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Titre: Réseaux de neurones sur graphes pour la simulation numérique des EDPs
Mots clés: Apprentissage profond, graph neural networks, EDPs

Résumé: Les équations aux dérivées partielles
(EDP) sont un outil essentiel de la simula-
tion numérique pour modéliser des systèmes
complexes. Cependant, la résolution de ces
équations avec une grande précision nécessite
généralement un coût de calcul élevé. Ces
dernières années, les algorithmes d’apprentissage
profond ont reçu un intérêt croissant pour
l’apprentissage à partir d’exemples, et pourraient
être utilisés comme substituts des méthodes
d’analyse numérique, en appliquant directement
les techniques d’apprentissage supervisé à des
bases de données de solutions connues, car une
fois le modèle neuronal appris, l’inférence des
solutions a un coût marginal. De nombreux
problèmes subsistent cependant, que cette thèse
de doctorat tente de résoudre. La thèse se
concentre en particulier sur trois défis majeurs
dans l’application des méthodes d’apprentissage

profond aux EDP : la gestion des maillages
non structurés, qui peut difficilement se faire en
utilisant les techniques de traitement d’images,
sources d’immenses succès en apprentissage
profond ; les problèmes de généralisation, en
particulier pour des données hors-distribution
par rapport aux données d’apprentissage ; et les
coûts de calcul élevés pour générer ces données
d’apprentissage. Nos trois contributions sont
fondées sur les Réseaux de Neurones sur Graphes
(GNNs) : un modèle hiérarchique inspirées des
méthodes multi-grilles de l’analyse numérique
; le méta-apprentissage pour améliorer les per-
formances sur les données hors distribution ; et
l’apprentissage par transfert entre des ensembles
de données multifidélité pour réduire le temps
de génération des données d’apprentissage. Ces
approches sont validées expérimentalement sur
différents systèmes physiques.

Title: Deep Graph Neural Networks for Numerical Simulation of PDEs
Keywords: Deep learning, Graph Neural Networks, PDEs

Abstract: Partial differential equations (PDEs)
are an essential modeling tool for the numerical
simulation of complex systems. However, their
accurate numerical resolution usually requires
a high computational cost. In recent years,
deep Learning algorithms have demonstrated
impressive successes in learning from examples,
and their direct application to databases of
existing solutions of a PDE could be a way
to tackle the excessive computational cost of
classical numerical approaches: Once a neural
model has been learned, the computational cost
of inference of the solution on new example is
very low. However, many issues remain that
this Ph.D. thesis investigates, focusing on three

major hurdles: handling unstructured meshes,
which can hardly be done accurately by simply
porting the neural successes on image processing
tasks; generalization issues, in particular for Out-
of-Distribution examples; and the too high com-
putational costs for generating the training data.
We propose three contributions, based on Graph
Neural Networks, to tackle these problems: A
hierarchical model inspired by the multi-grid
techniques of Numerical Analysis; The use of
Meta-Learning to improve the performance of
Out-of-Distribution data; and Transfer Learning
between multi-fidelity datasets to reduce the
computational cost of data generation. The pro-
posed approaches are experimentally validated
on different physical systems.
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Synthèse

Les équations aux dérivées partielles (EDPs) constituent un outil essentiel dans
le domaine de la simulation numérique, permettant de modéliser des systèmes
complexes de manière efficace et précise. Ces équations sont utilisées dans
une multitude de domaines, allant de la physique fondamentale à l’ingénierie
et à l’économie, permettant de décrire des phénomènes naturels et complexes.
Cependant, obtenir des solutions précises à ces équations peut souvent entraîner
des coûts de calcul prohibitifs. En effet, la résolution d’EDP à haute résolution
nécessite une puissance de calcul considérable.

Dans ce contexte, les techniques d’apprentissage profond ont attiré une
attention considérable au cours des dernières années. Ces algorithmes, capables
d’apprendre de manière autonome à partir d’exemples, ont le potentiel de servir de
substituts aux méthodes d’analyse numérique traditionnelles. Par exemple, il est
possible d’appliquer directement des techniques d’apprentissage supervisé à des
bases de données de solutions connues à des EDPs. Une fois le modèle neuronal
entraîné, l’inférence des solutions peut être effectuée à un coût marginal. Cela
signifie que les techniques d’apprentissage profond peuvent offrir une alternative
attrayante aux méthodes conventionnelles de résolution d’EDPs, en particulier
lorsque les ressources de calcul sont limitées.

La thèse se concentre en particulier sur trois défis majeurs dans l’application
des méthodes d’apprentissage profond aux EDP :
1. La plupart des méthodes d’apprentissage profond sont conçues pour fonctionner
avec des données structurées, comme des images, qui peuvent être facilement
manipulées avec des techniques standard de traitement d’images. Cependant,
les maillages non structurés, qui sont couramment utilisés dans les simulations
numériques, présentent des défis uniques qui rendent difficile leur traitement avec
des méthodes d’apprentissage profond traditionnelles.
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2. La capacité de généralisation des réseaux neuronnes est limitée, en par-
ticulier lorsqu’il s’agit de données hors-distribution par rapport aux données
d’apprentissage. Les méthodes d’apprentissage profond peuvent avoir du mal
à fournir des résultats précis lorsque les données de test sont significativement
différentes de celles sur lesquelles le modèle a été formé.
3. Les coûts de calcul élevés pour générer ces données d’apprentissage. Bien
que l’inférence à partir de modèles neuronaux formés puisse être relativement
peu coûteuse, l’entraînement initial des modèles peut être coûteux en termes
de temps et de ressources de calcul.

Dans cette thèse, nos contributions est de proposer différentes approches
visant à résoudre les trois problèmes mensionnés.
1. Nous introduisons un modèle hiérarchique inspiré des méthodes multigrilles
de l’analyse numérique, basé sur les Réseaux de Neurones sur Graphes (GNNs).
D’une part, les GNNs peuvent être appliqués directement aux maillages non
structurés, et d’autre part, le modèle hiérarchique peut aider à extraire les
features utiles.
2. Nous introduisons une perspective de méta-apprentissage des tâches de
problèmes physiques et appliquons une approche de méta-apprentissage basée sur
l’optimisation pour améliorer la performance des modèles appris sur les points de
données hors distribution.
3. Nous proposons une approche basée sur l’apprentissage par transfert pour
transférer les connaissances préalables des données de maillage grossier aux
données de maillage à haute résolution. L’apprentissage par transfert contribue à
réduire la taille du jeu de données nécessaire sur les maillages à haute résolution,
conduisant à une réduction globale du temps de calcul sur la génération de données.

Nous validons ces trois approches expérimentalement sur divers problèmes
physiques tels que la dynamique des fluides, l’élasticité et les équations de Poisson.
Cependant, les approches proposées sont très générales et peuvent être appliquées
à une variété de problèmes au-delà de ceux testés.
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1
Introduction

Nowadays, numerical simulation represents an essential tool in designing and
managing real-world systems, thanks to its lower cost compared to direct experi-
mental testing on the system to be designed. (see Figure 1.1) Many industrial
applications have benefited from the contributions of numerical simulation to
improve the performance of systems. The mathematical modeling of the numerical
simulation use often partial differential equations (PDEs) to model continuous
phenomena and describe the behavior of real-world complex systems, be they
physical(e.g., mechanics, biology,.etc) or artificial (e.g, finance, networks,.etc).

Figure 1.1: Numerical Simulation for real systems

However, it is usually impossible to derive a PDE’s solution in some ana-
lytic form. The numerical analysis encompasses different numerical simulation
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22 1. Introduction

methods that are widely used to approximate the solutions of PDEs. One of the
most famous methods used to deal with this limitation is the Finite Element
Method (FEM): This approach discretizes the domain into meshes and computes
approximated values of the quantities of interest on each node or cell of the mesh.
These approaches can predict the behavior of the systems, generally with known
error bounds. However, in order to be accurate enough for operational use, these
simulations come at a high computational cost for complex systems.

In recent years, and in particular, since the rise of Deep Learning approaches to
solve computer vision or Natural Language Processing problems in the 2010s, there
has been a rapid growth in the use of machine learning algorithms to solve problems
from different domains where the numerical analysis approaches are hard to design,
or too expensive to compute accurately. Deep neural networks have become the
most popular approach due to their ability to solve complex tasks, outperforming
existing numerical analysis algorithms when large-scale data are available.

In such context, the overall goal of the present thesis is to study the ability to
use Deep Learning algorithms to reduce the computational cost of FEM-based
resolution methods.

Partial Differential Equations
Studies on PDEs date back to the 18th century, when scientists such as Euler,
Lagrange, d’Alembert, and Laplace [1–3] describe physical laws in mechanics as
PDEs. Since the 19th century, some methods have been proposed to calculate
analytical solutions for certain particular PDEs with appropriate boundary
conditions. Separation of variables, method of characteristics and integral
transform, etc. [4–6] are essential methods to find the exact solutions of PDEs. In
the meantime, scientists like Poincaré, show interest in studying general properties
of PDEs, existence, uniqueness, and regularity [7–9] for example.

In the early 20th century, there has been a rise in the development of the
numerical analysis of PDEs. The finite difference methods (FDM) [10], the finite
element methods (FEM) [11], and the finite volume (FVM) methods [12] are
three common numerical techniques. They involve discretizing the domain and
the PDEs, and solving the resulting discrete problem to obtain approximate
numerical solutions. On a practical side, in engineering, almost all PDEs are
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solved today by numerical analysis approaches. These approaches can predict the
physical behavior of the systems accurately, however, at a high computational
cost for complex systems.

Among the techniques proposed to overcome this drawback, multi-grid [13]
and model order reduction [14] stand out. Multi-grid methods use a hierarchy of
discretizations to accelerate the convergence of basic iterative methods. Model
order reduction aims to simplify the mathematical model itself, such as the state
space dimension or degrees of freedom, to reduce the time complexity. Both Multi-
grid and Reduced Order Modeling(ROM) have been demonstrated to be effective
in reducing computational time. However, it is important to note that these
techniques may not be sufficient to fully address the computational challenges
associated with large-scale PDEs.

Machine Learning for PDEs
Back in the 50s, some simple algorithms have been proposed, pioneering machine
learning research [15]. Machine learning algorithms automatically detect patterns
from experience by the use of large amounts of data and later use the uncovered
patterns to predict outcomes. There are various types of models in the field of
machine learning. Common algorithms include linear regression, decision trees,
support vector machines, random forest, naive Bayes, etc. [16–20]. Later on, the
deep learning algorithms come to the stage. The term multi-layer neural networks
were introduced in the 60s [21]. Later on, the backpropagation algorithm and its
general use in neural networks were proposed [22] to train deep learning models.
In the 2010s, boosted by the rapid development of specialized hardware like GPUs,
training a deep learning model became feasible. Since then, deep neural networks
have become the most popular approach due to their ability to solve complex tasks.

Using machine learning algorithms to solve PDEs has received particular atten-
tion since mid-2010. Regarding the learning algorithms applied, we can categorize
these researches into two main categories, data-driven approaches to accelerate
computation time and unsupervised methods to solve high dimensional PDEs.

Some scientists have proposed data-driven methods (see Figure 1.2), making
full use of labeled data accumulated by numerical solvers, known as the training
set. Some works [23, 24] are based on ROM model, using deep learning methods
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Figure 1.2: Data-driven methods to solve PDEs

to correct the result from ROM. Others aim to construct a model to solve a
set of PDEs of the same type. The inputs of the model are physical quantities
that define a specific instance of a given PDE. By analyzing labeled data from
the training set, these methods learn a function that maps the input to learned
features to the desired solution. Thanks to their capacity to capture spatial
features, Convolutional Neural networks(CNN) are the most widely used model
structure due to their tremendous successes in image analysis. Many works
[25–28] applied CNNs to solve PDEs. For instance, [25] constructs a convolutional
model to approximate electromagnetic problems by solving Poisson’s equation
on a square domain. Training data is generated by a FEM solver using a
regular mesh, resulting in data living in a Euclidean space, which ensures the
applicability of CNNs.

Spatial phenomena at different scales can be captured more efficiently by using
specific network architectures, such as the U-Net architecture [29]. For instance,
[26] utilizes the U-Net model to solve Reynolds Averaged Navier-Stokes (RANS)
flow problems on airfoil shapes. The generated data on the unstructured mesh
is first projected on structured grids as images before training. Compared with
traditional methods, the CNN models can indeed reduce the overall computational
time to compute the solution of new instances. They either use a structured mesh
to discretize the physical domain such that image-like data is generated directly
or apply interpolation to convert mesh data into structured grids.

In recent years, many attempts have been made to construct a deep learning
model based on graph neural networks (GNNs) that can be applied directly
to mesh data instead of projection into structured grids. [30] discussed fluid
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flow field problems on different irregular geometries. It considers CFD data as
a set of points (called point clouds) and applies the PointNet[31] architecture
specially designed for such a data type. [32] combines graph neural networks
with a traditional CFD solver (run on a coarse mesh) to accelerate fluid flow
prediction on a much finer mesh.

On the other hand, unsupervised learning methods are designed to solve the
cases where current numerical solutions on PDEs are inefficient for problems with
high dimensions or complex geometry. A significant difficulty for such problems is
meshing. On the one hand, forming a mesh is costly for complex geometric issues.
On the other hand, it becomes infeasible in high-dimensional space. In such cases,
unsupervised learning algorithms are proposed to avoid mesh construction. The
basic idea of such methods is to train a model fθ(x) to simulate the solution u(x) of
a specific PDE. Based on universal approximation theorems [33], neural networks
have strong expressive power. Any continuous functions can be approximated by
neural networks with only one hidden layer, provided it is large enough.

The loss function is directly defined by physical quantities without using any
training set. The solution u(x) for a specific PDE is approximated by a deep neural
network that is directly trying to satisfy the equation. After learning, by entering
a variable x0, the network will predict the value u(x0). [34] used fully connected
layers to approximate the solution on complex geometry. [35] discussed the
possibility of solving high-dimensional problems within 200 dimensions by neural
networks. The most famous work in such domain is the Physics-Informed Neural
Network (PINN) [36]. The authors apply them to more challenging dynamic
problems described by time-dependent nonlinear partial differential equations.

To date, solving PDEs with machine learning algorithms is still at an early
stage. For data-driven methods, there are many issues yet to be resolved. We
list three common problems encountered when adapting machine learning to
PDEs in most cases:

• When dealing with problems defined on a geometrically complex domain,
where the data does not live in Euclidian space, CNN approaches can lead
to a significant interpolation error, in particular on the boundary of the
actual domain. As an alternative, GNN-based models can handle mesh
data directly, avoiding the need for structured grid projections. However,
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the irregular nature of mesh data presents challenges in defining pooling
operators, and to date, no multi-resolution GNNs like the U-Net architecture
have been proposed yet.

• As the deep learning methods learn patterns directly from the data instead
of studying problem-related constraints beyond the PDEs, they cannot really
grasp the physics of the problem at hand. The lack of underlying physical
laws leads to generalization issues: the predicted results can significantly
lack any physical significance. Learned models often underperform on
out-of-distribution samples. Generally speaking, the deep learning model
can predict unseen examples that are close to the training set but perform
poorly at solving new problems that significantly differ from the training
examples.

• A complex neural network requires a large amount of data to learn latent
patterns from PDEs. The most feasible method to collect datasets is to
apply traditional solvers to numerical analysis. The accumulation of data
on our physical problems becomes expensive and time-consuming with the
use of numerical solvers.

Main Contributions
In the present thesis, we propose different approaches aiming to tackle the three
issues above. The proposed approaches help to better adapt deep learning
methods to PDEs. Our main contributions are threefold:

• We propose the hierarchical Graph models for the numerical simulation
of PDEs and experimentally demonstrate the power of Graph models to
handle PDEs in various physical domains [37].

• We introduce a meta-learning perspective of physical problem tasks and
apply an optimization-based meta-learning approach to enhance the perfor-
mance of the learned models on out-of-distribution data points [38].
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• We propose a transfer learning based approach to transfer prior knowledge
from coarse mesh data to high-resolution mesh data. Transfer learning
helps to reduce the size of the dataset needed on high-resolution meshes,
leading to an overall reduction of computation time on data generation [39].

We validate these three approaches experimentally on various physical prob-
lems such as fluid dynamics, elasticity, and Poisson’s equations. However, the
proposed approaches are very general and can be applied to different domains.
This thesis consists of 7 chapters with two main parts:

• In PART I (Chap. 2 and 3), a comprehensive survey of the related existing
studies and techniques in the literature is presented. Classical FEM methods
are introduced first to provide a deeper understanding of the nature of
approximately solving partial differential equations. Then, the fundamental
concepts of Deep Learning are briefly presented in Chap. 3, sections 1 to
3. The following sections, 3 to 5, delve into the various connected machine
learning techniques, such as graph neural networks, transfer learning, and
meta-learning, that are used to solve PDEs.

• In PART II (Chap. 4 to 7), the methods we propose and the associated
experimental results are discussed in detail, including a thorough analysis of
the hierarchical Graph models and the meta-learning and transfer learning
applied in PDEs. The experimental setup, data generation, and evaluation
metrics used are also presented. The experimental results are discussed and
compared with those of baseline models. Finally, the conclusion of the work
is presented, including a summary of the main findings and contributions
of the work and a discussion about the evaluation of the proposed methods,
the limitations of this work, and potential directions for future research.
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Partial Differential Equations (PDEs) are widely used to model physical
systems. For example, the heat equation describes the diffusion of heat in a
material and can be applied in the design of thermal management systems, such
as heat exchangers for power plants or heat sinks for electronic devices. And the
Navier-Stokes equations describing the motion of the fluid are commonly used
in the analysis and design of fluid flow systems, such as the design of airfoils in
aerodynamics. Numerical Analysis (Figure 2.1) is the branch of Mathematics that
studies numerical simulations, deriving, theoretically analyzing, and proposing
practical implementations of numerical methods. Common numerical analysis
methods on PDEs involve discretizing the continuous system into a discrete
problem, resulting in a set of algebraic equations, theoretically bounding the error
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(difference between the solutions of these equations and the exact continuous
solution of the PDE at hand), and practically solving these equations at the
smallest possible computational cost. Several approaches have been proposed
to reduce this computational cost, and the work presented in this dissertation
will get inspiration from the so-called multi-grid methods that are based on the
use of different granularity of discretization.

Figure 2.1: Numerical Analysis for PDEs

In this Chapter, we will rapidly survey some well-known discretization methods
in PDEs, as well as some iterative methods used to solve the resulting discrete
models. Finally, we will discuss some popular multi-grid methods that will be
used later in this work. Interested readers are referred to the books [13, 40, 41]
for more details on numerical analysis and multi-grid methods.

2.1 Discretization Methods

Systems in the physical world are discretized by subdividing the continuous
physical domain into small segments. Common discretization schemes include
the finite difference method (FDM), finite element method (FEM), and finite
volume method (FVM).

Finite Difference Method is the simplest discretization method. The basic
idea is to replace the derivatives in PDEs with the difference quotients that define
the derivatives: because these quotients converge to the actual derivatives when
the discretization step goes to zero, the solutions of the discretized equations will
converge, under appropriate hypotheses, to those of the continuous equations.
Let us consider the one-dimensional case (in Figure 2.2) for the sake of simplicity.
The basic finite difference method (FDM) divides the interval of [a,b] into n
equal sub-intervals of length h=(b-a)/n. By Taylor’s theorem, any C2 continuous
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Figure 2.2: Finite difference Method

function u at the point xi can be expanded as:

u(xi + h) = u(xi) + hu′(xi) + O(h2) (2.1)

Denoting ui the value u(xi), the derivative and the second derivative at xi can
be approximated by a second-order accurate scheme:

u′(x) ≈ ui+1 − ui−1

2h
, u′′(x) ≈ ui+1 + ui−1 − 2ui

h2 (2.2)

We use the finite difference expressions above to replace the derivatives of u(x) in
PDEs to obtain the approximate discrete system consisting of algebraic equations.

The fact that FDM uses equal segments for discretization is a bottleneck
when solving PDEs with complex geometry in multiple dimensions, as complex
geometry usually requires higher resolution leading to a higher computational
cost. Additionally, in certain physical problems, certain sub-domains may require
greater attention, but with FDM, every grid is considered of equal importance.
This lack of flexibility has motivated the development of FEM and FVM, which
avoid regular grid subdivisions by using the PDEs’ integral form.

Finite Element Method discretizes the PDEs by dividing the problem domain
into small elements, i.e., a partition of the domain into polyhedrons. Figure 2.4
shows a 2D domain discretized in a triangular mesh. Meshes in 2D can also be
made of quadrangles, while 3D meshes are generally built from tetrahedrons,
pentahedrons, or hexahedrons elements.
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Figure 2.3: Problems existing in FDM

Figure 2.4: A Mesh

On each element, the values of the solution
at given points of the elements, the "degrees of
freedom" (dof) of the elements, are chosen as
unknown, and the PDE, written in variational form,
is applied using a specific basis of the approximation
space, with small supports. The resulting set of
discrete equations is the algebraic system whose
solution is the sought approximation of the PDE
at hand.
According to [40], the FEM approach is made of
the following 5 steps:

1. Preprocessing/meshing: subdividing the problem domain into finite elements
by constructing a mesh.

2. Element formulation: development of sub-equations for each element by
using the weak form or variational equations form of the PDEs.

3. Assembly: obtaining the equations of the entire system from the equations
of individual elements.

4. Solving the entire system.
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5. Postprocessing: determining quantities of interest from the unknown of the
discrete system (e.g., stresses and strains in solid mechanics) and visualizing
the approximate solution.

The FEM computes an approximation ui of the quantity of interest u(x)
on each mesh degree of freedom i. The final approximate solution u can be
expressed as

u(x) =
N∑
i

uiΦi(x),

where Φi(x) is the basis function corresponding to dof i.
In the FEM, the accuracy of the solution directly depends on the discretization

finesse (maximal size of all elements, directly linked to the number of elements
when using modern mesh generators), and meshes with thousands to millions
of nodes are routinely used in practice to obtain a reasonably accurate solution.
Meanwhile, the computation cost increases with the number of elements as the
number of equations from the assembled system increases. There hence exists a
trade-off between accuracy and computational cost. Choosing a proper mesh is
one of the most critical components of FEM so that an optimal balance can be
achieved between accuracy and computational time.

Finite Volume Method is mainly used in the field of fluid dynamics. Similar
to FEM, the finite volume method(FVM) uses a mesh to subdivide continuous
domains into smaller subdomains. The FVM applies the divergence theorem on
each element (cell) of the mesh, which converts volume integrals containing
divergence terms into surface integrals. Contrary to FDM or FEM, which
approximate the solution using nodal values, it constructs approximations of the
solution within the cells of the cells.

All three methods end up solving one (or several) system(s) of linear equations
to compute an approximate numerical solution of the PDE at hand. And for all
three methods, these linear systems are sparse, and the equation for an unknown
ui involves only a few neighbors of point i. Overall, FDM is mostly used for
geometries that can be discretized by structured grids (e.g., rectangles), while
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FEM and FVM are more suitable for complex domains. As FVM is based
on the integral formulation of a conservation law, it is mainly used to solve
PDEs in fluid dynamics, which involves fluxes of the conserved variable. In
this dissertation, we are only interested in general PDEs defined on a complex
geometry where FDM is not applicable.
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2.2 Solving Discrete Linear Systems

The discretization methods convert the continuous PDEs into a set of algebraic
equations. The discrete equations of a linear PDE are also linear. These linear
systems can be efficiently solved by iterative techniques. In the case of non-linear
PDEs, linearization schemes are required to convert the non-linearity into a
sequence of linear systems: a sequence of linearized equations is solved iteratively,
converging to the solution of the non-linear system. This section reviews some
iterative methods for solving linear systems and commonly used linearization
schemes for handling non-linear systems.

2.2.1 Iterative Methods

Iterative methods are used to solve large and sparse linear systems. They generate
a sequence of approximations x(k) such that x(k) → x when k → ∞ if x is the
solution of the linear system at hand.
Let Ax = b denote a system of linear equations, where:

A =


a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n
... ... ... . . . ...

an1 an2 an3 . . . ann

, x =


x1
x2
...

xn

, b =


b1
b2
...

bn


The basic iterative methods split the matrix A into two parts A = M − K,
where M is any non-singular matrix, "easy" to invert. The iterative methods
is then defined by:

Mx(k+1) = Kx(k) + b, (2.3)

that is, for each iteration, the new approximation x(k+1) is calculated by:

x(k+1) = M−1Kx(k) + M−1b (2.4)

Thus, the algorithm [41] is given in Algorithm 1. The key to the success of
iterative methods is the choice of split matrices M and K. M−1K and M−1b

should be easily calculated. In the following, we outline two common iterative
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Algorithm 1 Basic iterative method for solving a linear system
1: Choose a starter guess x(0)

2: for k = 0, 1, 2, ... until the convergence criterion is satisfied do

x(k+1) = M−1Kx(k) + M−1b

3: end for

methods, the Jacobi [42] and Gauss–Seidel [43] algorithms.

Jacobi Method decomposes the matrix A into a diagonal component M = D

and the rest part K = −L − U , where L is the lower triangular part and U

is the upper triangular part of A.

D =


a11 0 0 . . . 0
0 a22 0 . . . 0
... ... ... . . . ...
0 0 0 . . . ann

, and L+U =


0 a12 a13 . . . a1n

a21 0 a23 . . . a2n
... ... ... . . . ...

an1 an2 an3 . . . 0


Since D is a diagonal matrix, its inverse D−1 can be easily computed. The
solution is then computed iteratively via: x(k+1) = −D−1(L + U)x(k) + D−1b.
The element-based formula is thus:

x
(k+1)
i = 1

aii

(bi −
∑
j ̸=i

aijx
k
j ) (2.5)

The algorithm of the Jacobi method is given in Algorithm 2.

Gauss–Seidel Method lets M = D + L and K = −U , so that the iterative
scheme can be expressed as:

x(k+1) = −(D + L)−1Ux(k) + (D + L)−1b

We compute the elements of x(k+1) sequentially using forward substitution since
D + L has a lower triangular structure. The computation of x(k+1) uses the
elements of x(k+1) that have already been computed. The algorithm of the
Gauss-Seidel method is given in Algorithm 3.
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Algorithm 2 The Jacobi Method
1: Choose a starter guess x(0)

2: for k = 0, 1, 2, ... until convergence do
3: for i = 1, 2, ..., n do
4: s = 0
5: for j = 1, 2, ..., n do
6: if j ̸= i then
7: s = s + aijx

(k)
j

8: end if
9: end for

10: x
(k+1)
i = 1

aii
(bi − s)

11: end for
12: end for

Algorithm 3 The Gauss-Seidel Method
1: Choose a starter guess x(0)

2: for k = 0, 1, 2, ... until convergence do
3: for i = 1, 2, ..., n do
4: s = 0
5: for j = 1, 2, ..., n do
6: if j < i then
7: s = s + aijx

(k+1)
j

8: else if j > i then
9: s = s + aijx

(k)
j

10: end if
11: end for
12: x

(k+1)
i = 1

aii
(bi − s)

13: end for
14: end for

2.2.2 Linearization Schemes

The linearization schemes turn non-linear systems obtained from nonlinear PDEs
into a sequence of linear systems that can be solved using any of the iterative
methods mentioned above. We discuss here two schemes, Picard Iteration [44],
and Newton–Raphson method [45].

Picard Iteration is an easy linearization scheme of handling the non-linearity
given a system of non-linear equations. It can be applied when the non-linear
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system is of the form A(x)x = b(x). The idea, at iteration k, is to simply use
the previous solution x(k) to replace x in the nonlinear terms and to solve the
resulting linear equation for x(k+1) :

A(x(k))x(k+1) = b(x(k)) (2.6)

Newton–Raphson method is designed to find the minimum of a function
f(x). At each iteration k, xk is updated as:

▽f(x)(xk+1 − xk) = −f(x) (2.7)

At the algebraic Level, for example, given a non-linear PDE: −∇(q(x)∇x) = f ,

Figure 2.5: Newton-Raphson method on a polynomial function

we express the discrete variational problem as:

Fi(x1, . . . , xN) ≡
N∑

j=1

∫
Ω

(
q

(
N∑

ℓ=1
xℓϕℓ

)
∇ϕjxj

)
· ∇ϕ̂i dx = 0, i = 1, . . . , N

(2.8)
The Newton–Raphson method to update x is:

N∑
j=1

∂

∂xj

Fi(xk
1, . . . , xk

N)δxj = −Fi(xk
1, . . . , xk

N), i = 1, . . . , N (2.9)

xk+1
j = xk

j + ωδxj, j = 1, . . . , N (2.10)



2. Numerical Analysis 41

We solve the linear equation to get δxj for further update.

As can be seen in both algorithms above, each iteration requires solving a
linear system, and any iterative methods presented in Section 2.2.1 can be used.
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2.3 Multi-grid Methods

Even though the basic iterative methods, such as Jacobi and Gauss-Seidel
presented above, are the most efficient methods to solve sparse linear systems,
when handling meshes with high resolutions involving a large number of linear
equations, solving such a system will be time-consuming. Therefore, multi-grid
algorithms have been developed to decrease the overall computational cost of
the discretized solution. The main idea is to compute approximate solutions to
the problem at hand on meshes of different granularities. The steps on coarse
meshes are fast and help to unveil the low-frequency pattern of the solution, while
fine meshes refine the solutions, removing unwanted spatial oscillations. There
are several common steps for multi-grid algorithms:

1. Relaxation: Apply a few iterations of the Gauss–Seidel or Jacobi method
to obtain an approximation.

2. Interpolation: Multigrid algorithms use solutions on coarse meshes as an
initial guess to accelerate the convergence for linear systems on fine meshes.
This requires some mechanism for transferring information between resolu-
tions. A common process used in numerical analysis is called interpolation.
These interpolation algorithms are applied directly in multigrid.

3. Correction: Correct the approximation on the fine mesh based on the
error obtained on the coarse mesh.

Consider a fine mesh Ωfine and a coarse mesh Ωcoarse, a typical cycle of a
multigrid method is the following:

• Apply a few iterations of an iterative method on the linear system Ax = f ,
defined on Ωfine, to obtain an approximation vfine of the solution;

• Compute the residual r = f − Avfine;

• Interpolate the residual from Ωfine to Ωcoarse;

• Solve the residual equation Ae = r on the coarse mesh Ωcoarse, to obtain an
approximation of the error ecoarse;
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Figure 2.6: V-Cycle and F-cycle schemes

• Interpolate the error ecoarse to the fine mesh Ωfine;

• Correct the approximation vfine ← vfine + efine

There are various multigrid schemes that apply different cycles based on the
loop above. Two of them have been inspirational in this work, the V-cycle, and
the F-cycle. V-cycle algorithm starts from the finest mesh and maps down to

Algorithm 4 V-Cycle Scheme on a uniform grid of spacing h
Require: A set of resolutions of meshes on the same domain Ω, from fine to

coarse: Ωh, Ω2h, Ω4h, Ω8h, ...
1: for ℓ = 1, 2, 4, ..., L do until the coarsest mesh L
2: Relax the linear system with iterative methods:

Aℓhuℓh = f ℓh

3: Calculate the residual error rℓh = f ℓh − Aℓhuℓh

4: Interpolate r on next mesh scale: f 2ℓh = I2ℓh
ℓh rℓh

5: end for

6: for L = ..., 4, 2, 1 from the coarsest until the finest mesh do
7: Correct the approximation on each mesh level:

vℓh = v2ℓh + Iℓh
2ℓhvℓh

8: Relax on Aℓhuℓh = f ℓh with an initial guess vℓh

9: end for

the coarsest mesh then works its way back to the finest mesh. Different from
V-cycle Scheme, F-cycle algorithm begin with coarest mesh and joins nested
iteration with the V-cycle.
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Algorithm 5 F-Cycle Scheme on a uniform grid of spacing h
Require: A set of resolutions of meshes on the same domain Ω, from fine to

coarse: Ωh, Ω2h, Ω4h, Ω8h, ...
1: for ℓ = 1, 2, 4, ..., L until the coarsest mesh L do
2: Initialize f 2ℓh = I2ℓh

ℓh f ℓh

3: end for

4: Solve the linear system on coarsest grid
5: for L = ..., 4, 2, 1 do from the coarsest mesh to the finest mesh
6: Call V-Cycle Scheme on Ω2ℓh

7: Correct the approximation on finer mesh

vℓh = v2ℓh + Iℓh
2ℓhvℓh

8: end for

The idea of multi-grid will be further discussed in Section 4 where the multi-
grid algorithms will be combined with graph neural networks in order to construct
multi-resolution graph models to approximate the solutions of PDEs. In particular,
a critical issue will be to design ad hoc interpolation procedures for GNNs (Section
4), as no such generic procedure exists between graphs of different granularities.
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2.4 Other methods to reduce simulation time
Besides multi-grid algorithms, other methods have been proposed to reduce the
computational cost of numerical solutions of PDEs. This section briefly surveys
these methods for the sake of completeness.

Model Reduction Method aims at decreasing the dimensionality of the model
without sacrificing its accuracy to reduce the computational complexity of large-
scale dynamical systems. The method generates a reduced-order model (ROM)
that approximates the original high-fidelity model while capturing the essential
dynamics of the original model in the meanwhile. There are different methods
to construct the ROMs, such as Proper Orthogonal Decomposition, Balanced
Truncation, Reduced Basis Method, and Empirical Interpolation Method. These
methods find a low-dimensional subspace that captures the most important
patterns of the system or selects the most relevant degrees of freedom. ROM is
widely used in various engineering and scientific fields to reduce computational
costs and improve the efficiency of the simulation.

Surrogate Modeling mimics the behavior of the complex model while being
computationally cheaper to evaluate. This method is commonly used in engineer-
ing design when the outcome of interest cannot be easily measured or computed.
Same to machine learning tasks, surrogate models use a data-driven approach.
The exact inner workings of the system are not necessarily known; only the
input-output relationships are important. The model is constructed by analyzing
the output of the simulator for a limited number of carefully selected data points.
This can be done using traditional machine learning algorithms like Support
Vector Machine [18] or the Gaussian Mixture process. In this work, the proposed
models can also be considered as a form of surrogate modeling.

The computational cost of numerically solving large-scale PDEs remains a
significant hurdle in many fields of science and engineering. Techniques like multi-
grid methods and reduced-order modeling are not fully capable of addressing
these challenges. The cost of computation remains high. Traditional machine
learning approaches through surrogate modeling are also limited in their ability to
handle the complexity of physical systems, as they are typically limited to solving
simple problems in low-dimensional spaces. Therefore, we propose utilizing deep
learning methods to tackle such complex physical systems effectively.
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In this chapter, we briefly introduce some basic knowledge of deep learning.
We start from machine learning basics, including fundamental statistical learning
theory, and discuss common issues like underfitting and overfitting, hyper-
parameters setting, and methods for model evaluation, which are general principles
that run through machine learning. Secondly, we discuss the basic block of deep
learning, Multi-Layer Perceptron, and review the commonly used structure for
treating image data, Convolutional Neural Networks. Lastly, we outline the more
advanced techniques that we have used during this thesis, namely graph neural
networks (GNNs), meta-learning, and transfer learning.

Readers seeking a wider perspective on machine learning and deep learning are
encouraged to read the (publically available) book [46] that covers more topics.
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3.1 Machine Learning Basics

From [47], Machine learning is the study of algorithms that can automatically
detect patterns in data and later use the uncovered patterns to predict future
data. Machine learning algorithms1 can be roughly divided into two categories
depending on the nature of the available data.

Supervised Learning algorithms handle a dataset containing both features and
the corresponding labels. The supervised learning algorithms can be considered
as learning a function that maps vectors of input features to their labels, following
the examples of the given sample dataset.

Unsupervised Learning algorithms learn to study the helpful properties of
the dataset from their describing features. When it comes to deep learning, we
usually want to learn the entire probability distribution that generated a dataset.
One common task for unsupervised learning is clustering, which goal is to discover
groups with similar feature patterns by their distributions.

We will only discuss in detail about supervised learning. In the following, we
abusively refer to supervised learning when we talk about machine learning. We
begin with the definition of a machine learning algorithm from the perspective of
statistical learning theory and then proceed to discuss the main challenges faced
in this field, namely underfitting and overfitting. Additionally, most learning
algorithms require settings of their so-called hyper-parameters before training;
we will explain how to use extra data to set these hyper-parameters. Finally,
after finishing training a model, we will describe how to measure and compare
the performances of different models.

3.1.1 Statistical Learning Theory

We consider an input space X (aka feature space) and an output space Y (aka label
space). The pairs (x, y) ∈ X × Y are drawn from an unknown joint distribution
function P (x, y). In the perspective of statistical learning theory, the supervised

1we will only discuss here "Example-based Machine Learning", and not at all "Reinforcement
Learning" [48], another domain of Machine Learning dealing with interaction-based learning.
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learning process is that of choosing from a given set of functions, so-called
machine learning models, f(x; θ) ∈ H: X → Y , parameterized by θ ∈ Θ, for some
parameter set Θ, the one that best estimates the conditional distribution P (y|x).
The set H of all candidate models is called the Hypothesis Space.

Risk Minimization The risk R(θ) of a function f(x; θ) is defined as the
expected loss:

R(θ) =
∫
L(y, f(x; θ))dP (x, y) = E[L(y, f(x; θ))] (3.1)

where L denotes the loss function that measures the difference between f(x; θ)
and y. The goal of a learning algorithm is to seek the function f(x; θ∗) that
minimizes the risk R(θ) over the class of functions f(x; θ), for θ ∈ Θ.

θ∗ = arg min
θ
R(θ), θ ∈ Θ (3.2)

Empirical Risk Minimization In general, R(θ) cannot be computed exactly, as
the joint distribution P (x, y) is unknown. Given a training set D = {(xi, yi), i =
1.., N}, a sequence of independent identically distributed (iid) features and labels
(x, y), R(θ) can be approximated by the empirical loss over the training set
D, the so-called the empirical risk:

R̂(θ) = 1
N

N∑
i

L(f(xi; θ), yi) (3.3)

Note that if the number of samples is small, the empirical risk will introduce a
statistical uncertainty, resulting in a poor estimate of the expected risk.
The empirical risk minimization principle states the learning algorithm should
choose a function f(x; θ̂) which minimizes the empirical risk R̂(θ).

θ̂ = arg min
θ
R̂(θ), θ ∈ Θ (3.4)

Estimation and Approximation Errors As described above, a learning
algorithm chooses a function f(., θ), that is, the parameter θ from a parameter
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space Θ based on a limited number of examples.
Suppose that f ∗ : X → Y is a function that achieves the minimal risk among
all possible functions.

f ∗ = arg min
f∈H

E[L(y, f(x))] (3.5)

The function f ∗(x) is the ideal goal of supervised learning, while f(x, θ̂) is the
best that can be obtained using learning algorithms. The error in terms of risk is :

R(f ∗)−R(θ̂) = R(f ∗)−R(θ∗)︸ ︷︷ ︸
εapp

+R(θ∗)−R(θ̂)︸ ︷︷ ︸
εest

(3.6)

• εapp is the approximation error, measuring how much inductive bias we have
by restricting ourselves to the specific class of functions f(.; θ) ∈ H, θ ∈ Θ.
This term is independent of the number of examples. Enlarging the class of
chosen functions can help to decrease the approximation error.

• εest is the estimation error, which measures the effect of minimizing the
empirical risk R̂ instead of the expected risk R. The estimation error
depends on the training examples and the complexity of the chosen class of
functions. When the training set is not large enough, the empirical risk R̂

can not approximate the expected risk R well, which leads to an increase of
the estimation error. Choosing a very rich class of functions can reduce the
approximation error, in the meanwhile, the estimation error might increase
as the size of the space of possible solutions increases, making the search
more difficult.

3.1.2 Underfitting and Overfitting

The ultimate goal of supervised learning is to identify a function that is able to
predict the label of previoulsy unseen data. Such prediction is called generalization.
The generalization error, also called the test error can be empirically estimated by
measuring the empirical loss on a set of examples, called the test set, disjoint from
the training set, but has been generated according to the same joint distribution
P (x, y).
There are hence two goals for a learning algorithm:
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1. minimize the training error,

2. minimize the gap between the training error and the test error.

The model performance is measured by the two factors corresponding to two
major pitfalls in machine learning: Underfitting and Overfitting. If the hypothesis
space H (the set of functions to select under a learning algorithm) is too small,
the approximation error εapp will be large, and the model will struggle to fit the
training set, which is known as underfitting. Overfitting, on the other hand, occurs
when there is a great gap between the training error and test error, in particular
when the estimation error εest is large. As stressed above, a too large hypothesis
space or a too small size of training set can both lead to overfitting: the training
data is learned quasi-"by heart", and the generalization performance is poor. A
first way to control Overfitting and underfitting is a careful selection of H.

Regularization is a common approach used to prevent the model from over-
fitting by adding constraints on the hypothesis space H. The most commonly
used method of regularization is simply adding some penalty term r(θ), typically
some norm of θ, to the loss function. The new target of the minimization
problem becomes:

J(θ) = 1
N

N∑
i

L(f(xi, θ), yi) + λr(θ) (3.7)

where λ is a hyper-parameter that controls the importance of the penalty term
r(θ).
Typical regularization terms are LASSO [49] and RIDGE [50]. The first use
L1-norm of θ as the regularizer r(θ) = ||θ||1, and the latter consider the L2-norm
to regularize the parameters r(θ) = ||θ||2. By adding these terms, optimizers are
encouraged to find a model of parameters with a small norm, i.e., a simpler model.

3.1.3 Hyper-parameters setting

Most machine learning algorithms have themselves parameters, called hyper-
parameters, that should be set before running them to control their behavior.
The choice of the hyper-parameters of a learning algorithm can greatly affect its
performance, both in the quality of the solution and computational cost. Since
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the learning algorithm aims at minimizing the generalization error, it is necessary
to compare models associated with different hyper-parameters on unseen data to
avoid overfitting.

Validation Set A validation set is yet another set of examples that are used to
tune the hyper-parameters of the learning algorithm. It should follow the same
distribution as the training set and the test set but must be drawn independently.
A general procedure is to split the training set into two subsets. One subset is used
to learn parameters θ of the model, and it is still called the training set. The other
one is the validation set, used to estimate the generalization errors after training
with different hyper-parameters and set the hyper-parameters accordingly.

Cross-Validation The cross-validation technique is commonly used in machine
learning to select hyper-parameters. As stressed above, a dataset is split into
three parts, a training set to learn the parameters θ, a validation set for hyper-
parameters setting, and a test set for final evaluation. Typically, a validation
set only takes a small percentage (less than 20%) of the dataset. If the number
of samples on a validation set is small, it will inevitably introduce statistical
uncertainty when estimating the error. Cross-validation is used to decrease this
uncertainty.
K-fold cross-validation is the most commonly used. The training set is first
randomly partitioned into k equal-sized subsets. At each step, a single subset
is extracted as the validation set, and the remaining k − 1 subsets are used to
train the model, which is tested on the extracted validation set. The process is
repeated k times so that all examples are used for both training and validation.
The generalization error used to set the hyper-parameters is the average over
the k folds of the performance on the validation set.

3.1.4 Model Evaluation

Once the hyper-parameters have been set, we will estimate the generalization error
of the learned model by observing its performance on the test set. Ideally, the
results should be averaged over several independent training+test sets, as in the k-
fold cross-validation. The averaged results can reduce the irreducible uncertainty
during the model training, such as noisy data and parameter initialization on
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deep learning. However, because the number of available examples is limited,
the learning procedure is repeated using different splits of the available training
data. In the present work, we employ the k-cross validation to form k-training
sets. After the k trials of training, the generalization error is then estimated by
averaging the test errors on all trained models.

Statistical tests are statistical tools to decide whether the data at hand
sufficiently support a particular hypothesisH. The standard process of a statistical
test is as follows: calculate from sample data a test statistic T , compute the
p-value, the probability of sample data under the null hypothesis, based on the
distribution of T , and finally decide whether to reject the hypothesis H with
a given level of confidence from the p-value. The statistical tests can basically
be divided into three categories based on the nature of H, one-sample tests,
two-sample tests, and paired tests. The one-sample tests are appropriate when
comparing the sample data to a population from H. Two-sample tests are mainly
used to compare two random and independent sample data, each sampled from a
different population. The purpose is to determine whether the two populations
are statistically significantly different. Same as two-sample tests, paired-sample
tests are designed to compare two samples of equal sizes. Rather than directly
comparing two sets, the test computes the differences between each pair to create
a new sample. Methods from one-sample tests are then applied to decide whether
to reject or not the hypothesis H.

In supervised machine learning, statistical tests are used combined with
cross-validation to decide whether two machine learning algorithms (or two hyper-
parameter settings of the same algorithm) are statistically significantly different.
The H0 hypothesis is that the results of the two models are sampled from the
same distribution. After applying k-fold cross-validation when training each
model, we obtain k evaluation scores. These scores are considered as the sample
data and used to calculate the test statistic T . In such cases, paired-sample tests
are appropriate as sample data from the two models are paired and observed.
Pair-sample tests can be conducted, among others, with the following methods:
z-test [51], t-test [52], and Wilcoxon signed-rank test [53].

T-test is a type of statistical hypothesis test in which, under the null hypothesis,
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the test statistic T follows a student t-distribution. It assumes that the distribution
of the sample data is normal. Additionally, the sample variance follows a κ2

distribution. Because of the central limit theorem, the normalized sum of N

identical random variables converges toward a normal distribution as N goes
to infinity, whatever the original variables. Therefore, the t-test is fairly robust
against the assumption of normality. For model evaluation where the sample
(Xi, Yi) is described as paired measurements, we suppose that the differences
di = Xi − Yi follow t-distribution. T-test is mostly used for small sample data,
especially when the sample size is smaller than 30.

Algorithm 6 Paired t-test
Require: A paired sample test {(X1, Y1), (X2, Y2), ..., (Xn, Yn)}

1: Compute the absolute difference d = {X1 − Y1, ..., Xn − Yn}
2: Calculate the test statistic T = d̄

sd/
√

n
, where d̄ and sd are the mean and

standard deviation of the difference d, sd =
√∑

i
(di−d̄)

n−1
3: Produce a p-value from T under the assumption that the test statistic T

follows a t-distribution with the freedom degree of n-1.

Z-test assumes that the distribution of the test statistic T can be approximated
by a normal distribution under the null hypothesis. Same as t-test, z-test requires
that the sample data follow a normal distribution. To perform a z-test, the
sample size should be larger than 30, and the population deviation σ must be
known. The latter is rarely satisfied in practice as σ is difficult to determine.

Algorithm 7 Paired z-test
Require: A paired sample test {(X1, Y1), (X2, Y2), ..., (Xn, Yn)}, the population

standard deviation of paired differences σ.
1: Compute the absolute difference d = {X1 − Y1, ..., Xn − Yn}
2: Calculate the test statistic T = d̄

σ/
√

n
, where d̄ of the difference d, and σ is

the known population standard deviation.
3: Produce a p-value from T under the assumption that the test statistic T

follows a normal distribution N (0, 1).

Wilcoxon Signed-Rank Test is a non-parametric statistical hypothesis test, i.e.,
a test that does not assume any particular form for the distribution of sampled
data (unlike t-test and z-test that assume normality of the data sampled).
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Algorithm 8 Wilcoxon Signed-Rank Test
Require: A paired sample test {(X1, Y1), (X2, Y2), ..., (Xn, Yn)}

1: Compute the absolute difference d = {|X1 − Y1|, ..., |Xn − Yn|}
2: Sort {|X1 − Y1|, ..., |Xn, Yn|}
3: Use the sorted list to assign ranks R1, ..., Rn. The rank of the smallest

observation is 1, and the next smallest observation is 2, until we rank the
largest as n.

4: Calculate the test statistic T as the signed-rank sum:

T =
N∑

i=1
sgn(Xi − Yi)Ri

5: Produce a p-value from T under the null hypothesis
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3.2 Deep Learning

This section briefly introduces the basic concepts of Deep Learning that have been
used in the rest of this work. The basic block of deep neural networks, the multi-
layer perceptron (MLP), is discussed initially. The optimization procedures that
are utilized for training deep learning models, such as stochastic gradient descent,
are also surveyed. Additionally, the commonly used initialization strategies, such
as Xavier initialization and Kaiming initialization, are discussed. Finally, the
section ends by presenting some common loss functions used for both classification
and regression problems, such as cross-entropy and mean squared error, and also
some feature scaling methods.

3.2.1 Artificial Neural Networks

Artificial Neural Networks (ANNs), or simply Neural Networks (NNs) 2 [54, 55]
are artificial systems inspired by biological neural networks. It is hoped that
ANNs are capable of performing complex tasks like the human brain, where
traditional algorithms barely succeed.

Neurons are the basic building block for Neural Networks. The design of a
neuron is inspired by biological neurons found in biological brains. A neuron is a
computational unit that takes as inputs a vector of real values x = (x1, x2, ..., xn),
computes their weighted sum using local weights w = (w1, w2, ..., wn) and a bias
term b. The weighted sum is called activation. It then applies to this activation
a non-linear function g, known as the activation function to produce the output
y = g(wT x + b).

Activation Function In general, the activation function g is non-linear, as
such non-linearity allows the neural network to be more expressive than a purely
linear model. The first activation function, used in the Boolean context, was the
discontinuous Heaviside function [56]. With the development of continuous NNs,
several activation functions have been proposed: the continuously differentiable
Sigmoid activation was long used, as well as the tanh activation, allowing
the gradient back-propagation algorithm, until Deep Learning popularized the

2the word "artificial" will be omitted from thereon, for NNs, neurons, etc.
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Figure 3.1: The architecture of an artificial neuron: h = g(wT x + b)

continuous but not differentiable at 0 ReLU activation [57], to avoid gradient
vanishing problems existing when using Sigmoid. (see Figure 3.2). However, they
have sub-gradients, and gradient methods can nevertheless be applied: in the
following, for simplicity, we will nevertheless talk about gradients. Later, leaky
ReLU and ELU activations [58, 59] were proposed based on ReLU to solve the
dying neuron problem, where many ReLU neurons only compute values of 0
when the inputs are negative. Leaky ReLU and ELU both add a small slope for
negative input instead of 0 in ReLU.

Figure 3.2: Some activation functions used by deep neural networks

Neural Networks are sets of neurons in which the outputs of some neurons are
connected as inputs to other neurons. Some neurons also received some external
inputs – the inputs of the NN. And the outputs of other neurons are tagged as
the outputs of the network. A NN can hence be represented as a directed graph,
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in which nodes represent artificial neurons and edges connect outputs and inputs
between neurons. Based on the properties of the connection graph, ANNs can be
classified into two categories, feedforward neural networks and recurrent neural
networks.

Feedforward Neural Networks are networks without cycles in the directed
graph of connections. Information only circulates through one direction, forward
from the input neurons to the output neurons. Multi-Layer Perceptron (MLP) is
the simplest feedforward neural network architecture. The neurons in MLP are
organized in layers. MLP is nevertheless very expressive because of the use of
a non-linear activation function: Hornik [33] proved a universal approximation
theorem for 3-layers MLPs (one hidden layer between the inputs and the output of
the network, see Figure 3.4) using sigmoid activations, i.e., they can approximate
any continuous function to any precision provided they contain enough neurons
in their hidden layer. The architecture of MLP is described in the figure 3.3

Figure 3.3: MLP Architecture

Recurrent Neural Networks In recurrent neural networks(RNNs), there exist
cycles in the graph because of the feedback connections. The output from some
neurons can impact the input from the same neurons by feedback paths. RNNs
are commonly used to process a sequence of inputs with variable lengths, such
as natural language processing.
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3.2.2 Optimization procedure

Optimization is a crucial component of machine learning. As discussed in Section
3.1.1, machine learning algorithms involve solving an optimization problem, mini-
mizing the empirical risk R̂ over the training setD = {(x1, y1); (x2, y2); ...; (xN , yN )}:

R̂(θ) = 1
N

N∑
i

L(f(xi; θ), yi) (3.8)

All supervised learning algorithms turn the learning problem into the problem of
minimizing such a loss function (directly R or variants thereof, see Section 3.2.4).
In deep learning, the non-linear activation functions causes loss functions to be
nonconvex, making the global optimization very difficult. Nevertheless, deep
learning models are usually trained using iterative gradient-based optimization
algorithms, leading to an expectedly "good enough" local minimum. At each
iteration, the current point moves following the opposite of the direction of
the gradient:

θt+1 = θt − η∇R̂(θt) (3.9)

where η is a positive scalar called the learning rate. η determines the step size. In
practice, in order to enforce convergence, η is generally gradually decreased over
time. In this part, we will discuss the backpropagation algorithm [22] to compute
the gradient of differentiable loss functions, and introduce several optimization
algorithms designed to train a deep learning model.

BackPropagation is widely used to calculate efficiently the gradient descent for
feedforward neural networks. For simplification, let’s consider the 3-layers MLP
shown in Figure 3.43. The forward propagation to compute the prediction ŷ is :

h1 = g(wT
1 x), h2 = g(wT

2 x), ŷ = g(wT
3 h) (3.10)

where wi denotes the local weights on the neuron i, g is the activation function,
and h = [h1, h2] is the hidden state. Moreover, we use ai = wT

i h to represent the
activation of each neuron. During the forward propagation, every activation ai is

3In the historical terminology, the inputs xi are considered as a first layer – hence the name
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Figure 3.4: A three layers neural network

saved and will be further used to calculate the gradients.
The gradients w.r.t each weight are computed reversely by the chain rule. [60]:

∂R̂

∂a3
= ∂R̂

∂ŷ

∂ŷ

∂a3
= ∂R̂

∂ŷ
g′(a3)

∂R̂

∂w31
= ∂R̂

∂a3

∂a3

∂w31
= ∂R̂

∂a3
h1;

∂R̂

∂w32
= ∂R̂

∂a3
h2

∂R̂

∂a1
= ∂R̂

∂h1

∂h1

∂a1
= ∂R̂

∂a3
g′(a1)w31;

∂R̂

∂a2
= ∂R̂

∂a3
g′(a2)w32

∂R̂

∂w11
= ∂R̂

∂a1
x1,

∂R̂

∂w21
= ∂R̂

∂a1
x2;

∂R̂

∂w12
= ∂R̂

∂a2
x1,

∂R̂

∂w22
= ∂R̂

∂a2
x2

(3.11)

By observing the equations above, we can notice that the gradients on layer i can
be efficiently computed from the gradients on layer i + 1 and activation values
recorded during forward propagation. The backpropagation, computing gradients
iteratively from the last layer, avoids redundant calculations in the chain rule.

Stochastic Gradient Descent can be considered as a stochastic approximation
of gradient descent optimization, and it is commonly used to solve deep learning
optimizer problems. Computing the exact gradient ∇R̂ can be expensive,
especitally bevause deep learning also requires a large training set. SGD proposes
to estimate the gradient using only a small number of examples (minibatch) from
the training set. See Algorithm 9 for a straightforward implementation of SGD.

SGD with Momentum Sometimes, using SGD to optimize the target can be
slow, as there is no way to ensure that SGD goes in the right direction at each
iteration because of the noisy gradient approximator due to using mini-batches.
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Algorithm 9 Stochastic Gradient Descent Updates [46]
Require: Learning rate schedule η1, η2, ...
Require: Initialize the parameters θ

1: for k = 1, 2, ... until stop criterion met do
2: Sample a minibatch of m examples from the training set {(xi, yi)}m

i=1
3: Compute the gradient estimation ĝ = 1

m
∇θ

∑
i L(f(xi, θ), yi)

4: Apply update: θ = θ − ηkĝ
5: end for

The SGD with momentum algorithm was proposed to cope with this issue: it
accumulates an exponentially decaying moving average of past gradients and
continues to move into their directions, the momentum ν. The update rules
of SGD with momentum become:

ν = αν − η
1
m
∇θ

∑
i

L(f(xi, θ), yi), θ = θ + ν (3.12)

Adam Optimizer The choice of learning rate η has a significant impact on the
final model performance. Moreover, the loss is often sensitive to some directions
of θ and less sensitive to others. Using a non-identical learning rate for each
parameter can be more reasonable. In recent years, a number of optimizers have
focused on adapting the learning rate of model parameters, such as AdaGrad[61]
and RMSProp [62]. These algorithms assign each parameter an individual learning
rate. AdaGrad keeps track of the per-parameter sum of squared gradients, which
is used to scale the learning rate of each parameter. While RMSProp is a small
modification on AdaGrad, that calculates the exponentially decaying moving
average of squared gradients to normalize the learning rate to avoid making
learning rates too small. Adam optimizer [63] is probably today the most widely
used among all the existing adaptive optimization algorithms, and the one we
have used throughout this thesis. It is detailed in Algorithm 10.

By default, Adam uses a decay rate of 0.9 on ρ1 for the first moment estimate,
0.999 on ρ2 for the second moment estimate, and a small constant of 1e− 8 on δ

to prevent division by zero. These default values have been found to be effective
and robust for a wide range of supervised learning problems. Similar to RMSProp
and AdaGrad, the Adam optimizer stores, in addition, the exponentially decaying
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Algorithm 10 Adam Algorithm [46]
Require: Learning rate η
Require: Exponential decay rates for moment estimates ρ1, ρ2
Require: Small constant δ used for numerical stabilization

1: Initialize the parameters θ ▷ (see Section 3.2.3)
2: Initialize two moments s, r to 0
3: for k = 1, 2, ... until stop criterion met do
4: Sample a minibatch of m examples from the training set {(xi, yi)}m

i=1
5: Compute the gradient estimation ĝ = 1

m
∇θ

∑
i L(f(xi, θ), yi)

6: Update s = ρ1s + (1− ρ1)ĝ
7: Update r = ρ1r + (1− ρ2)ĝ⊙ ĝ
8: Correct the bias ŝ = s

1−ρk
1
, r̂ = r

1−ρk
2

9: Update θ = θ − η ŝ√
r̂+δ

10: end for

moving average of squared gradients. Adam also uses momentum to determine
the moving direction.

Learning Rate Decay In practice, training neural networks by annealing the
learning rate has proved helpful in many works and for several different network
architectures, such as ResNet [64] and DenseNet[65]. Initially, the learning rate is
set to a large value in order to accelerate the move toward some optimal region.
It is then gradually decreased to fine-tune the local minimum. Several strategies
have been proposed for learning rate decay:

1. Step Decay: Decay the learning rate by some multiplicative factor at a fixed
interval of epochs, the number of training iterations over the dataset. The
factor by which the learning rate is reduced, and the interval at which the
reductions are applied, are two the hyperparameters of step decay. e.g.: In
Figure 3.5, the learning rate is multiplied by a factor of 0.5 every 20 epochs.

2. Exponential Decay: Decay the learning rate by some factor γ every epoch,
the learning rate after t epochs is ηt = η0 × γt−1. The factor γ is a
hyperparameter to set.

3. Automatic Decay: Dynamic learning rate reducing when the validation error
has stopped improving, e.g.: multiply a factor 0.5 to the current learning
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Figure 3.5: Different Learning Rate Decay Schedules

rate if no improvement on the validation error is observed for a period of
20 epochs.

3.2.3 Weight Initialization

Deep neural networks are trained by iterative methods, thus requiring the user to
specify initial values of trainable parameters. Indeed, the initialization strongly
influences the convergence and the final performance of the model. Initializing all
the parameters with a constant value has experimentally proved to be detrimental.
This leads all neurons to learn the same features during training. Too small
initial weights will slow down the convergence, while too large initial weights
lead to numerical divergence. The initial weights should be chosen carefully for
efficient training. Two strategies are commonly used, Xavier [66] and Kaiming
[67] initializations.
Xavier initialization is designed to ensure that the variances of inputs and
outputs after each layer are similar. Given uniform distribution as an example,
Xavier initialization limits the weights into a range:

w[l] ∼ U (−
√

6√
n[l] + n[l−1]

, +
√

6√
n[l] + n[l−1]

) (3.13)

where n[l] represents the number of neurons at layer l.
In practice, Xavier initialization works very well in cases where the activation
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function is symmetric, such as Sigmoid.
Kaiming initialization is commonly used with ReLU activation functions
(see Figure 3.2) :

w[l] ∼ U (−
√

6√
n[l−1]

, +
√

6√
n[l−1]

) (3.14)

3.2.4 Loss functions and Evaluation Metrics

The empirical risk R̂(θ) = 1
N

∑N
i L(f(xi, θ), yi) is based on a loss function L,

which measures how different the prediction f(xi, θ) and the ground truth yi are.
On the other hand, the evaluation metrics are used to measure the performance
of a trained model. In this Section, we will discuss some frequently used loss
functions and metrics for both classification and regression problems.

Classification Problem In classification problems, the accuracy [68] is the most
commonly used metric to measure the overall performance of the model. The
accuracy is the proportion of accurate predictions within the whole sample set.
However, the metric accuracy is not differentiable, and hence it is rarely used
as a loss function. Other metrics, such as precision, recall, and F1-score, are
also employed frequently, especially when datasets are imbalanced. The precision
measures the proportion of correctly classified positive samples among overall
samples predicted to be positive. Recall calculates the proportion of correctly
classified positive samples among overall true positive samples. While F1-score is
the harmonic mean of precision and recall to provide a balance between the two
metrics. Cross-entropy loss [69], on the other hand, is a common loss function
for classification problems. The notion of cross-entropy comes from information
theory, and it compares the similarity of two probability distributions p and
q. The definition is expressed as:

H(p, q) = −Ep[log q] (3.15)

Back to a classification problem with C classes, the prediction ŷi ∈ [0, 1]C

represents the probabilities for the example xi to belong to the existing classes
1, . . . , C, and the ground truth yi on xi is one-hot encoded, that is the value yic
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of yi at index c is 1 if and only if xi belongs to the class c. The cross-entropy
between the prediction and the actual probability distribution is:

Hi = −
C∑

c=0
yic log ŷic (3.16)

where ŷic represents the score of the output ŷi at the class c.
Besides being differentiable, the cross entropy is also convex. The convexity of
a loss function is important, especially in the context of traditional machine
learning algorithms, such as logistic regression. The cross-entropy loss in logistic
regression ensures that the optimization problem is convex, meaning that the
local minimum is also the global minimum.

Regression Problem For regression problems, the output y is a vector with con-
tinuous values. Mean Squared Error (MSE) [70] and Mean Absolute Error (MAE)
[71] are the two most commonly used loss functions used for regression problems.

MSE = 1
N

N∑
i

(yi − f(xi; θ))2 (3.17)

MAE = 1
N

N∑
i

|yi − f(xi; θ)| (3.18)

MAE computes the absolute distance between the ground truth and the network
prediction, and MSE measures the variance of the residual. It is more sensible to
outliers compared to MAE but may be less robust since the squaring of the error
impose a higher emphasis on outliers.
There are several evaluation metrics especially designed for regression problems,
such as the coefficient of determinant R2 [72] and relative error [73]. They both
take into consideration the order of magnitude of the target.

R2 = 1−
∑N

i (yi − f(xi, θ))2∑N
i (yi − ȳ)2 (3.19)

where ȳ is the mean of the ground truth. R2 indeed calculates the ratio of MSE
and the variation of the ground truth.
The relative error compares the error from model predictions and that achieved by
a simple predictor. More specifically, the simple predictor is usually the average
of the actual data. Here is an example of relative absolute error (RAE):

RAE =
∑N

i |yi − f(xi, θ)|∑N
i |yi − ȳ|

(3.20)
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3.2.5 Feature Scaling

Feature Scaling normalizes the range of the features to avoid numerical issues
and eventually accelerate the convergence of the gradient descent. Since the
range of values for each feature can vary widely, the gradient descent used to
optimize most machine learning algorithms works much more efficiently with
feature scaling. There are several methods to scale the features.

Min-Max Scaling is the simplest scaling method to scale each feature x to
the range [0, 1] by min and max values on this feature:

x′ = x− xmin

xmax − xmin

(3.21)

Standardization convert values of each feature with zero mean and unit variance.
This is the most commonly used method in machine learning, e.g., SVM, logistic
regression, and NNs, etc.

x′ = x− x̃

σ
(3.22)

with x̃ the mean and σ the variance of the feature x.

Scaling to unit length simply scales the component of a vector x of input
features such that the norm of x equals to 1 after scaling.

x′ = x
||x||

(3.23)

3.2.6 Hyperparameters in Neural Networks

Neural Networks have a large number of hyperparameters that need to be adjusted
to optimize their performance. According to the previous discussion of neural
networks, hyperparameters can be roughly divided into four parts:

• Structure/topology of the Neural Network: Hyperparameters from
the structure involve the number and the type of layers in the network,
the number of neurons in each layer, the activation function used by each
layer, etc. They determine the overall capacity of the network. Increasing
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the number of layers and neurons can improve the ability of the model
to adapt to the training data, but it also increases the risk of overfitting.
Other topology parameters include skip connections, introduced in ResNet
[64], and used in U-Net [29] that has been inspirational for this work (See
Section 3.3.1).

• Optimization: The choice of the optimizer, together with its own associ-
ated hyperparameters, such as the learning rate, is crucial for training the
network. Moreover, there are some other hyper-parameters to set up for
learning rate decay strategies as illustrated (Figure 4.6). Taking the step
decay as an example, hyperparameters include the multiplicative factor and
the initial step size.
The batch size, and the number of training examples used in each iteration
of the learning also influence the training. In general, a larger batch size can
provide more accurate estimates of the gradient of the loss function, which
can lead to faster and more stable convergence of the learning algorithm.
However, a larger batch size also requires more memory and computational
resources, which can limit the size of the network or the amount of data
that can be used for training. On the other hand, a smaller batch size can
provide more noisy estimates of the gradient, which can make the learning
algorithm more sensitive to the specific initialization of the weights and
biases. This can lead to better generalization, but it can also make the
learning process more costly and less stable.

• Weight Initialization: As discussed in Section 3.2.3, there are mainly
two weight initialization strategies used nowadays, Xavier and Kaiming
initialization. The two strategies are designed to make the variances of
inputs and outputs after each layer similar to avoid gradient vanishing or
exploding.

• Loss function: Different loss functions are designed for different types of
problems (Section 3.2.4) and can provide different trade-offs between bias
and variance. In general, the loss function should be chosen based on the
specific data and problem at hand. It is important to select a loss function
that is appropriate for the task and that provides a meaningful and effective
measure of the error between the prediction and ground truth.
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• Other hyperparameters: Several other variants of topology, optimiza-
tion procedure, etc. have been proposed, like gradient clipping, batch-
normalization layers, dropout, etc. [74–76], but have not been used in this
work, and we will not detail them here.

Tuning these hyperparameters can be a challenging and time-consuming task,
but it is an important part of building a successful neural network model.
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3.3 Convolutional Neural Networks

The Convolutional Neural Networks (CNNs) have been proposed by Yann LeCun,
and co-authors [77] back in 1989! CNNs are specially designed to handle images,
i.e., data with grid-like topology. In this section, we will outline the structure
and properties of CNNs. Moreover, we will discuss a famous architecture based
on CNNs, UNet [29], designed for image segmentation tasks.

3.3.1 The Convolution Operator

The convolution of two functions X and W is defined as:

(X ∗W )(t) =
∫ +∞

−∞
X(τ)W (t− τ)dτ (3.24)

In images, X and W are both discrete, and the convolution operator becomes:

(X ∗W )(i, j) =
∑
m

∑
n

X(m, n)W (i−m, j − n)

=
∑
m

∑
n

X(i−m, j − n)W (m, n)
(3.25)

In such context, X is often referred as the input and W as the kernel, or filter.
In general, the kernel has small support, and this limits the summation above
and gives the convolutional operator some nice properties when dealing with
image datasets. Fully connected layers are not good at treating data with high-
dimensional inputs such as images in consideration of the model complexity and
memory requirements. Instead, in CNN layers, each neuron of a given layer
is connected with only a small local region of the previous layer. The local
connectivity of neurons helps to control the number of parameters for such high-
dimensional data.
Moreover, the same filter is used at every location of the layer input: beyond
limiting the number of weights, this ensures some invariance by translation
of the whole process. We could expect that these filters can learn some local
features at different locations.



3. Deep Learning 71

Figure 3.6: A Convolutional Operator (source from [78])

3.3.2 Pooling and Un-pooling

It is common to insert a pooling function after applying some CNN layers on
images, as for instance in VGGNet [79]. The pooling function down-samples
images to a smaller size. Due to the local connectivity, the filter receive information
from a small region. The pooling layer helps filters to have a larger perspective
of the input volume so that CNNs can extract hierarchical spatial features. In
addition, the pooling layer can successively reduce the image size so as to reduce
the computation time of CNNs The most common form of a pooling layer is

Figure 3.7: Pooling Operator with a filter of size 2× 2 and a stride of 2

to apply a filter of size (2, 2) with a stride of 2, as shown in Figure 3.7). The
maximum or mean value of each region of size 2×2 is used to fill the corresponding
pixel of the next layer. The process is repeated on the next non-overlapping region.
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Contrary to the pooling operator, un-pooling up-samples the feature map to
a higher resolution. Such operator is commonly used in image reconstruction
tasks to recover the down-sampled feature maps. A simplest approach to achieve
up-sampling is Nearest-Neighbor (In Figure 3.8). It copies values of the input
image to the corresponding sub-region of the output image.

Figure 3.8: Nearest Neighbor un-pooling operator

3.3.3 The U-Net Architecture

For classification problems on images, the first successes were obtained with
VGG [79], an architecture that alternates CNN and pooling layers until obtaining
features of small dimensions. Later, ResNet [64], introducing skip connections
to jump over one or more layers (Figure 3.9), was proposed to allow training
very deep CNNs with impressive performance. Fully connected layers are then

Figure 3.9: ResNet Architecture

used to compute the output (class scores).
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However, for image reconstruction or image segmentation tasks, the output
should be an image of same dimension than the input. In such context, many
fully-convolutional models [80, 81] are proposed. In particuler, U-Net [29] is a
CNN architecture specially designed for image reconstruction tasks. U-Net is
one of the most famous encoder-decoder models, and was originally proposed
for biomedical image segmentation. Figure 3.10 shows an example of U-Net
architecture. The encoder part (on the left) regularly down-samples the image,
applying a few CNN layers at each level to extract features at different granularity
levels. The decoder (on the right) gradually up-samples these low-resolution
features until reaching the original dimensions of the input. Furthermore, high-
resolution features from the encoding part are directly linked together with the
outputs of the up-sampled layers (horizontal arrows). These skip connections
provide some extra information about features at all scales to the decoder.

Figure 3.10: An example of U-Net Architecture [29]

An interesting remark in the context of the present work is that the U-Net
architecture is very similar to the multi-grid method called V-cycle discussed in
Section 2.3. They both use a hierarchical architecture where the information
is transformed between different resolutions.
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3.4 Graph Neural Networks

In the previous section, convolutional networks have been introduced. Due to
their local connectivity and parameter sharing, they can effectively capture hidden
patterns from data with grid-like topology. However, there are still an increasing
number of applications involving data that is not grid-like, such as graphs that
describe entities in relation with one another. For instance, molecules such as
proteins are modeled as graphs in biology. Social Networks are represented by
graphs. And at the heart of the work presented in this dissertation, the simulation
of physical systems that are modeled by Partial Differential Equations (PDEs)
involves data that is most often represented on a mesh structure, which can
also be expressed as a graph. However, most of the early deep learning tools
were designed to treat simple data types such as grids, sequence data, or fixed
size vectors. Graphs are much more complex and harder to process by deep
learning algorithms since graph nodes are connected in a non-ordered manner,
and with a variable size of neighborhoods.

Motivated by the great success of CNNs on images, there are plenty of studies
aiming at designing algorithms to define a convolutional operator on graph
data, leading to the so called graph neural networks (GNNs). These algorithms
can be divided into two categories, the spectral-based GNNs, and spatial-based
GNNs. The first spectral-based GNN was proposed by [82], which defines a
convolution operator in the Fourier space of a graph. From the convolution
theorem [83], the convolution in the spatial domain is defined as the multiplication
after Fourier transformation.

Since then, several works [84, 85] improved spectral-based GNNs. Meanwhile,
some scientists attempt to construct the convolutions directly on the graph, called
spatial-based GNNs. These approaches, such as [86–88], aggregate the feature
information on each node from its neighbors. Moreover, there are several works
made to solve problems with a set of points (aka point clouds). The PointNet
[31] is the first neural network for point clouds. The basic idea is that each
point feature is encoded and then aggregated to a global vector by a symmetric
function. PointNet++ [89] improved the PointNet by introducing hierarchical
structures to capture local features.
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In this section, we will first describe the graph structure in detail with its
properties and discuss how GNNs are designed to treat graph data. This work
focuses exclusively on one type of GNNs, the message passing GNNs. For readers
seeking a general presentation in this domain, we refer to the survey paper [90].

3.4.1 Data Set-Up

A graph is defined by a set of n nodes V and a list of edges E that describe the
connections between two nodes, G = (V, E). Let vi ∈ V denote a node and eij =
(vi, vj) ∈ E to denote an edge pointing from the nodes vj to the node vi. We repre-
sent the neighbourhood of node vi as N(vi) = {vj ∈ V |(vj, vi) ∈ E}. For example,
we can list all nodes V = {1, 2, 3, 4} and edges E = {(1, 2), (1, 3), (2, 3), (3, 4)}
of the undirected graph in Figure 3.11 to represent this graph.

An alternative way to represent a graph is by using an adjacent matrix (in
Figure 3.11). The adjacent matrix A is a matrix of size n×n, where n is the number
of nodes of the graph. Aij = 1 only if there exists an edge eij in G, and Aij = 0 if
the two nodes vi and vj are not connected. The adjacent matrices are symmetrical
for undirected graphs and are often extremely sparse in the real world.

Figure 3.11: Graph represented by adjacent matrix

Graph data can be attached to nodes or edges. For example, node attributes
can represent the properties of a specific node, and edges can be assigned with
weights to represent how strong the connection is. The matrix X ∈ Rn×d denotes
the property of each node by a vector xi ∈ Rd, and Xe ∈ Rm×c denotes the edge
attributes with xe

ij ∈ Rc to describe the attribute on the edge eij.
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Figure 3.12: Graph Data

3.4.2 Challenges on graph data

Before the invention of Deep Learning, machine learning pipelines used hand-
crafted features such as node degrees, centrality, etc to train models on graph data.
The choice of these handcrafted features greatly influences the final performance
of the model. With the help of deep learning, the models are expected to better
learn how to represent data on a graph, by alsolearning the features (end-to-
end learning). As mentioned, the well-defined convolution operator of CNNs is
designed for grid-like inputs and cannot be applied in general to graph data. To
better learn on graphs, new operators should be defined based on some common
properties of a graph.

Variable Input Size A natural way to define a neural network for graphs
would be to simply use the adjacent matrix as input features, and feed it into a
multi-layer perceptron. Such naive method, however, is not applicable for graphs
of different sizes. When designing an architecture for graph data, the model
should allow varying input sizes.

Interaction among Nodes An edge in a graph represents an interaction between
two nodes, and these nodes are correlated through their neighborhoods. For
example, in social networks, social connections can influence the individual
characteristics of a person. Therefore, similar to CNNs, the model designed for
graph data is expected to extract local structures from neighborhood.
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Permutation equivariant A graph doesn’t have a canonical order of the nodes
meaning that a model needs to be equivariant to any permutation of the graph
nodes: once inputs are permuted, the resulting objects will also be permuted
consistently.

Figure 3.13: Permutation equivariant of the graph

A graph neural network should at least satisfy the three properties above. In
next Section, we will outline a general framework of spatial-based GNNs, "Message-
Passing Schema," which is designed to solve the above issues for graph data.

3.4.3 Message-Passing Schema

Let us first take a look at CNNs on image data: indeed, an image can be
considered as simply a special case of graph data, by considering that there is
an edge between neighboring pixels. Suppose that a single convolutional layer is
applied with a filter of 3× 3. What the convolutional layer does is taking an area
of 3 × 3 from the image and apply some transformation to create a new pixel
(Figure 3.14). In the perspective of graphs, the transformation simply multiplies
edge weights to the corresponding neighbors and take a sum:

xt+1
i =

∑
j∈N (i)

Wijx
t
j (3.26)

Each node receives information from its neighbors, from which it creates new fea-
tures.

This is the basic idea of message-passing schema [91]. The general framework
of message-passing treats the convolutional operator in a graph as a message-
passing process in which information is passed along edges from one node to its
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Figure 3.14: CNN operator is considered as a transformation of message in a graph

neighbors. The new feature on node vi is calculated by aggregating information
from its neighbors vj ∈ N (i) using permutation invariant functions, i.e., functions
that are invariant w.r.t. to permutations of node order, like Sum and Mean.
The information propagation function is defined as:

xt+1
i = γ(xt

i,
∑

j∈N (i)
ϕ(xt

i, xt
j, xe

ij)) (3.27)

where both γ and ϕ are parametric functions, MLPs, for example, and the Sum
operator can be replaced by any permutation invariant functions accepting a
variable number of variables. The architecture allows different graph sizes, and it

Figure 3.15: Message Passing Schema

also helps to extract local features by receiving neighbors’ messages. Moreover,
the message passing is permutation equivariant as it finally applies a permutation
invariant function to aggregate neighbor’s information in a node-wise manner.
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To construct a graph model, one can apply the message passing layer multiple
times. The more layers are utilized, the farther the information the nodes receive.
Indicated in figure 3.16, by applying two message passing layers, the node 1 can
receive messages from the node 4, which is not one of its neighbor: after applying
k layers, the node gets information from k hops away.

Figure 3.16: A message passing schema with two graph layers, the node 1 will finally
receive information from the node 4 after a two-layer GNN.

Almost all recently proposed GNN algorithms can be expressed using a
message-passing schema. They all share the idea of information propagation. In
the following sections, we will provide an overview of several GNNs that have
been proposed within the context of this message-passing framework.

Graph Convolutional Network [85] is a spectral-based GNN, in which
the convolution operator is defined in the Fourier domain. Consider a graph
represented by its adjacency matrix A; the graph convolutional network (GCN)
first normalizes the adjacency matrix with self-loop Â = A + I such that all
rows sum to one. The normalization is achieved by simple matrix multiplication
involving the diagonal normalizing matrix D : D− 1

2 ÂD− 1
2 . GCN defines the

convolution operator as:

X ′ = D− 1
2 ÂD− 1

2 XΘ (3.28)

where X denotes the matrix of the feature attributes, and Θ represents the
trainable parameters of the graph layer. Even though GCN is a spectral-based
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GNN, it can still be written in the message-passing framework by taking its
node-wise formulation:

xt+1
i = ΘT

∑
j∈N (i)∪i

xt
j√

didj

, (3.29)

with di denoting the number of neighbours on node i by counting the self-loop.
GCN is one of the simplest graph neural networks. However, the architecture
cannot take into consideration edge attributes.

MoNet [88] assigns different aggregation weights to a node neighbours depending
on the edge features. Weight functions are trained to map the edge features to
the relative weight between two connected nodes. Consider a weighted graph
G = (V, E,V , E), the basic idea of MoNet is to define a trainable function wk

that computes an edge weight wij from the edge features eij . MoNet then defines
the convolutional operator on node i as:

xt+1
i = 1

|N (i)|
∑

j∈N (i)

1
K

K∑
k=1

wk(xe
ij)⊙Θkxt

j (3.30)

where K is the user-defined kernel size, Θk ∈ RM×N stands for the trainable
matrix applying a linear transformation on the input data, ⊙ is the element-wise
product, and wk, k = 1, . . . , K are trainable edge weights. Following [88], we
choose Gaussian kernels defined as:

wk(xe
ij) = exp(−1

2(xe
ij − µk)T Σ−1

k (xe
ij − µk)) (3.31)

Both µk and Σk are trainable parameters representing the mean vector and
covariance matrix of the Gaussian kernel. MoNet provides a framework to learn
graphs with multi-dimensional edge features, that is, using a trainable function
w to map the edge features to an edge weight. Some recent graph layers are
based on the work of the MoNet. For example, [92] chooses the kernel function
defined over the weighted B-Spline tensor product basis.
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3.4.4 Graph pooling operators

CNN-based models utilize pooling operators to reduce the image size and generate
smaller feature maps to extract hierarchical spatial features. The down-sampling
strategy is also needed for graph models to coarsen the graph. However, defining
a pooling operator is not straightforward for graph data. The pooling operator
is not natural for graph structures, as it breaks the connections between nodes.
Normally, to coarsen a graph, the preserved nodes should be carefully chosen after
the pooling operator, then new edges between these nodes should be added if
needed. Some earlier works [93, 94] proposed the idea of using eigen-decomposition
to down-sample the graphs. More recent works, however, tend to apply neural
networks to automatically learn how to coarsen graphs rather than using time-
consuming eigen decomposition methods.

Top-K pooling [95, 96] uses a trainable projection vector to transform node
features to the corresponding scores. The top k nodes with the highest scores are
chosen as the remaining nodes of the new graph, but no additional connections
are added between these nodes.

Diff pooling [97] is a differential pooling layer. The Diff pooling can generate
hierarchical representations of graphs in an end-to-end fashion by learning a
differentiable cluster assignment for nodes at each graph layer. The cluster
assignment is learned by the following equation:

Sl = softmax(GNNl(Al, X l)), Al+1 = (Sl)T AlSl (3.32)

where X l denotes the node features, and Al represents the adjacency matrix. Sl

is the learned assignment matrix. If edge features are scalar, they are expressed
in adjacency matrix; otherwise, edge features are not considered.

Self-Attention graph pooling [98] uses a GNN to provide self-attention scores.
Similar to the Top-k pooling, after getting the score of each node, the top k nodes
with the highest scores are preserved to construct the new graph.

These coarsen operators take advantage of nodal features to select a subset of
nodes from the graph. While [99] proposed an edge pooling operator, where a
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score is attributed to each edge by a trainable function, and edges are contracted
iteratively according to that score.

In Chapter 4, we will propose two hierarchical graph architectures based on
a set of meshes with different scales. Different from the situation above, coarse
meshes are generated by well-studied mesh generation algorithms. This will allow
us to define pooling operators with k-nearest neighbors to transform the features
from one mesh to the next, upward or downward.
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3.5 Transfer Learning

Although deep learning methods have achieved big success in many domains,
there are still some limitations when it comes to certain real-world applications.
Collecting sufficient data to support the training process of deep learning models
is often expensive or even infeasible. According to the statistical learning theory,
large and diverse data is needed to reduce the estimation error so as to achieve
broad generalization on unknown examples drawn from the same distribution as
those in the training set. For example, the most famous database on computer
vision is ImageNet which contains more than 14 million images covering more
than 20 000 categories. However, in most cases, only a few data can be accessed,
such as medical images or sport images, that can be viewed as different tasks, with
images drawn from different distributions. Learning to solve all those different
tasks from scratch with possibly insufficient data is impractical.

Transfer Learning algorithms [100] is one way to handle such issues, where
the knowledge gained while solving a task is re-used for a different but related
task. Transfer Learning is widely used nowadays to solve text- and image-related
tasks [101–103], especially in similar situations when only a few data samples are
available or training. We will discuss in more detail the underlying ideas in transfer
learning and the formal definition in this section. We refer the interested reader
to the review papers [100, 104, 105], that provide a comprehensive understanding
of the transfer learning domain.

3.5.1 Definitions

This Section is a quick introduction to Transfer Learning, following [100, 106].
A domain D = {X , P} consists of a feature space X and a distribution P

over X . A learning task T is defined by a label space Y, and a model f(x) that
predicts a label y to all points in X . The goal of the supervised learning task, as
introduced in Section 3.1.1, is to identify the model f(x) from an i.i.d. sample
X = {xi ∈ X , i = 1, . . . , n} drawn following P , and the corresponding labels yi =
f(xi). Many learning algorithms learn, in fact, a conditional distribution P (Y |X),
such that the output of the model for a given x ∈ X is the probability distribution
P (y|x) for all y in Y . More generally, the resolution of a supervised learning task
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uses a so-called loss function L (See Section 3.1.1) whose minimization leads to
an approximation of the model f , or of the conditional probability P (.|x).

Standard supervised learning problems (Section 3.1.1) are concerned with
solving one single learning task defined on one single domain: from a sample
dataset drawn from one single distribution in which examples are independent of
each other (i.i.d examples), the goal is to find a model that generalizes to any
sample drawn from the same distribution. Transfer learning considers several
source tasks, possibly defined on several domains, and for which the learning is
supposed to be relatively easy (for instance, because of the availability of a large
representative labeled sample set), and different target tasks, possibly defined
on different domains, that would be hard to solve stand-alone (for instance,
because only very few, if any, labeled examples are available), but for which the
knowledge acquired on the source tasks can help (see Figure 3.17). More formally:

Transfer learning: Given mS source domains and tasks {(DS
i , T S

i ), i = 1, . . . , mS},
and mT target domains and tasks {(DT

j , T T
j ), j = 1, . . . , mT}, the basic idea of

transfer learning is to use the knowledge from the learning processes run on the
source tasks (usually the corresponding learned models) to improve the learning
process on the target tasks compared to what would be learned using only the
data of each target task. The sought improvement can be either in terms of
the accuracy of the learned model or in terms of the computational cost of the
learning itself – or both. Figure 3.17 is a schematic representation of a transfer
learning setting with mS = 2 and mT = 1.

3.5.2 Transfer Learning Approaches

According to [100, 106], transfer learning approaches can be categorized into four
cases, instance-based, feature-based, parameter-based, and relational-based.

Instance-based approaches [107–110] assume that by re-weighting, some data
in the source domain can be reused for learning in the target domain. These
approaches propose certain algorithms to re-weight and sample data from the
source domain.

Feature-based approaches [111–113] learn a good feature representation for the
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Figure 3.17: Difference between transfer learning and traditional machine learning.

target domain with the help of data in the source domain. The representative
features are considered as the transferred knowledge. It involves minimizing the
marginal and conditional distribution differences, preserving the properties or
potential structures of the data, and finding the correspondences between features.

Parameter-based approaches assume that the source model and the target
model share some parameters or prior-distribution of hyper-parameters. The
parameter-based approaches are widely used in neural networks. A more detailed
discussion will follow for the parameter-based topic.

Relational-based approaches [114–116] focus primarily on problems in relational
domains. The logical relationships or rules learned in the source domain are
transferred to the target domain.

3.5.3 Parameter-based Approaches

Parameter-based approaches are commonly used in transfer learning, especially
with deep learning models. One benefit of deep learning is that when treating
complex tasks such as image recognition, deep learning models tend to automati-
cally learn feature representation at different levels [117]. Hand-crafted features
used for traditional machine learning methods are no longer needed. As much as
the source and the target tasks are related, the learned feature representation from
the source domain can also help to solve the target task. Usually, parameter-based
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Figure 3.18: Parameter-based approach on deep learning model

approaches start by training a model using data from the source domain. To solve
the target task, instead of training a new model from scratch, parameters of the
pre-trained model are used as an initialization. Typically, for multi-layer neural
models, the final layer from the pre-trained model is replaced by a randomly
initialized layer to match the output dimension for the target task, as shown in
Figure 3.18. Data from the target domain is then fed to retrain the model.

There are mainly two ways to retrain the model. The first one freezes the
weights of the layers from the pre-trained model, considers these layers as a feature
extractor, and only trains the last few layers: [103] is an example; it preserves
the front layers of the model trained on the ImageNet dataset to compute latent
representation features for images from other domains.

Another approach is to retrain the entire model but using a small learning
rate. Incremental adaptation of the pre-trained features to the new data (also
called fine-tuning) can potentially lead to meaningful improvements (see e.g.,
[101, 102] for NLP applications).

In chapter 6, we will propose an original transfer learning approach for the
specific case of PDE approximation, where the source domain will be the data-
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based simulation of the PDE on a coarse mesh, and the target domain will be
the numerical approximation of the same PDE using a much finer mesh.
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3.6 Meta Learning

Standard supervised learning problems introduced in Section 3.1.1 are concerned
with solving one single task. Transfer learning, as surveyed in the previous Section
3.5, aims at using knowledge acquired after solving some source learning tasks
better to solve some target tasks, a priori known.

As noted in previous Sections, standard supervised machine learning algo-
rithms have difficulties in solving problems with only a few data accessible.
Transfer Learning is one way to handle such issues when at least a few tasks can
be easily learned: the transfer of knowledge makes it easier to solve new related
tasks. However, when no source task is sufficiently easy to learn on its own, or
when the goal is to solve any target task from a given distribution of tasks and
not a few a priori known target tasks, Transfer Learning might not be efficient
enough, or not even applicable, and this is where Meta-Learning can be a solution.

In this section, we introduce the concept of Meta-Learning, a technique
to transfer learning methodology, and in particular, to solve problems with
insufficient data. The basic idea is to learn an incomplete model that is selected
(and optimized) for its ability to learn efficiently (quickly and accurately) several
different tasks, known as training tasks. According to [118], given a set of
tasks {T1, T2, . . . , TN} with different data generation distributions and decision
functions, meta-learning algorithms are designed to learn a general purpose but
incomplete model that, in turn, will be able to rapidly learn specialized models
for some new tasks (e.g., with very few samples).

One baseline naive approach for solving such a meta-learning problem involving
multiple tasks would be to aggregate all data across the different tasks so as
to reduce the problem to a single-task problem with a distribution equal to the
mixture of the different initial distributions. Every task then shares the same
model as single-task learning. But first, such an approach ignores the fact that
data comes from different distributions, something that can easily hinder the
search for a good model. And second, this assumes that all the tasks you want to
solve are known beforehand, and this is not always the case in real applications.
Indeed, if a new unknown task is to be solved, the model should be completely
re-trained after augmenting the training set with the examples from the new
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tasks. Another choice could be to train a different model for each task and to use
Transfer Learning for new tasks. Unfortunately, this is not ideal, especially when
there is only a small amount of data per task. The empirical risk is no longer a
reliable approximation of the actual risk due to the lack of training examples.

Meta-learning provides a way to gain experience (aka meta-knowledge) over
various tasks, and to use this experience to improve learning a new task using
task-specific data. In the perspective of statistical learning, rather than seeking a
function for a single task from scratch, the meta-knowledge, in a way, decrease
the complexity of the hypothesis space so as to reduce the requirement of learning
examples to obtain a good estimation error.

In this Section, we will briefly introduce some commonly used meta-learning
algorithms. Readers interested in more details on meta-learning are referred
to [119], and the paper [118].

3.6.1 Problem Set-Up

A Meta-learning dataset consists of a set of training tasks Ti, i = 1, . . . , N . For
each task Ti, a dataset D⟩ of pairs (features, label) is available, sampled from a
distribution p(Ti), with Di = {(xi

1, yi
1), . . . , (xi

k, yi
k)}, as well as a loss function Li.

In addition, each datasetDi is split into a training and a test set: Di = {Dtr
i ,Dtest

i }.
Formally, the meta-training set is: Dtr

meta = {(Dtr
i ,Dtest

i )}N
i . Figure 3.19 shows

an example of the meta-learning dataset in the image recognition context.

Meta-training: some meta-knowledge w is learned from Dtr
meta. w differs for

the different learning algorithms and will be discussed in detail in the next
section. Task-specific parameters θi are then computed based on Dtr

i and the
meta-knowledge w:

θi = arg min
θ
Li(Dtr

i , θ, w) (3.33)

During meta-training, meta-learning algorithms minimize the performance of all
task-specific parameters θi on their respective test set Dtest

i , after some (partial)
training for task Ti:

min
w

N∑
i

Li(Dtest
i , θi, w) (3.34)

s.t. θi = arg min
θ
Li(Dtr

i , θ, w) (3.35)
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Figure 3.19: An Example of meta-learning dataset (Source from Pinterest)

Meta-testing: given a new meta-test task T = {(Dtr,Dtest),L} sampled from
the same meta-distribution as the training tasks T1, . . . , TN , it should be possible
to learn the task-specific parameters θ for the new task T using Dtr and the
meta-knowledge w. The performance of the whole meta-learning algorithm is
then evaluated on the test set Dtest (and possibly for several different new
meta-test tasks T ).

3.6.2 Meta-learning Algorithms

There are mainly three categories of meta-learning algorithms based on how
adaptation is performed in the training process: Model-based, metric-based, and
optimization-based approaches.

Model-based approaches [120–122] train a neural network to directly predict
the task-specific parameters θi given the corresponding training set Dtr

i :

θi = fw(Dtr
i )

In this case, the meta-knowledge w is an entire model.
The model-based algorithms can be trained directly with standard supervised

https://www.pinterest.com/
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learning. The target is to train a neural network fw such that the output
parameters θ represent an accurate predictor on every test set for each task:

w = arg min
w

N∑
i

Li(Dtest
i , fw(Dtr

i )) (3.36)

These approaches are very expressive and easy to combine with different learning
algorithms. But they require a complex model to take the entire dataset as input,
which challenges the optimization problem. Moreover, to train a complex model,
they need sufficiently many training tasks, and this is rarely the case.

Metric-based approaches [123–126] usually employ non-parametric methods
(e.g., k-nearest neighbors) to compute the prediction for each task. These methods
are simple and efficient and work very well when tasks contain only a few data.
The prediction over a task is approximated by simply comparing the input features
with training samples and predicting the label of the matching training samples
in classification problems or the weighted average in regression problems:

ŷ =
∑

(xi,yi)∈Dtr
j

kw(x, xi)yi,

where kw is a kernel function to compute the similarity score between two input
features. Metric-based learning algorithms aim to learn a good similarity kernel
kw over Dtr. The metric-based approaches are easy to optimize but they don’t
work well on larger tasks.

Optimization-based approaches [127–129] are based on the idea that the
adaptation on a specific task is treated as an optimization problem. In other
words, the task-specific parameters θ are computed through optimization, and the
meta-parameters w serve as a prior, i.e., as an initialization of the optimization
process. In the next section, we will discuss in more detail the well-known
optimization-based approach MAML (Model-Agnostic Meta-learning).

3.6.3 Model-Agnostic Meta-learning

Model-Agnostic Meta-learning (MAML) [128] is an optimization-based meta-
learning algorithm that explicitly optimizes model parameters for fast learning.
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Figure 3.20: Architecture of a metric-based approach: prototypical-network, the
network embeds a function fw to encode each input to an M-dimensional space. The
similarity between inputs is calculated by a pre-defined distance function

As mentioned, the meta-parameters w are trained to serve as a prior for the
subsequent meta-test learning tasks. In fact, one successful usage of prior
knowledge is from fine-tuning introduced in Section 3.5. In fine-tuning, the
pre-trained model fw from a similar task is considered as initialization, and used
to train a new model using a few steps of gradient descent:

θ = w − η▽wL(Dtr, w)

Indeed, fine-tuning works very well on small-scale datasets. Rather than learning
from scratch, using an initialization from the pre-trained model can accelerate the
training time and also avoid overfitting. This is one way to solve meta-learning
problems. Meta-training dataset is used to get a pre-trained model, and new
tasks are solved by simply fine-tuning the pre-trained model during meta-test
time. Unfortunately, for cases where only small samples are available in test
tasks, fine-tuning is not very effective.

Inspired by such fine-tuning approaches, MAML aims to find a partial model
with parameters w, which can be easily fine-tuned for all tasks, even with small
amounts of data. At meta training time, for each training task Ti, the fine-
tuning process is used to obtain the task-specific parameters θi and evaluate the
task-specific model fθi

by samples from the test set Dtest
i . The optimization

target in this case is:

min
w

∑
Ti

Li(Dtest
i , θi) (3.37)
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θi is obtained by fine-tuning w on Dtr
i : If only one step of gradient descent

is applied, θi is expressed as:

θi = w − α∇wLi(Dtr
i , w) (3.38)

By replacing θi with the formula above, the optimization problem becomes:

min
w

∑
Ti

Li(Dtest
i , w − α∇wLi(Dtr

i , w)) (3.39)

In the more general case where that there are N update steps of gradient, the
meta loss function is then written as:

min
w

∑
Ti

LTi
(fθN

i
) = min

w

∑
Ti

LTi
(fθN−1

i −α∇θLTi
(f(θN−1

i ))) (3.40)

In other words, MAML learns a set of parameters w in such a way that it is
easily fine-tuned for each known learning task. It is then expected that it can
also be easily adapted to all test tasks with a few steps of fine-tuning. MAML
is described in Algorithm 11.

Algorithm 11 Model-Agnostic Meta-learning Algorithm
Require: Sample a set of tasks {T1, ..., Tn} from the task distribution.

1: Set learning rate parameters η1, η2
2: Initialize the meta parameters θ
3: for every training task Ti do
4: Sample disjoint dataset (Dtr

i , Dtest
i ) from Ti

5: Evaluating gradient descent on θ with Dtr
i

6: Compute adapted parameters: θi = w − η1∇wL(Dtr
i , w)

7: end for
8: Update the meta-parameters w = w − η2∇w

∑
Ti
Li(θi, Dtest

i )

In fact, MAML tends to extrapolate better than metric-based and model-
based approaches, as the procedure of adaptation at test-time corresponds to
an actual optimization method. However, the update of the meta-parameters
θ requires second-order derivatives. As a result, MAML has high computation
cost and is memory-intensive. The bi-level optimization problem also introduces
instabilities when training the meta-learner. Some works try to mitigate these
instabilities: [130, 131] automatically learn inner learning rate η1, [132, 133]
optimize only a subset of parameters in inner-loop. The state-of-the-art of
such works is, to the best of our knowledge, MAML++ [134], stabilizing the
meta-learner by redesigning the loss function
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Figure 3.21: Diagram of MAML

Figure 3.22: Comparison of model performance on extrapolation tasks between
MAML and the two model-based methods SNAIL and MetaNet. These meta-learners
are trained by the Omniglot dataset, and tested on out-of-distributions tasks where
images are simply sheared or scaled. Source from [135]

3.6.4 MAML++

According to [134], MAML can become very unstable when training with large
update steps. For instance, Figure 3.23 displays the instability of MAML during
the meta-training on the Omniglot dataset. In order to mitigate these instabilities,
[134] proposed a multi-step loss optimization method (MSL). Instead of minimizing
only the loss from the last step, the idea is to minimize the weighted sum of the
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Figure 3.23: Instability of MAML and stability of MAML++ on Omniglot dataset,
from [134]

losses at every updating step j, where the weights wj are pre-defined by users.

Lmeta =
∑
Ti

N∑
j=1

wjLTi
(fθj

i
) (3.41)

Figure 3.23 shows three training curves of MAML and three (almost undistin-
guisahble) training curves for the improved MAML++ on the Omniglot dataset:
MAML++ is clearly much more stable and displays a better convergence (in
both accuracy and speed) than the original MAML.

In chapter 5, we will propose a meta-learning approach for airfoil simulation
problems to enhance the model’s performance on out-of-distribution data.
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In Chapter 1, we discussed some research on applying CNNs to solve PDEs
thanks to their tremendous successes in image analysis. Typically, data generated
on unstructured meshes is first projected on structured grids, then trained
by a CNN-based model. However, in the real world, physical problems have
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complex geometric domains, and such a CNN approach can lead to a significant
interpolation error, especially on the boundary of an actual domain. We will
discuss this in more detail later in this chapter.

Graph Neural Networks (GNNs) introduced in Section 3.4 are ML methods
that handle data living on graphs. GNNs aim to reproduce the locality properties
of CNNs on graph data. As the mesh data can be considered as a special graph
structure, GNNs allow us to construct a deep learning model that can be applied
directly to mesh data instead of projection into structured grids. In recent
years, many attempts have been made to construct a GNN model to study mesh
data: [30] discussed fluid flow field problems on different irregular geometries.
It considers CFD data as a set of points (called point clouds) and applies the
PointNet[31] architecture specially designed for such a data type. [32] combines
graph neural networks with a traditional CFD solver (run on a coarse mesh) to
accelerate fluid flow prediction on a much finer mesh; [136] proposed a framework
for learning mesh-based simulation problems with graph neural networks. Unlike
these methods that apply GNNs directly on a fine mesh, we propose a hierarchical
structure to extract both global and local features from mesh data. We propose
generic up- and down-sampling procedures for GNNs, taking advantage of meshes
of different granularities. From thereon, inspired by the multi-grid methods in
the numerical field [13], we introduce two such architectures for GNNs in the
context of PDE simulations: the Graph U-Net, based on the famous U-Net [29]
proposed for image segmentation, and the novel Multi-Grid Multi-Input model.

This Chapter is organized as follows: In Section 4.1, we introduce the multi-
grid architectures Graph U-Net and Graph MGMI, based on a hierarchy of
meshes on the domain of the PDE. In Section 4.2, we describe the experimental
use cases used to validate our proposed models: non-linear Poisson equations
and Navier-Stokes equations for airfoil simulation. In Section 4.3 and 4.4, we
present the results of our experiments on non-linear Poisson’s equations and
Navier-Stokes equations for airfoil simulation, respectively, which validate the
effectiveness of the proposed approach.
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4.1 Multi-Grid GNNs

Given a partial differential equation (PDE) defined on a domain Ω, the goal of this
work is to use neural networks as a replacement for numerical solvers to simulate
the PDE. To do this, we first generate sample data on the domain using numerical
solvers. This dataset is then used to train a neural network to predict solutions for
new samples of the PDE. However, when simulating PDEs, complex geometries
and unstructured meshes are often inevitable. The finite element method (FEM)
or finite volume method (FVM) mentioned in Chapter 2.1 are commonly used
to discretize PDEs by constructing a mesh on the domain Ω. And except in
specific cases (Ω is similar to a quadrangle), this mesh will be irregular, i.e., not
topologically equivalent to a grid. As a result, the data generated from numerical
simulations is no longer structured as a regular grid image. In order to effectively
handle this type of data with Deep Neural Networks, we will use Graph Neural
Networks, as already mentioned. However, whereas multi-grid approaches can be
straightforwardly ported to CNNs, their implementation in GNNs is still missing.

In this section, we propose hierarchical graph-based approaches for learning
approximate numerical solutions of partial differential equations (PDEs) on
unstructured meshes. Our approach addresses the up- and down-sampling issues
of graph neural networks (GNNs) by constructing a hierarchy of meshes with
increasing complexity. This allows us to learn both global and local features
of the solution on the mesh data.

4.1.1 GNNs for Mesh data

When it comes to unstructured mesh data, a naive solution is to embed the
complex domain into a regular rectangle domain and to proceed by interpolation
to project data on the unstructured mesh onto the grid. From there on, CNNs
can be applied straightforwardly to treat the resulting Euclidean data. However,
using pixel representation has some shortcomings [137]:

• Due to the data projection between mesh and grid, pixelization decreases the
accuracy of mesh data, especially for physical problems posed on complex
geometric domains. Such a CNN-based approach can lead to a significant
interpolation error, in particular on the boundary of the actual domain.
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• Pixels often require higher resolution to have a similar expressive power
than a mesh when the geometry is complex. The donut domain, which will
be discussed in Section 4.3 is an example. Grids are not good at describing
complex boundaries.

• Moreover, it is common to mask the interior area in the pixel-wise approach.
Some computational effort of the CNN is wasted on the unused area.

The use of GNNs becomes crucial when it comes to unstructured meshes, as
GNNs can operate directly on data from non-Euclidean space. As a matter of
fact, a mesh is naturally a particular graph architecture. Formally, any 2D mesh
structure1 can be expressed as M = (V, E, E). The set vi ∈ V denotes the nodes
of the mesh, eij = (vi, vj) ∈ E if both vi and vj belong to one element of the
mesh. Moreover, the attached attributes E ∈ Rm×2 denote the pseudo-coordinates
for every edge: The attribute xe

ij ∈ R2 on edge eij is defined as the difference
of the coordinates of the two nodes vi and vj.

xe
ij = pj − pi (4.1)

where pi and pj are the coordinates of node vi and node vj respectively.
Any type of data can be defined on the mesh, as some node attribute in V .

MoNet GNN Some basic concepts of GNNs are outlined in Section 3.4. Most
of them are based on the idea of message-passing, leveraging features from the
node’s neighbors to create new information. In this work, we use the mixture
model network MoNet as GNN structure introduced in Section 3.4.3.

4.1.2 Multi-Resolution Approaches

As discussed in Section 2.3, many multi-grid algorithms have been proposed in
the context of numerical simulation. The main idea is to compute approximate
solutions to the problem at hand on meshes of different resolutions. The steps on
coarse meshes are fast and help to unveil the global features of the solution, while
fine meshes refine the solutions, removing unwanted spatial oscillations but at a

1For the sake of simplicity, we will only consider in this work P1 finite elements in 2D, for
which the dof are the values at the nodes. The same work can be done for other types of 2D or
3D meshes, with more complex notations, but will not be discussed here.
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higher computational cost. As a matter of fact, the idea of multi-grid has already
been used in the neural network framework in the context of CNNs for image
analysis and is based on pooling (down-sampling) and up-sampling layers that
merge or expand rectangle patches of the image. Among well-known examples
are Autoencoders, and the famed U-Net architecture (Section 3.3.3), which adds
to the reduction/reconstruction structure some "horizontal" connection between
downstream and upstream layers of the same dimension.

The multi-grid concept can be extended to the GNN framework easily. Instead
of using down-sampling (pooling) operators to automatically coarsen the mesh, we
create, over the domain at hand, a hierarchy of meshes of increasing complexity.
However, different from the CNN context, no obvious down-sampling (pooling)
operators exist when it comes to GNNs. The pooling operators discussed in
Section 3.4.4 focus on the selection of nodes to construct a coarse graph – but
this is unnecessary for mesh data. By simply generating a set of meshes with
different coarsenesses, we can easily define operators that transform the features
from one mesh to the next, up- or downward.

Mesh Hierarchy There are many options to create meshes to subdivide the
problem domain. In fact, a considerable amount of effort is undertaken to design
mesh structures to achieve high-order accuracy in numerical analysis. Thanks to
the full-developed studies on mesh construction, we can easily create hierarchies
of meshes without using graph pooling operators discussed in Section 3.4.4.
Delaunay triangulation [138] is a commonly used algorithm to create a mesh on
a given domain. It attempts to maximize the minimum of all the angles of the
triangles in the triangulation to avoid sliver triangles. New nodes are gradually
inserted into the triangulation and connected with their neighbors under several
rules. Delaunay triangulation divides the whole domain uniformly, avoids narrow
triangles, and retains geometric properties with limited nodes. The software
CGAL [139] uses Delaunay triangulation to ensure good mesh quality, and allows
for the efficient computation of sets of meshes at different scales using user-defined
criteria.
Nevertheless, several approaches have been proposed to mesh coarsening. For
example, the incremental decimation method aims to reduce the number of points
by preserving the specific properties of the original mesh as much as possible.
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It sequentially removes one vertex or edge with the smallest changes until the
given criteria are satisfied. Such methods are quite expensive compared with
Delaunay triangulation which directly computes the coarse mesh. As a result,
in this work we utilize Delaunay triangulation to generate a set of independent
meshes at different scales in order to reduce generation time.

Sampling Operator We propose a sampling operator to convert data between
two meshesM1 andM2 that simply uses the k-nearest interpolation proposed in
PointNet++ [89]. Let z be a node from M1, and assume its k nearest neighbors
on M2 are (x1, . . . , xk). Let f represent some node feature. The interpolated
feature f(z) is defined from those of the xi as:

f(z) =
∑k

i=1 w(xi)f(xi)∑k
i=1 w(xi)

, where w(xi) = 1
||z − xi||2

(4.2)

Based on these operators, both up- and down-sampling operators can be
defined, and it is then straightforward to define multi-resolution architectures
in the context of PDE simulation.

The U-Net Achitecture

First, we propose a simple adaptation of the U-Net architecture [29], where each
block is a MoNet block, followed by one sampling operator as described above.
The "horizontal" connections that characterize U-Net are added as well. During
encoding, the model starts capturing local features from small neighborhoods.
Pooling layers will down-sample the data from finer to coarser mesh, where neurons
have spatially larger receptive fields. We repeat the above steps until we reach
the coarsest mesh where features have a good representation of the whole domain.

As noted, the U-Net architecture is quite similar to the V-cycle scheme on
Multi-grid algorithms (See Section 3.3.3), which starts from the finest mesh and
samples down to the coarsest mesh, then works its way back into the finest mesh.

The MGMI Architecture

We now propose a completely original architecture called Multi-Grid Multi-Input
(MGMI), as displayed in Figure 4.1. Here, we will illustrate it on the example
from the non-linear Poisson’s equation that will be introduced in Section 4.2.1.
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Figure 4.1: The MGMI architecture: Coarse-to-fine meshes are linked with up-
sampling operators, and the right-hand side is input to the NN at all different resolutions.

The external force function f is considered as an input, and the function u is
what we want to predict. Only upsampling operators are used: the model starts
from the coarsest mesh, and the input is the projection of f on this mesh. Our
approach is inspired by the F-cycle scheme from multi-grid algorithms, which
starts at the coarsest mesh and progresses to finer meshes until the target mesh
is reached. After a GNN block, an upsampling operator adapts the output to
the next mesh, and a projection of f on the current mesh concatenated with
the previous output is again fed to the next GNN block. The process repeats
until reaching the finest mesh (4 different levels will be used throughout this
work). This should allow the features of different granularities to be discovered
gradually, from global to local features.

This architecture takes advantage of the hierarchy of meshes from the input
perspective, feeding the different dimensions with ad hoc samples of the input f

as well. Note that a similar strategy with the U-Net architecture (i.e., adding
scaled f inputs at all mesh levels) did not make any significant difference.
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4.2 The Problems

The experimental validation of the two multi-resolution architectures proposed in
the previous section will be made on two physical problems associated with two
different underlying PDEs. This section will first introduce a simple electrostatics
problem. Next, the more challenging problem of simulating Navier-Stokes
equations around airfoils will be introduced. In this section, we will describe the
two systems in detail, explain how these problems are solved with traditional
numerical methods, and finally establish machine learning scenarios to address
these challenges and experiment with the two multi-resolution architectures that
have been proposed in the previous section.

4.2.1 A nonlinear Poisson Equation

Poisson’s equation is an elliptic PDE that arises in many physical problems,
including electromagnetism, heat transfer, and fluid dynamics.

In the field of electrostatics, Poisson’s equation is used to determine the
electric potential V given a charge density ρ. In electrostatics, the field around
charges D⃗ is described by Gauss’ law:

∇D⃗ = ρ (4.3)

By introducing the constitutive relation D⃗ = ϵE⃗, where ε is the permittivity of
the medium and E⃗ is the electric field, we can rewrite the above equation as:

∇(εE⃗) = ρ (4.4)

As the electric field E⃗ can be expressed as the gradient of the electric potential
V, E⃗ = −∇V , by replacing E⃗ with V , the electrostatic problem is modeled
by Poisson’s equation:

∇(ε∇V ) = −ρ (4.5)

If the medium is homogeneous, ε is constant and 4.5 becomes the linear Poisson’s
equation. However, permittivity ε is generally not constant, and may vary
depending on various factors depending on the position within the medium. In
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this work, we will study a more complex non-linear Poisson’s equation defined on a
domain Ω, with boundary Γ, where ε is a function depending on the electric field:

−∇(D(u, x)∇u(x)) = f(x) in Ω
u(x) = g(x) on ΓD

∇u(x) · n = 0 on ΓN

(4.6)

where u(x) is the function to solve representing the electric potential V, and
D(u, x) is the permittivity depending on u and the position x. The charge density
is represented by f(x). g(x) is the Dirichlet boundary condition, defined on the
boundary domain ΓD ⊂ ∂Ω. Given these functions f , D, and g, the value of
interest u is obtained by solving the non-linear Poisson’s equation.

Finite Element Approach

In this Section, we briefly recall how to numerically solve the non-linear Poisson’s
equation 4.6 with the finite element method algorithm presented in Section 2.1.
FEM converts the nonlinear Poisson’s equation into a sequence of linear systems
that are solved using Picard iteration (In Section 2.2.2).

By simply replacing u in the non-linear terms D(u, x) with a known solution
from the previous iteration, the Poisson’s equation becomes:

−∇(D(uk, x)∇uk+1(x)) = f(x) (4.7)

In iteration k + 1, the new solution uk+1 is computed by solving the linear
system above. Iteratively, uk+1 will converge to the real solution of the Non-
linear Poisson’s equation.

Denoting a(x) the term D(uk, x), the linear equation (4.7) becomes the
classical Poisson’s equation:

−∇(a(x)∇u(x)) = f(x) (4.8)

The finite element method first converts the equation above to a variational
problem by multiplying the test function v on each side and integrating the whole
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equation over the domain Ω. The variational problem is defined as follows:
Find a solution u ∈ V such that:

−
∫

Ω
(∇(a(x)∇u(x)))vdx =

∫
Ω

fvdx ∀v ∈ V̂

V = u ∈ H1(Ω) : u = g on ΓD

V̂ = v ∈ H1(Ω), v = 0 on ΓN

(4.9)

To discretize the variational problem, the two function space V and V̂ are
discretized. The discrete problem becomes: find uh ∈ Vh ⊂ V such that:

−
∫

Ω
∇(a∇uh)vhdx =

∫
Ω

fvhdx, ∀vh ∈ V̂h ⊂ V̂ (4.10)

By using Green’s identity for the integration, the problem equals to:∫
Ω

a∇uh∇vhdx =
∫

Ω
fvhdx (4.11)

There are a lot of choices on Vh. Generally, Vh is a space of piecewise polynomial
functions. Assume that {Φj}N

j=1 is a basis for the subspace Vh and {Φ̂i}N
i=0 is

a basis for the subspace V̂ , N represents the dimension of the two spaces. uh

can be represented as a combination of the basis Φj:

uh =
∑

j

ujΦj (4.12)

By varying the function v over its basic functions, the finite element discretization
problem is obtained:

∑
j

uj

∫
Ω

a∇Φj∇Φ̂idx =
∫

Ω
f Φ̂idx, ∀i ∈ 1, 2, .., N (4.13)

The solution uh is then computed by solving the linear problem:

Au = b (4.14)

where Aij =
∫

Ω a∇Φj∇Φ̂idx depending on the form of basis functions, bi =∫
Ω f Φ̂idx, and Uj = uj. The assembled matrix A is a sparse matrix. If and only

if the nodes i and j share an edge on the mesh or i = j, Aij is a non-zero value.
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A common way to solve such a linear system is the Jacobi method mentioned
in Section 2.2.1. Successive approximations are used to improve the solution
at each step:

ut+1
i = 1

Aii

(bi −
∑

j

Aiju
t
j) (4.15)

The method starts with an initial guess u0, and the sequence ui after each
iteration will converge to the solution u. From the expression, we observe that
the computation of the new approximation uk+1

i only requires uk
j where j is the

neighbor of the node i. The solution process for the non-linear Poisson’s equation
involves applying the Jacobi method iteratively with different values of Aij and bi.

As previously discussed, Aij, Bij = 0 if j doesn’t share an edge of the
triangulation with i on the mesh. The iterative process on node i is indeed
aggregating information from its neighbors j, which can be viewed as a special
graph neural layer.

Machine Learning Scenarios on Poisson’s Equations

Even though the FEM can perfectly approximate the solution of electrostatic
problems using the steps above, it takes high computation costs, especially when
tens of thousands of problems are to be solved. Once given a new problem, FEM
reconstructs the discrete model and solves new linear systems despite the fact that
these problems share the same physical law. In such a context, machine learning
can be extremely helpful. Machine learning algorithms learn hidden patterns
from experience gained from solving numerous problems of the same type and
use them to efficiently compute solutions to unseen problems. We propose three
machine learning scenarios on Poisson’s equations of increasing difficulty.

Various charge density f : In the first scenario, we consider a set of electrostatic
problems with different charge density f but the same domain Ω and boundary
conditions. We will use a machine learning model to predict the solution u given
a new function f .

Different Dirichlet conditions g: The second scenario adds the additional
challenge of different Dirichlet conditions g, requiring the model to be able to
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handle distinct input functions f and g.

Unfixed Physical Domain Ω: The third and most challenging scenario involves
solving problems with varying physical domains Ω, charge density f , and boundary
conditions g. This scenario is the most general case, as it includes the most
variables and requires the model to be able to adapt to different problem domains.

In our study, we begin by examining the simplest case of the electrostatics
problem. If the deep learning model performs well in this simple case, we will
gradually increase the complexity of the problem. By starting with the simplest
case and gradually complicating it, we can better understand the capabilities
of deep learning in solving more complex problems.

4.2.2 Airfoil Flow Simulation

In the field of computational fluid dynamics (CFD), the turbulence flow around
an airfoil is a well-studied physical problem. The goal is to compute the velocity
and pressure distributions of the flow around the airfoil when it is immersed
in a fluid such as air. Reynolds-Averaged Navier-Stokes Equations (RANs) can
be used to model the complex physical system.

However, traditional CFD solvers that use the finite volume method mentioned
in Section 2.1 often have high computational costs, especially when dealing with
complex non-linear equations like RANs.

CFD Background

Reynolds-averaged Navier–Stokes equations [140] (RANS equations) are time-
averaged equations of motion for fluid flow. The simulation of the airfoil flow
system with RANs equations is described by:

∂ui

∂xi

= 0 (4.16)

uj
∂ui

∂xj

= ∂

∂xj

[−pδij + (v + vt)(
∂ui

∂xj

+ ∂uj

∂xi

)] (4.17)

where U = (ux, uy) and p are velocity and pressure, the unknown variables to
identify, ν is the fluid viscosity considered as a constant depending on the fluid
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property, and νt is the eddy viscosity. νt can be further solved by Spalart–Allmaras
equation [141], a commonly used model. The model is expressed as follows:

νt = ν̃fv1, fv1 = χ3

χ3 + C3
v1

, χ := ν̃

ν

uj
∂ν̃

∂xj

= Cb1[1− ft2]S̃ν̃ + 1
σ
{∇ · [(ν + ν̃)∇ν̃] + Cb2|∇ν̃|2}

−
[
Cw1fw −

Cb1

κ2 ft2

] (
ν̃

d

)2
+ ft1∆U2

S̃ ≡ S + ν̃

κ2d2 fv2, fv2 = 1− χ

1 + χfv1

fw = g

[
1 + C6

w3
g6 + C6

w3

]1/6

, g = r + Cw2(r6 − r), r ≡ ν̃

S̃κ2d2

ft1 = Ct1gt exp
(
−Ct2

ω2
t

∆U2 [d2 + g2
t d2

t ]
)

ft2 = Ct3 exp
(
−Ct4χ

2
)

S =
√

2ΩijΩij

Ωij = 1
2(∂ui/∂xj − ∂uj/∂xi)

where σ, χ, and all quantities denoted with a "C" are constants specific to the
model, calibrated through experimentation. The Spalart-Allmarasa equation to
model eddy viscosity combined with RANs equations forms a system of four
PDEs in two-dimensional space. This system is typically solved using the Semi-
Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm, which
assumes that the fluid is incompressible.

Machine Learning Scenario on Airfoil Flow

The airfoil flow system is characterized by two physical quantities: the Angle-of-
Attack (AoA) and the Mach number. The AoA describes the angle between the
airfoil and the incoming fluid flow, while the Mach number is a dimensionless
quantity representing the ratio of the flow velocity past the airfoil to the local
speed of sound. Only subsonic cases with Mach numbers smaller than 0.3 are
considered in this study. Although these two quantities are low-dimensional,
the airfoil simulation is a complex problem as the two parameters can lead to
diverse fluid flow behaviors.
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In this work, we aim to construct a machine learning model that can accurately
predict the behavior of fluid flows around an airfoil given its associated mesh and
the AoA and Mach number. We will evaluate the performance of the proposed
model by applying it to a set of flow problems defined on different airfoil shapes
and with various physical parameters. This will allow us to assess the ability
of the model to generalize to complex physical systems.

Figure 4.2: Airfoil Flow Scenario
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4.3 Validation on Poisson’s Equation

This section presents some significant results obtained on Poisson’s equation that
validate the proposed multi-grid GNN approaches.

Note that several other experimental campaigns on the Poisson’s equation
have been published in our ICANN’21 paper "Multi-resolution Graph Neural
Networks for PDE approximation" [37], that addresses the same nonlinear
Poisson’s equations under different machine learning scenarios (and in particular
different geometric domains). These published results are similar to those
presented here, but the ones presented below allow a more unified view of
the overall results.

We will use here the three scenarios for Poisson’s equation discussed in Section
4.2.1. For each scenario, the problem statement and data collection are first
introduced. After proper hyper-parameters tuning, the models are trained and
finally compared to some baseline approaches.

4.3.1 Various charge density f

In scenario 1, a set of electrostatics problems with different charge densities f

are given on the same domain. We will learn a model to predict u given the
input function f . We fix D(u, x) = 1 − u(x) + u(x)2 and apply a constant
Dirichlet condition. The problem becomes:

∇((1− u(x) + u(x)2)∇u(x)) + f(x) = 0 in Ω
u(x)|ΓD

= 1
∇u(x) · n = 0 in ΓN

(4.18)

The domain is the "doughnut" Ω = {(x, y) ∈ R2|0.09 ⩽ x2 + y2 ⩽ 1} and apply
the Dirichlet condition on the outer boundary ΓD = {(x, y) ∈ R2|x2 + y2 = 1}.

Data Preparation

To construct the learning dataset, we vary the function f(x), and use the FEM
solver Fenics to solve each problem in turn, i.e., to compute the approximated
nodal values of the solution u on the mesh.
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Mesh Generation To construct the hierarchical models, four scales of unstruc-
tured mesh (in Figure 4.3) are generated by CGAL for the same domain Ω, with
respectively 32, 105, 384, and 1478 nodes. Fenics is applied on the finest mesh
with 1478 nodes to obtain some high-quality approximations, considered as the
"ground truth" in the following. These irregular triangle sub-domains can better

Figure 4.3: Different resolution of meshes on Ω

capture the geometry of Ω than a structured mesh consisting of regular rectangles
(shown in Figure 4.4).

Figure 4.4: A comparison of structured (left) and unstructured (right) meshes with
similar resolutions

Input function In Equation (4.18), the source terms f are generated randomly
as a linear combination of eight isotropic Gaussian functions. This results in 32
control parameters: the coordinates of the means of the Gaussian functions and
their standard deviations, and their respective weights in the linear combination.
These parameters are chosen uniformly from domain-dependent intervals. 8 000
data are generated as the training set.

f(x) =
8∑

i=1

Ci

σi

exp((x− xi)2 + (y − yi)2

2σ2
i

)
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These 32 parameters are sampled under uniform distributions as follows: the
weight Ci ∼ U(−5, 5), the coordinate of the means (xi, yi) ∼ U([−1, 1]2), finally
the standard deviation σi ∼ U(0.1, 1).

Inputs and Outputs for GNNs As expressed in Section 4.1.1, the mesh data
can be converted to a graph with node et edge features. The input function f

defined on the continuous domain Ω is converted into node features by taking
the values of the function f at each node. The output of the GNN model is
the nodal values of the solution u on the mesh. The model performs node-level
prediction with a graph structure and node content information as inputs plus
the geometrical edge features described in Section 4.1.

Figure 4.5: Input and output function are expressed in a format of graph

Hyper-parameters tuning

To ensure that our model has a high level of performance, we carefully consider
several key hyperparameters. These include the overall structure of the model,
including the number of graph layers and channels, as well as the initial value
and decay strategy of the learning rate. We also carefully select an appropriate
loss function. A 5-fold cross-validation is applied for hyper-parameters tuning
to reduce the uncertainty. At each fold, the entire dataset is separated into a
training set with 6 400 samples and a validation set containing 1 600 samples.
Then hyper-parameters will be selected due to the validation errors across the
five folds. Moreover, the training epochs are fixed as 1 000. After then, the model
with the best performance is evaluated on a test set containing 2 000 examples.

Learning Rate Decay Taking Graph U-Net as an example, the learning rate
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Figure 4.6: Comparison of model performance between applying or not learning rate
decay

is one of the most important hyperparameters to consider. A small learning
rate can increase the probability that the model will get stuck in a bad local
minimum or saddle point, while a large learning rate may prevent the model from
converging. We found that using a learning rate decay strategy, as discussed in
Section 3.2.2, is helpful for training neural networks. A large learning rate at the
beginning can accelerate convergence and help the model escape saddle points
while gradually reducing the learning rate prevents us from missing local minima.
In our experiments, we use a step decay strategy that reduces the learning rate
by half every 200 epochs.
When adjusting the learning rate decay, we kept the other hyperparameters fixed:
The graph model contains 2 layers and 48 channels for each GNN block, and we
train the model using the Adam optimizer with an initial learning rate of 0.001.

A comparison of training the model with and without learning rate decay is
shown in Figure 4.6. The model performance is vastly improved by applying the
step learning rate decay. Moreover, the training process becomes more stable.

Decaying Strategy There are a variety of learning rate decay strategies (see
Section 3.2.2). We evaluate the performance of models trained with different
strategies, including step decay, exponential decay, and automatic decay. The
other hyperparameters remain the same. From Table 4.1, step decay, exponential
decay, and automatic decay have similar performance, but step decay is the most
stable among different validation sets. Therefore, we will use step decay as our
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Strategies StepLR ExponentialLR AutomaticLR
MAE 0.0014 ± 0.0001 0.0014 ± 0.0003 0.0015 ± 0.0002

Table 4.1: Validation error using different learning rate decay strategies

Figure 4.7: Comparison of models trained with different initial learning rate decay

strategy to anneal the learning rate for future experiments.

Initial Learning Rate In order to further improve the performance of our
model, we must carefully consider the choice of the initial learning rate for our
learning rate decay strategy. In our experiments, we tested a range of learning
rates, including 0.0001, 0.001, and 0.01, on the graph model containing 2 layers
and 48 channels for each GNN block and found that the model trained with
a learning rate of 0.001 yielded the best results. As shown in Figure 4.7, this
model outperformed the others, achieving a higher level of accuracy and stability
during the training process. Therefore, we will use a learning rate of 0.001 in
combination with our step decay strategy for all future experiments.

Model Structure Another important factor that can impact the performance
of our model is the choice of its structure. A model with a simple structure
may not be able to capture the complex patterns present in the training data,
while a complex model may be prone to overfitting and require more resources
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to train. In our experiments, we use a Graph U-Net model with four different
mesh resolutions. This model consists of a series of graph blocks and sampling
operators. Each graph block C is composed of multiple graph layers followed by
an "elu" activation function (see Section 3.2). For example, a block C = (4, 128, 5)
would consist of four graph layers, each with 128 hidden channels and a kernel
size of 5. After each graph block, a sampling operator is applied to transform the
data between two mesh levels. The sampling operator has one hyperparameter,
the number of nearest neighbors n. After some preliminary experiments, we
set n = 6 for all our experiments. Finally, a graph layer is applied to map the
high-dimensional features to the solution space.

From Table 4.2, we found that the model with 128 channels and 2 layers and
that with 48 channels and 4 layers on each block have similar performance on
validation sets. In this case, we prefer to choose the simplest model, as it has
fewer trainable parameters and thus a reduced risk of overfitting. After tuning
these crucial hyper-parameters, the best model for Graph U-Net is that with 48
channels and 4 layers trained with Step Decay every 200 epochs from an initial
learning rate 0.001.

Table 4.2: Comparison models of different structures

Num. of Channels Num. of Parameters (1e5) MAE(1e-3)
Layers=2 32 1.1 1.8 ± 0.3

48 2.5 1.4 ± 0.1
64 4.4 1.2 ± 0.1
128 17 1.0 ± 0.1

Layers=4 32 2.1 1.2 ± 0.3
48 4.7 1.0 ± 0.3
64 8.3 1.4 ± 0.5
128 3.3 1.6 ± 0.8

Loss Function Mean absolute error (MAE) and mean squared error (MSE) (see
Section 3.2.4) are commonly used as loss functions for regression problems. MAE
measures the average absolute difference between the predicted values and the
true values, while MSE measures the average squared difference. One advantage
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of MAE is that it is more robust to outliers, as it does not amplify the effects
of individual errors as much as MSE. However, MSE can penalize large errors
more heavily, which can be beneficial in some cases. In our experiments with the
U-Net model, we tested both loss functions and found the results as follows:

Table 4.3: Comparison of Loss functions

Loss Function Evalutation Metrics (1e-2)
MAE Error RMSE Error Max Absolute Error

MAE 1.0± 0.3 2.2± 0.7 5.8± 1.7
MSE 1.2± 0.2 2.1± 0.3 4.7± 1.2

The choice of loss functions has relatively little effect on the performance of the
model. We take MSE loss as the loss function by taking into consideration of
Max Error.
We use the same strategy for hyperparameter tuning in Graph-MGMI and focus
on the model structure. All models were trained using step decay on an initial
learning rate of 0.001. Through our experiments, we found that a model structure
with 48 channels and 8 layers per block yielded the best results.

Baseline Models

In this experiment, we compare the performance of our hierarchical graph
models to two baseline approaches. The first baseline is based on a pixelization
method, where we project all mesh data onto a pixel grid using interpolation
or extrapolation and then apply standard convolutional neural network (CNN)
layers directly to the pixelated data (as illustrated in Figure 4.8). This simplifies
the problem into an image reconstruction task, and the prediction from the CNN
model is then mapped back to the original mesh space. However, as shown in
Figure 4.8, the preprocessed image data does not accurately represent the solution
and its underlying geometry. The second baseline is a pure GNN model that
operates only on the finest mesh scale and directly predicts the solution from the
input. This model does not incorporate any of the hierarchical structures. All the
hyperparameters of these baselines have been set according to a procedure similar
to the one described above for our multi-grid architectures; see values below.
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Figure 4.8: CNN Baseline model Strategy

Training the Models

After completing the hyperparameter tuning process, we evaluate the performance
of the model using 10-fold cross-validation on the dataset with the best-chosen
hyperparameters. Models trained on the different folds are then evaluated
on a test set.

The activation function used between consecutive layers is the exponential
linear unit (ELU) function. We initialize all models using the Kaiming distribution
(as described in Section 3.2.3), which is recommended when using the ELU or
rectified linear unit (ReLU) activation functions. To prevent overfitting and
ensure that the models are fully trained, we use early stopping during training.
The Adam optimizer is used in combination with a step decay scheduler, with
the learning rate halved every 500 epochs. All models are trained with a batch
size of 100 (several previous experiments showed that the results are not very
sensitive to the batch size and that the limiting factor is the size of the available
memory on the GPUs).
We train a Graph U-Net model with 48 hidden channels and 33 graph layers, using
an initial learning rate of 0.001. The Graph MGMI model also has 33 layers and 48
hidden channels for each layer and is trained using an initial learning rate of 0.0005.
The Pure Graph model has the same number of layers and hidden channels as the
other two models and is trained using an initial learning rate of 0.001. Finally,
the CNN model is trained on the projected image-like dataset, using a U-Net
architecture to solve the image reconstruction task. This model has 33 layers
with 32 hidden channels and is trained using an initial learning rate of 0.0005.
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Evaluation

In addition to evaluating the performance of our model on a test set with the
same distribution as the training set, we also assess its ability to generalize to
out-of-distribution (OoD) samples. In practice, the training and test sets are
rarely sampled from the same distribution, despite the fundamental assumption
of machine learning. We, therefore, expect our model to perform well on OoD
samples underlying the same physical rules as the training samples. To this end,
we create three OoD test sets with different input distributions:

• Exponential Set: We generate new examples by the same distribution used
when generating the training set. The function f can be expressed as a
linear combination of eight exponential functions.

• Sine Set: The function f is expressed as a trigonometric function. We have

f = C sin(2π

T
[(x− x0)2 + (y − y0)2]),

where the parameters C, T, x0, y0 are randomly sampled from uniform
distributions. C ∼ U [0, 10], T ∼ U [1, 5], and (x0, y0) ∼ U([−0.5, 0.5] ×
[−0.5, 0.5]).

• Polynomial set: The function f is represented as a polynomial function.
The expression is as follows:

f = A1x
2 + A2y

2 + B1x + B2y + C,

the distributions of the five parameters above are: A1, A2 ∼ U [−5, 5],
B1, B2 ∼ U [−10, 10], and C ∼ U [−5, 5]

Each of these test sets contains 2 000 examples.

Results on Exponential Set: As shown in Table 4.4, the results of all algorithms
on the exponential set indicate that Multi-resolution models outperform pure
graph models. Furthermore, the training time for pure graph models is also longer
in the context of graph-based approaches.
As shown in Figure 4.9, Graph-based models demonstrate superior performance
compared to CNN-based models. However, it should be noted that CNN models
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Figure 4.9: Predictions of a new Poisson’s equation by three models

exhibit strong performance on regular grids, and the observed discrepancy can
be attributed to interpolation error. Furthermore, errors in the CNN-based
model tend to concentrate near the boundary of the domain, which may be due
to the limitations in the geometry representation of regular grids. In terms of
graph-based approaches, it appears that Graph U-Net slightly outperforms Graph
MGMI in the case of donut-shaped data.

Table 4.4: Results on the exponential set

Model Evalutation Metrics

n-th percentile (1e-3)

RMSE(1e-3) 10 50 90 R-Square

Graph U-Net 1.17 ± 0.19 0.40 ± 0.06 0.66 ± 0.11 1.72 ± 0.29 0.99999 ± 0.00001
Graph MGMI 1.85 ± 0.30 0.38 ± 0.06 0.63 ± 0.09 2.38 ± 0.37 0.99997 ± 0.00002
Pure Graph 15.28 ± 3.57 3.69 ± 0.95 7.58 ± 2.20 24.39 ± 6.37 0.99791 ± 0.00090
CNN 17.17 ± 0.02 12.92 ± 0.02 16.24 ± 0.03 21.70 ± 0.03 0.99603 ± 0.00001

Results on out-of-distribution test sets: From Table 4.5 and 4.6, even when
presented with examples from the Sine and Polynomial sets that differ significantly
from those in the training set, the models are able to predict the output solution
u accurately. In particular, the two hierarchical graph models exhibit strong
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performance. In terms of out-of-distribution test sets, our proposed multi-
resolution models demonstrate the ability to solve these problems effectively.

Table 4.5: Results on the Sine set

Model Evalutation Metrics

n-th percentile (1e-3)

RMSE(1e-3) 10 50 90 R-Square

Graph U-Net 5.62 ± 0.71 0.47 ± 0.08 1.34 ± 0.22 7.27 ± 0.94 0.99119 ± 0.00218
Graph MGMI 15.6 ± 2.5 0.63 ± 0.09 2.57 ± 0.30 22.8 ± 3.7 0.95063 ± 0.02852
Pure Graph 49.6 ± 22.1 8.2 ± 2.8 20.6 ± 6.5 68.4 ± 25.1 0.90660 ± 0.02454
CNN 19.4 ± 1.0 15.6 ± 0.1 17.6 ± 0.1 21.7 ± 1.5 0.93394 ± 0.00390

Table 4.6: Results on the Polynomial set

Model Evalutation Metrics

n-th percentile (1e-3)

RMSE(1e-3) 10 50 90 R-Square

Graph U-Net 0.85 ± 0.14 0.52 ± 0.08 0.79 ± 0.13 1.15 ± 0.20 0.99999 ± 0.00001
Graph MGMI 1.02 ± 0.14 0.58 ± 0.06 0.92 ± 0.11 1.40 ± 0.22 0.99997 ± 0.00001
Pure Graph 14.3 ± 6.6 7.0 ± 2.6 12.1 ± 5.1 20.7 ± 10.3 0.99612 ± 0.00298
CNN 16.1 ± 0.1 13.0 ± 0.1 15.4 ± 0.1 19.6 ± 0.1 0.99344 ± 0.00001

Statistical significance For all pairwise comparisons between test errors, we
performed a Wilcoxon signed-rank statistical test (see Section 3.1.4) with 95%
confidence on the results of the ten models obtained through the 10-fold procedure.
The results indicate that all differences between the multi-resolution models and
the baselines are statistically significant.
Evaluation of the three types of test sets has demonstrated that these hierarchical
graph models can improve prediction accuracy on test sets with different source
terms compared to the Pure Graph model. Additionally, the CNN model with
projection performs worse than graph models for problems defined on complex
physical domains due to interpolation errors.
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Figure 4.10: Visualization on the exponential test set. Left: Prediction by Graph
U-Net. Right: Ground Truth

Figure 4.11: Visualization on sine test set. Left: Prediction by Graph U-Net. Right:
Ground Truth

Figure 4.12: Visualization on polynomial test set. Left: Prediction by Graph U-Net.
Right: Ground Truth
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4.3.2 Different Dirichlet Condition

In this scenario, not only does the charge density f vary, but the Dirichlet
condition g also varies. We will explore whether our proposed architectures are
able to solve this more complex problem effectively.

Data Generation

Similar to the first scenario, we vary the external force f using a combination
of exponential functions. Additionally, for each problem, we also change the
Dirichlet condition g defined on the outer boundary.

g(x, y) = sin(2πx

T
),

where T ∼ U [1, 3]. We generate 4 000 examples as the training set by randomly
sampling parameters to create distinct input functions f and g.

Inputs to the GNN

Because this scenario involves two input functions, the external force f defined
in Ω, and the Dirichlet condition g defined on the outer boundary of ∂Ω, the
input layer had to be re-scaled. The nodal feature vi at node i is defined as
vi = (fi, gi, hi), where fi is the value of function f at node i, and gi = g(i) is the
value of function g at node i if the node is located on the outer boundary, or
0 otherwise. hi is a binary variable, which takes 1 if the node is on the outer
boundary of ∂Ω, and 0 otherwise. This variable serves as an indicator of whether
a given node is located on the Dirichlet boundary.

Training models

The results from Scenario 1 indicate that the CNN baseline model performed
poorly due to high interpolation errors between the mesh and grids. Additionally,
the Pure Graph model, which did not incorporate a hierarchy, performed signifi-
cantly worse than the other models. In this section, we only focus on the two
hierarchical graph models: Graph U-Net and Graph MGMI. Both models have
48 channels and 33 layers. As before, we use the Adam optimizer to train the
models. Graph U-Net has an initial learning rate of 10−3, while Graph MGMI is
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trained with an initial learning rate of 5× 10−4. Every 500 epochs, the learning
rate is halved. We apply 10-fold cross-validation on the training set and compute
the mean and standard deviation of the test errors.

Results

We generated 1 000 new examples with same feature distributions as the test
set. Errors are recorded on Table 4.7

Table 4.7: Results on Non-linear Poisson’s equations with different Dirichlet conditions

Model Evalutation Metrics

n-th percentile (1e-3)

RMSE(1e-3) 10 50 90 R-Square

Graph U-Net 2.20 ± 0.28 1.03 ± 0.15 1.59 ± 0.23 3.14 ± 0.40 0.99998 ± 0.00001
Graph MGMI 2.51 ± 0.26 0.90 ± 0.08 1.44 ± 0.14 3.48 ± 0.30 0.99998 ± 0.00001

As the results from scenario 1, both models are capable of solving the
problems with different Dirichlet conditions. Graph U-Net is slightly better
than Graph MGMI.

Figure 4.13: Some predictions by Graph U-Net. Left: Prediction, Right: Ground
Truth
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4.3.3 Variable Domain Ω

The graph neural networks have the capacity to solve nonlinear Poisson’s equations
with different source terms f . In this part, we will study a set of more complex
problems. These Poisson’s equations are defined on different physical domains Ω.

We generate polygonal domains by sampling 10 random vertices and setting a
vertex at a random radius at each step while walking along a circle at a random
angular step. This allows us to create a wide range of diverse domains.

△θi = U(2π

n
− ϵ,

2π

n
+ ϵ)

θi = θi−1 + 1
k
△θi, k =

∑△θi

2π

ri = clip(N (rave, σ), 0, 2rave)

where θi and ri define the angle and radius of each point relative to the center of
the circle. The random angular step △θi is chosen from a uniform distribution
U . r is sampled from a Gaussian distribution, and the clip(., 0, 2rave) thresholds
the radius ri into a range from 0 to 2rave. n is the number of vertices of the
polygon. The two parameters ϵ and σ control how irregular the polygon is. ϵ

decides whether or not the vertices are uniformly spaced angular-wise around the
circle, and σ controls how large the points can vary from the circle of radius rave.

We choose the average radius as 1. Figure 4.14 presents some polygons
from the dataset. This scenario aims to evaluate the ability of our models to

Figure 4.14: Some examples of polygons for scenario 3

solve problems defined on different geometric domains. Each training sample
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is defined on a different polygonal domain (and hence a different mesh), also
involving a different f and a Dirichlet condition g. We created a totally 4 000
data points as the training set.

Model Evaluation

We train the hierarchical models with 10-folds cross-validation. The test set
consists of 1 000 new polygon problems sampled from the same distribution as
the training set. Results are listed in Table 4.8. The R-square values indicate
that the graph models exhibit strong performance on problems defined on diverse
graphs, although the performance is slightly worse than on the static graph in
the Donut problem.

Table 4.8: Results on polygon problems

Model Evalutation Metrics

n-th percentile (1e-2)

RMSE(1e-2) 10 50 90 R-Square

Graph U-Net 1.43 ± 0.06 0.68 ± 0.02 1.12 ± 0.04 2.07 ± 0.10 0.99933 ± 0.00005
Graph MGMI 1.49 ± 0.10 0.54 ± 0.03 1.02 ± 0.05 2.24 ± 0.16 0.99930 ± 0.00009

Besides the polygon test set with the same distribution, we present two out-of-
distribution experiments. We take the trained Graph U-Net as an example to
discuss the capacity of model generalization on out-of-distribution sets.

Mesh complexity The first experiment (in Table 4.9) examines the impact of
the number of nodes in the meshes. In the training set, the target meshes had an
average of 1049 nodes, with a range of 900 to 1,200. We generate two test sets
with the number of nodes in the ranges [1, 200, 1, 600] and [1, 600, 2, 200].

Domain shape Whereas the training set was made of polygons with 10 vertices,
this second OoD experiment concerned shapes made with 5 and 20 vertices,
keeping the number of mesh nodes approximately the same.
As expected, the performance degrades as we move away from the training
distribution. However, the graph model is still able to maintain its performance
on these out-of-distribution test sets.
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Table 4.9: Test Errors on out-of-distribution sets

Graph U-Net Graph MGMI

Dataset RMSE(1e-2) R-Square RMSE(1e-2) R-Square

Nodes 1200-1600 1.74 ± 0.09 0.99898 ± 0.00010 1.95 ± 0.16 0.99876 ± 0.00018
Nodes 1600-2200 3.01 ± 0.20 0.99703 ± 0.00037 4.35 ± 0.39 0.99440 ± 0.00089

5 Vertices 1.36 ± 0.06 0.99937 ± 0.00005 1.58 ± 0.08 0.99916 ± 0.00008
20 Vertices 1.72 ± 0.07 0.99907 ± 0.00007 1.62 ± 0.05 0.99920 ± 0.00005
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4.4 Airfoil Flow Simulation

The Machine Learning scenario on Airfoil Flow problems (Section 4.2.2) is to
construct a model which can predict the flows around an airfoil given its shape
(with associated mesh) and the two flow parameters, Angle of Attack (AoA) and
Mach number (Mach). To achieve this, we will train a model on a set of airfoil
flows obtained with a standard numerical solver on a range of airfoils, AoA, and
Mach. Based on the previous experiments on Poisson’s equations, we discuss
solely the Graph U-Net model in this case.

4.4.1 Data Generation

We generate a database of cases with various airfoil shapes, AoAs, and Machs.
The CFD solver OpenFOAM is used to generate ground truth on C-grid meshes
[142] designed for airfoil shape.

NACA Airfoil Generation To create a set of diverse airfoil shapes, we generate
80 NACA 4-digit airfoils characterized by their camber C, the position of their
maximum camber P , and their thickness T [143].

Figure 4.15: An example of NACA airfoil

The NACA airfoil section is drawn from its camber line and its thickness
distribution, measured orthogonally to the camber line (Figure 4.15), that are
themselves determined by the three parameters: the camber C, the position of
maximum camber P , and the thickness T . The camber line is described by a
function that is parameterized by C and P :

yc =


C
P 2 (2Px− x2), 0 ≤ x < P

C
(1−P )2 (1− 2P + 2Px− x2), P ≤ x ≤ 1
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While the thickness distribution is decided by a polynomial function:

yt = T

0.2(a0x
0.5 + a1x + a2x

2 + a3x
3 + a4x

4)

,where {ai|i = 0, .., 4} are constants. These parameters allow us to control
the shape of the airfoil.

To generate a diverse set of NACA airfoils, we uniformly sample the three
parameters from uniform distributions: C ∼ U [0, 0.09], P ∼ U [0.4, 0.6], and
T ∼ U [0.1, 0.3]. Examples of the generated airfoil shapes are shown in Figure
4.16.

Figure 4.16: Examples of NACA airfoil shapes

Automatic Mesh Generation Each NACA airfoil is automatically meshed in a
C-grid quadrilateral format using the algorithm provided by [142]. The algorithm
creates a C-grid mesh given some inputs concerning mesh size, the domain, and
the coordinates describing the discretized airfoil shape. Figure 4.17-left displays
such a mesh. C-grid meshes are widely used for CFD analysis of an airfoil. In
most cases, these meshes give a better convergence of flow over the airfoil than
the Delaunay triangulation.

Ground Truth To generate ground truth data, we use the open-source CFD
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software OpenFOAM to solve a set of airfoil flow problems. The flow around the
airfoil is modeled using the Reynolds Averaged Navier-Stokes equations, and the
Spalart-Allmaras equation is used to solve for the eddy viscosity µt, as detailed
in Section 4.2.2.
For each airfoil, we uniformly sample the two quantities, AoA and Mach num-
ber, from their respective ranges: AoA ∼ U [−22.5, 22.5] degrees and Mach ∼
U [0.03, 0.3]. This generates a total of 3 200 examples, with 40 examples for each
of the 80 airfoils.

Data Pre-processing Data Generation by CFD solvers requires a large com-
putational domain where the approximation of CFD simulation is calculated.
An appropriate distance between the airfoil object and the borders of the
computational domain should be large enough so that the boundary conditions
assigned to the outer domain don’t affect the quality of the flow simulation around
the airfoil. However, only the area close to the airfoil is of interest to the engineer,
and hence, it is not necessary that the ML model computes predictions for areas
that are far away from the airfoil, where the flow is approximately equal to the
incoming flow. We can instead focus on a small domain close to the airfoil, as
shown in Figure 4.17. This allows us to save computational resources and improve
the accuracy of ML predictions. Additionally, the output quantities (velocity

Figure 4.17: Left: Domain used by OpenFOAM, Right: the inference domain for Deep
Learning

u and pressure p) are normalized relative to the magnitude of the freestream
velocity to make them dimensionless, i.e.,

ū = u/||u0||, p̄ = p/||u0||2
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.

Network Inputs and Outputs A two-dimensional quadrilateral mesh can be
represented as M = (P, C), where P ∈ RN×N is a collection of N mesh nodes
with coordinates (x, y), and C = (i1, j1, k1, l1), ..., (iM , jM , kM , lM)) is a set of M

quadrilateral cells, each represented by nodal indices. In our case, the CFD solver
OpenFOAM uses finite volume methods to discretize the PDE. The simulation
results provide an approximate value of the output quantities at the center of
each cell. The dof of the discretization (i.e., the centroids of each cell) are the
nodes of the graph, and two centroids i and j are connected if their corresponding
cells are adjacent (i.e., share an edge).
The initial freestream condition v0 = (v0,x, v0,y) depending on AoA and Mach is
considered as the two input channels of the deep learning model. The outputs
have three channels representing nodal values of the normalized pressure p and the
normalized velocity (vx, vy), coordinate of the flow velocity in the x, y system. For
each node of the graph, we assign the same vector (v0,x, v0,y) as nodal features. The
output with three channels denotes the prediction of (p, ux, uy) on each graph node.

4.4.2 Hyper-parameters Tuning

We mainly discuss two hyper-parameters, the number of layers and the channel
size of each block in this case. The dataset is separated into the training set,
Validation set 1, and Validation set 2.

Training and Validation Sets The dataset of 3200 examples is split into three
parts:

• Training set: 64 different NACA airfoils with 30 examples for each airfoil.

• Validation set 1: the same 64 training airfoils containing 10 other samples
for each airfoil, used to measure the performance of the trained model on
known airfoils.

• Validation set 2: 16 new NACA airfoils with 40 examples each, the first
20 examples are used to update the initial model, and the other 20 are used
to evaluate the model performance.
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Figure 4.18: RMSE error on validation sets w.r.t. number of epochs. The two models
have very similar convergence curve which signifies the lighter model takes less training
time to reach to the same validation error.

We are not only interested in the performance of the model on unknown airfoils,
but also on airfoils shown in the training set but with different flow parameters
(AoA, Mach).

Layers Channels Num.
Weights

RMSE Val1 RMSE Val2

2 48 250k 0.0069 0.0110
2 64 445k 0.0065 0.0129
4 24 119k 0.0080 0.0140
4 48 473k 0.0061 0.0130
8 24 231k 0.0087 0.0155

Table 4.10: Hyper-parameters tuning on Model Structure

The results of the hyperparameter search in Table 4.10 show that the three models
(2, 64), (2, 48), (4, 48) have similar performance, and better than the others. We
further apply 5-cross validation to analyze the stability of these three models.
From table 4.11, the two models (4, 64) and (2, 48) have similar performance, while
the model (2, 64) is less stable compared with the others. Combined with Figure
4.18, we choose the lighter model by taking into consideration the training time.

After choosing the best model structure, we train the model with 10-fold
cross-validation.
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(Layers, Channels) (2, 48) (4, 48) (2, 64)
Validation Set1 0.0065± 0.0003 0.0062± 0.0006 0.0066± 0.0006
Validation Set2 0.0142± 0.0026 0.0143± 0.0024 0.0166± 0.0050

Table 4.11: Hyper-parameters tuning on Model Structure with 5-cross validation

4.4.3 Experimental Results

We use three different test sets to validate the performance of our Graph-UNet
model and we will mainly discuss the generalization error w.r.t. airfoil shapes.
For the Ao and Mach, we use the same distribution as for the training set.

• Flow Interpolation test set: We generate 10 more examples for each
training airfoil. For evaluation, we can directly use the training data to
update each task and make further predictions for new examples.

• Shape Interpolation test set: It contains 20 airfoils which are generated
using the same distributions of NACA parameters. 20 samples are created
on each airfoil with a total of 400 data.

• Out of Distribution test set (OoD) – Thinner Airfoils: By changing the
range of distribution on T and P , we can create airfoils that are thinner
and more irregular (P ∈ [20, 80] and T ∈ [5, 10]). We generated 20 thinner
airfoils, with 20 new examples for each airfoil by varying AoA and Mach.

As for evaluation metrics, we calculate root mean squared error and R-Square
Score for all the test sets. Moreover, we also compute the k-th percentile, a score
in which a given percentage k falls, with k = 10, 50, 90.

Table 4.12: Results on Airfoil Flow problems

Test Sets Evalutation Metrics

n-th percentile (1e-2)

RMSE(1e-2) 10 50 90 R-Square

Flow Interpolation 0.71± 0.03 0.48± 0.03 0.61 ± 0.03 0.89 ± 0.04 0.9991 ± 0.0001
Shape Interpolation 1.58 ± 0.15 0.61 ± 0.06 1.08 ± 0.09 2.36 ± 0.26 0.9962 ± 0.0006
Out-of-Distribution 6.22 ± 1.66 1.55 ± 0.18 3.60 ± 0.53 10.55 ± 3.41 0.9299 ± 0.0334
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By comparing the predicted results with the ground truth in Table 4.12, we can
conclude that the model has good performance on samples from the training
set and the interpolation set but performs poorly on the out-of-distribution test
set. This is a frequent disadvantage of data-driven methods, as they tend to
learn patterns from the training data rather than understanding the underlying
physical constraints. The error distribution on the out-of-distribution set is less

Figure 4.19: Predictions from three test sets

centered and has a larger variance, as shown in Figure 4.20. Finally, we randomly
plot a set of predictions from all three test sets, we can see that the model is
able to accurately predict the behavior of the flow for samples from the training
and interpolation sets, but it fails to do so for the out-of-distribution set (Figure
4.27).

Errors on surface of the airfoils In our previous discussions, we have
extensively analyzed the total RMSE across the entire domain of inference.
However, in practical applications, the emphasis may often be placed more on the



4. Graph Neural Networks for PDEs 137

surface errors surrounding the airfoil. For a more comprehensive comparison, we
plot the RMSE errors on surface in Table 4.13. It can be observed that across

Table 4.13: Results on the surface of Airfoil Flow problems

RMSE (1e-2) Evalutation

Test Sets Surface Errors Volume Errors

Flow Interpolation 1.20± 0.12 0.71± 0.03
Shape Interpolation 2.32± 0.31 1.58 ± 0.15
Out-of-Distribution 11.20± 2.48 6.22 ± 1.66

all three test sets, the surface errors marginally exceed the volume errors. Despite
this, the model maintains a commendable level of performance, particularly
for the first two test sets.
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Figure 4.20: Comparison of RMSE distribution on three test sets
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Figure 4.21: A set of predictions on flow field Pressure from Flow Interpolation Test
Set.
Left:Simulation by OpenFOAM (Ground Truth), Right:Prediction from Graph U-Net

Figure 4.22: A set of predictions on flow field Velocity along axis x from Flow
Interpolation Test Set.
Left: Simulation by OpenFOAM (Ground Truth), Right:Prediction from Graph U-Net

Figure 4.23: A set of predictions on flow field Velocity along axis y from Flow
Interpolation Test Set.
Left: Simulation by OpenFOAM (Ground Truth), Right:Prediction from Graph U-Net
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Figure 4.24: A set of predictions on flow field Pressure from Shape Interpolation
Test Set. Left: Simulation by OpenFOAM (Ground Truth), Right:Prediction from
Graph U-Net

Figure 4.25: A set of predictions on flow field Velocity along axis x from Shape Inter-
polation Test Set. Left: Simulation by OpenFOAM (Ground Truth), Right:Prediction
from Graph U-Net

Figure 4.26: A set of predictions on flow field Velocity along axis y from Shape Inter-
polation Test Set. Left: Simulation by OpenFOAM (Ground Truth), Right:Prediction
from Graph U-Net
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Figure 4.27: A set of predictions on flow field Pressure from Out-of-Distribution
Test Set. Left: Simulation by OpenFOAM (Ground Truth), Right:Prediction from
Graph U-Net

Figure 4.28: A set of predictions on flow field Velocity along axis x from Out-
of-Distribution Test Set. Left: Simulation by OpenFOAM (Ground Truth),
Right:Prediction from Graph U-Net

Figure 4.29: A set of predictions on flow field Velocity along axis y from Out-
of-Distribution Test Set. Left: Simulation by OpenFOAM (Ground Truth),
Right:Prediction from Graph U-Net
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NACA0012 Validation Case

Even though studies on airfoil flow problems last over decades, the Navier-Stokes
equations on an airfoil still remain challenging to solve. Simulations from CFD
solvers do not ensure an accurate prediction of flow fields. We will hence perform
a validation from experimental data on the NACA0012 profile, for which high-
quality experimental results are accessible: Ladson tripped data [144] measured
by NASA, is publically available. This data set is considered to be the most
appropriate for comparison with fully turbulent CFD forces at a Reynolds number
of 6 million [145], a dimensionless number comparing how much the fluid is
moving around (inertial forces) to how much the fluid is being slowed down by
internal friction (viscous forces). In our case, a Reynolds number of 6 million
corresponds a Mach number of 0.15 approximately. We will thus compare the
CFD approximation from OpenFOAM and the prediction from our deep learning
model to the real experimental data from Ladson. We consider two experimental
cases where Mach = 0.15 and AoA = 0o or 10o to show the high reliability of
the deep learning model in predicting flow fields. In such conditions, the initial
freestream along the two axes x and y, v0 = (51.4815, 0) (for the case of AoA = 0o

) v0 = (50.6994, 8.9397) (for the case of AoA = 10o), are considered as the inputs
of our deep learning model.

NACA0012 Airfoil is a member of NACA 4-digits airfoils with the max camber
C = 0, the max camber position P = 0 and the thickness T = 12%. The
mathematical equation to describe the profile of NACA0012 is written as:

y = ±0.594689181 · (0.298222773 ·
√

x− 0.127125232 · x
−0.357907906 · x2 + 0.291984971 · x3 − 0.105174606 · x4)

Apparently, the NACA0012 case doesn’t follow the distribution we used to
generate training airfoil profiles. It can be considered as an OoD problem.

Pressure Coefficient Cp is a non-dimensional number. It describes the relative
pressures in a flow field:

Cp = p− p∞
1
2ρ∞U2

∞
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Figure 4.30: Pressure Coefficient on NACA0012 for AoA = 0o

Figure 4.31: Pressure Coefficient on NACA0012 for AoA = 10o

We calculate Cp at every point of the airfoil surface using the prediction of
the pressure.

As shown in Figure 4.30 and 4.31, the prediction by our Graph model is very
close to the measured experimental data. Deep learning is capable of predicting
the flow field with high accuracy.
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4.5 Computational Cost

In our experiments, we use a single GPU Nvidia A100 to compute the inference
computational cost of the graph-based model, and compare it to that of numerical
solvers on Intel(R) Xeon(R) Silver 4108 CPU. Note that this does not take into
account the learning cost.

Table 4.14: Time computation Comparison

Time (s) Donut
Senario 1 Senario 2 Polygon Airfoil Flow

Graph U-Net 0.77 0.78 0.88 0.28
Graph MGMI 0.74 0.75 0.77 \
Numerical Solver 59.15 61.45 47.1 1542

Non-linear Poisson Equations We use a batch size of 100 to solve 1 000
unknown PDEs with our graph models on the three scenarios and compare them
to that of FEniCS solver. For problems on fixed mesh, the computation time of
neural networks is about 80 times faster than FEniCS.
When considering problems on variable polygon domains, the sampling operators
slow down the graph-based approaches, making the computation time about 50
times faster than FEniCS. Also, Graph MGMI has fewer down-sampling operators
than Graph U-Net, and hence allows slightly faster prediction.

Airfoil Flow problems are much more costly than the nonlinear Poisson’s
equation. To calculate the time computation of the traditional CFD solver
OpenFOAM, we fix the solver relative tolerance as 1E-4. The solver will stop when
the ratio of current to initial residuals falls below the solver’s relative tolerance.
We report the computation cost of solving a batch of 80 new problems.
The experimental results in Table 4.14 show that the Graph U-Net model is
much more efficient than the CFD solver OpenFOAM. When solving complex
physical systems, deep learning models have tremendous advantages in time
consumption of the inference part.

Finally, note that this work studied a simple problem, though nonlinear, for
which FEM solvers are relatively fast. The advantage of graph-based inference
for complex PDEs (e.g., 3D CFD) would be even more significant.
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4.6 Graph Neural Networks for PDEs: Con-
clusions

The present Chapter introduced multi-resolution graph-based approaches to
learning PDE solutions on unstructured meshes, addressing the up- and down-
sampling issues of GNNs spatially based on a hierarchy of meshes of increasing
complexity. The models work with mesh-based simulations on various physical
domains, including electrostatics and aerodynamics.

By bypassing the projection on a regular mesh and the use of standard CNNs,
these approaches avoid the resulting interpolation errors. Furthermore, our
experiments have shown that these hierarchical models improve the prediction
accuracy on test sets compared to a simple GNN model that only uses the finest
mesh. Most importantly, these models largely accelerate the computation time
compared to the classical numerical solvers, especially for complex physical cases
like Navier-Stokes CFD simulations.

Furthermore, whereas Out-of-Distribution generalization is satisfactory w.r.t.
the source characteristics and the mesh complexity for electrostatics problems,
in aerodynamics, further work is needed to decrease the dependency w.r.t. the
airfoil profile outside the strict bounds of the training distribution. This is the
subject of the next Chapter, based on recent advances in Meta-Learning.
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5.4 Meta-Learning for Air Flow Simulation: Conclusions 159

As demonstrated in the previous Chapter, neural networks are capable of
accurately simulating complex physical systems and can reduce computational
costs when compared to traditional numerical solvers. Through the use of deep
learning methods, these models are able to learn patterns directly from data,
allowing for more efficient and effective solutions to PDEs. However, a major
limitation of these approaches is their tendency to suffer from poor generalization
performance on out-of-distribution (OoD) samples, as the underlying physical
laws are not explicitly incorporated into the learning process.
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In order to address this issue, a number of researchers have proposed the use
of hybrid models that combine deep learning with computational fluid dynamics
(CFD) solvers. [32] takes advantage of the approximated solutions from CFD
solvers on coarse meshes, using them as input features for deep learning models to
make super-resolution predictions in aerodynamics. [146] uses machine learning
to correct errors in cheap simulations on coarse meshes from traditional solvers.
These models obtain extra information from the coarse-grained simulations to
reduce generalization errors. While these hybrid models are able to improve
the accuracy of predictions on OoD samples, they are often less efficient than
pure machine learning methods.

In particular, we will focus on the application of these methods to airfoil flow
problems, where our previous work has shown that deep learning models are
effective at solving problems involving airfoil shapes from the training set, but
may struggle with new and significantly different airfoil configurations.
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5.1 Generalization issues on OoD data

In Section 4.2.2, we evaluated the performance of a deep learning model on a
set of NACA airfoils and found that it struggled to generalize to OoD samples.
Specifically, we trained the model on a dataset of 64 NACA airfoils and tested it
on three separate test sets: A set of additional samples derived from the training
airfoils, a set of interpolated airfoils generated using the same distribution of
NACA parameters, and a set of thinner airfoils that significantly differ from the
training distribution. While the model performed well on the first two test sets,
it demonstrated poor performance on the OoD samples.

One strategy to consider in order to improve the accuracy of the model when
making predictions on an OoD airfoil is to use transfer learning. If we have access
to a small dataset Dnew of pairwise data from the OoD airfoil, we can leverage
the knowledge learned by the pre-trained model and fine-tune it using this new
data. This can help to speed up training process and prevent overfitting, as
the pre-trained model serves as an initialization for the fine-tuning process. By
applying a few steps of gradient descent on the new dataset, we can potentially
improve the model performance can be potentially improved on the OoD airfoil.

Algorithm 12 Transfer Learning Algorithms to solve OoD problems
Require: A pre-trained model fθ

Require: New out-of-distribution airfoils we wish to deal with {A1, ...,An}.
1: for every OoD airfoil Ai do
2: Sample a few data on Ai by changing physical quantities to create Di

3: Set step size parameters αi

4: Evaluating a few steps of gradient descent on θ with Di

5: Compute fine-tuned parameters: ϕi = θ − αi∇θL(θ, Di)
6: end for
7: The finetuned model fϕi

will be used to deal with problems defined on Ai

While fine-tuning can be effective in many cases, it may not be as effective
when we have limited data available for the new task. This has been observed
in studies of fine-tuning language models for text classification [101] (in Figure
5.1), where the performance of the fine-tuned model was found to be significantly
better than a model trained from scratch but was less effective when the dataset



150 5.1. Generalization issues on OoD data

Figure 5.1: Validation error rates for supervised and semi-supervised transfer model
ULMFiT vs. training from scratch with different numbers of training examples on
datasets IMDb, TREC-6, and AG (from left to right).

contained fewer than 100 examples The process of collecting data for fine-tuning a
model on OoD airfoils can be resource-intensive, as it involves running numerical
simulations more than 100 times to generate new problem instances. This can be
a significant burden, especially when the model needs to be fine-tuned for multiple
OoD airfoils. To address this issue, rather than transfer learning, we propose to use
meta-learning to train a meta-learner capable of adapting to new tasks or domains
using a small amount of data. Meta-learning, or learning to learn, presented in
Section 3.6, involves training a model on a (meta-)distribution of tasks from the
same meta-distribution such that it can quickly adapt to new tasks by leveraging
its past experience. In the following section, we will discuss how meta-learning can
be applied to improve the performance of a data-based approach on OoD airfoils.



5. Meta Learning Algorithms for Airfoil Flow Simulation 151

5.2 A meta-learning perspective

Introduced in Section 3.6, meta-learning provides a way to gain meta-knowledge
over various tasks (meta-knowledge) and to use this knowledge to learn a new
task using few task-specific data.

We formulate the airflow problem over various airfoils as a meta-learning
problem, where each set of examples defined on a single airfoil shape is treated as
a separate task. Our goal is to learn a meta-learner that is able to adapt to new
tasks, i.e., to unseen airfoil shapes, using only a small amount of task-specific
data (results of simulation on that shape). To achieve this, we propose to use the
model-agnostic meta-learning (MAML) (see Section 3.6.3) to learn a meta-learner
that can then be easily fine-tuned.

Figure 5.2: Airfoil Dataset for MAML algorithms: examples defined on the same
airfoil are considered as a single task.

Recall that MAML is an optimization-based algorithm in meta-learning that
find the initial parameters to enable quick adaptation to new tasks with small
amounts of data.

In airfoil flow problems (see Figure 5.3), MAML++1 is used to learn an
incomplete model fθ0 , called a meta-learner, that need to be fine-tuned with a

1the improved version of MAML, see Section 3.6.4, that we will abusively name MAML in
the following
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few steps of gradient descent, for any task, both from the meta-training set and
the meta-test set. During meta-test time, new tasks from the meta-test set, with
small amounts of data points, are treated similarly: the meta-leraner is updated
with a few steps of gradient descent on the task-specific examples. The updated
model fθi

is then employed to predict further unseen exampes of this specific task.

Figure 5.3: Prediction diagram of MAML algorithm for new tasks with a step of
gradient descent
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5.3 Experiments

In this Section, we revisit the airfoil simulation problems discussed in Section
4.4 and formulate it as a meta-learning problem.

5.3.1 Dataset and Baseline

As said, one task here corresponds to one airfoil shape. The Meta-Dataset is the
same as in Section 4.4: It is made of 80 tasks (the same NACA airfoils) with
40 examples of various AoA and Mach numbers. As before, this dataset is
split into three parts:

• Meta-Training set: 64 different tasks (NACA airfoils) with 30 examples
for each airfoil.

• Meta-Validation set 1: the same 64 tasks (NACA airfoils) containing
10 new samples for each airfoil, used to measure the performance of the
trained model on the airfoil already seen.

• Meta-Validation set 2: 16 new tasks (NACA airfoils) with 40 examples
for each airfoil, the first 20 examples are used to update the initial model,
and the other 20 are used to evaluate the model performance within MAML.

MAML results will be compared with those of the baseline presented in
Section 4.4, where we consider the dataset as one single task and train a global
model. For a fair comparison, both the baseline and MAML model use the
same architecture, described in Section 4.4.

5.3.2 Hyper-parameter tuning

As for the baseline model (Section 4.4), we chose the hyper-parameters of model
structure using 5-cross validation folds. Here we focus on the impact of the
inner learning rate of MAML.

During meta-training, the meta-learner is updated using Adam optimizer
with an initial learning rate of 5E-4 and step decay by a factor of 0.5 every 500
epochs. The number of inner gradient update steps is set to 3, and the first
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20 examples of each task Ti are considered as the train set Dtr
i used for inner

gradient updates, while the remaining examples are used as Dtest
i to compute

the meta-loss L for meta-update.

Different from the baseline model, MAML requires a few examples to update
the meta-learner once given a new task. To treat problems with airfoils already
seen in the training set, we can use examples from the training set to update the
model. While for new tasks (in the Meta-Validation set 2), new examples (with the
corresponding solutions) must be generated to update the model. First, validation
errors are computed by using 3 steps of gradient updates, the same number in
Meta-training. Moreover, the authors of the original paper of MAML have noted
that using more gradient steps during Meta-testing may continuously improve
the performance of an updated model without overfitting. To further investigate
the impact of the inner learning rate, we conduct additional experiments using
10 steps to update the model. This will allow us to thoroughly examine the
influence of the inner learning rate on the performance of the MAML model.
As shown in Table 5.1, the experimental results indicate that increasing the

Table 5.1: RMSE error on both Validation sets of different inner learning rate

RMSE(1e-2) 3 Inner Steps 10 Inner Steps
Inner Lr Val. 1 Val. 2 Val. 1 Val.2
Lr=0.01 0.82± 0.05 1.33± 0.23 0.80 ± 0.04 1.20 ± 0.17
Lr=0.001 0.83± 0.06 1.32± 0.16 0.82± 0.05 1.29± 0.14

number of update steps can lead to improved performance of the MAML model.
Moreover, the choice of inner learning rate does not appear to have a significant
influence on the performance of the MAML model when using 3 steps to update
the model. When using 10 update steps, we find that the model performs best
when using an inner learning rate of 0.01. The inner learning rate will be fixed
as 0.01 for the following experiments.
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5.3.3 Results

After using 5-fold cross-validation to choose the proper hyper-parameters, we
evaluate the models with different test sets. To better compare the baseline
model and MAML, we apply 10-fold cross-validation folds.

Three meta-test sets will allow us to evaluate the generalization of the models
with respect to airfoil shapes. For the flow parameters AoA and Mach number, we
use the same distribution as in training set in order to more accurately highlight
the performance of the models on OoD tasks.

• Flow Interpolation Test Set: We generate 10 more examples for each
meta-training task (airfoil shape). For evaluation, we can directly use the
training data to update each task and make further predictions for new
examples.

• Shape Interpolation set: This set contains 20 new airfoils that are
generated using the same distributions of NACA parameters as the training
set. Each airfoil is treated as a separate meta-test task, with 50 examples
in total. We use the first 20 examples to update the MAML model and the
remaining 30 examples to evaluate the model performance.

• Out of Distribution set – Thinner Airfoils: By changing the range of
distribution on T and P , we can create airfoils that are thinner and less
regular (P ∈ [20, 80] and T ∈ [5, 10]). These test tasks are more challenging
than those in the training set, with each task consisting of 50 different
examples.

Our meta-model is evaluated after fine-tuning on each task and compared with
the baseline model on the three meta-test sets described above. MAML models
require additional data every time a new task is presented. In contrast, the
baseline model is applied directly to unseen airfoils. However, such extra data
(the few labeled examples available for the new tasks/airfoils) can help not only
MAML but maybe also the baseline model: To be fair to the baseline, the same
number of additional gradient descent steps are used to finetune the baseline
model on each new tasks before evaluation, in the same way as for MAML: this
is the column labeled "Baseline + FT" in Table 5.2. We use RMSE as the metric
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Table 5.2: Evaluation Results on different test sets with 10 gradient updates

RMSE(1e-2)
Test Sets MAML Baseline Baseline + FT
Flow Interpolation 0.79 ± 0.08 0.71 ± 0.03 0.71 ± 0.03
Shape Interpolation 1.18 ± 0.14 1.58 ± 0.15 1.48 ± 0.14
Out-of-Distribution 3.69 ± 0.28 6.22 ± 1.66 5.35±1.62

for model performance.
Moreover, for all pair-wise comparisons between test errors on MAML and Base-
line, we performed a Wilcoxon signed-rank statistical test with 95% confidence,
and the differences between all pairs are statistically significant. From the
results in Table 5.2, it turns out the MAML model outperforms the baseline
on the interpolation and OoD test sets. By using just a few data points and
gradient steps, MAML models can quickly adapt to new tasks without overfitting.
Compared to the baseline, the MAML model shows much better performance
on OoD Meta-test tasks, less similar to the meta-training tasks. Interestingly,
adding some fine-tuning to the baseline does improve its performance, but the
results remain far below those of the MAML approach.

Figure 5.4: Sensitivity w.r.t. the number of gradients on Shape Interpolation Test
Set (a) and Out-of-Distribution Test set (b). The MAML model is improved a lot with
extra gradients and continues to improve. While the baseline with finetune doesn’t
have significant improvement

Sensitivity w.r.t. the number of gradient updates Figure 5.4 shows that
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with small amounts of data, the model learned with MAML is able to adapt
quickly to new tasks and continues to improve without overfitting. Again, we can
see that fine-tuning indeed improves the performance of the baseline, but not as
much as the model trained with MAML.

Discussion on number of Examples As previously mentioned, during the
meta-training phase, 20 examples were used for inner gradient updates. At the
meta-test time, the same number of examples is used to update the meta-learner
for test tasks in the first experiment.

We now investigate the impact of the number of points used for test tasks
on the performance of the MAML model. Specifically, the MAML model is
fine-tuned using 10, 5, and 1 examples, each with 10 gradient updates, in order
to understand how the number of examples used for test tasks affects the model
performance. The results shown in Table 4 indicate that decreasing the number

Figure 5.5: RMSE w.r.t. number of examples on Shape Interpolation Test Set (a)
and Out-of-Distribution Test set (b)

.

of examples used to update the meta-learner has a negative impact on the model
performance. While the MAML model still performs well on new tasks and
outperforms the baseline model when using smaller numbers of examples. From
Figure 5.5 it is unable to make reasonable predictions on new tasks (i.e., at least
as good as the baseline) on new meta-tasks with using less than 4 examples:
at least 4 examples are necessary for the Shape Interpolation set, while 3 are
sufficient on the OoD set, where the baseline is far less efficient. This suggests
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Table 5.3: Results using a different number of examples to update the model

RMSE(1e-2) Num. Examples

Models 10 5 1 Before Update

Shape Int. MAML 1.21± 0.14 1.33± 0.10 3.91± 1.25 10.34± 3.60
Baseline+FT 1.49±0.12 1.50±0.13 1.52±0.13 1.58±0.15

OoD MAML 4.00± 0.30 4.19± 0.33 6.70± 0.92 14.44± 3.49
Baseline+FT 5.44±1.39 5.51±1.72 6.07±1.48 6.43±1.79

that while the MAML model is able to adapt to new tasks using only a small
number of examples, it nevertheless requires more than one example in order
to perform well on these tasks: one example is, in particular, insufficient to
reach the performance of the baseline.
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5.4 Meta-Learning for Air Flow Simulation: Con-
clusions

In this Chapter, we have presented a meta-learning approach to address airfoil flow
problems. By utilizing the Model-Agnostic Meta-Learning (MAML) algorithm,
we have trained a meta-learner that is capable of adapting to new tasks with
only a small number of examples.

Our experimental results show that the meta-learner consistently outperforms
the baseline model, which is trained classically, once and for all using the whole
dataset, in terms of its ability to generalize to out-of-distribution (OoD) airfoil
shapes – and this, even if this baseline model is fine-tuned with the same small
amount of data for the new tasks than the MAML meta-learner. Overall, we claim
that the meta-learning approach represents a promising solution for addressing
the challenges of generalization in airfoil flow problems.
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Experimental results presented in previous Chapters have demonstrated the
ability of data-based models to solve PDEs with low computational costs at
inference time, however using at training time large datasets (even though this
assumption can be mitigated by adopting some Meta-Learning approach whenever
possible, see Chapter 5). The dataset is gathered using classical numerical solvers
such as the finite element method (FEM) or the finite volume method (FVM).
As discussed in Section 2.1, these methods discretize the physical domain into
small elements, somehow project the PDE on each element in turn, and solve
the resulting system of discrete equations. The accuracy of the FEM/FVM
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solution depends on the size of the mesh, i.e., the number of elements. Generally,
fine meshes (i.e., with a large number of elements) are needed to reach an
acceptable accuracy, and one important challenge in the data-based approach
is the computational cost of generating such large training datasets. This is
particularly true for complex phenomena that require large deep networks, which
in turn require large training datasets. Additionally, the total error of the trained
model is the sum of the training error of the network and the numerical error
of the samples in the training set, which should be accurate enough solutions,
hence obtained using very fine meshes.

To alleviate this challenge, we propose MFT, a Multi-Fidelity Transfer learning
approach that uses two meshes of different granularity: On the coarse mesh,
FEM/FVM approximate solutions of the PDE at hand can be computed at low
cost – but only poorly approximating the solution of the PDE. On the fine mesh,
on the other hand, the FEM/FVM solutions are good approximations of the
solution of the PDE, but are very costly to compute, making it unrealistic to
generate enough samples to train an accurate-enough deep model. The goal of
the work presented in this Chapter is to train such an accurate-enough deep
model using only a small dataset of highly accurate solutions, but leveraging
the result of the training on the many samples computed on the coarse mesh, in
combination with principles from Transfer Learning: the model trained on the
large dataset generated on the coarse mesh is used as a starting point for the
learning process on the small dataset of accurate solutions.
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6.1 Multi-fidelity Transfer Learning

In the following, we aim at learning a data-based model for numerically solving
a given PDE associated with various input quantities x that govern the system
on a given domain. To do so, we utilize a FEM/FVM numerical solver on two
different meshes of the same domain, a coarse mesh Mc, and a fine mesh Mf .
The solver thus computes so-called low-fidelity solutions at a low cost on the
coarse mesh Mc and high-fidelity solutions at a higher cost on the fine mesh
Mf . Our goal is to train a deep neural network model that can predict accurate,
high-fidelity solutions for any given input using as few high-fidelity samples as
possible but taking advantage of as many low-fidelity samples as needed.

6.1.1 Prediction on the Coarse Mesh

The first step involves generating a dataset Dc of low-quality solutions by applying
the FEM/FVM solver to the coarse mesh Mc using a representative set of input
values x. A deep model fc is then trained on Dc (details below). As many
samples as necessary can be computed efficiently and at a low cost, and the loss
function is the mean squared error between the network output and the numerical
solution in Dc, which is treated as the ground truth at this stage. Even in the
ideal case where the error of the trained network is close to zero, thanks to a
very large dataset Dc, the accuracy of the learned model is not satisfactory, as
the solutions in Dc are poor approximations of accurate solutions.

6.1.2 Transfer of low-fidelity knowledge on the Fine Mesh

The second step of the process begins with the low-fidelity model fc, which has
been fully trained on the low-fidelity dataset Dc. It also involves the dataset Df

of high-fidelity solutions. However, Df is assumed to be too small to allow for
direct training of a sufficiently accurate deep learning model. Drawing inspiration
from the concept of Transfer Learning (detailed in Section 3.5), which utilizes
the knowledge acquired while solving a task to improve the learning of a related
but distinct task, we propose to leverage the knowledge contained within fc to
enhance the learning of a deep model using the small dataset Df .
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Figure 6.1: Diagram of the multi-fidelity transfer learning approach on Wheel Contact
problem. Note that the network is asked to predict the correction w.r.t. the projection
of the prediction by the low-fidelity model fc rather than directly the deformation y.

Latent Feature Extraction The basic assumption here is that the pre-trained
model fc has learned a meaningful representation of the problem and can be
viewed as a feature extractor for the high-fidelity task. For each input x, the
vector h, outputs of all neurons before the last layer of fc, can be viewed as a
vector of latent features of the problem. It is first upsampled to the fine mesh
Mf using k-nearest neighbors interpolation (see Section 4.1.2), and then used as
additional inputs for the high-fidelity learning, as illustrated in Fig. 6.1.

Transfering Using the high-fidelity dataset Df and additional input h, we train
a transfer model ft using again the MSE loss. The final output is:

y = ft(x, h) = ft(x, UpSample[fc(x)])
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6.2 Case Studies

The MFT approach is experimentally validated on two different PDEs, describing
respectively the flow around an airfoil and the contact of a tire on the road.

Airfoil Flow: This problem, described in detail in Section 4.4, is that of the
incompressible fluid flow around an airfoil, modeled by the Reynolds Averaged
Navier Stokes equations. Flow fields on 80 distinct 2D NACA airfoils are simulated
by the CFD solver OpenFOAM. Inputs are the Mach number ∈ [0.03, 0.3], and the
Angle-of-Attack (AoA) ∈ [-22.5, 22.5] (in degrees). The target variable are the
velocity v = (vx, vy) and the pressure p. The low-fidelity dataset is generated
with meshes of approx. 500 nodes and the high-fidelity dataset uses meshes with
around 3800 nodes.

Wheel Contact: As a specific use case of Michelin, the goal is to predict the
deformation field u = (ux, uy) of a tire on a fixed 2D wheel under some external
force f describing the action of the road on the tire while the car is driving. The
FEM solver used is GetFEM++ [147]. The input quantities are the mechanical
properties of the rubber used to make the tire: Young’s modulus E ∈ [5, 7]× 106

and Poisson’s ratio ν ∈ [0.38, 0.495]; the magnitude A ∈ [0.1, 0.5] and angle
α ∈ [−0.78,−2.35] of the external forces; and the friction coefficient of the road
µ ∈ [0.5, 0.8]. The 2D linear plane strain elasticity equation is used to model
the problem, with the following simplifying hypotheses:

1. The displacements of the material particles are much smaller than any
relevant dimension of the tire.

2. The inner rim of the wheel is considered rigid.

3. The floor in contact with the wheel is flat and rigid.

In this context, the formulation of the wheel contact problem is as follows: ν

represents the normal vector of the boundary Γ, u and Π denote the Piola-
Kirchoff displacement and stress fields, respectively. Moreover, we denote by
uν and uτ the normal and tangential components, Πν and Πτ the normal and
tangential stresses on Γ. W (F) is a function representing hyperelastic internal
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Figure 6.2: Physical Domain for Wheel Contact Problem

energy density depending on F, the deformation gradient. f0 and f2 denote a
volumetric force density and a surface traction force density, respectively. Finally,
g represents the normal distance between the wheel and the foundation, and
µ is the friction coefficient of the road.

Π = ∂FW (F) in Ω, (6.1)
Div Π + f0 = 0 in Ω, (6.2)
u = ud on Γ1, (6.3)
Πν = f2 on Γ2, (6.4)
uν ≤ g, Πν ≤ 0, (uν − g) Πν = 0 on Γ3, (6.5){
∥Πτ∥ ≤ µ |Πν | ,
−Πτ = µ |Πν | uτ

∥uτ ∥ if uτ ̸= 0.
on Γ3 . (6.6)

Equation (6.1) represents the hyperelastic constitutive law of the material.
Equation (6.2) is the equilibrium equation. The two conditions (6.3) and (6.4)
represent the displacement and boundary conditions, respectively. Finally, (6.5)
and (6.6) describe the rubbing contact condition.
The low-fidelity dataset is generated on a fixed coarse mesh with 504 nodes, while
the high-fidelity dataset uses a fixed mesh with 3398 nodes.
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6.3 Experiments

In the following, we evaluate the MFT approach on the two use cases introduced
in previous Section 6.2.

Datasets For each domain, we create two meshes of different scales: a coarse
mesh Mc and a fine mesh Mf . The low-fidelity dataset Dc consists of 2,000
samples generated on Mc, while the high-fidelity dataset Df on Mf consists
of 400 samples. While it would have been ideal for experiments with various
numbers of samples, including 400, 300, 200, and 100, due to the time constraints
of the Ph.D. research, it was not feasible to conduct other experiments.

Baselines We compare MFT with three baselines. An interpolation model LF-
Int predicts the outputs by simply up-sampling the output of model fc. Model
HF-400 is directly trained on the 400 high-fidelity samples without any knowledge
transfer. Finally, in order to be fair with the high-fidelity-only approach, we add
some high-fidelity samples to Df to compensate for the computational cost of
creating Dc. Model HF-ST is trained on this extended high-fidelity dataset.

Hyper-parameter setting The hyperparameters are tuned using the same
process as Chapter 4. Models are trained to minimize the mean square error
(MSE) between the output and ground truth. We utilize the Adam optimizer to
minimize this loss function. Moreover, a step decay strategy is applied during
training, where the learning rate is halved every 500 epochs. The GNN architecture
is the graph U-Net described in Section 2.3, consisting of a series of graph blocks
and sampling operators. A graph block C contains multiple graph layers, each of
which is followed by an activation function "elu". Each block C is parametrized
by the number of layers l, a channel factor c, and a kernel size k. After each GNN
block, a sampling operator is applied to convert data between both mesh levels.
The sampling operator has one hyper-parameter, and the number of nearest
neighbors n is set again to 6 for all our experiments. Finally, a graph layer is
applied to map high-dimensional features onto the solution space.
For the airfoil flow problem, in order to train the model fc which predicts the
solution on a coarse mesh Mc, we down-sample once Mc, and up-sample it back
to Mc. A total of three blocks C = (4, 128, 5) are applied. The transfer model ft
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on high-resolution meshes down-samples progressively three times in the encoding
part and recovers the mesh resolution with three up-sampling operators during
decoding. ft contains seven GNN blocks C = (2, 48, 5).
For the wheel contact problem, the model fc contains three mesh levels and 5
GNN blocks C = (4, 48, 5). For the transfer model ft, same as that on airfoil flow,
there are seven GNN blocks C = (2, 64, 5).

Training Both the coarse model fc and the transfer model ft use the Graph
U-Net architecture described above. Standard 10-fold cross-validation is applied
when training ft to assess the robustness of the approach, and we report the
averages and standard deviations of test errors over the different folds. Models
are trained on a single Nvidia A100 GPU, and each training takes from 3 to 6
hours.

Evaluation We create 800 new samples on Mf for each task to form the ultimate
test set and evaluate the results of all approaches using the rooted mean squared
error (RMSE) metric.

Results Table 6.1 reminds the characteristics of the datasets (right side) and the
error on the test set described above (left). The latter clearly demonstrates that
the MFT model significantly outperforms the three baselines on both physical
problems. The performance of the interpolation baseline LF-Int shows that the
transfer model MFT largely improved the predictions based on the pre-trained
model fc. Meanwhile, the prior knowledge extracted from Dc does help the
prediction on fine meshes compared with HF-400, which has only access to the
high-fidelity dataset Df . Moreover, the comparison between HF-ST and MFT
indicates that the multi-fidelity datasets containing many more low-resolution
samples are still more informative than a pure high-fidelity dataset with the same
computational budget. Furthermore, it seems more stable, as it displays a much
lower variance. The MFT model combines the benefit of the low-fidelity dataset for
fast generation with the high-fidelity simulations to create accurate ground truth.

Figure 6.3 and 6.4 show examples of the predictions made by the MFT
model for the airfoil flow and Wheel Contact problems. The figures demonstrate
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Table 6.1: Rooted mean squared error (RMSE) for both Airfoil Flow and Wheel
Contact problem (right); dataset composition for each discussed model (left); and
generation time for each sample in the last two rows.

Datasets Results

Models Dc Df Airfoil Flow (e-2) Wheel Contact (e-4)

LF-Int 2 000 \ 9.81 27.82
HF-400 \ 400 2.98 ± 0.30 6.62± 0.25
HF-ST \ 400 + 127/240 2.43 ± 0.39 4.80± 0.19 1

MFT 2 000 400 1.95 ± 0.05 4.57 ± 0.10

Generation Airfoil Flow ∼ 2.33s ∼ 36.7s
Time (each) Wheel Contact ∼ 0.20s ∼ 1.64s

the ability of the MFT model to effectively transfer knowledge from the low-
fidelity dataset to the high-fidelity dataset, resulting in accurate predictions
for both problems.

Figure 6.3: An example of wheel contact prediction

1We generated 127 additional high-fidelity examples on fine meshes for the Airfoil Flow
problem, and 240 for Wheel Contact problem.
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Figure 6.4: An example of airfoil flow prediction

Discussion on size of high-fidelity dataset

In this section, we will discuss the experiments with various numbers of samples
for the high-fidelity dataset to analyze better the capacity of the proposed MFT
approach. The low-fidelity dataset always has 2 000 examples, while the high-
fidelity dataset contains 400, 320, 240, 160, and 80 examples separately.

Figure 6.5 presents a comparison of the performance of the proposed MFT
model and the HF-ST model, each with varying sizes of high-fidelity datasets.
(The HF-ST model is always trained with the extended high-fidelity only dataset
to compensate for the computational cost of creating the low-fidelity dataset)
The plot reveals that the HF-ST model is considerably more sensitive to the
number of examples incorporated in the high-fidelity dataset. In contrast, the
MFT model demonstrates a superior level of stability in relation to the impact
of the number of high-fidelity dataset examples when compared to the HF-ST
model. This outcome is quite reasonable, given that the MFT model can always
leverage valuable information derived from the extensive low-fidelity dataset.
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Figure 6.5: Errors comparison of the different number of high-fidelity examples. (a)
airfoil flow problem; (b) wheel contact problem
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6.4 Challenges on the Higher-Resolution Mesh

The proposed MFT approach is highly adaptable and can easily be applied to
even higher-resolution meshes than above with additional high-fidelity datasets.
In this Section, we demonstrate the ability of the MFT model to adapt to
higher-resolution meshes by further refining the mesh and generating examples
of even higher quality.

Same as in the previous experiments, we can transfer prior-knowledge learned
to solve the higher-fidelity task. The transfer model learned from the previous
experiments is considered as the new pre-trained model. In such a way, the new
dataset on higher-resolution meshes with the two datasets Dh and Df used in the
previous experiment, from all three mesh-scales, contribute to training process,
resulting in improved performance and accuracy.

Datasets Higher resolution meshes than past experiences are created to generate
160 new samples. The higher-fidelity dataset Dh uses meshes Mh with around
15000 nodes for the airfoil flow problem and a fixed mesh with 9015 nodes
generated on the same domain for the wheel contact problem.

The baseline The MFT model will be fairly compared with the HF-ST model,
the improved high-fidelity-only approach (see Section 6.3).

Evaluation We create 400 new samples on Mh for each problem to form the
test set with high-quality and evaluate the results of all approaches using the
rooted mean squared error (RMSE) metric.

Table 6.2: Rooted mean squared error (RMSE) for both Airfoil Flow and Wheel
Contact problem (left); dataset size for each discussed model (right)

Results
Dh Models Airfoil Flow (e-2) Wheel Contact (e-4)
0 LF-Int 6.50 13.27
160 + 91/180 HF-ST 6.61± 0.22 26.2 ± 1.7
160 MFT 5.90 ± 0.10 7.09 ± 0.04

From Table 6.2, it can be observed that the results are consistent with the
findings of previous section. Compared to table 6.1, the predictions on higher
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resolution meshes become worse, which is due to the fact that the simulation
from OpenFOAM becomes more accurate, leading to a large difference in Df

and Dh. The results indicate that the proposed Multi-Fidelity Transfer (MFT)
approach is able to effectively adapt to higher resolution meshes, once additional
high-fidelity datasets are created.
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6.5 Multi-Fidelity Transfer Learning: Conclu-
sions

This Chapter introduced MFT, a multi-fidelity transfer learning model, to use
Machine Learning approaches (namely GNNs) to numerically solve PDEs on
fine meshes efficiently. MFT benefits from a large amount of low-fidelity data
to extract some prior-knowledge, and then transfer it to predict high-fidelity
solutions. The training process on fine meshes can then be achieved by using
only a small training set. The experimental results on two complex physical
problems are the first proof of the concept that MFT can solve PDEs accurately
when a small number of high-fidelity samples is available.



7
Contributions and Further Work

We conclude this dissertation by summarizing our contributions and sketching a
few research directions that have emerged from this work.

Contributions
It has become increasingly popular over the last few years to use deep neural
networks to solve PDEs, as a way to accelerate computation time with data-
driven methods or compensate for mesh-based solvers limitations when mesh
decomposition becomes infeasible. However, such approaches still remain in their
infancy. We have discussed throughout this thesis three common difficulties
when using deep learning to approximate the solutions of PDEs: Model design
to treat mesh data; Generalizing issues on OoD problems; And the cost of
collecting data. Our main contribution was to develop some model architectures
to start alleviating these hurdles.

We started by designing the first multi-resolution GNN approaches to learning
the solutions of PDEs on unstructured meshes. On the one hand, graph neural
networks can directly handle data living on unstructured meshes to reproduce the
locality properties of CNNs. On the other hand, multi-resolution architectures
extract hierarchical spatial features and accelerate message passing across the
whole mesh.

175
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Our second contribution was to adopt a meta-learning perspective in order to
revisit deep learning scenarios on PDEs. The physical problems are decomposed
into multiple tasks on the basis of their geometric domains. By porting the use
of MAML, an optimization-based meta-learning approach, we enhanced model
performance on Out-of-Distribution data points.

Last, in order to reduce the computational cost of data gathering, we turned
to leverage low-quality data obtained on coarse meshes, which is almost costless,
to help produce accurate solutions on fine meshes with very few solutions obtained
directly on fine meshes. Transfer learning was thus introduced as a tool to solve
tasks with insufficient high-accuracy training sets. By transferring knowledge
from coarse meshes, transfer learning quickly solved problems on finer meshes
using much less high-quality data than before.

Experimental results on various problem domains have shown the effectiveness
of the proposed approaches: our proposed hierarchical GNN architectures avoid
the resulting interpolation errors compared to CNN models, thus improving the
quality of the predictions. The multi-resolution models based on a hierarchy of
meshes largely outperform the baseline graph model without hierarchy. However,
the experiences on model evaluation highlighted the generalization issue on OoD
problems. We validated our Meta-learning approach on airfoil simulation tasks.
The meta-learner demonstrated strong performance in cases outside the strict
bounds of the training distribution. The two experiments on transfer learning
showed that low-quality data on coarse meshes can be considered as the source
domain and used to improve the predictions on high-resolution meshes.

Further work
Continuing our research in the field of deep learning for solving PDEs, there are
several interesting directions that could be explored further.

Studies on 3D domains While the present work demonstrates the effectiveness
of GNN-based models in solving PDEs, our current work is limited to simple
simulated cases on 2D domains. In the real world, where physical problems
are often defined on 3D domains with meshes with tens of thousands of nodes,
predicting solutions can be more challenging and require larger amounts of data.
Further investigation is needed to examine how these methods scale up to very
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large meshes and to 3D domains. One approach is to directly train a model with
the multi-resolution GNNs on 3D mesh data to predict the solutions from PDEs
(Chapter 4).

Incorporating real experimental data The present study employs datasets
generated by traditional numerical solvers, yet, directly utilizing data obtained
from real experiments could enhance the model’s representation of real-world
systems and help to bypass the limitations of the PDE model itself. However, real-
world measurements are often scarce and insufficient on their own to train a model.
A possible approach could be to combine datasets obtained from simulations and
real-world measurements to train the model. Another way could be incorporating
the framework of the transfer learning method proposed in Chapter 6. Data from
the simulation is considered as the low-fidelity dataset and can be further used
to help the predictions on real systems. Alternatively, real-world measurements
can be utilized to validate the model performance and ensure the accuracy and
reliability of the model predictions.

Automatic Meshing To improve the proposed multi-resolution GNN models, it
is possible that direct mesh generation algorithms to create a set of meshes of
different scales employed in the current study may not be sufficient, as problems
with different physical parameters may require different sampling methods. One
possible way is to incorporate adaptive mesh refinement techniques [148] used
in numerical analysis to refine the mesh after initial simulation. Specifically,
after each iteration of the training process for deep learning models, areas with
higher prediction errors can be identified and refined automatically to generate
new mesh scales. By combining the proposed multi-resolution GNN models with
adaptive mesh refinement, more accurate and efficient solutions can be achieved
at a reasonable computational cost.

Conclusions
The use of deep learning to solve PDEs has seen great progress in recent years, but
it is still in the early stages. The present thesis is an attempt to develop precise
and efficient deep learning models. However, there are still many challenges that
need to be overcome before we can fully benefit from these techniques for industry.
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Nonetheless, the potential of deep learning for solving PDEs is immense. Further
research and the development of more precise and efficient models could lead
to significant breakthroughs in various industrial fields.
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