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Abstract
The objective of our work is the development of a method for the detection of prostate
cancer from multiparametric MRI sequences. In this thesis, we detail the main sources of
difficulties in the development of such a method as well as ways to overcome them.

Chapter 2 deals with the inter-rater variability of volume estimates and zonal segmenta-
tions of the prostate, two important factors for the establishment of the diagnosis and
the construction of the databases necessary for the training of automatic methods. We
exploit a database of 40 cases for which 7 radiologists of various levels have provided
zonal segmentations as well as volume estimates. We evaluate their variations depending
on the experience of the clinicians, the estimation methods used and some characteristics
of the considered prostates. For the generation of segmentation masks, we show that
variability is the highest at the apex and base of the prostate, and that it is independent of
radiologists’ experience. Furthermore, we show that the most robust volume estimation
method for a prostate is to compute it directly from its segmentation.

In chapter 3, we introduce a new method to merge binary segmentation masks provided
by several raters into a single consensus segmentation. The introduced MACCHIATO
algorithm is based on the combination of local Fréchet means for well-chosen distances.
It differs from the two main existing consensus determination methods (Averaging and
STAPLE) on two points: contrary to averaging it is not computed at the voxel-level, and
contrary to STAPLE it is independent of the background size. We exhibit the differences
between the consensus produced by the three methods and show that our method can be
placed between the two other methods with regards to consensus size. In addition, we
make an in-depth analysis of the STAPLE algorithm and show its limitations, especially
in case of large background size.

Chapter 4 presents a method based on deep neural network and attention mechanisms
for the zonal segmentation of the prostate from 2D and/or 3D T2 MRI sequences. We
evaluate our method on two databases and show that our method was on par with
state-of-the-art methods for automatic segmentation and with the 7 available radiologists,
being in the middle of the pack. Finally, we measure the impact that our method has on
the determination of tumor location, both at the zonal and sector levels, with promising
results on their localization accuracy.

In chapter 5 we study the influence of annotation quality and dataset size on a prostate
cancer detection method. To this end, we develop two pseudo-labeling methods based
on weak annotations of the lesion position extracted from radiological information: the
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former based on prostate sector only, and the latter also including intensity and size
information. The lesion detection method is a deep learning network taking as inputs
biparametric MRI and zonal segmentation. This network was trained using each pseudo-
labelling method on a large weakly annotated dataset, with or without the inclusion of a
small amount of fully annotated cases. We compare those configurations at both patient
and lesion levels to a network trained only on a fully annotated dataset.

Finally, we discuss areas of potential improvement and remaining challenges.

Keywords: medical imaging, segmentation, inter-rater variability, artificial intelligence,
machine learning, consensus, prostate.
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Résumé
L’objectif de notre travail est le développement d’une méthode de détection du cancer
de la prostate à partir de séquences IRM multiparamétriques. Dans cette thèse, nous
détaillons les principales sources de difficultés dans le développement d’une telle méthode
ainsi que les moyens de les surmonter.

Le chapitre 2 traite de la variabilité inter-experts des estimations de volume et des
segmentations zonales de la prostate, deux facteurs importants pour l’établissement
du diagnostic et la construction des bases de données nécessaires à l’entraînement des
méthodes automatiques. Nous exploitons une base de données de 40 cas pour lesquels
7 radiologues de différents niveaux ont fourni des segmentations zonales ainsi que des
estimations de volume. Nous évaluons leurs différences en fonction de l’expérience
des cliniciens, des méthodes d’estimation utilisées et de certaines caractéristiques des
prostates considérées. Pour la génération des masques de segmentation, nous montrons
que la variabilité est la plus élevée à l’apex et à la base de la prostate, et qu’elle est
indépendante de l’expérience des radiologues. En outre, nous montrons que la méthode
la plus robuste d’estimation du volume d’une prostate consiste à le calculer directement
à partir de sa segmentation.

Dans le chapitre 3, nous présentons une nouvelle méthode pour fusionner les masques
de segmentation binaires fournis par plusieurs annotateurs en une seule segmentation
consensuelle. L’algorithme MACCHIATO repose sur la combinaison de moyennes de
Fréchet locales pour des distances bien choisies. Il diffère des deux principales méth-
odes existantes de détermination du consensus (moyenne et STAPLE) sur deux points :
contrairement à la moyenne, il n’est pas calculé au niveau du voxel, et contrairement à
STAPLE, il est indépendant de la taille du fond. Nous présentons les différences entre
les consensus produits par les trois méthodes et montrons que notre méthode peut être
placée entre les deux autres méthodes en ce qui concerne la taille du consensus. En
outre, nous effectuons une analyse approfondie de l’algorithme STAPLE et montrons ses
limites, en particulier lorsque la taille du fond est importante.

Le chapitre 4 présente une méthode basée sur un réseau neuronal profond et des
mécanismes d’attention pour la segmentation zonale de la prostate à partir de séquences
d’IRM T2 2D et/ou 3D. Nous évaluons notre méthode sur deux bases de données et
montrons qu’elle se situe au même niveau que les méthodes de l’état de l’art pour la
segmentation automatique et que les 7 radiologues disponibles, avec des perfomances
similaires à ceux-ci sans les surpasser. Enfin, nous mesurons l’impact de notre méthode
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sur la détermination de la localisation des tumeurs, tant au niveau zonal que sectoriel,
avec des résultats prometteurs sur leur précision de localisation.

Dans le chapitre 5, nous étudions l’influence de la qualité des annotations et de la taille
de l’ensemble de données sur une méthode de détection du cancer de la prostate. À cette
fin, nous développons deux méthodes de pseudo-étiquetage basées sur des annotations
faibles de la position des lésions extraites des informations radiologiques : la première
basée sur le secteur de la prostate uniquement, et la seconde comprenant également des
informations sur l’intensité et la taille. La méthode de détection des lésions est un réseau
d’apprentissage profond prenant comme entrées l’IRM biparamétrique et la segmentation
zonale. Ce réseau a été entraîné à l’aide de chaque méthode de pseudo-étiquetage sur
un vaste ensemble de données faiblement annotées, avec ou sans l’inclusion d’un petit
nombre de cas entièrement annotés. Nous comparons ces configurations au niveau du
patient et de la lésion à un réseau entraîné uniquement sur un ensemble de données
entièrement annotées.

Enfin, nous discutons des domaines d’amélioration possibles et des défis qui restent à
relever.

Mots-clés: imagerie médicale, segmentation, variabilité inter-expert, intelligence artifi-
cielle, apprentissage profond, consensus, prostate.
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This thesis deals with the computer-aided diagnosis of prostate cancer through multi-
parametric MRI via the use of deep learning methods.

1.1 Context of the thesis

1.1.1 Prostate cancer: clinical aspect and diagnosis methods

Prostate is a gland of the masculine reproductive system, playing a key role in the pro-
duction of seminal fluid. Located under the urinary bladder and around the urethra, it
can be decomposed into several zones: the central zone (CZ), the transition zone (TZ),
the peripheral zone (PZ) and the anterior fibromuscular stroma (AFMS). An example of
the prostate anatomy is provided in Fig. 1.1.
Prostate cancer (PCa) is one of the most frequent cancers in the world, especially in de-
veloped countries. Between 2015 and 2019, the incidence rate in the USA was estimated
at 109.9 per 100,000 population, the second highest among all types of cancers behind
breast cancer [Sie+23]. Therefore, it has been estimated that 1 American man over 8
will develop it during his lifetime. Similarly, it has been estimated that one quarter of
cancer cases on French men was prostate cancer [Ins22]. This high prevalence makes
it an important public health concern with major economic impacts [RB11], despite its
high 5-year survival rate (97%) compared to other frequent cancers such as breast (91%),
colorectal (65%) and lung (23%) cancers.
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Fig. 1.1.: Prostate zonal anatomy. Reproduced with permission from Elsevier [Ree+16].

For years, the standard protocol for PCa detection has consisted of three steps. First,
clinicians check family history and perform non-invasive, low-cost tests such as digital
rectal exam (DRE) and measurement of the level of prostate-specific antigen (PSA)
through blood tests. Then, if a cancer is suspected, imaging-based screening is performed
to find possible abnormalities. And finally, if such an anomaly is detected, a biopsy is
performed to confirm the diagnosis and characterize the cancer if found. This biopsy can
either be targeted, i.e. the location of the extracted tissue sample is determined from the
mpMRI sequence, or systematic, in which case several samples from different locations
are extracted.
Originally, the recommended imaging technique for screening was transrectal ultra-
sonography (TRUS). However in the last decade, TRUS has been gradually replaced by
multiparametric MRI (mpMRI), a combination of T2-weighted (T2W), diffusion-weighted
(DWI and ADC), and dynamic contrast-enhanced (DCE) sequences. While more expen-
sive, this new imaging protocol allows for targeted biopsies (less invasive for the patient)
and reduces the number of benign lesions wrongly estimated as clinically significant (i.e.
the number of false positives) [Rou+19; Kas+18; Ahm+17]. This advantage of mpMRI
over TRUS made it the recommended system of screening by the European Association
of Urology [Mot+21]. An example of the different sequences used in mpMRI can be seen
in Fig. 1.3.

To standardize the acquisition, interpretation, and reporting of prostate mpMRI examina-
tions, radiologists conceived in 2012 a set of radiological guidelines named as Prostate
Imaging-Reporting and Data System (PI-RADS v1 [Bar+12]) , which was then updated
in 2015 (PI-RADS v2 [Wei+16]) and in 2019 (PI-RADS v2.1 [Tur+19]. It first provides a
standardized sector map of the prostate for the location of lesions, represented in Fig. 1.2.
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In addition, it defines a five-point scale to assess the suspected severity of the lesion only
based on observations of the mpMRI. The main innovation brought by PI-RADS v2 is the
differentiated weight of each sequence according to the location of the suspected lesion.
Lesions located in the TZ are mainly assessed using T2W sequences, whereas diffusion
sequences will be prevalent on the PZ. DCE is only used to refine the grade for some
specific PZ lesions. PI-RADS is only defined on those two zones since PZ and TZ represent
the location of approximately 70% and 25% of prostatic cancerous lesions [McN+88;
Wei+16] and due to of the absence of clear delineations between PZ and CZ. The impact
of each sequence on the PI-RADS score is shown on Tab. 1.1.

When the mpMRI indicates a suspicion of cancerous lesion (corresponding to a PI-
RADS score ≥ 3), the current method to confirm the diagnosis is to perform a biopsy.
The diagnosis is then given as a score, either the Gleason score [Hum04] or the ISUP
score [Eps+16]. The Gleason score ranges from 2 to 10 and is based on the two
dominant cell patterns observed on the biopsy sample under the microscope. A score>6
is the usual threshold for malign lesions. The cell patterns used to determine the score
are represented in Fig. 1.4a. This score is generally given as a sum, since the order
of prevalence has an impact on the estimated severity of the lesion. For example, a
cancerous lesion with a score of 4+3 is usually more aggressive than one with a score
of 3+4. The ISUP score [Eps+16], equivalent to the Gleason Grade Group, is a 5-point
scale derived from the Gleason score to simplify the interpretation of the diagnosis. The
correspondence between ISUP and Gleason scores is available in Tab. 1.4b. For more
information, the whole process of PCa assessment is detailed in Appendix A.

1.1.2 Computer-aided diagnosis methods for Prostate cancer
and associated challenges

Computer-aided detection/diagnosis (CAD) solutions to detect PCa are currently investi-
gated by several teams around the world in order to help radiologists in their diagnosis
tasks. Several of those methods have already been approved by the competent authorities
on their internal markets and are commercially available, a list of them being available
in [TH22]. Currently their level of performance are not equivalent to those of human radi-
ologists, but they can already provide them with assistance [Gig+23; Cac+23; Rou+22].
The global framework of those CAD methods is often similar [Lem+15; Cuo+19]: first,
the mpMRI undergoes a preprocessing phase including normalization and registration
of the different sequences as well as segmentation of the prostate gland from the MRI
(generally using the T2W sequence). Then the detection/segmentation of tumoral lesions
is performed and for the most advanced methods, a characterization of those lesions
such as a prediction of their PI-RADS/Gleason score is also determined. Those methods
correspond to a Computed-Aided Detection (CADe). Another family of CAD methods
are methods processing lesions given to them by radiologists (Computer-aided diagnosis,
CADx).
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Fig. 1.2.: Prostate sector map as defined by PI-RADS v2.1. Prostate zones: PZ - Peripheral Zone;
CZ - Central Zone; TZ - Transition Zone; AFS- Anterior Fibromuscular Stroma; US -
Urethra.
Zones Subdivisions: a-anterior; p-posterior; pm-posteromedial; pl-posterolateral.
Reproduced with permission from Elsevier [Tur+19].
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(a) T2W (b) ADC

(c) DWI (b-value = 800) (d) DCE

Fig. 1.3.: Example of mpMRI, with a lesion sur-
rounded in red. Figure (d) repre-
sents Ktrans, a parameter computed
from DCE sequences. Compared to
the surrounding areas, the lesion is
hypointense on the T2W and ADC se-
quences, and hyperintense on the other
sequences.

Peripheral zone
T2W DWI DCEI PI-RADS v2
Any 1 Any 1
Any 2 Any 2

Any 3
- 3
+ 4

Any 4 Any 4
Any 5 Any 5

Transition zone
T2W DWI DCEI PI-RADS v2

1 Any Any 1
2 Any Any 2

3
≤ 4

Any
3

5 4
4 Any Any 4
5 Any Any 5

Tab. 1.1.: Method of determination of PI-
RADS v2 grade according to the
zonal location as described in
[Wei+16]. The grade is ranging
from 1 (very low probability of
PCa) to 5 (very high probability of
PCa) and is computed on each se-
quence based on specific radiolog-
ical criteria before merging them
on a final grade.

(a) Cell patterns used to determine
the Gleason score. Reproduced
with permission from Springer

Nature [Hum04].

ISUP 2014
score

Gleason
Grade

Glandular
aspects

1 ≤ 6 Only individual discrete well-formed glands

2 3+4=7
Predominantly well-formed glands

with lesser component of poorly-formed/fused/cribriform glands

3 4+3=7
Predominantly poorly formed/fused/cribriform glands

with lesser component of well-formed glands

4 8

Only poorly formed/fused/cribriform glands
or predominantly well-formed glands
and lesser component lacking glands

or predominantly lacking glands
and lesser component of well-formed glands

5 9-10
Lack of gland formation (or with necrosis)

with or without poorly formed/fused/cribriform glands

(b) Correspondence between the Gleason scores and the ISUP
scores. Adapted from [Eps+16].

The majority of recent CAD methods are based on deep learning. Deep learning consists
in training artificial neural networks on a large dataset. These neural networks are
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composed of multiple layers of interconnected nodes, which are designed to process and
analyze complex patterns in data. Each layer in a neural network transforms the input
data in a way that makes it more suitable for the next layer to process, until the final
layer produces the desired output. The process of training a neural network involves
adjusting the weights and biases of the connections through stochastic gradient error
back-propagation. One of the main families of neural networks are convolutional neural
networks (CNNs), which are based on convolution operations to extract features from
images. Deep learning-based techniques are being actively developed to address various
stages of PCa detection, encompassing tasks from registering mpMRI with other imaging
modalities (ultrasound and histopathology) to detecting tumors on histopathology im-
ages, including tumors on mpMRI scans [Bha+22].

1.2 Thesis overview

If the development of CAD methods for PCa detection is a rapidly expanding field,
several limitations still exist restraining them from being widely exploited by clinicians in
hospitals.

1.2.1 Challenges tackled in this thesis

Evaluation of rater variability for prostate cancer management Accuracy of the labels
used in the training of such networks is important as poor labels will lead to ineffective
methods. But on medical data, determining the ground truth can be hard [Ren+20],
especially for a organ such as the prostate which has an important inter-subject variability
and can have different intensity and morphological properties according to the considered
zone of the organ. Thus, variations of prostate segmentations among raters can be
observed [Mon+21; Bec+19] which in turn can impact lesion detection, especially for
low-grade (PI-RADS=3) lesions [Smi+19; Gre+19; Mus+19] as well as their estimated
location [Gre+18]. This leads to the following challenge: what is the extent of inter-rater
variability of the prostate delineation in mpMRI and what is its potential impact on label
generation and clinical decision?

Construction of consensus prostate segmentation masks A solution to mitigate this
inter-rater variability effect is to combine the information provided by several experts
into one consensus segmentation. For binary segmentation masks, Majority Voting and
STAPLE [WZW04] are among the most common methods to create such a label. However,
both of them have limitations : the former is computed at the voxel-level, the latter
depends on the image size. From there, we can wonder how to generate a consensus
segmentation computed at the lesion-level and independent of the background size?
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Use of weak annotations in large training sets In most cases, deep learning methods
are trained on datasets in a supervised way, i.e. which there is a reliable label for each
sample. Those conditions can be easily met on natural images [Lin+15; Eve+15], but
are harder to obtain on medical datasets for several reasons.
On the one hand, the creation and sharing of medical data is strictly regulated by
GDPR [Cou16b] and national health authorities. This is particularly true for MRI data
as the DICOM format used to store them can contain identifying metadata. In addition,
collecting data coming from different hospitals requires to have the authorization from
each of them separately, taking more time and with more administrative burden. This
tends to restrict the possibility of models trained on large datasets. Moreover, even if such
large datasets are available, manually segmenting prostate and/or lesions and, in the
latter case, assessing their PI-RADS score can take several minutes, even for experienced
radiologists [Ros+17], and thus doing so on a large scale is not realist. So, can we use
train PCa detection methods on weakly-annotated data, and what are the performance of
such methods?

1.2.2 Organization of the Thesis

This manuscript is organized as follows:
In Chapter 2, we study the inter-rater variability of prostate segmentation and prostate
volume measurements. To do so, we used a database containing 40 instances for which
three expert, two senior and two junior radiologists have submitted zonal segmentations
and volume estimates. We assess these variabilities in light of the doctors’ experience,
the estimating techniques employed, and specific features of the prostates under con-
sideration. Comparisons on segmentations were done using either pairwise metrics or
metrics with respect to a consensus segmentation. We demonstrate that variability of
segmentations is maximal at the apex and base of the prostate, and that it is unrelated to
radiologists’ level of experience. Those results have been obtained whatever which type
of metrics were used. In addition, we demonstrate that computing a prostate’s volume
directly from its segmentation is the most reliable volume estimation technique. We
published on this subject in several clinical journals [Mon+21; Ham+22a]. Appendix B
extends this study by exploring the impact of the number of raters on the estimation of
segmentation variability [Mol+23].

The chapter 3 focuses on the computation of binary masks consensuses by studying
some classical methods and introducing a new one. First, we thoroughly examine the
STAPLE method, a state-of-the-art method to compute segmentation consensus from
binary masks, and demonstrate its drawbacks, particularly when the processed images
have large background sizes. Second, we introduce a new method to compute a segmen-
tation consensus that is independent of the background size while taking into account
local context. This method, coined MACCHIatO, is based on the local Fréchet means
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for Jaccard-based or Dice-based distances and thus is not impacted by background size.
In addition, by design this method produces consensuses computed at a larger level
than the voxel, contrary to averaging. We analyze how the three approaches’ produced
masks differ and show that, in terms of consensus size, our method can be positioned
between the other two methods. This work has first been presented at MICCAI-UNSURE
2022 [Ham+22c] and then extended and submitted to MELBA - Journal of Machine
Learning for Biomedical Imaging [Ham+23b].

In Chapter 4, we present a deep-learning based method exploiting attention mechanisms
to produce zonal segmentation of prostate using 2D and/or 3D T2 MRI. We test our
method on two databases and demonstrate that its level of performance was similar
to those of state-of-the-art methods and not far from those of radiologists. Finally, we
assess the influence of our approach on the localization of tumors at the zonal and
sector levels, showing that the high zonal accuracy was encouraging in terms of clinical
exploitation of those algorithms. This work as been published in Journal of Medical
Imaging [Ham+22b]. An associated review of methods for automatic segmentation of
the prostate, published in a peer-reviewed journal [Wu+22] is available in Appendix C

In Chapter 5, we introduce a new method to generate pseudo-masks of prostate lesions
from radiological information and mpMRIs. We use the radiological information on the
location and the size of the lesion to guide a intensity-based method to create a pseudo-
mask of this lesion. We compare it with another pseudo-mask generation method only
based on the location information provided by radiologists. We show that between the
two pseudo-mask generation strategies, the intensity-based one produces results closest
to ground truth lesion segmentations and can be used to train deep learning methods on
large weakly-annotated datasets. Moreover, the obtained levels of performance are at
least similar to those obtained while training on a smaller fully-annotated dataset. Finally,
we show the benefit of mixed-supervision to improve generalization abilities [Ham+23c].

In Chapter 6, the main contributions of this thesis are summarized. Finally, potential
future work and perspectives are drawn.

This thesis was conducted in partnership with the Radiology Department of the Pitié-
Salpêtrière Hospital (Paris, France) and in collaboration with the APHP’s Entrepôt des
Données de Santé (EDS) and the Health Data Hub (HDH), France’s national health data
platform.
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1.3 Datasets used during this PhD

During this thesis work we used several mpMRI datasets. In the following table we sum
up the characteristics of those different datasets. For each of them, we provide:

• Their name

• #Cases: Number of MRIs

• #csPCa cases: Number of MRIs with at least one clinically significant lesion, as
well as the criteria used to define the clinical significance: PI-RADS (radiological)
or ISUP (histological)

• Available labels: Zonal segmentation of the prostate into TZ and PZ, precise
segmentations of the lesions, ...

• The chapters in which they were used

• The public availability of the dataset

• Other information detailing the specificities of each dataset: number of involved
raters, how the segmentations have been obtained...

Name #Cases #csPCa cases Labels Chapters Accessibility Other information

PAIMRI-RV∗ 40 17§ Zonal & Tumors
segmentations 2, 3, 4, 5, B Private Number of raters: 7

PAIMRI-FA 160 63§ Zonal & Tumors
segmentations 4, 5 Private -

PAIMRI-WA 5290 2850§ Weak labels 4, 5 Private
Available labels: PI-RADS, sector,

lesion diameter, PSAd
Automatic zonal segmentations

ProstateX†[Arm+18] 204 76F Zonal & Tumors
segmentations 4, 5 Public Segmentations by [Cuo+21b]

PI-CAI[Sah+22] 1500 425F Zonal & Tumors
segmentations 5 Public

Automatic zonal segmentations.
Half of lesions

automatically segmented
F: ISUP≥2; §: PI-RADS≥3
∗: Included into PAIMRI-FA; †: Included into PI-CAI

Tab. 1.2.: Description of all the mpMRI prostate datasets used in this PhD thesis.

PAIMRI-RV was originally designed to study inter-rater variability and was then included
into PAIMRI-FA for evaluation of automatic zonal segmentation. PAIMRI-FA was exploited
for both its zonal segmentation and its segmented lesions. ProstateX was designed for
PCa detection but first we used it for automatic zonal segmentation, before exploiting it
for its original objective through its inclusion into the PI-CAI dataset. PAIMRI-WA was
used in 5 for its large size despite providing only weak annotations (sector and size of
each lesion). A more precise description for each of those datasets is present in their
corresponding chapters.

1.4 Publications

The contributions listed above led to the following list of peer-reviewed publications.
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Journal Articles

• [Mon+21] Montagne, S.*, Hamzaoui,D.∗, Allera, A., Ezziane, M., Luzurier, A.,
Quint, R., Kalai, M., Ayache, N., Delingette, H., & Renard-Penna, R. (2021).
Challenge of prostate MRI segmentation on T2W-weighted images: Inter-observer
variability and impact of prostate morphology. Insights into Imaging, 12(1), 71.

• [Ham+22a] Hamzaoui,D.∗, Montagne, S.*, Granger, B., Allera, A., Ezziane, M.,
Luzurier, A., Quint, R., Kalai, M., Ayache, N., Delingette, H., & Renard-Penna,
R. (2022). Prostate volume prediction on MRI: Tools, accuracy and variability.
European Radiology, 32(7), 4931–4941.

• [Ham+23b] Hamzaoui,D., Montagne, S., Renard-Penna, R., Ayache, N., & Delingette,
H. (2023). Morphologically-Aware Consensus Computation via Heuristics-based
IterATive Optimization (MACCHIatO). Submitted to MELBA - Journal of Biomedical
Imaging.

• [Wu+22] Wu, C., Montagne, S., Hamzaoui,D., Ayache, N., Delingette, H., &
Renard-Penna, R. (2022). Automatic segmentation of prostate zonal anatomy on
MRI: A systematic review of the literature. Insights into Imaging, 13(1), 202.

• [Ham+22b] Hamzaoui,D., Montagne, S., Renard-Penna, R., Ayache, N., & Delingette,
H. (2022). Automatic zonal segmentation of the prostate from 2D and 3D T2W-
weighted MRI and evaluation for clinical use. Journal of Medical Imaging, 9(2),
024001.

• [Ham+23c] Hamzaoui,D., Renard-Penna, R., Montagne, S., Molière, S., Ayache,
N., & Delingette, H. (2023). Weak and Mixed supervision for prostate cancer
detection through radiological annotations. In preparation

Conference Papers

• [Ham+22c] Hamzaoui,D., Montagne, S., Renard-Penna, R., Ayache, N., & Delingette,
H. (2022, September 18). MOrphologically-aware Jaccard-based ITerative Opti-
mization (MOJITO) for Consensus Segmentation. In Uncertainty for Safe Utilization
of Machine Learning in Medical Imaging: 4th International Workshop, UNSURE
2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022,
Proceedings (pp. 3-13).

• [Mol+23] Moliere, S.*, Hamzaoui,D.∗, Montagne, S., Allera, A., Ezziane, M.,
Luzurier, A., Quint, R., Kalai, M., Ayache, N., Delingette, H., & Renard-Penna, R.
(2023). Reference standard for evaluation of automatic segmentation algorithms:
quantification of inter observer variability of manual delineation of prostate contour
on MRI. Abstract accepted to RSNA 2023.
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∗ indicates that both authors contributed equally to the work.

We also contributed to the redaction of the following papers. As they are not directly
related to the subject of PCa detection, they will not be discussed in his manuscript and
are only evoked here to show the other collaborations that occured during this PhD:

• [Aud+22] Audelan, B., Hamzaoui,D., Montagne, S., Renard-Penna, R., & Delingette,
H. (2022) Robust Bayesian fusion of continuous segmentation maps, Medical Image
Analysis, 78, 102398

• [Aud+20] Audelan, B., Hamzaoui,D., Montagne, S., Renard-Penna, R., & Delingette,
H. (2020). Robust fusion of probability maps. In Medical Image Computing and
Computer Assisted Intervention–MICCAI 2020: 23rd International Conference,
Lima, Peru, October 4–8, 2020, Proceedings, Part IV 23 (pp. 259-268).

• [Bri+23] Brillat-Savarin, N., Wu, C., Aupin, L.„ Thoumin, C., Hamzaoui,D., &
Renard-Penna, R. (2023). 3.0 T Prostate MRI : Visual assessment of T2-weighted
imaging 2D and 3D from the PI-QUAL score. European Journal of Radiology, 166,
110974.
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Abstract Reliable estimation of prostate volume (PV) and of prostate zonal anatomy
is essential for prostate cancer management. To improve them, in this chapter, we
focus on how those measurements can vary across radiologists. In more details, first,
we study the variability of manual prostate zonal segmentation by radiologists on
T2W sequences. Second, we determine intra and inter-rater variability of PV from
manual planimetry and ellipsoid formulas. In both cases, we analyze the impact
of factors such as radiologist’ experience and prostates’ morphological properties.
Forty treatment-naive patients who underwent prostate 3D T2-weighted MRI were
selected from a local database, and whole prostate gland (WG) and transition zone
(TZ) were segmented by 7 independent radiologists. In addition, they estimated
PV and corresponding PSA density (PSAd) using the traditional ellipsoid formula
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(TEF), the newer biproximate ellipsoid formula (BPEF), and the manual planimetry
method (MPM) used as ground truth. Segmentation variabilities were evaluated
based on: anatomical and morphological variation of the prostate, variation in image
acquisition, and reader’s experience, based on several classic metrics. Volume intra
and inter-rater variability was calculated using the mixed model based intraclass
correlation coefficient (ICC) and relative standard deviation (rSTD). We showed that
segmentation inter-rater variability is higher in the extreme parts of the gland, is
influenced by changes in prostate morphology (volume, zone intensity ratio), and
is relatively unaffected by the radiologist’s level of expertise. All three methods of
volume measurements are highly reproducible, however MPM is the one with the
lowest variability. TEF showed a high degree of concordance with MPM but a slight
overestimation of PV. Precise anatomical landmarks as defined with the BPEF led to
a more accurate PV estimation, but also to a higher variability.

This chapter is adapted from two articles published in Insights Into Imag-
ing [Mon+21] and European Radiology [Ham+22a].

2.1 Introduction
Volume estimation and segmentation of prostate MRI play a crucial role in many existing
and developing clinical applications, including prostate cancer staging and treatment
planning. PSA density (PSAd), one of the strongest predictors of PCa in risk mod-
els [Ben+92; Sea+93; Dis+17], is obtained by dividing the prostate-specific antigen
(PSA) level by PV. Hence, it is highly dependent on accurate PV measurement. MRI
has become the new standard imaging method for prostate volume estimation and
segmentation as its higher spatial resolution and better soft tissue contrast compared
to previously existing technologies (TRUS) makes it easier for the radiologist to select
outer boundaries and provide more accurate and more reproducible volume estima-
tions [Rah+92; LC07; Pat+16]. The PI-RADS V2.1 stipulates that PV should always
be reported on MRI and should be determined using either manual or automated seg-
mentation, or calculated using the formula for a conventional prolate ellipse [Tur+19].
Manual segmentation is considered to give the closest volume estimation to pathological
specimen volume [Gar+14; Bul+12; Jeo+08]. However, this segmentation is usually
performed by contouring the prostate in a slice-by-slice manner using either the axial,
sagittal, or coronal views, or a combination of different views. Hence, it is extremely
time-consuming, tedious, and prone to inter and intra-observer variation due to the large
variability in prostate anatomy across patients [Kor+15], and prostate gland intensity
heterogeneity.

The traditional ellipsoid formula (TEF) for volume estimation is very easy and quick,
for clinical situations (only a few minutes). However, it relies on geometric models that
"approximate" the prostatic contour by considering the prostate as a regular ellipse-like
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shape, whereas in reality it is usually irregular and often has an eccentrically enlarged
median lobe. To enhance measurement consistency and reduce intra- and inter-rater
variability in PV approximation, Wasserman et al [WNS20] recently proposed a new ellip-
soid formula, called the biproximate method (BPEF). BPEF is based on very well-defined
anatomic landmarks and includes measurement of intravesical prostatic protrusion (IPP),
to locate prostate boundaries with more precision. Few studies have examined the
precision and accuracy of ellipsoid and planimetry volumetrics measurements. None of
them evaluated the recently published BPEF [WNS20], and most of them used one single
reader segmentation as ground truth [Bez+18; Sos+03; Gha+21; Tur+13; Maz+15].

In addition, if volume estimation only requires whole gland segmentation of the prostate,
PI-RADS is based on the internal structure of the prostate, divided into four histological
zones called the peripheral (PZ), transitional (TZ), central (CZ) zones and the anterior
fibromuscular stroma (AFMS) [McN68]. Thus, the focus for automatic prostate segmenta-
tion went from whole gland segmentation to zonal segmentation of the gland [Mey+19;
Ald+20], which is now necessary for the development of AI algorithms for prostate
cancer detection.

The quality of a segmentation is evaluated by comparing it to a reference segmentation,
often designated as ground truth. Manual delineation of the prostate gland performed by
human experts (radiologists or radiation oncologists) is the main approach to generate
ground truth. Several teams [MNA16; Wan+19a; Ise+21] have trained their models
on prostate MRIs and the relative manual ground truth annotation available from the
PROMISE12 challenge [Lit+14b], based on the final segmentation of a single expert
reader. Very few studies have systematically investigated inter-reader variability in zonal
segmentation due to reader expertise [Bec+19], anatomical or disease-induced variations
in the prostate aspect, or technically-induced variability in the image acquisition. There
are no current guidelines for prostate zonal segmentation.

In this chapter, we investigate the inter-reader variability when delineating prostate zonal
anatomy on T2W sequences with a 3-T MRI without endorectal coil, and the impact
of reader expertise, variations in prostate anatomy, cancer-induced modifications, and,
for a subgroup of patients, technical differences in image acquisition. Moreover, we
evaluate intra- and inter-rater variability in PV estimation, when using manual planimetry
measurement (MPM), TEF, and BPEF.

2.2 Dataset
This work was supported by the Clinical Data Warehouse of the AP-HP (Assistance
Publique-Hôpitaux de Paris) and was approved by our joint institutional review boards.
Data were extracted from the Clinical Data Warehouse of the Greater Paris University
Hospitals. We compiled a cohort of 40 patients from a larger cohort/dataset (in house,
𝑛 = 150) of treatment-naive patients who underwent a prostate MRI before the first
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round of biopsy for clinical suspicion of PCa between October 2013 and July 2019. This
dataset included patients fulfilling the inclusion criterion for clinical indication of prostate
MRI for suspicion of PCa (elevated prostate-specific antigen (PSA), positive Digital Rectal
Evaluation, genetic susceptibility) with a standardized PI-RADS V2 score. In the compiled
cohort, patients were randomly selected in order to have a large distribution of PI-RADS
scores and prostate volumes.

2.2.1 MRI protocol

MRI exams were performed using a 3T clinical system (SIGNA TM Architect, GE Health-
care, Chicago, IL and MAGNETOM TM Skyra, Siemens Healthcare, Erlangen, Germany)
using a 32-channel phased-array torso coil. Patients were advised to perform bowel
preparation before the exam and to empty their bladder; 1mg glucagon was administered
intramuscularly to reduce peristaltic motion. All MRI protocols included 3D T2W images
(characteristics of the acquisition are presented in Additional file 2.9), and for a subgroup
of 12 patients, a supplementary axial 2D T2W sequences acquisition.

2.2.2 MRI manual segmentation

Seven radiologist readers performed manual segmentation: 3 expert (>1000 prostate
MRI interpreted, G1), 2 senior (500 prostate MRI, G2) and 2 junior (< 100 prostate
MRI, G3)) radiologists. A training meeting with the 7 readers was organized before the
beginning of the study in order to reach an agreement on segmentation criteria. The basic
zonal anatomy of the prostate was reviewed (especially base and apex limits, and the
distinction between the TZ and PZ at the base). The readers were instructed to segment
the whole gland (WG) and then the transition zone (TZ) first on the axial plane of the
3D T2W sequence (𝑛 = 40) and then for a sub group of patients on the axial 2D T2W
sequences (𝑛 = 12). The PZ was obtained by subtracting the WG and the TZ. The CZ and
AFMS were not segmented separately for two reasons. The first was that PCa originating
in the CZ is uncommon, and because there are no guidelines regarding delineation of
the CZ, which is mostly posterior to the TZ, we chose to include it in the PZ. Second,
PCa does not originate from the AFMS which is an entirely non glandular zone. Most
suspicious lesions in the AFMS arise in the TZ, therefore we considered the AFMS to be
part of the TZ. Example of anatomic zonal segmentation is provided in Fig. 2.1.

Segmentation was performed using MedInria, an open-source software developed by the
Inria Research Institute. Polygons were delineated on the axial plane of the 3D (𝑛 = 40)
and 2D (n=12) T2W sequences, from the lowest part of the apex to the extreme base:
approximately one in every six slices on the 3D T2Ws sequences (between 35 and 75
polygons per prostate) and one in every three slices on 2D T2W sequences. The software
performed an interpolation between these polygons to create the whole segmentation.
All contours were then carefully checked using MedInria’s capability for visualization in
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Fig. 2.1.: Example of anatomic zonal segmentation. The central zone (purple) is included in PZ
(green contour minus blue contour), and not in TZ (blue) on this slice

three dimensions (axial, sagittal and coronal) and modified if necessary with a repulsor
tool or by directly moving one vertex of the polygon (2.13).

Signal intensity Two readers placed similar sized ROIs in the TZ and in the PZ to
evaluate TZ (SITZ) and PZ (SIPZ) signal intensity, and then the squared contrast between
both was calculated as (SITZ−SIPZ)2

(SITZ+SIPZ)2
.

2.2.3 Prostate volume evaluation

We tested three evaluation methods: whole gland segmentation with computation of the
extracted volume (MPM), and two estimations by ellipsoid formulas (TEF and BPEF).

1. Manual Planimetry (MPM) We computed the whole gland segmentation’s volume
estimations (𝑛 = 280, 40 × 7) using the toolbox SimpleITK [Low+13; Yan+18]. MPM
was considered as the ground truth [Gar+14; Bul+12; Jeo+08; Bez+18].

2. Traditional ellipsoid formula (TEF) According to the PI-RADS V2.1 recommenda-
tions [Tur+19], the ellipsoid formula was based on the following: (maximum antero-
posterior (AP) dimension) × (maximum longitudinal dimension) [both placed on the
mid-sagittal T2W sequence] × (maximum transverse dimension) [placed on an axial T2W
sequence] ×0.52(Fig. 2.2a, b). Ellipsoid volumes were used as the reference volume for
tests on segmentation variability, as the method is the most usual in clinical settings.

3. Biproximate ellipsoid formula (BPEF) This method was described by Wasserman
et al [WNS20] and is based on the same formula as TEF but with differences on axes
measurements. Length measurement was made on the mid-sagittal plane. Transverse
and AP measurements were made on the axial plane showing maximal diameter, and
were drawn from the inside border of the external prostatic capsule (Fig. 2.2c, d).
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Fig. 2.2.: Example of 3D T2W MRI showing manual prostate measurement: measures are made in
the axial plane showing the biggest prostate width (Fig. 1a, c) and the midsagittal plane
(Fig. 1b, d). a and b show the 3 axes used to determine prostate volume by the TEF,
and c and d are the ones used for the BPEF. In d, the line joining the vesicoprostatic
angles and the apical line are shown as green dotted lines. Prostate length is calculated
by summing both red lines (gland length + median lobe length)
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2.3 Metrics and methods

2.3.1 Classical statistical tests

The paired Wilcoxon signed-rank test and Mann-Whitney-U test were used respectively
for related samples and independent samples comparisons. The Spearman correlation 𝜌
was used for the correlation calculations. 𝑝-values from multiple tests were corrected
with the Holm-Bonferroni method. All statistical tests were two-sided. A 𝑝-value < 0.05
after correction was considered indicative of a statistically significant difference. We used
the Python modules statsmodels, and Pingouin to compute those statistical tests.

2.3.2 Metrics and methods for segmentation comparisons

We used the open-source software VISCERAL Evaluate Segmentation (Apache License
v2) for computation of the metrics used for the comparisons and SimpleITK [Low+13;
Yan+18]. Two methods were used to evaluate the similarity of the segmentations:
classic pairwise calculation (by comparing each mask one by one, and then consider-
ing the mean and the standard deviation of the metrics to compare both readers) and,
inspired by Shahedi et al. [Sha+17], consensus comparison based on STAPLE algo-
rithm [WZW04](computation of a consensus between the seven raters’ segmentations
and calculation of the metrics comparing the masks and the consensus mask generated
with SimpleITK [Low+13; Yan+18]). Because of correlations existing between those
metrics, we only performed statistical tests on some of the most commonly used in
the literature: The Dice Score (DSC), the Hausdorff Distance (HD), and the Average
Hausdorff Distance (AHD) [TH15]. All metrics are in 3D unless stated otherwise. To
investigate the segmentation variability along the cranio-caudal axis we computed HD
and DSC for each third of the prostate: apex, mid-gland and base, taking as limits the
upper and lower slices of the masks for the pairwise comparison, and the limits of the
consensus mask for the STAPLE comparison.

2.3.3 Metrics and methods for volume comparisons

To assess the inter-rater and the intra-rater variability on volume measurements, we used
the relative standard deviation (rSTD), defined for an element with multiple measures
𝑋1, 𝑋2, . . . , 𝑋𝑛 as 𝜎 (𝑋 )

𝜇 (𝑋 ) , and the intraclass correlation coefficient (ICC) derived from a
two-way mixed, average measures, absolute agreement model. Empirical statistical
power was computed with the R package MKpower (version 0.5), using the mclust
package [Scr+16] to estimate distributions with a Gaussian mixture model.

We also used the R package Lme4 (version 1.1-26) to fit a linear mixed-effect model, con-
sidering the rater and method effects as fixed effects and the subject impact as a random
effect. Inspired by McGraw and al [MW96], we defined ICCrater as 𝜎method +𝜎sujpet

𝜎residual +𝜎method +𝜎sujet +𝜎rater

2.3 Metrics and methods 25

http://www.statsmodels.org
http://pingouin-stats.org
https://github.com/Visceral-Project/EvaluateSegmentation
http://www.simpleitk.org
https://cran.r-project.org/web/packages/MKpower/index.html
https://cran.r-project.org/web/packages/lme4/index.html


and ICCmethod as 𝜎rater +𝜎sujet
𝜎residual +𝜎mechod +𝜎sujet +𝜎rater

to estimate the overall impact of raters and
methods on the variability.

No statistical tests were made for experience level impact on volume estimation.
To assess the impact of PV variability on PSAd, we estimated the number of cases that
would lead to a clinical disagreement between the PSAd scores computed by raters using
the same PV method. Specifically, we identify cases in which there was no unanimous
consensus on whether the PSAd fell above or below the classical threshold of 0.15ng/mL
for PCa suspicion [Mot+21; Roz+20]. We also computed specificity, sensitivity, and area
under the curve (AUC), taking as PV for a given patient and a given method the mean of
the volumes obtained by the seven raters [Eri+02].

2.4 Results

The demographic, biologic and morphological data for our population are summarized
in Table 2.1. Median age at MRI was 64 years [range 45− 76 years], mean PSA level was
8.4 ± 5.6ng/mL, and median prostate volume was 57.8 cm3 [range 15-199]. Among the
40 patients, 17 (42.5%) were classified with a PI-RADS ≥ 3. (𝑛 = 40)

Tab. 2.1.: Demographic and clinical characteristics of study participants.
𝑎 Median [range]; b Mean (± STD).
𝑐Median volume was estimated by the median of all the volumes the readers estimated
from the MRIs, using the ellipsoid formula
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2.4.1 Segmentation
Inter-reader variability of prostate segmentation: WG versus TZ

Pairwise comparison When evaluating the WG, we obtained a mean DSC of 0.92(±SD =

0.02), a mean HD of 9.8(±3.8) voxels, and a mean AHD of 0.17(±0.08) voxels.

Concerning the TZ we found a higher variability with a mean DSC of 0.88(±SD = 0.05),
an increase of the mean HD to 12.0 (±4.9) voxels, and an increase of the mean AHD
to 0.31 (±0.19) voxels. An example of segmentation variability between the different
readers groups is shown in Fig. 2.3, and the global results are illustrated in Fig. 2.4.

Fig. 2.3.: Examples of low (a) and high (b) segmentation variabilities for WG (full line) and TZ
(dashed line) on a transverse slice for one rater of each group of experience (blue for
expert, orange for senior, green for resident)

Consensus comparison (STAPLE method) Results (summarized in Table 2.3) were
similar for the WG with a mean DSC of 0.94(±SD = 0.03), a mean HD of 8.15 (±3.33)
voxels and a mean AHD of 0.11 (±0.07) voxels, and a higher variability for TZ with a
mean DSC of 0.91(±SD = 0.05), a mean HD of 10.0 (±4.2) voxels, and a mean AHD of
0.21 (±0.16) voxels.

Inter-reader variability of prostate segmentation: regions/cranio-caudal axis

With the pairwise method the lowest similarity was found at the base with a mean DSC
and HD respectively of 0.87(±SD = 0.06) and 9.66(±4.61) voxels, compared to the apex
(mean DSC and HD respectively of 0.90 (±0.06), and 7.12 (±3.72) voxels), and to the
mid-gland (mean DSC and HD respectively of 0.95(±0.02) and 7.51 (±3.63) voxels).
All comparisons between the base and other regions were found to be significant for
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Tab. 2.2.: Impact of various factors on segmentation variability with 2 methods (pair-wise com-
parison and consensus comparison (STAPLE reference)).
𝑎 Test: Spearman correlation;
𝑏 Test: Mann-u-Whitney

both metrics. Similar results were obtained with the STAPLE method. These results are
summarized in Table 2.3 and illustrated in Fig. 2.4.

Inter-reader variability of prostate segmentation: impact of prostate
morphological differences

We found that the smaller the prostate was, the higher the variability was (using DSC for
both methods), 𝜌 > 0.8 (𝑝-value < 0.001).

A low squared TZ to PZ contrast was significantly associated with a higher segmentation
variability (𝜌 = 0.5(CI 95% = [0.23; 0.7], 𝑝-value = 0.01 and 0.45 (CI 95% = [0.17;
0.67], 𝑝-value = 0.03) for the pairwise method and the consensus comparison (STAPLE
method).
No significant difference was found when considering the impact of the presence of
tumor (𝑝-value = 0.53 for the mean DSC on the WG). Finally, a retro-urethral lobe
protruding into the bladder showed no significant influence on segmentation variability
(𝑝-value = 0.08 for the mean DSC on the WG). These results are detailed in Table 2.2
and illustrated in Figs. 2.5, 2.6 and Additional figures 2.14 and 2.15.

Inter-reader variability of prostate segmentation: impact of reader expertise

Masks from the 3 different groups of radiologists (expert, senior, and junior) were
compared to the consensus (STAPLE reference).
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Fig. 2.4.: Comparison of DSC for segmentations of WG and TZ (a, c), and for WG segmentation
when the prostate is divided along the cranio-caudal axis in the base/mid-gland/apex
(b, d), using a pairwise comparison (a, b) and a consensus comparison (c,d)

Structure Method DSC HD (voxels) AHD (voxels)
WG Pairwise 0.92 ± 0.02 9.77 ± 3.78 0.17 ± 0.08
TZ 0.88 ± 0.05 11.98 ± 4.92 0.31 ± 0.19
WG STAPLE 0.94 ± 0.03 8.15 ± 3.33 0.11 ± 0.07
TZ 0.91 ± 0.05 10.03 ± 4.25 0.21 ± 0.16
Base Pairwise 0.87 ± 0.06 9.66 ± 4.61
Mid-gland 0.95 ± 0.02 7.51 ± 3.63
Apex 0.90 ± 0.06 7.12 ± 3.73
Base STAPLE 0.91 ± 0.06 7.87 ± 3.69
Mid-gland 0.96 ± 0.02 6.10 ± 3.05
Apex 0.93 ± 0.05 5.88 ± 3.05

Tab. 2.3.: Summarized similarity metrics for all radiologists and all structures (WG vs. TZ, and
WG divided along cranio-caudal axis in base, mid-gland and apex), with 2 methods
(pair-wise comparison and consensus comparison (STAPLE reference))
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Fig. 2.5.: Influence of variation in prostate volume on zonal differentiation.
a Poor zonal differentiation in a small prostate volume (20 cm3).
b Clear zonal anatomy differentiation in a larger prostate volume 120 cm3) : pseudo-
capsule (green arrows) and TZ delimitation (red dotted arrows) are clearly individualiz-
able.

Fig. 2.6.: Influence of intensity signal ratio between the TZ and the PZ on zonal differentiation.
a Moderate signal difference between zones (signal ratio = 0.98).
b Marked difference in signal intensity, facilitating zonal differentiation (signal ratio
= 0.37)
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For WG, G1, G2, and G3 had respectively a mean DSC of 0.944(±0.023), 0.936(±0.031),
and 0.938(±0.025). G1 was the closest to the consensus (𝑝-value = 0.009 and 0.03 for
G1/G2 and G1/G3 comparison) (Fig. 2.7). Similar results were obtained using HD and
AHD.

Fig. 2.7.: Impact of the readers’level of expertise (expert/senior/resident) on segmentation vari-
ability evaluated by DSC, for WG (a) and TZ (b) segmentation (ns = not significant)

On TZ, G1, G2, and G3 had respectively a mean DSC of 0.903 (±0.061), 0.916(±0.055),
and 0.907(±0.04). G2 was the closest to the consensus but was not significantly closer
than G3 (𝑝-value = 0.27). The results are summarized in Table 2.4.

Tab. 2.4.: Segmentation variability according to the reader’s level of expertise (3 experts/2 se-
niors/2 residents), with their comparison’ associated p-values

Inter-reader variability: 2D versus 3D segmentation

WG versus TZ No significant difference was shown when comparing segmentation on
3D T2W MRI versus segmentation on 2D T2W MRI, neither with DSC for the TZ with
0.860 versus 0.861 (𝑝-value = 0.8), nor with HD on WG and TZ (𝑝-value = 0.24 and
0.44 respectively). The only exception was the mean DSC for WG with 0.91 vs 0.90
(𝑝-value = 0.006).
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Cranio-caudal axis We found higher mean slicewise DSC and HD for 3D versus 2D MRI
segmentations, but these differences were statistically significant only for mid-gland DSC
and base HD(𝑝-value = 0.01 and 0.03).

All those results are summarized in Table 2.5.

Tab. 2.5.: 2D versus 3D T2W MRI segmentation variability (𝑛 = 12).
𝑎 Computations with 3D metrics.
𝑏 Computations with slicewise metrics.
∗ Not significant

2.4.2 Volumes

Prostate volume measurements, MPM, TEF, BPEF

Mean volumes were 67.00(±36.61), 66.07(±35.03), and 64.77(±38.27)cm3 with TEF,
BPEF, and MPM, respectively. Median PV measurements for each technique and each
rater are given in Table 2.6 and illustrated in Fig. 2.9. Figure 2.8 shows detailed results
for each rater and each method.

Group TEF a BPEFa MPM a

Group 1 (experts) Reader 3 49.95/62.33/104.68 57.82/69.52/97.73 36.31/55.26/85.98
Reader 6 32.48/49.86/68.70 32.78/50.51/72.55 35.56/57.92/83.58
Reader 7 43.75/58.5/85.75 38.32/59.41/81.20 36.85/56.46/87.50

Group 2 (seniors) Reader 1 39.90/64.53/81.76 35.65/59.18/77.41 30.08/51.14/79.35
Reader 2 41.00/58.98/85.55 46.36/66.74/87.01 38.11/60.20/91.52

Group 3 (juniors) Reader 4 33.50/51.4/76.63 32.94/52.02/79.68 34.03/54.34/81.27
Reader 5 35.25/61.35/87.43 36.19/52.16/69.78 36.38/56.11/84.86

Tab. 2.6.: Distribution of prostate volume estimations for each method and rater.
aQ1/median/Q3

While considering the volume distribution, taking as PV for a given patient and a given
method the mean of the volumes obtained by the seven raters, we observed that the
median difference of calculated volumes compared to the reference (MPM) was significant
for TEF with a slight overestimation of PV of 1.91 cm3 (IQ = [− 0.33 cm3, 5.07 cm3

]
, 𝑝

val = 0.03, power = 0.71) but not for BPEF
(
1.45 cm3 , IQ =

[
−1.07 cm3, 5.63 cm3

]
, 𝑝-

val = 0.43, power = 0.28) ( Table 2.7). No statistical difference was found between BPEF
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Fig. 2.8.: Volume estimations for the 7 raters and the 3 methods. Each color corresponds to one
rater.
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and TEF (median difference = −0.58 cm3, IQ =
[
−3.32 cm3, 2.56 cm3

]
, 𝑝-val = 0.15,

power = 0.27)

Group Rater TEF versus MPM 𝑝-val BPEF versus MPM 𝑝-val
Group 1 (experts) Reader 3 13.317 ± 12.226 < 0.001 16.517 ± 15.270 < 0.001

Reader 6 −7.966 ± 9.985 < 0.001 −6.545 ± 12.584 0.02
Reader 7 0.846 ± 11.935 0.62 1.493 ± 12.728 0.62

Group 2 (seniors) Reader 1 9.111 ± 9.932 < 0.001 4.637 ± 13.235 0.22
Reader 2 0.473 ± 7.503 0.69 2.374 ± 14.218 0.15

Group 3 (juniors) Reader 4 −3.195 ± 9.350 0.62 −2.664 ± 10.156 0.62
Reader 5 3.000 ± 9.420 0.0498 −6.720 ± 12.869 0.004

Tab. 2.7.: Mean difference between estimated volumes for each rater when using MPM versus
ellipsoid methods (TEF or BPEF). More detailed results are available in Additional Table
2.10

PSAd measurements

The median values were 0.117 (IQ = [0.079, 0.193]), 0.127 (IQ = [0.082, 0.202]), and
0.119 (IQ = [0.078, 0.197]) for tefPSAd, mpmPSAd, and bpefPSAd (Fig. 2.9b). As
seen for PV, there was a significant difference between mpmPSAd and tefPSAd (𝑝-val
= 0.01).

Fig. 2.9.: Subject-wise mean prostate volumes (a) and PSAd (b) for each method. The dotted line
in b represents the 0.15ng/mL clinical threshold

Volume Intra-reader variability

For each reader, the ICC between the three PV methods was above 0.90. Detailed
results are presented in Table 2.8. No substantial differences were observed according to
experience.
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Group Rater ICC CI 95%
Group 1 (experts) Reader 3 0.960 [0.885, 0.982]

Reader 6 0.981 [0.960, 0.990]
Reader 7 0.978 [0.963, 0.988]

Group 2 (seniors) Reader 1 0.981 [0.961, 0.990]
Reader 2 0.982 [0.969, 0.990]

Group 3 (juniors) Reader 4 0.987 [0.978, 0.993]
Reader 5 0.977 [0.948, 0.999]

Tab. 2.8.: Intra-rater reproducibility of volume estimation (evaluated by ICC) for each rater

Volume Inter-rater variability

Using ICC to assess the inter-rater variability, the highest ICC was obtained by MPM (ICC
= 0.999, CI 95% = [0.997, 0.9995]), followed by TEF (ICC = 0.988, CI 95% = [0.978,
0.994]) and BPEF ( ICC = 0.984, CI 95% = [0.968, 0.992]). MPM’s ICC is significantly
higher than other methods’ ICC, while rSTD for MPM was significantly lower than those
of the ellipsoid methods (Fig. 2.10a, b). In addition, the 1st quartile, median, and 3rd

quartile of PV measurements are more consistent between raters using MPM than with
the ellipsoid methods, as illustrated in Fig. 2.8.

Similar results were obtained on PSAd (Fig. 2.10c, d).

Inter-rater agreement for axes measurement with BPEF

Length measurements are the main source of variability (compared to width or AP
measurements), with a mean rSTD and ICC of 0.13 ± 0.04 and 0.943 for length against
0.04± 0.03 and 0.986 for transverse diameter and 0.08± 0.05 and 0.969 for AP diameter.
The differences on rSTD are significant when comparing all three axes (Fig. 2.11).

Evaluation of variability using a linear mixed-effect model

The linear mixed-effect models comparing both ellipsoid methods with MPM returned an
ICC of 0.956 (CI 95%: [0.923 − 0.969]) for TEF and 0.932 (CI 95% : [0.8880.953]) for
BPEF. Once again, we found a statistically significant difference between MPM and TEF
(𝑝 = 0.01), but not between MPM and BPEF (𝑝 = 0.116). ICCrater was 0.956 for TEF and
0.911 for BPEF, and ICCmethod was 0.955 for TEF and 0.910 for BPEF.
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Fig. 2.10.: Inter-rater variability for prostate volume measurement (a, b) and PSAd (c,d), depend-
ing on the estimation method (𝑝-value < 0.05 for all 3 distributions). a and c show
relative standard deviation (rSTD); b and d show intraclass correlation (ICC)

Fig. 2.11.: BPEF axis measure variability. a shows mean measures for e axis (length in brown,
width in pink, and antero-posterior in gray). b shows the rSTD variability distribution
for each axis. rSTD distribution is significantly different for each axis (𝑝-val < 0.001).
c shows the ICC distribution for each axis
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Impact of volume methods on PSAd measurement and linked diagnosis

In addition to variability estimation using ICC and rSTD which gives similar results to
those obtained with volumes, we also estimated the number of disagreements arising
from PSAd differences. There were two patients (5%), seven patients (17.5%), and nine
patients (22.5%) with disagreements when using MP, TEF, and BPEF, respectively.

At the clinical threshold of 0.15ng/mL, bpefPSAd had a sensitivity of 59% and a specificity
of 83% against 65% and 78% for tefPSAd, and 65% and 73% for mpmPSAd. AUC from
the three PSAd were similar (Fig. 2.12).

Fig. 2.12.: ROC curves and AUC for PSAd determination when prostate volume is estimated by
the three methods (TEF in red, BPEF in purple, MPM in green).

2.5 Discussion

2.5.1 Prostate segmentation

Manual delineation of the internal structure of the prostate performed by human experts
is the main approach for generating the ground truth in order to develop automated PCa
diagnosis algorithms. Very few studies have investigated the variability of the manual
zonal prostate delineation, and for automated segmentation tools under development, a
quality and well-described ground truth is rarely available.
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To identify sources of variability that may influence the quality of the ground truth for
the development of automatic zonal segmentation of the prostate gland, we evaluated in
this study the influence of reader expertise, variation of prostate morphology, and in a
subgroup of patients variability due to images acquisition differences.

We found a low variability when evaluating the WG (DSC of 0.92 and 0.94 with pairwise
and STAPLE method respectively) and slightly higher variability for the TZ segmentation
(DSC of 0.88 and 0.91). In the cranio-caudal axis we found a lower similarity at the base
(DSC 0.87) and the apex (DSC 0.90) of the prostate.

To our knowledge, two studies have evaluated the inter-reader variability of the zonal
anatomy [Bec+19; Pad+19]; Becker et al. [Bec+19; Pad+19] found in a multi-reader
study (2 expert radiologists, 2 residents, and 2 computer vision scientists), in a cohort
of 80 patients using a 3T MRI and endorectal coil, a DSC of 0.733 for the WG and a
higher variability for the TZ (DSC 0.738), in the apex (2D DSC 0.85) and basal part of
the gland (2D DSC 0.87). Padgett et al. [Pad+19] in a multi-reader study (𝑛 = 2) of
zonal segmentation on 2D T2W sequences obtained on 3T of 30 consecutive patients
found for the WG a DSC of 0.88 ± 0.04 and 0.81 ± 0.1 for the TZ.

Our results are partly in line with these previously published studies and highlight the
difficulty of zonal segmentation especially at the ends of the gland: (a) the apex that
has an intensity profile similar to surrounding structures, fuzzy borders, and poor image
contrast at the boundary, and (b) at the base with the tricky challenge of partial volume
effect between the PZ and the TZ.

Unlike those two previous studies we have chosen to include the CZ in the PZ seg-
mentation. There are no current guidelines in particular regarding whether the CZ
should be delineated separately or included in the PZ or in the TZ, and figures provided
in the different studies do not clearly indicate this specific point. The CZ, which ap-
pears as a symmetric band of tissue between the peripheral and the transition zones
at the base of the prostate, extending from below the seminal vesicles to the verumon-
tanum, is extremely difficult to delineate, because it is usually compressed and displaced.
Very few cancers arise from this area, (around 7%) [RT14], and even in the PI-RADS
score [Tur+19], there is no guidance on how to derive the PI-RADS assessment category
for such lesions involving the CZ. It is suggested that CZ lesions should receive PI-RADS
score as if they were located in the zone from which they are most likely to be coming
from (the PZ or TZ) [Tur+19; Pur+21]. This highlights the need to work on guidelines
for prostate delineation for the development of automatic tools.

We evaluated the influence of expertise with 7 readers of varying experiences divided
into 3 groups. We did not find any substantial difference on TZ and WG segmentation.
Results were statistically significant but numerical DSC values were very close (0.94 for
the 3 groups) and showed no substantial difference. Our overall segmentation variability
scored higher than those previously published whatever the region analyzed and the level
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of expertise. However, all readers in our study were radiologists and have benefited from a
training meeting before the start of the study, in order to precisely define the segmentation
criteria. This is concordant with the results of Becker et al. [Bec+19], who only found
significant differences between non-radiologists and radiologists and concluded that
inter-reader baseline of non-radiologists may not be sufficient for meaningful comparison
to new segmentation algorithms. Previous studies emphasize the challenge of automated
segmentation because of variation in prostate size and shape but there is not description
of such variability in the databases, and no evaluation of the influence of anatomical
variations such as prostate volume, intensity contrast ratio between TZ and PZ, or the
presence of visible lesions.

The prostate gland is a complex organ with varied size, shape and appearance. Morpho-
logical differences may contribute to segmentation variability. We found that the smaller
the prostate, the higher the segmentation variability was (𝑝 < 0.001). Hyperplasia
of the TZ leading to prostate hypertrophy is the most common change attributed to
aging [McN83]. We hypothesized that the increase in size of TZ was associated with
sharper contours (surgical capsule) which are then easier to draw, whereas in small
volume prostate without prostatic hyperplasia, the glandular tissues of the transition
and peripheral zone are histologically identical [McN83] and therefore more difficult
to differentiate. In our cohort, 42.5% of MRIs had a PI-RADS score > 2 with lesions in
both the PZ and the TZ that may alter the appearance of anatomical structure under
segmentation. The presence or absence of a PI-RADS score > 2 lesion did not translate
into an increase in segmentation variability (𝑝 = 0.53). However, the variability increased
with a lower PZ to TZ contrast ratio (𝑝-value = 0.01) which can be explain by poor
contrast at boundary between zones.

Variation in image acquisition such as 3D versus 2D T2W sequences could translate
into variability of segmentation. Unlike 2D T2W sequences, the 3D T2W sequences are
acquired with sub-millimeter resolution, to allow the acquisition of a volume that can be
reconstructed into any plane with an improvement of anatomic delineation. Although we
are aware of the limited number of patients, we didn’t find any substantial differences in
the subgroup (𝑛 = 12) who benefited from both types of acquisition.

Zonal prostate segmentation is a fundamental step in the development of automated PCa
diagnosis algorithms. In the PROMISE12 challenge [Lit+14b] reference segmentations
of the WG were provided in each center by an experienced reader, and were checked
by a second expert (with more than 1000 prostate MRIs analyses) who was asked to
correct the potential WG segmentation inconsistencies. The resulting segmentation was
used as the reference standard and served as a training set for the development for
multiple AI algorithms. However, the PROMISE12 database does not provide any zonal
information of the prostate besides the WG and furthermore relies only on a single
reference standard. Yet, the estimation of inter-observer variability is very important to
assess the practical performance of an algorithm with respect to human experts. Indeed,
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this variability reflects the intrinsic ambiguity of the segmentation task, and an algorithm
performance can be properly assessed by testing whether its output falls within the range
of inter-observer variability. Knowledge of the factors influencing the quality of prostate
zonal segmentation may also contribute to producing high-quality labeled training data
essential for PCa detection and PI-RADS score application. Well-defined guidelines to
ensure consistency and accuracy of manual delineation of the prostate are currently not
available and should be developed and followed to generate ground truth segmentations.
To account for the anatomical and disease-related variability among different patients, as
well as the variability in image acquisition, image databases should include representative
clinical samples with anatomical variation and patients with different tumors according
to their localization.

2.5.2 Volume estimation

Despite the difficulty of delineating the prostate gland, in particular at its extremities,
we found MPM to be the most reproducible method (ICC = 0.999, CI 95% = [0.997,
0.9995]). Compared to planimetry, we found a slight overestimation of PV with both
ellipsoid formulas, significant with TEF (𝑝-val = 0.03) but not with BPEF (𝑝-val = 0.43)
with a median difference of 1.91 cm3 and 1.485 cm3. Empirical powers are coherent
with those results. Nevertheless, supplementary tests with more subjects are necessary to
confirm them with a better statistical power.

Several studies have looked into the accuracy of PV estimation with ellipsoid formulas on
3T MRI with a different type of PV estimation method, in particular by measuring the AP
dimension in the axial vs sagittal plane. They found high levels of concordance between
ellipsoid formulas and reference (manual planimetry or prostatectomy specimen), with
either a slight overestimation [Sos+03; Gha+21] for an underestimation [Bul+12;
Maz+15], probably due to variations in the measurements and image interpretation.

Sosna et al [Sos+03] compared values from the ellipsoid formula among 6 different
datasets and found that the best estimate was obtained using two diameters from the
sagittal plane multiplied by the right-left diameter of the axial plane as recommended in
PI-RADS V2.1 [Tur+19].

These authors argued that measuring the AP dimension from sagittal rather than axial
images could result in a more precise estimate of PV since the shape of the prostate is
more oval or ellipsoid in the sagittal plane. However, measurement of the AP dimension
in the sagittal plane may lead to an overestimation because of the inclusion of peri-
capsular veins and/or thick anterior fibromuscular stroma. This has been shown by
Ghafoor et al [Gha+21], who compared the gland volume measurement between the
TEF as defined in the PI-RADS V2.0 and V2.1 [Wei+16; Tur+19] (AP measurement
in the sagittal vs axial plane). They found a slight but significant overestimation (𝑝 <
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0.001) of gland volume with AP measurement in the sagittal plane by 2.6 mL compared
to the reference.

Turkbey et al [Tur+13] compared the accuracy of fully automated segmentation, man-
ual segmentation, and ellipsoid volumetric measurement using post-operative prostate
specimens as "ground truth." Authors found a strong positive correlation between true
PV, PV derived from the ellipsoid formula (𝑅 = 0.86 − 0.90, 𝑝 < 0.0001), and manual
segmentations (𝑅 = 0.89 0.91, 𝑝 < 0.0001). The strongest correlation was between true
PV and manual segmentations.

Bezinque et al [Bez+18] found an excellent correlation between the ellipsoid formula and
MRI R3D (automatic prostate segmentation with manual adjustments by an experienced
radiologist) measurement (ICC = 0.90), showing that MRI using the ellipsoid formula
provides accurate estimates of PV for most patients.

Wasserman et al [WNS20] found an excellent inter- and intra-rater reliability (precision
of 0.95 and 0.98, respectively) of their updated method (BPEF), with the length mea-
surement being the most common cause of variation between readers. Our results are
concordant with an excellent correlation between BPEF and the reference (median differ-
ence of PV of 1.45 cm3, IQ =

[
−1.07 cm3, 5.63 cm3

]
, 𝑝 val = 0.43). However, inter-rater

variability was the highest with this method (ICC = 0.984, CI 95% = [0.968, 0.992]),
mainly due to length measurements with a mean rSTD of 0.13 ± 0.04 against 0.04 ± 0.03
and 0.08±0.05 for width and AP, respectively. This underlines the difficulty of delineating
precise lower and upper landmarks in the mid-sagittal plane while measuring length.

Very few studies have examined precision, accuracy, and agreements of ellipsoid and
planimetry volumetric measurements with MRI, and most of them are limited by not
taking into account the level of rater experience in the analysis, and the absence of inter-
and intra-rater variability evaluation.

Ghafoor et al [Gha+21] found an excellent inter-rater agreement between four readers
for TEF (ICC > 0.90); however, only one reader provided the reference (whole gland
manual segmentation).

Bulman et al [Bul+12] compared results from pathological standard, planimetry by
two different readers, ellipsoid formula by two other readers, and results obtained by
an automated method, with overall good to excellent agreement between the different
methods and readers.

Other works only considered one reference segmentation with no analysis on either inter-
or intra-rater variability [Bez+18; Sos+03; Tur+13; Maz+15].

Evaluating them and determining their sources are essential to provide accurate gland
measurements, in order to obtain the lowest variability impact on PSAd calculation. In
our study, we found very low intra- and inter-rater variability between planimetry and
the two ellipsoid derived formulas with an ICC > 0.90 for all readers with no impact
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of level of experience, although no statistical tests confirmed this last result. Ellipsoid
methods may be a time-saver for expert radiologists and allow young radiologists without
experience in prostate MRI to safely perform accurate prostate volumetry, an essential
step in learning prostate MRI.

However, the MPM method was significantly more reproducible than the ellipsoid-based
methods, but also the most time consuming. Until fast, reliable, automated or manually
adjusted MRI software is available, ellipsoid formula methods are appropriate for routine
clinical work with a high degree of concordance. Although both TEF and BPEF differed
from the reference, overestimation was higher with TEF due to less-defined anatomical
boundaries, but BPEF was less reproducible probably because of a new definition of these
landmarks.

The observed high level of concordance between the measurements translates into a
high level of concordance for PSAd risk classifications. However, considering 0.15ng/mL
as threshold, disagreement of volumetry-based PSAd levels was lower with MPM (only
5% of disagreements) compared to TEF and BPEF (17.5% and 22.5% disagreement).
These individual case errors were not apparent in statistical analysis, but highlighted the
relevance of accurate volume estimation for PSAd measurements as it may affect biopsy
strategy whether for tumor detection or as part of active surveillance.

2.5.3 Limitations

Our study has several limitations. First, due to the prohibitive time cost, the sample
size was small. However, this is because manual segmentation is an extremely time
consuming process and this limit was partially offset by the number of readers (seven
radiologists) who each provided a planimetry for all forty 3D MRIs of the dataset. We
found only one study [Bec+19] with more cases segmented (80 vs. 40) but fewer readers
(6 vs. our 7), and with technical differences such as the use of 2D T2W sequences (vs 3D
in our case) and an endo-rectal coil (instead of the pelvic coil we used). Second, we chose
manual planimetry as the "ground truth" measure for total prostatic volume rather than
the pathological specimen, which may be considered as a limitation. However, it has been
shown that the mean PV was significantly smaller ex vivo than in vivo with an average
change in volume of 19.5% because of loss of vascularity. In addition, tissue shrinkage
during specimen processing is one of the factors that may significantly affect the accuracy
of PV measurement [Jon+06; Orc+14]. MRI volume imaging eliminates these variables,
and it has been argued by multiple authors that MRI volumetric measurements in the
living patient should replace postmortem measurement as the "gold standard" [Rah+92;
WNS20; Haa+17]. We accepted in this study that manual planimetry could be considered
to have the highest level of accuracy and should be considered as ground truth. Finally,
we should also point out the lack of non-radiologist readers, which would have been
interesting as it was discussed for example by Becker et al. [Bec+19] to evaluate the
impact of expertise.
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2.6 Conclusion
Identifying sources of variability of prostate zonal segmentation that may influence
the quality of the ground truth is a prerequisite for the development of automated
PCa detection algorithms. In this study we found that segmentation variability was
higher in the extreme parts of the gland, influenced by change in prostate morphology
such volume and intensity ratio between zones and was not substantially influenced
by radiologist’s expertise. Despite those variations, manual planimetry is a robust
and reproducible method for PV measurement and PSAd calculation, with the lowest
variability between readers. Volumes computed with the traditional ellipsoid formula
showed a high degree of agreement with those estimated by planimetry but with a
slight overestimation of PV. Delineation of clear anatomical boundaries as defined in the
biproximate ellipsoid method leads to a more accurate assessment of PV but with a slight
decrease in reproducibility. This highlights the need to include representative clinical
samples with morphological variation in image databases to help developing efficient,
reproducible and robust automatic segmentation tools in prostate MRI in the future.
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2.7 Appendices

3T SIGNATM Architect,
GE Healthcare,

Chicago, IL∗

3T MAGNETOMTM Skyra,
Siemens Healthcare,
Erlangen, Germany∗∗

Parameters Axial T2W 3D T2W Axial T2W 3D T2W
Sequence type FSE Echo de Spin Cube TSE SPACE

Field of view (mm) 200 280 250 230
Acquisition matrix 512×512 512×512 296×334 230×320

Repetition time (ms) 9861 1602 3050 1550
Echo time (ms) 153.14 102.87 84 173

Flip angle (degrees) 170 - 133 115
Slice thickness (mm) 2.5 1 2.5 0.85
Image reconstruction

matrix (pixels) 0.7×0.9×2.5 0.8×0.8×1 0.7×0.7×2.5 0.4×0.4×0.85

Time for acquisition
(min:s) 3min34 5min11 3min14 5min35

∗ Receiver frequency coils: 16-channel phased array body small coil and 32-channel spine coil.
∗∗ Receiver frequency coils: 18-channel phased array body coil and 32-channel spine coil.
T2W = T2-weighted imaging, FSE = Fast Spin Echo, TSE = turbo spin-echo,
SPACE = Sampling Perfection with Application optimized Contrasts using different flip angle Evolution

Tab. 2.9.: MRI acquisition specificities

TEF versus MPM1 BPEF versus MPM1 BPEF versus TEF1

Reader 1 3.43/6.95/13.12 -3.77/4.62/9.99 -8.62/-3.52/2.53
Reader 2 -3.97/0.09/7.49 -1.50/4.78/10.25 -1.15/2.35/9.95
Reader 3 5.63/13.09/19.43 9.21/13.68/21.14 -3.04/2.34/9.21
Reader 4 -8.92/-0.91/2.06 -7.48/-2.04/3.10 -4.95/0.61/5.46
Reader 5 -1.68/2.74/8.80 -9.86/-4.32/0.51 -16.78/-9.01/-0.89
Reader 6 -12.58/-7.45/-2.60 -11.43/-5.03/-0.96 -2.94/2.01/6.14
Reader 7 -2.23/1.68/7.29 -4.95/2.10/10.61 -9.42/0.29/9.76

Mean -0.33/1.91/5.07 -1.04/1.45/5.63 -3.32/-0.58/2.66
1 Q1/Median/Q3

Tab. 2.10.: Distribution of estimated volumes difference for each rater
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Fig. 2.13.: Example of a segmentation with manually drawn polygons (thick lines visible on TZ)
and result of the interpolation between them (thin lines), reformat in a coronal plan.
TZ is drawn in blue WG is drawn in green.

Fig. 2.14.: Relationship between variability (evaluated by DSC) and prostate volume for WG
segmentation, using pairwise comparison.

Fig. 2.15.: Example of prostate tumor modifying zones contours. a: PI-RADS 5 tumor in the PZ
(blue arrow); b: PI-RADS 5 tumor in the TZ, with contour deformation (red arrows).
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Abstract The extraction of consensus segmentations from several binary or proba-
bilistic masks is important to solve various tasks such as the analysis of inter-rater
variability or the fusion of several neural network outputs. One of the most widely
used method to obtain such a consensus segmentation is the STAPLE algorithm. In
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this chapter, we first demonstrate that the output of that algorithm is heavily im-
pacted by the background size of images and the choice of the prior. We then propose
a new method to construct a binary or a probabilistic consensus segmentation based
on the Fréchet means of carefully chosen distances which makes it totally indepen-
dent of the image background size. We provide a heuristic approach to optimize this
criterion such that a voxel’s class is fully determined by its morphological distance,
the connected component it belongs to and the group of raters who segmented it. We
compared extensively our method on several datasets with the STAPLE method and
the naive segmentation averaging method, showing that it leads to binary consensus
masks of intermediate size between Majority Voting and STAPLE and to different
posterior probabilities than Mask Averaging and STAPLE methods.

This chapter has been submitted to MELBA - Journal of Biomedical Imag-
ing [Ham+23b] as an extension to a paper previously accepted into the MICCAI
2022-UNSURE workshop [Ham+22c].

3.1 Introduction
The fusion of several segmentations into a single consensus segmentation is a classical
problem in the field of medical image analysis related to the need to merge multiple
segmentations provided by several clinicians into a single “consensus” segmentation. This
problem has been recently revived by the development of deep learning and the multipli-
cation of ensemble methods based on neural networks [Ise+21]. One of the most well-
known methods to obtain a consensus segmentation is the STAPLE algorithm [WZW04],
where an Expectation-Maximization algorithm is used to jointly construct a consensus
segmentation and to estimate the raters’ performances posed in terms of sensitivities
and specificities. The seminal STAPLE method [WZW04] creating a probabilistic con-
sensus from a set of binary segmentations was followed by several follow-up works.
For instance, [AL12] replaced global indices of performance by spatially dependent
performance fields and [CAAW12] combined STAPLE with a sliding window approach, in
order to allow spatial variations of rater performances. Another improvement consisted
in introducing the original image intensity information [AL13]. Several alternatives to
STAPLE were proposed, with a large diversity of approaches. Some of them decided to
use a generative model but with different properties. For example, [Aud+20] modeled
raters’ input maps by heavy-tailed distributions which parameters are estimated by vari-
ational calculus, and [Sab+10] presented a model using a random field learnt on the
whole set to model the interaction between the intensity maps and the corresponding
label maps. Methods based on deep learning were also conceived, as in [Zha+20] where
two CNNs are trained together to estimate simultaneously the consensus segmentation
and each rater’s performance via an estimation of their spatial confusion matrices. In
addition to those complex methods, several studies [RM07; Alj+09] show that simple
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majority voting (MV) could remain a suitable pick. However STAPLE and its simple
yet robust probabilistic model remains the go-to method for consensus segmentation
estimation [WZW04; DV+15] despite suffering from several limitations, some of them
already addressed in the literature [AL12; CAAW12; AL13] and some, to the best of our
knowledge, never raised before.

In this article, we first analytically characterize the dependence of the STAPLE algorithm
on the size of the background image and the choice of prior consensus probability. We
then introduce an alternative consensus segmentation method, coined MACCHIatO, which
is based on the minimization of the squared distance between each binary segmentation
and the consensus. After choosing a distance between binary or probabilistic shapes, the
consensus is thus posed as the estimation of the Fréchet mean of this distance, which
is independent of the size of the background image for a well-chosen distance. We
show that the adoption of specific heuristics based on morphological distances during
the optimization allows to provide a novel binary or probabilistic globally consistent
consensus method which creates masks of intermediate size between Majority Voting
and the STAPLE methods.

3.2 Estimation of a soft or hard consensus from
binary segmentations

In the remainder, we consider the problem of generating a consensus segmentation 𝑇𝑛,
1 ≤ 𝑛 ≤ 𝑁 given 𝐾 binary segmentations S = {𝑆1, ..., 𝑆𝐾 }, 𝑆𝑘𝑛 ∈ {0, 1} of size 𝑁 provided
by each rater 𝑘. The consensus segmentation may be either a hard binary segmentation
𝑇𝑛 ∈ {0, 1} or a soft probabilistic segmentation 𝑇𝑛 ∈ [0, 1], the tilde sign indicating that
we are dealing with a continuous probabilistic consensus value, rather than a binary one.
Given a soft consensus, one can easily generate a hard consensus by thresholding the soft
consensus voxels at the 0.5 limit. Yet, this raises the issue of dealing with voxels that are
exactly at the 0.5 value which can be either set arbitrarily to one of the 2 classes, or set
aside to a third class.

In terms of probabilistic framework, the main approach is to consider that each observed
binary segmentation 𝑆𝑘 results from a random process applied on a consensus segmenta-
tion 𝑇 which is captured by the likelihood distribution 𝑝(𝑆𝑘 |𝑇, 𝜃𝑘) also involving some
parameters 𝜃𝑘 specific to each rater 𝑘. A prior probability on the consensus 𝑝(𝑇) is also
defined related to the general a priori knowledge about the consensus segmentation.
Then a hard consensus can be obtained as a maximum likelihood 𝑇 = arg max𝑀 𝑝(S|𝑀)
or maximum a posteriori estimate 𝑈 = arg max𝑈 𝑝(S|𝑈)𝑝(𝑈) whereas a soft consensus
is obtained as the posterior probability 𝑝(𝑇 |S) = 𝑝(S|𝑇)𝑝(𝑇)/𝑝(S). The parameters 𝜃𝑘
are also estimated by maximum likelihood for hard consensuses or maximum marginal
likelihood for soft ones.
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We make use of the following notations : FP𝑘 , TP𝑘 , FN𝑘 , and TN𝑘 are respectively the
number of false positives, true positives, false negatives, and true negatives between
observed mask 𝑆𝑘 and consensus 𝑇 , i.e. 𝐹𝑃𝑘 =

∑𝑁
𝑛=1 𝑆

𝑘
𝑛 ∧ 𝑇𝑛.

We consider as baseline methods to create a hard consensus the majority voting (MV)
and the ML STAPLE algorithms whereas mask averaging (MA) and STAPLE algorithm are
baseline approaches for the soft consensus estimation. We describe below the hypotheses
in terms of probability distribution associated with those baseline models and discuss
their limitations.

3.2.1 Majority Voting and Mask Averaging Models

We first make the hypothesis of voxel independence, i.e. that the binary value of each
voxel of an observed segmentation mask 𝑆𝑘 is independent of the values of other voxels
: 𝑝(𝑆𝑘 |𝑇) = ∏𝑁

𝑛=1 𝑝(𝑆𝑘𝑛 |𝑇𝑛). Furthermore, we consider that the prior and likelihood
probability are simple Bernouilli distribution of the same parameter 𝑏𝑛 ∈ [0, 1] : 𝑝(𝑆𝑘𝑛 =

1|𝑏𝑛) = 𝑝(𝑇𝑛 = 1|𝑏𝑛) = 𝑏𝑛. This means that the probability parameter 𝑏𝑛 is potentially
different for all voxels, but the same for all raters : 𝜃𝑘 = 𝜃 = {𝑏𝑛}. Also, the observed
masks S do not directly depend from the consensus but share the same distribution.

Therefore the likelihood of observing the whole segmentation data is then

𝑝(S|𝜃) =
𝐾∏
𝑘=1

𝑁∏
𝑛=1

𝑏
𝑆𝑘𝑛
𝑛 (1 − 𝑏𝑛)1−𝑆

𝑘
𝑛 =

𝑁∏
𝑛=1

𝑏
𝑆+𝑛
𝑛 (1 − 𝑏𝑛)𝑆

−
𝑛

where 𝑆+𝑛 (resp. 𝑆−𝑛 = 𝐾 − 𝑆+𝑛) is the number of times voxel 𝑛 is equal to 1 (resp. 0) in
the observed segmentation masks 𝑆𝑘 ,1 ≤ 𝑘 ≤ 𝐾. After maximizing the likelihood, one
trivially gets the Bernouilli parameter as 𝑝(𝑆𝑘𝑛 = 1|𝑏𝑛) = 𝑝(𝑇𝑛 = 1|𝑏𝑛) = 𝑆+𝑛

𝐾
= 𝑏𝑛, leading

to the Mask Averaging consensus formula where the probability of having a foreground
voxel is the frequency of positive voxels in the observed masks 𝑆𝑘 . To estimate the hard
consensus, one needs to maximize 𝑝(𝑇𝑛 |𝑏𝑛) thus leading to majority voting : 𝑇𝑛 = 1 if
𝑆+𝑛 > 𝑆

−
𝑛 and 𝑇𝑛 = 0 if 𝑆+𝑛 < 𝑆

−
𝑛 .

Limitations Majority voting and mask averaging are simple and easy to understand
mechanisms to choose a consensus. Yet they suffer from the fact that this decision is
purely local without any influence from the neighboring pixels. This can lead to situations
where the hard consensus includes some isolated voxels or has very irregular boundaries.
Another limitation of majority voting is the case where the number of raters 𝐾 is even
and therefore many decisions are ambiguous with as many foreground than background
voxels. Finally, those simple models assume that all raters contributions to the consensus
are equal which may not be the case. In particular, an underperforming rater will bias
the soft consensus with mask averaging.
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3.2.2 STAPLE model

In the STAPLE algorithm [WZW04], all voxels are also assumed independent but the
probability that 𝑆𝑘𝑛 is equal to 𝑇𝑛 depends on whether 𝑇𝑛 is a background or foreground
voxel, and on the rater 𝑘. More precisely, 𝑝(𝑆𝑘𝑛 = 𝑇𝑛 |𝑇𝑛 = 1) = 𝑝𝑘 and 𝑝(𝑆𝑘𝑛 = 𝑇𝑛 |𝑇𝑛 = 0) =
𝑞𝑘 where 𝑝𝑘 is the sensitivity of rater 𝑘 and 𝑞𝑘 its specificity.

Prior Consensus The consensus prior probability is here supposed to factorize as the
product of voxel priors 𝑤𝑛 values 𝑝(𝑇) = ∏𝑁

𝑛=1 𝑃(𝑇𝑛) =
∏𝑁
𝑛=1 𝑤𝑛. The original STAPLE

paper [WZW04] also introduced an Ising Markov random field model as a prior consensus
probability to enforce that a voxel prior value depends on that of its neighbors. However
this approach leads to solving iteratively graph cuts problems and is not available
in most widely used STAPLE implementations. Instead, the original paper assumes
simple independent priors that lead to closed form updates. Choosing 𝑤𝑛 = 𝑤 = 1

2 is a
non-informative prior but another common choice is to have a spatially uniform value
𝑤𝑛 = 𝑤 = 1

𝑁𝐾

∑
𝑛,𝑘 𝑆

𝑘
𝑛 which is the average relative size of the foreground object in the

observed segmentation masks. We further consider more general priors of the form
𝑤 = 𝐴

𝑁 𝛼
, with 𝐴 a constant independent of the image size, and 𝛼 ∈ N an exponent. The

non-informative case 𝑤𝑛 = 0.5 corresponds to 𝛼 = 0 while the average object size to
𝛼 = 1.

Maximum likelihood (ML STAPLE) The likelihood of the observed data simply writes
as L(𝑇, 𝜃) = ∏𝐾

𝑘=1 𝑝
TP𝑘
𝑘
(1 − 𝑝𝑘)FN𝑘𝑞

TN𝑘
𝑘
(1 − 𝑞𝑘)FP𝑘 and does not involved the prior on

the consensus. There is no closed form expression for the estimation of the rater
parameters (𝑝𝑘 , 𝑞𝑘) and the hard consensus (T) maximizing the likelihood. But an
iterative maximization of the likelihood is possible by setting its derivatives to zero which
leads to the update equation :

𝑝𝑘 =
TP𝑘

TP𝑘 + FN𝑘
𝑞𝑘 =

TN𝑘
TN𝑘 + FP𝑘

(3.1)

𝑠+𝑛 =
𝐾∏
𝑘=1

𝑝
𝑆𝑘𝑛
𝑘
(1 − 𝑝𝑘)1−𝑆

𝑘
𝑛 𝑠−𝑛 =

𝐾∏
𝑘=1

𝑞
1−𝑆𝑘𝑛
𝑘
(1 − 𝑞𝑘)𝑆

𝑘
𝑛 (3.2)

𝑇𝑛 = 1 if 𝑠+𝑛 > 𝑠
−
𝑛 𝑇𝑛 = 0 if 𝑠+𝑛 < 𝑠

−
𝑛

Maximum marginal likelihood (MML STAPLE) The marginal likelihood or evidence writes
as 𝑝(S|𝜃) = ∏𝑁

𝑛=1(𝑤𝑛
∏
𝑘 𝑝

𝑆𝑘𝑛
𝑘
(1 − 𝑝𝑘)1−𝑆

𝑘
𝑛 + (1 − 𝑤𝑛)

∏
𝑘 𝑞

1−𝑆𝑘𝑛
𝑘
(1 − 𝑞𝑘)𝑆

𝑘
𝑛 ) and is only a

function of the rater parameters 𝜃𝑘 . Its maximisation is not tractable in closed form but
the expectation-maximisation algorithm provides a way to estimate some local maxima.

3.2 Estimation of a soft or hard consensus from binary segmentations 51



The E-step consists in evaluating the posterior probability from Bayes law with the current
estimated sensitivities and specificities :

𝑢𝑛 = 𝑝(𝑇 |𝜃,S) =
𝑤𝑛

∏
𝑘 𝑝

𝑆𝑘𝑛
𝑘
(1 − 𝑝𝑘)1−𝑆

𝑘
𝑛

𝑤𝑛
∏
𝑘 𝑝

𝑆𝑘𝑛
𝑘
(1 − 𝑝𝑘)1−𝑆𝑘𝑛 + (1 − 𝑤𝑛)

∏
𝑘 𝑞

1−𝑆𝑘𝑛
𝑘
(1 − 𝑞𝑘)𝑆𝑘𝑛

(3.3)

The M-step updates the the parameters 𝑝𝑘 and 𝑞𝑘 as follows:

𝑝𝑘 =

∑
𝑛,𝑆𝑘𝑛=1 𝑢𝑛∑
𝑛 𝑢𝑛

=
sTP𝑘

sFN𝑘 + sTP𝑘
𝑞𝑘 =

∑
𝑛,𝑆𝑘𝑛=0(1 − 𝑢𝑛)∑
𝑛 (1 − 𝑢𝑛)

=
sTN𝑘

sTN𝑘 + sFP𝑘
(3.4)

where sTP𝑘 , sTN𝑘 , sFP𝑘 , sFN𝑘 are the "soft extension" of the number of true positive,
true negative, false positive and false negative voxels from rater 𝑘.

Influence of the prior term

We can better understand the influence of the prior when estimating the probability to
belong to a consensus by writing its logit logit(𝑢𝑛) = ln ( 𝑢𝑛1−𝑢𝑛 ) from Eq.3.3 :

logit (𝑢𝑛) = logit(𝑤𝑛) +
∑︁
𝑘,𝑆𝑘𝑛=1

log
(

𝑝𝑘

1 − 𝑞𝑘

)
+

∑︁
𝑘,𝑆𝑘𝑛=0

log
(
1 − 𝑝𝑘
𝑞𝑘

)
(3.5)

Thus, we see that to estimate 𝑢𝑛 each foreground voxel of rater 𝑘 "votes" with a (usually)
positive quantity log

(
𝑝𝑘

1−𝑞𝑘

)
whereas each background voxel "votes" with a (usually)

negative quantity log
(

1−𝑝𝑘
𝑞𝑘

)
. The prior term logit(𝑤𝑛) then biases this votes depending

whether 𝑤𝑛 is greater or smaller than 1
2 .

Influence of the background size

In many cases, the size 𝑁 of images that contain the objects delineated by the raters
is arbitrary since it can be the size of the original image (with large value of 𝑁) or the
size of a restricted region of interest (with small value of 𝑁). It is therefore important
to estimate the influence of the background size, i.e the number of true negative voxels
TN𝑘 , in the estimation of the hard and soft consensus. This notion of background size
can be extended to the whole set S as the number of voxels segmented by no rater (i.e.
|{𝑛|∀𝑘, 𝑆𝑘𝑛 = 0}|).

Influence on hard consensus Based on Eqs.3.1 and 3.2, the sensitivity and coefficient
𝑠+𝑛 are not influenced by TN𝑘 , but the specificities are. More precisely, we have 𝑞𝑘 =

1 − FP𝑘
TN𝑘
+𝑂 ((TN𝑘)−2), and therefore the quantity 𝑠−𝑛 tends towards 0 when TN𝑘 reaches

52 Chapter 3 Morphologically-Aware Consensus Computation via Heuristics-based IterATive

Optimization (MACCHIatO)



large values. This implies that the hard consensus converges towards the union of all
observed segmentation masks when the background size becomes large.

Influence on soft consensus The posterior probability 𝑢𝑛 and specificities 𝑞𝑘 are mainly
impacted by the increase of the background size, while the sensitivities are more
marginally influenced. The nature of the soft consensus depends on the 𝛼 exponent of
the prior expression 𝑤𝑛 = 𝐴

𝑁 𝛼
, and in particular we have :

logit (𝑢𝑛) = (
𝐾∑︁
𝑘=1

𝑆𝑘𝑛 − 𝛼) log 𝑁 + log 𝐴 + ln ( 𝑝𝑘
sFP𝑘

)) +
∑︁
𝑘,𝑆𝑘𝑛=0

ln (1 − 𝑝𝑘) +𝑂 (𝑁−2)

As seen in Fig.3.1b, the soft consensus when having a large background size depends on
the value of 𝛼, with larger 𝛼 corresponding to smaller consensus. The detailed proof is
presented in Appendix 3.6.1.

Removing the Influence of the background size We explore under which conditions the
STAPLE model leads to consensus estimations that are independent of the background
size. A first simplification of the model is to assume that all raters perform equally 𝑝𝑘 = 𝑝,
𝑞𝑘 = 𝑞. In this case, the global specificity maximizing the likelihood is 𝑞 =

∑𝐾
𝑘=1 TN𝑘∑𝐾

𝑘=1 TN𝑘+FP𝑘
which is still dependent on the size of the background through TN𝑘 .

A second simplification is to consider that each rater sensitivity and specificity are equal,
i.e. 𝑝𝑘 = 𝑞𝑘 = 𝛾𝑘 . This implies that the rater performance is independent of the fact
the consensus voxel is in the background or foreground. In this case, the parameter
𝑝𝑘 = 𝑞𝑘 = 𝛾𝑘 can be interpreted as the accuracy parameter and its optimization leads

to 𝛾𝑘 =
TP𝑘+TN𝑘

𝑁
. It is easy to see that in that case, 𝑠

+
𝑛

𝑠−𝑛
=

(
𝛾𝑘

1−𝛾𝑘

)𝑆+𝑛−𝑆−𝑛
, and therefore the

maximum likelihood is equivalent to majority voting when 𝛾𝑘 > 1
2 which is independent

of background size. With this simplification, and from Eq.3.5, the soft consensus obtained
by maximizing the marginal likelihood with a non-informative prior 𝑤𝑛 = 1

2 , is such that
logit(𝑢𝑛) = (𝑆+𝑛 − 𝑆−𝑛) logit(𝛾𝑘). The value of 𝛾𝑘 depends on the background size, but
whether a voxel is more likely to be a background pixel 𝑢𝑛 > 1

2 does not depend on the
background size.

Limitations

The STAPLE algorithm addresses the problem of taking into account the performance
of raters when building a consensus segmentation. However, this approach has the
drawback of being dependent on the choice of the prior, and the background size. This
dependence of the STAPLE consensus can be explained by the fact that it is a generative
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(a) Impact of background size on a simple 2D case
with 7 raters (the 7th is an empty map), with

STAPLE computed on a 67×61 image (middle),
and 640×640 (right) with 𝑤 = (∑𝑛,𝑘 𝑆𝑘𝑛)/𝑁𝐾.

The relative size of the structure can be seen at
the top right corner.

(b) Limits of STAPLE algorithm for 3 different
values of 𝛼 on a toy example with 4 raters

providing the red, blue, green and magenta
contours. The figures are the number of raters

who segmented this zone, and the colors are the
probability of the soft consensus with colormap

borrowed from Fig.3.1a.

Fig. 3.1.: Impact of STAPLE hyperparameters and background size on the soft consensus

model which should explain the foreground and the background voxels separately. When
assuming that the rater performance is the same in both background and foreground,
then the model becomes equivalent to majority voting.

The use of local sliding windows in STAPLE as in [CAAW12] can somewhat mitigate the
background size effect, but smallest structures in images can still be impacted and the
window size remains a hyperparameter which is difficult to set.

3.3 MACCHIatO framework

3.3.1 Main approach description

In the previous section, we have seen that only the majority voting and mask averaging
algorithms lead to a consensus which is independent of the background size. Yet, those
algorithms are purely local at the voxel level and can lead to irregular boundaries or
isolated voxels.

In this section we introduce a new framework to compute soft and hard consensus that
are i) invariant from the background size and ii) dependent on the global morphology
of each binary object. This approach is coined MACCHIatO for Morphologically-Aware
Consensus Computation via Heuristics-based IterATive Optimization.

Distance-based approach We formulate the estimation of a hard consensus 𝑇 as the
minimization of the sum of the square distance between the consensus 𝑇 and each
observed binary mask 𝑆𝑘 :

𝑇 = arg min
𝑀 ∈{0,1}𝑁

𝐾∑︁
𝑘=1

𝑑 (𝑀, 𝑆𝑘)2 (3.6)
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where 𝑑 (𝑇, 𝑆𝑘) is a distance as defined in [DD16] between the two masks 𝑆𝑘 and 𝑇 . This
is equivalent to estimating the consensus as a maximum likelihood where the likelihood
can be written as 𝑝(𝑆𝑘 |𝑇) ∝ exp(−𝜆𝑑 (𝑇, 𝑆𝑘)2). Note that the square sum

∑𝐾
𝑘=1 𝑑 (𝑀, 𝑆𝑘)2

can be seen as the Fréchet variance, and 𝑇 as the Fréchet mean of the set of binary masks
S.

Link with baseline models In section 3.2.2, we have seen that when the sensitivity
and specificity are equal, the maximization of the STAPLE model leads to the majority
voting algorithm. In this case, we can write the likelihood 𝑝(𝑆𝑘 |𝑇) = 𝛾

TP𝑘+TN𝑘
𝑘

(1 −
𝛾𝑘)FP𝑘+FN𝑘 (where 𝛾𝑘 is the accuracy parameter) which is a product of 𝑁 independent
Bernouilli distributions. Since the Bernouilli distribution is a member of the exponential
family [DDW13], it can be also written as 𝑝(𝑆𝑘 |𝑇) ∝ exp(−𝜆𝑘 (FP𝑘 + FN𝑘)) where 𝜆𝑘 =

logit(𝛾𝑘). The number of false positives or false negatives FP𝑘 + FN𝑘 is the number of
elements of symmetric difference between the two sets 𝑆𝑘 and 𝑇: FP𝑘 + FN𝑘 = |𝑇Δ𝑆𝑘 | =
| (𝑇 ∪ 𝑆𝑘) \ (𝑇 ∩ 𝑆𝑘) | and is also called the Hamming distance in information theory. Thus,
for instance by choosing 𝑑 (𝑇, 𝑆𝑘) =

√︁
|𝑇Δ𝑆𝑘 |, the maximum likelihood leads to majority

voting consensus (as detailed in Appendix 3.6.2).

Soft consensus framework On the baseline models, soft consensuses were obtained as
posterior probability of having a consensus from the observed binary masks. However,
from the likelihoods 𝑝(𝑆𝑘 |𝑇) ∝ exp(−𝜆𝑑 (𝑇, 𝑆𝑘)2), the computation of the posterior
𝑝(𝑇 |S) may not be tractable due to the difficulty of computing the normalization constant.
Instead, we propose to approximate 𝑝(𝑇𝑛 |S) by the quantity 𝑈𝑛 ∈ [0, 1] such that
𝑈 ∈ [0, 1]𝑁 minimizes the quantity :

𝑈 = arg min
𝑋 ∈[0,1]𝑁

𝐾∑︁
𝑘=1

𝑑𝑠 (𝑋, 𝑆𝑘)2 (3.7)

where 𝑑𝑠 (𝑋, 𝑆𝑘) is a distance between the probabilistic array 𝑋 and the binary mask
𝑆𝑘 . More precisely, the distances 𝑑𝑠 (𝑋, 𝑆𝑘) considered are soft surrogate of the distance
between binary sets 𝑑 (𝑋, 𝑆𝑘) such that 𝑑𝑠 (𝑋, 𝑆𝑘)2 = 𝑑 (𝑋, 𝑆𝑘)2 when 𝑋 ∈ {0, 1}𝑁 . For
instance, the distance 𝑑 (𝑋, 𝑆𝑘) = ‖𝑋 − 𝑆𝑘 ‖ is a soft surrogate of the Hamming distance
since |𝑋Δ𝑆𝑘 | = ‖𝑋 − 𝑆𝑘 ‖2. Besides it is clear that the mask averaging (MA) method is a
soft consensus minimizing the following square sum

∑𝐾
𝑘=1 ‖𝑈 − 𝑆𝑘 ‖2.

Optimization approach The estimation of the soft and hard consensus is independent of
the background size if the distance 𝑑 (𝑇, 𝑆𝑘) is invariant to the number of true negatives.
Besides, unlike the MV and MA algorithms, the optimization cannot be performed at the
voxel level when the distance cannot be split voxelwise. Instead of optimizing the whole
foreground object, we chose to consider each connected component separately from each
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other as to obtain more coherent results. Finally, we further split the optimization on
sub-crowns with various heuristics to speed-up the computation.

3.3.2 Distances between binary masks
We detail below the selected distances between binary sets that are considered and their
associated soft surrogates. We mainly focus on distances based on two widely used
methods to measure the overlap between binary segmentations : the Jaccard and Dice
coefficients.

Jaccard distance The Jaccard coefficient (aka IoU) between binary masks 𝐴 and 𝐵 ∈
{0, 1}𝑁 is defined as: Jac(𝐴, 𝐵) = |𝐴∩𝐵 ||𝐴∪𝐵 | . In [Kos19], it is shown that its complementary
to 1 dist𝐽 (𝐴, 𝐵) = 1 − Jac(𝐴, 𝐵) =

|𝐴Δ𝐵 |
|𝐴∪𝐵 | is a metric between binary sets following

the triangular inequality. Several formulations of soft surrogates exist that extend the
Jaccard distance. We focused specifically on two of them: the Soergel metric [Spä81;
DD16] 𝑑Sg(𝑥, 𝑦) =

∑
𝑖 max(𝑥𝑖 ,𝑦𝑖)−min(𝑥𝑖 ,𝑦𝑖)∑

𝑖 max(𝑥𝑖 ,𝑦𝑖) which follows the triangular inequality but is not
differentiable, and the widely-used Tanimoto distance [WBD98; DD16; LG07] 𝑑Tan(𝑥, 𝑦) =
1 −

∑
𝑖 𝑥𝑖𝑦𝑖∑

𝑖 𝑥
2
𝑖
+𝑦2
𝑖
−𝑥𝑖𝑦𝑖

=
| |𝑥−𝑦 | |2

| |𝑥−𝑦 | |2+<𝑥,𝑦> .

Dice coefficient It is defined as DSC(𝐴, 𝐵) = 2 |𝐴∩𝐵 |
|𝐴 |+ |𝐵 | and is widely used in image seg-

mentation as a performance index. Indeed, the Dice index is equal to the F1-score and
corresponds to the harmonic mean of the sensitivity and positive predictive value. It is
closely related to the Jaccard coefficient as DSC(𝐴, 𝐵) = 2Jac(𝐴,𝐵)

1+Jac(𝐴,𝐵) . The Dice distance
dist𝐷 (𝐴, 𝐵) = 1 − DSC(𝐴, 𝐵) is a near-metric i.e. it respects a relaxed form of the triangu-
lar inequality [GS18]. Soft surrogates of the Dice distance have been developed especially
as a loss function in deep learning. We consider in the remainder two main extensions
of the Dice distance [Ma+21] on non-binary sets defined as 𝑑pSD(𝑥, 𝑦) = 1 − 2

∑
𝑖 𝑥𝑖𝑦𝑖∑

𝑖 𝑥
𝑝

𝑖
+∑𝑖 𝑦𝑝𝑖

where 𝑝 ∈ {1, 2}.

By construction, all those distances only depend on segmented pixels and are independent
of the background size. Note that both distances are extended to get a null distance
between two empty sets. The different formulations of the MACCHIatO framework are
summarized in the table 3.1.

3.3.3 Heuristic computation based on morphological distance
and crowns

Domain of optimization Since the distances listed in the previous section are indepen-
dent of the number of true negatives, their computations can be restricted to the union
of all rater masks : ES = {𝑛|∑𝐾

𝑘=1 𝑆
𝑘
𝑛 > 0}. Furthermore, we consider that to decide

whether a voxel belongs to the consensus, one should only take into account the regional
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Hard Consensus
Method

Soft Consensus
Method Distance Soft Surrogate Computation level

Majority Voting Mask Averaging |𝐴Δ𝐵| ‖𝑥 − 𝑦‖ Voxel-level
ML STAPLE MML STAPLE NA NA Image-level

MACCHIatO-J
MACCHIatO-TJ

Jaccard 𝑑𝐽
Tanimoto 𝑑Tan

Connected
component

level

MACCHIatO-SJ Soergel 𝑑Sg

MACCHIatO-D
MACCHIatO-1SD

Dice 𝑑𝐷
𝑑1SD

MACCHIatO-2SD 𝑑2SD

Tab. 3.1.: Distances between binary sets and their soft surrogate considered to compute hard and
soft consensus with the MACCHIatO framework

context associated with the connected components surrounding that voxel, since far
away components may not be relevant. Therefore, we choose to minimize separately the
Fréchet variances of Eqs. 3.6 and 3.7 for each connected component 𝑆𝑡 of the masks union
ES. Therefore, in practice, we minimize the Local Mean Squared Distance between S
and the consensus: LMSD𝑑 (S, 𝑀) =

∑
𝑆𝑡⊂ES

1
𝐾

∑
𝑘 𝑑 (𝑆𝑘‖𝑆𝑡 , 𝑀‖𝑆𝑡 )

2 where 𝑆𝑘‖𝑆𝑡 (resp. 𝑀‖𝑆𝑡)
are the restriction of the binary masks 𝑆𝑘 (resp. 𝑀) to the connected component 𝑆𝑡. To
lighten notations, we drop in the remainder the 𝑆𝑡 index which is equivalent to consider
that ES has only one single connected component.

Sub-crown based optimization The minimization of the Fréchet variance is a combi-
natorial problem with a complexity of 2 |ES | for the naive approach. Furthermore, it
may lead to several global minima when the number of raters 𝐾 is small. This is why
we propose instead to seek a local minimum of the Fréchet variance by introducing
some heuristics in the optimization. With this approach, the local minimum has a lower
complexity to compute and is by construction maximally connected to avoid isolated
voxels. More precisely, instead of a computationally expensive per voxel minimization of
the Fréchet variance, we decompose the set ES into a set of sub-crowns that take into
account the global morphological relationships between each rater mask. The formal
definition of sub-crowns requires the specification of distance maps 𝐷𝑚N (𝑆𝑘) to each
binary mask 𝑆𝑘 on ES according to a chosen neighborhood N . This one can be either the
4 or 8 (resp. 6 or 26) connectivity in 2D (resp. 3D) and the distance 𝐷𝑚N (𝑆𝑘) is set to
0 for all voxels inside the object 𝑆𝑘 . The global morphological distance map is the sum
of those distance maps 𝐷NS =

∑
𝑆𝑘 ∈S 𝐷𝑚N (𝑆𝑘) for all raters on ES. A crown 𝐶N

𝑡𝑑
is then

defined as the set of voxels having a global morphological distance 𝑡𝑑. Those crowns
realize a partition of ES (ES =

∐
𝑡𝑑 𝐶

N
𝑡𝑑

), and the 0-crown corresponds by construction to
the intersection of all masks in S. We further split each crown as a set of sub-crowns by
grouping the voxels that have been produced by the same set of raters. In other words,
a sub-crown corresponds to a set of voxels located at the same morphological distance
from the intersection of all rater masks and which have been segmented by exactly the
same group of raters, as seen in Fig. 3.2a. Formally, a sub-crown is noted (𝐶N

𝑡𝑑
)𝑔 where
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the superscript 𝑔 corresponds to a group of raters and sub-crowns realize a partition of a
crown :

𝐶N
𝑡𝑑

=
∐

𝑔∈P(È1,𝐾É)
(𝐶N
𝑡𝑑
)𝑔,with (𝐶N

𝑡𝑑
)𝑔 = {𝑛|𝑛 ∈ 𝐶N

𝑡𝑑
& ∀𝑘 𝑆𝑘𝑛 = (𝑘 ∈ 𝑔)} (3.8)

where P(È1, 𝐾É) is the power set (i.e. the set of all subsets) of the first K integers.

(a) (b)

Fig. 3.2.: (a) Left: Preprocessing step of the MACCHIatO algorithm, with the construction of the
crowns. Right: An iteration of the shrinking approach with selection of sub-crowns
and the evaluation of their contribution to the LMSD𝑑. (b) Application of averaging
and soft MACCHIatO on a toy example with three segmentations (red, green and blue
contours). After thresholding, averaging gives an empty segmentation whereas the soft
MACCHIatO method is more inclusive and outputs one connected component.

3.3.4 Hard consensus algorithm
The optimization proceeds in a greedy fashion by iteratively removing or adding sub-
crowns to the current estimate of the consensus until the LMSD𝑑 criterion stops decreas-
ing. In Alg. 1, we use two concurrent strategies: either we start from the union of all
masks (as seen in Fig. 3.2a) and then remove sub-crowns with decreasing distances or we
start with the crown with the minimum distance and then add sub-crowns of increasing
distances. Both growing and shrinking strategies are applied in order to mitigate the risk
of falling into a local minimum and the consensus associated with the minimum LMSD𝑑
of both strategies and the null set is kept. The empty consensus is also tested in a last
stage, since there are often a lot of local minima when dealing with large disagreement
among raters.

Examples of consensus obtained with this strategy can be seen in Fig. 3.3. Thus, the
resulting consensus leads to a consistent grouping since all voxels belonging to the same
connected component, having the same morphological distance, and being generated
by the same group of raters will end up in the same class. Alternative optimization
approaches could have been based on the removal or addition of single voxels (smaller
than sub-crowns) or crowns (larger than sub-crowns). While voxel-based minimization
would be very time consuming especially in 3D, conversely crown-based would lead to
suboptimal results as crowns can be fairly large. Thus, the Morphologically-Aware Con-
sensus Computation via Heuristics-based IterATive Optimization (MACCHIatO) algorithm
is designed be a good compromise between computational efficiency and consistency,
with a number of iterations exponentially depending on 𝐾 but which is lower than the
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naive 2 |ES | complexity.

Input: S segmentation maps, N neighborhood, 𝑑 distance
Result: 𝑇
Initialization: Computation of 𝐷NS , 𝑡𝑑𝑢 = max(𝐷NS ), 𝑡𝑑𝑖 = min(𝐷NS );
𝑇𝑢 =

⋃
𝑘 𝑆

𝑘 ; 𝑇 𝑖 = {𝑛| (𝐷NS )𝑛 = 𝑡𝑑𝑖}
while LMSD𝑑 (𝑇𝑢 ,S) decreases do // Shrinking strategy

for 𝑔 ∈ P(È1, 𝐾É) do
if LMSD𝑑 ((𝑇𝑢/(𝐶N𝑡𝑑𝑢 )

𝑔),S) < LMSD𝑑 (𝑇𝑢 ,S) then
𝑇𝑢 ← 𝑇𝑢/(𝐶N

𝑡𝑑𝑢
)𝑔

end
end
𝑡𝑑𝑢 ← max({𝑥 ∈ 𝐷NS |𝑥 < 𝑡𝑑𝑢})

end
while LMSD𝑑 (𝑇 𝑖 ,S) decreases do // Growing strategy

for 𝑔 ∈ P(È1, 𝐾É) do
if LMSD𝑑 ((𝑇 𝑖 ∪ (𝐶N𝑡𝑑𝑖 )

𝑔),S) < LMSD𝑑 (𝑇 𝑖 ,S) then
𝑇 𝑖 ← 𝑇 𝑖 ∪ (𝐶N

𝑡𝑑𝑖
)𝑔

end
end
𝑡𝑑𝑖 ← min({𝑥 ∈ 𝐷NS |𝑥 > 𝑡𝑑𝑖})

end
𝑇 ← arg min

𝑇 ∈{𝑇 𝑢 ,𝑇 𝑖 ,∅}
LMSD𝑑 (𝑇,S)

Algorithm 1: Hard consensus algorithm.

Fig. 3.3.: Comparison of several hard consensus methods on a 2D slice with 5 raters using MV,
ML STAPLE and both hard MACCHIatO. On the left is indicated the number of raters
who segmented each pixel.

3.3.5 Soft consensus algorithm
The estimation of a probabilistic or soft consensus is based on the minimization of the
sum of square surrogate distances as displayed in Eq. 3.7 and the optimization is split for
each connected component of the mask union ES.

The soft MACCHIatO algorithm extends the previous approach to minimize the criterion
LMSD𝑑𝑠 (𝑇,S). A brute force approach would lead to the optimization of a sum of 𝐾
rational polynomials over a set of |ES | scalars. Instead, we proceed in a greedy manner,
separately on each connected component of ES, by starting with the mean consensus and
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optimizing successively sub-crowns of increasing distances. All sub-crowns of increasing
distances are iteratively considered until LMSD𝑑 (𝑇,S) stops decreasing. For each sub-
crown 𝑟 = (𝐶N

𝑡𝑑
)𝑔, we seek the scalar value 𝑝𝑟 ∈ [0, 1] such that it minimizes

𝑝𝑟 = arg min
𝑥∈[0,1]

(𝑑 (𝑇(𝑡𝑑,𝑔) ,𝑥 ,S)), with 𝑇(𝑡𝑑,𝑔) ,𝑥 =

{
𝑥 if 𝑛 ∈ 𝑟
𝑇𝑛 otherwise

.

The algorithm is described in Alg.2 and iteratively optimizes each sub-crown from the
inside to the outside of the ES set. We have observed no gain to combine a growing
and a shrinking exploration of sub-crowns unlike Alg. 1. For the optimization process of
Eq. 3.3.5, we use the SLSQP algorithm [Kra88] implemented in Scipy v1.7.3 [Vir+20].
Resulting consensus can be seen in Figs. 3.4, 3.6 and 3.7.

Input: S segmentation maps, N neighborhood, 𝑑𝑠 distance
Result: 𝑇
Initialization: Computation of 𝐷NS ; 𝑇 = 1

𝐾

∑𝐾
𝑘=1 𝑆

𝑘

while LMSD𝑑𝑠 (𝑇,S) decreases do
for 𝑡𝑑 ∈ 𝐷NS in increasing order do

for 𝑔 ∈ P(È1, 𝐾É) do

𝑝 = arg min
𝑥∈[0,1]

(LMSD𝑑𝑠 (𝑇(𝑡𝑑,𝑔) ,𝑥 ,S)) with 𝑇(𝑡𝑑,𝑔) ,𝑥 =

{
𝑥 on (𝐶N

𝑡𝑑
)𝑔

𝑇 elsewhere
𝑇 ← 𝑇(𝑡𝑑,𝑔) , 𝑝

end
end

end
Algorithm 2: Soft consensus algorithm

Fig. 3.4.: Comparison of several soft consensus methods on a 2D case with 5 raters using MA,
STAPLE and MACCHIatO with different distances.

3.4 Results

60 Chapter 3 Morphologically-Aware Consensus Computation via Heuristics-based IterATive

Optimization (MACCHIatO)



3.4.1 Datasets and Implementation Details

We applied our method on 3 datasets:

• A private database of transition zones of prostate T2W sequences, composed of 40
cases segmented by 5 raters.

• The publicly available MICCAI MSSEG 2016 dataset of Multiple Sclerosis lesions
segmentations [Com+18] segmented from Brain MR images, with 15 subjects
segmented by 7 raters

• The publicly available SCGM dataset [Pra+17], with 40 spinal cords and their
grey matter segmented by 4 raters. We used the whole spinal cord segmentation
(SCGM-SC) and the grey matter segmentation (SCGM-GM).

Images from the private dataset (resp. MSSEG dataset, SCGM dataset) have a size of
[80-288]×[320-640]×[320-640] voxels (resp. [144-261]×[224-512]×[224-512] voxels
and [3-28]×[100-655]×[100-776] voxels). It was possible to extract from the private
dataset bounding boxes of size [58-227]×[53-184]×[62-180] voxels. Similarly, we were
able to extract from SCGM-SC (resp. SCGM-GM) bounding boxes of size [3-20]×[15-
90]×[24-131] voxels(resp.) From the 3D private dataset, we created a 2D subset by
extracting a single slice for each patient located at the base of the prostate since this
region is subject to a high inter-rater variability [Bec+19; Mon+21].
Examples for each dataset of segmentations by the different raters of the same case is
available in Appendix 3.6.3 (Fig. 3.8).

Implementation details In the remainder, STAPLE results were produced by using the
algorithm implemented in SimpleITK v2.0.2 [Low+13]. All MACCHIatO methods used
the 8 or 26-connectivity neighborhood for 2D or 3D cases. MACCHIatO code is available
at https://gitlab.inria.fr/dhamzaou/jaccardmap

3.4.2 Heuristics relevance

In Section 3.3.3, we have presented the sub-crown based heuristics which drives the
optimization of the local mean square distance criteria. Indeed, those sub-crown group
voxels based on three properties: their morphological distance, the connected component
they belong to and the raters who segmented them. To check if this heuristics is
appropriate, we compared it with two alternatives:

• One iteratively minimizing the LMSD𝑑 at the crown level, without any rater-related
property.

• One iteratively processing each voxel separately.
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Heuristics LMSD𝑑 Time
Subcrown-based

heuristics 0.159 0.26s

Crown-based
heuristics 0.176 0.07s

Voxel-based
approach 0.159 0.92s

Estimated True
minimizer 0.159 0.55s

Tab. 3.2.: Computed LMSD𝑑𝑠 and computa-
tion time for the soft consensus
with Tanimoto distance on the toy
example of Fig.3.5 using three dif-
ferent heuristics and the true min-
imizer.

Fig. 3.5.: Different soft consensus obtained
on a toy example. Each contour
corresponds to one of the raters’
segmentation and colors indicate
the probability using the same col-
ormap as Fig 3.4.

We compared the 3 heuristics by computing a soft consensus (with the Tanimoto distance)
on the toy example of Fig. 3.5 and we display their optimized value of LMSD𝑑𝑠 and
their computation time in Table 3.2. Furthermore, since the size of ES is small, we
could estimate the true minimizer of LMSD𝑑𝑠 which involves the optimization of |ES |
parameters.

Unlike the crown-based heuristics, the subcrown-based and voxel-based heuristics ap-
pears to compute a consensus close to the true LMSD𝑑𝑠 minimizer. In addition, the
sub-crown method is significantly faster than the voxel-based approach.

We have also compared the three heuristics on two datasets in Table 3.3. The crown-
based heuristics is the fastest method to compute but with the highest criteria LMSD𝑑𝑠 ,
whereas the voxel-based method requires far more time to compute than the subcrown-
based heuristics, and even several hours for some Prostate 3D cases. Surprisingly, the
subcrown-based heuristics reaches in average a lower LMSD𝑑𝑠 criteria than the voxel-
based method, although the difference may hardly be seen on the produced consensus.
In those datasets, we were not able to estimate the true minimizer of LMSD𝑑𝑠 , due to the
important memory resources those computations would require.

Dataset Sub-crown Crown Voxel
MSSEG 16.36 (57.48s) 16.50 (23.41s) 16.36 (20min30s)

Prostate 3D 1.24e-2 (31.5s) 1.26e-2 (5.46s) NA
Prostate 2D 5.98e-3 (0.29s) 6.22e-3 (0.07s) 6.10e-3 (5.30s)

Tab. 3.3.: Mean LMSD𝑑𝑠 and computation time for three different heuristics on some datasets
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3.4.3 Comparison with baseline methods

Comparison of inter-rater variabilities A first set of experiments consist in measuring
the impact of the choice of the consensus method when computing a measure of inter-
rater variability. More precisely, we compute the average precision, recall and F1-score
between the hard consensus (considered as ground truth) and each rater segmentation.
Those metrics have been computed on the MSSEG dataset where there are potentially
large disagreements between raters. Table 3.4 reports those metrics averaged among
all lesions of all images, a lesion corresponding to a connected component of the mask
union ES. The MV consensus has the highest recall and lowest precision which can be
interpreted by a MV consensus smaller than other methods. Conversely, the STAPLE
consensus has largest precision and lowest recall, thus corresponding to a consensus of
larger size. In terms of F1-score, MV and MACCIHIatO methods are close to each other,
but it is highest for MACCHIatO-D (0.449).

Measure
Method ML

STAPLE MV MACCHIatO-J MACCHIatO-D

Precision 0.976 0.497 0.562 0.570
Recall 0.273 0.817 0.769 0.758

F1-score 0.297 0.437 0.448 0.449
Tab. 3.4.: Averaged lesion-wise measures on the MSSEG dataset for all hard consensus methods

In addition, we also compared the methods on the number of connected components. To
do so, we defined each consensus as a potential ground truth and from there computed
the average precision, recall and F1-score of each rater for lesion detection (considering
the existence of a non-null intersection with the rater’s segmentation as a sufficient
threshold to detect). We made this experiment on the MSSEG dataset, as it is our only
dataset with several connected components per case. Table 3.5 reports those metrics
averaged among all patients. The MV consensus has the highest detection recall and
lowest detection precision which can be interpreted by a MV consensus not segmenting
some lesions conserved by the other methods. Conversely, the STAPLE consensus has
largest precision and lowest recall, thus corresponding to the presence of lesions rarely
segmented by the raters. In terms of F1-score, MV and MACCHIatO methods are close to
each other, but it is highest for MACCHIatO-D (0.894).

Measure
Method ML

STAPLE MV MACCHIatO-J MACCHIatO-D

Precision 0.994 0.887 0.914 0.931
Recall 0.643 0.967 0.931 0.930

F1-score 0.746 0.892 0.888 0.894
Tab. 3.5.: Measures of lesion detection on the MSSEG dataset for all hard consensus methods
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Fig. 3.6.: Two consecutive slices of a MSSEG sample on which we applied STAPLE (pink), Majority
Voting (purple) and MACCHIatO-TJ (green contour) (a, c), and for each voxel of those
slices the number of raters who segmented them (b, d). We can note that some zones
(highlighted by brown squares) were selected by soft MACCHIatO-TJ whereas less than
the majority of raters segmented them.

Comparison of consensus areas or volumes In Table 3.6, we compare the relative size
of hard consensus on 2 datasets, taking the MV consensus as reference. In average, all
methods lead to consensus of larger size than MV. For the MACCHIatO methods, the
difference with MV consensus is modest on a massive organ (prostate) but significant for
small lesions (>16%). The ML STAPLE method generates much larger consensus than
MV, especially when dealing with small lesions. Note that for the MSSEG dataset, ML
STAPLE is computed on the whole image, thus with a large background size. Finally, the
MACCHIatO-D and MACCHIatO-J methods lead to consensus of similar size, without
any clear order. Table 3.7 compares the soft area or volumes of the soft consensus given
by

∑𝑁
𝑛=1𝑈𝑛 generated by all methods, taking the mask averaging as reference. Fig. 3.6

illustrates those soft consensuses on the MSSEG dataset. The variation of volumes is
smaller for soft consensus than for hard consensus. In general, the MA method produces
the smallest volumes, and STAPLE the largest ones. The methods using surrogate Dice or
Jaccard distances give similar volumes, although the Soergel and 1𝑆𝐷 are more diverging
on the MSSEG dataset. We also compare the size of the thresholded maps 𝑈𝑛 > 0.5
which provide similar trends than their soft maps.

For both hard and soft consensuses, the largest differences between the different methods
are observed on the MSSEG dataset, followed by SCGM-GM.

Avg. size variation w.r.t MV Frequencies of size > |MV|

Dataset
Method

Jaccard Dice ML STAPLE Jaccard Dice ML STAPLE

Prostate 3D +0.4% +0.6 % +22% 87.5% 85% 100%
MSSEG +19% +16% +151% 100% 93% 100%

SCGM-SC +2.36% +2.30% +11% 97.5% 97.5% 100%
SCGM-GM +17% +15% +47% 100% 100% 100%

Tab. 3.6.: Left: Average size variation on 3D datasets for hard consensus, with the Majority Voting
serving as the reference size. Right: percentage of cases where the computed consensus
is strictly larger than the MV consensus. Red color indicates that for this setting, all
cases are at least of equal size.
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Avg. soft volume variation w.r.t MA

Dataset
Method

TJ SJ 2SD 1SD STAPLE

Prostate 3D +0.4% +0.1% +0.1% +0.7% +10%
Thresholded +0.1% +0.07% +0.09% +0.03% +11%

MSSEG +4% +16% +2% -3% +43%
Thresholded +8% +37% +4% +11% +68%

SCGM-SC -0.4% +0.5% -0.5% +0.3% +4%
Thresholded +1% +1.3% +0.9% +0.9% +5.7%
SCGM-GM +1.2% +4.4% +1% +2.9% +8.6%

Thresholded +13% +16% +11% +14% +19%

Frequencies of soft volume > |MA|

Dataset
Method

TJ SJ 2SD 1SD

Prostate 3D 80% 65% 60% 80%
Thresholded 22.5% 12.5% 7.5% 7.5%

MSSEG 87% 100% 73% 33%
Thresholded 93% 100% 80% 93%

SCGM-SC 10% 52.5% 5% 37.5%
Thresholded 35% 67.5% 25% 27.5%
SCGM-GM 92.5% 95% 92.5% 82.5%

Thresholded 100% 100% 100% 100%
Tab. 3.7.: Top: Average soft volume variation on 3D datasets for soft consensus, with the MA

serving as the reference. Bottom: Percentage of cases where the obtained consensus has
a higher volume than the MA consensus. Red color indicates for the thresholded case
that for this setting, all cases are at least of equal size.
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We recorded the cumulative running time for STAPLE and soft MACCHIatO methods to
generate a consensus for all structures of our datasets in Table 3.8. We did not consider
MA as it requires far less computation than the other methods. Among the considered
algorithms STAPLE is in general the fastest method, being approximately 2-3 times faster
than MACCHIatO methods. The exception here being the computation time on SCGM,
which always involve small structure sizes and large image sizes.

Dataset
Method

TJ SJ 2SD 1SD STAPLE

Prostate 2D 11.1s 14.6s 7.4s 9.8s 2.3s
Prostate 3D 15m02s 12m52s 9m19s 9m48s 4m17s

MSSEG 14m29s 11m31s 11m42s 11m13s 3m38s
SCGM-SC 16.7s 15.1s 14s 14.3 40.6s
SCGM-GM 14.1s 12.8s 12.4s 13.3s 34.7s

Tab. 3.8.: Computation time of continuous methods on all datasets

3.4.4 Entropy of soft consensus

In Figs. 3.3 and 3.7 we show examples of soft consensus on the prostate and lesions
datasets. It appears that MACCHIatO-SJ and MACCHIatO-1SD methods often assign
to sub-crowns probability values very close to 0 or 1 despite being soft consensus
methods. To confirm this behaviour, we compared on all 3D datasets the Shannon
entropy −∑𝑛𝑈𝑛 log𝑈𝑛 − (1 − 𝑈𝑛) log(1 − 𝑈𝑛) obtained by MA and by the four soft
MACCHIatO methods. Table 3.9 confirms the strong binary behavior of MACCHIatO-
SJ and MACCHIatO-1SD methods while MACCHIatO-TJ and MACCHIatO-2SD have a
similar spread than mask averaging. Thus, we classify the surrogate distances between
two families: the ones associated with low-entropy consensus (Soergel, 𝑑1𝑆𝐷), and the
ones generating high-entropy consensuses (Tanimoto, 𝑑2𝑆𝐷).

Dataset MA TJ SJ 2SD 1SD
Prostate 3D 63850 63658 6928 63799 19361

MSSEG 41295 37377 3805 37720 6107
SCGM-SC 2401 2467 259 2483 305
SCGM-GM 757 736 97 736 118

Tab. 3.9.: Mean entropy on 3D datasets for soft MACCHIatO methods. MA entropy is given as a
reference.

3.4.5 Discussion

Experiments confirmed the dependence on background size of the STAPLE method, as
shown on Fig. 3.1a and in Appendix 3.6.1 (Tab. 3.10). We also observed that hard
consensuses obtained by MACCHIatO were generally slightly larger than those obtained
by MV, particularly with MACCHIatO-J which never produces consensuses smaller than
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Fig. 3.7.: Impact of the choice of the distance on the computed soft MACCHIatO consensus on a
SCGM-GM example

MV’s. This can be explained by the fact that the MACCHIatO consensus may include
voxels segmented by less than half of the raters (as seen in Figs. 3.3 and 3.6). Finally,
STAPLE consensuses always have a larger size than both MACCHIatO and MV. Similar
observations can be made on soft consensus but with a smaller difference between
methods on soft volumes compared to hard volumes. The MACCHIatO methods by
construction create consensuses, independent from the background size, that maximizes
the local average (soft) Dice or Jaccard coefficients between the consensus and rater
masks for each connected component. Furthermore, they produce masks that are
different from the MV and STAPLE methods and having in general larger volumes
than MV consensus and smaller volumes than STAPLE ones. Finally, the MACCHIatO
algorithms are in general more computationally expensive than MV or STAPLE algorithms
but only to a reasonable extent (about 2 or 3 times more).

It can also be noted that the size variation observed on a dataset seems to be correlated
with its inter-rater variability, the observed differences being more important on the
MSSEG and SCGM-GM dataset than on the others.

In this article, we always considered 8-connexity in 2D cases and 26-connexity in 3D cases,
as it performed better on preliminary experiments. However, use of other neighborhoods
(such as the 4-neighborhood in 2D, or the 6 and 18-neighborhood in 3D) could be
envisaged. Moreover, we did not consider the case of highly anisotropic images, like
in the SCGM dataset where a ratio of anisotropy greater than 10 in the voxel size is
encountered. For those cases, it could be considered to apply a 2.5D approach consisting
in applying our method to each slice independently. Comparisons between 2.5D and 3D
neighborhood on SCGM is available in Appendix 3.6.4.

The proposed method has several limitations. First, we only considered a binary seg-
mentation problem. Extension to multiclass segmentation could be foreseen using for
instance the generalization method presented in [CCH06] and [Sud+17]. Second, the
considered distances between binary sets are based on region overlap measures (Dice,
Jaccard indices) and discard distances between boundaries such as Hausdorff Distance
(HD). Our experiments based on HD were not conclusive. The reasons for this may be
similar to the ones described in [KS19]: instability of the methods to minimize a distance
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only defined from the largest error, HD sensitivity to outliers, difficulties to optimize it
from an optimization point of view. To mitigate those effects, we made some tests using
two of the Hausdorff alternatives defined in [KS19] and based respectively on distance
maps and erosion, to no avail.
Third, the proposed criteria LMSD𝑑, weights all raters equally for all connected compo-
nents unlike the STAPLE algorithm. It is possible to extend the MACCHIatO framework by
attributing a weight to each rater based on their precision and recall (as those measures
are independent of background size), either at the local or at the global level. Yet, this
extension would require additional optimization steps, since the weights depend on the
current estimate of the consensus.

Extending the MACCHIatO method to generate consensuses from 𝐾 (soft) probability
maps instead of binary segmentations is not straightforward. Indeed, while minimizing
the Fréchet variance of Eq. 3.7 is well-posed, we can no longer restrict its computation
to the set ES and define sub-crowns as optimization blocks. An alternative method that
we have explored in our prior work [Aud+20], is to map probabilities to real values
through a link function (e.g. a logit function) and then use robust parametric models
(t-distributions) to fuse the probability maps.

3.5 Conclusion
In this chapter, we have shown that the STAPLE method is impacted by the image
background size and the choice of prior law. We have also introduced a new background-
size independent method to generate a consensus based on Jaccard and Dice-based
distances, thus extending the Majority Voting and mean consensus methods. More
precisely, the generated masks minimize the average Jaccard or Dice distance between
the consensus and each rater segmentation. The MACCHIatO algorithms are efficient
and provide consistent masks by taking into account local morphological configurations
between rater masks. The consensus masks are usually of larger size than those generated
by the majority voting or mask averaging methods but smaller than those issued by
STAPLE. Therefore, we believe based on the experiments performed on two datasets,
that the hard and soft MACCHIatO algorithms are good alternatives to MV-based and
STAPLE-based methods to define consensus segmentation.
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3.6 Appendices

3.6.1 Influence of background size in STAPLE

We can see that by definition 𝑢𝑛 is impacted by the value of 𝑤𝑛 and, through 𝑇𝑁𝑘 , by
the background size 𝐵𝑆 = |{𝑛|∀𝑘, 𝑆𝑘𝑛 = 0}| (i.e. the number of voxels that no rater
segmented). In the following subsections we will characterize the dependence of the
produced consensus to those parameters.

STAPLE dependence on background size at fixed foreground

By definition, when the background size increases 𝑇𝑁𝑘 also increases whereas 𝑇𝑃𝑘 , 𝐹𝑃𝑘
and 𝐹𝑁𝑘 remain constants. So, 𝑞𝑘 → 1 when 𝐵𝑆 →∞ and we can write

logit (𝑢𝑛) ∼ logit (𝑤𝑛) +
∑︁
𝑘,𝑆𝑘𝑛=1

(ln (𝑝𝑘) − ln (1 − 𝑇𝑁𝑘

𝑇𝑁𝑘 + 𝐹𝑃𝑘
)) +

∑︁
𝑘,𝑆𝑘𝑛=0

ln (1 − 𝑝𝑘)

∼ logit (𝑤𝑛) +
∑︁
𝑘,𝑆𝑘𝑛=1

(ln (𝑝𝑘) − ln ( 𝐹𝑃𝑘

𝑁 − 𝐵𝑘
)) +

∑︁
𝑘,𝑆𝑘𝑛=0

ln (1 − 𝑝𝑘)

∼ logit (𝑤𝑛) +
∑︁
𝑘,𝑆𝑘𝑛=1

(ln (𝑁 − 𝐵𝑘) + ln ( 𝑝𝑘
𝐹𝑃𝑘
)) +

∑︁
𝑘,𝑆𝑘𝑛=0

ln (1 − 𝑝𝑘)

with 𝐵𝑘=𝑇𝑃𝑘+𝐹𝑁𝑘 .

Impact of the consensus prior 𝑤𝑛 on the limit

In [WZW04], they proposed to set 𝑤𝑛 as a spatially uniform value 𝑤𝑛 = 𝑤 where
𝑤 is either a constant (typically 𝑤 = 0.5) or defined as the average occurrence ratio
(𝑤 = 1

𝑁𝐾

∑
𝑛,𝑘 𝑆

𝑘
𝑛). We further consider more general priors of the form 𝑤 = 𝐴

𝑁 𝛼
, with A a

constant independent of the image size 𝐵𝑆, thus having logit(𝑤𝑛) = − ln ( 𝑁 𝛼−𝐴
𝐴
).

From there, we can write

lim
𝐵𝑆−→∞ logit (𝑢𝑛) = − ln (𝑁

𝛼 − 𝐴
𝐴
) +

∑︁
𝑘,𝑆𝑘𝑛=1

ln (𝑁 − 𝐵𝑘) +
∑︁
𝑘,𝑆𝑘𝑛=1

ln ( 𝑝𝑘
𝐹𝑃𝑘
) +

∑︁
𝑘,𝑆𝑘𝑛=0

ln (1 − 𝑝𝑘)

=
∑︁
𝑘,𝑆𝑘𝑛=1

ln (𝑁 − 𝐵𝑘) − ln (𝑁𝛼 − 𝐴) + ln (𝐴) +
∑︁
𝑘,𝑆𝑘𝑛=1

ln ( 𝑝𝑘
𝐹𝑃𝑘
) +

∑︁
𝑘,𝑆𝑘𝑛=0

ln (1 − 𝑝𝑘)

∼
∑︁
𝑘,𝑆𝑘𝑛=1

ln (𝑁) − 𝛼 ln (𝑁) + ln (𝐴) +
∑︁
𝑘,𝑆𝑘𝑛=1

ln ( 𝑝𝑘
𝐹𝑃𝑘
) +

∑︁
𝑘,𝑆𝑘𝑛=0

ln (1 − 𝑝𝑘)
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And

lim
𝐵𝑆−→∞ 𝑢𝑛 =

1

1 +
( 1
𝐴

∏
𝑘

𝐹𝑃
𝑆𝑘𝑛
𝑘

𝑝
𝑆𝑘𝑛
𝑘
(1−𝑝𝑘 )1−𝑆

𝑘
𝑛

)
𝑁𝛼−

∑
𝑘 𝑆

𝑘
𝑛

Dataset Measure Full size STAPLE Focused STAPLE

Prostate 3D
Entropy 2019 10992

Size 300534 285329

SCGM-SC
Entropy 74 269

Size 11406 11275

SCGM-GM
Entropy 71 118

Size 1854 1838
Tab. 3.10.: Mean soft consensus entropy and volume comparisons on Prostate 3D between STAPLE

on the full image and on a bounded box.

3.6.2 Proof of Majority Voting as a Fréchet Mean
With 𝑆1, 𝑆2, ..., 𝑆𝐾 ∈ {0, 1}𝑁 binary segmentation maps and 𝑇 their Fréchet mean with
regards to the function

√
𝐴4𝐵 =

√︁
| (𝐴 ∪ 𝐵) \ (𝐴 ∩ 𝐵) |, we have

𝑇 = arg min
𝑀 ∈{0,1}𝑁

∑︁
𝑘

(√︁
| (𝑆𝑘 ∪ 𝑀) \ (𝑆𝑘 ∩ 𝑀) |

)2
= arg min

𝑀 ∈{0,1}𝑁

∑︁
𝑘

(√︁
| (𝑆𝑘 ∪ 𝑀) \ (𝑆𝑘 ∩ 𝑀) |

)2
= arg min

𝑀 ∈{0,1}𝑁

∑︁
𝑘

(
∑︁
𝑛

(𝑆𝑘𝑛 + 𝑀𝑛 − 𝑆𝑘𝑛𝑀𝑛) − 𝑆𝑘𝑛𝑀𝑛) = arg min
𝑀 ∈{0,1}𝑁

∑︁
𝑘,𝑛

𝑆𝑘𝑛
2 + 𝑀𝑛2 − 2𝑆𝑘𝑛𝑀𝑛

= arg min
𝑀 ∈{0,1}𝑁

∑︁
𝑛

(∑︁
𝑘

(𝑆𝑘𝑛 − 𝑀𝑛)2
)
= (𝛿(

∑︁
𝑘

𝑆𝑘𝑛 >
𝐾

2
))𝑛(the Majority Voting consensus).
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3.6.3 Inter-rater variability

(a) Prostate dataset

(b) MSSEG

(c) SCGM-SC (d) SCGM-GM

Fig. 3.8.: Example of the inter-rater variability between the raters for the different datasets.

3.6.4 Comparison between 2.5D and 3D neighborhoods

Avg. size variation w.r.t MV Direct size comparisons
Method 3D 2.5D |3D| > |2.5D| |3D| < |2.5D|
Jaccard +2.37% +1.66% 32.5% 65%

Dice +2.3% +1.6% 37.5% 55%
SCGM-SC

Avg. size variation w.r.t MV Direct size comparisons
Method 3D 2.5D |3D| > |2.5D| |3D| < |2.5D|
Jaccard +16.9% +15.8% 77.5% 15%

Dice +14.7% +14.9% 67.5% 27.5%
SCGM-GM

Tab. 3.11.: Size comparisons for hard MACCHIatOs between the 2.5D and 3D neighborhood on
SCGM-SC (top) and SCGM-GM (bottom)

Fig. 3.9.: Examples of hard consensuses on SCGM with 2.5D and 3D neighborhoods.
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Abstract An accurate zonal segmentation of the prostate is required for prostate
cancer management with MRI. The aim of this work is to present UFNet, a deep
learning-based method for automatic zonal segmentation of the prostate from T2W
MRI. It takes into account the image anisotropy, includes both spatial and channel-
wise attention mechanisms and uses loss functions to enforce prostate partition.
The method was applied on a private multicentric 3D T2W MRI dataset and on
the public 2D T2W MRI dataset ProstateX. To assess the model performance, the
structures segmented by the algorithm on the private dataset were compared with
those obtained by seven radiologists of various experience levels. On the private
dataset, we obtained a Dice score (DSC) of 93.90 ± 2.85 for the whole gland (WG),
91.00 ± 4.34 for the transition zone (TZ) and 79.08 ± 7.08 for the peripheral zone
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(PZ). Results were significantly better than other compared networks’ (p-value<.05).
On ProstateX we obtained a DSC of 90.90 ± 2.94 for WG, 86.84 ± 4.33 for TZ and
78.40 ± 7.31 for PZ. These results are similar to state-of-the art results and, on the
private dataset, are coherent with those obtained by radiologists. Zonal locations
and sectorial positions of lesions annotated by radiologists were also preserved. Deep
learning-based methods can provide an accurate zonal segmentation of the prostate
leading to a consistent zonal location and sectorial position of lesions, and therefore
can be used as a helping tool for prostate cancer diagnosis.

This chapter was previously published into Journal of Medical Imaging[Ham+22b].

4.1 Introduction
Prostate cancer (PCa) is the most frequent type of cancer affecting men in Europe and
North America with more than 280,000 expected cases in the USA in 2023. It is estimated
that 12% of American men will develop PCa during their life [Sie+23]. For years, the
standard imaging modality used to guide biopsies was transrectal ultrasound (TRUS),
prone to underdetection of clinically significant PCa and to overestimation of benign
lesions [Sta+19]. Now, its replacement by multiparametric MRI (mpMRI) is supported
by several medical associations such as the European Association of Urology [Mot+21]
and the American Urological Association [Bju+20]. Based on mpMRI, the PI-RADS
score [Tur+19] is designed to improve detection, localization, characterization and
risk stratification in patients with suspected PCa in treatment-naive prostate glands. It
uses a 5-point scale based on the probability that a combination of mpMRI findings on
T2W, DWI and DCE sequences correlates with the presence of clinically significant PCa.
Then the patient will benefit from standard and targeted biopsies if a suspected lesion is
detected [Sta+19; Kas+18; Rou+19; Kas+19; Elk+19]. PI-RADS defines a dominant
sequence for each zone of the prostate: T2W for the Transition Zone (TZ) and DWI for
the Peripheral Zone (PZ); so identification of the zonal location of a lesion is vital. Both
zones are represented in Fig. 4.1.

In addition, to locate findings on MRI reports and to simplify discussions about biopsies
and treatment, radiologists and urologists have defined sector maps that are based on
those zones and on longitudinal, transverse and antero-posterior directions. Since both PI-
RADS scores and sectorial positions are subject to a high inter-rater variability [Wes+20;
Gat+19; Gre+18] there is a need for automated PCa diagnosis methods.
When required, the manual segmentation of prostate zones is commonly performed from
T2W sequences. But several factors complicate this task and make it time-consuming
even for a skilled physician [Sar+11]. First, boundaries of the prostatic gland and inner
boundaries between TZ and PZ may be hard to detect. Second, the prostate is subject to
an important inter-subject variability due to physiological differences in terms of shape,
size and tissue intensities [Bec+19] as shown in Chapter 2. Finally, sequences acquired
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Fig. 4.1.: Left: Axial view of the T2-weighted MR image of a prostate. Right: The corresponding
zonal and lesion segmentation. The whole gland is the union of transition zone and
peripheral zone.

from different MRI machines increase the variability in appearance of the prostate in
T2W imaging.

Related Works Several authors proposed computerized methods for the automatic seg-
mentation of the prostate from T2W sequences. In 2012 the PROMISE12 challenge,
dedicated to the segmentation of the whole prostatic gland (WG) [Lit+14b], took place
and was won by Vincent et al. [VGB12] using active appearance models. Meanwhile,
convolutional neural networks (CNN) began to provide promising results, especially in
image classification [KSH12]. Among the different architectures, UNet [RFB15] appeared
to be adapted to biomedical image segmentation. Furthermore, in 2016 Milletari et
al. [MNA16] presented V-net, a 3D UNet variation with a Dice similarity coefficient
(DSC) based loss function dedicated to the automatic segmentation of the prostate
with consistent results on PROMISE12 (mean DSC of 86.9±3.3%) and was the first of
many works on WG segmentation using deep learning. For example, in 2017, Cheng
et al. [Che+17] used holistically nested networks [XT15] and coherence-enhancing
diffusion filters [Wei99] to perform this task, and in 2018 Tian et al. [Tia+18] studied
the use of transfer learning from large-scale datasets. Now, CNN have become the most
widely used methodology for automated segmentation of WG, with best mean DSC on
PROMISE12 comprised between 91.5% and 93% [Ise+21; Jia+19].

Although WG prostate segmentation is performed successfully in many cases, the zonal
segmentation of the prostate is more difficult especially for the PZ. Indeed, in addition
to having a croissant-like shape in axial views, this zone is subject to an important
inter-subject variability. For the zonal segmentation of the prostate, many authors used
2D neural networks, as the large anisotropy of 2D T2W sequences makes them closer
to stacked 2D images than to real 3D volumes. To improve the generalization on pre-

4.1 Introduction 75



viously unseen datasets, Rundo et al. [Run+19] proposed a 2D UNet for the zonal
segmentation with Squeeze-and-Excitation modules. Aldoj et al. [Ald+20] conceived a
DenseNet-like network to perform a zonal segmentation, with a DSC of 92.1± 0.8% for
WG and 89.5 ± 2% for the TZ. Cuocolo et al. [Cuo+21a] compared the classic 2D UNet
with efficient neural network (ENet) [Pas+16] and efficient residual factorized ConvNet
(ERFNet) [Rom+18] which aim to limit their number of parameters, and computation
times while keeping a high level of performance. All those articles used the public
dataset ProstateX [Lit+17; Lit+14a; Cla+13] consisting of 2D T2W sequences with a
slice thickness of 3mm, originally dedicated to PCa diagnosis [Arm+18]. Several works
also considered 3D neural networks to take into account the volumetric consistency
between slices. Bardis et al. [Bar+21] used a combination of 3D UNets to respectively
locate the whole prostate, segment the prostate in the image and classify each voxel of
the image as TZ or PZ. Meyer et al. [Mey+19] performed zonal segmentation with a
3D neural network including anisotropic MaxPooling and deconvolutions to perform a
zonal segmentation of the prostate. Zavala-Romero et al. [ZR+20] used a multiplanar 3D
neural network [Mey+18] to perform this zonal segmentation, and studied in particular
the impact of MRI vendors on generated segmentations, showing the importance of
multicentric and multivendor datasets.

Limitations All those works obtained good results regarding the zonal segmentation of
the prostate. However, they did not tackle the issue of localizing prostate lesions within
zones and sectors. This localization is important for grading those lesions in the PI-RADS
standard.
Moreover, prior works were based on 2D T2W sequences since they are the most
widely available modality. Yet, 3D T2W prostate MR images allow a shorter acqui-
sition time [Ros+10; Pol+17] and simplify modalities fusion among other advan-
tages [Bat+20], while having similar performances in terms of diagnosis. For those
reasons they will probably become the new radiological standard in prostate imaging in
the near future. Differences between 2D and 3D T2W sequences can be seen in Fig. 4.2.
In addition, inter-rater variability in the segmentation of prostate zones and whole gland
has not been widely considered [Ald+20; Mey+19; Sha+17]. The number of human
raters was limited to three, and no consensus was built for the prostate zones.

Contributions To cope with the previous limitations, we introduce in this chapter the
following contributions :

• To the best of our knowledge, we provide the first prostate zonal segmentation
method on 3D T2W images in addition to 2D T2W images. The obtained results
are similar to the state of the art.
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Fig. 4.2.: Left: Sagittal view of a 3D T2W MRI of the prostate and its segmentation by a radiologist
(slice thickness: 1mm). Right: Sagittal view of a 2D T2W MRI of the same prostate
and its segmentation from the axial views by the same radiologist, resampled to the
resolution of the 3D T2W MRI (original slice thickness: 3.25mm).

• We propose a deep learning-based framework for the automatic zonal segmentation
of the prostate (transition zone and peripheral zone), including a novel neural net-
work architecture. This architecture takes into consideration the anisotropy of the
data, and includes dual attention mechanisms to improve the zonal segmentation.
Partition loss functions were defined to enforce the partition of the prostate.

• We compare the generated segmentations with the ones supplied by 7 radiologists
of various experience levels, from which we derive a consensus segmentation. We
show that our network performs similarly to the radiologists.

• Finally, we show that our method globally preserves both the zonal location and the
sectorial position of lesions of the prostate, making it suitable as a helping tool for
the detection and grading of lesions. Furthermore we propose the first computerized
method to generate a prostate’s sector map from its zonal segmentation.

4.2 Material and Methods

4.2.1 Dataset

MRI Scans

In this work approved by our joint institutional review boards, we used a private dataset
of 131 3D T2W MRIs from treatment-naive patients who underwent a prostate MRI
before the first round of biopsy for clinical suspicion of PCa (linked to an elevated
prostate-specific antigen (PSA), a positive Digital Rectal Evaluation and a genetic sus-
ceptibility) between October 2013 and July 2019 from 3T Siemens scanners (Siemens
Healthcare, Erlangen, Germany) on Pitié-Salpêtrière Hospital, Paris, France (100, 76.6%)
and from 3T G.E. scanners (GE Healthcare; Chicago, IL) on Tenon Hospital, Paris, France
(31, 23.4%). This dataset was built to have a diversity in terms of shapes, sizes and
volumes. The voxel dimensions are [0.36-0.78, 0.36-0.78, 0.5–1.0]mm. A random split
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of 91/40 (69%/31%) patients has been used between the training-validation set and
the test set.In practice, the former was split into five folds in a cross-validation strategy
where four folds served as a training set and the fifth one as a validation set. A minority
(35.9%) had at least a clinically significant lesion, which was defined as a lesion with
a PI-RADS score ≥ 3, of which 30 being on the training-validation set (33.0% of the
training-validation set) and 17 on the test set (42.5%).
To assess the capacity of our network to provide a segmentation preserving not only
the zonal location of the lesions but also their sectorial positions, we had access to an
additional dataset of 33 3D T2W sequences of prostates with 46 clinically significant
lesions that we will call private lesion dataset. These sequences have been acquired on
the same scanners than the private dataset between May 2017 and December 2019, with
24 from Tenon Hospital, Paris, France (73%, voxel dimensions: [0.547, 0.547, 0.5]mm)
and 9 from Pitié-Salpêtrière Hospital, Paris, France (27%, voxel dimensions: [0.36-0.78,
0.36-0.78, 0.5–1.0]mm).
In addition, we considered the public dataset ProstateX [Lit+17; Lit+14a; Cla+13]
to compare our method with prior works. It consists of 204 T2W MRIs taken with 3T
Siemens scanners on Radboud University Medical Center, with an in-plane dimension
of [0.375-0.6]mm² and a slice thickness of [3-4.5]mm, the most frequent resolution
being 0.5x0.5x3mm. We excluded three sequences for mismatches with their provided
segmentation and randomly split the remaining data into a training-validation set of 141
sequences and a test set of 60 prostates, with a fivefold cross-validation strategy similar
to the one used on the private dataset.

Zonal segmentation

The zonal segmentation of the private dataset consists of binary masks of the WG and
the TZ. The segmentation of the training-validation set has been performed by a single
expert radiologist, whereas on the test set 7 radiologists of various levels of experience
provided each a zonal segmentation for each prostate: 3 experts (≥ 1000 prostate MRI
interpreted), 2 seniors (≈ 500 prostate MRI) and 2 juniors (≤ 100 prostate MRI). This led
to a total of 280 (=40×7) zonal segmentations on the test set, for a rich comparison of
performance with radiological experts. The radiologists were instructed to first segment
WG and then TZ on the axial plane of the 3D T2W sequence of our cohort. PZ was
obtained by subtracting TZ to WG. Segmentation was performed using MedInria, an
open-source software (https://med.inria.fr/).

In addition to these segmentations we also generated a consensus segmentation for WG
and TZ using the STAPLE algorithm [WZW04] , which describes raters’ binary segmenta-
tions by Bernoulli distributions and uses an expectation-maximization (EM) algorithm to
produce a consensus of the segmentations. We binarized the obtained consensus by only
keeping voxels with a probability ≥ 0.75. This threshold was chosen empirically, as its
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Fig. 4.3.: Inter-rater variability, with segmentations from 3 of the 7 raters (red, blue, yellow) and
consensus segmentation from STAPLE using the 7 raters (white), on axial (left) and
sagittal views (right). Solid line: whole gland, dashed line: transition zone.

value varies following the different authors between 0.5 and 0.95 [Sui+14; Cox+12;
Pop+06]. PZ was then obtained by subtracting the consensus TZ to the consensus WG.
An example with different raters segmentation and the consensus can be seen in Fig.4.3.
As the segmentations supplied by the radiologists have been prone to intra-rater vari-
ability, leading to some gaps between TZ and WG border on the anterior part of the
prostate which, after verification with a radiologist, do not belong to PZ, we applied
on the initially determined PZ a slicewise 2D erosion, followed by a restriction to its
largest connected component - or the two largest components if the second component
is at most three times smaller than the largest component, then a slicewise 2D dilation.
Examples of the impact of those corrections can be seen in Fig. 4.4.

Fig. 4.4.: Top: Examples of segmentations of the peripheral zone (= whole gland - transition
zone) before correction. Bottom: Same segmentations after correction.

For ProstateX, we used the zonal segmentation provided by Cuocolo et al. [Cuo+21a;
Cuo+21b]. No zonal segmentation has been done on the private lesion dataset.
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Lesion placement

On the private dataset, each expert or senior radiologist (5 of the 7 raters) provided
a segmentation of the lesions, from which we derived a consensus using the STAPLE
algorithm as explained in section 4.2.1. On the private lesion dataset, a radiologist
provided for each lesion its sectorial position according to the 27 regions of interest
sector map defined in Dickinson et al. [Dic+11] - with for some lesions 2 or 3 sectors
indicated, as well as their size, their PI-RADS score and their Likert score [Ros+13].

4.2.2 Objectives and architecture of the networks

For the zonal segmentation of the prostate we chose a framework with two cascaded
UNet-based neural networks. A sum-up of the whole framework is available in Fig.4.5.

The objective of the first network, that we will call global location network, is to roughly
segment WG in order to generate a bounding box around the prostate with a fixed size of
8cm according to transverse and antero-posterior directions, and a margin of 10cm above
and below that segmentation. It takes as inputs patches of size 192 × 192 × 32 voxels
at a resolution of 1x1x3mm, and uses as a loss function the Generalized Dice loss func-
tion [Sud+17]. For image resampling we used the python module SimpleITK [Low+13],
with BSpline interpolation for images and nearest neighbors interpolation for masks.
The second network, or zonal segmentation network, operates at a higher resolution
of 0.5x0.5x1mm and takes input patches of 96x96x48 voxels, which appeared to be a
good compromise between the quantity of information brought to the network and the
available GPU memory. Resampled and rescaled images had a size of 160x160x[57-110]
voxels. The loss functions used for the training of the zonal segmentation network are
defined in section 4.2.4. Detailed architecture of the networks is provided in Fig.4.6. In
the final framework we used UFNet for both the global location network and the zonal
segmentation network, but with fewer parameters for the former. We combined in UFNet
two methods to take into account the existing anisotropy of the data. As in Meyer et
al. [Mey+21], we used anisotropic MaxPooling and 3D Deconvolutions with varying
kernel sizes, and we replaced the classic k×k×k kernels by a combination of k×k×1 and
1×1×k as presented in Fig.6.d inspired by Liu et al. [Liu+]. We used the activation
function LeakyReLU with a parameter 𝛼=0.1 except for the last layer which uses sigmoid
activation. In UFNet we used deep supervision, which consists in introducing upscaled
versions of intermediate results from the decoder into the final result as a form of regu-
larization. We also performed Dropout [Sri+14] and Instance normalization [UVL17]
to fight against overfitting and improve stability of our network, and we used attention
modules which are presented in section 4.2.3.
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Fig. 4.5.: Framework for the zonal segmentation of the prostate. The global location network
extracts from a T2W sequence a bounding box, which serves as input to the zonal
segmentation network, generating the zonal segmentation of the whole gland (cyan),
the transition zone (green) and the peripheral zone. Finally, a sector map is constructed
from the zonal segmentation to provide information about the location of the lesion
(magenta)
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            (c) (d)

(a)

(b)

Fig. 4.6.: Architecture of the zonal segmentation network (a) and its components: the encoder
block (b), the attention gate (c) and the used convolutional block (d). Values above
layers in (a) correspond to the number of output filters in the convolutions performed
in this layer. Architecture of global location network is similar but with a lower number
of parameters.
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4.2.3 Attention mechanisms

Attention in deep learning consists in encouraging the network to focus on some specific
parts of the data, deemed with particularly relevant information for its task, and to
downplay the importance of the rest of the data. The information can be highlighted
based on its spatial location (spatial attention) or on the characteristics of the feature
maps that contains it (channel attention). Here, we combined both channel attention and
spatial attention through two different methods: respectively Squeeze-and-Excitation
modules and attention gates [HSS18; Okt+18].

Squeeze-and-Excitation modules The objective of Squeeze-and-Excitation modules [HSS18]
is to put more focus on the feature maps that provides useful information for the seg-
mentation task. Given x the input of the module, of size 𝑊 × 𝐻 × 𝐷 × 𝐶, we define
x̃ = [x̃1, x̃2, . . . , x̃C] (size: 𝑊 × 𝐻 × 𝐷 × 𝐶) the output of the module as

f𝒔𝒒 = ReLU
(
W𝑇

1 GAP(x)
)

(4.1)

f𝒆𝒙 = 𝜎(W𝑇
2 f𝒔𝒒) (4.2)

∀𝑐 ∈ [1, 𝐶], x̃c = (f𝒆𝒙)𝑐 · xc (4.3)

GAP() is a 3D Global Average Pooling module, 𝜎() is the sigmoid function and W1, W2

are convolutional kernels (See Fig.6.b). Both f𝒔𝒒 and f𝒆𝒙 have a size of 1×1×1× C. We
used Squeeze-and-Excitation modules on the encoder part of our network.

Attention gates Introduced in biomedical segmentation by Oktay et al. [Okt+18] , the
principle of attention gates is to highlight in skip connections spatial zones with the more
informative content. More precisely, if x and g are respectively the feature maps from
skip connection and the gating signal with coarser information, we define

q𝒂𝒕𝒕 = ψ
𝑇
(
ReLU(W𝑇

g g +W𝑇
x x + bg)

)
+ bψ (4.4)

α = 𝜎(q𝒂𝒕𝒕 ); x̂ = α � x (4.5)

with Wg and Wx convolutional kernels, ψ a 1x1x1 convolutional kernel, bψ and bg
biases and � the Hadamard product. A visualization of the architecture is available in
Fig.6.c. We used attention gates on each layer of our network.
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Combination of both attention methods has already been used for PCa detection [Zha+19;
SHH21] but to the best of our knowledge it is the first time it is applied to prostate zonal
segmentation.

4.2.4 Loss functions for the zonal segmentation network

We used as the main loss function the mean of 1-DSC for WG, for TZ and for PZ.

Several approaches have been proposed in prior works to enforce the partition of the
prostate such that WG = TZ∪PZ and TZ∩PZ = ∅. First, one can only segment WG and TZ
and build PZ by subtracting TZ to WG [Run+19]. Second, one can learn to segment WG
and both zones, and rely on postprocessing to enforce the partition [Mey+21]. Another
approach is to segment WG and to classify its voxels as either TZ or PZ [Bar+21]. In this
chapter we propose another approach only based on segmentation, with partition loss
functions dedicated to obtain a partition of the prostate. If we consider 𝑝WG, 𝑝TZ, 𝑝PZ ∈
[0, 1]𝑁 the probabilistic segmentation by the zonal segmentation network of respectively
WG, TZ and PZ, then we define the two losses:

L1
𝑎𝑢𝑥 (𝑝WG, 𝑝TZ, 𝑝PZ) = 1

𝑁

𝑁∑︁
𝑖=1

(𝑝WG
𝑖 − 𝑝TZ

𝑖 − 𝑝PZ
𝑖 )2 (4.6)

and

L2
𝑎𝑢𝑥 (𝑝WG, 𝑝TZ, 𝑝PZ) =

𝑁∑
𝑖=1
(𝑝TZ
𝑖
.𝑝PZ
𝑖
)

(
𝑁∑
𝑖=1

𝑝WG
𝑖
) + 𝜖

. (4.7)

The objective of L1
𝑎𝑢𝑥 is to ensure that the segmentation obtained by the network is

coherent i.e. that the segmentations for TZ and for PZ are within the limits of the
segmentation of WG, and that they totally cover it. For this reason, we chose to penalize
not only segmented voxels outside the whole gland segmentation but also the voxels that
are included in both the TZ and PZ segmentations. The objective of L2

𝑎𝑢𝑥 is to enforce
this lack of intersection.

4.2.5 Sector map construction

Another objective of our work is also to estimate the efficiency of our method to correctly
assess the sectorial position of lesions. To this end, we designed an algorithm taking as
input the zonal segmentation of a prostate and constructing the associated sector map.
We chose to base our sector map on the 27 regions of interest sector map defined in
Dickinson et al. [Dic+11]. We defined the limits between sectors as follows:

• According to the longitudinal axis: We split the prostate on three equal-sized parts
corresponding to the apex, to the midgland and to the base, taking as extremes
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points the lowest and highest positions of WG segmentation. Following axes are
computed separately for each third of the prostate.

• According to the antero-posterior axis: We split each part across its median sagittal
slice 𝑥mid.

• According to the transverse axis: For each part we take the mean of the extreme
positions of their slices (their leftest and rightest positions) according to the trans-
verse axis 𝑥left and 𝑥right, and we define the positions of the inner subdivisions as:
𝑥midleft = 0.4(𝑥mid − 𝑥left) + 𝑥left and 𝑥midright = 0.6(𝑥right − 𝑥mid) + 𝑥mid.

The main difference between our constructed sector map and the 27 regions of interest
sector map [Dic+11] is the absence of the 3 sectors related to the anterior fibromuscular
stroma, as we did not segment this particular zone but included it into TZ. For this reason
we included lesions located in the anterior fibromuscular stroma among the TZ lesions.
An illustration is provided in Fig.4.7

The zonal location of a lesion in the prostate is defined as the zone (PZ or TZ) with the
highest proportion of lesions’ voxels, and the sectorial position of the lesion as the sector
within the considered zone with the highest proportion of lesion’s voxels.

4.3 Experimental design

4.3.1 Training of the network

Training on the private dataset was performed using an Intel(R) Xeon(R) Gold 6246R
CPU and a NVIDIA Tesla V100 SXM2 32GB GPU, a NVIDIA Tesla T4 16GB GPU having
also been used for the ProstateX dataset. We used Keras [Cho+15] and Tensor Flow
2.4.1 [Aba+15] as a deep learning framework.
The training of the global location network has been done with a batch size of 4, using
RMSProp as a gradient optimizer with an initial learning rate of 5e-4. The training of
the zonal segmentation network has been done with a batch size of 8, using Adam as a
gradient optimizer with an initial learning rate of 5e-4, and attributing loss weights of 1,
0.1 and 0.01 respectively to L, L1

aux and L2
aux. Several values of parameters (learning

rate, batch size...) were tested before choosing those values.
For both networks we adopted a maximal number of epochs of 500, with a policy of early
stopping if the validation loss did not improve for 70 epochs. We also adopted a policy of
reduction of the learning rate with a multiplication by 0.2 in case of stagnation of the
validation loss for 30 epochs. The dropout rate was set to 0.3.
To improve the performance of the network we artificially increased the number of
images used during the training thanks to data augmentation through the Python module
batchgenerators [Ise+20]. This module allowed us to apply several transformations such
as rotation according to the longitudinal axis, mirror transform along the antero-posterior
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Fig. 4.7.: Sector map of the prostate according to axial views in the base (top left), the midgland
(top right) and the apex (bottom left), and to the sagittal view (bottom right). White:
whole gland, orange: transition zone. The blue axis separates the anterior from the
posterior of the prostate, the red axes are left-right based separations and the yellow
axes represent the separations between the base (top left), the midgland (top right) and
the apex (bottom left). The green dashed lines on the sagittal view indicate the location
of the different axial views.
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axis, elastic transform or intensity transforms such as gamma transform. The intensity of
each sequence has also been normalized via the subtraction of its voxels’ mean value and
a division by their standard deviation.

4.3.2 Test and postprocessing

We used test-time augmentation [Wan+19b; Sha+20], which consists in applying dif-
ferent transformations to an image during the test procedure, to use the network on
each of these transformed images and then to revert those transforms and to combine
the obtained results onto one final prediction by taking their mean, to improve the
final segmentation and the robustness of the process. Transformation applied were all
combinations of flip along the antero-posterior axis with a rotation of ±10◦, for a total of
6 images.
In postprocessing, to apply our method on the whole image we applied a sliding window
strategy, where patches of size 96x96x48 were extracted with steps of (24, 24, 12) voxels
according to each dimension and where the contribution of each patch to a specific voxel
is divided by the number of patches contributing to this voxel. Finally, after reconstruc-
tion of the segmentation from the patches, we applied a threshold of 0.5 to obtain WG
segmentation that we restrained to its largest connected component according to the
longitudinal direction. Within WG segmentation we defined TZ segmentation as the
voxels for which the probability to be in TZ was higher than the probability to be in PZ,
and conversely for PZ.

4.4 Results

The main metrics we used to estimate the performance of our network were DSC and
95% Hausdorff distance (HD95%). We mainly compared three networks for the zonal
segmentation network: a 3D UNet as presented in Isensee et al. [Ise+18], introducing
context and localization modules and which served as a basis for other networks, the
network UNetV2 with elements presented in section 4.2.2 to take into account the image
anisotropy and UFNet which adds deep supervision, attention modules and the partition
losses. These 3 networks have respectively 2.15M, 2.28M and 2.32M parameters. A
UFNet with 1.03M parameters was used as the global location network.
To improve the segmentations and their stability, inspired by Isensee et al. [Ise+21], we
combined the results of 5 neural networks obtained through cross-validation to provide
a final, more precise ensembled segmentation by taking the mean of their prediction
before postprocessing, including test-time augmentation. These networks are named
with the suffix -E.
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4.4.1 Results on private dataset

On this dataset we compared the outputs of the networks to the consensus obtained from
the 7 radiologists and corrected as described in section 4.2.1 (i.e. slicewise restriction
of PZ to its largest components). The same correction was applied to the outputs of the
network.

Segmentation results

Results obtained for the metrics on WG, TZ and PZ are given in Table 4.1. They are
illustrated in Fig.4.8, along with statistical differences between the performance of the
networks. The global location network provided an adequate bounding box of the
prostate, i.e. which surrounds the prostate without crossing it, for all images. Some
examples of zonal segmentation are provided in Fig.4.9 and Fig.4.10. The mean time to
process one patch was 0.8s, and the mean time to process a sequence on this dataset was
4.5s.

Model Zone DSC (in %) p-val/UNet-E HD95% (in mm) p-val/UNet-E

UFNet-E
(5×2.32M parameters)

WG 93.90 ± 2.85 *** 2.59 ± 0.98 **
TZ 91.00 ± 4.34 *** 3.20 ± 0.90 ***
PZ 79.08 ± 7.08 *** 3.87 ± 1.65 *

UNetV2-E
(5×2.28M parameters)

WG 93.65 ± 2.46 * 2.73 ± 0.80 *
TZ 90.73 ± 4.09 * 3.42 ± 0.94 *
PZ 78.11 ± 7.58 * 4.26 ± 2.36 >.05

UNet-E
(5×2.15M parameters)

WG 93.48 ± 2.54 - 2.81 ± 0.80 -
TZ 90.47 ± 4.28 - 3.53 ± 0.97 -
PZ 77.51 ± 7.95 - 4.09 ± 1.93 -

Model Zone DSC (in %) p-val/UNet HD95% (in mm) p-val/UNet

UFNet
WG 93.45 ± 2.89 *** 2.81 ± 0.93 **
TZ 90.45 ± 4.51 *** 3.41 ± 0.93 ***
PZ 77.80 ± 7.79 *** 4.15 ± 1.92 *

UNetV2
WG 93.16 ± 2.51 >.05 2.91 ± 0.80 >.05
TZ 90.24 ± 4.16 * 3.52 ± 0.93 >.05
PZ 76.52 ± 8.03 * 4.37 ± 2.09 >.05

UNet
WG 92.87 ± 2.79 - 3.21 ± 1.32 -
TZ 89.85 ± 4.56 - 3.83 ± 1.17 -
PZ 75.95 ± 8.47 - 4.38 ± 1.91 -

Tab. 4.1.: Comparison between our method and UNet on our private dataset after correction.
Top: Results for the ensembling of 5 networks of 3 different types, obtained from
cross-validation. Best results for each considered metric are in bold. Bottom: Mean of
the results from the 5 networks used in the ensemble version. Signed-rank Wilcoxon
test with Bonferroni-Holm correction has been used to assess statistically significant
differences and to compute p-values for ensembled networks and for mean of networks
on each fold. Significant differences are indicated (* : p-value ≤ 0.05; **: p-value ≤
0.01; ***: p-value ≤ 0.001)
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Fig. 4.8.: Metrics between network segmentation and consensus segmentation on private dataset
for all three networks. Top: Dice for whole gland, transition zone and peripheral zone.
Bottom: Hausdorff distance for whole gland, transition zone and peripheral zone. Black
line and red point are respectively median and mean. Signed-rank Wilcoxon test with
Bonferroni-Holm correction has been used to assess statistically significant differences
and to compute p-values. Significant differences are indicated (* : p-value ≤ 0.05; **:
p-value ≤ 0.01; ***: p-value ≤ 0.001)
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Fig. 4.9.: Good segmentations on the private dataset, with axial views of the base (top left),
the midgland (top right) and the apex (bottom left), and sagittal view (bottom right).
White: Ground truth whole gland, Orange: Ground truth transition zone, Cyan: Network-
segmented whole gland, Green: Network-segmented transition zone.
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Fig. 4.10.: Poor segmentations on the private dataset, with axial views of the base (top left), the
midgland (top right) and the apex (bottom left), and sagittal view (bottom right).
White: Ground truth whole gland, Orange: Ground truth transition zone, Cyan:
Network-segmented whole gland, Green: Network-segmented transition zone.

Comparison with radiologists

We compared these results to the segmentations provided by the 7 radiologists on the
same dataset, as can be seen in Fig.4.11. While not being as good as the best radiologists
i.e. those with the closest segmentations to the consensus, UFNet-E obtained results
similar to radiologists’. If we rank UFNet-E and all radiologists according to how close
they are to the consensus for all metrics according to their means, UFNet-E is ranked
between the 3th place and the 7th place, with a global 5th place.

4.4.2 Lesion positions

Test set

On the 17 prostates of the test set with a lesion, we applied our sector map construction
algorithm and determined the location of the lesion using the sector map derived from the
ground truth as the true sector map. On the zonal location of the lesion, we obtained a
100% accuracy, whereas on the sectorial position we obtained an accuracy of 88% (15 out
17 cases). Observed lesion position errors are due to differences on the delineations of the
apex, midgland and base between the ground truth segmentation and the segmentation
from the network. Examples of lesion locations are provided in Fig.4.12.
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Fig. 4.11.: Metrics between UFNet-E (Ours) segmentation and the consensus segmentation on
private dataset, side to side with the metrics for raters’ segmentation ranked in increas-
ing order of performance (the rater k being written as Rk). Top: Dice for whole gland,
transition zone and peripheral zone. Bottom: 95% Hausdorff distance for whole gland,
transition zone and peripheral zone. Black line and red point are respectively median
and mean values.
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Fig. 4.12.: Examples of correct lesion placement on the test set. Left: placement derived from the
true segmentation (white: whole gland, orange: transition zone). Right: placement on
the sector map computed from the network segmentation (cyan: whole gland, green:
transition zone). Separations between sectors are in red (antero-posterior direction)
and in blue (transverse direction). Lesions are in magenta (consensus segmentation
from 5 radiologists).
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Private lesion set

On the private lesion set, we obtained an accuracy for the zonal location of lesions of
91% (42 out of 46), and of 74% for their sectorial positions (34 out of 46).
All 4 cases where the lesion has been placed in the wrong zone are cases with a config-
uration similar to the configuration presented on the right image of Fig.4.13, i.e. with
a lesion in the anterior part of PZ near the border with TZ, and with a voxel intensity
closer to TZ’s than to PZ’s. Cases with a sectorial position error correspond to either
lesions located according to our algorithm across two adjacent sectors - including the true
sectorial position - but with a majority of voxels in the wrong sector (4 cases), or a lesion
well located according to transverse and antero-posterior directions but not according
to longitudinal direction, for example lesions located in the midgland whereas the true
position is in the base (4 cases).

Fig. 4.13.: Left: Example of wrong lesion placement on the test set. Top: placement derived
from the true segmentation (white: whole gland, orange: transition zone), in the
base. Bottom: placement on the sector map computed from the network segmenta-
tion, in the midgland (cyan: whole gland, green: transition zone). Limits between
base/midgland/apex are in yellow, the lesion is in magenta. Right: Example from the
private lesion set with the lesion (in magenta) located in TZ by the network whereas
the radiologists located it in PZ.

4.4.3 Results on ProstateX
Segmentation results

Results obtained on ProstateX are given on Table 4.2, and are illustrated in Fig.4.16. A
boxplot graph illustrating the performances according to the different metrics is available
in Fig. 4.14. The global location network provided an adequate bounding box of the
prostate for all images. The mean inference time of the network for each patch was 0.09s,
adding up to 3.5s on the whole sequence.
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Fig. 4.14.: Metrics between network segmentation and ground truth segmentation on ProstateX
dataset for all three networks. Top: Dice for whole gland, transition zone and peripheral
zone. Bottom: 95% Hausdorff distance for whole gland, transition zone and peripheral
zone. Black line and red point are respectively median and mean values. Signed-rank
Wilcoxon test with Bonferroni-Holm correction has been used to assess statistically
significant differences, but no differences were found.
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Model Zone DSC (in %) HD95% (in mm)

UFNet-E
WG 90.90 ± 2.94 3.50 ± 1.36
TZ 86.84 ± 4.33 4.27 ± 1.40
PZ 78.40 ± 7.31 4.00 ± 2.54

UNetV2-E
(with partition losses)

WG 90.83 ± 2.81 3.48 ± 1.12
TZ 86.82 ± 4.53 4.25 ± 1.42
PZ 78.29 ± 7.14 4.01 ± 2.48

UNetV2-E
(without partition

losses)

WG 90.81 ± 2.82 3.48 ± 1.11
TZ 86.73 ± 4.31 4.29 ± 1.43
PZ 78.31 ± 7.12 4.08 ± 3.04

UNet-E
WG 90.59 ± 3.09 3.91 ± 2.89
TZ 86.66 ± 4.56 4.64 ± 3.02
PZ 78.04 ± 7.60 4.14 ± 3.34

UFNet
WG 90.62 ± 2.92 3.58 ± 1.15
TZ 86.45 ± 4.45 4.38 ± 1.41
PZ 77.81 ± 7.35 4.06 ± 2.38

UNetV2
(with partition losses)

WG 90.48 ± 2.86 3.59 ± 1.11
TZ 86.38 ± 4.39 4.37 ± 1.37
PZ 77.45 ± 7.42 4.26 ± 3.46

UNetV2
(without partition

losses)

WG 90.47 ± 2.88 3.66 ± 1.19
TZ 86.31 ± 4.58 4.44 ± 1.44
PZ 77.53 ± 7.54 4.32 ± 3.94

UNet
WG 90.25 ± 3.04 3.86 ± 1.93
TZ 86.19 ± 4.58 4.60 ± 2.10
PZ 77.27 ± 7.75 4.24 ± 3.26

Tab. 4.2.: Comparison between our method and UNet on the ProstateX dataset.
Top: The -E signals the use of an ensemble of 5 networks. Best results for each considered
metric are in bold. No statistical differences were found between the ensembles of
networks.
Bottom: Mean of the results from the 5 networks used in the ensemble version.
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Evolution of Dice score during training

Fig. 4.15.: Evolution of the Dice coefficient on both training and validation sets during training
(on one fold of ProstateX).

We also estimated on ProstateX the impact of the different architectures on the evolution
of DSC during the training. These results are illustrated in Fig.4.15. It appeared that
taking into account the anisotropy does not have an important impact on the course of
the training, contrary to the introduction of attention modules which help to speed up
the training.

4.5 Discussion
In this work, we used a framework composed of two successive neural networks to
generate a zonal segmentation of the prostate on both 2D and 3D T2W sequences.
The global location network has been able to provide an adapted bounding box of the
prostate, and the zonal segmentation network has been able to generate an accurate
zonal segmentation of the prostate. This framework not only allows us to detect the
prostate despite its relatively small size (around 5% of the image on the private dataset)
but also to take advantage of the better resolution on 3D T2W sequences while only
requiring a reasonable amount of memory.
The results for the segmentation of the different zones of the prostate are comparable
with the results of the state of the art, as for example Bardis et al. [Bar+21] obtained a
mean Dice of 94.0% for the whole prostate, 91.4% for the transition zone and 77.6% for
the peripheral zone. On ProstateX we obtained DSC similar or superior to Cuocolo et
al. [Cuo+21a] with segmentations from the same dataset, showing the efficiency of our
method. Those differences could be explained by the use of 3D networks (compared to
2D used by Cuocolo et al. [Cuo+21a]), of attention modules, and by the difference in
training set sizes and number of training epochs.
The use of attention modules and anisotropy-adapted modules appeared to have a pos-
itive impact, with fewer epochs for training with attention modules and overall better
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Fig. 4.16.: Segmentations on the 2D dataset ProstateX, with axial views of the base (top left), the
midgland (top right) and the apex (bottom left), and sagittal view (bottom right). Left
column shows good segmentations, right column shows poor segmentations. White:
Ground truth whole gland, Orange: Ground truth transition zone, Cyan: Network-
segmented whole gland, Green: Network-segmented transition zone.
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results for both modifications, especially on 3D T2W sequences with p-values<.05 be-
tween the classic UNet, the version with the anisotropy modules and the version with
both additional modules on almost all considered metrics. On the other hand, the use of
partition losses seemed to have a positive but moderate impact on the Hausdorff Distance
and on TZ segmentation, whereas slightly deteriorated results for PZ.

The apex and the base of the prostate are the most difficult regions to segment, which is
in accordance with previous publications, involving human [Bec+19] (cf. Chapter 2) or
automatic raters [Ald+20; Sha+17] (See Figs.4.9, 4.10 and 4.16). The reasons behind
this complexity include, but are not limited to, the heterogeneity of the tissues on these
regions, the possible ambiguities of the borders, or exotic shapes of both WG and TZ at
their top and bottom slices.
Results obtained by the network appeared to be on the same level of performance than
those of the radiologists, who can be separated in three categories: the experts (raters
3, 6 and 7), the seniors (raters 1 and 2) and the juniors (raters 4 and 5). The network
obtained results comparable to those of radiologists in the middle of the pack and
significantly better results than the rater 3 (an expert radiologist) for both TZ and PZ
(p-val < .05).

We have observed on the private lesion dataset that in more than 90% of the cases, the
automatic segmentation preserved the zone in which the lesions were located. The four
cases of zonal location errors correspond to a very specific situation that was not present
in the training-validation set. Also, we compare favourably with the inter-rater variability
on sectorial positions observed by Greer et al. [Gre+18] with 74% of agreement between
the radiologists and our method, even though we rely on a slightly simpler sector map.
Moreover, the observed errors on sectorial positions would only have a minor clinical
impact, as the global position of the lesion (left/right and anterior/posterior) has been
preserved in each case. It may also be more appropriate for clinical use to provide the
top two sectors on which each lesion lies, since in almost all cases the true sector is
among those two. Those results validate the use of neural network segmentation as a
second reader for automatic PCa diagnosis to detect in which zone the suspected lesion
is located. This is important as it determines which sequence to use to determine the
PI-RADS score, as the importance of the different sequences depends on which zone the
suspected lesion is located in.

Our study faces several limitations. First the quality of the ProstateX segmentations are
uneven, as can be seen in Fig.4.16. Nevertheless we chose to work with this annotation
set for the sake of comparing ourselves with other methods. On the private dataset,
we had to correct PZ masks computed as WG-TZ with an ad hoc method to avoid the
occurrence of thin isolated lines or voxels (see Fig. 4.4). Indeed, without this processing,
PZ-associated metrics and especially PZ HD95% were affected. However, the impact was
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the same on the three compared networks and it did not modify their relative perfor-
mances. This processing was not required on the ProstateX segmentation.
In addition, the algorithm to create the prostate sector map is based on debatable hy-
potheses. In particular boundaries were determined part-wise and not slice-wise, and we
arbitrarily defined inner antero-posterior boundaries positions since there exists no formal
definition to define them. Those choices have a direct impact on sectorial positions, since
peripheral sectors on the apex (especially sectors 6p and 12p) can have a very small area
with our method. Moreover, the sector map used in this study, inspired by the 27 region
of interest sector map defined in Dickinson et al. [Dic+11], does not correspond to the
PI-RADS 2.1 standard sector map [Tur+19] which is based on 39 regions of interest.
Nevertheless, in practice, the differences between the two sector maps have little to no
practical effects.

In Fig.4.10, we can see that some of the segmentations may have very unusual shapes,
with for instance "outgrowths" on the generated segmentation or WG split into two parts.
To enforce coherent shapes of WG and TZ, it may be possible to project the prostate
on a restricted learned shape space [Kar+18; Tan+19] in order to correct aberrant
segmentations.

4.6 Conclusion
We proposed a deep learning-based method for the zonal segmentation of the prostate
from T2W sequences, taking into account the anisotropy of these sequences, with atten-
tion modules and enforcing the partition of the prostate. This method can be applied on
both 2D and 3D T2W sequences. The obtained results not only are similar to the results
from the state of the art but are also coherent with the results obtained by radiologists
and globally preserving zonal locations and sectorial positions of the lesions, making
our method suitable as a first step tool for an automated system dedicated to diagnosis
and grading of prostate cancer, as done in Hosseinzadeh et al. [Hos+21] or in Mehta et
al. [Meh+21].
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Abstract Automatic method for prostate cancer (PCa) detection are often trained
on relatively small datasets, as the accurate segmentation and characterization of
cancerous lesions is a time-consuming task. As a way to circumvent this problem,
we introduce a weak supervision approach that only requires the sectorial location
and the size of each lesion instead of a precise delineation of each lesion. More
precisely, our method automatically generates a pseudo-segmentation mask from
those information, and use them during the training with segmentation loss functions.
We used this method to train a deep learning-based method for PCa on a large weakly-
annotated prostate dataset called PAIMRI. To estimate the relevance of this method
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to generate pseudo-masks, we compared it to an alternative strategy only based on
sectorial location and to the use of precise annotations from the PI-CAI dataset. In
addition, we evaluate the impact of mixed supervision combining weak and precise
annotations on network performances.
We compared those networks on three datasets - one subset of PI-CAI, one fully-
annotated subset of PAIMRI and the external dataset Prostate-158, at both patient
and lesion-levels. Our intensity-based pseudo-mask generation was shown to have
improved results compared to sector-based pseudo-masks. In addition, using our
approach, networks trained on larger weakly-annotated datasets perform generally
better than smaller, fully-annotated datasets. Those results validate the interest
of weak labels for PCa detection and support the development of large, weakly-
annotated datasets.

This chapter will be submitted to a journal [Ham+23c].

5.1 Introduction

5.1.1 Clinical context

Prostate cancer (PCa) is one of the most frequent cancers in the world. Between 2015
and 2019, the incidence rate in the USA was estimated at 109.9 per 100.000 population,
the second highest among all types of cancers behind breast cancer[SMJ20]. In addition,
it has been estimated that 1 American man over 8 will develop it during his lifetime.
This widespread presence makes it an major public health concern with economic im-
pacts[RB11], despite its high 5-year survival rate (97%). Currently, the screening process
of PCa can be decomposed into the following stages: first, the clinician proceeds to
a digital rectal exam (DRE) and a measurement of the level of PSA (Prostate-Specific
Antigen) in the blood . Then, in case of suspicious results, a multiparametric MRI
(mpMRI) composed of T2-weighted sequences (T2W), diffusion-weighted images (DWI)
and dynamic contrast-enhanced (DCE) imaging is performed. Finally, if the mpMRI
confirms clinician’s suspicions, a biopsy is performed to confirm the diagnosis. As this
last step is invasive and time-consuming, it is important to have a sensitive and specific
mpMRI diagnosis in order to avoid useless biopsy exams while preserving the chances
of the patient for detecting cancer lesions. However, the interpretation of mpMRI can
be complex. Despite the existence of the Prostate Imaging-Reporting and Data System
grading standard (PI-RADS, [Tur+19]) to report suspected lesions in a standardized scale
from 1 to 5, the variability of its estimation between radiologists is significant [Smi+19;
Gre+19; Mus+19], especially for grade 3 lesions (the threshold to undergo a biopsy). In
addition, determination of the PI-RADS score can be a time-consuming task.
Therefore, the issue of computer-aided detection of PCa lesions from mpMRI raised
the interest of teams all across the world and is the subject of several studies. Yet, the
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majority of them are only based on small datasets: Sunoqrot et al.[Sun+22] referenced
3369 publicly available prostate MRIs distributed between 17 public datasets. The largest
of those datasets, PI-CAI with 1500 mpMRI, also represents 67% of all publicly available
mpMRI cases and the most of lesion-segmented mpMRIs. This is an important drawback
to the development of robust and accurate diagnosis methods. This is mentioned by
Hosseinzadeh et al.[Hos+21] who state that a large number of cases (>> 2000 MRIs)
was necessary to obtain radiologist-level results. However, fully annotating a large dataset
requires to gather highly skilled radiologists for several weeks or months. For this reason,
in this paper we consider the possibility of using weak segmentations only on a large
dataset as a trade-off between the ability to have large datasets and the time needed to
annotate them.

5.1.2 Related works

Prostate cancer detection For years, Computer Aided-diagnosis (CAD) tools were con-
ceived to help radiologists detect prostate cancer from mpMRI. For example, in 2012,
Niaf et al.[Nia+12] extracted from multiparametric MRI grey-level, texture, gradient and
functional features that were then selected (for example using t-test) and used to train
classic machine learning methods (such as support vector machines) for the detection of
prostate cancer in peripheral zone. However, for the past few years, the majority of those
CAD tools are based on deep learning, as in the list of submitted models to the Prosta-
teX[Arm+18] and PI-CAI[Sah+22] challenges for prostate cancer detection. For example
Saha et al.[SHH21] conceived an end-to-end 3D framework based on Unet++[Zho+18],
taking as inputs the biparametric MRI (bpMRI, corresponding to the mpMRI minus DCE)
and a precomputed anatomical prior to predict clinically significant lesions. In addition,
the obtained probability heatmap is refined by a classification-based method at the patch
level to reduce the number of false positives. Vente et al. [Ven+21] used 2D U-Nets
on bpMRI with zonal information to segment tumoral lesions and predict their ISUP
score, using Soft-Label Ordinal Regression to leverage the ordinal aspects of those grades.
On the PI-CAI challenge, Debs et al [Deb+] used a combination of nnU-Net[Ise+21],
Retina U-Net[Jae+18] and normalized PSA density to detect lesions and generate a
segmentation as well as the associated level of confidence.

Weakly supervised learning Weak supervision consists in learning a task while having
access to only limited or partial. The definition of "limited information" is rather large
and gathers several scenarios: learning with noisy labels[Son+22], with bags of labels
rather than individual labels - often referred as Multiple Instance Learning[DLLP97],
with imprecise labels... A few papers dealt with the detection of prostate cancers
using imprecise labels for the training, even though in various settings. Thus, Duran

5.1 Introduction 103



et al.[DJL20] extended a previously-existing size constraint loss function[Ker+21] to
segment and characterize prostate lesions using only randomly sampled scribbles as
labels. Patel et al.[PD22] generated lesion segmentations from only classification labels
via class activation map (CAM)-based methods[Zho+16; Sel+20], using specific loss
functions to enforce inter-modalities information exchange and equivariance constraints.
In some cases, this limited information can be combined with a subset for which all
the information are available, that case is called mixed supervision [Mly+19]. For
example, Mlynarski et al. [Mly+19] designed a U-Net-based network with two decoder
branchs: one for tumor segmentation, and one for classification. This network was then
trained on both fully-annotated and weakly-annotated image. On the prostate, Bosman et
al [Bos+22] used a semi-supervised strategy, based on clinical reports to determine cases
with lesions and a network trained on fully-annotated data to segment corresponding
candidate lesions, that are then used to augment the training set.

Pseudo-mask generation As a surrogate for real annotations in case of non-availability,
several teams decided to generate pseudo-masks from available information. In case of
semi-supervised learning, a common strategy is to train on a fully annotated subset and
then to use the trained network to generate the pseudo-masks on the non-annotated
data [Lee13; Sei+22]. However, when no masks are available at all, it is still possible
to construct pseudo-masks from image-level or region-level annotations. For example,
Hou et al. [Hou+16] used Gaussian mixture of patch classification and Expectation-
Maximization based patch extraction to generate tumor masks on Whole Slide Tissue
images. Silva-Rodriguez et al.[SCN21] extracted feature maps after softmax and before
Global Aggregation layers for Gleason Grade Prediction of the patches. Several meth-
ods used CAM or its derivatives[Zho+16; Sel+20] to produce pseudo-masks[ACK19;
Wu+19] then used as a supervision tool during the training. If those methods can be
refined to incorporate prior knowledge [Yan+22], by design they rely on the network
ability to discriminate the right areas of interest. More simply, Dang et al.[Dan+22]
used K-means on 2D patches identified by the user as containing vessels to generate the
corresponding pseudo-segmentations for supervision.

5.1.3 Contributions

In this work, we study the impact of large weakly annotated databases on the perfor-
mance of deep learning-based PCa detection. Our objective is to show the efficiency of
our pseudo-mask generation strategy to create segmentation masks by comparing it to a
more basic pseudo-mask generation method and to a fully supervised method trained on
a smaller dataset. Finally, we want to show how mixed supervision and dataset merging
can improve network performances.
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Our contributions are:

• a method generating pseudo segmentation mask from weak labels for prostate
cancer detection, taking into account clinical information such as lesion’ sectorial
location and size

• the evaluation of the impact of weak and mixed supervised methods on the detec-
tion of prostate lesions on the training of deep-learning based method

5.2 Datasets
In this study, in order to estimate size effects, to compare our method with supervised
learning and to test generalization behaviour of our trained networks, we used three
datasets: a large dataset with incomplete information, a smaller dataset but with lesion
segmentations, and one unrelated, fully-annotated dataset. In the next section we present
them and detail their characteristics, but a summary can be found in Tab. 5.1.

Training Test Clinical criteria

PAIMRI
Cases: 5290 Cases: 146

PI-RADS≥3
Positive cases: 2850 (54%) Positive cases: 67 (46%)

PI-CAI
Cases: 1423 Cases: 49

ISUP≥2
Positive cases:374 (26%) Positive cases: 18 (37%)

Prostate 158
- Cases: 138

PI-RADS≥4
Positive cases: 82 (59%)

Tab. 5.1.: Description of datasets used in this work. Red color indicates that
no segmentations were available for this dataset.

Fig. 5.1.: 27-sector map of a prostate as defined in PI-RADS v1, extracted from a clinical report.
The blue square on the schema corresponds to a rough tumor location (not exploited in
this work).

5.2.1 PAIMRI-WA dataset
In this work, we analyze a large private set of 10791 patients coming from two different
centers (characteristics of each center being available in Tab.5.2a), between March 2009
and March 2022. Among those 10791 cases, 5290 of them were exploitable for automatic
detection. The flowchart of their selection is detailed in Appendices (Fig. 5.11). 2850 of
them have at least one PI-RADS≥ 3 lesion. For each MRI, clinicians indicated if lesions
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were present and for each of them their corresponding PI-RADS score (as defined in
PI-RADS v2[Tur+19]) and Likert score (a subjective scale for lesion characterization, not
exploited in this study), its maximal diameter and its main sectorial location. This last
information was determined using the 27-sector map defined in PI-RADS 1.0[Bar+12]
and represented in Fig.5.1. Only one sector was reported, even if the lesion can expand
on other sectors. All those information are common information available in clinical
reports. Distribution of tumors according to their PI-RADS score and to their zonal
location is available in Tab.5.2b. We will refer to this dataset as PAIMRI-WA (WA for
weakly annotated).

PAIMRI-WA PAIMRI-FA
Center Pitié-Salpêtrière Tenon Pitié-Salpêtrière Tenon

Constructor Siemens GE Siemens GE

Machines
• Skyra (3T)
• Aera (1.5T)

• SIGNA Architect (3T)
• Optima (1.5T)

• Skyra (3T)
• Aera (1.5T) SIGNA Architect (3T)

#MRI (3T/1.5T) 3752 (2992/760) 1538 (1496/42) 82 (70/12) 64
Avg. T2 resolution (mm) 0.36 × 0.36 × 0.85 0.547 × 0.547 × 0.5 Variable 0.547 × 0.547 × 0.5

#Positive cases (%) 2130 (57%) 720 (47%) 32 (39%) 35 (55%)
#Lesions 3055 1007 44 50

(a) Technical information and population for both PAIMRI datasets.

<3 3 4 5

PAIMRI-WA
PZ 248 384 2232 737
TZ 49 225 224 261

PAIMRI-FA
PZ - 5 43 10
TZ - 7 9 13

(b) Distribution of tumors according to their zones and their PI-RADS score for both PAIMRI datasets. Lesions
on the anterior fibromuscular stroma were considered as TZ lesions.

Tab. 5.2.: Characteristics of PAIMRI datasets. A more detailed distribution by sectors is available
in Appendix.

5.2.2 Other datasets

In addition to this massive but weakly annotated private dataset, we make use of smaller,
fully annotated datasets:

• A private dataset of 146 cases, distinct from the one previously described but
originating from the same centers, and that we used in a previous study[Ham+22b].
For 60 cases of this dataset, a lesion with a PI-RADS≥ 3 was detected and segmented.
We will refer to this dataset as PAIMRI-FA (for fully annotated). Its description is
also available in Tab. 5.2b.

• The PI-CAI challenge dataset[Sah+22] is composed of 1500 publicly available
biparametric MRI sequences, with their associated prostate segmentation (whole-
gland only, produced by a neural network). In addition, for 425 cases out of 1500,
lesions with ISUP score ≥ 2 were detected. Only 220 of them were segmented by
a human expert, while other lesions were segmented by a neural network. 23 of
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those cases were discarded for inaccurate lesion segmentations. All information on
this dataset can be found online1.

• The publicly available Prostate-158 dataset, composed of 139 monocentric bipara-
metric MRI sequences, their zonal segmentations and their lesion segmentation
if appropriate. We discarded one case for incomplete DWI sequence. Clinically
significant lesions were defined as PI-RADS ≥ 4 lesion confirmed by biopsy, and
were present in 82 out of 138 cases. More details on this dataset can be found in
Adams et al.[Ada+22]

Description of both public datasets can be found in Tab. 5.3.

PI-CAI Prostate-158

Centers
• Radboud University Medical Center

• Ziekenhuisgroep Twente
• University Medical Center Groningen

Charité University
Hospital Berlin

Constructors
Siemens (3T/1.5T)
Philips (3T/1.5T) Siemens (3T)

#MRI 1500 138
Avg. T2 resolution (in mm) Variable 0.47 × 0.47 × 3

#Positive cases (%) 425 (28%) 83 (60%)
#Lesions 455 89

Tab. 5.3.: Information on PI-CAI and Prostate-158 datasets.

5.3 Methods

5.3.1 Pseudo-mask generation
In this work, we propose to perform a weak supervision of a segmentation task by
generating a pseudo-mask, in order to train machine learning models as if exact lesion
segmentations were available. We made this choice as it seems to be the most intuitive
way to exploit the specific radiological information provided by the clinicians in their
reports, i.e. the main sector location of the lesion and its diameter.

Sectorial pseudo-mask

A first method consists in generating pseudo-masks of the main prostate sector in which
the lesion has been indicated in. To create them, we generated automatic zonal seg-
mentations 𝑃𝑖 of prostates into their Peripheral Zone (PZ) and Transition Zone (TZ)
using a previously developed deep-learning based method[Ham+22b]. These zonal
segmentations were then used as a basis to create sector maps with a deterministic
algorithm we developed in a previous work[Ham+22b]. More precisely, the sectors
are defined based on the TZ and PZ as well as anatomically specific planes defined as
follows:

1https://pi-cai.grand-challenge.org
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Fig. 5.2.: a) Sector map of the prostate (in blue) and the ground truth lesion segmentation (in
red). b) In green, mask of the sector 4p indicated by the radiologist as the main sector
where the lesion is localized. c) Probabilistic mask generated by our intensity-based
method (yellow: contours of probabilities between 0.1 and 0.5, orange: contours of the
binary mask).

• At each third of the prostate for the axial planes. Those planes help us define apex,
midgland and base of the prostate.
Following planes are then computed independently for each of those thirds:

• Median coronal plane - distinction anterior/posterior

• Median sagittal plane - distinction left/right

• Sagittal planes at respectively 40% and 60% of the third for the limits between
"lateral" peripheral zone sectors and "medial" peripheral zone sectors. This is used
as a surrogate to the central zone segmentation (not available here).

Furthermore, we decided to include lesions noted from anterior fibromuscular stroma
(AFMS), corresponding in Fig.5.1 to sectors 13a, 14a and 15a, into their corresponding
in-plane TZ sectors for two reasons. First, as AFMS is a non-glandular zone and the
majority of AFMS lesions arises in the TZ, tumors from AFMS and TZ are often gathered
together[Tav+18]. Second, our zonal segmentation method does not segment AFMS.
Example of sector maps generated by our method are given in Figs. 5.2a and 5.3 and . A
sector-based pseudo-mask is shown in Fig. 5.2b.

Intensity-based pseudo-mask

Sectorial pseudo-masks delineate roughly the lesion position and they do not take into
account information on lesion size, nor the possibility of cross-sectors lesions. For this
reason, we propose another pseudo-mask strategy taking those criteria into account.
Besides, we constrain the pseudo-mask to never lie at the same time on both TZ and
PZ. Indeed, lesions in each zone have different characteristics according to their zone
of origin [Vis+12; Gre+91], and consequently PI-RADS [Tur+19] rules for the two
zones differ: PI-RADS assessment of lesions on TZ (resp. PZ) are done using primarily
T2W (resp. diffusions) sequences. So, zonal locations of the lesions influence their
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Fig. 5.3.: Sector map of the prostate according to axial views in the base, the midgland and the
apex, and to the sagittal view. Segmentation of the whole gland is in white, segmentation
of the transition zone is in orange. The blue axis separates the anterior from the posterior
of the prostate, the red axes are sagittal planes and the yellow axial planes separate
the base, the midgland and the apex. The green dashed lines on the sagittal view
indicate the location of the different axial views. Reproduced from [Ham+22b] with
authorization of SPIE.

characteristics and their methods of diagnosis, in consequence cross-zonal lesions must
not be considered as they hardly correspond to a real case and make the diagnosis process
more difficult.

For a patient 𝑖 with a lesion, the construction of the associated pseudo-mask 𝑦𝑖 is done
via the following scheme:

• Determination of the target sector indicated by the radiologist.

• Filtering the ADC sequence using an averaging filter (kernel size: 3 × 7 × 7) then
determination of 𝐶 the voxel of the filtered image within the target sector with the
lowest intensity.

• Computation of a ball centered on 𝐶 and with a diameter equal to the lesion
diameter reported by the radiologist. This ball is then restrained to the zone to
which the indicated sector belongs to. Indeed, a prostate sector belongs to only one
zone, and we forbid cross-zonal lesions for previously mentioned reasons.

• In this ball, use of Otsu’s thresholding method [Ots79] to determine the potential
lesion as voxels of values below the computed threshold. The final pseudo-mask
𝑆𝑖 is the restriction of this set to its largest connected component using a 26-
neighborhood.

In addition, we must take into account that there can be discrepancies between the sector
indicated by the radiologist and the sector determined by our method. To do so, we
attribute to voxels outside of the pseudo-mask 𝑆𝑖 a value based on their distance to the
pseudo-mask: 𝑦𝑖 = 𝜎(500𝑆𝑖 − 𝐷𝑀 (𝑆𝑖)), with 𝜎(.) the sigmoid function.
In this equation, 𝐷𝑀 (𝑆𝑖) = (1 − 𝜆)𝐷𝑀𝐸 (𝑆𝑖) + 𝜆𝐷𝑀𝐼 (𝑆𝑖; 𝑃𝑖) is the combination between
the classical Euclidean distance map to the mask, allowing us to take into account the
proximity to the pseudo-mask 𝑆𝑖, and 𝐷𝑀𝐼 a penalization map equal to 0 on the prostate
zone (PZ or TZ) in which the lesion is located in, and > 0 on both the other zone and the
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Fig. 5.4.: Construction of the intensity-based pseudo-mask. a): Sector map (in blue) and true
lesion segmentation (in red) for reference). b) Determination of the center of the
zone of lowest intensity after average filtering (orange cross). c) Construction of
the ball centered on this region (magenta). d) Otsu’s thresholding for final pseudo-
masks (orange) and area of uncertainty based on distance maps (in yellow, contours of
probabilities with a value between 0.1 and 0.5.

background. By design, values outside of 𝑆𝑖 are lower than 0.5. The combination of the
two distances leads to: i) higher probabilities for voxels close to 𝑆𝑖 that are in the same
zone than the lesion, and ii) lower probabilities for voxels in the other zone or far from
the lesion. Here, 𝐷𝑀𝐼 was computed as a geodesic distance map based on the zonal
segmentation 𝑃𝑖, with specific values for background and prostatic zones.

An example of this intensity-based pseudo-mask 𝑦𝑖 is presented in Fig. 5.2c, and the
different stages are presented in Fig.5.4. The process of creation of the uncertainty area
is detailed in Fig. 5.5

Fig. 5.5.: Construction of the intensity-based pseudo-mask 𝑦𝑖. a) ADC sequence with zonal seg-
mentation (in white) and 𝑆𝑖 (in orange). b) Euclidean distance map to the pseudo-mask
c) Penalization map in the case of a PZ lesion d) Final distance map e) Corresponding
pseudo-mask 𝑦𝑖

We chose to use lowest intensity regions on ADC to determine possible position of tumors
for two reasons:
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• tumors appear as hyposignal on ADC sequence images and ADC is one of the two
sequences used in PI-RADS to detect PZ lesions

• experiments showed that looking for hypersignal in DWI would lead to similar
results than ADC for the generation of pseudo-masks for PZ lesions but not for
TZ lesions. As for T2W, the sequence recommended on TZ by PI-RADS, the low
intensity of bladder walls and fibromuscular stroma is not compatible with simple
intensity-based strategies.

This strategy has limitations, as hyposignal in the TZ on the ADC sequence can also be
due to benign fibrodysplastic nodules. However, the restriction of the search for low-
intensity regions to a single sector and the use of a spatially large averaging filter helps
the generation method to focus on the right region to determine the pseudo-mask.

5.3.2 Neural network
To take into account the three modalities, we used a U-Net based network inspired by the
work of Saha et al. [SHH21], but with three encoders parts: one for each MR sequence
(T2W, ADC, DWI). Each of those encoders takes as input the corresponding sequences
as well as the zonal segmentation of the prostate automatically generated by a prostate
segmentation framework previously developed [Ham+22b]. Outputs at each layer of the
encoders are concatenated, and then given to the decoder part. Attention gates [Okt+18]
and Squeeze-and-Excitation modules [Run+19; HSS18] are used to improve respectively
spatial and feature discriminative power of the network. A representation of this network
is available in Fig. 5.6.
For the loss function we used the Focal Loss [Lin+17] since the structures we have to
find are very small compared to the image size and are not present in some cases. We
picked as hyperparameters 𝛼 = 0.75 and 𝛾 = 2.

5.4 Results

5.4.1 Accuracy of the generated pseudo-masks
We compared the generated pseudo-masks (sector-based and intensity-based) with
ground truth segmentation masks on the PAIMRI-FA dataset. For those comparisons, we
used soft Dice and cross-entropy losses. For 12 cases from PAIMRI-FA, in addition to the
segmented lesions, the radiologist’s main sectorial location and their estimated maximal
diameter was available as in PAIMRI-WA. This subset, coined PAIMRI-RA, allowed us to
compare both pseudo-masks generation strategies in real settings. However, due to its
limited size, we also compared the generated pseudo-masks on the whole PAIMRI-FA
dataset but using the main prostate sector and lesion diameter information as provided
by the automatic zonal segmentation algorithm and the ground truth lesion masks.
To compute the distance maps for intensity-based pseudo-masks, we used the method
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Fig. 5.6.: Lesion detection network architecture, inspired by Saha et al.[SHH21], using Squeeze-
and-Excitation bottlenecks [HSS18] and attention gates [Okt+18]. All convolutional
layers use LeakyReLU (with 𝛼 = 0.1) as loss functions. Dropout nodes (p = 0.50) are
connected at each scale of the decoder to limit overfitting.

presented by Criminisi et al. [CSB08] and implemented in FastGeodis [ADV22], using as
parameters 𝐴 = 500, 𝜆 = 0.33. For the computation of the geodesic distance based on
the zonal segmentation, we attributed to each voxel in the background a value of 0, 50
for those in the PZ and 75 for those in the TZ.
Results are shown in Fig. 5.7. For both cases, mean metrics are minimized when using
the intensity-based pseudo-mask (even though not for all cases). For comparisons on the
whole PAIMRI-FA set we computed the p-value using the Wilcoxon signed-rank test, and
for both metrics the p-value was < 0.001.

5.4.2 Experimental design for the impact of weakly annotated
databases

We compare the same network architectures trained on different databases and pseudo-
mask generation methods:

• A network trained only on the fully annotated dataset PI-CAI (trained on 1125
cases).

• A network trained only on PAIMRI-WA, (trained on 4025 cases) with sector or
intensity based pseudo masks

• A network trained on both PAIMRI-WA (with sectorial pseudo-masks or intensity-
based pseudo-masks for PAIMRI-WA) and PI-CAI (with corresponding masks).
Trained on 5150 cases.

The trained networks were then tested on PAIMRI-FA (n=146), on a extracted test set of
PI-CAI that we’ll call PI-CAI-Te (n=49) and on the Prostate-158 (n=138) datasets. In all
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(a) Soft Dice loss (left) and log-cross entropy loss (right) for each case of PAIMRI-RA.
Stars indicate cases where the radiologist-indicated sector does not correspond to

the sector estimated by our segmentation network.

(b) Soft Dice loss (left) and log-cross entropy loss (right) on PAIMRI-FA (N=88)

Fig. 5.7.: Comparison between ground truth lesion and suggested pseudo-masks for Soft Dice
loss (=1 - Soft Dice) and log cross-entropy on both PAIMRI-RA (clinical information
by a radiologist) and PAIMRI-FA (automatically determined clinical information). On
both datasets, the average soft dice loss and log-cross entropy is lower using the
intensity-based pseudo-mask rather than the sector mask. On both images, sector-based
pseudo-masks’ measurements are in blue, intensity-based pseudo-masks’ are in red.
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settings we used the Adam optimizer with a initial learning rate of 1e-6, a batch size of 4
and we trained the network for approximately 90 epochs, with the exception of the fully
supervised network which was trained for 180 epochs to compensate for its smaller size.
All images were resampled to a resolution of 0.5 × 0.5 × 1mm. T2, ADC and DWI were
rigidly registered using SimpleElastix[Mar+16]. When possible, b-values for PAIMRI
DWI images were set to 2500. B-values on other datasets or when the b-value was not
accessible were unchanged.
To improve models performance, data augmentation such as flipping, in-plane rotation,
translation and scaling were applied on datasets with the Kornia package [Rib+19].

5.4.3 Performance metrics

To estimate the efficiency of the different methods, we provide several performance
metrics. First, the Area Under Receiver Operating Characteristic (AUROC) curve at the
patient-level provides an indication on the performance of the methods to detect patients
with clinically significative lesions irrespective of the choice of a specific threshold.
Second, the Average Precision (AP) at the lesion-level, giving the indication on how
efficient our method is to detect each lesion separately. In its computation, the considered
threshold for the detection of a lesion was an Intersection over Union between the mask
𝑀 and the ground truth 𝐺: 𝐼𝑜𝑈 (𝐺, 𝑀) = |𝐺∩𝑀 ||𝐺∪𝑀 | ≥0.1. Those metrics are similar to those
used in the PI-CAI challenge. In addition, we also provide the sensitivity level (or True
Positive Rate, TPR) of each method for a threshold corresponding to 0.5 false positive per
patient. Finally, since the main radiological indication provided by radiologists is sector
location, we also want to assess the accuracy of the trained networks to detect lesions
at the right sector location. To do so, we computed sectorial accuracy (SA) by using
the previously mentioned automatic sectorization algorithm to determine the sectorial
location of each ground truth lesion and of each binarized prediction. For the latter,
we defined this sectorial location as the sector with the largest intersection with the
predicted lesion mask. To binarize the predictions, we used as a threshold the value
maximizing the Youden’s index (=sensitivity+specificity-1) on the patient-level ROC
curve.

5.4.4 Metrics results

In Table 5.4 we show the performance metrics of the networks on the different test
datasets. In addition, corresponding patient-level ROC curves , lesion-level precision-
recall curves (related to AP) and FROC curves are available in Fig. 5.8. Visual examples
of good predictions are displayed in Fig. 5.9, and examples of false positives and false
negatives are shown in Fig. 5.10.
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(a) PI-CAI-Te

(b) PAIMRI-FA

(c) Prostate-158

Fig. 5.8.: Result curves for the different datasets: PI-CAI (top), PAIMRI-FA (middle) and Prostate-
158 (bottom). On the left: Patient-level ROC curve, with the best performance (i.e.
maximizing the Youden’s index) indicated by a cross. In the center: Lesion-level
Precision-Recall curve. On the right: FROC curve.
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(a) PI-CAI

(b) PAIMRI-FA

(c) Prostate-158

Fig. 5.9.: Examples of results on PI-CAI (top), PAIMRI-FA (middle) and Prostate158 (bottom)
datasets. True segmentations are in red, zonal segmentations are in green, values above
the threshold are contoured in black.
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Train set
Test set

PI-CAI-Te (n=49) PAIMRI-FA (n=146) P158 (n=138)

AUROC AP Sect.
Acc.

TPR@
0.5FP AUROC AP Sect.

Acc.
TPR@
0.5FP AUROC AP Sect.

Acc.
TPR@
0.5FP

PI-CAI-Tr
(n=1135) 86.76% 48.37% 50% 56% 74.12% 21.35% 32% 36% 71.65% 9.21% 19% 19%

PAIMRI-Sec
(n=4025) 78.49% 36.64% 22% 50% 85.62% 10.17% 25% 36% 66.33% 8.66% 18% 16%

PAIMRI-Int 75.37% 44.88% 44% 72% 83.79% 35.97% 42% 48% 70.80% 19.19% 15% 29%
Both-Sec

(n=5160) 83.27% 51.02% 44% 67% 84.77% 19.74% 40% 31% 76.42% 16.98% 15% 23%

Both-Int 82.54% 62.03% 50% 78% 83.96% 31.16% 41% 45% 78.88% 33.63% 27% 40%

Tab. 5.4.: Results of the networks according to the used traininig and test sets. Best metrics on
each test set are in bold. -Sec indicates the use of sector-based pseudo-masks. -Int
indicates the use of intensity-based pseudo-masks.

(a) False positive (b) False negative

Fig. 5.10.: Examples of false negative (left) and false positive (right) on the PAIMRI-FA dataset.
Ground truth segmentations are in red, zonal segmentations are in green, values above
the threshold are contoured in black.

5.5 Discussion

Impact of the labelling method In Table 5.4, we compare the results obtained on the
same dataset between the two conceived pseudo-labelling methods: intensity-based and
sector-based. We can see that, all other things being equal (test dataset, presence or
not of fully annotated data, ...), the intensity-based pseudo-labelling method appears
in general as the most relevant, with better Average Precision and sectorial accuracy
in all cases, and close results in terms of patient-level AUROC. It means that even if
both sectorial-based and intensity-based methods have similar results for patient-level
prediction, the intensity-based mask leads to a better assessment of the lesion. However,
in terms of sectorial accuracy, sector-based pseudo-masks can hold the same level of
precision than intensity-based pseudo-mask, but this result is not persistent across all
datasets and settings, and the associated sectorial accuracy can drop as low as half of the
one obtained with intensity-based pseudo-masks.

On the examples of Fig. 5.9 we can see that the probability heatmaps are more focused
for intensity-based pseudo-mask networks compared to those trained using sector-based
pseudo-masks (without considering if those probabilities are above the threshold or not).
We can also notice the effect of the addition of the PI-CAI cases here, which helped the
sector-based network to produce even more focused heatmaps.
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Comparisons between fully-annotated and weakly-annotated methods The difference
of performance between the network trained only on PI-CAI and the one trained on
PAIMRI using intensity-based pseudo-masks can be noted. Each of these networks
outperforms the other ones on the test set related to their training set. Yet, except for
the AUROC, the difference of performance between the two networks is more important
on the PAIMRI dataset (and at the benefit of the network trained on PAIMRI) than on
the PI-CAI dataset. In particular, PI-CAI-trained network has a high false positive rate
compared to other networks at equal sensitivity. Similarly, the level of performance of
both networks on the Prostate-158 dataset is either relatively close or at the advantage
of the PAIMRI-trained dataset. Several reasons could explain those results. One of them
is the size difference between the two datasets (training sets of size 1135 vs 4025).
Another explanation is the chosen criteria of clinical significance for each dataset. Indeed,
the criteria for both Prostate-158 and PAIMRI is the radiological-based PI-RADS score,
whereas the criteria for PI-CAI is the histological-based ISUP.

Mixed supervision We can note that the use of mixed supervision by combining the
PI-CAI dataset with the PAIMRI dataset using our weak supervision strategy hold among
the highest metrics on all datasets, and especially on the Prostate-158 dataset where
the difference was significant (+14% in AP, +8% in SA and +11% in TPR@0.5FP com-
pared to other methods). This confirms that the use of multicentric datasets is a good
way to obtain network with better generalization abilities. However, this combination
seems to be mainly occurring when using the intensity-based pseudo-mask method,
rather than using sector-based PAIMRI pseudo-masks with PI-CAI labelled cases. These
results are on par with those obtained by Bosma et al. [Bos+22]. They showed that
the inclusion of ∼4500 cases segmented by an automatic method to a set of ∼3000
manually annotated MRIs improved their AUROC on an external set by 2%. Similarly,
metrics linked to FROC and Precision-Recall curves were also improved by the inclusion
of automatically annotated cases. However, the relevance of their method in cases
where the fully-annotated and the automatically-annotated sets have different charac-
teristics can be questioned. For example, here, performance of the network trained on
PI-CAI and tested on the PAIMRI-FA dataset was low and so using these segmentation
to train a model may lead to bad results. Additional tests on this topic must be conducted.

We want to emphasize that, if our network did not obtain results similar to the most
efficient methods developed for the PI-CAI challenge [Sah+22] (best models on the
PI-CAI challenge have AUROC around 90% and AP between 60% and 70%), the deep
learning method used in this paper is far simpler than those models. Indeed, contrary to
many of them, the evaluated method does not use ensembling of multiple networks, nor
false-positive reduction postprocessing, nor inclusion of clinical information (such as PSA
density)... However we believe that results observed here have no reasons not to hold
when using more complex strategies for lesion detection.
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Limitations This study suffers from several limitations. First, the conditions of clinical
significance between PI-CAI (ISUP ≥ 2) and PAIMRI (PI-RADS ≥ 3) or 4 are not equiv-
alent. Indeed, PI-RADS score is only a radiological score, whereas Gleason score is an
histological score which indicates the properties of the cancerous cells. Thus, the PI-RADS
is only an imperfect proxy - a high PI-RADS score does not always mean a high Gleason
score. It was shown in Drost et al. [Dro+19] that PI-RADS-based detection has a very
high sensitivity (0.91) but a low specificity (0.37), meaning not only that PI-RADS based
labels can result in many histological false positives, but also that ∼10% of lesions are
not detected by radiologists on the mpMRI. Since only one score (PI-RADS or Gleason)
was provided for each dataset, we choose to binarize them as clinically significant/not
clinically significant as a way to mitigate those differences. Nevertheless, if PI-RADS’s low
specificity questions its use as a labelling tool, the possibility to correctly assess Gleason
grade of all lesions solely from mpMRI has yet to be proved.
Another drawback of this study is the lack of data curation of the PAIMRI dataset. Manual
curation of large datasets is time-consuming, especially for the segmentation of tumors
(quality of pseudo-masks, matching between indicated sector and true sectorial location
on PAIMRI; automatic tumor segmentation on PI-CAI) and of prostate zones (done by
a neural network in this study). There are several strategies to perform this curation,
from the simple exploitation of clinical information (prostate volume, zonal intensi-
ties) to more complex strategies such as shape analysis to detect and remove outliers
segmentations [SG02].

Future works Several extensions of our work can be considered. First, for the generation
of pseudo-masks, refinement for better handling of TZ lesions should be proposed. For
instance, taking into account the T2W sequence or differentiating AFMS from TZ in the
mask generation.
Another possible extension is to exploit more information from clinical reports. For
example, in Fig. 5.1 we see that there is an indication of tumor location and extent (in
Fig. 5.1, this information is provided by the blue square). These sketches , often found in
clinical reports, can help the generation of more precise pseudo-masks, along the other
textual information available in the clinical report.
In addition, in this chapter we did not properly study the impact of the dataset size and/or
proportion of weakly-vs-fully data on the network performance. Finally, additional studies
should be done on multicentric datasets. As seen in Tab. 5.2a, images from PAIMRI come
from two different datasets with different imaging manufacturers. Similarly, images from
PI-CAI originate from three centers and two different imaging manufacturers. However,
we did not include specific methods to analyze how networks trained on MRI coming
from one center can generalize to those from the other center. This question has already
been investigated in the context of prostate segmentation[ZR+20; Gib+18], but studies
on a larger scope and on tumor detection should be launched.
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5.6 Conclusion
In this work we presented a new method to generate pseudo-masks for prostate cancer
detection from radiological information. We showed that using this method to train a
network on a large weakly-annotated dataset allowed us to a more efficient network than
training it on a smaller, fully-annotated dataset. In addition, combining both datasets
helped to improve the generalization ability of this network. This confirms the relevance
of our pseudo-labelling method and calls for the release of large prostate datasets even
with limited information on cancer locations.
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5.7 Appendices

Fig. 5.11.: Diagram shows inclusion of patients into PAIMRI-WA. PSA = prostate-specific antigen,
mpMRI = multiparametric MRI

Fig. 5.12.: Number of lesions for each sector. Their corresponding zone is also indicated.
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6Conclusion

In this thesis, we introduced several methods involved at different stages of prostate
cancer detection from multiparametric MRI, while focusing on important challenges :
variability of the prostate shape, volume and rater performance, correct estimation
of a segmentation consensus from binary masks for datasets design, prostate zonal
segmentation and possible clinical consequences, construction of large annotated datasets.
Below we summarize our contributions and consider additional challenges that should
be addressed in future studies.

6.1 Main contributions
Evaluation of inter-rater variability of prostate volumes and segmentations In Chapter
2 we studied the inter-rater variability of prostate zonal segmentation and volume
estimation on a dataset of 40 T2W prostate images segmented by 7 raters of various
levels (3 expert, 2 intermediate, 2 junior). We showed that segmentation inter-rater
variability was globally low for whole gland and slightly higher for transition zone. This
variability was mainly concentrated at the extremities of the organ and influenced by
prostate properties such as its volume and its PZ-to-TZ intensity ratio, but not by the
radiologists’ level of expertise. Despite this observed variability on segmentation masks,
manual planimetry appears as the volume estimation method with the lowest variability
between raters. Yet, ellipsoid-based methods provide a good approximation of prostate
volume while being also highly reproducible and simpler to compute.
In addition, we also showed that, for inter-rater segmentation variability studies, using
either pairwise metrics or metrics with respect to a consensus was leading to similar
trends. Finally, as developed in Appendix B we also studied the impact of the number of
raters in prostate segmentation inter-rater variability studies and showed that for both
metric methods (either pairwise or with respect to a consensus), the optimal number of
raters to consider is 3.

Background-independent region-level consensus segmentation In Chapter 3 we showed
that the classic STAPLE method to compute consensus segmentation from binary masks
was dependent on the background size and the choice of the prior probability law. In
particular, we demonstrated that in case of large background size the obtained consensus
tends towards the set of all voxels segmented by a specific number of raters, this number
depending on the prior law. As an alternative we designed MACCHIatO, a method
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based on the approximation of local Fréchet means of Jaccard or Dice distances through
morphological-based heuristics to compute a consensus segmentation. This method
is independent from background size, contrary to STAPLE, and computed at a larger
scale than the voxel, contrary to mean averaging. Both MACCHIatO and averaging
are special cases of a framework we formalized to compute consensus segmentations,
but with different choice of distances between binary masks. Consensuses produced
by MACCHIatO are generally of intermediary size between those produced by majority
Voting and those produced by STAPLE, and differ significantly from those produced by
averaging in case of high inter-rater variability.

Automatic zonal segmentation and clinical evaluation In chapter 4 we developed a deep
learning based method for the zonal segmentation of prostate from T2W sequences. This
method is composed of two networks. The former one, based on U-Net, determines a
segmentation of the whole gland from a low resolution T2W MRI. The bounding box
corresponding to this segmentation is then extracted and given as input to a second, larger
neural network computing the zonal segmentation from this restrained T2W image but at
a higher resolution. This second network incorporates spatial and feature-wise attention
modules to improve its performance. We evaluated our method on one public (n=131)
and one private(n=204) dataset, with consistent results. We also compared the obtained
results with those obtained by 7 radiologists, showing that our method had results similar
to those obtained by them - being in the middle of the pack. We also checked the
impact on the sectorial location of tumors, using the produced zonal segmentation. To
this end, we conceived a deterministic algorithm based on PI-RADS rules to construct
from a zonal segmentation the corresponding sector map, and compared the estimated
location of lesions based on our computed zonal segmentation with the ones provided by
a radiologist. We obtained that the correct zones and sectors were conserved in a large
majority of cases, validating their possible use in clinical setting as the PI-RADS scale
depends on this location.

Pseudo-mask generation method for large weakly-annotated datasets In chapter 5, we
presented a new method to generate pseudo-masks for prostate cancer detection, based
on simplified radiological information provided by radiologists. To this end we used
information present in clinical reports such as the sectorial location of the lesion and its
diameter with automatic methods to construct zonal segmentations and sector maps of
prostate. In addition, these information were used to lead an intensity-based method
to construct a pseudo-mask for the indicated lesion. The generated pseud-masks were
shown to be more precise than using only as a pseudo-mask the unique sector provided by
radiologists. The objective of this method is to allow to train networks on large datasets
while minimizing time to create annotations to supervise them. We experimented that
by comparing methods trained on a large weakly-annotated dataset (n=5290) with
those trained on a smaller, fully-annotated dataset (n=1500) and showed that methods
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trained using our pseudo-mask generation strategy obtained similar or better results than
those trained on the smaller, fully-annotated dataset. In addition, a method trained on
a mixed-supervised way performed generally better that methods trained on only one
dataset, especially on external datasets. Those results demonstrated the relevance of our
method for weak annotations and call for the release of large, multicentric datasets even
if they only have weak annotations.

Each of those contributions may help the improvement of future prostate cancer CAD
methods.

6.2 Perspectives for the future
Several subjects linked to prostate cancer detection were not studied in this thesis, and
could lead to future studies extending the themes evoked here.

Exploitation of other clinical information In this thesis, the detection of PCa was done
using biparametric MRI, i.e. without considering DCE. Reasons behind this choice are
twofold: first, contrary to T2W and diffusion-weighted sequences that lead to a single
volumetric image, information coming from DCE are stored in time series of volumetric
images, and its processing before use in deep learning is less trivial. Second, its role on
PI-RADS determination is very specific since it only serves to choose between a PI-RADS
score of 3 and 4 for some PZ lesions[Wei+16], and the debate on its benefit/cost ratio is
ongoing in the radiology community. Recent studies [Woo+18; Chr+20] suggest that
bpMRI and mpMRI have similar levels of performance for trained radiologists but that
DCE sequences may be useful for less experienced radiologists [Col+22] or for some
specific lesions [Tag+19]. However, more studies regarding the overall benefits of DCE
are required before a conclusion can be drawn. Similarly, some articles explored the
relevance of DCE in CAD methods [Meh+21; Bra+21; Che+22], and they were not
conclusive with respect to this question.
Moreover, in addition to imaging data, other clinical information such as PSA density
(PSAd), prostate volume or patient age could be included into the different models in or-
der to improve their performance. In particular, PSAd seems worthy of interest [Ben+92;
Yus+20], and its inclusion into CAD methods is under evaluation [Meh+21; Deb+].

Active surveillance Prostate is a non-vital organ and, contrary to the vast majority of
cancers, PCa are mostly non-lethal. Combined with the advanced age of the majority of
patients (more than 60% of PCa are detected in people older than 65 [Key]), surgical and
radiotherapy-based treatment can be more detrimental to the patient’s health than the
tumor in its current state. In this situation, corresponding to non-aggressive lesions with
a ISUP≥1 or =2 with a small volume, the guidelines [Mot+21; Bju+20] recommend
active surveillance, i.e. their monitoring via regular screenings: PSA every 3 to 6 months,
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DRE every year, mpMRI and biopsies every 2 to 3 years [Mot+21]. The benefits of
deep-learning based active surveillance methods are similar to those for PCa detection:
assisting radiologists and avoiding as much as possible the performance of prostate
biopsy [Alg+18]. However, contrary to simple PCa detection, deep learning-based active
surveillance must handle longitudinal data, in order to predict the evolution of the tumor
and to correctly assess risks [Lee+22].

Large multicentric datasets One of the identified methods to improve the performances
of CAD methods is the construction of very large datasets to train them. Indeed, the
training set size has been identified as having an important impact on the method’s
performance [Sun+22]. If such large datasets are currently not publicly available, it
could be the case in the coming years. First, as seen in Chapter 5 those datasets would
not have to be fully annotated - reducing the needed time to create them. Second, such
datasets with a semi-public access already exist: the PI-CAI challenge [Sah+22] gave
access to their best participants in a second phase to a large dataset of 11,000 cases.
However, one aspect of the problem we only barely scratched is the question of mul-
ticentric datasets. Indeed, in addition to the prostate variability, characteristics of the
MRI machine (constructor, field strength...) and acquisition parameters impact the im-
age properties and hence the possible performance of the deep learning methods. For
example, [Zav+20] showed that a neural network trained on GE images had worse
performance on Siemens images, and conversely. The first and most obvious option to
improve generalization abilities of PCa detection methods is to include directly images
from different datasets into the training set, as done in [Zav+20] and by ourselves
in chapter 5. However, the normalization of the images should be carefully studied.
Instead of classic normalizations like whitening or min-max normalization, which would
not help mitigate domain shift impact, more specific methods such as Nyul histogram
matching [NUZ00] could be considered. Ways to extend those methods on previously
unseen datasets should also be considered - either by only trusting the model and its gen-
eralization abilities, by using adapted normalization processes or by using unsupervised
domain adaptation [Tol+20].
The robust analysis of cases coming from multiple centers is a difficult task. For PAIMRI
we circumvented the problem by gathering data coming from different hospitals but be-
longing to the same hospital cluster (Assistance Publique - Hôpitaux de Paris, AP-HP). To
perform such an analysis, the Health Data Hub (with whom we collaborated during this
PhD) is currently hosting the DAICAP1 project, result of the collaboration between AP-HP,
French national research agency for informatics (Inria), a private company (Incepto) and
several hospitals from different clusters to create a large multicentric dataset mixing fully
annotated retrospective data with clinical and histological information with prospective
data. However, in general case, this gathering is a long and tedious task requiring multi-

1https://www.health-data-hub.fr/partenariats/daicap
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ple authorizations from different entities. Federated learning [Sil+19] could be a way to
alleviate the administrative process and to only focus on the technological problems.

Score prediction and explainability of prostate cancer diagnosis In this study, we only
tried to determine if a lesion was clinically significant, using radiological criteria (PI-
RADS≥ 3) or histological ones (ISUP≥2). However, it is also possible to consider
the refinement of determining the exact score from the mpMRI. A few studies have
tried to determine the PI-RADS score [San+20a; Yil+22], but the majority of those
scoring methods skips the PI-RADS and directly tries to determine the Gleason or ISUP
score [Ven+21; Dur+22; Alq+20; Cao+19], generally exploiting the ordinal aspect of
those scores in their learning process. This choice to focus on Gleason score is motivated
by its histological origin whereas PI-RADS is more of a radiological proxy measurement
used when biopsy information is not available. As a proxy, if PI-RADS allow to detect
the majority of cancerous lesions (sensitivity of 0.91), it also detects a high number
of false positive (specificity of 0.37) [Dro+19]. However, today, the assessment of
lesions’ Gleason grade solely from mpMRI remains an open question. To the best of our
knowledge, the use of PI-RADS for Gleason prediction has not been considered in the
literature - except in Alqahtani et al. [Alq+20].
But all those methods for PCa detection and grading will only have a clinical application
if they address one of the major drawbacks of deep learning: the black box aspects of
this technology. Knowing what caused a specific output of a neural network is usually
complex, whereas the GDPR requires that in the medical field (among others), an
explanation to a decision should be available to the patient if required [Cou16a]. Some
methods exist to provide visual explanation [GL20; Sel+20], and even our methods
could be modified to improve their explainability via the exploitation of the attention
modules. However, in segmentation cases, visual explanation may not be informative,
since they will probably highlight the zones already distinguished by the segmentation,
and in case of score prediction visual explanation is not be enough to understand the
reason behind a specific scoring. However, in the specific case of PCa diagnosis case,
determination of PI-RADS (or Gleason) score follows specific rules [Wei+16; Eps+16]
that we have not explicitly exploited in this thesis. They could be used to a model that
not only highlights the clinically significant lesions but also their score with an associated
explanation [Ham+23a].
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AAppendix A: Flowchart for prostate

cancer detection and treatment

In this chapter we present a flowchart of the process for detecting, assessing the risk
and treating prostate cancer as recommended by the European Association of Urol-
ogy[Mot+21]. This flowchart has been reproduced with authorization of Knowuro[San22].
For clarity reasons, possible adjuvant therapies and procedures in case of metastasis were
not included.
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Fig. A.1.: Flowchart of EAU guidelines for prostate cancer diagnosis and treatment
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BAppendix B: Reference standard for

evaluation of automatic segmentation

algorithms: quantification of inter

observer variability of manual delineation

of prostate contour on MRI

Abstract Objective: Multiple readers are necessary to establish a reference standard
of organ segmentation to develop robust and generalizable automatic segmentation
algorithms. The objective of this study is to quantify inter observer variability,
regarding manual prostate contour segmentation, in order to propose an ideal
number of readers necessary to establish a reference standard.

Methods: Seven radiologists with various experience independently performed a
manual segmentation of the prostate contour (whole-gland (WG) and transition zone
(TZ)) on 40 MRI. To quantify inter observer variability, a comparative analysis of the
delineations was performed using standard metrics (Dice, Hausdorff and volume-
based metrics), and impact of the number of raters (from 2 to 7) on segmentation
variability using two measurement strategies - pairwise metrics (consistency) and
metrics with respect to a reference segmentation (conformity)– was evaluated.

Results: The average segmentation Dice score (DSC) for 2 readers in pairwise
comparison was 0.919 (WG) / 0.876 (TZ). The variability decreases rapidly with the
number of readers: the interquartile range of the DSC was 0.076 (WG) / 0.021 (TZ)
for configurations with 2 readers, 0.005 (WG) / 0.012 (TZ) for 3 readers, and 0.002
(WG) / 0.0037 (TZ) for 6 raters. The evolution of interquartile range according
to the number of raters was similar between 2 and 3 raters than between 3 and 6
raters. When using consensus methods, variability often reached its minimum with
three readers (with STAPLE, WG: DSC=0.96, min-max=0.945-0.971, TZ: DSC=0.94,
min-max=0.912-0.957), and interquartile range has often been found minimal for 3
raters, indicating that consensus between three readers might represent an optimal
reference.

Conclusion: The number of readers impacts the inter-reader variability, in both term
of inter-reader consistency and conformity to a reference. Variability has often been
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found to be minimal for 3 raters, or 3 raters represent a tipping point in the variability
evolution, with both pairwise-based metrics or metrics with respect to a reference. It
results that three readers may represent an optimal number to determine references
for AI applications.

The abstract of this appendix has been accepted to RSNA 2023 [Mol+23]

B.1 Introduction

Segmentation of the prostate on MRI plays a crucial role in numerous clinical applications,
including prostate cancer detection and staging, for MRI-US biopsy fusion, and for
optimal treatment planning and delivery. Repeatable and accurate prostate and/or
lesion segmentation is crucial for comparing images acquired at multiple time points, for
longitudinal measurements as for active surveillance or for treatment monitoring of focal
therapy. It is also essential for deriving precise biomarkers to improve prostate cancer
characterization and prognostic. Finally prostate contour segmentation is performed in
clinical routine for multimodal fusion, ultrasound and MRI for prostate-guided biopsy,
for treatment planning, more particularly in the context of radiotherapy and focal
treatment.

There is currently no consensus as to the optimal technique for delineating prostate
contours. Manual segmentation is one of the approaches, in which the physician deter-
mines the organ outline on the basis of visual perception of the organ border. While
manual image segmentation is considered to be the gold standard, it is a tedious and
time-consuming process that is subject to variability . More specifically for prostate
contour, inter observer variability may depends on objective and subjective factors such
as type of sequence and their quality, prostate morphology and volume, partial volume
effect at the base and apex, readers experience and attentiveness. Automated algo-
rithms have been sought in order to remove the variability introduced by raters. A good
automated algorithm should require less time to apply and have better precision than
segmentation by experts. However automatic structure delineation is subject to algorithm
and programming bias which can be induced by a ground truth of insufficient quality.
Performance of such tools, as performance of human segmentation, is difficult to quantify
because a true segmentation is often not accessible. A true reference standard can only
be available from phantom studies, but such phantoms do not reflect the full range of
normal and anatomical variability of clinical imaging [Van+13; Gun+22; Gao+07].
A recent consensus from ESR and EORTC [DeS+22] recommend that the reference
standard used, when training algorithms, should be based on segmentation by «multiple»
trainer’s observers. However, the ideal number of readers (and segmentations) to limit
variability is still unclear.
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The aim of this study is to quantify the inter-observer variability of manual delineation
of prostate contour on MRI for a group of 7 independent readers and to determine the
optimal number of reader needed to establish the full range of inter-observer variability.
To do so, we used different set of measures and a double methodology based either on
pairwise measurements or on a comparison to a reference segmentation.

Repeatable and accurate prostate and/or lesion segmentation is crucial for comparing
images acquired at multiple time points, for longitudinal measurements as for active
surveillance or for treatment monitoring of focal therapy. It is also essential for deriving
precise biomarkers, such as PSA density or quantitative MRI parameters to improve
prostate cancer characterization and prognostic. Finally prostate contour segmentation
is performed in clinical routine for multimodal fusion, ultrasound and MRI for prostate-
guided biopsy, for treatment planning, more particularly in the context of radiotherapy
and focal treatment.

There is currently no consensus as to the optimal technique for delineating prostate
contours. Manual segmentation is one of the approaches, in which the physician deter-
mines the organ outline on the basis of visual perception of the organ border. While
manual image segmentation is considered to be the gold standard, it is a tedious and
time-consuming process that is subject to variability [Par+20]. More specifically for
prostate contour, inter-observer variability may depends on objective and subjective
factors such as type of sequence and their quality, prostate morphology and volume,
partial volume effect at the base and apex, readers experience and attentiveness.

Automated algorithms have been sought in order to remove the variability introduced by
raters. A good automated algorithm should require less time to apply and have better
precision than segmentation by experts. However automatic structure delineation is
subject to algorithm and programming bias which can be induced by a ground truth of
insufficient quality. Performance of such tools, as performance of human segmentation, is
difficult to quantify because a true segmentation is often not accessible. A true reference
standard can only be available from phantom studies, but such phantoms do not reflect
the full range of normal and anatomical variability of clinical imaging, and an anatomical
reference may not easily obtained [Pup+18; Gun+22; Gao+07].

An alternative and practical approach involves generating a consensus segmentation
by combining the masks provided by multiple raters. However, opting for this solution
presents two important issues that need to be addressed. First, determining which
readers should participate in the segmentation process and how many of them should be
involved to obtain a representative sample of observations that accurately reflects reality.
Second, producing a consensus segmentation that captures the variability present in
multiple observations. While the latter is typically approached from a computer science
perspective, the former poses a clinical challenge.
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Previous studies have explored the impact of readers’ expertise on their segmenta-
tions [San+22; AS+23b; Mon+21], but the influence of the number of readers on the
resulting consensus segmentation remains unexplored. It should be noted that simply
adding more readers may not always enhance the quality of the consensus segmentation
due to various reader-associated factors, including subjectivity, experience, hand-eye
coordination, preferences, and motivation to dedicate time to the task. Furthermore, the
number of readers is constrained by practical limitations such as time and funding.

Recognizing the significant issue of inter-reader variability, a recent consensus reached
by ESR and EORTC [DeS+22] recommends that the reference standard used for training
algorithms should be based on segmentations generated by “multiple” expert observers.
However, an ideal number of readers remains unclear. To address this challenge, an
objective assessment of the consistency between readers’ segmentations and their agree-
ment with the consensus is needed. The aim of this study is to quantify the inter-observer
variability of manual delineation of prostate contour on MRI for a group of 7 independent
readers and to determine the optimal number of readers needed in order to establish
a reference standard for volumetric measurements and for evaluation of automatic
segmentations algorithms.

B.2 Material and Methods

B.2.1 Dataset

This work was supported by the Clinical Data Warehouse of the AP-HP (Assistance
Publique-Hôpitaux de Paris) and was approved by our joint institutional review boards.
We compiled a cohort of 40 patients from a larger cohort/dataset (in house, n= 1200)
of treatment naive patients who underwent prostate MRI before the first round of
biopsy, for clinical suspicion of PCa between October 2013 and July 2019. This dataset
included patients fulfilling the inclusion criterion for clinical indication of prostate MRI
for suspicion of PCa (elevated prostate-specific antigen (PSA), positive DRE, genetic
susceptibility) with a standardized PI-RADS V2.1 score. 150 patients were first randomly
selected in the bigger dataset for an automatic segmentation project [Ham+22b], the
patients included in the present study correspond to a subset of 40 randomly selected
patients

B.2.2 MRI protocol

MRI exams were performed using a 3 Tesla clinical system (SIGNA TM Architect, GE
Healthcare, and MAGNETOM TM Skyra, Siemens Healthcare) using a 32-channel phased-
array torso coil, and 1.5 Tesla MR imaging system (MAGNETOM TM Aera, Siemens
Healthcare) using a pelvic phased-array coil with 18 channels. Patients were advised to
perform bowel preparation before the exam and to empty their bladder; 1mg Glucagon
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3T SIGNA™ Architect,
GE Healthcare,

Chicago, IL*

3T MAGNETOM™ Skyra,
Siemens Healthcare,
Erlangen, Germany**

Parameter 3D T2WI 3D T2WI
Sequence type Spin echo Cube SPACE

Field of view (mm) 280 230
Acquisition matrix 512x512 230x320

Repetition time (ms) 1602 1550
Echo time (ms) 102.87 173

Flip angle (degrees) - 115
Slice thickness (mm) 1 0.85
Image reconstruction

matrix (pixels) 0.8x0.8x1 0.4x0.4x0.85

Time for acquisition (min:s) 5min11 5min35
* Receiver frequency coils: 16-channel phased array body small coil and 32-channel spine coil.
** Receiver frequency coils: 18-channel phased array body coil and 32-channel spine coil.
T2WI = T2-weighted imaging, SPACE = Sampling Perfection with Application optimized Contrasts
using different flip angle Evolution.

Tab. B.1.: MRI acquisition parameters

was administered intra muscularly to reduce peristaltic motion. All MRI protocol included
3D T2W images. All information are on Table B.1.

B.2.3 Image processing

Seven radiologists independently performed a manual segmentation of the prostate on
40 MRI (n = 280); 3 experts (>1000 prostate MRI interpreted), 2 seniors (500 prostate
MRI) and 2 juniors (<100 prostate MRI). A training meeting with the 7 readers was
organized before the beginning of the study, to reach an agreement on segmentation
criteria. The basic zonal anatomy of the prostate was reviewed (especially base and
apex limits, and the distinction between the TZ and PZ at the base). The readers were
instructed to segment the whole gland (WG) and then the transition zone (TZ) on the
axial plane of the 3D T2w sequence. For segmentation we used the freely available
MedInria software in a polygon mode. This software allows the possibility to draw the
contours as accurately as possible in multi-incidence (axial, sagittal and coronal). The
mask volumes were computed using the python package SimpleITK.

B.2.4 Variability analysis

Metrics used for comparisons between segmentations

In our work, the fundamental measure involves comparing two segmentations, whether
they are produced by different readers or by a reader and a reference segmentation. For
that, we computed both spatial overlap-based (Dice-Sørensen coefficient or F1-score),
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Fig. B.1.: Visual representation of the analyses made in this study. The total number of available
readers was 7. Each reader manually segmented whole prostate and transition zone.
We then performed separate variability analysis for pair-wise comparison and compar-
ison to consensus. In this figure are listed the comparisons made between readers’s
segmentation, for n=3 readers, as well as the calculated variables.

distance-based (Hausdorff distance and average symmetric surface distance) and volume-
based metrics [TH15]. These metrics are complementary, since two sets may have a large
overlap but parts distant from each other. More detailed information about these metrics
can be found in Annex 1.

Impact of the number of readers on overall segmentation variability

The evaluation involved two separate analyses based on the chosen metrics. Firstly, the
consistency of segmentations between readers was examined by systematically comparing
random pairs of readers. This analysis aimed to assess the agreement and variability
between individual readers’ segmentations. Secondly, the conformity of each reader’s
segmentation to a consensus segmentation was investigated. This analysis focused on
how well each reader’s segmentation aligned with the consensus. These analyses were
performed considering a variable number of readers, ranging from 2 to 7. A summary of
the aggregated analyses is provided in the subsequent section (more detailed information
can be found in Annex 2). A visual representation of the analyses is illustrated Fig. B.1.

Consistency of readers’ segmentations For each combination of 𝑛 readers (ranging
from 2 to 7), we calculated the average value of a specific metric 𝑑 (Dice coefficient,
Hausdorff distance, or ASSD) for all possible pairs of readers in this combination. This
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value reflects the consistency of segmentations from a given combination of readers
and represents a single data point. Since there are multiple possible combinations of
readers, we further obtained an aggregated measure of this consistency across all possible
combinations of n readers, which we refer to as 𝑉𝑎𝑟𝑑(n): we computed the interquartile
range (IQR) of the data points for each n, denoted as IQRd(n), and normalized it by
the average difference in segmentations when all available raters are combined (𝑉𝐹𝑑).
Similarly, we defined another measure to estimate the spread of variability: we calculated
the range of the metric for each combination of n raters and divided it by 𝑉𝐹𝑑. This
measure, referred to as 𝐷𝑖 𝑓𝑑, helps us quantify the extent of variability among the raters’
measurements.

Conformity of segmentation to reference segmentations For each 3D segmentation, and
each n-uplet of readers between 2 and 7, we computed two reference segmentations, one
with Majority Voting and one using the STAPLE algorithm [WZW04], which estimates
the consensus segmentation by weighting each input by its level of performance. The
first method simply consists in selecting voxels segmented by more than half of the
radiologists into the consensus. The second method, among the most popular ones to
construct a consensus from binary masks, is an Expectation-Maximization algorithm
where each rater is characterized by their sensitivity and specificity. Those values are
used to compute the posterior probability of each voxel to belong to the structure and are
then updated using the constructed consensus, until convergence. We then reproduced
the steps above to obtain the average comparison to the reference segmentation, for a
given metric and a given number of readers, representing a single datapoint, as well as
the aggregated measures for all possible combinations, 𝑉𝑎𝑟𝑑(n) and 𝐷𝑖 𝑓𝑑.

Evolution of segmentation volumes according to the number of readers Finally, inspired
by Joskowicz et al. [Jos+19], we evaluated the impact of the number of raters on the
obtained consensus. For a given n number of readers, we computed the following
volumes:

• The union of all segmentations by n readers: corresponding to all the possible
volumes

• The intersection of all segmentations by n readers: corresponding to the minimum
volume agreed upon by these readers.

• The consensus segmentation obtained by STAPLE [WZW04] and majority voting by
n readers

All these values were normalized by the average volume obtained by n readers.
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B.3 Results

B.3.1 Impact of the number of readers on overall segmentation
variability

Consistency between all prostate segmentations (whole gland and transition
zone) according to the number of readers.

The average segmentation Dice score (DS) for 2 readers in pairwise comparison was
0.919 (WG) / 0.876 (TZ).

Figure B.2 and B.3 illustrates the relationship between the number of annotators and
the inter-reader segmentation variability (consistency), as measured through pairwise
comparisons. As the number of annotators increases, the range of values for inter-
reader variability estimation became narrower (Figure B.2), and the interquartile value
decreased (Figure B.3). The interquartile range of the Dice score was 0.0076 (WG) /
0.021 (TZ) for configurations with 2 readers, 0.005 (WG) / 0.012 (TZ) for 3 readers,
and 0.002 (WG) / 0.0037 (TZ) for 6 readers. Overall segmentation consistency remains
high in all readers configurations: when considering combinations of only 2 raters, the
inter-reader variability (measured using the Dice metric) ranged from 0.903 to 0.928 for
WG and from 0.840 to 0.898 for TZ.

(a) Dice (b) Hausdorff Distance

(c) 95% Hausdorff Distance (d) Average Symmetric Surface Distance

Fig. B.2.: Violinplot of mean pairwise metrics according to the number of raters for all four metrics
(DSC, HD, HD95% and ASSD) for both WG and TZ. Final value obtained with the 7
raters is indicated on the graph in purple. The width of each violinplot corresponds with
the approximate frequency of data points for each value of the corresponding metric.
Inside each violinplot, horizontal lines also show the data distribution, with a central
longdashed line indicating the median value and two other dashed lines indicating the
range of the central 50% of the data.
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(a) WG (b) TZ

Fig. B.3.: Evolution of 𝑉𝑎𝑟𝑑 according to the number of raters on both structures with pairwise
metrics. Full lines correspond to 𝑉𝑎𝑟𝑑 (=75%-25%), dotted lines correspond to 𝐷𝑖 𝑓𝑑
(=max-min)

Conformity to a reference segmentation (STAPLE and Majority Voting).

Figure B.4 and B.5 illustrate the relationship between the number of annotators and the
inter-reader segmentation variability, as assessed through comparisons to a reference
segmentation (conformity). Using the STAPLE [WZW04] consensus method (Fig. B.4a,
b), the conformity between readers’ segmentation and the consensus segmentation
was comparable with 2 and 3 annotators, the better for 3 annotators and decreased
for 4 or more annotators. Additionally,as illustrated in Fig. B.5 the minimal range of
variability was seen for cases with n = 3 (WG: DSC=0.959, min-max=0.945-0.971,
TZ: DSC=0.938, min-max=0.911-0.957). Likewise, using the majority voting method
(Fig. B.4c, d), the conformity was the higher with 2 and 3 annotators (similar values),
even though the results were not as marked as with STAPLE consensus. Similar results
were obtained using Hausdorff distances as well as average surface distance, with the
highest conformity between readers’ segmentation and the consensus segmentation
obtained for 2 and 3 raters. As for the range of those variabilities, illustrated in Figure 5,
a decrease of variability (better conformity) could be observed with all methods and all
metrics between 2 and 3 raters, before either stabilizing (Majority Voting) or increasing
(STAPLE).

B.3.2 Evolution of segmentation volumes according to the
number of readers

The evolution of consensus volume according to the number of raters is available in
Fig. B.6. As anticipated, the union volume of all segmentations (i.e., all voxels included
in at least one reader’s annotation) grew at a faster rate than the average volume as the
number of readers increases, while the intersection of all segmentations (i.e., all voxels
included in every reader’s annotation) decreased. We showed that the increase in the
union volume ratio for the whole gland was substantial when the number of readers
increased from 1 to 3, with a nearly 15% increase observed. However, we also observed
that the increase was much less significant when the number of readers increased from
3 to 5, resulting in less than a 5% increase in the union volume ratio. We observed a
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Fig. B.4.: Violinplot of mean pairwise metrics according to the number of raters for all four metrics
(DSC, HD, HD95% and ASSD) for both WG and TZ. The purple line shows the 𝑉 𝑓𝑑 value
for the corresponding metric.
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Fig. B.5.: Evolution of 𝑉𝑎𝑟𝑑 and 𝐷𝑖 𝑓𝑑 according to the number of raters on both structures with
pairwise metrics. Full lines correspond to 𝑉𝑎𝑟𝑑 (=75%-25%), dotted lines correspond
to 𝐷𝑖 𝑓𝑑 (=max-min)

similar pattern for transition zone segmentation. When comparing the volume resulting
from the STAPLE consensus method to that resulting from majority voting, we noted
that the STAPLE volume increased at a faster rate, although this increase was relatively
limited and only observed with more than four annotators.

B.4 Discussion
In this study, our objective was to assess the inter-observer variability in the manual
delineation of the prostate contour by involving a group of 7 independent observers.
We employed various metrics and algorithms to quantify this variability and determine

Fig. B.6.: Evolution of the consensus size according to the number of raters involved in the
consensus computation. Left: WG, Right: TZ. Y-axis represent the ratio between the
consensus volume and the segmentations’ average volume. Dashed lines represent 1
and 3rd quartiles, longdashed lines represent min-max.
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the optimal number of readers required to achieve a consensus. Through exhaustive
combinations and the use of different metrics, we discovered that a combination of three
readers yielded the most reliable reference standard with minimal delineation variability
for volumetric measurements and the evaluation of automatic algorithms.

Several studies have evaluated inter-rater variability of manual segmentation of different
structures. A non-exhaustive list of studies dedicated to prostate segmentation can be
found in Table B.2.

Recently, a systematic review of the literature was conducted to comprehensively analyze
and compare the applicability and efficiency of published methods for automatic segmen-
tation of the prostate gland [Wu+22]. Among the 33 studies analyzed, the majority (31
teams) reported employing multiple readers using various approaches such as splitting,
stratification, and blinding. The number of readers ranged from 2 readers in 6 studies to
12 readers in 1 study. Surprisingly, only 4 studies assessed inter-rater variability, revealing
that it was generally low for the segmentation of the entire gland. However, greater
variability was observed at the extreme base and apex of the gland. It is noteworthy
that none of these studies specifically investigated the optimal combination of readers to
establish a consensus.

Sharp et al. [Sha+14b] referenced more than 14 studies estimating inter-rater segmen-
tation variability on 25 organs, a list far from being exhaustive. Comparisons between
all those studies are complex; number of raters are variable, organ and/or lesion to be
segmented are different, as well as the chosen imaging modalities. For example, on CT, a
state-of-the-art method for automatic segmentation [Ise+21] has been able to perform
liver segmentation from with a mean Dice score of 0.96 but could not perform better
than a Dice score of 0.66 on hepatic vessels segmentation. Those reasons make it difficult
to establish one final and definitive conclusion on inter-rater variability, as it is wide and
differs significantly between structures evaluated and modality used.

To the best of our knowledge, the study conducted by Joskowicz et al. [Jos+19], stands
as the sole investigation that evaluates inter-rater variability of segmentation of different
structures (liver, lung tumors, kidney contours, and brain hematoma on CT) by the
same readers. The study involved a large number of independent raters, specifically 11
individuals with varying degrees of expertise. The primary objective was to establish
a reference standard for the evaluation of automatic segmentation tools. The authors
conducted a thorough assessment of manual tracing variability for each case. Additionally,
they performed pair-wise comparisons between random pairs of observers, taking into
account the stratification by case and structure type. The expertise of the observers
and groups of observers were also considered during the analysis. Interestingly, the
authors introduced two noteworthy group-wise metrics in their study. They computed a
volume called “consensus” including voxels that are included in all delineations, a volume
called “possible” including voxels that are included in at least one delineation and the
difference between these two volumes, referred to as the “variability”. These metrics
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Article Zonal N. raters N. cases
Pairwise/
Consensus

Impact of
experience

Other
studied

parameters

Adair Smith
et al. [AS+23a] No 2 6 Pairwise

No difference
between

radiographers
and clinicians

-

Salvi et al. [Sal+22] No 2 15 Pairwise - -
Meyer et al. [Mey+19] Yes 2-3 20-10 Pairwise - -

Pathmanathan
et al. [Pat+19b] No 3 10 Pairwise - Imaging

Shahedi et al. [Sha+17] No 3 10 Both - Thirds
Shahedi et al. [Sha+14a] No 3 10 Both - Thirds
Gardner et al. [Gar+15] No 5 10 Consensus - -
Khalvati et al. [Kha+16] No 5 15 Pairwise - -

Pathmanathan
et al. [Pat+19a] No 5 15 Pairwise - -

Sanders et al. [San+22] No 7 25 Pairwise
Difference between

radiation oncologists
and clinical observers

Imaging,
volume

Adair Smith
et al. [AS+23b] No 10 10 Consensus

No difference
between

radiographers
and clinicians

-

Sabater et al. [Sab+21] No 9 10 Consensus - -
Nyholm et al. [Nyh+13] No 10 25 Pairwise - Volume

Padgett et al. [Pad+19] Yes 2 30 Pairwise -
Thirds,
imaging

Shahedi et al. [Sha+16] No 3 10 Consensus - -
Liu et al. [Liu+12] No 5 23 Consensus - Thirds

Becker et al. [Bec+19] Yes 6 80 Pairwise

Difference
between

radiologists
and non-radiologists

Thirds

Montagne
et al. [Mon+21] Yes 7 40 Both

No influence
of experience

within radiologists

Thirds,
volume,

intensity ratio
Tab. B.2.: Selected studies on inter-rater prostate segmentation variability
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were calculated for different number of readers, from 2 to 10. Authors demonstrated
that the volume overlap variability for a large group of delineations is wide and differs
significantly between structures (minimal for kidney contours). It increases as a function
of the number of observers in groups. Indeed, the volume of “possible” segmentations
(pixels segmented by at least one reader) monotonically increased with the number of
observers: 37% for two observers, 53%, 72% and 85% for 3, 5 and 8 delineations (after
nine delineations the contribution of each additional delineations was less than 5%).

In our study on prostate segmentation, we also observed an increase in the maximum
“possible” volume with the number of observers. However, in contrast to Joskowicz’s
findings, the rate of increase was significantly lower for more than 3 readers. Specifically,
the increase in volume between 3 and 5 readers was less than 5%.

Our study was the first to investigate the influence of the number of readers on consensus
formation. It is important to note that the term "consensus" volume used by Joskowicz et
al. does not refer to a practical method of consensus formation, but rather represents
the minimal set of pixels on which all readers agree. In contrast, our study employed
two reference segmentation methods: the STAPLE method and the Majority Voting
approach. The STAPLE algorithm provided a probabilistic estimation of the true contour
by incorporating the manually drawn contours contributed by all raters. This allowed us
to evaluate the consistency of each individual segmentation with respect to the state-of-
the-art in consensus formation. Our results indicated that the conformity to the consensus
segmentation was highest for k=2 and k=3 readers. However, the variability range
and interquartile were consistently lower for k=3, with only marginal improvements
observed for higher k (as illustrated in Figure 5). It is worth noting that the observed
high variability for k=2 arises from a specific case in consensus computation, where the
consensus is determined by the intersection of two segmentations. This particular case
is more dependent on the individual choices made by radiologists compared to other
cases. These findings were consistent across both overlap-based metrics (such as Dice
coefficient) and Hausdorff distances, suggesting that the optimal number of readers may
be the same despite their differences.

Another fundamental distinction between our work and that of Joskowicz et al. lies
in the types of organs or lesions that were segmented. In their study, the authors
considered kidney contouring as the simplest task due to its lower volume variability,
while other tasks involved contouring pathological processes with more ambiguous
contours, resulting in higher variability. Among these tasks, the segmentation of brain
hematoma exhibited the highest level of variability. The segmentation of the prostate on
MRI presents challenges similar to those encountered in segmenting other abdominal or
pelvic organs. Specifically, these challenges are related to the inconsistent visibility of the
prostatic capsule , the difficulty in distinguishing between different prostatic zones and
the important variability of prostate gland morphology.
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Several limitations can be found in this study. First, our study was only done on a
small size set – 40 cases. However, we believe that the high number of radiologists
who provided segmentations allow us to derive conclusions despite this small number.
Second, all the segmented cases included in this study as well as the annotators are
from the same institution. In consequence, there could be hidden biases due to similar
imaging acquisition or in-house methodologies in the segmentations. Moreover, contrary
to Joskowicz et al [Jos+19], in our study we only focused on one organ: the prostate.
The results we obtained may be expanded to organs with similar characteristics but
can not be expanded to all medical segmentations (such as tumor segmentations, for
example). A methodological limit to this study is the absence of statistical significance
between the different measures according to the number of raters. This is due to the
complexity of such a study, from a statistical point of view: each data point can share
a certain number of raters, and thus data for different numbers of raters are neither
independent nor can be paired (for example, each data point for the case n=2 has 2
raters in common with 5 data points of the case n=3, and 1 rater in common with 20
more of them.)

B.5 Conclusion
The number of readers impacts the inter-reader variability, in both term of inter-reader
consistency and conformity to a reference. Variability has been found to be minimal for 3
raters, or 3 raters represent a tipping point in the variability evolution, with both pairwise-
based metrics or metrics with respect to a reference. It results that three readers may
represent an optimal number in order to establish a reference standard for volumetric
measurements of the prostate gland and for evaluation of automatic segmentations
algorithms
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B.6 Appendices

B.6.1 Metrics used for comparisons between 2 segmentations

The Dice-Sørensen coefficient (DSC, also known as F1-score) is one of the most used
metrics for comparing segmentations. For two binary sets A and B, it is defined as
𝐷𝑆𝐶 (𝐴, 𝐵) = 2 |𝐴∩𝐵 |

|𝐴∪𝐵 | . A Dice coefficient of 0 indicates no overlap between the two sets,
an DSC of 1 indicates a perfect overlap (i.e. A=B)

The Hausdroff distance (HD) corresponds to the maximal distance between the two
sets, equal to 0 if the two sets are equal. For two binary sets A and B it is defined
as 𝐻𝐷 (𝐴, 𝐵) = max(max𝑎∈𝐴min𝑏∈𝐵 𝑑 (𝑎, 𝑏); max𝑏∈𝐵 min𝑎∈𝐴 𝑑 (𝑏, 𝑎)), with 𝑑 the classic
Euclidean distance. However, it is sensitive to outliers, as only one point can heavily
impact it. In consequence, the Hausdorff distance 95% (HD95), defined as as the 95th
percentile of the ensemble {𝑑 (𝑎, 𝐵)∀𝑎 ∈ 𝐴} ∪ {𝑑 (𝐴, 𝑏)∀𝑏 ∈ 𝐵}, is more robust to outliers
than the classic one. Its combination with Dice coefficient allows to consider at the same
time the extent of the overlap between two segmentations and the “maximal distance”
between them.

The Average Symmetric Surface distance (ASSD) is defined as the average of all
the distances from points on the boundary of the first segmentation to the boundary
of the other segmentation, and vice versa:𝐴𝑆𝑆𝐷 (𝐴, 𝐵) = 1

|𝐴 |+ |𝐵 |
∑
𝑎∈𝐴min𝑏∈𝐵 𝑑 (𝑎, 𝑏) +∑

𝑏∈𝐵 min𝑎∈𝐴 𝑑 (𝑏, 𝑎). It provides information on the correspondance of both sets’ global
shape, as it is defined on all points from both sets.

Finally, segmentation volume of the binary set A corresponds to the number of segmented
voxels, converted into cc.

B.6.2 Assessment of the consistency between readers’
segmentations

For each metric 𝑑 and for a number n of readers between 2 and 7, we went through the
following steps:
We first determined all the possible combinations of n readers (n-uplets):

Raters 2 3 4 5 6

C(7, n) 21 35 35 21 7
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For each combination of n readers we then defined the average pairwise comparison,
as the mean of the pairwise comparisons, between all couples of readers present in the
n-uplet, using the metric d (Dice, Hausdrauff distance or ASSD):

𝑑 (𝐴1, . . . , 𝐴𝑛) =
𝑛(𝑛1)

2

𝑛∑︁
𝑖, 𝑗=1,𝑖< 𝑗

𝑑 (𝐴𝑖 , 𝐴 𝑗)

Thus, each datapoint of this analysis represents a specific combination of readers and
corresponds to the average difference between two segmentations of this readers group.

For any given number n of readers, considering all possible combinations of n readers,
we computed a normalized robust estimation of the variability: 𝑉𝑎𝑟𝑑 (𝑛) = 𝐼𝑄𝑅𝑑 (𝑛)

𝑉 𝑓𝑑
with

𝐼𝑄𝑅𝑑 (𝑛) the interquartile range of the measures with the metric d for n raters and 𝑉 𝑓𝑑
the average difference of segmentations in the group containing all the seven raters
altogether: 𝑉 𝑓𝑑 = 𝑑 (𝐴1, . . . , 𝐴7).

Similarly, we defined the normalized range of variability: 𝐷𝑖 𝑓𝑑 (𝑛) =
𝑟𝑎𝑛𝑔𝑒 (𝑛)
𝑉 𝑓𝑑

with
range(n) the interquartile range of the measures with the metric 𝑑 for n raters.

It should be noticed that, by design, the mean value is always equal to 𝑉 𝑓𝑑 no matter the
number of raters, and that the obtained values converge towards 𝑉 𝑓𝑑. However, in this
case the subject of interest is the speed of convergence of both 𝐷𝑖 𝑓𝑑 and 𝑉𝑎𝑟𝑑.
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CAppendix C: Automatic segmentation of

prostate zonal anatomy on MRI: a

systematic review of the literature

Objectives: Accurate zonal segmentation of prostate boundaries on MRI is a critical
prerequisite for automated prostate cancer detection based on PI-RADS. Many articles
have been published describing deep learning methods offering great promise for fast
and accurate segmentation of prostate zonal anatomy. The objective of this review
was to provide a detailed analysis and comparison of applicability and efficiency
of the published methods for automatic segmentation of prostate zonal anatomy
by systematically reviewing the current literature. Methods: A Preferred Reporting
Items for Systematic Reviews and Meta-Analysis (PRISMA) was conducted until
June 30, 2021, using PubMed, ScienceDirect, Web of Science and EMBase databases.
Risk of bias and applicability based on Quality Assessment of Diagnostic Accuracy
Studies 2 (QUADAS-2) criteria adjusted with Checklist for Artificial Intelligence
in Medical Imaging (CLAIM) were assessed. Results: A total of 458 articles were
identified, and 33 were included and reviewed. Only 2 articles had a low risk of
bias for all four QUADAS-2 domains. In the remaining, insufficient details about
database constitution and segmentation protocol provided sources of bias (inclusion
criteria, MRI acquisition, ground truth). Eighteen different types of terminology
for prostate zone segmentation were found, while 4 anatomic zones are described
on MRI. Only 2 authors used a blinded reading, and 4 assessed inter-observer
variability. Conclusions: Our review identified numerous methodological flaws
and underlined biases precluding us from performing quantitative analysis for this
review. This implies low robustness and low applicability in clinical practice of
the evaluated methods. Actually, there is not yet consensus on quality criteria for
database constitution and zonal segmentation methodology.

This appendix has been pusblished in Insights into Imaging [Wu+22].

C.1 Introduction
Magnetic resonance imaging (MRI) is the first imaging choice for detecting and localizing
prostate cancer [Mot+21; Roz+20], based on the Prostate Imaging Reporting and Data
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System (PI-RADS) scoring system [Tur+19] and depending on zonal anatomy. Zonal
segmentation of the prostate plays a crucial role for prostate cancer detection as the PI-
RADS score differs depending on the areas studied, based on diffusion-weighted imaging
(DWI) for peripheral zone lesions and T2-weighted (T2W) imaging for transitional zone
lesions, but also for multiple clinical application such as reproducible prostate volume
and Prostate Specific Antigen (PSA) density evaluation [Ben+92], MRI-ultrasound fusion
biopsy, radiotherapy, or focal planning.

Zonal segmentation of the prostate is usually performed manually on T2W images
by contouring the prostate in a slice-by-slice manner. It is extremely time-consuming,
tedious, and prone to inter and intraobserver variability due to the subjective human
interpretation of organ boundaries and large variability in prostate anatomy and gland
intensity heterogeneity across patients [Kor+15]. There is a real need to develop
automatic methods to accelerate the whole process and offer robust and accurate prostate
segmentation.

Automatic zonal segmentation of the prostate is a challenging task for multiple reasons.
Prostate gland is subject to large morphological variation, intra-prostatic heterogeneity,
and poor contrast with adjacent tissues, making delineation of prostatic zonal contours
laborious. Multi-institutional applicability can be difficult to evaluate as there is a wide
technically induced variability in the image acquisition, as MRI signal intensity is not
standardized and image characteristics are strongly influenced by acquisition protocol,
field strength, scanner type, coil type, etc. [Zav+20].

Finally, the performances of an automated segmentation method depend in part on
the database (heterogeneity of the data used, knowledge of possible selection biases),
quality of ground truth (manual delineation of the prostate performed by human experts),
training time and hardware requirements. First commonly used methods were based
on machine learning methods, such as atlas-based registration models in which several
reference images with corresponding labels are registered and deformed onto the target
image [Lit+12; Pad+19] or C-means clustering models [Chi+16; MBC14]. Most com-
mon methods described after 2017 are based on deep learning with convolutional neural
networks (CNN) allowing automatic extraction of features and semantic image segmenta-
tion. Common architectures such as U-net [RFB15], V-net [MNA16] or ResNet [He+15]
have been extensively used. Modification and fine tuning of existing models, by either
combining multiple U-nets [Zhu+19; Zab+19; Cla+17], adding attention modules
such as squeeze and excitation [Run+19], feature pyramid attention [Liu+19], adding
blocks [Kha+19], transition layers or up-sampling strategies [Nai+20], allowed either
improving accuracy of classical CNN or obtaining same accuracy with reduced memory
and storage requirements.

The primary objective of this review was to provide a detailed analysis and comparison
of applicability and efficiency of the published methods for automatic segmentation
of prostate zonal anatomy by systematically outlining, analyzing, and categorizing the
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relevant publications in the field to date. We also aimed to identify methodological
flaws and biases to demonstrate the need for a consensus on quality criteria for database
constitution and prostate zonal segmentation methodology.

C.2 Materials and methods
This systematic review was conducted and reported in accordance with the Preferred Re-
porting Items for Systematic Reviews and Meta-Analyses statement (PRISMA) [Pag+21].
The methods for performing this systematic review were registered on PROSPERO [Boo+11]
database (registration number CD42021265371), and were agreed by all authors before
the start of the review process to avoid bias. This study was exempt from ethical approval
at our institution because the analysis involved only deidentified data.

C.2.1 Data sources and search

Medical literature published in the English language published until 30 June 2021 was
searched in multiple databases (Medline, Science direct, Embase and Web of Science)
using the following terms:

(prostatic OR prostate) AND (automated OR automatic) AND (segmentation OR
segmented) AND (zone OR zonal) AND ("magnetic resonance" OR mri OR \"magnetic
resonance\"OR mri OR mr) AND (\"artificial intelligence\" OR \"deep learning\"
OR \"machine learning \") and all possible combinations.

No beginning date was applied.

C.2.2 Study selection

Full-text selection was independently performed by two radiologists, one experimented
radiologist specialized in uroradiology and prostate imaging (S.M., 5 years in prostate
imaging, with more than 1000 cases of prostate MRI per year) and one radiology fellow
specialized in uroradiology and prostate imaging (C.W., 1 year in prostate imaging, with
more than 1000 cases of prostate MRI per year). A third experimented professor of
radiology specialized in prostate imaging (R.R.P., 15 years in prostate imaging, with
more than 1000 cases of prostate MRI per year) intervened in case of disagreement. We
summarized search strategy details for each database in Fig. C.1.

We imported all articles retrieved into the reference manager Zotero and removed all
duplicates. The same two radiologists (C.W., S.M.) then independently and manually
screened titles and abstracts of the resultant database to ensure relevance. Articles
that were obviously out of the scope of the research topic were excluded at this stage.
Subsequently, all the remaining articles full texts were retrieved and read, applying
inclusion and exclusion criteria (explained below) with conflicts resolved by consensus
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Fig. C.1.: Flow diagram based on Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) recommendations for systematic reviews

with the third reviewer. Reference lists of these relevant articles were also reviewed for
possible papers missed in the primary search, and those papers were screened using

C.2.3 Selection criteria
Inclusion criteria Articles were included if they were original articles, used machine
learning or deep learning algorithms and aimed to segment prostate human MRI images
by zonal anatomy, using a fully automated method with manual segmentation as ground
truth.

Exclusion criteria Articles were excluded if they were commentaries, editorials, letters,
case reports or abstracts. Were also excluded articles with semi-automated segmentation
methods, no description of segmentation method, segmentation of the whole gland (WG),
or prostate cancer without zonal anatomy, absence of similarity metrics or of evaluation
against ground truth segmentations.

Data collection and extraction process The qualifying papers were then reviewed, and
various data of the studies were extracted and tabulated prior to analysis (Table C.1).

Assessment of methodological quality The two same radiologists (C.W., S.M.) indepen-
dently assessed and extracted data from each of the included articles, using the Quality
Assessment of Diagnostic Accuracy Studies tool-2 (QUADAS-2) framework [FW+11]
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Sources Patients Data Flow and timing Reference standard Test

Scientific database
Public or in-house
database

Vendor Cross-validation Type of annotation
Validation or test on
external data

Title
Eligibility criteria: inclu-
sion and exclusion criteria

Field
Splitting in training,
validation and test set

Annotation tool if used Performance metrics

Authors Sample size Array Number of annotators Results based on DSC

Year of publication Ethic consent Field of view
Ground truth segmenta-
tion and rationale

Journal name
Presence of benign pros-
tate hypertrophia

Pre-processing
Measurements of inter-
and intra-rater variability
if any

Presence of prostate
cancer

Post-processing Type of annotators

Percentage of prostate
cancer

Number of vendors Experience of annotators

Uni or multicentric Slice thickness
Prospective or retrospec-
tive

Type of slice and
sequence
Cross-validation

DSC = Dice Similarity Coefficient

Tab. C.1.: Data extraction.

Fig. C.2.: Chronological distribution of the 33 reviewed articles. 1st model for prostate zonal
anatomy segmentation was published in 2011. 1st convolutional neural network (CNN)
was published in 2017

adjusted with topics from the Checklist for Artificial Intelligence in Medical Imaging
(CLAIM) [MMK20] to evaluate the risk of bias and applicability for each selected study,
with conflicts resolved by consensus with the third reviewer.

Extracted data were tabulated, synthesized, and evaluated for methodological flaws and
applicability of the proposed techniques.

C.3 Results
After removing duplicates, 458 articles were remaining. Final consensus was reached
yielding a total of 33 articles [Zav+20; Lit+12; Pad+19; Chi+16; MBC14], [Zhu+19;
Zab+19; Cla+17; Run+19; Liu+19; Kha+19; Nai+20], [Mak+11; Yin+12; MG12;
Tot+13; Chi+14; Can+18; MBH18; Che+17; Jen+19; Ham+19; Run+20; Mey+19;

C.3 Results 153



Mot+20; Qin+20; Liu+20; Lee+20; Ald+20; San+20b; Lai+21; Bar+21; Cuo+21a]
(Figs. C.1,C.2).

C.3.1 Datasets
Training, validation, and test sets All articles used retrospective datasets.

Wide heterogeneity in training, validation and test datasets was found (Table C.2).

Performance testing of the algorithms can be done on same source than for the devel-
opment or use different source of data, and based on either public data, private data
or a combination of both. Public data were used in 15/33 articles for testing. Only 7
studies [Zav+20; Chi+16; Cla+17; Che+17; Run+20; Qin+20; Liu+20] used both
private and public data for testing, allowing better generalization of their algorithms.
None of them used prospective data for validation and testing.

Most used public datasets were PROSTATEx [Arm+18], NCI-ISBI 2013 [NB15] and
PROMISE12 [Lit+14b] (Additional file 1: Table S1).

Eight authors applied cross-validation, using a subset of available dataset as training
set, while the remaining data constituted the test set to evaluate the segmentation
performance and accuracy. Nine reported using cross-validation for testing, averaging
the results from the different rounds, hence adding bias.

Technique We identified major technical differences in datasets regarding the number
of vendors, field strength, type of coils, sequences, slice thickness, field of view (FOV)
and input data used for automatic segmentation (Table C.3). Less than half (14/33)
studies used more than one type of vendors and 7/33 used both 1.5 T and 3 T MRI
machines. More than 2/3 (24/33) used mono-modal input, mainly T2-weighted planes,
in combination with apparent diffusion coefficient (ADC) map in one study [Zab+19] or
with multiparametric and multi-incidence MR images in another [Chi+16]. The slice
thickness of T2-weighted axial planes was consistent with the PI-RADS v2.1 recommen-
dations in 13/33 studies (≤ 3 mm), which was not the case for the public data base
PROSTATEx (3.6 mm). Only 7 studies provided sequence details (type of sequence, slice
thickness, FOV) used for ground truth manual segmentation.

C.3.2 Zonal anatomy
We found 18 different types of very heterogeneous and unclear terminologies of zonal
anatomy (Fig. C.3, Additional file 1: Fig. S1). Out the 33 articles reviewed, less
than 1/4(8/33) [Mak+11; MG12; Ham+19; Mey+19; Qin+20; Liu+20; San+20b;
Cuo+21a], provided precise terminology and segmentation protocol. Frequently the
inappropriate term "central gland" (CG) was used, with ambiguous definition of central
zone (CZ) and anterior fibro-muscular stroma (AFMS) alternatively included in peripheral
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zone (PZ) or transition zone (TZ), or mainly not described at all. Two studies mis-used
the term "central zone" to refer to the "central gland" [Chi+14; Ald+20].

C.3.3 Ground truth

Manual delineation of the prostate gland performed by human experts was used to
generate ground truth (Table C.4).

Annotation tool Twenty studies (61%) reported using manual contouring, while a third
(11/33) reported using annotation tools. One team [Jen+19] specified that the radiolo-
gist did not delineate zones on all slices but relied on interpolation performed by their
annotation tools. Two studies [Ham+19; Run+20] did not provide any information.

C.4 Qualifications of annotators

Most studies (27/33, 81%) reported a radiologist or a radiation oncologist as human
expert. In 3 papers, no detail was provided on annotators qualification, although
one [Run+19] specified using an "expert" reader. Definition of an "expert" reader was
mostly unclear with no specification of number of MRI they interpreted, for exam-
ple [MBC14; Run+19; Tot+13; Jen+19; Mey+19; Ald+20].

C.5 Number of readers

Number of readers and their experience are described in Table C.4. Number of readers
was not available in two studies. While 2/3 of teams (22/33) reported using more than
one reader, with splitted, stratified or blinded reading approaches, 7 did not provide
information on reading approach.

C.6 Intra and inter-rater variability

Inter-rater variability for annotations was rated in only 4 studies [Lit+12; MBC14;
Mak+11; Ald+20]. Some studies used alternative techniques to approach better homo-
geneity of ground truth. In [Zab+19], the four radiologists met for a training session and
together segmented two example patients to achieve a similar methodology for the rest
of the dataset, using only experienced radiologists. In [Zav+20], the contours segmented
by three radiologists were cross-checked and reviewed by two radiation oncologists,
resulting in better homogeneity of ground truth. In [Nai+20], the initial prostate masks
were drawn by two students who were trained in segmenting prostate zones.
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C.6.1 Risk of bias and quality assessment

The detailed results are presented in Fig. C.4 and Additional file 1: Table S2.

Regarding patient selection, we considered a low risk of bias if there were clear data
inclusion and exclusion criteria, inclusion of patients with and without PCa. Models were
considered less applicable if datasets were composed of only one type of scanners or if
no information was specified. For reference standard, number of readers and type of
reading for ground truth segmentation were reviewed. Clear partitioning of the database
(into training, validation, and test sets) was needed to waive risk of bias for flow and
timing. Some articles used cross-validation methods without keeping a clear independent
test dataset [Zav+20; Lit+12; Pad+19; Run+19; MG12; Tot+13; Che+17; Run+20]
[Qin+20] Overall, all 33 included studies were judged to have a low risk of bias in the
domain "index test" and 22 of 33 (67%) of the studies were judged to have a low risk of
bias considering "flow and timing". However, only 1/4 of the studies (8/33) were judged
to have a low risk of bias in the domain "patient selection", 1/3(10/33) in the domain
"reference standard". Only 2 articles were judged to have a low risk of bias in all four
domains.

C.6.2 Al methodology

Before 2017, authors mostly used machine learning-based methods for automatic segmen-
tation of prostatic zones. After 2017, almost all publications were based on deep learning
with convolutional neural networks (CNN) (72%, 24/33). Common architectures such as
U-net [RFB15] have been extensively used, with modification and fine tuning of existing
models, allowing either improved accuracy of classical networks or reduced memory and
storage requirements.

Dice coefficient (DSC) and Hausdorff distance [TH15] were commonly used metrics.
Almost all authors found inferior results for PZ than WG, CG or TZ segmentation,
attributing this to the more complex shape and structure of PZ, especially within the
anterior bundles. Eleven authors subsequently stratified their DSC results based on
prostate height, with various methods:in three equal parts [Zab+19], in 25% apex, 50%
mid gland and 25% base [Ald+20] in 30%, 40% and 30%, respectively [Jen+19]. Five
authors did not provide any details on how they divided the volume.

These results as well as the remaining metrics are summarized in Table C.5.

C.7 Discussion
Our systematic review highlights the high prevalence of deficiencies in methodology in
the literature on automatic segmentation of prostate gland on MRI.
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Fig. C.3.: Schematic of the four major types of protocol of zonal segmentation. Type A: articles
for which “central gland” included CZ, TZ and AFMS. Type B: articles for which “central
gland” included TZ and CZ. No details for AFMS. Type C: articles which did not provide
details for AFMS, CZ or CG. CZ seemed to be mostly segmented PZ, while AFMS seemed
to be mostly segmented with TZ, usually called “CG”. Type D: articles which did not
provide details for AFMS or CZ. CZ and AFMS seemed to be mostly segmented with PZ.
CZ central zone, TZ transition zone, AFMS anterior fibro-muscular stroma, PZ peripheral
zone, CG central gland

Fig. C.4.: Stacked bar charts showing results of quality assessment for risk of bias and applicability
of included studies. QUADAS-2 scores for methodologic study quality are expressed
as the percentage of studies that met each criterion. For each quality domain, the
proportion of included studies that were determined to have low, high, or unclear risk
of bias and/or concerns regarding applicability is displayed in green, orange, and blue,
respectively. QUADAS-2: Quality Assessment of Diagnostic Accuracy Studies 2
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First author, year of publication Annotation Annotators
Type Tool Qualification Number Type of reading Experience*

Cuocolo et al. [Cuo+21a] Software itk-SNAP (A) 4 Splitted¶ 2 to 5
Bardis et al. [Bar+21] Software In house (A) 12 Stratified 10

Lai et al. [Lai+21] Manual − (A) 1 − 10
Nai et al. [Nai+20] Software MITK Medical physicist 4 Stratified 2 to 10

Sanford et al. [San+20b] Software pseg (A) 1 − 10
Aldoj et al. [Ald+20] Manual − (A) 1 −F "Expert"

Zavala-Romero et al. [Zav+20] Manual − (𝐴) + (𝐵) 3 Stratified 10
Lee et al. [Lee+20] Manual - (A) 2 ? 4
Liu et al. [Liu+20] Software Osirix (𝐶) + (𝐴) More than 2 Stratified 10 and 19
Qin et al. [Qin+20] Manual − (𝐴)† ? − ?

Motamed et al. [Mot+20] Manual − (A) 2 ? 4 and 6
Zabihollahy et al. [Zab+19] Software itk-SNAP (A) 4 Splitted 5 and 14

Padgett et al. [Pad+19] Manual − (B) 2 Blinded § 10 and 26
Rundo et al. [Run+19]1 Manual - ? Multiple ? "Expert"
Meyer et al. [Mey+19] Software 3DSLICER Medical student +

urologist + (A)
4 Stratified "Expert"

Liu et al. [Liu+19] Software Osirix (C) +(A) 7 Stratified 10 − 15
Rundo et al.[Run+20]2 ? ? (A) Multiple ? ?

Hambarde et al. [Ham+19] ? ? (A) Multiple ? ?
Jensen et al. [Jen+19] Software ? (A) 1 − "Expert"
Khan et al. [Kha+19] Manual - (A) 3 ? ?
Cheng et al. [Che+17] Software pseg (A) 1 - 10
Zhu et al. [Zhu+19] Manual − ? 2 ? More than 5
Mooij et al. [MBH18] Manual − ? ? ? ?
Can et al. [Can+18] Manual - (A) 3 ? ?
Clark et al. [Cla+17] Manual − (A) 1 ? ?

Chilali et al. [Chi+16] Manual − (A) 1 − 15
Makni et al. [MBC14] Manual − (A) 3 Blinded "Expert"
Chi et al. [Chi+14] Manual - (A) 1 − 5

Toth et al. [Tot+13] Software 3DSLICER (A) 1 − "Expert"
Litjens et al. [Lit+12] Manual − (A) 3 ? ?

Moschidis
and Graham [MG12]

Manual − (A) 2 ? ?

Yin et al. [Yin+12] Manual − "Radiologist-trained
operators"

2 Splitted ?

Makni et al. [Mak+11] Manual _ (A) 3 Blinded 4.6 and 9
(A) Radiologist
(B) Radiation oncologist
(C) Research fellow
? Data not reported
∗ Experience of reader(s), in years
† Unclear for PROMM, in-house data
¶ Splitted but consensus per binome resident-senior
F Only one reading for ground truth segmentation but evaluation of intra and inter observator variability on some masks
§ Measure of inter- observator variability for 10 masks
Splitted: database is divided such as each set of images is read only once, resulting in an equivalent of single reader
(Stratified: first reading (mostly by a less experienced reader) subsequently corrected by a more experience reader
Blinded: blinded reading by at least 2 readers
1 Rundo et al., USE-Net: incorporating Squeeze-and-Excitation blocks into U-Net for prostate zonal segmentation of multi-institutional MRI datasets [Run+19]
2 Rundo et al., CNN-based Prostate Zonal Segmentation on T2-weighted MR Images: A Cross-dataset Study [Run+20]

Tab. C.4.: Type of ground truth segmentation
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Since 2011, 33 studies proposed new or fine-tuned existing approaches for automatic
prostatic zonal segmentation. Many studies are hampered by issues with limitation of
the dataset used in the model, methodological mistakes, poor reproducibility, and biases
in study design. Most studies focused on achieving the best accuracy for their algorithms,
sometimes putting aside validity and applicability in clinical practice. Indeed, only two
articles presented with an overall low risk of bias.

The common limitations concerned datasets used for the model development, definition of
the ground truth for evaluation of the model and strategies used for model evaluation.

Regarding the datasets used, some are private, and some are public open source. For
private databases, advanced technical characteristics of images (e.g., imaging sequence,
field of view, noise) used and patient’s inclusion and exclusion criteria were poorly or
not described. Most databases lacked representability of patients’ variability as prostate
volume, prostate tissue heterogeneity, prostatic pathology as PCa or benign hypertropia.
Open-source prostate MRI databases also have several limitations such as selection bias,
limited annotations, low-resolution images, unclear terminology, lack of demographic
statistics and of precise histologic data.

This can have a direct impact on the generalizability of the model developed. Indeed,
it has been shown for example that prostate morphological differences contribute to
segmentation variability: Montagne et al. [Mon+21], showed that the smaller the
prostate volume was, the higher the variability was; several authors [Nai+20; Ald+20;
Cuo+21a] found poorer performance of their model applied on special cases such as
history of trans-urethral-resection of prostate (TURP), while most databases lacked
representativity of patients variability.

Even though it is tedious and time-consuming, reference segmentation should require at
least two trained readers because inter- and intra-rater variability can be significant. Qual-
ity of images (slice thickness, partial volume artifacts), apex or base location [Mon+21;
Bec+19] or prostate morphological differences [Mon+21] have been shown to decrease
accuracy of segmentation. Meyer et al. [Mey+19] showed that training on segmentation
obtained by a single reader introduced bias into the training data. Indeed, performance
was higher when obtained from the expert who created the training data in comparison
with evaluation against other expert segmentation. Aldoj et al. [Ald+20] emphasized the
need for finely annotated sets as they improved overall performances of their algorithms,
showing the greater importance of well annotated databases compared to large and
coarsely annotated databases.

Quality of the resulting auto segmentation is evaluated against the corresponding refer-
ence segmentation, so called the ground truth. The main approach is manual delineation
of the prostate zones performed by human experts. We found a great heterogeneity on
the segmentation protocols and terminology used. Eighteen different types of prostate
delineation were found; each anatomical zone was segmented directly or obtained by
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First author, year of
publication

Type DSC results † Stratification
by gland height

Pre-processing
details

Post-processing
detailsWG TZ PZ CG

Cuocolo et al. [Cuo+21a] CNN 0.9063∗ - 0.7142∗ 0.8692∗ 𝑥 X 𝑥

Bardis et al. [Bar+21] CNN 0.94 0.91 0.774 − 𝑥 X 𝑥

Lai et al. [Lai+21] CNN − 0.93 0.7004 - 𝑥 X 𝑥

Nai et al. [Nai+20] CNN 0.89∗ − 0.712∗ 0.856∗ X X 𝑥

Sanford et al. [San+20b] CNN 0.915 0.89 − - 𝑥 X 𝑥

Aldoj et al. [Ald+20] CNN 0.921∗ − 0.781∗ 0.895∗ X √
𝑥

Zavala-Romero et al. [Zav+20] CNN
0.825𝑎

0.892𝑏
-

0.788𝑎

0.811𝑏
- 𝑥 X X

Lee et al. [Lee+20] CNN 0.8712 0.7648 − − 𝑥 X 𝑥

Liu et al. [Liu+20] CNN − 0.89∗𝑐

0.87∗𝑑
0.80∗𝑐

0.79∗𝑑
- X X 𝑥

Qin et al. [Qin+20] CNN - − 0.806 0.901 𝑥 X X

Motamed et al. [Mot+20] CNN
0.89𝑒

0.85 𝑓
0.86e

0.84 𝑓
- − 𝑥 𝑥 X

Zabihollahy et al. [Zab+19] CNN
0.9533𝑔

0.9209ℎ
− 0.8678g

0.861h
0.9375g

0.8989h X X X

Padgett et al. [Pad+19] Atlas 0.83∗ 0.75∗ 0.59∗ − X 𝑥 𝑥

Rundo et al.[Run+19]1 CNN − -
0.919𝑖

0.831 𝑗

0.801𝑘

0.871𝑖

0.886 𝑗

0.937𝑘
𝑥 X X

Meyer et al. [Mey+19] CNN − 0.876 0.798 − 𝑥 X X

Liu et al. [Liu+19] CNN -
0.86𝑐

0.79𝑑
0.74𝑐

0.74𝑑
- X X 𝑥

Rundo et al.[Run+20]2 CNN - −
0.91∗ (with
pre-train-
ing)

0.85∗ (with
pre-train-
ing)

𝑥 X X

Hambarde et al. [Ham+19] CNN − − 0.8733 − 𝑥 X 𝑥

Jensen et al. [Jen+19] CNN - − 0.692 0.794 X X X

Khan et al. [Kha+19] CNN − − 0.703∗ 0.88∗ × 𝑥 𝑥

Cheng et al. [Che+17] CNN 0.9235∗ − − 0.9006∗ X X X

Zhu et al. [Zhu+19] CNN 0.927 − 0.793 − X X ×
Mooij et al. [MBH18] CNN − 0.85∗ 0.6∗ − 𝑥 X 𝑥

Can et al. [Can+18] CNN − − 0.722∗ 0.89∗ × 𝑥 𝑥

Clark et al. [Cla+17] CNN
0.886𝑐

0.862𝑑
0.847𝑐 − − × X 𝑥

Chilali et al. [Chi+16] C means + Atlas 0.9478 0.7023 0.62 − 𝑥 X 𝑥

Makni et al. [MBC14] C means − 0.88 0.78 − × X 𝑥

Chi et al. [Chi+14] Gaussian model 0.8 − 0.53 0.83 × 𝑥 𝑥

Toth et al. [Tot+13] Active appearance model 0.81 -
0.681

0.60𝑚
0.791

0.72m X X 𝑥

Litjens et al. [Lit+12] Atlas − − 0.75 0.8 𝑥 𝑥 𝑥

Moschidis and Graham [MG12]
Random Forrest + Graph
Cuts

- - − − 𝑥 X 𝑥

Yin et al. [Yin+12] Graph Cuts - − − 0.81 × 𝑥 𝑥

Makni et al. [Mak+11] C means - - 0.761 0.871
𝒹
¶ 𝑥 𝑥

CNN convolutional neural network
† Dice similarity coefficient (DSC) for whole gland (WG), transition zone (TZ), peripheral zone (PZ) or central gland (CG) (means)
∗ Best results if several models were tested
¶ no Dice Similary Coefficien (DSC) provided
𝑎,𝑏 Trained on combined datasets and, respectively, tested on 𝐺𝑎 or Siemens 𝑏
𝑐,𝑑 Respectively for testing on internal 𝑐 or external 𝑑 data

𝑒, 𝑓 Respectively for source 𝑒 or target 𝑓 with 115 patients for training (best results)
𝑔,ℎ Respectively for 𝑇2-weighted 𝑔 and apparent diffusion coefficient (ADC) map ℎ

𝑖., 𝑗 Trained on combined datasets and, respectively, tested on dataset #1𝑖 ,#2 𝑗 or #3𝑘
1, m Using pre-segmented whole gland (WG)’, or with whole process 𝑚
1 Rundo et al., USE-Net: incorporating Squeeze-and-Excitation blocks into U-Net for prostate zonal segmentation of multi-institutional MRI datasets [Run+19]
2 Rundo et al., CNN-based Prostate Zonal Segmentation on T2-weighted MR Images: A Cross-dataset Study [Run+20]

Tab. C.5.: Overview of segmentation methods with performance based on DSC. Number of articles
reporting stratification by gland height, and reporting pre- or post-processing steps

subtraction from one region to another (resulting in CZ, AFMS and PZ, which can be
obtained either by delineation or by subtraction of WG and TZ). Terminology used was
extremely variable from one study to another and did not always respect the one used
and referenced in the PIRADS [Tur+19; Wei+16] (for example, use of "central gland"
instead of CZ or TZ).

Number of readers, level of expertise, inter- and intravariability evaluation were mostly
absent, limiting the generalizability of the developed models due to interobserver vari-
ability. Only 2/33 studies [MBC14; Mak+11] used blinded reading for ground truth.
Nonetheless, prostate segmentation is a very challenging task. The prostate gland usu-
ally has fuzzy boundaries. Pixel intensities are heterogeneous both inside and outside
the prostate, and contrasts and pixel intensities are very similar for prostate and non-
prostate regions. The manual delineation of the prostate zones is therefore limited by
the subjective interpretation of the organ boundaries. Becker et al. [Bec+19] found in a
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multi-reader study a higher variability at the extreme part of the gland (apex and base)
and for the TZ delineation. Similar results were found by Padgett et al. [Pad+19] who
found a difference of DSC from 0.88 to 0.81 for WG and TZ. Meyer et al. [Mey+19]
showed that training on segmentation obtained by a single reader introduced bias into
the training data.

Strategies used for model evaluation were limited by the lack of external validation
Only 7 studies [Zav+20; Chi+16; Cla+17; Che+17; Run+20; Qin+20; Liu+20] used
both private and public data to evaluate their model. The absence of an external testing
dataset is a critical limitation to the clinical applicability of the developed models. Data
augmentation and transfer learning were also used to help addressing this issue [Zav+20;
Cla+17; Run+19; Liu+19; MBH18; Jen+19; Run+20; Mot+20; Qin+20; Liu+20;
Lee+20; Ald+20; San+20b; Lai+21; Cuo+21a; Mey+21]. It is important to note that
some bias cannot be balanced-out by increasing the sample size by data augmentation or
repetition of training. For example, data augmentation of a dataset constituted without
prostate cancer patients cannot decrease risk of bias induced by the more homogeneous
contours it provides.

Even without data augmentation, MRI images contains wide heterogeneity and most
of the times pre-processing steps involving intensity normalization or noise reduction
to remove confounding features and improve image quality are necessary [GSJ20].
Some authors [Zav+20; Zab+19]15, 31, 33, 35, 51] also reported post-processing. Not
reporting some of the pre- or post-processing steps can affect reproducibility and sufficient
detail enables readers to determine the quality and generalizability of the work. While
several checklists can be used such as those from Enhancing the Quality and Transparency
Of health Research (EQUATOR) Network guidelines [Equ], the use of the recently
published Checklist for Artificial Intelligence in Medical Imaging [MMK20] would be
helpful to lower risk of bias of ongoing work.

In the future, there is a need for well-sampled databases including large number of
representative cases for the anatomical variability of the prostate gland and technical
specificities (2D T2 versus 3D T2, slice thickness, FOV, vendors) to account for the
anatomical, disease related, acquisition related variabilities, with a multi-readers seg-
mentations and a well-defined delineation guideline of the prostate (as it is already done
for example in organs at risk for radiotherapy planning [Vrt+20]).

Constitution of quality database should be based on latest PI-RADS recommendations, by
associating quality criteria such as the consensual quality requirements ESUR/ESUI [de
+20] or Prostate Imaging Quality (PI-QUAL) [Gig+21] score to guarantee essential
image quality for zonal segmentation and tumor detection.

The main limitation of this review is the absence of details of technical information used;
each study making its own contribution for networks with countless hyperparameters,
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sometimes without enough details to be gathered. This precluded us from comparing
models’ accuracy without bias.

Some other relevant papers also could be missing because of incongruences between
search terms, article keywords, or indexing in the databases, such as for conference
proceedings papers. In particular, databases such as ArXiv were not searched as it also
provides access to preprints, without peer review.

C.8 Conclusion
This review systematically synthesizes published automatic prostate zonal segmentation
methods using MRI. We found that no papers in the literature currently have both
sufficiently documented datasets selection and segmentation criteria and enough external
validation.

This underlines the critical need for higher quality datasets, a documented reproducible
method and terminology for zonal segmentation and sufficient external dataset to develop
the best quality methods free from biases: an essential step for future development of
automatic detection of prostate cancer.
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Acronyms

ADC: Apparent Diffusion Coefficient

AFMS: Anterior Fibromuscular Stroma

AHD: Average Hausdorff Distance

AUC: Area Under the Curve

BPEF: Biproximate Ellipsoid Formula

bpMRI: Biparametric MRI

CAD: Computer-Aided Diagnosis/Detection

CADe: Computer-Aided Detection

CADx: Computer-Aided Diagnosis

CI: Confidence Interval

CNN: Convolutional Neural Networks

CZ: Central Zone

DCEI: Dynamic Contrast-Enhanced Imaging

DSC: Dice Score

DRE: Digital Rectal Exam

DWI: Diffusion-weighted Imaging
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GGG: Gleason Grade Group

GDPR: General Data Protection Regulation

HD: Hausdorff Distance

ICC: Intraclass Correlation Coefficient

IQR: Interquartile Range

LMSD: Local Mean Squared Distance

MPM: Manual Planimetry Method

MRI: Magnetic Resonance Imaging

MV: Majority Voting

mpMRI: multiparametric MRI

PCa: Prostate Cancer

PSA: Prostate-Specific Antigen

PSAd: PSA density

PV: Prostate Volume

PZ: Peripheral Zone

(r)STD: (relative) Standard Deviation

T2WI: T2-weighted Imaging

TEF: Traditional Ellipsoid Formula

TRUS: Transrectal Ultrasonography

TZ: Transition Zone

WG: Whole Gland
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