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HABILITATION A DIRIGER DES RECHERCHES

Interfaces in crystalline materials

Interfaces such as grain boundaries in polycrystalline as well as and heterointerfaces in mul-
tiphase are ubiquitous in materials science and engineering with wide-ranging properties and
applications. Therefore, understanding the basics of interfaces is key in optimization of ceramics
for a wide range of applications including electrochemical energy conversion and storage, optical,
magnetic, and mechanical applications, thermal applications including thermal and environmen-
tal barrier coatings in automobile and aeronautical industries.

Far from being featureless dividing surfaces between neighboring crystals, elucidating fea-
tures of solid-solid interfaces is challenging and requires theoretical and numerical strategies to
describe the physical and mechanical characteristics of these internal interfaces. The first part
of this manuscript is concerned with interface-dominated microstructures emerging from poly-
morphic structural (diffusionless) phase transformations. Under high hydrostatic compression
and shock-wave conditions, the pressure-driven phase transitions and the formation of internal
diffuse interfaces in iron are captured by a thermodynamically consistent framework for combin-
ing nonlinear elastoplasticity and multivariant phase-field approach at large strains. The calcu-
lations investigate the crucial role played by the plastic deformation in the morphological and
microstructure evolution processes under high hydrostatic compression and shock-wave condi-
tions. The second section is intended to describe such imperfect interfaces at a finer scale, for
which the semicoherent interfaces are described by misfit dislocation networks that produce a
lattice-invariant deformation which disrupts the uniformity of the lattice correspondence across
the interfaces and thereby reduces coherency. For the past ten years, the constant effort has been
devoted to combining the closely related Frank-Bilby and O-lattice techniques with the Stroh sex-
tic formalism for the anisotropic elasticity theory of interfacial dislocation patterns. The structures
and energetics are quantified and used for rapid computational design of interfaces with tailored
misfit dislocation patterns, including the interface sink strength for radiation-induced point de-
fects and semicoherent interfaces.
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Chapter 1

Introduction

Interfaces in polycrystalline as well as multiphase solids of natural and synthetic origin have
found their places in various applications, ranging from semiconductor devices to advanced mul-
tifunctional coatings in automobile and aeronautical industries. Remarkably, the behavior of poly-
crystalline materials is often reduced to the analysis of their inherent grain boundaries, while the
most recent roadmaps on photonics and phononics propose to design on-demand bandgaps by
tailoring the topological interface states in metamaterials. As claimed by Wolfgang Pauli, how-
ever, because "God made the bulk; the surface was invented by the devil!", the interface engineer-
ing of solid-state materials inevitably requires specific experimental and numerical contributions
to describe the physical and mechanical characteristics of these internal interfaces. Far from being
featureless dividing surfaces between neighboring crystals, the study of the structure and proper-
ties of homo- and hetero-phase interfaces has thus become as a central area in a broder field of the
materials science and engineering.

The manuscript is divided into two chapters, considering first the thermodynamics of diffuse
interfaces in chapter 2, which was developed more than a hundred years ago by Gibbs. The de-
scription of the structures and energetics of imperfect interfaces, namely semicoherent interfaces,
is then treated in chapter 3. These semicoherent interfaces are also described by misfit disloca-
tion networks that produce a lattice-invariant deformation which disrupts the uniformity of the
lattice correspondence across the interfaces and thereby reduces coherency. This topic has more
recently received considerable attention due to the development of high-resolution techniques
and increased computational resources in recent decades.

The first introductive chapter 2 is thus concerned with the internal interfaces emerging from
polymorphic structural (diffusionless) phase transformations. The formation of these solid-solid
interfaces during the pressure-driven phase transitions in iron is captured by a thermodynami-
cally consistent framework for combining nonlinear elastoplasticity and multivariant phase-field
approach at large strains. Treatments of thermodynamics and kinetic relations of the phase transi-
tions are formulated by the free energy landscape that involves the concept of reaction pathways
with respect to the point group symmetry properties of both low- (cubic) and high- (hexagonal)
pressure crystal lattices of iron. The phase-field formalism coupled with finite elastoplastic de-
formations is implemented into a three-dimensional finite element scheme and is applied to the
body-centered cubic into hexagonal close-packed phase transitions under high hydrostatic com-
pression and shock-wave conditions. The calculations exhibit the crucial role played by the plastic
deformation in the morphological and microstructure evolution processes. However, the coexis-
tence over a wide range of pressure of both cubic and hexagonal lattice structures in the interface-
dominated microstructure leads, in general, to the loss of lattice coherence at the interfaces, for
which the lattice correspondence across the grain boundaries and heterophase interfaces require
a fine dislocation-based description of internal interfaces. It is this last objective that is covered by
the main chapter 3.

Chapter 3 is therefore dedicated to the structures and energetics of heterophase interfaces. Al-
though the simplest interface is a single isolated planar interface separating two adjacent crystals,
also viewed as a planar interface in bimaterials, such an idealized interface between two dissimilar
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crystals provides the essential basis for understanding the properties of interface-dominated ma-
terials. For the past ten years, the constant effort has been devoted to combining the closely related
Frank-Bilby and O-lattice techniques with the Stroh sextic formalism for the anisotropic elasticity
theory of interfacial dislocation patterns. The key formalism is used by means of a Fourier series-
based analysis to determine the reference states of semicoherent interfaces that gives rise to dis-
location arrays whose far-field elastic fields meet the condition of vanishing far-field strains and
prescribed misorientations. In accordance with the quantized Frank-Bilby equation, these inter-
face dislocation structures, which are also viewed as Volterra dislocations that have been inserted
into the reference state, generate persistent short-range elastic stresses near the interfaces. The cor-
responding energetics have been quantified and used for rapid computational design of interfaces
with tailored misfit dislocation patterns. In particular, a coupled approach with an object kinetic
Monte Carlo code has revealed that elastic interactions between radiation-induced point defects
and semicoherent interfaces lead to significant increases in interface sink strength, compared to
the case with no defect-interface interactions. The original work has also been extended to bi-
layers of finite thickness terminated with free surfaces, layered superlattices with differing layer
thicknesses as well as multilayered magneto-electro-elastic plates for semicoherent interfaces with
relaxed dislocation patterns at semicoherent interfaces including core-spreading effects. Overall,
the elastic full-field solutions have been compared with atomistic calculations for many specific
lattice structures, which provide an opportunity for rigorous validation of the anisotropic elas-
ticity theory of interfacial dislocations as well as for collaborations with individuals outside the
home laboratory.

Although the reader may be disappointed (I understand it...) not to find the content of the two
chapters combined together in a unified formalism, chapter 4 provides concluding remarks and
further directions for near future developments.



Chapter 2

Crystalline interfaces during solid-solid
phase transitions in iron
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92,1-27, 2016.

2.1 Motivation

The high-pressure and high-deformation states of iron (Fe) are of vital importance in many tech-
nological and sociological applications [33] as well as in geophysics due to the role of Fe prop-
erties in the Earth and telluric exoplanet internal structure [233]. Fundamental understanding of
the physical and mechanical properties of Fe under extreme conditions, where the deformation
state is caused by various irreversible processes (e.g. plasticity and polymorphic structural (dif-
fusionless) solid-solid phase transformations), is therefore crucial in both materials science and
condensed matter physics.

The first indirect evidence of polymorphic phase transitions in iron has been discovered by
[17] under shock compression. The authors reported a series of three discontinuous jumps in the
velocity of the free surface and postulated that the three shock-wave structure is produced by a
compressive elastic precursor (Ep wave) followed by a plastic wave (P wave), and, a third wave at-
tributed to a phase transformation (PT wave). Wave profile measurements indicate that the onset
of the phase transition occurred at a pressure of ~ 13 GPa and room temperature on the Hugo-
niot. Since the pioneering experiments, efforts succeeded in acquiring static high pressure X-ray
diffraction analysis, where the stable ferromagnetic body-centered cubic ground state (bcc a-Fe)
has shown a magnetic and structural transition to the nonmagnetic hexagonal close-packed phase
(hcp e-Fe) at about 13 GPa, revealing the same transition as in shock experiments. Therefore, both
bce and hep phases have been observed to coexist over a wide range of pressure, which captures
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the signature of a diffusionless solid-to-solid martensitic transition in iron. While the phase di-
agram of iron under hydrostatic pressure is well established [217], detailed in situ observations
via dynamic X-ray diffraction techniques during shock-loading have supported unambiguously
that the high pressure phase has hcp crystal structure [139, 287]. However, due to the consid-
erable experimental difficulties of quantifying plasticity with respect to the polymorphic phase
transformations during shock wave propagation in solids, the complete irreversible deformation
mechanism still remains poorly investigated.

The high pressure-induced transition in iron has been intensively described using ab-initio
electronic structure calculations, where some simulation results remain debated. Although the
broad outline of the transition has been settled by crystallographic considerations [49, 179, 23],
a major problem deals with the accuracy in determining the energy landscape for the bce-to-hep
transition [84, 170]. Furthermore, ab-initio computational resources are limited to small system
sizes, for which plasticity-induced effects in iron cannot be captured by first-principles calcula-
tions. Alternative approaches are based on large-scale molecular dynamics simulations that give
insight into the motion of multi-million-atoms. Shock waves have also been simulated by em-
ploying embedded atom method potentials and varying initial shock strength [137, 138, 136]. For
low particle velocities, an elastic shock wave of uniaxially compressed bcc was observed. With
increasing shock strength, a two-wave shock structure was identified with an elastic precursor
followed by a slower phase-transition wave. No direct evidence of plastic wave profile was ob-
served, certainly due to the small time scale compared to experiments that exhibit a three-wave
structure at the nanosecond scale [17, 19]. While further work is needed to understand the de-
tailed mechanisms of plasticity under shock conditions, phase-field models provide a companion
approach to shock response of crystalline materials at higher time and length scales.

Various continuum mechanics approaches to simulate martensitic phase transitions in the con-
text of plasticity theory have been developed and can be categorized by the nature of the scale
description of the constitutive relations. A first micromechanical class of models aims to deliver
predictions of macroscopic observables, e.g. stress-strain curves, by including microstructural as-
pects via homogenization and averaging techniques. In a multiscale strategy, relevant approaches
track the volume fraction of martensite phase in the small [129, 215] and large [148, 177] strain
formulations. However, these models are generally unable to predict detailed microstructural
changes and spatial arrangements of parent—product interfaces during phase transformations at
the nanometer scale. A second class of models for displacive transformations has pushed to-
ward smaller scales in an effort to capture transformational processes by tracking the kinetics of
interface orientations and variants with respect to the associated configurational forces. Thus,
structural phase-field approaches have been successfully applied to model microstructure evo-
lution by formulating thermodynamic driving forces for martensitic transitions between stable
states [157, 10, 142, 77, 291]. Treatments of thermodynamics and kinetic relations in phase-field
approaches are related to the pioneering works by [50] and [3], within which a material system
tends to evolve towards a minimum state of free energy.

Chapter 2 introduces a thermodynamically consistent framework for combining nonlinear
elastoplasticity and multivariant phase-field approach at large strains [252]. In accordance with
the Clausius-Duhem inequality in section 2.2, the Helmholtz free energy and time-dependent con-
stitutive relations give rise to displacive driving forces for pressure-induced martensitic phase
transitions in materials. Inelastic forces are obtained by using a representation of the energy land-
scape that involves the concept of reaction pathways with respect to the point group symmetry
operations of crystal lattices [76]. Using the element-free Galerkin method with high-performance
computing resources, the finite deformation framework is used to analyze the polymorphic a- into
e-Fe iron phase transitions under high hydrostatic compression [252] and shock-wave [253] load-
ings, as detailed in sections 2.3 and 2.4, respectively, while a recent application to twinning and
retwinning in tantalum can be found in Ref. [44]. The three-dimensional nonlinear simulations
accurately reproduce observable characteristics reported by the experimental literature, for which
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the crucial role played by the plastic deformation is analyzed with respect to the peculiar forma-
tion of interface-dominated microstructure with a specific selection of high-pressure variants.

2.2 A phase-field model coupled with finite elastoplasticity

This section is concerned with a thermodynamically consistent phase-field formalism for solid-
state transitions. The model is formulated in a Lagrangian framework for finite strains, motivated
by obtaining isothermal driving forces and constitutive relations at a material point.

2.2.1 Kinematics

An arbitrary material point X is defined in a homogeneous reference configuration )y C R3, for
which the motion of ) is given by the mapping x = x (X,t) : Qy — Q C R? with respect to
time t. The total deformation gradient F is related to the following multiplicative decomposition
[158,159, 148, 161], i.e.,

F = g;(( t = Vx =FeFt-Fp, (2.1)
with V the material gradient with respect to X. Here, the reference configuration is associated
with the initial single-crystal bcc iron, and, the total deformation gradient is decomposed into
elastic Fe, plastic Fp, and, transformational Ft distortions, leading to the pressure-induced phase
transformation from the bcc to hep phases.

Similarly to classical crystal elastoplasticity theories [151, 156], the decomposition eq. (2.1) is
not uniquely defined and different ordering relations have been taken into account in the literature
[241]. Because the local irreversible plastic deformation Fp of the neighborhood of X, e.g. caused
by dislocation glides, does not alter the crystal orientation and structure of the lattice vectors, the
transformational component Ft occurs between Fp and Fe, where the elastic contribution accounts
for the lattice stretching Ue and rotation Re. The polar decomposition to Fe reads: Fe = Re -
Ue, with Ue? = Fe'- Fe, and, detFe = detUe = j.. The superscript ! denotes the transpose
operation. Although the controversy regarding the decomposition is beyond the scope of this
paper, both tensors Fp and Ft describe here two intermediate configurations, Qp and (t, as shown
in Fig. (2.1). For more justifications regarding the three-term multiplication decomposition eq. (2.1)
for nonlinear elasticity coupled to martensitic phase transformations and plasticity, the reader is
referred to the recent analysis on combined kinematics in Ref. [161]. It follows from eq. (2.1) that
the total spatial velocity gradient tensor L is given by

L=FF!=1Le+FelLtFe ! +FetLp-Fet!, (2.2)

with Fet = Fe-Ft. The superposed dot in eq. (2.2) denotes the time derivative. The elastic Le,
transformational Lt, and, plastic Lp velocity strain tensors are similarly defined by

Le = Fe-Fe !, Lt = Ft-Ft" !, and Lp = Fp-Fp !, (2.3)

which are related to the current and the intermediate configurations, i.e., (3, Ot and Qp, respec-
tively. Furthermore, two basic kinematic assumptions are considered in the present theory:

1. The measures of volume changes after each deformation processes satisfy:
je = detFe >0, jy = detFt > 0, and detFp =1, (2.4)

so that, Fe, Ft and Fp are invertible, and, the plastic flow preserves the volume.
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FIGURE 2.1: Schematics of the reference )y, intermediate, Qp and (t, and, current () configurations, for
which the total deformation gradient tensor F is decomposed multiplicatively into plastic Fp, transforma-
tional Ft and elastic Fe distortions.

2. The model is restricted to isotropic plastic theories with irrotational plastic flows. Therefore,

Fp = Dp-Fp, with Dp = sym Lp = Lp, (2.5)
where sym Lp denotes the symmetric part of Lp.

Figure (2.1) illustrates the multiplicative split of the total deformation gradient tensor F. In
agreement with the conservation law of mass, the determinant of F gives the volume change
between the current (with a volume V) and the reference (Vj) configurations, i.e., j = detF =
po/p =V /Vy, where p (oo with gy = 0) is the current (reference) mass density.

2.2.2 Balance laws

During the different deformation processes, the equilibrium equations of force must be fulfilled.
In the Lagrangian description, the local form of the linear momentum balance is given by

VP+p0b:pou in Q)g, (26)

where P is the first (non-symmetric) Piola-Kirchhoff stress tensor, b are external body forces per
unit mass, and, it = ¥ (X, t) is the acceleration of the material point X, with u the corresponding
displacement field, defined by u = x (X, t) — X.

An appropriate formulation of the constitutive relations for isothermal and irreversible pro-
cesses of deformation requires a thermodynamically consistent formalism, within which the bal-
ance law in eq. (2.6) holds at all points X in the domain of ().

2.2.3 The Clausius-Duhem inequality

The martensitic phase-field approach coupled with large elastoplastic deformations is derived
within a thermodynamic framework in which the second law of thermodynamics plays a cru-
cial role. When the thermal effects are ignored, the fundamental Clausius-Duhem inequality is
expressed in terms of stress power per unit reference volume [67] as

/ (P:F — potp) dQ >0, 2.7)

Q

where : denotes the double inner tensor product, and, i the specific Helmholtz free energy. Equa-
tion (2.7) shows that the first Piola-Kirchhoff stress tensor P and the deformation gradient F are
work-conjugate variables, while P: F defines the mechanical stress power per unit volume in the
Lagrangian formulation.
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Within the model of the multiplicative decomposition in finite strains, it is conveniently pos-
tulated that the Helmholtz free energy can be written in the following form:

= i (Fe, Ft, VFt) , 2.8)

where VFt is a phenomenological third-order gradient term that acts as a penalty for spatial
nonuniformity to produce diffuse interfaces. Because the elastic response is not affected by the
plastic activities, the elastic part of the Helmholtz free energy is supposed to depend on the elastic
and transformational distortions only. Moreover, it is assumed that both transformational and
plastic works are not dependent on each other, so that the free energy may be additively decom-
posed into elastic ¢, transformational ¢, and, purely empirical gradient penalty ¢, contributions.
With the aforementioned considerations, the Helmholtz free energy can thus be written as

P = o (Fe, Ft) + ¢ (Ft) + ¢, (VFt), (2.9)

which, in contrast with ab-initio electronic structure calculations, is not uniquely defined. How-
ever, such elastic/inelastic splitting, comparable to the classical phase-field models with elastic
and chemical potentials [278, 10], is fundamental for applications that exhibit a strong coupling
between acoustic waves and phase transformations, e.g. wave propagation influencing the early
stages of the phase transitions induced by shock loadings. Thus, egs. (2.1) and (2.9) yield to the
rates of the total deformation and free energy, i.e.,

F = Fe-Ft-Fp + Fe-Ft-Fp + Fe-Ft-Fp

. 0 e+ e

(2.10)
Y= 3Fel, T ok

M % alpv . r
Fe. Ft + 5Ft ‘Ft+ IVE VEt,

where .*. denotes the triple inner tensor product. Inserting egs. (2.10) into the global form of the
Clausius-Duhem inequality (2.7) and applying the chain rule, the non-negative requirement leads
therefore to

oY
. t- t —_— e
/QO { (P O

oy, :
pOBVFt L VFt} dO, >0,

oy

e - :
. poaH>.Ft+Z*.Dp

:F Fe'-P-Fp! —
DESURE N

(2.11)

where X, is a work-conjugate stress measure related to the first Piola-Kirchhoff P, as follows
L, = Fet'-P-Fp'. (2.12)

Using the permutability of time and space differentiation in the reference configuration and
the Gauss theorem, the last right-hand side term in eq. (2.11) can be rewritten, i.e.,

alpv . f — aﬁ. [ [ -a&
/Q (aVFt ,,VFt> 40y = /Q (V AR dQO+Z fro 00 n) dx, 013
0 0 0

~—
surface dissipation

where Y, is a boundary of )y with unit outward normal n. Assuming that the surface dissipa-
tion is absent during the transformational process, additional boundary conditions as set of nine
equations for phase transitions may also be derived by

3, o
n= 2.14
TV n=0, with Ft Z0atX,, (2.14)
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corresponding to the orthogonality relations between VFt and the external surfaces X,. Thus,
egs. (2.11-2.14) yield to a local formulation of the free energy imbalance in terms of dissipation
per unit reference volume of mechanical energy D, as follows

D= <P-1:pf-1=tt — po gfz

):Fe+Xt:Ft+Z*:Dp20, (2.15)
Ft

where the dissipative forces Xt, conjugated to dissipative rate Ft, are given by

0 Y +00 V- Wy (2.16)

oY,
tp At e _
Xt = Fe'-P-Fp' — p, PR SO

oFt

The relation (2.16) defines the thermodynamic displacive driving forces for change in Ft, act-
ing on a material point X under isothermal conditions. Although the plastic deformation is not
integrated as an internal state variable, e.g. via a defect-energy term as in Refs. [107, 2], but rather
as a kinematic variable, the plastic contribution may significantly alter the state of residual stress
and also play an important role in dictating the morphology of the microstructural changes and
in modeling the irreversibility of phase transitions.

2.2.4 Constitutive equations

Constitutive equations for reversible elastic deformations and irreversible processes of deformable
material bodies undergoing phase and plastic deformations are required to be consistent with the
Clausius-Duhem inequality.

Hyperelasticity

The standard assumption that the rate of dissipation is independent of Fe in eq. (2.15), i.e., elastic-
ity is a non-dissipative process, results in the hyperelasticity constitutive relation in terms of the
first Piola-Kirchhoff stress field, as follows

P = pp 9. ‘Ft “Fp~". (2.17)

A quadratic form for the strain energy density per unit reference volume is assumed, for which
a dependence of 1. on Fe and Ft manifests explicitly via the anisotropic elastic components:

potfe = 3Ee: D (Cet) : Ee, (2.18)
where Ee is the elastic Green-Lagrange strain tensor, defined by
Ee=3(Ce—1I), (2.19)

with Ce = Fe'- Fe the right elastic Cauchy-Green deformation tensor, so that Cet = Ft'-Ce-Ft.
Inserting eq. (2.18) into the hyperelasticity condition (2.17), the nonlinear stress-elastic strain con-
stitutive relation is rewritten as follows

oD (Cet
P = Fe-Se-Ft "-Fp ' + Fet- (Ee: E)((Zef) : Ee) ‘Fpt, (2.20)

where Se = ID (Cet) : Ee is an elastic stress measure associated with Ee, and, dcetID is a sixth-order
tensor, i.e., the derivative of ID with respect of Cet. It is worth pointing out that the anisotropic
pressure-dependent elastic stiffness tensors of both bcec and hep phases are explicitly taken into
account in the present formalism.
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With use of the non-dissipative properties of hyperelasticity, the local dissipation considered
in the Clausius-Duhem inequality (2.15) can also be conceptually divided into transformational
D and plastic D, dissipative rates per unit reference volume, i.e.,

D=Di+D, >0, (2.21)

due to the onset of the phase transitions or the movements of interface during phase transitions,
and, to the plastic deformation in materials, respectively. For simplicity, it is assumed that both
transformational and plastic dissipative processes are thermodynamically uncoupled such that
the inequality (2.21) splits into two stronger non-negative inequalities, as follows

Dy =Xt:Ft >0 and, D, =X,:Dp > 0. (2.22)

Kinetic constitutive relations that relate the rates Ft and Dp to the associated driving forces for
both dissipative processes in hyperelastic materials must also be defined such that the inequalities
in egs. (2.22) are satisfied. These steps are carried out in the two subsequent sections.

Kinetics of phase transitions

For solid-state structural transformations, a linear kinetic equation that relates the rate of the trans-
formational distortion Ft to the displacive driving forces Xt is suggested, i.e.,

vEt = Xt, (2.23)

where v > 0 is a viscosity-like parameter. For example, the case with v — 0 represents an in-
stantaneous relaxation. The evaluation of the kinetic equations for martensitic phase transitions
is still a subject of intense debates, within which the average transformational kinetics may be in-
fluenced by the nucleation processes, interface mobilities, collective dislocation behaviors, as well
as inertial effects. In the context of the time-dependent Ginzburg-Landau formalism, a detailed
modeling of the kinetics of phase transitions in iron is not the purpose of the present analysis.
However, the linear form of the driving forces Xt gives rise to thermodynamic consistency con-
ditions for phase transformations, so that the dissipation inequality in eq. (2.22) is unequivocally
satisfied, as follows

Dy = v |Xt|*>0, (2.24)

with | Xt| the Frobenius norm of Xt. A nonequilibrium thermodynamic system is also characterized
when D; > 0, e.g. corresponding to mobile solid-solid interfaces when Xt > 0. Using eqs. (2.16)
and (2.20), eq. (2.23) yields

. _ o 9P
_ o ) . ) t V- v
vFt = Xt = Ce-(ID (Cet) : Ee)-Ft Poog TPV SR (2.25)

transformational forces

forces due to elastic energy

including mechanical elastically and transformational inelastically induced driving forces, with
a gradient-related term for interface energy. Equation (2.25) shows competition between driving
forces due to elastic energy and the inelastic transformational forces related to microstructure
evolution processes in materials. In particular, the (meta)stable equilibrium configurations are
achieved when Xt = 0, exhibiting a force balance between the elastic and inelastic contributions.

A general quadratic form for the gradient energy penalty that is localized at the diffuse inter-
faces between two phases may be defined by

oo = s VFt - °A - VFt, (2.26)
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where °A is a positive definite symmetric (major symmetry) sixth-order tensor that takes into
account the gradient-energy interaction between different phases. Assuming an isotropic descrip-
tion of the interface energy and neglecting the interactions between all phases [160] such that
®A = A °I, with °I the sixth-rank identity tensor, eq. (2.26) reduces to

Popy = A VEt - °I - VFt=IAVFt - VF, (2.27)

where the positive scalar A controls phenomenologically the finite width of interfaces. The latter
distance may be correlated to the short-range elastic fields produced by discrete intrinsic dislo-
cation arrays between bcc/hcp semicoherent heterophase interfaces and also computed by using
a recent formalism linking the Frank-Bilby equation and anisotropic elasticity theory, as investi-
gated in chapter 3. Finally, the driving forces expressed in the Ginzburg-Landau formalism are
given by

vFt = Xt = Ce-(ID (Cet) : Be)-Ft ' — pog;{fi + A V2Ft, (2.28)

with V? the Laplacian operator.

Plastic flow rule

Macroscopic quasi-perfectly plastic regimes have been observed in polycrystalline bec iron sam-
ples under high-strain rate compressions [132]. To go beyond the elastic limit, the large strain
perfectly plastic |, flow theory has also been incorporated in the present model. Accordingly,
the evolution of the plastic distortion Fp, given in terms of the plastic deformation rate Dp, is
determined by considering the postulate of maximum dissipation [118]. The space of admissible
stresses &, is written as

Er={o|¢(c) <0}, (229)

where the yield function ¢ is expressed in terms of the Cauchy stress o, defined by

oD (Cet
o =j 'P-F' = !Fe-Se-Fe' + j ! Fet- (Ee: E)((Ie’f) : Ee)-Fett, (2.30)

according to eq. (2.20). The work-conjugate stress X in eq. (2.12) may also be related to the Cauchy
stress tensor o by
X, = jFet'.c-Fet ' = Ft"Z.-Ft ", (2.31)

where £ = jFe'-o-Fet. Thus, the rate of plastic deformation Dp is given by the associated flow
rule, as follows

Dp =7 Fet—l-gf-Fet =7 H, (2.32)

with 77 > 0 a non-negative scalar-valued factor, so-called the plastic multiplier, that is required to
satisfy the consistency relation: 77 ¢ = 0. The outward normal to the yield surface is given by H in
the stress space, for which the yield function ¢ in egs. (2.29) and (2.32) is described with the von
Mises yield criterion, i.e.,

¢ (0) =4/3)(0) — 0y with, J, =1deve:deve, (2.33)

where 0y > 0 is the yield stress measure, and, dev o denotes the deviatoric part of o. Finally,
including the direction of the plastic flow into the rate Dp, eq. (2.32) yields

dev o

Dp = 37y Fet - Fet, (2.34)

o
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for which the dissipation inequality for plastic flow in eq. (2.22) with (2.31) is satisfied, i.e.,

. |deve|?
Dy = 3 jij |
P2l

>0. (2.35)

According to egs. (2.24) and (2.35), the present formalism is also thermodynamically consistent
since the Clausius-Duhem inequality (2.21) is fulfilled.

2.2.5 Multiple reaction pathways and energy landscape

In what follows in section 2.2.5, focus is on the & <+ € phase transitions in iron, where the en-
ergy landscape is defined by reaction pathways for multivariants with respect to the point group
symmetry properties of the bcc and hcp lattices.

The bce-to-hep transition mechanism

As illustrated in Fig. (2.2a), the considered crystallographic relations in the bce-to-hcp martensitic
phase transition are given by the Mao-Bassett-Takahashi mechanism [179], as follows

[001Jpece || [2170]nep and, (110)pec || (0001 )nep , (2.36)

which differs from the transformation path proposed in Ref. [49] by a rotation of ~ £5.2° around
the [0001]hcp axis [271]. The structural relations in eq. (2.36) are achieved by considering two
transformation operations, as shown in Fig. (2.2b). The hcp phase may be obtained by applying a
shear to a (110). plane, which consists of an elongation and a compression along the [110]pc. and
the [001]p. directions, respectively. This transformation is required to form a regular hexagon (in
red in Fig. 2.2b) and may be related to a homogeneous linear mapping U, i.e.,

3+1\fc _3+1\fc 0

42 aV2Tm g p a2

U= _3+1\FC 3+1\FC
4\6 2\ 2 /a 4\6 2V 2 /a

0 0

ol, (2.37)
V3

2
where c/, = ¢ /a is the lattice ratio for the pure e-Fe phase [55], while the volume change accom-
panying the phase transition is determined by detU = 9c/, /16. Then, the mechanism involves
a shuffle t, which corresponds to atomic displacements of every other deformed (110)pc plane in
one of the two possible opposite [110]pe. directions. The close-packed structure of hep is also ob-
tained, where a ratio c/, of 1.603 £ 0.001 has been experimentally determined along this bec-to-hcp
path in iron [179, 78], reflecting a ~ 10% volume reduction.

In the described case, the transformations U and ¢ are illustrated separately but can occur si-
multaneously, as discussed by using first-principles simulations [81]. For both scenarios, the shuf-
fle does not induce any lattice-distortion transformations and has therefore no direct coupling
with the overall stress in the deforming materials. Although not visible for a given deformation
state at the macroscopic scale, the shuffling modes, however, may have important implications
on the free energy along the reaction pathways as well as the kinetics of phase transitions, which
are not taken into account in the present formalism. Assuming to take place at a smaller time
scale compared to the lattice-distortion transformations, additional variables of state (also, addi-
tional associated kinetic equations) should therefore be introduced to characterize such atomistic
displacements. With the aforementioned considerations, and because of the required number of fi-
nite element meshes for three-dimensional calculations, the example applications to high-pressure
compression in sections 2.3 and 2.4 focus on the first cycle of forward and reverse martensitic tran-
sitions only, for which the shuffle does not modify the point group symmetries. For higher-order
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cycles, this mechanism may be responsible for the generation of an unbounded set of variants. The
notion of transformation cycles has been addressed in Ref. [76], where a two-dimensional simula-
tion has shown that variants could hierarchically nucleate into previously created ones over up to
five levels of transformations for the square to hexagonal martensitic phase transitions.

When ¢/, is experimentally chosen to determine eq. (2.37), the corresponding homogeneous
mapping U contains obviously and inseparably both elastic and irreversible part of the defor-
mation in samples. A homogeneous distortion Ut is therefore introduced to identify the pure
transformational component of the total deformation provided by experimental data under high
hydrostatic pressure, i.e.,

Ut =«U, (2.38)

where « is a elastic correction factor, as discussed in Ref. [252].

(a) [001]

(110) bee/hep structural
correspondences
bee hep

[001] —s [2110]

(0101 (110) — (0001)

[110]

(b) L [0(‘) 1 [2110]

® (110) // (0001)

FIGURE 2.2: Crystallographic relations in the bcc-to-hcp martensitic phase transition established in

Refs. [179, 23]. (a) Red atoms in a bec atomic-side unit cell are located at a (110)p.. layer and the blue

atoms at the adjacent layers. (b) The transition path consists of two transformations. First, a shear deforma-

tion U leads to an elongation and a compression along the [110]},.. and the [001]p,. directions, respectively.

The deformation transforms a polygon in blue into a regular hexagon in red, corresponding to the (0001)pp

hcp basal plane. Then, a shuffle t is applied to the entire plane that contains the blue atoms, e.g. by shifting
all these atoms in the [110]p. direction.

Multiple symmetry-related variants

During the forward @ — € and the reverse ¢ — &’ martensitic transformations, significant differ-
ences in orientation from the initial a-Fe phase may exist. To make the clear distinction in phase
orientation between variant formation and selection, «’ denotes here the reversed a phase, as de-
picted by the two-dimensional schematic network in Fig. (2.3a).

A rigorous link between the standard crystallographic concepts of holohedry with group-
subgroup relationships, crystal system and Bravais lattice type (cubic and hexagonal), is explicitly
included into the phase-field formalism. For the forward & — € transition, the generation of all
hcp variants } Ut from the linear mapping Ut is described by

10t = Ri.-Ut-Rpcc, (2.39)
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where Ry, is a rotation matrix in the point group of cubic lattice "Hy,.. and n the number of hcp
variants [206]. Because of the high symmetry of the considered phase, a total number of 6 hcp
variants are generated, i.e., n = 1,...,6, within which 18 operations in the basic group of 24
rotations for cubic lattices are redundant. To complete the phase transformations with the reverse

€ — & transitions, the bec variants % Ut are deduced by performing the following operation:
) -1
"0t = Rioo Ry Ut Rpygp - Ut-Risee (2.40)

where Ry, is a rotation matrix in the point group of hexagonal lattice "Hpp and m the number of
bce variants [206]. Equation (2.40) consists in generating 12 bec variants, i.e., m = 1,...,12, so that
a total of 19 variants (including the identity as the 19" variant) are identified to describe the com-
plete bce-hcp-bece transition in terms of multiple symmetry-related variant structures. Figure (2.3a)
depicts the forward transition of the initial bcc phase, leading to six equivalent hcp phases, and,
the reverse transition from each hcp phase that leads to three bec phases.

All tabulated hcp and bec variants with the corresponding holohedral subgroups "Hy, and
"Hncp are given in Tab. 1 from Ref. [252], where the rotation axes are expressed in the hcp and bec
lattice basis, respectively. For clarity, the matrices defined by egs. (2.39) and (2.40) are written in
the following as kUtwithk=1,...,18, i.e.,

‘ PUt 1<k<6
Ut=1{ , (2.41)
it 7<k<18,
which are associated with the variant of interest Vj for the forward (1 < k < 6) and the reverse
(7 < k < 18) transformations.

Reaction pathways in strain spaces

Instead of introducing the Landau thermodynamic potential [162], where the classical Landau-
type approach with polynomials is not convenient to apply for reconstructive transitions due to
the large numbers of potential energy wells [28], the concept of reaction pathways [77, 76] is used
to describe the phase transitions in iron. In particular, the minimum inelastic energy density
profile between two different pure phases is represented by a single reaction pathway, along which
the associated function ), is assumed to possess the same symmetries as all symmetry-related
variants Vj, and, to satisfy the principle of material objectivity [27], e.g.,

P = P (“C) (2.42)
where ¥Ct are the transformational Cauchy-Green strain measures for all pure phases, given by
k&t = Futt - Fur, (2.43)

as listed in Appendix A from Ref. [252], with the aid of egs. (2.39—2.41). Here and in the following,
the superimposed caret will be used to indicate quantities strictly defined along the pathways. To
model continuous forward and the reverse transformations, each transition pathway k is repre-
sented by linear interpolation between starting kCtetart and ending kCt.png strain states, as follows

kCt (sk) = (1 —sg) kétstart + sk kétend , (2.44)

with s; € [0,1] the curvilinear coordinates along k. For instance, hcp variants Vj are parameter-
ized by: kCtyart = I and kCtend = kU2, with1 < k < 6. Generating the reaction pathways with
egs. (2.37—2.44) and using projection matrices C;, C; and C3, an example of three-dimensional
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'Ct(T))

FIGURE 2.3: (a) Schematic illustration of the multiple symmetry-related variants for the forward « — €

(in red) and the reverse ¢ — a’ (blue) phase transitions in iron. (b) The corresponding reaction pathway

network in a specific {Cy,Cp, C3} strain space, within which the transformational Cauchy-Green tensor
Ct = Ft' - Ft as well as some quantities described in the text, are defined.

representation of the network is shown in Fig. (2.3b), within which each pathway connects con-
tinuously and linearly with two pure bee/hep variants Vj in the {C;, Cp, C3} strain space. The
projection is not unique and the specific strain space in Fig. (2.3b) is characterized by using the
following matrices:

1 10 00 0 30 1
Ci=1|1 30/,CG=1l01 1/,C =| 00 0. (2.45)
0 00 01 -3 101

The reaction pathway network describes also a six-dimensional energy landscape, for which
each straight segment represents a minimum-energy reaction pathway that connects two sta-
ble/(meta)stable states with possible (if any) saddle points [28].

Inelastic energy landscape

In order to define the total inelastic energy landscape ¢; in a whole strain space, e.g. not only
restricted along the pathways as i, the partition of unity approach is used as a weighted sum of
the contribution ¥, of each individual pathway k. Thus, the overall inelastic energy density ; is
formally defined by introducing the weighting functions wy (Ct), i.e.,

18

¥ (Ct) = ) wi (Ct) gy (Ct) (2.46)

k=1

for any transformational Cauchy-Green tensor Ct = Ft'-Ft. Without loss of generality, for any
given tensor A, e.g. Ct and Cet, these functions wy (A) satisfy the partition of unity condition,
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namely:

4" (A)

18 —h
Zi:1 di (A)
where h is a positive parameter that controls the weighted average of all pathways. The quantities

dy (A) correspond to the minimum Euclidean distances in the strain space between A and the
pathways k, defined by

18
Y wi(A) =1 with, wi(A) = , (2.47)
k=1

di (A) = [FII(A)|= min |A—*A(Cy)], (2.48)
Crel0,1]

where KA (Z}) are also mapped onto the reaction pathways with ; (A) the corresponding reac-

tion coordinates. For example, when A = Ct: Fig. (2.3b) shows the projected tensor 1Ct (1) onto

the forward pathway 1, between the initial single-crystal bcc phase and the hcp variant V;. In-

troducing the convenient curvilinear coordinates (;° (A) for fictitious unbounded pathways, as

follows A kA
) . Ctong — “Ctatart A
©(A)=FD: (A -kt =__°n —start . (A kGt , 2.49
gk ( ) ( start) ’ k Ctend & Ctstart| ( start) ( )

where D defines the normalized direction of the pathway k, the argmin { in eq. (2.48) is also
determined by solving d;, di (A) = 0 for a given Ct, leading to

oo (A) if: 5P (A) €10,1]
k(A) =<0 if: (<0 (2.50)
1 if: ¢ >1,
so that the distance measure di (A) in eq. (2.48) with (2.50) represents the minimum distance from
A to a given segment in R®.

On the other hand, it is assumed that each potential ¢, in eq. (2.46) is related to the minimum
energy density ¢y, combining with an additional out-of-path component, i.e.,

P (C) = Py (Tk (C)) + 0y (Ct) + 7t | tr FTI(C)| (2.51)

out-of-path component

such that d¢; tr ¥TI (Ct) and ¥D are orthogonal to each other, i.e., dc; tr *IT (Ct) : ¥D = 0. Here, tr A
denotes the trace of A. The parameters ¢ and 77 in eq. (2.51) scale two different out-of-path energy
barriers: one component is linearly proportional to the Euclidean distance from the pathways with
o, while the second coefficient 7t is used to distinguish different force magnitudes for isochoric and
volumetric transformational deformations, when 7t # 0.

Figure (2.4) illustrates the construction of the overall inelastic energy landscape ; defined by
eq. (2.46) with eq. (2.51), for all Ct of the neighborhood of the associated reaction pathway network
in Fig. (2.3b). In accordance with the model parameters discussed in section 2.3.1, Fig. (2.4a)
shows the given (invariant) minimum energy density {y, along all reaction coordinates {; (Ct) of
the individual pathways k. Then, the weighting functions wy (Ct) are used to extrapolate each
contribution into the whole space: Fig. (2.4b) depicts a 5 x 108 J.m3-iso-surface of the extended
inelastic energy part wy (Ct) §y, in the {Cy, C;, C3} strain space. As illustrated by arrows, the
iso-surface is perpendicular to the reaction pathways and the energy profile is "sombrero-shaped"
along the axis C; + C, + C3. Figure (2.4c) shows a 10° J.m3-iso-volume related to the out-of-
path contribution ody (Ct) only, i.e., with 7 = 0 in eq. (2.51). For sake of clarity, this additional
energy potential is depicted in Fig. (2.4d) onto two planes passing by variants V; and V3 (upper
plane) and variants V5 and Vg (lower plane). It is also shown that the energy profile is exclusively
controlled by the iso-distances around the paths, as illustrated by the cylinders around the paths
and by the half-spheres at their ends. Finally, Fig. (2.4e) gives the same 10° J.m3-iso-volume of
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FIGURE 2.4: Construction of the total inelastic energy landscape ; associated with the multiple reaction
pathways Vj in iron. (a) Invariant and minimum energy profile along the individual reaction pathways k
from 0 (in dark red, for the pure bcc phases) to ~ 8 x 10° J.m 3 (in white, for hcp phases). (b) Extrapolation
of the minimum energy potential in the whole {C;, Cy, C3} strain space, e.g. 5 X 108 J.m3-iso-surface. (c)
shows a 10° J.m3-iso-volume of the out-of-path contribution od; with 7t = 0, whereas (d) illustrates the
energy profile onto two planes passing by variants V; and V3 (upper plane) and variants V5 and Vg (lower
plane). (e) and (f) are similar to (d) and (e) for the total inelastic energy : landscape, respectively.

the total inelastic energy ¢; landscape, within which the volume in (c) is plotted with transparency
as well, for comparison. In contrast with Figs. (2.4c) and (d), it is shown that the total energy has a
"cone-shaped" profile, exhibiting the directional character of the transformations toward the pure
hcp phases, as distinctly depicted onto both planes in Fig. (2.4f).

Transformational inelastic forces

The calculation of the inelastic driving forces for phase transformations in eq. (2.28) is deduced by
computing the derivative of i, with respect to Ft, which can be expressed as follows

o o (Ct) )
O%t _ 5. 52
“Fi 2 Ft T (2.52)
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According to eq. (2.46), the derivative of the energy function in the right-hand side of eq. (2.52)
yields

Iy dawy. (C Ipy, (Ct
¢a((zt letk (Ct) wgé S (Ct)qjg‘ét), (2.53)

where the derivative of the weighting functions wy (A) with respect to A is given, without loss of
generality, by

awk 18 1 A

A

K (A) —5x) 'N(A), (2.54)

with 6; the Kronecker delta, i.e., 6 = 1if i = k and = 0, otherwise, and, ‘N (A) represents the
normal tensor to the pathway i in the direction of A, obtained in the following form:

odi (A) _ 'TI(A)

0A  d;(A)’ 255)

IN(A) =

such that 'N (A) | = 1, and, ‘N (A) :'D = 0 when {° (A) € [0,1]. Moreover, the derivative of i,
with respect to Ct in eq. (2.53) leads to

By, (C) _ Aty (2 (1))
aCt Al

*D + 0 "N (Ct) + sgn(tr “II(Ct)) (I—-*D tr*D). (2.56)

Substituting eqgs. (2.54) and (2.56) into eq. (2.53), and, then into eq. (2.52), it is also shown
that two directions are included in the transformational inelastic forces: one component is related
to the longitudinal directions D along the reaction pathways, while the second component is
associated with the normal directions *N (Ct) towards Ct.

Mechanical elastic forces

Since the phase-field model aims at modeling high-pressure phase transitions in iron, particular
attention is paid to the configuration within which the nonlinear elastic stiffness tensor is ex-
pressed. The out-of-path elasticity tensor ID (Cet) in eq. (2.28), which depends on the elastic and
transformational deformation states, is given in the whole strain space by

D (Cet) = klf:lwk (Cet) ¥ID (g (Cet)) , (2.57)

where D are the elasticity tensors associated with the reaction pathways k, and, i (Cet) are the
reaction coordinates that minimize the Euclidean distance dj (Cet) between Cet and the individual
paths k. The weighting functions wy (Cet) are also defined by eq. (2.47), where the partition of
unity is written as a function of Cet. The projected tensors *Cet are also mapped onto the reaction
pathways (as well as ¥Ct) and the corresponding reaction coordinates are consistently determined
by solving d;, dj (Cet) = 0. Imposing dcetID (Cet) = 0 for all pure (meta)stable phases (i.e., at the
ends of all reaction pathways k, when J; = 0 and {; = 1) with Cet = kCet, the elasticity tensors
D in eq. (2.57) may be represented by a cubic interpolation function to ensure numerical stability,
ie.,

“D (g (Cet)) = (1 - 33 +24,°) D + (35° — 2¢°) IDF, (2.58)

with ID* and ID¢ the elastic stiffness tensors of the pure bcc and hep iron phases, respectively. In
particular, if {&° (Cet) < 0 (> 1), also D (g (Cet)) = D* (= ID€). For instance, for such pure hcp



2.2. A phase-field model coupled with finite elastoplasticity 19

e-Fe phases, the finite hyperelasticity condition from eq. (2.18) leads therefore to

Py | _3se
0Ee 0Fe|. 0Ee

D€ = p, (2.59)

€
where ID€ is defined in the reference configuration ()y and obeys the left and right minor sym-

metries. However, the elastic tensor differs from experimental or computed (e.g. using atomistic
simulations) elasticity tensors b¢, expressed in the current and deformed Q) by

e Oo
b == (2.60)

€
with & the Eulerian strain tensor [269, 232, 66]. In the present work, the relevant tensor b for
a pure hydrostatic compression is obtained by considering the following two-step deformation
state along the reaction pathways: first, a material is subjected to a volumetric deformation F,
from initial volume Vj; to the final volume V = jV;, with F, = jl/ 31, and then, to a small and
symmetric shear isochoric deformation Fjs, = I+ € with |e|< 1, such as it is commonly performed
using density functional theory calculations [163, 143]. Without plasticity, the total deformation
gradient is also given by F = j1/3 (I + ¢). Using eq. (2.60) with the aid of eq. (2.30) and considering
o = pI with the Cauchy pressure p < 0, the relation between the elasticity tensors ID¢ and the
incremental tangent modulus b€ is reduced to

Dy = j~1% (b + p° (00 — 6udjt — Gadji) ), (2.61)
exhibiting the same symmetries as in eq. (2.59). Thus, the elasticity tensors ID¢ is obtained by iden-
tifying the values of b° as well as the corresponding equilibrium pressures p€ from experiments
or atomistic calculations. Inserting eq. (2.61) into eq. (2.58) with D* = b* (here, the bcc a-Fe phase
is thermodynamically stable at zero pressure and zero temperature), and, then into eq. (2.57), the
mechanical elastic driving forces in eq. (2.25) may therefore be determined in a computational
Lagrangian framework.

2.2.6 Computational framework

The present model is implemented in a three-dimensional Lagrangian code using an element-free
Galerkin least-squares formulation [25] with explicit time integration that handles acoustic wave
propagation and rapid phase changes. The objective is to obtain solutions of the 12 unknown
primary solution variables (i.e., degrees of freedom (DoFs) at integration nodes) namely, the dis-
placement field u (3 DoFs) and the non-symmetric transformational distortion Ft (9 DoFs) at each
reference point X in (), by solving the system of partial differential equations, as follows

18
it =Y V. {wk (Cet) Fe- (¥ID (g (Cet)) : Ee)-Ft *-Fp~*
k=1

+ wy (Cet) (Be:¥ID’ (g (Cet)) : Ee) Fet-*D-Fp* + (Ee: D ({\ (Cet)) : Ee) Fet-%-l:pft}
18

vFt =) wy (Cet) Ce- (*ID (g (Cet)) : Ee) -Ft* + A V2t
k=1

— 200 (Pt 8k (C)) 4 o di(Ct) 4 7t | tr FIL(Ct)]) Ft- dwy (Ct)

JaCt
— 200 wy (Ct) (1/3’:]/( (Ck (Ct)) Ft-D + 0 Ft-*N (Ct) + rsgn(tr FIT(Ct)) (Ft — Ft-*D trkf))) ,
(2.62)
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where ’ denotes the derivative with respect to the reaction coordinates i, while the derivatives
of the weighting functions wy with respect to Ct and Cet are determined by using eq. (2.54). The
calculation of the first Piola-Kirchhoff stress tensor in the linear momentum balance in egs. (2.62)
is given in Appendix B from Ref. [252].

2.3 Pure hydrostatic compression

The phase-field formalism coupled with finite elastoplastic deformations is applied to analyze the
a-Fe into e-Fe phase transitions under high hydrostatic compression. The simulations exhibit the
major role played by the plastic deformation in the morphological and microstructure evolution
processes.

2.3.1 Material and model inputs

Tables (2) and (3) in Ref. [252] list the values for the material and model parameters for iron under
high pressure compression, respectively, which have been collected from a variety of sources.

In the present phase-field model, the elastic pressure-dependent properties of iron are defined
by four pressures: {p*, p¢}, for which the crystalline phases are fully bec, and, fully converted to
hep, respectively; and: {p* ¢, p°7*}, which characterize the transition states where the forward
and reverse transformations start, respectively. Here, the equilibrium pressures {p* = 0,p° =
—20} GPa, with the corresponding atomic volumes {v* = 11.75,v¢ = 10.20} A3 /at, are selected
from Ref. [78]. In accordance with these experimental measures, the associated elastic components
b* and b€ for both pure bee and hep phases are given in Ref. [163], while the stiffness tensor D€ is
expressed in the current configuration by using eq. (2.61), and, D* = b" at zero pressure.

The ratio c¢;, = 1.603 of the hcp close-packed structure has been experimentally determined
in Ref. [179], so that detU = 9c,, /16 = 0.902. However, U corresponds to the complete phase
transformation into the hcp iron sample at p¢ = —20 GPa, for which the experimental measure-
ments contain indistinctly elastic and transformational distortions. According to eq. (2.38) and
following the procedure in Appendix C from Ref. [252], the transformational part Ut is related to
U as follows

3 - z —-1/2
Ut:KU:\@<1+ 1+3]exl§f> U, (2.63)

where D¢ is the hcp bulk modulus, and, jexp, = v¢/0" is the experimental volume change from the
initial pure bcc sample, at p* = 0 GPa, to the final pure polycrystalline hcp iron, at p© = —20 GPa.

In the present perfect plasticity theory, a constant yield stress is chosen to analyze the crucial
role of plasticity on nucleation and selection of variants during phase transformations, i.e., oy =
0.25 GPa, which is fairly of the same order of magnitude with Hugoniot elastic limits in Ref. [214].

The positive parameter /1 of the weighting functions controls the energetic part of the phase
transition during a possible jump from one reaction pathway to the neighboring branches. The
energy variation for such transition may be determined using molecular dynamics simulations
[77], for which the exponent can be tuned to reproduce the atomistic results. However, without
relevant information about the bce-bec and hep-hep phase transitions in iron, it is therefore as-
sumed that all reaction pathways are mainly controlled by their immediate surroundings. This
consideration may be achieved by imposing large magnitudes for #, e.g. h = 10, as well as large
values for the energy barrier parameters ¢ and 7. The relation 77 = 100 (in GPa) is used in the
energy penalty part of eq. (2.51) to consider higher pull-back forces onto the pathways for the
volumetric than the isochoric phase transformations, which are conveniently applied to non-zero
strain states that are out of the transition pathways, i.e., for any Ct with IT (Ct) # 0.

The onset of a new crystalline phase can be viewed as the product of a morphological insta-
bility involving elastic energy, interfacial energy, inelastic energy, transformational dissipation,
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plastic dissipation, additional energies due to the long-range elastic interactions between vari-
ants, etc. Because of the complexity in modeling such phase instability, a phenomenological form
is adopted to define the minimum energy density ¢, as a function of the reaction coordinate
along each individual pathway k, i.e.,

oot (Zk (Ct)) = Se1 8k + 2 8k, (2.64)

with ¢1 and ¢, (in J.m %) two parameters that may be calibrated to experimental data. As described
in Appendix D from Ref. [252], these parameters are given by

o= LD, and, ¢ — L (FUEZD) oo, 265

with j*7¢ = ¢*7¢/v* and j*7% = v°7%/0v"* the experimental volume changes from the initial
pure bce sample to the Hugoniot states where the forward and reverse transitions occur, at p*—¢
and p®%, respectively. According to the recent experimental results from Ref. [78], the forward
transition starts at p* ¢ = —14.9 GPa, with the corresponding volume v* ¢ = 11.0 A3/at, and,
the reverse at p°** = —12.0 GPa, with v*** = 10.6 A®/at. The minimum energy density profile
along the individual reaction pathways from eq. (2.64) with eq. (2.65), for which the values of c;
and c; are provided in Tab. 3 from Ref. [252], is depicted in Fig. (2.4a).

The parameter v in the relaxation eq. (2.23) is akin to viscosity in classical viscoplastic ap-
proaches. For the face-centered cubic (fcc) to bec phase transitions in Fe3Ni, an attempt to fit the
magnitude v = 14 mPa.s, comparable to the viscosity of liquid metals, has been investigated by
using molecular dynamics simulations [77]. Such quantitative data analysis is not available for
the bce-hep transformations in iron, but it is assumed that the amount of stress state due to the
viscosity is lower than the yield stress, i.e., vé; < 0y, where ¢; is a measure of the transformational
strain rate. This measure can be estimated by ¢ = /At = }|Ct — I|/At during a time interval
At awaited for the transformation, with &, the norm of the transformational Green-Lagrange de-
formation tensor. Thus, it follows that v < optf /e, with ¢ the final simulation time. According
to the mentioned material inputs and time characteristics discussed in the following section, it is
also considered that v ~ optf /et ~ 2.6 kPa.s.

Finally, the Laplacian operator in eq. (2.28) can be approximated using the mesh discretiza-
tion in the finite element framework, such that A = A*/¢2, where A* = 0.5 GPa is a mesh-size
parameter and / is an average element size of the simulation grid.

2.3.2 Analysis of the pressure-volume responses

The simulated material is a cube containing 1 million finite elements with full periodic boundary
conditions, within which each element volume is V, = 3> = 1 ym®. In the present dynamic
continuum mechanics framework, the final simulation time tr is related to the physical time t,
needed for acoustic waves to travel through the samples. Assuming that t; = 100¢, the latter
relation also means that the acoustic waves run over 100 times during the entire simulations for
each sample, which ensures the quasi-static loading conditions. Thus, t. = L/cy, with L = 100¢ =
0.1 mm, the initial box length, and c;, the longitudinal wave celerity in iron, i.e., c;, = /b, /po. It
therefore follows that: ¢; = 5850 m.s~!, and, tr = 1.7 ps, corresponding to the duration of the all
performed calculations. Here and in the following, the subscript ; will denote the final state.

The initial single-crystal bcc iron is subjected to a three-step loading, as follows. First, all
edges are continuously and proportionally decreased to a global volume reduction imposed by
j =V /Vy = 0.86, for which the volume change is achieved within a time step from ¢, to t = 0.4 ¢;.
Then, a constant volume is maintained from t = 0.4 tr to 0.6 t, and, finally the volume is released
back to the initial volume, so that j = Vf/ Vo=1,att =t

Figure (2.5) illustrates the volume change j as a function of the pressure p in GPa. Although
different in shape and magnitude, both hysteresis loops characterize martensitic transitions over
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a wide range of pressure, involving an important stored elastic strain energy caused by the coex-
istence of numerous solid-state phases. The difference in both phase transformation hysteresis is
due to plastic deformation in samples, which exhibits a larger width for the case with plasticity
than without. When increased pressure, the appearance of the high pressure hcp phase is reached
at —25.6 GPa, followed by a sudden drop to —23.1 GPa (without) and —19.7 GPa (with plasticity),
due to dissipative effects during the forward & — € transitions. However, the reverse € — a
transition without plasticity is characterized by a slow martensitic transformation, compared to
an instantaneous volume change that occurs between —7.4 and —2.1 GPa with plasticity. Sig-
nificantly, the forward transformation pressures predicted by the present model are higher than
the experimental values for bcc samples that have been fully converted to hcp phases, within the
range of —18.4 GPa [78] and —23.0 GPa [239] at room temperature. The experimental measure-
ments from Refs. [100, 78] have been plotted in Fig. (2.5) with symbols, where the more recent data
in Ref. [78] for high-purity Fe single crystals in helium pressure medium (shown by the oriented
blue arrows) can be compared to the simulated hysteresis widths. Within the pressure range of
coexistence of both phases, the experimental bec (open symbols) and hcp (solid symbols) atomic
volumes are separately deduced from X-ray diffraction measurements of lattice parameters at each
applied pressure step. On the other hand, the computed results (solid lines) are obtained using
the average pressure and volume states over the simulation samples. In addition, the pressure
discrepancies are possibly due to the approximations/presumptions in the present coupled for-
malism and, more precisely, to the absence of free boundaries in the prescribed simulation setups.
For instance, simulations in a helium pressure media, which is a fluid with a very low viscos-
ity, together with a dislocation density-based crystal plasticity model, should give rise to a better
description of the nonhydrostatic effects and anisotropic stresses in the transition pressures, and
also of the hysteresis widths of iron. In accordance with the present calculations with periodic
boundary conditions, classical molecular dynamics simulations using an embedded atom method
potential have shown that the simulated transition pressure of the hcp and face-centered cubic
(fcc) phases is significantly higher for uniform (31 — 33 GPa) than uniaxial (14 GPa) compression
[270]. Although the simulated coexistence domain is larger than the experimental domain under
quasi-hydrostatic conditions, the present P-V equation-of-state curves behave in good agreement
with experimental responses when increasing (from 0 to —18 GPa) and decreasing (from —23 to
—7 GPa) pressures [100, 78].

Figure (2.6) illustrates the partitioning of the total energy ¢ in terms of elastic ¢ /¢ (in blue)
and inelastic (1 + 1 ) /1 (green) energy ratios as a function of the dimensionless simulation time
t* = t/t, for calculations without and with plasticity. It is also shown that the total energy is
mainly composed by the elastic strain energy until the nucleation of the first hcp phases in iron
occurs at t* ~ 0.28, as depicted by the two vertical arrows. When the volume is maintained con-
stant, Fig. (2.6a) shows that the dissipative transformational process leads to 38% decrease in the
amount of elastic energy, while the latter represents 54% of the total energy. During the early
stages of the pressure release (as shown by a double-headed arrow), the stress state decreases, but
the pressure remains sufficiently high to maintain the newly formed phases, as depicted by * in
Fig. (2.6a) when the internal elastic stored energy increases then to t* = 0.90, before completely
releasing back to zero. However, plastic deformation allows for a considerably higher stress re-
laxation between variants when phase transformations occur at large volume change states, as
shown in Fig. (2.6b), where the upper thin curve for the elastic energy ratio without plasticity has
been included for comparison. It also emphasizes the reduction of the stored elastic energy due
to the plastic dissipation, for which the elastic strain energy falls down to 42% (compared to 54%
without plasticity) of the total energy and remains constant during the second loading step. When
the volume increases back to the initial volume, the elastic energy is then dramatically reduced to
zero, significantly dissipated by plastic deformation.
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FIGURE 2.5: Volume change j as a function of the pressure p in GPa, for calculations without (black dotted

line) and with (red full line) plasticity, with oy = 0.25 GPa. The experimental bcc (open symbols) and

hcep (solid symbols) atomic volumes are separately deduced from X-ray diffraction measurements of lattice

parameters at each applied pressure step, while the computed results (solid lines) are obtained using the
average pressure and volume states over the simulation samples.

2.3.3 Microstructure and variant selection

Figure (2.7a) illustrates the microstructure texture variation of transition-induced volume change
j versus the dimensionless time t* in the form of histograms. These histograms are obtained by
splitting the simulation volume change (ranging from j = 0.80 to 1) into 100 bins of constant
width, within which the phase fraction of materials is computed for all time steps. Coexistence
of a-Fe and e-Fe phases with different equilibrium volumes therefore leads to a multimodal his-
togram in the large range of pressure, where the grayscale represents the volume fractions of
phases. For both simulations, the single-crystal volume is homogeneously decreased with respect
to the prescribed hydrostatic conditions, as depicted by the points A. Without plasticity, Fig. (2.7a)
shows a single-mode histogram: the volume change is slightly spread out over a large time inter-
val, starting from the first forward phase transitions at t* = 0.28 (point B). This spreading regime
is spatially correlated to the strong elastic interactions between numerous variants that have par-
tially been reversed into hcp phases only, from point B to D. However, continued pressure release
results in a decrease in the proportion of the hcp phase compensated by an increase of the bec
phase between C and D. When the simulated iron is transformed back to the initial single-crystal
material (point D), the volume exhibits no spatial variation, corresponding to a sharp single-mode
histogram. With plasticity, the volume spreading is dramatically reduced after a brief fluctua-
tion (point B) and remains a single mode until the first reverse phase transitions occur. Between
t* ~ 0.75 and 0.90, a mixed-mode regime can be pointed out, which exhibits the structural texture
formation of heterogeneous microstructure. The higher volume (point C’) is greater in magnitude
than the average prescribed volume, until all reversions are achieved (point D’). The second mode
(point C) corresponds to a volume that remains constant and slightly increases during the rever-
sions (point D). According to these different modes, a particular microstructure texture evolution
in iron associated with preferential variant selection during the phase transitions is also expected.

Figure (2.7b) shows the volume fractions of each variant Vj as a function of the simulation time
t*. Without plasticity, Fig. (2.7b) illustrates that the initial phase is partially transformed into the
6 possible hcp variants with comparable phase fractions, within which a residual amount of bcc
phase persists in the microstructure, even for a large pressure range up to —25 GPa. When the
compression is released to the original volume, all hcp variants are transformed back to the initial
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FIGURE 2.6: Partitioning of the total energy into the elastic and inelastic components as a function of the
dimensionless simulation time t*, for calculations (a) without and (b) with plasticity.

single-crystal bcc iron, behaving partially as a shape-memory alloy. For this case, most of transfor-
mations to e-Fe phases are partial only. These pseudo-hcp structures break the symmetries of fully
formed hcp lattice, and, cannot lead to the formation of reversed a’-Fe phases. Because the mis-
match between bcc and hcp phases is not taken into account in the present formalism, the elastic
strain state due to the interaction between variants is mainly responsible for the incomplete poly-
morphic phase transformations without plasticity. Therefore, when numerous hcp nucleus are
considered, the long-range elastic interactions between variants dramatically increase the over-
all elastic energy, which in turn hinder the forward « — € phase transitions. Because plasticity
dissipates considerably the stored elastic strain energy, the onset of plasticity screens the elastic
interactions between variants and thus decreases the energy cost to form the hcp variants. It also
appears as an essential mechanism to enhance phase transformations by relaxing stresses due to
elastic interactions, so that the complete formation of a polycrystalline iron formed by the 6 hcp
variants is energetically favorable, as shown in Fig. (2.7b). In addition, a sudden burst of reversed
«'-Fe nucleation of variants occurs at t* ~ 0.90, with ~2% volume fraction for each { Vi3, V13, Vi5},
~1% for each {Vi1, V14, Vis}, and, ~0.5% for each of the 6 other bcc variants. Thus, both initial
a-Fe and reversed a'-Fe phases coexist at t* = 1.0, without any retained hcp phases. However,
the initial a-Fe phase orientation largely dominates the forward and reverse transitions, while the
volume fraction of &’ inclusions is ~ 12.3% in the final microstructure.

To summarize, Fig. (2.8) illustrates the microstructure evolution under hydrostatic pressure at
t* = 0.6 and t* = 1.0, defined in both strain and current mesh spaces. As shown in Fig. (2.8a), the
non-flat sample surfaces capture the signature of the local unconstrained deviatoric stress com-
ponent of the externally applied hydrostatic conditions. For the simulation without plasticity, the
initial bcc a-Fe phase (in gray) is not completely converted into hcp e-Fe phases, with a retained
~26.6% volume fraction of bcc phase at t* = 0.6. However, the calculation with plasticity ex-
hibits a polycrystalline iron that has been entirely transformed into 6 hcp e-Fe grain variants (red
gradient). Such close-packed grains have been observed by performing large-scale molecular dy-
namics simulations under shock loading [137]. It is worth mentioning that various morphologies
of hcp phases have been observed for structural phase transformations in iron, e.g. needle-like
e-Fe phases [276], lath-like e-Fe regions [55], and, ellipsoidal e-Fe particles [202], for which the
a <+ w martensitic transitions exhibit similar discrepancies in zirconium [18]. On the release of
hydrostatic pressure, the calculation without plasticity transforms back to the initial single-crystal
bec iron at t* = 1.0, while the calculation with plasticity leads to 12 reversed bec a'-Fe, heteroge-
neously nucleated in pairs (e.g. {V11, Vi2}, in light and dark green) from one single e-Fe variant.
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FIGURE 2.7: Evolution of (a) the volume change j and (b) the phase fractions of variants Vj as a function of
the dimensionless simulation time t*, for calculations without and with plasticity.

2.4 Shock wave propagation

The numerical shock wave calculations accurately describe some important features reported by
the experimental literature, and strongly complement our understanding of the phase-change dy-
namics in iron at larger time and length scales than hitherto explored by molecular dynamics sim-
ulations in the last two decades. The numerical model is able to reproduce unstable shock waves
(which break up into elastic, plastic and phase-transition waves), providing new stress-informed
insights into the coupling between the high strain-rate plasticity and microstructure evolution
during the displacive phase transitions.

2.4.1 The internal structure of shock waves

In the following dynamical analyses, the three-dimensional iron samples are oriented along the
[100] directions, and the shock waves are generated along the z || [001], direction, using 80 x 80 x
1280 element-free Galerkin nodes (~ 8.2 millions), with periodic boundary conditions transverse
to the direction of shock front propagation, i.e., to x || [100]pec and y || [010]pec. The initial shock
compression is induced by imposing a velocity of 850 m.s~! on the rear face along z || [001]p,
while the free surface is located at the extremity of the rectangular parallelepiped-shaped samples,
as depicted in Fig. (2.9a). The unshocked material is at rest at t = ¢, = 0, while the final simulation
time fy is related to the physical time #. for acoustic waves to travel through the sample. The
dynamical loading conditions are controlled by assuming that t; = 2.5%, such that the acoustic
waves run over 2.5 times the samples during the entire simulations. Thus, t. = L,/cr, where
L, is the initial box length in the [001]p.. shock direction, with L, = 16 L, = 16 L, = 1.28 mm,
and ¢y, is the longitudinal wave celerity in iron, defined by ¢, = /b{,/po, with bj; = 271 GPa
the corresponding low-pressure elastic component of the pure bcc iron [163]. It therefore follows
that: c; = 5850 m.s~}, so that tr &~ 0.55 ps, which corresponds to the duration of all calculations.
For convenience, a dimensionless time t* is defined as t* = t/ tr, while the dimensionless length
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FIGURE 2.8: Transformational states defined in both strain and current mesh spaces at (a) t* = 0.6 and
(b) t* = 1.0, for calculations without and with plasticity. Each black dot in the strain space represents the
current transformational strain Ct for all mesh elements, while the colors along the pathways are associated
with the corresponding phases and variants in the 3D simulated microstructures. Without plasticity, the
initial bcc a-Fe phase remains in a large fraction (~26.6%, in gray) at t* = 0.6, whereas the calculation
with plasticity exhibits a polycrystalline iron formed by the 6 hcp e-Fe variants only (red gradient). On
the release of hydrostatic pressure, the former is transformed back to the initial single-crystal bcc iron at
t* = 1.0, while the latter shows the presence of 12 reversed bcc a’-Fe with ~12.3% volume fraction.

L* along z is given by L* = z/L,, so that both quantities t* and L* are ranged between 0 and
1. Moreover, the classical sign convention in continuum mechanics is used, so that compressive
(extensive) volumetric stresses have negative (positive) signs.

The capability of the continuum element-free Galerkin model to reproduce the experimental
multiple split-wave structure is illustrated in Fig. (2.9) by displaying the spatial heterogeneous dis-
tribution of the pressure behind the incident compressive wave. Figures (2.9¢c) and (2.9d) show the
corresponding two- and three-wave structures for representative simulations without and with
plasticity at t* = 0.35, respectively. Different regions, namely, the initial unshocked, the elastically
compressed bcc iron, and the transformed regions with high-pressure hcp Fe multivariants are
also depicted. Furthermore, the plastically deformed bcc iron can be displayed for the calculation
with plasticity in Fig. (2.9d). A sharp PT wave front is exhibited without plasticity, while a more
complex rough PT front (see inset in Fig. (2.9d)) is shown to generate multiple planar pulses (as
depicted by the vertical double-headed arrows) that propagate toward the leading plastic front.
These localized traveling-wave fronts are suddenly produced by the dynamical phase transitions
with high velocity in the compressed bcc region with high-pressure elastic properties. The con-
sequences of the complex three-wave structure and competing wave interactions in the evolving
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FIGURE 2.9: (a) Schematics of the finite deformation framework that combines nonlinear elasto-
viscoplasticity and multivariant phase-field theory to model the shock-induced response of single-crystal
iron along the [001]p. direction. (b) Distribution of the pressure resulting from three-dimensional sim-
ulation without plasticity. The unstable shock wave breaks up into the elastic precursor and the phase-
transition wave, which leads to different internal deformation states at material points. (c) Similar calcu-
lation with plasticity, within which an intermediate plastic wave front propagates between the elastic and
phase-transition wave fronts. The inset shows a rough phase-transition front, leaving behind a complex
high-pressure microstructure with preferred selection and evolution of hcp variants.

deformation microstructure are elucidated in the following sections.

The shocked-induced microstructure during the martensitic phase transitions (also, the PT
front) is analyzed in the six-dimensional Cauchy-Green strain space, as illustrated in Fig. (2.10).
Thus, the deformation states that are mapped and visualized by colored points correspond to the
local transformational distortions experienced by the iron samples. Each color is associated with
the index of the nearest first-rank variant Vj. Figures (2.10a) and (2.10b) depict the corresponding
states that are captured when the elastic fronts reach the free surfaces for calculations without
plasticity and with plasticity, respectively. The former shows that two hcp variants are nucleated
without plasticity, denoted by V; and V;. These two preferential e-Fe variants are formed with
different volume fractions, i.e., 62% for V; and 35% for V;, and are thoroughly promoted by the
[001]pec direction of the shock. On the other hand, although the calculations with plasticity ini-
tiate the early formation of the same two variants, the four companion hcp variants are rapidly
nucleated behind the PT wave front with comparable volume fractions. This microstructural fin-
gerprint exhibits a crucial role played by the plastic deformation in nucleating and selecting all six
energetically equivalent hcp variants in Fig. (2.10b). According to the previous simulations un-
der high-pressure hydrostatic compression, the single-crystal iron has been transformed at high
pressure into a polycrystalline microstructure that consists of the same six hcp variants, without
any retained initial bec phase. It is therefore suggested that the present high strain-rate plastic
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FIGURE 2.10: (a) The three-rank network of reaction pathways is projected in a {Cy, Cy, C3} strain space,
within which the local transformational Cauchy-Green Ct strain states at all material points are displayed
with different colors (each color is associated with a specific hcp variant from the first-rank group symme-
try operation). The results are related to the simulation without plasticity, captured at the instant when the
elastic front reaches the free surface, revealing the nucleation of two (from amongst six possible variants)
preferred hep variants. (b) Similar simulation with plasticity at the same time instant as in (a), where the
other four energetically equivalent hcp variants are activated in the transformed polymorphic microstruc-
ture. Such structural features indicate that the high strain-rate plastic deformation is locally capable of
producing a nearly relaxed hydrostatic state from the uniaxial strain state produced by the shock-wave
compression.

deformation can locally achieve a similar nearly relaxed three-dimensional hydrostatic state from
the uniaxial strain state produced by the shock-wave compression. The nucleation of all (also, six)
high-pressure hcp variants have never been described by atomistic calculations of shock-loaded
iron, certainly because of the small dimensions that hinder plastic relaxation needed to nucleate
these four companion hcp variants. For instance, two twinned hcp variants, separated by nonco-
herent grain boundaries (GBs), are observed in Refs. [137, 138].

2.4.2 Effect of plasticity in shock-loaded iron

Because the deformation processes act as distinctive signatures in shock-compressed samples, re-
flecting the history the solid experienced (in terms of velocity, shock pressure, etc.), three averaged
quantities over the computational samples are plotted in Fig. (2.11). Slice-averaged quantities
within spatial planar bins (of one element width) are also used to quantify the role of plasticity
in tailoring the complex microstructure from the uniaxial strain deformation, namely the free-
surface velocity v, in Fig. (2.11a), the pressure p = —(0xx + Oyy + 022)/3 in Fig. (2.11b), and the
von Mises stress oy in Fig. (2.11c) with respect to t*, obtained without (gray curves) and with
(black curves) plasticity. Both averaged quantities p and o\ are displayed with respect to L*
along the z || [001], loading direction of the samples.

Figure (2.11a) shows the presence of two distinct plateaus for the free-surface velocity profile
without plasticity (gray curve), supporting by the split two-wave structure into the noticeable
fastest elastic and the phase-transition (denoted by PT, see arrow) waves. The elastic wave is
characterized by the elastic precursor Ep with v, = 255 m.s~!, while the phase-transition front
produces a considerable increase of the velocity at free surface, up to v; = 1660 m.s~!. On the
other hand, the simulation with plasticity shows a much more complex velocity profile, where
the multiple-wave structure consists inter alia of the elastic precursor Ep with the same velocity
as the case without plasticity, the plastic (P wave) front, and the elastic wave reverberation with
the on-going PT wave, i.e., the rEp wave. This wave profile is comparable to those reported in
experimental works with distinct three-wave structures [19, 130]. The instants when both P and
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FIGURE 2.11: (a) Free surface velocity histories from shock-loaded iron samples without (gray curve) and
with (black curve) plasticity. The former is caused by the arrival of the elastic precursor (denoted by Ep)
and of the phase-transition (PT) wave. The latter is decomposed by Ep, the plastic (P) wave front, and rEp
that results from the interaction between the reflected Ep front at the free surface and the on-coming PT
wave. (b) The representative profiles of pressure in GPa along the [001]p,.. direction for both calculations
without and with plasticity. The slice-averaged values within spatial planar bins of one finite element width
correspond to the three-dimensional microstructures in Figs. (2.9c) and (2.9d). (c) The von Mises stress in
GPa for both calculations without and with plasticity.

rEp waves reach the free surface are displayed by the double-headed arrows in Fig. (2.11a), cor-
responding to v, = 880 m.s~! and v, = 1170 m.s~!, respectively. It is worth noting that both
reflected Ep and P waves that propagate back in the elastically compressed and plastically de-
formed bcc iron (thus, along the [001]p. direction) produce a residual stress state that does not
favor the mandatory forward a — € phase transitions. The interaction in releasing the stresses
between the reflected Ep and P waves with the PT wave encourages therefore the reverse e — «
phase transitions, without retaining any e-Fe hcp phase nor without forming any a’-Fe bcc vari-
ants. Interestingly, this feature differs from the pure hydrostatic compression loading, for which
a significant residual volume fraction (~ 12%) of &’ bec inclusions has been obtained in the mi-
crostructure after the reverse phase transformations. Consequently, the incident PT wave cannot
reach the free surface for calculations with plasticity, in contrast to the simulation case without
plasticity. Additionally, it is worth mentioning that the amplitude of the steady-state free-surface
velocity with plasticity is close to the one without plasticity, i.e., v. = 1707 m.s~!, which is roughly
twice the particle velocity of 850 m.s~! imposed on the rear face behind the incident shock as a
loading condition, consistently with the traction-free conditions at free surfaces.

Both calculations without and with plasticity in Fig. (2.11b) exhibit a similar elastic state where



30 Chapter 2. Crystalline interfaces during solid-solid phase transitions in iron

compression remains uniaxial in the [001],. direction, characterized by a pressure pg = 3.9 GPa
in the elastically compressed bcc phase. By considering this threshold pressure as the Hugoniot
elastic limit for the plasticity-free case, the value of 3.9 GPa is defined between two reference exper-
imental data in polycrystalline iron samples, i.e., ~ 2.1 GPa [292] and ~ 5.5 GPa [230]. It is worth
mentioning that the similar computed values for both uniaxial elastic limits without and with
plasticity are fortuitous since the former corresponds to the transformational front (accompanied
by both hydrostatic and deviatoric stresses), while the latter is related to the plastic front (mainly
controlled by deviatoric stresses). In practice, once the phase transformation operated by one spe-
cific variant is initiated, the excess free energy between both bcc and hep iron phase promotes
a partially-to-complete shock-induced transition that behaves differently than pure pressure, as
quantified by eq. (2.37). The corresponding released stress state after this phase transformation
is much more complex than the stress state behind the deviatoric stress-driven plastic front. The
changes from the uniaxial shock compression to a complex stress state after phase transitions
in the plastically deformed iron cannot therefore be captured by a usual pressure-shock velocity
(e.g. represented by a Rayleigh line), yielding an important distinction between the shock physics
described at the macroscopic scale and ones described at the grain scale. Behind the traveling
Ep wave front, the pressure profile depicts the presence of one (two) plateaus for calculations
without (with) plasticity. The former exhibits the presence of the PT wave front as the pressure
dramatically increases up to ppr = 37.7 GPa. The latter profile shows an intermediate pressure
plateau that characterizes the plastically deformed bcc region, within which the forward « — €
phase transitions start roughly at the onset pressure ppr = 18.2 GPa, as indicated by the dotted
line in Fig. (2.11b). This value is on the range of experimental values for single-crystal iron under
hydrostatic pressure [78], and in excellent agreement with large-scale molecular dynamics sim-
ulations in single-crystal iron as well, i.e., 18 GPa along the same [001]p. shock direction [274].
Here, the value deviates from the conventional macroscopic threshold from experiments on poly-
crystalline Fe samples (occurring at 13 GPa [17, 19]), for which the GBs with pre-existing intrinsic
defects reduce the amplitude of the forward transition pressure [105, 275, 297]. Achieved after the
complete phase transformation of the bcc into hep variants, the upper plateau is governed by the
load intensity and is reached at p = 44.1 GPa, slightly higher than the pressure without plasticity.
This value is in very good agreement with recent results from molecular dynamics simulations in
shocked iron [4], where a maximum mean pressure of ~ 40 GPa has been measured by applying
a comparable piston velocity of 800 m.s 1.

Figure (2.11c) shows the corresponding values for the von Mises stress, with oy = 2.7 GPa
for both simulations in the elastically compressed bec iron. Then, the large von Mises stress profile
increases inhomogeneously in the sample without plasticity, which is due to a heterogeneous dis-
tribution of both hcp variants V; and V;, in the microstructure with lamellar arrangements along
the shock direction (not shown here). The maximum value is oy = 18.1 GPa. With plasticity,
however, the volume-preserving plastic deformation relaxes significantly the internal von Mises
stress to reach an averaged von Mises stress of oy = 1.1 GPa (< 3.9 GPa, at the peak Hugo-
niot elastic state) in the shocked-induced hcp multivariant region. This difference asserts the role
played by plasticity to release the shear stress state produced by the uniaxial strain compression to
obtain a roughly hydrostatic state with 6 high-pressure hcp variants (instead of 2 variants without
plasticity) in the transformed heterogeneous microstructure.

Figures (2.12a) and (2.12b) capture the evolution of the longitudinal stress component in the
shock direction ¢, in the Lagrangian adimensional position-time (L*, t*) diagrams, without and
with plasticity, respectively. The non-steady-state regimes of the present elastic precursor (Ep,
solid lines), plastic (P, dashed), and phase-transition (PT, dotted) waves —moving with different
average speed so that net distances between the respective fronts increase with time— exhibit a
more complicated picture for the three-wave structure with the high strain-rate plasticity than
the corresponding diagram without plasticity. The reflection of the incident fronts from the free
surfaces are depicted as well.
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FIGURE 2.12: (a) Slice-averaged maps of the longitudinal stress component 0, in the Lagrangian adimen-
sional position-time (L*, t*) diagram from simulation without plasticity. The two-wave (composed of the
elastic Ep and phase-transition PT waves) structure with the reflection of both waves at the free surface are
shown using different line types. (b) The three-wave structure with the presence of the intermediate plastic
wave (P wave) front illustrates a considerably more complicated scenario of nonlinear wave interaction.
As depicted by the arrows, this calculation with plasticity reveals two nucleation events at t* = 0.10 and
t* = 0.27, which result in the inhomogeneous propagation of the the trailing PT wave and in the presence
of a stress-release envelope. The latter travels faster than the leading shock and is characterized by a lower
longitudinal stress in magnitude.

The leading E wave front, traveling at 5412 m.s~! (5541 m.s~!) for calculation with (without)
plasticity, leaves the iron system in an elastically compressed state with high-pressure proper-
ties. The former value is in excellent agreement with the computed shock velocity of 5409 m.s~*
using atomistics simulations in single-crystal iron without pre-existing defects [137], which is
consistent with the present calculations. Without plasticity, the trailing PT front travels homo-
geneously in the sample at 4655 m.s~!. For the three-wave structure, the nearly over-driven P
front (but not over-run, i.e., characterized by a finite separation between the E and P waves) prop-
agates at 5059 m.s~!, while the slower heterogeneous PT front travels with intermittent regimes
at 3002 £ 99 m.s~!, which is much lower than the homogeneous PT front without plasticity. In
contrast to the case without plasticity, the intermittent propagation of the PT front with plasticity
reveals the presence of i) sudden nucleation events of hcp variants (as depicted by the arrows in
Fig. (2.12b)), and consequently of ii) a so-called traveling release-stress envelope. This envelope
propagates by reflection between the rear surface on the left-hand side of the sample and the PT
wave before interacting the (unloading) reflected Ep wave with the free surface, as displayed by
the asterisk * in Fig. (2.12b). It precedes always the slower wave, i.e., the PT wave, but travels
faster than the elastic wave at 8312 m.s~! in the transformed high-pressure regions of iron (i.e.,
with high pressure-induced stiffness and density). These distinct nucleation sites of hcp variants
are not experienced for calculations without plasticity, exhibiting again the specific role played by
the plastic deformation in governing such microstructural features. Analogous distinct nucleation
events in position-time diagrams have been observed in shocked crystalline 1,3,5-triamino-2,4,6-
trinitrobenzene using large values for the input parameter ¢ in molecular dynamics simulations
[152].

2.4.3 Residual stresses in the plastically-deformed microstructure

Figures (2.13a) display three shock-induced microstructures M, M, and M3 in Fig. (2.12b) that are
associated with t* = 0.21, t* = 0.27, and t* = 0.44, respectively, for the calculation with plasticity
only. For these microstructures, various stress-related quantities, i.e., the longitudinal Cauchy
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FIGURE 2.13: (a) Three-dimensional time snapshots of shock-induced microstructures, designated M; at
t* =021, (b) My at t* = 0.27, and (c) M3 at t* = 0.44, from the position-time diagram in Fig. (2.12b) for
simulation with plasticity. From top to the bottom, each panel captures the heterogeneous distribution of
various stress quantities, namely, the longitudinal Cauchy stress 0;;, the shear stress T, the stress-related
quantities s, and s to the second invariant J, using eq. (2.66), as well as the polycrystalline high-pressure
domains composed of six hcp variants. These variants are colored using the same code as in Fig. (2.10b),
while the transparent zones are associated with the initial unshocked beciron. As displayed by *, a dynamic
instability in the polymorphic phase transitions is observed in M, leading to the nucleation of a large
monovariant with columnar growth in the microstructure that is still visible (xx) after the propagation of
the incident phase-transition wave front. (b) The color legends associated with the stress-related quantities.

stress tensor component in the shock direction ¢, the shear stress T = ((Tzz — ((Txx + (Tyy) / 2) /2,
sy, and ss, as well as the corresponding hcp variant selection, are displayed. Both stress quantities
s, and s, are related to the second invariant of the stress deviator [, and the von Mises stress oy
by

3), =02y = Sdevo: deve = Ls, +6s;, (2.66)

where dev o is the deviatoric part of ¢, so that s, and ss are defined by

Sn = (U'xx - Uyy)z + (U'yy - (7',zz')2 + (U'xx - Uzz)z (2.67)

Ss :0§y+(7§z+a§z, '
with 0y, 0z, and 0y, being the orthogonal shear stresses. As a signed quantity, the shear stress
T, which equals to the von Mises stress if the off-diagonal terms are neglected, can also have
positive (in red) or negative (green) values depending on the magnitude of ¢,, with respect to
(0xx + 0yy) /2. All color legends for the stress-related quantities are displayed in Fig. (2.13b).

At instant t* = 0.21, the split three-wave structure into the Ep, P, and PT wave fronts is clearly
distinguishable by the change in magnitude of ¢, in Fig. (2.13a). Close to the phase-transition
front, the transformed region with 6 high-pressure hcp variants is characterized by positive val-
ues of the shear stress T (values in red). Between the PT and P wave fronts, the shear stress T
is negative (green), the stress field ss is zero, while the quantity s, exhibits the presence planar
surfaces as pulses generated by the PT front that dynamically nucleates the hcp variants. These
six variants are pictured with the same colors as in Fig. (2.10b). Behind the complex rough PT
front, some hcp grains grow preferentially into flaky morphology with (110)pc. and (110)p. habit
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FIGURE 2.14: (a) Slice-averaged magnitude of the plastic Green-Lagrange strain tensor Ep in the Lagrangian

adimensional position-time (L*, t*) diagram from simulation with plasticity. The elastic and plastic wave

fronts with constant velocities are shown using different line types as well as two (primary and secondary)

phase-transition zones that are associated with specific nucleation of release and reload variants (see text

for details). (b) The corresponding selection of hcp variants, categorized into two groups, so-called G; =
{V1 4+ V2} (inblue) and Gy = {V53 + Vy + V5 + Vi } (red).

planes of the bcc iron, which are transformed into the (0001)y, close-packed planes after the
phase transition.

At t* = 0.27, the presence of a dynamical instability in the compressed and plastically de-
formed microstructure is shown. This occurs under a complex stress state that is responsible to
an extremely rapid nucleation of a large single-crystal hcp variant V; (in orange, as depicted by
* in M in Fig. (2.13a)) with columnar growth in the direction of the shock loading. This sponta-
neous nucleation is characterized by a notable change in sign of the shear stress T from negative
(green) to positive (red) values. The ideal volume-reducing transition path of the strain-free mono-
variant V; requires a compression of ~ 12.5% along the z || [001], direction, as defined by the zz
component in eq. (2.37). This sudden nucleation event gives rise to the aforementioned traveling
release-stress envelop in Fig. (2.12b), which is also characterized by a finite domain with positive
shear stress values, as depicted by white double-sided arrows in M, and M3. Surrounded by the
initial bec phase, the variant V; is able to grow in the shock direction, whereas the confined region
between the PT front and V; in M, becomes an unstable zone for nucleation of high-pressure vari-
ants. Similar shock-driven regions of instabilities, within which local nucleation of hcp embryos
occur, have been observed by Wang et co-workers using atomistic simulations [273].

Although V; is still visible at instant t* = 0.44, the phase-transition wave front continues to
propagate in the shock direction, exhibiting the coalescence of the hcp variants and also a specific
morphological fingerprint of shock-induced hcp variants with large transformed bands (due to
the periodic boundary conditions) at high pressure. A thickness of ~ 77 ym for V; is found in
the z || [001],c direction, which also depends on the shock velocity (results not shown here).
Overall, s, exhibits large values in the elastically compressed zones, which significantly decrease
as soon as the nucleation of growth of hcp variants take place during the polymorphic phase
transitions. In turn, because both quantities s,, and ss quantities play a complementary role in the
present ], plasticity theory, s; gives rise to large values in the phase-transformed hcp regions. The
aforementioned transformed bands are therefore considered here as an important mechanism of
stress relaxation under shock compression at high strain rate, thus providing novel guidelines for
future experimental diagnostics of shock wave propagation in iron.
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FIGURE 2.15: Schematics of the presence of internal dislocation structures at solid-solid interfaces.

2.4.4 Dynamical instability in structural phase transitions

Figure (2.14a) illustrates the shock-induced instability in the structural phase transitions by means
of the magnitude of the plastic Green-Lagrange deformation Ep, defined by |Ep| = |Fp'-Fp —1|/2.
This quantity is plotted in the Lagrangian adimensional position-time (L*, t*) diagram, where t*
is restricted between 0 and 0.5 for clarity, so that the multiple reflections of incident waves from
the free surface are conveniently omitted in the following discussion. It is shown that the propa-
gation of the PT front gives rise to a spatially (not temporally) heterogeneous distribution of |Ep|
with local values up to 0.25. This localization of plastic deformation is therefore strongly corre-
lated with the specific selection of shock-induced hcp variants, which can be separated into two
pertinent groups, so-called G; = {V; + V»} and G, = {V3 + V4 + V5 + Vi }, each set involving dif-
ferent features of the microstructural fingerprints in shock-loaded iron. Thus, Fig. (2.14b) displays
the variant selection during the shock wave propagation using a linear interpolation of color to
distinguish the presence of both groups G; (blue) and G, (red) in the microstructure. As already
mentioned, both V; and V; variants (from amongst six available variants) of G; are promoted by
the shock direction in the first instants of the shock wave propagation. Since the two-phase mix-
ture induces a large contraction along the loading z || [001]p. direction, the corresponding group
G is composed of variants designated by "release variants". However, the second group G,
which consists of a mixture of the complementary four variants with identical volume fractions,
experiences an expansive reaction in the shock direction. In contrast to G;, these newly-formed
variants of G, are also expected to generate an expansion (or reloading) wave, which are therefore
not promoted by the initial compressive (or loading) wave. In the following, the four variants of
G, are denoted by "reload variants", for which the nucleation is accompanied by severe plastic
deformation with large values of |Ep|, as indicated by Fig. (2.14a).

2.5 Limitations

While the present phase-field approach is capable of considering the elastic mismatch between
low- and high-pressure variants during the pure pressure- and shock-induced phase transfor-
mations in iron, the coexistence of both solid-state phases with different crystal structures (e.g.
lattice parameters) yields to the loss of lattice coherence at the interfaces. This also means that the
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perfect lattice correspondence across the bee/hcep interfaces as well as the misoriented hcp/hcp
grain boundaries obtained in Fig. (2.8) becomes an implausible model assumption, and that the
current description of the crystalline interfaces during solid-solid phase transitions remains obvi-
ously incomplete. In fact, experimental observations of such interfaces show that coherent inter-
faces break down through the formations of misfit dislocation structures, as sketched in Fig. (2.15)
with internal hexagonal dislocation patterns. The resulting "semicoherent interfaces" consist of
coherent regions separated by these interfacial dislocation structures. Since the earliest observa-
tions of dislocation arrangements into periodic patterns along solid-state interfaces in a variety
of conditions [6, 54, 5, 65], the advantages/inconveniences introduced by the presence of such
crystal defects in high-technology applications have been addressed in interdisciplinary materials
science and engineering [237, 95], involving chemistry, physics, electronics, metallurgy, mechan-
ics, etc. Extensive investigations have indicated that the interfacial dislocation patterns at grain
and interphase boundaries may, however, be designed to increase the unprecedented levels of
high strength [7], ductility [300], and radiation-induced damage tolerances [26] in nanocrystalline
polycrystals, nanolayered laminated composites, precipitation-strengthened alloys, and epitaxial
free-standing thin films. In part, the fundamental problem of characterizing the dislocation struc-
tures and energetics at heterophase interfaces is treated in the following chapter 3.
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Chapter 3

Dislocation structures and energetics at
heterophase interfaces
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3.1 Motivation

Far from being featureless dividing surfaces between neighboring crystals, interfaces in homo-
and hetero-phase solids have internal structures of their own. These structures depend on in-
terface crystallographic character (misorientation and interface plane orientation) and affect the
physical properties of interfaces, such as interface energy [73], resistivity [42], permeability [125],
mechanical properties [141], morphology and variant selection of precipitates [210], point defect
sink efficiencies [225], and mobilities [147]. To better understand and control the properties of
interfaces, it is desirable to be able to predict their internal structures. The first part of this chap-
ter 3 presents a method for predicting a specific interface structural feature: the Burgers vectors
of intrinsic dislocations in semicoherent homophase and heterophase interfaces. This informa-
tion is then used to compute the interface elastic strain energies in standard tilt and twist GBs as
well as the partition of elastic distortions at complex heterophase interfaces. An application to
the sink strength of semicoherent interfaces is described in section 3.5, for which the non-random
walk diffusion of radiation-induced defects is highly sensitive to the detailed character of inter-
facial stresses. The follow-up extensions to the elastic strain relaxation in interfacial dislocation
patterns and to the elastic interaction with extrinsic dislocation arrays and loops are investigated
in sections 3.6 and 3.7, respectively.

One way of studying interface structure is through atomistic simulations, which explicitly ac-
count for all the atoms that make up an interface. However, this approach is not always practical
or efficient: it can be very resource-intensive because it requires a separate simulation for each in-
dividual interface. Thus, it does not lend itself to rapidly scanning over many different interfaces,
for example if one were searching for trends in interface structures or for tailored interfaces with
a specific structure. Low-cost, analytical techniques for predicting interface structure would be
preferable in such situations.

One widely used analytical approach applies to semicoherent interfaces and describes inter-
face structures in terms of intrinsic dislocations using the closely related Frank-Bilby [93, 30] and
O-lattice [32, 296, 237] techniques. Both procedures require the selection of a reference state, within
which the Burgers vectors of individual interface dislocations are defined. Because this choice
does not affect the calculated spacing and line directions of interface dislocations, it has some-
times been viewed as if it were arbitrary. In practice, one of the adjacent crystals [145, 110, 289] or
a "median lattice" [91] have often been used as the reference state.

However, the choice of reference state does influence the values of far-field stresses, strains,
and rotations associated with interface dislocations. These, in turn, are usually subject to con-
straints, namely that the far-field stresses be zero and that the far-field rotations be consistent
with a prescribed misorientation. Thus, the choice of reference state is in fact not arbitrary. As
discussed by Hirth and co-workers [119, 122, 123], the importance of selecting proper reference
states has often been overlooked in part because the best-known applications of interface dislo-
cation models are to interfaces of relatively high symmetry, such as symmetric tilt or twist GBs,
for which correct reference states are easy to guess. Furthermore, many analyses assume uniform
isotropic elasticity, which leads to equal partitioning of interface dislocation elastic fields between
the neighboring crystals. In general, however, interfaces need not have high symmetry and the
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neighboring crystals may have unlike, anisotropic elastic constants. By use of heterogeneous and
anisotropic elasticity theory, the correct selection of reference states in such general cases is far
more challenging.

Elasticity theory for analyzing semicoherent interfaces and determining the field solutions pro-
duced by interface dislocations has been initiated by van der Merwe [244]. The concept of misfit
dislocations, which act as stress annihilators to free the total stress fields far from the interfaces,
has been introduced using the Peierls-Nabarro model to formulate a misfit dislocation theory for
critical thicknesses of strained and layer systems during epitaxial growth of structures with two
isotropic semi-infinite solids [245, 243]. The problem of single straight screw and edge disloca-
tions and dislocation arrays situated at the interface between two anisotropic elastic half-spaces
has received special attention in the literature [282, 60, 21, 34, 283, 277, 260, 146], for which the
dislocation-based calculations and also mechanisms may be significantly altered when isotropic
elastic approximation is considered.

By means of the Stroh sextic formalism [234, 235] with a Fourier series-based technique, the
geometry of interface dislocation patterns as well as the corresponding Burgers vectors have been
solved using anisotropic elasticity theory in bicrystals with two sets of dislocations [260, 258, 261].
This computational method for structural and energetic properties of individual heterophase in-
terfaces has been extended by taking into account the presence of free surfaces in bi- and tri-
layered materials [247, 248] and the local reactions between planar and crossing dislocation arrays
to form new dislocation arrangements [249, 250]. Application examples have revealed the signifi-
cant influence played by elastic anisotropy in the interactions between the semicoherent interfaces
and radiation-induced point defects [255] as well as extrinsinc dislocation loops [256].

3.2 Determining the Burgers vectors of interface dislocation arrays

The notion of introducing Volterra dislocations into a reference state for constrained interfaces is
consistently defined with the Frank-Bilby equation that are free of far-field stresses.

3.2.1 Planar interfaces in linear elastic bicrystals

In the present analysis, planar interfaces are considered formed by joining two semi-infinite linear
elastic crystals, for which the crystallography of the interfaces has been specified completely. For a
GB, this requires five parameters: three to describe the relative misorientation between neighbor-
ing crystals and two to describe the orientation of the GB plane [237]. For a heterophase interface,
the number of crystallographic DoFs may be higher. For example, an interface between two fcc
crystals such as Al and Ni would require the lattice parameters of the two neighboring metals to
be given in addition to the five parameters needed for a GB. Interfaces between materials with
differing crystal structures may require further parameters.

To describe completely the crystallography of a heterophase interface between elements A and
B, the notion of a "reference" state for the interface is adopted: in the reference state, the interface is
coherent, i.e. the two separate crystals that meet at the interface are rotated and strained [131, 237]
such that they are in perfect registry with each other across the interface plane after bonding.
Thus, the reference state has the interface structure of a single perfect crystal.

Starting from the reference state, materials A and B are mapped separately into new configura-
tions that yield an interface with the required crystallographic character and zero far-field stresses,
as shown in Fig. (3.1). Following Hirth, Pond, and co-workers [123], the state of the interface after
this mapping is referred as the "natural” state. For a GB, the maps applied to materials A and B are
proper rotations while for a pure misfit interface they are pure strains. To account for both cases
as well as for heterophase interfaces between misoriented crystals, the maps are described as uni-
form displacement gradients ,F and sF. In the reference state, the neighboring crystals might not
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FIGURE 3.1: Mapping from a coherent reference state to the natural state using displacement gradients ,F
and gF. Volterra dislocations introduced into the reference state remove coherency stresses and may change
the misorientation of the neighboring crystals.

be stress free, but the interface is coherent. In the natural state, the interface is not coherent, but
the neighboring crystals are both free of far-field stresses.

This framework is sufficiently general to describe the crystallography of many commonly
studied heterophase interfaces, e.g. ones formed by fcc and bce metals [73, 75], but not all. For
example, mapping from a common reference state to an interface between a cubic and hcp crystal
cannot directly be accomplished by a displacement gradient alone and requires an internal shuffle
rearrangement, as mentioned in section 2.2.5. The present chapter 3 is also focused on materials
that may be mapped to a common reference state using displacement gradients alone.

The crystallographic considerations described above do not require a single, unique reference
state. On the contrary, an infinite number of new reference states may be generated from an
original one by applying to it any uniform displacement gradient yF. If the original reference
state may be mapped to the natural state with ,F and gF, then the new reference state may be
mapped to the same natural state using ,F <F 1 and ;F:F~1. However, a consistent description of
the elastic fields of a discrete dislocation network in an interface of specified crystallography and
free of far-field stresses does require a single specific reference state.

3.2.2 Volterra dislocations in the reference state

The atomic structures of real interfaces are not like those generated by the linear mappings from a
reference state. Instead, for any given interface crystallography, the atomic structure may undergo
a variety of local relaxations or reconstructions that lower its energy. In many low-misorientation
GBs and low-misfit heterophase interfaces, these changes lead to formation of regions of co-
herency (which generally have low energies) separated by networks of intrinsic dislocations.
Many such interface dislocation networks have been imaged using transmission electron mi-
croscopy [5].

There are two common ways of describing interface dislocations. In one, they are viewed not
as conventional Volterra dislocations, but rather as special kinds of interface defects with short-
range elastic fields that are formed when the interface atomic structure in the natural state relaxes
[120, 37]. The superimposed elastic fields of all such defects residing within an interface decay
away to zero at long range and therefore do not alter the far-field stress state or the crystallography
of the natural interface state.

Another description—the one adopted here—views interface dislocations as genuine Volterra
dislocations with resultant elastic stress fields that need not decay to zero at long range. For
example, the structure of some pure misfit heterophase interfaces may be described as an array of
equally spaced edge dislocations residing on the same glide plane [181]. Such an array of Volterra
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dislocations has a non-zero far-field stress [7]. Certain symmetric tilt GBs may be described as
arrays of edge dislocations lying directly one above the other on separate glide planes. These
Volterra dislocation arrays have zero far-field strains (hence, also zero stresses [7]), but possess
non-zero rotations at long range [213, 164]. In general, arrays of Volterra dislocations may have
non-zero far-field strains, rotations, or both.

In the work described here, interface dislocations are viewed as Volterra dislocations that have
been introduced into the reference state, as shown in Fig. (3.1). Therefore, the far-field stresses
due to these dislocations oo g}, and oy are equal and opposite to the coherency stresses 5o and
p0¢ in the reference state respectively, leading to the removal of all far-field stresses in the natural
state:

A0c+ 0G5 =0, and, o +0g, =0. (3.1)

Although free of long-range stresses, interface dislocation networks in the natural state have non-
zero short-range elastic fields as a result of the superposition of the non-uniform stress fields
of the Volterra dislocation networks and the uniform coherency stresses in the reference state.
Additionally, the far-field rotations due to the Volterra dislocations are required to conform to
the given interface crystallographic character. These requirements restrict the choice of reference
states to a single specific one.

The notion of introducing Volterra dislocations into the reference state primarily is treated
as a hypothetical operation. However, this operation may be a physically meaningful analog of
processes occurring at some real interfaces. For example, the transformation of certain coherent
heterophase interfaces into ones that are not coherent, but free of far-field stresses, occurs by the
deposition on the interface of Volterra dislocations that glide through the neighboring crystalline
layers [181, 182]. Similarly, subgrain boundaries are thought to assemble from glide dislocations
formed during plastic deformation of polycrystals [8].

3.2.3 Crystallographic constraints on interface dislocations

A variety of shapes of interface dislocation networks have been observed [5], such that the ones
that may be represented by j < 2 arrays of parallel dislocations with Burgers vectors b;, line
directions &;, and inter-dislocation spacings d;. Following previous investigators [93, 30, 237],
these quantities are related to the density of admissible Volterra dislocations in the reference state
and interface crystallography as

j % &
B=§<"dfl-p> bi= (\F ' —F ) p=Tp, (3.2)

where 7 is a unit vector normal to the interface and the so-called probe vector p is any vector
contained within the interface plane. Equation (3.2) is known as the quantized Frank-Bilby equa-
tion [237, 289], where T corresponds to an average operation that maps p to the resultant Burgers
vector B of interface dislocations intersected by p.

The individual Burgers vectors b; of interface dislocations are assumed to be related to the
crystal structure of the reference state. For example, if the reference state is an fcc crystal of lattice
parameter 4, values of b; may be drawn from a set of 5(110)-type glide or £(112)-type Shockley
partial dislocation Burgers vectors. Once the set of admissible Burgers vectors is known, well-
studied methods stemming from Bollmann’s O-lattice theory [32] may be used to compute n, ¢;,
and d; [145, 289] from the O-lattice vectors p?, defined by

by =Tp°. (3.3)

The O-lattice vectors p{ —and therefore both ¢; and d;—do not depend on the choice of reference
state. If an original reference state is mapped to a new one using displacement gradient yF, then b;
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is mapped to b; = zFb;. Here and in the following, the superimposed inverse caret will be used to
indicate trial values of variables. The new reference state may also be mapped to the natural state
using AF = \FyF1and ;F = ;FxF, as discussed in section 3.2.1. Assuming that rank T = 3, the
O-lattice vectors computed from the original and new reference states are identical:

pY =T = (JF 1 —oF 1) b= o (3.4)

This conclusion may also be shown for matrix T of rank 2 or 1. Thus, for a given set of Burgers
vectors b;, interface crystallography uniquely determines interface dislocation line directions ¢;
and spacings d;, but not the reference state. Based on this result, some authors have argued that
the choice of reference state is truly arbitrary [32]. However, in different reference states, b; will
clearly have different magnitudes and directions, both of which influence the magnitudes of the
elastic fields generated by interface dislocations (the latter by altering their characters).

3.2.4 Solution strategy

Determining the elastic fields of semicoherent interfaces requires finding the correct interface dis-
location Burgers vectors, which are defined in the coherent reference state. The following five-step
strategy is applied to determine the specific reference state that meets the constraints of interface
crystallographic character and zero far-field stresses.

Step 1: Solving for geometry of dislocation networks

As shown in section 3.2.3, the geometry of interface dislocations (their line directions and spac-
ings) is independent of the choice of reference state. Thus, a reference state is chosen identical
to one of the crystals adjacent to the interface in its natural state. This choice provides an initial
guess of the interface dislocation Burgers vectors. Then, the interface dislocation geometry is de-
termined by using standard methods [31, 145, 110]. Multiple dislocation geometries are possible
in some interfaces, but attention is restricted in this section to interfaces with unique geometries.

Step 2: Solving for interface dislocation elastic fields

The complete elastic fields, produced by the arrays of dislocations found in step 1, are determined
using anisotropic linear elasticity theory in bicrystals. The elastic fields are assumed to follow the
periodicity of the two-dimensional dislocation structures predicted in step 1 and must also satisfy
specific boundary conditions at the interfaces.

Step 3: Solving for far-field distortions

The far-field distortions associated with each set of parallel dislocations are computed separately
and then superimposed to obtain the resultant far-field distortions of the interface dislocation
network as a whole. These elastic distortions are key for determining the correct reference state
for the interfaces of interest. Far-field strains, stresses, and rotations may also be deduced.

Step 4: Solving for the reference state

The correct reference state is the one in which the superposition of the strains produced by inter-
face dislocation arrays eliminate the coherency strains, giving a bicrystal that is free of far-field
stresses and has far-field rotations that agree with the given interface crystallographic character.
This condition is met by continuously adjusting the reference state along a specified transforma-
tion pathway, starting with the initial guess selected in step 1.
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FIGURE 3.2: (a) Schematic illustration of a planar interface dislocation network formed by bonding mate-

rials A and B. (b) The geometry of an interface containing two sets of dislocations described by O-lattice

vectors pf and p9. Open circles represent O-lattice points and filled circles illustrate atoms with nearly
matching positions in materials A and B.

Step 5: Solving for the interface elastic strain energy

Incomplete cancellation of the coherency and Volterra fields near the interface gives rise to short-
range stresses and strains. These stresses and strains are used to compute the elastic energies of
semicoherent interfaces.

3.2.5 Elastic fields of interface dislocation arrays

This section is focused on interfaces containing up to two arrays of infinitely long straight, and
uniformly spaced parallel dislocations at equilibrium, as illustrated in Fig. (3.2a). The Stroh for-
malism of anisotropic linear elasticity [234, 235, 59] and a Fourier series-based solution technique
are used to compute the elastic fields outside the cores of interface dislocations [22, 68, 34]. For
clarity in this section, the pre-subscripts A and B in the field expressions will be omitted if no
distinction between materials is required.

Problem formulation

The geometry of a dislocation network consisting of two arrays of straight parallel dislocations
may be described by two O-lattice vectors p? # p5 in the interface of interest using a Cartesian
coordinate system with basis vectors (x1, x2, x3), as shown in Fig. (3.2b). An interface containing
only one array of straight parallel dislocations is a special case of this more general geometrical
description. The unit vector normal to the interface is n || x,, with the interface located at x, = 0 :
xp > 0 for material A, and x, < 0 for material B. The dislocation line direction &; is parallel to p?
and ¢, || p$, as illustrated in previous studies [110, 237, 289].

A representative interface unit cell of the dislocation pattern is illustrated in Fig. (3.2b). Trans-
lations of the unit cell by the basis vectors p? and p? tessellate the interface plane. It is also
convenient to identify a non-orthogonal (oblique) frame with basis vectors (x}, x2, x;), where
x| py || & and x5 || x3 || p9 || &;. The oriented angle between &, and ¢; is denoted by ¢, so
that x] = xjcsc¢ and x5 = x3 — x1 ctg¢. Thus, any position vector in this non-orthogonal frame
may be expressed as r = x| p§ + x5 pS.
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Due to the periodicity of the interface dislocation structure, it is useful to seek a complete set
of wavevectors k such that the elastic fields in the interface may be analyzed using plane waves
e2%r_The set of all k is conveniently written as k = np;* + m p5 with respect to the reciprocal
vectors p; and p, defined by the orthogonality conditions p; - pg = Jup, Wwhere n, m are integers.

The complete elastic distortion field D is the superposition of the uniform coherency and the
Volterra dislocation distortions, D. and Dy;s, as discussed in section 3.2.2. Following the seminal
work of Bonnet [34, 35, 36], outside of dislocation cores, D may be expressed as the biperiodic
Fourier series, i.e.

D (x) = D + Dyis (x) = D +Re ) €27 DF (1) , (3.5)
k£0

with i = v/—1, while Re stands for the real part of a complex quantity and the sum spans over
all non-zero wavevectors k. The Fourier amplitudes of the complete distortion waves D* (x,) are
required to converge (not necessary to zero) in the far-field, i.e. x — d-co. The components k; and
ks of the wavevector k satisfy

k'r:k1x1—|—k3X3:<ncs§¢—mCt§¢>x1+mox3~ (3-6)
‘P1| ’Pz‘ |P2’

The complete displacement field # may be found by integrating eq. (3.5) as

u(x) = @— D. x +Re Z el27tk 1 4k (x2) = sage (%) + ugis (%) ,

& (3.7)

affine part

where u is an arbitrary constant displacement. The complete displacement field # may be decom-
posed into an affine part u,¢ corresponding to D, and a biperiodic Fourier series representation of
displacement fields ug4;s generated by the Volterra dislocations.

The Fourier amplitudes in egs. (3.5) and (3.7) are determined from linear elasticity in the ab-
sence of body forces and subject to boundary conditions associated with interface dislocations.
The complete displacement gradients D (x) = grad u (x) in crystals A and B must fulfill the par-
tial differential equations of mechanical equilibrium

div(C:grad u(x)) =0, (3.8)
where : denotes the double inner product and C is a fourth-order anisotropic elasticity tensor.

Complete field solutions

Substituting the displacement field eq. (3.7) into eq. (3.8), the second-order differential equation
applied to both half-spaces is obtained as follows

duk (x 2 uk (x
w1 Wq uk (XQ) + w> (W2 + WZt) ( 2) + W3 (2 2) =0. (3.9)
with w; = —47% and w, = i27t. Here, t denotes the matrix transpose and W1, W5, and W3 are

3 x 3 real matrices related to the wavevectors (i.e. interface geometry) and the stiffness constants
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(i.e. elasticity) indexed in Voigt notation:

. IGe1n + 2kiksers + Kiess  Kjcie + kiks(c1a + cs6) + k§C45 kic1s + kiks(c13 + cs5) + K3es5
W; =W; = Kicse + kiks(c36 + ca5) + Kicss Kices + 2kikscas + K3cas
sym IGess + 2kikscas + k3cas

kicig +kacse  kicio +kscos  kicia + k3C45] (3.10)

Wy = [k1C66 +kacag  kicoe +kacoa  kicas +kacas
kicse +kscze  kicas +kacas  kicas + kacaq

¢ Co6 C26 C46

W3 = W3 = €22 Co4

sym Ca4

As demonstrated in Appendix A from Ref. [260], the complete displacement field (3.7) is written
as follows
_ 1 27tk - r > « 27Tptxy o w \I27TpSXy 0
u(x) =uo+ D.x+ Re izﬂ}{;()e agl/\e a* + "e a’, (3.11)

where the eigenvalues p* and eigenvectors a* are calculated by solving the sextic algebraic equa-
tion of the Stroh formalism [234, 235] for each material A and B. The asterisk indicates complex
conjugates of solutions with positive imaginary parts, i.e. p*™3 = p* and a**3 = a%, indexed by
a =1, 2, 3. The complete elastic strains and stresses are also deduced from eq. (3.11) by

E(x) ={D(x)} =  (grad u (x) + grad u* (x)) (3.12)

c(x)=C:E(x), ‘
respectively. Equation (3.12a) gives the strain-displacement relationship, where {D (x)} denotes
the symmetric component of the distortion field, while eq. (3.12b) is the Hooke’s law for small
strains that determines the stress field. The general solutions of elastic fields of egs. (3.11—-3.12)
are expressed as linear combinations of the eigenfunctions given by eq. (3.76), and include A*
and " as complex unknown quantities that are to be determined by the boundary conditions, as
follows.

Boundary condition 1: Convergence of far-field solutions

In accordance with Saint Venant’s principle, the convergence of the Fourier amplitudes u* (x,)
when x, — +oc0 leads to the requirement that ,¢* = 0 and sA* = 0. This condition applies to
infinite bicrystals and would not be appropriate for bicrystals terminated with free-surfaces.

Boundary condition 2: Absence of far-field strains

The elimination of the coherency strains E. by the far-field strains of the interface Volterra dislo-
cations EJ is taken into account by requiring the total elastic strain field E to decay to zero when
Xy — oo, ie.

lei)rilooE (x) =E* =E.+Ej, =0, (3.13)
where E. = {D.} and E3}, = {Dg,} is the far-field strain produced by the interface dislocations.
Equation (3.13) is equivalent to egs. (3.1) expressed using strains rather than stresses. As detailed
in Appendix B from Ref. [260], the far-field distortions, calculated individually for each set of
dislocations, i = 1 and 2, and then superposed, are given as follows

2 3
D3, = —sgn(xz) Re Y d7 'Y A'GH+[IGL. (3.14)

i=1 a=1
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Here, (4 = {5 = 0 and sA{ = A5 = 0 for the reasons described in boundary condition 1.
Superimposed bars are used to indicate quantities related to the far-field boundary conditions,
while the complex constants ,A% and ,{% are determined by solving a specific system of equations,
as described in Ref. [260].

Boundary condition 3: Disregistry due to interface Volterra dislocations

Disregistry is the discontinuity of displacements across an interface [7], expressed in terms of the
relative displacements between neighboring atomic planes. Each dislocation produces a stepwise
change in disregistry at its core with magnitude equals its Burgers vector. The disregistry at xo = 0
of a network of two sets of dislocations may be represented by the staircase functions

cscop x x3 — ct X
Au(x1, x3) = au (x1, x3) — (X1, X3) = —by {’ p(l;] 1—‘ — by [3 ‘pé%"l’ 1—‘ , (3.15)
1 2

as illustrated in Fig. (3.3), where only one set has been displayed for clarity, for which the complete
displacement discontinuity at the interface can therefore be expressed as

Au(x1, x3) = Augg (X1, x3) + Augss (X1, X3) - (3.16)

The left-hand side of eq. (3.16) gives the relative displacement field A u,¢ at the interface generated
by the uniform macroscopic distortions ,D. and D in the affine form

Auaff (Xl, X3) = Auy+ [[(ADC - BDC) x]]xZ:() ’ (317)

where Auy = —3 (b1 + by) is chosen, without loss of generality. As shown in Fig. (3.3), eq. (3.17)
may be interpreted as a continuous distribution of (fictitious) Volterra dislocations with infinitesi-
mal Burgers vectors and spacing [30, 195].

The right-hand side of eq. (3.16) is the displacement discontinuity A ug4;s produced by equilib-
rium interface dislocations in the natural state, shown as A in Fig. (3.1). According to egs. (3.7)
and (3.11), the quantity A ug;s is given in Ref. [260]

1

) 3
e DG DPVUV AV (3.18)

k#0 a=1

Augis (x1, x3) =

which may be represented by sawtooth functions [87, 34, 90], as illustrated in Fig. (3.3). Using the
Fourier sine series analysis and superposing the sawtooth-shaped functions associated with the
two sets of dislocations, eq. (3.18) can be expressed as

Augis (x1, x3) = ) — Lgin Znnw+ Y _ 2 gin znmw '
iz nm I F21 (3.19)

set 1 set 2

Thus, the boundary condition in eq. (3.19) for equilibrium interface dislocations, combined with
eg. (3.18), leads a set of 6 linear equations:

3
Re Z A)\aAaD‘ — BCD‘Bai‘ =17

T ! (3.20)

Im Z A/\aAll“ - Bg“Blli‘ = 0,

a=1
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where Im stands for the imaginary part of a complex quantity and ¢ is given by

b
—;1 if m=0 (n>1)
012 in=o (> 1) (3.21)
0 if nm#0 (n,m>1).
Boundary condition 4: No net tractions along the interfaces
The solution must satisfy the traction-free boundary condition along the interfaces:
A0 (x1,0,x3)n =50 (x1,0, x3) 1, (3.22)

where o (x1, 0, x3) is reduced to the short-range stress field produced by the interface equilibrium
dislocations when eqgs. (3.1) are satisfied. In that case, the tractions at the interface read

‘ 3
o (x1,0, x3)n=sgn(x2) Y ™" Y A'K* + "R, (3.23)
k#0 a=1

where the subsidiary complex vectors h* are related to the vectors a* by
K = (WS +p* Wa) a®* = —p* | (Wy + p* Wa) a®, (3.24)

with hf = Hj,. Boundary condition in eq. (3.22) together with eq. (3.23) leads the additional
system of 6 linear equations:

3
Re Z A/\O‘Ah“ - Bgthi‘ =0
Yo ! (3.25)
Im Z A/\DéAhDL - BélXBhi‘ =0.
a=1

The two latter conditions 3. and 4. may be rewritten in a eigenvalue problem for equilib-
rium interface dislocation arrays. Indeed, the elastic fields of these dislocations in an anisotropic
bicrystal free of far-field strains are given in terms of the 12 eigenvalues Eval and 12 corresponding
eigenvectors Evec witha =1, 2, 3, i.e.

Eval = {Re ,p", Im ,p*, Re ,p*, Im p" }

B Y e ia (3.26)
EVEC—{Aa , BA ,Ah /Bh }.

All these quantities are determined by solving a 6-dimensional eigenvalue problem that may be
recast with the aid of egs. (3.24) into the form

N|Y | 307
w| =P e (3.27)

where the real nonsymmetric 6 X 6 matrices IN depend on the wavevectors and the stiffness con-
stants for crystals A and B through the W matrices given by egs. (3.10), i.e.

—W5; ! W w;!
N:[ ;W ; ]

1t 4 (3.28)
Wi +Wr W W, —W, W,
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FIGURE 3.3: The disregistry Au due to interface Volterra dislocations is a staircase function. It may be de-

composed into an affine part A 1,4 generated by a uniform distortion (represented by a continuous distribu-

tion of fictitious infinitesimal dislocations) and a sawtooth function A uy; associated with the equilibrium
interface dislocations in the natural state.

Properties Materials

Symbol  Unit Cu Nb Fe Al Ni
a A 3615 3301 2866 4.050 3.524
ci1 GPa || 1684 246.0 2420 1082 246.5
cip GPa || 1214 1340 1465 613 1473

cae  GPa 754 287 112.0 285 1247

TABLE 3.1: Material properties for copper, niobium, iron, aluminium, and nickel. The values of lattice
parameters a for all materials are those listed by Gray [104] and elastic components c11, ¢12, and cg4 by
Hirth and Lothe [7].

Finally, the linear systems X; and X, are solved numerically to determine the 12 real constants
Ecst, i.e.
Ecst = { Re aA%, ImaA%, Re;¢%, Im ,* }, (3.29)

completing the solutions of the elastic fields.

3.2.6 Interface elastic strain energy

Using the divergence theorem, the elastic strain energy <. of equilibrium interface dislocation ar-
rays may be expressed as a surface integral over a unit cell A of the interface dislocation network,
ie.

1
Ye (10) = A //A(ro) o (x1,0, x3)n- Augs (x1, x3) dS, (3.30)

where o (x1, 0, x3) n is the total traction vector produced at the interface of interest. Stress fields at
dislocation cores diverge, so regions near the cores must be excluded from the integral in eq. (3.30).
Following standard practice [7], the domain of integration is limited to parts of the interface unit
cell that are not within a pre-determined cutoff distance 7, of the dislocation cores.

3.3 Symmetric example applications

The model described in the forgoing sections is applied to simple example interfaces: symmetric
tilt and twist GBs as well as a pure misfit heterophase interface. The materials properties used in
these examples are listed in Table 3.1.
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3.3.1 Pure tilt grain boundary

Tilt boundaries that contain one set of interfacial dislocations have been discussed extensively
[237]. To illustrate and validate the present method, a symmetrical tilt boundary with [001] tilt
axis and tilt angle 6 = 2° is analyzed in detail. The calculations are carried out for Cu, which has
a moderately high anisotropy ratio, Ac, = 2c44/(c11 — ¢12) = 3.21. The boundary consists of one
set of straight parallel dislocations with Burgers vector content B, expressed as

_ (nx¢ ~ (p-1 1Y 4 — 7o
B—( . .p>b_(R+ —RZI) p=2sinf/2 px w. (3.31)

Here, the "median lattice" is used as the obvious reference state: the mapping matrices F have been
replaced by rotation matrices R, with R representing a rotation of the upper crystal by angle 6, =
/2 about the tilt axis and R_ the rotation 6 = —0/2 of the adjacent lower crystal. Equation (3.31)
is known as Frank’s formula [91, 48], which gives the density of interface dislocations needed to
create the tilt boundary. Selecting b = ac, [010] || n, eq. (3.31) shows that { = [001] and d =
10.3567 nm.

As expected, the far-field stresses vanish for this choice of reference lattice, and only non-
zero stresses are short-ranged. Figure (3.4) plots interface stresses as a function of x; and x, (the
stresses are invariant along the dislocation line direction, x3). The red contour illustrates where the
stresses fall to zero when |x;| > 7 — 10 nm (depending on the stress components), showing that
their range is comparable to the dislocation spacing. The far-field rotations may be calculated from
the antisymmetric part of the far-field distortions, i.e. Q% =}Dg {. They satisfy OF — Q* =T
and yield a net non-vanishing rotation about the tilt axis, as excepted [180, 121]:

0 0 0 X1 X b
=0, 0" =— 0 =0 (3.32)
0.03490

The disregistry Auy and the displacement discontinuity A u; qis associated with the Volterra and
equilibrium tilt boundary dislocations are plotted in Fig. (3.5a). They are in good quantitative
agreement with the applied boundary conditions, represented by staircase and sawtooth curves.

The average elastic energy per unit interface area 7. is determined for several values of the
core cutoff parameter ry. Following eq. (3.30), 7. may be written as

1 d—rg
Ye (r0) = 2dl o2 (x1, 0, 0) Aupgis (x1, 0) dxq. (3.33)
0

w

The variation of stress component o2, at xo = 0 with x; is plotted as a black line in Fig. (3.5b). The
core region is shaded in grey. Local contributions to the interface elastic energy W (values of the
integrand in eq. (3.33)) are plotted in red. The average elastic energy per unit interface area will
depend on the choice of ry. For example, y. = 142.8 mJ].m~2 with 7y = b/2 and 7. = 167.8 mJ.m—2
with vy = b/3, where b is the magnitude of b. An appropriate r( value is selected by comparing the
interface elastic energies computed with the present dislocation-based method to experimentally
measured energies of small angle [001] tilt boundaries [102], plotted as solid triangles in Fig. (3.6).
The calculations using 7y = b/2 are in good agreement with the experiments up to ~ 5° while
ro = b/3 fits better in the range of ~ 5 — 12°. The classical energy per unit area given by Read and
Shockley [213], Egs (/) = 1450 6 (—3 — In 6) mJ.m~2, is also shown in Fig. (3.6). It compares well
with the calculations for ro = b/3.
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FIGURE 3.4: Contour plots of stress components (a) 071 and (b) 0, for the 2° symmetric tilt boundary

described in the text. The negative values (compression) are plotted in light grey, and the positive values

(extension) in dark grey. The stresses decay away over distances comparable to the interface dislocation
spacing. In red, the stress field values are equal to zero.

3.3.2 Twist grain boundary

As shown in Fig. (3.7a), small-angle (010) twist GBs contain two sets of dislocations, so their
dislocation content B is expressed as

B— <";<1§1 .,,) byt <" :252 .p> b= (R —R)p. (3.34)

The twist boundaries of angle 6 = 2° is considered in Cu, where the rotation axis is perpendicular
to the boundary, w = x, = [010]. As in the case of the tilt boundary, the obvious reference state
for twist boundaries is the "median lattice" suggested by Frank [92]. In this state, the total rotation
across the boundary is equally partitioned between the two grains. However, to illustrate the im-
portance of selecting the correct reference state, other possible reference states are considered. A
common choice is to use of the adjacent crystal grains as the reference state. There is a continuum
of other possible reference states between these two extremes, and the angle 6. = —x 6 is intro-
duced to define the rotation of the reference state from the case where the upper crystal above
the boundary has been chosen as the reference lattice. Here, x is a dimensionless parameter that
varies from 0 to 1. Equipartitioning of rotations between the adjacent crystals (i.e. the "median
lattice") occurs when x = 1/2.

Section 3.2.3 demonstrated that interface dislocation geometry is independent of reference
state. In this example, the twist boundary contains an orthogonal grid of dislocations with line
directions & = 1/+/2[101] and & = 1/+/2[101]. The spacings between successive parallel dis-
locations are dy = d, = d = 7.3233 nm. Because of the pure twist misorientations, the coherency
stress fields are zero for all possible reference states. Figure (3.7b) plots the dependence of non-
vanishing far-field stress components on «. If a reference state with ¥ = 0 is chosen, then the in-
terface dislocations deviate by 1° from pure screw character and possess non-zero far-field stress
components 07y, = 033, and 07} _ = 033 _. This demonstrates that ¥ = 0 does not represent the
correct reference state since egs. (3.1) (and egs. (3.13) via eq. (3.12b)) are not satisfied. Furthermore,
the far-field rotation with ¥ = 0 does not equal 2°, but discrepancies on the order of 0.001° between
the rotation vector component and the prescribed misorientation are found. As « increases, the
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FIGURE 3.5: (a) Disregistries A u, (staircase function) and A u, ;5 (sawtooth function) computed using 100
harmonics for the 2° symmetric tilt boundary described in the text. (b) Stress distribution o3, and local
elastic energy density 7. at the GB.

far-field stresses decrease and eventually reach zero at x = 1/2, as expected. The interface dislo-
cations have perfect screw characters for this reference state, where non-zero far-field stresses are
again obtained when « is increased beyond x = 1/2.

Taking ¥ = 1/2, the elastic strain energy per unit area 7. is calculated for the twist GB using
the expression:

1 d—rg
Ye (10) = A // (W(l) + W) + W(1_2)) dxy dxs, (3.35)
To
with A = |p$ x p9| the area of the interface unit cell. Equation (3.35) is decomposed into self-

energy densities W(;) and Wy for each set of parallel dislocations and the interaction energy den-
sity W(1_») between the two sets. These energies are obtained from the separate elasticity solutions
for each set of dislocations:

Wy + Wiy = 0231y (%1, 0, 0) Auzgisay(x1, 0) + 0122 (0, 0, x3) A1 4is2) (0, X3) (336)
Wa—2) = 0231)(x1, 0, 0) Att14is2) (0, x3) + 012(2)(0, 0, x3) Auzgis)(x1, 0).

The local self- and interaction energies are shown in Figs. (3.8a) and (b), respectively. The integral
of the interaction energy W,_,) over area A is zero for any value 7, in agreement with the classical
dislocation theory result that orthogonal screw dislocations do not exert any forces on each other
[7]. The total elastic energy is plotted in Fig. (3.9) as a function of the twist angle up to 12° for three
core cutoff parameters: ro = b1 /2,1y = b1 /3, and o = by /4.

3.3.3 Pure misfit interface

Lastly, the model is illustrated on an Al/Ni heterophase interface. The terminal planes of both
adjacent crystals are fcc (010) planes. The [100] and [001] directions of both crystals are parallel in
the interface plane. Thus, the interface is in the cube-on-cube orientation and contains two sets of
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FIGURE 3.7: (a) Small-angle twist GB on a (010) plane containing two sets of orthogonal dislocations. (b)
Dependence of far-field stresses on « for the 2° twist boundary described in the text.

parallel dislocations. Following eq. (3.2), the Burgers vector content B is written as

B = (n ;161 -P) b; + (n ;zgz -P) by = (Alsil(rAl) - Nisil(rNi)) P- (3.37)
T

The reference state for this interface is a crystal oriented identically to the Al and Ni in their
natural state, but strained such that its lattice constant in the interface plane is a., with ay; < a. <
a,. Only strains within the interface are necessary to ensure coherency: normal strains are not
required. Thus, the matrix T in eq. (3.37) is composed of two equibiaxial stretch matrices (no
rotations), AST = alEc + T and NiS_1 = niEc + I, where I represents the identity matrix. These
mapping matrices depend on the ratios of lattice parameters between Al and Ni in their natural
and reference states, 7y = a5 /4. > 1 and ry = a4y /ac < 1. The matrix T in eq. (3.37) may also be
rewritten as the difference between the coherency strains prescribed in Al and Ni:

AIEC - NiEC =T. (3-38)

Following the procedure described in section 3.2.4, Ni is initially chosen as the reference lattice, so
that 7y = a, /an and ry = 1, and identify b1 = an/V?2 [101] and by = an/V?2 [101]. Then, using
eq. (3.3), an interface that consists of an orthogonal grid of edge dislocations with & = 1/+/2[101]
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and & = 1/+/2[101] is found, and the corresponding dislocation spacings d; = d» = 1.902 nm.
Using this choice of reference state, the far-field strains produced by the interface dislocations
are:

0.10133 0 0 —0.03243 0 0
AES =] 0 00 , and, vES, =] O 0 0 , (339
0 0 0.10133 0 0 —0.03243

such that the matrices in egs. (3.39) satisfy
— (nE3s —nEg) =T (3.40)
Combining egs. (3.38) and (3.40), it follows
—0.03243 0 O

AIEC + AlEslois — NiEC +NiEz]ojs — O 0 0 ?é 0 ( == A]EOO — NiEOO ) 7 (341)
=0 0 0 —0.03243
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interface. The red dotted line gives the unique reference state, for which the far-field decay to zero and

the coherent parameter a. is defined. The lattice parameter 4 = 2a, ayn; / (a1 + an;), which is a good ap-

proximation for an interface between crystals of different lattice parameters but identical elastic constants
[93, 131], is marked by a grey cross symbol.

with \;Ec = 0 here, because Ni has been chosen as the reference lattice. However, according to
eq. (3.41b), condition 2. given by eq. (3.13) is not satisfied since the total far-field strains in each
individual material do not decay to zero when x, — +co. This demonstrates that the initial choice
of reference state is not correct.
To find the correct reference state, a variable §, with 0 < § < 1 that interpolates a. between a,
and ay; is introduced as follows
ac =0y + (1 —90)ay. (3.42)

It is shown that the far-field strains in Al and Ni are equal for all §, so that eq. (3.41a) is always
satisfied, i.e. 5\E® = GE with Ec = 0if § = 0, and 5E. = 0if § = 1. However, only one
unique reference state (corresponding to an unique value of J) gives vanishing far-field strains in
the bicrystal in its natural state by satisfying eq. (3.13) as well. The pure misfit interface example
serves to show that eq. (3.41a) is a necessary, but not sufficient condition for determining the
reference state.

The total far-field strain component 4 E7] in Al is plotted in Fig. (3.10) as a function of é and is
identical to the component 4 E33, according to the interface symmetry (all other strain components
are zero). Because eq. (3.41a) is verified for all J, the same components in Ni give the same plot
as in Fig. (3.10). The far-field strains vary linearly with § and become zero when § = 0.21787, so
that a. = 0.36386 nm. This value of a. is the unique coherent reference state for which the pure
misfit Al/Ni interface of interest is consistent with the Frank-Bilby equation. It is closer to ay; than
to a, because Ni is the stiffer of these two materials and so carries a lower coherency strain in the
reference state. The far-field rotations are zero for all values of ¢, as excepted.

To demonstrate the errors that come about from ignoring the unequal partitioning of elastic
fields and to validate the current calculation, 4. is recomputed under the assumption that both
sides of the interface have the same stiffness (equal to that of Al or Ni), but different natural
lattice parameters (a, and ay;, as the original calculation). For this case, the calculated value for
ac is in very good agreement with the well-known approximate result @ = 2a, ay; / (aa + i) =
0.37687 nm [93, 131], corresponding to § = 0.46521. This value, however, is far from the correct
lattice parameter of the reference state when the differing stiffnesses of Al and Ni are taken into
account, as illustrated by cross symbols in Fig. (3.10). It is also shown that 7 deviates from the
prediction and is not consistent with the Frank-Bilby equation when the heterogeneous distortions
of bicrystals are explicitly described at equilibrium.
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natural state and its corresponding path with closure failure B in the reference state.

3.4 Partitioning of elastic distortions at fcc/bec interfaces

In this section, the study is focused on semicoherent heterophase interfaces comprised of two
sets of dislocations and formed along closest-packed planes in fcc/bcc bimetals, especially for
fce{111} /bec{110} (Cu/Nb, Ag/V, and Cu/Mo) interfaces in the Nishiyama-Wassermann (NW)
orientation relations (OR) [279, 192] as well as in ORs that differ from the NW by an in-plane
twist rotation. It is showed that elastic distortions, i.e. strains as well as tilt and twist rotations,
are in general unequally partitioned at such interfaces. The correct partitioning of these fields
determines the coherent reference state for which the bicrystal of interest is free of far-field strains.
Using these results, the stress fields generated by misfit dislocation patterns are computed and
analyzed for the Cu/Nb system in the NW and Kurdjumov-Sachs (KS) [154] ORs. The dislocation
structure (i.e. the Burgers vectors, spacings, and line directions) is also determined in lowest strain
energy solutions of the Frank-Bilby equation along a specific transformation pathway between the
NW and KS ORs.

Similarly to Fig. (3.1), the concept of reference and natural states of an interface is depicted
in Fig. (3.11). The natural state contains an interface formed by joining two crystals with pre-
scribed misorientation and interface planes as well as vanishing far-field strains. This state is also
related to a single crystal, coherent reference state by uniform displacement gradients ,F = ¢F
and sF = .F, which map the reference state to the natural state, as shown in Fig. (3.11a). In the
reference state, the two adjacent materials that meet at the interface are rotated and strained such
that they are in perfect registry with each other across the X — Z interface plane after bonding. In
general, these displacement gradients entail interface misorientations that have both tilt and twist
components [7, 237, 123]. Again, the interface along the & — £ plane is not coherent in the natural
state, but rather semicoherent due to the presence of misfit dislocations.

The atomically sharp fcc{111} /bcc{110} interfaces in NW and in-plane twisted-NW ORs con-
tain two periodic arrays of infinitely long, straight, and uniformly spaced dislocations. In the NW
OR, one of the (110) directions in a fcc {111} plane lies parallel to the (100) direction in a bcc
{110} plane [279, 192]. The in-plane twisted-NW ORs considered here differ from the NW OR
only by a twist rotation of one crystal (here, the bcc material) with respect to the adjacent (fcc)
crystal about the axis normal to the interface. The procedure described in section 3.2.4 is adopted
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| Systems | ¢é11 (GPa) ¢1p (GPa) é44 (GPa) | a () |

Cu 178.8 122.6 81.03 3.615
Nb 245.6 133.7 28.8 3.3008
Ag 124.2 93.9 46.1 4.090
\Y% 220.15 130.7 42.8 3.039
Cu 187.8 125.7 70.6 3.615
Mo 545.9 219.3 108.8 3.147

TABLE 3.2: Material properties for copper (Cu), niobium (Nb), silver (Ag), vanadium (V), and molybdenum
(Mo). The values of stiffness constants ¢11, €12, €44, and lattice parameters a for all materials are those listed
in Ref. [258].

to determine the unique reference states that meet the condition of vanishing far-field strains and
prescribed misorientation for such interfaces. Thus, the dislocation content B of an interface, in-
tersected by a probe vector p contained within the interface plane as illustrated in Fig. (3.11b), is
described by the Frank-Bilby equation in eq. (3.2). For interfaces in the NW OR, a transformation
pathway is defined by continuously adjusting the reference state from the strain-free state of the
fcc crystal present at the interface to that of the adjacent bce crystal. For all reference states along
this path, the method described in section 3.2 is used to compute the superposition of the uniform
coherency strains, E., needed to maintain perfect registry and the far-field strain fields produced
by the Volterra dislocation arrays, E3;.. In the correct reference state, these quantities cancel and
the total far-field strain field E vanishes in both upper fcc (i > 0) and lower bec (7 < 0) materials,
as defined by egs. (3.13), as

lim E(%7,2) =0

CCEOO - CCE + CCEO? - 0
{f feeme T feedis (3.43)
Q—H:oo

bccEOO = bccEC + bccESﬁS =0,

for which the far-field rotation state in the NW OR is consistent with the given crystallographic
character (interface plane and misorientation).

To find the reference state for interfaces differing from those in the NW ORs by an in-plane
twist angle 6, a second pathway is defined by rotating the previously determined reference state in
the NW OR from 0 to 6. Along this second path, the rotated reference state, for which egs. (3.43) are
satisfied, also yields far-field rotations that must be consistent with the in-plane prescribed twist
misorientations. Using the correct reference states for all ORs, the short-range interface strains
and stresses that arise from the incomplete cancellation of the coherency and Volterra dislocation
fields near the interfaces are also computed as well as the interface elastic energy . from eq. (3.30)
as a surface integral over a unit cell. The domain of integration is related to a pre-determined
cutoff distance ry of the dislocation cores to determine the likeliest interface misfit dislocation
configurations whenever the Frank-Bilby equation (eq. (3.2)) admits multiple solutions.

In this section, a detailed discussion of partitioning of distortions at Cu/Nb interfaces is pre-
sented, while analogous results for Ag/V and Cu/Mo interfaces are shown, albeit without going
into detail. The material properties (elastic constants and lattice parameters) used in all calcula-
tions for these three interface types are listed in Table 3.2.

3.41 Mapping between states in the Nishiyama-Wassermann orientations

Without loss of generality, the following specific relation is used among 12 possible equivalent
variants of the NW OR [106] to construct the mapping from the fcc to the bec crystal:

2 e = [112] || %pee = [010],
NW: n || g || yfcc = [111]fcc H ybcc = [Oll]bcc (344)
£ || zee = [110], || Zoee = [100], -
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Dislocation structures in NW Cu/Nb
* solutions by selecting the fcc Burgers vectors

Cases dy(nm) dpy(nm) | ¢° ¢1° ¢ °
cl:{b%, b5} | 11234 11234 | 1503 | 3751 3751
2:{bl, b5} | 42953  1.1234 | 82.49 | 60.00 82.49
3:{b5, b} | 42953  1.1234 | 82.49 | 60.00 82.49

* solutions by selecting the proper reference Burgers vectors

Cases | di(m) dy(am) | ¢° | ¢1°  2°
cl: {by, b5} | 11234 11234 | 15.03 | 39.62  39.62
c2:{by', by} | 42953 1.1234 | 8249 | 57.89 8249
3:{by, by} | 42953 1.1234 | 8249 | 57.89 8249

TABLE 3.3: Dislocation spacings d;, angle between the two sets of dislocations ¢, and characters ¢; for three
solutions, namely c1, ¢2, and ¢3, for which the fcc (here, Cu) and the proper Burgers vectors have been
selected as the reference state in NW Cu/Nb interface.

Here and in the following, the superimposed hat will indicate quantities expressed in a frame with
basis vectors, # = [100], # = [010], and 2 = [001]. A schematic representation of a Cu/Nb interface
in the NW OR is shown in Fig. (3.12a). Labeling of Burgers vectors for the other fcc/bcc systems
of interest here follows the same pattern as shown for NW Cu/Nb in Figs. (3.12a) and (b).

If the fcc Cu material is used as the reference state, then three trial Burgers vectors may be
selected in the interface plane:

bl = % [101] , b5 = % [011] , and, b5 = % [110] . (3.45)

The transformation matrix Ty,—sc, that represents the transformation of the bcc Nb material to the
fcc Cu material may be written as

Tawoca = I —F2l, ., (3.46)

where I is the identity matrix and F,—x, —the mapping that transforms the fcc Cu to the bec Nb
crystal—is written in the fcc reference system (x¢., ¥, Z:wc) as:

1.281998 —0.009298 0.109180
—0.009298  1.281998 0.109180 | . (3.47)
—0.154404 —0.154404 0.899935

FCu%Nb -

For this interface, the Frank-Bilby equation has three different solutions, namely c1, which uses
the pair {b[*, b5}, ¢2 with {b*, b5}, and ¢3 with {b5°, b5 }. Due to the crystal symmetry along 2
in the NW OR, which exhibits the p2/m11 layer space group, two of the three solutions (c2 and
c3) are mirror images. Analysis of dislocation structures for all three cases are given in Table 3.3,
with ¢ the angle between the two sets of dislocations and ¢; their individual characters. The
dislocation line directions and spacings are schematically depicted in Fig. (3.12c), where the filled
circles represent the O-lattice points [32, 237].

If the bee Nb lattice is used as the reference state, then corresponding expressions for Fy,—c,
and T¢,—n, may also be obtained. In this case, Burgers vectors are equivalently expressed in the
bce crystal structure and the same dislocation geometries are found. Neither the fcc nor the bec
reference states satisfy the condition of vanishing far-field strains and stresses [123, 260] because
neither accounts for the required partitioning of strains and rotations between the adjacent crystals
[119].

There is a continuum of other possible reference states between these two extreme cases. To
find the correct reference state, a dimensionless variable ¢ that interpolates linearly between the
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FIGURE 3.12: (a) Representation of the NW OR between fcc {111} (blue atoms) and bec {110} (red atoms)
close packed planes in Cu/Nb interfaces. (b) The reference state is depicted by the dashed black polyhe-
dron, within which the Burgers vectors (corresponding to the sides of each polyhedron) are defined. The
difference between the positions of the fcc and bcc atoms have been exaggerated for clarity. (c) Schematic
illustrations of two admissible dislocation structures (solutions c1 and c2) with O-lattice points (black cir-
cles) and the local elastic energy densities stored in a representative unit cell of the dislocation patterns.
The colors of the dislocations are associated with the Burgers vectors that are colored in (b). Contour values
(from the center of the patterns to the dislocation lines): {0,0.2,0.6,1.2,2.0,3.2,5.2} Jm~2.

pure Cu and Nb materials is introduced as follows

(3.48)

wF = (1_(5)I+5FNb—>Cu

Foré =0,T = Txpwcwand for 6 = 1, T = Te,—ne. Along the transformation pathway characterized
by 4, the elastic distortions (strain and rotation fields) in the NW ORs can also be computed.

3.4.2 Far-field strains and rotations

As shown in Refs. [126, 123, 260], and illustrated in Fig. (3.11b) the natural state of semi-infinite
bicrystals is homogeneously transformed into a reference state by biaxial distortions parallel to
the plane with normal n || ), so that the removal of the strains &2 = *, with j =1,2,3 [126, 123].
Thus, only six components (three for strains and three for rotations) of the distortion matrices are
needed to meet the condition of vanishing total far-field strains and prescribed misorientations.

In the linear-elastic approximation, the distortion matrices D may also be separated into sym-
metric E and antisymmetric €} parts:

€1 * é3 0 -1 @13
D= * ok %k + @12 0 —Wn3 . (3.49)
€13 * é&33 —w1i3 w3 0
B o)

The coherency strain fields E. on both sides of the interface are given by

cufe = sym wF1—1, and, E. = sym wF =1, (3.50)
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Cu/Nb, Ag/V and Cu/Mo heterophase interfaces. The vertical dotted line shows the J under the assump-
tion that both materials at the interface have the same stiffness.

where ,F~! and ,F~! are obtained from egs. (3.48). Superposing the elastic strains produced by
the interface dislocations in Cu and Nb, i.e. ,E3  and \wEg;,, the total far-field strain state in the
entire bicrystal may be calculated [260].

Figure (3.13) shows the total strain component .55 in Cu as a function of ¢ (black line). This
strain vanishes, i.e. c,é55 = 0, for dc,np = 0.429103. All other elastic components are consistent
with the absence of strains in the far-field and the total far-field strain in Nb vanishes at the same
6 as in Cu. Thus, the reference state is closer to Cu than to Nb, i.e. dcu/np < 0.5. This result cannot
be easily predicted from inspection of the stiffness constants alone (see Table 3.2). Figure (3.13)
also shows that d,,,v = 0.623359 and dc,/mo = 0.701109, i.e. the reference state is closer to the bcc
material (V and Mo) in both cases.

Knowing the é value at which far-field stresses vanish, the crystal structure of the reference
state is given by the uniform displacement gradients, obtained using eqs. (3.48) and (3.50):

0.022615 0.072664 0
cafe = —cuBgs = | 0.072664 0.047550 0
0 0 0.107173

0.030089 0.096675 0
— o = wBa = | 0.096675 0.063262 0
0 0.154414 0.142588

(3.51)

The Burgers vectors of the interfacial misfit dislocations are to be drawn from this reference state.
The correct reference state of the NW OR is depicted by the dashed polyhedron in Fig. (3.12b),
within which the Burgers vectors are defined by:

~ref

by = —0.226379 % — 0.141507 2 (nm)
Taw { by = —0.226379 % + 0.141507 2 (nm) (3.52)

~ref A ref ~ref
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strains tilt rotations °

6 fccé33 c bccé33 C l9fcc 19bcc
Cu/Nb | 0429103 | 0.107173 —0.142588 | —4.17 5.55

Ag/V | 0.623359 | 0.031076 —0.018777 | —6.03 3.68
Cu/Mo | 0.701109 | 0.152295 —0.064925 | —6.91 2.88

Systems

TABLE 3.4: Partitioning of strains and rotations for various fcc/bcc bicrystals.

In addition to completely accommodating the coherency strains, interface dislocations also give
rise to unequally partitioned rotation fields, given in the case of Cu/Nb in the NW OR by

Qi = —0.072664 (— @ § + § ® &) (353)
wOiis = —0.096675 (R @) — D &) , '
yielding a net non-vanishing rotation vector, i.e.
W = cu@® — @™ = (—0.072664 — 0.096675) 2 = —0.169339 2, (3.54)

about the 2 tilt axis. The unequal partition of far-field rotations given by egs. (3.53) shows that,
to achieve the NW OR, the upper material in the reference state must be rotated by a rigid-body
rotation through a tilt angle 8, ~ —4.17° about the tilt axis 2 || z,. = [110],_ to the Cu material in
the natural state. In addition, the lower material must be rotated through a tilt angle ¢y, ~ 5.55°
about the tilt axis 2 || z,.. = [100],. to form the Nb material. Thus, the net rotation angle is
~ 9.72° about £, as discussed in Ref. [106]. This result can be shown by computing the polar
decomposition of eq. (3.47) such that Fe, .\, = R(~ 9.72°,[110], ) - B, i.e.

fec

0.992799 —0.007201 0.119573 1.291296 0 0
R= | —0007201 0992799 0.119573 | , and, B = 0 1.291296 01,
—0.119573 —0.119573 0.985599 0 0 0.913084
(3.55)

with By = By = v2/A, Bss = 1/A and the lattice parameter ratio A = ac,/an. In egs. (3.55),
the matrix R corresponds to a rigid-body rotation matrix of angle ~ 9.72° about [110], . and B is
the Bain strain matrix [16, 295]. The compression axis for the Bain strain is [110], _ || 2, because
Bz < 1.

Table 3.4 summarizes the main results of unequal partitioning of elastic strains and tilt rota-
tions between the adjacent materials of Cu/Nb, Ag/V and Cu/Mo systems in the NW OR.

3.4.3 Spurious fields from incorrect reference states

Asindicated in Table 3.3, the correct dislocation Burgers vectors for the Cu/Nb interface in the NW
OR differ from what they would have been had the fcc crystal (Cu) been selected as the coherent
reference state. Their directions differ by ~ 2.11°, which affect the character of the interface dis-
locations. The magnitudes of the Burgers vectors in the fcc crystal and the correct reference state
also differ, with [bi| : [bf"| = 0.90. The consequences of these deviations in character and mag-
nitude may be seen in Fig. (3.14): a residual stress state in Cu persists with ¢, 033 = —20.01 GPa,
corresponding to a residual strain state ,é55 = —0.10, as shown in Fig. (3.13). A residual stress
field exists in Nb as well, with \,0335 = 16.67 GPa. Figure (3.14) illustrates the variations of the
spurious stress field component ¢33 in the neighboring materials as a function of . This elastic
field arises when an incorrect reference state is selected.

To emphasize the need for accounting for the unequal partitioning of elastic distortions, the
coherency strain matrices is recomputed under the assumption that both sides of the interface
have the same stiffness (i.e. homogeneous elasticity problem), equal to that of Cu, but with their
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FIGURE 3.14: Dependence of the total far-field stress component ¢33 on J in the fcc and bee materials for
the Cu/Nb, Ag/V and Cu/Mo interfaces.

natural (unequal) lattice parameters, as in the original calculation for the Cu/Nb interface. The
results are in agreement with the well-known approximate calculation for equally partitioned
strains due to simple geometrical considerations [123], i.e.

0.026451 0.085660 0

aiso aiso

cuBe = —E. = | 0.085660 0.055845 0 , (3.56)
0 0 0.127132
with &5, = wésy. = (A — ac,/ V2)/(awy + aca/+/2) and a net rotation vector @™ = —2 x

0.085660 %, corresponding to equipartitioning of rotations with tilt angles —9¢, = t, ~ 4.91°.

In the nomenclature given by egs. (3.48), the homogeneous anisotropic (or isotropic) case is
associated with § = 0.5, as depicted by the vertical dotted lines in Figs. (3.13) and (3.14). The ver-
tical dotted line in Fig. (3.14) shows a (non-zero) excess far-field stress state with 043 = 3.69 GPa
in Cu and \,033 = —3.09 GPa in Nb in the NW Cu/Nb interface or ¢,055 = —7.36 GPa and
Mo0a5 = 19.08 GPa in the NW Cu/Mo interface. Thus, even if the choice of equipartitioning of
strains and (tilt) rotations is better than selecting the fcc material as the reference state, a spurious
far-field stress field still remains. As a consequence, the associated dislocation structures for the
homogeneous anisotropic (or isotropic) elasticity case of the Cu/Nb bicrystal are designated as
non-equilibrium structures.

3.4.4 Orientations differing from the Nishiyama-Wassermann relations

Another commonly studied misorientation of interfaces between close-packed planes of neigh-
boring {111} fcc and {110} bec solids is the KS OR [154]. In the KS OR, one of the (110) directions
in a fcc {111} plane lies parallel to one of the (111) directions in a bec {110} plane. A schematic
representation of a Cu/Nb interface in the KS OR is shown in Fig. (3.15a), where the bcc atoms
have been rotated by 5.26° from their positions in the NW OR. The geometrical characteristics
(line directions and spacings) of dislocation structures in the KS OR for the three cases are given
in Table 3.5 and depicted in Fig. (3.15¢).

To treat the KS OR and other ORs related to the NW by an in-plane twist, the rigid-body
rotation matrix R (0) that rotates all bcc atoms in the natural state is introduced with respect to the
fixed fcc atoms by angle 6 about the interface normal n. The NW OR corresponds to 6 = 0°. The
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FIGURE 3.15: Similar illustration as in Fig. (3.12), but for a Cu/Nb interface in the KS OR. Contour values
(from the center of the patterns to the dislocation lines): {0,0.2,0.4,0.6,1.0,1.4,2.8,4.8} Jm~2.

KS OR differs from the original NW OR by a twist rotation of angle 6 ~ 5.26° about the interface
normal axis n.

To describe the relation between the natural and reference states for fcc/bcc in the in-plane
twisted ORs, (F~! and ,..F ! in eq. (3.2) are replaced by R (x ) (.Fy} and p.R (k 0) 1 Fryh, Where
k is a dimensionless parameter that varies from 0 to 1, such that R (x 6) is the rotation matrix
that continuously adjusts the reference state in the KS OR from the one determined in the NW
OR. This rotation matrix is expressed in the fcc (¥, ¥, Zi.) and bec (Yoo, Y, Zoee) Systems by
cuR (x0) and R (x 6) in the Cu/Nb bicrystal, respectively. Equipartitioning of twist between the
adjacent crystals occurs when x = 0.5 [193, 123].

The condition that determines « is that the far-field rotations produced by the interface disloca-
tions must be in accordance with the prescribed twist misorientation. The x value that satisfies this
condition for Cu/Nb in the KS OR is x = 0.570897, yielding unequal partitioning of the twist rota-
tions O, ~ 3.20° and Oy, ~ —2.06°. The correct Burgers vectors associated with this reference state
are illustrated in Fig. (3.15b). If the approximation of equipartitioning of distortions is considered,
i.e. x = 0.5, the partitioning of rotations gives rise to 6., = 6, = 2.63°, such that the dislocation
characters differ by ~ 0.57° from the results obtained with the unequally partitioned distortions.
This difference is not large because 6 ~ 5.26° is small, but the elastic (short- and long-range) fields
may be significantly affected by deviations associated with larger twist rotations [123].

3.4.5 Short-range elastic fields

Although the far-field strains vanish when the correct reference state for ORs differing from the
NW by an in-plane twist is used, the dislocation structures depicted in Figs. (3.12b) and (3.15b)
nevertheless generate non-zero short-range strains and stresses. For instance, Fig. (3.16) plots
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Dislocation structures in KS Cu/Nb
* solutions by selecting the proper reference Burgers vectors
Cases di(nm) dy(nm) | ¢° ¢1° ¢ °

~ref  ~ref

cl:{b;, by} 09073  1.2394 | 22.04 | 21.06 65.00

aref  oref

2:{by, by} | 21457 12394 | 6254 | 6157  57.02

~ref  aref

c3:{b,, by} 2.1457 09073 | 40.51 | 245 79.05

TABLE 3.5: Dislocation structures associated with Cu/Nb in the KS OR. See the caption of Table 3.3 for
definitions of notation.

stress components 01 and 02, for set 1 only and for both sets of dislocations of c1 for the Cu/Nb
interface in the NW OR, as a function of x’ (x L &;) and y (§ || n), with z = 0. Negative values
(compression) are plotted in light grey and the positive values (extension) in dark grey. The thick
black lines show the locations where the stresses are equal to zero. The fields are asymmetric due
to the material elastic anisotropy and the characters of the dislocation arrays.

Using these short-range fields at the interface, i.e. y = 0, the local self- and interaction energy
densities are computed as a function of x and z, as shown in Figs. (3.12c) and (3.15¢) for all potential
solutions predicted by the Frank-Bilby equation in the Cu/Nb NW and KS ORs, respectively. The
unique solution of the Frank-Bilby equation is predicted by integrating the strain energy densities
over each candidate solution and choosing the dislocation pattern with lowest elastic energy [258].
It is illustrated in the next section 3.4.6 that the present formalism predicts that c3 is in near perfect
quantitative agreement with atomistic simulations for § > 1°. For instance, both approaches
predict that Cu/Nb interface energy is minimized at = 2°. The insets of Fig. (3.17) illustrates a
qualitative comparison between the elasticity and atomistic calculations.

Using the minimum strain energy criterion for finding the likeliest dislocation structures,
Fig. (3.17) plots the geometrical characteristics in terms of dislocation spacings, d; (in black), and
characters, ¢; (light grey), for both sets of dislocations as a function of 6 (between the NW and KS
ORs). The geometry (i.e. dislocation spacing and character) of set 2 does not vary significantly as
a function of 6. In particular, the low spacing between misfit dislocations of set 2 is d ~ 1 nm
and is almost perfectly edge for & = 2°. On the other hand, the dislocation spacing and character
of set 1 change markedly with 6, e.g. from mixed dislocation character to almost perfectly screw
character, and the dislocation spacing decreases almost by a factor 2. Set 1 is almost perfectly
screw for 0 = 4.75°. The vertical line in Fig. (3.17) shows the lowest interface energy reported in
Ref. [258] with the corresponding geometrical characteristics, i.e. dislocation spacings and char-
acters. Surprisingly, this interface does not correspond to the interface with the largest dislocation
spacings or nearly perfectly screw dislocation characters, contrary to what may be expected based
on the theory of dislocations in uniform isotropic solids [7]. However, the approach predicts a
dislocation structure with d; = 3.5856 nm, ¢; = 24.37°, d» = 1.0426 nm, ¢, = 89.61°, which is in
agreement with the atomistic calculations [258] .

3.4.6 Comparison with atomistic simulations

The present approach to interface design is to construct a mesoscale (as opposed to atomic-level)
model that predicts misfit dislocation patterns with accuracy comparable to atomistic simulations,
but at a fraction of the cost. The model is a reduced order model because it replaces the millions of
variables associated with atomic positions with < 15 variables needed to describe misfit disloca-
tions. The misfit dislocations are viewed as Volterra dislocations that have been inserted into the
coherent reference state, suggesting that the total interface energies -y be expressed as

’)/ = ’Ye (1’0) + ryCOI'e + /)/relax + cee e (357)
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FIGURE 3.16: Contour plots of short-range stress component 031 and o, for the Cu/Nb interface in the NW

OR of c1, related to (a) the set 1, L, only and (b) both sets, L and _L, of interface dislocations. Contours

with negative values (compression) are plotted in light gray while positive values (extension) are shown in
dark gray. The thick black lines show the locations where stresses are zero.

with 7, the elastic strain energy due to misfit dislocations from eq. (3.30), ¥ core the core energy,
7 relax the energy part due to relaxations of the misfit dislocation network, and perhaps additional
terms that have not yet been recognized. For the present purposes, it is not necessary to calculate
the absolute value of v, but rather only differences in 7y between the candidate solutions of the
Frank-Bilby equation.

The outputs of the elasticity-based model are compared with atomistic calculations, which
provide an opportunity for rigorous validation of the elasticity theory of dislocations. They are
also convenient for atomistic simulations because embedded atom method potentials are available
for several fcc/bcc binaries. The elasticity-based model is validated against the interface compo-
sitions: Cu/Nb [72], Ag/V [281], Cu/Fe [174], and Cu/Mo [103]. These choices fix the elastic
constants, crystal structures, and lattice parameters of the adjoining constituents. Because atten-
tion is restricted to interfaces along fcc (111) and bee (110) planes, only one crystallographic DoF
remains to be specified: the twist angle 6 describing the relative rotation of the crystals parallel
to the interface plane. The 6 is measured with respect to the NW OR, where a bee (100) direction
is parallel to a fcc (110) direction, such that § = 71/3 — cos™!(1/+/3) ~ 5.26° yields the KS OR.
Due to the symmetry of the interface planes, all crystallographically distinct interfaces fall within
0° < 0 < 15°. However, the analysis limited to 0° < 6 < 10° because for greater twists, misfit
dislocations are too closely spaced to characterize reliably in atomic models.

For any composition and 6, the Frank-Bilby equation has three distinct candidate solutions, as
illustrated in Fig. (3.15b), which corresponds to one of three combinations of interfacial Burgers
vectors, as described in the previous sections . The first candidate, termed "case 1" (= c1), uses
Burgers vectors by and by. "Case 2" (= ¢2) and "case 3" (= ¢3) use Burgers vectors by, b3, and
by, b3, respectively. Using the elasticity-based model, 7. of all three cases is computed for each
composition and 0 of interest. For all interfaces, the atomic-scale models are also constructed
by joining cylindrical fcc and bce blocks following the required interface crystallography. The
models are large enough to contain a representative area of the misfit dislocation pattern and to
avoid elastic images from free surfaces.

Figure (3.18a) compares ‘. from the elasticity-based model with 7 from atomistic simulations
for Cu/Nb interfaces. Because the relative energies of the three cases are the key quantities for
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Dislocation spacings d, (nm)

Elasticity approach Atomistic simulation

FIGURE 3.17: Dislocation spacings and characters predicted by the Frank-Bilby equation for both sets of

dislocations in the Cu/Nb interface as a function of 8 (from the NW, i.e. 6 = 0° to the KS, i.e. 6 ~ 5.26°,

ORs). The red line corresponds to the lowest energy interface for 8 = 2°, reported in Ref. [258]. In insets:

comparison of the dislocation geometries in the minimum energy state computed by the elasticity and
atomistic approaches.

comparison, both the elasticity-based model and atomistic data are shifted so that their energy
minima occur at 0 J/m?. The elasticity-based model predicts that case 3 has lowest 7, for all §. Fur-
thermore, . for case 3 is in near perfect quantitative agreement with -y for > 1°. Figure (3.18b)
shows a similar comparison for Ag/V interfaces. Here, the elasticity-based model predicts that
case 1 has lowest 7, for all 6 outside 4.25° < 6 < 5.25°, where 7. is lowest for case 2. 7. and
are in qualitative agreement over the entire twist angle range and in quantitative agreement for
§ > 5°. As described in the Supplementary Note from Ref. [258], it is found comparable agree-
ment between the elasticity-based model and atomistic interface energies for the remaining two
compositions. Agreement between <. and v is not sufficient to validate the present formalism.
For that, it must be determined whether the lowest energy cases predicted by the elasticity-based
model match the misfit dislocation patterns in atomistic simulations. Each of the three Frank-Bilby
solutions predicts a different misfit dislocation pattern and therefore also a different disregistry.
The present goal is to compare the disregistries of all three cases with that found in atomistic sim-
ulations. The model is validated if the case with lowest 7, has the best match with the atomistic
disregistry. As shown in Figs. (3.18a) and (b), and detailed in Ref. [258], the disregistry analysis
is in agreement with the elastic predictions for all Cu/Nb and Ag/V interfaces (circle filled with
light grey) except Cu/Nb at § = 0°. The disagreement is attributed to the reconstruction of the
misfit dislocation network that is known to occur at that interface [272], which can be treated by
further extensions from section 3.6. One further case of disagreement where dislocation network
reconstruction occurs is found for Cu/Mo at 8 = 0° (see Supplementary Note). However, the
agreement between the elasticity-based model and the atomistic models is excellent, overall.
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The general approach may be compared with several ad hoc parameters proposed previously
to determine which of the cases predicted by the Frank-Bilby equation is likeliest. Bollmann sug-
gested that the likeliest case minimizes [32]

b?
1
P = Z 7 (3.58)
1 1
which is analogous to the Frank rule for predicting dislocation reactions [7]. Similarly, Ecob and
Ralph propose two parameters [82] to distinguish between cases, defined by Q and R, as follows

b

ibj
0= ]Z didj

(3.59)

bib;

, and, R:;Z didj/
]

using geometrical arguments for the energy of semicoherent interfaces. Figures (3.18c) and (d) plot

these parameters for Cu/Nb and Ag/V interfaces. Comparing with Figs. (3.18a) and (b), none of

them predicts the misfit dislocation patterns seen in atomistic models. For example, for Cu/Nb,

all three parameters favor case 2, while the true interface structure is case 3. The elasticity-based
model is therefore viewed as superior to these parameters and as validated for the purpose of
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computational design of patterned interfaces.

3.5 Application to the sink strength of semicoherent interfaces

Clean, safe, and economical nuclear energy requires new materials capable of withstanding severe
radiation damage. One way of removing radiation-induced defects is to provide a high density of
sinks, such as GBs or heterophase interfaces [227] that continually absorb defects as they are cre-
ated. This motivation underlies ongoing exploration of the radiation response of nanocomposite
materials [74, 57], due to the large total interface area per unit volume they contain. These inves-
tigations have demonstrated wide variations in sink behavior of different interfaces. Some easily
absorb defects, preventing damage in neighbouring material, but become damaged themselves
[111]. Others are poor sinks for isolated defects, but excellent sinks for defect clusters [75]. The
sink behavior of yet others changes with radiation dose [15, 14]. This wide variety of radiation
responses prompts the physicists to ask:

* Are some specific interfaces best suited to mitigate radiation damage?

* Is it possible to identify them without resorting to resource-intensive irradiation experi-
ments?

Here it is demonstrated that elastic interactions between point defects and semicoherent in-
terfaces lead to a marked enhancement in interface sink strength. The conclusions stem from
simulations that integrate first principles, object kinetic Monte Carlo, and anisotropic elasticity
calculations. Surprisingly, the enhancement in sink strength is not due primarily to increased
thermodynamic driving forces [144, 133], but rather to reduced defect migration barriers, which
induce a preferential drift of defects towards interfaces. The sink strength enhancement is highly
sensitive to the detailed character of interfacial stresses, suggesting that "super-sink" interfaces
may be designed by optimizing interface stress fields. These findings motivate a computational
search for "super-sink" interfaces: ones that optimally attract, absorb, and annihilate radiation-
induced defects.

3.5.1 Computational multi-model strategy

To answer the aforementioned questions, an improved computational method for rapidly assess-
ing the vacancy and interstitial sink strength of semicoherent interfaces is proposed. This method
builds on the interfacial dislocation-based model for elastic fields of heterophase bicrystals, pre-
viously described. Such interfaces are of particular interest because many of them contain a high
density of defect trapping sites [73, 220]. Moreover, semicoherent interfaces generate elastic fields
that interact directly with radiation-induced defects [255]. These elastic fields have an unexpect-
edly large influence on interface sink strength, as quantified by the following computational multi-
model approach.

Elastic dipole tensor calculation

Defect P-tensors are calculated using VASP [149], a plane wave-based, first principles density
functional theory code. A fcc supercell containing 256 + 1 atoms (+1 and —1 for interstitial and
vacancy, respectively) is used. Calculations are also performed LAMMPS [207] classical potential
simulations using embedded atom method potentials for Ag [88] and Cu [187] to study the conver-
gence of the elastic dipole tensors up to supercell sizes of 2048 atoms. The discrepancy in the elas-
tic P-tensor components between the 256-atom supercell and that of 2048-atom supercell is found
lower than 4%. This supercell size ensures the convergence of defect formation energies to within
few meV, as detailed in the Supplementary Note from Ref. [255]. The 256-atom density functional
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theory simulations is therefore viewed as well converged with respect to model size. A 3 x 3 x 3
shifted Monkhorst-Pack K-point grid mesh, a Hermite-Gaussian broadening of 0.25 eV [184], and
a plane wave cutoff energy of 400 eV are used. The change of the elastic dipole tensors is less
than 0.5% compared to tighter settings. The Perdew-Burke-Ernzerhof [205] exchange-correlation
functional is conveniently used within the projector-augmented-wave approach [150]. The struc-
tures are internally relaxed with a force convergence criterion of 103 eV / A. The climbing image
nudged elastic band method [117] is employed to find the saddle points for defect migration.

Object kinetic Monte Carlo algorithm

The defect diffusion is investigated by using an object kinetic Monte Carlo code with a residence
time algorithm to advance the simulation clock [38, 101]. At time £, the time step is chosen ac-
cording to At = —(Inry)/wior, where 71 is a random number with r; €]0,1] and wyet is the sum
of frequencies of all events that may occur at t, i.e. wio; = Y.¥ w;. The chosen event f is such that
Zrl W; < PryWior < Zﬁ w;, where r; is another random number with r, €]0,1].

Three kinds of events are considered in the simulations: the jump of a point defect from one
stable point to a neighbouring one, the absorption of a defect by an interface, and the creation of
a new point defect through irradiation. Jump frequencies are given by w; = vexp(—AE;/(kT)),
where v is an attempt frequency and AE; = E32 — E$% is the energy difference between the saddle
position and the initial stable position of the jump considered. The stable point energy is

sta _ sta mt sta
E; P e ( , (3.60)

while the saddle point energy is

Eisad Z Pslazd Slkl}t sad (361)

with E™ the migration energy in the absence of elastic interactions. Here, P* and P are the
defect P-tensors in the ground state and saddle point configurations, respectively. For simplicity,
the position of the saddle point 75 is taken mid-way between the two stable points explored by
the jump [236].

The defect is considered to have been absorbed by an interface if it reaches the nearest atomic
row to the interface. It is then simply removed from the simulation. This absorption condition is
used to obtain a first estimate of sink strength, without taking into account the diffusion of point
defects along interfaces or their possible reemission. The irradiation rate is fixed at the beginning
of each simulation to keep the average number of point defects equal to 200 in the material where
the measurements are performed, if no elastic interactions are considered. The actual number
of point defects in the system, averaged over the simulation time when steady state is reached,
constitutes the basis for the sink strength calculation.

The concentration of defects is recorded every 10* iterations, after the concentration has be-
come stationary. At the end of the simulation, an estimate of the average defect concentration Cis
computed by averaging over the values C;, with j =1,...,n, as follows

:\r—*

Y. G (3.62)

j=1

The final time is adjusted to obtain sufficient accuracy on C and thus on the associated sink
strength k2 in accordance with the mean field rate theory formalism [301]. For this purpose, the
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FIGURE 3.19: Schematic illustration of the diffusion of radiation-induced point defects (illustrated by ovals)
to interfaces under the influence of interface elastic fields. In general, materials A and B may be any two
crystalline solids. In the present work, they are chosen to be either Cu or Ag.

estimation of the error on the concentration is given by the standard error of the mean value, i.e.

— 0y
0C, = —, 3.63
n \/ﬁ ( )
where
2 1 v = \2
0, = Z (Cj — Cn) . (3.64)
n—1 =

The final time for each system is chosen so that the relative error on C and k? is less than 0.5%.

3.5.2 Kinetic Monte Carlo simulations with elastic interactions

Modelling the removal of radiation-induced point defects at sinks is a challenging task: on one
hand, the variety and complexity of defect behaviors call for the flexibility of atomistic modelling.
On the other, the relatively slow, thermally activated mechanisms of defect motion require longer
simulation times than may be reached using conventional atomistic techniques, such as molecular
dynamics. The object kinetic Monte Carlo (OKMC) method [38, 101, 56, 135] is employed, which
is well suited to modeling long-time, thermally activated processes yet is also able to account for
nuances of defect behavior uncovered through atomistic modeling.

Figure (3.19) illustrates the setup of the simulations containing two crystalline layers—A and
B—separated by semicoherent interfaces. Periodic boundary conditions are applied in all direc-
tions, so each model contains two A-B interfaces. Due to their inherent internal structure, the
interfaces create characteristic stress fields in the neighbouring crystalline layers. These stress
fields interact with radiation-induced point defects, modifying their diffusion.

The interface stress fields is computed by the approach discussed in section 3.2. For illustra-
tion, two specific interfaces are treated in the present work: a low-angle twist GB on a (001) plane
in Ag and a pure misfit (zero misorientation) heterophase interface between (001) planes of Ag and
Cu. Figure (3.20a) shows a plan view of the Ag twist GB, where the adjacent GB planes have been
rotated by 60/2 (6: twist angle). The boundary plane contains two sets of parallel, pure screw
dislocations: one aligned with the x = [110] direction and the other with the y = [110] direction.
For a relative twist angle of 6 = 7.5°, the spacing between dislocations within each set is ~ 2.2 nm.
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FIGURE 3.20: Planar semicoherent interfaces with identical misfit dislocation arrangements in (a) Ag twist
GB with pure screw dislocations and (b) a Ag/Cu misfit interface with pure edge dislocations.

Figure (3.20b) shows the interface plane of the Ag/Cu pure misfit interface. Similar to the twist
boundary in Fig. (3.20a), this interface also contains two sets of parallel dislocations aligned with
the x = [110] and y = [110] directions. Furthermore, the spacing between dislocations in the
Ag/Cu interface is the same as in the twist boundary of Fig. (3.20a): ~ 2.2 nm. However, unlike
in the twist boundary, both sets of dislocations in the misfit interface are of pure edge type.

The two interfaces in Fig. (3.20) have identical dislocation arrangements, but different disloca-
tion characters. Thus, they contain identical dislocation densities, but have differing stress fields.
For instance, all normal stress components for the twist GB are zero throughout the entire bicrys-
tal. This stress field is therefore purely deviatoric. By contrast, due to symmetry, the shear stress
012 is everywhere zero for the Ag/Cu interface, but all of its other stress components are in general
non-zero. In particular, this interface generates significant hydrostatic stresses. These differences
have important implications for interface-defect interactions and defect migration pathways.

The force dipole moment approximation is used to compute elastic interaction energies be-
tween point defects and interfaces, EPD/int 140, 226, 71]:

EPD/int _ _Pijslj]nt (x,,2) . (3.65)

Here, 82}“ (x,y,z) = Ejj(x,y,z) are the short-range components of the previously calculated
interface strain field, given by eq. (3.12a). On the other hand, P;; are the components of the elastic
dipole tensor (the "P-tensor"), which describes the elastic fields generated by a point defect. EPP/int
values are used to compute stress-dependent energy barriers for defect migration at each location
in the simulation cell. A similar approach has been adopted in previous OKMC studies to describe
point defect interactions with dislocations [228, 236].

The density functional theory is used to calculate P-tensors for two types of point defects in
Ag and Cu: vacancies and self-interstitials of lowest formation energy, namely (100)-split dumb-
bells [242]. The P-tensor values for these defects are obtained in their ground states as well as
at their saddle point configurations during migration (found using the climbing image nudged
elastic band method [117]). Starting from a simulation cell containing a perfect, stress-free crystal,
the point defect of interest is inserted in the desired location and relax the atom positions while
keeping the simulation cell shape fixed. The point defect induces stresses, 0j;, in the simulation
cell. They are related to the defect P-tensor through

Pj= Vo= P +p"d;, (3.66)
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Interstitial Vacancy
Element . .
Ground state Saddle point Ground state Saddle point
26.80 0 0 26.69  2.59 0 —3.04 0 0 —-2.64 —0.39 0
Ag 0 26.86 0 259  26.69 0 0 —3.04 0 -039 264 O
0 0 26.86 0 0 27.74 0 0 —3.04 0 0 2.15
17.46 0 0 18.01 1.78 0 -3.19 0 0 -3.61 —0.37 0
Cu 0 17.66 0 1.78 18.01 0 0 -3.19 0 -037 -3.61 0
0 0 17.66 0 0 18.46 0 0 -3.19 0 0 212

TABLE 3.6: Elastic dipole tensors P-tensors (in eV) of point defects from first principles for a (100)-split

dumbbell self-interstitial and a vacancy in Ag and Cu at both the ground state and saddle point configura-

tions. The ground state interstitial is oriented in the [100] direction. Its saddle point configuration is for a
[100]-to-[010] migration path. The vacancy saddle point is for migration along the [110] direction.

FIGURE 3.21: Elastic interaction energy between (a) an interstitial with the Ag twist GB (EPP/int <
—0.002 eV in the blue isovolume), and between the Ag/Cu misfit interface with (b) an interstitial and

(c) a vacancy (EPP/int < 0,06 eV in the blue isovolume; EFP/i"t > (.06 eV in the red; gray contours are
locations with zero interaction energy).

where V is the simulation cell volume. Pl-;i and p" are the deviatoric and hydrostatic (isotropic)
P-tensor components, respectively. The former is associated with a pure shear (no volume change)
while the latter is related to isotropic tension (interstitials) or compression (vacancies), which leads
to a volume change.

Table 3.6 lists the P-tensors used in the present study. All of them are expressed in the Nye
frame, where the X-, Y-, and Z-axes are aligned with the [100], [010], and [001] Miller index di-
rections, respectively. The form of the P-tensor reflects the symmetry of the corresponding defect.
Thus, the P-tensor for a vacancy in its ground state is isotropic while that of an interstitial is tetrag-
onal. P-tensors for defect orientations other than those given in Table 3.6 may be calculated using
coordinate system rotations. The P-tensors for (100)-split dumbbell self-interstitials and vacan-
cies in Cu agree with experimental data [114, 242, 285]. Furthermore, the present calculations of
relaxation volumes of a vacancy in Ag and Cu are in very good agreement with recent ab-initio
predictions [191].

Figure (3.21) shows the distribution of ground state interstitial and vacancy interaction en-
ergies with the Ag twist GB and the Ag/Cu misfit interface. A (100)-split dumbbell interstitial
may take on three different orientations. Figure (3.21) uses the orientation with lowest EFP/int,
For the Ag twist GB, interstitial interaction energies are negative at all locations, as shown in
Fig. (3.21a). Thus, all interstitials in the vicinity of this GB experience a thermodynamic driving
force to migrate towards the boundary. The interstitials, however, have nearly isotropic P-tensors
(see Table 3.6), so their interaction energies with the Ag twist GB are very small. The interaction
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energy of vacancies with the Ag twist GB is everywhere zero due to the absence of hydrostatic
stresses near this interface. However, the anisotropy of the vacancy saddle point configuration
leads to non-zero interaction energies of migrating vacancies with the GB.

Interstitial interaction energies near the Ag/Cu misfit interface, shown in Fig. (3.21b), may
be attractive or repulsive, depending on the location of the defect. Thus, interstitials in Ag are
expected to migrate towards the center of the dislocation pattern while those in Cu are expected
to migrate to dislocation cores. Figure (3.21c) shows the interaction energy between vacancies and
the Ag/Cu misfit interface. The spatial variation of this interaction energy is similar to that of the
interstitials, but with opposite sign.

The OKMC simulations assume a constant, uniform defect creation rate, G. Defects diffuse
until they are absorbed by an interface. Only individual interstitials or vacancies are tracked in
the simulations: defect reactions, such as clustering or recombination, are not considered. After
a certain simulation time, defect distributions reach a steady state, whereupon the defect concen-
tration is computed as a function of position along the z-direction (normal to the interface plane)
based on the time spent by each defect on a given atomic site.

3.5.3 Effect of elastic interactions on interface sink strength

Figure (3.22) shows steady-state vacancy and interstitial concentrations for the two types of inter-
faces described above for models with 10 nm-thick Ag and Cu layers. In the absence of elastic
interactions between defects and interfaces, steady-state defect concentrations may be computed
analytically, which are successfully compared with the simulation results.

Elastic interactions have a dramatic effect on defect concentration profiles. In all cases shown in
Fig. (3.22) except vacancies near Ag/Cu interfaces, there are nearly no defects within ~ 2 nm-wide
zones adjacent to the interfaces. By contrast, without elastic interactions, defect concentrations are
zero only at the interfaces themselves. Moreover, even though defect-interface elastic interaction
energies are negligible beyond ~ 2 nm, the zones depleted of defects near the interfaces have a
pronounced effect on defect concentrations throughout the entire layer, markedly reducing the
average defect concentration. For the simulations in Fig. (3.22), elastic interactions reduce defect
concentrations by about a factor of two even in the middle of the layers. This effect is even more
pronounced for thinner layers. For vacancies in Ag/Cu, local traps are responsible for the sharp
increase in concentration near the interface.

The simulations account for numerous aspects of defect-interface elastic interactions, such as
defect anisotropy or differences in defect ground state and saddle point properties. To discover
which ones are primarily responsible for the defect concentrations shown in Fig. (3.22), some
of these characteristics are artificially "switched off" and repeated the OKMC simulations to see
whether doing so changes the steady-state defect concentrations. These calculations demonstrate
that the anisotropy of the P-tensor in the saddle point configurations is primarily responsible for
the reduced defect concentrations in Figs. (3.22a) and (3.22b).

The saddle point anisotropy is "switched off" by replacing the saddle point P-tensor with
psad = ph 1, where I is the identity matrix and p; is one third of the trace of the true saddle
point P-tensor. This assumption is tantamount to modelling defects at saddle points as misfitting
spherical inclusions in isotropic media. Concentration profiles obtained with this approximation
are markedly different from the anisotropic case, as shown in Fig. (3.22). In the case of the Ag
twist GB (Figs. (3.22¢c) and (3.22d)), isotropic saddle points yield the same defect concentrations as
when there are no defect-interface interactions at all. Indeed, since the twist interface generates no
hydrostatic strain field, only the deviatoric components of defect P-tensors may interact with these
interfaces. Ground state vacancies have zero deviatoric P-tensor components, so the interaction
energy with the Ag twist GB vanishes, similar to ground state interstitials with nearly isotropic
P-tensors (Table 3.6). The same conclusions hold at saddle positions if saddle point anisotropy
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FIGURE 3.22: Steady-state point defect concentrations as a function of location normal to interface planes.
The black vertical lines represent the interface planes, while the continuous gray lines denote the refer-
ence case with no elastic interactions, computed analytically. OKMC results for both isotropic (orange)
and anisotropic (blue) saddle point configurations are shown. (a) Vacancy and (b) interstitial profiles near
Ag/Cu pure misfit interfaces. (c) Vacancy and (d) interstitial profiles near Ag twist GBs. Concentrations are
normalized by the average concentration C obtained when no elastic interactions are taken into account.

is "switched off", as describe above. Elastic interactions then do not affect migration energies,
explaining why defect concentrations are identical to the case without elastic interactions.

For the Ag/Cu interface, concentration profiles computed without saddle point anisotropy lie
between the non-interacting and fully anisotropic cases, as shown in Figs. (3.22a) and (3.22b).
Vacancy concentrations are only marginally lower than the non-interacting case (Fig. (3.22a)),
demonstrating the overriding importance of saddle point anisotropy in their behavior. Interstitial
concentrations obtained without saddle anisotropy lie approximately mid-way between the fully
anisotropic and non-interacting cases (Fig. (3.22b)), demonstrating that saddle point anisotropy is
at least as important to their behavior as are p AV interactions, which are more commonly inves-
tigated.

Figure (3.23) gives a more detailed view of defect concentrations at different locations in the
Ag layer of the Ag/Cu interface and in the Ag twist GB. Close to these interfaces, concentrations
vary as a function of location parallel to the interface plane, following the strain field pattern cre-
ated by the interfaces. Indeed, the strain field creates preferential paths for defect migration, as
shown by the gray trajectories in Fig. (3.23). These paths are in general different for interstitials
and vacancies. For both the Ag/Cu interface and Ag twist GB, vacancies preferentially migrate to
the dislocation lines, while interstitials are mostly absorbed between dislocations. This preferen-
tial, non-random walk drift of point defects to specific locations is responsible for the enhanced
interface sink strengths. Knowing the steady-state defect concentrations obtained by OKMC, sink
strengths are derived for the two interfaces considered above. In the mean field rate theory for-
malism [41], "sink strengths" quantify the ability of sinks, such as interfaces, to absorb defects.
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(a) Vacancies r y (b) Interstitials

FIGURE 3.23: Preferential migration paths and local concentrations of (a) vacancies and (b) interstitials on

the Ag side of the Ag/Cu interface and of (c) vacancies and (d) interstitials in the Ag twist GB. Migration

paths are shown as gray lines originating from 1 nm away from the interface. The square grid of black lines

represents interface dislocations. Concentrations are plotted in a plane located two atomic distances away

from the interface. The concentrations are normalized by C: the average concentration when no interactions
are considered. Any normalized concentration values higher than 0.015 are shown as equal to 0.015.

Within this formalism, the evolution equation for the average defect concentration, C, follows

——=G-kDC, 3.67

I (3.67)
where G is the defect creation rate and D is bulk defect diffusivity. The second term on the right
hand side is related to the loss of defects at sinks with associated sink strength, k2. At steady state,
the sink strength may be computed from the average concentration:

K2 = i_. (3.68)
DC

Using the average of the concentration profile computed for defect removal at interfaces in the
absence of elastic interactions, the interface sink strength is analytically found to be k* = 12/d?
[46]. When interactions between interfaces and defects are present, the sink strength is numeri-
cally determined through eq. (3.68), by using the average steady-state concentration obtained by
OKMC simulations and the diffusion coefficient without elastic interactions. The resulting va-
cancy and interstitial sink strengths for both interfaces are shown in Fig. (3.24a—f) as a function of
layer thickness.

In all cases, the sink strength increases significantly when elastic interactions are taken into
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FIGURE 3.24: Enhancement in sink strength of Ag/Cu interfaces and Ag twist GBs for (a—c) vacancies

(k2) and (d—f) interstitials (klz) in a given layer (Ag or Cu), as a function of layer thickness, d. (g—i) Bias

factors of Ag/Cu interface and Ag twist GB. The gray line corresponds to the analytical solution when

no interaction is present (k? = 12/d?). Orange and blue lines correspond to OKMC calculations without
saddle point anisotropy and with the fully anisotropic interaction model, respectively.

account. This effect is especially pronounced for thinner layers, as defects undergo elastic inter-
actions with interfaces over a larger fraction of the layer. It is particularly strong for interstitials,
whatever the interface type, and for vacancies for the twist interface. These results also confirm the
importance of saddle point anisotropy: by comparing with OKMC simulations that use isotropic
saddle-point P-tensors, it yields order-of-magnitude increases in sink strength, in some cases.

Another quantity of interest for radiation response is the bias factor, B, which expresses the
propensity of a given sink to absorb more interstitials than vacancies. It is defined as

o

B=ti_ v (3.69)
e

where k% and k? are the sink strengths for vacancies and interstitials, respectively. For example,
small interstitial clusters and dislocations exhibit positive bias factors (typically between 0.01 and
0.3 [47, 116]) and thus absorb more interstitials than vacancies. The preferential absorption of
interstitials by biased sinks leads to an excess of remaining vacancies, which cluster and eventually
aggregate into voids [47, 178].

Bias factors for the semicoherent interfaces are shown in Fig. (3.24g—1i). Values larger than 0.2
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are obtained for the fully anisotropic interaction model in the case of the Ag/Cu interface. Such
interfaces would compete for interstitials with dislocations. The presence of two sinks of differing
bias magnitude has been given as a possible cause for void swelling suppression in ferritic steels
[168]. Interestingly, for the Ag twist GB the bias factor is negative, meaning that these interfaces
tend to absorb more vacancies than interstitials. Similar observations have been made in Ref. [229],
where the bias factor for single screw dislocations is negative when using anisotropic elasticity
theory and zero in the isotropic approximation. Such GBs may therefore deplete excess vacancy
concentrations sufficiently to inhibit void nucleation.

3.6 Elastic strain relaxation in interfacial dislocation patterns

The interfacial dislocation-based model described in section 3.2 has been extended to investigate
the equilibrium relaxed dislocation microstructures with specified constraints on semicoherent
interfaces [249, 250]. The present parametric energy-based framework includes surface/interface
stress and elasticity effects as additional constitutive relations, which are viewed as infinitely thin
membranes in contact with each individual material, give rise to non-classical boundary condi-
tions. The elastic field solutions are used to compute the corresponding strain energy landscapes
for planar hexagonal-shaped configurations containing three sets of misfit dislocations with un-
extended three-fold nodes.

3.6.1 General considerations on hexagonal-shaped dislocation patterns

The mechanical dislocation-based problem for determining the elastic strain relaxation of inter-
facial patterns formed by joining two linear anisotropic elastic materials A and B is described
by adopting specific notations and conventions in Fig. (3.25). In the global coordinate system
(O, X9, X3, xgr), corresponding to the orientation relations along fixed crystal directions of the
system of interest, the semicoherent interface is located at the coordinate x5 = 0, with x3* > 0
for material A, and x9" < 0 for material B. Such directions are not necessary related to high sym-
metry directions, so that the anisotropic elastic constants may be displayed in the most general
form. In the present work, the unit vector normal to the interface is n || x$", and a coplanar free
surface to the semicoherent interface is potentially introduced at x3* = ha, whereas B is always a
semi-infinite linear elastic crystal.

The crystallography of all interfaces is completely specified between close-packed planes of
neighboring materials, so that both orientation relations of crystals A and B with relative misori-
entations (tilt and twist) and differing lattice parameters (misfit) are described using the previous
concept of reference/natural states, as defined in section 3.2. As an example, the 2.5° Ta (tanta-
lum) twist boundary is illustrated in Fig. (3.25a). In the reference state, the interface is coherent,
but the interface is not coherent in the natural state, and the atomic structures of interfaces lead
to the formation of periodic networks of misfit dislocations that may undergo local relaxations or
reconstructions [94].

The closely related quantized Frank-Bilby equation [93, 30, 29] and the O-lattice theory [32] are
crystallographic approaches used to describe intrinsic dislocation structures at semicoherent inter-
faces, which provide the interfacial dislocation geometries in terms of line directions and spacings
for one, two, or three independent, planar, and uniformly spaced parallel sets of infinitely long
straight dislocations. As illustrated in the previous sections, however, such purely geometrical
approaches are not able to characterize local reactions of crossing dislocations to form dislocation
segments with different Burgers vectors in mesh networks that are energetically favorable.

The extended formalism for predicting the interface dislocations arrays linking the quantized
Frank-Bilby equation and anisotropic elasticity theory under the condition of vanishing the far-
field stresses is used to identify the periodicity of the structures with two sets of dislocations from
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FIGURE 3.25: Geometry of a hexagonal-shaped dislocation pattern containing three sets of interface disloca-
tions with the associated individual Burgers vectors. (a) The orientation relationships between the adjacent
linear materials are defined with respect to the global coordinate system (O, X", x5, xgr), within which
the semicoherent interface is located at x3° = 0. For illustration, the current intrinsic dislocation structure
is associated with a planar {011} || n twist GB between two bcc crystals with a 2.5° rotation angle. (b)
Anisotropic elasticity calculations are performed in the non-orthogonal (O, x} || p9, x2 || n, x5 || p9) frame
with fixed basis vectors, where p{ and p§ # p{ are the O-lattice vectors that describe the periodicity of the
dislocation structures. The fixed red and blue points characterize the initial lozenge-shaped unit cell and
the pivot points for elastic strain relaxations, respectively. The grey points are related to the O-lattice points,
separated by the networks of interfacial dislocations with three-fold dislocation junction nodes where the
conservation law of Burgers vectors is satisfied, e.g. at the specific orange node J; that is parametrized by
the dimensionless coordinates (71,72). For convex hexagonal-shaped dislocation configurations, J; may
move within the shaded triangular domain 7agc in dark grey.

the pre-determined O-lattice vectors p§ and p§ # p?, as illustrated in Fig. (3.25b). These two vec-
tors characterize the initial lozenge-shaped unit cell of crossing dislocation sets (red points), for
which the translations of the unit cell by the basis vectors p{ and pf tessellate the entire interface
plane. In the following, the superscript """ will be used to indicate quantities related to the unre-
laxed dislocation configurations, e.g. " || p§ and &5" || pf correspond to the initial dislocation
directions of the two sets that consist of the lozenge-shaped patterns, with Burgers vectors b; and
by, respectively, as stated in section 3.2. Planar energetically favorable interactions may lead to the
formation of dislocation junctions with coplanar Burgers vector bs, i.e.

b1 + by — b3, (3.70)

such that the current semicoherent interfaces contain infinite, planar, and periodic dislocation
structures with three sets of misfit dislocations. As illustrated in Fig. (3.25b), the third newly
formed set (in black) is associated with the junction formation due to the local rearrangements
between two initial crossing dislocation arrays, shown by the blue and red dashed lines. The
current directions of the three sets of misfit dislocations are denoted by ¢;, &,, and ¢; for which
the latter is associated with the direction of the in-plane dislocation junctions.

The present reactions yield to hexagonal-shaped patterns with three-fold dislocation nodes,
where the centers of the parent dislocation segments from the lozenge-shaped unit cells consist
of pinning pivot points (blue points) for glissile planar dislocations. An useful triangular domain
Tasc for performing parametric energy-based analyses, is represented by two blue pivot points (B
and C) and the red intersection point A in which dislocation reactions occur, as shaded in dark
grey in Fig. (3.25b). On the other hand, the newly formed representative hexagonal-shaped unit
cell (light grey domain), which contains six vertices (dislocation nodes), indexed and ordered by
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J1, J2, I3, Ju, J5, and J¢, is denoted by Hy,j,),1,55),- The determination of such infinitely repeated
dislocation nodes with the type of rearrangement defined by eq. (3.70) produces neither orien-
tation nor magnitude changes in the O-lattice vectors. Thus, the two-dimensional periodicity of
the dislocation networks containing three families of straight parallel dislocation segments in the
local Cartesian frame (O, x1, x2, x3) with x, || x3° || #, remains unchanged during the elastic strain
relaxation processes.

In the previous non-orthogonal (oblique and fixed) frame with basis vectors (O, x}, x2, x3),
where x] || p? || & and x5 || a3 || p9 || &1", the oriented angle between &5" and ¢} is denoted
by ¢"", so that xj = x7 csc¢"™ and x§ = x3 — x1 ctgp"™. Thus, any position vector in this non-
orthogonal frame may be expressed as: ¥ = x{ p + x5 p9 = (x1cscp™) p§ + (x3 — x1 ctg p™) p?.
In particular, the mobile dislocation three-fold node of interest J;, which is parametrized by the
dimensionless coordinates (771, 12) in the first quadrant of the (O, x|, x5, x}) frame, is also defined
by: j; = m1 pS + 12 pS, with (111, 12) € 10, 1/2[?, excluding 0 and 1/2 to describe convex hexagonal-
shaped patterns with six distinct dislocation edges. For example, the limiting case of equilibrium
arrays with two sets of orthogonal misfit dislocations is given by: ¢*1 = /2, nfq — 1/2, and
751 — 1/2,s0 that ], ~ J3 and J5 ~ J,, as the (010) twist GBs in fcc materials. On the other hand,
the regular equilibrium hexagonal network corresponds to the particular case where: ¢*1 = 77/3,
and 7,1 = 1,1 = 1/3, as the (111) twist GBs in fcc crystals.

3.6.2 Solution methodology for strain-relaxed rearrangements

During the non-random elastic strain relaxations without externally applied stresses, misfit dis-
locations are rearranged into hexagonal-shaped networks due to local reactions that lower the
elastic strain energy at semicoherent interfaces [94, 7]. Such strain-relaxed rearrangements of in-
terfacial dislocation patterns also involve the mechanical problem of finding the minimum-energy
paths from a given initial non-equilibrium lozenge-shaped microstructure with two sets of par-
ent misfit dislocations to new unique or multiple (with the same strain energy) stable equilibrium
hexagonal-shaped dislocation patterns of lowest energies with possible metastable configurations.

Without changing the interface crystallographic characters upon the relaxation processes, the
prescribed displacement jumps for each periodic hexagonal unit cell are also assumed to vary
linearly with the (algebraic) directed distance between the O-lattice points (displayed by the grey
points in Fig. (3.25b)) and the nearest neighbor interfacial dislocation segments. At the positions
of the dislocation segments, the relative displacements are completely described by the directions
and constant magnitudes of the associated individual Burgers vectors. Furthermore, the non-
classical boundary conditions due to the free surface excess stress and the semicoherent interface
excess stress contributions are therefore applied at: x3" = ha and x3* = 0, respectively. Thus, the
minimum-energy paths are entirely obtained by measuring the removal of the short-range elastic
strain energy with respect to the coordinates (#1,72) of J;, along which the long-range elastic
strain-free state is not altered by spurious non-zero far-field strains.

For a given crystallographic orientation relationship between materials A and B, the method-
ology for determining the equilibrium dislocation configurations for elastic strain relaxation pro-
cesses along minimum-energy paths is described below. The two first items summarize the strat-
egy procedure for computing the Burgers vectors of interface dislocations using anisotropic elas-
ticity theory, which have been introduced in section 3.2.

1. The geometries in terms of dislocation spacings and line directions, i.e. ;" and 5", related
to the initial lozenge-shaped patterns are found by using the quantized Frank-Bilby equa-
tion. For such networks containing two sets of straight, parallel, and infinite misfit disloca-
tions, the periodicity of the dislocation structures is also obtained by mapping the O-lattice
points at the interfaces. The corresponding computed O-lattice vectors p{ and p9 # p? are
conveniently associated with the fixed and non-orthogonal basis vectors of the (O, x}, x2, x%)
frame for elasticity analyses, where x| || p§ || &7, x2 || n, and x5 || p9 || &7
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2. The reference state, within which the individual Burgers vectors of both dislocation sets
are defined, i.e. by and by, is determined by combining the Frank-Bilby equation with
anisotropic elasticity theory that meets the constraints of interface crystallographic charac-
ter and zero long-range strains (or stresses) for infinite bicrystals. Because the latter far-field
condition is still fulfilled during the elastic strain relaxation processes, the third Burgers
vector b3 for the newly formed dislocation junctions is also obtained from the conservation
eq. (3.70) of the Burgers vector content at the three-fold node J;. In the limiting case where
a coplanar free surface is located in material A, the reference state (and therefore also, the
three Burgers vectors) is fully associated with material B, e.g. the case of a thin film on a
semi-infinite substrate.

3. The specific triangular region Tapc in the representative lozenge-shaped unit cell, formed
by the three fixed points A, B, and C in Fig. (3.25b), is discretized into four-node quadri-
lateral elements with respect to the ith nodal points with coordinates (7i,75), such that
{ni,n5} €10, 1/2[2. This discretization allows to represent any convex hexagonal-shaped
dislocation patterns in the non-orthogonal (O, x/, x,, x3) frame for mechanics-based calcu-

lations of elastic field solutions, e.g. displacements, stresses, traction forces, etc.

4. The elastic strain energy stored at semicoherent interfaces is computed at any mesh point
(171, 15), by using the persistent short-range stress and strain field solutions for convex and
irregular hexagonal-shaped dislocation configurations. Furthermore, the complete elastic
energy landscape 7.(171,72) is interpolated for any (171,72) € |0, 1/2[? with the aid of stan-
dard finite element bilinear shape functions for four-node elements.

5. For energetically favorable reactions, the minimum-energy dislocation configurations are
numerically obtained by using the conjugate gradient algorithm on the pre-computed en-
ergy landscapes with a given prescribed tolerance. Then, the nudged elastic band method
[117,222] is used to provide access to the minimum-energy paths between the initial (non-
equilibrium) lozenge-shaped structures and the determined elastically relaxed dislocation

patterns with the aid of the elastic forces: f, = —V.(11,%2). In practice, all elastic field
solutions are recomputed along the curvilinear reaction coordinates of the minimum-energy
paths.

3.6.3 Parametric energy-based framework

This section is concerned with the complete expressions of elastic fields for hexagonal-shaped dis-
location patterns located at heterophase interfaces between two dissimilar anisotropic materials.
The Stroh sextic formalism of anisotropic linear elasticity combined with the surface/interface
treatment in Ref. [108] and a Fourier series-based solution technique is therefore used to compute
the elastic fields outside the cores of dislocations. In the general case, all surfaces of interest (i.e.
semicoherent interfaces and free surfaces) are distinctly considered as infinitely thin membranes
with different, separate, and appropriate constitutive equations than the relations for both (bulk)
materials A and B.

Again, the pre-subscripts A and B in the elastic properties and also the field expressions will
be omitted for clarity in the following if no distinction between materials is required.

Elastic field equations and solutions in bulk materials

In the fixed Cartesian coordinate system (O, x1, x2, x3), the three-dimensional stress field o (x) =
0ij(x1,x2,x3) and the displacement field u(x) = u;(x1,x2,x3) in both crystals A and B are related
by the Hooke’s law in index form from Eq. (3.12b), as follows

0ij(x1,%2,X3) = Cija ux1(x1,%2,%3) (3.71)
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where a comma stands for differentiation, with repeated indices denoting summation convention
ranging from 1 to 3, unless stipulated otherwise. The anisotropic elastic constants of the fourth-
order stiffness tensor C are fully symmetric, i.e. ¢;ji = ¢jit = Cijik = cyij, and the classical partial
differential eq. (3.8) of mechanical equilibrium that is fulfilled in both crystals in terms of the
displacement fields is given by

03, (X1, X2, X3) = Cijia g j1(x1,%2,%3) = 0. (3.72)

According to eq. (3.7), the complete displacement field is expressed as the superposition of
the linear displacement contribution from the proper selection of reference states for constrained
interfaces and the total displacement fields produced by the arrays of interfacial Volterra dislo-
cations. The latter dislocation displacement fields are also given as a biperiodic Fourier series,
ie. ) » )

I/l]c{hs(XLXZ, JC3) = Re Z e127‘(k~r Mf(xZ) = 2ReZelznk'r M’]: (JCZ) , (373)
k0 D

where the Fourier series expansion involves the harmonics (n, m) that belong to the upper two-
dimensional half-plane domain, defined by D = {{n € IN*} U {m € Z*, n = 0} }. For clarity, the
subscript g4;s in eq. (3.7) has been changed to superscript in eq. (3.73). The components k; (1, m)
and k3 (m) of the wavevectors k are given by eq. (3.6) as follows

un un
kor=la g My <” e mcge )x1 + 25 3 = ku(n,m) x4 ks(m) x5, (3.74)
P1 P2 P1 P2 P2
with pf = |p?| and p§ = |[p?]. On the other hand, the far-field components are computed for
two dislocation sets to determine the correct reference state [260], within which the Burgers vec-
tors by and b, (and also b3, by virtue of eq. (3.70)) are defined. Because the elastic (short-range)
strain relaxations do not alter the long-range strain state during the junction formation of the third
dislocation sets, the removal of the far-field strains (or stresses) in the natural state is fulfilled by
solving the tensorial far-field egs. (3.1), exhibiting non-zero and heterogeneous short-range elastic
fields for interfacial dislocation patterns, only. Thus, substituting the displacement field eq. (3.73)
into eq. (3.71), the second-order differential equation applied to both materials is obtained in index
form as follows

—471% Wy, 11 (x2) + 1270 (Wa,, + Wa, ) 115 (x2) + W, i (x2) =0, (3.75)

where W1, Wy, and W3 are 3 x 3 real matrices defined in egs. (3.10). In eq. (3.75), the superimposed
tilde to any quantities will be used to indicate that the corresponding field solutions are consistent
with the Frank-Bilby equation under the condition of vanishing far-field strains (or stresses) for
any dislocation patterns. For non-zero wavevectors k, the standard solutions satisfying eq. (3.75)
can be written in the following form [64]

i (xp) = ei2mP 2 ak, (3.76)

where p¥ = p and a¥ = a; become the complex scalar and vectorial unknowns of the boundary
value problems, respectively, for which the superscripts k are omitted, for clarity. Introducing
eg. (3.76) into eq. (3.75), the vector a is found to satisfy the homogeneous linear system

[Wlik +p (WZik + Wzki) + pz W3ik] ar = I ar =0, (3.77)

which corresponds to the standard eigenvalue problem in anisotropic elasticity theory [234, 240].
A non-zero (non-trivial) solution can be found only if the determinant of I is zero, i.e.

det Hik =0, (378)
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leading to a sextic equation for p. As mentioned in section 3.6.3, the solutions of eq. (3.78) have
six imaginary roots, which are arranged such that the three first eigenvalue solutions p* have
positive imaginary parts, indexed by superscripts « = 1, 2, 3. The remaining three solutions have
negative imaginary parts, so that p*™> = p*. The corresponding eigenvectors a* = a¥ are also
complex conjugates with a* ™3 = a% = ay _, so that the general solution may be rewritten as a linear
combination of the three eigenfunctions, i.e.

3
agls(xpxz, x3) = 2Re Zelznk" Z A%ei27P" %2 ag + %22 @, , (3.79)
D

a=1

which differs from eq. (3.11) by a multiplicative i27t term, without loss of generality. It also follows
from eq. (3.71) that

3
6.515(x1’x2, x3) — 477 Rezieﬂnk-r Z /\aeﬂnp"‘xz Hf} + é’ﬂcelZﬂPi‘XZ H;’;* , (3.80)
D x=1

where the 3 x 3 complex matrices H* are related to the eigenvectors a® by
Hf;- = (kl Cijk1 + k3 Cijk3 + plxciij) (Z]Dé , (3.81)

from selected elastic constants of materials A and B. In particular, the surface tractions at the
semicoherent interfaces, i.e. x, = 0, are reduced to

. . ;' 3
B (x1,03) = 035(21,0,x3) m; = 4 Re Y ie?™ T Y AHY, + (" HY, (3.82)
)

a=1

as well as the tractions at the free surface, i.e. xo = hy, to

3
FS(x1,x3) = 005 (x1, hia, x3) ;= 47 Re Y i@ Y Ave2ha HE, 4 che2Wiha HE, . (3.83)
D

a=1

Free surface and semicoherent interface elasticity contributions

Combined with the surface tractions in eqs. (3.82) and (3.83), the additional surface/interface
stress contributions, due to the work required by applying in-plane forces to elastically stretch
the pre-existing free surfaces and interfaces neighboring both materials A and B into the correct
reference states, are introduced as follows

dy
wa(X],X3) = ')’5)(4) + W
X¢

’ 3.84
X1,x3) ( )

where Ty (x1,%3) and €5, (x1, x3) are the 2 X 2 surface stress and strain tensors, and 7 is the surface
free energy [224, 53]. Because eq. (3.84) is derived for the plane stresses acting in the surface area,
the stress and strain fields have only in-plane components, and Greek indices take values 1 and 3,
only. In order to solve the elasticity problems with appropriate constitutive relations between the
surface stress and strain components, a linear constitutive equation analogous to eq. (3.71) is used
[221], i.e.

Tep(X1,%3) = T + dygyy €3, (x1,X3) (3.85)

xXp\A1, A3 X9 xeyn o\ Ay 3)/ .

where ’L'?(C)(P is the surface/interface residual stress tensor and dy ¢, is the fourth-order stiffness
tensor of surface/interface elastic constants. When the surface/interface entities are considered
as elastic isotropic media, the elasticity tensor contains also two independent constants, known as
surface/interface Lamé constants [53].
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In the case of realistic semicoherent interfaces, the atomic structures are not exactly like those
generated by the linear mappings from a reference state, as idealized and illustrated in Fig. (3.25a)
with no atomic relaxations. Indeed, electron microscopy and atomistic calculations have revealed
that such boundaries consist of coherent patches separated by networks of interfacial dislocations.
The coherency and bounding conditions between such boundaries and the adjacent bulk materials
yield therefore to the expression for the surface stresses in terms of the derivatives of the bulk
displacement fields, i.e.

~ dis

2€5,(x1,x3) = 2&y,

s (x1,0,x3) = 155 (x1,0,x3) + il (x1,0,%3), (3.86)

i

for all in-plane strain components, at x, = 0. Similarly to the model for interface stresses with
application to misfit dislocations in Ref. [52], this interface/bulk conversion of strain fields in
eq. (3.86) depends strongly on the presence of the misfit dislocations (and, therefore, on the non-
arbitrary coherent reference states), which in the present case, gives rise to unequally partitioned
distortion states, in terms of strains as well as tilt and twist rotations.

The elastic field solutions of the displacements, stresses and tractions of egs. (3.79), (3.80),
and (3.82—3.83) respectively, with respect to surface/interface effects defined by egs. (3.85—3.86),
are also written as linear combinations of the eigenfunctions, within which {A%, "} are complex
unknown quantities that are to be determined by the boundary conditions. For hexagonal-shaped
dislocation patterns, these specific required conditions are expressed in terms of the discontinu-
ities of displacement and stress components across the semicoherent interfaces in bimaterials in
presence (if any) of a free surface in the upper material.

3.6.4 Boundary conditions with surface/interface constitutive relations

In what follows in section 3.6.4, expressions of displacements, strains, and stresses, and also all
related quantities that are needed to compute these field solutions (e.g., the elastic constants,
Burgers vectors by, by, and bs, eigenvectors a*, etc.), are expressed in the local oblique and fixed
(O, x1, x, x3) frame. In particular, the boundary conditions are written with respect to the geome-
try of the dislocation patterns, i.e. to the canonical coordinates (71, 172) of the three-fold dislocation
node J1, as well as the magnitudes and directions of the individual Burgers vectors for three sets
of dislocations.

Convergence of the elastic field solutions

For all constrained interfaces that are consistent with the Frank-Bilby equation, i.e. when egs. (3.1)
are fulfilled with respect to the correct reference state, the corresponding semi-infinite linear crys-
tal (here, material B) is also necessary free of all far-field stress components. The elastic stress
solution in eq. (3.80) is therefore required to converge to zero at long range, i.e. when x, — —oo.
Hence, gA* = 0, independently of interfacial boundary conditions. For infinite bicrystals of in-
terest, the convergence conditions in both materials A and B yield to: gA* = A{* = 0, when
Xy — £00, as already defined in section 3.2.5.

Relative displacement due to the interfacial dislocation patterns

In accordance with eq. (3.15), the prescribed relative displacement field u”(x1, x3) for any (irregu-
lar) hexagonal-shaped dislocation patterns at the interface, i.e. x, = 0, is obtained by superposing
the contributions of both Burgers vectors by and by, i.e.

X1 cSc U X3 — x1 ctg o'
1 O(I’ by 4+ 53 1Og<P

» b, = 24 (Xl) b, + Zz(xl,X3) b,, (3.87)
1 2

uf(x1,x3) =
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where z; = z1(x1) and zp = zp(x1,x3) are dimensionless linear functions. Assuming that the
displacement jumps are zero at all positions of the O-lattice points, e.g. at O in the representative
unit cell in Fig. (3.25b), the prescribed displacement field is also an odd function with respect to r
in the oblique (O, x{, x2, x%) frame. According to the linear elasticity theory, these displacement
jumps produced by each hexagonal-shaped dislocation cell can therefore be formally expressed as
double Fourier series for any dislocation configurations with respect to (11, 12), i.e.

ul(x1,x3) =Im ) ™72 (yy,52) = —Rei ) ™7 (af (i, 12) + 0y (1, 72)) » (388
kZ0 kZ0

where all real-valued expansion coefficients @7 (71, 72) in eq. (3.88) are additionally decomposed
into the individual contributions i (11, 772) and i} (171, 172), associated with by and b,, respectively.
In particular, the vector quantity # (171, 12) for by is deduced by solving the double integral with
respect to z; and z;, as follows

() Llzmip) .
1(m <zl / 2(z111.172 o~ i2m(nz+mz) de) dzl] by, (3.89)
Za(z1112)

=
<
—
=
<
=
N
SN—
|
=3
)
—
b\[\]
1

for any (111,72) € Hy,p,1504050- Moreover, eq. (3.89) may be integrated over three separate unit
domains, e.g. the parallelogram Pj,}.;,;, and both triangles 77,;,;, and 77,5, i-e.

iy (,12) = g (10 12) g0 = 0 012 1ey 0 81 ()l iy ()l
(3.90)
as illustrated by the different vertices in Fig. (3.25b). Because the boundaries of the hexagonal-
shaped unit cells are composed of straight dislocation segments, the integral eq. (3.89) is neces-
sarily bounded by affine functions with respect to the coordinates #; and 7,. The first quantity
) (71, 112)|Py 1,5, in the right-hand side of eq. (3.90) is also computed by using the following

bounds, i.e.
- _ _1 —2172 . 1
V{n,m} € Priae - {Zl(m) — M and ) = =, (3.91)
4 1J3J4)6 * = o 4 _ 7 .
2lm) =m Za(z1,71,12) = — 2172177221 +3-

Similarly, the two quantities @} (171, 772) ‘Th 1,5, and al (111, 72) |T]4 o3, I €q. (3.90) are determined
by considering

(1-2m)z1 —14m+1m

_ _ ZZ(Z], M1, 172) = _
v{ﬂlz ’72} € 7—111213 : {;EZB — 1]71— m’ and = < ) 212 z1 *’712 o
Z2\z21,M1,12) = 12y
: ! (3.92)
- 221 +172
_ B Zo(z1,1n,12) = 55 =
C Jzaim)=m-1 —itam
V{i,m2}t € Thasss - {21(771) =—m and %5 (20, 11, 172) — (1-2p)zi+1-m—m
Ny 1— 2 ’

respectively. Thus, after integrating eq. (3.90) analytically with respect to egs. (3.91) and (3.92), it
can also be found that

—1+2m

by,
22 (m—+n—2(muyy+nmn1)) 2muyz +n(—=1+2n)) !

(3.93)

itf (m,112) = sin (27 (mm2 + n))
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for any given (771,72). Analogously to eq. (3.89), the vector quantity i} (171,12) for b, is written in

the form

Z1(m) Z2(z1,m,112) .

17!5(171,172) ~ Re [1/ 1(M (/ 2(21,71,72 % eszH(nzﬁmzz) d22> dzl} bz, (3_94)
z1(m) Z2(z1,111.12)

for which the same integral bounds defined by egs. (3.91) and (3.92) are used to calculate eq. (3.94)
over the hexagonal-shaped dislocation patterns. Hence, it follows

—1+2n2
22 (m+n—2(mmy+nny)) (m(=1+2n2)+2nn)

bZ/

(3.95)
for any (#1,72). Combining eq. (3.93) with eq. (3.95), the complete vectorial solution for @7 (171, 172)
is given by

it} (171, 172) = sin (271 (m 12 +ny))

sin (2t (muy +n1ny)) —142m,

1) = EE
) = 5 (=2 (o)) [2m iy + 1 (—1+271)

m(—=1+42m) +2nm

(3.96)
which closely corresponds to the same expression given in Ref. [39], after minor corrections. It is
worth noting that three singular values for n and m give rise to null denominators in eq. (3.96), so
that three cases must be distinguished, i.e. cl: m+n—2(mma+nn;) #0,c2:n—2(my+nm) #
0,and c3: m —2(mnp +nny1) # 0. By defining the function z(n, m) = nz; + m z; in the exponential
terms of both egs. (3.89) and (3.94), all corresponding real-valued expansion coefficients are also
obtained by replacing m with m* in z(n, m) for all different cases, i.e.

b1+

4

1-2 1-2 2
n , c2:mt=mn n ,and 3: m*=n n ,
1—27’]2 172 1—2172

cl: m* = —n (3.97)
for which the expressions for these three cases are given in Appendix A from Ref. [249]. Finally,
to exhibit the discontinuity condition in displacement, the prescribed jump in eq. (3.87) with the
aid of the egs. (3.96) may finally be related to the displacement fields generated by the interface
dislocation patterns, i.e.

uf (x1,x3) = [ (x1,0,x3)] ., = afl®(x1,0,x3) — iy (x1,0,x3), (3.98)
where the complete elastic field solutions in both materials A and B are given by eq. (3.79). The
symbol [y.]. . = Ay, = ay; — BY; corresponds to the vectorial jump of the quantity y across
the interface at x, = 0. Although all physical displacement fields in eq. (3.98) are defined as the
real quantities of complex Fourier series-based expressions, the real part designation in eqgs. (3.79)
and (3.88) are conveniently omitted to express the complex equality, as follows

3
—if(p1,m) = Y aA*aaf + al%aaf, — BC%pa} (3.99)

a=1

so that both real and imaginary parts of eq. (3.99) lead to the equivalent homogeneous linear
system X; of six real equations, i.e.

3
0=Re ) aA“aaf + al%aaf. — L Baf.
(X1) Vk € {1,2,3}: wsl (3.100)
—if (1,m2) =Im Y AA*aaf + al%aaf — BC"pa5

a=1

where @7 (171,7) is defined in eq. (3.96), for any given (11, 12) € ]0, 1/2[? and for all {n,m} € D.
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Stress conditions at the semicoherent interfaces

Due to the presence of the interfacial excess energy close to grain and interphase boundaries,
the discontinuity of the tangential stress components is introduced using the generalized Young-
Laplace equation [108, 209, 80], as an equilibrium boundary condition to solve the present boundary-
value problem with interface stress effects, i.e.

oo (x1,0,x3) il + T =0, (3.101)

together with the stress discontinuity in normal direction of the boundaries, as follows
[0 dlls(xl,O, Xx3) nj il = Txo Kxo s (3.102)

with %y, the curvature tensor of the solid-state interface of interest. Substituting the linear con-
stitutive relation of eq. (3.85) into egs. (3.101) and (3.102) respectively, the governing non-classical
boundary equations lead to

0= [I:E lnt(xll x3)]]int + d(PX’W] ﬁiiipc (xll 0/ XS)

- . R (3.103)
0= [t" (x1,%3)],., (T + dypyy W(x1,0 x3)) (KX(P + KX(P) ,

where K?C(P and KQ(P are the deformation-independent curvature and curvature change tensors, re-
spectively. In the classical theory of initially flat and infinitely thin membranes with small out-of-
plane deflections [40], as the considered (and interpreted as surface stresses) elastically stretched

membranes in Refs. [108, 109], the curvature change tensor may be approximated by
Kp = —il55,(x1,0,%3), (3.104)
without internal moments. Under the treatment of such specific boundary conditions normal
to the initially flat (but, stretched) membranes, the distortion response caused by the presence of
interface dislocations may elastically warp the semicoherent interfaces with radii defined by ry, =
1/ Kﬁq). Thus, the right-hand side of the second equation in egs. (3.103) is deduced by subsequently
imposing no initial curvature and neglecting the second-order effects compared with unity, as

follows '

(Tyg + dxgy ﬁg‘f] (x1,0,%3)) (K} + K3p) =~ =Ty uglw(xl, 0,x3), (3.105)

thus, imposing K?( = (0and udls (xl, 0,x3) ugféq)(xl, 0,x3) < 1. According to eq. (3.82), both discon-
tinuous stress boundary condltlons in egs. (3.103) can also be recast in matrix form, i.e.

[ (x1, x3)],, — 472 Vig 1™ (x1,0,x3) = 0, (3.106)
where the 3 x 3 real matrix V is expressed as
IGdyy + 2kikadys + KGdss 0 Kidys + kiks (dis + dss) + K3dss
sz- = Vik = 0 k%T% + 2k1k3T{)3 + k%ng’ 0 ’
IGdys + kiks (d13 + dss) + K3dss 0 IGdss + 2kikadss + K3das
(3.107)

within which the surface/interface elastic constants are indexed using standard contracted nota-
tions. Mechanically balanced by the interface stress effects, eq. (3.106) shows that the infinitesimal
in-plane strain fields in the membranes may influence the stresses in both bulk materials due to
the elasticity contributions at the interphase boundaries. In contrast to the classical continuum
elasticity, the tractions across the interface and the displacement fields are related to each other by
the interface elasticity properties as well the interface geometries through the wavevector compo-
nents.
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Because the materials A and B are mapped separately from the reference state, the coherent re-
gions at the interfaces (separated by the networks of interfacial dislocations) can also be viewed as
infinitely thin membranes separately in contact with each individual bulk material. Furthermore,
the determination of the reference states yielding (in general) to unequal partitioning of elastic
distortions, the tractions that act on each individual upper and lower materials bonded by these
coherent interfacial regions are consequently assumed to be different in both magnitude and direc-
tion. Using the concept of interface zone by in Ref. [146], the specific traction vector ont ™ (x1,x3),
acting on both neighboring crystals with fictitious infinitely thin inter-layered coherent patches
at x, = 0, is introduced to transfer traction forces from the upper material to the adjacent lower
material. The equilibrium condition between the interface coherent regions and material A also
reads .

Afkmt (xl, X3) — Cohtkint(xl,X3) 471' Ath dls (Xl, 0 X3) = O (3108)

by use of the boundary condition in eq. (3.106), while the equilibrium condition between the in-
terface coherent regions and material B is given by

Cohtkint(xl, X3) —B f]:nt(xl,X3) 47'[ vat ~d‘S(x1,0 X3) 0, (3109)

where AV and gV depend on the elastic properties of the interfaces with respect to each mate-
rial A and B, respectively. Summing both egs. (3.108) and (3.109), it also follows that

AR (21, x3) —B B (21, x3) — 472 (AV““t /™ (x1,0,x3) + BV B (x1,0, X3)) =0, (3.110)
which yields to the non-classical stress discontinuity conditions at the mismatched interfaces. Us-
ing egs. (3.79) and (3.82), eq. (3.110) gives rise to the additional linear system ., of six equations,

ie.

0= Re[ Z A/\“Ah“ + AC"‘Ah"‘ + 127T( th (AA"‘Aa‘f + AéaALl‘f*) + AVilrét(A/\“Aﬂg + AC‘)‘Aa"g*))

a=1 ) 3
— BC“ (Bh%* — i27T(BV111}t Bal + Bvlf_éf Bag‘*))} = Re Z U’i‘
a=1
3
0= Re[ Z A/\aAh + ACXA]’Z“ -+ 127'[( th (A/\“Aa% + ACXBLI%*)) — BCX (Bhg* — 127 BV‘zrﬁtBaz )}
a=1
() : = Re Z v3

a=1

3 .
0= Re{ Z AA'XAI”I + ACXAI”IIX + 127‘[( th (A)\“Aa’i‘ + ACXAa‘i‘*) + AV‘;gt(AA”‘Aag‘ + ACaAﬂg*))
a=1 3
— Bg“ (Bhg* — iZN(BVilgt Bblﬂf* + BVé%t Bag‘*))} = Re Z ’0%
a=1
3

O:Im{ Zvﬂ , Yk € {1,2,3},

a=1

(3.111)
with hff = H,, for any given (171,72) € ]0, 1/2[? and for all {n,m} € D.

Stress conditions at the free surfaces

Similarly to the semicoherent interface treatment, the free surfaces experience excess energy and
excess energy due to different energy profiles close to such singular membrane-like boundaries.
Thus, additional non-classical boundary conditions as eq. (3.110) are introduced on the outer free
surface, at x3" = hp, i.e.

Atk (xl,X3) + 47 AVkl Audls(xl,hA,xg) =0, (3.112)
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where AV depends on the elastic constants of the free surfaces. It also yields to the following
system 23 of six other equations, i.e.

3 o

0= Re[ Y aA eI (yB} — 27 (aVE) A0t + AVES adf))
=1 <

+ Al%e 27t ha (Ah"‘ _ 127T(AV11 Aal* + AV13 Aa3 ] = Re Z wy

a=1

3
0= Re[ Z A/\aeiZHp“hA (Aha 27T AV22 Aaz) + ACX i27piha (Ah{x —i2m AV22 Aaz )]

a=1

3
() : =Re ) wj
3 =1
0= Re[ Z A/\(xeiZHp“hA (Ahg — 127T(AV§S3 Aa’i‘ + AV%% Aag‘))
a=1 3
+A€ae127rp*hA (Ahg* — i27‘[(AV§S3 Aﬂlf* +AV£53 Aag‘*))] = Re Z wg‘
a=1
3
0= Im[ Zwﬂ , Vk € {1,2,3},
a=1

(3.113)
for any given (11, 12) € ]0, 1/2[? and for all {n,m} € D.

Determination of the minimum-energy paths

When the linear systems in egs. (3.100) with (3.111) and (3.113) are combined, the set Ecst of all
eighteen real unknowns (twelve and six for A and B, respectively) are also solved with respect to
the prescribed boundary conditions, i.e.

3
Ecst = ) {ReaA®, ImaA*, Real", Im A%, Repl", Impl* }, (3.114)

a=1

completing the solutions of the elastic displacement and stress fields, given by egs. (3.79) and (3.80),
respectively. Following the procedure described in section 3.6.2, the upper triangular domain
Tagc in the representative unit dislocation cell, denoted by ABC in Fig. (3.25b), is discretized into
four-node quadrilateral elements with respect to the i nodal point coordinates (171, 715%), such that
{ni, 75} €10, 1/2[? for convex hexagonal-shaped dislocation patterns. Thus, for any dislocation
pattern that is geometrically characterized by the given coordinates (17},15), the corresponding
elastic strain energy can be computed as a volume integral over the heterostructure of interest,
ie.

171,172 =54 /// dls (x1,x2,x3) ﬂﬁs(xhxz,xg) dv, (3.115)

where all persistent short-range field solutions of the integrand depend specifically on (17, 15) by
the treatment of boundary conditions, described in section 3.6.4. For far-field stress-free bicrystals
at equilibrium, the standard volume integral eq. (3.115) may be reduced to a surface integral by
the use of integration by parts, together with the divergence theorem without any body forces
[223, 260], as follows

L) = 5 // ™ (1, x3) [ (x1,0,x3)], . dS, (3.116)

where A(r) is the hexagonal-shaped unit cell. In egs. (3.115) and (3.116), the expressions of elas-
tic strain energy are conveniently expressed per unit area, for which A = A(ry = 0), and account
for several different contributions, i.e. interaction between Volterra-type dislocations against the
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misfit strain state, self-energy induced by individual hexagonal-shaped dislocation configura-
tions, as well as the interaction between the hexagonal-shaped unit cell with all infinitely re-
peated cells. Finally, the complete elastic strain energy landscape 7.(#1,72) is interpolated for
any (171,72) €10, 1/2[2, as follows

4 . . .
Ye(n,m2) = Y Ni(m1,72) ve (11, 172) (3.117)

i=1

where N;(#1,172) are the standard finite element bilinear shape functions for four-node elements.
For elastic strain landscapes that favor the formation of dislocation junctions, the minimum-
energy configurations are determined by computing the conjugate gradient algorithm, while the
nudged elastic band method is used to find the corresponding minimum-energy paths. The
nudged elastic band method is a chain-of-states method in which a string of images is used to
describe the reaction pathways. These configurations are connected by spring forces to ensure
equal spacing along the paths of interest. The ensemble of the configurations is then relax through
a force projection scheme to converge to the most energetically favorable pathways [117, 222]. To
identify the minimum-energy paths between the initial (non-equilibrium) lozenge-shaped pattern
and the final elastically relaxed configurations (previously computed by the conjugate gradient
algorithm), all images are simultaneously evolved to equilibrium under a nudged elastic band
force (on image indexed by s,) that contains two independent components on all images sy, i.e.

NEB _ 1
R =g +f5‘l/’ (3.118)
where fsi is the component of the elastic force acting normal to the tangent of the elastic landscape,
as follows

for = = Vel m) + (Vre(n,m) - %,) %, (3.119)

with % the unit tangent to the elastic energy landscape. In addition, the spring force fS‘L in
eq. (3.118), acting parallel to the energy landscape [117, 222] is defined by

£ =kl —m | = lm, =1, 41) (3.120)

where n, = 115”(171,172) is the position of the s,f‘h image and k the spring constant. The spring
interaction between adjacent images is added to ensure continuity of the chain.

The present numerical procedure is identical to nudged elastic band calculations recently per-
formed to analyze the calculation of attempt frequency for a dislocation bypassing an obstacle
[231] using a nodal dislocation dynamics simulation with non-singular treatments for isotropic
elastic fields [51].

3.6.5 Application to Au/Cu heterosystems

The section gives applications to two examples of the general parametric energy-based frame-
work. The first simple and limiting case is concerned with two dislocation sets in pure misfit
(010) Au/Cu interfaces, for which the strain energy landscape for formation of dislocation junc-
tions is unfavorable. The subsequent investigation of the effects of surface/interface stress and
elasticity properties with different boundary conditions in (010) Au/Cu interfaces can be found
in Ref. [249]. On the other hand, the second case deals with the minimum-energy reaction path-
way of the pre-computed (111) Au/Cu elastic energy landscape, where the initial and unrelaxed
dislocation pattern solution is described by the Frank-Bilby equation. The materials properties
used in these examples are listed in Table 3.7.
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Symbols Au (material A) Cu (Material B) Units References
Lattice parameters

a 0.4078 0.3615 nm [104]
Elastic components (Voigt notation)

c11 187.0 168.4 GPa [7]

C12 157.0 121.4 GPa [7]

C44 43.6 75.4 GPa [7]

Elasticity properties for the semicoherent interfaces (Voigt notation)
* Interface stress

1 —0.0465 0.645 N/m [146]
T13 0 0 N/m [146]
33 —0.0465 0.645 N/m [146]
x Interface modulus

dip —6.84 —5.99 N/m [146]
diz —3.47 0.6540 N/m [146]
dss —6.84 —5.99 N/m [146]
dis 0.0042 0.0032 N/m [146]
dss 0.0042 0.0032 N/m [146]
dss -1.91 —3.67 N/m [146]

Elasticity properties for the free surface (Voigt notation)
* Surface stress

T1 1.49 — N/m [185]
T3 0 — N/m [185]
T33 1.49 — N/m [185]
* Surface modulus

dn —-7.10 - N/m [185]
d13 —5.67 - N/m [185]
dss —3.17 — N/m [185]

TABLE 3.7: Lattice parameters a of Au and Cu crystals, material properties Cij of both bulk materials, surface
stress Ty, and surface modulus dy, of the semicoherent Au/Cu heterophase interface and the (010) free
surface in Au.
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FIGURE 3.26: Dependence of the total far-field stress component o + (Tlil“’ on ¢ in the Au and Cu materials
for the (010) and (111) Au/Cu semicoherent interfaces.

Case 1: The (010) Au/Cu interface with two sets of dislocations

As a limiting case, the atomically sharp (010) Au/Cu misfit interface contains two sets of orthog-
onal dislocations in cube-cube orientation relationship, i.e. x* = [101], x§* = n = [010], and
x§" = [101]. Similar to eq. (3.37), the net Burgers vectors are expressed by using the quantized
Frank-Bilby equation [93, 30, 29], as follows

un un
<1’l ;}gl . p) b1 + <1’l ;(2ur12 . p) b =n1by+nyby, = (F;}l — FE&) P, (3.121)
where di"™ and d;™ are the regularly spaced inter-dislocation spacings, and the interface Burgers
vectors by || [101] and by || [101] are both parallel to x;- and x3-axis, respectively. As a result of
arbitrarily selecting the reference state identical to the Au (or Cu) natural state, for which the ge-
ometry of interface dislocations (line directions and spacings) is independent of the choice of ref-
erence state, the line directions are defined by &;™ || [101] and & || [101], and the inter-dislocation
spacings are given by d{" = d," = p{ = p9 = 2.25144 nm. Thus, the Frank-Bilby equation pre-
dicts that an orthogonal network of straight parallel dislocations with pure edge characters is also
needed to accommodate the pure misfit (010) Au/Cu interface.

The geometry of such orthogonal grid of dislocations can also be characterized by r7; — 1/2
and 7, — 1/2 in the general parametric framework, because ¢*" = 71/2. According to the bi-
linear function u” (13 — 1/2,112 — 1/2) for the prescribed displacement field in eq. (3.87), the
corresponding real-valued expansion functions in eq. (3.88) for the individual set 1 can be com-
puted by imposing m = 0, as follows

-1 n+1

lim ! = lim o i

pif @) = i, @i (ne) = 5, = b .
lim lim Zﬁp(ﬁl 172) = [lim (_1)n+1 (_1 + 2772) bz —0 .

m—1/2 172 < 2N 1 —1/2 27tn ’

exhibiting that ¥ (11 — 1/2,12 — 1/2) = @] (;1 — 1/2,72 — 1/2) is evidently written as a
function of by, for set 1. By superposing the similar contribution of set 2 with n = 0, the final
prescribed displacement field produced by an orthogonal network of dislocations in eq. (3.88)
is therefore written in the form of two distinct one-dimensional sawtooth-shaped functions with
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FIGURE 3.27: Elastic strain energy landscapes 7. in ].m 2 of the hexagonal-shaped patterns with three-fold
dislocation nodes as a function of #; and 7, for the (a) (010) and (b) (111) Au/Cu heterophase interface
cases. The large points at #; = #2 = 1/2 correspond to the initial lozenge-shaped patterns, for which the
two crossing dislocation sets are related to equilibrium and non-equilibrium dislocation configurations for
the (010) and (111) interface planes, respectively. The latter case gives rise to the presence of a minimum-
energy path (in black) between the initial pattern and the fully elastically strain-relaxed dislocation struc-
ture (magenta point) at stable equilibrium state. An intermediate state is displayed by the orange point.

Fourier sine series, as follows

uf(x1,x3) = — ) (_1)nsin (27tky(n,0) x1) by — Y <_2m

T sin (27tks (m) x3) b2, (3 123)
1

1 n=
0 m>

where kq(1,0) and ks(m) are defined in eq. (3.74), with ¢ = 71/2. Here, the sawtooth-shaped
functions in eq. (3.123) differ from eq. (3.19) by individual translations of magnitude d;""' /2. Sim-
ilarly to X1 and X; in egs. (3.20) and (3.25), the simplest limiting case of bicrystals without any
surface/interface elasticity effects leads to a set of twelve real and linear equations, i.e.

3
Re ) aA“aa" —pl"gal =0
a=1
_1)n
_(nn) by if m=0 n € N*
3
L S . S % T _ —1)m
ImaglA)\ aa” —pl%ga, =19, with: ¢ _( ) by, ifn=0 m e N*
3 0 if nm#=0 neN",melN*
Re Y AA“AR* —pl"ghi =0
a=1
3
Im E A)LaAha — Bgthi‘ == 0,
\ a=1
(3.124)

with respect to the six associated complex unknown quantities, i.e. AA* and gC*.
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Following the procedure described in section 3.3.3, the two deformation gradients Fglll and FE&
in eq. (3.121) (also, the magnitudes of both by and b,) are determined by ensuring the condition of
vanishing far-field stresses along a transformation pathway between both materials Au and Cu.
For cube-cube orientation relation, this condition is met by continuously adjusting the reference
lattice parameter a,¢¢ along a specified reaction pathway coordinate J, starting with the pure lattice
parameter of Au to Cu, i.e.

Aret = (1 —0) aay +dacy, (3.125)

where 0 < § < 1is a dimensionless variable that interpolates linearly between ax, and acy.

According to the far-field eq. (3.1), the dependence of the total large-range stress components
o+ (Tﬁ"" in Au (black line with symbols) and Cu (red line with symbols) on the transformation
pathway coordinate ¢ is plotted in Fig. (3.26). For the (010) misfit case, both far-field stress com-
ponents vanish for g9y = 0.60392, so that the corresponding reference state is closer to Cu than
to Au, i.e. §(p19) > 0.5, where cuc1; < AuC11 and cuCp < AuC1a, but cuCaa > auCay. All other
elastic components are consistent with the absence of strains in the long range and no rotations
are induced along the transformation path. Thus, it gives rise to the reference lattice parameter
aref = 0.37984 nm, and also the magnitudes of correct Burgers vectors, i.e. by = by = 0.26859 nm,
selected by the coherent reference state. When an incorrect reference state is arbitrary chosen,
the corresponding Burgers vectors deviate in magnitude and non-zero spurious stress fields exist
in the microstructure. For instance, a residual stress state in Au persists with .0} + Au(71+1°° ~
6.29 GPa and ~ —3.66 GPa, for §g;9) = 0 and 1, respectively. A larger residual stress field exists
in Cu as well, where c,07; + cu0y;” =~ —8.77 GPa, for 5(010) = 0, and ~ 5.09 GPa, for 5(010) =1.

For the following calculations in interfacial hexagonal-shaped dislocation patterns, the upper
half-plane domain D = {{0 < 7 < #iax } U {|m] < timax } } \ {m < 0, n = 0} } is defined by setting
Nmax = 50, which is large enough to ensure accurate solutions in truncated elastic stress fields with
three sets of dislocations.

Figure (3.27a) shows the elastic strain energy landscape for the (010) Au/Cu misfit interface
with classical boundary conditions between both neighboring semi-infinite Au and Cu crystals,
for simplicity. To determine such energy landscape, the triangular domain 7agc is first discretized
into 121 nodal points with coordinates (17,75), such that {75} € ]0, 1/2[?, as depicted by
the gray dots in Fig. (3.27a). Using the persistent short-range elastic fields, the finite (guaran-
teed by the zero far-field stresses) stored elastic energy per unit area is computed for any (1%, 75)
using eq. (3.116) with ry = b;/4. Following the standard interpolation procedure of eq. (3.117),
the elastic strain energy for any given (11,12) € |0, 1/2[? shows a smooth and symmetric land-
scape with respect to the median (177 = #2) of the triangular domain, within which the unique
strain energy minima is obtained at 7; — 1/2 and 17, — 1/2, with 7" = (1 — 1/2,1 —
1/2) ~ 0.57344 .m~2. Planar dislocation reactions and junctions for (010) misfit interfaces are
also shown to be energetically unfavorable. It is therefore demonstrated that the initial orthogo-
nal grid of uniformly spaced edge dislocations corresponds to the equilibrium structures for the
(010)-type misfit interfaces, which satisfies the condition of vanishing far-field stresses as well as
the minimum-energy criterion for predicting the most favorable dislocation structures.

Near the unreacted state of the (010) Au/Cu system, the present energy landscape shows
concave slope profiles at 1 ~ 1, ~ 1/2. For calculations with other fcc/fcc heterosystems in
the (010) cube-cube orientation relationship (not shown here), the corresponding unreacted state
can exhibit convex energy profiles, which suggest different bound crossed states of dislocation
reactions for the (010) twist GBs. Thus, the parent dislocations could also exhibit strong repulsive
interactions or crossed states where local bend and twist of dislocations may locally occur at the
short-range distances, as observed in non-coplanar dislocations [176].
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FIGURE 3.28: (a) Dependence on 771 = 1, of the elastic energy 7. in].m~?2, i.e. along the bisecting lines of the
admissible triangular domains 7apc, as displayed in Figs. (3.27). The blue and the red curves correspond to
the mismatched (010) and (111) Au/Cu interfaces, respectively. The latter exhibits black dots, indexed by
sy = 1,...,16, which represent the minimum-energy path from Fig. (3.27b). The large points at 71 = 172 =
1/2 are related to the initial lozenge-shaped patterns with two crossing sets of dislocations, whereas the
vertical arrow shows the minimum-energy configuration associated with the (111) semicoherent interface.
(b) Dependence on s, of the dislocation characters ¢; for the three sets and the angle ¢ between the two
parent dislocations for the corresponding (111) Au/Cu case. All these quantities are expressed in °.

Case 2: The (111) Au/Cu interface with three sets of dislocations

In contrast to the (010) Au/Cu case, the (111)-oriented habit interface planes exhibit different
arrangements of atoms, which yield to more complex interface dislocation patterns and also to
general elastic states where both constituent strains and rotations are unequally partitioned be-
tween the crystals [123].

The present orientation relations associated with the (111) Au/Cu misfit case are defined by
2 = [112], 29" = [111] || n, and x§* = [110], within which the fcc {111} close-packed planes
contain a,¢/2(110)-type Burgers vectors. Similarly to the (010) case, such Burgers vectors must
be defined in the proper reference state under the condition of vanishing far-field stresses in the
(111) Au/Cu bicrystal. By arbitrarily choosing by = aa,/2[101] and by = aa,/2[011] as the
reference Burgers vectors, the quantized Frank-Bilby eq. (3.121) gives rise to the lozenge-shaped
dislocation structure that is specifically comprised of two arrays of parallel dislocations (with no
local reactions at nodes): the initial line directions are defined by & || [011] and &" || [101], so
that the individual characters are ¢ = ¢y = 60°, and the angle between these two unrelaxed
sets of dislocations is "™ = 60°. In addition, p{ = p§ = 2.25144 nm, so that the inter-dislocation
spacings are given here by di"" = d;"" = 1.94980 nm.

As illustrated in Fig. (3.26), the dependence of the total far-field stress components in the (111)
system, i.e. in both Au (black line) and Cu (red line) on §, yields to a predicted reference state for
da11) = 0.57962, so that a,es = 0.38096 nm, and also to the magnitudes of correct Burgers vectors
are defined by by = by = 0.26938 nm. Moreover, Fig. (3.26) shows stronger spurious stress values
for the (111) than (010) system cases, by a factor of 2.33 (2.15) in Au (Cu) when 6 = 0, i.e. when
Au is improperly selected as the reference state. The same qualitative conclusion regarding the
spurious stress state can be drawn for § = 1.

Using the aforementioned Frank-Bilby solution as the initial dislocation structure for possible
elastic strain relaxation, Fig. (3.27b) shows the pre-computed elastic landscape as function of #;
and 17, associated with the (111) misfit interface case. The symmetric landscape has been com-
puted using the same number of nodal points than in Fig. (3.27a), for which the orientations of
both plots are different for clarity. The elastic energy per unit interface area for the unrelaxed



3.6. Elastic strain relaxation in interfacial dislocation patterns 93

(a) Dislocation structures

Intermediate

[112]

[111]

0.01
0.008
0.006
0.004
0.002
0

0

FIGURE 3.29: Plots of initial, intermediate, and final states along the computed minimum-energy path
for the (111) Au/Cu heterophase interface. The initial periodic network of lozenge-shaped misfit disloca-
tions undergoes local relaxations and also leads to a final elastically relaxed hexagonal-shaped dislocation
pattern with lowest short-range strain energy. (a) Dislocation structures. Distribution of (b) the normal dis-
placement component 1, and (c) the displacement norm u. See text for the displacement field expressions.
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lozenge-shaped dislocation pattern is given by ye(71 — 1/2,172 — 1/2) =~ 0.49568 ].m~2, with
ro = b1 /4, which is slightly lower than the stored energy for the (111) Au/Cu system forn; — 1/2
and 1, — 1/2. Here, the landscape for the (111) system is qualitatively and quantitatively differ-
ent than the (010) case, since the former gives rise to the existence of a unique minimum-energy
dislocation configuration with three sets of dislocations resulting from junction reactions.

The energy minimization procedure that involves the conjugate gradient algorithm is per-
formed by using a prescribed convergence criterion in the pre-computed energy landscape. The
interface dislocation structures with the lowest elastic energy are considered to be found when the
difference between the values of the stored elastic energy for two subsequent iterations is less than
10~* J.m 2. The corresponding minimum-energy path is determined by using the nudged elastic
band method between the initial non-equilibrium and the minimum-energy states, for which the
spring constant k in eq. (3.120) has been varied over several orders of amplitude without notice-
able effects on the computed path. The obtained minimum-energy path is displayed in Fig. (3.27b)
by the black curved chain with equidistantly positioned images (i.e. intermediate states), where
the final configuration state is designated as the final elastically strain-relaxed dislocation pattern.
Here, the smooth path has no energy barrier (therefore also, no saddle point) and 15 intermedi-
ate states, which connect the initial and final states, are constructed. The minimum strain energy
related to the relaxed dislocation pattern is given by 7™ = «.(; — 0.31981,7, — 0.31981) =
0.44733 J.m 2, which corresponds to a significant decrease in strain energy of 9.75%.

The variations of strain energy along the median (1 = #,) of the two (010) and (111) Au/Cu
landscapes, as displayed by the blue and red dotted lines in the insets of Fig. (3.28a), start from
their initial corresponding lozenge-shaped dislocation structures at 1 = 1, = 1/2 with different
stored energy values. The red (blue) line illustrates the (un)favorable elastic energy profile for
junction formation that continuously decreases (increases) with decreasing both values of #; and
12 from 1/2 at the (111) ((010)) Au/Cu heterophase interface. The intermediate states between
the lozenge-shaped and the relaxed hexagonal-shaped dislocation configurations for the (111)
case are indexed by s, = 1,...,15. Such considerable saving in strain energy along s, is related to
the change in dislocation structures, e.g. dislocation characters ¢; and the angle ¢ between ¢, and
¢1, which can be examined along the determined minimum-energy path. Figure (3.28b) plots these
geometrical characteristics in terms of ¢ (in green), ¢; (blue), ¢> (red), and ¢3 (black, for the newly
formed set of dislocation junction) as a function of s;,. It is also found that the geometrical equilib-
rium configuration of the minimum-energy dislocation pattern is characterized by ¢*1 ~ 128.4°,

1= ¢;1 ~ 85.8°,and ¢ = 90°. Both sets 1 and 2 deviate by 4.2° from pure edge characters, and
the dislocation structure deviates by 8.4° from regular hexagonal-shaped configuration. Such dis-
location arrangement is in agreement with atomistic analysis in iron, where deviations from pure
screw dislocations in (110) bee twist GBs with comparable order of dislocation spacings have been
reported using molecular statics simulations [290].

Figures (3.29) illustrate the strain-relaxed rearrangements of the interfacial dislocations from
the lozenge-shaped configurations on the (111) heterophase interface using different elastic quan-
tities, which can, for example, be used to analyze the likely regions for nucleating interface dis-
locations or absorbing and annihilating point defects (interstitials and vacancies). All contour
plots are displayed at xo = 3 a4, with respect to the three dislocation configurations shown in
Figs. (3.29a), i.e. the "initial"! at sy = 1, intermediate (s, = 8), and the final relaxed (s;, = 16) states,
for which the specific intermediate case is located exactly halfway between both initial and final
states, as depicted by the orange point along the computed minimum-energy path in Fig. (3.27b).
A schematic representation of the atomically sharp (111) Au/Cu interface with current periodic
dislocation lines is shown in Figs. (3.29a), where the Au (Cu) atoms are plotted by white (gray)

1Here, "initial" means the first admissible configuration with three sets of dislocations, where an initially small
dislocation segment for the junction has been introduced (in the direction of the steepest descent between the two
parent sets) to solve the corresponding solutions for hexagonal-shaped dislocation patterns.
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dots. The three corresponding Burgers vectors on the (111) close-packed plane are represented as
well.

Figures (3.29b) and (c) illustrate the normal displacement component 1, = ﬂgis(xl,?) AAu, X3)
and the displacement norm u = \ﬁdis(x1,3a Au,X3)|, respectively. Figures (3.29b) show that the
minimum values of u = —0.01 nm are located in the centers of the dislocation patterns, while
the maximum values yield close to the dislocation junctions for the initial unrelaxed pattern. In
the final relaxed dislocation configuration, the maximum values are unequally distributed at the
three-fold dislocation nodes, e.g. J; = {J1, J3,J5} versus J; = {J», J4, Js}, for which the set of
junction nodes J; gives rise to larger amplitudes of u; than J;;. Figures (3.29¢c) display the complex
relief of displacement norm u with the largest magnitudes at Jj, for illustration.

3.6.6 Comparison with atomistic simulations

The model interfaces for the present comparisons with atomistic simulations are selected accord-
ing to the following criteria:

1. The structure of the interface is describable as a dislocation network. The present study is
concerned with dislocation-based models of interface structure. Thus, interfaces to which
these models do not apply are not suitable.

2. This dislocation network undergoes a relaxation through the dissociation of four-fold junc-
tions into three-fold junctions. Some interfacial dislocation networks are not suitable for the
study because they contain stable four-fold junctions that do not undergo any relaxation.

3. The interface dislocation network is initially periodic and remains so as it relaxes. Moreover,
the dislocations in the network do not dissociate into partials. These choices are necessitated
by current limitations in modeling capabilities [249, 250]. The requirement of periodicity is
met by selecting special interfaces that may be modeled by two overlapping sets of misfit
dislocations, whereas general interfaces involve three overlapping dislocation sets [1]. The
requirement of no dissociation excludes from consideration GBs in low stacking fault energy
materials.

4. The final structure of the relaxed interface is not the outcome of any inherent symmetry that
the interface possesses. For example, while twist boundaries on {111} planes in aluminum
meet all the foregoing conditions, they are excluded from consideration because the relaxed
dislocation structure in these interfaces has the same p6m symmetry as the underlying, un-
relaxed dichromatic pattern [69, 70]. Such a symmetry-driven relaxation does not constitute
a stringent test of the elasticity-based relaxation model.

5. Differences between the relaxed and unrelaxed dislocation network must be discernable in
atomistic simulations. Thus, the dislocations should not be so closely spaced that they are
difficult to distinguish yet not so far apart that they would require very large atomistic mod-
els. This criterion is met through judicious selection of the interface crystallographic charac-
ter (misorientation, misfit, and plane orientation).

All of the foregoing criteria are met by the two classes of model interfaces selected for the
present comparison: low-angle twist GBs on {110}-type planes in niobium (Nb t-GBs) as well as
heterophase interfaces between {111}-type planes of silver and {110}-type planes of vanadium
(Ag/V interfaces). For both interface types, a series of structures is considered by varying twist
angle, 0,1i.e. 0° < 6 < 10° for both interface types. When 6 = 0°, the Nb t-GB reduces to a perfect
single crystal while the Ag/V interface is in the NW OR [279, 192], where (110);_. and (100),,. are
parallel within the interface plane.

Ag/V interfaces formed in magnetron sputtered multilayers have been characterized exten-
sively [280]. They are observed in a variety of ORs and with a wide range of interface planes.

fec
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FIGURE 3.30: Nb-t GB energies computed as a function of § using the dislocation-based model and atom-
istic modeling.

Among the structures reported are Ag/V interfaces in the KS and NW ORs, both along Ag {111}
and V {110} planes. They have been previously modeled using elasticity theory, albeit without
accounting for network relaxations, as well us using classical potential [172]. Comparisons with
atomistic simulations revealed discrepancies that were hypothesized to arise from nodal recon-
structions of the kind investigated here. The dislocation-based model is presented in details in
section 3.6, while the embedded atom method potentials are used to model atomic interactions in
both Nb [294] and Ag/V [281].

No experimental investigations of Nb {110} t-GBs have been reported. Nevertheless, these
interfaces were previously investigated by atomistic simulations [173], by anisotropic linear elas-
ticity theory, and most recently using phase field models [211]. However, no quantitative com-
parison between structures predicted by the elasticity theory and atomistic modeling has been
previously conducted.

Nb {110} +-GBs

Figure (3.30) compares the energy of Nb t-GBs computed from atomistic models with values ob-
tained using the dislocation-based model, the latter using two different core cutoff radii. Both
atomistics and the elasticity theory reveal similar trends, with energies increasing monotonically
as a function of § within the range of twist angles investigated. Comparison of elastic results be-
fore and after relaxation of the dislocation network shows that this step in the calculation yields
a relatively modest reduction in elastic energies. For example, for 8 = 2°, the reduction is ap-
proximately 8% of the initial energy. Energies computed from atomistic models are higher than
those obtained from the elasticity theory. This difference is due to dislocation core energies, which
are inherently captured in the atomistic calculation, but are not accounted for in the dislocation
approach. The larger the core cutoff, the lower the energy computed by the present calculations.
Interestingly, regardless of the cutoff radius, the values are smaller than the atomistic ones by
an apparently 0-independent factor, consistent with both the elastic and core energies scaling in
proportion to the total length of dislocation segments in the network, to a first approximation.
Figure (3.31) compares the structure of Nb t-GB dislocation networks determined from atom-
istic modeling to ones found with the elasticity theory, using 6 = 2° as an example. Other twist
angles give rise to qualitatively similar structures. The atomistic structure in Fig. (3.31a) consists of
a 2-D tiling of hexagonal regions separated by a connected network of misfit dislocation segments
of predominantly screw character. Two types of segments are present: ones with 3 (111)-type
Burgers vectors as well as ones with (100)-type Burgers vectors. As shown in Fig. (3.31a), the for-
mer are approximately twice as long as the latter. Consistent with previous studies in bce Nb [173]
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(a) = (b)

L <110>
FIGURE 3.31: Dislocation networks in Nb t-GBs obtained by (a) atomistic modeling and the dislocation-
based model with core cutoff radii of (b) and one quarter of the Burgers vector magnitude and (c) two times
the Burgers vector magnitude. Atoms in (a) are colored by their potential energy. The pattern is symmetric

with respect to the dashed mirror lines in (a). In (b) and (c), dislocation line segments are superimposed on
the unrelaxed dichromatic pattern of the GB.

and iron [288], both segment types have compact cores of atomic-scale dimensions. The hexagonal
regions making up the t-GB are symmetric with respect to reflections about mirror lines parallel
and perpendicular to the shorter segments (with (100)-type Burgers vectors).

Similar to the atomistic structure, the network predicted by the elasticity theory—shown in
Fig. (3.31b) and (3.31c)—also consists of predominantly screw character dislocation segments with
1(111)- and (100)-type Burgers vectors, the former with approximately twice the length of the
latter. However, unlike in the atomistic structure, for a core cutoff radius of one quarter of the
Burgers vector, the dislocation-based model network consists of slightly distorted hexagons with
no lines of mirror symmetry, as evidenced by the unequal values of the angles #; and a, between
the short and long dislocation segments in Fig. (3.31b). In addition to the geometry shown in
Fig. (3.31b), the elasticity theory also predicts another stable dislocation network configuration
with identical energy by reversing the circulation of the Burgers vectors and with the values of
the two angles a; and a; reversed. Thus, the complete elastic energy landscape of the Nb t-GB
dislocation network with this cutoff radius—expressed in terms of the nodal positions—shares the
same symmetry as the GB dichromatic pattern itself, but the individual dislocation configurations
corresponding to the minima in that landscape do not.

The discrepancy between the elasticity-based and atomistic structures has been analyzed in
detail and confirmed that, for core cutoff radii of one quarter of the Burgers vector, it occurs sys-
tematically for all the twist angles and is not due to inadequate relaxation of either model. Its
cause ultimately traces back to the character dependence of dislocation strain energies in bcc crys-
tals [20, 11]. In elastically isotropic bcc crystals, screw dislocations have the lowest energy per
unit length. By contrast, in elastically anisotropic materials, the dislocation energy per unit length
is lowest for mixed dislocations. For instance, in Nb, dislocation arrays with [111]-type Burgers
vectors exhibit a deviation of ~ 10° with respect to perfect screw character [250]. The asymmetry
of the distorted hexagons in Fig. (3.31b) increases the edge component of the constituent disloca-
tion segments, thereby reducing the elastic strain energy, as compared to the perfectly symmetric
hexagons in Fig. (3.31a).

Interestingly, when the core cutoff radius is increased to two times the Burger vector, the elas-
tic prediction of the relaxed dislocation network is symmetric, as shown in Fig. (3.31c). At first, it
might be tempting to say that using a larger core cutoff changes the character dependence of the
dislocation elastic energy, e.g. by lowering the energy of the pure screw relative to a mixed char-
acter. However, the form of the elastic field around an isolated dislocation has no characteristic
length scale, so changing the core cutoff cannot lead to any change in the character dependence
of dislocation properties [7]. Rather, the difference between the patterns in Fig. (3.31b) and (c) is
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FIGURE 3.32: Ag/V interface energies computed as a function of § using the dislocation-based approach
and atomistic modeling.

likely due to the length scale of the GB dislocation network itself, in particular to features of its
elastic field within a distance of ~ 2b from the three-fold junctions that, when excluded from the
elastic energy calculation, shift the elastic energy minimum to the symmetric state. Evidence for
such near-node effects at twist GBs along {110}-type planes in bcc metals has been found in phase
tield simulations of dislocation networks, where dislocations are seen to acquire a slight curvature
near three-fold junctions in some materials [270].

Ag/V interfaces

Figure (3.32) plots energies of Ag/V interfaces as a function of twist angle, 6. As discussed in
section 3.4.6, the energies of heterophase interfaces, such as Ag/V, may be viewed as the sum
of a chemical contribution, which is due to the difference in bonding between the two elements
in the coherent reference state, and a contribution from the misfit dislocation network, which is
associated with the relaxation of coherency. Only the latter depends on the twist angle while the
former is a constant, independent of 6. The elasticity-based model only computes the elastic con-
tribution to the misfit dislocation network energy. Thus, to ease comparison of energies computed
from atomistics to those computed using the elasticity theory, all plots in Fig. (3.32) have been
shifted so that their minima are at an energy value of zero. For the atomistic calculations, a down-
ward shift of 0.85 ]/m? was imposed while all the elastic calculations were shifted downward by
0.24 J/m?2. The difference between these shift values, i.e. 0.61 J/m?, is due to the chemical bond-
ing contribution to the total interface energy. It is substantially larger than the elastic contribution.
This conclusion is consistent with previous first-principles calculations, such as the one on Fe/VN
interfaces reported in Ref. [134].

The Ag/V interface energies computed using the atomistic model exhibit local maxima at
6 = 0° (the NW OR) and 8 = 5.25° (the KS OR), two nearly degenerate minima at 6 = 4.5°
and 6 = 6°, and a monotonically increasing energy for twist angles greater than 6°. Figure (3.32)
plots the elastic energies for two unrelaxed dislocation network configurations, labeled "case 1"
and "case 2". These cases correspond to two different solutions to the Frank-Bilby equation ob-
tained by selecting two different combinations of misfit dislocation Burgers vectors, following the
terminology introduced in section 3.4.6. Thus, case 1 is identified as the solution obtained using
Burgers vectors b; and b, and case 2 as that obtained using b; and bz, with by = a,¢/ 2[101],
by = a,¢/2[011], and b3 = a,¢/2[110] in the reference crystal. Case 1 has the lower energy for
all twist angles, except in the interval ~ 4.25° < 0 <~ 5.25°, where the energy of the latter is
lower. One point of intersection between the case 1 and case 2 plots in Fig. (3.32) occurs near a
local energy maximum, close the KS OR. Each of the unrelaxed configurations predicts one energy
minimum, with twist angles and energies in reasonable agreement with one of the minima in the
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(by 0=2° d 6=8°

FIGURE 3.33: The dislocation structures of the Ag/V interface obtained by the atomistic modeling (atoms

coloured by their local potential energies using the same color bar as in Fig. (3.31) from —5.13 ev (blue) to

—5.11 ev (red) and dislocation-based model (dislocation segments superimposed on dichromatic patterns).

In (a), (b), and (c), the black line segment is the dislocation segment created upon dissociation of a four-fold

node into two three-fold nodes. There is no such segment in (d) because the four-fold node in this network

does not dissociate. The thin black lines in (a) illustrate the shape of the initial, unrelaxed dislocation
network.

atomistic model. Moreover, the energies of case 1 are in quantitative agreement with the atomistic
model for 6 > 6°. However, at lower twist angles (6 <~ 6°), case 1 systematically overpredicts
the interface energy by approximately 20 m]J/m?.

As demonstrated in Fig. (3.32), relaxation of the dislocation network structure in the elasticity-
based model removes nearly all discrepancies in energy between the two models. Quantitatively
accurate predictions of interface energies are achieved over the full range of twist angles, with the
greatest differences being on the order of 10 mJ/m? and occurring within a relatively narrow range
of twist angles centered approximately on 6 = 5.5°. Most notably, the match in the energy and
twist angle of the minimum near 6 = 4.5° improves and the discrepancy between the elasticity-
based model and atomistic energies for § <~ 4° is removed.

The dislocation network geometries predicted by atomistics and the elasticity theory are com-
pared in Fig. (3.33) for several representative twist angles. All these examples exhibit good qualita-
tive agreement between the two modeling methods, with the general shape of the relaxed patterns
matching that of the atomistic models. Small quantitative discrepancies in the lengths and angles
of individual dislocations are nevertheless apparent, e.g., in the orientation of the dislocation seg-
ments colored blue for § = 2° in Fig. (3.33b). Interestingly, the elasticity-based model predicts
no dissociation of four-fold dislocation nodes for 6 = 8°, thereby explaining why the unrelaxed
network labeled "case 1" in Fig. (3.32) predicts the energy of this interface so accurately.

Discussion

It is found that incorporating relaxation leads to improved predictions of interface energies for
Ag/V interfaces, yielding nearly perfect quantitative agreement with atomistic models. In par-
ticular, it did not appear that these predictions might be improved by incorporating a dislocation
core model into the elasticity theory. This apparent insensitivity to core structure may be due to
the relatively large (1 nm-scale [258]) width of misfit dislocation cores in such interfaces as well
as their confinement to the interface plane [73]. It indicates that the effectiveness of linear elastic,
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dislocation-based models in predicting interface energies and structures is greater than anticipated
for some heterophase interfaces, such as the Ag/V interface studied here.

The investigation also shows that, while incorporating relaxations improved quantitative pre-
dictions of Ag/V interface energies, it did not alter the qualitative features of the energy versus
twist angle plots obtained from unrelaxed dislocation models. In particular, it appears that qual-
itative features of this curve—such as the number of energy minima and maxima as well as their
twist angles and relative energies—may be obtained via consideration of unrelaxed structures
alone. Relaxation of the dislocation network is not essential for predicting those aspects of the
interface energy dependence on twist angle. However, dislocation network relaxation is essential
for correctly predicting the geometry of the dislocation networks in these interfaces.

For Nb t-GBs, marked differences between energies computed using the elasticity-based model
and atomistic models are observed. These differences are attributed to the significant contribution
of dislocation cores to the total energy of these interfaces: a contribution naturally accounted for in
the atomistic model, but not in the elasticity theory. In particular, the incorporation of dislocation
network relaxations in the elasticity theory does not resolve the observed discrepancies. More-
over, use of short (~ b/4) core cutoff radii leads to asymmetric lowest energy network geometries,
contrary to atomistic models. Thus, to better predict the energies of Nb t-GBs, the dislocation ap-
proach should be augmented with a core model. Overall, the introduction of core-spreading dislo-
cations in continuum mechanics is a long-standing problem. One approach might be to include a
Peierls-Nabarro type calculation with gamma-surfaces obtained from first principles calculations
[70]. Some phase field models of dislocation behavior already use such techniques to model dis-
location core spreading as well as the corresponding core energy [270, 211]. A second branch is
based on generalized higher-order continuum dislocation mechanics [85, 155, 238, 208], which pro-
vides length-scale dependent field solutions. Besides these approaches, a recent core-spreading
treatment to the present interfacial dislocation networks has been proposed, as described in sec-
tion 3.8.

3.7 Interaction with extrinsic dislocations in bimaterials

In this section, lattice dislocation interactions with semicoherent interfaces are studied by means
of anisotropic field solutions in homo- and hetero-structures. The Stroh formalism cover different
shapes and dimensions of various extrinsic and intrinsic dislocations?. As illustrated in Fig. (3.34),
equi-spaced arrays of straight lattice dislocations and finite arrangements of piled-up dislocations
as well as polygonal and elliptical dislocation loops are considered using the superposition prin-
ciple in three dimensions. Interaction and driving forces are derived to compute the equilibrium
dislocation positions in pile-ups, including the internal structures and energetics of the interfacial
dislocations. For illustration, the effects due to the elastic and lattice mismatches are discussed
in the pure misfit Au/Cu and heterophase Cu/Nb systems, where the discrepancies from the
approximation of isotropic elasticity are shown.

3.7.1 Extrinsic dislocation arrays and loops

In classical dislocation dynamics calculations [246, 254], the material volumes of interest are usu-
ally regarded as a representative part of infinitely large crystals that are replicated by periodic
boundary conditions to preserve the translational invariance. It becomes also useful to derive ac-
curate field solutions for infinite dislocation arrays, for which the periodicity of lattice dislocations

2In accordance with the former derivations established by the Pan and workers, two explicit conventions have been
changed with the foregoing formalism: the interface normal n || x, with n || x3, as well as the positive with negative
sign of the exponential in the Fourier transforms in egs. (3.5) and (3.73), without loss of generality. These conventions
will be adopted to the end of the manuscript.
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(a) Misfit dislocations (b) Lattice dislocations (C) Dislocation loops (d) Piled-up dislocations (C) Elastic superposition
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FIGURE 3.34: Linear superposition scheme of elastic field solutions in dissimilar anisotropic materials due
to the presence of (a) misfit dislocation patterns at the heterophase interfaces, (b) infinite long straight
lattice dislocations in the upper material A, (c) arbitrary polygonal and elliptical dislocation shear or pris-
matic loops in both crystals, (d) piled-up dislocation arrays onto specific glide planes in the lower material
B. For each dislocation problem, the insets show particular features that are explained in the text. The
three-dimensional applied stresses, internal stresses, image as well as self-stresses are superposed in (e) to
compute some interaction force distributions on defects, as illustrated in the insets of (c) and (d).

is consistent with infinitely periodic boundary conditions applied to the elementary representa-
tive volumes, without introducing truncation in replicating simulation cells. The elastic solutions
for arrays of lattice dislocations and dislocation pile-ups located in bimaterials are analytically ob-
tained using anisotropic elasticity, respectively. Without loss of generality, the following solutions
are given for singularities located either in material A or B.

Elastic fields for infinitely periodic dislocation arrays

The linear elasticity problem of the elastic field solutions in both materials A and B due to a
Volterra-type lattice dislocation array with periodic inter-dislocation distances / in bicrystals is
solved for single dislocations [199, 198, 200] with infinite series [61]. For n lattice dislocations
from —oo to oo, which are located in material A at (x1* 4 nk, x}t), the corresponding displacement
field in material A, i.e. with x3 > 0, is expressed therefore as

All latarray % i [ < (xl ( lat+nh>_|_Ap (X3—x1at))>Aq }

- X (3.126)

i m| 32 aA-(In(x — (" + k) + aptxs — apt ) ag®],

= =1

where the diagonal complex matrices (') are introduced as follows

()= [1 2 3] , (3.127)

since the three eigenvalues p' in eq. (3.126) do not allow an index representation. The first term in
eq. (3.126) is the full-plane dislocation Green’s functions in A, within which A = [aa!, ra?, Aa®]
is the complex eigenmatrix associated with the corresponding Stroh eigenvalues Ap®. Further-

more, the vector Aq* is defined by
AG” = ABT oAD", (3.128)
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where the matrix oB is given by AB = [Ahl, NG Ah3}, within which the subsidiary complex
vectors h* are related to the vectors a* by

pzx W = plX (Rt 4 poc T) a* = — (Q + pt’é R) a®, (3.129)

with Qi = cik1, Rik = citks, and, Tjx = cizr3. On the other hand, the displacement field in material
B is given by

[ee]

1
w0 = L5 i Y pA(InGe — )+ e, G130

—o0 a=1

where the eigenmatrix gA is accordingly associated with the Stroh eigenvalues gp*. The second
term in eq. (3.126) as well as the single term in eq. (3.130) correspond to the dislocation Green’s
function solutions due to the presence of the elastic mismatches, for which the complementary
complex vectors oq* and gq* are determined using the standard continuity conditions along the
interface of the two semi-infinite materials. These unknown vectors can be obtained for perfect
interfaces [240, 200], as

Ag" = AATL (AM 4 5M,) - (3M, — AM,)-AA, - T* AgT

-1 -1 o (3.131)
Bg" =BA (AM, +8M) -(AM+ aAM, ) aA- 1" 5q
where the diagonal matrices I* are defined by
3 1 0 0
I'=(1,00), "=(0,1,0) , and, P=(0,0,1), sothat: Y I*=1[0 1 o =1, (3.132)
a=1 0 0 1
and the impedance tensors M in eq. (3.131) by
M=—-iB-A!, (3.133)

for which both tensors A and B satisfy the classical orthogonality relations in both adjacent ma-
terials [240]. In index notation, by substituting the derivatives of the displacement fields from
egs. (3.126) and (3.130) with respect to the space coordinates into the constitutive Hooke’s law in
eg. (3.71), and by virtue of the following explicit solution [63, 189] for the sum over n from —oo to
o0, 1i.e.

Y (z4nh)t = % ctg %z, (3.134)

n=—oo

both stress states in materials A and B can also be straightforwardly determined as follows

lat array

3
i Z [ ACijk1 + AP" ACijk3) AAkm ATy Ctg( p (1 — 2 4 ap™ (x5 — X{o,“)))]

S‘\H

1 > > i1 o 7T lat o, lat
+ 7 Im Zl [ Zl (ACz’jkl + Ap ACijkB) AAKm ATy, Ctg(ﬁ(xl —x{" + Ap"'x3 — ApL X3 ))] ,
(3.135)
1 3 3
poy " (x) = pm ) { Y (BCijia + BP" BCijka) BAKm B4y, Ctg(%(xl — X" 4 pp"xs — Ap“xlat))} ,

m=1 a=1
(3.136)
which complete the stress fields in A and B produced by infinitely periodic arrays of lattice dislo-
cations with inter-dislocation spacings h located in the anisotropic upper material A.
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Elastic fields for piled-up dislocation arrays

Since the single dislocation pile-up system can be viewed as a discrete set of identical parallel lat-
tice dislocations lying in the same slip plane with combinations of attractive and repulsive forces
on each dislocation until a barrier (here, the semicoherent interface) is encountered, the particular
boundary-value problem consists of superposing the elastic stress fields produced by each dislo-
cation from the entire pile-up. This summation over N dislocations that are individually located
at xlats = (xlats xlats) for the sth piled-up lattice dislocation of interest (here, invariant along the
x7-axis), with the same (positive or negative) sign, is also carried out over the single stress field
solutions, as follows

N

lat pile-u latsth lat pile-u 1 t

a0y () = Lagt (x), and, oy P (x Z st (3.137)
5= =

where the self-stress contribution should be omitted in the self-force calculations. Using the stan-

dard limit when h1 — oo, i.e.

lim 1ctg Ez = (mz)7t, (3.138)
h—o h

in the expressions similar to egs. (3.135) and (3.136), and replacing the pre-subscripts A with B
(and contrariwise) for dislocations in the lower material, the classical field solutions based on
the single-dislocation Green’s function in material A for the s individual lattice dislocation are
therefore obtained, i.e.

3 3
Im ) [ Y (aCijin + AP" ACijks) AAKm Ay, (X1 XP 4 ap™xg — pptaEtt) 1} ,
m=1

a=1
(3.139)

AT (x) =

ql=

while the field solutions in material B are given by

lat s
0'1]

:H*—‘

3
Z [ (Bcijkl + sp™ BCijk3) B AR By, (1 — X 4 pp™ (x5 — x%;ats)) 71]

1 3 3
+Im ), [ Y (BCijer + BP" BCijka) BAKm B (X1 — X7 + Bp"x3 — pplA5) 1} ,

m=1 a=1
(3.140)
such that the piled-up dislocations field solutions in both materials A and B are determined by
substituting egs. (3.139) and (3.140) into egs. (3.137), respectively.

Furthermore, in order to analyze the equilibrium conditions of discrete piled-up dislocation
walls that consist of infinite and equi-spaced arrays of dislocation pile-ups [99, 218], the corre-
sponding stress fields associated with such idealized dislocation arrangements can similarly be
written as

<

N N
lat wall lat th lat wall y lat "
a0; W (x) = ZlAUi;1 T (x), and, o v(x) = 13‘7; T (x), (3.141)

s= 5=

where jclatamays” gnd polatamays® 5pe given by egs. (3.135) and (3.136) respectively, within which
all pre-subscripts A must be changed with B, and vice versa, and also (x}f, x12t) with (xlats, xlats)
for the st piled-up dislocation within the specific discrete wall of interest.

Extrinsic dislocation loops

Line-integral expressions for elastic stress fields due to planar polygonal and elliptical disloca-
tion loops in the three-dimensional bimaterials are given by simple integrals. For simplicity, a
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constant extended Burgers vector Abl"c’p is defined over the planar cut-surfaces Sa in material
A, as depicted by the gray surfaces in Fig. (3.34c). The solutions for a corresponding displace-
ment discontinuity in material B is found in Ref. [256]. Based on Betti’s reciprocal theorem in
three-dimensional space, the displacement components induced by the dislocation loops can be
described as integral form [200], i.e.

WP () = [ o, %) B () P (60 dS() = [ () G (0, ) P (1) m™P () dS ()
(3.142)

with Uik]-(y, x) the Green'’s stress at x induced by a unit point force at y in k-direction, and G, (y, x)
the tensorial point-force Green’s functions [112, 113, 201, 200]. The latter functions represent the
elastic displacement in m-direction at location x caused by the unit force in k-direction applied at
y, while the displacement discontinuities are mathematically equivalent to the derivatives of the
Green’s tensors. In eq. (3.142), the vector n!°°P represents the unit normal to the planar surface S
capping the dislocation loop.

Since the point force (called source point) acts at y in the upper half-space of a bimaterial, i.e.
y5 > 0, the general Green’s function tensor at x (called field point) is separated into two parts, i.e.

AG (y, x) = AG'®(y, x) + AG™%(y, x), x3>0
Vy; >0: Gy, x) = _ (3.143)
BG' (y, x) = pG'™(y, x), x3 <0,

where G'® corresponds to the full-space part and G'™¢ to the complementary image part, for
which the latter is associated with the elastic mismatch in dissimilar materials. Here and in the
following, the symbol 1 (1) is introduced to unambiguously specify that the tensorial Green’s func-
tions are associated with a dislocation loop that is located in the upper (lower) material. For in-
stance, AG'® (y, x) represents the full-space Green'’s function tensor computed in the semi-infinite
linear elastic crystal A at x when the point force y acts at the upper crystal 7.

For a specific surface Sy bounded by a dislocation loop in the upper material A with con-
stant elastic stiffness and uniform Burgers vector, the corresponding displacement gradients can
straightforwardly be separated into two parts as follows

1 It ! 00 im
A () = i b PAn [ (s, (030 £ AGIE (0] dS(), s
A

where differentiation on the left-hand side is with respect to y. Only the corresponding derivatives
of the point-force Green’s function tensors are therefore needed to determine the elastic distortion
(also, the elastic stress) fields, which is discussed and detailed in Appendix A from Ref. [256].
Thus, the complete point-force Green’s displacement tensor in real space is given by

1 T
o [ AACFGED aATd0, x>, o
AG“’O(!/, x) = 1 T and, AGTimage(y, x) = ﬁ / AA*'ACT'AAt de[
JO
ﬁ/o AA-F(ap") -aA"de,  0<x<y;,
(3.145)
where both matrices F(sp'), or F(ap!) by substitution, and oC" for the full-space and comple-

mentary image parts, respectively, are defined by

F(ap') = ((x1 — 1) cos 0 + (x2 — ) sin 6 + ap*(x3 — y3)) ' I

ACh = ((x1 —yy) cos b + (x2 — y,) sin 6 +Ap§ X3 — Ap7y3)71 (—AA,jlo(AM* + M) L (AM — BM)-AA).
(3.146)
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By virtue of eq. (3.71) and eq. (3.144) with egs. (3.145) and (3.146) , the stress fields produced
in A due to dislocation loops located at the upper material A are expressed as follows

s

(27) ™! ACunvkq ACiimi Ab}OOPAniOOP /0 {* AA*'/SF,xpyq(ApI) dS(x) -a AL + AA*'/SAC,;M, ds(x) 'AAt] o de, X3 > Y3

. JSA JSa
e — e —|
loop 1
AU'va (y) = (1) @ (2) @

s

(27) ™" AcCuikg ACijmlAb}OOpA”}OOP/O {AA‘/SF,xpy” (ap") dS(x) -AA" +AA*'/5AC,;M4 dS(x) ‘AAt] kder 0<x3 <y,,

A A m.
(3.147)

in terms of two surface integrals (1) and (2) over a given arbitrary, uniform, and flat polygonal sur-
face Sa. The analytical solutions of these surface integrals are given in Appendix B from Ref. [256],
so that eqgs. (3.147) contains convenient line-integral expressions for both the full-part and the im-
age parts over [0, 77|, only.

On the other hand, the stress field solutions that are generated in the lower material B (i.e. x3 <
0) are needed to complete the entire stress fields in anisotropic bimaterials. Following the same
derivation as in the upper half-space, the analogous displacement gradients in B are expressed as

1 loop 1
B () = ACqm AU P AT /s BGhik y, (¥, %) dS(x), (3.148)
A

where the complementary (i.e. image only, without full-space contribution) tensorial point-force
Green’s functions from eq. (3.143) are defined by

1

5G (v, %) = 5G™ (Y, x) = 5

7T
/ AA.-5Cl-5AL d6, (3.149)
0
for which the matrix gC' is given by

BC' = ((x1 —y;) cos O+ (x2 — y,) sinf + ap¥ a3 —5pl y3) ' (AT (AM, + M) (M, +5M)3A,),
(3.150)
so that the completing stress field solutions in the lower materials B are finally given by

1 _ 1 1 T
B0 (Y) = (270) " BCouky ACijmi AbjoopAnimp/O [AA*'/SBC,L,% dS(x) 'BAi]mk do,
A
|

)

(3.151)

where the expression for the integral (3) is analytically determined as well.

Equations (3.147) and (3.151) yield the final inhomogeneous stresses in both neighboring crys-
tals A and B with different anisotropic elastic constants, respectively, which are induced by arbi-
trary polygonal-shaped as well as elliptical dislocation loops in the upper material. These expres-
sions are suitable for numerical treatments (e.g., using the weighted Chebyshev-Gauss quadrature
method) since line integrals over [0, 77| are needed for both full-part and image parts in stresses.

3.7.2 Internal forces on intrinsic and extrinsic dislocations

A general concept in classical dislocations dynamics simulations is based on the assumption of
equilibrium of forces at each time increments that act along the dislocation lines or loops (e.g.,
polygonally discretized into segments). These forces arise externally from the dislocation of inter-
est (as a long-range force) and from the dislocation itself (as a self-force). In the following, these
two contributions are described.
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The long-range Peach-Koehler formula

Many features of crystalline solids can be explained based on the conservative driving forces to
dislocation lines and loops. In the present work, to determine the driving force exerted on dis-
locations by the total stress field o*°!(x”) applied at the coordinate x” of point P, the long-range
Peach-Koehler force f**(x") per unit length is used [203], i.e.

ATRGE) = e by () 71 (67) Gr(x") = e by (x°) (077 + ol (xF) + o () + 'IOOp( ")) Ge(x"),

(3.152)
where € is the permutation tensor, and the superimposed bars to any stress quantities are used to
indicate that the stress fields exclude the singular self-stress field components which would yield
unrealistic divergent components. Thus, the local stress fields in eq. (3.152) are originated from
external applied (here, uniform) stresses ¢?FP, and the internal stresses produced by the other
dislocations, i.e. including the misfit dislocation stresses oMt lattice dislocation structures (arrays
and pile-ups) 72, and dislocation loops &'°°P, where all field solutions include the complementary
image stresses arising from the presence of dissimilar interfaces.

Self-force on planar dislocation loops

Without considering any nonlinear interatomic interactions due the dislocation cores, the standard
self-force is thought of as resulting from the elastic self-energy of the dislocation loops. From
Ref. [97], the self-energy of a planar dislocation loop with arbitrary shape is defined to be the
strain energy exterior to a tube of cut-off radius € surrounding the dislocation loop L, such that
the corresponding stored energy value is formally finite. The total self-energy W*!f for a given
dislocation loop is also separated into two contributions [45, 97, 13], i.e.

Wself Wself +W self 2 / 100p loop( ) H;Ube ds + % / U};)OP (x) bI'OOP n;ube dS, (3153)
Se

1
where n'"Pe is the inner normal on the tube T, surrounding L, referred as the tube self-energy
contribution, and S, is the portion of an open surface S bounded by L not enclosed by T, i.e.
the cut self-energy part. After substantial manipulation [98, 97], the tube contribution to the self-
energy is given by

Wself 2/d£/ 100p 10010( )n ;“beedw :H(oc)/dﬁ, (3.154)
L

where

SET aul""P

1 27T
H(w) == | =3 / o

(3.155)
d w

with w the polar angle about the dislocation in any plane cross-section of the tube, and ¢; the
Airy stress function vector. The rigorous derivation in Ref. [97] by varying the self-energy in
eq. (3.153) with respect to an arbitrary in-plane virtual normal displacement of the dislocation
loop gives rise to the self-consistent treatment of the total distributed (and also signed) self-force
on the dislocation loop at point P of interest. The complete line-tension self-force expression is
also defined as follows

Il = ;bl nj(o, 1O(’p(xPJrem) +(71°°p(xp em)) +xE(¢) —K|:H(DC) +

o
on? |’

L |
tube self-force

(3.156)

cut self-force

where m = n x T points inward for convex planar dislocation loops (i.e. toward the centers)
with T the unit local tangent vector to the planar loop, « is the local curvature at point P, E is the
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standard pre-logarithmic energy factor of an infinite straight dislocation with tangent ¢, and H is a
tube integral around the same latter dislocation. The term E in eq. (3.156) is expressed as function
of the polar angle ¢, which is measured between the Burgers vector and the line direction ¢, i.e. ¢
denotes a given character angle, where ¢ = 0° corresponds to a pure screw dislocation [219], while
H depends on the angle a between T and an arbitrary datum [97, 13]. The datum is conveniently
chosen here along the fixed Burgers vector of the corresponding planar dislocation loop. Hence, «
is also the local character angle, measured counter-clockwise from the Burgers vector to the local
tangent vector T at every point on the loop. In particular, « = ¢ + 90° for circular shear dislocation
loops, where more complex geometrical relations arise for arbitrarily-shaped dislocation loops.

Importantly, because these energy contributions vary with dislocation characters (e.g., edge
and screw dislocations have different energies), the line-tension self-forces can exert a torque on
the line portion of the curved dislocation of interest in order to rotate it into its orientation of
lowest energy. It is worth noting that the first part in the cut self-force contribution in eq. (3.156) is
given in Ref. [43], where the singularity is removed by defining the stress as an average of stress
evaluated at two points on the opposite side of and at a short distance € away from the dislocation
line. The correction term x E(¢), proportional to the curvature «, has been consistently obtained
in Ref. [97]. Here, if the force calculated from eq. (3.156) is positive, then it acts along —m and vice
versa, so that

fFaPy=—f(xPym. (3.157)

For large values of k! and (xe) !, the dominant cut self-force contribution in eq. (3.156) is
—xI', where I represents the classical local line-tension approximation [13], i.e.

2

r= <E(<p) - ;45) In((xe)™ 1), (3.158)

for which —«I" vanishes for any P along infinitely long straight dislocations, i.e. when x — 0. In
the following, € is chosen as the pre-determined cutoff distance r, that excludes the dislocation
singularities, i.e. € = 7.

3.7.3 On the piled-up dislocations in the (111)Cu/(011)Nb bimaterial

The considered interaction problems are related to the force equilibrium of piled-up systems with
infinitely long straight dislocations under the action of an externally applied shear stress that
maintains the lattice dislocations toward the impenetrable interfaces (i.e. without slip transmis-
sion across the boundaries) in (111)-type glide planes. Without loss of generality, the dislocations
with Burgers vectors sb" are embedded in the material B. Several cases, from the simple single-
crystal case of equilibrium pile-ups to the piled-up dislocations between the bimetallic semico-
herent Cu/Nb interface with relaxed interfacial dislocation arrangements and a shear dislocation
loop, are presented. The materials properties used in the calculations are listed in Table 3.1.

Computational procedures

The present calculations of equilibrium positions of N piled-up dislocations embedded in the
lower materials are carried out by using a numerical iterative relaxation scheme under constant
applied stresses. As commonly used in dislocation dynamics simulations, linear mobility law for
all (except for the leading dislocations) piled-up dislocations, individually located at x'2!* in single
glide planes, is phenomenologically introduced, i.e.

Uglide(xlats) =B~! glli(de(xlats) , (3.159)
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FIGURE 3.35: Specific internal stress components produced by the equilibrium (a) 6-mixed, (b) 9-mixed,

and (c) 12-screw piled-up dislocations against the interface in Cu using anisotropic elasticity. The same

component as in (c) is shown in (d) using the approximation of isotropic elasticity (obtained by the Voigt
averages). The horizontal lines denote the impenetrable interfaces.

where B is an isotropic viscous coefficient and is ~ 107> Pa.s for fcc solids [153]. In the following
calculations, B = 5.107° Pa.s. In eq. (3.159), the Peach-Koehler force is also used to compute
the velocity vg)iqe for dislocation glide, which in turn, is used to predict the newly positions of
the dislocation by adopting a standard time integration scheme (the explicit forward Euler time
discretization) accordingly, such that x'2(t + At) = x'3*5(t) 4 At vgjige (12'°).

The initial distributions of the piled-up dislocations are aligned and arbitrary equi-spaced on
the same glide plane until the net resolved force on each dislocation (except acting on the first
leading dislocations at the interfaces) is less than 107> N/m. For the specific leading dislocations,
strictly located at the interfaces, i.e. x5t = 0, a zero velocity is therefore imposed, while the
corresponding Peach-Koehler force f7% (x!2t1st = 0) is not necessary equal to zero. These forces
acting on the leading dislocations at interfaces are therefore separated into both resolved glide
and climb components, i.e.

PK, 1st _ ¢PK/ latlst _ PK, 1st __ ¢PK (. latlst _
fiide F= A =0) - vgge, and, fo® =0 (X = 0) - Vaimb (3.160)

where vVglige = Vlimp X §, while vqin, are the directions of the dislocation pile-ups and the normal
of the slip planes, respectively. Here, the piled-up dislocation line directions ¢ are chosen such
that v44e points away from the interfaces, so that a positive value of the glide force in eq. (3.160)
indicates a repulsive force from the interface.

In order to illustrate the numerical procedure for dislocation pile-ups, single-crystal Cu sys-
tems (which consist of a particular case where both materials A and B are identical, i.e. without
lattice misfit nor image forces) are considered with the following orientation, i.e. x; = [110],
xp = [110], and x3 = n = [001]. Two piled-up systems with different dislocation characters are ex-
amined: the piled-up dislocations with 60° mixed and pure screw characters. The line directions
¢ || [110] are defined along the planar glide plane normal to vy, || [111], which is not orthog-
onal to the impenetrable interface since an angle of 54.7° is defined with the pile-up plane. The
calculations are performed in Cu, with the moderately high anisotropy ratio Acy = 3.21, and the
associated Burgers vectors are defined by gb'™ = ac,[101] and gb™ = ac,[110] || x», for 6-, 9-, or
12-mixed and screw piled-up dislocations, respectively. As quantified in the foregoing sections,
because the corresponding elastic coherency stress states that characterize the semicoherent inter-
faces can be very large in the far-field stress-free materials, simple shear stresses are applied to the
nanostructured elastic problems with mixed and pure screw piled-up dislocations, respectively.

Figures (3.35a), (b) and (c) illustrate the stress field components (Tgt or (fﬁt produced by the
equilibrium piled-up arrangements of 6, 9 or 12 mixed and screw dislocations, respectively. For
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# Mixed dislocation | 1 2 3 4 5 6 7 8 9 10 11 12 fgﬁcﬁ st f. lﬁ)l“
Isotropic | 0 052 1.80 3.91 7.08 1197 2.67 —0.47
Anisotropic | 0 049 1.67 3.62 6.55 11.06 2.67 0.13
Isotropic | 0 035 120 254 442 692 10.18 1448 20.51 4.01 —0.61
Anisotropic | 0 0.33 111 235 4.09 6.41 943 1341 19.01 4.01 0.61
Isotropic | 0 027 090 1.89 3.25 5.02 722 991 1318 1718 22.18 28.89 5.38 —0.55
Anisotropic | 0 024 0.82 174 3.01 4.65 6.69 9.19 1223 1595 20.60 26.86 5.36 1.44
#Screw dislocation | 1 2 3 4 5 6 7 8 9 10 11 RS fa
Isotropic | 0 1.09 372 814 1483 2511 14.70 —0.19
Anisotropic | 0 0.76 266 578 1035 17.64 14.70 —7.45
Isotropic | 0 0.62 233 512 9.05 1431 21.20 30.29 43.21 22.05 —7.78
Anisotropic | 0 059 167 3.72 640 10.01 1492 21.11 30.28 22.04 —10.26
Isotropic | 0 055 1.79 3.86 6.67 1038 15.04 20.75 27.73 36.38 4723 6217 | 29.40 0.92
Anisotropic | 0 046 123 267 4.68 733 1054 1445 1936 2542 33.03 4322 | 2939 —1354

TABLE 3.8: Equilibrium positions (in nm) of 60° mixed and pure screw piled-up dislocations measured
obliquely along the piled-up slip direction from the interface in Cu.

comparison with Fig. (3.35c), Fig. (3.35d) shows the equilibrium 12-screw piled-up dislocations
and the corresponding stress component ¢3! that are obtained by using the isotropic elastic ap-
proximation based on the Voigt averages of the elastic constants. Considered as the exhaustion of
Frank-Read sources, these plots illustrate the back stress concentrations generated by the pile-ups,
which are considerably affected by the number of piled-up dislocations, the individual dislocation
characters, as well as the anisotropic elasticity.

Table (3.8) reports the corresponding dislocation positions in the different equilibrium pile-
ups and forces on the fixed leading dislocations in anisotropic and isotropic media. As found in
the earliest studies of discrete edge or screw dislocation pile-ups on simple single glide planes
by use of the Laguerre polynomials as routine procedures [86, 115], the present results essentially
illustrate a ~ x~1/2 dependence of the dislocation density on the distance x to the impenetrable
interfaces. For the mixed piled-up dislocations, the results from anisotropic and isotropic elas-
tic calculations are practically indistinguishable with 6 and 9 dislocations. For screw piled-up
dislocations, however, the results exhibit the discrepancies in dislocation spacings and forces (in
magnitude in N/m and sign, especially for the climb components) resulting from the considered
approximation of isotropic elasticity, with relative errors that vary between 16.4% and 31.3% in
dislocation positions.

Dislocation geometries and orientations

An arbitrary microstructure is chosen here to demonstrate the ability of the present elastic super-
position scheme in complex piled-up dislocation problems. The short-range stress fields generated
by the infinitely periodic misfit dislocation pattern and interacted with various types of lattice de-
fects are investigated for the semi-infinite Cu/Nb system in the NW OR. As defined in eq. (3.44),
the following specific NW relations are used, i.e. x1 || [110]¢c || [100]pee, X2 = [112]5ec || [011]pec,
and, x3 || 7 || [111]¢cc || [011]pec-

In the upper dislocated Cu material, two sets of the infinitely periodic mixed dislocations with
identical line directions & || [112]¢ || %2, but different Burgers vectors Ab*™® || [101] (i.e. almost
edge) and Ab@ || [011] (i.e. 30° mixed) are randomly introduced near the Cu/Nb interface, re-
spectively. The inter-dislocation distance /1, which consists of the translationally periodic bound-
ary conditions with respect to the x; direction, and each set of the infinitely long dislocations
has the same number of positive and negative signed dislocation characters, such that these dis-
locations are viewed as statistically-stored dislocations [9], without producing long-range stress
effects. On the other hand, the misfit dislocations that are characterized by a non-zero Burgers
vector content (to necessarily realize the compatibility at the NW Cu/Nb interface) are, by def-
inition, geometrically-necessary dislocations with zero far-field stresses as well. Following the
procedure from section 3.6, these geometrically-necessary dislocations are analyzed in Fig. (3.36).
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FIGURE 3.36: Representation of the arrangements of atoms and dislocations in the semicoherent Cu/Nb
interface, which yields hexagonal-shaped meshes of dislocations with the lowest strain energies. (a) The
pre-computing elastic energy landscape for the Cu/Nb system in the NW orientation shows a minimum-
energy path (i.e. the horizontal chain in black) from the initial lozenge-shaped Frank-Bilby solution (i.e. a
pattern with two sets of dislocations, represented by the red and blue lines) in (c) to the final (fully-relaxed)
dislocation structures of the lowest strain energy in (d). The corresponding variation of energy along the
minimum-energy path is plotted with respect to the dimensionless coordinate s, in (b). The initial Frank-
Bilby solution and the final hexagonal dislocation structure for the Cu/Nb system are shown in terms of
dislocation structure (left-hand sides) by forming the third new set of dislocation junctions (in black) and
of the normal stress O'égt in GPa (right-hand sides).

Furthermore, an elliptical shear dislocation loop that lies on the (111)¢. || n glide plane, with
Ab'°°P || [110]¢cc || x1, is embedded in the Cu material.

In the lower bcc Nb material, a pile-up system with N = 5 pure edge dislocations is introduced
with line directions ¢ || [011]pcc || 2, on the glide plane normal to vimp || [211] and Burgers vec-
tors gb'at || [111]pec. Furthermore, a circular shear dislocation loop resides in the (011)pcc || 7 glide
plane in Nb, such that the pile-up of edge dislocations is comprised between the circular shear
dislocation loop and the semicoherent Cu/Nb interface. The complete dislocated microstructure
in the present Cu/Nb bimaterial is displayed in Fig. (3.37a).

According to these dislocation geometries and orientations, both interacting shear dislocation
loops in Cu and Nb are not periodically replicated. Moreover, the extrinsic lattice dislocations are
fixed in Cu, while the piled-up dislocations can glide only, without bowing around the loops.

Interfacial dislocation structures

The proper reference state under the condition of vanishing far-field stresses in the NW Cu/Nb
bicrystal has been determined in section 3.4, where the magnitude of correct Burgers vectors are
given by b; = b, = 0.28301 nm. With respect to the Burgers vectors, the quantized Frank-Bilby
eq. (3.121) gives rise to different solutions, with a particular lozenge-shaped dislocation struc-
ture that is specifically comprised of two arrays of parallel dislocations (with no local reactions at
nodes) with mixed characters ¢ = ¢3" = 37.51°, and the angle between these two unrelaxed sets
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# Edge dislocation | 1 2 3 4 5 Loitemup TSt f Tt
Isotropic | 0 028 41 120 40 233 3.6 3.62 7.1 7.44 39 | 1401 183 7.99 19.5
Anisotropic | 0 027 ref 116 ref 242  ref 390  ref 774  ref | 1185  ref 992 ref

TABLE 3.9: Equilibrium positions (in nm) of pure edge piled-up dislocations in Nb measured obliquely

along the piled-up direction from the interface in Cu/Nb. Values in brackets indicate the algebraic relative

error (in %) due the isotropic approximation of elasticity (with respect to the true anisotopic case as refer-
ence).

of dislocations is ¢"" = 15.03°. In addition, p = p9 = 4.33249 nm, so that the inter-dislocation
spacings are given by di"" = d,™ = 1.12341 nm. This specific dislocation structure is considered
as an initial non-equilibrium state, where local reactions of crossing dislocations to form dislo-
cation segments with a third Burgers vector in hexagonal-shaped networks can be energetically
favorable.

As described in section 3.7.1, the intrinsic dislocation pattern in the NW orientation is obtained
by pre-computing the elastic strain energy landscape that corresponds to the lozenge-shaped
solution predicted by the quantized Frank-Bilby equation. Figure (3.36a) displays the specific
landscape for the Cu/Nb system that is related to the initial lozenge-shaped dislocation struc-
ture with two sets of dislocations, as depicted by the red and blue lines in Figs. (3.36a) and (c).
The minimum-energy dislocation configuration exhibits also a hexagonal-shaped structure with
three sets of dislocations, as designated by the fully strain-relaxed pattern. The corresponding
minimum-energy path is plotted in Fig. (3.36b). It is therefore shown that the elastic relaxation is
accompanied by a decrease in strain energy of ~ 4%, yielding the formation of large set of dislo-
cation junctions with pure edge characters (black lines in Fig. (3.36d)). Changes in the associated
normal stresses ¢3! between the initial and the final configurations in the Cu/Nb system are com-
puted at x3 = 1 nm, and illustrated on the right-hand side. It is observed that the third new set of
dislocation junctions exhibits almost zero normal stresses, while the maximum compressive stress
values are reached at the parent dislocation sets.

Internal forces on lattice dislocations

Table (3.9) summarizes the results (positions to the interface and forces) computed at x, = 0 nm
for the dislocation pile-up in anisotropic and isotropic Cu/Nb dislocated bimaterial at equilib-
rium, for which the explicit positions are depicted in Fig. (3.37a) for the anisotopic case. Values in
brackets indicate the algebraic relative error (in %) due to the isotropic approximation of elasticity
(with respect to the full anisotopic case as reference) with significant errors of ~ +20% in both
glide and climb force magnitudes.

Nucleation and multiplication of dislocations in microstructure are traditionally described by
applying dislocation criteria, e.g., resolved shear stresses, Hertzian principal shear stresses, von
Mises strains or stresses. For illustration, Fig. (3.37b) plots the von Mises stress distribution cut
from the mid-section of the microstructure, where the local stress is mainly concentrated around
the upper dislocation loop. The Peach-Koelher forces along the leading piled-up dislocation and
lattice dislocations are computed at equi-spaced positions along the x;-axis, and are displayed in
Fig. (3.37¢), including the full-space and the complementary image parts. For clarity, the reference
vector that scales the magnitude of the Peach-Koehler force is 10 N/m for the leading disloca-
tion, and 5 N/m for the lattice dislocations. According to the large magnitude in von Mises stress
field, the dislocation features may serve as dislocation emission in the bimaterial or/and the semi-
coherent interface. Despite the present idealized situations in dislocation features, the complex
and heterogeneously distributed force profiles on straight dislocations provide insights into the
behavior of dislocations, e.g. the largest forces in magnitude are experienced on the leading piled-
up dislocation (L), which would also bow-out away from the interface since the heterogeneous
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FIGURE 3.37: (a) Geometries and orientations among various dislocations in the anisotropic
(111)Cu/(011)Nb bimaterial with interface at x3 = 0 nm. The upper material Cu contains eight infinitely
long straight and uniformly spaced parallel dislocation arrays along the xy-axis, with different characters
(in dark gray (almost edge) and in red (30° mixed)) and an elliptical shear dislocation loop, while the
lower material Nb is comprised of a pile-up system with 5 pure edge dislocations and a circular shear
dislocation loop. (b) The corresponding von Mises stress field, associated with the equilibrium piled-up
dislocations and all other dislocations, including the hexagonal-shaped dislocation structures at the semi-
coherent Cu/Nb interface. (c) Force distribution along all lattice dislocations (e;) and (m;) in Cu as well as
along the leading dislocation (L). The reference vector 10 N/m (5 N/m) represents the magnitude scale of
the Peach-Koehler force exerted on the leading (lattice) dislocation(s). All lattice and piled-up dislocations
are defined along the x,-axis.

step-like force profile is mainly due to the presence of the intrinsic hexagonal-shaped dislocation
structure at the semicoherent interface.

From these distributions, the resolved shear stress forces on specific glide planes could there-
fore be projected to extend the computational procedure of motion for all glide dislocations in
bimaterials.

Self- and Peach-Koehler forces on shear dislocation loops

In order to compute the complete self-forces f! associated with the dislocation loops, the pre-
logarithmic energy factor E in eq. (3.156) is determined by asymptotically reducing the parametric
energy-based framework for one set of dislocations [249]. For a single set of Volterra-type dis-
locations, the corresponding energy per unit length of dislocation is viewed as the work done
in forming the dislocation network by cutting and displacing the habit plane at x, = 0 between
x1 = 1o and x1 = dq — ry, as follows

di—r
E=dine=p [ tinm=0)uf(n,xn=0)dy, (3.161)
To
according to eq. (3.30), where the prescribed displacement jump is #”(x1,x, = 0) = —b; for

Volterra-type dislocations [260]. However, the inter-distance spacings must be sufficiently large
to represent the equivalent energy state for one infinite straight dislocation, as requested by the
line tension formulation in section 3.7.2. Here, the inter-distance spacings d; for one single set
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FIGURE 3.38: Determination of the self-forces, given by eq. (3.156), on the planar elliptical and circular
shear dislocation loops that reside in upper material Cu (red curves) and lower material Nb (blue curves),
respectively, as function of the angles ¢ and a in °. (a) E+ E”, (b) H+ H", (c) E— H” — E”, and (d) the com-
plete algebraic self-forces ! that are continuously distributed around both dislocation loops. The symbol
" stands for differentiation with respect to the proper angles that are depicted in the inset of (b). The fcc
(bcc) case exhibits symmetric (asymmetric) behavior with respect to the median axes (i.e. the vertical dot-
ted lines), and ! can also be positive in Nb (depicted by the shaded regions in blue), which means that the
self-forces tend locally to expand the corresponding dislocation loop by the near-edge dislocation elements,
ie.a =90+ 17° and a = 270 + 17°, while fT is always negative for the elliptical shear loop in Cu.

of dislocations is chosen such that the corresponding stress field is equivalent to the stress state
produced by one single dislocation. As discussed in Ref. [265], when d; is fictitiously increased
by a multiplicative factor 10%, the discrepancy in stress state between such dislocation array with
large spacings and the single dislocation case is almost zero. Thus, substituting d; with 103d; in
eq. (3.161), E and E”, where ' stands for differentiation with respect to ¢, can be numerically be
evaluated for infinite character-dependent dislocations in the present anisotropic Cu/Nb material.

As a measure of the stiffness of the dislocations, the term E + E” for Cu and Nb is plotted in
Fig. (3.38a) as function of ¢, such that pure screw (edge) character is characterized by ¢ = 0° (¢ =
90°) for infinite dislocations, respectively. These plots are in agreement with the distinguishing
classification of the anisotropic curves in Ref. [13], e.g., the appearance of maxima and minima
for values of ¢ between ¢ = 0° and 180° as well as the asymmetric (symmetric) case in bcc Nb
(fcc Cu) materials about ¢ = 90°. Furthermore, the term H + H” that arises in eq. (3.156) for the
tube self-force contribution, where H is defined in eq. (3.154), is displayed in Fig. (3.38b), while the
superposition E — H — H” is plotted in Fig. (3.38¢c). Here, the symbol ’ deals with differentiation
with respect to «.

Using the geometrical features in terms of curvatures x and relations between ¢ and « for
both elliptical and circular dislocation loops in Cu and Nb, which can be easily parametrized, the
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complete algebraic self-forces f' are shown in Fig. (3.38d). Interestingly, as the self-force f! is
positive close to the edge orientations in Nb, i.e. 90° < a < 107° and 253° < a < 270° (which
corresponds to & = 90 +17° and a = 270 = 17° by symmetry properties), as shown by the shaded
blue regions, the line tension provides an expansion reaction in the near-edge orientations that acts
along the —m directions, i.e. pointing outward from the centers of the circular dislocation loop,
while a global striking behavior is observed for all other non-edge characters, especially for the
local near-screw character elements that usually have lower elastic energy [7, 153]. This result is in
good qualitative agreement with predictions in Ref. [12] with similar characteristics (i.e. Burgers
vector and habit plane) for shear dislocations in highly anisotropic a-iron. In Cu, however, the
elliptical dislocation loop tends to shrink under the action of the heterogeneously distributed and
centripetal line tension self-forces.

Figures (3.39a) and (b) illustrate the self-force profiles (black arrows) that are larger in mag-
nitude in the x; = [112]z || [011]pe direction in Cu and Nb, respectively, while the self-force
contribution tends to locally expand the lower dislocation loop in Nb in the x; || [100]p direction
(as displayed by the dotted circles in gray). Furthermore, the blue arrows illustrate the interaction
force contribution between the two dislocation loops. For instance, the interaction force acting on
the upper dislocation loop in Cu is determined by superposing its complementary image force
and the full-space part produced by the lower dislocation loop in Nb. It is shown that this force
component pulls the elliptical dislocation loop toward the semicoherent interface, i.e. toward the
softer material Nb, with the largest magnitude on the minor axis region with screw character ele-
ments. On the other hand, the dislocation loop force contribution is almost in-plane for the lower
dislocation loop in Nb. Finally, the total Peach-Koehler forces, which include the dislocation loop
force contribution and all other contributions from the lattice dislocation arrays (including the
piled-up dislocations), are shown in Fig. (3.39) with orange arrows. It can therefore be observed
that the Peach-Koehler force tends to rotate out of the (111). glide plane in the upper dislocation
loop around the [110], and also to shear it by climb-assisted dislocation-glide process, while the
same force in Nb tends to expand preferentially the lower circular dislocation loop in the specific
[011]pcc direction onto the (011)p glide plane.

3.7.4 Limitations

Based on the previous sections 3.4 and 3.6, and specially in section 3.7, where it should be recog-
nized that the procedure for determining the driving forces is not easily tractable for arbitrarily-
shaped dislocation loops in large-scale dislocation dynamics simulations, the inherent assump-
tion that follows from the linear elasticity theory is related to the introduction of a core cutoff
radius to eliminate the divergence of the dislocation field solutions. Furthermore, the compari-
son between the elasticity theory and atomistic predictions leads to discrepancies in the interfacial
stored energies, mainly due to the singular consideration of the dislocation cores, as quantified
in sections 3.4.6 and 3.6.6. Thus, the remedy to the difficulties encountered and the discrepancies
made, lies in the derivation of non-singular solutions for extrinsic and intrinsic dislocation struc-
tures. In the context of classical elasticity, singularity-free fields are obtained by convoluting the
prescribed displacement jumps with isotropic Gaussian distributions. Conceptually similar to the
original Peierls-Nabarro approach [204, 190], this procedure overcomes the long-standing dislo-
cation problems of singular elastic fields in the core regions, which has been applied to interfacial
dislocations [257] and more recently to extrinsic dislocation loops [263]. In addition, a second
emphasis has been placed on the extension to multilayered magneto-electro-elastic plates with
multiple semicoherent interfaces, such that the single semicoherent homo- and hetero-phase in-
terface in pure elastic bimaterials becomes a particular case of the general approach, as described
in the following section 3.8.
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FIGURE 3.39: Discrete distribution of the local forces (black arrows), of the dislocation loop forces (blue)
that include the corresponding full-space solutions and complementary (image) contributions of the loops,
and of the complete Peach-Koehler forces (orange), which act along both shear dislocation loops. These
force distributions are exerted on the elliptical dislocation loop in Cu (a) and on the circular loop in Nb (b).
For both shear dislocation loops, the associated fcc and bec Burgers vectors lie along the x;-axis. The dotted
two small circles in (b) illustrates the local self-stress expansion of the loop in the lower material Nb by the
near-edge (since the local character between the Burgers vector and the local tangent is characterized by a
in Fig. (3.38)) character elements.

3.8 Extension to non-singular fields in multilayered magneto-electro-
elastic plates

Multiphysics analyses in man-made (piezoelectric, piezomagnetic, and magneto-electro-elastic
(MEE)) multiferroics have attracted tremendous interest of many researchers because of their
widespread and advanced applications involving intelligent topological structures, energy har-
vesting and green energy production, optoelectronics, and self-powered biomedical devices. Ex-
ternal surfaces and internal interfaces between alternating dissimilar materials play special roles
in magnetism [79, 175, 268], electrical transport [175, 128, 268], mechanical properties [299, 186],
and also in multiple coupled magnetic, electric, and mechanical fields, which become crucial to
design novel nanostructured composites with outstanding functional and enhanced MEE prop-
erties [194, 212, 62, 286]. One significant technological problem during the growth of nanoscale
multilayers is related to the lattice mismatches between different layers [58, 298, 83, 293], which
induce spurious MEE field concentrations that can markedly enhance or degrade the materials
properties, and in the latter case, causing crack initiation and growth, dielectric breakdown and
magnetic failure. The present section focuses on atomistically informed conditions for crystalline
interfaces with lattice-mismatched dislocation structures in multilayered MEE materials made of
CoFe;O4 (magnetostrictive cobalt ferrite, CFO) and BaTiO3 (piezoelectric barium titanate, BTO).
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FIGURE 3.40: Superposition principle for the semicoherent interfaces in miscible MEE multilayers subjected
to external loads. (a) Representative linear and anisotropic free-standing multilayered system that consists
of w rectangular layers with a couple of semicoherent interfaces at z = z; and z = zi, while the others are
perfectly bonded between adjacent layers. The heterophase interfaces possess different internal structures
comprised of two planar arrays of infinitely long straight, and periodically-spaced dislocations. The open
and filled symbols represent the atomic structure of the lattice-mismatched semicoherent interface, while
the solid segments indicate the corresponding misfit dislocations. The imperfect interface at z; is bonded
between layers j and j + 1, with discontinuity quantities between the upper and lower sides indicated by +
and —, and is therefore coplanar to two flat free surfaces at z = zp = 0 (bottom) and z = z, (top). (b) Using
the superposition principle, general mechanical, electric, and magnetic boundary conditions are externally
and vertically applied on both the top and bottom surfaces of MEE solid with perfectly bonded interfacial
boundary conditions (i.e., coherent internal interfaces).

3.8.1 Boundary-value problem and singularity-free field solutions

The classical six-dimensional Stroh formalism is extended to a ten-dimensional formalism com-
bined with a Fourier series-based solution procedure to determine the displacement and traction
fields in anisotropic multilayered MEE solids under external loads. Such multilayers are com-
posed of semicoherent interfaces, for which each pure misfit interface consists of two different sets
of infinitely long straight, uniformly spaced, and parallel core-spreading dislocations. Practical re-
cursive operations are explicitly derived with respect to specific internal and external boundary
conditions for multilayered solids with one and two semicoherent heterophase interfaces.

Basic equations

Figure (3.40a) shows the representative multilayered system that consists of w dissimilar, linear
and anisotropic MEE layers with individual finite thickness hy = zj — zy_; for the k' layer, with
k =1,...,w. A global and fixed Cartesian coordinate system with basis vectors (x1, x2, x3) =
(%, y, z) is conveniently attached to the multilayers (and alternatively used for clarity in the fur-
ther notations), where the unit vector normal to the interfaces is n || x3 || z, while all layered
rectangular plates are located in the positive z-region. Thus, the flat bottom and top surfaces are
located at z = zp = O and at z = z,, = H = Y hy, respectively, within which (mechanical,
electric, and magnetic) loads can therefore be applied on these external surfaces, as illustrated in
Fig. (3.40b). Furthermore, s (< w — 1) semicoherent interfaces of given crystallographic charac-
ters (misorientation and interface plane orientation) containing each up to two different sets of
infinitely periodic dislocation patterns are explicitly described by solving the quantized Frank-
Bilby equation, as detailed in section 3.2. In the absence of body forces, thermal effects, electric
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current densities, electric and magnetic charge densities, the unified formulation of the governing
equations of mechanical equilibrium with the Maxwell equations is represented by a single set of
partial differential equation [166, 165, 196, 197, 200] as follows

Oiji = 0, (3162)

where the index runs from 1 to 3 (from 1 to 5) over repeated lowercase (uppercase) subscripts,
unless stipulated otherwise. The extended stress field ¢;; in eq. (3.162) is defined by

0'1']'
oij = § Di
B;

(3.163)

=123
4
5,

e e
|

with ¢;; the components of the mechanical stress (in N/ m?), D; the electric displacement (in
C/m?), and B; the magnetic induction (in N/A.m), which satisfy the static constitutive relations
for each linear and anisotropic layer of the fully coupled MEE materials, i.e.

Tij = CijimYim — €kijEx — qkijHk

D; = Cijk"Y jk + Gi]'Ej + (Xi]'Hj (3164)

Bi = qijeyjx + ajiEj + piHj,
where all materials properties are position-dependent in the multilayers, but homogeneously de-
fined in each layer. In particular, v;, is the elastic strain (dimensionless), Ej is the electric field
(in V/m), Hy is the magnetic field (in A/m), and ¢jjiu, exij, qrij and a;; are the elastic moduli (in
N/m?), piezoelectric (in C/m?), piezomagnetic (in N/A.m), and magnetoelectric (in C/A.m) co-
efficients, respectively. Furthermore, €;; and y;; are the dielectric permittivity (in C2/N.m?) and
magnetic permeability (in N.s?/C?) coefficients, respectively, for which all repeated indexes are
ranged in {1, 2, 3}. Various particular and uncoupled cases (e.g., pure elastic and piezoelectric)

can evidently be reduced from eq. (3.164) by setting the appropriate coupling coefficients to zero.
Using the shorthand notation, the constitutive relations can be recast as follows

Oif = CiJKIYKI = CiJKIUK,I , (3.165)
where the materials constants are defined by

((cijw |, K=j k=123
eij J=j=123K=4
e J=4K=k=1,23
“K = Z:,: ; - {3 ;:;{3':112,53 (3160
—a; J=4,K=5 0 K=4,]=5
—€; J,K=4

_,uﬂ ]IKZSI

which satisfy the fOHOWiI’Ig symmetries: Cijlm = Cjilm = Cijml = Clmij/ ekij = ekﬁ, Qkij = qkji/ 061']' = (X]'i,
€ij = €ji, and p;; = pj;. Both extended strain 7y and displacement u fields in eq. (3.165) are given
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by
T =5 (ug+ux)  K=k=12,3 e K=k=123
Y =14 —E=¢, K=4, and, ugx=4 ¢ K=4
“H =y, K=5 y K=5,
(3.167)

with uy, ¢, and ¥, being the elastic displacement (in m), the electrostatic potential (in V), and the
magnetostatic potential (in A), respectively. From eq. (3.163), the extended traction ¢; with normal
is n; is therefore given by

U'i]'TlZ‘ ]:j:1,2,3

t] = ojn; = Dini ] =4 (3168)
Bini ] =5.

The dual variable and position procedure in multilayered systems

For in-plane multilayered MEE plates in presence of periodically-spaced interfacial dislocations,
the extended displacement vector u; in the physical domain is written in terms of a biperiodic
Fourier series expansion, as follows

uy (x1,%2,x3 = z) = Re}_e 2% i (,2) (3.169)
1

with « = {1, 2}, as already defined in eq. (3.73) with a negative sign of the exponential in the
Fourier transforms. For clarity in the notation, the wavevectors k in eq. (3.73) have been changed
with g7in eq. (3.169), as well as the superscript ¥ with the superimposed tilde for all fields expressed
in the frequency domain. Substitution of eq. (3.169) to eq. (3.165) and then to eq. (3.162) results
in a system that consists of five homogeneous second-order differential equations in the Fourier-
transformed domain, i.e.

47‘C2C1a]5 Nallp Uy + 277 (C[,x]?, + C13]a) Natlj3 —cr3p3tif33 =0, (3.170)

with B = {1, 2}, and differentiation of the extended displacement is operated with respect to the
coordinate variable x3. Furthermore, the derivatives of the Fourier-transformed displacements
with the aid of the constitutive equations yield ten convenient relations between the complex
transformed-Fourier displacement # and traction # expansion coefficients that can straightfor-
wardly be converted into a linear system of first-order differential equations, i.e.

P 27y T-IRE T1 i (1,2)
dz |¥(n,2)] ~ |-47%* (-Q+RT'RY) 27ty RT Y] |#(y,2) |’

which is satisfied for each homogeneous layer, individually. In eq. (3.171), the five-dimensional
real matrices Q, R, and T are given by

(3.171)

Qix = ¢jixksmjms , Rix = cjixsmjns , and, Tix = cjixshjns, (3.172)
with ¢jjks being the elastic, electric, and magnetic coefficients defined in eq. (3.166), and

m My cos 0 nm/n

0
n=|m| =nmm=\/n?+y3m, m= |my| = |sin6| = |n/y| ,and, n=|0| , (3.173)
0 0 0 0 1
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such that the extended matrices in eq. (3.172) are characterized in the oblique plane basis spanned
by (m(60), n). For non-zero wavevectors # of magnitude #, the standard and general solution of
eq. (3.171) can be presented as follows

iy (17,z) = e P17 g

. . o (3.174)
ty(n,z) = —i2rmy e =PI by,

where p is the eigenvalue, and a = {ay, ay, a3, a4, as}* and b = {by, by, b3, by, bs}* are the corre-

sponding complex eigenvectors of the following linear ten-dimensional eigensystem, i.e.

—T~ 'R T ! ] [a a
—Q+RT R —RT_t} [b] -F M ' (3.175)

after substituting eq. (3.174) into eq. (3.171). The Stroh eigenvalues of eq. (3.175) and the corre-
sponding eigenvectors are conveniently arrange such that Imp; > 0, and p;;5 = pj, because
the remaining five solutions have negative imaginary parts due to the positive definiteness of
the magnetic, electric, and elastic strain energy densities. Here and in the following, the over-
bar denotes the complex conjugate. By superposing the ten eigensolutions, general expressions
of the extended displacements and tractions in the Fourier-transformed domain can therefore be
expressed in terms of the Stroh formalism in any given layer j bonded by interfaces z; 1 and zj, as
follows

{Kl} , (3.176)

-2y i (n,z)]  [A A <€7i2np+’7(zizj)> 055
K>

t(n,z) ~ |B B 0s.s (e 27Priz=21))

with z; 1 <z < z;, while A and B the 5 x 5 eigenvector matrices defined by

A = [a1, az, az, as, ﬂ5}

‘ 3.177
B = [by, by, bs, by, bs] = R'A + TA (27P1(-5)) (3.177)

where the z-dependent diagonal and exponential matrix in eq. (3.177) is represented by

<ei2np+17(z—zj)> _ dlﬂlg |:ei27Tp177(Z—Z]'), ei27‘(p277(z—z]-), ei27‘[p377(z—zj), ei27‘rp4f7(z—zj), ei271p577(z—zj):| , (3178)

and K; and K3 in eq. (3.176) are two 5 x 1 complex (and constant) column matrices to be deter-
mined by specific boundary conditions in dislocated MEE multilayers. Once the extended dis-
placement i and traction # vectors in the transformed domain are obtained by solving eq. (3.176),
the remaining 7 x 1 extended in-plane stresses ¢° in the transformed domain, i.e., consisting of the
in-plane elastic stresses, electric, and magnetic displacements, can be found by using the following
relation, i.e.
a7y (n,2) = —i27y cigamy i1k (17, 2) + cigam ik 3(1, 2) , (3.179)
with i = {1,2}, ] = {1,2,4,5}, and i < ]. The derivative term on the right-hand side of
eq. (3.179) is given in terms of the extended displacements and tractions in the transformed do-
main by
k3 (1,2) = [Ci]Klnl”i]_l (f] (n,z) + i27y cipgmn; ﬁK(;y,z)) , (3.180)

for which egs. (3.179) and (3.180) read in vector-tensor form as
0°(n,z) = —i2nmy My it (17,z) + Mo itz (17,z)
= {011, G12, 02, 014 = D1, 024 = Dy, 015 = By, 025 = By} (3.181)
ii3(n,z) =T (E(n,z) + 2y R (17, 2))
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respectively. The two 7 x 5 matrices M; and M; in eq. (3.181) are explicitly given by

[c11x17M1 + C11K21M2] [c11my +clema  C1eMy + Cl2Ma  C15My + C1aM2 €11 + e qumi +gamz |
C12k1M1 + C12K21M12 Ce1M1 + CopMp  CepMy + CeaMMa  Co5M1 + Ceata  €16MM1 + €261M2 q16M1 + Goety
Coor1M1 + CooK2M12 Cp1M1 + CopMiy  Coethy + CoaMMy  Cos5Miy + Coathy  e1piy + expity q12my + Gty

M, = |cuuramy + cuukema | = |enmy + ey ey +e1pMy  eisiy + ey —€11M1 — €12My  —X11M] — K12M)
Co4K1M1 + Coak21M2 €M1 + €61y €261M71 + €212 €251M7 + €paMly  —€1M] — €201y —Ap1M] — A1)
C15K1M1 + C15K21M2 qumi + qieMa  qieM1 + qaMa  qisMy + qiama  —a11M] — K12y — P11 — P1oMp

| Co5K11M1 + Co5K21M7 | Lg21M1 + Goeta o6t + Goamia o5ty + goally  —Q 1My — QoM —Ho1MMy — P22ty |

[c11k3] [c15 c1a c13 es1 g31 ]

C12K3 Ce5 Cea C63 €36 q36
C22K3 C5 C24 (€23 €32 q32

M, = |cuugs| = |e15 e ez —€13 —a3|,
C24K3 €5 €4 €23 —€23 —N3
C15K3 qi15 q14 413 —&13 —H13

LC25K3 ] Lq25 q24 G235 —&23 —H23]

(3.182)
indexed in Voigt notation, in any homogeneous layer.

The present dual variable and position procedure for multilayered structures aims at express-
ing recursive relations for the Fourier expansion coefficients between coherent and semicoherent
interfaces, instead of conventionally solving the entire 10w x 10 system that is composed of the
full-field solutions from all layers, as recently adopted for surface loads in transversely isotropic
layered solids [169] and thermoelasticity of multilayered plates [266, 263]. Substituting z by z; 4
and z; into the linear system in eq. (3.176), it gives rise to

[A A} {(d’zﬂpwhw 05X5] [Kl}

—i2707 11(1], Zj-1) A
B B 05><5 IS><5 KZ

£(1,2j-1)
(3.183)

—i2ry @(n,z)] _ [A Al [Tss 0s.5 {Kl}

o L= [ Ao e el

respectively. Both unknown complex vectors K; and K, in eq. (3.183) can then be eliminated to
establish the relation between the expansion coefficients on both interfaces at z; 1 and z; of the
layer j of interest, i.e.

i - , . i ~ } j j . . ,
[ 127?7”(77'2]_1)} = [Slouo] { l?”””(”'zf)} _ |Su Sk { 1?7”7”(’%2])} . (3.184)
E(17,2)) (1, 2j-1) S, Sh t(1,zj1)
within which the ten-dimensional matrix Sj10X10 is formulated as follows
. _ B o 1
) A <e127r p1 hj> A A A <e—127rp+17 hj>
) —
[Shoao] = [ B B (e-i2npnhyy | |B (e2nriniy & . (3.185)

For the adjacent layer j + 1, the corresponding propagation of the expansion coefficient solu-
tions at both interfaces z; and z;; yields therefore similar relations as eq. (3.184), i.e.

t(n,zj11) t(1,2j) t(17,2j)

. » . ~ i+1 i+1 . -
—i2my ()] _ gie1 1 [~i2anal,zi)] (S Sh | [~i2m i, zje) 2186
- [ 10><10] fr - Sj+1 Sj+1 ’ ( . )
21 22

which can be combined with eq. (3.184) by properly assuming that the interface at z; between
the two layers is perfectly bonded, i.e., the transformed displacement and traction vectors are
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continuous at z = z;, as specified by
: [@(n,z = zj) ]];
[E(nz=2)] =

Thus, the following recursive relations between interfaces z; 1 and z; 1 can be derived as

i (1, 2j+) = #(,2j-) = Osa (3.187)
E(n,21) —E(1,2-) = 05

. - . - 41 ij+1 . -
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E(1,2j11) e £(1,2j1) gl gl t,zi1) |7

where the superscripts /77! means the resulting propagation matrix from layer j to layer j + 1,
with the submatrices S]H{:rl}] being expressed as

5] = [SLSIE) + (51,15 1~ Shsly'] ' Shsit)
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For multilayers with a single semicoherent interface, the recursive relations in eq. (3.188) with
egs. (3.189) can be propagated from the bottom surface to the semicoherent interface and then
from the semicoherent interface to the top surface, without causing numerical instability issues as
obtained by the traditional propagation matrix method [266]. Using the specific displacement dis-
continuity conditions at the semicoherent interfaces and the traction-free boundary conditions at
bottom and top surfaces, the involved unknown expansion coefficients can be numerically solved
and propagated to any z-level to determine all z-dependent expansion coefficients of both the
Fourier-transformed displacement and traction vectors. This procedure is explicitly derived for
two practical traction-free multilayered structures with one and two semicoherent interfaces in the
next section. By use of the superposition principle, external uniform loads acting on the bottom
and/or top surfaces in the associated MEE solids can consistently be applied using similar re-
cursive relations with perfectly bonded interfacial conditions and subsequently be superposed to
the previous dislocation-induced field solutions. When these coefficients are solved by imposing
internal and external boundary conditions, the ultimate operations are related to the summation
of all the Fourier components altogether to obtain the general and complete full-field solutions in
the physical domains by inverse Fourier transforms.

Disregistry at semicoherent interfaces with core-spreading dislocation structures

Due to the two-dimensional periodicity of the interface dislocation structures for a given neigh-
boring atomic plane, the relative displacement discontinuity condition at semicoherent interfaces
at z = z;j between layers j and j + 1, is defined in both physical and Fourier-transformed domains
using a similar biperiodic Fourier series expansion to eq. (3.169), as follows
i (xv302 = 2) ' = f (k1,32.3)
=uy (x,x0,z=2zj) —uy (x1, X2,z =z;_) = ReZe’izn’“x‘* ﬁf (n,m,zj)
1

i (n,z=2)] =a;(nz=2zy) 5 (n,z=2_) = 1] (n,m,z;)
(3.190)
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with u? and i being the prescribed relative displacement vectors (magnitudes and directions),
expressed in the physical and Fourier-transformed domains [249, 250], respectively. The compo-
nents of the wavevectors 5 parallel to the interface in eq. (3.190) must fulfill the following relation,
ie.

m
NaXe = N1(n) x1 +12(m) xp = — x1 + ’p—| X2, (3.191)
2

|71

by virtue of eq. (3.6), with ¢ = 71/2. For pure misfit heterophase interfaces that consist of orthog-
onal edge dislocation networks with zero interaction energy, the complete displacement jump is
described by the superposition of two distinct one-dimensional sawtooth-shaped functions u}
and u} with Fourier sine series in the physical domain, as defined in eq. (3.123). The correspond-
ing Fourier-transformed displacement jumps #] and i} for each set of dislocations are therefore

related to the total disregistry in eq. (3.190) by

(_1)n+1
n

(_1)m+1

i? (n,m,zj) = it} (n,zj) + i) (m,zj) = —i —

b] (Z]) —1i bz(Z]) , (3192)
where the z-dependent Burgers vectors are discretely localized at the interfaces. However, the
cores of the misfit dislocations can spread at dissimilar boundaries for interfaces with low shear
resistances [188, 124, 171]. Such compact dislocation cores can therefore be spread out by convo-
luting the discontinuity displacement conditions with specific spreading function on the interface
plane to form a continuous distribution of the Burgers vectors. In the context of linear elasticity
theory, two isotropic weighted Burgers vector density functions w,, (x, ), with v = {1, 2}, are also
introduced as follows

which ensures that both the magnitude and the direction of the Burgers vectors remain unchanged,
and *b, = b, when the density function is reduced to the delta function, i.e., w,(x,) = 6(x,).
In eq. (3.193) the pre-superscript * indicates the quantities that have been distributed (also, con-
voluted) by the weighted core-spreading functions. One-dimensional Gaussian distributions of
dislocation cores are conveniently prescribed to represent the core-spreading dislocations for each
independent set of interfacial dislocations, i.e.

wq(xy) = e (3.194)

where the standard deviation is ¢, = r,A/2, with r, > 0 being the dislocation core radius pa-
rameters that regularize the classical compact dislocation cores. In practice, the same weighted
core-spreading functions are applied to both sets of interfacial dislocations, so that w; = wy, with
r1 = ro = rg. Using the advantages offered by the convolution properties of Fourier series expan-
sions, the weighted displacement jump for set 1 from egs. (3.123) and (3.192) is defined as

*uf(xl,z]-) = uf(xl,z]-) * wi(x1) = /700 ulp(xl — x1,2j) Wy (x]) dx}
(_1)n+1 o—(mnro/p1)? ) (27-[;13(1)
= sin bi(z;
n; — o) @) (3.195)
m=0
. (=1 n+1 e—(7mrg/pl)2
ulp(n,zj) = —z( ) bi(z)),
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respectively, while the corresponding displacement jumps for set 2 are analogously given by

i} _1ym+1 ef(mnrg/pz)2 . 27T x
ué’(xsz) — Z (=1) — sm( 2> bz(z]-)
9 (3.196)
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in both the physical and Fourier-transformed domains. The non-regularized discontinuous dis-
placement vectors (given by egs. (3.123) and (3.192)) are also obtained for 7y = 0 in egs. (3.195)
and (3.196). Thus, the interface conditions S on the semicoherent interface associated with core-
spreading dislocations in the Fourier-transformed domain are imposed by

L (n,z2=2)] =y z)—(y,z-)
(_1)n+l e—(rmro/pl)

S: =—i ™ b1 (Z]) —1

[F(1.z2=2)] =0 zj+) —F1,z-) =05,

2 (_1)m+1 e—(nmrg/pz)z

p— ba(zj) (3.197)

for any {n, m} > 1, which are evidently reduced to egs. (3.187) for coherent interfaces with zero
Burgers vector content.

Figure (3.41a) shows the Gaussian density distribution b; w1 (x1) of the single discrete Burg-
ers vector by, with arbitrarily given values for by = 0.32 nm and o = 2.5b;, while Fig. (3.41b)
illustrates the corresponding displacement jumps across the interface with core-spreading dislo-
cations: *uf (red curve, given by eq. (3.195)), and without: ulp (black, with rg = 0). These curves
are plotted with 20 harmonics only, with also arbitrarily dislocation spacings p1 = 7 nm, exhibit-
ing that the Fourier series expansion with the core-spreading treatment for interface dislocations
converges conditionally and numerically faster than the original expansions without treatment.
The relative displacement profile becomes therefore continuously smooth close to the regularized
dislocation cores unlike the jump occurring in the original description with compact dislocation
cores.

Once the specific interface conditions S in egs. (3.197) dedicated to interface dislocation pat-
terns are defined, the recursive relations in the layered sub-structures between the semicoherent
interfaces and external surfaces can be propagated to obtain the field solutions in the Fourier do-
main. The following two practical examples give rise to the explicit recursive relations between
the transformed displacement and traction vectors that are used for numerical application exam-
ples in multilayers with (i) one semicoherent interface, and (ii) two semicoherent interfaces. The
multilayered cases of interest with three and more interfaces consist of a straightforward continu-
ation of both subsequent situations with three and more additional recursive sequences.

(i) For a single semicoherent interface in multilayers, the transformed displacement and trac-
tion vectors are propagated from the bottom surface at z = zj to the lower side where the semico-
herent is located, i.e., at z = z;_, so that eq. (3.188) leads to

. B 1:9 7 . ~
[—lzﬁnuw,zw] _|si sy [—lz@ﬂuw)} (3.198)
H,2j-) Sy Sy tpz)

and also, from the upper side of the interface at z = z;, to the top surface at z = z, i.e.

—i2mn (1, zj4.)| _ Sﬁtw 5’5“" — 12701 (1], 2 (3.199)
Hpze) ] s syt Lz )0 |
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where si;fm and S]S'leéu are individually defined by egs. (3.189). Equations (3.198) and (3.199)
together with the given boundary/interface conditions S in eqgs. (3.197) solve all the involved
transformed-Fourier unknowns. An example for the bilayered system is provided in eq. (3.213)
where the system of equations is reordered by arranging all the given quantities to the right-hand
side and all the unknowns to be solved to the left-hand side. The field solutions can therefore
be propagated to any z-level to determine the transformed propagating values of interest, e.g.,
using a relation similar to eq. (3.198) if the field point is above the semicoherent interface, or
using a relation similar to eq. (3.199) if the field point is below the interface. Finally, operating the
summation of the transformed solutions in the Fourier series expansions, the full-field solutions
in the physical domain are obtained.

(ii) For two semicoherent interfaces in multilayers, located at z = z; (corresponding to the
previous case (i) and z = z; with z; < z, the prescribed relative displacement is, in general,
different than the interface at z = z; in terms of dislocation structures, so that

[#(n,z=2)] =d(pz=2zcs) — 0 (n,2=2_) = "] (n,2¢) + 0§ (m,z)
(Alamz=2)1),

with, for instance, different dislocation spacings and magnitudes of both Burgers vectors (but,
with similar directions in the present pure misfit interface cases). Thus, while eq. (3.198) is un-
changed, eq. (3.199) is split into two propagation relations, from the upper side z;; of the first
semicoherent interface at zj to the lower side of the second semicoherent interface at z = z;_, i.e.

(3.200)

{—12777 (1, Zj+)} [ oS [—izim ﬂ(ﬂfzk)] (3.201)
t(n,z_) SJJH‘ Sgl:k t(n,zj+) ’
and then, from the upper side of the second semicoherent interface at zx; to the top surface at
Z = Zy, 1.e.
[—iZmy ﬁ(?’],Zk+>:| _ Sy Slﬁqzw [—127'“7 f‘(’?rZW)] (3.202)
1, 2) syt syt L Enze) ] |

Again, egs. (3.198) and (3.201—-3.202) combining with the prescribed boundary conditions in
egs. (3.197) and (3.200) are applied for solving the involved unknowns for the given boundary and
interface conditions. After determining the involved boundary and interface values, the trans-
formed displacement and traction vectors at any z-level are obtained by merely propagating the
suitable recursive relation (depending upon the relative location of the field point with respect to
the two semicoherent interface locations), while the physical-domain solutions are finally deduced
by taking the summation of all the Fourier series components.

Traction boundary conditions at external surfaces

The extended traction boundary conditions are vertically and uniformly applied on the top and
bottom surfaces, at z = z, and z = z, respectively, as referred to Fig. (3.40b). The mechani-
cal normal traction is described by imposing t3, while the electric and magnetic components are
characterized by t4 and ts, respectively. For simplicity, the normal traction components are ho-
mogeneously distributed along the x;-axis, and uniformly imposed along the x;-axis only, so that
the present case is treated as a two-dimensional plane-strain deformation problem in the (x1, x3)-
plane. In terms of the Cartesian coordinates attached to the present multilayered systems, the
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FIGURE 3.41: The core-spreading operation for the internal dislocation networks at semicoherent interfaces.
(a) The weighted Burgers vector distribution function *by, with rg = 2.5 b; and b; = 0.32 nm, as a function
of x1. (b) Disregistries in terms of the original relative displacement ulp with compact dislocation cores

(in black) and the convoluted displacement *u} (red) by the core-spreading dislocation function. Both

illustrations are carried out with 20 harmonics and arbitrary dislocation spacings p; = 7 nm. (c) The

prescribed traction boundary condition on the upper surface with 300 harmonics, I = 5nm, L = 5/, and
I'=1(@n N/m2, C/mz, or N/A.m).

prescribed traction ¢ f at the top surface are expressed as

L1 L+1
I — << Lt/
t (x1,2 = 2z0) = 2 2 (3.203)

0 otherwise,
for | = 3,4,5, only, and at the bottom surface as
t]p (x1,z=120) = t]p (x1,2 = 2zy) . (3.204)

Thus, the same distribution is applied on the bottom surface to ensure the equilibrium con-
dition of zero in vertical direction. In egs. (3.203) and (3.204) the uniform mechanical, electric, or
magnetic fields I" are applied over the interval with total length I, while L is a reference size to
translate the center of the loading area from the global coordinate center to avoid the singularity
in the series expansion as can be observed below. Furthermore, the present numerical calculation
indicates that L = 51 leads to rapid convergent series. Using the similar discrete Fourier series
representation with the previous derivation for the semicoherent interfaces, the surface traction
relation at z = z,, is consistently given by

H (x1,2=20) =Rei Y e ™ (n,2=20) (3.205)

n>1

where the expansion coefficients ff can analytically be obtained by multiplying both sides of
eq. (3.205) by sin(7rm xq /L), with m integer (i.e., making use of the periodicity of the sine function
over the interval [0, L]) and integrating along x; from 0 to L at z = zy, i.e.

L Tmx L, ; TM X1\ -~
/o t;’ (x1,2 = zu) sin( T 1) dx; :Re/0 iy e/l sin( i 1) t]p (n,z = zy) dxq,

>1
=T nz=

(3.206)
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which also gives rise to

L/2+1/2
L Tm xq L .p p Ar . smmy . (mml

I |— = —t ,Z = < f ,Z = = —— <7) - .

ercos< T )] et 20 (m,z = zy) ;(m,z=zy) —osin{ —-)sin| —-
(3.207)

Thus, the traction boundary condition on the top surface can be expressed as
AL . . I
tf (x1,z = zy) = —Re 1[315 ZESHl(%) sm(?) e imx/L (3.208)
n=1,3,5,..

exhibiting a sum over positive odd integers, only.

Figure (3.41c) illustrates the prescribed traction t}g from eq. (3.208) with 300 harmonics, and
arbitrary values for | = 5nm, L =5/,and I' = 1 (in N/m?if ] =3,C/m?if | = 4, or N/A.m if
J = 5). Itis shown that the external traction boundary condition that acts on the top surface is well-
represented in terms of the Fourier series expansion, so that the external loads can consistently
and similarly be described with respect to the boundary-value problem as for the semicoherent
interface case. Therefore, for | = 3,4,5, only, the external load conditions L on both the top and
the bottom surfaces in the Fourier-transformed domain are finally given by

- 4ar . (mnN\ . (nnl
iy (n,Z:Zw):——sm<7) sin{ =7~ (3209)

where identical expansion coefficients under uniform pressure are applied on the bottom surface,
at z = zg. The particular boundary conditions F for free surfaces can also be taken into account by

imposing I' = 0 in egs. (3.209), i.e.
fr(n,z=zyp)
F:

=0
~ (3.210)
tr(n,z=20) =0.

Similar procedure as the internal semicoherent interfaces in section 3.8.1 can be derived for the
present external load case to explicitly determine the corresponding displacement and traction
field solutions at any z-level in all layers with perfectly bonded (i.e., coherent) interface conditions.
Thus, the solutions in the Fourier-transformed domain at z; in layer j can be obtained from the
following set of equations

[—iZmy ﬁ(n,zo)} _ [Silj Sh]] [—izmyﬂ(n,zf)]

t(n, zs) 5;1] 5;2] t(n,zo)

21 Oz (3.211)
[—iZmy it(n,zf)} _ [Sﬁu S{;’] [—i2m7 ﬁ(n,zw)}

t(n,zy) 512'1;” SJZ;’ t(n,zy)

which can be recast into the following linear system to be analytically solved for any n > 1, i.e.

1 o
S%lj 055 —Iss Oss —i2~7[;7 ﬂ(n,zf) _S%]‘ t(n, ZO)
Sai _I‘.5><5 0. 0555 . t(n,;zw) _ | —S,) #(n,z0) , (3.212)
_I5><5 5]1;0 05><5 S”l; _?271—17 u(n’ ZO) 05><5
0,5 szcéu 0.5 8]2:;0 —i27tn ﬁ(n, Zw) i’(i’l, Zw)

where the submatrices of s};fm and ijouim are defined in egs. (3.189) and the associated boundary
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Properties Materials
Symbol Unit LNO BTO 0.75BTO 0.50 BTO 0.25BTO CFO
o1 GPa 203 166 196 225 256 286
c1n GPa 53 77 101 125 149 173
c13 GPa 75 78 101 124 147 170
o33 GPa 243 162 189 216 243 269
Cas GPa 60 43 44 44 48 45
e31 C/m? 0.2 —4.4 -33 -22 -1.1 0
e C/m? 1.3 18.6 14.0 9.3 4.6 0
e1s C/m? 3.7 11.6 8.7 5.8 29 0
e 1077 C2/N.m? 0.39 11.2 8.4 5.6 2.9 0.1
€33 1079 C2/N.m? 0.26 12.6 9.5 6.3 3.2 0.1
w1 1074 N.s?2/C? 0.05 0.05 1.51 2.97 4.44 5.90
w1074 N.s?/C? 0.10 0.10 0.46 0.83 1.20 1.57
931 N/A.m 0 0 145 290 435 580
433 N/A.m 0 0 175 350 525 700
q15 N/A.m 0 0 137 275 412 550
an C/Am 0 0 0 0 0 0
a33 C/Am 0 0 0 0 0 0

TABLE 3.10: Properties of MEE materials [200] used in the application examples, with LINbO3 (piezoelectric

lithium niobate, LNO), BaTiO3 (pure piezoelectric barium titanate, BTO), and CoFe,O4 (pure magnetostric-

tive cobalt ferrite, CFO). Three MEE material compositions made of BTO and CFO are indicated by x BTO,
where x is the volume fraction ratio of BTO.

conditions are given by eq. (3.209). Once the solutions are found at any field point by considering
the interval [(L —1)/2, (L +1) /2] from the prescribed boundary condition in eq. (3.203), the corre-
sponding solutions for the displacement and traction fields can simply be translated to the central
loading case by replacing x; with x; — L/2.

Three analyses on the influence of misfit dislocations on the elastic, electric, and magnetic
field solutions are discussed for finite-thickness bi-, tri-, and multi-layered MEE composite mate-
rials, respectively, with and without applied mechanical loads. The first two-dimensional illus-
trative case deals with one semicoherent interface only, while the subsequent three-dimensional
systems are made of two semicoherent interfaces, for which each one contains two sets of interfa-
cial dislocations. In the following, all terminal planes between two adjacent crystals are defined
by n || (001) in the cube-on-cube orientation, where both x; = [100] and x, = [010] directions are
parallel in the interface planes. The corresponding materials properties used in these examples
are listed in Table 3.10.

3.8.2 A primary case: 2D bilayered composites

In the present two-dimensional bilayered structure without external loads, the lower layer con-
sists of the ferromagnetic (spinel, layer 1) CFO and the upper layer of the ferroelectric (perovskite,
layer 2) BTO, with hcpo = hgro = 10 nm. Due to the moderately large 5% lattice mismatch in
the CFO/BTO system, with lattice parameters acpo = 0.838 nm and agro = 0.399 nm for CFO
and BTO, respectively [298], a specific semicoherent interface with discrete edge dislocations is
located between these two adjacent crystals. The straight parallel dislocations are defined along
the xj-axis, for which the infinitely long, straight, parallel dislocations are uniformly spaced by
p1 = prs = 8.378 nm, as predicted by the quantized Frank-Bilby equation. Here, the Burgers
vectors are given by b; = 4[100]* along the x1-axis, where the reference in-plane lattice param-
eter a) is determined using the procedure proposed in section 3.2.4 for purely elastic CFO/BTO
bilayers, i.e., with electric and magnetic constants equal to zero. For this simple case, egs. (3.201)
and (3.202), combining with the specific interface conditions S in eq. (3.197) for a single set of
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FIGURE 3.42: Illustration of some (elastic, electric, and magnetic) field solutions in CFO/BTO bilayers.
(a) Cross-sectional contours of the elastic displacement component u3 (in nm), the electrostatic ¢ (in V)
and magnetostatic ¢ (in mC/s) potentials, with the regularized dislocation core parameter ryp = 0.3 nm.
Minimum (maximum) values are linearly displayed in blue (red), while the field solution values are equal
to zero in gray. (b) The corresponding distribution of u3, ¢, and ¢ with respect to x3 at x; = —p1/2, ie,
along the vertical z-axis depicted by the white lines in (a). The calculations are performed for the compact
dislocation core case, i.e.,, r9p = 0 (black curves), and the core-spreading case, with 7y = 0.3 (red), and
ro = 2.5 nm (blue). (c) Similar distribution of the stress component 3 (in GPa), the electric displacement
component D3 (in C/m?), and the magnetic induction component B3 (in Wb/m?3).

dislocations, can be recast into the following global linear system, as

05.; —I; SO SB° —i27ty it (n,zo) —i27ty it (n,z1)

055 055 SS° SNO| |—i2mpit(n,zi-)| 05.4

—Isys S%:O 055 Osss _i27T77 i (n/ ZZ) B 0551 ’ (3.213)
05,5 S%:O 055 —Isys i'(n/ Zl) 05,1

which solves the Fourier-transformed unknowns, i.e., {# (n,z), &t (n,z1-), #t(n,z2), t(n,z1) },
on both external boundaries as well as on the internal interface for all n > 1, with respect to
the corresponding submatrices SEEO and SEEO for both individual materials, with also zop = 0,
z1 = hcro, and zp = hero + hpro.

Figure (3.42) shows the dislocation-induced fields with three different core-spreading param-
eters, i.e., rop = 0, rp = 0.3 and rp = 2.5 nm, with 64 harmonics that are sufficient to accurately
compute the elastic, electric, and magnetic field solutions. For illustration, Fig. (3.42a) displays
the periodical contours of the elastic displacement component u3 (in nm), the electrostatic ¢ (in



3.8. Extension to non-singular fields in multilayered magneto-electro-elastic plates 129

V) and magnetostatic i (in mC/s) potentials, within the area of (x1,x3) € [~10 nm, 10 nm]?, for
the intermediate value rop = 0.3 nm. It is also depicted that the presence of misfit dislocations
generates strong short-range electrostatic and magnetostatic potentials in the neighborhood of the
semicoherent interface. In particular, these profile should dramatically affect the magnetoelectric
effect (induction of magnetization (polarization) by an electric (magnetic) field) and, in general,
the coupling between the electric and magnetic fields in laminated piezoelectric/piezomagnetic
layers, e.g., the influence of the interfacial dislocations on the effective magnetoelectric coupling
coefficients #1; and a33 in such two-phase systems.

Figure (3.42b) exhibits the distribution of u3, ¢ and ¥ for the three core-spreading parameters
at x; = —p1/2nm, i.e,, along the vertical z-axis, as depicted by the white lines in Fig. (3.42a). It is
clearly demonstrated that the core widths reduce the intensity of all internal elastic, electric, and
magnetic solution fields. For rp = 2.5 nm, the derivatives of the normal displacement close to the
interfaces change in sign compared to the dislocation networks with compact cores, i.e., 7o = 0 nm.
All depicted solutions are continuous across the CFO/BTO interface with ro # 0, which is also the
case for the elastic stress component ¢33 in Fig. (3.42c) that originally diverges for ry = 0 using
the classical theory of dislocations. However, not all the field quantities are continuous across
the semicoherent interfaces, due to the discrete definition of the materials properties along the
z-direction, as illustrated in the next section 3.8.3. For rg = 2.5 nm, the elastic stress o33, electric
displacement D3 and magnetic induction Bz concentrations are dramatically decreased close to
the dislocations as well, as displayed in Fig. (3.42c), which reveals the main role of the spreading
cores to release field concentrations produced by the topological interface defects.

3.8.3 Energy-based criterion for interlayers in A/B/A trilayers

This section aims at deriving an energy-based criterion of zero net work that computes the crit-
ical dislocation spacings and thicknesses of interlayers in heterogeneous MEE materials. Such
nanoscale inhomogeneities are typical in strain-induced martensitic transformation domains in
ferroelectric systems [127, 167, 96]. More generally, the misfit stabilization of these interlayers with
intrinsic dislocation networks can play a decisive role in the self-assembled structural (e.g., pre-
cipitation hardening) and functional (e.g., conversion of energies stored in electric and magnetic
tields) properties of nanoscale MEE heterostructures. The heterogeneous mechanical problem is
also to estimate the complete strain energy stored in the interlayers in the presence of the lattice
and stiffness mismatches as well as the interfacial dislocations.

From coherent to semicoherent state in trilayers

As shown in Fig. (3.43a) a trilayered A/B/A composite is considered, where the adjacent layers
A (interlayer B) are characterized by a finite thickness /o (hg) and the corresponding anisotropic
MEE constants. In the present analysis, 15 > hg, so that the thin rectangular-shaped interlayer is
assumed to be associated with a large lattice mismatch with flat interfaces and small surface ten-
sion. Depending on the lattice constants, the layers A and B are under biaxial tension or compres-
sion, such that the coherency strain field in the interlayer B is defined by eg(a)) = (a; — ag)/as,
with 4| the reference in-plane lattice parameter for both interfaces in trilayers, which should be
different from the previous reference lattice parameter 4 in bilayered systems.

In the present analysis, the "reference state" is conceptually created by separating the three
layers and by applying uniform distortions to each individual material, as depicted in Fig. (3.43b).
After structurally (not chemically) bonding these three distorted layers, the ideal commensurate
trilayer is formed, within which forces are needed on both fictitious interface planes to main-
tain the uniform coherent state, and also the corresponding one-to-one correspondence between
lattice planes on the two sides of each interface. In this reference state, which has the interface
structure of a single perfect crystal, the interface is also coherent, so that the three layers are in
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FIGURE 3.43: Schematic illustration of the decomposition of the total strain energy E; in a representative
finite-thickness A/B/ A trilayers. (a) A strained three-layered structure with specific anisotropic MEE prop-
erties is composed of two different types of (virtual and misfit) dislocation networks at the upper and lower
semicoherent interfaces. The region R represents the unit three-layered cell, within which the total strain
energy is decomposed and computed. (b) The three materials are separated, rotated, and strained, such
that the common reference configuration (depicted in green) with the same in-plane lattice is described by
uniform displacement gradients applied to A (blue arrows) and B (red arrows). (c) The ideal commensurate
trilayer is formed after bonding the three individual solids with the presence of continuous infinitesimal
dislocations (i.e., virtual dislocations) to maintain the uniform coherent state, i.e., the three materials are in
perfect registry with each other across both interface planes. These two continuous distributions of ficti-
tious infinitesimal dislocations with the same magnitude but opposite signs generate uniform distortions
that are non-zero in the interlayer B (orange arrows) and are compensated (also, zero) in both materials A.
(d) The atomic structures of both semicoherent interfaces lead to formation of networks of discrete misfit
dislocations separated by the regions of coherency that decrease the stored strain energy. The correspond-
ing superposition of the three operations gives rise to non-zero stresses that are short-ranged and heteroge-
neously distributed in the three layers. The relaxed mismatch strain energy that consists of separating (b)
and bonding (c) the three layers is denoted by E;,, while E; is associated with the work done in forming
the discrete dislocation networks. The white symbols in (d) correspond to the shifted upper dislocation
network, i.e., to the specific cases 5 and 6 in Fig. (3.44).

perfect registry with each other across the interface planes. It is illustrated in Fig. (3.43c) that the
continuity of the reference lattice is virtually maintained across the interfaces by the presence of
continuous distributions of infinitesimal extrinsic dislocations. Because these two continuous dis-
tributions of fictitious infinitesimal dislocations are defined by the same magnitude but opposite
signs, the non-zero distortions are added and uniformly distributed in the interlayer B only, and
are compensated (also canceled) in both adjacent layers A. Finally, the discrete intrinsic dislocation
arrays with short-range elastic fields only (i.e., free of far-field stresses) are superposed to repro-
duce the "natural state" that defines the semicoherent interfaces with non-uniform internal struc-
tures comprised of misfit dislocations, as depicted in Fig. (3.43d) with opposite signs compared
to continuous distributions of infinitesimal dislocations. By deviating locally the continuity in the
reference configuration, these discrete dislocations emerge to release the elastic stored energy in
the heterostructures by alleviating the residual lattice-misfit strains from the ideal commensurable
trilayers.

In practice, both semicoherent interfaces in this natural state have the same internal structures
with two sets of dislocations, i.e., in terms of the dislocation spacings p; = p, and the magnitude of
both Burgers vectors b; = by = b, except that the directions are defined by b} = a,[100]* and b, =
a,;[010]* at the lower interface, and with opposite signs, bf = —a;[100]* and by = —a;[010]" at
the upper interface, such that the interlayers are formed by periodic arrays of dislocation dipoles
in MEE trilayers.

Coherency and dislocation-induced energies

In accordance with the aforementioned three-step strategy to characterize the heterophase inter-
layer B, the total energy E; per unit area that is contained in the elementary region R in Fig. (3.43a)
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is conveniently expressed as
Ey =2E;+ Ey, (3.214)

where E; is the stored dislocation-induced energy due to the heterogeneous short-range stresses
generated by a single set of intrinsic dislocation dipoles at the upper and lower interfaces. On
the other hand, E,, in eq. (3.214) is the relaxed mismatch strain energy due to the differences in
lattice parameter between layers A and B by introducing the continuous distributions of fictitious
infinitesimal dislocations. The factor 2 in front of E; is associated with the second set of disloca-
tion dipoles that is orthogonal to the first set with zero interaction energy, so that the following
calculations can conveniently be described in two dimensions.

By taking the advantages of the translational periodicity for one set of interfacial dislocations
and using the divergence theorem, the dislocation-induced energy contribution per unit area E;
in eq. (3.214) reads

1

1 1 .
E; = 2;71/12 (ijuij — Dipi — Biwp ;) dxydxs = 20 /azz oijftiudl = — >

O'i'ﬁib‘de P 3.215
2p /pm] ! (3.215)

without electric and magnetic charge densities. The complete dislocation-induced stress field in
eq. (3.215) has been derived in the previous section 3.8.1, while dR corresponds to the boundary
of the periodic region R and p to the cut along the line between two discrete dislocations from
the lower and upper interfaces, as depicted in Fig. (3.43a). The proper cut p excludes the regions
of compact dislocation cores by introducing an out-of-plane cutoff parameter r, so that the stress
divergence near the dislocation cores is removed, with in practice: » = r9/4. In the following
calculations with core-spreading dislocations, however, this exclusion is not necessary to compute
the line integrals, so that r = 0. Due to the periodicity of the traction and displacement on the
external boundary dR and the zero-traction conditions at the free surfaces, the specific traction
is also reduced to the limiting stress 0;; acting on p, where 71; denotes the unit vector normal to
p, as displayed in Fig. (3.43a). Evaluation of the integral in eq. (3.215) can also be performed
using the appropriate dislocation-induced stresses, which intrinsically depend on the coupled
elastic/electric/magnetic field solutions by virtue of eq. (3.164) and on the thicknesses of the three
layers as well as the internal dislocation spacings.

Similarly to the work done by Willis and co-workers [283, 284], the relaxed mismatch energy
E,, in eq. (3.214) is considered as a result of the elastic superposition of the lattice-mismatched
strain and the strain-annihilator fields generated by the continuous distribution of infinitesimal
dislocations. On the one hand, the determination of the coherent reference state in nano-trilayers
(in general, nano-multilayers) would necessitate atomistics simulations because of the complex-
ity of inhomogeneous anisotropic MEE trilayered systems with finite thicknesses. For large (but
finite) thicknesses of layers A, however, the lattice parameter of material A can reasonably be se-
lected as the reference state, so that ;| = a4, and also the coherency strain field in A is es(aa) =0,
yielding to zero uniform distortions applied in both layers A in Fig. (3.43b), while the correspond-
ing field in Bis eg(aa) = (aa —ag)/ap = fm. As discussed in section 3.2, the continuous distribu-
tion of fictitious dislocations with infinitesimal Burgers vectors and spacings can be represented
by a linear (macroscopic) displacement field in x1, as b;x1/p1, which generates a corresponding
uniform distortion, i.e., (bifij + bjf1;) /2p;. Hence, the genuine mismatch energy E,, is given by

Ew = % BCijkiBE] BE; /13, (3:216)

with pcjji the elastic constants of the interlayer B, and Be}'} the relaxed mismatch strain field de-

fined by
bif; + bjf;
Bell = fudij + ——— ]Pl 2, (3.217)
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case 1* case 1** case 2* case 2** case 3* case 3** case 4* case 4**
hg=2nm hg=2nm hg=12nm hg=12nm p;=8378nm p; =8378nm p; =12nm p;=12nm
ro=03nm ryg=25nm ry=03nm ry=25nm ro = 0.3 nm ro = 2.5 nm ro=03nm rg=25nm
varying p; ~ varying p;  varying p;  varying p; varying hg varying hg varying hg ~ varying hp

TABLE 3.11: Different configurations in trilayered A/B/A composites, where the specific characteris-
tics are schematically illustrated in Fig. (3.43a) with hp being the middle layer thickness, p; the inter-
dislocation spacing, and ry the core-spreading parameter. These configurations are applied to both
BTO/CFO/BTO and CFO/BTO/CFO stacking sequences. In addition, cases 5 and 6 correspond to case 4 in
the BTO/CFO/BTO and CFO/BTO/CFO trilayers, respectively, within which the upper dislocation array
is shifted by half dislocation spacing with respect to the lower dislocation array, as depicted in Fig. (3.43d).

Cases
Trilayers
BTO/CFO/BTO | 2228 1495 1220 1001 ~oo ~oco 1292 444 1726 4.45
CFO/BTO/CFO | 28.53 17.75 2853 1073 ~oo ~oco 2354 926 26.99 12.06

TABLE 3.12: Critical values (in nm) for the six different cases (see text for details), i.e., the critical dislocation

spacings for cases 1 and 2, while the others deal with the critical thicknesses of the interlayer. Numerical

calculations are performed for layered MEE structure made of three layers, with both BTO and CFO mate-
rials.

which is homogeneously distributed in the interlayer B for two sets of continuous distributions of
dislocation dipoles.

Critical dislocation spacings and interlayer thicknesses

In the following calculations, the layered MEE structure is made of three layers, with A =BTO and
B =CFO, for which two different stacking sequences are discussed, i.e., the BTO/CFO/BTO and
CFO/BTO/CFO trilayers. The thicknesses of both adjacent layers A are fixed and sufficiently large
compared to the dislocation spacings predicted by the Frank-Bilby equation in bilayered systems,
ie., hpo = 40 nm. In extremely thin (but stable) multiferroics and miniaturized magnetoelectric
memory devices, the relations and size effects between the interfacial dislocation spacings and
the interlayer thickness hg become desirable for novel technological paradigms by dislocation
engineering. In particular, the estimate of the critical quantities «,, e.g., dislocation spacings and
interlayer thicknesses, are obtained by finding the values x. such that eq. (3.214) yields to

Ei(x;) = 2E4(xc) + En(xc) =0, (3.218)

exhibiting an energy balance criterion between the dislocation-induced energy contribution and
the relaxed mismatch strain energy from the perfectly coherent trilayered state. Based on a com-
parison of energy states in eq. (3.218), the critical values for the inter-dislocation distances and
thicknesses correspond to the situation where the background relaxed mismatch stress is com-
pletely balanced by the stresses generated by the misfit dislocations. Thus, the zero total energy
criterion leads to the structural characteristics in trilayers for which the coherently strained inter-
layer is stabilized by the presence of discrete misfit dislocations at both interfaces of the interlayers.

Figures (3.44a) and (b) illustrate the determination of the critical dislocation spacings and in-
terlayer thicknesses, respectively, by plotting the dislocation stored energy 2E; (black curves), the
relaxed mismatch strain energy E,, and the total energy E; = 2E; + E,, for six different cases.
All energy contributions are expressed in J/m?. For the given i" case, the solid (dotted) curves
are associated with the BTO/CFO/BTO (CFO/BTO/CEFO) trilayers, while the sub-case i* (i**) is
related to field solutions with a core parameter rp = 0.3 nm (19 = 2.5 nm), also called here: "con-
densed dislocation cores" ("core-spreading dislocations"). Thus, the present results exclude the
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FIGURE 3.44: Estimate of critical quantities in MEE trilayers, i.e., dislocation spacings in (a) and thicknesses
in (b), for different cases (see text for details of these cases) with condensed dislocations and core-spreading
cores. The coherency energy E;; (red curves) can be recovered (except for case 3) by the work done in
forming the discrete dislocation networks E; (black curves), such that the critical quantities are obtained
when the total strain energy E; (blue curves) is zero, as depicted by the vertical solid and dotted arrows.
The results for the BTO/CFO/CFO (CFO/BTO/CFO) systems are indicated with solid (dotted) lines. The
specific case 5 (6) corresponds to case 4, within which the upper dislocation array is shifted by half the
dislocation spacings in the BTO/CFO/CFO (CFO/BTO/CFO) system, as displayed in Fig. (3.43d). For
comparison, the thin solid and dotted lines in cases 5 and 6 indicate the results from cases 4* and 4**,
respectively.

calculations with the unrealistic compact dislocation cores, i.e., calculations with 7y = 0 nm. The
considered cases are:

— Cases 1 and 2 exhibit the effect of the dislocation spacings p; on the energy profiles, with
tixed finite thickness for the interlayers B (= CFO or BTO, depending on the stacking se-
quence), i.e.,, hg = 2 nm and hg = 12 nm, respectively. Thus, the specific calculations of case
1** are performed with rg = 2.5 nm and hg = 12 nm.

— Cases 3 and 4 illustrate the influence of the intermediate thicknesses /g on the energy pro-
tiles, with fixed dislocation spacings, i.e., p1 = prg = 8.378 nm and p; = 12 nm, respectively.

— Case 5 (case 6) corresponds to the previous case 4, within which the upper dislocation array
is shifted by half the dislocation spacings p; with respect to the unchanged lower dislocation
network in the BTO/CFO/BTO (CFO/BTO/CFO) trilayer, as displayed by dislocations in
white at the upper interface in Fig. (3.43d).

Table 3.11 summarizes the aforementioned configurations, while Table 3.12 reports the predic-
tions of the critical quantities for the different cases, obtained from Fig. (3.44) when Ei(x.) = 0.
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FIGURE 3.45: Comparison of elastic, electric, and magnetic field quantities induced by dislocation networks
with condensed dislocation cores (contours in left-hand sides, with rg = 0.3 nm) and with core-spreading
regions (right-hand sides, with ro = 2.5 nm) in A/B/A trilayers, with A =BTO and B=CFO, i.e., the elastic
displacement components #; and u3 (from —0.01 to 0.01 nm), the electrostatic ¢ (from —0.01 to 0.01 V)
and magnetostatic ¢ (—0.01 to 0.01 mC/s) potentials, the electric displacement component D3 (—0.2 to
0.2 C/m?), the magnetic induction component B3 (—8 to 8 Wb/ m?), and the stress components 011, 033, 012,
and 013 (in GPa). Minimum (maximum) values are linearly displayed in blue (red), while the field solution
values are equal to zero in gray.
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FIGURE 3.46: Variation of elastic displacement component u3 (in nm) and stress components ¢y1, 013, and
o33 (in GPa) with respect to x3 at x; = 0, i.e., along the vertical z-axis, midway between two interfacial
dislocation dipoles in Fig. (3.45). Both misfit dislocation arrays have Burgers vectors with the same mag-
nitudes, but with opposite signs. Calculations are performed for interfacial dislocations with condensed
dislocation cores (plots in left-hand sides) and spread cores (right-hand sides) in trilayered BTO/CFO/CFO
(blue/red/blue) and CFO/BTO/CFO (red/blue/red) systems. The results are illustrated for cases 3*
and 3**, with specific thicknesses, i.e., hg = 5 nm (black curves) and hg = 12 nm (red curves), as de-
picted by the black * and red * asterisks in Fig. (3.44).

Comparing rows 2 and 3 in Table 3.12, it is concluded that the largest critical values are always
associated with the CFO/BTO/CFO sequences, as displayed by the vertical dotted versus solid
arrows in Fig. (3.44). Here, BTO is elastically softer than CFO, which therefore reduces the magni-
tude of E;, for the CFO/BTO/CFO trilayers, compared to the BTO/CFO/BTO ones. On the other
hand, the stacking MEE sequence has less influence on dislocation-induced energy E; than the
coherency energy E,,;, especially for case 2, even though the elastic constants for these two mate-
rials are considerably different, as listed in Table 3.10. In contrast to purely elastic calculations, it
is worth remembering that the present predictions result from the elastic/electric/magnetic cou-
pling phenomenon, which also resorts to the coupled constitutive relation in eq. (3.164) with three
distinct (elastic, electric, and magnetic) contributions. Whereas the first elastic part gives rise to
different stress distributions from both stacking sequences, the piezoelectric and piezomagnetic
terms are therefore able to counterbalance the stress difference that is generated using the purely
elastic constitutive relations alone. For both cases 1 and 2 with fixed thicknesses, the positive co-
herency energy decreases (increases) when p; < p1 (> p1), and is equal to zero when p; = py,
i.e., Ex(p1) = 0. The latter corresponds to the fully relaxed mismatch strain case, i.e., Be;’]? =0in
eq. (3.217), for which the interlayers are entirely accommodated by the continuous distribution of
virtual dislocations.

Because the core-spreading regions affect the short-range stress concentration close to the in-
terfaces (not the coherency energy E,;) the dislocation-induced energy E; is reduced in magni-
tude when the core-spreading parameter ry increases, so that E,;, becomes more dominant than
E, for large values of the regularized dislocation cores. Furthermore, the energy variations show
that E; decreases monotonically in magnitude when increasing p; for the condensed cores (e.g.,
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FIGURE 3.47: Similar illustration as in Fig. (3.46) for electrostatic potential ¢ (in V), electric displacement
D; (in C/s?), magnetostatic potential ¢ (in mC/s), and magnetic induction Bz (in Wb/m?).

cases 1* and 2*), while E; becomes fairly constant with respect to p; for core-spreading dislo-
cations (cases 1** and 2**). Significant differences between these two profiles are observed for
very small dislocation spacings (equivalently, for high interfacial dislocation densities). Case 1
versus 2 illustrates that the critical inter-dislocation distance (density) decreases (increases) with
increasing the thickness of the interlayers for both sequences, which is qualitatively in accordance
with experimental investigations in bilayers [183]. Case 3 shows that E,, ~ 0 when p; = prs,
while E; decreases slowly in magnitude with increasing hg, so that no critical thicknesses are
reached. This theoretical result suggests that the equilibrium inter-dislocation distances are larger
in finite-thickness trilayers than in the semi-infinite bicrystals. Case 3 versus 4 demonstrates that
the critical interlayer thicknesses decrease when increasing the dislocation spacings for both MEE
sequences and both condensed and core-spreading dislocations, which is due to stronger elastic
interactions for high dislocation spacings. Again, case 4 illustrates that the core-spreading regions
have a great influence on the determination of the critical interlayer thicknesses. For the shifted
case 5 versus 6, the critical values for thicknesses are larger than the previous unshifted cases,
except for case 4** that has the same value as case 5** for large core-spreading dislocation widths.
Furthermore, E; is close to zero for small thickness values, as qualitatively expected using the
classical theory of dislocation dipoles.

Size effects on the coupled MEE field solutions in trilayers

Figure (3.45) illustrates the influence of the spreading dislocation cores on various elastic, electric,
and magnetic solution field components for both particular cases 3* and 3** (i.e., with g = 0.3 nm
and rp = 2.5 nm, respectively), where hg = hcpo = 12 nm are comparable with the internal
inter-dislocation spacings. This MEE system is identified by the red asterisk in Fig. (3.44). Sim-
ilarly to the previous primary bilayered case, the general tendency is that the spreading-core re-
gions release significantly the aforementioned solution fields in magnitude, such that the larger
the spreading widths are, the lower the complex distribution and concentration of these elastic,
electric, and magnetic quantities become (especially close to the interfaces). Thus, the present core-
spreading treatment can therefore be regarded as flattening and stretching operations in the z- and
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x- directions, respectively, of the released elastic, electric, and magnetic concentration originated
from the compact cores. Interestingly, whereas the electrostatic and magnetostatic potentials are
non-zero in both materials, the electric displacement D3 and the magnetic induction B3 are strictly
equal to zero in the magnetostrictive CFO and piezoelectric BTO layers, respectively. The theo-
retical coexistence of these highly localized electric and magnetic characteristics that emerge from
the interfacial dislocations should unambiguously produce remarkable effects on the electric and
magnetic properties in MEE heterostructures, as substantial energy electron fluxes in laminated
structures. This suggests also that interfacial dislocation networks cannot always be considered as
detrimental, but can present an opportunity to enhance the material performance, and to produce
exceptional/exotic performances though dislocation technological concepts.

All red curves in Fig. (3.46) illustrate the variation of the elastic displacement u3 and stress
components 011, 012, and o33 at x; = 0, i.e., along the vertical z-axis between two interfacial dislo-
cations in Fig. (3.45), for which the interlayer thickness in both stacking sequences is hg = 12 nm.
For comparison, the black curves that correspond to the similar MEE system with hg = 5 nm,
identified by the black asterisk in case 3 from Fig. (3.44), are plotted as well (converted to the same
interface locations for easy comparison, with a similar treatment in Fig. (3.47)). Calculations are
performed for interfacial dislocations with condensed dislocation cores (plots in left-hand sides,
with vy = 0.3 nm) and spreading-core dislocations (right-hand sides, with rp = 2.5 nm) in both
trilayered BTO/CFO/BTO (blue/red/blue) and CFO/BTO/CFO (red/blue/red) systems. It can
quantitatively be shown that the magnitudes in the normal displacement and stress field com-
ponents are dramatically released by the core-spreading operations. The normal displacement
between two misfit dislocations is continuous across both interfaces with similar characteristic
double-well shaped profiles close to the internal boundaries as in Fig. (3.42b), with positive (neg-
ative) values at the lower (upper) interfaces. The elastic stress component ¢33 is continuous across
the interfaces as well, as expected by the required boundary conditions in the MEE trilayers. The
corresponding profiles of o33 are different in the interlayers for hig = 5 nm (black curve) and
hg = 12 nm (red curve), for which the former (latter) exhibit parabolic (double-well) profiles in
both CFO and BTO interlayers, with large differences in magnitude (that are reduced by spread-
ing the dislocation cores). On the other hand, ¢1; and ¢y, in Fig. (3.46) are discontinuous across
the interfaces, which is intrinsically ascribed by the heterogeneous elastic properties of the adja-
cent layers that differ from the interlayers. It can also be observed that the shear component in
the middle layers is very sensible to the associated thicknesses, which increases with decreasing
thicknesses due to the strong elastic interactions (and also, the superposition of ;) between both
adjacent dislocation networks with opposite signs. The o7 component, however, results from
the superposition of positive and negative regions produced by these adjacent networks, which
yields to weaken size effects in the interlayers. It is reasonable to point out that such size effects
in the interlayer thicknesses would considerably affect the glide and climb components of the
Peach-Kohler force acting on lattice dislocations in the interlayers, and also the corresponding mi-
croscopic plastic deformation mechanisms and related macroscopic mechanical properties in MEE
multilayers.

Figure (3.47) illustrates similar plots as in Fig. (3.46), but for electric quantities (electrostatic
potential ¢, and electric displacement D3) and for magnetic quantities (magnetostatic potential ¢
and magnetic induction Bz). All quantities are continuous across both semicoherent interfaces,
and differences in profiles are more discernible between both stacking sequences for the electric
and magnetic measures than the relatively small variations in the elastic fields, as excepted. Inter-
estingly, the electric displacement D3 and the magnetic induction Bz have alternatively analogous
profiles in CFO and BTO interlayers depending on the stacking sequence. Similar features as in
the elastic variations in the parabolic versus double-well distributions are emphasized with re-
spect to the interlayer thicknesses, which are extremely reduced by the spreading-core operations.
Important size effects on the electric displacement D3 (the magnetic induction Bs) are observed in
the intermediate layer BTO (CFO) in the CFO/BTO/CFO (BTO/CFO/BTO) trilayers.
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FIGURE 3.48: Distribution of superposed field quantities in the six-layered MEE materials along two lines

in the x3-direction, i.e., at x; = 0 (solid lines) and x; = (p; + p2)/4 (dotted lines), as displayed in (a).

The total field solutions (red curves) result from the superposition of the external load (blue curves) and

the dislocation-induced (black curves) fields. Elastic (b) displacement u3 (in nm) and (c) stress o33 (in

GPa) components. Electric (d) potential ¢ (in V), (e) displacement D3 (in C/ s?) and (f) field E3 (in V/um)

components. Magnetic (g) potential ¢ (in mC/s), (h) induction Bz (in Wb/m?), and (i) field H; (in A/um)
components.

3.8.4 Dislocation-induced response under applied external loading

Two three-dimensional MEE systems are investigated and compared, i.e., the tri- LNO/BTO/CFO
(green/orange/maroon) and the six- LNO/BTO/0.75 BTO/0.50 BTO/0.25 BTO/CFO layered sys-
tems in the same cube-on-cube orientations as previously discussed, for which the lead-free ferro-
electric LINbO3; (LNO) is a piezoelectric material as well as the widely used BTO material. Here,
0.25 BTO means 25% of BTO in the MEE composite made of BTO and CFO, so that the interme-
diate 0.75 BTO/0.50 BTO/0.25 BTO trilayer can be regarded as a buffer sequence to progressively
accommodate the lattice mismatch between BTO and CFO. For these two cases, the same mechan-
ical load is applied to both external surfaces and two semicoherent interfaces are considered, so
that both lower and upper interfaces in the six-layered system are located between LNO and BTO,
and, between 0.25 BTO and CFO, respectively. The following calculations aim at introducing the
capabilities of the present framework to investigate the distribution of the elastic, electric, and
magnetic field solutions in complex MEE multilayers under externally applied loads, with buffer
sequences in presence of topological defects at two semicoherent interfaces.
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(a)  Mises stress (in GPa) (b)  Electric displacement D; (in C/s2) (c)  Magnetic induction B3 (in Wb/m3)

-30. 30.
[T - -/

FIGURE 3.49: Three-dimensional spatial distribution in the six-layered MEE composite of the (a) von Mises
stress (in GPa), (b) electric displacement D; (in C/ s%), and (c) magnetic induction B3 (in Wb/ m?) compo-
nents.

Interaction between internal dislocation fields and externally mechanical loads

Both interfaces have different internal structures in terms of dislocation spacings and Burgers
vectors. Here, the internal dislocation structure at the lower LNO/BTO interface is described by
the same dislocation spacings as in the former studies in trilayers, i.e., p} = p, = 8.378 nm, with
bl = b} = agro = 0.399 nm, while the upper 0.25 BTO/CFO interface is characterized by a higher
dislocation density, where p} = p5 = 5911 nm, and b} = by = acro/2 = 0.419 nm. The cross-
sectional illustration in Fig. (3.48a) illustrates both internal structures in the tri- and six-layered
systems of interest. Importantly, all dislocations have Burgers vectors with the same sign, and
all three-dimensional calculations are performed with ryp = 0.3 nm. Because of the miniaturized
dimensions of ultrathin multiferroics in the experimental literature [89, 24], nominal nanoscale
thicknesses are arbitrarily chosen: hino = hcro = 3 nm, hgro = 1.5 nm, and the thickness of each
intermediate buffer layer (i.e., for the layers of 0.25 BTO, 0.50 BTO, and 0.75 BTO) is equal to 1 nm.
The mechanical load that is applied to both external surfaces is I' = 1 GPa, over I = 10 nm, while
the corresponding responses are computed using totally 1024 harmonics in both directions.

To complete the present results, external electric and magnetic loadings could also be applied
and compared to the mechanical loads in the six-layered heterostructure.

Distribution of the MEE field solutions in the six-layered heterostructure

Figure (3.48) focuses on the variations of some elastic, electric, and magnetic field components in
the six-layered heterostructure, resulting also from the superposition (red curves) of the external
load (blue) and the dislocation-induced (black) solutions, along two vertical (solid and dotted)
lines in the z-direction, as depicted in Fig. (3.48a). The solid lines are located at x; = 0, while the
dotted line are located midway between two adjacent dislocations, at x; = (p1 + p2) /4.

All considered elastic, electric, and magnetic quantities are continuous across the five internal
interfaces, except the vertical electric E3 and horizontal magnetic H; fields that reveal strong and
sharp discontinuities at the interfaces. The later are computed by inverting eq. (3.164) and also
solving for the extended strains, as

t -1

v c —e —q o
E|l=|e € % D|, (3.219)
H q « 7 B

reading in the vector-tensor form.

All non-homogeneous solutions are more disturbed and disrupted close to the dislocation
cores (dotted lines) with pronounced changes at the interfaces, revealing that the long-range in-
teractions between adjacent dislocation networks have important effects on the distribution of the
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MEE field components. Significant differences between solid and dotted lines show that the solu-
tion fields are not uniformly distributed with dramatically changes in sign (e.g., the vertical elec-
tric displacement D3 and the horizontal magnetic induction H;, which are both discontinuously
distributed), so that the atomic-scale measure of the layered magnetoelectric effects in dislocated
composites by semicoherent interfaces should be interpreted with considerable precautions.

As a conclusive illustration, three-dimensional visualization of three elastic (von Mises stress,
electric (positive horizontal displacement D;), and magnetic (positive vertical magnetic induction
B3)) quantities in the six-layered multilayer are exhibited in Fig. (3.49). These figures illustrate
the highly localized nature of these field components, which are dramatically located at both,
lower, and upper interfaces, respectively. For instance, the in-plane von Mises stress concentra-
tion along the misfit dislocations indicate the possible nucleation sources for plastic deformation
mechanisms and cracks, preferentially at upper interface with the highest dislocation density. The
horizontal displacement D; is asymmetrically concentrated at the lower interface and the lower
LNO layer, while the misfit dislocation intersections introduce preferential sites with maximum
magnetic induction D3 that is also diffused in the upper CFO layer.
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Chapter 4

Conclusion and future works

4.1 Concluding remarks

During my first years at the French Alternative Energies and Atomic Energy Commission, a three-
dimensional continuum thermodynamically consistent formalism for combining elastoplasticity
and phase-field theories has been developed for displacive phase transformations in finite strains.
In accordance with the Clausius-Duhem inequality, explicit expressions for the Helmholtz free
energy and constitutive relations have been used to determine the displacive driving forces for
pressure-induced martensitic phase transitions. Inelastic forces are obtained by a representation of
the energy landscape using the concept of reaction pathways for multivariants with respect to the
point group symmetry properties of crystalline lattices. In particular, the Mao-Bassett-Takahashi
transition path is used to characterize the transformational distortion along the reaction pathways
for iron. On the other hand, the elastic forces are formulated for the general case that accounts for
large strains and rotations, nonlinear and anisotropic elasticity with different pressure-dependent
properties of stable and intermediate phases.

Implemented in a fully Lagrangian code, the nonlinear formalism is applied to analyze the for-
ward and reverse polymorphic phase transformations under high pressure compression in single-
crystal iron, within which the multiple lattice-related variants for (low-pressure) cubic and and
(high-pressure) hexagonal structures are distinctly generated. Two loading conditions are investi-
gated, i.e. the quasi-static and shock-wave regimes in Refs. [252] and [253], respectively. The first
application shows that a forward bec — hep transformation of the initial single-crystal bec phase
into a polycrystal of hcp variants is energetically unfavorable due to the large amplitude of the
stored elastic energy interactions between phases, and also remains incomplete without plasticity.
However, the polymorphism bcc — hep — bec martensitic transformations occurs when plasticity
is active. This simulation result is due to the effect of the plastic dissipation that releases con-
siderably the elastic strain energy in the formation of a polycrystalline iron with an unexpected
selection of variants.

On the other hand, the second dynamics simulations with plasticity accurately reproduce im-
portant observable characteristics reported by the experimental literature. For instance, the free-
surface velocity exhibits that the shock wave is unstable, which breaks up into elastic, plastic and
phase-transition waves for which the bce-to-hcp phase transformation pressure is in agreement
with experiments. The present split three-wave structure is characterized by the dynamical evo-
lution of the strain from one- to three-dimensional compression with a local stress state that also
relaxes to a nearly hydrostatic state. Similar plastic relaxations, however without structural phase
transformation, have already been revealed in shock-compressed copper by diffraction experi-
ments and large-scale molecular dynamics simulations. Furthermore, the microstructural stress-
informed analyzes complement the extensive studies hitherto examined by molecular dynamics
simulations with multi-million-atoms in the last two decades. The heterogeneous plastic deforma-
tion is quantitatively found to play a significant role in nucleating and selecting the shock-induced
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variants at high pressure, which significantly differs from samples loaded under hydrostatic ex-
ternal compression. The Lagrangian time-position diagrams reveal that the prompt plastic relax-
ation to a nearly hydrostatic local state from uniaxial shock-compression is responsible for the
peculiar multiphase microstructure with a gradient selection of high-pressure variants behind the
phase-transition wave front. The existence of two sets of variants, so-called "release" and "reload"
variants appearing in separated zones, results from a nucleation instability that leads to a spe-
cific fingerprint of the nonlinear dynamics of unstable shock waves induced by structural phase
transformations.

The continuum formalism for phase transitions is, however, incomplete. In particular, the for-
mation of homo-phase grain boundaries and the heterophase interfaces between low- and high-
pressure phases during the coexistence of the solid-solid phases should be accompanied by a
loss the lattice coherence. This lattice mismatch by rotations and strains is ignored in the afore-
mentioned simulations, while experimental observations have revealed that coherent interfaces
break down the perfectly-matching interfaces through the presence of misfit dislocation structures
at such (semicoherent) interfaces in a variety of conditions. A lattice-based approach has there-
fore been developed to overcome this significant limitation, first dedicated to materials that are
mapped to a common reference state using displacement gradients alone. The ad-hoc strategy has
been conveniently applied to interface between fcc and bec crystals, which could be formed during
the temperature-driven polymorphic bec-fce phase transition in iron as well as the pressure-driven
bcee-fee-hep transitions, with the fcc phases as intermediate phases.

The lattice-based model combines the closely related Frank-Bilby and O-lattice techniques with
the Stroh sextic formalism for the anisotropic elasticity theory of interfacial dislocation networks
[260]. Starting from my postdoctoral position at the Massachusetts Institute of Technology, the
formalism is used by means of a Fourier series-based analysis to determine the reference states of
semicoherent interfaces that gives rise to dislocations whose far-field elastic fields meet the con-
dition of vanishing far-field strains and prescribed misorientations. These interface dislocations
are viewed as Volterra dislocations that have been inserted into the reference state, subject to the
stated constraints at long range. The complete elastic fields of these dislocations are calculated us-
ing heterogeneous anisotropic linear elasticity and interface dislocation configurations consistent
with the quantized Frank-Bilby equation. The present model resolves the ambiguity arising from
the infinite number of reference states available when the Frank-Bilby equation is analyzed based
on geometry alone, i.e. without consideration of the elastic fields. The importance of accounting
for the reference state has been illustrated in Refs. [259, 261], for which the selection of incorrect
reference states leads to non-zero far field stresses, spurious far-field rotations, or both. Overall,
all results reflect the importance of considering the anisotropy of elastic constants in the materials
joined at the interface, where unequal partitioning of elastic fields is found.

The corresponding energetics have been quantified and used for rapid computational design
of interfaces with tailored misfit dislocation patterns [258, 255]. In particular, the coupled ap-
proach with an object kinetic Monte Carlo code has revealed that elastic interactions between
radiation-induced point defects and semicoherent interfaces lead to significant increases in inter-
face sink strength, compared to the case with no defect-interface interactions [255]. The origi-
nal version has also been extended to bilayers of finite thickness terminated with free surfaces
[247], layered superlattices with differing layer thicknesses [248] as well as multilayered MEE
solids [257] for semicoherent interfaces with relaxed dislocation patterns at semicoherent inter-
faces [249, 250] and core-spreading dislocation networks [263]. For many complicated lattice struc-
tures, the elastic full-field solutions have been compared with atomistic calculations [258, 251],
which provide an opportunity for rigorous validation of the anisotropic elasticity theory of in-
terfacial dislocations as well as for collaborations with individuals outside the home laboratory.
Recently, a unified formalism for intrinsic dislocation arrays and extrinsic dislocation loops has
recently been developed in Ref. [264], improving the first investigation on the estimation of elastic
interactions between both types of defects from Refs. [265, 256].
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Regarding the active research topic on the role played by the dislocations in interface-dominated
materials, three inspiring routes are currently emerging, which are focused mainly on the ther-
moelasticity of imperfect interfaces as well as the interactions between dislocations and cracks
by use of theoretical (continuously distributed dislocations based) and numerical (finite-element
based) approaches.

4.2 DPerspectives

4.2.1 Thermoelasticity of semicoherent interfaces

[P24] A. Vattré, E. Pan, V. Chiaruttini. Free vibration of fully coupled thermoelastic multilayered com-
posites with imperfect interfaces. Composite Structures, 113203, 2021.

[P23] A. Vattré, E. Pan. Thermoelasticity of multilayered plates with imperfect interfaces. International
Journal of Engineering Science, 158, 103409, 2021.

In this research line, the thermoelasticity response of the most advanced dislocation-based
model from the previous chapter 3 is targeted in the near future, including the presence of intrinsic
and extrinsic dislocations in multilayered materials subjected to external thermoelastic loads. A
first effort has recently been done in Refs. [266, 267], within which the imperfect interfaces are
described by phenomenological constitutive relations.

In the former reference, the three-dimensional solutions for time-harmonic temperature and
thermoelastic stresses in multilayered anisotropic layers are derived with imperfect boundary con-
ditions at internal interfaces using the extended Stroh formalism combined with nonlocal effects.
For illustration, the residual stress fields in graphite fiber-reinforced epoxy matrix composites are
investigated in Fig. (4.1). In particular, a unidirectional graphite-epoxy composite with fibers ori-
ented along the x;-direction (material depicted in grey) and a soft core is considered, where the
thermoelastic properties and dimensions of both materials are reported in Ref. [266].

Following Savoia and Reddy [216], the steady-state thermoelastic bending of the three-layered
sandwich square plates with L,/L, = 1 are subjected to a sinusoidal temperature that rises at
both bottom and top surfaces, with T8 = 1 K, and TT = —1 K, respectively. Figure (4.1) shows
the effects of the ratios of Ly/H and I/ H on various thermoelastic field solutions, by varying the
lateral length L, as well as the nonlocal Eringen-based parameter /, where the entire thickness H is
kept fixed. For thinner plates, the temperature profile tends to a linear distribution through each
individual layer, as illustrated in Fig. (4.1a), while nonlinear exponential branches appear in the
graphite-epoxy composite plates for larger thicknesses. This trend indicates that when the aspect
ratio is small, namely L,/H < 5, the standard thin-plate result may be invalid, even though
the temperature remains linear (close to zero) in the middle layer. The corresponding curves
associated with the heat flux in Fig. (4.1b) are different from the temperature variation along the
vertical z-direction. In particular, the normal heat flux is continuous across the interfaces and
tends also to be steeper for thinner systems, while significant gradient emerges at the external
surfaces as L,/ H decreases.

The in-plane normal stress components 011 and 02, are displayed in Figs. (4.1c-f) for both ex-
treme aspect ratios with further consideration of nonlocal effect. Three ratios for the nonlocal
analysis are examined. It is worth noting that with reference to the composite stiff faces, higher
in-plane stress levels occur in the direction perpendicular to the fibers. Moreover, due to mate-
rial property mismatch between the layers, these in-plane normal stresses are discontinuous at
both interfaces, with significant discontinuities in ¢q; when the aspect ratio is small, as shown in
Fig. (4.1d). The amplitudes of these discontinuities at internal interfaces are therefore less pro-
nounced for thinner plates, with negligible effect by the nonlocal parameter. However, the nonlo-
cal parameter [ has a significant influence on the stress field for extremely thick plates subjected
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FIGURE 4.1: Steady-state thermoelastic bending of a three-layered structure with square plates subjected

to a sinusoidal temperature rise at the two external faces. The first terms in the temperature expansion

are considered, thus m = n = 1. The light grey regions are the unidirectional graphite-epoxy composites

with fibers oriented along the x;-direction, which are bonded by a soft core material. The through-the-

thickness distributions for different values of the aspect ratios Ly/H and of the nonlocal parameters [/ H

are depicted for (a) the temperature T, (b) the normal heat flux g3, (c-d) the in-plane stresses ¢y, and (e-f)
02. The standard local case corresponds to the field solutions with [ = 0.

to thermal loads only, where the nonlocal parameter can completely change the variation trend of
the stresses, switching their signs and altering their magnitudes, as depicted by the blue curves in
Figs. (4.1d) and (4.1f).

4.2.2 Distributed dislocations for periodic networks of cracks

[P25] A. Vattré. Kinked and forked crack arrays in anisotropic elastic bimaterials. Journal of the Me-
chanics and Physics of Solids, 104744, 2022.

In Ref. [262], the fracture problem of multiple branched crack arrays in anisotropic bimateri-
als has recently been formulated by using the linear elasticity theory of lattice dislocations with
compact cores described in section 3.7.1. Yet, the general full-field solutions are obtained from the
standard technique of continuously distributed dislocations along finite-sized cracks of arbitrary
shapes, which are embedded in dissimilar anisotropic half-spaces under far-field stress loading
conditions. The bimaterial boundary-value problem leads to a set of coupled integral equations of
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Cauchy-type that is numerically solved by using the Gauss-Chebyshev quadrature scheme with
appropriate boundary conditions for kinked and forked crack arrays. The path-independent J-
integrals as crack propagation criterion are therefore evaluated for equally-spaced cracks, while
the limiting configuration of individual cracks is theoretically described by means of explicit ex-
pressions of the local stress intensity factors K for validation and comparison purposes on several
crack geometries. The non-zero, singular and dimensionless stress components resulting from the
idealized configurations of infinitely periodic cracks are illustrated in Fig. (4.2), for which the ap-
plication setups are given in Ref. [262]. Specially, the o5," “*** exhibits a small compressive zone
along the crack pointing to the upper surface. Figure (4.2) shows the large discontinuities of the in-
plane stress component 037 “** across both crack and interface planes as well as the traction-free
conditions for o55™ “*** and 075~ “* along the main crack plane that are therefore fully satisfied,
as required.

The corresponding non-singular elasticity problem (using the core-spreading treatment from
section 3.8.1) for interfacial cracks has recently and successfully been addressed in collaboration
with Andreas Kleefeld from the University of Applied Sciences Aachen by use of the Tikhonov
method for Fredholm integral equations of the first kind. The novel stress field solutions at in-
terfacial crack tip do not exhibit oscillatory singularity induced by mismatching of the dissimilar
materials, while the traction-free conditions are completely fulfilled along the discontinuities. In
the near future, the influences of anisotropic elasticity, elastic mismatch, applied stress direction,
inter-crack spacings and crack length ratios on the predictions from the crack opening displace-
ment, as well as Ji- and K- based fracture criteria could therefore be examined in the light of
different configurations from the single kinked crack case in homogeneous media to the network
of closely-spaced interfacial cracks at bimaterial interfaces.

4.2.3 Towards a general treatment for {interfaces, dislocations, cracks}

[P27] A. Vattré, V. Chiaruttini. Singularity-free theory and adaptive finite element computations of
arbitrarily-shaped dislocation loop dynamics in 3D heterogeneous material structures. Journal of
the Mechanics and Physics of Solids, 104954, 2022.

The long-standing problem of arbitrarily-shaped dislocation loops in three-dimensional het-
erogeneous material structures has been addressed by introducing novel singularity-free elastic
field solutions as well as developing adaptive finite element computations for dislocation dy-
namics simulations in Ref. [263]. The first framework uses the Stroh formalism in combination
with the biperiodic Fourier-transform and dual variable and position techniques to determine the
finite-valued Peach-Koehler force acting on curved dislocation loops. On the other hand, the sec-
ond versatile mixed-element method proposes to capture the driving forces through dissipative
energy considerations with domain integrals by means of the virtual extension principle of the
surfacial discontinuities. Excellent agreement between theoretical and numerical analyses is il-
lustrated from simple circular shear dislocation loops to prismatic dislocations with complicated
simply-connected contours in linear homogeneous isotropic solids and anisotropic elastic multi-
materials, which also serves as improved benchmarks for dealing with more realistic boundary-
value problems with evolving dislocations. For illustration, the singularity-free Peach-Koehler
magnitudes for a prismatic dislocation loop with a complex butterfly-shaped front are presented
in Fig. (4.3a), using a given core-spreading radius. The theoretical (numerical) solutions are shown
as solid lines (with symbols), while the corresponding driving forces are drawn in pink along the
contours in Fig. (4.3b), with and without the two-dimensional shear stress 012(x1, X2, z5) maps in
the background for further comparison. The signed magnitudes of the Peach-Koehler forces are
plotted against the polar angle 6, for which 6 = 0° corresponds to the points M in the schemat-
ics. In general, the very good agreement in terms of stresses and forces in sign and magnitude is
also demonstrated, although slight deviations in direction are noticeable when the local radius of
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FIGURE 4.2: Contours of non-zero and dimensionless stress field components produced by a network of
equally- and closely- spaced forked cracks in an anisotropic bimaterial under traction using the concept of
the continuously distributed dislocations.

curvature changes drastically in sign. These discrepancies are mainly due to the different core-
spreading schemes that have been appropriately adopted for mathematical convenience in each
of the theoretical and numerical formulations.

Figure (4.4a) illustrates a large-scale three-dimensional finite element computation that cannot,
to the knowledge of the authors, be achieved by existing numerical approaches in the broader lit-
erature, corresponding to the Orowan dislocation-precipitate bypass mechanism in a compressed
micropillar of polycrystalline copper. An anisotropic copper polycrystalline micropillar with 80
grains is automatically generated from the intersection of a cubical Voronoi tessellation with a rep-
resentative pillar specimen, in which a shear dislocation loop with a Burgers vector glides in the
(111) slip plane of a specific host grain. The latter lies outside the microstructure, so that the outer
grain boundary corresponds to the free surface of the computational sample. A high compressive
strain of 7.1% is applied and maintained constant on one external face of the specimen, while the
opposite face is blocked. At the grain scale, the Orowan bypass mechanism is described by the
presence of the infinitely stiff, also elastically mismatched precipitate of arbitrary shape, for which
the elastic constants are fictitiously multiplied by a factor of ten, with impenetrable boundaries
and without consideration of cross-slip events. The internal grain boundaries are also considered
as impenetrable barriers to dislocation motion, so that the dislocation loop is strictly confined to
the host grain. The initial number of degrees of freedom associated with the full mesh is ~ 193k,
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FIGURE 4.3: Prismatic dislocation loops with complex simply-connected fronts as the (a) butterfly- and

(b) skull-shaped contours. The corresponding magnitude of the singularity-free Peach-Koehler forces are

computed at z; and are displayed on the left-hand side with respect to the polar angle 6, for which 8 = 0° is

represented by the point M in the plots of the right-hand side. The direction and amplitude of the driving

forces as well as the shear stress component o7, (x1, X2, zs) are depicted for both theoretical and numerical

finite element solutions. For the sake of clarity, the Peach-Koehler forces along both dislocation contours
are also shown in pink without the stress maps in the background.

while the multiscale problem exhibits three orders of magnitude between the polycrystalline sam-
ple length and the representative size of the precipitate. The snapshot in Fig. (4.4b) shows the
elastic dislocation/precipitate interaction, and especially the dislocation propagation by bowing
around the inclusion as well as the self-coalescence of the dislocation loop once the arms pass the
particle in the intermediate configuration,. Thus, an Orowan-like dislocation loop is left around
the infinitely strong inclusion, providing a new route in understanding of the Bauschinger effect
in realistic precipitation-strengthened material structures. The planar propagation of a dislocation
loop completely cuts the host grain and also leaves a surface step of the Burgers vector magnitude
on the free surface of the micropillar sample, while the slip transmission of the dislocation loops
across the neighboring grain boundaries is let for promising future development. Figure (4.4b)
summarizes the various stages of the dislocation loop propagation bypassing the inclusion in the
polycrystalline copper micropillar, for which the final configuration mesh is composed of ~ 1007k
degrees of freedom. The corresponding animation of the Orowan precipitate bypass mechanism
is referred to as "Orowan bypass mechanism in a micropillar”, computed in less than 20 hours
with 291 adaptive remeshing events with an average discrete time step of 0.46 ns.

At first glance and in the current form, the finite-element framework should be considered
as a computational tool to carry out calculations with several types of discontinuities, such as
grain boundaries, free surfaces, dislocation loops and cracks, in multiphase finite material struc-
tures. The main interesting feature of the approach is to unify these discontinuities into a single
finite-element entity to revisit the fundamental problems concerning the interactions between dis-
location loops and cracks, in particular the emission of dislocations from crack fronts in three
dimensions, as well as the interactions between dislocations and stress concentrations at grain
boundaries and heterophase interfaces, especially the nucleation and emission of dislocation loops
from the internal material boundaries. Although the computational approach undoubtedly opens
many perspectives, also with close links to experiments, some extensions can be introduced. A
current limitation is related to the use of a single regularization rule at the dislocation fronts,
whether the dislocation loops are located in the core of the grains or near the internal interfaces. A
more physics-based rule could be provided to offer a better description of the short-range elastic
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FIGURE 4.4: From the initial dislocation loop embedded in a given grain of the polycrystalline copper

micropillar with ~ 193k degrees of freedom in (a) to the various propagation steps followed by the shear

dislocation loop in (b), thus leaving residual dislocation edges around the bypassed heterophase precipitate.
The final computational mesh involves ~ 1007k degrees of freedom.

tields close to the grain boundaries to analyze the transmission of dislocation loops into neigh-
boring grains, thus overcoming the current impermeability conditions. Furthermore, although
the current simulations are performed on a workstation, the numerical framework could bene-
fit from the robust iterative and domain decomposition solvers to handle the discretization of
several tens of millions of unknowns. By the use of a parallel mesh generation algorithm for
robust domain decomposition techniques, high-performance calculations with a hundred disloca-
tion loops are anticipated to characterize standard dislocation microstructures with typical den-
sities of 10'2/10'* m~2 in the 1-to-100 micrometer mesoscale range. Finite element calculations
with hundreds of millions of degrees of freedom are therefore expected to achieve such numer-
ical experiments for multiple dislocation loops in three-dimensional material structures. These
subsequent boundary-value problems should be accompanied by consideration of additional dis-
location junctions, such as the Lomer-Cottrell lock, the Hirth lock and the glissile junction as well
as the implementation of the dislocation cross-slip mechanism and energetics, which are left for
future investigations. In an extrapolation scenario, computations of several thousand dislocation
loops on supercomputers could be carried out with the aim of better understanding dislocation-
based strain hardening mechanisms in realistic structures at the macroscale.



149

References

[1] N Abdolrahim and MJ Demkowicz. Determining coherent reference states of general semi-
coherent interfaces. Computational Materials Science, 118:297-308, 2016.

[2] Amit Acharya. Constitutive analysis of finite deformation field dislocation mechanics. Jour-
nal of the Mechanics and Physics of Solids, 52(2):301-316, 2004.

[3] Samuel M Allen and John W Cahn. A microscopic theory for antiphase boundary motion
and its application to antiphase domain coarsening. Acta metallurgica, 27(6):1085-1095, 1979.

[4] N Amadou, T De Resseguier, A Dragon, and E Brambrink. Coupling between plasticity
and phase transition in shock-and ramp-compressed single-crystal iron. Physical Review B,
98(2):024104, 2018.

[5] S Amelinckx. The direct observation of dislocations. Academic Press, New-York, 1964.

[6] S Amelinckx and W Dekeyser. The structure and properties of grain boundaries. In Solid
State Physics, volume 8, pages 325-499. Elsevier, 1959.

[7] Peter M Anderson, John P Hirth, and Jens Lothe. Theory of dislocations. Cambridge Univer-
sity Press, 2017.

[8] S Argon. Strengthening mechanisms in crystal plasticity. Oxford University Press, New-York,
2008.

[9] Athanasios Arsenlis, David M Parks, Richard Becker, and Vasily V Bulatov. On the evolution
of crystallographic dislocation density in non-homogeneously deforming crystals. Journal
of the Mechanics and Physics of Solids, 52(6):1213-1246, 2004.

[10] Andrei Artemev, Y Jin, and AG Khachaturyan. Three-dimensional phase field model of
proper martensitic transformation. Acta materialia, 49(7):1165-1177, 2001.

[11] RJ Asaro and JP Hirth. Planar dislocation interactions in anisotropic media with applications
to nodes. Journal of Physics F: Metal Physics, 3(9):1659, 1973.

[12] S Aubry, SP Fitzgerald, SL Dudarev, and W Cai. Equilibrium shape of dislocation shear
loops in anisotropic a-fe. Modelling and Simulation in Materials Science and Engineering,
19(6):065006, 2011.

[13] DJ Bacon, DM Barnett, and Ronald Otto Scattergood. Anisotropic continuum theory of
lattice defects. Progress in Materials Science, 23:51-262, 1980.

[14] Xian-Ming Bai, Louis ] Vernon, Richard G Hoagland, Arthur F Voter, Michael Nastasi, and
Blas Pedro Uberuaga. Role of atomic structure on grain boundary-defect interactions in cu.
Physical Review B, 85(21):214103, 2012.

[15] Xian-Ming Bai, Arthur F Voter, Richard G Hoagland, Michael Nastasi, and Blas P Uberu-
aga. Efficient annealing of radiation damage near grain boundaries via interstitial emission.
Science, 327(5973):1631-1634, 2010.



150 REFERENCES

[16] E Bain and N Dunkirk. The nature of martensite. Transactions of the American Institute of
Mining and Metallurgical Engineers, 70(21):25-35, 1924.

[17] Dennison Bancroft, Eric L Peterson, and Stanley Minshall. Polymorphism of iron at high
y y p g
pressure. Journal of Applied Physics, 27(3):291-298, 1956.

[18] S Banerjee, R Tewari, and GK Dey. Omega phase transformation-morphologies and mech-
anisms. International journal of materials research, 97(7):963-977, 2006.

[19] LM Barker and RE Hollenbach. Shock wave study of the « = ¢ phase transition in iron.
Journal of Applied Physics, 45(11):4872-4887, 1974.

[20] DM Barnett, R] Asaro, SD Gavazza, D] Bacon, and RO Scattergood. The effects of elastic
anisotropy on dislocation line tension in metals. Journal of Physics F: Metal Physics, 2(5):854,
1972.

[21] DM Barnett and J Lothe. An image force theorem for dislocations in anisotropic bicrystals.
Journal of Physics F: metal physics, 4(10):1618, 1974.

[22] DM Barnett and J Lothe. Line force loadings on anisotropic half-spaces and wedges. Physica
Norvegica, 8(1):13-22, 1975.

[23] WA Bassett and E Huang. Mechanism of the body-centered cubic—hexagonal close-packed
phase transition in iron. Science, 238(4828):780-783, 1987.

[24] H Béa, S Fusil, K Bouzehouane, M Bibes, M Sirena, G Herranz, E Jacquet, J-P Contour, and
A Barthélémy. Ferroelectricity down to at least 2 nm in multiferroic bifeo3 epitaxial thin
films. Japanese journal of applied physics, 45(2L):L187, 2006.

[25] Ted Belytschko, Yun Yun Lu, and Lei Gu. Element-free galerkin methods. International
journal for numerical methods in engineering, 37(2):229-256, 1994.

[26] IJ Beyerlein, A Caro, MJ Demkowicz, NA Mara, A Misra, and BP Uberuaga. Radiation
damage tolerant nanomaterials. Materials today, 16(11):443—449, 2013.

[27] K Bhattacharya. Microstructure of Martensite. Oxford University Press, Oxford, 2003.

[28] Kaushik Bhattacharya, Sergio Conti, Giovanni Zanzotto, and Johannes Zimmer. Crystal
symmetry and the reversibility of martensitic transformations. Nature, 428(6978):55-59,
2004.

[29] Bruce Alexander Bilby. Types of dislocation sources. Report of the conference on defects in
crystalline solids, pages 124-133, 1955.

[30] Bruce Alexander Bilby, R Bullough, and Edwin Smith. Continuous distributions of dislo-
cations: a new application of the methods of non-riemannian geometry. Proceedings of the
Royal Society of London. Series A. Mathematical and Physical Sciences, 231(1185):263-273, 1955.

[31] W Bollmann. O-lattice calculation of an fcc-bcc interface. Physica status solidi (a), 21(2):543—
550, 1974.

[32] Walter Bollmann. Crystal defects and crystalline interfaces. Springer Science & Business Media,
2012.

[33] Carsten Bolm. A new iron age. Nature chemistry, 1(5):420-420, 2009.

[34] R Bonnet. Periodic elastic fields in anisotropic two-phase media. application to interfacial
dislocations. Acta Metallurgica, 29(2):437-445, 1981.



REFERENCES 151

[35] R Bonnet. Elasticity theory of a thin bicrystal distorted by an interfacial dislocation array
parallel to the free surfaces. Philosophical Magazine A, 51(1):51-58, 1985.

[36] R Bonnet. Evaluation of surface strain due to the reconstruction of atomically close-packed
crystalline surfaces. Physical Review B, 61(20):14059, 2000.

[37] RBonnet and M Dupeux. Stress calculations for interfacial extrinsic and intrinsic dislocation
arrays in anisotropic two-phase media. Philosophical Magazine A, 42(6):809-812, 1980.

[38] A.B. Bortz, M.H. Kalos, and J.L. Lebowitz. A new algorithm for monte carlo simulation of
ising spin systems. Journal of Computational Physics, 17(1):10-18, 1975.

[39] A Bouzaher and R Bonnet. Elastic energy of regular hexagonal networks of intrinsic dislo-
cations at interfaces separating media with isotropic elasticities. Philosophical Magazine A,
66(5):823-837, 1992.

[40] Allan F Bower. Applied mechanics of solids. CRC press, 2009.

[41] AD Brailsford and Ronald Bullough. The theory of sink strengths. Philosophical Transactions
of the Royal Society of London. Series A, Mathematical and Physical Sciences, 302(1465):87-137,
1981.

[42] LJ Brillson. The structure and properties of metal-semiconductor interfaces. Surface Science
Reports, 2(2):123-326, 1982.

[43] LM Brown. The self-stress of dislocations and the shape of extended nodes. Philosophical
Magazine, 10(105):441-466, 1964.

[44] Nicolas Bruzy, Christophe Denoual, and Aurélien Vattré. Polyphase crystal plasticity for
high strain rate: Application to twinning and retwinning in tantalum. Journal of the Mechan-
ics and Physics of Solids, 166:104921, 2022.

[45] R Bullough and EAJ Foreman. The elastic energy of a rhombus-shaped dislocation loop.
Philosophical Magazine, 9(98):315-329, 1964.

[46] R Bullough, MR Hayns, and MH Wood. Sink strengths for thin film surfaces and grain
boundaries. Journal of Nuclear Materials, 90(1-3):44-59, 1980.

[47] R Bullough and RC Perrin. The mechanism and kinetics of void growth during neutron irradiation.
ASTM International, 1970.

[48] JM Burgers. Imperfections in nearly perfect crystals edited by w. shockley, jh hollomon, r.
maurer and f. seitz. Acta Crystallographica, 6(1):110-111, 1953.

[49] WG Burgers. On the process of transition of the cubic-body-centered modification into the
hexagonal-close-packed modification of zirconium. Physica, 1(7-12):561-586, 1934.

[50] John W Cahn and John E Hilliard. Free energy of a nonuniform system. i. interfacial free
energy. The Journal of chemical physics, 28(2):258-267, 1958.

[51] Wei Cai, Athanasios Arsenlis, Christopher R Weinberger, and Vasily V Bulatov. A non-
singular continuum theory of dislocations. Journal of the Mechanics and Physics of Solids,
54(3):561-587, 2006.

[52] RC Cammarata, Karl Sieradzki, and F Spaepen. Simple model for interface stresses with
application to misfit dislocation generation in epitaxial thin films. Journal of applied physics,
87(3):1227-1234, 2000.



152 REFERENCES

[53] Robert C Cammarata. Surface and interface stress effects in thin films. Progress in surface
science, 46(1):1-38, 1994.

[54] W Carrington, KF Hale, and D McLean. Arrangement of dislocations in iron. Proceedings
of the Royal Society of London. Series A. Mathematical and Physical Sciences, 259(1297):203-227,
1960.

[55] Kyle J Caspersen, Adrian Lew, Michael Ortiz, and Emily A Carter. Importance of shear in
the bec-to-hcep transformation in iron. Physical review letters, 93(11):115501, 2004.

[56] M] Caturla, N Soneda, E Alonso, BD Wirth, T Diaz de la Rubia, and JM Perlado. Com-
parative study of radiation damage accumulation in cu and fe. Journal of nuclear materials,
276(1-3):13-21, 2000.

[57] Y Chen, K'Y Yu, Y Liu, S Shao, H Wang, MA Kirk, ] Wang, and X Zhang. Damage-tolerant
nanotwinned metals with nanovoids under radiation environments. Nature communications,
6(1):7036, 2015.

[58] Kyoung Jin Choi, Michael Biegalski, YL Li, A Sharan, ] Schubert, Reinhard Uecker, P Reiche,
YB Chen, XQ Pan, Venkatraman Gopalan, et al. Enhancement of ferroelectricity in strained
batio3 thin films. Science, 306(5698):1005-1009, 2004.

[59] YT Chou. Interaction of parallel dislocations in a hexagonal crystal. Journal of Applied Physics,
33(9):2747-2751, 1962.

[60] YT Chou and CS Pande. Interfacial screw dislocations in anisotropic two-phase media.
Journal of Applied Physics, 44(7):3355-3356, 1973.

[61] Haijian Chu and Ernian Pan. Elastic fields due to dislocation arrays in anisotropic bimateri-
als. International Journal of Solids and Structures, 51(10):1954-1961, 2014.

[62] Ying-Hao Chu, Lane W Martin, Mikel B Holcomb, Martin Gajek, Shu-Jen Han, Qing He,
Nina Balke, Chan-Ho Yang, Donkoun Lee, Wei Hu, et al. Electric-field control of local ferro-
magnetism using a magnetoelectric multiferroic. Nature materials, 7(6):478-482, 2008.

[63] R Churchill. Dislocation and plastic flow in crystals. Oxford University Press, New Jersey, 1953.
[64] R Churchill. Fourier Series and Boundary Value Problems. McGraw-Hill, New-York, 1963.
[65] LM Clarebrough. Electron microscopy of interfaces in metals and alloys. Routledge, 2021.

[66] JD Clayton and ] Knap. Phase-field analysis of fracture-induced twinning in single crystals.
Acta Materialia, 61(14):5341-5353, 2013.

[67] Bernard D Coleman. Thermodynamics of materials with memory. Technical report, MEL-
LON INST PITTSBURGH PA, 1964.

[68] Maria Comninou and ] Dundurs. Elastic interface waves involving separation. 1977.

[69] Shuyang Dai, Yang Xiang, and David ] Srolovitz. Structure and energy of (1 1 1) low-angle
twist boundaries in al, cu and ni. Acta materialia, 61(4):1327-1337, 2013.

[70] Shuyang Dai, Yang Xiang, and David ] Srolovitz. Atomistic, generalized peierls—nabarro
and analytical models for (1 1 1) twist boundaries in al, cu and ni for all twist angles. Acta
materialia, 69:162-174, 2014.

[71] PH. Dederichs, C. Lehmann, H.R. Schober, A. Scholz, and R. Zeller. Lattice theory of point
defects. Journal of Nuclear Materials, 69-70:176-199, 1978.



REFERENCES 153

[72] Michael ] Demkowicz and RG Hoagland. Simulations of collision cascades in cu-nb layered
composites using an eam interatomic potential. International Journal of Applied Mechanics,
1(03):421-442, 2009.

[73] Michael ] Demkowicz, Jian Wang, Richard G Hoagland, and JP Hirth. Interfaces between
dissimilar crystalline solids. Dislocations in solids, 14:141-207, 2008.

[74] M] Demkowicz, P Bellon, and BD Wirth. Atomic-scale design of radiation-tolerant
nanocomposites. MRS bulletin, 35(12):992-998, 2010.

[75] MJ Demkowicz and L Thilly. Structure, shear resistance and interaction with point defects
of interfaces in cu-nb nanocomposites synthesized by severe plastic deformation. Acta ma-
terialia, 59(20):7744-7756, 2011.

[76] C Denoual and A Vattré. A phase field approach with a reaction pathways-based potential
to model reconstructive martensitic transformations with a large number of variants. Journal
of the Mechanics and Physics of Solids, 90:91-107, 2016.

[77] Christophe Denoual, Anna Maria Caucci, Laurent Soulard, and Yves-Patrick Pellegrini.
Phase-field reaction-pathway kinetics of martensitic transformations in a model fe 3 ni alloy.
Physical review letters, 105(3):035703, 2010.

[78] A Dewaele, Christophe Denoual, S Anzellini, F Occelli, Mohamed Mezouar, Patrick Cordjier,
Sébastien Merkel, M Véron, and E Rausch. Mechanism of the a- € phase transformation in
iron. Physical Review B, 91(17):174105, 2015.

[79] Chun-Gang Duan, Renat F Sabirianov, Wai-Ning Mei, Sitaram S Jaswal, and Evgeny Y Tsym-
bal. Interface effect on ferroelectricity at the nanoscale. Nano letters, 6(3):483—-487, 2006.

[80] HL Duan, Jian-xiang Wang, ZP Huang, and Bhushan Lal Karihaloo. Size-dependent effec-
tive elastic constants of solids containing nano-inhomogeneities with interface stress. Journal
of the Mechanics and Physics of Solids, 53(7):1574-1596, 2005.

[81] Bertrand Dupé, Bernard Amadon, Yves-Patrick Pellegrini, and Christophe Denoual. Mech-
anism for the a— ¢ phase transition in iron. Physical Review B, 87(2):024103, 2013.

[82] Roger C Ecob and Brian Ralph. Geometrical model for the energy of semicoherent inter-
phase interfaces. Proceedings of the National Academy of Sciences, 77(4):1749-1753, 1980.

[83] W Eerenstein, M Wiora, JL Prieto, JF Scott, and ND Mathur. Giant sharp and persistent
converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nature materials,
6(5):348-351, 2007.

[84] Mathias Ekman, Babak Sadigh, Kristin Einarsdotter, and Peter Blaha. Ab initio study of the
martensitic bec-hep transformation in iron. Physical Review B, 58(9):5296, 1998.

[85] A Cemal Eringen and JL Wegner. Nonlocal continuum field theories. Appl. Mech. Rev.,
56(2):B20-B22, 2003.

[86] John Douglas Eshelby. The force on an elastic singularity. Philosophical Transactions of the
Royal Society of London. Series A, Mathematical and Physical Sciences, 244(877):87-112, 1951.

[87] Neville H Fletcher et al. Crystal interface models—a critical survey. Advances in materials
research, 5:281-314, 1971.

[88] SM Foiles, MI Baskes, and Murray S Daw. Embedded-atom-method functions for the fcc
metals cu, ag, au, ni, pd, pt, and their alloys. Physical review B, 33(12):7983, 1986.



154 REFERENCES

[89] Dillon D Fong, G Brian Stephenson, Stephen K Streiffer, Jeffrey A Eastman, Orlando Au-
ciello, Paul H Fuoss, and Carol Thompson. Ferroelectricity in ultrathin perovskite films.
Science, 304(5677):1650-1653, 2004.

[90] Dan HR Fors, Sven AE Johansson, Martin VG Petisme, and Goran Wahnstrom. Theoretical
investigation of moderate misfit and interface energetics in the fe/vn system. Computational
materials science, 50(2):550-559, 2010.

[91] FC Frank. The resultant content of dislocations in an arbitrary intercrystalline bound-
ary. In Symposium on The Plastic Deformation of Crystalline Solids, Mellon Institute,
Pittsburgh,(NAVEXOS-P-834), volume 150, pages 2-2, 1950.

[92] FC Frank. Lxxxiii. crystal dislocations.—elementary concepts and definitions. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 42(331):809-819, 1951.

[93] F.C Frank. Martensite. Acta Metallurgica, 1(1):15-21, 1953.

[94] FC Frank. Hexagonal networks of dislocations. Report of the conference on defects in crystalline
solids, pages 159-169, 1955.

[95] Lambert Ben Freund and Subra Suresh. Thin film materials: stress, defect formation and surface
evolution. Cambridge university press, 2004.

[96] Peng Gao, Jason Britson, Christopher T Nelson, Jacob R Jokisaari, Chen Duan, Morgan
Trassin, Seung-Hyub Baek, Hua Guo, Linze Li, Yiran Wang, et al. Ferroelastic domain
switching dynamics under electrical and mechanical excitations. Nature communications,
5(1):3801, 2014.

[97] SD Gavazza and DM Barnett. The self-force on a planar dislocation loop in an anisotropic
linear-elastic medium. Journal of the Mechanics and Physics of Solids, 24(4):171-185, 1976.

[98] Steven Dino Gavazza. Energy release rates and associated forces on singular dislocations. Stanford
University, 1975.

[99] MGD Geers, RH] Peerlings, MA Peletier, and Lucia Scardia. Asymptotic behaviour of a
pile-up of infinite walls of edge dislocations. Archive for Rational Mechanics and Analysis,
209:495-539, 2013.

[100] PM Giles, MH Longenbach, and AR Marder. High-pressure &« — ¢ martensitic transformation
in iron. Journal of Applied Physics, 42(11):4290-4295, 1971.

[101] Daniel T Gillespie. A general method for numerically simulating the stochastic time evolu-
tion of coupled chemical reactions. Journal of computational physics, 22(4):403-434, 1976.

[102] N Ao Gjostein and FN Rhines. Absolute interfacial energies of [001] tilt and twist grain
boundaries in copper. Acta Metallurgica, 7(5):319-330, 1959.

[103] HR Gong, LT Kong, and BX Liu. Metastability of an immiscible cu-mo system calculated
from first-principles and a derived n-body potential. Physical Review B, 69(2):024202, 2004.

[104] D Gray. American Institute of Physics Handbook. MacGraw-Hill, New-York, 1957.

[105] Nina Gunkelmann, Eduardo M Bringa, Diego R Tramontina, Carlos ] Ruestes, Matthew ]
Suggit, Andrew Higginbotham, Justin S Wark, and Herbert M Urbassek. Shock waves in
polycrystalline iron: Plasticity and phase transitions. Physical Review B, 89(14):140102, 2014.



REFERENCES 155

[106] Z Guo, CS Lee, and JW Morris Jr. On coherent transformations in steel. Acta Materialia,
52(19):5511-5518, 2004.

[107] Morton E Gurtin. A gradient theory of single-crystal viscoplasticity that accounts for ge-
ometrically necessary dislocations. Journal of the Mechanics and Physics of Solids, 50(1):5-32,
2002.

[108] Morton E Gurtin and A Ian Murdoch. A continuum theory of elastic material surfaces.
Archive for rational mechanics and analysis, 57:291-323, 1975.

[109] Morton E Gurtin and A Ian Murdoch. Surface stress in solids. International journal of Solids
and Structures, 14(6):431-440, 1978.

[110] MG Hall, JM Rigsbee, and HI Aaronson. Application of the “0” lattice calculation to fcc/bcc
interfaces. Acta Metallurgica, 34(7):1419-1431, 1986.

[111] Weizhong Han, Michael ] Demkowicz, Nathan A Mara, Engang Fu, Subhasis Sinha,
Anthony D Rollett, Yongqiang Wang, John S Carpenter, Irene ] Beyerlein, and Amit

Misra. Design of radiation tolerant materials via interface engineering. Advanced materi-
als, 25(48):6975-6979, 2013.

[112] Xueli Han and Ernie Pan. Fields produced by three-dimensional dislocation loops in
anisotropic magneto-electro-elastic materials. Mechanics of Materials, 59:110-125, 2013.

[113] Xueli Han, Ernie Pan, and Ali Sangghaleh. Fields induced by three-dimensional dislocation
loops in anisotropic magneto-electro-elastic bimaterials. Philosophical Magazine, 93(24):3291—
3313, 2013.

[114] H-G Haubold and D Martinson. Structure determination of self-interstitials and investiga-
tion of vacancy clustering in copper by diffuse x-ray scattering. Journal of Nuclear Materials,
69(1-2):644-649, 1978.

[115] AK Head. The positions of dislocations in arrays. Philosophical Magazine, 4(39):295-302,
1959.

[116] PT Heald and MV Speight. Steady-state irradiation creep. Philosophical Magazine, 29(5):1075—
1080, 1974.

[117] Graeme Henkelman, Blas P Uberuaga, and Hannes Jénsson. A climbing image nudged
elastic band method for finding saddle points and minimum energy paths. The Journal of
chemical physics, 113(22):9901-9904, 2000.

[118] Rodney Hill. On constitutive macro-variables for heterogeneous solids at finite strain. Pro-
ceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 326(1565):131-147,
1972.

[119] John Price Hirth and Robert Charles Pond. Strains and rotations in thin deposited films.
Philosophical Magazine, 90(23):3129-3147, 2010.

[120] JP Hirth and RW Balluffi. On grain boundary dislocations and ledges. Acta Metallurgica,
21(7):929-942, 1973.

[121] JP Hirth, DM Barkett, and J Lothe. Stress fields of dislocation arrays at interfaces in bicrys-
tals. Philosophical Magazine A, 40(1):39—47, 1979.

[122] JP Hirth and RC Pond. Compatibility and accommodation in displacive phase transforma-
tions. Progress in Materials Science, 56(6):586—636, 2011.



156 REFERENCES

[123] JP Hirth, RC Pond, RG Hoagland, X-Y Liu, and ] Wang. Interface defects, reference spaces
and the frank-bilby equation. Progress in Materials Science, 58(5):749-823, 2013.

[124] RG Hoagland, JP Hirth, and A Misra. On the role of weak interfaces in blocking slip in
nanoscale layered composites. Philosophical Magazine, 86(23):3537-3558, 2006.

[125] Richard G Hoagland and Richard J Kurtz. The relation between grain-boundary structure
and sliding resistance. Philosophical Magazine A, 82(6):1073-1092, 2002.

[126] Malek Homayonifar and Jorn Mosler. Efficient modeling of microstructure evolution in
magnesium by energy minimization. International Journal of Plasticity, 28(1):1-20, 2012.

[127] SY Hu, YL Li, and LQ Chen. Effect of interfacial dislocations on ferroelectric phase stabil-
ity and domain morphology in a thin film—a phase-field model. Journal of applied physics,
94(4):2542-2547, 2003.

[128] Harold Y Hwang, Yoh Iwasa, Masashi Kawasaki, Bernhard Keimer, Naoto Nagaosa, and
Yoshinori Tokura. Emergent phenomena at oxide interfaces. Nature materials, 11(2):103-113,
2012.

[129] Takeshi Iwamoto. Multiscale computational simulation of deformation behavior of trip steel
with growth of martensitic particles in unit cell by asymptotic homogenization method.
International Journal of Plasticity, 20(4-5):841-869, 2004.

[130] Brian ] Jensen, GT Gray III, and Robert S Hixson. Direct measurements of the a-¢ transition
stress and kinetics for shocked iron. Journal of applied physics, 105(10):103502, 2009.

[131] WA Jesser. On the extension of frank’s formula to crystals with different lattice parameters.
physica status solidi (a), 20(1):63-76, 1973.

[132] D Jia, KT Ramesh, and E Ma. Effects of nanocrystalline and ultrafine grain sizes on consti-
tutive behavior and shear bands in iron. Acta materialia, 51(12):3495-3509, 2003.

[133] Chao Jiang, Narasimhan Swaminathan, Jie Deng, Dane Morgan, and Izabela Szlufarska.
Effect of grain boundary stresses on sink strength. Materials Research Letters, 2(2):100-106,
2014.

[134] Sven AE Johansson, Mikael Christensen, and Goran Wahnstrém. Interface energy of semi-
coherent metal-ceramic interfaces. Physical review letters, 95(22):226108, 2005.

[135] T Jourdan, J-L Bocquet, and F Soisson. Modeling homogeneous precipitation with an event-
based monte carlo method: Application to the case of fe-cu. Acta materialia, 58(9):3295-3302,
2010.

[136] Kai Kadau, Timothy C Germann, Peter S Lomdahl, Robert C Albers, Justin S Wark, Andrew
Higginbotham, and Brad Lee Holian. Shock waves in polycrystalline iron. Physical review
letters, 98(13):135701, 2007.

[137] Kai Kadau, Timothy C Germann, Peter S Lomdahl, and Brad Lee Holian. Microscopic view
of structural phase transitions induced by shock waves. Science, 296(5573):1681-1684, 2002.

[138] Kai Kadau, Timothy C Germann, Peter S Lomdahl, and Brad Lee Holian. Atomistic simu-
lations of shock-induced transformations and their orientation dependence in bcc fe single
crystals. Physical Review B, 72(6):064120, 2005.



REFERENCES 157

[139] DH Kalantar, JF Belak, GW Collins, JD Colvin, HM Davies, JH Eggert, TC Germann,
] Hawreliak, BL Holian, K Kadau, et al. Direct observation of the a-¢ transition in shock-
compressed iron via nanosecond x-ray diffraction. Physical Review Letters, 95(7):075502, 2005.

[140] H Kanzaki. Point defects in face-centred cubic lattice—i distortion around defects. Journal
of Physics and Chemistry of Solids, 2(1):24-36, 1957.

[141] Inderjeet Kaur, Yuri Mishin, Wolfgang Gust, et al. Fundamentals of grain and interphase bound-
ary diffusion. John Wiley, 1995.

[142] Armen G Khachaturyan. Theory of structural transformations in solids. Courier Corporation,
2013.

[143] Hajime Kimizuka, Shigenobu Ogata, Ju Li, and Yoji Shibutani. Complete set of elastic con-
stants of a-quartz at high pressure: a first-principles study. Physical Review B, 75(5):054109,
2007.

[144] AH King and DA Smith. Calculations of sink strength and bias for point-defect absorption
by dislocations in arrays. Radiation Effects, 54(3-4):169-176, 1981.

[145] KM Knowles. The dislocation geometry of interphase boundaries. Philosophical Magazine A,
46(6):951-969, 1982.

[146] Hideo Koguchi and Yuki Hirasawa. Stress and displacement fields around misfit dislocation
in anisotropic dissimilar materials with interface stress and interface elasticity. Journal of
Applied Mechanics, 82(8), 2015.

[147] Kedarnath Kolluri and Michael ] Demkowicz. Dislocation mechanism of interface point
defect migration. Physical Review B, 82(19):193404, 2010.

[148] VG Kouznetsova and MGD Geers. A multi-scale model of martensitic transformation plas-
ticity. Mechanics of Materials, 40(8):641-657, 2008.

[149] Georg Kresse and Jiirgen Furthmiiller. Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set. Physical review B, 54(16):11169, 1996.

[150] Georg Kresse and Daniel Joubert. From ultrasoft pseudopotentials to the projector
augmented-wave method. Physical review b, 59(3):1758, 1999.

[151] Ekkehart Kroner. Allgemeine kontinuumstheorie der versetzungen und eigenspannungen.
Archive for Rational Mechanics and Analysis, 4:273-334, 1959.

[152] Matthew P Kroonblawd, Thomas D Sewell, and Jean-Bernard Maillet. Characteristics of
energy exchange between inter-and intramolecular degrees of freedom in crystalline 1, 3,
5-triamino-2, 4, 6-trinitrobenzene (tatb) with implications for coarse-grained simulations of
shock waves in polyatomic molecular crystals. The Journal of Chemical Physics, 144(6):064501,
201e6.

[153] Ladislas Kubin. Dislocations, mesoscale simulations and plastic flow, volume 5. Oxford Univer-
sity Press, 2013.

[154] G Kurdjumov and G Sachs. Over the mechanisms of steel hardening. Z. Phys, 64(325-343),
1930.

[155] Markus Lazar and Giacomo Po. The non-singular green tensor of mindlin’s anisotropic
gradient elasticity with separable weak non-locality. Physics Letters A, 379(24-25):1538-1543,
2015.



158 REFERENCES

[156] Erastus H Lee. Elastic-plastic deformation at finite strains. 1969.

[157] Valery I Levitas. Phase transitions in elastoplastic materials: continuum thermomechan-
ical theory and examples of control—part i. Journal of the Mechanics and Physics of Solids,
45(6):923-947, 1997.

[158] Valery I Levitas. Thermomechanical theory of martensitic phase transformations in inelastic
materials. International Journal of Solids and Structures, 35(9-10):889-940, 1998.

[159] Valery I Levitas. Critical thought experiment to choose the driving force for interface prop-
agation in inelastic materials. International Journal of Plasticity, 18(11):1499-1525, 2002.

[160] Valery I Levitas. Phase field approach to martensitic phase transformations with large
strains and interface stresses. Journal of the Mechanics and Physics of Solids, 70:154-189, 2014.

[161] Valery I Levitas and Mahdi Javanbakht. Interaction between phase transformations and
dislocations at the nanoscale. part 1. general phase field approach. Journal of the Mechanics
and Physics of Solids, 82:287-319, 2015.

[162] Valery I Levitas, Vladimir A Levin, Konstantin M Zingerman, and Eugene I Freiman. Dis-
y & &
placive phase transitions at large strains: phase-field theory and simulations. Physical Review
Letters, 103(2):025702, 2009.

[163] A Lew, K Caspersen, EA Carter, and M Ortiz. Quantum mechanics based multiscale mod-
eling of stress-induced phase transformations in iron. Journal of the Mechanics and Physics of
Solids, 54(6):1276-1303, 2006.

[164] James CM Li. Some elastic properties of an edge dislocation wall. Acta metallurgica, 8(8):563—
574, 1960.

[165] Jiang Yu Li. Magnetoelectroelastic multi-inclusion and inhomogeneity problems and their
applications in composite materials. International Journal of Engineering Science, 38(18):1993—
2011, 2000.

[166] Jiang Yu Li and Martin L Dunn. Anisotropic coupled-field inclusion and inhomogeneity
problems. Philosophical magazine A, 77(5):1341-1350, 1998.

[167] YL Li, Shenyang Y Hu, S Choudhury, Michael I Baskes, A Saxena, T Lookman, QX Jia,
Darrell G Schlom, and LQ Chen. Influence of interfacial dislocations on hysteresis loops of
ferroelectric films. Journal of Applied Physics, 104(10):104110, 2008.

[168] EA Little, Ronald Bullough, and MH Wood. On the swelling resistance of ferritic steel.
Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 372(1751):565—
579, 1980.

[169] Heng Liu, Ernian Pan, and Yingchun Cai. General surface loading over layered transversely
isotropic pavements with imperfect interfaces. Advances in Engineering Software, 115:268—
282, 2018.

[170] JB Liu and Duane D Johnson. Bcc-to-hcp transformation pathways for iron versus hydro-
static pressure: coupled shuffle and shear modes. Physical Review B, 79(13):134113, 2009.

[171] Jie Liu, Yuheng Zhang, and Haijian Chu. Modeling core-spreading of interface disloca-
tion and its elastic response in anisotropic bimaterial. Applied Mathematics and Mechanics,
38(2):231-242, 2017.



REFERENCES 159

[172] X-Y Liu, RG Hoagland, M] Demkowicz, Michael Nastasi, and A Misra. The influence of
lattice misfit on the atomic structures and defect energetics of face centered cubic-body cen-
tered cubic interfaces. Journal of engineering materials and technology, 134(2), 2012.

[173] Zeng-Hui Liu, Ya-Xin Feng, and Jia-Xiang Shang. Characterizing twist grain boundaries in
bce nb by molecular simulation: Structure and shear deformation. Applied Surface Science,
370:19-24, 2016.

[174] Matthias Ludwig, Diana Farkas, Dora Pedraza, and Siegfried Schmauder. Embedded atom
potential for fe-cu interactions and simulations of precipitate-matrix interfaces. Modelling
and Simulation in Materials Science and Engineering, 6(1):19, 1998.

[175] Jing Ma, Jiamian Hu, Zheng Li, and Ce-Wen Nan. Recent progress in multiferroic magneto-
electric composites: from bulk to thin films. Advanced materials, 23(9):1062-1087, 2011.

[176] R Madec, B Devincre, and LP Kubin. On the nature of attractive dislocation crossed states.
Computational materials science, 23(1-4):219-224, 2002.

[177] S Manchiraju and Peter Martin Anderson. Coupling between martensitic phase transfor-
mations and plasticity: a microstructure-based finite element model. International Journal of
Plasticity, 26(10):1508-1526, 2010.

[178] Louis Kenneth Mansur. Void swelling in metals and alloys under irradiation: an assessment
of the theory. Nuclear Technology, 40(1):5-34, 1978.

[179] Ho-Kwang Mao, William A Bassett, and Taro Takahashi. Effect of pressure on crystal struc-
ture and lattice parameters of iron up to 300 kbar. Journal of Applied Physics, 38(1):272-276,
1967.

[180] RA Masumura and ME Glicksman. An elasto-chemical theory of tilt boundaries. Journal of
Electronic Materials, 4:823-837, 1975.

[181] JW Matthews and AE Blakeslee. Defects in epitaxial multilayers: I. misfit dislocations. Jour-
nal of Crystal growth, 27:118-125, 1974.

[182] JW Matthews and AE Blakeslee. Defects in epitaxial multilayers: Ii. dislocation pile-ups,
threading dislocations, slip lines and cracks. Journal of Crystal Growth, 29(3):273-280, 1975.

[183] JW Matthews and JL Crawford. Accomodation of misfit between single-crystal films of
nickel and copper. Thin Solid Films, 5(3):187-198, 1970.

[184] MPAT Methfessel and AT Paxton. High-precision sampling for brillouin-zone integration
in metals. Physical Review B, 40(6):3616, 1989.

[185] Changwen Mi, Sukky Jun, Demitris A Kouris, and Sung Youb Kim. Atomistic calculations of
interface elastic properties in noncoherent metallic bilayers. Physical Review B, 77(7):075425,
2008.

[186] Yu Mishin, M Asta, and Ju Li. Atomistic modeling of interfaces and their impact on mi-
crostructure and properties. Acta Materialia, 58(4):1117-1151, 2010.

[187] Yu Mishin, MJ Mehl, DA Papaconstantopoulos, AF Voter, and JD Kress. Structural stability
and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations.
Physical Review B, 63(22):224106, 2001.

[188] A Misra, JP Hirth, and H Kung. Single-dislocation-based strengthening mechanisms in
nanoscale metallic multilayers. Philosophical Magazine A, 82(16):2935-2951, 2002.



160 REFERENCES

[189] Philip M Morse and Herman Feshbach. Methods of theoretical physics. American Journal of
Physics, 22(6):410-413, 1954.

[190] FRN3374614 Nabarro. Dislocations in a simple cubic lattice. Proceedings of the Physical Soci-
ety, 59(2):256, 1947.

[191] Roman Nazarov, Tilmann Hickel, and Jorg Neugebauer. Vacancy formation energies in
fcc metals: influence of exchange-correlation functionals and correction schemes. Physical
Review B, 85(14):144118, 2012.

[192] Z NISHIYAMA. X-ray investigation of the mechanism of the transformation from face cen-
tered cubic lattice to body centered cubic. Sci. Rep. Tohoku Univ., 23:637, 1934.

[193] Mellon Institute of Industrial Research, Carnegie Institute of Technology, and United
States. Office of Naval Research. A Symposium on the Plastic Deformation of Crystalline Solids:
Mellon Institute, Pittsburgh, 19, 20 May 1950. NAVEXOS P. U.S. Government Printing Office,
1950.

[194] A.Ohtomo and H. Y. Hwang. A high-mobility electron gas at the laalo3/srtio3 heterointer-
face. Nature, 427(6973):423-426, 2004.

[195] GB Olson and Morris Cohen. Interphase-boundary dislocations and the concept of co-
herency. Acta Metallurgica, 27(12):1907-1918, 1979.

[196] E Pan. Exact solution for simply supported and multilayered magneto-electro-elastic plates.
J. Appl. Mech., 68(4):608-618, 2001.

[197] E. Pan. Three-dimensional green’s functions in anisotropic magneto-electro-elastic bimate-
rials. Zeitschrift fiir angewandte Mathematik und Physik ZAMP, 53(5):815-838, 2002.

[198] E Pan. Some new three-dimensional green’s functions in antisotropic piezoelectric bimate-
rials. Electronic Journal of Boundary Elements, 1(2), 2003.

[199] E Pan. Three-dimensional green’s functions in anisotropic elastic bimaterials with imperfect
interfaces. J. Appl. Mech., 70(2):180-190, 2003.

[200] Ernian Pan and Weiqiu Chen. Static Green’s functions in anisotropic media. Cambridge Uni-
versity Press, 2015.

[201] Ernian Pan, JH Yuan, WQ Chen, and WA Griffith. Elastic deformation due to polygonal dis-
locations in a transversely isotropic half-space. Bulletin of the Seismological Society of America,
104(6):2698-2716, 2014.

[202] Wei-Wei Pang, Ping Zhang, Guang-Cai Zhang, Ai-Guo Xu, and Xian-Geng Zhao. Mor-
phology and growth speed of hcp domains during shock-induced phase transition in iron.
Scientific Reports, 4(1):1-7, 2014.

[203] M Peach and JS39537 Koehler. The forces exerted on dislocations and the stress fields pro-
duced by them. Physical Review, 80(3):436, 1950.

[204] R Peierls. The size of a dislocation. Proceedings of the Physical Society, 52(1):34, 1940.

[205] John P Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approximation
made simple. Physical review letters, 77(18):3865, 1996.

[206] Mario Pitteri and Giovanni Zanzotto. Continuum models for phase transitions and twinning in
crystals. CRC Press, 2002.



REFERENCES 161

[207] Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal of
computational physics, 117(1):1-19, 1995.

[208] Giacomo Po, Markus Lazar, Nikhil Chandra Admal, and Nasr Ghoniem. A non-singular
theory of dislocations in anisotropic crystals. International Journal of Plasticity, 103:1-22, 2018.

[209] Yu Z Povstenko. Theoretical investigation of phenomena caused by heterogeneous surface
tension in solids. Journal of the Mechanics and Physics of Solids, 41(9):1499-1514, 1993.

[210] D Qiu, R Shi, P Zhao, D Zhang, W Lu, and Y Wang. Effect of low-angle grain boundaries
on morphology and variant selection of grain boundary allotriomorphs and widmanstatten
side-plates. Acta Materialia, 112:347-360, 2016.

[211] Di Qiu, Pengyang Zhao, Chen Shen, Weijie Lu, Di Zhang, Matous Mrovec, and Yunzhi
Wang. Predicting grain boundary structure and energy in bcc metals by integrated atomistic
and phase-field modeling. Acta Materialia, 164:799-809, 2019.

[212] Ramaroorthy Ramesh and Nicola A Spaldin. Multiferroics: progress and prospects in thin
films. Nature materials, 6(1):21-29, 2007.

[213] William T Read and WJPR Shockley. Dislocation models of crystal grain boundaries. Physical
review, 78(3):275, 1950.

[214] D Rittel, G Ravichandran, and A Venkert. The mechanical response of pure iron at high
strain rates under dominant shear. Materials Science and Engineering: A, 432(1-2):191-201,
2006.

[215] Amir Sadjadpour, Daniel Rittel, Guruswami Ravichandran, and Kaushik Bhattacharya. A
model coupling plasticity and phase transformation with application to dynamic shear de-
formation of iron. Mechanics of Materials, 80:255-263, 2015.

[216] M Savoia and JN Reddy. Three-dimensional thermal analysis of laminated composite plates.
International Journal of Solids and Structures, 32(5):593-608, 1995.

[217] SK Saxena and LS Dubrovinsky. Iron phases at high pressures and temperatures: Phase
transition and melting. American Mineralogist, 85(2):372-375, 2000.

[218] Lucia Scardia, Ron HJ Peerlings, Mark A Peletier, and Marc GD Geers. Mechanics of dislo-
cation pile-ups: a unification of scaling regimes. Journal of the Mechanics and Physics of Solids,
70:42-61, 2014.

[219] RO Scattergood and DJ Bacon. Symmetric stacking fault nodes in anisotropic crystals. Acta
Metallurgica, 24(8):705-716, 1976.

[220] Shuai Shao, Jian Wang, Amit Misra, and Richard G Hoagland. Spiral patterns of dislocations
at nodes in (111) semi-coherent fcc interfaces. Scientific reports, 3(1):2448, 2013.

[221] Vijay B Shenoy. Atomistic calculations of elastic properties of metallic fcc crystal surfaces.
Physical Review B, 71(9):094104, 2005.

[222] Daniel Sheppard, Rye Terrell, and Graeme Henkelman. Optimization methods for finding
minimum energy paths. The Journal of chemical physics, 128(13):134106, 2008.

[223] A-C Shi, C Rottman, and Yu He. Calculation of energy of low-angle grain boundaries.
Philosophical Magazine A, 55(4):499-511, 1987.



162 REFERENCES

[224] Ro Shuttleworth. The surface tension of solids. Proceedings of the physical society. Section A,
63(5):444, 1950.

[225] RW Siegel, SM Chang, and RW Balluffi. Vacancy loss at grain boundaries in quenched
polycrystalline gold. Acta Metallurgica, 28(3):249-257, 1980.

[226] R Siems. Mechanical interactions of point defects. physica status solidi (b), 30(2):645-658,
1968.

[227] Bachu Narain Singh. Effect of grain size on void formation during high-energy electron
irradiation of austenitic stainless steel. The Philosophical Magazine: A Journal of Theoretical
Experimental and Applied Physics, 29(1):25-42, 1974.

[228] AB Sivak, VM Chernov, VA Romanov, and PA Sivak. Kinetic monte-carlo simulation of
self-point defect diffusion in dislocation elastic fields in bcc iron and vanadium. Journal of
nuclear materials, 417(1-3):1067-1070, 2011.

[229] AB Sivak and PA Sivak. Efficiency of dislocations as sinks of radiation defects in fcc copper
crystal. Crystallography Reports, 59:407-414, 2014.

[230] RF Smith, JH Eggert, RE Rudd, DC Swift, CA Bolme, and GW Collins. High strain-rate
plastic flow in al and fe. Journal of Applied Physics, 110(12):123515, 2011.

[231] Cameron Sobie, Laurent Capolungo, David L McDowell, and Enrique Martinez. Modal
analysis of dislocation vibration and reaction attempt frequency. Acta Materialia, 134:203—
210, 2017.

[232] Lars Stixrude. Elasticity of oxides and ionics. Handbook of Elastic Properties of Solids, Liquids,
and Gasses, 2:31, 2001.

[233] Lars Stixrude and RE Cohen. High-pressure elasticity of iron and anisotropy of earth’s inner
core. Science, 267(5206):1972-1975, 1995.

[234] AN Stroh. Dislocations and cracks in anisotropic elasticity. Philosophical magazine, 3(30):625—
646, 1958.

[235] AN139306 Stroh. Steady state problems in anisotropic elasticity. Journal of Mathematics and
Physics, 41(1-4):77-103, 1962.

[236] Gopinath Subramanian, Danny Perez, Blas P Uberuaga, Carlos N Tomé, and Arthur F Voter.
Method to account for arbitrary strains in kinetic monte carlo simulations. Physical Review
B, 87(14):144107, 2013.

[237] Adrian P Sutton. Interfaces in crystalline materials. Monographs on the Physice and Chemistry
of Materials, pages 414—423, 1995.

[238] Vincent Taupin, K Gbemou, Claude Fressengeas, and L Capolungo. Nonlocal elasticity
tensors in dislocation and disclination cores. Journal of the Mechanics and Physics of Solids,
100:62-84, 2017.

[239] RD Taylor, MP Pasternak, and R Jeanloz. Hysteresis in the high pressure transformation of
bce-to hep-iron. Journal of Applied Physics, 69(8):6126—6128, 1991.

[240] Thomas Chi-tsai Ting. Anisotropic elasticity: theory and applications. Number 45. Oxford
University Press, USA, 1996.



REFERENCES 163

[241] S Turteltaub and AS] Suiker.  Grain size effects in multiphase steels assisted by
transformation-induced plasticity. International journal of solids and structures, 43(24):7322—
7336, 2006.

[242] H Ullmaier, P Ehrhart, P Jung, and H Schultz. Atomic defects in metals/atomare fehlstellen
in metallen. Numerical Data and Functional Relationships in Science and Technology—New Se-
ries/Condensed Matter, Springer, Berlin Heidelberg, 1991.

[243] Jan H Van Der Merwe. Crystal interfaces. part ii. finite overgrowths. Journal of Applied
Physics, 34(1):123-127, 1963.

[244] JH Van der Merwe. On the stresses and energies associated with inter-crystalline bound-
aries. Proceedings of the Physical Society. Section A, 63(6):616, 1950.

[245] JH Van der Merwe. Crystal interfaces. part i. semi-infinite crystals. Journal of Applied Physics,
34(1):117-122, 1963.

[246] A Vattré. Strength of single crystal superalloys: from dislocation mechanisms to continuum
micromechanics. PhD These. ONERA The French Aerospace Lab, page 155, 2009.

[247] A Vattré. Mechanical interactions between semicoherent heterophase interfaces and free
surfaces in crystalline bilayers. Acta Materialia, 93:46-59, 2015.

[248] A Vattré. Elastic interactions between interface dislocations and internal stresses in finite-
thickness nanolayered materials. Acta Materialia, 114:184-197, 2016.

[249] A Vattré. Elastic strain relaxation in interfacial dislocation patterns: I. a parametric energy-
based framework. Journal of the Mechanics and Physics of Solids, 105:254-282, 2017.

[250] A Vattré. Elastic strain relaxation in interfacial dislocation patterns: Ii. from long-and short-
range interactions to local reactions. Journal of the Mechanics and Physics of Solids, 105:283-305,
2017.

[251] A Vattré, N Abdolrahim, SS Navale, and MJ Demkowicz. The relaxed structure of intrinsic
dislocation networks in semicoherent interfaces: predictions from anisotropic elasticity the-
ory and comparison with atomistic simulations. Extreme Mechanics Letters, 28:50-57, 2019.

[252] A Vattré and C Denoual. Polymorphism of iron at high pressure: a 3d phase-field model
for displacive transitions with finite elastoplastic deformations. Journal of the Mechanics and
Physics of Solids, 92:1-27, 2016.

[253] A Vattré and C Denoual. Continuum nonlinear dynamics of unstable shock waves induced
by structural phase transformations in iron. Journal of the Mechanics and Physics of Solids,
131:387-403, 2019.

[254] A Vattré, Benoit Devincre, F Feyel, R Gatti, S Groh, O Jamond, and A Roos. Modelling
crystal plasticity by 3d dislocation dynamics and the finite element method: the discrete-
continuous model revisited. Journal of the Mechanics and Physics of Solids, 63:491-505, 2014.

[255] A Vattré, T Jourdan, H Ding, M-C Marinica, and MJ] Demkowicz. Non-random walk
diffusion enhances the sink strength of semicoherent interfaces. Nature communications,
7(1):10424, 2016.

[256] A Vattré and E Pan. Three-dimensional interaction and movements of various dislocations
in anisotropic bicrystals with semicoherent interfaces. Journal of the Mechanics and Physics of
Solids, 116:185-216, 2018.



164 REFERENCES

[257] A Vattré and E Pan. Semicoherent heterophase interfaces with core-spreading dislocation
structures in magneto-electro-elastic multilayers under external surface loads. Journal of the
Mechanics and Physics of Solids, 124:929-956, 2019.

[258] AJ Vattré, N Abdolrahim, K Kolluri, and MJ Demkowicz. Computational design of pat-
terned interfaces using reduced order models. Scientific reports, 4(1):6231, 2014.

[259] AJ Vattré and Michael ] Demkowicz. Effect of interface dislocation burgers vectors on elastic
fields in anisotropic bicrystals. Computational materials science, 88:110-115, 2014.

[260] A]J Vattré and MJ Demkowicz. Determining the burgers vectors and elastic strain energies of
interface dislocation arrays using anisotropic elasticity theory. Acta Materialia, 61(14):5172-
5187, 2013.

[261] AJ Vattré and M] Demkowicz. Partitioning of elastic distortions at a semicoherent het-
erophase interface between anisotropic crystals. Acta Materialia, 82:234-243, 2015.

[262] Aurélien Vattre. Kinked and forked crack arrays in anisotropic elastic bimaterials. Journal of
the Mechanics and Physics of Solids, 160:104744, 2022.

[263] Aurélien Vattré and Vincent Chiaruttini. Singularity-free theory and adaptive finite element
computations of arbitrarily-shaped dislocation loop dynamics in 3d heterogeneous material
structures. Journal of the Mechanics and Physics of Solids, 167:104954, 2022.

[264] Aurélien Vattré and E Pan. Dislocation singularities in layered magneto-electro-elastic
plates. International Journal of Engineering Science, 181:103765, 2022.

[265] Aurélien Vattré and Ernian Pan. Interaction between semicoherent interfaces and volterra-
type dislocations in dissimilar anisotropic materials. Journal of Materials Research, 32:3947—
3957, 2017.

[266] Aurélien Vattré and Ernian Pan. Thermoelasticity of multilayered plates with imperfect
interfaces. International Journal of Engineering Science, 158:103409, 2021.

[267] Aurélien Vattré, Ernian Pan, and Vincent Chiaruttini. Free vibration of fully coupled
thermoelastic multilayered composites with imperfect interfaces. Composite Structures,
259:113203, 2021.

[268] Carlos AF Vaz. Electric field control of magnetism in multiferroic heterostructures. Journal
of Physics: Condensed Matter, 24(33):333201, 2012.

[269] Duane C Wallace. Thermodynamics of crystals. American Journal of Physics, 40(11):1718—
1719, 1972.

[270] BT Wang, JL Shao, GC Zhang, WD Li, and P Zhang. Nucleation of hcp and fcc phases in
bce iron under uniform compression: classical molecular dynamics simulations. Journal of
Physics: Condensed Matter, 22(43):435404, 2010.

[271] FM Wang and R Ingalls. Iron bec-hep transition: Local structure from x-ray-absorption fine
structure. Physical Review B, 57(10):5647, 1998.

[272] ] Wang, RF Zhang, CZ Zhou, Irene ] Beyerlein, and A Misra. Interface dislocation patterns
and dislocation nucleation in face-centered-cubic and body-centered-cubic bicrystal inter-
faces. International Journal of Plasticity, 53:40-55, 2014.



REFERENCES 165

[273] Kun Wang, Jun Chen, Wenjun Zhu, Wangyu Hu, and Meizhen Xiang. Phase transition of
iron-based single crystals under ramp compressions with extreme strain rates. International
Journal of Plasticity, 96:56-80, 2017.

[274] Kun Wang, Shifang Xiao, Huigiu Deng, Wenjun Zhu, and Wangyu Hu. An atomic study on
the shock-induced plasticity and phase transition for iron-based single crystals. International
Journal of Plasticity, 59:180-198, 2014.

[275] Kun Wang, Wenjun Zhu, Shifang Xiao, Kaiguo Chen, Huigiu Deng, and Wangyu Hu. Cou-
pling between plasticity and phase transition of polycrystalline iron under shock compres-
sions. International Journal of Plasticity, 71:218-236, 2015.

[276] S] Wang, ML Sui, YT Chen, QH Lu, E Ma, XY Pei, QZ Li, and HB Hu. Microstructural
fingerprints of phase transitions in shock-loaded iron. Scientific reports, 3(1):1086, 2013.

[277] X Wang and E Pan. Magnetoelectric effects in multiferroic fibrous composite with imperfect
interface. Physical Review B, 76(21):214107, 2007.

[278] Y Wang and AG Khachaturyan. Three-dimensional field model and computer modeling of
martensitic transformations. Acta materialia, 45(2):759-773,1997.

[279] Guinter Wassermann. Einflufs der a-y-umwandlung eines irreversiblen nickelstahls auf
kristallorientierung und zugfestigkeit. Archiv fiir das Eisenhiittenwesen, 6(8):347-351, 1933.

[280] Qiangmin Wei and Amit Misra. Transmission electron microscopy study of the microstruc-
ture and crystallographic orientation relationships in v/ag multilayers. Acta Materialia,
58(14):4871-4882, 2010.

[281] QM Wei, X-Y Liu, and A Misra. Observation of continuous and reversible bcc—fce phase
transformation in ag/v multilayers. Applied Physics Letters, 98(11):111907, 2011.

[282] JR Willis. Fracture mechanics of interfacial cracks. Journal of the Mechanics and Physics of
Solids, 19(6):353-368, 1971.

[283] JR Willis, Suresh C Jain, and R Bullough. The energy of an array of dislocations: implications
for strain relaxation in semiconductor heterostructures. Philosophical Magazine A, 62(1):115-
129, 1990.

[284] JR Willis, Suresh C Jain, and R Bullough. The energy of an array of dislocations: Ii. consid-
eration of a capped epitaxial layer. Philosophical Magazine A, 64(3):629-640, 1991.

[285] WG Wolfer. Fundamental properties of defects in metals. Comprehensive nuclear materials,
1:1-45, 2012.

[286] SM Wu, Shane A Cybart, P Yu, MD Rossell, JX Zhang, R Ramesh, and RC Dynes. Re-
versible electric control of exchange bias in a multiferroic field-effect device. Nature materials,
9(9):756-761, 2010.

[287] B Yaakobi, TR Boehly, DD Meyerhofer, TJB Collins, BA Remington, PG Allen, SM Pollaine,
HE Lorenzana, and JH Eggert. Exafs measurement of iron bee-to-hcp phase transformation
in nanosecond-laser shocks. Physical review letters, 95(7):075501, 2005.

[288] JB Yang, Y Nagai, M Hasegawa, and Yu N Osetsky. Atomic scale modeling of {110} twist
grain boundaries in a-iron: Structure and energy properties. Philosophical Magazine, 90(7-
8):991-1000, 2010.



166 REFERENCES

[289] ]JB Yang, Y Nagai, ZG Yang, and M Hasegawa. Quantization of the frank-bilby equation for
misfit dislocation arrays in interfaces. Acta materialia, 57(16):4874-4881, 2009.

[290] JB Yang, YN Osetsky, RE Stoller, Y Nagai, and M Hasegawa. The effect of twist angle on
anisotropic mobility of {1 1 0} hexagonal dislocation networks in a-iron. Scripta Materialia,
66(10):761-764, 2012.

[291] Hemantha Kumar Yeddu, Hongxiang Zong, and Turab Lookman. Alpha-omega and
omega-alpha phase transformations in zirconium under hydrostatic pressure: A 3d
mesoscale study. Acta Materialia, 102:97-107, 2016.

[292] EB Zaretsky and GI Kanel. Yield stress, polymorphic transformation, and spall fracture of
shock-loaded iron in various structural states and at various temperatures. Journal of Applied
Physics, 117(19):195901, 2015.

[293] RJ Zeches, MD Rossell, JX Zhang, AJ Hatt, Q He, C-H Yang, A Kumar, CH Wang,
A Melville, C Adamo, et al. A strain-driven morphotropic phase boundary in bifeo3. science,
326(5955):977-980, 2009.

[294] Liang Zhang, Enrique Martinez, Alfredo Caro, Xiang-Yang Liu, and Michael ] Demkowicz.
Liquid-phase thermodynamics and structures in the cu—nb binary system. Modelling and
Simulation in Materials Science and Engineering, 21(2):025005, 2013.

[295] Ming-Xing Zhang and Patrick M Kelly. Crystallographic features of phase transformations
in solids. Progress in Materials Science, 54(8):1101-1170, 2009.

[296] W-Z Zhang and GR Purdy. A tem study of the crystallography and interphase boundary
structure of a precipitates in a zr-2.5 wt% nb alloy. Acta metallurgica et materialia, 41(2):543—
551, 1993.

[297] Xueyang Zhang, Kun Wang, Wenjun Zhu, Jun Chen, Menggqiu Cai, Shifang Xiao, Huiqgiu
Deng, and Wangyu Hu. Effect of grain boundaries on shock-induced phase transformation
in iron bicrystals. Journal of Applied Physics, 123(4):045105, 2018.

[298] Haimei Zheng, ] Wang, SE Lofland, Z Ma, Ly Mohaddes-Ardabili, T Zhao, L Salamanca-
Riba, SR Shinde, SB Ogale, Feiming Bai, et al. Multiferroic batio3-cofe204 nanostructures.
Science, 303(5658):661-663, 2004.

[299] Ting Zhu and Ju Li. Ultra-strength materials. Progress in Materials Science, 55(7):710-757,
2010.

[300] Yuntian T Zhu and Xiaozhou Liao. Retaining ductility. Nature materials, 3(6):351-352, 2004.

[301] Steven ] Zinkle and GS Was. Materials challenges in nuclear energy. Acta Materialia,
61(3):735-758, 2013.



	
	Introduction
	Crystalline interfaces during solid-solid phase transitions in iron
	Motivation
	A phase-field model coupled with finite elastoplasticity
	Kinematics
	Balance laws
	The Clausius-Duhem inequality
	Constitutive equations
	Multiple reaction pathways and energy landscape
	Computational framework

	Pure hydrostatic compression
	Material and model inputs
	Analysis of the pressure-volume responses
	Microstructure and variant selection

	Shock wave propagation
	The internal structure of shock waves
	Effect of plasticity in shock-loaded iron
	Residual stresses in the plastically-deformed microstructure
	Dynamical instability in structural phase transitions

	Limitations

	Dislocation structures and energetics at heterophase interfaces
	Motivation
	Determining the Burgers vectors of interface dislocation arrays 
	Planar interfaces in linear elastic bicrystals
	Volterra dislocations in the reference state
	Crystallographic constraints on interface dislocations
	Solution strategy
	Elastic fields of interface dislocation arrays
	Interface elastic strain energy

	Symmetric example applications
	Pure tilt grain boundary
	Twist grain boundary
	Pure misfit interface

	Partitioning of elastic distortions at fcc/bcc interfaces
	Mapping between states in the Nishiyama-Wassermann orientations
	Far-field strains and rotations
	Spurious fields from incorrect reference states
	Orientations differing from the Nishiyama-Wassermann relations
	Short-range elastic fields
	Comparison with atomistic simulations

	Application to the sink strength of semicoherent interfaces
	Computational multi-model strategy
	Kinetic Monte Carlo simulations with elastic interactions
	Effect of elastic interactions on interface sink strength

	Elastic strain relaxation in interfacial dislocation patterns
	General considerations on hexagonal-shaped dislocation patterns
	Solution methodology for strain-relaxed rearrangements
	Parametric energy-based framework
	Boundary conditions with surface/interface constitutive relations
	Application to Au/Cu heterosystems
	Comparison with atomistic simulations

	Interaction with extrinsic dislocations in bimaterials 
	Extrinsic dislocation arrays and loops
	Internal forces on intrinsic and extrinsic dislocations
	On the piled-up dislocations in the (111)Cu/(011)Nb bimaterial
	Limitations

	Extension to non-singular fields in multilayered magneto-electro-elastic plates
	Boundary-value problem and singularity-free field solutions
	A primary case: 2D bilayered composites
	Energy-based criterion for interlayers in A/B/A trilayers
	Dislocation-induced response under applied external loading


	Conclusion and future works
	Concluding remarks
	Perspectives
	Thermoelasticity of semicoherent interfaces 
	Distributed dislocations for periodic networks of cracks
	Towards a general treatment for {interfaces, dislocations, cracks}



