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Abstract

In cryptography, many protocols are based on security assumptions such as the Discrete Logarithm
(DL) assumption and the Computationnal Diffie-Hellman (CDH) assumption. The security of many
protocols rely on the hardness of such assumptions, and the variety of protocols brought some more
analogous assumptions such as the one-more assumptions.

The one more-discrete logarithm assumption (OMDL) is central to the security analysis of
identification protocols, multi-signature schemes such as the recent MuSig2 multi-signatures and
blind signatures, most notably the Blind Schnorr Signatures which we analyse in this work.

Despite OMDL wide use, surprisingly, those one-more assumptions are lacking any rigorous
analysis; there is not even a proof that it holds in the generic group model (GGM). (We show that
a claimed proof is flawed.) OMDL is also assumed for many impossibility results that show that
certain security reductions cannot exist.

We give rigorous proofs in the GGM of OMDL and a related assumption, the one-more
computational Diffie-Hellman assumption. We do so by deviating from prior GGM proofs replacing
the use of the Schwartz-Zippel Lemma by a new argument.

In this work we also analyse the Schnorr blind signing protocol which allows blind issuing of
Schnorr signatures, one of the most widely used signatures. Despite its practical relevance, its
security analysis is also unsatisfactory. The only known security proof is rather informal and in the
combination of the GGM and the random oracle model (ROM) assuming that the “ROS problem”
is hard.

We analyze the security of these schemes in the algebraic group model (AGM), an idealized
model closer to the standard model than the GGM. We first prove tight security of Schnorr
signatures from the DL assumption in the AGM+ROM. We then give a rigorous proof for blind
Schnorr signatures in the AGM+ROM assuming hardness of the OMDL problem and ROS.

As ROS can be solved in sub-exponential time using Wagner’s algorithm, we propose a simple
modification of the signing protocol, which leaves the signatures unchanged. It is therefore
compatible with systems that already use Schnorr signatures, such as blockchain protocols. We
show that the security of our modified scheme relies on the hardness of a problem related to ROS
that appears much harder.

Finally, as the situation is similar for (Schnorr-)signed ElGamal encryption (a simple CCA2-
secure variant of ElGamal), we give tight reductions, again in the AGM+ROM, of the CCA2
security of signed ElGamal encryption to DDH and signed hashed ElGamal key encapsulation to
DL.
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Chapter 1

Intoduction



2 CHAPTER 1. INTODUCTION

1.1 Context

Generalities

Signing is an essential procedure in human societies. From the seal on an historical manuscript to
your own artistic calligraphy on your ID card, it seems that the signature procedure will always
be part of every human life. Producing a signature is not a big deal for anyone though, since a
prerequisite for an efficient signature is to be easy to build. In fact signatures could be even thought
as a gift from nature that makes every human (and every living being) different. There exist
some signatures that we carry with us without even thinking of then: we could think about our
appearance (although appearance impersonation becomes more and more easy with fake videos),
our DNA or our fingerprints. Those are used by the police as unintentional signatures left by the
criminals which identify them.

As a child, we first encounter signatures when our teachers tell us to make our parent sign our
grade book. We quickly learn two things: 1- signature falsification can make us impersonate our
elders and 2- although they seem easy to produce for their author, it needs some training and effort
to get the ability of copying a signature, but also a risk to be caught.

That’s why a signature is so important: it should prove that you and only you could have
seen / read / approved / written / sent a message and it thus should be impossible to forge
(unforgeable). But progress in technology makes it more and more easy for a signature to be forged.
The hand-written signatures can now easily be copied and pasted onto a numerical document, and
even signed documents can be modified on an imagery software afterwards. Also it’s unclear how
to sign an email or an online transaction using a handwritten signature.

Figure 1.1: Message of John Lennon saying that the author of this Phd is right.

The digital development has obliged us to search for stronger signatures but also signatures
protocols that can be used by a computer. Fortunately, computer science also came up with
a lot of interesting solutions to solve this. Researchers designed signatures protocols based on
mathematical problems, in which the signer who signs the message often knows a secret number x,
and communicates a public number X which is linked to the secret but doesn’t give information on
it. Every message sent by the signer will then be “sealed” using the secret x, and everyone will be
able to use X to verify that the seal is correct, thus that the message comes from the signer.

The more the technology was used, the more specific protocols were required for different uses.
For example signatures protocols were invented in which a user who cannot sign (doesn’t know
the secret x) gets a signature from an authority (who knows x) who we call the signer. You could
think of the user as the child who want a signature on his grade book from his parents who are the
signers. Blind signature is a protocol in which the user actually wants a signature from the signer,
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but doesn’t want the signer to be able to recognize the signed document afterwards. The signer is
blindfolded while signing the document provided by the user.

In this work we were interested in Schnorr signatures; which is a protocol of signature based on
the Schnorr identification scheme. It’s one of the simplest and oldest signature scheme designs based
on prime-order groups. This protocol is widely deployed in a lot of numerical architectures and will
soon be implemented in the Bitcoin. More precisely, we studied the security (unforgeability) of
a blind signature version of this protocol which is actually harder to study, but also appeared to
have some security weaknesses (which we will discuss in the work). Thus we propose a new blind
signature version of this protocol which we call the Clause Blind Schnorr signature scheme.

In cryptography, the study of the security of protocols relies on mathematical reasoning and
on assumptions. The idea is that some mathematical problems are hard to solve, and thus we
can use them to hide a secret. If a signer has a secret which is protected behind a mathematical
problem which cannot be solved efficiently, then this secret is considered to be safe and the protocol
is secure. For example, say the signer knows 5 and 7, multiplies them together and shows you
35, it may be easy for you to deduce the decomposition 35 = 5× 7. But now if the signer shows
you 16637 and asks you to guess what is the decomposition of it, maybe you will eventually find
that 131 × 127 = 16637, but we can be sure it will take you much more time to guess. In fact
the factorisation problem of finding the two primes p, q such as N = pq, from only seeing N is a
problem called the factorisation problem and is considered to be hard. This means the larger the
primes p ans q are, the harder the problem is to solve. This problem is at the foundation of the
RSA protocols.

In our work, we encountered a few mathematical problems, some of which are derivatives of the
discrete logarithm problem. The security of blind Schnorr signature security (unforgeability) relies
on two problems which are the one-more discrete logarithm (OMDL) and the ROS problem. The
ROS problem was proved to be the main weakness of the blind Schnorr protocol, but we found
that OMDL actually had not been formally analysed either in the literature.

We found that OMDL was a widely used mathematical assumption and that many results relied
on it in the research literature, but since it has never been proved to be hard even in some idealized
models, for example the generic group model, we decided to write a proof for it. It turned out to
be more complex than expected.

Now let’s get to the serious work.

Models

Generic Group Model: The Generic Group Model (GGM) is an idealized model for the
security analysis of hardness assumptions such as DL, CDH or OMDL. It was introduced by Shoup
[Nec94, Sho97] and it formalizes the idea that group elements don’t give any information about the
structure of the group. That’s what elliptic curves aim on doing: generate group elements which are
so hard to understand that they do not reveal information about the group. In fact in this model,
an algorithm having access to some group elements as input can only do two actions which are:
compute the composition of two group elements and check equality between two group elements.

In the generic group model, an adversary playing in a security game (the adversary is an algorithm
which tries to break a security assumption) is given some group elements (X1, . . . , Xn) ∈ Gn as
input. To formalize that those group elements do not leak more information that they should,
we build an injective handle function Ξ : G→ E that associates each element of the group to an
element of a set E that does not have a group structure. For example E could be {0, 1}log2(p) and
Ξ associate each Xi to a random string of E. Or E could be equal to Zp and Ξ(Xi) = i (and if
exists j such as i > j and Xj = Xi then Ξ(Xi) = j).

In the Generic Group Model, the adversary will have as input only the handles (Ξ(X1), Ξ(X2), . . . , Ξ(Xn)).
Since those are not associated to a group structure, the adversary won’t be able to compute a sum
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of group elements alone, so we give to the adversary an access to a group computation oracle, we
call GCmp which takes as input a pair (Ξ(Xi), Ξ(Xj)) and outputs Ξ(Xi + Xj) to the adversary.

For an hardness assumption based on a secret −→x = (x1, x2, . . . , xn) that the adversary must
guess, the Generic Group Model often allows to simulate the security game for the adversary without
actually defining the secret −→x . Say for example that the adversary gets (Ξ(G), Ξ(X1), . . . , Ξ(Xn)) as
input with the secret −→x such that Xi = xiG. The challenger simulating the hardness game can just
build polynomial variables (X1, . . . , Xn) ∈ Zp[X1, . . . , Xn] that represent each group element challenge
X1, . . . , Xn. The challenger can give handles to the adversary on polynomials of Zp[X1, . . . , Xn]
instead of handles on group elements. Let’s call Ξ′ : Zp[X1, . . . , Xn]→ E′ the new injective handle
function.

The adversary get as input (Ξ′(1), Ξ′(X1), . . . , Ξ′(Xn)) and on call to oracle GCmp(Ξ′(P ), Ξ′(Q))
with P, Q ∈ Zp[X1, . . . , Xn] the adversary get Ξ′(P + Q). More generally, for a polynomial P the
adversary gets access to Ξ′(P ) but the adversary expects Ξ(P (−→x )G). In the end, the adversary
should guess the secret −→x , so it outputs −→x ∗ and since the challenger has simulated the whole game
to the adversary with only polynomials (so without defining the secret −→x ), it can now pick the
secret −→x at random. Since the secret −→x is picked by the challenger after the adversary gives its
output −→x ∗ we get that the adversary has a very low chance to win the game with −→x ∗ = −→x .

Still, after the challenger picks a random secret −→x , he needs to check that the simulation
would have been the same if it was done with group elements based on this secret. Indeed, if
for some polynomials P ̸= Q computed by the adversary, we have P (−→x ) = Q(−→x ), then we have
Ξ′(P ) ̸= Ξ′(Q) but Ξ(P (−→x )G) = Ξ(Q(−→x )G) is what the adversary should have seen in the real
game ! So the simulation is incorrect.

Usually, we bound the probability of failure by using the Schwarz-Zippel Lemma (described
in the preliminaries section). But we will see that this Lemma does not apply for the OMDL
assumption.

Algebraic Group Model: Notice that in the previous example, since the adversary can only
build simple additions, it is not able to compute polynomials of degree more than 1. So every
polynomial computed will have at most degree 1. In fact, all the group elements computed by the
adversary can be decomposed using the input of the adversary: If the adversary get the handle
for the polynomial P = α0 + α1X1 + . . . + αnXn, it means that from the group element point of
view, it computes the group element X = α0G + α1X1 + . . . + αnXn. So for every element that
the adversary computes, the challenger knows which decomposition the adversary used with from
input it got.

The Algebraic Group Model (AGM) was designed to be able to use this property [FKL18]. This
model lies between the GGM and the standard model. The AGM considers that the adversary in
the security game is algebraic, which means that every time the adversary outputs a group elements
or gives a group element as input to an oracle, it should also provide its decomposition with respect
to the input it got.

For example, if an adversary gets as input the group elements (X1, . . . , Xn) and outputs Y , it
must also output the vector −→α such that Y = α0G + α1X1 + . . . + αnXn. Security results in the
AGM are proved via reductions to computationally hard problems like in the standard model.

Random Oracle Model: In the Random Oracle Model (ROM) we consider that there exists an
oracle that gives a truly uniformly random output depending on the input. This algorithm should
be deterministic, meaning that it outputs always the same value for the same input. This oracle is
used as a blackbox by the challenger during the game. In practice it is an idealized model for the
hash functions, meaning that every hash function implemented in this model will be represented by
a random oracle in the ROM.
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1.2 One More-Discrete Logarithm

Provable security is the prevailing paradigm in present-day cryptography. To analyze the security
of a cryptographic scheme, one first defines a formal model for what it means to break the scheme
and then gives a rigorous proof that this is infeasible assuming that some computational problem is
hard.

Classical hardness assumption like RSA and the discrete logarithm assumption in various groups
have received much scrutiny over the years, but there are now myriads of less studied assumptions.
This has attracted criticism [KM07, KM10], as the value of a security proof is unclear, when it is
by reduction from an (often newly introduced) assumption that is not well understood. A sanity
check that is considered a minimum requirement for assumptions in cyclic groups is a proof in the
GGM, which guarantees that there are no efficient solvers that work for any group.

In this work we give the first proof that the one-more discrete logarithm assumption, a widely
used hardness assumption, holds in the GGM. While prior proofs in the GGM have followed a
common blueprint, the nature of OMDL differs from that of other assumptions and its proof
requires a different approach, which we propose in this paper. We then extend our proof so that it
also covers the one-more Diffie-Hellman assumption.

OMDL. The one-more discrete logarithm problem, introduced by Bellare et al. [BNPS03], is an
extension of the discrete logarithm (DL) problem. Instead of being given one group element X
of which the adversary must compute the discrete logarithm w.r.t. some basis G, for OMDL the
adversary can ask for as many challenges Xi as it likes. Moreover, it has access to an oracle that
returns the discrete logarithm of any group element submitted by the adversary. The adversary’s
goal is to compute the DL of all challenges Xi, of which there must be one more than the number
of DL oracle calls it made.

Applications of OMDL

Security of blind signatures. Blind signature schemes [Cha82] let a user obtain a signature
from a signer without the latter learning the message it signed. Their security is formalized by
one-more unforgeability, which requires that after q signing interactions with the signer, the user
should not be able to compute signatures on more than q messages.

The signatures in the blind Schnorr signature scheme [CP93] are standard Schnorr signatures
[Sch91], which, in the form of EdDSA [BDL+12] are increasingly used in practice and considered
for standardization by NIST [NIS19]. They are now used in OpenSSL, OpenSSH, GnuPG and
considered to be supported by Bitcoin [Wui18].

In this work, we give a security analysis for blind Schnorr signatures one-more unforgeabilily
which relies on OMDL.

Multi-signatures. Multi-signature schemes [IN83] allow a group of signers, each having individ-
ual verification and signing keys, to sign a message on behalf of all of them via a single signature. In
recent work, Nick et al. [NRS20] present a (concurrently secure) two-round multi-signature scheme
called MuSig2 (a variant of the MuSig scheme [MPSW19]), which they prove secure under the
OMDL assumption. The resulting signatures are ordinary Schnorr signatures (under an aggregated
verification key, which is of the same form as a key for Schnorr); they are thus fully compatible with
blockchain systems already using Schnorr and will help ease scalability issues, as a single aggregate
signature can replace a set of individual signatures to be stored on the blockchain.

Earlier, Bellare and Neven [BN06] instantiated another signature primitive called transitive
signatures [MR02] assuming OMDL.
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Identification schemes. Bellare and Palacio [BP02] assume OMDL to prove that the Schnorr
identification protocol is secure against active and concurrent attacks, and Gennaro et al. [GLSY04]
use it for a batched version of the scheme. Bellare and Shoup [BS07] prove that the Schnorr
identification scheme verifies special soundness under concurrent attack from OMDL. Bellare et al.
[BNN04] assume OMDL to prove their ID-based identification protocol secure against impersonation
under concurrent attacks.

Negative results. OMDL has also been assumed in proofs of impossibility results. Paillier
and Vergnaud [PV05] prove that unforgeability of Schnorr signatures cannot be proven under the
discrete logarithm assumption. In particular, they show that there is no algebraic reduction to DL
in the standard model if OMDL holds. There are further results about the N -OMDL assumptions
(OMDL limited to N challenges) which show that these assumptions are not equivalent to each
other. It is done by considering algebraic white-box reduction [BMV08] or standard black-box
reduction [Bro07]. These results convinced us furthermore to directly consider the strongest version
of OMDL where the adversary chooses adaptively the number of challenges (called ∗-OM-DL in
[Bro07]). Seurin [Seu12] shows that, assuming OMDL, the security bound for Schnorr signatures
by Pointcheval and Stern [PS96b] using the forking lemma is optimal in the ROM under the
DL assumption. More precisely, the paper shows that if the OMDL assumption holds, then any
algebraic reduction of Schnorr signatures must lose the same factor as a proof via the forking
lemma. Fischlin and Fleischhacker [FF13] generalize this impossibility result to a large class of
reductions, they call the single-instance reductions, again assuming OMDL.

Finally, Drijvers et al. [DEF+19] show under the OMDL assumption that many multi-signature
schemes, namely CoSi [STV+16], MuSig [MPSW19], BCJ [BCJ08] and MWLD [MWLD10], cannot
be proven secure from DL or OMDL. Many other works prove negative results about the security
of Schnorr signatures as long as OMDL holds. [GBL08, FF13, FJS14, FH21].

The Generic Security of OMDL

Despite its wide use, surprisingly, OMDL is lacking of rigorous analysis. So far, OMDL has only
been compared to the other DL assumptions [KM08]. OMDL assumption is trivially easier to break
than DL. Using the index calculus algorithm, the OMDL assumption seems to be strictly easier to
break than DL in jacobian groups of genus 3 or more [KM08]. The only analysis in the GGM is a
relatively recent proof sketch by Coretti, Dodis, and Guo [CDG18, eprint version], which we show
is flawed.1 (The authors confirmed this.)

Their analysis follows the blueprint of earlier GGM proofs, which goes back to Shoup’s [Sho97]
proof of the hardness of DL in the GGM. However, as we explain below, the adversary can make
their simulation of the GGM OMDL game fail with overwhelming probability. The particularity of
OMDL compared to other assumptions, which lend themselves more easily to a GGM proof, is
that via its DL oracle, the adversary can obtain information about the secret values chosen by the
experiment.

Bauer et al. [BFL20] have recently given further evidence that the analysis of the generic security
of OMDL must differ from that of other assumptions. They show that in the algebraic group
model, a large class of assumptions, captured by an extension of the uber assumption framework
[BBG05, Boy08], is implied by the hardness a parametrized discrete-logarithm problem: in q-DLog
the adversary is given (xG, x2G, . . . , xqG) and must find x. While in the AGM q-DLog implies
assumptions as diverse as the strong Diffie-Hellman [BB08], the Gap Diffie-Hellman [OP01], and the

1The authors study the security of assumptions (including OMDL) and schemes in an extension of the generic
group model that models preprocessing attacks. They give a proof sketch for the security of OMDL with preprocessing.
While we show that their sketch is flawed (see p. 7), their preprocessing techniques can be adapted to our proof. Thus
their result for OMDL in the preprocessing GGM still holds, except for a change of bounds.
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LRSW assumption [LRSW99], this is not the case for OMDL. Using the meta-reduction technique,
Bauer et al. [BFL20] show that it is impossible to prove OMDL from q-DLog, for any q, in the
AGM.

Challenges in the GGM proof of OMDL. We proceed like Shoup [Sho97] in that we re-
place all challenges xi in the game by corresponding polynomials Xi ∈ Zp[X1, . . . , Xn]. It seems
tempting to then deduce, like for DL, that the probability that P (x1, . . . , xn) = Q(x1, . . . , xn) for
any P ≠ Q generated during the game is at most 1

p by Schwartz-Zippel. (This is what Coretti et al.
[CDG18] do in their proof sketch.) This however ignores the fact that, via the discrete logarithm
oracle DLog(·), the adversary can obtain (a lot of) information on the challenges xi and thereby
easily cause such collisions. In more detail, such a straightforward proof has the following issues:

First, in the game simulated via polynomials, the adversary’s oracle DLog(·) must be simulated
carefully. For example, suppose the adversary asks for the discrete logarithm of the first challenge
by making the query DLog(Ξ(X1)). Since the challenge x1 is not defined yet, the challenger
samples it randomly and gives it to the adversary. However, if the adversary later asks for Ξ(X1 + 1)
(via its group-operation oracle) and queries DLog on it, it expects the answer x1 + 1, and not a
random value. (In [CDG18], the DLog oracle always returns random values; the adversary can
thus trivially decide that it is not playing the OMDL game in the GGM.)

Second, there is a more subtle issue. Again suppose that the adversary queried DLog(Ξ(X1))
and was given the answer x1. Let P := X1. Using the group-operation oracle, the adversary can
compute (an encoding of) the constant polynomial Q := x1, that is, it can obtain Ξ(Q). Since
P (x1) = Q(x1) = x1, this means that the adversary can construct two polynomials P and Q such
that P (x1, . . . , xn) = Q(x1, . . . , xn) and P ̸= Q. These situation can not occur in GGM proofs of
other assumptions, because as long as there is no simulation failure, the adversary’s polynomials
are independent of −→x . This is the reason that one can apply Schwartz-Zippel (SZ) in the end.

In summary, this use of SZ is not possible for OMDL (although [CDG18] uses it) because the
adversary can obtain information on the challenge (x1, . . . , xn) even when there is no simulation
failure, namely from its oracle DLog.

All these issues persist when using Maurer’s model [Mau05], which is an abstraction of Shoup’s
GGM model in which all (logarithms of) group elements remain in a “black box”. The adversary
can ask for creating new entries in the box that are the sum of existing entries, or for values of
its choice. For OMDL one would have to extend the model and allow the adversary to obtain
values from the box to implement a DLog oracle. In proofs in this model [Mau05], the adversary
wins if it creates a collision between values in the black box (which is what lets Maurer assume
non-adaptive adversaries). However, an OMDL adversary can easily create collisions (e.g., get x1
from the DLog oracle, then insert the constant x1 into the black box).

Our GGM proof of OMDL In our proof of the hardness of OMDL in the GGM we follow the
overall strategy of simulating the game using polynomials, but we take into account the issues just
described. That is, the challenger monitors what the adversary has learned about the challenge and
defines the simulation considering this knowledge, so the adversary cannot trivially distinguish the
real game from the simulation. Of course, their might still be simulation failures due to “bad luck”,
which corresponds to the event that previous proofs bound via Schwartz-Zippel. As our simulation
is quite different, we propose a new lemma that precisely corresponds to the situation in OMDL.
That is, it bounds the probability that our (more complex) simulation fails.

Our strategy is similar to how Yun [Yun15] analyzed the generic security of the multiple discrete
logarithm assumption, where the adversary must solve multiple DL challenges (but is not given a
DLog oracle, which is what causes all the complication of the OMDL proof). Like Yun, we formalize
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the knowledge about the challenge that adversary accumulates by affine hyperplanes in Znp . Due to
the DLog oracle, this formalization is more complex for OMDL.

One might wonder if it was possible to still rely on the Schwartz-Zippel lemma (SZ) for proving
OMDL, which would be the obvious approach. We have already argued that applying it once and
at the end of the game, as in previous proofs, is not possible. But can SZ be applied before the end
of the game?

A first idea could be to apply SZ at each call to the DLog oracle, but it does not work. Consider
a call DLog(Ξ(X1 + X2)) answered with a uniform v ← Zp. One could now replace the variable X1
by the expression X2 − v in all polynomials P generated so far and use SZ to bound the probability
that this creates a collision. One problem is that, P being a multivariate polynomial, SZ does
not directly imply a bound on Pr[P (X2 − v, X2, . . . , Xn) = 0]. Indeed, P (X2 − v, X2, . . . , Xn) is the
evaluation of the polynomial P̂ (X1) := P (X1, X2, . . . , Xn) for X1 = X2 − v, so we need to bound
Pr[P̂ (X2− v) = 0] for a polynomial P̂ with coefficients in the ring Zp[X2, . . . , Xn]. But SZ is defined
for polynomials over fields. More generally, when the query DLog(Ξ(P (X1, . . . , Xn)) involves a
more complex polynomial than P = X1 + X2 then the substitution of one variable by a linear
expression of the other is even more cumbersome to describe notationally. In our proof, these
problems are avoided by replacing SZ with a lemma appropriate for OMDL.

Another idea would be to apply SZ each time a new encoding is computed. Indeed, assuming
no collisions have occurred so far, then one could use SZ to bound the probability that the new
encoding introduces a collision, and then proceed by induction.

But the resulting proof would require one game hop for every newly computed encoding: The
j-th hybrid of this game would be the one in which the j first encodings are chosen all different
independently of the real value of the challenge. The challenge −→x is picked by the game just before
the (j + 1)-th encoding, corresponding to the polynomial Pj+1, is defined. Using SZ, we can show
that the probability that Pj+1(−→x ) = Pi(−→x ) for all i ≤ j is negligible.

But in fact, we need to be more cautious. When the adversary queries DLog(Ξ(X1)) and
obtains x1, to prevent the attack where the adversary generates the constant polynomial Pj+1 = x1,
we need to adapt all polynomials so far defined to reflect the information revealed by the oracle
Dlog. In this example, this is easy to formalize: update every polynomial by evaluating X1 on x1
and replace Pk(x1, X2, . . . , Xn) by some P ′k(X2, . . . , Xn); the updated challenge −→x would be of size
n− 1. To generalize this, we would have to apply an affine transformation to all the variables of
the polynomials at each call to DLog(). After as many game hops as there are queries by the
adversary, we would arrive at a game in which all the encodings are random and the challenge is
defined after the adversary gives its output.

We believe that both approaches just sketched lead to more complicated proofs than the one
we give. In our proof, in the first game hop we abort if our simulation fails and we bound this
probability by our new lemma. The remaining 3 game hops are purely syntactical, in that they do
not change the adversary’s winning probability.

One-More CDH

Another “one-more” assumption is the one-more computational Diffie-Hellman assumption [BNN04],
also known as 1-MDHP [KM08, KM10], which is very similar to the chosen-target CDH assumption
[Bol03]. In this problem, the adversary receives q pairs of group elements (X, Yi), which all have the
same first component X = xG, and its task is to compute xYi for all i, for which it is provided an
oracle CDH1() that computes xY for any Y of the adversary’s choice. As for OMDL, the number
of queries must be less than the number of challenges.

It turns out that this assumption can be proved to hold in the generic group model using
standard techniques. Following the original GGM proof of DL [Sho97], we modify the simulation
for the adversary from encoding logarithms to encoding polynomials in Zp[X, Y1, . . . , Yn]. The
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challenges that the adversary receives are the monomials X, Y1, . . . , Yn, and when the adversary
queries its oracle CDH1() on an encoding that corresponds to a polynomial P , it receives an
encoding corresponding to XP , i.e., its polynomial multiplied by the indeterminate X. To win this
“ideal” game, the adversary must construct encodings that correspond to (XY1, . . . , XYn). Making
q calls to its CDH1() oracle and using its group-operation oracle, it can only construct (encodings
of) polynomials from Span(1, X, Y1, . . . , Yn, XP1, . . . , XPq).

Ignoring polynomials of degree less than 2, the adversary wins the game if Span(XY1, . . . , XYn) ⊆
Span(XP1, . . . , XPq). But it also has to satisfy the second winning condition, namely to solve more
challenges than the number of its CDH1() oracle queries; that is q < n. Using a dimension argument,
we deduce that the above condition cannot be satisfied, and thus the adversary cannot win this
game.

This “ideal” game is indistinguishable from the original one if the adversary does not create two
distinct polynomials that agree on x, y1, . . . , yn (the discrete logarithms of X, Y1, . . . , Yn). Because
the degree of all polynomials is upper-bounded by q + 1, we can use the Schwartz-Zippel Lemma
(as, e.g., done in [Boy08]) to upper-bound the statistical distance between the two games by
O

(
(q+1)(m+q)2

p

)
, where m is the number of group operations made by the adversary. We can

therefore derive the generic security of this assumption. (Another way of obtaining this result is by
casting the assumption as an uber-assumption in the algebraic group model and applying [BFL20,
Theorem 4.1].)

The situation is very different for a variant of the above problem, in which the first component
of the challenge pairs is not fixed. That is, the adversary can request challenges, which are random
pairs (Xi, Yi) and is provided an oracle CDH(), which on input any pair (X = xG, Y ) returns the
CDH solution of X and Y , that is xY . The adversary must compute the CDH solutions of the
challenge pairs while making fewer queries to CDH(). In this paper we will refer to this assumption
as OMCDH.

For this problem the standard proof methodology in the GGM fails. On a very high level,
the reason is the following. Providing the adversary with an oracle CDH1(), as in the one-more
Diffie-Hellman assumption with one component fixed (or a DLog oracle in OMDL) lets the adversary
only construct polynomials of degree at most q + 1. In contrast, the CDH() oracle in OMCDH
leads to a multiplication of the degrees, which enables the adversary to “explode” the degrees and
make arguments à la Schwartz-Zippel impossible, since they rely on low-degree polynomials.

There is however, a neat way around this problem, namely to prove the following, stronger
assumption: as in OMCDH, the adversary still has to compute CDH solutions, but now it is
given a discrete-logarithm oracle. This hybrid assumption implies both OMDL (for which the goal
is harder) and OMCDH (in which the oracle is less powerful) and we prove it in the GGM by
extending our proof of OMDL.

1.3 Blind Schnorr Signature

Schnorr Signatures. The Schnorr signature scheme [Sch90, Sch91] is one of the oldest and
simplest signature schemes based on prime-order groups. Its adoption was hindered for years by a
patent which expired in February 2008, but it is by now widely deployed: EdDSA [BDL+12], a
specific instantiation based on twisted Edward curves, is used for example in OpenSSL, OpenSSH,
GnuPG and more. Schnorr signatures are also expected to be implemented in Bitcoin [Wui18],
enabling multi-signatures supporting public key aggregation, which will result in considerable
scalability and privacy enhancements [BDN18, MPSW19].

The security of the Schnorr signature scheme has been analyzed in the random oracle model
(ROM) [BR93], an idealized model which replaces cryptographic hash functions by truly random
functions. Pointcheval and Stern [PS96b, PS00] proved Schnorr signatures secure in the ROM under
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the discrete logarithm assumption (DL). The proof, based on the so-called Forking Lemma, proceeds
by rewinding the adversary, which results in a loose reduction (the success probability of the DL
solver is a factor qh smaller than that of the adversary, where qh is the number of the adversary’s
random oracle queries). Using the “meta reduction” technique, a series of works showed that this
security loss is unavoidable when the used reductions are either algebraic [PV05, GBL08, Seu12] or
generic [FJS19]. Although the security of Schnorr signatures is well understood (in the ROM), the
same cannot be said for two related schemes, namely blind Schnorr signatures and Schnorr-signed
ElGamal encryption.

Blind Schnorr Signatures. A blind signature scheme allows a user to obtain a signature from
a signer on a message m in such a way that (i) the signer is unable to recognize the signature later
(blindness, which in particular implies that m remains hidden from the signer) and (ii) the user
can compute one single signature per interaction with the signer (one-more unforgeability). Blind
signature schemes were introduced by Chaum [Cha82] and are a fundamental building block for
applications that guarantee user anonymity, e.g. e-cash [Cha82, CFN90, OO92, CHL05, FPV09],
e-voting [FOO93], direct anonymous attestation [BCC04], and anonymous credential [Bra94, CL01,
BCC+09, BL13a, Fuc11].

Constructions of blind signature schemes range from very practical schemes based on spe-
cific assumptions and usually provably secure in the random oracle model [PS96a, PS00, Abe01,
Bol03, FHS15, HKL19] to theoretical schemes provably secure in the standard model from generic
assumptions [GRS+11, BFPV13, GG14].

The blind Schnorr signature scheme derives quite naturally from the Schnorr signature scheme
[CP93]. It is one of the most efficient blind signature schemes and increasingly used in practice.
Anticipating the implementation of Schnorr signatures in Bitcoin, developers are already actively
exploring the use of blind Schnorr signatures for blind coin swaps, trustless tumbler services, and
more [Nic19].

While the hardness of computing discrete logarithms in the underlying group G is obviously
necessary for the scheme to be unforgeable, Schnorr [Sch01] showed that another problem that he
named ROS, which only depends on the order p of the group G, must also be hard for the scheme to
be secure. Informally, the ROSℓ problem, parameterized by an integer ℓ, asks to find ℓ + 1 vectors
−→ρ i = (ρi,j)j∈[ℓ] such that the system of ℓ + 1 linear equations in unknowns c1, . . . , cℓ over Zp

∑ℓ
j=1 ρi,jcj = Hros(−→ρ i) , i ∈ [ℓ + 1]

has a solution, where Hros : (Zp)ℓ → Zp is a random oracle. Schnorr showed that an attacker able
to solve the ROSℓ problem can produce ℓ + 1 valid signatures while interacting (concurrently)
only ℓ times with the signer. Slightly later, Wagner [Wag02] showed that the ROSℓ problem
can be reduced to the (ℓ + 1)-sum problem, which can solved with time and space complexity
O

(
(ℓ + 1)2λ/(1+⌊lg(ℓ+1)⌋)), where λ is the bit size of p. For example, for λ = 256, this attack

yields 16 valid signatures after ℓ = 15 interactions with the signer in time and space close to 255.
For ℓ + 1 = 2

√
λ, the attack has sub-exponential time and space complexity O(22

√
λ), although

the number of signing sessions becomes arguably impractical. Asymptotically, this attack can
be thwarted by increasing the group order, but this would make the scheme quite inefficient.
Benhamouda et al. [BLOR20] recently presented a polynomial-time solver for ROS. This leads to
forgeries of blind Schnorr signatures when the attacker is allowed to run concurrent executions of
the signing protocol.

From a provable-security point of view, a number of results [FS10, Pas11, BL13b] indicate that
blind Schnorr signatures cannot be proven one-more unforgeable under standard assumptions, not
even in the ROM. The only positive result by Schnorr and Jakobsson [SJ99] and Schnorr [Sch01]
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states that blind Schnorr signatures are secure in the combination of the generic group model and
the ROM assuming hardness of the ROS problem.

The recent analysis by Hauck, Kiltz, and Loss [HKL19] of blind signatures derived from linear
identification schemes does not apply to Schnorr. The reason is that the underlying linear function
family F : Zp → G, x 7→ xG lacks the property of having a pseudo torsion-free element from the
kernel (see [HKL19, Definition 3.1]). In particular, F is one-to-one, whereas Hauck et al. reduce
blind signature unforgeability to collision resistance of the underlying function family.

Our Results on Blind Schnorr Signatures. Our starting point is the observation that in
the combination2 AGM+ROM Schnorr signatures have a tight security proof under the DL
assumption. This is because we can give a reduction which works straight-line, i.e., unlike the
forking-lemma-based reduction [PS96b, PS00], which must rewind the adversary, it runs the
adversary only once.3 Motivated by this, we then turn to blind Schnorr signatures, whose security
in the ROM remains elusive, and study their security in the AGM+ROM.

Our first contribution is a rigorous analysis of the security of blind Schnorr signatures in the
AGM+ROM. Concretely, we show that any algebraic adversary successfully producing ℓ+1 forgeries
after at most ℓ interactions with the signer must either solve the one-more discrete logarithm
(OMDL) problem or the ROSℓ problem. Although this is not overly surprising in view of the
previous results in the GGM [SJ99, Sch01], this gives a more satisfying characterization of the
security of this protocol. Moreover, all previous proofs [SJ99, Sch01] were rather informal; in
particular, the reduction solving ROS was not explicitly described. In contrast, we provide precise
definitions (in particular for the ROS problem, whose exact specification is central for a security
proof) and work out the details of the reductions to both OMDL and ROS, which yields the first
rigorous proof.

Nevertheless, the serious threat by Wagner’s attack for standard-size group orders remains. In
order to remedy this situation, we propose a simple modification of the scheme which only alters
the signing protocol (key generation and signature verification remain the same) and thwarts (in
a well-defined way) any attempt at breaking the scheme by solving the ROS problem. The idea
is that the signer and the user engage in two parallel signing sessions, of which the signer only
finishes one (chosen at random) in the last round. Running this tweak takes thus around twice
the time of the original protocol. We show that an algebraic adversary successfully mounting an
(ℓ + 1)-forgery attack against this scheme must either solve the OMDL problem or a modified ROS
problem, which appears much harder than the standard ROS problem for large values of ℓ, which
is precisely when the standard ROS problem becomes tractable.

Our results are especially relevant to applications that impose the signature scheme and for
which one then has to design a blind signing protocol. This is the case for blockchain-based systems
where modifying the signature scheme used for authorizing transactions is a heavy process that can
take years (if possible at all). We see a major motivation for studying blind Schnorr signatures in
its real-world relevance for protocols that use Schnorr signatures or will in the near future, such
as Bitcoin. For these applications, Wagner’s attack represents a significant risk, which can be
thwarted by using our modified signing protocol.

Chosen-Ciphertext-Secure ElGamal Encryption. Recall the ElGamal public-key encryp-
tion (PKE) scheme [ElG85]: given a cyclic group (G, +) of prime order p and a generator G, a
secret/public key pair is of the form (y, yG) ∈ Zp ×G. To encrypt a message M ∈ G, one draws
x $← Zp, computes X := xG, and outputs ciphertext (X, M + xY ). This scheme is IND-CPA-secure

2This combination of idealized models was already considered when the AGM was first defined [FKL18].
3A similar result [ABM15] shows that Schnorr signatures, when viewed as non-interactive proofs of knowledge of

the discrete logarithm of the public key, are simulation-sound extractable, via a straight-line extractor. Our proof is
much simpler and gives a concrete security statement.
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under the decisional Diffie-Hellman (DDH) assumption [TY98], that is, no adversary can distinguish
encryptions of two messages. Since the scheme is homomorphic, it cannot achieve IND-CCA2
security, where the adversary can query decryptions of any ciphertext (except of the one it must
distinguish). However, ElGamal has been shown to be IND-CCA1-secure (where no decryption
queries can be made after receiving the challenge ciphertext) in the AGM under a “q-type” variant
of DDH [FKL18].4

A natural way to make ElGamal encryption IND-CCA2-secure is to add a proof of knowledge of
the randomness x used to encrypt. Intuitively, this makes the scheme plaintext-aware [BR95], which
informally means that for any adversary producing a valid ciphertext, there exists an extractor
that can retrieve the corresponding plaintext. The reduction of IND-CCA2 security can then use
the extractor to answer the adversary’s decryption queries. (For ElGamal, the extractor would
extract the randomness x used to produce (X = xG, C = M + xY ) from the proof of knowledge
and return the plaintext M = C − xY .) Since the randomness x together with the first part X of
the ciphertext form a Schnorr key pair, a natural idea is to use a Schnorr signature [Jak98, TY98],
resulting in what is usually called (Schnorr-)signed ElGamal encryption. This scheme has a number
of attractive properties: ciphertext validity can be checked without knowledge of the decryption
key, and one can work homomorphically with the “core” ElGamal ciphertext (a property sometimes
called “submission-security” [Wik08]), which is very useful in e-voting.

Since Schnorr signatures are extractable in the ROM, one would expect that signed ElGamal
can be proved IND-CCA2 under, say, the DDH assumption (in the ROM). However, turning this
intuition into a formal proof has remained elusive. The main obstacle is that Schnorr signatures
are not straight-line extractable in the ROM [BNW17]. As explained by Shoup and Gennaro
[SG02], the adversary could order its random-oracle and decryption queries in a way that makes
the reduction take exponential time to simulate the decryption oracle.

Schnorr and Jakobsson [SJ00] showed IND-CCA2 security in the GGM+ROM, while Tsiounis
and Yung [TY98] gave a proof under a non-standard “knowledge assumption”, which amounts to
assuming that Schnorr signatures are straight-line extractable. On the other hand, impossibility
results tend to indicate that IND-CCA2 security cannot be proved in the ROM [ST13, BFW16].

Our Results on Signed ElGamal Encryption. Our second line of contributions is twofold.
First, we prove (via a tight reduction) that in the AGM+ROM, Schnorr-signed ElGamal encryption
is IND-CCA2-secure under the DDH assumption. While intuitively this should follow naturally from
the straight-line extractability of Schnorr proofs of knowledge for algebraic adversaries, the formal
proof is technically quite delicate: since messages are group elements, the “basis” of group-element
inputs in terms of which the adversary provides representations contains not only the three group
elements of the challenge ciphertext but also grows as the adversary queries the decryption oracle.5

We finally consider the “hashed” variant of ElGamal (also known as DHIES) [ABR01], in which
a key is derived as k = H(xY ). In the ROM, the corresponding key-encapsulation mechanism
(KEM) is IND-CCA2-secure under the strong Diffie-Hellman assumption (which states that CDH is
hard even when given a DDH oracle) [CS03]. We propose to combine the two approaches: concretely,
we consider the hashed ElGamal KEM together with a Schnorr signature proving knowledge of the
randomness used for encapsulating the key and give a tight reduction of the IND-CCA2 security of
this scheme to the DL problem in the AGM+ROM.

4[FKL18] showed IND-CCA1 security for the corresponding key-encapsulation mechanism, which returns a key
K = xY and an encapsulation of the key X = xG. The ElGamal PKE scheme is obtained by combining it with the
one-time-secure data-encapsulation mechanism M 7→ M + K. Generic results on hybrid schemes [HHK10] imply
IND-CCA1 security of the PKE.

5Bernhard et al. [BFW16] hastily concluded that, in the AGM+ROM, IND-CCA2-security of signed ElGamal
followed from straight-line extractability of Schnorr signatures showed in [ABM15]. Our detailed proof shows that
this was a bit optimistic.
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1.4 Other work
In this document, I do not discuss a major part of my work during my Phd which concerns the
collaboration I had with Melissa Chase and Esha Ghosh from MSR.

This work aims to extend the principle of anonymous credentials in a more complicated setting
than usual. Anonymous Credentials is a protocol in which a user get some credential (for example
the id card) from a signing authority (for example the State) and wants to prove to a verifier
that he is allowed to get access to some resource (for example, you can show your id card to prove
you’re a citizen of the country so that you can vote.) A trivial way of proving that you can get an
access on the resource is to show your credential to the verifier, but this is not anonymous at all
(for example your id card shows more information than only the fact that you’re allowed to vote. It
reveals your age, your name, etc...).

To make the process anonymous we usually use a zero knowledge proofs of knowledge, which
proves that the user owns a valid credential. By doing this, we can show to a verifier that some
users are allowed get access to the resources without revealing anything more. To enforce the
scheme, we can also make the signing authority provide credential by using some blind signatures
procedure, so that they cannot collude with the verifier to deduce the user’s identity.

In credential transparency, we consider the situation in which the users give their credential to
an authority called the Cloud. Since only the Cloud is able to manipulate the users’ credentials in
this setting, it is also the Cloud which shows the credential to the verifier so that a user can get an
access a resource.

Thus we now need to consider what the Cloud could be mischievous. For example, a Cloud
which has no access to a resource could use one user’s credential to authenticate anonymously to a
verifier. Thus we want the users to be aware of how their credentials are used by the Cloud. We
want to make the Cloud accountable for all the use of credential that it does.

In this work, we designed a scheme we called credential transparency inspired from some already
existing constructions such as certificate transparency, Coniks or SeemLess. The aim is to allow the
auditing of the Cloud’s behaviour so that we don’t need to trust it. The main idea behind those is
that the authority will have to maintain a log of all the actions it did. In credential transparency,
the Cloud will have to update the log for every time it uses a credential to authenticate to a verifier.
The logs are accumulators (for example merkle trees) that provide an efficient way of verifying that
an element is included inside (proof of inclusion) and provide privacy. Every update of such a log
by the cloud is released together with a snapshot and proof of update provided so that external
parties called auditors can verify that the update was computed correctly. Since those snapshot
are public, everyone who wants to check the inclusion of some information in the log can check
that the snapshot they refer to is the same for everyone: the cloud cannot cheat.

With Melissa and Esha, we designed the credential transparency protocol and proved its security.
Our scheme uses a lot of cryptographic primitives, such as Strong Accumulator (SA), append-only
zero knowledge set (aZKS), simulatable Verifiable Pseudorandom Functions (sVRF), simulatable
Commitment, and Zero Knowledge (ZK) scheme.





Chapter 2

Preliminaries

In this chapter, we introduce the notation and basic assumptions and primitives employed throughout
this manuscript. We start by recalling some standard mathematical and computational notions,
then we briefly introduce provable security. We also recall some well-known number-theoretic
assumptions.

2.1 General Notation
Integers, sets, modulus: In this document, R is the set of real numbers, Z is the set of integers
and N the set of positive integers. If a, b ∈ Z with a < b, we denote the closed integer interval from
a to b by [a, b].

If p ∈ N we call Zp the ring of integers modulus p. We represent Zp by the elements of [0, p− 1].
Elements of Zp can also be seen as the remainders of the integers in Z after Euclidian division by p.
If a and b are equal modulo p, meaning that there exist q, q′ ∈ Z such that a−qp = b−q′p ∈ [0, p−1],
we write a ≡p b or a ≡ b (mod p). If p is a prime then Zp has the structure of a field.

If S is a set and n ∈ N, n > O, a tuple of elements of S is noted (s1, . . . , sn). The set of tuples
is denoted Sn. We use the vector notation −→s to represent a list of elements of S, meaning that
there exists a unique n ∈ N, such as −→s ∈ Sn. We call n the size of −→s and we denote |−→s | = n. We
also use the notation −→s = (si)ni=1. The empty list is denoted (). If S is a finite set of elements we
call |S| the cardinal of (number of elements in) S.

Thus |Zp| = p. Throughout this work, p will always part of the public parameters.

Cyclic groups: Every group of prime order (cardinal) p is cyclic and thus is homomorphic to
Zp. In this work we call G such a group with neutral element 0G ∈ G (or 0 when there is no
possible confusion). We use additive notation, meaning that if X1, X2 ∈ G we have X1 + X2 ∈ G
and −X1 ∈ G. if n ∈ N and x ∈ G we define nX ∈ G as the sum of n times the group element X.
Since G has order p, if r is the remainder of n in the Euclidian division by p, we get nX = rX,
thus we can define rX with r ∈ Zp. A generator G of G is a group element such that for any group
element X ∈ G, there exists a unique x ∈ Zp such that X = xG. Since the order of G is a prime p,
every element of G which is not 0G is a generator.

Thus we define the discrete logarithm of an element X ∈ G with respect to the generator G
by the unique x ∈ Zp such that X = xG. We write logG(X) = x or log(X) = x when there is no
ambiguity on the generator G. We denote by (p,G, G) the tuple representing the order p of the
group G and its generator G.

Polynomials: If A is a ring, a polynomial P ∈ A[X] is represented as P (X) = ∑n
i=0 aiXi, with

(ai)ni=0 ∈ An+1. Since A[X] is also a ring we can define A[X1, X2] = A[X1][X2] and by induction
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A[X1, . . . , Xn]. Elements P ∈ A[X1, . . . , Xn] are called multivariates polynomials. Every multivariate
polynomial can be written as a unique linear combination of the monomials Xi11 Xi22 . . . Xinn which
have by definition degree i1 + i2 + . . .+ in. The degree of P written deg(P ) is equal to the maximum
degree of the monomials that compose it. For multivariate polynomials P ∈ A[X1, . . . , Xn] we write
−→
X := (X1, . . . , Xn) and P (−→x ) := P (x1, . . . , xn) for −→x ∈ An. In the whole document the ring A will
always be Zp.

Vector spaces: Zp[X1, . . . , Xn] has the structure of a Zp-vector space. In this document we
consider vector subspaces of Zp[X1, . . . , Xn]: if L = (P1, . . . , Pq) is a list of polynomials then
Span(L) :=

{ ∑
i∈[1,q] αiPi | −→α ∈ Zqp

}
is the smallest vector space containing the elements of L. If

L = ∅ then Span(L) = {0}. If F is a vector subspace of Zp[X1, . . . , Xn], we denote by dim(F ) the
dimension of F .

If E is a vector space, an affine subspace of E is a couple A = (x, F ) with x ∈ E and F a
vectorial subspace of E. We denote by dim(A) = dim(F ) the dimension of the affine space A. An
affine hyperplane is an affine subspace of dimension dim(E)− 1.

For the Euclidian space (Znp , ⟨·, ·⟩) we write the scalar product of two elements −→x ,−→y ∈ Znp ,
as ⟨−→x ,−→y ⟩ = ∑

i∈[1,n] xiyi. In this work, polynomials are typically of degree 1, so we can write
P = ρ0 + ∑n

i=1 ρiXi as a scalar product: P (−→X ) = ρ0 + ⟨−→P ,
−→
X ⟩, where we define −→P := (ρi)i∈[1,n],

that is the vector of non-constant coefficients of P .

Probabilities: For a random variable X and a possible outcome x, we write Pr[X = x] to
denote the probability of the event X = x. Given a non-empty finite set S, we let x $← S denote the
operation of sampling an element x from S uniformly at random, meaning that if X is a random
variable sampled uniformly from S and s ∈ S, we have Pr[X = s] = 1

|S| .

The Schwarz-Zippel Lemma We introduce here the Schwarz Zippel Lemma, which we mention
a lot in our work. [DL77]:

Lemma 2.1. Let P ∈ Zp[X1, . . . , Xm] be a non-zero polynomial of total degree d. Let r1, . . . , rm
be selected at random independently and uniformly from Z∗p. Then

Pr
[
P (r1, . . . , rm) ≡p 0

]
≤ d

p− 1 .

Function Bounds: Given a function f : N→ R, the set O(f) describes all the functions that f
dominates, meaning they can be upper-bounded by f . Namely, g ∈ O(f) means that exists M ∈ R
such that for all λ ∈ N we have |g(λ)| ≤ M |f(λ)|. We say that g is polynomially bounded if and
only if g ∈ O(f), with f a polynomial function.

A function µ : N→ [0, 1] is negligible (denoted µ = negl) if for all c ∈ N there exists λc ∈ N such
that µ(λ) ≤ λ−c for all λ ≥ λc. A function ν is overwhelming if 1− ν = negl.

Algorithms: Algorithms are Turing Machines. If A is an algorithm, the length function A.rl(λ)
of A is a polynomially bounded function from N to N in λ defining the length of the randomness
for a probabilistic interactive Turing Machine. In this work all the algorithms are probabilistic
unless stated otherwise meaning that an algorithm A(x1, . . . , xn; r) is run on input (x1, . . . , xn)
with random coins r ∈ {0, 1}A.rl(λ). By y ← A(x1, . . . , xn) we denote the operation of running
algorithm A on input (x1, . . . , xn) and uniformly random coin and letting y denote the output. In
the algorithm instantiation, we denote by y := x the attribution of the value x to the variable y. If
A has oracle access to some algorithm Oracle, we write y ← AOracle(x1, . . . , xn).
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2.2 Security notions

Security games A security game GAMEpar(λ) indexed by a set of parameters par consists
of a main procedure and a collection of oracle procedures. The main procedure, on input the
security parameter λ, initializes variables and generates input on which an adversary A is run.
The adversary interacts with the game by calling oracles provided by the game and returns some
output, based on which the game computes its own output bit b, which we write b← GAMEApar(λ).
We identify false with 0 and true with 1. Games are either computational or decisional. If the
game is computationnal, the advantage of A in GAMEpar(λ) is defined as

AdvGAME
par,A := Pr[1← GAMEApar(λ)]

If the game is decisionnal, the advantage of of A in GAMEpar(λ) is defined as

AdvGAME
par,A := 2 · Pr[1← GAMEApar(λ)]− 1

where the probability is taken over the random coins of the game and the adversary. We say that
GAMEpar is hard if for any probabilistic polynomial-time (p.p.t.) adversary if A, AdvGAME

par,A =
negl(λ). All games considered in this paper are computational unless stated otherwise (we only
consider decisional games in Section 7.1 and Section 7.3 and 6.4.)

Algebraic security An algebraic security game (with respect to GrGen) is a game GAMEGrGen
that (among other things) runs Γ← GrGen(1λ) and runs the adversary on input Γ = (p,G, G). An
algorithm Aalg executed in an algebraic game GAMEGrGen is algebraic if for all group elements Z that
it outputs, it also provides a representation of Z relative to all previously received group elements:
if Aalg has so far received −→X = (X0, . . . , Xn) ∈ Gn+1 (where by convention we let X0 = G), then
Aalg must output Z together with −→z = (z0, . . . , zn) ∈ (Zp)n+1 such that Z = ∑n

i=0 ziXi. We let
Z[−→z ] denote such an augmented output. When writing −→z explicitly, we simply write Z[z0,...,zn]
(rather than Z[(z0,...,zn)]) to lighten the notation.

Algebraic Algorithms in the Random Oracle Model. We assume the existence of a p.p.t.
algorithm GrGen which, on input the security parameter 1λ in unary, outputs a group description
Γ = (p,G, G) where p is of bit-length λ. The original paper [FKL18] considered the algebraic group
model augmented by a random oracle and proved tight security of BLS signatures [BLS04] in the
AGM+ROM model. The random oracle in that work is of type H : {0, 1}∗ → G, and as the outputs
are group elements, the adversary’s group element representations could depend on them.

In this work we analyze Schnorr-type cryptosystems, for which the RO is typically of type
H : G × {0, 1}∗ → Zp. Thus, an algebraic adversary querying H on some input (Z, m) must also
provide a representation −→z for the group-element input Z. In a game that implements the random
oracle by lazy sampling, to ease readability, we will define an auxiliary oracle H̃, which is used by
the game itself (and thus does not take representations of group elements as input) and implements
the same function as H.

The One-More Discrete Logarithm Problem. The discrete logarithm (DL) problem con-
sists in finding the discrete logarithm of a group element. From a group description (p,G, G) we
resolve the DL problem if for X ∈ G, we find logG(X) in a polynomial time. The security game
representing the DL problem is represented in figure 2.1.

For a group description (p,G, G) with input X, Y ∈ G with secret x, y ∈ Zp such as X = xG and
Y = yG, the Computational Diffie Hellman (CDH) problem consist in finding the group element Z
such as Z = xyG. The security game representing the CDH problem is represented in Figure 2.2.
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Game DLAGrGen(λ)
(p,G, G)←GrGen(1λ)
x

$← Zp ; X := xG

y ← A(p,G, G, X)
return (y = x)

Game OMDLAGrGen(λ)
(p,G, G)←GrGen(1λ)
−→x := ( ) ; q := 0
−→y ← AChal,DLog(p,G, G)
return

(−→y = −→x ∧ q < |−→x |
)

Oracle Chal()
x

$← Zp ; X := xG
−→x := −→x ∥ (x)
return X

Oracle DLog(X)
q := q + 1
x := logG(X)
return x

Figure 2.1: The DL and OMDL problems.

Game CDHAGrGen(λ)
(p,G, G)←GrGen(1λ)
x, y

$← Zp

X := xG ; Y := yG

V ← A(p,G, G, X, Y )
return (V = xyG)

Game OMCDHAGrGen(λ)
(p,G, G)←GrGen(1λ)
−→
Z := ( ) ; q := 0
−→
V ← AChal,CDH(p,G, G)

return
(−→

Z = −→V ∧ q < |
−→
Z |

)

Oracle Chal()
x

$← Zp ; X := xG

y
$← Zp ; Y := yG

−→
Z := −→Z ∥ (xyG)
return X, Y

Oracle CDH(X, Y )
q := q + 1
x := logG(X)
y := logG(Y )
return (xyG)

Figure 2.2: The CDH and OMCDH problems

The one more-discrete logarithm (OMDL) problem is an extension of the DL problem and
consists in finding the discrete logarithm of n group elements by making strictly less than n calls
to an oracle solving the discrete logarithm problem. The security game representing the OMDL
problem is represented in figure 2.1. It was introduced in [BNPS03] and used for example to prove
the security of the Schnorr identification protocol against active and concurrent attacks [BP02].

Equivalently, the one more-computational Diffie Hellmann (OMCDH) is an extension of the
CDH problem and is represented in figure Figure 2.2



Chapter 3

One More-Discrete Logarithm security
in the Generic Group Model

In this chapter, we give a security proof for the OMDL assumption in the GGM. Despite the
intuition, we need more work than the usual GGM proofs to show that OMDL is secure in the
GGM. First, we define a lemma on which our proof will be based. Then we give an intuition for
the proof, and finally we build the security proof.

After that, we give an insight on how the same proof idea can cover the OMCDH assumption
security and further assumptions. Those are proved in the appendices.

3.1 A Technical Lemma for OMDL in the GGM

While a standard argument in GGM proofs uses the Schwartz-Zippel lemma, this argument cannot
be made for OMDL since in this game the adversary obtains information on the challenge −→x not
only when the simulation fails. We therefore cannot argue that −→x looks uniformly random to the
adversary, which is a precondition for applying Schwartz-Zippel.

We therefore use a different lemma, which bounds the probability that for a given polynomial
P , we have P (−→x ) = 0 when −→x is chosen uniformly from a set C. This set C ⊆ Znp represents the
knowledge the adversary has on the challenge −→x .

The Schwartz-Zippel lemma applies when C = Sn with S a subset of Zp, whereas our lemma is
for the case that P has degree 1 and C is defined by an intersection of affine hyperplanes Qj from
which we remove other affine hyperplanes Di, that is C :=

( ⋂
j∈[1,q]Qj

)
\

( ⋃
i∈[1,m]Di

)
.

We start with some notations. Consider m polynomials Di ∈ Zp[X1, . . . , Xn] of degree 1, and
q + 1 polynomials Qj ∈ Zp[X1, . . . , Xn] also of degree 1. We can write them as

Di(
−→
X ) = Di,0 +

n∑
k=1

Di,kXk = Di,0 +
〈−→
Di,
−→
X

〉
(3.1)

with−→Di := (Di,k)1≤k≤n. We define the sets of roots of these polynomials, which are affine hyperplanes
of Znp :

∀i ∈ [1, m] : Di = {−→x ∈ Znp |Di(−→x ) = 0}
∀j ∈ [1, q + 1] : Qj = {−→x ∈ Znp |Qj(−→x ) = 0} .

(3.2)

From (3.1), we see that the vector −→Di of non-constant coefficients defines the direction of the
hyperplane Di. It contains the coefficients of the polynomial Di −Di(0) = ∑n

k=1 Di,kXk.
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We define the set
C :=

( ⋂
j∈[1,q]

Qj
)
\

( ⋃
i∈[1,m]

Di
)

, (3.3)

that is, the set of points at which all Qi’s vanish but none of the Di’s do. The following lemma will
be the heart of our proofs of one-more assumptions in the GGM.

Lemma 3.1. Let D1, . . . , Dm, Q1, . . . , Qq+1 ∈ Zp[X1, . . . , Xn] be of degree 1; let C be as defined in
(3.2) and (3.3). Assume Qq+1 ∩ C ̸= ∅ and −→Q q+1 is linearly independent of (−→Q j)j∈[1,q]. If −→x is
picked uniformly at random from C then

p−m

p2 ≤ Pr
[
Qq+1(−→x ) = 0

]
≤ 1

p−m
.

Proof
Since −→x is picked uniformly in C, we have Pr[−→x ∈ Qq+1] = |Qq+1 ∩ C|

|C|
.

We first bound |C|. We define the affine space Q := ⋂
j∈[1,q]Qj and let d := dim(Q) denote its

dimension. Thus, Q contains pd elements. We rewrite C:

C = Q \
( ⋃
i∈[1,m]

(Di ∩Q)
)

.

Now for a fixed i ∈ [1, m] we bound the size of Di ∩ Q. Since the polynomial Di has degree one
by definition, Di is an hyperplane. There are three cases: either Q ⊆ Di, which means C = ∅.
This contradicts the premise of the lemma, namely Qq+1 ∩ C ̸= ∅. Since Di is an hyperplane, the
remaining cases are Q∩Di = ∅ and Q∩Di has dimension dim(Q)− 1 = d− 1. In both cases Di ∩Q
contains at most pd−1 elements.

When we remove the sets (Di)i∈[1,m] from Q, we remove at most mpd−1 elements, which yields

pd −mpd−1 ≤ |C| ≤ pd . (3.4)

We now use the same method to bound |C ∩ Qq+1|. We define Q′ = Qq+1 ∩Q. Since −→Q q+1 is
linearly independent of (−→Q j)j∈[1,m], we get dim(Q′) = d− 1.

For a fixed i ∈ [1, m], since by assumption Qq+1 ∩ C ̸= ∅, we can proceed as with Q above:
either Q′ ∩ Di = ∅ or Q′ ∩ Di has dimension d− 2, which yields

pd−1 −mpd−2 ≤ |Qq+1 ∩ C| ≤ pd−1 . (3.5)

Combining equations (3.4) and (3.5) we obtain the following, which concludes the proof:

pd−1 −mpd−2

pd
≤ |Qq+1 ∩ C|

|C|
≤ pd−1

pd −mpd−1 .

3.2 Proof Overview
The generic game. We prove a lower bound on the computational complexity of the OMDL
game in generic groups in the sense of Shoup [Sho97]. We follow the notation developed by Boneh
and Boyen [BB08] for this proof.

In the generic group model, elements of G are encoded as arbitrary unique strings, so that
no property other than equality can be directly tested by the adversary. The adversary performs
operations on group elements by interacting with an oracle called GCmp.

To represent and simulate the working of the oracles, we model the opaque encoding of the
elements of G using an injective function Ξ: Zp → {0, 1}⌈log2(p)⌉ where p is the group order.
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Game OMDLGGMAGrGen(λ)
−→x := ( ) ; a0 := 1
j := 0 ; q := 0 ; n := 0
−→y ← AChal,DLog,GCmp(Enc())
return

(−→y = −→x ∧ q < n
)

Oracle Chal()
n := n + 1
xn

$← Zp

j := j + 1
aj := xn

return Enc()

Oracle DLog(ξ)
if ξ /∈ {ξi}i∈[0,j]

then return ⊥
q := q + 1
i := min{k ∈ [0, j] | ξ = ξk}
return ai

Enc()
if ∃ i ∈ [0, j − 1] : aj = ai

then ξj := ξi

else

ξj
$← {0, 1}log(p) \ {ξi}i∈[0,j−1]

return ξj

Oracle GCmp(ξ, ξ′, b)
if ξ /∈ {ξi}i∈[0,j] or ξ′ /∈ {ξi}i∈[0,j]

then return ⊥
i := min{k ∈ [0, j] | ξ = ξk}
i′ := min{k ∈ [0, j] | ξ′ = ξk}
j := j + 1 ; aj := ai + (−1)bai′

return Enc()

Figure 3.1: The OMDL game in the GGM

Internally, the simulator represents the elements of G by their discrete logarithms relative to a fixed
generator G. This is captured by Ξ, which maps any integer a to the string ξ := Ξ(a) representing
a ·G. In the game we will use an encoding procedure Enc to implement Ξ.

We specify the game OMDL in the GGM in Figure 3.1. In contrast to Figure 2.1 there are
no more group elements. The game instead maintains discrete logarithms a ∈ Zp and gives the
adversary their encodings Ξ(a), which are computed by the procedure Enc. The challenger uses
variable j to represent the number of created group elements, which is incremented before each call
to Enc. The procedure Enc then encodes the latest scalar aj . If aj has already been assigned a
string ξ, then Enc() outputs ξ, else it outputs a random string different from all previous ones.
For this, the game maintains a list (ai, ξi)0≤i≤j of logarithms and their corresponding encodings.

OMDLGGM initializes j = 0 and a0 = 1, and runs the adversary on input ξ0 ← Enc() (ξ0 is
thus the encoding of the group generator). The oracle Chal increments a counter of challenges n,
samples a new value xn and returns its encoding by calling Enc(). Since it creates a new element,
it first increments j and defines the aj := xn. The oracle DLog is called with a string ξ and returns
⊥ if the string is not in the list of assigned strings {ξi}i∈[0,j]. Else, it picks an index i (concretely:
the smallest such index) such that ξi = ξ and returns ai, which is the Ξ-preimage of ξ (and thus
the logarithm of the group element encoded by ξ).

The adversary also has access to the oracle GCmp for group operations, which takes as input
two strings ξ and ξ′ and a bit b, which indicates whether the adversary wants to compute the
addition or the subtraction of the group elements. The oracle gets the (smallest) indexes i and i′

such that ξ = ξi and ξ′ = ξi′ . The oracle increments j, sets aj := ai + (−1)bai′ and returns Enc(),
which computes the encoding of aj .

Proof overview. The aim of our proof is to simulate the game without ever computing scalars
ai by replacing them by polynomials Pi and show that with overwhelming probability this does not
affect the game. Game0 (defined by ignoring all the boxes, except the dashed ones, in Figure 3.2)
is the same game as OMDLGGM, except for two syntactical changes, which will be useful in the
proof. The main modification is that we now make n calls to the oracle DLog after A outputs its
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answer −→y : for i ∈ [1, n] we set xi := DLog(ξji), where indexes ji are defined in the oracle Chal
so that aji = xi; thus DLog(ξji) always outputs aji = xi, meaning this does not affect the game.
Second, as calls to DLog increase q, we put the condition “if q < n then return 0” before those
calls.

Introducing polynomials. Game1, defined in Figure 3.2 by only ignoring the gray boxes,
introduces the polynomials Pi. The polynomial P0 = 1 represents a0 = 1. In the n-th call to Chal,
the game defines a new polynomial Pj = Xn, which represents the value xn. We thus have

Pi(−→x ) = ai , (3.6)

and in this sense the polynomial Pi represents the scalar ai (and thus implicitly the group element
aiG). The group operation oracle maintains this invariant; when computing aj := ai + (−1)bai′ , it
also sets Pj := Pi + (−1)bPi′ .

Note that there are many ways to represent a group element aG by a polynomial. E.g., the
first challenge x1G is represented by both the polynomial X1 and the constant polynomial x1.
Intuitively, since x1 is a challenge, it is unknown to A, and as long as A does not query DLog(ξ),
with ξ := Ξ(x1), it does not know that the polynomials X1 and x1 represent the same group element.
Game1 introduces a list L that represents this knowledge of A. E.g., when A calls DLog(Ξ(x1)),
the game will append the polynomial X1 − x1 to the list L. More generally, on call DLog(ξi)
the game appends Pi − Pi(−→x ) to L, which represents the fact that A knows that the polynomial
Pi − Pi(−→x ) represents the scalar 0 and the group element 0G. The list L will be used to ensure
consistency when we replace scalars by polynomials in the game.

Recall that our goal is to have the challenger only deal with polynomials when simulating the
game for A. As this can be done without actually defining the challenge −→x , the challenger could
then select −→x after A gave its output, making it impossible for A to predict the right answer.

This is done in the final game Game4, defined in Figure 3.4, where the challenger is in the
same position as A: it does not know that x1 is the answer to the challenge represented by the
polynomial X1 until DLog(ξ) is called with ξ := Ξ(x1). In fact, x1 is not even defined before this
call, and, more generally, −→x does not exist until the proper DLog queries are made.

To get to Game4, we define two intermediate games. We will modify procedure Enc so that it
later deals with polynomials only (instead of their evaluations, as −→x will not exist). Because of
this, it will be unknown whether Pj(−→x ) = Pi(−→x ) for some i ∈ [0, j − 1] – unless Pj − Pi ∈ Span(L),
since both the challenger and the adversary are aware that all polynomials in L evaluate to 0 at −→x .

However, it can be the case that, when −→x is defined later, Pj(−→x ) = Pi(−→x ). That is, in the
original game, we would have had aj = ai, but in the final game, Enc is not aware of this. This is
precisely when the simulation fails, and we abort the game. We will then bound the probability of
this event, for which we will use Lemma 3.1.

In “typical” GGM proofs an abort happens when Pj(−→x ) = Pi(−→x ) and Pj ̸= Pi. For OMDL,
because the adversary might have information on the −→x (and the challenger is aware of this), we allow
that there are Pj ̸= Pi for which the current knowledge on −→x lets us deduce Pj(−→x ) = Pi(−→x ). With
the formalism introduced above this corresponds exactly to the situation that Pi − Pj /∈ Span(L).
We introduce this abort condition in the procedure Enc in Game1 (Figure 3.2). Because in the
“ideal” game Game4 (Figure 3.4), there are no more values ai, we will express the abort condition
differently (namely in oracle DLog) and argue that the two conditions are equivalent.

Eliminating uses of scalars. Using the abort condition in Game1, we can replace some uses of
the scalars ai by their representations as polynomials Pi. This is what we do in Game2, (Figure 3.2,
including all boxes except the dashed box), which eliminates all occurrences of ai’s. In Enc, since
the game aborts when Pj(−→x ) = Pi(−→x ) and Pj−Pi /∈ Span(L), and because when Pj−Pi ∈ Span(L),



3.2. PROOF OVERVIEW 23

Game0, Game1 , Game2
−→x := ( ) ; a0 := 1

j := 0 ; q := 0 ; n := 0

P0 := 1 ; L := ∅
−→y ← AChal,DLog,GCmp(Enc())
if q < n then return 0
for i ∈ [1, n]

xi := DLog(ξji
)

return −→y = −→x

Oracle Chal()
n := n + 1
xn

$← Zp

jn := j

j := j + 1
aj := xn

Pj := Xn

return Enc()

Oracle DLog(ξ)

if ξ /∈ {ξi}i∈[0,j]

then return ⊥
i := min{k ∈ [0, j] | ξ = ξk}
q := q + 1

v := ai v := Pi(−→x )

if Pi ∈ Span(1, L) then
Let (αk)q−1

k=0 ∈ Zq
p s.t.

Pi = α0 +
∑q−1

k=1 αkQk

v := α0

Qq := Pi − v

L = L ∪ {Pi − v}

return v

Enc( ) // outputs ξj := Ξ(aj)

// Only in Game0 and Game1

if ∃i ∈ [0, j − 1] : aj = ai

then ξj := ξi

if ∃i ∈ [0, j − 1] : Pj(−→x ) = Pi(−→x )
and Pj − Pi /∈ Span(L)

then abort game

if ∃i ∈ [0, j − 1] : Pj − Pi ∈ Span(L)
then ξj := ξi

else ξj
$← {0, 1}log(p) \ {ξi}i∈[0,j−1]

return ξj

Oracle GCmp(ξ, ξ′, b)
if ξ /∈ {ξi}i∈[0,j] or ξ′ /∈ {ξi}i∈[0,j]

then return ⊥
i := min{k ∈ [0, j] | ξ = ξk}
i′ := min{k ∈ [0, j] | ξ′ = ξk}

j := j + 1 ; aj := ai + (−1)bai′

Pj := Pi + (−1)bPi′

return Enc()

Figure 3.2: Game0 (which only includes the dashed boxes) is the GGM version of OMDL. Game1
(including all but the gray boxes) introduces the polynomials that represent the information that A
obtains, and aborts when Game0 cannot be simulated with polynomials. In Game2 (including all
but the dashed boxes) we eliminate the use of scalars (except for the abort condition) in oracles
Enc and DLog.

it implies that Pj(−→x ) = Pi(−→x ), we can replace the event Pj(−→x ) = Pi(−→x ) by Pj − Pi ∈ Span(L).
Intuitively, we can now think of Enc() as encoding the polynomial Pj instead of the scalar aj .

We next modify the oracle DLog. The first change is that instead of returning ai the oracle
uses Pi(−→x ), which is equivalent by (3.6). The second change is that on input ξ, oracle DLog checks
if A already knows the answer to its query, in which case it computes the answer without using
−→x . E.g., assume A has only made one query Chal(), and thus q = 0 and L = ∅: if A now queries
DLog(ξ) with ξ := Ξ(x1), the oracle first checks if Pi = X1 ∈ Span(1, L), (with i the current value
of number of group elements seen by the adversary), which is not the case, and so it computes
v := Pi(−→x ) = x1. It then adds the polynomial Q1 := X1 − x1 to L and returns x1. If for example
A makes another call DLog(ξ′) with ξ′ := Ξ(2x1 + 2), then it knows that the answer should be
2x1 + 2. And indeed, the oracle DLog checks if 2X1 + 2 ∈ Span(1, L), and since this is the case, it
gets the decomposition

2X1 + 2 = (2x1 + 2) + 2Q1 = α0 + α1Q1
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with α0 = 2x1 + 2 and α1 = 2. The oracle uses this decomposition to compute its answer
v := α0 = 2x1 + 2.

More generally, on input ξi, the oracle DLog checks if Pi ∈ Span(1, L). If so, it computes the
answer using the decomposition of Pi in Span(1, L); else it uses −→x and outputs ai = Pi(−→x ).

We have now arrived at a situation close to the “ideal” game, where the challenger only uses
polynomials. The only uses of scalars are the abort condition in Enc (since it compares Pj(−→x ) and
Pi(−→x )) and in DLog, when computing the logarithm of an element that is not already known to
A. Towards our goal of simulating the game without defining −→x , we modify those two parts next.

Changing the abort condition. The aim of Game3 is precisely to modify the abort condition
so that it does not use −→x anymore. Figure 3.3 recalls Game2 and defines Game3 by not including
the dashed and the gray box. In Game3 the challenger does not abort in the procedure Enc. This
means that if Pj − Pi /∈ Span(L) for some i, the challenger creates a string ξj ̸= ξi even when
Pj(−→x ) = Pi(−→x ). This means that the simulation of the game is not correct anymore; but we will
catch these inconsistencies in the oracle DLog.

For concreteness consider the following example: let −→x = (x1) and suppose A built the
polynomials Pi1 = x1 using the oracle GCmp and Pi2 = X1 using the oracle Chal; suppose also
that A has not queried DLog yet, thus L = ∅. If i1 < i2 then Game2 aborts on the call Enc()
which encodes Pi2 , since Pi1(−→x ) = Pi2(−→x ) and Pi2 − Pi1 /∈ Span(L). In contrast, in Game3 the
challenger defines ξi1 ̸= ξi2 , which is inconsistent. But the abort will now happen during a call to
the oracle DLog.

Suppose A queries DLog(ξi3), with ξi3 = Ξ(2X1 + 2). Game3 now adds the polynomial
Q1 = 2X1 + 2− (2x1 + 2) = 2(X1 − x1) to L and checks for an inconsistency of this answer with all
the polynomials that A computed. Since it finds that Pi1 − Pi2 = x1 − X1 ∈ Span(L) but ξi1 ̸= ξi2 ,
the game aborts. But Game3 should also abort even if A does not query the oracle DLog. This
was precisely the reason for adding the final calls of the game to the oracle DLog in Game0. Since
Pji = Xi and the challenger calls xi ← DLog(ξji) for i ∈ [1, n] at the end, the challenger makes the
query DLog(ξj1), which adds X1 − x1 to L, after which we have Pi1 − Pi2 ∈ Span(L) and therefore
an abort.

More generally, in Game3 the oracle DLog aborts if there exists (i1, i2) ∈ [0, j]2 such that
Pi1 − Pi2 ∈ Span(L) and ξi1 ̸= ξi2 . In the proof of Theorem 3.2 we show that this abort condition
is equivalent to the abort condition in Game2.

Eliminating all uses of −→x . In Game3 the only remaining part that uses −→x is the operation
v := Pi(−→x ) in oracle DLog. Our final game hop will replace this by an equivalent operation.
In Game4, also presented in Figure 3.3, the challenger samples v uniformly from Zp instead of
evaluating Pi on the challenge. In the proof of Theorem 3.2, we will show that since the distribution
of Pi(−→x ) is uniform for a fixed Pi, this change does not affect the game.

This is the only difference between Game4 and Game3, but since this modification removes all
the uses of −→x for the challenger, we rewrite Game4 explicitly in Figure 3.4, where we define −→x only
after A outputs −→y . Game4 is thus a game which is easily seen to be hard to win for A. The reason
for this is that A cannot make enough queries to DLog to constrain the construction of −→x at the
end of the game and therefore cannot predict the challenge −→x . We now make the intuition given
above formal in the following theorem.
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3.3 Formal Proof

Theorem 3.2. Let A be an adversary that solves OMDL in a generic group of prime order p,
making at most m oracle queries. Then

AdvOMDLGGM
A ≤ 1

p
+ m2

p−m2 .

Game2, Game3 , Game4
−→x := ( )
j := 0 ; q := 0 ; n := 0
P0 := 1 ; L := ∅
−→y ← AChal,DLog,GCmp(Enc())
if q ≥ n then return 0
for i ∈ [1, n]

xi := DLog(ξji
)

return −→y = −→x

Oracle Chal()
j := j + 1 ; n := n + 1
xn

$← Zp ; jn := j

Pj := Xn

return Enc()

Oracle DLog(ξ)

if ξ /∈ {ξi}i∈[0,j] then return ⊥
i := min{k ∈ [0, j] | ξ = ξk}
q := q + 1

v := Pi(−→x ) ; v
$← Zp

if Pi ∈ Span(1, L) then
let (αk)q−1

k=0 ∈ Zq
p s.t. Pi = α0 +

∑q−1
k=1 αkQk

v := α0

Qq := Pi − v ; L = L ∪ {Pi − v}

// Abort condition in Game3 and Game4 only

if ∃(i1, i2) ∈ [0, j]2 : Pi1 − Pi2 ∈ Span(L)
and ξi1 ̸= ξi2

then abort game
return v

Enc() // outputs ξj which encodes Pj

// Abort condition in Game2 only

if ∃i ∈ [0, j − 1] : Pj(−→x ) = Pi(−→x )
and Pj − Pi /∈ Span(L)

then abort game

if ∃i ∈ [0, j − 1] : Pj − Pi ∈ Span(L)
then ξj := ξi

else
ξj

$← {0, 1}log(p) \ {ξi}i∈[0,j−1]

return ξj

Oracle GCmp(ξ, ξ′, b)
if ξ /∈ {ξi}i∈[0,j] or ξ′ /∈ {ξi}i∈[0,j]

then return ⊥
i := min{k ∈ [0, j] | ξ = ξk}
i′ := min{k ∈ [0, j] | ξ′ = ξk}
j := j + 1
Pj := Pi + (−1)bPi′

return Enc()

Figure 3.3: In Game3 we move the abort condition from Enc to the oracle DLog, so it can be
checked without using scalars. The only remaining use is then “v := Pi(−→x )” in oracle DLog.
Game4 instead pick the output x uniformly at random.

Proof [Proof of Theorem 3.2] The proof will proceed as follows: we first compute the statistical
distance between Game0, which is OMDLGGM, and Game1 (Figure 3.2); we then show that
Game1, Game2, Game3 and Game4 (Figures 3.2 and 3.3) are equivalently distributed; and finally we
upper-bound the probability of winning Game4 (Figure 3.4).
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Game4

j := 0 ; q := 0 ; n := 0
P0 := 1 ; L := ∅
−→y ← AChal,DLog,GCmp(Enc())
if q ≥ n then return 0
for i ∈ [1, n]

xi := DLog(ξji
)

return −→y = −→x

Oracle Chal()
j := j + 1 ; n := n + 1
Pj := Xn ; jn := j

return Enc()

Oracle DLog(ξ)
if ξ /∈ {ξi}i∈[0,j] then return ⊥
i := min{k ∈ [0, j] | ξ = ξk}

q := q + 1 ; v
$← Zp

if Pi ∈ Span(1, L) then
let (αk)q−1

k=0 ∈ Zq
p s.t. Pi = α0 +

∑q−1
k=1 αkQk

v := α0

Qq := Pi − v ; L = L ∪ {Pi − v}
if ∃(i1, i2) ∈ [0, j]2 : Pi1 − Pi2 ∈ Span(L)

and ξi1 ̸= ξi2

then abort game
return v

Enc() // outputs ξj which encodes Pj

if ∃i ∈ [0, j − 1] : Pj − Pi ∈ Span(L)
then ξj := ξi

else

ξj
$← {0, 1}log(p) \ {ξi}i∈[0,j−1]

return ξj

Oracle GCmp(ξ, ξ′, b)
if ξ /∈ {ξi}i∈[0,j] or ξ′ /∈ {ξi}i∈[0,j]

then return ⊥
i := min{k ∈ [0, j] | ξ = ξk}
i′ := min{k ∈ [0, j] | ξ′ = ξk}
j := j + 1
Pj := Pi + (−1)bPi′

return Enc()

Figure 3.4: Final game Game4 does not use −→x in the oracles anymore. It defines the challenge −→x
after A gave its output and this is what makes it simple for us to prove it is hard to win for A.

Preliminary results. We start with proving three useful invariants of the polynomials Pi and
the set L which are introduced in Game1. The first one is:

∀ i ∈ [0, j] : Pi(−→x ) = ai . (3.7)

This holds in Game1 and justifies replacing all occurrences of ai by Pi(−→x ) in Game2 in Figure 3.3.
To prove this, we show that each time the games introduce a new polynomial Pj , we have Pj(−→x ) = aj .

We prove this by induction. Initially, P0 = 1 and a0 = 1 so the statement holds for j = 0. Now
suppose it is true for all i ∈ [0, j − 1]. We show it is true for j. Polynomial Pj can be built either
by oracle Chal or by oracle GCmp:

• In oracle Chal, Pj := Xn and aj := xn so we have Pj(−→x ) = xn = aj .

• In oracle GCmp, Pj := Pi + (−1)bPi′ and aj := ai + (−1)bai′ so we have Pj(−→x ) := Pi(−→x ) +
(−1)bPi′(−→x ) = ai + (−1)bai′ = aj .

This proves (3.7).
We next show that the following holds in Game1, Game2 and Game3:

∀Q ∈ Span(L), Q(−→x ) = 0 (3.8)
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(in the other games either L or −→x are not defined). For L = {Q1, . . . , Qq} if Q ∈ Span(L) then
Q = ∑q

k=1 αkQk. To show (3.8), it suffices to show that for all k ∈ [1, q] we have Qk(−→x ) = 0.
For k ∈ [0, q], Qk is defined during the k-th call to DLog on some input ξ. In Game1, the oracle

finds i such that ξi = ξ and sets v := ai and Qk := Pi − v, so we get Qk(−→x ) = Pi(−→x )− ai. Using
the first result (3.7), we get that (3.8) holds. In Game2 and Game3 the oracle sets v := Pi(−→x ) so
we directly get Qk(−→x ) = Pi(−→x )− Pi(−→x ) = 0

The third result we will use holds (assuming the game did not abort) in Game1, Game2, Game3
and Game4:

∀j ≥ 1 ∀i ∈ [0, j − 1] : ξj = ξi ⇔ Pj − Pi ∈ Span(L) . (3.9)

We first prove
∀j ≥ 1 ∀i ∈ [0, j − 1] : ξj = ξi ⇒ Pj − Pi ∈ Span(L)

by induction. We show that this holds for j = 1 and all other j > 0 and suppose that for some
i∗ ∈ [0, j − 1], ξj = ξi∗ . We show that Pj − Pi∗ ∈ Span(L).

• In Game2, Game3 and Game4, since ξj is not a new random string when it is defined it means
that for some i1 ∈ [0, j − 1] we had Pj − Pi1 ∈ Span(L) and thus the game defined ξj := ξi1 .
This implies that ξi1 = ξi∗ , and since i1 < j, using the induction hypothesis, we get that
Pi1 − Pi∗ ∈ Span(L) and furthermore

Pj − Pi∗ = (Pj − Pi1)− (Pi1 − Pi∗) ∈ Span(L) .

Now the situation is more simple when j = 1: we must have i1 = i∗ = 0 so

Pj − Pi1 = Pj − Pi∗ = P1 − P0 ∈ Span(L) .

• In Game1 the proof is almost the same: since ξj is not a new random string it means that
for some i1 ∈ [0, j − 1] we had Pj(−→x ) = Pi1(−→x ) and thus the game defined ξj := ξi1 . Since
the game did not abort we don’t have “Pj(−→x ) = Pi1(−→x ) and Pj − Pi1 /∈ Span(L)”, and thus
Pj − Pi1 ∈ Span(L). From here the proof proceeds as for the other games above, and thus
Pj − Pi∗ ∈ Span(L).
When j = 1, we have i∗ = 0 and P1 − P0 ∈ Span(L), otherwise the game aborts.

We now prove the other implication:

∀j ≥ 1 ∀i ∈ [0, j − 1] : Pj − Pi ∈ Span(L)⇒ ξj = ξi ,

again by induction. Using the same method as before we can argue that this is true for j = 1. For
j > 1, when Enc() defines ξj , if for some i∗ ∈ [0, j − 1] we have Pj − Pi∗ ∈ Span(L) then we show
that ξj is assigned ξj = ξi∗ .

• In Game2, Game3 and Game4, since for some i1 ∈ [0, j − 1] : Pj − Pi1 ∈ Span(L), the game
defines ξj := ξi1 . And since

Pi∗ − Pi1 = (Pi∗ − Pj) + (Pj − Pi1) ∈ Span(L) ,

by induction we get ξi1 = ξi∗ which yields ξj = ξi∗ .

• In Game1, since we know that (Pj − Pi∗)(−→x ) = 0 from the previous result (3.8), we get that
for some i1 ∈ [0, j − 1] : Pj(−→x ) = Pi1(−→x ). Since the game did not abort, we know that
Pj − Pi1 ∈ Span(L), so using the same argument as before, we get ξj = ξi∗ .



28
CHAPTER 3. ONE MORE-DISCRETE LOGARITHM SECURITY IN THE GENERIC GROUP

MODEL

Game0 to Game1. We now compare Game0 to Game1. The only difference between the two is
when Game1 aborts in the procedure Enc() on event

∃i ∈ [0, j − 1] such that Pj(−→x ) = Pi(−→x ) and Pj − Pi /∈ Span(L) . (3.10)

We call this event F . Since Enc is called at most m times, we get:

AdvGame0
A ≤ AdvGame1

A + m · Pr[F ] . (3.11)

We now upper-bound Pr[F ]. Before a call to Enc, the oracle defines Pj . Consider a fixed
i ∈ [0, j − 1] and define P := Pj − Pi. We will upper-bound the probability that

Pj(−→x )− Pi(−→x ) = P (−→x ) = 0

with P := Pj − Pi /∈ Span(L).
Since A does not know −→x one might consider applying the Schwartz-Zippel lemma. But we

cannot, since A knows information on −→x . From A’s point of view, −→x is not uniformly chosen over
Znp , since it satisfies Q(−→x ) = 0 for all Q ∈ L (using (3.8)). We write L = {Q1, . . . , Qq}, now using
the notation from Lemma 3.1 with Qq+1 := P .
A also knows that if for some indexes i1, i2 it was given ξi1 ̸= ξi2 then Pi1(−→x ) ̸= Pi2(−→x ). We

can reformulate this by writing D−→ı = Pi1 − Pi2 for −→ı ∈ I := {(i1, i2) ∈ [0, j − 1]2 | ξi1 ̸= ξi2}. A
knows that D−→ı (−→x ) ̸= 0. Using the notation of Lemma 3.1 we get that

−→x ∈ C :=
( ⋂
j∈[1,q]

Qj
)
\

( ⋃
i∈I
Di

)
.

Our goal is to apply Lemma 3.1 to upper-bound Pr−→x←C[P (−→x ) = 0]. We need to verify that
the three premises of the lemma are satisfied, which are: from A’s point of view, −→x ∈ C is picked
uniformly at random, Qq+1 ∩ C ̸= ∅ and −→Q q+1 is independent of (−→Q i)i∈[1,q].
−→x is chosen uniformly in C. To show this, we fix the randomness (of the challenger and the
adversary) of the game (which means the order in which the ξi are picked is deterministic) and
we consider the transcript π(−→x ) of what A sees during the game when the secret is chosen as −→x :
π(−→x ) = (ξ0, . . . , ξj−1, v1, . . . , vq) (In this transcript, the strings ξi are ordered and so are the vi, but
we implicitly suppose that before the query vk there was a query vk−1 or ξik and after the query vk
there was either a query vk+1 or ξi′

k
. We do not formalize this.)

The transcript π corresponds to all the output of the oracles that were given to A: The ξi are
the outputs of GCmp and Chal, and the vi are the outputs of DLog. The transcript π(−→x ) only
depends on the challenge −→x . What is important to notice is that for all −→y ∈ C: π(−→y ) = π(−→x ).
Indeed, if we call π(−→y ) = (ξ′0, . . . , ξ′j−1, v′1, . . . , v′q) we can show by induction that ξ′i = ξi and
v′k = vk for all i ∈ [1, j − 1] and k ∈ [1, q].

• Let k ∈ [1, q]; we show that vk = v′k: in both challenges −→x and −→y , since the transcript A
received is the same by the induction hypothesis, it behaves the same way and calls DLog
on input ξ. The oracle DLog then picks i = min{j | ξj = ξ} which is the same in both cases
by the induction hypothesis. DLog computes vk = Pi(−→x ) and defines Qi := Pi − vk for the
challenge −→x while it computes v′k = Pi(−→y ) and Q′i := Pi− v′k for the challenge −→y . Now Since
−→y ∈ C, we have in particular −→y ∈ Qi, so we know that Qk(−→y ) = Pi(−→y )− vk = 0. This gives
Pi(−→y ) = v′k = vk and Q′k = Qk.

• Let k ∈ [1, j − 1]; we show that ξk = ξ′k: for both challenges −→x and −→y , since the transcript
A received is the same by induction hypothesis, it behaves the same way and calls either
Chal or GCmp. In both cases the the game creates a polynomial Pk and calls the procedure
Enc(), for which there are two cases:
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1: ∀ i ∈ [0, k − 1] : Pk(−→x ) ̸= Pi(−→x ). The game with challenge −→x outputs a new random ξk,
which means ξk ̸= ξi for i ∈ [1, k − 1]. Since −→y ∈ C, we know that for all i ∈ [0, k − 1],
−→y /∈ Di,k = {−→z : (Pi − Pk)(−→z ) = 0 and ξi ̸= ξk} This means that for all i ∈ [0, k − 1],
since ξi ̸= ξk, we have Pi(−→y ) ̸= Pk(−→y ), so the game also chooses ξ′k as a new random
string. Since we fixed the randomness of the game, we get ξk = ξ′k.

2: ∃ i∗ ∈ [0, k − 1] : Pk(−→x ) = Pi∗(−→x ). The game defines ξk := ξi for the challenge −→x .
Since the game did not abort for k < j, we know that Pk − Pi∗ ∈ Span(L). Now since
L = (Qi)i and −→y ∈ ⋂

i∈[1,q]Qi, we also get (Pk − Pi∗)(−→y ) = 0. So the game defines
ξ′k := ξ′i = ξi = ξk, by the induction hypothesis and the preliminary result (3.9).

In both cases we get that ξk = ξ′k.

Since the transcript that A sees is the same for all elements in C, A can only make a uniform guess
on which element of C is the challenge. Thus from A’s point of view, −→x is chosen uniformly at
random in C.

Qq+1 ∩ C ̸= ∅. Since Qq+1 = {−→x ∈ Zp : P (−→x ) = 0}, if we had C ∩ Qq+1 = ∅, then P (−→x ) ̸= 0 for
all −→x ∈ C, and thus Pr−→x $←C

[P (−→x ) = 0] = 0. In this case, there is no need to upper-bound the
probability, which is why we assume that Qq+1 ∩ C ̸= ∅.
−→
Q q+1 is independent of (−→Q i)i∈[1,q]. Recall that −→P = (pk)k∈[1,n] is the vector representing the
polynomial P − P (−→0 ) = ∑n

k=1 pkXk. We assume that −→Q q+1 is dependent of (−→Q i)i∈[1,q] and then
show that this contradicts the previous premise Qq+1 ∩ C ̸= ∅. Assume thus that for some α:

Qq+1 −Qq+1(−→0 ) =
q∑

k=1
αk

(
Qk −Qk(

−→0 )
)

.

With α := Qq+1(−→0 ) + ∑q
k=1 αkQk(

−→0 ) and Q := ∑q
k=1 αkQk, we can write this as Qq+1 = α + Q

with α ∈ Zp and Q ∈ Span(L). Now since we are in event F , defined in (3.10), we have Qq+1 =
P /∈ Span(L), which implies α ≠ 0 (otherwise P = Q ∈ Span(L)). Since C ⊆ Qi we have
that for all i ∈ [1, q] and all −→x ∈ C: Qi(−→x ) = 0, and thus Q(−→x ) = 0. From this, we have
Qq+1(−→x ) = α + Q(−→x ) = α. Thus, Qq+1(−→x ) ̸= 0 for all −→x ∈ C, which implies C ∩ Qq+1 = ∅, which
contradicts the previous assumption. We thus proved that −→Q q+1 is independent of (−→Q i)i∈[1,q].

Applying Lemma 3.1. Since all its premises are satisfied, we can apply Lemma 3.1 and obtain:

Pr−→x←C

[
P (−→x ) = 0

]
= Pr−→x←C

[
Qq+1(−→x ) = 0

]
≤ 1

p− |I|
,

with |I| ≤ j2 ≤ m2. Since we need to test this with P = Pj − Pi for all i ∈ [0, j − 1], we get
Pr[F ] ≤ m

p−m2 and from (3.11):

AdvGame0
A ≤ AdvGame1

A + m2

p−m2 . (3.12)

Game1 to Game2. There are three changes in Game2, which we show do not affect the distributions
of the game. First, we replace ai by Pi(−→x ) in oracle DLog, which is equivalent by (3.7).

Second, in Enc, we replace the condition

if ∃i ∈ [0, j − 1] : Pj(−→x ) = Pi(−→x ) then ξj := ξi



30
CHAPTER 3. ONE MORE-DISCRETE LOGARITHM SECURITY IN THE GENERIC GROUP

MODEL

by
if ∃i ∈ [0, j − 1] : Pj − Pi ∈ Span(L) then ξj := ξi .

We show that this new condition does not affect the output of Enc(). There are two cases for
Pj(−→x ):

Case 1: ∃i∗ ∈ [0, j − 1] : Pj(−→x ) = Pi∗(−→x ). We have either

◦ Pj − Pi∗ ∈ Span(L), and in this case Game1 and Game2 both set ξj = ξi∗ and output ξj
using (3.9); or

◦ Pj − Pi∗ /∈ Span(L), meaning that both Game1 and Game2 abort since “Pj − Pi∗ /∈
Span(L) and Pj(−→x ) = Pi∗(−→x )” is the abort condition.

Case 2: ∀i ∈ [0, j − 1] Pj(−→x ) ̸= Pi(−→x ). Since, by 3.8, all polynomials in Span(L) vanish at −→x ,
this implies ∀i ∈ [0, j − 1] : Pj − Pi /∈ Span(L). In this case both Game1 and Game2 output a
random new string ξj .

The third change in Game2, in the oracle DLog, does not change the output either: in Game1
the DLog oracle always outputs ai = Pi(−→x ). In Game2, when Pi ∈ Span(L), the game uses the
decomposition Pi = α0 + ∑q−1

k=1 αkQk, and since Qk(−→x ) = 0 by (3.8), it outputs Pi(−→x ) = α0.
Together this yields:

AdvGame1
A = AdvGame2

A . (3.13)

Game2 to Game3. In this game hop we move the abort condition from the procedure Enc to
the oracle DLog. We show that the two abort conditions are equivalent, by showing the two
implications of the equivalence:

If Game2 aborts then Game3 also aborts. If Game2 aborts, it means that for a fixed index
j∗ the game found i∗ ∈ [0, j∗ − 1] such that Pj∗ − Pi∗ /∈ Span(L) and Pj∗(−→x ) = Pi∗(−→x ). We show
that Game3 also aborts in this situation. Let P := Pj∗ − Pi∗ . At the end of Game3 the challenger
makes calls to DLog on each challenge Pji = Xi. This adds the corresponding polynomials Xi − xi
to L for all i ∈ [1, n]. With P = P (−→0 ) + ∑n

k=1 pkXk, we can write

P =
n∑
k=1

pk(Xk − xk) + P (−→0 ) +
n∑
k=1

pkxk .

Since P (−→x ) = Pj∗(−→x ) − Pi∗(−→x ), we have P (−→x ) = 0. On the other hand, by (3.8), we have
P (−→x ) = P (−→0 )+∑n

k=1 pkxk. Together, this yields P = ∑n
k=1 pk(Xk−xk), which means P ∈ Span(L)

at the end of the game. At the time when Game2 would have aborted, we had P /∈ Span(L) and
thus the game attributed two different strings ξi∗ ≠ ξj∗ to Pi∗ and Pj∗ , respectively. But at the
end of Game3, when L contains all Xi − xi for i ∈ [1, n], we have P ∈ Span(L). This means that
one call to DLog updated L so that P ∈ Span(L) and when this happened, since ξi∗ ≠ ξj∗ , the
abort condition in DLog was satisfied and the game aborted

If Game3 aborts then Game2 also aborts. If Game3 aborts, then on a call to DLog we have
∃(i1, i2) ∈ [0, j]2 such that Pi1 −Pi2 ∈ Span(L) and ξi1 ̸= ξi2 . From Pi1 −Pi2 ∈ Span(L), using (3.8)
we get Pi1(−→x ) = Pi2(−→x ). Suppose i1 < i2. The challenger in Game2 used the procedure Enc() when
the counter j was equal to i2 to compute ξi2 ̸= ξi1 . This means that at that moment, L contained
fewer elements and we had Pi2 − Pi1 /∈ Span(L). Since Game2 aborts when Pi1(−→x ) = Pi2(−→x ) and
Pi2 − Pi1 /∈ Span(L), thus Game2 aborts in this case.
Combining both implications yields

AdvGame2
A = AdvGame3

A . (3.14)
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Game3 to Game4. The only difference between these games is in the oracle DLog. Instead of
computing v := Pi(−→x ), Game4 picks a random v $← Zp. We prove that after this modification,
the distribution of the outputs of oracle DLog remains the same. The difference between the
two games occurs only when Pi /∈ Span(1, L). Let us bound Pr−→x←C

[
Pi(−→x ) = v in Game3

]
, where

−→x ∈ C represents the information that A knows about −→x , which we previously used in the first
game hop.

We apply Lemma 3.1 again to bound this probability. Now since the game does not abort
immediately when the inconsistency Pi1(−→x ) = Pi2(−→x ) and ξi1 ̸= ξi2 occurs, the inequalities on the
strings level do not give A any information on what the evaluation Pi(−→x ) cannot be. This means
that C is simpler than in the first game hop, namely

C =
⋂

i∈[1,q]
Qi .

We define Qq+1 := Pi − v and show that once again the three premises of Lemma 3.1 hold:
−→x ∈ C is picked uniformly at random, Qq+1 ∩ C ̸= ∅ and −→Q q+1 is independent of (−→Q i)i∈[1,q].

−→x is chosen uniformly in C. To show this, we again fix the randomness of the game and
consider the transcript π that A sees during the game if a particular −→x is chosen: π(−→x ) =
(ξ0, . . . , ξj−1, v1, . . . , vq), which contains all oracle outputs given to A. We show that for all
−→y ∈ C : π(−→y ) = π(−→x ). Indeed, for π(−→y ) =: (ξ′0, . . . , ξ′j−1, v′1, . . . , v′q) we show by induction that
ξ′i = ξi and v′k = vk for all i ∈ [1, j − 1] and k ∈ [1, q].

• Let k ∈ [1, q]; then vk = v′k is showed exactly as in the first game hop (on page 28).

• Let k ∈ [1, j − 1]; we show that ξk = ξ′k: for both challenges −→x and −→y , since the transcript A
received is the same by induction hypothesis, A behaves the same way and calls either Chal
or GCmp. In both cases the game creates a polynomial Pk and calls Enc(), for which there
are two cases:

1: ∀ i ∈ [0, k − 1] : Pk − Pi /∈ Span(L). Since this condition is independent of −→x and −→y , for
both the game outputs a new random string ξk and ξ′k. Since we fixed the randomness
of the game, we get ξk = ξ′k.

2: ∃i∗ ∈ [0, k− 1] : Pk − Pi∗ ∈ Span(L). In this case the game defines ξk := ξi and ξ′k := ξ′i for
both challenge −→x and −→y . We get ξ′k := ξ′i = ξi = ξk by the induction hypothesis and
(3.9).

In both cases we thus have ξk = ξ′k.

As in first game hop, we conclude that A cannot distinguish between two different values −→x ∈ C
and so we can consider −→x to be chosen uniformly at random in C.
−→
Q q+1 is linearly independent of (−→Q i)i∈[1,q]. Recall that Pi /∈ Span(1, L) and Qq+1 := Pi− v.
If −→Q q+1 were linearly dependent of (−→Q i)i∈[0,j], then (using the same method as in the first game
hop) we would have Qq+1 = Pi − v = α + Q with α ∈ Zp and Q ∈ Span(L). As this contradicts
Pi /∈ Span(1, L), we conclude that −→Q q+1 is linearly independent of (−→Q i)i∈[1,q].

Qq+1 ∩ C ̸= ∅. C = ⋃
i∈[1,q]Qi is an affine space and −→Q q+1 is linearly independent of (−→Q i)i∈[0,j].

This implies that Qq+1 ∩ C has dimension dim(C)− 1 and thus Qq+1 ∩ C ̸= ∅.
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Applying Lemma 3.1. Since its three premises are satisfied, Lemma 3.1 with M := 0 yields:

Pr[ Qq+1(−→x ) = 0 ]−→x←C = Pr−→x←C

[
Pi(−→x ) = v in Game3

]
= 1

p
.

This means that in Game3 the distribution of Pi(−→x ) is uniform, so the change we make does
not affect the overall distribution of the game. We thus have

AdvGame3
A = AdvGame4

A . (3.15)

Analysis of Game4. We prove that A wins Game4 at most with negligible probability 1
p . To do

this, we prove that at least one component of the vector −→x is picked uniformly at random after A
outputs −→y .

When A outputs −→y , L contains q elements, so dim(Span(L)) ≤ q. Since q < n, Span(1, L) has
dimension at most q + 1 and therefore at most n when the adversary outputs the vector −→y . Since
the dimension of Span(X1, . . . , Xn) is n and 1 /∈ Span(X1, . . . , Xn), we get that Span(X1, . . . , Xn)
is not contained in Span(1, L). This means that there will be at least one index i ∈ [1, n] such
that Xi /∈ Span(1, L). We choose the smallest index i that verifies this. Then the oracle DLog
outputs a randomly sampled value xi when called on ξji . This xi is sampled randomly after the
i-th coefficient of vector −→y output by A and we obtain: Pr[−→x = −→y ] ≤ 1

p . This yields:

AdvGame4
A ≤ 1

p
. (3.16)

The theorem now follows from Equations (3.12), (3.13), (3.14), (3.15), and (3.16)



Chapter 4

One More-Computationnal
Diffie-Hellman security in the Generic
Group Model

4.1 OMCDH in the GGM

The OMCDH assumption (defined in Figure 2.2), though, similar to the OMDL assumption, is
slightly more complex. In OMDL the adversary has access to a DLog oracle and must solve DLog
challenges; in OMCDH the adversary has access to a CDH oracle and must solve CDH challenges.
In particular, the CDH oracle in OMCDH enables the adversary to construct (encodings of) group
elements that correspond to high-degree polynomials since on input (Ξ(x), Ξ(y)), the oracle returns
Ξ(xy), which in the “ideal” game is encoded as the polynomial XY of degree 2 by the challenger.
This makes using known proof techniques in the GGM impossible, since if A is not constrained in
terms of the degree, it can build non-zero polynomials that evaluate to zero on the challenge with
non-negligible probability. (E.g., Xp − X evaluates to 0 everywhere in Zp.)

Given this situation, we can neither use the Schwartz-Zippel lemma (this lemma would yield
a non-negligible bound on the adversary’s advantage) nor Lemma 3.1 (since it only applies for
polynomials of degree 1). In fact, some cryptanalysis in the literature (e.g., the attacks by Maurer
and Wolf [MW96, Mau99]) use high-degree polynomials to break DL in group of smooth order
when given a CDH oracle.

Since the generic group model does not handle high-degree polynomials well, in order to analyze
the hardness of OMCDH, we decided to consider a stronger assumption instead, which we call
OMCDHDL and define in Figure 4.1. This problem is analog to OMCDH, except that the CDH
oracle is replaced by a DLog oracle. As the adversary has access to the same oracles as in the
game OMDL, as seen in the OMDL proof, it can only build polynomials of degree at most 1.
Actually, as we show in Supplementary Material 4.2, OMCDHDL implies OMDL (Property 4.5)
and we also prove that (modulo a polynomial number of group operations) OMCDHDL implies
OMCDH (Property 4.1).

In Supplementary Material 4.3 we formally prove the hardness of OMCDHDL in the generic
group model. This is done following the same strategy as for OMDL in Theorem 3.2 (section 3.1);
the games hops are the same, only the final analysis of the last game is different, since the winning
condition is different. This leads to a different winning probability at the end. This is summarized
in Theorem 4.7 below.

Property 4.1 (OMCDHDL implies OMCDH). In a cyclic group of order p, let A be an adversary
that solves OMCDH by using at most m group operations and q calls to DLog. We can build an
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Game OMCDHDLAGrGen(λ)
(p,G, G)←GrGen(1λ)
−→
Z := ( ) ; q := 0
−→
Z ′ ← AChal,DLog(p,G, G)

return
(−→

Z =
−→
Z ′ ∧ q < |−→x |

)

Oracle Chal()
x

$← Zp ; X := xG

y
$← Zp ; Y := yG

−→
Z := −→Z ∥ (xyG)
return (X, Y )

Oracle DLog(X)
q := q + 1
x := logG(X)
return x

Figure 4.1: The OMCDHDL problem.

adversary B that solves OMCDHDL using at most m + 2q⌈log(p)⌉ group operations.

The proof is straightforward by answering the CDH oracle queries by making queries to the
DLog oracle. It is formally given as Property 4.6 in Supplementary Material 4.2.

Theorem 4.2. Let A be an adversary that solves OMCDHDL in a generic group of order p, making
at most m oracle queries. Then

AdvOMCDH GGM
A ≤ 1

p− 1 + 2m

p
+ m2

p−m2 .

A formal proof of the theorem can be found in Supplementary Material 4.3. Combining this
with Property 4.1, we obtain the following corollary, which proves the security of OMCDH in the
generic group model.

Corollary 4.3. Let A be an adversary that solves OMCDHDL in a generic group of order p, making
at most m oracle queries and q CDH oracle queries. Then

AdvOMCDH GGM
A ≤ 1

p− 1 + 2(m + 2q⌈log(p)⌉)
p

+ (m + 2q⌈log(p)⌉)2

p− (m + 2q⌈log(p)⌉)2 .



4.2. COMPARISON OF OMCDHDLTO OTHER ASSUMPTIONS 35

Adversary BA1,Chal,DLog
1 (p,G, G)

−→
Y := () ; −→x ←AChal′,DLog

1 (1λ)
return

(
SqMul(x1, Y1), . . . , SqMul(xn, Yn)

)
Oracle Chal′()
X, Y := Chal()
−→
Y , := −→Y ∥ (Y )
return X

Figure 4.2: Adversary B1 against OMCDHDL.

4.2 Comparison of OMCDHDLto Other Assumptions

We want to prove that OMCDHDL is easier than OMDL and OMCDH. To show these two properties,
we will use the well-known square-and-multiply algorithm.

Lemma 4.4. Let G be a group of order p. The square-and-multiply SqMul algorithm in G takes
as input a scalar a ∈ Zp, and a group element X ∈ G, and returns aX after computing at most
2⌈log(p)⌉ group operations.

Property 4.5 (OMCDHDL is easier than OMDL). In a cyclic group of order p, let A1 be an
adversary that solves OMDL using at most m group operations and n challenge oracle calls. Then
we can build an adversary B1 solving OMCDHDL using at most m + 2n⌈log(p)⌉ group operations.

Proof We define B1 in Figure 4.2. A1 plays in OMDL and B1 in OMCDHDL. B1 gives A1
access to its own oracle DLog. Then for the oracle Chal′, B1 makes one query to its own oracle
Chal, receiving the pair (X, Y ), and outputs the challenge X to A1. Using the oracles DLog and
Chal′, A1 can play in OMDL.

Let q be the number of queries made by A1 to the oracle DLog. Then B1 also uses the DLog
oracle q times. When A1 wins this game we have n > q and −→x = (x1, . . . , xn) with xi = logG(Xi).
Since n is the number of queries made by A1 to Chal′, it is also the number of queries made by B1
to Chal. Thus, B1 outputs

(x1Y1, . . . , xnYn) = (x1y1G, . . . , xnynG) ,

which is the right answer to win OMCDHDL. And since moreover n > q, it implies B1 wins the
game OMCDHDL. We upper-bound the number of group operations of B1 by noting that B1 uses
group operations only trough A1 and SqMul and by combining Lemma 4.4 and the fact that the
number of executions of SqMul is equal to n.

Property 4.6 (OMCDHDL is easier than OMCDH). In a cyclic group of order p, let A2 be an
adversary that solves OMCDH by using at most m group operations and q DLog oracle calls. Then
we can build an adversary B2 that solves OMCDHDL using at most m + 2q⌈log(p)⌉ group operations.

Proof We show in Figure 4.3 how to build B2 using A2. The adversary B2 plays in OMCDHDL

and gives A2 access to the oracles CDH and Chal in order to simulate game OMCDH to A2. The
oracle Chal is the same for A2, and the oracle CDH′ is defined using the oracle DLog that B2
has an access to. On input (X, Y ), with X := xG and Y := yG, the oracle CDH′ should output
Z := xyG. It therefore uses the oracle DLog to compute x and then uses SqMul to compute
Z := xY .

Let n be the number of queries made by A2 to Chal. Then B2 also calls the Chal oracle n

times. When A2 wins this game, we have n > q and
−→
Z ′ = (CDH(X1, Y1), . . . , CDH(X1, Yn)). Thus

B2 wins the game OMCDHDL.
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Adversary BA2,Chal,DLog
2 (p,G, G)

−→
Z ′←AChal,CDH′

2 (1λ)

return
(−→
Z ′)

Oracle CDH′(X, Y )
x := DLog(X)
Z := SqMul(x, Y )
return Z

Figure 4.3: Adversary B2 against OMCDHDL.

We upper-bound the number of group operations of B2 by noting that B2 uses group operations
only via A2 and SqMul and by combining Lemma 4.4 and the fact that the number of executions
of SqMul is equal to q.

4.3 OMCDHDL in the Generic Group Model

In this section we show that OMCDHDL is hard in the GGM. We first argue that Game0, defined in
Figure 4.4, describes OMCDHDL in the GGM. As with OMDL, we show that all the modifications
we made for convenience in Game0 do not affect the result of the game and its behavior. In fact the
only important modification in Game0 for the initial OMCDHDL is at the end of the game, after
the adversary outputs

−→
Z ′.

We see that since jn is defined in the oracle Chal such that ajn = xn and ajn+1 = yn, the final
calls to DLog:

xi := DLog(ξji) and yi := DLog(ξji)

do not change the values of xi and yi for all i ∈ [1, n].
The game also defines zi := xiyi and z′i := DLog(Z ′i), which does not change its behavior since

those are new elements.
The last change from the initial OMCDHDL in Game0 is the output of the game: instead of

outputting the winning condition −→Z ′ = (xiyiG)i∈[1,n], the game outputs the condition
−→
z′ = −→z .

But those conditions are the same since for a fixed generator in a cyclic group of prime order
p, comparing the discrete logarithm of two group elements is equivalent to comparing the group
elements themselves.

Since z′i := DLog(Z ′i), we get z′i = ak such that Ξ(ak) = Z ′i which means Ξ(z′i) = Z ′i. So when
we compare

−→
z′ = −→z , we do the same comparison as −→Z ′ = (xiyiG)i∈[1,n] but on discrete-logarithm

level. This means the answer is the same. This will help us prove the following theorem:

Theorem 4.7. Let A be an adversary that solves OMCDHDL in a generic group of order p, making
at most m oracle queries. Then

AdvOMCDH GGM
A ≤ 1

p− 1 + 2m

p
+ m2

p−m2 .

Proof The proof follows exactly the same method as the proof of OMDL in Section 3.1. It
makes the same game hops with the same boundaries and uses the Lemma 3.1 the same way. So we
skip all the game hops and proceed directly to the analysis of the final game, which we call Game4
in Figure 4.5

The various game hops give us the following bound:

AdvGame0
A ≤ AdvGame4

A + m2

p−m2 . (4.1)
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Game0

a0 := 1
j := 0 ; q := 0 ; n := 0
−→
Z ′ ← AChal,DLog,GCmp(Enc())
if q < n then return 0
for i ∈ [1, n]

z′
i := DLog(Z ′

i)
for i ∈ [1, n]

xi := DLog(ξji
)

yi := DLog(ξji+1)
zi := xiyi

return
−→
z′ = −→z

Oracle Chal()
j := j + 1 ; n := n + 1
xn

$← Zp ; aj := xn

jn := j

j := j + 1
yn

$← Zp ; aj := yn

return Enc()

Oracle DLog(ξ)
if ξ /∈ {ξi}i∈[0,j]

then return ⊥
i := min(k ∈ [0, j] | ξ = ξk)
q = q + 1 ; v = ai

return v

Enc( ) // outputs ξj := Ξ(aj)

if ∃i ∈ [0, j − 1] : aj = ai

then ξj := ξi

else

ξj
$← {0, 1}log(p) \ {ξi}i∈[0,j−1]

return ξj

Oracle GCmp(ξ, ξ′, b)
if ξ /∈ {ξi}i∈[0,j] or ξ′ /∈ {ξi}i∈[0,j]

then return ⊥
i := min( k ∈ [0, j] | ξ = ξk)
i′ := min( k ∈ [0, j] | ξ′ = ξk)
j := j + 1 ; aj := ai + (−1)bai′

return Enc()

Figure 4.4: Game0 represents the GGM version of the game OMCDHDL, with small modifications
inspired by the proof of OMDL, which are useful in the proof of Theorem 4.7.

Now we analyze Game4 described in Figure 4.5. This game looks a lot like the final game of
OMDL (Figure 3.4): the challenges xi and yi are no longer defined, until the adversary makes
some calls to DLog or until the game defines them at the end. We show that the adversary cannot
predict some of the challenges that are assigned randomly at the end.

In this analysis we need to suppose that all the challenges xi, yi will be different from 0. Note
that in OMCDHDL and also in OMCDH, if we have xi = 0 or yi = 0, it becomes easy for the
adversary to win since xiyi = 0 and the adversary can output 1G. Since in Game4 all the discrete
logarithms are picked uniformly at random, we can deduce that xi and yi have a probability at
most 1

p to be equal to zero. Another way to obtain this result would be to consider the fact that the
distribution of the games are not modified and by doing the game hops from Game1 to Game4, as in
OMDL. This way, in Game4 the distribution of the challenge is the same as in Game1, which is the
same as Game0 and in those games, xi and yi are defined uniformly at random, which means they
are equal to 0 with probability 1

p . We call E the event “∃i ∈ [1, n] such that xi = 0 or yi = 0”.
Since there are n challenges xi and n challenges yi, we get:

Pr[ E ] ≤ 1−
(
1− 1

p

)2n ≤ 1−
(
1− 1

p

)2m
,

and since 2m
p is small, using

(
1− 1

p

)2m ≥ 1− 2m
p , we get:

Pr[ E ] ≤ 2m

p
. (4.2)

Now we suppose that we are not in event E. Since q < n, we know that L contains at most n−1
elements when A outputs its answers. Then the challenger adds n polynomials to L by making n
queries to the oracle DLog, which are z′i := DLog(Z ′i).

This means that just before defining the challenges xi and yi, L contains at most 2n − 1
elements, which yields that Span(1, L) has dimension at most 2n. But since the dimension of



38
CHAPTER 4. ONE MORE-COMPUTATIONNAL DIFFIE-HELLMAN SECURITY IN THE

GENERIC GROUP MODEL

Game4

j := 0 ; q := 0 ; n := 0
P0 := 1 ; L := ∅
−→
Z ′ ← AChal,DLog,GCmp(Enc())
if q < n then return 0
for i ∈ [1, n]

z′
i := DLog(Z ′

i)
for i ∈ [1, n]

xi := DLog(ξji
)

yi := DLog(ξji
)

zi := xiyi ;

return
−→
z′ = −→z

Oracle Chal()
j := j + 1 ; n := n + 1
Pj := Xn ; jn := j

ξ := Enc()
j := j + 1 ; Pj := Yn

ξ′ := Enc()
return ξ, ξ′

Oracle DLog(ξ)
if ξ /∈ {ξi}i∈[0,j]

then return ⊥
i := min(k ∈ [0, j] | ξ = ξk)
q = q + 1 ; v

$← Zp

if Pi ∈ Span(1, L) then
get (αk)k ∈ Zq

p s.t.

Pi = α0 +
∑q−1

k=1 αkLk

x := α0

Lq := Pi − v ; L = L ∪ {Pi − v}
if ∃(i1, i2) ∈ [0, j]2 :

Pi1 − Pi2 ∈ Span(L)
and ξi1 ̸= ξi2

then abort game
return v

Enc( )
if ∃i ∈ [0, j − 1] : Pj − Pi ∈ Span(L)
then ξj := ξi

else

ξj
$← {0, 1}log(p) \ {ξi}i∈[0,j−1]

return ξj

Oracle GCmp(ξ, ξ′, b)
if ξ /∈ {ξi}i∈[0,j] or ξ′ /∈ {ξi}i∈[0,j]

then return ⊥
i := min( k ∈ [0, j] | ξ = ξk)
i′ := min( k ∈ [0, j] | ξ′ = ξk)
j := j + 1
Pj := Pi + (−1)bPi′

return Enc()

Figure 4.5: Game4 is the final game in which the challenger simulates OMCDHDL to the adversary
by using only polynomials.

Span(X1, . . . , Xn, Y1, . . . , Yn) is exactly 2n and 1 /∈ Span(X1, . . . , Xn, Y1, . . . , Yn), there must exist
an index i such that Xi /∈ Span(1, L) or Yi /∈ Span(1, L). Without loss of generality, we suppose
that Xi /∈ Span(1, L).

This means that on the call xi := DLog(ξji), xi is picked uniformly at random. Since z′i is
fixed before that we have either:

• yi was fixed by the game with the adversary and we get Pr[xi = z′
i
yi

] ≤ 1
p−1 (it is an equality

when z′i ̸= 0). (We know that yi ̸= 0 since we are not on event E and we get p− 1 instead of
p since we know that xi can’t be 0). Or:

• yi is defined uniformly at random as xi, which implies the product xiyi is also picked uniformly
at random over Z∗p and we obtain Pr[ xiyi = z′i ] ≤ 1

p−1 as before.

In the end, we get:
AdvGame4

A ≤ Pr[ E ] + 1
p− 1 . (4.3)

The equations (4.1), (4.2) and (4.3) together give the result of the theorem.



Chapter 5

Blind Schnorr signatures in the
Algebraic Group Model

In this Chapter we first define the Schnorr signatures, and prove their unforgeability by using a
reduction to the DL assumption in the AGM. This proof is simple but will give an insight on how
to build the security proofs for Blind Schnorr signatures and Clause Blind Schnorr Signature which
are more complex.

Then we define the Blind Schnorr signatures and the ROS assumption and we give a proof that
the unforgeability of this signature scheme can be reduced to the ROS assumption and the OMDL
problem in the AGM with the ROM (Random Oracle Model).

5.1 Schnorr Signatures

Definitions

A signature scheme SIG consists of the following algorithms:

• par← SIG.Setup(1λ): the setup algorithm takes as input the security parameter λ in unary
and outputs public parameters par;

• (sk, pk)← SIG.KeyGen(par): the key generation algorithm takes parameters par and outputs
a secret key sk and a public key pk;

• σ ← SIG.Sign(sk, m): the signing algorithm takes as input a secret key sk and a message
m ∈ {0, 1}∗ and outputs a signature σ;

• b ← SIG.Ver(pk, m, σ): the (deterministic) verification algorithm takes a public key pk, a
message m, and a signature σ; it returns 1 if σ is valid and 0 otherwise.

Correctness requires that for any λ and any message m, when running par ← SIG.Setup(1λ),
(sk, pk) ← SIG.KeyGen(par), σ ← SIG.Sign(sk, m), and b ← SIG.Ver(pk, m, σ), one has b = 1 with
probability 1. The standard security notion for a signature scheme is existential unforgeability
under chosen-message attack (EUF-CMA), formalized via game EUF-CMA, which we recall in
Figure 5.1. The Schnorr signature scheme [Sch91] is specified in Figure 5.2.

Security of Schnorr Signatures in the AGM

As a warm-up and to introduce some of the techniques used later, we reduce security of Schnorr
signatures to hardness of DL in the AGM+ROM.
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Game EUF-CMAASIG(λ)
par← SIG.Setup(1λ)
(sk, pk)← SIG.KeyGen(par) ; Q := ( )
(m∗, σ∗)← ASign(pk)
return

(
m∗ /∈ Q ∧ SIG.Ver(pk, m∗, σ∗)

)

Oracle Sign(m)
σ ← SIG.Sign(sk, m)
Q := Q ∥ (m)
return σ

Figure 5.1: The EUF-CMA security game for a signature scheme SIG.

Sch.Setup(1λ)
(p,G, G)← GrGen(1λ)
Select H : {0, 1}∗ → Zp

return par := (p,G, G, H)

Sch.Sign(sk, m)
(p,G, G, H, x) := sk ; r

$← Zp ; R := rG

c := H(R, m) ; s := r + cx mod p

return σ := (R, s)

Sch.KeyGen(par)
(p,G, G, H) := par ; x

$← Zp ; X := xG

sk := (par, x) ; pk := (par, X)
return (sk, pk)

Sch.Ver(pk, m, σ)
(p,G, G, H, X) := pk ; (R, s) := σ

c := H(R, m)
return (sG = R + cX)

Figure 5.2: The Schnorr signature scheme Sch[GrGen] based on a group generator GrGen.

Theorem 5.1. Let GrGen be a group generator. Let Aalg be an algebraic adversary against the
EUF-CMA security of the Schnorr signature scheme Sch[GrGen] running in time at most τ and
making at most qs signature queries and qh queries to the random oracle. Then there exists an
algorithm B solving the DL problem w.r.t. GrGen, running in time at most τ + O(qs + qh), such that

Adveuf -cma
Sch[GrGen],Aalg

≤ AdvDLGrGen,B + qs(qs + qh) + 1
2λ−1 .

We start with some intuition for the proof. In the random oracle model, Schnorr signatures can
be simulated without knowledge of the secret key by choosing random c and s, setting R := sG−cX
and then programming the random oracle so that H(R, m) = c. On the other hand, an adversary
that returns a signature forgery (m∗, (R∗, s∗)) can be used to compute the discrete logarithm of the
public key X. In the ROM this can be proved by rewinding the adversary and using the Forking
Lemma [PS96b, PS00], which entails a security loss.

In the AGM+ROM, extraction is straight-line and the security proof thus tight. After querying
the signing oracle on messages m1, . . . , mqs , the adversary obtains (Ri, si)1≤i≤qs that also verify
Ri = siG−ciX with ci = H(Ri, mi). A valid forgery satisfies R∗ = s∗G−c∗X, with c∗ := H(R∗, m∗).
On the other hand, since the adversary is algebraic, when it made its first query H(R∗, m∗), it
provided a representation of R∗ in basis (G, X,

−→
R ) with −→R = (Ri)1≤i≤qs , that is, (γ∗, ξ∗,

−→
ρ∗) with

R∗ = γ∗G + ξ∗X + ∑qs
i=1 ρ∗iRi = γ∗G + ξ∗X + ∑qs

i=1 siG −
∑qs
i=1 ciX. Together, these equations

yield (
c∗ + ξ∗ −

∑qs
i=1 ρ∗i ci

)
X =

(
s∗ − γ∗ −

∑qs
i=1 ρ∗i si

)
G .

Since c∗ was chosen at random after the adversary chose ξ∗, ρ∗1, . . . and ρ∗qs , the probability that
c∗ + ξ∗ −

∑qs
i=1 ρ∗i ci ̸≡p 0 is overwhelming, in which case we can compute the discrete logarithm of

X from the above equation.
Proof
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Game0
(
EUF-CMAAalg

Sch[GrGen]
)
, Game1 , Game2

(p,G, G)← GrGen(1λ)
j := 0 ; x

$← Zp ; X := xG

Q := ( ) ; T := ( ) ; L := ( )(
m∗, (R∗

[γ∗,ξ∗,−→ρ ∗], s∗)
)
← AH,Sign

alg (p,G, G, X)

// R∗ = γ∗G+ ξ∗X +
∑|Q|

i=1 ρ
∗
iRi

if m∗ ∈ Q then return 0
c∗ := H̃(R∗, m∗)

if L(R∗, m∗) ̸= ⊥ then

(γ∗, ξ∗,
−→
ρ∗) := L(R∗, m∗)

if ξ∗ −
∑|Q|

i=1 ρ∗
i ci ≡p −T(R∗, m∗) then return 0 (I)

return (s∗G = R∗ + c∗X)

Oracle H̃(R, m)
if T(R, m) = ⊥ then

T(R, m) $← Zp

return T(R, m)

Oracle H(R[γ,ξ,−→ρ ], m)

// R = γG+ ξX +
∑|Q|

i=1 ρiRi

if T(R, m) = ⊥ then

T(R, m) $← Zp ; L(R, m) := (γ, ξ,−→ρ )
return T(R, m)

Oracle Sign(m) // in Game0 and Game1

j := j + 1 ; rj
$← Zp ; Rj := rjG

cj := H̃(Rj , m) ; sj := rj + cjx mod p

Q := Q∥(m)
return (Rj , sj)

Oracle Sign(m) // in Game2

j := j + 1 ; cj , sj
$← Zp ; Rj := sjG− cjX

if T(Rj , m) = ⊥ then T(Rj , m) := cj

else abort game and return 0 (II)
Q := Q∥(m)
return (Rj , sj)

Figure 5.3: Games in the proof of Theorem 5.1. Game0 is defined by ignoring all boxes; boxes are
included in Game1 and Game2; Gray boxes are only included in Game2.

[Proof of Theorem 5.1] Let Aalg be an algebraic adversary in EUF-CMASch[GrGen] that makes
at most qs signature queries and qh RO queries. We proceed by a sequence of games specified in
Figure 5.3.

Game0. The first game is EUF-CMA (Figure 5.1) for the Schnorr signature scheme (Figure 5.2)
with a random oracle H. The game maintains a list Q of queried messages and T of values sampled
for H. To prepare the change to Game1, we have written the finalization of the game in an equivalent
way: it first checks that m∗ /∈ Q and then runs Sch.Ver(pk, m∗, (R∗, s∗)), which we have written
explicitly. Since the adversary is algebraic, it must provide a representation (γ∗, ξ∗,

−→
ρ∗) for its

forgery (m∗, (R∗
[γ∗,ξ∗,

−→
ρ∗]

, s∗) such that R∗ = γ∗G + ξ∗X + ∑|Q|
i=1 ρ∗iRi, and similarly for each RO

query H(R[γ,ξ,−→ρ ], m). By definition,

AdvGame0
Aalg

= Adveuf -cma
Sch[GrGen],Aalg

. (5.1)

Game1. In Game1 we introduce an auxiliary table L that for each query H(R[γ,ξ,−→ρ ], m) stores the
representation (γ, ξ,−→ρ ) of R. Second, when the adversary returns its forgery (m∗, (R∗

[γ∗,ξ∗,
−→
ρ∗]

, s∗))

and previously made a query H(R∗
[γ′,ξ′,,

−→
ρ′ ]

, m∗) for some (γ′, ξ′,
−→
ρ′ ), then we consider this previous

representation of R∗, that is, we set (γ∗, ξ∗,
−→
ρ∗) := (γ′, ξ′,

−→
ρ′ ). The only actual difference to Game0

is that Game1 returns 0 in case ξ∗ −
∑|Q|
i=1 ρ∗i ci ≡p −T(R∗, m∗) (line (I)).
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We show that this happens with probability 1/p ≤ 1/2λ−1. First note that line (I) is only
executed if m∗ /∈ Q, as otherwise the game would already have returned 0. Hence T(R∗, m∗) can
only have been defined either (1) during a call to H by the adversary or (2), if it is still undefined
when Aalg stops, by the game when defining c∗. In both cases the probability of returning 0 in line
(I) is 1/p:

(1) If T(R∗, m∗) was defined during a H query of the form H(R∗
[γ′,ξ′,

−→
ρ′ ]

, m∗) then T(R∗, m∗)

is drawn uniformly at random and independently from ξ′,
−→
ρ′ and values (ci)1≤i≤|Q|. Since then

L(R∗, m∗) ̸= ⊥, the game sets ξ∗ := ξ′,
−→
ρ′ := −→ρ∗ and hence ξ∗ −

∑|Q|
i=1 ρ∗i ci ≡p −T(R∗, m∗) holds

with probability exactly 1/p. (2) If T(R∗, m∗) is only defined after the adversary output ξ∗ and −→ρ∗

then again we have ξ∗ −
∑|Q|
i=1 ρ∗i ci ≡p −T(R∗, m∗) with probability 1/p. Hence,

AdvGame1
Aalg

≥ AdvGame0
Aalg

− 1
2λ−1 . (5.2)

Game2. In the final game we use the standard method for Schnorr signatures of simulating the
Sign oracle without the secret key x by programming the random oracle. Game1 and Game2 are
identical unless Game2 returns 0 in line (II). For each signature query, Rj is uniformly random, and
the size of table T is at most qs + qh, hence the game aborts in line (II) with probability at most
(qs + qh)/p ≤ (qs + qh)/2λ−1. By summing over the at most qs signature queries, we have

AdvGame2
Aalg

≥ AdvGame1
Aalg

− qs(qs + qh)
2λ−1 . (5.3)

Reduction to DL. We now construct an adversary B solving DL with the same probability as
Aalg wins Game2. On input group description (p,G, G) and X, the adversary runs Aalg on input
(p,G, G, X) and simulates Game2, which can be done without knowledge of logG(X). Assume that
the adversary wins Game2 by returning (m∗, R∗, s∗) and let c∗ := T(R∗, m∗) and (γ∗, ξ∗,

−→
ρ∗) be

defined as in the game. Thus, ξ∗ −
∑|Q|
i=1 ρ∗i ci ̸= −c∗ mod p and R∗ = γ∗G + ξ∗X + ∑|Q|

i=1 ρ∗iRi;
moreover, validity of the forgery implies that s∗G = R∗ + c∗X. Hence,

(
s∗ − γ∗ −

∑|Q|
i=1 ρ∗i si

)
G =(

ξ∗ −
∑|Q|
i=1 ρ∗i ci + c∗

)
X and B can compute

log X = (s∗ − γ∗ −
∑|Q|
i=1 ρ∗i si)(ξ∗ −

∑|Q|
i=1 ρ∗i ci + c∗)−1 mod p .

Combining this with Eqs. (5.1)–(5.3), we have

AdvDLGrGen,B = AdvGame2
Aalg

≥ Adveuf -cma
Sch[GrGen],Aalg

− qs(qs + qh) + 1
2λ−1 .

Assuming that scalar multiplications in G and assignments in tables T and L take unit time, the
running time of B is τ + O(qs + qh).

5.2 Blind Schnorr Signatures

Definitions

We start with defining the syntax and security of blind signature schemes and focus on schemes
with a 2-round (i.e., 4 messages) signing protocol for concreteness.
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Game UNFABS(λ)
par← BS.Setup(1λ)
(sk, pk)← BS.KeyGen(par)
ctr1 := 0 ; ctr2 := 0 ; S := ∅
(m∗

i , σ∗
i )i∈[n] ← ASign1,Sign2(pk)

return
(
ctr2 < n

∧ ∀ i ̸= j ∈ [n] : (m∗
i , σ∗

i ) ̸= (m∗
j , σ∗

j )
∧ ∀ i ∈ [n] : BS.Ver(pk, m∗

i , σ∗
i ) = 1

)

Oracle Sign1(msg)

ctr1 := ctr1 + 1 // session id

(msg′, statectr1)← BS.Sign1(sk, msg)
S := S ∪ {ctr1} // open sessions

return (ctr1, msg′)

Oracle Sign2(j, msg)
if j /∈ S then return ⊥
(msg′, b)← BS.Sign2(statej , msg)
if b = 1 then S := S \ {j} ; ctr2 := ctr2 + 1
return msg′

Figure 5.4: The (strong) unforgeability game for a blind signature scheme BS with a 2-round
signing protocol.

Syntax. A blind signature scheme BS consists of the following algorithms:

• par← BS.Setup(1λ): the setup algorithm takes the security parameter λ in unary and returns
public parameters par;

• (sk, pk) ← BS.KeyGen(par): the key generation algorithm takes the public parameters par
and returns a secret/public key pair (sk, pk);

• (b, σ)← ⟨BS.Sign(sk), BS.User(pk, m)⟩: an interactive protocol is run between the signer with
private input a secret key sk and the user with private input a public key pk and a message
m; the signer outputs b = 1 if the interaction completes successfully and b = 0 otherwise,
while the user outputs a signature σ if it terminates correctly, and ⊥ otherwise. For a 2-round
protocol the interaction can be realized by the following algorithms:

(msgU,0, stateU,0)← BS.User0(pk, m)
(msgS,1, stateS)← BS.Sign1(sk, msgU,0)

(msgU,1, stateU,1)← BS.User1(stateU,0, msgS,1)
(msgS,2, b)← BS.Sign2(stateS , msgU,1)

σ ← BS.User2(stateU,1, msgS,2)

(Typically, BS.User0 just initiates the session, and thus msgU,0 = ( ) and stateU,0 = (pk, m).)

• b ← BS.Ver(pk, m, σ): the (deterministic) verification algorithm takes a public key pk, a
message m, and a signature σ, and returns 1 if σ is valid on m under pk and 0 otherwise.

Correctness requires that for any λ and any message m, when running par ← BS.Setup(1λ),
(sk, pk)← BS.KeyGen(par), (b, σ)← ⟨BS.Sign(sk), BS.User(pk, m)⟩, and b′ ← BS.Ver(pk, m, σ), we
have b = 1 = b′ with probability 1.

Unforgeability. The standard security notion for blind signatures demands that no user, after
interacting arbitrary many times with a signer and k of these interactions were considered successful
by the signer, can produce more than k signatures. Moreover, the adversary can schedule and
interleave its sessions with the signer in any arbitrary way.
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BlSch.Sign((p,G, G, H), x) BlSch.User(((p,G, G, H), X), m)

r $← Zp ; R := rG R−−−−−−−→ α, β $← Zp
R′ := R + αG + βX

c′ := H(R′, m)
c := c′ + β mod pc←−−−−−−−

s := r + cx mod p s−−−−−−−→

return 1

if sG ̸= R + cX then return ⊥

s′ := s + α mod p

return σ := (R′, s′)

Figure 5.5: The signing protocol of the blind Schnorr signature scheme.

In game UNFABS defined in Figure 5.4 the adversary has access to two oracles Sign1 and Sign2
corresponding to the two phases of the interactive protocol. The game maintains two counters
ctr1 and ctr2 (initially set to 0), where ctr1 is used as session identifier, and a set S of “open”
sessions. Oracle Sign1 takes the user’s first message (which for blind Schnorr signatures is empty),
increments ctr1, adds ctr1 to S and runs the first round on the signer’s side, storing its state as
statectr1 . Oracle Sign2 takes as input a session identifier j and a user message; if j ∈ S, it runs the
second round on the signer’s side; if successful, it removes j from S and increments ctr2, which
thus represents the number of successful interactions.

We say that BS satisfies unforgeability if AdvUNFBS,A is negligible for all p.p.t. adversaries A. Note
that we consider “strong” unforgeability, which only requires that all pairs (m∗i , σ∗i ) returned by
the adversary (rather than all messages m∗i ) are distinct.

Blindness. Blindness requires that a signer cannot link a message/signature pair to a particular
execution of the signing protocol. Formally, the adversary chooses two messages m0 and m1 and
the experiment runs the signing protocol acting as the user with the adversary, first obtaining a
signature σb on mb and then σ1−b on m1−b for a random bit b. If both signatures are valid, the
adversary is given (σ0, σ1) and must determine the value of b. A formal definition can be found in
section 6.4

Blind Schnorr signatures. A blind signature scheme BlSch is obtained from the scheme Sch
in Figure 5.2 by replacing Sch.Sign with the interactive protocol specified in Figure 5.5 (the first
message msgU,0 from the user to the signer is empty and is not depicted). Correctness follows since
a signature (R′, s′) obtained by the user after interacting with the signer satisfies Sch.Ver:

s′G = sG + αG = (r + cx)G + αG = R + αG + βX + (−β + c)X
= R′ + c′X = R′ + H(R′, m) X .

Moreover, Schnorr signatures achieve perfect blindness [CP93].

The ROS Problem

The security of blind Schnorr signatures is related to the ROS (Random inhomogeneities in
an Overdetermined, Solvable system of linear equations) problem, which was introduced by
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Game ROSAGrGen,ℓ,Ω(λ)
(p,G, G)← GrGen(1λ) ; Tros := ( )(
(−→ρ i, auxi)i∈[ℓ+1], (cj)j∈[ℓ]

)
← AHros(p)

// −→ρ i = (ρi,1, . . . , ρi,ℓ)

return
(
∀ i ̸= i′ ∈ [ℓ + 1] : (−→ρ i, auxi) ̸= (−→ρ i′ , auxi′)

∧ ∀ i ∈ [ℓ + 1] :
∑ℓ

j=1 ρi,jcj ≡p Hros(−→ρi , auxi)
)

Oracle Hros(−→ρ , aux)
if Tros(−→ρ , aux) = ⊥ then

Tros(−→ρ , aux) $← Zp

return Tros(−→ρ , aux)

Figure 5.6: The ROS game, where Hros : (Zp)ℓ × Ω→ Zp is a random oracle.

Schnorr [Sch01]. Consider the game ROSGrGen,ℓ,Ω in Figure 5.6, parameterized by a group generator
GrGen,1 an integer ℓ ≥ 1, and a set Ω (we omit GrGen and Ω from the notation when they are clear
from context). The adversary A receives a prime p and has access to a random oracle Hros taking as
input (−→ρ , aux) where −→ρ ∈ (Zp)ℓ and aux ∈ Ω. Its goal is to find ℓ + 1 distinct pairs (−→ρ i, auxi)i∈[ℓ+1]
together with a solution (cj)j∈[ℓ] to the linear system ∑ℓ

j=1 ρi,jcj ≡p Hros(−→ρi , auxi), i ∈ [ℓ + 1].2
The lemma below, which refines Schnorr’s observation [Sch01], shows how an algorithm A

solving the ROSℓ problem can be used to break the one-more unforgeability of blind Schnorr
signatures.

Lemma 5.2. Let GrGen be a group generator. Let A be an algorithm for game ROSGrGen,ℓ,Ω, where
Ω = (Zp)2 × {0, 1}∗, running in time at most τ and making at most qh random oracle queries.
Then there exists an (algebraic) adversary B running in time at most τ + O(ℓ + qh), making at
most ℓ queries to Sign1 and Sign2 and qh random oracle queries, such that

AdvunfBlSch[GrGen],B ≥ AdvrosGrGen,ℓ,Ω,A −
q2

h + (ℓ + 1)2

2λ−1 .

Proof : We first consider a slightly modified game ROS′GrGen,ℓ,Ω, which differs from ROS in that
it first draws x, r1, . . . , rℓ

$← Zp and returns 0 if one of the following two events occurs:

• E1: when A queries Hros(−→ρ , (γ, ξ, m)), there has been a previous query Hros(−→ρ ′, (γ′, ξ′, m′))
such that m = m′ and

γ + ξx + ∑ℓ
j=1 ρjrj ≡p γ′ + ξ′x + ∑ℓ

j=1 ρ′jrj ;

• E2: when A returns
(
(−→ρ i, (γi, ξi, mi))i∈[ℓ+1], (cj)j∈[ℓ]

)
, there exists i ̸= i′ ∈ [ℓ + 1] such that

mi = mi′ and
γi + ξix + ∑ℓ

j=1 ρi,jrj ≡p γi′ + ξi′x + ∑ℓ
j=1 ρi′,jrj .

Games ROS and ROS′ are identical unless E1 or E2 occurs in ROS′. Note that we could defer
the random selection of x, r1, . . . , rℓ and the check whether E1 or E2 occurred to the very end of the
game. Consider two distinct random oracle queries (−→ρ , (γ, ξ, m)) and (−→ρ ′, (γ′, ξ′, m′)); if m ̸= m′

then E1 cannot occur; if m = m′, then (γ, ξ,−→ρ ) ̸= (γ′, ξ′,−→ρ ′) and by the Schwartz-Zippel Lemma,

(γ − γ′) + (ξ − ξ′)x + ∑ℓ
j=1(ρj − ρ′j)rj ≡p 0

1The group generator GrGen is only used to generate a prime p of length λ; the group G is not used in the game.
2The original definition of the problem by Schnorr [Sch01] sets Ω := ∅. Our more general definition does not seem

to significantly modify the hardness of the problem while allowing to prove Theorem 5.4.
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with probability 1/p ≤ 1/2λ−1 over the draw of x, r1, . . . , rℓ. Hence, event E1 occurs with probability
at most q2

h/2λ−1. Similarly, event E2 occurs with probability at most (ℓ + 1)2/2λ−1. Hence,

Advros′
GrGen,ℓ,Ω,A ≥ AdvrosGrGen,ℓ,Ω,A −

q2
h + (ℓ + 1)2

2λ−1 . (5.4)

We now construct an adversary B for the game UNFBlSch[GrGen] as follows. Adversary B, which
takes as input (p,G, G, X) and has access to random oracle H and signing oracles Sign1 and Sign2,
simulates game ROS′ as follows. First, B initiates ℓ parallel instances of the protocol by querying
(j, Rj) ← Sign1() for j ∈ [ℓ]. Then, it runs A(p). When A queries Hros(−→ρ , (γ, ξ, m)) where
−→ρ = (ρj)j∈[ℓ] ∈ (Zp)ℓ and (γ, ξ, m) = aux ∈ (Zp)2×{0, 1}∗, B computes R := γG+ξX +∑ℓ

j=1 ρjRj

and returns H(R, m) + ξ, unless there has been a previous query Hros(−→ρ ′, (γ′, ξ′, m′)) with m = m′

and R = γ′G + ξ′X + ∑ℓ
j=1 ρ′jRj , in which case B aborts. It is easy to see that B perfectly simulate

game ROS′. Eventually, A returns
(
(−→ρ i, (γi, ξi, m∗i ))i∈[ℓ+1], (cj)j∈[ℓ]

)
. Then B closes all signing

sessions by calling sj ← Sign2(j, cj) for j ∈ [ℓ]. Finally, for i ∈ [ℓ + 1], it computes

R∗i := γiG + ξiX + ∑ℓ
j=1 ρi,jRj

s∗i := γi + ∑ℓ
j=1 ρi,jsj mod p

and returns ℓ + 1 forgeries (m∗i , (R∗i , s∗i ))i∈[ℓ+1].
Assume that A wins game ROS′. Then, in particular, (i) all pairs (m∗i , R∗i ) are distinct and (ii)

for all i ∈ [ℓ + 1], ∑ℓ
j=1 ρi,jcj ≡p Hros(−→ρ i, (γi, ξi, m∗i )) ≡p H(R∗i , m∗i ) + ξi ,

where the second equality follows from the way B answers A’s queries to Hros. While (i) implies
that all forgeries (m∗i , (R∗i , s∗i )) are distinct, (ii) implies that all forgeries are valid since for all
i ∈ [ℓ + 1],

s∗iG = γiG +
ℓ∑

j=1
ρi,j(rj + cjx)G = γiG +

ℓ∑
j=1

ρi,jRj︸ ︷︷ ︸
R∗

i−ξiX

+

 ℓ∑
j=1

ρi,jcj


︸ ︷︷ ︸
H(R∗

i ,m
∗
i )+ξi

X = R∗i + H(R∗i , m∗i )X .

Thus, B successfully breaks unforgeability of BlSch[GrGen], and thus

AdvunfBlSch[GrGen],B = Advros′
GrGen,ℓ,Ω,A . (5.5)

Clearly, B runs in time at most τ + O(ℓ + qh) and makes at most ℓ queries to Sign1 and Sign2
and qh random oracle queries. Combining Eqs. (5.4) and (5.5) concludes the proof.

The hardness of the ROS problem critically depends on ℓ. In particular, for small values of ℓ,
the ROS problem is statistically hard, as captured by the following lemma.

Lemma 5.3. Let GrGen be a group generator, ℓ ≥ 1, and Ω be some arbitrary set. Then for any
adversary A making at most qh queries to Hros,

AdvrosGrGen,ℓ,Ω,A ≤
( qh
ℓ+1

)
+ 1

2λ−1 .

proof Consider a modified game ROS*
GrGen,ℓ,Ω that is identical to ROS, except that it returns 0

when the adversary outputs ((−→ρ i, auxi)i∈[ℓ+1], (cj)j∈[ℓ]) such that for some i ∈ [ℓ+1] it has not made
the query Hros(−→ρ i, auxi). Games ROS and ROS∗ are identical unless in game ROS the adversary
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wins and has not made the query Hros(−→ρ i, auxi) for some i, which happens with probability at most
1/p ≤ 1/2λ−1. Hence,

AdvrosGrGen,ℓ,Ω,A ≤ Advros∗
GrGen,ℓ,Ω,A + 1

2λ−1 .

In order to win the modified game ROS∗, A must in particular make ℓ + 1 distinct random oracle
queries (−→ρ i, auxi)i∈[ℓ+1] such that the system

∑ℓ
j=1 ρi,jcj ≡p Hros(−→ρi , auxi), i ∈ [ℓ + 1] (5.6)

with unknowns c1, . . . , cℓ has a solution. Consider any subset of ℓ + 1 queries (−→ρ i, auxi)i∈[ℓ+1] made
by the adversary to the random oracle and let M denote the (ℓ + 1)× ℓ matrix whose i-th row is
−→ρ i and let t ≤ ℓ denote its rank. Then, Equation 5.6 has a solution if and only if the row vector−→
h := (Hros(−→ρ i, auxi))T

i∈[ℓ+1] is in the span of the columns of M . Since −→h is uniformly random, this
happens with probability pt/pℓ+1 ≤ 1/p ≤ 1/2λ−1. By the union bound,

Advros∗
GrGen,ℓ,Ω,A ≤

( qh
ℓ+1

)
2λ−1 ,

which concludes the proof.
On the other hand, the ROSℓ problem can be reduced the (ℓ + 1)-sum problem, for which

Wagner’s generalized birthday algorithm [Wag02, MS12, NS15] can be used. More specifically,
consider the (ℓ + 1)× ℓ matrix

(ρi,j) =



1 0 · · · 0
0 1 · · · 0

. . .

0 · · · 0 1
1 · · · · · · 1


and let −→ρ i denote its i-th line, i ∈ [ℓ+1]. Let q := 2λ/(1+⌊lg(ℓ+1)⌋). The solving algorithm builds lists
Li = (Hros(−→ρ i, auxi,k))k∈[q] for i ∈ [ℓ] and Lℓ+1 = (−Hros(−→ρ ℓ+1, auxℓ+1,k))k∈[q] for arbitrary values
auxi,k and uses Wagner’s algorithm to find an element ei in each list Li such that ∑ℓ+1

i=1 ei ≡p 0.
Then, it is easily seen that ((−→ρ i, auxi)i∈[ℓ+1], (ej)j∈[ℓ]), where auxi is such that ei = Hros(−→ρ i, auxi),
is a solution to the ROS problem. This algorithm makes qh = (ℓ + 1)2λ/(1+⌊lg(ℓ+1)⌋) random oracle
queries, runs in time an space O((ℓ + 1)2λ/(1+⌊lg(ℓ+1)⌋)), and succeeds with constant probability.

Security of Blind Schnorr Signatures

We now formally prove that blind Schnorr signatures are unforgeable assuming the hardness of the
one-more discrete logarithm problem and the ROS problem.

Theorem 5.4. Let GrGen be a group generator. Let Aalg be an algebraic adversary against the
UNF security of the blind Schnorr signature scheme BlSch[GrGen] running in time at most τ and
making at most qs queries to Sign1 and qh queries to the random oracle. Then there exist an
algorithm Bros for the ROSqs problem making at most qh + qs + 1 random oracle queries and an
algorithm Bomdl for the OMDL problem w.r.t. GrGen making at most qs queries to its oracle DLog,
both running in time at most τ + O(qs + qh), such that

AdvunfBlSch[GrGen],Aalg
≤ AdvomdlGrGen,Bomdl + Advrosℓ,Bros .
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We start with explaining the proof idea. Consider an adversary in the unforgeability game, let
X be the public key and R1, . . . , Rℓ be the elements returned by the oracle Sign1 and let (R∗i , s∗i ) be
the adversary’s forgeries on messages m∗i . As Aalg is algebraic, it must also output a representation
(γi, ξi,

−→ρ i) for R∗i w.r.t. the group elements received from the game: R∗i = γiG + ξiX + ∑ℓ
j=1 ρi,jRj .

Validity of the forgeries implies another representation, namely R∗i = s∗iG−c∗iX with c∗i = H(R∗i , m∗i ).
Together, these yield

(c∗i + ξ∗i )X + ∑ℓ
j=1 ρ∗i,jRj = (s∗i − γ∗i )G , (5.7)

which intuitively can be used to compute log X.
However, the reduction also needs to simulate Sign2 queries, for which, contrary to the proof

for standard Schnorr signatures (Theorem 5.1), it cannot rely on programming the random oracle.
In fact, the reduction can only win OMDL, which is an easier game than DL. In particular, the
reduction obtains X, R1, . . . , Rq from its challenger and must compute their logarithms. It can
make q logarithm queries, which it uses to simulate the Sign2 oracle: on input (j, cj), it simply
returns sj ← DLog(Rj + cjX).

But this means that in Equation 5.7 the reduction does not know the logarithms of the Rj ’s;
all it knows is Rj = sjG− cjX, which, when plugged into Equation 5.7 yields(

c∗i + ξ∗i −
∑ℓ
j=1 ρ∗i,jcj︸ ︷︷ ︸

=:χi

)
X =

(
s∗i − γ∗i −

∑ℓ
j=1 ρ∗i,jsj

)
G .

Thus, if for some i, χi ̸= 0, the reduction can compute x = log X, from which it can derive
rj = log Rj = sj − cj x. Together, x, r1, . . . , rq constitute an OMDL solution.

On the other hand, we can show that if χi = 0 for all i, then the adversary has actually found
a solution to the ROS problem (Figure 5.6): A reduction to ROS would answer the adversary’s
queries H(R[γ,ξ,−→ρ ], m) by Hros(−→ρ , (γ, ξ, m))− ξ; then χi = 0 implies (recall that c∗i = H(R∗i , m∗))

0 = χi = H(R∗i , m∗i ) + ξ∗i −
∑ℓ
j=1 ρ∗i,jcj = Hros(−→ρ ∗i , (γ∗i , ξ∗i , m∗i ))−

∑ℓ
j=1 ρ∗i,jcj ,

meaning
(
(−→ρ ∗i , (γ∗i , ξ∗i , m∗i ))i, (cj)j

)
is a solution to ROS.

To simplify the proof we first show the following lemma.

Lemma 5.5. Let GrGen be a group generator and let A be an adversary against the UNF security
of the blind Schnorr signature scheme BlSch[GrGen] running in time at most τ and making at most
qs queries to Sign1 and qh queries to the random oracle. Then there exists an adversary B that
makes exactly qs queries to Sign1 and qs queries to Sign2 that do not return ⊥, and returns qs + 1
forgeries, running in time at most τ + O(qs), such that

AdvunfBlSch[GrGen],A = AdvunfBlSch[GrGen],B .

proof We construct the following adversary that plays game UNF (Figure 5.4). On input pk,
adversary B runs A(pk) and relays all oracle queries and responses between its challenger and
A. Let q be the number of A’s Sign1 queries, let R1, . . . , Rq be the answers, and let C be the
completed sessions, that is, the set of values j such that A queried Sign2 on some input (j, ∗) and
Sign2 did not reply ⊥. Let (m∗i , (R∗i , s∗i ))i∈[n] be A’s output, for which we must have k = |C| < n
when A wins.
B then makes qs − q queries to Sign1 to receive Rq+1, . . . , Rqs . Next, B completes all qs − k

open signing sessions for distinct messages by following the protocol in Figure 5.5: for every j ∈
S := [1, . . . , qs]\C, adversary B picks a fresh message mj /∈ {m∗i }i∈[n]∪{mi}i∈S\[j] and αj , βj

$← Zp,
computes R′j := Rj + αjG + βjX, queries H(R′, mj) to get c′j , computes cj := c′j + βj mod p
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Game0
(
UNFAalg

BlSch[GrGen](λ)
)
, Game1

(p,G, G)← GrGen(1λ)
x

$← Zp ; X := xG ; ctr1 := 0 ; ctr2 := 0 ;
S := ∅ ; T := ( ) ; L := ( )(
m∗

i , (R∗
i [γi,ξi,−→ρ i], s∗

i )
)

i∈[ℓ+1]

← AH,Sign1,Sign2
alg (p,G, G, X)

//R∗
i = γiG+ ξiX + Σℓ

j=1 ρi,jRj

if ctr2 > ℓ then return 0
if ∃ i ̸= i′ ∈ [ℓ + 1] : (m∗

i , R∗
i ) = (m∗

i′ , R∗
i′) then

return 0

for i = 1 . . . ℓ + 1 do
if T(R∗

i , m∗
i ) = ⊥ then

T(R∗
i , m∗

i ) $← Zp

// T(R∗
i ,m

∗
i ) := Hros(−→ρ i, (γi, ξi,m

∗
i ))− ξi

L(R∗
i , m∗

i ) := (γi, ξi,
−→ρ i)

for i = 1 . . . ℓ + 1 do
c∗

i := H̃(R∗
i , m∗

i ) // doesn’t modify T in Game1

(γ∗
i , ξ∗

i ,−→ρ ∗
i ) := L(R∗

i , m∗
i )

if ∀ i ∈ [ℓ + 1] :
∑ℓ

j=1 ρ∗
i,jcj ≡p c∗

i + ξ∗
i

then return 0 (I)
// ((−→ρ ∗

i , (γ
∗
i , ξ

∗
i ,m

∗
i ))i∈[ℓ+1],

−→c ) solves ROS

return (∀ i ∈ [ℓ + 1] : s∗
i G = R∗

i + c∗
i X)

Oracle H̃(R, m)

if T(R, m) = ⊥ then T(R, m) $← Zp

return T(R, m)

Oracle H(R[γ,ξ,−→ρ ], m)
// R = γG+ ξX + Σ|−→ρ |

j=1 ρjRj

if T(R, m) = ⊥ then
T(R, m) $← Zp

// T(R,m) := Hros(−→ρ , (γ, ξ,m))− ξ

L(R, m) := (γ, ξ,−→ρ )
return T(R, m)

Oracle Sign1()
ctr1 := ctr1 + 1 ; rctr1

$← Zp

Rctr1 := rctr1G // Rctr1 ← Chal()

S := S ∪ {ctr1}
return (ctr1, Rctr1)

Oracle Sign2(j, cj)
if j /∈ S then return ⊥
sj := rj + cjx // sj ← DLog(Rj + cjX)

S := S \ {j} ; ctr2 := ctr2 + 1
return sj

Figure 5.7: Games used in the proof of Theorem 5.4. Game0 ignores all boxes. The
light-gray comments in Game1 and oracle H show how reduction Bros solves ROS; the
dark-gray comments in the Sign oracles show how Bomdl embeds its challenges and simulates
Game1.

and queries (j, cj) to Sign2. Upon receiving sj , B computes s′j := sj + αj mod p, which yields a
signature (R′j , s′j) on message mj .

Finally, B concatenates A’s output with qs + 1− n ≤ qs − k signatures: let S = {j1, . . . , jqs−k};
then B returns (m∗i , (R∗i , s∗i ))i∈[n] ∥ (mji , (R′ji , s′ji))i∈[qs+1−n]. When A wins the game, all tuples
(m∗i , (R∗i , s∗i )) are different; as all remaining messages also differ, all tuples output by B are distinct.
By correctness of the scheme, B’s signatures are valid. Thus whenever A wins, then so does B.

proof [Proof of Theorem 5.4] Let Aalg be an algebraic adversary making at most qs queries to
Sign1 and qh random oracle queries. By the above lemma, we can assume that Aalg makes exactly
ℓ := qs queries to Sign1, closes all sessions, and returns ℓ + 1 valid signatures. We proceed with a
sequence of games defined in Figure 5.7.

Game0. The first game is the UNF game (Figure 5.4) for scheme BlSch[GrGen] played with Aalg in
the random oracle model. We have written the finalization of the game in a different but equivalent
way. In particular, instead of checking that (m∗i , (R∗i , s∗i )) ̸= (m∗i′ , (R∗i′ , s∗i′)) for all i ̸= i′ ∈ [ℓ + 1],
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we simply check that (m∗i , R∗i ) ̸= (m∗i′ , R∗i′). This is equivalent since for any pair (m, R), there
is a single s ∈ Zp such that (R, s) is a valid signature for m. Hence, if the adversary returns
(m∗i , (R∗i , s∗i )) and (m∗i′ , (R∗i′ , s∗i′)) with (m∗i , R∗i ) = (m∗i′ , R∗i′) and s∗i ≠ s∗i′ , at least one of the two
forgeries is invalid. Thus,

AdvGame0
Aalg

= AdvunfBlSch[GrGen],Aalg
. (5.8)

Game1. In Game1, we make the following changes (which are analogous to those in the proof of The-
orem 5.1). First, we introduce an auxiliary table L that for each query H(R[γ,ξ,−→ρ ], m) stores the repre-
sentation (γ, ξ,−→ρ ) of R. Second, when the adversary returns its forgeries (m∗i , (R∗i [γi,ξi,

−→ρ i], s∗i ))i∈[ℓ+1],
then for each i ∈ [ℓ + 1] for which T(R∗i , m∗i ) is undefined, we emulate a call to H(R∗i [γi,ξi,

−→ρ i], m∗i ).
Again, this does not change the output of the game, since in Game0, the value T(R∗i , m∗i ) would
be randomly assigned when the game calls H̃ to check the signature. Finally, for each i ∈ [ℓ + 1],
we retrieve (γ∗i , ξ∗i ,−→ρ ∗i ) := L(R∗i , m∗i ) (which is necessarily defined at this point) and return 0 if∑ℓ
i=1 ρ∗i,jcj ≡p c∗i + ξ∗i for all i ∈ [ℓ + 1], where cj is the (unique) value submitted to Sign2 together

with j and not answered by ⊥.
Game0 and Game1 are identical unless Game1 returns 0 in line (I). We reduce indistinguishability

of the games to ROS by constructing an algorithm Bros solving the ROSℓ problem whenever Game1
stops in line (I). Algorithm Bros, which has access to oracle Hros, runs Aalg and simulates Game1 in
a straightforward way, except for using its Hros oracle to define the entries of T.

In particular, consider a query H(R[γ,ξ,−→ρ ], m) by Aalg such that T(R, m) = ⊥. Then Bros pads
the vector −→ρ with 0’s to make it of length ℓ (at this point, not all R1, . . . , Rℓ are necessarily defined,
so −→ρ might not be of length ℓ), and assigns T(R, m) := Hros(−→ρ , (γ, ξ, m)) − ξ (cf. comments in
Figure 5.7). Similarly, when Aalg returns its forgeries (m∗i , (R∗i [γi,ξi,

−→ρ i], s∗i ))i∈[ℓ+1], then for each
i ∈ [ℓ + 1] with T(R∗i , m∗i ) = ⊥, reduction Bros assigns T(R∗i , m∗i ) := Hros(−→ρ i, (γi, ξi, m∗i ))− ξi. Since
Hros returns uniformly random elements in Zp, the simulation is perfect.

If Game1 aborts in line (I), then Bros returns ((−→ρ ∗i , (γ∗i , ξ∗i , m∗i ))i∈[ℓ+1], (cj)j∈[ℓ]), where (γ∗i , ξ∗i ,−→ρ ∗i ) :=
L(R∗i , m∗i ). We show that this is a valid ROS solution.

First, for all i ̸= i′ ∈ [ℓ + 1]: (−→ρ ∗i , (γ∗i , ξ∗i , m∗i )) ̸= (−→ρ ∗i′ , (γ∗i′ , ξ∗i′ , m∗i′). Indeed, otherwise we would
have (m∗i , R∗i ) = (m∗i′ , R∗i′) and the game would have returned 0 earlier. Second, since the game
returns 0 in line (I), we have ∑ℓ

j=1 ρ∗i,jcj ≡p c∗i + ξ∗i for all i ∈ [ℓ + 1]. Hence, to show that the
ROS solution is valid, it is sufficient to show that for all i ∈ [ℓ + 1], c∗i = Hros(−→ρ ∗i , (γ∗i , ξ∗i , m∗i ))− ξ∗i .
This is clearly the case if T(R∗i , m∗i ) = ⊥ when the adversary returns its forgeries. Indeed, in that
case (γ∗i , ξ∗i ,−→ρ ∗i ) = (γi, ξi,

−→ρ i) and

c∗i = T(R∗i , m∗i ) = Hros(−→ρ i, (γi, ξi, m∗i ))− ξi = Hros(−→ρ ∗i , (γ∗i , ξ∗i , m∗i ))− ξ∗i .

Otherwise, T(R∗i , m∗i ) was necessarily assigned during a call to H, and this call was of the form
H(R∗i [γ∗

i ,ξ
∗
i ,
−→ρ ∗

i ], m∗i ), which implies that c∗i = T(R∗i , m∗) = Hros(−→ρ ∗i , (γ∗i , ξ∗i , m∗i ))− ξ∗i . Hence,

AdvGame1
Aalg

≥ AdvGame0
Aalg

−Advrosℓ,Bros . (5.9)

Moreover, it is easy to see that Bros makes at most qh + ℓ + 1 queries to Hros and runs in time at
most τ + O(ℓ + qh), assuming scalar multiplications in G and table assignments take unit time.

Reduction to OMDL. In our last step, we construct an algorithm Bomdl solving the OMDL
problem whenever Aalg wins Game1. Algorithm Bomdl, which has access to two oracles Chal and
DLog (see Figure 2.1) takes as input a group description (p,G, G), makes a first query X ← Chal(),
and runs Aalg on input (p,G, G, X), simulating Game1 as follows (cf. comments in Figure 5.7).
Each time Aalg makes a Sign1() query, Bomdl queries its Chal oracle to obtain Rj . It simulates
Sign2(j, c) without knowledge of x and rj by querying sj ← DLog(Rj + cX).
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Assume that Game1 returns 1, which implies that all forgeries (R∗i , s∗i ) returned by Aalg are
valid. We show how Bomdl solves OMDL. First, note that Bomdl made exactly ℓ calls to its oracle
DLog in total (since it makes exactly one call for each (valid) Sign2 query made by Aalg).

Since Game1 did not return 0 in line (I), there exists i ∈ [ℓ + 1] such that∑ℓ
j=1 ρ∗i,jcj ̸≡p c∗i + ξ∗i . (5.10)

For all i, the adversary returned a representation (γ∗i , ξ∗i ,−→ρ ∗i ) of R∗i , thus

R∗i = γ∗i G + ξ∗i X + ∑ℓ
j=1 ρ∗i,jRj . (5.11)

On the other hand, validity of the i-th forgery yields another representation: R∗i = s∗iG + c∗iX.
Combining these two, we get

(c∗i + ξ∗i )X + ∑ℓ
j=1 ρ∗i,jRj = (s∗i − γ∗i )G . (5.12)

Finally, for each j ∈ [ℓ], sj was computed with a call sj ← DLog(Rj + cjX), hence

Rj = sjG− cjX . (5.13)

Injecting Equation 5.13 in Equation 5.12, we obtain(
c∗i + ξ∗i −

∑ℓ
j=1 ρ∗i,jcj

)
X =

(
s∗i − γ∗i −

∑ℓ
j=1 ρ∗i,jsj

)
G . (5.14)

Since by Equation 5.10 the coefficient in front of X is non-zero, this allows Bomdl to compute
x := log X. Furthermore, from Equation 5.13 we have rj := log Rj = sj − cjx for all j ∈ [ℓ]. By
returning (x, r1, . . . , rℓ), Bomdl solves the OMDL problem whenever Aalg wins Game1, which implies

AdvomdlGrGen,Bomdl = AdvGame1
Aalg

. (5.15)

The theorem now follows from Equations (5.8), (5.9) and (5.15).





Chapter 6

Clause Blind Schnorr signatures

6.1 Definition of the Clause Blind Schnorr Signature Scheme

We present a variation of the blind Schnorr signature scheme that only modifies the signing protocol.
The scheme thus does not change the signatures themselves, meaning that it can be very smoothly
integrated in existing applications.

The signature issuing protocol is changed so that it prevents the adversary from attacking the
scheme by solving the ROS problem using Wagner’s algorithm [Wag02, MS12]. The reason is that,
as we show in Theorem 6.1, the attacker must now solve a modified ROS problem, which we define
in Figure 6.2.

We start with explaining the modified signing protocol, formally defined in Figure 6.1. In the
first round the signer and the user execute two parallel runs of the blind signing protocol from
Figure 5.5, of which the signer only finishes one at random in the last round, that is, it finishes
(Run1 ∨ Run2): the clause from which the scheme takes its name.

This minor modification has major consequences. Recall that in the attack against the standard
blind signature scheme from subsection 5.2, the adversary opens ℓ signing sessions, receiving
R1, . . . , Rℓ, then searches a solution −→c to the ROS problem and closes the signing sessions by
sending c1, . . . , cℓ. Our modified signing protocol prevents this attack, as now for every opened
session the adversary must guess which of the two challenges the signer will reply to. Only if all
its guesses are correct is the attack successful. As the attack only works for large values of ℓ, this
probability vanishes exponentially.

In Theorem 6.1 we make this intuition formal; that is, we define a modified ROS game, which
we show any successful attacker (which does not solve OMDL) must solve.

We have used two parallel executions of the basic protocol for the sake of simplicity, but the
idea can be straightforwardly generalized to t > 2 parallel runs, of which the signer closes only one
at random in the last round, that is, it closes (Run1 ∨ . . . ∨ Runt). This decreases the probability
that the user correctly guesses which challenges will be answered by the signer in ℓ concurrent
sessions.

6.2 The Modified ROS Problem

Consider Figure 6.2. The difference to the original ROS problem (Figure 5.6) is that the queries
to the Hros oracle consist of two vectors −→ρ 0,−→ρ 1 and additional aux information. Analogously,
the adversary’s task is to return ℓ + 1 tuples (−→ρ i,0,−→ρ i,1, auxi), except that the ROS solution
c∗1, . . . , c∗ℓ is selected as follows: for every index j ∈ [ℓ] the adversary must query an additional
oracle Select(j, cj,0, cj,1), which flips a random bit bj and sets the j-th coordinate of the solution
to c∗j := cj,bj

.
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CBlSch.Sign((p,G, G, H), x) CBlSch.User(((p,G, G, H), X), m)

r0, r1
$← Zp

R0 := r0G ; R1 := r1G R0, R1−−−−−−−→ α0, β0, α1, β1
$← Zp

R′0 := R0 + α0G + β0X

R′1 := R1 + α1G + β1X

c′0 := H(R′0, m)
c′1 := H(R′1, m)
c0 := c′0 + β0 mod p

c1 := c′1 + β1 mod pc0, c1←−−−−−−−
b $← {0, 1}
s := rb + cbx mod p b, s−−−−−−−→

return 1

if sG ̸= Rb + cbX then return ⊥

s′ := s + αb mod p

return σ := (R′b, s′)

Figure 6.1: The clause blind Schnorr signing protocol.

Game MROSAGrGen,ℓ,Ω(λ)
(p,G, G)← GrGen(1λ)
Tros := ( )
(−→ρ i,0,−→ρ i,1, auxi)i∈[ℓ+1] ← AHros,Select(p)

// −→ρ i,b = (ρi,b,1, . . . , ρi,b,ℓ)

return
(
∀ i ̸= i′ : (−→ρ i,0,−→ρ i,1, auxi) ̸= (−→ρ i′,0,−→ρ i′,1, auxi′)

∧ ∀ i ∈ [ℓ + 1] :
∑ℓ

j=1 ρi,bj ,jcj ≡p Hros(−→ρ i,0,−→ρ i,0, auxi)
∧ ∀ i ∈ [ℓ + 1]∀ j ∈ [ℓ] : ρi,1−bj ,j = 0

)

Oracle Hros(−→ρ 0,−→ρ 1, aux)
if Tros(−→ρ 0,−→ρ 1, aux) = ⊥ then

Tros(−→ρ 0,−→ρ 1, aux) $← Zp

return Tros(−→ρ 0,−→ρ 1, aux)

Oracle Select(j, c′0, c′1)
// must be queried ∀ j ∈ [ℓ]

bj
$← {0, 1} ; cj := c′

bj

return bj

Figure 6.2: The modified ROS problem.

Up to now, nothing really changed, as an adversary could always choose −→ρ i,0 = −→ρ i,1 and
cj,0 = cj,1 for all indices, and solve the standard ROS problem. What complicates the task for
the adversary considerably is the additional winning condition, which demands that in all tuples
returned by the adversary, the ρ values that correspond to the complement of the selected bit must
be zero, that is, for all i ∈ [ℓ + 1] and all j ∈ [ℓ]: ρi,1−bj ,j = 0. The adversary thus must commit to
the solution coordinate c∗j before it learns bj , which then restricts the format of its ρ values.

We conjecture that the best attack against this modified ROS problem is to guess the ℓ bits bj
and to solve the standard ROS problem based on this guess using Wagner’s algorithm. Hence, the
complexity of the attack is increased by a factor 2ℓ and requires time

O
(
2ℓ · (ℓ + 1)2λ/(1+⌊lg(ℓ+1)⌋)) .
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Figure 6.3: Estimated complexity τ of conjectured best attack against the modified ROS problem
as a function of parameter ℓ for λ = 256 (solid line) and λ = 512 (dashed line).

This estimated complexity is plotted for λ ∈ {256, 512} in Figure 6.3. This should be compared to
the standard Wagner attack with ℓ + 1 = 2

√
λ running in time 232 and 245, respectively, for the

same values of the security parameter.

6.3 Unforgeability of the Clause Blind Schnorr Signature Scheme

We now prove that the Schnorr signature scheme from Figure 5.2, with the signing algorithm
replaced by the protocol in Figure 6.1 is secure under the OMDL assumption for the underlying
group and hardness of the modified ROS problem.

Theorem 6.1. Let GrGen be a group generator. Let Aalg be an algebraic adversary against the
UNF security of the clause blind Schnorr signature scheme CBlSch[GrGen] running in time at most
τ and making at most qs queries to Sign1 and qh queries to the random oracle. Then there exist an
algorithm Bmros for the MROSqs problem making at most qh + qs + 1 random oracle queries and an
algorithm Bomdl for the OMDL problem w.r.t. GrGen making at most qs queries to its oracle DLog,
both running in time at most τ + O(qs + qh), such that

AdvunfBlSch[GrGen],Aalg
≤ AdvomdlGrGen,Bomdl + Advmrosℓ,Bmros .

19em20.5em
The theorem follows by adapting the proof of Theorem 5.4; we therefore discuss the changes

and refer to Figure 6.4, which compactly presents all the details.
The proof again proceeds by one game hop, where an adversary behaving differently in the two

games is used to break the modified ROS problem; the only change to the proof of Theorem 5.4 is
that when simulating Sign2, the reduction Bmros calls Select(j, cj,0, cj,1) to obtain bit b instead
of choosing it itself. By definition, Game1 aborts in line (I) if and only if Bmros has found a solution
for MROS.

The difference in the reduction to OMDL of the modified game is that the adversary can fail to
solve MROS in two ways: (1) its values ((ρi,bj ,j)i,j , (cj)j) are not a ROS solution; in this case the
reduction can solve OMDL as in the proof of Theorem 5.4; (2) these values are a ROS solution, but
for some i, j, we have ρi,1−bj ,j ̸= 0. We show that in this case the OMDL reduction can compute
the discrete logarithm of one of the values Rj,1−bj

.



56 CHAPTER 6. CLAUSE BLIND SCHNORR SIGNATURES

Game0
(
UNFAalg

CBlSch[GrGen](λ)
)
, Game1

(p,G, G)← GrGen(1λ)
x

$← Zp ; X := xG

ctr1 := 0 ; ctr2 := 0 ; S := ∅ ; T := ( ) ; L := ( )
(m∗

i , (R∗
i [γi,ξi,−→ρ i,0,−→ρ i,1], s∗

i ))i∈[ℓ+1]

← AH,Sign1,Sign2
alg (p,G, G, X)

// R∗
i = γiG+ ξiX + Σρi,0,jRj,0 + Σρi,1,jRj,1

if ctr2 > ℓ then return 0
if ∃ i ̸= i′ ∈ [ℓ + 1] : (m∗

i , R∗
i ) = (m∗

i′ , R∗
i′)

then return 0

for i = 1 . . . ℓ + 1 do
if T(R∗

i , m∗
i ) = ⊥ then

T(R∗
i , m∗

i ) $← Zp

// T(R∗
i ,m

∗
i ) := Hros(−→ρ i,0,

−→ρ i,1, (γi, ξi,m
∗
i ))− ξi

L(R∗
i , m∗

i ) := (γi, ξi,
−→ρ i,0,−→ρ i,1)

for i = 1 . . . ℓ + 1 do
c∗

i := H̃(R∗
i , m∗

i ) // does not modify T in Game1

(γ∗
i , ξ∗

i ,−→ρ ∗
i,0,−→ρ ∗

i,1) := L(R∗
i , m∗

i )

if ∀ i ∈ [ℓ + 1] :
∑ℓ

j=1 ρ∗
i,bj ,jcj ≡p c∗

i + ξ∗
i

∧ ∀ i ∈ [ℓ + 1],∀ j ∈ [ℓ] : ρ∗
i,1−bj ,j = 0

then return 0 (I)
// ((−→ρ ∗

i,0,
−→ρ ∗

i,1, (γ
∗
i , ξ

∗
i ,m

∗
i ))i∈[ℓ+1]) solves MROS

return (∀ i ∈ [ℓ + 1] : s∗
i G = R∗

i + c∗
i X)

//



φi := s∗
i − γ

∗
i −Σℓ

j=1 ρ
∗
i,bj ,j sj

if χi := c∗
i + ξ∗

i −Σℓ
j=1 ρ

∗
i,bj ,j cj ̸≡p 0

x := χ−1
i φi mod p

for j ∈ [ℓ] : rj,1−bj
←DLog(Rj,1−bj

)
else if ψ := ρ∗

i,1−bȷ̂,ȷ̂ ̸= 0 for some i, ȷ̂

for j ̸= ȷ̂ : rj,1−bj
←DLog(Rj,1−bj

)
rȷ̂,1−bȷ̂

:= ψ−1(φi −Σj ̸=ȷ̂ ρ
∗
i,1−bj ,j rj,1−bj

)

x← DLog(X)
for j ∈ [ℓ] : rj,bj

:= sj − cjx

(x, r1,0, . . . , rℓ,0, r1,1, . . . , rℓ,1) solves OMDL

Oracle H̃(R, m)

if T(R, m) = ⊥ then

T(R, m) $← Zp

return T(R, m)

Oracle H(R[γ,ξ,−→ρ 0,
−→ρ 1], m)

// R = γG+ ξX + Σρ0,jRj,0 + Σρ1,jRj,1

if T(R, m) = ⊥ then
T(R, m) $← Zp

// T(R,m) := Hros(−→ρ 0,
−→ρ 1, (γ, ξ,m))− ξ

L(R, m) := (γ, ξ,−→ρ 0,−→ρ 1)
return T(R, m)

Oracle Sign1()
ctr1 := ctr1 + 1
rctr1,0, rctr1,1

$← Zp

Rctr1,0 := rctr1,0G // Rctr1,0 ← Chal()

Rctr1,1 := rctr1,1G // Rctr1,1 ← Chal()

S := S ∪ {ctr1}
return (ctr1, Rctr1,0, Rctr1,1)

Oracle Sign2(j, cj,0, cj,1)
if j /∈ S then return ⊥
bj

$← {0, 1}
// bj ← Select(j, cj,0, cj,1)

cj := cj,bj

sj := rj,bj + cjx

// sj ← DLog(Rj,bj
+ cjX)

S := S \ {j}
ctr2 := ctr2 + 1
return (bj , sj)

Figure 6.4: Games used in the proof of Theorem 6.1. Game0 is the unforgeability game for
the clause blind Schnorr signature scheme in the ROM for an algebraic adversary Aalg. The
comments in light gray show how Bmros solves MROS; the dark comments show how Bomdl solves
OMDL.
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More in detail, the main difference to Theorem 5.4 is that the representation of the values R∗i
in the adversary’s forgery depend on both the Rj,0 and the Rj,1 values; we can thus write them as

R∗i = γ∗i G + ξ∗i X + ∑ℓ
j=1 ρ∗i,bj ,j

Rj,bj
+ ∑ℓ

j=1 ρ∗i,1−bj ,j
Rj,1−bj

(this corresponds to Equation 5.11 in the proof of Theorem 5.4). Validity of the forgery implies
R∗i = s∗iG− c∗iX, which together with the above yields

(c∗i + ξ∗i )X + ∑ℓ
j=1 ρ∗i,bj ,j

Rj,bj
= (s∗i − γ∗i )G−∑ℓ

j=1 ρ∗i,1−bj ,j
Rj,1−bj

(cf. Equation 5.12). By definition of sj , we have Rj,bj
= sjG−cjX for all j ∈ [ℓ]; the above equation

becomes thus

(
c∗i + ξ∗i −

∑ℓ
j=1 ρ∗i,bj ,j

cj
)
X =

(
s∗i − γ∗i −

∑ℓ
j=1 ρ∗i,bj ,j

sj
)
G−

∑ℓ
j=1 ρ∗i,1−bj ,j

Rj,1−bj
(6.1)

(which corresponds to Equation 5.14 in Theorem 5.4). In Theorem 5.4, not solving ROS implied
that for some i, the coefficient of X in the above equation was non-zero, which allowed computation
of log X.

However, if the adversary sets all these coefficients to 0, it could still fail to solve MROS if
ρ∗i∗,1−bj∗ ,j∗ ̸= 0 for some i∗, j∗ (this is case (2) defined above). In this case Game1 does not abort
and the OMDL reduction Bomdl must succeed. Since in this case the left-hand side of Equation 6.1
is then 0, Bomdl can, after querying DLog(Rj,1−bj

) for all j ≠ j∗, compute DLog(Rj∗,1−bj∗ ), which
breaks OMDL.

We finally note that the above case distinction was merely didactic, as the same OMDL reduction
can handle both cases simultaneously, which means that our reduction does not introduce any
additional security loss. In particular, the reduction obtains X and all values (Rj,0, Rj,1) from its
OMDL challenger, then handles case (2) as described, and case (1) by querying R1,1−b1 , . . . , Rℓ,1−bℓ

to its DLog oracle. In both cases it made 2ℓ queries to DLog and computed the discrete logarithms
of all 2ℓ + 1 challenges.

Figure 6.4 presents the unforgeability game and Game1, which aborts if the adversary solved
MROS. The gray and dark gray comments also precisely define how a reduction Bmros solves MROS
whenever Game1 aborts in line (I), and how a reduction Bomdl solves OMDL whenever Aalg wins
Game1.

Blindness of Clause Blind Schnorr Signatures Blindness of the “clause” variant in Fig-
ure 6.1 follows via a hybrid argument from blindness of the standard scheme (Figure 5.5). In
the game defining blindness (see Figure 6.5 in section 6.4), the adversary impersonates a signer
and selects two messages m0 and m1. The game flips a bit b, runs the signing protocol with the
adversary for mb and then for m1−b. If both sessions terminate, the adversary is given the resulting
signatures and must determine b.

In the blindness game for scheme CBlSch, the challenger runs two instances of the issuing
protocol from BlSch for mb of which the signer finishes one, as determined by its message (βb, sb)
in the third round (βb corresponds to b in Figure 6.1), and then two instances for m1−b.

If b = 0, the challenger thus asks the adversary for signatures on m0, m0, m1 and then m1.
We define a hybrid game where the order of the messages is m1, m0, m0, m1; this game thus lies
between the blindness games for b = 0 and b = 1, where the messages are m1, m1, m0, m0. The
original games differ from the hybrid game by exactly one message pair; intuitively, they are thus
indistinguishable by blindness of BlSch.

A technical detail is that the above argument only works when β0 = β1, as otherwise in the
reduction to BlSch blindness, both reductions (between each original game and the hybrid game)
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abort one session and do not get any signatures from its challenger. The reductions thus guess the
values β0 and β1 (and return a random bit if the guess turns out wrong). The hybrid game then
replaces the β0-th message of the first two and the β1-th of the last two (as opposed to the ones
underlined as above). Following this argument, in section 6.4 we prove the following:

Theorem 6.2. Let A be a p.p.t. adversary against blindness of the scheme CBlSch. Then there
exist two p.p.t. algorithms B1 and B2 against blindness of BlSch such that

AdvblindCBlSch,A ≤ 4 ·
(
AdvblindBlSch,B1 + AdvblindBlSch,B2

)
.

Since the (standard) blind Schnorr signature scheme is perfectly blind [CP93], by the above,
our variant also satisfies perfect blindness.

Analyzing ℓ = 1. The modified ROS problem for ℓ = 1 is as follows (dropping index j). The
adversary can query Hros(ρ0, ρ1, aux), where aux = (γ, ξ, m). At some point it queries Select(c0, c1)
and gets b $← {0, 1}. It can keep making hash queries. Eventually, the adversary returns

((ρ1,0, ρ1,1, aux1), (ρ2,0, ρ2,1, aux2)).

The adversary wins if

ρ1,bcb = Hros(ρ1,0, ρ1,1, aux1)
ρ2,bcb = Hros(ρ2,0, ρ2,1, aux2)
ρ1,b−1 = ρ2,b−1 = 0.

First, we can assume (ρ1,0, ρ1,1) ̸= (0, 0) and (ρ2,0, ρ2,1) ̸= (0, 0). Otherwise, this is a standard
Schnorr forgery and we can solve DL: The adversary submits a hash query H(R∗, m∗) with a
representation (γ, ξ) and returns a forgery (m∗, (R∗, s∗)). Hence, we can assume the adversary
makes no query of the form Hros(0, 0, aux).

Let q′h, resp. q′′h, be the number of hash queries before, resp. after the call to Select. After the
call to Select, hash queries don’t help much since cb is fixed. Hence, Hros(ρi,1, ρi,2, auxi) = ρi,bcb
with probability 1/p. Hence, the adversary finds two hash queries satisfying the system with
probability at most (q′′h/p)2.

Consider now the hash queries before the call to Select. The adversary’s output must be
such that ρ1,0 = ρ2,0 = 0 or ρ1,1 = ρ2,1 = 0 as otherwise it cannot win. So the best strategy
seems to be to guess b first, and only make queries of the form Hros(0, ρ1, aux) if guess b = 0
and Hros(ρ0, 0, aux) if guess b = 1. Then, the probability to find two hash queries such that the
system has a solution is at most (q′h)2/p. So one should be able to prove that the best advantage is
max{(q′h)2/(2p), (q′′h)2/p2}.

Arbitrary ℓ. Assume to simplify that the adversary makes all its hash queries, and then all
its Select queries. We simplify the game for the adversary. At the end of its hash queries, we
draw bj

$← {0, 1} for j ∈ [ℓ] and consider any subset of ℓ + 1 out of the qh queries. If the system∑ℓ
j=1 ρi,j,bj

cj = Hros(γi, ξi,
−→ρi , mi) mod p admits a solution and ∀i ∈ [ℓ + 1],∀j ∈ [ℓ] : ρi,j,1−bj

= 0,
then we say the adversary has won. Consider any subset of ℓ + 1 hash queries. Let k be the number
of integers j ∈ [ℓ] such that ∀i ∈ [ℓ + 1], ρi,j,0 = ρi,j,1 = 0. (This is the number of columns that are
simultaneously zero in both matrices ρ̂0 = (ρi,j,0) and ρ̂1 = (ρi,j,1). For these columns, the random
draw of bj “does not count”.) Then, for ℓ− k integers j′ in [ℓ], the j′-th column of either ρ̂0 or ρ̂1 is
non-zero, so that

Pr
[
b1, . . . , bℓ

$← {0, 1} : ∀i ∈ [ℓ + 1], ∀j ∈ [ℓ], ρi,j,1−bj
= 0

]
≤ 1

2ℓ−k .
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(This probability could be zero if for some the j′-th column in both ρ̂0 and ρ̂1 is non-zero for some
j′.) now consider the matrix ρ̂ = (ρi,j,bj

). This (ℓ + 1) × ℓ matrix has at least k zero columns,
hence its rank is at most ℓ− k. This implies that, over the draw of Hros, the probability that the
system ∑ℓ

j=1 ρi,j,bj
cj = Hros(γi, ξi,

−→ρi , mi) mod p admits a solution is at most 1/pk+1. (This is the
probability that the vector of inhomogeneities is in the span of the columns. If the rank of the
matrix is s, this probability is ps/pℓ+1 ≤ pℓ−k/pℓ+1.) Hence, the adversary wins for any subset of
ℓ + 1 queries with probability at most

max
k∈[0..ℓ]

1
2ℓ−k ·

1
pk+1 = 1

p · 2ℓ ≤
1

2λ+ℓ−1 .

By the union bound, the adversary wins with probability at most( qh
ℓ+1

)
2λ+ℓ−1 .

6.4 Blindness of the Clause Blind Schnorr Signatures
In this section we formally prove blindness of the clause blind Schnorr signature scheme CBlSch,
whose signing protocol is defined in Figure 6.1, by reducing it to blindness of the (standard) blind
Schnorr signature scheme BlSch (Figure 5.5).

In the game defining blindness for BlSch, the adversary plays the role of the signer and interacts
with oracles that simulate a user running two signing sessions. Oracle U1 reproduces the first
interaction BlSch.User1 of session i, in which the user sends a challenge c. Oracle U2 is the second
interaction BlSch.User2, which, once both sessions are finished, outputs the resulting signatures.

The formal game BLINDBlSch for adversary B is specified in Figure 6.5, where we follow the
definition from Hauk, Kiltz and Loss [HKL19]. As usual, B’s advantage is defined as AdvblindBlSch,B :=
2 · Pr

[
1← BLINDBBlSch(λ)

]
− 1.

Proof of Theorem 6.2 Figure 6.5 shows the blindness game for clause blind Schnorr
signatures, where we have replaced CBlSch.User1 and CBlSch.User2 by their instantiations in terms
of BlSch.User1 and BlSch.User2: the user first runs two instances of BlSch.User1, and the signer
calls U2 with an additional input β, which specifies which instance the signer completes.

To reduce blindness of CBlSch to blindness of BlSch, we will guess the bits β0 and β1 that
the adversary will use in its calls to U2: game GA(λ), specified in Figure 6.5, is defined like
BLINDACBlSch, except that it picks two random bits β̂0 and β̂1 and aborts if its guess was wrong.
(We also make a syntactical change in that U2 continues session β̂i instead of βi; when β̂i ̸= βi, the
simulation is not correct, but the game ignores A’s output anyway.) When β̂0 ̸= β0 or β̂1 ≠ β1, the
bit b′ is random, so we have

Pr
[
1← GA(λ)

∣∣ β̂0 ̸= β0 ∨ β̂1 ̸= β1
]

= 1
2 . (6.2)

On the other hand, when β̂0 = β0 and β̂1 = β1, the game is the same as the original blindness
game, whose output is independent of the guess, which yields

Pr
[
1← GA(λ)

∣∣ β̂0 = β0 ∧ β̂1 = β1
]

= Pr
[
1← BLINDACBlSch(λ)

]
. (6.3)

From Eqs. (6.2) and (6.3), we have

Pr
[
1← GA(λ)

]
= 1

2 ·
3
4 + Pr

[
1← BLINDACBlSch(λ)

]
· 1

4 ,

and thus
AdvG

A = 2 · Pr
[
1← GA(λ)

]
− 1 = 1

4 ·AdvblindCBlSch,A . (6.4)
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Game BLINDBBlSch(λ)
b

$← {0, 1}
b0 := b ; b1 := 1− b

b′ ← BInit,U1,U2(1λ)
return (b′ = b)

Init(pk, m0, m1)
sess0 := init

sess1 := init

Oracle U1(i, Ri)
if i /∈ {0, 1} ∨ sessi ̸= init then return ⊥
sessi := open
(statei, ci)← BlSch.User1(pk, Ri, mbi

)
return ci

Oracle U2(i, si)
if sessi ̸= open then return ⊥
sessi := closed

σbi ← BlSch.User2(statei, si)
if sess0 = sess1 = closed then

if σ0 = ⊥ ∨ σ1 = ⊥ then (σ0, σ1) := (⊥,⊥)
return (σ0, σ1)

else return ϵ

Game BLINDACBlSch(λ), GA(λ)

b
$← {0, 1}

b0 := b ; b1 := 1− b

β̂0, β̂1
$← {0, 1}

b′ ← AInit,U1,U2(1λ)

if β̂0 ̸= β0 ∨ β̂1 ̸= β1 then b′ $← {0, 1}

return (b′ = b)

Init(pk, m0, m1)
sess0 := init

sess1 := init

Oracle U1(i, Ri,0, Ri,1)

if i /∈ {0, 1} ∨ sessi ̸= init then return ⊥
sessi := open
(statei,0, ci,0)← BlSch.User1(pk, Ri,0, mbi

)
(statei,1, ci,1)← BlSch.User1(pk, Ri,1, mbi

)
return (ci,0, ci,1)

Oracle U2(i, si, βi)
if sessi ̸= open then return ⊥
sessi := closed

σbi
← BlSch.User2(statei,βi

, si)

σbi
← BlSch.User2(statei,β̂i

, si)

if sess0 = sess1 = closed then
if σ0 = ⊥ ∨ σ1 = ⊥ then (σ0, σ1) := (⊥,⊥)
return (σ0, σ1)

else return ϵ

Figure 6.5: The blindness game for the blind Schnorr signature scheme BlSch (top) and (bottom)
for the clause blind Schnorr signature scheme CBlSch (ignoring boxes) and game G (including the
boxes) used in the proof of Theorem 6.2.
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GA0 (λ) GA∗ (λ) GA1 (λ)

β̂0, β̂1
$← {0, 1}

b′ ← AInit,U1,U2(1λ)
if β̂0 ̸= β0 ∨ β̂1 ̸= β1 then b′ $← {0, 1}
return b′

Init(pk, m0, m1)
sess0 := init

sess1 := init

Oracle U1(i, Ri,0, Ri,1) // in G0 and G1

if i /∈ {0, 1} ∨ sessi ̸= init then return ⊥
sessi := open
(statei,0, ci,0)← BlSch.User1(pk, Ri,0, mi)
(statei,1, ci,1)← BlSch.User1(pk, Ri,1, mi)
(statei,0, ci,0)← BlSch.User1(pk, Ri,0, m1−i)
(statei,1, ci,1)← BlSch.User1(pk, Ri,1, m1−i)

return (ci,0, ci,1)

Oracle U2(i, si, βi)
if sessi ̸= open then return ⊥
sessi := closed

σi ← BlSch.User2(statei,β̂i
, si) // only in G0

σ1−i ← BlSch.User2(statei,β̂i
, si) // in G∗ and G1

if sess0 = sess1 = closed then
if σ0 = ⊥ ∨ σ1 = ⊥ then (σ0, σ1) := (⊥,⊥)
return (σ0, σ1)

else return ϵ

Oracle U1(i, Ri,0, Ri,1) // only in G∗

if i /∈ {0, 1} ∨ sessi ̸= init then return ⊥
sessi := open
if β̂i = 0 then

(statei,0, ci,0)← BlSch.User1(pk, Ri,0, m1−i)
(statei,1, ci,1)← BlSch.User1(pk, Ri,1, mi)

else if β̂i = 1 then
(statei,0, ci,0)← BlSch.User1(pk, Ri,0, mi)
(statei,1, ci,1)← BlSch.User1(pk, Ri,1, m1−i)

return (ci,0, ci,1)

Figure 6.6: Description of the games G0 and G1 which fix the bit b in game G from Figure 6.5. G∗
is a hybrid game that makes the transition between G0 and G1.

In the remainder of the proof, we will show that the adversary’s behavior only changes negligibly
when the bit b changes from 0 to 1. To do so, we define GA0 and GA1 by modifying GA as follows:
the bit b is fixed to 0 and 1, respectively, and the game directly outputs bit b′. The games are
specified in Figure 6.6 and we define BLINDB0,BlSch and BLINDB1,BlSch analogously. We have:

AdvG
A = Pr

[
1← GA(λ)

∣∣ b = 1
]

+ Pr
[
1← GA(λ)

∣∣ b = 0
]
− 1

= Pr
[
1← GA1 (λ)

]
− Pr

[
1← GA0 (λ)

]
. (6.5)

We now define a hybrid game G∗ which lies “between” G0 and G1 and is also specified in
Figure 6.6. It differs from G0 in the β̂i-th message used in signing session i and from G1 in the
(1− β̂i)-th message. Since

AdvG
A = Pr[1← GA1 (λ)]− Pr[1← GA∗ (λ)] + Pr[1← GA∗ (λ)]− Pr[1← GA0 (λ)] , (6.6)

it suffices to bound these two differences. For the first, we construct an adversary B1 playing game
BLINDBlSch and simulating G to A so that if B1 plays BLIND0,BlSch, it simulates G0 to A; whereas
if it plays BLIND1,BlSch, it simulates G∗ to A. Adversary B1 thus embeds its interaction with its
challenger as the two sessions that A will conclude (provided that β̂0 and β̂1 are guessed correctly);
it is specified in Figure 6.7. By inspection, we have

Pr
[
1← BLINDB1

0,BlSch(λ)
]

= Pr
[
1← GA0 (λ)

]
and

Pr
[
1← BLINDB1

1,BlSch(λ)
]

= Pr
[
1← GA∗ (λ)

]
.

(6.7)
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BInitB,UB
1 ,UB

2
1 (1λ) BInitB,UB

1 ,UB
2

2 (1λ)

β̂0, β̂1
$← {0, 1}

b′ ← AInitA,UA
1 ,UA

2 (1λ)
if β̂0 ̸= β0 ∨ β̂1 ̸= β1 then // βi could be ⊥

b′ $← {0, 1}
return b′

InitA(pk, m0, m1)

sess0 := init

sess1 := init

InitB(pk, m0, m1)

Oracle UA1 (i, Ri,0, Ri,1) // simulated by B1

if β̂i = 0 then
ci,0 ← UB

1 (i, Ri,0)
(statei,1, ci,1)← BlSch.User1(pk, Ri,1, mi)

if β̂i = 1 then
(statei,0, ci,0)← BlSch.User1(pk, Ri,0, mi)
ci,1 ← UB

1 (i, Ri,1)
return (ci,0, ci,1)

Oracle UA2 (i, si, βi) // simulated by B1

out← UB
2 (i, si)

// out can be ϵ, (σ0, σ1), or (⊥,⊥)

return out

Oracle UA2 (i, si, βi) // simulated by B2

if sessi ̸= open then return ⊥
sessi := closed

σ1−i ← BlSch.User2(statei,β̂i
, si)

if sess0 = sess1 = closed then
if σ0 = ⊥ ∨ σ1 = ⊥ then (σ0, σ1) := (⊥,⊥)
return (σ0, σ1)

else return ϵ

Oracle UA1 (i, Ri,0, Ri,1) // simulated by B2

if i /∈ {0, 1} ∨ sessi ̸= init then return ⊥
sessi := open
if β̂i = 0 then

(statei,0, ci,0)← BlSch.User1(pk, Ri,1, m1−i)
ci,1 ← UB

1 (i, Ri,1)
if β̂i = 1 then

ci,0 ← UB
1 (i, Ri,0)

(statei,1, ci,1)← BlSch.User1(pk, Ri,1, m1−i)
return (ci,0, ci,1)

Figure 6.7: Description of adversaries B1 and B2 in the proof of Theorem 6.2.

We also construct an adversary B2 that simulates game GA∗ (λ) or GA1 (λ). It embeds its
interaction as the sessions that A will abort and executes the concluding sessions (which are
the same in G∗ and G1) on its own. Adversary B2 is also specified in Figure 6.7 (note that in
its simulation of U2, the variable statei,β̂i

is always defined because of our syntactical change in
Figure 6.5). We have

Pr[1← BLINDB2
0,BlSch(λ)] = Pr[1← GA∗ (λ)] and

Pr[1← BLINDB2
1,BlSch(λ)] = Pr[1← GA1 (λ)] .

(6.8)

From Eqs. (6.6) – (6.8) we get

AdvG
A = AdvblindBlSch,B1 + AdvblindBlSch,B2 ,

which, together with Equation 6.4, concludes the proof.



Chapter 7

ElGamal Public Key Encapsulation
Scheme in the AGM

7.1 Schnorr-Signed ElGamal Encryption

A public key for the ElGamal public-key encryption (PKE) scheme is a group element Y ∈ G.
Messages are group elements M ∈ G and to encrypt M under Y , one samples a random x ∈ Zp
and derives an ephemeral key K := xY to blind the message: C := xY + M . Given in addition the
value X := xG, the receiver that holds y = log Y can derive K := yX and recover M := C −K.

Under the decisional Diffie-Hellman (DDH) assumption (see Figure 7.1), ciphertexts of different
messages are computationally indistinguishable: replacing K by a random value K ′ makes the
ciphertext C perfectly hide the message. In the AGM, ElGamal, viewed as a key-encapsulation
mechanism (KEM) was shown to satisfy CCA1-security (where the adversary can only make
decryption queries before seeing the challenge key) under a parametrized variant of DDH [FKL18].

The idea of Schnorr-signed ElGamal is to accompany the ciphertext by a proof of knowledge of
the randomness x = log X used to encrypt, in particular, a Schnorr signature on the pair (X, C)
under the public key X. The scheme is detailed in Figure 7.2. (Note that we changed the argument
order in the hash function call compared to section 5.1 so that it is the same as in ciphertexts.)

The strongest security notion for PKE is indistinguishability of ciphertexts under adaptive
chosen-ciphertext attack (IND-CCA2), where the adversary can query decryptions of ciphertexts
of its choice even after receiving the challenge. The (decisional) game IND-CCA2 is defined in
Figure 7.3.

When ephemeral keys are hashed (that is, defined as k := H′(xY )) and the scheme is viewed
as a KEM, then CCA2-security can be reduced to the strong Diffie-Hellman (SDH) assumption1

[ABR01, CS03] in the ROM. In section 7.3 we show that when key hashing is applied to the
Schnorr-signed ElGamal scheme from Figure 7.2, then in the AGM+ROM we can directly reduce
CCA2 security of the corresponding KEM to the DL assumption (Figure 2.1); in particular, we do
so using a tight security proof (note that SDH is equivalent to DL in the AGM [FKL18] but the
reduction from DL to SDH is non-tight). Here we prove that the Schnorr-signed ElGamal PKE is
IND-CCA2-secure in the AGM+ROM under the DDH assumption.

Theorem 7.1. Let GrGen be a group generator. Let Aalg be an algebraic adversary against the
IND-CCA2 security of the Schnorr-signed ElGamal PKE scheme SEG[GrGen] making at most qd
decryption queries and qh queries to the random oracle. Then there exist two algorithms B1 and B2

1SDH states that given X = xG and Y it is infeasible to compute xY even when given access to an oracle which
on input (Y ′, Z′) returns 1 if Z′ = xY ′ and 0 otherwise.
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Game DDHAGrGen(λ)
(p,G, G)←GrGen(1λ) ; b

$← {0, 1} ; x, y, z
$← Zp

X := xG ; Y := yG ; Z0 := xyG ; Z1 := zG

b′ ← A(p,G, G, X, Y, Zb)
return (b = b′)

Figure 7.1: The DDH problem.

SEG.Setup(λ)
(p,G, G)← GrGen(1λ)
Select H : {0, 1}∗ → Zp

return par := (p,G, G, H)

SEG.Enc(pk, M)
(p,G, G, H, Y ) := pk ; x, r

$← Zp

X := xG ; R := rG ; C := xY + M

s := r + H(X, C, R) · x mod p

return (X, C, R, s)

SEG.KeyGen(par)
(p,G, G, H) := par ; y

$← Zp ; Y := yG

sk := (par, y) ; pk := (par, Y )
return (sk, pk)

SEG.Dec(sk, (X, C, R, s))
(p,G, G, H, y) := sk
if sG ̸= R + H(X, C, R) ·X then

return ⊥
return M := C − yX

Figure 7.2: The Schnorr-Signed ElGamal PKE scheme SEG[GrGen].

Game IND-CCA2APKE(λ)
par← PKE.Setup(λ)
(pk, sk)← PKE.KeyGen(par)
b

$← {0, 1}
b′ ← AEnc,Dec(pk)
return (b = b′)

Oracle Enc(m0, m1) // one time

c∗ ← PKE.Enc(pk, mb)
return c∗

Oracle Dec(c)
if c = c∗ then return ⊥
return PKE.Dec(sk, c)

Figure 7.3: The IND-CCA2 security game for a PKE scheme PKE.

solving respectively the DL problem and the DDH problem w.r.t. GrGen, such that

Advind-cca2
SEG[GrGen],Aalg

≤ 2 ·AdvddhGrGen,B2 + AdvDLGrGen,B1 +
qd + 1

2λ−1 (qd + qh)
2λ−1 .

We start with the proof idea. The full proof can be found in section 7.2. Let Y be the public
key, let P0 and P1 denote the challenge plaintexts, and let (X∗ = x∗G, C∗ = x∗Y + Pb, R∗, s∗)
be the challenge ciphertext. Under the DDH assumption, given Y and X∗, the value x∗Y looks
random. We can thus replace x∗Y by a random group element Z∗, which perfectly hides Pb and
leads to a game where the adversary gains no information about the challenge bit b.

It remains to show how the reduction can simulate the game without knowledge of log X∗

(needed to sign the challenge ciphertext) and log Y (needed to answer decryption queries). The
Schnorr signature under X∗ contained in the challenge ciphertext can be simulated by programming
the random oracle H as for Theorem 5.1.
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Decryption queries leverage the fact that the Schnorr signature contained in a queried ciphertext
(X, C, R, s) proves knowledge of x with X = xG. Thus, intuitively, the reduction should be able
to answer a query by extracting x and returning M = C − xY . However, this extraction is a lot
trickier than in the proof of Theorem 5.1: During the game the adversary obtains group elements
Y , X∗, C∗, and R∗, as well as the answers M1, . . . , Mqd to its queries to Dec. The adversary’s
representations of group elements can thus depend on all these elements. In particular, since Dec
on input (X, C, . . .) computes M := C − yX, by successive calls to Dec, the adversary can obtain
arbitrary powers of y.

In our proof we first show that from a representation given by the adversary, we can always
(efficiently) derive a representation in basis

(G, X∗, Y = yG, . . . , yqd+1G, x∗yG, . . . , x∗yqd+1G) .

Now consider a decryption query (X, C, R, s), each group element represented as

X = γxG + ξxX∗ + ∑qd+1
i=1 υ

(i)
x yiG + ∑qd+1

i=1 ζ
(i)
x x∗yiG , R = γrG + . . . (7.1)

We show that each query falls into one of three categories:
(1) The choice of c = H(X, C, R) was unlucky, which only happens with negligible probability (this
corresponds to an abort in line (I) in Figure 7.4 in section 7.2).
(2) The representation of X is independent of Y , that is, X = γxG + ξxX∗. Then xY (and hence
the answer M = C − xY to the query) can be computed as xY := γxY + ξxZ∗ (where Z∗ := x∗Y
is known by the reduction).
(3) Otherwise we show that the adversary has actually computed log Y (corresponding to an abort
in line (III) in Figure 7.4): If the Dec query was valid then sG = R + cX, which, by plugging in
the representations (7.1) yields

0 = (γr + cγx − s)G + (ξr + cξx)X∗ +
qd+1∑
i=1

(
(υ(i)
r + x∗ζ(i)

r ) + c (

=:β(i)︷ ︸︸ ︷
υ(i)
x + x∗ζ(i)

x )︸ ︷︷ ︸
=:α(i)

)
yiG

If β(i) ≡p 0 for all i, we are in case (2). If β(j) ̸≡p 0 for some j and α(i) ≡p 0 for all i,
then c ≡p −(υ(j)

r + x∗ζ
(j)
r ) · (β(j))−1 was an unlucky choice (made after the adversary chose

its representations from (7.1)) (case (1)). Otherwise α(j) ≡p 0 for some j and

0 = γr + cγx − s + (ξr + cξx)x∗ + ∑qd+1
i=1 α(i)yi

can be solved for y. (Note that the reduction to DL chooses x∗ itself.)

7.2 Proof of the Theorem

Consider games Game0–Game4 in Figure 7.4, where Game0 is IND-CCA2Aalg
SEG[GrGen] and the adver-

sary’s advantage in Game4 is 0. We prove the theorem by bounding the probability that the
adversary behaves differently in two consecutive games Gamei and Gamei+1.

First, we establish some notation regarding the representation of group elements. Let (P0, P1)
be the two messages of the adversary’s call to Enc. At the beginning of the experiment, the only
group-element inputs to Aalg are G and the challenge public key Y . When the adversary queries its
Enc oracle, it receives three more group elements (X∗, C∗, R∗) in the answer. Furthermore, as the
adversary queries its Dec oracle, it receives additional group elements M1, . . . , Mqd

in response.
All in all, representations provided by the adversary are w.r.t. (G, Y, X∗, C∗, R∗, M1, . . . , Mqd

) and
for a group element A we write

A = γaG + υaY + ξaX
∗ + κaC

∗ + ρaR
∗ +

qd∑
j=1

µa,jMi ,
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with the convention that (ξa, κa, ρa) = (0, 0, 0) before the call to Enc and µa,j = 0 before the j-th
call to Dec.

Claim Consider a query H(X[γx,υx,ξx,κx,ρx,(µx,j)j ], C[... ], R[... ]) or Dec(X[... ], C[... ], R[... ], s) in
Game0. Then there exist efficiently computable coefficients (γ̄r, ξ̄r, (ῡ(i)

r )i, (ζ̄(i)
r )i, γ̄x, ξ̄x, (ῡ(i)

x )i, (ζ̄(i)
x )i)

which only depend on c∗, s∗, and on the coefficients of the representations of X, C, R and of the
group elements contained in previous Dec queries such that

X = γ̄xG + ξ̄xX∗ +
qd+1∑
i=1

ῡ(i)
x yiG +

qd+1∑
i=1

ζ̄(i)
x x∗yiG (7.2)

R = γ̄rG + ξ̄rX
∗ +

qd+1∑
i=1

ῡ(i)
r yiG +

qd+1∑
i=1

ζ̄(i)
r x∗yiG . (7.3)

Proof When the adversary queries H on a tuple (X, C, R) or Dec on a tuple (X, C, R, s), it
provides a representation of X, C, and R in terms of the group elements received so far:

X = γxG + υxY + ξxX∗ + κxC∗ + ρxR∗ + ∑qd
j=1 µx,jMj (7.4)

C = γcG + υcY + ξcX
∗ + κcC

∗ + ρcR
∗ + ∑qd

j=1 µc,jMj (7.5)
R = γrG + υrY + ξrX

∗ + κrC
∗ + ρrR

∗ + ∑qd
j=1 µr,jMj . (7.6)

Let Bj = (G, X∗, yG, . . . , yjG, x∗yG, . . . , x∗yjG). We will show the following:

1. the j-th message Mj returned by Dec can be represented over Bj+1;

2. C∗ and R∗ can be represented over Bqd+1.

Combined with (7.4) and (7.6), this will prove the claim.
We first show (i) for the Dec calls before the Enc query (if any). Consider the first Dec

call before the Enc query and let (X1, C1, R1, s1) be its input. Then (7.4) and (7.5) simplify to
X1 = γx,1G + υx,1Y and C1 = γc,1G + υc,1Y . The output of Dec is thus

M1 := C1 − yX1 = γc,1︸︷︷︸
=:γm,1

G + (υc,1 − γx,1︸ ︷︷ ︸
=:υ(1)

m,1

)Y + (−υx,1︸ ︷︷ ︸
=:υ(2)

m,1

)y2G .

In the second Dec call preceding the Enc query, the representation of the arguments (X2, C2, R2, s2)
can also depend on M1, so analogously, we can define coefficients γm,2, υ

(1)
m,2, υ

(2)
m,2 and υ

(3)
m,2 such

that the second output M2 of Dec satisfies

M2 = γm,2G + υ
(1)
m,2Y + υ

(2)
m,2y2G + υ

(3)
m,2y3G .

More generally, the j-th message returned by the Dec oracle before the Enc query can be written
as

Mj = γm,jG + ∑j+1
i=1 υ

(i)
m,jy

iG . (7.7)

In the following, we let k denote the number of queries to Dec before the Enc call.
When the adversary queries its Enc oracle, it provides the representation of the challenge

messages P0 and P1. We thus have for b ∈ {0, 1}, Pb = γp,bG + υp,bY + ∑k
j=1 µp,b,jMj . Analogously

to the above, using (7.7) we can define coefficients such that

Pb = γ̄p,bG + ∑k+1
i=1 ῡ

(i)
p,by

iG .
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By inspection of the code of Enc, it follows that

C∗ = x∗Y + Pb = x∗Y + γ̄p,bG + ∑k+1
i=1 ῡ

(i)
p,by

iG and (7.8)
R∗ = s∗G− c∗X∗ , (7.9)

which proves (ii). Consider now the first Dec query after the Enc query. Plugging in (7.8) and
(7.9) into Equation (7.4) yields

X = (γx + κxγ̄p,b + ρxs∗)G + (ξx − ρxc∗)X∗ + (υx + κxῡ
(1)
p,b )Y + κxx∗Y

+ ∑k+1
i=2 κxῡ

(i)
p,by

iG + ∑k
j=1 µx,jMj .

Moreover, the Mi’s are still of the form as in (7.7), hence we obtain

X = (γx + κxγ̄m,b + ρxs∗ + ∑k
j=1 µx,jγm,j︸ ︷︷ ︸

=:γ̄x

)G + (ξx − ρxc∗︸ ︷︷ ︸
=:ξ̄x

)X∗

+ (υx + κxῡ
(1)
p,b + ∑k

j=1 µx,jυ
(1)
m,j︸ ︷︷ ︸

=:ῡ(1)
x

)Y + ∑k+1
i=2 (κxῡ

(i)
p,b + ∑k

j=1 µx,jυ
(i)
m,j︸ ︷︷ ︸

=:ῡ(i)
x

)yiG + κx︸︷︷︸
=:ζ̄x

x∗Y

and similarly for C. Hence, the output Mk+1 = C − yX of Dec is of the form

Mk+1 = γm,k+1G + ξm,k+1X∗ + ∑k+2
i=1 υ

(i)
m,k+1yiG + ∑2

i=1 ζ
(i)
m,k+1x∗yiG .

More generally, the j-th message returned by Dec, j > k, can be written

Mj = γm,jG + ξm,jX
∗ + ∑j+1

i=1 υ
(i)
m,jy

iG + ∑j+1−k
i=1 ζ

(i)
m,jx

∗yiG ,

which proves (i) for all j.
To prove Theorem 7.1, we start with the difference between Game0 and Game1. First note that

at any point T(X∗, C∗, R∗) is the only value in T that might not have been set during an adversary’s
call to H or Dec, and that could thus does not have a corresponding entry in L. Moreover, if Dec
does not reply ⊥, we must have (X, C, R) ̸= (X∗, C∗, R∗), since otherwise by the 3rd line in Dec,
we have s = log R∗ + T(X∗, C∗, R∗) log X∗ = s∗ and the oracle would have returned ⊥ in the 1st
line.

The values (γ̄x, ξ̄x, (ῡ(i)
x )i, (ζ̄(i)

x )i, γ̄r, ξ̄r, (ῡ(i)
r )i, (ζ̄(i)

r )i) as defined in Dec were (implicitly) chosen
by the adversary before T(X, C, R) = c was randomly drawn, which, as we argued above, must
have been by a call from the adversary. The value c is thus independent of (γ̄x, . . . , (ζ̄(i)

r )i).
Game0 and Game1 behave identically unless Game1 aborts during a Dec call in line (I), thus in

particular for some j: β(j) := ῡ
(j)
x +x∗ζ̄

(j)
x ̸≡p 0 and α(j) := (ῡ(j)

r +x∗ζ̄
(j)
r )+c (ῡ(j)

x +x∗ζ̄
(j)
x ) ≡p 0. By

the above argument, the probability that c was chosen such as c = −(ῡ(j)
r + x∗ζ̄

(j)
r ) · (β(j))−1 mod p

is upper-bounded by 1
2λ−1 .

Denoting by A the event that Game1 aborts in line (I) during some Dec call, we have Pr[A] ≤
qd

2λ−1 . Since Pr[1← Game0 | ¬A] = Pr[1← Game1 | ¬A], we have

AdvGame0
Aalg

−AdvGame1
Aalg

= 2 Pr[A]
(

Pr[1← Game0 |A]− Pr[1← Game1 |A]
)

≤ Pr[A] ,

as Pr[1← Game1 |A] = 1
2 . We thus have

AdvGame1
Aalg

≥ AdvGame0
Aalg

− qd
2λ−1 . (7.10)
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Game0 Game1 Game2 Game3 Game4

(p,G, G)← GrGen(λ)
y

$← Zp ; Y := yG

b
$← {0, 1}

T := ( ) ; L := ( )
b′ ← AH,Enc,Dec

alg ((p,G, G), Y )
return (b = b′)

Oracle H̃(X, C, R)
if T(X, C, R) = ⊥ then

T(X, C, R) $← Zp

return T(X, C, R)

Oracle Enc(P0,[γp,0,υp,0,(µp,0,j)j ], P1,[...])
// one-time; only in Game0 and Game1

// Pb = γp,bG+ υp,bY +
∑k

j=1 µp,b,jMj

x∗, r∗ $← Zp ; X∗ := x∗G

C∗ = x∗Y + Pb

R∗ := r∗G ; c∗ := H̃(X∗, C∗, R∗)
s∗ := r∗ + c∗x∗ mod p

return (X∗, C∗, R∗, s∗)

Oracle Enc(P0,[γp,0,υp,0,(µp,0,j)j ], P1,[...])
// one-time; only in Game2 – Game4

x∗, c∗, s∗ $← Zp ; X∗ := x∗G

Z∗ := x∗Y

Z∗ $← G
C∗ = Z∗ + Pb

R∗ := s∗G− c∗X∗

if T(X∗, C∗, R∗) = ⊥ then
T(X∗, C∗, R∗) := c∗

else abort game and
return b′ $← {0, 1} (II)

return (X∗, C∗, R∗, s∗)

Oracle H((X[γx,υx,ξx,κx,ρx,(µx,j)j ], C[··· ], R[··· ])
// X = γxG+ υxY + ξxX

∗ + κxC
∗ + ρxR

∗ +
∑

j
µx,jMj

let γ̄x, ξ̄x, (ῡ(i)
x )i, (ζ̄(i)

x )i, γ̄r, ξ̄r, (ῡ(i)
r )i, (ζ̄(i)

r )i such that

X = γ̄xG + ξ̄xX∗ +
∑

i ῡ
(i)
x yiG +

∑
i ζ̄

(i)
x x∗yiG

R = γ̄rG + ξ̄rX∗ +
∑

i ῡ
(i)
r yiG +

∑
i ζ̄

(i)
r x∗yiG

if T(X, C, R) = ⊥ then

T(X, C, R) $← Zp

L(X, C, R) := (γ̄x, ξ̄x, (ῡ(i)
x )i, (ζ̄(i)

x )i, γ̄r, ξ̄r, (ῡ(i)
r )i,

(ζ̄(i)
r )i)

return T(X, C, R)

Oracle Dec(X[γx,υx,ξx,κx,ρx,(µx,j)j ], C[··· ], R[··· ], s)

if (X, C, R, s) = (X∗, C∗, R∗, s∗) then return ⊥
c := H(X[γx,υx,ξx,κx,ρx,(µx,j)j ], C[··· ], R[··· ])
if sG ̸= R + cX then return ⊥

(γ̄x, ξ̄x, (ῡ(i)
x )i, (ζ̄(i)

x )i, γ̄r, ξ̄r, (ῡ(i)
r )i, (ζ̄(i)

r )i) := L(X, C, R)
for all i : α(i) := (ῡ(i)

r + x∗ζ̄(i)
r ) + c (ῡ(i)

x + x∗ζ̄(i)
x ) mod p

if ∃j : ῡ(j)
x + x∗ζ̄(j)

x ̸≡p 0 and ∀i : α(i) = 0 then
abort game and return b′ $← {0, 1} (I)

if ∃j : α(j) ̸= 0 then
abort game and return b′ $← {0, 1} (III)

// solve for y:
∑

i
α(i)yi + (ξ̄r + cξ̄x)x∗

// +(γ̄r + cγ̄x − s) ≡p 0

// ∀i : ῡ(i)
x = ζ̄

(i)
x = 0 ⇒ x = γ̄x + ξ̄xx∗ and yX = γ̄xY + ξ̄xZ∗

M := C − yX

M := C − (γ̄xY + ξ̄xZ∗)
return M

Figure 7.4: The IND-CCA2 game for the Schnorr-Signed ElGamal scheme (Game0) and games
Game1–Game4 used in the proof. The comments in dashed boxes show how the DL reduction
simulates Game3 without knowledge of y.
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Game1 and Game2 behave identically unless oracle Enc generates values (X∗, C∗, R∗) that have
already been assigned a value in the table T. The values X∗ and R∗ are uniformly random in G.
Thus, after the adversary has made qh queries to H and qd to Dec, at most qh + qd values in T
are assigned. Thus the probability that (X∗, C∗, R∗) collides with one of the entries is bounded by
qh+qd

(2λ−1)2 , and we thus have

AdvGame2
Aalg

≥ AdvGame1
Aalg

− qd + qh
(2λ−1)2 . (7.11)

Game2 and Game3 behave identically unless for some j: α(j) := (ῡ(j)
r +x∗ζ̄

(j)
r )+c (ῡ(j)

x +x∗ζ̄
(j)
x ) ̸≡p

0. We show that when this happens, we can build a reduction B1 that computes the discrete
logarithm of Y . The reason is that if Dec does not return ⊥ then sG = R + cX, which, by plugging
in (7.2) and (7.3), yields

0 = (γ̄r + cγ̄x − s)G + (ξ̄r + cξ̄x)X∗ +
qd+1∑
i=1

(ῡ(i)
r + cῡ(i)

x )yiG +
qd+1∑
i=1

(ζ̄(i)
r + cζ̄(i)

x )x∗yiG

= (γ̄r + cγ̄x − s)G + (ξ̄r + cξ̄x)X∗ +
qd+1∑
i=1

α(i)yiG . (7.12)

If α(j) ̸= 0 for some j, then we can solve the above for y.
In more detail, reduction B1 is given a challenge Y and sets it as the public key. It simulates

Game2 by choosing random values x∗, c∗ and s∗ during the Enc call. Moreover, it can simulate
any Dec query before a potential abort in line (III) without knowledge of y as follows.

Consider a call Dec(X[γx,υx,ξx,κx,ρx,(µx,i)i], C[··· ], R[··· ], s). The oracle returns ⊥ if sG ̸= R +
H(X, C, R)X or (X, C, R, s) = (X∗, C∗, R∗, s∗). As s is determined by (X, C, R), the latter implies
(X, C, R) ̸= (X∗, C∗, R∗) if Dec did not return ⊥.

If furthermore Dec does not abort in line (I) or (III), then ῡ
(i)
x + x∗ζ̄

(i)
x ≡p 0 for all i; thus, by

(7.2): X = γ̄xG + ξ̄xX∗. The reduction can thus compute yX = γ̄xY + ξ̄xx∗Y and return

M := C − (γ̄x + ξ̄xx∗)Y = C − xY = C − yX .

(Note that Game3 also introduced a syntactical change by directly defining the response of Dec as
M := C − γ̄xY + ξ̄xZ∗ = (γ̄x + ξ̄xx∗)Y = C − yX.)

This shows that B1 can simulate Game3 until an abort in line (III). In this case, B1 returns y,
the solution of the following equation (cf. (7.12)):∑qd+1

i=1 α(i)yi + γ̄r + cγ̄x − s + (ξ̄r + cξ̄x)x∗ ≡p 0 .

and thus solves the DL challenge Y . This yields

AdvGame3
Aalg

≥ AdvGame2
Aalg

−AdvdlGrGen,B1 . (7.13)

Finally, Game3 and Game4 only differ in the definition of Z∗, which in Game3 is the CDH of X∗

and Y , whereas in Game4 it is random. We build a reduction B2 to DDH, which is given a DDH
challenge (X∗, Y, Z∗) and uses these values to simulate Game3 (when Z∗ is x∗Y ) or Game4 (when
it is random). Note that the games can be simulated without knowledge of x∗ and y; in particular,
the abort condition for (III) can be checked as

0 ?= α(j)G = (ῡ(j)
r + cῡ(j)

x )G + (ζ̄(j)
r + cζ̄(j)

x )X∗

and likewise for the condition of abort (I). We thus have
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SEGK.Setup(λ)
(p,G, G)← GrGen(1λ)
Select H : {0, 1}∗ → Zp

Select H′ : {0, 1}∗ → K
return par := (p,G, G, H, H′)

SEGK.Enc(pk)
(p,G, G, H, H′, Y ) := pk

x, r
$← Zp ; X := xG ; R := rG

k := H′(xY ) ; s := r + H(R, X) · x mod p

return (k, (X, R, s))

SEGK.KeyGen(par)
(p,G, G, H, H′) := par

y
$← Zp ; Y := yG

sk := (par, y) ; pk := (par, Y )
return (sk, pk)

SEGK.Dec(sk, (X, R, s))
(p,G, G, H, H′, y) := sk
if sG ̸= R + H(R, X) ·X then

return ⊥
return k := H′(yX)

Figure 7.5: The Schnorr-signed ElGamal KEM scheme SEGK[GrGen] for key space K.

AdvGame4
Aalg

≥ AdvGame3
Aalg

− 2 ·AdvddhGrGen,B2 . (7.14)

Inspecting Game4, we note that A’s output is independent of b, because the random group
element Z∗ completely hides the message Pb. And whenever the game aborts, it outputs a random
bit; we thus have:

AdvGame4
Aalg

= 2 · Pr[1← Game4]− 1 = 0 . (7.15)

The theorem now follows from Equations (7.10), (7.11), (7.13), (7.14) and (7.15).

7.3 Schnorr-Signed Hashed ElGamal KEM

A public key for the ElGamal key-encapsulation mechanism (KEM) is a group element Y ∈ G. To
encrypt a message under Y , one samples a random x ∈ Zp and derives an ephemeral key K := xY
to encrypt the message. Given the encapsulation X := xG, the receiver that holds y = log Y
can derive the same key as K := yX. Under the decisional Diffie-Hellman assumption (DDH),
this scheme is IND-CPA-secure. In the AGM, it was shown to satisfy CCA1 security (where
the adversary can only make decryption queries before it has seen the challenge key) under a
parameterized variant of DDH [FKL18].

By hashing the key, that is, defining k := H(xY ), the assumption for proving CPA, resp. CCA2
security, can be relaxed to CDH, resp. strong Diffie-Hellman (SDH), in the random-oracle model.

Exactly as in section 7.1, the idea of Schnorr-signed hashed ElGamal is that, in addition to X,
the encapsulation contains a proof of knowledge of the used randomness x = log X, in the form of
a Schnorr signature on message X under the public key X. The scheme is detailed in Figure 7.5.

The strongest security notion for KEM schemes is indistinguishability of ciphertexts under
chosen-ciphertext attack (IND-CCA2), where the adversary can query decryptions of encapsulations
of its choice even after receiving the challenge. The (decisional) game IND-CCA2 is defined in
Figure 7.6.

We now prove that the Schnorr-signed hashed ElGamal KEM is tightly IND-CCA2-secure in
the AGM+ROM under the discrete logarithm assumption.

Theorem 7.2. Let GrGen be a group generator. Let Aalg be an algebraic adversary against the
IND-CCA2 security of the Schnorr-signed ElGamal KEM scheme SEGK[GrGen] making at most qd
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Game IND-CCA2AKEM(λ)
par← KEM.Setup(λ)
(pk, sk)← KEM.KeyGen(par)
b

$← {0, 1}
b′ ← AEnc,Dec(pk)
return (b = b′)

Oracle Enc() // one time

(k0, c∗)← KEM.Enc(pk) ; k1
$← K

return (kb, c∗)

Oracle Dec(c)
if c = c∗ then return ⊥
return KEM.Dec(sk, c)

Figure 7.6: The IND-CCA2 security game for a KEM scheme KEM.

decryption queries and qh queries to both random oracles. Then there exists an algorithm B solving
the DL problem w.r.t. GrGen, such that

Advind-cca2
SEGK[GrGen],Aalg

≤ AdvDLGrGen,B +
qd + 1

2λ−1 (qd + qh)
2λ−1 .

We start with the proof idea. Let Y be the public key and let (X∗ = x∗G, R∗, s∗) be the
challenge ciphertext. If the adversary never queries H′(x∗Y ) then it has no information about the
challenge key kb; but in order to query K∗ := x∗Y , the adversary must solve the CDH problem for
(Y, X∗). A CDH solution cannot be recognized by the reduction, so it would have to guess one of
A’s H′ queries, which would make the proof non-tight.

In the AGM we can give a tight reduction to a weaker assumption, namely DL: Given a DL
challenge Y , we set it as the public key, pick a random z and set X∗ := zY . If the adversary makes
the query H′(K∗) then we have K∗ = zy2G. On the other hand, the adversary must provide a
representation (γ, υ, ξ, ρ) of K∗ w.r.t. (G, Y, X∗, R∗), and thus

K∗ = γG + υY + ξX∗ + ρR∗ = (γ + υy + ξzy + ρs∗ − ρc∗zy)G , (7.16)

using the fact that R∗ = s∗G− c∗X∗. Setting these two representations of log K∗ equal yields the
following quadratic equation in y:

zy2 − (υ + ξz − ρc∗z)y ≡p γ + ρs∗ .

If one of the solutions is the DL of Y , we are done; otherwise, the adversary’s query was not of the
form K∗ and the challenge bit remains information-theoretically hidden.

The rest of the game is simulated without knowledge of log X∗ and log Y as follows: The Schnorr
signature under X∗ contained in the challenge encapsulation can be simulated by programming
the random oracle H as in the proof of Theorem 5.1. Decryption queries leverage the fact that the
Schnorr signature contained in an encapsulation (X, R, s) proves knowledge of x with X = xG. By
extracting x, the reduction can answer the query with k = H′(xY ), but this extraction is trickier
than in the proof of Theorem 5.1, since both X and R can also depend on Y , X∗ and R∗ (if the
query is made after seeing the challenge ciphertext, which is the harder case).

In more detail, given the representations (γ, υ, ξ, ρ) and (γ′, υ′, ξ′, ρ′) of R and X provided by
the adversary, we can write (analogously to Equation 7.16):

r = log R ≡p γ + υy + ξzy + ρs∗ − ρc∗zy ≡p αy + (γ + ρs∗) and
x = log X ≡p γ′ + υ′y + ξ′zy + ρ′s∗ − ρ′c∗zy ≡p α′y + (γ′ + ρ′s∗)

(7.17)

with α := υ + (ξ − ρc∗)z mod p and α′ := υ′ + (ξ′ − ρ′c∗)z mod p. Since the signature (R, s)
contained in the query must be valid, we have s ≡p r + cx with c = H(R, X). Plugging the above
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two equations into the latter yields

(α + α′c)y ≡p s− (γ + ρs∗)− (γ′ + ρ′s∗)c .

If α + α′c ̸≡p 0 then solving the above for y solves the challenge DL and the reduction can stop.
Since c = H(R, X) was chosen by the experiment after the adversary provided representations of R
and X, which define α and α′, we have that α + α′c ≡p 0 happens with probability 1

p , unless α′ = 0.
In the latter case however, from Equation 7.17 we have x = γ′ + ρ′s∗ mod p, meaning the

reduction can compute x and can therefore answer the decryption query by returning H′(xY ) =
H′(yX).

Proof
[Proof of Theorem 7.2] Consider the games Game0 through Game3 in Figure 7.7, where in Game3

the adversary’s advantage is 0. Game0 has the same behavior as IND-CCA2Aalg
SEGK[GrGen]; the only

syntactical change is that the value X∗ used in the Enc oracle is already set before running A
(which ensures that in later games it is defined in the abort conditions for lines (I), (III) and (IV)
even when Enc has not been called yet). We prove the theorem by bounding the probability that
the adversary behaves differently in two consecutive games Gamei and Gamei+1.

We start with the difference between Game0 and Game1, which consists in a possible abort in
line (I) in oracle Dec. This happens when the experiment randomly chooses c as one particular
value. (Note that Game1 sets c∗ := 0, so the value is defined in Dec when Enc has not been called
yet.)

Observe that at any point T(R∗, X∗) is the only value in T that might not have been set during
an adversary’s call to H or Dec, and that could not have a corresponding entry in L. Moreover, if a
call (X, R, s) to Dec is not answered by ⊥, we must have (X, R) ̸= (X∗, R∗), since otherwise by
the 3rd line s = log R∗ + T(R∗, S∗) log X∗ = s∗ and the oracle would have returned ⊥ in the 1st
line.

Game1 sets the values (γ, υ, ξ, ρ, γ′, υ′, ξ′, ρ′) that were given as the representation of X and R
when T(X, R) = c was randomly drawn. As we argued above, this must have been during a call
from the adversary. The value c is thus independent of (γ, . . . , ρ′), the values that define α and α′.

The two games Game0 and Game1 behave identically unless Game1 aborts in line (I), that is,
if α + cα′ ≡p 0 and α′ ̸= 0. By the above argument, the probability that c was chosen such as
c = −α ·(α′)−1 mod p is upper-bounded by 1

2λ−1 . Denoting by A the event that Game1 aborts in line
(I) during some Dec call, we have Pr[A] ≤ qd

2λ−1 . Since Pr[1← Game0 | ¬A] = Pr[1← Game1 | ¬A],
we have

AdvGame0
Aalg

−AdvGame1
Aalg

= 2 Pr[A]
(

Pr[1← Game0 |A]− Pr[1← Game1 |A]
)

≤ Pr[A] ,

as Pr[1← Game1 |A] = 1
2 . We thus have:

AdvGame1
Aalg

≥ AdvGame0
Aalg

− qd
2λ−1 . (7.18)

The two games Game1 and Game2 behave identically unless oracle Enc generates values (R∗, X∗)
that have already been assigned a value in the table T. The values R∗ and X∗ are uniformly
random in G. Moreover, after the adversary has made qh queries to H and qd to Dec, at most
qh + qd values in T are assigned. Thus, the probability that (R∗, X∗) collides with one of the entries
is bounded by qh+qd

(2λ−1)2 , and we thus have

AdvGame2
Aalg

≥ AdvGame1
Aalg

− (qd + qh)
(2λ−1)2 . (7.19)
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Game0 Game1 Game2 Game3

(p,G, G)← GrGen(λ)
y

$← Z∗
p ; Y := yG

b
$← {0, 1}

T := ( ) ; T′ := ( ) ; L := ( ) ; c∗ := 0
x∗ $← Zp ; X∗ := x∗G

// z
$← Z∗

p ; X∗ := zY

b′ ← AH,H′,Enc,Dec
alg ((p,G, G), Y )

return (b = b′)

Oracle H̃(R, X)
if T(R, X) = ⊥ then T(R, X) $← Zp

return T(R, X)

Oracle H̃′(K)
if T′(K) = ⊥ then T′(K) $← K
return T′(K)

Oracle Enc() // one-time oracle

// only Game0 and Game1

r∗ $← Zp ; R∗ := r∗G

c∗ := H̃(R∗, X∗)
s∗ := r∗ + c∗x∗ mod p

k0 := H̃′(x∗Y ) ; k1
$← K

return (kb, (X∗, R∗, s∗))

Oracle Enc() // one-time oracle

c∗, s∗ $← Zp ; R∗ := s∗G− c∗X∗

if T(R∗, X∗) = ⊥ then
T(R∗, X∗) := c∗

else abort game and

return b′ $← {0, 1} (II)
k0 := H̃′(x∗Y ) ; k1

$← K

return (k1, (X∗, R∗, s∗))

return (kb, (X∗, R∗, s∗))

Oracle H(R[γ,υ,ξ,ρ], X[γ′,υ′,ξ′,ρ′])
// R = γG+ υY + ξX∗ + ρR∗

// X = γ′G+ υ′Y + ξ′X∗ + ρ′R∗

// (if Enc has not been called yet,

// then ξ = ξ′ = ρ = ρ′ = 0)

if T(R, X) = ⊥ then
T(R, X) $← Zp

L(R, X) := (γ, υ, ξ, ρ, γ′, υ′, ξ′, ρ′)
return T(R, X)

Oracle H′(K[γ,υ,ξ,ρ])
if K = yX∗ then

abort game and return b′ $← {0, 1} (III)

// solve zy2 − (υ + (ξ − ρc∗)z)y ≡p γ + ρs∗

if T′(K) = ⊥ then T′(K) $← K
return T′(K)

Oracle Dec(X[γ′,υ′,ξ′,ρ′], R[γ,υ,ξ,ρ], s)

if (X, R, s) = (X∗, R∗, s∗) then return ⊥
c := H(R[γ,υ,ξ,ρ], X[γ′,υ′,ξ′,ρ′])
if sG ̸= R + cX then return ⊥

(γ, υ, ξ, ρ, γ′, υ′, ξ′, ρ′) := L(R, X)
z := x∗y−1 mod p

α := υ + (ξ − ρc∗)z mod p

α′ := υ′ + (ξ′ − ρ′c∗)z mod p

if α + α′c ≡p 0 and α′ ̸= 0 then
abort game and return b′ $← {0, 1} (I)

if α + α′c ̸≡p 0 then
abort game and return b′ $← {0, 1} (IV)

// y = (α+ α′c)−1(s− (γ + ρs∗)− (γ′ + ρ′s∗)c) mod p

// α′ = 0 ⇒ x = γ′ + ρ′s∗, thus k = H′(xY )

k := H̃′(yX)
return k

Figure 7.7: The IND-CCA2 security game IND-CCA2Aalg
SEGK[GrGen] (Game0) for the Schnorr-Signed

hashed ElGamal KEM scheme and games Game1–Game3 used in the proof of Theorem 7.2. The
comments in dashed boxes show how the DL reduction simulates Game3 without knowledge of x∗

and y.
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Reduction to DL. We now construct an adversary B solving DL whenever Game3 differs from
Game2, that is, when there is an abort in line (III) or (IV). Given a DL challenge Y , the reduction
B sets Y as the public key, chooses a random z $← Z∗p and sets X∗ := zY . It simulates Enc() by
computing (R∗, s∗) as prescribed by the oracle, but setting kb := k1, a random key. (We argue below
that when this introduces an inconsistency, the game aborts in line (III) anyway). B simulates
the other oracles in Game3 for A without knowledge of y and x∗ as follows (cf. the comments in
dashed boxes in Figure 7.7):

• Queries to H′: whenever A queries K[γ,υ,ξ,ρ] with

K = γG + υY + ξX∗ + ρR∗ = (γ + υy + ξzy + ρs∗ − ρc∗zy)G ,

B checks whether K = yX∗ (which equals zy2G) by solving the following equation for y

zy2 − (υ + ξz − ρc∗z)y ≡p γ + ρs∗

and checking whether some solution y satisfies Y = yG (in this case Game3 would abort in
line (III)); if so, B stops and returns y.
Note that otherwise, K ̸= yX∗ and thus k1 still perfectly simulates H′(yX∗) = kb.

• Queries to Dec: when queried (X, R, s), Dec returns ⊥ if sG ̸= R+H(R, X)X or (X, R, s) =
(X∗, R∗, s∗). Since s is determined by (R, X), the latter implies (R, X) ̸= (R∗, X∗) if Dec did
not return ⊥. By the first lines in the box in Dec, we have that (γ, υ, ξ, ρ) and (γ′, υ′, ξ′, ρ′)
are such that

R = γG + υY + ξX∗ + ρR∗ = (γ + υy + ξzy + ρs∗ − ρc∗zy)G
X = γ′G + υ′Y + ξ′X∗ + ρ′R∗ = (γ′ + υ′y + ξ′zy + ρ′s∗ − ρ′c∗zy)G .

(7.20)

As in Dec, we let α := υ + (ξ − ρc∗)z mod p and α′ := υ′ + (ξ′ − ρ′c∗)z mod p and thus from
Equation 7.20 we have

r := log R = γ + ρs∗ + αy mod p

x := log X = γ′ + ρ′s∗ + α′y mod p .
(7.21)

Since the oracle did not return ⊥ in the 3rd line, we have s ≡p r+cx, and thus, by substituting
r and x from Equation 7.21:

(α + α′c)y ≡p s− (γ + ρs∗)− (γ′ + ρ′s∗)c .

If α + α′c ̸≡p 0 then Game3 would abort in line (IV); in this case B returns the DL solution
y = (α + α′c)−1(s− (γ + ρs∗)− (γ′ + ρ′s∗)c) mod p.
If α + α′c ≡p 0 and α′ ̸= 0 then both Game2 and Game3 (and thus B) abort in line (I).
Otherwise we must have α′ = 0 and, from Equation 7.21: x = γ′+ ρ′s∗ mod p. The reduction
can thus simulate the decryption query by returning H′(xY ) (which might define a new H′
value or not).

This shows that whenever Game3 differs from Game2 (in lines (III) or (IV)), reduction B solves the
DL problem, which yields:

AdvGame3
Aalg

≥ AdvGame2
Aalg

−AdvdlGrGen,B . (7.22)

Inspecting Game3, we note that A’s output is independent of b and if the game aborts it outputs
a random bit; we thus have:

AdvGame3
Aalg

= 2 · Pr[1← Game3]− 1 = 0 . (7.23)

The theorem now follows from Equations (7.18), (7.19), (7.22) and (7.23).
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MOTS CLÉS

Signatures de Schnorr aveugles, One More Discrete Logarithm, Modèle du Groupe Générique, Modèle du
Groupe Algèbrique.

RÉSUMÉ

L’hypothèse de sécurité appelée "one more-discrete logarithm" (OMDL) est centrale dans l’analyse de sécurité des proto-
coles d’identifiactions, les signatures aveugles ainsi que les récentes multi-signatures MuSig2. Malgré sa grande utilisa-
tion, il est surprenant que OMDL n’a jamais été rigoureusement analysée. Dans cette thèse, nous donnons une preuve
rigoureuse de OMDL dans le Modèle du Groupe Générique (GGM) ainsi que d’autres hypothèses en lien.
Les signatures de Schnorr aveugles sont un protocole qui permet d’envoyer à l’aveugle des signatures de Schnorr, qui
sont parmi les signatures les plus utilisées. De même que OMDL, en dépit de leur utilité pratique, l’analyse de sécurité
(basée sur OMDL) de ces signatures est insatisfaisant. Nous analysons la sécurité de ces protocoles dans le Modèle du
Groupe Algébrique (AGM), qui est un modèle idéalisé plus proche du modèle standard que du GGM. Pour le renforcer,
nous proposons une modification simple du protocole de signature, qui laisse les signatures inchangées.

ABSTRACT

The one more-discrete logarithm assumption (OMDL) is central to the security analysis of identification protocols, blind
signatures and multi-signature schemes, most notably blind Schnorr signatures and the recent MuSig2 multi-signatures.
Despite its wide use, surprisingly, OMDL is lacking any rigorous analysis. In this work we give rigorous proofs in the
Generic Group Model of OMDL and a related assumption.
The Schnorr blind signing protocol allows blind issuing of Schnorr signatures, one of the most widely used signatures.
As for OMDL, despite its practical relevance, its security analysis (based on OMDL) is unsatisfactory. We analyze the
security of these schemes in the algebraic group model (AGM), an idealized model closer to the standard model than the
GGM.

KEYWORDS

Blind Schnorr signatures, One More Discrete Logarithm, Generic Group Model, Algebraic Group Model
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