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Résumé

L’imagerie historique se caractérise par une haute résolution spatiale et des acqui-
sitions stéréoscopiques. Elle constitue une ressource précieuse pour la détection
des changements et la surveillance environnementale a long terme. Des millions
d’images historiques ont été numérisées. Elles sont des témoins objectifs du temps
et parfois la seule source visuelle restante de la forme historique du territoire.
Cependant, ’énorme potentiel des images historiques diachroniques est supprimé
en raison du goulot d’étranglement que constitue leur géoréférencement précis. Il
s’agit d’un processus appelé ajustement de faisceau auto-calibré pour estimer les
paramétres de calibrage de la caméra. Il faut un nombre suffisant de correspon-
dances dans des paysages évolutifs, qui sont difficiles & obtenir automatiquement,
en raison des changements de scéne et des conditions hétérogénes d’acquisition des
images.

Dans cette recherche, nous présentons des pipelines entiérement automatiques
pour trouver des correspondances entre des images historiques prises & différents
temps (c’est-a-dire, inter-époques), sans données auxiliaires nécessaires. En profi-
tant de la géométrie 3D et de la stratégie grossier-a-précis, nous (1) enregistrons
grossiérement les différentes époques en établissant un modele de transformation
globalement cohérent sur I'ensemble du bloc, et (2) nous apparions précisément
les images inter-époques sous la direction du co-enregistrement grossier pour
réduire 'ambiguité. Six variantes de deux stratégies sont explorées pour 'étape
de co-enregistrement grossier, et deux variantes pour ’étape d’appariement précis.
Nos pipelines sont adaptés & diverses applications de surveillance environnementale.
Cing données représentatifs sont choisis pour les expériences, chacun représentant
une application caractéristique. Avec les correspondances inter-époques récupérées,
nous améliorons les orientations de l'image puis calculons les Digital Surface
Models (DSMs) a chaque époque, et évaluons quantitativement les résultats avec
les Difference of DSMs (DoDs) et le déplacement du sol di & un séisme. Nous
démontrons que notre méthode (1) peut géoréférencer automatiquement des images
historiques diachroniques ; (2) peut atténuer efficacement les erreurs systématiques
induites par des paramétres de caméra mal estimés ; et (3) est robuste contre les
changements drastiques de la scéne. Les pipelines proposés sont mis en ceuvre dans
MicMac, un logiciel de photogrammétrie libre et gratuit.

Mots clefs: Appariement des caractéristiques, Images historiques, Multi-époques,
Estimation de la pose, Auto-étalonnage
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Abstract

Historical imagery is characterized by high spatial resolution and stereoscopic
acquisitions, providing a valuable resource for change detection and long-term
environmental monitoring.  Millions of historical images have been digitized.
They are objective witness over time and sometimes the only remaining visual
source of historical land-form. However, the huge potential of diachronic historical
images is suppressed due to the bottleneck of their accurate geo-referencing. It
involves a process called self-calibrating bundle adjustment to estimate the camera
calibration parameters. Sufficient amount of matches under evolving landscapes
are required, which are difficult to be obtained automatically, due to scene changes
and heterogeneous image acquisition conditions.

In this research, we present fully automatic pipelines to finding matches
between historical images taken at different times (i.e., inter-epoch), without
auxiliary data required. By taking advantage of 3D geometry and rough-to-precise
strategy, we (1) roughly co-register different epochs by establishing a globally
consistent transformation model over the whole block, and (2) precisely match
inter-epoch images under the guidance of rough co-registration to reduce ambiguity.
Six variants out of 2 strategies are explored for rough co-registration stage, and
two variants for precise matching stage. Our pipelines are suitable for diverse
applications of environmental monitoring. Five representative sets of datasets are
chosen for experiments, each one represents a characteristic application. With
the recovered inter-epoch matches, we refine the image orientations followed
by calculating Digital Surface Model (DSM)s in each epoch, and quantitatively
evaluate the results with Difference of DSMs (DoD)s and ground displacement
due to an earthquake. We demonstrate that our method (1) can automatically
geo-reference diachronic historical images; (2) can effectively mitigate systematic
errors induced by poorly estimated camera parameters; and (3) is robust against
drastic scene changes. The proposed pipelines are implemented in MicMac, a free,
open-source photogrammetric software.

Keywords: Feature matching, Historical images, Multi-epoch, Pose estimation,
Self-calibration
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CHAPTER 1

Introduction en francais
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1.1 Motivation et objectifs

1.1.1 Pourquoi les images historiques sont-elles intéressantes

Les images aériennes historiques (c’est-a-dire analogiques ou d’archives) jouent un
role important en fournissant des informations uniques sur I’évolution de la couver-
ture terrestre. Ce sont des atouts précieux pour un grand nombre d’applications
telles que (1) I'analyse des catastrophes naturelles (par exemple, tremblement de
terre, glissement de terrain, volcan, inondation, avalanche, etc.), (2) la surveillance
éco-environnementale (par exemple, forét, atmospheére, glacier, eau, littoral, etc.),
(3) Vexpansion urbaine et (4) la pollution et la protection de I’environnement, etc.

Les images aériennes historiques ont été réguliérement acquises depuis les années
1920 par des agences cartographiques, militaires ou cadastrales du monde entier.
Une quantité massive d’entre elles ont été numérisées et rendues accessibles par des
services web [Giordano & Mallet 2019, USGS 2019, IGN 2019]. Par exemple, selon
une enquéte réalisée au début de 2017 en Europe |Giordano & Mallet 2019], il y
a environ 50 millions d’images aériennes archivées en Europe, dont environ 37,8%
sont numérisées. Les images sont de haute résolution spatiale, et sont acquises en
configuration stéréoscopique, permettant la restitution 3D des territoires. Elles sont
souvent accompagnées de métadonnées, comprenant dans la plupart des cas la focale
de la caméra, la hauteur de vol, 'échelle et la taille physique du capteur, qui sont
généralement enregistrées ou mentionnées sur les films. D’autres métadonnées telles
que les plans de vol, les certificats d’étalonnage de la caméra ou les orientations ne
sont pas couramment disponibles.
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Lorsque les parameétres d’étalonnage de la caméra sont inconnus, ils doivent

étre évalués au moyen d’'une procédure appelée ajustement du faisceau d’auto-
étalonnage. Ground Control Point (GCP)s sont nécessaires, sinon des paramétres
de caméra estimés de maniére inexacte entraineront des surfaces d’erreur sys-
tématiques appelées effet de dome (c’est-a-dire effet de bol). En général,
les GCPs proviennent (1) de mesures sur le terrain [Micheletti et al. 2015,
Walstra et al. 2004, Cardenal et al. 2006, (2) d’orthophotos et de DSM récents
[Nurminen et al. 2015, Ellis et al. 2006, Fox & Crziferszky 2008| et (3) d’images
satellites récentes [Ellis et al. 2006, Ford 2013|. Le plus difficile est d’identifier les
GCPs sur les images historiques, ce qui n’est pas facile en raison des inévitables
changements de scéne. Les GCP sont généralement mesurés manuellement & 'aide
de photos récentes, mais cela reste monotone et laborieux. Il est urgent d’identifier
automatiquement les points correspondants (c’est-a-dire les correspondances) sur
des images historiques et récentes.
Lorsque les utilisateurs sont uniquement intéressés par la comparaison de différentes
époques historiques, 'auto-calibrage peut étre réalisé sans GCPs. Les correspon-
dances entre différentes époques serviraient d’observations dans l'ajustement du
faisceau pour éliminer les erreurs systématiques des surfaces. En conclusion, le
goulot d’étranglement de l’auto-calibration des images historiques est la récupéra-
tion des correspondances sur des images prises a des époques différentes (c’est-a-dire
multi-époques).

1.1.2 Comment faire correspondre des images historiques multi-
époques

Cependant, la comparaison d’images historiques multi-époques reste difficile,
malgré le fait qu’il existe un grand nombre d’algorithmes de comparaison d’images
dont Defficacité a été prouvée sur des images modernes. Les raisons en sont les
suivantes:

1. Les images multi-époques sont souvent acquises a différents moments de la
journée et par différents temps et saisons, ce qui entraine inévitablement des
différences d’apparence.

2. La scéne change au fil du temps en raison de phénoménes anthropiques (par
exemple, 'urbanisme) ou naturels (par exemple, un tremblement de terre), en
particulier pour les grands écarts temporels.

3. Les images multi-époques présentent souvent des résolutions spatiales
hétérogénes, accompagnées de conditions d’acquisition différentes (capteurs,
canaux spectraux, etc).

4. Les images historiques sont souvent confrontées & umne faible qualité ra-
diométrique, notamment un faible contraste, du bruit d’image, une détéri-
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oration causée par le vieillissement des films, ou méme des rayures sur les

films.

La simple application de méthodes d’appariement des caractéristiques (par exemple,
SIFT [Lowe 2004] ou SuperGlue [Sarlin et al. 2020]) sur des paires d’images multi-
époques donne souvent des résultats insatisfaisants. Un exemple est donné dans
la Figure 1.1. Une paire d’'images multi-époques est représentée avec des rectan-
gles rouges indiquant la zone de chevauchement sur la Figure 1.1(a). Les images
de gauche et de droite ont été prises au méme endroit en 1954 et 1970 respective-
ment. La scéne a changé de maniére significative, beaucoup de nouveaux batiments
sont apparus, les tons de couleur étaient trés différents. Dans la Figure 1.1(b-d),
les résultats de correspondance de SIFT, SuperGlue et le nétre sont affichés pour
comparaison. Comme on peut le voir, SIFT n’a trouvé aucune correspondance. Su-
perGlue a trouvé 369 correspondances, dont la plupart semblent bonnes, mais en
regardant plus attentivement, les détails révelent une faible précision de localisation.
Notre méthode a trouvé 1463 correspondances avec une grande précision, grace a
Paide (1) de la géométrie 3D et (2) de la stratégie diviser et conquérir (c’est-a-dire
grossier-a-preécis), qui sont détaillées dans les textes suivants.

(b) Résultat de SIFT (0 correspondances)

(¢) Résultat de SuperGlue (d) Résultat du notre

Figure 1.1: (a) Une paire d’'images multi-époques avec des rectangles rouges indi-
quant la zone de chevauchement. (b-d) Résultat de la correspondance de SIFT,
SuperGlue et le notre.
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Avantages de la géométrie 3D Les images RGB sont largement utilisées pour
pour 'appariement des images. Cependant, elles présentent les inconvénients suiv-
ants:

(1) Leur apparence change avec le temps (voir la Figure 1.2), et avec des angles
de vue variables sur des surfaces non-Lambertiennes (voir la Figure 1.3). (2) Les
autosimilitudes (par exemple, les modéles répétitifs) favorisent les fausses correspon-
dances (voir la Figure 1.3).

Heureusement, la géométrie 3D telle que DSM compense parfaitement ces défauts.
Comme on peut le voir sur la Figure 1.2, les images RGDB sont trés différentes car
la scéne a beaucoup changé. Cependant, les DSM correspondants sont similaires,
ce qui est raisonnable, car le paysage 3D est plus stable dans le temps. De plus,
les DSM sont plus distinctifs que les images RGB lorsqu’il s’agit de surfaces non-
Lambertiennes et de motifs répétitifs, comme indiqué dans la Figure 1.3. Méme si
la géométrie 3D manque de textures et de détails par rapport 4 'image RGB, elle
sert de complément idéal. En outre, elle joue un réle important en fournissant des
informations 3D pour établir un modele de transformation de Helmert 3D entre les
époques afin (1) de déplacer différentes époques dans le méme cadre de coordonnées
et (2) de supprimer les fausses correspondances dans une routine RANSAC qui est
plus fiable que les modéles de transformation 2D.

Diviser et conquérir Puisque la récupération de correspondances robustes
et précises sur des paires d’images multi-époques est une tache difficile, nous
divisons la tache en deux sous-tiches et les conquérons individuellement avec la
stratégie grossier-a-précis. Cette stratégie est illustrée dans la Figure 1.4. Les deux
sous-taches sont les suivantes:

1. Co-enregistrement grossier, comme illustré sur la Figure 1.4(b). Son objectif
est d’aligner grossiérement les paires d’images multi-époques en se concentrant
sur la robustesse et en relachant ’exigence de précision.

2. Appariement précis, comme illustré sur la Figure 1.4(c). Elle améliore les cor-
respondances prédites par le résultat grossier du co-enregistrement en recher-
chant uniquement le voisinage local pour réduire 'ambiguité.

1.2 Contributions

Dans cette thése, nous présentons des pipelines grossiers-&-précis pour I’appariement
d’images multi-époques. Ils sont adaptés aux images aériennes, satellitaires et
mixtes, ce qui ouvre la possibilité de géoréférencer des millions d’images his-
toriques sans nécessiter de GCPs. Six variantes sont proposées pour 'étape de
co-enregistrement grossier et deux variantes pour l’étape d’appariement précis.
Chaque variante a sa propre caractéristique:
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i %ﬁ L3 i -
(a) Image RGB 1971 (b) Image RGB 2015

(c) DSM 1971 (d) DSM 2015

Figure 1.2: La méme zone observée a différents moments. Les images RGB ont
beaucoup changé alors que les DSMs sont restés stables au fil du temps.
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(a) Image RGB 1971 (b) Image RGB 2015

(c) DSM 1971 (d) DSM 2015

Figure 1.3: La méme végétation observée & des moments différents. Réflexion non-
lambertienne et autosimilitude présentes dans les images RGB, tandis que les DSMs
restent distinctifs.
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(¢) Appariement précis

Figure 1.4: Stratégie grossier-a-précis. (a) Un exemple de paire d’images inter-
époques & apparier. I°! et I° représentent les images prises & epochi et epochs
individuellement. (b) Hlustration du co-enregistrement grossier entre I et 1°2. En
conséquence, [°! est grossiérement aligné avec 1°2. (c) Illustration de I'appariement
précis. Pour les points clés de I¢1 (croix verte), un emplacement est prédit dans €2
(croix violette) sur la base d’un co-enregistrement grossier, dont le voisinage local
sera recherché pour trouver I’appariement précis (croix jaune).
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1. Pour les variantes de co-enregistrement grossier: (1) celles basées sur l'idée
d’appariement des DSMs conduisent généralement aux résultats les plus ro-
bustes ; (2) celles qui apparient les orthophotos pourraient servir d’alternatives
dans les rares scénarios de terrain parfaitement plat ot les DSMs ne fournissent
pas d’informations utiles ; (3) les autres qui apparient les paires d’images orig-
inales conduisent souvent & des résultats moins satisfaisants, mais ce sont les
seules options adaptées aux images terrestres.

2. Pour les variantes d’appariement précis: (1) Patch est basé sur des méthodes
d’appariement par apprentissage, il donne généralement plus de correspon-
dances car il est plus invariant dans le temps. (2) Guided est basé sur des
méthodes artisanales, il est plus efficace en termes d’utilisation de la mémoire
et des ressources CPU car il n'implique pas de rééchantillonnage des patchs,
ce qui est nécessaire pour Patch.

Nos pipelines visent a libérer le potentiel des images historiques pour le suivi
des conditions environnementales. Nous collaborons actuellement avec plusieurs
instituts pour appliquer nos pipelines dans différentes applications, notamment:

1. Institut de Physique du Globe de Paris (IPGP) et Korea Institute of Geo-
science and Mineral Resources (KIGAM) pour analyser les déformations de la
crolte terrestre afin de comprendre les événements sismiques.

2. Conseil national de la recherche, Institut de recherche pour la protection hy-
drogéologique (CNR-IRPI) pour 'analyse de ’évolution des glissements de
terrain en Italie.

3. Département des sciences de la terre et de ’environnement de 1'université de
Pavie pour 'analyse de I’évolution des badlands en Europe.

Nous avons également développé deux tutoriels complets accompagnés
d’ensembles de données de test pour familiariser les utilisateurs avec nos pipelines
implémentés dans MicMac|Zhang et al. 2021a| (plus de détails sont présentés dans
lannexe C):

1. Tutoriel d’appariement des images aériennes |Zhang et al. 2021e|

2. Tutoriel d’appariement d’images mixtes (c’est-a-dire d’'images aériennes et
satellitaires) |[Zhang et al. 2021d]

Publications de ’auteur:

1. M Santangelo, L. Zhang, E Rupnik, M Pierrot-Deseilligny, M Cardinali.
Schéma d’évolution des glissements de terrain révélé par des MNS multitem-
porels obtenus & partir d'images aériennes historiques. ISPRS Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, 2022.
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2. L Zhang, E Rupnik, M Pierrot-Deseilligny. Appariement des caractéristiques
pour des images aériennes historiques multi-époques, 182, 176-189, 2021.

3. L Zhang, E Rupnik, M Pierrot-Deseilligny. Appariement des caractéristiques
guidé pour 'estimation de la pose de blocs d’images historiques multi-époques.
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Informa-
tion Sciences, 2020.

Nous fournissons également une vidéo [Zhang et al. 2021f], des diapositives
[Zhang et al. 2021¢]| et le site web du projet [Zhang et al. 2021b] pour améliorer la
visibilité de notre travail.

1.3 Organisation de la thése

Cette thése présente des pipelines entiérement automatiques pour I'appariement
d’images multi-époques. Une bréve présentation de l’état de l’art est donnée dans
le Chapitre 3.

Dans le Chapitre 4, les applications ainsi que 5 données représentatifs sont
présentés, qui sont ensuite utilisés pour tester nos pipelines.

Dans le Chapitre 5, six variantes de co-enregistrement grossier sont élaborées
pour aligner grossiérement le bloc entier en construisant un modéle de transforma-
tion globalement cohérent entre les époques différentes.

Dans le Chapitre 6, deux variantes d’appariement précis sont introduites pour
obtenir des appariements exacts sous la direction des orientations et des DSM qui

sont grossiérement co-registrés.

Enfin, le Chapitre 7 présente les conclusions et les perspectives.






CHAPTER 2

Introduction

Contents
2.1 Motivation and objectives . . . ... ... ... ... ..... 11
2.1.1 Why are historical images interesting . . . . . ... ... ... 11
2.1.2 How to match multi-epoch historical images . . . . . ... .. 12
2.2 Contributions . . . . . .. ... Lo L e e e e 16
2.3 Organization of the thesis . . . . ... ... 18

2.1 Motivation and objectives

2.1.1 Why are historical images interesting

Historical (i.e., analogue or archival) aerial images play an important role in provid-
ing unique information about evolution of land-covers. They are valuable assets for
a wide range of applications such as (1) analyzing of natural disasters (e.g., earth-
quake, landslide, volcano, flood, avalanche, etc), (2) eco-environmental monitoring
(e.g., forest, atmosphere, glacier, water, coastline, etc), (3) urban expansion and (4)
environmental pollution and protection and so on.

Historical aerial images have been regularly acquired since the 1920’s by map-
ping, military or cadastral agencies all over the world. A mass amount of them have
been digitized and made accessible through web services [Giordano & Mallet 2019,
USGS 2019, IGN 2019]. For example, according to a survey taken place at the be-
ginning of 2017 in Europe [Giordano & Mallet 2019], there are approximately 50
millions of aerial images archived in Europe, with around 37.8% of them digitized.
The images are of high spatial resolution, and are acquired in stereoscopic config-
uration, allowing for 3D restitution of territories. They are often accompanied by
metadata, in most cases including the camera focal length, flight height, scale and
the physical sensor size, which are usually saved or mentioned on the films. Other
metadata such as flight plans, camera calibration certificates or orientations are not
commonly available.

When the camera calibration parameters are unknown, they should be evaluated
by a procedure called self-calibrating bundle adjustment. GCPs are required, other-
wise inaccurately estimated camera parameters will lead to systematic error surfaces
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called dome effect (i.e., bowl effect). Generally, GCPs originate from (1) field sur-
veys [Micheletti et al. 2015, Walstra et al. 2004, Cardenal et al. 2006], (2) recent or-
thophotos and DSM [Nurminen et al. 2015, Ellis et al. 2006, Fox & Cziferszky 2008]
and (3) recent satellite images [Ellis et al. 2006, Ford 2013]. The most challenging
part is to identify the GCPs on the historical images, which is not easy due to
inevitable scene changes. GCPs are usually manually measured with the help of re-
cent photos, however, it is still monotonous and time-consuming. There is an urgent
need to automatically identify corresponding points (i.e., matches) on historical and
recent images.

When users are only interested in comparing different historical epochs, the self-
calibration can be accomplished without GCPs. Matches between different epochs
would serve as observations in bundle adjustment to eliminate the systematic er-
rors in surfaces. In conclusion, the bottleneck of historical image self-calibration is
recovering matches on images taken at different times (i.e., multi-epoch).

2.1.2 How to match multi-epoch historical images

However, matching multi-epoch historical images remains challenging, despite the
fact that there exists a large number of image matching algorithms with their effec-
tiveness proven on modern images. The reasons include:

1. Multi-epoch images are often acquired at different times of day and in various
weathers and seasons, which unavoidably leading to appearance differences.

2. The scene changes over time due to anthropogenic phenomena (e.g., urban
planning) or natural ones (e.g., earthquake), especially for large time gaps.

3. Multi-epoch images often exhibit heterogeneous spatial resolutions, accompa-
nied with different acquisition conditions (sensors, spectral channels, etc).

4. Historical images are often facing low radiometric quality, including low con-
trast, image noise, deterioration due to the aging of films, or even scratches
on the films.

Simply applying state-of-the-art feature matching methods (e.g., SIFT [Lowe 2004]
or SuperGlue [Sarlin et al. 2020]) on multi-epoch image pair often leads to unsatis-
factory results. An example is given in Figure 2.1. A pair of multi-epoch images are
demonstrated with red rectangles indicating the overlapping area in Figure 2.1(a).
The left and right images are taken at the same place in 1954 and 1970 individu-
ally. The scene changed significantly, a lot of new buildings arose, the color tones
were very different. In Figure 2.1(b-d), the matching result of STFT, SuperGlue and
Ours are displayed for comparison. As can be seen, SIFT failed to find any matches.
SuperGlue recovered 369 matches, most of which seem good, but at a closer look
the details reveal poor localization precision. Our method found 1463 matches with
high accuracy, thanks to the help of (1) 3D geometry and (2) the divide and conquer
(i.e., rough-to-precise) strategy, which are elaborated in the following texts.
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(a) Multi-epoch image pair (b) Result of SIFT (0 matches)

(c) Result of SuperGlue (d) Result of Ours

Figure 2.1: (a) A pair of multi-epoch images with red rectangles indicating the
overlapping area. (b-d) Matching result of SIFT, SuperGlue and Ours.
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Advantages of 3D geometry RGDB images are widely used for image matching.
However, they have the following shortcomings:

(1) Their appearances change over time (see Figure 2.2), and over varying view
angles on non-Lambertian surfaces (see Figure 2.3).

(2) Self similarities (e.g., repetitive patterns) favor false matches (see Figure 2.3).
Fortunately, 3D geometry such as DSM makes up for these shortcomings perfectly.
As can be seen in Figure 2.2, the RGB images look very different because the scene
changed a lot. However, the corresponding DSMs look similar, which is reasonable,
as the 3D landscape is more stable over time. Besides, DSM is more distinctive than
RGB image when it comes to non-Lambertian surfaces and repetitive patterns, as
shown in Figure 2.3. Even though 3D geometry lacks textures and details compared
to RGB image, it serves as an ideal supplement. Besides, it plays an important
role in providing the 3D information for establishing 3D Helmert transformation
model between epochs to (1) move different epochs into the same coordinate frame
and (2) remove false matches in a RANSAC routine which is more reliable than 2D
transformation models.

(a) RGB image 1971 (b) RGB image 2015

(c) DSM 1971 (d) DSM 2015

Figure 2.2: The same zone observed in different times. The RGB images changed a
lot while the DSMs stayed stable over time.
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(a) RGB image 1971 (b) RGB image 2015

(c) DSM 1971 (d) DSM 2015

Figure 2.3: The same vegetation observed in different times. Non-Lambertian re-
flection and self similarities present in RGB images, while the DSMs stay distinctive.
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Divide and Conquer Since the task of recovering robust and precise matches
on multi-epoch image pairs is difficult, we divide the task into two sub-tasks and
conquer them individually with the rough-to-precise strategy. It is illustrated in
Figure 2.4. The two sub-tasks includes:

1. Rough co-registration, as illustrated in Figure 2.4(b). Its goal is to roughly
align the multi-epoch image pairs by focusing on robustness and relaxing the
requirement for accuracy.

2. Precise matching, as illustrated in Figure 2.4(c). It refines the matches pre-
dicted by the rough co-registration result by searching only the local neigh-
borhood to reduce ambiguity.

2.2 Contributions

In this thesis we present rough-to-precise pipelines for matching multi-epoch images.
They are suitable for aerial, satellite and mixed images, which open the possibility
of geo-referencing millions of historical images without requiring any GCPs. Six
variants are provided for the rough co-registration stage and two variants for the
precise matching stage. Each variant has its own characteristic:

1. For rough co-registration variants: (1) the ones based on the idea of matching
DSMs generally lead to the most robust results; (2) the ones that match
orthophotos could serve as alternates in rare scenarios of perfectly flat terrain
where DSMs fail to provide useful information; (3) the others that match
original image pairs often lead to less satisfactory results, but they are the
only options suitable for terrestrial images.

2. For precise matching variants: (1) Patch is based on learned matching meth-
ods, it generally results in more matches as it is more invariant over time. (2)
Guided is based on hand-crafted methods, it is more efficient in terms of the
use of memory and CPU resources as it doesn’t involve resampling patches,
which is necessary for Patch.

Our pipelines aim to unlock the potential of historical images for tracking en-
vironmental conditions. We are currently collaborating with several institutes to
apply our pipelines in different applications, including:

1. Institut de Physique du Globe de Paris (IPGP) and Korea Institute of Geo-
science and Mineral Resources (KIGAM) for analyzing deformations of the
earth crust to understand the seismic events.

2. National Research Council, Research Institute for Hydrogeological Protection
(CNR-IRPI) for analyzing landslide evolution in Italy.
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(a) Example of an inter-epoch image pair

(¢) Precise matching

Figure 2.4: Rough-to-precise strategy. (a) An example of an inter-epoch image pair
to be matched. I** and I°? represents images take at epoch; and epochs individually.
(b) Ilustration of rough co-registration between ¢! and I1°2. As a result, I is
roughly aligned with I°2. (c) Illustration of precise matching. For keypoints in
I¢* (green cross), a location is predicted in I (purple cross) based on rough co-
registration, whose local neighborhood will be searched to find the precise match
(yellow cross).
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3. Department of Earth and Environmental Sciences in University of Pavia for
analyzing badland evolution in Europe.

We also developed two thorough tutorials accompanied with test datasets to fa-
miliarize users with our pipelines implemented in MicMac[Zhang et al. 2021a] (more
details are introduced in Appendix C):

1. Tutorial of matching aerial images [Zhang et al. 2021¢|

2. Tutorial of matching mixed images (i.e., aerial and satellite images)
|Zhang et al. 2021d|

Publications of the author:

1. M Santangelo, L Zhang, E Rupnik, M Pierrot-Deseilligny, M Cardinali. Land-
slide evolution pattern revealed by multi-temporal DSMs obtained from histor-
ical aerial images. ISPRS Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, 2022.

2. L Zhang, E Rupnik, M Pierrot-Deseilligny. Feature matching for multi-epoch
historical aerial images. ISPRS Journal of Photogrammetry and Remote Sens-
ing, 182, 176-189, 2021.

3. L Zhang, E Rupnik, M Pierrot-Deseilligny. Guided feature matching for
multi-epoch historical image blocks pose estimation. ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020.

We also provide video |Zhang et al. 2021f], slides [Zhang et al. 2021c| and project
website [Zhang et al. 2021b| to improve the visibility of our work.

2.3 Organization of the thesis

This thesis presents fully automatic pipelines to match multi-epoch images. A brief
presentation of the state-of-the-art is given in Chapter 3.

In Chapter 4, applications as well as 5 sets of representative datasets are
introduced, which are latter used to test our pipelines.

In Chapter 5, six rough co-registration variants are elaborated to roughly align
the whole block by building a globally consistent transformation model between

different epochs.

In Chapter 6, two precise matching variants are introduced to get accurate
matches under the guidance of roughly co-registered orientations and DSMs.

Finally, in Chapter 7 conclusion and perspective are given.
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3.1 Local feature matching

Local feature refers to a discriminative structure found in an image, such as a point,
corner, blob, edge or image patch. It is often accompanied with a descriptor, which
is a compact vector representing the local neighborhood.

According to different data storage types, descriptors can be divided into two
categories: floating-point and binary descriptors. The former is recorded in floating-
point format, which has the advantage of being informative. It is widely used in
various matching scenarios. The latter is stored in binary type, which guarantees
faster processing while demanding less memory. It is particularly suitable for real-
time and/or smartphone applications. Since our goal is to match multi-epoch images
for high accuracy cartography, we are interested in floating-point descriptors rather
than binary ones.

According to whether machine learning techniques are applied, local features can
be categorized as hand-crafted or learned. We subsequently elaborate on the two
categories of approaches.

3.1.1 Hand-crafted methods

In the early stage, Moravec detects corner feature by measuring the sum-of-squared-
differences (SSD) by applying a small shift in a number of directions to the
patch around a candidate feature [Moravec 1980]. Based on this, Harris computes
an approximation to the second derivative of the SSD with respect to the shift
|Harris & Stephens 1988|. Since both Moravec and Harris are sensitive to changes
in image scale, algorithms invariant to scale and affine transformations based on
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Harris are presented [Mikolajczyk & Schmid 2004]. Other than corner feature, SIFT
(Scale-invariant feature transform) [Lowe 2004] detects blob feature in scale-space,
which is an entire pipeline including detection and description. It uses a difference-
of-Gaussian function to identify potential feature points that are invariant to scale
and orientation. SIFT is a milestone among hand-crafted features, and is able
to outperform machine learning alternatives when matching conditions are favor-
able. RootSIFT [Arandjelovi¢ & Zisserman 2012] uses a square root (Hellinger)
kernel instead of the standard Euclidean distance to measure the similarity be-
tween SIFT descriptors, which leads to a dramatic performance boost. Similar to
SIFT, SURF [Bay et al. 2006] resorts to integral images and Haar filters to extract
blob feature in a computationally efficient way. DAISY [Tola et al. 2009] is a local
image descriptor, which uses convolutions of gradients in specific directions with
several Gaussian filters to make it very efficient to extract dense descriptors. KAZE
[Alcantarilla ef al. 2012] is an algorithm that detects and describes multi-scale 2D
feature in nonlinear scale spaces. AKAZE [Alcantarilla et al. 2013| is an accelerated
version based on KAZE.

3.1.2 Learned methods

With the rise of machine learning, learned features have shown their feasibility in
the image matching problem when enough ground truth data is available. FAST
[Rosten & Drummond 2006] uses decision tree to speed up the process of find-
ing corner feature. LIFT (Learned Invariant Feature Transform) [Yi et al. 2016]
is a deep network architecture that implements a full pipeline including detec-
tion, orientation estimation and feature description. It is based on the previous
work TILDE [Verdie et al. 2015], the method of [Moo Yi et al. 2016] and DeepDesc
[Simo-Serra et al. 2015]. Tian et al. introduce L2-Net |Tian ef al. 2017] to learn
high performance descriptor in Euclidean space via the Convolutional Neural Net-
work (CNN). Afterwards Mishchuk et al. [Mishchuk et al. 2017] introduce a com-
pact descriptor named HardNet, by applying a novel loss to L2Net [Tian et al. 2017].
DELF [Noh et al. 2017] is an attentive local feature descriptor based on CNN, which
works particularly well for illumination changes. SuperPoint [DeTone et al. 2018] is
a self-supervised, fully-convolutional model that operates on full-sized images and
jointly computes pixel-level feature point locations and associated descriptors in one
forward pass. LF-Net [Ono et al. 2018] is a deep architecture that embeds the entire
feature extraction pipeline, and can be trained end-to-end with just a collection of
images. D2-Net [Dusmanu et al. 2019] is a single neural network that works as a
dense feature descriptor and a feature detector simultaneously, but their keypoints
are less accurate compared to classical features since they are extracted on feature
maps which have a resolution of 1/4 of the input image. ASLFeat [Luo et al. 2020]
improves shape-awareness and localization accuracy by applying light-weight yet ef-
fective modifications on improved D2-Net. R2D2 [Revaud et al. 2019] is a CNN ar-
chitecture that learns dense local descriptors (one for each pixel) as well as two asso-
ciated repeatability and reliability confidence maps. Contextdesc [Luo et al. 2019]
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is a unified learning framework that leverages and aggregates the cross-modality
contextual information. D2D [Wiles et al. 2020] allows dense features to be modi-
fied based on the differences between the images by conditioning the feature maps on
both images. Different than the aforementioned feature extraction methods, Super-
Glue [Sarlin et al. 2020] presents a new way of thinking about the feature matching
problem. It matches two sets of pre-existing local features by adopting a flexible
context aggregation mechanism based on attention to jointly find matches and re-
ject non-matchable points, leading to robust matching results even in challenging

situations.
Early learned methods (LIFT  [Yi et al. 2016], L2-Net |[Tian et al. 2017,
HardNet  [Mishchuk et al. 2017, DELF [Noh et al. 2017],  SuperPoint

[DeTone et al. 2018], LF-Net [Ono et al. 2018]) use only intermediate metrics
(e.g., repeatability, matching score, mean matching accuracy, etc) to evaluate the
matching performance. Even though they demonstrate better performance when
compared to hand-crafted features on certain benchmarks, it does not necessarily
imply a better performance in terms of subsequent processing steps. For example,
in the context of Structure from Motion (SfM), finding additional matches for
image pairs where SIFT already provides enough matches does not necessarily
result in more accurate or complete reconstructions [Schonberger et al. 2017]. Jin
et al. [Jin et al. 2020] introduce a comprehensive benchmark for local features
and robust estimation algorithms, focusing on the accuracy of the reconstructed
camera pose as the primary metric. Using the new metric, SIFT [Lowe 2004] and
SuperGlue [Sarlin et al. 2020] take the lead [Trulls et al. 2020].

3.2 Robust matching

The goal of robust matching is to tell apart true matches (i.e., inliers) from false
matches (i.e., outliers), and eliminate the latter from further processing.

Typically, an iterative sampling strategy based on RANSAC (Random Sam-
ple Consensus) [Fischler & Bolles 1981] relying on some mathematical model, such
as homography |Sonka et al. 2014] or essential matrix [Sonka et al. 2014] is carried
out to remove outliers. This is an important issue which was often not given suf-
ficient attention. LMedS (Least Median of Squares) [Leroy & Rousseeuw 1987] is
a meaningful groundwork before RANSAC, which is also commonly used to re-
place RANSAC. MLESAC (Maximum Likelihood SAC) [Torr & Zisserman 2000]
adopts the same sampling strategy as RANSAC but chooses the solution that
maximizes the likelihood instead of the number of inliers. PROSAC (Pro-
gressive Sample Consensus ) [Chum & Matas 2005] chooses samples from pro-
gressively larger sets of top-ranked matches, which makes it significantly faster
than RANSAC. DEGENSAC [Chum et al. 2005| is an algorithm for epipolar ge-
ometry estimation unaffected by planar degeneracy. It is widely used in the
2020 image matching challenge [Trulls et al. 2020]. USAC (Universal RANSAC)
|[Raguram et al. 2012] framework is a synthesis of the various optimizations and
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improvements that have been proposed to RANSAC. GC-RANSAC (Graph-Cut
RANSAC) [Barath & Matas 2018] runs graph-cut algorithm in the local optimiza-
tion step. MAGSAC [Barath et al. 2019] eliminates the need for a user-defined
inlier-outlier threshold with marginalization.

Various deep learning methods have also been developed to handle the
erroneous matches. DSAC (the differentiable counterpart of RANSAC)
|Brachmann et al. 2017] replaces the deterministic hypothesis selection by a proba-
bilistic selection. CNe (Context Networks) [Moo Yi et al. 2018] trains deep networks
in an end-to-end fashion to label the matches as inliers or outliers, known intrinsics
are required as input, and a post-processing with RANSAC is often tasked. CNe
was embedded into the framework of [Jin et al. 2020] to remove outliers, paired with
DEGENSAC, PyRANSAC (a variant of DEGENSAC by disabling the degeneracy
check, introduced in [Jin et al. 2020]) and MAGSAC. The results showed that with
STFT used to train CNe, about 80% of the outliers were filtered out. Nearly all classi-
cal methods benefited from CNe, but not the learned ones. Jin et al. [Jin et al. 2020]
also state that RANSAC should be tuned to particular feature detector and descrip-
tor, and specific settings should be selected for a particular RANSAC variant.

In this research, we use RANSAC to estimate the 3D Helmert transformation
between surfaces (i.e., DSMs) calculated in different epochs. Compared to the clas-
sical essential /fundamental matrix filtering, with less data we impose stricter rules
on the sets of points. Lastly, we eliminate the remaining false matches by looking
at their cross-correlation.

3.3 Pose estimation

Pose estimation describes the intrinsic and extrinsic parameters of an im-
age and is classically solved with the SfM algorithms [Snavely et al. 2006,
Pierrot-Deseilligny & Cléry 2012, Schonberger & Frahm 2016] based on local fea-
ture matches. The accuracy of matches plays an important role throughout the SfM
process, since small inaccuracies in their locations can result in large errors in the
estimated poses. Good matches will lead to better results on image orientation, cam-
era calibration and 3D reconstruction |Lindenberger et al. 2021|, [Sarlin et al. 2021],
[Truong Giang et al. 2018].

Unlike in modern images where the image coordinate system overlaps with the
camera coordinate system, in historical images the overlap is not maintained due
to the scanning procedure. To account for this, an additional 2D transformation
is estimated in the SfM procedure [McGlone 2013], which puts higher demands on
the matches. [Giordano et al. 2018] demonstrates the importance of good matches
in estimating the camera calibration and its great impact on the planimetric and
altimetric accuracies of the resulted DSM. Systematic errors expressed as dome ef-
fect (i.e., a vertical doming of the surface) could appear in the DSMs when camera
models are poorly estimated (i.e., inaccurately estimated lens distortion parame-
ters) [Wackrow et al. 2008], [James & Robson 2014], which restricts the wider use
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of DSMs.

3.4 Historical image processing

Compared to modern digital images, historical images are accompanied with particu-
lar characteristics such as poor radiometric quality and deformation during scanning.
Therefore, aligning multi-epoch historical images by directly applying state-of-the-
art feature matching methods often leads to unsatisfactory results. In Figure 2.1
we showed an example where SIFT and SuperGlue failed to recover good matches
on an inter-epoch image pair with drastic scene changes. It is understandable as
(1) SIFT is not sufficiently invariant over time, while (2) SuperGlue is not invariant
to rotations larger than 45° and it underperforms on larger images because it was
presumably trained on small images.

Therefore, many previous researches bypassed the task of extracting inter-epoch
matches by processing different epochs separately followed by an inter-epoch
co-registration relying on GCPs. Between 10 and 169 GCPs are required in
[Pinto et al. 2019], [Bozek et al. 2019], [Persia et al. 2020], [Micheletti et al. 2015]
and [Mélg & Bolch 2017]. Manually measuring GCPs are laboursome and tedious.
Furthermore, it is difficult to find salient points that are stable over time.

Certain attempts were made to extract inter-epoch matches.  Giordano et
al. [Giordano et al. 2018] extract feature matches between historical and recent
images relying on HoG descriptors |Dalal & Triggs 2005]. The authors require
flight plans as input, which are not commonly available as mentioned in Sec-
tion 2. Feurer et al. [Feurer & Vinatier 2018| joins multi-epoch images in a sin-
gle SfM block based on SIFT-like algorithm by making the assumption that
a sufficient number of feature points remain invariant across each time pe-
riod. Their methods are widely used in the subsequent works [Filhol et al. 2019],
[Cook & Dietze 2019|, [Parente et al. 2021] and [Blanch et al. 2021]. It remains
questionable whether the method is capable of handling drastic scene changes.
Additionally, a stream of previous works focus on historical terrestrial im-
ages ( [Maiwald & Maas 2021], [Beltrami et al. 2019], [Bevilacqua et al. 2019,
[Maiwald 2019]) and historical video recordings ( [Maiwald 2019]). However, their
algorithms are not suitable to the aerial case.

In this work, we propose a rough-to-precise strategy to recover inter-epoch matches,
without requiring any GCPs or auxiliary data.






CHAPTER 4

Applications and Datasets

Our pipelines open the possibility for millions of historical images to come into play
in diverse applications of geoscience, including but not limited to disaster analy-
sis, eco-environmental monitoring, urban expansion and so on. In order to reveal
the potential of our pipelines, we choose five representative datasets for experiments:

1. Fréjus: city zone in France which exhibited notable urban expansion between
1954 and 2014. It contains 4 epochs of aerial images.

2. Pezenas: mountain area in France mainly covered with vegetation that
demonstrated large-scale landuse changes between 1971 and 2015. Four epochs
are available, including 3 aerial epochs and a satellite epoch.

3. Kobe: dataset over an island in Japan that chronicled an earthquake with 2
sets of aerial images taken before and after the event (i.e., 1991 and 1995).

4. Alberona: rural area in Italy that witnessed a landslide with 2 epochs taken
before and after the event (i.e., 1954 and 2003).

5. Hofsjokull: ice cap area in Iceland with only one aerial epoch. Instead of
alming at inter-epoch images alignment, in this dataset we are interested in
studying extremely challenging case in matching intra-epoch images for glacier
monitoring.

The datasets contain both aerial and satellite images, details of the former are
listed in Table 4.1 and 4.2, while that of the latter are displayed in Table 4.3. All
the historical aerial images are scanned from films followed by resampling to the
geometry of the fiducial marks. The resampling procedure is illustrated in Figure
4.1.

The images of each dataset are demonstrated in Figure 4.2, 4.4, 4.5, 4.6 and 4.7
individually.

Fréjus. The dataset Fréjus is mainly covered with buildings along with scattered
farmlands, except a half-moon-shaped bay located in south. It is a 15 km? rectangu-
lar area located in Fréjus, a commune in southeastern France. We have four sets of
aerial images acquired in 1954, 1966, 1970 and 2014. The epoch 2014 was acquired
with the Institut national de linformation géographique et forestiére (IGN)’s
digital metric camera [Souchon et al. 2010], its orientations are both in global
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(a) Original image and the fiducial mark (b) Resampled image

Figure 4.1: Hlustration of resampling historical image to the geometry of the fiducial
marks. (a) Original image with enlarged detail of the fiducial mark on the bottom
right corner displayed. (b) Image resampled based on the 4 fiducial marks in the
Ccorner.

reference frame and precise. Therefore it is treated as Ground Truth (GT) during
our processing (in other words, their parameters will be fixed during the Block
Bundle Adjustment (BBA)). The area exhibits drastic scene changes in the 60-
year period, as can be seen in Figure 4.3, where evolution of a subregion is displayed.

Pezenas. The dataset Pezenas is mainly covered with vegetation and several
sparsely populated urban zones. It is a 420 km? rectangular area located in Pezenas
in the Occitanie region in southern France. We have at our disposal three sets
of aerial images acquired in 1971, 1981 and 2015, and one set of satellite images
acquired in 2014. Both the epoch 2014 and 2015 are treated as GT. In this dataset
we are interested in matching historical epochs (1971 and 1981) with aerial GT
and satellite GT individually. The area exhibits changes in scene appearance in the
44-year period.

Kobe. The dataset Kobe witnessed the well-known Kobe earthquake in January
1995. Tt is a 90 km? area of irregular shape located in the north of Awaji Island,
Japan. We have two sets of aerial images: pre-event acquired in 1991 and post-event
acquired in 1995. It is mainly covered with mountain area and narrow urban zones
along the sea. There are neither GT epochs nor GCPs, therefore we measured 2
points on Google map to scale the result to metric units. In this dataset we are
interested in localizing the earthquake fault.
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Alberona. The dataset Alberona is characterized by the diffuse presence of clay
rich lithologies, with the wide presence of slow moving landslides. It is a 90 km?
rectangular area located in southern Italy, near the village of Alberona (Puglia
region). It is a rural, poorly inhabited, mainly agricultural and wooded area. A
slow moving slide-earthflow has been detected there since the 1950s. We have two
sets of aerial images: pre-event acquired in 1954 and post-event acquired in 2003.
Images were scanned with non photogrammetric scanner with 800 dpi. The films
were poorly preserved before scanning, which present some scratches and dust, a
typical feature for images that were not preserved for photogrammetric purposes.
There are no GT epochs but 7 GCPs which could be used to move the results from
relative coordinate system to absolute one. In this dataset we are interested in
localizing the landslide.

Hofsjokull. The dataset Hofsjokull is a snow-covered area located in Hofsjokull
in central Iceland. Unlike other datasets described previously, Hofsjokull consists
of only one epoch, as in this dataset we are only interested in matching challenging
intra-epoch image pairs. It contains several archival aerial images acquired in the
year 1960, provided by the National Survey of Iceland. They were scanned with
a photogrammetric scanner Wehrli RM-6, in 16micron/px and 12 bit, in order to
digitize as much information as possible appearing in the films. In Figure 4.7 we
displayed 6 consecutive images in the same flight strip, with snow-covered area
gradually expanding. We are interested in matching the most challenging image
pair (i.e., image 5 and 6, as they are fully snow-covered with very limited context),
whose overlapping zone is labeled with red rectangles.
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Image PixSz Focal length Physical ImgSz | Digital ImgSz
Epoch . .
type [em] [pix] ‘ [mm)| [mm)] [pix]
1954 Historical | 21.17 | 23350 502 300 x 300 13932 x 13902
Fré: 1966 Historical | 21.17 | 10230 210 180 x 180 8758 x 8759
FIUS 1970 || Historical | 21.17 | 10230 | 210 180 x 180 8766 x 8763
2014 Modern 6.8 18281 124.3 99.28 x 72.42 14600 x 10650
1971 Historical | 21.17 | 7600 160 230 x 230 10600 x 10600
Pegenas 1981 Historical | 21.17 7600 160 230 x 230 10600 x 10600
zen o0ts || Modery | 68 | 99675 | 67.8 A7 % 35 6950 x 5175
ode 6.8 | 92045 | 62.6 50 x 36 7325 x 5350
Kob 1991 Historical 20 7662 | 152.66 230 x 230 10600 x 10600
obe 1995 || Historical | 20 | 7662 | 152.66 | 230 x 230 | 10600 x 10600
Alb 1954 Historical | 31.75 4760 153.0 230 x 230 7113 x 7109
O 9003 || Historical | 31.75 | 4650 | 152.8 230 x 230 6689 x 7065
| Hofsjokull | 1960 || Historical | 16 | 9656 | 154.49 | 230 x 230 14014 x 14009 ||
Table 4.1: Aerial dataset details of Fréjus, Pezenas, Kobe, Alberona and Hofsjokull.
The 2015 acquisition of Pezenas is obtained with two sets of camera. PixSz means
pixel size, ImgSz stands for image size. Digital image size of historical epoch is
based on images resampled to the geometry of the fiducial marks.
F i I
Epoch GSD ) H Scale orward | Side Hase Flightline
[m] [m] overlap | overlap | number
1954 0.11 | 2530 | 1:5000 60% 20% 19 West-Est
Fréius 1966 0.17 | 1780 | 1:8000 60% 30% 15 West-Est
] 1970 0.17 | 1770 | 1:8000 60% 30% 19 West-Est
2014 0.35 | 6500 | 1:5000 60% 30% 33 West-Est
1971 0.32 | 2400 | 1:1500 60% 20% 57 West-Est
Pegenas 1981 0.59 | 4500 | 1:3000 60% 20% 27 West-Est
9015 0.46 | 4600 | 1:7000 60% 50% 308 West-Est
0.5 4600 | 1:7000 60% 50% 74 West-Est
Kob 1991 0.5 | 3800 | 1:25000 65% 35% 15 Northeast-Southwest
obe 1995 0.18 | 1100 | 1:7000 65% 65% 83 Northeast-Southwest
Alberona 1954 1.0 6000 | 1:4000 65% / 3 North-South
PR 9003 || 0.85 | 4850 | 1:3000 | 65% 30% West-Est
| Hofsjokull | 1960 || 0.57 | 5480 | 1:3500 | 60% | / [ 6 North-South |

Table 4.2: Continuation of Table 4.1.

the flying height.

GSD is the ground sampling distance, H is
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Master image | Secondary image
Constellation Pleiades Pleiades
GSD [m] 0.5 0.5
Acquired date 12/06/2014 12/06/2014
Number of lines 38468 37710
Number of pixels per line 34108 33392
Cloud cover 3.9% 4.0%
Snow cover 0% 0%

Table 4.3: Satellite dataset details of Pezenas. It consists of 2 images, which is
indicated as master and secondary image individually. GSD means the ground
sampling distance.

(a) Fréjus 1954 (19 images) (b) Fréjus 1966 (15 images)

(c¢) Fréjus 1970 (19 images) (d) Fréjus 2014 (33 images)

Figure 4.2: Tmages demonstration of 4 aerial epochs in Fréjus (i.e., 1954, 1966,
1970 and 2014), image number of each epoch is displayed in the parenthesis of each
sub headline. The overlapping zone between all the epochs is indicated with red
rectangles. Graphic scale is demonstrated on epoch 2014 in (d).
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(a) Subregion of Fréjus 1954

(b) Subregion of Fréjus 2014

Figure 4.3: Evolution of a subregion in Fréjus.
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(a) Pezenas 1971 (57 images) (b) Pezenas 1981 (27 images)

(c) Pezenas 2014 (2 satellite images) (d) Pezenas 2015 (382 images)

Figure 4.4: Tmages demonstration of 3 aerial epochs (i.e., 1971, 1981 and 2015)
as well as satellite epoch (i.e., 2014) in Pezenas, image number of each epoch
is displayed in the parenthesis of each sub headline. There are 2 historical aerial
epochs (1971 and 1981) and 2 GT epochs (2014 the satellite epoch and 2015 the
aerial epoch) in this dataset. The overlapping zone between the historical epochs
and the 2014 satellite epoch is indicated with blue rectangles, while that between
historical epochs and the 2015 aerial epoch is in red rectangles. Graphic scales are
demonstrated on epoch 2014 and 2015 in (c) and (d).
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(b) Kobe 1995 (83 images)

Figure 4.5: ITmages demonstration of 2 aerial epochs (i.e., 1991 and 1995) in Kobe,
image number of each epoch is displayed in the parenthesis of each sub headline. The
overlapping zone between different epochs is indicated with red rectangles. Graphic
scale is demonstrated on epoch 1995 in (b).

(a) Alberona 1954 (3 images) (b) Alberona 2003 (7 images)

Figure 4.6: Images demonstration of 2 aerial epochs (i.e., 1954 and 2003) in Al-
berona, image number of each epoch is displayed in the parenthesis of each sub
headline. The overlapping zone between different epochs is indicated with red rect-
angles. Graphic scale is demonstrated on epoch 2003 in (b).
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(d) Image 4 (e) Image 5 (f) Image 6
Figure 4.7: Images demonstration of epoch 1960 in Hofsjékull. The overlapping
zone of the most challenging image pair (i.e., image 5 and 6) is labeled with red
rectangles.
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5.1 Introduction

5.1.1 Motivation and objective

The goal of rough co-registration is to perform rough alignment between image
pairs, so that they can be later used to guide the precise matching by narrowing
down the search space in 2D image geometry. It plays a fundamental role as
wrongly aligned results would lead to deviation from the right search space.
Therefore robustness is the most critical target in rough co-registration. In the
meantime, it doesn’t need to be very accurate as the precision would be improved
in the precise matching part via searching local neighborhood. Therefore, we can
reasonably sacrifice precision when necessary to trade for robustness.

The task of rough alignment could be accomplished by matching every possible
inter-epoch image pair, followed by a RANSAC routine to recover the best
transformation model between each image pair. However, inter-epoch image pairs
often demonstrate different appearances due to scene changes and heterogeneous
acquisition conditions, which often leads to limited inlier ratio, in other words,
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failure of the later RANSAC procedure. Therefore, instead of aligning a group of
inter-epoch image pairs separately, we come up with an idea to improve robustness
by aligning the whole block integrally to build a globally consistent transformation
model. Afterwards, we can move different epochs to the same coordinate frame,
providing orientations and DSMs in the same geographic system for later processing
(i.e., precise matching and BBA). Besides, we take advantage of 3D geometry
which could be easily obtained within each epoch to boost the inter-epoch matching
performance.

As a consequence, we come up with 2 strategies for multi-epoch rough co-
registration: (1) ImgPairs (i.e., matching image pairs) and (2) Ortho or DSM
(i.e., matching orthophotos or DSMs). The former strategy comes up first, but its
performance is less satisfactory. This motivated us to conceive and explore the
latter strategy. Even though ImgPairs is generally outperformed by Ortho or DSM,
it still has its own strengths in certain cases such as viability for terrestrial images.

5.1.2 Contributions

Our main contribution is complete and fully automated pipelines for rough co-
registration between inter-epoch image pairs. The pipelines are composed of the
following key ingredients:

1. improving matching robustness by building globally consistent transformation
model;

2. introducing the idea of matching DSMs to obtain robust matches even under
drastic scene changes, as the 3D landscape often stays globally stable over
time;

3. introducing RANSAC in 3D for ImgPairs: each three matches projected to
DSM serve to compute a 3D Helmert transformation model between epochs,
and most importantly provide a 2D constraint on all image pairs;

4. introducing 4 rotation hypotheses to make SuperGlue suitable for matching
images with rotation larger than 45°;

5. introducing one-to-many tiling scheme to scale-up the deep learning methods
for feature matching;

6. improving the performance of matching inter-epoch images with SIFT by (1)
using downsampled images and (2) skipping ratio test.

5.2 Methodology

To roughly co-register different epochs to the same frame, we propose 2 strategies:
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1. ImgPairs: matching each inter-epoch image pairs followed by global filtering
over the whole block;

2. Ortho or DSM: generating global image for each epoch (i.e., orthophotos or
DSMs) and performing matching only once.

Please notice our pipelines are generic, different feature matching methods can be
readily applied. At present we adopt either SIFT or SuperGlue in our pipeline
as they are currently the state-of-the-art, but they can be replaced when better
matching methods arise in the future.

Our pipelines are able to match both aerial and satellite images. For aerial images,
they are supposed to be accompanied with focal lengths and physical sensor sizes,
which are usually available, as mentioned in Section 2.

We adopt the following naming conventions: (1) I°' and I°?: images acquired

in epochy and epochy; (2) Ot and O°: orientations of epoch; and epochs; (3) Op®
and Op©?: orthophotos of epochy and epochy; (4) D' and D¢2: DSMs of epochy and
epochs.
Prior to inter-epoch rough co-registration, we process each epoch individu-
ally to recover the relative orientations and DSM within the same epoch.
It is a standard photogrammetry or SfM pipeline and can be accomplished
with lots of solutions (e.g., MicMac |[Pierrot-Deseilligny & Cléry 2012],
COLMAP  [Schonberger & Frahm 2016], OpenMVG  [Moulon et al. 2016],
Theia [Sweeney 2015], etc.). The one used in our experiment is MicMac. It
is performed within each epoch; individually as follows:

1. Extract intra-epoch matches between images I with SIFT [Lowe 2004];

2. Based on the sequential SfM to compute interior and relative orientations

(©5,

ini
for satellite images;

) for aerial images, or to refine the Rational Polynomial Coefficient (RPC)

3. Based on image orientations O’

ing [Pierrot-Deseilligny & Paparoditis 2006] between images ¢ to get DSM
(D5

ini

perform semi-global dense match-

) in their arbitrary coordinate frames.

€
ini

4. Orthorectify the images to get orthophotos (Op;' .) if strategy Ortho is applied.

5.2.1 Strategy 1: Matching image pairs (ImgPairs)

The strategy ImgPairs is the first attempt we made for rough co-registration. The
workflow is displayed in Figure 5.1(a). For the sake of simplicity, only 2 epochs are
present in our processing flows, however, it can be easily extended to more epochs.
The matching procedure (i.e., the magenta rectangle in Figure 5.1(a)) with SIFT
or SuperGlue is slightly different, so we elaborate both in Figure 5.1(b) and (c)
individually for better understanding. We introduce 4 rotation hypotheses when
feature matching method that is not invariant to rotations lager than 45° (e.g.,
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SuperGlue) is applied.

Four rotation hypotheses. It normalizes rotation to achieve invariance, which is
similar to ASIFT [Morel & Yu 2009] by exploring the space of possible deformation,
but adapted as it only explores 2D rotation.

The 4 rotation hypotheses works as follows (cf. Figure 5.1(d)):

1. Rotate the secondary image by 90° four times;
2. Match each rotated image with the master image;

3. Keep the rotation hypothesis with the largest number of matches.

Workflow of I'mgPairs. Assuming the numbers of images in epoch; and epochs
are P and Q individually, the strategy ImgPairs works as follows:

1. Match PxQ inter-epoch image pairs respectively, giving rise to PxQ sets of
matches M (K¢, K*) (K¢ represents keypoints in image I¢).

2. Sample matches M (K, K*) iteratively to compute the 2D similarity trans-
formation RANSAC model:

e y €1
[§§2]:A.[ 00?90 SZ”Z].[§§1]+[§”} (5.1)
Y —sind cos Y y
where A is the scale factor, 6 is the in-plane rotation angle and [ Ay, Ay ]
" is the translation vector. Matches within T, of its predicted position (i.e.,

K- 01|

co§9 sind 1 K + A)| < T,) are considered as inliers. The
—sinf  cosf

resulted inliers are referred to as M (I~{61,I~{62) (K% represents keypoints in
image ).

This step aims to reduce matches into a reasonable number when SIFT is
applied, otherwise the subsequent global filtering would become prohibitive. It
is not necessary if SuperGlue is applied as it simultaneously performs filtering
during the matching procedure.

3. Project K% from SIFT or K% from SuperGlue onto DSM D

ing
of orientations Oy, resulting in 3D points KG*.

with the help

4. Sample matches M(KG® ,KG®) iteratively to compute the 3D Helmert
transformation RANSAC model:

KGe KG% A,

KG2 | =A-R-| KGS | +| 4, |- (5.2)
KGe KGo A,
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where A is the scale factor, R is the rotation matrix and [ Ag, Ay, A, ] g
is the translation vector. Matches within T, of its predicted position (i.e.,
IKG* — (AR -KG® 4+ A)| < T,) are considered as inliers.

This strategy is adapted from our early attempt to match different epochs by
matching P xQ inter-epoch image pairs separately without the later step of building
a globally consistent transformation model. In [Zhang et al. 2020] we accomplished
it by estimating a 2D similarity model for each image pair and using it to guide
precise matching. Obviously it is less robust as the PxQ 2D similarity models might
not be consistent. However, the idea of using 2D similarity model to guide matching

e €

is more generic as it doesn’t require initial orientations O;;, and DSMs D;; ..

viable and maybe even the only possible approach when it is impossible to acquire

Itisa

orientations O, and DSMs D;.. An example is demonstrated in section 5.3.4.

5.2.2 Strategy 2: Matching Orthophotos/DSMs (Ortho or DSM)

Another strategy is to match orthophotos or DSMs. The detailed workflows are
displayed in Figure 5.2(a) and Figure 5.3(a) individually. Different than match-
ing PxQ image pairs in strategy ImgPairs, we only need to match one pair of
DSMs/orthophotos. The DSMs are typically floating-point images, in order to apply
feature matching methods directly on them without adjusting the implementation of
SIFT or SuperGlue, we further describe the conversion of DSM to a gray-scale raster.
Additionally, we propose a one-to-many tiling scheme to maximize the performance
of feature matching with learned methods.

Matching DSMs/orthophotos has the following merits: (1) redundancy caused
by the forward and side overlapping areas is removed; (2) it enables a follow-up
search for globally consistent inliers directly without the need to project matches
onto ground; (3) it decreases the combinatorial complexity caused by rotation
ambiguity of PxQ images; (4) when matching DSMs, robust matches can be
expected even under extreme scene changes, as 3D landscape generally provide
stable information over time.

Converting DSM to grayscale image. DSMs are 2.5D rasters recorded
in floating-point format. It is complicated to apply feature matching meth-
ods on them directly, as most of the methods are implemented for RGB images.
Therefore, we convert DSM beforehand to [0-255] range grayscale images as follows:

1. Calculate the standard deviation of the DSM elevation;

2. Pixels with elevations larger than double the standard deviation are considered
outliers and therefore ignored;

3. Transform the inlier pixels to the range of [0-255], resulting in grayscale image.
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Figure 5.1: Rough co-registration by matching image pairs (i.e., ImgPairs). (a)
Whole workflow. Each inter-epoch image pair is matched individually, followed by
projecting the matches onto ground to find globally consistent inliers. (b) Match
image pairs with STF'T, which involves matching followed by 2D similarity RANSAC
to find inliers. (c¢) Match image pairs with SuperGlue, which involves matching
combined with four rotation hypotheses. (d) Four rotation hypotheses. We rotate
the secondary image by 90 ° four times to match with master image and keep the
best one with the largest number of matches (red rectangle).
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Figure 5.2: Rough co-registration by matching orthophotos (i.e., Ortho). (a) Whole
workflow. Orthophotos are matched, followed by projecting the inlier matches onto
ground to build 3D Helmert transformation model. (b) Four rotation hypotheses
combined with one-to-many tiling scheme. We rotate the secondary orthophoto by
90 ° four times to match with master orthophoto and keep the best one with the
largest number of RANSAC inliers (red rectangle). Omne-to-many tiling scheme is
applied during each hypothesis, with both orthophotos croped into tiles followed by
matching all the tile pairs and merging the matches.
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Figure 5.3: Rough co-registration by matching DSMs (i.e., DSM). (a) Whole work-
flow. DSMs are matched, followed by projecting the inlier matches onto ground to
build 3D Helmert transformation model. (b) Four rotation hypotheses combined
with tiling scheme. We rotate the secondary DSM by 90 © four times to match with
master DSM and keep the best one with the largest number of RANSAC inliers
(red rectangle). Tiling scheme is applied during each hypothesis, with both DSMs
cropped into tiles followed by matching all the tile pairs and merging the matches.
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4. Apply Wallis filter on the grayscale image to get rid of uneven illumination,
resulting in more informative image.

One-to-many tiling scheme. DSMs/orthophotos are usually large images as
they have larger extent than original images. Learned matching methods often
underperform on large images as they are either trained on small images in order
to run real-time or with limited spatial resolution of CNN feature maps. To make
up for the deficiency, we propose an one-to-many tiling scheme, which is performed
as follows (Figure 5.2(a) and Figure 5.3(a)):

1. Crop master and secondary images into M and N tiles of size SZsne—to—many;
2. Apply matching on MxN tile pairs respectively;

3. Merge the matches and perform RANSAC based on 2D similarity transforma-
tion to remove outliers.

The one-to-many tiling scheme can be combined with 4 rotation hypotheses, as
shown in Figure 5.2(b) and Figure 5.3(b).

Workflow of Ortho and DSM. The matching DSMs/orthophotos strategy
works as follows:

1. Transform DSMs to grayscale images if the strategy DSM is applied.

2. Match DSMs/orthophotos, giving rise to one set of matches M (K, K¢) (K¢
represents keypoints in DSM D¢ or orthophoto Op®).

3. Sample matches M (K K*) iteratively to compute the 2D similarity trans-
formation RANSAC model:

Ke ] cost  sinf Ko A,
[K?]_A'[sme COSQ:|‘|:K§1:|+|:AZ/:|‘ (5.3)

where A is the scale factor, 6 is the in-plane rotation angle and [ Ay, Ay ]

" is the translation vector. Matches within T, of its predicted position (i.e.,

Ke — (- { cost  sind

, - K + A)| < T}) are considered as inliers.
—sinf  cosf

4. Project the inlier matches onto DSM D' to fit the best 3D Helmert trans-
formation parameters.
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5.3 Experiments

As described in the previous section, we provide 3 pipelines out of 2 strategies to
perform rough co-registration:

1. ImgPairs: match image pairs;
2. Ortho: match orthophotos;
3. DSM: match DSMs.

For each pipeline, we employ either SIFT or SuperGlue as the feature matching
method, giving rise to 6 variants:

1. SIFTmgPairs;

2. SuperGluermgpairs;
3. SIFTortho;

4. SuperGlueprino;

5. SIFTpsu;

6. SuperGluepsr;

We test the 6 variants on all the multi-epoch datasets which are elaborated in
Chapter 4: Fréjus, Pezenas, Kobe and Alberona, except that we skip the variants
SIFTrmgpairs and SuperGluermgpairs for satellite images in Pezenas as there are
only 2 images with the same extent.

Additionally, we provide experiments where we test the influence of the SIFT
parameters (image downsampling factor, ratio test, RANSAC, etc.) in Section 5.3.2
and the effectiveness of one-to-many tiling scheme in Section 5.3.3. In Section 5.3.4
we demonstrate a real case study where the basic 2D similarity model outperforms
the more sophisticated 3D Helmert transformation model. Finally, the 6 variants
are compared in Section 5.3.5.

5.3.1 Implementation details

To improve efficiency, all input images are downsampled by a factor of 3 beforehand,
except for dataset Alberona as it consists of very few images. To calculate the DSMs
and orthophotos, we further downsample the images by a factor of 8, which amounts
to a total downsampling factor of 24 with respect to the input images (total down-
sampling factor of 8 for Alberona). For example, the images in Fréjus 1970 are
downsampled from [8766, 8763] to [365, 365] for calculating DSMs and orthophotos.
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As the goal of rough co-registration is to get robust rather than precise matches, a
low resolution DSM /orthophoto is good enough and keeps the computational cost
low.

However, the downsampling factor of Fréjus 2014 is set to be 12 instead of 24, as
Fréjus is mainly covered with buildings and the GSD of Fréjus 2014 is too limited
to tell details from DSM with low resolution.

For each dataset, one epoch (generally the most recent epoch) is chosen as the
reference epoch E,, the others would be treated as free epoch Ey. The rough co-
registration is applied between each free epoch Ey and the reference epoch FE,. As
a result, all free epochs Ey would be moved to the frame of epoch E,.

For the procedure of RANSAC to build (1) 3D Helmert transformation, we em-
pirically set the number of iteration to 2000, and 7, to 50m; (2) 2D similarity
transformation, we set the number of iteration to 1000, and 7. to 15 pixels. For the
one-to-many tiling scheme, the tile size SZyne—to—many 15 set to be 1280x960 pixels
to balance performance and efficiency. All the image/tile pairs entering SuperGlue
are downsampled to 640x480 pixels, as it is the default parameter provided by the
author and guarantees the best performance.

5.3.2 Comparison between STFT sjqptea and STFTpepquit

In this section, two different sets of SIFT parameters are compared, which are
referred to as STFTpefeur and STFT agapted:

1. SIFTpefaur: Extract SIFT keypoints on the original images, followed by
mutual nearest neighbor matching combined with ratio test.

2. STFT pgaptea: Downsample the input images with a factor of 3 and extract
SIFT keypoints, match them by mutual nearest neighbor without ratio test,
followed by applying RANSAC based on 2D similarity transformation model
to remove outliers.

Results on matching image pairs. For pipeline ImgPairs, we choose a pair of
images from dataset Pezenas consists of images taken at 1971 and 2015 individually.
The results are displayed in Figure 5.4. As can be seen, STFT gqqpteq recovers 101
good matches out of 2592 total matches, however, STFTpefqu; finds only 3 matches
in total, even though 2 of them are correct matches, it is impossible for the RANSAC
procedure to screen the correct ones.

Results on matching orthophotos. For pipeline Ortho, we choose orthophotos
from Pezenas 1981 and 2015 individually. The results are displayed in Figure 5.5.
As can be seen, STFT gqqpteq recovers 44 good matches out of 855 total matches,
while STFTpefqu: finds 8 total matches which are all wrong.
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Figure 5.4: Comparison between SIFTaqapteq and SIFTpefque on a pair of im-
ages from Pezenas 1971 and Pezenas 2015 individually. (a) Image pair to be
matched, with red rectangles indicating the overlapping zone. (b) Numbers of total
matches and RANSAC inliers of STFT agqpteq and STFTpegau- (c) Visualization
of RANSAC inliers based on SIFT aqapteqa- (d)Visualization of total matches based
on SIFTDefault-
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Figure 5.5: Comparison between SIFT pqapteq and STFTpe et on orthophotos from
Pezenas 1981 and Pezenas 2015 individually. (a) Orthophotos to be matched, with
red rectangles indicating the overlapping zone. (b) Numbers of total matches and
RANSAC inliers of STFT aqapted and STFTpe fquit- (¢) Visualization of RANSAC in-
liers based on STFT gqapteq- (d)Visualization of total matches based on STFTpefquir.
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Results on matching DSMs. For pipeline DSM, we choose DSMs from Fréjus
1954 and 2014 individually. The results are displayed in Figure 5.6. As drastic scene
changes are displayed in dataset Fréjus, SIFTpefquq fails to find any matches.
SIFT pgapted, however, recovers 11 good matches, even though the inlier ratio is
dangerously low (i.e., 0.5%).

— Total matches
2374 == RANSAC inliers

Number of matches
5

- (0.5%)

0
SIFT_Adapted SIFT_Default

(a) DSMs (b) Number of recovered matches

SIFT_Adap
Mulchesﬁ\‘l

(€) SIFTAjapica ™ (d) STFTRo el atches

Figure 5.6: Comparison between SIFTpqapted and SIFTpefque on DSMs from
Fréjus 1954 and Fréjus 2014 individually. (a) DSMs to be matched, with red rectan-
gles indicating the overlapping zone. (b) Numbers of total matches and RANSAC
inliers of STFT agapteqd and STFTpefaui. (c) Visualization of RANSAC inliers based
on SITFT pqapted- (d)Visualization of total matches based on STFTpefquir.

In general, STFT pqqpteq recovers enough good matches in all the 3 variants
(SIFTrmgpairs, STFTorhe and SIFTpgyy), while STFTpepquy fails. It is reason-
able as inter-epoch images often look very different, STFTpfqu¢ generally recover
very few matches. By downsampling the images, we are able to focus on the global
outline of the scene to improve robustness. By relaxing the matching restriction
of ratio test, right matches would be preserved while wrong matches would be
removed in the subsequent RANSAC.

5.3.3 Comparison between SuperGluesijing, and SuperGlueyyg

In order to explore whether the one-to-many tiling scheme improves the performance
of SuperGlue, we compare 2 sets of the results on matching multi-epoch orthophotos
and DSMs with SuperGlueging and SuperGluey;q. The former and latter stands
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orthophoto DSM
Width [pix] | Height [pix] | Width [pix] | Height [pix]
E1970 899 618 3323 2394
E2014 1124 773 4154 2992

Table 5.1: Size of orthophotos and DSMs from Fréjus 1970 and 2014.

orthophoto DSM
Width | Height | Width | Height
SuperGlueyrig 14 1.3 1.8 1.6
E1970
SuperGluegijing 2 2 2 2
SuperGlueoyig 5.2 5.0 6.5 6.2
E2014
0 SuperGluegiiing 2 2 2 2

Table 5.2: Comparison of downsampling ratio between SuperGlueg,g and
SuperGlueyrig for both orthophotos and DSMs from Fréjus 1970 and 2014.

for SuperGlue combined with and without our one-to-many tiling scheme. We chose
the orthophotos and DSMs from Fréjus 1970 and 2014 individually for testing.
The sizes of the orthophotos and DSMs are listed in Table 5.1. As mentioned in
Section 5.3.1, the tile size SZyne—to—many is set to be 1280x960 pixels, and the
image/tile pairs in both SuperGlueijing and SuperGlueyriy are downsampled to
640x480 pixels before entering SuperGlue. The comparison of downsampling ratio
between SuperGlueg;ing and SuperGlueyriy for orthophotos and DSMs from Fréjus
1970 and 2014 is demonstrated in Table 5.2.

Results on matching orthophotos. Figure 5.7 displays the results of matching
orthophotos with SuperGlueing and SuperGlueyrig. As can be seen, the former
recovers 58 good matches with an inlier ratio reached 33%, while the latter fails to
find any correct matches.

Results on matching DSMs. Figure 5.8 displays the results of matching DSMs
with SuperGlueijing and SuperGluey;g. As can be seen, the former recovers 190
good matches with an inlier ratio reached 46.5%, while the latter fails to find any
correct matches.

In general, SuperGlue;ing is able to recover enough good matches with high
inlier ratio to guarantee stability in RANSAC, while SuperGlueyq fails to find
any correct matches. In other words, our one-to-many tiling scheme improves the
performance of SuperGlue significantly.
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Figure 5.7: Comparison between SuperGlueqiing and SuperGlueyrig on orthopho-
tos from Fréjus 1970 and 2014 individually. (a) Orthophotos to be matched, with
red rectangles indicating the overlapping zone. (b) Numbers of total matches
and RANSAC inliers of SuperGlueing and SuperGluey . (c) Visualization of
RANSAC inliers based on SuperGlueiing. (d)Visualization of total matches based
on SuperGlueorig.
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Figure 5.8: Comparison between SuperGluegi,g and SuperGlueyriy on DSMs from
Fréjus 1970 and 2014 individually. (a) DSMs to be matched, with red rectangles
indicating the overlapping zone. (b) Numbers of total matches and RANSAC inliers
of SuperGlueyjing and SuperGlueorig. (c) Visualization of RANSAC inliers based
on SuperGlueing. (d)Visualization of total matches based on SuperGluey,ig.
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5.3.4 Use case of matching guided by 2D similarity transformation

In this section we show an example where using 2D similarity model to guide match-
ing is the only possible approach. The image pair to be matched is taken at the
same time in Hofsjokull (c.f., Figure 5.9(a)). The overlapping zone is indicated with
red rectangles. As can be seen, the area is fully covered with snow. It is extremely
challenging to be matched as the whole image is weakly textured. However, the
details revealed in the purple squares demonstrated that there are still some helpful
information available. We compare the performance of state-of-the-art matching
methods: (1) STFT and (2) SuperGlue, as well as our matching strategy: (3) SIFT
under the guidance of 2D similarity transformation model followed by RANSAC to
remove outliers. No less than two matches are required to estimate the 2D similarity
transformation parameters. In this particular case we need to measure 2 matching
points manually. In less challenging scenarios one can use automated feature ex-
tractors for that purpose.

For each keypoint in the master image, our strategy uses 2D similarity trans-

formation model to predict a location in the secondary image and search only its
neighborhood of a circle with a radius S (in our experiment, S is set to be 45, 30
and 15 pixels respectively) to reduce ambiguity.
Figure 5.9(b-f) demonstrates the matching results of SIFT, SuperGlue and our
matching strategy. As can be seen, SIFT and SuperGlue fail to find any correct
matches, while our strategy obtains a large number of good matches with negligible
manual labor. The number of matches increases as the search radius S changes from
45 to 15, which is reasonable due to decrease of ambiguity. However, false matches
are introduced when the radius is too small (c.f., Figure 5.9(f)). The best balance
is achieved with S set to be 30 pixels (c.f., Figure 5.9(e)).

5.3.5 Comparison of 6 variants

In order to evaluate the results of the 6 variants qualitatively and quantitatively,
the following criteria are applied:

1. Matches visualization. The numbers of (1) total matches (i.e., matches
before RANSAC) as well as (2) RANSAC inliers (matches that survived
RANSAC) are displayed together in bar charts; in the meantime, the RANSAC
inliers are visualized and demonstrated, from which we can tell whether the
variants succeeded or failed.

2. DoD. For the variants that succeeded, we use the resulted orientations in the
same frame to calculate DSMs in order to generate DoD. The visualization of
DoD as well as the statistical information are displayed.

As the results reveal similar pattern on different datasets, for the sake of
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Figure 5.9: Matching results of an intra-epoch image pair from dataset Hofsjokull.
(a) Image pairs to be matched, with red rectangles indicating the overlapping zone.
Details are revealed in purple squares. (b) and (c) are matches recovered by SIFT
and SuperGlue individually. (d-f) displays matches found by our matching strategy
with search radius set to be 45, 30 and 15 pixels individually, with purple squares
indicating the details.



54 Chapter 5. Rough co-registration

simplicity, we only show the results of 2 sets of datasets (i.e., Fréjus and Alberona),
as the former represents challenging case with drastic scene changes and the latter
stands for general case, and we move the results of Kobe as well as Pezenas to
Appendix A to keep the current section tidy.

Matches visualization. For each dataset, each free epoch Ey is matched with
reference epoch E, with 6 variants (i.e., ® SIFTrpgpairs, @ SuperGluermgpairs, @
SIFTortho, ® SuperGlueo,tho, ® SIFTpsy and ® SuperGluepgyr), the matches
In Table 5.3 we display
whether the 6 variants succeeded or failed on all the datasets.

are visualized and displayed together for comparison.

ImgPairs Ortho DSM

SIFT SuperGlue SIFT SuperGlue SIFT SuperGlue
Frejusidi Fail Succeed Fail Succeed | Succeed | Succeed
Frejusidfs Fail Succeed Fail Succeed | Succeed | Succeed
FrejusidT Fail Succeed Fail Succeed | Succeed | Succeed
Pezenasi)it Succeed | Succeed | Succeed | Succeed | Succeed | Succeed
Pezenasdit Succeed | Succeed | Succeed | Succeed | Succeed | Succeed
Pezenaségﬁ(sate”ite) / / Fail Fail Succeed | Succeed
Pezenasys y sateiite) / / Fail Succeed | Succeed | Succeed
Kobeidat Fail Succeed Fail Succeed | Succeed | Succeed
Alberonaldds Fail Succeed Fail Succeed | Succeed | Succeed

Table 5.3: Demonstration of 6 variants succeeding or failing on each dataset.

For Fréjus, the reference epoch E,. is 2014, the matches visualizations between
free epochs Ey (i.e., epoch 1954, 1966 and 1970) and E,. are displayed in Figure 5.10,
5.11 and 5.12 individually. For Alberona, the reference epoch E, is 2003, the
matches visualizations between free epoch E (i.e., epoch 1954) and E, are displayed
in Figure 5.13.

DoD. According to Table 5.3, by applying 6 variants (or 4 variants for satellite
images) on each free epoch and the reference epoch, we got 50 testing cases.
Among all the cases, there are 37 of them succeeded, which leads to 37 sets of
co-registered orientations. For each set of resulted orientations, we use them to
calculate DSMs in free epoch and reference epoch individually in order to generate
DoD. 16 sets of DoDs belong to Fréjus and Alberona therefore are displayed in the
current section (Figure 5.14 and 5.15). Their corresponding statistical informa-

tion is displayed in Table 5.4. The rest 21 sets of DoDs are displayed in Appendix A.




5.3. Experiments

55

2400

Number of matches

(b) Number o

Total matches
m RANSAC inliers

2070

SIFT SuperGlue

f recovered matches(ImgPairs)

TRANSAC’InlierS
ImgPairs

(c) SIF

2700

(d) SuperGlue

RANSACInliers
ImgPairs

2100

s

Number of matche:

(e) Orthophotos (f) Number

Total matches
s RANSAC inliers

1082

0.6%) 244 (11.1%)
6

SIFT

SuperGlue

of recovered matches(Ortho)

RANSACInliers

(g) SIFTOTthD

2700

(h) SuperGlue

RANSACInliers
Ortho

Number of matches
g 3 .

o

(j) Number

SuperGlue
Matches:

75

Total matches
= RANSAC inliers

2374

998

(17.3%)

SuperGlue

of recovered matches(DSM)

(k) SIFTg?ﬁSACInMETS

(1) SuperGluelgglA\/flsACInliers

Figure 5.10: Result of ImgPairs (a-d), Ortho (e-h) and DSM (i-1) on matching
Fréjus 1954 and 2014. (a, e, i) Image pairs/orthophotos/DSMs to be matched,
with red rectangles indicating the overlapping zone. (b, f, j) Numbers of total
matches and RANSAC inliers of both SIFT and SuperGlue on variants ImgPairs,
Ortho and DSM individually. (c, g, k) Visualization of RANSAC inliers based
on SIFTrmgpairs, STFTorthe and SIFTpgsy. (d, h, 1) Visualization of RANSAC
inliers based on SuperGluer,gpairs, SuperGlueorin, and SuperGluepgiy-
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Figure 5.11: Result of ImgPairs (a-d), Ortho (e-h) and DSM (i-1) on matching
Fréjus 1966 and 2014. (a, e, i) Image pairs/orthophotos/DSMs to be matched,
with red rectangles indicating the overlapping zone. (b, f, j) Numbers of total
matches and RANSAC inliers of both SIFT and SuperGlue on variants ImgPairs,
Ortho and DSM individually. (c, g, k) Visualization of RANSAC inliers based
on SIFTmgpairs; SIFTorthe and SIFTpgy. (d, h, 1) Visualization of RANSAC
inliers based on SuperGluer,gpairs, SuperGlueorin, and SuperGluepsiys-
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Figure 5.12: Result of ImgPairs (a-d), Ortho (e-h) and DSM (i-1) on matching
Fréjus 1970 and 2014. (a, e, i) Image pairs/orthophotos/DSMs to be matched,
with red rectangles indicating the overlapping zone. (b, f, j) Numbers of total
matches and RANSAC inliers of both SIFT and SuperGlue on variants ImgPairs,
Ortho and DSM individually. (c, g, k) Visualization of RANSAC inliers based
on STFTrmgpairs, STFTorne and SIFTpsy. (d, h, 1) Visualization of RANSAC
inliers based on SuperGluermgpairs, SuperGlueo,in, and SuperGluepgy.
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Figure 5.13: Result of ImgPairs (a-d), Ortho (e-h) and DSM (i-1) on matching
Alberona 1954 and 2003. (a, e, i) Image pairs/orthophotos/DSMs to be matched,
with red rectangles indicating the overlapping zone. (b, f, j) Numbers of total
matches and RANSAC inliers of both SIFT and SuperGlue on variants I'mgPairs,
Ortho and DSM individually. (c, g, k) Visualization of RANSAC inliers based
on SIFTmgpairs; STFTorthe and SIFTpgy. (d, h, 1) Visualization of RANSAC
inliers based on SuperGluer,gpairs, SuperGlueo,in, and SuperGluepgiy.
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Figure 5.14: DoDs between free epoch Fréjus 1954, 1966, 1970 and reference
epoch 2014 with variants SuperGluermgpairs (3, 8, m), SuperGlueorin, (b, b, n),
SuperGluepsns (¢, 1, 0), SIFTimgpairs (d, j, ), SIFTorho (€, k, q) and SIFTpsm
(f, 1, ). The prohibition sign means the corresponding variant failed.
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Figure 5.15: DoDs between free epoch Alberona 1954 and reference epoch 2003
with variants SuperGluermgpairs (2), SuperGlueorin, (b), SuperGluepsi (c),
SIFTrmgpairs (d), SIFTomno (€) and SIFTpgar (f). The prohibition sign means
the corresponding variant failed.
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I | pm] [ o[m] | |p[m] ]

SuperGluermgpairs | 6.02 7.04 7.39

SuperGlueortho 2.55 7.31 5.29

Frejus SuperGluepsm 2.24 5.34 4.35

DoD1gs5i 5014

SIFTimgpairs / / /
SIFTortho / / /

SIFTpswm 6.91 8.90 8.45

SuperGluermgpairs | -1.74 4.78 3.55

SuperGlueortho -0.69 5.11 3.59

DoDFEreius SuperGluepsm -0.80 4.71 3.28
19662014 | QT poirs / / /
SIFTortho / / /

SIFTpsm -2.12 5.66 4.42

SuperGluermgpairs | -5.60 | 6.16 6.54

SuperGlueortho -3.34 6.50 5.48

DoDFredus SuperGluepsm -2.37 | 6.57 5.35
1970-2014 | STETy pairs / / /
SIFTortho / / /

SIFTpsm -3.76 6.21 5.47

SuperGluermgpairs | -2.90 7.65 6.13

SuperGlueortho -1.06 9.35 6.86

DoDlberona SuperGluepsm -0.46 7.70 6.08
- SIFTimgpairs / / /
SIFTortho / / /

SIFTpswm -2.11 7.39 5.92

Table 5.4: Average value pu, standard deviation o, and absolute average value |u| of
all the DoDs in Figure 5.14 and 5.15.
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Discussion. As can be seen, SIFTy,gpairs and STFToppn, fail to recover correct
matches for most of the cases. It is reasonable as the appearance of inter-epoch
RGB images often looks different and SIFT is not sufficiently invariant over time
by its very nature.

SIFTpsy and SuperGluepgps recover enough good matches for all the datasets,
even the most challenging case of Fréjus with extreme scene changes, thanks to
stable information on DSMs. However, the inlier ratio of SIFTpgas on Fréjus is
dangerously low (around 1%), which makes the RANSAC procedure unstable and
the rough co-registration result inferior.

SuperGluermgpairs and SuperGlueo,in, succeeded for almost all the testing cases,
except for SuperGluep,tho on matching Pezenas 1971 and 2014, as the overlapping
zone is too limited to provide enough clues in context to ensure the matching
performance.

For the DoDs, dome effect is present in all the datasets. This is caused by
inaccurately estimated lens distortion parameters. It is acceptable for rough co-
registration as our goal is only to provide guidance for precise matching.

It is worth noting that the DoDs between Fréjus 1954 and 2014 based on variant
SIFTpsy (ie., Figure 5.14 (f)) is accompanied with specifically obvious dome ef-
fect, with its absolute average value |u| reached 8.04 meters as shown in Table 5.4.
This is because the inlier ratio of matches in the RANSAC procedure is too low to
guarantee reliable rough co-registration. According to the absolute average value
|| displayed in Table 5.4, variant SuperGluepgys performs the best for match-
ing Fréjus 1954 and 1966 to 2014, where drastic scene changes are presented. In
the meantime, variants SuperGlueprn, and SIFTpgy perform the best for less
challenging cases (i.e., matching Fréjus 1970 to 2014, and Alberona 1954 to 2003).

5.4 Conclusion

We provide 2 strategies for multi-epoch rough co-registration: (1) match image
pairs (i.e., ImgPairs) and (2) match orthophotos/DSMs (i.e., Ortho and DSM). For
each pipeline, we test 2 feature matching methods (SIFT and SuperGlue), which
leads to 6 variants (i.e., ® SIFTpmgpairs, @ SuperGluermgpairs, @ SIFTorthe, ®
SuperGlueoriho, ® SIFTpsy and ® SuperGluepsyr). We test the variants on 4
datasets (Fréjus, Pezenas, Kobe and Alberona), including the cases of (1) matching
aerial epochs only and (2) matching aerial and satellite epochs mixed. Experiments
show that:

1. SIFTpgy and SuperGluepgys lead to more robust results than other vari-
ants, since landcover provides more reliable information as scene evolves.

2. SuperGlue is generally more reliable than SIFT, as the former is more invariant
over time.
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6.1 Introduction

6.1.1 Motivation and objective

The rough co-registration stage elaborated in Section 5 laid a solid foundation for
matching inter-epoch images, as it roughly aligned images from different epochs in a
globally consistent way. However, the alignment is not accurate enough for high pre-
cision cartography. Therefore, we propose a precise matching stage to get matches
with higher accuracy, which benefits from the guidance of rough co-registration to
guarantee both robustness and precision. For each inter-epoch image pair /¢! and
I°2 to be matched, our goal is to find precise matches M (K K¢) (K represents
keypoints extracted in image I¢). Based on the roughly co-registered orientations
and DSMs resulted from Chapter 5, we can readily predict a potential matching
point K¢ in I° for keypoint K. As rough co-registration provides robust yet
imprecise alignment, the precise matching point for keypoint K¢ should not be
far away from the predicted point Ke2. Therefore, we can narrow down the search
space in precise matching stage by only considering the local neighborhood of the
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predicted point K® to reduce ambiguity tremendously. For hand-crafted meth-
ods like SIFT, the strategy of predicting keypoints followed by narrowing down the
search space can be readily applied. Besides, as SIFT provides explicitly the scale
and rotation angle of the keypoints, we can take advantage of that and introduce
an idea of SclRotCheck, which is to check if the scale and rotation of the keypoints
coincide with the scale and rotation predicted by rough co-registration.

For learned methods like SuperGlue, it is not easy to modify the algorithm, as it
inevitably involves retraining the model, which is not easy due to lack of training
data. Therefore we propose an one-to-one tiling scheme (not to confuse with the
one-to-many tiling scheme presented in Section 5) to feed roughly aligned patches
into the model to reduce ambiguity. Its merits are twofold: (1) up-scaling the
learning based feature matching algorithms to high resolution imagery, as directly
feeding the original images often lead to inaccurate results; (2) narrowing down the
searching space in an elegant way without modifying the model.

6.1.2 Contributions

Our contribution is to combine rough co-registration results, one-to-one tiling
scheme, SclRotCheck and 3D-RANSAC into a reliable pipeline to recover both ro-
bust and precise matches, more specifically, we:

1. reduce the difficulty in precise matching under the guidance of co-registered
orientations and DSMs by narrowing down the search space.

2. introduce one-to-one tiling scheme to (1) scale-up the deep learning methods
and (2) reduce matching ambiguity without retraining the model.

3. introduce SclRotCheck to remove potential matches whose scale ratio and rota-
tion difference are not consistent with the prediction of rough co-registration.

4. perform RANSAC to estimate the 3D Helmert transformation between sur-
faces (i.e., DSMs) calculated in different epochs. Compared to the classical
essential /fundamental matrix filtering, with less data (3 versus 5 points) we
impose stricter rules (1D versus 2D constraint).

6.2 Methodology

To compute precise inter-epoch matches, we perform matching on original RGB
images under the guidance of co-registered orientations and DSMs. It consists of
extracting tentative inter-epoch matches, followed by a 3D-RANSAC filter and a
cross correlation stage to remove outliers. The workflow is displayed in Figure 6.1(a).

We choose matching RGB images for precise matching instead of DSMs, as
DSMs are (1) noisy due to errors inevitably introduced during calculating DSMs
and (2) monotonous in flat terrain due to lack of textures. In Section 6.3.2 we
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displayed the matching results on both RGB images and DSMs over the same area.
It demonstrates that more matches are found in DSMs but the accuracy is inferior.
As our goal is to recover accurate matches, the RGB images are more suitable
than DSMs. Besides, it is more efficient as calculating high resolution DSMs is
computationally demanding.

e
Patch | Guided  3D-RANSAC Cross
matching filter correlation
er Tentative Enhanced Final
“9 T w matches matches matches
Roughly co-registered

&rjentations and DSM;/

(a) Workflow

Buffer zone

(b) Patch matching (c) Buffer zone of tiles (d) Guided matching

Figure 6.1: (a) Workflow of precise matching. It is carried out by performing patch
or guided matching to obtain tentative matches, followed by 3D-RANSAC filter and
cross correlation, giving rise to final matches. (b) and (d) illustrate toy-examples
of the patch and guided matching, respectively. (c) displays the match where K¢
exceeds the original tile size (dark green area) and is therefore abandoned.

6.2.1 Get tentative matches with patch/guided matching

We offer two alternatives to recover tentative matches: patch or guided matching.
The former uses learned features, while the latter uses hand-crafted features. Patch
matching often gives larger number of matches, while guided matching is in general
more efficient.

Patch matching for learned features. For patch matching, we propose a
one-to-one tiling scheme to improve matching performance of learned features and
reduce ambiguity at the same time. It is illustrated in Figure 6.1(b), and elaborated
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below:

ZOrig

one—to—one’ and

1. Crop the master RGB image I°! into M original tiles of size S
expand them with a buffer zone of size SZp,fer (as shown in Figure 6.1(c)),

giving rise to M buffered tiles (T°!) of size SZyne—to—one;

2. Project each buffered tile T onto the DSM D¢} and backproject to secondary
RGB image I°? to find the corresponding tile 7°°%;

3. Resample T to T, so that the tile pair P(T®,T*) is free from differences
of rotation, scale and extent;

We apply SuperGlue on each tile pair P(Tel,fei’) to find matches M (K 6 K*)
(K¢ represents keypoints in image ), and merge the matches together by
removing the ones with K located in the buffer zone. As the orientations and
DSMs are only roughly co-registered, we take into account the margin of error
when projecting tiles to overlapping images. This is why we add a buffer zone in
the tile T°!.
For better understanding, in Figure 6.2 we display an example of an inter-epoch
image pair, as well as the tile pairs resulted from the one-to-one tiling scheme.
Our patch matching experiments are performed based on SuperGlue, however,
other learned methods can be adopted readily.

Guided matching for hand-crafted features. The patch matching substitute
orientated towards hand-crafted features is the guided matching, as shown in
Figure 6.1(d). It leverages the positions of predicted keypoints, the known scale
ratio and rotation differences to narrow down the list of the matching candidates.
In our experiments, we use the SIFT points, but the pipeline is suitable to any
hand-crafted extractor. It consists of the following steps:

1. Compute the scale ratio R,y and the rotation D, between two images by
sequentially projecting the [ image corners to the co-registered DSM D¢}
and to image 1°?;

2. Extract keypoints K in image I°! and K in image 1°?;
3. Intersect the keypoints K° with the co-registered DSM D¢}:

4. Back-project them to image I2, giving rise to predicted keypoints I~(62;

5. Search for a subset of points in K¢ located within a radius S centered at the
predicted positions K*2;

6. Remove candidate matches whose scales and rotations computed by SIF'T are
out of range [(LThscl)XRscla (1+Thscl)XRscl] and [Drot‘Throta Drot+Throt] )
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(a) Example of an image pair

(b) Demonstration of tile pairs

Figure 6.2: Illustration of patch matching applied on an inter-epoch image pair.
(a) The master image (I°') and secondary image (/°?) are taken at Fréjus in 1954
and 2014 individually. (b) Tile pairs resulted from one-to-one tiling scheme, the tile
zones before and after buffering are marked as red and green rectangles.
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Figure 6.3: Illustration of keypoint prediction (cross symbols) accompanied with

search space (circles), the master image (I°*) and secondary image (I°?) are taken
at Fréjus in 1954 and 2014 individually.

7. Find the best matches with mutual nearest neighbor combined with the first
to second nearest neighbor ratio test [Lowe 2004].

For better understanding, in Figure 6.3 we display an example of an inter-epoch
image pair, with keypoint prediction (cross symbols) accompanied with search
space (circles) superposed on them.

6.2.2 Get enhanced matches with 3D-RANSAC

To compute enhanced matches, we apply a 3D-RANSAC filter on the previously
obtained tentative matches. More precisely, we do the following: (1) for each
match M (K K), the keypoints K and K are projected onto DSM D¢ and
D;?. individually to get 3D matching points M (KG®,KG*); and (2) the matches
M(KG*, KG*®) are iteratively sampled to compute the 3D Helmert transformation

RANSAC model:

KGe KG& A,
KG? | =A-R-| KG9 |+ | 4, |. (6.1)
KGe KG& A.

where A is the scale factor, R is the rotation matrix and [ Az, Ay, A, ] " is the
translation vector. Matches within 7, of its predicted position (i.e., [ KG®> —(A-R-
KG* + A)| < T;) are considered as inliers.
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6.2.3 Get final matches with cross correlation

In the preceding step we got rid of a substantial number of outliers, however, we
believe that not all outliers could be identified. Besides, our goal is to get a moderate
number of reliable matches instead of many unreliable ones. Therefore we introduce
a different filtering method (i.e., cross correlation) to further remove false matches.
Even though cross correlation itself is not discriminative and efficient enough when
used alone, it fits well in our pipeline as we already recovered many discriminative
and well-distributed matches before applying it. Matches with their correlation
scores below a predefined threshold T, are discarded. The correlation window size
was set to be large enough to take into account the context around a point (32x32
pixels in our experiment). Figure 6.4 shows an example of a false match (red)
eliminated by cross correlation, while the true match (blue) is kept.

Figure 6.4: Demonstration of the validation with cross-correlation. Considering
poor quality of historical images, the window size (blue and red rectangles) was set
to 32x32 pixels. False match (red) is eliminated by cross correlation, while true
match (blue) is kept.

6.2.4 Refine orientations

Based on the intra-epoch and inter-epoch matches, a free network BBA is performed
to refine all the image orientations and camera calibrations. If the results need to
be analyzed in a metric scale, a 3D Helmert transformation will be performed to
move the refined acquisitions in an arbitrary reference frame to a metric one. If the
precise orientations for one of the epochs were known, their parameters will be fixed
during the BBA and the subsequent 3D Helmert transformation will be skipped.
We adopted the Fraser model [Fraser 1997] to calibrate the cameras and allowed
image-dependent affine parameters, the remaining parameters were shared among
all images. Fraser is a radial model, with decentric and affine parameters, there
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are 12 degrees of freedom: 1 for focal length , 2 for principal point, 2 for distortion
center , 3 for coefficients of radial distorsion, 2 for decentric parameters and 2 for
affine parameters. We choose this model because we want to test the versatility of
our pipeline, instead of trying different model to achieve the best performance.

6.3 Experiments

As described in the previous section, our precise matching stage relies on RGB
images and consists of 3 main steps to get the tentative, enhanced and final
matches. In Section 6.3.2 we compare the matching results on RGB images and
DSMs to explain why we choose the former over the latter to perform precise
matching.

For obtaining tentative matches, there are 2 alternatives (i.e., patch or guided
matching), leading to 2 precise matching variants:

1. Patch: recover tentative matches with patch matching, followed by 3D-
RANSAC and cross correlation to remove outliers;

2. Guided: same as Patch, except replacing patch matching with guided match-
ing.

For each dataset, we choose the rough co-registration results calculated with
SIFTpsy and SuperGluepgys individually (as they are the most robust variants
for rough co-registration) to guide the precise matching Patch or Guided, leading
to 4 sets of variants, which are referred to as:

1. PatchngDSM
2. Guidedspapsm

3. Patchsirrpsm
4. Guidedsirrpsm

We test our precise matching variants on all the multi-epoch datasets which are
elaborated in Chapter 4: Fréjus, Pezenas, Kobe and Alberona. The results are
demonstrated in Section 6.3.3.

For Fréjus, Kobe and Alberona, we keep all the epochs for experiments, as Fréjus
displayed drastic scene changes, while Kobe and Alberona witnessed earthquake
and landslide individually. In Pezenas, less changes are observed. Therefore
we maximize the matching difficulty by choosing both aerial and satellite epoch
accompanied with the largest time gap (i.e., aerial epoch 1971 and satellite epoch
2014).

The orientations of GT epochs (i.e., Pezenas 2014 and Fréjus 2014) were treated
as fixed during the combined BBA since they were accurately known a-priori, while
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all the remaining orientations were considered as free parameters. At first, interior
orientation parameters were shared among all images. Once stable initial values
were known, interior parameters were further refined with image-dependent affine
parameters. The affine component of the camera calibration is expected to model
the shear of the analog films, at least partially.

6.3.1 Implementation details

Same as Section 5.3.1, all input images are downsampled by a factor of 3 beforehand
to improve efficiency except for dataset Alberona. To calculate the DSMs, we
further downsample the images by a factor of 4 (different from 8 in Section 5.3.1),
which amounts to a total downsampling factor of 12 with respect to the input
images (total factor of 4 for Alberona). For example, the images in Fréjus 1970 are
downsampled from [8766, 8763] to [730, 730| for calculating DSMs. Note that the
DSMs serve 2 purposes in precise matching: (1) narrowing down the search space
in finding tentative matches, and (2) providing 3D coordinates for 3D-RANSAC
filter. A low resolution surface is good enough for these tasks and improves the
efficiency.

For patch matching, the buffered tile size SZype—to—one 18 set to be 640x480 pixels,
the buffer size SZy,fper is 10% XS Zone—to—one (i-e., widening 64 pixels on both
left and right sides, 48 pixels on both upper and lower sides). Therefore, the
original tile size Sngeiﬂto_one is left to be 512x384 pixels. The tile pairs entering
SuperGlue are not downsampled. For guided matching, the search radius S is set
to be 100 pixels; the thresholds for checking scale and rotation (i.e. Thgy and
Thyot) are set to be 0.2 and 30° individually. For the 3D-RANSAC procedure, we
set the number of iteration to 1000, and T} to 10xGSD where GSD is the mean
ground sampling distance in the coordinate frame of reference epoch E,. This
distance is computed as the ground distance between two adjacent image pixels.
The threshold T, in cross correlation is set to be 0.6. To balance the number of
the intra- and inter-epoch matches, we perform intra-epoch matches reduction
available as command Ratafia in MicMac [Pierrot-Deseilligny et al. 2015]. If the
intra-epoch matches after reduction are still obviously more than the inter-epoch
ones, we further set the relative observation weight in the BBA. The matches
reduction algorithm maximizes good spatial distribution, points’ multiplicity and
low reprojection error, it also helps to speed up the BBA.

Inter-epoch matches are extracted for every possible combination of 2 epochs and
finally merged.
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6.3.2 Comparison of precise matching on DSMs and original RGB
images

In order to decide which type of image (DSM or original RGB image) is more suitable
for executing precise matching, we apply our variant Patch on both DSMs and RGB
images of Fréjus 1970 and 2014 for comparison. The final matches are displayed in
Figure 6.5 (a) and (b). To asses quantitatively the results, we created a GT depth
map and calculated the accuracy (correct matches / total matches). In Figure 6.5 (c)
we plot the accuracy curves while varying the reprojection error threshold from 0
to 10 pixels. Obviously the result using the RGB images is more accurate, even
though the DSMs recovered more matches. This is because historical RGB images
are inevitably accompanied with noise, and it gets worse in DSMs at full resolution
(see the DSM shaded image in Figure 6.5 (d)) due to inevitably information loss and
errors introduction during calculating the DSM. Therefore RGB images are more
suitable for precise matching.

(a) Matches on RGB images (b) Matches on DSMs

—&— Original Images —— DSMs

1.0

0.8

0.6

0.4 4

0.2

Accuracy (Correct matches / Total matches)

0.0 1

4 6
Threshold[px]

(¢) Accuracy of (a) and (b) (d) Shaded image of historical DSM

Figure 6.5: Comparison of precise matching on original RGB images and DSMs.
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6.3.3 Comparison of 4 variants

In order to evaluate the results qualitatively and quantitatively, the following
criteria would be applied:

1. Matches visualization. The number of tentative, enhanced and final
matches are displayed together in bar charts; in the meantime, the final
matches are visualized and demonstrated.

2. DoD. For each variant, the refined orientations would be used to calculate
DSMs in order to generate DoD. The visualization of DoD as well as the
statistical information are displayed. Since the orientations are refined with
precise matches, DoDs with dome effect mitigated or even eliminated are
expected.

For Pezenas and Fréjus datasets, DoDs are calculated between historical
epochs and the available GT epochs. For Kobe and Alberona datasets, there
is no GT. Therefore we calculate the DoDs between every epochs instead.

3. Ground displacement. For the dataset that witnessed an earthquake (i.e.,
Kobe), we: (1) calculate the DSMs; (2) orthorectify the images; and (3) per-
form 2D correlation of the respective orthophotos |Rosu et al. 2015] to see
whether we can observe the slip of the tectonic plate.

For matches visualization and DoD, as the results show similar pattern on
different datasets, we only display the results of Fréjus and Alberona in the current
section for the sake of simplicity, and move the results of Kobe as well as Pezenas
to Appendix B.

Matches visualization. For each dataset, we match every possible combina-
tion of 2 epochs with 4 variants (i.e., ® Patchspgpsym, @ Guidedspapsy, @
Patchsirrpsy and @ Guidedsirrpsir)-

For Fréjus, there exist 4 epochs, leading to 6 sets of epoch combination. The
visualizations of resulted matches are displayed in Figure 6.6, 6.7, 6.8, 6.9, 6.10 and
6.11.

For Alberona, there exist 2 epochs, leading to 1 set of epoch combination, the
matches visualization is displayed in Figure 6.12.

DoD. The DoDs for Fréjus and Alberona are demonstrated in Figure 6.13
and 6.14. In each figure, the roughly co-registered DoDs resulted from rough
co-registration variants SuperGluepgy and SIFTpgy (elaborated in Chapter 5,

DSPGDSM and DeDSIFTDSM)

hereinafter referred to as Do are displayed as refer-

ences, and the refined DoDs resulted from variants Patchs,apsm, Guidedspaps,
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Figure 6.6: Precise matching visualization of Fréjus 1954 and 2014. (a) Im-
age pairs to be matched, with red rectangles indicating the overlapping zone. (b)
Numbers of tentative, enhanced and final matches recovered with Patchsy,apsm,
Guidedsygpsm, Patchsiprpsy and Guidedsrrrpsy individually. (c-f) Visualiza-
tion of final matches recovered with Patchspapsir, Guidedsy,apsi, Patchsirrpsm
and GuidedsjpTDgM individually.
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Figure 6.7: Precise matching visualization of Fréjus 1966 and 2014. (a) Im-
age pairs to be matched, with red rectangles indicating the overlapping zone. (b)
Numbers of tentative, enhanced and final matches recovered with Patchspapsu,
Guidedspapsm, Patchsiprpsy and Guidedsrprpsy individually. (c-f) Visualiza-
tion of final matches recovered with Patchspapsyr, Guidedsy,apsn, Patchsirrpsm
and GuidedSIFTDSM individually.
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Figure 6.8: Precise matching visualization of Fréjus 1970 and 2014. (a) Im-
age pairs to be matched, with red rectangles indicating the overlapping zone. (b)
Numbers of tentative, enhanced and final matches recovered with Patchs,apsir,
Guidedspapsimr, Patchsiprpsy and Guidedsrprpsy individually. (c-f) Visualiza-
tion of final matches recovered with Patchspapsy, Guidedsy,apswy, Patchsirrpsm
and Guideds;rrpsys individually.
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Figure 6.9: Precise matching visualization of Fréjus 1954 and 1970. (a) Im-
age pairs to be matched, with red rectangles indicating the overlapping zone. (b)
Numbers of tentative, enhanced and final matches recovered with Patchs,aps,
Guidedspapsir, Patchsiprpsy and Guidedsrprpsy individually. (c-f) Visualiza-
tion of final matches recovered with Patchspapsy, Guidedsy,apswy, Patchsirrpsm
and Guideds;rrpsays individually.
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Figure 6.10: Precise matching visualization of Fréjus 1966 and 1970. (a) Im-
age pairs to be matched, with red rectangles indicating the overlapping zone. (b)
Numbers of tentative, enhanced and final matches recovered with Patchs,apsir,
Guidedspapsir, Patchsiprpsy and Guidedsrprpsy individually. (c-f) Visualiza-
tion of final matches recovered with Patchspapsy, Guidedsy,apswy, Patchsirrpsm
and Guideds;rrpsys individually.
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Figure 6.11: Precise matching visualization of Fréjus 1954 and 1966. (a) Im-
age pairs to be matched, with red rectangles indicating the overlapping zone. (b)
Numbers of tentative, enhanced and final matches recovered with Patchsp,apsu,
GuidedspGDSM, Patchgrprpsy and Guidedsrprpsy individually. (c-f) Visualiza-
tion of final matches recovered with Patchspapsar, Guidedsy,apsa, Patchsirrpsm
and Guz’dedgjpTDSM individually.
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Figure 6.12: Precise matching visualization of Alberona 1954 and 2003. (a)
Image pairs to be matched, with red rectangles indicating the overlapping zone. (b)
Numbers of tentative, enhanced and final matches recovered with Patchsy,apsm,
GuidedspGDSM, Patchsiprpsy and Guidedsrprpsyr individually. (c-f) Visualiza-
tion of final matches recovered with Patchspapsr, Guidedsy,apsa, Patchsirrpsm
and GuidedSIFTDSM individually.
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I \ | pfm] [ o fm] [ |p [m] ]

SpGDSM 2.24 5.34 4.35

Patchspapsm -1.89 4.16 2.93

DoDFreus Guidedspapsm -1.29 4.03 2.65
1954-2014 | GTFPTDSM 6.91 8.90 8.45
Patchsirrpsm -6.17 | 6.54 6.69
G’uidedsprDSM 3.72 17.12 12.90

SpGDSM -0.80 4.71 3.28

Patchspapsm -0.93 4.00 2.57

DoDFresus Guidedspcpsm -0.51 | 3.93 2.45
1966=2014 1\ GTFTDSM -2.12 | 5.66 4.42
PatchstTDSM -0.99 4.01 2.58
GuidedstTDSM -0.24 3.92 2.56

SpGDSM -2.37 6.57 5.35

Patchspapsm -1.18 3.83 2.38

DoDFreius Guidedspapsm -0.46 3.83 2.37
1970-2014 |\ GTETDSM -3.76 6.21 5.47
Patchsirrpsm -1.28 | 3.92 2.45
Guidedsrrrpsnm | -0.43 3.79 2.40

SpGDSM -0.28 7.84 6.17

Patchspapsm -0.80 | 4.44 3.22

DOngng:OQ%%g Guidedspapsm -0.20 6.20 4.86
SIFTDSM -1.88 7.44 5.89

Patchsrrrpsm -1.00 | 3.73 2.75
G’uidedsprDSM 2.11 5.86 4.63

Table 6.1: Average value pu, standard deviation o, and absolute average value |u| of
all the DoDs in Figure 6.13 and 6.14.

Patchsirrpsy and Guidedsiprpsm (hereinafter termed as DODPatChSPGDSM,
DoDGwidedspapsm  DoDPatehsirrpsm and DoDEWdedsirrpsa ) are given for compar-
ison. For the DoDs of Alberona, the extent of the landslide area is indicated with
black lines based on the landslide inventory map, which is plotted by expert geo-
morphologists with visual interpretation of aerial photographs. The corresponding
statistical information is displayed in Table 6.1.

Ground displacement (i.e., Gd). The northeastward Gd maps of Kobe dataset
as well as the ground truth Gd provided by the Geospatial Information Author-
ity of Japan are presented in Figure 6.15. The roughly co-registered Gds resulted
from variants SuperGluepsy and SIFTpsy (i-e., Figure 6.15 (b) and (e), elabo-
rated in Chapter 5) are displayed as references, and the refined Gds resulted from
variants PatChSpGDSMy GUidedSpGDSM, PatChSIFTDSM and GuidedstTDSM (i.e.,
Figure 6.15 (¢, d) and (f, g)) are given for comparison.

Discussion. As can be seen, both Patch and Guided recover a lot of matches, ex-
cept for the ones involving epoch 1954 based on rough co-registration of STFTps
(Figure 6.6 (e, f), 6.9 (e, f) and 6.11 (e, f)). It is because the rough co-registration
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Figure 6.13: (a-f) DoDs between free epoch Fréjus 1954 and reference epoch 2014.
(g-1) DoDs between free epoch Fréjus 1966 and reference epoch 2014. (m-r) DoDs
between free epoch Fréjus 1970 and reference epoch 2014. (a, d, g, j, m, p) are
roughly co-registered DoDs resulted from variants SuperGluepsy and STFTpgay
(elaborated in Chapter 5). (b, ¢, e, f, h, i, k, 1, n, o, q, r) are refined DoDs resulted
from variants Patchspcpsu, GuidedspGDSM, Patchgrprpsy and Guidedsiprpsm
individually.
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et

SpGDSM Patchgpapsm Guidedspapsm
(a‘) DODAlberona (b) DODAlberona (C) DODA“?E"O"G
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Figure 6.14: DoDs between free epoch Alberona 1954 and reference epoch 2003.
(a) and (d) are roughly co-registered DoDs resulted from variants SuperGluepgs
and SIFTpgy (elaborated in Chapter 5). (b, c, e, ) are refined DoDs resulted
from variants PatChSpGDSM; GuidedngDgM, Patchsrrrpsy and Guidedsrrrpsy
individually.



84 Chapter 6. Precise matching

- Displacement 1m

A /:4'2:":5‘ > Displacement 2m

P

PatchspGDSM
(C) GdKObe

- ——— e
. e N e

Guidedsp,apsm
(d) GdKobe

(©) GaiET o

GuidedsirTDSM
(g) GdKobe

(h) Gd legend

Figure 6.15: Ground displacement(Gd) between free epoch Kobe 1991 and refer-
ence epoch 1995. (a) is the ground truth Gd provided by the Geospatial Information
Authority of Japan. (b) and (e) are roughly co-registered Gds resulted from vari-
ants SuperGluepgy and SIFTpgy (elaborated in Chapter 5). (c, d, f, g) are
refined Gds resulted from variants Patchs,apsm, Guidedspyapsm, Patchsirrpsm
and GuidedSIFTDSM individually.



6.4. Conclusion 85

result of STFTpgys for epoch 1954 is unsatisfactory, as was mentioned in Section
5.3.5. Besides, 3D-RANSAC filter and cross correlation removed a considerable
number of matches, at the same time enough matches survived, which guaranteed
robustness of our method.

For the DoDs, the dome effect appears in all the DoDSPEPSM and DeDSTFTDSM
(i.e., the first column of the subgraphs in Figure 6.13 and 6.14), as the camera
parameters are poorly estimated without the precise matches.

For most refined DoDs in Fréjus (i.e., the second and third columns of subgraphs in
Figure 6.13 except for (e) and (f)), the dome effect is effectively mitigated, thanks
to our numerous and precise matches. In the meantime, the real scene changes are
preserved, such as the new buildings and seaports.

For Figure 6.13 (e) DoD?fZZi{g&DSM and (f) Dnggé;lZi%gZDSM, the dome effect is
even worse than the roughly co-registered one (i.e., Figure 6.13 (d) DoD%@gﬁgéﬁ)
due to low quality of matches shown in Figure 6.6 (e, f), 6.9 (e, f) and 6.11 (e, f).
For the refined DoDs in Alberona, the dome effect is mitigated for the variant
Patch, but not for Guided, as the images from different epochs showed various
tone, which is challenging for Guided. Besides, the images are poorly preserved
and scanned with non photogrammetric scanner, and limited number of images
leads to a lack of redundant observation. Therefore, only the DoDi%@cfoifj TDSM
(i.e., Figure 6.14 (e)) showed both useful signs in the landslide zone and limited
systematic errors in the whole block, as it is based on good matches recovered with
Patch variant under the good rough co-registration resulted from SIFTpgas.

For the Gds, we displayed the GT in Figure 6.15 (a), and ours in Figure 6.15
(b-g). The GT is produced with a lot of manual work, which is very laborious.
However, ours are completely automatic. According to the GT, there is a nojima
fault caused by the earthquake (i.e. indicated as black line), and the displacement
is indicated as small arrows. On the upper side of the fault, the arrows are generally
rightward, while on the lower side they are leftward. In ours, the displacement is
indicated as colors: blue represents rightward and red leftward. As can be seen,
ours after refinement with precise matching (i.e. Figure 6.15 (d-g)) recovered the
same signal as ground truth, which is rightward on the upper side of the fault (i.e.
indicated as dashed line) and leftward on the lower side.

6.4 Conclusion

In this section we elaborate two variants for precise matching: Patch and
Guided. We test each variant based on two sets of rough co-registration results:
SIFTpsny and SuperGluepsar, which leads to 4 variants (i.e., @ Patchspapsm,
@ Guidedspapsy, @ Patchsiprpsm and ® Guidedsirrpsy. Experiments are
performed on 4 sets of datasets (Fréjus, Pezenas, Kobe and Alberona), including
the cases of (1) matching aerial epochs only and (2) matching aerial and satellite
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epochs mixed. Experiments show that:

1. Both precise matching variants (i.e., Patch and Guided) are capable of re-
covering numerous and accurate matches, as long as the rough co-registration
result is reliable.

2. By adopting the precise matches in a BBA routine, the systematic errors in
the surfaces can be effectively mitigated while the real scene changes stay.
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7.1 Conclusion

During the past decades, a large number of historical images were digitized,
which signified huge potential for long-term environmental monitoring studies.
Unfortunately, their value is overlooked as they are accompanied with special
characteristics: analog films were probably inappropriately conserved, leading to
poor radiometric quality; deformation caused by scanning; different resolutions
and acquisition conditions, etc. The principal difficulty in processing multi-epoch
historical images is feature matching. Often, no a priori about the camera geometry
is available and a dense distribution of matches is required to model it a posteriori.
Even though we have seen an emergence of software solutions capable of processing
modern digital images in a 100% automated manner, the performance of these
solutions degenerates when applied to multi-epoch historical images.

The thesis aims at matching historical images as well as modern digital images
taken at different times. The goal is accomplished with the divide and conquer
strategy, which is to decompose the task of recovering robust and precise matches
on inter-epoch image pairs into 2 sub-tasks: (1) rough co-registration focusing on
robustness, and (2) precise matching on accuracy.

Five representative sets of datasets for different applications are introduced in
order to validate the suitability of our pipelines for various domains. They consist
of mixed images (i.e., historical and modern, aerial and satellite images) with
heterogeneous acquisition conditions.

Different strategies for rough co-registration are studied. The first attempt we
made is matching each inter-epoch image pair separately followed by building a
globally comnsistent transformation model over the whole block. It is not efficient
and robust enough, leading us to another strategy: combining images from the
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same epoch into entirety (i.e., orthophoto or DSM) and applying matching directly
on the whole block. All the strategies are tested on four sets of multi-epoch
datasets, based on which we come to a conclusion that the strategy of matching
DSM provides the most robust results. Besides, different configurations of matching
methods (i.e., SIFT and SuperGlue) are compared, and a use case of matching
guided by 2D similarity transformation is presented.

Then, we propose and evaluate precise matching under the guidance of rough co-
registration. Two variants are explored for obtaining tentative matches: (1) patch
matching orientated towards learned features and (2) guided matching focused on
hand-crafted features, followed by 3D-RANSAC and cross correlation to remove false
matches. The most robust variants for rough co-registration (i.e., matching DSMs
with SIFT and SuperGlue respectively) are chosen to guide the precise matching in
the experiments, based on which we conclude that both patch and guided matching
are capable of recovering a large number of accurate and robust matches as long as
the rough co-registration result is reliable. Besides, comparison of precise matching
on DSMs and original RGB images is performed to explain why we choose RGB
images over DSMs for precise matching.

7.2 Perspective

Historical dataset benchmark There are a lot of benchmark datasets for fea-
ture matching, but none of them are multi-epoch historical images. In order to
push forward the state-of-the-art in multi-epoch historical image processing, in the
future we are interested in publishing the datasets used in this thesis, as well as
collaborating with other scholars who are interested in processing historical images
to build an open-access historical dataset benchmark (i.e., MultiHist). It should
contain different scenes accompanied with ground truth orientations and DSMs, or
even GCPs if possible. Different scenes consist of several epochs, probably organized
as Figure 7.1.

! v v
| Scenel I I Scene2 | | Scene3 I
| Epochl | ’ Epoch2 |
[
| images ||orientations‘| DSMs || GCPs |

Figure 7.1: Organization of our benchmark.
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Train a network with RGB images combined with DSMs Another direc-
tion of our future work is to use both RGB images and DSMs to train a neural
network architecture in extracting robust features over time. As training data made
from historical images is limited, it might be better to fine-tune existing models
(e.g., SuperGlue). In order to validate if it improves matching performance to use
RGB images and DSMs at the same time, we did a comparison of using off-the-shelf
SuperGlue model to match (1) RGB images only, (2) corresponding full resolution
DSMs only and (3) RGB images combined with DSMs by concatenating keypoints.
We choose a pair of roughly aligned images and feed them directly into SuperGlue
without applying any #iling scheme to keep the performance independent from ir-
relevant factors. The results are displayed in Figure 7.2(c), (d) and (e) respectively,
with their accuracy compared in Figure 7.2(f). As can be seen, it provides more
matches with better accuracy when simply feeding concatenated keypoints to the
ready-made model, it is reasonable to expect better performance after we fine-tune
the model.
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(a) RGB image pair (b) DSM pair

(d) Matches on DSMs

—— RGB - DsM —— Concate

5 8 8 & 8 3 3

Accuracy (Correct matches / Total matches)%

°

4 6
‘Threshold[px]

(e) Matches on concatenation (f) Accuracy of (c-e)

Figure 7.2: Comparison of SuperGlue applied on RGB images (c¢), DSMs (d) and
combined input by concatenating the keypoints (e).
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APPENDIX A

Result of rough co-registration

In Section 5.3.5, we demonstrate the matches visualization and DoDs of rough co-
registration results on representative datasets Fréjus and Alberona. In this section
the remaining results on other datasets (i.e., Pezenas and Kobe) are displayed.

A.1 Matches visualization

For Pezenas, there are 2 reference epochs E,: aerial E, (i.e., epoch 2015) and
satellite E, (i.e., epoch 2014). The matches visualizations between free epochs E¢
(i.e., epoch 1971 and 1981) and both FE, are displayed in Figure A.1, A.2; A.3 and
A 4. For Kobe, the reference epoch F, is 1995, the matches visualizations between
free epoch Ey (i.e., epoch 1991) and E, are displayed in Figure A.5.

As can be seen, for both free epochs E; in Pezenas, even the weakest variants
STFTmgpairs and STFTo¢p, succeeded on matching them to the aerial reference
epoch F,, since neither drastic scene changes nor different image tones is shown in
Pezenas, which lowers the matching difficulty. However, STF T, fails on satellite
reference epoch FE,, as satellite epoch not only has more limited overlapping zone
with the free epochs, especially for epoch 1971, but also is covered with clouds. For
the rest 4 variants, we can see the same pattern as the results of Fréjus and Alberona
(c.f., Section 5.3.5).

A.2 DoD

The visualizations of DoDs for datasets Pezenas and Kobe are displayed in Fig-
ure A.6, A.7 and A.8. The corresponding statistical information is given in Ta-
ble A.1.

As can be seen, different epochs are roughly aligned with dome effect present in all
the DoDs due to poorly estimated camera parameters, same pattern as the results
of Fréjus and Alberona (c.f., Section 5.3.5).
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Figure A.1: Result of ImgPairs (a-d), Ortho (e-h) and DSM (i-1) on matching
Pezenas 1971 and 2015. (a, e, i) Image pairs/orthophotos/DSMs to be matched,
with red rectangles indicating the overlapping zone. (b, f, j) Numbers of total
matches and RANSAC inliers of both SIFT and SuperGlue on variants ImgPairs,
Ortho and DSM individually. (c, g, k) Visualization of RANSAC inliers based
on STFTrmgPairs, STFTorne and SIFTpsy. (d, h, 1) Visualization of RANSAC
inliers based on SuperGluermgpairs, SuperGlueo,in, and SuperGluepgy.
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Figure A.2: Result of ImgPairs (a-d), Ortho (e-h) and DSM (i-1) on matching
Pezenas 1981 and 2015. (a, e, i) Image pairs/orthophotos/DSMs to be matched,
with red rectangles indicating the overlapping zone. (b, f, j) Numbers of total
matches and RANSAC inliers of both SIFT and SuperGlue on variants ImgPairs,
Ortho and DSM individually. (c, g, k) Visualization of RANSAC inliers based
on SIFTmgpairs; SIFTorthe and SIFTpgy. (d, h, 1) Visualization of RANSAC
inliers based on SuperGluer,gpairs, SuperGlueorin, and SuperGluepsiys-
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Figure A.3: Result of ImgPairs (a-d), Ortho (e-h) and DSM (i-1) on matching
Pezenas 1971 and 2014 (Satellite). (a, e, i) Image pairs/orthophotos/DSMs to
be matched, with red rectangles indicating the overlapping zone. (b, f, j) Numbers
of total matches and RANSAC inliers of both SIFT and SuperGlue on variants Img-
Pairs, Ortho and DSM individually. (c, g, k) Visualization of RANSAC inliers based
on STFTrmgPairs, STFTorne and SIFTpsy. (d, h, 1) Visualization of RANSAC
inliers based on SuperGluermgpairs, SuperGlueo,in, and SuperGluepgy.
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Figure A.4: Result of ImgPairs (a-d), Ortho (e-h) and DSM (i-1) on matching
Pezenas 1981 and 2014 (Satellite). (a, e, i) Image pairs/orthophotos/DSMs to
be matched, with red rectangles indicating the overlapping zone. (b, f, j) Numbers
of total matches and RANSAC inliers of both SIFT and SuperGlue on variants Img-
Pairs, Ortho and DSM individually. (c, g, k) Visualization of RANSAC inliers based
on STFTrmgpairs, STFTorne and SIFTpsy. (d, h, 1) Visualization of RANSAC
inliers based on SuperGluermgpairs, SuperGlueo,in, and SuperGluepgy.
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Figure A.5:  Result of ImgPairs (a-d), Ortho (e-h) and DSM (i-]) on matching
Kobe 1991 and 1995. (a, e, i) Image pairs/orthophotos/DSMs to be matched,
with red rectangles indicating the overlapping zone. (b, f, j) Numbers of total
matches and RANSAC inliers of both SIFT and SuperGlue on variants ImgPairs,
Ortho and DSM individually. (c, g, k) Visualization of RANSAC inliers based
on SIFTmgpairs; SIFTorthe and SIFTpgy. (d, h, 1) Visualization of RANSAC
inliers based on SuperGluer,gpairs, SuperGlueorin, and SuperGluepgiy-



A.2. DoD 99

SuperGluermgPairs SuperGlueo riho SuperGluepspr
(a‘) DODPezena5197l (b) DODPezena51971 (C) DODPeze'ﬂa51971

SIFTImgPaiTs

SIFTOrtho SIFTpgm
(d) DODPezena51971 (e) DODPezencL51971 (f) DODPezena31971

SuperGluermgPairs SuperGlueg,rtho . SuperGluep g
(g) DoD (h) DoD (1) DODPezenaleSl

Pezenas1981 Pezenas1981

. SIFTmgPairs SIFTOrtho SIFTpsm
(J) DODPezenaleBl (k) DODPezenaleBl (l) DODPezenaleSl

1om S o

(m) DoD legend

Figure A.6: DoDs between free epoch Pezenas 1971, 1981 and reference
aerial epoch 2015 with variants SuperGluermgpairs (2, 8), SuperGlueo, o (b, h),
SuperGlueDSM (C, i), SIFT[mgpairs (d, J), SIFTOrtho (e, k) and SIFTDSM (f, 1)
The prohibition sign means the corresponding variant failed.
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Figure A.7: DoDs between free epoch Pezenas 1971, 1981 and reference satellite
epoch 2014 with variants SuperGlueo,ino, (8, €), SuperGluepsyr (b, £), STFTortho
(c, g) and SIFTpsy (d, h). The holes among them are areas covered with clouds
which are masked out. The prohibition sign means the corresponding variant failed.
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Figure A.8: DoDs between free epoch Kobe 1991 and reference epoch 1995
with variants SuperGluermgpairs (2), SuperGlueorn, (b), SuperGluepsir (c),
SIFTrmgpairs (d), SIFTomno (€) and SIFTpgar (f). The prohibition sign means
the corresponding variant failed.
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Table A.1: Average value pu, standard deviation o, and absolute average value |u| of

| pu[m] | o [m] [ [p] [m]

SuperGluermgpairs | -7.46 | 16.20 13.56
SuperGlueortho -8.25 | 21.89 16.47
DODS%T%H SuperGluepsnr 4.73 16.06 14.03
SIFTrmgpairs 2.54 | 17.86 | 13.98
SIFTortho -8.39 | 22.78 17.29
SIFTpsm -0.85 | 17.81 13.56
SuperGluermgpairs | -0.98 | 19.74 7.40
SuperGlueortho -1.70 9.17 7.30
DODﬁ;%fo%m SuperGluepsm 0.96 8.42 6.97
SIFTimgpPairs -2.02 9.44 7.52
SIFTortho -4.82 12.76 10.05
SIFTpsm -0.72 8.96 7.21
SuperGlueortho / / /
DODE)%SIL&)SM(SateHite) g?;?iiZfDSM -4./35 12)48 8.;15
SIFTpsm -1.45 11.24 5.78
SuperGlueortho -1.92 6.77 5.06
Pezenas SuperGluepsm -1.81 5.85 4.58
DOD198172014(Su.tellite) SIFTomne / / /
SIFTpsm -2.76 6.59 5.03
SuperGluermgpairs | -1.63 | 13.85 7.24
SuperGlueortho -0.54 | 14.83 7.78
DoD{535% 1905 E?;GTT?WED.SM -0'/75 14k62 7';)5
mgPairs
STFTortho / / /
SIFTpsm 0.27 | 14.40 7.57

all the DoDs in Figure A.6, A.7 and A.8.
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Result of precise matching

In Section 6.3.3, we demonstrate the matches visualization and DoDs of precise
matching results on representative datasets Fréjus and Alberona. In this section the
remaining results on other datasets (i.e., Pezenas and Kobe) are displayed.

B.1 Matches visualization

For both datasets, there exist 2 epochs, leading to 1 set of epoch combination
for precise matching. Four variants (i.e., @ Patchspgpsm, @ Guidedspapsm, @
Patchsrrrpsy and @ Guidedsrrrpsar) are tested on both datasets, the resulted
matches are visualized in Figure B.1 and B.2. As can be seen, patterns similar to
Fréjus and Alberona (c.f., Section 6.3.3) are present.

B.2 DoD

The DoDs for Pezenas and Kobe are demonstrated in Figure B.3 and B.4. The
corresponding statistical information is displayed in Table B.1. As can be seen,
patterns similar to Fréjus and Alberona (c.f., Section 6.3.3) are present.
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Figure B.1: Precise matching visualization of Pezenas 1971 and 2014 (Satel-
lite). (a) Image pairs to be matched, with red rectangles indicating the overlap-
ping zone. (b) Numbers of tentative, enhanced and final matches recovered with
Patchspapsy, Guidedsyapsim, Patchsiprpsy and Guidedsrrrpsy individually.
(c-f) Visualization of final matches recovered with Patchgs,cpsy, Guidedsygpsm,
Patchsrprpsy and Guidedgrprpsy individually.
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Figure B.2: Precise matching visualization of Kobe 1991 and 1995. (a) Im-
age pairs to be matched, with red rectangles indicating the overlapping zone. (b)
Numbers of tentative, enhanced and final matches recovered with Patchgs,aps,
Guidedspapsmr, Patchsrrrpsy and Guidedsrrrpsar individually. (c-f) Visualiza-

tion of final matches recovered with Patchspapsy, Guidedsy,apswy, Patchsirrpsm
and Guideds;rrpsays individually.
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Figure B.3: DoDs between free epoch Pezenas 1971 and reference satellite
epoch 2014. (a) and (d) are roughly co-registered DoDs resulted from variants
SuperGluepsy and SIFTpgy (elaborated in Chapter 5). (b, ¢, e, ) are refined
DoDs resulted from variants Patchspapsy, Guideds,gpsy, Patchsiprpsy and
Guidedsirrpsar individually. The holes among them are areas covered with clouds
which are masked out.

I | | p[m] [ o [m] [ |p[[m] ]

SpGDSM -4.35 | 12.48 8.45

Patchspapsm -0.46 3.73 1.72

DODPezenas ) Gu'idedSpGDSM -0.78 3.73 1.94
1971-2014(Satellite) |\ GrETDSM -1.45 | 11.24 | 5.78

Patchsirrpsm -0.60 3.71 1.71
GuidedsiFrpsm -0.69 3.66 1.68

SpGDSM -0.75 14.62 7.95
Patchspepsm 1.93 10.26 3.99
DoDgbe | Guidedspapsm 2.03 11.74 4.30
SIFTDSM 0.27 14.40 7.57

PCLtChs[FTDSM 1.80 10.36 4.00
Guideds[FTDSM 1.84 9.48 3.87

Table B.1: Average value u, standard deviation o, and absolute average value |u| of
all the DoDs in Figure B.3 and B.4.
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Figure B.4: DoDs between free epoch Kobe 1991 and reference epoch 1995. (a)
and (d) are roughly co-registered DoDs resulted from variants SuperGluepgys and
SIFTpsy (elaborated in Chapter 5). (b, ¢, e, f) are refined DoDs resulted from
variants Patchsy,apsm, GuidedngDSM, Patchsirrpsy and Guidedsrprpsy in-
dividually.






APPENDIX C

Tutorial of our pipeline

We provide two thorough tutorials [Zhang et al. 2021e|, [Zhang et al. 2021d] with
test datasets to familiarize users with our pipelines. The goal of the tutorials is
to recover matches for multi-epoch images. The tutorial performs an intra-epoch
processing, followed by an inter-epoch processing. The latter consists of 2 main
steps: rough co-registration and precise matching. At the end, an evaluation part is
presented to generate and display the resulted DoDs. The structure of the tutorial
is as follows:

- Intra-epoch processing:
1. Feature matching. Apply feature matching based on SIFT on images
within the same epoch.
2. Relative orientation. Compute relative orientations for each epoch.
3. DSM generation. Compute DSM of each epoch based on relative ori-
entations.
- Inter-epoch processing;:
1. Automated pipeline. The automated pipeline will launch the whole
inter-epoch processing pipeline by calling several subcommands.

2. Deep-dive in submodules. We also provide deep-dive to explain all
the submodules used in the automated pipeline. It consists of: (1) rough
co-registration, which roughly co-register the DSMs and image orienta-
tions from different epochs; (2) precise matching, which obtains precise
matches under the guidance of rough co-registration.

- Evaluation:

1. Roughly co-registered DoD.
2. Refined DoD based on SuperGlue.
3. Refined DoD based on SIFT.
Take one tutorial (i.e., [Zhang et al. 2021e]) as example, in the following we

display the commands used in the tutorial. The dataset used in the tutorial consists
of 2 epochs (i.e., 1971 and 1981).
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C.1 Intra-epoch processing

In this section, both epochs 1971 and 1981 go through the same commands
individually. For the sake of simplicity, we take only epoch 1981 as an example to
demonstrate the commands.

C.1.1 Feature matching

1. Recover tie-points with command Tapioca:
mm3d Tapioca MulScale 0IS-Reech_IGNF_PVA_1-0__1981.%tif 500 -1 PostFix=_1981

2. Remove tie-points on the fiducial marks with command HomolFilterMasq:

mm3d HomolFilterMasq 0IS-Reech_IGNF_PVA_1-0__1981.x%tif
GlobalMasq=Fiducial_marks_masq-1981-3.tif PostIn=_1981 PostOut=_1981-Masq

3. Tie-points reduction with command Ratafia:
mm3d TestLib NO_A110ri2Im OIS-Reech_IGNF_PVA_1-0__1981.xtif SH=_1981-Masq

mm3d Ratafia O0IS-Reech_IGNF_PVA_1-0__1981.xtif SH=_1981-Masq Out=_1981-Ratafia

C.1.2 Relative orientation

Recover relative orientation with command Tapas:

mm3d Tapas FraserBasic 0IS-Reech_IGNF_PVA_1-0__1981.xtif Out=1981 SH=_1981-Masq

C.1.3 DSM generation

Calculate DSM with command Malt:

mm3d Malt Ortho OIS-Reech IGNF_PVA_1-0__1981.*tif 1981 NbVI=2
MasqImGlob=Fiducial_marks_masq-1981-3.tif DirMEC=MEC-Malt_1981 EZA=1 ZoomF=2
DoOrtho=0

C.2 Inter-epoch processing

C.2.1 Automated pipeline with command TiePHistoP

1. Option 1: SuperGlue:
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mm3d TiePHistoP Ori-1971 Ori-1981 ImgList1971all.txt ImglList198lall.txt
MEC-Malt_1971 MEC-Malt_1981 CoRegPatchLSz=[1280,960]
CoRegPatchRSz=[1280,960] PrecisePatchSz=[1280,960] Feature=SuperGlue

2. Option 2: SIFT:
mm3d TiePHistoP Ori-1971 Ori-1981 ImgList1971all.txt ImgList1981lall.txt

MEC-Malt_1971 MEC-Malt_1981 PrecisePatchSz=[1280,960] Feature=SIFT
SkipCoReg=1 CoRegOril=1971_CoReg_SuperGlue

C.2.2 Deep-dive in the pipeline’s submodules

1. Rough co-registration

(1) DSM Equalization for each epoch with command TestLib
DSM _ FEqualization:

mm3d TestLib DSM_Equalization MEC-Malt_1981 DSMFile=MMLastNuage.xml
OutImg=DSM1981-gray.tif

mm3d TestLib DSM_Equalization MEC-Malt_1971 DSMFile=MMLastNuage.xml
OutImg=DSM1971-gray.tif

(2) DSM Wallis filter for each epoch with command TestLib Wallis:
mm3d TestLib Wallis DSM1981-gray.tif Dir=MEC-Malt_1981
OutImg=DSM1981-gray.tif_sfs.tif

mm3d TestLib Wallis DSM1971-gray.tif Dir=MEC-Malt_1971
OutImg=DSM1971-gray.tif_sfs.tif

(3) Matching DSM based on SuperGlue with 4 rotation hypotheses.

(3.1) Rotate the secondary DSM four times and split DSM pairs into patch
pairs with command TestLib GetPatchPair:

mm3d TestLib GetPatchPair BruteForce MEC-Malt_1971/DSM1971-gray.tif_sfs.tif
MEC-Malt_1981/DSM1981-gray.tif _sfs.tif OutDir=./Tmp_Patches-CoReg
Rotate=1 PatchLSz=[1280,960] PatchRSz=[1280,960]

(3.2) Hypothesis 0 °:
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mm3d TestLib SuperGlue SuperGlueInput.txt InDir=./Tmp_Patches-CoReg/
OutDir=./Tmp_Patches-CoReg/ SpGOutSH=-SuperGlue

mm3d TestLib MergeTiePt ./Tmp_Patches-CoReg/ HomoXml=SubPatch.xml
MergeInSH=-SuperGlue MergeOutSH=-SubPatch PatchSz=[1280,960]

mm3d TestLib RANSAC R2D MEC-Malt_1971.tif MEC-Malt_1981.tif
Dir=./Tmp_Patches-CoReg/ 2DRANInSH=-SubPatch
2DRANOutSH=-SubPatch-2DRANSAC

(3.3) Hypothesis 90 °:

mm3d TestLib SuperGlue SuperGlueInput_R90.txt InDir=./Tmp_Patches-CoReg/
OutDir=./Tmp_Patches-CoReg/ SpGOutSH=-SuperGlue

mm3d TestLib MergeTiePt ./Tmp_Patches-CoReg/ HomoXml=SubPatch_R90.xml

MergeInSH=-SuperGlue MergeOutSH=-SubPatch_R90

PatchSz=[1280,960]

mm3d TestLib RANSAC R2D MEC-Malt_1971.tif MEC-Malt_1981.tif
Dir=./Tmp_Patches-CoReg/ 2DRANInSH=-SubPatch_R90
2DRANOutSH=-SubPatch_R9O0-2DRANSAC

(3.4) Hypothesis 180 °:

mm3d TestLib SuperGlue SuperGluelnput_R180.txt InDir=./Tmp_Patches-CoReg/

OutDir=./Tmp_Patches-CoReg/ SpGOutSH=-SuperGlue

mm3d TestLib MergeTiePt ./Tmp_Patches-CoReg/ HomoXml=SubPatch_R180.xml
MergeInSH=-SuperGlue MergeOutSH=-SubPatch_R180 PatchSz=[1280,960]

mm3d TestLib RANSAC R2D MEC-Malt_1971.tif MEC-Malt_1981.tif
Dir=./Tmp_Patches-CoReg/ 2DRANInSH=-SubPatch_R180
2DRANOutSH=-SubPatch_R180-2DRANSAC

(3.5) Hypothesis 270 °:

mm3d TestLib SuperGlue SuperGluelnput_R270.txt InDir=./Tmp_Patches-CoReg/

OutDir=./Tmp_Patches-CoReg/ SpGOutSH=-SuperGlue

mm3d TestLib MergeTiePt ./Tmp_Patches-CoReg/ HomoXml=SubPatch_R270.xml
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MergeInSH=-SuperGlue MergeOutSH=-SubPatch_R270 PatchSz=[1280,960]

mm3d TestLib RANSAC R2D MEC-Malt_1971.tif MEC-Malt_1981.tif
Dir=./Tmp_Patches-CoReg/ 2DRANInSH=-SubPatch_R270
2DRANOutSH=-SubPatch_R270-2DRANSAC

(4) Create GCPs with command TestLib CreateGCPs:

mm3d TestLib CreateGCPs ./Tmp_Patches-CoReg MEC-Malt_1971.tif
MEC-Malt_1981.tif ./ ImgList1971all.txt ImgList1981all.txt
Ori-1971 Ori-1981 MEC-Malt_1971 MEC-Malt_1981
CreateGCPsInSH=-SubPatch_R180-2DRANSAC Out2DXml1=0utGCP2D_epoch1971.xml
Out3DXml1=0utGCP3D_epoch1971.xml Out2DXml2=0utGCP2D_epoch1981.xml
Out3DXml12=0utGCP3D_epoch1981.xml

(5) 3D Helmert transformation with command GCPBascule:

mm3d GCPBascule "OIS-Reech IGNF_PVA_1-0__1971.%tif" 1971 1981
OutGCP3D_epoch1981.xml OutGCP2D_epochl1971.xml

2. Precise matching

(1) Get overlapped images with command TestLib GetOverlappedImages:

mm3d TestLib GetOverlappedImages 1971 1981 ImgList1971all.txt
Imglist1981all.txt Para3DH=Basc-1971-2-1981.xml

(2) Get Patch Pair with command TestLib GetPatchPair Guided:

mm3d TestLib GetPatchPair Guided
0IS-Reech_IGNF_PVA_1-0__1971-06-21__C2844-0141_1971_FR2117_0974.tif
0IS-Reech_IGNF_PVA_1-0__1981-06-16__C2544-0021_1981_F2544-2644_0064.tif
Ori-1971 Ori-1981 OutDir=./Tmp_Patches-Precise
SubPXml1=0IS-Reech_IGNF_PVA_1-0__1971-06-21__C2844-0141_1971_FR2117_0974_
0IS-Reech_IGNF_PVA_1-0__1981-06-16__0C2544-0021_1981_F2544-2644_0064_SubPatch.xml
ImgPair=0IS-Reech IGNF_PVA_1-0__1971-06-21__C2844-0141_1971_FR2117_0974_
0IS-Reech_IGNF_PVA_1-0__1981-06-16__C2544-0021_1981_F2544-2644_0064
_SuperGluelnput.txt
PatchSz=[1280,960] Para3DH=Basc-1971-2-1981.xml DSMDirL=MEC-Malt_1971

(3) Get tentative tie-points (optionl: SuperGlue) with command TestLib
SuperGlue and TestLib MergeTiePt:
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mm3d TestLib SuperGlue
0IS-Reech_IGNF_PVA_1-0__1971-06-21__C2844-0141_1971_FR2117_0974_
0IS-Reech_IGNF_PVA_1-0__1981-06-16__C2544-0021_1981_F2544-2644_0064
_SuperGluelnput.txt
InDir=./Tmp_Patches-Precise/ OutDir=./Tmp_Patches-Precise/
SpGOutSH=-SuperGlue CheckNb=100

mm3d TestLib MergeTiePt ./Tmp_Patches-Precise/
HomoXml=0IS-Reech_ IGNF_PVA_1-0__1971-06-21__C2844-0141_1971_FR2117_0974_
0IS-Reech_IGNF_PVA_1-0__1981-06-16__C2544-0021_1981_F2544-2644_0064_SubPatch.xml
MergeInSH=-SuperGlue MergeOutSH=-SuperGlue OutDir=./ PatchSz=[1280,960]
BufferSz=[128,96]

(4) Get tentative tie-points (optionl: SIFT) with command TestLib Guided-
SIFTMatch:

mm3d TestLib GuidedSIFTMatch
0IS-Reech_IGNF_PVA_1-0__1971-06-21__0C2844-0141_1971_FR2117_0974.tif
0IS-Reech_IGNF_PVA_1-0__1981-06-16__C2544-0021_1981_F2544-2644_0064.tif
Ori-1971 Ori-1981 SkipSIFT=false DSMDirL=MEC-Malt_1971 DSMDirR=MEC-Malt_1981
Para3DH=Basc-1971-2-1981.xml

(5) 3D-RANSAC with command TestLib RANSAC R3D:

mm3d TestLib RANSAC R3D
0IS-Reech_IGNF_PVA_1-0__1971-06-21__C2844-0141_1971_FR2117_0974.tif
0IS-Reech_IGNF_PVA_1-0__1981-06-16__C2544-0021_1981_F2544-2644_0064.tif
Ori-1971 0ri-1981 Dir=./ DSMDirL=MEC-Malt_1971 DSMDirR=MEC-Malt_1981
DSMFilel=MMLastNuage.xml DSMFileR=MMLastNuage.xml 3DRANInSH=-SuperGlue
3DRANOutSH=-SuperGlue-3DRANSAC

(6) Cross correlation with command TestLib CrossCorrelation:

mm3d TestLib CrossCorrelation
0IS-Reech_IGNF_PVA_1-0__1971-06-21__C2844-0141_1971_FR2117_0974.tif
0IS-Reech_IGNF_PVA_1-0__1981-06-16__C2544-0021_1981_F2544-2644_0064.tif
CCInSH=-SuperGlue-3DRANSAC CCOutSH=-SuperGlue-3DRANSAC-CrossCorrelation
SzW=32 CCTh=0.6 PatchSz=[1280,960] BufferSz=[30,60]
PatchDir=./Tmp_Patches-Precise
SubPXml1=0IS-Reech_IGNF_PVA_1-0__1971-06-21__C2844-0141_1971_FR2117_0974_
0IS-Reech_IGNF_PVA_1-0__1981-06-16__C2544-0021_1981_F2544-2644_0064_SubPatch.xml
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C.3 Evaluation

C.3.1 Roughly co-registered DoD
1. Get DSM of epoch 1971:

mm3d Malt Ortho 0IS-Reech_IGNF_PVA_1-0__1971.*%tif 1981 NbVI=2
DirMEC=MEC-Malt_1971_CoReg EZA=1 MasqImGlob=Fiducial_marks_masq-1971-3.tif
ZoomF=4 DoOrtho=0

2. Calculate DoD with command CmplIm:

mm3d CmpIm MEC-Malt_1971_CoReg/Z_Num7_DeZoom4_ STD-MALT.tif
MEC-Malt_1981/Z_Num8_DeZoom2_STD-MALT.tif UseFOM=1 FileDiff=DoD-CoReg.tif
16Bit=1

C.3.2 Refined DoD based on SuperGlue

1. Set weight of inter-epoch tie-points with command TestLib TiePtAdd Weight :
mm3d TestLib TiePtAddWeight 10 InSH=-SuperGlue-3DRANSAC-CrossCorrelation

2. Txt to binary conversion with command HomolFilterMasq:
mm3d HomolFilterMasq "O.*tif'" PostIn=-SuperGlue-3DRANSAC-CrossCorrelation-W10
PostOut=-SuperGlue-3DRANSAC-CrossCorrelation-W10-dat ANM=1 ExpTxt=1
ExpTxt0Out=0

3. Merge intra- and inter-epoch tie-points with command Merge Homol:
mm3d MergeHomol "Homol_1971-Ratafia|Homol_1981-Ratafia
|Homol-SuperGlue-3DRANSAC-CrossCorrelation-W10-dat"
Homol_Merged-SuperGlue

4. Run bundle adjustment with command Campari:

mm3d Campari "O.xtif" 1981 Campari_Refined-SuperGlue SH=_Merged-SuperGlue
AllFree=1 NblterEnd=20 SigmaTieP=0.25

5. Get DSM of epoch 1981:
mm3d Malt Ortho O0IS-Reech_IGNF_PVA_1-0__1981.*tif Campari_Refined-SuperGlue
NbVI=2 DirMEC=MEC-Malt_1981_Refined-SuperGlue EZA=1

MasqImGlob=Fiducial_marks_masq-1981-3.tif ZoomF=2 DoOrtho=0

6. Get DSM of epoch 1971:
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mm3d Malt Ortho OIS-Reech_IGNF_PVA_1-0__1971.%tif Campari_Refined-SuperGlue
NbVI=2 DirMEC=MEC-Malt_1971_Refined-SuperGlue EZA=1
MasqImGlob=Fiducial_marks_masq-1971-3.tif ZoomF=4 DoOrtho=0

7. Calculate DoD:

mm3d CmpIm MEC-Malt_1971_Refined-SuperGlue/Z_Num7_DeZoom4_STD-MALT.tif
MEC-Malt_1981_Refined-SuperGlue/Z_Num8_DeZoom2_STD-MALT.tif UseFOM=1
FileDiff=DoD-Refined-SuperGlue.tif 16Bit=1
C.3.3 Refined DoD based on SIFT
1. Set weight of inter-epoch tie-points:
mm3d TestLib TiePtAddWeight 10 InSH=-GuidedSIFT-3DRANSAC-CrossCorrelation

2. Txt to binary conversion:

mm3d HomolFilterMasq "O.*tif" PostIn=-GuidedSIFT-3DRANSAC-CrossCorrelation-W10
PostOut=-GuidedSIFT-3DRANSAC-CrossCorrelation-W10-dat ANM=1 ExpTxt=1
ExpTxt0Out=0

3. Merge intra- and inter-epoch tie-points:

mm3d MergeHomol "Homol_1971-Ratafia|Homol_1981-Ratafia
|Homol-GuidedSIFT-3DRANSAC-CrossCorrelation-W10-dat"
Homol_Merged-GuidedSIFT

4. Run bundle adjustment:

mm3d Campari "O.xtif" 1981 Campari_Refined-GuidedSIFT SH=_Merged-GuidedSIFT
AllFree=1 NbIterEnd=20 SigmaTieP=0.25

5. Get DSM of epoch 1981:

mm3d Malt Ortho OIS-Reech_IGNF_PVA_1-0__1981.xtif Campari_Refined-GuidedSIFT
NbVI=2 DirMEC=MEC-Malt_1981_Refined-GuidedSIFT EZA=1
MasqImGlob=Fiducial_marks_masq-1981-3.tif ZoomF=2 DoOrtho=0

6. Get DSM of epoch 1971:

mm3d Malt Ortho OIS-Reech_IGNF_PVA_1-0__1971.xtif Campari_Refined-GuidedSIFT
NbVI=2 DirMEC=MEC-Malt_1971_Refined-GuidedSIFT
MasqImGlob=Fiducial_marks_masq-1971-3.tif EZA=1 ZoomF=4 DoOrtho=0

7. Calculate DoD:

mm3d CmpIm MEC-Malt_1971_Refined-GuidedSIFT/Z_Num7_DeZoom4_ STD-MALT.tif
MEC-Malt_1981_Refined-GuidedSIFT/Z_Num8_DeZoom2_STD-MALT.tif UseF0OM=1
FileDiff=DoD-Refined-GuidedSIFT.tif 16Bit=1
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