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A B S T R A C T

The aim of this thesis is to propose algorithms for the task of Text-based Image
Editing (TIE), which consists in editing digital images according to an instruction
formulated in natural language. For instance, given an image of a dog, and the
query "Change the dog into a cat", we want to produce a novel image where
the dog has been replaced by a cat, keeping all other image aspects unchanged
(animal color and pose, background). The north-star goal is to enable anyone to
edit their images using only queries in natural language.

One specificity of text-based image editing is that there is practically no training
data to train a supervised algorithm. In this thesis, we propose different solutions
for editing images, based on the adaptation of large multimodal models trained
on huge datasets.

We first study a simplified editing setup, named Retrieval-based image edit-
ing, which does not require to directly modify the input image. Instead, given
the image and modification query, we search in a large database an image that
corresponds to the requested edit. We leverage multimodal image/text alignment
models trained on web-scale datasets (like CLIP) to perform such transformations
without any examples. We also propose the SIMAT framework for evaluating
retrieval-based image editing.

We then study how to directly modify the input image. We propose FlexIT,
a method which iteratively changes the input image until it satisfies an abstract
"editing objective" defined in a multimodal embedding space. We introduce a
variety of regularization terms to enforce realistic transformations.

Next, we focus on diffusion models, which are powerful generative models able
to synthetize novel images conditioned on a wide variety of textual prompts. We
demonstrate their versatility by proposing D iffEdit, an algorithm which adapts
diffusion models for image editing without finetuning. We propose a zero-shot
strategy for finding automatically where the initial image should be changed to
satisfy the text transformation query.

Finally, we study a specific challenge useful in the context of image editing:
how to synthetize a novel image by giving as constraint a spatial layout of objects
with textual descriptions, a task which is known as Semantic Image Synthesis.
We adopt the same strategy, consisting in adapting diffusion models to solve the
task without any example. We propose the ZestGuide algorithm, which lever-
ages the spatio-semantic information encoded in the attention layers of diffusion
models.
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R É S U M É

L’objectif de cette thèse est de proposer des algorithmes pour la tâche d’édition
d’images basée sur le texte (TIE), qui consiste à éditer des images numériques
selon une instruction formulée en langage naturel. Par exemple, étant donné
une image d’un chien et la requête "Changez le chien en un chat", nous voulons
produire une nouvelle image où le chien a été remplacé par un chat, en gardant
tous les autres aspects de l’image inchangés (couleur et pose de l’animal, arrière-
plan). L’objectif de l’étoile du nord est de permettre à tout un chacun de modifier
ses images en utilisant uniquement des requêtes en langage naturel.

Une des spécificités de l’édition d’images basée sur du texte est qu’il n’y a pra-
tiquement pas de données d’entraînement pour former un algorithme supervisé.
Dans cette thèse, nous proposons différentes solutions pour l’édition d’images,
basées sur l’adaptation de grands modèles multimodaux entraînés sur d’énormes
ensembles de données.

Nous étudions tout d’abord une configuration d’édition simplifiée, appelée
édition d’image basée sur la recherche, qui ne nécessite pas de modifier direc-
tement l’image d’entrée. Au lieu de cela, étant donné l’image et la requête de
modification, nous recherchons dans une grande base de données une image qui
correspond à la modification demandée. Nous nous appuyons sur des modèles
multimodaux d’alignement image/texte entraînés sur des ensembles de données
à l’échelle du web (comme CLIP) pour effectuer de telles transformations sans au-
cun exemple. Nous proposons également le cadre SIMAT pour évaluer l’édition
d’images basée sur la recherche.

Nous étudions ensuite comment modifier directement l’image d’entrée. Nous
proposons FlexIT, une méthode qui modifie itérativement l’image d’entrée jus-
qu’à ce qu’elle satisfasse un "objectif d’édition" abstrait défini dans un espace
d’intégration multimodal. Nous introduisons des termes de régularisation pour
imposer des transformations réalistes.

Ensuite, nous nous concentrons sur les modèles de diffusion, qui sont des
modèles génératifs puissants capables de synthétiser de nouvelles images condi-
tionnées par une grande variété d’invites textuelles. Nous démontrons leur po-
lyvalence en proposant D iffEdit, un algorithme qui adapte les modèles de
diffusion pour l’édition d’images sans réglage fin. Nous proposons une stratégie
"zero-shot" pour trouver automatiquement où l’image initiale doit être modifiée
pour satisfaire la requête de transformation de texte.
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iv résumé

Enfin, nous étudions un défi spécifique utile dans le contexte de l’édition
d’images : comment synthétiser une nouvelle image en donnant comme contrainte
une disposition spatiale d’objets avec des descriptions textuelles, une tâche qui est
connue sous le nom de synthèse d’image sémantique. Nous adoptons la même
stratégie, consistant à adapter les modèles de diffusion pour résoudre la tâche
sans exemple. Nous proposons l’algorithme ZestGuide, qui exploite l’infor-
mation spatiosémantique encodée dans les couches d’attention des modèles de
diffusion.
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1
I N T R O D U C T I O N

We first give an overview of the general context of this thesis. We then present
in more details the main task that we tackle, Text-based Image Editing (TIE), with
its challenges. The last section is devoted to outlining this thesis’ contributions
and main publications.

1.1 Context

Artificial intelligence (AI) is a field of computer science, where the aim is to
develop algorithms and systems that can perform tasks that normally require
human intelligence, such as perception, reasoning, learning, and decision-making.
AI algorithms have been successfully applied to a wide range of fields, and are
notably used in healthcare (analyzing medical images and diagnose diseases,
Nasser and Abu-Naser 2019), entertainment (playing strategic games like Chess
and Go, Silver et al. 2018), finance (detecting credit card fraud, Awoyemi et al.
2017), self-driving cars (recognizing traffic patterns and navigating complex envi-
ronments, Grigorescu et al. 2020), recommendation systems (personalize product
recommendations for customers, Batmaz et al. 2019), manufacturing (optimizing
production processes and predicting equipment failures, Carvalho et al. 2019),
agriculture (optimizing crop yields, monitoring soil health, Van Klompenburg
et al. 2020), weather forecasting (Sinha et al. 2022), energy production (plasma
confinement for nuclear fusion, Degrave et al. 2022), social networks (moderating
online communities and detecting hate speech, Kiela et al. 2020), programming
(code completion and code translation, Roziere et al. 2020), and predict protein
folding (Jumper et al. 2021). AI usually involves training algorithms and models
to learn patterns and insights from data, without being explicitly programmed.

Computer Vision (CV) is a subfield of AI that aims at enabling computers to
understand, interpret and process digital images and videos. Applications of com-
puter vision include image and video analysis, object recognition, face recognition,
gesture recognition, autonomous vehicles, robotics, medical imaging, and many
more. It has become an important technology in various industries, including

1



2 introduction

healthcare, automotive, entertainment, and security, among others. A major task
in computer vision is image classification, where an algorithm should attribute a
text label to a given image, among a finite set of classes. The ImageNet benchmark
(J. Deng et al. 2009a) was established to compare quantitatively different classifi-
cation algorithms, and neural networks brought a revolution in 2012 when they
showed superior performance on this task compared to traditional approaches
(Alex Krizhevsky et al. 2012). Neural networks are algorithms loosely inspired
from the human brain, that can be trained to perform any task for which we have
a dataset of examples, like labelled images in image classification. They are the
basis for almost all modern computer vision systems.

Natural Language Processing (NLP) is another subfield of AI concerned with
human language. The goal of NLP is to enable computers to understand, interpret,
and generate human language, both written and spoken. NLP encompasses tasks
such as text classification, sentiment analysis, language translation, information
extraction, question answering, and chatbot development, among others. The
applications of NLP are very diverse and can be found in various industries,
including healthcare, finance, customer service, marketing, and education. For
example, in healthcare, NLP is used to extract insights from medical records,
identify and categorize medical entities and concepts, and monitor patient data. In
customer service, NLP is used to develop chatbots and virtual assistants that can
interact with customers, answer questions, and provide personalized assistance.
The most known and capable chatbot is ChatGPT: released in 2023, it reached
100 millions users in only 2 months. The core technology is a Large Language
Model (LLM), trained with the next token prediction task, where the aim is to find
the next word given the beginning of the sentence. Most modern NLP systems
are based on the transformers neural network architecture (Ashish Vaswani et al.
2017). Beyond language-only applications, some models have integrated visual
understanding of the world inside those language models, like Flamingo (Alayrac
et al. 2022) or GPT-4 (Bubeck et al. 2023). This allows to perform tasks that
require multimodal image and text understanding, like answering a question
about a visual scene.

Text-to-image generation is arguably one of the biggest AI breakthroughs of
the last three years. It consists in generating an image based on a textual descrip-
tion of that image, written in natural language. The training data is obtained by
scrapping the web to find text-image pairs, which usually consist in an image
with an associated caption. Text-to-image generation models are typically trained
on billions of images and are able to generate photo-realistic images for a wide
range of text prompts, include rare objects and unusual scene compositions, like
a teddy bear swimming or a corgi in a sushi house (see Figure 1.1). These models have
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A blue jay standing
on a large basket of
rainbow macarons.

Teddy bears swim-
ming at the Olympics
400 M Butterfly
event.

A flooded art gallery
displaying Monet
Paintings, with
robots going around
using paddle boards.

A cute corgi lives in
a house made out of
sushi.

Figure 1.1. – A few examples of images generated with the text-to-image gener-
ation algorithm Imagen (Saharia et al. 2022b). Images taken from
https://imagen.research.google/.

also shown artistic potential, being able to imitate an artist’s style (Crowson et al.
2022). In this thesis, we are interested in the field of Text-Based Image Editing,
where such algorithms are expected to not only generate novel images, but also
modify existing images.

1.2 Image Editing

Image editing refers to the process of manipulating digital images using soft-
ware tools. This can involve adjusting the color balance, brightness and contrast,
cropping or resizing the image, removing unwanted objects or backgrounds, and
applying filters or effects to the image. Image editing is an essential tool for
graphic designers and other creative professionals, and it requires a wide range
of skills and technical knowledge of specialized software like Photoshop. AI-
powered image editing can help automate the more tedious and time-consuming
aspects of image editing, allowing professionals to focus on more creative as-
pects of their work. Using generative modelling approaches for image editing is
especially useful for the following applications:

• Image restoration: removing noise, blur, or other distortions from images
(Isola et al. 2017);

• Image enhancement: improving image quality by adjusting brightness, con-
trast, and color saturation (Shi et al. 2020);

https://imagen.research.google/
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Figure 1.2. – Examples of tasks in image editing, with the "Output" middle col-
umn being the result of the Palette model (Saharia et al. 2022a) when
given the input in the first column. Image from Saharia et al. (2022a).

• Object Addition or Removal: adding or removing objects or people from im-
ages (Gafni and Wolf 2020; Brown et al. 2022);

• Image Inpainting filling in missing areas of an image, such as scratches or
damaged parts of a photo (Yu et al. 2018);

• Style transfer: applying the style of one image onto another image, such as
turning a photo into a painting (Jing et al. 2019);

• Super-Resolution: increasing the resolution of images, making them appear
sharper and more detailed (J. Johnson et al. 2016; Ledig et al. 2017; Saharia
et al. 2022c);

• Scene graph manipulation: changing the interactions between scene elements
(Dhamo et al. 2020);

• Personalized image generation: Placing subjects in novel contexts (Ruiz et al.
2022).

A few examples are shown in Figure 1.2.
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In this thesis, we tackle the task of Text-based Image Editing (TIE), where the
goal is to modify an input image based on an instruction written in natural
language. We focus on high-level semantic modifications of the image scene, such
as replacing objects or persons, or changing the interactions between the different
scene elements. This requires computer vision algorithms able to understand and
interpret the input image’s composition, as well as natural language processing
algorithms able to understand the text instruction.

Text-based image editing has numerous applications. First, it can be used to
analyze other AI-powered image processing algorithms. Computer vision models
are often trained with the objective to classify images into a set of categories, like
medical algorithms making disease predictions based on images or self-driving
cars algorithms taking actions based on the visual perception of their environ-
ment. AI-powered image editing can be a powerful tool in understanding how
these systems process their inputs, by studying how their outputs change when
their inputs are changed. Second, text-based image editing is revolutionizing the
fields of art and design, broadening the set of possibilities offered by text-to-image
generation algorithms. Beyond text-to-image generation, iterative image editing
can help visual creators to refine artistic ideas and incorporate parts of real pho-
tographs in their artwork. In the gaming industry, AI-based image generation and
editing is used to create game environments, non-playable characters and other
game assets. In e-commerce, text-based image editing has applications in helping
users find clothing by iteratively refining a visual proposal based on a dialog.

From text-to-image generation to editing. Text-based image editing is closely
related to text-to-image generation, because being able to synthetize novel objects
is an essential skill to solve the task. Therefore, a central theme in this thesis is
the question of how to leverage the knowledge acquired by text-to-image mod-
els trained on web-scaled data. This is crucial in TIE, because it is generally not
possible to find supervised data (i.e. real editing examples) to train neural net-
works. While supervised data can be easily obtained on specific non-semantic
image editing tasks like super-resolution and inpainting, relevant training data
for semantic image editing requires either images edited by human experts, or
pairs of very similar images annotated with a text describing the visual difference,
both being very costly to acquire at scale. Zero-shot approaches are therefore
the main approach for TIE, which consists in finding algorithms that solve the
task by modifying text-to-image generation models, without any editing example.
On top of this, training large text-to-image generation models has a very high
computational cost.
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1.3 Contributions

The aim of this thesis is to propose novel algorithms that leverage the power
of large image and text processing models for image editing. We consider two
classes of such models: dual image/text encoders trained to encode images and
text data, which are not trained with an explicit image generation objective but
learn robust multimodal representations; and diffusion models, which are models
trained to generate images, currently representing the state-of-the-art in text-to-
image generation.

This thesis is organized in five main chapters.

Chapter 2: Background and Positioning. In this chapter, we present the main
papers that are at the foundation of our different works and contributions.

Chapter 3: Retrieval-based Image Editing with Multimodal queries. In this
chapter, we study a simplified editing task that does not require image synthesis
algorithms. Instead of editing the pixels of an image, we define a high-level
specification of what the edited image should look, and search for a corresponding
real image in a database. The material covered in this chapter was published in
the following paper:

• Guillaume Couairon, Matthijs Douze, Matthieu Cord, and Holger Schwenk
(2022a). “Embedding Arithmetic of Multimodal Queries for Image Retrieval”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, O-DRUM workshop, pp. 4950–4958

Chapter 4: Image Editing with instance-based optimization of a multimodal
embedding objective. In this chapter, we take advantage of the high-level im-
age specification from the previous chapter, and we iteratively change the pixels
of the input image to match this objective. The material covered in this chapter
was published in the following paper:

• Guillaume Couairon, Asya Grechka, Jakob Verbeek, Holger Schwenk, and
Matthieu Cord (2022b). “Flexit: Towards flexible semantic image transla-
tion”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pp. 18270–18279

Chapter 5: Image Editing with diffusion models and mask guidance. In
this chapter, we leverage synthesis abilities of diffusion models, a class of text-to-
image generative models. We study how to adapt these models for image editing,
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without any training. The material covered in this chapter was published in the
following paper:

• Guillaume Couairon, Jakob Verbeek, Holger Schwenk, and Matthieu Cord
(2023b). “Diffedit: Diffusion-based semantic image editing with mask guid-
ance”. In: International Conference in Learning Representations

Chapter 6: Image Synthesis conditioned on semantic segmentation maps. In
this chapter, we consider a problem related to image editing: Semantic Image
Synthesis, which consists in generating images conditioned on a spatial layout
with spatial masks specifying in natural language what should appear in images.
Tackling this problem is key in image editing, as it can be easily combined with
inpainting methods to edit only parts of an image. The material covered in this
chapter is currently under review in the following paper:

• Guillaume Couairon, Marlene Careil, Matthieu Cord, Stéphane Lathuillère,
and Jakob Verbeek (2023a). “ZestGuide”. In: Under Review

The complete list of publications carried out during this thesis, involving col-
laborators from either Sorbonne Université or Meta AI, is presented in appendix
A.1.
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B A C K G R O U N D A N D P O S I T I O N I N G

In this chapter, we go over the main algorithms and methods at the foundation
of our work, and recall the context in which these methods have been developed.
We first present methods designed for joint understanding of vision and language,
enabling us to solve multimodal tasks. Then, we give an overview of image
generation algorithms, which are closely linked to our image editing objective.
Finally, building on these generative models, we present a few baseline methods
for image editing, that will be useful for understanding the next chapters. We
finish by presenting our contributions, and positioning them in the wider context
of image generation and editing.

2.1 Joint image/text understanding

Solving the task of text-based image editing, presented in the previous chap-
ter, requires both natural language processing algorithms, to process the textual
editing query, along with a detailed understanding of the visual world captured
in digital images. It is not sufficient to have high-performing algorithms on each
modality separately: editing algorithms need a correspondence between the visual
appearance of digital images, and the natural language that we use to describe
them.

From vision to vision-language The creation of the ImageNet dataset (Jia Deng
et al. 2009) has paved the way for impressive advances in the design of neural
networks architectures for computer vision (Alex Krizhevsky et al. 2012; He et al.
2015), mostly focused on the classification task. With 1000 fixed classes in the
standard classification setup, neural networks learn to classify images without
any meaningful understanding of the classes’ textual descriptions. These models
are typically convolutional neural networks (CNNs) (LeCun, Bengio, et al. 1995;
He et al. 2016), that apply convolution operations sequentially to the pixel repre-
sentation of images, intertwined with non-linear operations and down-sampling
operations. Beyond the vision-only approaches, understanding image and lan-
guage jointly has been an important research direction of the machine learning

9
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community since many years. It is indeed central to solving tasks involving inter-
acting with the user in natural language, like Visual Question Answering (Goyal
et al. 2017), where the goal is to answer a question about an image, written in
natural language. First approaches (Karpathy and Fei-Fei 2015) involved using
two pretrained neural networks: one for handling the question, pretrained on
language-only data, and one for the image, typically pretrained on ImageNet.
The network for language processing is usually a transformer (Ashish Vaswani
et al. 2017), an architecture invented for sequence-to-sequence to modelling that
takes as input a list of tokens, each token representing a word or sub-word in the
input text. These two networks were then combined in a single architecture with
novel layers, fine-tuned to find the right answer among a fixed set of 3000 possible
answers. More recent approaches, like OSCAR (X. Li et al. 2020) found that much
better performance could be obtained by using a pretraining task that is inher-
ently multimodal, learning from both images and text at the same time, which
helps to understand the connection between vision and natural language. This
requires parallel image-text data: in almost all cases, the pretraining database is a
list of images described by textual captions. Among the most popular training ob-
jectives is masked language modelling (Devlin et al. 2018), introduced for Natural
Langage Processing, extended to multimodal pretraining. It consists in masking
a fraction of words in the caption of an image-caption pair, and trying to recover
the original words, from the image and unmasked caption words. Since solving
this task requires high-level understanding of images, it provides a good objective
for pre-training joint image/text models. To process image and text modalities
jointly, the image is usually split into a set of token embeddings, by considering
patches of pixels in the input image (Dosovitskiy et al. 2020; Touvron et al. 2021).
The image token embeddings are then concatenated to the text token embeddings,
before being processed by a single transformer, able to perform multimodal oper-
ations on this list of tokens coming from different modalities (W. Kim et al. 2021).
This processing is called Early fusion as it fuses the different modalities together
before processing it with the multimodal model.

CLIP Instead of early fusion, the other possibility for joint image/text under-
standing is to keep the multimodal pretraining objective, but instead of early
fusion, to encode image and text modalities separately. This kind of architecture
is called dual encoders (Liwei Wang et al. 2016; Faghri et al. 2018; Engilberge et al.
2018; Z. Zheng et al. 2020). Both images and text are encoded into a shared em-
bedding space with disjoint networks, each specialized for their own modality: a
transformer for text, and a convolutional network or vision transformer for the
images. They are typically trained with the image-text matching (ITM) pretraining
task on a database of captioned images (Sohn 2016b; Aaron van den Oord et al.
2018). The objective is to bring the image embeddings closer to the text embed-
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dings of their respective captions, and farther from text embeddings of all other
unrelated captions. Symmetrically, caption embeddings are brought closer to their
associated images, and farther from unrelated images. This objective is illustrated
in Figure 2.1. Authors of the CLIP algorithm (Radford et al. 2021a) have shown
that this approach scales very well with dataset size: they use a large database of
web-scraped 400M image-text pairs and reach competitive classification accuracy
on ImageNet without using the training set, leveraging only the class names.

Figure 2.1. – Overview of the training objective used in CLIP. An image encoder
and text encoder are trained to increase the similarity of matching
image/text pairs (diagonal elements) while decreasing the similarity
of mismatched image/text pairs (off-diagonal elements). Image from
Radford et al. (2021a).

Subsequent works have shown that image-text matching is a very relevant pre-
training objective for solving downstream multimodal tasks: using trained CLIP
networks, both for image processing and language processing, provides a strong
initialization scheme in most tasks requiring joint image/text understanding, such
as image captioning (Barraco et al. 2022).

Once trained, CLIP gives a single representation space for both text and im-
ages, allowing to compute a normalized "alignment score" between an image
and a caption, or even between two different images or two different texts. This
representation space can be used for large-scale image-text retrieval.
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2.2 Image generation

Text-based image editing requires algorithms trained for image synthesis. Im-
age generation (or image synthesis) is the task of generating new images from a
dataset. In probabilistic terms, it consists in learning to approximate the data prob-
abilistic distribution pdata, such that the learned distribution pθ can be sampled to
produce novel images x ∼ pθ. Conditional image generation consists in learning
the conditional distribution pθ(·|c), where c is some additional information, which
can be a class label, some text describing the image or another image in the case of
image-to-image translation. In this section, we review a few different algorithms
invented for image generation, and we introduce a few important tools that are
heavily used in this thesis.

GANs Generative Adversarial Networks (GAN, Goodfellow et al. 2014) have
long been the state-of-the art for generating images. It consists in co-training two
networks, a generator and a discriminator: the discriminator learns to distinguish
generated images from real images, while the generator learns to fool the discrim-
inator. The generator typically takes Gaussian noise as input, so the generation
process amounts to a single forward pass with a neural network, which is gener-
ally quite fast (<0.1s) for a single image. Text-conditional GANs can be trained by
providing textual image descriptions as additional information to the generator
and discriminator (Reed et al. 2016; Perarnau et al. 2016). However, GANs typi-
cally have two majors issues: training stability and mode collapse, where parts
of the training distribution are ignored and never generated by the generator. To
solve these issues, other image generation algorithms have been proposed, which
we review in the remainder of this section. However, GANs are still a very active
area of research, and several recent work propose to fix the stability issue, e.g. by
using pretrained discriminators (Sauer et al. 2022); and the mode collapse issue
by using auxiliary losses, e.g. CLIP alignment for text-to-image generation (Kang
et al. 2023).

Diffusion Models The current state-of-the art in image generation is dominated
by Diffusion Models (Ho et al. 2020), that have taken over the field by storm, with
Latent Diffusion Models (Rombach et al. 2022b), DALL-E 2 (Ramesh et al. 2022)
and Imagen (Saharia et al. 2022b) vastly improving state of the art in modelling
wide distributions of images and allowing for unprecedented compositionality of
concepts in image generation.

The core idea is to train a model to reverse a diffusion process, which gradually
adds Gaussian noise to an image I for a large number of time steps T , until it
is no longer distinguishable from random Gaussian noise. The diffusion process
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gradually maps the data distribution to the unit Gaussian distribution N (0, I). A
neural network is then trained to reverse that process, mapping the unit Gaussian
distribution to the data distribution. A novel image can be produced by sampling
the unit Gaussian distribution, and iteratively denoising it with the trained neural
network. It was shown that the training objective can equivalently be written as

L = Ex0,t,ϵ∥ϵ− ϵθ(xt, t)∥22, (2.1)

where ϵθ is the noise estimator which aims to find the noise ϵ ∼ N (0, I) that is
mixed with an input image x0 to yield xt =

√
αt x0 +

√
1− αt ϵ. The coefficient

αt defines the level of noise and is a decreasing function of the time step t, with
α0 = 1 (no noise) and αT ≈ 0 (almost pure noise).

J. Song et al. (2021) propose to use ϵθ to generate new images with the Denoising
Diffusion Implicit Model algorithm (DDIM): starting from xT ∼ N (0, I), the
following update rule is applied iteratively until step 0:

x̂0 =

(
xt −

√
1− αt ϵθ(xt, t)√

αt

)
xt−1 =

√
αt−1 x̂0 +

√
1− αt−1 ϵθ(xt, t).

(2.2)

Text-conditional generation can be achieved by providing an encoding ρ(T ) of
the text T as additional input to the noise estimator ϵθ(xt, t, ρ(T )) during training.
The text is usually encoded with a frozen language-specific architecture, like CLIP
in Stable Diffusion (Rombach et al. 2022b) or T5 (Raffel et al. 2020) for Imagen
(Saharia et al. 2022b).

Auto-regressive sequence modelling Although images have a non-sequential
spatial structure, it is possible to define a sequential representation for images
and to learn the distribution with sequence modelling algorithms, borrowed from
the NLP community. The most straightforward approach is to list the pixels
composing an image in an arbitrary order, typically from left to right and top
to bottom, giving a sequence of N + 1 real values (x0, · · · , xN). Then, the se-
quence distribution is learned with the following decomposition : p(x0, · · · , xN) =

p(x0)
∏N

i=1 p(xi|x1, ..., xi−1), where a neural network is trained to predict the next
pixel value xi given the list of preceding pixel values x0, · · ·xi−1 for every pixel
index i from 0 to N . In this framework, learning text-conditional image generation
p(x0, · · · , xn, y) simply consists in prefixing the sequence of image pixels with the
list of words in text y, for an adequate text representation. One of the most com-
mon architectures for sequence modelling is the transformer architecture (Ashish
Vaswani et al. 2017), which has brought a revolution in NLP, and all modern large
language models (LLM) are based on it. ImageGPT (M. Chen et al. 2020) has
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demonstrated the high potential of this sequence modelling approach in image
generation, yielding more stable and scalable results than GANs. This sequential
modelling approach is also naturally suited for inpainting and image completion,
closer to our image editing objective, since a fraction of the real pixel values in an
input image can be provided to a model, that can fill in the rest with the learned
model p(xi|x0, ..., xi−1). Despite the good stability and scalability results, this ap-
proach is very costly since it requires n forward passes in the transformer, one to
generate each pixel value. As a result, generating images of size larger than 64x64

is too costly, especially given that transformers have an attention mechanism that
scales quadratically with the sequence length.

Image Auto-Encoders Generating pixel values one by one is also very ineffi-
cient, since there is a lot of redundant information in images, especially locally
where nearby pixels have highly correlated values. Therefore, better computa-
tional efficiency can be obtained by compressing images into shorter sequences.
Efficient image compression was demonstrated with Vector Quantization ap-
proaches like VQ-VAE (A. van den Oord et al. 2017). In this line of work, Esser
et al. (2021b) present an approach for image generation, with a two-stage image
generation algorithm presented in Figure 2.2. The first stage consists in learning
an encoder-decoder architecture (called VQGAN) to compress images into a se-
quence of tokens, where each token is a vector in a set called codebook, or visual
dictionary. The token sequence length depends on the size of input image: typi-
cally, a 256x256 image is encoded in a 1024-long sequence. The second step is to
model this compressed sequence distribution with a transformer trained with a
next-token prediction objective. Once trained, the transformer is able to generate
token sequences, which can be decoded into real images by using the image de-
coder trained during the first stage. Having this two-stage process allows to have
a decoupling in image generation: the first stage specializes in compressing im-
ages with little information loss, while the transformer in the second-stage focuses
on modelling higher-level non-trivial dependencies in images that are not cap-
tured by the first-stage model. One of the interesting properties of the first-stage
encoder-decoder pair is that the decoder is trained to generate realistic textures,
with a dedicated perceptual GAN objective comparing crops of the reconstructed
image with crops of the input image being compressed. Therefore, although the
compression algorithm does not maximize the pixel-wise reconstruction (which
would give blurry results), it provides a more perceptual compression, where
human can recognize that the texture in a reconstructed image is similar to the
texture in the input image. This training procedure encourages the visual dictio-
nary to encode more high-level perceptual information. Image auto-encoders like
VQGAN have allowed for efficient auto-regressive modelling of images, notably
with DALL-E (Ramesh et al. 2021), Cogview (Ding et al. 2021) and Make-a-scene
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(Gafni et al. 2022a). The image encoder and decoders can be used without quan-
tization in diffusion models: Latent Diffusion Models (Rombach et al. 2022a) are
diffusion models trained in these image latent spaces instead of pixel spaces, yield-
ing greater modelling efficiency: it indeed allows the diffusion model to focus on
non-trivial image parts dependencies rather than low-level pixel correlations that
are easily captured by the auto-encoder.

Figure 2.2. – Efficient auto-regressive image modelling with VQGAN. In a first
stage, an encoder-decoder architecture is trained to compress images
into into a quantized latent space, effectively transforming images
into sequences of tokens; In the second stage, a transformer is trained
with auto-regressive modelling to generate token sequences. Image
from Esser et al. (2021b).

VQGAN + CLIP The VQGAN encoder-decoder architecture provides a very
good latent representation for images, that can be used for other tasks. We present
here an algorithm that has sparked a revolution in the field of AI-based art gen-
eration, known as VQGAN+CLIP (Crowson et al. 2022), which combines this
VQGAN latent representation with the CLIP multimodal encoders presented in
Section 2.1. The VQGAN + CLIP text-to-image generation algorithm is based on
the following idea: in the multimodal CLIP embedding space, we can compute
the cosine similarity between the embeddings of an image I and a text descrip-
tion T , to measure whether T actually describes image I . This similarity score
provides a differentiable objective that can be optimized by gradient descent on
the image itself. Starting from a target text description T , a random initial im-
age I is progressively optimized to increase CLIP similarity score with T . In a
few hundred gradient descent steps, this produces an image well aligned in the
CLIP embedding space, that should therefore be well described by input text
T . By direct optimization of the pixel values composing the image, one quickly
run into a problem related to adversarial attacks: the CLIP image backbone is
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very confident that the resulting image matches the text description embedding
(because we directly optimize the CLIP score), but the image does not look like
a real image: finely adjusting the pixel values tricks the CLIP image backbone,
but not the human eye. The problem is that there are too many dimensions in
the pixel space, thus too many low-level parameters to optimize that, considered
independently, do not reflect the actual variations of the visual world captured
in images. The VQGAN latent space, on the other hand, compresses images into
higher-level representations: it has a much lower vector space dimensionality and
better reflects natural variations of image parts, at least locally. The VQGAN-CLIP
algorithm consists in optimizing these latents codes directly, which means that
the codes need to be decoded into real images before being processed by CLIP,
which can only process RGB images. In this framework, the CLIP optimization
problem is much more constrained: the optimized image stays in the space of
images that consist of natural image parts, lessening the adversarial attack ef-
fect, and producing images that look more natural and match the text prompt.
Generative artists have used VQGAN-CLIP to produce novel art images, quickly
produce surprising and innovating image compositions (e.g. "portrait of Henri
the 8th, cyberpunk edition") or imitate the style of known artists. Despite this
success in art applications, the method is mostly adapted to art generation: the
image generation objective is an implicit, inference-time optimization, which often
produces non-photorealistic images.
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2.3 Image editing

In this section, we start by presenting in detail our main task, text-based image
editing. We then give an overview of a few baseline editing methods, which are
foundational elements in our contributions.

Task setup and challenges. While Text-Based Image Editing is close to text-to-
image generation, there are some specific challenges. First, while text-to-image
algorithms are free to generate images with an unconstrained structure, having
as sole requirement to match the text prompt, editing models should be able to
adapt to the spatial structure of the input image. Second, editing performance
cannot be measured with a single score, like in image classification. there are
three requirements that edited images should meet:

• Faithfulness: the editing should be in accordance with the text editing query.

• Edit distance: the edited image should be as similar as possible to the input
image: only parts of the image concerned by the editing should be changed,
and all other image aspects should stay the same.

• Image quality: the edited image should look as natural as possible, ideally
indistinguishable from a real image.

Evaluation. Each of these criterions can be measured with a dedicated metric.
Faithfulness is measured by comparing the edited image with the text transfor-
mation query with a CLIP score (Radford et al. 2021a); Edit distance is measured
in with the LPIPS distance (R. Zhang et al. 2018), which is a perceptual distance
between images; Image quality is measured with the FID score, a standard image
quality assessment metric, which compares the distribution of generated images
to the distribution of real images in the embedding space of an Inception network
(Christian Szegedy et al. 2016).

It is not possible to optimize these three metrics at the same time. Matching
the editing query and minimizing distance to input image are two contradictory
objectives: there is an inherent trade-off between those two metrics. For a given
editing method, better matching the text query comes at the cost of increased
distance to the input image. Often, a parameter controls that trade-off, allowing
generating Pareto curves between the metrics. Therefore, to compare different
methods, we must compare their trade-off curves.
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Image editing with GANs A lot of approaches for image editing have been
using GANs. Some approaches involve training an end-to-end architecture with
a proxy objective before being adapted to editing at inference time, based on
GANs (B. Li et al. 2020b; B. Li et al. 2020a; Ma et al. 2018; Alami Mejjati et al. 2018;
Mo et al. 2018; Gonzalez-Garcia et al. 2018). Other approaches have studied how
to leverage a GAN pretrained on image generation: it has been explored to find
directions in the latent space that correspond to specific semantic edits (Härkönen
et al. 2020; Collins et al. 2020; Shen et al. 2020a; Shoshan et al. 2021), or to guide
a latent space walk with an optimization objective in a multimodal embedding
space like CLIP (Patashnik et al. 2021). These methods require GAN inversion
to edit real images (T. Wang et al. 2022b; J. Zhu et al. 2020; Grechka et al. 2021b).
We mention these approaches for reference, but we do not use GANs for image
editing in this thesis.

Image Editing in embedding spaces In Section 2.1, we have presented the
CLIP shared image-text embedding space, where images and text can be em-
bedded into the same space with encoders Ci and Ct. In this space, the scalar
product between image and text embeddings defines a similarity score, which is
the basis for retrieval-based tasks. The image embeddings are compressed image
representations, that encode the semantics in images rather than low-level pixel
information, since they are designed to be compared with text embeddings. This
semantic organization of the embedding space allows arithmetic manipulation
of embedding vectors: similarly to geometric relationships in word embeddings
(King is to Queen what Man is to Woman), semantic transformations (e.g. change
man to woman) can be defined as vector directions (e.g., Ct(woman) − Ct(man)),
and then added to image embeddings Ci(I). More generally, to apply the text-
defined transformation change T1 into T2 to an image embedding Ci(I), we use
the following simple equation:

P = Ci(I) + Ct(T2)− Ct(T1), (2.3)

in which P should be the embedding of the input image I edited as requested
by the text transformation query. In the case of the man→woman transformation,
the gender of the main person depicted in the image should change accordingly.
Now, the transformation only happens in the embedding space. To produce an
image corresponding to the edited embedding P , we can either train an image
generative model conditioned on CLIP embeddings, or we can simply retrieve in
a large database, the image whose embedding is closest to P .

Image editing with instance-based optimization As explained above, the CLIP
space can be used to perform editing on embeddings with simple linear opera-
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tions. This embedding editing method can be coupled with a generative model
like StyleGAN (T. Karras et al. 2020) to make real modifications on the input
image (Patashnik et al. 2021). Instead of using a trained generative model, im-
ages can be synthesized by iterative modification of a random latent code from
an image auto-encoder like VQGAN 2.2, to optimize the CLIP similarity score
with a given text description. This generative algorithm can be easily extended
to editing an input image I in two ways: first, instead of starting from a random
latent code, we can start from the one representing the input image I , using sim-
ply the VQGAN encoder. The parameters of the iterative optimization procedure
(longer training, larger learning rate) allow controlling how far we can go from
I . Second, instead of optimizing the CLIP similarity with a single text, we can
define a high-level specification as a multimodal CLIP embedding and optimize
the edited image to match this embedding in the CLIP space. The optimization
procedure aims at solving the following problem:

z = argmax
z

Ci(D(z)) · (Ci(I) + Ct(T2)− Ct(T1)) (2.4)

where D is the image decoder, and z is a latent code initialized as Ci(I) (the latent
code of image I).

Image editing with diffusion models The generation algorithm for diffusion
models is remarkably well suited for image editing. Indeed, image editing can
be viewed as image generation with additional constraints, given by the input
image; and there are multiple ways to guide the generative process with inference-
time constraints, without retraining the diffusion model. We present here three
important methods used in this thesis.

First, the SDEdit algorithm (Meng et al. 2022) allows to process an input image,
and to generate a novel image with a pretrained diffusion model, that is close to
the input image. The distance to the input image is controlled by a parameter
interpolating between copying the input image and unconstrained generation.
The algorithm can be summarized as following: given an input image I = x0,
first add random Gaussian noise to it, xr =

√
αr x0 +

√
1− αr ϵ. Then, run the

diffusion model starting from step r with Equation 5.2. The parameter r controls
the level of editing: with the maximum value r = T , αT ≈ 0 so xr is almost equal
to random Gaussian noise, which corresponds to the classical DDIM generation
algorithm. By choosing an appropriate noise level and conditioning text in the
generation phase, one can get a generated image that respects a text specification,
while controlling the distance with the input image.

Second, the DDIM update rule (J. Song et al. 2021) is well suited for inpainting:
in this update rule at time step t, the variable x̂0 can be seen as an estimation of
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the final generated image. At the beginning, this estimation is very coarse and
blurry, but throughout the generation process, it becomes more and more refined
until it actually corresponds to the generated image. This estimation is used to
computed the next denoised sample xt−1, which is a very interesting behavior in
the context of image editing. Changing the value of x̂0 between each denoising
step allows to guide the generative process in various ways. Image inpainting is a
form of constrained image generation where outside an inpainting mask M , the
pixels of the generated image should be equal to the pixel values of input image I .
Therefore, to guide the diffusion generative process, we can simply "copy-paste"
the ground truth values from input image, outside the mask:

x̃0 = x̂0 ∗M + (1−M) ∗ I (2.5)

and the DDIM update rule now uses x̃0 instead of x0:

xt−1 =
√
αt−1 x̃0 +

√
1− αt−1 ϵθ(xt, t). (2.6)

Third, the iterative nature of the decoding process in diffusion models allows
so-called “guidance” techniques, such as classifier guidance (Sohl-Dickstein et al.
2015; Yang Song et al. 2021; Dhariwal and Nichol 2021a). This technique consists
in guiding the decoding process with the gradient of a trained classifier, with the
aim to generate images that belonging to a certain class according to this classi-
fier. Dhariwal and Nichol (2021a) show that DDIM sampling can be extended
to sample the posterior distribution p(x0|c), where c is the class detected by the
classifier, with the following modification for the noise estimator ϵθ:

ϵ̃θ(xt) = ϵθ(xt)−
√
1− αt ∇xtp(c|xt) (2.7)

where p(c|xt) is the classifier probability that the input xt belong to class c. The
classifier can be trained to use noisy inputs xt, but we can also use an off-the-shelf
classifier by using the denoised estimation x̃0 as input at each step. This technique
has since been extended to take as input other constraints such as for the tasks of
inpainting, colorization, and super-resolution (Saharia et al. 2022a).

2.4 Positioning

In this section, we present our different contributions, what problems they
aim at solving, and what methods and tools they are built upon. The thesis is
organized in four chapters:
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Retrieval-based Image Editing with Multimodal queries. In Chapter 3, we
study a simplified editing task, which does not require an image generation
algorithm. Given an input image and a text transformation query written as a
pair (source, target) (e.g. cat → dog), the aim is to find an image in a large image
database that corresponds to the input image, modified according to the text query.
Since searching in a database will give us real images, there might not be an exact
match for our transformation, so we need to have some flexibility in accepting
database matches. Solving this task requires to define a score measuring how well
an image matches the theoretically best edited image, and then select the image
in the database according to that score. We show that multimodal embedding
spaces like CLIP (presented in Section 2.1) allow performing arithmetic operations
between image embeddings and text embeddings, allowing to add or remove
semantic concepts with simple additions and subtractions. We express the editing
constraint as a target image embedding for the edited image, and then search
for the image that has the nearest embedding in the database. We consider the
problem of image editing in a multimodal embedding space, which does not
require image synthesis abilities. This chapter’s material is the foundation for the
following publication:

• Guillaume Couairon, Matthijs Douze, Matthieu Cord, and Holger Schwenk
(2022a). “Embedding Arithmetic of Multimodal Queries for Image Retrieval”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, O-DRUM workshop, pp. 4950–4958

Image Editing with instance-based optimization. In Chapter 4, we are inter-
ested in real image editing, which modifies the pixels of the input image instead
of performing database retrieval. The problematic is as following: how can we
use the CLIP multimodal embedding space to perform real image editing, given
that it has not been trained with an image generation objective? Inspired by the
VQGAN+CLIP approach presented in Section 2.2, we perform editing as instance
optimization of the input image’s VQGAN representation, with the aim to reach a
target embedding in the CLIP space. We then propose a variety of regularization
schemes to improve editing accuracy and realism. This chapter’s material is the
foundation for the following publication:

• Guillaume Couairon, Asya Grechka, Jakob Verbeek, Holger Schwenk, and
Matthieu Cord (2022b). “Flexit: Towards flexible semantic image transla-
tion”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pp. 18270–18279
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Image Editing with diffusion models. In Chapter 5, we leverage recent ad-
vances in generative models based on diffusion. Since these models are able to
synthetize a wide range of visual objects and concepts, we study how to leverage
these abilities in the context of image editing. The main challenge is to understand
the image given as input, find places where the image need editing, generate the
edit and then blend it seamlessly with the input image. We have three main con-
tributions: (i) we design a method to find what should be changed in an image,
given an input and editing query; (ii) we adapt DDIM encoding to better preserve
information of the input image, and give theoretical insights; (iii) we provide a
quantitative evaluation framework based on three datasets, focusing on different
aspects of text-based image editing. This chapter’s material is the foundation for
the following publication:

• Guillaume Couairon, Jakob Verbeek, Holger Schwenk, and Matthieu Cord
(2023b). “Diffedit: Diffusion-based semantic image editing with mask guid-
ance”. In: International Conference in Learning Representations

Image Synthesis from semantic segmentation maps. In Chapter 6 we consider
a problem related to image editing: Semantic Image Synthesis, which consists in
generating images conditioned on a spatial layout with spatial masks specify-
ing in natural language what should appear in images. We choose to design a
zero-shot algorithm for this task by adapting pre-trained diffusion models on this
task, without any supervised data. Similarly to image editing, adapting diffusion
models to this task requires to incorporate an additional constraint into the gener-
ative algorithm, which is challenging since spatial layouts are strong constraints,
which the diffusion models have not been trained to process. Our algorithm,
dubbed ZestGuide, is based on the classifier guidance method; we leverage the
spatio-semantic patterns in the attention maps of the diffusion model’s U-Net to
guide the generative algorithm. This chapter’s material is the foundation for the
following submission, currently under review:

• Guillaume Couairon, Marlene Careil, Matthieu Cord, Stéphane Lathuillère,
and Jakob Verbeek (2023a). “ZestGuide”. In: Under Review
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3.1 Introduction

In Chapter 2, we have presented how images and text can be embedded in a
shared multimodal latent space, which enables essential multimodal applications
like large-scale image/text retrieval. Classical image/text retrieval consists in
having a query from one modality, like a textual image description, and to find a
matching sample from the other modality. In this chapter, we study the problem
of image retrieval from multimodal queries (called Multimodal Image Retrieval):
given an input image and a simple text transformation query (e.g. cat→dog), the
aim is to find in a large database, an image for which the semantic difference with
the input image (e.g. representing a cat) can be accurately described by the text
transformation. For example, with the cat→dog transformation, an image showing
a cat sitting in the grass should be transformed into an image with a dog sitting
in the grass (Figure 3.1): the main semantic difference is accurately described by
the transformation cat→dog.

Multimodal Image Retrieval is a simplified editing problem which focuses on
semantic composition of visual concepts rather than image synthesis skills. Most
existing methods for solving this task (N. Vo et al. 2019b; Anwaar et al. 2021; Yale
Song and Soleymani 2019) focus on supervised learning, using a fraction of the
dataset for training and the remaining for testing. Instead, we want to measure
if multimodal embeddings trained with an image/text matching objective can be
used to solve this task without any transformation example.

We choose to transform images by encoding the transformation query as a
delta vector in the multimodal space, before adding it to an image embedding and
retrieving the closest image in a database (see Figure 3.1). This operation solely
relies on the image/text alignment without needing any transformation example.
However, it requires a well-structured multimodal space to be able to transfer
text transformations to images. We know that word and sentence embeddings
trained on vast amounts of data have been shown to possess geometric properties
that can be useful for text transformation (Mikolov et al. 2013; Logeswaran and

23
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Figure 3.1. – SIMAT image editing with evaluation framework. The transforma-
tion is mapped to a delta vector, added to the image embedding to
produce a transformed embedding, for which a corresponding image
is retrieved in a database. The evaluation module checks that the
text-transformed caption is valid for the image result.

H. Lee 2018), such as the famous analogy: queen is to king what woman is to man.
Previous work (Jia et al. 2021) has hinted that such geometric properties could
also be present in multimodal spaces, without quantitative evidence.

In this chapter, we study the suitability of multimodal embedding spaces like
CLIP (Radford et al. 2021a) to perform image retrieval with image-text queries.
We also study whether it is beneficial to leverage the geometric properties of
sentence embedding spaces to get multimodal embeddings better suited to image
retrieval with multimodal queries. In particular, we use LASER (Artetxe and
Schwenk 2019) and LaBSE (F. Feng et al. 2020), which have been pre-trained on
large corpora of multilingual data.

We aim to define a rigorous evaluation framework for our task. A good dataset
to evaluate Multimodal Image Retrieval should contain feasible (image, text trans-
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formation) queries: the transformation man→dog can be applied to an image with
“A man is running on the beach”, but not to “A man is speaking on the phone”. We
create SIMAT, a corpus based on Visual Genome images and annotations (Kr-
ishna et al. 2017) and ensure that this requirement is met. SIMAT contains 6k
images and 18k textual transformation queries that aim at either replacing scene
elements or changing pairwise relationships between scene elements. Finding
metrics for Multimodal Image Retrieval is challenging: first, we need to ensure
that the requested transfer is performed (the cat is replaced by a dog). Then, we
need to verify that the modification is minimal: the dog should be sitting on grass
and ideally, all other visual elements should not be changed. We use OSCAR (X.
Li et al. 2020) as an external oracle to assess whether these two conditions are
met. OSCAR is a multimodal transformer trained on captioned images with a
binary cross-entropy loss to recognize whether a given text corresponds to an
image (see Section 2.1 for more details). At the time of writing, it was the best
available model for detecting whether a text correctly describes an image.

The remainder of the chapter is organized as follows: we first present in detail
how we built the SIMAT database. We then explain our retrieval-based editing
framework in the methods section, and finally we conduct a variety of experiments
on the SIMAT database.

3.2 The SIMAT database

3.2.1 Existing databases for Multimodal Image Retrieval

Several datasets exist to evaluate Multimodal Image Retrieval on narrow image
domains: the CSS dataset (N. Vo et al. 2019b) which is a synthetic dataset with
simple colored geometrical objects based on CLEVR (Justin Johnson et al. 2017).
The Fashion200k dataset (Han et al. 2017) provides around 200k images of fash-
ion products, each annotated with a compact attribute description. Similarly, the
Fashion-IQ dataset (Guo et al. 2019) was built to advance research on interactive
fashion image retrieval. The MIT-States dataset (Isola et al. 2015), also commonly
used, is a dataset of ≈60k images, each annotated with an object/noun label and
a state/adjective label such as new car or broken window.

Those datasets are designed to evaluate image retrieval with multimodal queries
on narrow domains, which gives more control over what attributes can be changed
and ensures that the transformation is always feasible. Another common charac-
teristic is the focus on changing object properties rather than objects relationships.
We focus on more realistic images, and study object transformations where an ob-
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ject should be replaced by another without changing the high-level subject-object
interaction.

3.2.2 Requirements

First, we need a list of images with some transformation queries (e.g. a man
sleeping on the beach, with the query man→woman). We want simple images (so
that the query is unambiguous) and relevant transformation queries. Second, we
need a database of images that we will use for the retrieval step. And finally, we
need a criterion to decide, based on the retrieved image, if the transformation is
successful or not. It is the case if only the element designated by the transforma-
tion query has changed, while keeping the rest of visual elements as similar as
possible.

Previous work (N. Vo et al. 2019a) has tried to solve these requirements with a
dataset of ≈1,500 images from Google Image Search queries, dubbed SIC112, with
each image annotated with an actor-action-environment triplet, such as (woman,
walking, street), among a set of 112 possible triplets. Transformation queries then
consist in changing either the subject, action or environment. This set of images is
also used as a database for retrieval, which has two advantages: (i) transformation
queries are always possible by design of the dataset, and (ii) the quality of the
retrieved image is measured by checking if its annotation triplet is indeed the one
expected by the transformation query.

We scale this approach to a larger number of annotation triplets, that take the
more general form of (subject, relationship, object). However, we observed that
due to the larger triplet vocabulary, images can be accurately described by mul-
tiple such triplets, which skews the evaluation metric: an image would often be
rejected for not being annotated with the expected triplet while still being vi-
sually correct. Therefore, we choose to use a different metric for evaluating the
quality of transformed images: we evaluate whether the semantic transformation
is successful by querying OSCAR (X. Li et al. 2020). OSCAR computes the prob-
ability PO(I, T ) that a caption T accurately described an image I , based on the
concatenation of the text tokens in T and the object tags and features detected
by faster R-CNN on image I (we provide the triplet to OSCAR in the form of
a caption written in natural language). Note that this OSCAR-based evaluation
method does not involve image annotations in the retrieval database and thus
could potentially be applied to a much larger database of non-annotated images,
which we leave for future work.
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3.2.3 Construction

Similarly to (N. Vo et al. 2019a), we create a list of images annotated with
(subject, relationship, object) triplets, and perform the retrieval step inside the
same list of images to ensure that transformation queries always have a valid
solution in the dataset. We start from annotations from the Visual Genome dataset
(Krishna et al. 2017). Each image in the dataset contains a list of such triplets with
subject and object bounding boxes, which we use to crop square regions of images
that minimally contain the subject and object in the image. We then filter this list
and compute possible transformations:

Subject/Relation filtering. Only keep triplets for which the subject is a human
or animal, and the relation is a non-positional relationship in Visual Genome. The
full lists are shown in Figure 3.2.

Object filtering. Only keep objects O for which there exists at least two triplets
(S,R,O) and (S ′, R′, O) with R ̸= R′. This ensures that the selected objects have
at least two different types of interaction in images. Then, only keep the 10 most
frequent objects for a single (subject, relation) pair. This gives a list of 645 distinct
triplets.

Building transformation queries. For each image I with associated triplet
(S,R,O), add in the list of transformation queries (I, O → O′) if there is a triplet
(S,R,O′) in the database. Do the same for S and R. This ensures that transforma-
tion queries consists of pairs of objects that can have the same (subject, relation)
pair, and symmetrically for subjects and relations.

Writing captions for OSCAR. For each of the 645 triplets, we manually wrote a
caption in natural language, e.g. (man, sitting on, chair) → A man sitting on a chair.

We now have a database of images and transformation queries, but we have
noticed some noise in the annotation procedure: an image can have a triplet an-
notation which does not well describe the main action in it, because the cropping
procedure included an object that is more important than the extracted triplet.
Also, transformation queries sometimes consisted in synonyms. We solve this
problem using OSCAR to filter transformation queries: given an image I with
query triplet t1 and target triplet t2, we keep the corresponding transformation if
PO(I, t1) > 0.9 and PO(I, t2) < 0.1. This ensures that not modifying the image is
not a valid solution to the problem.

The distribution of images being quite skewed (see Figure 3.2), the transforma-
tion queries also have a bias towards the more frequent subjects, relations and
objects. We alleviate this problem by using re-weighting in the scoring metric (see
below).
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Figure 3.2. – Statistics for SIMAT database. All subjects and relationships are
represented, but only 25 objects out of 131 are listed here.

In summary, our SIMAT dataset (for Semantic IMage Transformation) consists
of:

• 5 989 images, each annotated with a subject-relation-object triplet.

• 17 996 transformation queries on those images, with queries asking to
change the subject, the relation, or the object.

• A list of 645 distinct subject-relation-object triplets with corresponding cap-
tions, each triplet having at least 2 corresponding images.

To allow hyperparameter selection, we make a 50-50 dev/set split on the list of
images, and split the transformation queries accordingly.

3.2.4 Evaluation Metric

Let (Ii, w1 → w2, Ti) be a sample in our dataset D where w1 → w2 is the
transformation query and Ti is the caption associated to the target triplet of this
sample. For this sample, we consider that a retrieved image Ji corresponds to a
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successful transformation if OSCAR outputs a probability PO(Ji, Ti) > 0.5. The
final score is simply a weighted accuracy over all dataset samples:

S =

∥D∥∑
i=1

µi1PO(Ji,Ti)>0.5 (3.1)

where the coefficients µi are the contributions of each sample to the total score.
We adopt an inverse square root re-weighting to down-sample the most frequent
transformations.

3.3 Embedding Editing strategies

Starting from semantic transformations in text, we show how text transforma-
tions can be transferred to images via multimodal embeddings. We then present
our procedure for fine-tuning multimodal embeddings.

3.3.1 Text delta vectors for semantic transformations

Semantic properties in sentences can be modified by word replacement: in the
sentence “A man walking on the beach”, the semantic property subject gender can be
changed by replacing the word man with the word woman. In a latent space, where
direct word replacement is not possible, we can apply semantic transformations
by doing arithmetic operations. By encoding sentences as the sum of their word
embeddings, applying a transformation w1 → w2 on a sentence embedding E(s)

amounts to adding the vector E(w2) − E(w1), which we call a delta vector. In
principle, the textual form of the transformed sentence can be found by retrieving
the sentence embedding closest to E(s) + E(w2)− E(w1) in a database.

However, there is some ambiguity in the process since bag of words represen-
tations do not take into account the order of words. That is why we consider
more complex non-linear sentence embeddings which have been shown to dis-
play similar properties as above (Logeswaran and H. Lee 2018), in addition to
better reflecting the meaning of sentences (Artetxe and Schwenk 2019).

We study four sentence embeddings: CLIP, obtained by a contrastive loss on a
large set of image/text pairs; FastText, obtained with a weighted sum of FastText
word embeddings (Bojanowski et al. 2017); LaBSE, which are trained by matching
parallel sentences in different languages with a contrastive loss (F. Feng et al.
2020); and the LASER embeddings (Artetxe and Schwenk 2019) which are trained
with a multilingual translation task.
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3.3.2 From text delta vectors to images

Semantic transformations, seen as delta vectors as defined above, can be added
to image embeddings in multimodal spaces. As introduced in equation 2.3, we
use an image encoder Eimg and a text encoder Etxt that embed both modalities
into a shared latent space (see Fig 3.1). The transformed embedding is

x = Eimg(I) + λ · (Etxt(w2)− Etxt(w1)) (3.2)

The scaling factor λ is a hyper-parameter that can be adjusted to increase the
strength of the transformation. The natural choice is λ = 1, but it has been noted
that a higher value can help to better enforce the transformation (Jia et al. 2021).
The image embeddings are quite sparse due to the relatively small size of the
image database, so we found it helpful to enforce the rule that the retrieved image
should be different from the input image.

3.3.3 Finetuning multimodal embeddings

We consider multiple choices for the image and text encoders: our default
setup is to use the CLIP embeddings for both modalities (63M parameters for
the text encoder, 87M for the image encoder), and we experiment with using
two ImageNet-pretrained ResNets (RestNet50 and ResNet152, respectively 23M
and 63M parameters) as image encoders, and FastText, LASER and LaBSE as
text encoders. We can evaluate the vanilla CLIP embeddings without retraining;
however, other encoding choices are not directly compatible, and we have to fine-
tune the encoders to be able to encode image and text into a shared latent space.
We use a very simple fine-tuning scheme on COCO (T.-Y. Lin et al. 2014b) where
we train linear adaptation heads after the frozen encoders (Fig 3.3) for 30 epochs
with a learning rate of 1e-3 and a batch size of 4096. Fine-tuning a model takes
approx. 3 hours on 8 Tesla V100 GPUs.

When using the ResNet-based encoders, our initial study showed that only
training a linear layer is not sufficient to get a reasonable performance on image-
text retrieval, because the backbone network is only trained on image classification.
Therefore, we freeze only the first three blocks of the ResNet models and add a
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simple 4-layer MLP architecture on top of the pooled features. We use an image-
text InfoNCE (Sohn 2016a) contrastive loss (which is used for training CLIP):

C(I, T ) =
1

n

n∑
i=1

( exp(Ii · Ti/τ)∑n
j=1 exp(Ii · Tj/τ)

)
L =

1

2
C(I, T ) + 1

2
C(T, I) (3.3)

where I and T are normalized image and text embeddings, τ a temperature
parameter which is learnable in CLIP. However, we choose to keep it fixed to
study its impact on the transformation score.

Image Encoder 
(CLIP, ResNet)

Text Encoder
(CLIP, FastText, 
LASER, LaBSE)

A cat is sitting 
on the grass
A cat is sitting 
on the grass
A cat is sitting 
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projection

Linear 
projection
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Stop 
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Stop 
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Figure 3.3. – Layer adaptation learning on COCO. The image and text embed-
dings are projected to a shared multimodal space of dimension 512.

3.4 Experiments

In this section, we analyze the ability of various multimodal embeddings to
transfer text transformations to images via delta vectors.

3.4.1 Vanilla CLIP embeddings

We first study the performance of the vanilla CLIP embeddings for transferring
text transformations to images with delta vectors. To put our results in perspective,
we also evaluate the following baselines:

Text to Image: we directly provide the target captions to the CLIP text encoder
and retrieve the image closest to that embedding. This is the standard image
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Image 
Query

Transformation 
Query Woman ➞ Man Leaning on ➞ 

Jumping over Toilet ➞ Suitcase Kite ➞ Rail Boat ➞ Bed Tennis racket ➞ 
Skateboard

Target 
Caption

A man balancing 
on a surfboard.

A horse jumping 
over a fence.

A cat sitting on a 
suitcase.

A man leaning on 
a rail.

A woman sitting in 
a bed.

A man playing 
with a 

skateboard.

Retrieved 
Image

Success 
(OSCAR) YES YES YES NO NO NO

Figure 3.4. – Transformation examples from the CLIP model fine-tuned on COCO
with temperature τ = 0.1. Columns 1-3 show examples of success-
ful subject, relation and object transformations. Column 4 shows an
example of an unsuccessful object transformation: the retrieved im-
age contains a bench instead of a rail, but we can note some visual
similarity with a rail. Row 5 shows a frequent mode of failure: the
object is the correct, but the relation has been modified. We assume
that our algorithm prioritized keeping the dog in the image.

retrieval task, which is easier because the target subject-relation-object features
are given as input. , it can be considered as an upper bound of our SIMAT score.

Image to Text to Image: we first find among the SIMAT captions, the text
embedding that is closest to the query image. We then add the text delta vector
corresponding to the transformation query and finally retrieve the closest image
in the SIMAT database. This means that we do not transform the input image
directly, but we transform a textual representation of the input image.

Results are shown in Table 3.1. The delta vector method works for 15.9% of
the transformation queries. A higher value of λ gives much better results (35.4%)
which are nonetheless below the Image to Text to Image baseline (39%), and
very far from the Text to Image upper bound (65.9%). It means that with our
benchmark, transforming images works better by using text representations of
images rather than the image embeddings themselves. However, in a real-world
scenario, we don’t want to get explicit context of images by converting them
to text (which requires a form of image captioning); we want to use the image
embeddings as implicit context.
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Method SIMAT score
n = 1 n = 5

Delta Vectors (λ = 1) 15.9 39.2
Delta Vectors (λ = 3) 35.4 67.6

Image to Text to Image 39.7 71.0
Text to Image 65.9 95.6

Table 3.1. – SIMAT score for delta vectors in the original CLIP multimodal space.
The default score considers the nearest neighbor in the retrieval step
(n = 1). We also report the SIMAT score for the best image using
n = 5 nearest neighbors.

3.4.2 Fine-tuning CLIP on COCO

In this section, we consider CLIP as image and text encoder, but we addition-
ally train adaptation layers on COCO with different values for the temperature
parameter τ . Figure 3.5 shows the SIMAT score as a function of the scaling factor
λ, on the SIMAT dev set. The same curve for the vanilla CLIP embeddings is
shown in black. We can see that all curves have an optimal value for λ, which
depends on τ . This optimal value λ∗(τ) decreases as τ increases from 0.01 to 1,
and the global optimum is reached for τ = 0.1 and λ = 1. For these values, the
SIMAT score is 48.2 which is a 33% absolute improvement over the zero-shot
score.

We therefore conclude that the temperature parameter τ has a great importance
for transferring text delta vectors to images, and that the fine-tuned embeddings
work best with delta vectors for τ = 0.1 and λ = 1.

Here, we make the important observation that the empirical optimal value for λ
is exactly the theoretical value of 1 that should be used to transform bag of word
embeddings. Given that λ = 1 is suboptimal for vanilla CLIP embeddings, we
make the hypothesis that multimodal embeddings that are optimal for λ ̸= 1 can
be projected to embeddings better suited for delta vectors (hence having better
geometric regularities) that maximize transformation accuracy for λ = 1.

Transformation examples on SIMAT obtained with this model are presented
in Figure 3.4.

Note that the best image retrieval and text retrieval evaluations on COCO are
obtained for τ = 0.01, which hints towards the fact that smaller temperatures
are better for image-text retrieval and higher temperatures (τ ∼ 0.1) are more
compatible with the delta vector framework. In the rest of this chapter, we use a
fixed temperature of τ = 0.1.
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Figure 3.5. – SIMAT score as a function of the scaling factor λ (on development
set). The overall best score is obtained for τ = 0.1 and a scaling factor
of exactly 1.

3.4.3 Using pretrained text encoders

We show in Figure 3.6, that a value of τ = 0.1 which is optimal for CLIP, is
also near-optimal for all other considered text embeddings, FastText, LASER and
LaBSE. It seems to be a value that works well for delta vectors. In Table 3.2, we
analyze our different choices for the image and text encoders. The Retrieval upper
bound metric corresponds to the Text to Image baseline of Section 3.4.1. The Text
delta vector metric is an evaluation of how well the text-defined delta vector can
accurately transform the caption of the input image (and not the image itself).
We also compute the standard image/text retrieval metrics (Image R@1 and Text
R@1) on the COCO test set.

We can see that the key contributing factor in the different SIMAT scores
is which sentence encoder has been used. If we fix the sentence encoder, the
image encoder has an important influence on the image-text retrieval metrics but
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MS Coco Text Retrieval
Image

Encoder
Sentence
Encoder

Text
R@1

Image
R@1

delta
vectors

SIMAT
score

upper
bound

RN50 25.4 22.3 88.0 44.5 76.2
RN152 CLIP 27.6 23.5 87.2 46.0 77.7
CLIP 45.2 34.8 82.4 48.2 75.4

RN50 17.6 15.2 95.3 44.6 65.6
RN152 FastText 19.1 16.3 95.5 46.7 68.0
CLIP 28.2 21.9 94.4 47.5 70.6

RN50 18.8 16.8 91.0 38.8 66.9
RN152 LaBSE 20.4 17.9 90.7 39.9 69.0
CLIP 31.4 24.9 92.9 41.9 69.9

RN50 17.0 15.4 92.1 37.0 67.0
RN152 LASER 19.0 16.9 92.6 36.0 67.6
CLIP 29.6 22.8 92.8 37.7 67.6

Table 3.2. – Comparison of different image and sentence encoders for the evalua-
tion of delta vectors (τ = 0.1).

very little impact on the SIMAT score. Therefore, we conclude that improving
multimodal embeddings at the task of image/text retrieval will not necessarily
improve their geometric properties (in the context of delta vectors).

Also, quite unexpectedly, the SIMAT score does not seem correlated to the
Text delta vector score, which measures how well delta vectors can transform text
embeddings: the fine-tuned CLIP text embeddings have a text transformation
accuracy of 82.4% whereas the fine-tuned FastText embeddings reach 94.4%. Yet
they have very similar SIMAT scores (48.2% vs 47.5%). It seems to show that
within our constraints, a slightly lower performance on text delta vector (which
indicates an embedding space with less geometric structure on the text side) is
not the current limitation.

3.4.4 Sentence-based delta vectors

In our default method for using text-based delta vectors, we used single words
as input to the text encoder. This is particularly well suited for the FastText
embeddings which are based on word embeddings, but not so much for the
LASER and LaBSE sentence encoders which are built to encode sentences and
not single words. This could explain the performance gap between FastText and
LASER/LaBSE. To test this hypothesis, we changed our definition of delta vectors
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Figure 3.6. – SIMAT score (λ=1) as a function of training temperature, for sev-
eral text encoders. For all, the maximum SIMAT score is always
obtained for τ ≈ 0.1.

so that it is computed by encoding sentences rather than single words. We define
the sentence average delta vector of transformation w1 → w2 as the average of delta
vectors E(s2)− E(s1) where s1 and s2 go over all pairs of SIMAT captions such
that s2 is the result of the text transformation w1 → w2 applied to s1.

We show the results in Table 3.3. With this new method, the performance gap
between the different text encoders is much smaller, the SIMAT score being
higher for LASER and LaBSE, and smaller for FastText. We observed that we can
use a higher scaling factor to boost the SIMAT score, up to λ = 1.5 for CLIP.
We suspect this is due to the fact that the second method produces more reliable
delta vectors with a smaller norm.

Note that the role of this experiment is to shed light on the reasons behind the
performance spread with respect to the text encoders. The captions of SIMAT
should be reserved for evaluation only and not used within the algorithm. A
better algorithm may use the COCO captions to create better sentence-based delta
vectors, but we leave this for future work.

3.4.5 Transformation score by target

In Figure 3.7, we use the CLIP model fine-tuned with τ = 0.1 and compute the
SIMAT score by grouping transformations by their target values: for each word
w, we compute the weighted accuracy of transformation success for all queries
w1 → w2 such that w2 = w. The relative weight of each target value in the final
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Sentence
Encoder

Single
word

Sentence
Average

λ = 1 λ = 1.2 λ = 1.5

CLIP 48.2 46.7 51.5 53.5
FastText 47.5 44.6 46.5 45.8
LASER 37.7 43.8 45.0 44.2
LaBSE 41.9 44.6 46.5 45.5

Table 3.3. – Comparison of two methods to calculate delta vectors: Single word
and Sentence average. With the latter, all the encoders have very similar
SIMAT scores.

SIMAT score in shown on the x-axis, and the y-axis represents the SIMAT score.
We can see that overall, transforming object relations is harder than transforming
the objects themselves, which is probably because relationship are less easily
identifiable in images. Also, if we compare the SIMAT scores between objects,
we can see that the best SIMAT scores are obtained for objects that are easy to
recognize (sink, toilet, suitcase...) while the worst scores correspond to objects
without a well-defined shape that are harder to recognize (feeder, counter, wall,
bus stop).

3.5 Conclusion

In this chapter, we introduced SIMAT, a novel dataset to study the task of
text-driven image transformation. It is much larger and has a wider variety of
transformations than existing approaches like SIC112. Due to this larger size, we
argue that evaluation cannot be performed solely by using the caption of the
retrieved image, and we propose to use OSCAR to assess whether an input image
has been successfully transformed.

We use SIMAT to study the geometric properties of multimodal embedding
spaces trained with an image-text alignment objective. We use a simple linear
approach (delta vectors) for transferring text-defined transformations to images in
multimodal spaces, which should work well for well-structured spaces. This pro-
vides a novel way to study multimodal embedding spaces compared to standard
image/text retrieval metrics in the literature.

After having evaluated vanilla CLIP multimodal embeddings, we have studied
embeddings obtained by training with an image/text alignment on COCO, that
use pretrained text encoders (FastText, LASER, LaBSE) and pretrained image
encoders (CLIP, Resnet50, Resnet152). We emphasize below our findings:
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Figure 3.7. – Score breakdown by target. Subjects are in red, relations in blue
and objects are in purple. The model used is CLIP fine-tuned with
τ = 0.1.

• Vanilla CLIP embeddings, although very powerful for image/text retrieval,
are not very well suited for delta-vector based transformation. Fine-tuning
CLIP on COCO brings substantial improvements for delta-vector based
transformations and the best performance is obtained for τ = 0.1 and λ = 1.

• We also observe that (τ = 0.1, λ = 1) is the best operating point for all
considered pretrained text encoders (FastText, LASER, LaBSE). λ = 1 is the
theoretical value for delta vectors, so we conclude that fine-tuning at τ = 0.1

helps to improve the geometric properties of the multimodal embedding
space.

• We did not find any evidence that using geometric properties of pretrained
sentence embeddings is helpful. While we expected multimodal embedding
spaces built on top of these well-behaved text spaces to display better linear
properties, experiments show the opposite : (a) higher accuracy for text
transformation is not correlated to better image transformation; (b) Using
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LASER and LabSE is actually harmful, but we show that this is almost
entirely due to the fact that we only have access to single words to compute
the text delta vector.

While this work provided interesting insights on the regularities of multimodal
embedding spaces, it does not provide real image editing and is inherently lim-
ited by the database’s size. In the remainder of the thesis, we study how to
directly modify the input image as requested by the transformation query. Unlike
database retrieval, this requires (i) to identify parts of the image that need editing,
(ii) to synthetize novel image parts, and (iii) to blend them seamlessly with the
unmodified other image parts. In the following chapters 4 and 5, we propose two
different approaches to these challenges.
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I M A G E E D I T I N G W I T H I N S TA N C E - B A S E D
O P T I M I Z AT I O N

4.1 Introduction

In the previous chapter, we have studied a simplified editing problem based on
database retrieval instead of really editing the input image. Real editing requires
strong image synthesis skills, and should ideally allow for a wide variety of edit
operations that can be described in natural language. While Generative Adversar-
ial Networks (GANs) hold the state-of-the-art in image synthesis on structured
domains (such as human faces), scaling them for text-to image generation and
editing is still very challenging.

In this chapter, we propose a more flexible approach to Semantic Image Editing,
dubbed FlexIT. Given an input image and a user defined text query of the form
(SaT ) (like cat → dog), we define a multimodal embedding "target point" that rep-
resents the edited image, similarly to what we did in Chapter 3. The target point
is a linear combination of the inputs CLIP embeddings (Radford et al. 2021b),
which contains one image embedding and two text embeddings for the source
and target texts. However, instead of searching for a corresponding image in a
database, we perform a per-image optimization procedure that gradually makes
changes in the input image to get closer to the multimodal target embedding.
The image is optimized in the latent space of the VQGAN image auto-encoder,
presented in Chapter 2. Compared to pixel space optimization, it allows us to
avoid adversarial optimization and to get edited images closer to the manifold
of real images, improving image realism. Compared to GAN latent space opti-
mization, it allows us to process a much wider variety of images than that used
for training the GAN generative model. A few editing examples are shown in fig-
ure 4.1. Using the CLIP networks, pretrained on web-scale data, lets us process a
wide variety of textual transformation queries, thanks to the well-organized CLIP
multimodal latent space. We also propose a variety of regularization strategies to
ensure image quality and relevance to the transformation query. FlexIT requires
only fixed pretrained components, and can thus be used off-the-shelf without

41
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Tiger 
→ White wolf

Standard schnauzer 
→ Yorkshire terrier

Black 
→ Red

Glass 
→ Water jug

Plastic bag 
→ Backpack

Sow’s ear 
→ Silk purse

Figure 4.1. – FlexIT transformation examples. From top to bottom: input image,
transformed image, and text query.

requiring any training, which is is essential in the context of image editing where
training data is very scarce (see Chapter 2 for details).

The lack of examples for the semantic image editing task also means that there is
no satisfying dataset for evaluation. Most previous works in the field have focused
on qualitative examples, and the available relevant quantitative evaluations only
covered very few textual transformation queries. To remedy this problem, we
propose a quantitative evaluation protocol for the task of semantic image editing.
It is based on the three main editing criteria presented in Chapter 2, that we recall
here: (i) the transformed image should correctly correspond to the text query,
(ii) the output image should look natural, and (iii) visual elements irrelevant to
the text query should remain unchanged. We thoroughly evaluate our model on
ImageNet, and demonstrate quantitatively and qualitatively the superiority of our
method against baselines.

The remainder of the chapter is organized as follows: after going over related
work, we present the FlexIT algorithm for Semantic Image Editing. We then
conduct experiments with our ImageNet-based evaluation protocol, and ablate
design choices in our methods, especially focusing on how to set values of hyper-
parameters for optimal editing. We conclude by underlying the benefits of the
method as well as its limitations.

4.2 Related Work on Image Editing in latent spaces

In this section, we go over different methods for editing images in GANs latent
spaces, and we give the motivation for using the VQ-GAN latent space, coming
from an image auto-encoder instead of a GAN training.
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Image editing with GANs Modern Generative Adversarial Networks like Style-
GAN (Tero Karras et al. 2019; T. Karras et al. 2020; Tero Karras et al. 2021), have an
impressively disentangled latent space, where performing copy-pastes between
two latent vectors transfers the corresponding styles in the image space. Conse-
quently, significant research efforts have been put into using pretrained GANs for
semantic image edition, as mentioned in paragraph 2.3.

More precisely through specific latent-space manipulation, high-level attributes
such as age or gender can be identified and edited realistically (Shen et al. 2020b;
Abdal et al. 2021; Zhuang et al. 2021; Härkönen et al. 2020). By using an aux-
iliary classifier, a simple approach consists in finding linear boundaries in the
latent space separating binary attributes (Shen et al. 2020b; Zhuang et al. 2021;
Goetschalckx et al. 2019), which allows editing attributes by “walking” in the
orthogonal latent direction. StyleFlow (Abdal et al. 2021) proposes a non-linear
approach by learning the latent transformations using normalizing flows. Other
methods (Härkönen et al. 2020; Voynov and Babenko 2020) operate without a
pre-trained classifier and find the transformations in an unsupervised manner,
requiring a manual labelling process to interpret and annotate the “discovered”
transformations. Finally, StyleCLIP (Patashnik et al. 2021) guides latent editing
with a multimodal objective in a CLIP space. These approaches, however, present
several caveats. First, contrary to generated latents, inferred latent codes repre-
senting real images have been shown to react poorly to latent editing opera-
tions (Grechka et al. 2021a). Moreover, edit operations are also limited to the
semantics identified in the latent space, which are specific to the single domain
the GAN was trained on, such as age or apparent gender in the case of faces.

Another line of research for image editing is image-to-image translation, which
consists in training a GAN to directly modify the images. These methods learn
a transformation between two domains, using paired data (Isola et al. 2017; T.-C.
Wang et al. 2018; Taesung Park et al. 2019) or unpaired data (J.-Y. Zhu et al. 2017; Y.
Choi et al. 2020). In ManiGAN, B. Li et al. (2020a) train an image-to-image transla-
tion GAN to increase semantic consistency with text caption in images. However,
these models only learn a single transformation, or combinations thereof (Y. Wang
et al. 2020), specific to the training data, limiting the scope of their applicability.
Rather such restricted sets of possible edit dimensions, we target more general
transformations described by free-text.

Image latent space. While GANs are highly effective as generative models,
inference of the latent variable given an image is in principle intractable. Even
though joint learning of an inference network has been proposed, see e.g. (J. Don-
ahue et al. 2017; Dumoulin et al. 2017), the mode-seeking training dynamics of
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  Latent 
variable

Image  
Encoder

Embedding loss

Image query I0

Source text S

Target text T

Cat

Tiger

Multimodal 
Encoder

Image  
Decoder

Multimodal 
Target point 

Perceptual loss

Transformation Query 2: Optimization Loop1: Initialization

Optimized via 
gradient descent

Latent loss

Figure 4.2. – FlexIT optimization framework: components involving the multi-
modal latent space colored in green; those involving the image latent
space in yellow; those involving the LPIPS distance in pink. Given a
transformation query (I0, S, T ), we first compute a target point P in
the multimodal embedding space, and we encode I0 in the image la-
tent space to get z0. Then, for a fixed number of steps, we update the
latent variable z (initialized with z0) to get closer to the target point
P . We add two regularization terms: the LPIPS perceptual distance
between the input image and the output image, and a latent distance
between z and z0. All networks are frozen, only z is updated.

GANs are not suited for good reconstruction performance beyond the training
distribution (or even within it, if modes are dropped).

Variational autoencoders (Kingma and Welling 2014), on the other hand, offer
an inference network by construction, and their likelihood-based training objective
ensures accurate reconstructions. Vector-quantized variational autoencoders (VQ-
VAE) (A. van den Oord et al. 2017; Razavi et al. 2019), which discretize the
latent space, have been found to offer both good reconstructions and compelling
samples. In this paper, we use the VQ-GAN variant (Esser et al. 2021b) presented
in Chapter 2 which includes an adversarial loss term to train the autoencoder.

4.3 FlexIT algorithm

An overview of our image transformation approach is depicted in Figure 4.2. It
relies on three pre-trained components. First, we edit the input image in a latent
space, with the requirement that a wide range of images can be encoded and
decoded back to an RGB image with minimal distortion. We chose the VQGAN
autoencoder (Esser et al. 2021b) for that purpose. Second, we embed the text query
and input image in a multimodal embedding space, to define the optimization
target for the modified image. We use the CLIP (Radford et al. 2021b) multimodal
embedding spaces. Finally, to ensure that the modified image remains similar to
the input, we control its distance to the input image with the LPIPS perceptual
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distance (R. Zhang et al. 2018) computed with a VGG (Simonyan and Zisserman
2015) backbone.

Optimization scheme. The core idea of the FlexIT method is to edit the input
image in a latent space, guided by a high-level semantic objective defined in the
multimodal embedding space. Let E be the image encoder, D the image decoder
and (Ct, Ci) the multimodal encoders for text and image respectively. Given an
input image I0 and a textual transformation S → T , we first initialize FlexIT
by computing the initial latent image representation as z0 = E(I0) and the target
multimodal point P as

P = Ct(T ) + λICi(I0)− λSCt(S). (4.1)

We choose to use a multimodal embedding space since it allows text and image
modalities to be combined in a meaningful way: semantic transformations defined
by textual embeddings can be applied to images with linear operations (Jia et al.
2021). In this context, our target point P can be seen as an image embedding that
has been semantically modified with textual embeddings, by removing the source
class information (−λSEt(S)) and adding the target class information (+Et(T )).
Equation 4.1 is indeed similar to equation 2.3 with additional hyperparameters:
since we don’t know what is the optimal linear combination of image and text
embeddings, we consider λI and λS as parameters which will be validated on our
development set.

To find an output image which, when encoded in the multimodal embedding
space, gets as close as possible to the target point, we optimize the embedding
loss:

Lemb(z) = ∥Ci(D(z))− P∥22, (4.2)

which is similar to the objective introduced in equation 2.4 from Chapter 2. We
add two regularization terms to the embedding loss, to encourage that only the
content related to the transformation query is changed. Without regularization,
the optimization scheme can alter any part of the image if this helps in getting
closer to the multimodal target point, which we have found to yield unnatural
artifacts. The distance to the input image I0 is controlled with a LPIPS distance:

Lperc(z) = dLPIPS(D(z), I0). (4.3)

To enforce staying in parts of the latent space that are well decoded by our
image decoder, we use a regularization term with respect to the initial latent code
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z0. We use an ℓ2 norm at each spatial position i of the latent code, and sum these
norms across spatial positions to obtain the loss:

Llatent(z) =
∑
i

∥zi − zi0∥2. (4.4)

This ℓ2,1 loss encourages sparse zi changes, i.e. limiting changes in spatial locations,
which is aligned with our objective to transform a localized part of the input
image.

Finally, note that λI in Equation (4.1) also acts as a regularization parame-
ter, by encouraging the input and output image to be close in the multi-modal
embedding space.

The total loss we optimize can be written as:

Ltotal(z) = Lemb(z) + λpLperc(z) + λzLlatent(z). (4.5)

After initialization, the latent image variable z is updated via gradient descent
with a fixed learning rate µ for a fixed number of steps N , while keeping all net-
work weights frozen. Following the implementation of the Fast Gradient Method
(Y. Dong et al. 2018), we normalize the gradient before the update.

Data 
Augmentations Concat

Encode in
embedding 

spaces

CLIP 
ViT-B/32

CLIP 
RN50

CLIP 
RN50x4

Figure 4.3. – Architecture of our robust CLIP-based image encoder, which com-
bines three different encoders by concatenation.

Image optimization space. The distance to the multi-modal target point is
a differentiable loss that can be optimized via gradient descent. A straightfor-
ward approach consists in performing gradient descent directly in the pixel-space.
However, this type of image representation lacks a prior on low-level image statis-
tics. By optimizing over a latent variable instead, the image is obtained as the
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output of a neural-network based decoder. Choosing an autoencoder, like that of
VQGAN, lets us (i) make use of the decoder’s low-level priors, which guides the
optimization problem towards images that exhibit at least low-level consistency;
and (ii) encode and decode images in its latent space with little distortion. The
spatial dimensions in the VQGAN latent space allows editing specific parts of
the image independently, contrary to GANs which typically rely on more global
latent variables. Although GANs generate realistic images with stronger priors,
it is problematic to optimize their latent space for two reasons: first, GANs work
well on narrow distributions (such as human faces), but do not work as well when
trained on a much wider distribution; second, even with a GAN trained on a wide
distribution such as that of ImageNet, it is hard to faithfully reconstruct an image
using its latent space.

We report on experiments with optimization over raw pixels and GAN latent
spaces in Section 4.4.3.

Implementation details. In FlexIT, we run the optimization loop for N = 160

steps, which we found enough to transform most images. We use a resolution of
288 for encoding images with VQGAN, which compresses the images in a latent
space with dimensions (256, 18, 18).

We take advantage of various pre-trained CLIP models, and combine their
embeddings with concatenation, as shown in Figure 4.3. By default, we use three
image embedding networks with different ResNet and ViT architectures (RN50,
RN50x4, ViT-B/32), which implement complementary inductive biases. To encode
an image with a single CLIP network, we average the embeddings of multiple
augmentations of the input image (8 by default). We use a random horizontal
flipping and a random rotation between −10 and 10 degrees, followed by cropping
the image (keeping at least 80% of the input image) with aspect ratio between
0.9 and 1.1. We have empirically observed that using multiple augmentations per
network stabilizes optimization in the early stages.

For the regularization coefficients, we use λz = 0.05, λp = 0.15, λS = 0.4, λI =

0.2 as our default values. These coefficients are set using our ImageNet-based
development set, and are fixed for all experiments.

These implementation choices are analyzed in Sec. 4.4.4.

4.4 Experiments

Below, we first describe our evaluation protocol in detail. We then present qual-
itative and quantitative results, and an in-depth analysis of various components
of our approach.
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4.4.1 Evaluation Protocol

Evaluation dataset. We did not find a satisfying evaluation framework to study
the problem of semantic image translation: existing dataset and metrics focus on
narrow image domains, or random text transformation queries (B. Li et al. 2020a;
Patashnik et al. 2021). To overcome this, we have decided to build upon the
ImageNet dataset (J. Deng et al. 2009b) for its diversity and its high number of
classes: by defining which class labels can be changed into one another (like cat
a tiger), we can build a set of sensible object-centric transformation queries. We
have selected a subset of the 273 ImageNet labels that we manually split into
47 clusters according to their semantic similarity. For instance, there is a cluster
containing all kinds of vegetables. Details on the subset selection and grouping
are presented in the appendix. We only consider transformations S → T where
S and T are in the same cluster, in order to avoid nonsensical transformations
between unrelated objects, e.g. laptop a butterfly.

For each target label T we construct eight transformation queries by randomly
sampling eight other classes {Si} within the same cluster, and sample a random
image from each Si from the ImageNet validation set. This gives a total of 2,184

transformation queries that we split into a development set and a test set of
equal size. We use the development set to tune various hyper-parameters of our
approach, and report evaluation metrics on the test set.

Measuring transformation success. We evaluate the success of the transforma-
tion by means of the Accuracy of an image classifier, which is possible since we
use ImageNet class labels as the transformation targets. We use a DeiT (Touvron
et al. 2021) classifier, which has an ImageNet validation accuracy of 85.2%. We
judge a transformation successful if, for the transformed image, class T has the
highest probability among the 273 selected classes. This metric is similar to the
OSCAR metric, introduced in Chapter 3, since it is a binary measure of whether
the transformed image actually corresponds to the target text.

Measuring image realism. To assess naturalness of transformed images, we
use a variant of the Fréchet Inception distance (FID) (Heusel et al. 2017a), which
measures the distance between the distributions of the real images and generated
images in the feature space of an InceptionV3 classifier C. Szegedy et al. 2016.
Since the images we transform are extracted from the ImageNet validation set, we
use the ImageNet training set as our reference distribution. To avoid numerical
instability related to estimating the feature distribution with a small number of
samples, we use the “Simplified FID” (SFID) (C.-I. Kim et al. 2020) which does
not take into account the off-diagonal terms in the feature covariance matrix. In
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Input 
Image

Output 
Image

Dataset 
Image

Lifeboat 
→ Fireboat

Beagle 
→ Otterhound

Soccer ball → 
Ping pong ball

Broccoli → 
Spaghetti squash

Indigo bunting 
→ Junco

Monarch → 
Sulphur butterfly

Tiger beetle 
→ LadybugText Query Steel drum

→ Marimba

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4.4. – Transformation examples with FlexIT on ImageNet images. From
top to bottom: input and output image, as well as dataset image
from the target class. Columns (a)-(e) show examples of successful
transformations. Column (f) shows an interesting behavior where
another object has been added in the image to add more context (a
table tennis racket in the hand of the person). The last two columns
show the most frequent modes of failure: only part of the input
object is transformed (g), or parts of the input object that should be
changed are not changed: in column (h), the transformed images
still has a broccoli shape with green parts instead of an orange and
round spaghetti squash.

addition to the SFID, we use a class-conditional SFID score (CSFID) which is an
average of the SFID scores computed for each target class separately. 1 Because
we compute these scores with a low number of examples for many classes, the
CSFID score has a high bias, low variance profile on our dataset (Chong and
Forsyth 2020), and we have found it to be reliable and stable. The CSFID metric is
a measure of both image quality and transformation accuracy, as it measures the
feature distribution distance between the transformed images and the reference
images from the target class in the training set.

Measuring image distortion. Editing should not change parts of the image that
are irrelevant to the transformation defined in the text, e.g. the background. We
use the LPIPS perceptual distance (R. Zhang et al. 2018) to measure deviation
from the input image. It is a weighted ℓ2 distance of deep image features, and has
been demonstrated to correlate well with human perceptual similarity. During
training, we used the LPIPS distance based on VGG features, to reduce bias in the
LPIPS evaluation which is based on AlexNet features A. Krizhevsky et al. 2012.

1. Referred to as within-class FID in (Benny et al. 2021).
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For both training and evaluation, LPIPS scores are computed at resolution 256.
The LPIPS distance cannot differentiate between edits that are relevant to the text
query, and those which are not; and we don’t know the minimal LPIPS distance
between an image and its closest successful transformation. Still, we argue that it
should be as low as possible.

4.4.2 Results

Qualitative results of FlexIT transformations on ImageNet images are pre-
sented in Figure 4.4, including successful transformations as well as several failure
cases.

Figure 4.5 shows intermediate transformation results with FlexIT for 0, 8, 16,
32 and 160 optimization steps. The result after zero optimization steps shows the
effect of autoencoding the input image, without changing the latent representa-
tion.

We also show examples of color transformations for images from the Stanford
Cars dataset (Krause et al. 2013) in Figure 4.6.

Yellow → Orange Grey → Blue Red → Orange Grey → Yellow Red → Grey

Figure 4.6. – Example transformations on the Cars dataset: input images (first
row), FlexIT results (second row), StyleCLIP results based on a
StyleGAN2 backbone pre-trained on LSUN Cars dataset (last row).
Although GAN-based images have better details like the wheels,
they are farther away from the input images.
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0 steps

32 steps

160 steps

16 steps

8 steps

Retrieve

Input 
Image

lemon → 
Granny 
Smith

Border terrier 
→ Yorkshire 

terrier
cheeseburger 

→ bagel

garden spider 
→ black 
widow

cello → banjo
Hen-of-the-
woods → 

bolete

bathing cap 
→ cowboy 

hat

Figure 4.5. – Intermediate transformation results obtained with FlexIT . Note
that most edits only require 32 steps to be completed; some edits
benefit from longer optimization schemes, such as the spider and
the banjo.
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LPIPS ↓ Acc.%↑ CSFID ↓ SFID ↓

Copy 0.0 0.45 106.0 0.2
Encode 17.5 1.6 107.5 3.0
Retrieve 72.4 90.6 27.2 0.2
ManiGAN (B. Li et al. 2020a) 21.7 2.0 123.8 17.0
StyleCLIP (Patashnik et al. 2021) 33.4 8.0 146.6 35.8
FlexIT (Ours) 24.7 51.3 57.9 6.8

Table 4.1. – Evaluation of FlexIT and baselines on ImageNet images.

Semantic image translation is inherently a trade-off between having the most
relevant and natural output image (as measured by Accuracy, CSFID and SFID),
while staying as close as possible to the input image (as measured by LPIPS). We
consider two extreme configurations as baselines, which only optimize one of
these two criteria: (i) The Copy baseline, which simply copies the input image
without any modification, and (ii) the Retrieve baseline that outputs a random
validation image labelled with the target class T . We add the Encode baseline
that simply passes the input image through the VQGAN autoencoder.

We compare FlexIT against StyleCLIP (Patashnik et al. 2021), a similar text-
driven image transformation algorithm from the literature. We consider the ver-
sion most similar to our method that embeds images with an ImageNet-trained
StyleGAN2, 2 and iteratively updates the StyleGAN2 latent representation to max-
imize the similarity with a given text in the CLIP latent space. We have also
trained ManiGAN (B. Li et al. 2020a) on ImageNet with the implementation from
the authors.

Results are reported in Table 4.1. As expected, the copy baseline is ideal on
LPIPS and SFID, but fails to adapt to the transformation target T , and thus fails
on Accuracy and CSFID. For the same reason, the auto-encoding baseline also
fails on Accuracy and CSFID, but demonstrates the non-trivial impact of using
the VQGAN latent space on LPIPS and SFID. The Retrieve baseline provides
ideal metrics for Accuracy, CSFID and SFID, as it returns natural images of the
target class. It fails on LPIPS, however, since the output image is unrelated to the
input.

Our FlexIT approach combines a low LPIPS (24.7 v.s. 17.5 for Encode)
with an accuracy of 51.3% and a CSFID of 57.9, which is closer to the CSFID of
Retrieve (27.2) than that of Encode (107.5). The StyleCLIP scores are poor,
with high SFID and CSFID scores which was expected as StyleCLIP has been
designed to work well where GANs shine. The StyleGAN2 model we use, trained

2. We used the publicly available model from https://github.com/justinpinkney/
awesome-pretrained-stylegan2, and train our own e4e encoder (Tov et al. 2021) to embed im-
ages into this latent space.

https://github.com/justinpinkney/awesome-pretrained-stylegan2
https://github.com/justinpinkney/awesome-pretrained-stylegan2
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Figure 4.7. – Group-wise CSFID and Failure Rate (1-Accuracy), lower is better
for both metrics. Dark colors: best possible values obtained with
Retrieve baseline; medium colors: scores obtained with FlexIT ;
light colors: values obtained with Copy baseline.

on ImageNet, is agnostic to class information and cannot synthesize realistic
images for all ImageNet classes. ManiGAN works well when trained on narrow
domains with color change transformation requests, but we find that it does not
produce convincing edits when trained on ImageNet.

To provide insight into which transformations work well, and which less so, we
group our 47 ImageNet clusters into 13 bigger groups (see appendix for details)
and report the average CSFID and failure rate (1−accuracy) scores for each group
in Figure 4.7. Generally, transformations among natural objects are more success-
ful than transformations among man-made objects. We believe that this is mostly
because the latter appear in a wider variety of shapes and contexts which leads
to more difficult transformations.

4.4.3 Ablation studies

Regularizers. In Figure 4.8, we show the evolution of CSFID along the opti-
mization steps, where we consider our method without regularization, with each
regularization scheme separately, and with all regularizers (default configuration).
Compared to not using regularization, the LPIPS regularization substantially im-
proves the CSFID score along the optimization path, while also reducing LPIPS
as expected. The CLIP regularizer has a similar effect, but is able to reduce CSFID
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tent and CLIP regularizers, and using all. Each curve corresponds to
160 steps of optimization on the dev. set.
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Figure 4.9. – Example transformations with different regularizers. Textual queries
from top to bottom: Rottweiler → German shepherd, Electric guitar
→ Banjo, Red wolf → Grey fox.

further while the LPIPS distance is only slightly reduced compared to our method
without any regularization. These two regularizers are complementary: while the
LPIPS loss mitigates image deviation for local features, the CLIP loss provides
semantic guidance which helps to reconstruct recognizable objects. Using all regu-
larizers allows us to obtain the lowest CSFID scores at low LPIPS. Corresponding
qualitative examples are shown in Figure 4.9.

CLIP embedding module. We study how different choices of CLIP image en-
coders impact the CSFID score. Our default configuration involves two ResNet-
based networks and one ViT-based network to embed the image in the CLIP space.
We experiment with a single ViT or ResNet, a combination of ViT with a single
ResNet, and also using all available pre-trained CLIP networks, which comprises
a ViT-B/16, a ViT-B/32, a ResNet50, ResNet50×4 and ResNet50×16, see (Radford
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Figure 4.10. – CSFID for different CLIP networks combinations and number of
data augmentations options. Default setting: ViT+2RN.

et al. 2021b) for details on the modules. For each CLIP network configuration, we
experiment with either not using data augmentation, or using d ∈ {1, 8, 32} aug-
mentations, which are presented in Section 4.3. Each of the Nnets CLIP networks
sees a different augmentation in each of the Nsteps optimization steps, resulting in
a total of d×Nnets ×Nsteps augmentations of the input image.

From the results in Figure 4.10, we see that while the ViT and ResNet embed-
ding networks lead to similar results, they are complementary and combining
them leads to a substantial improvement. Adding additional networks leads to
further improvements. Second, using data augmentation is very beneficial, and
leads to a reduction in CSFID of 10 or more points for all network configurations.
Using more than one augmentation does not improve results substantially: it
suffices to a different augmentation for each network at each optimization step.
In our other experiments we use the three smallest (and fastest) CLIP networks
as our default setting.

Image optimization space. We compare our choice of optimizing in the VQ-
GAN latent space with using the latent spaces of StyleGAN2 (T. Karras et al. 2020)
and IC-GAN (Casanova et al. 2021), as well as optimizing directly in the pixel
space. IC-GAN (Casanova et al. 2021) generates images similar to an input image,
and uses a latent variable to allow for variability in its output. As IC-GAN does
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Figure 4.11. – CSFID and LPIPS scores across iterations, using different latent
spaces, or raw pixels, for optimization.

not offer direct inference of the latents for a given image, we take 1,000 samples
from the latent prior, and keep the one yielding minimal LPIPS distance to the
input image. We found that optimization to further reduce the LPIPS w.r.t. the
input image from this point on was not effective. For StyleGAN2 (T. Karras et al.
2020), we use the same network pretrained on ImageNet as we used for StyleCLIP.
To embed the evaluation images into this latent space, we first obtain an initial
prediction of the vector with the e4e encoder (Tov et al. 2021), as in StyleCLIP, and
then perform an additional 1,000 optimization steps to better fit the input image,
following the GAN inversion procedure described in (Tero Karras et al. 2019).

The results in Figure 4.11 show that using the VQGAN latent space allows to
substantially decrease the CSFID score along the iterations, while only slightly
increasing LPIPS. Using the raw pixel space is not effective to decrease the CSFID.
IC-GAN has relatively good image synthesis abilities but it is hard to faithfully
encode images in its latent space, yielding high LPIPS scores above 50. The Style-
GAN2 latent space (W+) is bigger, allowing generated images to be closer to
the input images; however its CSFID scores are not competitive with the other
approaches.

In Figure 4.12, we show qualitative results when we replace the VQGAN image
encoder with other GAN-based encoders. VQGAN has a native encoder and
decoder, and thus the initial latent vector is obtained directly. For StyleGAN2
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Input 
Image

Class 
Example

VQGAN
160 steps
(FlexIT)

StyleGAN2
160 steps

IC-GAN
160  steps

cauliflower → 
spaghetti squash

goldfinch → 
house finch

red fox → 
grey fox

beach wagon 
→ limousine

bald eagle → 
great grey owl

indigo bunting 
→ junco

golden retriever 
→ Irish setter

StyleGAN2
0 steps

IC-GAN
0 steps

VQGAN
0 steps

Pixel space

Figure 4.12. – Transformation examples for various image latent spaces.
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T. Karras et al. 2020, we use the e4e encoder Tov et al. 2021 followed by an
additional 1,000 steps of LPIPS minimization. For the IC-GAN Casanova et al.
2021 model, we use the BigGAN Brock et al. 2019 backbone as generator. IC-
GAN is naturally conditioned on the SwaV embedding Caron et al. 2020 of the
input image; for added robustness we sample 1,000 latent points and choose
the one yielding smallest LPIPS distance with respect to the input image. For
each latent space, we show the initial image decoded from the initial point z0,
and the resulting image after 160 optimization steps. The three latent spaces
differ substantially in their encoding images (0 steps). The IC-GAN latent space
provides natural images that are far away from the input image due to the limited
generator capacity in conjunction with the smaller latent space size (2560 dim.).
StyleGAN2 images preserve the input image appearance thanks to the larger size
of its latent space W+ (8192), however images contain many unnatural artifacts
due to the challenges of embedding images in this latent space Tov et al. 2021. The
VQGAN latent space leads to the best reconstruction results. After 160 steps of
optimization, the images generated with StyleGAN2 still have the same unnatural
artifacts, and images generated with IC-GAN remain natural but far from the
input images. VQGAN, which we use in FlexIT, achieves good edits while
preserving the overall image appearance. The pixel-space method introduces
high-frequency artifacts, without substantially modifying the high-level semantic
image content, resembling adversarial examples for image classification.

4.4.4 Hyperparameter study

In Figure 4.13, we illustrate the effect of our hyper-parameters on the LPIPS,
CSFID, and Accuracy metrics. For the three regularization parameters λp, λz, λI ,
we observe that (i) the LPIPS distance with respect to the input image is smaller
as the regularization gets stronger, as expected; (ii) less regularization allows
more image modifications, yielding better accuracy scores, as illustrated in the
bottom panel; (iii) there is a global minimum in CSFID scores when we vary
each hyper-parameter independently (top panel). Regularization constraints are
indeed useful to prevent inserting unnatural visual artifacts; however, too much
regularization penalizes our algorithm as the distribution of output images gets
closer to the input distribution, and thereby farther from the target distribution.

The parameter λS , similarly to the regularization parameters, has a an optimal
value which minimizes the CSFID. It is beneficial to give a hint to the optimization
algorithm which semantic content should be changed, however focusing too much
this objective reduces image realism.

For our main experiments, we set our hyper-parameters to minimize the CSFID
score on the development set. This is a natural choice given the convex shape of



60 image editing with instance -based optimization

22 23 24 25 26 27 28
Mean LPIPS distance

54

56

58

60

62

64

66

C
S

F
ID

λp = 0.1

0.2

λS = 0

0.5

λS = 0.8
λI = 0

λI = 0.1

λI = 0.4

λz = 0
λz = 0.1

λp

λS

λI

λz

23 24 25 26 27 28 29
Mean LPIPS distance

40

50

60

A
cc

ur
ac

y

λp = 0.05

λp = 0.1

λp = 0.2

λS = 0

λS = 0.2

λS = 0.5

λI = 0

λI = 0.1

λI = 0.4

λz = 0

λz = 0.1

λp

λS

λI

λz

Figure 4.13. – Effect on CSFID and Accuracy of hyper-parameters; default settings
represented by the black dot, where all lines cross.
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the CSFID scores, whereas optimizing for accuracy would remove the regularizers
which is detrimental for image quality.

4.4.5 Limitations

Figure 4.14 show representative failure cases for our method, due to either
the regularization method or the multimodal embedding space. The first three
columns show examples where the regularization with respect to the initial image
was too strong.

French horn 
→ sax

timber wolf 
→ red fox

water bottle → 
measuring cup

gazelle → 
bison

cucumber → 
artichoke

computer 
keyboard 

→ cassette
Shih-Tzu → 

papillon

Input 
Image

Class 
Example

FlexIT

(a) (b) (c) (d) (e) (f) (g)

Figure 4.14. – Representative failure cases of FlexIT.

• (a): FlexIT added bison-like texture but fails to change the shape convinc-
ingly.

• (b): markings have been added to the bottle, but without changing its shape
to that of a measuring cup.

• (c): only a part of the input object was changed.

• (d): the bell pepper rather than the cucumber was transformed, probably
because the former is more centered, and has a better initial shape.

Columns (e)–(g) show failure cases related to the CLIP embedding space.
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• (e): we observe an interesting text synthesis behavior where the letters of
the target class “sax” have been written in the image. This is related to the
OCR capabilities of CLIP.

• (f): a butterfly is synthesized on the head of the dog (CLIP optimized for
both the dog breed papillon and the insect papillon).

• (g): an unrealistic image is produced by adding saturated red to the image.

4.5 Conclusion

In this chapter, we have presented FlexIT , a novel method for semantic image
translation. It uses a multimodal objective defined in the CLIP embedding space,
and optimizes this objective with gradient descent the input image’s VQGAN
latent representation. Using an autoencoder latent space, rather than specialized
GAN latent spaces, lets us operate on a much wider range of images; using a
general pretrained multi-modal embedding space provides flexibility, allowing
FlexIT to process free-text transformation queries without training.

While we studied transformations that change the class or color of the main
object in a scene, other transformations of interest could consider changing the ac-
tion of a subject (person walking v.s. running), changing object attributes, adding
or deleting objects, or consider more elaborate textual descriptions which require
non-trivial grounding in the image (“change the color of car parked next to the
bicycle.”). Importantly, progress in this direction will require to identify the right
data and evaluation metrics.

As our algorithm relies on CLIP for editing, it could potentially inherit its
biases. The authors of CLIP have demonstrated that their model is subject to fair-
ness issues such as misclassifying human faces into non-human or crime-related
categories, and producing gender biased associations. Our editing method could
reflect such biases if prompted transformations such as doctor → newscaster,
although we have not observed experimental evidence of this. A potential bias
mitigation strategy would be to add constraints with CLIP prompts to control
bias before and after editing.

Finally, FlexIT works best for semantic image editing when the input image
provides guidance, but has difficulties synthesizing realistic novel objects from
scratch. The main reason is probably that despite our regularization schemes,
the multimodal target embedding can sometimes be reached by synthetizing
only characteristic parts of objects, the one which are best recognized by the
CLIP network. This is because CLIP was trained with a contrastive classification
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objective instead of a generative objective, and is therefore biased to recognize the
most distinctive features in images and forget the less distinctive features.

One of the motivations for this work was that GANs could not be trained
successfully for text-to-image tasks on wide distributions. Leveraging CLIP and
its large-scale training allowed to process a much larger variety of images and edit
prompts compared to standard GAN-based editing methods. However, instance-
based optimization is much more computationally costly than GAN inference.
On the other hand, recent diffusion models have been shown to scale very well
with compute and data and are now able to generate photo-realistic images for a
very large distribution of text prompts. In the next chapter, we propose to adapt
these powerful models for semantic image editing.
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5.1 Introduction

Text-conditional image generation is undergoing a revolution, with auto-regressive
modelling and diffusion-based approaches (see Chapter 2.2) surpassing GANs
on wide image distributions. Scaling these models is a key to their success: state-
of-the art models are now trained on vast amounts of data, which requires large
computational resources (Chapter 2). Similarly to language models pretrained
on web-scale data and adapted in downstream tasks with prompt engineering,
the generative power of these big generative models can be harnessed to solve
semantic image editing, avoiding training specialized architectures (B. Li et al.
2020a; J. Wang et al. 2022), or to use costly instance-based optimization (Crowson
et al. 2022; Patashnik et al. 2021).

Diffusion models are an especially interesting class of model for image editing
because of their iterative denoising process starting from random Gaussian noise.
This process can be guided through a variety of techniques presented in Chapter 2,
like CLIP guidance (Nichol et al. 2021; Avrahami et al. 2022b; Crowson 2021), and
inpainting by copy-pasting pixel values outside a user-given mask (Lugmayr et al.
2022). These previous works, however, lack two crucial properties for semantic
image editing: (i) inpainting discards information about the input image that
should be used in image editing (e.g. changing a dog into a cat should not modify
the animal’s color and pose); (ii) a mask must be provided as input to tell the
diffusion model what parts of the image should be edited. We believe that while
drawing masks is common on image editing tools like Photoshop, language-
guided editing offers a more intuitive interface to modify images that requires
less effort from users.

Conditioning a diffusion model on an input image can also be done without a
mask, e.g. by considering the distance to input image as a loss function (Crowson
2021; J. Choi et al. 2021), or by using a noised version of the input image as a
starting point for the denoising process as in SDEdit (Meng et al. 2021). However,
these editing methods tend to modify the entire image, whereas we aim for

65
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localized edits. Furthermore, adding noise to the input image discards important
information, both inside the region that should be edited and outside.

In this chapter, we propose D iffEdit, a method that leverages a pretrained
text-conditional diffusion model for zero-shot semantic image editing, without
expensive editing-specific training. D iffEdit makes it possible by automatically
finding what regions of an input image should be edited given a text query, by
contrasting the predictions of a conditional and unconditional diffusion model.
Edits obtained with D iffEdit are shown in Figure 5.1.

Input 
Image

A bowl of fruits

Query text
Ref. text A bowl of fruits

Computed Mask
A bowl of pears A basket of fruits

Description A bowl of fruits

Query: A basket of fruits

Query: A bowl of peers

Edited Image

Diffusion with 
mask-based 

guidance

SDEdit

Add NoiseInput Image

Diffusion w/ query “A 
bowl of pears”

 

Diffusion w/ query “A 
basket of fruits”

 

DiffEdit
Encode

Mask 
Generation  

Module

Encode
Input Image

Masked Diffusion w/ 
query “A bowl of pears”
 

Masked Diffusion w/ 
query “A basket of fruits”

Mask Generation  
Module w/ texts 

“A bowl of fruits”,
“A bowl of pears”

Mask Generation  
Module w/ texts 

“A bowl of fruits”,
“A basket of fruits”

Text Query:
A bowl of pears

Masked 
Diffusion

Encode

Mask 
Generation  

Module
Masked 

Diffusion

Encode

Input Image

Mask 
Generation  

Module

Text Query A bowl of pears

Masked 
Diffusion

Encode

Input Image

Mask 
Generation  

Module

Text Query A basket of fruits

Masked 
Diffusion

A bowl of fruits

Text Query:
A basket of fruits

Input Image

Caption: A bowl of fruits Generate Mask

Masked Diffusion
Encode

Query: A bowl of pears

Input Image

Caption: A bowl of fruits Generate Mask

Masked Diffusion
Encode

Query: A basket of fruits

Figure 5.1. – In D iffEdit, a mask generation module determines which part of
the image should be edited, and an encoder infers the latents, to
provide inputs to a text-conditional diffusion model which produces
the image edit.

We also show how using a reference text describing the input image and similar
to the query, can help obtain better masks. Moreover, we demonstrate that using
a reverse denoising model, to encode the input image in latent space, rather than
simply adding noise to it, allows to better integrate the edited region into the
background and produces more subtle and natural edits.

The remainder of this chapter is organized as follows: after going over related
work, we present the D iffEdit framework along with a theoretical analysis
showing how the distance between edited image and input image can be con-
trolled. We then quantitatively evaluate our approach and compare to prior work
using images of the ImageNet and COCO dataset, as well as a set of generated
images.

5.2 Related work on Editing with Diffusion Models

Because diffusion models iteratively refine an image starting from random
noise, they are easily adapted for inpainting when a mask is given as input, as
exemplified in Chapter 2. J. Song et al. 2021 proposed to condition the generation
process by copy-pasting pixel values from the reference image at each denoising
step. Nichol et al. 2021 use a similar technique by copy-pasting pixels in the esti-
mated final version of the image. T. Wang et al. 2022a use DDIM encoding of the
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input image, and then decode on edited sketches or semantic segmentation maps.
The gradient of a CLIP score can also be used to match a given text query inside a
mask, as in Paint by Word (Bau et al. 2021), local CLIP-guided diffusion (Crowson
2021), or blended diffusion (Avrahami et al. 2022b). Lugmayr et al. 2022 apply
a sequence of noise-denoise operations to better inpaint a specific region. There
are also a number of methods that do not require an editing mask. In Diffusion-
CLIP (G. Kim and Ye 2021), the weights of the diffusion model themselves are
updated via gradient descent from a CLIP loss with a target text. The high com-
putational cost of fine-tuning a diffusion model for each input image, however,
makes it impractical as an interactive image editing tool. In SDEdit (Meng et al.
2021) the image is corrupted with Gaussian noise, and then the diffusion net-
work is used to denoise it. While this method is originally designed to transform
sketches to real images and to make pixel-based collages more realistic, we adapt
it by denoising the image conditionally to the text query. In ILVR (J. Choi et al.
2021), the decoding process of diffusion model is guided with the constraint that
downsampled versions of the input image and decoded image should stay close.
Finally, in recent work concurrent to ours, Hertz et al. 2022 propose to edit images
by modifying attention maps during the diffusion process.

5.3 Dif fEdit algorithm

In this section, we first give an overview of diffusion models. We then describe
our D iffEdit approach in detail, and provide a theoretical analysis comparing
D iffEdit with SDEdit.

5.3.1 Background: diffusion models, DDIM and encoding

Denoising diffusion probabilistic models (Ho et al. 2020) is a class of generative
models that are trained to invert a diffusion process. For a number of time steps
T , the diffusion process gradually adds noise to the input data, until the resulting
distribution is (almost) Gaussian. A neural network is then trained to reverse that
process, by minimizing the denoising objective

L = Ex0,t,ϵ∥ϵ− ϵθ(xt, t)∥22, (5.1)

where ϵθ is the noise estimator which aims to find the noise ϵ ∼ N (0, I) that is
mixed with an input image x0 to yield xt =

√
αt x0 +

√
1− αt ϵ. The coefficient

αt defines the level of noise and is a decreasing function of the timestep t, with
α0 = 1 (no noise) and αT ≈ 0 (almost pure noise).
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J. Song et al. (2021) propose to use ϵθ to generate new images with the DDIM
algorithm: starting from xT ∼ N (0, I), the following update rule is applied itera-
tively until step 0:

xt−1 =
√
αt−1

(
xt −

√
1− αt ϵθ(xt, t)√

αt

)
+
√

1− αt−1 ϵθ(xt, t). (5.2)

The variable x is updated by taking small steps in the direction of ϵθ. Equation
5.2 can be written as the neural ODE , taking u = x/

√
α and τ =

√
1/α− 1 :

du = ϵθ(
u√

1 + τ 2
, t)dτ. (5.3)

This allows to view DDIM sampling as an Euler scheme for solving Equation
5.3 with initial condition u(t = T ) ∼ N (0, αT I). This illustrates that we can use
fewer sampling steps during inference than the value of chosen during training,
by using a coarser discretization of the ODE. In the remainder of the chapter, we
parameterize the time step t to be between 0 and 1, so that t = 1 corresponds
to T steps of diffusion in the original formulation. As proposed by J. Song et al.
2021, we can also use this ODE to encode an image x0 onto a latent variable xr

for a time step r ≤ 1, by using the boundary condition u(t = 0) = x0 instead of
u(t = 1), and applying an Euler scheme until time step r. In the remainder of
the chapter, we refer to this encoding process as DDIM encoding, we denote the
corresponding function that maps x0 to xr as Er, and refer to the variable r as the
encoding ratio. Similarly, we note Dr the inverse function that maps xr to x0, which
corresponds to regular DDIM decoding. With sufficiently small steps in the Euler
scheme, decoding xr approximately recovers the original image x0. This property
is particularly interesting in the context of image editing: all the information of
the input image x0 is encoded in xr, and can be accessed via DDIM sampling.

5.3.2 Semantic image editing with Dif fEdit

In many cases, semantic image edits can be restricted to only a part of the
image, leaving other parts unchanged. However, the input text query does not
explicitly identify this region, and a naive method could allow for edits all over the
image, risking modifying the input in areas where it is not needed. To circumvent
this, we propose D iffEdit, a method to leverage a text-conditioned diffusion
model to infer a mask of the region that needs to be edited. Starting from a
DDIM encoding of the input image, D iffEdit uses the inferred mask to guide
the denoising process, minimizing edits outside the region of interest. Figure 6.3
illustrates the three steps of our approach, which we detail below.
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Step 1: Computing editing mask. When denoising an image, a text-conditioned
diffusion model will yield different noise estimates given different text condition-
ings. We can consider where the estimates are different, which gives information
about what image regions are concerned by the change in conditioning text. For
instance, in Figure 6.3, the noise estimates conditioned to the query zebra and
reference text horse 1 are different on the body of the animal, where they will
tend to decode different colors and textures depending on the conditioning. For
the background, on the other hand, there is little change in the noise estimates.
The difference between the noise estimates can thus be used to infer a mask that
identifies what parts on the image need to be changed to match the query. In our
algorithm, we use a Gaussian noise with t = 50% (see analysis in Section 5.4.3,
Figure 5.8), which means that the input image is linearly mixed with noise as
x =

√
α0.5 x0 +

√
1− α0.5 ϵ. We then estimate noise conditionally to the two differ-

ent text conditionings, remove extreme values in noise predictions and stabilize
the effect by averaging spatial differences over a set of n predictions, with n=10

in our default configuration. The output is then rescaled to the range [0, 1], and
binarized with a threshold, which we set to 0.5 by default. The masks generally
somewhat overshoot the region that requires editing, this is beneficial as it allows
it to be smoothly embedded in it’s context, see examples in Section 5.4.

Step 2: Encoding. We encode the input image x0 in the implicit latent space
at time step r with the DDIM encoding function Er. This is done with the un-
conditional model, i.e. using conditioning text ∅, so no text input is used for this
step.

Step 3: Decoding with mask guidance. After obtaining the latent xr, we de-
code it with our diffusion model conditioned on the editing text query Q, e.g.
zebra in the example of Figure 6.3. We use our mask M to guide this diffusion pro-
cess. Outside the mask M , the edited image should in principle be the same as the
input image. We guide the diffusion model by replacing pixel values outside the
mask with the latents xt inferred with DDIM encoding, which will naturally map
back to the original pixels through decoding, unlike when using a noised version
of x0 as typically done (Meng et al. 2021; J. Song et al. 2021). The mask-guided
DDIM update can be written as ỹt = Myt + (1 − M)xt, where yt is computed
from yt−dt with Equation 5.2, and xt is the corresponding DDIM encoded latent.

The encoding ratio r determines the strength of the edit: larger values of r

allow for stronger edits that allow to better match the text query, at the cost of
more deviation from the input image which might not be needed. We evaluate

1. We can also use an empty reference text, which we denote as Q = ∅.
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Step 1: Compute Mask

Step 2: Encode with DDIM until encoding ratio r

Estimate noise 
conditioned to 

reference text R

Estimate noise 
conditionally to 

query Q

Compute 
normalized 
difference Binarize

M

Output

Mask M

zebra

Step 3: Decode with mask-wise correction

Reverse 
DDIM 
Step

DDIM 
Step

DDIM 
Step

Query Q: Zebra

Reverse 
DDIM 
Step

Gaussian 
noise

Ref. 
Text R:

Horse 
or Ø

DDIM 
Step
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Figure 5.2. – The three steps of D iffEdit. Step 1: we add noise to the input
image, and denoise it: once conditioned on the query text, and once
conditioned on a reference text (or unconditionally). We derive a
mask based on the difference in the denoising results. Step 2: we
encode the input image with DDIM, to estimate the latents corre-
sponding to the input image. Step 3: we perform DDIM decoding
conditioned on the text query, using the inferred mask to replace the
background with pixel values coming from the encoding process at
the corresponding time step.
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the impact of this parameter in our experiments. We illustrate the effect of the
encoding ratio in figure 5.5.

5.3.3 Theoretical analysis

In D iffEdit, we use DDIM encoding to encode images before doing the actual
editing step. In this section, we give theoretical insight on why this component
yields better editing results than adding random noise as in SDEdit (Meng et al.
2021). With xr being the encoded version of x0, using DDIM decoding on xr

unconditionally would give back the original image x0. In D iffEdit, we use
DDIM decoding conditioned on the text query Q, but there is still a strong bias to
stay close to the original image. This is because the unconditional and conditional
noise estimator networks ϵθ and ϵθ(·, Q) often produce similar estimates, yielding
similar decoding behavior when initialized with the same starting point xr. This
means that the edited image will have a small distance w.r.t. the input image, a
property critical in the context of image editing. We capture this phenomenon
with the proposition below, where we compare the DDIM encoder Er(x0) to the
SDEdit encoder Gr(x0, ϵ) :=

√
αr x0 +

√
1− αr ϵ, which simply adds noise to the

image x0.

Proposition 5.1. Let X = Rd be the space of input images, pD be the data distribution
of couples (x0, Q) where x0 ∈ X and Q a textual query to edit that image. Suppose
that ∥ϵθ(xt, Q, t)∥2 ≤ C for all x ∈ X , t ∈ [0, 1], that ϵθ(·, ∅, t) is K1-Lipschitz for all t,
and let K2 = E(x0,Q)∈pD maxt∈[0,1] ∥ϵθ(x, Q, t)− ϵθ(x, ∅, t)∥. Then, for all encoding ratios
0 ≤ r ≤ 1, we have the two following bounds:

E
(x0,Q)∼pD
ϵ∼N (0,1)

∥x0 −Dr(Gr(x0, ϵ), Q)∥2 ≤ (C + 1)τ, (5.4)

E
(x0,Q)∼pD

∥x0 −Dr(Er(x0), Q)∥2 ≤
K2τ√
τ 2 + 1

(
τ +

√
τ 2 + 1

)K1

, (5.5)

where τ =
√

1/αr − 1 increases with the encoding ratio r: τ(r = 0) = 0 and limr→1 τ =

+∞.

We provide the proof in Appendix A.4. The first bound is associated with
SDEdit, and is an extension of a bound proven in the original paper. The second
bound we contribute is associated with D iffEdit. It is tighter than the first
bound below a certain encoding ratio, see Figure 5.3. We empirically estimated
the parameters K1, K2 and C with the diffusion models that we are using. While
the asymptotic behavior of the second bound is worse than the first with K1 > 1,
it is the very small value of K2 that gives a tighter bound.
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Figure 5.3. – Illustration of the bounds from Proposition 5.1, with estimated pa-
rameters C=1, K2=0.02, and K1=3.

This supports our argument from above: because the unconditional and text-
conditional noise estimates generally give close results —K2 being a measure
of the average difference— the Euler scheme with ϵθ(·, Q, ·) gives a sequence of
intermediate latents yr, ...,y0 that stays close to the trajectory xr, . . . , Dr(xr) ≈ x0

mapping back xr to x0. While these upper bounds do not guarantee that DDIM
encoding yields smaller edits than SDEdit, experimentally we find that it is indeed
the case.

5.4 Experiments

In this section, we describe our experimental setup, followed by qualitative and
quantitative results.

5.4.1 Experimental setup

Datasets. We perform experiments on three datasets. First, on ImageNet (Jia
Deng et al. 2009) we follow the evaluation protocol of FlexIT (Couairon et al.
2022b). Given an image belonging to one class, the goal is to edit it so that it will
depict an object of another class as indicated by the query. Given the nature of
the ImageNet dataset, edits often concern the main object in the scene. Second,
we consider editing images generated by Imagen (Saharia et al. 2022b) based
on structured text prompts, in order to evaluate edits that involve changing the
background, replacing secondary objects, or changing object properties. Third, we
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consider edits based on images and queries from the COCO (T.-Y. Lin et al. 2014a)
dataset to evaluate edits based on more complex text prompts.

Diffusion models. In our experiments we use latent diffusion models (Rombach
et al. 2022b). We use the class-conditional model trained on ImageNet at resolution
256×256, as well as the 890M parameter text-conditional model trained on LAION-
5B (Schuhmann et al. 2021), known as Stable Diffusion, at 512×512 resolution. 2

Since these models operate in a VQGAN latent spaces (Esser et al. 2021b), the
resolution of our masks is 32×32 (ImageNet) or 64×64 (Imagen and COCO).
We use 50 steps in DDIM sampling with a fixed schedule, and the encoding
ratio parameter further decreases the number of updates used for our edits. This
allows to edit images in ∼10 seconds on a single Quadro GP100 GPU. We also use
classifier-free guidance (Ho and Salimans 2022) with the recommended values: 5

on ImageNet, 7.5 for Stable Diffusion.

Comparison to other methods. We use SDEdit (Meng et al. 2021) as our main
point of comparison, since we can use the same diffusion model as for D iffEdit.
We also compare to FlexIT (Couairon et al. 2022b), a mask-free, optimization-
based editing method based on VQGAN and CLIP. On ImageNet, we evaluate
ILVR (J. Choi et al. 2021) which uses another diffusion model trained on ImageNet
(Dhariwal and Nichol 2021b). Finally, on COCO and Imagen images, we compare
to the concurrent work of Hertz et al. 2022. 3

Evaluation. In semantic image editing, we have to satisfy the two contradictory
objectives of (i) matching the text query and (ii) staying close to the input image.
For a given editing method, better matching the text query comes at the cost of
increased distance to the input image. Different editing methods often have a
parameter that allows to control the editing strength: varying its value allows
to get different operating points, forming a trade-off curve between the two ob-
jectives aforementioned. Therefore, we evaluate editing methods by comparing
their trade-off curves. For diffusion-based methods, we use the encoding ratio to
control the trade-off.
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Figure 5.4. – Comparison on ImageNet data of D iffEdit with other Image Edit-
ing methods. For D iffEdit we annotate the different operating
points with the corresponding encoding ratios.

5.4.2 Experiments on ImageNet

On ImageNet, we follow the evaluation protocol of Couairon et al. 2022b,
with the associated metrics: the LPIPS perceptual distance (R. Zhang et al. 2018)
measures the distance with the input image, and the CSFID, which is a class-
conditional FID metric (Heusel et al. 2017b) measuring both image realism and
consistency w.r.t. the transformation prompt. For both metrics, lower values indi-
cate better edits. For more details see Couairon et al. 2022b.

We compare D iffEdit to other semantic editing methods from the literature in
terms of CSFID-LPIPS trade-off. Stronger edits improve (lower) the CSFID score
as the edited images better adhere to the text query, but the resulting images
tend to deviate more from the input image, leading to worse (increased) LPIPS
distances.

The results in Figure 5.4 indicate that D iffEdit obtains the best trade-offs
among the different methods. For fair comparison with previous methods, here
we do not leverage the label of the input image and use the empty text as reference
when inferring the editing mask. The Copy and Retrieve baselines are two opposite
cases where we have the best possible LPIPS distance —zero, by copying the
input image— and best possible transformation score by discarding the input
image and replacing it with a real image from the target class from the ImageNet

2. Available at https://huggingface.co/CompVis/stable-diffusion.
3. As there is no official implementation available at the time of writing, we used the

unofficial implementation adapted for Stable Diffusion from https://github.com/bloc97/
CrossAttentionControl.

https://huggingface.co/CompVis/stable-diffusion
https://github.com/bloc97/CrossAttentionControl
https://github.com/bloc97/CrossAttentionControl
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Figure 5.5. – Edits obtained on ImageNet with D iffEdit and ablated models.
Encode-Decode is D iffEdit without masking, and SDEdit is ob-
tained when not using masking nor encoding. When not using mask-
ing (SDEdit and Encode-Decode) we observe undesired edits to the
background, see e.g. the sky in the second column. When not using
DDIM encoding (SDEdit and D iffEdit w/o Encode), appearance
information from the input —such as pose— is lost, see last two
columns.
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dataset. D iffEdit, as well as the diffusion-based SDEdit and ILVR, are able
to obtain CSFID values comparable to that of the retrieval baseline. Among the
diffusion-based methods, our D iffEdit obtains comparable CSFID values at
significantly better LPIPS scores. For FlexIT, the best CSFID value is significantly
worse, indicating it is not able to produce both strong and realistic edits. Using
more optimization steps does not solve this issue, as the distance to the input
image is part of the loss it minimizes.

Visual ablation. We show visual results for ablations of our two main compo-
nents, mask inference and DDIM encoding, in Figure 5.6. The resulting methods
are SDEdit (Meng et al. 2021), Encode-Decode, D iffEdit w/o Encoding, and
D iffEdit. We demonstrate the qualitative behavior of these different methods,
at varying encoding ratios between 30% and 80%. Compared to SDEdit, Encode-
Decode allows to better match the query with fewer modifications of the main
object and the background, especially at 60% − 70%. Mask inference allows to
maintain exactly the background. Using DDIM inference on top of mask-based
decoding allows to better retain visual appearance inside the mask, especially at
70% and 80%, c.f. row 3 vs. 4.

SDEdit

Encode-
Decode

DiffEdit
w/o Encoding

Input 
Image

30% 40% 50% 60% 70% 80%

Query Bald Eagle

DiffEdit

Method Name Encoding Mask

Mask 
generated 

w/ DiffEdit

Figure 5.6. – Qualitative ablations of the mask and encoding components, using
different encoding ratios from 30% to 80%.

Ablation experiments. We ablate the two core components of D iffEdit, mask
inference and DDIM encoding, to measure their relative contributions in terms of
CSFID-LPIPS trade-off. If we do not use either of these components our method
reverts to SDEdit. The results in Figure 5.7, left panel, show that adding DDIM
encoding (Encode-Decode) and the masking (D iffEdit w/o Encode) separately
both improve the trade-off and reduce the average editing distance w.r.t. the
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Figure 5.7. – Ablations on ImageNet. Left: effect of masking and encoding com-
ponent. Right: D iffEdit with different mask thresholds; with 0.5
our default setting.

input image compared to SDEdit. Moreover, combining these two elements into
D iffEdit gives an even better trade-off, showing their complementarity.

The right panel of Figure 5.7 shows D iffEdit with different mask binarization
thresholds. Compared to our default value of 0.5, a lower threshold of 0.25 results
in larger masks (more image modifications) and worse CSFID-LPIPS trade-off. A
higher threshold of 0.75 results in masks that are too restrictive: the CSFID score
stagnates around 40, even at large encoding ratios.

Finally, our mask guidance operator ỹt=Myt+(1−M)xt provides a better trade-
off than the operator used in GLIDE (Nichol et al. 2021), which interpolates yt

with a mask-corrected version of the predicted denoised image ŷ0. With encoding
ratio 80%, both operators produce edits with a LPIPS score of 30.5, but the GLIDE
version yields a CSFID of 26.4 compared to 23.6 for ours.

5.4.3 Analysis of noise used to compute the mask

In step one our method an editing mask is inferred by contrasting noise esti-
mations on a noised version of the input image, see Section 5.3.2. In this section,
we study the impact of the level of noise added to the input image, by varying its
value between 0.1 and 0.8, where 0 corresponds to using the initial image as input,
and 1 to replacing the input image with random Gaussian noise. We evaluate the
obtained operating points on ImageNet with the CSFID and LPIPS metrics when
using a encoding ratios of 0.7 and 0.8 for DDIM encoding and masked-guided
denoising in steps two and three of D iffEdit. From the results in Figure 5.8,
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Figure 5.8. – Impact of the noise added to input image when computing the mask,
for encoding ratios of 0.7 and 0.8 on ImageNet.

we find that best results are obtained for moderate values of noise addition of 0.6
and below. Indeed, with too much noise added to the input image, it is difficult
to correctly identify visual elements in the input image. We use a value of 0.5 in
all our experiments.

5.4.4 Experiments on images generated by Imagen

In our second set of experiments we evaluate edits that involve changes in
background, replacing secondary objects, and editing object properties. We find
that images generated by Imagen (Saharia et al. 2022b) offer a well suited test bed
for this purpose. Indeed, the authors tested the compositional abilities of Imagen
with template prompts of the form: “{A photo of a | An oil painting of a} {fuzzy panda
| British shorthair cat | Persian cat | Shiba Inu dog | raccoon} {wearing a cowboy hat
and | wearing sunglasses and} {red shirt | black jacket} {playing a guitar | riding a bike
| skateboarding} {in a garden | on a beach | on top of a mountain}”, resulting in 300

prompts.

We use the generated images as input and ask to change the prompt to another
prompt for which one of these elements is changed. Since we cannot use the
CSFID metric as for ImageNet, as images do not carry a single class label, we
use FID to measure image realism, and CLIPScore (Hessel et al. 2021) to measure
the alignment of the query and output image. These two scores have become the
standard in evaluating text-conditional image generation (Saharia et al. 2022b).
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Figure 5.9. – Editing trade-offs on Imagen images.
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Figure 5.10. – Masks and edits obtained with and without reference text in the
mask computation algorithm.
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Figure 5.11. – Edits on Imagen dataset. We use encoding ratio of 90% for
D iffEdit and 70% for SDEdit for fair comparison: both methods
have similar CLIPScore, for larger encoding ratios SDEdit drasti-
cally change the input.
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Figure 5.9 displays the CLIP-LPIPS and FID-CLIP trade-offs. D iffEdit pro-
vides more accurate edits than SDEdit, FlexIT, and Cross Attention Control, by
combining inferred masks with DDIM encoding. Two versions of D iffEdit are
shown, which differ by how the mask is computed: they correspond to (i) using
the original caption as reference text (labelled w/ ref. text) or (ii) using the empty
text ∅ (labelled w/o ref. text).

Computing the mask with the original caption as reference text yields the
best overall trade-off. Leveraging the original caption yields better CLIP and FID
scores. Figure 5.10 illustrates the difference in the masks obtained with and with-
out reference text for two examples. The reference text allows ignoring parts of
the image that are described both by the query and reference text (e.g. the fruits),
because in both cases the network uses the common text on the corresponding
image region to estimate the noise. On the contrary, parts where the query and
reference text disagree, e.g. “bowl” vs. “basket”, will have different noise estimates.
Qualitative transformation examples are shown in Figure 5.11, where the masks
are inferred by contrasting the caption and query texts.

5.4.5 Experiments on COCO

To evaluate semantic image editing with more complex prompts, we use images
and captions from the COCO dataset T.-Y. Lin et al. 2014a. To this end, we leverage
the annotations provided by Hexiang Hu et al. 2019, which associate images from
the COCO validation set with other COCO captions that are similar to the original
ones, but in contradiction with the given image. This makes these annotations
particularly interesting as queries for semantic image editing, as they can often be
satisfied by editing only a part of the input image, see Figure 5.12 for examples.
Similar to our evaluation for Imagen images, here we evaluate edits in terms of
CLIPScore, FID and LPIPS.

The results in Figure 5.13 show that the CLIP-LPIPS trade-off of D iffEdit is
the best, but that it reaches lower maximum CLIP score than SDEdit. The FID
scores are similar to SDEdit, but significantly improves upon the Encode-Decode
ablation, which does not use a mask.

Moreover, in contrast to results on the Imagen data, leveraging the original
image caption does not change the CLIP-LPIPS and FID-CLIP trade-offs. We
find that the caption often describes the input image differently compared to the
query text, making it more difficult to identify which part of the image needs to be
edited. We verify this hypothesis in Section A.3 by filtering the dataset according
to the edit distance between the caption and edit query. When the caption and
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Figure 5.12. – Editing queries on the COCO dataset.
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Figure 5.14. – Examples edits on COCO images.

edit query are similar, leveraging the image caption boosts CLIP scores by 0.25

points, a similar improvement as seen on the Imagen data.

Qualitative examples are shown in Figure 5.14. The first column illustrates the
benefit of DDIM encoding: we are able to correctly maintain properties of the
object inside the mask, such as clothes’ color. The three last columns illustrate how
contrasting different pairs of reference and query text allows selecting different
objects in the input image to perform different edits.

Additional qualitative examples on COCO images are shown in Figure 5.15

and Figure 5.16.

5.4.6 Representative failure cases

Figure 5.17 shows several failure cases of semantic image editing with D iffEdit.
Some failure modes are inherited from the generative model itself: models trained
on web-scrapped image-text data are known to struggle with understanding spa-
tial positions in images, spatial reasoning, and counting (Ramesh et al. 2021).
Others are specific to our mask-based method, like the difficulty to insert objects,
because the mask often seeks an “anchor” visual element to insert an object, see
first column.
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Figure 5.15. – More qualitative examples on COCO. Baseline methods are shown
for comparison. The mask is sometimes bigger or smaller than one
could expect: in column 3, it is larger, but there are few edits outside
the requested bread → burger transformation (except for the wine
bottle label), which is not the case without DDIM encoding. In
column 4, the mask does not cover the interior of the truck, but this
does not affect the edit quality.
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5.5 Conclusion

We introduced D iffEdit, a novel algorithm for semantic image editing based
on diffusion models. Given a textual query, using the diffusion model, D iffEdit

infers the relevant regions to be edited rather than requiring a user generated
mask. Furthermore, in contrast to other diffusion-based methods, we initialize
the generation process with a DDIM encoding of the input image which allows
preserving more appearance information from the input image. We provide the-
oretical analysis that motivates this choice, and show experimentally that this
approach conserves more appearance information from the input image, leading
to lighter edits. Quantitative and qualitative evaluations on ImageNet, COCO,
and images generated by Imagen, show that our approach leads excellent edits,
improving over previous approaches. Although D iffEdit works better with a
reference text describing the input image, we believe this additional information
can be inferred from input image and target caption. Finally, D iffEdit demon-
strates that there are rich interactions between the text conditioning and spatial
arrangement in generated images. In the next chapter, we study in more detail
these relationships between semantics and spatial structure.
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Figure 5.16. – More qualitative examples on COCO. In the first column, the color
of the objects to be edited is maintained, which would not be
the case with regular inpainting methods. Contrasting similar text
query and reference text allows to select the object to be edited.
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Figure 5.17. – Illustration of failure modes. In the first two columns show diffi-
culty to insert an object in a smooth region of the image. In column
three the mask fails to identify a region where to add the zebra.
Columns 4 and 5 show mask identification errors, where multiple
similar objects are included in the mask, whereas matching the text
query only requires to edit a single object. In both cases this results
in over-editing. Col. 6 shows the failure to change a spatial relation
in the image.
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I M A G E S Y N T H E S I S F R O M S E M A N T I C
S E G M E N TAT I O N M A P S

6.1 Introduction

In the previous chapters, we have studied how textual editing prompts can be
used to condition image generation. Text prompts can effectively convey informa-
tion about the objects in the scene, their interactions, and the overall style of the
image; however they may not be the optimal choice for achieving fine-grained
spatial control. Accurately describing the pose, position, and shape of each ob-
ject in a complex scene with words can be a cumbersome task. Moreover, recent
works have shown the limitation of diffusion models to follow spatial guidance
expressed in natural language (Avrahami et al. 2022a; Paga et al. 2022).

On the other hand, semantic image synthesis is a conditional image generation
task that allows for detailed spatial control, by providing a semantic map to
indicate the desired class label for each pixel. Both adversarial (T. Park et al. 2019;
Schönfeld et al. 2021) and diffusion-based (T. Wang et al. 2022a; W. Wang et
al. 2022) approaches have been explored to generate high-quality and diverse
images. However, these approaches rely heavily on large datasets with tens to
hundreds of thousands of images annotated with pixel-precise label maps, which
are expensive to acquire and inherently limited in the number of class labels.

In this chapter, we propose a zero-shot approach semantic image synthesis
called ZestGuide, short for ZEro-shot SegmenTation GUIDancE, which em-
powers a pretrained text-to-image diffusion model to enable image generation
conditioned on segmentation maps with corresponding free-form textual descrip-
tions. A few examples are shown in Figure 6.1. The task of semantic image
synthesis is not an image editing task but rather a conditional generation task. It
is nonetheless very close to approaches presented in previous chapters for two
reasons: first, being able to synthesize an object at a precise location is very useful
in the context of image editing and can be combined with other image editing
tools such as inpainting; second, our goal is in spirit similar to Chapter 5, since we
augment diffusion models with novel abilities at test time, in a zero-shot fashion.

89
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“A cat wearing “ A dog looking “Astronauts on the
a dress.” at the sunrise street with rainbow

behind the fuji.” in outer space ”

Figure 6.1. – ZestGuide generates images conditioned on segmentation maps
with corresponding free-form textual descriptions.

Our zero-shot approach builds upon classifier-guidance techniques that allow
to adapt pretrained diffusion models (Dhariwal and Nichol 2021a) for condi-
tional generation, as presented in Chapter 2. These techniques utilize an external
classifier to steer the iterative denoising process of diffusion models toward the
generation of an image corresponding to the condition. While these approaches
have been successfully applied to various forms of conditioning, such as class
labels (Dhariwal and Nichol 2021a) and semantic maps (Bansal et al. 2023), they
still rely on pretrained recognition models. In the case of semantic image syn-
thesis, this means that an image-segmentation network must be trained, which
(i) violates our zero-shot objective, and (ii) allows each segment only to be con-
ditioned on a single class label. To circumvent the need for an external classifier,
our approach takes advantage of the spatial information embedded in the cross-
attention layers of the diffusion model to achieve zero-shot image segmentation.
Guidance is then achieved by comparing a segmentation extracted from the at-
tention layers with the conditioning map, eliminating the need for an external
segmentation network. In particular, ZestGuide computes a loss between the
inferred segmentation and the input segmentation, and uses the gradient of this
loss to guide the noise estimation process, allowing conditioning on free-form
text rather than just class labels. No fine-tuning of the text-to-image diffusion
model is required. See Figure 6.2 for an overview of ZestGuide.



6.2 related work 91

A realistic photograph of a piece
of cake with a glass and a lemon

in a natural landscape

Segmentation
Consistency

Guidance

Diffusion
Model

Zero-shot
Segmentation

Figure 6.2. – In ZestGuide, the image generation is guided by the gradient of a
loss computed between the input segmentation and a segmentation
recovered from attention in a text-to-image diffusion model.

The remainder of the chapter is organized as follows: after going over related
work, we present our Zestguide algorithm, and notably how the attention maps
of the cross-attention layer are used to perform zero-shot segmentation. We then
perform qualitative experiments on COCO, improving over existing both zero-
shot and training-based approaches both quantitatively and qualitatively.

6.2 Related work

In this section, we go over the literature of generative models conditioned on
spatial semantic maps, as well as related work on train-free adaptation of diffusion
models.

Spatially conditioned generative image models Following seminal works on
image-to-image translation (Isola et al. 2017), spatially constrained image gen-
eration has been extensively studied. In particular, the task of semantic image
synthesis consists in generating images conditioned on masks where each pixel is
annotated with a class label. Until recently, GAN-based approaches were promi-
nent with methods such as SPADE (T. Park et al. 2019), and OASIS (Schönfeld
et al. 2021). Alternatively, autoregressive transformer models over discrete VQ-
VAE (A. van den Oord et al. 2017) representations to synthesize images from text
and semantic segmentation maps have been considered (Esser et al. 2021a; Gafni
et al. 2022b; Razavi et al. 2019), as well as non-autoregressive models with faster
sampling (Chang et al. 2022; Lezama et al. 2022).

Diffusion models have also been explored for semantic image synthesis. For
example, PITI (T. Wang et al. 2022a) finetunes GLIDE (Nichol et al. 2022), a large
pretrained text-to-image generative model, by replacing its text encoder with an
encoder of semantic segmentation maps. SDM (W. Wang et al. 2022) trains a
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diffusion model using SPADE blocks to condition the denoising U-Net on the
input segmentation.

As introduced in Chapter 2, the generative algorithm of diffusion models can
be guided to match a specific classification result given by a pretrained classifier.
For semantic image synthesis, the gradient of a pretrained semantic segmentation
network can be used as guidance (Bansal et al. 2023). This approach, however,
suffers from two drawbacks. First, only the classes recognized by the segmen-
tation model can be used to constrain the image generation, although this can
to some extent be alleviated using an open-vocabulary segmentation model like
CLIPSeg (Lüddecke and Ecker 2022). The second drawback is that this approach
requires a full forwards-backwards pass through the external segmentation net-
work in order to obtain the gradient at each step of the diffusion process, which
requires additional memory and compute on top of the diffusion model itself.

While there is a vast literature on semantic image synthesis, it is more limited
when it comes to the more general task of synthesizing images conditioned on
masks with free-form textual descriptions. SpaText (Avrahami et al. 2022a) fine-
tunes a large pretrained text-to-image diffusion model with an additional input
of segments annotated with free-form texts. This representation is extracted from
a pretrained multi-modal CLIP encoder (Radford et al. 2021b): using visual em-
beddings during training, and swapping to textual embeddings during inference.
GLIGEN (Yuheng Li et al. 2023) adds trainable layers on top of a pretrained diffu-
sion models to extend conditioning from text to bounding boxes and pose. These
layers take the form of additional attention layers that incorporate the local infor-
mation. T2I (Mou et al. 2023) and ControlNet (Lvmin Zhang and Agrawala 2023)
propose to extend a pretrained and frozen diffusion model with small adapters for
task-specific spatial control using pose, sketches, or segmentation maps. All these
methods require to be trained on a large dataset with segmentation annotations,
which is computationally costly and requires specialized training data.

Train-free adaptation of text-to-image diffusion models Several recent stud-
ies (Chefer et al. 2023; W. Feng et al. 2022; Hertz et al. 2022; Parmar et al. 2023)
found that the positioning content in generated images from large text-to-image
diffusion models correlates with the cross-attention maps, which diffusion models
use to condition the denoising process on the conditioning text. This correlation
can be leveraged to adapt text-to-image diffusion at inference time for various
downstream applications. For example, (Chefer et al. 2023; W. Feng et al. 2022) aim
to achieve better image composition and attribute binding. Feng et al. (W. Feng
et al. 2022) design a pipeline to associate attributes to objects and incorporate
this linguistic structure by modifying values in cross-attention maps. Chefer et
al. (Chefer et al. 2023) guide the generation process with gradients from a loss aim-
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ing at strengthening attention maps activations of ignored objects. Closer to our
work, eDiff-I (Balaji et al. 2022) proposes a procedure to synthesize images from
segmentation maps with local free-form texts. They do so by rescaling attention
maps at locations specified by the input semantic masks. MultiDiffusion (Bar-Tal
et al. 2023) fuses multiple generation processes constrained by shared parameters
from a pretrained diffusion model by solving an optimization problem, and ap-
plying it to panorama generation and spatial image guidance. Finally, in (Bansal
et al. 2023), a pretrained segmentation net guides image generation to respect a
segmentation map during the denoising process of the diffusion model.

6.3 ZestGuide algorithm

In this section, we present ZestGuide, which extends pretrained text-to-image
diffusion models to enable conditional generation of images based on segmenta-
tion maps and associated text without requiring additional training, as described
in Section 6.3.2. In Figure 6.3 we provide an overview of ZestGuide.

6.3.1 Classifier Guidance

Classifier guidance is a technique for conditional sampling of diffusion mod-
els (Sohl-Dickstein et al. 2015; Yang Song et al. 2021), which we have presented in
Chapter 2, equation 6.1. We recall here the equation for sampling an image that
will be associated the label c by an external classifier with probability distribution
pπ:

ϵ̃θ(xt, t, ρ(T )) = ϵθ(xt, t, ρ(T ))

−
√
1− αt ∇xtpπ(c|xt),

(6.1)

where ρ(T ) is an encoding of the conditioning text information provided as input
to the diffusion model. Classifier guidance can be straightforwardly adapted to
generate images conditioned on semantic segmentation maps by replacing the
classifier by a segmentation network which outputs a label distribution for each
pixel in the input image. However this approach suffers from several weaknesses:
(i) it requires to train an external segmentation model; (ii) semantic synthesis
is bounded to the set of classes modeled by the segmentation model; (iii) it is
computationally expensive since it implies back-propagation through both the
latent space decoder and the segmentation network at every denoising step. To
address these issues, we propose to employ the cross-attention maps computed
in the denoising model ϵθ of text-to-image diffusion models to achieve zero-shot
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Figure 6.3. – ZestGuide extracts segmentation maps from text-attention layers
in pretrained diffusion models, and uses them to align the generation
with input masks via gradient-based guidance.
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Figure 6.4. – Top, from left to right: image generated from the prompt “A lion read-
ing a book.”, the noisy input to the U-Net at t = 20, cross-attention av-
eraged over different heads and U-Net layers for “Lion” and “Book”.
Bottom: individual attention heads.

segmentation. This has two major advantages: first, there is no need to decode
the image at each denoising step; second, our zero-shot segmentation process is
extremely lightweight, so the additional computational cost almost entirely comes
from back-propagation through the U-Net, which is a relatively low-cost method
for incorporating classifier guidance.

6.3.2 Zero-shot segmentation with attention

To condition the image generation, we consider a text prompt of length N

denoted as T = {τ1, . . . , τN}, and a set of K binary segmentation maps S =

{S1, . . . ,SK}. Each segment Si is associated with a subset Ti ⊂ T . The diffusion
model has been trained conditionally to the text token embeddings, which are
processed with cross-attention layers in the U-Net, where keys and values are
computed from the text embeddings.

Attention map extraction We leverage cross-attention layers of the diffusion
U-Net to segment the image as it is generated. The attention maps are computed
independently for every layer and head in the U-Net. For layer l, the queries Ql

are computed from local image features using a linear projection layer. Similarly,
the keys Kl are computed from the word descriptors T with another layer-specific
linear projection. The cross-attention from image features to text tokens, is com-
puted as

Al = Softmax
(

QlK
T
l√

d

)
, (6.2)
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where the query/key dimension d is used to normalize the softmax energies (A.
Vaswani et al. 2017). Let An

l = Al[n] denote the attention of image features w.r.t.
specific text token Tn ∈ T in layer l of the U-Net. To simplify notation, we use l to
index over both the layers of the U-Net and the different attention heads in each
layer. In practice, we find that the attention maps provide meaningful localization
information, but only when they are averaged across different attention heads
and feature layers. See Figure 6.4 for an illustration.

Since the attention maps have varying resolutions depending on the layer, we
up-sample them to the highest resolution. Then, for each segment we compute
an attention map Si by averaging attention maps across layers and text tokens
associated with the segment:

Ŝi =
1

L

L∑
l=1

N∑
j=1

Jτj ∈ TiK Al
j, (6.3)

where J·K is the Iverson bracket notation which is one if the argument is true and
zero otherwise.

Spatial self-guidance We compare the averaged attention maps to the input
segmentation using a sum of binary cross-entropy losses computed separately for
each segment:

LZest =
K∑
i=1

(
LBCE(Ŝi,Si) + LBCE(

Ŝi

∥Ŝi∥∞
,Si)

)
. (6.4)

In the second loss term, we normalized the attention maps Ŝi independently for
each object. This choice is motivated by two observations. Firstly, we found that
averaging softmax outputs across heads, as described in Equation equation 6.3,
generally results in low maximum values in Ŝi. By normalizing the attention
maps, we make them more comparable with the conditioning S. Secondly, we
observed that estimated masks can have different maximum values across dif-
ferent segments resulting in varying impacts on the overall loss. Normalization
helps to balance the impact of each object. However, relying solely on the nor-
malized term is insufficient, as the normalization process cancels out the gradient
corresponding to the maximum values.

We then use DDIM sampling with classifier guidance based on the gradient
of this loss. We use Eq. (6.1) to compute the modified noise estimator at each
denoising step. Interestingly, since xt−1 is computed from ϵ̃θ(xt), this conditional
DDIM sampling corresponds to an alternation of regular DDIM updates and
gradient descent updates on xt of the loss L, with a fixed learning rate η multiplied
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“A car and a tree, “ A mirror, sink “Plate with cookies “A brown cow in “A mouse wearing
at the beach.” and flowers and cup of coffee, a field, cloudy sky, a hat in the desert.”

in a bathroom.” fancy tablecloth ” red full moon”

Figure 6.5. – ZestGuide generations on coarse hand-drawn masks.

by a function λ(t) monotonically decreasing from one to zero throughout the
generative process. In this formulation, the gradient descent update writes:

x̃t−1 = xt−1 − η · λ(t) ∇xtLZest

∥∇xtLZest∥∞
. (6.5)

Note that differently from Eq. (6.1), the gradient is normalized to make updates
more uniform in strength across images and denoising steps. We note that the
learning rate η can be set freely, which, as noted by (Dhariwal and Nichol 2021a),
corresponds to using a renormalized classifier distribution in classifier guidance.
As in (Balaji et al. 2022), we define a hyperparameter τ as the fraction of steps
during which classifier guidance is applied. Preliminary experiments suggested
that classifier guidance is only useful in the first 50% of DDIM steps, and we set
τ = 0.5 as our default value, see Section 6.4.3 for more details.

6.4 Experiments

We first present a few examples on hand-drawn masks. Then we present our
experimental setup in Section 6.4.1, followed by our main results in Section 6.4.2
and ablations in Section 6.4.3.

Visualizations on hand-drawn masks In Figure 6.5, we show generations con-
ditioned on coarse hand-drawn masks, a setting close to real-world applications.
In this case the generated objects do not exactly match the shape of conditioning
masks: the flexibility of ZestGuide helps to generate realistic images even in
the case of unrealistic segmentation masks, see e.g. the cow and mouse examples.
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Method Zero- Eval-all Eval-filtered Eval-few
shot ↓FID ↑mIoU ↑CLIP ↓FID ↑mIoU ↑CLIP ↓FID ↑mIoU ↑CLIP

OASIS (Schönfeld et al. 2021) ✗ 15.0 52.1 — 18.2 53.7 — 46.8 41.4 —
SDM (W. Wang et al. 2022) ✗ 17.2 49.3 — 28.6 41.7 — 65.3 29.3 —
SD w/ T2I-Adapter (Mou et al. 2023) ✗ 17.2 33.3 31.5 17.8 35.1 31.3 19.2 31.6 30.6
LDM w/ External Classifier ✗ 24.1 14.2 30.6 23.2 17.1 30.2 23.7 20.5 30.1

SD w/ SpaText (Avrahami et al. 2022a) ✗ 19.8 16.8 30.0 18.9 19.2 30.1 16.2 23.8 30.2
SD w/ PwW (Balaji et al. 2022) ✓ 36.2 21.2 29.4 35.0 23.5 29.5 25.8 23.8 29.6
LDM w/ MultiDiff.(Bar-Tal et al. 2023) ✓ 59.9 15.8 23.9 46.7 18.6 25.8 21.1 19.6 29.0
LDM w/ PwW ✓ 22.9 27.9 31.5 23.4 31.8 31.4 20.3 36.3 31.2
LDM w/ ZestGuide (ours) ✓ 22.8 33.1 31.9 23.1 43.3 31.3 21.0 46.9 30.3

Table 6.1. – Comparison of ZestGuide to other methods in our three evaluation
settings. OASIS and SDM are trained from scratch on COCO, other
methods are based on pretrained text-to-image models: StableDiffu-
sion (SD) or our latent diffusion model (LDM). Methods that do not
allow for free-form text description of segments are listed in the up-
per part of the table. Best scores in each part of the table are marked
in bold. For OASIS and SDM the CLIP score is omitted as it is not
meaningful for methods that don’t condition on text prompts.

6.4.1 Experimental setup

Evaluation protocol We use the COCO-Stuff validation split, which contains
5k images annotated with fine-grained pixel-level segmentation masks across 171

classes, and five captions describing each image (Caesar et al. 2018). We adopt
three different setups to evaluate our approach and to compare to baselines.
In all three settings, the generative diffusion model is conditioned on one of
the five captions corresponding to the segmentation map, but they differ in the
segmentation maps used for spatial conditioning.

The first evaluation setting, Eval-all, conditions image generation on complete
segmentation maps across all classes, similar to the evaluation setup in OA-
SIS (Schönfeld et al. 2021) and SDM (W. Wang et al. 2022). In the Eval-filtered
setting, segmentation maps are modified by removing all segments occupying
less than 5% of the image, which is more representative of real-world scenarios
where users may not provide segmentation masks for very small objects. Finally,
in Eval-few we retain between one and three segments, each covering at least 5%
of the image, similar to the setups in (Avrahami et al. 2022a; Bar-Tal et al. 2023).
It is the most realistic setting, as users may be interested in drawing only a few
objects, and therefore the focus of our evaluation. Regarding the construction of
the text prompts, we follow (Avrahami et al. 2022a) and concatenate the anno-
tated prompt of COCO with the list of class names corresponding to the input
segments.
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Evaluation metrics We use the two standard metrics to evaluate semantic im-
age synthesis, see e.g. (T. Park et al. 2019; Schönfeld et al. 2021). Fréchet Inception
Distance (FID) (Heusel et al. 2017b) captures both image quality and diversity.
We compute FID with InceptionV3 and generate 5k images. The reference set
is the original COCO validation set, and we use code from (Parmar et al. 2022).
The mean Intersection over Union (mIoU) metric measures to what extent the
generated images respect the spatial conditioning. We compute the mIoU met-
ric with ViT-Adapter(Z. Chen et al. 2023) as segmentation model rather than
the commonly used DeepLabV2 (L.-C. Chen et al. 2015), as the former improves
over the latter by 18.6 points of mIoU (from 35.6 to 54.2) on COCO-Stuff. We
additionally compute a CLIP score that measures alignment between captions
and generated images. All methods, including ours, generate images at resolu-
tion 512 × 512, except OASIS and SDM, for which we use available pretrained
checkpoints synthesizing images at resolution 256× 256, which we up-sample to
512× 512.

Baselines We compare to baselines that are either trained from scratch, fine-
tuned or training-free. The adversarial OASIS model (Schönfeld et al. 2021) and
diffusion-based SDM model (W. Wang et al. 2022) are both trained from scratch
and conditioned on segmentation maps with classes of COCO-Stuff dataset. For
SDM we use T = 50 diffusion decoding steps. T2I-Adapter (Mou et al. 2023) and
SpaText (Avrahami et al. 2022a) both fine-tune pre-trained text-to-image diffusion
models for spatially-conditioned image generation by incorporating additional
trainable layers in the diffusion pipeline. Similar to Universal Guidance (Bansal
et al. 2023), we implemented a method in which we use classifier guidance based
on the external pretrained segmentation network DeepLabV2 (Liang-Chieh Chen
et al. 2017) to guide the generation process to respect a semantic map. We also
compare ZestGuide to other zero-sot methods that adapt a pre-trained text-
to-image diffusion model during inference. MultiDiffusion (Bar-Tal et al. 2023)
decomposes the denoising procedure into several diffusion processes, where each
one focuses on one segment of the image and fuses all these different predictions
at each denoising iteration. In (Balaji et al. 2022) a conditioning pipeline called
“paint-with-words” (PwW) is proposed, which manually modifies the values of
attention maps. For a fair comparison, we evaluate these zero-shot methods on
the same diffusion model used to implement our method. Note that SpaText,
MultiDiffusion, PwW, and our method can be locally conditioned on free-form
text, unlike Universal Guidance, OASIS, SDM and T2I-Adapter which can only
condition on COCO-Stuff classes.

Text-to-image model Due to concerns regarding the training data of Stable
Diffusion (such as copyright infringements and consent), we refrain from experi-
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menting with this model and instead use a large diffusion model (2.2B parameters)
trained on a proprietary dataset of 330M image-text pairs. We refer to this model
as LDM. Similar to (Rombach et al. 2022a) the model is trained on the latent space
of an autoencoder, and we use an architecture for the diffusion model based on
GLIDE (Nichol et al. 2022), with a T5 text encoder (Raffel et al. 2022). With an FID
score of 19.1 on the COCO-stuff dataset, our LDM model achieves image quality
similar to that of Stable Diffusion (Rombach et al. 2022a), whose FID score was
19.0, while using an order of magnitude less training data.

Implementation details For all experiments that use our LDM diffusion model,
we use 50 steps of DDIM sampling with classifier-free guidance strength set to
3. For ZestGuide results, unless otherwise specified, we use classifier guid-
ance in combination with the PwW algorithm. We review this design choice in
Section 6.4.3.

6.4.2 Main results

We present our evaluation results in Table 6.1. Compared to other methods that
allow free-text annotation of segments (bottom part of the table), our approach
leads to marked improvements in mIoU in all settings. For example improving
by more than 10 points (36.3 to 46.9) over the closest competitor PwW, in the
most realistic Eval-few setting. Note that we even improve over SpaText, which
finetunes Stable Diffusion specifically for this task. In terms of CLIP score, our
approach yields similar or better results across all settings. Our approach obtains
the best FID values among the methods based on our LDM text-to-image model.
SpaText obtains the best overall FID values, which we attribute to the fact that it is
finetuned on a dataset very similar to COCO, unlike the vanilla Stable Diffusion
or our LDM.

In the top part of the table we report results for methods that do not allow to
condition segments on free-form text, and all require training on images with
semantic segmentation maps. We find they perform well in the Eval-all setting for
which they are trained, and also in the similar Eval-filtered setting, but deteriorate
in the Eval-few setting where only a few segments are provided as input. In the
Eval-few setting, our ZestGuide approach surpasses all methods in the top
part of the table in terms of mIoU. Compared to LDM w/ External Classfier,
which is based on the same diffusion model as ZestGuide but does not allow
conditioning segments on free text, we improve across all metrics and settings,
while being much faster at inference: LDM w/ ExternalClassifier takes 1 min. for
one image while ZestGuide takes around 15 secs.



6.4 experiments 101

“Two zebra standing “Five oranges “There is a dog “A person over a box” “A train traveling “There is a woman
next to each other with a red apple holding a Frisbee jumping a horse through rural country- about to ski

in a dry grass field.” and a green apple.” in its mouth.” over a box’.’ side lined with trees.” down a hill.”

plant apple sky horse bush person
straw orange sand fence grass snow

dog tree train tree

Ex
t.

C
la

ss
ifi

er
M

ul
ti

D
iff

us
io

n
Pw

W
Z

es
tG

ui
de

(o
ur

s)

Figure 6.6. – Qualitative comparison of ZestGuide to other methods based on
LDM, conditioning on COCO captions and up to three segments.
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Figure 6.7. – Qualitative comparison of ZestGuide to other methods based on
LDM, conditioning on COCO captions and up to three segments.

We provide qualitative results for the methods based on LDM in Figure 6.6
when conditioning on up to three segments, corresponding to the Eval-few setting.
Our ZestGuide clearly leads to superior aligment between the conditioning
masks and the generated content.

6.4.3 Ablations

We first present a visualization of the impact of Zestguide across time steps,
before moving to quantitative ablations on COCO.

Evolution of attention maps across time steps We show in Figure 6.8 average
attention maps on the different objects present in the input segmentation during
the first 12 denoising steps with and without our guidance scheme. We condition
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Figure 6.8. – Visualization of first 12 denoising steps out of 50 steps. Same seed
for w/ and w/o guidance.

on the same Gaussian noise seed in both cases. We notice that attention maps
quickly converges to the correct input conditioning mask when we apply Zest -
Guide and that the attention masks are already close to ground truth masks only
after 12 denoising iteration steps out of 50.

Next, we perform quantitative ablations, focusing on evaluation settings Eval-
filtered and Eval-few, which better reflect practical use cases. To reduce compute,
metrics are computed with a subset of 2k images from the COCO val set.

Ablation on hyperparameters τ and η Our approach has two hyperparamters
that control the strength of the spatial guidance: the learning rate η and the
percentage of denoising steps τ until which classifier guidance is applied. Varying
these hyperparameters strikes different trade-offs between mIoU (better with
stronger guidance) and FID (better with less guidance and thus less perturbation
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“On the moon”

“ A horse”

“An astronaut”

Figure 6.9. – ZestGuide outputs when varying the two main hyperparameters
η (learning rate) and τ (percentage of steps using classifier guidance).
Our default configuration is η=1, τ=0.5.

of the diffusion model). In Figure 6.9 we show generations for a few values of
these parameters. We can see that, given the right learning rate, applying gradient
updates for as few as the first 25% denoising steps can suffice to enforce the layout
conditioning. This is confirmed by quantitative results in the Eval-few setting
presented in paragraph 6.3. For η = 1, setting τ = 0.5 strikes a good trade-off
with an mIoU of 43.3 and FID of 31.5. Setting τ = 1 marginally improves mIoU
by 1.3 points, while worsening FID by 3.2 points, while setting τ = 0.1 worsens
mIoU by 9.1 points for a gain of 1 point in FID. Setting τ=0.5 requires additional
compute for just the first half of denoising steps, making our method in practice
only roughly 50% more expensive than regular DDIM sampling.

Guidance losses and synergy with PwW In Figure 6.10 we explore the FID-
mIoU trade-off in the Eval-filtered setting, for PwW and variations of our ap-
proach using different losses and with/out including PwW. The combined loss
refers to our full loss in Eq. (6.4), while the BCE loss ignores the second normal-
ized loss. For PwW, the FID-mIoU trade-off is controlled by the constant W that
is added to the attention values to reinforce the association of image regions and
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Figure 6.10. – Trade-off in Eval-filtered setting between FID (lower is better) and
mIoU (higher is better) of PwW and ZestGuide using different
losses. In dotted green is shown the FID for unconstrained text-
to-image generation. Using LZest in combination with PwW (our
default setting) gives the best trade-off.

their corresponding text. For ZestGuide, we vary η to obtain different trade-
offs, with τ = 0.5. We observe that all versions of our approach provide better
mIoU-FID trade-offs than PwW alone. Interestingly, using the combined loss and
PwW separately hardly improve the mIoU-FID trade-off w.r.t. only using the
BCE loss, but their combination gives a much better trade-off (Combined Loss +
pWW). This is possibly due to the loss with normalized maps helping to produce
more uniform segmentation masks, which helps PwW to provide more consistent
updates.

In the remainder of the ablations, we consider the simplest version of Zest -
Guide with the LBCE loss and without PwW, to better isolate the effect of gradient
guiding.

Attention map averaging As mentioned in Section 6.3.2, we found that aver-
aging the attention maps across all heads of the different cross-attention layers is
important to obtain good spatial localization. We review this choice in Table 6.2.
When we compute our loss on each head separately, we can see a big drop in
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Components ↓FID ↑mIoU ↑CLIP

Loss for each attention head 33.6 32.1 29.9
Loss for each layer 31.6 42.7 30.5
Loss for global average (ours) 31.5 43.3 30.4

Table 6.2. – Evaluation of ZestGuide on Eval-few setting, with different aver-
aging schemes for computing the loss. Averaging all attention heads
before applying the loss gives best results.

mIoU scores (-11 points). This reflects our observation that each attention head
focuses on different parts of each object. By computing a loss on the averaged
maps, a global pattern is enforced while still maintaining flexibility for each at-
tention head. This effect is much less visible when we average attention maps per
layer, and apply the loss per layer: in this case mIoU deteriorates by 1.6 points,
while FID improves by 0.9 points.

Gradient normalization Unlike standard classifier guidance, ZestGuide uses
normalized gradient to harmonize gradient descent updates in Eq. (6.5). We find
that while ZestGuide also works without normalizing gradient, adding it gives
a boost of 2 mIoU points for comparable FID scores. Qualitatively, it helped for
some cases where the gradient norm was too high at the beginning of generation
process, which occasionally resulted in low-quality samples.

Impact of parameter τ In our method, classifier guidance is only used in a
fraction τ of denoising steps, after which it is disabled. Table 6.3 demonstrates that
after our default value τ = 0.5, mIoU gains are marginal, while the FID scores
are worse. Conversely, using only 10% or 25% of denoising steps for classifier
guidance already gives very good mIoU/FID scores, better than PwW for τ = 0.25.
As illustrated in Figure 6.8, this is because estimated segmentation maps converge
very early in the generation process.

Components ↓FID ↑mIoU ↑CLIP

τ = 0.1 30.54 34.25 31.18
τ = 0.25 30.36 40.75 30.77

τ = 0.5 31.53 43.34 30.44

τ = 1 34.75 44.58 29.99

Table 6.3. – Ablation on parameter τ , with fixed learning rate η = 1 in the Eval-
few setting.
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Tokens used as attention keys Our estimated segmentation masks are com-
puted with an attention mechanism over a set of keys computed from the text
prompt embeddings. In this experiment, we analyze whether the attention over
the full text-prompt is necessary, or whether we could simply use classification
scores over the set of classes corresponding to the segments. We encode each class
text separately with the text encoder, followed by average pooling to get a single
embedding per class. Computing our loss with these embeddings as attention
keys results in a probability distribution over the segmentation classes. We find
that the FID scores are worse (+ 3 pts FID), but the mIoU scores are very close
(43.36 vs 43.34). We conclude that our loss function primarily serves to align spa-
tial image features with the relevant textual feature at each spatial location, and
that the patterns that we observe in attention maps are a manifestation of this
alignment.

Attention layers used We first validate which layers are useful for comput-
ing our classifier guidance loss in Table 6.4. We find that whatever the set of
cross-attention layers used for computing loss, the mIoU and FID scores are very
competitive. In accordance with preliminary observations, it is slightly better to
skip attention maps at resolution 8 when computing our loss.

Layers used ↓FID ↑mIoU ↑CLIP

All layers 33.74 40.17 30.19

Only decoder layers 33.81 40.02 30.05

Only encoder layers 30.98 38.24 30.67

Only res32 layers 29.35 39.49 30.75
Only res16 layers 33.59 40.27 30.23

res16 and res32 layers (ours) 31.53 43.34 30.44

Table 6.4. – Ablation on cross-attention layers used for estimating segmentation
maps.

6.5 Conclusion

In this chapter, we have presented ZestGuide, a zero-shot method which
enables precise spatial control over the generated content by conditioning on seg-
mentation masks annotated with free-form textual descriptions. Our approach
leverages implicit segmentation maps extracted from text-attention in pre-trained
text-to-image diffusion models to align the generation with input masks. Ex-
perimental results demonstrate that our approach achieves high-quality image
generation while accurately aligning the generated content with input segmenta-
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tions. Our quantitative evaluation shows that ZestGuide is even competitive
with methods trained on large image-segmentation datasets.

Despite this success, there remains a limitation shared by many existing ap-
proaches. Specifically, the current approach, like others, tends to overlook small
objects in the input conditioning maps, which may be related to the low resolution
of the attention maps in the diffusion model.
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C O N C L U S I O N

We first summarize the contributions that we propose in this thesis before
discussing research directions for future work. The main task that we tackle is
Text-based Image Editing: we aim at editing images given an instruction written
in natural language. We recall here the main challenges: first, it requires joint
image/text processing, since the input data is inherently multimodal; second,
training data is very scarce and costly to acquire, therefore we need to design
zero-shot algorithm that leverage the knowledge embedded in machine learning
models pretrained on large-scale image/text datasets.

7.1 Summary of contributions

The first direction we explore in Chapter 3 is a simplified image editing setup
which does not require a generative model. We leverage the multimodal embed-
ding space of pretrained image/text contrastive models like CLIP (Radford et
al. 2021a). Inspired by the geometric properties of word embedding spaces, we
study the suitability of such multimodal embedding spaces for embedding arith-
metic. We design a test dataset for retrieval-based image editing, dubbed SIMAT,
which provides a quantitative framework for our analysis. Based on this evalua-
tion setup, we show that multimodal embedding trained for image/text retrieval
are not the best choice for embedding arithmetic, and that a simple fine-tuning
scheme can bring large improvements.

While SIMAT allowed us to study embedding arithmetic, the space of possible
images is vastly bigger than any fixed-size dataset, which limits possibilities for
editing. Therefore, the second direction we explore in Chapter 4 is real image
editing, where we aim at modifying the image given as input instead of retrieving
an image from an existing database. Generative Adversarial Networks are able
to generate photo-realistic images on narrow domains, but zero-shot editing for
real images in the latent space is difficult. To broaden the scope of possible edits,
we propose the FlexIT algorithm: similarly to Chapter 3, we compute a high-
level objective of what the edited image should look like. This objective is a
multimodal embedding, computed as a linear combination of the embeddings of
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the input image and text transformation query. Then, the input image is iteratively
optimized, so that the embedding of the edited image gets closer to the "target"
multimodal embedding. We show that optimizing the image in the VQGAN auto-
encoder latent space (Esser et al. 2021b) allows for natural editing compared to
pixel-based optimization, which leads to adversarial unnatural results. Finally, we
show how the editing strength can be controlled with regularization optimization
terms.

The third direction we explore in Chapter 5 is to leverage diffusion models
for text-based image editing. The optimization scheme presented in 4 is quite
costly, and is based on a algorithm trained for image/text matching instead of
image generation. As a result, images edited with FlexIT can lack realism when
image parts are not correctly identified by CLIP. We turn to generative models
and choose to study how to adapt pretrained diffusion models to the task of text-
based image editing. We propose the D iffEdit algorithm, which automatically
produces an editing mask by finding which image regions need editing. We also
incorporate reverse DDIM into D iffEdit, and give theoretical bounds showing
how the distance w.r.t input image can be controlled.

Finally, we explore in Chapter 6 a problem related to image editing: how to
constrain the generative process of diffusion models to take into account a set
of objects with their precise location in the image. We propose the ZestGuide

algorithm, which generates images conditionally to a semantic segmentation map
without any training, and allows for open-vocabulary conditional generation. We
demonstrate how to best take advantage of the spatio-semantic patterns in the
cross-attention maps of the diffusion model.

7.2 Perspective for future work

We believe that the last two chapters represent promising path towards truly
flexible text-based image editing. We emphasize here some limitations of these
works, on which further work may bring improvements. The limitations of D iffEdit

are discussed in Section 5.4.6. Notably, the masks identifying the edit location are
still not as precise as they could be: the method could be coupled with segmen-
tation approaches or image priors to increase mask accuracy. Also, the method
works best when given a pair of sentences, one describing the input image, and
one describing the novel image that we want to get. The two sentences should
be very similar, so the user has to provide redundant information. It is possible
to solve this problem by asking the user to provide only the textual description
of the novel image, and to infer the input image’s caption that is closest to this
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description. This would provide an appreciable improvement over the original
algorithm.

A common limitation of all works presented in this thesis is the difficulty
to change the position of objects, which is due to how images are stored and
generated on a fixed pixel grid. As a result, two images representing the exact
same objects at different spatial locations usually have a high edit distance. A
promising approach to solve this problem is to use image generation methods
that are based on structured representations like BlobGAN (Epstein et al. 2022),
where the position of objects in images are encoded as scalar variables which can
be changed easily.

Finally, we believe that there is a lot of potential in augmenting diffusion models
to do novel tasks at inference time, like we did in Chapter 5 for image editing
and in Chapter 6 for semantic image synthesis. Diffusion models could also be
adapted for classification (A. C. Li et al. 2023), semantic segmentation, and video
editing (Qi et al. 2023). Their adaptability partly comes from their generic training
objective (image denoising), which acts similarly to a self-supervised learning
task, allowing the model to learn powerful image representations. Future work
on zero-shot adaptation of diffusion models are promising research directions to
advance the field of computer vision.

7.3 Societal Impact and Ethical challenges

Image editing with diffusion models trained on web-scraped data like LAION
raises several ethical challenges that we wish to discuss here. In particular, it was
shown that LAION contains inappropriate content (violence, hate, pornography),
along with racist and sexist stereotypes. Furthermore, it was found that diffu-
sion models trained on LAION, such as Imagen, can exhibit social and cultural
bias. Therefore, the use of such models can raise ethical concerns, whether the
text prompt is intentionally harmful or not. Because image editing is usually per-
formed on real images, there are additional ethical challenges, such as potential
skin tone change when editing a person or reinforcing harmful social stereotypes.
We believe that open-sourcing editing algorithms in a research context contributes
to a better understanding of such problems, and can help the community in ef-
forts to mitigate them in the future. Furthermore, image editing tools could be
used with harmful intent such as harassment or propagating fake news. This
use, known as deep fakes, has been largely discussed in previous work (Etienne
2021). To mitigate potential misuse, the Stable Diffusion model is released under
a license focused on ethical and legal use, stating explicitly that users “must not
distribute harmful, offensive, dehumanizing content or otherwise harmful rep-
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resentations of people or their environments, cultures, religions, etc. produced
with the model weights”. Furthermore, the question of how to align AI models
to desired behaviors and to prevent them from going out of bounds is an active
area of research, for large language models as well as diffusion models (Ouyang
et al. 2022; K. Lee et al. 2023; H. Dong et al. 2023).

Our editing benchmark based on the COCO dataset also has some limitations.
COCO has a predominant western cultural bias, and we are therefore evaluating
transformations on a small subset of images mostly associated with western cul-
ture. Finding relevant transformation prompts for an image is challenging: while
we found it relevant to leverage existing annotations based on COCO, we believe
that evaluating image editing models on a less culturally biased dataset is needed.

Finally, we remind that the recent trend to scale image generation models train-
ing to billions of text-image pairs consumes vital resources, from the materials
required to build the graphic cards and data centers, to electricity required to run
inference with the generative models. These usages cause CO2 emissions. Even
if the electricity is produced from renewable energies, or compensated from re-
newable electricity certificates, it can increase the CO2 intensity of higher-priority
electricity usage like heating. In this thesis, we have tried to foster research in
lightweight adaptation of diffusion models, which requires much less energy com-
pared to training. However, diffusion models are still inefficient models to run
compared to GANs, which requires further research to reduce their carbon foot-
print, along with government incentives to reduce the total computational power
used to train and run generative models.
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Pretraining has become the prevalent approach for tackling multimodal
downstream tasks. The current trend is to move towards ever larger models
and pretraining datasets. This computational headlong rush does not seem
reasonable in the long term to move toward sustainable solutions, and de
facto excludes academic laboratories with limited resources. In this work, we
propose a new framework, dubbed ViCHA, that efficiently exploits the input
data to boost the learning by: (a) a new hierarchical cross-modal alignment
loss, (b) new self-supervised scheme based on masked image modeling, (c)
leveraging image-level annotations, called Visual Concepts, obtained with
existing foundation models such as CLIP to boost the performance of the
image encoder. Although pretrained on four times less data, our ViCHA
strategy outperforms other approaches on several downstream tasks such
as Image-Text Retrieval, VQA, Visual Reasoning, Visual Entailment and Vi-
sual Grounding.
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Diffusion Models”. In: arXiv preprint arXiv:2303.15435. Abstract: Generative
image modeling enables a wide range of applications but raises ethical
concerns about responsible deployment. This paper introduces an active
strategy combining image watermarking and Latent Diffusion Models. The
goal is for all generated images to conceal an invisible watermark allowing
for future detection and/or identification. The method quickly fine-tunes
the latent decoder of the image generator, conditioned on a binary signature.
A pre-trained watermark extractor recovers the hidden signature from any
generated image and a statistical test then determines whether it comes from
the generative model. We evaluate the invisibility and robustness of the
watermarks on a variety of generation tasks, showing that Stable Signature
works even after the images are modified. For instance, it detects the origin
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of an image generated from a text prompt, then cropped to keep 10% of the
content, with 90+% accuracy at a false positive rate below 10−6.

• Jamie Tolan, Hung-I Yang, Ben Nosarzewski, Guillaume Couairon, Huy Vo,
John Brandt, Justine Spore, Sayantan Majumdar, Daniel Haziza, Janaki Va-
maraju, et al. (2023). “Sub-meter resolution canopy height maps using self-
supervised learning and a vision transformer trained on Aerial and GEDI
Lidar”. In: arXiv preprint arXiv:2304.07213 Abstract: Vegetation structure
mapping is critical for understanding the global carbon cycle and moni-
toring nature-based approaches to climate adaptation and mitigation. Re-
peat measurements of these data allow for the observation of deforesta-
tion or degradation of existing forests, natural forest regeneration, and the
implementation of sustainable agricultural practices like agroforestry. As-
sessments of tree canopy height and crown projected area at a high spatial
resolution are also important for monitoring carbon fluxes and assessing
tree-based land uses, since forest structures can be highly spatially hetero-
geneous, especially in agroforestry systems. Very high resolution satellite
imagery (less than one meter (1m) ground sample distance) makes it pos-
sible to extract information at the tree level while allowing monitoring at a
very large scale. This paper presents the first high-resolution canopy height
map concurrently produced for multiple sub-national jurisdictions. Specifi-
cally, we produce canopy height maps for the states of California and São
Paolo, at sub-meter resolution, a significant improvement over the ten meter
(10m) resolution of previous Sentinel / GEDI based worldwide maps of
canopy height. The maps are generated by applying a vision transformer
to features extracted from a self-supervised model in Maxar imagery from
2017 to 2020, and are trained against aerial lidar and GEDI observations. We
evaluate the proposed maps with set-aside validation lidar data as well as by
comparing with other remotely sensed maps and field-collected data, and
find our model produces an average Mean Absolute Error (MAE) within
set-aside validation areas of 3.0 meters.
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A.2 ImageNet transformations dataset

To evaluate Semantic Image Editing, we have designed the ImageNet trans-
formations dataset, used in chapters 4 and 5. To design transformation queries
from ImageNet classes, we have grouped classes into clusters by semantic simi-
larity, upon manual inspection of the WordNet hierarchy of classes. The resulting
clusters are shown in Table A.1. This process resulted in 273 classes gathered in
47 clusters. We have not included all ImageNet classes because (i) we wanted
to reduce the large number of dog breed classes, and (ii) a lot of classes were
“standalone classes" with no natural target for transformation among the other
classes. The clusters are then grouped into 13 bigger “groups”.

A.2.1 FlexIT Ablation results

In this section, we give the detailed evaluation scores for the FlexIT method
(Chapter 4) with different configurations. We also show quantitative results for
additional ablation experiments.

In Table A.2, we show quantitative results for the main configuration parame-
ters. In Table A.3, we show ablations for combining multiple CLIP networks and
using multiple data augmentations in the multimodal encoder. We also report the
runtime needed for each algorithm.
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Group Cluster Classes

bird bird of prey bald eagle, kite, great grey owl
bird finch indigo bunting, goldfinch, house finch, junco
bird grouse black grouse, prairie chicken, ptarmigan, ruffed grouse
bird seabird king penguin, albatross, pelican, European gallinule, black swan
bird wading bird goose, oystercatcher, little blue heron, black stork, bustard, flamingo, spoonbill

container bag backpack, plastic bag, purse

container food container water jug, beer bottle, water bottle, wine bottle, coffee mug, vase,
coffeepot, teapot, measuring cup, cocktail shaker

device electronics cassette player, cellular telephone, computer keyboard, desktop computer,
dial telephone, hard disc, iPod, laptop

device measuring analog clock, digital clock, wall clock, stopwatch, digital watch, odometer, barometer

dog hound English foxhound, Italian greyhound, Afghan hound, basset, beagle, otterhound
dog sporting dog English springer, cocker spaniel, golden retriever, Irish setter

dog terrier American Staffordshire terrier, wire-haired fox terrier, standard schnauzer,
Border terrier, Irish terrier, Yorkshire terrier

dog toy dog papillon, Chihuahua, Japanese spaniel, Shih-Tzu, toy terrier

dog working dog collie, German shepherd, Rottweiler, miniature pinscher,
French bulldog, Siberian husky, boxer, Eskimo dog

edible edible fruit Granny Smith, strawberry, lemon, orange, banana, custard apple, fig, pineapple, pomegranate
edible sandwich cheeseburger, hotdog, bagel

edible vegetable bell pepper, broccoli, cauliflower, spaghetti squash, zucchini,
butternut squash, artichoke, cardoon, cucumber

fungus fungus bolete, coral fungus, earthstar, gyromitra, hen-of-the-woods, stinkhorn

insect beetle ground beetle, ladybug, leaf beetle, long-horned beetle, tiger beetle, weevil
insect butterfly monarch, admiral, cabbage butterfly, lycaenid, ringlet, sulphur butterfly
insect spider black widow, garden spider, tarantula, wolf spider, scorpion

mammal bear American black bear, brown bear, ice bear, sloth bear, giant panda, lesser panda
mammal bovid ox, ibex, bighorn, gazelle, impala, water buffalo, ram, bison

mammal canine Arctic fox, grey fox, red fox, African hunting dog, dingo,
coyote, red wolf, timber wolf, white wolf, hyena

mammal equine sorrel, zebra
mammal feline Persian cat, tabby, cheetah, jaguar, leopard, lion, snow leopard, tiger
mammal great ape chimpanzee, gorilla, orangutan
mammal monkey capuchin, spider monkey, squirrel monkey, baboon, guenon, macaque

music. instr. percussion chime, drum, gong, maraca, marimba, steel drum
music. instr. stringed cello, violin, acoustic guitar, electric guitar, banjo
music. instr. wind bassoon, oboe, sax, flute, cornet, French horn, trombone

object ball golf ball, ping-pong ball, rugby ball, soccer ball, tennis ball
object handtool hammer, plane, plunger, screwdriver, shovel
object headdress bathing cap, shower cap, bonnet, cowboy hat, sombrero, football helmet

reptile amphibian bullfrog, tree frog, axolotl, spotted salamander, common newt, eft, European fire salamander

reptile snake rock python, boa constrictor, green mamba, Indian cobra, diamondback, sidewinder,
horned viper, king snake, green snake, thunder snake

reptile turtle box turtle, mud turtle, terrapin

sea life aqu. mammal killer whale, grey whale, sea lion, dugong
sea life bony fish goldfish, tench, eel, anemone fish, lionfish, gar, sturgeon
sea-life crab American lobster, Dungeness crab, fiddler crab, king crab, rock crab, crayfish, hermit crab, isopod
sea life shark great white shark, tiger shark, hammerhead

vehicle bicycle motor scooter, tricycle, unicycle, mountain bike, moped
vehicle boat speedboat, lifeboat, canoe, fireboat, gondola
vehicle car ambulance, beach wagon, cab, convertible, jeep, limousine, minivan, sports car
vehicle locomotive electric locomotive, steam locomotive
vehicle sailing vessel catamaran, trimaran, schooner
vehicle truck minivan, police van, fire engine, garbage truck, pickup, tow truck, trailer truck, school bus

Table A.1. – Groups and clusters of the ImageNet classes used to define the trans-
formation queries.
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Acc.↑ LPIPS↓ CSFID↓ SFID↓

λI = 0 64.8 27.6 65.4 12.3
λI = 0.1 60.6 25.9 57.8 8.3
λI = 0.2 52.6 24.6 55.9 6.4
λI = 0.3 45.8 23.5 56.3 5.5
λI = 0.4 38.6 22.6 58.6 5.0

λS = 0.0 34.3 23.8 60.2 4.8
λS = 0.2 45.9 24.0 57.3 5.5
λS = 0.4 52.6 24.6 55.9 6.4
λS = 0.5 56.2 25.0 56.5 7.1
λS = 0.8 60.0 26.5 65.5 11.7

λz = 0.0 59.4 26.5 56.1 7.1
λz = 0.05 52.6 24.6 55.9 6.4
λz = 0.1 51.0 23.3 56.7 6.3

λp = 0.05 66.2 28.8 56.0 7.9
λp = 0.1 59.1 26.4 56.0 7.2
λp = 0.15 52.6 24.6 55.9 6.4
λp = 0.2 47.9 23.3 57.5 6.3

ℓ1 54.2 24.6 56.3 6.5
ℓ2 52.4 24.5 55.9 6.8
ℓ2,1 52.6 24.6 55.9 6.4

lr = 0.025 47.6 22.5 58.3 6.0
lr = 0.5 52.6 24.6 55.9 6.4
lr = 0.1 60.4 27.6 54.8 7.2

resolution 256 53.8 24.8 56.8 7.2
resolution 288 52.6 24.6 55.9 6.4
resolution 320 54.3 24.0 57.4 7.3

Table A.2. – FlexIT ablation results. lr is the learning rate. Lines corresponding
to our default configuration are marked in light grey. The norms ℓ1, ℓ2,
and ℓ2,1 refer to the distance used for regularization in the VQGAN
latent space. Best values for each metric are shown in bold inside
each group of parameter values.
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networks d Acc.↑ LPIPS↓ CSFID↓ SFID↓ sec. /im

ViT-B/32 0 9.4 21.8 92.7 7.4 27s
ViT-B/32 1 37.5 26.4 76.5 11.1 27s
ViT-B/32 8 35.1 25.4 76.9 10.7 33s
ViT-B/32 32 35.5 25.0 77.7 10.8 53s

RN50x4 0 13.4 23.8 91.6 11.8 35s
RN50x4 1 32.5 27.4 80.2 13.7 35s
RN50x4 8 31.0 25.2 77.3 12.3 53s
RN50x4 32 27.0 24.2 79.1 11.7 122s

2 nets 0 23.0 22.8 80.7 9.5 39s
2 nets 1 50.6 26.4 63.2 8.9 39s
2 nets 8 47.8 24.9 62.7 8.4 64s
2 nets 32 47.4 24.2 62.9 8.1 160s

3 nets 0 30.4 22.5 72.2 8.3 45s
3 nets 1 54.9 26.0 56.7 6.7 45s
3 nets 8 52.6 24.6 55.9 6.4 75s
3 nets 32 51.7 24.0 56.7 6.7 190s

5 nets 0 39.6 22.4 66.8 7.7 70s
5 nets 1 60.3 25.5 51.9 5.5 70s
5 nets 8 60.1 23.9 52.1 5.4 176s
5 nets 32 52.0 22.8 52.7 5.2 560s

Table A.3. – Ablation results for the multimodal encoder components. d is the
number of augmentations. d = 0 means that the encoder takes the
unchanged image as input; For d = 1, the encoder takes only one
(augmented image), which explains why the edit time is the same
as d = 0. When considering n CLIP networks, we take the first n
elements in the following list: RN50x4, ViT-B/32, RN50, ViT-B/16,
RN50x16. Our default configuration is marked in light grey. Last
column gives computation time per image in seconds.
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Figure A.1. – Results on COCO: unfiltered (left) and filtered (right). While having
a small impact overall, for the filtered set using the reference text is
beneficial, especially at high encoding ratios, e.g. 90%.

A.3 DiffEdit Experiments on filtered COCO dataset

In this section, we investigate why there is little difference between using or
not the reference text to compute the mask on our COCO queries. In Figure 5.12

we show several editing queries on the COCO dataset taken from the BISON
dataset (Hexiang Hu et al. 2019). Generally, the text query describes a scene
similar to the one in the input image, and it is possible to match the text query by
editing only a fraction of the input image. However, we find that while queries
have been built to be close to a caption of the input image, most of the time the
query is not well aligned with the caption. We create a filtered version of this
dataset, for which queries are structurally similar to the caption, i.e. where only a
few words are changed, but the grammatical structure stays the same. We use the
filtering criterion that the total number of words inserted/deleted/replaced must
not exceed 25% of the total number of words in the original caption, resulting
in a total of 272 queries out of 50k original queries. In Figure A.1 we compare
results with and without filtering, and observe that for the images with small
caption edits the gain of D iffEdit (w/ ref. text) compared to Encode-Decode
is somewhat larger than on the unfiltered dataset. Moreover, using the original
caption as reference text to compute the mask gives higher CLIPScore, especially
at high encoding ratio. This illustrates that a well chosen reference text helps to
generate better editing masks.
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A.4 Theoretical results for Dif fEdit

In this section, we prove the bounds given in Chapter 5. We reused notations
from Proposition 5.1 in the main paper. We also discuss links to optimal transport.

A.4.1 Proof of SDEdit bound

Proposition A.1. Suppose that ∥ϵθ(x, Q, t)∥2 ≤ C for all x ∈ X , t ∈ [0, 1]. Then

E
(x0,Q)∼pD
ϵ∼N (0,1)

∥x0 −Dr(Gr(x0, ϵ), Q)∥2 ≤ (C + 1)τ (A.1)

Proof:

Let T , xr = Gr(x0, ϵ) , yr = xr and y0 = Dr(yr, Q). Then

∥ xr√
αr

− y0∥ = ∥ yr√
αr

− y0√
α0

∥ = ∥
∫ 0

τ

ϵθ(xt, Q, t)dτ∥ ≤ Cτ. (A.2)

Since xr√
αr

= x0+ τϵ, we have ∥x0−y0∥ ≤ ∥x0+ τϵ−y0∥+ ∥τϵ∥ ≤ Cτ + τ which
concludes the proof.

In the SDEdit paper (Meng et al. 2021), a proof similar to what we state is
given, with three main differences: (i) the proof is given in the case of variance-
exploding Stochastic Differential Equation (VE-SDE), which needs adaption for
our setting which uses variance-preserving SDE; (ii) the bound is derived in the
case of a stochastic differential equation, whereas we use a deterministic DDIM
process; (iii) the bound is given by controlling the probability tail, whereas we
only consider the expectancy of edit distance. However, despite these differences,
the spirit of the proof is the same as here.

A.4.2 Proof of proposition 2

Proposition A.2. Suppose that ϵθ(·, Q, t) is K1-lipschitz and κ2 defined as

κ2(x0) = max
t∈[0,1]

∥ϵθ(Et(x0), Q, t)− ϵθ(Et(x0), ∅, t)∥ (A.3)

Let K2 = Ex0κ2(x0). Then for all encoding ratio r, with τ =
√
α−1
r − 1 ,
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Ex0∥x0 −Dr(Er(x0), Q)∥ ≤ K2τ√
τ 2 + 1

(
τ +

√
τ 2 + 1

)K1

(A.4)

Proof: Let σ be a time-dependent variable defined as σ(t) =
√
α−1
t − 1 . Let

u = x/
√
α = x

√
1 + σ2 and v = y

√
1 + σ2 . u and v are solutions of the following

differential system:

du|t = ϵθ(u/
√
1 + σ2 , ∅, t)dσ, (A.5)

dv|t = ϵθ(v/
√
1 + σ2 , Q, t)dσ, (A.6)

u(r) = v(r) = Er(x0)
√
1 + σ2 . (A.7)

Let w = ∥u− v∥, then w|t=r = 0 and

dw|t ≤ ∥du|t − dv|t∥ = ∥(ϵθ(x, ∅, t)− ϵθ(y, Q, t))dσ∥ (A.8)

≤ ∥(ϵθ(x, ∅, t)− ϵθ(x, Q, t)∥dσ + ∥(ϵθ(x, Q, t)− ϵθ(y, Q, t)∥dσ
(A.9)

≤ κ2(x0)dσ +K1∥x− y∥dσ (A.10)

≤
(
κ2(x0) +

K1√
1 + σ2

w
)
dσ. (A.11)

By integration we get

w(t) ≤ κ2(x0) ∗ (τ − t) +

∫ τ

t

K1√
1 + σ2

w(σ)dσ.

From here we can apply Grönwall’s inequality:

w(0) ≤ κ2(x0)τ exp
(∫ τ

0

K1√
1 + s2

ds
)

(A.12)

≤ κ2(x0)τ exp
(
K1 log(τ +

√
τ 2 + 1 )

)
(A.13)

≤ κ2(x0)τ
(
τ +

√
τ 2 + 1

)K1

. (A.14)
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Which finally gives

∥x0 − y0∥ ≤ κ2(x0)τ√
τ 2 + 1

(
τ +

√
τ 2 + 1

)K1

. (A.15)

Taking the expectation w.r.t. the input image x0 gives the final result:

Ex0∥x0 −DT (ET (x0), Q)∥ ≤ K2τ√
τ 2 + 1

(
τ +

√
τ 2 + 1

)K1

(A.16)

which concludes the proof.

A.4.3 Links to optimal transport theory

The reverse DDIM encoder Er maps the distribution of images p0 = pD to the
distribution pr of images noised at timestep r. Khrulkov and Oseledets 2022 sug-
gested that Er could be an optimal transport map between p0 and pr, minimizing
the transport cost Ex0∥x0 − Er(x0)∥22. This means that the encoded images are,
on average, as close as possible to the input images, while following the correct
distribution pr. It would entail that the unconditional decoder Dr = E−1

r would be
an optimal transport map between pr and p0, and moreover that the conditional
decoder Dr(·, Q) would be an optimal transport map between the distributions
pr(·|Q) and p0(·|Q) conditioned by text description Q. Under the hypothesis that
pr is very close to pr(·|Q), then the Encode-Decode algorithm would be the com-
bination of two optimal transport maps Er and Dr(·, Q), mapping p0 to pr and
then pr ≃ pr(·|Q) to p0(·|Q). This is a very interesting property and we make the
connection with the desired properties of semantic image editing, which can be
expressed as an optimal transport problem. Given two distribution of images p1,
p2 (lets say cats and dogs), the aim is to find the function f that performs the ex-
pected edit (changing images of cats into images of dogs) while minimally editing
the image, which can be expressed mathematically as:

f = argmin
f

Ex∥x− f(x)∥ s.t. p2 = f#p1, (A.17)

where f# is the push-forward measure. The function Dr(·, Q)◦Er is not a solution
of this optimal transport problem, because (i) it was proven that the reverse DDIM
encoder is not the optimal transport map for some distributions (Lavenant and
Santambrogio 2022), and (ii) the composition of two optimal transport maps is
not necessarily an optimal transport map. However, experiments and numerical
simulations suggest that Er is very close from an optimal transport map. It would
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be interesting to study the “optimality defect” of Er and of the editing function
Dr(·, Q) ◦ Er. We leave this for future work.
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