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Résumé

Dans le domaine des matériaux granulaires, le lien entre les variables micro-
scopiques (forces de contact et déplacements) et les variables macroscopiques
(contraintes et déformations) nécessite l’utilisation d’une échelle intermédi-
aire appelée échelle mésoscopique. À cette échelle, plusieurs mésostructures
ont été identifiées et étudiées en tant qu’agrégats de grains ou de vides at-
tachés tels que par exemple les boucles, les espaces poreux et les chaînes de
force.

Parmi ces mésostructures, les boucles sont particulièrement intéressantes
car elles sont riches d’informations et sont les seules à ne pas être définies dans
des conditions 3D. Ces boucles forment des polygones simples capables de
diviser un milieu 2D en espaces fermés plus petits se sorte à ce que la somme
de la surface des boucles est égale à la surface totale de l’échantillon. Par
conséquent, l’application directe de la définition des boucles à des conditions
3D conduit à la formation de formes 2D dans un milieu 3D ce qui est irréaliste.

Dans cette thèse, nous proposons d’étendre la définition des boucles au
cas tridimensionnel. Dans un premier temps, une méthode d’identification
des boucles (2D) basée sur la fusion de cellules créées par une triangulation
de Delaunay est analysée. Ensuite, une extension de cette procédure à des
conditions 3D est proposée. Comme les structures identifiés ne sont plus
représentatives du concept mathématique de boucle (ou cycle), elles sont
appelées Clusters. Ces structures se révèlent plus complexes que leurs homo-
logues en 2D, ce qui nécessite un plus grand nombre de métriques pour les
quantifier. C’est pourquoi les concepts de taille et d’ordre se distinguent re-
spectivement par le nombre de grains et le nombre de frontières externes. En
outre, le concept de déformabilité est introduit comme moyen de quantifier
l’interconnectivité d’une structure en clusters.

Une série d’essais triaxiaux 3D complexes a été réalisée grâce au logiciel
LIGGGHTS qui est basé sur la méthode des éléments discrets (DEM) . Par la
suite, une application a été développée pour analyser les propriétés des clus-
ters pendant le trajet de chargement et en fonction de la proximité d’autres
structures granulaires internes coexistantes (chaînes de force et bandes de
cisaillement).

Il est démontré que l’indice des vides moyen et la déformabilité (capacité
à se déformer) des clusters augmentent avec leur taille. En outre, une aug-
mentation du nombre de clusters plus denses est observée pendant la phase
de contraction de la déformation macroscopique et des clusters plus lâches
pendant la dilatation. Enfin, une relation entre les chaînes de force, les ban-
des de cisaillement et les clusters est établie. Toutes les caractéristiques des
clusters mentionnées sont connues pour les boucles 2D. Les clusters peuvent
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donc être considérés comme des extensions des boucles dans des conditions
3D.

Mots clés : Méthode des éléments discrets (DEM), Milieux granu-
laires, Mésostructures, Clusters, Boucles, Tessellation de Delaunay, Chaines
de force, Bande de cisaillement.



Abstract

In the field of granular materials, a link between microscopic variables (con-
tact force and displacement) and macroscopic variables (stress and strain)
requires the use of an intermediate scale called "the mesoscopic scale." At this
scale, several mesostructures have been identified and studied as aggregates
of attached grains or voids, such as loops, pore spaces, and force chains.

From these mesostructures, loops are particularly noteworthy, as they
are the only structures not yet defined in 3D conditions. Loops form simple
polygons that are capable of partitioning a 2D media into smaller closed
spaces, where the sum of the loop surfaces is equal to the total surface of the
specimen (known as the pavement property). Therefore, direct application of
the definition of loops to 3D conditions leads to the formation of 2D shapes
in a 3D media, thereby compromising the pavement property.

In this thesis, we propose to extend the loop definition to the 3D case.
First, a method to identify loops (2D) based on the merger of cells created
through a Delaunay triangulation is analyzed. Then, an extension of this
procedure to 3D conditions is proposed. As the newfound structures are no
longer representative of the mathematical concept of a loop or cycle, they
are named "clusters." These structures are shown to be more complex than
their 2D counterpart, necessitating a larger number of metrics to quantify
them. For this reason, the concepts of size and order are distinguished as
the number of grains and the number of external frontiers, respectively. Fur-
thermore, the concept of deformability is introduced as a way to quantify the
interconnectivity of a loop-like structure.

A series of 3D discrete element method (DEM) triaxial tests were per-
formed in the software LIGGGHTS. An application was then developed to
analyze the properties of clusters during the loading path and in regard to
proximity to other coexisting internal granular structures (force chains and
shear bands).

It is shown that the average void ratio and deformability (capacity to
deform) of clusters increase with their size. Furthermore, an increase in the
number of denser clusters is observed during the macroscopic strain contrac-
tion phase and of looser ones during the dilation. Finally, a relation between
force chains, shear bands, and clusters is established. All the aforementioned
cluster characteristics are known for 2D loops. Thus, clusters can be seen as
extensions of loops in 3D conditions.

Keywords: Discrete element method (DEM), Granular materials, Mesostruc-
tures, Clusters, Loops, Delaunay tessellation, Force chains, Shear bands.
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Chapter 1

Introduction

Motivation

Granular materials, such as sand, rocks, coffee beans, and rice, are widespread
in everyday life. Loosely speaking, the behavior of these materials is akin
to a simple solid under the effects of gravity. However, granular assemblies
comprise a multitude of individual particles of finite sizes, each presenting
their own degrees of freedom [1]. Thus, the individual movement of particles
gives granular materials incredible complexity.

The emerging properties of granular materials can be analyzed at three
different scales. At the microscopic scale, the material behavior is dictated
by the contact laws governing pairs of grains. Therefore, at this local scale,
granular materials are inherently discrete. Conversely, at the macroscale, the
specimen behaves as a continuum material for which the constitutive law re-
sults from a combination of the intergranular contact forces and geometrical
properties. In between, the mesoscale bridges these two extremes, linking
the properties of individual grains to the behavior of a collective. Several
structures have been identified and studied at this intermediate scale as ag-
gregates of attached grains or voids, such as loops, pore spaces, and force
chains.

Three main groups of numerical models exist to simulate the behavior
of granular materials. The first group of models comprises those based on
continuum theory. Through a constitutive law, the continuum deformation
is obtained and later related to the motion of particles. However, these mod-
els fail to consider local fluctuations in particle displacements and particle
rotations, which significantly influence the bulk behavior of granular media
[2].

By contrast, the second group of models consists of those based on the
discrete element method (DEM). DEM models simulate each particle indi-
vidually, and the specimen’s response is directly related to the inter-particle
interaction. Nevertheless, simulating natural materials is complex, as compu-
tational costs increase drastically with the number of particles and complexity
of shapes.

Finally, there is multiscale modeling. This group combines the benefits
of both previous classes by simulating a continuum-scale system but with a
constitutive law enriched from numerical models of finer scale instead of re-
sorting to empirical constitutive models through homogenization techniques.

1
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Thus, the performance of these models is directly linked to a good under-
standing of fine-scale physics.

An excellent example of multiscale modeling is the so-called H-model,
which describes the fine scale of a granular assembly through the distribu-
tion of mesostructures with varying orientations [3]. The inspiration for this
model comes from the structure of loops, a closed circuit of grains in con-
tact enclosing a common void space. Loops form simple polygons capable
of partitioning a 2D media into smaller closed spaces, where the sum of the
surface of the loops is equal to the total surface of the specimen (known as
the "pavement property").

However, applying loops identification techniques in 3D conditions would
lead to the formation of 2D shapes in a 3D media. The newfound structures
would have no volume and be often imbricated, thus losing the important
pavement property. Consequently, extending this definition to a convenient
3D structure is necessary in order to properly expand the 2D framework and
the related results to 3D cases.

Over the past few years, this dimension change has been regarded as a
significant challenge, and several methods to extend the notion of loops to 3D
have been proposed. These methods included partitioning the specimen into
tetrahedrons through a weighted Delaunay tessellation and then applying
a merging criterion to join neighboring tetrahedrons into larger structures.
The proposed merging criterion was mainly based on applications of another
field of study, the pore space. However, they have yet to be proven entirely
successful [4].

Objective

This thesis proposes a procedure to extend the 2D loop structure to 3D, keep-
ing the properties that make it an essential feature of a granular assembly.

Chapter 2 summarizes some of the relevant background literature. A brief
description of the mechanics of granular material at the macro-, meso-, and
microscales is given. Several concepts essential for the development of this
study are introduced, such as the properties of the loop structure. Later, the
principles of the discrete element method (DEM) are presented, followed by
the intricacies of LIGGGHTS, the chosen software to apply it.

Chapter 3 encompasses the theoretical and numerical procedures devel-
oped to accomplish the proposed task. First, a review of a method to iden-
tify loops (2D) is shown, followed by the proposal of a procedure to extend
this notion to 3D conditions. The resulting structures are named "clus-
ters," as this nomenclature better matches their observed topological fea-
tures. Next, procedures to identify cluster characteristics and interactions
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with other mesostructures are proposed. Finally, the numerical tools used or
developed to test the theoretical methods are presented. Resulting in sev-
eral numerical prismatic triaxial simulations of dense soil under three loading
paths: drained, undrained, and constant deviatoric stress.

Chapter 4 outlines the mechanical response of the numerical triaxial sim-
ulations, validating the behaviors expected for dense soils. The macroscopic
and mesoscopic responses of the granular assembly are analyzed and corre-
lated.

Chapter 5 presents the results related to clusters, with the aim of validat-
ing known loop characteristics in 3D conditions. First, all identified clusters
are studied as a group, highlighting the scope of characteristics of clusters.
Next, clusters are categorized based on whether they are destroyed or created
with regard to the drained loading path. Then the transition between cluster
categories will be analyzed for each loading path, highlighting the evolution
of the specimen’s internal structure. Finally, the influence of clusters in other
coexisting internal structures of granular materials is investigated.



Chapter 2

Granular materials behavior and
material approaches at different
scales

2.1 Foreword

In this chapter the overall mechanical behavior of granular materials will be
delineated at several scales, laying a foundation for the tools developed in
this work. First, the analytical behavior of the soil will be presented at the
three previously mentioned scales (micro, meso, and macro). Notably, the
loop structure will be presented in 2D, leading the way to the development
of an equivalent 3D structure. Finally, a short introduction will be made to
the discrete element method (DEM) numerical mode and its application in
the software LIGGGHTs.

2.2 Macro-mechanics, instabilities, and shear
band

A granular assembly, when inspected as a whole, behaves homogeneously.
However, the underlying discrete nature of the particles makes their overall
behavior highly nonlinear and dependent on load history and previous de-
formation states. Thus, the conditions in which the specimen was assembled
and the loads applied will have a major influence on its mechanical behavior.

For example, Figure 2.1 illustrates the classic response of three soil speci-
mens with the different initial void ratios for the same drained triaxial loading
path.

A loose specimen can be identified by the predominance of contraction
(negative value for the volumetric strain) and hardening (increase in devia-
toric stress) during the entirety of the test. Conversely, dense and medium-
dense specimens will present a dilation (expansion) phase after an early con-
traction. In addition, these last two cases go through an early hardening
phase until a deviatoric peak value is reached, where failure occurs, leading
to a softening phase (decrease in overall strength).

4
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Figure 2.1: Shear stress and volumetric strain evolution for general categories
of soil under a triaxial test: loose, medium, and dense. [5]

At the microscopic level, from the beginning of the loading, a network
of regions of concentrated deformation starts to form, known as "slip lines."
Depending on the initial density and confining stress, these smaller concen-
trated deformations persist even at large strains, thus causing a failure in all
specimen regions [6, 7, 8]. This generalized failure is known as a "diffuse fail-
ure" [9]. However, for other configurations, the deformation concentrates into
a narrow band traversing the specimen forming one or multiple shear bands,
as illustrated in Figure 2.2. These bands divide the sample into regions that
seemingly move as separate rigid-body objects.

Figure 2.2: Shear band formation in a cylindrical specimen [10].

Despite these differences, for a given material and initial mean effective
stress, at large strains, they all reach an equivalent steady state, where the
volume and the deviatoric stress stay constant for an increase in axial strain.
When the material’s void ratio and volumetric strain also reach a steady
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state, the specimen is in the so-called critical state, where shearing may
continue indefinitely without any changes in volume or effective stresses.

2.2.1 Shear bands properties

Although shear bands have been extensively studied, the specific details of
their origin proved elusive to decipher [11, 12, 13, 14, 15, 16, 17, 18, 19, 7,
8, 20, 21]. Even in controlled conditions, it is hard to predict, with pre-
cision, exactly when and where these patterns form and how they evolve.
Experimental studies have identified that shear band formation is altered
by several factors linked to the specimen condition, including porosity, the
inherent anisotropy, the particle shape and size, and effective mean stress
[22, 23, 24].

A long-standing question on the origins and transformation of slip lines
and shear bands has existed due to the complexity of plastic deformation
in the pre-failure domain. In fact, most of the observations of their co-
evolution have been restricted to numerical simulations [21]. However, recent
experimental results on the formation of slip lines imply that shear bands
are not formed from microbands. Instead, it is suggested that both patterns
coexist near failure, generating the final failure pattern [25]. Indeed slip lines
are predominant in the pre-failure regime while shear bands persist in the
failure domain [26, 8].

It has been shown that each shear band in granular materials involves a
significant number of grains. Several studies have approximated the width of
the shear band as a function of the average grain diameter using experimental
and theoretical formulations [14, 16]. However, a conclusive quantity was not
observed, and results vary from 8 to 18 average grain diameters obtained for
different experiments [27, 15, 19, 28]. In addition, shear bands are not a
perfect plane of constant thickness but maintain a wavy form with varying
thickness throughout the structure [16].

The formation of the shear band results from plastic strain, which is re-
flected microscopically as the reorganization of grains, creating large voids in
the region. In fact, the volumetric and deviatoric strain concentration in a
narrow band implies an increase in volume. Furthermore, it has been shown
that the local void ratio around the shear band can be larger than the max-
imal void ratio for the whole specimen obtained by standard experimental
methods [16, 29, 30].

Under a microscope, soil particles such as sand show very irregular and
rough surfaces. Contact between two particles generates a rolling resistance
that impacts the behavior of the soil. Indeed, this effect allows larger void
ratios to persist that would have collapsed otherwise. It can be noted that
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particle orientation (ellipsoidal particles) changes sharply on the boundary
of shear bands, and a high gradient of particle rotations develops during the
formation of the shear band [16, 19, 31].

Finally, the values of several of the characteristics of granular materials
inside the shear band differ from the rest of the specimen. Thus, a common
practice to identify the shear band is computing the characteristics of the
granular material locally, highlighting regions of concentrated values. The
most used characteristics are, among others, particle rotation, translational
particle velocity, void ratio, and deviatoric strain [16, 32, 33, 34, 29, 7, 30].

2.2.2 A note on instability and second-order work

The classic approach of failure in soils considers its limit as a surface in the
stress space, generally through the Mohr–Coulomb criterion, characterized by
friction angle and cohesion. Consequently, all the failure states are assumed
to correspond to the stress points of this failure surface [35].

However, it has been shown that soil failure can be observed before the
classic theory surface limits are reached in some cases, e.g., sand liquefaction.
For example, in loose sand isotropically consolidated under undrained triaxial
conditions, instability occurs in the domain contained between the critical
state line (CSL) and the instability line (IL) [36, 37].

Generally, reaching the CSL is the reason for soil failure, since it can
be seen as the upper limit of the soil strength (Mohr–Coulomb). However,
if specific loading paths are adopted (different from the isochoric loading
path), conditional failure may occur before this limit. Therefore, a different
criterion is needed to identify these paradoxical instabilities (before classic
limit states).

Following Hill’s sufficient condition of stability [38], a specimen may be
considered unstable if at least one existing loading direction leads to a neg-
ative value of the second-order work. The bifurcation domain can then be
defined as the set of points that fulfill this condition. In these cases, the
system regime can evolve from a quasi-static regime to a dynamic one [39].
Hill’s criterion applied at the material point scale in the general framework
of the continuum mechanics says that for any strain-specific loading paths
adopted (different from the isochoric loading path), conditional failure may
occur before this limit for an additional (∆σ,∆ε) couple where ∆σ and ∆ε
are conjugated through the constitutive relation. [40, 41, 42].

Over the past few decades, and irrespective of the scales considered (from
the elementary microstructural scale to the macrostructural scale for engi-
neering purposes), the second-order work criterion has proved its capability
to identify unstable states [43]. The vanishing of the second-order work has
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been shown to be a necessary condition and a precursor of inertial transi-
tion, characterizing failure. Furthermore, this criterion has been used at all
three scales pertaining to granular materials: the macroscale [40, 41], the
mesoscale [42], and the microscale [44, 45, 46].

2.3 Obtaining information from the grain scale
At the elementary scale, the microscale, the study of granular materials is
condensed to discrete particles as solids of their own. At this scale, interac-
tion between pairs of particles occurs through physical contact, as illustrated
in Figure 2.3. A study of this scale is generally made through numerical
methods, as acquiring information at the grain scale is rarely feasible for
experimental projects.

For each contact between particles, a repulsion force is generated between
them, which is generally considered punctual and does not necessarily have
the same direction as the contact plane. Each particle has its position, move-
ment, and forces acting upon it.

Figure 2.3: Illustration of a simple contact between two particles in 2D.
Branch vector lAB and each particle contact vector r⃗A and r⃗A are represented

Using these elementary properties, physical quantities can be constructed
in three perspectives: configuration, force, and movement [47]. Configuration
quantities, such as anisotropy and coordination numbers, reveal information
on the statistical distribution of contact and force inside the specimen. Force
quantities allow for an approximation of particle and region stress. Movement
quantities, such as particle translation, highlight the path through which
external deformation permeates the specimen. Any of these properties can
be computed for a wide range of closed domains, enabling either a local
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analysis or an approximation of the macroscopic properties from the average
of the local values to be obtained.

2.3.1 Anisotropy: quantifying contact networks

The contacts described above form a network that will assure the equilibrium
of the system at a particular state in a static or quasi-static condition. Thus,
the contact network will evolve with the displacement of each grain during
loading. To quantify this evolution, a second-order tensor called fabric tensor
is calculated through the normal of each vector [48], as shown by equation
(2.1).

Fij =
1

Nc

Nc∑
k=1

nk
i n

k
j (2.1)

Nc is the total number of contacts in the specimen, ni
k is the i-th component

of the normal vector k of the characteristics studied (force normal or contact
normal).

The given tensor brings forth the particularities of the contact direction
distributions through the anisotropy value (obtained by computing the square
root of its second invariant) and the analysis of its eigenvectors. A high
anisotropy value indicates that contacts were formed in a privileged direction,
while a null value indicates an even distribution. Furthermore, two origins
for the anisotropy can be distinguished: inherent and induced. The former
results from the technique used to create the specimen, while the latter is
generated by the loading history.

It has been shown that the macroscopic response of a specimen is directly
linked to the anisotropy state, thus defining a stress–force–fabric relation
for 2D systems [49]. In general, tests show that the maximum value of
contact force anisotropy occurs alongside the measured peak resistance of the
material [49]. Furthermore, the ratio between normal and tangential stress
(frequently associated with the mobilized angle of friction for cohesionless
materials) can be inferred from force and contact anisotropy. This suggests
that cohesion-less granular assemblies carry deviatoric loads through their
ability to develop an anisotropic contact network [50, 49, 51, 29].

2.3.2 Average stress on a discrete system

In continuum mechanics, the stress state of a region can be approximated by
averaging the stress of all the points included within it. However, this defi-
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nition is only valid for continuous media and is not adapted for the discrete
nature of granular materials.

It has been shown that, under static or quasi-static conditions, a consis-
tent definition of the stress tensor for a closed domain of a granular assembly
can be derived through the volume average of the tensorial product between
the contact forces and the branch vectors of contacts [52, 53, 49, 54, 55, 56,
57], as defined in Figure 2.3. Thus, defining the classic Love–Weber formula
depicted by equation (2.2) as:

σ̄ij =
1

V

C∑
c=1

f c
i l

c
j (2.2)

with the summation over all contacts C, where f i
k is the i-th component of

the force of the contract c, ljk is the j-th component of the branch vector of
the contact c, and V is the volume of the analyzed region.

This tensor has been a staple in the granular materials community for its
ease of use and precision. Furthermore, it enables the computation of the
stress over almost any closed domain, making an in-depth analysis of local
granular behavior possible.

2.3.3 Average strain on a discrete system

Strain can be defined as the measure of change in the length, area, or vol-
ume of a system. Thus, the discrete nature of granular materials renders
convoluted the definition of this quantity with the complex motion of grains.
Many researchers have developed techniques of diverse theoretical origins to
compute the strain locally with varying degrees of complexity and success
[58, 59, 60, 1, 61, 62, 63, 30].

In the article by Bagi [59], the author describes a granular assembly as a
dual system composed of material and space cells. The first consists of all the
space closer to a particular grain than any other grain in the specimen. Thus,
each grain will have its own material cell surrounding it, forming a closed
domain. A common face between the material cell of two neighboring grains
is formed by the region located at the same distance between each grain.
Thus, if two grains are in contact, there must be a material face between
their cells.

Space cells, however, are a sub-product of material cells. They are formed
by creating a line between the center of the grains whose material cells share
a surface. These lines will then partition the granular media into triangular
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shapes (or tetrahedra in 3D) with grain centers as nodes and encompass a
common void space between them.

It can be shown that the deformation of the granular assembly is directly
correlated with the deformation of the space cell system, thus with the strain
tensor. Furthermore, the material system is directly connected to the stress
tensor, making the dual system an incredible tool for analyzing the granular
macrostructure [59].

In the particular case of spherical particles, the material cell is equivalent
to the Dirichlet tessellation, while space cells are equivalent to the Delaunay
tessellation. The latter can map a cloud of points into triangles in 2D or
tetrahedra in 3D. Thus, by applying it to the center of the particles, we
obtain a triangulated mesh that subdivides the domain into several smaller
elementary shapes that will henceforth be referred to as cells. Furthermore,
the connections formed between the grain’s centers will be known as edges,
and the element that divides two cells will be called a frontier (edge in 2D
and surface in 3D). This is illustrated in Figure 2.4 where a 2D example is
shown.

Figure 2.4: Delaunay tessellation of a 2D granular material showing the
triangular cells formed by the tessellation edges.

Each cell is a simplex formed by D + 1 grains and frontiers. When ana-
lyzing any single cell, a frontier will have the same identification number as
the only grain from the cell that does not form part of it. Thus, a surface
vector bk of a frontier k can be defined as the outward vector whose length
is equal to the surface (or length in 2D) of the frontier k.

To quantify something akin to the region of influence of an edge, the
complementary area vector de is defined. For a specific edge e between two
grains m and n, de is the sum of all cells that share the edge e of the difference
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between the surface vectors with the same ID as the grains forming the edge,
as described by equation (2.3).

de = dmn =
1

D(D + 1)

C∑
c=1

(bn(c) − bm(c)) (2.3)

To create a second-order tensor capable of quantifying the strain locally,
the complementary area vector dmn is multiplied by the difference between
the incremental displacements of the grains connected through the edge e.
For a given closed domain, the average incremental gradient tensor is pro-
vided by the following equation:

Ēij =
1

V

N∑
e=1

∆ue
id

e
j (2.4)

N is the number of all edges of the specimen, ∆ue the difference of incre-
mental displacements between both nodes of the edge e, and de the comple-
mentary area vector of the edge e .

The incremental strain tensor is the symmetric part of the tensor of equa-
tion (2.4), while the skew-symmetric tensor reflects the average rotation of the
cells. It can be concluded that knowledge of the position and displacement of
particles allows for an approximation of the strain tensor of a granular assem-
bly. Furthermore, this definition can be applied to any closed domain inside
the specimen, thus enabling a thorough analysis of the strain distribution.

Finally, it is interesting to note that the strain formulation based on a
linear interpolation of the incremental displacements of the particles [58, 63,
30, 42] can be transformed to match equation (2.4). The main difference
between both formulations is the base element of the analysis: The former
requires a closed domain (i.e., 2D loop or cell), while the latter can be applied
to a single edge.

2.4 The intermediate scale
Several structures in an intermediate scale have been identified to bridge the
microscale of individual grains and the macroscale of the whole specimen.
These mesostructures are agglomerations of at least three grains that share
common properties, allowing them to combine the physics of individual par-
ticles with that of larger structures. In the scope of this thesis, only the
mesostructures force chain and loops will be analyzed.
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2.4.1 Force chains

As mentioned earlier, the externally applied force is transmitted inside the
granular matter through contact forces. They propagate from grain to grain,
forming a highly ramified force network. Through photo-elastic disks, many
researchers performed tests to identify the characteristics of this force prop-
agation [64, 65, 66, 67, 68]. This material can change its light transmission
properties depending on the stress state of the molecules. Thus, by applying
loads to an assembly of these disks, the path of the force could be observed
with the naked eye, as illustrated in Figure 2.5.

It has been shown that two force network systems appear inside granular
materials. The weak network, representing most of the specimen (approx-
imately 60%), is composed of particles in which the stress value is inferior
to the mean value of the force within the sample [55, 69]. On the contrary,
the strong network is organized into chains of highly stressed particles. Both
networks have an influence on the strength of the granular assembly. The
strong one is responsible for most of the force transmission, while the weak
one will ensure the stability of the strong network.

Figure 2.5: Force chain obtained during a biaxial compression test of photo-
elastic disks [68].

An objective description of force chain structures can be summarized as
follows [70] :

• A force chain is formed by at least three particles;

• The most compressive principal stress of each particle within a chain
must be above the average value of the specimen;
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• The difference between the direction of a particle’s most compressive
principal stress and the direction of the branch vector of the contact
with the next chained particle must be inferior to a defined θ value
(commonly chosen at 45◦).

The stress tensor of each particle can be obtained through the Love–
Weber formula defined in Section 2.3.2. For each particle, the summation
is made over all the contact forces acting in the particle and divided by the
volume of the particle.

The importance of force chains on the macroscopic behavior of granular
materials has been shown in many numerical experiments [71, 72, 70, 67,
73, 2, 74, 75, 76]. The stability of these structures is directly connected to
the resistance and the volumetric performance of granular materials. Fur-
thermore, the bending and buckling of force chains have been shown to be
directly related to the loss of strength of the specimen and the development
of shear bands [77, 78, 79, 30, 80]. As force chains are deformed inside shear
bands, the void ratio increases, thus highlighting the dilatancy of this region.
[2, 74, 81]. Force chains have also been regarded as responsible for non-affine
strain and the mechanisms of energy dissipation inside granular materials [2].

It has been shown that the granular material properties influence the for-
mation of force chains [73]. Increasing inter-particle friction, specimen den-
sity, or grain size dispersion tends to create force chains that are straighter,
less ramified, and more stable. In addition, denser systems also tend to pro-
duce shorter chains. Consequently, the increased strength of denser materials
can be seen as a product of the characteristics of their force chains.

2.4.2 Loops as a contact cycle

In 2D, loops are geometric shapes formed by contacts between grains forming
a closed circuit that encloses a common void space. They were first identified
by Satake [82] in groundbreaking research of a graph-theoretical approach to
granular materials. As illustrated in Figure 2.6, loops emerge in several
shapes and sizes (number of grains).

Loops are a direct product of the force and geometry of the contact be-
tween grains. While the physical contact determines the form of the loop,
contact forces assure the stability of the entire mesostructure.

It can be demonstrated that the physical capabilities of loops are directly
linked to their size (number of grains forming it). Smaller loops tend to
be more stable while larger ones are capable of changing forms to adapt to
external stimuli, thus being deformed without breaking any contacts. For
this reason, the analysis of loops quantities is generally made through the
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Figure 2.6: Example of loops of different sizes (L3, L4, and L5) being formed
in a theoretical granular specimen.

definition of categories based on their size, as follows: loops 3, loops 4, loops
5, and loops 6+. The last one contains all loops of a size larger than 6 as
they have equivalent physical capabilities and become increasingly rare with
the growth in size (in 2D).

Loops have the potential to partition the entire granular media into small
unique elements. These are closed domains where stress and strain values
can be defined using the formulations presented in section 2.3. Furthermore,
macroscale properties can be upscaled as the surface weighted average of
loops properties [55, 56, 57]. This local analysis at the mesostructure level
can highlight the unique properties of the granular assembly.

It has been shown that the average void ratio of loops increases with their
size, indicating that as the number of grains forming a loop increases, so does
the amount of void they encapsulate. Furthermore, recent works reported
that the volumetric behavior of granular materials is linked to the evolution
of loops L3 and L6+ [20, 28], showing a direct relationship between local
loop surface area and specimen-wide properties.

Loops composed of three grains are demonstrated to be a key source of
stability and reinforcement of force chains [75, 20, 30]. As force chains start
buckling, their surrounding loops start to merge, increasing in size and void
ratio.

Furthermore, the buckling of force chains has been directly linked to
the formation of shear bands, as mentioned in Section 3.2.2. Thus, a link
between the local increase in loop size and shear bands could be implied. In
fact, direct analysis of the local distribution of loops has shown that inside
the shear bands, loops of greater size are more prevalent in relation to the
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rest of the specimen [28].
The measure of the elongation of loops obtained through a loop fabric

tensor has been used to investigate the relation between loops and local
strain tensor [83]. It has been shown that loops elongated through the mi-
nor principal strain direction were prone to dilatancy, while loops elongated
through the major principal direction showed more often a contracting be-
havior [75, 20].

When the critical state of a specimen is reached, the distribution per-
centage of each loop category has been shown to attain a constant value
[84, 20]. Further analysis of the topological evolution of loops indicated that
this steady state originates from an equilibrium between the creation and
destruction of loops, as their difference is shown to fluctuate near zero [28].

In addition, a constitutive model has been created based on the topolog-
ical properties of loops [3]. The H-directional model describes the material
through a combination of mesostructures oriented in different directions. In
the 2D case, the base structure is the hexagonal loop L6, and the collective
rearrangement in granular materials is accounted for in the H-model through
the deformation of the H-cells.

2.5 Discrete element method numerical simu-
lation

The discrete element method model, better known as DEM, was first devel-
oped by Cundal [85] and later improved by Cundal and Strack [86]. It uses
the position and velocity of discrete particles to study their movements, thus
being able to compute the next instant in time of all grains in a granular
specimen. Among the different methods applied in the field of the micro-
mechanics of granular materials, DEM is the most widely used and developed
tool, thanks to the simplicity it is able to simulate the discrete nature of the
particles. Since the creation of DEM, computational power has increased
greatly and the use of this technique became widely used by the scientific
community [49, 87, 88, 89, 90, 91, 76, 30].

Since each particle is simulated as its own rigid body with many degrees of
freedom, a simulation containing thousands of particles becomes a very com-
plex system. As shown in the previous sections, homogenization techniques
are capable of averaging the local data to transform them into quantities
corresponding to the macroscopic variables observed. Thus, a DEM model
enables the acquisition of data capable of linking the behavior of the micro-
and macroscales in a way that is almost impossible to obtain in experimental
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settings.

2.5.1 LIGGGHTS

LIGGGHTS(R)-PUBLIC is an open-source software for particle simulations
using the DEM. It is distributed by DCS Computing GmbH, Linz, Austria.

LIGGGHTS is built on the foundations of LAMMMPS, a well-known
molecular dynamics software largely utilized in physics and chemistry. It
has been modified for the general case of granular materials, using physical
contact instead of electrical potentials to quantify the interaction between
particles [92]. As LIGGGHTS is not programmed to handle particle breakage,
each particle is considered unbreakable.

LIGGGHTS has seen use in the industrial and academic fields. Among
others, Huang et al. [93] have studied the behavior of stress paths in 3D in
the critical state, Hurley and Andrade [94] have modeled a simple shear test,
and Sufian et al. [95] have analyzed the evolution of the pore network under
cyclic loading.

2.5.2 Calculation cycle

The calculation cycle of a DEM model consists of the determination of the
position of the particles at the next timestep through the use of the contact
forces in a time interval ∆t between tn and tn+1. At tn, the position and ve-
locity of particles are known. Two particles are considered in contact if there
is an interpenetration of their exterior walls. Once the forces are calculated,
the new position and velocity of particles are determined for the next step,
tn+1. This cycle can be written in the following steps:

• Through the velocity and position of particles, update the list of par-
ticles in contact at the instant tn;

• Calculate, for each contact, the force of contact between two grains in
contact using the contact law;

• For each particle, integrate the contact forces and calculate the accel-
eration for the time interval ∆t;

• Update the position and velocity of the particles for the next timestep
tn+1.

At the end of the last step, all the data needed to execute the first step
are available, forming a closed and repeatable cycle.
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2.5.3 Particle shape and contact law

For a DEM simulation, contact detection is the most time-consuming task,
which is directly related to the shape of the simulated particle. The least
demanding shapes to simulate are spheres, which only require the position
and radius of particles for a contact to be detected. However, particles of
real granular materials can be presented in many different geometries, from
more uniform materials such as coffee grains and seeds to amorphous ones
such as sand. In this regard, many techniques have been developed, for
example, the use of clumped spheres [96, 29], polygonal particles [97, 98, 99],
or more complex algorithms such as the level-set DEM [100]. Nevertheless,
a simplification of grain geometry dramatically improves the time needed for
execution, and thus the use of spherical particles will be envisioned for this
work as no specific type of material is being modeled.

A contact law can be defined as the function that will determine the
force of contact

−→
F considering the position of implicated particles. Thus,

the choice of the contact law will have a deep impact on the mechanical
response at all scales, as it is an integral part of the calculation cycle.

The most common contact law in DEM is the elasto-frictional law, intro-
duced by Cundall and Strack [86]. When a contact is detected, two virtual
springs are created, one normal and one perpendicular to the contact plane,
illustrated in Figure 2.7a.

(a) Illustration of contact springs. (b) Limitation of tangential spring force.

Figure 2.7: Illustration of the elasto-frictional contact law. On the left is
the representation of virtual springs and on the right is the limitation of the
tangential force through the normal force and a friction coefficient [47].

The first contact spring, of rigidity kn, simulates the physical contact
between two particles. The laws of physics prevents the superposition of
two rigid undeformable objects, and thus this spring will create a repulsion
force between contacting particles that increases with the interpenetration
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of the two modeled particles. Furthermore, as the materials simulated are
non-cohesive, this spring cannot exert a negative force.

The second contact spring, of rigidity kt, models the friction physics be-
tween particles in contact and is limited through a friction coefficient µ in-
herent to the simulated material, as illustrated in Figure 2.7b.

LIGGGHTS uses a variation of the elasto-frictional law, adding a damping
effect to the force values. The contact force between two particles i and j is
given by the following equations :

F = Fn + Ft

Fn = (kn.δnij − γnVn,ij)
Ft = min( ktδtij − γtVt,ij , µFn )

(2.5)

with kn the rigidity of the normal spring, δnij the particle interpenetration
in the normal direction, Vn,ij the relative velocity of the particles in the
normal direction, kt the rigidity of the transversal spring, δtij the particle
interpenetration in the transversal direction, Vt,ij the relative velocity of the
particles in the transversal direction, and µ the friction coefficient of the
material. γn and γt are coefficients with no physical meaning calculated as a
function of material parameters, as further described in equations (2.6).

The value of these linear spring rigidities can be estimated in many ways.
For the case of the software LIGGGHTS, they are calculated in function of
the material parameters of the particles in contact. With i and j being two
grains in contact, the rigidity of the springs simulating the contact between
them is calculated through the following equations:

kn = 4
3
E ′√R′δn, γn = −2

√
5
6
β
√
Snm′ ≥ 0,

kt = 8G′√R′δn, γt = −2
√

5
6
β
√
Stm′ ≥ 0,

Sn = 2E ′√R′δn, St = 8G′√R′δn,
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ln2(e)+π2

, 1
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+
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1
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+
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1
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(2.6)

with, for particle i, Ri the radius i, mi the mass, νi the rigidity ratio, Ei

the elasticity modulus, Gi the shear modulus and e the restitution coefficient.
Furthermore, perfectly spherical grains have the capacity to rotate around

any axis without affecting their neighbors, a characteristic that is not very
common in real materials. To decrease the influence of this effect, a common
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practice is to add a rolling resistance to the model, through the addition of
a third virtual spring to the contact law. Furthermore, it has been shown
that phenomena like shear banding can only be well developed on DEM
simulations of spherical particles when rolling resistance is applied [88, 101,
96, 102, 103].

The method "elastic-plastic spring-dashpot 2" (EPSD2) proposed by Iwashita
and Oda [88] was added to the contact law, as described in equation (2.7):

kr = ktR
2

∆Mk
r = −kr∆Θr

Mk
r,t+∆t = Mk

r,t +∆Mk
r

Mk
r,t+∆t| ≤ Mm

r

Mm
r = µrR

′Fn

(2.7)

with kr the rolling spring rigidity, kt the transversal spring rigidity (cf.
equation 2.6), R the radius of the particle, and µr the rolling friction coeffi-
cient.

The spring torque Mk
r can be easily calculated through the relative rota-

tion between the two particles ∆Θr. Later the total rolling resistance torque
is limited by the value Mm

r calculated in function of the user-defined rolling
friction coefficient µr. This coefficient is a dimensionless parameter repre-
senting the tangent of the maximal angle of a slope upon which the rolling
resistance torque balances the torque produced by the acceleration of gravity
[104].

2.5.4 Critical timestep and model stabilization

As shown in the section 2.5.2, the calculation cycle of a DEM simulation
occurs for a time interval ∆t, which must be chosen wisely to ensure the
validity of the contact physics of the discrete model. If, for example, the
interval taken is too high, the movement of particles may generate a high
interpenetration of particles or even superposition, which no longer has a
physical meaning thus invalidating the model. Conversely, a simulation with
a low timestep requires several more calculation cycles to reach equivalent
results to those obtained with an efficient timestep.

To do so, the way the efforts are transmitted inside the granular matter
must be considered. The modeled particles must not transmit forces faster
than would happen in reality. Miller and Pursey have shown that Rayleigh
waves are responsible for 67% of the energy irradiated, in comparison with
the 7% for dilation waves and 26% for distortion waves. Since the latter have
the same velocity as the first waves, the hypothesis that the energy is totally
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transmitted by Rayleigh waves can be asserted [90]. This approximation
has been widely used in academic and industrial applications [105, 106, 107,
108]. For a certain material M, the critical timestep ∆tc is calculated by the
following equation :

∆tc =
πr

0.1631ν + 0.8766

√
ρ

G
(2.8)

with r the radius of the smallest grain, ν the stiffness ratio, and ρ the density
G the shear modulus.

∆tc is the maximal value that can be chosen for an interval between two
timesteps. If more than one material is being used in the simulation, ∆tc
must be calculated individually and the smallest value should be taken.

The critical timestep, described in equation (2.8), determines the maximal
value upon which the simulation timestep should be chosen to maintain the
physical properties of the model. In the case of the software LIGGGHTS,
a further reduction of 80% of this value is indicated, resulting in a timestep
∆t = 0.2∆tc.

It is interesting to note that the shear modulus G is in the denominator of
equation (2.8). Thus, a common technique to increase the critical timestep
is to lower the elastic modulus of the chosen material. This approximation
should be handled with caution, as decreasing the elastic modulus impacts
the stiffness of the particles. Keeping a value above 107Pa is indicated as
it has been shown to maintain the average normal overlap between particles
below 0.5% [109, 110].

2.6 Concluding remarks
This chapter provided fundamental concepts and reviewed recent advances
in the understanding of granular materials and presented the three internal
structures that will be the focus of the thesis (loops, force chains, and shear
bands). It was shown that there is a deep connection between these three
structures; however, loops have only been defined in a 2D environment. The
present thesis proposes the definition of a loop-like structure in 3D condi-
tions capable of maintaining the properties that make it so attractive to the
scientific community.



Chapter 3

Procedures and tools for
identification of internal
structures

3.1 Foreword

In this chapter, the theoretical procedures to identify the sought structures
will be presented, beginning with a loop-like structure in 3D conditions and
followed by force chains and shear bands. Next, the parameters of the script
developed for the DEM simulation in the software LIGGGHTS will be pre-
sented, followed by a succinct presentation of the post-processing tool devel-
oped for this work.

3.2 Identification procedures and characteris-
tics of mesostructures

3.2.1 Loops and clusters

To be able to transpose the definition of loops to 3D conditions, a procedure
to identify the former needs to be developed. To do so, the domain will be
subdivided into contact-based partitions using the space cell domain [59].
In the particular case of spherical particles, it is translated to the use of a
Delaunay tessellation.

This definition will be shown to be effective in the identification of 2D
loops, and later transposed to 3D conditions generating the cluster struc-
tures. Finally, the definition of quantities capable of extracting cluster char-
acteristics will be presented in the form of anisotropy, size, order, and void
ratio.

Space cell systems as contact-based divisions

To create a procedure to identify loop-like structures in 2D and 3D, first a
parceling of the granular assembly into elementary contact-based structures

22
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is envisioned. Then a merging criterion will be introduced to join these
building blocks to create the sought structures.

Granular media formed by convex-shaped particles can be partitioned
into a dual system formed by material cells and space cells [59].

A material cell consists of the region delimiting all the points that are
closer to a certain grain than any other. Thus, each grain will have its own
material cell surrounding it, thereby forming a closed domain. The common
frontier (face in 3D or edge in 2D) between two neighboring material cells
is formed by the set of points that are at the same distance between both
grains. Thus, if two grains are in contact there must be a face between their
material cells.

On the other hand, to create space cells, the center of the grains whose
material cells have a common surface is joined by a line. These lines will then
partition the granular media into triangular surfaces forming space cells in
the form of tetrahedra (or triangles in 2D) that have grain centers as vertices
comprising an internal void space.

In the special case of spherical particles, the material cell is equivalent to
the Dirichlet tessellation of the assembly, while the space cell system coun-
terpart is the Delaunay tessellation. This duality is exemplified in Figure
3.1, showing a monodisperse 2D sample. If a polydisperse system is created,
a weighted tessellation is needed to take into account the influence of the
radius of each grain.

Figure 3.1: Representation of the duality of Dirichlet (red) and Delaunay
tessellation (gray) for a monodisperse 2D sample.

Using a Delaunay tessellation, a granular material will mesh into elemen-
tary shapes through the connection between grain centers. By doing so, two
grains that are in physical contact will always have a connection between
them.
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The nomenclature definition proposed in Section 2.3.3 for the strain calcu-
lation will be maintained. The Delaunay tessellation will divide the granular
assembly into elementary shapes that will be known as cells, the connections
between grains will be known as edges, and the triangular faces formed by
three edges as surfaces.

Loop identification

In 2D, the domain analyzed is a surface, thus the representative elements
generated by the Delaunay tessellation are triangles. Each cell is then a
triangle formed by three edges and each edge forms a frontier with only
one adjacent cell. As the triangles are created, pairs of grains are connected
through edges irrespective of physical contact. Hence, two categories of edges
arise: closed and open. Closed edges are defined as those in which the
connected grains are in physical contact, while open edges correspond to
grains that are not in contact.

Figure 3.2: Example of 2D loop identification using a Delaunay tessellation.

The loop structure is formed by a group of grains in contact enclosing a
common void space. In other words, it is equivalent to polygons composed
of only closed edges on their boundaries. As each edge marks a frontier of
exactly two cells, a convenient merging criterion consists in joining adjacent
cells that share a common open edge. Thus, the merging criterion can be
defined as the presence of an open frontier between two distinct cells, as
illustrated in Figure 3.2.

Generalizing the procedure for a 3D specimen

To extend the 2D algorithm to 3D conditions, an open frontier must be
defined taking into account 3D properties. As the domain analyzed is now a
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volume, the elementary partition of the tessellation is a tetrahedron. Thus,
in 3D conditions, the cells are tetrahedra composed of four surfaces and six
edges, as seen in Figure 3.3.

Figure 3.3: Example of a 3D cell.

As the dimension of the system has been incremented, edges no longer
mark the frontier between two cells. The domain that is now shared exactly
by two distinct cells is a surface. Therefore, the merging criterion for 3D
cells must be described as the presence of a common open surface between
two cells. Nonetheless, the characterization of a 3D frontier as open or closed
is not as straightforward. In fact, as each surface presents a combination of
three edges that can be open or closed, and four categories of surface can be
defined, as illustrated in Figure 3.5a.

Figure 3.4: Evolution of the number of open and closed edges for a dense
drained triaxial test at 100kPa (test D100 later presented in Section 4)

Previous works [4] stated that a surface is considered open when at least
one of its edges is open. However, in 3D conditions, each edge is shared by
a multitude of cells, and thus an open edge would lead to the merger of all
cells that surround it. Furthermore, even for dense specimens, most of the
edges generated by the triangulation are open, as illustrated in Figure 3.4.
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This definition leads to the detection of a loop that contains most of the cells
within the considered specimen ( 70%), as proclaimed by Nguyen et al. [4].
This merging criterion is therefore not restrictive enough to avoid merging a
disproportionate number of tetrahedra.

The definition proposed here is that an open surface exists only when all
edges forming it are open. As a result, a closed surface corresponds to all
other cases where at least one edge is closed, as illustrated in Figure 3.5a.

(a) Classification of surfaces into closed
(1) or open (2).

(b) Example of the merger of cells sharing
an open surface to create a cluster.

Figure 3.5: Illustration of the merging criterion for 3D conditions: 3.5a illus-
trates surface classification, while 3.5b exemplifies the formation of a cluster.

With the merging criterion now clearly defined, the detection algorithm
used in the 2D condition can be directly extended to 3D. Figure 3.5b illus-
trates the creation of a 3D mesostructure by joining two cells.

In a mathematical framework, a loop can be described as a chain of edges
in which no vertex besides the first appears more than once 1. Therefore, the
loop definition as described in Section 2.4.2 introduces a bijection between a
polygon and the loop composed of its vertices. However, in the 3D structures
presented in Figure 3.5b, it is impossible to cycle through all the grains and
edges without repeating an element. Thus the word "loop" is not adopted for
the 3D framework and henceforth these structures will be called "clusters." In
the following, the term “loop” refers to 2D conditions while the term “cluster”
is used in 3D conditions.

1The given mathematical definition is that of a cycle and not a loop. The term "cycle"
represents more accurately the 2D mesostructure. However, the "loop" nomenclature is
kept as it has been widely used by the granular materials community.
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Size vs order

Classically, a loop is categorized by the number of grains it contains, which
is a known quantity, as the size is. This metric can be directly estimated
using the characteristics of the identification procedure of loops. Since each
cell has three grains and each open edge is shared between two cells, the size
Sloop of a loop can be expressed in 2D conditions as:

SLoop = 3×NCells − 2×NOpenEdges (3.1)

For illustration purposes, let us take the blue loop in Figure 2.6(b). This
loop is created through the merging of three cells through two open edges.
Therefore, its size is Sloop,blue = 3 × (3) − 2 × (2) = 5, corresponding to the
number of grains constituting the loop.

The given definition can then be extended to 3D conditions. However, in
this case, each cell is a tetrahedron constructed from four distinct grains and
the presence of an open frontier between cells infers three repeated grains
instead of two. The size of a cluster can then be calculated through the
following modification of Eq. (3.1) :

SCluster = 4×NCells − 3×NOpenSurfaces (3.2)

In the same vein, with the objective of exemplifying, Eq.(3.2) can be
applied to the cluster illustrated in Figure 3.5b. In this case, the cluster was
created by merging two individual cells through one open surface, resulting
in a size of SCluster,F.5 = 4 × (2) − 3 × (1) = 5, which corresponds to the
number of grains observed.

However, it can be shown that Eq.(3.2) is not valid for all cases, since the
resulting answer does not match the number of grains forming the cluster.
For example, the structure illustrated in Figure 3.6 is a cluster formed by six
grains and four cells joined through four open surfaces. In this case, Eq.(3.2)
returns a value of SCluster,F.6 = 4 × (4) − 3 × (4) = 4 grains, which differs
from the reality.

Therefore, for a cluster, the number of grains (size) that compose it is not
directly related to the number of cells and open frontiers and thus cannot be
calculated from only these metrics. However, as the identification procedure
is heavily based on these concepts, a new metric also based on these ideas,
thereafter denoted as the "order," can be conveniently introduced. The order
of a loop or cluster is defined as the number of closed frontiers forming the
boundary of the structure. It can be computed as the difference between the
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Figure 3.6: Pathological case: the order (exterior faces) of a cluster does not
correspond to its size (the number of grains).

total number of frontiers and the number of open ones, as represented by
Equations (3.3) and (3.4) showing the order O of loops and cluster:

OLoop = SLoop = 3×NCells − 2×NOpenEdges (3.3)
OCluster = 4×NCells − 2×NOpenSurfaces (3.4)

Applying equation (3.4) to the pathological case shown in Figure 3.6
returns a value of OCluster,F.6 = 4 × (4) − 2 × (4) = 8, which corresponds
to the correct number of external faces forming the boundary of the cluster,
thus validating the definition. In addition, equation (3.3) proves that both
quantities are equivalent in 2D conditions.

In the following, order will be favored for the overall analysis. However,
size is an interesting metric as it can be used to distinguish clusters of different
shapes, since they may have the same order but different sizes.

Deformability

A configuration of a loop-like structure can be defined as a geometrical pat-
tern bounded by the relative position of the grains making up part of it.
As the definition of clusters is heavily dependent on the contact network
of a granular system, the characteristics of the contacts will influence how
loop-like structures behave when stimulated by a given external loading, thus
changing in configuration.

As an example, the case of a loop of order 3 can be considered. As
the three grains are in physical contact, the given structure has only one
possible configuration and cannot be deformed by grain rearrangement. By
contrast, a loop of order 4 or greater is able to adopt several configurations
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to accommodate the displacement of neighboring grains imposed by external
solicitations, as illustrated in Figure 3.7. In addition, the number of possible
configurations a loop can take increases with the order of the structures.

Figure 3.7: Illustration of a change in configuration for a loop of order 4, in
2D.

This capacity of a loop-like structure to adapt to external loads influences
directly the strength of the specimen. It has been shown that the presence
of less deformable loops around force chains increases their stability, result-
ing in a stronger specimen [80]. When different loops start merging with
each other, generating larger structures, they become more deformable, con-
sequently leading to the loss of stability of force chains and an increase in
their probability of bending, finally generating a general loss of mechanical
strength for the sample.

The deformability of a loop-like structure is introduced here as a new
metric to quantify the capacity to deform, according to its topological char-
acteristics. It is defined as the capacity of a loop or cluster to deform without
creating or breaking contacts.

The feature that allows a loop to admit more configurations, and thus to
be more deformable, is the presence of open edges. An open edge represents a
void space between grains, thus leaving a margin of space for grains to move
around. The level of deformability of a loop-like structure is then measured
as a dimensionless ratio between the number of open edges and total edges,
as shown in Eq. (3.5):

D =
NOpenEdges

NTotalEdges

(3.5)

In a 2D framework, because the size and order have the same formulation,
the number of edges can be directly calculated from these properties. The
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minimal loop, of order 3, is composed of three closed edges with a deforma-
bility DLoop3 = 0. For each unit increment in the order of greater than 3, two
edges are added to the total, one open and one closed. Thus, Eq. (3.5) can
be rewritten in 2D as:

DLoop =
OLoop − 3

2OLoop − 3
(3.6)

with Oloop being the loop order. It can be noted that, as the order in-
creases to greater than 3, so does the deformability with a maximal possible
value approaching 0.5.

The deformability principle in Eq. (3.5) is directly applicable to 3D con-
ditions. Even though edges are no longer the frontier between 3D cells, they
still portray the connections between two grains. In this way, the existence
of open edges is still the necessary condition for a cluster to be deformable.

However, as discussed in Section 3.2.1, both open and closed surfaces are
comprised of a combination of open edges and closed edges. Hence, in 3D, a
direct deformability equation equivalent to Eq. (3.6) cannot be established
and no simple relation between the deformability and the order of a cluster
exists.

Direction of elongation of loop-like structures

The deformability property explained in the previous section highlights the
capacity of loops and clusters to take different forms in a granular assembly.
As mentioned in Section 2.4.2, the shape and elongation direction of loops
have a direct influence on the strength of granular materials [84, 83, 75, 20].
Thus, it is wise to introduce an equivalent notion for the case of clusters.

A common procedure to analyze loop forms is through a second-order
tensor, in a similar way to the procedure proposed to evaluate the contact
network in Section 2.3.1. However, instead of the whole specimen, the anal-
ysis would be made over every single loop-like structure separately. For the
cluster case, two tensors will be constructed from vectorial data of two dif-
ferent properties of the clusters: a mass tensor and a surface tensor.

The first one, the mass tensor, will provide information on the distribution
of the mass inside the cluster. It will be constructed with the distance vectors
from the center of mass of the cluster to each of the grains forming it, as
indicated by equation (3.7), thus showing the overall positioning of the grains
in the three dimensions.
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M =
1

Ng

∑
gϵL

G⃗Pg ⊗ G⃗Pg (3.7)

with L being the cluster analyzed, g a grain belonging to L, Pg the coordi-
nates of the grain g, G the coordinates of the center of gravity, and Ng the
number of grains forming the cluster.

On the other hand, the surface tensor will be defined from the surface
vectors of the closed surfaces forming the cluster boundaries. These vectors
are the outward normal whose magnitude is equivalent to the area of the
surface they represent. This type of tensor has already been used to study
other Delaunay-tessellation-based structures such as the pore structure of
a granular system [111]. This way, the distribution and orientation of the
external surfaces will be highlighted, providing a second point of view in the
cluster forms.

M =
1

Os

∑
sϵL

V⃗s ⊗ V⃗s (3.8)

with L being the cluster analyzed, s a closed surface belonging to L, Vs the
coordinates of the surface vector of s, and Os the order of the cluster (number
of closed surfaces).

The direction of elongation can then be obtained through the analysis of
the principal values of the tensor. For the mass tensor, the major principal
value is envisioned, as it points toward the direction where mass is mostly
concentrated. However, for the surface tensor, the minor principal value
is retained, as the most elongated direction is the one to which the lowest
number of surface normal vectors point.

The chosen vectors will be expressed in terms of their azimuthal and
elevation angle [111]. The former represents the rotation in the x–y plane in
relation to the y-positive direction, while the latter will indicate the uplift of
the vector in relation to the x–y plane, with x being the smallest dimension
of the specimen (axes are defined in Figure 3.11a).

3.2.2 Force chains

Since force chains have been studied for a long time, procedures capable of
identifying them have already been developed. In this section, the procedure
introduced by J. Peters [70] will be presented and further modified to identify
structures adapted to our analysis.
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The force inside granular materials has been shown to be transmitted
mostly by the strong network, containing grains with higher than average
local stresses [55]. Thus, to identify the force chains, the stress level of each
grain must be quantified. The Love–Weber formula, shown in equation (2.2),
can be modified to account for the domain of spherical particles as shown in
equation (3.9).

σ̄ij =
1

V

C∑
c=1

f c
i r

c
j (3.9)

the summation is extended over all contacts C, where f i
k is the i-th component

of the force of the contact c, rjk is the j-th component of the vector from the
center of grain to the point of the contact c, and V the volume of the grain.

From each of the particle’s tensors, the principal values and vectors are
obtained. The strong network is detected by selecting only the grains whose
major principal stress (most compressive) is higher than the average. Fur-
thermore, to identify force chains, contacts between grains A and B of the
strong network are checked by equation (3.10). The angle between the major
principal stress of both particles and the branch vector of the contact must
be smaller than a predefined θ value (commonly chosen equal to 45◦).

cos(θ) < min

(
|lAB.σ

M
A |

|l||σM
A |

,
|lBA.σ

M
B |

|l||σM
B |

)
(3.10)

with lAB the branch vector of the contact between the grains A and B, σM
A the

most compressive principal stress of particle A, and σM
B the most compressive

principal stress of particle B.
With this definition, an algorithm capable of identifying force chains can

be defined, as proposed by J. Peters [70]. However, this algorithm has a flaw:
It cannot take into account the ramification of force chains. As the algorithm
can only choose one grain at a time, whenever a ramification appears a
different force chain is created, as illustrated in Figure 3.8.

To correct this drawback, an algorithm based on contacts is proposed.
Once the strong network is detected, a list of contacts between highly stressed
grains is built. The condition described by equation (3.10) is then checked
for all contacts in the mentioned list. Contacts that were validated are then
joined into chains. The chains containing at least three grains aligned in the
force transmission direction are then considered force chains.

To take into account the force chain ramification phenomenon, two def-
initions can be established: chains and branches. Chains will represent the
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(a) Ramified force chain. (b) Force chains identified.

Figure 3.8: Illustration of J. Peters algorithm [70] drawback for ramified
force chains. 3.8a represents a ramified force chain, while 3.8b shows the two
identified force chains.

totality of the force chain with all its ramifications, while branches represent
each possible force path. This proposal is illustrated in Figure 3.9.

(a) Force chain. (b) Force chain branches.

Figure 3.9: Illustration of the definition of a force chain (3.9a) and its
branches (3.9b).

It is important to note that a branch must have two extremities, one en-
during an external load and one transmitting it forward (to grains outside the
chain or to the boundary conditions). Thus, the connection between grains
inside the chain must follow the direction of the most compressive stress
characterized by equation (3.10). Consequently, a branch connecting the two



34 Procedures and tools for identification of internal structures

bottom-most grains of the force chain illustrated in Figure 3.9a is impossible,
as it would require a force to be transmitted in the opposite direction. This
way branches may (and most likely will) have common particles with other
branches originating from the same force chain.

The phenomenon of force chain bending has been shown to have a direct
impact on the softening phase of granular materials and even the formation
of shear bands [112, 71, 2, 75, 81, 113, 80]. In the literature, several authors
use the names bending and buckling interchangeably. However, a rigorous
definition of buckling requires an analysis of the stress saturation besides the
geometrical evolution [30]. Thus the nomenclature "bending" will be kept
throughout this work.

According to the definition given in Section 2.4.1, elementary parts of
force chains are built from groups of three heavily stressed particles in contact
in the direction of the force transmission, known as 3-p force chains [30].
A bending event will be considered if, between two calculation steps, the
angle between each 3-p force chain has evolved of a value larger than θc. As
illustrated in Figure 3.10, |θt − θt+dt| > θc.

Figure 3.10: Illustration of a force chain bending event.

For a bending event to take place, the 3-p force chain must survive during
the time interval. Consequently, the disappearance of the 3-p element does
not count as a bending event.

It must be noted that the number of bending events obtained through
this definition is highly dependent on the limit value θc and the calculation
interval chosen. If a high interval is chosen, the likelihood of the survival
of 3-p force chains will decrease. On the other hand, a sufficiently low in-
terval would result in almost negligible angle variations between force chain
contacts, thus a large θc would not be able to identify the bending events.
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3.2.3 Shear bands

As mentioned in Section 2.2, inside shear bands several granular material
properties differs from the rest of the specimen. Thus, a local analysis of
these properties allows for the identification of the band.

In this work, the local calculation of deviatoric strain and second-order
work will be shown to be capable of highlighting the appearance of the shear
band inside a specimen. A negative second-order work value of a sub-domain
of the specimen does not indicate the presence of the shear band in itself,
but a negative value is a necessary (but not sufficient) condition for the band
formation.

A method to acquire the strain tensor of a discrete material has already
been defined in Section 2.3.3. However, the local element upon which the
calculation will be executed and exploited remains to be chosen. Throughout
this work, two structures have been considered for micromechanical analysis:
cells and grains.

Cells, as mentioned in Section 2.3.3, are elementary volumes in tetra-
hedral shapes (triangular in 2D) formed with the grain centers as vertices.
It can be shown that the cells vastly outnumber the grains. This way, the
specimen is compartmentalized into numerous small closed domains that will
highlight, with great detail, the internal characteristics of the specimen. Fur-
thermore, cells are closed domains where the strain tensor previously defined
can be directly applied. However, the cells are perishable by nature. Thus,
with this element, a persistent analysis of the evolution of any quantity over
time becomes unattainable.

On the other hand, as any sort of particle rupture and physical deforma-
tions are absent in the chosen DEM model, each grain is considered persistent
over time. Furthermore, since the stress tensor is defined for a particle vol-
ume, the definition of a strain tensor for the region situated around each
grain would allow for a continuous measure of this quantity and the analysis
of the second-order work criterion.

Upon closer inspection of the strain definition in Section 2.4, the minimal
element on which the strain is defined is an edge. By considering the strain
constant for the whole edge, the volume displacement tensor defined by the
multiplication de ⊗ ∆ue (complementary area vector of the edge times the
relative displacement of the grains forming the edge from Eq. (2.4)) can be
estimated through the volume of both grains concerned, thus distributing
this quantity for each grain.

Equation (2.4) can then be modified to calculate a strain tensor on the
grain level. It can be computed as the sum of the weighted volume displace-
ment tensor of all edges that are connected to it, later divided by the grain
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volume as represented in the following equations.

egij =
1

V g

M∑
m=1

[
dmg
i ∆umg

j ∗
(

V g

V g + V m

)]
(3.11)

with egij the ij-th component of the incremental strain tensor of the grain
g, M representing all the grains forming edges with the grain g, V m being
the volume of the grain m, dmg

i the i-th component of the complementary
area vector of the edge mg, and ∆umg

j the j-th component of the relative
incremental displacements of grains m and g.

It must be noted that the grain itself is not physically deformed, the value
obtained measures the incremental deformation of the space surrounding each
grain for a given time increment.

To summarize, a calculation with grain as a base element will allow for
the acquisition of the second-order work and a persistent measure of strain.
The latter highlights regions that have been deformed along the totality of
the loading path. On the other hand, as cell elements far outnumber grains,
they will provide information on instantaneous deformation with incredible
detail. In addition, the latter does not require the approximation of equation
(3.11), resulting in a more accurate value in relation to the grain version.
Finally, both analyses may be seen as complementary and thus resulting in
a more complete view of the specimen.

3.3 Software and 3D DEM numerical simula-
tions

As mentioned in Section 2.5, LIGGGHTS is a software based on the DEM.
Therefore, it calculates particle location, speed, and forces at each timestep
as a means to observe the evolution of the specimen. These quantities are the
output from LIGGGHTS, which need to be treated before any conclusions
on the state of the specimen can be inferred.

With the objective of allowing further works to be developed on the same
platform, all execution scripts have been written in such a way as to allow
researchers less fluent with LIGGGHTS language to replicate easily the same
tests that were used in this work. In addition, an application capable of
transforming LIGGGHTS output data into meaningful physical quantities
was created and will be briefly presented.

The tools developed for this thesis can be obtained from the following
public repositories:
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• Rectangular Triaxial Analysis for LIGGGHTS (RTAL)
git@github.com:magosemana/RTAL.git

• LIGGGGHTS Rectangular Triaxial Script (LRTS)
git@github.com:magosemana/LRTS.git

3.3.1 Shape and material properties

Several specimen geometrical shapes have been used to simulate triaxial tests,
with cylindrical shapes being the most common in experimental work, as they
facilitate a plane-symmetrical analysis. However, in numerical work, a simple
prismatic shape is frequently used to ease sample preparation and possibly
use periodic boundary conditions. In this work, the apparatus will consist
of a simple prismatic shape with a fixed base (normal z+) and five moving
pistons in the other principal directions, as illustrated in Figure 3.11a.

(a) Triaxial model simulation. (b) Biaxial test at INSA de Lyon.

Figure 3.11: Model illustration. On the right (b) is the rectangular biaxial
test that served as inspiration for the numerical model, which is situated on
the left (a). The vertical piston is represented in red (z-axis), the fixed base
is represented in gray, and the four horizontal pistons are represented in a
transparent blue (x-y plane).

The red piston in Figure 3.11a is called a "vertical piston" hereafter while
the other four are named "horizontal pistons." The sample dimensions are
presented in Table 3.1. Note that the sample is considered thin since the
width (x-axis) of the box is less than half of the other dimensions. One
of the reasons for this narrow prismatic shape is the existence of a similar
experiment at INSA de Lyon (see Figure 3.11b), a prismatic biaxial test of
around the same size using expanded clay spheres as soil media. Although
a comparison between experimental and numerical tests will not be made,
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the tools developed for this work will make it possible in future studies. In
addition, a thin prismatic specimen is expected to display failure patterns
closer to 2D specimens, as, for example, shear bands traversing the full width
(x direction) of the specimen. This makes the comparison between 2D and
3D results simpler.

To avoid crystallization pathology linked to mono-disperse simulations, a
ratio of 2 between minimal and maximal diameter was chosen. From an im-
plementation point of view, LIGGGHTS does not have a predefined function
to create particles of varying diameters. To create a polydisperse simulation,
a mass distribution percentage histogram must be provided. The chosen
distribution is illustrated in Figure 3.12.

Table 3.1: DEM simulation material information.

Parameter Value
Dimensions 450 x 350 x 150 mm

Stiffness ratio (ν) 0.25
Elasticity modulus 0.1GPa

Friction coefficient particle–particle 0.57
Friction coefficient particles–wall 0.00

Rotational friction coefficient 0.30
Restitution coefficient 0.50
Number of particles 18.165
Particle diameter [8,10,12,14,16] mm

(a) Mass percentage distribution (b) Number of particles distribution

Figure 3.12: Histogram of the granular distribution for the DEM triaxial
simulations. On the left (a) mass percentage, and on the right (b) number
of particles.
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3.3.2 Specimen preparation

In LIGGGHTS particles are inserted through gravity deposition, as illus-
trated in Figure 3.13a. Random points are chosen for particle creation within
a prescribed domain. Particles then fall under gravity until the kinetic energy
is dissipated through collisions with walls and other particles. This method
creates an inherent anisotropy in the gravity direction with contacts prefer-
entially oriented vertically. This will influence the mechanical behavior of
the sample.

A common practice to create specimens of different densities is to change
the friction and rolling friction coefficients during the gravity deposition
phase. More significant coefficients allow for larger tangential forces and
rolling momentum, which decrease particle reorganizations, thus generating
looser soils. On the other hand, smaller coefficients will limit the tangen-
tial forces and rolling momentum, thus forcing particles to move around in a
denser configuration to find an equilibrium position. In this work, only dense
soils are considered.

After insertion and before the triaxial test, the specimen is submitted to
an isotropic compression, as shown in Figure 3.13b. All pistons are moved
at a constant speed until the same stress value is reached in all directions.

(a) Insertion (b) Isotropic compression (c) Test execution

Figure 3.13: Illustration of three phases of the simulation for a drained tri-
axial test. From left to the right : (a) insertion, (b) isotropic compression,
and (c) test execution.

3.3.3 Triaxial tests

Three different triaxial tests are simulated to test the validity of propositions
made in Chapter 3: drained, undrained, and constant deviatoric stress. The
specimen chosen will be a dense material with no addition of water. Thus,
there will be no difference between effective and normal stress values.

The drained triaxial test is the classic triaxial test. The four horizontal
pistons maintain a constant stress (equal to the fixed isotropic compression



40 Procedures and tools for identification of internal structures

stress), while the vertical piston moves downward at a constant speed. Ex-
pressly, it is a compression test with constant lateral pressure.

The undrained triaxial test consists in vertically compressing the speci-
men while preserving its volume constant. This is attained by attributing a
fixed descending speed to the vertical piston and controlling the movement
of the horizontal ones. For a given state of the test, the incremental width
dw and length dl for a fixed height increment dh are computed as follows:

dw = w

(√
h

h+ dh
− 1

)
dl = l

(√
h

h+ dh
− 1

)
(3.12)

with w the width, l the length, and h the height of the specimen.
Finally, the constant deviatoric stress (q-constant) triaxial test is sepa-

rated into two parts. A drained triaxial test is conducted in the first part
until the desired deviatoric stress value is reached. In the second part, the
control parameters are changed to gradually decrease applied stress in all pis-
tons at a constant rate while maintaining the deviatoric stress fixed. Thus,
the mean stress will gradually decrease to a point where the sample can no
longer support the applied deviatoric load, resulting in the rupture.

The different tests will be named with the following codification "AXXX."
Where the letter "A" represents the type of triaxial test, with "D" for
drained, "U" for undrained, and "Q" for the q-constant. The suffix "XXX"
represents a two- or three-digit number equal to the stress applied during the
isotropic compression phase in kPa. However, the q-constant test depends on
a second fixed value: the targeted deviatoric stress. Thus, a second number
will be attached to this test name to identify the target deviatoric stress in
kPa.

For example, the test Q100-150 is a q-constant triaxial test with an
isotropic compression phase of 100 kPa and a target deviatoric stress of 150
kPa, whereas D100 is a drained triaxial test with an isotropic compression
phase of 100 kPa.

3.3.4 Inertial number

All procedures previously defined require the specimen to be loaded in a
quasi-static condition, as the contribution of inertial terms in equations is
ignored. However, loading speeds must be chosen high enough to decrease
the computational power necessary, since real-time scales of quasi-static lab-
oratory tests still require several days of c.p.u. time [114].

Thus, the inertial number (I) will be introduced to quantify the influence
of the inertial terms in equations. It is a dimensionless ratio relating the
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shear speed and inertial ratio of the specimen quantities as the following
[115, 116, 114]:

I = γ̇

√
m

Pd
(3.13)

with I being the inertial number, γ̇ the incremental shear strain rate, m the
mass, P the mean pressure, and d a characteristic length.

The inertial term is calculated along two scales: macroscopic and micro-
scopic. At the macroscale, I is a scalar representing the inertial number for
the whole specimen. Thus, all quantities of equation (3.13) are calculated for
the entire specimen, and the characteristic length d represents its height. By
contrast, the inertial term is calculated per grain at the microscopic scale.
Consequently, d represents the diameter of each grain, and all quantities of
equation (3.13) are calculated with the procedures described in Section 3.2.

For the quasi-static regimen to be validated, an IN of approximately 10−3

or lower is recommended in the literature [115, 116, 114].

3.3.5 Development of a post-processing tool

Tool presentation

A user-friendly application was created with the software Matlab to execute
the post-processing of the raw LIGGGHTS data. Two factors influenced the
choice of Matlab. First, Matlab has a long list of ready-to-use tools such
as AppDesigner and Delaunay tessellation functions; second, my experience
with the software made it a sound choice. However, were I to redo it today,
I would probably create it in python as it is a more common language in
the scientific community, implementable inside other software, and does not
require a subscription.

Upon running the developed LIGGGHTS script, all data concerning the
displacement and forces of both grains and pistons are saved in individual
files. In addition, a log file containing information about the specimen’s
initial state, time, and folder location is created. The Matlab application
will use the log file to prepare the calculation environment, opening the main
menu as illustrated in Figure 3.14.

On the right, a draft of the y-z plane is plotted for the current timestep,
showing the current dimensions of the specimen. From this point, the cal-
culation can be executed through the left panel. Specific simulation periods
can be analyzed by choosing the beginning and end timesteps. The precision
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Figure 3.14: Matlab application main menu.

of the results can be further adjusted by selecting the timestep increment
(interval) between two calculation points.

In addition, for most of the developed functions, a region inside the speci-
men can be chosen for local analysis, represented in blue in Figure 3.14. The
partition tool is rectangular in the y-z plane that goes through the entire
width (x direction) of the specimen. This shape can later be subdivided into
several equal parts for a more precise analysis.

The developed application could analyze rectangular triaxial tests from
any DEM software results if the data are appropriately formatted. Alterna-
tively, the function responsible for file reading could easily be modified to
adapt to new input formats.

Table 3.2 summarizes all the developed post-processing tools and specifies
whether local treatments can be performed.

Calculation Total Local
Anisotropy Yes Yes

Force Chains Yes No
Loops/Clusters Yes No

Void Ratio Yes Yes
Stress through grain quantities Yes Yes
Strain through grain quantities Yes Yes
Stress through piston quantities Yes No
Strain through piston quantities Yes No

Table 3.2: Calculations developed for the Matlab application, and whether
they can perform local analysis.
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Several functions of the developed application 3.2 are outside the scope
of this work and will not be used. Their development was still an important
part of this thesis as it allowed for a better comprehension of the overall
mechanics of granular material. Furthermore, it will facilitate the future
continuation of this work.

The Delaunay tessellation

To apply the Delaunay tessellation to the specimen, the Matlan function
delaunayTriangulation was chosen. A weighted Delaunay tessellation (also
known as "regular tessellation") should be preferred, as the specimen dis-
tribution described in Section 3.3.1 is polydisperse. However, as the range
between minimal and maximal diameter is 2, the contact network is preserved
by a normal Delaunay tessellation.

Next, if the Delaunay tessellation is directly applied to the center of
grains, highly elongated cells connecting the grains located near the boundary
conditions are created. From the literature, two techniques two overcome this
pathology have been reported: deletion of the outer 10% of the specimen
[117, 118] or creation of large spheres representing the exterior walls of the
specimen [119].

Figure 3.15: Example of the mesh of virtual particles replacing the walls for
the Delaunay tessellation. Virtual particles are represented in red, and real
granular particles are represented in blue.

Both approaches are interesting but have their flaws. The first removes
part of the data from the analysis, while the second constrains the calculation
to the volume comprised of the center of the outermost particles. For this
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reason, a mesh of virtual particles in the location of the external walls was
created, as illustrated in Figure 3.15.

Consequently, the tessellation is bounded by the mesh of virtual grains.
For cluster analysis, only cells formed by real grains will be analyzed. How-
ever, for strain calculations, using the data from the entire simulation returns
a better match to the strain measured macroscopically.

3.4 Concluding remarks
This chapter proposed a procedure to identify a loop-like structure in 3D
conditions. The name "cluster" was chosen as it is a better fit for the mor-
phology of the structures. It was shown that clusters cannot be characterized
only through the number of grains forming them, thus introducing the or-
der metric as the number of exterior frontiers. Deformability and elongation
direction were also introduced to characterize the cluster properties further.

Procedures to identify force chains based on algorithms previously defined
in the literature were proposed. The notion of force chain bending and a
method to identify it was also presented. Finally, two categories of force
chains were introduced, concerning the presence of ramifications.

Several procedures to identify shear bands were proposed based on the
local analysis of several quantities of the granular assembly. Grains and cells
were presented as suitable bases for the calculation, highlighting these two
different ways of partitioning the granular assembly.

Finally, the numerical tools developed to simulate granular materials and
apply the proposed procedures were presented. The proposed discrete ele-
ment model (DEM) simulation consists of spherical particles inserted into
a rectangular specimen and later submitted to three triaxial loading paths
(drained, undrained, and constant deviatoric stress). An application was de-
veloped using the software Matlab to execute the raw post-processing data
obtained from the simulation. The simulation script and post-processing tool
were designed to facilitate the reproduction of this work.



Chapter 4

Mechanical behavior of granular
materials under triaxial
conditions

4.1 Foreword

In this chapter, the behavior of the simulated triaxial tests will be analyzed
regarding mechanical and internal topological characteristics. First, it will
be shown that the specimens behave like dense soil during the proposed
loading paths. Next, the behavior of force chains and shear bands will be
analyzed and compared with the macroscopic evolution observed, resulting
in a complete analysis of the mechanical response of each specimen.

4.2 Triaxial tests

4.2.1 Test presentation

For each triaxial condition presented in Section 3.3.3, several specimens with
varying consolidation stress levels were simulated, for a total of 12. A single
sample was created and saved just after the insertion phase in order to ini-
tialize all simulations from the same initial state. Figure 4.1 compares the
three triaxial loading paths that will be analyzed in this chapter.

Three drained triaxial tests with confining pressures of 50 kPa, 100 kPa,
and 200 kPa, respectively, were considered. However, a fourth simulation
was added with a confining pressure of 28 kPa as it will be shown to reach
failure at around the same deviatoric and mean stress values as the constant
deviatoric stress in Section 4.5. The velocity of the vertical piston is fixed at
a value of 2mm/s.

Three undrained triaxial tests were executed with simulated confining
pressures of 50 kPa, 100 kPa, and 200 kPa, respectively. The vertical piston
descends at a constant speed of 2mm/s while the others move according to
the formulas given in Section 3.3.3.

Unlike the previous triaxial conditions, the constant deviatoric test re-
lies on two specific values: the initial confining pressure and the targeted

45
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deviatoric stress. Three tests with varying confining pressure (50 kPa, 100
kPa, and 200 kPa) were simulated for targeted deviatoric stress of 100 kPa
(Q50-100, Q100-100, and Q200-100). In addition, two tests with increasing
targeted deviatoric stress (150kPa and 200kPa) and departing from an equiv-
alent confining pressure of 100 kPa (Q100-150 and Q100-200) were simulated.
During the drained phase, the vertical piston descends at a fixed velocity of
2mm/s. Later, pistons are stress controlled and have their targeted stress
decreased by a rate of 2.5kPa/s.

(a) Deviatoric stress vs axial strain. (b) Deviatoric stress vs mean pressure.

(c) Volumetric strain vs axial strain. (d) Volumetric strain vs mean pressure.

Figure 4.1: Macroscopic response for different triaxial paths with equivalent
initial isotropic pressure (D100, Q100-100, and U100). The triangle marks
the initial state, the square the final state, while the circle and diamond
mark important points for the respective test. (a) Deviatoric Stress vs axial
strain;(b) deviatoric stress vs mean pressure;(c) volumetric strain vs axial
strain;(d) volumetric strain vs mean pressure.



Triaxial tests 47

It can be observed in Figure 4.1 that the drained and undrained tests
reached axial strains of approximately 0.38 while q-constant tests were lim-
ited to 0.2. This is due to the increased computational time necessary for
q-constant simulations, which required 4 times the execution time of the
other two conditions.

The macroscopic results were obtained using the force and displacement
information of the five moving pistons. The slope M that characterizes the
failure line (MFL) or the critical state line (MCSL) in the mean-deviatoric
stress plane (p–q plane) will be derived from the drained tests. Furthermore,
the internal structure of each specimen will be examined by identifying force
chains and shear band formation. Their evolution allows for a correlation
between the macro- and mesostate of the specimen.

4.2.2 Inertial number

The inertial number was calculated for all simulations at both micro- and
macroscales, as presented in Section 3.3.4 and illustrated in Figure 4.2. In
the first column (Figures 4.2a, 4.2b and 4.2c), the macroscopic result is shown
for all specimens. However, in the second column (Figures 4.2d, 4.2e and 4.2f)
the microscopic result is presented, with the red curve being the mean value
and the blue lines the standard deviation. The microscopic results of tests
D100, U100, and Q100-100 only are shown as the conclusions derived for
each triaxial test type are roughly the same.

The macroscopic inertial number (I) remains below the 10−3 limit during
the loading path for all triaxial tests, respecting the quasi-static condition
mentioned in Section 3.3.4. It can be noted that the increase in mean pres-
sure applied to the specimens results in a decrease in the inertial number.
This is well illustrated by specimens Q200-100 and Q100-200. The former is
submitted to a higher confining pressure, resulting in a lower I initial value
compared to the latter. However, the test Q100-200 ruptures at a higher
mean pressure, resulting in a lower final I.

Furthermore, the I curves for q-constant conditions, illustrated in Figure
4.2c, show two discontinuities (jump in I value), which can be traced directly
to a change in the piston control parameters. The first one is the transition
between the end of the drained triaxial phase and the start of the unloading.
The second one was artificially introduced to decrease the inertial term of
the simulation. During previous iterations of this triaxial condition, the
specimen was observed to suddenly collapse. Thus, when approaching failure,
the maximal displacement speed of the piston was divided by a factor of 100.
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(a) Macro I for drained cases.

(b) Macro I for undrained cases.

(c) Macro I for q-constant cases.

(d) Micro I for D100 test.

(e) Micro I for U100 test.

(f) Micro I for Q100-100 test.

Figure 4.2: Evolution of the logarithm of the specimen inertial number (I) in
function of the axial strain. In Figures (a), (b), and (c), I is calculated macro-
scopically for all simulated samples for drained, undrained, and q-constant
conditions, respectively. On the right, I was calculated microscopically for
tests D100 (d), U100 (e), and Q100-100 (f) showing the mean value (in red)
and the standard deviation (in blue).
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The microscopic results reveal a similar trend. However, the average
microscopic I is observed to surpass the 10−3 limit in all triaxial tests, mostly
for large strains. The standard deviation illustrates the dispersion of values
inside the specimen, revealing the heterogeneity within the specimen. It can
be noted that the average microscopic I was calculated before the logarithmic
conversion. Consequently, it can be concluded that the number of particles
with an inertial value higher than 10−2 is small, as their contribution to the
average is several orders of magnitude higher than particles with a 10−5 I.

The presented simulations will be considered as the upper limit of quasi-
static conditions, even though the microscopic calculations surpass the rec-
ommended value for large strains. Execution with a lower shear rate (piston
displacement speed) would be preferable; however, it would involve a much
higher computational cost.

4.3 Drained triaxial conditions

4.3.1 Macroscopic response

Figure 4.3e illustrates the evolution of the volumetric strain. At early stages,
all specimens show a contracting behavior (i.e., decrease in volume). Then
a peak value (diamond mark) is reached, followed by a dilation phase as the
specimen expands in volume until a steady state is reached near the end of
each simulation.

The stress behavior is given in Figure 4.3a. First, a hardening phase
is observed, characterized by a non-linear increase in the strength of the
specimen. After a peak value (circle mark), a softening phase occurs, leading
to a decrease in strength until a steady state is reached for high axial strain
values.

Figure 4.3d illustrates the void ratio evolution. It can be seen that the
final states of the samples are not aligned. Furthermore, a steady state in
the volumetric strain curves of specimens D28 and D50 was not observed in
Figure 4.3e. Thus, the arrival to the critical state cannot be fully inferred.

Overall, the stress–strain behavior of the specimen is divided into three
phases: contracting and hardening from the beginning until the characteristic
point (diamond mark); dilatancy and hardening between the characteristic
point and the peak deviatoric stress (circle mark); dilatancy and softening
from the peak deviatoric stress and forward. This corresponds to what was
previously observed in the literature [120, 121, 29, 30]
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(a) Deviatoric stress vs axial strain.(b) Deviatoric stress vs mean stress.

(c) Second-order work vs axial strain.(d) Void ratio vs log of mean stress.

(e) Volumetric strain vs axial strain.(f) Volumetric strain vs mean stress.

Figure 4.3: Macroscopic results of drained triaxial simulations with different
confining stresses (28 kPa, 50 kPa, 100 kPa, and 200 kPa). The triangle
marks the initial stage, the square the final stage, the diamond the charac-
teristic point, and the circle the peak deviatoric stress. (a) Deviatoric stress
vs axial strain; (b) deviatoric stress vs mean stress; (c) second-order work
vs axial strain; (d) void ratio vs log of mean stress; (e) volumetric strain vs
axial strain; (f) volumetric strain vs mean stress.
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A measure of the macroscopic value of the second-order work is shown
in Figure 4.3c, highlighting the state at which the specimen achieves insta-
bility for each confining pressure. It can be noted that negative values are
only reached after the peak deviatoric stress, thus indicating that the soft-
ening phase of the drained triaxial loading direction belongs to the cone of
instability.

Figure 4.3b illustrates the mean stress–deviatoric stress plane (p–q plane),
where the peak stress line and the critical state line (CSL) are identified
through their coefficients, MFL and MCSL, respectively. The first is related
to the upper strength limit of the simulated material. It is obtained through
linear interpolation with the origin of the peak deviatoric stress values (circle
points) in each test. The former represents an equivalent stress ratio reached
by granular materials at high strain levels.

In geomechanics, a relation between the slope M and the friction angle
of the soil φ can be obtained through the following equation:

M =
6sinφ

3− sinφ
φ = arcsin

(
3M

6 +M

)
(4.1)

Thus, an approximation of the friction angle can be obtained from the iden-
tified lines. The φ values obtained differ greatly from the contact friction
angle defined in the DEM software of 55◦. However, this result is expected
since the internal friction angle includes geometrical effects.

4.3.2 Force chains

Force chains were identified through the procedures defined in Section 3.2.2.
The identified structures are classified into two categories, namely, single-
branch force chains (no ramification) and multibranch force chains (presence
of ramification). The results are presented in Figure 4.4.

Figure 4.4a is the classic representation of force chain evolution, illustrat-
ing the ratio of grains structuring force chains (chained grains) in relation
to the total amount of grains. A decrease in this ratio is observed in the
very early stages, which is more pronounced in specimens submitted to lower
isotropic stresses. Before compression, force chains were developed in all di-
rections, as none was privileged during the isotropic consolidation. However,
as the vertical load increases, grains that carry the load in the non-preferred
direction are no longer submitted to higher-than-average stresses. Conse-
quently, the number of chained grains decreases. Furthermore, Figure 4.4d
shows that this decrease is mainly due to the loss of multibranch force chains,
with the number of single-branch structures remaining unimpacted.
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(a) Ratio of chained grains. (b) Number of single-branch trees.

(c) Number of bending events. (d) Number of multibranch trees.

Figure 4.4: Force chain results of drained triaxial simulations with different
consolidation stresses (28 kPa, 50 kPa, 100 kPa, and 200 kPa). The triangle
marks the initial stage, the square the final stage, the diamond the charac-
teristic point, and the circle the peak deviatoric stress. (a) Ratio of chained
grains; (b) number of single-branch trees; (c) number of bending events; (d)
number of multibranch trees.

After this early phase, the number of grains structuring the force chain
increases until a peak is reached, roughly corresponding to the peak deviatoric
stress (circle mark). A direct relation between these two quantities can be
established. The increase in strength of the specimen (hardening phase)
comes from the rise in the number of grains actively participating in the
force transmission. When a limit is reached, grain reorganization occurs,
decreasing the number of chained grains. Consequently, the specimen loses
strength (softening phase) [113].



Drained triaxial conditions 53

Furthermore, the peak number of chained grains increases with the de-
crease in the lateral confining stress applied. To identify the reason behind
this relation, the probability density function (PDF) of the stress distribution
at the peak deviatoric state of each test was calculated and is illustrated in
Figure 4.5;

(a) Stress PDF. (b) Relative stress PDF.

Figure 4.5: Probability density function (PDF) of the stress distribution
in the peak deviatoric stress for drained triaxial simulations with different
consolidation stresses (28 kPa, 50 kPa, 100 kPa, and 200 kPa). On the left
(4.5a) the PDF of the stress distribution, while on the right (4.5a) the stress
is normalized in relation to the mean value.

Figure 4.5b shows the PDF of the stress normalized to the mean value.
It can be seen that specimens with higher confining stress present a narrower
PDF, indicating that stress is more evenly distributed.

Furthermore, it can be noted in Figure 4.5a, that specimens with lower
confining pressure present a large amount of low-stressed grains, thus lower-
ing the average grain principal stress. Consequently, a higher proportion of
grains have higher than average stress and may be considered chained grains.
In this case, the loss of chained particles results in a lesser decrease in the
macroscopic stress compared to samples with higher confining pressure. Fi-
nally, all samples converge to an equivalent number of chained grains at large
strains.

Single-branch and multibranch force chains can be seen to reflect a similar
evolution to chained particles, as illustrated in Figures 4.4b and 4.4d. It
can be noted that the observed peak for both curves appears before the
characteristic point (diamond mark), with the single-branch curve reaching



54 Mechanical behavior of granular materials under triaxial conditions

it before the multibranch curve. Furthermore, single-branch structures vastly
outnumber multibranch ones.

As the specimen is being loaded, it starts contracting, thus increasing the
number of force chains and hardening the sample. During this early stage, the
specimen behavior is elastic, with particles submitted to low displacements.
Consequently, most force chains appear as smaller single-branch structures
permeating the specimen through the previously formed granular skeleton.

When the existing contact network can no longer sustain an increase in
force, particle rearrangement occurs. Existing force chains ramify and merge,
creating increasingly longer structures. Consequently, a decrease in the num-
ber of single-branch force chains is observed, later followed by multibranch
ones.

The phenomenon of force chain bending is summarized in Figure 4.4c.
Bending events start occurring when approaching the characteristic point
(diamond mark). After that, the number of bending events increases until
a steady value is reached. Three phases can then be distinguished between
force chain bending and the stress behavior in Figure 4.3a. First, the material
is hardened (increase in strength of the specimen) while no bending event
occurs. Later, a few bending events start while the sample is still in the
hardening phase. Finally, the softening phase begins.

Furthermore, force chain bending has been shown to be associated with
the growth of surrounding voids [112, 71]. As force chains start bending,
the void spaces surrounding them increase in volume, leading to dilation
of the specimen [112, 71, 2]. This decrease in the void ratio around force
chains makes force chains less stable, increasing the probability of bending
and ultimately leading to the peak deviatoric stress and later softening phase
of the specimen.

Figure 4.6 illustrates the elevation angle of force chain contacts for the
D100 test. The elevation is defined as the angle between the contact vector
and the x–y plane, thus returning a 90◦ for vertical and 0◦ for horizontal
contacts. Only the D100 test results will be shown since the conclusion is
equivalent to the remaining tests.

It can be noted that no preferential direction is present at the beginning
of the test, which is in accord with the isotropic condition applied. As the
vertical force increases, the force chain contact with angles greater than 45◦

increases rapidly. Furthermore, contacts with an angle less than 30◦ rapidly
approach zero and will only increase once bending events occur.
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Figure 4.6: Evolution of the elevation angle of force chain contacts for the
D100 test. It is defined as the angle between each contact and the x–y
plane, with values between 90◦ and 0◦ for vertical and horizontal contacts,
respectively.

4.3.3 Shear bands

With the procedures previously defined in Section 3.2, the numerical results
will be visualized using ParaView software. Shear banding phenomena will
then be identified through the localization of the following characteristics:
cumulative deviatoric strain (grain scale), second-order work (grain scale),
and incremental deviatoric strain (cell scale).

Shear banding was observed for all drained triaxial tests performed. As
the conclusions taken from the analysis in this subsection are equivalent for
all four tests, only the results related to sample D100 will be shown. The
remaining test results in drained conditions can be found in Appendix A.
Figure 4.7 illustrates the evolution of the shear band during different stages
of the D100 test, using the three types of calculations proposed in Section
3.2.3.

No localization pattern can be clearly distinguished in the cumulative cal-
culation at the deviatoric stress peak, as illustrated in Figure 4.7a. However,
both incremental calculations show a hint of the shear band formation. Next,
in Figure 4.7b a clear shear band can be distinguished from the bottom-left
corner to the top-right corner. A reflection of the shear band can be observed
three times: first on the top wall, then on the right wall, and finally on the
bottom wall. Figure 4.7d illustrates the final stage of the specimen.
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(a) Shear band identification at εz = 0.088 (peak deviatoric stress).

(b) Shear band identification at εz = 0.221.

(c) Shear band identification at εz = 0.295.

(d) Shear band identification at εz = 0.381.

Figure 4.7: Shear band evolution for the D100 test. Figures (a), (b), (c),
(d) illustrate axial strains 0.088, 0.221, 0.295, and 0.381, respectively. Each
column shows a different identification method, from left to right: cumulative
deviatoric strain (grain scale), negative second-order work (grain scale), and
incremental deviatoric strain (cell scale).
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A difference between incremental and cumulative methods of identifica-
tion of the shear band can be inferred. The former illustrates the instanta-
neous localization, while the latter shows all the shear band of the region has
appeared throughout the loading path. This discrepancy can be better ana-
lyzed in Figure 4.7c, where the cumulative calculation does not register the
third reflection observed for instantaneous ones. In addition, in Figure 4.7d,
the first branch of the shear band becomes barely visible for the incremental
calculations but remains present for the cumulative method.

Figure 4.8: Lateral view of the shear band represented in Figure 4.7c. Each
column shows a different identification method, from left to right: cumulative
deviatoric strain (grain scale), negative second-order work (grain scale), and
incremental deviatoric strain (cell scale).

All shear bands were observed to traverse the entire width of the specimen,
as illustrated in Figure 4.8 where a rotation of 90◦ around the z-axis of
Figure 4.7c is represented. Since the width of the specimen (x direction)
remains several times smaller than the other two dimensions, its impact on
the localization pattern of the sample is lessened. Consequently, shear band
analysis can be performed from a lateral view (y–z plane).

4.4 Undrained triaxial conditions

4.4.1 Macroscopic response

Figure 4.9e illustrates the volumetric strain evolution of the three tests, reach-
ing a maximal value of approximately 8× 10−7. As the incremental vertical
displacement applied between each measure (point of the curves) represents
a vertical strain of −1.25 × 10−4, the volumetric variations can be consid-
ered negligible, thus validating the constant volume constraint required for
undrained conditions.
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(a) Deviatoric stress vs axial strain.(b) Deviatoric stress vs mean stress.

(c) Second-order work vs axial strain.

(d) Relative strength vs axial strain.(e) Volumetric strain vs mean stress.

Figure 4.9: Macroscopic results of undrained triaxial simulations with three
different consolidation stresses: 50 kPa, 100 kPa, and 200 kPa. The triangle
marks the initial state, the square the final state, and the diamond the peak
relative strength. Peak stress and critical state lines derived from drained
tests are displayed. (a) Deviatoric stress vs axial strain; (b) deviatoric stress
vs mean stress; (c) second-order work vs axial strain; (d) relative strength vs
axial strain; (e) volumetric strain vs mean stress.
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Figure 4.9a shows the influence of consolidation stress on the strength of
the specimen. As for the drained case, higher consolidation stress generates
a stronger macroscopic response. Furthermore, it can be observed that ap-
proaching the end of the test, a steady state is reached for all specimens.
Note that no failures through liquefaction is observed (vanishing of the mean
pressure and the deviatoric stress), which is expected for a dense granu-
lar material (also visible in undrained tests through contractive/dilative and
hardening/softening behaviors).

In fact, no sudden failure was ever observed, as indicated by the second-
order work represented in Figure 4.9c. The value decreases continuously,
fluctuating around zero for large strains; this indicates the approach of the
critical state, as it corresponds to the plastic limit yield surface where the
expected value of the second-order work is null for some incremental direc-
tion. Several negative peaks are present throughout the test. These can be
referred to as small instabilities and local fluctuations of the stress state.

The failure and critical state lines obtained for the drained case are plotted
in the deviatoric–mean stress plane (p–q plane) represented in Figure 4.9b. It
can be noted that all three undrained specimens evolve coincidentally with
the failure line for a portion of their loading path. This region can also
be identified in Figure 4.9d by a small plateau around the highest attained
relative strength value (diamond mark). Later this ratio decreases in value,
representing a loss of relative strength and the tendency of the former curve
to be attracted toward the CSL [122].

An undrained MCLS value was calculated using the final points (square
mark) of the undrained tests returning a value of M = 1.2, sufficiently close
to the previously defined MCSL = 1.141 obtained in the drained case. It
can be assumed that if the loading were continued, the undrained specimens
would evolve to reach an equivalent state to the drained ones.

4.4.2 Force Chains

In the early stages of the test, the specimen goes through a rapid hardening
phase until the failure line is reached, as illustrated in 4.9b. This phase results
in a rapid augmentation of the number of chained grains, as shown in Figure
4.10a. Consequently, the number of force chains is observed to increase, as
illustrated in Figures 4.10d, 4.10b and 4.10a. Since grain rearrangement has
not yet started, force chains mainly comprise smaller structures permeating
the specimen.
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(a) Ratio of chained grains. (b) Number of single-branch trees.

(c) Number of bending events. (d) Number of multibranch trees.

Figure 4.10: Force chain results of undrained triaxial simulations with dif-
ferent consolidation stresses (50 kPa, 100 kPa, and 200 kPa). The triangle
marks the initial state, the square the final state, and the diamond the peak
relative strength. (a) Ratio of chained grains; (b) nNumber of single-branch
trees; (c) number of bending events; (d) number of multibranch trees.

Next, force chains start ramifying and merging, which results in increas-
ingly larger chains. A decrease in single-branch structures and later multi-
branch ones is observed. This phase is accompanied by the start of force
chain bending, further confirming the grain rearrangement.

When new grains stop being incorporated into force chains, the specimen
can no longer support the incremental load being applied, leading to a de-
crease in relative strength. During this phase, Figure 4.10c shows increasing
bending events, leading to the localization patterns observed in the following
section.
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4.4.3 Shear bands

Shear bands were identified using the same procedures applied in drained
conditions. The results of specimen U100 are presented in Figure 4.11, while
the remaining undrained tests can be found in Appendix A.

The presence of a shear band was not identified at the peak relative
strength of the U100 test (diamond mark in Figure 4.9b), as illustrated in
Figure 4.11a. Both incremental calculations show a mostly homogeneous
specimen.

A clear localization pattern can be observed from Figure 4.11b onward.
The initial shape of the band is similar to the one observed in the D100 test,
starting from the bottom-left corner and rising to the top-right corner.

Figures 4.11c and 4.11d show indications of shear band reflection in the
top wall and right wall, with the latter being more apparent for incremental
calculations.
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(a) Shear band identification at εz = 0.067 (diamond mark).

(b) Shear band identification at εz = 0.146.

(c) Shear band identification at εz = 0.255.

(d) Shear band identification at εz = 0.378.

Figure 4.11: Shear band evolution for the U100 test. Figures (a), (b), (c),
(d) illustrate axial strains of 0.06, 0.12, 0.23, and 0.38, respectively. Each
column shows a different identification method, from left to right: cumulative
deviatoric strain (grain scale), negative second-order work (grain scale), and
incremental deviatoric strain (cell scale).
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4.5 Q-constant triaxial conditions

4.5.1 Macroscopic response

In the context of this work, failure of q-constant tests is defined as a drop
in the deviatoric stress to 99.9% of the targeted value and is represented
by a diamond mark in each of the curves in Figure 4.12. For all tests, the
failure occurs when the stress state reaches the failure line (FL), as shown in
Figure 4.12b. Furthermore, as illustrated in Figure 4.12c, the second-order
work shows that negative values only appear after the chosen criterion, thus
validating this approach.

When effective failure occurs, a drop in deviatoric stress is visible cor-
responding to a loss of controllability. During this phase, the specimens
can no longer sustain the required deviatoric stress for the applied pressure.
Consequently, the axial strain increases rapidly, and the specimens undergo
a stress-softening phase (decrease in stress value), as illustrated in Figure
4.12a. At the final stages, the stress stabilizes for high strain values resulting
in the specimen approaching the critical state.

It can be noted that the response of all specimens crosses through the
critical state line (CSL) without presenting any influence on the macroscopic
behavior, thus inferring the absence of a bifurcation domain for the presented
tests until the failure line is reached.

After failure, the specimen stress-state shifts rapidly to the CSL with
a similar slope to the drained part of the test (tests Q100-150 and Q100-
200 were stopped before the line could be reached). By lowering the mean
pressure, the specimen strength decreases until it can no longer sustain the
applied deviatoric stress, leading to the observed drained equivalent failure.

In Figures 4.12e and 4.12f, an early contraction phase is imposed during
the first phase of the test (drained compression). Later a dilatative behavior
occurs, which is the intuitive response of a material subjected to a decrease
in the isotropic part of the stress. During this phase, the volumetric strain
evolves proportionally to the mean stress. Finally, a sudden increase in volu-
metric and axial strain is observed around the failure point of the specimen.
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(a) Deviatoric stress vs axial strain (b) Deviatoric stress vs mean stress.

(c) Second-order work vs axial strain. (d) Void ratio vs log of mean stress.

(e) Volumetric strain vs axial strain. (f) Volumetric strain vs mean stress.

Figure 4.12: Macroscopic results of constant deviatoric stress (q-costant)
triaxial simulations, with varying isotropic compression stresses (50 kPa, 100
kPa, and 200 kPa) and deviatoric stress targets. The triangle marks the
initial state, the square the final state, the diamond the end of the drained
phase, and the circle the failure point. (a) Deviatoric stress vs axial strain;
(b) deviatoric stress vs mean stress; (c) second-order work vs axial strain;
(d) void Ratio vs log of mean stress; (e) volumetric strain vs axial strain; (f)
volumetric strain vs mean stress.
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It can be noted that the nature of the volumetric deformation sustained
during the drained compression phase differs for the two groups of tests. Dur-
ing the Q100-100, Q100-150, and Q200-100 tests, the deformation is elastic
as the specimens return to their initial state with the subsequent decrease
of pressure, while the remaining tests do not (Q50-100 and Q100-200). This
phenomenon is related to the fact that, for the latter, the ending point of
the drained phase is around the CSL, as shown in Figure 4.12b. Plastic de-
formation creates grain rearrangement, making the return to the initial state
impossible.

4.5.2 Force chains

The global conclusions made from the analysis of the force chain behavior
in q-constant conditions will be shown to follow the same trends highlighted
for the drained cases.

It can be noted that the change in stress during the isotropic compression
phase does not have a significant effect on the number of chained grains, as
illustrated in Figure 4.13a. All three specimens with equivalent targeted
deviatoric stress show a coincidental behavior for the final phases of the test.
Furthermore, the change in target deviatoric stress only seems to shift the
observed response in the x-axis.

During the first phase, the specimens are charged until the target devia-
toric stress is reached. In Figure 4.13a an increase in the number of grains
structuring force chains can be observed, reflecting the macroscopic harden-
ing behavior of the specimen.

Next, the specimen is discharged while maintaining the deviatoric load
applied. In other words, the relative strength of the specimen increases. Con-
sequently, the number of force chains and chained grains increases while the
specimen is still being submitted to a stress hardening phase, as illustrated
in Figure 4.13.

This effect can also be analyzed as a loss of strength of the weak network
of the specimen (grains with below-average stress states). With the decrease
in the mean pressure, the contribution of the deviatoric stress to the stress
state of the grains becomes more important. Thus, as the average grain stress
decreases, more grains are identified as part of force chains.

Later the number of grains structuring force chains reaches a peak value
around the failure point of the specimen (circle mark), as illustrated in 4.13.
It can be concluded that the decrease in the number of chained grains results
in an overall reduction in the specimen strength, as was observed for the
drained and undrained cases.
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(a) Ratio of chained grains. (b) Number of single-branch trees.

(c) Number of bending events. (d) Number of multibranch trees.

Figure 4.13: Force chain results for the constant deviatoric stress (q-constant)
triaxial simulations with different consolidation stresses (28 kPa, 50 kPa, 100
kPa, and 200 kPa). The triangle marks the initial state, the square the final
state, the diamond the end of the drained phase, and the circle the failure
point. (a) Ratio of chained grains; (b) number of single-branch trees; (c)
number of bending events; (d) number of multibranch trees.

4.5.3 Shear bands

As for the previous cases, Figure 4.14 illustrates the shear band formation
for one test, the Q100-100, while the remaining can be found in Appendix A.

Around the failure point, a clear localization pattern was not identified
for the cumulative deviatoric strain (grain-based), as shown in Figure 4.14a.
However, the second-order work (grain-based) and incremental deviatoric
strain (cell-based) show a few concentrated values starting on the lower-left
corner and traversing the specimen to the upper-right corner.
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Later, the shear band can be identified as a single band traversing the
specimen, as shown in Figures 4.14b and 4.14c.

Furthermore, the initial shape of the shear band is similar for all speci-
mens. As all tests depart from the same initial state, a predisposition to this
shape can be asserted. However, the final form of the shear band varies with
the loading conditions, with the phenomenon of shear band reflection being
observed primarily in the drained cases.



68 Mechanical behavior of granular materials under triaxial conditions

(a) Shear band identification at p = 89.89kPa (failure point).

(b) Shear band identification at p = 79.20kPa.

(c) Shear band identification at p = 66.31kPa.

Figure 4.14: Shear band evolution for the Q100-100 test. Figures (a), (b), (c)
illustrate mean pressure of 61.47 kPa, 58.13 kPa, and 49.70 kPa, respectively.
Each column shows a different identification method, from left to right: cu-
mulative deviatoric strain (grain scale), negative second-order work (grain
scale), and incremental deviatoric strain (cell scale).
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4.6 Comparison between drained and q-constant
conditions

To analyze the impact of the loading path on the failure at an equivalent
stress state, tests D28 and D100 will be compared.

4.6.1 Macroscopic response

Figure 4.15b illustrates that, for both tests, failure occurs at a similar stress
state, represented by a circle for both tests. Furthermore, Figure 4.15c illus-
trates that the void ratio is equivalent between both failure points, illustrat-
ing that both specimens are in the same state.

It is interesting to note that the nature of both loading paths is opposed.
The constant deviatoric stress tests consist of lowering the stress level applied,
while the drained triaxial tests increase it. Thus, in Figures 4.15b,4.15c, and
4.15d they approach the failure point from opposite directions.

Figure 4.15a shows the evolution of the deviatoric stress between both
paths. It is interesting to note that even though the failure occurred at
different strains, the slope of the softening phase is concurrent, thus inferring
that the failure mechanism is identical between the two tests.

The volumetric strain, illustrated in Figure 4.15d, represents the volume
variation in relation to the initial state of the test (after the isotropic compres-
sion). Since both tests were subjected to different initial confining pressure,
their initial volumetric conditions are not comparable. To this effect, the
void ratio was plotted in Figure 4.15c to illustrate an internal characteristic
of the specimens. It can be seen that both samples reach failure at almost
the same void ratio. Consequently, failure can occur for the same state of
pressure, deviatoric stress, and void ratio.

4.6.2 Force chains

It is noteworthy in Figure 4.16 that the curves from both specimens start
at different states and converge to the failure point of both specimens, from
where they behave similarly.

Figure 4.16c shows that the number of bending events is several times
larger for the Q100-100 test than for the D100 test. As bending events are
calculated by comparing two successive states of the specimen, the interval
choice directly impacts the resulting value. Consequently, both values are not
comparable since the interval chosen for both tests is not adapted for this
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(a) Deviatoric stress vs axial strain. (b) Deviatoric stress vs mean stress.

(c) Void ratio vs log of mean stress. (d) Volumetric strain vs mean stress.

Figure 4.15: Macroscopic results comparison between constant deviatoric
stress (Q100-100) and drained (D28) triaxial simulations reaching failure at
around the same stress state. The triangle marks the initial state, the square
the final state, while the circle and diamond mark important points for the
respective test. (a) Deviatoric stress vs axial strain; (b) deviatoric stress vs
mean stress; (c) void ratio vs log of mean stress; (d) volumetric strain vs
mean stress.

analysis. However, Figure 4.16c is still interesting, as it shows that bending
events mostly occur after the rupture for both tests.

Globally, these results complement the conclusions of Section 4.6.1, show-
ing that the state (internal and external) of both specimens is equivalent in
the instant of failure and tends to evolve similarly afterward.
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(a) Ratio of chained grains. (b) Number of single-branch trees.

(c) Number of bending events. (d) Number of multibranch trees.

Figure 4.16: Force chain results comparing constant deviatoric stress (Q100-
100) and drained (D28) triaxial simulations reaching failure at a similar stress
state. The triangle marks the initial state, the square the final state, while
the circle and diamond mark important points for the respective test. (a)
Ratio of chained grains; (b) Number of single-branch trees; (c) Number of
bending events; (d) Number of multi-branch trees.

4.7 Concluding remarks

In this chapter, it was shown that all the specimens behave like dense soil
under the different loading paths applied.

The failure line (FL) and critical state line (CSL) were identified in the
drained loading path and later applied to the other triaxial cases. In the q-
constant simulations, failure appeared around the instant when the specimen
tried to cross the CSL. At the same time, the undrained simulations show
no signs of failure. However, undrained behavior was shown to be bounded
between both lines, matching the FL at the peak relative strength and later
approaching CSL for large strain values.



72 Mechanical behavior of granular materials under triaxial conditions

The evolution of force chain structures is directly linked to the macro-
scopic behavior of the specimen. Their general behavior can be summarized
as follows: Force chains are created in the hardening phase. Next single-
branch force chains start merging with multibranch force chains. Then, as
no more force chains are being created, force chains start bending and leading
to the softening phase of the material.

The Q28 and Q100-100 tests were planned to fail at an equivalent macro-
scopic stress state with a similar failure point. Further analysis of the force
chain structures of both tests revealed a convergence between the behavior
of these structures around the failure point.

Strain localization in the form of shear bands appeared in all specimens.
The three different methods of identifying the shear band were effective. In-
cremental calculations show the instantaneous transformation of the sample,
while the cumulative version allows for the observation of the history of the
shear band inside the specimen.

Furthermore, the initial shape of the shear band is similar for all speci-
mens, starting in the lower-left corner and finishing in the top-right corner.
As all tests depart from the same initial state, a predisposition to this shape
can be asserted. However, the final form of the shear band varies with the
loading conditions, with the phenomenon of shear band reflection being ob-
served primarily in the drained cases.

Finally, the analysis of the inertial number of the triaxial tests executed
showed that they are in the upper limit of quasi-static conditions. Fur-
thermore, all q-constant tests surpass the 10−2 mark after failure, directly
impacting the observed results. For example, the number of bending events
of q-constant tests is much higher than in other triaxial conditions.



Chapter 5

Clusters characteristics and
relation to coexisting internal
structures

5.1 Foreword

In this chapter, clusters will be identified using the procedures described in
Section 3.2.1 and later analyzed to validate them as extensions for loops in 3D
conditions. First, several internal characteristics of clusters will be explored,
giving an overview of the properties of these structures. Next, clusters will be
categorized with regard to whether they are created or destroyed during the
loading path. Finally, the relation of clusters to co-existing internal granular
structures, namely, force chains and shear bands, will be explored.

5.2 Cluster characteristics

Using the tools presented in Section 3, the newly proposed cluster structures
will be studied in a 3D granular material simulation. The first question that
arises is about the appearance of these structures. Loops can be clearly
visualized in 2D conditions as simple geometric shapes. However, this is far
from the case for clusters. In this regard, Figure 5.1 illustrates a few clusters
of different orders and sizes, their varying geometrical configurations, and
their location for a rectangular drained triaxial test.

Figure 5.1 reveals that these structures adopt different forms, from more
elongated ones like cluster A (Order 70, Size 33) to more clumped ones like
cluster C (Order 72, Size 30). A comparison between both of these clusters
shows that the form of a cluster has an impact on its order and size. Although
cluster A is made up of a significantly higher number of grains than cluster
C, the manner in which its cells are arranged creates fewer external surfaces,
thus a lower order (exterior surfaces).

73
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Figure 5.1: Examples of clusters of varying sizes and orders for a rectangular
drained triaxial test.

5.2.1 Size and order

To quantify the range of orders reached by these structures, Figure 5.2 illus-
trates the evolution of the maximal cluster order for tests D28, Q50-100, and
U50. Only these tests are shown as they present the largest cluster orders in
their respective triaxial category.

The maximal cluster order observed is approximately 350 for test D28,
240 for test Q50-100, and 190 for test U50. If specimens under q-constant
conditions were continued past 20% axial strain, clusters of a higher order
would be identified, as the post-failure behavior is equivalent to drained con-
ditions. By contrast, the mean pressure only increases during the undrained
loading path, and thus clusters of orders larger than 200 are less probable.

It was previously affirmed in Subsection 3.2.1 that there is no bijection
between the size and order of clusters. However, the evolution of these quan-
tities is very similar for each test, as illustrated in Figure 5.2. Thus, a relation
between them can be inferred.

Let there be a cluster C of size S and order O. To add a random grain G
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(a) Order evolution. (b) Size evolution.

Figure 5.2: Evolution of the maximal cluster order (a) and size (b) for tests
D28, Q50-100, and U50.

to C (increasing S by 1), new cells between G and other grains belonging to
C are created. Each of the newfound cells can only share one open surface
with C, as the three other surfaces of the newly created cells contain the
grain G, and thus could not previously be part of C. Consequently, the cells
created between G and C must follow one of these cases:

• 1) The newfound cell shares one open surface with C. Thus, this cell
will increment C order by 3. However, C had to lose one of its closed
surfaces for the new cell to be joined. Finally Onew = O + 2.

• 2) The newfound cell shares one open surface with C and one with other
newfound cells. Thus, this cell will increment C order by 2. However,
C had to lose one of its closed surfaces for the new cell to be joined.
Finally Onew = O + 1.

• 3) The newfound cell shares one open surface with C and two with
other newfound cells. Thus, this cell will increment C order by 2.
However, C had to lose one of its closed surfaces for the new cell to be
joined. Finally Onew = O.

• 4) The newfound cell shares one open surface with C and three with
other newfound cells. Thus, this cell will not increment the order of C.
However, C had to lose one of its closed surfaces for the new cell to be
joined. Finally Onew = O − 1.

For an incremental increase in size, if only one cell or several cells joined
by open surfaces is created, the overall order sum always turns out to be
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Onew = O + 2. Thus, departing from the minimal cluster (order and size of
4) and adding n grains, the following relation can be established:

S

O
=

4 + n

4 + 2n
(5.1)

However, two pathologies invalidate equation (5.1). The first one appears
if several separate sets of structures are created by adding a single grain into
a previously formed cluster. Take, for example, the 2D representation of
an almost closed ring-like structure illustrated in Figure 5.3. Adding the red
grain to this structure creates two separate cells. Applying the same principle
in 3D increases the order by 4 and the size by 1, resulting in a lower value
than expected from equation (5.1).

Figure 5.3: Representation of a circular structure composed of cells in 2D.
Adding the red grain creates two separate cells, thus invalidating equation
(5.1).

On the other hand, if a grain is completely enclosed inside a cluster, it
would increase the total structure size without adding an external frontier.
Consequently, a higher value than expected from equation (5.1) is obtained.

Figure 5.4 illustrates the evolution of the ratio size over the order in
function of the order value. The red line represents Equation (5.1), and the
black line represents the average value.

It can be noted that the black and red lines are superposed up to around
order 26. From there, most of the clusters obtained are shown to be below the
limit defined by the red line. This indicates that adding one grain to high-
order clusters generates, on average, several separate structures increasing
the order by more than 2. The first incidence of clusters below the red line
appears relatively early for order 12; on the other hand, clusters above the
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red line appear after order 20. However, these early cases can be considered
rare cases, as the mean value for this order still coincides with the red line.

Figure 5.4: Evolution of the ratio size over the order in function of the order.
The black line is the mean curve, while the red line represents equation (5.1).

At the extreme, the first pathology leads to the formation of clusters of
order 4 inside high-order clusters, as illustrated in Figure 5.5. The cell shown
in red is a cluster of order 4, containing four closed surfaces, inside a large
cluster of order 30. Consequently, the latter is formed by 26 closed surfaces
pointing outward and four pointing inward toward the red cell.

Figure 5.5: Cluster of order 30 and size 17 containing a cluster of order 4,
illustrated in red, completely inside its domain. The four grains composing
this cluster 4 are also illustrated.

This pathology often occurs through the formation of clusters of order
4 from two unconnected pairs of grains. This is illustrated in Figure 5.5,
where each red particle is connected to a blue particle. As all surfaces of the
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smaller cluster are shared with the larger one, the smaller cluster could be
integrated into the larger one. Yet, this would require creating an exception
rule or modifying the merging criterion defined in Section 3.2.1. However, in
the context of this thesis, the previously defined merging criterion will not
be modified.

Next, to identify a relation between order and size values, the observed
values of cluster order and size properties are summarized in Figures 5.6 and
5.4.

(a) Analysis per specimen. (b) Total identified cluster analysis.

Figure 5.6: Evolution of size in function of order. In (a) linear regression of
the data obtained for each simulation is represented on the left. In (b), a
scatter of the joint data of all simulations is shown with a linear regression
illustrating the relation between these two quantities.

Each line in Figure 5.6a was obtained from a linear regression of the
size distribution and order values observed during each simulation. These
lines can be seen to follow a similar tendency between the different tests.
For this reason, data obtained throughout all simulations were scattered in
Figure 5.6b, where each gray speck represents an observed cluster. From
the latter, a linear correlation between size and order results in an evolution
law between size and order. Furthermore, it can be noted that the gray
specs represented in Figure 5.6b do not stray far from this linear relation,
indicating low variability for the possible size and order values.

5.2.2 Deformability

It was previously established that the evolution of the form and order of the
loops influences their internal properties, with deformability being a good
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example. The deformability values for all clusters identified in all simula-
tions were collected and scattered in Figure 5.7 to observe whether the same
trends apply to clusters. Each gray spec represents a cluster observed in the
previously presented triaxial tests. Furthermore, three curves were added;
the blue curves are the fit of the minimal and maximal values per order, and
the black curve represents the average value per order.

Figure 5.7: Deformability distribution in function of cluster order for the
entirety of clusters identified throughout all simulations. Blue curves are
the fit of the minimal or maximal values per order, while the black curve
represents the average value per order.

It can be noted that the average deformability value increases with the or-
der of the cluster, stabilizing for high orders. The average deformability value
observed for the minimal cluster is approximately 0.49, indicating that most
of these clusters are indeed deformable, in contrast to the non-deformable 2D
counterpart. Hence, this confirms the increase in complexity of the minimal
cluster with the change in dimension.

In addition, the blue curve in Figure 5.7 marking the upper boundary
of the observed deformability values represents almost a straight line. This
indicates that clusters may have a maximum deformability value of approxi-
mately 0.7. Thus, using the definition of deformability from Section 3.2.1, it
could be inferred that a minimum of approximately 30% of closed edges are
required to form a cluster.

The dispersion of values is much more prevalent for clusters of a smaller
order. In fact, it can be shown that the minimal deformability value increases
with the order, as an increasingly higher number of open edges is necessary to
form the cluster. Thus, the deformability values of very high order clusters
(i.e., order 200) are restricted by an increasingly smaller interval with the
cluster growth.



80 Clusters characteristics and relation to coexisting internal structures

In Figure 5.7, certain areas lack values for lower orders. Indeed each clus-
ter has a fixed number of configurations of its open and closed edges, meaning
that only certain specific deformability values can be attained for each order.
For example, the minimal cluster of order 4 has six edges, and zero to four
may be open. Thus it has only five possible values for deformability.

In addition, the number of possible cluster configurations increases with
the order. For very high order clusters, this results in a large number of
points bounded by a small interval between the minimal and maximal value
related to each order.

Overall deformability indicates the interconnectivity between the grains of
a cluster. Thus, on average, smaller clusters are better connected than larger
ones, providing more stability for surrounding structures (as force chains).

Finally, the deformability of clusters may represent one aspect of the
macroscopic behavior of the specimen. Small clusters (of lower deformabil-
ity) are more prevalent in the early stages, resulting in a sturdier structure.
However, as larger and more deformable clusters appear, the specimen be-
comes more deformable, thus losing strength.

5.2.3 Void ratio

To obtain the void ratio of a region, the void and solid volume must be
identified. In the case of clusters, only one of these quantities is needed, as
the total volume of each cell is known.

From the perspective of a cell, its solid volume is the enclosed volume
of the four grains forming it. In other words, it is the intersection of four
individual spheres and a tetrahedron. Thankfully, this problem has already
been solved in the literature as an analytical equation [123].

Figure 5.8 illustrates the density distribution of the void ratio of clusters
for test D100. The black line represents the mean value per order. The
results of the remaining tests are presented in Appendix B.

The cluster density was estimated in relation to the maximum number of
points of each order. First, the number of structures located inside rectan-
gular regions spanning a 0.05 void ratio and a single order was calculated.
Then, the values observed were divided by the maximum of each order. Con-
sequently, red regions represent high-density regions and yellow represents
low-density regions for the same order of clusters. An analysis based on
colors cannot be made between clusters of different orders.

It can be seen that, in all stages of the D100 test, the average void ra-
tio tends to increase with the cluster order, which is a logical result of the
conclusion on the deformability property. This is further reinforced by the
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(a) Initial state. (b) Characteristic point.

(c) Peak stress. (d) Final state.

Figure 5.8: Void ratio density map in function of cluster order for test D100
at (a) initial state, (b) characteristic point, (c) peak stress, and (d) final
state. Point density is calculated in relation to the rectangle containing the
maximum number of points for each order. The black curve represents the
mean value.

density map, where regions containing numerous clusters (red regions) are
located around the black curve.

On the other hand, the maximal void ratio observed tends to decrease
with the increase in order. Several smaller clusters present a very high void
ratio (larger than 1.5), peaking at 3.5 for clusters of order 4. In addition,
these anomalies become more apparent for large strains, as illustrated in
Figure 5.8d.

These void ratio anomalies come from a pathological case where a cluster
is formed from two unconnected strings of grains. This can be exemplified by
the cluster previously illustrated in red in Figure 5.5, where this pathological
case appeared inside a larger cluster. Consequently, the void space between
both groups of grains can be several times larger than the solid volume of
the cluster.
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As large clusters are formed by several cells, the probability of a structure
to be formed from two separate sets of grains decreases with the increase in
order. This explains the decrease in the maximal void ratio with the increase
in order.

Finally, it can be concluded that, on average, the void ratio increases with
the order of the cluster. Larger clusters tend to be less interconnected and
thus have void space between grains, resulting in a higher void ratio.

5.3 Statistics and categorization of clusters

5.3.1 Drained conditions

Categorization

It is known that the statistical distribution of loops varies during the loading
path [80, 28, 122]. Thus, an analogous evolution was anticipated for their 3D
counterpart. Generally, loops are categorized following their order into four
groups: Loops 3, Loops 4, Loops 5, and Loops 6+. As briefly mentioned in
Section 5.2.1 and illustrated in Figure 5.9, the maximal cluster order observed
in drained conditions is approximately 350 for test D28. This value is much
higher than what is known for loops, which have been shown to grow rarely
beyond order 8, highlighting a clear difference between the range of orders
for these two structures.

Figure 5.9: Evolution of the maximal cluster order for the drained triaxial
tests with confining pressures between 28 kPa and 200 kPa.

Categories were created to better study cluster distributions in light of
their behavior regarding being created or destroyed at a certain axial strain
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value, as shown in Figure 5.10. The four defined categories can be summa-
rized as follows:

• Small - Order 4. This category is by far the most abundant. They
increase in number during the contraction phase, but when approaching
the dilation regime, their number decreases until a constant value is
reached at large strain values.

• Submedium - Order 6. In the early stages, these clusters evolve
in an opposite way to small clusters, decreasing in number during the
contraction phase and increasing during the dilation. However, near
the deviatoric stress peak, their behavior changes, and their number
decreases until a steady state is reached at large strain values.

• Medium - Order 8 to 20. Medium clusters evolve similarly to sub-
medium ones until the peak deviatoric stress, from where a steady
state is reached for large strains. In fact, the behavior of the medium
category is the direct opposite of the small category.

• Large - Order 22+. These clusters are not present in representative
numbers in the early phases, mostly appearing only after the character-
istic point. This category contains all clusters of an order higher than
the upper limit of the medium category. Once they appear, they only
grow in number until an asymptotic value is reached for large vertical
strains.

In the first-column images in Figure 5.10, it is challenging to observe
the behavior of clusters beside the small category, as they represent most of
these structures. The studied material being dense soil contributes to this
effect. However, so does the narrow rectangular geometry of the specimen. It
was observed that the majority of the cells located in the interface with the
wall belong to the small category. Choosing a specimen shape with a higher
volume-to-surface ratio would probably smoothen the cluster distribution.

Although the number of clusters and strain value of peaks differs between
the three tests for each cluster category, the shape of the curves along the
drained loading path is similar. In the early stages, the samples are in a
contraction regime, which signifies a decrease in the total volume and, thus,
a reduction in the specimen void ratio. Therefore, the soil particles are slowly
being reorganized within the sample, destroying structures of high void ratio
to form denser ones. In other words, as large category clusters are not yet
present, medium and submedium clusters are broken down to create smaller
ones.
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(a) D50 (b) D50, no small clusters

(c) D100 (d) D100, no small clusters

(e) D200 (f) D200, no small clusters

Figure 5.10: Evolution of the number of the clusters in each category in
drained conditions. Figures (a), (c), and (e), illustrate the distribution of
clusters for the tests D50, D100, and D200, respectively. Figures (b, (d),
and (f) are a zoom-in of the former for higher cluster categories. The tri-
angle marks the initial state, the square the final state, the diamond the
characteristic point, and the circle the peak deviatoric stress.
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Next, the number of clusters in the small category peaks, leading to the
start of the cluster merging phase. Consequently, small clusters can be ob-
served to decrease in number, while all other categories increase in number.
In other words, denser structures merge to create clusters of increasingly
higher void ratios. This phase is reflected macroscopically in the decrease of
the volumetric strain rate, later ushering in the characteristic point and the
macroscopic strain dilation.

Near the deviatoric stress peak (circle mark), medium and submedium
categories diverge in behavior as the latter decreases in number. This results
from a decrease in small clusters merging to create submedium clusters, while
the latter are still being consumed to form increasingly larger clusters.

Not long after this, the number of small and medium clusters reaches an
equilibrium, while clusters of submedium and large categories only stabilize
in number for large strains. The balance between cluster categories indicates
a plateau of the volumetric strain, characterizing the approach of the critical
state.

An equivalent analysis can be made by evaluating the number of cells
in each cluster category, as shown in the first column of Figure 5.11. As
each cluster of submedium and large categories is composed of several cells,
the impact of clusters of more significant categories becomes more visible,
especially at higher axial strains, where the number of large clusters may
have seemed underwhelming in the previous analysis method.

In addition, the cell evaluation makes it possible to approximate the vol-
ume distribution per cluster category, as seen from a direct comparison with
the evolution of total volume per cluster category, illustrated in the second
column of Figure 5.11.

It can be noted that more than half of the volume of the specimen is
occupied by small clusters at any point of the loading path. Furthermore,
the initial and final cell ratio values of each category depend on the confining
stress applied during the isotropic compression phase. The lower the pressure
applied, the more prevalent the clusters of larger order.

Going forward, the number of cells will be favored for cluster analysis as
it gives a better representation of cluster distribution than the number of
clusters.
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(a) D50 - Cell ratio. (b) D50 - Volume ratio.

(c) D100 - Cell ratio. (d) D100 - Volume ratio.

(e) D200 - Cell ratio. (f) D200 - Volume ratio.

Figure 5.11: Evolution of the volume and ratio of cells in each cluster category
in drained conditions. Figures (a), (c), and (e), illustrate the distribution of
the ratio of cells for the tests D50, D100, and D200, respectively. Figures (f),
(f), and (f) illustrate the distribution of the volume for the tests D50, D100,
and D200, respectively. The triangle marks the initial state, the square the
final state, and the diamond the peak relative strength.
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(a) Small category. (b) Medium category.

Figure 5.12: Evolution of the small (a) and medium (b) cluster category for
the drained triaxial tests. The triangle marks the initial state, the square
the final state, and the diamond the peak relative strength.

The change in the isotropic pressure applied during the drained triaxial
test makes the turning point of the behavior of each cluster categories occur
for larger axial strains. This effect can be observed in Figure 5.12, which com-
pares the evolution of small and medium clusters between the three different
consolidation stresses. A similar effect is observed in Figure 4.3 depicting the
macroscopic results for the drained tests. An increase in the consolidation
pressure leads to a delay in the stress peak and the critical state regime.
It can be concluded that both effects are intertwined, and a change in the
macroscopic level directly affects the mesoscopic scale.

Void ratio

For each test, the average void ratio of each cluster category was calculated,
illustrating the impact of the macroscopic state of the specimen on the cluster
void ratio. Figure 5.13 illustrates the results related to the drained triaxial
tests.

Figure 5.13d shows substantial noise. This is due to the low number
of large clusters identified compared to the other categories. This is further
confirmed by the late behavior of specimens D28 and D50, where the number
of large clusters sharply increases and the void ratio curve becomes more
stable.

It can be noted in Figure 5.13 that, for any test and at any mean pres-
sure, the mean void ratio observed increases with the clusters category. This
confirms the increase in void ratio with order observed in Section 5.2.3.
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(a) Small clusters. (b) Submedium clusters.

(c) Medium clusters. (d) Large clusters.

Figure 5.13: Evolution of the average void ratio of each cluster category for
all drained triaxial tests performed. Figures (a), (b), (c), and (d) illustrate
small clusters, submedium clusters, medium clusters, and large clusters, re-
spectively. The dashed lines represented the average void ratio of each spec-
imen. The triangle marks the initial state, the square the final state, the
diamond characteristic state, and the circle the peak deviatoric stress.

From the early phases until the characteristic point (diamond mark), the
average void ratio of each cluster category decreases. This is an expected be-
havior as the specimen goes through a macroscopic compression phase, thus
favoring the decrease in the void ratio of internal structures. Furthermore,
during this phase, the average void ratio of all categories decreases almost
linearly with the increase in mean pressure, implying a relationship between
these two quantities for this early phase.

Just after the characteristic point, a slow macroscopic void ratio dila-
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tion phase starts, as shown in Figure 4.3d. The average void ratio of small
clusters, illustrated in Figure 5.20a, is seen to increase slowly, following the
macroscopic trend. At the same time the average void ratio of all other
categories sharply decreases, which is counter-intuitive. However, it can be
shown to be a product of the transition between cluster categories.

The void ratio of the specimen can be estimated from the average void
ratio of each cluster category as follows:

e =
1

N

4∑
c=1

Ncec (5.2)

where e is the macroscopic void ratio, N is the number of clusters, Nc is the
number of clusters of the category c, and ec is the average void ratio of the
category c.

Equation 5.2 shows that two mechanisms govern the evolution of the
macroscopic void ratio: the average void ratio and the number of clusters of
each category. Consequently, increasing the macroscopic void ratio is possible
even if the average void ratio of all categories decreases.

As seen in Figure 5.10, during this phase, clusters of large, submedium,
and medium categories are being created in distinction to small clusters.
It can be assumed that the newly formed structures have a lower void ratio
than the previous average of the respective category, resulting in the observed
decrease in value. However, as the number of clusters of the larger categories
increases, the macroscopic dilatative trend is respected.

Finally, the specimen ruptures, leading to a highly dilatative phase until
the critical state is reached. The average void ratio of all cluster categories
behaves similarly, as illustrated in Figure 5.14.

Figure 5.14: Void ratio evolution of cluster categories for test D100.
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5.3.2 Undrained conditions

Categorization

The cluster categories previously defined are maintained and applied for the
analysis of the simulations in undrained conditions. Figure 5.15 illustrates
the evolution of the number of cells in each cluster category as a function of
axial strain.

At the starting point, clusters of the small category are predominant,
while the fraction of higher categories is minimal. This early configuration

(a) U50 (b) U100

(c) U200

Figure 5.15: Evolution of the ratio of cells in each cluster category for all
undrained triaxial tests performed. Figures (a), (b), and c), illustrate the
distribution of cells in each category for the tests U50, U100, and U200,
respectively. The triangle marks the initial state, the square the final state,
and the diamond the peak relative strength.
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remains constant for small deformations, as grain reorganization has not yet
started.

After the early stages, a phase of rapid transition between categories is
established, with a decrease in the number of small categories in favor of an
increase in larger ones. This phase coincides with the force chain reorganiza-
tion observed in Section 4.4, starting at increasingly large strains for higher
initial confining stresses. Clusters and force chains are being reorganized to
support increasingly higher external loads being applied.

Around the diamond mark of each undrained test, a phase of slow transi-
tions appears. Clusters of submedium and medium categories merge to form
increasingly larger clusters.

Throughout the loading path, less dense clusters are formed. This result
should not be possible since, under undrained conditions, the total volume
(and consequently void ratio) of the specimen is supposed to remain con-
stant. However, two volumes must be considered: the volume enclosed by
the specimen piston walls and the volume delimited by clusters. The former
comprises the center of all particles. Consequently, the region between the
walls and the center of the outermost grains is not part of the cluster volumes.
Figure 5.16 illustrates the void ratio evolution of both volume calculations
in undrained conditions.

(a) Void ratio of total volume. (b) Void ratio of cluster volume.

Figure 5.16: Comparison between the void ratio evolution of two different
volume envelopes. In Figure (a), the volume is delimited by the triaxial
test walls, while in Figure (b) the volume is delimited by the center of the
outermost grains. The triangle marks the initial state, the square the final
state, and the diamond the peak relative strength.

In drained and q-constant conditions, both calculations showed an equiv-
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alent trend. However, this is no longer true in the undrained case. As
pistons control the loading conditions, the constant volume is valid for the
entirety of the specimen. Consequently, the void ratio illustrated in Figure
5.16a remains constant. However, Figure 5.16b shows that the void ratio of
the region delimited by the clusters constantly increases. Consequently, the
dilation observed through the analysis of the cluster void ratio is confirmed.

It can be noted that all categories still follow the general premise of the
properties defined in the drained case: Small and medium clusters present a
mirrored behavior, large clusters are not present in the initial phase of the
tests and only increase in number from their appearance; the behavior of
submedium clusters differs from all the others. At first glance, submedium
and medium categories appear to behave similarly. However, the peak of
submedium clusters is reached before that of the medium categories, thus
justifying the separation.

However, cluster categories in drained conditions go through an early peak
or valley that is not observed in the undrained case. This can be referred to as
the variation in the volumetric strain behavior (compressive then dilatative)
of the former that is not present in the undrained case.

Void ratio

The results of the mean void ratio evolution for each cluster category from
the undrained triaxial tests are illustrated in Figure 5.17.

From the beginning of the test until peak relative strength (diamond
mark), all categories show a decrease in average void ratio even though the
macroscopic behavior is dilatative. During this phase, clusters are rapidly
merging, creating larger structures. Thus, the transitions between cluster
categories govern the macroscopic void ratio.

After the peak relative strength, the rate of transitions between cluster
categories decreases. Consequently, an increase in the average void ratio
for medium and large categories can be observed following the macroscopic
trend.

At this point, an interesting discrepancy can be observed in the behavior
of small clusters between the different triaxial conditions. For the drained
cases, the behavior of the void ratio of small clusters seemed to follow the
volumetric trends of the specimen. However, small clusters behave oppositely
to the macroscopic volume trend under undrained conditions. In reality,
another macroscopic quantity is at play: the mean pressure. In both triaxial
conditions, an increase in mean pressure leads to a decrease in the void ratio
of small clusters , with the opposite also being true.
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(a) Small clusters. (b) Submedium clusters.

(c) Medium clusters. (d) Large clusters.

Figure 5.17: Evolution of the average void ratio of each cluster category for
undrained triaxial tests performed. Figures (a), (b), (c), and (d) illustrate
small clusters, submedium clusters, medium clusters, and large clusters, re-
spectively. The dashed lines represented the average void ratio of each speci-
men. The triangle marks the initial state, the square the final state, and the
diamond the peak relative strength.

5.3.3 Q-constant conditions

Categorization

Differently from the previous cases, the constant deviatoric stress test results
will be presented in two phases. First, the values of the Q50-100 and Q200-
100 tests will be discussed to exemplify the relations between each cluster
category. Later the five different q-constant tests will be compared, showing
the influence of the initial confining pressure and target deviatoric stress on
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(a) Test Q50-100. (b) Test Q200-100.

Figure 5.18: Evolution of the ratio of cells in each cluster category for the
constant deviatoric stress triaxial tests Q50-100 and Q200-100, illustrated in
Figure (a) and (b), respectively. The triangle marks the initial state, the
square the final state, the diamond the end of the drained phase, and the
circle the failure point.

the cell ratio of each cluster category.
Figure 5.18 illustrates the evolution of each cluster category of the Q50-

100 and Q200-100 tests following the constant deviatoric stress loading path.
First, the specimen is subjected to a drained triaxial phase until the

targeted deviatoric stress is reached. It can be observed that clusters of
small categories are being created, while larger ones are being destroyed.
Thus resulting in the macroscopic compression observed in Section 4.12.

Next, the specimen is discharged. Clusters of small order are slowly
merging to create clusters of medium and submedium order. This phase is
better illustrated for specimen Q200-100 in Figure 5.18b, where an almost
linear transition can be identified, starting from the diamond mark until a
mean pressure of approximately 95 kPa is reached. The end of this phase can
be related to the region around where the stress state of the specimen crosses
the critical state line (CSL) represented in 4.12b. Thus, as the drained phase
of test Q50-100 ends after the CSL, this linear phase cannot be identified.

Next, the rate of transitions between cluster categories rapidly increases,
leading to the rupture of the specimen. Clusters of increasingly higher order
are appearing at a fast pace, thus justifying the observed rapid dilatative
macroscopic response previously observed.
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(a) Small clusters. (b) Submedium clusters.

(c) Medium clusters. (d) Large clusters.

(e) Maximal cluster order.

Figure 5.19: Evolution of the ratio of cells in each cluster category for all
constant deviatoric stress (q-constant) triaxial tests performed. Figures (a),
(b), (c), and (d) illustrate the distribution of cells in each category, while
Figure (e) shows the evolution of maximal order observed. The triangle
marks the initial state, the square the final state, the diamond the end of the
drained phase, and the circle the failure point.
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The described behavior is observed for all constant deviatoric stress tests,
as illustrated in Figure 5.19, which compares the results between tests for
each cluster category.

The value of the initial phase of confining pressure applied has little to
no impact on the final ratio of clusters in each category. In fact, all three
tests with the target deviatoric stress of 100 kPa (Q50-100, Q100-100, and
Q200-100) follow a very similar path after the drained compression phase,
with test Q100-100 (represented in red) being barely visible.

However, the impact of the targeted deviatoric stress appears more im-
portant, as an increase in value results in a decrease in the ratio of clusters of
larger order in favor of smaller ones. In addition, this quantity also impacts
the maximal order of clusters, which is seen to decrease in Figure 5.19e.

Void ratio

The results of the mean void ratio evolution for each cluster category related
to the q-constant triaxial tests are illustrated in Figure 5.20.

As found for the previous loading conditions, for any test from Figure
5.20 and at any mean pressure, the mean void ratio observed increases with
the cluster category.

Furthermore, the results illustrated in Figure 5.20a confirm the relation
between mean pressure and the average void ratio of small clusters, as pro-
posed in Section 5.3.2.

During the drained phase of the test, the average void ratio of each cluster
category decreases until the targeted deviatoric stress is reached, which is
expected from a volumetric compression phase.

Next, the mean pressure of the specimen gradually decreases, causing
macroscopic dilation. This is reflected locally by an increase in the average
void ratio of all cluster categories.

When approaching the rupture point, two groups of behavior appear.
Small clusters see an increase in void ratio following the macroscopic trend.
At the same time, all other categories observe a rapid decrease in the void
ratio. As seen for the previous loading conditions, this is attributed to a
phase of relatively slow evolution of the macroscopic void ratio and the rapid
merger of clusters. Thus, the transitions between cluster categories govern
the macroscopic void ratio.

Finally, a phase of rapid dilation is reached after the specimen rupture,
resulting in an increase in the mean void ratios of all categories.
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(a) Small clusters. (b) Submedium clusters.

(c) Medium clusters. (d) Large clusters.

Figure 5.20: Evolution of the average void ratio of each cluster category for
all constant deviatoric stress (q-constant) triaxial tests performed. Figures
(a), (b), (c), and (d) illustrate small clusters, submedium clusters, medium
clusters, and large clusters, respectively. The dashed lines represented the
average void ratio of each specimen. The triangle marks the initial state, the
square the final state, the diamond the end of the drained phase, and the
circle the failure point.

5.3.4 Comparison between drained and q-constant con-
ditions

Categorization

It was shown in Section 4.6 that tests D28 and Q100-100 have an equivalent
failure point in relation to several macroscopic and force chain characteristics.
Figure 5.21 compares cluster categories between these two tests to identify
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whether the same tendency is observed for clusters.

A clear convergence of the cell ratio of each cluster category around the
failure point (circle mark) can be observed, thus confirming the equivalence
of both mesoscopic states. The post-rupture behavior of both specimens
appears to be similar. However, test Q100-100 was stopped at 20% axial
strain, thus rendering impossible the comparison at very large strains.

(a) Small clusters. (b) Submedium clusters.

(c) Medium clusters. (d) Large clusters.

Figure 5.21: Evolution of the ratio of cells in each cluster category for tests
D28 and Q100-100. Figures (a), (b), (c), and (d) illustrate the distribution of
cells in small, submedium, medium, and large categories, respectively. The
triangle marks the initial state, the square the final state, the diamond the
end of the drained phase, and the circle the failure point.
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Void ratio

It was shown in Section 5.3.4 that the cluster distribution of tests D28 and
Q100-100 was similar around an equivalent rupture point. To further verify
the equivalence of the mesostructures, the cluster void ratio results related
to tests D28 and Q100-100 are illustrated in Figure 5.20.

(a) Small clusters. (b) Submedium clusters.

(c) Medium clusters. (d) Large clusters.

Figure 5.22: Evolution of the average void ratio of clusters in each cluster
category for tests D28 and Q100-100. Figures (a), (b), (c), and (d) illustrate
the distribution of cells in small, submedium, medium, and large categories,
respectively. The dashed lines represented the average void ratio of each
specimen. The triangle marks the initial state, the square the final state,
and the circle the failure point.

The initial average void ratio of all cluster categories of test D28 is higher
than that of test Q100-100, as the former was subjected to lower mean pres-
sure. However, as the tests advance, the average void ratios of each cluster
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category converge around the rupture point.
Together with Section 4.6, this result illustrates how a specimen sub-

jected to different loading paths reaches the failure point at an equivalent
macroscopic and mesoscopic state (cluster and force chain).

In the literature, the unicity of the mesoscopic distribution at the crit-
ical state has already been proven using loops (2D conditions) [124, 122].
Departing from different initial void ratios, specimens were subjected to the
same loading path. The distribution of loops observed in the critical state
inside the failure area of all specimens was identical.

It can be concluded that the microscopic structure of a given specimen is
independent of the loading path.

5.4 Interaction between coexisting internal gran-
ular structures

5.4.1 Clusters and force chains

Statistics of the interaction

A concrete relationship between loops and force chains in 2D conditions
has already been established by several authors [75, 20, 30], as mentioned
in Section 2.4.2. Consequently, an equivalent behavior should be identified
between clusters and force chains based on the premise of clusters being the
3D version of loops to be validated.

To do so, the cluster distribution presented in Section 5.3 will be subdi-
vided into two groups: force chain cluster (FCC) and non-force chain cluster
(NFCC). An FCC is a cluster that actively participates in force transmis-
sion. As force chains are defined by the contact between grains, a cluster
will be considered as an FCC if at least one of the closed edges forming it is
part of a force chain. By contrast, an NFCC is a cluster that does not have
a common edge with force chains and thus does not participate actively in
force transmission.

As shown in Section 4.2 the number of force chains evolves during the
loading path. Thus, to remove the influence of force chain numbers over the
distribution of FCC and NFCC clusters, the ratio of cells belonging to each
cluster category (small, submedium, medium, large) will be calculated for
both FCC and NFCC separately. Figure 5.23 illustrates the cluster distribu-
tion for the drained case. The results for the remaining triaxial conditions
can be found in Appendix D.

A clear disparity between FCC and NFCC can be observed during the
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drained loading path. NFCC behaves similarly to what was observed for
the whole specimen, illustrated in Figure 5.11. Alternatively, FCC shows a
unique behavior. The distribution of submedium, medium, and large clusters
is more prevalent for FCC, representing more than half of the cells around
the end of the test. In fact, most - if not all - clusters of the large category are
FCC, showing a direct link between the more voluminous clusters and force
chains. However, the number of small FCCs is not negligible, principally in
the early phases of the test.

At very early stages, there is a small variation in FCC distributions,
which is not noticeable in NFCC. This is due to the restructuring of force
chains that were not aligned with the charging direction created during the
isotropic compression phase. As the number of current force chains is small,
this restructuring is relevant for the FCC but not for the rest of the specimen
(NFCC).

Later, the number of force chains increases rapidly, as illustrated in Figure
4.4. It can be concluded that force chains are being created uniformly, with
no noticeable variations in FCC categories observed.

When approaching the characteristic point, bending events start to occur,
as seen in Figure 4.4c. Force chain bending is known to increase the local
void ratio around the bent structures [112, 71], resulting in the merger of
surrounding clusters to form increasingly larger structures.

As the deformability of the cluster increases with the order, an FCC of
higher orders leads to a decrease in the stability of force chains. Consequently,
an increasing number of bending events start to occur. A feedback loop is
formed between bending events promoting the merger of clusters and larger
clusters, decreasing force chain stability until an equilibrium is reached at
large strains.

A similar conclusion between the behavior of loops and force chains in
2D conditions has already been established for biaxial quasi-static conditions.
Force chain loops (FCL) of order 3 have been shown to decrease rapidly before
leveling off around the critical state [75, 80], illustrating the loss of stability
that leads to force chain bending events. At the same time, FCL of orders
larger than 6 show a mirrored behavior, increasing in number due to the
increase in the void ratio around force chains [80].

It can be concluded that the interaction between force chains and loop-like
structures is equivalent in 2D and 3D conditions, with small clusters behaving
analogously to Loops 3 while clusters of medium and large categories behave
as Loops 6+.
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(a) FCC D50. (b) NFCC D50.

(c) FCC D100. (d) NFCC D100.

(e) FCC D200. (f) NFCC D200.

Figure 5.23: Distribution of the ratio of cells of force chain clusters (FCC)
and non-force chain clusters (NFCC) in drained conditions. Figures (a), (c),
and (e) illustrate FCC for triaxial tests D50, D100, and D200, respectively.
Figures (b), (d), and (f) illustrate NFCC for triaxial tests D50, D100, and
D200, respectively.
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Morphology of the interaction

The presence of a force chain requires physical contact between two particles
for the transmission of force to occur. Thus, in a cluster, it translates as
the existence of a closed surface, following the definitions from Section 3.2.1.
Figure 5.24 exemplifies the distribution of force chains around a large cluster
of order 326 observed in test D28.

It can be seen in Figures 5.24b, 5.24c, and 5.24d that force chains are
mostly situated around the exterior surface of clusters, where closed surfaces
are expected. However, Figures 5.24e and 5.24f show that force chains may
traverse the cluster structures, thus indicating the presence of closed surfaces
inside a cluster.

(a) Cluster cells and grains. (b) Cluster cells and force chain grains.

(c) Small force chain on cluster surface. (d) Large force chain on cluster surface.

(e) Force chain traversing cluster. (f) Force chain traversing cluster.

Figure 5.24: Example of force chain positioning around a cluster of order
326, observed in test D28 at 0.2911 axial strain.
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Indeed, closed surfaces can be present inside clusters as exemplified in
Figure 5.25. The highlighted internal surface is closed, as it is composed of
a closed edge. However, the separated cells are joined in a cluster through
their connection to neighboring cells. In addition, as this closed surface does
not form part of the boundary of the cluster, it is considered a "pseudo-open
surface" and removed from the order calculation of equation 3.4.

Figure 5.25: Example of a cluster (Order 8) containing a "pseudo-open sur-
face" surface inside its domain. The black surface is closed. However, it is
located inside a cluster after several connections through other cell surfaces.

The phenomena of force chain traversing clusters are more prevalent for
larger and more voluminous clusters. However, even for these cases, they are
rare compared to the normal occurrence (force chain running through cluster
exterior surface).

Finally, force chains can only transverse loop-like structures in 3D con-
ditions, as no equivalent of "pseudo-open surfaces" can be manifested in 2D
conditions.

Direction of elongation

When particles of a granular system are mobilized by a shearing load, their
contact network is rearranged. Generally, contacts in the major principal
stress direction become more prevalent, generating an anisotropic state. This
state is reflected in the internal structures of the specimen through the di-
rection of force chains, pore spaces, and loops [91, 84, 125].

Through the procedures detailed in Section 3.2.1, the direction of elonga-
tion of clusters can be studied. However, only the orientation of structures
composed of multiple cells was analyzed (no small clusters). In addition, as
the conclusions are similar for all tests, only the results related to specimen
D100 will be shown, while the results of the remaining tests can be found in
Appendix C.
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The azimuth and elevation angles will be categorized into portions of 15◦.
As the former represents the rotation in the x–y plane in relation to the y-
positive direction, 12 categories are presented. However, only six were used
for the elevation since positive and negative angles are considered equivalent.
The results of test D100 for the cluster categories submedium, medium, and
large are presented in Figures 5.26 and 5.27.

From Figure 5.26 it can be established that there are no preferred cluster
orientations in the x–y plane during the loading path. All 12 curves fluctuate
around a value of 0.085. The early variations in Figure 5.26c arise from the
low number of large clusters in the early stages of the test. Representative
numbers are only reached after the deviatoric stress (second dashed line),
where the previous affirmation is validated.

The elevation angle of submedium and medium clusters is shown to be
deeply influenced by the loading path, as illustrated in Figure 5.27. It should
be noted that any evolution observed is essentially from the creation and
destruction of clusters in each class instead of a change in direction of existing
clusters. This is directly linked to force chain behavior.

In the early stages, a steady phase is presented without much change
between the angle classes. In fact, grain reorganization is at its lowest, and
force chains are distributed around the already-established contact networks.
Thus, the elevation angle is representative of the inherent anisotropy of the
specimen, generated mostly through the deposition under gravity.

Next, an increase in the number of clusters of submedium and medium
categories located around force chains (FCC) was observed, as shown in
Section 5.4.1. As the main stress direction is vertical, a decrease in low
elevated clusters (0◦ to 45◦) and increases in highly elevated ones (45◦ to
90◦) are observed.

Finally, after the peak deviatoric stress (second dashed vertical line),
force chain bending events start to rapidly increase in number, decreasing
the verticality of these structures. Consequently, the trend between low-
elevated clusters and highly elevated ones reverses, with a slow evolution
taking place until a steady state is reached at the end of the test.

Furthermore, the fluctuations in elevation angle are more prevalent for
medium clusters (Figure 5.27b) than for submedium ones (Figure 5.27a).
This is due to the fact that the number of medium clusters created during
this phase is far superior to the submedium ones, as previously illustrated in
Figure 5.10.

The presented results confirm the impact of the loading conditions on
the orientation of newly created clusters. The vertical compression suffered
by the D100 specimen results in an increase of mesostructures with a higher
elevation angle. In addition, as both horizontal directions have the same
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(a) Azimuth angle distribution for submedium clusters.

(b) Azimuth angle distribution for medium clusters.

(c) Azimuth angle distribution for large clusters.

Figure 5.26: Evolution of the azimuth angle distribution of a cluster during
the loading path for test D100. Surface tensor results are illustrated on
the left and gravity on the right. Figures (a), (b), and (c) represent medium,
submedium, and large categories, respectively. Azimuth is the rotation in the
x–y plane in relation to the y-positive direction. Two dashed vertical lines
were created to represent the characteristic point and the peak deviatoric
stress, respectively.
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(a) Elevation angle distribution for submedium clusters.

(b) Elevation angle distribution for medium clusters.

(c) Elevation angle distribution for large clusters.

Figure 5.27: Evolution of the elevation angle distribution of a cluster during
the loading path for test D100. Surface tensor results are illustrated on the
left and gravity on the right. Figures (a), (b), and (c) represent medium,
submedium, and large categories, respectively. Elevation is the rotation in
relation to the x–y plane. The two dashed vertical lines represent the char-
acteristic point and the peak deviatoric stress, respectively.
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impact (equal stress applied) it is logical that the azimuth angle does not
present any particular preferred direction.

5.4.2 Clusters and shear band

As for the previous section, a relationship between loops and shear bands has
already been established in 2D conditions. It was shown that loops of larger
orders are more prevalent inside the localization. At the same time, minimal
loops of order 3 are better represented in the rest of the specimen [28].

Large voids were shown to appear during the shear band formation, in-
creasing the local void ratio. As a result, structures of lower density are
created inside the band. As a relation between cluster order and the void
ratio has already been established in Section 5.2.3, it can be expected that
clusters of larger order appear around shear bands.

To test this hypothesis between clusters and shear bands, two visual anal-
yses are proposed:

• The average cluster order of a grain. Calculated as the average order
of all cells forming part of a grain.

• Geometrical positioning of the sizable clusters. A sizable cluster is
defined here as a cluster larger than 30% of the maximal order existent
during the instant of the calculation.

Figure 5.28 illustrates, for test D100, the comparison between the iden-
tified shear band (incremental deviatoric strain method) and the analysis of
both clusters.

It can be noted that sizeable clusters are mostly arranged in the regions
where the shear band is formed. Furthermore, regions outside the shear band
(void regions in the first two columns) also correspond to a less populated
region in the cluster images, indicating the absence of sizable clusters.

This correlation is also observed for all remaining tests, which can be
found in the Appendix E. This phenomenon is better observed for experi-
ments where the shear band appeared at higher mean pressure (D100, D200,
U200).

It can be concluded that there is a direct connection between the posi-
tioning of sizable clusters and shear bands.
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(a) Shear band identification at εz = 0.106.

(b) Shear band identification at εz = 0.236.

(c) Shear band identification at εz = 0.380.

Figure 5.28: Comparison between cluster and shear band locations for test
D100. Figures (a), (b), and (c) illustrate axial strains 0.106, 0.236, and 0.380,
respectively. The first column illustrates the the shear band (cumulative
deviatoric strain method), the second column is the average cluster order of
the grain, while the third represents the distribution of sizable clusters.

5.5 Concluding remarks

The procedures to identify a loop-like structure in 3D (clusters) described in
Chapter 3 were applied to all simulated triaxial tests. Clusters were shown
to appear in a wide range of orders, many times larger than that observed
on loops.

It was shown that as the cluster increases in order it becomes, on average,
more deformable. The deformability value seems to have an upper limit of
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0.7, indicating that a minimum of 30% of closed edges are necessary for the
formation of a cluster of larger orders. By contrast, the maximum possible
deformability in 2D conditions is 0.5.

The void ratio of clusters was shown to increase, on average, with the
increase in cluster order. However, a very large dispersion of possible values
was observed, with smaller clusters showing results several times above the
average. These results were attributed to the formation of structures formed
by two unconnected sets of grains. In addition, these structures were shown
to be uncommon and increasingly rare with the increase in the order of
clusters.

It was proposed that a bijection between the properties of size and order
does not exist. However, it was shown that the relation between these two
quantities fluctuates around a linear relation. Furthermore, it was shown
that small clusters (of order 4) are likely to be present inside clusters or large
categories.

Clusters were divided into categories in regard to whether they are created
or destroyed during each phase of the drained loading path, generating the
four following categories:

• Small: minimal clusters of order 4.

• Submedium: clusters of order 6.

• Medium: clusters of order 8 to 20.

• Large: clusters of order 22+.

Although the categories were created for the drained loading path, they
were shown to be representative of the material for all triaxial tests simu-
lated. However, it is believed that the limit between the medium and large
categories is dependent on the soil density, with looser soils returning a higher
value.

The macroscopic volumetric comportment of the specimen is reflected by
the transition between cluster categories. When larger clusters are breaking,
thus creating denser structures, the specimen undergoes a contracting phase.
However, when clusters start merging, the specimen dilates.

The average void ratio of each category was shown to be related to the
macroscopic behavior of the specimen. The average void ratio of small clus-
ters was shown to be most affected by the mean pressure applied to the
specimen. At the same time, all other categories are also impacted by the
volumetric strain rate of the specimen.

In addition, the behavior of clusters for tests D28 and Q100-100 was
shown to converge around a similar rupture point. The convergence was
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observed for the cell distributions and the average void ratio of each cluster
category, indicating that the state of the mesostructures around the failure
was equivalent for both tests.

The distribution of clusters attached to force chains (FCL) was shown to
differ from clusters not attached to force chains (NFCL). Clusters of higher
order tend to be formed around force chains, with most - if not all - clusters
of the large category being FCL. By contrast, the number of clusters of small
order is superior in NFCL.

It was established that the presence of larger clusters around force chains
decreases their stability. In addition, less stable force chains are more prone
to bending, which increases the void ratio of surrounding clusters. Thus, a
feedback loop between force chain bending and the merger of clusters was
constated.

Furthermore, force chains were shown to be able to traverse through clus-
ters of a large order, as a result of the formation of "pseudo-open surfaces"
(closed surfaces formed inside clusters). This pathology may manifest for
two reasons: the presence of a small cluster inside a larger one; or through
the merger of cells sharing the closed surface through other open surfaces.

The macroscopic loading path was demonstrated to have an impact on
the direction of the elongation of clusters. It was shown that newly created
clusters tend to orient themselves toward the direction of the major principal
stress. This change in direction can be seen as the result of grain reorgani-
zation in the form of force chains. As the latter is oriented in the strongest
principal stress direction (vertical), so are the newly created clusters.

A relation between high-order clusters and shear bands was implied. It
was shown that for all specimens, sizable clusters (clusters with an order
higher than 30% of the existent maximal) tend to be located in the region of
shear bands.

Finally, comparing the above results with the behavior of loops presented
in Section 2.4.2 enabled the validation of clusters as the extension of loops
in 3D conditions.



Chapter 6

Conclusion

6.1 Synthesis of the main outcomes

In the context of granular materials, loops are mesoscale structures that can
link the properties of each grain to the behavior of a collective. In Section
2.4.2, loops were shown to deeply influence the overall behavior of the gran-
ular assembly and other coexisting internal granular structures. However,
their definition was bound to 2D conditions.

This work proposed a procedure to extend the definition of loops to 3D
conditions. It is based on the use of a Delaunay tessellation to subdivide the
3D medium into tetrahedral cells, which are merged into larger structures
following a merging criterion.

Cells are composed of edges between grains in contact or in proximity
with each other, characterizing closed edges and open edges, respectively.
These edges are combined in trios forming the exterior triangular surfaces
of cells. A surface is characterized as open if all three edges forming it are
open. Thus, the presence of at least one closed edge delineates a closed
surface. Finally, the merging criterion is defined as the presence of an open
frontier between two cells.

The identified structures are called "clusters," as this nomenclature is
more aligned with their topological features. It was shown that the number of
grains and external frontiers is not equal for clusters, distinguishing between
size and order, respectively.

Several discrete element method (DEM) simulations of dense material un-
der three triaxial types (drained, undrained, and constant deviatoric stress)
were executed in the software LIGGGHTS to test the cluster identifica-
tion procedure. First, the macroscopic behavior of the tests was validated.
Then, the characteristics of the identified cluster were analyzed to investigate
whether the newfound structures maintain the properties that make loops an
important feature of granular assemblies.

6.1.1 Simulation mechanical response

In total, 12 triaxial loading paths departing from the same initial state were
numerically conducted using the DEM.

To validate the different tests executed, two classic limits of soil mechanics

112
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were calculated: the failure line (FL) and the critical state line (CSL). Both
values were identified in the drained loading path and reported to the other
triaxial conditions. In the constant deviatoric stress (q-constant) cas e, failure
appeared around the instant when the specimen tried to cross the CSL.
Undrained simulations showed no signs of failure. However, their behavior
was shown to be bound between both lines, matching the FL at the peak
relative strength and later approaching CSL for large strain values.

The evolution of force chain structures was shown to be directly linked to
the macroscopic behavior of all specimens. It was shown that the variations
in specimen strength are due to the change in the number of chained grains.
Hardening is characterized by an increase in the number of chained grains
and softening by a decrease or stabilization of this quantity.

In the early phases, force chains are created in the existent contact net-
work of the material. This is reflected in a large number of small single-
branch force chains. Once the granular skeleton starts reorganizing through
plastic deformation, force chains merge and branch forming larger structures.
Consequently, a decrease in single-branch structures and later multibranch
structures is observed.

At the same time, force chain bending starts occurring. These events are
known to increase the void ratio around the chains, decreasing their stability
and increasing their probability of bending. This ultimately leads to the
softening phase of the material.

Tests D28 and Q100-100 were shown to rupture at an equivalent macro-
scopic stress state. It was shown that the macroscopic state of both tests
converges around the rupture point. In addition, an analysis of the force
chain structures of both tests revealed a convergence between the behav-
ior of these structures around the rupture point for all analyzed force chain
metrics.

Strain localization in the form of shear bands was shown to appear in
all specimens. Three methods to identify these structures were proposed:
grain-based cumulative deviatoric strain, grain-based incremental second-
order work, and cell-based incremental deviatoric strain. All methods were
shown to be capable of identifying the presence and location of the shear
band at different instants of the simulation. However, results are more ap-
parent for specimens submitted to higher mean pressure during the shear
banding (D100, D200, U200). Incremental calculations could capture the
instantaneous transformations of the specimens, while cumulative ones allow
the history of the shear band inside the specimen to be observed.

Furthermore, the initial shape of the shear band is similar for all spec-
imens, departing from the lower-left corner and finishing in the top-right
corner. As all tests depart from the same initial state, a predisposition to
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this shape can be asserted. However, the final shape of the shear band varies
with the loading conditions, with the phenomenon of shear band reflection
being observed mostly in the drained cases (D50, D100, and D200).

6.1.2 Cluster characteristics

The identified clusters exhibited a large array of orders and sizes. Thus, to
facilitate their characterization, clusters were categorized in terms of being
created or destroyed during the different phases of the drained triaxial loading
path. Later, the categories were validated in the remaining triaxial conditions
(undrained and q-constant). The four classes created can be summarized as
follows:

• Small - Order 4. This category is by far the most abundant, occu-
pying most of the volume of the specimen. These clusters increase in
number during the contraction phase, but when approaching the dila-
tion regime, their number decreases until a constant value is reached.

• Submedium - Order 6. In the early stages, these clusters evolve
oppositely to small clusters, decreasing in number during the contrac-
tion and increasing during the dilation. However, near the deviatoric
stress peak, their behavior changes, and their number decreases until a
steady state is reached.

• Medium - Order 8 to 20. Medium clusters evolve similarly to sub-
medium ones until the peak deviatoric stress, from where a steady state
is reached for large strains. In fact, medium and small populations dis-
lay the opposite behavior.

• Large - Order 22+. These clusters only appear in significant numbers
after the characteristic point and contain all clusters larger than the
medium category. Once they appear, they only grow in number until
an asymptotic value is reached for large vertical strains.

In 3D conditions, the number of external frontiers (order) and the num-
ber of grains (size) were shown to differ. However, both of these quantities
were shown to be linked by a linear relation, illustrating the mechanisms
that take place during the creation of large clusters. For small, submedium,
and medium categories, a unitary increment in size results, on average, in
two increments in order value. However, for the large category, the average
order is increased by more than 2 for the same size increment. This phe-
nomenon highlights a pathological case where small clusters (order 4) are
formed completely inside large clusters.
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The deformability was shown to be a valid measure of the capacity to
deform loop-like structures. It was shown that, on average, the deformability
increases with the order of a cluster. The upper limit of the envelope of
observed values is a straight line of deformability value around 0.7. This
result illustrates that a minimum of 30% of closed edges are needed to form
clusters of larger order. Furthermore, it can be shown that the minimal
deformability value increases with the order, as an increasingly higher number
of open edges is necessary to form clusters.

The void ratio of clusters was analyzed in two separate ways. First,
the fluctuation of the void ratio per cluster order for several timesteps was
analyzed. It was concluded that the average void ratio for each cluster order
increases with the growth in order. Furthermore, large void ratio values were
observed mostly for medium and lower categories. It was concluded that
these extreme values are due to a pathology where clusters are formed by
two separate sets of grains. However, as these structures are infrequent, the
probability of a cluster of this type being formed decreases with the increase
in order. Consequently, the large category is less affected by this pathology.

Next, the average void ratio evolution of cluster categories was analyzed
for each triaxial loading path. It was shown that the macroscopic state of the
specimen impacts the average void ratio of clusters. The macroscopic void
ratio was shown to be governed by two separate mechanisms: the transition
between cluster categories and the evolution of the average void ratio of each
category.

The void ratio of the small category is mostly influenced by the mean
pressure applied. Conversely, the remaining categories are affected by both
mechanisms. During the early phases, the void ratio of these categories is
shown to evolve linearly with the mean pressure. Next, cluster transfor-
mations allow for a decrease in the cluster average void ratio in a dilatant
environment. Finally, the late behavior of the cluster void ratio evolves in
agreement with the macroscopic tendency observed.

The comparison between cluster characteristics of tests D28 and Q100-
100 highlighted a convergence around an equivalent rupture point. The phe-
nomenon was observed for the ratio of cells and average void ratio of each
category.

Together with previous results comparing the same tests, this result illus-
trates how a single specimen subjected to different loading paths reaches the
failure point at an equivalent macroscopic and mesoscopic state (cluster and
force chain). This result indicates that the mesoscopic structure of a given
specimen is independent of the loading path.
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6.1.3 Interaction with other internal granular structures

Clusters and force chains are defined by the granular assembly contact net-
work. To analyze the interaction between these two structures, the cluster
categories were further subdivided into two groups. Force chain clusters
(FCC) are composed of clusters that share at least one contact with a force
chain and thus directly participate in the force transmission. At the same
time, non-force chain clusters (NFCC) permeate the rest of the specimen and
do not actively participate in the force transmission.

It was shown that the proportion of clusters of each category between FCC
and NFCC is significantly different. Submedium, medium, and large cluster
categories are better represented in FCC, with most - if not all - clusters of
the large category being part of this group. However, small NFCC are higher
in number, representing more than half of NFCC cells for the entire loading
path of all tests.

However, small FCC were shown to play an important role in the me-
chanical behavior of the specimen. As small clusters are less deformable,
their presence increases the stability of force chains. Thus, as small FCC are
the most represented category in the early phases, they grant the stability
necessary for the hardening phase of the specimen.

Once small clusters start merging with other categories, the stability of
the force chain decreases, and bending events materialize. These events pro-
mote the increase in the local void ratio, which translates into the develop-
ment of increasingly larger clusters. Both these phenomena form a feedback
loop that results in a macroscopic softening phase.

Finally, a shear band is formed through a coordinated, multiforce chain
bending in a narrow band. As large clusters were shown to be created around
bending events, it can be assumed that they can be found around shear bands.

Through visual analysis, a relation between cluster distribution and shear
band location was demonstrated. It was shown that sizable clusters (clusters
with an order higher than 30% of the existent maximal) tend to be located
in the region of shear bands. Furthermore, an equivalent result was obtained
when calculating the average cluster order per grain. Similarly to the shear
band identification, this analysis is more precise for specimens submitted to a
higher mean pressure during the formation of the band (D100, D200, U200).

6.1.4 Verdict

The analysis of the topological and mechanical characteristics of clusters
showed that these structures respect the characteristics of 2D loops in 3D
conditions. Furthermore, the definition of clusters assures that the sum of the
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volume of clusters is equal to the total volume of the envelope comprising
the center of particles, validating the pavement property. Thus, it can be
concluded that clusters are a valid extension of loops to 3D conditions.

6.2 Perspectives

6.2.1 Changing material and shape configurations

The simplest way to improve this study is to increase the scope of the sam-
ple data. Changing the specimen dimensions, granulometry, charging speeds,
material properties, and especially the initial density should enrich the knowl-
edge of cluster characteristics.

For example, the distribution of clusters of categories is probably dif-
ferent for loose specimens. As the large category is defined by the largest
cluster present in significant numbers in the early phases of the test, the
limit between medium and large categories may be linked to the density of
the specimens. In fact, clusters of medium and large categories are probably
more prevalent in looser specimens. Considering the destabilizing effects that
clusters of higher orders cause around force chains, it would be interesting to
observe the impact of cluster distribution in diffuse failure.

Finally, the initial idea for cluster structure was based on Bagi’s space cell
system [59], briefly described in Section 3.2.1. This system can partition any
granular material composed of convex shapes into tetrahedra. Thus, an algo-
rithm capable of identifying space cell systems would enable the application
of the defined cluster procedure to materials composed of particles of more
complex shapes, thus resulting in a less idealized material. A space cell al-
gorithm could be based on the Euclidean distance transform (EDT) followed
by a local maxima search. This procedure has been used to identify pore
structures [126]. However, instead of a segmentation process, a triangulation
could be created by connecting grains that share a local maximum.

6.2.2 Pathology analysis

Any form of loop-like structure created in 3D through a simple criterion
will present pathological cases. The proposal of Nguyen et al. [4] created
a structure that comprised 70% of the specimen. In the case of this work,
clusters formed by two strings of unconnected grains and small clusters inside
large ones are prime examples of pathological cases.

A better understanding of the origins of these pathologies is necessary.
Then a modification of the merging criterion or the creation of an exception
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rule can be defined.

6.2.3 Validation of other loop properties

Several properties of loop structures remain to be validated through clusters
in 3D conditions. A good example is the analysis of the lifespan and life
expectancy of loops [127]: They represent, respectively, the time a structure
has continually existed and the time it has until it disappears. Both of these
quantities have been shown to be directly related to the size of the loop and
to impact the stability of force chains [127].

Alternatively, it has been shown that the number of loops in each cat-
egory remains stable around the critical state. Furthermore, critical states
have been shown to be a result of the equilibrium of the transitions between
categories of loops [127]. In Section 5.3, the observed results of cluster distri-
butions show signs of stabilization for large deformations. However, further
research would be necessary for a definitive conclusion to be asserted.

6.2.4 Comparing anisotropy and stress state

The ratio between deviatoric stress and mean pressure has been related to
the anisotropic state of the specimen in a macroscopic analysis [55]. This
result illustrates how the direction of the grains in the microscopic space has
an important effect on the macroscopic behavior. It would be interesting to
study whether this relation is true in a local analysis. Clusters are a good
candidate for the study of this relationship.

However, contact anisotropy and strain tensors need to be correctly de-
fined. The Love–Weber stress and contact tensors are calculated as a function
of the contact between grains. Different from loops, clusters are not com-
pletely closed by contacts. Thus, a formal definition of both tensors for these
clusters has to be established.

6.2.5 Utilization of the tools developed

A possible perspective of this work stems not from the theoretical proposi-
tions but instead from the tools developed during this work. As presented
in Section 3.3, a Matlab application capable of analyzing rectangular tri-
axial DEM simulations was developed. This application can partition the
specimen, thereby allowing for a local analysis of several properties.

A good prospect is the study of precursors of shear band formation inside
the specimen. First, the application can be used to determine the shear band
angle and position. Then, a local analysis of the material properties (void



Perspectives 119

ratio, anisotropy, number of clusters, etc.) can be performed to investigate
the existence of a precursor for shear localization.



Appendix A

Shear banding images of
remaining tests

A.1 Foreword
This appendix contains shear band identification for the tests not presented
in Section 4.2. Each column shows a different identification method, from
right to left: cumulative deviatoric strain (grain scale), negative second-order
work (grain scale), and incremental deviatoric strain (cell scale).
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A.2 D28

(a) Shear band identification at εz = 0.051.

(b) Shear band identification at εz = 0.177.

(c) Shear band identification at εz = 0.291.

(d) Shear band identification at εz = 0.373.

Figure A.1: Shear band evolution for the test D28 at axial strains 0.051,
0.177, 0.291 and 0.373. Each column shows a different identification method,
from right to left: cumulative deviatoric strain (grain scale), negative second-
order work (grain scale), and incremental deviatoric strain (cell scale).
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A.3 D50

(a) Shear band identification at εz = 0.066.

(b) Shear band identification at εz = 0.173.

(c) Shear band identification at εz = 0.292.

(d) Shear band identification at εz = 0.378.

Figure A.2: Shear band evolution for the test D50 at axial strains 0.066,
0.177, 0.292 and 0.378. Each column shows a different identification method,
from right to left: cumulative deviatoric strain (grain scale), negative second-
order work (grain scale), and incremental deviatoric strain (cell scale).
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A.4 D200

(a) Shear band identification at εz = 0.121.

(b) Shear band identification at εz = 0.224.

(c) Shear band identification at εz = 0.298.

(d) Shear band identification at εz = 0.386.

Figure A.3: Shear band evolution for the test D200 at axial strains 0.121,
0.224, 0.298, 0.386. Each column shows a different identification method,
from right to left: cumulative deviatoric strain (grain scale), negative second-
order work (grain scale), and incremental deviatoric strain (cell scale).
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A.5 Q50-100

(a) Shear band identification at p = 87.23kPa.

(b) Shear band identification at p = 74.74kPa.

(c) Shear band identification at p = 64.87kPa.

Figure A.4: Shear band evolution for the test Q50-100 at mean pressure
87.23kPa, 74.74kPa and 64.87kPa. Each column shows a different identifi-
cation method, from right to left: cumulative deviatoric strain (grain scale),
negative second-order work (grain scale), and incremental deviatoric strain
(cell scale).
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A.6 Q100-150

(a) Shear band identification at p = 139.82kPa.

(b) Shear band identification at p = 124.03kPa.

(c) Shear band identification at p = 101.31kPa.

Figure A.5: Shear band evolution for the test Q100-150 at mean pressure
139.82kPa, 124.03kPa and 101.31kPa. Each column shows a different identi-
fication method, from right to left: cumulative deviatoric strain (grain scale),
negative second-order work (grain scale), and incremental deviatoric strain
(cell scale).
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A.7 Q100-200

(a) Shear band identification at p = 192.97kPa.

(b) Shear band identification at p = 177.94kPa.

(c) Shear band identification at p = 139.61kPa.

Figure A.6: Shear band evolution for the test Q100-200 at mean pressure
192.97kPa, 177.94kPa and 139.61kPa. Each column shows a different identi-
fication method, from right to left: cumulative deviatoric strain (grain scale),
negative second-order work (grain scale), and incremental deviatoric strain
(cell scale).
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A.8 Q200-100

(a) Shear band identification at p = 90.51kPa.

(b) Shear band identification at p = 81.50kPa.

(c) Shear band identification at p = 66.29kPa.

Figure A.7: Shear band evolution for the test Q200-100 at mean pressure
90.51kPa, 81.50kPa and 66.29kPa. Each column shows a different identifi-
cation method, from right to left: cumulative deviatoric strain (grain scale),
negative second-order work (grain scale), and incremental deviatoric strain
(cell scale).
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A.9 U50

(a) Shear band identification at εz = 0.146.

(b) Shear band identification at εz = 0.255.

(c) Shear band identification at εz = 0.378.

Figure A.8: Shear band evolution for the test U50 at axial strain 0.146, 0.255,
and 0.378. Each column shows a different identification method, from right
to left: cumulative deviatoric strain (grain scale), negative second-order work
(grain scale), and incremental deviatoric strain (cell scale).
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A.10 U200

(a) Shear band identification at εz = 0.154.

(b) Shear band identification at εz = 0.260.

(c) Shear band identification at εz = 0.386.

Figure A.9: Shear band evolution for the test U200 at axial strain 0.154,
0.260, and 0.376. Each column shows a different identification method, from
right to left: cumulative deviatoric strain (grain scale), negative second-order
work (grain scale), and incremental deviatoric strain (cell scale).



Appendix B

Shear banding images of
remaining tests

B.1 Forword
This appendix contains the void ratio distribution of tests not presented in
section 5.2.3. The explanation of the calculation of the density map can be
found in the main text.
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B.2 D28

(a) Initial State. (b) Characteristic point.

(c) Peak stress. (d) Final state.

Figure B.1: Void ratio density map in function of cluster order for the test
D28 a the initial state, characteristic point, peak stress, and final state. Point
density is calculated in relation to the rectangle containing the maximum
number of points for each order. The black curve represents the mean value.
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B.3 D50

(a) Initial State. (b) Characteristic point.

(c) Peak stress. (d) Final state.

Figure B.2: Void ratio density map in function of cluster order for the test
D50 a the initial state, characteristic point, peak stress, and final state. Point
density is calculated in relation to the rectangle containing the maximum
number of points for each order. The black curve represents the mean value.
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B.4 D200

(a) Initial State. (b) Characteristic point.

(c) Peak stress. (d) Final state.

Figure B.3: Void ratio density map in function of cluster order for the test
D200 a the initial state, characteristic point, peak stress, and final state.
Point density is calculated in relation to the rectangle containing the maxi-
mum number of points for each order. The black curve represents the mean
value.
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B.5 Q50-100

(a) Initial State. (b) End of the drained phase.

(c) Rupture point. (d) Final state.

Figure B.4: Void ratio density map in function of cluster order for the test
Q50-100 a the initial state, end of the drained phase, rupture point, and final
state. Point density is calculated in relation to the rectangle containing the
maximum number of points for each order. The black curve represents the
mean value.
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B.6 Q100-100

(a) Initial State. (b) End of the drained phase.

(c) Rupture point. (d) Final state.

Figure B.5: Void ratio density map in function of cluster order for the test
Q100-100 a the initial state, end of the drained phase, rupture point, and
final state. Point density is calculated in relation to the rectangle containing
the maximum number of points for each order. The black curve represents
the mean value.
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B.7 Q100-150

(a) Initial State. (b) End of the drained phase.

(c) Rupture point. (d) Final state.

Figure B.6: Void ratio density map in function of cluster order for the test
Q100-150 a the initial state, end of the drained phase, Rupture point. and
final state. Point density is calculated in relation to the rectangle containing
the maximum number of points for each order. The black curve represents
the mean value.
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B.8 Q100-200

(a) Initial State. (b) End of the drained phase.

(c) Rupture point.. (d) Final state.

Figure B.7: Void ratio density map in function of cluster order for the test
Q100-200 a the initial state, end of the drained phase, rupture point, and
final state. Point density is calculated in relation to the rectangle containing
the maximum number of points for each order. The black curve represents
the mean value.
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B.9 Q200-100

(a) Initial State. (b) End of the drained phase.

(c) Rupture point. (d) Final state.

Figure B.8: Void ratio density map in function of cluster order for the test
Q200-100 a the initial state, end of the drained phase, peak stress, and final
state. Point density is calculated in relation to the rectangle containing the
maximum number of points for each order. The black curve represents the
mean value.
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B.10 U50

(a) Initial State. (b) Peak relative strength.

(c) Axial strain 0.207. (d) Final state.

Figure B.9: Void ratio density map in function of cluster order for the test
U50 a the initial state, characteristic point, peak stress, and final state. Point
density is calculated in relation to the rectangle containing the maximum
number of points for each order. The black curve represents the mean value.
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B.11 U100

(a) Initial State. (b) Peak relative strength.

(c) Axial strain 0.211. (d) Final state.

Figure B.10: Void ratio density map in function of cluster order for the test
U100 a the initial state, peak relative strength, and final state. Point density
is calculated in relation to the rectangle containing the maximum number of
points for each order. The black curve represents the mean value.
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B.12 U200

(a) Initial State. (b) Peak relative strength.

(c) Axial strain 0.222. (d) Final state.

Figure B.11: Void ratio density map in function of cluster order for the test
U200 a the initial state, peak relative strength, and final state. Point density
is calculated in relation to the rectangle containing the maximum number of
points for each order. The black curve represents the mean value.
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Cluster Orientation images of
remaining tests

C.1 Forword
This appendix contains the results related to the orientation of the clusters
for the remaining specimens. Only clusters formed by more than one cell are
being analyzed, thus excluding clusters of the small category. Furthermore,
the procedures used to obtain the following results are presented in section
3.2.1.
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C.2 Cluster orientation for test D28
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(a) Azimuth angle distribution for submedium clusters

(b) Azimuth angle distribution for medium clusters

(c) Azimuth angle distribution for large clusters

Figure C.1: Evolution of cluster’s azimuth angle distribution for the test
D28. Surface tensor results are illustrated on the left and gravity on the right.
Figures (a), (b), and (c) represent medium, submedium, and large categories,
respectively. Azimuth is the rotation in the x-y plane in relation to the y-
positive direction. The two dashed vertical lines represent the characteristic
point and the peak deviatoric stress, respectively.
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(a) Elevation angle distribution for submedium clusters

(b) Elevation angle distribution for medium clusters

(c) Elevation angle distribution for large clusters

Figure C.2: Evolution of cluster’s elevation angle distribution for the test
D28. Surface tensor results are illustrated on the left and gravity on the
right. Figures (a), (b), and (c) represent medium, submedium, and large
categories, respectively. Elevation is the rotation in relation to the x-y plane.
The two dashed vertical lines represent the characteristic point and the peak
deviatoric stress, respectively.



146 Cluster Orientation images of remaining tests

C.3 Cluster orientation for test D50
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(a) Azimuth angle distribution for submedium clusters

(b) Azimuth angle distribution for medium clusters

(c) Azimuth angle distribution for large clusters

Figure C.3: Evolution of cluster’s azimuth angle distribution for the test
D50. Surface tensor results are illustrated on the left and gravity on the right.
Figures (a), (b), and (c) represent medium, submedium, and large categories,
respectively. Azimuth is the rotation in the x-y plane in relation to the y-
positive direction. The two dashed vertical lines represent the characteristic
point and the peak deviatoric stress, respectively.
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(a) Elevation angle distribution for submedium clusters

(b) Elevation angle distribution for medium clusters

(c) Elevation angle distribution for large clusters

Figure C.4: Evolution of cluster’s elevation angle distribution for the test
D50. Surface tensor results are illustrated on the left and gravity on the
right. Figures (a), (b), and (c) represent medium, submedium, and large
categories, respectively. Elevation is the rotation in relation to the x-y plane.
The two dashed vertical lines represent the characteristic point and the peak
deviatoric stress, respectively.
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C.4 Cluster orientation for test D200
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(a) Azimuth angle distribution for submedium clusters

(b) Azimuth angle distribution for medium clusters

(c) Azimuth angle distribution for large clusters

Figure C.5: Evolution of cluster’s azimuth angle distribution for the test
D200. Surface tensor results are illustrated on the left and gravity on the
right. Figures (a), (b), and (c) represent medium, submedium, and large
categories, respectively. Azimuth is the rotation in the x-y plane in relation
to the y-positive direction. The two dashed vertical lines represent the char-
acteristic point and the peak deviatoric stress, respectively.
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(a) Elevation angle distribution for submedium clusters

(b) Elevation angle distribution for medium clusters

(c) Elevation angle distribution for large clusters

Figure C.6: Evolution of cluster’s elevation angle distribution for the test
D200. Surface tensor results are illustrated on the left and gravity on the
right. Figures (a), (b), and (c) represent medium, submedium, and large
categories, respectively. Elevation is the rotation in relation to the x-y plane.
The two dashed vertical lines represent the characteristic point and the peak
deviatoric stress, respectively.
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C.5 Cluster orientation for test Q50-100
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(a) Azimuth angle distribution for submedium clusters

(b) Azimuth angle distribution for medium clusters

(c) Azimuth angle distribution for large clusters

Figure C.7: Evolution of cluster’s azimuth angle distribution for the test
Q50-100. Surface tensor results are illustrated on the left and gravity on the
right. Figures (a), (b), and (c) represent medium, submedium, and large
categories, respectively. Azimuth is the rotation in the x-y plane in relation
to the y-positive direction. The vertical dashed line represent the rupture
point.
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(a) Elevation angle distribution for submedium clusters

(b) Elevation angle distribution for medium clusters

(c) Elevation angle distribution for large clusters

Figure C.8: Evolution of cluster’s elevation angle distribution for the test
Q50-100. Surface tensor results are illustrated on the left and gravity on the
right. Figures (a), (b), and (c) represent medium, submedium, and large
categories, respectively. Elevation is the rotation in relation to the x-y plane.
The vertical dashed line represent the rupture point.
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C.6 Cluster orientation for test Q100-100
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(a) Azimuth angle distribution for submedium clusters

(b) Azimuth angle distribution for medium clusters

(c) Azimuth angle distribution for large clusters

Figure C.9: Evolution of cluster’s azimuth angle distribution for the test
Q100-100. Surface tensor results are illustrated on the left and gravity on
the right. Figures (a), (b), and (c) represent medium, submedium, and large
categories, respectively. Azimuth is the rotation in the x-y plane in relation
to the y-positive direction. The vertical dashed line represent the rupture
point.
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(a) Elevation angle distribution for submedium clusters

(b) Elevation angle distribution for medium clusters

(c) Elevation angle distribution for large clusters

Figure C.10: Evolution of cluster’s elevation angle distribution for the test
Q100-100. Surface tensor results are illustrated on the left and gravity on
the right. Figures (a), (b), and (c) represent medium, submedium, and large
categories, respectively. Elevation is the rotation in relation to the x-y plane.
The vertical dashed line represent the rupture point.
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C.7 Cluster orientation for test Q100-150
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(a) Azimuth angle distribution for submedium clusters

(b) Azimuth angle distribution for medium clusters

(c) Azimuth angle distribution for large clusters

Figure C.11: Evolution of cluster’s azimuth angle distribution for the test
Q100-150. Surface tensor results are illustrated on the left and gravity on
the right. Figures (a), (b), and (c) represent medium, submedium, and large
categories, respectively. Azimuth is the rotation in the x-y plane in relation
to the y-positive direction. The vertical dashed line represent the rupture
point.
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(a) Elevation angle distribution for submedium clusters

(b) Elevation angle distribution for medium clusters

(c) Elevation angle distribution for large clusters

Figure C.12: Evolution of cluster’s elevation angle distribution for the test
Q100-150. Surface tensor results are illustrated on the left and gravity on
the right. Figures (a), (b), and (c) represent medium, submedium, and large
categories, respectively. Elevation is the rotation in relation to the x-y plane.
The vertical dashed line represent the rupture point.
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C.8 Cluster orientation for test Q100-200
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(a) Azimuth angle distribution for submedium clusters

(b) Azimuth angle distribution for medium clusters

(c) Azimuth angle distribution for large clusters

Figure C.13: Evolution of cluster’s azimuth angle distribution for the test
Q100-200. Surface tensor results are illustrated on the left and gravity on
the right. Figures (a), (b), and (c) represent medium, submedium, and large
categories, respectively. Azimuth is the rotation in the x-y plane in relation
to the y-positive direction. The vertical dashed line represent the rupture
point.
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(a) Elevation angle distribution for submedium clusters

(b) Elevation angle distribution for medium clusters

(c) Elevation angle distribution for large clusters

Figure C.14: Evolution of cluster’s elevation angle distribution for the test
Q100-200. Surface tensor results are illustrated on the left and gravity on
the right. Figures (a), (b), and (c) represent medium, submedium, and large
categories, respectively. Elevation is the rotation in relation to the x-y plane.
The vertical dashed line represent the rupture point.
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C.9 Cluster orientation for test Q200-100
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(a) Azimuth angle distribution for submedium clusters

(b) Azimuth angle distribution for medium clusters

(c) Azimuth angle distribution for large clusters

Figure C.15: Evolution of cluster’s azimuth angle distribution for the test
Q200-100. Surface tensor results are illustrated on the left and gravity on
the right. Figures (a), (b), and (c) represent medium, submedium, and large
categories, respectively. Azimuth is the rotation in the x-y plane in relation
to the y-positive direction. The vertical dashed line represent the rupture
point.
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(a) Elevation angle distribution for submedium clusters

(b) Elevation angle distribution for medium clusters

(c) Elevation angle distribution for large clusters

Figure C.16: Evolution of cluster’s elevation angle distribution for the test
Q200-100. Surface tensor results are illustrated on the left and gravity on
the right. Figures (a), (b), and (c) represent medium, submedium, and large
categories, respectively. Elevation is the rotation in relation to the x-y plane.
The vertical dashed line represent the rupture point..
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C.10 Cluster orientation for test U50
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(a) Azimuth angle distribution for submedium clusters

(b) Azimuth angle distribution for medium clusters

(c) Azimuth angle distribution for large clusters

Figure C.17: Evolution of cluster’s azimuth angle distribution for the test
U50. Surface tensor results are illustrated on the left and gravity on the
right. Figures (a), (b), and (c) represent medium, submedium, and large
categories, respectively. Azimuth is the rotation in the x-y plane in relation to
the y-positive direction. The vertical dashed line represent the peak relative
strenght.
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(a) Elevation angle distribution for submedium clusters

(b) Elevation angle distribution for medium clusters

(c) Elevation angle distribution for large clusters

Figure C.18: Evolution of cluster’s elevation angle distribution for the test
U50. Surface tensor results are illustrated on the left and gravity on the
right. Figures (a), (b), and (c) represent medium, submedium, and large
categories, respectively. Elevation is the rotation in relation to the x-y plane.
The vertical dashed line represent the peak relative strenght.
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C.11 Cluster orientation for test U100
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(a) Azimuth angle distribution for submedium clusters

(b) Azimuth angle distribution for medium clusters

(c) Azimuth angle distribution for large clusters

Figure C.19: Evolution of cluster’s azimuth angle distribution for the test
U100. Surface tensor results are illustrated on the left and gravity on the
right. Figures (a), (b), and (c) represent medium, submedium, and large
categories, respectively. Azimuth is the rotation in the x-y plane in relation to
the y-positive direction. The vertical dashed line represent the peak relative
strenght.
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(a) Elevation angle distribution for submedium clusters

(b) Elevation angle distribution for medium clusters

(c) Elevation angle distribution for large clusters

Figure C.20: Evolution of cluster’s elevation angle distribution for the test
U100. Surface tensor results are illustrated on the left and gravity on the
right. Figures (a), (b), and (c) represent medium, submedium, and large
categories, respectively. Elevation is the rotation in relation to the x-y plane.
The vertical dashed line represent the peak relative strenght.



Cluster orientation for test U200 173

C.12 Cluster orientation for test U200
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(a) Azimuth angle distribution for submedium clusters

(b) Azimuth angle distribution for medium clusters

(c) Azimuth angle distribution for large clusters

Figure C.21: Evolution of cluster’s azimuth angle distribution for the test
U200. Surface tensor results are illustrated on the left and gravity on the
right. Figures (a), (b), and (c) represent medium, submedium, and large
categories, respectively. Azimuth is the rotation in the x-y plane in relation to
the y-positive direction. The vertical dashed line represent the peak relative
strenght.
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(a) Elevation angle distribution for submedium clusters

(b) Elevation angle distribution for medium clusters

(c) Elevation angle distribution for large clusters

Figure C.22: Evolution of cluster’s elevation angle distribution for the test
U200. Surface tensor results are illustrated on the left and gravity on the
right. Figures (a), (b), and (c) represent medium, submedium, and large
categories, respectively. Elevation is the rotation in relation to the x-y plane.
The vertical dashed line represent the peak relative strenght.



Appendix D

Cluster vs Force chains images of
remaining tests

D.1 Forword
This appendix contains the results relating clusters and force chains for the
remaining specimens. The procedures used to obtain the following results
are presented in section 5.4.1.

D.2 Cluster and force chain test D28

(a) FCC D28. (b) NFCC D28.

Figure D.1: Distribution of the ratio of cells between force chain clusters
(FCC) and non-force chain clusters (NFCC) for test D28.
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D.3 Cluster and force chain test Q50-100

(a) FCC Q50-100. (b) NFCC Q50-100.

Figure D.2: Distribution of the ratio of cells between force chain clusters
(FCC) and non-force chain clusters (NFCC) for test Q50-100.

D.4 Cluster and force chain test Q100-100

(a) FCC Q100-100. (b) NFCC Q100-100.

Figure D.3: Distribution of the ratio of cells between force chain clusters
(FCC) and non-force chain clusters (NFCC) for test Q100-100.
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D.5 Cluster and force chain test Q100-150

(a) FCC Q100-150. (b) NFCC Q100-150.

Figure D.4: Distribution of the ratio of cells between force chain clusters
(FCC) and non-force chain clusters (NFCC) for test Q100-150.

D.6 Cluster and force chain test Q100-200

(a) FCC Q100-200. (b) NFCC Q100-200.

Figure D.5: Distribution of the ratio of cells between force chain clusters
(FCC) and non-force chain clusters (NFCC) for test Q100-200.
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D.7 Cluster and force chain test Q200-100

(a) FCC Q200-100. (b) NFCC Q200-100.

Figure D.6: Distribution of the ratio of cells between force chain clusters
(FCC) and non-force chain clusters (NFCC) for test Q200-100.

D.8 Cluster and force chain test U50

(a) FCC U50. (b) NFCC U50.

Figure D.7: Distribution of the ratio of cells between force chain clusters
(FCC) and non-force chain clusters (NFCC) for test U50.
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D.9 Cluster and force chain test U100

(a) FCC U100. (b) NFCC U100.

Figure D.8: Distribution of the ratio of cells between force chain clusters
(FCC) and non-force chain clusters (NFCC) for test U100.

D.10 Cluster and force chain test U200

(a) FCC U200. (b) NFCC U200.

Figure D.9: Distribution of the ratio of cells between force chain clusters
(FCC) and non-force chain clusters (NFCC) for test U200.



Appendix E

Cluster vs Shear bands images of
remaining tests

E.1 Forword
This appendix contain the images relating Shear bands and Clusters for the
tests that were not presented in section 5.4.2. The first two column shows
the identification of the shear band through two methods (cumulative devi-
atoric strain and negative second-order work respectively), while the third
represents the location of sizable clusters.

181



182 Cluster vs Shear bands images of remaining tests

E.2 D28

(a) Shear band identification at εz = 0.051.

(b) Shear band identification at εz = 0.177.

(c) Shear band identification at εz = 0.291.

(d) Shear band identification at εz = 0.373.

Figure E.1: Comparison between Cluster and Shear band locations for the
test D28. Figures (a), (b), (c) illustrates axial strains 0.177, 0.291 and 0.373,
respectively. The first column illustrate the the shear band (cumulative de-
viatoric strain method), the second column is grain’s average cluster order,
while the third represents the distribution of sizable clusters.
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E.3 D50

(a) Shear band identification at εz = 0.066.

(b) Shear band identification at εz = 0.173.

(c) Shear band identification at εz = 0.292.

(d) Shear band identification at εz = 0.378.

Figure E.2: Comparison between Cluster and Shear band locations for the
test D50. Figures (a), (b), (c), (d) illustrates axial strains 0.066, 0.173,
0.292, and 0.378, respectively. The first column illustrate the the shear band
(cumulative deviatoric strain method), the second column is grain’s average
cluster order, while the third represents the distribution of sizable clusters.
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E.4 D200

(a) Shear band identification at εz = 0.121.

(b) Shear band identification at εz = 0.224.

(c) Shear band identification at εz = 0.298.

(d) Shear band identification at εz = 0.386.

Figure E.3: Comparison between Cluster and Shear band locations for the
test D200. Figures (a), (b), (c), (d) illustrates axial strains 0.121, 0.224,
0.298, and 0.386, respectively. The first column illustrate the the shear band
(cumulative deviatoric strain method), the second column is grain’s average
cluster order, while the third represents the distribution of sizable clusters.
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E.5 Q50-100

(a) Shear band identification at p = 87.23kPa.

(b) Shear band identification at p = 74.74kPa.

(c) Shear band identification at p = 64.87kPa.

Figure E.4: Comparison between Cluster and Shear band locations for the
test Q50-100. Figures (a), (b), (c) illustrates mean pressure 87.23kPa,
74.74kPa, and 64.87kPa, respectively. The first column illustrate the the
shear band (cumulative deviatoric strain method), the second column is
grain’s average cluster order, while the third represents the distribution of
sizable clusters.
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E.6 Q100-150

(a) Shear band identification at p = 139.82kPa.

(b) Shear band identification at p = 124.03kPa.

(c) Shear band identification at p = 101.31kPa.

Figure E.5: Comparison between Cluster and Shear band locations for the
test Q100-150. Figures (a), (b), (c) illustrates mean pressure 139.82kPa,
124.03kPa, and 101.31kPa, respectively. The first column illustrate the
the shear band (cumulative deviatoric strain method), the second column
is grain’s average cluster order, while the third represents the distribution of
sizable clusters.
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E.7 Q100-200

(a) Shear band identification at p = 192.97kPa.

(b) Shear band identification at p = 177.94kPa.

(c) Shear band identification at p = 139.61kPa.

Figure E.6: Comparison between Cluster and Shear band locations for the
test Q100-150. Figures (a), (b), (c) illustrates mean pressure 192.97kPa,
177.94kPa, and 139.61kPa, respectively. The first column illustrate the
the shear band (cumulative deviatoric strain method), the second column
is grain’s average cluster order, while the third represents the distribution of
sizable clusters.
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E.8 Q200-100

(a) Shear band identification at p = 90.51kPa.

(b) Shear band identification at p = 81.50kPa.

(c) Shear band identification at p = 66.29kPa.

Figure E.7: Comparison between Cluster and Shear band locations for the
test Q200-100. Figures (a), (b), (c) illustrates mean pressure 90.51kPa,
81.50kPa, and 66.29kPa, respectively. The first column illustrate the the
shear band (cumulative deviatoric strain method), the second column is
grain’s average cluster order, while the third represents the distribution of
sizable clusters.
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E.9 U50

(a) Shear band identification at εz = 0.146.

(b) Shear band identification at εz = 0.255.

(c) Shear band identification at εz = 0.378.

Figure E.8: Comparison between Cluster and Shear band locations for the
test U50. Figures (a), (b), (c) illustrates axial strain 0.146, 0.255, and 0.378,
respectively. The first column illustrate the the shear band (cumulative de-
viatoric strain method), the second column is grain’s average cluster order,
while the third represents the distribution of sizable clusters.
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E.10 U200

(a) Shear band identification at εz = 0.154.

(b) Shear band identification at εz = 0.260.

(c) Shear band identification at εz = 0.388.

Figure E.9: Comparison between Cluster and Shear band locations for the
test U200. Figures (a), (b), (c) illustrates axial strain 0.154, 0.260, and
0.388, respectively. The first column illustrate the the shear band (cumulative
deviatoric strain method), the second column is grain’s average cluster order,
while the third represents the distribution of sizable clusters.
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