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Résumé

Dans la ruche, les abeilles butineuses informent leurs congénères de l’“emplacement”
d’une source de nourriture en effectuant une danse en huit, qui indique la direction
et la “distance” à parcourir. Des études précédentes ont suggéré que l’odomètre
(servant de compteur de distance) de l’abeille évalue cette distance en intégrant
mathématiquement la vitesse angulaire brute de l’image balayant vers l’arrière à
travers leur champ de vision ventral, ce qui est connu comme le flux optique de
translation. Dans les applications robotiques aériennes, la mise en œuvre d’une
odométrie visuelle à bord de micro- et nano-drones est une tâche particulièrement
difficile en raison des faibles ressources de calcul et des faibles moyens de perception
disponibles. Plusieurs insectes ailés, tels que les abeilles et les papillons, oscillent de
haut en bas tout en volant vers l’avant, ajoutant une composante d’expansion et de
contraction à leur champ de vecteurs de flux optique ventral : il s’agit de la divergence
du flux optique. La question se pose de comprendre comment l’intégration brute du
flux optique (exprimée en r ad/s) pourrait coder de manière suffisamment fiable une
distance, puisque le flux optique dépend à la fois de la vitesse sol et de la hauteur
sol. Dans cette thèse, un modèle de l’odomètre visuel de l’abeille, appelé SOFIa,
est présenté. La hauteur courante par rapport au sol est estimée par un filtre de
Kalman étendu et la divergence du flux optique générée par la trajectoire oscillante.
L’estimation de la hauteur par rapport au sol permet la mise à l’échelle du flux optique
de translation, qui est ensuite intégré mathématiquement pour obtenir la distance
parcourue. En mesurant les indices de flux optique de translation et de divergence
avec des capteurs de flux optique, l’odomètre visuel SOFIa a pu être testé sur un
hexarotor à la fois en intérieur et en extérieur. Un second modèle d’odomètre visuel
(appelé SuRf) a également été développé et testé en simulation. L’odomètre visuel
SuRf est également basé sur la mise à l’échelle du flux optique de translation, mais
dans ce cas, le flux optique pris en compte est toujours perçu perpendiculairement à
la surface survolée. Pour cela, un processus de réorientation active a été ajouté afin
de toujours garder le plan visuel parallèle au terrain en dessous. Le modèle SuRf a
permis d’améliorer les performances odométriques obtenues sur terrain irrégulier
par rapport à celles du modèle SOFIa brut. Modéliser l’odomètre visuel de l’abeille
en se basant sur une vision biologiquement plausible est donc d’un grand intérêt
pour deux raisons principales : (i) jeter une lumière nouvelle sur les processus neuro-
éthologiques à l’œuvre chez les insectes ailés, et (ii) ouvrir la voie à la mise en œuvre
sur des micro-robots volants de capacités odométriques visuelles minimalistes.

Mots clés: odométrie visuelle, abeilles, flux optique, facteur d’échelle, oscillations,
robotique aérienne
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Abstract

In the hive, foraging honeybees inform their nestmates about the “location” of a food
source by performing a waggle dance, which carries knowledge about the direction
and “distance” to travel. Previous studies have suggested that the odometer (serving
as a distance-meter) of flying honeybees assesses distance by mathematically inte-
grating the raw angular velocity of the image sweeping backwards across their ventral
viewfield, which is known as the translational optic flow. In aerial robotic applica-
tions, performing visual odometry onboard micro- and nano-drones is a particularly
challenging task due to the low computational and perception resources available.
Several winged insects, such as bees and butterflies, oscillate up and down while flying
forward, adding an expansion and contraction component to their ventral optic flow
vector field: this is the optic flow divergence. The question arises as to how raw integra-
tion of the optic flow (expressed in r ad/s) could reliably encode a distance, since optic
flow depends on the ground speed and the ground height. In this thesis, a model for
the honeybee visual odometer, called SOFIa, is presented. The current ground height
is estimated solely by means of an Extended Kalman Filter (EKF) and the optic flow
divergence generated by the oscillating trajectory. The ground height estimate scales
the translational optic flow, which is then mathematically integrated to obtain the
distance travelled. By measuring the translational and divergence optic flow cues with
optic flow sensors, the SOFIa visual odometer could be tested onboard a hexarotor
both indoors and outdoors. A second model for the visual odometer (called SuRf) was
also developed and tested in simulation. The SuRf visual odometer is also based on
the scaling of the translational optic flow, but in this case, the optic flow taken into
account is always perceived perpendicularly to the surface below. For this purpose, an
active reorientation process was added so as to always keep the visual plane parallel
to the ground below. The SuRf model improved the odometric performances obtained
over uneven terrain in comparison with those of the raw SOFIa model. Modelling of
the honeybee visual odometer using biologically plausible vision is therefore of great
interest for two main reasons: (i) shed new light on the neuro-ethological processes at
work in winged insects, and (ii) open the way to providing micro flying robots with
minimalistic visual odometric equipment and abilities.

Keywords: visual odometry, honeybees, optic flow, scaling factor, oscillations, aerial
robotics
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1 Thesis contributions and outline

Foraging honeybees inform their nestmates about the direction and distance of a food
source from the hive by performing a waggle dance. Previous studies have suggested
that the odometer (serving as distance-meter) of the foragers’ path integrator assesses
distance by mathematically integrating the raw angular velocity of the image sweeping
backwards across their ventral viewfield, which is known as translational optic flow.
The question arises as to how integration of optic flow (expressed in r ad/s) can
reliably encode a distance, since optic flow depends on the ground speed and the
ground height. Several winged insects, such as bees and butterflies, oscillate up and
down at a frequency between 1H z and 5H z while flying forward. Thus, flying insects
enrich their ventral optic flow vector field by adding an expansion and contraction
component: this is the optic flow divergence. In aerial robotic applications, visual
odometry performed with cameras has limitations due to environmental conditions
and the high computational power required. This task is particularly challenging in the
case of micro- and nano-drones, on which onboard computational and perception
resources available tend to be low. The aim of this thesis project is to develop a
model for the honeybee visual odometer in order to: (i) shed new light on the neuro-
ethological processes at work in winged insects, and (ii) open the way to providing
micro flying robots with minimalistic visual odometric equipment and abilities.

Contributions

The first contribution of this thesis is the presentation of a model for the honeybee
visual odometer, called SOFIa (Self-scaled Optic Flow time-based Integration), to
estimate the distance traveled solely on the basis of the translational and divergence
optic flow cues perceived during forward flights with up-and-down self-oscillations.
In the SOFIa visual odometer, the optic flow divergence cue is used to visually estimate
the current ground height, which then scales the translational optic flow cue before
its integration over time. The SOFIa visual odometer was tested on honeybees’ trajec-
tories in open-field simulations under a wide range of wind and terrain conditions.
In order to test the SOFIa visual odometer onboard a small flying robot, it was demon-
strated that the optic flow divergence cue can be measured as the difference of two
optic flow magnitudes perceived by two optic flow sensors placed at angles φ and
−φ with respect to the normal to a surface. To experimentally test this strategy, a test
bench was built consisting of two optic flow sensors set at fixed angles on a chariot
placed on a slider in front of a panorama. The optic flow sensors were made to oscil-
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late back and forth in front of the panorama (either static or moving) to mimic the
up-and-down self-oscillations performed by honeybees while flying forward. The
distance of the optic flow sensors from the panorama was estimated by means of
an Extended Kalman Filter (EKF) receiving as measurement the measured optic flow
divergence cue. Similarly, it was demonstrated that the translational optic flow cue
can be measured as the sum of two optic flow magnitudes perceived by two optic flow
sensors placed at angles φ and −φ with respect to the normal to a surface.
By measuring both translational and divergence optic flow cues with two optic flow
sensors, the SOFIa visual odometer was tested onboard a hexarotor equipped with
optic flow sensors placed downwards at fixed angles. To further improve the odo-
metric performance of the SOFIa method, the idea of using prior knowledge of the
oscillations imposed on the hexarotor to more accurately measure translational and
divergence optic flow cues was also investigated. Two different sensor fusion strate-
gies, respectively based on precise and rough prior knowledge of optic flow variations,
were tested onboard the hexarotor both indoors and outdoors.
To improve the measurement of the optic flow cues, the idea of reorienting the sim-
ulated honeybee compound eye in order to keep the head pitch on a level with the
surface below was investigated. This second model for the honeybee visual odometer,
called SuRf (Surface Reference based), is also based on the scaling of the translational
optic flow, but in this case, the optic flow taken into account is always perceived
perpendicularly to the surface below. The SuRf visual odometer was tested on honey-
bees’ trajectories in open-field simulations under a wide range of wind and terrain
conditions.

Outline

In Chapter 2, observations on the ability of honeybees to assess the distance to a food
source from the hive are discussed. The concept of the honeybee odometer based on
visual cues is introduced. A review of odometric approaches in robotics is provided,
with a focus on visual odometry performed with cameras.
In Chapter 3, the concept of optic flow is introduced. Observations on the use of optic
flow by flying insects to navigate their environment are discussed. The measurement
of optic flow with cameras is presented. Optic flow sensors are then described. Finally,
insect-inspired robotic approaches based on the use of optic flow cues are presented.
In Chapter 4, the model for the honeybee visual odometer based on the mathematical
integration of the raw angular velocity of the image sweeping backwards across the
ventral viewfield is discussed. The self-oscillations observed in flying honeybees are
introduced.
In Chapter 5, the SOFIa model for the honeybee visual odometer is presented. The
SOFIa visual odometer is tested on honeybees’ trajectories in open-field simulations
and its odometric performance is compared with that of the model based on the
mathematical integration of the raw angular velocity of the image sweeping backwards
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across the ventral viewfield.
In Chapter 6, a strategy to measure the optic flow divergence cue with two optic flow
sensors is discussed. This strategy is tested on a test bench consisting of two optic
flow sensors oscillating back and forth in front of a moving panorama.
In Chapter 7, the SOFIa visual odometer is experimentally tested onboard a hexarotor
equipped with optic flow sensors. Two sensor fusion strategies, based respectively on
a precise and rough prior knowledge of optic flow variations, are tested in order to
further improve the odometric performance of the SOFIa method.
In Chapter 8, the SuRf model for the honeybee visual odometer is presented. The SuRf
visual odometer is tested on honeybees’ trajectories in open-field simulations and its
odometric performance is compared with that of the SOFIa visual odometer.
In Chapter 9, conclusions and future perspectives are discussed.
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2 Introduction

Honeybees and flying robots may seem to have little in common. However, they both
have the same problem to solve: navigating their environment to perform tasks and
return to a starting point. Once they have reached a patch of flowers and collected
pollen, foraging honeybees return to the hive and communicate the location of the
food source to their nestmates so that they too can forage. These tasks are so impor-
tant for the survival of the hive that honeybees have developed their own form of
communication to convey information about the distance and direction of a food
source from the hive: the waggle dance. Decades of research have made it possible
to partially decode the dance language of honeybees. Many questions still remain
unanswered, such as how honeybees estimate the distance to a food source from the
hive.
This thesis focuses on the problem of estimating the distance travelled and how a bet-
ter understanding of the innate abilities of honeybees in navigating their environment
can help to develop solutions for flying robots. In this chapter, the dance language of
honeybees is discussed and a review of solutions developed for robotic applications
to estimate the distance travelled is given.
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2.1 The visual system of flying insects and the

compound eye

The world of insects is shaped by a variety of cues and landmarks: the position of the
sun by day and the moon and stars by night, polarised light, the presence of trees and
bushes, the perceived movement of their surroundings, etc... (see Figure 2.1) [80, 261].
Flying insects (such as honeybees, flies and dragonflies) perceive the surrounding
visual scene thanks to the two compound eyes set on either side of their heads (see
Figure 2.2.a). The visual system of honeybees also includes three small simple eyes,
called ocelli, located dorsally on the top of their head.
The compound eye is composed of units called ommatidia [104]. An ommatidium
perceives only a small portion of the visual scene and can be considered as a bundle
of photoreceptors providing a brightness estimate [107]. Each ommatidium consists
of a hexagonal lens (also called cornea or facet), a transparent crystalline cone and
light-sensitive visual cells (called rhabdom) [74]. Ommatidia are separated from their
neighbors by the inter-ommatidial angle ∆φ, which varies from region to region of the
compound eye (see Figure 2.2.b). The size of each region is set by its optical radius,
which is defined as the radius measured from the point where the optical axis of the
ommatidia intersect. Measurements taken on the compound eyes of different species
of insects indicated that the optical radius is greater at the front of the eye, suggesting
that the visual scene perceived in the frontal region might be sampled more densely
then elsewhere [104]. This frontal region is called fovea and is characterised by omma-
tidia with larger lenses. Some insects (such as dragonflies) have additional foveas that
look upward or laterally [104].
The ommatidia of a compound eye are all connected to three ganglia: the lamina,
the medulla and the lobula plate (see Figure 2.3). The neurons in the lamina act

Figure 2.1: Examples of visual cues insects can rely on to orient themselves in their
environment include the position of the sun, the position of the moon
and stars, polarised light, the perceived movement of their surroundings
(or optic flow) and the presence of landmarks (from C.A. Freas and M.L.
Spetch, 2022 [80]).
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Figure 2.2: a) Close up of a honeybee and its compound eye (by K.K. Garvey, 2018 [84]).
b) Scheme of the compound eye (from G.A. Horridge, 1977 [104]). The
compound eye is composed of units called ommatidia, each consisting
of a hexagonal lens (also called cornea or facet), a transparent crystalline
cone and a rhabdom. Neighboring ommatidia are separated by the inter-
ommatidial angle ∆φ, which varies from region to region of the compound
eye.

as high-pass filters by amplifying temporal changes and auto-adjust to background
illuminance. Relevant findings suggest that the local motion detection between neigh-
boring ommatidia might take place in the medulla [52]. Thus, the medulla could
be responsible for the detection of contrast in the visual scene. In the lobula plate,
large-field collator neurons called lobula plate tangential cells (or LPTCs-neuron)
respond to motion patterns and transmit the signal via the neck of the insect to the
thoracic interneurons [95, 129, 232, 28, 55, 231, 239]. LPTCs-neuron also respond to
local visual motion and their sensitivity seems to be based on constrast detection [77,
56]. In honeybees, the Velocity-Tuned neurons (or VT-neuron) respond monotonically
with the visual angular speed [111].

2.2 To a food source and back again: a honeybee’s

journey

In 1973 K. von Frisch, N. Tinbergen and K. Lorenz shared the Nobel Prize in Physiology
or Medicine for their behavioural studies on insects. This achievement crowned their
work in developing the field of modern ethology, which had spread from the end of the
19th century to both continental Europe and North America. The work of K. von Frisch
focused on honeybees and their sensory perception. In particular, K. von Frisch was
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Figure 2.3: Scheme of the visual and central nervous system of flies (from J.S. Humbert,
2005 [107]). The ommatidia of each compound eye are connected to the
corresponding lamina, medulla and lobula plate ganglia. The tangential
cells of the lobular plate (or LPTCs-neuron) send the signal to the thoracic
interneurons through the neck of the insect.

one of the first scientists to interpret the foragers’ dance as a means of communicating
to their nestmates the location of a food source by conveying information about its
distance and direction from the hive.

2.2.1 The waggle dance

In 1967 K. von Frisch described in his book “The Dance Language and Orientation of
Bees" the so called tail-wagging (or waggle) dance performed by foraging honeybees
in the hive. During the waggle dance, foragers convey relevant information about
the distance of a food source from the hive and the direction of the corresponding
flight trajectory to their nestmates [247]. Foragers can be observed running a short
stretch (called waggle run) while laterally waggling their abdomen before returning
to the starting point in a semicircle alternately to the right and to the left (see Figure
2.4.a). This waggling motion is repeated several times per second during the waggle
run, while foragers make buzzing noises.
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Figure 2.4: a) During the waggle dance, the forager runs a stretch (called waggle run)
while laterally waggling her abdomen. The forager then returns to her
starting point in a semicircle, alternately to the right and to the left. The
nestmates attend the waggle dance to extract the relevant information
about the distance of a food source from the hive and the direction of the
corresponding flight trajectory in order to find the indicated food source
themselves. b) Relationship between the distances of a feeding station
from the hive and the tempo of the corresponding 6267 waggle dances ob-
served, for experiments carried out over 10km (adapted from “The Dance
Language and Orientation of Bees", K. von Frisch, 1967 [247]).

How do honeybees assess direction? Foraging honeybees assess the direction
of a food source from the hive by means of the sun compass. This ability was tested
in 1959 by P. Renner with experiments in which honeybees trained to feed between 1
and 2 p.m. in Saint James (in Long Island, near New York City) were taken overnight
to Davis (in California, near San Francisco). As the time difference between the two
locations is 3.25h, P. Renner observed that honeybees shifted their search for food
to suit the original position of the sun as perceived in Saint James during training
[183]. Similar observations were made by M. Lindauer in 1957 when taking honeybees
trained in Ceylon to Munich, Germany. According to reports, the change in the course
of the sun strongly disoriented the honeybees for over a month and a half [139].
K. von Frisch observed that on horizontal surfaces foragers execute the waggle run at
the same angle with respect to the sun that they held while reaching the food source
during their outward flight. On vertical surfaces, the solar angle is transposed to the
gravitational angle (see Figure 2.5). When the sun can be seen only intermittently or
not at all, foragers orient relatively to the polarised light. This ability is confirmed
by the fact that foragers continue to execute waggle dances that indicate the correct
direction even when the sky is very cloudy and therefore the sun is not visible. When
the hive was laid horizontally with an unobstructed view of the sky (in both clear
and cloudy weather), the presence of filters that retained ultraviolet light disoriented
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the foragers’ dances. Under similar experimental conditions, filters that altered the
polarisation of light caused the foragers to reorient themselves according to the new
perceived angle [247].

How do honeybees assess distance? The innate ability of honeybees to assess
the distance of a food source from the hive is referred to as the honeybee “odometer".
K. von Frisch reported a monotonic relationship between the distance of a feeding
station from the hive and the tempo of the corresponding waggle dance. The tempo of
a waggle dance is defined as the number of circuits (with a circuit being a waggle run +
a semicircle) performed over a span of 15s. The tempo of the waggle dances performed
by foragers for a feeding station set at 100m, 500m and 1500m were reported. Over a
span of 15s foragers executed 9-10 circuits in the case of the feeding station at 100m,
6 in the case of the feeding station at 500m and only 4 in the case of the feeding
station at 1500m. This inversely proportional relationship was further confirmed by
subsequent experiments conducted by K. von Frisch and his collaborators over several
kilometres (see Figure 2.4.b) and later by other authors [60, 223]. However, the neuro-
ethological mechanisms behind the honeybee odometer are not yet fully understood.

Figure 2.5: While executing a waggle dance on a vertical surface, the forager orients
her waggle run by transposing the solar angle perceived while flying toward
the food source (here 20deg) with respect to gravity (adapted from A. Toth,
2007 [241]) .
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In addition, it is still open to debate whether honeybees assess the distance travelled
or the distance measured in a straight line.

2.2.2 Honeybees exploit visual cues to assess the distance

travelled

K. von Frisch hypothesised that foragers assess the distance of a food source from
the hive by means of the amount of energy spent in reaching their destination [247].
Later findings seemed to corroborate his “energy hypothesis" [167]. More recent
studies have suggested that the “energy hypothesis" does not account for the honeybee
odometer over distances up to few hundred meters [59]. In a behavioural study, it
was reported that waggle dances executed by foragers trained to fly for 65m and then
walk for 3m in a Teflon tube to reach a feeding station indicated the same distance
information as those performed by foragers that did not walk the additional 3m. The
energy required to walk the additional 3m was measured through the consumption
of O2 and was estimated to be equivalent to the energy needed to fly over 128m (see
Figure 2.6).

Figure 2.6: a) Representation of the experimental equipment and setup for measuring
O2 consumption. b) Relationship between the distance of the feeding
station from the hive and the number of waggling motions per waggle
run counted during waggle dances. (A) shows the experimental results
obtained with 11 foragers who flew 65m and walked an additional 3m, (B)
shows the expected results according to the “energy hypothesis" and (C)
shows the expected results according to the consumption of 02 (adapted
from H. Esch and J.E. Burns, 1995 [60]).

28



2 Introduction – 2.3 Small as an insect, smart as an insect: insect-sized robots

In a subsequent experiment, foragers were trained to visit a feeding station attached
to a weather balloon at a distance of 70m from the hive [60]. The weather balloon was
held first at ground level and then at 30m, 60m and 90m from the ground. Contrary to
what was expected according to the “energy hypothesis", the distance information
indicated by the foragers during the recorded waggle dances decreased the higher the
balloon was held. These findings led to the conclusion that foragers use the retinal
image flow of the ground motion to assess the information conveyed on the distance.
Several studies have further supported the hypothesis that the honeybee odometer
relies on visual cues [60, 58, 225, 224, 223], and more specifically on optic flow [61]
(see also [40] for a review). Examples of tests carried out in tunnels to investigate
the capability of honeybees to assess the information conveyed on the distance by
manipulating a variety of potential odometric cues (such as flight duration, energy
consumption, image motion, airspeed, inertial navigation and landmarks) are shown
in Figures 2.7 and 2.8. A more recent study has also proposed a circuit for path
integration and steering in bees by anatomically identifying the neurons involved in
processing light polarisation and optic flow cues [230].

2.3 Small as an insect, smart as an insect:

insect-sized robots

Insects are able to carry out complex tasks such as navigation in a cluttered environ-
ment, take-off and landing, selection of food sources, etc... All these tasks are achieved
despite the fact that insects can only rely on very simple nervous systems [221] and
a considerably small size [146, 49]. These characteristics have led scientists from
different fields to study insects in order to find computationally low-cost solutions
applicable to robots. Previous studies have presented a honeybee-inspired mobile
robot that can measure the distance to an object in terms of image velocity [252], a fly-
sized flapping-wing robot capable of tethered but unconstrained stable hovering and
basic maneuvers [146], a fly-sized flying robot capable of stabilising its flight by means
of an accelerometer [82] (see Figure 2.9) and a honeybee-inspired strategy based on
visual familiarity to perform homing flights onboard a quadrotor [228], for example.
However, the majority of these solutions still have an important limitation: the lack of
a closed-loop onboard perception and thus the need for external infrastructure, such
as a motion capture system or an umbilical.

2.4 The problem of estimating distance in

Robotics

As with honeybees, estimating distances in order to navigate the environment to
perform tasks and return to a starting point is a problem that often arises in robotic
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Figure 2.7: Example of test carried out with honeybees flying in a tunnel to investigate
their capability to assess the information conveyed on the distance during
short flights under controlled laboratory conditions (from M.V. Srinivasan
et al., 1997 [224]). Honeybees were trained to find a reward in unit 9 of the
tunnel (A). Searching trajectories (B) and spatial distribution (C) reported
for trained honeybees during tests without a reward.

applications. In Robotics, the term “odometry" often refers to the use of sensors to
estimate the position/location (x, y) or (x, y, z) of an agent (such as a robot, a camera,
a vehicle, etc...) with respect to a known starting point.

2.4.1 Odometric strategies in Robotics

Various solutions based on the use of different technologies and sensors have been
proposed to perform odometry in robotic applications [4] (see Figure 2.10 and 2.11).
Examples of odometric strategies are based on the use of wheels, Inertial Navigation
Systems and the mathematical integrations of speed and/or acceleration.

Wheel odometry In mobile Robotics, the position of a wheeled robot with respect
to a starting point can be estimated by counting the number of revolutions of the
wheels in contact with the ground [27]. This odometric strategy relies on the use
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Figure 2.8: Example of test carried out with honeybees flying in a short narrow tunnel
to collect a food reward. A) Experimental layout, with 4 tunnels equipped
with feeders. B) Mean waggle duration reported for experiments 2 and 4
and their equivalent flight distances as from the regression line (adapted
from M.V. Srinivasan et al., 2000 [223]).

of low-cost sensors, such as optical encoders (see Figure 2.11.a). Although wheel
odometry is a straightforward and low-cost technique, the use of wheels limits its
implementation to wheeled robots operating over regular terrain. Moreover, wheel
odometry is subject to wheel slippage [70, 172].

Inertial Navigation Systems In Inertial Navigation Systems (INS), the position
of an agent is estimated with respect to a known starting point, orientation and
velocity. This is achieved by means of motion sensors (such as accelerometers) and
rotation sensors (such as gyroscopes) [4] (see Figure 2.11.b). INS are self-contained
and applicable to aerial robots. However, the mathematical integration of the sensors’
outputs makes these odometric strategies highly prone to drift [187, 249, 258]. The
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Figure 2.9: A.i) Five identical fly-inspired winged robots designed with a pair of inde-
pendently actuated wings (adapted from K. Y. Ma et al., 2022 [146]). A.ii)
Scheme of the 10mg fly-sized NAT flying robot equipped with off-the-shelf
sensors. B.ii) The NAT robot compared to a 1mg fruit fly. C.ii) A 143mg

fly-inspired winged robot [51, 39]. D.ii) A palm-sized 30g quad-rotor [3].
E.ii) The sensors used to perform stable hovering onboard the NAT robot
(from S. Fuller et al., 2022 [82]).

accuracy of INS is highly dependent on the performance, size and cost of the sensors
used. In micro- and nano-drones, the specifics of the equipped sensors most often
limit INS accuracy. INS can also be used as a temporary solution when other odometric
approaches fail due to environmental conditions or sensor constraints [213].
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Dead reckoning in Robotics Dead reckoning in Robotics can be defined as the
process of assessing the current position of an agent by updating a previously known
position with estimates of speed and direction over a given time interval. Historically,
dead reckoning approaches have been used in marine, air and automotive navigation.
Dead reckoning is highly prone to cumulative errors and its accuracy largely depends
on the specifics of the sensors used (such as accelerometers and magnetometers).
However, dead reckoning can be combined with other strategies and technologies to
achieve better accuracy. For example, a dead reckoning approach combined with INS
was implemented on a quadrotor following a periodic trajectory [213].

Figure 2.10: Comparison of advantages and disadvantages of different technologies
used to perform odometry and localisation in robotic applications (from
M.O.A. Aquel et al., 2016 [4]). Examples of odometric strategies and other
localisation methods are based on the use of wheels, Inertial Navigation
Systems (INS), Global Positioning System (GPS) and Global Navigation
Satellite System (GNSS), ultrasonic sensors, laser sensors and cameras.
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Figure 2.11: a) Example of optical encoder for wheel odometry (from Pololu Corpo-
ration, 2016). b) Example of Inertial Navigation System (INS) (adapted
from M.O.A. Aquel et al., 2016 [4]). c) Scheme of the Global Positioning
System (GPS) (i) and trilateration by means of 3 satellites (ii) (adapted
from A. Noureldin et al., 2013 [173]). d) Scheme of real-time Differential
GPS (DGPS) (adapted from M.O.A. Aquel et al., 2016 [4]).

2.4.2 Other localisation strategies

Examples of other localisation strategies used in Robotics include satellite-based
systems, ultrasonic and laser sensors (see Figure 2.10 and 2.11).

Satellite-based strategies The Global Navigation Satellite System (GNSS) and
the Global Positioning System (GPS) are satellite-based systems that provide position,
navigation and timing information of an agent (almost) anywhere on Earth [181,
43] (see Figure 2.11.c). GPS consists of 24 operational satellites orbiting the Earth
and transmitting radio frequency signals, arranged to provide worldwide coverage
[181, 173]. GPS is not subject to error accumulation and is very effective outdoors,
where it provides an accuracy within 10m [4]. Differential GPS (DGPS) and Real-
Time Kinematic GPS (RTK-GPS) were developed to further improve GPS performance
outdoors, lowering the accuracy in open-field conditions to the range of centimeters
(see Figure 2.11.d). GPS has limitations indoors, in tunnels, in confined places and in
urbanised areas [86, 148, 249, 43]. This is due to the presence of obstacles that interfere
with radio signals, satellite signal blockage, high noise content and low bandwidth.

Sonar-based strategies Sonar (or ultrasonic) sensors rely on sound propagation
to detect objects and assess distances in the environment. Ultrasonic sensors send
an ultrasonic pulse into the environment and then receive the reflected signal from
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nearby objects. By measuring the time-of-flight of the signal, the distance to the target
can be assessed. In this way, the position of an agent equipped with the ultrasonic
sensor can be estimated by triangulation with two sonar measurements acquired in
two different poses. The incremental update of the assessed position can be used
to perform odometry. However, this strategy is very sensitive to target material and
orientation as well as environmental noise [187, 130, 199].

Laser-based strategies Similar to sonar sensors, laser (or lidar) sensors rely on
light propagation to detect objects and assess distances in the environment. Distances
are assessed based on the time-of-flight of the light waves sent by the laser sensor
into the environment and reflected by objects. By means of two laser measurements
taken in two different poses, the position of an agent equipped with the laser sensor
can be estimated by triangulation. The incremental update of the assessed position
can be used to perform odometry. Laser sensors require high computational costs
due to iterative calculations to match two laser scans. In addition, the scan may fail
depending on the material of the object reflecting the signal [236, 103, 141].

2.4.3 Visual odometry in Robotics

In Robotics, the term “visual odometry" was first proposed in 2004 [170] and often
refers to the estimation of the position/location (x, y) or (x, y, z) of an agent equipped
with one or more cameras by means of the stream of images captured [203, 169, 161].
The estimates of the position are incrementally updated, as this odometric strategy is
based on the changes induced by the movement of the agent on the onboard cameras
[203, 34, 86, 164]. In Robotics, visual odometry is a no-contact method and thus can
be applied to aerial robots [164]. Its main advantages are the reduced cost [171, 86,
172] and the high accuracy [105]. Overall, in Robotics visual odometry has a good
trade-off among cost, reliability and implementation complexity [170]. Also, as visual
odometry is a self-contained technique, there is no risk that loss of information will
cause significant errors, as in the case of GPS [236].

2.4.3.1 Optical cameras

Cameras (or optical cameras) are low-cost no-contact sensors providing a stream of
images, which conveys a large amount of information. Since cameras are passive
sensors, they are not subject to interference as ultrasonic or laser sensors [81, 187]. In
Robotics, different types of cameras have been used to perform visual odometry, such
as stereo (or binocular), monocular, omnidirectional and RGB-D cameras (see Figure
2.12).

Stereo cameras: Stereo cameras have two lenses, each of them equipped with an
image sensor consisting of a pixel array (see Figure 2.12.b). The depth information can
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Figure 2.12: Examples of monocular camera (a), stereo camera (b) and RGB-D camera
(c) (adapted from Y. Lu et al., 2018 [144]).

be extracted by a single frame, as the stereo baseline is known. Thus, triangulation can
be easily performed. However, synchronization of the two images is key to correctly
retrieve depth information. Stereo cameras tend to be expensive and need extensive
calibration [125].

Monocular cameras: Monocular cameras have one lens and are equipped with
only one image sensor (see Figure 2.12.a). They are cheaper and easier to calibrate
than stereo cameras. However, monocular cameras are subject to scale uncertainty
[172, 86]. Several solutions have been proposed to solve this problem, such as the
use of point cloud combined with bundle adjustment [125] or minimization of image
projection error [262], for example.

Omnidirectional cameras: Omnidirectional cameras are stereo or monocular
cameras characterised by a very wide field-of-view, up to 360deg.

RGB-D cameras: RGB-D (RGB stands for Red, Green and Blue, while D stands for
Depth) cameras are stereo or monocular cameras providing depth information and
color data of the perceived visual scene (see Figure 2.12.c). The depth information is
retrieved by means of a depth sensor, such as a time-of-flight sensor, for example.

The stream of images captured by a camera can be processed for a wide range of
tasks, such as feature tracking and contrast detection. However, image analysis is
typically computationally expensive. In visual odometry, image analysis may involve
several steps such as extracting features (such as edges, angles, etc...), matching frames
or calculating pixel displacement between frames. In addition, vision algorithms are
sensitive to environmental conditions and may fail in a wide range of circumstances
[173].

2.4.3.2 Visual odometry with cameras

In Robotics, visual odometric strategies can be classified based on the type of cameras
used [243]. Most approaches are based on the use of either stereo or monocular
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cameras. These two categories can be referred to as Stereo Visual Odometric Systems
(SVOS) and Monocular Visual Odometric Systems (MVOS), respectively.

Stereo Visual Odometric Systems: SVOS rely on stereo cameras. The first ex-
ample of SVOS was presented in 1980 by H. Moravec, with the aim of estimating the
position of a rover on Mars [158]. The odometric strategy proposed was based on the
use of a single camera that captured images at equidistant intervals while perform-
ing a translational motion as the rover moved in a stop-and-go fashion. This SVOS
approach is referred to as a “stereo slider". In [158], the estimation of the distance
travelled was performed by triangulating the position of the rover’s corner detected
in two consecutive positions. Later studies have proposed similar techniques based
on feature tracking [152, 96], feature matching [105, 6, 118, 83] and template track-
ing [214]. SVOS have been implemented also with multispectral cameras [160] and
laser-rangefinders [154] and combined with map-matching algorithms [1].

Monocular Visual Odometric Systems: MVOS rely on monocular cameras. Due
to the unsolvable scale uncertainty, MVOS require ground height information provid-
ing the image scale. This scaling factor can be retrieved separately by using a static
pressure sensor [119], an Inertial Measurement Unit (IMU) and range sensors [203,
94], stereo vision [234, 50], a telecentric camera [164] or it can be integrated when
using the hybrid approach [246], for example. Image scale can also be retrieved by
means of independent information on the observed scene, such as the size of a known
object [48]. Other solutions proposed to recover the position/location of the agent
include template matching [86, 260], maximizing conditional probability of intensity
differences between two consecutive images [151], robust feature tracking combined
with motion constraints [92] and the use of a probabilistic appearance-based ground
classifier [133]. MVOS have been implemented for a wide range of applications, such
as off-road navigation with a mobile robot [87], rear view parking in an urban area
[142] and navigation of a micro-flyer in a GPS-denied environment [73].

Visual odometry with omnidirectional and RGB-D cameras: Several robotics
studies have proposed different visual odometric approaches that rely on omnidi-
rectional cameras and the use of feature matching [205, 204], optic flow integration
[45] or stereo algorithms applied to panoramic image data [32], for example. Vari-
ous studies have also proposed odometric approaches that rely on RGB-D cameras
[69] and the use of a statistical confidence interval [67], a closed-form bound on the
propagated error[66], linearization of the energy function [229] or minimization of the
photometrical error [121], for example.

In Robotics, another possible classification of visual odometric strategies is based on
mapping [144]. Some visual odometric strategies can be classified as Simultaneous
Localisation and Mapping (SLAM) (see Figure 2.13). SLAM is an approach that allows
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Figure 2.13: Example of Unmanned Aerial Vehicle (UAV) navigation strategy based on
Simultaneous Localisation and Mapping (SLAM) (from Y. Lu et al., 2018
[144]).

to perform onboard visual odometry and mapping simultaneously [216, 68, 135, 156].
In SLAM, the robot locates itself in the environment while incrementally building a
map to estimate its new position with respect to it. SLAM relies on monocular cameras
to acquire data in order to build the map [248, 57, 162, 38]. SLAM requires the use of
computationally intensive algorithms (e.g. feature detection) and constant feedback
from the environment, resulting in high computational requirements. SLAM has also
been implemented with omnidirectional [237] and RGB-D cameras [106, 53, 255].

2.4.3.3 The limitations of visual odometric strategies based on cameras

The main drawbacks of visual odometric strategies based on cameras are the depen-
dence on environmental conditions and the high computational power required for
image analysis [87, 164, 172, 260]. In indoor settings, environmental conditions can
be controlled to reduce direct sunlight, image blur, shadows, etc.... However, this is
not possible outdoors. Additionally, for aerial robotic applications, the use of compu-
tationally intensive algorithms is most often incompatible with onboard computers.
This is particularly challenging in the case of micro- and nano-drones, where Speed,
Size, Weight and Power (SSWaP) constraints play a key role. From these constraints
stems the importance of using minimalistic equipment and low-cost processing so-
lutions. Several studies have proposed minimalistic approaches for tasks such as
landing [99] or hovering [82], for example.
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Figure 2.14: Representation of an outward trajectory of a desert ant. The insect odome-
ter assesses the distance travelled along the trajectory X = x1+x2+...+x13

by integrating the velocity norm from a starting point (the nest) to a target
point (a food source). Path integration assesses the position (X ,Y ) of the
target point with respect to the known starting point (0,0) by integrating
the velocity vector (adapted from M.V. Srinivasan, 2015 [220]).

2.5 Difference between odometry and path

integration

Inspired by behavioural studies, in this chapter we define (see Figure 2.14):

• odometry as the mathematical integration of the velocity norm to assess the
distance travelled along a trajectory X = x1 +x2 + ...+xn from a known starting
point

• path integration as the mathematical integration of the velocity vector (thus
including its direction component) to assess a position (X ,Y ) relative to a known
starting point

Conclusion

The need to navigate the environment and return to a starting point is a common
problem for flying insects and robots. The waggle dance performed by foraging hon-
eybees provides an insight into the perception of distance in flying insects, which (at
least in the case of honeybees) relies on visual cues, and more specifically on optic
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flow. The perceptual capabilities observed in flying insects have inspired various com-
putationally low-cost solutions applicable to small robots. The problem of estimating
the position/location in Robotics has been addressed in different ways. In aerial
robotic applications, odometry is most often performed with cameras, although these
solutions have limitations due to environmental conditions and SSWaP constraints.
As with honeybees, optic flow could be a possible answer to this problem.
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3 Honeybees’ solutions for visual
guidance: the use of optic flow

Honeybees perceive the surrounding visual scene thanks to the two compound eyes
set on either side of their heads. Several studies have suggested that the honeybee
odometer relies on visual cues, and more specifically on optic flow. However, how
honeybees are able to exploit optic flow to assess the distance of a food source from
the hive is still an open question.
In robotics, various odometric approaches have been developed based on the use of
different technologies and sensors. In aerial robotic applications, visual cues can be
detected by processing the stream of images captured by a camera with algorithms
generally requiring high computational costs. Nevertheless, the low computational
and perception resources available make cameras relatively unsuitable for performing
visual odometry onboard micro- and nano-drones. A possible solution is the use
of optic flow, which can be measured either with cameras or with computationally
low-cost optic flow sensors.
In this chapter, optic flow is defined and its exploitation by flying insects to navigate
their environment is discussed. The measurement of optic flow with cameras is
presented and alternative low-cost solutions are introduced. Finally, insect-inspired
robotic solutions based on optic flow are presented.
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of optic flow

3.1 The definition of optic flow

Optic flow can be defined as the pattern of apparent motion of objects and surfaces in
the environment caused by the relative motion between the observer and the visual
scene [33]. The concept of optic flow was introduced by the American psychologist J.J.
Gibson in 1950 in his book “The perception of the visual word", where it was defined
as the visual stimulus provided to animals moving through the world [85].
To define optic flow, let us consider the vantage point O of an observer (such as the
nodal point of an eye, a camera, etc...). A fiducial point F can be defined as a landmark
or feature that serves as marker in the environment for a short span of time. The
position of F is considered fixed and unconstrained, except that it cannot coincide
with O. O moves along a given path in space and this motion can be specified by a
finite number of vectors, which unambiguously represent a translation ~T or a rotation
about an axis ~R.
Let us consider a system of spherical coordinates centered on O (see Figure 3.1). F

is set at a distance ~Di (Φ,Θ) (with Φ azimuthal angle and Θ elevation angle) in the
direction ~di (Φ,Θ)) with respect to O, which corresponds to a nearness σi (Φ,Θ) =

1
Di (Φ,Θ)) . The displacement of F with respect to O for an (infinitesimal) incremental
time ∆t can be expressed as:

∆~Di =−(~T +~R ×~Di )∆t (3.1)

The change in the direction of F can be expressed as:

∆~di =−σi (~T − (~T ~di )~di +~R ×~Di )∆t (3.2)

Figure 3.1: System of spherical coordinates centered on the vantage point of the ob-
server O. The fiducial point F is set at a distance Di (Φ,Θ)) with respect to
O, with Φ azimuthal angle and Θ elevation angle.
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Figure 3.2: Representation as a vector field of the optic flow perceived by an aircraft
pilot when landing at an airport (from “The perception of the visual world",
J.J. Gibson, 1950 [85]).

Figure 3.3: Representation of the optic flow vector field generated by a translational
(A) and a rotational (B) motion of the observer with respect to the visual
scene (from “Photoreception and vision in invertebrates", E. Buchner, 1984
[31]).

Thus, the optic flow due to the apparent motion of F with respect to O in the vi-
sual scene p(Φ,Θ) (referred to also as motion field or parallax) is given by the time
derivative of equation (3.2) [126]:

p(Φ,Θ) =
∂~di

∂t
=−σi (~T − (~T ~di )~di )−~R × ~di (3.3)
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Figure 3.4: Representation of the optic flow vector field generated by a lift traslation
along the vertical body axis (a) and a roll rotation around the longitudinal
body axis (b) of an observer, respectively (from “Optic flow processing",
H.G. Krapp, 2014 [128]).

The motion parallax p(Φ,Θ) is always orthogonal to the direction di (Φ,Θ). Only the
translational component of the motion parallax is linked to the nearness and thus can
be used to assess the distance of F with respect to O if the rotational component of
the motion is null.
By means of equation (3.3), optic flow can be represented as a vector field [256, 165,
129], as shown in Figure 3.2. Figures 3.3 and 3.4 show the optic flow generated by a
translational and a rotational motion of the observer, respectively [31, 128]. These
motions generate two different optic flow cues: the translational optic flow and the
rotational optic flow, respectively. Approaching and receding with respect to a surface
causes respectively an expansion and contraction on the optic flow vector field: this is
known as the optic flow divergence [99].
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Figure 3.5: Trajectories of n honeybees tested in a tunnel under the following condi-
tions: (a) the entrance and the feeding station were both in middle of the
tunnel, (b) the entrance and the feeding station were both on the left side
of the tunnel, (c) the entrance and the feeding station were both on the
right side of the tunnel, (d) the entrance and the feeding station were both
on the right side of the tunnel and part of the left wall was removed. On
top, distributions of the means ordinate of each trajectory (from J. Serres et
al., 2008 [211]).

3.2 Navigating by means of optic flow: a lesson

from flying insects

Several studies have suggested that flying insects, such as honeybees and flies, navigate
their environment relying on optic flow cues. Examples of the use of optic flow by
flying insects include (and are not limited to) flight speed control, heading control,
frontal obstacle avoidance, landing and odometry [209].

Flight speed control Experimental results have suggested that honeybees rely on
optic flow to control their forward flight speed in tunnels [225, 178, 10, 10]. When
the tunnel cross-section narrows, honeybees decrease their flight speed to keep the
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Figure 3.6: a) Landing trajectory of a honeybee on a flat surface, showing its position
(circles) and shadow (stars) at 40ms intervals. b) 3D view of the landing
trajectory. c) Representation of the honeybee landing, showing that the
descent angle is kept constant (from M.V. Srinivasan et al., 2000 [226]).

sum of the two laterally perceived optic flows within a range of 460−640r ad/s [225,
10]. These observations led to the conclusion that honeybees might use an optic flow
regulator to adjust their flight speed [210, 207, 9, 138].

Heading control While flying through a narrow gap or a straight tunnel with ver-
tical stripes on both walls, honeybees were observed balancing distances on both
the left and the right side [124]. These observations have been explained with the
“centering response", according to which honeybees control their heading by min-
imizing the error between the two laterally perceived optic flows [222, 124, 211]. A
different behaviour was displayed when one of the walls of the tunnel was moving, as
honeybees showed a tendency to fly closer to the stationary wall [222]. Similar obser-
vations were reported for honeybees trained to reach a feeding station placed close to
a wall, suggesting a “wall-following" behaviour [211] (see Figure 3.5). Thus, in tunnels
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honeybees may follow either a “centering" or “wall-following" behaviour depending
on the position of the entrance and of the feeding station during training [222, 211].
Subsequent experiments have suggested that honeybees adjust their forward speed to
maintain the optic flow perceived on the wall constant [195].

Frontal obstacle avoidance In order to avoid frontal obstacles (such as sudden
turns) while flying in a tunnel, winged insects are thought to recur to optic flow to
estimate time-to-contact [134, 54, 168, 176]. Time-to-contact τ can be expressed as
the inverse of the optic flow divergence ωdi v [209]:

τ=
1

ωdi v
(3.4)

The expansion of the perceived optic flow in the frontal region of the compound eye
allows flying insects to assess the distance to the surface of the obstacle and avoid it.

Landing Honeybees have been observed landing on a flat surface keeping the de-
scent angle constant [226, 225] (see Figure 3.6). To explain this behaviour, it has
been suggested that honeybees control their forward speed by keeping the optic flow
perceived by the ventral region of their compound eye constant and that they keep de-
scent speed proportional to forward speed [226]. When landing on vertical platforms,
bumblebees alternately decelerate to maintain a constant optic flow expansion rate
and accelerate to reach higher optic flow expansion rates in order to land quickly and
robustly [89]. Honeybees have also been observed landing on a horizontally moving
target [263].

The honeybee visual odometer relies on optic flow Nowadays, researchers
consider the waggle duration as the metric used by foraging honeybees to communi-
cate the distance of a food source from the hive to their nestmates during the waggle
dance. The waggle duration is measured by [238]:

• averaging durations of the waggle runs executed by a forager during a single
waggle dance,

• computing the mean of the waggle run durations for all waggle dances executed
by a single forager for a given feeder position,

• computing the mean of the values obtained for all the foragers.

According to [223], the use of the waggle duration as the clue of the distance perception
makes it possible to define an “absolute" calibration for the honeybee visual odometer,
independent of the characteristics of the environment and equivalent to 17.7deg of
image motion per millisecond of waggle.
Experiments carried out with honeybees flying in narrow highly textured tunnels [223,
61] and over a lake [238] have suggested that the slope of the relationship between the
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indicated distance of a food source from the hive and the waggle duration depends on
the properties of the optic flow perceived. Two of the optic flow properties that seem
to influence this relationship are its density (which depends on the visual contrast
of the ground texture) and magnitude (an angular speed, which depends on both
the ground speed and the ground height). Previous studies have suggested that this
relationship depends on the accumulated ventral optic flow perceived by foraging
honeybees during the outward flight [60, 58, 61, 238].

3.3 Measuring optic flow cues

Various techniques have been developed to measure optic flow cues with pixel-level
accuracy by processing the stream of images captured by a camera [11] (see Figure
3.7). However, cameras are not the only sensors able to perceive optic flow. Other
common sensors used to measure optic flow include optical mouse chips, optical
motion tracking sensors and CCD/CMOS sensors [36].

3.3.1 Measuring optic flow cues with cameras

Optic flow can be measured as the difference in position of a point in two successive
images captured by a camera. Thus, on the image plane optic flow can be expressed
as follows:

[µ̇, ν̇]T
= f (µ,ν) (3.5)

with (µ,ν) coordinates of a point in pi xel /s or pi xel / f r ame and f function used to
measure the optic flow, dependent on the method applied [36] (see Figure 3.8).
Most camera-based optic flow measurement algorithms rely on the following assump-
tions [26, 188]:

• principle of brightness or feature consistency: only the movement of an object
with respect to the camera can locally change image or feature intensity,

• principle of spatial smoothness: the motion is uniform for neighbouring pixels,

• principle of small motion: the sampling frequency of the stream of images is fast
enough to accurately represent the motion over time.

The most common approaches to measure optic flow by processing the stream of
images captured by a camera in aerial robotic applications are:

• differential methods, that measure optic flow by means of spatio-temporal
derivatives of image intensity [14, 242], as the Lucas-Kanade method [145] and
the Horn-Schunck method [102],

• image interpolation methods, that do not use feature tracking nor image velocity
calculations [215],

• block matching algorithms, that minimize the sum of squared differences and/or
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Figure 3.7: Comparison of Optic Flow (OF) measurement with three different methods
using the stream of images captured by a camera: adaptive method [253],
complementary OF method [264] and DPOF method [137] (from S. Baker
et al., 2011 [11]).

of absolute differences [119],

• feature-based methods, that are based on the correlation of detected features
into pixel movements [143].

Other methods include region-based matching methods [2], phase-based methods
[71], fusion-based methods [235] and fractional-order-operator-based method [37].
Direct sunlight, image blur, shadows and increased speed are examples of factors
that may impact negatively the measurement of optic flow. Nevertheless, optic flow
cues can in principle be measured by processing the stream of images captured by
a camera also under challenging environmental conditions. For example, optic flow
divergence has been successfully exploited for underwater navigation [46] (see Figure
3.9).
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Figure 3.8: Projection of a 3D point of coordinates (ηx , ηy , ηz) on the image plane
(from H. Chao et al., 2014 [36]).

3.3.2 Alternatives to cameras

The number of pixels of the image sensor greatly influences the computational power
required to process the stream of images captured by a camera [35]. In aerial robotic
applications, the low onboard computational and perception resources available lead
to the use of minimalistic equipment, such as optic flow sensors and vision chips.

Optic flow sensors A minimalistic solution for measuring optic flow cues is the
use of optical motion tracking (or optic flow) sensors. The technology on which optic
flow sensors are based derives directly from the sensors first incorporated in optical
mice in the 1980s. Optic flow sensors rely on small arrays of monochromatic pixels,
ranging in size from about 2×2 [65] to 35×35. On the contrary, high-resolution cameras
have big color-sensitive pixel arrays (e.g. FullHD cameras have 1920×1080 pixel arrays).
Thus, optic flow sensors can be considered as small low-resolution cameras, with
image sampling up to 1000 f r ames/s and higher [91, 123]. The measurement of the
optic flow is based on digital image correlation: images are captured in continuous
succession and compared with each other to determine how much the sensor has
moved. Examples of optic flow sensors are the PAW3903 and PMW3901 models by
PixArt Imaging Inc. [117] (see Figure 3.10.a).
Optic flow sensors have been used to develop a self-contained, light-weight navigation
system tested on a robotic arm constrained to a horizontal plane [123]. The optic
flow measurements obtained by means of two optical mouse chips were used to filter
Interial Measurement Unit (IMU) outputs in order to estimate the full 6 degrees-of-
freedom platform state by means of an Extended Kalman Filter (EKF). Optic flow
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Figure 3.9: a) The Leonard ROV (Remotely Operated underwater Vehicle) (up) and the
Speedy ROV (down) during coordinated archaeological operations on the
Lune shipwreck (at a depth of 90m, in Toulon, France). b) Setup on the
Leonard ROV (adapted from V. Creuze, 2017 [46]).

Figure 3.10: Examples of (a) optic flow sensor (PMW3901 model by PixArt Imaging
Inc., [117]) and (b) vision chips (by CentEye Inc. [116]).

sensors coupled with inertial information were also used to perform stabilization and
collision avoidance on a fly-inspired micro-flyer [266]. Visual odometric approaches
implemented with optic flow sensors were tested on a mobile robot [136]. Forward
speed control was performed by means of an onboard light-weight optic flow sensor
on a flying robot over a steep relief [193].

Vision chips Technology similar to the one used in optic flow sensors has been
applied by CentEye Inc. to develop vision chips to support embedded applications
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with asynchronous interface, shutterless pixel circuits and flexible pixel window down-
sampling. The CentEye chips have small pixel arrays of about the same size of an optic
flow sensor [116] (see Figure 3.10.b). CentEye vision chips have been employed to
perform obstacle avoidance and hovering onboard a small aerial robot.

3.4 Insect-inspired robotic approaches based on

optic flow

Although the mechanisms underlying its perception in insects is not yet fully un-
derstood [251], optic flow has been widely used in robotics as a low-cost alternative
visual cue [209]. Taking inspiration from insects, it is possible to develop minimalistic
approaches requiring fewer resources in terms of sensors and computational power
for tasks involving navigation [131, 101, 93] or vision [76, 75], for example. Robotic
approaches can also help explaining the innate abilities and performance of insects
in navigating their cluttered environment [79, 218, 132, 115]. Insect-inspired robotic
strategies based on optic flow have been developed to perform speed control, naviga-
tion in a tunnel, obstacle avoidance, take-off and landing, ground avoidance, ground
following, etc... (see Figure 3.11).

Forward speed control A honeybee-inspired forward speed control system based
on optic flow was first implemented in 1992 on the Bee-Bot mobile robot, keeping the
bilateral optic flow within a measurable range [44]. The concept of bilateral optic flow,
defined as the sum of the optic flows measured by two cameras placed on the left and
right side respectively, was introduced and tested in a tapered tunnel on the Robee
mobile robot [200] (see Figure 3.12). As observed in honeybees, the higher the desired
bilateral optic flow, the faster the robot advanced close to the walls. Similar strategies
have been proposed in later studies [221, 5, 108, 109].
Forward flight speed control has been achieved by means of a vertical optic flow
regulator called OCTAVE (Optic flow based ConTrol system for Aerial VEhicles) on a
rotorcraft [196, 193] (see Figure 3.13). The OCTAVE autopilot ensures that the flight
height of the rotorcraft is proportional to its forward flight speed.

Navigation in a tunnel Taking inspirations from honeybees, a dual optic flow
regulator called LORA (Lateral Optic Regulator Autopilot) has been developed for
avoiding collisions in a tapered tunnel [192, 78]. The dual optic flow regulator consists
of:

• a unilateral controller to regulate lateral movement in order to maintain the
highest perceived lateral optic flow around a given set-point,

• a bilateral controller to adjust the forward movement in order to keep the sum
of the two perceived lateral optic flows around a second given set-point.
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Figure 3.11: Examples of behaviours observed in flying insects and their robotic coun-
terparts developed. (A) Terrain-following behaviour [174, 227] that in-
spired (E) the development of a free-flying aerial robot following the
ground [24, 198]. (B) Navigation in a tapered tunnel [178] that inspired (F)
ground-following and speed adjustment in complex tunnels with micro-
flyers [64, 177]. (C) Landing at a constant slope [226] that inspired (G) a
ventral optic flow regulator [192]. (D) Landing on a moving target [263]
that inspired (H) landing on a moving platform with a micro-flyer [98,
194] (from J. Serres and F. Ruffier, 2017 [209]).
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Figure 3.12: The mobile robot Robee equipped with a divergent stereo (from J. Santos-
Victor et al., 1995 [200]).

Figure 3.13: The 100g rotorcraft developed to test the OCTAVE (Optic flow based Con-
Trol system fro Aerial VEhicles) autopilot (from F. Ruffier and N. Frances-
chini, 2005 [192]).

The unilateral controller maintains the distance to the nearest wall proportional to the
forward speed, while the bilateral controller scales the forward speed according to the
width of the tunnel [210, 207]. If the unilateral set-point is reduced while keeping the
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Figure 3.14: Close-up view of the vision system consisting of 7 optic flow sensors
onboard a small aircraft to perform fly-inspired collision avoidance (from
A. Beyeler et al., 2009 [24]).

bilateral set-point constant, wall-following behaviour is observed. Centring behaviour
occurs when the unilateral set-point is less than half of the bilateral set-point.

Frontal obstacle avoidance The expansion of the optic flow vector field has
been exploited to estimate the time-to-contact with respect to a frontal obstacle by
triggering a given angle of rotation around the axis of a robot [168, 176]. This strategy
was tested in simulation on a flying robot [163] and experimentally onboard a wheeled
robot [54, 13, 252]. Optic flow divergence combined with inertial sensing has been
successfully exploited to detect obstacles onboard a 158g quadrotor both indoors
and outdoors [259]. Another strategy inspired by flies [122] and based on open-loop
commands (or saccades) has been proposed, either using constant given values [186,
265, 21] determined by means of a Gaussian distribution [182] or by means of optic
flow [23, 24, 198, 140, 184] (see Figure 3.14). The saccade-based strategy was tested on
a fully actuated hovercraft using the LORA autopilot, allowing the robot to navigate a
complex tunnel presenting S-shaped turns [191, 190] (see Figures 3.15 and 3.16).

Take-off, ground following and landing A honeybee-inspired strategy for land-
ing was implemented onboard a small fixed-wing aircraft [35]. However, the altitude
of the aircraft decreased linearly with time and not exponentially as expected. Optic
flow has also been used to perform ground avoidance with a small glider [15] and
with a fixed-wing aircraft [90]. The OCTAVE autopilot was used to perform take-off,
ground following and landing [196, 192, 78, 194]. With this strategy, landing can also be
performed on a moving target. Optic flow divergence has been exploited to estimate
the distance with respect to a surface in order to achieve stable hover and landing
onboard a small flying robot [47, 99].
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Figure 3.15: Comparison of the behaviour of the simulated LORA (Lateral Optic Regu-
lator Autopilot) rotorcraft and the behaviour displayed by the blowfly in a
tunnel with S-shaped turns. a) 8 trajectories executed by the rotorcraft in
the tunnel. b) Points in the tunnel where the saccades occur. c) Typical
trajectory of the rotorcraft in the tunnel, plotted every 400ms. d) Typi-
cal trajectory of the blowfly in the tunnel (from Kerne et al., 2012 [122];
image from J. J. Harrison, Wikimedia commons). e) Relative frequency
of saccades per trajectory. f) Number of saccades in the range [−90deg;
90deg], with a step of 30deg. g) Yaw angle of the rotorcraft body during
the typical trajectory shown in (c). f) Yaw angle of the blowfly during the
typical trajectory shown in (d) (from J. Serres et al., 2015 [212]).

ALIS: an optic flow based autopilot that mimics the 3D behaviour of honey-
bees A 3D optic flow based autopilot called ALIS (AutopiLot using an Insect-based
vision System) has been developed by combining the OCTAVE and LORA autopilots
[177] (see Figure 3.17). The ALIS autopilot consists of:

• a forward speed control loop based on feedback from the maximum value of the
two optic flows perceived along the vertical axis,

• a positioning control loop based on feedback from the maximum value of per-
ceived lateral, vertical and dorsal optic flows.

The ALIS autopilot was tested in simulation in straight and tapered tunnels in the
presence disturbances, such as temporary lack of texture or changes in the tunnel
section. With this strategy, the simulated flying robot considers the minimum cross-
section of the tunnel to adjust its forward speed and the nearest surface to adjust its
distance from the walls.
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Figure 3.16: A) The LORA (Lateral Optic Regulator Autopilot) fully autonomous hov-
ercraft equipped with an artificial compound eye of 8 pixels. B) Small
fully actuated hovercraft equipped with four fly-inspired Local Motion
Sensors (LMSs) of 2 pixels, navigating along an unknown textured tunnel.
C) The LORA hovercraft moves along a tapered tunnel solely on the basis
of translational optic flow (in white on the walls) (from F.L. Roubieu et al.,
2014 [190]).

Figure 3.17: Scheme of the ALIS (AutopiLot using an Insect-based vision System) au-
topilot, resulting from the combination of the dual optic flow regulator
LORA (Lateral Optic Regulator Autopilot) and the vertical optic flow regu-
lator OCTAVE (Optic flow based ConTrol system fro Aerial VEhicles) (from
G. Portelli et al., 2010 [177]).

58



3 Honeybees’ solutions for visual guidance: the use of optic flow – 3.4 Insect-inspired

robotic approaches based on optic flow

Figure 3.18: a) Trajectory of the BeeRotor robot following the ground while keeping
the artificial compound eye CurvACE (in the picture) fixed (BeeRotor I, in
blue) and while reorienting the artificial compound eye to keep its equator
parallel to the ground (BeeRotor II, in red). b) Experimental setput (from
F. Expert and F. Ruffier, 2015 [64]).

The ALIS autopilot was tested onboard a rotocraft called BeeRotor [64] (see Figure
3.18). A third feedback loop was added to reorient an artificial compound eye called
CurvACE equipped on the rotorcraft in order to keep its equator always parallel to the
nearest surface.

Conclusion

Flying insects rely on optic flow to perform tasks fundamental to their survival, such
as flight control, obstacle avoidance, landing, etc... Optic flow is also the visual cue on
which the honeybee odometer seems to rely. Thus, optic flow represents a possible
solution to the problem of visual odometry onboard micro- and nano-drones, since it
can be measured both by processing the stream of images captured by a camera and
with computationally low-cost sensors such as optic flow sensors and vision chips.
Several insect-inspired solutions based on the use of optic flow have been developed
for forward speed control, tunnel navigation, obstacle avoidance, etc...
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4 New considerations on the role
of optic flow in the honeybee
visual odometer

Several studies have suggested that the honeybee visual odometer assesses the dis-
tance of a food source from the hive by mathematically integrating the raw angular
velocity of the image sweeping backwards across the ventral viewfield, which is known
as the translational optic flow. However, the question arises as to how the integration
of the optic flow (expressed in r ad/s) can reliably encode a distance, as it depends
on the ground speed and the ground height. Furthermore, honeybees have been
observed to oscillate while flying forward both in tunnels and in open field. These
self-oscillations add an additional cue to their optic flow vector field: this is the optic
flow divergence.
In this chapter, the role of optic flow cues in the honeybee visual odometer is discussed.
The self-oscillations observed in flying honeybees are introduced and the optic flow
cues generated by following such self-oscillatory trajectories are identified.
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4.1 Oscillating while flying forward

Experiments carried out in horizontal [124] and vertical [178] tunnels have shown that
honeybees oscillate while flying forward (see Figure 4.1). The oscillation frequencies
reported range around 2H z, while the oscillation amplitude is approximately 3cm in
width (in narrow 12cm-wide tunnels) [124] and 10cm in height (in 40cm-high tunnels)
[178]. According to a recent study, honeybees flying in narrow tunnels might control
their ground height by means of lateral self-oscillations with a mean frequency of
4.7±1.6H z [8].
Similar self-oscillations have also been observed in lepidopterans [257, 201]. As with
honeybees, oscillation frequencies of about 2H z were reported in moths [12]. The
flight direction of migratory moths crossing the landing strip at La Sirena (Parque
Nacionai Corcovado, Costa Rica) were sampled with the aid of a sighting compass
[174, 227]. Up-and-down oscillations at an average ground height of about 1m can be
observed in Figure 4.2, in which the flight track used by the migratory moths is shown.
Figure 4.3 shows the chronophotography of the flight of a butterfly in the Luminy
Campus (Marseille, France), in which up-and-down self-oscillations can be observed.
In tunnels, the direction of the self-oscillations (either on the vertical or horizontal
plane) seems to depend strongly on the geometric configuration of the tunnel itself
and on the entrance point of the insect. Therefore, the impact of tunnel geometry is
stronger for smaller tunnels. Experimental results obtained with lepidopterans and
qualitative observations on both lepidopterans and hymenopterans have indicated
that flying insects oscillate up and down in open field conditions.

B

A

Vertical tunnel (Portelli et al, 2011)

Horizontal tunnel (Kirchner and Srinivasan, 1989)

Figure 4.1: A) Top view of the trajectory of a flying honeybee presenting side-to-side
oscillations (on the right) in a horizontal tunnel (on the left) (adapted
from W.H. Kirchener and M. V. Srinivasan, 1989 [124]) B.i) Side view of the
trajectory of a flying honeybee presenting up-and-down oscillations (on
the right) in a vertical doubly-tapered tunnel (on the left) (adapted from G.
Portelli et al., 2011 [178]).
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Figure 4.2: Flight track used by migratory moths (Urania fulgens) while approaching,
crossing and leaving the landing strip at La Sirena in the Parque Nacionai
Corcovado, Costa Rica (from E.G. Oliveira, 1998 [174]). The up-and-down
self-oscillations can be observed as the moth crosses the landing strip.

Figure 4.3: Chronophotography of a butterfly flying in open field over an irregular
pattern of grass (recorded on the Luminy Campus in Marseille, France).
Up-and-down self-oscillations are observable.

4.1.1 Optic flow cues perceived by the ventral region of the

honeybee compound eye

The optic flow vector field perceived by the ventral region of the honeybee compound
eye during self-oscillatory forward flights in open field is shown in Figure 4.4. Three
optic flow cues can be identified: the translational, divergence and rotational optic
flow cues.
The translational optic flow cue is the pattern due to the translational motion of the
honeybee flying forward above the ground [85]. Assuming a linear flight on a vertical
plane (x, z) with a null rotational component of motion, the local translational optic
flow ωT can be expressed downward as the ratio between the horizontal component
Vx of the velocity V and the ground height h of the honeybee [256] (shown in red in
Figure 4.4):

ωT =
Vx

h
(4.1)

The up-and-down self-oscillatory motion generates a series of contractions and ex-
pansions in the ventral optic flow vector field, which can be quantified as the optic
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flow divergence cue. The optic flow divergence is superimposed in the optic flow
vector field on the translational optic flow component.
Let us consider a point of coordinates (xi , yi ) perceived on the ground below. The
optic flow divergence can be expressed as the partial derivatives of its velocities (u, v)
with respect to its image position (xi , yi ) [153, 100]:

ωdi v (xi , yi ) =
∂u(xi , yi )

∂xi
+
∂v(xi , yi )

∂yi
(4.2)

Assuming a linear flight on a vertical plane (x, z) with a null rotational component of
motion, the local optic flow divergence ωdi v can be expressed downward as the ratio
between the vertical component Vh of the velocity V and h (shown in blue in Figure
4.4):

ωdi v =
Vh

h
(4.3)

Honeybees also perform turns and saccades as they fly forward while oscillating.
These rotational motions generate distortions in the ventral optic flow vector field,
which can be quantified as the rotational optic flow cue. The rotational optic flow
depends on the rotational speed of the honeybee and is superimposed in the optic
flow vector field on the translational and divergence optic flow components. Assuming
a linear flight on a vertical plane (x, z) with a null translational component of motion,
the local rotational optic flow ωR due to a rotation about the y axis can be expressed
as the derivative over time of the honeybee pitch θ:

ωR =
d(θ)

d t
(4.4)

4.2 Estimating the distance of a food source from

the hive: the honeybee visual odometer

Several studies have proposed a model for the honeybee visual odometer based on the
mathematical integration of the accumulated raw translational optic flow measured
in the ventral viewfield (here called OFacc model for Optic Flow accumulation model)
[58, 225, 224, 61, 238]. The OFacc model can be expressed as follows:

X̂acc =

∫

ωT d t (4.5)

The estimates of the distance travelled X̂acc obtained with the OFacc model are given
in r adi ans. Figure 4.5 shows the distribution of the final distance estimates obtained
in simulation of honeybees’ trajectories over a 100m-long open field with 3 small
hills separated by flat areas in the presence of wind (see Chapter 5 for more details).
The OFacc model was tested in simulation under a total number of 630 parametric
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Figure 4.4: Honeybees oscillate up (a.i) and down (b.i) while flying forward over the
ground, generating a series of contractions (a.ii) and expansions (b.ii) in
the ventral optic flow vector field quantified as the optic flow divergence
cue (in blue). The optic flow divergence is superimposed in the optic flow
vector field on the translational optic flow (in red).

conditions. The final distance estimates were calibrated to show the results in meter s.
The calibration factor (called kcompar i sons) was computed in order to set at 100m the
median value of the distribution:

kcompar i sons =
100

medi an
= 1.161 [m/r ad ] (4.6)

The Median Absolute Deviation (MAD) of the final distance estimates amounted to
25.62r ad , equivalent to 29.74m. Thus, the OFacc model does not seem to account
well for the accuracy observed in foraging honeybees returning to a previously visited
food source.

Conclusion

Several studies have proposed a model for the honeybee visual odometer that math-
ematically integrates the raw translational optic flow perceived across the ventral
viewfield during outward flights. When tested in simulation, this model for the honey-
bee visual odometer proved to be not very accurate. Honeybees and butterflies have
been observed oscillating up and down while flying forward in open field. This oscilla-

64



4 New considerations on the role of optic flow in the honeybee visual odometer – 4.2

Estimating the distance of a food source from the hive: the honeybee visual odometer

Figure 4.5: The curve gives the distribution of the final distance estimates obtained
with the Optic Flow accumulation (OFacc) model for the honeybee visual
odometer. The OFacc model was tested on honeybees’ trajectories in open
field simulations in the presence of wind and ground irregularities, under a
total number of 630 parametric conditions. The set of simulated conditions
was generated by modulating i) the peak height of the ground relief ii) the
wind speed iii) the translational optic flow setpoint and iv) the ground
speed of the simulated honeybee. The median value of the final distance
estimates obtained with the OFacc model was aligned with the 100m tick
on the meter abscissa (here called goal).

tory motion generates an additional optic flow cue: this is the optic flow divergence.
The optic flow divergence cue could play a key role in the innate ability of honeybees
to assess the distance travelled.
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5 The SOFIa model for the
honeybee visual odometer

Foraging honeybees inform their nestmates about the distance of a food source from
the hive by performing a waggle dance. Several studies have suggested that the honey-
bee odometer relies on visual cues, and more specifically on optic flow. A model for
the honeybee visual odometer based only on the mathematical integration of the raw
translational optic flow perceived across the ventral viewfield (here called OFacc for
Optic Flow accumulation) has been proposed. However, the accuracy of the OFacc
model does not seem to account for observations on honeybees.
Honeybees have been observed performing self-oscillations while flying forward in
horizontal and vertical tunnels. These oscillatory movements enrich the ventral optic
flow vector field of honeybees with a sequence of contractions and expansions, which
can be quantified as the optic flow divergence cue. Changes in ground height and
ground speed due to the self-oscillations make these two variables observable and
thus they can both be estimated by means of the optic flow divergence cue.
In this chapter, we present a model for the honeybee visual odometer, called SOFIa
(Self-scaled Optic Flow time-based Integration model), to estimate the distance trav-
elled exclusively on the basis of translational and divergence optic flow cues. The
optic flow divergence cue is given as measurement to an Extended Kalman Filter
to visually estimate the ground height, which scales the translational optic flow cue
before its integration over time. The SOFIa visual odometer was tested on honeybees’
trajectories in simulation over a 100m-long open field with 3 small hills, under a wide
range of wind and terrain conditions.
The SOFIa visual odometer proved to be approximately 10 times more accurate than
the OFacc model tested under the same conditions. Additionally, the output of the
SOFIa model is expressed in metr es, whereas that of the OFacc model is expressed
in r adi ans. Therefore, the SOFIa visual odometer is doubly interesting, as it is both
bio-plausible and opens up the possibility of performing minimalistic visual odometry
onboard small flying robots.

66



5 The SOFIa model for the honeybee visual odometer –

Table of contents

5.1 Oscillations make a self-scaled model for honeybees’ visual odometer
reliable regardless of flight trajectory . . . . . . . . . . . . . . . . . . . . 68

5.1.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.3 A model for bees’ visual odometer based solely on optic flow cues 70

5.1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1.4.1 Self-oscillations make the height of flight h assessable
whatever the wind conditions . . . . . . . . . . . . . . . 72

5.1.4.2 SOFIa odometer assesses flight distances under various
conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1.4.3 The SOFIa odometer is more precise than the OFacc model 74

5.1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1.5.1 Open-field simulation and height of flight . . . . . . . . 78

5.1.5.2 Reliability of the honeybee’s visual odometer documented
in the literature . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1.5.3 Oscillations help bees to gauge their clearance from the
ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1.5.4 Biological plausibility of the SOFIa model . . . . . . . . 80

5.1.5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1.6 Supplemental Information . . . . . . . . . . . . . . . . . . . . . . 86

5.1.6.1 Honeybees’ self-oscillation . . . . . . . . . . . . . . . . . 86

5.1.6.2 Extended Kalman Filter equations . . . . . . . . . . . . . 86

5.1.6.3 Robustness of the SOFIa visual odometer at the various
self-oscillation frequencies applied . . . . . . . . . . . . 88

5.1.6.4 Final % errors in the flight distances estimated under
three different wind conditions . . . . . . . . . . . . . . 90

5.1.6.5 Simulations under tail and head wind conditions with
respect to time . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1.6.6 Statistical dispersion: comparisons in terms of uΘ and
hpeak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

67



5 The SOFIa model for the honeybee visual odometer – 5.1 Oscillations make a

self-scaled model for honeybees’ visual odometer reliable regardless of flight

trajectory

5.1 Oscillations make a self-scaled model for

honeybees’ visual odometer reliable

regardless of flight trajectory

Published as:
L. Bergantin, N. Harbaoui, T. Raharijaona and F. Ruffier, “Oscillations make a self-
scaled model for honeybees’ visual odometer reliable regardless of flight trajectory,”
Journal of the Royal Society Interface, 18.182 (2021), p. 20210567., 2021

5.1.1 Abstract

Honeybees foraging and recruiting nestmates by performing the waggle dance need
to be able to gauge the flight distance to the food source regardless of the wind
and terrain conditions. Previous authors have hypothesized that the foragers’ visual
odometer mathematically integrates the angular velocity of the ground image sweep-
ing backward across their ventral viewfield, known as translational optic flow. The
question arises as to how mathematical integration of optic flow (usually expressed
in r adi ans/sec) can reliably encode distances, regardless of the height and speed
of flight. The vertical self-oscillatory movements observed in honeybees trigger ex-
pansions and contractions of the optic flow vector field, yielding an additional visual
cue called optic flow divergence. We have developed a self-scaled model for the
visual odometer in which the translational optic flow is scaled by the estimated cur-
rent clearance from the ground. In simulation, this model, which we have called
SOFIa, was found to be reliable in a large range of flight trajectories, terrains and
wind conditions. It reduced the statistical dispersion of the estimated flight distances
approximately 10-fold in comparison with the mathematically integrated raw optic
flow model. The SOFIa model can be directly implemented in robotic applications
based on minimalistic visual equipment.

5.1.2 Introduction

It was reported in 1967 by von Frisch [247] that honeybees perform the waggle dance
to convey relevant information about the distance from the hive to a food source and
the direction of the corresponding flight trajectory. The nestmates extract the relevant
distance and direction information from the waggle dance and use it to find the food
source themselves. However, it has not yet been established exactly how foragers as-
sess the flight distance. It has been previously concluded that honeybees estimate this
flight distance by gauging the amount of energy spent in reaching their destination
[247, 167]. However, recent findings have suggested that this “energy hypothesis” does
not actually account for the honeybees’ odometer, at least not in the case of medium
distances of a few hundred meters [59]. Several authors have established that in this
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case, the honeybees’ odometer relies on visual cues [60, 58, 225, 224, 223] especially
the optic flow [61] (see also [40] for a review).
The duration of the waggle run depends quite linearly on the flight distance from
the hive to the food source, especially in the case of open field flights [60, 223]. The
slope of this linear relationship depends on some properties of the optic flow, such as
those perceived when flying through a narrow highly textured tunnel [223, 61] or over
low-contrast lake water ripples [238]. The ventral optic flow has several properties
of this kind: (i) the optic flow density, which depends on the visual contrast of the
ground texture and (ii) the magnitude of the optic flow, which depends on both the
ground speed and the ground height. Some authors have concluded that the duration
of the waggle run observed in the hive depends on the accumulated ventral optic flow
perceived during the forager’s flight to the food source [60, 58, 61, 238]. Lastly, it has
been suggested that honeybees may gauge the flight distance by accumulating the
raw translational optic flow measured in their ventral viewfield [58, 225, 224, 61, 238],
as described in the previous model for the visual odometer which we have referred to
here as the OFacc model.
The question arises as to how mathematical integration of the raw translational optic
flow (usually expressed in r adi ans/sec) can reliably encode a distance. It has not yet
been established how a visual flight odometer fed solely with translational optic flow
can be reliable, since this cue depends on both the insects’ velocity and their height of
flight with respect to the ground. A pioneering biorobotic study has shown that raw
mathematical integration of the optic flow does not suffice to obtain a reliable visual
odometer [114]. Several visual odometric approaches involving the use of either optic
flow [234] or the sparse-snapshot method [50] have been successfully tested on flying
robots. All these approaches require ground height information providing the factor
scaling the visual information. This scaling factor is often determined separately, using
a static pressure sensor [119] or stereovision [234, 50], for example. A neuroanatomical
constraint model for the bee brain’s path integration process based on raw accumu-
lated optic flow was recently tested on a mobile robot [230]: this terrestrial robot was
endowed with an optic flow camera moving at an intrinsically constant height from
the ground.
Horizontal and vertical oscillations have been observed during forward flight in Hy-
menopterans in horizontal [124] and vertical tunnels [178] (see Suppl. Information

Figure S1). These movements generate a sequence of contractions and expansions
in the optic flow vector field, which has been quantified and termed the optic flow
divergence. During oscillatory forward flight, the sequence of contractions and expan-
sions is superimposed on the translational optic flow. Various optic flow cues such
as translational optic flow [78] and optic flow divergence [7, 244] have been used to
explain insects’ visually controlled landing performances. Moreover, translational
optic flow [192] and optic flow divergence [98, 30, 99] have been used to control robots’
manoeuvres. The present study was based on the previously developed visuo-motor
model for honeybee flight [78, 180], which includes the honeybee’s dynamics and the
optic flow regulation process [192], which keeps the translational ventral optic flow
constant (as observed in honeybees [226, 177]).
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In this section, we present a new honeybee-inspired model for the visual odometer
assessing the flight distance on the sole basis of optic flow cues. In this new model,
self-induced oscillations generating optic flow divergence are used to gauge the depth,
which we have also called the ground height or the clearance from the ground. This
information serves to scale the time-based integration of the concomitant transla-
tional optic flow. The present model has been called the SOFIa model, which stands
for Self-scaled Optic Flow time-based Integration model. The output resulting from
the scaling by the current clearance from the ground is given here in meter s, whereas
that of the model based solely on the raw mathematical integration of the optic flow
is given in r adi ans. The SOFIa model was tested in simulation under a large range
of flight trajectories and wind conditions, as well as over flat and irregular surfaces
representing the ground.

5.1.3 A model for bees’ visual odometer based solely on

optic flow cues

The SOFIa model assesses the flight distance by integrating over time the translational
optic flow scaled by the current estimated height of flight ĥ. The self-oscillations

Figure 5.1: a) Honeybees perform up-and-down oscillatory movements while flying
forward over the ground. This process of self-oscillation generates alter-
nating contractions and expansions of the ventral optic flow vector field,
which can be quantified using the optic flow divergence cues. The op-
tic flow divergence depends downward on the ratio ωdi v =

Vh

h
. b) If the

vertical velocity with respect to the ground Vh is positive, the optic flow
divergence component will be a contraction (i); if it is negative, the optic
flow divergence component will be an expansion (ii). The contraction or
expansion of the optic flow is superimposed in the optic flow vector field
on the translational optic flow, whose magnitude depends downward on
the ratio ωT =

Vx

h
.

70



5 The SOFIa model for the honeybee visual odometer – 5.1 Oscillations make a

self-scaled model for honeybees’ visual odometer reliable regardless of flight

trajectory

performed by the simulated honeybee flying over a surface result in the superimposi-
tion of two vector field components of the optic flow (see Figure 5.1), from which the
simulated honeybee can extract:

• the translational optic flow, whose magnitude depends downward on the ratio
between the forward ground speed Vx and the height of flight h:

ωT =
Vx

h
[r ad/s] (5.1)

and

• the optic flow divergence, which depends downward on the ratio between the
vertical speed Vh and the height of flight h:

ωdi v =
Vh

h
[r ad/s] (5.2)

The optic flow divergence makes the clearance from the ground ĥ observable via
an Extended Kalman Filter (EKF) (see Materials and Methods for the state space
representation of the EKF as well as for the observability analysis; see also the EKF
equations A.1-A.7 in section A.2 of appendix 5.1.6). The estimated flight distances
X̂SOF I a were determined by integrating over time an estimated linear speed, defined
as the translational optic flow ωmeas

T scaled by the estimated height of flight ĥ, as
follows:

X̂SOF I a =

∫

ωmeas
T · ĥ d t (5.3)

The honeybees’ trajectories were simulated using the results of previous modelling
studies on honeybees, focusing in particular on the ventral optic flow regulator [78]
and the simplified honeybees’ flight dynamics [180] (see Honeybees’ vertical dynamics
section a of Material and Methods and the video at this and the video at this link 1). To
test the SOFIa model for the visual odometer, we simulated a honeybee performing
self-controlled oscillatory movements regulating its downward translational optic flow
in the presence of disturbances (see Figure 5.2). The self-scaled model for the visual
odometer was first tested in simulation over flat ground in the presence of tail and
head wind, and then with additional ground irregularities with various heights and
slopes.
The honeybee-inspired autopilot scheme includes an optic flow feedback loop con-
trolling the simulated honeybee’s vertical dynamics [78, 180], as shown in Figure 5.2.
The vertical controller adjusts the wing stroke amplitude u∆Φ, which drives the vertical
dynamics and hence the clearance from the ground (or height of flight) h in order to
keep the ventral optic flow constant. The wing stroke amplitude u∆Φ is the sum of
the vertical controller’s output and the self-oscillatory control input (see Simulated
honeybee flight parameters section b of Material and Methods). The height of flight
is disturbed by the presence of irregularities on the ground. In parallel, the forward

1https://www.youtube.com/watch?v=SRAafqcSeAo
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Figure 5.2: The control scheme implemented in the honeybee-inspired autopilot in-
cludes a feedback loop for vertical control, which keeps the translational
optic flow constant, feeding the vertical controller with the difference be-
tween the translational optic flow perceived ωmeas

T and its setpoint ωset
T .

The forward dynamics are modelled by a transfer function between the
simulated bee’s pitch uΘ and the air speed Vai r . The velocity of the wind
is added to Vai r , giving the forward velocity Vx . A height estimator (an
EKF) receives i) the wing stroke amplitude u∆Φ as an the control input (or
efference copy) and ii) the optic flow divergence ωmeas

di v
measurements. The

estimated flight distances are assessed by mathematically integrating over
time the translational optic flow ωmeas

T scaled by the estimated height of

flight ĥ. Neurons sensitive to optic flow divergence and translational optic
flow have been identified in honeybees (see Discussion section).

dynamics fed by the honeybee’s pitch uΘ give the honeybee’s forward velocity, which
can be is affected by the wind velocity (see Wind modelling section e of Material and

Methods).
The translational optic flow cannot give either the ground speed or the ground height
directly, but only the ratio between these two variables. This means that the use of
an optic flow regulator controlling the wing stroke amplitude involves an inverse
nonlinearity ( 1

x
): the feedback loop does not linearly act on the optic flow, but rather

provides the means of adjusting the denominator on which the optic flow depends,
i.e., the height of flight h (see Figure 5.2).

5.1.4 Results

5.1.4.1 Self-oscillations make the height of flight h assessable whatever
the wind conditions

Simulations of a vertically oscillating honeybee flying forward over a 8m-long flat
ground were performed. These self-oscillations generated an undulating pattern of
optic flow divergence, as shown in Figure 5.3.e. The simulations included automatic
take-off, cruise flight and landing based on the ventral optic flow regulator (see Simu-
lated honeybee flight parameters section b of Material and Methods). Two different
wind conditions (tail and head wind) were studied (see Figure 5.3.b).
As shown in Figure 5.3.a, the simulated honeybee’s height of flight depended on the
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Figure 5.3: Oscillating forward flights of honeybees were simulated over a 8m-long
flat ground (see Simulated honeybee flight parameters section b of Mate-

rial and Methods). a) The trajectory including take-off, cruise flight and
landing was simulated under tail (blue) and head (red) wind conditions.
The honeybee’s pitch determined the speed and hence the height of flight
h, in line with the optic flow regulation scheme. The change in the pitch
uΘ was responsible for take-off and landing. b) The wind was modelled as
in equation 8.18 (see Wind modelling section e of Material and Methods).
Its sign depended on its direction: it was positive in the case of tail wind
(blue) and negative in that of head wind (red). c) The estimated height of
flight ĥ (in dashed lines) converged quickly to h under various initial EKF
conditions. d) The velocity Vx increased during take-off, ranged around
a constant value during cruise flight, and decreased during landing. Its
value during cruise flight depended on the wind conditions: it was higher
in the case of tail wind (blue) and lower in that of head wind (red). e) The
undulating patterns of optic flow divergence were due to the vertical self-
oscillatory movements. At a given optic flow setpoint, the amplitude of
the optic flow divergence was greater in the case of head wind due to the
honeybee being closer to the ground (see appendix 5.1.6 Figure A.4).
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wind conditions. Under tail wind conditions, the simulated honeybee flew higher
with respect to the ground in order to keep the perceived translational optic flow near
the optic flow regulator’s setpoint. It has been previously reported that a stronger tail
wind results in a higher ground speed in honeybees [254], and that flying insects (such
as locusts and honeybees) ascend by tail wind and descend by head wind ([120] and
[29], respectively). For the same reason, a head wind results in a lower value of Vx and
hence in a lower height of flight.
Even in the presence of wind, it was possible to estimate the simulated honeybee’s
clearance from the ground accurately using an EKF. As shown in Figure 5.3.c, the
height of flight estimates ĥ converged quickly with the ground-truth h and followed
h accurately throughout the entire trajectory. The final estimation error amounted
to 3.67% in the case of head wind and 5.18% in that of tail wind. ĥ can therefore be
used as a scaling factor by the SOFIa visual odometer model in order to determine the
estimated flight distances accurately.

5.1.4.2 SOFIa odometer assesses flight distances under various
conditions

To test the robustness of the SOFIa model even in the presence of ground disturbances,
simulations were performed over a 100m-long ground surface including irregularities
with various heights and slopes in the presence of wind (see Figure 5.4). As shown in
Figure 5.4, even in the presence of multiple disturbances, including here the presence
of a relief, the clearance from the ground ĥ was still accurately estimated using the
EKF thanks to the self-controlled oscillations. Again, ĥ can be used as a scaling factor
the SOFIa visual odometer model to estimate the distance flown. Figure 5.4.e gives
examples of the results obtained in the estimation of X̂SOF I a : the final estimation error
here was 1.1% in the absence of wind, 0.69% under tail wind and 1.8% under head
wind.

5.1.4.3 The SOFIa odometer is more precise than the OFacc model

The two models for the honeybee’s visual odometer (the OFacc model based solely on
the raw mathematical integration of optic flow and the SOFIa model) were both tested
in simulation under the same set of 630 parametric conditions in order to analyse and
compare fairly the statistical distributions of the estimated flight distances. The set
of simulated conditions was generated by varying: i) the peak height of the ground
relief, taking 3 different values of hpeak (no relief, 1m and 2m), ii) the wind speed,
taking 7 different kwi nd values ranging from −1.5 to 1.5 with a 0.5 interval, giving a
full set of wind conditions ranging from head to tail wind, iii) the translational optic
flow setpoint, taking 4 different values of ωset

T ranging from 2 to 3.5 r ad/sec with a 0.3
r ad/sec interval and iv) the honeybee’s flight speed, taking 5 different time-profiles
of the pitch uΘ, the cruising values of which ranged between 30deg and 50deg with
an interval of 5deg.
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Figure 5.4: Oscillating forward honeybee flights were simulated over a 100m-long
ground including irregularities with various heights and slopes (see Simu-
lated honeybee flight parameters section b of Material and Methods). a-d)
The simulated trajectory included take-off, cruise flight and landing under
three different wind conditions: no wind (b) in black, tail wind (c) in blue,
and head wind (d) in red. When wind was present, its sign depended on
its direction: it was positive in the case of tail wind, c.ii, and negative in
that of head wind, d.ii. The estimated height of flight ĥ (in dashed lines)
converged quickly with h under various initial EKF conditions. e.i) The
error in the estimated flight distances with respect to the ground truth was
normalized and expressed in %. In the absence of wind, its final value was
−1.1%, under tail wind, it was 0.69%, and under head wind, it was −1.8%.
e.ii) The X̂SOF I a estimated flight distance values were compared with the
ground truth X throughout the entire trajectory: the estimates were found
to be accurate although they were based on optic flow cues alone.

The SOFIa model’s outputs were quite accurate, giving a median distance of 104.8m

when simulated over a 100m-long irregular surface under various wind conditions
(ranging between 1.38m/s and −1.25m/s) and relief heights (up to 2m). The two
models for the visual odometer were also simulated in a large range of heights of flight
h and ground speeds Vx , from 0 to 4.35m and from 0 to 4.95m/s, respectively.
The distribution of the OFacc visual odometer’s outputs was multiplied by kcompar i sons

after the simulation runs just to be compared statistically with that of the SOFIa model,
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Figure 5.5: The curves give the distributions of the two models for the visual odometer
simulated during a 100m-long flight above 3 small hills with gentle slopes
separated by flat areas, under a total number of 630 parametric conditions.
The set of simulated conditions was generated by modulating i) the peak
height of the ground relief ii) the wind speed iii) the translational optic
flow setpoint and iv) the honeybee’s flight speed. For the sake of visual
comparisons, the median value in r adi ans of the OFacc model was aligned
with the 100m tick on the meter abscissa using the factor kcompar i sons (see
section f of Material and Methods). The line carrying the ◦markers denotes
the relative frequency distribution given by the SOFIa model, and the line
with the � markers denotes the relative frequency distribution given by
the OFacc model based on the raw accumulated optic flow. The symbol •
placed above the curves at 104.8m gives the median value of the estimated
flight distances based on the SOFIa model in comparison with the goal
(the virtual food source) located 100m away. The spread of the two models’
outputs differed significantly (Brown-Forsythe-test, df = 502, F: 383.66, p-
value << 0.001). The statistical dispersion of the distribution obtained with
the SOFIa model was found to be considerably smaller than that obtained
with the OFacc model: the Median Absolute Deviation (MAD) of the SOFIa

model was 3.09m, while that of the OFacc model amounted to 25.62r ad ,
i.e. 29.74m after multiplication by kcompar i sons .

since its output is given in r adi ans and not in meter s (see section f of Materials

and Methods). As shown in Figure 5.5, the statistical dispersion of the estimated
flight distances with respect to the wind obtained with the SOFIa model differed
considerably from those obtained with the OFacc model (Brown-Forsythe-test, df =
502, F: 383.66, p-value << 0.001). The Median Absolute Deviation (MAD) of the results
obtained with the SOFIa model amounted to 3.09m, whereas that obtained with the
previous model amounted to 29.74m after multiplication by kcompar i sons . Figure 5.6
shows the statistical distributions of the outputs of the SOFIa model and those of the
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Figure 5.6: The plots give the statistical distributions obtained under the same 630
parametric conditions with the SOFIa model (in green) and the OFacc

model based solely on the raw mathematical integration of the optic flow
(in grey) under tail wind, no wind and head wind conditions. Under tail
wind conditions, the median values of the statistical distribution obtained
were 77.7m with the OFacc model (after multiplication by kcompar i sons) and
103.72m with the SOFIa model. In the absence of wind, the median values
were 100.67m with the OFacc model (after multiplication by kcompar i sons)
and 106.67m with the SOFIa model. Under head wind conditions, the
median values obtained were 122.96m with the OFacc model (after mul-
tiplication by kcompar i sons) and 104.78m with the SOFIa model. The me-
dian values of the OFacc model outputs differed significantly among the
three wind conditions (Kruskal-Wallis test, p-value < 10−49 with the OFacc

model). Under the various wind conditions considered, the median values
of the two visual odometer models’ outputs differed significantly (Wilcoxon
test, p-value < 0.001, Z=20.13 ; 11.64 ; 20.13, under tail wind, no wind and
head wind conditions, respectively). Overall, the SOFIa model’s odomet-
ric performances were consistently more reliable regardless of the wind
conditions.
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OFacc model under tail wind, no wind and head wind conditions. The median values
given by the SOFIa model ranged between 103.72m and 106.67m, whereas those
given by the OFacc model ranged between 77.7m and 122.96m after multiplication by
kcompar i sons . The MAD of the SOFIa model was consistently lower than 3.16m, while
the MAD of the OFacc model ranged between 19.72m and 28.71m after multiplication
by kcompar i sons . Our findings show that the statistical dispersion of the estimated
flight distances obtained with the SOFIa model was about 10 times smaller than that
of the estimates obtained with the OFacc model. Similar results were obtained upon
comparing the odometric performances of the two models in terms of the honeybee’s
body pitch uΘ, which drives its forward speed, as well as in terms of the height of the
simulated relief hpeak (see Figure A.5.a and b in section A.6 in appendix 5.1.6).
At a given optic flow setpoint, the honeybee flies at a slower ground speed under head
wind or low body pitch conditions and therefore takes longer to reach the food source
(see Figure 5.6 and Figure A.5.a in appendix 5.1.6, respectively). As a result, the OFacc

model integrates this regulated ventral optic flow mathematically during a longer time
and hence overestimates the flight distance. Conversely, in the case of tail wind or
high body pitch, the honeybee flies at a faster ground speed and takes less time to
reach the food source, and therefore the OFacc model integrates this optic flow during
a shorter time, and hence underestimates the flight distance. In short, in the case
of head or tail wind and low or high speed, the output of the OFacc model deviates
increasingly with time from the actual distance flown by the simulated honeybee. By
contrast, the output of the SOFIa model varies very little, especially depending on the
forward flight speed or the wind direction or speed.

5.1.5 Discussion

The new model for the honeybee’s visual odometer called SOFIa presented in this
section was based on biologically plausible optic flow cues. This reliable bio-plausible
visual odometer can be used to assess the flight distance based on two different
characteristics of the ventral vector field of the optic flow, while at the same time
accounting for honeybees’ visual odometric performances.

5.1.5.1 Open-field simulation and height of flight

Here we have presented the results obtained on simulated honeybees flying over a
virtual open field, possibly in the presence of landforms. Under these conditions, the
simulated honeybee’s ventral optic flow regulator is free to adjust its altitude without
being constrained by the height of a tunnel. In tunnels, the honeybees’ height and
lateral position depend on the tunnel’s geometrical configuration and on the position
of the initial entrance point, while the flight speed depends on the smallest tunnel
cross-section [177, 178, 179]. The impact of the tunnel’s geometrical configuration
on the height of flight and thus on the performances of the ventral visual odometer is
therefore more pronounced in narrow low-roofed tunnels. For example, the accuracy
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of the behaviour observed in honeybees while searching in narrow tunnels [224] and
in the open field [185] differs considerably under tail wind conditions, when the mean
errors recorded were −14,4% and 3%, respectively (see Table A.1 in section A.4 in
appendix 5.1.6).

5.1.5.2 Reliability of the honeybee’s visual odometer documented in the
literature

To reach a food source in the close vicinity, honeybees are thought to rely on several
mechanisms, such as those based on visual snapshots and smell. This makes it difficult
to assess the accuracy of the honeybees’ visual odometer alone, since it has not yet
been established when and where on their trajectory honeybees conclude that they
have reached their target. Many observations [247] have shown that honeybees are
able to assess distances accurately when searching for a target containing a food
source. Heran [97] has reported that honeybees signal the position of a food source
in the same way whether it is placed downhill or uphill, and Bräuninger [29] has
observed that honeybees can retrieve food from a source whatever the wind direction.
It has also been reported that bees can sometimes fail their first attempt to find
a food source immediately after attending a waggle dance [206]. Some intra- and
inter-individual variability is known to exist in Hymenopterans, and this has been
observed in honeybees’ trajectories while they are landing on a food source [226],
as well as during altitude control in a vertical tunnel [179]. To our knowledge, only
two quantitative studies have been published so far on honeybees’ visual odometric
estimation of the flight distance to a food source. These two behavioural studies were
conducted under very different conditions, the one in narrow tunnels [224] and the
other in the open field [185]. In addition, the honeybees’ trajectories were analysed
using two very different methods: based on honeybees’ successive U-turns in the
proximity of a target in [224], and on the truncation of the tracks when they deviated
by more than 90deg in [185]. These two behavioural studies have yielded substantially
different results in terms of the accuracy and the statistical dispersion (see Table
A.1 in section A.4 in appendix 5.1.6 for a quantitative comparison expressed in %
error and relative dispersion). It is therefore difficult to make comparisons between
these two behavioural studies and either the SOFIa model or the OFacc model. These
comparisons might be possible only in a single case: under tail wind conditions, the
accuracy of the results of the SOFIa model obtained in the virtual open field (0.69%)
matches the accuracy observed in [185] (3%) better than that of the OFacc model (-26%
after multiplication by kcompar i sons). Generally speaking, the distribution spread and
the accuracy of the results obtained with the SOFIa model correspond to the fact that
visual cues, especially optic flow cues, can reliably feed the honeybee’s visual odometer
over distances of the order of a few hundred meters regardless of the trajectory taken
[58, 225, 223, 61, 40].
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5.1.5.3 Oscillations help bees to gauge their clearance from the ground

Self-controlled oscillations generate a sequence of contractions and expansions in
the optic flow vector field. These contractions and expansions, which in each case
can be quantified by the optic flow divergence, are superimposed on the translational
optic flow component. These self-oscillatory movements make the state vector

[

h; vh

]

locally observable, and therefore the height of flight h can be estimated using an EKF
(see sections c and d of Materials and Methods). In fact, an EKF is a nonlinear filter
that estimates the h, which is also called the clearance from the ground or the depth,
using the optic flow divergence and the wing stroke amplitude control signals. On
this basis, the self-controlled oscillations make it possible for the ventral translational
optic flow to be scaled by the clearance from the ground.
Previous experiments with honeybees flying both freely and in tunnels have shown
the presence of these self-oscillatory movements. Honeybees’ self-oscillations have
also been described quantitatively in narrow horizontal and vertical tunnels: the
oscillation frequency ranges around 2H z, and the amplitude of the oscillations is ap-
proximately 3cm in width (in narrow 12cm-wide tunnels) [124] and 10cm in height (in
40cm-high tunnels) [178] (see appendix 5.1.6 Figure A.1). Baird et al. [8] have recently
investigated the hypothesis that honeybees flying in narrow tunnels might control
their height of flight by means of sideways self-oscillations with a mean frequency
of 4.7±1.6H z. Besides Hymenopterans, vertical oscillations are also known to occur
in Lepidopterans: one can easily observe the erratic bouncing and fluttering flight
patterns of butterflies inhabiting various continents [257, 201] as well as series of
up-and down vertical curves described by moths at a frequency of about 2H z [12].
The SOF I a model was tested in simulation under conditions resembling those per-
taining in an open field or a wide tunnel, where honeybees seem to oscillate at lower
frequencies. In all the figures presented here in the main text, the simulated honey-
bees oscillated with a frequency of 1H z and an amplitude of 35 to 55cm, depending
on the height of flight, the air speed, and the optic flow setpoint. Further experiments
performed with a simulated honeybee oscillating at 2H z, 3H z and 4H z showed there
were no significant differences in the spread of the flight distance estimates X̂SOF I a

assessed by the SOFIa model (Brown-Forsythe-test, df ={3, 2516}, p-value = 0.899) (see
section A.3 in appendix 5.1.6 Figure A.2 and Figure A.3).

5.1.5.4 Biological plausibility of the SOFIa model

In honeybees, various motion-sensitive neurons respond to specific motion patterns:
i) the Velocity-Tuned neurons (VTs) and some Descending Neurons (DNs) respond to
translational optic flow [110, 111] and ii) other DN neurons respond to the expansion
and contraction of the optic flow [25, 113]. DN motion-sensitive neurons cover the
ventral field of view [88] and respond to downward visual motion [112]. Honeybees
are therefore sensitive to the ventral optic flow of translation, of expansion and of
contraction generated by their oscillatory forward flights. The use of stereo visual
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cues is not biologically plausible here because flying insects lack both a binocular
ventral visual field aimed toward the ground and a sufficiently large spatial resolution
in their ventral visual region to be able to estimate their height of flight. Nor did stereo
visual signals play a role in the case of gulls’ offshore take-off [208]. In particular, birds’
binocular visual field is rather used to guide their beaks for manipulation purposes, for
example [149, 150]. The optic flow-based estimator of the scale factor is a nonlinear
filter (EKF) based here on i) a nonlinear model, ii) a control input (or called the
efference copy in biological systems) and iii) a biologically plausible sensory output
(the optic flow divergence). The SOFIa model can therefore be said to be biologically
plausible even if it is not entirely anatomically constrained. Nevertheless, it opens up
some interesting functional perspectives for mesoscale modelling [250].
The SOFIa model would be reliable regardless of the base unit and the coding in which
the information flow is processed, including those possibly used by honeybees to
evaluate the scaling factor based on the flow divergence to detect the translational
optic flow, to process the efference copy (or control input), to weigh and accumulate
input signals, and thus to assess the flight distance.

5.1.5.5 Conclusion

In conclusion, the Self-scaled time-based Optic Flow Integration model called SOFIa

involves the use of a scaling factor extracted from the optic flow vector field. This
scaling factor is the clearance from the ground estimated by means on an EKF based
on the optic flow divergence generated by the bees’ self-oscillatory movements. Since
the time-based integration of the ventral optic flow is scaled, the SOFIa model is less
sensitive to changes occurring in the environment such as changes in the direction
of the wind or in the trajectory taken. As shown here in the simulations and the
standard deviation analysis, the estimated flight distances obtained were particularly
reliable and accurate with a large range of ground surfaces and wind conditions. The
SOFIa model for the visual odometer was found to be reliable even in the presence
of multiple disturbances as well as changes in the simulated honeybees’ internal
parameters, such as the optic flow setpoint and the flight speed. This model reduces
the statistical dispersion of the estimated flight distance 10-fold in comparison with
the previous model for the visual odometer based on the raw mathematical integration
of the translational optic flow. Therefore, the SOFIa visual odometer model shows
that their bouncing trajectory may help honeybees (i) to retrieve a food source, (ii) to
return to the close vicinity of the hive and (iii) to communicate to their nest-mates a
reliable flight distance between the hive and the food source.
Since the scaling was performed using a optic flow-based estimation of the clearance
from the ground, the output of the SOFIa model is given in meter s. In fact, the
precision of the SOFIa model, combined with the dimension of its output, opens
up the possibility of implementing the model directly in the field of flying robotic
applications. One particularly promising future application of the SOFIa model might
be in GPS-denied environments, where it would enable flying robots to assess the
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flight distance accurately using only minimalistic visual equipment.

Materials and Methods

Honeybees’ vertical dynamics A simplified dynamic honeybee model was pre-
viously developed, based on behavioural studies [180]. The honeybees’ vertical dy-
namics were expressed in that study as follows:

GV z(s) =
Vz(s)

u∆Φ(s)
=

Kz

1+τz s
(5.4)

where u∆Φ [deg] is the difference in the wing stroke amplitude in comparison with
hovering, Vz [m/sec] is the vertical speed, τz = 0.22[sec] and Kz = 0.11. The honeybees’
forward dynamics were expressed here as follows:

GVai r
(s) =

Vai r (s)

uθ(s)
=

Ksur g e

1+τsur g e s
(5.5)

where uθ [deg] is the honeybee’s pitch during hovering, Vai r [m/sec] air speed, τsur g e =

0.22[sec] and Ksur g e = 0.10.

Simulated honeybee flight parameters The controller of the ventral optic flow
regulator was a PD controller with a proportional coefficient kP = 15 and a derivative
coefficient kD = 0.3. When h ≥ 5cm, the self-oscillation command Aosc si n(2π fosc )
was added to the PD vertical controller output to form the wing stroke amplitude u∆Φ

control signal feeding the vertical dynamics. The 5cm height condition made the
honeybee’s take-off and landing manoeuvres suitably smooth [62]. Take-off was deter-
mined by imposing an ascending ramp on the pitch uΘ between 0m and 1m. Landing
was determined by imposing a descending ramp on uΘ starting at 5.5m in the case of
simulations over an 8m-long flat ground and at 95.5m in that of simulations over a
100m-long irregular ground. In Figures 5.3 and 5.4, the self-oscillatory movements
were simulated by a sine wave with a frequency of fosc = 1H z and an amplitude of
Aosc = 18deg. In Figures 5.3, 5.4 and A.3 in appendix 5.1.6, the translational optic flow
setpoint was set at 2.5r ad/sec.

State space representation of the EKF used to visually gauge ĥ To estimate
the current height of flight h, the EKF used i) the downward perceived optic flow
divergence as its measurement input, ii) the model for the vertical dynamics of the
simulated honeybee and iii) the control input signal (the wing stroke amplitude ∆Φ)
regulating the vertical dynamics (see EKF equations A.1-A.7 in appendix 5.1.6). The

82



5 The SOFIa model for the honeybee visual odometer – 5.1 Oscillations make a

self-scaled model for honeybees’ visual odometer reliable regardless of flight

trajectory

continuous state space model was therefore written as follows:

ẋ(t ) = f (x(t ),∆Φ(t )) = A.x(t )+B.∆Φ(t )

=

[

0 1
0 −1

τz

][

h

vh

]

+

[

0
Kz

τz

]

∆Φ

(5.6)

y(t ) = g (x(t )) = [x2(t )/x1(t )] = vh/h =ωdi v (5.7)

where x =

[

h

vh

]

is the state vector, ∆Φ is the control input and ωdi v is the optic flow

divergence. All the results presented here were obtained with the following initial EKF
conditions: hEK F i

= 0.5m, VEK F i
= 1m/s.

It is worth noting that the model’s dynamics given in equation 5.6 are linear, whereas
the EKF’s observation equation in 5.7 is nonlinear. We slightly adapted one EKF
equation by taking the absolute value of the height of flight given in the previous state
estimates in order to take into account the fact that the ground height can only be
positive (see appendix 5.1.6 eq. A.1). In practice, this helped to achieve a much faster
and more reliable convergence of the EKF estimates.

Self-oscillations make the scaling factor observable The optic flow diver-
gence and the self-controlled oscillatory movements make the system observable, i.e.,
the observation process based on the measurement input during a finite period of
time (t0, t1) makes it possible to determine the state vector at the instant t1. To check
the observability of the system, the observability rank condition was analysed. First
the observability matrix was calculated using the EKF observation equation 5.7 with
respect to the model dynamics given in equation 5.6 [99]. The successive Lie deriva-
tives of g (.) were then calculated. A system is observable if and only if the Jacobian
function of the observability matrix is full rank. In the present case, the observability
matrix was expressed as follows:

O =

[

L0
f

(g (x(t ))

L1
f

(g (x(t ))

]

=

[

g (x(t ))
g (x(t )
∂x(t ) ∗ f (x(t ),u(t ))

]

=

[ Vh (t )
h(t )

−Vh (t )2

h(t )2 +
u
h

]

(5.8)

r ank(O) = n (5.9)

Next, an analysis of O was performed in order to check whether its Jacobian was
full-rank. The first function of the observability matrix was y(t) = Vh/h = ωdi v ,
and its second function was the first Lie derivative with respect to the dynamics
−Vh(t )2/h(t )2 +u/h. This result showed that the system is (locally) observable if and
only if the input disturbance u 6= 0, and h 6= 0 and Vh 6= 0. The continuous variation
of the control signal u due to the self-induced input disturbances ensured that the
values of the states h and Vh and the control signal were rarely zeroed. Therefore, the
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oscillatory movements made the clearance from the ground observable via the optic
flow divergence.

Wind modelling A logarithmic law was used to model the wind profile along the
altitude [240] as follows:

vwi nd = kwi nd · v0 ln
h

h0
(5.10)

with the reciprocal of the Von Kármán constant v0 = 0.2m/s, the current height h and
the roughness height h0 = 0.05m. In Figures 5.3 and 5.4 the range of values spanned
by the wind in each case is given in the coloured portion of the wind curves.

OFacc model and kcompar i sons computation The model for the visual odometer
based on the accumulated (time-based integrated) raw translational ventral optic flow
(named in this paper OF acc) gives as its output an angle expressed here in r adi ans

(and not in meter s) as follows:

OF acc =

∫

ωmeas
T d t [r ad ] (5.11)

The distribution of the OFacc model’s output was calibrated after the simulation runs
to be expressed in meter s only to be compared statistically with the distribution of
the SOFIa model’s output. The calibration factor was called kcompar i sons and was
computed in order to set at 100m the median value of the distribution of the OFacc

model’s output obtained after a 100m-simulated flight under the 630 parametric
conditions:

kcompar i sons =
100

medi an{OF acc}
= 1.161 [m/r ad ] (5.12)

Final flight distance estimates and flight distance error estimate The dis-
tributions plotted in Figure 5.5 and 5.6 were final flight distance estimates across
combinations of simulation parameters. The final flight distance estimate was ob-
tained at X = 100m. The error (expressed as a %) was computed as follows:

er r% =
X̂SOF I a −X

X
×100 (5.13)

where X̂SOF I a is the estimated flight distance and X is the ground truth.

Computation of the relative dispersion The relative dispersion, which is also
known as the Coefficient of Variation (CV), is a standardised measure of the dispersion
of a probability distribution. It was expressed here as a percentage in Table A.1 in
appendix 5.1.6. The relative Standard Deviation (rSD) was defined as the ratio between
the Standard Deviation (SD) and the mean in the case of the parametric data, i.e.,
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those based on [185]. The relative Median Absolute Deviation (rMAD) is the ratio of
the MAD to the median in the case of the non-parametric data, i.e., the present set of
final odometric errors obtained with both simulated models.

Computer simulations The two visual odometers were both simulated using Mat-
lab/Simulink 2020 software. Raw data will be available online, which includes all
detailed simulation results of the trajectories for oscillation frequencies of 1H z, 2H z,
3H z and 4H z.
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5.1.6 Supplemental Information

5.1.6.1 Honeybees’ self-oscillation

B

A

Vertical tunnel (Portelli et al, 2011)

Horizontal tunnel (Kirchner and Srinivasan, 1989)

Figure 5.7: A.i) Honeybees were trained to enter a horizontal tunnel via the opening
O and fly along it to the box R containing a sugar water reward. A.ii) The
oscillatory trajectory of one honeybee flying along the horizontal tunnel
(adapted from [124]). B.i) Perspective view of the whole doubly-tapered
tunnel in which the experiments were carried out. B.ii) Side view of a
honeybee’s oscillatory trajectory (adapted from [178]).

5.1.6.2 Extended Kalman Filter equations

The following processing steps were performed by the Extended Kalman Filter (EKF)
to estimate the simulated bees’ height of flight h, based on the downward-perceived
optic flow divergence as the measurements and the stroke amplitude as the inputs
feeding the vertical dynamics. In order to apply the EKF, the system was discretised
and linearised around an estimated nominal trajectory in order to obtain a linear
model for the error. One EKF equation was slightly adapted by adding an absolute
function to the first state (the ground height) in the previous state estimate, in order
to account for the fact that the ground height can only be positive (see expression of
Xk−1 in eq. 5.14). In practice, this helps to obtain a much faster and more reliable
convergence of the EKF estimates. The covariance of the measurement noise R was
3 ·10−6, and that of the process noise Q was 1 ·10−3.

Prediction step
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(a) One-step-ahead predictions

Xk|k−1 = f (Xk−1,uk−1) (5.14)

with Xk−1 =

[

|h|

vh

]

(because the height is always positive)

(b) Covariance matrix of the state prediction error vector

Pk|k−1 = Fk−1Pk−1|k−1F T
k−1 +Qk−1 (5.15)

where Fk is the Jacobian matrix of f (.)

Fk−1 =
∂ f

∂X
|X=Xk−1|k−1 (5.16)

Correction step

(c) Measurement update

Xk|k = Xk|k−1 +Wk (Zk − g (Xk|k−1)) (5.17)

(d) Covariance matrix of the state estimation error vector

Pk|k = Pk|k−1 +Wk [Hk Pk|k−1H T
k +Rk ]W T

k (5.18)

Wk = Pk|k−1H T
k [Hk Pk|k−1H T

k +Rk ]−1 (5.19)

where Hk is the Jacobian matrix of the nonlinear function defined as follows:

Hk =
∂g

∂X
|X=Xk|k−1 (5.20)

where:
Wk is the Kalman gain.
Zk − g (Xk|k−1) is called the innovation of EKF.
Hk Pk|k−1H T

k
+Rk is the covariance of the innovation.

87



5 The SOFIa model for the honeybee visual odometer – 5.1 Oscillations make a

self-scaled model for honeybees’ visual odometer reliable regardless of flight

trajectory

5.1.6.3 Robustness of the SOFIa visual odometer at the various
self-oscillation frequencies applied

To further determine its robustness at various self-oscillation frequencies, the SOFIa

visual odometer was tested in simulation under the 630 parametric conditions with
the following four sets of self-oscillation parameters: fosc = 1H z and Aosc = 18deg;
fosc = 2H z and Aosc = 40deg; fosc = 3H z and Aosc = 60deg; fosc = 4H z and Aosc =

80deg. Figure 5.8 shows the distributions of the SOFIa model outputs with the four
self-oscillation frequencies studied. Their spreads were not found to differ significantly
from each other, and therefore they did not depend on the self-oscillation frequency
(Brown-Forsythe-test, df ={3, 2516}, p-value = 0.899).
Figure A.3 shows examples of simulations performed over a 100m-long ground surface
including 3 small hills with gentle slopes separated by flat areas under no wind, tail
wind and head wind conditions at 4 different self-oscillation frequencies, fosc : 1H z,
2H z, 3H z and 4H z. The simulations were performed with a peak height hpeak of 1m,
a wind speed gain kwi nd of −1m/s, 0m/s and 1m/s, a translational optic flow setpoint
ωset

T of 2.5r adi ans/sec and a pitch uΘ of 30deg. Figure A.3 shows that in each of the
four self-oscillation frequencies under consideration, the error with respect to the
goal located at a distance of 100m ranged between 0.1% and 2.2%.

Figure 5.8: The plots show the statistical dispersions of the outputs of the SOFIa model
tested in simulation under the 630 parametric conditions with fosc of 1H z,
2hz, 3H z and 4H z. The median values of the distributions ranged between
102.79m and 104.8m, while their MAD ranged between 3.03m and 3.09m.
The spreads of the four distributions did not depend on the self-oscillation
frequency because they were not found to differ significantly from each
other (Brown-Forsythe-test, df ={3, 2516}, p-value = 0.899).
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Figure 5.9: (a) Examples of simulated oscillatory flights over a 100m-long ground sur-
face including 3 small hills with gentle slopes separated by flat areas under
no wind (in black), tail wind (in blue) and head wind (in red) conditions
were plotted. The self-oscillatory movements were simulated by a sine wave
with (b) fosc = 1H z and Aosc = 18deg, (c) fosc = 2H z and Aosc = 40deg, (d)
fosc = 3H z and Aosc = 60deg and (e) fosc = 4H z and Aosc = 80deg. At each
oscillation frequency under consideration, the error in the estimated flight
distances with respect to the ground truth was normalised and expressed
in %. The error ranged between 0.1% and 2.2%.
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5.1.6.4 Final % errors in the flight distances estimated under three
different wind conditions

head wind no wind tail wind

X̂SOF I a ( fosc = 1H z) (% error ± % rMAD) -1.8 ± 2.69 -1.1 ± 2.75 0.69 ± 3.16

kcompar i sons ·OF acc ( fosc = 1H z) (% error ± % rMAD) 20.6 ± 28.7 -3.3 ± 22.45 -26 ± 19.72

Open field, data from [185] (% error ± % rSD) 3 ± 25.7 2

Narrow tunnel, data from [224] (% error) 6.66 3 -3.33 4 -14.4 5

Table 5.1: Table of the final % errors in the flight distances assessed by the SOFIa model,
the OFacc model calibrated with kcompar i sons , based on data published by
[185] and [224]. To obtain the datasets with the SOFIa and the OFacc models,
honeybee flights were simulated over a 100m-long ground surface including
3 small hills with gentle slopes separated by flat areas under no wind, tail
wind and head wind conditions. With both models, the relative Median
Absolute Deviation (rMAD) was computed under the three wind conditions
under consideration. In [185] data were collected in the open field under
cross-tail wind conditions. The final % error was retrieved, and the relative
Standard Deviation (rSD) was computed. In [224], the data were collected
in a narrow tunnel 3.2m long, 22cm wide and 20cm high. The final % error
was determined under no wind, tail wind and head wind conditions. It was
difficult to make fair comparisons between the four datasets in question
because the conditions under which the experiments in the studies by [185]
and [224] were conducted and the methods used to analyse the data were
very different.

4Data from [185] collected under a mean crosswind of 3.3m/s oriented at 38deg with respect to the
normal from the hive to the feeder, i.e. with a mean tail wind component of 2.6m/s.

5Data recomputed from Figure 3a in [224] collected under a head wind of 0.7m/s.
6Data recomputed from Figure 3a in [224] collected in still air.
7Data recomputed from Figure 3a in [224] collected under a tail wind of 0.65m/s.
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5.1.6.5 Simulations under tail and head wind conditions with respect to
time

Figure 5.10: Oscillating forward flights of honeybees were simulated over a 8m-long
flat ground (see Simulated honeybee flight parameters section in Material

and Methods). a) The trajectory including take-off, cruise flight and land-
ing was simulated under tail (blue) and head (red) wind conditions. The
results of the simulations were plotted here with respect to the distance
flown. b) The wind was modelled as in equation 4.7. c) The results of
the simulations were plotted here with respect to time. To reach the goal
position at 8m, the simulated honeybee took about 4s under tail wind
and about 7.5s under head wind conditions. d) The ground speed, Vx , ob-
tained during cruise flight depended on the wind conditions. The ground
speed was higher in the case of tail wind (blue), which made the simulated
honeybee fly at a higher altitude due to the optic flow regulation process;
the ground speed was lower in the case of head wind (red), which made
the honeybee fly at a lower altitude. e) The optic flow divergence patterns
observed were due to the vertical self-oscillatory movements. At a given
optic flow setpoint, the amplitude of the optic flow divergence was greater
in the case of head wind due to the honeybee being closer to the ground.
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5.1.6.6 Statistical dispersion: comparisons in terms of uΘ and hpeak

Figure 5.11: The plots give the statistical distributions of the results obtained with the
SOFIa model (in green) and the OFacc model (in grey) with various values
of uΘ and hpeak . Both models were tested in simulation under a total
number of 630 parametric conditions, as described in Section 3.c. The
OFacc model was calibrated with kcompar i sons (see Materials and Meth-

ods) so as to be able to make direct comparisons with the SOFIa model. (a)
The median values of the statistical dispersions of the data obtained with
the SOFIa model with various values of the pitch uΘ (which drives the
forward speed) ranged between 103.6m and 107.78m, while those of the
OFacc model ranged between 77.6m and 134.7m. The MAD of the SOFIa

model ranged between 2.22m and 4.07m, whereas the MAD of the OFacc

model ranged between 17.83m and 34.5m. At a given optic flow setpoint,
in the case of low body pitch, the slower the honeybee flies, the longer
the OFacc model accumulates the optic flow magnitude and hence, the
more greatly the flight distance is overestimated. Conversely, in the case
of high body pitch, the faster the honeybee flies, the quicker the honeybee
reaches the food source, and the shorter the time during which the OFacc

model integrates the magnitude of the optic flow mathematically and
hence, the more greatly the flight distance is underestimated. Therefore,
in the case of both low and high speeds, the output of the OFacc model
deviates increasingly with time from the actual distance flown by the
simulated honeybee. Overall, the pitch parameter significantly affected
the median values of the OFacc model distributions (Friedman-test, df=2,
p-value << 0.001), whereas the output of the SOFIa model varied very
little depending on this parameter. Under each of the
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Figure 5.11: uΘ conditions considered, the median values of the two models’ outputs
differed significantly (Wilcoxon test, p-value << 0.001, Z=13.76 in the
case of each pitch). (b) The median values of the statistical distributions
of the data obtained with the SOFIa model with various values of hpeak

ranged between 101.6m and 106.75m, while those of the data obtained
with the OFacc model ranged between 99.58m and 99.76m. The MAD of
the SOFIa model was consistently lower than 3.26m, whereas the MAD
of the OFacc model ranged between 29.99m and 31.01m. Under each of
the hpeak conditions tested in simulation, the spread of the two models’
outputs differed significantly (Brown-Forsythe-test, df:278, p-value <<

0.001, F=182.37;181.80;170.71, with hpeak = 0m;1m;2m, respectively).

93



6 Measurement of the local optic
flow divergence cue with two
optic flow sensors

Visual odometric approaches based on the use of cameras have limitations due to
environmental conditions and the high computational power required. A minimalistic
alternative to cameras is represented by optic flow sensors. The first step towards
implementing the SOFIa visual odometer onboard a small flying robot was to find a
way to measure the optic flow divergence cue by means of optic flow sensors.
In this chapter, it was mathematically and experimentally demonstrated that the
local optic flow divergence cue can be measured as the difference of two optic flow
magnitudes perceived by two optic flow sensors placed at angles φ and −φ with
respect to the normal to a surface. To test this strategy, a test bench was built with two
optic flow sensors, each weighing approximately 1.6g . The optic flow sensors were
placed at fixed angles φ and −φ (with φ= 15deg ) on a chariot set on a slider in front
of a panorama. In order to mimic the up-and-down self-oscillations performed by
honeybees, the two optic flow sensors were made to oscillate back and forth in front of
the panorama (either static or moving) by means of a DC motor connected to the slider
end opposite the panorama. The panorama could move along the axis perpendicular
to the optic flow sensors at variable speed, mimicking the translational component
of the honeybees’ motion while flying forward. Due to the changes induced by the
self-oscillations, the distance and speed of the optic flow sensors with respect to the
panorama could be observed locally. Therefore, the distance was estimated by means
of an Extended Kalman Filter receiving as measurement the measured local optic flow
divergence.
Tests were performed under two different illuminance conditions of 120l ux and
974lux, with panorama velocities between 0.25m/s and 0.75m/s and oscillation
frequencies between 0.25H z and 1H z. The results of the distance estimation were
accurate to the ground truth provided by a lidar sensor and were not affected by
illuminance conditions.
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L. Bergantin, T. Raharijaona and F. Ruffier, “Estimation of the distance from a surface
based on local optic flow divergence,” 2021 International Conference on Unmanned

Aircraft Systems (ICUAS). IEEE., p. 1291–1298., 2021

6.1.1 Abstract

Estimating the distance from a surface is a well-known problem for all kinds of applica-
tions involving robots moving in an unknown environment. For flying robots this issue
is often coupled with weight constraints, from which the importance of carrying out
the estimation of distances with minimalistic equipment. In this section, we present a
method to exploit the optic flow divergence cue in order to assess the distance from a
surface by means of an Extended Kalman Filter. First, we demonstrated mathemat-
ically that the optic flow divergence can be assessed by computing the subtraction
between two local optic flow magnitudes. Then, we tested this method on a test bench
consisting of two on-the-shelf optic flow sensors performing a back-and-forth oscilla-
tory movement in front of a static or moving panorama. Our findings showed that the
optic flow divergence measured as a subtraction of two local optic flow magnitudes
was in line with the optic flow divergence computed theoretically under two different
lighting conditions. Thus, we were able to use the optic flow divergence measured to
assess the distance from the static or moving panorama for low (120lux) and bright
(974lux) illuminance respectively. Future work will focus on the implementation of
this method on a micro-flier to estimate the distance from a surface, with little mass
and computational power.

6.1.2 Introduction

The problem of distance estimation while navigating in an unknown environment is
common to all types of robots. In flying robots, and more specifically in micro-fliers,
this need is often coupled with weight constraints. From these considerations stems
the importance of carrying out an accurate visual distance estimation by means of
minimalistic equipment. Previous authors have suggested the use of stereo vision to
avoid obstacles in vehicle environment perception [22, 166] and in flying robots [157],
as well as the use of monocular vision for depth perception [202]. All these approaches
rely on the use of cameras and often require the use of complex computer vision
algorithms. Optic flow (OF) cues have been used on board flying robots to visually
control landing with translational OF [192] and with OF divergence [98, 244, 47, 99], to
follow uneven terrain [64] or to attempt visual odometry and localisation [114, 119]
(see [209] for review). Moreover, instabilities have been used to determine the height
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of flight of a micro-flier by exploiting the linear relation between the oscillation and
the fixed control gain [47]. Local OF sensors have been extensively tested in a wide
range of lighting conditions for OF based guidance. More generally, the criteria for
evaluating the suitability of translational OF sensors for robotic applications include
[245]:

• Robustness to light level variations, defined by the number of irradiance decades
in which the visual sensor can operate,

• Range of OF angular speeds (or magnitudes) covered, defined by the minimum
and maximum values measured,

• Accuracy and precision, defined by systematic errors and coefficients of varia-
tion,

• Output refresh rate, defined by the instantaneous output frequency.

To measure the translational OF, a OF sensor was based on the M2APix (Michaelis-
Menten Auto-adaptive Pixel) retina that can auto-adapt in a 7-decade lighting range
[147]. Moreover, it has been demonstrated that a single Local Motion Sensor (LMS)
fitted with two auto-adaptive pixels allows to measure an OF range of [50°/s; 350°/s]
despite variations in lighting conditions from ∼ 50lux to 10,000l ux [65]. A similar
OF range of [50°/s; 250°/s] (i.e., 0.7-decade) was measured with a semi-panoramic
artificial eye, called CurvACE [72]. The OF range can also be measured for outdoor
flights, as in [197]. In [189], LMSs were used in front of a moving panorama to measure
translational OF.
Small self-oscillatory movements have been observed in honeybees flying in hori-
zontal [124] and vertical tunnels [178]. These self-induced oscillations are different
from side-to-side parallax movements observed in insects (more specifically in locusts
[41] and in praying mantis [127]). These oscillations generate a pattern of expansions
and contractions in the OF vector field, known as OF divergence. The changes in the
vertical speed and in the height of flight due to the oscillations make both variables
locally observable [99]. Therefore, by having a device performing back-and-forth
oscillatory movements in front of a surface, the local observability of its speed and
distance from the surface is ensured.
Taking inspiration from honeybees, in this section we exploit the OF divergence cue
to visually estimate the distance from a static or moving surface. In previous studies,
authors have used cameras to assess the OF divergence and in some cases to estimate
the distance from a surface using an Extended Kalman Filter (EKF) on board a flying
robot [99]. In this section, we assessed the distance from a static or moving surface by
measuring the OF divergence solely based on the subtraction of the magnitudes of
two local OF sensors.
In section 6.1.3, we demonstrate mathematically that the OF divergence can be mea-
sured solely based on the subtraction of the magnitudes of two local OF sensors: this
subtraction results in the OF divergence even in front of a static or a moving surface.
In section 6.1.4.1, we present the test bench consisting of two OF sensors placed on a
slider performing a back-and-forth oscillatory movement in front of a panorama. In
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section 6.1.5, we show experimentally that the signal obtained was equivalent to the
OF divergence computed theoretically. Then, the signal was conveyed to the EKF to
assess the distance from the static or moving panorama under two different lighting
conditions.
Due to their low weight, OF sensors are particularly interesting for flying robotic ap-
plications. Thus, we plan to test the method presented to estimate the distance of a
flying robot at about one meter from a surface.

6.1.3 The optic flow divergence

6.1.3.1 Definition of the local optic flow divergence

Oscillatory movements generate a sequence of expansions and contractions in the
OF vector field. This pattern is known as OF divergence and is superimposed on the
translational OF component of the OF vector field. The OF divergence is defined as
the ratio of the velocity in the direction normal to a surface vh and the distance from
the surface h:

ωth
D IV =

vh

h
(6.1)

These oscillations make the state vector of the oscillating system locally observable
[99] and hence allow to assess the distance from the surface by means of an estimator,
i.e. an EKF. The OF divergence can be used by flying robots as an additional visual cue
for distance estimation purposes.

6.1.3.2 True local optic flow divergence measured by only two optic flow
sensors

We mathematically demonstrate here that the local OF divergence ωmeas
di v

can be
computed as the subtraction between the magnitudes of two OF sensors’ outputs.

Proof. To compute the OF divergence, we consider the case of a device equipped with
two OF sensors oriented forward at φ and −φ with respect to the horizontal axis z and
placed in front of a surface. The device moves forward oscillating back-and-forth in
front of the surface, that moves at a speed −vx . The OF divergence can be measured
as follows

ωmeas
D IV =ω(φ)−ω(−φ) (6.2)

with ω(φ) and ω(−φ) the OF magnitudes measured by the two OF sensors respec-
tively. By definition, the OF due to the translation movement of the surface can be
written as follows

ω(φ) =

∥

∥

∥

−→
V

∥

∥

∥

D
sin

(

~D ,~V
)

∧

(6.3)
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with
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We can express the two components of the velocity vector
−→
V of the device in front

of the surface as:
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We can then express ω(−φ) and ω(φ) as:

ω(−φ) =
vx

D
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(π

2
−φ

)

−
vh

D
sinφ (6.12)
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ω(φ) =
vx

D
sin

(π

2
−φ

)

+
vh

D
sinφ (6.13)

Thus, the OF divergence can be computed as

ω(φ)−ω(−φ) = 2.
vh

D
· sin(φ) (6.14)

where h = D · cos(φ) is the distance from the surface.

ω(φ)−ω(−φ) = 2 ·
vh

h
. sin(φ).cos(φ) (6.15)

Since sin(φ) ·cos(φ) = 1
2 · sin(2 ·φ), we can express equation (6.14) as follows:

ωmeas
D IV =ω(φ)−ω(−φ) =

vh

h
. sin(2.φ) (6.16)

where ω is the OF magnitude, φ is the visual direction of the OF sensor with respect
to the axis z and h is the distance from the panorama. The maximum sensitivity of such
a local OF divergence device corresponds to a OF sensor orientation of φ= 45°.

6.1.4 Materials and Methods

To show that it is possible for an oscillating system to retrieve its distance from a
surface solely on the basis of OF cues, we built a test bench consisting of two OF
sensors set at fixed angles φ and −φ which performed a back-and-forth oscillatory
movement in front of a panorama. Since the system was locally observable due to
the oscillations, it was possible to estimate the distance from the static or moving
panorama by means of the EKF. The EKF received as measurement the OF divergence
computed as in equation (6.2), with ω(φ) and ω(−φ) the OF magnitudes measured by
the two OF sensors. To test the robustness of this method, we considered two lighting
conditions: bright (974lux, 6.95 ·10−5W /cm2) and low (120lux, 5.42 ·10−6W /cm2)
illuminance, respectively. In the test bench, Vx =−Vpanor ama because the movement
of the panorama mimicked the flight forward above a surface of the system to which
the OF sensors were attached.

6.1.4.1 The test bench

The test bench built consisted of two OF sensors set on a chariot at φ and −φ (with
φ = 15°) with respect to the horizontal axis z and placed on a slider in front of a
panorama, as shown in Figure 6.1. A DC motor was connected at the end of the
slider opposite to the panorama and induced a back-and-forth movement on the
chariot along the slider on the horizontal axis z. The panorama moved on the x

axis at a varying velocity Vpanor ama . A lidar set on the chariot provided the ground
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Figure 6.1: (a) The test bench consisted of two OF sensors set on a chariot at φ and
−φ (with φ = 15°) with respect to the horizontal axis z and placed on a
slider in front of a panorama. The DC motor connected at the end of
the slider opposite to the panorama induced a back-and-forth oscillatory
movement on the chariot on the horizontal axis z. The direction of the
chariot’s movement was associated with the velocity vh , represented in
blue. The panorama moved on the x axis at a varying velocity Vpanor ama

(in green). A lidar placed on the chariot measured the distance D ·cos(φ) to
the panorama and hence provided the ground truth for the experiment. (b)
The two OF sensors measured the OF magnitudes ω(φ) and ω(−φ), respec-
tively. When the DC motor induced a velocity vh in the direction of the z

axis, the movement of the two OF sensors coupled with the movement of
the panorama mimicked an ascending flight above a static surface. The
resulting velocity V was oriented upward with an angle α and a contrac-
tion was perceived on the OF vector field. When the DC motor induced a
velocity vh in the opposite direction with respect to the z axis, the move-
ment of the two OF sensors coupled with the movement of the panorama
mimicked a descending flight above a static surface. In this case, V was
oriented downward with an angle α and an expansion was perceived on
the OF vector field.
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truth measuring the distance D · cos(φ) from the panorama. The back-and-forth
movement of the OF sensors reproduced the self-oscillations observed in honeybees,
while the movement of the panorama mimicked the motion forward above a surface.
Synchronization was guaranteed by the use of an interface that initialized the OF
sensors, the lidar and the DC motor at the same time. More specifically, we used
two Flow Deck V2 from ❤tt♣s✿✴✴✇✇✇✳❜✐t❝r❛③❡✳✐♦✴. On each deck were set a PixArt
PMW3901 OF sensor and a VL53L1x ToF lidar. The sensors were connected to an
Arduino DUE board. To compute the ground truth, we relied on the output of the lidar
on the left. The interface MyViz was used for synchronization purposes and to change
the frequency of the chariot’s oscillation when required.

6.1.4.2 Calibration of the optic flow sensors

To compute the OF divergence, we relied on the OF magnitudes ω(φ) and ω(−φ)
measured by the two OF sensors set on the chariot. The OF sensors’ raw outputs
were given in [pixel/s] and thus needed to be calibrated to be expressed in [rad/s]. To
find the calibration coefficients, a position on the slider was chosen (0.14m). One OF
sensor was kept stationary with φ= 0° with respect to the axis z, while the panorama
moved with nine values of velocity Vpanor ama (from 0.2m/s up to 1m/s with a step
of 0.1m/s). For each Vpanor ama , were computed the theoretical translational OF w th

T

and the average of the measured translational OF w meas
T . Nine points of coordinates

(w th
T , w meas

T ) were obtained and used to fit an affine line w meas
T = m ·w th

T +q , where
m and q were the calibration coefficients. This procedure was applied to the two OF
sensors separately.

6.1.4.3 The model of the test bench

The system of the test bench can be represented as the block diagram in Figure 6.2.
The system’s input was the velocity setpoint of the DC motor Ω, while its output
was the distance h of the two OF sensors from the panorama. The slider dynamics

Figure 6.2: Block diagram of the test bench system. The system of the test bench
received as input the velocity setpoint of the DC motor Ω [rad/s] and as
output the distance h [m] of the two OF sensors from the panorama. More
specifically, the slider dynamics received Ω as input and gave the velocity
induced on the chariot by the DC motor VΩ [rad/s] as output. VΩ was
scaled by the radius R of the pulley connecting the DC motor to the chariot
in order to compute vh [m/s]. vh was then integrated in order to obtain h.
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represents the motion control system, as to say a feedback loop over a PID and the
motor dynamics. The slider dynamics received as input the DC motor’s velocity
setpoint Ω in [rad/s] and gave as output the velocity induced by the DC motor on
the chariot VΩ in [rad/s]. VΩ was scaled by the radius R (with R = 0.012m) of the
pulley connecting the DC motor to the chariot in order to compute vh , which was
then integrated to compute h. We identified the slider’s system between the setpoint
input Ω and the chariot’s displacement h in [m] using a transfer function that can be
expressed as

G(s)Sl i der =
Z (s)

U (s)
=

0.3498

s(s +54.27)
(6.17)

The system’s state space representation can then be expressed as















Ẋ = A ·X +B ·u =

[

0 1
0 −54.27

]

X +

[

0
0.3498

]

u

Y =C ·X +D ·u =

[

1 0
0 1

]

X

(6.18)

where u is the velocity setpoint Ω and X =
[

h; vh

]

is the state vector. It is important
to notice that the measurement equation of the model is nonlinear, since it can be
expressed as

Y =ωD IV =
vh

h
(6.19)

This is the reason why the use of an EKF is necessary. Once defined the model of the
test bench system in equation (6.18), we proceeded to its discretization (see Appendix
6.2.1 for the EKF calculations). The EKF received as input the velocity setpoint of the
DC motor Ω and as measurement the OF divergence measured.

6.1.5 Results

To show experimentally that the measured OF divergence obtained as in equation (6.2)
was equivalent to the theoretical OF divergence computed as in equation (7.3.3), sev-
eral datasets were collected under different conditions. The two OF sensors performed
a back-and-forth oscillatory movement in front of the panorama, which was mov-
ing with different values of velocity Vpanor ama (0m/s, 0.25m/s, 0.5m/s and 0.75m/s).
The panorama speed Vpanor ama can not exceed 0.75m/s steadily because of mechan-
ical constraints. For each Vpanor ama , four oscillation frequencies were considered:
0.25H z, 0.5H z, 0.75H z and 1H z. The maximum peak-to-peak amplitude was reached
for 0.25H z (see details in caption of the Figure 6.3). For oscillation frequencies be-
low 1H z, the oscillation amplitude was too small to allow an effective estimation of
the distance from the panorama with the current setup. To test the robustness of
the method, the datasets were taken under two different lighting conditions: bright
(974lux, 6.95 ·10−5W /cm2) and low (120lux, 5.42 ·10−6W /cm2) illuminance, respec-
tively. For each dataset we subtracted the OF magnitudes measured by the two OF
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Figure 6.3: The plots show a linear relation between ωmeas
di v

and ωth
di v

and are there-
fore an experimental counterpart of the mathematical proof shown in
section 6.1.3.2. The Median Absolute Deviation (MAD) of each plot was
low (see Table 6.1). The OF divergence ωmeas

di v
was measured in front of

the static or moving panorama under two lighting conditions: bright
(974lux, 6.95 · 10−5W /cm2) and low (120lux, 5.42 · 10−6W /cm2) illumi-
nance, respectively. For each value of Vpanor ama (0m/s, 0.25m/s, 0.5m/s

and 0.75m/s) four values of oscillation frequency were considered (0.25H z,
0.5H z, 0.75H z and 1H z). For all datasets, the starting position of the char-
iot on the slider was 0.14m. The peak-to-peak amplitude covered by the
chariot on the slider ranged from the starting position to about 0.3m for a
frequency of 0.25H z, 0.25m for 0.5H z, 0.2m for 0.75H z and 0.17m for 1H z.
The theoretical OF divergence ωth

di v
was computed for every dataset. The

values of ωmeas
di v

measured for all the oscillation frequencies for a velocity
Vpanor ama under a given lighting condition were put together and plotted
in comparison with the corresponding ωth

di v
.In each plot, the median val-

ues of ωth
di v

and the curves representing its MAD are shown to display the
range of values measured. The subtraction between the OF magnitudes
obtained by means of the two OF sensors can measure reliably a stimuli of
OF divergence between −0.93r ad/s and 1.3r ad/s.

sensors as in equation (6.2), obtaining the corresponding OF divergence ωmeas
di v

. In

parallel, we computed the theoretical OF divergence ωth
di v

as in equation (7.3.3). To

compare ωmeas
di v

and ωth
di v

, all the values of ωmeas
di v

measured for all the oscillation
frequencies for the panorama moving with a given Vpanor ama under a set lighting

104



6 Measurement of the local optic flow divergence cue with two optic flow sensors –

6.1 Estimation of the distance from a surface based on local optic flow divergence

condition were put together and plotted in comparison with the corresponding ωth
di v

.
Figure 6.3 shows experimentally that the subtraction between the OF magnitudes
obtained by means of the two OF sensors can measure the OF divergence as demon-
strated mathematically in section 6.1.3.2. The plots show that ωmeas

di v
and ωth

di v
were in

the same range of values for every set of conditions. The Median Absolute Deviation
(MAD) was low for every case considered, ranging between 0.25r ad/s and 0.38r ad/s

(see Table 6.1). Thus, the OF divergence measured ωmeas
di v

can be considered in line

with ωth
di v

under every set of conditions analysed and hence can be given as measure-
ment to an EKF to estimate the distance from a static or moving surface.

Average MAD of the OF divergence low light bright light
Vpanor ama = 0m/s 0.27r ad/s 0.27r ad/s

Vpanor ama = 0.25m/s 0.26r ad/s 0.25r ad/s

Vpanor ama = 0.5m/s 0.29r ad/s 0.30r ad/s

Vpanor ama = 0.75m/s 0.38r ad/s 0.34r ad/s

Table 6.1: Table of the average MAD obtained for the comparison of ωmeas
di v

and ωth
di v

for
four values of Vpanor ama (0m/s, 0.25m/s, 0.5m/s and 0.75m/s) under bright
(974lux, 6.95·10−5W /cm2) and low (120lux, 5.42·10−6W /cm2) illuminance,
respectively. The values of the average MAD ranged between 0.25r ad/s and
0.38r ad/s.

Since we showed that the OF divergence can be measured reliably as the subtraction
of two OF magnitudes, we used it to estimate the distance from the static or moving
panorama by means of the EKF. The OF sensors moved back and forth in front of
the panorama for 10s with a frequency of 0.5H z. This was done for four values of
Vpanor ama (0m/s, 0.25m/s, 0.5m/s and 0.75m/s) under bright and low illuminance.
Figure 6.4.a shows the results obtained under bright illuminance. The estimates of the
distance from the panorama ĥ converged quickly (about 2s) to the ground truth h for
Vpanor ama equal to 0m/s, 0.25m/s and 0.5m/s. For Vpanor ama equal to 0.75m/s the
converging time increased slightly (about 3s). In every case, the OF divergence was
a sinusoidal signal due to the pattern of expansion and contraction in the OF vector
field induced by the oscillatory movement. The OF divergence measured presented
noise, due to the OF measurement noise, the limitations in the view-field of PixArt
OF sensors and the mechanical noise caused by the movement of the chariot on the
slider. In general, the noise increased with Vpanor ama . The presence of a higher noise
magnitude explained the slightly higher convergence time for Vpanor ama = 0.75m/s.
Figure 6.4.b shows the results obtained under low illuminance. As in the case of
bright illuminance, the estimates of the distance from the panorama ĥ converged
quickly (about 2s) to the ground truth h for Vpanor ama equal to 0m/s and 0.25m/s.
For Vpanor ama equal to 0.5m/s and 0.75m/s the converging time increased (about 3s)
due to higher noise magnitudes. The noise was present in every case and increased
with Vpanor ama .
To compare the estimation performances of the method under the two lighting con-
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Figure 6.4: The OF divergence was measured with an oscillation frequency of 0.5H z

under (a) bright (974lux, 6.95 · 10−5W /cm2) and (b) low (120lux, 5.42 ·

10−6W /cm2) illuminance in front of the panorama moving with four values
of Vpanor ama (0m/s, 0.25m/s, 0.5m/s and 0.75m/s). i) The estimates of the
distance from the panorama ĥ converged quickly (from about 2s to 3s) to
the ground truth h for every value of Vpanor ama . The distance h covered
by the chariot on the slider ranged between 0.14m and 0.25m. ii) In every
case, the OF divergence measured ωmeas

di v
was a sinusoidal signal. The noise

magnitude increased with Vpanor ama and in general was slightly higher
for datasets taken under low illuminance. The higher noise magnitude
resulted in a slightly higher convergence time in the case of Vpanor ama

equal to 0.75m/s under bright illuminance and 0.5m/s and 0.75m/s under
low illuminance. iii) In (a.iii), the average error values computed after
convergence were 0.31%, 12.09%, 3.29% and 8.29%, respectively. In (b.iii),
the average error values computed after convergence were 4.49%, 15.73%,
12.03% and 5.41%, respectively (see Table (6.2)).
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ditions, an analysis of the average error of the estimates of the distance from the
panorama ĥ after the convergence to the ground truth h was performed. The results
are shown in Table 6.2.

Estimation average errors low light bright light
Vpanor ama = 0m/s 4.49% 0.31%
Vpanor ama = 0.25m/s 15.73% 12.09%
Vpanor ama = 0.5m/s 12.03% 3.29%
Vpanor ama = 0.75m/s 5.41% 8.29%

Table 6.2: Table of the average errors of the estimates of the distance from the
panorama ĥ after the convergence to the ground truth h for four values
of Vpanor ama (0m/s, 0.25m/s, 0.5m/s and 0.75m/s) under bright and low
illuminance (974lux and 120lux, respectively). We computed the average
error between 3s and 10s to guarantee that all the datasets converged. The
average errors ranged between 0.31% and 15.73%.

We considered as time of convergence 3s in order to include all the datasets analysed.
The average errors computed ranged between 0.31% and 15.73%. The errors com-
puted under low illuminance were slightly higher than those obtained under bright
illuminance. The only exception was Vpanor ama = 0.75m/s, for which the average
error under bright illuminance was about 3% higher than under low illuminance. The
results obtained under bright and low illuminance can be considered similar. Thus,
our findings show that ωmeas

di v
can be used to estimate reliably the distance from a

surface under both lighting conditions.

6.1.6 Conclusion

The observation of self-induced oscillatory movements in honeybees [124, 178] has
led to consider the use of an additional OF cue: the OF divergence. The presence of
oscillations makes the oscillating system always locally observable and hence opens
the possibility of using the OF divergence cue to assess the distance from a surface,
regardless of the maneuver performed. OF divergence has already been used to
visually control landing in a micro-flier [99].
In this section, we exploit the OF divergence cue in order to assess the distance
from a surface without the need of previous knowledge of the environment or of
emissive sensors. The OF divergence can be computed as the subtraction between the
magnitudes measured by two OF sensors. To test this method a test bench was built,
consisting of two OF sensors performing a back-and-forth oscillatory movement in
front of a static or moving panorama. The OF sensors were set on a chariot at an angle
of 15° and −15° respectively from the normal to the panorama. The chariot was placed
on a slider and was actuated by a DC motor in order to move back and forth along
the slider in front of the panorama. To test the robustness of this method, datasets
were taken while the panorama was moving at different velocities under bright and
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low lighting conditions.
Our findings show that it is possible to compute reliably the OF divergence between
−0.93r ad/s and 1.3r ad/s as the subtraction of OF magnitudes measured by two
OF sensors. Hence, the OF divergence measured this way can be used to assess the
distance from the panorama by means of an EKF. We successfully tested this method
for distances ranging between 0.14m and 0.25m. The estimates of the distance from
the panorama were generally more accurate for lower velocities of the panorama, due
to a lower noise magnitude. In every case considered, the estimates of the distance
from the panorama converged within 3s to the ground truth. The ground truth was
obtained by a separate mean: a lidar placed on the chariot. The lighting conditions
tested did not influence the results obtained.
Given the low weight of the OF sensors and the low computational power required to
compute the OF divergence, this method can be easily implemented on flying robots
and more specifically on micro-fliers. In this section, we tested the method presented
only for a small range of distances, all of them fairly short if considering the flight of a
micro-flier. Our results were promising and showed that it is worthwhile to test the
method further. Future work will include an analysis of the estimation of the distance
from the panorama for a wider range of oscillation frequencies and of Vpanor ama to
prepare for the implementation of this method on a micro-flier. Moreover, we plan
to use OF sensors with wider optical aperture lenses to expand the range of lighting
conditions. Ultimately, we plan to test the presented method to estimate the distance
of a flying robot at about one meter from a surface.
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6.2 Appendices

6.2.1 Appendix A: The Extended Kalman Filter calculations

for the estimation of distance from the panorama

The discretized model of the test bench can be expressed as

{

X [k +1] =Φ ·X [k]+Γ ·u[k]
y[k] =Ck ·X [k]+Dk ·u[k]

(6.20)

with
Φ= e A·d t (6.21)

Γ= (
∫d t

0
e A·τdτ) ·B = (AT

·e A·d t
− AT ) ·B (6.22)

Ck = h(xk ) =

[

x2[k]

x1[k]

]

(6.23)

Dk = 0 (6.24)

where d t is the discretization time.
To estimate the distance h from the panorama, the EKF took the following iterative
steps for each k th time
Prediction step

(a) One-step ahead prediction

Xk/k−1 =Φ ·Xk−1/k−1 +Γ ·uk−1/k−1 (6.25)

(b) Covariance matrix of the state prediction error vector

Pk/k−1 =Φ ·Pk−1/k−1 ·Φ
T
+Q (6.26)

Correction step

(c) Measurement update

Xk/k = Xk/k−1 +Kk · (yk −Hk ·Xk/k−1) (6.27)

with Kk Kalman gain defined as

Kk = Pk/k−1 ·H T
k · [Hk ·Pk/k−1 ·H T

k +Rk ]−1 (6.28)

and Hk Jacobian matrix for the non linear function defined as follows

Hk =
∂h

∂X
|X=Xk/k−1 =

[

−
ẋ

x2
1
x

]

(6.29)
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(d) Covariance matrix of state estimation error vector

Pk/k = Pk/k−1 +Kk · [Hk ·Pk/k−1 ·H T
k +Rk ] ·K T

k (6.30)

(e) Innovation
ỹk = yk −Hk ·xk/k (6.31)
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7 Minimalistic in-flight odometry
based on optic flows with
oscillatory trajectories

Carrying out visual odometry is a challenging task especially in the case of micro- and
nano-drones, on which onboard computational and perception resources available
tend to be low. The use of optic flow sensors combined with computationally low-cost
algorithms represents a minimalistic alternative to solve this problem.
In this chapter, it was mathematically and experimentally demonstrated that the local
translational optic flow cue can be measured as the sum of two optic flow magnitudes
perceived by two optic flow sensors placed at angles φ and −φ with respect to the nor-
mal to a surface. The SOFIa visual odometer was then tested on a hexarotor equipped
with four optic flow sensors positioned downwards at fixed angles φ and −φ (with
φ= 30deg ) on either side of the drone’s vertical axis along the horizontal axis x and
the lateral axis y , respectively.
The idea of using prior knowledge of the oscillations imposed on the hexarotor to fur-
ther improve the Signal-to-noise Ratio (SnR) of both the measured local translational
and divergence optic flow cues was also investigated. Two sensor fusion strategies
were developed, based on precise and rough prior knowledge of optic flow variations,
respectively.
Tests were performed in a flight arena, where the hexarotor executed approximately
50m-long circular trajectories while oscillating up and down under different illumi-
nance conditions. In all cases considered, the odometry results obtained were accurate
to the ground truth provided by the flight arena motion-capture system and were not
affected by illuminance conditions or trajectory variations. Subsequently, preliminary
tests were performed outdoors on approximately 20m-long longitudinal bouncing
trajectories over a field irregularly covered with grass in the presence of wind. The
sensor fusion strategies presented increased the SnR of both measured optic flow cues
and thus decreased the error in the distance traveled estimates in all cases considered,
improving odometric performance. This was the case even when only rough prior
knowledge of optic flow variations was taken into account.
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7.1.1 Abstract

Estimating distance traveled is a frequently arising problem in robotic applications
designed for use in environments where GPS is only intermittently or not at all avail-
able. In UAVs, the presence of weight and computational power constraints makes
it necessary to develop odometric strategies based on minimilastic equipment. In
this section, a hexarotor was made to perform up-and-down oscillatory movements
while flying forward in order to test a self-scaled optic flow based odometer. The
resulting self-oscillatory trajectory generated series of contractions and expansions
in the optic flow vector field, from which the flight height of the hexarotor could be
estimated using an Extended Kalman Filter. For the odometry, the downward trans-
lational optic flow was scaled by this current visually estimated flight height before
being mathematically integrated to obtain the distance traveled. Here we present
three strategies based on sensor fusion requiring no, precise or rough prior knowledge
of the optic flow variations generated by the sinusoidal trajectory. The “rough prior
knowledge" strategy is based on the shape and timing of the variations in the optic
flow. Tests were performed first in a flight arena, where the hexarotor followed a
circular trajectory while oscillating up and down over a distance of about 50m under
illuminances of 117l ux and 1518l ux. Preliminary field tests were then performed, in
which the hexarotor followed a longitudinal bouncing 20m-long trajectory over an
irregular pattern of grass.

7.1.2 Introduction

Estimating distance traveled by an aerial robot is a problem which frequently arises
when designing applications for use in situations where GPS is available only inter-
mittently or not at all. In UAVs (Unmanned Aerial Vehicles), reducing the Size, Weight
and Power (SWaP) of the perceptual equipment is often of great importance in order
to ensure that the robot’s task will be performed successfully.
Several visual odometric approaches involving the use of either optic flow [234, 159],
events, images & IMU (Inertial Measurement Unit) combinations [246] or the sparse-
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snapshot method [50] have been successfully tested on flying robots. All these ap-
proaches require ground height information providing the factor used to scale the
visual information. This scaling factor can be determined separately using a static
pressure sensor [119] or stereovision [234, 50], or it can be integrated when using the
hybrid approach [246], for example. One of the approaches used to estimate the 2D
position of a drone is a combination of onboard odometry and visual mapping, known
as SLAM (Simultaneous Localisation and Mapping) [68, 135, 156].
Most of these approaches require the use of computationally intensive algorithms
and feedback from the environment (such as the detection of a beacon or feedback
from a map). A minimalistic alternative is IMU based dead reckoning - i.e. inertial
integration [213]. A dead reckoning signal could be used by a UAV to return to the
close proximity of its base station before reaching it a second time using other means
of perception. In this case, the landing of the UAV on its base station can provide a new
known starting point. Another minimalistic alternative consists in using optic flow
cues, such as translational optic flow and optic flow divergence cues. Translational
optic flow has been used on UAVs to control landing visually [192], to follow uneven
terrain [64] and to attempt visual odometry and localisation [114, 119] (see [209] for a
review).
Self-oscillations have been observed in honeybees flying forward in horizontal [124,
211], doubly tapered [178] and high-roofed [177, 179] tunnels. The self-oscillatory
motion generates a series of expansions and contractions in the optic flow vector field,
providing the optic flow divergence cue. Visually controlled landing has been achieved
based on the optic flow divergence cue [98, 244, 47, 99]. The instabilities due to os-
cillatory movements have been used to determine the flight height of a micro-flyer
based on the linear relationship between the oscillation and the fixed control gain
[47]. The instabilities due to depth variations have been used to assess the optic flow
scale factor of the scene observed to perform visual odometry onboard an underwater
vehicle [46]. The local optic flow divergence was measured by means of two optic flow
magnitudes perceived by two basic optic flow sensors placed on a chariot performing
back-and-forth oscillatory movements in front of a moving panorama [20]. The local
optic flow divergence was then used to estimate the local distance between the chariot
and the moving panorama by means of an Extended Kalman Filter (EKF) [20].
A SOFIa (Self-scaled Optic Flow time-based Integration) model has been previously
tested as a means of modeling the visual odometer of honeybees with simulations
[19] as well as with preliminary indoor flights [17]. The SOFIa method to estimate
the distance traveled is based on the integration of the local translational optic flow
scaled by the drone’s flight height, determined by means of an EKF taking the local
optic flow divergence as measurement [19]. The SOFIa model was found to be about
10 times more accurate than the values obtained in simulations based on the raw
mathematical integration of the optic flow [19]. Using an integration scheme of this
kind can therefore be regarded as a minimalistic dead reckoning method based on the
optic flow.
Here we investigated how to include some knowledge about the oscillations occurring
during the trajectory in an odometric strategy based on optic flow cues alone. For
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this purpose, the optic flow based odometric scheme called SOFIa was tested both
indoors and outdoors on a hexarotor equipped with optic flow sensors (see Figure
7.1). First we applied the SOFIa method using only 2 optic flow measurements per-
ceived along the longitudinal axis of the drone, with no prior knowledge of the optic
flow variations. In order to improve the odometric accuracy, a sensor fusion strategy
based on the parameters of the self-oscillation using 4 optic flow sensors embedded
in the hexarotor was then tested. The idea was to use some prior knowledge about
the oscillations imposed on the drone in order to measure the optic flow divergence
and the translational optic flow cues more accurately. Two different sensor fusion
strategies, based on precise and on rough prior knowledge of the optic flow variations,
respectively, were tested. The sensor fusion strategy based on rough prior knowledge
consisted solely in using the shape and timing of the variations in the optic flow. All
three optic flow based odometric processing methods were tested first indoors on
bouncing circular trajectories about 50m-long under illuminances of 117lux and
1518lux and then outdoors on bouncing longitudinal trajectories about 20m-long in

Figure 7.1: Hexarotor oscillating up and down while flying forward over the ground
at the flight height h. a) The hexarotor’s velocity V can be decomposed
into the components Vx and Vh . Along the hexarotor’s longitudinal axis x,
the optic flow sensors are set at angles ±φ with respect to the hexarotor’s
vertical axis, at the distance D with respect to the ground. They perceive the
optic flow magnitudes ω(φ) and ω(−φ), respectively. This configuration is
also present along the hexarotor’s lateral axis y . b) If Vh is positive, the optic
flow divergence component is a contraction (in blue) (i); if it is negative,
the optic flow divergence component is an expansion (in blue) (ii). The
contraction or expansion of the optic flow is superimposed in the ventral
optic flow vector field on the translational optic flow (in red).
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the presence of various wind and irregular grass conditions.
In section 7.1.3, the hexarotor used to perform both indoor and outdoor experiments
is described. In section 7.1.4, the measurement of the local translational and diver-
gence optic flow cues is discussed. In section 7.1.5, the minimalistic visual odometric
method is discussed. In section 7.1.6, the odometric processing method based on
raw measurements of 2 optic flow sensors without any prior knowledge of the optic
flow variations is discussed. In section 7.1.7, the sensor fusion odometric processing
method based on 4 optic flow sensors is discussed, both with precise and with rough
prior knowledge of the optic flow variations. In section 7.1.8, the indoor experimental
setup is first described, and experiments are then presented showing that the two
sensor fusion strategies based on the knowledge of optic flow variations increased the
measurement quality of the local optic flow cues. Lastly, the performances of the three
minimalistic in-flight optic flow based odometric processing methods are compared.
In section 7.1.9, we first discuss the outdoor experimental setup and then present
experiments showing that the same considerations also apply to preliminary flight
tests performed outdoors. In section 7.1.10, conclusions are drawn and projects for
future studies are discussed.

7.1.3 The SOFIa hexarotor

The hexarotor was developed together with HexadroneTM and equipped with 4 Pixart
PAW3903 optic flow sensors (see Figure 7.2 and Table 7.2). The Pixart PAW3903 optic
flow sensors were embedded on printed circuits to be set on the drone. The hexaro-
tor’s onboard low-level flight controller was the PX4 autopilot system [155], using a
trajectory tracking algorithm1. Based on the intrinsic attitude stability of the hexarotor,
we can assume that no rotational component is measured by the optic flow sensors.
In addition, the pitch and roll components were taken to be negligible. The downward
translational optic flow can therefore be measured along the x axis of the optic flow
sensors.

Specifics Optic flow sensors
Sensor chip Pixart PAW3903
Sensor PCB 4 × 2g
Hardware read-out of the 4 sensors Arduino Nano

Table 7.1: Characteristics of the optic flow sensors equipped on the hexarotor.

7.1.4 Measurement of the local optic flow cues

The translational optic flow is the angular speed magnitude of the optic flow vector
field generated by the translational motion of a drone flying above the ground [85].

1https://github.com/gipsa-lab-uav/trajectory_control
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The theoretical local translational optic flow ωth
T can be expressed as the ratio between

the Vx component of the drone’s velocity and its flight height h (see Figure 7.1):

ωth
T =

Vx

h
(7.1)

The local translational optic flow can be measured on a hexarotor as the sum of two
optic flow magnitudes ω(φ) and ω(−φ) perceived by two optic flow sensors oriented
at angles ±φ with respect to the hexarotor’s vertical axis, divided by a known factor of

Figure 7.2: a) Hexarotor equipped with 4 optic flow sensors oriented towards the
ground flying along a bouncing circular trajectory in the Mediterranean
Flight Arena. b) 2 optic flow sensors were set along the longitudinal axis
x at angles φ=±30o with respect to the hexarotor’s vertical axis z, while
the other 2 optic flow sensors were set along the lateral axis y at angles
φ = ±30o with respect to the axis z. c) Example of a flight test trajectory
over a distance of 53m at an oscillation frequency of 0.28H z.
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2 ·cos2φ (see mathematical proof in Appendix 7.3.3):

ωmeas
T =

ω(φ)+ω(−φ)

2 ·cos2φ
=

Vx

h
(7.2)

In the case of a hexarotor equipped with 4 optic flow sensors as illustrated in Figure
7.2.b, three translational optic flow cues can be measured as follows:

• the sum of the two optic flow magnitudes perceived by the two optic flow sensors
set along the longitudinal axis x, namely ωmeas

T1
,

• the sum of the two optic flow magnitudes perceived on the x axis by the two
optic flow sensors set along the lateral axis y , namely ωmeas

T2
,

• the median value of the four optic flow magnitudes sensed along the hexarotor’s
longitudinal axis by the 4 optic flow sensors, scaled by a 1/cos(φ) factor, namely
ωmeas

T3
.

The series of contractions and expansions generated in the optic flow vector field by
up-and-down oscillatory movements is known as the optic flow divergence. When a
drone flies forward while oscillating up and down above the ground, the optic flow
divergence is superimposed on the translational optic flow in the optic flow vector field.
Due to the oscillatory movements, the state vector X = [h,Vh]T is locally observable
[99]. The theoretical local optic flow divergence ωth

di v
can be expressed as the ratio

between the Vh component of the drone’s velocity and h (see Figure 7.1):

ωth
di v =

Vh

h
(7.3)

We have previously proved mathematically that the local optic flow divergence can be
measured on a micro-flyer as the difference between two optic flow magnitudes ω(φ)
and ω(−φ) perceived by two optic flow sensors oriented at angles ±φ with respect to
the normal to a surface, divided by a known factor of sin2φ (see mathematical proof
in Appendix 7.3.3) [20]:

ωmeas
di v =

ω(φ)−ω(−φ)

sin2φ
=

Vh

h
(7.4)

In the case of a hexarotor equipped with 4 optic flow sensors, two optic flow divergence
cues can be measured as follows:

• the difference between the two optic flow magnitudes perceived by the two optic
flow sensors set along the longitudinal axis x, namely ωmeas

di v x
,

• the difference between the two optic flow magnitudes perceived by the two optic
flow sensors set along the lateral axis y , namely ωmeas

di v y
.
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7.1.5 The SOFIa visual odometer method

A model for the honeybee’s visual odometer called SOFIa (Self-scaled Optic Flow time-
based Integration model) was tested in simulations [19]. The SOFIa model is based on
the integration of the local translational optic flow ωT scaled by the estimated distance
with respect to the ground ĥ:

X̂SOF I a =

∫

ωT · ĥ d t (7.5)

ĥ was estimated by means of an EKF. The use of an EKF was necessary due to the
non-linearity of the local optic flow divergence, as the measurement depends on the
ratio between the two states Vh and h (see equation (7.3)).

State space representation of the hexarotor along the vertical axis: The
hexarotor’s system was modeled in the form of a double integrator receiving as its input
the acceleration az on the vertical axis z given by the drone’s IMU. The hexarotor’s
state space representation can therefore be expressed as follows:







Ẋ = f (X , az ) = A ·X +B ·az =

[

0 1
0 0

]

·X +

[

0
1

]

·az

Y = g (X ) = [X (2)/X (1)] =Vh/h =ωdi v

(7.6)

where X =
[

h,Vh

]T
is the hexarotor’s state vector.

7.1.6 Odometric method based on 2 optic flow sensors with

No Prior Knowledge (NPK) of the optic flow variations

The local optic flow divergence ω2S
di v

was measured by taking the difference between
the two raw optic flow magnitudes perceived by the 2 optic flow sensors set along the
x axis, while the local translational optic flow ω2S

T
was measured in the form of their

sum. To estimate the flight height ĥ, the EKF received the following:

• input: the acceleration of the drone az ,

• measurement: the local optic flow divergence ω2S
di v

.

See Appendix 7.3.2 for the EKF calculations.
ĥ was then used to scale the integration of the local translational optic flow ω2S

T
in

order to perform the odometry. This odometric method based on 2 raw optic flow
measurements does not require any prior knowledge about any parameters to assess
the distance traveled.
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Figure 7.3: a) The sensor fusion based on 2 Optic Flow (OF) sensors is achieved using
an Extended Kalman Filter (EKF). The embedded computer handles the
outputs of the optic flow sensors set on the hexarotor, whose outputs
are used to measure the local optic flow divergence ω2S

di v
and the local

translational optic flow ω2S
T

. The EKF receives as its input the hexarotor’s
acceleration az and as its measurement ω2S

di v
to estimate the current flight

height ĥ. The EKF output ĥ scales ω2S
T

, which is then integrated in order to
perform the odometry. b) The sensor fusion based on 4 optic flow sensors
is achieved by inserting additional Kalman Filters (KF). ωmeas

di v x
and ωmeas

di v y

are taken as measurements by a KF (denoted K Fdi v ) receiving as its input
the current value Udi v of the model for the optic flow divergence. The
output of the KF is the local optic flow divergence ωK F

di v
. ωmeas

T1
, ωmeas

T2
and

ωmeas
T3

are taken as measurements by a KF (denoted K FT ) receiving as its
input the current value UT of the model for the translational optic flow.
The output of the KF is the local translational optic flow ωK F

T . The EKF
receives as its input the hexarotor’s acceleration az and as its measurement
ωK F

di v
to estimate the current flight height ĥ. The EKF output ĥ scales ωK F

T ,
which is then integrated in order to perform the odometry.

7.1.7 Fusion strategies based on 4 optic flow sensors

7.1.7.1 Fusion strategy using Precise Prior Knowledge (PPK) of the optic
flow variations

Here we investigated how to use prior knowledge about the self-oscillations to further
improve the accuracy of the distance traveled estimates with 4 optic flow sensors.
The optic flow divergence induced by the self-oscillation serving as an input to a
Kalman Filter (KF) was expressed as follows (see Figure 7.4.a):

ωdi v =
ḣ

h
−→Udi v (k) =

Aosc 2π fosc cos(2π fosc kδt )

h0 + Aosc sin(2π fosc kδt )
(7.7)
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Figure 7.4: Inputs Udi v (a) and UT (b) to the Kalman Filters (KF) used to fuse optic flow
divergence cues and translational optic flow cues with both the Precise
Prior Knowledge (PPK) fusion strategy (in purple) and the Rough Prior
Knowledge (RPK) fusion strategy (in green). In the RPK fusion strategy, a
sinus helps the KFs to keep the timing of the oscillations and the shapes of
the inputs in (a) and (b) are a rough approximation of the complex optic
flow cues variations that are considered in the inputs of the PPK fusion
strategy.

where fosc , the oscillation frequency, was equal to 0.28H z, Aosc , the oscillation ampli-
tude, was equal to 0.25m, and h0, the average flight height, was equal to 0.55m. To
fuse ωmeas

di v x
and ωmeas

di v y
, a KF was used (see Figure 7.3). At each k th step, the KF received

as input the current value of the model in the equation (7.7) and as measurements
ωmeas

di v x
and ωmeas

di v y
. See Appendix 7.3.1 for the KF calculations.

The translational optic flow induced by the forward motion serving as the input to a
KF was expressed as follows (see Figure 7.4.b):

ωT =
Vx

h
−→UT (k) =

ωK F
T (k −1) · ĥ(k −1)

h0 + Aosc sin(2π fosc kδt )
(7.8)

Vx(0) ≈ωK F
T (k = 0) · ĥ(k = 0) was initialized at 0.45m/s. To fuse the three translational

optic flow cues ωmeas
T1

, ωmeas
T2

and ωmeas
T3

, a KF was used (see Figure 7.3). At each k th

step, the KF received as input the current value of the model in the equation (7.8) and
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as measurements ωmeas
T1

, ωmeas
T2

and ωmeas
T3

. See Appendix 7.3.1 for the KF calculations.

7.1.7.2 Fusion strategy using Rough Prior Knowledge (RPK) of the optic
flow variations

Here we investigated how to implement the sensor fusion strategy based on 4 optic
flow sensors without any knowledge of the oscillation amplitude Aosc or the average
flight height h0, just using the information about the general shape and timing of the
oscillations during the trajectory.
For this purpose, we approximated very roughly both the optic flow divergence and
the translational optic flow cues in the form of a sinusoidal signal serving as the input
to both KFs as follows (see Figure 7.4):

Udi v (k) =−UT (k) = sin(2π fosc kδt ) (7.9)

where the oscillation frequency fosc was taken to be equal to 0.28H z. At each k th step,
the two KFs received as input the current value of the model in the equation (7.9) and
as measurements the optic flow divergence measurements (ωmeas

di v x
and ωmeas

di v y
) and the

translational optic flow measurements (ωmeas
T1

, ωmeas
T2

and ωmeas
T3

), respectively. See
Appendix 7.3.1 for the KF calculations.
By using as KF input UT (k) =−si n(2π fosc kδt ), the fusion strategy takes into account
the fact that the variation of the translational optic flow is inversely proportional to
the flight height h, since it depends only on the ratio Vx/h (see equation (7.1)). As
shown in Figure 7.4, only a rough approximation of the actual shape and timing is
taken into account.

7.1.7.3 Extended Kalman Filter in the fusion strategy with 4 optic flow
sensors

To estimate the drone’s flight height ĥ, the EKF used received the following:

• input: the acceleration of the drone az ,

• measurement: the local optic flow divergence ωK F
di v

filtered by the KF based on
the optic flow divergence measurements.

See Appendix 7.3.2 for the EKF calculations.
ĥ was used to scale the local translational optic flow ωK F

T (filtered by the KF based on
the translational optic flow measurements), which was then integrated to perform the
odometry as follows:

X̂SOF I a =

∫

ωK F
T · ĥ d t (7.10)
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Figure 7.5: Hexarotor flying in the Mediterranean Flight Arena (a). The same dataset
taken at 1518lux was processed with the No Prior Knowledge (NPK)
method (b), the Precise Prior Knowledge (PPK) strategy (c) and the Rough
Prior Knowledge (RPK) strategy (d). The local Optic Flow (OF) divergence
(in blue) measured with the NPK method had a Signal-to-noise Ratio (SnR)
of 5.62dB (b.i), while with both the PPK and the RPK strategies the SnR
was 6.72dB (c and d.i). The local translational optic flow (in red) measured
with the NPK method had a SnR of 19.12dB (b.ii), 25.74dB with the PPK
strategy (c.ii) and 25.9dB with the RPK strategy (d.ii). The flight height
estimates ĥ converged within 4s with the ground truth values h given by
the MoCap system in all 3 cases (b, c and d.iii). The average percentage
error of ĥ with respect to h after convergence was −9.77% with the NPK
method ( range: [−61.5%,65.34%]) (b.iv), −2.16% with the PPK strategy (
range: [−36.89%,34.13%]) (c.iv) and −2.55% with the RPK strategy ( range:
[−36.88%,34.25%]) (d.iv). The final percentage error of the distance trav-
eled estimates X̂SOF I a with respect to the ground truth Xg t was −8.57%
with the NPK method (b.v), −1.22% with the PPK strategy (c.v) and −2.80%
with the RPK strategy (d.v).
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Figure 7.6: a) Comparison of the position of the hexarotor on the vertical plane (x,z)
estimated with the Rough Prior Knowledge (RPK) fusion strategy (dashed
line) with the ground truth given by the MoCap system (continuous line).
The flight height estimates ĥ were plotted on the distance traveled esti-
mates X̂SOF I a , while the ground truth h was plotted on Xg t . This flight test
was performed at an illuminance of 1518lux. b) The final percentage error
in the distance traveled estimates X̂SOF I a with respect to the ground truth
Xg t was −2.63%.

7.1.8 Indoor experimental flight tests

7.1.8.1 Indoor experimental setup

Indoor flight tests were performed in the Mediterranean Flight Arena (see Figure 7.5.a).
The position and orientation used in the hexarotor’s control system were taken from
the motion-capture (MoCap) system installed in the flight arena, consisting of 17
motion-capture cameras covering a 6 × 8 × 4 m (lxLxH) volume using a VICONTM

system. Datasets including the optic flow measurements were recorded via the Robot
Operating System (ROS) and processed with the Matlab/Simulink 2022 software.

7.1.8.2 Indoor experimental results

The sensor fusion strategies based on Precise Prior Knowledge (PPK) and Rough
Prior Knowledge (RPK) of the optic flow variations (using 4 optic flow sensors) were
compared with the strategy based on No Prior Knowledge (NPK) of the optic flow
variations (using 2 optic flow sensors). 7 bouncing circular flight tests over a distance
of about 50m were performed with the hexarotor under an illuminance of 117l ux

(5.36 ·10−6W /cm2) and an illuminance of 1518l ux (2.71 ·10−4W /cm2), amounting
to a total number of 14 flight tests. First, the 14 datasets were processed with the
NPK method (see Section (7.1.6)). The 14 datasets were then processed using the
PPK strategy (see Section (7.1.7.1)) and the RPK strategy (see Section (7.1.7.2)). Supp.
video n° 12 shows a synchronised video of the odometry results obtained with the
RPK fusion strategy for the same flight test processed in Figure 7.5 and 7.6. The KF
parameters discussed in Appendix 7.3.1 were defined experimentally as Φ= 10, Γ= 10

2https://www.youtube.com/watch?v=qzCzenY5_xg
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Figure 7.7: Distributions of the final percentage errors in the distance traveled esti-
mates X̂SOF I a with respect to the ground truth Xg t (traveled along the x

axis) for 7 datasets recorded at 1518lux and 7 datasets recorded at 117l ux.
a.i) At an illuminance of 1518lux, the final percentage error ranged be-
tween −8.57% and 5.52% (with a median value of −1.14%) in the case of the
No Prior Knowledge (NPK) method (in black), between −1.65% and 1.08%
(with a median value of −0.8%) in that of the Precise Prior Knowledge
(PPK) strategy (in purple) and between −3.95% and 0.63% (with a median
of −1.55%) in that of the Rough Prior Knowledge (RPK) strategy (in green).
a.ii) At an illuminance of 117l ux, the final percentage error ranged between
−0.72% and 8.4% (with a median value of 4.73%) with the NPK method,
between −4.02% and 2.38% (with a median of −0.27%) with the PPK strat-
egy and between −4.65%% and 2% (with a median value of −1.14%) with
the RPK strategy. b) Upon combining all 14 datasets recorded, the final
percentage error ranged between −8.57% and 8.4% (median value: 0.47%)
with the NPK method, between −4.02% and 2.38% (median value: −0.53%)
with the PPK strategy and between −4.65% and 2% (median value: −1.34%)
with the RPK strategy.

and Hk = 10, based on the first dataset recorded under an illuminance of 1518lux and
used to process all 14 datasets for both PPK and RPK fusion strategies.
As shown in Figure 7.5, the optic flow measurements were processed with the three
strategies (NPK, RPK and PPK), taking the same dataset recorded under an illuminance
of 1518l ux. The increase in the Signal-to-noise Ratio (SnR, computed as the square
ratio of the root mean square of the signal and the root mean square of its noise) for
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the local optic flow divergence and the local translational optic flow in the case of the
PPK and the RPK strategies in comparison with the NPK method affected the average
percentage error of the flight height estimates after convergence (at 4s). The average
percentage error of the flight height estimates was −9.77% with the NPK method,
−2.16% with the PPK strategy and −2.8% with the RPK strategy. Similar results were
obtained with all 14 datasets. The SnR of the local translational optic flow measured
with the NPK method ranged between 18.08dB and 24.79dB , between 24.84dB and
29.93dB with the PPK strategy and between 24.84dB and 31.39dB with the RPK strat-
egy. The SnR of the local optic flow divergence measured with the NPK method ranged
between 5.41dB and 5.71dB , and between 6.47dB and 7.11dB with both the PPK and
RPK strategies.
The flight height estimates ĥ and distance traveled estimates X̂SOF I a were used to
assess the position of the hexarotor on the vertical plane (x,z). An example is shown
in Figure 7.6, where the flight height estimates ĥ were plotted on the distance traveled
estimates X̂SOF I a (which are given directly in meters) and compared with the ground
truth values given by the MoCap system. Since the 2D position estimates were based
on the optic flow based odometry, they were subject to an accumulated error increas-
ing with the distance covered.
Overall, the final percentage error in the distance traveled estimates X̂SOF I a with re-
spect to the ground truth Xg t (traveled along the x axis) ranged between −8.57% and
8.4% with the NPK method, between −4.02% and 2.38% with the PPK strategy and
between −4.65% and 2% with the RPK strategy (see Figure 7.7.b). Similar results were
obtained taking the two different illuminances separately (see Figure 7.7.a).

Figure 7.8: Top view of the drone’s horizontal trajectory during an outdoor flight test
(outdoor flight n◦2). The drone was equipped with a TeraRanger Evo 3m
distance sensor to measure the flight height and a Pixhawk GPS to measure
its position on the horizontal plane (x, y). The take-off point of the flight
was taken to be [0,0]. The optic flow based odometry is performed along
the darker part of the trajectory.
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Figure 7.9: Hexarotor flying over a field irregularly covered with grass (outdoor flight
n◦2) (a). The same dataset recorded outdoors was processed with the No
Prior Knowledge (NPK) method (b), the Precise Prior Knowledge (PPK)
strategy (c) and the Rough Prior Knowledge (RPK) strategy (d). The local
Optic Flow (OF) divergence (in blue) measured had a Signal-to-noise Ratio
(SnR) of 5.74dB with the NPK method (b.i), 6.15dB with the PPK strategy
(c.i) and 6.14dB with the RPK strategy (d.i). The local translational optic
flow (in red) measured had a SnR of 5.9dB with the NPK method (b.ii),
7.41dB with the PPK strategy (c.ii) and 7.4dB with the RPK strategy (d.ii).
The flight height estimates ĥ converged within 5s with the ground truth
values h given by the distance sensor in all 3 cases (b, c and d.iii). The
average percentage error of ĥ with respect to h after convergence was 1.1%
with the NPK method ( range: [−56.77%,85.65%]) (b.iv), 7.12% with the
PPK strategy ( range: [−33.91%,79.94%]) (c.iv) and 7.19% with the RPK
strategy ( range: [−33.91%,83.34%]) (d.iv). The distance traveled estimates
X̂SOF I a with respect to the ground truth Xg t were computed only after
convergence. The final percentage error was 6.83% with the NPK method
(b.v), 3.68% with the PPK strategy (c.v) and 4.08% with the RPK strategy
(d.v).
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Figure 7.10: a) Comparison between the position of the hexarotor on the vertical plane
(x,z) estimated with the Rough Prior Knowledge (RPK) fusion strategy
(dashed line) and the ground truth values given by the distance sensor
(continuous line) (outdoor flight n◦2). The flight height estimates ĥ were
plotted on the distance traveled estimates X̂SOF I a , while h was plotted on
Xg t (the ground truth values). b) The final percentage error in the distance
traveled estimates X̂SOF I a with respect to the ground truth values Xg t was
4.08%.

7.1.9 Preliminary outdoor experimental flight tests

7.1.9.1 Outdoor experimental setup

Outdoors, for trajectory tracking purposes, the hexarotor was equipped with a Ter-
aRanger Evo 3m distance sensor in order to measure the flight height of the drone
and with a Pixhawk GPS sensor (from Holybro) in order to measure the horizontal
position. These 2 sensors were connected directly to the PX4 flight controller. In order
to validate the precision of the TeraRanger Evo 3m distance sensor with the help of
the MoCap system, a test was performed in the flight arena, in which we observed
that TeraRanger Evo 3m was very reliable. This reliability was confirmed by the quality
of the TeraRanger Evo 3m sensor’s output, which was devoid of high frequency noise
when measured on the field (see Section (2) of Supp. Information). According to the
PX4 documentation, the standard deviation of the horizontal position error is 0.8 m
using GPS outdoors. We observed that the hexarotor flying in the horizontal plane had
a maximum deviation of about 1 m with respect to the desired trajectory (see Figure
7.8). Besides, the physical distance on the hexarotor of 5cm between the TeraRanger
Evo 3m sensor and the optic flow sensors has been subtracted to the flight height
estimates ĥ to be compared to the ground truth h (measured by the TeraRanger Evo
3m sensor) in Figures 7.9, 7.10 and 7.11.
The outdoor experiments were performed using the same set of Pixart PAW3903 optic
flow sensors, but adding a neutral density filter of 2 in front of the lenses to attenuate
the solar luminosity. Without these filters, the optic flow sensors would have been
saturated.
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Figure 7.11: In the 4 datasets recorded outdoors, the final percentage error in the
distance traveled estimates X̂SOF I a with respect to the ground truth values
Xg t ranged between 1.77% and 17.23% (median value: 4.67%) with the
No Prior Knowledge (NPK) method (in black), between −8.92% and 9.4%
(median value: −2.49%) with the Precise Prior Knowledge (PPK) strategy
(in purple) and between −8.37% and 9.7% (median value: −2.1%) for
Rough Prior Knowledge (RPK) (in green).

7.1.9.2 Results of preliminary outdoor experiments

4 bouncing longitudinal flight tests over a distance of about 20m were performed with
the hexarotor outdoors over a field irregularly covered with grass (see Supp. video n°
23 and 34). In Figure 7.9, the optic flow measurements of the outdoor flight number
2 were processed with the NPK method, the PPK strategy and the RPK strategy (see
the odometry results obtained with the RPK fusion strategy in Supp. video n°2 for the
outdoor flight number 2). The values of the KF parameters defined in Appendix 7.3.1
were those previously used in the indoor flight tests. As with the indoor flight tests, the
SnRs of the local optic flow divergence and those of the local translational optic flow
were greater with the PPK and RPK strategies than with the NPK method (see Section
(1) of Supp. Information). Figure 7.10 gives the 2D position estimation on the vertical
plane (x,z) for the outdoor flight number 2.
Due to the presence of wind disturbances and the greater convergence time required
by the EKF in outdoor visual setting, the distance traveled X̂SOF I a was estimated only
after a convergence time of 5s. Overall, the final percentage error in the distance
traveled estimates X̂SOF I a with respect to the ground truth values Xg t ranged between
1.77% and 17.23% with the NPK method, between −8.92% and 9.4% with the PPK
strategy and between −8.37% and 9.7% with the RPK strategy (see Figure 7.11). As
with the indoor flights (see Figure 7.7), Figure 7.11 shows comparable results between
the PPK and the RPK fusion strategies. The RPK fusion strategy seems to be very
interesting because it only uses knowledge of the timing and general shape of the
translational and divergence optic flow cues. This knowledge can be considered
reasonable since it is available onboard the UAV: it is in fact the drone itself that shapes

3https://www.youtube.com/watch?v=G9uT6Cj2Hs8
4https://www.youtube.com/watch?v=u88ZnfkUIVg
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the optic flow cues by creating these oscillations.

7.1.10 Conclusion

In this section, we investigated how to use information about the oscillating trajectory
to improve a minimalistic odometry based on optic flow cues. The experiments were
performed onboard a hexarotor first indoors, following circular bouncing trajectories
at a frequency of 0.28H z over distances of about 50m under illuminances of 117l ux

and 1518lux. The results were not affected by the illuminance conditions. A few tests
were then performed outdoors, where the hexarotor followed bouncing longitudinal
trajectories over a distance of about 20m over a field irregularly covered with grass in
the presence of various wind conditions.
The findings obtained in this section show that the sensor fusion strategies based on
the use of 4 optic flow sensors make it possible to measure the optic flow divergence
and the translational optic flow cues more reliably thanks to the use of additional
Kalman Filters. This was the case even when taking only rough prior knowledge
about the optic flow variations into account, and more specifically, only the general
shape and timing of the oscillations during the trajectory. This prior knowledge can
be considered acceptable since the general shape and timing of the oscillations are
imposed by the drone itself on its own forward trajectory. The sensor fusion strategies
presented decreased the error in the flight height estimates, and thus decreased
the percentage error in the distance traveled estimates in all the cases considered,
improving the odometric performances. These considerations also applied in the case
of the few outdoor flight tests performed in the presence of wind and an irregular
pattern of grass.
With all three odometric processing methods, the final distance traveled estimates
were admittedly subject to small errors as the odometric strategy is a dead reckoning
method involving no feedback from the environment. Nevertheless, we show here
that the SOFIa model can be accurate and precise enough to move in close proximity
to a target without GPS, indoors and outdoors. Likewise, this highly minimalistic optic
flow based odometric strategy could also be used to enable a future drone to assess
whether it is returning near its base station without any need for a GPS. So far, the
present findings can be said to constitute the first experimental proof-of-concept of
the SOFIa model [19] before this optic flow based odometric strategy is implemented
on a nanodrone requiring very little computational power [175]. We now intend to
test the robustness of these strategies in a range of forward speeds, in cases where a
large drone pitch occurs and in the presence of strong reliefs.
Future studies will also include the implementation of an optic flow regulator keeping
the translational optic flow around a given setpoint.
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7.1.11 Supplemental Information

7.1.11.1 Preliminary outdoor flight tests

Figure 7.12: Hexarotor flying over a field irregularly covered with grass.

132



7 Minimalistic in-flight odometry based on optic flows with oscillatory trajectories –

7.1 Indoor and outdoor in-flight odometry based solely on optic flows with

oscillatory trajectories

Figure 7.13: Outdoor flight test number 1 processed with the No Prior Knowledge
(NPK) method (a), the Precise Prior Knowledge (PPK) strategy (b) and the
Rough Prior Knowledge (RPK) strategy (c).
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Figure 7.14: Outdoor flight test number 3 processed with the No Prior Knowledge
(NPK) method (a), the Precise Prior Knowledge (PPK) strategy (b) and the
Rough Prior Knowledge (RPK) strategy (c).
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Figure 7.15: Outdoor flight test number 4 processed with the No Prior Knowledge
(NPK) method (a), the Precise Prior Knowledge (PPK) strategy (b) and the
Rough Prior Knowledge (RPK) strategy (c).
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Outdoor test n°1 SnR ωmeas
T SnR ωmeas

di v
% ĥ −h % X̂SOF I a −Xg t

NPK 6.04dB 5.84dB 12.28% 2.5%
PPK 7.13dB 5.83dB 12.09% −8.9%
RPK 7.12dB 5.82dB 11.9% −8.3%
Outdoor test n°2
NPK 5.9dB 5.74dB 1.1% 6.83%
PPK 7.41dB 6.15dB 7.12% 3.68%
RPK 7.4dB 6.14dB 7.19% 4.08%
Outdoor test n°3
NPK 7.67dB 5.77dB −0.06% 17.2%
PPK 10.06dB 6.04dB 9.18% 9.39%
RPK 10.05dB 6.03dB 8.76% 9.69%
Outdoor test n°4
NPK 5.42dB 5.81dB 4.29% 1.76%
PPK 6.72dB 6.1dB 6.65% −8.6%
RPK 6.72dB 6.08dB 6.34% −8.2%

Table 7.2: Table showing the Signal-to-noise Ratio (SnR) of the local translational optic
flow ωmeas

T , the SnR of the local optic flow divergence ωmeas
di v

, the average

percentage error of the flight height estimates ĥ with respect to the ground
truth h and the final percentage error of the distance traveled estimates
X̂SOF I a with respect to the ground truth Xg t in the 4 flight tests performed
outdoors.
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7.1.11.2 Comparison between the flight height ground truth obtained
using the MoCap Sytem and the TeraRanger Evo 3m distance
sensor

Figure 7.16: a) Comparison between the TeraRanger Evo 3m distance sensor’s out-
put and the MoCap system’s output during the oscillatory trajectory. b)
Distribution of the error between the flight height measured by the Mo-
Cap system and the distance sensor. A mean deviation of 11cm and a
standard deviation of 3.7cm were observed. The offset of 11.1cm is due
to the distance between the center of the "reflective markers set" used
with the MoCap system and the position of the TeraRanger Evo 3m sensor.
c) Flight height measured by the TeraRanger Evo 3m sensor during an
oscillatory trajectory, while the hexarotor was flying over a field covered
with an irregular pattern of grass. No pics can be observed on the raw
TeraRanger Evo 3m sensor’s output. Therefore, the TeraRanger Evo 3m
sensor can be seen as precise and accurate and be considered as a reliable
ground truth outdoors.
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Published as part of:
L. Bergantin, C. Coquet, A. Negre, T. Raharijaona, N. Marchand, and F. Ruffier, “Min-
imalistic in-flight odometry based on two optic flow sensors along a bouncing tra-
jectory,” 2022 International Conference on Control, Automation and Systems (ICCAS).

IEEE., p. 1321-1326, 2022

7.2.1 Computation of the optic flow cues by means of two

optic flow magnitudes onboard a hexarotor

To show experimentally that the signals measured by means of equations (7.4) and
(7.2) on the hexarotor were indeed respectively the divergence and the translational
OF cues, 12 tests were performed at an oscillation frequency of 0.28H z for each of
the following illuminance conditions: 1518lux (2.71 · 10−4W /cm2), 814lux (2.15 ·

10−5W /cm2) and 117lux (5.36 ·10−6W /cm2). As shown in Figure 7.17.a, the values of
the measured local OF divergence ωmeas

di v
of the 12 tests performed at 1518lux pooled

together and of the corresponding theoretical local OF divergence ωth
di v

(computed
as in equation (7.3)) presented a linear relation, as did those of the measured local
translational OF ωmeas

T and of the corresponding theoretical local translational OF
ωth

T (computed as in equation (7.1)). Similar results were obtained for the 12 tests
performed at 117lux (see Figure 7.17.b). Thus, we can use equation (7.4) to measure
the local OF divergence cue and equation (7.2) to measure the local translational OF
cue reliably onboard the hexarotor.

7.2.2 Robustness of the visual odometry strategy based on

two optic flow magnitudes to different trajectories

To analyse the robustness of the NPK visual odometry strategy presented to different
trajectories, we performed 12 tests at an oscillation frequency of 0.25H z, 12 tests at
an oscillation frequency of 0.28H z and 12 tests at an oscillation frequency of 0.31H z

under an illuminance of 1518lux (see Figure 7.18). At an oscillation frequency of
0.25H z, the average percentage error of the estimates of ĥ with respect to h ranged
between −6.49% and 10.37%, with a median of −2.08%. Similarly, at an oscillation
frequency of 0.31H z the average percentage error ranged between −7.14% and 8.59%,
with a median of 4.12%. At 0.25H z the final percentage error of the odometry had a
median of 0.96% (corresponding to about 0.48m), while at 0.31H z it had a median of
3.37% (corresponding to about 1.69m). The performance of the method presented
was similarly accurate for all three oscillation frequencies considered.
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Figure 7.17: The plots show the characteristics of the measured Optic Flow (OF) cues
with respect to their theoretical counterparts as perceived onboard the
hexarotor oscillating vertically at 0.28H z. The median values and the
curves representing the Median Average Deviation (MAD) of the OF cues
are shown to display the range of values measured. At 1518l ux, the lo-
cal OF divergence presented a MAD of 0.48r ad/s (a.i), while the local
translational OF presented a MAD of 0.43r ad/s (a.ii). At 117l ux, the lo-
cal OF divergence presented a MAD of 0.47r ad/s (b.i), while the local
translational OF presented a MAD of 0.6r ad/s (b.ii). All plots show linear
relations between the measured OF cues and the theoretical OF cues
computed under the same illuminance conditions. Therefore, they can
be considered as experimental counterparts of the mathematical proofs
of equations (7.4) and (7.2) respectively.
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Figure 7.18: (a) Examples of test trajectories performed with oscillation frequencies
of 0.25H z (in black), 0.28H z (in blue) and 0.31H z (in red) at 1518lux. (b)
The error in the estimates of the distance traveled X̂SOF I a with respect to
the ground truth Xg t was expressed in %. For the 12 tests performed at
0.25H z the final percentage error ranged between −8.61% and 14.58%,
with a median of 0.96%. For the 12 tests performed at 0.28H z the final
percentage error ranged between −8.86% and 5.54%, with a median of
1.55%. For the 12 tests performed at 0.31H z the final percentage error
ranged between −9.13% and 11.09%, with a median of 3.37%.
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7.3.1 Appendix A: Kalman Filter calculations

In the PPK strategy, the optic flow divergence and the translational optic flow cues
were expressed as in the equations (7.7) and (7.8), respectively. In the RPK strategy, the
optic flow divergence and the translational optic flow cues were both expressed as in
the equation (7.9). With each optic flow cue, at each k th step, the current value of the
corresponding model was computed and given to the corresponding KF as input (see
Figure 7.3). In the following paragraph, the notation A > 0 indicates a strictly positive
definite matrix. The KF took the following iterative steps at each k th time:
Prediction step

(a) One-step ahead prediction

Xk/k−1 =Φ ·Xk−1/k−1 +Γ ·Uk−1/k−1 (7.11)

with Φ> 0,Γ> 0.
(b) Covariance matrix of the state prediction error vector

Pk/k−1 =Φ ·Pk−1/k−1 ·Φ
T
+Q (7.12)

Correction step

(c) Measurement update

Xk/k = Xk/k−1 +Kk · (Y i
k −Hk ·Xk/k−1) (7.13)

with Y i
k

current value of the i th measurement, Hk > 0 and Kk Kalman gain defined as:

Kk = Pk/k−1 ·H T
k · [Hk ·Pk/k−1 ·H T

k +Rk ]−1 (7.14)

The measurement update step was repeated for each i th measurement (2 times for
the optic flow divergence and 3 times for the translational optic flow).
(d) Covariance matrix of state estimation error vector

Pk/k = Pk/k−1 +Kk · [Hk ·Pk/k−1 ·H T
k +Rk ] ·K T

k (7.15)

(e) Innovation
Ỹk = Yk −Hk ·Xk/k (7.16)
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7.3.2 Appendix B: Extended Kalman Filter calculations

The discretized model for the hexarotor along the vertical axis (see equation (7.6)) can
be expressed as follows:

{

X [k +1] =Φ ·X [k]+Γ ·U [k]
Y [k] =Ck ·X [k]+Dk ·U [k]

(7.17)

with
Φ= e A·d t (7.18)

Γ= (
∫d t

0
e A·τdτ) ·B = (AT

·e A·d t
− AT ) ·B (7.19)

Ck = g (Xk ) =

[

X2[k]

X1[k]

]

=

[

Vh[k]

h[k]

]

(7.20)

Dk = 0 (7.21)

where d t is the discretization time. To estimate the flight height h, the EKF took the
following iterative steps at each k th time:
Prediction step

(a) One-step ahead prediction

Xk/k−1 =Φ ·Xk−1/k−1 +Γ ·Uk−1/k−1 (7.22)

(b) Covariance matrix of the state prediction error vector

Pk/k−1 =Φ ·Pk−1/k−1 ·Φ
T
+Q (7.23)

Correction step

(c) Measurement update

Xk/k = Xk/k−1 +Kk · (Yk −Hk ·Xk/k−1) (7.24)

with Kk Kalman gain defined as:

Kk = Pk/k−1 ·H T
k · [Hk ·Pk/k−1 ·H T

k +Rk ]−1 (7.25)

and Hk Jacobian matrix for the non linear function defined as follows:

Hk =
∂g

∂X
|X=Xk/k−1 =

[

−
Vh

h2
1
h

]

(7.26)

(d) Covariance matrix of state estimation error vector

Pk/k = Pk/k−1 +Kk · [Hk ·Pk/k−1 ·H T
k +Rk ] ·K T

k (7.27)
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(e) Innovation
Ỹk = Yk −Hk ·Xk/k (7.28)

7.3.3 Appendix C: Computation of the local divergence and

translational optic flow cues

The local optic flow divergence can be measured as the difference between two optic
flow magnitudes ω(φ) and ω(−φ) perceived by two optic flow sensors oriented at
angles ±φ with respect to the normal to a surface, divided by a known factor of sin2φ:

ωmeas
di v =

ω(φ)−ω(−φ)

sin2φ
=

Vh

h
(7.29)

The local translational optic flow can be measured as the sum of ω(φ) and ω(−φ),
divided by a known factor of 2 ·cos2φ:

ωmeas
T =

ω(φ)+ω(−φ)

2 ·cos2φ
=

Vx

h
(7.30)

Proof. We take a drone equipped with two optic flow sensors oriented toward the
ground at angles φ and −φ with respect to its vertical axis. The optic flow magnitudes
perceived by each optic flow sensor can be expressed as follows:

ω(φ) =

∥

∥

∥

−→
V

∥

∥

∥

D
· sin

(

~D ,~V
)

∧

=

∥

∥

∥

−→
V

∥

∥

∥

D
· sin(

π

2
−φ+α)

The two components of the velocity vector
−→
V of the drone flying above the ground

can be expressed as follows:

Vx =

∥

∥

∥

−→
V

∥

∥

∥ ·cosα

Vh =

∥

∥

∥

−→
V

∥

∥

∥ · sinα

with
∥

∥

∥

−→
V

∥

∥

∥=

√

V 2
x +V 2

h

From which we obtain:

cosα=
Vx

√

V 2
x +V 2

h

sinα=
Vh

√

V 2
x +V 2

h
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Thus

ω(φ) =

∥

∥

∥

−→
V

∥

∥

∥

D
· sin

(

~D ,~V
)

∧

=

√

V 2
x +V 2

h

D
· sin

(π

2
−φ+α

)

=

√

V 2
x +V 2

h

D
·

(

sin
(π

2
−φ

)

·cosα+cos
(π

2
−φ

)

· sinα
)

=
Vx

D
· sin

(π

2
−φ

)

+
Vh

D
·cos

(π

2
−φ

)

=
Vx

D
· sin

(π

2
−φ

)

+
Vh

D
· sinφ

=

∥

∥~Vx

∥

∥

D
· sin

(

~D , ~Vx

)

∧

+

∥

∥~Vh

∥

∥

D
· sin

(

~D , ~Vh

)

∧

We can then express the optic flow magnitudes ωφ and ω(−φ) perceived by the two
optic flow sensors as follows:

ω(φ) =
Vx

D
· sin

(π

2
−φ

)

+
Vh

D
· sinφ (7.31)

ω(−φ) =
Vx

D
· sin

(π

2
−φ

)

−
Vh

D
· sinφ (7.32)

Subtracting equations (7.31) and (7.32), we obtain:

ω(φ)−ω(−φ) = 2 ·
Vh

D
· sinφ (7.33)

Since h = D · cosφ is the distance of the drone from the ground, equation (7.33) can
be written as follows:

ω(φ)−ω(−φ) = 2 ·
Vh

h
· sinφ ·cosφ (7.34)

Using the trigonometric formula sinφ ·cosφ=
1
2 · sin(2φ), we can rewrite equation

(7.34) as follows:

ωmeas
di v =

ω(φ)−ω(−φ)

sin(2φ)
=

Vh

h

Summing equations (7.31) and (7.32), we obtain:

ω(φ)+ω(−φ) = 2 ·
Vx

h
· sin(

π

2
−φ) ·cosφ (7.35)

Using the trigonometric formula sin(π2 −φ) = cosφ, we can rewrite equation (7.35) as
follows:

ωmeas
T =

ω(φ)+ω(−φ)

2 ·cos2φ
=

Vx

h
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honeybee visual odometer

In previous chapters, the SOFIa visual odometer was tested on honeybees’ trajectories
in open field simulations and experimentally onboard a hexarotor equipped with optic
flow sensors. Two sensor fusion strategies were developed with the aim of measuring
local translation and divergence optic flow cues more accurately, in order to improve
the odometric performance of the SOFIa method.
In this chapter, another solution is investigated to improve odometric performance
in order to better rely on the surface below. The idea of reorienting the honeybees’
compound eye so that the head pitch is on a level with the surface below was tested
in open field simulations. This model for the honeybee visual odometer, called SuRf
(Surface Reference based), is also based on the scaling of the translational optic flow,
but in this case, the optic flow taken into account is always perceived perpendicularly
to the surface below.
To test the SuRf visual odometer, the ventral region of the honeybees’ compound
eye was simulated by means of 9 downward-facing optic flow sensors at orientation
angles between 20deg and −20deg . The head reorientation is based on the maximum
optic flow perceived along this field-of-view. To ensure that the optic flow cues were
measured perpendicularly to the surface below regardless of the presence of abrupt
changes in the terrain slope, the pitch of the compound eye was adjusted to keep the
head pitch on a level with the surface below. The SuRf visual odometer was tested on
honeybees’ trajectories in simulation over a 70m-long open field with terrain slope
irregularities, under a wide range of wind and terrain conditions.
The SuRf visual odometer proved to be more accurate than the SOFIa visual odometer
tested under the same conditions. This tendency was particularly pronounced when
considering flights in the absence of wind and under head wind conditions. In general,
the lack of head reorientation led to an underestimation of the distance travelled in
all cases considered. Therefore, the SuRf visual odometer is interesting for two main
reasons, as it (i) takes into account the accuracy and the tendency to follow an optic
flow pattern on a surface observed in honeybees and (ii) provides a more precise
odometric approach for aerial robotic applications.
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Article in preparation as:
L. Bergantin, X. Daïni, T. Raharijaona and F. Ruffier, “Head reorientation increases the
reliability of a model for the honeybee odometer over uneven terrain”

8.2 Abstract

Foraging honeybees communicate to their nestmates information about the direction
and distance to a food source from the hive during the waggle dance. Previous studies
have suggested that the honeybees’ odometer relies on the mathematical integration
of the raw angular velocity of the image sweeping backwards across their ventral
viewfield, which is known as the translational optic flow cue. Winged insects, such
as honeybees and butterflies, oscillate up and down while flying forward. These self-
oscillations enrich the ventral optic flow vector field by adding an expansion and
contraction component: this is the optic flow divergence cue. To assess the distance to
a food source from the hive, the current flight height might be estimated by means of
the optic flow divergence cue to scale the translational optic flow before its integration
over time. Honeybees have been observed adjusting altitude in vertical tunnels to
follow the floor or roof depending on the release point of their training flights. In this
study, we present a model for the honeybee visual odometer, called SuRf, which relies
on head reorientation to improve optic flow based terrain-following behaviour and
then optic flow based odometry. In this model, the honeybee head pitch is adjusted
so that it is always oriented parallel to the surface below. Thus, the translational
and divergence optic flow cues are perceived perpendicularly to the surface below.
The SuRf model was tested in open field simulations in the presence of terrain slope
irregularities, under a wide range of flight trajectories and wind conditions. The SuRf
model has proved to be more reliable than the model without head pitch adjustment
tested in simulation under the same conditions. The reliability of the SuRf model
opens up possibilities for minimalistic aerial robotic applications taking place over
irregular terrain.

8.3 Introduction

Flying insects (such as honeybees, flies and dragonflies) perceive the surrounding
visual scene also thanks to the two compound eyes set on either side of their heads.
Each compound eye is composed of units called ommatidia, that can be considered
as bundles of photoreceptors providing a brightness estimate of a patch of the vi-
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sual scene [104, 107]. During the waggle dance, foraging honeybees communicate
information about the direction and distance to a food source from the hive to their
nestmates [247]. Previous studies have suggested that to assess the distance travelled
to a food source from the hive the honeybee odometer relies on visual cues [60, 58,
225, 224, 223], and more specifically on optic flow [61] (see also [40] for a review).
The portion of the waggle dance dedicated to the communication of the distance
travelled is called waggle run and consists of a straight stretch run by the forager while
performing waggling body motions and buzzing noises [247]. The duration of the
waggle run depends quite linearly on the distance travelled [60, 223] and in particular
on the properties of the optic flow perceived during the flight to reach the food source
(or outward flight) [223, 61, 238]. Optic flow has several properties, such as density
(which depends on the visual contrast of the scene texture) and magnitude (which
depends on both flight speed and height).
Previous studies have suggested that the honeybee visual odometer assess the dis-
tance travelled as the mathematical integration over time of the raw translational
optic flow perceived across the ventral viewfield during the outward flight [58, 225,
224, 61, 238]. However, when tested in open field simulations in the presence of wind
and ground irregularities, this raw integration of optic flow for the honeybee visual
odometer does not account well for the accuracy observed in honeybees flying back
to a food source [19]. In aerial robotic applications, translational optic flow has been
used to visually control landing [192], follow uneven terrain [64] and attempt visual
odometry and localisation [114, 119] (see [209] for review). The local translational
optic flow was measured as the sum of two optic flow magnitudes perceived by two
optic flow sensors onboard a small flying robot [16].
Honeybees have been observed oscillating while flying forward both in horizontal and
vertical tunnels ([124] and [178], respectively). Up-and-down self-oscillations have
also been reported for lepidopterans [257, 201, 174]. The up-and-down self-oscillatory
movement generates a series of expansions and contractions in the ventral optic flow
vector field, which is known as the optic flow divergence cue. The changes in vertical
speed and flight height due to the self-oscillations make the two variables observable
[99]. Instabilities due to oscillatory movements have been used to determine the
flight height of a landing micro-flyer by exploiting the linear relationship between the
oscillations and a fixed control gain [47]. Similarly, instabilities due to depth variation
have been exploited to asses the scale factor of the observed scene to perform visual
odometry onboard an underwater vehicle [46]. The local optic flow divergence was
measured as the difference of two optic flow magnitudes perceived by two optic flow
sensors oscillating back-and-forth in front of a moving panorama [20]. The measured
local optic flow divergence was then used to estimate the distance of the optic flow
sensors from the panorama by means of an Extended Kalman Filter (EKF). The optic
flow divergence cue has been exploited to achieve visually controlled landing in small
flying robots [98, 244, 47, 99].
A model for the honeybee visual odometer, called SOFIa (Self-scaled Optic Flow time-
based Integration model), has been assessed in bio-plausible open field simulations
[19]. The SOFIa model is based on the integration over time of the translational optic
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Figure 8.1: Example of outward flight to reach a food source from the hive in the
presence of wind and terrain slope irregularities. In open field, honeybees
oscillate up and down while flying forward. The head pitch is adjusted in
order to keep its orientation parallel to the surface below (in purple).

flow scaled by the current flight height estimated by means of the optic flow diver-
gence cue. When tested in simulation over uneven terrain in the presence of wind,
the SOFIa model was 10 times more accurate than the raw integration over time of
optic flow. The SOFIa visual odometer was tested onboard a hexarotor equipped with
optic flow sensors performing 50m-long circular bouncing flights indoors [18] and
20m-long longitudinal bouncing flights outdoors [16].
Honeybees have been observed adjusting their altitude to follow the floor or the roof
of a vertical tunnel according to the release point of their training flights [179]. These
findings have led to the hypothesis that honeybees might follow an optic flow pattern
previously memorized over a surface. It has been mathematically and experimen-
tally demonstrated that adjusting the pitch of an artificial compound eye onboard a
micro-flyer to keep the head pitch on a level with the surface below improves terrain
following capabilities [64]. The Beerotor aerial robot successfully performed complex
nap-of-the-earth maneuvers by adjusting its flight height in order to maintain the
magnitude of the optic flow perceived by the ventral region of its reoriented com-
pound eye constant [64].
In this study, we present a model for the honeybee visual odometer, called SuRf

(Surface Reference based model), that relies on optic flow cues perceived perpen-
dicularly to the surface below. A honeybee-inspired controller is used to simulate
honeybees’ trajectories in open field in the presence of wind and terrain slope irregu-
larities [177]. The ventral region of the honeybee compound eye is simulated by means
of 9 optic flow sensors facing downward at orientation angles between −20° and 20°.
To ensure that the optic flow cues are measured perpendicularly to the surface below
regardless of the presence of terrain slope irregularities, the pitch of the simulated
honeybee compound eye is adjusted in order to keep the head pitch on a level with
the surface below (see Figure 8.1 and the video at this link 1). To analyse the impact
of such a reorientation strategy, the odometric performance of the SuRf model is
then compared to that of the raw SOFIa model without head pitch adjustment in the
presence of highly steep terrain.

1https://www.youtube.com/watch?v=AMb0IN36-G0
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8.4 The optic flow cues

The translational optic flow cue is the pattern perceived by the honeybee compound
eye on the ventral optic flow vector field due to the translational motion of the honey-
bee flying forward above a surface [85]. The theoretical local translational optic flow
ωth

T can be expressed downward as the ratio of the horizontal component Vx of the
velocity of the simulated honeybee V and the flight height h:

ωth
T =

Vx

h
(8.1)

Up-and-down self-oscillations generate a series of contractions and expansions on the
ventral optic flow vector field, which can be quantified as the optic flow divergence cue.
On the ventral optic flow vector field, the optic flow divergence is superimposed on the
translational optic flow. Due to the oscillatory motion, both the vertical component
Vh of the velocity of the simulated honeybee V and the flight height h are locally
observable [99]. The theoretical local optic flow divergence ωth

di v
can be expressed

downward as the ratio of Vh and h:

ωth
di v =

Vh

h
(8.2)

Honeybees perform turns and saccades while flying forward. These rotational motions
generate distortions on the ventral optic flow vector field, which can be quantified
as the rotational optic flow cue. The rotational optic flow depends on the rotational
speed of the compound eye and is superimposed on the ventral optic flow vector field
on the translational and divergence optic flow. The theoretical local rotational optic
flow ωth

R can be expressed as the derivative over time of the pitch of the simulated
honeybee compound eye θe ye :

ωth
R =

d(θe ye )

d t
(8.3)

The rotational optic flow cue is positive when the velocity of the simulated honeybee
V is negative, while it is negative when V is positive.

8.5 The Surface Reference based (SuRf) model

8.5.1 Simulation of the ventral region of the honeybee

compound eye

The ventral region of the honeybee compound eye is simulated by means of 9 optic
flow sensors facing downward at angles φ = [−20°;20°] with respect to the normal
of the compound eye, with a step of 5°. Each i − th optic flow sensor is set at an
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Figure 8.2: a) Inertial Reference (IR) frame with axis (x, z), in which the velocity of the
simulated honeybee V can be decomposed as (Vx , Vh). b) Compound Eye
Reference (CER) frame with axis (xSuR f ,zSuR f ), in which V can be decom-
posed as (VxSuR f

, VhSuR f
). The pitch of the simulated honeybee compound

eye is adjusted in order to keep the head pitch on a level with the surface
below while flying over a terrain irregularity of slope α. The CER frame is
rotated of an angle θe ye/I with respect to the IR frame.

orientation angle φi at a distance Di from the surface below and thus measures an
optic flow magnitude ω(φi )meas :

ω(φi )meas
=

∥

∥

∥

−→
V

∥

∥

∥

Di
sin

(

~Di ,~V
)

∧

(8.4)

The optic flow sensors have a sampling frequency of 20H z and are subject to a white
noise of magnitude 1e−6r ad/s.
We define two reference frames:

• an Inertial Reference (IR) frame with axis (x, z) (see Figure 8.2.a),

• a reference frame with origin in the centre of the compound eye with axis
(xSuR f ,zSuR f ), referred to as Compound Eye Reference (CER) frame (see Fig-
ure 8.2.b).

V can be decomposed in the IR frame as (Vx , Vh) and in the CER frame as (VxSuR f
,

VhSuR f
). When the simulated honeybee flies above a flat surface, the two reference

frames coincide. When the simulated honeybee flies over a terrain irregularity of slope
α, the pitch of the compound eye in the IR frame θe ye/I is adjusted in order to keep
the head pitch on a level with the surface below. Therefore, the CER frame is rotated
of an angle θe ye/I with respect to the IR frame. When the equator of the compound
eye is parallel to the surface, θe ye/I =α.
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8.5.2 Measurement of the local optic flow cues

The local translational optic flow ωmeas
T is measured as the sum of the two optic flow

magnitudes perceived by the two optic flow sensors set at φ=±20°, divided by a given
factor 2 ·cos2φ [18]:

ωmeas
T =

ω(φ)+ω(−φ)

2 ·cos2φ
(8.5)

Similarly, the local optic flow divergence ωmeas
di v

is measured as the difference of the
two optic flow magnitudes perceived by the two optic flow sensors set at φ = ±20°,
divided by a given factor sin2φ [20]:

ωmeas
di v =

ω(φ)−ω(−φ)

sin2φ
(8.6)

To measure the local rotational optic flow cue ωmeas
R , the pitch of the compound eye

in the IR frame θe ye/I is derived over time:

ωmeas
R =

d(θe ye/I )

d t
(8.7)

If the rotational speed of the simulated honeybee d(D0°)
d t

(with D0° distance to the
surface below of the optic flow sensor set at φ= 0°) is negative, ωmeas

R is added to the
optic flow magnitudes ω(φi )meas measured by the simulated honeybee compound
eye. If the rotational speed is positive, ωmeas

R is subtracted.

8.5.3 Adjustment of the head pitch

If the equator of an artificial compound eye onboard a micro-flyer is kept parallel to
a surface, the relationship between the orientation angles of the optic flow sensors
mimicking the ommatidia and the perceived relative optic flows is a cosine-square
function [64]. Thus, a least-squares regression method can be used to retrieve the
angle between the slope of the surface below and the equator of the compound eye
through the maximal value of the perceived relative optic flows .
To adjust the pitch of the simulated honeybee compound eye in the IR frame θe ye/I , we
consider that the cosine square function can be approximated by a polynomial second
order function using a Taylor expansion around zero. The optic flow magnitudes
measured by the simulated honeybee compound eye are approximated as follows:

ω(φi )meas
≈ a · (φ)′2 +b ·φ′

+ c (8.8)

We define Φ = [(φ)′2,φ′,1] and Γ the vector of the optic flow magnitudes ω(φi )meas

measured at a given time ti . We can then compute the coefficients [a,b,c] using the
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least-squares regression method:

[a,b,c] = i nv(Φ ·Φ
′) ·Φ ·Γ

′ (8.9)

The angular shift between the equator of the compound eye and the slope of the
surface below can be estimated as:

θ̂e ye/sl ope =−
b

2 ·a
(8.10)

To reduce noisy behaviour„ a confidence index Icon f is computed as:

Icon f =

∑

|Φ′ · [a,b,c]−ω(φi )meas |

medi an(ω(φi )meas)
(8.11)

If at a given time ti Icon f is higher than a given threshold, the estimate of θ̂e ye/sl ope is
discarded and its estimate at ti−1 is used instead.

Figure 8.3: A vertical control feedback loop keeps the measured local translational op-
tic flow ωmeas

T constant around a given setpoint ωset
T . The self-oscillations

(in blue) are added to the vertical controller output to compute the wing
stroke amplitude u∆Φ, which feeds the vertical dynamics to obtain the
flight height h. The forward dynamics are modelled by a transfer func-
tion between the body pitch of the simulated honeybee uθ and the air
speed Vai r . The velocity of the wind Vwi nd (in orange) is added to the air
speed Vai r , obtaining the forward velocity Vx . The head pitch adjustment
feedback loop (in purple) adjusted the pitch of the compound eye in the
Inertial Reference (IR) frame θe ye/I to keep the head pitch on a level with
the surface below. The estimates of the angular shift θ̂e ye/sl ope feed the
compound eye dynamics to compute the pitch of the compound eye in the
Compound Eye Reference (CER) frame θe ye/sl ope , to which the body pitch
of the honeybee uθ is added obtaining θe ye/I .
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8.5.4 The honeybee-inspired autopilot

Honeybees’ trajectories are simulated by means of a minimalistic honeybee-inspired
autopilot [78]. The vertical and forward dynamics are modelled on simplified honey-
bees’ flight dynamics [180] (see Section 8.7.1).
The autopilot includes a feedback loop for vertical control, where the measured lo-
cal translational optic flow ωmeas

T is kept constant around a given setpoint ωset
T (see

Figure 8.3). The output of the vertical controller is perturbed by the self-oscillations
simulated by a sinusoidal signal with a frequency of 2H z and an amplitude of 40r ad .
The vertical dynamics take the wing stroke amplitude of the simulated honeybee u∆Φ

as input to compute the flight height z, to which the surface relief is added to obtain
the flight height h. The forward dynamics are modelled by a transfer function between
the pitch of the simulated honeybee uθ and the air speed Vai r , to which the velocity of
the wind Vwi nd is added to obtain the forward velocity Vx .
A head pitch adjustment feedback loop keeps the head pitch on a level with the surface
below (in purple in Figure 8.3). The pitch of the compound eye in the IR frame θe ye/I

is derived over time to measure the local rotational optic flow ωmeas
R , which is either

added or subtracted to the measurements of the simulated honeybee compound
eye according to the sign of the rotational speed. The outputs obtained are used to
estimate the angular shift θ̂e ye/sl ope , that feeds the eye controller and then the eye
dynamics to compute the pitch in the CER frame θe ye/sl ope . The body pitch of the
simulated honeybee uθ is added to θe ye/sl ope to compute θe ye/I .

8.5.5 The SuRf model for the honeybee visual odometer

The SuRf model for the honeybee visual odometer is based on the integration over
time of the local translational optic flow ωmeas

T measured as in equation (8.5) scaled

by the estimated current flight height ĥ:

X̂SuR f =

∫

ωmeas
T · ĥ d t (8.12)

ĥ is estimated by means of an EKF that receives as:

• input: the wing stroke amplitude of the simulated honeybee u∆Φ,

• measurement: the local optic flow divergence ωmeas
di v

measured as in equation
(8.6).

The use of the EKF is necessary due to the non-linearity of the optic flow divergence
(see equation (8.2)). See Appendix 8.10.1 for the EKF calculations.
The estimates of the distance travelled X̂SuR f are compared to the ground truth
Xsur f ace given by the perimeter of the surface followed.
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8.6 The raw SOFIa model

For the raw SOFIa model, a compound eye consisting of one optic flow sensor facing
downward at φ= 0° is simulated. The optic flow sensor has a sampling frequency of
20H z and is subject to a white noise of magnitude 1e−6r ad/s.
The local translational optic flow ωmeas

T is measured as the perceived optic flow mag-
nitude:

ωmeas
T =ω(φ) (8.13)

The local optic flow divergence ωmeas
di v

is measured as the ratio of Vh and the distance
of the optic flow sensor to the surface below D0°:

ωmeas
di v =

Vh

D0°
(8.14)

The autopilot used to simulate the honeybees’ trajectories does not include the pitch
adjustment feedback loop.
The raw SOFIa model is based on the integration over time of the local translational
optic flow ωmeas

T measured as in equation (8.13) scaled by the estimated current flight

height ĥ:

X̂SOF I a =

∫

ωmeas
T · ĥ d t (8.15)

To estimate the flight height ĥ, an EKF receives as:

• input: the wing stroke amplitude of the simulated honeybee u∆Φ,

• measurement: the local optic flow divergence ωmeas
di v

measured as in equation
(8.14).

See Appendix 8.10.1 for the EKF calculations.
The estimates of the distance travelled X̂SOF I a are compared to the ground truth Xg t

given by the nominal distance flown (in this study: 70m).

8.7 Materials and Methods

8.7.1 Honeybees’ vertical dynamics

The honeybees’ vertical dynamics were expressed in [180] as follows:

GV z(s) =
Vz(s)

u∆Φ(s)
=

Kz

1+τz s
(8.16)

where u∆Φ [deg] is the difference in the simulated honeybee wing stroke amplitude
in comparison with hovering, Vz [m/sec] is the vertical speed, τz = 0.22[sec] is the
heave time constant and Kz = 0.11 is a gain. See Appendix 8.10.2 for the observability
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analysis.
The honeybees’ forward dynamics were expressed as follows:

GVai r
(s) =

Vai r (s)

uθ(s)
=

Ksur g e

1+τsur g e s
(8.17)

where uθ [deg] is the honeybee pitch during hovering, Vai r [m/sec] is the air speed,
τsur g e = 0.22[sec] is the surge time constant and Ksur g e = 0.10 is a gain.

8.7.2 Wind modelling

A logarithmic law was used to model the wind profile along the altitude [240] as follows:

vwi nd = kwi nd · v0 ln
h

h0
(8.18)

with the reciprocal of the Von Kármán constant v0 = 0.2m/s, the current height h and
the roughness height h0 = 0.05m.

8.7.3 Computer simulations

The SuRf and raw SOFIa models for the honeybee visual odometer were both simulated
using MATLAB/Simulink 2020 software.

8.8 Results

To test the SuRf model, honeybees’ trajectories were simulated over a 70m-long open
field in the presence of wind and terrain slope irregularities. The simulation included
a 5m-tall hill: one hillside had an initial slope α of 15° changing halfway trough to 25°
and the other had a constant slope of 20°. Figure 8.4 shows an example of round-trip
flight. During the outward flight, the simulated honeybee tackled the hillside with the
varying slope first and was subject to tail wind. During the return flight, the simulated
honeybee tackled the hillside with the constant slope first and was subject to head
wind. In both cases, the pitch of the simulated honeybee compound eye in the IR
frame θe ye/I converged quickly (within 2.5s) to the ground truth given by the slope of
the surface below. The percentage error of the estimates of the flight height ĥ with
respect to the ground truth h ranged between −47.33% and 24.59% after convergence
(with an average value of −13.57%) for the outward flight and between −30.43% and
15.91% after convergence (with an average value of −3.51%) for the return flight. The
final percentage error of the estimates of the distance travelled X̂SuR f with respect to
the ground truth Xsur f ace was −7.41% for the outward flight and 1.13% for the return
flight.
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Figure 8.4: Example of round-trip flight simulated to test the Surface Reference based
(SuRf) model (with ωset

T = 2r ad/s, uθ = 40° and a wind coefficient kwi nd =

1). i) Due to the direction of the wind, the outward flight was subject to
tail wind (blue) and the return flight was subject to head wind (red). ii)
The pitch of the compound eye in the Inertial Reference (IR) frame θe ye/I

(dashed line) converged within 2.5s to the ground truth given by the slope
of the surface below (continuous line). iii) The percentage error of the
estimates of ĥ with respect to h had an average value after convergence of
−13.57% for the outward flight and of −3.51% for the return flight.

Figure 8.5 shows examples of outward flights simulated to test the SuRf and raw SOFIa
models, respectively. The local optic flow divergence ωmeas

di v
measured with the SuRf

model presented less abrupt changes in correspondence to terrain slope irregularities.
In particular, the value of ωmeas

di v
in correspondence to the hill top was 3.79r ad/s

for the SuRf model and 5.55r ad/s for the raw SOFIa model. The percentage error
of the estimates of ĥ with respect to h after convergence ranged between −31.05%
and 16.13% (with an average of −2.78%) for the SuRf model, while it ranged between
−11.01% and 45.05% (with an average value of 20.52%) for the raw SOFIa model. Since
the SuRf and raw SOFIa models refer to different ground truths, the percentage errors
of the estimates of the distance travelled (X̂SuR f for SuRf, X̂SOF I a for raw SOFIa) with
respect to the ground truth (Xsur f ace for SuRf, Xg t for raw SOFIa) were computed in
order to compare the odometric performance of the two visual odometers. The final
percentage error of the odometry was 5.22% for the SuRf model and −14.03% for the
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Figure 8.5: Examples of outward flights simulated to test respectively the SuRf (Surface
Reference based model, in purple) and the raw SOFIa (Self-scaled Optic
Flow time-based Integration model, in black) models (with ωset

T = 2r ad/s,
uθ = 40°, in absence of wind). i) Comparison of flights with the SuRf and
raw SOFIa models, respectively. ii) The local optic flow divergence ωmeas

di v
was measured as the difference of the two optic flow magnitudes perceived
downward at φ=±20° for the SuRf model and as the ratio between Vh and
D0° for raw SOFIa model. iii) The average percentage error of the estimates
of ĥ with respect to h after convergence (at 2.5s) was −2.78% for the SuRf
model and 20.52% for the raw SOFIa model.

raw SOFIa model.
To analyse the impact of the reorientation strategy, outward flights were simulated
under a total number of 81 parametric conditions to test both the SuRf and the raw
SOFIa models. As shown in Figure 8.6, when considering all 81 parametric condi-
tions the final percentage error of the odometry for the SuRf model ranged between
−8.76% and 10.62%, while it ranged between −29.89% and −4.14% for the raw SOFIa
model.Similar results were obtained when considering wind conditions separately.
In absence of wind, the final percentage error of the odometry for the SuRf model
ranged between −1.2% and 6.24% (with an average value of 1.28%), while it ranged
between −19.9% and −12.44% (with an average value of −15.53%) for the raw SOFIa
model. Under head wind, the final percentage error of the odometry for the SuRf
model ranged between −6.42% and 10.62% (with an average value of 4.97%) while it
ranged between −29.89% and −8.91% (with an average value of −19.04%) for the raw
SOFIa model. Under tail wind, the final percentage error of the odometry for the SuRf
model ranged between −8.76% and 9.61% (with an average value of 0.36%), while it
ranged between −25% and −4.14% (with an average value of −12.54%) for the raw
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Figure 8.6: The curves show the distributions of the final percentage odometry errors
for the SuRf (Surface Reference based model) and the raw SOFIa (Self-
scaled Optic Flow time-based Integration model) models tested in simula-
tion over a 70m-long open field in the presence of wind and terrain slope
irregularities, under a total number of 81 parametric conditions. The set of
simulated parametric conditions were generated by varying: (i) the trans-
lational optic flow setpoint ωmeas

T , taking 3 different values (1.75r ad/s,
2r ad/s and 2.25r ad/s), (ii) the body pitch of the simulated honeybee uθ,
taking 3 different values (30°, 40° and 50°) and (iii) the wind coefficient
kwi nd , taking 9 different values (ranging between −1 and 1, with a step
of 0.25). The final percentage error of the odometry for the SuRf model
(in purple) ranged between −8.76% and 10.62%, with an average value of
2.51% and a Median Absolute Deviation (MAD) of 3.78%. The final per-
centage error of the odometry for the raw SOFIa model ranged between
−29.89% and −4.14%, with an average value of −15.76% and a MAD of
4.77%.

SOFIa model.

8.9 Conclusion

In this study, we presented a model for the honeybee visual odometer, called SuRf,
that relies on head pitch reorientation to perceive optic flow cues perpendicularly to a
surface below. The SuRf model involves adjusting the pitch of the simulated honeybee
compound eye to keep the head pitch on a level with the surface below. The SuRf
model was tested in simulation over a 70m-long open field in the presence of wind
and terrain slope irregularities under a total number of 81 parametric conditions. The
SuRf model was then compared to the raw SOFIa model, which was tested under the
same conditions.
Our findings show that perceiving optic flow cues perpendicularly to the surface
below improves the performance of the honeybee visual odometer in open field
flights. The distribution of the final percentage errors of the odometry under the 81
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parametric conditions tested was less spread and presented a lower average value
after convergence for the SuRf model. This trend was particularly noticeable for flights
in the absence of wind and under head wind. Under these conditions, the simulated
honeybee tended to fly closer to the surface below and thus the measurement of the
optic flow cues was more affected by the presence of ground irregularities. In general,
the lack of head pitch adjustment led to an underestimation of the distance travelled
in every case considered.
The accuracy of the SuRf model, combined with the fact that its output is given in
meters, opens up possibilities for aerial robotic applications. The implementation
of the SuRf visual odometer would be particularly beneficial for applications taking
place outdoors, over irregular terrain and in the presence of big changes in ground
slope. In this study, we focused on the adjustment of the honeybee pitch on the
vertical plane. However, the same model applied on the lateral plane might help
aerial vehicles to navigate in tunnels in the presence of abrupt turns. Future work will
include simulation and experimental tests of pitch, yaw and roll adjustment onboard
an aerial vehicle, with the final aim of implementing the SuRf visual odometer on a
micro-drone in a 3D environment.
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8.10 Appendices

8.10.1 Appendix A: Extended Kalman Filter calculations

The model of the honeybee’s vertical dynamics taken from [180] was discretized and
expressed as:

{

X [k +1] =Φ ·X [k]+Γ ·u[k]
y[k] =Ck ·X [k]+Dk ·u[k]

(8.19)

with
Φ= e A·d t (8.20)

Γ= (
∫d t

0
e A·τdτ) ·B = (AT

·e A·d t
− AT ) ·B (8.21)

Ck = h(xk ) =

[

x2[k]

x1[k]

]

(8.22)

Dk = 0 (8.23)

where d t is the discretization time. To estimate the flight height h, the EKF took the
following iterative steps for each k th time:
Prediction step

(a) One-step ahead prediction

Xk/k−1 =Φ ·Xk−1/k−1 +Γ ·uk−1/k−1 (8.24)

(b) Covariance matrix of the state prediction error vector

Pk/k−1 =Φ ·Pk−1/k−1 ·Φ
T
+Q (8.25)

Correction step

(c) Measurement update

Xk/k = Xk/k−1 +Kk · (yk −Hk ·Xk/k−1) (8.26)

with Kk Kalman gain defined as:

Kk = Pk/k−1 ·H T
k · [Hk ·Pk/k−1 ·H T

k +Rk ]−1 (8.27)

and Hk Jacobian matrix for the non linear function defined as:

Hk =
∂h

∂X
|X=Xk/k−1 =

[

−
ḣ

h2
1
h

]

(8.28)
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(d) Covariance matrix of state estimation error vector

Pk/k = Pk/k−1 +Kk · [Hk ·Pk/k−1 ·H T
k +Rk ] ·K T

k (8.29)

(e) Innovation
ỹk = yk −Hk ·xk/k (8.30)

8.10.2 Appendix B: Observability analysis of the honeybee

vertical dynamics

Simplified honeybee vertical dynamics can be expressed as follows [177]:











ḣ = vh

v̇h =−
vh

τz
+

Kz

τz
∆Φ

ωdi v =
vh

h
=

ω(φ)−ω(−φ)
sin2φ

(8.31)

To estimate the current ground height h, the Extended Kalman Filter (EKF) used i)
the downward perceived optic flow divergence ωdi v as its measurement input, ii) the
model for the vertical dynamics of the simulated honeybee as expressed in equation
8.31 and iii) the control input signal (the wing stroke amplitude ∆Φ) regulating the
vertical dynamics.
The continuous state space model of the honeybee vertical dynamics was therefore
written as follows:











ẋ(t ) = f (x(t ),∆Φ(t )) =

[

ḣ(t )
v̇h(t )

]

=

[

0 1
0 −1

τz

][

h

vh

]

+

[

0
Kz

τz

]

∆Φ

y(t ) = g (x(t )) = vh

h
=

ḣ
h
=ωdi v

(8.32)

where x =

[

h

vh

]

is the state vector. It is worth noting that the model’s dynamics are

linear, whereas the EKF’s observation equation is nonlinear.
To check the observability of the system, the observability rank condition was analysed.
First the observability matrix was calculated using the EKF observation equation with
respect to the model dynamics [99]. To do so, the successive Lie derivatives of g (.)
were calculated, as follows:

L0
f (g (x(t )) = g (x(t )) =

Vh(t )

h(t )
(8.33)

L1
f (g (x(t )) =

g (x(t )

∂x(t )
∗ f (x(t ),u(t )) =−

Vh(t )2

h(t )2
+

u

h
(8.34)
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Thus, the observability matrix was expressed as follows:

O =

[

L0
f

(g (x(t ))

L1
f

(g (x(t ))

]

=

[ Vh (t )
h(t )

−Vh (t )2

h(t )2 +
u
h

]

(8.35)

A system is observable if and only if the Jacobian function of the observability matrix
is full rank. Thus, an analysis of the observability matrix O as expressed in equation
(8.35) was performed in order to check whether its Jacobian was full-rank. In the
present case, the system is (locally) observable if and only if the input disturbance
u 6= 0, and h 6= 0 and vh 6= 0. The continuous variation of the control signal u due to
the self-induced input disturbances ensured that the values of the states h and vh and
the control signal were rarely zeroed. Therefore, the oscillatory movements made the
ground height observable via the optic flow divergence.
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In aerial robotic applications, visual odometry is most often performed by processing
the stream of images captured by a camera with algorithms that require high compu-
tational costs. This thesis addresses the issue of performing visual odometry onboard
micro- and nano-drones, on which computational and perception resources available
tend to be low. The strategy presented is based on a model for the honeybee visual
odometer based solely on optic flow cues.

9.1 Thesis contributions

The SOFIa model for the honeybee visual odometer In this thesis is pre-
sented a model for the honeybee visual odometer, called SOFIa (Self-scaled time-
based Optic Flow Integration model), which relies solely on the translational and
divergence optic flow cues. The SOFIa model involves the use of a scaling factor
extracted from the ventral optic flow vector field. This scaling factor is the ground
height estimated by means of an Extended Kalman Filter (EKF), which receives as
measurement the optic flow divergence generated by the up-and-down self-oscillatory
movements performed by the honeybee while flying forward. Due to the scaling of the
translational optic flow, the SOFIa model is less sensitive to changes occurring in the
environment (such as variations in the wind direction or in the flight trajectory) than
the model for the honeybee visual odometer based solely on the raw integration optic
flow. Tested on honeybees’ trajectories in open field simulations under a total number
of 630 different parametric conditions, the SOFIa model was found to be reliable even
in the presence of multiple disturbances and changes in the internal parameters of the
simulated honeybee (such as optic flow setpoint and ground speed). The statistical
dispersion of the estimates of the distance travelled obtained with the SOFIa model
was reduced 10-fold compared to the one obtained with the raw mathematical inte-
gration of translational optic flow under the same conditions. This analysis suggests
that in open field honeybees need to self-oscillate to retrieve the distance of a food
source from the hive, return to the hive, recruit their nestmates, etc... Thanks to the
scaling of the translational optic flow by means of the ground height estimates, the
output of the SOFIa visual odometer is given in metr es and not in r adi ans.
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The measurement of the optic flow cues by means of optic flow sensors
In this thesis, it is mathematically and experimentally demonstrated that both the
divergence and translational optic flow cues can be measured by means of two optic
flow magnitudes perceived by two optic flow sensors placed at angles φ and −φ with
respect to the normal to a surface. The measurement of the optic flow divergence
cue was tested for the first time on a test bench equipped with two optic flow sensors
performing a back-and-forth oscillatory motion in front of a panorama. The measured
local optic flow divergence was then exploited to estimate the distance of the optic flow
sensors from the panorama without the need for prior knowledge of the environment
or emissive sensors. The translational and divergence optic flow cues were then
measured onboard a hexarotor.

Implementation of the SOFIa visual odometer onboard a hexarotor The
SOFIa visual odometer was tested for the first time onboard a hexarotor following
50m-long circular bouncing trajectories in the Mediterranean Flight Arena. The use
of oscillating trajectory information to improve the measurement of translational
and divergence optic flow cues was also investigated. Two sensor fusion strategies,
based respectively on a precise and rough prior knowledge of optic flow variations,
were presented and experimentally tested onboard the hexarotor equipped with four
optic flow sensors. The experimental results obtained show that the sensor fusion
strategies allow to measure the optic flow cues more reliably thanks to additional
Kalman Filters (KF). This was the case even when only a rough prior knowledge of
the optic flow variations (more specifically only the general shape and timing of the
oscillations during the trajectory) was taken into account. This prior knowledge can
be considered acceptable, as the general shape and timing of the oscillations are
imposed by the drone itself on its forward trajectory. The sensor fusion strategies
reduced the error in the ground height estimates and thus the percentage error in
the estimates of the distance travelled in all cases considered, improving odometric
performance. Preliminary tests were also performed outdoors, where the hexarotor
followed 20m-long longitudinal bouncing trajectories over a field irregularly covered
with grass in the presence of wind.

Head reorientation increases the reliability of the honeybee visual odome-
ter A second model for the honeybee visual odometer, called SuRf (Surface Reference
based model), is presented as well. The SuRf model is also based on the scaling of the
translational optic flow, but in this case, the optic flow taken into account is always
perceived perpendicularly to the surface below. For this purpose, an active reorien-
tation process is added so as to always keep the visual plane parallel to the surface
below. The SuRf model was tested on honeybees’ trajectories in open field simulations
in the presence of wind and terrain irregularities under a total number of 81 different
parametric conditions. The distribution of the final percentage errors of the estimates
of the distance travelled obtained with the SuRf model was less spread and had a
lower average value than the one obtained with the SOFIa model tested under the
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same conditions. The results obtained show that the perception of the optic flow
cues perpendicularly to the surface below improves the performance of the honeybee
visual odometer in open field flights.

9.2 Future perspectives for aerial robotic

applications

The minimalistic SOFIa visual odometric strategy presented in this thesis can be
implemented onboard flying robots, and more specifically onboard micro- and nano-
drones that present Speed, Size, Weight and Power (SSWaP) constraints [99, 82], due
to:

• the low weight of the optic flow sensors, which amounts to about 1−2g for each
sensor including the circuit board,

• the low computational power required to measure the translational and diver-
gence optic flow cues by means of optic flow sensors.

Thus, the SOFIa visual odometer allows to perform accurate visual odometry without
computationally heavy algorithms to process the stream of large images captured by
one or more cameras. The SOFIa visual odometer is most effective in high-contrast
environments under illuminance conditions that allow to accurately measure the
translational and divergence optic flow cues. Experimental results illustrated in this
thesis show that it is possible to measure the optic flow cues under illuminances as
low as 117lux. The measurement of optic flow cues could be possible even for lower
illuminances, depending on the optic flow sensors used.
The SOFIa visual odometer is particularly interesting for aerial robotic applications
taking place in environments where GPS is only intermittently or not at all available
(such as buildings or tunnels) to estimate the distance travelled in order to fly from
landmark to landmark. The estimates of the distance travelled are subject to a small
cumulative error, as the odometric strategy presented is a dead reckoning method
based on optic flow and does not require any feedback from the environment. How-
ever, the SOFIa visual odometer is sufficiently accurate and precise to allow a drone
to move close to a target without GPS, both indoors and outdoors. This minimalistic
odometric strategy based on optic flow could also be used by a drone to assess whether
it is returning close to its base station without the need for GPS.

9.2.1 The implementation of the SOFIa visual odometer in

autonomous aerial robotic applications

Steps to implement the SOFIa visual odometer in autonomous aerial robotic applica-
tions should include:
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• an accurate analysis of robustness to large drone pitch, oscillation amplitude
and the presence of strong reliefs,

• the development of optic flow sensors adapted to high speed and both very high
and very low illuminance conditions.

The SOFIa visual odometer could also be combined with other odometric strategies to
improve its accuracy. An example of hybrid solution involving GPS could rely on the
estimates of the distance travelled assessed with the SOFIa visual odometer, period-
ically fused with information provided by GPS to reduce cumulative error. Another
possible solution could be to fuse the estimates of the distance travelled obtained
with the SOFIa visual odometer to information provided by sonar or laser sensors.
The use of landmarks (i.e. detected by a camera) could also be considered to reduce
cumulative error for aerial robotic applications taking place in known environments.
Developing a device consisting of optic flow sensors that autonomously oscillate up
and down would also facilitate the implementation of the SOFIa visual odometer
onboard small flying robots. Such a device would allow to measure the local trans-
lational and divergence optic flow cues without the need for the drone to perform
bouncing trajectories. Another possible solution could be based on a numerical zoom
and de-zoom of the visual scene below by means of a camera.

9.2.2 The advantages of the SuRf visual odometer

The implementation of the SuRf visual odometer would be particularly advantageous
for applications taking place outdoors, over uneven terrain and in the presence of
strong slope variations. In this thesis, only the pitch adjustment to always keep the
visual plane of the simulated honeybee parallel to the surface below is considered.
However, the same strategy applied also on the lateral plane could help aerial vehicles
to navigate in constrained environments (such as tunnels with sharp turns). Steps to
implement the SuRf visual odometer in autonomous aerial robotic applications should
include both simulation and experimental tests of pitch, roll and yaw adjustment
onboard a flying robot.

9.2.3 Optic flow for aerial robotic applications

Optic flow cues can be easily measured with computationally low-cost algorithms.
Thus, optic flow represents a powerful tool for robotic applications, and more specif-
ically for aerial robotic applications relying on platforms that present SSWaP con-
straints. Although this thesis focuses on the use of optic flow for visual odometry,
applications based on translational and divergence optic flow cues could also be de-
veloped for obstacle avoidance or autonomous navigation in cluttered environments,
for example.
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9.3 Feedback to biology

In order to reach a food source in the immediate vicinity, honeybees are believed to
rely on various mechanisms, such as those based on landmarks and smell. This makes
it difficult to assess the accuracy of the honeybee visual odometer alone, as it has not
yet been established when and at what point in the trajectory the honeybees conclude
they have reached their target. However, honeybees are able to retrieve the distance of
a food source from the hive and communicate it to their nestmates during the waggle
dance with sufficient accuracy to forage.
Neurophysiological evidence shows the presence of neurons in the honeybee brain
that are sensitive to translational and divergence optic flow cues [230]. The SOFIa
visual odometer is therefore based on biologically plausible cues. The scaling factor
estimator based on optic flow is a non-linear filter that relies on i) a non-linear model,
ii) a control input (or efference copy) and iii) a biologically plausible sensory output
(the optic flow divergence). Thus, the SOFIa model can be said to be biologically
plausible even though it is not completely anatomically constrained.
In this thesis, the SOFIa model was tested in simulation under conditions similar to
those of an open field or a very large tunnel, where honeybees appear to oscillate at
lower frequencies. Under these conditions, the ventral optic flow controller of the
simulated honeybee is free to adjust its altitude without being constrained by the
height of a tunnel. The impact of the geometric configuration of a tunnel on the flight
trajectory of a honeybee seems to be more pronounced in narrow, low-roofed tunnels.
So far, the SOFIa model has been tested in simulation on straight honeybees’ trajec-
tories on a vertical plane (x, z). However, the SOFIa model does not depend on the
honeybees’ vertical dynamics, but only on the extraction of optic flow cues from the
visual scene. The translational and divergence optic flow cues can both be extracted
along more complex 3D trajectories, according to the definition of optic flow [126].
Thus, the SOFIa model may be generalized to the case of holonomic flights such as
those performed by honeybees [42]. Future studies should include testing the SOFIa
model in simulation in a 3D environment.

9.3.1 The self-scaling of the SOFIa model assesses the

ground speed

The odometric performance of the SOFIa model corresponds to the fact that visual
cues, and more specifically optic flow, can reliably feed the visual odometer over dis-
tances of the order of a few hundred metres, regardless of the trajectory. Furthermore,
the SOFIa model would be reliable irrespective of the base unit and coding in which
the information flow is processed, including those possibly used by honeybees.
It certainly seems that the honeybee estimates the distance travelled on its trajectory
[247, 219, 63]. Even if the honeybee does not gauge the distance travelled (i.e. the
honeybee does not explicitly track the distance travelled on a trajectory) but instead
continuously “accumulates its velocity", the problem of estimating its ground speed
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at different heights would still need to be solved. The SOFIa model provides a solution
to this issue thanks to the self-scaling of the optic flow.

9.3.2 Better understand how honeybees react to the optic

flow divergence

A considerable number of studies have suggested that honeybees rely on the trans-
lational optic flow cue to perform several fundamental tasks, such as assessing the
distance of a food source from the hive [60, 58, 61, 238], landing [226, 225, 263] and
control forward flight speed in tunnels [225, 178, 10, 10], for example. Considerably
less is known about the behavior of the honeybee with respect to the optic flow diver-
gence cue. Some studies have suggested that the optic flow divergence cue could be
used by bees to perform landing [217, 89, 7] and by flies to control altitude [233].
Some studies have reported self-oscillations in honeybees’ flights in tunnels, both
horizontally [124, 8] and vertically [178]. In a recent study, the authors have also
suggested that lateral (not vertical) self-oscillations combined with information about
the changes in airspeed could be used by honeybees to estimate the ground height in
open field, but without describing a precise perceptual mechanism [8]. Due mostly
to the experimental difficulty in performing accurate observations under outdoor
conditions on such small and fast targets, little is known of free-flying honeybees’
trajectories outdoors, where the flying insects are not constrained by the geometry of
the chosen experimental tunnel. Lepidopterans might be an easier model for such

Figure 9.1: a) Aerial view of the experimental site, where honeybees were trained
to fly either towards the south-west over a stretch of land and then over
water to reach an island, or towards the north-west entirely over land. b)
Linear approximation of the variation in waggle duration with respect to
the distance of the feeder from the hive reported for foraging honeybees
flying over a stretch of land (segment 1) and then over water (segment 2)
and again over land (segment 3) (adapted from J. Tautz et al., 2004 [238]).
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experimental observations, due to their bigger size and colorful wings. Studies on
free-flying moths and butterflies seem to indicate that such flying insects perform
up-and-down self-oscillations while flying in open field [257, 201, 174, 227].
Steps to better understand the role of the self-oscillations and of the optic flow diver-
gence cue in the honeybee visual odometer could include:

• a study on honeybees flying in vertically-striped tunnels of various shapes
and sizes, in order to assess (i) the impact of geometric configurations on self-
oscillations and (ii) the oscillation frequencies displayed,

• a study on lepitoderans flying in open field, possibly involving several high-
resolution cameras disposed over at least a few tens of meters,

• a similar open-field study on hymenopterans (such as bumblebees or ideally
honeybees), possibly involving several high-resolution cameras disposed over at
least a few tens of meters between the hive and a feeding station.

9.3.3 The dependence of the integration rate on the optic

flow density

Previous studies have reported that foraging honeybees trained to fly in short, narrow
tunnels with textured walls perform waggle dances indicating a greater distance than
actually travelled [223]. Subsequent experiments have compared the slope of the
relationship between the waggle duration and the distance travelled reported for
waggle dances performed by honeybees flying either over land or over land and water
[238] (see Figure 9.1). The slope of this relationship was flatter for honeybees whose
outward trajectories included water overflight, suggesting that the integration rate of
the honeybee visual odometer decreases on low contrast surfaces due to low optic flow
density. The SOFIa model does not account for this dependence of the integration
rate on the optic flow density.

General conclusion

This thesis suggests a new principle that might help to better understand how honey-
bees assess the distance travelled to a food source from the hive. This same principle
can be implemented onboard micro- and nano-drones as an optic flow based dead
reckoning solution. Flying insect navigation is far from being a solved mystery. The
integration of neuroethology and robotics may help shed light on how the tiny brains
of insects handle complex tasks on which their own survival depends.
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Introduction

Comment l’abeille indique une source de nourriture

En 1967, K. von Frisch décrit dans son livre “The Dance Language and Orientation
of Bees" la danse en huit exécutée par les abeilles butineuses une fois de retour à la
ruche. Au cours de cette danse, les abeilles butineuses informent leurs congénères de
la direction et la distance à parcourir pour atteindre une source de nourriture [247].
Les abeilles butineuses peuvent être observées en train de parcourir une courte ligne
droite tout en agitant latéralement leur corps avant de revenir au point de départ en

Figure 10.1: a) Au cours de la danse en huit, l’abeille butineuse effectue une course
en ligne droite tout en agitant latéralement son corps. L’abeille butineuse
revient ensuite à son point de départ en demi-cercle, alternativement vers
la droite et vers la gauche. Ses congénères assistent à la danse en huit
pour extraire les informations pertinentes sur la distance et la direction à
suivre pour atteindre la source de nourriture indiquée. b) Relation entre
les distances indiquées pendant les danses en huit et le tempo des danses
en huit rapporté pour des expériences menées sur 10km, sur la base de
6267 danses observées (adapté de “The Dance Language and Orientation
of Bees", K. von Frisch, 1967 [247]).
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demi-cercle alternativement à droite et à gauche (voir Figure 10.1.a).
Les abeilles butineuses évaluent la direction vers une source de nourriture depuis la
ruche au moyen de la position du soleil [183, 139]. La capacité des abeilles à estimer la
distance entre la ruche et une source de nourriture est appelée “odomètre". K. von
Frisch a observé une relation monotone entre la distance à la source de nourriture et
le tempo de la danse en huit [247] (voir Figure 10.1.b). Plusieurs études ont suggeré
l’hypothèse selon laquelle l’odomètre des abeilles repose sur des indices visuels [60,
58, 225, 224, 223], et plus particulièrement sur le flux optique [61] (voir [40] pour
une revue bibliographique). D’autres études proposent que les abeilles évaluent la
distance entre la ruche et une source de nourriture en intégrant mathématiquement
le flux optique brut de translation perçu dans le champ visuel ventral [60, 58, 61, 238],
mais le fonctionnement de cet odomètre reste encore sujet à débat.

Le problème de l’estimation de la distance en robotique

Comme pour les abeilles, l’estimation de la distance parcourue afin de naviguer dans
l’environnement pour effectuer des tâches et revenir à un point de départ est un prob-
lème récurrent dans les applications robotiques. Le terme "odométrie" fait référence
à l’utilisation de capteurs pour estimer le déplacement linéaire d’un agent (tel qu’un
robot, une caméra, un véhicule, etc.) à partir d’un point de départ connu, de manière
incrémentale. Diverses solutions basées sur l’utilisation de différentes techniques et

Figure 10.2: a) Exemple d’encodeur optique pour l’odométrie basée sur l’utilisation
de roues (d’après Pololu Corporation, 2016). b) Exemple de système de
navigation inertielle (adapté de M.O.A. Aquel et al, 2016 [4]). c) Schéma du
système satellitaires (GPS) (i) et trilatération au moyen de 3 satellites (ii)
(adapté de A. Noureldin et al., 2013 [173]). d) Schéma du GPS différentiel
en temps réel (DGPS) (adapté de M.O.A. Aquel et al., 2016 [4]).
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capteurs ont été proposées pour mettre en oeuvre des strategiés d’odométrie dans les
applications robotiques [4]. Des exemples de stratégies odométriques sont basés sur
l’utilisation de roues, de systèmes de navigation inertielle, de systèmes satellitaires, de
capteurs ultrasoniques et laser (voir Figure 10.2).
Le terme “odométrie visuelle" a été proposé pour la première fois en 2004 [170] et fait
référence à la capacité d’estimer la position d’un agent en utilisant le flux d’images
prises par une ou plusieurs caméras qui lui sont attachées [203, 169, 161]. L’odométrie
visuelle est une méthode sans contact et peut donc être appliquée aux robots aériens
[164].
Les principaux inconvénients des stratégies odométriques visuelles basées sur des
caméras sont la dépendance aux conditions environnementales et la puissance de
calcul élevée requise pour l’analyse des images [87, 164, 172, 260]. En intérieur,
les conditions environnementales peuvent être contrôlées pour réduire la lumière
directe du soleil, le flou de l’image, les ombres, etc..... Cependant, cela n’est pas pos-
sible à l’extérieur. De plus, pour les applications robotiques aériennes, l’utilisation
d’algorithmes à forte intensité de calcul est le plus souvent incompatible avec un faible
charge utile. Cela est particulièrement difficile dans le cas des micro et nano-drones,
où les contraintes de vitesse, de taille, de poids et de puissance (SSWaP) jouent un rôle
clé. De ces contraintes découle l’importance d’utiliser des équipements minimalistes
et des solutions de traitement à faible coût.

Le flux optique

Le flux optique peut être défini comme le motif dû au mouvement apparent des
objets et des surfaces dans l’environnement causé par le mouvement relatif entre
l’observateur et la scène visuelle [33]. Le concept de flux optique a été introduit par le
psychologue américain J.J. Gibson en 1950 dans son livre “The perception of the visual
word", où il était défini comme le stimulus visuel fourni aux animaux se déplaçant
dans le monde [85] (voir Figure 10.3).

Les capteurs de flux optique

Les capteurs de flux optiques reposent sur des matrices de pixels monochromatiques,
dont la taille varie de 18×18 à 35×35 pixels environ.???? Ainsi, les capteurs de flux
optique peuvent être considérés comme de petites caméras à très basse résolution,
avec un échantillonnage d’image pouvant atteindre 1000i mag es/s et plus. La mesure
du flux optique repose sur la cross-corrélation des signaux visuels : les images sont
capturées à fréquence fixe et comparées entre elles pour déterminer de combien les
contrastes se sont déplacés angulairement dans le champs visuel.
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Figure 10.3: Représentation du flux optique comme un champ de vecteurs pour un
observateur avançant frontalement (d’après “The perception of the visual
world", J.J. Gibson, 1950 [85]).

Approches robotiques inspirées par les insectes et basées

sur le flux optique

Bien que les mécanismes relatifs à sa perception chez les insectes ne soient pas encore
totalement compris [251], le flux optique –indice visuel biologiquement plausible– a
été largement utilisé en robotique comme une perception visuelle alternative, sou-
vent à faible coût [209]. En s’inspirant des insectes, il est possible de développer des
approches minimalistes nécessitant moins de ressources en termes de capteurs et
de puissance de calcul pour des tâches impliquant la navigation [131, 101, 93] ou la
vision [76, 75], par exemple. Les approches robotiques peuvent également contribuer
à expliquer les capacités et les performances des insectes à naviguer dans leur en-
vironnement encombré [79, 218, 132, 115]. Des stratégies robotiques inspirées des
insectes et basées sur le flux optique ont été développées pour effectuer le contrôle
de la vitesse, la navigation dans un tunnel, l’évitement d’obstacles, le décollage et
l’atterrissage, l’évitement du sol et le suivi du sol, etc... (voir Figure 10.4).

Les oscillations en vol

Des études menées dans des tunnels horizontaux [124] et verticaux [178] ont mon-
tré que les abeilles oscillent en volant vers l’avant (voir Figure 10.5). Les fréquences
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Figure 10.4: Exemples de comportements observés chez les insectes volants et leurs
équivalents robotiques n’utilisant que le flux optique. (A) Comportement
de suivi du terrain [174, 227] qui a inspiré (E) le développement d’un
robot aérien en vol libre suivant le terrain [24, 198]. (B) Navigation dans
un tunnel [178] qui a inspiré (F) le suivi du terrain et l’ajustement de la
vitesse dans des tunnels complexes [64, 177]. (C) Descente et atterrissage
à pente constante (sans variomètre) [226] qui ont inspiré (G) le régulateur
de flux optique ventral [192]. (D) Atterrissage sur une cible mobile [263]
qui a inspiré (H) un robot aérien se posant sur une cible placée sur une
plateforme en mouvement [194] (d’après J. Serres et F. Ruffier, 2017 [209]).
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B

A

Vertical tunnel (Portelli et al, 2011)

Horizontal tunnel (Kirchner and Srinivasan, 1989)

Figure 10.5: A) Vue de dessus de la trajectoire d’une abeille présentant des oscillations
latérales (à droite) dans un tunnel horizontal (à gauche) (adapté de W.H.
Kirchener et M.V. Srinivasan, 1989 [124]) B) Vue latérale de la trajectoire
d’une abeille présentant des oscillations de haut en bas (à droite) dans un
tunnel vertical (à gauche) (adapté de G. Portelli et al, 2011 [178]).

d’oscillation rapportées se situent autour de 2H z, tandis que l’amplitude des oscilla-
tions est d’environ 3cm en largeur (dans des tunnels étroits de 12cm de large) [124] et
10cm en hauteur (dans des tunnels de 40cm de haut) [178]. Selon une étude récente,
les abeilles volant dans des tunnels étroits pourraient contrôler leur hauteur de vol
au moyen d’oscillations latérales d’une fréquence moyenne de 4,7±1,6H z [8]. Des
oscillations similaires ont également été observées chez les lépidoptères [257, 201, 12,
174, 227].

Les indices de flux optique durant le vol de l’abeille

Le champ de vecteurs du flux optique perçu par la région ventrale de l’œil composé
de l’abeille pendant les vols vers l’avant tout en oscillant en milieu ouvert est illustré à
la Figure 10.6. Trois indices de flux optique peuvent être identifiés : les indices de flux
optique de translation, de divergence et de rotation.
L’indice de flux optique de translation est le motif dû au mouvement de translation
de l’abeille qui survole le sol [85]. Le flux optique local de translation ωT dépend du
rapport entre la vitesse sol Vx – composante horizontale de la vitesse V de l’abeille – et
la hauteur sol h – hauteur de vol de l’abeille – [256] (représenté en rouge sur la Figure
10.6) :

ωT =
Vx

h
(10.1)

Le mouvement oscillatoire de haut en bas génère une série de contractions et d’expansions
dans le champ de vecteurs du flux optique ventral, qui peut être quantifié comme
l’indice de divergence du flux optique. La divergence du flux optique est superposée
dans le champ de vecteurs du flux optique sur la composante translationnelle du
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Figure 10.6: Les abeilles oscillent vers le haut (a.i) et vers le bas (b.i) tout en volant
vers l’avant au-dessus du sol, générant une série de contractions (a.ii)
et d’expansions (b.ii) dans le champ de vecteurs du flux optique ventral,
quantifié comme l’indice de divergence du flux optique (en bleu). La
divergence du flux optique est superposée dans le champ de vecteurs du
flux optique sur le flux optique de translation (en rouge).

flux optique (voir Figure 10.6). La divergence locale du flux optique ωdi v dépend du
rapport entre la composante verticale Vh de la vitesse de l’abeille V et h (représentée
en bleu sur la Figure 10.6) :

ωdi v =
Vh

h
(10.2)

Les abeilles effectuent également des virages et des saccades lorsqu’elles volent vers
l’avant en oscillant. Ces mouvements de rotation se rajoutent au champ de vecteurs
du flux optique : cet indice se nomme le flux optique de rotation. Le flux optique de
rotation dépend de la vitesse de rotation de l’abeille et se superpose dans le champ
de vecteurs du flux optique aux composantes du flux optique de translation et de
divergence. Le flux optique local de rotation ωR peut être exprimé comme la dérivée
dans le temps du tangage de l’abeille θ :

ωR =
d(θ)

d t
(10.3)
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Contributions de la thèse

L’objectif de cette thèse est de développer une approche odométrique visuelle min-
imaliste pour de micro- et nano-robots volants inspirée des abeilles et basée sur
l’utilisation de capteurs de flux optiques.

Le modèle SOFIA d’odomètre visuel des abeilles

Dans cette thèse, nous proposons un modèle d’odomètre visuel des abeilles, appelé
SOFIa (Self-scaled time-based Optic Flow Integration model). L’odomètre visuel
SOFIa implique l’utilisation d’un facteur d’échelle extrait du champ de vecteurs du
flux optique ventral. Ce facteur d’échelle est la hauteur de vol estimée au moyen d’un
Filtre de Kalman Etendu (EKF). Pour ce faire,l’EKF reçoit comme mesure la divergence
du flux optique générée sur le champ de vecteurs du flux optique ventral par les
mouvements oscillatoires de haut en bas. Grâce à la mise à l’échelle du flux optique

Figure 10.7: Les courbes donnent les distributions de fréquences relatives des sorties
des deux modèles pour l’odomètre visuel simulé lors d’un vol de 100m

de long au-dessus de 3 petites collines à pentes douces séparées par des
zones plates, sous un nombre total de 630 conditions paramétriques. À
des fins de comparaisons visuelles, la valeur médiane en r adi ans du
modèle OFacc a été alignée avec la tache de 100m sur l’abscisse en mètre.
La dispersion des sorties des deux modèles diffère significativement (test
de Brown-Forsythe, df = 502, F : 383.66, p-value << 0.001). La dispersion
statistique de la distribution obtenue avec le modèle SOFIa s’est avérée
considérablement plus faible que celle obtenue avec le modèle OFacc :
l’écart absolu médian du modèle SOFIa était de 3.09m, tandis que celui
du modèle OFacc s’élevait à 25.62r ad , soit 29.74m.
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de translation avant son intégration dans le temps, l’odomètre visuel SOFIa est moins
sensible aux changements de trajectoires par exemple dû au vent que le précédent
modèle d’odomètre visuel basé uniquement sur l’intégration brute du flux optique
de translation. Testé sur des simulations “en milieu ouvert" de 100m de long dans un
nombre total de 630 conditions paramétriques différentes, l’odomètre visuel SOFIa
s’est avéré fiable même en présence de multiples perturbations et changements des
paramètres internes de l’abeille simulée (tels que le point de consigne du flux optique
et la vitesse de vol). La dispersion statistique des résultats odométriques obtenus avec
le modèle SOFIa a été réduite de 10 fois par rapport à celle des résultats odométriques
obtenus avec l’intégration mathématique brute du flux optique de translation dans
les mêmes conditions (appelé ici OFacc pour Optic Flow accumulation model, voir
Figure 10.7). Cette analyse suggère qu’en milieu ouvert, les abeilles peuvent mettre à
l’échelle leur flux optique grâce à leurs oscillations verticales, ceci les aidant à retrouver
l’emplacement d’une source de nourriture, à retourner à la ruche, et donc à recruter
leurs congénères, etc. Grâce à la mise à l’échelle du flux optique de translation au
moyen des estimations de la hauteur de vol, la sortie de l’odomètre visuel SOFIa est
donnée en mètres et non en radians.

Mesure des indices du flux optique au moyen des capteurs

de flux optique

Dans cette thèse, il a été démontré mathématiquement et expérimentalement que les
indices de flux optique de divergence et de translation peuvent être mesurés au moyen
de deux magnitudes de flux optique perçues par deux capteurs de flux optique placés
à des angles φ et −φ par rapport à la normale à une surface. La mesure de l’indice de
divergence du flux optique a été testée pour la première fois sur un banc d’essai équipé
de deux capteurs de flux optique effectuant un mouvement oscillatoire de va-et-vient
devant un panorama (voir Figure 10.8). La divergence locale du flux optique mesurée a
été exploitée pour estimer la distance entre les capteurs de flux optique et le panorama
sans avoir besoin d’une connaissance préalable de l’environnement ou des capteurs
émissifs. Les tests ont été réalisés avec une large gamme de vitesses de panorama
dans des conditions de luminosité faible et forte, qui n’ont pas affecté les résultats
expérimentaux obtenus. Les indices de flux optique de translation et de divergence
ont ensuite été mesurés en utilisant deux magnitudes de flux optique perçues par
deux capteurs de flux optique sur un hexarotor.

Tests de l’odomètre visuel SOFIa sur un hexarotor

L’odomètre visuel SOFIa a été testé pour la première fois sur un hexarotor suivant
des trajectoires circulaires rebondissantes de 50m de long dans une arène de vol,
dans des conditions de forte et de faible luminosité (voir Figure 10.9). L’utilisation
d’informations sur les trajectoires oscillantes pour améliorer la mesure des indices de
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Figure 10.8: Le banc d’essai est composé de deux capteurs de flux optique placés sur
un chariot à φ et −φ (avec φ = 15deg) par rapport à l’axe horizontal z

et placés sur une glissière devant un panorama. Un moteur à courant
continu connecté à l’extrémité de la glissière opposée au panorama induit
un mouvement oscillatoire de va-et-vient du chariot sur l’axe horizontal z

à la vitesse Vh (en bleu). Le panorama se déplace sur l’axe x à une vitesse
variable Vpanor ama (en vert).

flux optique de translation et de divergence a également été étudiée. Deux stratégies
de fusion de capteurs, basées respectivement sur une connaissance préalable précise
et approximative des variations de flux optique, ont été présentées et testées expéri-
mentalement sur l’hexarotor équipé de quatre capteurs de flux optique. Les résultats
expérimentaux obtenus montrent que les stratégies de fusion de capteurs permettent
une mesure plus fiable des indices de flux optique grâce à des Filtres de Kalman (KF)
supplémentaires, même lorsque seule une connaissance préalable approximative des
variations du flux optique (seulement la forme générale et le temps des oscillations
au cours de la trajectoire) est prise en compte. Cette connaissance préalable peut
être considérée comme acceptable, car la forme générale et le temps des oscillations
sont imposés par le drone lui-même sur sa trajectoire vers l’avant. Les stratégies de
fusion de capteurs ont réduit l’erreur dans l’estimation de la hauteur de vol et donc
le pourcentage d’erreur dans l’estimation de la distance parcourue dans tous les cas
considérés, améliorant ainsi les performances odométriques (voir Figure 10.10). Les
résultats n’ont pas été affectés par les conditions de luminosité. Des tests prélimi-
naires ont également été effectués en extérieur, où l’hexarotor a suivi des trajectoires
longitudinales rebondissantes de 20m de long sur un terrain irrégulier en présence de
vent. Les considérations faites pour les vols en intérieur se sont également avérées
valables pour les quelques tests en extérieur réalisés.
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Figure 10.9: a) Hexarotor équipé de 4 capteurs de flux optique orientés vers le sol
volant le long d’une trajectoire circulaire rebondissante dans une arène
de vol. b) Deux capteurs de flux optique ont été placés le long de l’axe
longitudinal x à des angles φ=±30deg par rapport à l’axe vertical z de
l’hexarotor, tandis que les deux autres capteurs de flux optique ont été
placés le long de l’axe latéral y à des angles φ=±30deg par rapport à l’axe
z. c) Exemple d’une trajectoire sur une distance de 53m à une fréquence
d’oscillation de 0.28H z.

La réorientation de la tête augmente la fiabilité de l’odomètre

visuel des abeilles

Une stratégie odométrique visuelle, appelée SuRf (Surface Reference based), basée
sur la mise à l’échelle du flux optique de translation toujours perçu perpendiculaire-
ment à la surface survolée a également été présentée. La stratégie SuRf consiste à
réorienter constamment le tangage de l’œil composé de l’abeille simulé pour que
l’équateur de son oeil composé reste parallèle à la surface survolée. Ainsi, la stratégie
SuRf permet d’évaluer les longueurs des pentes et autres périmètres des formes sur-
volées. la stratégie SuRf a été testée sur des simulations en milieu ouvert de 70m de
long en présence de vent et d’irrégularités du terrain dans un nombre total de 81
conditions paramétriques différentes. Les performances odométriques de la stratégie
SuRf ont ensuite été comparées à celles de la stratégie SOFIa brute, dans laquelle le
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Figure 10.10: Distributions des erreurs finales en pourcentage des estimations de la
distance parcourue X̂SOF I a par rapport à la vérité terrain Xg t (parcourue
le long de l’axe x) pour 7 ensembles de données enregistrés à 1518lux et
7 ensembles de données enregistrés à 117lux. a.i) Pour une luminosité
de 1518lux, la valeur médiane est de 1,14% dans le cas de la méthode
sans connaissance préalable des variations du flux optique (NPK, en
noir), −0.8% dans celle de la stratégie avec connaissance précise des
variations du flux optique (PPK, en violet) et −1.55% dans celle de la
stratégie avec connaissance approximative des variations du flux optique
(RPK, en vert). a.ii) Pour une luminosité de 117lux, la valeur médiane
est de 4,73% avec la méthode NPK, 0,27% avec la stratégie PPK et 1,14%
avec la stratégie RPK. b) En combinant les 14 ensembles de données
enregistrés, la valeur médiane est de 0.47% avec la méthode NPK,−0,53%
avec la stratégie PPK et −1,34% avec la stratégie RPK.

réorientation du plan visuel n’est pas réalisée. La distribution des erreurs finales en
pourcentage des estimations de la distance parcourue obtenues avec la stratégie SuRf
était moins étendue et avait une valeur moyenne après convergence plus faible que
celle obtenue avec la stratégie SOFIa brute testée dans les mêmes conditions. Les
résultats obtenus montrent que la perception d’indices de flux optique perpendicu-
lairement à la surface survolée améliore les performances de l’odomètre visuel des
abeilles lorsque les abeilles doivent tout de même suivre un terrain très irrégulier. Une
implémentation sur drone n’a cependant pas encore été réalisée.
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Conclusion

Perspectives pour les applications robotiques aériennes

La stratégie odométrique visuelle minimaliste SOFIa présentée dans cette thèse peut
être implémentée sur de robots volants, et plus particulièrement sur de micro- et nano-
drones qui présentent des contraintes de vitesse, de taille, de poids et de puissance
(SSWaP), en raison de :

• le faible poids des capteurs de flux optique, qui s’élève à environ 1−2g r pour
chaque capteur, y compris la carte de circuit imprimé,

• la faible puissance de calcul nécessaire pour mesurer les indices de flux optique
avec les capteurs de flux optique.

Ainsi, la méthode SOFIa permet de réaliser une odométrie visuelle précise sans avoir
recours à des algorithmes lourds en calcul pour traiter le flux d’images capturées
par une ou plusieurs caméras. La méthode SOFIa est plus efficace dans des envi-
ronnements à fort contraste et dans des conditions de luminosité qui permettent de
mesurer avec précision les indices de flux optique de translation et de divergence.
Cependant, les résultats expérimentaux illustrés dans cette thèse montrent qu’il est
possible de mesurer les indices de flux optique de translation et de divergence sous des
luminosité aussi faibles que 117lux. La mesure des indices de flux optique pourrait
être possible même pour des luminosités plus faibles, en fonction des capteurs de flux
optique utilisés.
L’odomètre visuel SOFIa est particulièrement intéressant pour les applications robo-
tiques aériennes se déroulant dans des environnements où le GPS n’est disponible que
par intermittence ou pas du tout (comme les bâtiments ou les tunnels) pour estimer
la distance parcourue afin de voler de babise en balise. Les estimations de la distance
parcourue sont sujettes à une petite erreur cumulative, car la stratégie odométrique
est une méthode à l’estime basée sur l’intégration du flux optique remis à l’échelle et
n’utilise aucun mécanisme de rétroaction avec l’environnement visuel. Cependant,
l’odomètre visuel SOFIa est suffisamment exact et précis pour permettre à un drone
de se rapprocher d’une cible sans utiliser de GPS, à l’intérieur comme à l’extérieur.
Cette stratégie odométrique minimaliste basée sur le flux optique pourrait également
être utilisée pour permettre à un drone d’évaluer s’il revient à proximité de sa station
de base sans avoir besoin de GPS.

Retour pour la biologie

Afin d’atteindre une source de nourriture située à proximité immédiate, les abeilles
butineuses s’appuieraient sur divers mécanismes, tels que ceux basés sur les points
de repère et l’odorat. Il est donc difficile de caractériser la précision du seul odomètre
visuel des abeilles, car il est difficile d’établir à quel moment de leur trajectoire, les
abeilles concluent qu’elles ont atteint leur cible. Cependant, les abeilles sont capables
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de retrouver l’emplacement d’une source de nourriture et de le communiquer à leurs
congénères pendant la danse en huit avec suffisamment de précision pour pouvoir
butiner.
L’odomètre visuel SOFIa est basé uniquement sur des indices visuels biologiquement
plausibles et prend en compte les performances odométriques observées chez les
abeilles butineuses. Ainsi, on peut dire que le modèle SOFIa est biologiquement
plausible même s’il n’est pas complètement contraint sur le plan anatomique.
Dans cette thèse, le modèle SOFIa a été testé dans des conditions similaires à celles
d’un milieu ouvert ou d’un très grand tunnel, où les abeilles semblent osciller à des
fréquences plus basses. Dans ces conditions, le régulateur de flux optique ventral de
l’abeille simulée est libre d’ajuster son altitude sans être contraint par la hauteur d’un
tunnel. L’impact de la configuration géométrique d’un tunnel sur la hauteur de vol de
l’abeille et donc sur les performances de l’odomètre visuel est plus prononcé dans les
tunnels étroits et à toit bas.
La distribution et la précision des résultats obtenus avec le modèle SOFIa corre-
spondent au fait que les indices visuels, plus précisément le flux optique, peuvent
alimenter de manière fiable l’odomètre visuel des abeilles sur des distances de l’ordre
de quelques centaines de mètres, quelle que soit leur trajectoire. De plus, le mod-
èle SOFIa serait fiable quels que soient l’unité de base et le codage dans lesquels le
flux d’information est traité, y compris ceux éventuellement utilisés par les abeilles
butineuses.
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