
HAL Id: tel-04167278
https://hal.science/tel-04167278

Submitted on 20 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Methodologies for Reproducible Analysis of Workflows
on the Edge-to-Cloud Continuum

Daniel Rosendo

To cite this version:
Daniel Rosendo. Methodologies for Reproducible Analysis of Workflows on the Edge-to-Cloud Contin-
uum. Distributed, Parallel, and Cluster Computing [cs.DC]. INSA RENNES, 2023. English. �NNT :
�. �tel-04167278�

https://hal.science/tel-04167278
https://hal.archives-ouvertes.fr


THÈSE DE DOCTORAT DE

L’INSTITUT NATIONAL DES
SCIENCES APPLIQUÉES RENNES

ÉCOLE DOCTORALE NO 601
Mathématiques, télécommunications, informatique,
signal, systémes, électronique
Spécialité : Informatique

Par

Daniel ROSENDO
Methodologies for Reproducible Analysis of Workflows
on the Edge-to-Cloud Continuum

Thèse présentée et soutenue à Rennes, le 01 Juin 2023
Unité de recherche : Inria
Thèse No : 23ISAR 13 / D23 - 13

Rapporteurs avant soutenance :

Rosa BADIA Research Director, Barcelona Supercomputing Center (BSC) - Spain
Ewa DEELMAN Research Director, USC Information Sciences Institute - California, United States

Composition du Jury :

Président : Maria PEREZ Full Professor, Universidad Politécnica de Madrid (UPM) - Spain
Examinateurs : Rosa BADIA Research Director, Barcelona Supercomputing Center (BSC) - Spain

Ewa DEELMAN Research Director USC Information Sciences Institute - California, United States
Dir. de thèse : Gabriel ANTONIU Directeur de recherche, Inria - Rennes, France
Co-dir. de thèse : Alexandru COSTAN Maître de conférences HDR, INSA - Rennes, France
Co-dir. de thèse : Patrick VALDURIEZ Directeur de recherche, Inria - Montpellier, France





To my grandmothers.

To my family,
who make it all worthwhile.





Those who walk alone may arrive faster,
but those who go with others will certainly go further.

- Clarice Lispector





ACKNOWLEDGEMENT

I want to start by thanking my reviewers: Rosa Badia and Ewa Deelman, as well as the other
members of my jury: Maria Perez, for taking the time to evaluate my Ph.D. thesis. Thanks also
to the members of my CSID: Alexandre Termier and Bruno Raffin, for their valuable feedback.

This work is possible thanks to the continuous support and advice from my brilliant advi-
sors, Gabriel Antoniu, Alexandru Costan, and Patrick Valduriez, who shared their energy and
connectionswith great researchers and gaveme the freedom to followmy research ideas. Thank
you for every word that gave me the strength to go forward.

I owe the work presented here to the various great collaborations:
Thanks to Pedro Silva (from theHasso-Plattner-Institut, Germany) for sharing his ideas and

Matthieu Simonin (Inria) for the technical support and impressive response time. The Pl@ntNet
team (University ofMontpellier, LIRMM), in the context of the HPC-Big Data Project, in unique
Alexis Joly and Jean-Christophe, for providing the use case to validate this work.

The Federal University of Rio de Janeiro (HPDeSc associate team with Brazil), and the Oak
Ridge National Laboratory, particularly Marta Mattoso, Debora Pina, and Renan Souza, for the
fruitful discussions and technical support.

I am also very grateful to Gabriel and Kate Keahey for hosting me (summer internship)
at Argonne National Laboratory (ANL) and for the fruitful discussions with Kate, Michael,
Mark, Adam, and Zhuo. The JLESC workshop allowed me to present and discuss my research
results with researchers and interns at ANL, in particular Romain Egele, Jaehoon Koo, Prasanna
Balaprakash, and Orcun Yildiz.

Thanks to the members of the KerData team: Luc Bougé (for his golden rules), Ovidiu,
Luis, François, Josh, Thomas (for motivatingme to start running), Julien, Cédric, Juliette, Hugo,
Matthieu, José, and Edgar. Thanks to Gaelle and Laurence for helping me with paperwork and
organizing my missions. Thanks to Esther, Reza, Benjamin, Joaquim, Alena, Cesar, and Camille
from the Zenith team. Thanks to Luis, Johanne, andMaël fromLACODAM team. I happily recall
our quality time together during lunch, conferences, and events organized at Inria by AGOS.

Thanks to my Master advisors, Judith Kelner, Patricia Endo, and Djamel, for hosting me at
the Networking and Telecommunications Research Group in Brazil and preparing me to start
my research career and Ph.D. journey at Inria.

Finally, I would like to thank my beloved grandmothers (who taught me values I will carry
with me for the rest of my life), my parents, my brothers, and all my family for their continuous
encouragement, support, and help in every step that I make. You make it all worthwhile.





RÉSUMÉ EN FRANÇAIS

Contexte

La révolution numérique actuelle a un impact sur les êtres humains dans leur façon de vivre,
de travailler, d’apprendre et de communiquer. Elle a entraîné des progrès impressionnants dans
de nombreux domaines, tels que le Cloud Computing, le Calcul à Haute Performance (HPC),
l’Intelligence Artificielle (IA), l’Analyse des Données Massives (Big Data) et l’Internet des Ob-
jets (IoT). En outre, de nouveaux scénarios d’applications stimulants apparaissent dans divers
domaines tels que les véhicules autonomes, la fabrication en temps réel, l’agriculture de préci-
sion et les villes intelligentes, pour n’en citer que quelques-uns [223, 142].

L’explosion des données générées par ces applications et la nécessité d’analyse en temps réel
et de prise de décision rapide ont entraîné un changement des paradigmes de traitement des
données et de Machine Learning (ML) depuis des approches centralisées vers des infrastruc-
tures et services informatiques décentralisés [137].

Les workflows de traitement de données et de ML ne peuvent plus s’appuyer sur des ap-
proches traditionnelles [175] qui envoient toutes les données vers des centres de données Cloud
centralisés et distants pour le traitement ou l’entraînement et l’inférence de modèles de ML. Au
contraire, elles doivent exploiter les nombreuses ressources à proximité des sites de génération
des données (i.e., dans le Edge ou le Fog) pour extraire rapidement des informations [18] et sat-
isfaire aux exigences de latence très faible des applications. Le défi est d’autant plus grand qu’il
faut maintenir une utilisation raisonnable des ressources et préserver les contraintes de confi-
dentialité. En pratique, pour équilibrer des exigences contradictoires, il est judicieux de peser
les avantages respectifs de la centralisation et de la décentralisation et de faire les compromis
appropriés pour utiliser intelligemment les avantages de chaque type d’infrastructure.

Cette approche flexible contribue à l’émergence du continuum Edge-Cloud [81], qui com-
bine de manière transparente les ressources et les services du Cloud avec ceux à la périphérie
du réseau dans le Edge et le Fog. Ainsi, les données sont d’abord générées et prétraitées (e.g.,
filtrage, inférence de base) sur les dispositifs IoT/Edge, tandis que les nœuds de Fog traitent
les données partiellement agrégées. Ensuite, si nécessaire, les données sont transférées dans le
cloud pour des analyses BigData, l’entraînement demodèles deML et des simulations globales.
Par exemple, les jumeaux numériques collectent les données dans le Edge et les stockent dans
le Cloud, où ils exécutent l’analyse des données et l’apprentissage des modèles, et finalement
exécutent des simulations basées sur ces modèles dans des clusters HPC.

1



En raison de la complexité des déploiements d’applications dans des infrastructures Edge-
Cloud distribuées et hétérogènes, la vision du continuum Edge-Cloud reste à concrétiser.

Comprendre et optimiser les performances d’applicatons réelles à grande échelle dans ce
contexte complexe est undéfimajeur [175]. Cela nécessite de configurer unemyriadedeparamètres
spécifiques au système (e.g., systèmes d’IA et de Big Data, applications et systèmes d’ingestion,
entre autres) et de concilier de nombreuses exigences ou contraintes en termes de consom-
mation d’énergie, d’interopérabilité, de mobilité, de latence de communication, d’efficacité du
réseau, de confidentialité des données et d’utilisation des ressources matérielles (e.g.,mémoire
GPU, puissance CPU, taille de stockage, et autres) [231].

Cette thèse est une contribution conceptuelle et pratique au continuumEdge-Cloud, proposant
des méthodologies et les appliquant dans des environnements novateurs. Nos méthodologies
ont pour but de s’affranchir de la complexité de la compréhension et de l’optimisation des work-
flows dans le continuumEdge-Cloud. Ainsi, elles permettent la conception d’expériences repro-
ductibles, l’optimisation des applications, la capture efficace des métadonnées de provenance
des exécutions de workflows, et la reproductibilité des expérimentations. Nous avons validé
notre proposition avec, d’abord, le développement du framework E2Clab qui supporte le cycle
complet d’analyse d’une application dans le continuum Edge-Cloud, et ensuite, l’utilisation de
E2Clab avec des applications réelles comme Pl@ntNet.

Contributions

Les principales contributions de cette thèse sont les suivantes:

Méthodologie pour la conception d’expériences reproductibles dans le continuum Edge-
Cloud

Dans ce contexte, il est difficile de comprendre les performances de bout en bout. Cela revient
à concilier de nombreuses exigences et contraintes applicatives, généralement contradictoires,
avec des choix de conception d’infrastructure de bas niveau. Un défi crucial consiste à repro-
duire avec précision les comportements pertinents des workflows et les paramètres représentat-
ifs de l’infrastructure physique sous-jascente. En d’autres termes, il faut trouver une approche
rigoureuse pour répondre à des questions telles que :Comment identifier les goulots d’étranglement
de l’infrastructure ? Quels paramètres systèmes et quelles configurations d’infrastructures ont un impact
sur les performances et comment ?

Nousproposonuneméthodologie rigoureuse pour un tel processus et la validons endévelop-
pant la plateforme E2Clab. Il s’agit de la première plateforme à prendre en charge le cycle
complet d’analyse d’une application dans le continuum Edge-Cloud : (i) la configuration de
l’environnement expérimental, des bibliothèques et des frameworks ; (ii) la correspondance

2



entre les parties de l’application et les machines dans le Edge, le Fog et le Cloud ; (iii) le dé-
ploiement de l’application sur l’infrastructure ; (iv) l’exécution automatisée ; et (v) la collecte
des métriques de l’expérience. Nous illustrons son utilisation avec une application réelle dé-
ployée sur Grid’5000, montrant que notre framework permet de comprendre et d’améliorer les
performances en les corrélant aux paramètres, à l’utilisation des ressources et aux spécificités
de l’infrastructure sous-jacente.

Ce travail est une collaboration avec Pedro Silva du Hasso-Plattner-Institut (HPI), Univer-
sité de Potsdam, Allemagne ; et Matthieu Simonin à Inria, France. L’article de référence E2Clab
a été publié à la conférence IEEE Cluster 2020, CORE Rank A [176]. E2Clab est un logiciel open
source, documenté, et a été utilisé et cité par la communauté des chercheurs [174].

Méthodologie d’optimisation des performances des applications Edge-Cloud

La nature automatisée des déploiements basés sur E2Clab rend naturelle l’exploration des
optimisations de performance des workflows Edge-Cloud. Ces workflows sont soumis à des
contraintes et exigences complexes en matière de performances, d’utilisation des ressources, de
consommation d’énergie et de coûts financiers. Il est donc difficile de répondre à des questions
telles que : Comment configurer le matériel et les composants du système pour minimiser la consomma-
tion d’énergie? Où les parties du workflows doivent-elles être exécutées dans le continuum Edge-Cloud
pour minimiser les coûts de communication et la latence de bout en bout?

Dans ce travail, nous proposons uneméthodologie pour l’optimisation d’applications réelles
dans le continuum Edge-Cloud. Nous l’avons implémenté dans le framework E2Clab. Notre ap-
proche repose sur une analyse rigoureuse des configurations possibles dans un environnement
de test contrôlé afin de comprendre leur comportement et les compromis de performance as-
sociés. Nous illustrons notre méthodologie en optimisant Pl@ntNet, une application mondiale
d’identification des plantes. La validation expérimentale à grande échelle sur Grid’5000 montre
que notre méthodologie s’est avérée utile pour comprendre et améliorer les performances de
Pl@ntNet.

Ce travail est une collaboration avec Alexis Joly de l’équipe Pl@ntNet, Inria, Montpellier
dans le cadre du Inria Project Lab (IPL) HPC-BigData et des discussions avec Orcun Yildiz
et Romain Egele de l’Argonne National Laboratory - USA dans le cadre du Joint Laboratory
for Extreme Scale Computing (JLESC). Cette contribution a donné lieu à une publication à la
conférence IEEE Cluster 2021, CORE Rank A [181] et à un poster à IPDPS 2021, CORE Rank A
[178].

3



Méthode de capture efficace des métadonnées de provenance pour les workflows s’éxécutant
sur le continuum Edge-Cloud

La capture des métadonnées de provenance des indicateurs de performance clés, avec leurs
données et processus associés, peut aider à comprendre et à optimiser les exécutions de work-
flows. Par exemple, elle peut aider à répondre à des questions telles que : Après plusieurs évalu-
ations de workflows, pouvons-nous comparer leur provenance et voir comment elle a changé? ou Quels
paramètres de workflows ont produit ces résultats?. Cependant, le coût de la capture des métadon-
nées de provenance peut être prohibitif, en particulier dans les appareils à ressources limitées,
comme ceux du Edge.

Sur la base d’une analyse des performances des systèmes existants, nous proposons Prov-
Light, un outil permettant une capture efficace de la provenance dans le Edge. Nous tirons parti
de modèles de données simplifiés, de la compression et du regroupement des données, et de
protocoles de transmission légers pour réduire les coûts d’exécution. Nous avons intégré Prov-
Light dans E2Clab pour permettre la capture de la provenance duworkflows dans le continuum
Edge-Cloud. Cette intégration fait d’E2Clab une plateforme prometteuse pour l’optimisation
des performances des applications par le biais d’expériences reproductibles. Nous validons
ProvLight avec des charges de travail synthétiques sur des dispositifs IoT/Edge réels dans les
testbeds à grande échelle Grid’5000 et FIT IoT LAB. Les évaluationsmontrent que ProvLight sur-
passe les meilleurs systèmes de provenance comme ProvLake et DfAnalyzer dans les dispositifs
à ressources limitées. ProvLight est 26—37x plus rapide dans la capture et la transmission des
données de provenance, utilise 5—7x moins de CPU, 2x moins de mémoire, transmet 2x moins
de données et consomme 2—2,5x moins d’énergie.

Ce travail est une collaboration avecMartaMattoso de l’Université Fédérale deRio de Janeiro
de l’équipe associée Inria HPDaSc avec le Brésil ; et Renan Souza du Oak Ridge National Labo-
ratory - USA. Il est publié à la conférence IEEE Cluster 2023 [180], CORE Rank A.

Reproductibilité des expériences sur le continuum Edge-Cloud

Comprendre les compromis de performance des workflows à grande échelle déployés dans
le continuum Edge-Cloud est un défi majeur. Pour y parvenir, il faut réaliser systématique-
ment des expériences pour permettre à d’autres chercheurs de reproduire l’étude et les conclu-
sions obtenues sur différentes infrastructures. Cela se résume au processus fastidieux de con-
ciliation des nombreuses exigences et contraintes expérimentales avec les choix de conception
d’infrastructures de bas niveau. Cette contribution explore : Comment permettre aux chercheurs
de reproduire facilement des expériences complexes sur le continuum Edge-Cloud? Ceci implique de
permettre aux chercheurs de trouver et de partager facilement les artefacts d’expérience et de
comprendre, reconfigurer et réaliser facilement les expériences.

4



Pour répondre aux limites des principales approches pour l’expérimentation distribuée et
collaborative, telles queGoogle Colab, Kaggle et CodeOcean, nous proposonsKheOps, un envi-
ronnement collaboratif spécialement conçu pour permettre la reproductibilité des expériences
sur le continuum Edge-Cloud. KheOps est composé de trois éléments centraux : (1) un réper-
toire d’expériences ; (2) un environnement de notebook ; et (3) uneméthodologie d’expériences
multiplateformes.Nous illustronsKheOps avec une application réelle. Les évaluations explorent
le point de vue des auteurs d’une expérience décrite dans un article (qui visent à rendre leurs ex-
périences reproductibles) et la perspective de leurs lecteurs (qui visent à reproduire l’expérience).
Les résultats montrent comment KheOps aide les auteurs à réaliser systématiquement des ex-
périences reproductibles sur Grid5000 + FIT IoT LAB. En outre, KheOps aide les lecteurs à
reproduire facilement les expériences des auteurs dans différentes infrastructures telles que
Chameleon Cloud + CHI@Edge, et à obtenir les mêmes conclusions avec une grande précision
(>88% pour toutes les mesures de performance).

Ce travail est une collaboration avec Kate Keahey de l’Argonne National Laboratory - USA
dans le cadre du Joint Laboratory for Extreme Scale Computing (JLESC). Cette contribution a
donné lieu à une publication à la conférence ACM-REP’23 [179].

Publications

Revues Internationales

— Daniel Rosendo, Alexandru Costan, Patrick Valduriez, Gabriel Antoniu. Distributed in-
telligence on the continuumEdge-to-Cloud: A systematic literature review. JPDC - Journal
of Parallel and Distributed Computing, Elsevier, 2022, 166, pp.71-94. CORE Rank A.

Conférences Internationales

— Daniel Rosendo, Kate Keahey, Alexandru Costan, Matthieu Simonin, Patrick Valduriez,
Gabriel Antoniu. KheOps: Cost-effective Repeatability, Reproducibility, and Replicability
of Edge-to-Cloud Experiments. ACM REP 2023 - ACM Conference on Reproducibility and
Replicability, Jun 2023, Santa Cruz California, United States.

— Daniel Rosendo, Marta Mattoso, Alexandru Costan, Renan Souza, Debora Pina, Patrick
Valduriez, Gabriel Antoniu. ProvLight: Efficient Workflow Provenance Capture on the
Edge-to-Cloud Continuum. Cluster 2023 - IEEE International Conference on Cluster Com-
puting, October 2023, Santa Fe, New Mexico, United States. CORE Rank A (acceptance
rate 25%).

— DanielRosendo, AlexandruCostan,GabrielAntoniu,Matthieu Simonin, Jean-Christophe
Lombardo,Alexis Joly, PatrickValduriez. Reproducible PerformanceOptimization ofCom-

5



plexApplications on the Edge-to-CloudContinuum.Cluster 2021 - IEEE International Con-
ference on Cluster Computing, Sep 2021, Portland, OR, United States. pp.23-34. CORE Rank
A (acceptance rate 29%).

— Daniel Rosendo, Pedro Silva, Matthieu Simonin, Alexandru Costan, Gabriel Antoniu.
E2Clab: Exploring the Computing Continuum through Repeatable, Replicable and Repro-
ducible Edge-to-Cloud Experiments.Cluster 2020 - IEEE International Conference on Cluster
Computing, Sep 2020, Kobe, Japan. pp.1-11. CORE Rank A (acceptance rate 31%).

Posters dans des Conférences Internationales

— Daniel Rosendo, Alexandru Costan, Gabriel Antoniu, Patrick Valduriez. E2Clab: Repro-
ducible Analysis of Complex Workflows on the continuum Edge-to-Cloud. IPDPS 2021
- 35th IEEE International Parallel and Distributed Processing Symposium, May 2021, Virtual,
France. CORE Rank A.

Conférences Nationales

— DanielRosendo, AlexandruCostan,GabrielAntoniu,Matthieu Simonin, Jean-Christophe
Lombardo,Alexis Joly, PatrickValduriez. Reproducible PerformanceOptimization ofCom-
plex Applications on the Edge-to-Cloud Continuum. BDA 2022 - 38ème Conférence sur
la Gestion de Données - Principes, Technologies et Applications, Oct 2022, Clermont-Ferrand,
France.

Posters dans des Conférences Nationales

— Daniel Rosendo, Alexandru Costan, Gabriel Antoniu, Patrick Valduriez. Enabling Repro-
ducible Analysis of Complex Workflows on the Edge-to-Cloud Continuum. BDA 2021 -
37ème Conférence sur la Gestion de Données - Principes, Technologies et Applications, Oct 2021,
Paris, France.

Logiciels

Contributions Principales

E2Clab

Description scientifique: E2CLab est un framework qui permet aux chercheurs de repro-
duire demanière représentative le comportement des applications dans un environnement con-
trôlé pour des expériences approfondies et, par conséquent, de comprendre les performances
de bout en bout des applications en corrélant les résultats aux paramètres. E2Clab fournit une

6



approche rigoureuse pour répondre à des questions telles que : Comment identifier les goulots
d’étranglement de l’infrastructure ?Quels paramètres systèmes et quelles configurations d’infrastructures
ont un impact sur les performances et comment?

Description fonctionnelle: les caractéristiques de haut niveau fournies par E2Clab sont : (i)
Reproductibilité des expériences. (ii) Correspondance entre les parties applicatives (Edge, Fog
et Cloud/HPC) et le testbed physique. (iii) Variation de l’expérience et mise à l’échelle trans-
parente des scénarios. (iv) Émulation de réseau avec contraintes de communication Edge-to-
Cloud. (v)Gestion des expériences : déploiement, exécution et surveillance (e.g., sur Grid’5000,
Chameleon et FIT IoT LAB). (vi) Optimisation : recherche de configuration des workflows des
applications. (vii) Provenance : capture des données des workflows Edge-to-Cloud.

— Link: https://gitlab.inria.fr/E2Clab/e2clab

— Taille et langage(s): ∼3K lignes, Python.

— Licence: GNU General Public License v3.0

ProvLight

Description scientifique: ProvLight est un outil qui permet aux chercheurs de capturer ef-
ficacement les métadonnées de provenance des workflows qui s’exécutent dans des infrastruc-
tures IoT/Edge. ProvLight a une faible coût concernant le temps de capture, l’utilisation du
processeur et de la mémoire, l’utilisation du réseau et la consommation d’énergie.

Description fonctionnelle: ProvLight adopte une architecture master/worker où le master
reçoit les données capturées des workers, puis les traduit et les envoie aux systèmes de prove-
nance. ProvLight fournit également une bibliothèque Python (conforme à la recommandation
PROV-DM du W3C) qui permet aux utilisateurs de capturer les données de leurs workflows
par l’instrumentation du code d’application.

— Link: https://gitlab.inria.fr/provlight/provlight

— Taille et langage(s): ∼700 lignes, Python.

— Licence: GNU General Public License v3.0

Contribution à un logiciel existant

EnOSlib

Description scientifique: EnOSlib est une bibliothèque Python pour la recherche expéri-
mentale reproductible en informatique distribuée. Elle vise à aider les chercheurs dans le pro-
cessus de développement de leurs artefacts expérimentaux et dans leur exécution et leur repro-
duction sur différentes infrastructures.

7



Description fonctionnelle: EnOSlib apporte des blocs de construction réutilisables pour
la configuration de l’infrastructure, le provisionnement de logiciels sur les hôtes distants et
l’organisationduworkflowexpérimental. L’interaction avec les testbeds (par exemple,Grid’5000,
FIT IoTLAB etChameleon) est confiée au fournisseur d’EnOSlib, et diverses actions sur les hôtes
distants reposent également sur les mécanismes offerts par la bibliothèque.

Notre contribution: Nous permettons à EnOSlib de prendre en charge la gestion de work-
flows complexes Edge-to-Cloud surChameleonCloud etCHI@Edge.Nous avons étendu l’abstraction
des fournisseurs d’EnOSlib pour permettre aux chercheurs de louer des ressources (calcul,
stockage et réseau) à partir des Chameleon testbed, ainsi que de déployer et d’exécuter leurs
workflows.

— Link: https://gitlab.inria.fr/discovery/enoslib

— Taille et langage(s): ∼1K lignes, Python.

— Licence: GNU General Public License v3.0

Outils et artefacts orientés vers la reproductibilité

KheOps

Description scientifique: KheOps est un environnement collaboratif conçu pour permet-
tre la reproductibilité des expériences Edge-to-Cloud dans les testbeds scientifiques à grande
échelle. Il permet aux chercheurs de trouver et de partager facilement des artefacts d’expérience
et de comprendre, reconfigurer et réaliser facilement des expériences.

Description fonctionnelle: KheOps est composé de trois éléments fondamentaux : (i) le
portail de partage Trovi pour le conditionnement et le partage des artefacts ; (ii) les Jupyter note-
books pour combiner les processus d’expérience avec le code exécutable ; et (iii) la méthodolo-
gieE2Clabpour réaliser des expériences dans les testbeds tels queChameleonCloud,CHI@Edge,
Grid’5000 et FIT IoT LAB. L’objectif est de réduire la barrière à la reproduction de la recherche
en combinant les artefacts et l’environnement expérimental et en fournissant un dépôt en libre
accès des artefacts de recherche qui sont visibles et reproductibles à travers les testbeds.

— Link: https://gitlab.inria.fr/KheOps/kheops

— Taille et langage(s): ∼800 lignes, Python

— Licence: GNU General Public License v3.0

Organisation du Manuscrit

Ce manuscrit est organisé en trois parties principales et huit chapitres.

8



La première partie:Le chapitre 2 présente le contexte de notre recherche. Il introduit la perti-
nence de la reproductibilité dans la communauté informatique ainsi que les systèmes existants
et les testbeds scientifiques à grande échelle pour la recherche expérimentale dans le contin-
uum Edge-to-Cloud. Puis il discute des défis ouverts concernant l’optimisation reproductible
des performances des workflows Edge-to-Cloud dans des infrastructures hétérogènes. Enfin, il
souligne les opportunités qui ont motivé nos contributions.

La deuxièmepartie:Les chapitres 3 à 5 se concentrent sur les contributions liées à l’approche
E2Clab. Trois objectifs majeurs sont abordés : (i) des expériences reproductibles dans le contin-
uum Edge-to-Cloud ; (ii) la compréhension des performances des workflows dans des infras-
tructures hétérogènes ; et (iii) l’optimisation des performances des workflows Edge-to-Cloud.

Le chapitre 3 présente nos méthodologies pour comprendre et optimiser les performances
des workflows Edge-to-Cloud aumoyen d’expériences reproductibles. L’implémentation de ces
méthodologies dans le framework E2Clab est présentée au chapitre 4. Les validations expéri-
mentales à grande échelle de nos méthodologies avec des applications du monde réel (e.g.,
application botanique Pl@ntNet) sont présentées au chapitre 5.

La troisième partie: Comme la compréhension, l’optimisation et la reproduction de work-
flows complexes s’exécutant sur le continuum Edge-Cloud peuvent être facilitées par la capture
de métadonnées de provenance. Le chapitre 6 explore la capture efficace de données de work-
flows s’exécutant dans des infrastructures IoT/Edge aux ressources limitées. Il propose Prov-
Ligh, une approche qui vise à capturer les métadonnées de provenance avec un faible surcoût.
E2Clab est étendu pour permettre la capture de données de provenance à l’exécution des work-
flows Edge-to-Cloud.

Le chapitre 7 propose KheOps, un environnement collaboratif conçu pour permettre la re-
productibilité des expériences sur le continuum Edge-Cloud. KheOps comprend un répertoire
d’expériences, un environnement de notebooks et une méthodologie d’expériences multiplate-
formes. KheOps est illustré avec une application réelle.

Le chapitre 8 conclut cette thèse et présente les nouvelles perspectives de recherche.

9





TABLE OF CONTENTS

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.2 Contribution to Existing Software . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.3 Reproducibility-oriented Tools and Artifacts . . . . . . . . . . . . . . . . . 8

1.5 Organization of the Manuscript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

I Context: Reproducibility and Experimental Research on the Edge-to-Cloud
Continuum 11

2 Background 13
2.1 Reproducibility in Computing Continuum Research . . . . . . . . . . . . . . . . . 14

2.1.1 Definitions and Landscape . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Edge-to-Cloud Computing Continuum . . . . . . . . . . . . . . . . . . . . 17
2.1.3 Meaningful Experiments on the Computing Continuum . . . . . . . . . . 17

2.2 Existing Systems for Analyzing Edge-to-Cloud Workflows . . . . . . . . . . . . . 20
2.2.1 Simulation, Emulation and Deployment Systems . . . . . . . . . . . . . . . 20
2.2.2 Workflow Management Systems . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Large-scale testbeds for Edge-to-Cloud Experiments . . . . . . . . . . . . . . . . . 24
2.3.1 Testbeds Explored in this Work . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Other Relevant Testbeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Open Challenges Explored in this Work . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.1 Understanding Performance of Edge-to-Cloud Workflows . . . . . . . . . 25
2.4.2 Optimizing Performance of Edge-to-Cloud Workflows . . . . . . . . . . . 26
2.4.3 Enabling Reproducible Analysis of Edge-to-Cloud Workflows . . . . . . . 27

i



TABLE OF CONTENTS

II E2Clab: Exploring the Computing Continuum through Repeatable, Replica-
ble and Reproducible Edge-to-Cloud Experiments 33

3 Our Methodology 35
3.1 The Need for Rigorous Experiment Methodologies . . . . . . . . . . . . . . . . . . 35
3.2 AMethodology for Designing Reproducible Experiments with Real-life Applica-

tions on the Computing Continuum . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.1 Providing Access to Experiment Artifacts . . . . . . . . . . . . . . . . . . . 37
3.2.2 Defining the Experimental Environment . . . . . . . . . . . . . . . . . . . 37
3.2.3 Providing Access to Experiment Results . . . . . . . . . . . . . . . . . . . . 39

3.3 A Methodology for Optimizing the Performance of Real-life Applications on the
Edge-to-Cloud Continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.1 Phase I: Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.2 Phase II: Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.3 Phase III: Finalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 E2Clab: The Methodology Implementation 43
4.1 High-Level Aspects and Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Experiment Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.2 Layers and Services Manager . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.3 Network Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.4 Workflow Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.5 Optimization Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.1 Usability and Reusability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.2 Methodology Genericness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Experimental Evaluation and Validation with the Pl@ntNet Application 56
5.1 Pl@ntNet: A Real-life Botanical Observation Application . . . . . . . . . . . . . . 56
5.2 Research Questions and Experimental Setup . . . . . . . . . . . . . . . . . . . . . 58
5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.1 What software configuration minimizes the user response time? . . . . . . 60
5.3.2 How does the number of simultaneous users accessing the system impact

the user response time? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.3 How do the Extraction and Similarity Search thread pool configurations

impact the processing and user response times? . . . . . . . . . . . . . . . 62
5.4 Reproducibility and Artifact Availability . . . . . . . . . . . . . . . . . . . . . . . . 66

ii



TABLE OF CONTENTS

III Facilitating Reproducibility and Replicability of Edge-to-Cloud Workflows 69

6 Efficient Workflow Provenance Capture on the Edge-to-Cloud Continuum 71
6.1 The Need for Provenance Capture of Edge-to-Cloud Workflows . . . . . . . . . . 72
6.2 Limitations of Existing Provenance Systems . . . . . . . . . . . . . . . . . . . . . . 73

6.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2.2 Overhead Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2.3 Design-level Limitations of Existing Systems . . . . . . . . . . . . . . . . . 77

6.3 ProvLight Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3.1 Data Exchange Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4 Provenance Capture of Edge-to-Cloud Workflows . . . . . . . . . . . . . . . . . . 82
6.4.1 Provenance Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.4.2 Provenance Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.5.1 Capture Time Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.5.2 CPU and Memory Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.5.3 Network Usage Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.5.4 Power Consumption Overhead . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.5.5 Performance in Cloud Servers . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.6.1 ProvLight Design Choices Impact on Performance . . . . . . . . . . . . . . 90
6.6.2 Impact of ProvLight on Real-life Use-Cases . . . . . . . . . . . . . . . . . . 91
6.6.3 Integration with Existing Systems . . . . . . . . . . . . . . . . . . . . . . . 92
6.6.4 Reproducibility and Artifact Availability . . . . . . . . . . . . . . . . . . . 92

7 Cost-effective Reproducibility and Replicability of Edge-to-Cloud Experiments 95
7.1 Requirements for Reproducible and Replicable Experiments . . . . . . . . . . . . 96
7.2 Limitations of Existing Collaborative Environments . . . . . . . . . . . . . . . . . 98
7.3 Kheops Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.3.1 Architecture and Implementation . . . . . . . . . . . . . . . . . . . . . . . 101
7.3.2 Experimental Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.4.2 How KheOps Helps Experiment Authors . . . . . . . . . . . . . . . . . . . 106
7.4.3 How KheOps helps readers . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

iii



TABLE OF CONTENTS

7.5.1 Replicability Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.5.2 Usability and Reusability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.5.3 Analyzing other Real-life Applications . . . . . . . . . . . . . . . . . . . . . 112
7.5.4 Integration with other Scientific Testbeds . . . . . . . . . . . . . . . . . . . 113
7.5.5 Reproducibility and Artifact Availability . . . . . . . . . . . . . . . . . . . 113

8 Conclusion and Prospects 115
8.1 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.1.1 Understanding and Optimizing Performance of Edge-to-Cloud Workflows 116
8.1.2 Enabling Provenance Capture of Edge-to-Cloud Workflows . . . . . . . . 117
8.1.3 Facilitating Reproducibility and Replicability of Edge-to-Cloud Workflows 117

8.2 Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.2.1 Prospects Related to the E2Clab (and ProvLight) Approach . . . . . . . . 118
8.2.2 Prospects Related to the KheOps Approach . . . . . . . . . . . . . . . . . . 119

Bibliography 121

iv



LIST OF FIGURES

2.1 Support to the reproducibility of experiments provided by the selected studies. . 16
2.2 Testbed size used in the experimental evaluations: small scale [244, 126, 46, 135,

243, 110, 222, 61, 189, 63, 99, 245, 146, 7, 94, 6, 236, 101, 129, 83, 125, 66, 20, 147],
medium scale [62, 157, 188, 190, 60, 90, 232], and large scale [107, 177, 182] . . . . 16

2.3 The Smart Surveillance System workflow on the Edge-to-Cloud Continuum. . . . 18
2.4 Edge-to-Cloud Continuum optimization problems. . . . . . . . . . . . . . . . . . 19

3.1 Enabling representative 3Rs experiments of real-world use cases on the Comput-
ing Continuum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Our experimental methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Our optimization methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 The E2Clab Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 E2Clab CLI to manage the experiment life cycle. . . . . . . . . . . . . . . . . . . . 47
4.3 Deployment of a COMPSs cluster on Chameleon Cloud and CHI@Edge. . . . . . 49
4.4 E2Clab Network: communication constraints for the COMPSs cluster. . . . . . . . 50

5.1 The Pl@ntNet application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Pl@ntNet Engine: user response time. . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3 (left) Baseline vs. preliminary optimumconfigurations, and (right)User response

time: baseline vs. preliminary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4 Impact of extract thread variability. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.5 Impact of extract thread variability on resource consumption. . . . . . . . . . . . 64
5.6 Impact of similarity search thread variability. . . . . . . . . . . . . . . . . . . . . . 65
5.7 User response time: baseline vs. optimums. . . . . . . . . . . . . . . . . . . . . . . 66

6.1 ProvLight Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2 Extended E2Clab: Provenance Data Manager. . . . . . . . . . . . . . . . . . . . . . 84
6.3 Experimental setup: more details in Section 6.2.1. . . . . . . . . . . . . . . . . . . . 86
6.4 Provenance data capture overheadwith respect to: CPU,memory, network usage,

and power consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

v



LIST OF FIGURES

7.1 Processes for reproducing and replicating experiments regarding the authors and
readers point of view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.2 Support to the reproducibility of Edge-to-Cloud experiments provided by the
selected studies in our survey [175]. . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.3 KheOps architecture and experimental workflow. . . . . . . . . . . . . . . . . . . 102
7.4 Edge-to-Cloud application: monitoring animals migration in the African savanna. 105
7.5 Cloud-centric vs Edge+Cloudprocessing: (a, b) executed by authors onGrid’5000

and FIT IoT LAB testbeds; and (c, d) replicated by readers on Chameleon Cloud
and CHI@Edge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.6 Amount of data sent to the Cloud regarding the Cloud-centric and Edge +Cloud
processing approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.7 Resource consumption on the Edge device: CPU and Memory usage. . . . . . . . 110

vi



LIST OF TABLES

2.1 ACM Digital Library Terminology Version 1.1 [17] . . . . . . . . . . . . . . . . . . 14
2.2 Simulation, Emulation, and Deployment Systems for Experimental Research on

the Edge-to-Cloud Continuum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 E2Clab Configuration Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1 Identification processing steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Thread pool configuration of Pl@ntNet Engine. . . . . . . . . . . . . . . . . . . . . 59
5.3 Comparison of the three Pl@ntNet configurations. . . . . . . . . . . . . . . . . . . 66

6.1 Synthetic workload configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2 Capture overhead of ProvLake and DfAnalyzer. . . . . . . . . . . . . . . . . . . . 76
6.3 ProvLake: impact of bandwidth and grouping strategy on the capture overhead. 76
6.4 Limitations of existing provenance systems. . . . . . . . . . . . . . . . . . . . . . . 77
6.5 The ProvLight provenance data exchange model follows PROV-DM. . . . . . . . 79
6.6 How does ProvLight differ from state-of-the-art systems in terms of data capture? 81
6.7 Capture overhead in IoT/Edge devices. . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.9 ProvLight scalability analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.8 Howdobandwidth variations and the grouping strategy impact the capture over-

head? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.10 Capture overhead in Cloud servers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.1 Limitations of Existing Collaborative Environments. . . . . . . . . . . . . . . . . . 100
7.2 Accuracy of replicated experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . 111

vii





LISTINGS

4.1 Layers and Services configuration file example. . . . . . . . . . . . . . . . . . . . . 48
4.2 COMPSs master service example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 COMPSs worker service example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4 Network configuration file example. . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5 E2Clab Workflow: managing services in the COMPSs cluster. . . . . . . . . . . . . 51
4.6 Example of a user-defined optimization in E2Clab. . . . . . . . . . . . . . . . . . . 53
6.1 ProvLight: user-defined provenance capture. . . . . . . . . . . . . . . . . . . . . . 83
6.2 E2Clab: provenance of Edge-to-Cloud workflows. . . . . . . . . . . . . . . . . . . 85
6.3 E2Clab: Provenance Manager implementation. . . . . . . . . . . . . . . . . . . . . 85
7.1 E2Clab: layers and services configuration. . . . . . . . . . . . . . . . . . . . . . . . 103
7.2 E2Clab: user-defined service for the Cloud server. . . . . . . . . . . . . . . . . . . 103
7.3 E2Clab: network configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.4 E2Clab: workflow configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

ix





Chapter 1

INTRODUCTION

Contents
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.2 Contribution to Existing Software . . . . . . . . . . . . . . . . . . . . . . 7

1.4.3 Reproducibility-oriented Tools and Artifacts . . . . . . . . . . . . . . . . 8

1.5 Organization of the Manuscript . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1 Context

The current digital revolution is impacting human beings in the way they live, work, learn,
and communicate. This has resulted in impressive progress in many areas, such as Cloud Com-
puting, High-Performance Computing (HPC), Artificial Intelligence (AI), Big Data Analytics,
and the Internet of Things (IoT). Furthermore, new challenging application scenarios are emerg-
ing from various domains such as autonomous vehicles, real-time manufacturing, precision
agriculture, and smart cities, to cite just a few [223, 142].

The explosion of data generated by many applications in the aforementioned areas and the
need for real-time analytics and fast decision-making has resulted in a shift of the data process-
ing paradigms, as well as of Machine Learning (ML) paradigms, from centralized approaches
towards decentralized and multi-tier computing infrastructures and services [137].

Data processing and AI workflows can no longer rely on traditional approaches [175] that
send all data to centralized and distant Cloud datacenters for processing or AI model training
and inference. Instead, they need to leverage the numerous resources close to the data gener-
ation sites (i.e., in the Edge or Fog) to promptly extract insights [18] and satisfy the ultra-low
latency requirements of applications. This is made more challenging by maintaining reason-
able resource usage and preserving privacy constraints. In practice, to balance contradictory

1



Partie , Chapter 1 – Introduction

requirements, in many situations, it makes sense to weigh the respective benefits of centraliza-
tion and decentralization and make appropriate trade-offs to use the advantages of each type
of infrastructure smartly.

This flexible approach contributes to the emergence of what is called the Computing Contin-
uum [81] (or the Digital Continuum or the Transcontinuum). It seamlessly combines resources
and services at the center of the network (e.g., in Cloud datacenters), at its Edge, and in-transit,
along the data path. Typically, data is first generated and preprocessed (e.g., filtering, basic in-
ference) on IoT/Edge devices, while Fog nodes further process partially aggregated data. Then,
if required, data is transferred to HPC-enabled Clouds for Big Data analytics, Artificial Intelli-
gence model training, and global simulations. For instance, Digital Twins collect data from the
edge, store it in the cloud, where they run data analytics and model training, and eventually
run simulations based on those models in HPC clusters.

Due to the complexity incurred by application deployments on such highly distributed and
heterogeneous Edge-to-Cloud infrastructures, the Computing Continuum vision remains to be
realized in practice. Deploying, analyzing and reproducing performance trade-offs, and opti-
mizing large-scale, real-life applications on such infrastructures is challenging [175]. It requires
configuring amyriad of system-specific parameters (e.g., fromAI andBigData systems, applica-
tions, and ingestion systems, among others) and reconciling many requirements or constraints
in terms of energy consumption, interoperability, mobility, communication latency, network ef-
ficiency, data privacy, and hardware resource usage (e.g., GPU memory, CPU power, storage
size, and others) [231].

In this thesis, we make a first step towards enabling the Computing Continuum vision by
proposing methodologies that guide researchers to systematically deploy, understand and op-
timize performance and reproduce complex Edge-to-Cloud workflows on large-scale and het-
erogeneous infrastructures.

1.2 Contributions

The main contributions of this thesis can be summarized as follows:

AMethodology for Designing Reproducible Experiments on the Computing Continuum

In this complex continuum, understanding end-to-end performance is challenging. This
breaks down to reconciling many, typically contradicting application requirements and con-
straints with low-level infrastructure design choices. One crucial challenge is to accurately re-
produce relevant behaviors of a given application workflow and representative settings of the
physical infrastructure underlying this complex continuum. That is, finding a rigorous approach

2



1.2. Contributions

to answering questions likeHow to identify infrastructure bottlenecks? Which system parameters and
infrastructure configurations impact performance and how?

We introduce a rigorous methodology for such a process and validate it through E2Clab. It
is the first platform to support the complete analysis cycle of an application on the Computing
Continuum: (i) the configuration of the experimental environment, libraries, and frameworks;
(ii) the mapping between the application parts and machines on the Edge, Fog and Cloud; (iii)
the deployment of the application on the infrastructure; (iv) the automated execution; and (v)
the gathering of experiment metrics. We illustrate its usage with a real-life application deployed
on the Grid’5000 testbed, showing that our framework allows one to understand and improve
performance by correlating it to the parameter settings, the resource usage, and the specifics of
the underlying infrastructure.

This work is a collaborationwith Pedro Silva fromHasso-Plattner-Institut (HPI), University
of Potsdam, Germany; and Matthieu Simonin at Inria, France. The reference E2Clab paper was
published at the IEEECluster 2020 conference, CORERankA (please see [176]). E2Clab is open
source, documented, and has been used and cited by the research community (please see [174]).

AMethodology for Optimizing the Performance of Edge-to-Cloud Applications

The automated nature of the E2Clab based deployments makes it seamless/natural to ex-
plore the performance optimizations of Edge-to-Cloud workflows. Such workflows are subject
to complex constraints and requirements regarding performance, resource usage, energy con-
sumption, and financial costs. This makes it challenging to answer questions like How to config-
ure the hardware and system components to minimize energy consumption? Where should the workflow
parts be executed across the Edge-to-Cloud Continuum to minimize communication costs and end-to-end
latency?

In this work, we propose amethodology to support the optimization of real-life applications
on the Edge-to-Cloud Continuum. We implement it atop E2Clab framework. Our approach re-
lies on a rigorous analysis of possible configurations in a controlled testbed environment to
understand their behavior and related performance trade-offs. We illustrate our methodology
by optimizing Pl@ntNet, a worldwide plant identification application. Large-scale experimental
validation on the Grid’5000 testbed shows that our methodology has proved helpful for under-
standing and improving the performance of Pl@ntNet.

This work is a collaboration with Alexis Joly from the Pl@ntNet team at the University of
Montpellier - France in the context of the HPC-BigData Inria Project Lab and discussions with
Orcun Yildiz and Romain Egele at the Argonne National Laboratory - USA in the context of the
Joint Laboratory for Extreme Scale Computing (JLESC). This contribution led to a publication
at the IEEE Cluster 2021 conference, CORE Rank A (please see [181]) and a poster at IPDPS
2021, CORE Rank A (please see [178]).

3



Partie , Chapter 1 – Introduction

Enabling the Efficient Workflow Provenance Capture on the Edge-to-Cloud Continuum

Capturing the provenance of key performance indicators, with their related data and pro-
cesses, may assist in understanding and optimizing workflow executions. For instance, it may
help answer questions like After multiple workflow evaluations, can we compare their provenance and
see how it has changed? or What workflow parameters produced these results? However, the prove-
nance capture overhead can be prohibitive, particularly in resource-constrained devices, such
as the ones on the IoT/Edge.

Based on a performance analysis of the existing systems, we propose ProvLight, a tool to
enable efficient provenance capture on the IoT/Edge. We leverage simplified data models, data
compression and grouping, and lightweight transmission protocols to reduce overheads. We
further integrate ProvLight into the E2Clab framework to enable workflow provenance capture
across the Edge-to-Cloud Continuum. This integration makes E2Clab a promising platform for
the performance optimization of applications through reproducible experiments. We validate
ProvLight with synthetic workloads on real-life IoT/Edge devices in the large-scale Grid’5000
and FIT IoT LAB testbeds. Evaluations show that ProvLight outperforms state-of-the-art prove-
nance systems like ProvLake andDfAnalyzer in resource-constrained devices. ProvLight is 26—
37x faster in capturing and transmitting provenance data, uses 5—7x less CPU, 2x less memory,
transmits 2x less data, and consumes 2—2.5x less energy.

This work is a collaboration with Marta Mattoso from the Federal University of Rio de
Janeiro and the HPDeSc associate team with Brazil; and Renan Souza from the Oak Ridge Na-
tional Laboratory - USA. It is published at IEEE Cluster 2023 conference, CORE Rank A (please
see [180]).

Cost-effectiveRepeatability, Reproducibility, andReplicability of Edge-to-CloudExperiments

Understanding the performance trade-offs of large-scale workflows deployed on the Edge-
to-Cloud Continuum is challenging. To achieve this, one needs to systematically perform exper-
iments to enable their reproducibility and allow other researchers to replicate the study and the
obtained conclusions on different infrastructures. This breaks down to the tedious process of
reconciling the numerous experimental requirements and constraints with low-level infrastruc-
ture design choices. This contribution explores: How to allow researchers to reproduce and replicate
complex Edge-to-Cloud experiments cost-effectively? Cost-effective means to allow researchers to
easily find and share experiment artifacts and easily understand, reconfigure, and perform the
experiments.

To address the limitations of the main state-of-the-art approaches for distributed, collabo-
rative experimentation, such as Google Colab, Kaggle, and Code Ocean, we propose KheOps,
a collaborative environment specifically designed to enable cost-effective reproducibility and

4



1.3. Publications

replicability of Edge-to-Cloud experiments. KheOps is composed of three core elements: (1)
an experiment repository; (2) a notebook environment; and (3) a multi-platform experiment
methodology. We illustrate KheOps with a real-life Edge-to-Cloud application. The evaluations
explore the point of view of the authors of an experiment described in an article (who aim to
make their experiments reproducible) and the perspective of their readers (who aim to repli-
cate the experiment). The results show how KheOps helps authors to systematically perform
repeatable and reproducible experiments on theGrid5000+ FIT IoT LAB testbeds. Furthermore,
KheOps helps readers to cost-effectively replicate authors experiments in different infrastruc-
tures such as Chameleon Cloud + CHI@Edge testbeds, and obtain the same conclusions with
high accuracies (>88% for all performance metrics).

This work is a collaborationwith Kate Keahey from theArgonneNational Laboratory - USA
in the context of the Joint Laboratory for Extreme Scale Computing (JLESC). This contribution
led to a publication at ACM-REP’23 conference (please see [179]).

1.3 Publications

Journal Articles

— Daniel Rosendo, Alexandru Costan, Patrick Valduriez, Gabriel Antoniu. Distributed in-
telligence on the Edge-to-CloudContinuum:A systematic literature review. JPDC - Journal
of Parallel and Distributed Computing, Elsevier, 2022, 166, pp.71-94. CORE Rank A.

International Conferences

— Daniel Rosendo, Kate Keahey, Alexandru Costan, Matthieu Simonin, Patrick Valduriez,
Gabriel Antoniu. KheOps: Cost-effective Repeatability, Reproducibility, and Replicability
of Edge-to-Cloud Experiments. ACM REP 2023 - ACM Conference on Reproducibility and
Replicability, Jun 2023, Santa Cruz California, United States.

— Daniel Rosendo, Marta Mattoso, Alexandru Costan, Renan Souza, Debora Pina, Patrick
Valduriez, Gabriel Antoniu. ProvLight: Efficient Workflow Provenance Capture on the
Edge-to-Cloud Continuum. Cluster 2023 - IEEE International Conference on Cluster Com-
puting, October 2023, Santa Fe, New Mexico, United States. CORE Rank A (acceptance
rate 25%).

— DanielRosendo, AlexandruCostan,GabrielAntoniu,Matthieu Simonin, Jean-Christophe
Lombardo,Alexis Joly, PatrickValduriez. Reproducible PerformanceOptimization ofCom-
plexApplications on the Edge-to-CloudContinuum.Cluster 2021 - IEEE International Con-
ference on Cluster Computing, Sep 2021, Portland, OR, United States. pp.23-34. CORE Rank
A (acceptance rate 29%).

5



Partie , Chapter 1 – Introduction

— Daniel Rosendo, Pedro Silva, Matthieu Simonin, Alexandru Costan, Gabriel Antoniu.
E2Clab: Exploring the Computing Continuum through Repeatable, Replicable and Repro-
ducible Edge-to-Cloud Experiments.Cluster 2020 - IEEE International Conference on Cluster
Computing, Sep 2020, Kobe, Japan. pp.1-11. CORE Rank A (acceptance rate 31%).

Posters at International Conferences

— Daniel Rosendo, Alexandru Costan, Gabriel Antoniu, Patrick Valduriez. E2Clab: Repro-
ducible Analysis of Complex Workflows on the Edge-to-Cloud Continuum. IPDPS 2021
- 35th IEEE International Parallel and Distributed Processing Symposium, May 2021, Virtual,
France. CORE Rank A.

National Conferences

— DanielRosendo, AlexandruCostan,GabrielAntoniu,Matthieu Simonin, Jean-Christophe
Lombardo,Alexis Joly, PatrickValduriez. Reproducible PerformanceOptimization ofCom-
plex Applications on the Edge-to-Cloud Continuum. BDA 2022 - 38ème Conférence sur
la Gestion de Données - Principes, Technologies et Applications, Oct 2022, Clermont-Ferrand,
France.

Posters at National Conferences

— Daniel Rosendo, Alexandru Costan, Gabriel Antoniu, Patrick Valduriez. Enabling Repro-
ducible Analysis of Complex Workflows on the Edge-to-Cloud Continuum. BDA 2021 -
37ème Conférence sur la Gestion de Données - Principes, Technologies et Applications, Oct 2021,
Paris, France.

1.4 Software

1.4.1 Main Contributions

E2Clab

Scientific Description: E2Clab is a framework that allows researchers to reproduce in a rep-
resentative way the application behavior in a controlled environment for extensive experiments
and, therefore, to understand the end-to-end performance of applications by correlating results
to the parameter settings. E2Clab provides a rigorous approach to answering questions like:
How to identify infrastructure bottlenecks? Which system parameters and infrastructure configurations
impact performance and how?

6



1.4. Software

Functional Description: High-level features provided by E2Clab: (i) Reproducible Experi-
ments: Supports repeatability, replicability and reproducibility. (ii)Mapping: Application parts
(Edge, Fog, and Cloud/HPC) and physical testbed. (iii) Variation & Scaling: Experiment varia-
tion and transparent scaling of scenarios. (iv)Network Emulation: Edge-to-Cloud communica-
tion constraints. (v) Experiment Management: Deployment, execution and monitoring (e.g., on
Grid’5000, Chameleon, and FIT IoT LAB). (vi)Optimization: configuration search of application
workflows. (vii) Provenance: data capture of Edge-to-Cloud workflows.

— Link: https://gitlab.inria.fr/E2Clab/e2clab

— Size and language(s): ∼3K lines, Python.

— License: GNU General Public License v3.0

ProvLight

Scientific Description: ProvLight is a framework that allows researchers to efficiently cap-
ture provenance data of workflows running on IoT/Edge infrastructures. ProvLight presents
low capture overhead regarding capture time, CPU and memory usage, network usage, and
power consumption.

Functional Description: ProvLight follows a master/worker architecture where the master
receives the captured data from workers and then translates and sends to provenance systems.
ProvLight also provides a Python library (which follows theW3C PROV-DM recommendation)
that allows users to capture data from their workflows (through application code instrumenta-
tion).

— Link: https://gitlab.inria.fr/provlight/provlight

— Size and language(s): ∼700 lines, Python.

— License: GNU General Public License v3.0

1.4.2 Contribution to Existing Software

EnOSlib

Scientific Description: EnOSlib is a Python library focusing on reproducible-driven exper-
imental research in distributed computing. It aims at helping researchers in the process of de-
veloping their experimental artifacts and running and reproducing them over different infras-
tructures.

Functional Description: EnOSlib brings reusable building blocks for configuring the in-
frastructure, provisioning software on remote hosts, and organizing the experimental work-
flow. Interaction with the testbeds (e.g., Grid’5000, FIT IoT LAB, and Chameleon) is deferred to

7



Partie , Chapter 1 – Introduction

EnOSlib’s provider, and various actions on remote hosts also rely onmechanisms offered by the
library.

Our Contribution: We enable EnOSlib to support the management of complex Edge-to-
Cloud workflows on the Chameleon Cloud and CHI@Edge testbeds. We extended EnOSlib’s
Providers abstraction to enable researchers to lease resources (e.g., compute, storage, and net-
working) from the Chameleon testbeds, as well as deploy and execute their workflows.

— Link: https://gitlab.inria.fr/discovery/enoslib

— Size and language(s): ∼1K lines, Python.

— License: GNU General Public License v3.0

1.4.3 Reproducibility-oriented Tools and Artifacts

KheOps

ScientificDescription:KheOps is a collaborative environment designed to enable cost-effective
reproducibility and replicability of Edge-to-Cloud experiments in large-scale scientific testbeds.
It allows researchers to easily find and share experiment artifacts and easily understand, recon-
figure, and perform experiments.

Functional Description: KheOps is composed of three core elements: (i) Trovi sharing por-
tal for packaging and sharing artifacts; (ii) Jupyter notebooks for combining experiment pro-
cesseswith executable code; and (iii)E2Clabmethodology for performing experiments in testbeds
such as ChameleonCloud, CHI@Edge, Grid’5000, and FIT IoT LAB testbeds. The goal is to lower
the barrier to reproducing research by combining the artifacts and the experimental environ-
ment and providing an open-access repository of research artifacts that are visible and repro-
ducible across testbeds.

— Link: https://gitlab.inria.fr/KheOps/kheops

— Size and language(s): ∼800 lines, Python

— License: GNU General Public License v3.0

1.5 Organization of the Manuscript

This manuscript is organized into three main parts and eight chapters.
The first part: Chapter 2 presents the context of our research. It introduces the relevance of

Reproducibility in the Computer Science community and the existing systems and large-scale
scientific testbeds for experimental research on the Edge-to-Cloud Continuum. Then, it dis-
cusses the open challenges regarding reproducible performance optimization of Edge-to-Cloud

8



1.5. Organization of the Manuscript

workflows on highly heterogeneous infrastructures. Finally, it highlights the opportunities that
drove our contributions.

The second part: Chapters 3 to 5 focus on contributions related to the E2Clab approach.
Three major objectives are being tackled: (i) reproducible experiments on the Computing Con-
tinuum; (ii) understanding performance of workflows on heterogeneous infrastructures; and
(iii) performance optimization of Edge-to-Cloud workflows.

Chapter 3 introduces ourmethodologies for understanding and optimizing the performance
of Edge-to-Cloudworkflows through reproducible experiments. Implementation of thesemethod-
ologies in the E2Clab framework is presented in Chapter 4. Large-scale experimental validations
of our methodologies with real-world applications (e.g., Pl@ntNet botanical application) are
presented in Chapter 5.

The third part: As understanding, optimizing, and reproducing complex Edge-to-Cloud
workflows may be assisted by provenance data capture, Chapter 6 explores the efficient data
capture of workflows running on resource-constrained IoT/Edge infrastructures. It proposes
ProvLigh, an approach that aims to capture provenance with low overhead. E2Clab is extended
to enable runtime provenance data capture of Edge-to-Cloud workflows.

Chapter 7 proposes KheOps, a collaborative environment designed to enable cost-effective
reproducibility and replicability of Edge-to-Cloud experiments. KheOps comprises an exper-
iment repository, a notebook environment, and a multi-platform experiment methodology. It
illustrates KheOps with a real-life Edge-to-Cloud application.

Chapter 8 concludes this thesis and presents the prospects brought by our solutions.

9





Part I

Context: Reproducibility and
Experimental Research on the
Edge-to-Cloud Continuum

11





Chapter 2

BACKGROUND

Contents
2.1 Reproducibility in Computing Continuum Research . . . . . . . . . . . . . . . 14

2.1.1 Definitions and Landscape . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Edge-to-Cloud Computing Continuum . . . . . . . . . . . . . . . . . . . 17

2.1.3 Meaningful Experiments on the Computing Continuum . . . . . . . . . 17

2.2 Existing Systems for Analyzing Edge-to-Cloud Workflows . . . . . . . . . . . 20

2.2.1 Simulation, Emulation and Deployment Systems . . . . . . . . . . . . . . 20

2.2.2 Workflow Management Systems . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Large-scale testbeds for Edge-to-Cloud Experiments . . . . . . . . . . . . . . . 24

2.3.1 Testbeds Explored in this Work . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 Other Relevant Testbeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Open Challenges Explored in this Work . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Understanding Performance of Edge-to-Cloud Workflows . . . . . . . . 25

2.4.2 Optimizing Performance of Edge-to-Cloud Workflows . . . . . . . . . . 26

2.4.3 Enabling Reproducible Analysis of Edge-to-Cloud Workflows . . . . . . 27

This thesis focuses on reproducibility and experimental research on the Edge-to-CloudCon-
tinuum. As introduced earlier, the Computing Continuum is a new computing paradigm that
brings new research challenges and opportunities in many domains of interest. Therefore, we
start by analyzing the state-of-the-art in these domains.

This chapter provides an overviewof the significant findings of our systematic study [175] of
state-of-the-art systems and open scientific testbeds for reproducible experimental research on
the Computing Continuum. First, it defines the main terms used in this work and then presents
how the selected articles in this review support the reproducibility of the experiments. In addi-
tion, it discusses the relevant performancemetrics typically considered in Edge-to-Cloud exper-
iments and introduces the definition of optimization problems. Next, it summarizes the main
systems and large-scale scientific testbeds for Edge-to-Cloud experimental research. Finally, it
discusses relevant open research challenges explored in this thesis.

13



Partie I, Chapter 2 – Background

Table 2.1 – ACM Digital Library Terminology Version 1.1 [17]

R
ep

ea
ta
bi
lit
y

Same team, same experimental setup: the measurement can be obtained with stated precision by
the same team using the same measurement procedure, the same measuring system, under the
same operating conditions, in the same location on multiple trials. For computational experi-
ments, this means that a researcher can reliably repeat their own computation.

R
ep

ro
du

ci
bi
lit
y

Different team, same experimental setup: the measurement can be obtained with stated
precision by a different team using the same measurement procedure, the same measuring
system, under the same operating conditions, in the same or a different location on multiple
trials. For computational experiments, this means that an independent group can obtain
the same result using the author’s own artifacts.

R
ep

lic
ab

ili
ty Different team, different experimental setup: the measurement can be obtained with stated

precision by a different team, a different measuring system, in a different location on multiple
trials. For computational experiments, this means that an independent group can obtain the
same result using artifacts which they develop completely independently.

2.1 Reproducibility in Computing Continuum Research

2.1.1 Definitions and Landscape

As communities from an increasing number of scientific domains are leveraging the Com-
puting Continuum, a desired feature of any experimental research is that its scientific claims
are verifiable by others to build upon them. This can be achieved through repeatability, repro-
ducibility, and replicability (3R’s) [27, 212]. There are many non-uniform definitions of the 3Rs
in literature. In this work, we follow the terminology proposed by the ACMDigital Library [17]
(Artifact Review and Badging), as presented in Table 2.1.

Achieving repeatabilitymeans that one can reliably repeat the experiments and obtain pre-
cise measurements (e.g., Edge to Cloud processing latency, memory consumption, among oth-
ers) by using the same methodology and artifacts (i.e., same testbed, same physical machines,
same libraries/framework, same network configuration). Executing multiple experiments al-
lows us to explore different scenario settings (e.g., varying the number of Edge devices) and
explore the impact of various parameters (e.g., the network configuration between Edge devices
and the Cloud server) on the performance metrics.

Reproducibilitymeans that external researchers having access to the original methodology

14



2.1. Reproducibility in Computing Continuum Research

(e.g., configuration of physical machines, network, and systems, scenario descriptions) and us-
ing their artifacts (i.e., data sets, scripts, AI frameworks, etc.) can obtain precise measurements
of the application processing latency and throughput, for instance.

Replicability refers to independent researchers (i.e., the readers of an article that was pub-
lished by a different team) having access to the original methodology and artifacts (e.g., config-
uration of physical machines, processing steps, network setup, etc.) and performing the exper-
iments in different testbeds. The goal is that independent researchers can obtain precise results
and conclusions consistent with the original study.

The selected studies. This systematic study follows a review methodology based on [122,
80]. First, we define the research questions focusing on the Edge-to-Cloud Continuum. Next,
we define the search string to find articles on scientific databases such as ACM, IEEE Xplore,
Springer, among others. Then, we define the inclusion/exclusion criteria and start the screening
process, which consists in reading the abstract and conclusions for each article. Finally,we select
a total of 69 studies.

Most of the challenges of achieving research 3Rs may be divided into three main categories:
the need for a well-defined experimentation methodology, access to experiment artifacts, and
access to experiment results.

How do the selected studies support the reproducibility of the experiments? We evaluate the
support for the reproducibility of experiments for each selected article. This evaluation is based
on the following three main relevant aspects:

— Access to artifacs: if authors provide access to a public repository with the artifacts used
to run the experiments, such as datasets, codes, applications, systems, configuration files,
among others.

— Experimental setup: if authors provide a description of the experimental setup, such as
hardware configuration of physical machines, software or systems used, network config-
urations, among others.

— Access to results: if the computed experimental results are available in a public reposi-
tory, such as: log files, files metric collected during runtime, monitoring data, code to plot
charts, among others.

Figure 2.1 summarizes the support for the reproducibility of experiments provided by the
selected studies. Regarding the access to artifacs, 68% of papers do not provide access to them,
and just 24% partially provide (a few artifacts, but not all). Analyzing the description of the
experimental setup, 76% of papers describe it in detail in a dedicated section of the paper,
while 21% only partially describe it, and just 3% do not provide enough information. Lastly,

15



Partie I, Chapter 2 – Background

Figure 2.1 – Support to the reproducibility of experiments provided by the selected studies.

Figure 2.2 – Testbed size used in the experimental evaluations: small scale [244, 126, 46, 135, 243,
110, 222, 61, 189, 63, 99, 245, 146, 7, 94, 6, 236, 101, 129, 83, 125, 66, 20, 147], medium scale [62,
157, 188, 190, 60, 90, 232], and large scale [107, 177, 182]

regarding the access to results, 95% of the articles do not provide access, and just 5% provide
a public repository with the results. In general, we notice a lack of support for experimental
reproducibility in the domain of Edge-to-Cloud experimental research.

Lastly, Figure 2.2 presents the size of the testbeds used in the experimental evaluations. As
one may note, 70% of papers use small-scale setups composed of at most five machines or de-
vices, while 20% of them use testbed setups composed of 6 to 19 nodes, and just 10% experiment
in large-scale setups with 20 nodes or more.

In conclusion, the results presented in Figure 2.1 reinforce the need for rigorous experimen-
tal methodologies that provide guidelines for the reproducibility of experiments in the Edge-to-
Cloud research domain. At the same time, Figure 2.2 highlights the need for methodologies and
deployment systems guiding researchers to evaluate and validate their proposed approaches
in large-scale environments.

16



2.1. Reproducibility in Computing Continuum Research

2.1.2 Edge-to-Cloud Computing Continuum

The Computing Continuum is a digital infrastructure jointly used by complex application
workflows typically combining real-time data generation, processing, and computation. It may
include computing resources at central locations such as Cloud datacenters or supercomputers,
devices at the Edge, and intermediate infrastructure such as Fog systems.

Edge infrastructures. Refers to computing and storage resources located where the data orig-
inated. They consist of potentially many (e.g.,millions of) smart devices sensing "What" is hap-
pening in the environment and generating potentially massive data streams at potentially high
rates [87]. Dedicated systems like Apache Nifi [12] push intelligence from the Cloud to those
devices and extract value from data in real-time (e.g., improving response times from seconds
to milliseconds [100] compared to Cloud-based approaches), while preserving privacy and se-
curity (critical data is analyzed locally and not sent remotely).

Fog infrastructures. Refers to a potentially large number of geographically-distributed re-
sources located on the data path between the Edge and the Cloud. Examples include thou-
sands of nodes such as gateways, antennas, routers, and servers [111]. They can be used for
in-transit processing on data aggregated from multiple neighboring Edge devices as a way to
reduce further data volumes that need to be transferred and processed on Clouds. Lightweight
frameworks typically based on message brokers (like Eclipse Mosquitto [77]) that implement
the MQTT protocol [145] enable hierarchical processing and intelligent aggregation, minimiz-
ing latency and bandwidth usage.

Cloud infrastructures. Provides virtually "unlimited" computing and storage resources used
essentially for backup and data analytics for global insight extraction in a centralized way (in its
datacenters). Data is first ingested at high rates through dedicated systems (such as Kafka [11],
Pulsar [13], ZeroMQ [241], etc.) and then analyzed by Big Data processing frameworks (such
as Flink [44], Spark [239], Storm [14], among others). They perform stream and batch ana-
lytics on vast historical data (in the order of Petabytes), AI model training, and complex sim-
ulations [137]. The goal is to help understand "Why" the phenomena sensed at the Edge are
happening.

2.1.3 Meaningful Experiments on the Computing Continuum

Let us illustrate with a real-life use-case the settings, parameters, andmetrics that need to be
considered when setting up an experimental Computing Continuum testbed. The application
is a Smart Surveillance System [199] which relies on resources from the Edge-to-Cloud Con-
tinuum to periodically identify the most crowded areas in a public space, as depicted in Figure

17



Partie I, Chapter 2 – Background

Figure 2.3 – The Smart Surveillance System workflow on the Edge-to-Cloud Continuum.

2.3. The video data processing consists of two phases: 1) detecting and counting, for each frame
of a camera, the maximum number of persons; then 2) aggregating the maximum number of
persons from all geographically distributed cameras to identify the most crowded area.

The question to answer is: where on this continuum should the video processing take place? The
choices are between a Cloud-centric approach where both phases are executed on the Cloud
(bottom of Figure 2.3) and a hybrid approach where processing is split between the Fog and
the Cloud (top of Figure 2.3). To address this question, one must explore a solution space in
several dimensions: environment settings, configuration parameters, and performance metrics.

The Surveillance System consists of data producers such as cameras placed on the Edge; gate-
ways in the Fog that receive per area video recordings from Edge devices, provide services like
basic data processing and analytics, and forward the data to the Cloud; lastly, ingestion systems in
the Cloud collect the video streams from all producers and push them to processing frameworks.
These interconnected components define the experimental environment and workflow.

These components consist of various hardware and software with different constraints and
configuration parameters that determine their actuation and scenario behavior. For instance,
the frequency of video frames on the producers, the streaming window on gateways, or the
reserved memory on processing frameworks impacts the workload and the end-to-end perfor-
mance. Furthermore, the interconnection capabilities vary between the Edge, Fog, and Cloud
due to the characteristics of those networks.

Performance metrics of interest in this context are Fog to Cloud latency: the time required to
send the data from gateways to ingestion systems; Fog to Cloud throughput: the amount of data
per second that arrives in the ingestion systems; and end-to-end throughput: the rate of processed
data sent by the processing framework. Besides, bandwidth, energy, CPU and memory usage help

18



2.1. Reproducibility in Computing Continuum Research

Figure 2.4 – Edge-to-Cloud Continuum optimization problems.

assess the footprint of different design choices.

Formalizing deployment optimization on the Edge-to-Cloud Continuum. Typically, Edge-
to-Cloud workflow optimization problems aim at optimizing metrics [29, 19] related to perfor-
mance (e.g., execution time, latency, and throughput), resource usage (e.g.,GPU, CPU,memory,
storage, and network), energy consumption, financial costs, and quality attributes (e.g., reliabil-
ity, security, and privacy). Equation 2.1 describes the formulation of an optimization problem
and its mathematical representation: the optimization variables, the objective function, and
the constraints.

min/max
x

fm(x), m = 1, 2, . . . , M

subject to gj(x) ≤ 0, j = 1, 2, . . . , J Inequality constraints.

hk(x) = 0, k = 1, 2, . . . , K Equality constraints.

xL
i ≤ xi ≤ xU

i , i = 1, 2, . . . , I Bounds on variables.

(2.1)

The optimization variablesx refer to the variables associatedwith the optimization problem
(e.g., storage capacity of Edge devices, or number of cores on Fog nodes).

The objective function refers to the optimization objective, such as minimizing or maxi-
mizing a given metric or set of metrics (e.g., performance, energy consumption). The objective
function maps the values of the optimization variables onto real numbers and may be classified
as single-objective (such as minimizing Edge-to-Cloud processing latency) or multi-objective

19



Partie I, Chapter 2 – Background

(e.g., minimizing energy consumption of Fog nodes and maximizing throughput).
Finally, the constraints refer to requirements that a given solution must satisfy. Constraints

may refer to a specific optimization variable (e.g., number of cores on Fog nodes between 10 and
20) and the metrics to be optimized by the objective function (e.g., the maximum response time
must be less than 3 seconds).

Figure 2.4 depicts some examples of optimization problems. Left, one would like to answer
the question: how to configure the system components to minimize processing latency? To reduce com-
plexity, the optimization problem is divided into three sub-problems, each with the objective of
minimizing the task processing time on the Edge, Fog, andCloud infrastructures, under specific
constraints. The right-hand example aims at answering the question: where should the workflow
components be executed tominimize communication costs and end-to-end latency?This translates into a
single multi-objective optimization problem (minimizing communication costs and end-to-end
latency), as opposed to the previous example (several single-objective optimization problems).

In order to model and solve such optimization problems, one may find multiple meth-
ods in the literature. For instance, packages and libraries such as Scikit-Optimize [194], Scikit-
Learn [156], Surrogate Modeling Toolbox (SMT) [36], DeepHyper [24], etc., may be used to build
surrogate models and then use those model to explore the search space of the optimization
problem.

2.2 Existing Systems for Analyzing Edge-to-Cloud Workflows

Table 2.2 summarizes the main open-source state-of-the-art simulation, emulation, and de-
ployment systems for experimental research on the Edge-to-Cloud Continuum. Furthermore,
it presents workflow management systems supporting Edge-to-Cloud applications.

2.2.1 Simulation, Emulation and Deployment Systems

Building experimental testbed environments is expensive and brings challenges to conduct-
ing reproducible experiments. In this sense, simulation systems play an important role as they
allow to analyze systems behavior at a very large scale while easily tuning a myriad of config-
uration parameters. Next, we present simulation systems used in the modeling of Cloud, Fog,
and Edge computing environments.

Simulation Systems

Cloud-based simulation systems. CloudSim [43] framework allows modeling and simula-
tion of Cloud computing infrastructures and services in a repeatable manner. CloudSim allows
users to model the behavior of data centers, Virtual Machines, and resource provisioning poli-

20



2.2. Existing Systems for Analyzing Edge-to-Cloud Workflows

cies. ElasticSim [41] is a workflow simulator that extends CloudSim. It focuses on support-
ing resource runtime auto-scaling and stochastic task execution time modeling. SCORE [85] al-
lows the execution of heterogeneous workloads for simulating energy-efficient monolithic and
parallel-scheduling models.

Fog-based simulation systems. FogExplorer [106] provides modeling and simulation to esti-
mate QoS and cost evaluation of Fog-based IoT applications. FogExplorer allows users to choose
good application designs during its design phase. FogTorch [40] aims to support the deploy-
ment of IoT applications in Fog infrastructures considering software, hardware, and QoS re-
quirements. FogNetSim++ [165] focuses on simulating large Fog networks and differs from
others mainly by providing features that allow users to incorporate customized mobility mod-
els, scheduling algorithms, andmanage handovermechanisms. XFogSim [138] extends FogNet-
Sim++ to simulate federated Fog computing environments. xFogSim is lightweight, config-
urable, and scalable, and introduces the concept of Fog federation for resource sharing among
Fog locations. Furthermore, it allows users to evaluate applications in terms of energy consump-
tion, processing latency, scalability, and resource usage. YAFS [128] aims to allow users to an-
alyze application designs and incorporate strategies for placement, scheduling, and routing.
YAFS also supports the dynamic allocation of new application modules, dynamic failures of
network nodes, and user mobility. Furthermore, it facilitates the shareability of experiment re-
sults by generating logs ofworkload generation and computation, and link transmissions. Lastly,
iFogSim [102] focuses on resourcemanagement techniques in IoT, Edge, and Fog computing en-
vironments. iFogSim allows users to measure, in a repeatable manner, the impact of resource
management techniques in terms of latency, network congestion, energy consumption, and cost.

Edge-based simulation systems. EdgeCloudSim [205] focuses on Edge Computing scenarios
and allows one to conduct experiments considering computational and networking resources.
IoTSim-Edge [148] allows users to easily configure their Edge infrastructures and to capture the
behavior of heterogeneous IoT and Edge devices in terms of sensing, processing, mobility, and
data rate. Both Edge systems extend CloudSim.

Emulation Systems

Compared to simulation, the emulation approach providesmore realistic results.While sim-
ulators mimic the behavior and configurations of a real device, emulation systems duplicate the
hardware and software features of a real device [209]. Emulation systems are also a less expen-
sive solution when compared to real deployments.

Fogbed [55] allows resource provisioning emulation in Fog environments. It combines Con-
tainernet [158] andMaxinet [226] (both are extensions of the Mininet [117] network emulator)

21



Partie I, Chapter 2 – Background

to allow the use of virtual instances for resource provisioning emulation.
EmuFog [139] focuses on the design of Fog Computing infrastructures and the emulation

of real applications and workloads. In EmuFog, users can: design the network topology; embed
Fog nodes in the topology; and run Docker-based applications on those nodes connected by an
emulated network.

RADICAL-DREAMER [166] provides the concepts of Task andWorkload to model the char-
acteristics of an application according to heterogeneous tasks. Besides, it provides the concept
of Resource to model distributed infrastructures. RADICAL-DREAMER allows users to evalu-
ate deployment configurations, performance trade-offs, and workload placement strategies for
Edge-to-Cloud applications [136].

Deployment Systems

Deploying real-life applications on large-scale testbeds provides the most realistic results
compared to simulation or emulation approaches. In this direction, a few systems have been
proposed in the past few years.

Kubernetes [38] aims to simplify the deployment andmanagement of services that compose
an application by providing mechanisms for deployment, maintenance, and scaling. Using Ku-
bernetes, users can manage containerized applications across multiple hosts.

KubeEdge [233] builds on top of Kubernetes to extend Cloud capabilities to the Edge and
allows containerized application orchestration and device management to hosts at the Edge.
KubeEdge key features are core infrastructure support for networking, application deployment,
and metadata synchronization between Cloud and Edge.

2.2.2 WorkflowManagement Systems

Scientific workflows allow users to execute computational tasks typically composed of mul-
tiple steps. Recently, such workflows have started to be deployed on distributed and heteroge-
neous Edge-to-Cloud computing infrastructures. Hence, workflow management systems have
been extended to allow the execution of workflows on highly distributed resources from IoT
sensors and devices in the Edge to HPC and Cloud computing resources.

Pegasus [64] workflow management system allows users to map high-level workflow de-
scriptions onto distributed resources such as clusters, grids, and clouds. It abstracts all the com-
plexities of deploying workflows on the underlying execution environment. Pegasus has been
extended to support Edge-to-Cloud workflows [215] (e.g., executed on the Chameleon Cloud
and Edge testbeds). This extension aims to allow scientists to explore performance trade-offs in
managing and executing Edge-to-Cloud workloads. Results show that Pegasus helps scientists
to conduct Edge-to-Cloud research. Table 2.2 summarizes the key features.

22



2.2. Existing Systems for Analyzing Edge-to-Cloud Workflows

COMPSs [21] is a task-based programming model which aims to ease the development and
execution of parallel applications (written in Java, Python or C/C++) in distributed computing
infrastructures (e.g., clusters, clouds, etc.). COMPSs applications are composed of tasks thatmay
be annotated with different constraints in terms of: computing resources such as GPU, number
of cores, etc.; memory available; among others. Such applications are agnostic of the underlying
computing infrastructure. In [22], authors extended COMPSs to manage distribution, paral-
lelism, and heterogeneity in Edge resources transparently to the application programmer.

EdgeWorkflow [235] is a workflow management system that allows users to deploy and
manage workflows in Edge computing environments. It supports the creation of Edge environ-
ments according to user settings, as well as the automatic deployment, monitoring, and perfor-
mance evaluation of workflows executed on the Edge. Evaluations show how EdgeWorkflow
helps to assess the performance of workflows regarding the energy consumption of the end
device, execution cost, and execution time.

Delta [127] is a service for scheduling function executions (Function as Service - FaaS paradigm)
across heterogeneous and distributed resources from Edge devices to Clouds and supercom-
puters. Through predictors and scheduling algorithms (e.g., for function runtime, data trans-
fer time, configuration delay, and cold start resource provisioning), Delta provides dynamic
estimates of function execution times to determine the most appropriate location for execu-
tion. Experiments show that Delta can halve workloadmakespan when compared with existing
strategies. In the same direction, authors propose OpenWolf [197], a serverless workflow man-
agement system that explores the FaaS paradigm for composing complex workflows on the
Cloud-Edge Continuum. OpenWolf allows users to describe the workflow structure in terms of
processes, relationships, used functions, and scheduling constraints.

As presented, the existing systems focus on the Edge, Fog, or Cloud infrastructures.
Very few aim to support experimentation on the whole Computing Continuum,
from the IoT/Edge to the Fog and Cloud/HPC infrastructures.
Therefore, enabling the Computing Continuum vision requires the development
of novel systems (beyond the ones presented in Table 2.2) or advancing existing
systems like Pegasus [64], COMPSs [55], or OpenWolf [197] for addressing the re-
quirements of Edge-to-Cloud experiments. Such systems, for enabling reproducibil-
ity, should abstract the complexities of deploying Edge-to-Cloudworkflows on open
scientific testbeds for large-scale evaluations.
In addition, they should provide support to the management of the whole experi-
mental cycle such as monitoring, the gathering of results, provenance capture, per-
formance optimization, and repeating experiments on the same infrastructure are
extremely relevant.

23



Partie I, Chapter 2 – Background

2.3 Large-scale testbeds for Edge-to-Cloud Experiments

Several experimental testbeds allow researchers to evaluate their proposals in real-life set-
tings by providing access to a large number of resources (grouped in homogeneous or hetero-
geneous clusters, upon convenience) and, more importantly, supported by some vibrant com-
munities of users and solid technical teams. We cite here just a few.

2.3.1 Testbeds Explored in this Work

Grid’5000 [31] is a large-scale French testbed for experimental research with a focus on par-
allel and distributed computing including Cloud, HPC, Big Data, and AI. Grid’5000 is merg-
ing with FIT IoT-Lab to enable Edge-to-Cloud experiments. FIT IoT-Lab [4] is a large-scale
multi-radio (e.g., IEEE 802.15.4, Bluetooth Low Energy, LoRa, etc.) and multi-platform (e.g.,
Arduino Zero, nRF52840-MDK, LoRa gateway, and many others) infrastructure for the Inter-
net of Things. FIT IoT-Lab consists of more than 1.5K nodes and provides tools for monitoring
energy consumption and network-related metrics, such as end-to-end delay, throughput, and
overhead.

Chameleon [120] is a large-scale US experimental platform that aims to support Computer
Science research in many areas, such as systems, storage, networking, GPU, security, Artificial
Intelligence, and High-Performance Computing. CHI@Edge is an extension of the Chameleon
testbed that aims to support EdgeComputing experiments. CombiningChameleon andCHI@Edge
testbeds allows more realistic Edge-to-Cloud experiments since it provides access to real-life
IoT/Edge devices such as Raspberry Pis, Jetson Nanos, among others.

2.3.2 Other Relevant Testbeds

ORBIT [151] (Open-Access Research Testbed for Next-Generation Wireless Networks) is
based on a 20x20 two-dimensional grid of programmable radio nodes which can be intercon-
nected into different topologies.ORBITprovides access to radio resources, includingWiFi 802.11
a/b/g 802.11n 802.11ac, Bluetooth (BLE), ZigBee, and SoftwareDefinedRadio platforms; Software-
defined networking (SDN) resources; LTE and WiMAX base stations and clients; and Cloud
resources such as nodes with Tesla-based GPUs.

SmartSantander [187] is a large-scale testbed composed of around 2000 IEEE 802.15.4 de-
vices deployed in a 3-tiered architecture (IoT node, repeaters, and gateway node) deployment
in the Spanish city of Santander. The testbed allows IoT native experimentation (e.g. wireless
sensor network experiments) and service provision experiments (e.g. applications using real-
time real-world sensor data).

Fed4FIRE+ [65] is a project offering the largest federation worldwide of Next Generation
Internet (NGI) testbeds. Fed4FIRE aims to provide open, accessible, and reliable experimental

24



2.4. Open Challenges Explored in this Work

infrastructures supporting a wide variety of research, such as 5G, IoT, Cloud Computing, and
wired and wireless Computer Networking. The list of testbeds [149] federated with Fed4FIRE
are: CityLab [213], PlanetLab [86], ExoGENI [26], Tengu [220], NITOS [155], w-iLab [35],
among others.

2.4 Open Challenges Explored in this Work

As presented in the previous chapter, distributed infrastructures for Data Analytics and
learning are now evolving towards an interconnected ecosystem allowing complex applications
to be executed from IoT Edge devices to the HPC Cloud. Next, we present some of the relevant
challenges and research opportunities to be addressed to enable the Computing Continuum
vision. All the findings presented in this chapter are published in a systematic review [175].

2.4.1 Understanding Performance of Edge-to-Cloud Workflows

Understanding end-to-end performance on the complex Edge-to-Cloud Continuum ecosys-
tem is challenging. Deploying large-scale real-life applications on such infrastructures requires
configuring a myriad of system-specific parameters and reconciling many requirements or con-
straints in terms of hardware capacity, mobility, network efficiency, energy, and data privacy,
with low-level infrastructure design choices. One important challenge is to accurately reproduce
relevant behaviors of a given application workflow and representative settings of the physical
infrastructure underlying this complex continuum.

A first step towards reducing this complexity and enabling the Computing Continuum vi-
sion is to enable a holistic understanding of performance in such environments. That is, finding a
rigorous approach to answering questions like (1) How to identify infrastructure bottlenecks across
the whole Edge-to-Cloud Continuum? (2) Which system parameters and network configurations impact
the application performance and how? (3) How Edge-to-Cloud hardware configurations impact on the
energy consumption and on the processing latency of the application?

Approaches based on workflow modeling [186] and simulation or emulation, as presented
in Table 2.2, raise some important challenges in terms of specification, modeling, and validation
in the context of the Computing Continuum [3, 214]. For example, it is increasingly difficult
to model the heterogeneity and volatility of Edge devices or to assess the impact of the inher-
ent complexity of hybrid Edge-Cloud deployments on performance. At this stage, experimental
evaluation remains the main approach to gain accurate insights on performance metrics and to
build precise approximations of the expected behavior of large-scale applications on the Com-
puting Continuum, as a first step prior to modeling.

A key challenge in this context is to be able to reproduce in a representative way the ap-
plication behavior in a controlled environment, for extensive experiments in a large enough

25



Partie I, Chapter 2 – Background

spectrum of potential configurations of the underlying hybrid Edge-Cloud infrastructure. How-
ever, this process is non-trivial due to the multiple combination possibilities of heterogeneous
hardware and software resources, as well as, system components for Data Analytics and Ma-
chine Learning. Therefore, the Computing Continuum vision calls for novel approaches to map
the real-world application components and dependencies to infrastructure resources.

Further research efforts shall necessarily focus on the design and implementation of novel
methodologies and systems for large-scale experimental evaluation covering the characteristics
of hybrid Edge-Cloud infrastructure deployments. Novel systems allowing the combination of
simulation and emulation systems in addition to supporting the deployment of state-of-the-art
systems for Data Analytics and Machine Learning on real-world large-scale testbeds, consid-
ering the same experimental evaluation package, would be relevant to accurately reproducing
complex application behaviors.

2.4.2 Optimizing Performance of Edge-to-Cloud Workflows

The optimization of application workflows on highly distributed and heterogeneous re-
sources is challenging. Real-world applications deployed on hybrid Edge-to-Cloud infrastruc-
tures (e.g., smart factory [223], autonomous vehicles [142], among others) typically need to
comply with many conflicting constraints related to hardware resource consumption (e.g.,GPU
memory, CPU power, main memory size, storage size, and bandwidth), software components
composing the application and requirements such as QoS, security, and privacy [231].

Furthermore, Edge-to-Cloud deployment optimization problems aim at optimizing met-
rics [29, 19] related to performance (e.g., execution time, latency, and throughput), resource
usage, energy consumption, financial costs, and quality attributes (e.g., reliability, security, and
privacy). The parameter settings of the applications and the underlying infrastructure result in
a complex multi-infrastructure configuration search space [167].

Therefore, one important challenge is to accurately and efficiently answer questions like (1)
How to configure the hardware and system components to minimize processing latency and energy con-
sumption? (2)Where should the workflow components be executed across the Edge-to-Cloud Continuum
tominimize communication costs and end-to-end latency? (3)How to efficiently autoscale the application
resources concerning workload fluctuations and infrastructure changes?

Such optimization problems are of NP-hard complexity and multi-objective [39, 123]. Fur-
thermore, the environment settings and configuration parameters are extremely vast, and their
combination of possibilities is virtually unlimited [196, 234]. Hence, the process of searching for
the ideal deployment and configuration of those real-life applications is challenging given the
search space complexity: bad choices may result in increased financial expenses during deploy-
ment and production phases, decreased processing efficiency, and poor user experience [221].

Given these complexities, future research should focus on proposing novel optimization

26



2.4. Open Challenges Explored in this Work

methodologies supporting the parallel deployment and evaluation of such complex application
workflows on real-life large-scale testbeds. The objective is twofold: speeding up the optimiza-
tion computations, as well as obtaining more accurate results.

Novel approaches should also rely on the development of fully automated surrogate model
building tomimic and approximate the complex behavior of Edge-to-Cloudworkflows and then
perform optimization and sensitivity analysis. These new solutions may combine computation-
ally tractable optimization techniques [159] such as Bayesian Optimization [204] methods (e.g.,
Gaussian process (Kriging) [203], Decision Trees [224], Random Forest [37], among others) to
build surrogatemodels; and then combinewith techniques such as evolutionary algorithms and
swarm intelligence based algorithms (e.g.,Genetic Algorithm [143], Differential Evolution [59],
Particle SwarmOptimization [73], etc.) to perform and to speed up the optimization (e.g., to find
the optimal deployment configuration using the built surrogate model).

Novel contributions are required for workload characterization and prediction, for auto-
scaling strategies to enable the efficient scaling of distributed application resources across the
Edge-to-Cloud Continuum, in response to workload fluctuations and infrastructure changes.
Contributions in this context should be aligned with the complex heterogeneous characteristics
of the Computing Continuum paradigm, in terms of computing resources, network constraints,
and application requirements.

2.4.3 Enabling Reproducible Analysis of Edge-to-Cloud Workflows

Given the relevance of experimental reproducibility in scientific research to allow the verifi-
cation of the scientific claims and also to evolve the studies, in addition to the lack of support for
the reproducibility of experiments identified in recent articles, as presented in Section 2.1, fu-
ture research efforts should focus on the design and implementation of rigorous methodologies
for experimental reproducibility.

Supporting the reproducibility of experiments carried out on large-scale distributed and
heterogeneous infrastructures is non-trivial. The experimental methodology, the artifacts used,
and the data captured should provide additional context that more accurately explains the ex-
periment execution and results.

One relevant challenge is to provide mechanisms to allow researchers to repeat, replicate,
and reproduce the scientific claims and to help them answer questions like (1) What machi-
nes/devices were used to execute the entire workflow? (2) What steps were invoked during the workflow
execution? (3) Which infrastructure configurations and application parameters produced these results?

Therefore, novel approaches should focus on enabling the repeatability, replicability, and re-
producibility of experiments. This requires thedefinition of rigorous experimentationmethod-
ologies (e.g., well-defined description of hardware and software resources required to run the
experiments and their configurations, network setups, resource interconnections, andworkflow

27



Partie I, Chapter 2 – Background

execution logic); the access to the experimental artifacts (e.g., datasets, scripts, libraries, appli-
cations, systems, configuration files, among others); and the access to results (e.g., log files,
metrics collected during execution, monitoring data, code to plot results, among others).

Answering the above questions may be assisted by provenance data capture. Capturing
provenance data of Edge-to-Cloud workflows requires the design and development of novel
approaches. The efficient data capture (e.g., low capture overheads in terms of CPUandmemory
usage, network usage, and power consumption) on heterogeneous hardware resources ranging
from HPC/Cloud servers to resource-constrained IoT/Edge devices remains an open issue.

The results presented in Figure 2.1 reinforce the need for rigorous experimental
methodologies guiding researchers to systematically perform Edge-to-Cloud ex-
periments to enable the experiment reproducibility. At the same time, Figure 2.2
highlights the need for systems guiding researchers to deploy, evaluate, and val-
idate their approaches in large-scale testbeds.
Furthermore, realizing the Computing Continuum vision in practice raises many
research questions. Therefore, novel approaches should focus on addressing chal-
lenges such as understanding the end-to-end performance of application work-
flows, enabling their optimized execution across the Edge-to-Cloud Continuum,
and systematically performing experiments to enable their reproducibility and
replicability by independent researchers. These challenges are explored in this the-
sis and presented in the next chapters.

Conclusion

28



Table 2.2 – Simulation, Emulation, and Deployment Systems for Experimental Research on the
Edge-to-Cloud Continuum.

Simulation
Systems Edge Fog Cloud Main Goal Key Features

CloudSim [43] X

Modeling,
simulation,
and experi-
mentation of
Cloud infras-
tructures and
application
services.

— modeling and simulation of large-scale
Cloud computing data centers.

— modeling and simulation of virtualized
server hosts and application containers.

— modeling and simulation of energy-
aware computational resources.

— modeling and simulation of data center
network topologies.

SCORE [85] X

Simulate
energy- ef-
ficiency,
security, and
scheduling
strategies
in Cloud
Computing
environ-
ments.

— allows to prototype and compare differ-
ent cluster scheduling strategies.

— generates synthetic workloads from
empirical parameter distributions.

— allows the analysis of scheduling per-
formance metrics.

ElasticSim [41] X
Simulate
autoscaling
algorithms.

— supports resource auto-scaling.
— supports stochastic task execution time

modeling.

iFogSim [102] X

Modeling and
simulation
of resource
management
techniques
in IoT, Edge,
and Fog
Computing
environments

— inherits features from CloudSim.
— provides resource management tech-

niques in IoT, Edge, and Fog.
— allows simultaneous execution of ap-

plications on the infrastructure.
— supportsmigration of applicationmod-

ules from one Fog device to another.

FogNetSim [165] X

Simulate dis-
tributed Fog
computing
environ-
ments.

— covers the network aspects such as
delay, packet error rate, transmission
range, handover, scheduling, and het-
erogeneous mobile devices.

— allows to simulate a large Fog network.
— allows to simulate heterogeneous de-

vices with varying features.
— supports handover: allows static and

dynamic nodes in the network.



Simulation
Systems Edge Fog Cloud Main Goal Key Features

FogTorch [40] X

QoS-aware
deployment
of IoT applica-
tions through
the Fog.

— allows the specification of a Fog infras-
tructure along processing (e.g., CPU
cores, RAMmemory, storage) and QoS
(e.g., latency, bandwidth) capabilities.

— allows applications to be deployed
alongwith needed IoTdevices, process-
ing and QoS requirements.

FogExplorer
[106] X

Simulate QoS
and cost eval-
uation of Fog-
based IoT ap-
plications.

— simulates processing cost and process-
ing time for applications.

— simulates transmission cost and trans-
mission time for data streams.

IoTSim-
Edge [148] X

Simulate
the distri-
bution and
processing
of streaming
data gener-
ated by IoT
devices in
Edge comput-
ing environ-
ments.

— allows to define data analytic opera-
tions and their mapping to different
parts of the infrastructure.

— supports modeling of heterogeneous
IoT protocols along with their energy
consumption profile.

— supports modeling of mobile devices
and captures the effect of handoff
caused by the movement of mobile de-
vices.

EdgeCloud-
Sim [205] X

Simulate
environ-
ments specific
to Edge
Computing
scenarios.

— considers computing and networking
resources.

— supports network modeling specific to
WLAN and WAN.

— supports device mobility model and
provides tunable load generator.

YAFS [128] X

Analyze the
design and
deployment
of applica-
tions through
customized
and dynami-
cal strategies.

— allows dynamic scenarios: placement,
path routing, orchestration, and work-
load movement.

— supports placement allocation algo-
rithms and orchestration algorithms.

— provides functions to obtain metrics
such as network utilization, network
delay, response time, and waiting time.

XFogSim [138] X

Simulate fed-
erated Fog
computing
environ-
ments.

— provides resource allocation algo-
rithms for resource sharing.

— supports static and mobile nodes (han-
dover mechanisms).

— supports evaluations in terms of energy
consumption, processing latency, scala-
bility, and resource usage.



Emulation
Systems Edge Fog Cloud Main Goal Key Features

EmuFog [139] X

Enable the
design of Fog
Computing
infrastruc-
tures and the
emulation of
real appli-
cations and
workloads.

— generates networks that can be emu-
lated easily with MaxiNet [226].

— supports topologies from BRITE [140]
and Caida [42].

— places Fog nodes based on user-defined
constrains (e.g., network latency or re-
source constraints).

Fogbed [55] X

Enable the
rapid proto-
typing of Fog
components
in virtualized
environ-
ments.

— allows dynamic topology changes.
— provides traffic control links such as de-

lay, rate, loss, and jitter.
— enables the deployment of Fog nodes

as software containers under different
network configurations.

RADICAL-
DREAMER
[166]

X X X

Emulate
resource
and task/-
workload
definition
in Edge-
to-Cloud
applications.

— allows to evaluate workload and re-
source management aspects of applica-
tions.

— supports modeling task placement in
Edge-to-Cloud applications.

— allows to evaluate deployment modali-
ties and performance trade-offs.

Deployment
Systems Edge Fog Cloud Main Goal Key Features

KubeEdge [233] X

Deploy com-
plex high-
level applica-
tions to the
Edge.

— provides containerized application or-
chestration and device management to
hosts at the Edge.

— provides core infrastructure support
for networking, application deploy-
ment, and metadata synchronization
between Cloud and Edge.

— supports MQTT which enables Edge
devices to access through Edge nodes.

Kubernetes
[38] X

Manage and
automate
the deploy-
ment, scaling,
and man-
agement of
containerized
applications
across multi-
ple hosts.

— provides mechanisms for deployment,
maintenance, and scaling of applica-
tions.

— provides service discovery and load
balancing.

— allows to automatically mount storage
systems, such as local storage and pub-
lic Cloud providers.



Workflow
Management
Systems

Edge Fog Cloud Main Goal Key Features

Pegasus [64] X X X

Develop, run,
monitor, and
debug large-
scale scientific
workflows.

— allows workflows to be reused in differ-
ent environments.

— prioritizes tasks in order to increase
workflow performance.

— provenance data collection to capture
performance metrics to optimize work-
flow executions.

— scales the size of the workflow and its
resources.

— provides debugging and recovery
strategies.

COMPSs [55] X X X

Ease the de-
velopment
and execution
of appli-
cations on
distributed
infrastruc-
tures.

— supports applications written in Java,
C/C++, and Python.

— applications are agnostic of the com-
puting infrastructure.

— allows expressing resource constraints
on tasks.

— provides task monitoring at runtime.

EdgeWork
-flow [233] X

Deploy and
manage work-
flows in Edge
Computing
environment.

— allows users to define Edge environ-
ments.

— provides deployment and monitoring
of workflows.

— supports workflow performance met-
rics like execution time, energy con-
sumption, and cost.

Delta [166] X X X

Schedule
function-
based work-
loads across
Edge-to-
Cloud re-
sources.

— provides profiling and predicting func-
tion performance.

— manages data movements across re-
sources.

— routes function executions to resources
based on scheduling policies.

OpenWolf [38] X X X

Explore FaaS
paradigm for
composing
workflows
across the
Cloud-Edge
Continuum.

— supports relationships between func-
tions.

— supports parallel process execution.
— allows data pre/post-processing filters.



Part II

E2Clab: Exploring the Computing
Continuum through Repeatable,
Replicable and Reproducible
Edge-to-Cloud Experiments

33





Chapter 3

OUR METHODOLOGY

Contents
3.1 The Need for Rigorous Experiment Methodologies . . . . . . . . . . . . . . . . 35
3.2 AMethodology for Designing Reproducible Experiments with Real-life Ap-

plications on the Computing Continuum . . . . . . . . . . . . . . . . . . . . . . 37
3.2.1 Providing Access to Experiment Artifacts . . . . . . . . . . . . . . . . . . 37
3.2.2 Defining the Experimental Environment . . . . . . . . . . . . . . . . . . 37
3.2.3 Providing Access to Experiment Results . . . . . . . . . . . . . . . . . . . 39

3.3 A Methodology for Optimizing the Performance of Real-life Applications
on the Edge-to-Cloud Continuum . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.1 Phase I: Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.2 Phase II: Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.3 Phase III: Finalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

The second part of the thesis focuses on addressing the challenges of understating and op-
timizing the performance of Edge-to-Cloud workflows through repeatable, replicable, and re-
producible experiments on open scientific testbeds. To do so, we introduce novelmethodologies
and their implementation within frameworks and tools.

This Chapter introduces our experiment methodology that guides researchers to deploy
Edge-to-Cloudworkflows on large-scale testbeds to understand application performance. Then,
it presents our optimization methodology for optimizing the performance of workflows exe-
cuted across the Computing Continuum.

3.1 The Need for Rigorous Experiment Methodologies

The Computing Continuum vision calls for a rigorous and systematic methodology to map
the real-world application components and dependencies to infrastructure resources. As illus-
trated in Figure 3.1, this complex process can be error-prone. Key research goals are 1) to iden-
tify relevant characteristics of the application workflows and of the underlying infrastructure as
a means to enable accurate experimentation and benchmarking in relevant infrastructure set-
tings in order to understand and optimize their performance, and 2) to ensure research quality
aspects such as the 3Rs.

35



Partie II, Chapter 3 – Our Methodology

Figure 3.1 – Enabling representative 3Rs experiments of real-world use cases on the Computing
Continuum.

The main contributions of our approach are:

1. A rigorous methodology for designing experiments with real-world workflows on the
ComputingContinuum spanning from theEdge through the Fog to theCloud; thismethod-
ology supports Open Science [150] and provides guidelines to move from real-world use
cases to the design of relevant testbed setups for experiments enabling researchers to un-
derstand performance and to ensure the 3Rs properties (Section 3.2);

2. Amethodology to optimize the performance of real-life applications on theComputing
Continuum, leveraging computationally tractable optimization techniques (Section 3.3).

3. A novel framework named E2Clab that implements these methodologies and allows re-
searchers to deploy their use cases on real-world large-scale scientific testbeds such as
Grid’5000 [31], ChameleonCloud andCHI@Edge [120], and FIT IoT-LAB [4] (Chapter 4).

To the best of our knowledge, E2Clab is the first platform to support the complete anal-
ysis cycle of an application on the Computing Continuum: (i) Reproducible Experiments:
supports repeatability, replicability, and reproducibility; (ii) Mapping: application parts
(Edge, Fog and Cloud/HPC) and physical testbed; (iii) Variation and Scaling: experiment
variation and transparent scaling of scenarios; (iv)Network Emulation:Edge-to-Cloud com-

36



3.2. A Methodology for Designing Reproducible Experiments with Real-life Applications on the Computing
Continuum

munication constraints; (v) Experiment Management: deployment, execution and monitor-
ing; and (vi) Optimization: configuration search of application workflows.

4. A large scale experimental validation of the proposed approachwith the Pl@ntNet appli-
cation on 42 nodes of the Grid’5000 testbed [32]. Our approach helps understand and op-
timize Pl@ntNet software configurations across the continuum tominimize user response
time (Chapter 5).

3.2 A Methodology for Designing Reproducible Experiments with
Real-life Applications on the Computing Continuum

Our methodology is based on the takeaways of a previous study on Edge and Cloud com-
puting trade-offs [199]. The specific experimental approach used for that study is generalized
and defined here in a standalone methodology, which can be used by any application and de-
ployed anywhere on the Computing Continuum. The methodology leverages three main pro-
cesses which consist of a series of actions to achieve the high-level goals of this thesis. Found at
the left side of Figure 3.2 are these processes pipelined in a stream fashion.

3.2.1 Providing Access to Experiment Artifacts

This process, illustrated at the bottom of Figure 3.2, consists in providing access to all the re-
search artifacts used to enable the experiments. They include the original dataset used as input
to the experiments; the software, algorithms, libraries, etc., developed by experimenters or ob-
tained from third parties; and the whole experiment configuration details such as the hardware
specifications, execution parameters, the network configuration, and the experiment workflow.

In order to enable the 3Rs of experiments, all these research artifacts must be in public and
safe repositories.

3.2.2 Defining the Experimental Environment

This process has as its main goal to define the whole experimental environment: the lay-
ers, the services, the network interconnect, and the experimental workflow, illustrated as sub-
processes at the core of Figure 3.2.

The methodology is centered around the concepts of Services and Layers:

— Services represent any system that provides a specific functionality or action in the sce-
nario workflow. Servicesmay refer to data producers, gateways, or processing frameworks
(e.g., a Flink cluster). A service can be composed of sub-services, for instance, a Flink service
composed of a Job Manager (master) and Task Managers (workers).

37



Partie II, Chapter 3 – Our Methodology

Services
La
ye
r 
1

Services

Services

Services
La
ye
r 
2

Services

Services

Services
La
ye
r 
N

Services

Services

Services

Services

Services

Services

Services

Services

Services

Services

Services

Services

Services

Services

Services

Services

Services

Services

Services

Services

Public
repository

Metrics & 
Monitoring

Optimal 
Configuration Visualization

Provide 
access to 
artifacts

Define 
workflow

Provide 
access to 

results

Define 
layers & 
services

Define 
network

De
fin

e 
Ex

pe
ri

m
en

ta
l E

nv
ir

on
m

en
t

Public 
repository

experiment 
configs. 

Software, 
algorithmsDataset

Figure 3.2 – Our experimental methodology.

— Layers define the hierarchy between services and group them with different granularities.
They can also be used to reflect the geographical distribution of the compute resources.
In the context of the Computing Continuum, layers refer to Edge, Fog, and Cloud, for
instance.

This layer and service abstraction targets experiments scalability and variation, since it al-
lows to easily resize the number of layers and to analyze different scenario deployments such as
single-layered (e.g., Cloud-only) or multi-layered (e.g., Edge + Cloud). Next, we describe the
roles of each sub-process.

1. Define Layers and Services: specifies the layers and the services deployed on each layer that
compose the experimental scenario. Each service must be configured with its specific pa-
rameters and low-level configurations according to the experimenters requirements. Each
service can be monitored (processor, storage, memory, network, I/O, etc.) during the exe-
cution of the experiments.

2. Define the Network: specifies the network communication rules between layers and between
services. For each network communication, the experimenter should be able to define spe-
cific network conditions and constraints.

38



3.3. A Methodology for Optimizing the Performance of Real-life Applications on the Edge-to-Cloud Continuum

3. Define the Workflow: specifies all the execution logic and rules of the software, algorithms,
and applications running on services (i.e., data producers, ingestion systems, processing
engines, etc.). Such execution logic and rules refer to dependencies between services (e.g.,
execution order of services and how they are interconnected) andmanaging their life cycle
(e.g., preparing all dependencies required to properly initiate their execution; launching
them with their respective parameters; and finalizing them). The workflow also includes
supporting components (not included in the experiment analysis) to collect performance
metrics, such as throughput, latency, among others.

Note that breaking down the definition of the experimental environment into three well-
defined sub-processes enables flexibility andvariability, since the definitions of each sub-process
may be modified without impacting the remaining ones.

3.2.3 Providing Access to Experiment Results

This process, illustrated at the top of Figure 3.2, collects all the output generated during the
execution of the experiments (i.e., log files, monitoring data, performance metrics, etc.). These
outputs may be aggregated and analyzed according to the experimenters interests to derive
insights and understand performance. Lastly, to enable the 3Rs, all the output data, the research
results, and the conclusions must be available in a public and safe repository.

3.3 AMethodology for Optimizing the Performance of Real-life Ap-
plications on the Edge-to-Cloud Continuum

The former methodology allows for performing reproducible experiments to understand
the application performance. Such applications typically need to comply with many constraints
related to resource usage (e.g.,GPU, CPU, memory, storage, and bandwidth capacities), energy
consumption, QoS, security, and privacy [231]. Therefore, enabling their optimized execution
across the Edge-to-Cloud Continuum is challenging. The parameter settings of the applications
and the underlying infrastructure result in a complex configuration search space [167]. Next,
we present our optimization methodology. It supports reproducible parallel optimization of
application workflows on large-scale testbeds. It consists of three main phases illustrated in
Figure 3.3.

3.3.1 Phase I: Initialization

This phase, depicted at the top of Figure 3.3, consists in defining the optimization prob-
lem. The user must specify: the optimization variables that compose the search space to be
explored (e.g., GPUs used for processing, Fog nodes in the scenario, network bandwidth, etc.);

39



Partie II, Chapter 3 – Our Methodology

Summary of Computations

(1) Workflow 
Deployment

(3) Workflow
Modeling & 

Optimization

(4) Workflow
Reconfiguration

(2) Workflow
Execution

Define Optimization Problem

Ph
as

e 
I

Ph
as

e 
II

Ph
as

e 
III

Parallel + Scalable + Reproducible 
application optimization on large scale testbeds

Optimization 
Manager

large scale testbed
Cluster 1

async m
odel 

tra
ining ...

...

Cluster 3 Cluster N

Cluster 2

Reproducible Research

reproducible 

evaluatio
ns

Figure 3.3 – Our optimization methodology.

the objective (e.g., minimize end-to-end latency, maximize Fog gateway throughput, etc.); and
constraints (e.g. the upper and lower bounds of optimization variables, budget, latency, etc.).

One may focus the optimization on: (1) specific parts of the infrastructure (e.g., only on
geographically distributed Edge sites, or only on Fog-to-Cloud resources) by defining multiple,
per infrastructure, optimization problems. This approach reduces the search space complexity
(in case of use cases with large search spaces) and hence the computing time; (2) or the whole
Edge-to-Cloud infrastructure as a single optimization problem.

3.3.2 Phase II: Evaluation

This phase aims at defining the mathematical methods and optimization techniques used in
the optimization cycle (presented in themiddle of Figure 3.3) to explore the search space. Such op-
timization cycle consists in: (1) parallel deployments of the application workflow in a large-scale
testbed; (2) their simultaneous execution; (3) asynchronous model training and optimization
with data obtained from the workflow execution; and (4) reconfiguration of the application
workflow for a new evaluation.

This cycle continues until model convergence or after a given number of evaluations de-
fined by the user. Depending on the run-time characteristics of the application workflows, their
evaluations may be performed differently.

40



3.3. A Methodology for Optimizing the Performance of Real-life Applications on the Edge-to-Cloud Continuum

Long-time Running Applications

These refer to experiments or simulations for which the evaluation of a single point in the
search space requires a lot of time to complete (e.g., hours, or even days). Since application
workflows in the context of the Computing Continuum typically consist of cross-infrastructure
parameter configurations resulting in a myriad of configuration possibilities, their optimization
problem presents a complex and large search space.

For those long-time running applications, a variety of Bayesian Optimization [204] methods
(e.g., surrogate models as Gaussian process (Kriging) [203], Decision Trees [224], Random For-
est [37], Gradient Boosting Regression Trees [89], Support Vector Machine [211], Polynomial
Regression [152], among others)may be applied as candidates to explore the search space. Their
generation is described below.

Surrogate Model Building: this consists of three steps: (a) a few sample points are gen-
erated, respecting the upper and lower limits of each optimization variable that composes the
search space. Sampling methods such as Latin Hypercube Sample [108] or Low Discrepancy
Sample [124] may be applied; (b) then, from the generated sample, parallel experiments (de-
ployment of application workflows) are run for each parameter set; (c) lastly, the surrogate
model is trained on the dataset generated in the previous step.

Model Retraining & Application Optimization: once the surrogate model is trained on
the sample points previously generated, it is used to explore the optimization search space by
deciding the subsequent application configurations to be evaluated in parallel. As soon as the
evaluations finish, the model is retrained and optimized asynchronously, then new points are
suggested to be evaluated.

Short-time Running Applications

They refer to the case when a fewminutes are enough to evaluate a single point in the search
space. Such applications also follow the optimization cycle previously presented. Besides, they
may also use surrogate models to explore the search space. However, differently from Long-
time Running Use Cases, they can use other optimization techniques such as evolutionary al-
gorithms and swarm intelligence-based algorithms (e.g., Genetic Algorithm [143], Differential
Evolution [59], Simulated Annealing [219], Particle Swarm Optimization [73], etc.).

3.3.3 Phase III: Finalization

For reproducibility purposes, this last phase illustrated at the bottom of Figure 3.3 provides
a summary of computations. Therefore, it provides the definition of the optimization problem
(optimization variables, objective, and constraints); the sample selection method; the surrogate
models or search algorithms with their hyperparameters used to explore the search space of

41



Partie II, Chapter 3 – Our Methodology

the optimization problem; and finally, the optimal application configuration found. Providing
all this information at the end of computations allows other researchers to verify and reproduce
the research results.

This chapter presented rigorous methodologies for, first, designing reproducible
experiments on the Edge-to-Cloud Continuum, and then, understanding and op-
timizing the performance of real-life Edge-to-Cloud workflows. Both methodolo-
gies support reproducibility and guide users to systematically define the whole
experimental environment (i.e., computing resources, network, and workflow ex-
ecution and optimization) and then share the experiment artifacts and results.
To provide users with a practical exploration of these methodologies across the
Edge-to-Cloud Continuum, the next chapter proposes their implementations as a
novel framework, named E2Clab.

Conclusion

42



Chapter 4

E2Clab: THE METHODOLOGY

IMPLEMENTATION

Contents
4.1 High-Level Aspects and Architecture . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Experiment Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.2 Layers and Services Manager . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.3 Network Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.4 Workflow Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.5 Optimization Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.1 Usability and Reusability . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.2 Methodology Genericness . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

This Chapter introduces the E2Clab framework that implements our methodologies. Next,
it details the high-level aspects and the architecture of E2Clab and then provides the implemen-
tation details. Finally, it discusses how E2Clab can optimize various Edge-to-Cloud applications
and support different open scientific testbeds.

4.1 High-Level Aspects and Architecture

To illustrate our methodology for experimentation on the Computing Continuum, we pro-
pose E2Clab, a framework that implements it. Researchers may use it to deploy real-life applica-
tions on large-scale testbeds and systematically perform meaningful experiments. Please learn
more about E2Clab on its documentation Web page [225].

We develop E2Clab with usability in mind: we propose a structure for configuration files
(presented in Table 4.1 and discussed in the following sections). Those files allow experimenters
to write their requirements descriptively. They are easy to comprehend, use, and adapt to any
scenario, reducing the effort of configuring the whole experimental environment.

43



Partie II, Chapter 4 – E2Clab: The Methodology Implementation

E2Clab

EnOSlib

lyr_svc_conf network_conf workflow_conf

LYR & SVC
Manager

Network
Manager

Workflow
Manager

Experiment Manager

Define Experimental Environment

Real-life Application Workflows

Large-scale Scientific Testbeds

Optimization
Manager

Figure 4.1 – The E2Clab Architecture.

Essentially, using only three configuration files, the experimenter describes theworkflow (e.g.,
Edge-to-Cloud data stream processing with Apache Flink), the layers and services that compose
the scenario (e.g., the Flinkmaster in theCloud layer andworkers on the Edge layer), and the net-
work specification (e.g., delays, losses, and rates between the Flink master and workers). E2Clab
abstracts from the users the complexity of the mappings between layers and services with the
actual machines in the testbeds (e.g., Grid’5000, Chameleon, FIT IoT LAB).

The E2Clab architecture is depicted at the core of Figure 4.1 and comprises a set of Man-
agers, described in the following sections. Their role is to convert the abstract specifications of
layers and services defined in the configuration file into concrete testbed resources (e.g., physical
machines of a computing cluster) with the respective services deployed. They also enforce the
configuration dependencies of the underlying services, defined by experimenters in theworkflow
configuration file.

E2Clab sits on top of EnOSlib [47], a library that brings reusable building blocks for configur-

44



4.2. Implementation

ing the infrastructure, provisioning software on remote hosts, and organizing the experimental
workflow. Interaction with the testbeds is deferred to EnOSlib’s providers, and various actions
on remote hosts also rely on mechanisms offered by the library (e.g.,monitoring stack). E2Clab
current version supports Grid’5000, Chameleon, and FIT IoT LAB. However, it can be extended
to support other testbeds.

4.2 Implementation

Next, we present the components of the E2Clab framework and their relationships.

4.2.1 Experiment Manager

The Experiment Manager coordinates the execution of the whole experiment and the infor-
mation exchange between all managers. It receives as input all the configuration files provided
by the users (layers and services, network, and workflow) and assigns them to the respective man-
agers to set up the experimental environment and execute the experiments. At the end of each
experiment, the Experiment Manager provides the results to the users.

Table 4.1 presents the structure for the configuration files and a brief description of each
of their attributes. These configuration files follow the YAML format [237]. In order to man-
age the experiment execution logic (i.e., interconnections, life cycle, execution parameters, and
execution order) on remote nodes, the workflow configuration file follows Ansible’s playbook
language [10]. Each configuration file has an important role in enabling the 3Rs as they rig-
orously abstract the underlying infrastructure, allowing other researchers to easily reproduce,
replicate or repeat the experiments.

E2Clab provides commands tomanage the experiment life cycle. It allows users to divide the
experiment deployment into smaller steps, according to the sequence presented in Figure 4.2.
For instance, the e2clab deploy command automatically enforces all the following commands:
"e2clab [layers-services; network; workflow prepare; workflow launch]"; then when the experiment
ends (e.g., after a duration defined by the user "-duration 180") E2Clab runs "e2clab finalize"
(which also includes "e2clab workflow finalize") to backup the relevant data generated, such as
application performance metrics; monitoring data; and provenance data captured.

We highlight that one may also easily repeat experiments N times using the "–repeat N"
argument. Automating the analysis of multiple scenarios (with their respective .yaml files), in
addition to variations in the workflow configuration parameters, can be easily achieved using
the "–scenarios_name" and "–app_conf" arguments, respectively. Furthermore, the workflow de-
ployment step can also be divided as "e2clab workflow [prepare, launch, or finalize]". Finally, the
"e2clab optimize" command helps users to find the optimal application workflow configurations.
It automatically enforces all the commands executed by "e2clab deploy".

45



Partie II, Chapter 4 – E2Clab: The Methodology Implementation

Table 4.1 – E2Clab Configuration Files

Attributes Description
environment
g5k
chameleon
iotlab
chiedge

Refers to the testbeds to run the experiments on, such as
Grid’5000, Chameleon Cloud, FIT IoT LAB, or Chameleon Edge.

monitoring
name
server

Deploys a monitoring service. It may be a TIG stack (Telegraf +
InfluxDB + Grafana) or a TPG stack (Telegraf + Promotheus +
Grafana).

provenance
name
server

Deploys a provenance data capture service. It allows capturing
provenance data in IoT/Edge devices and Cloud/HPC systems.

layers
- name

Defines the hierarchy between services and group them in differ-
ent granularities.

Layers &
Services

services
- name
environment
roles
quantity
repeat

Defines service-specific configurations, such as the testbed it
should be deployed on if it should be monitored (roles: [monitor-
ing]), the number of nodes required to deploy the service, the
service repeatability, among others.

Network networks
- src
dst
delay
rate
loss

Defines custom network configurations between the layers. For
each network, users may vary parameters such as delay, rate, and
loss.

- hosts
Refers to remote nodes (hosting the defined services) to deploy
the experiment artifacts (libraries, applications, dataset, among
others) and to enforce the experiment workflow.

depends_on
- service_selector
grouping
prefix

Represents dependencies between services that compose a work-
flow. These services may be grouped using different strategies.
The goal is to access from a service(s) metadata (such as IP ad-
dress, port number, configurations, among others) of another ser-
vice(s).

Workflow

prepare
launch
finalize

Refers to the three phases of theworkflowmanagement. Each one
consists of tasks to be applied on remote nodes such as 1) prepare:
copy files to remote nodes (libraries, dataset, software, etc.); 2)
launch: execute commands on nodes to start applications with
specific parameters or resource constraints; 3) finalize: backup
data generated during execution of experiments.

46



4.2. Implementation

e2clab deploy /scenario_dir /artifacts_dir --duration 180 --repeat 2 
                               --scenarios_name A,B --app_conf C,D

workflow.yaml

e2clab layers-services /scenario_dir /artifacts_dir

e2clab network /scenario_dir

e2clab workflow /scenario_dir prepare

e2clab workflow /scenario_dir launch

e2clab workflow /scenario_dir finalize

e2clab finalize /scenario_dir

e2clab optimize /scenario_dir /artifacts_dir --duration 180

network.yaml

layers_services.yaml

Monitoring / Provenance

User-defined 
Optimization

Figure 4.2 – E2Clab CLI to manage the experiment life cycle.

4.2.2 Layers and Services Manager

This Manager interprets the layers and services configuration file and starts the deployment
phase by reserving Edge-to-Cloud physical resources on multiple testbed environments (e.g.,
Grid’5000, Chameleon, FIT IoT LAB) and then installing, configuring, and deploying all the ser-
vices defined by the user. It also allows users to deploy additional services, such as aMonitoring
Service (monitors resource usage) and a Provenance Data Capture Service (captures application
workflow data). Both services provide visualization tools to track workflow execution.

Deploying Edge-to-Cloud workflows with E2Clab. Deploying applications using E2Clab re-
quires their implementation as a User-Defined Service. Users services must inherit the Service
class provided by E2Clab. Users have to implement the logic of their service (according to their
needs) in the deploy()method and then register it using the register_service()method.

Publicly accessible in our repository, users may find and reuse in their experiments sev-
eral services already implemented. The available services refer tomaster-worker-based services,
containerized services using Docker, and services composed of sub-services. To cite a few ex-
amples: Horovod [195] service (for distributed Deep Learning training); Flower [30] service
(for Federated Learning training); Apache Flink [44] service (for distributed data stream pro-
cessing); and COMPSs [21] service (for executing parallel applications).

Illustrative example: Edge-to-Clouddeployment ofCOMPSsworkflowsonChameleonCloud
and CHI@Edge testbeds. COMPSs is a framework that aims to ease the development and ex-
ecution of parallel applications for distributed infrastructures. Listing 4.1 provides an excerpt
of a configuration file where the user aims to deploy a COMPSs cluster on Chameleon Cloud

47



Partie II, Chapter 4 – E2Clab: The Methodology Implementation

1 environment :
2 chameleon :
3 rc_file : app -cred -cloud - openrc .sh
4 key_name : my - sshkey
5 image: CC - Ubuntu20 .04
6 chiedge :
7 rc_file : app -cred -edge - openrc .sh
8 monitoring :
9 name: tig
10 cluster : compute_skylake
11 layers :
12 - name: cloud
13 services :
14 - name: compssMaster
15 environment : " chameleon "
16 cluster : gpu_rtx_6000 , quantity : 1, roles: [ monitoring ]
17 - name: edge
18 services :
19 - name: compssWorker
20 environment : " chiedge "
21 cluster : jetson -nano , quantity : 3, roles: [ monitoring ]

Listing 4.1 – Layers and Services configuration file example.

and CHI@Edge testbeds. Line 1 refers to the testbeds to deploy the COMPSs cluster, and line 8
defines the monitoring service.

Next, the user defines the layers and services. Line 14 refers to the compssMaster service
on the cloud layer defined in line 12. Then, the compssWorker service (line 19) composed of 3
Edge devices (quantity : 3) are deployed on the Edge layer (see line 17). Both services will
be monitored during execution (roles : [monitoring]). It means that users can monitor the
computing resources of the COMPSs cluster during the execution of experiments.

Suppose one needs to deploy two (or more) distinct regions of COMPSs workers on the
Edge layer while keeping the same configuration on the Cloud side (COMPSs master). In that
case, it can be done by simply adding the attribute (repeat : 2) within the compssWorker service.
This allows users to quickly and transparently scale the scenarios by adding layers and to easily
vary them by replicating the services.

Listings 4.2 and 4.3 present the user-defined service implementation of the COMPSs Master
and COMPSs Worker services. In this example, the COMPSs cluster is deployed using Docker
containers, with images obtained by default from the Docker Hub [71]. Hence, users can set
their custom images by using the image attribute and specifying the image identifier in the
Docker Hub (e.g., image: "username/my-compss-version").

We highlight that leveraging containerization and virtualization enables reproducibility:
everything required to run the service efficiently and bug-free (i.e., configuration files, libraries,
dependencies, datasets, etc.) can be packed, made publicly available and reused. Figure 4.3 il-
lustrates the deployment configuration defined in Listing 4.1.

48



4.2. Implementation

1 from e2clab . services import Service
2 import enoslib as en
3
4 class CompssMaster ( Service ):
5 def deploy (self):
6 self. deploy_docker ()
7 # Start COMPSs Master container
8 with en. actions (roles=self.roles) as a:
9 a. docker_container (name=" compss_master ", image=" compss / compss ")

10 # Register the Service
11 return self. register_service ()

Listing 4.2 – COMPSs master service example.

1 from e2clab . services import Service
2 import enoslib as en
3
4 class CompssWorker ( Service ):
5 def deploy (self):
6 self. deploy_docker ()
7 # Start COMPSs Worker containers
8 workers = []
9 extra_compss_worker = []

10 for host in self.hosts:
11 worker_id = f’{ compss_worker }_{host.alias}’
12 workers . append ( worker_id )
13 extra_compss_worker . append ({’container_name ’: worker_id })
14 with en. actions (roles=host) as a:
15 a. docker_container (name=worker_id , image=" compss / compss ",
16 published_ports =" 43001 -43002:43001 -43002 ")
17 # Register the Service
18 return self. register_service (extra= extra_compss_worker )

Listing 4.3 – COMPSs worker service example.

                   layers_services.yaml

Cloud

COMPSs 
Master

COMPSs 
Workers

layers

User-defined
Service

services

environment

quantity: 1

monitoring

experiment
network

Monitoring
Server

InfluxDB

Grafana
monitoring

network

Telegraf

COMPSs 
Monitor

COMPSs User-defined Service

quantity: 3
CHI@Edge

COMPSs 
Master

Edge COMPSs 
Workers

Figure 4.3 – Deployment of a COMPSs cluster on Chameleon Cloud and CHI@Edge.

49



Partie II, Chapter 4 – E2Clab: The Methodology Implementation

1 networks :
2 - src: cloud
3 dst: edge
4 delay: 50ms
5 rate: 1gbit
6 loss: 2
7 - src: cloud .1. compss . master .1
8 dst: edge .1. compss . worker .2
9 delay: 280 ms
10 rate: 150 mbit
11 loss: 2

Listing 4.4 – Network configuration file
example.

src: cloud.1.compss.master.1
dst: edge.1.compss.worker.2

          network.yaml

COMPSs 
Master

COMPSs 
Workers

src: cloud
dst: edge

Figure 4.4 – E2Clab Network: communication con-
straints for the COMPSs cluster.

4.2.3 Network Manager

After the formerManager leases the testbed resources and deploys the services, the Network
Manager interprets the network.yaml (see Listing 4.4) file to enforce the network configurations
defined by users (e.g., delay, loss, and bandwidth). This Manager defines the communication
rules between layers (coarse-grained approach), or in a finer granular way, between layers and
services or between services. It uses NetEm [131] (Linux traffic control) to configure the whole
network, and once this is done, it generates a file report for users to check and validate the
network parameters.

Regarding the COMPSs cluster example, the network.yaml file defines two distinct networks
rules, as shown in Listing 4.4 lines 2 and 7. The first rule (coarse-grained) is applied between
the Cloud and Edge layers, which means between the master and all workers. The second one
(fine-grained) is applied between the master and the second worker. The second rule enforces a
delay of 280ms, 150mbit bandwidth, and a packet loss of 2%. Figure 4.4 illustrates the network
configurations defined in Listing 4.4.

We highlight that E2Clab abstracts all the complexities of configuring the whole network
from users. E2Clab allows users to enforce complex rules by using high-level names, such as
"src : cloud" and "dst : edge"; or "src : cloud.1.compss.master.1" and "dst : edge.1.compss.worker.∗"
(the "∗" symbol may be used to refer to all workers). Such abstraction of the network configu-
ration complexity from end users enables the E2Clab replicability and reproducibility.

4.2.4 WorkflowManager

This Manager interprets the workflow.yaml configuration file to manage and automate the
life cycle of each service through Ansible tasks. It allows users to deploy their applications in
threewell-defined steps: prepare, launch, and finalize. TheWorkflowManager defines the execution

50



4.2. Implementation

1 - hosts: cloud. compss .1. master .1
2 depends_on :
3 service_selector : "edge. compss .1. worker .*"
4 grouping : " aggregate "
5 prefix : " workers "
6 prepare :
7 # Generating the project .xml file on the master .
8 - copy:
9 src: gen_project_xml .py

10 dest: /tmp/ gen_project_xml .py
11 - shell: python gen_project_xml .py --workers {{ workers . container_name }}
12 launch :
13 # Running a COMPSs application
14 - shell: docker exec -it compssmaster bash -c runcompss
15 --project =" project .xml" --resources =" resources .xml" -d simple .py
16 finalize :
17 # Backup processing latency logs
18 - fetch:
19 src: /opt/ metrics /processing - latency
20 dest: /experiment - results / master / metrics /

Listing 4.5 – E2Clab Workflow: managing services in the COMPSs cluster.

order and relationships between services. Considering the COMPSs cluster example, Listing 4.5
presents how E2Clab avoids burdening the users with doing the exact mapping between layers
(Cloud and Edge) and services (Master and Workers), at the workflow level.

Line 1 refers to the management tasks to be applied on the COMPSs master. The prepare
phase (see line 6) is composed of two tasks: first, it copies the Python script to generate the
project.xml file (defines the resources used by the master); and then generates it. We highlight
that using the "depends_on" attribute (see line 2), the master can access data from other ser-
vices, in this case, data from all workers ("service_selector : edge.compss.1.worker.∗") are ag-
gregated (grouping : aggregate). Then, by using the prefix workers the master can get the
workers ids (container name) and pass them as an argument to the Python script that gener-
ates the project.xml file (e.g., "–workers {{workers.container_name}}"). Accessing this metadata is
possible since users saved it during the service registration (see Listing 4.3 line 18). After that,
the launch phase (see line 12) executes the application on the COMPSs master container.

Finally, when the application execution ends the finalize phase (see line 16) backups (e.g.,
fetches from the remote to the local node) log files that the user wants to analyze. We highlight
that the Workflow Manager collects all data generated during the execution of the experiments,
such as physical machine monitoring, files generated by user applications such as log files, files
containing performance metrics data, etc. Researchers must provide all the data collected by the
Manager in a public and safe repository for replicability and reproducibility purposes.

4.2.5 Optimization Manager

The Optimization Manager implements the optimization approach in Figure 3.3. Its role is
to: interpret the user-defined optimization setup defined by users and then automate the op-

51



Partie II, Chapter 4 – E2Clab: The Methodology Implementation

timization cycle (1. parallel deployment of the application workflow in a large-scale testbed; 2.
simultaneous application workflow execution; 3. asynchronous model training and optimiza-
tion; and 4. reconfiguration of the application workflow for a new evaluation) to optimize the
application workflow. Lastly, the Optimization Manager provides a summary of computations
for reproducibility purposes.

TheOptimizationManager takes advantage ofRay [170] to run parallel applicationworkflows
on large-scale testbeds (e.g., Grid’5000, Chameleon, FIT IoT LAB). Ray Tune [130] provides
state-of-the-art search algorithms, manages model checkpoints and logging, and methods for
analyzing training.

Optimizing Edge-to-Cloud workflows with E2Clab. Optimizing application workflows us-
ing E2Clab requires the implementation of the optimization logic as aUser-defined Optimization,
see an example in Listing 4.6. The Optimization Manager offers a class-based API that allows
researchers to set up and control the optimization.

Users have to implement two functions: run() and run_objective(). First, users have to in-
herit the Optimization class and define in the run() function the objective (e.g., minimize the
application processing time), the optimization variables, and their constraints (e.g., the number
of processing cores to be assigned for the various tasks that compose the application), search
algorithms (e.g., single-objective and multi-objective Bayesian Optimization search algorithms
from libraries such as Scikit-Optimize [194],Dragonfly [116],Ax [23],HEBO [56], among others),
parallelism (e.g., N parallel evaluations of the application workflow), among others.

Next, users define in the run_objective() function (Listing 4.6 line 28) their optimization logic,
which runs in parallel to train the model. To do so, theOptimization class provides the following
three methods:

1. prepare(): for reproducibility of optimization evaluations, it generates a dedicated opti-
mization directory for each model evaluation (Listing 4.6 line 30).

2. launch(): deploys the application on large-scale testbeds to perform a model evaluation
(Listing 4.6 line 32). For reproducibility, deployment-related information is captured, such
as physical machines, network constraints, and application configurations.

3. finalize(): for reproducibility purposes, it stores the optimization computations for a given
model evaluation in the optimization directory created in the prepare() phase (Listing 4.6
line 34). Saved information refers to intermediate models throughout training and points
evaluated.

52



4.3. Discussion

1 from e2clab . optimizer import Optimization
2
3 class UserDefinedOptimization ( Optimization ):
4
5 def run(self):
6 algo = SkOptSearch (
7 optimizer = Optimizer (
8 base_estimator =’ET’,
9 n_initial_points =45,

10 initial_point_generator ="lhs",
11 acq_func =" gp_hedge "))
12 algo = ConcurrencyLimiter (algo , max_concurrent =2)
13 scheduler = AsyncHyperBandScheduler ()
14 objective = tune.run(
15 self. run_objective ,
16 metric =" processing_time ",
17 mode="min",
18 name=" compss_application ",
19 search_alg =algo ,
20 scheduler =scheduler ,
21 num_samples =10,
22 config ={
23 " task_1 ": tune. randint (20, 60) ,
24 " task_2 ": tune. randint (20, 60) ,
25 " task_3 ": tune. randint (20, 60) ,
26 " task_4 ": tune. randint (3, 9)})
27
28 def run_objective (self , _config ):
29 # create an optimization directory
30 self. prepare ()
31 # deploy the configs on the testbed
32 self. launch ()
33 # backup the optimization computations
34 self. finalize ()
35 # report the metric value to Ray Tune
36 tune. report ( user_resp_time = user_resp_time )

Listing 4.6 – Example of a user-defined optimization in E2Clab.

4.3 Discussion

Besides revealing the hidden performance trade-offs of workflow deployments through re-
producible experiments, E2Clab exhibits a series of features that make it a promising plat-
form for future performance optimization of applications on the Edge-to-Cloud Continuum.
We briefly discuss them here.

4.3.1 Usability and Reusability

E2Clab targets usability by abstracting all the low-level details of the definition and config-
uration of the experimental environment. It avoids the burden of mapping layers and services
to users since it provides a high-level abstraction that allows performing this mapping through

53



Partie II, Chapter 4 – E2Clab: The Methodology Implementation

logical names and pattern matching. Besides, the configuration files are designed to be easy to
use and understand.

Furthermore, it targets reusability by formalizing the support of users applications through
User-Defined Services. For this purpose, E2Clab provides a Service class in which users have to
override a deploy method to define the deployment logic of their services (e.g., mapping the
services to the physical machines; installing required software; etc.) and then register them.
Next, E2Clab managers can deploy each service on the different testbeds. In our repository,
users may find and reuse in their experiments several services already implemented, such as
Horovod [195]; Flower [30]; Apache Flink [44]; COMPSs [21]; among others.

4.3.2 Methodology Genericness

Our experiment methodology is generic: E2Clab provides two simple abstractions for mod-
eling applications and infrastructures: layers and services. Such abstractions are powerful enough
to express several applications (throughUser-defined Services) deployed onheterogeneous testbed
environments, ranging from the Edge to the Cloud (e.g., Grid’5000, Chameleon, and FIT IoT
LAB). Furthermore, we believe that the core idea behind E2Clab, of a methodology to enable
the design of relevant testbeds for 3R’s experiments, may prove useful for understanding and
optimizing the performance of large-scale applications.

Supporting different Edge andCloud testbeds: the deployment of Edge-to-Cloudworkflows
onmultiple testbeds is supported by our experimentmethodology. It allows users to analyze ap-
plicationworkflows on various large-scale scientific testbeds, such as Grid’5000 and Chameleon
(provide Cloud/HPC resources) and FIT IoT LAB and CHI@Edge (provide IoT/Edge devices).
We highlight that the definition of the experimental environment through E2Clab configuration
files (e.g., layer_services.yaml, network.yaml, and workflow.yaml) is agnostic from the testbed,
meaning that a deployment done in the Grid’5000 testbed may be replicated in Chameleon if
the later also provides the required computing resources for the deployment.

Our optimization methodology is generic: the optimization of other applications may be
achieved by describing the application optimization problem in the User-defined Optimization
file. We highlight that despite our evaluations focusing on the Pl@ntNet as a use case (pre-
sented in the next chapter), our methodology and its implementation in E2Clab can be used
to analyze other applications in the context of the Edge-to-Cloud Continuum. Furthermore, it
allows users to define different optimization problems (e.g., single-objective andmulti-objective
problems) with application-specific optimization variables and constraints.

54



4.3. Discussion

This chapter proposed the E2Clab framework that implements our methodologies.
E2Clab aims to overcome the complexities of understanding and optimizing Edge-
to-Cloud workflows. It helps users to execute reproducible experiments on open
scientific testbeds providing access to heterogeneous Edge-to-Cloud computing re-
sources.
E2Clab supports the complete analysis cycle of an application on the Computing
Continuum: experiment design (i.e., defining the computing resources, network
constraints, and workflow execution), deployment (e.g., on Grid’5000, Chameleon,
CHI@Edge, and FIT IoT LAB), execution and monitoring, and application opti-
mization. Furthermore, E2Clab is generic regarding application deployment, sup-
ported testbeds, and application optimization.
To illustrate the benefits of exploring E2Clab, the next chapter presents a validation
with Pl@ntNet, a global plant identification application.

Conclusion

55



Chapter 5

EXPERIMENTAL EVALUATION AND

VALIDATION WITH THE PL@NTNET

APPLICATION

Contents
5.1 Pl@ntNet: A Real-life Botanical Observation Application . . . . . . . . . . . . 56

5.2 Research Questions and Experimental Setup . . . . . . . . . . . . . . . . . . . 58

5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.1 What software configuration minimizes the user response time? . . . . . 60
5.3.2 How does the number of simultaneous users accessing the system im-

pact the user response time? . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.3 How do the Extraction and Similarity Search thread pool configurations

impact the processing and user response times? . . . . . . . . . . . . . . 62
5.4 Reproducibility and Artifact Availability . . . . . . . . . . . . . . . . . . . . . . 66

The E2Clab framework aims to enable the Computing Continuum vision by allowing re-
searchers to perform reproducible experiments on large-scale testbeds in order to understand
and optimize the performance of Edge-to-Cloud workflows.

Toward this goal, this Chapter validates the E2Clab framework with a real-life application.
It shows how E2Clab helps to understand and optimize the performance of Pl@ntNet and sup-
ports reproducible experiments.

5.1 Pl@ntNet: A Real-life Botanical Observation Application

Pl@ntNet is a participatory application and platform that produces botanical data and plant
identification. The data comprises +35K plant species collected from more than 200 countries.
As illustrated in Figure 5.1, using the Pl@ntNet mobile application, users (located in the Edge)
may identify plants from pictures taken by their phones. Before sending these pictures, some
preprocessing is done to reduce the image size.

56



5.1. Pl@ntNet: A Real-life Botanical Observation Application

Cloud

Edge

+10M users
~400K images/day

+180 countries
+30K species

Figure 5.1 – The Pl@ntNet application.

Then, the Pl@ntNet Identification Engine (located in the Cloud), subject to analysis in this
work, is responsible for automatically identifying species through Deep Learning. In a nutshell,
the Identification Engine performs twomain activities: (1) Species prediction: refers to the feature
extraction and classification of user images; and (2) Similarity Search: searches for the images of
the botanical databases that are themost similar to the user images. At the end of the processing,
the Identification Engine returns the ranked list of most probable species with their respective,
most similar plant pictures, allowing interactive validation by the users.

The processing performance of the Identification Engine strongly depends on the thread
pool size configured to process the various tasks involved during the identification of users
images. Table 5.1 presents the execution order of all tasks, the thread pool they belong to, and
inwhich hardware they take place. Table 5.2 describes the role of each thread pool and an exam-
ple of the configuration currently used in the Pl@ntNet production servers. This configuration
was defined by Pl@ntNet engineers based on their best practical experience with the Pl@ntNet
system considering mainly the following: (a) for thread pools using CPU: a machine with 40
CPU cores available; and (b) for the GPU thread pool: the maximum number of threads which
fit in GPU memory.

The main performance metric for this application is the user response time. A preliminary
analysis [15] showed that to achieve a 4 seconds response time (the maximum tolerated by
users), the thread pool and hardware configurations can not serve more than 120 simultaneous
requests (3.86±0.13), as shown in Figure 5.2.

In this context,meaningful questions are: Is there a better thread pool allocation that minimizes the
user response time? How many more users can the system serve if we find a better thread pool configura-
tion?The answers to those questions andmore analytical insightswill be presented in Section 5.2

57



Partie II, Chapter 5 – Experimental Evaluation and Validation with the Pl@ntNet Application

Figure 5.2 – Pl@ntNet Engine: user response time.

through our proposed methodologies and their implementation in the E2Clab framework.
Let us highlight that Pl@ntNet is representative of other applications in the context of the

Computing Continuum. As illustrated in Figure 5.1, it consists of many geographically dis-
tributed devices (over 10 million users) that collect and send data (about 400K plant images
per day), and perform preprocessing at the Edge, followed by extensive processing (e.g., species
prediction, similarity search, etc.) in centralized Cloud/HPC infrastructures.

5.2 Research Questions and Experimental Setup

In this section, we illustrate our proposed methodologies by showing how they can be used
to analyze the performance of the Pl@ntNet botanical application and to find its thread pool
configurations.

The goal of our experiments is to answer the following research questions:

1. What software configuration minimizes the user response time?

2. How does the number of simultaneous users accessing the system impact the user re-
sponse time?

3. How do the Extraction and Similarity Search thread pool configurations impact the pro-
cessing time and user response time?

The experimental setup is defined as follows:

a) Scenario Configuration: the experiments are carried out on 42 nodes of the Grid’5000 [32]
testbed (clusters [92]: chifflot, chiclet, chetemi, chifflet, and gros). Since the Pl@ntNet Identification
Engine requires GPU, it is deployed on the chifflot machines (model Dell PowerEdge R740),
which are equipped with Nvidia Tesla V100-PCIE-32GB GPUs, Intel Xeon Gold 6126 (Skylake,
2.60GHz, 2 CPUs/node, 12 cores/CPU), 192GB of memory, 480GB SSD, and 25Gbps Ethernet

58



5.2. Research Questions and Experimental Setup

Table 5.1 – Identification processing steps.

Task Description Thread pool Hardware
pre-process Decoding the query parameters. HTTP CPU

wait-download Wait for an available download thread. HTTP,
Download CPU

download Download images. Download CPU

wait-extract Wait for an available extractor thread. HTTP,
Extract CPU, GPU

extract DNN inference of the image. Extract GPU

process Process classification and similarity search out-
put at query level. HTTP CPU

wait-simsearch Wait for an available similarity search thread. HTTP,
Simsearch

CPU

simsearch Search the most similar images in our database. Simsearch CPU

post-process Check processed query results and format the re-
sponse. HTTP CPU

Table 5.2 – Thread pool configuration of Pl@ntNet Engine.
Thread pool Size (# threads) Description Hardware
HTTP 40 # simultaneous requests being processed. CPU
Download 40 # simultaneous images being downloaded. CPU
Extract 7 # simultaneous inferences in a single GPU. GPU
Simsearch 40 # simultaneous similarity search. CPU

interface. The clients submitting requests to the Pl@ntNet Identification Engine are deployed on
the chiclet, chetemi, chifflet, and gros clusters. The network connection is configured with 10Gb.

b) Workloads: we defined three categories of workloads, according to the number of simul-
taneous requests (i.e., 80, 120, and 140) submitted to the Pl@ntNet Identification Engine during
the whole experiment execution.

c) Configuration Parameters: Table 5.2 presents the parameters used to configure the thread
pool size of the Pl@ntNet Engine. As presented in Equation 5.1, these parameters refer to the
optimization variables of the optimization problem.

d) Performance Metrics: the metric of interest is the user response time. In Equation 5.1, this
metric is to be minimized as the optimization objective. The user response time refers to the av-
erage time that a user waits for the response to a request. Besides this metric, we also analyze
the identification processing time, which refers to the average time to process a user request. The
identification processing is divided into multiple tasks running in parallel, as described in Ta-
ble 5.1.

59



Partie II, Chapter 5 – Experimental Evaluation and Validation with the Pl@ntNet Application

We compare and analyze the user response time and identification processing time with respect
to two thread pool configurations: baseline and preliminary optimum. The baseline refers to the
current Pl@ntNet configuration used in the production servers. This configuration was defined
by Pl@ntNet engineers based on their best practical experience with the Pl@ntNet system, as
explained in Section 5.1 and presented in Table 5.2.

Thepreliminary optimumconfiguration: this configuration is the one foundusing ourmethod-
ology (see Subsection 5.3.1).We named it preliminary since the optimization problemmay have
multiple minima and one may find other application configurations if a different technique is
used (e.g., Gaussian Process (Kriging) [203], Gradient Boosting Regression Trees [89], among
others).

Besides, changes in the hardware configuration (e.g., size of GPU memory, number of CPU
cores, among others) running the Pl@ntNet application will require a new search for the thread
pool sizes since their configuration strongly depends on the hardware. In this case, our op-
timization methodology should be applied again. In a subsequent step, we further refine the
preliminary optimum using sensitivity analysis to obtain what we call refined optimum (see
Subsection 5.3.3).

Since we identified variations between measurements through experiments, we decided to
repeat each experiment (each thread pool configuration) 7x to obtain accurate measurements.
Besides, we ran each experiment for 23 minutes (or 1380 seconds) with an interval of metric
collection of 10 seconds to minimize the standard deviation of the metrics collected. We use
23 minutes because this amount of time is enough to stress the Pl@ntNet Identification Engine
and obtain more stable measurements of the user response times. Therefore, the user response
time is presented with the mean and standard deviation regarding 966 measurements (138 ∗ 7).
Furthermore, thanks to the repeatability feature provided in E2Clab, one may repeat those
experiments easily by issuing the following command:

e2clab deploy –repeat 7 –duration 1380 experiments/ artifacts/

5.3 Evaluation

Next, we present the results of the three research questions.

5.3.1 What software configuration minimizes the user response time?

The optimization problem to be solved can be stated as follows:

60



5.3. Evaluation

Figure 5.3 – (left) Baseline vs. preliminary optimum configurations, and (right) User response
time: baseline vs. preliminary.

Thread pool baseline preliminary
optimum

HTTP 40 54
Download 40 54
Extract 7 7
Simsearch 40 53
User response
time

2.657
(±0.0914)

2.484
(±0.0912)

Find (http, download, simsearch, extract), in order to

Minimize UserResponseT ime

Subject to 20 ≤ (http, download, simsearch) ≤ 60, Pool Size.

3 ≤ (extract) ≤ 9, Pool Size.

(5.1)

The function UserResponseTime is given by the parallel execution of the Pl@ntNet workflow
on the Grid’5000 testbed, as described in Phase II of our optimization methodology.

In order to define the search space dimensions,we run experiments to identify themaximum
upper bounds of variables that do not increase the user response time compared to the baseline
Pl@ntNet configuration. Therefore, the lower and upper bounds of variables (see Equation 5.1)
are ±50% of the baseline configuration (recall Table 5.2), respectively.

Theworkload uses 80 simultaneous requests to the Pl@ntNet Identification engine.We high-
light that this number has to be bigger than the upper bound of the HTTP thread pool size since
the HTTP pool refers to the simultaneous requests being processed.

We leverage Bayesian Optimization since it is typically used for global optimization of black-
box functions that are expensive to evaluate [88]. Extra Trees regressor is used as surrogate
model [194] to model our expensive function. This surrogate model is improved by evaluating
theUserResponseTime function at the next points. The goal is to find theminimumofUserRespon-
seTime function with as few evaluations as possible. After nine evaluations, the minimization
has converged, and the results are presented in Figure 5.3 (left), considering a workload of 80
simultaneous requests. As one may note, the preliminary optimum configuration reduces the
user response time by 7% and can serve 35% more simultaneous users (54 against 40, see the
HTTP thread pool).

From the results,we highlight that thanks to ourmethodologies implemented in E2Clab, one
may easily find an optimized application configuration. E2Clab abstracts all the complexities to:
define thewhole optimization problem; deploy the application on large-scale scientific testbeds;

61



Partie II, Chapter 5 – Experimental Evaluation and Validation with the Pl@ntNet Application

run parallel evaluations of the optimization; and collect all the experiments results.
In the following sections, we enhance our analysis to (a) understand the performance of

both configurations for different workloads; and (b) better understand the performance results
and their correlation with resource usage.

5.3.2 How does the number of simultaneous users accessing the system impact the
user response time?

In order to understand the impact of different workloads on the user response time, we de-
fined three workloads that represent simultaneous requests submitted to the Pl@ntNet system.
These experiments aim to compare the performance gains of the preliminary optimum thread
pool configuration (found using ourmethodology) against the baseline (current Pl@ntNet con-
figuration). Lastly, we exploit the maximum number of simultaneous requests that each config-
uration can handle considering the constraint of 3-4 seconds user response time.

As presented in Figure 5.3 (right), we scale up the workloads as follows: 80, 120, and 140
simultaneous requests. As one may note, the preliminary optimum configuration outperforms
the baseline for all workloads. We highlight that the difference between them varied as follows:
6.9%, 2.2%, and 6.7% for 80, 120, and 140 simultaneous requests, respectively.

Themain observation is that the preliminary optimumconfiguration (foundusing ourmethod-
ology) outperforms the baseline thanks to a better threadpool allocation that allows the Pl@ntNet
system to serve simultaneously 35%more requests (54 against 40) with a shorter user response
time when compared to the baseline.

We also highlight that thanks to the transparent scaling feature provided by E2Clab, one
may easily scale up the workloads to analyze their impact on the application performance.

5.3.3 How do the Extraction and Similarity Search thread pool configurations im-
pact the processing and user response times?

Since the extraction and similarity search tasks are the most time-consuming compared to the
remaining ones, we zoom our analysis on them. The goal is to improve the thread pool config-
uration even more and identify possible bottlenecks on the Pl@ntNet identification engine.

The experiment aims to understand how variations in the preliminary optimum thread pool
configuration of the extraction and similarity search tasks impact the user response time and the
processing time of the identification tasks.

We apply Sensitivity Analysis techniques to explore the impact of such variations. From the
existing Sensitivity Analysis methods, we decided to use One-at-a-time (OAT) [104]. OAT is a
simple and common approach consisting of varying a single parameter at a time to identify the
effect on the output.

62



5.3. Evaluation

(a) user response time.

(b) processing time.

(c) extract pool busy time. (d) simsearch pool busy time.

Figure 5.4 – Impact of extract thread variability.

In our case, the parameters are extract and simsearch thread pool sizes. We vary the extract
pool size in±2 from the current size (7 threads), while the simsearch in±3 (current size is 53 and
for simplification, we do not present in Figure 5.6a the times for 50 and 51 since they are bigger
than 52). These variations result in 10 new thread pool configurations to be evaluated. There-
fore, we take advantage of E2Clab to automatically run them in a reproducible way, following
E2Clab’s methodology.

Analyzing thread pool variations in the extraction task

Figure 5.4 shows the impact of extraction threads on (a) the user response time, (b) the time
to process each task, (c) extract pool busy time, and (d) simsearch pool busy time. Furthermore,
presented in Figure 5.5, we also analyze their impact on resource usage, such as (a) CPU usage

63



Partie II, Chapter 5 – Experimental Evaluation and Validation with the Pl@ntNet Application

(a) CPU usage. (b) GPU memory usage. (c) system memory usage.

Figure 5.5 – Impact of extract thread variability on resource consumption.

(b) GPU memory, (c) system memory.
In Figure 5.4a, we observe that the preliminary optimum configuration with seven extract

threads does not produce the minimum user response time since using six extract threads re-
duces it by 8.5%. Decreasing to 5 threads or increasing it to 8 or 9 threads impacts negatively
when compared to 6 threads. The explanation for this behavior is given next.

Regarding the processing time (Figure 5.4b), as expected, thewait-extract time reduces as we
increase the number of extract threads, while the simsearch task time increases. This time increase
in the simsearch task can be explained by Figure 5.5a since using 8 and 9 extract tasks results in
a CPU usage of 100% during the whole application execution. Hence, as those tasks compete
for processing resources, allocating more extract threads impact negatively the simsearch task
time. As for the remaining sizes, they varied between 85% and 100%. This behavior explains the
results observed for the user response time in Figure 5.4a. Furthermore, unlike the wait-extract
time, the extract task time was not reduced when increasing the extract thread pool size.

By analyzing the impact on the GPU memory usage (Figure 5.5b), we observe that it in-
creases as we allocate more threads to the extract thread pool, and it remains constant during
the application execution. The GPU utilization for all thread pool sizes is between 35% and 60%
most of the time, while the GPU power draw is between 50 Watts and 80 Watts. As the GPU
memory usage, the system memory usage (Figure 5.5c) of the Docker container running the
Pl@ntNet Engine also increases with the extract thread pool size.

Lastly, the extract thread pool busy time (Figure 5.4c) is 100% during the whole application
execution for thread pool sizes of 5, 6, and 7, and between 80% and 100% for sizes 8 and 9.
This explains the higher and lower values of the wait-extract times observed in Figure 5.4b. For
the similarity search (Figure 5.4d), the thread pool busy time is between 80% and 100% for a
size of 8 and 9. For the 5, 6, and 7 thread pool sizes, it is 50%, 55%, and 60% busy on average,
respectively. This also explains the higher values of wait-simsearch for sizes 8 and 9 compared to
5, 6, and 7 in Figure 5.4b.

64



5.3. Evaluation

(a) user response time.

(b) processing time.

(c) simsearch pool busy time. (d) extract pool busy time.

Figure 5.6 – Impact of similarity search thread variability.

Analyzing thread pool variations in the similarity search task

Following our analysis, Figure 5.6 shows the impact of the thread pool size for similarity
search on: (a) user response time and (b) processing time. Besides, in Figure 5.6c and Fig-
ure 5.6d, we show the thread pool busy time for the similarity search and extract thread pools,
respectively.

In Figure 5.6a, the preliminary optimum configuration with 53 threads may be increased
to 55 threads to reduce by about 4% the user response time. Regarding the processing time
(Figure 5.6b), the simsearch task time confirms what was observed with the user response time.
That is, adding more than 55 threads is not worth to decrease its execution time.

Figure 5.6c shows the correlation of the similarity search pool busy time with the simsearch
task time observed in Figure 5.6b and explains its variation. Using 52 threads, it is busy between

65



Partie II, Chapter 5 – Experimental Evaluation and Validation with the Pl@ntNet Application

Table 5.3 – Comparison of the three Pl@ntNet configurations.

Thread pool baseline preliminary optimum refined optimum
HTTP 40 54 54
Download 40 54 54
Extract 7 7 6
Simsearch 40 53 53
User response time 2.657 (±0.0914) 2.484 (±0.0912) 2.476 (±0.0826)

Figure 5.7 – User response time: baseline vs. optimums.

90% and 100%, while for 53 to 55, it is below 60% and increases to about 80% with 56 threads.
The impact of the similarity search thread pool variation on the extract task (Figure 5.6b) can
be explained by Figure 5.6d. Lower times in wait-extract for sizes 52 and 56 is due to a busy time
between 90% and 100%. For sizes from 53 to 55, the busy time is 100%.

Exploring the refined optimum configuration

Since we observed a lower user response time after analyzing the impact of variations of the
extract and simsearch thread pool configurations on the user response time, we exploit this con-
figuration (named refined optimum) with all the previously defined workloads. As presented
in Table 5.3 and Figure 5.7, we observed even better results for all workloads.

The refined optimum presents the best results for all workloads, outperforming both the
baseline and preliminary optimum. Compared with the baseline, the difference between con-
figurations varied with the workloads as follows: from 6.9% to 7.2%; from 2.2% to 6.3%; and
from 6.7% to 9.8% for 80, 120, and 140 simultaneous requests, respectively.

5.4 Reproducibility and Artifact Availability

Our methodologies are aligned with the Open Science [84] goal to make scientific research
processes more transparent and results more accessible. As presented, our experiment method-
ology provides guidelines to systematically define the whole experimental environment, such

66



5.4. Reproducibility and Artifact Availability

as the testbed resources, the network configurations, and the execution logic of the application
workflow. Furthermore, our optimization methodology guides users to manage the optimiza-
tion cycle of complex workflows, such as: (Phase-I) defines the optimization problem and the
application-related parameters to optimize; (Phase-II) defines the optimization techniques and
search algorithms; and (Phase-III) provides access to the optimization results.

The whole optimization cycle is set up through aUser-defined Optimization class. This class is
designed to be easy to use and understand, and it can be easily adapted to different optimization
problems (find outmore in the documentationWebpage [225]). At the end of each optimization
cycle, E2Clab provides an archive of the generated data. The archive consists of data from Phases
I and II, which is needed to allow other researchers to reproduce the results. The access to the
experimental artifacts, the definition of the experimental environment, and the experimental
results are publicly available at [74].

This chapter presented the validation of our methodologies at a large scale on 42
nodes of the Grid’5000 testbed. It shows how E2Clab can be used to analyze and
optimize the performance of the Pl@ntNet botanical application, used by more
than 10 million users in 180 countries. We highlight that the analysis presented in
this chapter, backed by our methodologies, helps to understand how variations in
the thread pool configuration of the Pl@ntNet engine impact the processing times
(user response time and identification processing steps) by correlating them with
resource usage.
Furthermore, this analysis helps to improve the performance of the application
by supporting 35% more simultaneous users and presenting a smaller user response
time for different workloads (80, 120, and 140 simultaneous requests) and 30% less
GPU memory utilization, when compared to the baseline.
The following chapter explores the efficient provenance capture of Edge-to-Cloud
workflows for assisting users to understand the application performance trade-offs.
It illustrates E2Clab with a synthetic application deployed on multiple scientific
testbeds (e.g., experiments combining Edge and Cloud resources).

Conclusion

67





Part III

Facilitating Reproducibility and
Replicability of Edge-to-Cloud

Workflows

69





Chapter 6

EFFICIENT WORKFLOW PROVENANCE

CAPTURE ON THE EDGE-TO-CLOUD

CONTINUUM

Contents
6.1 The Need for Provenance Capture of Edge-to-Cloud Workflows . . . . . . . . 72
6.2 Limitations of Existing Provenance Systems . . . . . . . . . . . . . . . . . . . . 73

6.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2.2 Overhead Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2.3 Design-level Limitations of Existing Systems . . . . . . . . . . . . . . . . 77

6.3 ProvLight Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3.1 Data Exchange Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4 Provenance Capture of Edge-to-Cloud Workflows . . . . . . . . . . . . . . . . . 82
6.4.1 Provenance Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.4.2 Provenance Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.5.1 Capture Time Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.5.2 CPU and Memory Overhead . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.5.3 Network Usage Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.5.4 Power Consumption Overhead . . . . . . . . . . . . . . . . . . . . . . . . 90
6.5.5 Performance in Cloud Servers . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.6.1 ProvLight Design Choices Impact on Performance . . . . . . . . . . . . . 90
6.6.2 Impact of ProvLight on Real-life Use-Cases . . . . . . . . . . . . . . . . . 91
6.6.3 Integration with Existing Systems . . . . . . . . . . . . . . . . . . . . . . 92
6.6.4 Reproducibility and Artifact Availability . . . . . . . . . . . . . . . . . . 92

71



Partie III, Chapter 6 – Efficient Workflow Provenance Capture on the Edge-to-Cloud Continuum

The third part of this thesis focuses on facilitating the reproducibility and replicability of
performance trade-offs of Edge-to-Cloud workflows. In particular, we show how E2Clab can be
applied to support other domains that are crucial for reproducibility, such as workflow prove-
nance capture and collaborative environments for replicating Edge-to-Cloud experiments.

ThisChapter introduces the ProvLight tool to enable efficient provenance capture in IoT/Edge
devices. Then, it presents the integration of ProvLight into the E2Clab framework for capturing
provenance data of Edge-to-Cloud workflows. Finally, it evaluates Provlight and shows that it
outperforms existing solutions.

6.1 The Need for Provenance Capture of Edge-to-Cloud Workflows

The process of understanding, optimizing, and reproducing complex Edge-to-Cloud work-
flows may be assisted by provenance data capture. "Provenance data" refer to a record trail that
accounts for the origin of a piece of data together with descriptions of the computational pro-
cesses that assist in explaining how and why it was generated [132]. Capturing provenance
data during workflow execution helps users in tracking inputs, outputs, and processing his-
tory, allowing them to steer workflows precisely [207].

For instance, considering a Federated Learning model training workflow executed on dis-
tributed devices on the Edge, the captured data during model training helps answer questions
like: (i) What are the elapsed time and the training loss in the latest epoch for each hyperparameter com-
bination? [201, 208] or (ii) Retrieve the hyperparameters which obtained the 3 best accuracy values for
model m? [160, 208]. Answering such queries helps to analyze hyperparameter values related
to the training stages and to adjust them for better-quality results.

Overhead in provenance systems is a critical problem that must be assessed [109]. Many
other contributions in provenance systems evaluate the overhead, such as [206, 202]. Overhead
is evenmore critical in edge devices because of resource constraints andpower consumption. For
this reason, we decided to focus on evaluating overhead in our work. In [25], leading database
researchers discussed the challenges of deploying services considering disaggregation and high
heterogeneity of resources in hybrid cloud infrastructures. In [200], the authors describe chal-
lenges related to capturing provenance on the Edge-to-Cloud Continuum.

Enabling provenance data capture with low overhead in resource-constrained IoT/Edge de-
vices cannot be easily achieved by existing provenance systems, calling for practical solutions
beyond the state-of-the-art. For instance, it requires the design and development of novel cap-
ture approaches focusing on the hardware limitations of IoT/Edge devices, as proposed in this
work.

We make the following contributions:

72



6.2. Limitations of Existing Provenance Systems

1. Aperformance evaluation of the existingprovenance systems (e.g.,DfAnalyzer, ProvLake,
PROV-IO, and Komadu) when capturing provenance in IoT/Edge devices (Section 6.2).

2. A novel workflow provenance capture approach tailored for resource-limited IoT/Edge
devices that addresses the limitations found in state of the art (Section 6.3). ProvLight is
an open-source implementation of this approach (available at [162]), following theW3C
PROV-DM recommendations.

3. An integration of ProvLight within the E2Clab framework. This enables provenance
data capture across theComputingContinuum for hybridworkflowsdeployed on IoT/Edge
and Cloud/HPC infrastructures. To the best of our knowledge, this enhanced version of
E2Clab is the first framework to support the end-to-end provenance data capture of com-
plex workflows executed on the Edge-to-Cloud Continuum (Section 6.4). This integration
with E2Clab is an open-source tool available at [75]. We highlight that ProvLight may
easily integrate into other deployment and performance optimization systems.

4. A large-scale experimental validation of ProvLight with synthetic workloads on 64 real-
life IoT devices (fromFIT IoT LAB [4] testbed) andCloud resources (fromGrid’5000 [33]
testbed). Experimental evaluations show that ProvLight outperforms (i.e., lower capture
overhead) DfAnalyzer and ProvLake systems in terms of capture time, CPU andmemory
usage, network usage, and power consumption (Section 6.5).

6.2 Limitations of Existing Provenance Systems

The main state-of-the-art provenance systems were designed to run on Cloud/HPC infras-
tructures. We have not found in the literature reference systems tailored for IoT/Edge devices.
Therefore, this work refers to systemswell-known for their low provenance capture overhead in
Cloud/HPC, such as DfAnalyzer [202], ProvLake [206], and PROV-IO [105]. We also include
Komadu [216] in our analysis because the authors of the systems mentioned earlier compare
with it.

Since our main goal is to enable the efficient provenance capture of workflows running on
IoT/Edge computing resources, the first research question we aim to answer is: How Do the
Existing Provenance Systems Perform in IoT/Edge Devices? We address this research question
by providing an experimental evaluation of existing provenance systems along with a detailed
discussion.

6.2.1 Experimental Setup

Selected provenance systems. Due to the limitations of the PROV-IO and Komadu systems,
shown in Table 6.4, they were excluded from our performance analysis. We choose ProvLake

73



Partie III, Chapter 6 – Efficient Workflow Provenance Capture on the Edge-to-Cloud Continuum

Table 6.1 – Synthetic workload configurations.

Configurations to generate the synthetic workloads
Number of chained transformations 5

Number of tasks 100
Attributes per task 10 100
Task duration (s) 0.5 1 3.5 5

and DfAnalyzer because we have access to their data capture components as open-source soft-
ware. Since we are limited to testing with the open-source version of these systems, we cannot
experiment with features that might deliver lower overhead but are not open-source. For in-
stance, ProvLake reports being able to use a different communication protocol other than HTTP
1.1 for machine learning provenance capture with low overhead in an HPC environment [208],
but this system version is not available as open-source.

Performance metrics. The main tracked metric is the capture time overhead, which refers to the
relative difference in workflow execution time with and without data capture. To increase the
accuracy of the results for each provenance system and each synthetic workload, we repeat the
experiment 10 times. All results are presented as the mean of the ten evaluations followed by
their respective 95% confidence interval.

Overhead levels. In the literature, the reference to low overhead or negligible overhead, in terms
of provenance capture time in Cloud/HPC environments, differs between application domains.
For instance: <2% for blockchains [185];6 4% for I/O-centric workflows [105]; 4% for AImodel
training [201]; 6 12% for security applications [153]; to cite a few. Regarding provenance cap-
ture on resource-limited IoT/Edge devices, prohibitive overhead levels may vary depending
on the application use case. For instance, in latency-sensitive applications such as autonomous
vehicles [141], real-time monitoring in smart energy grids [2], and virtual and augmented re-
ality [134], to cite a few, a > 3% processing time overhead is considered high (i.e., enough to
exceed the acceptable latency thresholds) as it can introduce delays that disrupt the real-time
nature of the application, leading to inaccuracies, missed targets, or compromised safety.

Synthetic workloads. We use a synthetic workload to evaluate the provenance capture over-
head because doing it in real workloads is much more complicated, costly, and may not make
sense for the real application. The reason is thatwe cannot precisely control and isolate variables
such as elapsed time, number of tasks, and number of attributes. A similar situation happens
when scientists need to rely on simulations instead of real phenomena to test and evaluate their
hypotheses. Unfortunately, there are no well-established benchmarks in the community to eval-
uate overhead in provenance systems. Therefore, like related work [206, 202], we decided to

74



6.2. Limitations of Existing Provenance Systems

focus our analysis on synthetic workload configurations. Such configurations are based on real-
life workloads [242, 133, 113], and we refined the configuration space of our workloads with
preliminary experiments on real-life edge devices.

Table 6.1 presents the 8 synthetic workload configurations used to analyze the data capture
overhead. We chose these values to cover combinations of application characteristics. The idea
of these configurations is to mimic the characteristics of the various real-life workloads that
IoT/Edge devices typically execute, such asAImodel training (e.g., the FL use casewe presented
earlier), image pre-processing, and sensor data aggregation, among others. Such workloads are
composed of various tasks (number of tasks), each one with a different number of attributes
(attributes per task) and with different processing times (task duration).

We consider workloads with 5 chained transformations, which is an approximate number of
transformations inmany applications. In the FL application, for example, one of the transforma-
tions is model training, which has many epoch executions. We consider each epoch execution
as a task of the model training transformation and each epoch has associated features (con-
sidered input attributes) and performance metrics (considered output attributes) [208]. Other
transformations include data preparation and the evaluation of the trained model.

To generate our synthetic workload, we consider 100 tasks. In the FL example, it would
represent a training with 100 epochs. For each task, we represent applications that manipulate
a few (about 10) or more (about 100) attributes per task. Besides, to represent various classes
of applications, we also consider four different task duration: shorter (e.g., 0.5 or 1 seconds) and
longer (e.g., 3.5 or 5 seconds).

We run preliminary experiments to refine the synthetic workload configurations. We ob-
serve that there is no significant impact on the capture overhead when varying the number of
tasks from 10, 50 to 100. In addition, since the data capture and transmission is measured per
task, mainly variations in the number of attributes per task (amount of data transmitted) and
task duration (data capture frequency) impact the capture time overhead (calculated as the rel-
ative difference).

Hardware. Eachworkload configuration runs on a singleA8-M3 [112] IoTdevice (ARMCortex-
A8 microprocessor, 600Mhz, 256MB; radio: 802.15.4, 2.4 GHz; power: 3.7V LiPo battery, 650
mAh) available at the FIT IoT LAB testbed [4]. We instrument the synthetic workloads (code
available at [161]) with the capture libraries provided by ProvLake and DfAnalyzer systems.
The capture libraries transmit the captured data to the provenance system running on a remote
Cloud/HPC server [91] (Intel Xeon Gold 5220, 2.20GHz, 18 cores; 96GB RAM; Ethernet) avail-
able at the Grid’5000 [33] testbed.

75



Partie III, Chapter 6 – Efficient Workflow Provenance Capture on the Edge-to-Cloud Continuum

Table 6.2 – Capture overhead of ProvLake and DfAnalyzer.

overhead
level

low
6 3%

high
> 3%

attributes per task Provenance System Capture Overhead (%)

10 ProvLake
56.9%
±0.08

29.9%
±0.29

8.56%
±0.01

6.02%
±0.01

10 DfAnalyzer
39.8%
±0.06

21.2%
±0.34

6.12%
±0.07

4.26%
±0.01

100 ProvLake
57.3%
±0.10

30.1%
±0.41

8.57%
±0.01

6.04%
±0.04

100 DfAnalyzer
40.5%
±0.20

21.3%
±0.06

6.12%
±0.01

4.31%
±0.01

task duration (s) 0.5 1 3.5 5

Table 6.3 – ProvLake: impact of bandwidth and grouping strategy on the capture overhead.

grouping data captured Bandwidth 1Gbit Bandwidth 25Kbit

0
59.49%
±0.09

30.1%
±0.27

321%
±1.05

161%
±1.14

10
6.83%
±0.02

3.58%
±0.20

102.5%
±3.89

49.8%
±2.92

20
3.87%
±0.01

1.99%
±0.01

100.8%
±3.78

51.16%
±1.03

50
2.37%
±0.01

1.24%
±0.01

95.04%
±0.10

43.23%
±0.28

task duration (s) 0.5 1 0.5 1

6.2.2 Overhead Analysis

Table 6.2 presents the capture time overhead of ProvLake and DfAnalyzer in IoT/Edge de-
vices, and Table 6.3 shows the analysis of a feature provided by ProvLake, which consists of
grouping the captured data, i.e., messages, before transmitting them to the server, i.e., prove-
nance system. In addition, we analyze how low-bandwidth networks may impact such data
grouping strategy.

Results in Table 6.2 show that both systems present high overhead (>39%) for tasks with
a duration of 0.5 seconds. For the remaining task duration, the overhead is still high (>3%).
Varying the number of attributes per task from 10 to 100 slightly increases the overhead.

Regarding Table 6.3, we observe low overhead (<3%) when grouping 50 messages for a

76



6.3. ProvLight Design

Table 6.4 – Limitations of existing provenance systems.

System Limitation
DfAnalyzer Presents high (>3%) capture overhead for all synthetic workloads.

ProvLake

Presents high (>3%) overhead for all workloads. However, ProvLake
allows grouping captured data to reduce transmission frequency, en-
abling lower overhead, but it still suffers high overhead in low band-
width networks.

PROV-IO

Does not send the captured data over the network to another machine
hosting the provenance system. Instead, it periodically dumps the in-
memory provenance graph to disk. This approach is not suitable for
IoT/Edge devices.

Komadu

Komadu does not follow a clear separation between a client library and
a backend provenance server. Therefore, the capture and the processing
of the captured information run in the same machine. This approach is
not suitable for capturing on IoT/Edge devices.

task duration of 0.5 seconds, and grouping from 20 messages for a task duration of 1 second,
for 1Gbit bandwidth. While for 25Kbit bandwidth, we observe high overhead (>43%) for all
workloads.

6.2.3 Design-level Limitations of Existing Systems

Table 6.4 presents the takeaways of our performance analysis and exposes the main limita-
tions of the existing provenance systems. In summary, the evaluation shows that the existing
systems present high overheads (>3%) when capturing on IoT/Edge devices.

ProvLake andDfAnalyzer rely onHTTP over TCP, instead of IoT-basedmessaging and trans-
mission protocols such as MQTT [145], CoAP [50], AMQP [8], UDP [218], RPL [183], to cite
a few. In resource-constrained devices, they make a relevant impact on performance, resource
usage, and power consumption, as explored by existing works [144, 230, 93].

The experiment results reinforce the need for capture approaches tailored to the constraints
imposed by IoT devices. In addition, simplified data models to represent the provenance data
help to reduce overheads.

6.3 ProvLight Design

This section introduces ProvLight, a tool [162] for the efficient provenance data capture of
Edge-to-Cloud workflows. ProvLight is designed to capture provenance in IoT/Edge devices
with low overhead in terms of capture time, CPU andmemory usage, network usage, and power

77



Partie III, Chapter 6 – Efficient Workflow Provenance Capture on the Edge-to-Cloud Continuum

consumption. Section 6.3.1 presents the ProvLight provenance model. Next, the architectural
details are given in Section 6.3.2, while Section 6.3.3 describes its implementation.

6.3.1 Data Exchange Model

ProvLight provenance data exchange model follows the W3C PROV-DM [28] recommen-
dation. The goal is to have a data exchange schema (domain-agnostic PROV modeling) for
capturing data in the IoT/Edge and ensuring these captured data are compatible with W3C
PROV-based workflow provenance systems, such as ProvLake, DfAnalyzer, PROV-IO, among
many others. Table 6.5 describes ProvLight classes and their relationships and maps them to
PROV-DM core elements.

The main classes of our model are Workflow, Task, and Data. These classes are derived from
the Agent, Activity, and Entity PROV-DM types, respectively. ProvLight classes aim to provide
a simplified abstraction allowing users to track workflow (Workflow class), input and output
parameters (Data class), and processing history (Task class).

TheWorkflow classmay be used to refer to the applicationworkflow (e.g., Federated Learning
training). The Task class refers to the tasks executed in the workflow (e.g., each epoch or model
update of the model training). Finally, the Data class represents the input data attributes and
values (e.g., hyperparameters of the learning algorithm) or the output attributes (e.g., training
time and loss of each epoch).

To represent PROV-DM relationships, we use the id attribute of each class. We link the Task
and Data classes with the workflow they belong to (wasAssociatedWith and wasAttributedTo, re-
spectively). The links between a Task and its respective Data inputs and the generated outputs
are represented by the used and wasGeneratedBy relationships, respectively. The dependencies at-
tribute in the Task class links tasks (wasInformedBy) with dependencies (e.g., task B starts after
task A ends). Finally, the derivations attribute in the Data class links (wasDerivedFrom) chained
data (e.g., data DA was used in task A to generate data DB).

Defining such relations aims to provide userswith the data processing history:Where did the
data come from?Howwas the data transformed? andWho acted upon it? For instance, capturing
provenance data of Federated Learning model training workflows may help users to interpret
results. Tracking model training at runtime and fine-tuning hyperparameters is helpful espe-
cially when the training process takes a long time.

6.3.2 Architecture

Figure 6.1 presents the ProvLight architecture. It follows a client/server model where the
server receives the captured data from clients and then translates it and sends it to provenance
systems. We highlight that ProvLight may integrate with existing provenance systems like Df-

78



6.3. ProvLight Design

Ta
bl
e
6.
5
–
Th

e
Pr
ov

Li
gh

tp
ro
ve

na
nc

e
da

ta
ex
ch

an
ge

m
od

el
fo
llo

w
sP

RO
V-
D
M
.

PR
O
V
-D

M
Ty

pe
Pr

ov
Li
gh

t
C
la
ss

Pr
ov

Li
gh

t
C
la
ss

A
ttr

ib
ut
es

Pr
ov

Li
gh

tA
ttr

ib
ut
e
D
es
cr
ip
tio

n
an

d
PR

O
V
-D

M
R
el
at
io
ns

hi
ps

Pr
ov

Li
gh

t
C
la
ss

D
es
cr
ip
tio

n
A
ge

nt
W
or
kfl

ow
id

W
or
kfl

ow
id
.

Re
fe
rs

to
ap

pl
ic
at
io
n
w
or
kfl

ow
s.

A
ct
iv
ity

Ta
sk

id w
or
kfl

ow
de

pe
nd

en
ci
es

da
ta

tim
e

st
at
us

Ta
sk

id
.

Li
nk

st
as
ks

w
ith

th
e
w
or
kfl

ow
th
ey

be
lo
ng

to
(w

as
A
ss
oc
ia
te
dW

ith
).

D
ep

en
de

nc
ie
sb

et
w
ee
n
ta
sk
s(

w
as
In
fo
rm

ed
By

).
D
at
a
us

ed
(u

se
d)

an
d
ge

ne
ra
te
d
(w

as
G
en
er
at
ed
By

)
by

a
ta
sk
.

Ta
sk

st
ar
ta

nd
en

d
tim

e.
Ta

sk
st
at
us

:r
un

ni
ng

or
fin

is
he

d.

Re
pr
es
en

ts
th
e
pr
oc
es
si
ng

st
ep

so
ft
as
ks

(a
nd

th
ei
r

de
pe

nd
en

ci
es
)
th
at

co
m
po

se
w
or
kfl

ow
s.

En
tit
y

D
at
a

id w
or
kfl

ow
_i
d

de
riv

at
io
ns

at
tr
ib
ut
es

D
at
a
id
.

Li
nk

sd
at
a
w
ith

th
e
w
or
kfl

ow
th
ey

be
lo
ng

to
(w

as
A
ttr

ib
ut
ed
To
).

Li
nk

sc
ha

in
ed

da
ta

(w
as
D
er
iv
ed
Fr
om

).
D
at
a
at
tr
ib
ut
es

an
d
va

lu
es
.

Re
pr
es
en

ts
da

ta
de

riv
at
io
ns

al
on

g
th
e
w
or
kfl

ow
ex
ec
ut
io
n.

79



Partie III, Chapter 6 – Efficient Workflow Provenance Capture on the Edge-to-Cloud Continuum

ProvLake

DfAnalyzer

PROV-IO

Komadu

Provenance 
Systems

HPC/Cloud IoT/Edge

ProvLight 
Server

…

Server

others

…

broker

translator

ProvLight 
Client

Library

services

broker
Provenance 

data 
translator

Client 
library

IoT/Edge 
device

Figure 6.1 – ProvLight Architecture.

Analyzer, ProvLake, and PROV-IO, among others (e.g., through their APIs and ProvLight data
translator), as a solution for capturing data of workflows running on IoT/Edge devices, as illus-
trated in Figure 6.1. Table 6.6 summarizes how the ProvLight architecture design differs from
the systems analyzed in Section 6.2.

This integration may be achieved by using:

Server

The ProvLight server is composed of a broker and a provenance data translator. Both may be
parallelized to scale the data capture for scenarios with various IoT/Edge devices. We describe
the main roles of each one.

(i) Broker: refers to anMQTT-SN broker (MQTT for Sensor Networks [210]). During work-
flow execution, clients subscribe to the broker and then start to transmit the captured data. Next,
this data is forwarded to the provenance data translator, which is subscribed to the broker.

(ii) Provenance Data Translator: translates the captured data to the respective format used
by the provenance system. The provenance data translatormay be extended, by users, to translate
to a particular data model of a provenance system. After translating, it sends the data to the
provenance system service (e.g., typically available at an ip:port). It allows seamless integration
with existing systems.

80



6.3. ProvLight Design

Table 6.6 – How does ProvLight differ from state-of-the-art systems in terms of data capture?

ProvLight DfAnalyzer ProvLake
application layer

protocol
MQTT-SN

(QoS 2: Exactly once)
HTTP 1.1 HTTP 1.1

transport layer
protocol

UDP TCP TCP

Communication
model

Publish/Subscribe Request/Response Request/Response

Server side MQTT-SN Broker HTTP Server HTTP Server

Client side
features

provenance data representation &
payload compression &
grouping data captured

N/A
grouping data

captured

Provenance data
model

PROV-DM PROV-DM PROV-DM

Capture library
language

Python Python, C++ Python

Client

The ProvLight client aims to efficiently capture provenance data on resource-limited devices.
ProvLight provides a client library that follows the W3C PROV-DM provenance model (as pre-
sented in Table 6.5). This library allows users to instrument their workflow code to decide what
data to capture. A client is configured to transmit, at runtime, the captured data to the remote
broker (e.g., ip:port). This allows users to track workflow execution at runtime (e.g., started and
finished tasks, input and output data, etc.) through provenance systems supporting data inges-
tion at runtime.

6.3.3 Implementation

Server

The Broker is implemented based on the Eclipse RSMB server [184] (Really Small Message
Broker). RSMB builds on top of Mosquitto [78] codebase and implements the MQTT-SN pro-
tocol.

The Provenance Data Translator is a Python service thatmay be extended to translate captured
data (from the ProvLight data format) to a particular provenance system (e.g., DfAnalyzer,
ProvLake, Komadu, etc.). In our repository [162], we provide an implementation showing how
to translate from the ProvLight data format to DfAnalyzer. Such translation is possible since
the aforementioned systems follow the W3C PROV-DM provenance model. For the translator-

81



Partie III, Chapter 6 – Efficient Workflow Provenance Capture on the Edge-to-Cloud Continuum

to-broker communication, we use the MQTT-SN Python client library [163] based on Eclipse
RSMB. Finally, for the translator-to-provenance-system communication, users are free to use any
Python library compatible with the provenance system (e.g., Requests [172]).

Client

The ProvLight client library is implemented in Python and provides a series of features
targeting resource-limited IoT/Edge devices:

— provenance data representation: simplified classes for provenance modeling that allow users
to represent workflows, data derivations (e.g., input/output data from tasks) and tasks
(e.g., status, dependencies, data derivations);

— payload compression: compresses the bytes in captured data before transmitting over the
network; and

— data capture grouping: allow users to optionally group data just from ended tasks, so users
may still track at workflow runtime the tasks that have already started.

As shown later in the evaluation section, grouping and compressing captured data help
reduce capture time overhead, especially in IoT/Edge devices.

Capturing Provenance using ProvLight

Listing 6.1 illustrates an example of application code instrumentation with the ProvLight
library highlighted in blue color. Lines 7, 8, and 24 instantiate the workflow, start, and finalize
it, respectively. Line 17 instantiates a task, linking it to the workflow, input data derivation, and
dependent task. Lines 19 and 22 capture data from the initialization and finalization of the task.

Before starting a task, line 18 instantiates Data and adds it as input data (line 19) to the
task. Following the same logic, line 21 instantiates and adds the output data from the task. The
begin() and end()methods ofWorkflow and Task transmit the captured data over the network to
the broker. Finally, line 20 is where the workflow task runs.

6.4 Provenance Capture of Edge-to-Cloud Workflows

This section presents the integration of ProvLight as a key system in the E2Clab [176] frame-
work for reproducible experimentation across the Edge-to-Cloud Continuum. This integration
allows users to capture end-to-end provenance data of Edge-to-Cloud workflows. Figure 6.2
shows the extended E2Clab architecture with the new components highlighted in red color.

82



6.4. Provenance Capture of Edge-to-Cloud Workflows

1 from provlight . workflow import Workflow
2 from provlight .task import Task
3 from provlight .data import Data
4
5 attributes = 100, chained_transformations = 5, number_of_tasks = 100
6 # Application Workflow
7 workflow = Workflow (1)
8 workflow .begin ()
9 # Tasks and data derivations

10 data_id = 0, previous_task = []
11 in_data = {’in’: [1 for _ in range( attributes )]}
12 out_data = {’out ’: [2 for _ in range( attributes )]}
13
14 for transf_id in range( chained_transformations ):
15 for task_id in range(int( number_of_tasks / chained_transformations )):
16 data_id += 1
17 task = Task(transf_id -task_id , workflow , transf_id , dependencies =

previous_task )
18 data_in = Data(in_{ data_id }, workflow .id , in_data )
19 task.begin ([ data_in ])
20 #### ADD YOUR TASK HERE ####
21 data_out = Data(out_{ data_id }, workflow .id , out_data )
22 task.end ([ data_out ])
23 previous_task = [task.id]
24 workflow .end ()

Listing 6.1 – ProvLight: user-defined provenance capture.

6.4.1 Provenance Manager

We design a new manager named Provenance Manager. Figure 6.2 illustrates the integrated
view of the two main elements that compose the Provenance Manager:

(i) ProvLight: to efficiently capture provenance data of workflows running on IoT/Edge
devices. It also allows users to capture provenance in Cloud/HPC environments. ProvLight
translates the captured data to the DfAnalyzer data model.

(ii) DfAnalyzer: to store and query provenance captured by ProvLight duringworkflow run-
time (e.g., compare provenance of multiple workflow evaluations to understand how they im-
pact on performance). Furthermore, it allows users to visualize dataflow specifications (i.e.,data
attributes of each dataset).

We highlight that in addition to the characteristics of the provenance systems analyzed
in Table 6.4, and due to ProvLake being proprietary within IBM, while DfAnalyzer is open
source [67], in this work, we decide to useDfAnalyzer. Note that, as the data capture component
of DfAnalyzer presents high overhead, we just use its data analysis and storage components. Fi-
nally, the Provenance Manager could replace DfAnalyzer with other provenance systems (e.g.,
PROV-IO, Komadu, etc.). It requires extending ProvLight to translate the provenance data to
the data model of the respective provenance system and use their APIs.

83



Partie III, Chapter 6 – Efficient Workflow Provenance Capture on the Edge-to-Cloud Continuum

E2Clab

EnOSlib

lyr_svc_conf network_conf workflow_conf

LYR & SVC
Manager

Network
Manager

Workflow
Manager

Provenance Manager

Experiment Manager

Define Experimental Environment

Real-life Application Workflows

Large-scale Scientific Testbeds

optimizer_conf

Optimization
Manager

Provenance
Manager

DfAnalyzer

ProvLight 
Server

others
MQTT-SN 

broker

Provenance 
data 

translator

…

MQTT-SN 
over 
UDP

ProvLight
Client

…

Figure 6.2 – Extended E2Clab: Provenance Data Manager.

6.4.2 Provenance Capture

Through the E2Clab framework, users may easily enable provenance data capture across the
Edge-to-Cloud continuum through simple configuration files, as illustrated in Listing 6.2. List-
ing 6.2 refers to the E2Clab layers_services.yaml configuration file used to setup the experimental
environment (e.g., testbeds, services that compose workflows, etc.). Lines 2 and 3 request re-
sources from Grid’5000 and FIT IoT LAB testbeds, respectively. Line 7 requests a single server
(e.g., Federated Learning server) on the Cloud layer; while line 11 requests 64 clients (e.g., to
train the model with their local data) on the Edge layer. Finally, line 6 setups the provenance
data capture (the ProvenanceManager service). After that, users may instrument their applica-
tion code to capture data, as presented in Listing 6.1.

The ProvenanceManager service is presented in Listing 6.3. Line 10 starts a Docker [70] con-
tainer with the DfAnalyzer provenance system. While line 16 refers to the ProvLight container
exposed at port 1883 to allow clients to send their provenance data. Then, it translates and sends
data to DfAnalyzer at port 22000. Finally, DfAnalyze publishes the captured data on its Web
interface at workflow runtime. We highlight that the ProvenanceManager service may be eas-
ily plugged into other provenance systems by just using their respective Docker containers in
line 10 and extending the provenance data translator.

84



6.5. Evaluation

1 environment :
2 g5k:
3 cluster : gros
4 iotlab :
5 cluster : grenoble
6 provenance :
7 name: ProvenanceManager
8 layers :
9 - name: cloud

10 services :
11 - name: Server
12 environment : "g5k"
13 quantity : 1
14 - name: edge
15 services :
16 - name: Client
17 environment : " iotlab "
18 archi: a8
19 quantity : 10

Listing 6.2 – E2Clab: provenance of Edge-to-Cloud workflows.

1 from e2clab . services import Service
2 import enoslib as en
3
4 class ProvenanceManager ( Service ):
5 def deploy (self):
6 self. deploy_docker ()
7 with en. actions (roles=self.roles) as a:
8 # DfAnalyzer
9 a. docker_container (

10 name=" dfanalyzer ",
11 image=" vitorss / dataflow_analyzer ",
12 published_ports =" 22000:22000 "
13 )
14 # provlight
15 a. docker_container (
16 name=" provlight ",
17 image=" username / provlight ",
18 published_ports =" 1883:1883 "
19 )
20 return self. register_service (port =[1883])

Listing 6.3 – E2Clab: Provenance Manager implementation.

6.5 Evaluation

This section aims to answer the following research questions: how does ProvLight perform
in IoT/Edge devices? while initially targeting resource-constrained Edge devices, can ProvLight be
efficiently used in the Cloud?We answer these questions in subsections 6.1—6.4 and 6.5, respec-
tively, by comparing ProvLight against ProvLake and DfAnalyzer.

85



Partie III, Chapter 6 – Efficient Workflow Provenance Capture on the Edge-to-Cloud Continuum

dfanalyzer_lib

provlake_lib

Cloud Edge

Network
bandwidth: 1Gbit / 25Kbit

delay: 23ms

ProvLake 
uWSGI HTTP server

DfAnalyzer 
uWSGI HTTP server

ProvLight 
MQTT-SN Broker

provlight_lib

uWSGI HTTP server

node-1

node-64

Client 
capture 
libraries

MQTT-SN
broker

translator-1
topic-1

topic-64…
worker-1

worker-64

… …

Provenance System

…

MQTT-SN

HTTP

HTTP

translator-64

Figure 6.3 – Experimental setup: more details in Section 6.2.1.

Themain performance metric is the capture overhead (relative difference of the workflow exe-
cution with and without data capture) in terms of (i) data capture time; (ii) CPU and memory
usage; (iii) network usage; and (iv) power consumption. The experimental setup is the same
as presented in Subsection 6.2.1, with synthetic workloads generated based on the FL use case.
The deployment is illustrated in Figure 6.3. Results in Figure 6.4 are the mean of 10 runs with
their 95% confidence interval.

6.5.1 Capture Time Overhead

Table 6.7 presents the capture time overhead comparison for the 8 synthetic workloads. In
summary, ProvLight presents low capture overhead (<3%) for all workloads analyzed. Re-
garding taskswith a duration of 3.5 seconds ormore, the capture overhead of ProvLight is below
0.5%. Varying the number of attributes per task from 10 to 100 does not significantly increase
the capture time. We highlight that ProvLight is about 37x and 26x faster than ProvLake and
DfAnalyzer, respectively.

Similarly to Table 6.3, Table 6.8 zooms our analysis in order to understand the impact of
bandwidth variations and the grouping strategy on the data capture time. Results show that,
differently from ProvLake, ProvLight presents low capture time overhead in low-bandwidth
scenarios for task durations of 0.5 and 1 second.Wehighlight that, especially in low-bandwidth
scenarios (25Kbit), the ProvLight grouping strategypresents lowoverhead (<2%),while ProvLake
presents high overhead (>43%), see Table 6.3.

86



6.5. Evaluation

Table 6.7 – Capture overhead in IoT/Edge devices.

System Capture Overhead (%)

ProvLake
56.9%
±0.08

29.9%
±0.29

8.56%
±0.01

6.02%
±0.01

10 DfAnalyzer
39.8%
±0.06

21.2%
±0.34

6.12%
±0.07

4.26%
±0.01

ProvLight
1.45%
±0.01

1.02%
±0.01

0.31%
±0.01

0.23%
±0.01

ProvLake
57.3%
±0.10

30.1%
±0.40

8.57%
±0.01

6.04%
±0.04A

ttr
ib
ut
es

pe
rt
as
k

10
0 DfAnalyzer

40.5%
±0.20

21.3%
±0.06

6.12%
±0.01

4.31%
±0.01

ProvLight
1.54%
±0.01

1.11%
±0.01

0.37%
±0.01

0.29%
±0.01

task duration (s) 0.5 1 3.5 5

Table 6.9 – ProvLight scalability analysis.

System Capture Overhead (%)

ProvLight
1.54%

±0.01

1.54%

±0.01

1.56%

±0.01

1.57%

±0.02

# of devices 8 16 32 64

Scalability analysis.Table 6.9 presents the capture time overhead of ProvLightwhen scaling
the number of IoT/Edge devices and considering 100 tasks of 0.5s each and 100 attributes per
task. We scale the scenario with 8, 16, 32, and 64 devices capturing provenance data in parallel
and sending the data to the cloud server.

As illustrated in Figure 6.3, each client sends its data to its respective topic in the Broker and
we parallelized the number of translators accordingly. Lastly, provenance systems (i.e., DfAn-
alyzer in our case) can handle parallel requests and store the provenance data in a database
system (e.g., MonetDB [34] used in DfAnalyzer).

Results show that by scaling up to 64 devices, the capture overhead is low (<3%) and
does not significantly impact the capture time. This is expected because devices (clients) asyn-
chronously publish their messages to their respective topics in the MQTT-SN Broker. For 8 and
64 devices, the capture time overhead is 1.54% and 1.57%, respectively.

87



Partie III, Chapter 6 – Efficient Workflow Provenance Capture on the Edge-to-Cloud Continuum

Table
6.8

–
H
ow

do
bandw

idth
variationsand

the
grouping

strategy
im

pactthe
capture

overhead?

grouping
data

captured
Bandw

idth
1G

bit
Bandw

idth
25K

bit
ProvLake

ProvLight
ProvLake

ProvLight
ProvLake

ProvLight
ProvLake

ProvLight

0
59.49%
±
0.09

2.10%
±
0.01

30.1%
±
0.27

1.10%
±
0.01

321%
±
1.05

2.00%
±
0.01

161%
±
1.14

1.04%
±
0.01

10
6.84%
±
0.02

1.37%
±
0.01

3.57%
±
0.20

0.75%
±
0.01

102.5%
±
3.89

1.37%
±
0.01

49.8%
±
2.92

0.74%
±
0.01

20
3.87%
±
0.01

1.32%
±
0.01

1.98%
±
0.01

0.72%
±
0.01

100.8%
±
3.78

1.34%
±
0.01

51.1%
±
1.03

0.73%
±
0.01

50
2.37%
±
0.01

1.31%
±
0.01

1.27%
±
0.01

0.72%
±
0.01

95.0%
±
0.10

1.31%
±
0.01

43.2%
±
0.28

0.72%
±
0.01

task
duration

(s)
0.5

0.5
1

1
0.5

0.5
1

1

88



6.5. Evaluation

5x less CPU 
utilization

7x less CPU 
utilization

(a) CPU overhead.

1.9x less memory 
utilization

2x less memory 
utilization

(b) Memory overhead.

1.8x fewer 
data

1.9x fewer 
data

(c) Network overhead.

2.6x less 
power

consumption

2.1x less 
power

consumption
6.82%

5.46%

2.58%

(d) Power overhead.

Figure 6.4 – Provenance data capture overhead with respect to: CPU, memory, network usage,
and power consumption.

6.5.2 CPU and Memory Overhead

Figures 6.4a and 6.4b present the CPU andmemory overhead for capturing provenance data
with ProvLake, DfAnalyzer, and ProvLight (from left to the right). Regarding the CPU over-
head, ProvLight uses 7x and 5x less CPU than ProvLake and DfAnalyzer, respectively. Cap-
turing with ProvLight, the CPU overhead is low (<3%), and CPU usage varies between 1.7%
and 2%. Regarding the memory overhead, ProvLight memory usage is <4%. It uses about 2x
less memory than ProvLake and DfAnalyzer.

6.5.3 Network Usage Overhead

As presented in Figure 6.4c, ProvLight transmits about 2x less data than ProvLake and
DfAnalyzer. ProvLight network usage is around 3.7 KB/sec during data capture. The applica-
tion layer protocol used in ProvLight (e.g.,MQTT-SN), which compresses captured data before
transmitting it, especially for tasks withmany attributes per task (e.g., 100 in this case), explains
such difference (2x less data) when compared to the other capture approaches.

89



Partie III, Chapter 6 – Efficient Workflow Provenance Capture on the Edge-to-Cloud Continuum

Table 6.10 – Capture overhead in Cloud servers.

System Capture Overhead (%)

ProvLake
1.71%
±0.03

0.92%
±0.01

0.34%
±0.01

0.26%
±0.01

100
attributes
per task

DfAnalyzer
1.17%
±0.02

0.63%
±0.01

0.25%
±0.01

0.21%
±0.01

ProvLight
0.24%
±0.01

0.17%
±0.01

0.12%
±0.01

0.11%
±0.01

task duration (s) 0.5 1 3.5 5

6.5.4 Power Consumption Overhead

Finally, results in Figure 6.4d (error bar omitted because we use the maximum power con-
sumption for capturing provenance data) show that ProvLight power consumption overhead
is 2.1x and 2.6x less than ProvLake and Dfanalyzer. We highlight that ProvLight overhead is
2.58% (considered low, <3%), against 5.46% (ProvLake) and 6.8% (DfAnalyzer). The power
consumption (in watts) for capturing and transmitting the data is on average 1.43W, 1.47W, and
1.49W for ProvLight, ProvLake, and DfAnalyzer, respectively.

6.5.5 Performance in Cloud Servers

We compare the capture time overhead of ProvLight against ProvLake and DfAnalyzer in
Cloud servers (i.e., data capture on a server [91] available in Grid’5000). Experiment results
in Table 6.10 show that the three approaches present low capture overhead (<3%) for all task
durations. Similarly to IoT/Edge devices, ProvLight also outperforms ProvLake andDfAnalyzer
in Cloud servers. ProvLight is 7x and 5x faster than ProvLake and DfAnalyzer, respectively.
ProvLight capture time overhead is very low (<0.25%) for all task durations.

6.6 Discussion

The integration of ProvLight as a key system within the E2Clab framework exhibits a se-
ries of features that make E2Clab a promising platform for future performance optimization of
applications on the Edge-to-Cloud Continuum through efficient provenance capture and repro-
ducible experiments.

6.6.1 ProvLight Design Choices Impact on Performance

As presented in Table 6.6, the combination of ProvLight design choices on the server and
client sides contributed to the low capture overhead. The ProvLight client library keeps the con-

90



6.6. Discussion

nection to the remote server open while capturing data (i.e., when capturing data from differ-
ent tasks, the connection is reused). Additionally, the library is based on the publish/subscribe
asynchronous communication model and it uses MQTT-SN (application layer protocol) over
UDP (transport layer protocol) instead of HTTP over TCP. Despite TCP being more reliable
(e.g., uses acknowledgment messages for data delivery), the ProvLight client sends data using
QoS level 2, which guarantees that each message is received exactly once by the recipient. Such
design choices help to reduce connection overheads while data transmission handshakes/ac-
knowledgments require less bandwidth.

Another important feature is that ProvLight compresses data (using binary format) be-
fore transmitting. Through preliminary experiments, we analyzed the performance trade-offs of
compressing the data on the IoT/Edge devices to make sure it is worth adding that feature. The
time required to compress data (e.g., tasks with 100 attributes) on the edge device is negligible,
around 0.001s on average.

Our analysis considered low-bandwidth scenarios and also the data grouping strategy, re-
sulting in fewer and larger messages to reduce the number of transmissions. We also observe
that the overhead of decompressing and translating such data on the Cloud server is negligible,
around 0.005s.

Data communication is key to performance efficiency in IoT/Edge workloads, especially for
low bandwidth networks. ProvLight design choices such as simplified capture library for prove-
nance data exchange (see Table 6.5), asynchronous MQTT-SN over UDP, data grouping, and
data compression, explain the positive effects on performance and costs (e.g., lower overheads
in terms of data capture time, and CPU, memory, network usage, and energy consumption).

In summary, the lightweight asynchronous protocol (MQTT-SN over UDP) has a major im-
pact on the capture time overhead, energy consumption, and CPU and network usage. Our
simplified data model has a major impact on memory consumption, and it helps to reduce even
more the capture time overhead and CPU usage by 1.7% and 1.4%, respectively.

6.6.2 Impact of ProvLight on Real-life Use-Cases

To illustrate how real-life use cases could benefit from ProvLight and its integration in the
E2Clab framework, we consider the training of Neural Networks presented in [160] and [201].
In these articles, the authors use the storage and query components of DfAnalyzer to store cap-
tured data during model training executed on Cloud/HPC infrastructure and then query the
data. They demonstrate how provenance data may be used to answer queries like the ones we
presented in Section 6.1.

Since modern AI workflows are being executed on hybrid infrastructures, we may instan-
tiate this use-case (Neural Network training on the Cloud/HPC) to the context of hybrid Edge-
to-Cloud Federated Learning Neural Network training. In this hybrid context, the model is now

91



Partie III, Chapter 6 – Efficient Workflow Provenance Capture on the Edge-to-Cloud Continuum

trained on various resource-limited Edge devices. Thanks to the efficient capture approach of
ProvLight, usersmay still track themodel training by capturing provenance data.Without Prov-
Light, capturing provenance data of this use-case on the IoT/Edge is prohibitive due to the high
overheads imposed by the existing approaches, as presented in Section 6.2.

Finally, thanks to the E2Clab framework, users may easily set up the Federated Learning
Neural Network training and deploy it on distributed Edge devices (to train the model) and on
the Cloud server (to update the global model). Furthermore, the E2Clab Provenance Manager
allows users to store data captured with ProvLight and query them using DfAnalyzer. There-
fore, through the E2Clab Provenance Manager, users may answer the same queries mentioned
earlier. We highlight that this Neural Network use case is just one example from various that
could benefit from this work.

6.6.3 Integration with Existing Systems

ProvLight is designed to be easily integratedwith existing provenance systems (e.g.,ProvLake,
DfAnalyzer, PROV-IO, among others) and workflow management systems and deployment
frameworks (e.g.,Pegasus, E2Clab, among others). Such integrationwould enable these systems
to capture provenance data (with low capture overheads) of workflows executed in IoT/Edge
devices.

As presented in Subsection 6.3.2, this is possible thanks to the ProvLight provenance data
translator. It translates from the ProvLight data format to the data format of the target system.
This requires users to extend the ProvLight translator. In this work, we demonstrate in Sec-
tion 6.4: (i) the integration of ProvLight with the open-source DfAnalyzer provenance system
as a solution for provenance capture on the IoT/Edge; and then (ii) we integrate this capture
solution within the E2Clab framework (the Provenance Manager) to enable provenance capture
of Edge-to-Cloud workflows.

6.6.4 Reproducibility and Artifact Availability

The experimental evaluations presented in this work follow a rigorous methodology [176]
to support reproducible Edge-to-Cloud experiments on large-scale testbeds (e.g.,Grid’5000 and
FIT IoT LAB used in our experiments). This guided us to systematically define the experimental
environment (e.g., computing resources, services/systems, network, and application execution)
through well-structured configuration files. The experiment artifacts and results are available
at [161].

92



6.6. Discussion

The provenance data capture approach proposed in this chapter, and implemented
in ProvLight, has proven efficient in workflows executed on resource-limited
IoT/Edge devices. The integration of ProvLight within E2Clab makes the latter, to
the best of our knowledge, the first framework to support the end-to-end prove-
nance capture of Edge-to-Cloud workflows with low overheads across the Com-
puting Continuum.
We have validated our capture approach with synthetic workloads on real-life
IoT/Edge devices in the FIT IoT LAB testbed. Experiments comparing ProvLight
with ProvLake and DfAnalyzer show that it outperforms these systems. ProvLight
is 26-37x faster in capturing provenance data; uses 5—7x less CPU, 2x less memory,
transmits 2x less data, and consumes 2—2.5x less energy.
The following chapter explores the cost-effective reproducibility of experiments.
It proposes a collaborative environment and illustrates with a real-life application
deployed on the Grid’5000 and FIT IoT LAB testbeds. It shows how indepen-
dent researchers can replicate the same experiments on the Chameleon Cloud and
CHI@Edge testbeds.

Conclusion

93





Chapter 7

COST-EFFECTIVE REPRODUCIBILITY AND

REPLICABILITY OF EDGE-TO-CLOUD

EXPERIMENTS

Contents
7.1 Requirements for Reproducible and Replicable Experiments . . . . . . . . . . 96

7.2 Limitations of Existing Collaborative Environments . . . . . . . . . . . . . . . 98

7.3 Kheops Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.3.1 Architecture and Implementation . . . . . . . . . . . . . . . . . . . . . . 101

7.3.2 Experimental Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.4.2 How KheOps Helps Experiment Authors . . . . . . . . . . . . . . . . . . 106

7.4.3 How KheOps helps readers . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.5.1 Replicability Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.5.2 Usability and Reusability . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.5.3 Analyzing other Real-life Applications . . . . . . . . . . . . . . . . . . . . 112

7.5.4 Integration with other Scientific Testbeds . . . . . . . . . . . . . . . . . . 113

7.5.5 Reproducibility and Artifact Availability . . . . . . . . . . . . . . . . . . 113

One way of allowing users to benefit from frameworks like E2Clab and to further contribute
to them is through the use of collaborative environments. In this chapter, we introduce KheOps,
an approach that aims to allow the cost-effective repeatability, reproducibility, and replicability
of Edge-to-Cloud experiments on large-scale scientific testbeds. It illustrates KheOps with a
real-life application and shows how it helps to replicate results accurately.

95



Partie III, Chapter 7 – Cost-effective Reproducibility and Replicability of Edge-to-Cloud Experiments

Published
Article

Results

Bob

Alice

Author

Reader
CHI@Edge

Replicate
Experiments

Experiment
Design

Deployment

Analysis & 
Publication

Open Access to Artifacts

1

2

3

4

Figure 7.1 – Processes for reproducing and replicating experiments regarding the authors and
readers point of view.

7.1 Requirements for Reproducible and Replicable Experiments

Systematically performing experiments on the Computing Continuum to enable their repro-
ducibility and replicating their performance trade-offs are inherently difficult [103]. Figure 7.1
illustrates such processes.

Let us consider the case of a group of researchers who execute their experiments on French
scientific testbeds such as Grid’5000 [33] (providing Cloud/HPC servers) and FIT IoT LAB [4]
(providing IoT/Edge devices), and want to publish their results in an article. Next, the readers
want to replicate the experiments on American testbeds such as the Chameleon Cloud [121]
and CHI@Edge [119].

These processes compel a lot of effort, are time-consuming, and bring many technical chal-
lenges for both sides. For instance, also depicted in Figure 7.1, they require:

1. following methodologies to design the experiments systematically and to reconcile many
application requirements or constraints in terms of energy consumption, network effi-
ciency, and hardware resource usage;

2. configuring systems and networks and deploying applications on testbeds for large-scale
evaluations;

3. analyzing, repeating experiments, and publishing results;

4. providing open access to the experiment artifacts in a public and safe repository.

Given such complexities, researchers end up not following rigorous methodologies for sup-
porting the reproducibility of the experiments, as observed in our previous survey [175] and
summarized in Figure 7.2. Consequently, it makes it hard for other researchers to replicate the
published studies.

96



7.1. Requirements for Reproducible and Replicable Experiments

Figure 7.2 – Support to the reproducibility of Edge-to-Cloud experiments provided by the se-
lected studies in our survey [175].

Let us sum up the associated requirements in this context. To enable reproducible experi-
ments on the Edge-to-Cloud continuum, the requirements (a-REQ) of the authors of the exper-
iments can be described as follows:

a-REQ 1. Execute experiments onheterogeneous computing resources (e.g., IoT/Edge andCloud/HPC
infrastructures).

a-REQ 2. Systematically describe and explain the experimental processes and their reasoning.

a-REQ 3. Efficiently configure the experimental infrastructure and express topologies in repeatable
ways.

a-REQ 4. Easily share the experiment artifacts in a public and safe repository.

At the same time, to enable the replicability of the experiments, the readers of an article
describing those experiments have the following requirements (r-REQ):

r-REQ 1. Find and access the experiment as simple as finding and reading its paper.

r-REQ 2. Perform the experiment, not just read about it.

r-REQ 3. Answer not just to the “What” question (What the experiment does?), but also the “Why”
(Whydid authors set it up thatway?) and “How” (Howdid authors connectmachines/de-
vices?)

r-REQ 4. Efficiently configure the experimental infrastructure to reduce the time spent satisfying
all the experiment requirements.

In this Chapter,we study the challenges of cost-effectively reproducing and replicating Edge-
to-Cloud experiments. Cost-effective means to allow authors and readers to efficiently fulfill
their experimental requirements as previously described. This calls for practical solutions be-
yond the state-of-the-art.

97



Partie III, Chapter 7 – Cost-effective Reproducibility and Replicability of Edge-to-Cloud Experiments

Our main objective is to provide a collaborative environment and methodology that sup-
ports reproducible Edge-to-Coud experimentation betweendifferent open testbeds such asGrid’5000,
FIT IoT LAB, Chameleon, etc., equipped to dealwith IoT/Edge andCloud/HPC resourceswhich
are fundamental to reproducibility [118]. We propose the following main contributions:

1. A study of the characteristics of the main state-of-the-art collaborative environments
(e.g., Google Colab, Kaggle, and Code Ocean) for enabling reproducible experiments.
Their main limitations in the context of Computing Continuum research are discussed
in Section 7.2.

2. A novel collaborative environment to enable reproducible Edge-to-Cloud experiments
(Section 7.3). This approach, named KheOps, allows researchers to reproduce and repli-
cate Edge-to-Cloud workflows cost-effectively. KheOps core elements are: (1) a portal
for sharing experiment artifacts; (2) a notebook environment for packaging code, data,
environment, and results; and (3) a multi-platform experimental methodology for de-
ploying experiments on heterogeneous resources from the IoT/Edge (FIT IoT LAB and
CHI@Edge) to the Cloud/HPCContinuum (Grid5000 andChameleon).We highlight that
KheOps may be integrated with other large-scale scientific testbeds.

3. An experimental validation of the proposed approach with a real-world use case de-
ployed on real-life IoT/Edge devices and Cloud/HPC systems. The evaluations show
that KheOps helps: (1) authors to perform reproducible experiments on the Grid5000 +
FIT IoT LAB testbeds, and (2) readers to cost-effectively replicate authors experiments
on the Chameleon Cloud + CHI@Edge testbeds, and obtain the same conclusions with
high accuracies, >88% for all performance metrics (Section 7.4).

7.2 Limitations of Existing Collaborative Environments

Webriefly discuss the limitations of state-of-the-art collaborative environments, with a focus
on the specific challenges of the Computing Continuum.

Google Colab [96] Mainly used by the AI community (more than 50K users), it is a ready-
to-use Jupyter notebook service. Colab notebooks are stored in the .ipynb open-source Jupyter
notebook format [97], and come with the most popular AI libraries and frameworks installed
(e.g., Scikit-Learn [156], TensorFlow [1], PyTorch [154], etc.) and allowusers to run python code
through the browser. It is typically used for machine learning, data analysis and education.

Colab is popular because it allows users to share Jupyter notebookswithout having to down-
load, install, or run anything. Besdides, it provides free access to very expensive computing re-
sources such as GPUs and TPUs. Colab permits multiple users to collaborate on the same note-
book. Sharing datasets, ML models, pipelines, and notebooks on AI Hub [5] is also possible

98



7.2. Limitations of Existing Collaborative Environments

(more than 167 notebooks). Its GitHub integration allows users to quickly open GitHub-hosted
Jupyter notebooks in Google Colab.

Kaggle [114] This is a data science and AI platform that offers a customizable Jupyter note-
book environment. Kaggle is a subsidiary of Google and, like Colab, it provides free access to
GPUs as well as a repository of community-published (more than 10.3 million users) datasets
(more than 50K public datasets) and code (e.g., machine learning code) with more than 400K
public notebooks.

Kaggle is integrated with AI Hub and is popular in the data science and machine learning
communities. Kaggle is also well-known for promoting Community Competitions in machine
learning at no cost.

The main differences [98] between Colab and Kaggle are:

1. Kaggle allows collaboration with other users on its Web site, while Colab allows collabo-
ration with anyone using the notebook link;

2. Kaggle has many data sets that users can use directly (e.g., notebooks already set up with
Kaggle databases [115]), while in Colab setting up notebooks with Google Drive [53] or
managing files [52] (e.g., to load data sets, files, and images) requires extra work;

3. Kaggle creates a history of notebook commits that we can be reviewed.

Code Ocean [49] Designed according to FAIR [229] (i.e., Findable, Accessible, Interoperable,
and Reusable), CodeOcean aims tomake scientificwork reproducible. It introduces the concept
of Compute Capsule, which refers to Docker [69] containers composed of code, data, environ-
ments, and results. Capsules provide ready-to-use tools such as Git, Jupyter, RStudio, among
others. Its integration with Git allows users to save changes on capsules and then commit them
with just one click.

Furthermore, users can easily share the link of a capsule and grant permission. Code Ocean
provides scalable compute and storage resources hosted on Amazon Web Services. Resources
used by capsules are scaled out when the demand exceeds the machine capacity. Finally, Code
Ocean provides a public Capsule Repository [51]withmore than 1K research capsules. It allows
authors of an article to incorporate capsules into the submission process via a Hub publishing
API.

99



Partie III, Chapter 7 – Cost-effective Reproducibility and Replicability of Edge-to-Cloud Experiments

Table
7.1

–
Lim

itationsofExisting
C
ollaborative

Environm
ents.

Lim
itation

G
oogle

C
olab

C
ode

O
cean

K
aggle

R
esource

heterogeneity

C
PU

,
disk,

and
m
em

ory
lim

its;
G
PU

types
available;no

access
to

IoT/Edge
devices;

experim
ents

run
on

AW
S
virtual

m
achines;no

access
to

IoT/Edge
devices;

lim
its

C
PU

,
G
PU

,
and

TPU
ac-

cess;does
not

support
IoT/Edge

devices;

Large-scale
experim

ents

lim
its

sessions
to

12
hours;paid

access
to

m
ultiple

com
puting

re-
sources.

lim
itsaccessto

10
com

putehours;
paid

access
to

m
ultiple

com
put-

ing
resources.

lim
its

execution
tim

e
to

12
hours;

paid
access

to
G
oogle

C
loud

Ser-
vices.

R
epeatability,

R
eproducibility,

R
eplicability

hard
to

repeat
and

reproduce
experim

ents
on

the
sam

e
hard-

w
are:resource

availability
varies

over
tim

e
and

usage
lim

its
fluc-

tuate.Replicability
in

differentin-
frastructures(e.g.,beyond

G
oogle

m
achines)

isnotstraightforw
ard.

lacks
support

for
the

repro-
ducibility

of
distributed

experi-
m
ents.

C
om

puting
and

storage
resources

are
available

in
AW

S
virtual

m
achines

in
the

clients
virtual

private
cloud.

H
ard

to
replicate

experim
ents

in
different

infrastructures.

lacks
support

for
the

repeatabil-
ity

and
reproducibility

of
dis-

tributed
experim

ents.C
om

puting
resources

vary
over

tim
e

and
hence

betw
een

accesses.Replica-
bility

in
different

infrastructures
isnoteasy

to
setup.

100



7.3. Kheops Design

Despite these systems being widely used by the AI and data science communities,
they present some limitations that hinder their adoption for Computing Continuum
research. Table 7.1 summarizes these limitations in terms of:

1. access to heterogeneous IoT/Edge and Cloud/HPC computing resources;

2. support for large-scale experimental evaluations;

3. repeatability and reproducibility of experiments on the same hardware setup,
and replicability on different infrastructures.

In summary, collaborative environments lack support for providing access to het-
erogeneous resources (e.g., Edge-to-Cloud); performing experiments at large-scale;
and achieving the reproducibility of experiments on the same hardware setup.
Hence, the need for novel approaches for reproducible evaluations of workflows
targeting the characteristics of the Computing Continuum.

7.3 Kheops Design

This section introduces KheOps, a collaborative environment for the cost-effective repro-
ducibility and replicability of Edge-to-Cloud experiments. KheOps is designed to meet the ex-
perimental requirements of both authors and readers as presented earlier.

7.3.1 Architecture and Implementation

Figure 7.3 presents the architecture of KheOps, which consists of three main components:
(i) Trovi sharing portal; (ii) Jupyter environment (JupyterHub service and JupyterLab server);
and (iii) E2Clab framework (multi-platform experiment methodology). Next, we present the
integration details of these components, and briefly describe their main roles.

Experiment Repository

KheOps uses Trovi to share research artifacts such as packaged experiments. These artifacts
may be publicly available to allow others to recreate and rerun experiments. Trovi provides a
REST API to manage experiment artifacts and integrate them with other systems. The Jupyter-
Hub in KheOps uses the Trovi REST API to download artifacts and launch them in the Jupyter-
Lab server.

Artifacts hosted in Trovi can also provide references to repositories like container registries
(e.g.,DockerHub [227]), multipurpose repositories (e.g., Zenodo [240]), code repositories (e.g.,
Github [95]), and among others.

101



Partie III, Chapter 7 – Cost-effective Reproducibility and Replicability of Edge-to-Cloud Experiments

Web Interface
(displays packaged artifacts)

Trovi API

Zenodo GitHubSwift

Storage Backends
Trovi

(1) Requests list of 
experiment artifacts

JupyterHub
(2) Users 
request 

launch of 
Trovi artifact

Spawner
(extended with 

Trovi integration)

(4) 
Downloads 

artifacts 
from Trovi

(3) Spawns 
notebook 

server

JupyterLab

E2Clab 
methodology (5) Deploys 

experiments 
on testbeds

Large-scale Scientific Testbeds 
Chameleon + Gridʼ5000 + FIT IoT LAB

Experiment results

credentials

KheOps

Figure 7.3 – KheOps architecture and experimental workflow.

Notebook Environment

Following our previous work [9] on integrating experiment workflows with Jupyter note-
books, we extend JupyterHub to authenticate users and to download (using the Trovi REST
API) the experiment artifacts available at Trovi.We also extend JupyterLab to allow users to eas-
ily share their experiments in Trovi. Furthermore, JupyterLab is set up with the E2Clab frame-
work as an experimental methodology.

The JupyterLab is packaged with code, data, environment configurations, and experiment
results. Its notebooks (file extension .ipynb) allowusers to run experiments step-by-step by com-
bining text (e.g., explaining the reasoning of the experiments:What parameters?Why these pa-
rameters? and How it was set up?) with executable code. Such notebooks are ready to use (e.g.,
installed with required library/software), executed through a browser, and shared as a Trovi
artifact.

Multi-testbed Experiment Methodology

KheOpsuses the E2Clabmethodology to deploy experiments on large-scale scientific testbeds
such as Grid’5000, Chameleon Cloud, CHI@Edge, and FIT IoT LAB. Notebooks comewith three
main template files (e.g., executable code cells in the notebook, presented in Listings 7.1 to 7.4)
that users can benefit from to easily configure and adapt the deployment logic (e.g., computing
resources, network, and application execution) according to their experimental needs.

The first file, named layers_services.yaml and presented in Listing 7.1, allows users to lease
IoT/Edge and Cloud/HPC resources. Through this file, users may also set up their applications

102



7.3. Kheops Design

1 environment :
2 g5k: cluster : dahu
3 iotlab : cluster : grenoble
4 layers :
5 - name: cloud
6 services :
7 - name: Server
8 environment : g5k , quantity : 1
9 - name: edge

10 services :
11 - name: Client
12 environment : iotlab , archi: rpi3 , quantity : 5

Listing 7.1 – E2Clab: layers and services configuration.

1 from e2clab . services import Service
2 import enoslib as en
3
4 class Server ( Service ):
5 def deploy (self):
6 with en. actions (roles=self.roles) as a:
7 a.shell("pip3 install torchvision torch")
8 a.shell("pip3 install pillow paho -mqtt")
9 return self. register_service (port =[1883])

Listing 7.2 – E2Clab: user-defined service for the Cloud server.

and services as presented in Listing 7.2. Next, the network.yaml file (Listing 7.3) allows users to
define delay, loss, and bandwidth between computing resources. Finally, the workflow.yaml file
(Listing 7.4) guides users to define the experiment workflow through three main steps: prepare
(e.g., copy artifacts to remote nodes, install libraries, etc.), launch (e.g., execute the application
parts), and finalize (e.g., backup results from remote nodes to the JupyterLab server).

E2Clab abstracts all the complexities of deploying and executing experiments across vari-
ous testbeds. To do so, users need to add the credential files of the respective testbeds to their
notebooks. Setting up a VPN is also supported as this may be required to enable the communi-
cation between different geographically distributed testbeds (e.g., Chameleon in the USA and
Grid’5000, FIT IoT LAB from France).

7.3.2 Experimental Workflow

In summary, the workflow for launching an experiment artifact on large-scale testbeds con-
sists of 5 main steps. First, through a web interface, users can browse the list of experimental
artifacts publicly available in Trovi (step 1). Selecting an artifact displays details such as the
experiment description, the authors and contact information, and the artifact versions.

A launch button allows users to execute the artifact (step 2). This button redirects users to
the JupyterHub service. After authentication, the request to launch the artifact is sent to the
JupyterHub Spawner. Next, the Spawner spawns the JupyterLab server (step 3), and then it

103



Partie III, Chapter 7 – Cost-effective Reproducibility and Replicability of Edge-to-Cloud Experiments

1 networks :
2 - src: cloud , dst: edge
3 delay: 150ms , rate: 25kbit , loss: 0.02

Listing 7.3 – E2Clab: network configuration.

1 - hosts: edge .*
2 depends_on :
3 conf_selector : cloud. server .*, grouping : round_robin , prefix : " server "
4 prepare :
5 - copy:
6 src :{{ working_dir }}/ artifacts , dest: /
7 launch :
8 - shell: bash / edge_worker .sh edge_data 100 "{{ server .ip}}" False
9 finalize :
10 - fetch:
11 src :/ tmp/ predict .log , dest :{{ working_dir }}/

Listing 7.4 – E2Clab: workflow configuration.

downloads experimental artifacts such as notebooks, code, and datasets, among others (step 4).
The JupyterLab service is set up with the E2Clab framework as the experimental methodology.
Finally, users can execute the code cells from the notebook to lease IoT/Edge and Cloud/HPC
computing resources available on the testbeds, deploy and execute the application, and gather
the experiment results (step 5).

Steps 2 to 4 are automatically executed. This is a one-click feature that allows users to have a
ready-to-use environment for reproducing and replicating complex Edge-to-Cloud experiments
cost-effectively. Note that the whole workflow requires only three clicks: selecting the experi-
ment artifact (step 1), then launching it (steps 2 to 4), and executing it on the testbeds (step
5).

7.4 Evaluation

In this section, we show how KheOps can be used to analyze the performance of a real-life
Edge-to-Cloud application deployed in the African savanna (illustrated in Figure 7.4). This ap-
plication is composed of distributed Edge devices monitoring animal migration in the Serengeti
region. Devices at the Edge collect and compress wildlife images, then the image is sent to the
Cloud where the animal classification happens using a pre-trained Neural Network model. Fi-
nally, classified data helps conservationists to learn what management strategies work best to
protect species.

The goals of these experiments are:

— to understand the impact on performance of Cloud-centric and Hybrid (Edge+Cloud)
processing;

104



7.4. Evaluation

Edge

Cloud

Figure 7.4 – Edge-to-Cloud application: monitoring animals migration in the African savanna.

— to show how authors of an article can benefit from KheOps to make their experiments
reproducible;

— to show how readers of an article can leverage KheOps to replicate the experiments in an
article (published using KheOps).

To reproduce the evaluations in this section, refer to [82].

7.4.1 Experimental Setup

Application performance metrics The main trackedmetric is the processing time, which refers
to the time required to: pre-process the image captured (e.g., image compression on the Edge
device); transmit the image to the Cloud server; and finally decompress the image and predict
the animal through an AI model. In addition, we analyze the amount of data transmitted to the
Cloud and the resource consumption (e.g., CPU and memory) on the Edge device.

To increase the accuracy of the results, we measure the processing duration 100 times for
each experiment, each time with a different image and an interval of 30 seconds (i.e., Edge de-
vices transmit images to theCloud server every 30 seconds). The remainingmetrics are captured
using Dool (Dstat) [72] at application runtime. All results are presented as the mean followed
by their respective 95% confidence interval.

KheOps replicability metric Tomeasure how close/precise readers experiments are from au-
thors experiments, we define the Replicability Accuracy (Repaccuracy)metric. For assessing vari-
ability and error in results [193], a recommendation is to repeat the experiments multiple times
to achieve narrower inferential error bars (i.e., confidence interval, standard deviation, etc.) [57].
The Replicability Accuracy metric is calculated as Equation 7.1:

105



Partie III, Chapter 7 – Cost-effective Reproducibility and Replicability of Edge-to-Cloud Experiments

Repaccuracy = 1−
∣∣∣∣ min(x1A, x2A)
max(x1A, x2A) −

min(x1R, x2R)
max(x1R, x2R)

∣∣∣∣ (7.1)

Ideally Repaccuracy would be close to 1. xiA and xiR refer to the application performance
metric value obtained from authors and readers experiments, respectively. For instance, in Fig-
ure 7.5a, x1A refers to the Cloud-centric bar and x2A to the Edge + Cloud bar.

Workload Devices at the Edge transmit images (from the Snapshot Serengeti dataset [246]
composed of millions of wildlife images collected annually) to the Cloud server that predicts
animals using a trained MobileNetV3 Convolutional Neural Network model. We evaluate this
workload considering two network configurations, 25Kbit and 15Kbit bandwidth,with a round-
trip delay of 150ms.

Software On theEdgedevices,weuse zlib [164] Python library to compress images.MQTT [145]
protocol transmits images to the Cloud. On the Cloud server, we use anMQTT broker to receive
images, then zlib to decompress images, and finally PyTorch to predict animals.

Hardware The authors perform experiments on the following testbeds in France: Grid’5000
and FIT IoT LAB. On Grid’5000 (Cloud server), they use the dahu [58] machine equipped with
an Intel Xeon Gold 6130 CPU 2.10GHz, 16 cores/CPU, 192GB of RAM, and Ethernet network.
On FIT IoT LAB (Edge device), they use a Raspberry Pi 3Model B [168] with four ARMCortex-
A53 1.2GHz processing cores, 1GB LPDDR2 memory, and 2.4GHz 802.11ac wireless LAN.

The readers replicate authors experiments on the following testbeds in the USA: Chameleon
Cloud and CHI@Edge. On Chameleon CHI@TACC (Cloud server), they use the Skylake [54]
machine equipped with an Intel Xeon Gold 6126 CPU 2.60GHz, 12 cores/CPU, 192GB of RAM,
and Ethernet network. On CHI@Edge (Edge device), they use a Raspberry Pi 4 [169], with four
BCM2711 Cortex-A72 processing cores running at 1.5GHz, 8GB LPDDR4 memory, and 2.4GHz
and 5GHz 802.11ac wireless LAN.

7.4.2 How KheOps Helps Experiment Authors

Let us consider the requirements of the experiment authors (a-REQ) as introduced earlier.

a-REQ 1. Execute experiments on heterogeneous computing resources KheOps provides ac-
cess to IoT/Edge devices and Cloud/HPC resources at large-scale, using the E2Clab methodol-
ogy. Supported testbeds include (but are not limited to, as explained in Section 7.5.4): Grid’5000,
FIT IoT LAB.

106



7.4. Evaluation

a-REQ2. Systematically describe and explain the experimental processes and their reasoning
Through Jupyter notebooks and the E2Clab configuration files, the authors describe and explain
the experiment design choices such as the layers (e.g., Edge and Cloud), the services (e.g., the
Edge client and the Cloud server), the network constraints, and the application workflow ex-
ecution. This is done in Jupyter notebooks by combining text (explaining the configurations)
followed by executable code (E2Clab configuration files).

a-REQ 3. Efficiently configure the experimental infrastructure and repeat the experiments
All the complexities of configuring the Edge-to-Cloud infrastructure, such as leasing computing
resources, mapping the application parts (e.g., Edge andCloud services), enforcing the network
constraints, and executing the workflow are transparently handled by KheOps. The authors
just need to define their experimental needs in the E2Clab configuration files. Repeating and
adapting the experiments (e.g., changing the network constraints) is easily done throughE2Clab
instrumentation.

a-REQ 4. Easily share the experiment artifacts in a public and safe repository Through the
Trovi and JupyterLab integration, authors can upload their artifacts to the Trovi sharing portal
with a few clicks.

We discuss the experimental results from the authors perspective, using the three applica-
tion performance metrics mentioned earlier.

Impact of the network on the processing time

The authors define two sets of experiments. In the first one (Figure 7.5a), they fix the net-
work bandwidth at 15Kbit and vary the processing approach between Cloud-centric and Hy-
brid (Edge + Cloud). In the second one (Figure 7.5b), they fix the bandwidth at 25Kbit for both
processing approaches.

From the results, the authors observe that the Hybrid (Edge + Cloud) approach outper-
forms the Cloud-centric one for both network configurations. In the 15Kbit bandwidth setup,
the processing time for the Cloud-centric is about 27 seconds on average, against 24 seconds for
the hybrid processing. In the 25Kbit bandwidth configuration, this difference is lower, 13 sec-
onds and 11 seconds for the Cloud-centric and Hybrid, respectively. The higher the bandwidth,
the lower will be the difference between the two processing approaches. This is because image
transmission is the most time-consuming task among the other tasks (i.e., compressing/decom-
pressing images and model inference).

107



Partie III, Chapter 7 – Cost-effective Reproducibility and Replicability of Edge-to-Cloud Experiments

Cloud-centric Edge+Cloud0
3
6
9

12
15
18
21
24
27
30
33

Pr
oc

es
sin

g 
tim

e 
(s

ec
)

15Kbit Bandwidth

(a) Grid’5000 + FIT IoT LAB.

Cloud-centric Edge+Cloud0
3
6
9

12
15
18
21
24
27
30
33

Pr
oc

es
sin

g 
tim

e 
(s

ec
)

25Kbit Bandwidth

(b) Grid’5000 + FIT IoT LAB.

Cloud-centric Edge+Cloud0

3

6

9

12

Pr
oc

es
sin

g 
tim

e 
(s

ec
)

15Kbit Bandwidth

(c) Chameleon + CHI@Edge.

Cloud-centric Edge+Cloud0

3

6

9

12

Pr
oc

es
sin

g 
tim

e 
(s

ec
)

25Kbit Bandwidth

(d) Chameleon + CHI@Edge.

Figure 7.5 – Cloud-centric vs Edge + Cloud processing: (a, b) executed by authors on Grid’5000
and FIT IoT LAB testbeds; and (c, d) replicated by readers onChameleonCloud andCHI@Edge.

Amount of data sent to the Cloud

According to the results presented in Figure 7.6a, authors observe that the Hybrid (Edge
+ Cloud) approach transmits fewer data (81kB/s on average) to the Cloud compared to the
Cloud-centric approach (96kB/s on average). This is because, in Hybrid processing, Edge de-
vices compress images before transmitting them to the Cloud.

Resource consumption on the Edge device

Results in Figures 7.7a and 7.7b show that there is no significant difference in the CPU and
memory usage in the Edge device when changing between the Cloud-centric and Hybrid pro-
cessing approaches. CPU usage is around 4.2% and 4.4% for Hybrid and Cloud-centric process-
ing, respectively. Memory usage is around 0.38GB for both.

7.4.3 How KheOps helps readers

After the authors publish their results, other researchers from a different lab download the
article from a scientific database and decide to replicate the study on their own premises (e.g.,
on a different testbed). Following the same logic, we present how KheOps helps the readers

108



7.4. Evaluation

Cloud-centric Edge+Cloud0
10
20
30
40
50
60
70
80
90

100
110
120

Da
ta

 (k
B/

s)

Data sent to the Cloud

(a) Grid’5000 + FIT IoT LAB.

Cloud-centric Edge+Cloud0
10
20
30
40
50
60
70
80
90

100
110
120

Da
ta

 (k
B/

s)

Data sent to the Cloud

(b) Chameleon + CHI@Edge.

Figure 7.6 – Amount of data sent to the Cloud regarding the Cloud-centric and Edge + Cloud
processing approaches.

to replicate the experiments cost-effectively, that is, according to the readers requirements (r-
REQ).

r-REQ1. Find and access the experiment as simple as finding and reading thepaper Through
the KheOps web interface (step 1 in Figure 7.3) the readers obtain access to all the public ex-
periments shared by the community and available in Trovi. Then, they select the experiment
shared by the authors of the article to get more details.

r-REQ 2. Perform the experiment, not just read about it Next, in the experiment details web
page, readers can launch a JupyterLab server with artifacts in just a single click (steps 2, 3, and 4
in Figure 7.3). Finally, following the experiment instructions described in the Jupyter notebook,
the readers deploy and execute the experiments on their testbeds, such as (but not limited to):
the Chameleon Cloud and CHI@Edge (step 5 in Figure 7.3).

r-REQ 3. Experiment reasoning: “What”, “Why”, and “How” Before running the experi-
ments, the readers can go through the Jupyter notebook to understand What the experiment
does (e.g., capture and compress images on Edge devices and then decompress the images and
predict the animals on the Cloud server). The readers can also discover Why the authors set
up the experiment with a 25kbit and 15kbit network bandwidth. Finally, KheOps allows under-
standing How the authors interconnect the Edge devices with the Cloud server (e.g., assigning
a public IP to the Cloud server, or opening firewall rules; using the MQTT protocol; etc.).

r-REQ 4. Efficiently configure the experimental infrastructure To achieve this, the readers
just have to adapt the layers_services configurationfile (presented in Listing 7.1) to theChameleon
Cloud and CHI@Edge testbeds. Configuring the network bandwidth to 25kbit and then chang-
ing it to 15kbit is as simple as changing the rate parameter in the network file (Listing 7.3). Finally,

109



Partie III, Chapter 7 – Cost-effective Reproducibility and Replicability of Edge-to-Cloud Experiments

Cloud-centric Edge+Cloud0

1

2

3

4

5

6
Us

ag
e 

(%
)

CPU usage

(a) Grid’5000 + FIT IoT LAB.

Cloud-centric Edge+Cloud0.0

0.01

0.02

0.03

0.04

0.05

Us
ag

e 
(G

B)

Memory usage

(b) Grid’5000 + FIT IoT LAB.

Cloud-centric Edge+Cloud0

1

2

3

4

5

6

Us
ag

e 
(%

)

CPU usage

(c) Chameleon + CHI@Edge.

Cloud-centric Edge+Cloud0.0

0.25

0.5

0.75

1.0

1.25

Us
ag

e 
(G

B)

Memory usage

(d) Chameleon + CHI@Edge.

Figure 7.7 – Resource consumption on the Edge device: CPU and Memory usage.

copying data to the Edge device, interconnecting it with the Cloud server, launching the appli-
cation, and finally collecting the results is as simple as defining the workflow configuration file
(Listing 7.4). The network and workflow configuration files are testbed agnostic, meaning that
users do not need to update these files when changing the deployment from Grid’5000 + FIT
IoT LAB to Chameleon Cloud + CHI@Edge.

Next, we report on the replicated experiments carried out by the readers.

Impact of the network on the processing time

From the results in Figures 7.5c and 7.5d, readers conclude that the Hybrid (Edge + Cloud)
processing approach outperforms the Cloud-centric one for both network configurations. This
conclusion is consistent with the results observed in the published article.

Following the analysis, readers observe that in the 15Kbit bandwidth network configuration,
the processing time for the Cloud-centric is about 8 seconds on average, against 6.5 seconds for
the hybrid processing. In the 25Kbit bandwidth setup, this difference is lower, 5.5 seconds and 4
seconds for the Cloud-centric and Hybrid, respectively. Similarly to the authors results, readers
also observe that the higher the bandwidth, the lower will be the difference between the two
processing approaches.

110



7.5. Discussion

Table 7.2 – Accuracy of replicated experiments.

Metric Replicability accuracy Experiment result
Processing time 15Kbit 0.943 Figure 7.5a and 7.5c
Processing time 25Kbit 0.882 Figure 7.5b and 7.5d
Data sent to the cloud 0.973 Figure 7.6a and 7.6b
CPU usage 0.978 Figure 7.7a and 7.7c
Memory usage 0.996 Figure 7.7b and 7.7d

Furthermore, as presented in Table 7.2, we highlight that readers obtained a replicability
accuracy of 88.2% and 94.3% for 15Kbit and 25Kbit network configurations, respectively.

Amount of data sent to the Cloud

According to the results presented in Figure 7.6b, readers observe that the Hybrid approach
transmits fewer data than the Cloud-centric. The former transmits around 89.2kB/s and the
latter 108.8kB/s. Compressing images on the Edge helps to reduce the amount of data sent to
the Cloud server. This conclusion is also consistent with the published article and presents a
replicability accuracy of 97.3%.

Resource consumption on the Edge device

Results in Figures 7.7c and 7.7d show no significant difference in the CPU and memory
usage between the Cloud-centric and the Hybrid processing approaches. CPU usage is around
5.1% and 5% for Hybrid and Cloud-centric processing, respectively. Memory usage is around
1.1GB for both.We highlight that these conclusions are consistent with the published article and
present a replicability accuracy of 97.8% and 99.6% for CPU and memory usage, respectively.

7.5 Discussion

We believe that the core idea behind KheOps exhibits several features that make it a promis-
ing environment for advancingComputingContinuumresearch through reproducible and repli-
cable experiments. We briefly discuss them here.

7.5.1 Replicability Accuracy

Despite readers observing a lower processing time compared to the authors, they could
verify that their experiment conclusions are consistent with the ones reported by the authors,
and their results present a high replicability accuracy (see Table 7.2).

111



Partie III, Chapter 7 – Cost-effective Reproducibility and Replicability of Edge-to-Cloud Experiments

This time difference is expected since readers used amore powerful Edge device (Raspberry
Pi4 against Raspberry Pi3) for processing the most time-consuming task (e.g., image compres-
sion and then transmission). The Raspberry Pi4 has more RAMmemory (8GB vs. 1GB in Rasp-
berry Pi3), a better CPU (1.5GHz vs. 1.2GHz), network (5GHz vs. 2.4GHz).

Furthermore, readers observe slight differences when replicating the original study in dif-
ferent testbeds regarding the remaining metrics, such as the amount of data sent to the Cloud
and the CPU and memory usage on the Edge device. This is due to the different deployment
approaches used by each testbed. For instance, in FIT IoT LAB, the Raspberry Pi 3 board runs an
embedded Linux built with Yocto [238], while CHI@Edge is based on Docker [69] containers.
Despite that, the conclusions observed by authors and readers are the same and present high
accuracies.

7.5.2 Usability and Reusability

KheOps targetsusability by allowingusers to easily find experiment artifacts shared in Trovi
and then launch experiments in a JupyterLab server in just a few clicks. KheOps abstracts all
the low-level details of defining and configuring the experimental environment. It provides a
high-level abstraction for mapping application parts with the Edge and Cloud infrastructures.
Besides, the configuration files used to define thewhole experimental environment are designed
to be easy to use and understand.

KheOps also targets reusability of the experiment artifacts. For instance, readers of an arti-
cle can reuse the authors artifacts to replicate the study or build upon the existing artifacts to
generate new results. In addition, through E2Clab User-Defined Services, users can define their
own services (e.g., the Edge client and theCloud server)with the desired deployment logic (e.g.,
mapping the services to the physical machines/devices; installing required software and pack-
ages; etc.). The community can share such services in this repository [76]. It allows users to eas-
ily plug in the existing services in their experiments. Several services already implemented and
shared by the community can be reused, such asHorovod [195], Flower [30], Apache Flink [44],
COMPSs [21], among others.

7.5.3 Analyzing other Real-life Applications

The KheOps approach is generic in terms of deployment and analysis of other applications.
Despite our evaluations focusing on theAfrican savanna use-case,we highlight that KheOps can
be easily used in other contexts. Supporting new applications can be achieved by describing and
implementing their logic in the User-Defined Services configuration file.

112



7.5. Discussion

7.5.4 Integration with other Scientific Testbeds

TheKheOps approach is generic concerning thedeployment testbeds. KheOps allows users
to analyze applicationworkflows onvarious large-scale scientific testbeds beyond the four testbeds
used in this work. The definition of the experimental environment through E2Clab configura-
tion files (e.g., layer_services.yaml, network.yaml, and workflow.yaml) is testbed agnostic, meaning
that deployment on the Grid’5000 testbed can be easily replicated in Chameleon if the latter also
provides the required computing resources for the deployment.

7.5.5 Reproducibility and Artifact Availability

The experimental evaluations presented in this work follow a rigorous methodology [176]
to support reproducible Edge-to-Cloud experiments on large-scale scientific testbeds. All the
experiment artifacts are publicly available [82] at the Trovi sharing portal, and the results are
also publicly available [161] in our GitLab repository.

This chapter proposed KheOps. KheOps is, to the best of our knowledge, the first
collaborative environment supporting the cost-effective reproducibility of ap-
plications on the Edge-to-Cloud Continuum. It provides simplified abstractions
for systematically defining and explaining the experimental environment through
Jupyter notebooks (e.g., infrastructures, services, network, and workflow execu-
tion); explores the E2Clab methodology for experimenting on large-scale scientific
testbeds providing access to heterogeneous computing resources from the IoT/Edge
to the Cloud/HPC; and allows researchers to easily find and share the experiment
artifacts in the Trovi sharing portal.
The experimental validation shows that KheOps helps authors tomake their exper-
iments repeatable and reproducible on the Grid’5000 and FIT IoT LAB testbeds.
Furthermore, KheOps helps readers to cost-effectively replicate authors experi-
ments in different infrastructures, such as Chameleon Cloud+CHI@Edge testbeds,
and obtain the same conclusions with accuracies >88% for all performancemetrics.

Conclusion

113





Chapter 8

CONCLUSION AND PROSPECTS

Contents
8.1 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.1.1 Understanding and Optimizing Performance of Edge-to-Cloud Work-
flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.1.2 Enabling Provenance Capture of Edge-to-Cloud Workflows . . . . . . . 117
8.1.3 Facilitating Reproducibility and Replicability of Edge-to-Cloud Work-

flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.2 Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.2.1 Prospects Related to the E2Clab (and ProvLight) Approach . . . . . . . 118
8.2.2 Prospects Related to the KheOps Approach . . . . . . . . . . . . . . . . . 119

Distributed infrastructures for computation and analytics are evolving towards an intercon-
nected ecosystem allowing complex applications to be executed from IoT/Edge devices to the
HPC/Cloud. Understanding and optimizing performance in such a complex continuum is chal-
lenging. This breaks down to reconcilingmany, typically contradicting application requirements
and constraints with low-level infrastructure design choices. One crucial challenge is accurately
reproducing and replicating the relevant behaviors of a given application workflow and repre-
sentative settings of the physical infrastructure underlying this complex continuum.

Therefore, realizing the Computing Continuum vision in practice raises many questions,
which we addressed in this thesis.

1. A first step towards reducing this complexity and enabling the Computing Continuum
vision is to enable a holistic understanding of performance in such environments. For
instance, finding a rigorous approach to answering a question likeWhich system parameters
and network configurations impact the application performance and how?

2. A natural next step is to optimize the performance of application workflows executed
on the highly heterogeneous Computing Continuum. Such applications typically need to
comply with various requirements and conflicting constraints, resulting in a vast com-
bination of configuration possibilities and hence complex search space. For instance, it
requires answering questions like Where should the workflow components be executed across
the Edge-to-Cloud Continuum to minimize communication costs and end-to-end latency?

115



Partie III, Chapter 8 – Conclusion and Prospects

3. Provenance data capturemay assist the processes of understanding and optimizing per-
formance of Edge-to-Cloud workflows. Capturing provenance during workflow execu-
tion helps users track inputs, outputs, and processing history, allowing them to steer their
experiments precisely. For instance, it helps answer questions like After multiple workflow
evaluations, can we compare their provenance and see what has changed?

4. Finally, reproducing and replicating application performance trade-offs carried out on
large-scale distributed and heterogeneous Edge-to-Cloud infrastructures is non-trivial.
These processes compel a lot of effort, are time-consuming, and bringmany technical chal-
lenges for researchers. One relevant challenge isHow to allow researchers to repeat, reproduce,
and replicate Edge-to-Cloud experiments cost-effectively?

The specific contributions of this thesis toward answering the above questions are detailed
in the next section. We then discuss the prospects opened for future work.

8.1 Achievements

8.1.1 Understanding and Optimizing Performance of Edge-to-Cloud Workflows

The E2Clab approach: As a first step toward enabling the Computing Continuum vision, we
introduce the E2Clab approach. E2Clab implements a rigorous experiment methodology and is
the first framework to support the complete analysis cycle of an application on the Computing
Continuum: (i) the configuration of the experimental environment, libraries, and frameworks;
(ii) the mapping between the application parts and machines on the Edge, Fog and Cloud; (iii)
the deployment of the application on the infrastructure (e.g., Chameleon Cloud, CHI@Edge,
Grid’5000, and FIT IoT LAB); (iv) the automated execution; and (v) the gathering of experiment
metrics. E2Clab is open-source [75] and documented [225]. As we finish this manuscript, this
implementation reaches version 1.0.0. E2Clab is used in several contributions of this manuscript
and cited and used by the research community [174].

Optimization support in E2Clab: First, we use E2Clab to understand the performance of
Edge-to-Cloud applications. Next, as such applications are subject to complex constraints and
requirements regarding performance, resource usage, and energy consumption, we explore
their performance optimization. We propose an optimization methodology and implement it
as an extension of E2Clab. It relies on a rigorous analysis of possible application configurations
to understand their behavior and related performance trade-offs. We illustrate our methodol-
ogy by optimizing Pl@ntNet (a worldwide plant identification application) on the Grid’5000
testbed. The results show that E2Clab allows one to understand and improve performance by
correlating the parameter settings, the resource usage, and the specifics of the underlying in-

116



8.1. Achievements

frastructure. Our methodology can be generalized to other applications in the Edge-to-Cloud
Continuum.

8.1.2 Enabling Provenance Capture of Edge-to-Cloud Workflows

Capturing the provenance of key performance indicators, with their related data and pro-
cesses, may assist in understanding and optimizing Edge-to-Cloud workflow executions. How-
ever, the provenance capture overhead can be prohibitive, particularly in resource-constrained
devices like those on the IoT/Edge. To specifically address this issue, we proposed ProvLight.

TheProvLight approach: ProvLight aims to enable efficient provenance capture on the IoT/Edge.
We integrate ProvLight into the E2Clab framework to enable workflow provenance capture
across the Edge-to-Cloud Continuum.We validate ProvLight with synthetic workloads on real-
life IoT/Edge devices in the large-scale FIT IoT LAB testbed. Evaluations show that ProvLight
outperforms state-of-the-art provenance systems. ProvLight is 26—37x faster in capturing and
transmitting provenance data, uses 5—7x less CPU, 2x less memory, transmits 2x less data, and
consumes 2—2.5x less energy. ProvLight [162] and its integration into E2Clab [75] are available
as open-source tools.

8.1.3 Facilitating Reproducibility and Replicability of Edge-to-Cloud Workflows

To understand the performance trade-offs of workflows deployed on the complex Edge-
to-Cloud Continuum, one needs to systematically perform experiments to enable their repro-
ducibility and to allow other researchers to replicate the study and the obtained conclusions on
different infrastructures. This breaks down to the tedious process of reconciling the numerous
experimental requirements and constraints with low-level infrastructure design choices. To this
end, we proposed KheOps.

TheKheOps approach: KheOps is a collaborative environment designed to enable cost-effective
reproducibility and replicability of Edge-to-Cloud experiments. KheOps is composed of three
core elements: (1) an experiment repository (e.g., Trovi portal); (2) a notebook environment
(e.g., Jupyter); and (3) a multi-platform experiment methodology (e.g., E2Clab). We illustrate
KheOps with a real-life Edge-to-Cloud application. The evaluations explore the point of view
of the authors of an experiment described in an article (who aim to make their experiments
reproducible) and the perspective of their readers (who aim to replicate the experiment). The
results show howKheOps helps authors to systematically perform repeatable and reproducible
experiments on the Grid5000 + FIT IoT LAB testbeds. Furthermore, KheOps helps readers to
cost-effectively replicate authors experiments in different infrastructures, such as Chameleon

117



Partie III, Chapter 8 – Conclusion and Prospects

Cloud + CHI@Edge testbeds, and obtain the same conclusions with high accuracies (>88% for
all performance metrics).

8.2 Prospects

This thesis opens several prospects. Next, we list the most promising ones. We divide these
prospects into two sections: the first groups potential contributions related to E2Clab (and Prov-
Light into E2Clab), while the second lists the directions opened by KheOps.

8.2.1 Prospects Related to the E2Clab (and ProvLight) Approach

Reproducible AI research on the Edge-to-Cloud Continuum: The proper selection of Ma-
chine Learning techniques for fast and accurate decision-making requires extensive experiments
and evaluations on real-life hybrid infrastructures combining HPC, Cloud, and IoT/Edge sys-
tems. The goal is to understand how: (a) infrastructure design choices, (b) optimized learning
algorithmswith tunable parameters, and (c) the combination of learning paradigms impact per-
formance metrics such as memory usage, energy consumption, model accuracy, training time,
network overhead, and application processing latency [173]. This concerns answering questions
like (1) How to efficiently deploy AI workflows on heterogeneous Edge-to-Cloud infrastructures to re-
duce training time and improve model accuracy? (2) How to combine Machine Learning paradigms to
leverage the massively distributed resources for training across the Edge-to-Cloud Continuum?

A relevant challenge, worthy of further consideration, is to understand the performance
trade-offs at scale of combining a variety of learning paradigms such as Reinforcement Learn-
ing [228], Online Learning [68], Multi-task Learning [68], and Federated Learning [16]. For
instance, exploring the massively distributed IoT/Edge devices for AI training to achieve scal-
able and distributed deployment of models on Edge-to-Cloud infrastructures; capturing prove-
nance data of model training to compare performance trade-offs; applying Neural Architecture
Search [79] and Hyperparameter Search [48] to obtain Deep Learning networks that require
less resource without losing accuracy; and exploring Knowledge Distillation [45] (i.e., trans-
ferring knowledge from a large model to a smaller model without loss of validity) to leverage
model deployment on resource-limited devices.

Lastly, further research is needed on novel approaches proposing rigorous methodologies
and systems for enabling the reproducible performance comparison of AI models and learn-
ing paradigms deployed on large-scale and heterogeneous Edge-to-Cloud infrastructures. Such
approaches should support reproducible and replicable experiments. These directions are still
ongoing and active research areas in the Big Data andAI communities. As presented in this the-
sis, we have not seen studies exploring such challenges at a large scale on hybrid Edge-to-Cloud
infrastructures.

118



8.2. Prospects

8.2.2 Prospects Related to the KheOps Approach

Towards a standard platform for facilitating the Reproducibility Initiative in Computer Sci-
ence: Science has the fundamental idea that progress depends on the ability of independent
researchers to verify and reproduce the experimental results using the article artifacts and then
to build on them in future studies [171]. Reproducing complex experimental processes de-
mands greater transparency. Providing just experiment descriptions for the reproducibility of
the results is not enough and results in a challenging task for the independent researcher. There-
fore, transparency in the experimental processes, such as defining the infrastructure configu-
rations, hardware, software, and computer code used to obtain results, is essential for repro-
ducibility.

The Reproducibility Initiative aims to enable reproducible research through transparency
and availability of experiment artifacts associated with publications. Various Computer Science
conferences and journals, such as SC [191], SIGCOMM [198], and TPDS [217], just to cite a few,
are already adopting the Reproducibility Initiative. It consists of authors submitting the artifacts
associated with their published article for post-publication peer review. The goal is that review-
ers can easily reproduce the articlemain results and claimswith provided artifacts. As an output
of this process, articles may receive a badge that quantifies their degree of reproducibility [17].

In this context, reviewers typically find many barriers to reproducing the results, given the
large variety of experiment types. For instance, reviewers have to first understand the artifact
description, then to have access to the required computing resources (e.g., technologies like
GPU, SSD, RDMA, 25G Ethernet, Infiniband, etc.), and finally to configure software and execute
the experiments [192].

Therefore, a standard platform can be a solution to reduce such complexities. The idea is
that authors, through a standard platform, can prepare, execute, and package their experiments
so that reviewers and the research community can reproduce them. Ideally, such a platform
should be integrated with large-scale scientific testbeds that provide access to a large variety of
computing resources, are highly reconfigurable and controllable, and are designed to support
reproducible research. Testbeds with such characteristics are explored in this thesis, such as
Chameleon, Grid5000, FIT IoT LAB, and CHI@Edge.

119





BIBLIOGRAPHY

[1] Martín Abadi et al., « Tensorflow: A system for large-scale machine learning », in: 12th
{USENIX} symposium on operating systems design and implementation ({OSDI} 16), 2016,
pp. 265–283.

[2] SM Abu Adnan Abir et al., « Iot-enabled smart energy grid: Applications and chal-
lenges », in: IEEE access 9 (2021), pp. 50961–50981.

[3] David Perez Abreu et al., « A Comparative Analysis of Simulators for the Cloud to Fog
Continuum », in: Simulation Modelling Practice and Theory (2019), p. 102029.

[4] Cedric Adjih et al., « FIT IoT-LAB: A large scale open experimental IoT testbed », in: 2015
IEEE 2nd World Forum on Internet of Things (WF-IoT), IEEE, 2015, pp. 459–464.

[5] AI Hub. Jan. 2023, url: https://aihub.cloud.google.com/.

[6] BrennoMAlencar et al., « FoT-Stream: A Fog platform for data stream analytics in IoT »,
in: Computer Communications (2020).

[7] Muhammad Ali et al., « RES: Real-time video stream analytics using edge enhanced
clouds », in: IEEE Transactions on Cloud Computing (2020).

[8] AMQP: Advanced Message Queuing Protocol. 2023, url: http://docs.oasis-open.org/

amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html.

[9] Jason Anderson and Kate Keahey, « A case for integrating experimental containers with
notebooks », in: 2019 IEEE International Conference on Cloud Computing Technology and
Science (CloudCom), IEEE, 2019, pp. 151–158.

[10] Ansible Documentation, url: https://docs.ansible.com/ansible/latest/index.

html, (accessed: 05.03.2020).

[11] Apache Kafka, url: https://kafka.apache.org/, (accessed: 04.27.2020).

[12] Apache Nifi, url: https://nifi.apache.org/, (accessed: 04.27.2020).

[13] Apache Pulsar, url: https://pulsar.apache.org/, (accessed: 04.27.2020).

[14] Apache Storm, url: http://storm.apache.org/, (accessed: 04.27.2020).

[15] AppDynamics, 16 metrics to ensure mobile app success, Jan. 2015, url: https : / / www .

appdynamics.com/media/uploaded-files/1432066155/white-paper-16-metrics-

every-mobile-team-should-monitor.pdf.

121

https://aihub.cloud.google.com/
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://kafka.apache.org/
https://nifi.apache.org/
https://pulsar.apache.org/
http://storm.apache.org/
https://www.appdynamics.com/media/uploaded-files/1432066155/white-paper-16-metrics-every-mobile-team-should-monitor.pdf
https://www.appdynamics.com/media/uploaded-files/1432066155/white-paper-16-metrics-every-mobile-team-should-monitor.pdf
https://www.appdynamics.com/media/uploaded-files/1432066155/white-paper-16-metrics-every-mobile-team-should-monitor.pdf


Partie III, BIBLIOGRAPHY

[16] Atakan Aral, Melike Erol-Kantarci, and Ivona Brandić, « Staleness control for edge data
analytics », in: Proceedings of the ACM on Measurement and Analysis of Computing Systems
4.2 (2020), pp. 1–24.

[17] Artifact Review and Badging Version 1.1. url: https://www.acm.org/publications/

policies/artifact-review-and-badging-current, (accessed: 22.12.2022).

[18] M Asch et al., « Big Data and Extreme-scale Computing: Pathways to Convergence -
Toward a Shaping Strategy for a Future Software and Data Ecosystem for Scientific
Inquiry », in: The International Journal of High Performance Computing Applications 32.4
(2018), pp. 435–479.

[19] Mohammad S Aslanpour, Sukhpal Singh Gill, and Adel N Toosi, « Performance evalu-
ation metrics for cloud, fog and edge computing: A review, taxonomy, benchmarks and
standards for future research », in: Internet of Things (2020), p. 100273.

[20] Mehdi Assefi et al., « Big data machine learning using apache sparkMLlib », in: 2017 ieee
international conference on big data (big data), IEEE, 2017, pp. 3492–3498.

[21] Rosa M Badia et al., « Comp superscalar, an interoperable programming framework »,
in: SoftwareX 3 (2015), pp. 32–36.

[22] Rosa M Badia et al., « Workflow environments for advanced cyberinfrastructure plat-
forms », in: 2019 IEEE 39th International Conference onDistributedComputing Systems (ICDCS),
IEEE, 2019, pp. 1720–1729.

[23] Maximilian Balandat et al., « BoTorch: A Framework for Efficient Monte-Carlo Bayesian
Optimization », in: Advances in Neural Information Processing Systems 33, 2020, url: http:

//arxiv.org/abs/1910.06403.

[24] Prasanna Balaprakash et al., « DeepHyper: Asynchronous hyperparameter search for
deep neural networks », in: 2018 IEEE 25th international conference on high performance
computing (HiPC), IEEE, 2018, pp. 42–51.

[25] Magda Balazinska et al., « The next 5 years: what opportunities should the database
community seize to maximize its impact? », in: Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, 2020, pp. 411–414.

[26] Ilya Baldin et al., « Exogeni: Amulti-domain infrastructure-as-a-service testbed », in: The
GENI Book, Springer, 2016, pp. 279–315.

[27] L. A. Barba and G. K. Thiruvathukal, « Reproducible Research for Computing in Science
Engineering », in: Computing in Science Engineering 19.6 (2017), pp. 85–87.

[28] Khalid Belhajjame et al., « Prov-dm: The prov data model », in:W3C Recommendation 14
(2013), pp. 15–16.

122

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://arxiv.org/abs/1910.06403
http://arxiv.org/abs/1910.06403


BIBLIOGRAPHY

[29] Julian Bellendorf and Zoltán Ádám Mann, « Classification of optimization problems in
fog computing », in: Future Generation Computer Systems 107 (2020), pp. 158–176.

[30] Daniel J Beutel et al., « Flower: A friendly federated learning research framework », in:
arXiv preprint arXiv:2007.14390 (2020).

[31] Raphaël Bolze et al., « Grid’5000: A Large Scale And Highly Reconfigurable Experimen-
tal Grid Testbed », in: International Journal of High Performance Computing Applications 20.4
(2006), pp. 481–494, doi: 10.1177/1094342006070078, url: https://hal.inria.fr/

hal-00684943.

[32] Raphaël Bolze et al., « Grid’5000: a large scale and highly reconfigurable experimental
grid testbed », in: The International Journal of High Performance Computing Applications 20.4
(2006), pp. 481–494.

[33] Raphaël Bolze et al., « Grid’5000: A Large Scale And Highly Reconfigurable Experimen-
tal Grid Testbed », in: International Journal of High Performance Computing Applications 20.4
(2006), pp. 481–494, doi: 10.1177/1094342006070078, url: https://hal.inria.fr/

hal-00684943.

[34] Peter A Boncz, Marcin Zukowski, and Niels Nes, « MonetDB/X100: Hyper-Pipelining
Query Execution. », in: Cidr, vol. 5, 2005, pp. 225–237.

[35] Stefan Bouckaert et al., « The w-iLab. t testbed », in: International Conference on Testbeds
and Research Infrastructures, Springer, 2010, pp. 145–154.

[36] MohamedAmine Bouhlel et al., « A Python surrogatemodeling frameworkwith deriva-
tives », in:Advances in Engineering Software (2019), p. 102662, issn: 0965-9978, doi: https:

//doi.org/10.1016/j.advengsoft.2019.03.005.

[37] Leo Breiman, « Random forests », in: Machine learning 45.1 (2001), pp. 5–32.

[38] Eric A Brewer, « Kubernetes and the path to cloud native », in: Proceedings of the sixth
ACM symposium on cloud computing, 2015, pp. 167–167.

[39] Bouziane Brik, Pantelis A Frangoudis, and Adlen Ksentini, « Service-oriented MEC ap-
plications placement in a federated edge cloud architecture », in: ICC 2020-2020 IEEE
international conference on communications (ICC), IEEE, 2020, pp. 1–6.

[40] A. Brogi and S. Forti, « QoS-aware Deployment of IoT Applications Through the Fog »,
in: IEEE Internet of Things Journal 4.5 (Oct. 2017), pp. 1185–1192, issn: 2327-4662, doi:
10.1109/JIOT.2017.2701408.

[41] Zhicheng Cai, Qianmu Li, and Xiaoping Li, « Elasticsim: A toolkit for simulating work-
flows with cloud resource runtime auto-scaling and stochastic task execution times »,
in: Journal of Grid Computing 15.2 (2017), pp. 257–272.

123

https://doi.org/10.1177/1094342006070078
https://hal.inria.fr/hal-00684943
https://hal.inria.fr/hal-00684943
https://doi.org/10.1177/1094342006070078
https://hal.inria.fr/hal-00684943
https://hal.inria.fr/hal-00684943
https://doi.org/https://doi.org/10.1016/j.advengsoft.2019.03.005
https://doi.org/https://doi.org/10.1016/j.advengsoft.2019.03.005
https://doi.org/10.1109/JIOT.2017.2701408


Partie III, BIBLIOGRAPHY

[42] Caida, About Caida, https://www.caida.org/about/, July 28, 2021.

[43] Rodrigo N Calheiros et al., « CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algorithms », in: Soft-
ware: Practice and experience 41.1 (2011), pp. 23–50.

[44] Paris Carbone et al., « Apache Flink: Stream and Batch Processing in a Single Engine »,
in: Bulletin of the IEEE Computer Society Technical Committee on Data Engineering 38.4 (Dec.
2015), pp. 1–11.

[45] Jiasi Chen and Xukan Ran, « Deep Learning With Edge Computing: A Review. », in:
Proceedings of the IEEE 107.8 (2019), pp. 1655–1674.

[46] Yitao Chen et al., « Exploring the use of synthetic gradients for distributed deep learning
across cloud and edge resources », in: 2nd {USENIX} Workshop on Hot Topics in Edge
Computing (HotEdge 19), 2019.

[47] Ronan-AlexandreCherrueau,Matthieu Simonin, andAlexandreVanKempen, « EnosStack:
A LAMP-like Stack for the Experimenter », in: IEEE INFOCOM 2018-IEEE Conference on
Computer Communications Workshops (INFOCOMWKSHPS), IEEE, 2018, pp. 336–341.

[48] Marc Claesen and Bart De Moor, « Hyperparameter search in machine learning », in:
arXiv preprint arXiv:1502.02127 (2015).

[49] April Clyburne-Sherin, Xu Fei, and Seth Ariel Green, « Computational reproducibility
via containers in psychology », in:Meta-psychology 3 (2019).

[50] CoAP: The Constrained Application Protocol. 2023, url: https://datatracker.ietf.org/

doc/html/rfc7252.

[51] Code Ocean Explore: Open Science Library. Jan. 2023, url: https : / / codeocean . com /

explore.

[52] Colab: Cloud Storage from the command line. Jan. 2023, url: https://cloud.google.com/

storage/docs/gsutil.

[53] Colab: Google Spreadsheets. Jan. 2023, url: https://github.com/burnash/gspread#

more-examples.

[54] Compute skylake cluster at CHI@TACC. Feb. 2023, url: https://www.chameleoncloud.

org/hardware/node/sites/tacc/clusters/chameleon/nodes/0b0bceb9- 14bf-

423e-890f-3ef187511d71/.

[55] Antonio Coutinho et al., « Fogbed: A rapid-prototyping emulation environment for fog
computing », in: 2018 IEEE International Conference on Communications (ICC), IEEE, 2018,
pp. 1–7.

124

https://www.caida.org/about/
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252
https://codeocean.com/explore
https://codeocean.com/explore
https://cloud.google.com/storage/docs/gsutil
https://cloud.google.com/storage/docs/gsutil
https://github.com/burnash/gspread#more-examples
https://github.com/burnash/gspread#more-examples
https://www.chameleoncloud.org/hardware/node/sites/tacc/clusters/chameleon/nodes/0b0bceb9-14bf-423e-890f-3ef187511d71/
https://www.chameleoncloud.org/hardware/node/sites/tacc/clusters/chameleon/nodes/0b0bceb9-14bf-423e-890f-3ef187511d71/
https://www.chameleoncloud.org/hardware/node/sites/tacc/clusters/chameleon/nodes/0b0bceb9-14bf-423e-890f-3ef187511d71/


BIBLIOGRAPHY

[56] Alexander I Cowen-Rivers et al., « HEBO: Heteroscedastic Evolutionary Bayesian Opti-
misation », in: arXiv preprint arXiv:2012.03826 (2020),winning submission to theNeurIPS
2020 Black Box Optimisation Challenge.

[57] Geoff Cumming, Fiona Fidler, and David L Vaux, « Error bars in experimental biology »,
in: The Journal of cell biology 177.1 (2007), pp. 7–11.

[58] Dahu cluster. Feb. 2023, url: https://www.grid5000.fr/w/Grenoble:Hardware#dahu.

[59] Swagatam Das, Sankha Subhra Mullick, and Ponnuthurai N Suganthan, « Recent ad-
vances in differential evolution–an updated survey », in: Swarm and Evolutionary Com-
putation 27 (2016), pp. 1–30.

[60] RustemDautov and SalvatoreDistefano, « Streamprocessing on clustered edgedevices »,
in: IEEE Transactions on Cloud Computing (2020).

[61] Rustem Dautov, Salvatore Distefano, and Rajkumaar Buyya, « Hierarchical data fusion
for Smart Healthcare », in: Journal of Big Data 6.1 (2019), pp. 1–23.

[62] Rustem Dautov et al., « Data processing in cyber-physical-social systems through edge
computing », in: IEEE Access 6 (2018), pp. 29822–29835.

[63] Rustem Dautov et al., « Pushing intelligence to the edge with a stream processing archi-
tecture », in: 2017 IEEE International Conference on Internet of Things (iThings) and IEEE
GreenComputing andCommunications (GreenCom) and IEEECyber, Physical and Social Com-
puting (CPSCom) and IEEE Smart Data (SmartData), IEEE, 2017, pp. 792–799.

[64] Ewa Deelman et al., « Pegasus, a workflow management system for science automa-
tion », in: Future Generation Computer Systems 46 (2015), pp. 17–35.

[65] Piet Demeester et al., « Fed4fire: the largest federation of testbeds in europe », in:Building
the future internet through FIRE, 2016, pp. 87–109.

[66] Swarnava Dey, Jayeeta Mondal, and Arijit Mukherjee, « Offloaded execution of deep
learning inference at edge: Challenges and insights », in: 2019 IEEE International Con-
ference on Pervasive Computing and Communications Workshops (PerComWorkshops), IEEE,
2019, pp. 855–861.

[67] DfAnalyzer tool. Jan. 2018, url: https://gitlab.com/ssvitor/dataflow_analyzer/-

/tree/master.

[68] Alberto Diez-Olivan et al., « Data fusion and machine learning for industrial prognosis:
Trends and perspectives towards Industry 4.0 », in: Information Fusion 50 (2019), pp. 92–
111.

[69] Docker. Jan. 2023, url: https://www.docker.com/.

[70] Docker,What is in a Docker container?, https://www.docker.com/, January 2, 2023.

125

https://www.grid5000.fr/w/Grenoble:Hardware#dahu
https://gitlab.com/ssvitor/dataflow_analyzer/-/tree/master
https://gitlab.com/ssvitor/dataflow_analyzer/-/tree/master
https://www.docker.com/
https://www.docker.com/


Partie III, BIBLIOGRAPHY

[71] Docker Hub, url: https://hub.docker.com/, (accessed: 05.03.2020).

[72] Dool (Dstat) monitoring. Jan. 2018, url: https://github.com/scottchiefbaker/dool.

[73] Ke-Lin Du andMNS Swamy, « Particle swarm optimization », in: Search and optimization
by metaheuristics, Springer, 2016, pp. 153–173.

[74] E2Clab experimental artifacts.May 2021, url: https://gitlab.inria.fr/E2Clab/Paper-

Artifacts/plantnet.

[75] E2Clab source code. July 2021, url: https://gitlab.inria.fr/E2Clab/e2clab.

[76] E2Clab User Defined Services. Feb. 2023, url: https://gitlab.inria.fr/E2Clab/user-

defined-services.

[77] Eclipse Mosquitto, url: https://mosquitto.org/, (accessed: 04.27.2020).

[78] Eclipse Mosquitto: An open source MQTT broker. Jan. 2017, url: https://github.com/

eclipse/mosquitto.

[79] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter, « Neural architecture search: A
survey », in: The Journal of Machine Learning Research 20.1 (2019), pp. 1997–2017.

[80] Patricia T Endo et al., « High availability in clouds: systematic review and research chal-
lenges », in: Journal of Cloud Computing 5.1 (2016), pp. 1–15.

[81] ETP4HPC, ETP4HPC Strategic Research Agenda, https://www.etp4hpc.eu/sra.html,
April 29, 2020.

[82] Experiment artifacts. Feb. 2023, url: https://www.chameleoncloud.org/experiment/

share/347adbf3-7c14-4834-b802-b45fdd0d9564.

[83] Xenofon Fafoutis et al., « Extending the battery lifetime of wearable sensors with em-
beddedmachine learning », in: 2018 IEEE 4thWorld Forum on Internet of Things (WF-IoT),
IEEE, 2018, pp. 269–274.

[84] Benedikt Fecher and Sascha Friesike, « Open science: one term, five schools of thought »,
in: Opening science (2014), pp. 17–47.

[85] Damián Fernández-Cerero et al., « SCORE: Simulator for cloudoptimization of resources
and energy consumption », in: SimulationModelling Practice and Theory 82 (2018), pp. 160–
173.

[86] Marc E Fiuczynski, « Planetlab: overview, history, and future directions », in:ACMSIGOPS
Operating Systems Review 40.1 (2006), pp. 6–10.

[87] Fog Computing and the Internet of Things: Extend the Cloud to Where the Things Are, url:
https://www.cisco.com/c/dam/en\_us/solutions/trends/iot/docs/computing-

overview.pdf, (accessed: 04.21.2020).

126

https://hub.docker.com/
https://github.com/scottchiefbaker/dool
https://gitlab.inria.fr/E2Clab/Paper-Artifacts/plantnet
https://gitlab.inria.fr/E2Clab/Paper-Artifacts/plantnet
https://gitlab.inria.fr/E2Clab/e2clab
https://gitlab.inria.fr/E2Clab/user-defined-services
https://gitlab.inria.fr/E2Clab/user-defined-services
https://mosquitto.org/
https://github.com/eclipse/mosquitto
https://github.com/eclipse/mosquitto
https://www.etp4hpc.eu/sra.html
https://www.chameleoncloud.org/experiment/share/347adbf3-7c14-4834-b802-b45fdd0d9564
https://www.chameleoncloud.org/experiment/share/347adbf3-7c14-4834-b802-b45fdd0d9564
https://www.cisco.com/c/dam/en\_us/solutions/trends/iot/docs/computing-overview.pdf
https://www.cisco.com/c/dam/en\_us/solutions/trends/iot/docs/computing-overview.pdf


BIBLIOGRAPHY

[88] Peter I Frazier, « A tutorial on Bayesian optimization », in: arXiv preprint arXiv:1807.02811
(2018).

[89] Jerome H Friedman, « Greedy function approximation: a gradient boosting machine »,
in: Annals of statistics (2001), pp. 1189–1232.

[90] Xinwei Fu et al., « Edgewise: a better stream processing engine for the edge », in: 2019
{USENIX} Annual Technical Conference ({USENIX}{ATC} 19), 2019, pp. 929–946.

[91] G5K, Grid’5000: a large-scale and flexible testbed for experiment-driven research. https://

www.grid5000.fr/w/Nancy:Hardware#gros, January 2, 2023.

[92] G5K hardware: cluster configuration details. url: https://www.grid5000.fr/w/Hardware,
(accessed: 20.12.2022).

[93] Cavide Balkı Gemirter, Çağatay Şenturca, and Şebnem Baydere, « A comparative eval-
uation of AMQP, MQTT and HTTP protocols using real-time public smart city data »,
in: 2021 6th International Conference on Computer Science and Engineering (UBMK), IEEE,
2021, pp. 542–547.

[94] Ananda Mohon Ghosh and Katarina Grolinger, « Edge-cloud computing for Internet of
Things data analytics: Embedding intelligence in the edgewith deep learning », in: IEEE
Transactions on Industrial Informatics 17.3 (2020), pp. 2191–2200.

[95] GitHub. 2018, url: https://github.com/.

[96] Google Colab. Jan. 2023, url: https://colab.research.google.com/.

[97] Google Colab: Frequently Asked Questions. Jan. 2023, url: https://research.google.

com/colaboratory/faq.html.

[98] Google Colab vs Kaggle, Jan. 2023, url: https://datasciencenotebook.org/compare/

colab/kaggle.

[99] Maciej Grzenda, Karolina Kwasiborska, and Tomasz Zaremba, «Hybrid short term pre-
diction to address limited timeliness of public transport data streams », in:Neurocomput-
ing 391 (2020), pp. 305–317.

[100] GSMA - IoTEdgeComputingRequirements, url: https://www.gsma.com/iot/resources/

iot-edge-computing-requirements/, (accessed: 04.23.2020).

[101] Peizhen Guo, Bo Hu, and Wenjun Hu, « Mistify: Automating DNN Model Porting for
On-Device Inference at the Edge. », in: NSDI, 2021, pp. 705–719.

[102] Harshit Gupta et al., « iFogSim: A toolkit for modeling and simulation of resource man-
agement techniques in the Internet of Things, Edge and Fog computing environments »,
in: Software: Practice and Experience 47.9 (2017), pp. 1275–1296.

127

https://www.grid5000.fr/w/Nancy:Hardware#gros
https://www.grid5000.fr/w/Nancy:Hardware#gros
https://www.grid5000.fr/w/Hardware
https://github.com/
https://colab.research.google.com/
https://research.google.com/colaboratory/faq.html
https://research.google.com/colaboratory/faq.html
https://datasciencenotebook.org/compare/colab/kaggle
https://datasciencenotebook.org/compare/colab/kaggle
https://www.gsma.com/iot/resources/iot-edge-computing-requirements/
https://www.gsma.com/iot/resources/iot-edge-computing-requirements/


Partie III, BIBLIOGRAPHY

[103] BenjaminHaibe-Kains et al., « Transparency and reproducibility in artificial intelligence »,
in: Nature 586.7829 (2020), E14–E16.

[104] DM Hamby, « A comparison of sensitivity analysis techniques », in: Health physics 68.2
(1995), pp. 195–204.

[105] Runzhou Han et al., « PROV-IO: An I/O-Centric Provenance Framework for Scientific
Data onHPCSystems », in:Proceedings of the 31st International Symposium onHigh-Performance
Parallel and Distributed Computing, 2022, pp. 213–226.

[106] Jonathan Hasenburg, Sebastian Werner, and David Bermbach, « Supporting the Evalu-
ation of Fog-based IoT Applications During the Design Phase », in: Proceedings of the 5th
Workshop on Middleware and Applications for the Internet of Things (M4IoT 2018), Rennes,
France: ACM, 2018.

[107] Manfred Hauswirth and Danh Le-Phuoc, « Autonomous RDF Stream Processing for
IoT Edge Devices », in: Semantic Technology: 9th Joint International Conference, JIST 2019,
Hangzhou, China, November 25–27, 2019, Proceedings, vol. 12032, Springer Nature, 2020,
p. 304.

[108] Jon CHelton and Freddie Joe Davis, « Latin hypercube sampling and the propagation of
uncertainty in analyses of complex systems », in: Reliability Engineering & System Safety
81.1 (2003), pp. 23–69.

[109] Melanie Herschel, Ralf Diestelkämper, and Houssem Ben Lahmar, « A survey on prove-
nance: What for? What form? What from? », in: The VLDB Journal 26 (2017), pp. 881–
906.

[110] RankyungHong and Abhishek Chandra, « Dlion: Decentralized distributed deep learn-
ing inmicro-clouds », in: 11th {USENIX}Workshop onHot Topics in CloudComputing (Hot-
Cloud 19), 2019.

[111] Michaela Iorga et al., Fog Computing Conceptual Model, tech. rep., 2018.

[112] IoT-LAB, IoT-LAB A8-M3 board. https://www.iot-lab.info/docs/boards/iot-lab-

a8-m3/, January 2, 2023.

[113] Rei Ito, Mineto Tsukada, and Hiroki Matsutani, « An on-device federated learning ap-
proach for cooperative model update between edge devices », in: IEEE Access 9 (2021),
pp. 92986–92998.

[114] Kaggle community. Jan. 2023, url: https://www.kaggle.com/.

[115] Kaggle datasets. Jan. 2023, url: https://www.kaggle.com/datasets.

[116] Kirthevasan Kandasamy et al., « Tuning Hyperparameters without Grad Students: Scal-
able andRobust BayesianOptimisationwithDragonfly », in: arXiv preprint arXiv:1903.06694
(2019).

128

https://www.iot-lab.info/docs/boards/iot-lab-a8-m3/
https://www.iot-lab.info/docs/boards/iot-lab-a8-m3/
https://www.kaggle.com/
https://www.kaggle.com/datasets


BIBLIOGRAPHY

[117] Karamjeet Kaur, Japinder Singh, andNavtej Singh Ghumman, «Mininet as software de-
fined networking testing platform », in: International Conference on Communication, Com-
puting & Systems (ICCCS), 2014, pp. 139–42.

[118] Kate Keahey, « The Silver Lining », in: IEEE Internet Computing 24.4 (2020), pp. 55–59.

[119] Kate Keahey et al., Chameleon@Edge Community Workshop Report, 2021.

[120] Kate Keahey et al., « Lessons Learned from the Chameleon Testbed », in: Proceedings of
the 2020 USENIX Annual Technical Conference (USENIX ATC ’20), USENIX Association,
July 2020.

[121] Kate Keahey et al., « Lessons learned from the chameleon testbed », in: 2020 USENIX
Annual Technical Conference (USENIX ATC 20), 2020, pp. 219–233.

[122] Staffs Keele et al.,Guidelines for performing systematic literature reviews in software engineer-
ing, tech. rep., Citeseer, 2007.

[123] Mashael Khayyat et al., « Advanced deep learning-based computational offloading for
multilevel vehicular edge-cloud computing networks », in: IEEEAccess 8 (2020), pp. 137052–
137062.

[124] LadislavKocis andWilliam JWhiten, « Computational investigations of low-discrepancy
sequences », in:ACMTransactions onMathematical Software (TOMS) 23.2 (1997), pp. 266–
294.

[125] AshishKumar, SaurabhGoyal, andManikVarma, « Resource-efficientmachine learning
in 2 KB RAM for the internet of things », in: International Conference on Machine Learning,
PMLR, 2017, pp. 1935–1944.

[126] Dhruv Kumar et al., « Decaf: Iterative collaborative processing over the edge », in: 2nd
{USENIX}Workshop on Hot Topics in Edge Computing (HotEdge 19), 2019.

[127] Rohan Kumar et al., « Coding the computing continuum: Fluid function execution in
heterogeneous computing environments », in: 2021 IEEE International Parallel and Dis-
tributed Processing Symposium Workshops (IPDPSW), IEEE, 2021, pp. 66–75.

[128] Isaac Lera, Carlos Guerrero, and Carlos Juiz, « YAFS: A simulator for IoT scenarios in
fog computing », in: IEEE Access 7 (2019), pp. 91745–91758.

[129] En Li et al., « Edge AI: On-demand accelerating deep neural network inference via edge
computing », in: IEEE Transactions on Wireless Communications 19.1 (2019), pp. 447–457.

[130] Richard Liaw et al., « Tune: A research platform for distributed model selection and
training », in: arXiv preprint arXiv:1807.05118 (2018).

[131] Linux, Linux manual page: tc-netem, Mar. 2022, url: https://man7.org/linux/man-

pages/man8/tc-netem.8.html.

129

https://man7.org/linux/man-pages/man8/tc-netem.8.html
https://man7.org/linux/man-pages/man8/tc-netem.8.html


Partie III, BIBLIOGRAPHY

[132] Ling Liu and M Tamer Özsu, Encyclopedia of database systems, vol. 6, Springer, 2009.

[133] Yi Liu et al., « Deep anomalydetection for time-series data in industrial IoT:A communication-
efficient on-device federated learning approach », in: IEEE Internet of Things Journal 8.8
(2020), pp. 6348–6358.

[134] Wen-Chih Lo, Chih-YuanHuang, andCheng-HsinHsu, « Edge-assisted rendering of 360
videos streamed to head-mounted virtual reality », in: 2018 IEEE International Symposium
on Multimedia (ISM), IEEE, 2018, pp. 44–51.

[135] Sidi Lu, Yongtao Yao, and Weisong Shi, « Collaborative learning on the edges: A case
study on connected vehicles », in: 2nd {USENIX}Workshop on Hot Topics in Edge Comput-
ing (HotEdge 19), 2019.

[136] Andre Luckow, Kartik Rattan, and Shantenu Jha, « Exploring task placement for edge-
to-cloud applications using emulation », in: 2021 IEEE 5th International Conference on Fog
and Edge Computing (ICFEC), IEEE, 2021, pp. 79–83.

[137] ZaighamMahmood, FogComputing: Concepts, Frameworks and Technologies, Springer, 2018.

[138] AsadWaqarMalik et al., « XFogSim:Adistributed fog resourcemanagement framework
for sustainable IoT services », in: IEEE Transactions on Sustainable Computing 6.4 (2020),
pp. 691–702.

[139] RubenMayer et al., « Emufog: Extensible and scalable emulation of large-scale fog com-
puting infrastructures », in: 2017 IEEE Fog World Congress (FWC), IEEE, 2017, pp. 1–6.

[140] Alberto Medina et al., « BRITE: An approach to universal topology generation », in:
MASCOTS 2001, ProceedingsNinth International Symposium onModeling, Analysis and Sim-
ulation of Computer and Telecommunication Systems, IEEE, 2001, pp. 346–353.

[141] Francisco Ferreira de Mendonça Junior et al., « The trade-offs between Fog Processing
and Communications in latency-sensitive Vehicular Fog Computing », in: Pervasive and
Mobile Computing 84 (2022), p. 101638.

[142] Sadip Midya et al., «Multi-objective optimization technique for resource allocation and
task scheduling in vehicular cloud architecture: A hybrid adaptive nature inspired ap-
proach », in: Journal of Network and Computer Applications 103 (2018), pp. 58–84.

[143] Seyedali Mirjalili, « Genetic algorithm », in: Evolutionary algorithms and neural networks,
Springer, 2019, pp. 43–55.

[144] Roberto Morabito, Z Laaroussi, and J Jiménez, « Evaluating the performance of CoAP,
MQTT, and HTTP in vehicular scenarios », in: IEEE Conference on Standards for Commu-
nications and Networking, CSCN, 2018.

[145] MQTT: The Standard for IoT Messaging. 2023, url: https://mqtt.org/.

130

https://mqtt.org/


BIBLIOGRAPHY

[146] Dariusz Mrozek, Anna Koczur, and Bożena Małysiak-Mrozek, « Fall detection in older
adults with mobile IoT devices and machine learning in the cloud and on the edge », in:
Information Sciences 537 (2020), pp. 132–147.

[147] LekhaRNair, SujalaD Shetty, and SiddhanthD Shetty, «Applying spark basedmachine
learning model on streaming big data for health status prediction », in: Computers &
Electrical Engineering 65 (2018), pp. 393–399.

[148] Devki Nandan Jha et al., « IoTSim-Edge: A Simulation Framework for Modeling the Be-
haviour of IoT and Edge Computing Environments », in: arXiv e-prints (2019), arXiv–
1910.

[149] Lucas Nussbaum, « An overview of Fed4FIRE testbeds–and beyond? », in: GEFI-Global
Experimentation for Future Internet Workshop, 2019.

[150] Open Science, url: https://ec.europa.eu/research/openscience, (accessed: 05.03.2020).

[151] PROJETOORBIT,Open-Access Research Testbed forNext-GenerationWirelessNetworks, 2016.

[152] Eva Ostertagová, «Modelling using polynomial regression », in: Procedia Engineering 48
(2012), pp. 500–506.

[153] Thomas Pasquier et al., « Runtime analysis of whole-system provenance », in: Proceed-
ings of the 2018 ACM SIGSAC conference on computer and communications security, 2018,
pp. 1601–1616.

[154] Adam Paszke et al., « Pytorch: An imperative style, high-performance deep learning
library », in: Advances in neural information processing systems 32 (2019), pp. 8026–8037.

[155] Katerina Pechlivanidou et al., « NITOS testbed: A cloud based wireless experimentation
facility », in: 2014 26th International Teletraffic Congress (ITC), IEEE, 2014, pp. 1–6.

[156] Fabian Pedregosa et al., « Scikit-learn: Machine learning in Python », in: the Journal of
machine Learning research 12 (2011), pp. 2825–2830.

[157] Juan Luis Pérez et al., « A resilient and distributed near real-time traffic forecasting ap-
plication for Fog computing environments », in: Future Generation Computer Systems 87
(2018), pp. 198–212.

[158] Manuel Peuster, Johannes Kampmeyer, and Holger Karl, « Containernet 2.0: A rapid
prototyping platform for hybrid service function chains », in: 2018 4th IEEE Conference
on Network Softwarization and Workshops (NetSoft), IEEE, 2018, pp. 335–337.

[159] Duc Pham andDervis Karaboga, Intelligent optimisation techniques: genetic algorithms, tabu
search, simulated annealing and neural networks, Springer Science & Business Media, 2012.

131

https://ec.europa.eu/research/openscience


Partie III, BIBLIOGRAPHY

[160] Débora Pina et al., « Provenance supporting hyperparameter analysis in deep neural
networks », in: Provenance and Annotation of Data and Processes: 8th and 9th International
Provenance and Annotation Workshop, IPAW 2020+ IPAW 2021, Virtual Event, July 19–22,
2021, Proceedings 8, Springer, 2021, pp. 20–38.

[161] Provenance Capture IoT/Edge: experiment artifacts. Jan. 2023, url: https://gitlab.inria.

fr/E2Clab/examples/provenance-iot-edge.

[162] ProvLight tool: Provenance Capture for IoT/Edge devices. Jan. 2023, url: https://gitlab.

inria.fr/provlight/provlight.

[163] PythonClient forMQTT-SN brokers. Jan. 2017, url: https://github.com/luanguimaraesla/

mqttsn.

[164] Python zlib. Feb. 2023, url: https://docs.python.org/3/library/zlib.html.

[165] Tariq Qayyum et al., « FogNetSim++: A toolkit for modeling and simulation of dis-
tributed fog environment », in: IEEE Access 6 (2018), pp. 63570–63583.

[166] RADICAL-DREAMER, RADICAL-DREAMER: Dynamic Runtime and Execution Adaptive
Middleware EmulatoR (RD), https://github.com/radical-project/radical.dreamer/,
Feb 12, 2022.

[167] Rajiv Ranjan et al., « The next grand challenges: Integrating the internet of things and
data science », in: IEEE Cloud Computing 5.3 (2018), pp. 12–26.

[168] Raspberry Pi 3 Model B. Feb. 2023, url: https://www.iot-lab.info/docs/boards/

raspberry-pi-3/.

[169] Raspberry Pi 4. Feb. 2023, url: https://chameleoncloud.org/experiment/chiedge/

hardware-info/.

[170] Ray,What is Ray?, May 2021, url: https://docs.ray.io/en/latest/index.html.

[171] Reporting standards and availability of data, materials, code and protocols, Feb. 2020, url:
https://www.nature.com/nature- portfolio/editorial- policies/reporting-

standards.

[172] Requests: HTTP for Humans. Jan. 2018, url: https://github.com/psf/requests.

[173] Aluizio F Rocha Neto et al., « Distributed machine learning for iot applications in the
fog », in: Fog Computing: Theory and Practice (2020), pp. 309–345.

[174] Daniel Rosendo, E2Clab Documentation Web Page: citations and usage by the research com-
munity. https://e2clab.gitlabpages.inria.fr/e2clab/publications.html, 2023.

132

https://gitlab.inria.fr/E2Clab/examples/provenance-iot-edge
https://gitlab.inria.fr/E2Clab/examples/provenance-iot-edge
https://gitlab.inria.fr/provlight/provlight
https://gitlab.inria.fr/provlight/provlight
https://github.com/luanguimaraesla/mqttsn
https://github.com/luanguimaraesla/mqttsn
https://docs.python.org/3/library/zlib.html
https://github.com/radical-project/radical.dreamer/
https://www.iot-lab.info/docs/boards/raspberry-pi-3/
https://www.iot-lab.info/docs/boards/raspberry-pi-3/
https://chameleoncloud.org/experiment/chiedge/hardware-info/
https://chameleoncloud.org/experiment/chiedge/hardware-info/
https://docs.ray.io/en/latest/index.html
https://www.nature.com/nature-portfolio/editorial-policies/reporting-standards
https://www.nature.com/nature-portfolio/editorial-policies/reporting-standards
https://github.com/psf/requests
https://e2clab.gitlabpages.inria.fr/e2clab/publications.html


BIBLIOGRAPHY

[175] Daniel Rosendo et al., « Distributed intelligence on the Edge-to-Cloud Continuum: A
systematic literature review », in: Journal of Parallel and Distributed Computing 166 (Aug.
2022), pp. 71–94, doi: 10.1016/j.jpdc.2022.04.004, url: https://hal.archives-

ouvertes.fr/hal-03654722.

[176] Daniel Rosendo et al., « E2Clab: Exploring the Computing Continuum through Repeat-
able, Replicable and Reproducible Edge-to-Cloud Experiments », in: Cluster 2020 - IEEE
International Conference on Cluster Computing, Kobe, Japan, Sept. 2020, pp. 1–11, doi: 10.

1109/CLUSTER49012.2020.00028, url: https://hal.archives-ouvertes.fr/hal-

02916032.

[177] Daniel Rosendo et al., « E2Clab: Exploring the Computing Continuum through Repeat-
able, Replicable and Reproducible Edge-to-Cloud Experiments », in: 2020 IEEE Interna-
tional Conference on Cluster Computing (CLUSTER), IEEE, 2020, pp. 176–186.

[178] Daniel Rosendo et al., E2Clab: Reproducible Analysis of Complex Workflows on the Edge-to-
Cloud Continuum, IPDPS 2021 - 35th IEEE International Parallel andDistributed Process-
ing Symposium, Poster, May 2021, url: https://hal.archives-ouvertes.fr/hal-

03269852.

[179] Daniel Rosendo et al., « KheOps: Cost-effectiveRepeatability, Reproducibility, andRepli-
cability of Edge-to-Cloud Experiments », in: Proceedings of the 2023 ACM Conference on
Reproducibility and Replicability, 2023, pp. 62–73.

[180] Daniel Rosendo et al., « ProvLight: EfficientWorkflow Provenance Capture on the Edge-
to-Cloud Continuum », in: Cluster 2023 - IEEE International Conference on Cluster Com-
puting, Santa Fe, New Mexico, United States, Oct. 2023, In press, url: https://hal.

science/hal-04161546.

[181] Daniel Rosendo et al., « Reproducible Performance Optimization of Complex Applica-
tions on the Edge-to-Cloud Continuum », in: Cluster 2021 - IEEE International Confer-
ence on Cluster Computing, Portland, OR, United States, Sept. 2021, pp. 23–34, doi: 10.

1109/Cluster48925.2021.00043, url: https://hal.archives-ouvertes.fr/hal-

03310540.

[182] Daniel Rosendo et al., « Reproducible Performance Optimization of Complex Applica-
tions on the Edge-to-Cloud Continuum », in: arXiv preprint arXiv:2108.04033 (2021).

[183] RPL: IPv6Routing Protocol for Low-Power and LossyNetworks. 2023, url: https://datatracker.

ietf.org/doc/html/rfc6550.

[184] RSMB: Really Small Message Broker. Jan. 2013, url: https : / / github . com / eclipse /

mosquitto.rsmb.

133

https://doi.org/10.1016/j.jpdc.2022.04.004
https://hal.archives-ouvertes.fr/hal-03654722
https://hal.archives-ouvertes.fr/hal-03654722
https://doi.org/10.1109/CLUSTER49012.2020.00028
https://doi.org/10.1109/CLUSTER49012.2020.00028
https://hal.archives-ouvertes.fr/hal-02916032
https://hal.archives-ouvertes.fr/hal-02916032
https://hal.archives-ouvertes.fr/hal-03269852
https://hal.archives-ouvertes.fr/hal-03269852
https://hal.science/hal-04161546
https://hal.science/hal-04161546
https://doi.org/10.1109/Cluster48925.2021.00043
https://doi.org/10.1109/Cluster48925.2021.00043
https://hal.archives-ouvertes.fr/hal-03310540
https://hal.archives-ouvertes.fr/hal-03310540
https://datatracker.ietf.org/doc/html/rfc6550
https://datatracker.ietf.org/doc/html/rfc6550
https://github.com/eclipse/mosquitto.rsmb
https://github.com/eclipse/mosquitto.rsmb


Partie III, BIBLIOGRAPHY

[185] Pingcheng Ruan et al., « LineageChain: a fine-grained, secure and efficient data prove-
nance system for blockchains », in: The VLDB Journal 30.1 (2021), pp. 3–24.

[186] Shazia Sadiq et al., « Data Flow and Validation in WorkflowModelling », in: Proceedings
of the 15th Australasian database conference-Volume 27, 2004, pp. 207–214.

[187] Luis Sanchez et al., « SmartSantander: IoT experimentation over a smart city testbed »,
in: Computer Networks 61 (2014), pp. 217–238.

[188] Suresh Sankaranarayanan et al., « Data Flow and Distributed Deep Neural Network
based low latency IoT-Edge computation model for big data environment », in: Engi-
neering Applications of Artificial Intelligence 94 (2020), p. 103785.

[189] David Sarabia-Jácome et al., « EfficientDeployment of PredictiveAnalytics in EdgeGate-
ways: Fall Detection Scenario », in: 2019 IEEE 5th World Forum on Internet of Things (WF-
IoT), IEEE, 2019, pp. 41–46.

[190] David Sarabia-Jácome et al., « Highly-efficient fog-based deep learning AAL fall detec-
tion system », in: Internet of Things 11 (2020), p. 100185.

[191] SC Reproducibility Initiative, Feb. 2023, url: https : / / sc23 . supercomputing . org /

program/papers/reproducibility-initiative/.

[192] SC: The largest Reproducibility Laboratory, Feb. 2023, url: https://www.chameleoncloud.

org/blog/2023/02/20/sc-the-largest-reproducibility-laboratory/.

[193] National Academies of Sciences Engineering, Medicine, et al., Reproducibility and repli-
cability in science, National Academies Press, 2019.

[194] Scikit-Optimize, Sequential model-based optimization, Mar. 2020, url: https://scikit-

optimize.github.io/stable/.

[195] Alexander Sergeev andMikeDel Balso, «Horovod: fast and easy distributed deep learn-
ing in TensorFlow », in: arXiv preprint arXiv:1802.05799 (2018).

[196] Shree Krishna Sharma and Xianbin Wang, « Live data analytics with collaborative edge
and cloud processing in wireless IoT networks », in: IEEE Access 5 (2017), pp. 4621–4635.

[197] Christian Sicari et al., « OpenWolf: A ServerlessWorkflowEngine forNative Cloud-Edge
Continuum », in: 2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing,
Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Comput-
ing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/Cyber-
SciTech), IEEE, 2022, pp. 1–8.

[198] SIGCOMM Reproducibility Initiative, Feb. 2023, url: https://conferences.sigcomm.

org/sigcomm/2023/cfp.html.

134

https://sc23.supercomputing.org/program/papers/reproducibility-initiative/
https://sc23.supercomputing.org/program/papers/reproducibility-initiative/
https://www.chameleoncloud.org/blog/2023/02/20/sc-the-largest-reproducibility-laboratory/
https://www.chameleoncloud.org/blog/2023/02/20/sc-the-largest-reproducibility-laboratory/
https://scikit-optimize.github.io/stable/
https://scikit-optimize.github.io/stable/
https://conferences.sigcomm.org/sigcomm/2023/cfp.html
https://conferences.sigcomm.org/sigcomm/2023/cfp.html


BIBLIOGRAPHY

[199] Pedro Silva, Alexandru Costan, and Gabriel Antoniu, « Investigating Edge vs. Cloud
Computing Trade-offs for Stream Processing », in: IEEE International Conference on Big
Data in 2019, 2019, pp. 469–474.

[200] Rafael Ferreira da Silva et al., «Workflows Community Summit 2022: A Roadmap Rev-
olution », in: arXiv preprint arXiv:2304.00019 (2023).

[201] RômuloM Silva et al., « Capturing Provenance to Improve theModel Training of PINNs:
first handon experienceswithGrid5000 », in:CILAMCE-PANACM2021-Proceedings of the
joint XLII Ibero-Latin-American Congress on Computational Methods in Engineering and III
Pan-American Congress on Computational Mechanics, 2021, pp. 1–7.

[202] Vítor Silva et al., « Dfanalyzer: runtime dataflow analysis tool for computational science
and engineering applications », in: SoftwareX 12 (2020), p. 100592.

[203] Timothy W Simpson et al., « Kriging models for global approximation in simulation-
based multidisciplinary design optimization », in: AIAA journal 39.12 (2001), pp. 2233–
2241.

[204] Jasper Snoek, Hugo Larochelle, and Ryan P Adams, « Practical bayesian optimization of
machine learning algorithms », in: arXiv preprint arXiv:1206.2944 (2012).

[205] Cagatay Sonmez, Atay Ozgovde, and Cem Ersoy, « Edgecloudsim: An environment for
performance evaluation of edge computing systems », in:Transactions on Emerging Telecom-
munications Technologies 29.11 (2018), e3493.

[206] Renan Souza et al., « Efficient runtime capture ofmultiworkflowdata usingprovenance »,
in: 2019 15th International Conference on eScience (eScience), IEEE, 2019, pp. 359–368.

[207] Renan Souza et al., « Keeping Track of User Steering Actions in Dynamic Workflows »,
in: Future Generation Computer Systems 99 (2019), pp. 624–643, issn: 0167-739X, doi: 10.

1016/j.future.2019.05.011.

[208] Renan Souza et al., «Workflow Provenance in the Lifecycle of Scientific Machine Learn-
ing », in: Concurrency and Computation: Practice and Experience e6544 (2021), pp. 1–21.

[209] S. Sreerangaraju,Emulation vs. Simulation, https://www.perfecto.io/blog/emulation-

vs-simulation, 2020.

[210] Andy Stanford-Clark and Hong Linh Truong, « Mqtt for sensor networks (mqtt-sn)
protocol specification », in: International business machines (IBM) Corporation version 1.2
(2013), pp. 1–28.

[211] Ingo Steinwart and Andreas Christmann, Support vector machines, Springer Science &
Business Media, 2008.

135

https://doi.org/10.1016/j.future.2019.05.011
https://doi.org/10.1016/j.future.2019.05.011
https://www.perfecto.io/blog/emulation-vs-simulation
https://www.perfecto.io/blog/emulation-vs-simulation


Partie III, BIBLIOGRAPHY

[212] Victoria Stodden and Sheila Miguez, « Best Practices for Computational Science: Soft-
ware Infrastructure and Environments for Reproducible and Extensible Research », in:
Available at SSRN 2322276 (2013).

[213] Jakob Struye et al., « The CityLab testbed—Large-scale multi-technology wireless ex-
perimentation in a city environment: Neural network-based interference prediction in
a smart city », in: IEEE INFOCOM 2018-IEEE Conference on Computer Communications
Workshops (INFOCOMWKSHPS), IEEE, 2018, pp. 529–534.

[214] Sergej Svorobej et al., « Simulating fog and edge computing scenarios: An overview and
research challenges », in: Future Internet 11.3 (2019), p. 55.

[215] Ryan Tanaka et al., « Automating Edge-to-Cloud Workflows for Science: Traversing the
Edge-to-Cloud Continuum with Pegasus », in: 2022 22nd IEEE International Symposium
on Cluster, Cloud and Internet Computing (CCGrid), IEEE, 2022, pp. 826–833.

[216] Yucel Tas, Mohamed Jehad Baeth, and Mehmet S Aktas, « An approach to standalone
provenance systems for big social provenance data », in: 2016 12th International Conference
on Semantics, Knowledge and Grids (SKG), IEEE, 2016, pp. 9–16.

[217] TPDS Reproducibility Initiative, url: https://www.computer.org/csdl/journal/td/

write-for-us/104303.

[218] UDP: User Datagram Protocol. 2023, url: https://datatracker.ietf.org/doc/html/

rfc768.

[219] Peter JM Van Laarhoven and Emile HL Aarts, « Simulated annealing », in: Simulated an-
nealing: Theory and applications, Springer, 1987, pp. 7–15.

[220] Thomas Vanhove et al., « Tengu: An experimentation platform for big data applica-
tions », in: 2015 IEEE 35th International Conference on Distributed Computing SystemsWork-
shops, IEEE, 2015, pp. 42–47.

[221] Parul Verma and Shahnaz Fatima, « Smart Healthcare Applications and Real-Time An-
alytics Through Edge Computing », in: Internet of Things Use Cases for the Healthcare In-
dustry, Springer, 2020, pp. 241–270.

[222] Dan Wang et al., « From IoT to 5G I-IoT: The next generation IoT-based intelligent algo-
rithms and 5G technologies », in: IEEE Communications Magazine 56.10 (2018), pp. 114–
120.

[223] JuanWang and Di Li, « Adaptive computing optimization in software-defined network-
based industrial Internet of Thingswith fog computing », in: Sensors 18.8 (2018), p. 2509.

[224] Xizhao Wang et al., « On the optimization of fuzzy decision trees », in: Fuzzy Sets and
Systems 112.1 (2000), pp. 117–125.

136

https://www.computer.org/csdl/journal/td/write-for-us/104303
https://www.computer.org/csdl/journal/td/write-for-us/104303
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc768


BIBLIOGRAPHY

[225] Welcome to E2Clab’s documentation!, Feb. 2020, url: https : / / e2clab . gitlabpages .

inria.fr/e2clab.

[226] Philip Wette et al., «Maxinet: Distributed emulation of software-defined networks », in:
2014 IFIP Networking Conference, IEEE, 2014, pp. 1–9.

[227] What is Docker Hub?, url: https://www.docker.com/products/docker-hub/.

[228] Marco A Wiering and Martijn Van Otterlo, « Reinforcement learning », in: Adaptation,
learning, and optimization 12.3 (2012).

[229] Mark DWilkinson et al., « The FAIR Guiding Principles for scientific data management
and stewardship », in: Scientific data 3.1 (2016), pp. 1–9.

[230] Bharati Wukkadada et al., « Comparison with HTTP and MQTT in Internet of Things
(IoT) », in: 2018 International Conference on Inventive Research in Computing Applications
(ICIRCA), IEEE, 2018, pp. 249–253.

[231] Ye Xia et al., « Combining heuristics to optimize and scale the placement of iot applica-
tions in the fog », in: 2018 IEEE/ACM 11th International Conference on Utility and Cloud
Computing (UCC), IEEE, 2018, pp. 153–163.

[232] Guangming Xian, « Parallel machine learning algorithm using fine-grained-mode spark
on a mesos big data cloud computing software framework for mobile robotic intelligent
fault recognition », in: IEEE Access 8 (2020), pp. 131885–131900.

[233] Ying Xiong et al., « Extend cloud to edge with KubeEdge », in: 2018 IEEE/ACM Sympo-
sium on Edge Computing (SEC), IEEE, 2018, pp. 373–377.

[234] Hansong Xu et al., « A survey on industrial Internet of Things: A cyber-physical systems
perspective », in: IEEE Access 6 (2018), pp. 78238–78259.

[235] Jia Xu et al., « EdgeWorkflow: One click to test and deploy your workflow applications
to the edge », in: Journal of Systems and Software 193 (2022), p. 111456.

[236] Le Xu et al., «Move Fast andMeet Deadlines: Fine-grained Real-time Stream Processing
with Cameo », in: 18th {USENIX} Symposium on Networked Systems Design and Implemen-
tation ({NSDI} 21), 2021, pp. 389–405.

[237] YAML, url: https://yaml.org/, (accessed: 05.03.2020).

[238] Yocto Project. Jan. 2023, url: https://www.yoctoproject.org/.

[239] Matei Zaharia et al., « Spark: Cluster Computing with Working Sets », in: Proceedings of
the 2Nd USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10, Boston, MA:
USENIX Association, 2010, pp. 10–10.

[240] Zenodo. 2018, url: https://zenodo.org/.

137

https://e2clab.gitlabpages.inria.fr/e2clab
https://e2clab.gitlabpages.inria.fr/e2clab
https://www.docker.com/products/docker-hub/
https://yaml.org/
https://www.yoctoproject.org/
https://zenodo.org/


Partie III, BIBLIOGRAPHY

[241] ZeroMQ, url: https://zeromq.org/, (accessed: 04.27.2020).

[242] Tuo Zhang et al., « Federated learning for internet of things », in: Proceedings of the 19th
ACM Conference on Embedded Networked Sensor Systems, 2021, pp. 413–419.

[243] Xingzhou Zhang, Yifan Wang, and Weisong Shi, « pcamp: Performance comparison of
machine learning packages on the edges », in: {USENIX}Workshop on Hot Topics in Edge
Computing (HotEdge 18), 2018.

[244] Li Zhou et al., « Distributing deep neural networks with containerized partitions at the
edge », in: 2nd {USENIX}Workshop on Hot Topics in Edge Computing (HotEdge 19), 2019.

[245] Zhe Zhou et al., « SaFace: Towards Scenario-aware Face Recognition via Edge Comput-
ing System », in: 3rd {USENIX}Workshop on Hot Topics in Edge Computing (HotEdge 20),
2020.

[246] Zooniverse dataset. Feb. 2023, url: https : / / www . zooniverse . org / organizations /

meredithspalmer/snapshot-safari.

138

https://zeromq.org/
https://www.zooniverse.org/organizations/meredithspalmer/snapshot-safari
https://www.zooniverse.org/organizations/meredithspalmer/snapshot-safari




Titre : Méthodologies pour l’Analyse Reproductible des Workflows Edge-to-Cloud

Mot clés : Continuum Edge-to-Cloud, Reproductibilité, Méthodologie, Workflows

Résumé : Les infrastructures distribuées
pour le calcul et l’analyse évoluent désormais
vers un écosystème interconnecté permettant
l’exécution d’applications complexes dans le
continuum Edge-to-Cloud. Comprendre et op-
timiser les performances de bout en bout dans
ce contexte est un défi majeur. Un besoin cru-
cial consiste à reproduire avec précision les
comportements pertinents des workflows et
les paramètres représentatifs de l’infrastruc-
ture physique sous-jascente.

Cette thèse est une contribution concep-
tuelle et pratique au continuum Edge-to-
Cloud, proposant des méthodologies et les
appliquant dans des environnements nova-
teurs. Nos méthodologies ont pour but de s’af-
franchir de la complexité de la compréhen-
sion et de l’optimisation des workflows dans

le continuum Edge-to-Cloud. Ainsi, elles per-
mettent la conception d’expériences reproduc-
tibles, l’optimisation des applications, la cap-
ture efficace des données de provenance des
exécutions de workflows, et la reproductibilité
des expériences.

Nous avons validé notre proposition avec,
d’abord, le développement du framework
E2Clab qui supporte le cycle complet d’ana-
lyse d’une application dans le continuum
Edge-to-Cloud, et ensuite, l’utilisation de
E2Clab pour l’optimisation Pl@ntNet, une ap-
plication mondiale d’identification des plantes.
La validation expérimentale à grande échelle
sur Grid’5000 montre que notre méthodologie
s’est avérée utile pour comprendre et amélio-
rer les performances de Pl@ntNet.

Title: Methodologies for Reproducible Analysis of Workflows on the Edge-to-Cloud Continuum

Keywords: Edge-to-Cloud Continuum, Reproducibility, Methodology, Workflows

Abstract: Distributed infrastructures for com-
putation and analytics are now evolving to-
wards an interconnected ecosystem allowing
complex applications to be executed on the
Edge-to-Cloud continuum. Understanding and
optimizing end-to-end performance in such a
complex continuum is challenging. One crucial
challenge is accurately reproducing relevant
behaviors of a given application workflow and
representative settings of the physical infras-
tructure underlying this complex continuum.

This thesis is a conceptual and practi-
cal contribution to the Edge-to-Cloud contin-
uum, proposing and applying methodologies
in novel environments. Our methodologies
aim at overcoming the complexity of under-

standing and optimizing Edge-to-Cloud work-
flows. As such, they enable reproducible ex-
periment design, application optimization, effi-
cient workflow provenance capture, and cost-
effective experiment reproducibility.

We validated our proposal by first devel-
oping the E2Clab framework that supports the
complete analysis cycle of an application on
the Edge-to-Cloud Continuum and then us-
ing E2Clab to optimize Pl@ntNet, a global
plant identification application. Large-scale ex-
perimental validation on Grid’5000 shows that
our methodology has proven helpful for un-
derstanding and improving the performance of
Pl@ntNet.



141


	Introduction
	Context
	Contributions
	Publications
	Software
	Main Contributions
	Contribution to Existing Software
	Reproducibility-oriented Tools and Artifacts

	Organization of the Manuscript

	I Context: Reproducibility and Experimental Research on the Edge-to-Cloud Continuum
	Background
	Reproducibility in Computing Continuum Research
	Definitions and Landscape
	Edge-to-Cloud Computing Continuum
	Meaningful Experiments on the Computing Continuum

	Existing Systems for Analyzing Edge-to-Cloud Workflows
	Simulation, Emulation and Deployment Systems
	Workflow Management Systems

	Large-scale testbeds for Edge-to-Cloud Experiments
	Testbeds Explored in this Work
	Other Relevant Testbeds

	Open Challenges Explored in this Work
	Understanding Performance of Edge-to-Cloud Workflows
	Optimizing Performance of Edge-to-Cloud Workflows
	Enabling Reproducible Analysis of Edge-to-Cloud Workflows



	II E2Clab: Exploring the Computing Continuum through Repeatable, Replicable and Reproducible Edge-to-Cloud Experiments
	Our Methodology
	The Need for Rigorous Experiment Methodologies
	A Methodology for Designing Reproducible Experiments with Real-life Applications on the Computing Continuum
	Providing Access to Experiment Artifacts
	Defining the Experimental Environment
	Providing Access to Experiment Results

	A Methodology for Optimizing the Performance of Real-life Applications on the Edge-to-Cloud Continuum
	Phase I: Initialization
	Phase II: Evaluation
	Phase III: Finalization


	E2Clab: The Methodology Implementation
	High-Level Aspects and Architecture
	Implementation
	Experiment Manager
	Layers and Services Manager
	Network Manager
	Workflow Manager
	Optimization Manager

	Discussion
	Usability and Reusability
	Methodology Genericness


	Experimental Evaluation and Validation with the Pl@ntNet Application
	Pl@ntNet: A Real-life Botanical Observation Application
	Research Questions and Experimental Setup
	Evaluation
	What software configuration minimizes the user response time?
	How does the number of simultaneous users accessing the system impact the user response time?
	How do the Extraction and Similarity Search thread pool configurations impact the processing and user response times?

	Reproducibility and Artifact Availability


	III Facilitating Reproducibility and Replicability of Edge-to-Cloud Workflows
	Efficient Workflow Provenance Capture on the Edge-to-Cloud Continuum
	The Need for Provenance Capture of Edge-to-Cloud Workflows
	Limitations of Existing Provenance Systems
	Experimental Setup
	Overhead Analysis
	Design-level Limitations of Existing Systems

	ProvLight Design
	Data Exchange Model
	Architecture
	Implementation

	Provenance Capture of Edge-to-Cloud Workflows
	Provenance Manager
	Provenance Capture

	Evaluation
	Capture Time Overhead
	CPU and Memory Overhead
	Network Usage Overhead
	Power Consumption Overhead
	Performance in Cloud Servers

	Discussion
	ProvLight Design Choices Impact on Performance
	Impact of ProvLight on Real-life Use-Cases
	Integration with Existing Systems
	Reproducibility and Artifact Availability


	Cost-effective Reproducibility and Replicability of Edge-to-Cloud Experiments
	Requirements for Reproducible and Replicable Experiments
	Limitations of Existing Collaborative Environments
	Kheops Design
	Architecture and Implementation
	Experimental Workflow

	Evaluation
	Experimental Setup
	How KheOps Helps Experiment Authors
	How KheOps helps readers

	Discussion
	Replicability Accuracy
	Usability and Reusability
	Analyzing other Real-life Applications
	Integration with other Scientific Testbeds
	Reproducibility and Artifact Availability


	Conclusion and Prospects
	Achievements
	Understanding and Optimizing Performance of Edge-to-Cloud Workflows
	Enabling Provenance Capture of Edge-to-Cloud Workflows
	Facilitating Reproducibility and Replicability of Edge-to-Cloud Workflows

	Prospects
	Prospects Related to the E2Clab (and ProvLight) Approach
	Prospects Related to the KheOps Approach


	Bibliography


