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ABSTRACT

Speaker recognition systems authenticate the identity of speakers from their speech ut-

terances. In order to authenticate the identity of a claimed user, it is required to obtain a

fixed-length compact speaker-discriminant representation for variable-length speech ut-

terances known as speaker embeddings. The current speaker recognition systems are us-

ing DNNs to extract speaker embeddings. Despite the relative robustness of DNN-based

speaker recognition systems, their performance degrades in the presence of acoustical

variabilities such as additive noise and reverberation. There are three main groups of

variabilities that reduce the performance of speaker recognition systems: internal (e.g.

age, emotion, and stress), external (e.g. noise, reverberation, and distance), and content

(e.g. language, and accent). The main theme of this thesis is robust DNN-based text-

independent speaker recognition systems against additive noise and reverberation vari-

abilities. The impact of variabilities can be addressed at the signal level, feature level,

speaker embedding extractor, speaker embedding, and scoring adaptation techniques.

The scope of our work is speaker embedding extractor and speaker embedding in two

well-known and successful DNN-based speaker recognition systems: TDNN, and ResNet.

The first part of our work (Chapter 5) is on proposing several noise compensation DAEs

(Stacked DAE, Gaussian DAE) that perform a transformation between pairs of distorted/clean

speaker embeddings extracted by the TDNN system. The Stacked DAE is composed of

several DAEs where each DAE receives as input the output of its predecessor DAE con-

catenated with the difference between noisy speaker embeddings and its predecessors’

output. The noise compensation modules are tested in the case of additive noise (unseen

noises, specific noise), early reverberation, and late reverberation distortions. We show a

significant improvement of equal error rate in all cases ranging from 20% to 76% relative

gain of equal error rate. In this part, we proposed two configurations for compensating

multiple distortions.

In the second part of our work (Chapter 6), the behavior of the ResNet speaker recogni-

tion system against noise and reverberation was explored and compared with the TDNN

system. Also, we investigate the noise compensation on ResNet speaker embeddings in

two cases: 1) compensation of artificial noise with artificial data, and 2) compensation

of real noise with artificial data. The second case is the most desired scenario because it

XIX
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makes noise compensation affordable without having real data to train denoising tech-

niques. The experimental results show that in the first scenario noise compensation gives

significant improvement with TDNN while this improvement in ResNet is not significant.

In the second scenario, we achieved a 15% improvement of EER over the VoiCes Eval chal-

lenge in both TDNN and ResNet systems. In most cases, the performance of ResNet with-

out compensation is superior to TDNN with noise compensation.

In the next part (Chapter 7), we move towards learning noise-robust speaker embed-

ding extractors. We propose two ResNet-based speaker recognition systems that make

the speaker embedding more robust against additive noise and reverberation. The goal

of the proposed systems is to extract speaker embeddings in noisy environments that are

close to their corresponding speaker embedding in a clean environment. The first pro-

posed system learns the same distribution for both noisy and clean environments. The

second proposed system shifts the noisy speaker embeddings towards the distribution of

the best-obtained system in a clean environment. In different situations with real and arti-

ficial noises and reverberation conditions, the modified systems outperform the baseline

ResNet system. The proposed systems are tested with four evaluation protocols. In the

presence of artificial noise and reverberation, we achieved a 19% improvement in EER.

The main advantage of the proposed systems is their efficiency against real noise and re-

verberation. In the presence of real noise and reverberation, we achieved a 15% improve-

ment in EER.

In the last part of our work (Chapter 8), we proposed a noise-robust self-supervised

ResNet speaker recognition system based on the Barlow Twins loss function. The Barlow

Twins objective function tries to optimize two criteria: First, it increases the similarity be-

tween two versions of the same signal (i.e. the clean and its augmented noisy version)

to make the speaker embedding invariant to the acoustic noise. Second, it reduces the re-

dundancy between the dimensions of the speaker embeddings which improves the overall

quality of speaker embeddings. The experimental results on the Fabiole corpus show a 22

% relative gain in terms of EER in clean environments and an 18% improvement in the

presence of noise with low SNR and reverberation.



ABSTRACT IN FRENCH

Les systèmes de reconnaissance du locuteur ont pour objectif d’authentifier des locuteurs

à partir de leurs énoncés vocaux. Afin d’authentifier un utilisateur revendiqué, il est néces-

saire d’obtenir une représentation de chaque énoncé, sous la forme d’un vecteur de taille

fixe, contenant linformation permettant la séparation des locuteurs. Les systèmes de re-

connaissance de locuteurs actuels utilisent des Réseaux de Neurones Profonds (RNP) pour

extraire de telles représentations aussi appelées embeddings de locuteurs. Malgré la ro-

bustesse relative des systèmes de reconnaissance de locuteurs basés sur des RNP, leurs

performances se dégradent en présence de variabilités acoustiques telles que du bruit ad-

ditif et de la réverbération. Il existe trois principaux types de variabilités qui réduisent les

performances des systèmes de reconnaissance du locuteur : interne (par exemple, l’émo-

tion, l’âge, et le stress), externe (par exemple, le bruit, la réverbération, et la distance entre

le locuteur et le microphone) et des variabilités liées au contenu (par exemple, la langue,

et l’accent). Cette thèse se concentre sur la robustesse, face aux bruits additifs et aux réver-

bérations, des systèmes de reconnaissances du locuteur indépendante du texte, basés sur

les RNP. L’impact de ces variabilités peut être traité au niveau du signal, au niveau des

caractéristiques, de l’extracteur dembeddings du locuteur, des embeddings et des tech-

niques d’adaptation. Notre travail porte principalement sur la robustesse de l’extracteur

des embeddings et sur les embeddings pour deux types de systèmes bien connus : TDNN

et ResNet.

La première partie de notre travail (Chapitre 5) consiste à proposer plusieurs Auto-

Encodeurs de Débruitage (AED) (Pile d’AED, AED Gaussien) pour compenser le bruit au

niveau des embeddings. Ces systèmes effectuent la transformation entre des embeddings,

extraits avec le système TDNN, bruités et leur version propre. La Pile d’AED est com-

posée de plusieurs AED où chaque AED reçoit en entrée la sortie de son prédécesseur

concaténée avec la différence entre l’embedding du locuteur bruité et la sortie de ses

prédécesseurs. Ces modules de compensation de bruit sont testés dans le cas de bruits

additifs (bruits inconnues, bruits spécifiques), de distorsions de réverbération précoce et

de réverbération tardive. Nos expériences montrent une amélioration significative du taux

d’erreur égal (EER). Dans tous les cas, 20% à 76% de gain relatif de EER est obtenu. Dans

cette partie, nous avons proposé deux configurations dans le cas d’avoir plusieurs distor-

XXI



XXII ABSTRACT IN FRENCH

sions acoustiques.

Dans la deuxième partie de cette thèse (Chapitre 6), le comportement des systèmes de

reconnaissance de locuteur de type ResNet face au bruit et à la réverbération est étudié et

comparé au système de type TDNN. Nous étudions également la compensation du bruit

sur des embeddings extraits par ResNet dans deux cas : 1) la compensation d’un bruit arti-

ficiel avec des données artificielles et 2) la compensation d’un bruit réel avec des données

artificielles. Le deuxième cas est le scénario le plus intéressant car il permet d’entraîner

le système de débruitage sans disposer de données réelles. Les résultats expérimentaux

montrent que dans le premier scénario, la compensation du bruit donne une améliora-

tion significative pour des embeddings de type TDNN mais pas pour des embeddings de

type ResNet. Dans le deuxième scénario, nous avons obtenu une amélioration de 15 %

de l’EER sur le challenge VoiCes Eval pour les systèmes TDNN et ResNet. Dans la plupart

des cas, les performances de ResNet sans compensation sont supérieures au TDNN avec

compensation de bruit.

La partie suivante (Chapitre 7), se concentre sur l’apprentissage de systèmes d’extrac-

tion d’embeddings du locuteurs robustes au bruit. Nous proposons deux systèmes de

reconnaissance du locuteur basés sur des ResNet qui rendent l’intégration du locuteur

plus robuste contre le bruit additif et la réverbération. Le but des systèmes proposés est

déviter la propagation du bruit du signal à l’embedding. De cette manière, les embed-

dings extraits dans des environnements bruités sont proches de leur version extraite dans

un environnement non-bruité. Le premier système proposé apprend la même distribu-

tion pour les environnements bruyants et propres. La seconde propose un système qui

impose aux embeddings de locuteurs pour environnement bruité de se déplacer vers la

distribution du système le mieux obtenu dans l’environnement propre. Dans différentes

situations avec des bruits réels et simulés et des conditions de réverbération, les systèmes

modifiés surpassent le système ResNet de base. Les systèmes proposés sont testés avec

quatre protocoles d’évaluation. En présence de bruit artificiel et de réverbération, nous

avons obtenu une amélioration relatif de 19 % de l’EER. Le principal avantage des sys-

tèmes proposés est leur efficacité contre le bruit réel et la réverbération. En présence de

bruit et de réverbération réels, nous avons obtenu une amélioration relatif de 15 % de

l’EER.

Dans la dernière partie de notre travail (Chapitre 8), nous avons proposé un système de

reconnaissance du locuteur, de type ResNet, auto-supervisé et robuste au bruit, basé sur

la fonction de perte Barlow Twins. La fonction de coût de type Barlow Twins essaie d’op-

timiser deux critères. Premièrement, elle augmente la similarité entre deux versions du

même signal (c’est-à-dire la version propre et sa version bruitée augmentée) pour rendre

les embeddings invariants au bruit acoustique. Deuxièmement, elle réduit la redondance

entre les dimensions des embeddings, ce qui améliore la qualité globale des embeddings
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de locuteurs. Les résultats expérimentaux sur le corpus Fabiole montrent un gain relatif

de 22% en termes d’EER dans des environnements propres et une amélioration de 18% en

présence de bruit à faible SNR et réverbération.
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1
INTRODUCTION TO SPEAKER

RECOGNITION SYSTEMS

Lacking any data lowers its threshold for noise, which then gets amplified

into arbitrary patterns of signals, producing, eventually, detailed hallucinations.

Daniel Dennett

In this introductory chapter, the general framework of speaker recognition systems is

presented. After that, a taxonomy of speaker recognition systems is given, in which

we postulate the domain of the considered systems in this thesis as text-independent

open-set speaker identification systems. In the next section, the challenges affecting the

performance of speaker recognition systems are reviewed. Since the domain of this

thesis is the robustness of the speaker recognition systems in the presence of additive

noise and reverberation, the negative impact of these acoustical variabilities on speech

signal and speaker recognition systems is discussed in more detail. This thesis is done

in the framework of the RoboVox project, a mobile robot equipped with a speaker

recognition system. The challenges facing a speaker recognition system, in this case, are

discussed in this chapter.

1



2 1. INTRODUCTION TO SPEAKER RECOGNITION SYSTEMS

1.1. INTRODUCTION

S PEAKER recognition systems are among the well-suited and well-known applications

in the domain of speech processing. Generally speaking, the goal of a speaker

recognition system is the authentication of speakers’ identities from their speech

utterances. Speaker recognition systems have introduced new methodologies and

challenges into the domain of speech processing, however, they have commonalities

with other speech technologies. The last generation of speaker recognition systems is

mainly based on deep neural networks [1–5]. Acoustical variabilities such as far-field

speech, additive noise, and reverberation are among the historical challenges that

degrade the performance of speaker recognition systems [6–9]. Although DNN-based

systems are more plausible in facing acoustical variabilities, still they are suffering

from these challenges.

Speaker recognition systems are ubiquitous. They can be used as a separate

system or they can be integrated into other speech applications such as automatic

speech recognition systems [10]. The broad range of speaker recognition applications

includes voice indexing and voice search, teleconferencing, finance, access control,

surveillance, and forensic and legal applications [11]. This broad usage of speaker

recognition systems exposes them to adversarial environments with different kinds

of variabilities. The main topic of this thesis is to address the problem of additive

noise and reverberation distortions in the domain of DNN-based speaker recognition

systems.

In the discussion of DNN-based speaker recognition systems, it is convenient to

separate the training and application phases. In the same manner, it is needed to

discuss the datasets in training and application parts separately. Our discussions here

are concise and different modules are scrutinized in the next chapters more precisely.

In the training phase, a deep neural network classifies the acoustic features based

on the speaker label. The implication of speaker classification results in producing

a speaker discriminant representation at the utterance level obtained from deep

hidden layers [1, 2]. This representation is known as speaker embedding, speaker

representation, and x-vector. The x-vector is adopted from the first successful

DNN-based speaker recognition systems and we just use this term for TDNN-based

speaker embeddings [2]. For other DNN-based systems, we use speaker embedding

throughout the thesis.

In the application phase, the trained speaker embedding network is used to generate

a fixed-length representation for speech utterances that contains speaker discriminant

features. The speaker classification part will be removed and the fixed speaker

embedding extractor will be held. In this step, we need enrollment and test datasets.
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The enrollment dataset includes files for the registered or new speakers whose

identities should be verified/recognized. The test data belongs to speakers who claim

the system belongs to them. The trained speaker embedding extractor gives speaker

discriminant representations with the same length for comparison. The comparison

will be done by a scoring technique: if the similarity between test and enrollment

speaker embeddings is higher than a threshold, the user will be accepted; otherwise,

it will be rejected. The training and application steps are depicted in Figure 1.1.

Figure 1.1: Configuration of a DNN-based speaker recognition system. Left: Traning

phase Right: Application phase

1.2. A TYPOLOGY OF SPEAKER RECOGNITION SYSTEMS

The speaker recognition systems can be categorized in terms of the task, the content

of the spoken dialog, and speakers:

• text-independent vs. text-dependent: Text-dependent speaker recognition

systems expect specific utterances while text-independent speaker recognition

systems are not constrained in terms of the content pronounced by the users.

• open-set vs. close-set: In close-set systems the list of clients are fixed but

in the open-set configuration adding new clients is allowed. In an open-set

configuration when the similarity between a claimed user and the registered

clients is less than a threshold, it can be considered as a new client.
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• identification vs. verification: Speaker verification is a one-to-one comparison

in order to determine if the voice of the claimed user comes from a specific

speaker. But in speaker identification, the comparison is one-to-many, the

claimed user is compared with a pool of registered users.

The major part of our work in this thesis falls into the text-independent open-set

speaker identification setup (Figure. 1.2). It is worth mentioning that the type of

the system can bring some variabilities and make speaker recognition more difficult.

For example, text-independent is more challenging than text-dependent speaker

recognition. Other types of variabilities that can impact the performance of speaker

recognition systems are presented in the next section.

Figure 1.2: A typology of different speaker recognition systems based on the content of

the spoken dialog, the possibility of adding new speakers, and the number

of system owners.

1.3. SPEAKER RECOGNITION VARIABILITIES AND CHALLENGES

There are different types of variabilities that impact the performance of speaker

recognition systems. A general categorization of these variabilities is shown in

Figure 1.3. Three main categories are internal variabilities, external variabilities,

and content-based variabilities. The highlighted variabilities (i.e. additive noise,

reverberation, far-field speech) are the three addressed challenges in this thesis.

1.3.1. INTERNAL VARIABILITIES

There are many reasons that impact the way of speaking for a specific person. A

given speaker even doesn’t pronounce the same content in different situations. This

alteration of speaking is called session variability, within-speaker variability, or internal

variability. Different kinds of internal variabilities are:
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Figure 1.3: Different kinds of variablities

• Task stress. Uttering speech signals during a stressful task such as driving

will be impacted significantly. Speaking under stress can impact the speed of

speaking or even slurred speech. The evaluation of speaker recognition systems

performance shows the significant impact of speaking under stress. Making the

system robust in such situations has been addressed in several papers [12, 13].

• Vocal effort. When a severe background noise becomes a barrier to

communication, the speaker changes his manner of speaking. The Lombard

effect is a well-known vocal effort that refers to the speaker being louder

involuntarily in the presence of noise. The speech signal under the Lombard

effect is different from a normal speech in several ways, including increased

intensity, pitch, glottal spectral tilt, etc. It is shown that the Lombard effect

impacts the performance of speaker recognition systems [14].

• Emotion. It has been shown that speaker embedding contains information about

emotions. This information impacts the performance of speaker recognition

systems significantly [15].

• Physiological. The speech disorders and changing voice over age are examples

of physiological variabilities that can cause a domain mismatch in speaker

recognition systems[16].

• Disguise. The deliberate or non-deliberate modification of speech such as

impersonation or mimicking of speaking a foreign language that requires more

effort than normal speech is called disguising [17].
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1.3.2. EXTERNAL VARIABILITIES

External variabilities arise from the acoustical environment, recording devices, and

transmission channels. This group of variabilities is not concerned about "who" is

speaking and "what" is pronounced. The external variabilities are so prevalent that

making the speaker recognition system robust against them embraces a major body

of speaker recognition research. The main external variabilities are:

• Transmission channel and microphone. The sender and receiver’s user interface

and the bandwidth limitation degrade the quality of speech signal that can

impact the performance of the speaker recognition systems [18].

• Additive noise. All sounds except the speaker’s utterances in the environment

are called additive noise. Among common additive noises, we can mention

water sounds, electrical device sounds, animal sounds, babble noises, etc.

• Reverberation. Reverberation is the impact of sound reflection on the speech

signal. This repetitive reflection of sound over the surfaces reduces the

performance of speaker recognition systems severely. Additive noise and

reverberation are discussed in the next section in more detail.

• Duration. The speaker recognition systems perform well in the presence of

enough data [19]. The lack of information in short speech signals reduces the

performance of the speaker recognition systems severely. In some cases, having

enough data is impossible and it is required to increase the robustness of the

system for such situations.

• Distance. The distance between the speaker and microphone impacts the

quality of the speech signal and reduces the SNR. In the far-distance speech,

the attenuation of speech signal causes a severe impact of additive noise and

reverberation [20].

1.3.3. CONVERSATION

• Language or dialect. DNN-based speaker embeddings carry language and dialect

information [21]. Language mismatch can arise in different steps of the speaker

recognition process such as a mismatch between the training or application data

or a language mismatch between test and enrollment utterances. [22].

• Content. The speaker embeddings carry the content information [23]. In

the same acoustical situation, the speaker embeddings for the same or similar

utterances are closer in comparison to utterances with completely different

content. Therefore, the content mismatch between target and test utterances
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impacts speaker recognition detrimentally.

1.4. ENVIRONMENTAL VARIABILITIES

Among the above-mentioned variabilities, some of them such as environmental

variabilities are more prevalent and have more negative effects. Additive noise and

reverberation are the main environmental variabilities. When there is more than one

variability their negative impact becomes more serious. For example, the presence of

additive noise and reverberation with a short duration makes the system even more

infeasible [20].

In order to reduce the impact of variabilities, two general approaches can be

taken. The first approach tries to improve the general performance of the system

in all environments, while the second approach tries to target a specific variability.

For example, the DNN-based approaches are generally more robust facing different

internal or external variabilities in comparison to their precedent statistical methods

such as i-vector systems, but still, they need to be made more robust. In this thesis,

we try to take both approaches but the main focus is on the second one. The additive

noise and reverberation are the two variabilities that have been considered throughout

the thesis. In the next subsections, the impact of additive noise and reverberation on

speech signals is discussed deeply.

1.4.1. ADDITIVE NOISE

Environmental noise is omnipresent. In different environments such as streets,

restaurants, libraries (air conditioning), and cars (engines), where speaker recognition

systems are used, we are facing background noises. Those noises that stay during

the time are called stationary noises, while those that are changing over time are

called non-stationary noises. In the case of stationary noise, because the nature of

the noise is known, the noise information can be used in different noise suppression

approaches. While in the case of non-stationary noise, the nature of the noise is

unknown and can be changed over time. This feature makes noise formulation more

challenging. A robust speaker recognition system should handle both stationary and

non-stationary noises. Figure 1.4 shows the impact of different variabilities including

additive noise.

In Equation 1.4, the general formulation of variabilities including additive noise is

given:
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Figure 1.4: Modeling the impact of different variabilities on speech signal [24]

y(n) =

(({[

s(n)

∣

∣

∣

∣

Task str ess, Lombar d e f f ect

]

+d1(n)

}

⊗hmi c (n)+d2(n)

)

⊗hchannel (n)

) (1.1)

where:

- s(n) is noise-free speech signal

- d1(n) is additive noise

- hmi c (n) is microphone mismatch distortion

- hchannel (n) is convolutive noise of a transmission channel

- d2(n) is additive noise caused by transmission channel

- d3(n) is background noise from the side of the receiver

- y(n) is degraded speech signal

In the case of additive noise, just the d1(n) will be considered.

The signal-to-noise ratio (SNR) is a common metric to measure the intensity of

noise. The SNR is defined as:

SN R = 10log10(
PSi g nal

Pnoi se
) (1.2)

where Psi g nal and Pnoi se are the power of signal and noise respectively. For high

values of SNR, the impact of noise on speaker recognition systems is not significant.

1.4.2. REVERBERATION

When the speaker is in a closed space and far from the recording devices, the speech

signal arrives from different paths to the microphone. However the speech signal can

directly move from the mouth of the speaker to the recording device, it can also
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be reflected from different surfaces and objects. The reflected speech wave is called

reverberation which impacts the acoustic characteristics of the speech signal. Indeed,

the reverberations are attenuated copies of the original speech signal.

The impact of reverberation can be modeled as a linear convolution of the speech

signal and room impulse response as Equation 1.3:

y(t ) =Σ
T
τ r (τ)x(t −τ) = r (t )⊗x(t ) (1.3)

where y(t ), r (t ), and x(t ) represent the reverberated signal, room impulses, and clean

signal respectively.

The room impulse response describes the changes of speech signal reflected from

the surface. They depend on many factors such as:

• Angle: The angle between the speaker and microphone changes the path

between the speaker and microphone. The indirect path causes more distortion.

• Distance: The far-distance speech causes more attenuation of the speech signal.

• Absorption rate: The absorption rate of speech signal for different surfaces is

different [25].

• Size and shape of room. In the big closed spaces the impact of reverberation

increases. For L-Shape [6] or curved rooms where the path between the speaker

and the microphone is not direct the impact of reverberation increases.

• Position of the microphone. When the height of the microphone and speaker

are not the same.

For a sinewave-modulated signal shown as:

I (t ) = II N P .(1+ cos(2πF t ) (1.4)

where F is Frequency(HZ), the reverberated sinewave-modulated signal shown as

I (t ) = I I N P .(1+m.cos(2πF t ) (1.5)

where m is called the modulation depth or modulation. The smaller value of m

means more reverberation. This change in modulation caused by reverberation is

called smearing. This phenomenon for different values of m is shown in Figure 1.5.

It is important to differentiate between two types of reverberations: early

reverberation and late (full) reverberation. After the arrival of direct speech, several

strong reflections called early reverberation will arrive. The early reverberation occurs

50ms after the arrival of the direct signal. After that, numerous indistinguishable

reflections arrive that are called late reverberation [26]. The required time for the late
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Figure 1.5: The smearing of the speech signal by reverberation[26]

reverberation to decay by 60 dB relative to the level of the direct sound is called the

reverberation time T60. For a normal room the T60 range between 200ms and 1000ms.

The early reverberations are strongly dependent on the speaker and microphone

position. The difference between early and late reverberation is shown in figure 1.6.

Figure 1.6: The differences between direct speech, early reverberation, and late

reverberation [26]

In many real scenarios where speaker recognition systems are used, both
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reverberation and additive noise distortions are present. The presence of both additive

noise and reverberation can be modeled as:

y(t ) =Σ
T
τ r (τ)x(t −τ)+d(t ) = r (t )⊗x(t )+d(t ) (1.6)

where r (t ) stands for room impulses and d(t ) stands for additive noise.

The impact of additive noise and reverberation is strongly dependent on the

distance between the microphone and the speaker. If we compare the impact of

additive noise and reverberation in the same environment for two microphones, a

closed microphone and a far one, we observe the severe attenuation of the speech

signal in the case of a far microphone that leads to very low SNR. As an example,

Figure 1.7 shows the same utterance recorded in a closed room simultaneously with a

closed microphone compared to the far microphone. The close microphone is near

the mouth and the far microphone is located 3m far from the speaker.

Figure 1.7: The impact of noise and reverberation in the far (first four signals) and

close (the last signal) microphone (adopted from RoboVox dataset)

1.5. ROBOVOX PROJECT

This thesis is done in the framework of the RoboVox project. Robovox is a

mobile security robot that is equipped with a speaker recognition system. The

embedded speaker recognition system faces several challenges relating to the remote

identification of a person in real conditions, which can reduce its performance

drastically1:

1https://robovox.univ-avignon.fr/
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• Ambient noise leading to low signal-to-noise ratios (SNR): The speech signal is

distorted with noise from fans, air conditioners, heaters, computers, etc.

• Internal robot noises (robot activators): The robot’s activator noise reverberates

on the audio sensors and degrades the SNR.

• Reverberation: The phenomena of reverberation due to the configuration of the

places where the robot is located. The robot is used in different rooms with

different surface textures and different room shapes and sizes.

• Distance: The distance between the robot and speakers is not fixed and it is

possible for the robot to move during the recognition.

• Babble noise: The potential presence of several speakers speaking simultaneously.

1.6. ROAD-MAP OF THE THESIS

• Chapter 2. In this chapter different modules of DNN-based speaker recognition

systems are described. Among the speaker embedding networks TDNN,

ECAPA-TDNN, MFA-Conformer, and ResNet networks are reviewed.

• Chapter 3. In this chapter, the robust speaker recognition system approaches

are reviewed. Among the main approaches speech enhancement techniques,

robust speaker embeddings, and noise compensation at the speaker embedding

level are discussed.

• Chapter 4. In this chapter, the known datasets for training speaker embedding

networks, data augmentation, and speaker recognition evaluation are discussed.

• Chapter 5. In this chapter, a general framework for noise compensation is

proposed that is based on mapping noisy x-vectors to their clean version.

Several systems are proposed to do this transformation. Also, the compensation

for the joint presence of noise and reverberation is explored.

• Chapter 6. In this chapter, noise compensation is explored in ResNet and TDNN

systems. The limitation of noise compensation in speaker embedding level is

studied.

• Chapter 7. In this chapter, two variants of ResNet speaker embedding extractors

have been proposed that shift the noisy embeddings towards their clean

corresponding distribution.

• Chapter 8. A self-supervised framework proposed that reduces the redundancy

between dimensions of speaker embeddings and makes them invariant to noise

and reverberation.
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2
DNN-BASED SPEAKER

RECOGNITION SYSTEMS

We understand what it means for a device to respond to a red light or a loud noise but

humans are the only devices in the universe that respond to danger.

Steven Pinker

In this chapter, we provide an overview of DNN-based speaker recognition systems. Our

discussion will include feature extraction, speaker embedding extractors, and speaker

recognition back-ends. We begin with classical feature extraction methods including

MFCCs and Filter banks. After that, the unsupervised DNN-based speech representation

methods including Wav2Vec and WavLM are described. The core of DNN-based speaker

recognition systems is the speaker embedding extractor. In this chapter, we show the

timeline of evolving speaker embedding extractors. Among them, the d-vector, TDNN,

ResNet, ECAPA-TDNN, and MFA-Conformer systems are described. We will describe how

each system improved its predecessor. The last part of this chapter is devoted to speaker

recognition back-ends. The common PLDA and Cosine scoring techniques are reviewed.

Finally, the well-known speaker recognition metrics including EER, DCF, and DET are

presented.

15
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2.1. INTRODUCTION

D Eep learning methods have revolutionized all aspects of language and speech

processing. The speaker recognition systems are not exempt from this revolution.

The current speaker recognition systems are based on deep neural networks. In the

previous chapter, the overall process of a DNN-based speaker recognition system was

described from both training and application perspectives. In this chapter, we delve

into all parts of these systems in more detail.

First of all, the feature extraction steps are described. The goal of feature extraction

is to produce compact and less redundant characters of speech signals. We begin

with classical feature extraction methods. The MFCC and filter banks are described

which are the main features used in the contribution part. Deep learning methods are

revolutionizing feature extraction methods too. We will describe the new DNN-based

speech representation methods such as WavLM and Wav2Vec in Section 2.2.3.

Speaker modeling is the process of obtaining a compact fixed-length speaker

discriminant representation from a variable-length speech utterance. The main reason

behind the success of current speaker recognition systems is the powerful ability

to learn speaker representations. The DNN-based speaker embedding extractors

are powerful to extract speaker discriminant characteristics from the speech signals.

Whether these characteristics are known such as gender, age, and accent or they are

unknown speaker features. The second part of this chapter is devoted to DNN-based

speaker modeling methods that are used to extract fixed-length speaker embeddings.

In Section 2.3 the evolving process of DNN-based speaker modeling is described. After

a short revision of statistical speaker modeling methods, the main DNN architectures

used for speaker modeling are described (Section 2.4).

A DNN-based speaker modeling framework has three main parts: Frame-level

DNN architecture, pooling layer, and speaker classification. Among the DNN

architectures, we will discuss the systems based on TDNN, ResNet, ECAPA-TDNN, and

MFA-Conformer. The common pooling methods including average pooling, statistics

pooling, and attentive pooling are described. The speaker classifier optimizes a

multi-class objective function. The softmax and angular softmax are among the

revised objective functions that are used during the training of the speaker embedding

networks.

After removing the speaker classifier part from the DNN, the remaining part is used

as a speaker embedding extractor. The speaker embeddings extracted by means of this

network are used for scoring. Dimensionality reduction is an important preprocessing

step before scoring, which is discussed in this chapter. In the last part of this chapter,

the Cosine, and PLDA scoring techniques are discussed. Finally, we will discuss
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various evaluation metrics used in speaker recognition systems.

2.2. FEATURE EXTRACTION

2.2.1. VOICE ACTIVITY DETECTION

In each speech signal, there are some silent parts that don’t have speaker discriminant

information and introduce unwanted information into the speaker embeddings.

Detecting the silent parts of a speech signal is called Voice Activity Detection (VAD)

which is a crucial prepossessing step in speaker recognition systems. There are several

VAD algorithms. The simplest and most widely used algorithm is based on energy

threshold. The energy for s(t ), a speech signal between t1 and t2, is defined as.

E =

∫t2

t=t1

x2(t )d x (2.1)

In the energy-based VAD, a speech frame is considered as silent if the energy is less

than a threshold. This threshold can be variable according to the speaker, background

noise, etc. The precision of VAD impacts the performance of speaker recognition

systems significantly [27]. Zero-crossing VAD is another well-known method. The

zero-crossing number for s(t ) between t1 and t2 is the number of points where

s(t ) = 0. There are more sophisticated methods such as statistical model (SM) VAD,

gaussian mixture model (GMM) VAD [27], and DNN-based VAD [28]. Throughout this

thesis, an energy-based VAD implemented in the Kaldi toolkit is used [29].

2.2.2. FILTER BANK AND MFCC

Feature extraction is a key component of speaker recognition systems. The aim is

to create a compact, less-redundant representation of speech signals that can be

used more easily than raw signals by DNNs. Filter banks and MFCCs are among

the common features used to train DNN-based speaker recognition systems. The

extraction steps of these features are as follows [30]:

1. Framing: Framing is the speech signal segmentation into very short parts.

Normally, the length of each frame is 25 milliseconds and each frame has an

overlap with its context frames.

2. Pre-emphasis: Since in high-frequency speech signals the magnitude is less

than low frequency, the pre-emphasis operation is done in order to increase the

magnitude of the speech signal in high frequency. For a speech signal, s[n], the
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pre-emphasis is defined as:

y[n] = s[n]− As[n −1] (2.2)

where A is between 0.9 and 1.

3. Windowing: In order to reduce the impact of spectral leakage at the beginning

and end of a frame, a windowing technique is applied to each frame. The

hamming window is a common windowing function that is defined as:

w[n] = 0.54−0.46cos(
2πn

N −1
),n = 0,1, ..., N −1 (2.3)

where N is the frame size.

4. FFT: The Discrete Fourier Transform (DFT) brings the speech signal from the

time domain into the frequency domain. Because in the frequency domain, the

speech characteristics such as formants and pitches are better revealed. The

DFT for a speech signal, x[n], is defined as:

x[k] =Σ
N−1
n=0 x[n]e− j 2πkn

N ,k = 0,1..., N −1 (2.4)

The time complexity of DFT computation is N 2 which makes it difficult to use.

There is a family of algorithms called Fast Fourier Transform (FFT) with N log2N

time complexity that is a faster implementation of DFT [31].

5. Mel Filter Bank: When the speech frequency increases, the human perceived

frequency decreases to make the human voice perception less sensitive to

frequency. The Mel Filter works in the same manner. Mel filter bank is a

band-pass filter that uses more narrow-bandwidth filters at low frequencies and

less wide-bandwidth filters at high frequencies. The magnitude spectrum x[k]

will be transformed to Mel scale with:

S[l ] =Σ

N
2 −1

k=0 Hl [k]x[k], l = 1,2, ...,L (2.5)

where Hl [k], is the l th Mel-filter.

6. log: A logarithm is taken to suppress the high amplitudes. The output of this

step is known as filter banks and they are calculated as:

Sl [l ] = log (S[l ]), l = 1,2, ...,L (2.6)

where Sl [l ] are called Mel scale filter banks.

7. DCT: Discrete Cosine Transform (DCT) is applied to decorrelate the filter bank

representation:

y[p] =
1

2
Σ

L
l=1Sl [l ]cos(

πp(l −0.5)

L
), p = 0,1, ... j −1 < L (2.7)
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8. MFCC: The resulting cepstral coefficients from the previous step are called Mel

Frequency Cepstral Coefficients (MFCC) features. Normally the first coefficients

are used and the remaining will be discarded.

9. ∆ and ∆∆: The first and second derivations of MFCCs

The log Mel scale filter bank and MFCCs are used in the speaker recognition

systems. The steps of extracting the filter bank and MFCCs are shown in Figure 2.1.

The Mel scale filter bank is obtained by Equation 2.6. The MFCCs are the output of

DCT transformation and they are obtained by Equation 2.7. In speaker recognition

systems it is common to use the first 19 coefficients of DCT with the log energy of the

frame. These 20 features are concatenated with their first and second derivations, ∆,

∆∆, produces the 60 coefficient features for each frame [32].

MFCC = {c1, ...c19,e,∆c1, ...,∆c19,∆e,∆∆c1, ...∆∆c19,∆∆e} (2.8)

Figure 2.1: The steps of Mel filter bank and MFCC feature extraction

Since the acoustical variabilities have not been targeted during filter bank and MFCC

feature extraction, the speaker recognition systems trained with them are not robust

and their performance reduces in the presence of variabilities. Several approaches

such as mapping-based and adversarial training methods are used to reduce the

impact of variabilities on filter banks and MFCC features. These approaches will be

discussed in Section 3.3. Before moving to the DNN speaker embedding systems, we

will discuss unsupervised neural speech representations that are more robust against

noise and reverberation.

2.2.3. UNSUPERVISED NEURAL SPEECH REPRESENTATION

The unsupervised methods based on deep learning are replacing hand-crafted features

such as MFCCs. The goal of unsupervised learning methods is to learn a speech

representation from unlabeled raw speech that can be used in a downstream task
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such as speaker recognition, automatic speech recognition, etc. There are several

unsupervised speech representation models such as Wav2Vec and WavLM.

The Wav2Vec model is composed of encoder and contextualization networks. In

this model, the encoder maps the raw speech signal, χ, into a latent representation,

z1, ..., zT with a stack of convolutional layers. The output of the encoder is given to

the contextualization network, g : ζ 7−→ θ, in order to capture the context information

for the latent space representation. The network is trained by optimizing a contrastive

binary classification task. The Wav2Vec predicts for zi the correct representation of

zi+k next frames. The final loss is the summation of the contrastive loss calculated for

predicting 1,2, ...,K next frames. Instead of using MFCC or Filter banks, the output

of the contextualization network can be used as speech representation features in

downward tasks such as speaker recognition systems. The architecture of Wav2Vec is

shown in Fig. 2.2.

Figure 2.2: The architecture of Wav2Vec speech representation systems [33]

Wav2Vec2 is a modified version of Wav2Vec. Besides encoder and contextualization

networks, the Wav2Vec2 has a quantization module q : ζ 7−→ω that discretizes speech

representation in latent space to a finite set of representations. The encoder is

composed of stacked convolutional layers and the contextualization network uses the

Transformer architecture. The network is trained to predict the correct quantized

speech representations. The architecture is shown in Figure 2.3. It is shown that

Wav2Vec2.0 gives competitive results in comparison to known benchmarks in speaker

recognition [34].

The WavLM speech representation model is composed of a CNN encoder and a

Transformer architecture. First, a partially noisy raw speech is given to the encoder.

For a given speech signal two types of noises are used for data augmentation. The

first type is noises chosen randomly from a noise pool. The second type of noise is

a random speech file chosen from the same mini-batch. In both cases, the noise
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Figure 2.3: The architecture of Wav2Vec2 speech representation systems [35]

is added to the utmost 50% of the clean speech signal. Since the speech noise

comes from the same speaker in the same mini-batch, it can make the task of

prediction more difficult which results in more speaker discriminant representation.

Second, the Transformer is fed with the masked version of the encoded speech. The

WavLM predicts the masked parts of the input. In the masked prediction task, the

model is trained to identify the main speaker from the noisy/overlapped speech and

predict the content information corresponding to the main speaker. The architecture

of WavLM is shown in Figure 2.4. The results on the speaker recognition task with

WavLM outperform the hand-crafted features significantly [36]. In this pipeline, the

weighted sum of all transformer layers is used as input features for training the

speaker embedding network.

2.3. FROM STATISTICAL TOWARDS DNN-BASED SPEAKER

EMBEDDING

Speaker modeling is the core component of a speaker recognition system. The goal

of a speaker modeling system is to find a compact fixed-length speaker discriminant

representation for a variable-length utterance. In this subsection, we will present

a short history of statistical speaker embedding systems and a transition towards

DNN-based speaker embedding systems.
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Figure 2.4: The architecture of WavLM speech representation framework [36]

2.3.1. STATISTICAL SPEAKER MODELING SYSTEMS

The i-vector framework is the latest and the most successful GMM-based speaker

modeling system. It has evolved from two precedent systems: joint factor analysis

(JFA) [37] and GMM-SVM [38] systems. These models are based on the concept of

super-vectors. The super-vectors are the concatenation of Gaussian mean parameters

estimated by the maximum apriori adaptation. In JFA, it is assumed that for a

given utterance from a specific speaker, ms,h , the GMM super-vector is the linear

combination of four elements [39]:

ms,h = m0 +V y +Ux +Dz (2.9)

where m0 denotes speaker/channel/environment-independent information, V and

D are speaker subspace, U is session/environment-dependant subspace. The y ,z, and

x are the speaker and session-dependent factors in their respective subspace. Since

it was observed that the channel component contains speaker information, a new

formulation was proposed that combines these components in a single space called

total variability. In this new formulation the GMM super-vector for ms,h is:

ms,h = m0 +T ws,h (2.10)
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where ws,h ∼ N (0, I ) is called total factors. The total factors are hidden variables

estimated by their posterior expectation and are called i-vectors. In the scoring step,

i-vectors are used as fixed-length representations for each speech utterance [16].

2.3.2. BOTTLENECK FEATURES

Bottleneck features can be considered as a bridge between statistical and DNN-based

speaker modeling systems. The bottleneck features are transformed versions of spectral

features by a neural network. In [40] a feed-forward network is proposed that accepts

the MFCCs at the input and classifies speakers. A hidden layer representation is used

as a bottleneck feature for training the GMM-UBM speaker recognition system. Since

the neural network is trained with utterance-level MFCCs, the bottleneck features can

capture the information at both the local and global levels of a speech utterance.

The bottleneck features sparked a line of research and different implementations with

statistical speaker modeling systems including with i-vector systems are explored [41].

2.3.3. D-VECTORS

A big leap in the evolution of the DNN-based speaker recognition systems is the

d-vector that brought us closer to the general framework of the current DNN-based

speaker recognition systems [1]. The d-vector system is a fully-connected feed-forward

neural network that accepts the filter bank features with a context for each frame

and performs a speaker classification task. The motivation behind this idea is this

assumption: the latent representation obtained by a speaker classifier DNN captures

the speaker’s characteristics. The authenticity of this assumption is the key to

the success of DNN-based speaker recognition systems. The DNN-based speaker

recognition systems are more complicated versions of the d-vector system. A trained

d-vector network with development data can be used to extract speaker embeddings

for enrolment and test utterances. During the scoring phase, the output layer is

removed and the average of the embedding layer for all input frames is used as a

compact speaker representation for a speech signal. The architecture of d-vector

systems is shown in Figure 2.5.

2.4. DNN-BASED ARCHITECTURES

In this section, the main DNN-based speaker embedding networks are outlined. The

general architecture of DNNs used for speaker recognition systems is comprised of

frame-level feature representation, pooling layer, speaker embeddings, and speaker

classifier:
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Figure 2.5: The d-vector speaker embedding extractor

• Input features can be raw signals in the time domain, acoustic features such

as the spectrogram, filter bank, or MFCC, or DNN-based unsupervised speech

representations such as Wav2Vec or WavLM.

• Frame level layers transform the input features to latent space.

• Temporal pooling performs a transformation from frame-level embedding

features to utterance-level embedding features.

• Speaker embedding layer is a fully-connected layer that gives the aggregated

representation obtained from the pooling layer.

• Speaker classifier performs a multi-class speaker classification task by optimizing

an objective function such as softmax or its variants.

The general architecture of the DNN speaker embedding network is depicted in

Figure 2.6.

Figure 2.6: The components of a DNN speaker embedding network

In the following subsections, all modules of DNN-based speaker embeddings are

discussed.
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2.4.1. TIME DELAY NEURAL NETWORKS ( TDNN)

Time Delay Neural Networks (TDNN) are feed-forward neural networks that model

the context of speech frames efficiently. In a normal feed-forwarded neural network

each computational unit accepts the weighted sum of the input speech frame, while

in the TDNN the computational units accept the weighted sum of the speech frames

alongside the weighted sum of the context (Time Delay). For example, in a normal

feed-forward neural network the first hidden layer neurons accept the weighted sum

of i1, ...in features, but in the TDNN with delay D = 2 it accepts the weighted sum for

D = 1 and D = 2. It means that the number of inputs for the first hidden layer neurons

increases D +1 times [42].

This characteristic of TDNN allows the deeper layers to receive speech signals across

multiple frames. For example, in Figure 2.7 for a specific frame, t , the first hidden

layer receives five frames [t −2, t +2]; the second hidden layer receives three frames

at t −2, t , and t +2 from the first hidden layer; the third hidden layer receives three

frames at t −3, t , and t +3 from the second hidden layer. At the third hidden layer,

each neuron captures 15 frames [43].

Figure 2.7: TDNN context capturing[43]

The architecture of TDNN-based speaker embedding is composed of several TDNN
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hidden layers that extract frame-level features. After TDNN layers there is a statistics

pooling layer that aggregates information through different frames in order to create a

compact fixed-length representation. The next layer is speaker embedding which is

called the x-vector [2]. After the speaker embedding layer there is a fully connected

speaker classification network. The architecture of the TDNN speaker embedding

network is shown in Figure 2.8.

Figure 2.8: The architecture of TDNN speaker embedding extractor network [43]

2.4.2. RESNET

Convolutional neural networks (CNN) are used widely in speaker embedding

extractors. The CNNs are leveraging sparse interaction, and weight sharing to reduce

the computational cost and increase efficiency. Also, they can be used for working

with variable-length inputs such as speech signals. In a convolution layer, three

operations are accomplished: a set of parallel convolution operations to generate a

linear activation, passing the linear activation through a nonlinear function such as

ReLu, and the pooling operation that produces a statistic summary from the network

output [44]. The ResNet speaker embedding network is a stack of convolutional layers

that are based on VGG networks for image classification [45].

With more than 30 layers, ResNet is a very deep network. A main obstacle on the way

of training a very deep neural network is vanishing/exploding gradients, which prevent

the convergences of training algorithms. Adding more layers necessarily doesn’t

increase the performance of DNNs and after some iterations cause performance

degradation. Residual neural networks are a successful solution to this problem [46].



2.4. DNN-BASED ARCHITECTURES 27

The hypothesis behind this network is that estimating a residual mapping is easier

than estimating the original one. For H(X ) a function that should be estimated by a

neural network, residual networks estimate:

F (x) = H(x)−x (2.11)

then

H(x) = F (x)+x (2.12)

This task is done by a shortcut connection in residual blocks shown in Figure 2.9:

Figure 2.9: ResNet block [46]

The ResNet speaker embedding system is a convolutional neural network composed

of stacking ResNet blocks. The shortcut connections are identity functions. If the size

of F (x) and x is not the same, the size of shortcut connections will be increased by

zero padding.

According to the number of layers, there are several common architectures for

ResNet systems including ResNet34, ResNet50, ReNet101, etc. In this thesis, we are

using ResNet34 which is composed of 34 layers. The layers are separated according to

the size of the feature map and the number of filters. In all convolution layers, a 3×3

convolution filter is used. In deeper layers where the size of feature maps is divided

by 2, the number of filters is multiplied by 2. All convolutional layers are followed by

ReLu and batch normalization layers. After the convolution layer, a statistics pooling

layer is used and a softmax fully connected layer attributes the speaker class to the

input signal. The architecture of ResNet34 is shown in Figure 2.10
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Figure 2.10: The architecture of ResNet speaker embedding extractor
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2.4.3. ECAPA TDNN

The ECAPA-TDNN is an altered version of the ResNet system. This system is composed

of ECAPA blocks. The ECAPA blocks rescale frame-level features with squeeze and

excitation blocks. Each ECAPA block is composed of a convolutional layer sandwiched

between a dense preceding convolution layer for dimension reduction and another

dense layer to regenerate the input dimension. The output of the third layer is given

to a squeeze and excitation block that gives different weights to each channel. Similar

to the ResNet architecture there is a shortcut connection from the input of each block

to the output (Figure. 2.11).

Figure 2.11: ECAPA block composed of a dilated convolutional layer located between

two dense layers followed by e Squeeze-and-Excitation block to rescale

frames and a shortcut connection from the input to the output of the

block [5]

Despite ResNet, in ECAPA-TDNN first dimensional convolutional layers are used [5].

Since the empirical experiments in the domain of DNN-based speaker embeddings

show that both shallow and deep features can contribute to achieving better speaker

representations, hierarchical feature learning is done by aggregation and propagation

of features at different hierarchical levels. The concatenated multi-level features (MFA)

are given to attentive statistics pooling, another contribution of the ECAPA-TDNN

pipeline, that produces utterance-level representation. This pooling strategy is

described in Section 2.4.5.
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Figure 2.12: ECAPA-TDNN speaker embedding network composed of ECAPA blocks

and multi-level hierarchical feature propagation connection, k and d stand

for kernel size and d for dilation spacing parameters of convolutional

dilation layers, C , T , and S correspond to channels, features dimension

and number of speakers, FC is a fully connected layer followed by B N

batch normalization[5]

2.4.4. MFA-CONFORMER

Multi-scale Feature Aggregation Conformer (MFA-Conformer) is a speaker embedding

architecture that leverages Convolution-augmented Transformer (Conformer) at the

frame level. The basic block of this system is the Conformer block [47]. The idea

behind using the Conformer block is to capture both local features and global features.
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To achieve this goal, the Conformer block uses the capability of convolutional layers

and Transformers. The convolutional layers are strong in capturing local features

but they can not capture the global dependencies which is the inverse in the case

of Transformers. The Transformers can capture global features successfully but they

are not strong in capturing local features. The Conformer block is composed of

two feed-forward neural networks a multi-head self-attention layer and a convolution

layer. The MFA-Conformers hire the advantages of both convolution layers and

Transformers [4]. For hi a given frame the output of the conformer block ho is

calculated as Equation 2.13.

ĥi = hi +
1

2
F N N (hi)

hi
′

= ĥi +M HS A(ĥi)

hi
′′

= hi
′

+Conv(hi
′

)

ho = hi
′′

+
1

2
F N N (hi

′′

)

(2.13)

where F N N stands for feed-forward neural network, and M HS A is multi-headed

self-attention network, ĥi is the input of MFA-conformer block and ho is the output

of MFA-conformer block.

Figure 2.13: MFA-Conformer block [47]

The input features of the MFA-Conformer are given to a subsampling convolution

layer in order to reduce the computational load. The output will be given to N

Conformer blocks. The output of all Conformers blocks will be concatenated and after

normalization, it will be given to the attentive pooling layer (Figure [4]).
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Figure 2.14: MFA-Conformer architecture [4]

2.4.5. POOLING LAYER

The temporal pooling operation converts the frame-level features into utterance-level

representation. For a speech signal H = {ht ∈ Rd2 |t = 1,2, ...,T }, where ht is the t th

features given by frame-level feature extractor, the utterance-level representation, u,

can be defined in several ways as follows:

AVERAGE POOLING

Average pooling is the simplest and most widely used pooling function. It is defined

as the average of frame-level features:

u =
1

T
Σ

T
1 ht (2.14)

STATISTICS POOLING

The statistics pooling is the concatenation of the statistic mean, m, and, the standard

deviation , σ, of H . The statistic mean is defined as:

µ=
1

T
Σ

T
1 ht (2.15)

and the standard deviation is

σ=

√

Σ
T
t=1

1

T
(ht ⊙ht −µ⊙µ) (2.16)

where ⊙ is the element-wise product. From Equation 2.15 and 2.16 the statistics

pooling is defined as:

u = [µT .σT ]T (2.17)
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ATTENTIVE POOLING

Both average and statistics pooling gives the same weight to all frames in a

speech utterance. However, some frames maybe contribute more to having better

representations. Attention strategy gives bigger weight to frames that contribute more

to having a more speaker-discriminant representation [32]. For H frames belonging to

a specific utterance, the attention can be regarded as a weight vector corresponding to

each frame. The attentive statistics pooling is a weighted version of statistics pooling

[4]. For ht , a given frame at time t , a scale score can be calculated as

et = vT f (Wht +b)+k (2.18)

where W ∈R
R×D , b ∈R

R×1, v ∈R
R×1, and k are trainable parameters. For calculating

αi , the scale score, a normalization score can be calculated as:

αt =
exp(et )

Σ
T
τ exp(eτ)

(2.19)

The weighted mean is defined as:

µ̂=Σ
T
1 αt ht (2.20)

and the weighted version of the standard deviation is defined as:

σ̂=

√

Σ
T
t=1αt (ht ⊙ht −µ⊙µ) (2.21)

where µ =
1
T Σ

T
1 ht and ⊙ is point-wise product. The attentive pooing is the

concatenation of µ̂ weighted mean, and σ̂ weighted standard deviation.

2.4.6. OBJECTIVE FUNCTIONS

The last part of DNN-based speaker recognition systems is the speaker classifier. The

speaker classifier is a feed-forward multiclass classification network. At the output

layer of the speaker classification network, the loss value is calculated based on an

objective function. Both generator and speaker classifier networks are trained in order

to reduce this loss value. The objective function can impact the performance of

speaker embedding in general and in specific cases such as the presence of variability.

In this subsection, the common objective functions used in speaker recognition

systems are presented.



34 2. DNN-BASED SPEAKER RECOGNITION SYSTEMS

SOFTMAX

For a multi-class classification task, the cross-entropy is calculated as

C E =−
1

N
Σ

N
n=1Σ

J
j=1tn j log pn j (2.22)

where (tn j = 1) ⇐⇒ xn ∈ cl ass c j , pn j is the posterior probability for xn belonging to

c j , and N is the number of training data points. If softmax is used as the activation

function:

pn j =
exp(wT

j xn +b j )

Σ
J
j=1exp(wT

j xn +b j )
(2.23)

By replacing 2.23 in 2.22 we achieve to softmax loss function

So f tmax =−
1

N
Σ

N
n=1log

exp(wT
ln

xn +b j )

Σ
J
j=1exp(wT

j xn +b j )
(2.24)

The Softmax loss function is used with d-vector and x-vector pipelines discussed in

section 5.2.1.

ANGULAR SOFTMAX (ASOFTMAX) LOSS

The angular softmax is a modified version of softmax that separates samples in the

angular space and adds an angular margin between classes [48]. If we rewrite the dot

product of wT
j xn in the following form

wT
j xn = ‖wj‖ · ‖xn‖cos(θ j ,n) 0 ≤ cos(θ jn ,n) ≤π (2.25)

After normalizing the weights, putting bias to zero, and adding a margin to

the angle with φ(θ j ,n) = (−1k )cos(mθ j ,n)−2k a monotonic function where m ≥ 1,

θ j ,n ∈ [ kπ
m , (k+1)π

m ], and k ∈ {1,2...,m}, the Equation 2.24 can be rewritten as:

L AS =−
1

N
Σ

N
n=1 log

exp(‖xn‖φ(θ j ,n))

Z
(2.26)

where

Z = exp(‖xn‖φ(θ j ,n))+Σ j¬θ j ,n exp(‖xn‖cos(θ j ,n)) (2.27)

where m is an integer value and is called a margin hyperparameter.

A more flexible version of angular softmax are Additive margin softmax (AMSoftmax)

loss [49] and Large margin softmax loss [50] for speaker verification. The ASoftmax,

AMSoftmax, and LMSoftmax improve the speaker embeddings in two ways. Firstly the
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embeddings are angularly redistributed. This characteristic makes them more suitable

with the cosine distance back-end discussed in Section 2.5.3. Furthermore, they

consider both inter-class and intra-class distances to be optimized while the cross

entropy just increases the inter-class distance [32].

2.5. BACKENDS

The last part of a speaker recognition system is scoring. It is common to reduce the

number of speakers embedding dimensions and project them to a more separable

space by a dimensionality reduction technique. In this section, the LDA projection is

described. After that, two main scoring techniques (i.e. PLDA and cosine similarity)

are described.

2.5.1. LDA

Linear discriminant analysis (LDA) is a dimensionality reduction technique that

is applied before scoring. The LDA works based on an optimization problem

that projects the speaker embeddings coming from different speakers into a lower

dimension space by maximizing the ratio of inter-class scatter over intra-class scatter

[51]. If we consider the SW as intra-class covariance and SB as inter-class covariance

matrix the LDA tries to optimize the following equation with an optimization method

such as maximum likelihood [52]:

argmax
W

J (W ) =
W T SB W

W T SW W
(2.28)

Before scoring with PLDA, it is common to reduce the dimensionality and increase

the discriminability between speaker embeddings belonging to different speakers.

2.5.2. PLDA

Probabilistic Linear Discriminant Analysis (PLDA) is one of the most popular back-ends

used for scoring in speaker recognition systems. The PLDA accepts pairs of speaker

embeddings and does the scoring based on log-likelihood ratio (LR) hypothesis testing.

For xs and xt given speaker embeddings, assume:

H0: xs and xt comes from the same speaker

H1: xs and xt comes from distinct speakers

The PLDA produces the likelihood ratio score for xs and xt given speaker

embeddings:
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SLR (xs , xt ) =
p(xs , xt |H0)

p(xs , xt |H1)
(2.29)

If the SLR (xs , xt ) will be greater than the threshold, then they come from the same

speaker, otherwise, the speakers are distinct. The PLDA assumes that the general

format of speaker embeddings is:

x = m +V z +ǫ (2.30)

where m is an global mean of all speaker embeddings, V is the speakers loading

matrix, z is the speaker specific factor, and ǫ is the residual information including

channel information.

From Equation 2.29, and Equation 2.30 we will get:

log SLR (xs , xt ) = logN (

[

xs

xt

][

m

m

][

Σtot Σac

Σac Σtot

]

)

−logN (

[

xs

xt

][

m

m

][

Σtot 0

0 Σtot

]

)

(2.31)

where Σtot = V V T +Σ and Σac = V V T . Because m is the average of all speaker

embeddings, it can be computed once. After removing it from all speaker embeddings

in Equation 2.31 it will be replaced by 0, by doing that and expanding Equation 2.31

we will have:

log SLR (xs , xt ) =
1

2
[xT

s Qxs +2xT
s P xt +xT

s Qxt ]+const (2.32)

where

Q =Σ
−1
tot − (Σtot −ΣacΣ

−1
totΣac )−1 (2.33)

and

P =Σ
−1
totΣac (Σtot −ΣacΣ

−1
totΣac )−1 (2.34)

The presented formulation is for the case of having one enrollment per speaker [43].

In the case of having more than one enrollment per speaker, the speaker embeddings

averaging (take the average of all speaker embeddings per speaker) or score averaging

(take the average of scores for all enrollments per speaker) can be used. In this thesis,

we are using score averaging.
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2.5.3. COSINE SIMILARITY SCORING

The cosine similarity scoring is a simple and efficient scoring technique in the speaker

embedding space. For a pair of xs and xt speaker embeddings, the cosine similarity is:

Scs (xs , xt ) =
xs .xt

‖xs‖×‖xt‖
(2.35)

The cosine similarity ranges between −1 for completely opposite speaker embeddings

and 1 for exactly the same speaker embeddings.

The motivation behind using PLDA scoring is channel compensation but in DDN-

based speaker embeddings, the channel variability can be compensated relatively in

the speaker embeddings space by training a robust speaker embeddings extractor or

data augmentation [53, 54]. This characteristic helps us to replace the PLDA with

cosine similarity. The second reason that makes the cosine similarity more plausible

is the redistribution of speaker embeddings by the angular softmax objective function

or its variants.

2.6. EVALUATION METRICS

Before defining the evaluation metrics, we will discuss the types of errors in speaker

recognition systems. Each speaker recognition system faces two types of attempts

(trials) named target (real-speaker) and non-target (imposters). In the target trials,

the claimed and the registered users are the same but in the non-target trials, the

registered speaker and the claimed user are different. According to these definitions,

there are two types of errors:

• False acceptance(FA) or (False alarm): grant access to imposter speaker

• False rejection (FR) or (Miss error): denying access to a legitimate speaker

From the definition of FA and FR, the error rates are defined as

F al se accept ance r ate =
Number o f F A er r or s

Tot al number o f i mposter s
(2.36)

and,

F al se r e j ect i on r ate =
Number o f F R er r or s

Tot al number o f l eg i t i mate at tempt s
(2.37)

If we consider the speaker recognition task as a binary classification, types of errors

can be rewritten in terms of a confusion matrix, as Table 2.1:
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Table 2.1: Types of errors in SR systems

Accept Reject

Accept True Accept False Accept

Reject False Reject True Reject

Figure 2.15: The EER evaluation metric [16]

2.6.1. EQUAL ERROR RATE

The Equal Error Rate (EER) is defined as an operating point θ, where F AR = F RR;

moving it from left to right reduces the F AR errors from 100 toward 0 and increases

the F RR from zero to 100. This process is shown in Figure 2.15. Choosing a smaller θ

means that the system accepts more illegitimate users and it is less secure, meanwhile,

a high threshold reduces the F AR which means the system is robust but it is not

user-friendly. The EER is a point in which there is a tradeoff between user-friendliness

and robustness. A normalized version of EER is called HRR which is defined as

EER/2.

2.6.2. DET

When we want to compromise between two types of F AR and F RR errors in different

operating points, the EER is not sufficient. In this case, the Detection Error Trade-off

(DET) curve is a common metric [55]. The DET curve is the plot of both F AR and

F RR across two different axes which is shown in Figure 2.16.
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Figure 2.16: Detection error tradeoff curve

2.6.3. DETECTION COST FUNCTION

The Detection Cost Function (DCF) is a weighted sum of FRR (PMi ss|Tar g et ) and FAR

(PF al se Al ar m|NonTar g et ) [56]. The DCF can be calculated as:

DC F (θ) =CMi ss ×PMi ss|Tar g et (θ)×PRe j ect+

CF al se Al ar m ×PF al se Al ar m|NonTar g et (θ)× (1−PTar g et )
(2.38)

where: θ is a decision threshold, CMi ss is the cost of false rejection, CF al se Al ar m is

the cost of false acceptance, PTar g et is the prior probability of target speakers.

2.7. CONCLUSION

In this chapter, we reviewed the current DNN-based speaker recognition systems.

Firstly we describe the feature extraction procedure. We described the MFCC and

filter banks. We mentioned that during the extraction of these features, the impact

of noise and reverberation is not considered. In order to reduce the impact of these

variabilities a speech enhancement method can be applied while the state-of-the-art

speech representation methods such as Wav2Vec or WavLM can target the impact of

environmental variabilities such as additive noise.

In the second part of this chapter, we showed the evolving path of the DNN-based

speaker embedding extractors. The x-vector (TDNN) system captures the speech

context in comparison to its predecessor, the d-vector, and the pooling operation over

frame-level representation gives more robust speaker embeddings. The ResNet system

uses the idea of residual connection to help the training of very deep networks.
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In the ECAPA-TDNN system, the residual architecture is equipped with squeeze

and excitation. The MFA-Conformer tries to exploit the speakers’ representation at

different levels. Also, it captures both local and global speaker features by means of a

combination of convolutional layers and transformer.

The PLDA and cosine similarity metrics are used as scoring techniques in this

thesis. Finally, the common evaluation metrics including the EER, DCF, and DET curve

described. In the next chapter, the different levels of handling noise and reverberation

in speaker embedding systems will be described.



3
SPEAKER RECOGNITION

CHALLENGES AND ADAPTATION

This chapter is devoted to speaker recognition variabilities and different methods used

to suppress their negative impact. Data augmentation is the main approach for

training noise robust speaker embeddings. We first describe the data augmentation

approaches. It is possible to make the speech recognition systems robust against

variabilities in different levels of the system. We will start with speech enhancement

methods. Among the speech enhancement methods, we review the methods based on

DNNs including masking-based, mapping-based, and adversarial training approaches.

Different strategies for making speaker embedding extractors robust against variabilities

such as adversarial training, discrepancy methods, pooling strategies, and attention

mechanisms are reviewed. The speaker embedding transformation comes after.

41
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3.1. INTRODUCTION

T He general framework of DNN-based speaker embedding doesn’t target explicitly

the negative impact of existing variabilities and domain mismatches. Robust

speaker recognition refers to different approaches that target explicitly the negative

impact of different types of variabilities. This chapter is devoted to robust speaker

recognition.

In Chapter 1 different types of variabilities including internal, external, and

conversation-based variabilities described, and Chapter 2 reviewed DNN-based

speaker recognition architectures. In this chapter, we will review the main approaches

to make DNN-based speaker recognition systems more robust against variabilities.

The robust speaker recognition approaches can be categorized from different points

of view. We will categorize them in terms of the level at which the compensation is

done. In speaker recognition systems domain adaptation can be done at the following

levels: speech signal, feature extraction, speaker modeling, and speaker embedding

and/or data augmentation techniques. We will concentrate on the methodology and

for each method, the applications for specific variabilities will be given.

The first group of robust speaker recognition approaches is data augmentation. Data

augmentation refers to increasing the size and diversity of training data by means of

constructing new images for a speech signal. Adding noise and reverberation at the

signal level or applying time-frequency masks at the feature level are among common

data augmentation techniques. In Section 3.2 the application of data augmentation in

robust speaker recognition is described.

The second group is speech enhancement methods at signal level or feature level

which are discussed in Section 3.3. The speech enhancement methods are working at

the front end of the speaker recognition system by removing the impact of acoustical

variabilities on raw speech signals or spectral features. In this chapter three groups

of speech enhancement methods are reviewed: masking-based, mapping-based,

and adversarial training. The masking-based speech enhancement methods try to

reconstruct the clean version of the speech signal in the time-frequency domain. The

mapping-based and adversarial-based methods are deeply investigated at the feature

level.

The third group is robust speaker modeling approaches; making the speaker

embedding network robust to interferences by proposing robust architecture, robust

objectives, or robust learning methods. Several strategies such as adversarial training,

multitask training, and discrepancy-based regularizers (e.g. Coral, MMD, KL) can be

used to produce robust speaker embeddings. Exploring more robust pooling operation

and using attention mechanism are among other modifications of DNN speaker
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embeddings reviewed in Section 3.4

The speaker embedding transformation between the source and target domain

is another group of robust speaker recognition. In this approach, a statistical or

DNN-based compensation module performs a transformation between source and

target speaker embeddings. In Section 3.5 several compensation techniques are

reviewed.

In order to have a consistent notation, we consider the source and target

environments. The source environment, D s = {X s = (X1, ...Xn)}, is a situation where

the baseline system is trained and the target environment, D t = {X t = (X1, ...Xn)}, is a

situation where the system will be used. It is assumed that P (D s ) 6= P (D t ).

3.2. DATA AUGMENTATION

Data augmentation is creating new images of a speech signal by adding noise,

reverberation, or changing speech characteristics such as speed. Data augmentation

is an efficient strategy for robust speaker recognition. It has been used in almost

all components of a speaker recognition system. Data augmentation techniques are

used in two different ways. Firstly, they have been used directly in order to increase

the size of training data or find a speech representation that is adapted to the

target environment. Secondly, they have been used in preparing the training data

for noise compensation techniques. In this section, the direct utilization of data

augmentation techniques in speaker recognition systems is reviewed. The utilization

of data augmentation with other methods will be explored in the next chapters.

The data augmentation techniques mostly are applied for environmental variabilities

such as noise and reverberation. The impact of these variabilities is discussed in

Section 1.4. In the case of reverberation, the RIR files can be recorded from real

environments or they can be simulated [57]. For a given training dataset D s using

its new images, D t1 , ...D t j , we can reduce the chance of overfitting which leads to

achieving a more robust system in the presence of different variabilities [2, 58–60].

Data augmentation techniques are not limited to the signal level or adding noise

and reverberation. They can be used at the feature level. Furthermore, they

are not limited to adding reverberation and noise. Frequency masking, and time

masking operations are used for data augmentation. SpecAugment is a speech data

augmentation applied to filter bank features. This augmentation method is composed

of time wrapping, frequency masking, and time masking operation on filter-bank

features [61]. SpecAugment has been proposed in the speech recognition domain and

it was investigated in TDNN and ResNet-based speaker embedding systems. It was
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shown that with ResNet system it outperforms signal-level data augmentation [62].

WavAugment is an augmentation technique applied to unsupervised speech

representation [63]. The proposed augmentation technique is an extension of the

contrastive predictive coding speech representation (CDC) algorithm. The CDC

produces the latent representation by predicting future samples [64]. In the

WavAugment for a given speech segment, f , the latent representation is produced by

predicting its past and future context where each of the past and future samples can

use different images of augmented data. For example, it is possible to use different

noises for the past and future samples [63]. In WavAugment, the next and previous

frames are distorted with reverberation and additive noise in the time domain. This

approach shows competitive performance in comparison to other data augmentation

approaches such as SpechAugment [65].

Rawboost is a speech data augmentation method without using noise datasets or

RIR files. It works by applying a combination of linear and non-linear convolutive

noise, impulsive signal-dependent additive noise, and stationary signal-independent

additive noise on raw speech signals. Rawboost can model different variabilities such

as encoding, transmission, microphones, amplifiers, and both linear and non-linear

distortions [65]. The Rawboost has been used in [66] with the Wav2Vec2 speech

representation framework for robust speaker recognition.

The data augmentation hyperparameters such as SNR in the case of additive noise

or the size of the room for reverberation are fixed or chosen randomly. This strategy

doesn’t guarantee the achievement of optimal diversified augmented data. In [67]

a heuristic search algorithm is used in order to fine-tune the data augmentation

hyperparameters. For a given speech signal it finds the probability and the intensity

of applying a specific distortion such as additive noise and reverberation in signal

level and masking parameters such as mask size at the feature level. The reported

results show a significant improvement in comparison to the manual settings of data

augmentation hyperparameters.

Since it is not easy to simulate all the possible variabilities in the speech signal,

data augmentation can not be used as a universal methodology for various domain

mismatches. This is the point that domain adaption techniques come into use.

In the next section, the main domain adaption techniques used for robust speaker

recognition are reviewed.
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3.3. SPEECH ENHANCEMENT

Speech enhancement is a common way to remove the impact of external variabilities

such as noise and reverberation in all speech applications. A general approach to

suppress the negative impact of noise and reverberation in speaker recognition systems

is by adding a speech enhancement module at the front end. The speech enhancement

methods are applied at the signal level and feature level before the speaker modeling

network. The general configuration of the speech enhancement method in speaker

recognition systems is shown in Figure 3.1. The speech enhancement module can be

optimized separately or jointly with the speaker modeling system. The feedback loop

from the output of the speaker modeling part shows the cases of joint optimization.

In joint optimization, the speaker classification output is used as guidance to help the

training of the speech enhancement module.

Figure 3.1: Speech enhancement module in speaker recognition systems

The output of speech enhancement methods generally is consumed by humans.

Two main categories of speech enhancement metrics are called signal-level and

perception-level [68]. Signal-level metrics are quantitative ways such as Source-

to-distortion ratio (SDR), Source to interference ratio (SIR), and Source to artifact

ratio (SAR) that measure the degree of enhancement or interference reduction [69].

Two main metrics in perception level are intelligibility and quality of speech signal

[68]. In the case of speaker recognition systems, the main consumer of the speech

enhancement methods is the speaker modeling module. Because of that reason, the

speaker recognition metrics will be used as an evaluation metric and the speech

enhancement metrics can be secondary metrics to explain the behavior of the systems

after adding the speech enhancement module.

The speech enhancement techniques that have been used in the domain of speaker

recognition can be categorized into three groups: mask-based, adversarial, and

mapping-based techniques. The overall configuration of the three approaches is

shown in Figure 3.2.
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Figure 3.2: Speech enhancement approaches used in the domain of speaker

recognition. (A) Masking-based approach; (B) Mapping-based approach;

(C) GAN-based approach.

3.3.1. MASKING-BASED SPEECH ENHANCEMENT

In masking-based methods, the time-frequency relation between clean signal and

interference is described [70]. Among the numerous masking-based methods Ideal

Binary Mask (IBM) and Ideal Ratio Mask (IRM) are widely used in speaker recognition

systems.

The IBM is defined as:

I B M =

{

1,SN R(t , f ) > LC

0,other wi se
(3.1)

where t is time and f is frequency. For each unit, if SNR is bigger than a threshold

I B M = 1, otherwise it is 0. IBM can be modeled as a binary classifier. Class 1 is for

speech dominant units and class 0 stands for interference dominant units.

The IRM is defined as:

I RM =

(

S(t , f )2

S(t , f )2 +N (t , f )2

)β

(3.2)

where S(t , f )2 and N (t , f )2 stand for speech and noise energy for a given unit, and β

scales the mask that can be fine-tuned. In IRM the speech and noise are assumed to

be uncorrelated. Mean square error (MSE) is the common loss function to estimate

the IRM. The MSE is calculated between I RMt , the targeted I RM and I RMp the

predicted I RM [71]. The masking-based speech enhancement is not limited to IBM

and IRM. Other masking-based methods include:

• target binary mask (TBM) categorizes all T-F units with a binary label
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• spectral magnitude mask (SMM) (or FFT-MASK) is the STFT (short-time Fourier

transform) magnitudes of clean speech and noisy speech

• phase-sensitive mask (PSM) adds a measure of phase to the SMM

• complex ideal ratio mask (cIRM) reconstruct clean speech from noisy speech

The masking-based speech enhancement methods can be trained with the speaker

modeling network jointly or separately. In joint optimization, it is possible to use both

speaker and interference information. In [72] a loss function named VoiceID loss for

speech enhancement was proposed that receives feedback from the speaker classifier.

In this research, firstly a speaker modeling system is trained. In the second step, the

speech enhancement network is added and the speaker modeling network is fixed.

The speech enhancement network predicts a ratio mask at the output layer. The ratio

mask is multiplied point-wise to a noisy signal in order to produce the enhanced

signal and the speech enhancement network will be updated according to the speaker

classifier loss value. The reported results show significant improvement of EER in the

case of artificial noise on the Voxceleb1 test set. However, the Perceptual Evaluation

of Speech Quality (PESQ) and Short Time Objective Intelligibility (STOI) metrics don’t

improve with the estimated mask, the performance of speaker recognition improves.

Therefore, the speech enhancement method should be customized according to the

speaker recognition task, however, an improvement in the quality of speech signal is

not observed.

The second way of applying DNNs for masking-based speech enhancement is to train

them separately. In [73] the researchers estimated the IRM mask with an LSTM-based

speech enhancement DNN. They showed that obtaining high perception-based speech

enhancement metrics doesn’t guarantee good performance in downstream tasks such

as speaker recognition and ASR. The proposed method is applied to artificial additive

noise. A similar approach utilizes BLSTM and CNN speech enhancement networks

to estimate IRM [74]. An encoder-decoder architecture based on convolutional gated

linear units is proposed to estimate the IRM and PSM masks for the amelioration of

magnitude and phase respectively [75].

A list of other masking-based speech enhancement methods is summarized in Table

3.1. The architecture stands for the DNN architecture, joint columns show the joint

training of speech enhancement and speaker embedding networks, the interference

column shows the type of noise (N) and reverberation (R) variabilities, and the speaker

modeling network is the architecture of the speaker embedding extractor.

In our survey on mask-based speech enhancement techniques, we achieved the

following main points:
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Table 3.1: Masking based speech encasement.

Architecture Mask Joint Interference Speaker-modelling Reference

TDNN IRM Y N, R x-vector [72]

LSTM DAE IRM N N, R x-vector [73]

BLSTM, CNN IRM N N i-vector [74]

Gated CNN DAE IRM, PSM N N, R i-vector, x-vector [75]

DAE IRM N N i-vector, GMM-UBM [76]

BLSTM
WF, IRM

GEV , MVDR N N, R i-vector, x-vector [77]

• The major part of the work is evaluated on artificial noise and reverberation and

the generalizability is not shown for real cases [72, 75–77].

• The improvement is marginal and inconsistent. For example, the results are

sensitive to the mask’s hyper-parameters and the nature of speech such as SNR.

• The masks are sensitive to the type of interference. For example, IRM gives

better results for additive noise due to amplitude improvement while PSM works

better for phase improvement [75].

• The speech enhancement techniques need speaker information guidance to

achieve better results. [72]

• The improvement of speech enhancement metrics doesn’t guarantee the

improvement of speaker recognition system [72, 73].

3.3.2. MAPPING-BASED SPEECH ENHANCEMENT

The target of mapping-based speech enhancement methods is to reconstruct the

clean spectral features of a noisy speech signal [32]. In another term, mapping-based

speech enhancement is suppressing the impact of noise at the feature level. Similar to

masking-based speech enhancement methods, the mapping methods can be trained

jointly with the speaker embedding network or they can be trained separately.

In [78] a UNet speech enhancement network is trained with an ECAPA-TDNN

network. The speech enhancement network accepts STFT noisy features and

reproduces the corresponding clean version by optimizing the MSE loss between

denoised and clean features. The UNet network is trained jointly with the speaker

embedding network. A similar approach is extended for noise and reverberation. In

[79] the UNet speech enhancement module is trained by optimizing MSE loss, Fisher

divergence loss, and speaker classification loss. The fisher divergence minimizes the
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divergence between the gradient of the log density of the noise and the gradient

predicted by the U-net speech enhancement network.

The separated training of mapping-based speech enhancement and speaker

embedding extractor is addressed in several papers. In [80] an end-to-end speech

enhancement method was proposed. In this work, a DAE based on a convolutional

recurrent network (CRN) is used to estimate the clean version of the short-time Fourier

transform (STFT) of clean speech. The speech enhancement network optimizes MSE

between the noisy and clean versions of STFT. In [81, 82] a denoising autoencoder

was proposed to map the noisy log magnitude spectrum to the corresponding clean

version. The proposed DAE accepts a frame of noisy signal and its context, but

the output layer reproduces the clean version of the central noisy frame, not its

context. The denoised features perform well in both i-vector and speaker embedding

frameworks for both artificial noise and reverberation but their generalizability is not

tested in the case of real noise and reverberation.

Removing the impact of noise and reverberation on both amplitude and phase

features can bring better results in speaker recognition systems. In [83] a speech

enhancement DAE proposed that accepts MFCC as amplitude features and Modified

group delay feature as phase features and reconstructs their clean version as a

multitask regression problem. The speech enhancement network is trained for the

reconstruction of both features jointly. The proposed approach shows that mapping

both features gives better results than improving one of the amplitude and phase

features. The main deficiency of reviewed literature is applying the proposed methods

to artificial noise and reverberation.

3.3.3. ADVERSARIAL-BASED SPEECH ENHANCEMENT

Generative adversarial networks are another approach used in the front-end of

speaker recognition systems. This approach is composed of a Generator (G) and a

discriminator (D) [84]. The generator is an encoder-decoder-based architecture trained

with a discriminator in an adversarial framework. The generator tries to recreate the

clean version of the speech signal in a way to fool the discriminator (D).

In [85] a speech enhancement preprocessing is done for speaker recognition using

the GAN architecture. In this paper, the architecture of G is U-Net that accepts the

STFT spectrum, at the output of G the L1 distance between the clean signal and the

predicted one is calculated as loss value, and the D tries to distinguish between the

clean signal and the output of the G . In a similar approach [86], the researchers

proposed a GAN feature bottleneck system composed of an Encoder (EN) and a

Discriminator (D), the EN accepts the clean MFCCs and their corrupted versions with
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a different noise, at the output it tries to predict a noise invariant version of MFCCs

while D tries to classify the output of E N according to the type of noise.

3.4. ROBUST SPEAKER EMBEDDING TRAINING

Having robust speaker embedding is extensively explored in the phase of speaker

embedding network training. At this level, the goal is to reduce the impact of

variabilities during the training of the speaker embedding extractor. The main merit

of this approach is eliminating the requirement of adding a specific module to

compensate for the negative impact of variabilities.

3.4.1. ADVERSARIAL-BASED ROBUST SPEAKER EMBEDDINGS

GAN-based speaker embedding training is among the main approaches to achieve a

nuisance robust speaker recognition system. A general framework for a GAN-based

speaker embedding is shown in Figure 3.4.1. It can accept the data from both Ds and

D t domains. For a given speech signal the goal is to train the network to achieve

nuisance invariant speaker embedding ω. For a given ω the classifier predicts the

speaker’s class P (S|ω) similar to a normal speaker embedding architecture described

in Chapter 2, the loss value calculated by speaker classifier is Lspk . The discriminator

network D is a feed-forward classifier network in general. The output of D depends on

the type of nuisance. The GAN-based speaker embedding network optimizes the Lspk

and Ld in an adversarial manner in a way that the discriminator can not distinguish

between the different views of a speech utterance. The LG AN is the summation of

Lspk and the inverse of Ld .

By optimizing the LG AN the discriminator tries to predict the domain of a given

speech signal while the generator tries to produce embeddings that make the task

harder for D . The adversarial speaker embedding learning aims to minimize the

distance between the source and the target distribution feature spaces. This framework

has been used to adapt the speaker embedding network for different variabilities.

• Additive noise: In [87] an adversarial strategy was proposed to make the speaker

embeddings more robust against noise. In the standard speaker embedding

extractors, after the embedding layer, a DNN speaker classifier is optimized. In

this work, a second classifier is trained adversarially that classifies the type of

noise in the output. In another work, a GAN-based speaker embedding was

proposed that uses a binary discriminator to discriminate the noisiness of the

speaker embedding alongside the speaker recognition classifier[88].
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Figure 3.3: GAN-based robust speaker embedding training

• Channel mismatch: Adversarial training is used successfully to produce channel

invariant speaker embeddings [89]. In [90], two discriminators D1 and D2 fed

with the output of the statistics pooling layer and speaker embedding layer

respectively. The discriminator’s output classifies different channels used in

the dataset. It has been shown that the joint optimization of discriminators

and speaker classifiers suppresses channel variability and improves performance

significantly. A binary classifier is used in [91] as a discriminator, different views

coming from the same speaker are considered as class 0, otherwise, the class

is 1. The final goal is to give the same representation for the same utterances

coming from different channels.

• Language Variability : In [92], the ResNet-based speaker embedding network

was extended with a language discriminator. The discriminator is a binary

classifier optimizing a cross-entropy, the class 0 is for the source and the target

domain (i.e. in this case languages).

• Phonetic variability Phonetic information is another source of session variability

that reduces the performance of text-independent speaker recognition systems.

In [93] it is shown that suppressing the phoneme information at the segment

level of DNN-based speaker recognition systems improves performance. In this

research, the output of the discriminator is defined as the relative frequency of

each phoneme presented in the input utterance.
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3.4.2. DISCREPANCY-BASED DOMAIN ADAPTATION

Imposing a general and flexible constraint on target distribution with discrepancy-

based methods during training/adapting the speaker embedding network is another

popular domain adaptation approach. The main configuration of this approach

is shown in Figure 3.4. For a given Ds source and D t target distributions the

discrepancy-based domain adaptation aligns the statistical distribution shift between

the source and target domains using some measurements. The discrepancy constraint

will be defined in the form of a regularization term Lr eg and it will be optimized with

the speaker classifier loss function Lspk .

Figure 3.4: Discrepancy-based domain adaptation framework

The CORAL loss is the distance between the second-order statistics (covariance) of

the source and target features [94] defined as:

Lcor al =
1

4d 2
‖Cs −Ct‖

2
F (3.3)

where ‖.‖2
F denotes the squared matrix Frobenius norm, d is the dimension of

speaker embeddings, and Cs and Ct are covariance matrices for embeddings extracted

from the source and target domains respectively. The CORAL discrepancy method has

been used in [95] for speaker embedding domain adaption.

A well-known measure of discrepancy between domains is Maximum Mean

Discrepancy (MMD), which is defined as:

LM MD = E[k(Φ f (xS ),Φ f (x
′

S ))]
xS ,x

′

S∼DS
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+ E [k(Φ f (xT ),Φ f (x
′

T ))]
xT ,x

′

T ∼DT

-2 E [k(Φ f (xS ),Φ f (x
′

T ))]xS∼DS ,xT ∼DT (3.4)

where Φ f (xS ) and Φ f (x
′

S ) are activation functions and k is Gaussian kernel defined

as:

k(Φ f (xS ),Φ f (x
′

S )) = exp(−
‖Φ f (xS )−Φ f (x

′

S‖
2
2

2σ2
) (3.5)

In [96] MMD is used in optimization at both frame-level and utterance levels. During

the training, the multilevel MMD is minimized jointly with the speaker classifier. This

approach is compared with the CORAL discrepancy method and it reduces the impact

of language variability to a significant degree. The MMD discrepancy method is used

for channel adaptation in language recognition systems [97].

3.4.3. POOLING STRATEGY

A part of fine-tuning speaker embedding extractors for domain mismatch and

handling variabilities is the pooling strategy. Statistics pooling (i.e. the concatenation

of average and standard deviation) is among the mostly used pooling strategies. In

[98] the performance of different pooling strategies with both TDNN and ResNet

speaker embedding networks are explored. The results show the supremacy of using

standard deviation pooling instead of statistics pooling with Voxceleb and SRE 2016

benchmarks. The same behavior was shown again for channel and language mismatch

on SRE 2021 benchmark [99].

3.4.4. ATTENTION MECHANISM

Speaker embeddings encode information such as variabilities information over their

dimensions. This secondary information is not essential for speaker recognition tasks.

Guiding the training of the speaker embedding extractor towards a trajectory that gives

bigger weight to parts of the speech signal that result in more speaker discriminant

representation is called the attention mechanism.

In [100] the TDNN-based speaker recognition system (Figure 2.8) was modified by

changing the statistics pooling with attention statistics pooling described in Section

2.4.5. Their experiments show a significant improvement in speaker recognition

systems for noisy environments. A key reason behind the success of ECAPA-TDNN [5]

and MFA-Conformer [4, 101] is leveraging the attention mechanism.
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In [102, 103] a hierarchical attention mechanism is used at the frame level

and segment level. For, S = {S1,S2, ...,SN }, a given speech signal, composed of N

segments and each segment Si = {X1, X2, ..., XM } composed of M frames, the attention

mechanism rescale each frame with softmax function as Equation 2.18 and 2.19. The

same mechanism is repeated at the segment level. In [104] a speech enhancement

DNN is integrated with the attention model. For an input, X ∈ RT,F,C , where T , F ,

and C denote time, frequency, and channel dimensions, the attention mechanism is

applied consequently across all dimensions of CNN blocks in the speech enhancement

module.

3.5. SPEAKER EMBEDDING TRANSFORMATION

In this section, we review the speaker embedding transformation methods used at the

speaker embedding level. A great part of the work done at this level is reconstructing

the desired speaker embeddings, Xs , from their distorted corresponding version

X t by doing a transformation X t 7→ Xs . These methods are also known as noise

compensation methods in the literature.

3.5.1. STATISTICAL SPEAKER EMBEDDING TRANSFORMATION

The statistical noise compensation modules are widely used and developed in the

i-vector framework. In [105, 106] a linear transformation function is defined to

reconstruct the Xs clean version of, X t , noisy i-vector by a MAP estimator. The i-MAP

method assumes that noisy and clean distributions are independent distributions,

while in the reality it is not the case. The joint i-MAP is another statistical mapping

technique that takes advantage of both clean and noisy i-vectors distributions along

with the joint information between both of them [107]. In this approach three

distributions are defined where X is the clean i-vectors, Y is the noisy i-vectors

and Z is the concatenation of clean and noisy i-vectors that holds the joint

distribution of clean and noisy i-vectors. The denoising problem is formulated with

an MMSE (Minimum Mean Square Error) estimator. The i-MAP and joint i-MAP

compensation functions give a significant improvement in the case of artificial noise

and reverberation. The Correlation Alignment (CA) algorithm is used for domain

adaptation in the speaker embedding (x-vector) space. The CA algorithm tries to

minimize the distance between the covariance of the out-of-domain and in-domain

speaker embeddings [108].
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3.5.2. DNN-BASED SPEAKER EMBEDDING TRANSFORMATION

RECONSTRUCTION-BASED

The reconstruction-based methods at the signal level are called speech enhancement,

which has been described in Section 3.3, the idea behind the mapping-based robust

training of speaker embedding in Section 3.4 is the same, compensation techniques

refer to reconstruction-based methods in speaker embedding level. The reconstruction

methods are rigorous DNNs that try to reconstruct the clean version of noisy speaker

embeddings. Denoising autoencoders (DAE) are among the common reconstruction

DNNs.

The speaker discriminant denoising autoencoder (DDAE) proposed for noise

compensation in i-vector framework [109–111]. The DDAE architecture is composed of

a DAE and a feed-forward neural network (FFNN). The DAE is trained by minimizing

a reconstruction loss between noisy and clean speaker embeddings in the input and

output, the FFNN is trained by minimizing a speaker classification loss function.

In [109] MSE is used as reconstruction loss and in [110] the cosine distance was

minimized. The architecture of DDAE is depicted in Figure 3.5. In this approach,

the classifier is jointly trained with a DAE in order to make the new i-vector more

discriminant.

Figure 3.5: Discriminant DAE

Siamese speaker embedding reconstruction was introduced in [112] to compensate

for additive noise and sampling rate mismatch in the speaker embedding (x-vector)

framework. It is shown that this technique is more effective to compensate for

sampling rate mismatch rather than additive noise. The Siamese network accepts

pairs of noisy speaker embeddings Y 1 and Y 2 belonging to S1 and S2 speakers. The

encoder network is trained by optimizing three objective functions. The L1r econstr uct

and L2r econstr uct reconstruct the desired version of Y 1 and Y 2 in a mini-batch. The
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third objective function is Lsi amese which is defined as:

Lsi amese =
f (Y 1). f (Y 2)

‖ f (Y 1)‖×‖ f (Y 2)‖
−γ(Y 1,Y 2) (3.6)

where γ(Y 1,Y 2) is:

γ(Y 1,Y 2) =







1 wher e S1 = S2

0 other wi se
(3.7)

The architecture of the Siamese noise compensation network is shown in Figure 3.6.

Figure 3.6: Siamese DAE for noise and channel mismatch compensation

DISCREPANCY

The MMD approach is used for the domain adoption method in the i-vector

framework [113]. In this research, multiple auto-encoders were used to reconstruct

input i-vectors coming from a specific domain. The MMD between hidden layers

coming from different autoencoders is minimized to suppress the domain mismatch

information from i-vectors [113, 114].

ADVERSARIAL TRAINING

GAN-based domain adaptation is another approach used in the i-vector framework

[115]. The combination of variational auto-encoders and GANs is another approach

for noise compensation at the speaker embedding level. In [116] a variational

auto-encoder is integrated with an adversarial domain discriminator and a speaker

classifier. The architecture of the proposed systems is shown in Figure 3.7. The

encoder receives speaker embeddings from different domains. The latent space is

fed into the speaker classifier, domain classifier, and decoder. The adapted version

achieves a marginal improvement on SRE16 and SER18 evaluation benchmarks.
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Figure 3.7: Variational GAN variability compensation

Cycle-GAN is another framework that is used for domain adaptation in the x-vector

framework. Cycle-GAN is a GAN framework that is composed of G : X → Y , F : Y → X

generators, and DX , DY discriminators. DY impose on G to transform X into outputs

indistinguishable from domain Y , and vice versa for DX , F , and X . Two cycle

consistency losses insure that the transformations between source and target domains

are reversible: (b) forward cycle-consistency loss: x → G(x) → F (G(x)) ≈ x, and (c)

backward cycle-consistency loss: y → F (y) → G(F (y)) ≈ y . In [117] the cycle-GAN

framework is used for domain adaptation between microphone and telephone speech

in the SITW benchmark. In another research, this framework is used to do a

transformation between x-vectors in a noisy and clean environment. They achieve a

significant improvement of EER in the VoiCes benchmark [118]

Figure 3.8: Cycle-GAN framework for speaker embedding adaptation [119]



58 3. SPEAKER RECOGNITION CHALLENGES AND ADAPTATION

3.6. CONCLUSION

In this chapter, the main robust speaker recognition approaches are reviewed. Firstly

the data augmentation techniques at different levels were reviewed. However data

augmentation improves the performance of speaker recognition systems in general by

increasing the number of speakers and data diversification, still, we need adaptation

methods that directly target a specific variability.

In this chapter the categories of speech enhancement methods including

masking-based, mapping-based, and adversarial training approaches reviewed that

are extensively used in the speaker recognition domain. The main limitation of

masking-based approaches is their sensitivity to the type of interference. Also, the

improved speech signal quality doesn’t guarantee to improve speaker recognition

system. The majority of mapping-based and adversarial training methods are tested

with artificial noise and reverberation. The reviewed literature shows that joint training

of speech enhancement module and speaker embedding network is more promising

than separate training. In the case of joint training, the speech enhancement network

uses the feedback given by the speaker embedding network.

Another common approach is training a robust speaker embeddings extractor. This

approach can be applied to a bigger number of variabilities in comparison to data

augmentation or speech enhancement. Having a robust embedding extractor can get

rid of us from using extra subsystems such as a speech enhancement module.

Doing a transformation between source and target speaker embedding before

scoring is another group of robust speaker recognition approaches reviewed in

this chapter. Different DNN compensation modules such as DAE, GAN, or VAE

architectures are used for domain adaption at the speaker embedding level. The

reviewed literature shows that noise compensation at the speaker embedding level is

more promising in comparison to other approaches. Using compensation techniques

we don’t need to change the architecture of the speaker embedding extractor which

leads to less computational cost and increases the adaptability of the trained speaker

embedding extractor.



4
DATASETS AND BENCHMARKS

If machine learning was something you bought in the supermarket, its carton would

say: Just add data!

Pedro Domingos

In this chapter, the main speaker recognition datasets and evaluation benchmarks are

reviewed. Among the training datasets, the Voxceleb 1&2 corpus is reviewed. All datasets

used in the contribution part of this thesis are described in this chapter. The MUSAN,

BBC Noise, and Freesound noises are datasets that are used for data augmentation or

data simulation. The third groups of datasets are evaluation benchmarks. Among the

evaluation benchmarks we reviewed SITW, VoxSrc, NIST SRE 2021, ChiMe, VoiCes, and

Dipco datasets. The last part of this chapter is devoted to the RoboVox dataset, which

we introduce for the first time to the community.
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4.1. INTRODUCTION

T He datasets used in the domain of speaker recognition can be categorized

into three groups. The first group is speaker embedding extractor training

datasets. According to our discussion on the general framework of DNN-based

speaker recognition, the main annotation for this kind of dataset is the speaker label.

However, having extra information can help in designing specific speaker embedding

extractors. Furthermore, having a significantly big size in terms of the number of

utterances and speakers is another requirement for training datasets. The common

speaker embedding training datasets are discussed in Section 4.2.

The second category of datasets used in speaker recognition is data augmentation

datasets. Data augmentation datasets can be used for several purposes. Above

all, they can be used during training the speaker embedding because of two main

reasons. Firstly, using data augmentation techniques we can increase the size of

speaker-annotated datasets that are crucial for training large DNNs with millions or

even billions of parameters. Secondly, data augmentation increases the variability

of the dataset. This technique makes the speaker recognition systems more robust

against unwanted interferences such as noise and reverberation. Having a piece of

prior information about the target environment can help us to do data augmentation

in a manner that matches the interference. Also, data augmentation can be used in

training noise compensation techniques. In Section 4.3 three main datasets that are

used in this thesis are described.

The third group of required datasets is evaluation benchmarks. The speech files in

this group can be divided into enrollment and test files. The enrollment files are used

for registered speakers and test files are claimed users that should be authenticated

by the speaker recognition systems. Depending on the application, different kinds of

annotations are required. For example, in text-dependent speaker recognition systems,

transcription is required. In our case, text-independent speaker recognition systems,

we just need the speaker label. For the semi-supervised or weakly-supervised adaption

technique, a small number of files in the evaluation dataset can be used to adapt

the system to the target environment. Several benchmarks and standard evaluation

datasets are described in Section 4.4.

4.2. SPEAKER EMBEDDING TRAINING DATA

Voxceleb Corpus has been collected in two stages: Voxceleb1 and Voxceleb2. Voxceleb1

contains 100,000 utterances from 1,251 celebrities. Voxceleb2 includes over 1 million

utterances from 6,000 speakers. The speakers are from different ethnicities with
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different ages, professions, and accents. The utterances are degraded with different

types of noises including background chatter, laughter, overlapping speech, and room

acoustics. Although there are a lot of variations in recording devices and channels. We

used Voxceleb1 and Voxceleb2 in training the speaker embedding extractor networks

and training the denoising techniques [120]. The general specification of the Voxceleb

dataset is presented in Table 4.1.

Table 4.1: Dataset statistics for both VoxCeleb1 and VoxCeleb2

Dataset Voxceleb 1 Voxceleb 2

Noo of speakers 1251 6112

Noo of utterances 153,516 1,128,246

Avg noo of utterances per speaker 116 185

Avg length of utterances (second) 8.2 7.8

Among other useful datasets for training speaker recognition systems, we can name

Common Voice 12.0 which its English part contains 3,161 hours of validated speech

recorded from 85,825 unique utterances 1.

4.3. DATA AUGMENTATION DATASETS

4.3.1. MUSAN

The Musan corpus has 109 hours of voice data including 60 hours of speech, 42 hours

of music, and 929 noise files. The noise files include DTMF tones, dial tones, fax

machine noises, and ambient sounds, such as car idling, thunder, wind, footsteps,

paper rustling, rain, animal noises, etc. Also, it includes some recordings of crowd

noises with indistinct voices [121].

4.3.2. FREESOUND

This corpus included 3000 RIR files and 4275 noise files collected from Freesound

noises. The selected noise categories include door, keyboard, office, phone,

background noise in the room, printer, fan, door knock, babble, etc. We divided the

dataset into two sets: a training set composed of 3725 clips and an evaluation set

composed of 1000 clips [122].

1https://commonvoice.mozilla.org/en/datasets
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4.3.3. BBC NOISES

The BBC noises dataset includes 33,000 sound clips across the world from the past 100

years. This dataset includes clips made by the BBC Radiophonic workshop, recordings

from the Blitz in London, special effects made for BBC TV and Radio productions, as

well as 15,000 recordings from the Natural History Unit archive2.

4.4. EVALUATION BENCHMARKS

4.4.1. VOXCELEB

The Voxceleb providers defined several benchmarks on the Voxceleb data. VoxCeleb1-E

is a test protocol that covers all speakers in Voxceleb1. The good results with the

state-of-the-art robust speaker embeddings on Voxceleb protocol stir up the necessity

of new benchmarks for more severe environments [9]. VoxSrc is the Voxceleb

speaker recognition challenge that each year defines new test sets and tasks in more

challenging situations [7].

4.4.2. SITW

The Speakers in the Wild (SITW) speaker recognition database contains hand-

annotated speech samples from open-source media to benchmark text-independent

speaker recognition technology on single and multi-speaker audio acquired across

unconstrained or wild conditions. The database consists of recordings from 299

speakers, with an average of eight different sessions per person. Unlike existing

databases for speaker recognition, this data was not collected under controlled

conditions and thus contains real noise, reverberation, intra-speaker variability, and

compression artifacts.

The SITW is among the earliest known speaker recognition challenges. While at the

beginning of DNN-based speaker recognition systems, this dataset was challenging,

similar to the Voxceleb test set, it is not challenging for the recent speaker recognition

systems anymore[123]. In the following, more challenging benchmarks are discussed.

4.4.3. NIST

The Speaker Recognition Evaluation (SRE) is a global benchmark held by the National

Institute of Standards and Technology (NIST) since 1996. The latest version of the

NIST 2021 protocol is shown in Table 4.2. The speech files are received from the

2http://bbcsfx.acropolis.org.uk
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WeCanTalk corpus. This corpus is composed of multilingual phone calls and video

recordings collected from social media [8]. This feature makes the corpus suitable for

a channel or microphone mismatch condition.

Table 4.2: NIST evaluation benchmark specifications

Task Spks(M/F) Enroll Test Target Non-target

DEV 5/15 138 2001 14,458 177,793

TEST 43/139 1247 17,037 132,038 5,899,731

4.4.4. VOICES

The VoiCes is a replayed speech corpus recorded from Librispeech under different

types of noises in four rooms. The VoiCes corpus takes several variables into account

that makes the impact of noise and reverberation severe. Among those variables

angle, distance, and shape of the room are more significant. In VoiCes, there is

an L-shaped room. Since in such environments, there is no direct path from the

speaker to the microphone the impact of reverberation becomes more serious. Also,

the angle between the microphone and speaker is variable. Similar to the shape of

the room, the indirect path between the microphone and speaker makes the impact

of reverberation more severe. Besides these positive aspects of VoiCes, there are two

main deficiencies. Firstly it is replayed speech and there is convolution noise of the

loudspeaker that makes the situation far from real applications. Also, the speech files

are recorded from a small pool set of clean speech (i.e. 2583 files from Librispeech)

that reduce the content variation in the data [6].

4.4.5. DIPCO

The Dinner Party Corpus (DiPCo) is a speech database that replicates the scenario

where a group of people is having an interactive conversation while having dinner in

a simulated home environment. The DiPCo speaker recognition benchmark is derived

from the DiPCo corpus. In this benchmark three tasks are defined: 1) Far-field

speaker recognition from a single microphone; 2) Task Far-field speaker recognition

from a single microphone array; and 3) Far-field speaker recognition from distributed

microphone. The overall specification of the DiPCo benchmark is presented in Table

4.3. Tr i al s refers to the number of evaluation target/nontarget pairs, Tar g et refers

to the number of evaluation trials positive, U t ter ances refers to the total number of

unique speech segments in the test set, and, Dur ati on is the length of files reported

as min/mean/max [9].
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Table 4.3: DiPCo speaker recognition benchmark specifications

Task Trials Target Utterances Duration(s)

Task-1 900,000 150,000 4,405 3.51/5.03/7.99

Task-2 900,000 150,000 4,405 3.51/5.03/7.99

Task-3 900,000 150,000 30,835 3.51/5.03/7.99

4.4.6. CHIME

This speaker recognition benchmark is derived from the CHiME-5 corpus. The goal of

this benchmark is to foster research on far-field multi-speaker recordings of naturally

occurring spoken interactions. This corpus includes four tasks with single-speaker

and/or multi-speaker recordings. The tasks are defined to compare close-talking vs

distant/far-field microphone recordings and single-microphone vs microphone-array

situations. Their evaluation shows that in the case of multispeaker, the EER is equal

to 20 which means for difficult cases we are from an ideal speaker recognition

system. However, the reported results make this corpus a good candidate to improve

the performance of speaker recognition, unfortunately, the dataset is not currently

available for public use [124].

4.4.7. FABIOLE

Fabiole is the most used corpus in the experimental part of this thesis. Fabiole is a

French corpus that contains 7,000 files from 130 speakers. The length of files spans

from very short utterances of less than 2 seconds to very long utterances. The Faboile

corpus is used as a test and enrollment. In this corpus, there are 30 speakers with

more than 100 utterances. The remaining 100 speakers have only one session. The

motivation behind this design is to have enough target trials for enrollment speakers

and use the 100 speakers with one file to create non-target trials [125]. However, in

our experiments, we don’t respect this implication in some cases in order to make a

severe and difficult situation for our speaker recognition system. The details about

different protocols created from this corpus are described in the next chapters.

4.5. ROBVOX DATASET

In this thesis, a new corpus (named RoboVox) will be introduced to the community.

Robovox is a French corpus recorded by a mobile robot (E4) in the framework of the

ANR project RoboVox. The robot is equipped with a speech recognition system in

noisy environments (Fig 4.1).
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Each recording in this corpus has 6 channels. The fifth channel is a closed

microphone which we considered as clean and other channels are considered noisy

and reverberated3. The utterances are recorded in both open and closed spaces. The

distance between the speaker and microphones in far channels is between 1 and 3

meters. There is a sixth microphone that records the robot’s background noise.

Figure 4.1: Robovox (E4): a mobile robot

The recorded part includes 2219 conversations from 64 speakers including 30 males

and 34 females. In each conversation, there are 5 dialogues on average. Therefore, the

total number of recorded dialogues is ≃ 11,000. The average length of each dialog is

3.6 seconds. The final version will include 70 speakers with 11,000 dialogues (speaker

turns) between the robot and the speakers.

Each recording has 6 channels. The channels information is as follows:

• Channel 1 to 3: microphones on the angels of the robot

• Channel 4: microphone embedded inside the robot

• Channel 5: ground truth microphone which is close to the speaker

• Channel 6: voice of the robot

It deserved to be mentioned that the clean signal, recorded by channel 5, is

a positive point that makes the RoboVox dataset protocol more comprehensive in

comparison to the previous far-field speaker recognition datasets. This feature enables

us to have the best-expected baseline system and allows us to know the amount of

performance degradation for far-field microphones.

The files are recorded from different distances in different acoustical environments

3https://robovox.univ-avignon.fr/
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with the main following settings:

• 1m, 2m and 3m: Distance of the speaker from the robot, respectively 1, 2, and

3 meters.

• hall, open space, small room (open/close) and medium room (open/close):

The sessions are recorded in the different rooms/environments with the door

open or close in meeting rooms.

• wall, center and corner: The robot is placed close to a wall (or window), in the

center of the room, or in the corner respectively.

• calm or noisy: Level of noise in the environment.

4.6. CONCLUSION

In this chapter, we introduced the main training corpora, data augmentation corpora,

and evaluation benchmarks. Among the introduced datasets we use Voxceleb1 and

Voxceleb2 broadly in this thesis for two purposes: training DNN speaker embeddings

and training DNN-based noise compensation techniques. The MUSAN, BBC, and

Freesound noises are used in different tasks in the next chapters. Among the

evaluation benchmarks, we used the Fabiole, Voices, and RoboVox datasets during our

experiments.
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NOISE COMPENSATION IN SPEAKER

EMBEDDING LEVEL

In this chapter, we propose a framework for noise compensation at the speaker

embedding level. Indeed the proposed framework is a pipeline that adds a noise

compensation module before scoring. We propose several denoising techniques. Firstly,

we use the i-MAP method which considers that both noise and clean speaker embeddings

have a Gaussian distribution. Then, leveraging denoising autoencoders (DAE) we try to

reconstruct the clean speaker embedding from the corrupted version. After that, we

propose two hybrid systems composed of statistical i-MAP and DAE. Finally, we propose

a novel DAE architecture, named Deep Stacked DAE. In the first experimental part,

the proposed noise compensation techniques are used for additive noise compensation.

The results obtained by Deep Stacked DAE are almost better than other methods.

For utterances longer than 12 seconds, we achieved a 51% relative improvement in

terms of EER with Deep Stacked DAE, and 18% for utterances shorter than 2 seconds

compared to the baseline system. The specific noise compensation, and exploring the

joint data augmentation and noise compensation are other experiments done in this

chapter. We will show even in the case of having extensive data augmentation, the

noise compensation can bring us closer to a clean environment. In the last part of this

chapter, we explored the scenarios where there are several distortions including additive

noise and reverberation. We will propose two configurations for the presence of multiple

distortions.

The presented work in this chapter is published in [126], [53] [127]
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5.1. INTRODUCTION

I N the past decade, introducing the i-vector statistical model and x-vector1 speaker

embedding has led to notable progress in the speaker recognition area. However, the

x-vector speaker modeling method has caused substantial improvement in the speaker

recognition system, the performance of this system in challenging environments

with the presence of unseen noises and reverberation degrade significantly. In our

experiments, with low SNR and a large number of unseen noises added to the test

data, we observed that the performance of x-vector embedding diminishes drastically

in comparison to results obtained with noise-free x-vectors.

Some studies [58–60] propose that by increasing the number of speakers, the

amount of training data, and by use of data augmentation, the x-vectors can achieve a

certain degree of robustness with the presence of noise, but this degree of robustness

remains insufficient, especially in the case of low SNR.

In this chapter, in addition to the common data augmentation techniques, we

propose to denoise the noisy x-vectors to approach the performance obtained by

noise-free x-vectors. In this manner, it becomes easier to target a specific unseen

noise or to adapt the denoising system to new conditions. In other words, the

proposed system is a pipeline of two systems, the first allows generating the best

x-vectors possible, and the second is used to denoise x-vectors.

A major part of the robust speaker recognition research against noise and

reverberation has been done at the front end: signal level, feature level, and speaker

modeling level (i.e. speaker embedding extractor). In the first part of our work, we

want to focus on noise compensation at the speaker embedding level (i.e. the speaker

embeddings obtained by DNNs). Thanks to its statistical properties, developing

denoising techniques at the speaker embedding level is more promising and easier

than the signal level, feature level, or speaker modeling network. However, the

noise compensation at the speaker embedding level has been done successfully and

extensively in the i-vector space, there is no such exploration in the x-vector systems.

The success of this methodology motivated us to extend it in the framework of

x-vector systems. The previous research in the i-vector framework shows that doing

noise compensation at this level is more promising than speech enhancement at the

frontend [74] [106]. Last but not least motivation is time and computational cost of

noise compensation at the backend. Simple statistical transformations such as i-MAP

need a small number of training examples and it can be done in a very short time

while training a robust speaker embedding extractor takes several days.

1Throughout this chapter we use x-vector and speaker embedding interchangeably because we are using

TDNN network for speaker embedding extraction
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Firstly we describe the proposed framework for noise compensation at the x-vector

level. After that, we introduce several noise compensation techniques. First of all,

we apply statistical denoising techniques on x-vectors that work effectively in the

i-vector domain. Our first attempt consists of using a statistical approach based on

the use of maximum a posteriori (MAP), namely, the i-MAP approach [105]. The

i-MAP denoising technique has been used successfully in the i-vector space. Then, we

compare the results obtained by i-MAP with the denoising autoencoder. Furthermore,

we propose two hybrid systems that use both denoising autoencoders and i-MAP.

Finally, we propose a novel DNN, named Deep Stacked DAE that outperforms all the

other methods.

The first part of our experiments is devoted to compensating additive noise. In

this group of experiments, our goal is to develop a system that tries to compensate

for different kinds of noises without explicit information about the noise for a given

utterance in the test data. The robustness of all the proposed denoising techniques

against additive noise is explored.

In the second part of our investigation, we compare the impact of data

augmentation versus noise compensation. We will show that, despite having efficient

data augmentation strategies, the noise compensation module brings a significant

improvement to the speaker recognition system.

From the first and second parts of our experiments, we found the superiority of our

proposed Deep Stacked DAE in noise compensation. In the next experiments, we just

use this approach. In another experiment, we explored using a specific model for a

known type of noise and we compare the results with the general model.

In many cases, there is more than one distortion. For example, the impact

of additive noise in closed environments becomes more severe by reverberation.

Proposing an efficient strategy for such cases is the last situation studied in this

chapter. We will propose two different configurations for environments where there

are additive noise, early reverberation, and late reverberation.

5.2. NOISE COMPENSATION FRAMEWORK

In this section, the framework of noise compensation at the x-vector level is presented.

The proposed framework for noise compensation in speaker embedding level is

composed of three steps. In the first step, the speaker embedding network is trained

with extracted features from a clean dataset and augmented data. Additive noise

and reverberation pools can be used to create several distorted versions of the clean

speech signal. This trained network is used as a speaker embedding extractor in the
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second part of the proposed pipeline (Figure 5.1. A).

In the second step, the trained speaker embedding extractor is used to produce

training data for the noise compensation module. The noise compensation training

data is composed of pairs of distorted/clean speaker embeddings. For generating the

distorted version of the training data we can do it blindly or take the environmental

information into account. After the extraction of both noisy and clean pairs of

x-vectors, the noisy version should be passed through a noise compensation module.

The goal is to train the noise compensation module in order to do a mapping between

the noisy and clean pairs. It should be mentioned that the noise pool and the RIRs in

the preparation of noise compensation training data are different from those used in

training the speaker embedding extractor (Figure 5.1. B).

The trained noise compensation module is used in the third step to remove the

impact of noise on speaker embeddings extracted over the test data. However, the goal

is to generalize the trained noise compensation module for test files degraded with

real distortions, in the experimental setup it is normal to simulate different situations

with artificial noises. In this chapter, we focus on artificial noise and reverberation.

The real noise and reverberation will be discussed in the next chapter. This process is

depicted in (Figure 5.1. C).

There are two main tasks in this framework that can be explored to achieve better

performance. The first task is simulating the training data for the noise compensation

module. Seeking an efficient simulation method that models the real environment

and makes the noise compensation generalizable to the real environment is a crucial

task in this framework. We will discuss this issue in more detail in the next chapter.

The second open question is designing an efficient noise compensation module. Our

work in this chapter is mainly focused on this task. The proposed noise compensation

modules are discussed in the next sections and their evaluation for different noises

and reverberation comes after.

5.2.1. SPEAKER EMBEDDING EXTRACTOR

In this chapter, we perform noise compensation on the TDNN speaker embedding

network. The TDNN architecture was introduced in chapter 2. In our experiments, we

are using the TDNN network implemented in [2]. The speaker embedding network is

composed of five frame-level TDNN layers. The context of TDNN layers increases in

deeper layers. For a specific frame, t , the first layer accepts 5 frames in its context.

This context will increase to 9 frames in the second layer and for the next hidden

layer, the context captures 15 frames. The statistical pooling layers calculate the

standard deviation and average for all T frames in a given utterance. The next layers
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Figure 5.1: The proposed framework of noise compensation at speaker embedding

level
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are fully connected layers that work on the segment level. The last layer is a softmax

layer that gives the probability of a specific utterance belonging to 1...N speakers in

the training dataset. The architecture of the speaker embedding network is shown in

Table 5.1. The network optimizes the Additive Angular Margin Loss function.

Table 5.1: The TDNN speaker embedding (x-vector) extractor

Layer Layer context Total context Input x output

frame 1 [t - 2, t + 2] 5 120x512

frame 2 {t - 2 , t, t + 2} 9 1536x512

frame 3 {t - 3, t, t + 3} 15 1536x512

frame 4 {t} 15 512x512

frame 5 {t} 15 512x1500

stats pooling [0, T] T 1500Tx3000

segment6 0 T 3000x512

segment7 0 T 512x512

softmax 0 T 512xN

5.2.2. PROPOSED NOISE COMPENSATION MODULES

In this section, the details about the i-MAP, denoising autoencoders, and other

proposed variants of DAE denoisers are discussed. Firstly, the i-MAP method is

described. Then, denoising autoencoders are described and two hybrid systems

developed from i-MAP and DAEs are presented. Finally, a novel DAE architecture is

introduced.

5.2.3. I-MAP

The i-MAP is a statistical denoising method originally developed for the i-vector

framework [105]. We define X and Y given random variables for clean and noisy

x-vectors. A third random variable for noise is defined as:

N = Y −X (5.1)

Where:

X ∼N (µX ,ΣX )

N ∼N(µN ,ΣN ) (5.2)
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In the i-MAP approach, we assume that both noise and clean x-vectors have a

Gaussian distribution. For a given noisy x-vector, Y0, from Equation 5.1 and Equation

5.2.3, we define:

f(Y0|X ) =
1

(2π)
p
2 |Σ

1
2 |

exp−
1
2 (Y0−X−µX )T

Σ
−1
N (Y0−X−µX ) (5.3)

To find X0, the clean version of Y0, a MAP estimator is used:

X0 = ar g maxx {lnf(Y0|X )f(X )} (5.4)

The final expression of calculating denoised x-vectors is:

X0 = (Σ−1
N +Σ

−1
X )−1(Σ−1

N (Y0 −µN )+Σ
−1
X µX ) (5.5)

More details about the mathematics of i-MAP can be found in [105, 106]

5.2.4. DENOISING AUTOENCODER

Denoising autoencoder is a specific type of autoencoder that takes the noisy x-vector

as input and tries to reconstruct the clean version at the output. Denoising

autoencoder tries to minimize:

L(x, f(y)) (5.6)

where L is the loss function, y is the corrupted x-vector and f(y) is the output of

DAE [44]. In the simplest version, L is the MSE loss. We did several experiments to

find the best denoising autoencoder. In the best architecture we found, three layers

are used. The activation function of the input and output layers is linear. In the

hidden layer, there are 1024 neurons with Tanh activation functions. The number of

hidden layer neurons is twice the number of x-vector dimensions in order to avoid

information loss. The [MSE) between the noisy and clean x-vector vector is calculated

at each mini-batch (Equation. 5.7):

LMSE =

B
∑

i=1
‖xi − yi‖

2 (5.7)

where B is the batch size, x j is the j th clean x-vector and yi is i th noisy x-vector.

5.2.5. HYBRID SYSTEMS

Here, we try to benefit from the potential of i-MAP and DAE simultaneously. In order

to do this, we combine those systems in two ways:
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DAE i-MAP: In this system, we used DAE and i-MAP methods sequentially. Firstly,

the noisy x-vector is denoised by leveraging DAE, then the output of the DAE is

denoised with i-MAP. The architecture of this system is presented in Figure 5.2 . A.

Gaussian DAE: Adding a regularization term to the loss function is a common

way to constrain the solution space in denoising DNNs [128] [129]. In Bayesian

formulation, the regularization terms correspond to prior probabilities added to the

loss function. Similar to i-MAP, in Gaussian DAE, we want to impose on the output of

DAE and the estimated noise to have a Gaussian distribution.

In the same manner, we add the regularization term to the MSE loss function. The

proposed system is named Gaussian DAE. In Gaussian DAE we defined a new loss

function to reduce MSE between input and output, and simultaneously maximize the

a priori probabilities of the noise and of the obtained x-vectors (both assumed to

be Gaussian) like in the i-MAP. In this system, the following equation is used as a

Gaussian regularizer:

Lr eg = (Y −X −µN )Σ−1
N (Y −X −µN )

+ (X-µX )Σ−1
X (X −µX ) (5.8)

where Y is the input of DAE and X is the output of DAE at each mini-batch, µN

and µX are the means of noise and clean x-vectors respectively, Σ−1
N and Σ

−1
X are the

inverse of the covariance matrix for noise and clean data, all these parameters are

estimated on the whole training data. The Gaussian DAE minimizes the following

equation:

LGaussi an = LMSE +λLr eg (5.9)

The architecture of the hybrid systems is shown in Figure 5.2. B. In both cases, the

architecture of DAE is the same as Section 5.2.4.

5.2.6. DEEP STACKED DENOISING AUTOENCODER

In this subsection, we introduce a new denoising autoencoder called Deep Stacked

DAE. In this architecture we have several DAE blocks. The noisy x-vectors, Y , fed to

the first DAE. The next DAE block receives Xi , the output of its predecessor block i

concatenated with Y − Xi , the difference between noisy x-vectors, and the output of

the previous block. The stacked DAEs are trained jointly with the SGD optimization

algorithm. The architecture of Deep Stacked DAE is presented in Figure 5.3. The

architecture of DAE blocks is the same as DAE presented in Section 5.2.4.

As we will see in the next section, this architecture outperforms all other methods.

One assumption behind the effectiveness of this method is that using the difference
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(A) the hybrid DAE i-MAP

(B) Gaussian DAE: denoised x-vectors have a Gaussian distribution.

Figure 5.2: The hybrid noise compensation module composed of statistical i-MAP and

DAE

Figure 5.3: Stacked DAE composed of several DAEs with residual connections

between noisy x-vectors and the output of the previous DAE can capture the noise

information. Let X be a clean x-vector and Y be a noisy x-vector. If we use Y

and X −Y in the input of the denoising autoencoder and construct X̂ (the denoised

x-vectors) in the output, the results will be very close to X . Moreover, this is similar

to residual connection [46] which helps to build deeper models.
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5.3. ADDITIVE NOISE COMPENSATION

The first part of our experiments is devoted to additive noise compensation. The

x-vector extractor, the noise compensation training data, and the test protocols are

described in the following sections.

5.3.1. EXPERIMENTS SETUP

TRAIN X-VECTOR EXTRACTOR

In the experiments, we used TDNN speaker embedding network introduced in Table

5.1. Firstly, we augmented Voxceleb1 with different branches of the Musan corpus

(music, babble, noise, reverberation). Then, we extracted MFCC features for 500,000

randomly chosen utterances from the augmented data. Then, Cepstral Mean Variance

Normalization (CMVN) is applied to the features. Finally, the VAD is applied to remove

silent frames. The trained network is used in all experiments to create x-vectors in

train and test parts of denoising techniques.

TRAIN AND TEST X-VECTORS USED IN DENOISING TECHNIQUES

In denoising techniques, we need the noisy x-vectors and their corresponding clean

version. Simulating noisy signals by adding noise to clean signals in the time domain

is an approach that has proven its effectiveness for generating training data in an

x-vector extractor (data augmentation). However, in this chapter, we use the same

approach to generate training and test data used in denoising techniques.

For training x-vectors, we used Voxceleb1 and Voxceleb2. Firstly, we extracted the

x-vectors from clean files in Voxceleb1 and Voxceleb2. Then, BBC Noises and Musan

were added to Voxceleb1 and Voxceleb2 with different SNRs from 0 to 15 and the

x-vectors of noisy files were extracted. We used 1638 noise files from BBC corpus.

The final version of the train data consists of 1.975 million pairs of noisy x-vectors

and their corresponding clean version. For some clean files, there is more than one

corrupted version.

For the test and enrollment dataset, we used the Fabiole corpus. We used 6882

utterances from Fabiole where half of them were used for enrollment and the

remaining part used as the test dataset. Because in real applications it is possible to

have clean data for enrollment, in our experiments we used clean files for enrollment.

But for the test part, we added 547 different noises from the BBC corpus to the test

files with different SNRs from 0 to 15. The noise files used in the test are different

from those used in the training dataset. Since the length of utterances in Fabiole
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is varied from very short (less than 2 seconds) to longer utterances (more than 12

seconds), we separated the utterances into 6 groups to investigate the results of

denoising methods on each group and especially to observe the effectiveness of the

denoising techniques on very short utterances.

SCORING METHOD

In the experiments, the PLDA classifier is used. Before training the PLDA, the x-vectors

are centered, and their dimensionality is reduced to 128 with LDA. The PLDA is

trained with 200k utterances chosen randomly from Voxceleb. Both clean files and

their augmented versions are used.

5.3.2. RESULTS

In this section, we describe the results obtained by the statistical i-MAP method and

our proposed methods. The results are presented in Table 5.2 and Table 5.3. In our

experiments, we used the equal error rate (EER) metric to evaluate the performance

of the recognition system.

Clean: In this experiment, the clean version of x-vectors is used in the test dataset.

As it is shown, the results are strongly dependent on the duration of test files. The

aim of this experiment is to compare the results obtained by denoising techniques

with noise-free x-vectors.

Noisy: To show the weakness of x-vectors in noisy environments, the BBC noise

files were added to the test data. In Table 5.2, we can see that there is a drastic

degradation in our results. For example, for utterances longer than 12 seconds the

EER increased from 0.83 to 5.13.

i-MAP: In this experiment, we tried to find a denoised version of test x-vectors by

using Equation 5.5. As it is shown in Table 5.2, in all cases the i-MAP improves the

results significantly. For utterances longer than 12 seconds, it gives 50% improvements

in terms of EER. It can also be observed that the best gains are obtained for longer

segments.

DAE: The network is trained with a stochastic gradient descent algorithm with a

learning rate equal to 0.02 and 0.0001 decay of the learning rate. The number of

epochs in this experiment and all other variations of DAEs set to 100, and Mean

Square Error (MSE) is used as a loss function. From our experiments, we observed

that the number of epochs is very important and a small reduction in MSE value has

a large impact on the results. In Table 5.2, we can see that for shorter utterances the

fine-tuned DAE outperforms the i-MAP method but for longer utterances, the results
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Table 5.2: Additive noise compensation by i-MAP, DAE, DAE i-MAP, and Gaussian DAE

(EER)

Duration [0,2] [2,4] [4,6] [6,8] [8,10] [10,12] [12,]

Clean 11.59 7.64 4.14 2.23 3.11 1.53 0.83

Noisy 15.94 12.88 10.50 7.83 8.88 6.66 5.13

i-MAP 14.2 11.07 8.011 5.59 5.33 4.10 2.63

DAE 13.62 10.87 8.28 5.59 5.77 4.10 2.69

DAE i-MAP 14.78 10.87 8.28 4.85 5.33 3.59 2.75

Gaussian DAE 14.20 9.85 7.45 5.59 5.77 4.103 3.14

Table 5.3: Additive noise compensation by Deep Stacked DAE (EER)

Length/ Nř DAEs [0,2] [2,4] [4,6] [6,8] [8,10] [10,12] [12,]

Clean 11.59 7.64 4.14 2.23 3.11 1.53 0.833

Noisy 15.94 12.88 10.50 7.83 8.88 6.66 5.13

2 13.04 10.46 8.011 5.22 5.33 3.59 2.50

3 13.04 9.65 7.73 4.85 5.77 4.10 2.50

are equivalent to i-MAP ones.

DAE i-MAP: In this method, we used the DAE with the same architecture and

parameters used in simple DAE. The denoised x-vectors are passed through the i-MAP

method for further noise compensation. In several cases, the results with this hybrid

system are better than simple DAE. In Table 5.2. we can see that for utterances

between 10 and 12 seconds, we achieved 46% improvement in relative EER.

Gaussian DAE: In this experiment, we try to not only decrease the MSE with DAE

but also maximize the prior probabilities of the estimated noise and of the obtained

x-vectors. The only difference between Gaussian DAE and simple DAE is the loss

function. In this experiment, the function defined in equation 5.2.5 were used as loss

functions. The results in Table 5.2 show that in some cases, the Gaussian DAE gives

better results than i-MAP and conventional DAE.

Deep Stacked DAE: In this experiment, the Deep Stacked DAE which was introduced

in section 5.2.6 is used. In the first DAE, there are three layers. The input and output

layers are linear and the hidden layers activation function is t anh. The output of the

first DAE concatenated with the difference between the noisy x-vector and the output

layer from its predecessor DAE, fed to the next DAE. In the second DAE, there are two

t anh layers with 1024 neurons and the output layer is linear. The number of neurons

in the output layer is 512 which equals the length of a noisy x-vector. The network
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was trained with the stochastic gradient descent method. The learning rate is 0.02 and

the decay of the learning rate is 0.0001. In another experiment, three stacked DAEs are

used. The architecture of the third DAE is the same as the second one. The third DAE

receives its input from the output of the second DAE concatenated with the difference

between noisy x-vectors and the output layer of the second DAE. The results in Table

5.3 show that adding more DAEs doesn’t bring significant improvement.

As we can see from Table 5.2 and Table 5.3, there is a slip in the results for

utterances between 8 and 10 seconds. We believe that it happens because the number

of trials for this experiment in the Fabiole corpus is small.

5.4. DATA AUGMENTATION VERSUS NOISE COMPENSATION

A number of studies [58–60] emphasized the importance of increasing the number of

speakers and data augmentation. It is shown that increasing the number of speakers

and using data augmentation makes the x-vector system more robust on noisy and

far-field test data. We will show that while data argumentation and increasing the

number of speakers make the x-vector system more robust, we can go further and

achieve better results with noise compensation techniques. We show that even with

large augmented data and a great number of speakers, noise compensation techniques

are effective.

To do that, we train two x-vector systems. In the first one, the x-vector network

is trained with Voxceleb1, and in the second one the network is trained with a

combination of Voxceleb1 and Voxceleb2. In both cases, the train data is augmented

with all branches of the Musan corpus. We show that in both protocols the relative

gain of EER after denoising x-vectors is significant. Hence, using denoising techniques

even with the availability of huge data is a good solution to increase the robustness of

speaker recognition systems.

We use two different denoising techniques. Firstly, the denoising autoencoder

proposed in section 5.2.4 is applied for noise compensation. Then we apply the Deep

Stacked DAE that is introduced in section 5.2.6.

5.4.1. EXPERIMENTS SETUP

B. TRAIN X-VECTOR EXTRACTOR

In our experiments, we used the standard Kaldi2 x-vector extractor introduced in [2].

The architecture of the TDNN network is shown in Table 5.1. The training data

2https://kaldi-asr.org/
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is augmented with different branches of the Musan corpus (music, babble, noise,

reverberation). Then, we extracted MFCC features for the augmented data. The

MFCC features are normalized by Cepstral Mean Variance Normalization (CMVN) and

silent frames are removed by the VAD. To explore the reliance of the x-vector system

on the number of speakers and utterances in noisy environments, we trained two

different networks. The first one is trained with 500,000 augmented utterances from

Voxceleb1. In the second one, 1,000,000 randomly chosen utterances from Voxceleb1

and Voxceleb2 were used. In each protocol, the trained network is used to extract

train, and test x-vectors that are used in denoising techniques.

C. TRAIN AND TEST X-VECTORS USED FOR DENOISING TECHNIQUES

In denoising techniques, we need the pairs of noisy-clean x-vectors. We use two

protocols to see the effectiveness of denoising techniques on x-vectors extracted from

a network trained with poor data (Voxceleb1) and a network trained with more rich

data (Voxceleb1 + Voxceleb2). The details about training and test dataset used in

denoising techniques are described in the following.

Protocol1: In this protocol the x-vectors are extracted by the network trained

with Voxceleb1. Firstly, the x-vectors for clean files in Voxceleb1 and Voxceleb2 are

extracted. The BBC Noises and Musan were added to Voxceleb1 and Voxceleb2 with

different SNRs from 0 to 15 to create the corresponding noisy x-vectors for each clean

file. We used 1638 noise files from BBC corpus. The train data consists of 1.975

million pairs of noisy-clean x-vectors. It deserves to be mentioned that for some clean

files, there is more than one noisy version. For the test and enrollment dataset, the

Fabiole Corpus is used. The Fabiole corpus includes 6882 utterances that 3441 files

were used for enrollment and the remaining part was used as the test dataset. The

test utterances were corrupted with 547 different noises from the BBC corpus with

different SNRs between 0 and 15. Since the length of utterances in Fabiole is varied

from very short (less than 2 seconds) to longer utterances (more than 12 seconds),

we separated utterances by their duration in 6 groups to see the results of denoising

methods on each group and especially to observe the effectiveness of the denoising

techniques on very short utterances.

Protocol2: In this protocol the x-vector network is trained with Voxceleb1, Voxceleb2,

and one million utterances from Voxceleb1, and Voxceleb2 augmented with different

parts of Musan corpus (Noise, Babble, Speech) and real RIRs. The noise compensation

training dataset includes 1,200,000 pairs of noisy-clean vectors from Voxceleb1 and

Voxceleb2. The added noises are the same as protocol1. In this dataset for each noisy

x-vector, there is only one clean version. The test and enrollment files extracted by
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this network are the same as protocol 1.

5.4.2. RESULTS

In this section, we describe the results of experiments for the baseline systems and

denoising techniques. The results are summarized in Table 5.4 and Table 5.5. In the

experiments, the equal error rate (EER) metric is used to evaluate the performance of

the speaker recognition system. In all experiments, the PLDA classifier is used for

scoring.

Clean: In this experiment the scoring is done on clean x-vectors in the test dataset.

We can see that the results are strongly dependent on the duration of test files.

Noisy: To see the performance of the x-vector system in noisy environments, the

BBC noise files were added to the test data. In Table 5.4, we can see that there is a

drastic degradation in our results. For example, in Protocol1 for utterances longer

than 12 seconds the EER increased from 0.833 to 5.131. From Table 5.5 we can see

that increasing the number of speakers and a number of training data makes the

system more robust but still, there is a large drop in the performance of the system

after adding the noise to the test data set. For example, in utterances longer than 12

seconds the EER increased from 0.5% to 2.69%.

Denoising autoencoder: Finding a good architecture and its parameters for a

specific problem is the main challenge of using denoising autoencoders. In our

experiments, we used a denoising autoencoder with three layers. The input and

output layers activation functions are linear. The hidden layer has 1024 neurons

with a tanh activation function. The network is optimized by a stochastic gradient

descent algorithm. The learning rate was 0.02 which decays 0.0001 at each epoch.

The network is trained in 100 epochs to reduce the mean square error (MSE) loss

function. In all experiments with conventional DAE and its modifications in the next

experiments, we used Tensorflow [130] and Keras [131] frameworks. From Table 5.4

and Table 5.5 we can see that in all cases the denoising autoencoder improves the

performance of the system in terms of EER. In Protocol1 we have 14% to 47% relative

improvement of EER. This improvement in Protocol2 is from 19% for utterances less

than 2 seconds to 58% for utterances between 8 and 10 seconds. The improvement

for utterances longer than 10 seconds is 52%.

Deep Stacked DAE: In this experiment, we used Deep Stacked DAE. We used two

DAE blocks. In the first one, we put three layers. The input and output layer is

linear and a dense layer with 1024 neurons was used in the hidden layer with t anh

activation function. The output of the first DAE block concatenated with the difference

between noisy x-vector and the output layer from the first DAE. This concatenated
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vector is used in the input of the next DAE block. In the second DAE, we used two

t anh layers with 1024 neurons and the output layer is linear. The number of neurons

in the output layer is 512 which is equal to the size of the noisy vector. The stochastic

gradient descent optimization method is used to train the network. The learning rate

is 0.02 and the decay of the learning rate is 0.0001.

From Table 5.4 and Table 5.5, we can see that in all experiments the Deep Stacked

DAE outperforms the simple DAE. In Protocol1, we have an 18% relative improvement

for utterances shorter than 2 seconds and 51% improvement for utterances longer

than 12 seconds. In Protocol2, we have a 21% improvement for utterances shorter

than 2 seconds and a 66% improvement for utterances between 8 and 10 seconds.

The results show that even with a smaller number of training samples in denoising

techniques the improvements in protocol 2 are higher.

Table 5.4: The results for x-vectors extractor trained with Voxceleb1 (Protocol1) and

denoising techniques

Duration [0,2] [2,4] [4,6] [6,8] [8,10] [10,12] [12,]

Clean 11.59 7.64 4.14 2.23 3.11 1.53 0.83

Noisy 15.94 12.88 10.5 7.83 8.88 6.66 5.13

DAE 13.62 10.87 8.28 5.59 5.77 4.10 2.69

Stacked DAE 13.04 10.46 8.01 5.22 5.33 3.59 2.50

Table 5.5: The results for the x-vector extractor trained with Voxceleb1+Voxceleb2

(Protocol2) and denoising techniques

Duration [0,2] [2,4] [4,6] [6,8] [8,10] [10,12] [12,]

Clean 10.43 4.62 1.93 1.11 0.88 1.02 0.57

Noisy 13.62 9.65 7.18 5.22 5.33 3.07 2.69

DAE 11.01 7.04 4.42 3.35 2.22 1.538 1.28

Stacked DAE 10.72 6.43 3.86 2.61 1.77 1.53 1.28

From the results in Table 5.4 and Table 5.5, we observed that, by increasing the

number of speakers and using more data in training the x-vector network, the system

becomes more robust in dealing with unseen noises. But the performance drops

significantly in comparison to noise-free environments. Applying noise compensation

techniques brings notable improvement in both protocols. The relative improvement

of EER for both protocols is presented in Figure 5.4.
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Figure 5.4: The relative improvement of EER(%) by deep-stacked denoising autoencoder

in Protocol1 and Protocol2

5.5. SPECIFIC NOISE COMPENSATION

Having a general noise compensation module that works with all unseen noises is

more convenient than adapting it to different environments. In this part of our

experiments, we explore the adaptation of noise compensation for a specific noise.

The intention behind this experiment is to answer whether having a general noise

compensation is sufficient to achieve a high-performance speaker recognition system

or whether we need to have an adapted noise compensation module for a specific

situation. In this experiment, the TDNN x-vector extractor is used (Table 5.1), and the

Deep Stacked DAE is used as a noise compensation module (Section 5.2.6).

5.5.1. EXPERIMENTS SETUP

x-vector extractor: The TDNN is trained with Voxceleb1, Voxceleb2, and one million

utterances from Voxceleb 1 and Voxceleb 2 augmented with different parts of Musan

corpus (Noise, Babble, Speech) and real RIRs.

noise compensation training data: We used two sets of training data. The general

model is trained with pairs of noisy/clean x-vectors extracted from Voxceleb1,2. In

this case, the random noises from the BBC corpus are added to the clean version.

In the second model that is trained to compensate for a specific noise, all files are

corrupted with the specific noise. This noise is the same in training and test data.

test and enrollment: The Fabiole corpus is used as test and enrollment. The 3441

files were used for enrollment and the remaining part was used for enrollment. The

test files are corrupted with motorcycle noise chosen from the BBC noises.
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5.5.2. RESULTS

In Table 5.6 we see the impact of motorcycle noise in different SNRs. As it is shown

in low SNR=2 the EER increase from 0.57 to 4.01. This degradation in high SNR is not

so significant. We are using the lowest SNR to be compensated with both general and

specific noise compensation modules.

Table 5.6: TABLE 2. The impact of specific noise at different SNRs (EER)

SNR/Dur [0,2] [2,4] [4,6] [6,8] [8,10] [10,12] [12,]

Clean 10.43 4.628 1.934 1.119 0.888 1.026 0.577

2 9.275 6.439 7.182 5.97 6.222 5.128 4.105

5 9.275 5.835 5.249 4.478 4.444 3.077 1.988

10 9.855 5.03 3.315 2.612 1.778 1.538 0.9622

15 9.855 5.03 2.762 1.493 1.333 1.026 0.6414

The results for specific noise compensation are presented in Table 5.7. The third

row shows the output of specific noise compensation and the last row is the EER

obtained from general noise compensation. In the case of long duration, we will see

that targeting a specific noise gives more improvement. However, the obtained results

with the general model are competitive with the specific one. These results show

that Deep Stacked DAE is learning a complex hyperplane between noisy and clean

distributions for a big number of noises. This characteristic helps us to have a general

noise compensation module for all unseen noises.

Table 5.7: Specific noise compensation (EER)

Duration [0,2] [2,4] [4,6] [6,8] [8,10] [10,12] [12,]

Clean 10.43 4.628 1.934 1.119 0.888 1.026 0.577

SNR=2 9.275 6.439 7.182 5.97 6.222 5.128 4.105

Specific 11.3 6.036 3.867 3.358 3.111 1.538 1.475

General 9.855 5.634 3.867 2.985 3.111 2.051 1.604

5.6. COMPENSATE MULTIPLE DISTORTIONS

In the previous section, we explored the effectiveness of compensating additive noise

at the x-vector level. In some cases, there is only one kind of domain mismatch like

additive noise or reverberation, but in many cases, there is more than one distortion.

Finding a solution for domain adaptation in the presence of different distortions is a
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challenge.

In this section, we investigate the situation in which there is none, one or more

of the following distortions: early reverberation, full reverberation, and additive

noise. We propose two configurations to compensate for these distortions. In

the first one, a specific denoising autoencoder is used for each distortion. In the

second configuration, a denoising autoencoder is used to compensate for all of these

distortions simultaneously.

Indeed, the proposed DAE tries to learn the relation between the x-vector affected

by a given distortion and its clean version. Thus, it is direct learning of the

distortion’s effect, which is expected to make the denoising system more efficient than

multi-condition training. The DAE uses more specific information about the distortion

than what would be used in a data augmentation approach. Moreover, the DAE we

propose is trained in the x-vector space, which reduces the training time, with respect

to the x-vector extractor training.

5.6.1. SYSTEM CONFIGURATION FOR MULTIPLE DISTORTIONS

Our study will focus on 5 conditions and their combinations: Clean (D), additive

Noise (N), Early reverberation (E), Full reverberation (F), and additive noise with Full

reverberation (FN). The reverberation is the sum of sound reflections arrived at a

single point inside an acoustical enclosure. Early reflections which are called early

reverberation arrive between 50-100ms after the arrival of the direct signal. The late

reverberation is the next echo that arrives to the listener with longer delays.

In the next sections, the DAE(N), DAE (E), DAE (F), DAE (FN), and DAE (N+E+F+FN)

stands for experiments that the input of denoising autoencoder is noisy x-vector data,

early reverberated x-vector data, the full reverberated x-vector data, the simultaneously

noisy fully reverberated x-vector data and finally a combination of x-vectors for all

distortions. The output of the DAE is always the clean x-vector data.

In this part, we compare two approaches for handling multiple distortions. In the

first approach, after the x-vector network, a specific denoising autoencoder is used

for each distortion. For clean x-vectors, the scoring is done without passing them

through a DAE. The details of this configuration are depicted in Figure 5.5. In this

configuration, we assume that the type of distortion is known. We will show when

the type of distortion is unknown, using a classifier can help to detect the kind of

distortion automatically.

In the second configuration depicted in Figure 5.6, the compensation for different

distortions is done by using one DAE. In this configuration like the specific
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Figure 5.5: Using specific models for each distortion

compensation, there is clean speech, distorted speech with additive noise, early

reverberation, full reverberation, additive noise, and full reverberation. With this

system, it is not necessary to have previous information about the kind of distortion.

As it is shown in the results, the denoising autoencoder learns to compensate for

all those distortions simultaneously. In the case of clean speech, we show that,

without any change in the system and without having previous information about the

environment, the denoising part does not have a negative effect on clean x-vectors. In

both configurations, the Stacked DAE is used for noise compensation. The Stacked

DAE is implemented in Pytorch3 library.

5.6.2. NOISE AND REVERBERATION DATA SIMULATION

To train the DAE for dereverberation or for denoising we need to have a set of x-vector

pairs, distorted/clean. Distortion here corresponds to reverberation or additive noise.

The reverberated version of the speech clips is obtained by convolving the original

speech clips with room impulse responses (RIR) simulated with the pyroomacoustics
4. The RIR was designed to simulate rooms whose dimensions are sampled randomly

between [3m∗4m∗2.5m] and [6m∗8m∗3.5m]. The reverberation time for the rooms

(RT_60) is drawn randomly between [200ms] and [600ms]. The microphone and the

speech source are located at least 1m away from any wall. The microphone is at

0.5m height (to simulate a small robot on the floor) and the speech source height

is drawn randomly in [1.6m,1.9m] (to simulate a human standing). The distance

3https://pytorch.org/
4https://github.com/LCAV/pyroomacoustics
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Figure 5.6: General domain adaptation for different distortions

between the speaker and the microphone is at least 1 meter. We generated 10000 RIR

for training and 2000 RIR for the test. When considering only early reverberation the

RIR is truncated to 50ms after the RIRs first peak. When additive noise is present, the

noise source clips are office noises collected from Freesound [122]. We collected 3275

clips for training and 1000 clips for the test. The training/test split is designed such

that there is no overlap in terms of Freesound users between both sets. The original

noise clips are drawn randomly and convoluted with an RIR file. The noise source is

located at least 1m away from any wall at a height of [1.6m,1.9m]. The noise files are

added with random SNR between [0,10].

5.6.3. EXPERIMENTAL SETUP

The x-vector network introduced in Table 5.1 was used to create x-vectors for training

and testing data. The x-vector network has been trained with Voxceleb1, Voxceleb2,

and one million utterances from Voxceleb 1 and Voxceleb 2 augmented with different

parts of the Musan corpus (Noise, Babble, Speech) and real RIRs. The x-vector

extractor has been used to create clean, noisy, and reverberant data to train DAE.

For each experiment firstly the reverberation and/or noise were added to Voxceleb2.

Then pairs of distorted/clean x-vector were produced to train DAE. In the same

manner, the data was distorted for the test. In all cases the enrollment data is clean;

because we assume that in real applications it is possible to have clean data for

enrollment. In the experiments, we use Deep Stacked DAE. The architecture (number

of layers and neurons) is the same in all experiments. In the back end, the cosine

distance is used for scoring.
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The Fabiole corpus was used for test and enrollment. In the Fabiole corpus, there

are 6992 files from 130 speakers. From 130 speakers in Fabiole, for 100 speakers there

is a small number of utterances. We used these speakers just in enrollment. The

utterances belonging to the remaining 30 speakers are randomly separated for the test

and enrollment. In enrollment, there are 3576 files and 3244 files are used for the test.

Because the duration of files in the Fabiole corpus spans from very short to long, the

test files are separated into seven groups every two seconds.

5.6.4. RESULTS

The results obtained in the presence of each distortion are summarized in Table

5.8. When we are in a clean environment without noise or reverberation, we show

that the use of DAE(F+N) gives almost the same (sometimes better) results as the

baseline system. This is an interesting property of the proposed approach. If the

x-vector belongs to the clean class, the scoring could be done directly. But for the

general configuration presented in Fig 5.6, we don’t care about the cleanness of the

environment and even in the case of noise-free and non-reverberant environments

the test x-vector will be passed through the DAE. When we apply the DAE trained on

noisy x-vectors on clean x-vectors, the output is still almost identical to the input. It

means that for noise and reverberation-free environments, the system could be used

without any modification

In the case of additive noise, both specific models and general models were tested.

As is shown the results obtained by specific models are a little better. For example,

for utterances longer than 12 seconds, the EER obtained by the specific model is 1.91

but the EER obtained by the general model is 2.23. For early reverberation and full

reverberation distortions, the results obtained by the general model for short segments

are better than the specific model but the results obtained for longer utterances are

almost the same. When there is additive noise and reverberation, in all cases the

results achieved by the general model are better. For specific models, the experiments

are done directly without using a classifier. But to prove that it is possible to detect

the type of distortion, we trained a feed-forward neural network. The accuracy of the

trained network is 81%. Even if we had a distortion classifier with 100% accuracy, the

results show that it’s better to use a general DAE instead of using a specific DAE for

each distortion

Our experiments show that, in the co-existence of noise and reverberation, the

second configuration gives better results. For example, with the second configuration,

we obtained 76.6% relative improvement of EER for utterances longer than 12 seconds.

For other situations in the presence of only one distortion, the second configuration
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gives almost the same results achieved by using a specific model for each distortion.

To explore the reasons behind the effectiveness of the general model, DAE

(N+E+F+FN), we did another set of experiments. In these experiments, we explored

if it is possible to do compensation for distortions interchangeably or not. When the

trained DAE with reverberated data, DAE(F), was used for additive noise compensation,

the EER for utterances longer than 12 seconds, was reduced from 6.63 to 5.42. Also,

if we use DAE (N) for full dereverberation, the EER for utterances longer than 12

seconds, reduces from 5.23 to 4.29. The results show that using training data from

other distortions has a positive impact on training the general model.

Table 5.8: Compensating multiple distortions: D(Dry signal), N(Additive noise), E(Early

Reverberation), F(Full reverberation), FN(Additive noise and Reverberation)

(EER)

Env Duration [0,2] [2,4] [4,6] [6,8] [8,10] [10,12] [12,]

D D 9.89 5.08 3.62 2.44 1.77 1.85 1.65

DAE (FN) 9.01 5.06 3.31 2.40 1.75 1.85 1.65

N 14.58 11.16 8.83 9.12 8.05 7.97 6.63

N DAE (N) 10.48 6.08 3.56 3.27 2.26 1.91 1.91

DAE (N+E+F+FN) 10.75 6.93 4.45 4.47 3.53 2.77 2.23

E 18.60 10.54 7.08 4.58 3.98 4.16 4.02

E DAE (E) 13.08 6.48 4.15 2.50 2.23 2.31 2.29

DAE (N+E+F+FN) 11.57 5.67 3.85 2.96 2.58 2.77 2.29

F 20.01 11.96 8.01 6.15 4.88 5.09 5.23

F DAE (F) 9.05 5.03 3.26 2.48 2.21 2.31 2.23

DAE (N+E+F+FN) 9.29 4.86 3.62 2.49 2.21 2.31 2.05

FN 27.32 24.34 20.77 18.68 19.38 19.93 17.61

FN DAE (FN) 14.24 9.93 7.37 4.97 3.96 3.68 4.53

DAE (N+E+F+FN) 13.66 9.73 6.52 4.54 3.61 3.24 4.09

5.7. CONCLUSION

In this chapter, the noise compensation in the TDNN x-vector system is explored

extensively for several scenarios. Firstly, we showed that in x-vector space when

there are many unseen noises, the results degrade substantially. Then, we tried to

exploit i-MAP statistical denoising technique, originally designed for i-vector space, to

denoise x-vectors. The i-MAP technique is applicable in the x-vector domain. In this

chapter, several variations of denoising autoencoders are proposed. The combination
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of i-MAP and DAE is better than using them separately for denoising x-vectors. In

another method (Gaussian DAE), we defined a new loss function that tries to combine

the MSE term with two additional terms corresponding to the likelihood of the output

data with respect to prior Gaussian distributions. Finally, a Deep Stacked DAE was

proposed that each DAE receives the output of its predecessor DAE concatenated

with the difference between noisy x-vectors and its predecessors output. The results

obtained by Deep Stacked DAE, outperform the statistical i-MAP technique and other

variations of DAE discussed in this chapter.

We showed that the system’s performance continues to improve by increasing the

number of speakers and data argumentation. We showed also that even with this

fact, applying compensation techniques is essential to approaching noise-free test

conditions. The obtained results for specific noise compensation show that having a

general Deep Stacked DAE is competitive with specific noise models.

Finally, we proposed two configurations for robust speaker recognition in

environments where there are several distortions. The systems should perform

efficiently in environments with early reverberation, full reverberation, additive noise,

additive noise, and full reverberation. To solve this problem, we proposed two

configurations. In the first configuration, we used a specific DAE for each distortion.

In the second configuration, one DAE is used to learn all of these distortions

simultaneously. The second configuration is simpler and gives the same or even

better results than specific compensation for each distortion. We also showed that

the speaker recognition performance doesn’t decrease (with respect to the baseline)

when the test data is clean, which is a positive behavior of the proposed noise

compensation module.



6
EXPLORING THE BEHAVIOR OF

RESNET SPEAKER RECOGNITION

SYSTEM AGAINST ADDITIVE NOISE

AND REVERBERATION

In the previous chapter, the behavior of TDNN speaker recognition systems against

additive noise and reverberation has been explored. In this chapter, we extend our

study to the ResNet speaker recognition system. Firstly the robustness of the ResNet in

the presence of noise, reverberation, and both distortions is explored. Our experimental

results show that in all cases the ResNet system is more robust than TDNN. After that, a

noise compensation task is done with a denoising autoencoder (DAE) over the x-vectors

extracted from both systems. We explored two scenarios: 1) compensation of artificial

noise with artificial data, and 2) compensation of real noise with artificial data. The

second case is the most desired scenario because it makes noise compensation affordable

without having real data to train denoising techniques. The experimental results show

that in the first scenario noise compensation gives significant improvement with TDNN

while this improvement in ResNet is not significant. In the second scenario, we achieved

a 15% improvement of EER over the VoiCes Eval challenge in both TDNN and ResNet

systems. In most cases, the performance of ResNet without compensation is superior to

TDNN with noise compensation.

The presented work in this chapter is published in [54] and [132].
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6.1. INTRODUCTION

T HERE is bulky research on proposing different speaker embedding networks to

improve the quality of speaker representations in general. This line of research

aims to improve the quality of speaker recognition systems for all environments. In

Chapter 2 the main proposed DNNs including TDNN [2], ResNet [46], ECAPA-TDNN

[5] and MFA-Conformer [4] reviewed. The main task of these networks is the same:

extract a fixed-size compact representation from variable-length speech utterances

known as speaker embedding or x-vector.

We observe an evolution in the proposed architectures. The ResNet system leverages

a high number of hidden layers. The residual connections are used to make its

training feasible. This big number of hidden layers with the ability to capture context

information by conventional layer and efficient objective function has improved the

performance of this system more significantly in comparison to the TDNN system.

The effectiveness of the ResNet system is not limited to noise-free environments

but it is more promising against environment variabilities such as additive noise,

reverberation, and far-distance recording devices [120] [3].

The previous research shows the weakness of TDNN-based speaker recognition

systems against noise and reverberation distortions. In Section 5.3 and Section 5.6

in Chapter 5 it is shown that in the presence of noise and reverberation using a

compensation module before scoring (statistical or DAE) can bring the performance

of the x-vector system closer to a clean situation. Several strategies such as data

argumentation (Section 5.4) and noise compensation are explored to make the

TDNN-based speaker recognition systems more robust against noise, reverberation,

and other variabilities (Section 5.3 and Section 5.6).

In this chapter, we first explore the robustness of the ResNet speaker embedding

system in different situations. After that, we explore the possibility of doing

compensation for environment variabilities with the ResNet speaker embeddings.

Throughout our work, we compare the performance of ResNet with the TDNN system

which is the most used and known speaker embedding system [2]. In our research,

we will show that even in difficult situations in the presence of additive noise with low

SNR and reverberation, the ResNet system is more robust than the TDNN system, but

still, we face some performance degradation in noisy and reverberated environments.

Despite the efficiency of noise compensation in TDNN, we found no or small

improvement in EER by using different statistical and DNN compensation techniques

in the ResNet system. Here, a serious question arises in regard to the behavior

of ResNet against noise and reverberation. It is not clear whether the noise and

reverberation are compensated internally by the ResNet system or if there is another
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characteristic that impedes us from doing compensation. In an attempt to understand

the reasons behind the behavior change of noise compensation in ResNet, the t-SNE

visualization of clean x-vectors and their noisy versions is studied for both systems.

Our visualization shows that the ResNet speaker embedding extractor performs the

compensation to a great extent and even in the presence of noise and reverberation

the extracted speaker embeddings remain close to the clean environment. This is

in conformity with ResNet results obtained from the severely noisy and reverberated

environments in comparison to the clean environment. However, the possibility of

doing compensation for the residual small degradation of performance in the presence

of acoustic noises remains an open question in the ResNet system.

6.2. SYSTEM CONFIGURATION

In this section, the architecture of the ResNet speaker embedding network is presented.

After that, the integration of the compensation module with the speaker recognition

system is presented.

6.2.1. RESNET AND TDNN ARCHITECTURE

The ResNet speaker embedding extractor used in this chapter is a variant based on

ResNet [46]. The ResNet model for extracting x-vectors is made of three parts: a

frame-level feature extractor, a statistics-level layer, and segment-level representation

layers.

• The frame-level component is based on the well-known ResNet topology. ResNet

(Residual Network) uses a stack of many Residual Blocks. A Residual Block is

made up of two 2-dimensional Convolutional Neural Networks (CNN) layers

separated by a non-linearity (ReLU). The input of the Residual Block is added to

its output in order to constitute the input of the next Residual Block. Residual

blocks are allowed to solve the problem of exploding and vanishing gradients.

And ResNet has emerged as a family with extremely deep architectures showing

compelling accuracy and effective convergence behaviors.

• The statistics-level component is an essential component that converts from

a variable-length speech signal into a single fixed-dimensional vector. The

statistics level is composed of one layer: the statistics-pooling, which aggregates

over frame-level output vectors of the DNN and computes their mean and

standard deviation.

• The segment-level component maps the segment-level vector to speaker
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Table 6.1: The proposed ResNet-34 architecture. In the last row, N is the number of

speakers. The dimensions are (Frequency×Channels×Time). The input is

comprised of 60 filter banks from speech segments. During training, we use

a fixed segment length of 400.

Layer name Structure Output

Input – 60 × 400 × 1

Conv2D-1 3 × 3, Stride 1 60 × 400 × 32

ResNetBlock-1

[

3×3,32

3×3,32

]

×3 , Stride 1 60×400×32

ResNetBlock-2

[

3×3,64

3×3,64

]

×4, Stride 2 30×200×64

ResNetBlock-3

[

3×3,128

3×3,128

]

×6, Stride 2 15×100×128

ResNetBlock-4

[

3×3,256

3×3,256

]

×3, Stride 2 8×50×256

Pooling – 8×256

Flatten – 2048

Dense1 – 256

Dense2 (Softmax) – N

Total – –

identities. The mean and standard deviation are concatenated together and

forwarded to additional hidden layers and finally to the softmax output layer

The stklia is used for ResNet implementation 1. In our experiments, we used the

TDNN architecture introduced in Section 5.2.1.

6.2.2. COMPENSATION MODULE

The compensation module performs a transformation between noisy and clean

speaker embeddings. In doing so, the compensation module tries to remove the

impact of noise from speaker embeddings. In this work, two techniques are tested for

compensation. We are using the Deep Stacked DAE for noise compensation. The

architecture of the Deep Stacked DAE is described in Section 5.2.6. In the experimental

phase, we tested several variants of this architecture for noise compensation in the

ResNet system. These details will be discussed in the next section.

1https://github.com/Chaanks/stklia
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6.3. EXPERIMENTAL SETUP

6.3.1. SPEAKER EMBEDDING EXTRACTOR TRAINING

The speaker embedding extractors are trained on the Voxceleb2 corpus. In order

to increase the diversity of the acoustic conditions in the training set, the MUSAN

corpus was used for data augmentation [121]. Also, an RIR pool is used for data

reverberation [2]. The TDNN system is trained with MFCC features with 25 frame

lengths, and ResNet is trained on 60 filter banks with 25 frame lengths.

6.3.2. TEST AND ENROLLMENT

In our experiments, we used two datasets. Fabiole protocol is used to evaluate the

robustness of the system against simulated noise and reverberation. In the Fabiole

protocol, we have 130 hundred speakers in the enrollment and 30 speakers for the

test. The number of test files is 6870. In both protocols, one file is used per speaker

in the enrollment. The Voices protocol is used to evaluate the robustness against real

noise and reverberation. Voices [6] dataset has train and test parts. The test part was

created from 1320 clean files coming from Librispeech (100 speakers) and the train

part is recorded from 2583 files coming from Librispeech (200 speakers). We used 300

files, each file belonging to one speaker for enrollment, and 3603 remaining files are

used as test utterances. In all experiments with Voices, the far microphone (mic 05)

and the rooms (room2, room3) with more reverberation are chosen. The details of

protocols are presented in Table 6.2.

6.4. BACK-END

The TDNN system is evaluated with PLDA back-end. The PLDA is trained with 200k

utterances extracted from Voxceleb. The ResNet is evaluated with cosine similarity.

6.5. RESULTS AND DISCUSSION

6.5.1. EXPLORING THE ROBUSTNESS OF TDNN AND RESNET

In this section, the results are presented. In all experiments, the ResNet is compared

with the TDNN x-vector system. The results for different situations are presented in

Table 6.3.

Clean. In the baseline experiment, there is no noise or reverberation.

Additive noise. Because there is no dataset with just additive noise, the
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Table 6.2: Test protocols derived from Fabiole and Voices evaluation datasets

Protocol Test Enroll Trials

Fabiole 6870 130 893k

Voices 3603 300 1080k

systems are evaluated with simulated additive noise. The experiments are done with

Fabiole protocol. The Freesound [122] noises are added to the clean speech with

Pyroomacoustics 2 tool. In three experiments, different SNRs are tested.

Reverberation. In another experiment, we explored the robustness of both systems

against reverberation. In this case, we tested the systems with both real and simulated

reverberation. The protocol for adding reverberation is described in Section 5.6. For

real reverberation, we used recorded files of room2 and room3 in Voices that are

recorded without noise.

Table 6.3: Robustness od TDNN and ResNet systems against different distortions (EER)

Distortion Protocol ResNet TDNN

Clean Fabiole 6.27 15.21

Voices 0.89 1.25

Fabiole [SNR 0-5] 8.28 17.83

Noise Fabiole [SNR 5-10] 7.43 16.58

Fabiole [SNR 10-15] 6.87 15.95

Fabiole 9.75 18.20

Reverberation Voices room 2 1.24 2.53

Voices room 3 2.6 6.68

Fabiole [SNR 0-5] 12.48 21.47

Reverberation and Noise Voices room 2 1.24 3.71

Voices room 3 2.6 6.69

Additive noise and reverberation. In this case, the systems are tested with both real

and simulated noise and reverberation.

If we compare the baseline results in Table 6.3 with the presence of distortions, we

see that the ResNet has relative robustness in the presence of noise and reverberation.

For example, in the worst case for SNR between 0 and 5 and reverberation on Fabiole

protocol, the EER is 12.48 while with TDNN in the clean environment, the EER is

2https://github.com/LCAV/pyroomacoustics
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15.21. With VoiCes protocol in the presence of noise and reverberation in room3, the

EER is 2.6 while for the TDNN system, the EER is 6.69. Just in the case of noise and

reverberation for Fabiole protocol the performance of ResNet degrades significantly.

One possible reason behind this degradation in Fabiole comes from the fact that in

Fabiole there are 1720 files shorter than 4 seconds. In all other experiments, ResNet

shows relative robustness against noise and reverberation. For example, in the VoiCes

protocol in the clean position, the EER is 0.89 but in the presence of severe noise and

reverberation, it is 2.6.

6.5.2. NOISE COMPENSATION

In the second group of experiments, we did noise compensation in both TDNN and

ResNet systems in the presence of artificial and/or real noises and reverberation.

During noise compensation, two scenarios are considered. The results for each

scenario are described in this subsection.

ARTIFICIAL NOISE COMPENSATION WITH ARTIFICIAL TRAINING DATA

In our experiments, we used pairs of noisy/clean speaker embeddings to train DAE.

The training pairs are constructed from Voxceleb. The noisy version is prepared by

adding Freesound noises and RIR files with Pyroomacoustics. In the training data,

there are about 5 million pairs of noisy/clean x-vectors. In the noisy version, there are

one or both additive noise and reverberation distortions. The noises and RIR files used

to prepare the training data are different from those that are used for test protocols.

After doing a transformation on noisy test files with the trained DAE, we observed a

small gain in terms of EER for the ResNet system. For example, in the presence of

additive noise and reverberation in Fabiole protocol, the EER reduces from 12.48 to

12.18, while in TDNN it reduces from 21.74 to 18.03. The results are shown in Table

6.4.

Table 6.4: Simulated noise compensation in TDNN and ResNet systems (EER)

System Clean Noisy Denoised

TDNN 15.21 21.47 18.03

ResNet 6.27 12.48 12.18

We explain this phenomenon by visualization of noisy and clean speaker embedding

with t-SNE. The visualization shows that ResNet x-vectors remain in the same space
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and the noise and reverberation don’t have a big impact on them. In this experiment,

we chose a random noisy speaker embedding and its 1000 closest neighbors. The

chosen vectors are plotted alongside their corresponding clean versions. The t-SNE

is trained with both clean and noisy speaker embeddings. This experiment shows

that noisy speaker embeddings in the ResNet system are not separable and are

far from their clean version. But in the TDNN system, there is a significant shift

between noisy and clean speaker embeddings. This phenomenon explains that there

is no big difference between noisy and clean versions of speaker embeddings to be

compensated by denoisers. This is in conformity with obtained EER in a noisy and

reverberant environment leveraging the ResNet system (Fig. 6.1). However, the small

residual noise in ResNet is not trainable with DAEs, we don’t know whether we have

arrived at the limit of doing noise compensation in this system or if it is possible to

do noise compensation in ResNet speaker embeddings (Fig. 6.1).

Denoising techniques reduce the MSE between noisy and clean speaker embeddings.

We observed that in ResNet we have a small relative gain in terms of MSE between

noisy and denoised speaker embeddings, while in the TDNN network, the MSE

improves significantly. For example, in the case of noise and reverberation in TDNN,

the MSE reduces from 0.21 to 0.07 on the Fabiole test set, while in ResNet this value

decreases from 4.18 to 3.94 with DAE. This small relative gain of MSE leads to just a

small improvement of EER.

We did several attempts to resolve the problem of noise compensation in ResNet

speaker embeddings. In a controlled condition, we tried specific noise compensation

by training the noise compensation module using a pair of distorted/clean data that

the distorted version is prepared by adding a specific noise. Even in this case, we

didn’t observe an improvement.

This characteristic of the ResNet shows that the residual noise in this system is

more complicated and unpredictable to be modeled by current denoising techniques.

However, the small residual noise in ResNet is not trainable with DAEs, we don’t know

whether we have arrived at the limit of doing noise compensation in this system or if

it is possible to achieve better results by noise compensation.

REAL NOISE COMPENSATION WITH ARTIFICIAL TRAINING DATA

In order to train the DAE for real noise and reverberation compensation, the same

training data was used that was prepared already for artificial noise compensation.

In this experiment, the standard VoiCes protocols introduced in [6] are used. The

results before and after noise compensation are shown in Table 6.5. Intuitively,

having simulated training data that matches better with the real noisy test data,
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(a) Pairs of clean and noisy embeddings extracted from TDNN system

(b) Pairs of clean and their denoised version embeddings extracted from TDNN system

(c) airs of clean and their denoised version embeddings extracted from ResNet system

Figure 6.1: t-SNE visualization of TDNN and ResNet x-vectors

gives better results. During data simulation, we tried to prepare another training

data by fine-tuning several parameters such as room size, sound absorption, and

microphone distance. We observed that creating a training simulated data by fixing

these parameters doesn’t bring more improvement. The experiments show that having

more diversified data with different parameters such as random microphone distance

and having different room sizes increases the chance of capturing the given noise in

the test situation.
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ADDITIVE NOISE AND REVERBERATION

Table 6.5: Real noise compensation with artificial noisy training data in TDNN and

ResNet systems(EER)

Voices Eval Voices Dev

System Noisy Denoised Noisy Denoised

TDNN 4.44 3.80 7.89 7.28

ResNet 1.37 1.15 5.10 5.04

6.6. CONCLUSION

In this chapter, we explored the noise robustness of two state-of-the-art speaker

recognition systems: TDNN and ResNet. We have shown through our experiments

that the system based on ResNet is much more robust to noise (additive noise and

reverberation) than the TDNN. Also, real and artificial noise compensation is done in

both systems. The most unexpected result is that the compensation techniques (based

on DAE) give a marginal improvement in the case of artificial noises with ResNet,

while the improvement is significant in the TDNN system. Despite this finding, the

ResNet system remains more efficient than the TDNN, with or without noise, with or

without compensation. However we found a degree of improvement in the case of real

noise compensation in both TDNN and ResNet systems, we had shown that a precise

simulation of real situations is the main challenge of doing real noise compensation

with artificial training data. The objective of future work is to handle noise and

reverberation in the speaker embedding level in order to avoid the limitations of noise

compensation in the speaker embedding level.
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SPEAKER RECOGNITION SYSTEM

In the previous chapter, we explored the possibility and limitations of noise compensa-

tion at the speaker embedding level for both TDNN and ResNet systems. In the current

chapter, we move towards learning noise-robust speaker embedding extractors. This

chapter proposes two new variants of ResNet-based speaker recognition systems that

make the speaker embeddings more robust against additive noise and reverberation.

The goal of the proposed systems is to extract speaker embeddings in noisy environments

that are close to their corresponding version in a clean environment. To do so, the

speaker embedding network minimizes the speaker classification loss function and

the distance between pairs of noisy and clean speaker embeddings jointly. The first

proposed system learns the same distribution for both noisy and clean environments.

The second proposed system imposes on the speaker embeddings for noisy environment

shift towards the distribution of the best-obtained system in the clean environment.

The experimental results obtained by our systems are compared with the baseline

ResNet system. In different situations with real and simulated noises and reverberation

conditions, the modified systems outperform the baseline ResNet system. The proposed

systems are tested with four evaluation protocols. In the presence of artificial noise and

reverberation, we achieved a 19% improvement in EER. The main advantage of the

proposed systems is their efficiency against real noise and reverberation. In the presence

of real noise and reverberation, we achieved a 15% improvement in EER.

The presented work in this chapter is published in [133]
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7.1. INTRODUCTION

According to the reviewed literature in Chapter 3, the problem of noise and

reverberation could be addressed at different levels of speaker recognition systems,

including signal level, feature level, speaker modeling level, speaker embedding level,

and scoring technique adaptation. Data augmentation is another approach for

making speaker recognition systems robust against noise. Researches show that data

augmentation brings a degree of robustness to the speaker recognition system, but

still, their performance degrades in noisy environments because there is no constraint

on the speaker embedding system to extract identical or close speaker embeddings for

pairs of the noisy-clean version of the same signal.

In several works, the researchers tried to make the speaker embedding extractors

robust to noise and reverberation. In [97] a domain adaptation technique is proposed

that uses mean discrepancy distance (MMD) as a regularizer with the speaker

embedding extractor that does the adaptation between the source and target domain.

The proposed method is tested for language adaptation, and its efficiency for noise

and reverberation adaptation is not examined. In [88] an adversarial strategy was

proposed to make the speaker embedding extractor more robust against noise. In

the general configuration of the speaker embedding extractor, the output layer does

speaker classification. In this work, a second classifier is trained adversarially that

accepts the type of noise in the output. In another work, a GAN-based speaker

embedding extractor was proposed that used a binary discriminator to discriminate

the noisiness of the speaker embedding alongside the speaker recognition classifier

[87]. The main deficiency of adversarial speaker embedding extractor systems is that

the training of the network in a manner that can not be able to discriminate the type

of noise or the noisiness of a speaker embedding doesn’t guarantee that noisy speaker

embeddings are close enough to their clean version. In another words, however, we

can have indistinguishable representations for both noisy and clean representations,

there is no constraint to guide the training process towards the optimal achievable

distribution.

Noise compensation at the speaker embedding level (i.e. extracted speaker

embeddings, x-vectors), the estimation of a clean speaker embedding from its

corresponding noisy version, by doing a transformation between pairs of noisy/clean

speaker embeddings is another approach that performed well in the compensation

of artificial noise and reverberation. In Chapter 5 we showed that this approach

performs well in some cases, but it doesn’t bring a significant improvement with

all speaker embedding systems and in all environments. The behavior of different

speaker embedding systems is different because they just consider the speaker

classification accuracy (inter-speaker and intra-speaker distance) during optimization
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and they don’t put an explicit constraint on the noise impact. This characteristic

makes noise compensation more difficult in some speaker embedding systems such

as ResNet. To overcome this challenge, in this chapter, we propose two training

strategies of ResNet-based speaker recognition systems that impose on the ResNet to

extract speaker embeddings for noisy signals that are close to their corresponding

version in a clean environment.

In the first approach, the objective is to optimize the speaker embedding in a

manner that converges toward the same point for the pairs of noisy/clean samples.

In this system, two loss functions are used. The speaker classifier loss function

is minimized and at the embedding layer, the mean square error (MSE) between

noisy and clean speaker embeddings is optimized. Although the system improves for

noise and reverberation, its performance is lower than the baseline system for clean

environments.

To solve this problem, we propose a second system. In this system firstly an

optimal speaker embedding extractor for a clean environment is trained. After that,

another speaker embedding is trained that jointly reduces the speaker classifier loss

function, and mean square error (MSE) between the output of the embedding layer

and an optimal clean speaker embedding extracted with the pre-trained system.

Since it is imposed on the output of the embedding layer to converge toward an

optimal clean space, the performance of the speaker embedding is preserved for clean

environments. Our proposed approaches, in all cases with different types of simulated

and real noises, outperform the baseline ResNet system. For the sake of readability in

the next parts of the chapter, we call the first proposed system ResNet-MSE1 and the

second system named ResNet-MSE2.

7.2. PROPOSED SYSTEM

In this section, the architecture of the baseline ResNet system and the proposed

variants are described.

7.2.1. BASELINE SYSTEM

The embedding extractor used in this chapter is a variant based on ResNet [46]. The

ResNet model for extracting embeddings consists of three modules: a stack of ResNet

Blocks, a statistics-level layer, and segment-level representation layer.

• ResNet (Residual Network) uses a stack of many Residual Blocks. A Residual

Block is made up of two 2-dimensional Convolutional Neural Network (CNN)
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layers separated by a non-linearity (ReLU). The input of the Residual Block is

added to its output in order to constitute the input of the next Residual Block.

• The statistics-level component is an essential component to convert a variable-

length speech signal into a single fixed-dimensional vector. The statistics-level is

composed of one layer: the statistics pooling, which aggregates over frame-level

output vectors of the DNN and computes their mean and standard deviation.

• The segment-level component maps the segment-level vector to speaker

identities. The mean and standard deviation are concatenated together and

forwarded to additional hidden layers and finally to the softmax output layer.

Figure 7.1: The ResNet baseline speaker embedding extractor.

The detailed topology of the used ResNet is shown in Table 6.1. We will show the

baseline system in three blocks 7.1: the ResNet block includes all layers before the

speaker embedding layer, the x-vector layer is the speaker embedding layer and the

remaining layers comprise the speaker classifier.

The ResNet is trained using ArcFace softmax to classify speakers contained in the

training set. Batch-norm and ReLU layers are not shown. The input is comprised of

60 filter banks from speech segments. During training, we use a fixed segment length

of 400. The ResNet is trained with the Additive Angular Margin Loss (ArCFace)[21]

function (Equation. 7.1):

LAr cF ace =−
1

n

n
∑

i=1
log

e s ·
(

cosθyi +m
)

e s.cos
(

θyi +m
)

+
∑

j 6=yi
e s.

(

cosθ j
) (7.1)

Where yi is the i th speaker, s is a scale factor and m is the margin.
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Figure 7.2: ResNet-MSE1 generates the same representation for both and clean situations

7.2.2. RESNET-MSE1

In this subsection, the first proposed system is described (Fig. 7.2). In the proposed

system a clean signal and its corresponding noisy version are given to the network.

At the embedding layer, the mean square error (MSE) between the noisy and clean

speaker embedding vector is calculated at each mini-batch (Eq. 7.2):

LMSE =

n
∑

i=1
‖xi − yi‖

2 (7.2)

Where n is the size of the mini-batch, xi is the i th clean speaker embedding and yi

is the i th noisy speaker embedding.

Both versions of the signal (i.e. clean and noisy) are given to the classifier. In this

system a combination of ArcFace softmax and mean square error is used as the loss

function (Eq. 7.3):

LResNet−MSE1 =LAr cF ace +λLMSE (7.3)

When the network is updated with a noisy signal, the MSE between noisy and clean

versions is reduced. In the same manner, when the network is updated on the clean

version this distance is optimized for the second time. Updating the network over

noisy samples improves the performance in noisy environments but training over the
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clean version makes the performance of the system a little worse because the clean

samples move toward the noisy sample. In the second proposed system, we resolve

this problem. This behaviour is shown in Figure 7.4a. The training procedure of

ResNet-MSE1 is shown in Algorithm 1.

Algorithm 1 ResNet-MSE2 training process

f : the encoder

cl : speaker cl assi f i er

N : batch si ze

(X ,Y ,S), pai r s o f noi s y and clean si g nal f or speaker S

for (X,Y,S) in loader do

EX ← f (X ,S) #clean speaker embedding

EY ← f (Y ,S) #noisy speaker embedding

LMSE ←
∑N

i=1(exi −e yi )2 #MSE error between noisy and clean embeddings

C EX ← cl (EX ,S) #classifier error for clean signal

C EY ← cl (EY ,S) #classifier error for noisy signal

loss ←C EX +C EY +λLMSE # total loss

loss.backw ar d( f ,cl )

opti mi zer.step()

end for

7.2.3. RESNET-MSE2

In the second proposed system, the performance degradation in clean environments

is resolved. To do that we used an assistance pre-trained network which is similar to

our baseline system. Firstly a speaker embedding network with a mixture of clean and

noisy data is trained. The pre-trained network is used to extract speaker embeddings

for a clean version of the training dataset. We assume these vectors as the best

version we can achieve. After that, another network is used to converge the noisy

version of speaker embeddings towards the clean version extracted in the previous

step. In this step, the system is trained with pairs of noisy and clean versions. At

the speaker embedding layer, the MSE between the fixed clean version and a given

training sample (for both clean and noisy versions) is calculated.

LMSE2 =

n
∑

i=1,p=1
‖xp − yi‖

2 (7.4)

Where n is the size of the mini-batch, xp is the pth clean speaker embedding

extracted from the pre-trained network, and yi is the i th noisy speaker embedding.
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Figure 7.3: ResNet-MSE2 impose on the noisy embedding to have the same

representation as the best clean embedding

Both clean and noisy versions are given to the classifier and the weights are updated

with all samples. In this system a combination of ArcFace softmax and mean square

error is used as the loss function (Eq. 7.5):

LResNet−MSE2 = L Ar cF ace +λLMSE2 (7.5)

This procedure is depicted in Figure 7.3. The steps of convergence towards the clean

speaker embedding are shown in Figure 7.4b. The training procedure of ResNet-MSE2

is shown in Algorithm 2. Both ResNet-MSE1 and ResNet-MSE2 are implemented in

Pytorch and stklia.
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Figure 7.4: The impact of applying MSE in the proposed systems Left) ResNet-MSE1

generates identical representations for both clean and noisy situations

Right) It is imposed on the noisy embedding to have the same

representation as the best clean embedding

7.2.4. EXPERIMENTAL SETUP

Algorithm 2 ResNet-MSE2 training algorithm

fC : the pr etr ai ned encoder fN : the noi s y encoder

clN : speaker sl assi f i er

N : B atch si ze

(X ,Y ,S), pai r s o f noi s y and clean si g nal f or speaker S

for (X,Y,S) in loader do

EX ← fC (X ,S) #clean speaker embedding

EY ← fN (Y ,S) #noisy speaker embedding

LMSE2 ←
∑N

i=1,p=1(exp − e yi )2 #MSE error between pre-trained clean embedding

and target network embedding

C EX ← cl (EX ,S) #classifier error for clean signal

C EY ← cl (EY ,S) #classifier error for noisy signal

loss ←C EX +C EY +λLMSE # total loss

loss.backw ar d( fN ,clN )

opti mi zer.step()

end for

7.2.5. SPEAKER EMBEDDING EXTRACTORS

All speaker embedding extractors are trained with Voxcleeb2 in 10.000 iterations. The

learning rate at the beginning of the training is set to 0.2 and weight decay equals

to 2.10−4. The momentum is set to 0.9. In all experiments, the stochastic gradient

descent optimizer is used. The size of the feature maps is 32, 64, 128, and 256 for the

4 ResNet blocks.

• Baseline. In the baseline ResNet, the training samples are chosen from clean

Voxceleb randomly. The training data includes all clean files of Voxceleb and

their augmented version with MUSAN Corpus and reverberated with a pool of
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RIR files 1. Kaldi toolkit is used for data augmentation [29]. The batch size is set

to 128.

• ResNet-MSE1. In this system, a clean file from Voxceleb was chosen randomly.

After that its augmented version was chosen. Because we have two versions of

each file at each mini-batch, we reduced the size of each mini-batch to 64.

• ResNet-MSE2. In this system at each mini-batch, a speaker embedding extracted

from the baseline system was chosen. At the same time, the clean or noisy

signal of the chosen files is selected. The modified system tries to reduce the

distance between the clean speaker embedding and the speaker embedding

extracted from the given signal.

7.2.6. TEST PROTOCOLS

• Fabiole1. In the first protocol, the Fabiole corpus is used. In this protocol 130

(one file per speaker) are used as enrollment and 1870 randomly chosen files

are used for the test. In this protocol, the BBC noise files are used as artificial

noise and data simulation is done with Kaldi.

• Fabiole2. The test and enrollment files in this protocol are the same as the

previous one. But in this protocol, we used Freesound noises that are completely

different from the noises used in the training data. In this experiment, we used

Pyroomacoustics2 for data simulation

• Robovox. In this protocol, 26 files, one file per speaker are used as the

enrollment, and 677 files are used as the test. The enrollment files are chosen

from a closed microphone with high quality but the test files are chosen from a

far microphone between 1 and 3 meters.

• VoiCes. In this protocol, 300 files, one file per speaker are used as enrollment,

and 300 files are used as the test. The enrollment files adopted from the

Librispeech (the clean version of Voices) and the test files are the replayed files

in VoiCes recorded in room 3 and room 4 in the presence of severe music noise,

and reverberation. We used mic 5, which is the farthest microphone in Voices.

The details of all protocols are summarized in Table 7.1.

1http://www.openslr.org/resources/28/rirs_noises.zip
2https://github.com/timmahrt/pyroomcoustics
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Table 7.1: Test protocols.

Protocols Test Enroll Trials

Fabiole1 1870 130 243k

Fabiole2 1870 130 243k

Robovox 26 677 17k

Voices 300 300 90k

7.2.7. RESULTS AND DISCUSSION

In this section, the obtained results are discussed. Our results show that in all

cases our proposed systems are more robust in noisy environments. However,

the performance of the first proposed system reduces in clean environments in

comparison to the baseline system, the performance of the second system for clean

environments remains stable.

In Table 7.2 the results for the Fabiole1 protocol are presented. As is shown, the

modified systems improve significantly in comparison to the baseline system. The

first column shows the results for clean environments and the other columns include

the results with different SNRs.For example, when SNR is between 0 and 5 the EER is

14 % with the second system.

Table 7.2: Fabiole 1 protocol results with baseline ResNet and proposed variants (EER).

System Clean Noisy 0-5 Noisy 5-10 Noisy 10-15

Baseline 5.20 7.96 7.43 7.00

ResNet-MSE1 5.40 7.43 6.79 6.09

ResNet-MSE2 5.19 6.79 5.98 5.66

In the Fabiole2 protocol, we showed the generalizability of proposed systems to

other noises and RIR simulators. In this protocol, the same test and enrollment files as

the Fabiole1 protocol are used. But the Freesound noises dataset and Pyroomacoustics

library are used for data simulation. Table 7.3 shows that in all cases the proposed

systems reduce the impact of noise and reverberation. It deserved to be mentioned

that in this protocol the results for the clean situation are worse in comparison to the

Fabiole1 protocol because test files are truncated to 15 seconds for both clean and

noisy situations.

In order to extend the capability of the proposed systems to real environments. The

experiments are done on the Robovox dataset in Table 7.4. The first column shows the
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Table 7.3: Fabiole 2 protocol results with baseline ResNet and proposed variants (EER).

System Clean Noisy 0-5

Baseline 7.11 12.19

ResNet-MSE1 7.30 11.18

ResNet-MSE2 6.95 10.46

results with the best channel with a closed microphone. As it is shown in the Fabiole

protocol the ResNet-MSE1 system is worse in a clean environment in comparison to

the baseline system and the results for the ResNet-MSE2 system are the same as the

baseline system. In the third column, the results are shown for far microphone in

the presence of noise and reverberation. Both adapted systems give better results in

comparison to the baseline system. The last column shows the results with simulated

noise in the Robovox protocol. In this experiment, the clean data from channel 3 is

augmented with Freesound noises and Pyroomacosutics with SNR between 0 and 5.

In this experiment, the behavior of the proposed systems is the same. For real noise

the relative improvement with the ResNet-MSE2 system is 15% and for simulated

noise the gain is 10%.

Table 7.4: Robovox protocol results with baseline ResNet and proposed variants(EER).

System Ch5 Ch3 Noisy 0-5

Baseline 2.21 4.38 6.59

ResNet-MSE1 2.36 4.10 6.05

ResNet-MSE2 2.21 3.69 5.90

Finally, the systems are tested with a protocol created from the VoiCes dataset. The

results are shown in Table 7.5. The experiments show that with the ResNet-MSE2

system, there is 5% relative improvement of EER.

Table 7.5: Voices protocol results with baseline ResNet and proposed variants(EER).

System Clean Room 4 Music

Baseline 0.66 6.33

ResNet-MSE1 0.66 6.33

ResNet-MSE2 0.66 6.00

The obtained results show the feasibility of doing noise compensation at the
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speaker embedding extractor level. The results obtained from ResNet-MSE1 in a clean

environment show that reducing the distance between noisy and clean environments

without fixing the clean point makes the system worse in clean environments because

it converges to a space between the noisy and clean spaces. To solve this problem we

fixed the clean speaker embedding in the second proposed system. Also, the results

show that the second system is superior in noisy environments because during the

process of reducing the distance between noisy and clean speaker embeddings the

noisy speaker embedding moves closer toward the clean point to minimize the MSE.

The MSE between noisy and clean speaker embeddings are shown in Table 7.6.

Table 7.6: MSE distance between pairs of noisy-clean speaker embeddings before and

after optimizing MSE with CE loss.

System Fabiole1 Fabiole2 Robovox VoiCes

Baseline 2.85 7.14 4.05 10.23

ResNet-MSE1 0.06 0.015 0.09 0.02

ResNet-MSE2 0.66 1.71 1.01 2.67

7.3. CONCLUSION

In this chapter, we introduced two variants of the ResNet-based speaker recognition

system to integrate a noise compensation module with the speaker embedding

in order to make the speaker embedding more robust against additive noise and

reverberation. In the first system, the network is updated to reduce the distance

between pairs of noisy/clean speaker embeddings in the embedding layer. In the

second system, an optimal clean point is fixed and at each iteration, the noisy and

clean speaker embeddings given by the signal in the input are shifted toward the

optimal point. Training speaker embedding extractors with the proposed strategies

makes the speaker embedding more robust against additive noise and reverberation.
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BARLOW TWINS SELF-SUPERVISED

LEARNING FOR ROBUST SPEAKER

RECOGNITION

The general improvement of speaker embeddings by capturing more speaker discriminant

information and their robustness against specific acoustical variabilities are the main

approaches that have been taken into account to achieve better systems. In the previous

chapters, we explored the robustness of speaker recognition systems against noise and

reverberation. In this chapter, we will propose a self-supervised speaker embedding

approach that tries to improve the performance of speaker recognition systems in

general and in the presence of noise and reverberation. Our proposed approach is

based on Barlow Twins self-supervised loss function. Barlow Twins objective function

tries to optimize two criteria: Firstly, it increases the similarity between two versions of

the same signal (i.e. the clean and its augmented noisy version) to make the speaker

embedding invariant to the acoustic noise. Secondly, it reduces the redundancy between

the dimensions of the speaker embeddings which improves their discriminability in

general. In our research, the Barlow Twins objective function is integrated with the

ResNet-based speaker embedding system. In the proposed system, the Barlow Twins

objective function is calculated in the embedding layer and it is optimized jointly with

the speaker classifier loss function. The experimental results on the Fabiole corpus show

a 22% relative gain in terms of EER in clean environments and an 18% improvement

in the presence of noise with low SNR and reverberation.

The presented work in this chapter is published in [134]
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8.0.1. INTRODUCTION

The speaker embeddings encode both speaker discriminant features and secondary

features such as transmission channel, acoustical variability, and content information.

Also, there is redundant information distributed over the dimensions of embeddings.

The acoustical variabilities and redundant information reduce the discriminability

of speaker embeddings. Discarding redundant information improves the quality of

speaker embeddings in general and for all situations. Suppressing the variabilities’

negative impact makes the speaker recognition systems more robust for specific

situations such as the presence of noise and reverberation. In the previous chapters,

we worked particularly on noise and reverberation compensation in TDNN and

ResNet speaker recognition systems. In this chapter, we go further to improve the

performance of ResNet-based speaker recognition systems for both clean and noisy

environments.

Although the DNN-based speaker embedding systems have given a degree

of robustness against acoustic noises, there is a significant degradation of their

performance in the presence of background noise, reverberation, and other variabilities

[53] [126] [127]. Various approaches have been proposed to handle these variabilities

in different parts of the system such as signal level [72], feature level [82], speaker

modeling level [135], speaker embedding level [127] and scoring technique level [136].

Addressing the variabilities at each step has its own advantage and disadvantages in

terms of data, computational resources, efficiency, etc. In this chapter, we chose to

make the ResNet-based speaker embedding extractor more robust against background

noise and reverberation with a self-supervised objective function named Barlow Twins

[137]. In the current work, we worked on the speaker modeling level. Because

reducing the impact of noise and reverberation in higher levels is limited [132], having

a noise-robust speaker embedding system is highly demanded.

The goal of self-supervised learning (SSL) is to learn a robust and invariant

representation of the same data samples in the presence of different distortions (i.e.

additive noise and reverberation in our case). Several self-supervised learning methods

are proposed for robust data representation [138] [139]. Although the contrastive

loss function has given promising results in domain adaption and robust speaker

recognition, it has some limitations such as the necessity for large batch size and the

way of defining the negative pairs [140].

Some self-supervised learning methods are used for domain adaptation in speaker

recognition systems. In a self-supervised approach, [120] the softmax loss function

is trained with the contrastive loss. Because joint training of softmax loss function

and contrastive function is intricate, they optimized the contrastive loss to fine-tune
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a network that is trained with a softmax loss function. In [97] a domain adaptation

technique is proposed that uses mean discrepancy distance (MMD) as a regularizer

integrated with speaker embedding that performs the adaptation between the source

and target domain.

In this chapter, we introduce the Barlow Twin objective function in the domain

of speaker recognition systems. Barlow Twins is a self-supervised objective function

that has two goals. Firstly, it increases the similarity between two versions of

the same signal to give an invariant representation. Secondly, it reduces the

redundancy between different dimensions of speaker embeddings. The first goal

makes the speaker representations more robust against variabilities and the second

goal improves the discriminability of representations that improves the overall quality

of the representations [137] [141]. The Barlow Twins objective function is integrated

with the ResNet-based speaker embedding system. In the proposed system, the

Barlow Twins objective function is jointly optimized with the Additive Angular Margin

Loss function. The Additive Angular Margin Loss is obtained from the last layer of the

ResNet system that classifies the speakers and the Barlow Twins function is calculated

over the clean version and its noisy corresponding version of speaker embeddings

extracted at the embedding layer of the ResNet network at each mini-batch.

8.0.2. PROPOSED APPROACH

BASELINE SYSTEM

The baseline speaker embedding extractor used in this chapter is a variant based on

ResNet [46]. The ResNet model for extracting embeddings consists of three modules:

a set of ResNet Blocks, a statistics-level layer, and segment-level representation layers.

The detailed topology of the used ResNet is shown in Table 6.1. The ResNet is trained

with 60 Mel scale filter banks from speech segments. During training, we use a fixed

segment length of 400 frames equals 4 seconds. The ResNet system is trained with the

Additive Angular Margin Loss function.

BARLOW TWINS SYSTEM

In the Barlow Twins system, the baseline ResNet network accepts the clean version

and its augmented version of the clean signal at each mini-batch. Therefore, in the

embedding layer, we have pairs of clean and noisy embeddings that fed into the

speaker classifier and the Barlow Twins objective function. The architecture of the

proposed system is depicted in Fig. 8.1. The generator accepting noisy and clean

signals are identical.
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Figure 8.1: The configuration of Barlow Twins robust speaker recognition system

The Barlow Twins objective functions accept two sets of inputs: z X and zY are the

mean-centered normalized versions of clean and noisy speaker embeddings obtained

from the embedding layer of the ResNet system at each mini-batch.

The Barlow Twins function is defined as Equation.8.1:

LBT =
∑

i
(1−Ci i )2

+λ
∑

i != j
(Ci j )2 (8.1)

where C is the correlation matrix between the output of noisy and clean speaker

embeddings at each mini-batch and, i and j are speaker embedding dimensions.

The C matrix is a square matrix; its dimension is equal to the size of the speaker

embedding. The first term is called invariant term which tries to increase the

correlation between two versions of noisy and clean speaker embeddings, in order to

give an invariant speaker embedding for noisy and clean versions, the second term is
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called redundancy reduction which reduce the redundancy within the dimensions of

the embedding, the λ coefficient indicates the importance of each term, and Ci j is

defined as Equation.8.2:

Ci j =

∑

b z X
b,i zY

b, j
√

∑

b(z X
b,i )2

√

∑

b(zY
b, j )2

(8.2)

the sum is performed over all the embeddings in a given mini-batch, and b is the

index of an embedding in the mini-batch.

In the proposed system, the Barlow Twins objective function is optimized jointly

with the Additive Angular Margin Loss ( function that is used in the speaker classifier.

The final objective function is the summation of Additive Angular Margin Loss

(ArcFace) [142] loss and Barlow Twins objective function. Both functions are optimized

with the same weight. In the end, the Barlow Twins objective function imposes on the

correlation matrix to be an identity matrix (it maps the C matrix to I identity matrix

shown in Fig. 8.1). The optimization of Barlow Twins brings the diagonal elements

closer to 1 to have the invariant representations and imposes on off-diagonal elements

of the correlation matrix to be close to 0. The training procedure of the proposed

system is shown in Algorithm 3.

Algorithm 3 Barlow Twins self-supervised learning algorithm

fC : the clean encoder fC : thenoi s y encoder

clN : speaker cl assi f i er

b : batch si ze

(X ,Y ,S), pai r s o f noi s y and cl ean si g nal f or speaker S

for (X,Y,S) in loader do

EX ← fC (X ,S) #clean speaker embedding

EY ← fN (Y ,S) #noisy speaker embedding

z X = (EX −EX .mean(0))/EX .std(0) #NxD Normalized clean embeddings

zY = (EY −EY .mean(0))/EY .std(0) #NxD Normalized noisy embeddings

Ci j =

∑

b z X
b,i zY

b, j
√

∑

b (z X
b,i )2

√

∑

b (zY
b, j )2

#DxD Correlation matrix

LBT =
∑

i (1−Ci i )2 +λ
∑

i != j (Ci j )2 # Barlow Twins loss value

C EX ← cl (EX ,S) #classifier error for clean signal

C EY ← cl (EY ,S) #classifier error for noisy signal

loss ←C EX +C EY +γLBT (EX ,EY ) # total loss

loss.backw ar d( fN ,clN )

opti mi zer.step()

end for
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Considering that a mini-batch is a matrix of D rows and B columns; where B is the

size of the mini-batch and D is the size of an embedding, we can see that Ci j is the

cosine between the vector lines of indices i (z X
b,i ) and j (zY

b, j ) of the mini-batch. The

Ci i is calculated over the same dimension of speaker embeddings in the clean and

noisy mini-batch and Ci j is calculated over the i th dimension of speaker embeddings

in the clean mini-batch and j th dimension noisy mini-batch or vice versa. This

process is shown in Figure 8.2. DS and DT stand for pairs of speaker embeddings in

clean and noisy environments respectively.

Figure 8.2: Barlow Twins calculation procedure on pairs of noisy and clean speaker

embedding at mini-batch

The Barlow Twins objective function minimizes the distances between row vectors

with the same indices and maximizes the distances between row vectors having

different indices. In this sense, it is similar to the contrastive learning objective

function. Indeed, it is the same formulation applied to the lines of the mini-batch in

the case of the Barlow Twins and applied to the columns of the mini-batch in the

case of contrastive learning. In the calculation of invariant terms in Barlow Twins,

each element comes from different speakers with different noises. It means that both

noise and speaker variabilities are present. While in calculating the distance between

the positive pairs in contrastive loss only the noise variability is taken into account

because two samples come from the same speaker that is augmented with different

noises. The Barlow Twins system is implemented in Pytorch.

8.0.3. EXPERIMENTS SETUP

In this section, the experiment’s setup including the used datasets, speaker embedding

extractors, and evaluation protocols are described.
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SPEAKER EMBEDDING EXTRACTORS

Both baseline and Barlow Twins speaker embedding extractors are trained with

Voxcleeb in 10,000 iterations. In another experiment, the Barlow Twins were used with

a pre-trained baseline system. In the last case, the Barlow Twins and Additive Angular

Margin Loss function are optimized together for 1,000 more iterations of the baseline

system. The learning rate at the beginning of the training is set to 0.2 with weight

decay equals 2.10−4. The momentum is set to 0.9. The gradient descent optimizer is

used. The size of the feature maps is 32, 64, 128, and 256 for the 4 ResNet blocks.

• Baseline. In the baseline system, the training samples are chosen randomly. The

training data includes all clean files of Voxceleb and their augmented version

with Musan Corpus and reverberated with a pool of RIR files. 1. Kaldi toolkit is

used for data augmentation [29]. The SNR was chosen between 0 and 20. The

batch size is set to 128. In this system, only the Additive Angular Margin Loss

function is optimized.

• Barlow Twins. In this system, a clean file from Voxceleb was chosen randomly.

After that, its augmented version was chosen. Because we have two versions

of each file at each mini-batch, we reduced the size of each mini-batch to 64.

At the embedding layer, the Barlow Twins objective function is calculated and

the proposed system was updated to minimize the summation of Barlow Twins

and Additive Angular Margin Loss functions. The λ variable is set to 0.005 in

Equation. 8.1. The λ is chosen experimentally. The large values for λ cause

gradient explosion.

8.0.4. EVALUATION PROTOCOLS

• Fabiole. In the first protocol, the Fabiole corpus is used. In this protocol 130

files (one file per speaker) are used as enrollment and 6,870 randomly chosen

files are used for the test. In this protocol, the BBC noise files are added to the

clean signal with different SNRs from 0 to 15. In all cases, the clean signal is

used for enrollment. In this protocol, the Kaldi toolkit is used to add noises to

clean files.

• Robovox. In this protocol, 26 files, one file per speaker, are used as the

enrollment, and 677 files are used as the test. The enrollment files are chosen

from a closed microphone with high quality but the test files are chosen from

far microphones. The average length of speech utterances in this protocol is 22

seconds.

1http://www.openslr.org/resources/28/rirs_noises.zip
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The details of both protocols are summarized in Table 8.1.

Table 8.1: Experimental Protocols, designed on Fabiole and Robovox corpora

Protocol Trials Test Enrolment

Fabiole 893k 6870 130

Robovox 17k 677 26

8.0.5. RESULTS AND DISCUSSIONS

In this section, the obtained results are discussed. The results obtained from the

Fabiole protocol are presented in Table 8.2. The BT column shows the results for a

system in which Barlow Twins is optimized from scratch with the speaker classifier.

For example in a clean environment, EER reduces from 6.27 to 4.87 which means 22%

relative gain. In the case of low SNR between 0 and 5, we achieved an 18% relative

gain of EER. The results for a case where Barlow Twins were used with a pretrained

baseline system are presented in the last column. In this experiment, in all cases, we

observed significant improvement of EER but the results for the training of Barlow

Twins from scratch are better.

Table 8.2: Fabiole Protocol results obtained by joint optimization of speaker

classification loss and Barlow Twins (EER)

SNR Baseline BT Pre+BT

Clean 6.27 4.87 5.46

[0-5] 8.31 6.81 7.37

[5-10] 7.43 5.86 6.66

[10-15] 6.87 5.48 6.17

The results with the Robovox protocol are presented in Table 8.3. In the BT column,

the results are shown for the case of joint optimization of both loss functions from

scratch. In this experiment, we observed significant improvement for some channels

but the behavior is not the same in all channels. The obtained results show that in the

clean situation (i.e. channel 5) the Barlow Twins improve the performance. In other

channels that are far and noisy, the results are paradoxical. Finally, the results of an

experiment which Barlow Twins adapts the pre-trained baseline system are presented

in the last column. In this case, we observed improvement in all channels for example

in the clean environment there is a 33% relative gain.



121

Table 8.3: Robovox Protocol results obtained by joint optimization of speaker

classification loss and Barlow Twins(EER)

Channel Baseline BT Pre+BT

1 4.28 4.28 3.98

2 4.72 4.43 4.13

3 4.38 4.57 3.84

4 5.76 5.90 5.31

5 2.21 1.92 1.47

In order to show the impact of Barlow Twins on decorrelating the speaker

embedding dimension we will do a visualization of the correlation matrix. Figure

8.3 shows the correlation matrix between noisy and clean speaker embeddings

extracted by the baseline system and Barlow Twins systems. We can see that the

Barlow Twins decorrelated the dimensions partially. It is expected to have more

decorrelated dimensions with a bigger coefficient of redundancy reduction term but

our experiments show that giving bigger weight to this term cause gradient explosion.

(a) Normal ResNet

(a) Barlow Twins

Figure 8.3: The correlation matrix for speaker embedding dimensions before and after

optimizing Barlow Twins
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In another experiment, the impact of different values for λ hyperparameter is

explored. The results are presented in Table 8.4.

Table 8.4: Applying the Barlow Twins with different values of λfor redundancy term

Ch/λ 0.5 0.05 0.005

1 4.57 3.84 3.98

2 4.43 4.13 4.13

3 4.57 3.98 3.84

4 6.2 4.72 5.31

5 1.92 1.77 1.47

The results show that for λ = 0.5 the system gives the worst results. From the

training process, we observed that bigger values for λ make the optimization of

speaker classification loss more difficult which results in low performance. In the

case of λ= 0.05 the improvement for channel 4 is significant which shows that for

noisy situations there is more redundant information and increasing the weight of the

Barlow Twins loss function helps to remove this unwanted information encoded in the

speaker embedding dimensions.

8.0.6. CONCLUSION

In this chapter, the Barlow Twins objective function was introduced in the area of

robust speaker recognition systems. The Barlow Twins objective function integrated

with ResNet speaker embedding in order to achieve two goals: give an invariant

representation for both clean and noisy versions of a speech signal, and reduce

redundancy between different dimensions of the speaker embedding. We showed

that the Barlow Twins objective function improves the performance of the speaker

embedding system in both noisy and clean environments. The joint optimization

of contrastive loss and Barlow Twins loss function in robust speaker recognition

is a potential future work. The proposed system improves speaker recognition

performance for both noise-free and noisy environments. Also, it can generalize well

in the case of real noise and reverberation. In future work, the behavior of the

Barlow Twins objective function in the presence of specific noises and with more data

augmentation techniques will be studied.
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Speaker recognition systems authenticate the identity of claimed users from their

speech utterances. The authentication is done by comparing the fixed-length

representations of enrollment (i.e. registered user) with test files (i.e. claimed user).

The performance of speaker recognition systems is highly impacted by the quality

of these representations. However, it is possible to have clean and enough speech

data for enrollment, the system is used in various environments where there are

different interferences that distort the speech signal. The distorted speech causes less

speaker-discriminant representations that result in the performance degradation of

the speaker recognition system.

The state-of-the-art speaker recognition systems based on DNNs are more robust

against acoustical distortions in comparison to their precedent statistical generation.

Despite this relative robustness severe acoustical distortion reduce the performance of

DNN-based speaker recognition systems.

In the first part of this thesis, the DNN-based speaker recognition systems and

their challenges have been discussed. In Chapter 1, a general taxonomy of speaker

recognition systems was presented and their challenges were discussed. We posited

the place of studied systems in this thesis as the robustness of text-independent

open-set speaker recognition systems against additive noise and reverberation.

In Chapter 2 the main DNN-based speaker recognition systems including TDNN,

ResNet, MFA-Conformer, and ECAPA TDNN are reviewed. In addition to the

architecture of speaker embedding DNNs, the pooling strategies, objectives function,

and scoring methods are discussed. The characteristics of different parts of speaker

recognition systems are important to archive a more robust pipeline.

In Chapter 3 the proposed strategies used for making speaker recognition

123
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robust against additive noise and reverberation are discussed. The speech

enhancement methods including masking-based, mapping-based, and adversarial

training approaches reviewed. Another common approach is training a robust speaker

embedding extractor. This approach can be applied to a bigger number of variabilities

including content variabilities in comparison to speech enhancement. The speaker

embedding transformation is the third group of reviewed robust techniques. The

reviewed literature shows that noise compensation at the speaker embedding level is

more promising in comparison to other approaches.

Three main reasons motivated us to study the robustness of speaker recognition

systems at the speakers modeling level and speaker embeddings. First of all the

improvement of speech quality in speech enhancement methods doesn’t guarantee

the improvement of the speaker recognition systems. Secondly, the achieved results

in the speaker embedding level are more substantial. Last but not least is the

low-computational cost and the facility of adapting the compensation module for

specific situations. In Chapter 5 a general framework of noise compensation at the

x-vector level has been proposed. The contributing findings are:

• The TDNN-based speaker recognition systems are not robust against additive

noise in low SNR and reverberation.

• Adding a noise compensation module before scoring can compensate for the

negative impact of noise and reverberation significantly.

• Several noise compensation modules based on DAEs proposed. The Stacked

DAE is the most successful one.

• Both statistical and different variants of DAE can compensate for additive noise.

• Data augmentation and increasing the number of speakers is crucial to make

the speaker recognition robust against noise, but it is not sufficient and still, the

noise compensation module can help us to achieve better results.

• Since the DAEs learn a hyperplane to make the noisy x-vector close to their

clean distribution, we don’t need to have specific noise compensation modules

for different noises and a general model can do the compensation for different

kinds of noises

• In the case of having more than one distortion two configurations proposed.

Similar to specific noise compensation, we observed that we don’t need to have

a specific noise compensation module for each distortion.

In Chapter 6 the behavior of the ResNet speaker recognition system facing noise

and reverberation has been investigated. The obtained results are compared with the

TDNN system. We found:
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• Noise compensation at speaker embedding level with ResNet system brings a

marginal improvement in terms of EER.

• Even without noise compensation, the performance of the ResNet system is

higher in comparison to TDNN with noise compensation.

• The noise compensation module doesn’t bring a significant improvement in

facing real noise and reverberation in both TDNN and ResNet systems. Despite

our endeavor to find an efficient training data simulation and fine-tune

environmental parameters that impact noise and reverberation, we found that

having a general rich dataset that considers all kinds of environments is more

plausible with noise compensation techniques.

Because of the limitation found in noise compensation, we shifted to improving the

speaker embedding network. In Chapter 7 we proposed two noise-robust learning

methods with the ResNet system. Our contributions are:

• We proposed a noise and reverberation invariant system that learns the same

distribution for both noisy and clean environments. This system gives better

results for noisy environments but the results for clean situations are worse.

• We proposed a second noise invariant system that imposes on the speaker

embeddings for noisy environment shift towards the distribution of the

best-obtained system in a clean environment.

• The experimental results obtained by our systems show a significant improvement

of the ResNet system against both artificial and real noise and reverberation.

In Chapter 8 we proposed a self-supervised learning framework based on Barlow

Twins loss function to make the speaker embeddings invariant to noise and

reverberation and decrease the redundancy between speaker embedding dimensions.

The proposed approach imposes on the speaker embedding network to improve the

quality of speaker embeddings in two ways.

• A redundancy reduction term in Barlow Twins decorrelate different dimensions

of speaker embeddings in order to increase the discriminability of embeddings

• A noise invariant term imposes on a different augmented version of embeddings

to be invariant to noise and reverberation distortions.

• The experiments show the effectiveness of both decorrelation and noise invariant

strategies and the proposed system gives better results for both clean and noisy

environments.
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9.1. PERSPECTIVES AND FUTURE WORK

Noise compensation at the speaker embedding level can be extended in several

directions. Firstly, the noise compensation can be extended to other speaker embedding

extractors such as MFA-Conformer and ECAPA-TDNN. Noise compensation with these

systems can give a broader insight into the efficiency of this methodology and the

behavior of these systems at the speaker embedding level.

The ResNet and ECAPA-TDNN are equipped with variants of angular softmax

objective functions such as the speaker classifier loss function that redistribute the

output classes over a more complex manifold. One possible reason behind the

marginal improvement of noise compensation in the ResNet system is using the

angular objective function. We propose to do noise compensation with a denoising

autoencoder that uses a similar approach as angular softmax.

However, our experimental results show that using a highly diversified data

augmentation method generalizes better in training noise compensation modules, it

is important to use other proposed data augmentation techniques such as Rawboost,

or heuristic-based optimal augmentation. Because such methods can simulate other

variabilities such as transmission channels.

The hand-made MFCC and filter banks are the used features throughout our thesis,

we propose to explore the recent unsupervised speech representation methods such

as WavLM that are more robust against additive noise and reverberation.

Our work in Chapter 7 can be extended in several ways. In our experiments,

we used the MSE loss function to generate noise-invariant representations. We

proposed replacing MSE with more flexible regularizers such as MMD [97] or Coral

[94]. Also, this system can be extended to an adversarial framework by replacing the

regulator with a discriminator. Furthermore, it is possible to use the potential of both

regularisation and adversarial training.

The proposed system in chapter 8 can be explored in more detail. The Barlow

Twins were improved in speaker embedding level. Since Barlow twins are optimized

over the speaker embedding dimension, we propose to calculate and optimize it in

the pooling layer where the number of dimensions is several times higher than the

speaker embedding layer. Also, we propose to optimize it hierarchically in frame-level

layers.

Finally, we propose to combine Barlow Twins with other self-supervised approaches

such as contrastive learning. The Barlow Twins redundancy reduction term improves

the performance of the system significantly. Although, the lack of necessity for

negative pairs is a positive characteristic of Barlow twins, in the case of additives noise
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and reverberation variabilities it is possible to produce several images for a given

signal that can be used as negative pairs. In such cases, using a contrastive loss can

assist in generating the equivalent representations for the different distorted versions

of a speaker embedding.
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