||L2(JR1) :

Remark 4.21 Proposition 4.20 does not depend on the fact Q = R’. See [MM18, Section 2]
where the same result is stated for bounded (even weak-)Lipschitz domains.

Proof. — The resolvent bound (4.15) is usual since (D2(D.), D.) is self-adjoint by construction,
see [Haa06, Proposition C.4.2]. The fact that it admits a bounded holomorphic functional calculus
follows from [McI86, Section 10]. |

For k € [0,n], the Hodge Laplacian (D(AH,RZL_,A’“), —Ay) can be realized on L2(Rﬁ,Ak)
by the mean of densely defined, symmetric, accretive, continuous, closed, sesquilinear forms on
L2(R%, A¥), for

ar ¢ Do, AN 5 (u,0) — [ (du, do) + / (5u, 50) (4.16)
R? R

with Da(az.1, A¥) = Da(d, A¥) N Do(d*, A¥), Da(azn) = D2(6%, A¥) N Do (6, A¥), so that it is easy
to see that both are closed, densely defined, non-negative self-adjoint operators on L? (R7, AF).
See [Ouh05, Chapter 1] for more details about realization of operators via sesquilinear forms on a
Hilbert space. The next theorem is a standard consequence.
Theorem 4.22 Let k € [0,n]. The operator (Da(Agy, R, A*), —Ay) is an injective non-negative
self-adjoint and 0-sectorial operator on L*(R", A¥), which admits bounded (or H*(Zy)-) holo-
morphic functional calculus for oll 6 € (0, 7).

Moreover, the following hold

(i) Da(Ay,R™,A¥) is a closed subspace of H2(R'}, A) ;

(ii) Provided pu € [0,7), for A\ € 5, f € L3R, A¥), then w:= (Al — Ay) 71 f satisfies

1

I Alllulliz@y ) + (A2 ID.ulliz@n) + [Aullizey) SpllfllLzee) 5 (4.17)
1

IMlullz@gny + M2Vl @) + [1Vullez@n) Snpe 1f ez 5 (4.18)

(iit) The following resolvent identity holds for all p € [0,m), A€ X, f € LQ(RQL_,A’“),
Ey (A= Ay) "' f = (A= A) "By f.

Remark 4.23 In above Theorem 4.22, points (i) and (%ii), as well as the estimate (4.18) of point
(ii) are the only points that relies on the fact that the considered openset is 2 = R’} , but mainly
the point (7ii) is used to deduce previous ones. The beginning of the statement, as well as (4.17),
does not rely on any particular structure, and remains true on any open set €.

Many other results below, in the present subsection about L2-theory of Hodge Laplacians and
the Hodge decomposition, remain true on general domains €2 as long as one can show that Hodge
Laplacians are injective.

Before proving Theorem 4.22; following 6 of Chapter 2, for J € {D, N}, we reintroduce the
following extension operator defined for any measurable function u on R}, for almost every
z= (2, x,) €eR":

' x,) ERVLX Ry,

u(z, zp) , if (
f(z',2,) e R x R* ;

—u(x', —x,) i

Epu(z’,z,) = {

u(r', x,) L if (2, 2,) € R X Ry,
u(r',—x,) 5 if (2, 2,) € R"L x R*.

Enu(x’,z,) = {
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Now, we precise the definition of the extension operators Ey, j, j € {t,n}, on measurable functions
u: R} — AF provided k € [0,n], I € ZF

Epu; ,ifnel,
Enxur ,ifn¢l;

Exyur ,ifnel,

. 4.19
EDUI s lfﬂ%], ( )

(Ep,eu)r == { and (Ey au)g = {

For u : R — A*, we also set
’L~Lj = [EHJU]‘]R,_L.

By construction, for j € {t,n}, s € (~1+41/p,1/p), p € (1,400), the Proposition 2.15 leads to
boundedness of

Eq,; @ HYP(R7,A) — H*P(R™, A). (4.20)
The same result holds replacing Hs» by either H*?, B} . or even by stxq’ q € [1, 4]
Lemma 4.24 For all u € Do(d, R, A¥) (resp. Do(d*,R", A¥)) we have
Eg cu € Do(d, R™, A®)  (resp. Do(6,R™, A¥) )
with formulas
dEy u = Eq ¢du (resp. 6Ep qu = Eqy d"u).
Proof. — Let u € Do(d, R, A¥), for v € §(R™, AFT1),
<E7{,tu,5v>w = <u,5v>Rn + <ﬂt’5U>RE
du 11>R1 + {(—en) A uvv>am + <a{zt,v>m + {(en) A ﬂt’v>6R’_L

={
= (du, U>R1 <duf’ >Rg
=

Ey ¢du, v>

Which holds, since (e,) A @¢(+,0) = (en) A u(-,0).
Now, if u € Da(d*, R, A¥), for v € §(R™, A1),

(Bpu, dv)y, = <u,dv>Ri + (i, dv)R,l
= <6U’U>R" +((—en) su U>3JR1 + <%f’ U>Rg +((en) - at’“>aRg
= <5u,v>Ri + <5ut, V)gn
= (Eped™u, v,
Which holds, since (¢,) _ (-, 0) = —(e5) S (-, 0) = 0. [ ]

Proof (of Theorem 4.22). — By the realization of Hodge Laplacian by the mean of the sesquilinear
form (4.16), we have (Do(Ay, R, A%), —Ay) = (D2(D?,R%, A¥), D?). Thus, as the square of a
self-adjoint 0-bisectorial operator, the Hodge Laplacian is a non-negative self-adjoint 0-sectorial
operator on L?(R", A¥), and it also admits bounded holomorphic functional calculus, see [Egel5,
Theorem 3.2.20]. In particular, (4.17) in point (%) holds.

For now, we only consider the case (Da(Ag ¢, R, AF), —Aq (), the proof could be achieved in
similar fashion for (Da(Agn, RY, AR), —Aqy n).

For A € B, p € (0,m), f € L3R, A%), we set U := (\I — A)"'Ey f € H*(R",A*). B
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construction, as in the proof of Theorem 4.22 for I € Z¥ we have
Ur|,pn =0, provided n € I,
+
9:,Ur),,, =0, provided n ¢ I.
+

Therefore, we obtain first,

k
v u|zm1 = "t d u|amzi =(-1) Z Upyty.. ty_yn(,0)dae, Ao Adag,
1<l1<... <l _1<n

= (—l)k Z UI’,n(',O) dxp = 0.

k—1
rert!
Similarly, we get that
I/Jdubm21 = —eanumi = — E E awjuhg2.,,zk71n(~,0)dxj /\dxgl /\.../\d.%‘gkf1
J=11<01<...<lp—1<n
— E arnuEIZQ,“gk(-,O) d.%'gl /\.../\d.%'gk
1< <. <lp_1<lp<n

=0.

From above calculations, we deduce that u := U, is such that u € H2(R%, AF)NDo(Agy R, AF),
+
and

M — Au=f in RY}.

Hence, by uniqueness (Al — Ay )7L f = [(AI — A)*lEHf]Ri. One may conclude following the lines
of the proof of Proposition 2.56, using Lemma 4.24. ]

Lemma 4.25 Provided k € [0,n], p € (0,7), A € X,,, the following commutation identities hold,
(i) POL— Ay )~ f = (ML= Ay ) 'Pf,  for all f € L2(R?, A¥);
(i1) d(ANL—Aqy )71 f = (AL — Ay ) tdSf, for all f € Da(d,R%, A¥) ;
(i) d*(AL— Agy )71 f = (A1 — Agy )" f, for all f € Do(d*,R%, A¥).
Every above identities still hold, replacing (t,P,d,d*) by (n,Q,§*,9).

Remark 4.26 Lemma 4.25 does not depend on the domain, {2 = R’} since its proof only relies
on the use of the sesquilinear form associated with the Hodge Laplacian.

Proof. — Step 0 : For all u,v € Da(D, R}, A),

ar ¢ (Pu,v) = <d]P’u,dv> + <d*IP’u,d*v>

R} R}
= <du,dv> "
<du dIF’U>
<du d}P’v>R,L <d*u,d*]P’v>]Ri
= ay, (u [P’v)

Step 1 :Let pe (0,7), A€ ¥,, and f € LQ(RZ}_,A’“), we set u := (Al — Ay ()1 f, then for all
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v € Do(Dy, R, A),
)\<]P’u, v>]R1 + ay ((Pu,v) = )\<u,]P’v>]R1 + az ¢ (u, Pv)
=(/, PU>JR1
= <Pf7U>R1'
Hence, by uniqueness of the solution to the resolvent problem in L2 (R%,A), we deduce Pu =
(AL— Ag, )~ 'Pf.

Step 2 : We use the same notations as the ones introduced in the Step 1, but we assume that
[ € Da(d,R7%, A®). For all v € Do(Ay ¢, R, A),

(.0)g, = (),
= )\<u,d*v>]R1 + az ¢ (u, d*v)
( " + <du,dd*v>Ri + (d*u, (d*)2v>R1
¢ ot <d*du,d*v>]Ri
<du,v>]Ri + <ddu,dv>Ri + <d*du,d*v>]Ri
<du,v>R1 + ay ¢(du, v).
Since the continuous embedding Dy (Az ¢, R}, A) < Da(D, R}, A) is dense, the above equality
still holds for all v € Dy (D¢, R, A). Hence, by uniqueness of the solution to the resolvent problem

in L?(R’, A), we obtain du = (Al — Ay )~ 'df. The proof ends here, since all remaining results
can be proven similarly. |

Lemma 4.27 Let k € [0,n], the following operators

d(_A"H,t)7% : LQ(R:E,A]C) — N2(d’ Ri,AkJrl);
" (~Ap) 7 L(RY,AF) — No(d R, AR

[N

are well-defined bounded linear operators on LQ(Ri,A), and are each-other’s adjoint.
Everything still holds, replacing (t,d,d*) by (n,d*,9).

Proof. — We prove the L?(R", A)-boundedness of d(—AH,t)_% and compute its adjoint.

We use bounded holomorphic functional calculus of Dy on L?(R", A) provided by Proposi-
tion 4.20. By the mean of z — ﬁ, and the boundedness of P, we have, for all A > 0, and all
f e LRy, AF)

_1
[d(AL = Agq,0) 72 fllLz@y) < [1f ey ;
" _1
[d* (AT — Agy o) QfHLQ(]Rj_) < ||fHL2(R1)-

The adjoint of d(Al — Ay ()2 provided A > 0, is (Al — Ay )" 2d* = d* (Al — Ay ) 2 up to a
dense subset of L?(R, A) (here Dy(d*, R, A)). Thanks to Lemma 4.25, we can pass to the limit
as A goes to 0 in the L? inner product yielding

(A(—Ag,)72) = d*(—Ag,) 2. n

We can summarize

Theorem 4.28 Let k € [0,n], the following assertions are true
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(i) The following equality holds

Na(d,R?, AF) = Ry(d, R, AF) W26

and still holds, replacing d by d*.

(ii) The (generalized) Helmholtz-Leray projector P : L?(R7, AF) — N2(d*,R7, A*¥) satisfies
the identity

P=1—d(~Ay) 2d"(~Ap) 2,
(iii) The following Hodge decomposition holds,
i
L*(R7%, A%) = N?(d*, R, AF) & N2(d, R, AF).
Moreover, the result remains true if we replace (t,d,d*,P) by (n,d*,9,Q).

Remark 4.29 The Theorem 4.28 and the whole construction of this section mainly depends on
the injectivity of the Laplacian : the construction is done via resolvent approximation, the abstract
functional calculus provided by the Hilbertian structure of LQ(RQL_, A) and the self-adjointness of
the Laplacian. Therefore, such construction and the proof do not depend on the open set Q = R7}.

To be more precise, the above Theorem 4.28 should remain true for all openset €, say at least
Lipschitz, which have no harmonic forms. In the case of a bounded domain : the theorem remains
true whenever all its Betti numbers vanish.

Proof. — Step 1 : Identity for P.

From boundedness of above operators, we deduce that the new operator P defined for all
feL?(RY,A) by

Pf = f —d(—Ag.) 2d*(—Au) 2 f,

is well-defined and bounded on LQ(RT;, A). We are going to check that P is an orthogonal projector,
hence, firstly a projector.

Pf = Bf — d(—As,) 2d*(~Ag) 2Bf
=Pf = (=D 2 (D)2 f + (A=A ) "2 (< Ag)ES
= lim (Bf — d*d(AL — Agg,) ' f + [A*d(AL = Ag ) TP S)

= lim (Pf — A"d(AL = Ag,)7*f)
=Pf.

By construction and by Lemma 4.27, P is self-adjoint, hence orthogonal.
For all f € Dy(d*, R, A),

AP = Jim (d°f = ddAL= Ay, Hd A= Ay, 7H )
= lim (4" + Agy (M - Ag,) 7 f)
= lim (d°f —d"f) = 0.
Thus, since the embedding Do (d*, R, A) < L?(R", A) is dense, it follows that

Ro(P, R, A) C No(d*, R, A).
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For all f € Na(d*,R%,A)

Ff = Jim (f = d = Ag,) 7" (A1 = A, )71 1)

= )1\1_}1110 (f =AM\ = Ag)~'d*f)

= lim (£ +0) = /.

Hence, ]P’|N2(d*ykim =1L
By construction, we also have Ry(I — P) = Ra(d(—Agp ) 2d*(—Ap)"2) C Ra(d, R, A) and
obviously P = P, so that by uniqueness of the orthogonal projection on No(d*, R%,A), P="P.
Step 2 : We notice first that the inclusion Rg(d,Rfﬁ,Ak)H.”L%Ri) C No(d, R, AF) is true.
Now, for the reverse inclusion let f € N(d,R"}, AF), we have
[1—P)f = lim dd*(\I — Ay )"t f
A—0
= lim —Ag (AL = Ag )"t f
A—=0 ’

By construction, for all A > 0, we have dd*(AI — Ay ()71 f € Ro(d, R, A¥1), so that the reverse
inclusion Na(d, R?, A¥) € Ry(d, R, AF) &) holds, n

2.3.3 H*” and B;’q-theory for Hodge Laplacians and the Hodge decomposition

We start this new subsection claiming about closedness of the exterior and interior derivatives
with and without 0 boundary conditions. The two following lemmas are straightforward.

Lemma 4.30 Letp € (1,400), s € (=14 1/p,1/p), k € [0,n]. With the same notations as in
Lemma 4.18, the operators

(D(d, R, A%),d) and (D;(3,RY, A), )
are densely defined closed operators on Hs’p(RTfr, A).

Moreover,

o the result still holds replacing (HS7P,D;) by either (H*?,Dy;), (B,

pa> Dp.a) or (B g, Dp o),
with g € [1,400) ;

p,q’

e in case of (B} ,D; ) and (B;OO, Dfo’oo) above, operators are only weak* densely defined,
strongly closed operators ;

e all the above results remain true, exchanging the roles of d and 6.

Lemma 4.31 Letp € (1,+00), s € (=14 1/p,1/p), k € [0,n]. With the same notations as in
Lemma 4.18, the dual operator of (Dy(d,R%, A),d) on H*P(RY, A), s

(D,*(d*, R%, A),d*) = (D, (6, R}, A), 8)

as an operator on H=%' (R, A).

Moreover,
e the result still holds, replacing (H*?, D;,H_S>p/7 D;,S) by (B;q, D;yq,B;,fq,, D;,fq,) with q €
[1,400);

e we may replace (D, H,B) by (D,H,B).

e all the above results remain true, exchanging the roles of d and 6.
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Remark 4.32 Notice that talking about Dy (d,R%, AF ) in above lemmas, with respect to notation
introduced in Lemma 4.18, in particular the involved 0-boundary condition, actually makes sense
thanks to Theorem 4.15.

Before we start our investigation of Hodge Laplacians and the Hodge decomposition, we need
to show the closedness of Hodge-Dirac operators. In order to verify such a property, the next
result is of paramount importance to reproduce the behavior obtained in the L? setting on other
scales of function spaces. We mention that many results presented here strongly depend on the
fact that the considered openset is R’} (mainly Lemma 4.33, and point (ii) of Theorem 4.36 which
are widely used to construct other results of the present section).

The proof of the next lemma is identical to the one of Lemma 4.24.

Lemma 4.33 Letp € (1,+), s € (=1+1/p,1/p), k € [0,n]. For all u € D‘;(d,Ri,Ak) (resp.
D;(d*,Rﬁ,Ak)) we have

Eyu € D5(d,R™, AF)  (resp. D3(5,R",A*) )
with formulas
dEy u = Ey du (resp. 0Eq u = Egy (d"u).

Moreover,
e the result still holds, replacing D; by D;,q with q € [1,400] ;
e we may replace D by D.

e all the above results remain true, exchanging the roles of d and §, and replacing t by n.
Proposition 4.34 Letp € (1,400), s € (=14 1/p,1/p), k € [0,n]. The Hodge-Dirac operator
(D5(Dg, R, A%), D) = (D5(d, R, AF) N D3(d*, R, A%), d + d*)

is a densely defined closed operator Hs’p(Ri,A),
Moreover,
o the result still holds replacing (HS7P7D;) by either (H*?,D7), (B; ,,
with q € [1,400) ;
e in case of (B} ., D; ) and (BIS)’O07
defined, and strongly closed ;

D;’q) or (BS

p,q’

D7)
D;oo) above Hodge-Dirac operator is only weak* densely

e all above results remain true, replacing (t,d) by (n,9).

Proof. — Let (uj)jen C D;(d,Ri,Ak) ﬂD;(d*,Ri,Ak), and (u,v) € HP(R", AF) x H*P(R, A)
satisfying

uj ——u and Dy —— v in H*P(RY).
Jj—4oo Jj—+4oo

We set for all j € N, U; := Eg u;, U := Eg u. By Lemma 4.33, we have for all j € Z
Uj € Dy(d,R™, AR N Dy (d, R™, A¥)

DUJ = E’H,tDtuj-
We also have,

DU; ——— V := Eq  in H*P(R").

J—r+oo
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By the Hodge decomposition on R™, check Theorem 4.12, there exists a unique couple (V, V1) €
R;(d,R”,A) X N;(é, R”, A) such that V = Vg + V4. Since U; goes to U in H*P(R™, A¥), by
continuity of involved projectors, and uniqueness of decomposition, it follows that

j—+oo

Jj—+oo

In particular, if we set v := Vj,, for £ € {0,1}, we necessarily have by restriction
+

duj —— vy and du; — w1 in H>P(RY).
J . 0 j +
j—+o0 J—too

But (u;);en converge to u in Hs’p(Ri, AF), so in particular in distributional sense. Thus, necessarily

(vo,v1) = (du, 6u) and v = Du. By continuity of trace provided by Theorem 4.14, we also have

v, =0, ie, (Di(D,RY,A*),D,) is a closed operator on H*?(R", A¥). The proof ends
¥

here, since one can reproduce all above arguments for (]f);(Dm R",A*), D), and also for all other
kind of function spaces. |

The next result about closedness of Hodge Laplacian admits a similar proof
Proposition 4.35 Letp € (1,400), s € (—1+4+1/p,1/p), k € [0,n]. The Hodge Laplacian
(DIS)(A'H,U Ria Ak)a _AH,’() = (D;(va R:L-v Ak)) D?)

s a densely defined closed injective operator on Hs’p(Ri7A), For allu € D;(Ayyt,Ri,Ak), the
following formula holds

—AEH#L’LL = EH,t[_AH,tu] .

Moreover,

e the result still holds replacing (H”’,D;) by either (H*?,D;), (B; ,D; ) or (B;7q,D;,q),
with q € [1,400) ;

e in case of (B, ., D; ) and (BZ,OO, D;OC) the Hodge Laplacian is only weak® densely defined,
and strongly closed ;

e all above results remain true, replacing t by n.

From there, the whole context has been established in order to be able to claim the next
theorem.

Theorem 4.36 Letp € (1,400), ¢ € [1,+00], s € (=14 1/p,1/p), and k € [0,n].
(i) For pe[0,m), A€ X,, if f € Hs’p(Ri,Ak) then the following resolvent problem

A —Ayu=f inRY,
admits a unique solution u € D;(AH, R?, AF) C [H“’ N H5+2*p] (R7, AF) with the estimates,

1
Al iy + NIl 1y + 1920l ) Sponsss 1 1o

A2 (A + 8)ul

fer(rn) T [[doul frer(re) T [[odul Flem (R ) SSPom5 0 1] Heor (R

In particular, N\ — Ay : D;(AH,R’LA’“) — Hs’p(RTfr, AF) is an isomorphism of Banach
spaces.

Furthermore, the result still holds replacing (Hs’p, Hs? N H3+2’p,]f)‘;) by (H®P HS 2P, D7),

(BS B‘;’q NB:T2 D2 ), or even by (BS,,B5t2 D3 ).

pP,q° p,q ’ T P.q P,q’ = P,q ’ T p,q
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(ii) For any p € (0,7), the operator —Aq admits a bounded (or H*(X,)-) holomorphic
functional calculus on function spaces : H*P(R", A*), B;q(Ri,Ak), H*P(R, A") and
s n k
B, (R, AY).
Moreover, the following resolvent identity holds on any previously mentioned function
spaces,

Ex(\—Ay)™' = (M- A) 'Ey.
Proof. — For pu € [0,7), A € 8, if f € H*P(R, A¥), thanks to (4.20), we have
(AL = A)'Ey f € [H*P N HST2P)(R™, AF).

Thus u := [(Al — A) " Eg f],,.. € [H¥? NH+2P(R?, AF), satisfies

[
A —Au=f in R,
with the estimates

[All[ul

o) + NIV
A1+ 6yl

frer®e) T V%4l feo @) Sponssp | flligen @),

for(rn) T ||d5u||Hsyp(R¢) + \|5du||Hs,p(Ri) Senssan || Hop(RT)"

By density of [L2 N H‘*”](Rﬁ, AF) in Hs’p(Ri, A*) one may use Theorem 4.22 and continuity of
traces provided by Theorem 4.15 to show that necessarily v Juj,,,, =0 and v 2du,,, =0 (or
. + +
resp. v Auj,,, = 0and v Aduy,,, =0). Hence u € Dy (Az, RY, AF).
¥ ¥

Now assume v € D;(AH,RQ, AF) satisfies
A —Ayv=f in R7.
We apply Proposition 4.35 to claim that V := Exv must satisfy
AV — AV = Eg f in R™.

Thus, necessarily Eyy (Al — Ayg) " f = (AL — A) " 1Ex f.
This resolvent identity leads to the construction of bounded (H*°(%,,)-)holomorphic functional
calculus, given by the following identity for all ¥ € H>*(X,), u € (0,7) :

Enl(—Ay) = U(—A)Ey.

The result for homogeneous Besov spaces B; ¢ 4 < +00, and other similar inhomogeneous function
spaces may be achieved similarly. The case of inhomogeneous and homogeneous Besov spaces
with ¢ = 400 follows from real interpolation. |

The goal for now is to prove the Hodge decomposition. The idea is to prove that the representa-
tion formula of P (resp. Q) proved in Lemma 4.27 still makes sense on H*? (R, A), By (R}, A),
and their inhomogeneous counterparts. To do so, we adapt Lemma 4.25 in the present setting.

Lemma 4.37 Letp € (1,+00), s€ (=14 1/p,1/p), p€[0,7), A€ X,,t >0, k € [0,n]. The
following commutation identities hold,

(i) NI — Agg) 71 f = (AL = Ay )7Ydf,  for all f € D3(d,RY,AF);
(i) d*(AL = Ag )7L f = (NI = Agg)"2d*f,  for all f € D3(d*, R, AF).
(iii) detAnif =etAnadf,  for all f € Di(d, R, AF);
(iv) d*etAwsf =ethwid*f forall f € D3(d*, R, AF).
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Every above identities still hold, replacing (t,d,d*) by (n,0*,9), and D; by either Dy, Dy . or

even by D;’q, with q € [1,4+00].

Proof. — Let f € Dg(d,Ri,Ak) C Hs’p(Rﬁ,Ak), then by Theorem 4.36 there exists a unique
u € D3(Ag,, R%, AF) € D3 (D, R%, AF) € D3(d, R, A¥) such that

A — Agu = f.
Since u, f € ng(d,Ri,Ak), we deduce that Ay u € D;(d,Ri,Ak) and we use d2 = 0 to deduce
Adu — Ay du = df.
But, we have du € H*?(R%, A*1) the solution of
v — Ay v =df.

Thus, uniqueness of the solution yields du = (Al — Ay ()~ *df. If it holds for resolvents, then it
holds for semigroups. |

Proposition 4.38 Letp € (1,400), s € (=141/p,1/p), k € [0,n]. For any X > 0, the following
operators are well-defined and uniformly bounded with respect to A

NI

AN = Agg)™
AL = Agg )™

t HYP(RT, AF) — No(d, R, AR ;
t HOP(RY, AY) — Nj(d*, R, AR

(NI

Moreover, the following identities also hold for all A > 0

1

o A= Ay )72 f = (A= Ay ) 2df for all f € D3(d, R, AF) ;

o *(NI—Ag) 2f=(N—Ay) 2d"f  forall f €D3(d*RY,AF).
Everything still holds, replacing (t,d, d*) by (n,*,8), and replacing (H>?, N;) by either (Bi,q» N;yq),
(H*P,N?7) or even by (B; ,, N5 ) with q € [1,+0c].

p,q’

Proof. — For X > 0, we introduce the representation formula,

1

(A= Ag ) 2f= 4 /ﬂo e=mrerbo p AT (4.21)
[V N '

This representation formula makes sense thanks to holomorphic functional calculus, and the
integral is absolutely convergent for every for f € R;(AHMR? AF).

We use the definition of function spaces by restriction and the bounded holomorphic functional
calculus, with the identity provided by point (7i) of Theorem 4.36, i.e. g e™2%t = e™Eq , to
obtain

[AAL = Agg,) "% f]

fre () + AT AL = Bag) 2 f|

_1
i (n) Sk [VAL= A)72Egy (f|

gn,k,syp ||f‘

Hs,p(Rn)

Hep(R%)

Therefore, the boundedness follows by density of R;(A;.M, R?, AF)in Hs-» (R%, AF). Commutations
relations when A > 0 follow from Lemma 4.37 and the representation formula (4.21). The
boundedness on the Besov scale follows from real interpolation. |

According to more convenient and usual notations with respect to the field of partial differential
equations, we set new symbols.
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Notations 4.39 We introduce the following notations

Hfg = N;(d*), HYP = N;(d) and H)? := N;(cS), HYP = NZ(d*);
B‘;”Z’t =N; (@), By7:=N; (d) and By7 :=N; (), By7 == Nj (57).

Then we are able to obtain the following result.

Theorem 4.40 Letp € (1,+00), q € [1,4+0], s € (-1 4+ 1/p,1/p), and let k € [0,n]. It holds
that

(i) The following equality holds with equivalence of norms,

I-llss o o

NS (d, R, A%) = Ry (d, R, Ak) ,

and still holds replacing d by d*.

(ii) The (generalized) Helmholtz-Leray projector P : H*P(R", AF) — Hf;g(R’_f_,Ak) is well-
defined and bounded. Moreover, the following identity is true

P=T—d(-Ap) 2" (~An0 F.
(iii) The following Hodge decomposition holds
HoP(RY, A%) = HPZ(RY, A%) @ HP (R}, AF).
Moreover, the result remains true if we replace

o HP by BS

p,q "
e (H,B) by (H,B);
4 (t7d,d*,]P>70','y) by (n76*75’Q77’0—)'

In case of Besov spaces with ¢ = 400, the density result of point (i) only holds in the weak™ sense.
Proof. — One may reproduce the proofs of Theorem 4.28, thanks to above Proposition 4.38. W

The following corollary is a direct consequence of the given expression for the Helmholtz-Leray
projection in Theorem 4.40.

Corollary 4.41 Let p € (1,+00), s € (=1 +1/p,1/p), p € [0,7), X € ¥, k € [0,n]. The
following commutation identities hold for all f € H¥P(RY, AF), for allt >0,

(AL = A ) 'Pf =P — Ag) ',
AHAPf = PetAu f,

Above identity still holds replacing (t,P) by (n,Q), and H>P by either HS?, B, , or even by Bg’q,
with q € [1,4+0].

2.3.4 Hodge-Stokes and Hodge-Maxwell operators

The present subsection is about discussing properties of Hodge-Stokes and Hodge-Maxwell
operators. First, one can define Hodge-Stokes operator’s domain, for all p € (1,400), s €
(_1 + 1/p7 1/p)7 ke [[O,TL]L by

D5 (Agg,e, R, AP) = HP (R, AY) N D3 (Ag e, R, AF), (4.22)
and for all u € D;(Aﬂ’t,Ri, AF)

Ay pu = d"du = —PAu = —APu = —Auw. (4.23)
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Above operator Ay ¢ is called the Hodge-Stokes operator with absolute boundary conditions
which is a closed densely defined operator on H' (R%, A*).
Similarly, one can treat the case of the Hodge-Maxwell operator,

DS (Mg, R, AF) := HIP (R, A%) N D3 (A, R, AF), (4.24)
and for all u € D3(Myy, R, AF)
My v :=dd*u = —[I = P]JAu = —A[l — Plu = —Au. (4.25)

The operator My  defined as above is called the Hodge-Maxwell operator with perfectly
conductive wall boundary conditions which is a closed densely defined operator on Hf{p (R7, AF).

Similarly, one may replace (t,d,P) by (n,d,Q), respectively in, (4.22) and (4.23), and in (4.24)
and (4.25). This leads to the construction of

(D;(AH,I‘URia Ak)7AH,l‘l) and (D;(MH,I‘URia Ak)aM'H,n)

called respectively the Hodge-Stokes operator with relative boundary conditions and the
Hodge-Mazwell operator with relative boundary conditions, which are both closed densely
defined operator on H3P? (R, A*) and Hy% (R”, AF), respectively.

Those Hodge-Stokes and Hodge-Maxwell operators still have sense on other scale of function
spaces replacing (H*?, D;) by (B;q, D;q), then (H,B,D) by (H,B,D).

Notice again the exception of Besov spaces, homogeneous and inhomogeneous, where the
domains of any Hodge-Stokes and Hodge-Maxwell operators are only weak* dense in the case
q = +o00.

With the above definitions, Theorem 4.36, Corollary 4.41 and Theorem 4.40, we obtain for free
the next theorem.

Theorem 4.42 Letp € (1,+00), s € (=1+1/p,1/p). For all u € (0,7), the operator Ay ¢ (resp.
My () admits a bounded (or H*®(X,)-)holomorphic functional calculus on H{2(R'Y, A) (resp.
B3P (R7, A) ).
Moreover, the result remains true if we replace

e HP by B; . q € [1,+00];

« (H,B) by (H,B);

° (t’ 0-) ’Y? A’ M) by (n7 77 0-) M’ A)'

3 L¢-maximal regularities with global-in-time estimates

Before going further, we want to simplify notations. From now on, we only consider function
spaces on R’ and no longer on R", so that we drop the mention of the open set in domains of
operators, we all also drop the mention of degree of differential forms, except when it is necessary.
Any discussion involving Dirichlet and Neumann Laplacians will always contain the implicit
information that their domains are made of scalar valued functions, whereas talking about Hodge
Laplacians and their derived operators will always contain the implicit information we are talking
about general differential forms valued functions of any degree, unless it is explicitly stated.

A first aim of this section is about to give an explicit description of homogeneous interpolation
spaces, provided 6 € (0,1), ¢ € [1,4+00], see [DHMT21, Proposition 2.12],

(X, D(A))a,g = Da(0, q), (4.26)
where X = Hs’p,B;,r and A € {—Ay, Ay, My}, with p € (1,400), =14+ 1/p < s < 1/p,
r € [1,+00). The main task here is about to compute (4.26), in order to compute above
space for A = —Ay. Indeed, for the related Hodge-Stokes operator, due to the commutations
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relations between the Hodge Laplacian and its Helmholtz-Leray projection, see (4.23), (4.25) and
Corollary 4.41, we should have (at least formally or up to a dense subset)

DI (6,9) = (HLE(RY), D5 (Ag,0)0,g = P P(RY), D5 (As0,0))0,0 = PDR . (6,9).

Obviously similar identities can be obtained with (n, Q) instead of (t, ), but also for the Hodge-
Maxwell operators up to appropriate changes.

Secondly, we aim to recover global-in-time L?-maximal regularity estimates for the abstract
Cauchy problem (ACP), provided T € (0, +oc], for A € {—Ay, Ay, My}, so that we are able to
apply Theorems 3.6 and 3.21.

3.1 Interpolation of homogeneous H*”-domains of operators

We start this section claiming that one can reduce the problem to the computation of interpo-
lation spaces

DR (0,9) and DL (6, q).

We recall here for convenience that —Ap and —A s stands respectively for the (negative) Dirichlet
and the Neumann Laplacian on the half-space for which a review of their properties in homogeneous
function spaces was achieved in the Section 6 of the previous Chapter 2.

To see it, one may stare at Theorem 4.22, Propositions 2.58 and 2.60, formula (4.19), Lemma
4.33 and Theorem 4.36 until the next lemma becomes quite clear

Lemma 4.43 Letp € (1,400), s € (-1 4+ 1/p,1/p), k € [0,n]. For all u € D;(AH,“A]‘;), we

have

Aq.[,tu = Z AN’U[ dxy + Z AD’UJ[/JL dzp Adx,.
IeTk ezt

n—1

We also have estimates,

dcul

fergn) Z |Apur r
S

i (n) + 110U emgny ~posn > lAwur]

Iezk

n—1

Hs.p (R%)

~psn |Vl Hep (R )

~p,s,n HU| Hs+2,p(Ri).

The result still holds replacing (t, N', D) by (n,D,N).

And for the same reasons, one has more generally,

Lemma 4.44 Letp € (1,4+00), s € (=1+1/p,1/p), a € [0,2], such that s + a # 1/p,1+ 1/p,
k € [0,n]. For all u € D5((—Ay)?%,A), we have

sta
Heter(R7) ~p,s,aom (=A%) U||LP(R1)~

1(=A) % ul

Hep(R7) ~pss,un [[ul
Recalling that in particular, AHvtle = Ap and A”"“’“\Ao = Ap.

In general, explicit description for interpolation spaces with boundary condition may be quite
tedious. We mention the work of Guidetti [Gui9la; Gui91b|, where such investigation is done.
Guidetti’s results were used to make a extensive treatment of elliptic boundary value problem
with general Lopatinskii-Shapiro boundary conditions in inhomogeneous Besov spaces on the
half-space and on bounded domains with smooth boundary.

Thanks to Lemmas 4.43 and 4.44, the current work is reduced to Dirichlet and Neumann
boundary conditions in the homogeneous case, which is unknown to the author’s knowledge yet.
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For p € (1,40), ¢ € [1,400], s € (-1 4+ 1/p,2 + 1/p), such that (Cs, 4) is satisfied, we set :

B;,q(Ri) ) if (S < ;))7

B:  (R?) := . )
+ {uGB;”,yq(Ri)’ubmi :0} ,1f(s>%) or (SZ%andqzl).

p,q,D

By o (RL) = Bpa(R2) Jf (s <1+ 3),
P e BB |y =0} (5> 14 o (s= 14 and g = 1),

and similarly (Cs ) is satisfied, we also set :

H3P(R?) = He(RY) i s <,
DA {uEHS’p(Ri)’umn :0} ,if8>%.
+
H*?(R™) yifs <147,

HP(R?) = .
A (R {uEHS’p(Ri)’&,ubRi:O} 7ifs>1—|—%.

And then, for J € {D, N}, we introduce the following subspace

Y= (1 [D;nD;nD;, ND; J(Ag).
s€(—1+1/p,1/p)

PE(1,+00)
q€[l,4]

Proposition 4.45 Letp € (1,400), ¢ € [1,400), s € (=14 1/p,2+ 1/p), such that (Cspq) s
satisfied, we have that

. < llss @n)y
g (RE) =Yg Tratsd,

whenever
e 7=D,s#1/p,1+1/p;
e T=N,s#1+1/p.
When q¢ = +oo, we still have weak™ density.

Proof. — We recall that for all p € (1,400), § € [1,4+00), § € R, such that (Cs ) is satisfied, we
have that
. ——=lllss _@n
B3 (RY) = 8(RY) ra™H
o First, assume that s € (1+1/p,2+1/p), for u € B;’qJ(RZ‘r), weset f:= —Agu € B;;Q(Rﬁ).
For (fj)jen C 8o(R7) such that

fi——f, By 2RY).

Jj——+oo
We set for all A > 0,
Uy, = ()\I — AJ)_lfj S YJ

where belonging to space Y 7 is a consequence of Propositions 2.58 and 2.60. For u, A > 0,

153



4 Hodge decomposition and maximal regularities for the Hodge Laplacian on the upper
half-space — 3 Li-maximal regularities with global-in-time estimates

by Lemma 4.43, we have
ljn = s ullss @) Sspan [~A7AI=A7)71 5+ Az (ul = Az) 7 ]
Ss,p,qm ||_AJ()‘I - AJ)ilfj - fj|

+ i+ Azl —Ag)7t ]

By (RY)

By 2(R%)

2q

0.

Ns—2 iy 7
Bis)qq (R+) A, u—0

By uniqueness of the solution for the Neumann (resp. Dirichlet) problem provided by
Proposition 2.62 (resp. Proposition 2.61), (v, j).>0 is a Cauchy net that admits a limit
that must be the unique solution u;. The strong continuity of (—A 7)1 concludes the case
of se(14+1/p,2+1/p).

e For s € (1/p,1+ 1/p), we consider first the case J = N. Again, for u € B;,%N(Ri) =
Bg’q(Ri), we can introduce (u;)jen C 8o(R%) such that

Uj ——— U
Jj—+oo

We set for all 7 > 0,
U j 1= (I — TAJ)_luj' S YJ

where belonging to space Y 7 is a consequence of Propositions 2.58 and 2.60. It is direct to
see that

Ur 5 TA—T()—) Uj m u in B;’q(Ri)
For the case J = D, since B;’q’D(Ri) = BZ,q,O
from Lemma 2.32.
This argument still works for s € (—1+ 1/p,1+ 1/p), when J = N.

o Finally s € (—=1+ 1/p,1/p), we notice that BZ,qJ(Ri) = B;,q’o(Rﬁ) = B;q(Rﬁ). Since

C*(R%) C Yy, the result follows from Corollary 2.34. [ |

(R%) and CP(R") C Yp, the result follows

The next result has a similar proof, left to the reader.

Proposition 4.46 Let p € (1,400), so,s1 € (1/p,2+1/p), T € {D,N} such that (Cs, p) is
satisfied, we have

[HSJO,;D N Hsl,p](Ri) _ WH'H[HSOvPﬁHSIvP](Ri) ,
whenever 1/p < sg,s1 < 2+ 1/p, except for s =1+ 1/p when J =N

The next lemma is inspired from [Gui91b, Lemma 2.4].

Lemma 4.47 Let p; € (1,400), ¢; € [1,400), and s; > 1/p;, for j € {0,1}. Let T be the map
!
T : fr |2, 2n) = e ™ (AD2 12
(i) Assume s; € (1/pj,1+2/p;), for j € {0,1}. Then the operator defined formally by

Ppu :=u—T]

u'BRi]’

is such that
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a) If (Cso.po) is satisfied, then Pp : [HooPo A Ho L PL|(RT) — [H39 P N HoLPL|(RY) is

a well defined linear and bounded projection. For all u € [H*Po N HTP1|[(RY) the
following estimate is true

| Ppul

%P5 (RT) Spyssn ||U||HSJ"PJ‘(R1) . j €{0,1}.

b) If instead (Csy,po,q0) @S Satisfied, then the above statement still holds with (Bzg’qo, Bfﬁv’ll)
replacing (Fs0-Po Fs1:P1),
We also have that Pp : st)g,oo(Ri) N B;?)’OOVD
bounded.

(it) Assume s; € (1+1/p;,1+2/p;), for j € {0,1}. Then the operator defined formally by

(R'}) is also well-defined linear and

Pynu:=u—+ (*A/)iéT[aﬂ:nu\amL

satisfies points (i)(a) and (i)(b) with N instead of D.
Proof. — This is a direct consequence of Proposition 2.43 and Corollary 2.44. |

Proposition 4.48 Letp € (1,400), s € (—1+1/p,1/p), T € {D,N,H}, then (DZ(AJ), —Ay7)
satisfies Assumptions (3.4) and (3.5). In other words, —Az is injective on H*P(R™), and we can
define

D (Ag) = {u € B**P(R1) | 3(uj)jen C Dy(Ag), v = ujlligesaner) vl

such that it also satisfies
H*?(R%) ND5 (A7) = Di(Ag). (4.27)

The result still holds with either Aq ¢ (resp. My () on Hfg(Ri) (resp. ny’p(Ri)), and similarly
replacing (ta a,7, A, M) by (1’1, v, 0, M, A) .

Proof. — We only show (4.27). The following inclusion is clear
Di(Az) C HYP(R7) ND3(As).
Now, let u € H*P(R%) N D;(AJ)7 then obviously
u € HP(R%}) N H22(RY).

It suffices to show that u has appropriate boundary conditions. We assume here that J = D,
other cases would be achieved similarly. Let (u;)jen C D;(Ap), such that

[l — ;] fe+2e®y) o O

j—+oo

Since u — u; € Hs’p(R’_ﬁ) N Hs”’p(RQﬁ), one may apply Proposition 2.52, and use Uj), o = 0 to
+

obtain

HS+2,p(Ri) —_— 0

||u\an§1 HB;;Q*”P(RTL—U Ssopon U — ujl o too

Therefore u, ., =0 so that u € DZ(AD). |
+

The Proposition 4.48 tells us that, for all p € (1,4+0), s € (—1 4 1/p,1/p), it makes sense to
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consider the semigroup,
eS¢ HP(RY) + D3(Ag) — 9P (RY) + D3 (Age),

thanks to [DHMT21, Chapter 2, Section 1].

For convenience of notations, and for later use, one may think about Lemma 4.43, we also set
for all p € (1,+00), ¢ € [1,4+00], s € (=14 1/p,1+2/p), such that (C; p 4) is satisfied, and for
k € [0,n],

B;,Q(R17Ak) a8< %7
s n s n Ak _ 1 1
Bp,q,Hl(R+7Ak) . {ue B, (R}, A )|en4u|mRi —0} 5 <s<1+,
{we By BN en supyy s e sduy,, =0) 14+3<s<2+1.

(4.28)

It is not difficult to see from point (%ii) of Theorem 4.15, that,

. . n—1 . n—1
s R AF) =By o R By (7)),

for which one may check for instance the Step 3 of Theorem 4.15’s proof.
One can also build in the same fashion By _ 5, (RY, A¥), with boundary conditions v Auj,,, =0
14 n +

and v A duy,,,, =0, so that
+

> . n—1 . ne1
;7‘177"“ (Ri’Ak) = ;q,N(Ri)('ﬁl) X Bqu,D(Ri)( k )

We denote by B;’q’H(Rﬁ), either B;,q’%(Ri, A) or B‘;’qﬂ“ (R, A).
Proposition 4.49 Letp € (1,400), g € [1,+00], and s € (—1+1/p,1/p). For all 6 € (0,1) such
that (Cst20.p,q) is satisfied, provided J € {D,N,H}, one has

(HP(R}), D} (Ag))e.q = By 27 (RY),

with equivalence of norms, whenever
e s+20#+1/pif J =D,
e s+20£1+1/pif T =N,
o s+20#1/p,1+1/pif J=H.
The proof is heavily inspired from the one of [DHMT21, Proposition 4.12].

Proof. — Step 1 : We start applying Proposition 2.33 which yields the embedding
(1P (R), D3 (A 7))o < (PP (RY), 2P (R, = B (RY).

Now, if ¢ < 400, we recall that H‘”’(Ri) N D;(Ag) = DZ(AJ) is dense in (Hs’p(Ri), DZ(AJ))97q
by Proposition 1.3, so that by continuity of traces,

(H*P(RY), D3 (A 7))o, — BSL2 (RY).

P,q,J

The case ¢ = +oo will be done in later steps. )
Step 2 : The reverse embedding when s + 260 € (=1 +1/p,1/p). Let f € D, (A7), then for all
t>0

t
f:€tA3f+Aj/T6TAJfg::b+a
0 T
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with obviously f € D;(Aj) C H*P(R%) + D‘;(Aj) and by definition of the K-functional, we
obtain

K(t, f,H*P(RY}),D3(A 7)) < |af

Hsyp(Ri) + tHAyb|

Hs»(R7)"

So as in the proof of [DHMT21, Proposition 4.12], we may apply [DHMT21, Lemma 2.11] so that

1
dt ¢
q
Hs,p(Ri) t > : (429)

1+9 +oo B
||fH(HS)p(Rz)’D;(AJ))B,q < T </; ||tl eAjetAJf|

Now, for 0 < 6 < ¢, such that s +20 < s+ 2¢ < 1/p we want to bound the Li-norm of
[E:=0A 7etA7 f| B () by the L{-norm of the K-functional associated with the real interpolation
space (H*?(R7), HS"’QEVP(R:L_))%(J.

Let (a,b) € H*P(R"%) x H*T2P(R" ), such that f = @+ b, the fact that f € DZ(AJ) implies
a,be AP N HSHE”’](RQL_). By Lemma 4.44, since s + 2 < 1/p we have

beDy((-Ag)%)
Therefore, since the semigroup (e*27);~¢ is analytic, by the use of Lemma 4.44, we have
-0 A -0 Ay~ -0 AsT
1770279 fllienny < 170Dzl + 170 Age™ Bl

St (Jal

frere) T to(10] Hs+25,p(Ri)) )

Taking the infimum of all such a, b, yields

[t~ Agetaa f]

fen(ry) Spas t K (5, fHOP(RE), HOP2P (RY)).

Therefore one may take the L{-norm on both sides, and use Proposition 2.33, to obtain for all
feDy(Ay),

||f||(Hs,p(Ri),D;(AJ))g,q ~p,s,n,0,e Hf”(Hs,p(Ri),Hst(Ri))%q ~p,s,n,0,e ||f| B;Tfe(Riy
If g € [1,+00), the result follows from Corollary 2.34, since C2°(R"}) C DZ(AJ). The case ¢ = +00
is obtained via the reiteration theorem, Theorem 1.5.

Step 3 : The reverse embedding when s + 20 € (1/p,2+ 1/p), J = D. Provided f € Yp,
as introduced in Proposition 4.45, we may reproduce the above Step 2 up to (4.29). From
there, for 0 < n < 0 such that 1/p < s+ 2n < s+ 20, we want to prove that one can
bound (4.29) by the Li-norm of the K-functional associated with the real interpolation space
(Fe+2mo (R ), Ho+22(R1)) oy

T—n-9

Since f € Yp C H*+21P(R%) + Ho+2P(RY), for a,b € H*H21P(R7) x H*+2P(R") such that
f=a+b, we get

a=f—beHT2PRY) N (HAFTP(RT) + Yp) C H27P(RT) N HT2P(RY),
and the same arguments leads to b € H*+272(R%) N H*+2P(R% ). From Lemma 4.47, we have
f="Ppf="Ppa+Ppd
where Ppa, Ppb € HiF P (R7 ) N H5+22(R7 ) with the estimates

| Ppal

Hs+27.2(R7) gp,smm llal Hes+27.p(R7) and [Ppb| Hs+2P(R7) Spsim 0] Hs+2p(R7 )"
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Therefore, by the estimate above, the analyticity of the semigroup (e!2?);~¢, and Lemma 4.43,
we are able to obtain

Htl—QADetADﬂ

) A ) A
fon(Ry) S [t'7¢ Apet DPDaHHs,p(Ri)‘FHtI Ape'>PPpb| Hep (R7)

Snps t7"||Ppal

evannan) + 1" [ Pob|

Fis+2.p (R7)
gn,p,s t—(@—n) (HQHHS‘FQWP(RK) + tl_n”b”Hsﬁ—?,p(Rﬁ_)) .
Taking the infimum of all such couple (a,b), yields

160 A" Fllgo ey Spome £ OV K( T, fH200(RY), P20 (RY)).

As in the Step 2, one may take the Li-norm on both sides, and use Proposition 2.33, to obtain
forall f € Yp,

Hf”(H&p(Ri),Df,(AD))eq ~p,s,n,0,n ||fH(H5+2771P(R1)7HS+21P(R1)))ﬂ . ~p,s,n,0,n ||f‘ B;E2G(R1)~
T—n"
If ¢ € [1,400), the result follows from Proposition 4.45. The case ¢ = 400 is obtained via the
application of the reiteration theorem, Theorem 1.5, by the mean of Lemma 4.47.
Step 4 : The reverse embedding s+26 € [1/p,1+1/p), J = N. One may pick f € Y so that,
as before, we can reproduce above Step 2 up to (4.29). From there, for 0 < 7 < 6 < € such that
1/p < s+2n < s+20 < s+2¢ < 141/p, we want to prove that one can bound (4.29) by the LZ-norm

of the K-functional associated with the interpolation space (HS"’QW’(RZ];), HS+257P(R1))2%;,7(1.

Since f € Yp € H*+212(R7) + HsF2eP(R?), for a,b € H¥T27P(R%) x H*+25P(R" ) such that
f=a+b, we get
b=f—-ac Hs+2”’p(R7jr) N (HS+2E’p(RT}r) +YuN) C HS+2’7’I’(R7+L) N HSHEJ’(R?F).
By Proposition 4.46, there exists sequences (a;);en, (b;)jen C Yo such that

lla; — a”HHQmP(Ri) + [b; — b”[HerZn,mHS”EvP](Ri) j_>+oo> 0.

Therefore, the analyticity of the semigroup (" );~q and Lemma 4.43 works together to deliver
[tA e AN ay

[EANE 2V b

He-P(R%) Sposinan tn||aj||Hs+2"”’(Ri) ’

i () Spsme t 1105 ligsrzemmny
so that taking limits, it yields
A
AN a0y Spisinn P allteans (4:30)

[tApetA b

€
Hs,P(]Ri) Sp,s,n,s t Hb| Hs+2€,p(R1).

Therefore, by the estimates (4.30), the following holds

Htl—GANetANf|

—(— _
Heop(R7) Snpsme t (0= (Ha| He+2n.0 (R ) + 5770 HS+2E’P(R1)) )
From there, we can take the infimum of all such couple (a,b), and we see that

[£1 70 Apre 2 f|

i) Spmame tOTVK (T, £ H200 (R, FOVE0 (RY)),

As in the Step 2, one may take the L{-norm on both sides, and use Proposition 2.33, to obtain
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for all f € Y,

”f”(HSvP(Ri),D;(AN))e,q ~p,sn,0,n.e ||f||(Hs+2n‘p(Ri),Herzs‘p(Ri)))u’q ~p,s,n,0,m.e [ f] By 120 (R7)

If ¢ € [1,400), the result follows from Proposition 4.45. The case ¢ = 400 is obtained via the
application of the reiteration theorem, Theorem 1.5. The case s = 1/p follows from reiteration
theorem, Theorem 1.5, between the Step 2 and this one.

Step 5 : The reverse embedding s+20 € (1+1/p,2+1/p), J = N. For f € Y, we reproduce
again the Step 2 up to (4.29). Now let 0 < < @ such that 1+ 1/p <s+2n<s+20 <2+ 1/p,
we want to achieve the same estimate obtained at the end of Step 3.

Since f € Yy C H¥T272(R%) + HsF2P(R"), for a,b € H*T27P(R?) x H**2P(R") such that
f=a+b, we get

b= f—aeHTP(RY) N (HF2P(RY) + Yu) C HP20P(RT) 0 HF2P(RY).

We want to fall in the expected homogeneous domains, i.e. to get back the Neumann boundary
condition, to do so, we use Lemma 4.47, and we get

f="Pnxf="Pnxa+Pnb,

with the estimates

||77NaHHs+2w(JR1) Spon,s llal Hs+27.2 (R ) and ||PNbHHs+2,P(R1) Sponsa ||bHHs+2,P(R1)-

By Proposition 4.46, there exists sequences (a;),en, (b;)jen C Y such that

||Clj - P/\/Gl Hs+277,p(R1) + ||bj — PNb”[Hs+2ﬂ,pﬂHs+2,P](R1) — 0.

Jj—+oo

as in the Step 4, we obtain

A
[tANE N Pralisngn) Sposma t'llal

[tANe AN Pl

Hs+2n.p (Ri) )

i () Sposim, HIDllirs 2.0 (g -

Therefore, by the estimates above, the following estimate holds

[t 70 Ape ¥ f|

—(o—
Hs,p(Ri) Sn,p,s t (0=m) <||a| Hb'+2vP(R1)) :

Hs+2n,p(R1) + tlin Hb|

Finally one may finish the present Step 5 with the same arguments present in the Step 3.
Step 6 : The case J = H. Let k € [0,n], from Lemma 4.43, we deduce that the following
holds with equivalence of norms

D3 (Ag i, AF) D;(AD)(::D x D;(AN)("?)

The result is then immediate, by all above steps. The case of the Hodge Laplacian with generalized
normal boundary conditions admits a similar proof. |

Finally, we want to compute interpolation spaces for the Hodge-Stokes and the Hodge-Maxwell
operators. To do so, we set for all p € (1,400), ¢ € [1,+¢], s € (=1 + 1/p,2+ 1/p), such that
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(Cs,p,q) is satisfied, provided, k € [0, n],

> BS7U RTL’Ak , § < la
BS,UH (Ri,/\k) — p,q,t(. + ) N 51 p 1 (431)
T {ueB) 3 REA)[Gu=0} , L <s<2+,s#1+1/p.
s . BSW(R",A’“) ,s< i
Bp:Z,Ht(R%Ak) =90 +§ n Ak _ 7 1 (4.32)
{ueBp’q’Hk(RJr,A)‘du—O} ,5<s<2+;,37é1—|—1/p.

One may build similarly B;Z,Hn (R%,A%) and B;:gﬂ-{“ (R}, A¥) replacing (t, 0,7, d, d) by (n,7,0,d,d).

Proposition 4.50 Letp € (1,400), ¢ € [1,+00], and s € (—=1+1/p,1/p). For all § € (0,1) such
that (Cs120,p,q) is satisfied, one has

TS, NS (R ~s+260,0

(P (RY), D3 (Age.))o.g = By 2] (RY), (4.33)
TS n NS (T 5 5+20, n

(HSP(R%), Dy (Mg, ))o.q = By 27 (RT), (4.34)

with equivalence of norms, whenever s+ 20 # 1/p, 14 1/p.
The same result holds replacing (t,0,v, A, M) by (n,v,c, M, A).

Proof. — We only prove (4.33), other equalities have the same proof.
Step 1 : We start with Proposition 2.33 which yields the embedding

(HP(R), D3 (Agg,0))a.q = (HOP(R), HT2P(RY))g,0 = By T2 (RY).

Now, if ¢ < 400, we recall that Hfg(Ri) N D;(&H){) is dense in (Hf”g(Ri),D;(A%t))g’q by
Proposition 1.3, so that by continuity of traces,

(HED (R ), Dy (Aa)og = Byl (RY) = Byl (RY).

P,q,H¢ P,q,H¢

Again density of Hfg(Ri) N D;(;&H’t) yields §f = 0 for all f € (H*?(R?), D;(AJ))W]. The case
q = +o is left to the end of Step 3.

Step 2 : We want to extend the range of exponents for the boundedness of P, and get a density
result.

Let f € DZ(A}L{) C B;ﬁ%t(RTfr), we have Pf € D;(Ayyt) and by Proposition 4.49, [DHMT21,
Proposition 2.12], Corollary 4.41 and Theorem 4.40, we obtain successively

.
Hor(RY) ¢

MR tA q de
Spomo ([ IR 1 e )

e 1-6 tA q dt %
- Hot e
gp,s,nﬂ </0 ||t A”H,te f”Hs,p(Ri) 1 )

S/p,s,nﬂ Hf|

Q=

IPf]

e 0 A
1— t
B720(Ry) Spasnid (/O [[£777 Agy e P S|

Q=

S o .
By L2 (RY)

From the estimates above, if ¢ < 400, by density of D;(AH,{) in B;Z?%l(Ryfr), we have that

P B (RY) — By (RY)

extends uniquely to a bounded linear projection on BZZ?%{(RQ) with range B;';%Z:’(Ri) The
result still holds for ¢ = 400, by above Step 1, the reiteration theorem, Theorem 1.5, and
Proposition 4.49.

In particular, D;(A%t) = IF’DIS,(A%{) is dense in B;Z?%f(R’_f_), when g < +o0.

160



4 Hodge decomposition and maximal regularities for the Hodge Laplacian on the upper
half-space — 3 Li-maximal regularities with global-in-time estimates

Step 3 : For the reverse embedding. For f € D‘;(AH,{) B;szh(Ri) where we recall that

Byt (R) = (HP(RE), D5 (Ag0,0))0,q C HOP(RY) + D5 (Ag)

If we let (a,b) € H*P(R) x DZ(AH,t) such that f = a+ b, by Proposition 4.48, it is given that
b=f—ae (D5(A)+HP(RY))ND3(Ag,) C D3 (A )
and for the same reason a € DZ(AH,t). Therefore,
f=Pf=Pa+PbeHJL(RY}) + D5 (Ay,).

By (4.23) and Corollary 4.41, we have

||t1_9A’H,t€_mH'tf||HS~P(R1) < ||t1—9AH’te—tAH,¢Pa| HSYP(RQ) + ||t1_6AH,t€_tAH’th| HS«P(Ri)

S [P AR e ey + 1P A b g

From there, we use analyticity of the semigroup, boundedness of P given by Theorem 4.40, to
obtain

||t1_0A’H,t€_tAHJfHHSvP(]Rj;) Spons tlal fr=r(R7) T 170 Agy | fien (RY )
Taking the infimum on all such pairs (a,b) yields
||t179A7.[7£€7tAH’£f”HSvP(]Ri) SIL%S tieK(tv fa Hs’p(Ri)v DZ(AH,’:))

One may take the Li-norm of above inequality and apply [DHMT21, Lemma 2.12] and above
Proposition 4.49, to deduce that

Foo dt
1 1l gzeem ) 3 (e, 90,0 0 (/0 1170 A, P LI t>

Sp,n,S,G ”f||(HS’P(R1),D;(AH,¢))9,C,

Spon.s,0 ||f||B;§29(R1)-

With the Step 1, one has for all f € DZ(AH’t),

Hf”(H* PRY),D:(Aag,0))p,q P80 11 By (R7)”

If ¢ < 400, then the end of the above Step 2, and [DHMT21, Lemma 2.10] allows concluding
by density. If ¢ = +o00, the result follows from the reiteration theorem, Theorem 1.5, and the
boundedness and the range of P in the Step 2 (use a retraction argument, see Theorem 1.21). W

The Step 2 from the proof above leads to the immediate following corollary.
Corollary 4.51 Letp € (1,+00), g € [1,+o0], s € (—=1+1/p,2+1/p), such that s ¢ N+ ;1), and
(Cs.p.q) 1s satisfied. Then,
P Bp ot (RY) — BT o (RY),

P,q,He
I-P]: (R}) — B, 77 5, (RL),

mﬂie p,q,H

are both well-defined bounded linear projection, so that the following Hodge decomposition holds
quHt(Rn) B ZHL(RR) ® B th(Ri)'

The result still holds if we replace (£,P) by (n,Q).
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Finally, we mention without its proofs, that follows exactly the same lines, the result for
interpolation spaces for the homogeneous operator with a Besov space as an ambient (or ground)
function space, say, for 6 € (0,1), r,q € [1,4+o0], p € (1,4+00), =1+ 1/p < s < 1/p,

DR1,(0,9) = (B} . (RY), D, (A%))aq-
We are able to obtain,
Proposition 4.52 Let p € (1,+00), r € [1,+00) ¢ € [1,4+00], and s € (—1+ 1/p,1/p). For all
6 € (0,1) such that (Csy20,p,q) s satisfied, provided J € {D,N,H}, one has

(B; . (R7), D (Ag))oq = B3L20(RY),

with equivalence of norms, whenever
e s+20#£1/pif J =D,
e s+2041+1/pif T =N,
o s+20£1/p,14+1/pif T =H.
Then by mean of Corollary 4.51,

Proposition 4.53 Let p € (1,+00),r € [1,400), ¢ € [1,40], and s € (-1 +1/p,1/p). For all
0 € (0,1) such that (Csy26,p,q) s satisfied, one has

oo o e s420.0 om
(Bor «(RL),D; (Ag,0)0.0 = By 50 (R,

p,T,t p,q,He
- . . 20,
By (RY), Dy, (Ma1))e,q = By o (RT),

with equivalence of norms, whenever s + 260 # 1/p, 1+ 1/p.
The same result holds replacing (t,0,v, A, M) by (n,v,0, M, A).

3.2 Maximal regularities for Hodge Laplacians and related operators

We present here direct application of Theorem 3.21, and [DHMT21, Theorem 2.20] with
appropriate identification of real interpolation spaces, provided p,r € (1,+00), s € (—=1+1/p,1/p),

D3P (0,9), DIP(0,q), 0 € (0,1), ¢ € [1,+00] and A € { Ay, Ay, My}

subject to either tangential or normal boundary conditions, see Propositions 4.49, 4.50, 4.52 and
4.53.

We recall that the definition of involved spaces are given in Notations 4.39, see also (4.28) and
(4.31). To alleviate notations in inequalities, we drop the references to the open set R!.

We give the first two Theorems in the case where the ambient space is an UMD Banach space
which is the case of H*? and By ,, provided p,r € (1,+00), s € (=1 +1/p,2+ 1/p).

Theorem 4.54 Let p,q,r € (1,+00), and for o € (—1+1/q,1/q) fized, we set ag :=1+a—1/q.
Let s € (—1+1/p,2 + 1/p) such that s,s + 20q ¢ N+ %, (Cst2a,,p.q) 15 satisfied, and let
T € (0, +00].
For any f € Ha’q((O,T),B;,TV%(RQ,A)), ug € B;—ZQZ‘: (R%,A), there exists a unique mild
. ©s+2a n
solution u € CY([0,T], B,y (R, A)) of

ou—Au = f, on (0,T) x R”,
Vadup, = 0, on (0,T) x ORY,
+
Vollgen = 0, on (0,T) x OR™, (HHS,)
+
.o4g_ 2
w(0) = w, inBhy "(R7,A),
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with the estimate

||U||Loo((07T)’Bf?::2aq) Sg;;,n ||(atuvVzu)HHa,q((o’T)’B;w) §g,’qs,n ”f”Ha,q((o’T),B;m) + HUOHBZEQ% .

For all 8 € [0,1], we also have

||(*at)ﬁ(*A’H,t)17ﬁ“||Ha,q((07T)7B;T) 5;’,(;,71 ||fHHa,q((o7T)71'3;T) + ||UO| B;ﬁf% . (435)

Proof. — From Theorem 4.36 we have the bounded holomorphic calculus of —Ay ¢ on B;T’H£ (R%),
so that we may apply Theorem 3.21 to obtain maximal regularity estimates, whereas Proposition

4.49 gives an exact description of interpolation spaces. |

Theorem 4.55 Let p,q € (1,40), s € (=14 1/p,1/p), and a € (=1 + 1/q,1/q) fized, we set
ag:=14+a—1/q. We assume that s +2ay ¢ N+ 1%, (Cst20g,p.q) 15 satisfied, and let T' € (0, 4-00].

For any f € H*9((0,T), Hy2(R?, A)), ug € B;Z)Qf[i’v(Rfﬁ, A), there exists a unique mild solution
u e CY([0,7, B, 57 (RY, A)) of

P4, Hn
ou—Au = f, on (0,T) x R%,
du = 0, on (0,T) x R%,
vA 5“\6R1 = 0, on (0,T) x ORY, (HMS,)
vA Ugzn = 0, on (0,T) x ORY,
L9ts_2
u(0) = wug, inBpy *(R%,A),

with the estimate

el 0,7, 857200 Spien 00t V20 |iga 0,79, 1100y Sl 1 a0, ey + 0l zea -

For all g €0,1], we also have

H(_at)B(MHﬂl)l_BuHHa,q((OyT)st,p) S;ng HfHH%Q((O,T),HSwP) + [|uol By (4.36)

Proof. — From Theorem 4.42 we have the bounded holomorphic calculus of My, ,, on Hs’p(Ri),
so that we may apply Theorem 3.21 to obtain maximal regularity estimates, whereas Proposition
4.52 gives an exact description of interpolation spaces. |

Finally, it remains to apply the homogeneous Da Prato-Grisvard Theorem [DHMT21, Theo-
rem 2.20] to state our last L¢-maximal regularity theorem.

Theorem 4.56 Letp € (1,+0), ¢ € [1,400), s € (=14+1/p,1/p+2/q), such that s,s+2—2/q ¢
N+ % and (Cs12-2/q,p,q) 15 satisfied and let T € (0, 40o0].

For any [ € Lq((O,T),B;Z’Ht(Ri,A)), ug € Bi—;:
c2+57%,a

2
! ’U(Ri,A), there exists a unique mild

solution u € C)([0,T],B, , 5" (R}, A)) of
Oou—Au = f, on (0,T) x R7,
ou = 0, on (0,T) x R%,
v du‘aRi = 0, on (0,T) x ORY, (HSS))
VU = 0, on (0,T) x ORY,
wO) = wo, in By, (RY,A),
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with the estimate

2
”u”Lw([o,Tl,BiT’%) @ Vo) | oo, 8 ) Sham 1 oo, + HUOHBTJ‘*% '

In the case ¢ = +00, if we assume in addition ug € D;(A%J), we have

| (Beu, VZU)HLoo([O,TLB;m) Sposin ||fHLoo((o,T),B;m) + [[Agy ¢uol B .

Remark 4.57 Notice that above Theorem 4.56 is the only one presented here that allows L'
and L in time maximal regularity estimates.

In particular, one should notice that in the case ¢ = 1, that above solution u satisfies for almost
every t € R4,

u(t), dyult), VZu(t) € BS  (RT).

Proof. — We may apply Theorem 3.6 to obtain maximal regularity estimates, since Proposition
4.50 gives an exact description of interpolation spaces. |

Remark 4.58 One may perform a cyclic permutation of systems (HHS;), (HMS,,) and (HSSy),
but also exchange t and n, up to appropriate modification on boundary conditions and considered
function spaces, to obtain each type of results for each operator

{=A% 6 Ar e, My, =Dy, Agg o, Mg n )

3.3 Maximal regularity for the Stokes system with Navier-slip boundary
conditions

The flatness of JR"} has the interesting consequence that, for u : R} — C" ~ Al regular
enough, the tangential Hodge boundary conditions

Viu = 0,
lorn
VJdu‘aw, = 0.
+

are equivalent to the Navier-slip boundary conditions

Y Moy = 0 (4.37)
t o .
[("Vu+ Vu)u}tanla]Ri = 0.
Indeed, recalling that v = —e¢,,, since one has
[("Vu+ Vu)vl,, = ("Vu+ Vu)(—en) = [("Vu + Vu)(=en) - (—en)](—en)
n—1
= — Z(awkun + arnuk)ek.
k=1

We may use —e, - u|,,, = un(-,0) =0, yielding for all k € [1,n — 1]
T

n—1 n—1
0= Z(axkun(,()) + Op, ur(+,0))e = Z Or, ug (-, 0)eg.
k=1 k=1

This implies that u satisfies the exact same n — 1 Neumann boundary conditions, and a single
Dirichlet boundary condition on wu,. This stands exactly as in Lemma 4.43. The converse also
holds.
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As long as one has enough regularity on u at least in the Sobolev / Besov sense on R}, one is
still able to perform the same decoupling for the boundary conditions.

This occurs when s € (=14 1/p, 14 1/p), p € (1,400) for the spaces H*T27 H®P N H5+2P,
H5+2P when those are complete. It still occurs when we replace HP by B, a€ [1, +o0].

Therefore, in each of the previous definitions restricted to A* ~ C", such as e.g. (4.28), one
may replace the boundary condition v | dmaRi =0 by [("Vu + Vu)]

tan|gpn =
T
However, we mention the fact that, as exhibited in [MMO09b, Section 2], such identification is
no longer true for (even smooth) domains 2 with non-flat boundary. In this case, the equivalence
holds up to a correction term Wu, i.e., (4.37) is equivalent to

{ Vel = 0,

vadu+Wu,, = 0.

Here, W is the Weingarten map. It is linear in u and its coefficients depends linearly on the
first derivatives of the outward unit normal v, requiring then some smoothness on the boundary
09). With the flat boundary 0R" , the outward normal v = —e,, is constant, which explains why
the map W vanishes.

We can then exhibit the following maximal regularity result, where we identify A' with C".
Similar results such as Theorems 4.54 and 4.55 are also available.

Theorem 4.59 Letp € (1,400), g € [1,+0), s € (=1+1/p,1/p+2/q), such that s,s+2—2/q ¢
N+ % and (Cs12-2/q,p,q) 5 satisfied and let T € (0, 4-00].

i Cots—2 o
For any f € L4((0,7),B; , 5 (R}, C")), ug € B;,J;,th’ (R%,C™), there exists a unique mild
S2ts—2 0 )
solution (u, Vp) € CY([0,T], B2+ 77 (R, €M) x L1((0,T), By , (R, C™)) of
Ou—Au+Vp = f, on (0,T) x R%,
divu = 0, on (0,T) x R%,
t _ n
[("Vu+ Vu)z/]tan‘ak1 = 0, on (0,T) x OR?, (NSS)
Vet = 0, on (0,T) x ORY,
¥
Lot 2
w(0) = wo, inByy o (R%,C"),
with the estimate
2 s
||U||L°°([0,T],B12,t:7%) + ||(atuav U’VP)HL‘J((O,T),B;,Q) Sp,qJL ||f||LQ((O,T),]'3;ﬂ) + ”uOHBi:sf% .

In the case ¢ = +o00, if we assume in addition ug € D;(A%Q, we have

H(at% V2U7 Vp)HLoo([o,T],B;m) Sposin ”fHLOO((O,T),B;;YOO) + HAH,tU0|

- .
Bl’»OC
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5 Homogeneous function spaces on
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Résumeé du chapitre

On cloture cette these avec ce chapitre, dans lequel on étend la construction initiée dans le
Chapitre 2 au cas des ouverts spéciaux Lipschitz. Pour cela, on utilise les résultats de la Section
3.3, et on améliore I'idée de certaines preuves. Cependant, pour couvrir ’ensemble des indices
pertinents, les résultats sont formulés d’une maniére plus lourde et moins naturelle.

On montre également un théoréme de trace essentiellement optimal du type

o * F9P(Q) — Boy? (09), (e (1,+00), s € (1/p,1+1/p))

dont la preuve que 'on propose étend 'idée simple exposée par Costabel et Ding [Cos88 ; Din96]
sur 'utilisation de traces pour des espaces de Sobolev anisotropes. Afin d’adapter 'argument a
notre cas, on utilise ici le Théoréme 3.21 du Chapitre 3, qui donne effectivement des estimées de
trace anisotropes lorsque les opérateurs sont bien choisis.

Avant tout cela, on considére des espaces de fonctions homogenes sur le bord d’un ouvert spécial
Lipschitz, ce qui semble étre une premiere dans la littérature.

Summary of the chapter

We close this dissertation with this chapter, in which we extend the construction initiated in
Chapter 2 to the case of special Lipschitz domains. For this, we use the results of Section 3.3, and
we improve the idea of some proofs. However, in order to cover the relevant indices, the results
are formulated in a heavier and less natural way.

We also show an essentially optimal trace theorem of the type

ot F52(Q) — Boy? (09),  (pe (1,+00), s € (1/p,1+1/p)),
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whose proof we propose extends the simple idea exposed by Costabel and Ding [Cos88 ; Din96]
on the use of traces for anisotropic Sobolev spaces. In order to adapt the argument to our case,
we use here the Theorem 3.21, from Chapter 3, which indeed gives anisotropic trace estimates
when the operators are well chosen.

First of all, we consider homogeneous function spaces on the boundary of a special Lipschitz
domain, which seems to be a first in the literature.

1 Introduction

1.1 Issues for realization of homogeneous function spaces on bent half
spaces

It is not clear what would be the actual meaning of homogeneous function spaces on general
domains (even smooth), since one cannot perform a composition with the change of coordinates,
even in the case of a smooth bent half-space.

Indeed, assuming that u + P € 8'(R™) is a representative of [u] € S'(R") /(C[x], and U is a
smooth diffeomorphism of R™, the meaning of

uoV¥ +PoVW

is not clear. Even if it has one, it should not depend on the choice of P which is again unclear. It
is then a major issue to find a way to transfer properties of homogeneous function spaces from
the whole and the half space to a bent one by change of coordinates. In particular, investigation
of traces at the boundary seems to be tricky.

Therefore, the realization of homogeneous function spaces provided by Costabel, M°Intosh

and Taggart [CMT13], built on 8'(R") / C[z], seems to be far from being exploitable for linear

problems with boundary values, in addition of being not suitable for non-linear problems. Here
again, the 8} (R")-realization of homogeneous function spaces saves us, and allows us to perform
such composition under some circumstances.

In order to be able to give a suitable meaning of traces, we will give a construction of
homogeneous Sobolev and Besov spaces on special Lipschitz domains and their boundaries, by
improvements of some arguments presented in Section 3 of Chapter 2. The structure of extension
and projection operators used here induce the consideration of two families of regularity indices :
(-1 + %, 1] and [0, 400) with common overlap [0,1]. We also note that the naive argument
presented for Proposition 2.17 is no longer available for the non-negative family of regularity
indices.

This is the main reason why the construction is done separately from the case 2 = R in
Chapter 2 : the necessity of two different extension operators further burden the statements for
the case of Lipschitz boundary and the strategy proving their boundedness is somewhat different.
However, once one has proved nice boundedness properties for the extensions operators, all the
remaining proofs follows extremely closely the corresponding ones given in Section 3 of Chapter
2, up to appropriate modifications.

1.2 Trace theorems

Trace theorems with sharp regularity are fundamental to study boundary value problems in the
field of partial differential equations. The usual theorem for traces of Besov or Sobolev functions
on R} = R"~! x (0, +00) and on bounded and sufficiently regular domains can be found in [BL76,
Subection 6.6], [AF03, Theorem 7.43, Remark 7.45], [Sch10, Theorems 3.16 & 3.19]. A very
general result for traces on subsets of R™ with minimal geometric assumptions can be found in
[JW84, Chapters VI & VII]. The usual trace theorem for Lipschitz domains can be stated as
follows.
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Theorem 5.1 Let p € (1,40), ¢ € [1,+], s € (%,1 + %), and Q be either a special or a
bounded Lipschitz domain,

1
1) the trace operator |- : H9P(Q)) — B, ," (09) is a bounded surjection, in particular for
| P.p

all uw € H*>P(§2),

aQ

||U|an|\Bs—l Sepm ullmer@);

v’ (092)

_1
(ii) the trace operator [],, : Bj () — B,.,” (99) is a bounded surjection, in particular for

allu € By (Q),

loo

Sspm Ul

HU\BQ” s

-1 Bs _(Q)5
B, " (0Q) P

1

(iii) the trace operator []),, : B;l(@Q) — LP(09) is a bounded surjection, in particular for

allu e Bgl(Q),

loa

i

||u|8§z ”Lp(aﬂ) ,Sp,n ||UHBP%’1(Q)

Moreover, the trace operator ['] admits a right bounded inverse for each of the above cases.

loo

Roughly speaking, the goal here is, up to technical modifications, to add dots on every H and
B symbols in Theorem 5.1 in the case of special Lipschitz domains. We take a focus on special
Lipschitz domains for two main reasons. First, on a bounded Lipschitz domain the localization
aspects induce that there are not that much differences between inhomogeneous and homogeneous
function spaces, one may think about Poincaré-Wirtinger-Sobolev type inequalities. In a second
time, the class of special Lipschitz domains seems to be the only suitable class of domains that
admits good extension operators with homogeneous estimates at the moment. For more general
unbounded Lipschitz, or smoother, domains one cannot reach homogeneous function spaces by
localization with smooth cut-off since this procedure completely destroys the homogeneity.

The reader must know that in the case of inhomogeneous function spaces, one may find simpler
proofs for the existence of traces seeing the trace operator as a (compact) operator with value in
LP(0R2) (when © has compact boundary). Similar results are also available for partial traces of
vector fields, even with compactness property in the case of compact boundary, e.g. see [Monl5;
Den21] and the references therein. A quite general result for partial traces on bounded Lipschitz
domains is achieved by Mitrea, Mitrea and Shaw in [MMS08, Section 4] for differential forms,
containing the result for vector fields.

Theorem 5.1 and fine properties of simple and double layer potentials were extensively used
to study regularity and well-posedness of elliptic boundary value problems and deduce some
functional analytic properties of involved elliptic operators (see e.g. [JK95; FMM98; MMO1 ;
MMTO01])).

The goal of this chapter is to give a proof of the usual trace theorem for scalar-valued
homogeneous Sobolev and Besov spaces on special Lipschitz domains. In order to prove the
homogeneous version of Theorem 5.1, we aim to follow the strategy exhibited in [Din96], and
initially described in [Cos88|. However, the use of the Fourier transform, and the overall strategy
restrict everything to the case of inhomogeneous L2-based Sobolev spaces. The idea we present
here is to use the global-in-time Hs’p(L”)—maXimal regularity for the Poisson semigroup on R"~!
and interpolation theory to replace the use of L? techniques.
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1.3 Expected behavior through a Hardy-Littlewood-Sobolev-Kato diagram.

We can represent of Sobolev and Besov spaces H*?(2) and B;yq(ﬂ) by the choice of a corres-
ponding point (%, 5) € (0,1) x R.

This representation is usually very useful to carryover visually most of the information, especially
in the context of interpolation theory. This is also useful to exhibit families of function spaces
sharing common properties.

s
R e S:n/p
s=14+1/p
Tl
s=1lf==7-----------———="----- {r=c====ssscsscsssssoooog s=1/p
_ s=—1+1/p
0 L2 1 1/p
T ¢ e

FIGURE 5.1 — Representation of Sobolev and Besov spaces in the plane : a Hardy-Littlewood-
Sobolev-Kato diagram. (with n = 3)

o The blue part corresponds to the condition (Cs j 4) for Besov spaces, s < n/p for Sobolev
spaces. Those are the function spaces that are complete.

o The red part s € (—1+1/p, 1/p) stands for the spaces for which we can extend the elements
of H*P(§2) (resp. B; ,(2)) by 0 to obtain an element of H*?(R") (resp. By ,(R™)). We also
have that C°(2) is dense when ¢ < +o0. See Corollaries 5.14 and 5.19.

o The part s € (1/p,1+ 1/p) stands for the spaces for which we have homogeneous
trace estimates on a dense subspace. More precisely, for all v € H¥?(Q),

||u|aa|| L s— 1 SP’S,H Hu|

B,.," (09)

Hs:7(Q)

and similarly for Besov spaces, up to appropriate modifications. See Theorem 5.43.
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2 Homogeneous Sobolev and Besov spaces on a special
Lipschitz domain.

From now on, and until the end of the paper, {2 will be a fixed special Lipschitz domain given
by a fixed uniformly Lipschitz function ¢ : R"™! — R, i.e.,

Q:={(2/,2,) €ER" I xRz, > () }.
We also set the following global bi-Lipschitz map of R® = R~ ! x R,
U (2 ) — (2,20 + o(2))).
For which, we have
U(RY) =Q, T HQ) =R and det(VV) = det(V(¥ 1)) = 1. (5.1)

One may expect to recover similar results for the scale of homogeneous Sobolev and Besov as
the one mentioned in Section 3.2. However, it still suffers the same issues as the one raised at the
beginning of Section 3.3 in Chapter 2 : the lack of completeness on the whole scale and it is not
known whether Rychkov’s extension operator satisfies homogeneous estimates.

The extension method employed in [DHMT21, Chapter 3] and Section 3.3 in Chapter 2, by
mean of the global change of coordinates and extension operators of higher order reflection
around the boundary, will fail for high regularities. Indeed, the global bi-Lipschitz map ¥ suffers
from its own lack of regularity, making it impossible to take its derivatives more than once.
Moreover, even if it were a smooth global diffeomorphism, higher order derivatives would produce
inhomogeneous parts with lower order terms. However, this method still makes sense for regularity
indices s € (—=1+1/p, 1].

The first idea here is to use Stein’s extension operator introduced in [Ste70, Chapter VI, for
which we have homogeneous estimates for non-negative integers indices of regularity.

The second idea is to fall in a setting so that one just has to use the proofs in Section 3.3
of Chapter 2, or at least to reproduce it with minor modifications. Indeed, those proofs mainly
depend on the existence of good extension operator with appropriate homogeneous estimates,
and the reflexivity of considered Sobolev spaces, so that everything goes similarly once the
boundedness is proved.

2.1 Homogeneous Sobolev spaces

The Sobolev embeddings are a straightforward consequence of the definition of function spaces
by restriction, see the proof of Proposition 2.24.

Proposition 5.2 Let p,q € (1,+00), s € [0,n), such that

_1 S
_p ~

| =

Then the following inequalities hold,

lulleac) Snspa lullizes ), Yu € H (),

”uHHJS"I(Q) Sn,s,p,q HUHLP(Q) , Vu e LP(Q) .

Moreover, each underlying embedding is dense.

In particular, Sobolev embeddings imply that any appropriate extension operator, such as the
next one, are already uniquely well-defined on any function in homogeneous Sobolev spaces such
that H*P(Q) C L7 (), i.e., for those who are complete. It remains to show the continuity
with respect to homogeneous Sobolev norms.
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Proposition 5.3 There exists a universal extension operator £, such that for all p € (1,400),
s € Ry, all u € H>P(Q),

Euy, = u,
with the estimate
[€ullgon @y Spsmioe [Ullgan@) -

In particular, € : H¥P(Q) — H*P(R") extends uniquely to a bounded operator whenever (Cs )
1s satisfied.

Proof. — Let &€ be Stein’s extension operator given in [Ste70, Chapter 6, Section 3, Theorem 5.
For all m € N, p € (1,400), u € H™P(Q)), we have

V™ ullpp ) < llulligmp) = mf V"4 Lr@n) < IV*(EW Lo @n) Spnm.o0 [V Ul q) -
ach™? (R"),

Hence, it satisfies
[€ullggm . mny Sponm,00 Wllgms(q) - (5.2)

So that £ : H™?(Q) —s H"™P(R"™) is bounded on subspace H™P(Q), in particular on whole
H™P () when it is complete, i.e. m < 2, since 8(Q) c H™P(Q) is dense in H™P(Q).

The estimate (5.2) implies, that for all U € H™P(R™), by the definition of function spaces by
restriction

1€[1QU]lgm»mny Sponam09 1U llgm.o @ny -
Therefore, if one uses Lemma 2.7,

I(A;E[MQU))jezllie®n 2, 2)) Spinm.oe I(A;0)jezlliem®n e, ) - (5.3)

m

For v = (vj) ez € LP(R™, £2,(Z)) with finite support with respect to the discrete variable, we
set

Squ = (Ajg[]lQ(szZAk [ ot oen])])

and since v has finite support with respect to the discrete variable we may define the auxiliary
function V' := ", _, Ay [Uk,l + v + ka] € H™P(R"), and we obtain, by [Gralda, Proposi-
tion 6.1.4],

IEqullLe@n 2 @) Spamon 1(A5V)jezllie@n 2 @) Spam.oe [Vl @n.e @) -

It follows that = extends uniquely to a bounded linear operator on LP(R"™, (2 (Z)) for all
p € (1,400), m € N, which is consistent on elements whose support in the discrete variable is
finite. Tt is still consistent on all element of the form (A;U);cz, provided U € H*?(R") , o > m
and we have by construction and uniqueness of the extension

Eal(AjU)jez] = (A;€[1aU]) oy
The complex interpolation of mixed weighted Lebesgue spaces, see Corollary 1.19, yields that

Zq @ LP(R", (2(Z)) — LP(R"™, (2(7Z))
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is a well-defined bounded linear operator for all s > 0, p € (1,400). Then, the map
Eal(A)1])jez] : HP(R") — LP(R", £3(2)) (5.4)

is also well-defined and bounded by Lemma 2.7. Provided s > 0, Eu € H®P(R") is already entirely
determined for u € H*P(£2) by the boundedness on the inhomogeneous Sobolev scale. Hence, for
U € H*P(R") such that U}, = u, by uniqueness of the extension of Zq, we have

Zal(A;U)jez] = (Ar€(1al]) 0 = (ArEu)

kez — keZ’

Thus, one may use the estimate (5.4) and Lemma 2.7 to deduce

1€l e (rny Sposm00 [1U[ggom@ny -
However, U is an arbitrary H*P-extension of u, so that by the definition of function spaces by
restriction, it holds that

ng||H~‘~P(R") Sposin,00 ||U||Hsyp(sz) :

When (Cy ) is satisfied, H*?(R™) is complete, and since 8¢(Q) C H*?(Q) is dense in H* (1), the
operator extends uniquely on the whole H*P (). ]

Remark 5.4 The method employed here is quite general, and could be adapted to the interpo-
lation of many other kinds of linear operators.

The general idea is to lift the operator to a level for which we can take completion without
losing any ambient structure information, here at the level of anisotropic Lebesgue spaces LP(¢?),
instead of taking abstract completion of our Sobolev spaces H*?. From this point, one perform
the complex interpolation, then one may hope to get back to a (appropriate dense) subset of
those spaces for which we can compute explicitly the operator, which was exactly what we have
done. This is a key point for complex (and even real) interpolation of operators in the case of
non-complete spaces when one wants to preserve homogeneous estimates.

Notice that similar ideas appear in the work of Auscher and Amenta [AA18, Chapter 4,
Sections 4.2 & 4.3], where interpolation for realizations of operator-adapted Hardy spaces is
concerned.

Proposition 5.3 is already a powerful enough tool to carry many results. However, this Stein’s
extension operator has its use restricted to non-negative indices of regularity for the Sobolev scale
and positive indices of regularity for the Besov scale. It would be of a great interest to be able to
look at similar properties for regularity indices s € (=1 + 1/p, 1/p).

We need to carry over the behavior of the global change of coordinates on the homogeneous
scale.

For any measurable function u on either Q2 or R, and any measurable function v on either R’
or R™, we introduce the maps

Tou:=uo¥, and T(b_lv =vo¥~h (5.5)

Proposition 5.5 Let p € (1,+00), s € [-1,1] and T € {T¢,T¢:1}. We assume that one of the
two following conditions is satisfied

(i) (Csp) and u € HP(R"),
(i}) s = n/p and u € H¥P(R™).
Then Tu € H*P(R™) with the estimate

1T ulltte () Spono9 [[0lliren gy -
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Proof. — We set T =Ty and T* = qul. First, we let v € HY?(R™) and we recall that the
following equalities hold almost everywhere

Oz, (Tu) = T Oz, 1) + Opy ¢T (s, 1) O, (Tu) =T (0p,u) , k€ [l,n—1] .

We recall that T is bounded on L?(R"™), and that, moreover, the Jacobian determinant of W is 1,
see (5.1). Therefore, we obtain

n—1

IV T ulle ) < 1|0z, tllLe @y + DOy ellLo )+ 1O dllLos |0, ullLo )
k=1

< L+ (n = DIV'll=) I VullLe @n)-
Similar computations yield,
VT ullie @ < (1 + (n = DIV @l ) [ VullLe e

Now, for v € L2(R™) N H_LP(R”), by Proposition 2.11, and since the Jacobian determinant of
U—lis 1,

ITolinmgn = sup To(z)u(z) dz
u€eS(R™) R™
el g, p oy ST
= sup / v(z) T u(z) dz
uES(R™) n

el g1, g, <1

< vllig-1e@n) sup 1T ull g )
u€S(R™)

el gy <1

/Sp,n,aQ ||’U||H*1,p(Rn)-

The same goes for T*. Hence, T (resp. 7*) extends uniquely to a bounded linear operator on
H~1?(R™). But since 7 (resp. 7*) is known to be bounded on L”(R™), by complex interpolation
given in Theorem 2.10, 7 (resp. 7*) is then a bounded linear operator on H*?(R"), for all

€ [—1,0]. One may repeat the duality argument, thanks to the boundedness on H=**' (R™) we
just proved, to obtain for s € [0, 1], u € H®P(R™),

[T ul

from (R opys,m,09 Wl prsm ()

and similarly for 7. Finally, when (C ;) is satisfied, H*?(R™) is complete, and since H*P(R") is
dense in H*?(R"™), the operator extends uniquely on the whole H*?(R™). [ |

Remark 5.6 Everything still holds for more general bi-Lipschitz transformation with constant
Jacobian determinants. One may probably want to generalize Proposition 5.5 in a way similar to
[DM15, Lemma 2.1.1].

We can deduce from Proposition 5.5 many interesting corollaries.

Corollary 5.7 For allp € (1,400), for all s € (—1+ %, %), for all u € H?(R™),

ILoulliger @n) Sspnon [[wlien @

The same result still holds with H instead of H.
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Proof. — Tt suffices to write lqu = T(;lllRi Tsu then to apply Propositions 5.5 and 2.15. |

Corollary 5.8 Let p € (1,+00), s € [0,1]. If one of the two following conditions is satisfied
(i) (Csp) and u € HHP(Q),
(i) s = n/p and u € H¥P(Q),

we have Tyu € H*P(R™) with the estimate

<

1 Toullirs.r gy Sp.sim.oa [[ul

Hep(Q) -

In particular, Ty : HP(Q) — Hs’p(Rﬁ) is an isomorphism of Banach spaces whenever (Cs p) is
satisfied. The result still holds if we replace (Q, R, Ty) by (R, Q,Tgl).

Proof. — Let u € H>?(Q), then Tyu = [Ty&u),, € H¥P(R?) C H>P(R%), where & is Stein’s
universal extension operator. Therefore, by the definition of function spaces by restriction and
Propositions 5.5 and 5.3, we have successively

Ik

||T¢U||Hs.p(1R1) < ||T¢5U||Hs,p(mn) Ss.pm,00 ”‘SUHH&P(]R") Ss.pm.09 ||ul HeP(Q)

When (C; ;) is satisfied, H*P(R" ) is complete, and since 8¢(Q2) C H*?(R) is dense in H*P(Q), the
operator extends uniquely on the whole H”’(Q) [ ]

Corollary 5.9 Letp € (1,40), s € (—1+ 1/p,1]. There exists an extension operator E, such
that if one of the two following conditions is satisfied

(i) (Csp) and u € H¥P(Q),
(i1) s =2 n/p and u € H¥P(Q),

we have
Eu, = u,
with the estimate

[[Eul

o (Rn) Spysm,09 [l HP(Q) -

In particular, E : Hs’p(Q) — Hs’p(R") extends uniquely to a bounded linear operator whenever
(Cs,p) 1s satisfied.

Proof. — We introduce the extension operator on the half space by even reflection, for any
measurable function v : R} — C, and for almost every (', x,) € R ! x R,

~ / if / Rn—l
Eu(x/,xn) = U(ﬂf ,.Tn) ’ 1 (‘1: ,.’1377,) € X (0’ +OO)7
uw(x', —xy,) if (2, 2,) € R*! X (—0,0).

The operator E is known to have the desired properties when Q = R?, see Proposition 2.17. It
suffices to set

E:=T, 'ET,.

The boundedness properties follows from Propositions 5.5 and 2.15 when s € (=14 1/p,1/p).
When s > 0, it suffices to apply Corollary 5.8. |

Proposition 5.10 Letp € (1,400), k € [1,4+o0[, s >k —1+ %, for all uw € HSP(Q),

k
IVFullge—rp(q) ~sikpm00 [Ullgerq)-
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In particular, |V*-|

f1s—k(q) 18 an equivalent norm on H*?(Q), whenever (Co_y.p) is satisfied.

Proof. — For all k € [1,+oo, p € (1,40), se R, u € H*?(Q), the estimate

V¥l

Hs—*.p(Q) Ssk.p,n [l Hs?2(Q)

always holds by the definition of function spaces by restriction. Therefore, it suffices to prove the
reverse inequality.

First, we assume s € (1/p, 1]. Let u € H>P(Q). In this case, by Corollary 5.9 and the definition
of function spaces by restriction,

[[ul

by < Bl ) Sopn I VBl 10y Sopmon 1Vl

Hs—Lp(Q)
Now, if s > 1, one obtains similarly from Proposition 5.3,
[[u] fop(Q) S [Eul Hs:»(R") Sspm IVEU] Hs—1.p(Rn) Ssmo0 [Vl Hs—1.2(Q)" (5.6)

This yields the result when s > k—1+41/p, and k = 1.

We mention that the estimate (5.6) is indeed legal, because for k € [1,n], there is a linear
operator T which has exactly the same boundedness properties as £, and which satisfies the
commutation property 9, & = £[0z,] + Tk[0x,], see for instance the argument in the proof of
[JK95, Proposition 2.18].

Now, for s > 2 — 1+ 1/p, k = 2, by the previous step for k = 1, we have

[l

fror () Sspen,02 [Vl ga-p(0)-

Since s —1>1—141/p, if s > 1 one may use again Stein’s extension operator to obtain

HUHHS»P(Q) SS,p,n,aﬂ ”vu”HS*Lp(Q) SS,p,n,aQ ||V5Vu||H3,2,p(Rn) Ss,p,n,aﬂ ”vzuHHsﬂ,p(Q)-

Otherwise for s — 1 € (1/p, 1], one uses the extension operator given by Corollary 5.9.
For k > 2, one obtains the result by induction, reproducing the steps above. |

Proposition 5.11 Let p; € (1,400), s; > —1 + p%, j € {0,1}, such that (Cs, p,) is satisfied.
Assume that one of the two following conditions is satisfied

(i) so,s1 <1 and E =E, given by Corollary 5.9,

(ii) so,s1 =0 and E =&, given by Proposition 5.3.

Then for all u € H5Po(Q) NH*P1(Q), we have Bu € H% P (R™), j € {0,1}, with the estimate

[[Eul

i1 (&n) Sy [l »s () (5.7)
Therefore, the following equality of vector spaces holds with equivalence of norms

Heo-Po (Q) N HPL(Q) = [HEOPo 0 HAP(Q),
In particular, H5Po (Q) NHP1(Q) is a Banach space which admits 8o(Q) as a dense subspace.

Proof. — Let p; € (1,+00), s; > —1 + 1/p;, such that (Cs, p,). For the beginning, we proceed
as in Proposition 2.19 for Q = R?, [H*>Po 0 H*1P1](Q) is complete and admits 8y(£2) as a dense
subspace and the following continuous embedding also holds by construction,

[Hs(upo N HS1,p1](Q> N HSO,po(Q) N 1P (Q)

For the reverse embedding, one may expect to reproduce the proof of Proposition 2.19, which
is only possible when E = E. Indeed, this is not possible for E = £, since the aforementioned
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proof use the fact that one can take derivatives a finite amount of time to fall in a complete space.
When p; is large enough [0,7/p1) is of size less than one, while (=1 +1/p1,n/p1) N (=1+1/p1,1]
always contains a translation of the interval [0, 1].

We let E = £ and then we get back to the use of the operator Eq, as introduced in (5.4). We
consider u € H*P0(Q) N H*1P1(Q), and let U € H* 71 (R") such that U, = u. We recall that we
have Eu € H%P0 (R") C 8}, (R™) since (Cs, p,) is satisfied. One also has

(Akfu) = (Akg[]].QU])

rez = Eal(AxU)kez] € LM (R", 2, (2))-

kez —

Therefore, by Lemma 2.7, since u € 8} (R"),

[[Eul

Hs1:P1(R?) ~p1,81,m ||(Akgu)kez||LP1(R",€§l (z))
~pysin [IE0l(ARU)kez) Lo @n ez, 2))

Sp1,s1,m,09 ||U||H51«P1(]R")'

As in the proof of Proposition 5.3, since U is an arbitrary extension of u in H*1-»1 (R™), taking
the infimum on all such U yields

HEUHHSLTH(R") 5171,817“,99 Hul Hs1:71(Q)"

Thus for u € H%-?0(Q) N H* 21 (Q), and by the definition of restriction spaces,

fromn (Re) S 1,00 [ WlH=0.m0 () T [l

HUH[HSO‘POOHSLM](Q) < H‘CJ’UHHSO«PO(R") + ngl Hs1:P1(Q)*

This yields the result. |

From now on, everything has been set up so that the most part of the remaining proofs
in Section 3.3, of Chapter 2, could be reproduced verbatim (sometimes up to the appropriate
technical modifications).

Now, we want to work with homogeneous Sobolev spaces whose elements are supported in €.

Proposition 5.12 Let p; € (1,400), 5; > —1 + %, J € {0,1}, such that (Cs, p,) is satisfied.
Then,
(Z) if‘SOvSl
(ii) if 50,51

such that for all u € H*Po(R™) N H*P1(R™), we have Pou € Hy ™/ (Q), j € {0,1}, with the
estimate

< 1, there exists a linear operator Py = Py,
> 0, there exists a linear operator Py = Py,

[ Poullg=;-»s (R™) Ssjpsm 00 [ullges s (R™)*

Proof. — We notice that Q° is also a special Lipschitz domain. If E € {E, £} is an extension
operator for {2 provided by Proposition 5.11, we denote by E™ the extension operator for Q°, and
we set for all u € H®o-Po(R™) N HP1(R")

Pou :=u — E™ [Igeu] (if 59,51 < 1), and Pou :=u — £ [Igeu] (if 59,51 > 0).
In this case, the boundedness properties follow from Proposition 5.11. |

The next proposition admits a proof similar to the one of Propositions 2.25 and 2.26. Indeed,
all the appropriate tools are available, thanks to Propositions 5.2 and 5.12.

Proposition 5.13 Let s,s0,s1 € R, p € (1,400), then the space CX () is dense in
(i) HyP(Q), whenever s € (—n/p',n/p) ;
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(ii) HP(Q) NHP(Q), if s0,51 = 0, and (Cs,.p) is satisfied.

The next corollary is fundamental for a proper theory of Sobolev spaces involving boundary
values. This is a direct combination of Proposition 5.13 and Corollary 5.7.

Corollary 5.14 For allp € (1,+00), s € (—1+ %, 1%);
HP(Q) = HSP(Q).

In particular, C(Q) is dense in H>P(Q) for the same range of indices.

Proposition 5.15 Let p € (1,+00), s € (=7, %), we have

(H7(Q)) =, *7 (Q) and (H5P(Q)) = H—7(Q).
Proof. — It suffices to reproduce the proof of Proposition 2.28, replacing R’} by (2. |

Corollary 5.16 Let p € (1,+00), —n/p’ < so < s1 < n/p. The space CX(Q) is dense in
H P (Q) N HY P (Q).

Proof. — It suffices to reproduce the proof of Corollary 2.29, replacing R’ by €. |
Proposition 5.17 Let p; € (1,+00), s; € (—=n/p;,n/p;), for j € {0,1} and for 0 € (0,1) we

set
() =0t o)

We assume that one of the two following condition is satisfied
(i) s; 20, for j € {0,1};
(it) s; € (=1+1/p;,1], j € {0,1}.

Then for b € {H7HO},

)

(507 (©), 5" 7 () = () |
[h—smpf) (9)7 b—81 ,pll (Q)]B — h_&p/(Q).
Proof. — We prove the first interpolation equality. It suffices to assert that {fhooPo(Q), h51-P1(Q)}
is a retraction of {H%o-Po(R™) H*P1(R™)}, thanks to Theorem 1.21. Indeed, both retractions are
given by
E : H%Pi(Q) — H*P/(R") and Rq : H* P/ (R") — H%Pi (Q),
L Hf)j’pj (Q) — H%Pi (R") and Py : HY P (R") — Hg-j’pj(Q).
where [E and Pg are given by Propositions 5.11 and 5.12, respectively. Rq stands for the restriction
operator, and ¢ for the canonical embedding. . B
By construction, H*0-Po(Q2) N H*P1 () is dense in H%Pi(Q), j € {0,1}, since it contains 8¢(€2).

Corollary 5.16 gives the density of HJ*P* (Q)NH P (Q) in Hy 7 (Q), j € {0,1}. Since all involved
spaces are reflexive, one deduces the second interpolation identity by duality, see Theorem 1.16.H

2.2 Homogeneous Besov spaces
Proposition 5.18 Forallp € (1,400), ¢ € [1,+], for all s € (—1—1—%7 %), forallu e Bfn’q(R"),

IToullss @n) Sspmo0 lullss @

The same results still hold with B instead of B.
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Proof. — Tt suffices to apply real interpolation given by Theorem 2.10 to Corollary 5.7. ]

Corollary 5.19 For allp € (1,+00), g € [1,4+], s € (-1 + %, %),

S
Bp,q,O

Q) =B, ,(9).
In particular, if ¢ < 400, the space C°(Q) is dense in B;7Q(Q) for the same range of indices.

Proof. — The equality of function spaces is straightforward from Proposition 5.18.
We only prove that C2°(€2) is dense in B;q (©2). We use an interpolation theoretical argument.
By the same equality for homogeneous Sobolev spaces, Corollary 5.14, and the elementary
interpolation embeddings (2.13) and (2.14), we obtain the following equality of function spaces
with equivalence of norms,

(507 (Q), T () ooy, = B

send P,q,0

() =B; (),

with p € (1,400), =1 +1/p < 59 < s < s1 < 1/p, ¢ € [1,40]. By Proposition 1.3, when
q € [1,400), we have the canonical dense embedding

HiOP(Q) NHYMP(Q) < BS ().
But C°(0) is known to be dense in H*P(€2) N H P (Q) by Corollary 5.16. ]

During the proof of the last result, we have shown our first real interpolation identity. In fact,
it can be improved. In order to prove general real interpolation statements, we want to improve
the boundedness of extension and projection operators up to the scale of Besov spaces.

Proposition 5.20 Let p € (1,400), ¢ € [1,400], s > -1+ %. Let us consider the extension
operator E (resp. Py) as in Proposition 5.11 (resp. Proposition 5.12). We assume moreover that

e 5>0,ifE=E& (resp. Po =Py);
e s<1,ifE=E (resp. Py =Py).
If one of the two following assertion is satisfied
(i) s >0 and u € By (Q) (resp. u € B (R"));
. 1 s s n
(it) s € (=14 ,0] and u € B ,(Q) (resp. u € By ((R")).

Then Eu € Bz’q(R”), (resp. Pou € B;’q’O(Q)) and we have the estimate

[[Eul

Bs . (R") Ss.pm.00 [ul Bs (Q)" (resp. [|Poul Bs  (R") Ss.pm.00 [ul Bs ,(R™) )

In particular, E (resp. Py) is a bounded linear operator from B;q(Q) to B;Q(R") (resp. from

B;,q(R") to BZ,q,O(Q)) whenever (Cspq) s satisfied.

Proof. — One just has to reproduce the proof of Corollary 2.30. ]
Proposition 5.21 Let p € (1,+00), ¢ € [1,+00), s > =1+ 1/p, such that (Csp4) is satisfied.
The space C°(Q) is dense in BE ().

P,q,0

Proof. — For s € (=1 + 1/p,1/p), the result is proved in Corollary 5.19. Now assume s > 0.
Let u € By , o(€2) C By ,(R™), then, for (ux)ren a sequence in By  (R™) which converges to u in

) p,q,0
B, ,(R™). By Proposition 5.20, Pouy, € B;, , 5(2) and we have
— - < _ .
[lu — Pouy| By (@) ~8p,q,09 [|w ukHB;yq(Rn) m 0.
The density of C2°(Q2) in Bj , ,(€2) yields the result. m
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Proposition 5.22 Let (po,p1,p,4,q0,q1) € (1,+00)3 x [1,+00]3, 50,51 € R, such that sy < s1,
let (h,b) € {(H,B), (Ho,B..0)}, and set for 6 € (0,1),

Yy

1 1 1 1 1 1
(Saa) = (1_0) <5057) +9 <5157) .
Po qo Po qo P11 q1

If either one of the following assertions is satisfied,
(i) s € (<14 1.1, j €{0,1}

(i) s; 20,5 €{0,1};
If po =p1 =p and (Cs,p q) is satisfied, the following equality is true with equivalence of norms

(6°7(2), 517 ())o.q = b5, (). (58)

If (Cs,; p,.q;) s true for j € {0,1}, with s; < 1 in case (i), s; > 0 in case (ii), then also is (Cs py.q0)
and

(675 4 (€2), b

Po,q0

D)]p =6, .. (). (5.9)

Ziyfh (

Proof. — The proof is verbatim the one of Proposition 2.33, even if the statement seems quite
confusing due to additional conditions, due to the use of two different extension operators. We
propose to reassure the reader by giving the proof anyway.

Step 1 : First, we assume (Cs; p, q;) in the case of Besov space, (Cs, p,) in the case of Sobolev
spaces j € {0,1}. We have retractions given by

E : H%Pi (Q) s HS9Pi (Rn) and R, : HsiPi (Rn) — .y H9Pi (Q)’
B;-;,qj Q) — B;);‘m (R™) B;-;,qj (R™) — B;; 0 (),

v HY P (Q) — HP(R™) and Py : HPi(R™) — Hy 7 (Q),
350,02 — B, (RY) o (R — B (@)

where E and P, are given by Propositions 5.11, 5.12 and 5.20. Rq stands for the restriction
operator, and ¢ for the canonical embedding. In particular, the interpolation identity (5.9) holds.
Step 2 : The interpolation identity (5.8) for (h,b) = (H, B) when ¢ < +o0.
Thanks to (2.13) in Lemma 2.16, we have continuous embedding,

B}q() = (0 7(Q), H 7 (9))g g
Let us prove the reverse embedding,

B; () ¢ (H*P(Q), H**(02))g,q-

p.q

Without loss of generality, we can assume s; > 2. Let f € $0(Q) C Bz’q(ﬂ), if follows that
f e ({oP(Q), H1P(Q))g,, C HOP(Q) + H*P(Q). Thus, for all (a,b) € H*0P(Q) x H***?(Q) such
that f = a + b, we have,

b= f—ac (8(Q)+HOP(Q)) NHP(Q).

In particular, we have a € Hs0?(Q) and b € Hs0P(Q) n H*?(Q). Hence, for F := Ea + Eb, we
have F, = f, Ea € H**P(R") and Eb € H*P(R™) N H**'P(R"), with the estimates, given by
Proposition 5.11,

<

He0:p(R?) ~550,0Q,p,n lal S

[Eal Hs1:p(R7) ~51,00Q,p,n 6]

fso.n () and [[Eb| fo1p(Q)-
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Then, one may bound the K-functional of F', for ¢t > 0,
K(t, FHOP(R™), B P (R")) < [Ballreo.n gn) + HED | iresmrny Ssjpm Nallireon () + 0l s o
Taking the infimum over all such functions a and b, we obtain

K(t, F,H*P(R"), H P (R")) S pn K (1, f, HOP(Q), HP(Q)),

from which we obtain, after multiplying by ¢, taking the L{-norm with respect to ¢, and applying
Theorem 2.10,

11

Finally, thanks to the first embedding (2.13), we have

Bs ,(2) < |F| Bs  (R™) Sspin ||f||(HSOW(Q),HSLP(Q))Q,(I'

1£l8; @) ~psnon |flleor @) i@, VF € S0(Q)-

Since ¢ < 400, we can conclude by density of §y(£2) in both B;q(Q) and in the interpolation space
(H#0P(Q), H*?(Q))g 4. The density argument for the later one is carried over by Proposition 5.11
and Proposition 1.3.
Step 3 : The interpolation identity (5.8) for (h,b) = (Hg,Bg) when ¢ < +o0.
Thanks to the elementary embedding (2.14) in Lemma 2.16, we have the continuous embedding,
(Ho™?(2), Hy" " (2))a,g = B} 4.0(%).

P,q,0

We are going to prove the reverse embedding,

(H* 7 (92), H5" " (2))o,q < Bj40(9)-

P,q,0

n

r otherwise one can go back to the

Step 1. Let us consider u € C°(2), then, u belongs to Hs0P(R") + H*:?(R"). In particular for
(a,b) € H%P(R™) x HP(R"™), such that u = a 4+ b we have

Again, without loss of generality we can assume s; >

b=u—ac (C®(Q)+ HOP(R™) NP (R).

in particular we have a € H*?(R") and b € H®?(R") N Hsl’p(R"). _ .
Consequently, we have u = Pou = Poa+Pob, with Poa € Hy"?(Q) and Pob € Hp* P (Q)NH P (Q2),
with the estimates

<

| Poal 1 0(0) Sevmon [0

fieow(rry and [[Pob]

£207 () Ssopin.00 lal Ho1P (R7)

thanks to Proposition 5.12. Thus, one may follow the lines of the Step 2, to obtain for all
u € CX(Q),

[[ul B3, o(Q) Tspm,0Q ||UH(Hgo’P(Q),Hgl’P(Q))e,q~
Again, one can conclude via density arguments since ¢ < +o00, and C°(Q?) is dense in B;7q7O(Q)
thanks to Proposition 5.21.

Step 4 : The interpolation identity (5.8) when ¢ = 4o0.

In the case of (h,b) = (H,B), the reiteration theorem, Theorem 1.5, in combination with the
Step 1 and the Step 2 yields the identity.

Similarly, for the case of (h,b) = (Hp, Bg) with the Step 1 and the Step 3. [ |

Lemma 5.23 Let p; € (1,+00), g; € [1,+00], s; > -1+ i, J €40,1}, such that (Cs, po.q0)
J
satisfied and consider the extension operator E given by Proposition 5.20.
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Then for allu € B  (Q)N B3 (Q), we have Eu € By 4. (R™), j € {0,1}, with the estimate

Po-,9q0 P1,q1
”Eu”B;;qJ (R™) ,Ssj ,pj,n,00 ||’U,||B;3q] Q-

The same result holds replacing (E, By} 4,(Q), Byl ¢, (R™)) by (Po, Byl 4, (R"),BZ,%O(Q)), where
Po is the projection operator given in Proposition 5.20.

Proof. — Tt suffices to apply real interpolation to prove the boundedness
Eq : LYZ,LP(R")) — £4(Z,LP(R"))

from the proof of Proposition 5.3, where s > 0, p € (1,+00), q € [1,+00].
Finally, the result follows, reproducing the arguments in the proofs of Propositions 5.3 and 5.11.H

Proposition 5.24 Let p; € (1,400), g; € [1,400], j € {0,1}, —1 —1—% < 8¢ < 81, such that
(Cso,po,q0) %5 satisfied. We assume moreover that either so > 0, or s1 < 1. Then the following
equality of vector spaces holds with equivalence of norms

B (Q)NBs

Po,q0 P1,91

Q) =B nB, Q).

Po,qo P1,91

In particular, stw?),qo QN BZLQI () is a Banach space, and it admits 8o(Q) as a dense subspace
whenever q; < 400, j € {0,1}.
Similarly, the following equality with equivalence of norms holds for all s > 0, q € [1, +0],
LP(Q)NB; (Q) =B ().

p,q

Proof. — This is a direct consequence of Lemma 5.23. |

Proposition 5.25 Let p; € (1,+00), ¢; € [1,+00], s; > m; — 1+ 1/p;, j € {0,1}, such that
(Csp—mo.po,q0) s satisfied. For allu e B () NB  (Q),

Posq0 P1,91

V™ ul

B:é:z;"j (@) " simi.pin ||UHB;;{1] Q-
Proof. — The proof follows the lines of the proof of Proposition 5.10. |

Proposition 5.26 Let (p,q,q0,q1) € (1,+00) x [1,+00]?, 50,51 € R, such that s < s1.
Let b € {B,B.. o}, and set for 6 € (0,1),

s:=(1—0)so+ 0s;.
Assume q; < +00 if (Cs, p,.q;) is not true for j € {0,1}, and that one of the following assertions
18 satisfied,
(Z) 85 € (71 + p%v 1)} JE {07 1} ;

(ii) 5> 0, j € {0,1};
If (Cs p.q) s satisfied, the following equality is true with equivalence of norms

(054, (), 6514, (2)),q = b5, (). (5.10)
Proof. — The proof follows the lines of the proof of Proposition 5.22. |

Finally, we claim the density result for B; . spaces, whose proof is an exact copy of the same

statement, Corollary 2.35. The same goes for the duality result that follows, see Proposition 2.40.

Proposition 5.27 Letp € (1,+00), s > —1+ 1/p, such that (Csp.00) is satisfied.
e The space CX(Q) is weak™ dense in B;,oo,o(Q)'
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o The space 8¢(QQ) is weak® dense in B;OO(Q)

Proposition 5.28 Let p € (1,+), ¢ € (1,4+], s > -1+ %, if (Csp,q) is satisfied then the
following isomorphisms hold

(B, o) =B} 4(Q) and (B, () =B; ().

p’,q’,0

3 The trace theorem

In the previous section, an appropriate construction of homogeneous Sobolev and Besov spaces
on special Lipschitz domains was given with their interpolation properties. Now, we want to make
sense of boundary values in homogeneous function spaces which stand for the main interest of
the present chapter.

The first subsection is devoted to the construction of function spaces on the boundary.

The second one concerns the transference of properties on the flat upper half-space to the
bent one via the global change of coordinates. However, we want to reach the sharp range of
regularity (1/p,1+ 1/p) for the trace result. The main issue will occur when s € [1,1 + 1/p),
since we do not have more than one full gradient under the action of the global change of
coordinate. To circumvent this issue, we introduce an anisotropic trace result inherited from
Theorem 3.21. This result is obtained from the H*~?(L?)-maximal regularity for the Poisson
semigroup (e‘t(_A,)l/Z)@o on R*~1.

The last subsection is devoted to the statement of the main trace theorem, and several
straightforward consequences.

3.1 Function spaces on the boundary

To define the trace as in the case of inhomogeneous function spaces, we have to define first
(homogeneous) Besov spaces on the boundary 9. To do so, since we have

Q={(,2,) eR" ' xR| 2, > ¢(z)},

where ¢ : R"~! — R is uniformly Lipschitz, we recall that the surface measure on the boundary
o0 = {(2,¢(2')), 2’ € R""1} C R" is defined as

o) = [ o) VI VP s

where A is any Lebesgue-measurable set of 02.
We also recall that ¢ is the unique Borel measure on 952 so that we have the integration by
parts formula

/Qﬁrku(:c)v(:r) dr = f/gzu(x)azkv(:c) dx + /aQ u(z)v(z)vg(z) doy, k € [1,n], (5.11)

provided u,v € C%1(R"), the space of complex-valued compactly supported Lipschitz functions.
And in (5.11), v; stands for the j-th component of the outward unit normal of €2, defined almost
everywhere on 0f) by

1 o

We introduce the pushforward map from 9 to R"~! for any measurable function v : 9Q — C,

Syu(z') == u(2’, 4(z')), 2’ € R* 1. (5.12)
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We also have the pullback map defined for any measurable function v : R*~! — C,
Sy u(y) == ('), y € 0N (5.13)

To construct the homogeneous function spaces on the boundary, we are going to follow the
ideas given in [DM15, Chapter 2, Section 2.2] and [Din96, Section 2].

Definition 5.29 For p € [1,4+00), s € (0, 1), for any measurable function f on 912, we define the

following quantities
_ P
B;.»(99) o0 Joo |T —ylpstn=

with the usual modifications when p = +00. We set, assuming p # 1, +oco for the last case,
o LP(09) :={u : 00 — C meas. | ||lul|rra0) < +00},

o B, (09) = {u € L, (09) | Syu € SL(R") & ullg, g0y < +00},

o H'P(0Q):={u € LL (9Q)]Ssu € 8, (R" 1) & lullgroa) = ||S;1[V’S¢u]||Lp(aQ) < 400}

loc

s o = [ 1F@P o1

The next lemmas justify that these definitions are meaningful.
Lemma 5.30 Let p € [1,4+00]. The map
Sy 1 LP(0Q) — LP(R™ 1)

s well-defined and a is continuous isomorphism of normed vector spaces. The same result holds

with L, ., instead of LP, as complete metric spaces.

Proof. — By direct computations, we obtain for all p € [1,+o00], u € LP(952),
1
[SpullLran-1y < llullLe@o) < (1+ [V'@lF) 2 [ Sgullue@n-1)-

The same goes for S;l.
For the L? isomorphism property, thanks to the last inequality, it suffices to exhibit two

loc
appropriate families of compact subsets.

For a,b € R"!, with a; < b;, j € [1,n], we define

n—1

Q(a,b) = H [a’j7bj] and K(a,b) = {((EI? ¢(x/))7 .’E/ S Q(a,b) }

Jj=1

In this case (Q(q,p))a<b (resp. (K(a,p))a<s) is a family of compact subsets of R"~! (resp. 6Q2), such
that

(S¢1Q(a,b))a<b = (]lK(a,b>)a<b and (Sgl]lK(a,b))a<b = (]]‘Q(a,b))(l<b' u
The following corollary is a direct consequence of Lemma 5.30.

Corollary 5.31 Let p € (1,+00). For u € H'?(3Q), we have Sgu € HVP(R*1)NL} (R™1),
with the estimate
||U||H11p(asz) ~s,p,n,00 ||S¢U||H1m(Rn—1)-

Conversely, if v € Hl’p(Rn_l) NnL;

bo(R1), then S;lv € H'P(9Q) with the corresponding
estimate.
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The idea behind the definition of Besov spaces on the boundary lies in the fact that for all
we Ll (RN N§) (R 1), when s € (0,1), p € [1,+00),

P )|p
By ,(Rn-1) TP /R /R B |x_ |p6+n T dzdy, (5.14)

see [BCD11, Theorem 2.36] for a proof. The case p = +0o0 is treated via usual modification with
homogeneous Hélder (semi-)norms.

loc

/1

Lemma 5.32 Let p € [1,+00], s € (0,1). For all u € B (99), Syu € B5 (R"~!) N L}

loc (Rn_ ! )
with the estimate

[l Bg ,(0Q) ~s,p.m,00 1Spul Bs (R"~1)

Conversely, for v € B5 (R""*) NL}

L J(R™1), one has S;lv € Bf,)p((?Q) with the corresponding
estimate.

Proof. — For u € Llloc((‘?Q), if p < +o0,

|Z7
Bs (09) /(’)Q /89 |z —y ‘pS-i-n r doedoy

/Rn /R @ =y o )))_u(? i(w@ﬂ VIVOE)? +1V[V(y) 2 + 1 da'dy’
[1+||V ¢||L°° / / |S¢u ) S¢u( )‘p da?/dy'

1. —y |ps+n 1

[l

< .
~SP,8,1,00 ||S¢U| Bs (R"~1) .

The last estimate comes from (5.14).
For the reverse estimate, we start with (5.14) then, we obtain

Spu(z’) — Spu(y’)?
BS S Np’s " / / | ¢ f- ( T )| dxldy/
( ) Rrn—1 JRn—1 .I‘ _y|ps n-

n— 1 (n—1)+ps — p
Rn—1 JRr—1 —y,

¢( ") — oy ))l””" !
y)[P
R 00 /asz /39 |z — y\pH" r doudoy = [lully

1Spull;

B;,p(aﬂ) ’
The case p = +oo is similar and left to the reader with
lw(z) —w(y)|
(aﬂ) sup 5 . |
(@yeonz, [T =Yl

Proposition 5.33 Let p € (1,400), s € (0,1). The following equality holds with equivalence of
norms

(LP(09), H'"P(09)),, = B ,(09) .

Proof. — Let u € LP(9Q) + HYP(9Q) € Ll _(89), then for (a,b) € LP(8Q) x H-P(dQ) such that
u = a + b, by Corollary 5.31, we have

Seu = Sya + Sgb € LP(R"™1) + HMP(R"1), (5.15)
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Therefore, by the definition of the K-functional and Corollary 5.31, we obtain
K(t, Syu, LP(R™1), H'P(R" 1)) < [|SpallLe@n-1) + t1Spbllgpgn1y
Spn,00 lallie o) + bl on)-
Looking at the infimum on all such pair (a,b) yields

K(t, Spu, LP(R*™1), H'P(R" 1)) <)) 00 K(t,u, LP(0Q), HP(9Q)).

~

Now, for the reverse estimate, from (5.15), let (A, B) € LP(R"~1) x H"?(R"~1), such that on has
Ssu = A+ B, since Sgu, A € L] (R"™1), it follows that

loc
B = Ssu—AcLL (R nHMWP(R ).
Hence, by Corollary 5.31,
u=S;'A+S;'B e LP(09Q) + H"(09).
So as before, we obtain,
K (t,u,LP(09), H"?(09)) Spoaon K(t, Spu, LP(R™), HVP(R™1)).
In the end we have obtained for all u € L?(9Q) + H?(9Q) and all t > 0 :
K (t,u, LP(09), HP(9Q)) ~p.n.00 K(t, Spu, LP(R™ ), HP(R" ). (5.16)

Finally, if one multiplies by (5.16) by ¢~%, then take its Li-norm, thanks to (2.3) and Lemma
5.32 we obtain

||UH(Lp(ag),Hlm(aQ))s,p ~s,p,n,0Q ||S¢u||B;,p(R“*1) ~s,p,n,0Q ||U\|B;}p(an)
which ends the proof. ]

Now, we introduce the following definition of homogeneous Besov space on the boundary with
third index ¢ # p, consistent with the case ¢ = p.

Definition 5.34 For p € (1,400), ¢ € [1,400], s € (0,1), we define
. B -
B; ,(09) := (LP(09Q), H"P(09Q))s,q-

The following results are then a direct consequence of the estimate (5.16) and usual results for
homogeneous Sobolev and Besov spaces on R” 1.

Corollary 5.35 Let p € (1,+00), s € (0,1), ¢ € [1,400]. For all u € B‘;)q(aﬂ), Spu €
Bz,q(Rn_l) NLL (R™1) with the estimate

lullg oy ~spm00 |Sgullsy qgns)

Conversely, for v € B‘:Z’q(R"_l) NL

L (R™1), one has S{;lv € Bzﬁq([“)Q) with the corresponding
estimate.

Proposition 5.36 Letp € (1,400), ¢ € [1,+0], s € (0,1). The following assertions are true.

(i) B;A@Q) is a Banach space whenever (CS+%7P7q) is satisfied.

(i) If s € (0, ”le), for % = % — 5, if g € [1,7], we have the continuous embedding

B ,(09) — L"(09).
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(iii) When p > n — 1, we have the continuous embedding

. n—1
B P

p,1

(092) — C5(99).

Remark 5.37 One could also check that the intersection space Bzg,qo (092) N Bfﬁ,ql (092) is
complete whenever (C 1, ) is satisfied.
ot E?

From there, it is straightforward to check that one can recover usual and very well known
function spaces H'?(9Q) = LP(9Q) N H'?(99Q), By (0Q) = Lr(0Q) N B3 (09), s € (0,1),
p € (1,400), g € [1,+0q].

3.2 Preliminary results for the trace theorem

The strategy of the proof will mainly arise from a flattening procedure of the boundary with
anisotropic estimates, as done in [Din96, Lemma 1, Lemma 2]. For the reader’s convenience we
recall, from (5.1) and (5.5), that for any measurable function v : Q@ — C,

Tyu(r',z,) = u(z',x, + d(z')), (2/,2,) € R*! x [0,+00).
For p € (1,400), s € [1,2], we introduce the function space
KoP(RY) = HOP (R, LP(RP)) 1 HO - (R, HEP(RP1))

with its natural norm. We also introduce the homogeneous (semi-)norm

[ ul Ksw(Re) *= [[(0z,,u, V'u)| He—1.p(Ry ,LP(RP—1))"

We notice that K'P(R7%) = H'P(R? ), and H-||,-C1‘,,(Ri) ~pn IVl rr )

During this section, we will need for a brief moment to use Banach valued (anisotropic)
homogeneous Sobolev spaces for non-negative index and with values in a (reflexive) Lebesgue
space. Go back to Section 3.1, in Chapter 3, for an elementary construction of homogeneous vector-
valued Riesz potential spaces and references therein for a more general review of vector-valued
Sobolev (Bessel potential) spaces and their properties.

For p € (1,4+00), provided 0 < o < 1/p, we define % = 117 - a,

H*P(R,LP(R"™Y)) == {u e L"(R,LP(R"" 1)) | (-2 ) *u € LP(R,LP(R"" 1)) = LP(R™) } .
We also define by restriction, in the sense of distributions, the corresponding space on the half line

H*P(Ry, LP(R")) := HYP(R, LP(R"))

‘TR_'_ :

This is a Banach space with respect to the quotient norm

Hu”Ha,P(R_,_,LP(R"*l)) = U inf HU||H‘1=P(R,LP(R"*1))'
R, =%
UeH>P(R,LP(R"™1)).

Lemma 5.38 Let p € (1,4+0), a € [0,1/p). For all u € H*P(R™), we have the estimate
||UHH§T‘I?’(R+,L£,(R"*1)) Spoan ”u”Ha‘P(Ri)'

Proof. — On R™ = R"~! x R, the result follows from the boundedness of Riesz transforms. The
case of the half-space follows from the definition of function spaces by restriction. ]
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Lemma 5.39 Forp € (1,400), s € [1,1+ 1/p). Then the linear operator
Ty - H¥P(Q) — K¥P(RY)

is well-defined and bounded.

Moreover, for all uw € HSP(Q) we have the homogeneous estimate

1 Tpul

ko) Sposm,o [[Ulliesq)- (5.17)

Proof. — For the boundedness of Tj from H*?(£2) to K*P(R"), it suffices to follow the proof of
[Din96, Lemma 2]. One may check the boundedness properties

T, :H"?(Q) — H"P(R,, LP(R" 1))
H*?P(Q) — H*P(R,,LP(R" 1))
which imply, by complex interpolation, that
T, :H*P(Q) — HP(Ry,LP(R" 1)) (5.18)
is well-defined and bounded for all s € [1,2]. Similarly, from the boundedness
T, :H"P(Q) — LP(Ry, HYP(R™ 1))
H*P(Q) — HYP(Ry, HWP(R")),
for s € [1,2], we deduce that
Ty :H*P(Q) — H*VP(Ry, HVP(R 1)) (5.19)

is well-defined and bounded. Thus, (5.18) and (5.19) yield the boundedness of Tj. Now, we prove
the estimate (5.17). For u € H*P(Q) C H*P(2), we have Tyu € K*P(R"), and since

Oz, (Tyu) = Ty(Or,u) + Oy, ¢Tp(0, 1) O, (Tyu) = Ty(0p,u) , k € [1,n—1],

n

we obtain,

||T¢u||I.CS,P(R1) e ||(a$nT¢u’v/Td)u)||Hs—1,p(R+7Lp(Rn71))
< ||T¢awnu| He—1.p(Ry ,LP(Rn—1)) + HV’T¢,u\
<@+ (n=DIV'ellLe) TV ul

Spsm,09 [T Vul

He=br(Ry L (R01))

fro—1o Ry Lo (Rr-1)) H 90, ull gm0, Lo @n-1))

=1 Ry P (RA))

The estimate (5.17) is then a consequence of Lemma 5.38 and Proposition 5.5

HT¢U||1‘CW(R1) Spesmon [[TsVul Hs—1,p(Ry,LP(R?—1))

Spesn09 [|TeVul He—L1p(R7Y)

SP,SJM?Q [Vl He—1.7(Q)

Sposin,00 HUHH&P(Q)' u
One may notice that, for say all u € HYP(Q), we have in B,l,g,l/ P(OR?), the equality

[T¢u] = S¢[u\asz]'

|BR1

187



5 Homogeneous function spaces on special Lipschitz domains and the trace theorem — 3 The
trace theorem
Lemma 5.40 Letp € (1,+00), s € [1,1+ 1/p). For all u € H>?(Q), we have
Tyu € CY(Ry, B3 YP(R™™).
Proof. — For u € H¥P(Q) C H'?(Q), then Tyu € HYP(R7) N K*P(R” ), and by Corollary 2.48,
Tyu € CY(Ry, By, /P (R™1),
R _
and [Ty, = Solue] n By'P(R71),
Therefore, if we set v(t,z') := Tyu(az',t), t > 0, 2’ € R"!, we have
Fi=0w+ (I—-A)7v e WP (R,, LP(R* 1)) € LP(R,, LP(R* 1)),
and v(0,) = [Tyul, = Syluj,,] € Bi,/P(R"™!) c B, V/P(R"™) c LP(R™1).

‘QR” U‘BQ

+

By uniqueness of the mild solution, for all ¢ > 0
1 t 1
o(t) = e HI=AD24(0) + / e~ (=) U=202 p(s) ds.
0

Therefore, by Theorem 3.21, since (I — A’)z is invertible on L?(R"!) with its domain D, ((I—
A")2) = HYP(R"1), we have the following maximal regularity estimate

Ay, (I — A)2v)|

[[v Hs—L.p(Ry,LP(R?—1)) Spsnll F He—1.p(Ry ,LP(Rn—1))

+ [lv(0)]

HL°°(R+,BZ;””(R%1)) Spson I(

By, /P (Rr=1))
and v € CO(Ry, Ba, /P (R1)). (]
Corollary 5.41 Letp € (1,+00), s € [1,1+ 1/p). For all u € H*?(Q),
||T¢UHL°°(R+,B;;1/p(]R"—l)) Sp,s,n,09 ||T¢u||;‘cw(m)-
Proof. — By Lemma 5.40,
Tyu € CR(E. By, /7 (R"~)) € CR(EL By, /7 (B ).
As in the proof of Lemma 5.40, for v(t,2') := Tyu(a’,t), 2’ € R""! and ¢ > 0, we have
fi=0w+ (~A)7v e H7MP(Ry, LP(R"™)) € PP (R, LP(R™Y)),
and v(0, -) = [Tyu = Seluj,,] € B‘;;l/p(R"_l) C Bg;l/p(R”_l).

|am<1

Therefore, by Theorem 3.21, since the operator (—A’)z on LP(R"~!) has homogeneous domain
1

Dp((—QA/ )?) = HYP(R" 1), we have the following maximal regularity estimate

psn |90, (—A") 7 v)|

v

||Loo(R+,B;;1/P(RvH)) S Hs—Lp(R, ,LP(R7—1)) ~p,s,n [[v] Ks:p(R™ )" u

We may need a Besov counterpart of Corollary 5.8 to carry over the trace result, or more
generally to transfer properties from the half-space to Besov spaces on special Lipschitz domains
by global change of coordinates. However, our strategy will be a bit different, so that the result
will be only used in the very specific case s = %, q = 1, but it still has its own interest.

Lemma 5.42 Let p € (1,400), s € (=1 + 1/p,1), ¢ € [1,400]. If one of the two following
conditions is satisfied
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(i) (Cspq) andu € BZ,Q(Q)’
(i) s = n/p and u € B; (Q),
we have Tyu € B;,q(R’_f_) with the estimate

1Tyl

Bs ,(R?) Sposin, 00 HUHB;Q(Q) :

In particular, Ty : Bf),q(ﬂ) — B;q(R’_ﬁ) is an isomorphism of Banach spaces whenever (Csp q)
is satisfied. The result still holds if we replace (0, R}, Ty) by (R, Q,T(;l).

Proof. — For s € (—1+1/p,1/p), the result follows from real interpolation, by Corollary 5.8 and
Proposition 5.22. Therefore, without loss of generality, we can assume s € [1/p,1). We are going
to proceed via a manual real interpolation scheme. Let u € Bf)’q(Q)7 then we have

u e LP(Q) + HYP(Q) € LP(Q) + HYP(Q).
Let (a,b) € LP(2) x HYP(Q), such that u = a + b,
b=u—ac (B, (Q)+LP(Q)NH"P(Q) c H'*(Q).
We have Tyu € B3 (R%) C B3 (R?), and Tya € LP(RY), Tyb € HYP(R?),
Tyu = Tya + Tyb € LP(RT) + HVP(R™) € LP(R™) + H'P(R?).

For E, the operator extension from R to R™ by reflection given in the proof of Corollary 5.9, we
have ETyu € By (R} ), and

ETyu = ETya + ETyb € LP(R™) + HYP(R™) C LP(R™) + HP(R™).

Now, for ¢ > 0, by definition of the K-functional and the homogeneous estimates given by
Corollaries 5.8 and 5.9, we obtain

K(t, ETyu, LP(R"), HV?(R™)) < |[ETyal|Lern) + HETsb] 1.0 @n)
5177“789 ||a||LP(Q) + t”bllHLP(Q)-
Looking at the infimum over such pairs (a, b) yields for ¢ > 0,

K(t, ETyu, LP(R™), HYP(R™)) <p 00 K(t,u, LP(Q), H'P(Q)).

~.

One multiply by ¢t %, and take the Li-norm, so that as a consequence of Lemma 2.16, Theorem 2.10
and the definition of function spaces by restriction

1 Toullgs @y < IETsullss @ny ~psn IETpull s @n) e @ny), ,

Sposm,o2 Ul w0 1), ,

Sposm,00 |ul B ()

If ¢ < 400 and (Cs p 4) is satisfied, the result follows by density argument. For ¢ = +o0, if (Cs p.q)

is satisfied, the result follows from real interpolation by the mean of Proposition 5.26 and the
reiteration theorem, Theorem 1.5. One may reproduce a similar proof for T, L |
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3.3 The trace theorem and related results

Theorem 5.43 Letp € (1,400), q € [1,+00], s € (1/p,1 4+ 1/p). The following statements are
true :

(i) for allu € HP(Q),

U0 | Spsno9 [[ullizer )

s 1
B, " (09)

In particular, the trace operator [ extends uniquely to a bounded linear operator from

loe
H*?(Q) to BZ;E (09) whenever (Csp) is satisfied.
(ii) for allu € By (),

||u|BQ|| ! Sposin,09 [l

BquE (09) B3, ()

In particular, the trace operator [] extends uniquely to a bounded linear operator from

loo

. et
By ,(Q) to By " (09) whenever (Csp,q) s satisfied.

(iii) for allu € Bgl(Q),

1%)o6 [ILr (00) Spon.o0 HUHBP%,AQ);

(iv) for allu € B, 7 (9),

1o 11 0 (92) Spomi092 HUHBx% @

In particular, the trace operator []),,, extends uniquely to a bounded linear operator from

1L .
B;jp () to HYP(9Q) whenever p < n — 1 is satisfied.

Proof. — We are going to cut the proof into three parts.

(i) First part : homogeneous Sobolev spaces.
Let u € H®P(Q)). We assume first that s € (11;,1]. By Proposition 5.5, we have Tyu €
H*P(R" ). The standard trace theorem with homogeneous estimates Theorem 2.49 yields
that, z, — Tyu(-, ,) € CO(Ry, Bi,/P(R"~1)), with the estimates

fer@n) Seon [Ullmer@) -

[Toul-, 0] -3 Ssom [Tsul

B,,," (R"~1)
But for almost every z’ € R"~!, we recall that
T¢U(LE/, 0) = u(‘rlv 0+ ¢(I/)) = S¢[u\an]($,) .

Thus, one may apply Lemma 5.32 :

Spsn,09 196Ul -1 Sspm00 ||ul

u 1
” IaQ” ’1’(89) BITF (Re-1)

B, Her (@) -
Now, we consider u € H*?(Q), with s € [1,1 + %) it follows from the successive use of
Lemma 5.38 and Corollary 5.41, that,

: <
1 Tu( 70)\\32;%(]1@_1) Ssom [Toul

K2 (R™) Ss,p,n,BQ [|ul He-r(Q)

Therefore, one may finish the proof as in the case s € (%, 1].
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(ii)

trace theorem

Hence, if moreover, we assume (Cs ), then every involved space is complete and one may
conclude with a density argument.

Second part : homogeneous Besov spaces with traces in Lebesgue/Sobolev spaces.

!
For u € B ;(©2), by Lemma 5.42 and Theorem 2.49,

L1 _
Tyu € BY,(RY) € CY(R, LP(R™))
with the estimates

Spnon |lull.

1
B (%)

[%pq ILe (02) ~p.n00 1Teu(; 0)|lLe@n—1) Spm.oa ITeull - (5.20)

1
P .
p,l( +

1 L14l !
Now, for u € B;; Q)N B;ﬁp (Q2), since Vu € B} (), we may use the estimate (5.20),
\Y% <p.n Vul 1 Sp.n, 1
IV u]joq lILe02) Spm.oe |l uHBil(ﬂ) Spanoa [l st gy
But one may check that we have
400 10 002y = 1185 V' [Ssttjaq llLe00) Spaon V|0l @0) Spaoo ||U||B1+1( ;
p,1
(5.21)
Third part : homogeneous Besov spaces.
Let s € (1/p,1+1/p), q € [1,+00], and let u € B;, ().
s % 1+% 5 % 1+7
ue By () CB)(Q)+B,,"(Q) CB)(Q2)+ Bp 17 ().
L1 141
Let (a,b) € B; () x B, ;7 (£2), such that u = a + b,
L1 1+1 .1l 1+1
b=a-ue (B (Q)+B;,(Q)N B 17 (Q) By ()N B 17 ().

1 Le—1
Therefore u,,, € B,," (09) C B, ,” (09) and (@)pe> bloe) € LP(092) x HYP(09), so that by
definition of the K-functional and homogeneous estimates (5.20) and (5.21), we obtain
K(tv Ul s Lp(ag)v Hl,p(aQ)) < ”a’\an ”Lp(aﬂ) + t”b\an ||H1 2(59)
Spaoe llall x4 tlbl

. 1
BY () B,,"(©)
Looking at the infimum over all such pairs (a, b) yields for all ¢ > 0,

L Y
K (t, )0, L7 (09), H' 7 (09) Sponoa K(tu, By 1(Q),B, )" ().

Multiplying by tf(sfi), then taking the L{-norm, by definition of homogeneous Besov
spaces on the boundary (see Definition 5.34, and Lemma 2.16), it holds that

u 11, < u
[ |BQH ;qP(aQ) ~psn | Ian||(Lp(aQ)7H1,p(aQ))57%1q Sposm.o9 | H(B”l(ﬂ) Bpt;(ﬂ))

Sposma0 |lul Bs ()

If ¢ < 400 and (Cs,p 4) is satisfied, the result follows by density argument. For ¢ = +oo, if
(Cs,p.q) 1s satisfied, the result follows from real interpolation by the mean of Proposition 5.26,
Definition 5.34 and the reiteration theorem, Theorem 1.5. |
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We state interesting consequences which concern regularity and integrability of traces in the
case of intersection spaces, and identification of function spaces for functions that vanish on the
boundary. The proofs are very similar to the proofs one can found at the end of Section 5, in
Chapter 2, for 2 being the half-space, therefore we present shortened proofs and the full ones are
omitted.

Proposition 5.44 Let p € (1,+00), q € [1,+00), and § € (0,1), —1 + % < sp < % <s1 <1 +%
such that

= (1 — 9)80 + 0s7.
Then the following assertions hold.

. . s 1
(i) For allu € H**P(Q) NH*P(Q), we have u,, € B,y * (9Q), with the estimate

1— 0
[l 1=y S0 1y ey + el

We also have

HU\aQHB:J%(aQ) Ss1.pm,02 [[Ullgere o) ¢

(it) For all u € B;?q(Q) N B;}q(Q), we have uy,, € By (89) with the estimate

sp—1 550,31,1), Q)Hu| o () Q)"

B,.q 7 (09)

14}

We also have

Byl (2)

s1—2 581,1?»71739 ”u‘

u
H |asz| 5177 (aq)

(iii) For all u € B;?Oo (N B;}OO (), we have uy,, € LP(02), with the estimate

)

||U|ag||LP(6Q) Sso,sl,p,n o0 Hu| ao o () ||u| B;}M(Q)'

Proof. — We mention the result Proposition 2.50 for the case {2 = R”}, where the proof only
relies on good interpolation inequalities and the appropriate trace estlmates Everything has been
made in order to recover the same interpolation inequalities, the result then follows from Theorem
5.43 points (7) and (i) for the case of Sobolev spaces, and from points () and (7ii) for the case

of Besov spaces. ]

Proposition 5.45 Let p; € (1,+00), ¢; € [1,4+00), s; > 1/p;, j € {0,1}, such that (Csy p,)
(resp. (Csypo.q0)) @5 satisfied. Then,

1

(i) For all u € [HPo N H*P1](Q), we have Uy, € Bpwp] ' (0R2), 7 € {0,1}, with the estimate

[woall (-2 Ssjpn lullizsi vs ()3
ijPj]

1

(ii) For allu € [B ., NB , ](Q), we have Uy, € :J,qj (092), j € {0,1}, with the estimate

Po,qo0 P1,q91

||u|anH _sj-—l%j 58]'7107” ||u||]'3;ﬂ]'_,qj(g)§
Pj.qj )
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Proof. — This is a direct consequence of density results provided by Propositions 5.11 and 5.24,
and the trace theorem, Theorem 5.43. [ |

Lemma 5.46 Let p; € (1,+00), s; € (1/pj,14+1/p;), j € {0,1} such that (Cs, p,) is satisfied.
We have the following canonical isomorphism of Banach spaces

{ue [P AH(Q) [up,, =0} = [Hy”? 0 H 7 (Q).

The result still holds replacing H%?i by Byl 4., q; € [1,+00], j € {0,1} assuming that (Csy po.q0)
1s satisfied.

Proof. — We mention the result Corollary 2.55 where the proof only rely on integration by parts,
the meaning of traces, and the possibility to extends elements of H*? from  to the whole space
R™ by 0 boundedly, whenever s € (—1+1/p,1/p). The boundedness of the extension by 0 from 2
to the whole space R™ is a direct consequence of Corollary 5.7. The same holds for Besov spaces
with Proposition 5.18. [ |

We conclude with few definitive remarks.
e The naive composition with Poisson’s extension only yields right bounded inverse for the
trace operator when the regularity index s lies between 1/p and 1, for Theorem 5.43.

¢ One may want a right bounded inverse for the trace operator whenever the regularity index
s between 1/p and 14 1/p in Theorem 5.43. Personal discussions with Patrick Tolksdorf and
Moritz Egert persuaded the author that one could adapt Jonsson and Wallin’s extension
operator [JW84, Chapter VII, Theorem 3] from the boundary to the whole domain in a
way so that it preserves homogeneous norms.

e One may use Jonsson and Wallin’s extension operator to reprove exactly the same way the
proof in Theorem 4.15 but replacing R} by 2 a special Lipschitz domain.

e Hence, we can make sense of partial traces of differential forms on the boundary. The
next step is to show that the potential operators introduced by Costabel, M¢Intosh, and
Taggart [CMT13] are well-defined for our realization of homogeneous function spaces.
Combining this with the arguments in [MM18], we can then extend the results in Chapter
4 to the setting of special Lipschitz domains. Specifically, we aim to establish appropriate
generalizations of Theorems 4.42 and 4.40 for €2 a special Lipschitz domain :

For a brighter future. There exists € > 0 depending on Q such that for all (p,s) € (1,400) x
(=14 1/p,1/p) that satisfy

the following assertions hold
(i) The generalized Helmholtz-Leray projector P : HSP(Q, A) — Hfﬁ(Q,A) is a well-defined
bounded linear operator, and the following identity holds

P=1I—d(—Ay) 2d*(—Ay) 2.
(it) The following Hodge decomposition holds
HoP(0, A) = HYZ(2,4) © H3P(Q, A).

(iii) For all € (0,7), the operator (DZ(AH), —Ay) admits a bounded H*™(X,,)-holomorphic
functional calculus on H*P(Q, A).

Generalizations replacing ) to be uniformly special Lipschitz, by a uniform special C' or by a
uniform special C'! domain might also be interesting to look at.
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