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Ecole Doctorale Mathématiques-Sciences du numérique et

de leurs interactions
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Chapter 1

General introduction

In this report I will present some selected results of my research activities. I will start with the description of
my global research objectives in Section 1.1. In Section 1.2, I will discuss my research activities related to my
main research topic, which is realization theory and its applications to system identification and model reduction.
In Section 1.3, I will present my research activities on those topics which fall outside realization theory and its
applications. Finally, in Section 1.4 I will describe the structure of the report

1.1 Global research objectives: reliable models for control of complex
cyber-physical systems

The focus of my research has been the development of reliable models for control, fault detection and prediction of
complex cyber-physical systems. Therefore, the topic of my research falls within control theory. Cyber-physical
systems (abbreviated as CPS) [8, 269, 157] are systems combining computer software with physical hardware
and they are an integral part of modern technology (e.g., automotive industry, aerospace, smart buildings, smart
grids, manufacturing systems, mechatronics, networked control systems). Control, fault detection and prediction
of cyber-physical systems have been subject of intensive research. However, much remains to be done when it
comes to finding models for such systems.

When describing my research philosophy, for the simplicity of presentation I will talk about modeling for
controller synthesis. However the same ideas apply when building models for other purposes, such as fault
detection and prediction. To begin with, notice that in order to build provenly correct controllers, mathematical
models of the to be controlled plant are used. The model is usually a dynamical system in the mathematical sense,
and so is the controller. It is then shown by formal proof that the interconnection of the controller and the model,
which is a dynamical system itself with known equations, has the desired properties. As a rule, it can also be
shown that these properties will still hold if the plant’s model is slightly changed.

The problem with this approach is that it guarantees the correctness of the controller for the model, not for
the real plant. Hence, after designing the controller, extensive testing is still required. However, this approach has
the advantage that if the designed controller does not work well on the physical plant, then there is a clear a way
to improve it. Namely, one should use a more accurate model of the plant or improve the controller by making it
less sensitive to the modeling error.

That is, the ideal workflow proposed by control theory/engineering methods is as follows:

• Step 1 (Modeling for control) Construct a model of the plant.

• Step 2 (Model-based controller synthesis) Use the model to compute a controller meeting the control
objectives.

7



CHAPTER 1. GENERAL INTRODUCTION

• Step 3 (Testing) Test the controller on the physical plant or on , if the control objectives are not met, then
go back to Step 1 and construct a more realistic model or a more robust controller.

The workflow suggests the importance of being able to construct good models. Indeed, from a practical point of
view, the theoretical guarantees of Step 2 are meaningful, only if they help to reduce the number and cost of each
iteration. In order to achieve this, methods for carrying out the modeling step of Step 1 are required.

In a nutshell, my research has been centered around the theoretical questions of modeling and its interplay
with controller synthesis, i.e., the interplay of Step 1. and Step 2.. The practical relevance of control theory is to
a large extent determined by the presence of suitable modeling methods 1.

For a modeling framework to be suitable for controller synthesis, it should provide a class of mathematical
models, algorithms and theory to accomplish the following goals:

O1: Learning from data: black-box and gray-box system identification. There should be algorithms for
estimating models from measurement data. These methods should allow the use of prior knowledge for
constructing models. The problem for learning models is called system identification in control theory
community.

O2: Model reduction: simplifying models. There should be algorithms for simplifying existing models, i.e.
replacing them by a simpler model observable behavior of which is close to the original one. The problem
of simplifying models is called model reduction in control theory community.

O3: Compatibility with controller synthesis: models suitable for controller, theoretical guarantees, in-
variance w.r.t. modeling methods. First of all, both system identification and model reduction methods
should result in models which can be used for controller synthesis. Second, there should be theoretical
guarantees that a controller calculated based on a model obtained via system identification or model re-
duction will achieve the desired control objectives for the underlying system. More precisely, for system
identification, we would like to have theoretical guarantees that if sufficient amount of measurements are
available, then any controller synthesized for the model learned from data will also achieve the control
objectives when applied to the true physical system. In other words, for a sufficiently large number of
measurements the model learned from data is good enough for controller synthesis. Likewise, for a simpli-
fied model obtained from model reduction, we would like to have theoretical guarantees that the controller
synthesized based on this model will work for the original model as well. Furthermore, if two system iden-
tification or model reduction methods result in two different models with the same observable behavior,
we would like to have guarantees that controller synthesized for one of them will work for the other model
as well, i.e., for observationally equivalent models it should not matter which one is used for controller
synthesis.

The motivation for these requirements is quite intuitive.
Clearly, in the absence of methods for learning models from data or for simplifying overly complex models,

modeling becomes too difficult and there is little to be gained from using model based methods instead of just
tuning controllers in a ad-hoc fashion. If the models generated by system identification or model reduction are
not in a form which is suitable for controller synthesis, then there is little use in building those models.

In the absence of theoretical guarantees for system identification and model reduction, the modeling step
becomes completely ad-hoc: if the controller synthesized based on the current model fails, it is not clear if the
model class has to be changed, the amount of data used to find the model has to be increased or another estimation
method has to be used. In this way, whatever is gained due to theoretically solid control synthesis methods will
be lost when trying to find good models. That is, instead of ad-hoc tuning of the controller, the user will tune the
model in a ad-hoc manner. The usefulness of such an approach is dubious.

1Note that the modeling and controller synthesis step can be merged, leading to adaptive control [250]. For the sake of simplicity I stick
to the workflow above. Note that the scientific challenges which arise in modeling for control do not disappear when using adaptive control,
in fact, they tend to become even greater.
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1.1. GLOBAL RESEARCH OBJECTIVES: RELIABLE MODELS FOR CONTROL OF COMPLEX
CYBER-PHYSICAL SYSTEMS

Finally, if two models obtained via systems identification or model reduction are observationally equivalent,
then there is no way of deciding which one is the better, so either model should lead to a correct controller.

Unfortunately, a coherent modeling framework as discussed above is available only for a very small class of
systems. Namely, such a framework exists for classical Linear Time-Invariant (LTI) model. Even for that case
there are gaps in the existing theory. However, linear time-invariant models are not suitable for representing the
behavior of more complex cyber-physical systems.

The high-level objective of my research was to accomplish the goals above (O1,O2,O3) for various model
classes which are more general than linear time-invariant models and which are suitable for representing larger
classes of cyber-physical systems. That is, the objective is to come up with a methodology containing system
identification and model reduction algorithms along with theoretical guarantees that the models produced by
those algorithms are useful for controller synthesis for cyber-physical systems. So far, I have been focusing on
the following model classes: Hybrid Systems, Stochastic Bilinear Systems, and Linear Parameter-Varying (LPV)
Systems. In order to achieve the stated goals for these model classes, I used realization theory and developed it
further when it was necessary.

The goal of realization theory is to characterize the relationship between the observed behavior and the internal
structure of the models. More precisely, realization theory attempts to answer the following questions for a given
class of dynamical systems:

• Existence of a realization, realization algorithm When is it possible to construct a dynamical system
of the given class which generates the specified input/output behavior ? Can we provide an algorithm for
constructing such a dynamical system from the input-output behavior ?

• Minimality How to characterize minimal dynamical systems which generate the specified input/output
behavior ? By minimal we mean minimal dimensional, i.e. with the least number of state variables.
Are minimal dynamical systems unique in some sense ? Do minimal dynamical systems have structural
properties which are useful for control, i.e., can they be driven to a desired state by using control inputs
(controllability) and can their internal state be estimated from the observed behavior (observability). Can
we propose algorithms for checking minimality ?

The standard answers to this are usually as follows. One has to find a class of dynamical systems and a class
of algebraic structures together with a suitable notion of dimension and basis elements such that the following
holds. The algebraic structure (Hankel-structure) generated by the input-output data has a finite dimension,
if and only if the input-output behavior can be generated by a dynamical system from the designated class.
The dynamical system then can be constructed from a basis of the Hankel-structure. Moreover, minimality is
usually equivalent to observability and controllability. In addition, minimal dynamical systems realizing the
same behavior are isomorphic. Note that for each class of systems the notions of minimality, isomorphism,
controllability, observability, Hankel-structure have to be defined separately, and the above results have to be
proven separately.

This means that for control, it is enough to work with minimal dynamical systems, as such systems can indeed
be controlled, and their states can be observed, hence controllers can be built. Moreover, due to the fact that
minimal representations are isomorphic, the resulting controller will not depend on the choice of the dynamical
system, as long as it represents the same input-output behavior. Furthermore, the parameters of such models
could be recovered from input-output measurements, hence such models could be learned from data. Moreover,
system identification and model reduction algorithms tend to result in minimal systems. That is, minimal models
are likely candidates for models for which a package of system identification and model reduction algorithms
can be constructed, such that the models produced by these algorithms are useful for control. Furthermore,
algorithms for constructing models from input-output data actually give rise to system identification algorithms,
and algorithms for transforming models to minimal ones give rise to model reduction algorithm. Realization
theory is also used for proving theoretical correctness of system identification and model reduction algorithms.

That is, realization theory provides the theoretical foundations for designing the desired package of theoreti-
cally sound system identification and model reduction algorithms which are useful for control.
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CHAPTER 1. GENERAL INTRODUCTION

In the next section, Section 1.2, I will present my research activities on realization theory and its application
to system identification and model reduction.

1.2 Principal research topics: realization theory and its applications
In the past decade the focus of my research was realization theory and its applications to model reduction and
system identification. Within realization theory, I focused on stochastic bilinear and linear parameter-varying
(LPV) systems, and to a lesser extent on hybrid systems. Within application of realization theory, I focused on
using my results on realization theory of hybrid, LPV and stochastic bilinear systems to model reduction and
system identification. In addition, I made some excursions to realization theory of semi-algebraic systems, i.e.,
systems which are defined by polynomial equations and inequalities, and later, using the latter results, I also
worked on realization theory of recurrent neural networks. The reason for focusing on LPV, bilinear, hybrid and
semi-algebraic systems is that they can be used to model a wide class of cyber-physical systems, including those
which exhibit nonlinear behavior, while at the same time they can be treated with numerical algorithms. This is
especially true for bilinear and LPV systems, which encode complex behavior by a finite collection of matrices.
Moreover, bilinear and LPV systems overlap with the class of the hybrid systems, the overlap corresponds to the
class of linear switched systems and jump-Markov linear systems. More precisely, linear switched systems/jump-
Markov linear systems can be viewed as LPV systems whose scheduling signals take values from a finite set.
Furthermore, deterministic bilinear systems can be viewed as LPV systems without control inputs. In particular,
bilinear systems contain deterministic autonomous switched systems as a special case. Likewise, stochastic
bilinear systems can be viewed as stochastic LPV systems without control inputs, and they contain autonomous
jump-Markov linear systems as a special case. Finally, all these system classes can be viewed as subclasses of
semi-algebraic systems. These relationships are illustrated on Figure 1.1. Note that on Figure 1.1 the deterministic
bilinear and switched systems are not viewed as special cases of their stochastic counterparts. This is motivated
by the fact that from the point of view of realization theory and system identification the deterministic case is
not really a special case of the stochastic one: in stochastic realization theory the external behavior is always a
process or pair of processes, while in the deterministic case it is an input-output relation.

Below I will describe my research activities in the past dozen of years in mode detail.

1.2.1 Realization theory
I worked on realization theory of following system classes:

Stochastic bilinear systems and jump-Markov systems. I worked on realization theory of stochastic bilin-
ear systems [223, 226] with René Vidal (Johns Hopkins University), resulting in a fairly complete theory.
These results turned out to be useful for realization theory and identification of stochastic LPV systems and
of stochastic jump-Markov systems. In particular, existence of a realization by stochastic bilinear systems
was characterized, along with minimality of such realizations. In addition, a formal definition of a stochas-
tic bilinear realization in forward innovation form was proposed, and it was shown that minimal stochastic
bilinear systems in forward innovation realizing the same output are isomorphic, and any stochastic bilinear
system can be converted to a minimal one in forward innovation form while preserving its output process.
Moreover, a covariance realization algorithm was formulated, which calculates a minimal stochastic bilin-
ear realization in forward innovation form for a given process. These results are relevant for theoretical
analysis of system identification algorithms, especially for subspace methods, as it was demonstrated in
[173, 172].

LPV systems. I worked on realization theory of deterministic LPV state-space models with affine dependence
[216], in collaboration Roland Tóth (Eindhoven University of Technology) and Guillaume Mercère (Uni-
versité de Poitiers). I also worked on realization theory of stochastic LPV state-space models with affine
dependence [173] in collaboration with Manas Mejari (Université de Lille). Manas Mejari was a postdoc
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1.2. PRINCIPAL RESEARCH TOPICS: REALIZATION THEORY AND ITS APPLICATIONS

Figure 1.1: Relationship between various system classes.
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under my supervision and this work was funded by the project CPER Data ’Machine learning meets con-
trol’. Furthermore, I worked on the question of preserving minimality while converting LPV models to
LFR models [5]. This is a joint work with my PhD student Ziad Alkhoury (Université de Poitiers/École
des Mines de Douai (IMT-Lille-Douai) and his co-advisor Guillaume Mercère (Université de Poitiers). I
also worked on embedding non-linear models to LPV state-space models [1] together with Abbas Hos-
sam (Electrical Engineering Department, Faculty of Engineering, Assiut University, Egypt), Roland Tóth
(Eindhoven University of Technology), Nader Meskin (Department of Electrical Engineering,College of
Engineering, Qatar University,Qatar), Javad Mohammadpour Velni (School of Electrical and Computer
Engineering, The University of Georgia, GA, USA).

Realization theory of neural networks. I explored realization theory of recurrent neural networks by embed-
ding them into rational systems (systems whose right-hand side are fractions of polynomials) and using
realization theory of rational systems. This work was done in collaboration with Thibault Defourneau, who
had a postdoctoral appointment under my supervision, and resulted in [72]. This work was funded by the
regional project CPER Data ’Machine learning meets control’. The significance of these results is that they
represent an alternative approach towards realization theory of RNNs and that they open up the possibility
of studying RNNs through system classes which are perhaps easier to handle theoretically. In particular,
the obtained results allowed us to formulate sufficient conditions for existence of a RNN representing a
certain behavior and minimality of RNNs. In turn, these results give an insight to what can be expected for
RNNs.
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Semi-algebraic systems, rational and Nash systems. I worked on realization theory of rational and Nash
systems [183, 184, 185, 182, 181, 187], leading to necessary conditions for existence of a realization and
conditions for minimality, and an observability reduction algorithm. Nash systems are a subclass of semi-
algebraic systems, where the right-hand sides of the equations are semi-algebraic and smooth functions.
This work was done in collaboration Jana Nemcova (Institute of Chemical Technology, Prague) and Jan
van Schuppen (Delft University of Technology). This line of research has not resulted in a complete theory.
In [224] a non-trivial necessary condition for existence of a realization is proposed for discrete-time semi-
algebraic systems defined by polynomial equations and inequalities. This work was done in collaboration
with René Vidal (Johns Hopkins University).

Spaces of nonlinear and hybrid systems. In [222, 214], I worked on definition distance and topology for a
large class of hybrid systems. This work was carried out in collaboration with René Vidal (Johns Hopkins
University) and Ralf Peeters (Maastricht University). We showed that the space of systems forms a Nash
manifold. The topology of this manifold is compatible with a distance, for which an explicit formula exists.
The coordinate charts of the manifold correspond to local canonical forms.

Hybrid systems. I continued working on realization theory of hybrid systems, leading to several results which
were not included into my PhD thesis: [209, 217, 224, 218]. Among these publications, [209, 217] dealt
with extending the results of my PhD thesis to discrete-time systems with external switching, and the
results represent a fairly complete realization theory for the systems in question. This work was carried
out in collaboration with Laurent Bako (Laboratoire Ampère, École Centrale de Lyon) and Jan H. van
Schuppen (Delft University of Technology). In contrast, [299, 224, 218] dealt with hybrid systems with
autonomous switching, and the results are partial.

In [218] an observability reduction method is proposed for piecewise-affine hybrid systems in continuous-
time. All this work was carried out in collaboration with Ralf Peeters, Ronald Westra (Maastricht Uni-
versity), and Jan H. van Schuppen (Delft University of Technology) respectively. Some other publications
which appeared after my PhD present significantly revised versions of the results included into my PhD
thesis: [203, 204, 220, 219, 221, 205].

1.2.2 Application of realization theory
In addition to developing realization theory for bilinear and LPV systems, I also worked on its application to
model reduction and system identification. In terms of model reduction, I focused more on linear switched
systems, which an be viewed a subclass of LPV systems. However, first results on LPV systems were derived
too. In system identification, I focused more on LPV systems.

Below I wll describe by research on these topic in more detail.

System identification. I used the previously derived results on realization theory to derive new results on system
identification of hybrid and LPV systems:

Identification of hybrid systems. In [210, 207, 208] I developed a computationally effective characteriza-
tion of identifiable parameterization of linear switched systems in collaboration with Laurent Bako (IMT-
Lille-Douai, École Centrale Lyon), Stéphane Lecoeuche, Koffi Motchon (IMT-Lille-Douai) and Jan H. van
Schuppen (Delft University of Technology). In [206] I also developed a characterization of persistence
of excitation of switching signals in collaboration with Laurent Bako. The analysis relies on realization
theory. System identification of hybrid systems was applied to fault detection of rails in [113], the latter
was a joint work with Stéphane Lecoeuche and Blaise Guepie ((IMT-Lille-Douai).

Identification of LPV systems. I worked on system identification of LPV systems, more precisely, on iden-
tifiability of LPV systems. This work was part of the PhD thesis of Ziad Alkhoury, whom I co-advised
with Guillaume Mercère (Université de Poitiers). The results were published in [7, 6]. Furthermore, I

12
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collaborated with Pepijn Cox, Roland Tóth (Eindhoven University of Technology) on system identification
algorithms for LPV systems [66]. This work was extended to stochastic system in [172, 173] in collabora-
tion with Manas Mejari (Université de Lille). Manas Mejari was a postdoc under my supervision and this
work was funded by the project CPER Data ’Machine learning meets control’.

Identification of polynomial systems. In addition, I worked on system identification of polynomial and rational
systems in collaboration with Jana Nemcova (Institute of Chemical Technology, Prague) and Jan H. van
Schuppen (Delft University of Technology) the results were published [186].

Model reduction

Model reduction of hybrid systems. I worked on model reduction of linear switched systems using moment
matching in collaboration with John Leth, Rafael Wisniewski (Aalborg University) [227], Mert Bastug
(Aalborg University/École des Mines de Douai (IMT-Lille-Douai)/École Centrale Lille) [30, 31]. The pa-
pers [30, 31] were part of the PhD thesis of Mert Bastug, who was co-advised by me, Rafael Wisniewski
and John Leth. Furthermore, I worked on model reduction of hybrid systems in collaboration with Ion Vic-
tor Gosea (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany) and
Athanasios C. Antoulas (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg,
Germany, Department of Electrical and Computer Engineering, Rice University, Houston) [105] using mo-
ment matching and Löwner matrices. In addition, with Ion Victor Gosea, Athanasios C. Antoulas and with
my colleague, Christophe Fiter from CRIStAL [106] we derived new error bounds for balanced truncation
of switched systems with reset maps. Furthermore, with Laurentiu Hetel (CRIStAL, CNRS), and Mert
Bastug (postdoc at CRIStAL, CNRS) we worked on model reduction of networked control systems, using
results from model reduction of hybrid systems [27, 26, 25]. I also worked on balanced truncation of hy-
brid systems with reset maps and state-dependent switching together with John Leth, Rafael Wisniewski,
Rasmus Pedersen (Aalborg University) [212] and Ion Victor Gosea and Athanasios C. Antoulas [108].

Model reduction of LPV and bilinear systems. In collaboration with John Leth, Rafael Wisniewski (Aalborg
University) [227], Mert Bastug (Aalborg University/École des Mines de Douai (IMT-Lille-Douai)/École
Centrale Lille) Roland Tóth (Eindhoven University of Technology) and Denis Efimov (CRIStAL) I worked
on model reduction of LPV systems [28] using moment matching. The paper [28] was part of the PhD
thesis of Mert Bastug. With Rafael Wisniewski and John Leth I also worked on model reduction of bilinear
systems using moment matching, leading to [228]. With Ion Victor Gosea and Anthansios C. Antoulas I
worked on Loewner framework for LPV systems [107].

All the results mentioned above used results from realization theory of switched, hybrid and LPV systems, which
were previously developed by my collaborators and me.

Reverse engineering of networks of linear and stochastic bilinear systems. I worked on realization theory of
the interconnection structure for stochastic linear and bilinear systems. The goal of this work is to relate the inter-
connection graph of state-space representations with the statistical properties of their outputs. This relationship is
useful for learning network structure from data and it has applications in systems biology and neuroscience. This
is a joint work with my PhD student Mónika Józsa (University of Groningen/IMT-Lille-Douai) and her co-advisor
Kanat Camlibel (University of Groningen). The results of this work were published in [137, 136, 134, 135].

1.3 Other research directions not related to realization theory
In addition to realization theory and its application to system identification and model reduction, I made a number
of excursions to other domains. This was motivated by applications I came across and by the desire to explore
the application of realization theory to control design and estimation.
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Optimal control and minimax observers for linear descriptor systems. I worked on this topic, in collabora-
tion with Serhiy Zhuk (IBM Research Dublin) resulting in the following publications [229, 317]. This work used
several results from realization theory of linear descriptor systems.

In addition to being a non-trivial application of realization theory, this work is a first step towards addressing
realization theory of hybrid/LPV descriptor models with a bounded noise. The latter is expected to be useful for
extending realization theory for hybrid/LPV systems to systems with bounded noise and algebraic constraints.
Indeed, in many applications the assumption that the noise is stochastic is not realistic and the model may contain
algebraic equations in addition to difference/differential equations. Minimax observers are the deterministic
counterpart of Kalman filters. Since Kalman filters were crucial in developing realization theory for stochastic
linear systems and stochastic bilinear/LPV/jump-Markov systems [167], it is expected that minimax observer will
play a similarly crucial role in realization theory of deterministic systems with bounded noise.

Stability analysis. I worked on stability analysis of sampled-data systems in collaboration with Laurentiu Hetel,
Jean-Pierre Richard (CRIStAL), Hassan Omran (École Centrale de Lyon) and Françoise Lamnabhi-Lagarrigue
(SUPELEC). This work was published in [193]. This work was relevant for me as it allowed me to under-
stand better the relationship between stability and dissipativity conditions of sampled-data systems with their
structural properties, such as observability, controllability,minimality. In turn, this is necessary in order to ap-
ply realization theory to control, as planned in the original work plan. Note that sampled-data control sys-
tems are an important class of hybrid/LPV systems with many additional properties, hence they are a logical
choice for starting to explore the relationship between stability/dissipativity and structural properties (observabil-
ity,controllability,minimality) of hybrid/LPV systems.

Observer design. With my colleagues from CRIStAL, Laurentiu Hetel, Denis Efimov and Luciene Etienne
(now at IMT-Lille-Douai) I worked on observer design for sampled-data control systems, resulting in the fol-
lowing publications [84, 83]. I worked on observer design of rational systems with Jana Nemcova (Institute of
Chemical Technology, Prague) and Jan van Schuppen (Delft University of Technology) [188]. With Mohamed
Djemai (Université of Valenciennes) and his co-worker I also worked on observer design for Petri-nets using
theory of singular linear systems [13]. My motivation for participating in this work was to better understand
the relationship between observability, as defined in realization theory, and observer design for networked and
rational control systems respectively. As it was mentioned above, sampled-data control systems are an important
special class of hybrid/LPV system, so it was a logical to start studying the relationship between observer design
and observability with sampled-data systems.

Hybrid and discrete-event control of mechatronics systems. In [272, 211, 215, 38] we investigated control
problems arising in certain mechatronics applications (printers, MRI scanners, etc.). In these applications, the
underlying plant is a hybrid or discrete-event system and the control objectives are discrete (can be expressed by
logical formulae). This work was done in collaboration with Rolf J. M. Theunissen Dirk A. van Beek, Jacobus
E. Rooda, Ramon R. Schiffelers, Esmée Bertens (Eindhoven University of Technology), Jan H. van Schuppen
(Delft University of Technology), and Roland Faber (Océ).

Application of control theory to water management. In [121, 122, 120] I investigated the application of
model predictive control for controlling the locks of navigable canals. The control objective was to maintain
the water level high enough to allow navigation. This work was done in collaboration with Eric Duviella,
Lala Rajaoarisoa, Klaudia Horvath (IMT-Lille-Douai), Karine Chuquet (VNF), and Joaquim Blesa (Universi-
tat Politècnica de Catalunya).

14



1.4. OUTLINE OF THE MANUSCRIPT

1.4 Outline of the manuscript
In this report I will present some selected topics I worked on in the past decade. These topics deal with realization
theory and its applications to system identification and model reduction. The report is divided into three parts.

In the first part, I present two major results on realization theory which were derived in the past decade:

Chapter 2 (realization theory of LPV systems):
In this chapter I present an overview of realization theory of LPV systems with affine dependence on the
scheduling parameters. This chapter is based on [213, 216]. These results were developed in collabora-
tion with Guillaume Mercère (Université de Poitiers,France) and Roland Tóth (Eindhoven University of
Technology, The Netherlands).

Chapter 3 (realization theory of generalized stochastic bilinear systems):
I present realization theory of stochastic bilinear systems. Note that the latter class contains linear jump-
Markov systems and stochastic LPV systems as a special case. This chapter is based on [223, 226]. This
work was carried out in collaboration with René Vidal (Johns Hopkins University, USA).

In the second part, I present some of my selected results on application of realization theory to system identifica-
tion and model reduction:

Chapter 4 (model reduction of hybrid systems):
In this chapter I present an overview of application of realization theory to model reduction of switched
systems. More precisely:

• I discuss results on moment matching using Markov-parameters, which were developed in the PhD
thesis of Mert Bastug [24] whom I co-advised with John Leth and Rafael Wisniewski (Aalborg Uni-
versity, Denmark). The presentation is based on the thesis [24] and the related publications [31, 30].

• I discuss results on balanced truncation. This work was done in collaboration with John Leth, Rafael
Wisniewski, Ion Victor Gosea (Max Planck Institute, Germany), Athansios C. Antoulas (Max Planck
Instute, Germany and Rice University, USA) and Christophe Fiter (CRIStAL, France). The presenta-
tion is based on [227, 106].

• I also discuss moment matching in frequency domain, which was developed in collaboration with
Ion Victor Gosea (Max Planck Instute, Germany) and Athansios C. Antoulas (Max Planck Instute,
Germany and Rice University, USA). The presentation is based on [105].

Chapter 5 (identifiability and subspace identification of LPV systems):
In this chapter I present selected results on system identification of LPV and hybrid systems:

• I discuss identifiability of LPV systems. This work is based on the PhD thesis of Ziad Alkhoury
(Université de Poitiers and IMT-Lille-Douai,France), whom I co-advised with Guillaume Mercère.
The presentation is based on [7, 4].

• I present a subspace identification algorithm for deterministic LPV systems. These results were de-
veloped in collaboration with Roland Tóth and Pepijn Cox (Eindhoven University of Technology, The
Netherlands). The presentation is based on [66]

• Finally, I discuss subspace identification algorithms for stochastic LPV. These results were devel-
oped in collaboration with Manas Mejari (CRIStAL, France), of whom I was the advisor during his
postdoctoral appointment. The presentation is based on [172, 173].

Chapter 6 (reverse engineering of networks):
In this chapter I present selected results on reverse engineering of network graphs of dynamical systems.
The results are based on the PhD thesis of Mónika Józsa (Groningen University, The Netherlands, IMT-
Lille-Douai,France), whom I co-advised with Kanat Camlibel (Groningen University, The Netherlands).
The presentation is based on [133, 137, 136].
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In the third part (Chapter 7), I will present my plans for future research.
The manuscript ends by presenting a short summary and conclusions in Chapter 8.
Finally, in Appendix A, I present my CV with a complete list of my publications and a detailed overview of

my service to scientific community (editorial activities, organization of workshops and invited sessions), of my
participation in funded projects, and my role in advising PhD students and postdoctoral researchers.

Acknowledgements
I am extremely grateful to Bart De Moor, Jamal Daafouz and Antoine Girard for accepting to be reviewers (‘rap-
porteur’) of my HDR and to serve on my defense committee. I would like to warmly thank Michel Verhaegen,
Xavier Bombois and Lotfi Belkoura for agreeing serve on my defense committee. I would like to thank Laurentiu
Hetel for agreeing to be my advisor for HDR and for guiding me through the process and providing a lots of
valuable suggestions and comments. I would also thank my colleagues for their support.

16



Part I

Selected topics on realization theory:
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Introduction

First, I will briefly recall some important milestones in the development of realization theory, on which my own
contribution was based on. Second, I will explain the relationship between my own contribution and the existing
literature.

A brief history of realization theory
As it was mentioned before, realization theory was originally championed by the founder of modern control
theory, R.E. Kalman, [143, 142]. Below, I will review those results in realization theory which were relevant for
my own research on the subject.

Reaization theory of linear systems

Deterministic linear systems. Realization theory was first worked out for deterministic linear time-invariant
systems (LTI systems for short) resulting in a large body of literature. We will not present a historical overview
of the various papers which appeared in the literature, such an overview can be found for example in [140,
144, 71] and the references therein. In a nutshell, the main results of realization theory of LTI systems are as
follows. For LTI systems input-output behavior is traditionally formalized as input-output maps. Later on, a
more general formal framework was proposed, the so called behavioral approach [306, 303, 304], however, for
the sake of simplicity we will stick to the traditional framework. The input-output maps which can potentially be
represented by LTI systems turned out to be the ones which correspond to proper rational transfer functions, if
interpreted in the frequency domain. It turns out that the existence of a LTI realization is equivalent to the finite
rank property of the classical infinite Hankel-matrix [140, 144]. The entries of the Hankel-matrix, the so called
Markov-parameters, they can be viewed as outcomes of input-output experiments. If the rank of the Hankel-
matrix is finite, then a minimal linear system can be computed from a finite sub-matrix of the Hankel-matrix.
The corresponding algorithm is known as Kalman-Ho realization algorithm [140, 144]. Moreover, all minimal
linear state-space representations of a certain input-output map are controllable and observable . Conversely,
every controllable and observable state-space representation is minimal. Furthermore, all such minimal state-
space representations are isomorphic and one can compute them directly from input-output data. For a detailed
discussion see for example [140, 144].

Stochastic linear systems. Later on, realization theory was extended to stochastic linear time-invariant sys-
tems (stochastic LTI) without inputs, see the monographs [57, 163] and the references therein. The main idea
behind this extension was to show that the covariances of the output process of a stochastic LTI are the Markov-
parameters of a deterministic LTI system, and conversely, that any minimal deterministic LTI system whose
Markov-parameters are the covariances give rise to a stochastic LTI system whose output is the given output
process. Incidentally, the latter relationship is closely related to dissipativity and solution of LMIs. Moreover, it
turned out that minimal deterministic LTI systems whose Markov-parameters are the covariances of the output
process actually give rise to stochastic LTI systems in the so called forward innovation form, i.e., stochastic LTI
systems whose noise process is the innovation process of their output process. Recall that the innovation process
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is the difference between the current output and the best possible (linear) prediction of the current output. Fur-
thermore, it was shown that minimal stochastic LTI systems in forward innovation form are isomorphic, if they
represent the same output process. In addition, the matrices of a minimal stochastic LTI system can be calculated
from the output covariances, using the so called covariance realization algorithm, which is the combination of
Ho-Kalman realization algorithm applied to covariances and solving an algebraic Riccati equation or LMI. These
results were later extended to stochastic LTI systems with inputs, see [163, 147] and the references therein.

Role of realization theory in control and system identification Realization theory of LTI systems (both de-
terministic and stochastic) played a significant role in control, system identification and model reduction of these
systems. For control design, the fact that any LTI system could be brought to a minimal one, while preserving
input-output behavior means that it is enough to work with minimal LTI systems, if the only information about
the underlying plant is its input-output behavior. Indeed, in the latter case, there is no a-priori reason for not using
minimal LTI systems as models for the plant, as minimal LTI systems are indistinguishable from any other class
of LTI systems based solely on the observed input-output behavior. The fact that such systems are controllable
and observable means that controller synthesis for such systems is easy, as existence of a feedback controller
guaranteed by controllability, and existence of an observer is guaranteed by observability. Moreover, due to the
fact that minimal representations are isomorphic, the resulting controller will not depend on the choice of the
state-space representation. Moreover, minimality turned out to be a useful technical property for relating various
properties of input-output behavior to properties of state-space representations. For example, for minimal LTI
systems dissipativity with respect to a supply rate, which is a property of the input-output behavior, is equivalent
to the existence of a quadratic storage function, and the latter is equivalent to the existence of a solution of an
LMI [305]. In turn, such a correspondence is useful for characterizing conservativeness of LMI based approaches,
and leads to such important results as Kalman-Yakubovich-Popov Lemma and Real Bounded Lemma [305, 85].
Note that it is exactly the implication that dissipativity implies existence of storage functions which is the most
challenging one, and it is precisely realization theory which allows the proof of that direction.

Furthermore, linear realization theory turned out to be of fundamental importance for system identification
see [282, 57, 147] and the references therein. In particular, the Kalman-Ho realization algorithm gave rise for sub-
space identification algorithms e.g., [282, 147], identifiability analysis, e.g., [101, 114, 279], theory of identifiable
local canonical forms and recursive parametric system identification algorithms, e.g. [114, 199, 171]. Minimal-
ity and minimization algorithms are closely related to balanced truncation for linear systems, and the notion of
Markov-parameters is essential to model reduction by moment matching, [12]. In fact, system identification and
model reduction are the main application domains of realization theory.

Extending realization theory beyond LTI systems

Motivated by the success of realization theory for LTI systems, there were several attempts to extend realization
theory to other classes of systems. When extending realization theory to other classes of systems, the aim was
to show, to the extent it was possible, the same results as for LTI systems. That is, minimality was shown to be
equivalent to counterparts of controllability and observability, minimal realizations were shown to be isomorphic
in a certain sense. Likewise, existence of a realization was shown to be equivalent to finiteness of the dimension
of a suitably defined algebraic structure which is generated by the input-output behavior. Finally, constructive
procedures were formulated for converting a system to minimal ones and for constructing them from input-output
behaviors.

Time varying linear systems, linear systems over rings. One direction was to extend LTI realization theory to
other classes of linear systems. Since realization theory of linear systems is algebraic in nature, it can be extended
to systems matrices of which are defined over any field [143]. The latter is relevant for systems describing codes
[243], and for time-varying and LPV systems [145, 274]. There are extensions to systems defined on rings [258].
There are also extensions of realization theory to infinite-dimensional systems [128], the latter class of systems

20



included partial-differential equations and systems with delays. It is also possible to reformulate realization theory
in terms of modules over ring of polynomials [143]. These extensions did not give rise to such deep applications
to control, system identification and model reduction as realization theory of LTI systems.

Deterministic and stochastic bilinear systems. Realization theory was extended to deterministic bilinear sys-
tems, leading to a theory which follows closely realization theory of LTI systems, see [257, 256, 125, 126, 127]
and the references therein. In particular, for bilinear systems minimality is equivalent to span-reachability (the
linear span of reachable states is the full state space) and observability, minimal realizations of the same input-
output map are related by a linear isomorphism, existence of a bilinear realization is equivalent to the rank of a
suitably defined Hankel-matrix. Furthermore, any bilinear system can be converted to minimal one while preserv-
ing input-output behavior, and a minimal bilinear realization can be computed from the Hankel-matrix. The latter
matrix is constructed using input-output data, more precisely, from counterparts of Markov-parameters, which,
in turn, can be obtained from suitable input-output experiments. More precisely, they represent the high-order
derivatives of the output with respect to the time (continuous-time case) and/or input values. Partial results on
extending realization theory of bilinear systems to the stochastic case appeared in [73, 92, 235] and the references
therein.

Analytic and smooth systems. Realization theory was also extended to analytic and smooth non-linear systems
[60, 131, 130, 132, 90, 261, 91, 126, 238, 58, 59, 96] and the references therein. More precisely, the characteri-
zation of minimality in terms of controllability and observability conditions and isomorphism of minimal realiza-
tion still carries over to analytic and smooth non-linear systems even though there are several technical subtleties
[126]. Generalization of Hankel-rank conditions are also available [60, 131, 130, 132]. In fact, for analytic input
affine non-linear systems the theoretical framework of generating (Fliess) series [90, 91, 126] gives rise to coun-
terparts of Markov-parameters, which allows to define Hankel-matrices and their Lie-rank [132, 90, 91, 126].
However, the characterization of existence of a realization has only partially been solved and the problem of find-
ing a realization algorithms has not been completely solved either, see [129, 194, 195] and the references therein.
Note that the geometric characterization of controllability and observability for nonlinear systems turned out to
be useful not only for realization theory, but also for control, giving rise to the field of geometric control theory
[126, 281]. Realization theory of nonlinear systems with polynomial/rational systems was also addressed, see
[22, 256, 257, 23, 189, 190, 296] and the references therein, leading to conditions on minimality and existence of
a realization. However, the computational aspects have not been worked out in detail, and a lot of subtle technical
issues remain open.

Hybrid and LPV systems. The realization problem for hybrid systems was first formulated in [111], but no
theory was developed. Realization theory for linear and bilinear switched systems with linear reset maps was
developed in [202, 203, 204, 220, 219, 221]. The latter work was partially based on my PhD thesis. Realization
theory for LPV was investigated in [276] using a behavioral setting, and for LFR systems in [33, 32, 34]. Partial
results on realization theory of discrete-time LPV systems with affine dependence were developed in [275].

Application of realization theory for non-LTI systems. Realization theory for bilinear and analytic systems
was used for identifiability analysis, see [294, 277, 200]. Moreover, realization algorithms for bilinear systems
were used for subspace identification algorithms [286, 86, 76] and the references therein. The results on realiza-
tion theory of LFR and LPV systems [33, 32, 275] were applied to model reduction of these systems [34, 275].

My research on realization theory
Novelty, open questions. Despite these developments several open questions remained at the moment when
I started my independent research career. In particular, the discrete-time version of realization theory of lin-
ear switched systems was not developed. There were no results on realization theory of jump-Markov linear
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switched systems with stochastic switching and stochastic additive noise. Furthermore, there were no results
on hybrid systems with autonomous, state-dependent, switching, especially in continuous-time. Realization the-
ory of stochastic bilinear systems was only partially developed: results concerned only white noise inputs, no
characterization of minimality or existence was available, published proofs of the correctness of the realization
algorithm contained gaps. Realization of LPV systems with affine dependence was only partially developed:
while a realization algorithm was formulated in [275], the rest of the theory was not developed.

My work on realization theory was aimed at filling these gaps.

Brief overview of my recent research on realization theory. I worked on realization theory of hybrid systems
[209, 217, 224, 218], extending previous results to the discrete-time case and to systems with state-dependent
switching. These results were derived in collaboration with several co-authors: Jan H. van Schuppen, Laurent
Bako, René Vidal. I developed for linear switched systems to develop realization theory for LPV systems with
affine dependence on parameters [216] and for stochastic bilinear and linear jump-Markov systems [226]. The
work on LPV realization theory was done in collaboration with Guillaume Mercère, Roland Tóth, Pepijn Cox.
The work on stochastic bilinear systems and jump-Markov systems was carried out in collaboration with René
Vidal. A more elaborate discussion on the novelty of my work on realization theory of LPV systems and stochastic
bilinear systems will be presented in Chapter 2 and Chapter 3 respectively.

Note that realization theory of linear/bilinear switched and hybrid systems with external switching relies on
the same algebraic tool as realization theory of bilinear systems, namely, on the theory of recognizable formal
power series [37, 152, 256]. Note that the latter theory is also present in computer science, and it is related to
weighted and probabilistic automata [152]. In addition, the same tools are also used for noncommutative nD
systems which arise in robust control [16, 33, 32, 141] and the references therein. As a result, the resulting theory
is quite complete and parallels closely that of LTI and bilinear systems. In particular, minimality is shown to
be equivalent to span-reachability and observability, minimal realizations of the same input-output behavior are
isomorphic, and existence of a realization by a linear/bilinear switched/hybrid system is equivalent to a finite
rank condition of a suitably defined Hankel-matrix. Note that the Hankel-matrix is defined via counterparts of
Markov-parameters. For linear switched/hybrid systems they are impulse responses (discrete-time) or high-order
derivatives of impulse responses along various switching signals. Moreover, algorithms were formulated for
transforming a system to a minimal one and for computing a minimal realization from the Hankel-matrix.

Contents of Part I
In order to give a glimpse of my research on realization theory after completing my PhD, I will present two topics,
which I think are representative of my work in that direction. The first topic (Chapter 2) is realization theory of
linear parameter-varying systems with affine dependence on parameters, the second one (Chapter 3) is realization
theory of stochastic bilinear systems. The reason for this choice is twofold. First, I believe that these two results
are the most significant ones among the various results I have obtained in realization theory. Second, these results
have been used in system identification and model reduction. Hence, it is possible to demonstrate the interaction
between realization theory and system identification on the example of these results. Finally, these results rely
heavily on my previous results on realization theory of linear switched systems [202, 203, 219, 221, 205].
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Chapter 2

Realization theory of LPV systems

2.1 Introduction

In this chapter we present a realization theory for LPV state-space representations with affine static dependence
of coefficients, abbreviated as LPV-SSA. Linear parameter-varying (LPV) systems are linear systems where the
coefficients are functions of a time-varying signal, the so-called scheduling variable. That is, LPV systems are
a class of mathematical models having a certain structure (linear and time-varying). Control design and system
identification of LPV systems is a popular topic [244, 178, 293, 274, 275, 17, 283, 75, 265, 288, 47]. LPV-SSAs
are linear state-space representations, matrices of which are affine functions of the scheduling variables. LPV-
SSAs are popular models for control synthesis, model reduction and system identification. This popularity is due
to the existence of efficient control synthesis algorithms for LPV-SSAs [244, 178].

In this chapter we will consider both the discrete-time (DT) and the continuous-time (CT) cases. Realization
theory of LPV-SSAs is fairly complete. In particular, there exist necessary and sufficient condition for an input-
output map to admit a realization by an LPV-SSA. This condition involves the rank of a suitably defined Hankel-
matrix. In addition, a minimal LPV-SSA realization of an input-output map can be calculated from the Hankel-
matrix using a Ho-Kalman-like realization algorithm. Moreover, minimality is equivalent to observability and
span-reachability and that all minimal LPV-SSA realizations of the same input-output map are isomorphic. The
latter isomorphism is linear and does not depend on the scheduling variable.

Realization theory of LPV-SSA models can be solved using realization theory of linear switched systems
[202, 203, 219, 209, 205]. Conversely, linear switched systems are a subclass of LPV-SSAs, and when the results
of realization theory of LPV-SSAs are applied to linear switched systems, one arrives at the same results as in
[202, 203, 219, 209, 205].

Many aspects of realization theory of LPV systems were addressed before. However, a complete realization
theory of LPV systems with affine dependence was lacking. In [274, 276], realization theory was developed
for LPV state-space representations where the system matrices depend on the parameters in a meromorphic and
dynamic way, i.e., the matrices are meromorphic functions of the scheduling variables and their derivatives (in
continuous-time), or of the current and future values of the scheduling variables (discrete-time). The system
theoretic transformations (passing from an input-output to a state-space representation, transforming a state-
space representation to a minimal one, etc.) of [274, 276] introduce LPV models with a dynamic and nonlinear
dependence on the parameters. In [35], using [63], realizability of LPV input-output model by LPV state-space
representations with a nonlinear (hence not necessarily affine) and static dependence is studied. In contrast, we
deal with the realizability of input-output maps and not of input-output equations, and we are interested in LPV
state-space representations with affine and static dependence on the parameter. That is, [274, 276, 35] do not
solve the realization problem for LPV-SSAs, in contrast to the results presented in this chapter. Some elements
of realization theory of LPV-SSAs, such as Hankel-matrices and Markov-coefficients of LPV-SSAs, appeared in
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[283, 288, 275]. However, in contrast to [283, 288, 275], in the current chapter, these concepts are defined directly
for input-output maps, and they are used to characterize existence of an LPV-SSA realization of an input-output
map. In fact, the finite rank of the Hankel-matrix represents the necessary and sufficient condition for the existence
of an LPV-SSA realization. In addition, we discuss the conditions for the correctness of the realization algorithm
in more details. The Kalman-Ho realization algorithm was discussed in [275], but it was formulated with the
assumption that an LPV-SSA realization exists. Moreover, the conditions under which the algorithm yields a
true realization of the input-output function were not discussed in detail. Extended observability and reachability
matrices were also presented in [274, 245], but their system-theoretic interpretation and their relationship with
minimality were not explored. This chapter is based on [216].

In Section 2.2 we present the notation used in this and subsequent chapters. In Section 2.3 we present the def-
inition of LPV-SSAs, input-output maps, equivalence and minimality. In Section 2.4 we present the relationship
between LPV-SSA and linear switched systems. In Section 2.5 we present the main results on minimality and in
Section 2.6 the main results on existence of a realization. Finally, in Section 2.7 realization algorithms similar to
the Ho-Kalman algorithm will be discussed and their correctness analyzed.

2.2 Notation used in the technical part of the manuscript
In this chapter, and later on, throughout the manuscript, the following notation will be used.

Spaces of functions We denote by AC(R+,Rn) the set of all absolutely continuous functions of the form
f : R+→Rn. We denote by PC(R+,Rm) the set of piecewise-continuous functions of the form f : R+→Rn, i.e.
functions f : R+→ Rn which have finitely many points of discontinuity on each finite interval and at each point
of discontinuity, the left- and right-hand side limits exists and are finite.

Standard basis vectors For each j = 1, . . . ,m, e j is the jth unit vector of Rm, i.e. e j = (δ1, j, . . . ,δn, j), δi, j is
the Kronecker symbol.

Time axis, ξ operator Let T= R+
0 = [0,+∞) be the time axis in the continuous-time (CT) case and T= N in

the discrete-time (DT) case. Note that in both cases we exclude negative time instances.
Denote by ξ the differentiation operator d

dt (in CT) and the forward time-shift operator q (in DT), i.e., if
z :T→Rn, then (ξ z)(t) = d

dt z(t), if T=R+
0 , and (ξ z)(t) = z(t+1), if T=N. Denote by ξ k the k-fold application

of ξ , i.e., for any z : T→ Rn, ξ 0z = z, and ξ k+1z = ξ (ξ kz) for all k ∈ N

Set of infinite sequences Denote by XN the set of all functions of the form f : N→ X .

Notation from automata theory: words The notation described below is standard in automata theory, see
[97, 80].

Set of strings (words) over an alphabet. Consider a set X which will be called the alphabet. Denote by X+

the set of finite sequences of elements of X , i.e. each element w ∈ X+ is of the form w = a1a2 · · ·ak for some
a1,a2, . . . ,ak ∈ X and k ∈ N,k > 0. Let ε /∈ X+ be a symbol, which we will call the empty sequence or empty
word. Denote by X∗ the set X+∪{ε}. The elements of X∗ will be referred to as strings or words over X .

Length of a string. If w ∈ X+, w = a1a2 · · ·ak for some a1,a2, . . . ,ak ∈ X , then ai is called the ith letter of w,
for i = 1, . . . ,k and k is called the length w. By convention, the length of ε is defined to be zero. The length of a
word w ∈ X∗ is denoted by |w|.

Concatenation of words. For any two words w,v∈X∗, we define the concatenation wv∈X∗ of w and v as fol-
lows. If w,v∈ X+ are of the form v = v1v2 · · ·vk, k > 0 and w = w1w2 · · ·wm, m > 0, v1,v2, . . . ,vk,w1,w2, . . . ,wm ∈
X , then define vw= v1v2 · · ·vkw1w2 · · ·wm. If v= ε and w∈X∗, then define vw=w. Similarly, if w= ε and v∈X∗,
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then define vw = v. With the operation of concatenation, X∗ forms a semi-group whose unit element is ε . For

a ∈ X and k ∈ N, k > 0, we denote by ak the sequence
k−times︷ ︸︸ ︷
aa · · ·a; by convention a0 = ε .

Definition 2.1 (Lexicographic ordering). Assume that X be a finite subset of integers. We define a lexicographic
ordering≺ on X∗ as follows. For any v,s ∈ X∗, v≺ s, if either |v|< |s| or 0 < |v|= |s|, v 6= s and for some l ≤ |s|,
vl < sl with the usual ordering of integers and vi = si for i = 1, . . . , l−1. Here vi and si denote the ith letter of v
and s respectively. Note that ≺ is a complete ordering and X∗ = {v1,v2, . . .} with v1 ≺ v2 ≺ . . .. Note that v1 = ε

and for all 0 < i ∈ N, q ∈ X, vi ≺ viq.
Denote by N(M) the number of sequences from X∗ of length at most M. It then follows that |vi| ≤M if and

only if i≤ N(M).

Products of matrices indexed by words

Notation 2.1. Consider a collection of matrices {Aq ∈ Rn×n}q∈X . For any v ∈ X∗, define the matrix Av ∈ Rn×n

as follows. If v = ε , then Aε = In is the identity matrix, and if v = q1 · · ·qk with q1, . . . ,qk ∈ X, k > 0, then

Av = Aqk Aqk−1 · · ·Aq1 .

2.3 Preliminaries
An LPV state-space (SS) representation with affine linear dependence on the scheduling variable (abbreviated as
LPV-SSA) is a continuous-time (CT) or discrete-time (DT) state-space representation of the form

Σ

{
(ξ x)(t) = A(p(t))x(t)+B(p(t))u(t),
y(t) = C(p(t))x(t) (2.1)

where x(t) ∈ X = Rnx is the state, y(t) ∈ Y = Rny is the output, u(t) ∈ U = Rnu is the input, and p(t) ∈ P ⊆ Rnp

is the value of the scheduling variable at time t, and A,B,C are matrix valued functions on P defined as

A(p) = A0 +
D

∑
i=1

Aipi, B(p) = B0 +
D

∑
i=1

Bipi, C(p) =C0 +
D

∑
i=1

Cipi, (2.2)

for every p = [ p1 p2 · · · pnp ]> ∈ P, with constant matrices Ai ∈ Rnx×nx , Bi ∈ Rnx×nu , Ci ∈ Rny×nx for all
i ∈ {0, . . . ,np}. Recall from Section 2.2 that (ξ x)(t) = d

dt x(t) in CT, and (ξ x)(t) = x(t +1) in DT. Intuitively, p
corresponds to varying-operating conditions, nonlinear/time-varying dynamical aspects and /or external effects
influencing the plant behavior and it is allowed to vary in the set P, see [274].

In the sequel, we use the tuple
Σ = (P,{Ai,Bi,Ci,Di}

np
i=0)

to denote an LPV-SSA of the form (2.1) and use dim(Σ) = nx to denote its state dimension.
In order to formulate the main result, we have to define what we mean by input-output function of an LPV-

SSA. To this end, define the following spaces. Denote by X the set of state-trajectories, U the set of input
trajectories, Y the set of output trajectories and P the set of scheduling signals.

For the continous-time case, X = AC(R+
0 ,X) is the set of absolutely continuous functions on the real time

axis R+ with values in the state-space X, and Y = PC(R+
0 ,Y), U = PC(R+

0 ,U), P = PC(R+
0 ,P) are the sets

of piecewise continous functions with values in the set of outputs Y, inputs U and scheduling variables P respec-
tively.

In the discrete-time case X =XN, Y =YN, U =UN, P =PN, i.e., they are the sets of functions (sequences)
defined on natural numbers N with values in X, Y, U and P respectively.
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By a solution of Σ we mean a tuple of trajectories (x,y,u, p) ∈ (X ,Y ,U ,P) such that (2.1) holds for all
t ∈ T. For an initial state xo ∈ X define the input-to-state map XΣ,xo and the input-output map YΣ,xo of Σ induced
by xo as

XΣ,xo : U ×P →X , YΣ,xo : U ×P → Y , (2.3)

such that for any (x,y,u, p)∈X ×Y ×U ×P , x =XΣ,xo(u, p) and y=YΣ,xo(u, p) holds if and only if (x,y,u, p)
is a solution of (2.1) and x(0) = xo.

We say that Σ is span-reachable from the zero initial state (span-reachable for short), if

Span{XΣ,0(u, p)(t) | (u, p) ∈U ×P, t ∈ T}=X.

That is, span-reachability means that the linear span of all the states reachable from the zero initial with some
input and some scheduling generates the whole state-space.

We say that Σ is observable, if for any two initial states x̄o, x̂o ∈ Rnx , YΣ,x̂o =YΣ,x̄o implies x̂o = x̄o. That is,
observability means that for any two distinct states of the system, the resulting outputs will be different for some
input and scheduling signals.

Let Σ of the form (2.1) and Σ′ = (P,{A′i,B
′
i,C

′
i}

np
i=0) with dim(Σ) = dim(Σ′) = nx. A nonsingular matrix

T ∈ Rnx×nx is said to be an isomorphism from Σ to Σ′, if

∀i ∈ {0, . . . ,np} : A′iT = TAi, B′i = T Bi, C′iT =Ci,

We formalize the input-output behavior of LPV-SSAs as maps of the form

F : U ×P → Y . (2.4)

While any input-output map of an LPV-SSA induced by some initial state is of the above form, the converse is
not true. Moreover, for the sake of simplicity, we will concentrate on input-output maps which can be induced by
an LPV-SSA from the zero initial state. That is, the LPV-SSA Σ is a realization of an input-output map F of the
form (2.4), if F=YΣ,0.

An LPV-SSA Σ is a minimal realization of F, if Σ is a realization of F , and for every LPV-SSA Σ′ which is a
realization of F, dim(Σ)≤ dim(Σ′).

To make our terminology less cumbersome, we will refer to the input-output map of an LPV-SSA Σ induced
by the zero initial state as the input-output map of Σ. That is, the input-output map of Σ is the input-output map
YΣ,0 induced by the zero initial state, and it is denoted by YΣ. We say that an LPV-SSA Σ is minimal, if it is
a minimal LPV-SSA realization of its own input-output map F = YΣ,0. We say that two LPV-SSAs Σ1,Σ2 are
input-output equivalent, if their input-output maps are equal, i.e., YΣ1,0 =YΣ2,0.

All the notions introduced above can be extended to include non-zero initial states, see [216].

2.4 LPV-SSAs and linear switched systems
In this section we will present the relationship between LPV-SSA and linear switched systems (abbreviated by
LSS in the sequel). We will use the terminology of [202, 203, 219, 209, 205], when discussing LSSs, see Appendix
B for a brief overview.

If P is finite, then an LPV-SSA can naturally be interpreted as a LSS, and vice versa, and LSS can easily be
viewed as an LPV-SSA scheduling space of which is finite, and the definitions above coincide with the corre-
sponding definitions for LSSs. Hence, realization theory of LPV-SSA clearly implies realization theory of LSSs.
In fact, we can identify an LPV-SSA of the form (2.1) with the LSS

S(Σ) :

{
ξ z(t) = Aσ(t)z(t)+Bσ(t)v(t)

υ(t) =Cσ(t)z(t)
(2.5)
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where σ(t) ∈ Q, Q = {0, . . . ,np} is the set of discrete mode, and for each discrete mode i ∈ Q, the linear system
belonging to this discrete mode is determined by the matrices (Ai,Bi,Ci) of the LPV-SSA. The S(Σ) above can
also be viewed as an LPV-SSA

(Psw,
{

Âi, B̂i,Ĉi
}np

i=0), Psw = {0,e1, . . . ,enp},

ei is the ith standard unit vector of Rnp , and

(Â0, B̂0,Ĉ0) = (A0,B0,C0), (Âi, B̂i,Ĉi) = (Ai−A0,Bi−B0,Ci−C0), i = 1, . . . ,np.

This latter point of view was used in [216]. We call S(Σ) the LSS associated with the LPV-SSA Σ.
In particular, if A0 = 0,B0 = 0,C0 = 0 and P contains 0 and the standard basis unit vectors {e1, . . . ,enp}, then

the LSS associated with Σ is just the restriction of Σ to scheduling signals which take as values the unit vectors.
Conversely, with any LSS

H

{
(ξ x)(t) = Aσ(t)x(t)+Bσ(t)u(t)

y(t) =Cσ(t)x(t)
(2.6)

defined over the set of discrete modes Q = {0, . . . ,np}, with Aq ∈ Rn×n, Bq ∈ Rn×m, Cq ∈ Rp×n, q ∈ Q, we can
associate the LPV-SSA L(H) of the form (2.1) such that the matrix functions A,B,C satisfy (2.2). We call L(H)
the LPV-SSA associated with the LSS H. Note that H can also be viewed as an LPV-SSA

(Psw,
{

Âi, B̂i,Ĉi
}np

i=0), Psw = {0,e1, . . . ,enp}
(Â0, B̂0,Ĉ0) = (A0,B0,C0), (Âi, B̂i,Ĉi) = (Ai−A0,Bi−B0,Ci−C0), i = 1, . . . ,np.

Moreover, the LSS associated with the LPV-SSA L(H) is the LSS H itself. In the same manner, if we consider
an LPV-SSA Σ and the LSS S(Σ) associated with S(Σ), then the LPV-SSA associated S(Σ) is Σ itself.

The correspondence between LPV-SSAs and LSSs described above make it possible to develop realization
theory of LPV-SSA based on that of LSSs. In particular, the conditions for minimality, observability and span-
reachability for LPV-SSA can be derived from the corresponding results for LSSs. There is a one-to-one corre-
spondence between input-output maps of LPV-SSAs and their associated LSSs, hence conditions for existence of
a realization by an LPV-SSA can be derived from the corresponding conditions for LSSs.

Below we will elaborate on this results in more details.

2.5 Reachability, observability, minimality
The results on (span-)reachability, observability and minimality for LPV-SSAs rely on those of for LSSs presented
in [202, 203, 219, 209, 205] (see also Theorem B.2 of Appendix B) and on the following relationship

Theorem 2.1 ([216]). Let Σ be an LPV-SSA.

• Σ is span-reachable if and only if the associated LSS S(Σ) is span-reachable.

• Σ is minimal if and only if the associated LSS S(Σ) is minimal.

• Two LPV-SSAs Σ1 and Σ2 are input-output equivalent, if and only if the associated LSSs S(Σ1) and S(Σ2)
are input-output equivalent.

• Two LPV-SSAs Σ1 and Σ2 are isomorphic if and only if the LSSs S(Σ1) is isomorphic to S(Σ2).

Using Theorem 2.1, the results on minimality of LSSs from [202, 203, 219, 209, 205] (see Theorem B.1 of
Appendix B) the following characterization of minimal LPV-SSA realizations can be derived.
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Theorem 2.2 (Minimal realizations, [216]). Assume that F is an input-output map of the form (2.4). Assume
that the LPV-SSA Σ is a realization of F. Then Σ is a minimal realization of F, if and only if Σ is observable and
span-reachable. Any two minimal LPV-SSA realizations of F are isomorphic.

Note that Theorem 2.2 does not exclude the possibility that two LPV state-space representations of the same
input-output map are related by a non-constant isomorphism, if these state-space representations are not minimal
or they are not LPV-SSAs, see [153].

In fact, since observability respectively span-reachability of an LPV-SSA are equivalent with observability
respectively span-reachability of the associated LSS, we can use the algebraic rank conditions and geometric
conditions from [202, 203, 219, 209, 205] (Theorem B.2 of Appendix B) to formulate necessary and sufficient
conditions for span-reachability and observability of LPV-SSAs. As a particular example, we present below a set
of conditions which rely on the rank of extended observability and reachability matrices as defined in [275].

Definition 2.2 (Ext. reachability & observability matrices). The n-step extended reachability matrices Rn of Σ,
n ∈ N, are defined recursively as follows

R0 =
[

B0 . . . Bnp

]
, Rn+1 =

[
R0 A0Rn . . . AnpRn

]
. (2.7a)

The extended n-step observability matrices On of Σ, n ∈ N, are defined recursively as follows

O0 =
[

C>0 . . . C>np

]>
, On+1 =

[
O>0 A>0 O>n . . . A>npO

>
n

]>
. (2.8)

We can now present the following characterization of span-reachability and observability of LPV-SSAs.

Theorem 2.3 (Rank conditions, [216]). The LPV-SSA Σ is span-reachable, if and only if rank{Rnx−1}= nx, and
Σ is observable, if and only if rank{Onx−1}= nx.

Theorem 2.1 indicates that we can use the minimization algorithms for LSSs described in [202, 203, 219, 209,
205]. To this end, it is sufficient to calculate the LSS associated with the given LPV-SSA, apply to this latter LSS
the minimization algorithm from [202, 203, 219, 209, 205], and then calculate the LPV-SSA which is associated
with the LSS produced by the minimization algorithm in the previous step. The resulting LPV-SSA will be a
minimal dimensional realization of the input-output function of the original LPV-SSA.

There are several versions of the minimization algorithm for LSSs. One of them uses Kalman-decomposition
[202, 260]. This latter minimization algorithm can be reformulated in terms of extended reachability and observ-
ability matrices. For the sake of completeness, and in order to illustrate the discussion above, below we present
that particular algorithm, formulated directly in terms of LPV-SSAs and the n-step extended reachability and
observability matrices.

Choose a basis {bi}nx
i=1⊂Rnx such that Span{b1, . . . ,br}=Im{Rnx−1} and Span{brm+1, . . . ,br}=(Im{Rnx−1}∩

ker{Onx−1}) for some r,rm ≥ 0. Define T =
[
b1 b2 . . . bnx

]−1, and let

Âi = TAiT−1, B̂i = T Bi, Ĉi =CiT−1, i = 0,1, . . . ,np

Then it is easy to see that

Âi=

Am
i 0 A′′i

A′i Â′ A′′′i
0 0 A′′′′i

, B̂i=

Bm
i

B′i
0

, Ĉi=

(Cm
i )>

0
(C′i)

>

>, (2.9)

where Am
i ∈ Rrm×rm ,Bm

i ∈ Rrm×nu , Cm
i ∈ Rny×rm , A′′′i ∈ R(n−r)×(n−r), B′i ∈ R(r−rm)×nu , C′i ∈ Rny×(n−r). Clearly,

Σ̂ = (P,{Âi, B̂i,Ĉi}
np
i=0) is isomorphic to Σ and can be viewed as the Kalman-decomposition of Σ. The following

corollary explains how to use the transformation above for minimizing LPV-SSAs.
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Corollary 2.1 (Minimization). With the notation of (2.9), the LPV-SSA Σm = (P,{Am
i ,B

m
i ,C

m
i }

np
i=0) is a minimal

realization of F=YΣ.

In order to illustrate the procedure above, we present the following example.

Example 2.1 (Illustrative example). Consider an LPV-SSA Σ as in (2.1), with P= R,

A0 =

 0 1 −1
−1 0 1
−1 1 0

 ,B0 =

1
0
0

 ,C0 =

 1
−1
−1

> ,
A1 =

 1 −1 −1
−1 2 0
−1 0 2

 ,B1 =

0
1
1

 ,C1 =

 2
−2
−2

> .
It is easy to see that rank{R2} = 2 and rank{O2} = 1. If we set, b1 =

[
1 0 0

]>, b2 =
[
2 1 1

]>, b3 =[
0 0 1

]>, then {b1,b2} span Im{R2} and b2 spans Im{R2}∩ker{O2}. If we apply the basis transformation

T =
[
b1 b2 b3

]−1, then we obtain the matrices Âi = TAiT−1, B̂i = T Bi,Ĉi =CiT−1, i = 0,1 which are of the
form (2.9), with

Am
0 = 2, Am

1 = 3, Bm
0 = 1, Bm

1 =−2, Co
0 = 1,Cm

1 = 2

By Corollary 2.1, Σm = (P,{Am
i ,B

m
i ,C

m
i }

np
i=0) is a minimal realization of the input-output function YΣ,0 = F from

the initial state zero.

The matrix T and hence Σm can easily be computed from Σ. Note that for computing Σm, or checking the rank
conditions of Theorem 2.3, it is not necessary to compute the matrices Rnx−1 and Onx−1, instead it is sufficient
to compute a basis of Im{Rnx−1} and ker{Onx−1}, which can be done in polynomial time w.r.t. np and nx [28,
Algorithm 1 – Algorithm 2].

2.6 Existence of a realization, sub-Markov parameters and Hankel-matrix
In order to formulate conditions of existence of an LPV-SSA realization, we have to define the class of input-
output maps which could potentially arise from LPV-SSAs. This class of input-output maps will be the one which
has impulse response representation (IIR).

To this end, we will use the following notation. In accordance with the notation defined in Section 2.2, we
will denote by {0,1, . . . ,np}∗ the set of all finite sequences of elements of {0,1, . . . ,np} (i.e. words over the finite
alphabet I0,np ). We will use the notation and terminology of Section 2.2 regarding words, the empty word, the
length and concatenation of two words, etc. Let F be of the form (2.4). For the purposes of this chapter it is
sufficient to know that if F has impulse response representation (IIR) , then

F(u, p)(t) =
{ ∫ t

0(hF � p)(δ , t)u(δ ) dδ continuous-time
∑

t−1
δ=0(hF � p)(δ , t)u(δ ) discrete-time

(2.10)

for a suitable parameter-dependent function (hF � p)(δ , t) which will be discussed below. Intuitively, in discrete-
time (DT) the latter function is a linear combination of products of the entries of p(t), . . . , p(δ ). In continuous-
time, this function is a linear combination of iterated integrals of past values of p. More precisely, we assume
that there exists functions, called the sub-Markov parameters of F,

θi, j,F : {0,1, . . . ,np}∗→ Rny×nu , i, j ∈ {0,1, . . . ,np}, (2.11)

such that the following holds. In discrete-time

(hF � p)(δ , t) =
np

∑
i, j=0

pi(t)p j(δ )

[
θi, j,F(ε)+

np

∑
s1,...,st−δ−1=0

θi, j,F(s1 · · ·st−δ−1)Π
k
i=1 psi(t +δ )

]
, (2.12)
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and in continuous-time,

(hF � p)(δ , t) =
np

∑
i, j=0

pi(t)p j(δ )

[
θi, j,F(ε)+

+
∞

∑
k=1

np

∑
s1,...,sk=0

θi, j,F(s1 · · ·sk)
∫ t

δ

psk(τ1)
∫

τ1

δ

psk−1(τ2) · · ·
∫

τk−1

δ

psk(τk)dτ1 · · ·dτk

] (2.13)

Note that in discrete-time the sum in (2.12) are actually finite, while for continuous-time the sum in (2.13) is
infinite. For the convergence of the latter we need to impose some mild constraints on θi, j, see [216] for more
details. These conditions hold automatically for input-output functions which arise from LPV-SSAs.

That is, (h � p)(δ , t) is sum of products (DT) or iterated integrals (CT) of scheduling signals, and the sub-
Markov parameters

Example 2.2 (Illustrative example ws � p). In order to illustrate the notation above, consider the case when
np = 1. In this case, for discrete-time, (hF � p)(2,5) is of the form

θ0,0,F(00)+ p(4)θ0,0,F(01)+ · · ·+ p(2)p(5)p(3)p(4)θ1,1,F(11).

For continuous-time, (hF � p)(2,5) is of the form

θ0,0,F(ε)+ · · ·+ p(5)p(2)θ1,1,F(ε)+ · · ·+

+ p(2)p(5)θ1,1,F(101)
∫ 5

2
p(s1)

∫ s1

2

∫ s2

2
p(s3)ds3ds2ds1 + · · ·

.

That is, in discrete-time, (hF � p)(2,5) is a polynomial of p(2), p(3), p(4), p(5), while in continuous-time, it is an
infinite sum of iterated integrals.

Example 2.3 (Illustrative example: IIR representation). Next, we illustrate how the sub-Markov parameters and
the maps (hF � p), (gF � p) relate to F. Let nu = ny = 1 and let F be an input-output map of the form (2.4) in
continuous-time defined as follows:

F(u, p)(t) =
∫ t

0
(1+2p(t))e2(t−τ)+2

∫ t
τ p(s)ds(1−2p(τ))u(τ)dτ

Then F admits an IIR with

(hF � p)(τ, t) = (1+2p(t))e2(t−τ)+3
∫ t

τ p(s)ds(1−2p(τ)),

and for every s ∈ I∗0,np
which contains k 0’s and l 1’s, θF(s) = 2k3l

[
1 −2
2 −4

]
. The LPV-SSA Σ from Example 2.1

is a realization of F

We can show that there is a one-to-one correspondence between input-output maps admitting an IIR and sub-
Markov parameters. It turns out that any input-output map which is realizable by an LPV-SSA admits an IIR, and
the sub-Markov parameters can be expressed via the matrices of this LPV-SSA realization. More precisely, if an
LPV-SSA of the form (2.1) is a realization of the input-output map F, then F has an IIR such that for any p ∈P ,

(hF � p)(s, t) =Cp(t)Φp(t,s)Bp(s)

where Φp : {(t,τ) ∈ T×T | τ ≤ t}→ Rnx×nx is defined as follows. In discrete-time,

Φp(t,s) = A(p(t−1))A(p(t−2)) · · ·A(p(s+1)).
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In continuous-time,
Xp,s : [s,∞) 3 t 7→Φp(t,s)

is the unique absolutely continous matrix-valued function which satisfies

d
dt

Xp,s(t) = A(p(t))Xp,s(t), Xp,s(s) = In.

Note that sub-Markov parameters are closely related to generating Fliess-series used in non-linear systems
theory [126, 91], more specifically, the sub-Markov parameters play the role similar to generating series in the
Fliess-series expansion of the input-output function F. If say θi, j,F = 0 for i 6= 0 or j 6= 0, and we assume single
input, i.e., nu = 1, then existence of IIR means that the function which maps the restriction of p to (δ , t) to
(hF � p)(δ , t) has a Fliess-series expansion with θ0,0,F being the corresponding generating series. In general
case, θi, j,Fpi(t)p j(δ ) can be viewed as the generating series of the Fliess-series expansion of the (i, j)th entry of
(hF� p)(δ , t). Just like in the case of generating series for Fliess-series expansion, it turns out that the sub-Markov
parameters uniquely determine the corresponding input-output function. In fact, the existence of an LPV-SSA
realizing an input-output function can be shown to be equivalent to the sub-Markov parameters being of a certain
form, as explained below.

Lemma 2.1 (Existence of the IIR, [216]). The LPV-SSA Σ of the form (2.1) is a realization of an input-output
map F, if and only if F has an IIR and for all i, j ∈ {0,1,2, . . . ,np}, s ∈ {0,1,2,np}∗,

θi, j,F(s) =CiAsB j , (2.14)

where As is defined as in Notation 2.1, Section 2.2, i.e. for s = ε , As is the identity matrix, and for s = s1s2 · · ·sn,
s1, . . . ,sn ∈ {0,1, . . . ,np}, n > 0, As = AsnAsn−1 · · ·As1 .

The lemma above allows us to formulate a link between sub-Markov parameters of LPV-SSAs and generalized
Markov parameters of linear switched systems. Let us consider the LSS S(Σ) associated with the LPV-SSA Σ

and let us recall from [202, 203, 219, 209, 205] or Appendix B the notion of generalized Markov parameters of the
input-output function of S(Σ) induced by the initial state zero. In fact, (2.14) means that sub-Markov parameters
of the input-output map of an LPV-SSA Σ correspond to the Markov parameters of the input-output map of the
associated LSS S(Σ). This allows to relate the problem of existence of a LPV-SSA realization with the problem
of existence of a LSS realization of a certain associated input-output function which acts on switching signals
instead of scheduling signals. Moreover, using the correspondence between generalized Markov parameters
of input-output functions of LSSs and sub-Markov parameters we can formulate Ho-Kalman-like realization
algorithms similar to those described in [202, 203, 219, 209, 205].

More precisely, we can define the switched input-output function S(F) associated with F as follows. Let
Q = {0,1, . . . ,np} be the set of discrete modes, let σ : T→ Q be a switching signal and let u ∈ U be a control
input. For continuous-time, assume that for any q ∈ Q, σ−1(q) is either an empty set or an interval of the form
[s,τ), s < τ , s,τ ∈ T. The define S(F)(u, p) = y as follows:

y(t) =

{
∑

t−1
j=0 θσ(t),σ( j)),F(σ j+1 · · ·σt−1)u( j) discrete-time

∑
k
i=0
∫ Ti

0 Gqk···qi(Ti−Ti−1− s,Ti+1−Ti, . . . ,Tk−Tk−1)u(s+Ti) continuous-time
(2.15)

where in continuous-time, σ(s) = qi for s ∈ [Ti−1,Ti), 0 = T0 < T1 < · · ·< Tk−1 < Tk = t, and

Gqk,...,qi(τi, . . . ,τk) =
∞

∑
ji,..., jk=0

θqk,qi,F(q
ji
i · · ·q

jk
k )

k

∏
r=i

τ
ji

r

jr!
(2.16)

with ql stands for the sequences consisting of l copies of q, and q0 is the empty sequence. Note that the additional
requirements [216] on IIR means that the infinite sum in (2.16) is absolutely convergent. Using the terminology
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of [202, 203, 219, 209, 205], S(F) admits a generalized kernel representation and its Markov-parameters satisfy
SS(F)

i, j = θi, j,F for all i, j ∈ {0,1, . . . ,np}= Q. Note that since Markov parameters determine an input-output map
admitting a generalized kernel representation uniquely, S(F), if exists, is unique. Finally, the existence of S(F)
for discrete-time is obvious, and for continuous-time is proven in [216]. The LPV-SSA realizations of F and the
LSS realizations of S(F) are related as follows.

Theorem 2.4 ([216]). An LPV-SSA Σ is a realization of F, if and only if the associated LSS S(Σ) is a realization
of S(F). An LSS H is a realization of S(F) if and only if the associated LPV-SSA L(H) is a realization of F.

That is, existence of an LPV-SSA realization of the input-output map F is equivalent to existence of an LSS
realization of the associated switched input-output map S(F). This means that we can re-use the results of
[202, 203, 219, 209, 205] on existence of an LSS realization and to calculate an LPV-SSA realization.

For the sake of completeness, we state the results below. Define the Hankel-matrix of F as

HF =


θF(v1v1) θF(v2v1) · · · θF(vkv1) · · ·
θF(v1v2) θF(v2v2) · · · θF(vkv2) · · ·
θF(v1v3) θF(v2v3) · · · θF(vkv3) · · ·

...
... · · ·

... · · ·

 ,
where v1≺ v2≺ ·· · is the lexicographic ordering of {0,1, . . . ,np}∗, as defined in Definition 2.1 for X = {0,1, . . . ,np},
and θF : {0,1, . . . ,np}∗→ Rny×nu such that for all s ∈ {0,1, . . . ,np}∗,

θF(s) =


θ0,0,F(s) · · · θ0,np,F(s)
θ1,0,F(s) · · · θ1,np,F(s)

... · · ·
...

θnp,0,F(s) · · · θnp,np,F(s)

 . (2.17)

Note that θF(s) coincides with the matrix which is obtained from the Markov-parameter MS(F)(s) of S(F) as
defined in [205, eq. (3.14)] by removing the first column of MS(F)(s), if we identify q ∈Q with the integer q+1,
for all q ∈ Q. Alternatively, θF coincides with the matrix MS(F)(s) defined in (B.9) of Appendix B. Note that
the latter column has all zero elements, as it corresponds to the effect of the initial state, and the latter is zero
in out setting. Hence, the Hankel-matrix HF equals the Hankel-matrix HS(F) of the associated switched input-
output map S(F) as defined in [205, Definition 26], after removing the all zero columns which arise from the first
column of MS(F). Alternatively, HF coincides with the the matrix HS(F as defined in Definition B.2 of Appendix
B. Then using [205, Theorem 3] (Theorem B.3 of Appendix B), and the one-to-one correspondence between LSS
realizations of S(F) we can state the following characterization of existence of a LPV-SSA realization.

Theorem 2.5 (Existence of a realization [216]). An input-output map F has a LPV-SSA realization, if and only if
F has an IIR and rankHF = nF < ∞. Any minimal LPV-SSA realization of F has a state dimension which equals
nF.

In addition to existence results, the correspondence between LPV-SSAs and LSSs allows us to use realization
algorithms for LSSs for LPV-SSAs. This will be discussed in the next section.

2.7 Ho-Kalman realization algorithms
The correspondence between LSSs and LPV-SSA also allows us to formulate Ho-Kalman-like algorithm for
computing a minimal LPV-SSA realization of an input-output map. in particular, [205, Algorithm 1] (see also
Algorithm 12 in Appendix B). More precisely, by reinterpreting the sub-Markov parameters of a potential input-
output function of a LPV-SSA as generalized Markov-parameters of the associated switched input-output func-
tion, we can compute a minimal LSS from a finite Hankel-like matrix constructed from sub-Markov parameters,
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as described in [205, Algorithm 1] or Algorithm 12 in Appendix B. We can then compute the LPV-SSA associ-
ated with the thus computed LSS. Moreover, we are able to analyze the correctness of the resulting realization
algorithm.

For the sake of completeness, and because we will use it in Chapter 5 we will present the realization algorithm
in details. More precisely, we can define the following finite sub-matrices HF,L,M of the Hankel-matrix

HF,L,M =


θF(v1v1) θF(v2v1) · · · θF(vN(M)v1)
θF(v1v2) θF(v2v2) · · · θF(vN(M)v2)

...
... · · ·

...
θF(v1vN(L)) θF(v2vN(L)) · · · θF(vN(M)vN(L))

 , (2.18)

where θF is the matrix of sub-Markov parameters defined in (2.17). Recall from Definition 2.1, Section 2.2 that
N(K) is the unique integer such that {v1, . . . ,vN(K)} is the set of all element of Q∗ of length at most K. Intuitively,
HF,L,M is the sub-matrix of HF, obtained by keeping the columns of HF indexed by words of length at most M and
keeping the rows indexed by words of length at most L. The matrix HF,L,M corresponds to the matrix HS(F),L,M
defined in (B.12) in Appendix B, or to the matrix defined in [205, eq. (3.17)] for f =S(F).

We are now ready to state the realization algorithm Algorithm 1 based on [205, Algorithm 1], or, alternatively,
Algorithm 12 of Appendix B. One way to compute the factorization HF,N,N+1 = OR in Algorithm 1 is as follows.

Algorithm 1 Realization algorithm
Inputs: an integer N > 0 and the Hankel-matrix HF,N,N+1.
Output: LPV-SSA ΣN

1: Compute a decomposition HF,N,N+1 = OR, where O ∈ RIN×n and R ∈ Rn×JN+1 and rank R = rank O = n,
IN = N(N)ny(np +1) and JN+1 = N(N +1)nu(np +1).

2: Consider the decomposition
R =

[
Cv1 , . . . , CvN(N+1)

]
,

such that Cvi ∈ Rn×((np+1)nu), i = 1,2, . . . ,N(N + 1), i.e. Cvi ∈ Rn×((np+1)nu), i = 1,2, . . . ,N(N + 1) are the
block columns of R. Define R,Rq ∈ Rn×JN , JN = N(N)nu(np +1), q ∈ Q as follows

R =
[
Cv1 , . . . , CvN(N)

]
, Rq =

[
Cv1q, . . . , CvN(N)q

]
.

Note that for any i ∈ {1, . . . ,N(N)} there exists j = j(i,q) ∈ {2, . . . ,N(N +1)} such that viq = v j, hence Rq
is well defined.

3: Return ΣN = (P,{Ai,Bi,Ci}
np
i=0 such that

•
[
B0, . . . ,Bnp

]
is formed by the first nu(np +1) columns of R

•
[
CT

0 , CT
2 , . . . , CT

np

]T
is the the first ny(np +1) rows of O

• Aq = RqR+, q = 0,1, . . . ,np, where R+ is the Moore-Penrose pseudo-inverse of R.

If rankHF,N,N+1 = n and HF,N,N+1 =USV is the SVD decomposition of HF,N,N+1 with S being the n×n diagonal
matrix, then define O =US1/2 and R = S1/2V .

The following theorem gives conditions under which the state-space representation returned by Algorithm 1
is a realization of the map F.

Theorem 2.6 ([216], correctness of Ho-Kalman algorithm Algorithm 1). If rankHF,N,N = rankHF, then Algorithm
1 returns a minimal realization of F. The condition rankHF,N,N = rankHF holds for a given N, if there exists a
LPV-SSA realization Σ of F such that dimΣ≤ N +1.
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The procedure outlined above is a variation of the Ho-Kalman-like realization algorithm described in [275],
and hence the discussion above gives sufficient conditions for the correctness of the realization algorithm in [275].
A detailed presentation of the realization procedure described above and the corresponding correctness analysis
can be found in [216].

Note that sub-Markov parameters can be computed from the responses of F, in fact, from input-output data,
see [66] and Chapter 5. This then suggests that the realization algorithm Algorithm 1 could be used for system
identification, by applying it to sub-Markov parameters based on data. This approach will be discussed in Chapter
5 and it was explored in [66]. One of the challenges with this approach is the choice of the integer N: Theorem
2.6 suggests that in Algorithm 1 the integer N should be chosen to be larger than or equal to the dimension of a
LPV-SSA realization of F. However, this latter choice results in an algorithm which scales badly with the size of
systems, HF,N,N+1 grows exponentially with N.

In order to address the problem above, and because it is interesting on its own right and it has other appli-
cations, below we present a modification of Algorithm 1 which uses the notion of selections. Selections play an
important role in the application of realization theory to model reduction and system identification, but also in the
study of geometry and topology of spaces of systems [214]. We will present only the SISO case (nu = ny = 1),
the full MIMO case was discussed in [214, 30] for LSSs and in [66] for LPV-SSAs.

We will call any subset α ⊆ Q∗×Q, where Q = {0,1, . . . ,np}, a selection. Finite selections will be used to
define Hankel-like matrices, entries of which are Markov parameters.

Assume that α and β are selection respectively and assume that α and β are both finite sets of cardinality n
and l respectively. Fix a enumeration of the elements of α and β as follows.

α = {(ui,qi)}n
i=1, β = {(v j,σ j)}l

j=1, (2.19)

Let us now define the matrix HF,α,β ∈ Rn×l as follows:

HF,α,β =


θq1,σ1,F(v1u1) θq1,σ2,F(v2u1) · · · θq1,σl ,F(vlu1)
θq2,σ1,F(v1u2) θq2,σ2,F(v2u2) · · · θq2,σl ,F(vlu2)

...
... · · ·

...
θqn,σ1,F(v1un) θqn,σ2,F(v2un) · · · θqn,σl ,F(vlun)

 (2.20)

If α,β has the same cardinality, then the matrix HF,α,β is a square one. Intuitively, the rows of HF,α,β are indexed
the elements of α , and the columns by the elements of β .

In order to present the algorithm, we define the matrices Hq,F,α,β ∈ Rn×l , HF,α,q ∈ Rn×1 and Hq,F,β ∈ R1×n:

Hq,F,α,β =


θq1,σ1,F(v1qu1) θq1,σ2,F(v2qu1) · · · θq1,σl ,F(vlqu1)
θq2,σ1,F(v1qu2) θq2,σ2,F(v2qu2) · · · θq2,σl ,F(vlqu2)

...
... · · ·

...
θqn,σ1,F(v1qun) θqn,σ2,F(v2qun) · · · θqn,σl ,F(vlqun)

 (2.21)

HF,α,q =
[
θq1,q,F(u1) θq2,q,F(u2) . . . θqn,q,F(un)

]T (2.22)

Hq,F,β =
[
θq,σ1,F(v1) θq,σ2,F(v2) . . . θq,σl ,F(vl)

]
(2.23)

Algorithm 2 Realization algorithm for LPV-SSA with selections

1: Consider the factorization HF,α,β = OnmRnm such that Onm is full column rank, Rnm is full row rank and
rank On = rank Rn = nm.

2: Define Âq = O+
nmHq,F,α,β R+

nm , B̂q = O+
nmHF,α,q, Ĉq = Hq,F,β R+

nm , where O+
nm ,R

+
nm is the Moore-Penrose in-

verse of On and Rn respectively.
3: Return Σ̂ = (P,{(Âi, B̂i,Ĉi)}

np
i=0).
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The algorithm above can be shown to be correct, i.e., to result in an LPV-SSA realization of F, under suitable
hypotheses.

Lemma 2.2 (Adapted from [66], correctness of the realization algorithm with selections from Algorithm 2). If nm
is the dimension of a minimal LPV-SSA realization of F, then the LPV-SSA Σ̂ defined in Algorithm 2 is a minimal
realization of F. Moreover, if nm is the dimension of a minimal F realization of f , then there exists a pair of
selections α,β ⊆ Q∗×Q such that the cardinality of the sets α,β is nm and rank HF,α,β = nm.

From [219] and the correspondence between LPV-SSAs and LSSsit follows that we can choose αN = βN =
{(v,q) | v ∈ Q∗, |v| ≤ N,q ∈ Q}, where N is any integer not smaller than the dimension of a minimal LPV-SSA
realization of F. Note that the number of elements of α and β can be chosen as the dimension of the supposed
LPV-SSA realization of the input-output function. This is the main advantage of Algorithm 2 in comparison
with Algorithm 1. More precisely, the number of sub-Markov parameters which are necessary for Algorithm
1 grows exponentially with the integer N, and the latter integer is chosen based on the supposed dimension of
a LPV-SSA realization of the input-output function at hand. In contrast, Algorithm 2 requires n sub-Markov
parameters, where n is the supposed dimension of a LPV-SSA realization of the input-output function. This
means that Algorithm 2 scales well with the size of the underlying system. Moreover, it is more practical for
system identification algorithm, as it requires the estimation of a smaller number of sub-Markov parameters.
These issues were discussed in [66] and will briefly be reviewed in Chapter 5.

Note that Algorithm 2 can also be adapted to LSSs, by using the relationship between LSSs and LPV-SSAs.
This adaptation is presented in Algorithm 13 in Appendix B.

2.8 Conclusions
I have presented a brief overview of my contribution to realization theory of LPV systems. More precisely, I
have presented a complete realization theory for LPV-SSAs, which mirrors the results for LTI, bilinear [126] and
switched linear systems [219, 203]. The results of this chapter turned out to be useful for model reduction and
system identification [5, 7, 65, 66, 28], presented in Chapter 4 – 5. Future work will be directed towards extending
the results to the behavioral setting [304] and to LFT/LFR systems [5, 33, 32].
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Chapter 3

Realization theory of stochastic bilinear
systems

3.1 Introduction
In this chapter, we discuss realization theory for a class of stochastic bilinear systems. This class includes sub-
classes of jump-linear system with stochastic switching, autonomous stochastic LPV systems and stochastic bi-
linear systems with white noise input. In contrast to previous chapters, where we were looking for representations
of input-output maps, in this chapter we are interested in representations of discrete-time stochastic processes.

More precisely, we will introduce the class of generalized bilinear systems (GBS for short). Roughly speak-
ing, a GBS is a discrete-time system bilinear system equipped with an additive noise term. The motivation for
GBSs is that they include stochastic bilinear, LPV and jump-Markov systems as special cases.

The results of this chapter are similar in spirit to those of stochastic realization theory for linear systems and
they appeared in [226]. More specifically, we provide a necessary and sufficient condition for processes to have a
realization by a GBS in terms a finite rank condition for the Hankel-matrix defined for this process. We also give
a characterization of minimal GBSs in terms of rank conditions for their reachability and observability matrices,
and we show that any two minimal realizations of the same output and inputs are related by a linear isomorphism,
if both these realizations are in the so called forward innovation form. We show that any GBS realization of a
given process can be converted to a minimal one in forward innovation form. We present a realization algorithm
for computing a minimal GBS realization from the covariances of the output process.

The results of this chapter use realization theory of LSSs, or which is equivalent, from realization theory of
recognizable formal power series/bilinear systems. The latter was used [226], but for the sake of consistency, we
prefer to use realization theory of LSSs, which, in our opinion, is also more intuitive.

Realization theory for stochastic bilinear systems was addressed [73, 92, 270, 271, 235]. However, [73]
addresses only the weak realization problem, it presents only sufficient conditions for existence of a weak re-
alization, and it considers only bilinear systems whose inputs are white noise stochastically independent of the
noise process of the system. Moreover, [73] skips a lot of mathematical details, including the proof of correctness
of the realization algorithm. Hence, the contribution of this chapter is new even for the class of systems from
[73]. As to [92, 235], they concentrate on the weak realization problem for infinite dimensional bilinear systems,
but they do not address the finite-dimensional case, the strong realization problem or minimality. In [270, 271],
the strong realization problem was addressed for a special class for bilinear systems with known noise.

There exist a number of papers on identification of bilinear systems, see e.g., [62, 86, 287, 288, 76]. However,
all these papers study the identification problem and not the realization problem. Our results will be useful for
analyzing consistency of subspace identification algorithms for bilinear and LPV systems. For example, our result
on isomorphism of minimal realizations provides sufficient conditions for the well-posedness of the identification
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problem studied in the cited papers. Indeed, note that all the cited papers use try to estimate the state of a time-
varying Kalman filter of the bilinear system. In this chapter we show that any GBS can be transformed to a
minimal GBS in forward innovation form, whose stationary Kalman-filter is the system itself. This provides a
theoretical justification for assuming that it is sufficient to estimate the state of the Kalman-filter. The results
on minimality help us to establish that it is sufficient to work with minimal GBSs, and that all minimal GBS
realization of the same output and input processes are isomorphic in some sense, i.e. it is sufficient to find a GBS
system matching the output and inputs up to a similarity transformation. This also opens up the possibility to
characterize the geometry and topology of the space of minimal GBSs, like it was done in [199, 115]. This is
important when trying to show consistency of the algorithms [62, 86, 287, 288, 76].

Outline of the chapter The chapter is organized as follows. In Section 3.2 we present an informal description
of the class of GBSs and we define the realization problem for GBSs. We also explain the relationship between
GBSs and stochastic bilinear systems, jump-Markov linear systems and LPV systems. In Section 3.3 we present
an informal description of the solution to the stochastic realization problem. In Section 3.4 we present the formal
problem formulation. In Section 3.5 we present our solution to the GBS realization problem as well as appli-
cations to several classes of systems. In Section 3.7 we discuss some consequences of the results of Section
3.5 for system identification. In particular, we address the existence of a realization in forward innovation form
and its relationship with filtering. In addition, we show that that under mild assumptions the solution to the
strong realization problem (Problem 3.1) implies finding a state-space representation of the input-output relation
{µq}q∈Q 7→ y.

3.2 Informal definition of GBSs, problem formulation, preliminaries

We start by introducing informally the class of systems considered. Let Q be a finite set. Consider a collection
{µq}q∈Q of R-valued stochastic processes, i.e. for each q ∈ Q, µq is a R valued stochastic process. We will call
the stochastic processes µq, q∈Q input processes. A generalized bilinear system (GBS) with respect to {µq}q∈Q
is a system of the form

G


x(t +1) = ∑

q∈Q
(Aqx(t)+Kqv(t))µq(t)

ỹ(t) =Cx(t)+Dv(t).
(3.1)

where Aq ∈ Rn×n, Kq ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m are the system matrices, ỹ, x, v are stochastic processes
taking values in Rp, Rn and Rm respectively, We call x the state process, ỹ the output process, v the noise process,
and {µq}q∈Q the collection input processes of G . We will identify G with the tuple

G = (n, p,m,Q,x,v,{µq}q∈Q, ỹ,C,D,{Aq,Kq}q∈Q) (3.2)

The integer n is called the dimension of G .

Subclasses of GBSs: stochastic bilinear systems, jump-Markov linear systems, stochastic LPV systems
As it was pointed out above, the motivation for studying the realization problem for GBSs is that they include
stochastic bilinear, LPV and jump-Markov systems.

In particular, if Q = {0,1, . . . ,d}, µ0 = 1, then GBSs are stochastic bilinear systems from [73, 92, 270, 271,
62, 86, 287, 288, 76] or autonomous LPV systems, if we identify µq, q ∈ Q with the scheduling parameter. In
this case, (3.1) becomes

x(t +1) = A(µ(t))x(t)+K(µ(t))v(t))
ỹ(t) =Cx(t)+Dv(t).

(3.3)
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where µ(t) = (µ1(t), . . . ,µd(t))T and A(µ(t)) = A0 +∑
d
i=1 Aiµ(t), K(µ(t)) = K0 +∑

d
i=1 Kiµi(t). In this case, it

is usually assumed that {µi}d
i=1 are zero mean white noise processes which are mutually uncorrelated.

Jump-Markov linear systems (switched systems with stochastic switching) can be encoded by GBSs as fol-
lows. Consider a jump-Markov linear system without input [64] of the form

x(t +1) = Mθ(t)x(t)+Bθ(t)v(t)

ỹ(t) =Cx(t)+Dv(t)
(3.4)

where x is the state process, ỹ is the output process, v(t) is the noise process, and θ is the switching processes
taking values in a finite set Θ, and Mq,Bq, q ∈Θ, C,D are matrices of appropriate dimension. Assume θ is taking
its values in a finite set Θ. Two cases should be distinguished. The first one is when θ(t) are independent and
identically distributed (i.i.d for short). In this case, we can take Q = Θ and µq(t) = χ(θ(t) = q), where χ is the
indicator function, i.e., χ(A) equals 1 when A holds, and it is zero otherwise, and Aq = Mq, Kq = Bq. With this
identification, (3.4) becomes (3.1).

The second case is when θ is a stationary and ergodic Markov process whose state space is the finite set Θ,
and with transition probabilities P(θ(t) = q2 | θ(t−1) = q1) = p(q2,q1) > 0, q1,q2 ∈ Θ. Let us take Q = Θ×Θ,
µ(q2,q1)(t) = χ(θ(t + 1) = q2,θ(t) = q1) for all q1,q2 ∈ Θ, t ∈ Z. In this case, let us define A(q2,q1) = Mq1 ,
K(q2,q1) = Bq1 and then (3.4) becomes (3.1). Note that is in this case the GBS which is derived from the jump-
Markov linear system differs from the original one in the sense that its system matrices in the state update equation
could depend not only on the current discrete state, but also on the next one. This is not the case for the GBS
obtained directly from the jump-Markov linear system, but it might be the case when the latter GBS is transformed
to say a minimal one. This technical issue does not effect the realization problem for jump-Markov linear systems,
see Subsection 3.6.4 later in the chapter.

The framework of GBSalso allows to combine stochastic bilinear systems with jump-Markov systems, and
deal with stochastic switched bilinear/LPV systems with Markovian switching [226].

To sum up, GBSs contain as special cases many widely used system classes. Note that the examples discussed
above involved mostly systems without control inputs. This is especially the case for LPV and jump-Markov
linear systems. However, in many cases,a stochastic systems with control input can be represented as a parallel
interconnection of a deterministic and an autonomous stochastic system. The deterministic part depends only on
the control input but not the noise, and the stochastic part depends only on the noise but not on the control input.
The realization problem then can be solved by solving the realization problem for the deterministic and stochastic
parts separately. For stochastic LPV systems this decomposition was worked out in [173]. We believe that a
similar approach will work for other relevant system classes as well. In particular, this hypothesis means that the
main bottleneck towards developing realization theory for stochastic systems is solving the realization problem
for systems without control inputs. The general case then follows by combining the solution for stochastic
autonomous systems with that of for deterministic systems.

The realization problem for GBSs. In this chapter we will be interested in realization theory of GBSs, hence
we should define what we mean by a realization by a GBS.

Definition 3.1 (Realization by GBS). A GBS G w.r.t. {µq}q∈Q is said to be a realization of the stochastic
processes y if output process of G equals y. That is, if G is of the form (3.2), then G is a realization of y, if ỹ = y.

In this chapter we will be interested in existence of a GBS realizations of a process and characterization of
minimal dimensional GBS realizations.

Some remarks are in order. Note that the choice of the input processes may play a role in existence of a GBS
realization. More precisely, let {µ̂q}q∈Q another collection of input processes. In principle, it may happen that a
process y has a realization by a GBS w.r.t. {µ̂q}q∈Q, but there exists no GBS w.r.t. {µq}q∈Q. It may also happen,
that a GBS w.r.t. {µ̂q}q∈Q is minimal dimensional among all those GBSs w.r.t. {µ̂q}q∈Q which are realizations
of y, but there exist a GBSw.r.t. {µq}q∈Q which is a realization of y and which has a smaller dimension. That
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is, strictly speaking, we whenever we speak of a GBS realization of y, we should indicate the input processes of
that GBS. However, such an approach would make the presentation cumbersome. For the ease of discussion, in
the sequel, unless stated otherwise, the input process {µq}q∈Q will be fixed, and by a GBS we will always mean a
GBS with respect to {µq}q∈Q. In particular, by a GBS realization of y we will always mean a GBS w.r.t. {µq}q∈Q
which is a realization of y. Moreover, by a minimal dimensional (or simply minimal) GBS realization of y we
mean a GBS w.r.t. {µq}q∈Q which is a realization of y and dimension of which is not larger than the dimension
of any other GBS w.r.t. {µq}q∈Q which is a realization of y. In this chapter, we consider the following realization
problem.

Problem 3.1 (Strong realization problem for GBSs). Given a process y find conditions for existence of a GBS
G which is a realization of y, as well as conditions for a GBS to be a minimal dimensional realization of y.
Formulate algorithms for computing a minimal dimensional GBS realization of y.

The proposed problem is a direct counterpart of the well known strong realization problem for linear stochas-
tic systems [147, 163, 162]. Similarly to linear systems [147, 163, 162], we can also formulate the concept of a
weak realization for GBS. Informally, a GBS G is a weak realization of y, if certain covariances of the output of
G equal the corresponding covariances of y. The weak realization problem is to find conditions for existence and
minimality of a weak realization of a process y and formulate algorithms for computing a minimal dimensional
weak realization of y. Clearly, if G is a realization of y, then it is also a weak realization of y. Hence, a solution
of Problem 3.1 also solves the weak realization problem. We refer the reader to [226] for details on the weak
realization problem for GBSs.

Note that the realization problem of Problem 3.1 is different from the realization problem for deterministic
systems which have been discussed so far. In Problem 3.1, we fix the input processes {µq}q∈Q, and we are
interested in GBSs which are driven by these fixed inputs, and whose output is y. This is consistent with the
traditional formulation of the realization problem for stochastic systems with inputs [147, 163], but it is different
from deterministic realization problem, where a state-space representation of an input-output relation {µq}Q 7→ y
is sought after. Note that from the point of view of system identification, the problem formulation with a fixed
input is the most natural one. Indeed, in system identification, only the response of the system to one particular
input is known. Therefore, in system identification, constructing a state-space representation and a noise process
which is consistent with an input and an output process is the best we can do. The general relationship between
these two problems is still open even for linear systems, and for this reason we will not attempt to explore it
for GBSs. However, for certain classes of GBSs, they are equivalent.More precisely, since minimal GBSs in
forward innovation form realizing the same process will be shown to be isomorphic, so this system class the two
formulations are closely related: if two such systems yield the same output process for some input (satisfying
certain properties), they will yield the same output process for any other input. In particular, the assumption that
the input is stochastic and it satisfies some technical properties is analogous to persistence of excitation: in order
to be able to reconstruct a state-space representation of a system, we need the knowledge of the input-output
behavior for sufficiently rich input signals. Once the state-space representation is found, it remains valid for any
other input signal. We will elaborate on in it Section 3.7.

Notation and terminology Throughout the chapter, we use the standard terminology and notation of probabil-
ity theory, see [43]. Throughout the chapter, we fix a probability space (Ω,F ,P) (F is a σ -algebra over Ω, and P
is a probability measure on F ). All the random variables and stochastic processes should be understood with re-
spect to this probability space. Moreover, all the stochastic processes considered in this chapter are discrete-time
processes with the time axis Z, where Z is the set of integers. We denote the expectation of a random variable z
by E[z]. We denote the conditional expectation of z w.r.t. to a q-algebra G by E[z | G ].
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3.3 Informal description of the solution: relationship between GBSs and
linear switched systems.

The basic idea is to relate the realization problem for GBSs with the realization problem for linear switched
systems (abbreviated by LSS in the sequel). We will use the terminology of [202, 203, 219, 209, 205] when
discussing LSSs, see Appendix B for an overview.

More precisely, recall from [57, 163, 147] that there is a correspondence between stochastic LTI state-space
representations of y and deterministic LTI state-space representations of deterministic input-output maps f y. This
correspondence is such that the Markov parameters of f y are covariances E[y(t + k)yT (t)] of y. Moreover, this
correspondence preserves minimality. We extend this idea to GBSs by establishing a correspondence between
GBSs realizations of y and LSS realizations of a deterministic input-output map f y. Similarly to the linear case,
the Markov-parameters of f y will be equal to certain covariances of y and {µq}q∈Q. Below we present the basic
steps, without discussing the assumptions which are necessary to make those steps mathematically well posed.
That latter will be done in subsequent sections.

As the first step, we will argue that if y has a realization by an GBSs G of the form (3.2), then the covariance
matrices Λ

y
w, w = q1 · · ·qk ∈ Q, k ≥ 1, defined below

Λ
y
q1···qk

=
1√

p(µq1) · · ·p(µqk)
E[y(t)yT (t− k)µq1(t− k) · · ·µqk(t−1)], (3.5)

correspond to the Markov parameters of a LSS

ΣG

z(t +1) =
(√

p(µq)Aq(t)

)
z(t)+Bq(t)w(t)

y(t) =Cz(t)
(3.6)

which we will call the LSS associated with G . Here q(t) takes values in Q. The number p(µq) from (3.5)
are suitable numbers defined uniquely by the process {µq}q∈Q. For example, {µq}q∈Q are i.i.d. processes, then
typically p(µq) =E[µ2

q(t)]. If Q=Θ×Θ, µ(q2,q1)(t) = χ(θ(t+1) = q2,θ(t) = q1) for all q1,q2 ∈Θ, t ∈Z, where
θ(t) is an ergodic Markov process taking values in a finite set Θ, then p(µ(q1,q2)) is the transition probability of
Θ.

The matrices Bq of (3.6) are defined as follows:

∀q ∈ Q : Bq =
1√

p(µq)
(AqPqCT +KqQqDT ) (3.7)

where {Pq = E[x(t)xT (t)µ2
q(t)]}q∈Q is the unique collection of positive semi-definite matrices {Pq}q∈Q which

satisfy the Lyapunov-like equation

Pq = p(µq) ∑
q1∈Q,q1q∈L

(Aq1Pq1AT
q1
+Kq1Qq1KT

q1
), (3.8)

where Qq1 = E[v(t)vT (t)µ2
q1
(t)], q1 ∈ Q. In this case,

−
Λ

y
qw =CAwBq

√
p(µw),

E[y(t)yT (t)µ2
q(t)] = (CPqCT +CQqDT )

(3.9)

for all q ∈ Q, w ∈ Q∗, where p(µε) = 1 and p(µq1···qk) = p(µq1)p(µq2) · · ·p(µqk) for all q1, . . . ,qk ∈ Q.
We can also relate potential input-output maps of deterministic LSS with covariances of y. More precisely,

let us define the input-output map f y : U ×Q→ Y , where U = (Rp)N, Q = QN, (Y = Rp)N, i.e., U ,Q,Y
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are the sets of all functions from the set of natural numbers N to the sets Rp,Q and Rp respectively. Note that U
and Y coincide in our case, however, we prefer to denote them by different symbols as they represent the space
of continuous input and output spaces of the input-output map f y. The input-output map f y is defined as follows:
for all u ∈U , σ ∈Q:

f y(u,σ(t) =
t−1

∑
i=0

Λ
y
σ(i)···σ(t−1)u(i). (3.10)

We will call f y the input-output map associated with y. Let us recall from [202, 203, 219, 209, 205] or Appendix
B the notion of generalized Markov parameters of the input-output function. From the definition of Markov-
parameter M f y

and S f y
q1,q2 [209, Definition 11,eq. (7)] or Appendix B.5 1 of input-output maps it follows that

S f y
q1,q2

(v) = Λ
y
q2v

That is, a GBS is a realization of y, if the associated LSS is a realization of the input-output map f y associated
with y.

The attentive reader might have noticed that the definitions above are well-posed only if suitable technical
assumptions are made G . In particular, we have to make sure that the right-hand side of (3.5) does not depend
on t, that E[y(t)yT (t)µ2

q(t)], Qq = E[v(t)vT (t)µ2
q(t)], and Pq = E[x(t)xT (t)µ2

q(t)], do not depend on t, and that
(3.8) has a unique solution which equals {Pq}q∈Q. Later on in the chapter we will introduce these technical as-
sumptions. The input processes {µq}q∈Q which satisfy these assumption will be called admissible, the processes
y,x,v will be called ZMWSSI with respect to {µq}q∈Q, and the GBSs with input processes {µq}q∈Q satisfying
these technical assumptions will be called stationary GBSs.

Next, we show that we can construct a GBS realization of y from a LSS realization of the associated input-
output map f y. By looking at the equations (3.9) it is clear that if we find a LSS realization Σ of f y, then the
matrices C and Aq of the GBS will be the same as those of Σ. The difficulty is to define the noise gain Kq and the
noise process v of the GBS. Since we have only y at our disposal, we have to define v as some function of y. We
will define v as the innovation process e of y with respect to {µq}q∈Q: e(t) = y(t)− ŷ(t), where ŷ(t) is the element
of the the closure of linear space generated by the random variables of the form y(t− k)µq1(t− k) · · ·µqk(t−1),
q1, . . . ,qk ∈ Q, k ≥ 1 such that E[‖y(t)− ŷ(t)‖2

2] is minimal. By closure we mean closure in the topology of
mean-square integrable random variables. We will present the precise definition later on. It suffices to note that
e(t) is well defined if y is a ZMWSSI process with respect to {µq}q∈Q (the notion of ZMWSSI processes will
be defined later). The definition of e(t) is similar to the classical definition of the innovation process for linear
systems: however, instead of looking at the difference of y(t) and its best linear prediction with respect to past
outputs, we define e(t) as the difference between y(t) and the best linear prediction of y(t) based on products of
past inputs and outputs. We will say that a stationary GBS G of the form (3.2) is in forward innovation form, if
its noise process v is the innovation process e of its output ŷ with respect to its input processes {µq}q∈Q and D is
the identity matrix.

Let Σ be a minimal LSS realization of f y of the form

Σ

{
x(t +1) = Āσ(t)x(t)+ B̄σ(t)u(t)

y(t) = C̄σ(t)x(t)
, (3.11)

where σ(t) ∈ Q is the switching signal, x(t),u(t),y(t) are the state, input and output signals of the LSS Σ respec-
tively.

By renaming the elements of Q, without loss of generality, we can assume that Q = {1, . . . ,D}. Recall from
[205, Definition 23] the definition of the observability matrix O(Σ) of Σ,

O(Σ) =
[
(C̃Āv1)

T , (C̃Āv2)
T , . . . , (C̃ĀvN(n−1))

T
]T
∈ RpDN(n−1)×n. (3.12)

1In the notation of [209], S f y
q1 ,q2 (v) corresponds to Sy f

(q2vq1)
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with C̃ =
[
C̄1, C̄T

2 , . . . , C̄T
D
]T ∈ RpD×n. We used the ordered enumeration v1,v2, . . . , defined in Definition

2.1, and the integer N(n− 1) is defined after Definition 2.1. Since Σ is minimal, it is span-reachable from the
zero initial state and observable. It can be shown that necessarily C̄q = C̄ due to span-reachability of Σ. Let us
consider the following sub-matrix of the observability matrix O(Σ):

Ô(Σ) =
[
(C̄Āv1)

T , (C̄Āv2)
T , . . . , (C̄ĀvN(n−1))

T
]T
∈ RpDN(n−1)×n. (3.13)

Note that the rank of Ô(Σ) is the same as the rank of O(Σ), since their row-spaces are the same. Since Σ is
observable and its observability matrix is full column rank, hence Ô(Σ) is also full column rank. Thus Ô(Σ) has
a left inverse. Let Yn(t) be formed by the products of future outputs and inputs:

Yn(t) =
[
(zy+

v1 (t))T , (zy+
v2 (t))T . . . (zy+

vN(n−1)(t))
T
]T

, (3.14)

with zy+
v1 (t) = zy+

ε (t) = yT (t) and zy+
vi , i > 1 is as defined in (3.15). We used the ordered enumeration v1,v2, . . . ,

and integer N(n−1) defined after Definition 2.1, where

zy+
ε (t) = y(t), zy+

q1···qk
(t) = y(t + k)

k

∏
i=1

µqi(t + k− i)√
p(µqi)

. (3.15)

Intuitively, the random zy+
w (t) represents the product of future outputs with past inputs.

Let x(t) be the element of the closure of the linear space generated by y(t − k)µq1(t − k) · · ·µqk(t − 1),
q1, . . . ,qk ∈Q, k≥ 1 such that E[‖Ô−1(Σ)Yn(t)−x(t)‖2

2] is minimal, i.e., x(t) is the orthogonal projection (in the
sense to be defined later) of the product of future outputs and inputs to the linear space generated by the products
of past outputs and inputs.

For each q ∈ Q, define a matrix Kq ∈ Rn×p such that

Kq = (Bq

√
p(µq)−

1√
p(µq)

AqPqCT )Q−1
q , (3.16)

Pq = E[x(t)xT (t)µ2
q(t)], and

Qq = (E[y(t)yT (t)µ2
q(t)]−CPqCT ) = E[e(t)e(t)µ2

q(t)]. (3.17)

Define the GBS
GΣ=(n, p, p,Q,x,e,{µq}q∈Q,y,C, Ip,{

1√
p(µq)

Aq,Kq}q∈Q). (3.18)

The GBS GΣ is called the GBS associated with the LSS Σ. Note that GΣ is in forward innovation form, and its
state is the projection of products of future outputs with inputs on the products of past outputs with inputs.

Note that the transition from GBSs to LSS and back preserves dimension and the state-space. Hence, min-
imality of GBSs is equivalent to minimality of the corresponding LSSs. Hence, we can use [209, Theorem 1]
(alternatively Theorem B.1 of Appendix B) to characterize minimality of GBSs. In general, minimal GBSs re-
alizations of the same output and input processes y will not be isomorphic, although their LSSsis. The reason
behind it is that different GBSs realizations with the same matrices C,Aq but different noises and noise gain ma-
trices may yield the same associated LSS. However, if we fix the noise process to be the innovation process of y,
then this source of freedom in the choice of GBS realizations disappears. In fact, it can be shown that all minimal
GBS realizations of y in forward innovation form are isomorphic. This situation parallels that of for stochastic
linear systems described in [57, 163, 147].

In addition, existence of a GBS realization of y is equivalent to existence of a LSS realization of the associated
input-output map f y. In turn, the latter can be characterized by a finite rank condition of the Hankel-matrix of f y,
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see [209, Theorem 2], Theorem B.3 of Appendix B. Note that this Hankel-matrix can be constructed from the
covariances Λ

y
w. In fact, by using [209, Algorithm 1] or the adaptation of the reduced-basis realization algorithm

from [66], we can compute a minimal LSS realization Σ of f y from finitely many covariances Λ
y
w. In turn,we can

compute from Σ the associated GBS realization GΣ of y, which will be minimal and in forward innovation form.
In this way we obtain a counterpart of the covariance realization algorithm for linear systems, see [57, 163, 147].
That is, a minimal GBS realization of y in forward innovation form can be computed from a finite number of
covariances of y and {µq}q∈Q.

Note that in the discussion above we could have used LPV-SSAs instead of LSSs, as these two system classes
are closely related, see Section 2.4. Indeed, assume that Q = {1, . . . ,D}. We can then identify the LSS (3.6) with
the LPV-SSA (RD,{

√
p(µq)Ai,Bi,Ci}D

i=0), where A0 = B0 = 0, C0 = 0, Ci = C, i ∈ Q. Conversely, we can use
the LPV-SSA (RD,{Āi, B̄i,C̄i}D

i=0), with Ā0 = 0, B̄0 = 0, C̄0 = 0, C̄i = C̄, i ∈ Q instead of (3.11) and adapt the
discussion accordingly. Which formalism is used, LSSs or LPV-SSA is largely matter of taste. In this chapter we
prefer to stick to LSSs, as the latter formalism seems more natural to us.

3.4 Mathematical framework
In order for the realization problem to be meaningful, a number of assumptions have to be made on the input and
output processes and GBSs. In this section we will present these assumptions.

We denote by H1 the Hilbert-space of square integrable real valued random variables with the scalar product
〈z,x〉= E[zx].

Definition 3.2 (ZMSI). A stochastic process z is called zero mean and square integrable (abbreviated by ZMSI),
if E[z(t)] = 0 and E[zT (t)z(t)]<+∞.

Recall that a process z is wide sense stationary, if for every s, t,k ∈ Z, the expectations E[z(t + k)zT (s+ k)],
E[z(t +k)] exist and their value is independent of k. In the sequel, we use the notation and terminology regarding
finite sequences of elements of Q introduced in Section 2.2.

In the sequel, we will be interested in GBSs input processes of which are admissible [226]. For the formal
definition, we refer to [226]. For the purposes of this chapter, it is sufficient to know that if a collection {µq}q∈Q is
admissible, then the following holds. For each word w ∈Q+ of the form w = q1q2 · · ·qk ∈Q+, k≥ 1, q1, . . . ,qk ∈
Q, define the process µw as

∀t ∈ Z : µw(t) = µq1(t− k+1)µq2(t− k+2) · · ·µqk(t). (3.19)

• there exists a set L⊆ Q+, such that µw = 0 for all w /∈ L,

• for each w,v ∈ Q+, the process
[
µw,µv

]T is wide-sense stationary,

• the linear span of {µq}q∈Q contains the constant 1 random variable, and

• there exists a set L⊆Q+, such that the conditional expectation of µvq(t)µwq′ (t) with respect to past values

{µq(s)}s<t is either zero if q 6= q
′
or it is p(µq)µv(t−1)µw(t−1) for some positive real numbers p(µq)>

0.

That is, the random variable {µw(t)}w∈Q+ are mutually orthogonal for each fixed time instance t, and they
have a Markov-like property: the conditional expectation of µvq(t)µwq(t) with respect to the past values of
{µq} depends only on the past values µv(t − 1)µw(t − 1) and a number pq. Intuitively, pq is such that if z(t)
is a random process which is conditionally independent of future inputs with respect to the past outputs, then
E[(z(t)µwq(t))(z(t)µvq(t))] = pqE[(z(t)µw(t− 1))(z(t)µT

v (t− 1)], i.e., pq describes a recursion for the covari-
ances of the random variables z(t)µw(t) and the recursion is on the length of w.

Below we present some examples of admissible input processes.
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Example 3.1 (Zero mean i.i.d. input). Let Q = {0,1, . . . ,d}, µ0 = 1, and assume that for each i = 1, . . . ,d, µi is
a zero mean and it is an i.i.d. process. and for each t ∈ Z, µ(t) is square integrable and E[µ2

q(t)] = p(µq). then
{µq}q∈Q is a collection of admissible input processes.

Example 3.2 (Discrete valued i.i.d process). Assume there exists an i.i.d process θ which takes its values from
a finite set Q. Let µq(t) = χ(θ(t) = q) for all q ∈ Q, t ∈ Z. Let S = Q×Q, L = Q+ and p(µq) = P(θ(t) = q),
αq = 1 for all q ∈ Q. Then {µq}q∈Q is a collection of admissible input processes.

Example 3.3 (Markov chain). Assume that θ is a stationary and ergodic Markov process whose state space
is the finite set Θ. Assume P(θ(t) = q2 | θ(t − 1) = q1) = p(q2,q1) > 0, q1,q2 ∈ Θ. Let us take Q = Θ×Θ,
µ(q2,q1)(t)= χ(θ(t+1)= q2,θ(t)= q1) for all q1,q2 ∈Θ, t ∈Z. Then {µq}q∈Q with p(µq)= p(q2,q1), q=(q2,q1)
and αq = 1 for all q ∈ Q is a collection of admissible input processes.

For the rest of the chapter, unless stated otherwise, {µq}q∈Q is assumed to be admissible.
In order to understand why admissible input processes are necessary, we will introduce the class of ZMWSSI

processes with respect to {µq}q∈Q (ZMWSSI w.r.t. {µq}q∈Q for short, or ZMWSSI if {µq}q∈Q is clear from the
context), see [226] for a complete definition. As it was mentioned above, {µq}q∈Q is assumed to be admissible,
and the notion of a ZMWSSI process w.r.t. {µq}q∈Q is defined only for admissible input processes {µq}q∈Q. For
the purposes of this chapter, it is sufficient to remember the following. Let us define the processes

∀t ∈ Z : zr
w(t) = r(t−|w|)µw(t−1)

1√
p(µw)

. (3.20)

where p(µε) = 1 and if w = vq for some v ∈ Q∗ and q ∈ Q, then p(µw) = p(µv)p(µq), and the covariances

∀w ∈ Q+ : Λ
r
w = E[r(t)(zr

w(t))
T ],

∀w,v ∈ Q+ : T r
v,w = E[zr

v(t)(z
r
w(t))

T ].
(3.21)

Note that if y is ZMWSSI, then the notation of (3.21) applied to y is consistent with the notation of (3.5). Then r
is a ZMWSSI process with respect to (w.r.t.) {µq}q∈Q, if

• the right-hand side of (3.21) does not depend on t,

• the future values of {µq(s)}s≥t of {µq}q∈Q do not depend on the past values {r(s)}s≤t of r; more precisely,
the σ -algebras generated by {r(s)}s≤t and {µq(s)}q∈Q,s≥t respectively are conditionally independent with
respect to the σ algebra generated by {µq(s)}s<t ;

If r is ZMWSSI w.r.t. {µq}q∈Q, then the following recursion holds:

T r
q,q′

= 0, if q 6= q
′

(3.22)

T r
wq,vq′

=

{
T r

w,v if q = q
′

and wq,vq ∈ L
0 otherwise,

(3.23)

T r
wq,q′

=

{
(Λr

w)
T if q = q

′

0 if q 6= q
′
.

(3.24)

That is, if we interpret Q+ as an additional time axis, then zr
w are wide-sense stationary w.r.t. to both t and w.

In order to develop realization theory, we have restrict attention to admissible inputs and to GBSs for which
the state and noise processes are ZMWSSIw.r.t. the admissible inputs. We will call such GBSs stationary GBSs.
More precisely, we will say that a GBS of the form (3.2) is stationary w.r.t. {µq}q∈Q (stationary, if {µq}q∈Q clear
from the context, if the following conditions hold:
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1. {µq}q∈Q are admissible inputs,

2. The joint state and noise process
[
xT , vT ]T is ZMWSSIwith respect to {µq}q∈Q.

3. ∀w ∈ Q+, t ∈ Z : E[v(t−|w|)µw(t−1)vT (t)] = 0.

4. ∀w ∈ Q+, t ∈ Z : E[x(t−|w|)µw(t−1)vT (t)] = 0 and ∀q ∈ Q, t ∈ Z : E[x(t)µ2
q(t)vT (t)] = 0.

5. The matrix ∑q∈Q p(µq)Aq⊗Aq is stable, i.e., all its eigenvalues are inside the open unit disk.

Intuitively, Part 2 requires that the input and noise processes are wide sense stationary and conditionally
independent from the future inputs given the past inputs. Part 3 – 4 require the noise process to be uncorrelated
and the past state and future and present noises to be uncorrelated. Part 5 is a stability condition, which is
necessary for the state process to be wide sense stationary. It could be tempting to simplify the definition of
stationarity by requiring the noise process to be completely independent of the inputs and of the past states.
Unfortunately, this would be too restrictive for realization theory, since the realization algorithm yields a system
whose noise process is uncorrelated with but not necessarily independent of the past inputs. More precisely, in
realization theory we would like to construct a system from y(t) which satisfies our chosen set of assumptions.
However, in a system constructed from y(t), the noise process v(t) and the state x(t) must be functions of past
outputs and inputs, as we have no other information at our disposal. Hence, the noise process will then depend on
the past inputs, and if the inputs are not independent, for example, they are a Markov process, it will depend on
future inputs too. Similarly, as both the noises and states depend on past inputs and outputs, in general, they will
not be independent. The best we can hope for is to replace independence by zero correlation. Since our processes
are not Gaussian, the latter does not translate into independence. The reason why we cannot assume Gaussian
distribution of the state and noise, is the presence of products of inputs and states (noises) in (3.1): products of
Gaussian are not Gaussian.

Note that the state of a stationary GBS is uniquely determined by the system matrices, and past inputs and
noises. To state this relationship, let us recall from Notation 2.1, Section 2.2 the notation for products of matrices
indexed by sequences, applied to {Aq}q∈Q and X = Q. If a GBS G of the form (3.1) is stationary, then

x(t) =
∞

∑
N=0

∑
w∈Q∗,|w|=N,q∈Q

√
p(µqw)AwKqzv

qw(t).

ỹ(t) =
∞

∑
N=0

∑
w∈Q∗,|w|=N,q∈Q

√
p(µqw)AwKqzv

qw(t).
(3.25)

for all t ∈ Z, where the infinite sum on the right-hand converges in the mean-square sense. In fact, in [226,
Lemma 3] it is shown that in order to define a stationary GBS, it is sufficient to define the system matrices and a
noise process in such a way that they satisfy the corresponding conditions of a stationary GBS then this choice
uniquely determines the state process, which will satisfy (3.25).

3.5 Formal description of the relationship with realization theory of LSS
In this section we present the formal description of the relationship between the realization problem for GBSs
and that of for LSSs.

Recall from Section 3.3 the informal definition of a LSS associated with a stationary GBS. The formal defi-
nition is as follows.

Definition 3.3 (LSS associated with a GBS). Let G be a stationary GBS realization of y of the form (3.1). Define
the LSS ΣG associated with G as ΣG = (n,{(

√
p(µq)Aq,Bq,Cq) | q ∈ Q}), where Cq = C for all q∈ Q, and the
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matrices Bq, q ∈ Q are defined as follows:

Bq =
1√

p(µq)
(AqPqCT +KqQqDT ) (3.26)

where {Pq = E[x(t)xT (t)µ2
q(t)]}q∈Q.

Remark 3.1 (Computation of ΣG ). Note that in order to compute the matrices {Bq}q∈Q from Definition 3.3, we
can use the fact from [226] that {Pq = E[x(t)xT (t)µ2

q(t)]}q∈Q is the unique collection of positive semi-definite
matrices {Pq}q∈Q which satisfy the Lyapunov-like equation

Pq = p(µq) ∑
q1∈Q,q1q∈L

(Aq1Pq1AT
q1
+Kq1Qq1KT

q1
), (3.27)

where Qq1 = E[v(t)vT (t)µ2
q1
(t)], q1 ∈Q. In turn, we can use [226, Lemma 5] to note that Pq = limN→∞ PN

q , where
the sequence {PN

q }q∈Q,0≤N∈Z is defined by P0
q = 0 and

PN+1
q = p(µq) ∑

q1∈Q,q1q∈L
(Aq1PN

q1
AT

q1
+Kq1Qq1KT

q1
) (3.28)

First, we show that the LSS associated with a GBS G are realizations of the input-output map fy associated
with the output y of G . To this end, we need to recall from [227] or Appendix B.6 that a LSS (n,{Aq,Bq,Cq}q∈Q)
is called strongly stable, if the eigenvalues of the matrix ∑q∈Q Aq⊗Aq are all inside the unit circle. Strongly stable
LSS are closed under minimization and have a number of useful properties [227].

More precisely, using [226, Lemma 4], [227, Lemma 11] [209, Lemma 1] we can derive the following.

Lemma 3.1 (From GBS to LSS). If G stationary GBS which is a realization of y, then y is ZMWSSI w.r.t.
{µq}q∈Q and the LSS ΣG is a realization of the input-output map fy. Moreover, ΣG is strongly stable.

The converse of Lemma 3.1 also holds. That is, we can show that LSS realizations of the input-output map fy
give rise to GBS realizations of the process y. In order to state this result formally, we will need a mild technical
assumption on y.

Definition 3.4 (SII process). A process y is said to be square integrable (SII) with respect to {µq}q∈Q (SII w.r.t.
{µq}q∈Q for short, or SII if {µq}q∈Q is clear from the context), if for all w ∈ Q+, the process zy+

w defined in
(3.15), i.e.,

zy+
ε (t) = y(t), zy+

q1···qk
(t) = y(t + k)

k

∏
i=1

µqi(t + k− i)√
p(µqi)

, q1, . . . ,qk ∈ Q,k > 0

is square integrable.

Remark 3.2 (Conditions for y being SII). One may wonder when y is SII. Below we present a class of process
which are SII.

One case is when y zero mean wide-sense stationary and square integrable, and µq is essentially bounded for
all q ∈ Q, i.e., there exists a constant K > 0 such that |µq(t)| ≤ K almost everywhere for all q ∈ Q, t ∈ Z, then
y is SII. This is the case when for example µq arises from a discrete valueIn this case, for any w ∈ Q+ we have
E[(zy,+

w (t))T zy,+
w (t)]≤ E[yT (t + |w|)y(t + |w|)]K2 1

pw
<+∞.

Another case is when y(t) is zero mean wide-sense stationary and square integrable, and µw(t) have finite
fourth order moments. In this case, by Hölders inequality, we have E[(zy+

w (t))T zy+
w (t)] ≤ (E[(yT (t + k)y(t +

k))2]E[µ4
w(t + k)])1/2 < +∞, where The right-hand side of the inequality above is finite by assumption. This

assumption was made in [73]. In particular, if the inputs are bounded, and y is ZMWSSI, then y is SII.

Now we are ready to state the result relating LSS realizations of fy with GBS realizations of y.
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Lemma 3.2 (From LSS to GBS). If y is ZMWSSI and SII w.r.t. {µq}q∈Q, f y has a realization by a strongly stable
LSS then y has a realization by stationary GBS.

The proof of Lemma 3.2 is constructive, as it relies on the notion of a GBS realization GΣ associated with
a minimal LSS realization of f y. The latter was already mentioned in Section 3.3. Below we will review the
definition of the GBS associated with a LSS and discuss how to compute it. The construction of the latter GBS
is instrumental for developing realization algorithms for GBSs. Moreover, the construction of the GBS also
introduces the notion of forward innovation form, which is interesting on its own right.

In order to continue the discussion, we need the notion of forward innovation process and GBS in forward
innovation form. To this end, we introduce the following notation.

Notation 3.1 (Orthogonal projection El). Let Z be a subset of square integrable random variables in Rp and let
M be the Hilbert space generated by the coordinates of the elements of Z. Let z be a square integrable random
variable with values in Rk. We denote by El [z | Z] the orthogonal projection of z onto the subspace M. By the
orthogonal projection of z onto M we mean the vector-valued random variable z∗ = (z∗1, . . . ,z

∗
k) such that z∗i ∈M

is the orthogonal projection of the ith coordinate zi of z onto M, as it is usually defined for Hilbert spaces.

Definition 3.5 (Forward innovation process). The forward innovation process of y w.r.t. {µq}q∈Q (or simply the
innovation process is {µq}q∈Q is clear from the context) is defined as the process e:

∀t ∈ Z : e(t) = y(t)−El [y(t) | {zy
w(t)}w∈Q+ ]. (3.29)

We say that y is full rank, if for each q ∈ Q the covariance matrix E[e(t)eT (t)µ2
q(t)] is invertable.

Now we are ready to define the notion of GBS in forward innovation form.

Definition 3.6 (GBS in forward innovation form). Let G be a stationary GBS of the form (3.1) which is a real-
ization of y. We say that G is in forward innovation form, if v = e and D = Ip, i.e. the noise process of G is the
forward innovation process of y.

Intuitively, the innovation process e is the prediction error of the best linear predictor of y, if the prediction is
done based on the products of the past values of y with the past inputs. Hence GBS realization of y in forward
innovation can be seen as a Kalman-filter for predicting the current value of y.

Now we are in position to review the notion of the GBS associated with a minimal LSS realization of f y.
To this end assume that y is ZMWSSI and SII, and let Σ = (n,{(Aq,Bq,Cq) | q ∈ Q}) be a strongly stable LSS
realization of f y. Since minimization preserves strong stability, see [227, Theorem 3] or Theorem B.5, Appendix
B.6, we can assume that Σ is minimal. In this case, Cq1 = Cq2 for all q1,q2 ∈ Q. Indeed, for all w ∈ Q+,
Cq1AwBq = S f y

q1,q(w) = Λ
y
qw = S f y

q2,q(w) = Cq2AwBq, i.e., Cq1x = Cq2x for any x ∈ ImR(S ). Since Σ is minimal
and thus span-reachable, R(Σ) = Rn and hence Cq1 =Cq2 . In the sequel, we denote by C the matrix Cq, q ∈ Q.

Using the discussion above, we can define the GBS associated with Σ as follows.

Definition 3.7 (GBS associated with Σ). Let Σ = (n,{(Aq,Bq,Cq) | q ∈ Q}) be a minimal strongly stable LSS
realization of fy. The GBS associated with the Σ is defined as

GΣ = (n, p, p,Q,x,e,{µq}q∈Q,y,C, Ip,{
1√

p(µq)
Aq,Kq}q∈Q), (3.30)

where Cq =C for all q ∈ Q, and

∀t ∈ Z : x(t) = El [Õ
−1(Σ)(Yn(t)) | {zy

w(t)}w∈Q+ ], (3.31)

where Yn(t) is as in (3.14), i.e.,

Yn(t) =
[
(zy+

v1 (t))T , (zy+
v2 (t))T . . . (zy+

vN(n−1)(t))
T
]T
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where zy+
v (t), v ∈ Q∗ is as in (3.15), and Õ−1(Σ) is a left inverse of Õ(Σ), and Õ(Σ) is defined in the same way

as the observability matrix O(Σ) of Σ (see (B.5) in Appendix B), but with C1 instead of C̃ 2 3 4, i.e.,

Õ(Σ) =
[
(C1Av1)

T , (C1Av2)
T , . . . , (C1AvN(n−1))

T
]T
∈ RpN(n−1)×n (3.32)

and Kq satisfies (3.16), i.e.

Kq = (Bq

√
p(µq)−

1√
p(µq)

AqPqCT )
(
E[e(t)e(t)µ2

q(t)]
)−1

, Pq = E[x(t)xT (t)µ2
q(t)].

Remark 3.3 (Computing GΣ). In order to compute the matrices of GΣ we can proceed as follows: compute the
sequence {PN

q ,KN
q }0≤N∈Z,q∈Q as follows: set P̂0

q = 0 and for all i = 0, . . . ,N

Pi+1
q = ∑

q1∈Q,q1q∈L
p(µq)(Aq1Pi

q1
AT

q1
+Ki

q1
Qi

q1
(Ki

q1
)T )

Qi
q = (p(µq)T y

q,q−CPi
qCT )

Ki
q = (Bq

√
p(µq)−AqPi

qCT )(Qi
q)
−1.

Then from [226, Theorem 3] it follows Kq = limN→∞ KN
q , Pq = limN→∞ PN

q , q ∈ Q.

Based on [226, Theorem 4] we can state the following relationship between Σ and the GBS associated with
Σ.

Lemma 3.3. The GBS GΣ is stationary and it is a realization of y in forward innovation form.

Note that [226, Theorem 4] states the result in terms of representations of recognizable formal power series
instead of discrete-time LSSs. However, there is a one-to-one correspondence between the two, see [209], so the
statement of Lemma 3.3 and [226, Theorem 4] are equivalent.

Lemma 3.2 is an easy consequence of Lemma 3.3. Indeed, assume that there exists a strongly stable realization
of f y. Then by [227, Theorem 3] or Theorem B.5 from Appendix B.6, any minimal LSS realization of f y is also
strongly stable. Let then Σ be a minimal realization of f y. Then Σ is strongly stable and by Lemma 3.3 GΣ is a
stationary GBS realization of y.

Notice that the LSS associated with a GBS G has the same state-space dimension as G . Conversely, the GBS
GΣ has the same state-space dimension as the LSS Σ. Moreover, the LSS associated with GΣ is Σ itself. This
means that we can state the following result relating minimal LSS realizations of f y and minimal stationary GBS
realizations of y.

Lemma 3.4. A stationary GBS G is a minimal realization of y, if and only if the associated LSS ΣG is minimal.
In particular, the GBS GΣ from Lemma 3.3 is a minimal realization of y.

Lemma 3.4 follows from [226, Appendix.D, Proof of Theorem 2], by using the correspondence between
representations of recognizable formal power series and discrete-time LSSs [209].

The correspondence between GBSs and LSS described above allow us to derive a fairly complete realization
theory of GBSs using realization theory of LSSs. These results will be reviewed briefly in the next section.

3.6 Main results on realization theory of GBSs
Below we will discuss conditions for existence and minimality of GBSs and minimal realization algorithms for
GBSs. The results to be presented below are based on the correspondence between GBSs and LSSs.

2Here, without loss of generality, we assume that Q = {1, . . . ,D} (otherwise, the elements of Q can be suitably renamed
3Alternatively, Õ(Σ) is obtained from the observability matrix O(Σ) of Σ by taking the first p rows of the block C̃Avi , i = 1, . . . ,N(n−1)

and deleting the other rows of the same block. Note that the deleted rows are equals to one of the first p rows of the block C̃Avi .
4Since Σ is minimal, it is observable and its observability matrix is full column rank, hence it has a left inverse.
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3.6.1 Existence of a realization
In order to formulate conditions for existence of GBSs, we need to define the notion of a Hankel-matrix defined
from covariances of y. To this end, without loss of generality we assume that Q = {1, . . . ,D} and define the map
Ψy : Q∗→ Rp×pD as

∀w ∈ Q∗ : Ψy(w) =
[
Λ

y
1w, Λ

y
2w, . . . Λ

y
Dw

]
,

and using the lexicographic ordering of Definition 2.1 define the Hankel-like matrix Hy,i, j of y as

Hy,i, j =


Ψy(v1v1), Ψy(v2v1), · · · Ψy(vN( j)v1)
Ψy(v1v2), Ψy(v2v2), · · · Ψy(vN( j)v2)

...
... · · ·

...
Ψy(v1vM(i)), Ψy(v2vM(i)), · · · Ψ(vN( j)vN(i))

 (3.33)

We say that the covariance sequence Ψy is recognizable, if sup0≤i, j∈Z,i, j≥1 rankHy,i, j = n <+∞ for some positive
integer n Ψy is square summable, if

‖Ψy(ε)‖2
F +

∞

∑
k=1

∑
q1∈Q
· · · ∑

qk∈Q
‖Ψy(q1q2 · · ·qk)‖2

F (3.34)

is convergent, where ‖ · ‖F is the Frobenius norm.
We can then state the following necessary and sufficient conditions for existence of a stationary GBS realiza-

tion.

Theorem 3.1 (Necessary and sufficient conditions for existence of a GBS realization). Assume y is SII w.r.t.
{µq}q∈Q. Then y has a realization by a stationary GBS if and only if y is ZMWSSI and the covariance sequence
Ψy is recognizable and square summable.

Theorem 3.1 is a reformulation of [226, Theorem 1], and it is a direct consequence of Lemma 3.1, Lemma 3.2
and [209, Theorem 2] (Theorem B.3 of Appendix B). Indeed, notice that rankHy,i, j = rankH f y,i, j, where H f y,i, j
is the Hankel-matrix defined in [209, Definiton 13] ((B.12) of Appendix B) In fact, Hy,i, j is obtained from H f y,i, j
by keeping the first p rows of each block row

[
M f (v1vr) M f (v2vr) · · · M f (vN(M)vr)

]
. It is easy to see that

rankH fy,i, j = supi, j rankH fy,i, j, and hence Ψy being recognizable is equivalent to f y being realizable by an LSS.
Note that Ψy is square summable if and only if ∑w∈Q∗ ‖M f y

(w)‖2
F is convergent, which [222] means that f y it is

realizable by a strongly stable discrete-time LSS, if it is realizable by an LSS at all.

3.6.2 Minimality of GBSs
Having established conditions for existence of a GBS realization, we turn to the question of minimality. We will
call a stationary GBS G a minimal realization of y if it realizes y and it has the minimal dimension among all
possible stationary GBS realizations of y.

Let G be a stationary GBS of the form (3.1). For each k = 0, . . . ,n− 1 define the k-step observability ma-
trix Ok(G ) and the k-step reachability matrix Rk(G ) of G recursively as follows: O0(G ) = C, and R0(G ) =[
B1 . . . BD

]
, where Bq is as in (3.7), and for k > 0

Ok(G )=
[
CT , (Ok−1(G )A1)

T , (Ok−1(G )A2)
T , · · · , (Ok−1(G )AD)

T ]T ,
Rk(G )=

[
R0(G ), A1Rk−1(G ), A2Rk−1(G ), · · · , ADRk−1(G )

]T
.

We say that G satisfies the observability rank condition, if rank On−1(G ) = n, and we say that G satisfies the
reachability rank condition if rank Rn−1(G ) = n.
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Consider a stationary GBSs G of the form (3.1), and let Ĝ = (n, p, m̂,Q, x̂, v̂, ŷ,Ĉ, D̂,{Âq,Kq}q∈Q) another
stationary GBS. An isomorphism from G to Ĝ is a non-singular matrix T ∈ Rn×n such that x̂ = T x, Dv = D̂v̂,
and

CT−1 = Ĉ, TAqT−1 = Âq, ∀q ∈ Q,

T Kqv(t)µq(t) = K̂qv̂(t)µq(t), ∀q ∈ Q, t ∈ Z.

If, in addition, m = m̂, v = v̂ and D = D̂ and T Kq = K̂q, q ∈Q, then we call T a strong isomorphism from G to Ĝ .
With the above notions of reachability and observability of GBSs, we can state the following characterization

of minimality from [226, Theorem 2].

Theorem 3.2 (Minimality of GBSs). Assume y is ZMSII w.r.t. {µq}q∈Q.

• (i) A stationary GBS realization of y is a minimal realization of y if and only if it satisfies the observability
and the controllability rank conditions.

• (i) If G and Ĝ are minimal GBS realizations of y in forward innovation form, then there exists an isomor-
phism from G to Ĝ . If y is in addition full rank, then this isomorphism is a strong one.

• (iii) If y has a realization by a stationary GBS, then it has a minimal GBS realization in forward innovation
form.

Part (i) of Theorem 3.2 is a direct consequence of Lemma 3.4 and that minimality of LSSs is equivalent to
their span-reachability and observability [209, Theorem 1] (Theorem B.1 of Appendix B). Note that Ok(G ) and
Rk(G ) correspond to the spaces Wk and Vk of the associated LSS ΣG defined in [205, Remark 1] (Remark B.1
of Appendix B), and the observability/reachability rank condition for GBS is equivalent to W∗ = {0},V∗ = Rn,
which in turn are equivalent to observability/span-reachability of ΣG . Part (ii) is a consequence of isomorphism
of minimal LSSs, the argument is not entirely trivial, see [226] for the proof. Part (iii) is a direct consequence of
the second statement of Lemma 3.4.

Remark 3.4. Note that we define isomorphism between GBSs as a linear transformation which is constant, i.e. it
does not depend on the inputs. Theorem 3.2 implies that such state-space transformations are sufficient to relate
minimal GBSs in forward innovation form which realize the same output.

For the linear case, i.e. Q = {0}, µ0 = 1, Theorem 3.2 boils down to well known results [163, Theorem
6.5.2,Theorem 6.5.4,Theorem 6.6.1,Theorem 8.7.4].

3.6.3 Realization and minimization algorithms
Below we present algorithms for checking minimality of GBSs and for transforming a stationary GBS to a min-
imal one with the same output. Moreover, we present a Ho-Kalman-like algorithm for computing a minimal
stationary GBS realization of y from covariances {Λy

w}w∈Q+,|w|≤N , {T y
σ ,σ}σ∈Q of y.

Checking minimality

In order to check minimality of a GBS G , the LSS ΣG associated with GBS G has to be computed and its
minimality checked as indicated in [205, Theorem 1 and Remark 1] (Remark B.1 and Theorem B.2 of Appendix
B). In order to compute ΣG we can process as explained in Remark 3.1. That is, in order to compute ΣG , we have
to calculate Bq, q ∈ Q from (3.7), and for that we have to compute the state-covariances {Pq}q∈Q from (3.8). By
[226, Lemma 5] this can be done as follows. Pq = limN→∞ PN

q , where the sequence {PN
q }q∈Q,0≤N∈Z is defined by

P0
q = 0 and

PN+1
q = p(µq) ∑

q1∈Q,q1q∈L
(Aq1PN

q1
AT

q1
+Kq1Qq1KT

q1
) (3.35)
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Minimization algorithm

In order to transform a GBS G to a minimal one, we can proceed as follows:

Algorithm 3 Minimization algorithm
Input: GBS G
Output: Minimal GBS Gm

1: Compute the associated LSS ΣG .
2: Transform it to a minimal LSS Σm as explained in [209, Procedure 3] (see Procedure B.3 of Appendix B).
3: Let Gm = GΣm , where GΣm is the GBS associated with Σm, and GΣm is computed as explained in Remark 3.3.

In order to compute the covariances {T y
q,q}q∈Q which are necessary to apply Remark 3.3, use the formula

(3.35) for G and set Pq = limN→∞ PN
q and then use (3.9).

4: return Gm

Covariance realization algorithm

Using a finite number of covariances {Λy
w}w∈Q+,|w|≤N+2 and {T y

q,q}q∈Q we can compute a GBS G realization of
y as follows.

Algorithm 4 Covariance realization algorithm
Input: Integer N > 0 and covariances {Λy

w}w∈Q+,|w|≤N+2 and {T y
q,q}q∈Q

Output: A GBS GN .
1: Construct the Hankel-matrix H fy,N,N+1 from {Λy

w}w∈Q+,|w|≤N+2.
2: Compute a minimal LSS ΣN from H fy,N,N+1 using [209, Algorithm 1] (Algorithm 12 of Appendix B) or an

adaptation of Algorithm 2 to LSSs (Algorithm 13 of Appendix B).
3: Compute the GBS GΣN associated with ΣN as explained in Remark 3.3.
4: return GN = GΣN .

If N is larger than the dimension of a GBS realization of y, then GN will be a minimal realization of y.

3.6.4 Applications to JMLS
To illustrate the usefulness of our results, we apply them to jump-Markov linear systems.

To start with, consider the special case when θ is an i.i.d process which takes its values from a finite set Q,
and µq(t) = χ(θ(t) = q) for all q ∈ Q, t ∈ Z, see Example 3.2. Then {µq}q∈Q is a collection of admissible input
processes. With this choice of the input processes, stationary GBSs correspond to a subclass of jump-Markov
linear systems with i.i.d switching, abbreviated by JMLSIID. Since µq(t) takes only values 0 and 1, from Remark
3.2 it follows that if y is ZMWSSI, then y is SII. Hence, in Theorem 3.1 – 3.2 the assumption that y is SII can
be dropped and the expression ‘stationary GBS’ can be replaced by JMLSIID. The algorithms from Section 3.6.3
remain valid for JMLSIIDs too.

Assume that θ is a stationary and ergodic Markov process taking its values in a finite set Θ = {1, . . . ,d}.
Define Q and {µq}q∈Q as in Example 3.3. Then {µq}q∈Q is an admissible collection of input processes. A
stationary GBSs of the form (3.1) can then be written as x(t + 1) = A(θ(t+1),θ(t))x(t)+K(θ(t+1),θ(t))v(t), ŷ(t) =
Cx(t)+Dv(t), and hence it can be regarded as a jump-Markov linear systems. We refer to this subclass simply
as jump-Markov linear systems or JMLS for short. Note that according to the standard definition [64], the state
transition matrices of a jump-Markov linear system depend only on the current value of θ. More precisely, [64]
considers systems of the form z(t +1) = Fθ(t)z(t)+Gθ(t)w(t), ŷ(t) = Hθ(t)z(t)+Lθ(t)w(t), where Fq,Lq,Hq,Gq,
q ∈Θ are matrices of suitable dimensions.
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Such a system can be transformed a JMLS of the form (3.1) with the same output process ŷ, see [225, Remark
9]. Conversely, a JMLS of the form (3.1) can be viewed as a jump-Markov system x(t+1)=Aθ̃(t)x(t)+Kθ̂(t)v(t),
ŷ(t) = Cx(t)+Dv(t) in the sense of [64], driven by the Markov process θ̃(t) = (θ(t + 1),θ(t)). Alternatively,
a JMLS can be converted to a system of the type [64] driven by the same Markov process θ and producing
the same output, see [225, Remark 10]. That is, JMLS and the systems from [64] represent the same set of
output processes. In fact, [225, 223] uses realization theory of JMLS to solve the realization problem for a class
of systems which contains the systems considered in [64]. From boundedness of {µσ}σ∈Σ and Remark 3.2
it follows that in Theorem 3.1 – Theorem 3.2 the assumption that y is SII can be dropped and the expression
‘stationary GBS’ can be replaced by ‘JMLS’. The algorithms discussed in Section 3.6.3 remain valid for JMLSs
too. That is, the results of this chapter yield a complete realization theory for JMLSs.

3.7 Consequences for system identification: weak realizations, GBSs as
optimal filters, realization of input-output relation vs. output process

In this section we would like to discuss some implications of the results of this chapter which we believe are of
fundamental importance for system identification. In particular, in Subsection 3.7.1 we show that GBSs can be
interpreted not only as devices generating an output process, but also as partial parameterizations of probability
distributions (high-order moments) and as optimal filters which predict current outputs based on past outputs and
scheduling signals. In particular, in Subsection 3.7.1 we introduce the notion of a weak realization. In Subsection
3.7.2 we discuss the relationship between the realization problem formulated in Problem 3.1 and the problem of
realizing the input-output relation {µq}q∈Q 7→ ỹ induced by a GBS.

3.7.1 Interpretations of GBS and their role in system identification
Recall from [57, 163, 147] that there are three views of linear stochastic systems:

• Stochastic systems as generators of an output process.

• Stochastic systems as parameterizations of probability distributions of the output process.

• Stochastic system as optimal filter, for predicting the current value of an output process based on its past
values.

For stochastic LTI systems all three views are equivalent. However, for other classes of systems the equivalence
is far from obvious. Below we will discuss the relationship between these three interpretations for GBSs.

Recall that if G is a stationary GBS realization of y, then the moments {Λy
w}w∈Q+ , {T y

q,q}q∈Q satisfy (3.9).
That is, the matrices and noise variances of a stationary G realization of y determine some higher order order
moments of y. Note that these higher order moments do not determine the probability distribution of y uniquely.
This is in contrast with outputs of Gaussian stochastic linear time-invariant systems. However, the matrices of G
together with the noise variance can be viewed as finite encodings of the infinite number of moments {Λy

w}w∈Q+ ,
{T y

q,q}q∈Q of y, and hence as a partial parameterization of the probability distribution of y.
Conversely, consider a tuple S = ({Aq,Kq,Qq}q∈Q,C,D), such that ∑q∈Q p(µq)Aq⊗Aq is stable and Qq =

QT
q > 0 for all q ∈ Q. It then follows from [226, Lemma2] that (3.8) has a unique solution and hence {Bq}q∈Q

from (3.7) are well defined. We will say that S is a weak realization of y, if {Λy
w}w∈Q+ , {T y

q,q}q∈Q satisfy
(3.9). The intuition behind this definition is as follows. Assume that S = ({Aq,Kq,Qq}q∈Q,C,D) is a weak
realization of y, and consider the GBS GS = (n, p,m,Σ,x,v,{µq}q∈Q, ỹ,C,D,{Aq,Kq}q∈Q) such that v is white
noise (zero mean, i.i.d.) and the σ -algebras generated by {µq(t)}q∈Q,t∈Z and {v(t)}t∈Z are independent and
E[v(t)vT (t)µ2

q(t)] = Qq. It then follows v is ZMWSSI and that G is well defined and the processes x and ỹ are
uniquely determined by the elements of the tuple Σ and the process v, see [226, Lemma 3]. Moreover, certain
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moments of the output ỹ of G coincides with those of y: Λ
ỹ
w = Λ

y
w and T ỹ

q,q = T y
q,q, w ∈Q+, q ∈Q. That is, a weak

realization of y is a finite encoding of the infinite number of moments {Λy
w}w∈Q+ , {T y

q,q}q∈Q of y.
Note that if S = ({Aq,Kq,Qq}q∈Q,C,D) is a weak realization of y, then it determines uniquely the covari-

ances {T y
q,q}q∈Q and the LSS ΣS = (n,{

√
p(uq)Aq,Bq,Cq = C}q∈Q) where {Bq}q∈Q is defined by (3.7), (3.8),

and ΣS is a realization of fy. In turn, ΣS and {T y
q,q}q∈Q can be used to calculate the GBS GΣS

associated with
the LSS ΣS , as defined in (3.18), and GΣS

is a realization of y in forward innovation form. That is, any weak
realization of y yields a GBS realization of y in forward innovation form.

That is, any GBS realization of y can be mapped to a weak realization of y, and the latter is a finite encoding
of the infinite number of moments {Λy

w}w∈Q+ , {T y
q,q}q∈Q. Conversely, any weak realization of y can be mapped

to a realization of y.
In other words, stationary GBSs can be viewed both as generators of output processes but also as (partial)

parameterizations probability distributions.
Next, we will argue that GBS realizations of y can be viewed as predictors. To this end, let G be a stationary

GBS realization of y in forward innovation form and assume that G is of the form (3.1). First note that that G
can be interpreted as a linear filter which predicts the value y(t) based on {zy

w(t)}w∈Q+ , i.e., based on products of
past values of {y(s)}s<t with past values of the input process {µq(s)}q∈Q,Z3s<t . Indeed, we can formally rewrite
the equations (3.1) with D = I and v = e as follows: e(t) = y(t)−Cx(t) and hence

x(t +1) = ∑
q∈Q

(Aq−KqC)x(t)+Kqy(t))µq(t), ŷ(t) =Cx(t), (3.36)

where ŷ(t) = El [y(t) | {zy
w(t)}w∈Q+ ] is the orthogonal projection of y(t) onto {zy

w(t)}w∈(Q)+ . Set Ãq = Aq−KqC.
Note that if ∑q∈Q p(µq)Ãq⊗ Ãq is stable, then by repeating the steps of the proof of [226, Lemma1] it can be
shown that

x(t) =
∞

∑
N=0

∑
w∈Q∗,q∈Q,|w|=N

√
p(µqw)ÃwKqzy

qw(t), ȳ(t) =
∞

∑
N=0

∑
w∈Q∗,q∈Q,|w|=N

√
p(µqw)CÃwKqzy

qw(t), (3.37)

and view G as a predictor which maps past values {y(s),µ(s)}t−1
s=−∞ to the estimate of ŷ(t) such that the prediction

error variance E[‖ŷ(t)−y(t)‖2] is minimal.
In fact, more is true, as zŷ+

v (t) = El [z
y+
v (t) | {zy

w(t)}w∈(Q)+ ] for any v ∈ Q+, and hence G can be viewed as
the best linear predictor from the products of past values of y and {µq}q∈Q to the products of future values of y
and {µq}q∈Q.

Similarly to the linear case, G can also be interpreted as a filter using only finite past starting from t f to
predict the current value of y, i.e., it predicts y(t) based on products of past values of {y(s)}t−1

s=t f
with past values

of the input signal {µ(s)}t−1
s=t−t f

. More precisely, let us define xG (t | t f ) and yG (t | t f ) recursively as follows:
xG (t f | t f ) = 0 and for all k ≥ t f

xG (t +1 | t f ) = ∑
q∈Q

(Aq−KqC)xG (t | t f )+Kqy(t))µq(t), yG (t | t f ) =CxG (t | t f ). (3.38)

If ∑q∈Q p(µq)(Aq−KqC)⊗ (Aq−KqC) is stable, then from (3.37) it follows that

lim
t−t f→∞

xG (t | t f )−x(t) = lim
t−t f→∞

∑
w∈Q∗,q∈Q,|wq|≥t−t f

CÃwKqzy
qw(t) = 0,

and hence

lim
t−t f→+∞

yG (t | t f )− ŷ(t) = 0,

E[‖y(t)−yG (t | t f )‖2]≥ E[‖y(t)− ŷ(t)‖2], lim
t−t f→+∞

E[‖y(t)−yG (t | t f )‖2] = E[‖y(t)− ŷ(t)‖2.
(3.39)
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In particular, for any t f , for large enough t, yG (t | t f ) can be made arbitrarily close to the best linear prediction of
y(t) based on {zy

w(t)}w∈Q+,|w|≤t f
. In other words, a GBS realization in forward innovation form is asymptotically

the best linear predictor in {zy
w(t)}w∈Q+,|w|≤t f

for y(t) as t− t f →+∞.

3.7.2 The stochastic realization problem versus realization of an input-output relation

Finally, we remark that the existence and uniqueness of GBS realizations in forward innovation form provides
the following justification for the realization problem formulated in Problem 3.1, which in turn, will also serve as
a justification for the identification problem for stochastic LPV.

Intuitively, we would like to be able to say that if y is the output response of an unknown stationary GBS G0
to the admissible input processes {uq}q∈Q, then any minimal GBS realization G of y will have the property that
G0 and G produce the same output response to any inputs, and not only to {uq}q∈Q. In general, we cannot prove
this. However, if we restrict attention to minimal realizations in forward innovation form, then this intuition holds
true.

Note that restricting attention to minimal realizations in forward innovation form can be justified as follows.
If the only thing we can observe of G0 is its response y to the admissible input process {uq}q∈Q, then based on this
data we cannot falsify the hypothesis that G0 is a minimal GBS in forward innovation form. For even if it is not,
it can always be brought to such a form without changing the observations. That is, based on our observations we
have to remain agnostic about this assumption.

In order to show that two minimal GBS realizations of y in forward innovation form will generate the same
output for all choices of input processes, we have to define formally the input-output behavior of a GBS. The
difficulty lies in the fact that the equations (3.2) are defined for negative time instances too and existence of a
solution to (3.2) cannot be guaranteed for all input processes. In order to address this problem, we will associate
with every GBS an LPV-SSA. This LPV-SSA corresponds to interpreting (3.2) for positive times. Then the state
process x(t) of the GBS corresponds to the solution of this LPV-SSA , obtained by feeding to the LPV-SSA the
noise v and interpreting {µq}q∈Q as scheduling signal, waiting t+ t f time instances and letting t f →+∞. In other
words, the state of GBS is the steady-state behavior of the corresponding LPV-SSA. Then the input-output map
of this LPV-SSA can be viewed as a formalization of the input-output relation {µq}q∈Q 7→ ỹ induced by the GBS.
We then argue that the LPV-SSAs associated with any two minimal GBS realizations of y in forward innovation
form are input-output equivalent.

The details are as follows. Assume without loss of generality that Q = {1, . . . ,D} and let G be a stationary
GBS of the form (3.2). Set P=RD, A0 = 0,K0 = 0, C0 =C, D0 = I, Ci = 0, Di = 0, i ∈Q, and consider the LPV-
SSA LG = (P,{Ai,Ki,Ci,Di}D

i=0). For a fixed t f ∈ N consider the stochastic processes σ
t f v : N 3 t 7→ v(t− t f ),

and σ
t f µ : N3 t 7→ (µ1(t− t f ), . . . ,µD(t− t f ) defined on N. Let σ

t f ỹ be the output response of the LPV-SSA LG

to σ
t f v and σ

t f µ, i.e., σ
t f ỹ =YLG

(σ t f v,σ t f µ). From (3.25) it follows that limt f→+∞ σ
t f ỹ(t + t f ) = y(t) in the

mean square sense for all t. That is, y(t) can be viewed as an approximation of the output of the LPV-SSA LG

obtained from the following experiment: we feed in the control input σ
t f v and the scheduling signal σ

t f µ, we
wait t f time instants for the system to get close to a steady regime and then we measure the output at time t + t f .
In other words, y(t) represents the steady state response of a LPV-SSA excited by a white noise control input and
scheduling signal µ. If G is in forward innovation form, and Ĝ is any other minimal realization of y in forward
innovation form, then by Theorem 3.2, Ĝ and G are isomorphic, and hence so are the associated LPV-SSAs LG

and LĜ . In particular, LG and LĜ are input-output equivalent.
This suggests that we can view outputs of a stationary GBS as the steady-state behavior of a LPV-SSA driven

by a white noise input and a suitable scheduling signal. If the corresponding noise process is the innovation
process of y and the GBS is minimal, then the matrices of any minimal GBS realization of y in forward innovation
form will determine an LPV-SSA, such that this LPV-SSA has the same input-output map as the original one
which was used to generate y. That is, we use admissible stochastic input processes only to find an LPV-SSA
which has the same input-output behavior as the original one. This will turn out to be important for system
identification of LPV systems, since when they are used for control, the scheduling signal is deterministic. The
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discussion above indicates that as long as the observed scheduling signal can be viewed as a sample path of an
admissible input process in the sense defined in this chapter, we can use the corresponding output to identify the
response of the underlying LPV system to any scheduling signal, including those which are deterministic. That is,
stochasticity of the scheduling signal is not a restriction of the type of system we consider, but it is a persistence
of excitation condition for the identification experiment.

The discussion above also brings forward an additional argument in favor of the hypothesis that the data
generating system is a GBS in forward innovation form. Namely, we can formulate the following two technical
results.

Lemma 3.5 (Invertable GBSs are in forward innovation form). Assume that G is of the form (3.2), D = I, G is
stationary and it is a realization of y, and assume that the matrix ∑q∈Q p(µq)(Aq−BqC)⊗ (Aq−BqC) is stable
(all its eigenvalues are inside the complex unit disk). Then v is the innovation process of y w.r.t. {µq}q∈Q and G
is a realization of y in forward innovation form.

Proof of Lemma 3.5. Note that we can write v(t) = y(t)−Cx(t) and hence the first equation of (3.36) holds, i.e.,
x(t +1) = ∑q∈Q(Aq−KqC)x(t)+Kqy(t))µq(t). Since ∑q∈Q p(µq)Ãq⊗ Ãq, Âq = Aq−KqC, is stable, then by re-
peating the steps of the proof of [226, Lemma1] it can be shown that x(t)=∑

∞
N=0 ∑w∈Q∗,q∈Q,|w|=N

√
p(µqw)ÃwKqzy

qw(t),
and hence the elements of x(t) belong to the Hilbert-space generated by {zy

w(t)}w∈Q+ . Note that E[v(t) |
{zy

w(t)}w∈Q+ ] = 0, see the proof of [226, eq. (37), proof of Theorem 4], hence, E[y(t) | {zy
w(t)}w∈Q+ ] = Cx(t)

and therefore e(t) = v(t).

Lemma 3.6 (Minimality conditions for GBS in innovation form). Assume that G is of the form (3.2) is stationary
realization of y in forward innovation form, and that y is full rank. Then G is a minimal realization of y, if and
only if the associated LPV-SSA LG = (RD+1,{Ai,Ki,Ci}D

i=0), A0 = 0,K0 = 0, C0 = C,D0 = I,, Ci = 0,Di = 0,
i = 1, . . . ,D is minimal.

Proof of Lemma 3.6. Note that G is minimal if and only if the observability and reachability matrices satisfy
the following rank conditions rank On−1(G ) = n and rank Rn−1(G ) = n . Note that the rows of the extended
observability matrix On−1 of the associated LPV-SSA LG are either zero or they coincide with the rows of
the observability matrix On−1(G ), i.e., rank On−1(G ) = rank On−1. That is, by Theorem 2.3, G satisfies the
observability rank condition if and only if the LPV-SSA LG is observable. We will show that ImRn−1(G ) =
ImRn−1, where Rn−1 is the extended controllability matrix of the LPV-SSA LG . From this, using Theorem 2.3
it follows that G satisfies the reachability rank condition if and only if LG is span-reachable. Then the statement
of the lemma follows from Theorem 3.2 and Theorem 2.2.

We show that Im Rn−1(G ) = Im Rn−1. To this end, from (3.25) it follows that x(t) belongs to the linear space
generated by the columns of AwKq, w ∈ Q∗,q ∈ Q. Since Bq = E[x(t)(zy

q(t))T ], it then follows that the columns
of Bq also belong to the linear space generated by the columns of AwKq, w ∈ Q∗,q ∈ Q. Therefore, the columns
of AvBq, v ∈ Q∗,q ∈ Q also belong to the linear space generated by the columns of AwKq, w ∈ Q∗,q ∈ Q. In turn,
using the correspondence between LPV-SSAs and LSSs described in Chapter 2 and [205, Theorem 2 and Remark
1], it is easy to see that latter subspace equals Im Rn−1. That is, Im AvBq is a subspace of Im Rn−1, and therefore
Im Rn−1(G ) ⊆ Im Rn−1. Conversely, from [226, eq. (37), proof of Theorem 4] it follows that E[x(t)zy

qv(t)] =√
p(µw)AvBq, i.e., for every w ∈Q+, the columns E[x(t)(zy

w(t))T ] belong to the space generated by AvBq, q ∈Q,
v∈Q∗. Notice that by [205, Theorem 2 and Remark 1] applied to the LSS ΣG , the latter space equals ImRn−1(G ).
Since the elements of ze

q(t) are limits of finite linear combinations of the rows of {zy
w(t)}w∈Q+ , it then follows that

the columns of E[x(t)(ze(t))T ] are the limits of finite linear combinations of columns of E[x(t)(zy
w(t))T ], w∈Q+,

and hence the columns of E[x(t)(zy
w(t))T ], w ∈ Q+ also belong to ImRn−1(G ). From [226, Proof of Theorem 4]

it follows that KqQq = E[x(t)(ze
q(t))

T ], where Qq = E[e(t)eT (t)µ2
q(t)], and hence the columns of KqQq belong

to ImRn−1(G ). Since Qq is non-singular, it then follows that the columns of Kq belong to ImRn−1(G ). Since
ImRn−1(G ) is Aq-invariant for all q ∈ Q and A0 = 0, it then follows that ImAvKq ⊆ ImRn−1 for all v ∈ I∗0,np

,
q ∈ I0,np , and thus ImRn−1 ⊆ ImRn−1(G ).
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The results of Lemma 3.5 and Lemma 3.6 suggests the following sufficient conditions that the system gener-
ating y is a minimal one in forward innovation form. Assume that the observed output y is generated by a minimal
LPV-SSA Σ = (RD+1,{Ai,Ki,Ci,Di}D

i=0) driven by white noise v, such that Ci = 0,Di = 0, i = 1, . . . ,D, D0 = I,
A0 = 0,K0 = 0 and ∑

D
q=1 p(µq)(Aq−KqC0)⊗ (Aq−KqC0) and ∑q∈Q p(µq)Aq⊗Aq are stable. It then follows that

the GBS G = (n, p, p,x,v,y,{Ai,Ki}D
i=1,C, I) is a minimal GBS realization of y in forward innovation form, and

the LPV-SSA associated with any minimal GBS realization of y in forward innovation form is isomorphic with
Σ. In particular, any minimal GBS realization of y in forward innovation form has the same input-output behavior
as the system which generated y. Note that the assumptions on the LPV-SSA system which generates y are very
mild. Indeed, we assume minimality, some stability conditions on the matrices, and a few other conditions on
the matrices, i.e., the assumptions are purely assumptions on the matrices. That is, the assumption that the ob-
servations are generated by minimal GBSs in forward innovation form are reasonable not only because it cannot
be falsified based on observations, but also because it can be replaced by a sufficient condition which represents
some mild assumptions on the matrices of the underlying system. In fact, these assumptions are mainly stability
assumptions, as explained in the remark below.

Remark 3.5. In fact, we could drop the assumption that Σ is minimal: if it is not, we can replace it by a minimal
LPV-SSA Σm = (RD+1,{Am

i ,K
m
i ,Cm

i ,Dm
i }D

i=0) which is input-output equivalent. We can easily adapt the proof of
[226, Theorem 6] to show that if Ci = 0,Di = 0, i = 1, . . . ,D, D0 = I, A0 = 0,K0 = 0 and ∑

D
q=1 p(µq)(Aq−KqC)⊗

(Aq−KqC) and ∑q∈Q p(µq)Aq⊗Aq are stable, then Cm
i = 0,Am

i = 0,Km
i = 0,Dm

i = 0, i = 1, . . . ,D, Dm
0 = I and

∑
D
q=1 p(µq)(Am

q −Km
q Cm

0 )⊗ (Am
q −Km

q Cm
0 ) and ∑q∈Q p(µq)Am

q ⊗Am
q are stable.

3.8 Conclusions and further work
I have presented selected results from my work on realization theory of a class of stochastic bilinear systems,
which includes autonomous stochastic LPV and jump-Markov systems. These results are based on applying
realization theory of deterministic linear switched systems. In [172] the results of this chapter were used to
propose a statistically consistent system identification algorithm. In [173] these results were extended to classes
of stochastic LPV systems with control input, and a statistically consistent system identification algorithm was
proposed. The application of the results of this chapter to jump-Markov systems with control inputs remains an
open problem. We conjecture that the results of this chapter can also be extended to continuous-time case, but
that extension remains a topic of future research.
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Introduction
In the second part of the manuscript I present some of my contributions to applications of realization theory of
linear switched, LPV and stochastic bilinear systems. More precisely, I will discuss my work on model reduction
of linear switched systems (Chapter 4), on system identification of linear parameter-varying systems (Chapter 5),
and on reverse engineering of network structures (Chapter 6). Below I will briefly describe the contents of each
Chapters 4 – 6 and the role of realization theory in each of them.

Chapter 4: model reduction

In Chapter 4, I present an overview of my work on model reduction of linear switched systems.

Novelty At the moment when I started working on model reduction of switched systems there were few results
on this topic, see for example [94, 312, 313, 316, 44, 45, 46, 198, 179]. Most of the papers proposed various
modifications of balanced truncation algorithms. However, the available results did not provide any error bounds
on the difference between the input-output behavior of the original and the reduced models. Moreover, there were
no algorithms based on moment matching using Markov parameters or multivariate Laplace transforms. My work
on model reduction was aimed at filling these gaps.

Contents of the chapter The methods presented in Chapter 4 can be divided into the following categories:

• Moment matching based on Markov parameters.

• Balanced truncation.

• Moment matching in frequency domain, based on multivariate Laplace transform.

The results on moment matching based on Markov-parameters described in Chapter 4 originate from the
PhD thesis of Mert Bastug [24], whom I co-advised together with John Leth and Rafael Wisniewski. The other
results were derived in collaboration with John Leth, Rafael Wisniewski, Ion Victor Gosea, Athanasios Antoulas,
Christophe Fiter.

Role of realization theory The results of Chapter 4 rely heavily on realization theory. Indeed, the methods
based on matching Markov parameter rely on the notion of Markov parameters for linear switched systems and
the latter notion originates from realization theory. Moreover, the model reduction algorithm itself is closely
related to partial realization algorithm. The methods based on balanced truncation use the relationship between
observability/reachability and minimality, and they can be viewed as a numerical implementation of the mini-
mization algorithm. In turn, characterization of minimality is an integral part of realization theory. Furthermore,
realization theory is necessary to show that the notion of singular values of grammians is independent of the
choice of state-space representation. In turn, singular values of grammians play a central role in analytic error
bounds for the approximation error in balanced truncation. Hence, in order to show that the performance of
balanced truncation does not depend on the choice of the state-space representation, i.e., balanced truncation
gives the same result for any state-space representation of the given input-output behavior, realization theory is
necessary.

Chapter 5: system identification

In Chapter 5 I present some selected results on system identification of LPV systems which are based on my work
on realization theory.
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Novelty At the moment when I started working on system identification of LPV systems, it was already a
mature topic with a rich literature, see [18, 155, 175, 231, 88, 288, 268, 284, 289, 49, 99, 150, 273] and the
references therein. In particular, there is a significant literature on subspace identification of LPV systems, see
[284, 88, 288, 289, 67] and the references therein. However, when I started research on LPV system identification,
the existing literature did not address the problem of identifiability of LPV state-space representations, nor there
were results on statistical consistency of subspace identification algorithms. In fact, for the case of LTI systems
both topics required results from realization theory. Moreover, subspace identification methods suffered from
curse of dimensionality and required strong assumptions on observability to work. My research in this topics was
aimed at filling these gaps.

Contents of the chapter In Chapter 5 I will discuss

• identifiability analysis of determinsitic LPV systems

• subspace identification of deterministic and stochastic LPV systems using reduced basis of the Hankel-
matrix.

The result on identifiability of LPV systems originate from the PhD thesis of Ziad Alkhoury, whom I co-advised
with Guillaume Mercère. By identifiability of a parameterizations we mean that there exist no two parameter
values for which the corresponding models have the same input-output behavior. In Chapter 5 we present con-
structive conditions for identifiability of LPV state-space parameterizations.

The results on subspace identification algorithm were derived in collaboration with Pepijn Cox, Roland Tóth
and Manas Mejari. For deterministic LPV systems one uses modifications of the realization algorithm from
Chapter 2. For purely stochastic LPV systems without inputs one uses the realization algorithm from Chapter 3
applied to empirical covariances. Finally, stochastic LPV systems with inputs can be decomposed into a stochastic
and a deterministic part. The stochastic part does not depend on the control input and its dynamics is driven by
a stochastic noise process. The deterministic part is driven by the control input and has no additive noise terms.
This decomposition also translates to the output of the system, as the latter is the sum of a stochastic process which
does not depend on the control input and a process which depends only on the control input. The former is the
output of the stochastic subsystem, the latter is the output of the deterministic one. As a result, in order to identify
a stochastic LPV state-space representation it is sufficient to identify an autonomous stochastic LPV state-space
representation of the stochastic component of the output, and a deterministic LPV state-space representation of
the deterministic component of the output. We then propose subspace identification algorithms for identifying
both components. The thus derived system identification algorithm can be shown to be statistically consistent.

Role of realization theory Identifiability of LPV systems relies on realization theory of LPV systems presented
in Chapter 2. More precisely, the characterization of identifiable parameterizations is based on characterizing pa-
rameterizations of minimal LPV state-space representations and formulating conditions for excluding isomorphic
copies of the same state-space representation within the parameterization. From realization theory of LPV sys-
tems presented in Chapter 2 it follows that two minimal state-space representations have the same input-output
behavior if and only if they are related by an isomorphism which does not depend on the state. As it was
noted above, subspace identification for LPV systems relies on the realization algorithm for deterministic LPV
state-space representations from Chapter 2 and on stochastic realization theory of generalized bilinear systems
presented in Chapter 3. Moreover, the results of Chapter 3 lead to a proof of existence of a state-space represen-
tation in forward innovation form. The latter is often taken as a starting point for subspace identification of LPV
systems, but its existence is usually not proven formally.

Chapter 6: Granger-causality for network identification
In Chapter 6 the application of stochastic realization theory to reverse engineering of network structure of dy-
namical systems is discussed.
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Novelty The problem of network identification, i.e. identifying a dynamical system with a (partially) known
network graph is a topic which has gained increased popularity, without claiming completeness we mention [297,
68, 298, 280, 191, 138, 146, 278, 104, 123, 310]. Some of the paper assume that the underlying system consists
of several subsystems, each with a separate transfer function, the transfer functions can exchange measurable
signals, the presence/absence of such signals is determined by the network graph of the system, and the goal
is to identify the transfer function of each node [297, 68, 298, 280, 50]. The latter problem is well-posed and
practically relevant. However, in many applications the goal is to identify the network graph of the underlying
state-space representation [191, 138, 146, 278].

In contrast to the problem of identifying transfer functions at a node of a network, the problem of identifying
the network graph of state-space representations is ill-posed in general, as state-space representations with differ-
ent network graphs could have the same observed behavior. Motivated by this observation, several author tried to
define the network graph of a system independently of the underlying state-space representation [104, 123, 310],
but the resulting definitions did not solve the problem of finding the network graph of the underlying state-space
representation.

Another approach is to abandon the idea of finding the network graph of the state-space representation, and
focus instead on the problem of deciding if a state-space representation with a certain network graph could exist
for the observed behavior. In other words, instead of trying to estimate the network graph from the observed
data, we try to decide if a certain network graph is consistent with the data. This is useful in systems biology
and neuroscience, as it allows to estimate from the observed data the likelihood of the presence/absence of an
interaction between subsystems. In turn, this likelihood can be used to guide experiment design. More precisely,
since biology is an empirical science, in order to prove the presence or absence of an interaction, experiments
have to be carried out anyway. It is then reasonable to focus on experiments which can prove/refute the presence
of most likely interactions.

However, at the moment when I started working on this topic, there was no formal correspondence between
the observed behavior and the existence of a state-space representation with a certain network graph. My goal was
to close this gap. This was done by establishing a formal correspondence between Granger-causality of observed
processes and the existence of stochastic linear and bilinear state-space representation with a given network graph.
There is a rich literature on characterizing Granger-causality in terms of transfer functions [110, 54, 53, 98, 21,
255, 74] or VAR models [77, 78, 79]. However, the problem of relating Granger-causality with stochastic linear
and bilinear state-space representations has not been addressed in the literature before. The results discussed in
Chapter 6 fill this gap.

Contents of the chapter In Chapter 6 two types of systems were considered: stochastic linear time-invariant
state-space representations (sLTI for short), and generalized stochastic bilinear systems. In both cases it was
shown that existence of Granger-acausality relations between components is equivalent to existence of a state-
space representation with a certain network graph. By network graph we mean the directed graph, nodes of which
are subsystems, and there is an edge from one node to another, if the state of the sub-system corresponding to the
source nodes is present in the update equation of the subsystem which corresponds to the second node. For sLTI
systems the classical definition of Granger-causality was used, for stochastic bilinear systems a new definition
was proposed. Note that the classical definition of Granger-causality is equivalent to absence of feedback, and it
plays an important role in proving consistency of open-loop identification algorithms. The same is expected for
Granger-causality for stochastic bilinear systems. The results of Chapter 6 originate from the PhD thesis [133] of
Mónika Józsa, whom I co-advised with Kanat M. Camlibel.

Role of realization theory The results of Chapter 6 rely on classical stochastic realization theory for linear
systems and on the results of Chapter 3 on stochastic bilinear systems.
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Chapter 4

Model reduction of linear switched
systems

4.1 Introduction

The goal of this chapter is to give an overview of my work on application of realization theory to model reduction
of linear switched systems (LSS for short). Linear switched systems represent the simplest subclass of hybrid
systems. Recall that a hybrid system is a finite collection of continuous-state dynamical systems, indexed by a
set of so called discrete modes (or states). The state of each dynamical system is governed by a set of differential
or difference equations. The operating discrete mode in any time instant can be chosen arbitrarily, or it may
depend on the value of the continuous state or other constraints, which are referred to as guards. The transitions
between the discrete states may result in a jump in the state of the underlying continuous dynamical system. This
jump is defined by the application of the so called reset maps. LSSs [161, 260] are the simplest and most widely
studied subclass of hybrid systems, for which the continuous subsystems are linear systems, and the change of
the discrete state is externally generated.

Model reduction is the field of replacing complex model by simpler ones such that the resulting simpler
model can be used for control engineering. As a rule, the simpler model is a dynamical system with less state
variables (of smaller order) than the original model, and it is referred to as the reduced model. Model reduction
is a mature field with an extensive literature [11]. Most of the literature on model reduction deals with linear
systems. For linear systems, model reduction techniques can be grouped in two large categories: model reduction
with balanced truncation and model reduction based on moment matching [11].

Roughly speaking, methods based on balanced truncation remove states which are difficult to observe or to
control. As a rule, balanced truncation methods for linear system come with analytic bounds on the approximation
error of the original model by the reduced order one. Usually, one uses the standard H∞,H2 norms to measure the
difference of output responses.

Moment matching methods rely on removing the states which do not contribute to the filtered output response
for certain inputs. For example, one may wish to restrict attention to output responses for inputs with certain
frequency, or components of the outputs lying in a certain frequency range, or the first couple of time instants of
the impulse response. In contrast to balanced truncation, for moment matching methods there are no analytical
error bounds for the difference of output responses of the reduced and the original model. Intuitively, the reasons
for this is quite clear: in balanced truncation we remove states which do not contribute to the input-output behavior
either because the have little influence on the outputs or because they are not sensitive to control inputs, hence
we can claim that for any input, the outputs of the original and reduced model should be similar. In moment
matching we want to make sure that the (filtered) response of the reduced model to certain inputs is similar to that
of the original model, we do not aim at making the (unfiltered) response of the reduced model close to that of the
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original one for all inputs.
These methods can be extended LSSs. When I started working on this topic there was already a fair amount

of literature on model reduction of LSSs. The model reduction methods for LSSs available at that time could be
grouped into the following categories.

LMI-based methods. These methods compute the matrices of the reduced order model by solving a set
of LMI. The advantage of this approach that error bounds are available. The disadvantage is that the proposed
conditions are only sufficient, and the trade-off between the dimension of the reduced model and the error bound
is not clear. Moreover, the computational complexity of solving those LMIs might be too high. Without claiming
completeness, we mention the following papers [94, 312, 313, 316].

Methods based on local grammians. These algorithms are based on finding observability/controllability
grammians for each linear subsystem. For these methods often there are no error bounds and the reduced order
model need not be well-posed. Examples of such papers include [179, 198, 44, 45, 46, 109]. When I started
working on model reduction of LSSs, there were no analytic error bounds available for these type of methods
when applied to deterministic LSSs.

Methods based on common grammians. These methods rely on finding the same observability/controllability
grammian for each linear subsystem. These grammians are derived as solutions of a suitable LMI. Such algo-
rithms were described in [251, 252, 234]. These algorithms apply only to LSSs which have a global quadratic
Lyapunov function. At the moment when I started working on model reduction, there were no analytic error
bounds available for these methods.

Finally, it is worth mentioning that model reduction is related to the notion of approximate bisimulation
introduced in [100, 233, 267, 266]. While the general goal of model reduction and of finding approximate
simulation relations is the same (both aim at replacing a complex model by a simpler one), the details are very
different. In particular, in model reduction, the aim is to replace a model with a model of the same type but with
less states. For example, a switched system is replaced by another switched system with a smaller number of
states. In contrast, the goal in using approximate simulation relations is to replace a hybrid/nonlinear system by
a finite-state transition system, which is approximately similar to the original system.

In my research on model reduction I focused on the following topics:
Analytic error bounds and new algorithms for balanced truncation In [227] error bounds were provided

for balanced truncation based on common grammians for LSSs. In [106, 108] balanced truncation methods based
on local grammians were proposed together with analytic error bounds for LSSs with linear reset maps. In [212]
this was extended to piecewise-linear systems with autonomous switching.

Moment matching. The idea behind these algorithms is to find a reduced order linear switched system such
that certain coefficients of the series expansions of the input-output maps of the original and the reduced order
system coincide. The series expansion can be the Taylor series with respect to switching times, in which case the
so-called Markov parameters are matched. Alternatively, the series expansion can be a Laurent-series expansion
of a multivariate Laplace transform of the input-output map around a certain frequency. The former approach
was pursued in [31, 30, 24] , the latter in [105]. While those methods do not allow for analytical error bounds,
under suitable assumption it can be guaranteed that the reduced model will have the same input-output behavior
for certain switching signals [31, 30, 24].

My main contribution to model reduction was the development of analytic error bounds for balanced trunca-
tion of LSSs and the development of moment matching algorithms for LSSs.

In this chapter I will discuss selected topics on model reduction I worked on. For the sake of simplicity, I will
discuss in detail only LSSs in continuous time and without reset maps. Most of the presented results are true for
the discrete-time case too, and some can be extended to include LSSs with reset maps which are not identity. I
will cite the relevant literature on these extensions.

Realization theory is relevant for model reduction in many ways. First, minimization and realization algo-
rithms can be viewed as simple model reduction algorithms. Moreover, the relationship between span-reachability,
observability and minimality is closely related to the existence of grammians which are used in balanced trun-
cation. Realization theory is even more critical for moment matching, as the latter can be viewed as partial
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realization algorithm. We will elaborate on the relationship between realization theory and model reduction when
presenting the particular methods.

This chapter is based on [230].
In Section 4.3 we discuss the basic principle of model reduction. In Section 4.4 we present balanced truncation

and in Section 4.5 we discuss moment matching for LSSs.
Throughout the chapter we will use notation and terminology of [203, 219, 209, 202] for LSSs., see Appendix

B for an overview. For the convenience of the reader, in order to keep the chapter self-contained, in Section 4.2
we briefly recall the basic terminology and notation for LSSs.

4.2 Definition and notation
We follow the presentation of [203, 227] and Appendix B. A linear switched system (LSS) is a control system
of the form

Σ

{
(ξ x)(t) = Aσ(t)x(t)+Bσ(t)u(t)

y(t) =Cσ(t)x(t)
(4.1)

where x(t) ∈ Rn is the state at time t, σ(t) ∈ Q is the discrete mode at time t, y(t) ∈ Rp is the output at time
t, and u(t) ∈ Rm is the continuous-valued input at time t, and (ξ x)(t) = d

dt x(t) in the continuous-time case, and
(ξ x)(t) = x(t +1) in the discrete-time. The set Q is a finite one, and it is referred to as the set of discrete modes.
Moreover, Aq ∈ Rn×n, Bq ∈ Rn×m, Cq ∈ Rp×n are the matrices of the linear system in the discrete state q ∈ Q.
The following notation

Σ = (n,{(Aq,Bq,Cq) | q ∈ Q})

is used as a short-hand representation for LSSs of the form (4.1). The number n is called the dimension (order)
of Σ and will be denoted by dim Σ.

The solution of a LSS is defined as follows. Recall the notation of Section 2.2 and let us introduce the
following notation. We write U , Q, X and Y to denote either PC(R+,Rm), PC(R+,Q), AC(R+,Rn) and
PC(R+,Rp). Then a solution of (4.1) is a tuple (x,u,σ ,y) ∈X ×U ×Q×Y , such that (x,y,σ ,y) satisfy (4.1).
Note that for every initial state x0 ∈Rn, input u ∈U and switching signal σ ∈Q there is a unique state trajectory
x and output trajectory y, such that (x,u,σ ,y) is a solution. We can define the input-output map of an LSS induced
by the initial state x0 as the map YΣ,x0 : U ×Q→ Y such that YΣ,x0(u,σ) = y, where (x,u,σ ,y) is the unique
solution of the LSS (4.1) such that x(0) = x0. We formalize the input-output behavior of Σ as a the input-output
map of Σ induced by the initial state x0 = 0. This is done for the sake of simplicity, see Appendix B.2 for more
comments on the subject. We call the input-output map YΣ,0 induced by the initial state 0 of Σ the input-output
map of Σ, and we denote YΣ,0 by YΣ. That is, a potential input-output map of a LSS is a function of the form

f : U ×Q→ Y . (4.2)

The LSS Σ is a realization of an input-output map f of the form (4.2) , if YΣ = f , i.e. if the input-output map of Σ

coincides with f . If Σ is a realization of f , then Σ is a minimal realization of f , if for any LSS realization Σ̂ of f ,
dimΣ ≤ dim Σ̂. Two LSSs Σ1,Σ2 are said to be input-output equivalent, if their input-output maps are equal, i.e.
YΣ1 = YΣ2 . A LSS Σ is said to be minimal, if it is a minimal realization of its own input-output map f = YΣ.

4.3 Model reduction
In model reduction, we would like to find LSSs of smaller dimension, input-output maps of which are close
(but not necessarily equal) to that of the original LSS. This is in contrast to realization theory, where we were
interested in finding a minimal LSS with exactly the same input-output map as the original one. The latter is a
special case of the former. Model reduction algorithms follow the following general pattern.
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Algorithm 5 Mode reduction/minimization algorithm
Inputs: Σ = (n,{Aq,Bq,Cq}q∈Q), matrices V ∈ Rn×r1 , W ∈ Rr2×n.

1: Let r = rank WV and let S ∈ Rr×r2 , T ∈ Rr1×r, SWV T = Ir.
2: Āq = SWAqV T , C̄q =CqV T , B̄q = SWBq.
3: return Σ̄ = (r,{Āq, B̄q,C̄q}q∈Q).

Intuitively, Algorithm 5 restricts the system to the set ImV and then merges those of its states x1,x2 for which
x1− x2 ∈ kerW .

Algorithm 5 can be viewed as a generalization of minimization algorithm [205, Procedure 3], [209, Procedure
3], Procedure B.3 in Appendix B. More precisely, recall from [205, Definition 21], Definition B.1, Appendix B
the definition of the subspaces W ∗, V ∗ for the LSS Σ. Intuitively, V ∗ is the linear subspace generated by the the
states of Σ which are reachable from the zero initial state, i.e., V ∗ are generated by states of the form x(t), where
(x,u,σ ,y) is a solution of Σ, x(0) = 0, and t is a time instance. Similarly, W ∗ is the subspace of all unobservable
states of Σ, i.e., a state x0 belongs to W ∗, if and only if the input-output map YΣ,x0 generated by x0 is zero.

If kerW = W ∗ and ImV = V ∗, with W ∗, V ∗ from Definition B.1, then the LSS Σ̄ returned by Algorithm 5
is a minimal LSS which is input-output equivalent to Σ, i.e., Algorithm 5 is just an implementation of Procedure
B.3. Algorithms for computing such matrices W,V such that kerW = W ∗ and ImV = V ∗ are described in [205,
Remark 1].

In case of model reduction, Algorithm 5 can again be used. However, instead of applying it with matrices W
and V such that kerW = W ∗ and ImV = V ∗, we use matrices W,V such that kerW ⊆ W ∗ and ImV ⊆ V ∗, i.e.,
we restrict the system to a subset of the set of reachable states, or we merge states which do not produce the same
input-output behavior. The resulting LSS model will no longer be a realization of f , but its input-output map will
approximate f in a suitable sense. Depending on the method we use, we will either be able to provide a global
error bound on the difference between the input-output maps of the original model and the reduced one, or state
that for certain switching sequences the two input-output maps coincide. We will elaborate on various methods
below.

4.4 Model reduction by balanced truncation
Let Σ be a LSS of the form (2.6), and assume that Σ is quadratically stable, i.e., there exists a matrix P > 0 such
that

∀q ∈ Q : AT
q P+PAq < 0.

In this case Σ is globally uniformly asymptotically (exponentially) stable [161] with the Lyapunov function
V (x) = xT Px. A matrix Q will be called an observability grammian, if

∀q ∈ Q : AT
q Q+QAq +CT

q Cq ≤ 0, Q > 0. (4.3)

Likewise, a matrix P will be called controllability grammians, if

∀q ∈ Q : AqP +PAT
q +BqBT

q ≤ 0, P > 0. (4.4)

Note that in contrast to the linear case, controllability/observability grammians for LSSs are not unique, since
they are solutions of LMIs and not of Lyapunov equation.

The procedure for balanced truncation is as follows. We apply Algorithm 5 with the following choice of W and
V . Find U such that P =UUT and find an orthogonal L such that UT QU = LΛ2LT , where Λ = diag(σ1, . . . ,σn)
and σ1 ≥ . . .≥ σn ≥ 0. Pick r ≤ n. Define

W =
[
Ir 0

]
Λ

1/2LTU−1, V =ULΛ
−1/2

[
Ir
0

]
.
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Then rank W = rank V = r, rank WV = r, S = T = Ir.
The intuition behind the procedure above is similar to that of balanced truncation for linear systems: By

applying the transformation S = Λ1/2LTU−1 to Σ, we obtain a LSS Σbal = (n,{S AqS −1,S Bq,CS −1}q∈Q),
such that Λ = S −T QS −1 = S PS T is both an observability and a reachability grammian. We obtain Σ̄ from
Σbal by taking the upper-left r× r, r×m, p× r, blocks of Aq, Bq, Cq, q ∈Q respectively. That is, we discard those
states which correspond to small values of the diagonals of Λ. The intuition behind it is that the discarded states
are either difficult to reach (it requires high energy input to reach them) or difficult to observe (their contribution
to the energy of the output is small). More precisely, let us fix an integer r > 0 which represents the desired state
dimension of the reduced order model. Let (x̃,u,σ , ỹ) be a solution of Σbal such that x̃(0) = 0, assume that for all
t > τ0, u(t) = 0. It then can be shown [227] that

r

∑
i=1

x̃2
i (τ0)

1
σi

+
n

∑
i=r+1

1
σi

x̃2
i (τ0)≤

∫
τ0

0
‖u(s)‖2ds

r

∑
i=1

x̃2
i (τ0)σi +

n

∑
i=r+1

σix̃2
i (τ0)≥

∫
∞

τ0

‖ỹ(s)‖2ds
(4.5)

and x̃i(τ0) denotes the ith component of x̃(τ0). The numbers σ1, . . . ,σn are called singular values of the pair
(P,Q) and they are the square roots of the eigenvalues of the product PQ.

That is, if σr+1, . . .σn are small, and the energy of u is small, i.e.,
∫ τ0

0 ‖u(s)‖2ds is small, then the values
x̃r+1(τ0), . . . , x̃n(τ0) have to be small due to the first inequality, and they contribute little to the output starting
from the time instance T0 due to the second inequality. That is, only the first r components of x̃ are relevant
for the input-output behavior. Hence, by discarding the last n− r state components we can expect to get a LSS,
input-output behavior of which is close to the original one.

This intuition can be formalized as the error bound below.

Theorem 4.1 (Error bound for balanced truncation [227]). For any σ ∈Q, u ∈U such that
∫

∞

0 ‖u(s)‖2
2ds <+∞,∫

∞

0
‖YΣ(u,σ)(s)−YΣ̄(u,σ)(s)‖2ds≤ (2

n

∑
k=r+1

σk)
2
∫

∞

0
‖u(s)‖2ds

Further extensions The results discussed above also hold for discrete-time LSSs [227]. The assumption that
P,Q do not depend on q ∈ Q implies quadratic stability, which is a quite restrictive assumption. In [106] this
assumption was replaced by local stability of the linear subsystems. Moreover, an error bound similar to Theorem
4.1 was derived in [106], but it holds only for switching signals with a sufficiently large dwell time. Note that
[106] allows for LSSs with non-trivial linear reset maps. Extension of [106] to arbitrary switching was developed
in [108]. Finally, balanced truncation was extended to linear switched systems with autonomous switching [212].

Relationship with realization theory First, the existence of positive definite grammians P,Q is a necessary
(but not sufficient) condition for minimality of quadratically stable LSSs [227]: the kernels of positive semi-
definite observability (resp. controllability) grammians are contained in the set of unobservable states (resp.
states which are not in the span of reachable states). Intuitively, when the grammians are positive definite,
we can bring them to a balanced form and then identify the states corresponding to small singular values with
unobservable/unreachable states. Then balanced truncation can be thought of as a numerical implementation of
the minimization procedure Procedure B.3. Theorem 4.1 provides means to evaluate the effect of the discarded
‘small” singular values on the approximation error.

Realization theory is also necessary to show that balanced truncation well posed. More precisely, the applica-
tion of balanced truncation relies on the availability of a quadratically stable LSS and by Theorem 4.1, the quality
of the reduced model relies on the singular values of the observability/controllability grammians. If the original
model is not quadratically stable, then one may wonder if there exist input-output equivalent quadratically stable
models. Using realization theory it is shown in [227] that in order to decide if balanced truncation can be applied,
it is sufficient to transform the original model to a minimal one (which also makes sense for the purposes of
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model reduction), and then to check if the minimal model is quadratically stable. Moreover, any minimal model
can be used for balanced truncation without introducing more conservativity. Indeed, in [227] it is shown that the
singular values of any pair of controllability/observability grammians for any LSS are not smaller than the singu-
lar values of some pair of grammians of a minimal input-output equivalent LSS. Moreover, due to isomorphism,
all controllability/observability grammians of minimal input-output equivalent LSSs are related by a similarity
transform and have the same singular values.

Finally, realization theory and the notion of Hankel-matrix can be used to relate singular values of grammians
to norms of a Hankel-operator [227].

4.5 Moment matching
Consider a LSS Σ of the form (2.6), and let us denote its input-output map by f . For the sake of simplicity, we
assume that p = m = 1, i.e., we deal only with the SISO case, and we consider systems only in continuous-time.
Recall from that since f is realizable by a LSS then f has to have a generalized kernel representation, see [205,
Definition 24], Appendix B.5, i.e. there must exist a sequence of analytic functions {G f

v}v∈Q+ , such that for any
switching signal σ and input u,

f (u,σ)(t) =
∫ t

0
G f (σ ,s, t)u(s)ds

and if σ(τ) = qi for τ ∈ [Ti−1,Ti), T0 = 0 < T1 < · · ·< Tk, i = 1,2, . . ., then

G f (σ ,s, t) = G f
qi···qk

(Ti− s,Ti+1−Ti,Ti+2−Ti+1, . . . , t−Tk−1)

if s ∈ [Ti−1,Ti) and t ∈ (Tk−1,Tk] for some integers 0 < i < k. That is, G f
qk ,G

f
qk−1qk ,G

f
q1···qk determine the response

of the input-output function f to the switching signal which switches through the discrete states q1,q2, . . . ,qk.
The idea of moment matching is to find a reduced order LSS Σ̄ such that for certain sequences v ∈ Q+, G f

v is
close to GY

Σ̄
v . Intuitively, this means that the input-output map of Σ̄ will be close to that f .

In Subsection 4.5 we present the Markov-parameter based approach [24, 30, 31], where we look for a reduced
order model Σ̄ such that certain Taylor-series coefficients of GY

Σ̄
v (Markov parameters of YΣ̄) and G f

v (Markov
parameters of f ) coincide. In Subsection 4.5 we present the frequency-domain based approach [105], where we
consider multi-variate Laplace transforms H f

v of G f
v and we look for reduced order models Σ̄ such that the Laplace

transform HY
Σ̄

v of the function GY
Σ̄

v coincides with H f
v for some complex values.

Matching Markov parameters

The basic idea of model reduction algorithms based matching Markov-parameters is to reduce the dimension
of the original model while preserving certain high-order derivatives of the elements of the generalized kernel
representation {G f

v}v∈Q+ of its input-output map f .
More precisely, recall from Appendix B.5 or [205, Definition 25] the notion of a Markov parameter S f

q,q0(v),
v ∈ Q∗:

S f
q,q0

(ε) = G f
q0q(0,0), S f (q,q0)(q1q2 · · ·qk) =

d
dt1
· · · d

dtk
G f

q0q1···qk
(0, t1, . . . , tk,0)|t1=···=tk=0

for all q,q0,q1, . . . ,qk ∈ Q, k ≥ 1. In fact, S f
q,0(v),v ∈ Q∗ are the Taylor series expansion of G f

q1,...,qk , i.e., for all
q1, . . . ,qk ∈ Q, k ≥ 1, α1, . . . ,αk ∈ N,

dα1

dtα1
1
· · · dαk

dtαk
k

G f
q1···qk

(t1, . . . , tk)|t1=t2=···tk=0 = Sq1,qk(q
α1
1 · · ·q

αk
k )
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Furthermore, recall from [30] or from Appendix B.5 the notion of selection. More precisely, for the particular
case of SISO systems, we call any subset α ⊆Q∗×Q a selection. Let α and β be two selections. Consider a LSS
Σ̄. Then Σ̄ is called a (α,β )-partial realization of f , if for every (v,q0) ∈ β , (u,q) ∈ α ,

SY
Σ̄

q,q0(vu) = S f
q,q0

(vu) (4.6)

That is, Σ̄ is an (α,β )-partial realization of f , if those Markov-parameters of f and of the input-output map YΣ̄

of Σ̄ which are indexed by (α,β ) coincide. This means that certain high-order derivatives of {G f
v}v∈Q+ and of

{GY
Σ̄

v }v∈Q+ are the same. That is, a (α,β )-partial realization of f can be viewed as an LSS input-output map of
which approximates f . If α = Q∗×Q or β = Q∗×Q, then any (α,β )-partial realization of f is a realization of
f .

The idea behind moment matching is then to replace a LSS Σ by a reduced order LSS Σ̄ such that Σ̄ is a (α,β )-
partial realization of the input-output map f =YΣ of Σ. The various algorithms differ in the way the selections α ,
β are chosen. The moment matching algorithms which produce (α,β )-partial realizations arise from Algorithm
5 by a suitable choice of the matrices W and V . In order to explain these choices in more detail, we introduce the
following definitions. Define the subspaces

Oα(Σ) =
⋂

(v,q)∈α

kerCqAv,

Rβ (Σ) = Span{AwBq0 | (w,q0) ∈ β}.

The matrices W and V can be chosen as follows.

(A) kerW = Oα(Σ) and V = In. Then Algorithm 5 returns a (α,{ε}×Q)-partial realization of f [30, Theorem
3].

(B) ImV = Rβ (Σ) and W = In. Then Algorithm 5 returns a ({ε}×Q,β )-partial realization of f , [30, Theorem
2].

(C) kerW = Oα(Σ), ImV = Rβ (Σ), rank W = rank V = rank WV . Then Algorithm 5 returns (α,β )-partial
realization of f , [30, Theorem 4].

There are two strategies for choosing α , β .
The first one is to choose α (resp. β ) to be finite such that dimOα(Σ) = n− r (resp. dimRβ (Σ) = r), and

in this case the reduced order model will have dimension r. In this case, Oα(Σ) = kerOα (resp. Rβ (Σ) = Rβ ),
where

Oα =
[
Cs1AT

v1
. . . Csr A

T
vr

]T
,

Rβ =
[
Aw1Bq1 . . . Awr Bqr

]
where α = {(vi,si)}r

i=1, β = {(wi,qi)}r
i=1. Using these matrix representations the matrices W and V described

above can easily be computed.
The second option for choosing selections is to choose (α,β ) to be consistent with a certain set of switching

signals. In this latter case, the dimension of the reduced order model cannot be fixed in advance, but it is known
that the reduced order model will have the same input-output behavior along those switching sequences which
belong to this designated set. More precisely, assume that the switching signal σ ∈ Q has the property that
σ(s) = qi, s ∈ [Ti−1,Ti), T0 = 0, Ti = ∑

i
r=1 tr for some qi ∈Q, 0 < ti ∈R+, 0 < i ∈N. We will say that a selection

(α,β ) is consistent with σ , if for every i > 0, for every ωi, . . . ,ωk ∈ N,

((qi)
ωi(qi+1)

ωi+1 · · ·(qk)
ωk ,qi) ∈ β , ((q1)

ω1(q2)
ω2 · · ·(qi)

ωi ,qi) ∈ α.

It then turns out that if the selection (α,β ) is consistent with a switching signal σ , then all (α,β )-partial
realizations have the same input-output behavior along the switching signal σ . The latter observation then char-
acterizes the effect of moment matching algorithms which use selections. The formal theorem is as follows.
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Theorem 4.2 (Properties of moment matching using selections [30]). Assume that (α,β ) is consistent with σ

and Σ̄ is (α,β )-partial realization of f . Then YΣ̄(u,σ) = f (u,σ), for all u ∈U .

Note that for a pair of selections to be consistent with a switching signal (or a set of switching signals),
the selections involved have to be infinite sets. If the prefixes of the sequences of discrete modes of the de-
sired switching signals form a regular language, then there exist algorithms to compute matrix representations of
Oα(Σ), Rβ (Σ), see [30, 31].

Further extensions. The model reduction method described above was extended to LPV models [28] and
bilinear systems [228]. In addition, the method above was applied to LSSs arising from asynchronous sampling
of linear time-invariant systems [25].

Relationship with realization theory. To begin with, the whole idea of matching Markov parameters relies
on the notion of Markov-parameters and partial-realization, which are integral parts of realization theory. In
fact, the result of the Ho-Kalman realization algorithm from Algorithm 13 is isomorphic to the LSS returned by
Algorithm 5 with the choice of the matrices W and V as described in option (C) above. That is, moment matching
is just a reformulation of Ho-Kalman algorithm when the latter is applied to finite Hankel-matrices, rank of which
is not maximal. The partial realization algorithm of [219] is a particular instance of this model reduction method,
if α = β = {v ∈ Q∗ | |v| ≤ N}×Q is chosen. Furthermore, Theorem 4.2 and its counterpart for the discrete-time
case [31] can be viewed as extensions of realization theory of LSSs with constrained switching [202, 203].

Moment matching in frequency domain

By applying multivariate Laplace transform of the functions {G f
v}v∈Q+ we can define a sequence of functions

{H f
v }v∈Q+ of complex variables as follows:

H f
v (s1, . . . ,sk) =

∫
∞

0
· · ·
∫

∞

0
Gv(t1, . . . , tk)es1t1+···+sktk dt1 · · ·dtk (4.7)

for all Re(si)> s0 for a suitable s0 ∈ R, where k = |v|. If f has a realization by a LSS Σ of the form (2.6) then by
[203],

G f
q1···qk

(t1, . . . , tk) =Cqk eAqk tk · · ·eAq1 t1Bq1 ,

and hence
H f

q1,q2,...,qk
(s1,s2, . . . ,sk) =Cqk Φqk(sk)Φqk−1(sk−1) · · ·Φq1(s1)Bq1 , (4.8)

where Φq(s)= (sIn−Aq)
−1, q j ∈Q, 16 j 6 k. We call the functions {H f

v }v∈Q+ the generalized transfer functions
of the input-output map f [105].

Let Γ and Θ be finite sets of tuples so that

Γ,Θ⊆ {(v,µ) | v ∈ Q+,µ ∈ Ck,k = |v|}.

We will say that a LSS Σ̄ is a (Γ,Θ)-partial realization of f , if for every (w,µ) ∈ Γ, (v,λ ) ∈Θ,

H f
wv(µ,λ ) = HY

Σ̄
wv(µ,λ ).

Intuitively, Σ̄ being a (Γ,Θ)-partial realization of f means that the generalized transfer functions f and that of the
input-output map of Σ̄ coincide for some switching sequences and some frequencies.

Our goal is to find a LSS Σ̄ such that Σ̄ is a (Γ,Θ)-partial realization of f , and the dimension of Σ̄ is smaller
than that of Σ.

To this end, for any v = q1 · · ·qk ∈ Q+, q1, . . . ,qk ∈ Q, define

r((v,µ) = Φqk(µk) · · ·Φq1(µ1)Bq1 ,

o((v,µ)) =Cqk Φqk(µk) · · ·Φq1(µ1).
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for any µ = (µ1, . . . ,µk) ∈ Ck. Assume that the cardinality of Γ and Θ are both r and consider an enumeration
Γ = {(wi,µ i

)}r
i=1 Θ = {(vi,λ i)}r

i=1 of these sets. Define the matrices

R =
[
r((w1,µ1

)) . . . r((wk,µr
))
]
,

O =
[
o((v1,λ 1))

T . . . o((vk,λ r))
T ]T .

Assume that rank OR = r. We can apply Algorithm 5 with W = O, V = R resulting in a LSS Σ̄ which will be a
(Γ,Θ)-partial realization of f . The formal theorem is as follows.

Theorem 4.3 (Correctness of frequency domain moment matching [105]). With the notation and assumptions
above, the LSS Σ̄ is a (Γ,Θ)-partial realization of f .

The method described above has an alternative formulation in terms of generalized Loewner matrices [105],
thus extending the well-known Loewner-matrix based model reduction method for linear systems.

Further extensions The results described above were extended to LPV systems in [107].
Relationship with realization theory The reformulation of this method in terms of generalized Loewner

matrices yields a partial realization algorithm, as it depends on data which can directly be obtained from Laplace
transforms of the input-output map. In a way, this method is the first step towards a reformulation of realization
theory of LSSs in frequency domain.

4.6 Conclusions
In this chapter I presented a brief overview of my contribution to model reduction of linear switched systems. It is
well known that for linear systems there is a deep connection between these two disciplines. As the results of this
chapter demonstrate, the same holds for linear switched systems too. There are many possible directions for future
research. A particularly natural one is to extend the results of this chapter to hybrid systems with state-dependent
switching, for example to piecewise linear systems. The latter can be viewed as a feedback interconnection of a
linear switched system with an discrete event generator, hence we are hopeful that the results of this chapter will
be useful for such an extension.
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Chapter 5

Identification of LPV systems

In this chapter I present a selection of topics related to systems identification which I worked on. I will concentrate
on LPV systems, and on those topics which rely on system identification. The reason for concentrating on
LPV systems is that my work on system identification mostly concerned linear switched systems with external
switching and LPV systems. The former is a subclass of the latter, hence, it seems more straightforward to discuss
the results for the more general system class.

System identification of LPV systems is a very active research area, without claiming completeness one can
mention mention [18, 155, 175, 231, 88, 288, 268, 284, 289, 49, 99, 150, 273, 67, 165, 166]. Within LPV system
identification, a large portion of the literature is focused on identifying input-output LPV models, see for example
[49, 155, 18, 231, 69]. My own work was focused on LPV state-space representations. The existing methods in
system identification of LPV state-space representations can be divided into two categories: parametric identi-
fication methods and subspace identification methods. Without claiming completeness, for parametric methods
we refer to [308, 159, 158, 240, 42, 19, 192], and for subspace methods to [284, 88, 288, 289, 76, 67] and the
references therein. In the case of parametric methods, the sought after state-space representation is assumed to be
a member of a parameterized family of state-space representations, and the task is to estimate the correct value
of the parameter from data. In the case of subspace methods, the state-space representation is assumed to be a
black-box, and the system matrices are estimated up to an isomorphism. This division is not very strict, as sub-
space methods could be viewed as a particular instance of parametric methods, and prediction error minimization
(PEM) methods [308] can be applied to black-box models. However, for the purposes of our discussion, such
a classification is useful. Another way of classifying LPV state-space identification methods is whether they
are local or global. Local methods aim at identifying the LTI model for each constant value of the scheduling
signal and then merge the resulting family of LTI models, again, without claiming completeness we can men-
tion [314, 99, 291] and the references therein. This is in contrast to global methods, where the LPV state-space
representation is estimated using time-varying scheduling signals. In this chapter, I will focus on global methods.

My work on LPV system identification was centered around the following two problems:

• Characterizing identifiability of LPV state-space representations.

• Proving statistical consistency of subspace algorithms and overcoming the curse of dimensionality and
weakening the usual observability assumptions made for subspace methods.

When I started research on LPV system identification, the existing literature did not completely solve the problem
of characterizing identifiability of LPV state-space representations, despite the pioneering work [158]. Identifi-
ability is important for parametric methods, as finding the best parameter estimate for non-identifiable parame-
terizations is conceptually and numerically problematic [171, 307, 285]. In addition, when I started working on
LPV system identification, there were no results on statistical consistency of subspace identification algorithms.
Moreover, most of the available subspace identification algorithms suffered from curse of dimensionality and
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they relied on quite strong observability assumptions about the underlying data-generating model. My research
in this topics was aimed at filling these gaps. In fact, similarly to the case of LTI systems, addressing both issues
for LPV state-space representations required results from realization theory.

In this chapter we will consider deterministic and stochastic LPV systems. For deterministic LPV systems,
we consider state-space representations with affine dependence on parameters (LPV-SSA) from Chapter 2, and
we present results on identifiability analysis and a deterministic subspace identification algorithm. The results
on identifiability are based on the paper [5] and PhD thesis [4], the results on subspace identification are based
on [66]. The results of the deterministic case rely on realization theory of LPV-SSAs presented in Chapter 2.
The stochastic case is based on the results of [172, 173] and it uses the results of Chapter 2 on realization theory
of stochastic bilinear systems. In this chapter, we will deal only with discrete-time systems, as they are simpler
and most of the existing literature on system identification of LPV and switched systems deals with the discrete-
time case. As it was mentioned before, linear switched systems can be viewed as LPV systems with scheduling
variables taking values in a finite set. Hence, the results of this chapter can directly be applied to linear switched
systems.

The chapter is organized as follows. In Section 5.1 we deal with system identification of deterministic LPV-
SSAs. In Section 5.2 we present stochastic subspace identification algorithms. In each section, we will discuss
the role of realization theory in the topic discussed in that particular section.

5.1 System identification of deterministic LPV-SS systems
The presentation of this section is based on [66, 5]. We will use the notation and terminology introduced in
Chapter 2, in particular, in Section 2.2 and Section 2.3. The system identification problem can be formulated in
various ways. First, we start with an intuitive and informal problem formulation.

Problem 5.1 (System identification: informal). Let (u, p,y) ∈ U ×P ×Y be signals such that for some x,
(x,u, p,y) is a solution of an unknown LPV-SSA Σtrue. Based on the data {u(t), p(t),y(t)}N

t=0 find a LPV-SSA
ΣN = (P,

{
AN

i ,B
N
i ,C

N
i
}np

i=0) such that for large enough N, the input-output behavior of ΣN is close enough to the
input-output behavior of Σtrue.

Intuitively, Σtrue can be thought of as the true LPV-SSA which generates the observations. The problem
above is ill-posed. First of all, we did not specify what we mean my input-output behavior. Second, we did
not specify how to compare them. The most natural definition of input-output behavior would be that of the
behavioral approach [306], which was extended to LPV systems [273], i.e., in this case the input-output behavior
of an LPV-SSA Σ is B(Σ) = {(ũ, p̃, ỹ) | ∃x̃ ∈X : (x, ỹ, ũ, p̃) is a solution of Σ}. However, this approach presents
a number of conceptual and technical difficulties. Instead, in order to keep the discussion simple, we follow the
classical approach in system identification and we formalize the input-output behavior of a LPV-SSA Σ as the
input-output map of Σ induced by the zero initial state. We then compare the input-output behavior of ΣN and
Σ∗ by comparing the system matrices of ΣN with the system matrices of a LPV-SSA realization of F =YΣtrue,0.
That is, we would like the system matrices of ΣN to be close to the system matrices of a LPV-SSA Σ∗ such that
Σ∗ is a realization of F. In this way, we ensure that for any scheduling signal and input, the output of ΣN will
be close to that of Σ∗, which, in turn, by virtue of Σ∗ being a realization of F, will be equal to the output of the
true system Σtrue. Note that the output responses of ΣN and Σ∗ could be close even if the system matrices are
different. In fact, two LPV-SSAs could have the same input-output map while their system matrices are very far
from each other. For this, it is sufficient to apply a linear state-space transformation to them. However, if the
system matrices are close, then the output responses to the same input and scheduling signal will also be close,
so the proposed approach is meaningful, even if it is conservative.

We then arrive to the following problem formulation.

Problem 5.2 (System identification: deterministic and non-parametric). Consider an LPV-SSA input-output map
F of the form (2.4) and assume that it has an LPV-SSA realization. Let (u, p,y) ∈ U ×P×Y be signals such
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that y = F(u, p). Based on the data {u(t), p(t),y(t)}N
t=0 find a LPV-SSA ΣN = (P,

{
AN

i ,B
N
i ,C

N
i
}np

i=0) such that for
all i ∈ I0,np , the limits

Ai = lim
N→∞

AN
i , Bi = lim

N→∞
BN

i , lim
N→∞

CN
i =Ci

exist, and Σ∗ = (P,{Ai,Bi,Ci}
np
i=0) is a realization of F.

That is, based on measurements {u(t), p(t),y(t)}N
t=0 find an LPV-SSA ΣN such that for large enough N, the

input-output maps of ΣN should be close enough to F, or, in other words, ΣT should be close to a true realization
of F. Often, the goal is not to find just an approximate LPV-SSA realization of F, but to find a realization with
a particular structure, i.e., an element of a parameterization. In order to formalize this concept, we introduce the
following terminology.

Definition 5.1 (LPV parameterization). Let Θ ⊆ Rnθ for some integer nθ > 0 and let us fix the integers
nx,nu,ny,np. An LPV-SS parameterization Π is a map

Π : Θ→ (Rnx×nx ×Rnx×nu ×Rny×nx)np+1. (5.1)

The interpretation of a parameterization is as follows. For every θ ∈Θ, Π(θ) is of the form

{(Ai(θ),Bi(θ),Ci(θ)}
np
i=0,

for some Ai(θ) ∈ Rnx×nx ,Bi(θ) ∈ Rnx×ny ,Ci(θ) ∈ Rny×nx for all i ∈ I0,np . Then, Π(θ) can be associated with an
LPV-SSA

ΣΠ(θ) = (P,{Ai(θ),Bi(θ),Ci(θ)}
np
i=0),

i.e., Π can be viewed as a map which associates an LPV-SS model with each value θ ∈ Θ and the matrices of
this LPV-SS model are functions of θ . Note that we can also view Π as a map Π : Θ→ RN , N = nx(nx + ny +

nu)(np +1), by storing the matrices {Ai(θ),Bi(θ),Ci(θ)}
np
i=0 for θ ∈ Θ as vectors. Note that if Θ = RN and Π is

the identity map, then the image of Π contains all LPV-SSA representations of dimension nx.
The motivation for introducing parameterizations is as follows. Often, instead of looking for an approximate

LPV-SSA realization of F in general, one wants to find an approximate LPV-SSA realization from a particular
parameterization. This is the case, for example, if a LPV-SSA realization of F could in principle be derived from
the first principles, but some of the physical quantities involved are unknown. This leads us to the following
reformulation of the identification problem.

Problem 5.3 (System identification: deterministic and parametric setting). Let Π be a LPV-SSA parameterization
of the form (5.1) and consider the signals (u, p,y) ∈ U ×P ×Y such that y = F(u, p). Based on the data
{u(t), p(t),y(t)}N

t=0 find θN ∈Θ, such that limN→∞ θN = θ∗ and Π(θ∗) is a realization of F.

Intuitively, the parametric system identification problem is to find a parameter θN based on the measurements ,
such that the corresponding LPV-SSA Π(θN) is close to a realization of F, at least for a large N. This is expressed
by the requirement that limN→∞ θN = θ∗ and Π(θ∗) is a realization of F. The same intuition could have been
formalized is a less restrictive manner, but for the purposes of this chapter the formalization above is sufficient.
The parameter θ∗ can be viewed as the parameter corresponding to a true realization of F, to the exact model of
underlying system.

The non-parametric system identification problem Problem 5.2 is a special case of Problem 5.3 if we take
the trivial parameterization Π(θ) = θ , ∀θ ∈ Θ = RN . However, as we shall see later, viewing Problem 5.2 as a
special case of Problem 5.3 is not very useful for a number of practical reasons.

The standard approach to solving problem Problem 5.3 is as follows. First, we define a loss function

`N(θ ,{u(t), p(t),y(t)}N
t=0)
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which measures the difference between the actual output y(t) and the output ŷ(t) of the LPV-SSA Π(θ), when
the latter is started from some initial state and fed the scheduling variables and inputs {u(t), p(t)}N

t=0. A typical
choice of the loss function `N(θ ,{u(t), p(t),y(t)}N

t=0) is as follows:

`N(θ ,{u(t), p(t),y(t)}N
t=0) =

1
N

N

∑
t=0
‖y(t)−YΠ(θ),0(u, p)(t)‖2

2, (5.2)

Then we choose θT be the solution of the following optimization problem

θT = argminθ∈Θ`T (θ ,{u(t), p(t),y(t)}N
t=0). (5.3)

That is, the identification problem of Problem 5.2 can be reduced to the optimization problem in (5.3), where θN
is chosen in such a way that it gives the smallest possible difference between the actual measured output and the
one predicted by Π(θN), i.e., Π(θN) is model which explains the data best among all the models described by the
parameterization Π.

So far we have not required that there should be a one-to-one relationship between the parameters θ and the
input-output behavior of Π(θ), i.e., it could happen that YΠ(θ1) =YΠ(θ2) for some θ1,θ2. If this is the case, then
we have to deal with two problems:

1. Non-uniqueness of the true model. It can happen that the set D(F) = {θ | Π(θ) is a realization of F}
contains several elements and hence the choice of θ∗ to which the estimates θT have to converge is not
unique. In principle, this need not be a problem. However, non-uniqueness of θ∗ makes the proof of
convergence technically difficult, especially if DF is a connected set. Moreover, if the parameters have a
physical meaning and we would like to estimate them from data, then this becomes impossible, as there are
several possible parameter values which are consistent with any measured data.

2. Local and global minim.a In this case, for most of reasonably defined loss functions, in particular for
the one of (5.2), `N(θ1,{u(t), p(t),y(t)}N

t=0) = `N(θ2,{u(t), p(t),y(t)}N
t=0), and hence the optimization

problem (5.3) has several solutions. In turn, this leads to numerical instability for most of the known
optimization algorithms or convergence to a local minimum or lack of convergence.

For this reason, when it comes to parametric identification, one would like to avoid the situation when there
are several parameters such that the corresponding models have the same input-output behavior. This prompts us
to recall the following definition from [5]

Definition 5.2 (Structural identifiability,). An LPV-SS parameterization Π of the form (5.1) is called structurally
identifiable if, for any two distinct parameters θ1,θ2 ∈ Θ, θ1 6= θ2, the input-output maps of the corresponding
LPV-SSAs ΣΠ(θ1) and ΣΠ(θ2) generated by zero initial states are different, i.e., YΣΠ(θ1),0 6=YΣΠ(θ2),0.

In other words, structural identifiability means that, for every two different parameters, there exists a sequence
of inputs and scheduling parameter values (u, p)∈U ×P , such that the corresponding outputs are different. That
is, in Problem 5.3 we want to deal only with structurally identifiable parameterizations. It is now easy to see
why considering the trivial parameterization where Π is the identity is not suitable for Problem 5.3. Namely, the
trivial parameterization is not structurally identifiable.

Realization theory can be used for solving Problem 5.2 and Problem 5.3 as follows. First, the Kalman-Ho-like
realization algorithm can be used to get a identification algorithm for solving Problem 5.2 along with a persistence
of excitation condition. Second, the theory of minimality can be used to find conditions for checking structural
identifiability and to come up with structurally identifiable parameterizations.

This section is structured as follows. In Subsection 5.1.1 we present a subspace-like algorithm based on the
Kalman-Ho-like algorithm from Chapter 2 and conditions for persistence of excitation. In Subsection 5.1.2 we
discuss the application of realization theory to identifiability.
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5.1.1 Deterministic subspace identification algorithm LPV-SSA
In this section we present subspace identification algorithms for deterministic LPV-SSAs. This section is based
on [66].

Recall from Section 2.6, Chapter 2 that a LPV-SSA realization of F can be calculated from the Hankel-
matrix HF,N,N+1 using Algorithm 1, or from the matrices HF,α,β Hq,F,α,β Hq,F,α HF,β ,q for some selections
α,β using Algorithm 2. Recall that these matrices can be constructed from the sub-Markov parameters of F.
Hence, one approach for solving Problem 5.2 is to estimate the sub-Markov parameters from the measured data
{u(t), p(t),y(t)}N

t=0 and then apply Algorithm 1 or Algorithm 2.
Notice that if F has a realization by a LPV-SSA, it has a IIR representation and hence if y = F(u, p), then

y(t) =
t−1

∑
δ=0

(hF � p)(δ , t)u(δ ) =
t−1

∑
δ=0

∑
iδ ,...,it∈I0,np

θit ,iδ ,F(iδ+1 · · · it−1)pit (t) · · · piδ (δ )u(δ ). (5.4)

In order to estimate the sub-Markov parameters of F from {u(t), p(t),y(t)}N
t=0, equation (5.4) has to be solved

with the sub-Markov parameters θit ,iδ ,F(iδ+1 · · · it−1) being treated as indeterminate to be found.
There are two ways of doing so. The first one is to assume that for some nb, if

(hF � p)(δ , t) = 0, if t−δ > nb

or, which is equivalent, that
θit ,iδ ,F(iδ+1 · · · it−1) = 0, if t−δ > nb.

If F has a realization by a stable LPV-SSA of the form (2.1), then for large enough nb, for t−δ ≥ nb, θit ,iδ ,F(iδ+1 · · · it−1)
is going to be close to zero [66], so this assumption will approximately be true. In this case, (5.4) can be written
as

y(t) =
nb

∑
δ=1

∑
it−δ ,...,it∈I0,np

θit ,it−δ ,F(it−δ+1 · · · it−1)pit (t) · · · pit−δ
(t−δ )u(t−δ ),

for all t ≥ nb. That is, we can formulate the following linear regression problem

YN = ΦNθN (5.5)

where
YN =

[
yT (nb +1) yT (nb +2) . . .yT (N)

]T
and ΦN is a suitable matrix constructed from the products pit (t) · · · pit−δ

(t − δ )u(t − δ ), and θN is the vector
constructed from the entries of θit ,it−δ ,F(it−δ+1 · · · it−1), nb ≤ t ≤ N, δ = 1, . . . ,nb it−δ , . . . , it ∈ I0,np , see [66] for
more details. Since YN and ΦN are known, the equation (5.5) can be solved in the least squares sense, leading to
the following system identification algorithm by combining the solution of (5.5) with Algorithm 1 or Algorithm
2. Below we will present only the SISO case in order to avoid excessive notation, and only the version using
Algorithm 2 as Algorithm 1 can be viewed as a special case of Algorithm 2:

Algorithm 6 Deterministic subspace identification algorithm based on finite impulse response

1: Solve (5.5) and denote the entry of the solution θN which corresponds to θit ,it−δ ,F(it−δ+1 · · · it−1), by
θ N

it ,it−δ ,F
(it−δ+1 · · · it−1), for all it−δ , . . . , it ∈ I0,np , nb ≤ t ≤ N for all δ = 1, . . . ,nb.

2: Choose nice selection α,β ⊆ {v∈ I∗0,np
| |v| ≤ n}×I0,np and construct the matrices H N

F,α,β , H N
q,F,α,β , H N

F,α,q

and H N
q,F,β by replacing in (2.20) – (2.23) every occurrence of θr1,r2,F(h), r1,r2 ∈ I0,np , h∈ I∗0,np

by θ N
r1,r2,F

(h).
3: Let ΣN be the LPV-SSA returned by Algorithm 2 when applied to H N

F,α,β H N
q,F,α,β , H N

F,α,q and H N
q,F,β .

4: return ΣN
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Lemma 5.1 (Correctness of Algorithm 6). Assume that rankHF,α,β equals the dimension of a minimal LPV-SSA
realization of F, and assume that θik,i0F(i1 · · · ik−1) = 0 for any i0, . . . , ik ∈ I0,np , k ≥ nb, and that the matrix ΦN
from (5.5) is full column rank. Then ΣN returned by Algorithm 6 is a realization of F.

That is, under suitable conditions Algorithm 6 solves Problem 5.2. Moreover, it solves it for a finite number
of data points, i.e., for large enough N the estimate ΣN is an exact realization of F, not an approximate one. As it
is to be expected, the corresponding conditions are quite strong.

More precisely, the condition that rankHF,α,β equals the dimension of a minimal LPV-SSA realization of F is
not at all restrictive. In fact, it is known that if F has a minimal LPV-SSA realization of dimension n, then there
exists selections α,β ⊆ I0,np×{v ∈ I∗0,np

| |v| ≤ n−1} such that rankHF,α,β = n. That is, once the likely order of
a minimal realization of F is fixed, one can always find suitable selections. In fact, the number of such selections
is finite, so suitable selections can always be found by exhaustive search, although the runtime complexity of this
is high. In practice, more intelligent search techniques are preferable.

The second requirement is that i
θik,i0F(i1 · · · ik−1) = 0

for any i0, . . . , ik ∈ I0,np , k ≥ nb. This is more problematic, since it means that long enough product of the system
matrices of any minimal LPV-SSA representation of F must be zero. However, if F has a quadratically stable
LPV-SSA representation, then this condition will hold approximately. Of course, in this case Lemma 5.1 no
longer holds, but an asymptotic version of Lemma 5.1 can probably be formulated. The condition that ΦN must
be of full column rank is reminiscent of persistence of excitation condition, it remains a topic of future research to
investigate the choice of signals u, p which satisfy this condition. Algorithm 6 was tested on numerical examples,
and it performs well, especially when combined with parametric system identification algorithms, for more details
see [66].

Another option is to use the statistical properties of the signals u, p,y. More precisely, assume that µ, u, y are
stochastic processes such that y(t) = F (µ,u)(t) for all t ∈ N and assume that p,u,y are sample paths µ, u, y.
From (5.4) it then follows that

y(t) =
t−1

∑
δ=0

∑
iδ ,...,it∈I0,np

θit ,iδF(iδ+1 · · · it−1)µit (t) · · ·µiδ (δ )u(δ ), (5.6)

where µq(t) denotes the qth component of µ(t) if q = 1, . . . ,np and µ0(t) = 1 otherwise. Assume now the
following:

Assumption 1. 1. u(t) are identically distributed and independent and zero mean with covariance Qu =
E[u(t)uT (t)]> 0, and

2. the random variables µ(t) are also identically distributed and independent and that E[µ j(t)µi(t] = 0 for
i 6= j, E[µ2

j(t)] = π j, i, j ∈ I0,np , and

3. the σ -algebras generated by the random variables {µ(t)}∞
t=0 and {u(t)}∞

t=0 are independent.

That is, u is white noise, and µ is either zero mean white noise or it is a binary noise, but independent of u. It
then follows that for any j0, . . . , jt ∈ I0,np ,

E[y(t)µ jt (t) · · ·µ j0(0)u
T (0)] =

t−1

∑
δ=0

∑
iδ ,...,it∈I0,np

θit ,iδF(iδ+1 · · · it−1)E[µit (t) · · ·µiδ (δ )µ jt (t) · · ·µ j0(0)u(δ )u
T (0)].

Notice that

E[µit (t) · · ·µiδ (δ )µ jt (t) · · ·µ j0(0)u(δ )u
T (0)] = E[µit (t) · · ·µiδ (δ )µ jt (t) · · ·µ j0(0)]E[u(δ )u

T (0)]
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5.1. SYSTEM IDENTIFICATION OF DETERMINISTIC LPV-SS SYSTEMS

and

E[u(δ )uT (0)] =
{

0 if δ 6= 0
Qu, if δ = 0

Moreover,

E[µit (t) · · ·µiδ (δ )µ jt (t) · · ·µ j0(0)] = Π
t
k=0E[µik(k)µ jk(k)] = 0 if i0 · · · , it 6= j0 · · · jt .

it follows that under Assumption 1,

E[y(t)µ jt (t) · · ·µ j0(0)u
T (0)] = θ jt , j0F( j1 · · · jt−1)π j0 · · ·π jt Qu,

and therefore
θ jt , j0F( j1 · · · jt−1) =

1
π j0 · · ·π jt

E[y(t)µ jt (t) · · ·µ j0(0)u
T (0)]Q−1

u . (5.7)

That is (5.7) allows us to express the sub-Markov parameters of F through the expected values

E[y(t)µ jt (t) · · ·µ j0(0)u
T (0)].

The latter can be estimated from the signals (u, p,y) using the empirical covariances

Ê j0··· jt ,N =
1

N− t−1

N

∑
k=t

y(k)p jt (k) · · · p j0(k− t)uT (k− t),

arriving at

θ
N
jt , j0,F( j1 · · · jt−1) =

1
π j0 · · · p jt

1
N− t−1

N

∑
k=t

y(k)p jt (k) · · · p j0(k− t)uT (k− t)Q−1
u . (5.8)

We can then propose the following system identification algorithm based on Algorithm 1 or Algorithm 2. We
will present only the SISO case in order to avoid excessive notation, and only the version using Algorithm 2 as
Algorithm 1 can be viewed as a special case of Algorithm 2.

Algorithm 7 Deterministic subspace identification algorithm based on covariances

1: Choose selections α,β as defined in (2.19).
2: Construct the matrices H N

f ,α,β , H N
q,F,α,β , H N

F,α,q and H N
q,F,β by replacing in (2.20) – (2.23) every occurrence

of θr1,r2,F(h), r1,r2 ∈ I0,np , h ∈ I∗0,np
by θ N

r1,r2,F
(h) calculated from (5.8). Note that only a finite number of

θ N
r1,r2,F

(h) has to be calculated.
3: Let ΣN be the LPV-SSA returned by Algorithm 2 when applied to H N

F,α,β H N
q,F,α,β , H N

F,α,q and H N
q,F,β .

4: return ΣN

We can state the following results on consistency of Algorithm 7.

Lemma 5.2 (Consistency of Algorithm 7, adapted from [66]). If rank HF,α,β equals the dimension nm of a
minimal LPV-SSA realization of F, and the selections α and β contain exactly nm elements each, and in Algorithm
2 the matrix Onm is chosen as Onm = H N

F,α,β and Rnm is the identity matrix, and

lim
N→∞

1
N− t +1

N

∑
k=t

y(k)p jt (k) · · · p j0(k− t)u(k− t) = E[y(t)µ jt (t) · · ·µ j0(0)u
T (0)] (5.9)

for all j0, . . . , jt ∈ I0,np , t ≥ 1, then the LPV-SSA ΣN = (P,
{

AN
i ,B

N
i ,C

N
i
}np

i=0) returned by Algorithm 7 has the
following property: limN→∞(AN

i ,B
N
i ,C

N
i ) = (Ai,Bi,Ci), i ∈ I0,np and the LPV-SSA Σ∗ = (P,{Ai,Bi,Ci}

np
i=0) is a

realization of F.
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The condition that rankHF,α,β equals the dimension of a minimal LPV-SSA realization of F is not very
restrictive: in fact, we know that if F has an LPV-SSA realization of dimension n then there exist nice selection
α,β ⊆ I0,np × (I0,np)

≤n of cardinality n for which this condition holds.
If (u,µ,y) are jointly ergodic, then (5.9) holds with probability one i.e., for almost all choices of the sample

paths (u, p,y) of (u,µ,y). It is not clear under which conditions (u,µ,y) are jointly ergodic. However, in [206]
it was shown that if

• µ(t) is chosen to be binary white noise, i.e. µi(t) = ξ (σ(t) = i), i = 1, . . . ,np and σ(t) is an i.i.d. process
taking values in {1, . . . ,np} and P(σ(t) = i) = 1

np
for all i = 1, . . . ,np, and

• u and µ satisfy Part 1 and Part 3 of Assumption 1, and

• (u, p) is a sample path of (u,µ),

then for y = F(u, p) condition (5.9) holds, provided F can be realized by a quadratically stable LPV-SSA.
Algorithm 7 was tested on numerical examples, Algorithm 6 and it performs well, especially when combined

with parametric system identification algorithms, for more details see [66]

Remark 5.1 (Persistence of excitation). Note that the conditions of Lemma 5.1 and Lemma 5.2 can be viewed
as conditions for persistence of excitation of the scheduling signal and the inputs. In case of Lemma 5.1 the
condition that ΦN is of full column rank is a persistence of excitation condition which depends only on the choice
of the scheduling signal and the input signal. For Lemma 5.2, the condition that (5.9) holds can also be viewed
as a persistence of excitation condition, as it depends on the measured data. In fact, as it was noted above, [206]
provides sufficient conditions on the scheduling signal and the input signal for (5.9) to hold.

Role of realization theory

The subspace identification algorithms discussed in this section rely on realization theory, more precisely, on Ho-
Kalman realization algorithms for LPV-SSAs. In fact, they are nothing but an application of the latter algorithms
to Hankel-matrices, entries of which are estimates of the corresponding sub-Markov parameters. The consistency
of these algorithms is a consequence of realization theory of LPV-SSAs.

5.1.2 Identifiability of LPV-SSA
In this section, we present necessary and sufficient conditions for identifiability. These conditions rely on the
properties of minimal LPV-SSA realizations, in particular, on the fact the minimal LPV-SSA realizations of the
same input-output map are isomorphic. The results of this section were published in [5].

As the first step, we will restrict attention to parameterizations which are so called structurally minimal.

Definition 5.3 (Structural minimality). A LPV-SSA parameterization Π of the form (5.1) is called structurally
minimal if, for all θ ∈Θ, the LPV-SSA ΣΠ(θ) is minimal.

The reason why we restrict our attention to structurally minimal parameterizations is as follows. First, any
parameterization can be transformed into a structurally minimal one by minimizing the corresponding LPV-SSA.
Second, for structurally minimal parameterizations, it is easy to find conditions for identifiability.

Theorem 5.1 (Identifiability of LPV-SSAs [5]). Let Π be a structurally minimal LPV-SSA parameterization of
the form (5.1). Then Π is structurally identifiable, if and only if both conditions below are satisfied

(i) the map Π is injective,

(ii) for every θ1,θ2 ∈Θ, if θ1 6= θ2, then there exists no isomorphism from ΣΠ(θ1) to ΣΠ(θ2).
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That is, (i) and (ii) are necessary and sufficient conditions for structural identifiability of Π. The proof of
Theorem 5.1 relies on the fact that minimal LPV-SSA realizations of the same input-output map are isomorphic.
An alternative formulation of Theorem 5.1, which leads to a computationally efficient condition, can be derived
as follows. Let Π be a structurally minimal LPV-SSA parameterization of the form (5.1). Let us introduce the
following notation.

Notation 5.1 (vec(T )). For a matrix T ∈ Rn×m, denote by vec(T ) the vector obtained by stacking up the
elements of T column-wise, i.e.,

vec(T ) =
[
T11, . . . ,Tn1, . . . ,T1n, . . . ,Tnm

]T
.

Notation 5.2 (vec−1(X)). For a vector X ∈ Rnm, we denote by vec−1(X) the unique matrix T ∈ Rn×m such that
X = vec(T ).

With the notation above, we identify Π(θ) = {Ai(θ),Bi(θ),Ci(θ)}
np
i=0 with the point

vec(
[
AT

0 (θ), · · · ,AT
np(θ)

]T
)

vec(
[
BT

0 (θ), · · · ,BT
np(θ)

]T
)

vec(
[
CT

0 (θ), · · · ,CT
np(θ)

]T
)

 ∈ RN .

where vec(X) is a column-wise vector representation of the matrix X . Using this correspondence, the parame-
terization Π will be called structurally continuous (structurally smooth, respectively) if the map Π : Θ→ RN is
continuous (smooth, respectively). Furthermore, we will need the following notation.

Notation 5.3 (G̃L(nx)). Define the set G̃L(nx) as follows: G̃L(nx) = {X ∈ Rn2
x | ∃T ∈ GL(nx) : X = vec(T )}.

Note that if T ∈ GL(nx), then vec(T −1) is well defined and it it just the vector representation of the inverse
matrix of T . This should not be confused with vec−1(X) for some X ∈ G̃L(nx). In the latter case, vec−1(X) is
the invertible matrix whose vector representation is X . That is, vec(T −1) is a vector and vec−1(X) is a matrix.

Define the map
F :GL(nx)×Θ→ RN

(T ,θ) 7→



vec(T A0(θ)T
−1)

...
vec(T Anp(θ)T

−1)

vec(T B0(θ))
...

vec(T Bnp(θ))

vec(C0(θ)T
−1)

...
vec(Cnp(θ)T

−1)



, (5.10)

where ΣΠ(θ) = (P,{Ai(θ),Bi(θ),Ci(θ)}
np
i=0) and N = nx(nx + ny + nu)(np + 1). Note that for all T ∈ GL(nx),

T can be seen as an isomorphism from ΣΠ(θ) to F(T ,θ).

Theorem 5.2 (Reformulation of identifiability). With the assumptions of Theorem 5.1, Π is structurally identifi-
able if and only if F is injective.

The reason for reformulating Theorem 5.1 into Theorem 5.2 and introducing the map F is that it allows for
a systematic procedure to verify structural and local structural identifiability of LPV-SS parameterizations in a
computationally effective way. In order to present the details, we need the following definition.
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Definition 5.4 (Local structural identifiability). Let us assume that Θ is an open subset of Rnθ and let Π be a
LPV-SSA parameterization of the form (5.1). We say that Π is locally structurally identifiable at θ0, if there exists
an open neighborhood W ⊆Θ of θ0 such that the LPV-SSA parameterization Π|W : W 3 θ 7→Π(θ) is structurally
identifiable.

Local structural identifiability is of prime interest because it is a necessary condition for the local convergence
of many identification algorithms using non-linear optimization techniques (see [291, 36, 292]).

Definition 5.5 (Local injectivity). Assume that F is a map of the form (5.10). We say the F is locally injective
at (I,θ0), if there exist open sets S ⊆ GL(nx), W ⊆ Θ such that I ∈ S,θ0 ∈W and the restriction F |S×W of F to
S×W is injective.

Before presenting the characterization of local structural identifiability, we would like to investigate the partial
derivatives of F . Notice that the set G̃L(nx) is an open subset of Rn2

x . Note that the correspondence GL(nx) 3
X 7→ vec(X) is one-to-one. Then F can be identified with the map

F̃ : G̃L(nx)×Θ 3 (X ,θ) 7→ F(vec−1(X),θ).

If Π is a smooth parameterization, then F̃ is a smooth function defined on an open subset of Rn2
x ×Θ, and then

it makes sense to investigate the partial derivatives of F̃ . In order to avoid excessive notation, we will tacitly
identify F with F̃, and denote the Jacobian matrices ∂ F̃

∂X (X ,θ) and ∂ F̃
∂θ

(X ,θ) by ∂F
∂T

(vec(X),θ), ∂F
∂θ

(vec(X),θ),
respectively.

Theorem 5.3 (Local identifiability). Let Π be a structurally minimal LPV-SSA parameterization of the form
(5.1):

1. Assume that Π is a continuous parameterization. The parameterization Π is locally structurally identifiable
at θ0 ∈Θ, if and only if F, defined in (5.10), is locally injective at (I,θ0).

2. Assume Π is a smooth parameterization. If the matrix

MF(θ0) =
[

∂F
∂T

(I,θ0)
∂F
∂θ

(I,θ0)
]
, (5.11)

is full column rank, then Π is locally structurally identifiable at θ0.

Note that

∂F
∂T

(I,θ) =



L (A0(θ))
...

L (Anp(θ))

B0(θ)
T ⊗ I

...

Bnp(θ)
T ⊗ I

−I⊗C0(θ)
...

−I⊗Cnp(θ)



,
∂F
∂θ

(I,θ) =



∂vec(A0(θ))
∂θ

...
∂vec(Anp (θ))

∂θ
∂vec(B0(θ))

∂θ

...
∂vec(Bnp (θ))

∂θ
∂vec(C0(θ))

∂θ

...
∂vec(Cnp (θ))

∂θ


Hence, rank of the matrix MF(θ0) in Eq. (5.11) can be checked numerically, and thus the condition of the
theorem is computationally effective. Intuitively, the first statement of Theorem 5.3 stems from the observation
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that local injectivity of F means that if the parameterization is restricted to a neighborhood of θ0, then no two
LPV-SSAs corresponding to distinct parameter values can be isomorphic. The second statement of Theorem 5.3
relies on the observation that the condition that MF(θ0) is full rank guarantees that F is locally injective at (I,θ0).

While Theorem 5.3 gives computationally effective sufficient conditions for local structural identifiability,
it does not allow us to check structural identifiability on the whole parameter space. The latter is important
because local structural identifiability guarantees only that the parameter estimation problem is well-posed on
a neighborhood of the nominal value. If the parameter estimation problem is formulated as an optimization
problem of a cost function, then local structural identifiability may give us a hope that the optimization algorithm
will converge to the true solution if it is initialized properly, i.e., if it starts not far from the true value. However,
local structural identifiability does not tell us anything about the global behavior of optimization algorithms: the
algorithms may converge to one of several solutions, based on the initial values (which are thus required a priori)
and the measured data. Thus, it is desired to generalize the condition of Theorem 5.3 to structural identifiability.
This is done below, where we present computational effective characterization of global identifiability.

Theorem 5.4 (Computationally effective conditions for global identifiability [5]). Let Π be a structurally minimal
LPV-SSA parametrization of the form (5.1), and assume that Θ =Rnθ and that Π, viewed as a map Π : Θ→ RN ,
is affine. Then Π is structurally identifiable if

∀θ , θ̃ ∈Θ : det
[
Y>(θ , θ̃)Y (θ , θ̃)

]
6= 0, (5.12)

where

Y (θ , θ̃) =

[
Z(θ , θ̃) 0 ∂F

∂θ
(I,θ)

0 Z(θ̃ ,θ) − ∂F
∂θ

(I,θ)

]
, (5.13)

and

Z(θ , θ̃) =



A0(θ)
T ⊗ I− I⊗A0(θ̃)

...
Anp(θ)

T ⊗ I− I⊗Anp(θ̃)

B0(θ)
T ⊗ I

...
Bnp(θ)

T ⊗ I
−I⊗C0(θ̃)

...
−I⊗Cnp(θ̃)



. (5.14)

Role of realization theory

Realization theory, especially the results on minimality allowed us to propose conditions for global and local
structural identifiability. More precisely, the proposed conditions for identifiability all rely on the fact that input-
output equivalent minimal LPV-SSA are isomorphic. The identifiability conditions provide conditions when there
are no isomorphic elements in the parametrization.

5.2 Stochastic subspace identification algorithm
Since any model is wrong, it is a standard practice in system identification to aim at estimating the parameters of
state-space representations which a noise term. This noise term is supposed to capture modeling errors. Histori-
cally, the noise term was assumed to be a stochastic process, in fact, it was assumed to be a white noise process
with a certain variance. Traditionally, system identification algorithms also aimed at estimating this variance. For
linear systems, this was useful for several reasons. For linear models the variance of the noise gives an indication
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of the error between the output predicted by the model and the actual one. Moreover, stochastic linear systems
with known noise variances are useful for stochastic optimal control.

For non-linear systems, the rational for using stochastic noise terms is less clear. For example, control synthe-
sis methods for LPV systems rely on robust control, in which the noise is assumed to be deterministic of bounded
energy. Nevertheless, the system identification literature for nonlinear systems, including LPV systems, tends
to use the assumption that the noise is stochastic. Reconciling this assumption with the requirements for robust
control is a topic of future research.

In this section we will discuss system identification algorithms for stochastic LPV systems. More precisely, in
Subsection 5.2.1 consider first the system identification problem for GBSs, generalized bilinear systems (GBSs)
introduced in Chapter 3. The latter problem is motivated by the fact that identification of autonomous stochastic
LPV-SSA systems can be viewed as a special case of identification of GBSs. In Subsection 5.2.2 we discuss the
system identification problem for stochastic LPV-SSA with inputs, and we briefly discuss how to decompose that
problem into identifying deterministic LPV-SSAs and identifying autonomous stochastic LPV-SSAs.

5.2.1 Stochastic subspace identification of GBSs
In this section we will consider subspace identification of stationary GBSs of the form (3.2). This section is
partially based on [172]. For the sake of simplicity we consider inputs of the following two forms:

Assumption 2. We assume that Q = {1, . . . ,D} and µ(t) = (µ1(t), . . . ,µD(t))T and either

• White noise scheduling signal: µ1 = 1, p(µ1) = 1, E[µi(t)] = 0, E[µi(t)µ j(t)] = 0, i, j 6= 0, E[µ2
i (t)] =

p(µi)> 0, i, j = 2, . . . ,D, or

• Binary white noise scheduling signal: there exists a process θ(t) which is i.i.d process and which takes
its values from a finite set {1, . . . ,np}, and µq(t) = χ(θ(t) = q) for all q = 1, . . . ,np, t ∈ Z, and p(µi) =
P(θ(t) = i).

The former case also corresponds to bilinear systems with a white noise input or stochastic LPV-SSAs, for the
latter see Subsection 5.2.2 for a detailed explanation, while the latter corresponds to stochastic switched systems.
Note that in both cases, {µq}q∈Q is an admissible input in the sense defined in Section 3.4, Chapter 3.

For GBSs we can formulate an identification problem. Intuitively, what we would like to do is to estimate
the matrices of a GBS realization of y based on finite number of samples of y and the input process µ, under the
hypothesis that µ satisfies Assumption 2 and y has a realization by a stationary GBS driven by the scheduling
signal µ.

Problem 5.4 (System identification for GBS). Let µ be a process satisfying Assumption 2 and let y be a process
such that y has a realization by a stationary GBS with input process {µq}q∈Q. Assume that (y, p) ∈ (Rp)N×
(RD)N, is a sample path of (y,µ), i.e., there exists ω ∈Ω such that for all t ∈N, y(t) = y(t)(ω), p(t) = µ(t)(ω).
Based on the data {p(t),y(t)}N

t=0 find matrices ({AN
i ,K

N
i ,Q

N
i }

np
i=1,C,D) such that for all i ∈ I0,np , the matrices

AN
i ,K

N
i ,Q

N
i converge to matrices Ai,Ki,Ci,Qi respectively, and the matrices CN ,DN converge to C,D respectively,

as N→∞, such that G∗ = (nx,ny,nv,x,v,{µq}q∈Q,y,{Aq,Kq}q∈Q,C,D) is a stationary GBS realization of y and
E[v(t)vT (t)µ2

i (t)] = Qi.

Some remarks are in order. Recall the notion of weak realization from Subsection 3.7.1 of Chapter 3. Intu-
itively, the problem formulation says that for large enough N, the

({AN
q ,K

N
q ,Q

N
q }q∈Q,CN ,DN)

is an approximation of a weak realization of y, i.e., for large enough N, the second-order moments predicted by

({AN
q ,K

N
q }q∈Q,CN ,DN)
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will be close to that of y;

GN = (nx,ny,nv,xN ,vN ,{µq}q∈Q,yN ,{AN
q ,K

N
q }q∈Q,CN ,DN),

with E[vN(t)(vN(t))Tµ2
i (t)] = QN

i , is an approximate realization of y in the weak sense: the covariances Λ
yN

w ,

T yN

q,q of the output yN of ΣN are close to the corresponding covariances Λ
y
w, T y

q,q of y for all w ∈ Q+,q ∈ Q. This
follows from the fact that the matrices CN ,DN ,AN

i ,K
N
i ,Q

N
i are close to the matrices C,D,Ai,Ki,Qi, i ∈ I0,np and

the equation (3.9) applied to G∗ and GN respectively. That is, the output yN of GN is close to the process y in the
sense that some of its second order moments are close to those of y. Intuitively, this means that the probability
distributions of yN and y are close in some sense.

This intuition is not very satisfactory, as in general close second order moments do not formally imply that
the probability distributions are close. For the linear case np = 1,µ1 = 1, this intuition is more satisfactory.
Indeed, in that case, if the noise process vN and v are Gaussian, then so are yN and y. Then the cross covariances
Λ

y
w = E[y(t + |w|)yT (t)], Λ

yN
w = E[yN(t + |w|)yT

N(t)], T y
q,q = E[y(t)yT (t)], Tq,qyN = E[y(t)yT (t)] determine the

joint probability distributions of y respectively yN uniquely. That is, if these cross-covariances are close, then so
are the probability distributions of y and yN respectively.

Another way of making sense of Problem 5.4 is to use the interpretation of GBSs as predictors, as described
in Subsection 3.7.1, Chapter 3. Recall that any stationary GBS can be transformed into a GBSin forward in-
novation form, moreover, the matrices and the noise covariance of the latter are determined by the matrices
and the noise covariance of the former. In fact, recall from Subsection 3.7.1 that any the weak realization
({AN

q ,K
N
q ,Q

N
q }q∈Q,CN ,DN) can be used to calculate the matrices of a GBS in forward innovation form using

(3.18) applied to the LSS defined (3.6). Note that the matrices of the GBS in forward innovation form are contin-
uous functions of ({AN

q ,K
N
q ,Q

N
q }q∈Q,CN ,DN), and hence without loss of generality we can assume that DN = I,

D = I, and G∗ is in forward innovation form and

GN = (nx,ny,nv,xN ,vN ,{µq}q∈Q,yN ,{AN
q ,K

N
q }q∈Q,CN ,DN)

is in forward innovation form. Then G∗ can be viewed as predictors, which predict the value of y(t) based on past
values of y and {µq}q∈Q. By replacing Ai,Ki,C by AN

i ,K
N
i ,C

N in (3.38), GN also give rise to a linear predictor of
y(t) based on past values of y(s) and {µq(s)}q∈Q, s ∈ [t− t f , t).

More precisely, let us denote by xGN (t | t f ) and yG ( f | t f ) the processes defined as in (3.38), but with Ai,Ki,C
replaced by AN

i ,K
N
i ,C

N , i.e., xGN (t f | t f ) = 0 and for all k ≥ t f

xGN (t +1 | t f ) = ∑
q∈Q

(AN
q −KN

q CN)xGN (t | t f )+Kqy(t))µq(t),

yGN (t | t f ) =CNxGN (t | t f ).

(5.15)

It then follows that limN→∞ xGN (t | t f ) = xG (t | t f ), limN→∞ yGN (t | t f ) = yG (t | t f ), i.e., for large enough N,
GN produces predictions of y(t) which is arbitrarily close to the predictions produced by G , and the latter is
asymptotically optimal as the prediction horizon goes to ∞.

Recall from Subsection 3.6.3, Chapter 3 that a stationary GBS realization of y in forward innovation form
can be computed from the covariances {T y

q,q}q∈Q and {Λy
w}w∈Q+,|w|≤2n−1. More precisely, recall from Section

3.3, Chapter 3 that we can associate the deterministic input-output map fy defined in (3.10) with the process
y, and recall that there is a correspondence between LSSs realizations of fy and stationary GBS realizations of
y. It is easy to see that if in Step 2 of the covariance realization algorithm Algorithm 4 from Subsection 3.6.3,
Algorithm 13 from Appendix B is used, then instead of Hy,k,k+1, it is sufficient to use the Hankel-like matrices
H fy,α,β ,Hq, fy,α,β ,Hq, fy,α ,H fy,β ,q from (B.14)–(B.17) for some selections α,β , such that rank H fy,α,β = n
where n is the dimension of a minimal stationary GBS realization of y.

The latter version of the covariance realization algorithm inspires the following system identification algo-
rithm:
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1. we choose selections α,β such that rank H fy,α,β = n, where n is the dimension of a minimal stationary
GBS realization of y,

2. We approximate the covariances necessary to construct the matrices H fy,α,β ,Hq, fy,α,β ,Hq, fy,α ,H fy,β ,q by
empirical covariances, and apply the covariance realization algorithm from Subsection 3.6.3 to the thus
obtained matrices.

In order to formalize the algorithm, we introduce the following notation: For all w = q1q2 · · ·qr ∈ Q+, r > 0,
define

pw(t) = pq1(t− k+1)pq2(t− k+2) · · · pqr(t)

zw(t) = y(t−|w|)pw(t−1)
1√

p(µw)

(5.16)

and define the empirical covariances

N
Λw =

1
N−|w|

N

∑
t=|w|

y(t)zw(t)

NT y
q,q =

1
N +1

N

∑
t=0

zq(t)zT
q (t)

(5.17)

for every w ∈ Q+, q ∈ Q. The resulting algorithm is formalized in Algorithm 8, for the single output case p = 1.
Below, we will state statistical consistency of the subspace identification algorithm described in Algorithm 8.

Theorem 5.5 (Consistency of subspace identification [172]). Assume that

1. The nice selection pair (α,β ) is such that rank H fy,α,β = nm, and the cardinality of α and of β is the
same and it equals nm, where nm is the state-space dimension of a minimal stationary GBS realization of
y. Moreover, in Step 3 of Algorithm 8, Algorithm 13 is used with the following choice of matrices Onm and
Rnm : Onm = NHα,β and Rnm is the nm×nm identity matrix.

2. The signals y : N→ Rp and p : N→ RD are sample paths of of the processes y and µ respectively such
that for all w ∈ Q+, q ∈ Q,

Λ
y
w = lim

L→∞

L
ΛwT y

q,q = lim
L→∞

LT y
q,q (5.18)

where LΛw, LT y
q,q are defined as in (5.17)

Then the result of Algorithm 8 satisfies the following for all q ∈ Q:

K̂q = lim
M→∞

lim
N→∞

NK̂M
q , Q̂q = lim

M→∞
lim

N→∞

NhatQM
q ,

P̂q = lim
M→∞

lim
N→∞

N P̂M
q , Âq = lim

N→∞

N Âq, Ĉ = lim
N→∞

NĈ,

and the GBS
G = (n, p, p,x,e,{µq}q∈Q,y,{Âσ , K̂σ}σ ,Ĉ, Ip)

is a minimal realization of y in forward innovation form, and for all q ∈ Q,

Q̂q = E[e(t)eT (t)µ2
q(t)],

P̂q = E[x(t)xT (t)µ2
q(t)].
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Algorithm 8 Identification of GBSs
Input: Observations sequence {y(t), p(t)}N

t=0, and nice selection (α,β ) of the form (2.19), maximum number
of iterations M > 0.

1: Compute approximate covariances NΛw, NT y
q,q are defined as in (5.17), for all q ∈ Q and for every w ∈ Q+,

such that w = ivu or w = iv or w = iu or w = ivqu for some words v,u ∈Q∗, i,q ∈Q, (u,k) ∈ α , (v, l) ∈ β for
some k, l ∈ Q, and

2: Construct empirical Hankel matrix NHα,β , NHq,α,β , NHq,α , NHβ ,q σ ∈ I0,np , by replacing S fy
q1,q2(v) by NΛq2v

in (B.14)–(B.17), i.e., for all i = 1, . . . ,n, j = 1, . . . , l,[NHα,β

]
i, j =

N
Λσ jv jui[NHq,α,β

]
i, j =

N
Λσ jv jqui , i = 1, . . . ,n, j = 1, . . . , l[NHα,q

]
i =

N
Λqui , i = 1, . . . ,n[NHq,β

]
j =

N
Λσ jv j j = 1, . . . , l

3: Run Algorithm 13 from Chapter 2 with: NHα,β instead of H f
α,β ; NHq,α,β instead of H f

q,α,β , NHq,α in-

stead of H f
q,α , NHβ ,q instead of H f

β ,q, q ∈ I0,np , and let the LSS returned by Algorithm 13 be Σ̂T =

(nm,{(N Âq,
N B̂q,

NĈ | q ∈ Q}).
4: Set N P̂0

q = 0 and
for i = 1, . . . ,M do

N P̂i+1
q = ∑

q1∈I0,np

µq
(N Âq1

N P̂i
q1
(N Âq1)

T +(NK̂i
q1
)Q̂i

q1
(NK̂i)T

q1

)
NQ̂i

q = pσ
NT y

σ ,σ −NĈ(N P̂)i
q1
(NĈ)T

NK̂i
q =

(N B̂q
√

pσ −N Âq
N P̂i

q(
NĈ)T )(NQ̂i

q
)−1

5: return ({N Âq,
NK̂M

q ,NQ̂M
q ,N P̂M

q }q∈Q,
NĈ)

89



CHAPTER 5. IDENTIFICATION OF LPV SYSTEMS

Remark 5.2 (Algorithm 8). Theorem 5.5 was deliberately formulated in a non statistical language. It can readily
be reformulated into the language of statistics as follows. Let us fix selections α,β such that rank H fy,α,β = nm,
where nm is the state-space dimension of a minimal GBS realization of y. Then Algorithm 8 can be viewed as a
map

EN : {y(t), p(t)}N
t=0 7→ ({N Âq,

NK̂M
q ,NQ̂M

q }q∈Q,
NĈ).

We can view EN as a series of statistical estimators which estimate the parameters

θ = ({Aq,Kq,Qq}q∈Q,C, I)

of a weak GBS realization of y, which, in turn, determine the second order moments of y. If (y,µ) are jointly
ergodic, then Theorem 5.5 says that

lim
N→∞

EN(y(t),µ(t)) = θ0 = ({Âq, K̂q, Q̂q}q∈I0,np
,Ĉ, I),

where θ0 is the vector of parameters of a stationary GBS realization of y, i.e., EN is a consistent estimator of a
stationary GBS realization of y.

That is, Algorithm 8 is a statistically consistent subspace identification algorithm for GBSs. To the best of
our knowledge, Algorithm 8 is the first subspace identification algorithm for GBSs, whose statistical consistency
has been proven formally.

5.2.2 Identification of stochastic LPV-SSA with inputs and its relationship with identi-
fication of GBSs and of deterministic LPV-SSA

Below we will explain the relationship between identification of stochastic LPV-SSA and that of GBSs explained
in Subsection 5.2.1. This section is partially based on [173]. As it was pointed out above, a GBS can be viewed as
an autonomous stochastic LPV-SSA, i.e., LPV-SSA without control inputs. Below we will discuss the relationship
between identifying stochastic LPV-SSAs with control inputs and identifying GBSs.

Consider stochastic LPV-SSA is a system of the form

x(t +1) =
np

∑
i=0

(Aix(t)+Biu(t)+Kiv(t))pi(t),

y(t) =Cx(t)+Du(t)+Gv(t)
(5.19)

where, Ai ∈ Rnx×nx , Bi ∈ Rnx×nu , Ki ∈ Rnx×nv , i ∈ I0,np , C ∈ Rny×nx and D ∈ Rny×nu , i ∈ I0,np , G ∈ Rny×nv are
real constant matrices, v is a white noise process, i.e., E[v(t)vT (s)] = 0, s 6= t, u(t) is the control input, x(t) is the
state process and y(t) is the output, p(t) = (p1(t), . . . , pnp(t))

T , p0(t) = 1, is the scheduling signal.
In order to deal with identification of (5.19), it will be useful to think of a stochastic LPV-SSA as the combi-

nation of a deterministic component:

xd(t +1) =
np

∑
i=0

(Ad
i xd(t)+Bd

i u(t))pi(t)

yd(t) =Cdxd(t)+Ddu(t)
(5.20)

and a stochastic components

xs(t +1) =
np

∑
i=0

(As
i x

s(t)+Ks
i v(t))pi(t),

ys(t) =Csxs(t)+Gsv(t)
(5.21)
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Clearly, these two views are equivalent: a system of the form (5.19) can be rewritten as (5.20), (5.21) and (5.22)
by taking As

i = Ad
i = Ai, Cs

i =Cd
i =Ci, Bd

i = Bi, Ks
i = Ki, i ∈ I0,np , Dd = D, Gs = G, . In this case

x(t) = xd(t)+xs(t),

and in which case the state and output process satisfy

y(t) = yd(t)+ys(t). (5.22)

That is, the output of a stochastic LPV-SSA is the sum of a deterministic and a stochastic components. The
deterministic component is generated by LPV-SSA driven by the control input, while the stochastic component is
generated by a LPV-SSA input of which is a noise processes. Intuitively, the deterministic component describes
the response of a nominal system to the control input and scheduling signal, while the stochastic component
models the model error and measurement uncertainty. Under suitable assumptions the decomposition of y into
the sum of yd and ys can be shown to be independent of the choice of the state-space representation (5.19), see
[173] for more details

Conversely, from (5.20), (5.21) and (5.22) we can construct a system of the form (5.19) as follows: and

x(t) =
[

xd(t)
xs(t)

]
, Ai =

[
Ad

i 0
0 As

i

]
, Bi =

[
Bd

i
0

]
, Ki =

[
0

Ks
i

]
,

D = Dd , C =
[
Cd Cs

]
and the output y of the constructed stochastic LPV-SSA (5.19) will satisfy (5.22).

That is, we can identify a stochastic LPV-SSA (5.19) with a tuple

(Σd ,Σs,v)

where

Σd = (P,{Ad
i ,B

d
i ,C

d
i ,D

d
i }

np
i=0), Cd

0 =Cd ,Dd
0 = Dd ,(Cd

i ,D
d
i ) = (0,0), i = 1, . . . ,np

Σs = (P,{As
i ,K

s
i ,C

s
i ,Gi}

np
i=0), Cs

0 =Cs,G0 = G,(Cs
i ,Gi) = (0,0), i = 1, . . . ,np

are LPV-SSA, and v is the stochastic noise process. In the sequel, we will identify a LPV-SSA

(P,{Ãi, B̃i,C̃i, D̃i}
np
i=0)

for which the matrices C̃i, D̃i are zero for all i = 1, . . . ,np and C̃0 = C̃, D̃0 = D̃0 with the tuple

(P,{Ãi, B̃i}
np
i=0,C̃, D̃).

In particular, since the matrices Cd
i ,Dd

i ,Gi,Ci
s are zero for i = 1, . . . ,np, we will use the notation

Σd = (P,{Ad
i ,B

d
i }

np
i=0,C

d ,Dd)

Σs = (P,{As
i ,K

s
i }

np
i=0,C

s,G)

and we will refer to Σd as the deterministic component, and Σs as the stochastic component of the stochastic
LPV-SSA.

The correspondence above allows us to specify what we mean by the input-output behavior of the stochastic
LPV-SSA (5.19). In turn, the latter is important in order to formulate the system identification problem.
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More precisely, we will proceed as follows: we will define the input-output behavior of (5.19) via the input-
output functions of the deterministic LPV-SSA Σs and Σd defined above. Note that we could identify the input-
output behavior of a deterministic LPV-SSA with the input-output map generated by the zero initial state, and we
could define all the signals on the positive time axis. However, if we assume the presence of a stochastic noise,
then there is no reason to assume that the noise has ever been absent in the past. On the contrary, the natural
assumption is that the noise has always been present, hence the state and output at the beginning of observations
represent some sort of steady state behavior which arises from feeding in the noise in the infinite past. For linear
time-invariant systems the situation is simillar, and the classical solution is to assume that the state and output
signals involved are defined for negative time instances too, and to assume that the system is stable. In this case,
we can define the behavior of the system started in the infinite past as a limit of behaviors starting from some
finite time instance t0 in the past, as t0→+∞. In addition, it solves the problem of possibly non-zero initial state,
as the effect of any initial state is absent in this case. We will take a similar approach for LPV systems.

To this end, we introduce the following definitions. We will say that a LPV-SSA

(P,{Ãi, B̃i,C̃i, D̃i}
np
i=0)

is {pq}
np
q=1-stable, if the matrix

(np +1)(Ãs
0⊗ Ãs

0 +(
np

∑
q=1

p2
qÃs

q⊗ Ãs
q))

is stable.
Let us call a tuple (Σs,v) stationary stochastic autonomous LPV-SSA, if Σs is a LPV-SSA such that

• Σs is {pq}D
q=1-stable, and

• P= [−p1,p1]×·· ·× [−pnp ,pnp ], and

• v is a white noise process taking values in the space Rnv , i.e., v is zero mean square integrable wide-sense
stationary with E[v(s)vT (t)] = 0, s 6= t and E[v(t)vT (t)] = Q, s, t ∈ Z.

Let us call the triple (Σd ,Σs,v) a stationary stochastic LPV-SSA, if (Σs,v) is a stationary stochastic autonomous
LPV-SSA.

We will first define the input-output behavior of stationary stochastic autonomous LPV-SSA, and then we will
use it to define the input-output behavior of stationary stochastic LPV-SSAs.

To third end, for a set X , let us denote by XZ the set of all functions Z→ X . Then for any p ∈ PZ , if
pi(t) ∈ [−pi,pi], i = 1, . . . ,np, and v is a white noise process, then similarly to the proof of [226, Lemma 3] it can
be shown that for all t ∈ Z the limit

ys(t) = lim
t0→∞

YΣs,0(σ
t p,σ tv)(t0 + t)

xs(t) = lim
t0→∞

XΣs,0(σ
t p,σ tv)(t0 + t)

converges in mean square sense, where YΣs,0 and YΣs,0 are the input-output and input-to-state maps of Σs induced
by the zero initial state, as defined in Chapter 2, and σ t p(s) = p(s+ t), σ tv(s+ t) 1.

Let us denote by Y the set of all random variables with values in Rp and assume that

P= [−p1,p1]×·· ·× [−pnp ,pnp ].

Then for a stationary autonomous LPV-SSA (Σs,v), we define the map

YΣs,v : PZ→ YZ

1To be very precise, note that σ t p : N 3 s 7→ p(s + t) ∈ P and we can define the map σ t v : Ω 3 ω 7→ (N 3 s 7→ v(s + t)(ω)) ∈
(Rnv )N and hence YΣs ,0(σ

t p,σ t v)(t0 + t) and XΣs,0(σ
t p,σ t v)(t0 + t) can naturally be identified with the random variables Ω 3 ω 7→

YΣs ,0(σ
t p,σ t v(ω))(t0 + t) and Ω 3 ω 7→ XΣs,0(σ

t p,σ t v(ω))(t0 + t) respectively.
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as follows
YΣs,v(p)(t) = lim

t0→∞
YΣs,0(σ

t p,σ tv)(t0 + t).

We will call the map YΣs,v the input-output map of (Σs,v). We will say that (Σs,v) is a realization of a function
Fs : PZ→ YZ, if Fs = YΣs,v.

Let (Σd ,Σs,v) be a stationary stochastic LPV-SSA. Then we define its input-output map as the map

YΣd ,Σs,v : U ×PZ→ YZ

such that

YΣd ,Σs,v(u, p)(t) =
{

YΣd (u, p|N)(t)+YΣs,v(p)(t) t ≥ 0
YΣs,v(p)(t) t < 0

where p|N denotes the restriction of p to N, i.e., p|N : N 3 s 7→ p(s).
It is then easy to see that for the system (5.19), if xd(0) = 0 and u(t) = 0 for t < 0, then

y(t) = YΣd ,Σs,v(u, p)(t),

for all t > 0.
That is, for negative times the output of a stochastic LPV-SSA is its steady state response due to the presence

of noise, while for nonnegative time its output is the sum of the response to control inputs and the response to the
noise.

We will say that (Σd ,Σs,v) is a realization of a function F : U ×PZ→ YZ, if

YΣd ,Σs,v = F .

Notice that F can be realized by a stochastic LPV system, if and only if we can decompose it as follows:

F (u, p) = Fd(u, p|N)+Fs(p) (5.23)

such that Fd is an input-output map of a LPV-SSA and Fs is the input-output map of an autonomous stochastic
LPV-SSA. In particular, F (0, p)(t) = Fs(p)(t) and Fd(u, p|N)(t) = F (u, p)(t)−F (0, p)(t) for all t ∈ N.

The idea behind this definition is as follows: YΣd ,Σs,v,µ,u = F captures the output response of (5.19) to
any scheduling signal and control input, without assuming that latter signals being stochastic. By saying that
we would like to find approximate realizations of F we capture the intuition that the estimated model should
approximate the output response of the underlying system to any scheduling signal and control input, and not
only to the signal µ and u used for system identification.

Assume now that we would like to estimate a stationary stochastic LPV-SSA realization (Σd ,Σs,v) of F from
data collected during system identification experiments. For the sake of simplicity assume that we can make two
system identification experiments:

• one with zero control inputs, and

• one with a nonzero control input.

and that the scheduling signal in both experiments is the same and it is a sample of a stochastic process. Moreover,
we assume that the data is generated by a stationary stochastic LPV-SSA realization of F .

Assumption 3 (Identification experiment stochastic LPV-SSA). Assume that F has a realization by a stochastic
LPV-SSA realization (Σd ,Σs,v) and assume there exist a stochastic process µ defined on the same œ underlying
probability space (Ω,P,F ) as the noise process v, such that the following holds:

• µ satisfies the conditions of Assumptions 2, and

• (Σs,v) is a stationary autonomous stochastic LPV-SSA, and
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• Σs is a minimal LPV-SSA, G = Iny , and

• ∑q∈Q(p(µq))
2(As

q−Ks
qCs)⊗ (As

q−Ks
qCs) is a stable matrix, i.e. all its eigenvalues are inside the unit disk,

and

• µ(t) ∈ P, t ∈ Z, and

• v is an ZMWSSI processes w.r.t. {µq}q∈Q, see Chapter 3 for the definition of ZMWSSI processes.

Furthermore, assume that we observe the signals

p ∈ PZ, u ∈U , y,ys ∈ Y (5.24)

which are samples of the stochastic processes µ, u, y and ys respectively, i.e. for some ω ∈Ω,

p(t) = µ(t)(ω), u(t) = u(t)(ω), y(t) = y(t)(ω), ys(t) = ys(t)(ω) (5.25)

where for all t ∈ Z,

ys(t) = F (0,µ)(t)
y(t) = F (u,µ)(t)

(5.26)

2 That is,ŷ is a sample of F (0,µ) and y is a sample of F (u,µ)(t) and p is the sample of µ, corresponding to the
same random event.

Problem 5.5 (Identification problem). If Assumption 3 holds, given any N, compute from the dataset

{y(t),ys(t), p(t),u(t)}N
t=1

the matrices {Âd,N
i , Âs,N

i , B̂d,N
i , K̂s,N

i ,QN
i }

np
i=0, Ĉd,N

i ,Ĉs,N
i , D̂N , ĜN such that the limits below exist,

(Âs
i , K̂

s
i ,Qi) = lim

N→∞
(Âs,N

i , K̂s,N
i ,QN

i ), i ∈ I0,np , (Ĉ
s, Ĝ) = lim

N→∞
(Ĉs,N , ĜN) (5.27)

(Âd
i , B̂

d
i ) = lim

N→∞
(Âd,N

i , B̂d,N
i ) i ∈ I0,np , (Ĉ

d , D̂) = lim
N→∞

(Ĉd,N , D̂N) (5.28)

and for

Σ̂s = (P,{Âs
i , K̂

s
i }

np
i=0,Ĉ

s, D̂s) (5.29)

Σ̂d = (P,{Âd
i , B̂

d
i }

np
i=0,Ĉ

d , D̂d) (5.30)

there exists stochastic process v̂ such that
(Σ̂d , Σ̂s, v̂)

is a stationary stochastic LPV-SSA realization of F , and

E[v̂(t)v̂(t)µ2(t)] = Qi, i ∈ I0,np . (5.31)

Recall the decomposition (5.23) of F . Note that in the problem formulation above (Σ̂s, v̂) is necessarily is a
realization of the stochastic component Fs of F , and Σ̂d is necessarily a realization of the deterministic compo-
nent Fd of F . Moreover, Σ̂s and the variances {Qi}

np
i=0 of {v̂(t)µ2

i (t)}
np
i=0 depend only on {Âs,N

i , K̂s,N
i ,QN

i }
np
i=0,

Ĉs,N
i , ĜN . Likewise, Σ̂d depends only on the matrices {Âd,N

i , B̂d,N
i }

np
i=0, Ĉd,N

i , D̂N .
That is, in order to solve Problem 5.5, it is sufficient to solve the following two problems.
2F (0,µ)(t) and F (u,µ)(t) can naturally be identified with the random variable: Ω 3 ω̂ 7→ F (0,µ(ω̂))(t)(ω̂) and Ω 3 ω̂ 7→

F (u,µ(ω̂))(t)(ω̂), where µ(ω̂) : Z 3 s 7→µ(s)(ω̂).
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Problem 5.6 (Identification of the deterministic component). Compute the matrices {Âd,N
i , B̂d,N

i }
np
i=0, Ĉd,N , D̂N

from {y(t)− ys(t), p(t),u(t)}N
t=0 such that the limits (5.28) exist and Σ̂d from (5.30) is a realization of Fd .

Problem 5.7 (Identification of the stochastic component). Compute the matrices {Âs,N
i , K̂s,N

i ,QN
i }

np
i=0, Ĉs,N , ĜN

from {ys(t), p(t)}N
t=0 such that the limits (5.27) exist and for Σ̂s from (5.29) and for some noise process v̂ for

which (5.31), (Σ̂s, v̂) is a stationary autonomous stochastic LPV-SSA which is a realization of Fs.

Solving Problem 5.6 amounts to solving Problem 5.2 and can be done using the methods discussed in Subsec-
tion 5.1.1. We will explain how to reduce Problem 5.7 to solving the identification Problem 5.4 for GBSs. To this
end, notice that if the stochastic autonomous LPV-SSA (Σs,v) satisfies Assumption 3, then we can define GBS

GΣs,v = (nx,ny,nv,Q,xs,v,{µq}q∈Q,ys,Cs,Ds,{As
i ,K

s
i }D

i=1)

where Q = {0, . . . ,D}, where ys(t) =YΣ,v(µ)(t) =Fs(µ)(t) =F (0,µ)(t) and xs(t) =XΣ,v(µ)(t), and this GBS
will be stationary. That is, with assumptions of Assumption 3, the stationary GBS GΣs,v is a realization of (ys,µ).

Recall from Subsection 3.7.2 the correspondence between LPV-SSAs and stationary GBSs. It then follows
that Σs is the LPV-SSA corresponding to GΣs,v. Recall from Assumption 3 that Σs is a minimal LPV-SSA and
it satisfies the conditions above and the condition that G = Iny and ∑q∈Q(p(µq))

2(As
q−Ks

qCs)⊗ (As
q−Ks

qCs) is
stable, As it was noted in Subsection 3.7.2, then GΣs,v is a minimal realization of ys in forward innovation form,
and hence v is the innovation process of ys in the sense defined in Chapter 3. Hence, any minimal stationary GBS
realization G of ys will yield an LPV-SSA ΣG such that ΣG is isomorphic to Σs. In particular, (ΣG ,v) will be a
stochastic autonomous LPV-SSA which is a realization of YΣs,v = Fs.

Assume now that the matrices {Âs,N
i , K̂s,N

i ,QN
i }

np
i=0, Ĉs,N , ĜN computed from {ys(t), p(t)}N

t=0 are such that
GN = Iny and the limits (5.27) exist and

Ĝ = (n,ny,ny,Q, x̂, v̂,ys,Ĉs, Iny ,{Âs
q, K̂

s
q}q∈Q),

is a realization of ys in forward innovation form and v̂ is the innovation process of ys and it satisfies (5.31).
Consider Σ̂s from (5.29). Then Σ̂s is the LPV-SSA associated with Ĝ , and by the discussion above (Σ̂s, v̂) is a
stationary autonomous stochastic LPV-SSA which is a realization of Fs. That is, a solution to Problem 5.4 gives
rise to a solution of Problem 5.7.

To sum up, in order to solve Problem 5.5, it is sufficient to

1. solve Problem 5.2 for data {u(t), p(t),y(t)− ys(t)}N
t=0 using the methods discussed in Subsection 5.1.1.

2. solve Problem 5.4 for data {p(t),ys(t)}N
t=0 using the methods discussed in Subsection 5.2.1.

In other words, under some mild assumptions, the problem of identifying a stochastic autonomous LPV-SSA
can be reduced to the problem of identifying a stationary GBS. The most important of these assumptions is that
the observed scheduling signal behaves as a sample path of a stochastic process. In fact, even this assumption
could be further weakened by requiring that the sample covariances constructed using the observed scheduling
signal converge to covariances of some stochastic process, [174]. We can view these assumptions as persistence of
excitation assumptions for the scheduling signal. In particular, when applied to stochastic LPV-SSAs with inputs,
this assumption does not mean that the scheduling signal of the estimated model is assumed to be stochastic.
Hence, the usual techniques of robust control still apply. Finally, if the scheduling signal is an external input (this
might be the case for switched systems, for example), then we can actually generate scheduling signals as sample
paths of suitable stochastic processes. The only slight issue is that the thus generated signals are applied starting
from a certain initial time instance, not from −∞. In practice, this is not an issue, as it is sufficient to run the
system long enough with the generated scheduling signal.

We note that in the discussion above we assumed that two distinct identification experiments can be per-
formed: one with zero control input, and another one with a sufficiently rich non-zero control input. In fact, the
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principle that the identification of a stochastic LPV-SSA can be reduced to the identification of the deterministic
and stochastic components can be extended to the case of one single control experiment, see [174] for details.

Finally, the discussion above sheds some more light on the notion of stochastic LPV-SSAs in innovation form:
namely, if the stochastic component of an LPV-SSA satisfies the conditions which guarantee that the correspond-
ing stationary GBS is a minimal one in forward innovation form, then from the point of view of identification it
behaves similarly to stochastic linear time-invariant state-space representations in forward innovation form. This
suggests that we define the innovation form of an LPV-SSA by requiring that the stochastic component should be
such that the corresponding GBS is in forward innovation form. The implications of such a definition remain a
topic of future research.

5.2.3 Role of realization theory
We could see that the covariance realization algorithm from Subsection 3.6.3 can be used to derive a subspace
identification algorithm GBSs and stochastic LPV-SSAs, and to show that the derived algorithm is a statistically
consistent estimator. This is not the only use of realization theory. Another consequence of realization theory that
it provides a mathematical formalization of the concept of innovation representation for GBS and for stochastic
LPV-SSAs. This also justifies and formalizes in a rigorous manner the widespread assumption made in LPV
subspace identification literature that the generator of the output is in innovation form [284, 76, 87]. More
generally, it helps to propose a coherent formalization of the identification problem for LPV systems and find
assumptions which are relevant for both control and for system identification. For example, it allows to reduce
the problem of identification of stochastic LPV-SSAs to the problem of identification of GBSs, i.e., to relate the
case when the scheduling signal is stochastic with the case of deterministic scheduling signals. This work is not
yet finished, and a lot more remains to be done.

5.3 Conclusions and further work
In this chapter I have presented a selection of my contributions to identification of LPV systems. Namely, I
presented selected results from my work on identifiability analysis of deterministic LPV-SSAs and on subspace
identification of deterministic LPV-SSAs and of autonomous stochastic LPV-SSAs. These contributions relied
on realization theory of LPV and stochastic generalized bilinear systems (GBS). More precisely, realization
theory of deterministic LPV-SSAs was shown to be useful for identifiability analysis and deterministic subspace
algorithms which are provenly consistent. Realization theory of GBSs was shown to be useful for statistically
consistent subspace identification algorithms for GBSs and for stochastic LPV-SSAs. There are other potential
applications of realization theory to system identification. For example, in [222, 214] the notion of distance
between linear switched systems was investigated and it was shown that the space of minimal linear switched
systems forms a smooth (analytic, Nash) manifold. Moreover, explicit expression for the coordinate charts were
presented and it was shown that these coordinate charts also represent identifiable canonical forms. In particular,
it shows that there are no global identifiable parameterizations for linear switched systems, even in the SISO
case. These results relied heavily on realization theory, in particular, on realization algorithms using selections.
In fact, coordinate charts of the manifold of minimal state-space representations correspond to different choices of
selections. Another application of realization theory are conditions for persistence of excitation of linear switched
systems [206], and conditions on minimality and identifiability of switched autoregressive models [207, 208].
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Chapter 6

Reverse engineering of network structure
for stochastic linear and bilinear systems

6.1 Introduction

In this chapter we are interested in the problem of reverse engineering of the network graph of a stochastic
dynamical system. By reverse engineering of the network graph we mean finding out the network graph of a
system based on the observed output of the system. This problem arises in several domains such as systems
biology [191, 138, 146, 278], neuroscience [242], smart grids [48, 315], etc.

To solve this problem, we first need to understand when the observed behavior can be realized by a system
with a specific network graph. More precisely, we would like to decide, based on observed data, if the observed
behavior can be realized by a system with a specific network graph. To this end, we need to:

• propose a formal mathematical definition of the concept of network graph, and

• relate this definition to the statistical properties of the observed data.

Informally, by the network graph of a system we mean a directed graph, whose nodes correspond to subsys-
tems, such that each subsystem generates a component of the output process. There is an edge from one node to
the other, if the subsystem corresponding to the source node sends information to the subsystem corresponding
to the target node.

In this chapter, we will consider two types of dynamical systems: stochastic linear state-space representations
without inputs (abbreviated by sLTI-SS) and generalized bilinear systems (abbreviated as GBSs) from Chapter 3.

For these systems network graphs are defined as follows. Let y be an output process of a sLTI-SS or of a
GBS and denote the system that represents y by S . Assume that y is partitioned such that y =

[
yT

1 , . . . ,y
T
n
]T and

consider the subsystems Si, i = 1, . . . ,n of the system S such that Si generates the component yi. Then, the
network graph has nodes {1, . . . ,n} and there is an edge from node i to node j, if the noise and the state process
of Si serve as an input of S j. In fact, for the systems at hand, an edge (i, j) in the network graph corresponds
to non-zero blocks in certain matrix parameters of the system. Similarly, the lack of this edge corresponds to
zero blocks in those matrices. Intuitively, an edge in the network graph means that information can flow from
the subsystem corresponding to a source node to the subsystem corresponding to the target node, but there is no
information flowing the other way around. Figure 6.1 illustrates the network graph of a sLTI-SS representation
having the three-node star graph as its network graph. This approach offers an intuitive mechanistic explanation
of how one component of the output process influences the other. However, the same output process can be
generated by systems with different network graphs. As a result, the presence of an interaction between two
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S3

{
x3(t +1) = α33x3(t)+β33e3(t)
y3(t) = γ33x3(t)+ e3(t)

S1

{
x1(t +1) = ∑i=1,3 α1ixi(t)+β1iei(t)
y1(t) = ∑i=1,3 γ1ixi(t)+ e1(t)

S2

{
x2(t +1) = ∑i=2,3 α2ixi(t)+β2iei(t)
y2(t) = ∑i=2,3 γ2ixi(t)+ e2(t)

x3,e3 x3,e3

e1 e2

e3

Figure 6.1: LTI–SS representation of a process y = [yT
1 ,y

T
2 ,y

T
3 ]

T with the three-node star graph as its network
graph: The state and noise process of subsystem S3 serves as an input to subsystems S1 and S2.

output components depends on the exact dynamical system representing the output process. For this reason, it is
not a-priori clear how to relate statistical properties of the outputs to the existence of a sLTI-SS or GBSs.

In order to translate existence of a state-space representation with a certain network graph to statistical prop-
erties of outputs, we use Granger causality [110]. Intuitively, y1 Granger causes y2, if the best linear predictions
of y2 based on the past values of y1 and y2 are better than those only based on the past values of y2. More gener-
ally, consider an output process y =

[
yT

1 , . . . ,y
T
n
]T of a dynamical system. We consider a graph nodes of which

correspond to the components yi and there is no edge from the node labeled by yi to the node labeled by y j, if yi
does not Granger-cause y j in a suitable sense (conditional Granger-causality, GB-Granger causality, etc.). We
will try to relate this graph with the network graph of a suitable state-space representation.

Conditional Granger non-causality is a general form of Granger non-causality: Informally, yi conditionally
does not Granger cause y j with respect to z if the knowledge of the past values of yi, y j and z does not yield a
more accurate prediction of the future values of y j than the knowledge of the past values of only y j and z. In this
case, when defining the graph above, we will require that there is no edged from the node yi to the node y j, if
yi does not conditional Granger-cause y j with respect to a suitably defined variable z, components of which are
chosen from the output components yk, k 6= i,k 6= j.

The notion of GB-Granger causality will be used only for outputs generated by GBSs driven by some input
process {µq}q∈Q. Intuitively, y1 does not GB-Granger cause y2, if the knowledge of the products of past value of
y1 and y2 with the past vales of {µq}q∈Q does not yield a more accurate prediction of future values y2 than the
knowledge of the products of past values of y2 with the past value of {µq}q∈Q.

Relationship between the two approaches: main results of the chapter In this chapter we relate Granger-
causality with existence of a state-space representations with a certain network graph. The chapter is based on
the thesis [133], and the publications [136, 137, 134, 135].

In particular,we show that a process y =
[
yT

1 ,y
T
2
]T has a sLTI–SS realization in the so-called block triangular

form if and only if y1 does not Granger cause y2. Informally, a sLTI–SS representation in block triangular form
is a system whose network graph has two nodes, corresponding to two subsystems generating y1 and y2, and
an edge from the node associated with y2 to the node associated with y1. We can also give conditions for the
minimality of the representations and present algorithms on the construction of the representations.

This result can be extended to more general graphs with 3 and more nodes [136, 134]. More precisely, let
y =

[
yT

1 ,y
T
2 . . . ,y

T
n
]T and let us define the graph Gy associated with y as follows. We associate each component yi

of y with the node i of Gy and there is no edge from node i to node j, if yi does not conditionally Granger cause
y j with respect to the collection of the components of y that correspond to the parent nodes of i. We then show
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S2 S1S

{µq}q∈Q y =

[
y1
y2

]
{µq}q ∈Q y2 {µq}q∈Q y1


Figure 6.2: Illustration of the results: Cascade interconnection structure in a GBS S with input {µq}q∈Q and
output y decomposed into subsystems S1 and S2 in the presence of GB–Granger non-causality from y1 to y2 with
respect to {µq}q∈Q

that there exist an LTI-SS representation of y whose network graph equals Gy, and conversely, if there exists a
LTI-SS representation of y with a network graph G

′
, then G

′
coincides with Gy.

The relationship described above for graphs with 2 nodes was extended to GBSs in [137]. More precisely, it
can be shown that a process y =

[
yT

1 ,y
T
2
]T admits a specific GBS realization in block triangular form if and only

if y1 does not GB–Granger cause y2. The network graph of a GBS realization of y in block triangular form has
two nodes, corresponding to two subsystems generating y1 and y2, and an edge from the node associated with y2
to the node associated with y1, see Figure 6.2.

The results of this chapter partially settle a long dispute in neuroscience [242, 278, 93, 102]. There, the
purpose is to detect and model interactions between brain regions using e.g., fMRI, EEG, MEG data. For this
purpose, both statistical method (Granger causality) based methods [102] and state-space based methods [93]
were used. In the former case, the presence of an interaction was identified with the presence of a statistical
relationship (Granger causality) between the outputs associated with various brain regions. In the latter case,
the presence of an interaction was interpreted as the presence of an edge in the network graph of a state-space
representation, whose parameters were identified from data. However, the formal relationship between these
methods was not always clear. This has lead to a lively debate regarding the advantages/disadvantages of both
methods [278, 70, 241]. The results of this chapter indicate that the two approaches are equivalent under some
assumptions.

Besides the concept of network graph introduced in this chapter, there are several other notions for describing
the structure of a system or the network of subsystems in a system. Examples of such notions are: feedback
modeling [54, 53, 98, 124], dynamical structure function [104, 123, 310], dynamic causal modeling [93, 117,
201], and causality graphs [78, 79]. Also, besides Granger and GB–Granger causality, there are several examples
for statistical notions that have essential role to understand the relation between stochastic processes. We can
mention here conditional orthogonality [55, 56], transfer entropy [20] and directional mutual information [170,
151]. For a detailed discussion on the relationship between the results of this chapter and the cited papers see
[133]. We would also like to mention [148, 149, 237, 196] on coordinated LTI-SSs, which served as inspiration
for certain classes of sLTI-SSs studied in this chapter.

Finally, there is a large body of literature on identifying transfer functions which are interconnected according
to some graph [297, 68, 298, 280, 50] and where all the signals exchanged by the transfer functions can be
observed. This latter problem is quite different from the problem considered in this chapter.

Outline: In Section 6.2 we present an overview of main results on the relationship between Granger-causality
and network structure of sLTI-SSs. In Section 6.3 we present an overview of the results relating GB-Granger
causality with the network structure of GBSs.

6.2 Granger causality: linear case

We will present an overview of the main result relating the graph defined by Granger-causality relationships with
the network graph of sLTI-SSs. We start with the case of two processes in Subsection 6.2.2. Then in Subsection
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6.2.3 we continue with the case of arbitrary number of processes network graph of which is start shaped. The most
general case is treated in Subsection 6.2.4. We conclude by discussing briefly in Subsection 6.2.5 the application
of the results to reverse engineering of network graphs. Before presenting the main results, in Subsection 6.2.1
we will introduce the necessary notation and terminology and briefly recall the relevant results from realization
theory of sLTI-SS.

6.2.1 Technical preliminaries: linear stochastic realization theory
The notation and presentation of this section follows those of [136].

The discrete-time axis is the set of integers Z. The random variable of a process z at time t is denoted by
z(t). If z(t) is k-dimensional (for all t ∈ Z), then we write z ∈ Rk and we call k = dim(z) the dimension of
z. The n× n identity matrix is denoted by In or by I when its dimension is clear from the context. We denote
by H the Hilbert space of zero-mean square-integrable random variables, where the inner product between two
random variables y,z is the covariance matrix E[yzT ]. The Hilbert space generated by a set U ⊂H is the smallest
(w.r.t. set inclusion) closed subspace of H which contains U . Consider a zero-mean square-integrable process
z ∈ Rk. Then H z

t−, H z
t+, H z

t , t ∈ Z are the Hilbert spaces generated by the sets {`T z(s) | s ∈ Z,s < t, ` ∈ Rk},
{`T z(s) | s ∈ Z,s ≥ t, ` ∈ Rk}, and {`T z(t)|` ∈ Rk}, respectively. If z1,. . .,zn are vector valued processes, then
z =

[
zT

1 ,. . .,z
T
n
]T denotes the process defined by z(t) =

[
zT

1 (t), . . . ,z
T
n (t)

]T , t ∈ Z.
If z(t) ∈H is a random variable and U is a closed subspace in H , then we denote by El [z(t) |U ] the orthog-

onal projection of z(t) onto U . The orthogonal projection onto U of a random variable z(t) = [z1(t), . . . ,zk(t)]T

taking values in Rk is denoted by El [z(t)|U ] and defined element-wise as El [z(t)|U ] := [ẑ1(t), . . . , ẑk(t)]T , where
ẑi(t) = El [zi(t)|U ], i = 1, . . . ,k. That is, El [z(t)|U ] is the random variable with values in Rk obtained by project-
ing the coordinates of z(t) onto U . Accordingly, the orthogonality of a multidimensional random variable to a
closed subspace in H is meant element-wise. The orthogonal projection of a closed subspace U ⊆H onto a
closed subspace V ⊆H is written by El [U |V ] := {El [u|V ],u ∈U}. Note that for jointly Gaussian processes y
and z the orthogonal projection El [y(t)|H z

t ] is equivalent with the conditional expectation of y(t) given z(t). A
stochastic process is called zero-mean square-integrable with rational spectrum (abbreviated by ZMSIR) if it is
weakly-stationary, square-integrable, zero-mean, full rank, purely non-deterministic, and its spectral density is a
proper rational function.

A stochastic stochastic time-invariant linear state-space representation) (sLTI-SS for short) is a stochastic
dynamical system of the form

x(t +1) = Ax(t)+Bv(t)
ŷ(t) =Cx(t)+Dv(t)

(6.1)

where A ∈ Rn×n,B ∈ Rn×m,C ∈ Rp×n,D ∈ Rp×m for n ≥ 0, m, p > 0 and x ∈ Rn, y ∈ Rp, v ∈ Rm are ZM-
SIR processes. The processes x, y and v are called state, output and noise process, respectively. Furthermore,
we require that A is stable (all its eigenvalues are inside the open unit circle) and that for any t,k ∈ Z, k ≥ 0,
E[v(t)vT (t−k−1)] = 0, E[v(t)xT (t − k)] = 0, i.e., v(t) is white noise and uncorrelated with x(t − k). In (6.1)
the state process x is uniquely determined by the noise process v and the system matrices A,B,C,D so that
x(t)=∑

∞
k=0 AkBv(t−k), where the convergence of the infinite sum is understood in the mean square sense. Hence,

an sLTI-SS of the form (6.1) will be identified with the tuple (A,B,C,D,v). Following the classical terminology,
we call the dimension of the state process the dimension of (6.1). We will say that the sLTI-SS of the form (6.1)
is a realization of a process y, if ŷ = y, if the output process of the sLTI-SS equals y. A sLTI-SS realization of y
is called minimal realization of y, if it has minimal dimension among all sLTI-SSs which are realizations of y.

sLTI-SS realizations of a given process y are strongly related to LTI-SS realizations of the covariance sequence

{Λy
k := E[y(t + k)yT (t)]}∞

k=0,

see [163, Section 6.2]. Below we briefly sketch this relationship, as it plays an important role in deriving the
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results of the paper. Consider a sLTI-SS (A,B,C,D,v) which is a realization of y. Denote the (time-independent1)
noise variance matrix by Λv

0=E[v(t)vT (t)]. Then, the variance matrix Λx
0=E[x(t)xT (t)] of the state process x of

(A,B,C,D,v) is the unique symmetric solution of the Lyapunov equation

Σ=AΣAT +BΛ
v
0BT (6.2)

and the covariance G :=E[y(t)xT (t +1)] satisfies

G =CΛ
x
0AT +DΛ

v
0BT . (6.3)

In light of this, the Markov parameters of the input-output map of the LTI-SS (A,GT ,C,Λv
0) are equal to the

covariances {Λy
k}

∞
k=0. More precisely,

Λ
y
k =CAk−1GT k > 0. (6.4)

Therefore, sLTI-SS realizations of y yield LTI-SSs Markov parameters of which are the covariances {Λy
k}

∞
k=0 of

y. Conversely, deterministic LTI-SS systems whose Markov parameters are the covariances {Λy
k}

∞
k=0 yield an

stochastic linear system of y. To this end, we use the following terminology: Recall that H y
t− denotes the Hilbert

space generated by y(t− k), k > 0. We call the process

e(t) := y(t)−El [y(t)|H y
t−], ∀t ∈ Z

the (forward) innovation process of y. Assume now that (A,GT ,C,Λy
0) is a stable minimal deterministic LTI-SS

system whose Markov parameters are the covariances of y, i.e., (6.4) holds. Let Σx be the minimal symmetric
solution2 of the algebraic Riccati equation

Σ=AΣAT +(GT−AΣCT )(∆(Σ))−1(GT−AΣCT )T , (6.5)

where ∆(Σ) = (Λy
0−CΣCT ) and set K as

K := (GT −AΣxCT )(Λy
0−CΣxCT )−1. (6.6)

Proposition 6.1. [147, Section 7.7] Let K be as in (6.6) and e be the innovation process of y. Then the following
sLTI-SS realization of y is minimal:

(A,K,C, I,e) (6.7)

Note that if x is the state of (A,K,C, I,e), then

Σx = E[x(t)xT (t)]

E[e(t)eT (t)] = (Λy
0−CΣxCT )

K = E[x(t +1)eT (t)]E[e(t)eT (t)]−1

and K is the gain of the steady-state Kalman filter [163, Section 6.9]. This motivates the following definition: Let
e,y∈Rp be ZMSIR processes and A∈Rn×n,K∈Rn×p,C∈Rp×n,D∈Rp×p. A sLTI-SS (A,K,C,D,e) such that it is
a realization of y and where e is the innovation process of y and D= Ip is called forward innovation representation
of y or a stochastic LTI realization of y in forward innovation form A forward innovation representation of y called
minimal forward innovation representation, if it is a minimal dimensional stochastic LTI realization of y. The
representation in Proposition 6.1 is a minimal forward innovation representation, thus we conclude that

Proposition 6.2. Every ZMSIR process y has a minimal forward innovation representation.

1stationarity implies that the (co)variance matrices are time-independent
2for any other symmetric solution Σ̃, the matrix Σ̃−Σ is positive definite
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In the sequel, we will use the following covariance realization algorithm for computing a minimal forward
innovation representation of y.

Algorithm 9 Covariance realization algorithm
Inputs: an integer N > 0 and the covariances {Λy

k := E[y(t + k)yT (t)]}N+1
k=0

Output: linear system ΣN

Construct the Hankel-matrix

HN,N+1=


Λ

y
1 Λ

y
2 · · · Λ

y
N+1

Λ
y
2 Λ

y
3 · · · Λ

y
N+1

...
...

...
Λ

y
N Λ

y
N+1 · · · Λ

y
2N


Compute a decomposition H f ,N,N+1 = OR, where O ∈ RN p×n and R ∈ Rn×(N+1)p and rank R = rank O = n,
Consider the decomposition

R =
[
C1, . . . , CN+1

]
,

such that Ci ∈ Rn×p, i = 1,2, . . . ,N +1, i.e., they are the block columns of R. Define R, R̂ ∈ Rn×N p,

R =
[
C1, . . . , CN

]
,

R̂ =
[
C2, . . . , CN+1

]
.

Construct ΣN = (A,G,C) such that

G = the first p columns of R
C = the first p rows of O
A = R̂R+

,

where R+ is the Moore-Penrose pseudo-inverse of R.

Step 4 Find the minimal symmetric solution Σx of the Riccati equation (6.5) (see e.g., [147, Section 7.4.2]).
Step 5 Set K as in (6.6) and define Λe

0 := Λ
y
0−CΣxCT .

Remark 6.1 (Correctness of Algorithms 9). Consider a ZMSIR process y with covariance sequence {Λy
k}

∞
k=0

and a sLTI-SS (Ã, B̃,C̃, D̃,v), which is a realization of y. Let e be the innovation process of y and N be larger
than or equal to the dimension of a minimal stochastic linear system of y. Then it follows from [147, Lemma 7.9,
Section 7.7] that if {A,K,C,Λe

0} is the output of Algorithm 9 with input {Λy
k}

2N
k=0 then (A,K,C, I,e) is a minimal

forward innovation representation of y and Λe
0=E[e(t)eT (t)].

Minimal forward innovation representations have the following properties.

Proposition 6.3. [163, Proposition 8.6.3] A sLTI-SS (A,K,C, I,e) realization of y in forward innovation form is
minimal if and only if (A,K) is controllable and (A,C) is observable.

Proposition 6.3 shows that minimality of a sLTI-SS (A,K,C, I,e) realization of y in forward innovation form
can be characterized by minimality of the deterministic system (A,K,C, I). In general, the characterization of
minimality in stochastic linear systems is more involved, and it is related to the minimality of the deterministic
LTI-SS system (A,GT ,C,Λy

0) associated with the stochastic stochastic linear system ([163, Corollary 6.5.5]). The
following Proposition shows that minimal sLTI-SS realizations of y in forward innovation form are isomorphic.
Isomorphism is defined as follows: two sLTI-SS (A,K,C, I,e) and (Ã, K̃,C̃, I,e) are isomorphic if there exists a
non-singular matrix T such that A=T ÃT−1,K=T K̃ and C̃=CT−1. Again, in general, the result does not apply
for stochastic linear systems.
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Proposition 6.4. [163, Theorem 6.6.1] If (A,K,C, I,e) and (Ã, K̃,C̃, I,e) are minimal sLTI-SS realizations of y in
forward innovation form, then they are isomorphic.

6.2.2 Classical Granger causality between two processes

Below we discuss the relationship between Granger-causality and existence of an sLTI-SS realization in so called
block triangular form. The latter class of sLTI-SS will be defined later. The systems of that class have the property
that their network graph has two nodes and one edge. We will follow the presentation of [136].

We start by defining the notion of Granger causality. Informally, y1 does not Granger cause y2, if the best
linear predictions of y2 based on the past values of y2 are the same as those based only on the past values of y.
Recall that H z

t− denotes the Hilbert space generated by the past {z(t− k)}∞
k=1 of z. Then, Granger causality is

defined as follows:

Definition 6.1 (Granger causality). Consider a zero-mean square integrable, wide-sense stationary process y =
[yT

1 ,y
T
2 ]

T . We say that y1 does not Granger cause y2 if for all t,k ∈ Z, k ≥ 0 El [y2(t + k)|H y2
t− ] = El [y2(t +

k)|H y
t−]. Otherwise, we say that y1 Granger causes y2.

The class of sLTI-SSs that Granger causality is associated with later on in this section is defined below.

Definition 6.2. A sLTI-SS (A,K,C, I,e = [eT
1 ,e

T
2 ]

T ) in forward innovation form, where ei ∈Rri , i = 1,2, is called
a sLTI-SS in block triangular form, if

A =

[
A11 A12
0 A22

]
K =

[
K11 K12
0 K22

]
C =

[
C11 C12
0 C22

]
, (6.8)

where Ai j ∈ Rpi×p j ,Ki j ∈ Rpi×r j ,Ci j ∈ Rri×p j and pi ≥ 0 for i, j = 1,2. If, in addition, (A22,K22,C22, Ir2 ,e2) is a
minimal sLTI-SS realization of y2 in forward innovation form, then (A,K,C, I,e,y) is called a sLTI-SS in causal
block triangular form.

The results that relate Granger causality to sLTI-SS in block triangular form are presented next, see [136,
Theorem 1].

Theorem 6.1 (Granger causality and network graphs with 2 nodes). Consider the following statements for a
ZMSIR process y = [yT

1 ,y
T
2 ]

T :

1. y1 does not Granger cause y2;

2. there exists a minimal sLTI-SS of y in causal block triangular form;

3. there exists a minimal sLTI-SS of y in block triangular form;

4. there exists a sLTI-SS of y in block triangular form;

Then 1 ⇐⇒ 2. If y is coercive, then 1 ⇐⇒ 2 ⇐⇒ 3 ⇐⇒ 4.

Algorithm 10 below shows how to calculate minimal sLTI-SS in causal block triangular form from the co-
variance sequence of the output process.
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Algorithm 10 Minimal Kalman representation in causal block triangular form based on output covariances

Input {Λy
k := E[y(t + k)yT (t)]}2N

k=0: Covariance sequence of y =
[
yT

1 ,y
T
2
]T

Output {A,K,C}: System matrices of (6.8)

Step 1 Apply Algorithm 9 with input {Λy
k}

2N
k=0 and denote its output by {Â, K̂,Ĉ}.

Step 2 Let Ĉ =
[
ĈT

1 ĈT
2

]T be such that Ĉi ∈ Rri×n. Calculate a non-singular matrix T such that

T ÂT−1 =

[
A11 A12
0 A22

]
, Ĉ2T−1 =

[
0 C22

]
, (6.9)

where (A22,C22) is observable.
Step 3 Set A := T ÂT−1, K := T K̂, C := ĈT−1.

Remark 6.2 (Correctness of Algorithm 10). Consider a ZMSIR process y = [yT
1 ,y

T
2 ]

T with covariance sequence
{Λy

k}
∞
k=0. Let e be the innovation process of y and N be any number larger than or equal to the dimension

of a minimal sLTI-SS realization of y. If y satisfies condition 1 of Theorem 6.1 and {A,K,C} is the output
of Algorithm 10 with input {Λ}2N

k=0, then (A,K,C, I,e) is a minimal sLTI-SS realization of y in causal block
triangular form.

6.2.3 Conditional Granger causality and sLTI-SS in coordinated form

The result above can be generalized to more than two output processes. Let us start by presenting the generaliza-
tion to the case when the network graph is star like Figure 6.3.

n

1 2 · · · n−1

Figure 6.3: Start-like network graph

To this end, in the sequel, we assume that y = [yT
1 , . . . ,y

T
n ]

T is a ZMSIR process, where n ≥ 2, yi ∈ Rri , and
ri > 0 for i = 1, . . . ,n. We introduce following definition, which describes a subset of those sLTI-SSs, network
graph of which is as in Figure 6.3.

Definition 6.3. A sLTI-SS (A,K,C, I,e = [eT
1 , . . . ,e

T
n ]

T ,y) realization of y, where ei ∈Rri , i = 1, . . . ,n, is called a
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sLTI-SS in coordinated form, if e is the innovation process of y, and

A =


A11 0 · · · 0 A1n
0 A22 · · · 0 A2n
...

...
. . .

...
...

0 0 · · · A(n−1)(n−1) A(n−1)n
0 0 · · · 0 Ann

 K =


K11 0 · · · 0 K1n
0 K22 · · · 0 K2n
...

...
. . .

...
...

0 0 · · · K(n−1)(n−1) K(n−1)n
0 0 · · · 0 Knn



C =


C11 0 · · · 0 C1n
0 C22 · · · 0 C2n
...

...
. . .

...
...

0 0 · · · C(n−1)(n−1) C(n−1)n
0 0 · · · 0 Cnn


(6.10)

where Ai j ∈Rpi×p j ,Ki j ∈Rpi×r j ,Ci j ∈Rri×p j and pi ≥ 0 for i, j = 1, . . . ,n. If, in addition, for each i= 1, . . . ,n−1([
Aii Ain
0 Ann

]
,

[
Kii Kin
0 Knn

]
,

[
Cii Cin
0 Cnn

]
, Iri+rn ,

[
ei
en

])
(6.11)

is a minimal sLTI-SS realization of [yT
i ,yT

n ]
T in causal block triangular form, then (A,K,C, I,e,y) is called a

sLTI-SS in causal coordinated form.

If n = 2, then Definition 6.3 coincides with Definition 6.2 of sLTI-SS in block triangular form. Furthermore,
if (A,K,C, I,e) is a sLTI-SS in causal coordinated form, then the dimensions of the block matrices Ai j,Ki j,Ci j,
i, j = 1, . . . ,n are uniquely determined by y. Definition 6.3 is based on the deterministic terminology [148, 237]
and on the definition of Gaussian coordinated systems [148, 196] . The term coordinated is used because the
sLTI-SS at hand can be viewed as consisting of several subsystems; one of which plays the role of a coordinator
and the others play the role of agents. More precisely, let (A,K,C, I,e,y) be a sLTI-SS in coordinated form as in
(6.10) and let x = [xT

1 , . . . ,x
T
n ]

T be its state such that xi ∈ Rpi , i = 1, . . . ,n. Then, for i = 1, . . . ,n−1

Sai

{
xi(t +1) = ∑ j={i,n}Ai jx j(t)+Ki je j(t)

yi(t) = ∑ j={i,n}Ci jx j(t)+ ei(t)
(6.12)

Sc

{
xn(t +1) = Annxn(t)+Knnen(t)

yn(t) = Cnnxi(t)+ en(t) .
(6.13)

Notice that subsystem Sai generates yi as output, has xi,ei as its state and noise process and takes xn,en as its
inputs, thus takes inputs from subsystem Sc. In contrast, Sc is autonomous, generating yn as output and having
xn,en as its state and noise process but not taking input from subsystems Sai , i = 1, . . . ,n−1 (see Figure 6.4). We
call Sc the coordinator and Sai with i = 1, . . . ,n−1 the agents. Intuitively, the agents do not communicate with
each other, only the coordinator sends information (xn and en) to all agents and does not receive information from
them. Next,we define the notion of conditional Granger-causality, which will play a central role in characterizing
existence of sLTI-SS realizations in coordinated form.

Definition 6.4. Consider a ZMSIR process y = [yT
1 ,y

T
2 ,y

T
3 ]

T . We say that y1 conditionally does not Granger
cause y2 with respect to y3, if for all t,k ∈ Z, k ≥ 0

El [y2(t + k) |H y2,y3
t− ] = El [y2(t + k) |H y1,y2,y3

t− ].

Otherwise, we say that y1 conditionally Granger causes y2 with respect to y3.

New we are ready to state the main result relating conditional Granger-causality with existence of sLTI-SSs
in coordinated form.
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Sc

Sa1 Sa2 · · · San−1

xn,en xn,en xn,en

Figure 6.4: Network graph of a sLTI-SS in coordinated form: Sc is the coordinator (6.13) and Sai , i= 1, . . . ,n−1
are the agents (6.12).

Theorem 6.2 (Conditional Granger-causality and star-shaped network graphs, [136, 133]). Consider the follow-
ing statements for a ZMSIR process y = [yT

1 , . . . ,y
T
n ]

T :

1. yi does not Granger cause yn, i = 1, . . . ,n−1;

2. yi conditionally does not Granger cause y j with respect to yn, i, j = 1, . . . ,n−1, i 6= j;

3. there exists a minimal sLTI-SS realization of y in causal coordinated form;

4. there exists a sLTI-SS realization of y in causal coordinated form;

5. there exists a sLTI-SS realization of y in coordinated form;

Then, the following hold:

• 1 and 2 ⇐⇒ 4.

• If, in addition, y is coercive, then we have: 1 and 2 ⇐⇒ 4 ⇐⇒ 5.

It is possible to formulate an algorithm for computing a sLTI-SS in coordinated form from the covariances
of y or any sLTI-SS realization of y, see [136, 133]. In fact, Theorem 6.2 and the corresponding algorithm for
calculating a sLTI-SS in coordinated form can be used to formulate statistical tests for checking (conditional)
Granger causality relationships, see [133, Chapter 7].

6.2.4 Directted acyclic graphs induced by Granger causality relations
To conclude, we present the general case, where the graph induced by Granger causality relations is a directed
acyclic graph. To this end, we define the class of transitive acyclic graphs.

Definition 6.5 (TADG). A directed graph G = (V,E), with set of nodes V = {1, . . . ,k} and set of directed edges
E ⊆ V ×V is called acyclic if there is no cycle i.e., closed directed path. Furthermore, it is transitive if for
i, j, l ∈ V the implication (i, j),( j, l) ∈ E =⇒ (i, l) ∈ E holds. The class of transitive acyclic directed graphs is
denoted by TADG.

For convenience we make the following assumption that applies for all ZMSIR processes throughout this
section.

Assumption 4. For a process y = [yT
1 , . . . ,y

T
n ]

T , we assume that none of the components of y is a white noise
process, or equivalently, the dimension of a minimal sLTI-SS realization of yi is strictly positive for all i ∈
{1, . . . ,n}.
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For a TADG G = (V = {1, . . . ,n},E), the set of nodes V has a so-called topological ordering. By topological
ordering we mean an ordering on V such that if (i, j) ∈ E is a directed edge then i > j. Throughout this chapter
we use integers to represent nodes of graphs and, without the loss of generality, we assume the following:

Assumption 5. Consider a TADG G = (V,E) where V = {1, . . . ,n}. Then (i, j) ∈ E implies i > j.

The class of TADGs will be used to define the class of sLTI-SS in forward innovation form network graph of
which is a TADG. To define this class of sLTI-SSs formally, we need to introduce some new terminology.

Notation 6.1 (parent and non-parent succeeding nodes). Let G = (V = {1, . . . ,n},E) be a TADG and consider
a node j ∈ V . The set of parent nodes {i ∈ V |(i, j) ∈ E} of j is denoted by I j. In addition, the set of non-parent
succeeding (with respect to the topological ordering of V ) nodes {i ∈V |i > j,(i, j) /∈ E} of j is denoted by Ī j.

The topological ordering on the set of nodes of a TADG graph implies that I j, Ī j ⊆ { j + 1, . . . ,n} for all
j ∈ {1, . . . ,n−1}. Furthermore, from the definition of Ī j, we have that I j ∪ Ī j = { j+1, . . . ,n}. The next notation
helps in referring to components of processes beyond the original partitioning of those processes.

Notation 6.2 (sub-process). Consider the finite set V = {1, . . . ,n} and a tuple J = ( j1, . . . , jl) where j1, . . . , jl ∈V .
Then for a process y =

[
yT

1 , . . . ,y
T
n
]T , we denote the sub-process [yT

j1 , . . . ,y
T
jl ]

T by y j1,..., jl or by yJ . By abuse of
terminology, if J is a subset of V and not a tuple, then yJ will mean process yα , where α is the tuple obtained
by taking the elements of J in increasing order, i.e. if J = { j1, . . . , jk}, j1 < j2 < · · · jk, then α = ( j1, . . . , jk).
However, yα,β always means [yT

α ,yT
β
]T regardless the topological order between the elements of α and β .

Next, we introduce what we mean by partition of matrices. Call the set {pi,qi}k
i=1 a partition of (p,q), where

p,q > 0, if ∑
k
i=1 pi = p and ∑

k
i=1 qi = q, where pi,qi > 0 for i = 1, . . . ,k.

Definition 6.6 (partition of a matrix). Let {pi,qi}k
i=1 be a partition of (p,q) for some p,q > 0. Then the partition

of a matrix M ∈ Rp×q with respect to {pi,qi}k
i=1 is a collection of matrices {Mi j ∈ Rpi×q j}k

i, j=1, such that

M =

M11 · · · M1k
...

. . .
...

Mk1 · · · Mkk

 .
In Definition 6.6, the indexing of matrix M refers to the blocks of M and does not refer directly to the elements

of M. It is parallel to the component-wise indexing of processes where the components can be multidimensional.

Notation 6.3 (sub-matrix). Consider the partition {Mi j ∈ Rpi×q j}k
i, j=1 of a matrix M ∈ Rp×q with respect to

the partition {pi,qi}k
i=1 of (p,q). Furthermore, consider the tuples I = (i1, . . . , in) and J = ( j1, . . . , jm) where

i1, . . . , in, j1, . . . , jm ∈ {1, . . . ,k}. Then by the sub-matrix of M indexed by IJ we mean

MIJ :=

Mi1 j1 · · · Mi1 jm
...

. . .
...

Min j1 · · · Min jm


We are now ready to define sLTI-SSs which have a so-called TADG-zero structure:

Definition 6.7 (G-zero structure). Consider a process y =
[
yT

1 , . . . ,y
T
n
]T and a TADG

G = (V = {1, . . . ,n},E).

Let
(A,K,C, I,e)

be a p-dimension sLTI-SS realization of y ∈ Rr in forward innovation form. Consider the partition of
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• A with respect to {pi, pi}n
i=1,

• K with respect to {pi,ri}n
i=1,

• C with respect to {ri, pi}n
i=1

where {pi,ri}n
i=1 is a partition of (p,r). Then we say that (A,K,C, I,e) has G-zero structure if

Ai j = 0, Ki j = 0, Ci j = 0 for all ( j, i) /∈ E.

If, in addition, for all j ∈V , the tuple J := ( j, Ī j, I j) defines a sLTI-SS

(AJJ ,KJJ ,CJJ , I, [eT
j ,e

T
Ī j
,eT

I j
]T )

which is a realization of [yT
j ,yT

Ī j
,yT

I j
]T in causal coordinated form (see Definition 6.3), then we say that (A,K,C, I,e)

has causal G-zero structure.

Besides saying that a sLTI-SS has G-zero structure or causal G-zero structure, we also say, sLTI-SS with
G-zero structure or with causal G-zero structure.

Consider the TADGs G1 = ({1,2},{(2,1)}) and G2 = ({1,2, . . . ,n},{(n,1),(n,2), . . . ,(n,n− 1)}). If the
graph G in Definition 6.7 is G1, then Definition 6.7 coincides with Definition 6.2 considering ZMSIR processes
that satisfy Assumption 4. In a similar manner, if the graph G in Definition 6.7 is G2 then it coincides with
Definition 6.3 considering ZMSIR processes that satisfy Assumption 4.

If a p-dimensional sLTI-SS (A,K,C, I,e) of y ∈Rr has causal G-zero structure, where G = (V,E) is a TADG,
then the partition {pi,ri}n

i=1 of (p,r) in Definition 6.7 is uniquely determined by y.
A sLTI-SS with TADG-zero structure can be viewed as consisting of subsystems where each subsystem gener-

ates a component of y= [yT
1 , . . . ,y

T
n ]

T . More precisely, let G= (V = {1, . . . ,n},E) be a TADG and (A,K,C, I,e,y)
be a p-dimensional sLTI-SS with G-zero structure where A,K and C are partitioned with respect to a partition
{pi,qi}k

i=1 of (p,q). Furthermore, let x = [xT
1 , . . . ,x

T
n ]

T be its state such that xi ∈ Rpi , i = 1, . . . ,n. Then the
sLTI-SS with output y j, j ∈V is in the form of

S j

{
x j(t +1) = A j jx j(t)+

(
A jI j xI j(t)+K jI j eI j(t)

)
+K j je j(t)

y j(t) =C j jx j(t)+C jI j xI j(t)+ e j(t).
(6.14)

Notice that if (i, j) ∈ E, i.e., i is a parent node of j, then subsystem S j takes inputs from subsystem Si, namely
the state and noise processes of Si. In contrast, if ( j, i) /∈ E, S j does not take input from Si. Intuitively, it means
that the subsystems communicate with each other as it is allowed by the directed paths of the graph G. Note that
from transitivity, if there is a directed path from i ∈V to j ∈V then there is also an edge (i, j) ∈ E.

Example 6.1. Take the TADG graph

G = ({1,2,3,4},{(4,1),(4,2),(3,1),(2,1)})

and a process
[yT

1 ,y
T
2 ,y

T
3 ,y

T
4 ]

T

with innovation process [eT
1 ,e

T
2 ,e

T
3 ,e

T
4 ]

T . Then a sLTI-SS with G-zero structure of [yT
1 ,y

T
2 ,y

T
3 ,y

T
4 ]

T is given by
x1(t +1)
x2(t +1)
x3(t +1)
x4(t +1)

=


A11 A12 A13 A14
0 A22 0 A24
0 0 A33 0
0 0 0 A44




x1(t)
x2(t)
x3(t)
x4(t)

+


K11 K12 K13 K14
0 K22 0 K24
0 0 K33 0
0 0 0 K44




e1(t)
e2(t)
e3(t)
e4(t)




y1(t)
y2(t)
y3(t)
y4(t)

=


C11 C12 C13 C14
0 C22 0 C24
0 0 C33 0
0 0 0 C44




x1(t)
x2(t)
x3(t)
x4(t)

+


e1(t)
e2(t)
e3(t)
e4(t)

 ,
(6.15)
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x4(t +1) = A44x4(t)+K44e4(t)
y4(t) = C44x4(t)+ e4(t)

x3(t +1) = A33x3(t)+K33e3(t)
y3(t) = C33x3(t)+ e3(t)

x2(t +1) = ∑i=2,4 (A2ixi(t)+K2iei(t))
y2(t) = ∑i=2,4 C2ixi(t)+ e2(t)

x1(t +1) = ∑
4
i=1 (A1ixi(t)+K1iei(t))

y1(t) = ∑
4
i=1 C1ixi(t)+ e1(t)

(x4,e4) (x4,e4) (x3,e3)

(x2,e2)

Figure 6.5: Network graph of the sLTI-SS (6.15) with G-zero structure

where Ai j ∈ Rpi×p j ,Ki j ∈ Rpi×r j ,Ci j ∈ Rri×p j and yi,ei ∈ Rri , xi ∈ Rpi for some pi > 0, i, j = 1,2,3,4. The
network graph of this sLTI-SS is the network of the sLTI-SSs S1,S2,S3,S4 defined in (6.14), generating y1, y2,
y3 and y4, respectively. See Figure 6.5 for illustration of this network graph.

Theorem 6.3 (General network structure, [133, 134]). Consider the following statements for a TADG G = (V =
{1, . . . ,n},E) and a process y = [yT

1 , . . . ,y
T
n ]

T :

1. y has G-consistent causality structure;

2. there exists a sLTI-SS realization of y with causal G-zero structure;

3. there exists a sLTI-SS realizayion of y with G-zero structure;

Then, the following hold:

• 1 =⇒ 3;

• 2 =⇒ 1.

• If, in addition, y is coercive, then we have 1 ⇐⇒ 2 ⇐⇒ 3.

The proof of Theorem 6.3 is constructive and it leads to an algorithm for computing a sLTI-SS realization of
y from any sLTI-SS realization of y or from the covariances of y, see [134, 133] for more details.

6.2.5 Reverse engineering of the network graph
The results described above were used to develop statistical hypothesis tests for checking various Granger-
causality based on data. The essence of those methods is to use empirical covariances of the observed processes
to calculate a sLTI-SS in causal block triangular form, causal coordinated form, or with causal G-zero structure
respectively. In the ideal case, when true covariances are used, suitable blocks of the matrices of such a sLTI-SS
should be zero, if the corresponding Granger-causality relationships hold. When approximate covariance are
used, the corresponding blocks are not zero, due to approximation error. The statistical hypothesis testing relies
on checking if those blocks are significantly different from zero. Details of this approach can be found in [133,
Chapter 7]. This statistical hypothesis testing procedure can also be viewed as a procedure for reverse engineering
of the network graph. Note that the problem of discovering the network graph from data is in principle ill-posed,
as systems with different network graphs can generate the same observed behavior. However, let us consider the
weaker problem of deciding if observed behavior is consistent with the hypothesis that the underlying system has
a particular network graph. That is, we want to decide if there exists a system with the given network graph which
can generate the observed data. This problem is well-posed. The hypothesis testing procedure described above
could be used to solve this weaker problem.
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6.3 Granger causality: bilinear case

In this section we will use the terminology and notation of Chapter 3. In particular, we will use the notion of
admissible inputs, ZMWSSI processes, and the processes zy+

v , zy
v defined in (3.15) and (3.20) respectively. More

precisely, we consider the processes ({µq}q∈Q,y = [yT
1 ,y

T
2 ]

T ), where {µq}q∈Q is admissible and y is ZMWSSI
w.r.t. {uq}q∈Q.

We would like to relate the existence of a GBS realization of y with a network graph consisting of two
nodes and one edge to Granger-causality-like properties of y1 and y2. Recall from [57, 163, 147] that sLTI-SS
realizations of y in forward innovation form can be viewed as optimal predictors which map past values of y to
its best linear prediction. Since the classical definition of Granger-causality imposed conditions on such optimal
linear predictors, it was possible to translate Granger-causality among components of y to properties of sLTI-
SS realizations of y. If we try to extend the same idea to GBSs, then we have to deal with the problem that a
GBS realization of y in forward innovation form is not a linear predictor based on past values of y, but it is a
linear predictor from the past outputs and inputs zy

v(t) to the future outputs and inputs zy+
v (t), see This motivates

our extension of Granger causality, where we use the process zy+
w (t) rather than y(t + |w|) and zy

v(t) rather than
y(t−|v|), v,w ∈ Q+:

Definition 6.8 (GB–Granger causality). We say that y1 does not GB–Granger cause y2 w.r.t. {µq}q∈Q if for all
v ∈ Q∗ and t ∈ Z

El [zy2+
v (t) | {zy

w(t)}w∈Q+ ] = El [zy2+
v (t) | {zy2

w (t)}w∈Q+ ]. (6.16)

Otherwise, y1 GB–Granger causes y2 w.r.t. {µq}q∈Q. Here we used Notation 3.1 from Chapter 3.

Informally, y1 does not GB–Granger cause y2, if the best linear predictions of the future of y2 w.r.t. {uq}q∈Q
along v is the same based on the past of y or based on the past of y2 w.r.t. {uq}q∈Q along {w}w∈Q+ .

Remark 6.3. If y1 does not GB–Granger cause y2 then it implies that y1 does not Granger causes y2. Moreover,
in the specific case, when Q = {1} and u1(t) ≡ 1, zy+

v (t) = y(t + |v|) and zy
w(t) = y(t − |w|) and thus Defini-

tions 6.1 and 6.8 coincide. The relationship between GB–Granger causality and other concepts of causality, such
as conditional independence [9], seems to be more involved and remains a topic of future research.

Next, we present the result on the relationship between GB–Granger causality and network graphs of GBSs.
The GBS in question are minimal ones in forward innovation form that can be constructed algorithmically (see
Algorithm 11 later on in this section).

Theorem 6.4 (GB-Granger causality and network graphs with 2 nodes ). Consider a GBS realization of y =
[yT

1 ,y
T
2 ]

T ) and let e = [eT
1 ,e

T
2 ]

T be the innovation process of y w.r.t. {uq}q∈Q, where ei ∈ Rki ,i = 1,2. Then, y1
does not GB–Granger cause y2 w.r.t. {uq}q∈Q if and only if there exists a GBS G of the form (3.2), such that G is
a minimal realization of y in forward innovation form and for all q ∈ Q,

Aq =

[
Aq,11 Aq,12

0 Aq,22

]
, Kq =

[
Kq,11 Kq,12

0 Kq,22

]
, C =

[
C11 C12
0 C22

]
, (6.17)

where Aq,i j ∈ Rni×n j , Kq,i j ∈ Rni×k j , Ci j ∈ Rki,n j , q ∈ Q, i, j = 1,2 for some n1 ≥ 0, n2 > 0 and

G2 = (n2, p, p,Q,x,e,{µq}q∈Q,y2,C22, I,{Aq,22,Kq,22}q∈Q),

is a minimal GBS realization of y2 in forward innovation form.

If Q = {1} and u1(t) ≡ 1, then GBS reduce to sLTI-SSs and Definitions 6.1 and 6.8 coincide. As a result,
Theorem 6.17 reduces to earlier results on sLTI-SSs and Granger causality (see [136, Theorem 1]).
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S2 S1
x2,e2

e2 e1

y2 y1

{uq}q∈Q y

Figure 6.6: Cascade interconnection of a GBS realization in forward innovation form with system matrices as in
(6.17).

A GBS realization of y of the form (3.2) in forward innovation form which satisfies (6.17) can be viewed as
a cascade interconnection of two subsystems. Define the subsystems

S1

{
x1(t +1) = ∑q∈Q(Aq,11x1(t)+Kq,11e1(t))uq(t)+∑q∈Q(Aq,12x2(t)+Kq,12e2(t))uq(t)

y1(t) = ∑
2
i=1 C1ixi(t))+ e2(t)

S2

{
x2(t +1) = (Aq,22x2(t)+Kq,22e2(t))uq(t)

y2(t) = C22x2(t)+ e2(t)

Notice that S2 sends its state x2 and noise e2 to S1 as an external input while S1 does not send information to
S2. The corresponding network graph is illustrated in Figure 6.6.

The necessity part of the proof of Theorem 6.4 is constructive, and it is based on calculating a GBS realization
in innovation form described in Theorem 6.4 from the observed behavior, i.e., from output covariances. For this
calculation, we present Algorithm 11.

Algorithm 11 Block triangular minimal GBS

Input {Λy
w := E[y(t)(zy

w(t))T ]}w∈Q+,|w|≤n and {T y
q,q := E[zy

q(t)(zy
q(t))T ]}q∈Q

Output ({Aq,Kq}q∈Q,C)

Step 1 Apply Algorithm 4 from Subsection 3.6.3, Chapter 3 to compute a minimal GBS realization

G̃ = (n, p,m,Q,x,e,{µq}q∈Q,y,C, I,{Ãq, K̃q}q∈Q)

of y in forward innovation form.
Step 2 Define the sub-matrix consisting of the last k2 rows of C̃ by C̃2 ∈ Rk2×n and define the observability
matrix ÕN(n)

ÕN(n) =
[
(C̃2Ãv1)

T · · · (C̃2Ãvk)
T
]T

,

where we used the lexicographic ordering (≺) on Q∗ from Chapter 2, Notation 2.1. If ÕN(n) is not of full
column rank then define the non-singular matrix T−1 =

[
T1 T2

]
such that the columns of T1 ∈ Rn×n1 is the

kernel of ÕN(n). If ÕN(n) is of full column rank, then set T = I.
Define the matrices Aq = T ÃqT−1, Kq = T K̃q for q ∈ Q and C = C̃T−1.
return ({Aq,Kq}q∈Q,C).

Remark 6.4. It follows that if y1 does not GB–Granger cause y2, then Algorithm 11 calculates the system
matrices of a GBS realization described in Theorem 6.4, if y can be realized by a stationary GBS of dimension n.
Hence, Algorithm 11 provides a constructive proof of the necessity part of Theorem 6.4, by calculating a minimal
GBS realization in forward innovation form that characterizes GB–Granger non-causality.
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Remark 6.5 (Checking GB–Granger causality). Algorithm 11 can be used for checking GB–Granger causality
as follows. Apply Algorithm 11 and check if the matrices {Aq,Kq}q∈Q and C returned by Algorithm 11 satisfy,

Aq =

[
Aq,11 Aq,12

0 Aq,22

]
C =

[
C11 C12
0 C22

]
,

Kq =

[
Kq,11 Kq,12

0 Kq,22

]
,

where Aq,i j ∈ Rni×n j , Ci j ∈ Rki×n j , Ki, j ∈ Rni,k j , i, j = 1,2 for some n1 ≥ 0, n2 > 0, and if

S2 = (n2, p, p,Q,x2,e,{µq}q∈Q,y2,C22, I,{Aq,22,Kq,22}q∈Q)

is a minimal GBS realization of y2 in forward innovation form. By Theorem 6.4 both tests are positive, if and
only if y1 does not GB–Granger cause y2. We check whether S2 is a minimal GBS realization in innovation form
as follows. We use Subsection 3.6.3 compute a minimal GBS realization S̄2 of y2 in forward innovation form
and the covariances Q̄q = E[v(t)vT (t)u2

q(t)], q ∈ Q of the innovation process v of y2. Then, S2 is a minimal
GBS realization in forward innovation form, if and only if S2 and S̄2 have the same dimension and the same
noise process, i.e., v = e2. For checking the latter, we remark that v(t) = e2(t) if and only if for all i = 1, . . . ,k2,
∑q∈Q α2

q Q̄q,ii = ∑q∈Q α2
q Qq,(k1+i)(k1+i), where {αq}q∈Q are such that ∑q∈Q αqµq = 1 3 and Qq,rl , Q̄q,kl denotes

the (k, l)th entry of the matrix Qq, Q̄q respectively.
Note that the covariances used as inputs of Algorithm 11 could be estimated from sampled data, the procedure

above could be a starting point of a statistical test for checking GB–Granger causality, similar to the one of
Granger causality in [133]. This remains a topic of future research.

6.4 Role of realization theory
The results of Section 6.2 depend on stochastic realization theory [163] of sLTI-SSs. In particular, the existence
of minimal of sLTI-SSs in forward innovation form is the main tool which allows us to related Granger-causality
with the network graph of sLTI-SS realizations. Note that the notion of Granger-causality plays an important role
in realization theory of sLTI-SSs with inputs. The relationship between the results of Section 6.2 and realization
theory of sLTI-SSs with inputs remains a topic of future research. Likewise, the results of Section 6.3 rely on
realization theory of GBSs, and especially on the existence of minimal GBSs in forward innovation form. Both
for sLTI-SSs and for GBSs, the algorithms for checking Granger-causality rely on covariance realization and
minimization algorithms.

6.5 Conclusions and future work
In this chapter we have presented an overview of results on the relationship between network graphs of state-space
representations and Granger causality relations among their outputs. We have discussed in detail the results on
sLTI-SS and GBSs. Similar results can be formulated for the relationship between transfer functions and Granger
causality relations, [135]. These results could be used for developing statistical hypothesis testing for deciding if
the network graph of the system which generates the data has certain interconnections [133].

There are many potential directions for further research. First of all, it would be desirable to extend the results
to sLTI-SSs and to LPV-SSAs/LSSs with control inputs. Reformulations of the results in purely deterministic
setting would also be of interest. The latter would require reformulating Granger-causality for the deterministic
setting. Another direction would be the use of statistical notions which are different from Granger-causality.
That remains topic of future research as well. Finally, more work needs to be done on statistical hypothesis

3Such {αq}q∈Q exist due to the definition of admissible inputs, see Section 3.4
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testing methods for deciding if the data could be generated by a system with a certain network graph. The latter
problem is essentially the well-posed version of the generally ill-posed problem of reverse engineering of network
graphs. First steps towards this goal were made in [133]. However, a formal theoretical analysis and experimental
validation of the methods from [133] is still lacking.
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Chapter 7

Future research directions

Recall that my global research objective is to provide algorithms and theory for building models for control. In
fact, I plan to continue this research program, since there exist several open problems which need to be solved.
In this chapter, I will first describe some of these open research problems which I plan to work on. This line
of research represents Axis A (reliable models for control of cyber-physical systems) of my future research. In
addition, I will also work on some new research topics, which represent a departure from my previous research:
namely

• Axis B: Reliable AI (artificial intelligence) for cyber-physical systems.
There is an increasing need for solving decision making problems for cyber-physical systems which involve
models from artificial intelligence. Traditionally, this topic is studied in computer science/artificial intelli-
gence, and significant progress has been made. However, when AI algorithms are applied to cyber-physical
systems, the behavior of physical components should be taken into account. This calls for methods and
theory for constructing such models from data and for simplifying them. In turn, this is likely to require
elements of control theory to be integrated into the analysis of such algorithms. Think for example of
obstacle detection and collision avoidance of autonomous vehicles. In a way, the general research program
of Subsection 1.1 still applies, with the difference that instead of gearing modeling methods and theory
towards controller synthesis we gear them towards more general decision making algorithms. The chal-
lenges remain the same: we would like to develop methods for learning models from data, such that the
resulting models can be proven to be useful for decision making. In particular, I plan to focus on analyzing
machine learning algorithms which are applied to dynamical systems. This includes learning recurrent
neural networks and reinforcement learning.

• Axis C: Reverse engineering of network topology of interconnected systems.
The goal is to provide theoretical guarantees and algorithms for learning the network topology of intercon-
nected systems. This is motivated by the large number of applications of this problem in systems biology
and neuroscience.

Note that while these two topics seem distant, they both require the same methodological tools, hence my interest
in them. In particular, both axis B and C will use results from axis A, more precisely, from sub-axis A1 which
deals with structural properties of cyber-physical systems. The relationship between different axes is illustrated
in Figure 7.1.

In Section 7.1 I will describe my research program for pursuing the objective of Subsection 1.1. In Section
7.2 I will discuss the research program for the two emerging topics discussed above.

117



CHAPTER 7. FUTURE RESEARCH DIRECTIONS

Figure 7.1: Relationship between axes,

Realization
theory (A.1)

System identi-
fication (A2.1)

Model reduc-
tion (A2.2)

Integrating system
identification,

model reduction
and control (A2.3)

Reverse engineer-
ing of network
topology (C)

Reliable AI for
cyber-physical

systems (B)

Axis C Axis A Axis B

7.1 Axis A: reliable models for control of cyber-physical systems

This research axis represents the continuation of the past research activities. Recall that the high-level goal of
the past research activities was to come up with model reduction and system identification algorithms for which
there are theoretical guarantees that the resulting models are useful for control.

When it comes to cyber-physical systems, existing results are still inadequate and there are still many open
questions. For the simplicity of presentation we will concentrate on cyber-physical systems which can be modeled
by polynomial, LPV and hybrid systems, as they have been the focus of my past research efforts. Note that while
the category of cyber-physical systems is an engineering concept, their theoretical analysis is done by choosing
a model class which can represent them sufficiently faithfully and analyzing the mathematical properties of the
elements of that model class. In our case, we will concentrate on polynomial,LPV and hybrid systems, as they
are capable of modeling a wide range of cyber-physical systems.

While there is a great body of literature on control, system identification and model reduction of polynomial,
LPV and hybrid systems [273, 268, 177, 154, 103, 260] the existing results do not yet form a comprehensive
theoretical package. While the literature on control is relatively mature, the existing results on identification
and model reduction tend to focus more on algorithms, and less so on their theoretical justification. Moreover,
the theoretical results are not always of the form which is informative for control. More precisely, recall that
the ultimate goal is to produce theoretical guarantees for the whole processes of control design, starting with
modeling based on data and ending up with the actual controller synthesis. This means that we should be able to
provide guarantees that if the cyber-physical system can be modeled by a certain class of polynomial/LPV/hybrid
systems, then the modeling step will yield a model such that the controller synthesized based on that model will
work when interconnected with the true hypothetical model.

As it was explained in Subsection 1.1, for systems identification, the theoretical guarantees usually take the
form of consistency results, i.e., proofs that the model produced by system identification algorithms converges
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to a true model as the number of data points available for learning increases. For model reduction, theoretical
guarantees tend to take the form of analytic error bounds which characterize the difference between the input-
output behavior of the original model and the reduced one, or proofs that the reduced order model has exactly the
same output response as the original one for some inputs. Despite the past research efforts, there are still many
open problems. In particular, I would like to address the following challenges:

• Extending theoretical guarantees to a larger class of system identification and model reduction algo-
rithms.
For many popular system identification and model reduction algorithms no analytical error bounds exist.
Moreover, there is a gap between the class of models for which there exist theoretical error bounds for
system identification and model reduction algorithms and the class of models used for control design. For
example, in LPV system identification often stochastic models are considered, and the statistical parame-
ters (variance, etc.) of the stochastic component are analyzed, while controller design methods often work
with deterministic uncertainties.

• Few theoretical results on how to convert theoretical guarantees for the model into guarantees for
controllers.
There are few explicit results relating the error bounds for model reduction and system identification with
the correctness of control design. Even when error bounds for system identification and model reduction
algorithms are available, there is little systematic theory explaining how to use these error bounds for
controller design.

• For certain applications, the models and assumptions used in system identification/model reduction
are too restrictive.
For instance, most of the results on LPV/hybrid system identification assume that the scheduling sig-
nal/switching signal is externally generated and that it satisfies some persistence of excitation condition.
However, in many cases these signals often depend on the state of the underlying system. In turn, this
means that they cannot be chosen arbitrarily, and hence it may be impossible to design identification ex-
periments for which the persistence of excitation condition holds. Often, the the persistence of excitation
condition involves the measured output too, which means that it is completely unclear how to design the
experiment in order to get persistently exciting measurement data. Another problem is that in hybrid sys-
tems the switching signal may be unobservable and dependent on the unmeasured state of the underlying
system. For this case, there are few theoretical guarantees, and they all tend to assume some richness of
the measured data (output). However, it is not at all clear how to design the corresponding identification
experiment to achieve it.

In order to address these shortcomings, the research will aim at achieving the following goals.

• (O1) Control-oriented theoretical guarantees for system identification and model reduction algorithms.

• (O2) Theoretical guarantees for controller synthesis which take into account the modeling error of the
models produced by system identification and model reduction algorithms.

• (O3) Developing theoretically sound system identification and model reduction algorithms for more real-
istic model classes.

The research can be divided into fundamental and methodological parts. The goal of the methodological part is to
achieve the cited research objectives. The goal of the fundamental part is to lay the theoretical foundations for the
methodological part. More precisely, fundamental research will be directed to developing realization theory for
model classes for which such a theory is lacking and applying it to understand the structural properties of these
model classes. The methodological part will be directed towards applying the results of the fundamental research
to achieve the stated goals.
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7.1.1 Axis A1: Fundamental research: further research on realization theory and struc-
ture theory

The goal of this research axis is to study the realization theory and the related fundamental structural of various
classes of state-space representations. This axis can be further divided into the following axis:

• Extending realization theory to more general model classes.

• Applying realization theory for studying structural properties which are relevant for modeling (system
identification and model reduction.

• Applying realization theory for studying structural properties which are relevant for control synthesis.

The main idea is that we develop realization theory for those model classes for which such a theory does not
exist, and then we use realization theory to develop further fundamental theoretical results, which in turn will be
useful for proposing an integrated approach for modeling and control. Below we discuss these research axes one
by one.

Axis A1.1: Extending realization theory to more general classes of LPV and hybrid systems

The goal of this research axis is to extend realization theory to model classes which are more realistic. In partic-
ular, I plan to address the following topics

Axis A1.1.1: Realization theory of hybrid systems with autonomous switching.
This problem remains open, yet it is important as hybrid systems with autonomous switching are widely
used in applications. Moreover, a widely used subclass of recurrent neural networks also falls into the
category of hybrid systems with autonomous switching, so the topic is also relevant for machine learning.

Axis A1.1.2: Realization theory of quasi-LPV systems.
A quasi-LPV system is an LPV system where the scheduling parameter depends on the input and state.
Such systems are widespread in practice, as non-linear systems are often modeled as quasi-LPV systems.
Once a quasi-LPV model is obtained, for control purposes it can treated as an LPV model, and the con-
troller designed for the LPV model will also work for the original quasi-LPV model, since the trajectories
of the latter are contained in the set of the trajectories of the former. Despite its wide-spread use, there are
few systematic procedures for transforming a non-linear model to a quasi-LPV, or constructing a quasi-
LPV model from data, and little is known about the relationship between the structural properties of the
quasi-LPV (minimality,observability,controllability) and those of the original non-linear model. Realiza-
tion theory of quasi-LPVs would shed a light on these questions. Note that if we allow the scheduling
parameter to be a discontinuous function of the state and the scheduling parameter takes values from a
finite set, then quasi-LPV becomes a piecewise-linear hybrid system with autonomous switching. Hence,
the proposed research topic is closely related to realization theory of hybrid systems with autonomous
switching.

Axis A1.1.3: Realization theory for hybrid/LPV systems with stochastic noise.
Most of existing results on realization theory of hybrid/LPV systems deals with models which contain no
noise. There is a recent extension of realization theory to hybrid/LPV systems with stochastic noise, see
[226], but the results are still incomplete as they do not allow for deterministic linear inputs. For this reason,
I plan to work further on realization theory of hybrid/LPV systems with stochastic noise.

Axis A1.1.4: Realization theory for hybrid/LPV systems with bounded deterministic noise and its rela-
tionship with stochastic noise.
For many applications the assumption that the noise is stochastic is not necessarily justified. For these
applications, it is often more natural to assume that the noise is deterministic and has a bounded amplitude
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or energy. Moreover, there is a rich theory and tool-set for robust control of systems with bounded noise,
especially for LPV and piecewise-affine systems. For this reasons, it would be desirable to develop real-
ization theory for hybrid/LPV systems with bounded noise. Furthermore, it would be desirable to establish
a formal equivalence between the case of deterministic and stochastic noise. One option is to think of a
stochastic noise as the modeling error which arises due to the use of stochastic inputs.

This would be especially useful for system identification of hybrid/LPV systems. Right now, the standard
assumption in hybrid/LPV system identification is that the noise is stochastic, and a lot of attention is
devoted to estimating the statistical properties of this stochastic noise. However, system identification is
done in order to have models for control, and most of available tools for hybrid/LPV control can handle
only bounded deterministic noise. This is especially true for LPV models, as they are often used exactly
because they are convenient for using tools from robust control. So there is a discrepancy between the
class of models considered in system identification and the class of models used in control design. I believe
that the existing system identification algorithms are probably quite adequate even when they are applied to
systems with a bounded deterministic noise. In this case, the estimated noise statistics is likely to represent a
bound on the amplitude/energy of the deterministic noise. In fact, the presence of stochastic noise could be
explained by assuming that the input used for the identification experiment is a sample path of a stochastic
process and that the noise process represents the prediction error of the output. In turn, using stochastic
inputs for identification might be necessary to ensure persistence of excitation.

I am especially optimistic about LPV system identification algorithms, as they have been extensively tested
on practical applications, and hence are likely to deliver adequate models in most of cases. So the task is
not so much to design completely new system identification algorithms, but to reinterpret existing ones. In
order to do so, parallels between stochastic and deterministic case have to be established, which amounts
to developing realization theory of hybrid/LPV systems with a bounded deterministic noise. The results
presented in [229, 317]. are expected to be useful for achieving this goal.

Axis A1.1.5: Realization theory and algorithms for polynomial systems.
I plan to continue working on realization theory and algorithms for polynomial systems, especially for semi-
algebraic systems, i.e. systems determined by polynomial equations and inequalities. These systems lack a
complete realization theory and the existing procedures for minimization and construction of a realization
are not algorithmically effective. This line of research overlaps with realization theory of recurrent neural
networks (Section 7.2.1), hybrid systems with autonomous switching , and quasi-LPV systems, as all these
system classes overlap with the class of semi-algebraic systems. Indeed, piecewise-linear hybrid systems
are semi-algebraic by definition, and so are quasi-LPV systems where the matrices are polynomial/rational
functions of the scheduling parameters.

Axis A1.1.6: Behavioral approach for realization theory of hybrid/polynomial/LPV systems.
Most of the existing work on realization theory uses input-output functions as a formalization of the ob-
served behavior of a state-space representation. However, in general, this formalization is not satisfactory,
as it tacitly assumes that the solutions of the state-space representation start from a particular initial state.
Intuitively, this might be approximately true for state-space representations which are stable in a suitable
sense. This assumption is also suitable for identification purposes, if only one long time-series is available
for identifying a state-space representation. However, in general, this assumption is not the most realistic
one, especially for control. Instead, it is much more natural to model the observed behavior as sets of timed
signals, i.e., adopt the behavioral approach of J.C. Willems [306]. All the questions of realization theory
(existence of a state-space representation, minimality, etc.) can easily be reformulated in the language of
the behavioral approach. For LTI state-space representations a fairly complete realization theory in the be-
havioral setting was developed [300, 301, 302] and partially extended to various other system classes [311],
in particular to LPV systems [273, 276]. However, much remains to be done, even for hybrid and LPV sys-
tems. For instance, the results of [273, 276] concern LPV state-space representation with a dynamic and
rational dependence on the scheduling parameters. However, for control purposes, LPV state-space repre-
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sentations with a static and affine dependence are preferable, and the results of [273, 276] do not yield a
realization theory for the latter class of state-space representations.

Axis A1.2: Application of realization theory to structure theory of models relevant for model reduction and
system identification

The goal of this research axis is to apply realization theory for studying certain structural properties of models.
These properties are useful for analyzing system identification and model reduction algorithms and they are as
follows:

Axis A1.2.1: Manifold structure of spaces of systems and distances between systems.
The goal is to study the topology and geometry of spaces of state-space representations belonging to vari-
ous model classes, for example LPV state-space representations with an affine dependence on parameters,
linear switched systems, etc. More precisely, let us fix a model class and a state-space dimension and
let us identify any two minimal dimensional state-space representations from the fixed model class and
of the fixed dimension, if these two state-space representations have the same input-output behavior. The
corresponding space will be composed of equivalence classes of state-space representations with the same
input-output behavior. Alternatively, we might identify each point of this space with the input-output be-
havior of a state-space representation. We would like to see if we can show that this space has the structure
of a finite-dimensional (smooth, algebraic, etc.) manifold, if it is metrizable and if the corresponding dis-
tance has a system-theoretic interpretation (for example, in the sense of induced L2 norm, etc.). Moreover,
there should be a finite number of local coordinate charts and they should be computable. Ideally, the
corresponding distance should be a Riemannian one and computable too.

Realization theory is necessary for this for the following reasons: first, it allows to characterize equivalence
classes of minimal state-space representations, second, realization algorithm might give rise to computable
coordinate charts [214, 222].

While some preliminary results for linear switched systems exist, [214, 222], I would like to work out this
topic further and to extend it to other model classes such as (quasi-)LPV systems, polynomial systems and
hybrid systems with autonomous switching.

Axis A1.2.2: Identifiability of parameterizations, identifiable canonical forms.
The goal is to study conditions for identifiability of parameterizations of various model classes. Recall from
Chapter 5 that a parameterization is identifiable, if any two elements of the parameterizations have different
input-output behaviors, i.e., their output responses are different for some input. Clearly, non-identifiable
parameterizations are not suitable for system identification, as it was discussed in Chapter 5. This brings
the following two questions: how to decide if a given parameterization is identifiable and how to come up
with identifiable parameterizations. In Chapter 5 it was shown how realization theory can be used to answer
the first question for LPV/linear switched state-space representations. I would like to use the same proof
technique to analyze identifiability for other classes of models, such as hybrid systems with autonomous
switching and polynomial systems.

The second question, i.e., the existence and construction of identifiable canonical forms has not been stud-
ied systematically even for linear switched systems or LPV systems. One obvious option for choosing such
parameterizations is to choose local coordinate charts of the manifold of systems as defined in Axis A1.2.3.
Other options remain to be explored.

Axis A1.2.3: Persistence of excitation.
The goal of this research axis is to explore the notion of universal inputs and persistence of excitation for
hybrid,LPV, and polynomial systems. Some preliminary work was done in [206], but much more needs to
be done. There are many technical definitions of persistence of excitation. Here by a persistently exciting
input signal we mean an input signal such that it is possible to construct a model of the whole input-output
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behavior from the output response of the system to this particular input signal. Clearly, the class of per-
sistently exciting signals depends on the choice of the class of models. The concept of persistence of
excitation is necessary for input design for the system identification experiments. Whatever input signal is
used for system identification, it should be persistently exciting, since the goal of any system identification
experiment is to generate data for estimating a model of the underlying system. Realization theory can be
used for this purpose as follows. In the process of developing realization theory various generalizations
of the notion of Markov-parameters emerge. The generalizations of Markov-parameters have two things
in common: first, they allow to encode the input-output behavior by a sequence of numbers (generalized
Markov-parameters), second these numbers can be constructed from the input-output behavior. Persis-
tently exciting input signals then are those input signals which allow the construction of these generalized
Markov-parameters from the corresponding output response. This approach was used in [206] for linear
switched systems, and I am hopeful that it can be extended to other model classes too.

Axis A1.2.4: Minimization algorithms, calculating observable/reachable/minimal subsystems and their
properties.
The goal of this research axis is to further develop algorithms for transforming a state-space representation
to a minimal one while preserving its input-output behavior, and to study the theoretical properties of these
algorithms. In particular, it is of interest to understand how to calculate observable/reachable/minimal sub-
systems of a state-space representation. Usually, minimization algorithms boil down to a rank/dimension
test, and the latter boils down to deciding if a number is zero. The numerical implementation of such a
procedure then depends on the choice of a cut-off threshold. In fact, such algorithms can be viewed as
simple model reduction algorithms. Furthermore, many model reduction algorithms can be viewed as im-
plementations of a minimization algorithm with a large cut-off threshold. For these reasons, it is important
to understand these algorithms and their properties.

Axis A1.2.5: (Partial-) realization algorithms and their properties: continuity, correctness, etc.
The goal of this research axis is to develop further realization algorithms, including partial realization
algorithms, and to study their theoretical properties. Usually, realization algorithms act on a finite number
of input data (Markov-like parameters) and they return a state-space realization of the underlying input-
output map if the input data is adequate, more specifically, enough Markov-like parameters are provided.
The minimal number of Markov-like parameters often depends on the dimension of the minimal state-
space representation of the underlying input-output map and they algorithm returns a minimal dimensional
state-space representation.

Realization algorithms can be used for system identification. The idea is to estimate the necessary Markov-
like parameters from data and to use the estimated values of these parameters as inputs to a realization
algorithm. The model returned by the realization algorithm is then the output of the system identification
algorithm. Partial realization algorithms can be used for (data-driven) model reduction: the reduced-order
model can be calculated by applying the realization algorithm to a smaller number of Markov-like param-
eters than the one which is necessary to calculate an exact state-space representation of the underlying
input-output behavior.

In order to analyze the correctness of such system identification and model reduction algorithms, the fol-
lowing questions need to be answered:

• We need to determine the number of Markov-like parameters which is necessary to calculate a mini-
mal state-space representation. If the number of Markov-like parameters is smaller than this number,
then we need to understand the relationship between the input-output map of the states-space repre-
sentation calculated by the realization algorithm and the true input-output map. Ideally, the former
should be an approximation of the latter in some suitable topology, for example the one studied in
Axis 1.2.1.
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• We need to understand if the realization algorithm is continuous in Markov-like parameters, if we use
the topology of state-space representations studied in Axis 1.2.1. That is, if a small perturbations in
the input parameters will lead to small changes in the model produced by the realization algorithm.

Axis A1.2.6: Reinterpreting stochastic realization theory in terms of deterministic input-output behav-
iors.
Traditionally, in stochastic realization theory stochastic state-space representations are viewed as represen-
tations of a pair of input and output processes, or a parameterization of the probability of the output process.
This interpretation is justified from the point of view of the subsequent use of stochastic models in system
identification. Indeed, in system identification, the assumption is that the data is a finite portion of a sample
path of the input and output processes. While the behavior of the underlying system is well defined for all
inputs, what we measure is a sample of its response to a particular input process. Hence, it is quite natural
to aim at finding a representation of a particular pair of input and output processes. Therefore, the usual
formalization of stochastic realization problem represents a natural abstraction of the system identification
problem. Moreover, this abstraction allows us to use the language and tools of statistics to analyze sys-
tem identification algorithms. In turn, stochastic realization theory is a necessary theoretical tool for using
statistical concepts.

While such a point of view is justified from the point of view of statistics, it is not always useful for
controller synthesis.

First of all, the control input need not be stochastic, and in fact the underlying physical system need not
be stochastic. Second, even if the stochasticity assumption is justified, is not sufficient that the model
is a valid representation of a certain pair of input and output processes. For control we need something
stronger, namely, that for all inputs (not necessarily stochastic ones) the output response of the model
should be close to the true one. This is especially problematic for model classes for which robust control
techniques are used, for example for LPV/hybrid models. In this case, the stochastic model generated by
stochastic realization algorithms/system identification algorithms cannot be directly used for control.

The goal of this research axis is to bridge this gap, and to argue that under suitable assumptions stochastic
state-space representations of the same pair of input and output processes have the same input-output
behavior, i.e., the two state-space representations generate the same output for all inputs, not only for a
particular stochastic input.

The main idea is to argue that stochasticity arises from the use of stochastic inputs. That is, we assume that
the physical process can be modeled by models which admit deterministic inputs (and which are possibly
equipped with a deterministic or stochastic noise process). However, by feeding a stochastic input to
these models we get stochastic outputs, and such models then become representations of a concrete pair
of stochastic input and output processes. In turn, the motivation for using stochastic inputs is that the
sample paths of stochastic inputs can be viewed as means to generate persistently exciting input signals;
for linear systems this is well-known, for switched and LPV systems see [206, 66]. Conversely, state-
space representations of the pair of the stochastic input and output processes can be reinterpreted as models
defining input-output relations.

Under suitable minimality assumptions, and assuming that the noise process driving the system is the
innovation noise, we can then show that minimal state-space representations of the stochastic input and
output processes generate the same input-output relation as the original system.

Note that there is a long tradition in system identification to view models as predictors of outputs based
on past outputs and inputs, [164]. Here, this view becomes an important technical tool.Indeed, we need to
assume that the original system can be modeled by a model where the noise is the innovation process, at
least when the designated stochastic input signal is used. Furthermore, we have to assume that the model
returned by system identification algorithms is in innovation form. In turn, models in innovation form can
be viewed as predictors.
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Note that the original noise process need not be assumed to be stochastic either. If it is assumed to be
a function of past outputs and inputs, which is the case if it represents unmodeled dynamics, then under
suitable technical stability assumptions, the noise becomes stochastic, if stochastic input is used.

The stochasticity of the input-output pair then means that the identification problem can legitimately viewed
as a statistical estimation problem, and all the statistical analysis is justified and meaningful. However, the
resulting model can be shown to be an adequate representation of the entire input-output behavior of the
underlying system.

In other words, from the fact that system identification algorithms are statistically consistent we can derive
that the models returned by system identification algorithms will be adequate models for the underlying,
possibly deterministic, input-output behavior, provided that the number of data points is large enough.

These ideas were partially developed in Subsection 3.7.2, Chapter 3 and for LPV-SSA models in Subsection
5.2.2, Chapter 5.

In order to accomplish the technical part of this research program, (stochastic) realization theory will be
necessary, that is, we will need the results of axes A1.1.1-A1.1.4. We will also need the results of axes
A2.1.1-A2.1.3. Finally, axes A1.1.6 will also be necessary for a proper formalization of the results in the
language of behaviors [306].

Axis A1.2.7: Relationship between input-output and state-space models for hybrid, polynomial and (quasi)
LPV systems.
Many dynamical models come in input-output form, i.e., in the form of equations relating high-order deriva-
tives or time shifts of outputs and inputs. Such models often arise from the first principles and they are often
preferred in system identification, as estimating such models tends to be easier than estimating state-space
representations. However, for controller synthesis, state-space models are preferable. Hence, it is of in-
terest to be establish equivalence between various input-output equations and state-space representations
along with algorithms for converting state-space representations to input-output equations and vice versa.
While for LTI systems such an equivalence and algorithms are well known, this remains an open problem
for LPV, hybrid and certain classes of polynomial systems.

Axis A1.3: Structural properties of models relevant for controller synthesis

The goal of this research axis is to investigate those structural properties which are relevant for controller synthe-
sis. Traditionally, state-space representations are used for controller synthesis, hence in this axis only models in
state-space representation form are considered. The main goal is to find a subclass M of state-space representa-
tions from the designated class S , such that

• (A1.3.I) Any state-space representation from S can be transformed to a state-space representation from
M while preserving input-output behavior.

• (A1.3.II) If a control synthesis algorithm can generate a suitable controller for a plant model from M ,
then the same algorithm will generate a suitable controller for a model of the plant such that this model
belongs to S . By suitable we mean that the interconnection of the controller with the plant model satisfies
the the control objectives. In particular, if a control synthesis problem has a solution for a state-space
representation from M , then it has a solution for some input-output equivalent state-space representation
from S .

• (A1.3.III) If a controller achieves the control objectives when interconnected with a model m from the
class M , then it achieves the similar (close enough) control objectives when interconnected with any other
model from M input-output behavior of which is close enough to that of m.

That is, we would like to show that for controller synthesis, it is sufficient to work with state-space represen-
tations from M , and for the outcome of controller synthesis is does not matter which element of M is used
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as long as it represents the input-output behavior of the plant in question. If S is the class of LTI state-space
representations, then the class M is the class of minimal-dimensional state-space representations and the criteria
(A1.3.I)-(A1.3.III) are met. Roughly speaking, the goal of this research axis is to show that for other choices of S
(linear switched systems, LPV with affine dependence on parameters, etc.), the class M of minimal dimensional
state-space representations has the same property. The reason why minimal dimensional models are expected to
play the role of M is as follows. If M allows models which are not minimal dimensional, then these models will
necessarily contain components which do not depend on the input-output behavior of the model. The presence
of such components mean that the requirement (A1.3.III) cannot be guaranteed, since those components can be
chosen arbitrarily, and hence it is impossible to say anything about the behavior of those components under the
influence of the controller at hand.

These properties are relevant for integrating modeling (systems identification and model reduction) with con-
trol for the following reasons. Different system identification and model reduction algorithms applied to the same
data/system tend to result in different models, but all these models have roughly the same input-output behavior.
Hence, the controller synthesized based on any such model should achieve the control objective for the true plant.
A necessary condition for this is that the controller provenly achieves the control objective when interconnected
with any model from the class M , as long as the latter model has the same or similar input-output behavior as
the model which was used to calculate the controller. This then means that the outcome of any correct system
identification/model reduction algorithm can be used for controller synthesis, and the thus calculated controller
will work for the plant. By correctness of a system identification we mean that as the number of data points grow,
the input-output behavior of the model returned by the algorithm converges to the input-output behavior of the
data generating system. That is, the returned model can represent the true input-output behavior with any desired
accuracy if a sufficiently large number of data points are used. By correctness of a model reduction algorithm we
mean that the distance between the input-output behavior of the model returned by the algorithm and that of the
original model is within a certain designated accuracy level. The right notion of distance to be used is application
specific. The tacit assumption behind this reasoning is that the plant can be identified with a model from M . This
assumption may be problematic, but in the absence of any further knowledge about the system there is no way to
falsify it.

In order to realize this program, we will organize the research along the following axis.

Axis A1.3.1; Observability, reachability, existence of observers/controllers.
The goal of this research axis is to relate structural properties such as minimality, controllability and reach-
ability of hybrid/LPV/polynomials systems with the existence of a controller (possibly with partial obser-
vation) achieving a certain control objective and with the existence of an observer. Here, observability and
reachability are understood in the sense of realization theory, i.e., as the structural properties which are
necessary and sufficient for a state-space representation to be minimal dimensional. More precisely, we
would like to show that any controller can influence only on the reachable subsystem of the state-space
representation and any observer (output based controller) reacts only to the observable subsystem of the
state-space representation. From this it then follows that any controller with partial observations acts only
on the minimal subsystem of the plant model. This research axis is going to be useful to show that mini-
mal state-space representations satisfy a weaker version of (A1.2.II), i.e., that if a control objective can be
achieved for a state-space representation, then it can be achieved for a minimal state-space representation.

Axis A1.3.2: Relationship between dissipativity, input-to-output stability and internal stability of minimal
state-space representations.
The goal of this axis is to relate dynamic properties of the input-output behavior such as input-to-output
stability and dissipativity with the corresponding properties of their hybrid/LPV/polynomial state-space
representations. In particular, we would like to show that input-to-output stability/dissipativity implies
existence of a Lyapunov function/storage function of the minimal state-space representation. As a con-
sequence, input-to-output stability then implies internal stability for minimal state-space representations.
That is, we are interested in counterparts of Bounded Real and Positive Real Lemma (with possibly with
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non-quadratic storage functions). These properties are useful for understanding the pitfall of using non-
minimal models. They are also useful for proving property (A2.1.II): indeed, many controller synthesis
algorithms attempt to find a Lyapunov function or a storage function for the closed-loop system, hence it
is of interest to show that if the closed-loop input-output behavior is input-to-output stable or dissipative,
and the plant is modeled by a minimal state-space representation, then such a Lyapunov function or storage
function exists.

These results will also be useful for showing (A2.1.III): they can also be used to show that the same
controller can achieve the control objectives for two different state-space representations with close enough
input-output behavior. The difficult part in such reasonings is that control objectives often include internal
stability. Note it is relatively easy to conclude if two models have a close enough input-output behavior, then
the closed-loop input-output behaviors will also be close enough, if the models are interconnected with the
same controller. Hence, it is relatively easy to argue that if a controller meets the control objectives for the
input-output behavior with one plant then it meets those objectives when interconnected with another plant
with a similar input-output behavior. It is much more difficult to argue that the control objectives which
concern the properties of the state-space representation, such as internal stability, will also be satisfied.
The results of this research axis allow us to do just that, by connecting the properties of the state-space
representation with those of its input-output behavior.

Axis A1.3.3: Robustness of controllers in the topology of systems.
Finally, we would like to show that if a controller satisfies the control objectives when interconnected
with a plant modeled by a state-space representation m from M , then it will also meet sufficiently similar
control objectives when interconnected a plant which can be modeled by an element of M which is close
enough to m in the topology of spaces of systems to be investigated in Axis A1.2.1. This then helps to show
property (A2.1.III) completely. Ideally, explicit error bounds using the distances defined in Axis A1.2.1
should be derived, such that if the distance between two models is smaller than the error bound, then the
controller which achieves the control objectives for one of the models, will achieve the close enough control
objectives for the other one. Moreover, a suitable topology on the control objectives should be found too.

7.1.2 Axis A2: Methodological research: control-oriented and theoretically sound sys-
tem identification and model reduction algorithms

The goal of this research axis is to derive theoretical guarantees for system identification and model reduction
algorithms, such that the derived theoretical guarantees are likely to be useful for control. This will be achieved
by developing theoretical guarantees for existing algorithms and by formulating new algorithms.

Axis A2.1: System identification: algorithms and theoretical guarantees

In system identification I plan to organize the research along the following topics:

Axis A2.1.1: Statistical analysis of existing system identification algorithms: consistency, variance.
The goal is to analyze the statistical properties of existing system identification algorithm for LPV/hybrid/polynomial
systems. We view system identification algorithms as estimators, and we investigate its statistical proper-
ties such asymptotic consistency and variance. That is, we want to find conditions which guarantee that the
model returned by a system identification algorithm converges to a true one as the number of data points
tend to infinity, and we would also like to have estimate on the variance of the estimated models.

There are two approaches for proving such results:

• For system identification algorithms which are based on realization algorithms (subspace identifica-
tion, covariance realization) we try to prove that as the number of data points tend to infinity, the
identification algorithm behaves more and more like a realization algorithm. For example, if the al-
gorithm is based on estimating output covariances and applying a covariance realization algorithm
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to the estimates, then we will try to show that the estimates converge to the true covariances and
hence, if the realization algorithm is continuous, then the model generated by the identification algo-
rithm converges a true one. This approach was taken for example for a particular version of subspace
algorithms for linear systems [163] and for LPV systems [172, 173].

• For parametric system identification algorithms the proof might be constructed as follows. Such
algorithms are based on minimizing an empirical cost function which depends on data. Then, under
the assumption of identifiability of the parameterizations and informativity of the signals, one has to
show that the minimum of the empirical cost function converges to the true parameter. The latter can
be shown by showing the the empirical cost function converges to a cost function unique minimum
of which is the true parameter.

This axis relies on axis A1.2. Indeed, realization algorithms from A1.2.5 allow the proof of consistency of
identification algorithms which are based on realization algorithms from axis A1.2.5. Furthermore, in order
to formalize the notion of consistency, the concepts on distances and topology for the space of models from
axis A1.2.1 will be necessary. In fact, we define consistency as follows: the sequence of models returned
by the identification algorithm when applied to an increasing number of data points converges to a true
model, and the convergence is understood in the sense of the topology from axis A1.2.1.

Moreover, the concepts of persistence of excitation (axis A1.2.3) and the continuity of realization algo-
rithms (axis A1.2.4) will be indispensable for formulating the proofs of consistency. The former is nec-
essary to show that the identification algorithm is related to the realization algorithm, as persistence of
excitation means exactly that the Markov-parameter-like numbers can be recovered from data. Continuity
of realization algorithms will be indispensable for showing that as the number of data points increase, the
result of applying the system identification algorithm to estimates of Markov-parameters will converge to
the application of the realization algorithm to the true Markov-parameters.

Finally, for parametric identification algorithms the assumption that the parameterization is identifiable is
likely to be necessary for proving consistency. In order to ensure that this assumption is satisfied, the use
of identifiable canonical forms is likely to be required. These topics are investigated in axis A1.2.2.

Axis A1.2.7 is relevant because many of the system identification algorithms are formulated for input-
output models, and it is of interest to reinterpret them for state-space models.

The research of this axis is a continuation of the classical research in system identification.

Axis A2.1.2: Non-asymptotical (PAC,PAC-Bayesian) error bounds for system identification algorithms
inspired by machine learning.
The goal of this research axis is to develop error bounds which characterize the difference between the true
behavior of the system and the behavior of a model returned by the system identification algorithm. Again,
the focus is on model classes for which realization theory exists and on existing system identification algo-
rithms. In particular, inspired by machine learning [112], we aim at developing Probably Approximately
Correct (PAC) [254] and PAC-Bayesian [112] error bounds for system identification of several known
model classes, and to analyze existing system identification algorithms in the light of those error bounds.
Such error bounds were recently proposed for ARX model identification [253] we hope to extend them to
other model classes. The advantage of such error bounds is that they express the difference between the
estimated and true model as a function of the number of data points and experimental conditions (e.g., per-
sistence of excitation of inputs). This allows more precise statements regarding the number of data points
and experimental conditions which are required for estimating a model which is accurate enough.

This research axis can be seen as a continuation of axis A2.1.1: axis A2.1.1 aims at showing that as we are
taking more and more data points, the resulting model will get closer and closer to a true one, while the
present research axis attempts to give an upper bound on the distance between the learned model and a true
one based on the number of data points.
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The role of axes A1.2 is the same as for A2.1.2, with the exception that the notion of distance between
models (axis A1.2.1) is even more indispensable.

Axis A2.1.3: Theoretically sound new system identification algorithms for more realistic model classes.
The objective is to derive new system identification algorithms which apply to more realistic model classes
and then execute for them the research program described in axes A2.1.1-A2.1.2. That is, this axis can be
viewed as an extension of A2.1.1-A2.2.2 to new system identification algorithms and new model classes.

Possible extensions include

• Black-box/gray-box system identification algorithms for LPV systems based on realization algo-
rithms, together with the corresponding theoretical guarantees, preliminary results in that direction
are in [172, 173] and they were also discussed in Chapter 5.

• Realization theory based system identification algorithms for polynomial/quasi-LPV systems and hy-
brid systems with autonomous switching, for some preliminary steps see [224, 299].

• System identification for aperiodically sampled sampled-data and quantized systems, in particular,
networked control systems, [295, 95, 118, 119]: such systems can be represented as LPV/hybrid
systems, but they have a number of particular properties.

• System identification for finite-dimensional approximations of infinite dimensional models. This
is relevant for identifying systems which can be modeled by PDE: in practice, one uses finite di-
mensional approximations of such PDEs, and hence it makes more sense to try to estimate a finite-
dimensional approximation from data, rather than to estimate the parameters of a PDE.

This axis relies on the realization algorithms to be developed and analyzed in A1.2.5. As it was explained in
the description of axis A2.1.1, in order to reformulate these realization algorithms as system identification
algorithms and prove their consistency, we will need the notion of persistence of excitation (axis A1.2.3).
Moreover, in order to formally state consistency results, we will have to use the notion of topology for the
space of models from axis A1.2.1.

Axis A2.1.4: Control-oriented reinterpretation system identification algorithms in terms of (deterministic)
input-output behaviors.
The goal of this axis is to bridge the gap between a purely statistical interpretation of the models generated
by system identification algorithms, and the needs of controller synthesis. As such, this research axis is a
logical continuation of the research axis A2.1.1-A2.1.3.

In axes A2.1.1-A2.1.3 we followed the classical approach of viewing system identification as a statistical
estimation problem. In particular, the underlying models are assumed to be essentially stochastic, and they
are interpreted as parameterizations of the probability distributions of stochastic processes from which the
data used for identification was sampled. That is, even if stochastic consistency is shown, it just says that
the identified model will represent approximately correctly the output response to the particular stochastic
input, sample of which was used for system identification. It says nothing about the response of the model
to other inputs. As it was pointed out in axis A1.2.6 this is not a sufficient guarantee for control purposes.

There are two ways to deal with it: to dismiss altogether the use of the statistical approach for models
which are intended for deterministic control, and with it a large body of the existing literature, or to try to
reinterpret the statistical results from a deterministic perspective. Many of the existing system identification
algorithm have a statistical justification but their result is used for deterministic controller synthesis. For
this reason, I believe that the second approach is more reasonable, and that the discrepancy described above
is often an artifact, which is a consequence of the use of (pseudo-random) inputs rather than a consequence
of physical reality.

In this axis we plan to use the results of axis A1.2.6 for showing that stochastic state-space representations
returned by system identification algorithms are approximations for the entire input-output behavior of the
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underlying system, i.e., they recreate approximately not only the output generated to the stochastic input
used for system identification, but the output for any other possible control input.

Axis A2.1.5: System identification algorithms for deterministic systems.
The goal of this research axis is to develop system identification algorithms and to analyze their correctness
in a deterministic setting. It is assumed that the models at hand are purely deterministic, uncertainty is
modeled as a deterministic noise, and the goal is to show that the model returned by the system identification
algorithm converges to a true one as the number of data points tends to infinity.

This research axis a complementary to the previous ones: axes A2.1.1-A2.1.3 aim at studying system
identification algorithms in a stochastic setting, while axis A2.1.4 aims at translating stochastic results into
a deterministic setting. In contrast, the aim of the present axis is to skip statistical analysis altogether. This
approach is motivated by the behavioral approach to system identification [169] and bears certain similarity
with the system identification methods with bounded noise [176]. In a way, we aim at further extending
[169] to LPV/hybrid models. Note that there is a significant literature on the extension of the methods [176]
to LPV models, without claiming completeness see for example[61].

This research axis will require realization theory of models with bounded deterministic noises and realiza-
tion theory with a behavioral approach, hence

Axis A2.2: Model reduction: algorithms and theoretical guarantees

The goal is similar to the one formulates for system identification. Namely, we would like to derive theoretical
guarantees for the existing model reduction algorithms and to derive new model reduction algorithms which are
applicable to more realistic classes of models. More precisely, I plan to investigate the following topics.

Axis A2.2.1: Theoretical guarantees for model reduction algorithms: global error bounds.
The goal of this research axis is to provide analytical bounds for the difference between the input-output be-
havior of the original and the reduced-order models. Roughly speaking, for any input signal we would like
have an analytic upper bound on the difference between the output responses of the original and reduced-
order model to this input. Examples of such error bounds are the ones derived for balanced truncation
[12], and extended to linear time-varying, LPV and switched systems [248, 309, 40, 227, 106]. Most of
the existing error bounds are L2 error bounds, which are not always useful for control synthesis. Hence, it
is of interest to extend them to other norms. Moreover, for many model reduction algorithms and model
classes there are no comparable error bounds. For deriving global error bounds, the various distances of
models from axis A1.2.1 will be necessary. Moreover, global error bounds tacitly imply stability, and
their proofs rely on the notion of dissipativity, hence the results of axis A1.2.2 will be useful for deriving
global error bounds. Furthermore, balanced truncation is intimately related to observability and reachabil-
ity and minimization algorithms, hence the corresponding results from axis A1.2.4 and axis A1.3.1 will be
necessary.

Axis A2.2.2: Theoretical guarantees for model reduction algorithms: restricted input-output behavior.
Another type of theoretical guarantee is a proof that the reduced-order model and the original model gen-
erate the same (possibly filtered) response to some inputs. These types of guarantees are natural for the
so called moment matching algorithms, and they were derived for various algorithms for linear, nonlinear,
and switched systems [12, 14, 30, 31, 105]. The goal of this axis to continue research for such guarantees,
one possible direction is to derive similar results for Loewner-based model reduction for switched systems
[105], and for LPV/bilinear systems [228].

In order to derive the desired results, the notion of Markov-parameters and their relationship with the input-
output behavior will be required. Hence, we will need realization theory and partial realization algorithms
from axis A2.1.6. We might also run into issues related to persistence of excitation, i.e. the relationship
between Markov-parameters and output response to certain inputs. That is, axis A1.2.3 might be useful.
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Axis A2.2.3: Extension of model reduction algorithms to more realistic models.
The goal of this axis is to extend model reduction algorithms to new model classes. In particular, I plan to
work on model reduction for hybrid systems with autonomous switching, polynomial and LPV state-space
representations. For the latter class, the challenge is to develop methods which are more computationally
efficient than the current methods based on balanced truncation, and which can also be applied to models
which are not quadratically stable. Candidates for such algorithms are methods based on moment matching,
in particular, I plan to extend the model reduction methods developed for switched systems [30, 31, 105]. In
the light of the close relationship between LPV state-space representations and switched systems described
in Chapter 2, the extension is likely to be feasible. A notable subclass of LPV/hybrid models are those
which arise in networked systems, where the plant can be modeled by a linear system. In those models, the
scheduling variable/switching represents delays and communication constraints, and those models have a
very rich structure. First steps towards model reduction algorithms were already made in [27, 26, 25].

The notion of Markov-parameters, minimization and realization algorithms were central to moment match-
ing for linear [12] linear switched [30, 31] and LPV/bilinear systems [28, 228], and we expect the same for
other system classes. Moreover, the notions of minimality, reachability, observability were necessary for
methods based on balanced truncation. That is, the results of axes A1.2.4-A1.2.5 are indispensable for the
present axis. Furthermore, the notion of internal stability and dissipativity are central for methods based on
balanced truncation, hence axes A1.3.2 will also be necessary for the present axis. Finally, the distances
developed in axis A1.2.1 will also be necessary for global error bounds.

Axis A2.2.4: Combining system identification and model reduction: data-driven model reduction.
The goal is to combine system identification and the model reduction algorithms into one single algo-
rithm which the could be used for calculating a reduced-order model directly from data. This is especially
interesting for systems which can be modeled by PDEs; in that case it is of interest to calculate a finite-
dimensional approximate model directly from data. However, for such a model to be useful for control
and simulation, its size should be reasonable, and hence a tradeoff between modeling accuracy and size
should be achieved. The latter is central to model reduction too. Hence this axis is a closely related to Axis
A2.1.3. A particularly promising candidate for data-driven model reduction is the Loewner-framework
[12, 10], which was recently extended to switched systems [105]. The challenge is to extend these methods
to LPV systems and hybrid systems with autonomous switching and to adapt them to the use of realistic
data. Note that the extension [105] uses data which is difficult to measure in practice.

Axis A2.3: Integrating system identification, model reduction and control

The goal of this axis is to integrate the results of axes A2.1 and A2.2 into control design. That is, we would
like to provide theoretical guarantees that the models obtained via system identification or model reduction are
good enough for control. More precisely, we would like to show that the controller designed based on a hy-
brid/LPV/polynomial model obtained by system identification or model reduction will also work for the true
system, assuming that the true system can adequately be described by a hybrid/LPV/polynomial model.

This research axis is divided into the following directions:

Axis A2.3.1: Asymptotic guarantees for using system identification for control.
The main idea is to use the continuity of controllers in the topology of models and the asymptotic con-
sistency of identification algorithms to show that for a large enough number of data points, the controller
synthesized based on the identified model will achieve the control objectives when applied to the true plant.

The argument is as follows: if a large enough number of data points is used, the identified model will be
sufficiently close to a true model of the plant. If the controller synthesis algorithm is provenly correct, then
the interconnection of controller with the model will satisfy the control objectives. The consistency of the
identification algorithm means that for a sufficiently large number of data points, the model is close enough
to a true model of the plant. Hence, if the controller is continuous in the topology of models, then the
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behavior of the interconnection of the controller with the plant will be sufficiently close to the behavior of
the interconnection of the controller with the identified model. Hence, if the control objectives are robust,
i.e., if a model satisfies them then a sufficiently close model will also satisfy them, then the interconnection
of the controller with the plant should satisfy these control objectives too.

That is, in this axis, axes A2.1.1 and A1.3.3 meet. There several challenges, the following two issues seem
to be the most significant:

• Formalization.
The argument described above needs to be formalized mathematically. In particular, suitable formal
definitions for distances between models should be proposed, and a formal proof should be provided
that as the model used for controller synthesis converges to the true one, then the behavior of the
closed-loop system converges to the desired one. In particular, formal statement should be provided
which characterize the modeling error under which the controller computed from the identified model
still achieves the control objectives for the true system.

• Reconciling assumptions of system identification and control design: stochastic vs. determinis-
tic, input-output maps vs. behaviors.
As it was noted before, consistency results for system identification algorithms tend to be stochastic,
and the formalization of the input-output behavior tends to be done in terms of input-output func-
tions. However, for control purposes, it is often more adequate to work with deterministic systems
(with possibly bounded deterministic noise) and with deterministic error bound/consistency guaran-
tees. Moreover, the formalization in terms of behaviors is preferable to that of input-output maps, as
it is more realistic for control, see axis A1.1.7.
The stochastic nature of consistency analysis of identification algorithms has to be dealt with. One
option is to provide stochastic guarantees, guarantees which hold with certain probability. Note that
even if the model is deterministic, the input signal may very well be stochastic, hence the consistency
analysis of the system identification algorithm will be stochastic.
For the reinterpretation in terms of behaviors, the results of A2.1.4 will have to be used together with
A2.1.1. Alternatively, the results of A2.1.5 might be used directly too. Moreover, system identifica-
tion for new model classes will be necessary, i.e., A2.1.3 will be used. Finally, for the formalization
of the results and the formal proofs, we will use axis A1.3, as we will need the properties (A1.3.I)–
(A1.3.III).

• Dealing with realistic model classes.
Another issue is that for this axis, the model classes generated by system identification should be
realistic and should be useful for control. In particular, model classes such as hybrid systems with
autonomous switching and quasi-LPV should be covered. That is, system identification for new model
classes will be necessary, i.e., A2.1.3 will be used

This research axis is likely to rely heavily on axis A2.1.3.

Axis A2.3.2: Non-asymptotic guarantees for using system identification for control.
The goal of this research axis is similar to the one of A2.3.1, but instead of just showing that for a large
enough number of data points the controller built using the identified model will meet the control objectives,
we would like to have more precise results regarding the number of data points which is necessary. In a
way, the results of A2.3.1 are just a sanity check, showing that combining system identification and control
synthesis makes sense. However, they do not give the user any guidance on the number of data points which
has to be chosen. In this axis, the goal is to derive bounds on the number of data points which guarantee
that the controller synthesized based on the plant model learned from those data points will satisfy the
control objectives for the true plant. Note that the controller synthesis could be done with modified control
objectives in order to take into account model uncertainty: for instance, if we know that the L2 distance
between the true model and the identified one is less than d1 and we want the L2 norm of the closed
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loop system to be smaller than γ , then the controller synthesized for the identified plant should achieve a
closed-loop L2 gain which is smaller than γ−d1. In order to achieve this goal, the results of axes A2.1.2,
A2.1.3 and A1.3.3 should be combined. The main challenges are similar to that of axis A2.3.1, namely,
the formalization of the argument and the combination of stochastic error bounds of system identification
algorithms with the deterministic guarantees of controller synthesis algorithms. Consequently, we will
need the results of axes A2.1.2, A2.1.3, A2.1.4, A2.1.5 and axis A1.3.

Axis A2.3.3: Integrating theoretical guarantees for model reduction algorithms and controller synthesis.
The goal of this research axis is to combine theoretical guarantees for model reduction algorithms and for
controller synthesis, i.e., to show that the controller synthesized using a reduced-order model will achieve
the desired control objectives for the original model too. As in the case of Axis 2.3.2, this may require
changing the control objectives used for controller synthesis, so that they take into account the modeling
error. Recall that the theoretical guarantees for model reduction can take the form of error bounds for the
difference between the original and reduce-order model,or they can come in the form of guarantees that the
restricted input-output behavior the reduced-order model and the original one coincide. Both approaches
should be explored. The latter approach is especially useful for formal methods and symbolic control.
One of the bottlenecks in applying formal method and symbolic control for large-scale systems is that
the corresponding methods do not scale-up sufficiently well for large systems. Model reduction of hybrid
systems could be very useful for solving this problem. Preliminary steps in this direction were made in
[31]. I would like to explore further the use of model reduction for producing models which are sufficiently
small for existing tools in formal methods and symbolic control.

This research will use the results of axes A2.2.1 and A2.2.2 and A2.2.3.

Axis A2.3.4: Integrating theoretical guarantees for model reduction, system identification and controller
synthesis into one framework.
The goal of this axis is to integrate the results of system identification, model reduction and controller
synthesis into one framework. That is the goal is to show that if we

• learn a model from a large enough number of data points,

• apply model reduction to it, and then

• perform controller synthesis based on the reduced-order model with possibly adapted control objec-
tives so that they take into account modeling error,

then the resulting controller will achieve the original control objectives for the plant. That is, we plan to
combine axes A2.3.1, A2.3.3, A2.3.3 and possibly A2.2.4 (data-driven model reduction) into one single
theoretical framework.

7.1.3 Interplay between fundamental and methodological research
The fundamental and theoretical research axes interact in a variety of ways. As it was pointed out, axis A1 is
necessary to accomplish the tasks described in A2. The detailed relationship between various axes was discussed
in their description. However, to make the relationship more clear, in Figure 7.2 we summarize it in a diagram.

7.2 Emerging research directions:axes B and C
In addition to the research explained in Section 7.1, I plan to work on a few research topics, which represent
a departure from the topics of Section 7.1. The first such is a direct continuation of Section 7.1, in the sense
that instead of focusing on reliable models for controller synthesis, its high-level objective is to generate reliable
models for more high-level decision making algorithms of the type for which artificial intelligence is used. This
research direction is described in Subsection 7.2.1. The second emerging topic is the detection of the graph
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Figure 7.2: Relationship between sub-axes of axis A,

Realization theory (A.1)

Structural properties relevant for system
identification and model reduction (A1.4)

Structural properties relevant
for control synthesis (A1.3)

System identification (A2.1) Model reduction (A2.2)

Integrating system iden-
tification, model reduc-
tion and control (A2.3)

of interconnections of a network of dynamical systems. My interest in the latter topic is motivated by need of
systems biology, especially of neuroscience. Of course, this topic might be of interest in many other domains,
such as economics or sociology, which try to represent a black box system as an interconnection of several simpler
subsystems. In particular, such results can be of interest for control, as they may allow estimating distributed
models of the plant, which in turn, may allow the use of decentralized controllers. However, this is more of a
useful side effect than the main objective of the research. What both directions have in common is that structure
theory in general, and realization theory in particular, seems to be useful for both topics.

7.2.1 Axis B: Reliable AI for cyber-physical systems: using control theory for machine
learning

Machine learning and control theory are two closely related subjects with common roots. Nevertheless, in the past
couple of decades, they developed separately. Recently, the two topics started to converge again: control theorists
are becoming increasingly interested in using machine learning techniques, while researcher in machine learning
start looking at control problems and at possibilities to use results from control theory for machine learning.

In the control theory community, machine learning techniques are increasingly adopted in system identifica-
tion, see the description of axis A2.1.2 and [168, 197, 290, 89, 51, 15, 239, 232, 156, 253] for some examples.

In fact, major control theory conferences include tracks on machine learning, speakers from the machine
learning community are invited as plenary speakers to major control theory conference and entire research
projects which involve machine learning are financed.

From the side of machine learning, there is a renewed interest in control theory. Part of this interest stems from
the popularity of reinforcement learning [52, 262, 263], which shares its roots with adaptive control [39, 180, 236].
Other source of interest is the desire to apply machine learning to cyber-physical systems. The challenge there
is twofold. First, these applications tend to be safety critical, and hence there is an increased need in theoretical
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guarantees. Second, the physical part of such systems tends to be dynamic and it can often be modeled from the
first principles. In turn, the control community has experience in dealing with dynamical systems which partially
arise from first principles, and proving their properties. This experience is likely to be relevant. In particular,
researchers in machine learning have also shown interest in control theory due to the need to:

• learn dynamical models of time-series [249, 264],

• analyze correctness and robustness of machine learning algorithms [116, 160, 41], especially when applied
to cyber-physical systems.

The objective of this research axis is to explore the application of control and systems theory to the analysis of
machine learning algorithms. More precisely, I plan to investigate the following topics.

Axis B1: Theoretical limits for learning dynamical models from time series

The goal of this research axis is to combine systems identification and realization theory with the general results
of the general results of [246, 247] to understand which classes of dynamical systems can at all be learned from
data. This axis relies both on system identification (Axis A2.1) and on realization theory (Axis A1). The latter
is necessary both indirectly, via axis A2.1 and directly, in order to be able to use the topological and geometric
structure of the space equivalence classes of minimal systems (Axis A1.2.1).

Axis B2: Theoretical guarantees for learning recurrent neural networks using realization theory

Recurrent neural networks (RNNs) are the most popular class of models used in deep learning when one needs
to process sequential data. The high-level objective of this axis is to come up with theoretical guarantees for the
correctness of learning algorithms for RNNs. In order to achieve it, we propose to use results from control theory
and systems identification. More precisely, note that an RNN can be viewed as a dynamical system equipped with
an internal state, input and output. Learning such an RNN from data is equivalent to estimating the parameters of
the RNN, viewed as a dynamical system. Estimating parameters of dynamical systems from data is the subject
of system identification. In particular, the research program of axis A2.1, especially A2.1.1-A2.1.3 becomes
relevant, and it can be carried out for RNNs. That is, we would like to show asymptotic consistency for learning
algorithms, and to derive PAC and PAC-Bayesian error bounds for the problem of learning RNNs.

In order to do, so we need to develop realization theory for RNNs. That is, we would like to answer the
following questions:

1. Which class of observed behaviors (input-output maps) can be represented by a RNN.

2. How can we characterize minimal RNNs (RNNs of the least complexity) representing a certain observed
behavior ?

3. What is the appropriate definition of minimality (smallest number of neurons, etc.) for RNNs, are minimal
RNNs are related by some transformation ?

4. Is there are constructive procedure for constructing an RNN representation from input-output behavior
which can be proven to be mathematically correct ?

We expect that the answer to these questions will allow us to answer the questions described in axes A1.2.1-
A1.2.4 and then use them for solving the research problems described in A2.1.1-A2.1.2 for RNNs. In turn, the
solution of the research problems described in A2.1.1-A2.2.2 are exactly the theoretical guarantees which are
sought after. In fact, axis A2.1.2 can be viewed as an integral part of the present research axis. Axis B1 could be
relevant in order to understand learnability issues for RNNs.

There are already some preliminary results in this direction, see [259, 3, 2, 72, 253].
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Axis B3: Theoretical limits of reinforcement learning algorithms.

The objective of this axis is to study the theoretical limits of reinforcement learning algorithms from machine
learning [139], using results from adaptive control and system identification. In particular, we would like to
investigate reinforcement learning algorithms applied to linear and piecewise-linear dynamical systems. The
latter represent a simple but powerful class of state-space representations with infinite and uncountable state-
spaces. Note that the use of finite state- and action-spaces is a limiting factor in scalability of reinforcement
learning algorithms, so this line of research has the potential to deliver algorithms which scale up for larger
systems. Since reinforcement learning and adaptive control a closely related, based on the analogy with adaptive
control it is likely that this research axis will rely on such concepts as identifiability, minimality, persistence of
excitation, i.e., concepts developed in research axis A1.2. It is also expected that learnability results from axis B1
will be useful too.

7.2.2 Axis C: Reverse engineering of network topology of interconnected systems

I plan to continue working on the problem of reverse engineering of the network topology of interconnected
systems, by further extending the results presented in Chapter 6.

More precisely, in Chapter 6 existence of a state-space representation with a certain network structure was
characterized by the presence of certain statistical relationships (Granger-causality). This opens up the possibility
of reverse engineering the network structure of a system based on data. More precisely, the presence of Granger-
causality relationships can be checked based on observed data. In fact, it can be cast into the framework of
hypothesis testing. If the hypothesis of the presence of Granger-causality is accepted based on the data, then
we can say that there exists a state-space representation of the observed behavior which has a certain network
graph structure. This means that that the true underlying system may have such a network graph structure. If
the hypothesis is rejected, that there does not exist a state-space representation with such a network structure,
hence, the true system cannot have such a network structure either. In other words, the results of Chapter 6 allow
us to test if a certain hypothesis regarding the network structure of the true system is consistent with data. This
is not entirely reverse engineering, as we do no reconstruct the network structure, we merely say if a certain
network structure is possible based on our observations. However, systems with different network structures can
generate the same observations, so in general the problem of reverse engineering of the network structure is not
well posed. Moreover, for applications in system biology, the presence of a certain network structure has to be
proven experimentally anyway. It is then useful to have a procedure to eliminate hypotheses on the presence of a
certain network structure by statistical means, as it allows to guide the experiments and avoid the ones which are
not likely to lead to a positive result.

This research program was partially carried out for linear systems: the relationship between Granger-causality
and the existence of a certain network structure is quite well understood, at least for the case of autonomous
stochastic state-space representations. There are some preliminary steps on hypothesis testing for checking
Granger-causality [133, Chapter 7], see also Subsection 6.2.5 of Chapter 6, but much more work needs to be
done.

The next step would be to extend the results of Chapter 6 to linear systems with inputs, nonlinear, LPV and
switched systems, and to develop statistically sound hypothesis testing for deciding if a certain network graph is
consistent with data. Finally, it would be of interest to apply the results real data from neuroscience (fMRI, EEG)
and systems biology.

More precisely, I plan to work along the following axes:

Axis C1: Relationship between Granger-causality and the network structure for stochastic nonlinear, LPV
and switched systems with inputs

The results described in Chapter 6 apply only to linear and bilinear systems without linear input terms. We would
like to extend those results to systems with inputs, and to more general models, such as polynomial/LPV/hybrid
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models. The latter is especially useful, as one of the main application of this research is the study of brain
connectivity [242, 278, 93, 102]. There, EEG and fMRI data is used to build hypothesis on the connectivity of
brain regions. However, fMRI data is normally modeled as an output of cascade interconnection of a bilinear
system with heamodynamic model, and the bilinear systems themselves contain linear input terms. Hence, it
would be desirable to extend those results to models which can cover completely the existing models used for
fMRI data.

This research axis will rely heavily on (stochastic) realization theory of these model classes, to be developed
in axes A1.1.1-A1.1.5.

Axis C2: Deterministic reformulation of Granger-causality and its relationship with the network structure
of linear, nonlinear, hybrid and LPV models

For many systems, the assumption that the system is stochastic is not valid. Even when it could be valid, in many
experimental settings the amount of data is not sufficient to estimate stochastic models in a reliable manner. This
might be the case for some applications in neuroscience and in system biology. In this case, deterministic models
are a better choice. However, the existing concepts of Granger-causality apply only to stochastic models. The
challenge is to extend these concepts to the deterministic case in such a manner that the extension represents a
meaningful formalization of causality and that it is equivalent to connectivity structure of the model.

For this research axis, we are likely to need elements of behavioral approach, hence, in addition to axes
A1.1.1-A1.1.5 we will also use axis A1.1.7.

Axis C3: Testing the consistency of a network graph with data

The previous axes C1-C2 only establish an equivalence between Granger-causality relationships of the observed
signals, and existence of a state-space representation with a certain network structure. As it was explained above,
this relationship could be used for deriving a hypothesis testing procedure for the presence of Granger-causality
relationships among the observed processes. Checking Granger-causality relationship can be done by comparing
variances of the innovation noise for various processes, see [133, Chapter 7], see also Subsection 6.2.5 of Chapter
6. The goal of this axis is to further extend the existing results on testing hypotheses regarding the presence of a
certain network structure. The main research goals are to make the existing algorithms statistically sound and to
extend them to other classes of models (linear systems with inputs, LPV and switched systems, etc.).

This axis will rely on the results of axes C1-C2. For checking Granger-causality, we will need the notion of
state-space realization in forward innovation form, and the ability to calculate such state-space representations
from data, see [133, Chapter 7]. Hence, we will need (stochastic) realization algorithms, and this axis A1 will be
required for this axis. Moreover, we will have to calculate state-space models from data, and hence the results of
axis A2 will be used.

Axis C4: Applications to neuroscience and systems biology

The goal of this research axis is to apply the results of the previous axes to exploring the network graph for
neuroscience and systems biology. As it was pointed out in Chapter 6, this problem arises in neuroscience, when
studying brain connectivity, [242, 278, 93, 102], and in system biology, when studying gene regulation networks
[191, 138, 146]. In particular, the use of Granger-causality and network graphs of state-space representations are
both well established in neuroscience [278, 70, 241]. However, the mathematical foundations of both methods
have not been investigated in depth. The previous axes C1-C3 can be viewed as the theoretical foundations for
applying these methods. The goal of this axis is then apply the theoretical results to real data and to evaluate their
relevance and efficiency.

Note that for systems biology and for neuroscience the theoretical foundations of the methods are important,
because in both cases the goal is to find the truth about the system under study, and in both cases experimental
validation of the results is difficult. The latter is especially the cases in neuroscience, where the goal is to study
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the connectivity between brain regions in humans. There, the results of experiments on animals are difficult to
extrapolate to humans, and such experiments are costly, and it is impossible to make experiments on humans.
Hence, experimental validation of the ground truth can take place only by observing neurological disorders,
where it is known that the connection between brain regions becomes broken, and hence it becomes a byproduct
of trying to give medical treatment to such patients. When methods are used which are theoretically not sound,
then the probability of deriving a false conclusion from data is high, and it is then very difficult to falsify such
false conclusions using experiments. For this reason, it is preferable to avoid methods which are theoretically
questionable.

7.2.3 Interplay between research axes A,B,C
While research axes B and C are quite distinct, they both rely on fundamental structural properties developed in
Axis A. As such, they can be viewed as particular applications of Axis A. The relationship between various axis
is illustrated on Figure 7.3 below.

7.3 Conclusions
In this chapter I have presented my plan for future research. The high-level goal of future research is to provide
theoretical foundations for model-based design of decision making algorithms, i.e., algorithms which use mathe-
matical models of the underlying phenomenon to predict its behavior and change according to some objectives.
To this end, two questions have to be dealt with:

1. assuming that the model is an adequate representation of the phenomenon, can we guarantee that the
decision making algorithm based on this model will achieve the desired objectives,

2. can we guarantee that the model is an adequate representation of the underlying phenomenon.

I plan to concentrate on the latter problem: how to get model from data or from other more complex models in
such a manner that they represent adequately the underlying phenomenon.

Controller synthesis is a particular case of decision making algorithms, and due to my background, a sig-
nificant part of my efforts will be directed for contribution theoretical foundations of modeling for control. In
particular, I plan to continue contributing to theoretical foundations of systems identification and model reduction
for control. What distinguishes the proposed research from the one already carried by other researchers is that
it relies heavily on structural, algebraic properties of models, in particular on realization theory. In fact, part of
the proposed research focuses on further developing realization theory. That is, the proposed research could be
summed up as follows: developing realization theory and applying it theoretical foundations of system identifi-
cation and model reduction algorithms. Moreover, I plan to concentrate on those theoretical questions which are
relevant for controller synthesis.

In addition to theoretical foundations of modeling for control, I plan to work on two other topics: namely, ap-
plication of control and systems theory to machine learning (PAC, PAC-Bayesian, RNN, reinforcement learning),
and reverse engineering of network graphs of interconnected dynamical systems. While these two topics are not
related at a first glance, realization theory is relevant for both topics.

That is, future research is organized around realization theory and its applications. This choice is motivated
by my desire to have a high degree of continuity with the past research activities while exploring significantly
new topics.

138



7.3. CONCLUSIONS

Figure 7.3: Relationship between axes A, B and C,
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Chapter 8

Summary and general conclusions

In this manuscript I have presented some selected topics I have worked on in the past decade. More precisely, I
have presented an overview of my work on realization theory and some of its applications to system identification
and model reduction. In my research I focused on classes of dynamical systems (hyrid systems, linear parameter-
varying systems, bilinear systems) which can be used to represent cyber-physical systems, i.e., systems which
combine physical systems with digital computers.

The manuscript starts with a general introduction in Chapter 1, where I explain my research philosophy, my
motivation to study realization theory and past research activities. The first chapter is followed by 5 technical
chapters, grouped in 2 parts: the first part presents some selected topics on realization theory, the second part
presents some applications of realization theory to system identification and model reduction. The manuscript is
concluded with the description of future research plans. The manuscript contains two appendices: one appendix
contains my detailed CV, the other one contains some background technical material on realization theory of
linear switched systems.

As it was discussed in Section 1.1, Chapter 1, the motivation for studying realization theory and its appli-
cations is the need to develop mathematically correct methods for building models of cyber-physical systems.
Moreover, the built models should be suitable for designing decision algorithms. In particular, the models should
be suitable for controller synthesis and fault detection. Such models can be built either from data or from more
complex models, which are derived from domain knowledge. Building models from data is the topic of system
identification. Computing simplified models from complex one, while preserving relevant properties, is the topic
of model reduction. That is, what we need are formal proofs of correctness of system identification and model
reduction algorithms. In turn, for the latter tasks it is useful to thoroughly understand the relationship between
observed behavior and structure of models representing them, which is the topic of realization theory. In addition,
realization theory helps to relate properties of input-output behaviors with those of the underlying models, which
is itself useful for controller synthesis.

In the past decade my goal was to apply realization theory of hybrid systems to model reduction and system
identification, and to extend realization theory to other system classes.

In order for realization theory of hybrid systems to be useful for system identification, it had to be extended
to the discrete-time case, and stochastic noise and switching had to be taken into account. The need to extend
realization theory to discrete-time hybrid systems was motivated my work on realization theory of discrete-time
switched systems. I also contributed to other realization theory of some other classes of hybrid systems (semi-
algebraic discrete-time hybrid systems, continuous-time linear systems with unknown switching, etc.).

It turned out that the realization problem linear parameter-varying (LPV) systems can be developed using
realization theory of linear switched systems. Considering the widespread use of LPV systems in applications and
the increased need for system identification of LPV systems, this observation motivated me to explore realization
theory and system identification of LPV systems. I presented this work in Chapter 2 of this manuscript. In
technical terms, these results required non-trivial application of the theory of Fliess-series expansion of input-
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output maps of nonlinear systems.
The need to include stochastic noise and stochastic switching for analyzing identification algorithms for hy-

brid systems lead to the study of jump-Markov systems. The latter inspired the development of realization theory
of generalized stochastic bilinear systems, which includes jump-Markov systems and stochastic LPV systems
as a special case. In technical terms, this work required a non-trivial extension of the geometric (Hilbert-space
based) realization theory of stochastic linear systems, and its merger with realization theory of discrete-time lin-
ear switched systems. For this reason, these results were included in Chapter 3, where I presented an overview
of realization theory of generalized stochastic bilinear systems, and its application to realization theory of jump-
Markov systems.

In parallel to extending realization theory, I also worked on applying existing results to model reduction
and system identification. In particular, I worked on applying realization theory of linear switched systems to
analyzing model reduction algorithms and to propose new ones. An overview of my work on model reduction
of linear switched systems was presented in Chapter 4. My research on model reduction was centered around
the following two approaches: balanced truncation and moment matching. In balanced truncation states which
are difficult to control and to observer are removed. My work on balanced truncation was aimed at proving
analytical bounds for the difference between the input-output behavior of the original and the reduced models.
Realization theory served as an important theoretical tool for showing that balanced truncation methods are well-
posed (their result does not depend on the choice of the state-space representation) and for providing intuition
for the definition of reachability/observability grammians. The proofs of the error bounds relied on proving that
the error system is dissipative for a well-chosen storage function. Moment matching was based on calculating
a reduced-order model while preserving certain Markov-parameters of the original model. The very idea of this
approach relies on realization theory, namely, on the notion of Markov-parameters. The corresponding model
reduction algorithms are variations of the realization algorithm developed for linear switched systems.

Another major application of realization I worked was system identification of hybrid systems, and later LPV
systems. First I focused on persistence of excitation and structural identifiability of linear switched systems.
However, due to the close relationship between realization theories of LPV and switched systems, I soon started
focusing more on structural identifiability and subspace identification of LPV systems. For the latter, realization
theory of generalized stochastic bilinear systems turned out to be useful, as it allowed to develop elements of real-
ization theory of stochastic LPV systems and to formulate statistically consistent subspace identification methods.
Note that the subspace identification algorithms relied on first estimating Markov-parameters/output covariances
and then applying the realization algorithm for LPV/generalized stochastic bilinear systems. In that respect, they
differ from many other subspace identification algorithms for LPV systems found in the literature. An overview
of my research on identifiability and subspace identification of LPV systems was presented in Chapter 5.

In addition to classical system identification for LPV systems, I also worked on reverse engineering of the
network structure of interconnected systems. This work was presented in Chapter 6. The aim was to establish
a relationship between statistical properties (Granger-causality) of the observed output and the communication
graph of the model which generates those outputs. First, the case of outputs generated by stochastic LTI models
was considered, later similar results were derived for outputs generated by stochastic generalized bilinear systems.
This work is a non-trivial application of stochastic realization theory. Moreover, due to the use of Granger-
causality, which is an equivalent formulation of feedback freeness, these results are expected to be useful for
analyzing identification algorithms for generalized bilinear systems with additive inputs. The latter includes
stochastic LPV systems and jump-Markov linear systems. This research direction can be viewed as a particular
case of system identification in the broad sense of the word, as the original goal was to indeed find the network
structure from data. However, the latter problem is ill-posed, as in general, the network structure cannot be
uniquely determined from data. Instead, the best what we can do is to determine if a certain network structure
is consistent with data, i.e., if there exists a model of the observed data with a given network structure. Even for
the latter case, the derived results represent only first steps and further research is required to derive efficient and
well-founded statistical hypothesis testing methods.

As it was mentioned in Section 1.3 of Chapter 1, in addition to the topics mentioned above, I also worked on
several others, such as theory of descriptor systems, symbolic control of hybrid systems, discrete-event systems
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and their applications, applications of control theory to water networks, stability analysis and observer design of
sampled-data systems, machine learning. The results were not included in the manuscript as they are either recent
research directions or they are less representative of my main research interests.

My plans for future research can be divided into the following directions. First, I would like to continue
working on reliable modeling for control of cyber-physical systems. In particular, I would like to further develop
realization theory of hybrid and LPV systems, and use it for developing the theoretical foundations of system
identification and model reduction of these systems. In addition, I would like to explore the interplay between
the structural properties of these systems (controllability, observability, minimality) and control synthesis. The
second research direction is the development of reliable machine learning algorithms for cyber-physical systems.
In particular, I would like to work on formal mathematical proof of correctness (consistency) of machine learning
algorithms when applied to cyber-physical systems. At a first glance it represents a departure from my previous
research, however, this is not entirely the case, as machine learning applied to physical systems can be viewed as
a particular case of system identification. In fact, many of the challenges are similar. In particular, I expect that
developing realization theory for neural networks will be useful for this research direction. I have already done
some preliminary work in this direction. Another future research direction is the reverse engineering of network
structures, that is, the continuation of the topic discussed in Chapter 6. In addition to theoretical work I also
plan to explore applications of reverse engineering of network structures to neuroscience and systems biology. A
detailed description of my plans for future research was presented in Chapter 7.

The results discussed in Chapter 2 - 6 were derived in collaboration with a large number of researchers from
several countries, and are partially based on the work of PhD students and postdocs I co-advised. In particular,
Chapter 4 – 6 each include results from PhD theses I co-advised. More precisely:

Chapter 2 (realization theory of LPV systems) was developed in collaboration with Guillaume Mercère (Uni-
versité de Poitiers,France) and Roland Tóth (Eindhoven University of Technology, The Netherlands).

Chapter 3 (realization theory of generalized stochastic bilinear systems) was carried out in collaboration with
René Vidal (Johns Hopkins University, USA), and was started when I had a postdoc position under his
supervision.

Chapter 4 (model reduction of hybrid systems):

• the results on moment matching using Markov-parameters were part of the PhD thesis of Mert Bastug
(Aalborg University , Denmark and IMT-Lille-Douai, France), whom I co-advised with John Leth and
Rafael Wisniewski (Aalborg University, Denmark)

• the results on balanced truncation and moment matching in frequency domain were derived in col-
laboration with John Leth, Rafael Wisniewski, Ion Victor Gosea (Max Planck Institute, Germany),
Athansios C. Antoulas (Max Planck Instute, Germany and Rice University, USA) and Christophe
Fiter (CRIStAL, France).

Chapter 5 (identifiability and subspace identification of LPV systems):

• Identifiability of LPV systems was the topic of the PhD thesis of Ziad Alkhoury (Université de Poitiers
and IMT-Lille-Douai,France), whom I co-advised with Guillaume Mercère,

• The results on reduced basis subspace identification algorithm for deterministic LPV systems were
developed in collaboration with Roland Tóth and Pepijn Cox (Eindhoven University of Technology,
The Netherlands).

• Subspace identification algorithms for stochastic LPV were developed in collaboration with Manas
Mejari (CRIStAL, France), of whom I was the advisor during his postodoctoral appointment,

Chapter 6 (reverse engineering of networks) is based on the PhD thesis of Mónika Józsa (Groningen University,
The Netherlands, IMT-Lille-Douai,France), whom I co-advised with Kanat Camlibel (Groningen Univer-
sity, The Netherlands).
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A more detailed overview of the PhD students and postdocs I advised is presented in Appendix A. In addition
to the collaborations described above, I also worked together with a number of other researchers on topics which
were not discussed in the manuscript. For a detailed overview of my other collaborations see Appendix A.
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Appendix A

CV

A.1 Professional experience
• October 1, 2015 – present Chargé de recherche CNRS 1er classe, Centre de Recherche en Informatique,

Signal et Automatique de Lille (CRIStAL), UMR CNRS 9189, France.

• 2011 September 1 – September 30, 2015
Assistant Professor (Maı̂tre assistant), Département Informatique et Automatique, École des Mines de
Douai (IMT-Lille-Douai), France.

• 2009 August 1 – 2011 August 31
Assistant Professor, Department of Knowledge Engineering, Maastricht University, The Netherlands.

• 2007 June 15 – 2009 July 31
Post-doc, Systems Engineering, Department of Mechanical Engineering,Eindhoven University of Technol-
ogy, The Netherlands.

• 2006 August 7 – 2007 June 9
Post-doc, Center for Imaging Science,Johns Hopkins, University, USA.

• 2005 October – 2006 March
CTS Fellow at INRIA Sophia-Antipolis, France

• 2002 August 1 – 2006 July 31
PhD student at CWI, The Netherlands.

A.2 Education
• 2006 June 22 : PhD, Vrije Universiteit, Amsterdam, The Netherlands. Title of the PhD thesis: Realization

theory of hybrid systems.

• 2002 August 14: Masters (MSc.) Computer Science, Vrije Universiteit, Amsterdam, The Netherlands

Summary of research activities since 2006
• Co-author of 27 international journal papers, over 50 papers in conference proceedings, 5 book chapters.

Published in IEEE Transactions on Automatic Control (7), Automatica (8), Systems & Control Letters (3),
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SIAM Journal of Optimal Control (1), ESAIM COCV (2), International Journal of Robust and Nonlinear
Control (1), Nonlinear Analysis: Hybrid Systems (1), and leading conferences CDC, ACC, ECC, IFAC
World Congress, HSCC, ADHS, MTNS,NOLCOS.

• Advising PhD students: 3 graduated

• Advising postdocs: 6 postdocs.

A.3 Supervision of postdocs and PhD students

A.3.1 Supervision of PhD students
I have advised 3 PhD students, the percentage of my involvement in the supervision was 50%. Below I will
present the list of PhD students I co-advised.

Mert Bastug (April 2013 – April 2016) His PhD was carried jointly at École des Mines de Douai (IMT-Lille-
Douai) and University of Aalborg. He was co-advised by John Leth (Aalborg University) and Rafael Wisniewski
(Aalborg University) and by me. The topic of his PhD thesis was model reduction of linear switched and LPV
systems. He defended his thesis, entitled Model reduction of hybrid systems, on February 26, 2016. His thesis
defense committee was a high profile one: Prof. Athanasios Antoulas (Rice University, Texas, USA & Jacobs
University, Bremen, Germany), Prof. Zhendong Sun (Chinese Academy of Sciences, Beijing, China). The
former is a leading researcher in model reduction, the latter is one of the leading researchers in theory of switched
systems. Mert Bastug received his degree from Aalborg University. He continued his career as a postdoc at
SyNeR, working on the ANR project ROCC-SYS, under the supervision of Laurentiu Hetel, and in 2018 he
joined the ASITIX company in Lille as an engineer on a permanent contract. This thesis resulted in 2 journal
papers (1 IEEE TAC full paper,1 Automatica brief paper) and 3 conference papers.

Ziad Alkhoury (December 2014 – November 2017) His PhD was carried out jointly at École des Mines
de Douai (IMT-Lille-Douai) and at Université de Poitiers. His other co-advisor is Guillaume Mercère from
Université de Poitiers. The topic of his PhD thesis is identification of LPV systems. Ziad Alkhoury defend
his thesis,entitled Minimality, input-output equivalence and identifiability of LPV systems in State-Space and
Linear FractionalRepresentations on November 9, 2017, and was awarded his PhD degree by Université de
Poitiers. His thesis defense committee was also high profile one: Marion Gilson (CRAN, Université de Lorraine),
Xavier Bombois (CNRS, École Centrale de Lyon), Herbert Werner (Hamburg University of Technology), Thierry
Poinot (LIAS, Université de Poitiers), Roland Tóth (Eindhoven University of Technology). After graduation,
Ziad Alkhoury joined the research laboratory ICube at University of Strasbourg as a postdoc. This thesis resulted
in 1 journal paper (Automatica, full paper) and 2 conference papers.

Mónika Józsa (September, 2014 – September 2018) Her PhD was carried out jointly at École des Mines de
Douai (IMT-Lille-Douai) and at University of Groningen. Her other co-advisor is Kanat Camlibel from Univer-
sity of Groningen, The Netherlands. She is expected to defend her thesis, entitled Relationship between Granger
non-causality and network graph of state-space representations, on February 25, 2019 and be awarded a PhD
degree by the University of Groningen. Her thesis assessment committee is a high profile one too: Arjan van
der Schaft (University of Groningen, The Netherlands), Peter Caines (McGill University, Canada), Ralf Peeters
(Maastricht University,The Netherlands). The same is true for her thesis defense committee: Arjan van der Schaft,
Ralf Peeters, Jan H. van Schuppen (Delft University of Technology,The Netherlands), Paul van den Hof (Eind-
hoven University of Technology, The Netherlands). She continued as a Research Associate in Computational
and Theoretical Neuroscience, Department of Engineering, Cambridge University. This thesis lead to 2 journal
papers (1 IEEE TAC full paper, 1 IEEE TAC technical note) and 3 conference papers.
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Deividas Eringis (October 2020 – ongoing) His PhD thesis deals with applying control theory to machine
learning, he is co-supervised with Rafael Wisniewski, John Leth and Zheng-Hua Tan. This project ongoing, it
has resulted in 1 conference paper, 1 journal submission, and 1 conference submission.

Elie Rouphael (October 2021 – ongoing) His PhD deals with application of realization theory of LPV and
hybrid systems to system identification. This thesis is co-supervised with Prof. Lotfi Belkour from University of
Lille. The thesis is ongoing.

A.3.2 Supervision of postdocs

Hassan Omran I advised him in the period April 2014 – December 2014, during this period he was a postdoc
at École des Mines de Douai (IMT-Lille-Douai), he was recruited for regional project ’Estimation distribuée de
systèmes dynamiques’ (ESTIREZ). He is currently an Associate Professor at Université de Strasbourg. This
postdoc results in 1 journal paper (Automatica brief paper)

Lucien Etienne He was recruited first as a research engineer (February 2016 – April 2016) and later (he de-
fended his PhD thesis in April) as a post-doc (starting from May 1, 2016) at SyNeR, for the regional project
ESTIREZ, financed by Région Hauts de France. Laurentiu Hetel and Denis Efimov were his principal advisors
were. In 2017 he joined IMT Lille Douai as a tenured associate professor. This postdoc resulted in 1 journal
paper (Automatica brief paper) and 1 conference paper.

Mert Bastug He was recruited on April 1, 2016 as a postdoc at SyNeR, for the ANR project ROCC-SYS. His
principal advisor was Laurentiu Hetel. He is my former PhD student. In 2018 he joined the ASITIX company in
Lille as an engineer on a permanent contract. This postdoc resulted in 2 conference papers and 1 book chapter.

Manas Dilip Mejari He was recruited on October 1, 2018 on the project CPER Data MLC, he left in June,
2019 for a postdoc position at Dalle Molle Institute for Artificial Intelligence, Lugano, Switzerland. This postdoc
resulted in 2 conference papers.

Thibault Defourneau He was recruited on October 1, 2018 on the project CPER Data MLC, her left in June,
2019 for a data scientist position at Trinove, Paris, France. This postdoc resulted in 1 conference paper.

Alireza Fakhrizadeh-Esfahani He was recruited in July, 2019 on the project CPER Data MLC, he left on June
30, 2020. He is currently a postdoc at IMT-Lille-Douai. This collaboration resulted in 2 conference papers, one
in the highly ranked machine learning conference AAAI.

Martin Gonzales He was recruited on January 1, 2022 on the project ‘Reliable AI for cyber-physical systems
using control theory’ with this a joint project with IRT System-X within the programme. call ‘Confiance.ia’. He
is currently employed by this project. This collaboration has resulted in 1 submitted journal paper and 1 accepted
workshop paper at the flagship conference ICML 2022.
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A.4 Scientific collaboration

Table A.1: Summary of the principal national and international collaborations
Name Affiliation Publications, projects, etc.

Guillaume Mercère Université de Poitiers, France Publications [5, 7, 6, 213,
216]
PhD of Ziad Alkhoury:
2014–2017

Laurent Bako École Centrale de Lyon, France Publications [206, 210, 209,
207, 208]

Stéphane Lecoeuche IMT Lille Douai, France Publications [207, 208, 113]
Mohamed Djemai Université de Valenciennes, France Publications [13]

John Leth Aalborg University, Denmark Publications : [30, 31, 29,
28, 28, 228, 227, 82, 108,
212]

Rafael Wisniewski PhD of Mert Bastug: 2013-
2016
PhD of Deividas Eringis:
2020 – ongoing

René Vidal Johns Hopkins University, USA Publications: [226, 223,
222, 224, 81]

Kanat Camlibel University of Groningen, The Netherlands Publications [137, 136, 134,
135]
PhD of Monika Jozsa: 2014-
2018

Serhiy Zhuk IBM Research, Dublin, Ireland Publications: [229, 317]
Ralf Peeters, Ronald Westra Maastricht University, The Netherlands Publications: [214, 299]

Jan H. van Schuppen Delft University of Technology,The Netherlands Publications: [185, 183,
186, 187, 188, 221, 220,
209, 210, 218, 217, 219,
215, 211, 272]

Jana Nemcova Institute of Chemical Technology, Prague, Czech Republic Publications: [182, 185,
181, 183, 186, 187, 188]

Roland Tóth, Eindhoven University of Technology,The Netherlands Publications: [28, 216, 66,
1, 65]

Ion Victor Gosea Max Planck Institute for Dynamics
Anthansios C. Antoulas of Complex Technical Systems Publications: [105, 106,

108, 107, 230]
Magdeburg, Germany

Jacobus E. Rooda,
Dirk A. van Beek, Eindhoven University of Technology, The Netherlands

Ramon R. Schiffelers publications [272, 211, 215,
38]

Rolf J. M. Theunissen
Eric Duviella IMT-Lille-Douai

Lala Rajaoarisoa IMT-Lille-Douai
Klaudia Horvath IMT-Lille-Douai

Publications [121, 122, 120]
Pascal Germain Université Laval, Canada PEPS Blanc 2019, publica-

tions [253]152
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Table A.2: Collaboration with the members of CRIStAL
Name Affiliation Publications, projects, etc.

Laurentiu Hetel CO2,SHOC Publications: [84, 83, 193, 27, 26, 25]
Supervision of postdocs: Lucien Etienne
Regional project: ESTIREZ

Christophe Fiter CO2, SHOC Publications: [106]
Jean-Pierre Richard CO2, VALSE Publications: [193]

Regional project: ESTIREZ
Denis Efimov CO2, VALSE Publications: [28]

Regional project: ESTIREZ

A.5 Funded projects
• 2022-2023: Co-PI of ‘Reliable AI for cyber-physical systems using control theory’, joint project with

IRT System-X, in the program ‘Confiance.ia’, Other co-PIs: Hatem Hajri (IRT System-X), Geoffrey D.
Delhomme (Airbus).
Funding: 140 000 EUR,

• 2019: Co-PI of PEPS Blanc 2019, “PAC-Bayesian theory for recurrent neural networks: a control theoretic
approach’, other PI: Pascal Germain, INRIA Nord.
Funding: 8000 EUR.

• 2018 - 2020: Co-PI of the regional project CPER Data ‘Machine learning meets control’, other PI: Daniil
Ryabko, INRIA Nord.
Funding: 109 00 EUR.

• 2013-2017: Coordinator of regional project ’Estimation distribuée de systèmes dynamiques en réseaux’,
financed by the region Hauts de France. Participating teams: École des Mines de Douai (IMT-Lille-Douai),
INRIA Non-A, CNRS CRIStAL SYNER.
Funding: 262 578 EUR.

• 2013-2014: participant in PHC VAN GOGH project 29342QL, together with Vincent Laurain (CRAN,France)
and Roland Toth (TUE, The Netherlands)
Funding: 2500 EUR.

A.6 Organizational activities and service to the scientific community
Organization of invited session, workshops, conferences I was also involved in the organization of invited
sessions and workshops and I was member of program committees of several conferences, below is a detailed list
of these activities:

• Member of the local organizing committee of JAMACS 2016, ‘Journées d’Automatique du GDR MACS
2016’, to be held in Lille, 15-16 November 2016

• Organizer of the workshop ‘Realization theory and its role in system identification”, 55th Conference on
Decision and Control, Las Vegas, USA, 2016.

• IPC member of the Sixth Workshop on Design, Modeling and Evaluation of Cyber Physical Systems,
CyPhy’16, Pittsburgh, PA, USA, 2016.

• IPC member IFAC Conference on Analysis and Design of Hybrid Systems, ADHS 2018, Oxford, UK,
ADHS 2021, Brussels, Belgium.

153



APPENDIX A. CV

Membership in scientific committees I am a member of the technical committee (TC) on System identification
& Adaptive Control of CSS (Control Systems Society) of IEEE.

Editorial activities

• Associate editor of Systems & Control Letters, 2019 – present.

• Associate editor of Nonlinear Analysis: Hybrid Systems, 2020 – present.

Review of publications and project proposals

• I have been a reviewer for the major journals and conferences of control theory (IEEE Transactions on
Automatic Control, Automatic, Systems & Control Letters, IEEE Conference on Decision and Control,
American Control Conference, etc.)

• I evaluated several project proposals for the region Grand Est (France).

Membership in PhD defense committees

• Opponent PhD thesis of Dobriborsci Dmitrii, ITMO University, St. Petersburg, December 2019.

• Assesor of the PhD thesis of Gabrielle Fiore, University of L’Aqueilla, May 2017.

• PhD defense and evaluation committee of Ivo Bleylevens, December 09, 2010, Maastricht University.

• PhD defense committee of Jana Nemcova, December 02, 2009, Vrije Universiteit, Amsterdam.

A.7 Teaching experience
PhD level courses

• Course ”System identification”, France Excellence Summer School ACES 2021, ACES 2022.

• Course ”Hybrid Dynamical Systems”, lab classes, (together with Laurentiu Hetel, Christophe Prieur, Alexan-
der Kruszewski), PhD School of H2020 Project UCoCoS, 2019.

• Course ”Switched Systems and Observations: theory and applications” (together with Jean-Pierre Barbot,
Marc Jungers, Laurentiu Hetel), JD-JN MAC’19, 2019.

• Course ”Geometric Linear Control Theory” (together with Rafael Wisniewski and John Leth). Doctoral
School The Doctoral School of Engineering and Science (2014, 2020) /Electrical and Electronic Engineer-
ing, Aalborg University.

Master level courses

• Programming in Python II: lectures and lab classes (SKEMA Bussiness School, Spring 2021,2022).

• Programming in Python I: lectures and lab classes (SKEMA Bussiness School, Fall 2020,2021).

• Machine learning, statistics, econometrics: lectures and lab classes (SKEMA Bussiness School, Fall 2021).

• Machine learning: lectures and lab classes, part of the module ‘Autonomous transportation systems’ (Ecole
Centrale de Lille, Fall 2019, 2020).
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• Sampled data control and observers: lectures and lab classes, part of the module ‘Autonomous transporta-
tion systems’ (Ecole Centrale de Lille, Fall 2019, 2020).

• Programming in C: lectures and lab classes, part of the module ‘Autonomous transportation systems’ (Ecole
Centrale de Lille, Fall 2019, 2020).

• Programming in Python: lectures and lab classes (SKEMA Bussiness School, Fall 2018, Spring 2020).

• Microcontroller programming: lectures and lab classes, part of the module ‘Autonomous transportation
systems’ (Ecole Centrale de Lille, Fall 2018).

• Control of dynamical systems (LMI & LPV, elements of robust control, Lyapunov theory): lectures and
exercise classes (Ecole Centrale de Lille, Winter 2015-2016, 2016-2017, 2017-2018).

• Linear control, part of the module: Control of dynamical systems with application to robotics, lectures, lab
and exercises classes (Ecole Centrale de Lille, Spring 2018).

• Tools for control of complex systems (Kalman-filters): lecture and exercise classes (Ecole Centrale de
Lille, Spring 2016, 2017).

• Modelling for control of physical systems (linear state-space control): lecture and exercise classes (Institute
de Genie Informatique et Industriel, Ecole Centrale de Lille, Spring 2016, 2017, 2018).

• Architecture of embedded systems: lab classes (IMT Lille Douai, Fall 2014, 2015, 2016, 2017, 2018,
2019,202).

• C Programming: lectures and lab classes (Ecole des Mines de Douai, Spring 2015).

• Linear control: lectures and lab classes (Ecole des Mines de Douai, Spring 2014, 2015).

• Systems Identification (Maastricht University, Spring 2010, 2011)

• Topics in Computation and Control (Maastricht University, Spring 2011)

• Stochastic Decision Making (Maastricht University, Fall 2010)

Bachelor level courses

• Calculus I (Maastricht University, Fall 2009, 2010).

• Calculus II (Maastricht University, Spring 2010,2011).

• Capita Selecta – Selected topics (Maastricht University, Spring 2010, 2011).

• Advanced Programming (Java), exercise classes (Ecole des Mines de Douai, Fall 2011, 2012).

• Programming and algorithms (Java) (Ecole des Mines de Douai, Fall 2012, 2013).

• Automatic control (discrete-event systems), exercise classes (Ecole des Mines de Douai, Fall 2012, Fall
2013).

• Programming and algorithms (Java):online course (Ecole des Mines de Douai, Fall 2014).

• Matlab for engineers, (Ecole des Mines de Douai, Winter 2013, Winter 2014).

• Programming and algorithms (Java), lab and execise classes (IMT Lille Douai, Fall 2018).

155



APPENDIX A. CV

Co-supervised MSc. and BSc. thesis projects

2009
‘Supervisory control theory applied to exception handling in Oce printers’, Esmeé Bertens, MSc. thesis,
Eindhoven University of Technology, Océ.

2011

1. Lian Nouwen, ‘Automatic branch matching of multiple angiographic artery projections to perform
3D reconstruction’ MSc. thesis, Maastricht University and Pie Medical Imaging B.V.

2. Ufuk Gundogmus ‘Contour detection in left ventricular x-ray angiographic images’, MSc. thesis,
Maastricht University and Pie Medical Imaging B.V.

3. Remco Bras, ‘Connectivity structure of dynamical systems’, BSc. thesis, Maastricht University.

A.8 List of publications which appeared after completing my PhD
Journal Papers

1. Hossam Abbas, Roland Toth, Mihaly Petreczky, Nader Meskin, Javad Mohammadpour Velni, Patrick J.W.
Koelewijn.
LPV Modeling of Nonlinear Systems: A Multi-Path Feedback Linearization Approach.
International Journal of Robust and Nonlinear Control, Wiley, 31(18):9436 – 9465, 2021.

2. Mihaly Petreczky, Laurent Bako, Stéphane Lecoeuche, Koffi M. D. Motchon.
Minimality and identifiability of discrete-time switched autoregressive exogenous systems.
International Journal of Robust and Nonlinear Control,30: 5871 – 5891, 2020.

3. Monika Jozsa, Mihaly Petreczky, Kanat M. Camlibel. Causality and network graph in general bilinear
state-space representations.
IEEE Transactions on Automatic Control, 65(8), 2623–2630, 2020.

4. Monika Jozsa, Mihaly Petreczky, Kanat M. Camlibel.
Relationship between Granger non-causality and network graph of state-space representations,
IEEE Transactions Automatic Control, 64(3):912-927, 2019.

5. Ion Gosea, Mihaly Petreczky, Athanasios Antoulas.
Data-Driven Model Order Reduction of Linear Switched Systems in the Loewner Framework.
SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 40 (2):572–610,
2018.

6. Ion Victor Gosea, Mihaly Petreczky, Athanasios C. Antoulas, Christophe Fiter.
Balanced truncation for linear switched systems.
Advances in Computational Mathematics, 44:1845-1886, 2018.

7. Pepijn Cox, Roland Tóth, Mihaly Petreczky.
Towards Efficient Maximum Likelihood Estimation of LPV-SS Models.
Automatica, 97:392–403, 2018.

8. Mihaly Petreczky, René Vidal.
Realization Theory of Generalized Bilinear Systems.
IEEE Transactions on Automatic Control, 63(1):69-84 2018.
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9. Lucien Etienne, Laurentiu Hetel, Denis Efimov, Mihaly Petreczky.
Observer synthesis under time-varying sampling for Lipschitz nonlinear systems.
Automatica, 85:433-440, 2017.

10. Ziad Alkhoury, Mihaly Petreczky, Guillaume Mercère
Identifiability of Affine Linear Parameter-Varying Models,
Automatica, 80:62-74, 2017.

11. Mihaly Petreczky, Serhiy Zhuk.
Solutions of differential-algebraic equations as outputs of LTI systems: Application to LQ control problems.
Automatica, 84:166-173, 2017.

12. Serhiy Zhuk, Mihaly Petreczky.
Minimax Observers for Linear Differential-Algebraic Equations.
IEEE Transactions on Automatic Control, 62(8):4104–4108, 2017.

13. Mihaly Petreczky, Roland Tóth, Guillaume Mercère
Realization Theory for LPV State-Space Representations with Affine Dependence,
IEEE Transactions on Automatic Control, 62(9):4667-4674, 2017.

14. Mert Bastug, Mihaly Petreczky, Rafael Wisniewski, John Leth.
Reachability and Observability Reduction for Linear Switched Systems with Constrained Switching
Automatica, 74:162-170, 2016.

15. Hassan Omran, Laurentiu Hetel, Mihaly Petreczky, Jean-Pierre Richard, Francoise Lamnabhi-Lagarrigue.
Dissipativity-based approach for stability analysis of nonlinear sampled-data systems with input-affine
control.
Automatica, 70:266-274, 2016.

16. Mert Bastug, Mihaly Petreczky, Rafael Wisniewski, John Leth.
Model Reduction by Moment Matching for Linear Switched Systems.
IEEE Transactions on Automatic Control 61(11): 3422-3437, 2016.

17. Rolf .J.M. Theunissen, Mihaly Petreczky, Ramon R.H. Schiffelers, Dirk A. van Beek, Jacobus E. Rooda.
Application of Supervisory Control Synthesis to a Patient Support Table of a Magnetic Resonance Imaging
Scanner,
IEEE Transaction on Automation Science and Engineerig, 11(1): 20 –32, 2014.

18. Mihaly Petreczky, Laurent Bako, Jan H. van Schuppen.
Realization theory of discrete-time linear switched systems.
Automatica, 49(11):3337-3344, 2013.

19. Jana Nemcova, Mihaly Petreczky, Jan H. van Schuppen.
Realization theory of Nash systems.
SIAM J. Control Optim. (51-5):3386-3414, 2013.

20. Mihaly Petreczky, Rafael Wisniewski, John J. Leth.
Theoretical Analysis of Balanced Truncation for Linear Switched Systems.
Nonlinear Analysis: Hybrid Systems, 10:4-20, 2013.

21. Mihaly Petreczky, Jan H. van Schuppen.
Partial realization theory for linear switched systems: a formal power series approach.
Automatica, 47:2177-2184, 2011.
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22. Mihaly Petreczky.
Realization theory for linear and bilinear switched systems: Formal power series approach - Part I: Real-
ization theory of linear switched systems
ESAIM Control, Optimization and Calculus of Variations, 17:410-445, 2011.

23. Mihaly Petreczky.
Realization theory for linear and bilinear switched systems: Formal power series approach - Part II:
Bilinear switched systems.
ESAIM Control, Optimization and Calculus of Variations, 17:472-492, 2011.

24. Mihaly Petreczky, Jan H. van Schuppen.
Generating series for bilinear hybrid systems
Systems & Control Letters, 59:218-225, 2010.

25. Mihaly Petreczky, Jan H. van Schuppen.
Span-reachability and observability of bilinear hybrid systems
Automatica, 46:501-509, 2010.

26. Mihaly Petreczky, Jan H. van Schuppen.
Realization Theory For Linear Hybrid Systems
IEEE Transactions on Automatic Control, 55:2282 - 2297, 2010.

27. Mihaly Petreczky.
Realization theory for linear switched systems: Formal power series approach.
Systems and Control Letters, 56:588-595, 2007

Book chapters

1. Mihaly Petreczky and Ion Victor Gosea.
Model reduction and realization theory of linear switched systems.
In Realization and Model Reduction of Dynamical Systems: A Festschrift in Honor of the 70th Birthday
of Thanos Antoulas. Springer International Publishing, 2022.

2. Jana Nemcova, Mihaly Petreczky, Jan van Schuppen.
Towards a system theory of rational systems
Operator Theory, Analysis and the State Space Approach. Operator Theory: Advances and Applications,
2018,

3. Mert Bastug, Laurentiu Hetel, Petreczky Mihaly.
Minimal- and Reduced-Order Models for Aperiodic Sampled-Data Systems
In Control Subject to Computational and Communication Constraints, Lecture Notes in Control and Infor-
mation Sciences, vol. 475, S. Tarbouriech, A. Girard, L. Hetel (eds), Springer-Verlag, ISBN: 978-3-319-
78448-9, 2018.

4. Mihaly Petreczky, Aneel Tanwani and Stephan Trenn
Observability of Switched Linear Systems
In Hybrid Dynamical Systems: Observation and control, Lecture Notes in Control and Information Sci-
ences, vol. 457, M. Djemai, M. Defoort (eds), Springer Verlag, ISBN: 978-3-319-10795-0, 2015

5. Mihaly Petreczky
Realization theory of linear hybrid systems
In Hybrid Dynamical Systems: Observation and control, Lecture Notes in Control and Information Sci-
ences, vol. 457, M. Djemai, M. Defoort (eds), Springer Verlag, ISBN: 978-3-319-10795-0, 2015
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6. Klaudia Horváth,Lala Rajaoarisoa, Eric Duviella, Joaquim Blesa, Mihály Petreczky, Karine Chuquet
Enhancing inland navigation by model predictive control of water level – the Cuinchy-Fontinettes case,
In Transport of Water versus Transport over Water - Exploring the dynamic interplay between transport
and water, Operations Research/Computer Science Interfaces Series, vol. 58, Carlos Ocampo-Martinez,
Rudy Negenborn (eds), Springer-Verlag, ISBN 978-3-319-16132-7, 2015.

Conference proceedings

1. Deividas Eringis, John Leth, Zheng-Hua Tan, Rafal Wisniewski, Alireza Fakhrizadeh Esfahani, Mihaly
Petreczky
PAC-Bayesian theory for stochastic LTI systems
60th IEEE Conference on Decision and Control, 2021.

2. Mihaly Petreczky, John Leth, Rasmus Pedersen and Rafael Wisniewski.
Model reduction for linear switched systems with autonomous switching.
2021 IEEE American Control Conference (ACC), 2021.

3. Victor Gosea, Mihaly Petreczky, Athanasios C. Antoulas.
Reduced-order modeling of LPV systems in the Loewner framework.
60th IEEE Conference on Decision and Control, 2021.

4. Ion Victor Gosea, Mihaly Petreczky, John Leth, Rafal Wisniewski, Athanasios C. Antoulas.
Model Reduction of Linear Hybrid Systems.
59th IEEE Conference on Decision and Control, 2020.

5. Vera Shalaeva, Alireza Fakhrizadeh Esfahani, Pascal Germain, Mihaly Petreczky.
Improved PAC-Bayesian Bounds for Linear Regression.
Thirty-Fourth AAAI Conference on Artificial Intelligence, 2020.

6. Manas Mejari, Mihaly Petreczky.
Consistent and computationally efficient estimation for stochastic LPV state-space models: realization
based approach.
58th IEEE Conference on Decision and Control, 2019.

7. Manas Mejari, Mihaly Petreczky.
Realization and identification algorithm for stochastic LPV state-space models with exogenous inputs.
3rd IFAC Workshop on Linear Parameter-Varying Systems, 2019.

8. Thibault Defourneau, Mihaly Petreczky.
Realization theory of recurrent neural networks and rational systems.
58th IEEE Conference on Decision and Contro, 2019.

9. Monika Jozsa, Mihaly Petreczky, Kanat Camlibel.
Causality based graph structure of stochastic linear state-space representations.
56th IEEE Conference on Decision and Control, 2017.

10. Mert Bastug, Laurentiu Hetel, Mihaly Petreczky.
Model Reduction for Aperiodically Sampled Data Systems.
20th IFAC World Congress, 2017.

11. Ziad Alkhoury, Mihaly Petreczky , Guillaume Mercère.
Comparing Global Input-Output Behavior of Frozen-Equivalent LPV State-Space Models.
20th IFAC World Congress, 2017.
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12. Monika Jozsa, Mihaly Petreczky, Kanat Camlibel.
Relationship between Causality of Stochastic Processes and Zero Blocks of Their Joint Innovation Transfer
Matrices.
20th IFAC World Congress, 2017.

13. Lucien Etienne, Laurentiu Hetel, Denis Efimov, Mihaly Petreczky.
Observer Analysis and Synthesis for Lipschitz Nonlinear Systems under Discrete Time-Varying Measure-
ments.
20th IFAC World Congress, 2017.

14. Mert Bastug, Mihaly Petreczky, Laurentiu Hetel.
Minimality of Aperiodic Sampled Data Systems.
American Control Conference (ACC), 2017.

15. Jana Nemcova, Mihaly Petreczky, Jan H. van Schuppen.
Observability reduction algorithm for rational systems.
55th Conference on Decision and Control, 2016.

16. Ziad Alkhoury, Mihaly Petreczky, Guillaume Mercère.
Structural properties of LPV to LFR transformation: minimality, input-output behavior and identifiability..
55th Conference on Decision and Control, 2016.

17. Jana Nemcova, Mihaly Petreczky, Jan H. van Schuppen.
Rational observers of rational systems. 55th Conference on Decision and Control, 2016.

18. Mihaly Petreczky, Rafal Wisniewski, John Leth.
Moment Matching for Bilinear Systems with Nice Selections.
10th IFAC Symposium on Nonlinear Control Systems, 2016.

19. Mónika Józsa, Mihaly Petreczky, Kanat Camlibel.
Towards Realization Theory of Interconnected Linear Stochastic Systems. Extended abstract.
22nd International Symposium on Mathematical Theory of Networks and Systems , Minnesota, Minneapo-
lis, MN, USA during July 11-15, 2016.

20. Mert Bastug, Mihaly Petreczky, Roland Tóth, Rafal Wisniewski, John Leth, Denis Efimov.
Moment Matching Based Model Reduction for LPV State-Space Models.
54th IEEE Conference on Decision and Control, 2015.

21. Faycal Arichi, Mihaly Petreczky, Mohamed Djemai, Brahim Cherki.
Observability and Observer Design of Partially Observed Petri Nets.
5th IFAC Conference on Analysis and Design of Hybrid Systems (ADHS), 2015.

22. Pepijn Bastiaan Cox, Roland Tóth, Mihaly Petreczky.
Estimation of LPV-SS Models with Static Dependency Using Correlation Analysis.
1st IFAC Workshop on Linear Parameter Varying Systems, 2015.

23. Jana Nemcova, Mihaly Petreczky, Jan H. van Schuppen.
An Algorithm for System Identification of a Discrete-Time Polynomial System without Inputs.
17th IFAC Symposium on System Identification, 2015.

24. Denis Efimov, Wilfrid Perruquetti, Mihaly Petreczky
On Necessary Conditions of Instability and Design of Destabilizing Controls,
53rd IEEE Conference on Decision and Control, 2014.
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25. Blaise Guepie, Mihaly Petreczky, Stéphane Lecoeuche
Eddy current signatures classification by using time series: a system modeling approach,
Annual Conference of the Prognostics and Health Management Society 2014

26. Jana Nemcova, Ewa Pawluszewicz, Mihaly Petreczky
Unified framework for continuous and discrete time Nash realizations, Extended Abstract
Symposium on Mathematical Theory of Networks and Systems 2014

27. Klaudia Horváth, Eric Duviella, Lala Rajaoarisoa, Mihály Petreczky, Karine Chuquet
11th International Conference on Hydroinformatics, 2014.

28. Klaudia Horváth,Mihaly Petreczky, Lala Rajaoarisoa, Eric Duviella,Karine Chuquet
MPC control of water level in a navigation canal - The Cuinchy-Fontinettes case study,
European Control Conference, 2014

29. Hossam S. Abbas, Roland Tóth, Mihaly Petreczky, Nader Meskin,Javad Mohammadpour
Embedding of Nonlinear Systems in a Linear Parameter-Varying Representation,
IFAC World Congress 2014

30. Mert Bastug, Mihaly Petreczky, Rafael Wisniewski, John Leth
Model Reduction of Linear Switched Systems by Restricting Discrete Dynamics,
53rd IEEE Conference on Decision and Control, 2014

31. Mert Bastug, Mihaly Petreczky, Rafael Wisniewski, John Leth
Model reduction by moment matching for linear switched systems,
American Control Conference, 2014

32. Sergiy Zhuk and Mihaly Petreczky.
Infinite horizon control and observer design for linear DAEs.
52th IEEE Conference on Decision and Control (CDC), 2013.

33. Jana Nemcova and Mihaly Petreczky.
Local Nash Realizations.
In 18th International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje,
Poland, 2013.

34. Mihaly Petreczky and Guillaume Mercère.
Affine LPV systems: realization theory, input-output equations and relationship with linear switched sys-
tems.
In 51th IEEE Conference on Decision and Control, 2012.

35. Mihaly Petreczky, Laurent Bako, Stephane Lecouche.
Minimality and identifiability of SARX systems.
Proceedings of 16th IFAC Symposium on System Identification (SYSID), Brussel, 2012.

36. Jana Nemcova, Mihaly Petreczky, Jan H. van Schuppen.
System reduction and system identification of rational Systems.
Proceedings of 16th IFAC Symposium on System Identification (SYSID), Brussel, 2012.

37. Mihaly Petreczky, Rafael Wisniewski, John Leth.
Theoretical analysis of balanced truncation for linear switched systems.
Proceedings of 4th IFAC Conference on Analysis and Design of Hybrid Systems, Eindoven, 2012.

161



APPENDIX A. CV

38. Mihaly Petreczky and Laurent Bako.
On the notion of persistence of excitation for linear switched systems.
Proceedings of 50th IEEE Conference on Decision and Control (CDC), 2011.

39. Ronald Westra, Mihaly Petreczky, Ralf Peeters.
Identification of Piecewise Linear Models of Complex Dynamical Systems.
Proceedings 18th IFAC World Congress 2011.

40. Mihaly Petreczky, Laurent Bako and Jan H. van Schuppen.
Identifiability of discrete-time linear switched systems.
In Hybrid Systems: Computation and Control (HSCC) 2010.

41. Mihaly Petreczky and Jan H. van Schuppen.
Observability reduction of piecewise-affine hybrid systems.
Proceedings 19th International Symposium on Mathematical Theory of Networks and Systems, 203–210,
2010.

42. Mihaly Petreczky and Ralf Peeters.
Spaces of nonlinear and hybrid systems representable by recognizable formal power series
Proceedings 19th International Symposium on Mathematical Theory of Networks and Systems, pages
1051–1058, 2010

43. Jana Nemcova, Mihaly Petreczky and Jan H. van Schuppen
Realization Theory of Nash systems
In Proceedings 48th IEEE Conference on Decision and Control (CDC), 2009.

44. Mihaly Petreczky, Peter Collins, Dirk A. Van Beek, Jan H. van Schuppen, Jacobus Rooda.
Sampled-data control of hybrid systems with discrete inputs and outputs
In Proceedings of 3rd IFAC Conference on Analysis and Design of Hybrid Systems (ADHS09)

45. Mihaly Petreczky and Jan H. van Schuppen
Realization Theory of Discrete-Time Linear Hybrid System.
In Proceedings 15th IFAC Symposium on System Identification, 2009.

46. Mihaly Petreczky, Rolf Theunissen, Rong Su, Dirk A. Van Beek, Jan H. van Schuppen, Jacobus E. Rooda
Control of input/output discrete-event systems.
In Proceedings of European Control Conference, 2009.

47. Ehsan Elhamifar, Mihaly Petreczky, René Vidal
Rank Test for Observability of Discrete-Time Jump Linear Systems with Inputs.
In American Control Conference, 2009.

48. E. Bertens, R. Fabel, M. Petreczky, D.A. van Beek, J.E. Rooda.
Supervisory control synthesis for exception handling in printers.
In Proceedings Philips Conference on Applications of Control Technology. 2009.

49. Mihaly Petreczky and René Vidal.
Realization Theory of Discrete-Time Semi-Algebraic Hybrid Systems
Hybrid Systems: Computation and Control (HSCC), LNCS 4981, 2008.

50. Mihaly Petreczky and René Vidal.
Metrics and Topology For Nonlinear and Hybrid Systems.
Hybrid Systems: Computation and Control (HSCC 2007), 2007, LNCS 4416.
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51. Mihaly Petreczky and Rene Vidal.
Realization Theory of Stochastic Jump-Markov Linear Systems.
In Proceedings 46th IEEE Conference on Decision and Control, 2007.
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Appendix B

Review of realization theory of linear
switched systems

B.1 Introduction
For the convenience of the reader in this chapter we present an overview of realization theory of linear switched
systems published in [203, 219, 209, 202].

B.2 Linear switched systems: basic definition
We follow the presentation of [203, 227].

A linear switched system (LSS) is a control system of the form

Σ

{
(ξ x)(t) = Aσ(t)x(t)+Bσ(t)u(t)

y(t) =Cσ(t)x(t)
(B.1)

where x(t) ∈ Rn is the state at time t, σ(t) ∈ Q is the discrete mode at time t, y(t) ∈ Rp is the output at time
t, and u(t) ∈ Rm is the continuous-valued input at time t, and (ξ x)(t) = d

dt x(t) in the continuous-time case, and
(ξ x)(t) = x(t +1) in the discrete-time. The set Q is a finite one, and it is referred to as the set of discrete modes.
Moreover, Aq ∈ Rn×n, Bq ∈ Rn×m, Cq ∈ Rp×n are the matrices of the linear system in the discrete state q ∈ Q.

The following short-hand notation

Σ = (n,{(Aq,Bq,Cq) | q ∈ Q}) (B.2)

is used as a short-hand representation for LSSs of the form (B.1). The number n is called the dimension (order)
of Σ and will be denoted by dimΣ.

Intuitively, an LSS is just a control system which switches among finitely many linear time-invariant systems.
The switching signal is part of the input. Whenever a switch occurs, the continuous state remains the same, only
the differential equation governing the state and output evolution changes. That is, whenever we switch to a new
linear system, we start the new linear system from the state which is the final state of the previous linear system.
For all this to make sense, all the linear systems should have the same input, output and state-spaces. Finally, we
do not have discrete outputs, only continuous ones.

In order to define formally the solution of a switched system (B.1), we have to put some additional restrictions
of σ ,x,y,u. To this end, recall the notation of Section 2.2 and let us introduce the following notation.
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Notation B.1 (Spaces X ,U ,Q,Y ). We write U , Q, X and Y to denote either PC(R+,Rm), PC(R+,Q),
AC(R+,Rn) and PC(R+,Rp) (in continuous-time) or (Rm)N, QN, (Rn)N and (Rp)N (in discrete time).

If we fix an initial state x0 ∈Rn, then every input u and switching signal σ give rise to a unique state trajectory
x and output trajectory y, such that (x,u,σ ,y) satisfies (B.1) and such that x(0) = x0. We can define the input-
output map of an LSSinduced by the initial state x0 as the map YΣ,x0 : U ×Q→ Y such that YΣ,x0(u,σ) = y,
where (x,u,σ ,y) is the unique solution of the LSS(B.1) such that x(0) = x0. That is, every initial state of the the
LSS gives rise to an input-output map.

There are several ways to model the input-output behavior of an LSS Σ:

• as the set B(Σ) of tuples (u,σ ,y) such that there exists a state trajectory x of Σ such that (x,u,σ ,y) is a
solution of Σ,

• as the set {YΣ,x | x ∈ Rn} of input-output maps of Σ induced by all possible initial states of Σ,

• as the input-output map YΣ,x0 induced by a particular initial state x0 of Σ.

For the sake of simplicity, we will adopt the third approach. In principle, this would imply that in addition
specifying the matrices of Σ we would have to specify an initial state too. Again, for the sake of simplicity, we
will consider the the initial state is zero. That is, we formalize the input-output behavior of Σ as a the input-output
map of Σ induced by the initial state x0 = 0. We call the input-output map YΣ,0 induced by the initial state 0 of Σ

the input-output map of Σ, and we denote YΣ,0 by YΣ.
We would like to stress that the assumption that the initial state is zero is not essential, it is made in order to

avoid notational and terminological difficulties, the general case is treated in [203].
We model the input-output behavior of a system (not necessarily of a finite-dimensional LSS) as a function

f : U ×Q→ Y . (B.3)

In the rest of this section, functions of the form (B.3) will be called input-output maps . Such a function captures
the behavior of a black-box, which reacts to piecewise-continuous inputs and switching sequences by generating
outputs in Rp. Next, we define what it means that this black-box can be modeled as an LSS, i.e. that an LSS
is a realization of f . The LSS Σ is a realization of an input-output map f of the form (B.3) , if YΣ = f , i.e. if
the input-output map of Σ coincides with f . If Σ is a realization of f , then Σ is a minimal realization of f , if
for any LSS realization Σ̂ of f , dimΣ ≤ dim Σ̂. Two LSSs Σ1,Σ2 are said to be input-output equivalent, if their
input-output maps are equal, i.e. YΣ1 =YΣ2 . A LSS Σ is said to be minimal, if it is a minimal realization of its own
input-output map f = YΣ.

B.3 Characterization of minimality by reachability and observability
We start by presenting the main results on minimality of LSSs . To this end, we need to introduce the notions
of observability, span-reachability and isomorphism. In the subsequent discussion, Σ denotes a LSS of the form
(B.1). An LSS Σ is said to be observable , if for any two distinct states x1 6= x2 ∈ Rn, the input-output maps
induced by x1 and x2 are different, i.e., if ∀x1,x2 ∈ Rn : x1 6= x2 =⇒ YΣ,x1 6= YΣ,x2 .

Let Reach0(Σ)⊆Rn denote the reachable set of the LSS Σ from the initial condition x0 = 0, i.e., Reach0(Σ) =
{x(t) ∈ Rn | there exists σ ∈Q,u ∈U ,y ∈ Y ,(x,u,σ ,y) solution of Σ}.

The LSS Σ is said to be reachable, if Reach0(Σ) = Rn. The LSS Σ is span-reachable if Rn is the smallest
vector space containing Reach0(Σ). We note that span-reachability and reachability are the same in continuous-
time, see [260].

Next, we recall the notion of LSS morphism. Consider two LSSs

Σ1 = (n,{(Aq,Bq,Cq) | q ∈ Q})
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and

Σ2 = (na,Q,{(Aa
q,B

a
q,C

a
q) | q ∈ Q}).

An LSS morphism S from Σ1 to Σ2, denoted by S : Σ1→ Σ2, is an na×n matrix, such that

∀q ∈ Q : Aa
qS = S Aq, Ba

q = S Bq, Ca
qS =Cq.

The LSS morphism S is said to be an isomorphism, if the matrix S is square and invertible.
The following theorem summarizes various results on minimality, see [202, 203, 209].

Theorem B.1 (Minimality, [202, 203, 209]). A LSS Σ is minimal, if and only if it is span-reachable and ob-
servable. If Σ1 and Σ2 are two minimal LSSs, and Σ1 and Σ2 are input-output equivalent, then Σ1 and Σ2 are
isomorphic.

The usefulness of Theorem B.1 becomes more apparent after presenting an algorithm for minimization of
LSSs, i.e. for converting an LSS into a minimal one while preserving its input-output map. This means that as
far as the external behavior is concerned, we can always replace an LSS with a minimal one. Moreover, this
minimal LSS will have such nice properties as observability and span-reachability. Finally, the fact that minimal
and equivalent LSSs are isomorphic is important for system identification: it means that while several LSSs can
produce the same observed behavior, as long as we restrict attention to minimal LSSs, all possible models fitting
the observed behavior are essentially the same (isomorphic).

In fact, any LSS can be transformed to a minimal LSS with the same input-output behavior. In order to formu-
late the minimization algorithm, we will present a geometric and algebraic characterization of span-reachability
and observability. This will be done in the next section.

B.4 Algebraic and geometric characterization of reachability and ob-
servability, minimization algorithm

Below we present an algebraic characterization of span-reachability and observability. This characterization is
similar to the well-known conditions on the rank of controllability and observability matrices of LTI systems, and
similarly to the LTI case, it allows us to formulate a minimization algorithm for LSSs.

In order to present these conditions, we recall from [227] the definition of the following spaces

Definition B.1 (W ∗ and V ∗). Let V ∗ = V ∗(Σ) be the smallest subspace (with respect to the inclusion) of Rn

which satisfies AqV ∗ ⊆ V ∗ and ImBq ⊆ V ∗ for any q ∈ Q. We will call V ∗(Σ) the reachable subspace of Σ. Let
W ∗ = W ∗(Σ) be the largest subspace (with respect to inclusion), such that W ∗ ⊆ kerCq and AqW ∗ ⊆ W ∗, for
any q ∈ Q. We will call W ∗ the unobservable subspace of Σ.

Remark B.1 (Computing V ∗,W ∗). It is not difficult to see that the spaces V ∗ and W ∗ can be computed
as follows. Set V0 to the space spanned by x0 and the columns of Bq and define Vk recursively as follows:
Vk = V0 + ∑q∈Q AqVk−1. It then follows that Vn−1 = V ∗. Similarly, if we set W0 =

⋂
q∈Q kerCq and Wk =

W0∩
⋂

q∈Q A−1
q (Wk−1), then Wn−1 = W ∗.

The above steps can be implemented, see [202, 29].
We can also define an explicit matrix representation of the spaces V ∗ and W ∗ too. To this end, we will use

the notation and terminology for sequences of letters, their length and lexicographic ordering from Section 2.2.
In particular, Q∗ will denote the set of all finite sequences of the elements of Q, and without loss of generality we
assume that Q = {1, . . . ,D} and let v1 ≺ v2 ≺ . . . be lexicographic ordering on the sequences from Q∗ as defined
in Definition 2.1 for X = Q. Recall that N(M) denotes the number of sequences from Q∗ of length at most M, and
that |vi| ≤M if and only if i ≤ N(M). Furthermore, we will need the following notation for products of square
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matrices {Aq}q∈Q indexed by sequences from Q∗, as defined in Notation 2.1, Section 2.2. We are now in position
to define the matrix representation of V ∗ and W ∗.

Define the controllability matrix of Σ as

R(Σ) =
[
Av1 B̃, Av2 B̃, . . . , AvN(n−1) B̃

]
∈ Rn×(mD+1)N(n−1) (B.4)

with B̃ =
[
B1, B2, . . . , BD

]
∈ Rn×(Dm+1).

Define the observability matrix of Σ as

O(Σ) =
[
(C̃Av1)

T , (C̃Av2)
T , . . . , (C̃AvN(n−1))

T
]T
∈ RpDN(n−1)×n (B.5)

with C̃ =
[
CT

1 , CT
2 , . . . , CT

D
]T ∈ RpD×n. The relationship between W ∗,V ∗ and the matrices defined above

is as follows.

Proposition B.1. V ∗ = ImR(Σ) and W ∗ = kerO(Σ).

In other words, the controllability matrix can be viewed as a matrix representation of V ∗ and the observability
matrix can be viewed as a matrix representation of the orthogonal complement of W ∗. Theoretically, the control-
lability and the observability matrices could be used to compute the spaces W ∗,V ∗, but this approach would not
be very practical, as the size of the matrices involved is exponential in the number of continuous states. For this
reason, it is more practical to use the ideas of Remark B.1. We are now ready to state the algebraic and geometric
conditions for span-reachability and observability.

Theorem B.2 ([260, 203, 205, 209]). . Let Σ = (n,{(Aq,Bq,Cq) | q ∈ Q}) be an LSS .

1. Span-Reachability: The following three statements are equivalent:

1. Σ is span-reachable,

2. V ∗ = Rn,

3. rankR(Σ) = n.

2. Observability: The following are equivalent:

1. Σ is observable,

2. W ∗ = {0},
3. rankO(Σ) = n.

Remark B.2 (Minimal LSS may have non-minimal subsystems). Note that observability (span-reachability) of
an LSS does not imply observability (reachability) of any of its linear subsystems. In fact, it is easy to construct
a counter example [203]: Σ = (n,{(Aq,Bq,Cq) | q ∈ Q}), Q = {q1,q2}, p = m = 1 and

Aq1 =

0 1 0
0 0 0
0 0 1

 , Bq1 =

0
1
0

 , Cq1 =

1
1
0

T

, Aq2 =

0 0 0
0 0 0
0 1 0

 , Bq2 =

0
0
0

 , Cq2 =

0
0
1

T

It is easy to see that Σ is span-reachable and observable, yet none of the subsystems are reachable or observable.
Together with Theorem B.1, which states that minimal realizations are unique up to isomorphism, this implies

that there exist LSSs which cannot be converted to an equivalent LSS where all (or some) of the linear subsystems
are observable (or reachable).
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The proof of Theorem B.2 can be found in [260, 203, 227]. The intuition behind it is as follows: V ∗ is simply
the span of all reachable states, and YΣ,x1 = YΣ,x2 ⇐⇒ x1− x2 ∈W ∗.

We are now able to recall from [227] the following algorithms for converting a LSS to a reachable, observable
and minimal one respectively, while preserving input-output behavior. We follow the presentation of [227].

Procedure B.1 (Reachability reduction). Assume that dimV ∗ = r and choose a basis b1, . . . ,bn of Rn such that
b1, . . . ,br span V ∗. It is easy to see that in this new basis, the matrices Aq,Bq,Cq can be rewritten as

Aq =

[
AR

q A
′
q

0 A
′′
q

]
,Cq =

[
CR

q , C
′
q

]
,Bq =

[
BR

q
0

]
, (B.6)

where AR
q ∈ Rr×r,BR

q ∈ Rr×m, and CR
q ∈ Rp×r.

Define the LSS ΣR = (r,Q,{(AR
q ,B

R
q ,C

R
q ) | q ∈ Q}).

It is easy to see that ΣR is span-reachable, and it is input-output equivalent to Σ. Intuitively, ΣR is obtained
from Σ by restricting the dynamics and the output map of Σ to the subspace V ∗.

Procedure B.2 (Observability reduction). Assume that dimW ∗ = n−o, and let b1, . . . ,bn be a basis in Rn such
that bo+1, . . . ,bn span W ∗. In this new basis, the matrices Aq, Bq, Cq can be rewritten as

Aq =

[
AO

q 0
A
′
q A

′′
q

]
,Cq =

[
CO

q , 0
]
,Bq =

[
BO

q

B
′
q

]
, (B.7)

where AO
q ∈ Ro×o,BO

q ∈ Ro×m, and CO
q ∈ Rp×o.

Define LSS ΣO = (o,Q,{(AO
q ,B

O
q ,C

O
q ) | q ∈ Q}).

It then follows that ΣO is observable and it is input-output equivalent to Σ. If Σ is span-reachable, then so is
ΣO. Intuitively, ΣO is obtained from Σ by merging any two states x1, x2 of Σ, for which x1− x2 ∈W ∗.

Finally, by combining Procedures B.1 – B.2 and using Theorem B.1, we can formulate the following proce-
dure for minimization of LSSs.

Procedure B.3 (Minimization). Transform Σ to a reachable LSS ΣR by Procedure B.1. Subsequently, transform
ΣR to an observable LSS ΣM = (ΣR)O using Procedure B.2. Then ΣM is a minimal LSS which is input-output
equivalent to Σ.

A more detailed description of the algorithms described in Procedure B.1 – B.3 can be found in [202].

B.5 Existence of a realization, Kalman-Ho algorithm
In this section we present conditions on existence of a LSS realization of an input-output map and an algorithm
for computing a LSS realization from input-output data. In this section, f denotes an input-output map of the
form (B.3). Note that at this point we do not assume that f is an input-output map of an LSS. We start with
defining the concept of Markov-parameters and the Hankel-matrix of f . The former is used to define the latter.
Similarly to the the linear case, these concepts are defined using only input-output data. The Hankel-matrices
are then used for characterizing the existence of a LSS realization and for computing such a realization from
input-output data. This is precisely the reason that the Hankel-matrix is defined without the assumption that an
LSS realization exists. In this section, we will tacitly assume that Q = {1,2, . . . ,D}. This can be done without
loss of generality.

We start with defining the Markov-parameters of f . To this end, we assume that f has a generalized kernel
representation (in the sequel abbreviated as GKR), that is, there exists a function G f : Q×T ×T → Rp×m such
that for all u ∈U , y ∈ Y , such that

f (u,σ)(t) =
{ ∫ t

0 G f (σ ,s, t)u(s)ds continuous time
∑

t−1
s=0 G f (σ ,s, t)u(s) discrete time
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and G satisfies a number of technical conditions. For the continous-time case, these conditions are elaborated in
[203, 202], for the discrete-time case these conditions are described in [209]. These conditions imply that there
exists maps S f

q1,q2 : Q∗→ Rp such that for the discrete-time case

G f (σ ,s, t) =
{

Sσ(t),σ(s)(ε) s = t−1
Sσ(t),σ(s)(σ(s+1) · · ·σ(t−1)) s < t−1

For the continuous-time case, the conditions on G f imply that G f (σ ,s, t) depends analytically t1, . . . , tk, where
s = t0 ≤ t1 < t2 < · · ·< tk < t = tk+1 and σ restricted to [ti, ti+1) equals the constant qi ∈Q, i = 0, . . . ,k and S f

q0,qk

are the coefficients of the Taylor series expansion of G f (σ ,s, t), if the latter is viewed as an analytic function of
τi = ti− ti−i, i = 1, . . . , tk, i.e.,

S f
q,q0

(ε) = G f
q0q(0,0), S f (q,q0)(q1 · · ·qk) =

d
dt1
· · · d

dtk
G f

q0q1···qk
(0, t1, . . . , tk,0)|t1=···tk=0

For the precise definition, see [203], or [205, Definition 25].
In both cases (CT and DT), the functions {S f

r,q}r,q∈Q uniquely determine G f and hence f , and conversely, the
values of {S f

r,q} can uniquely be recovered from the values of f . For the discrete-time case,

S f
r,q(v) =

[
f (u1,σ)(t) . . . f (um,σ)(t)

]
,

where ui(0) is the ith standard unit vector of Rm, and ui(s) = 0 for all s > 0, i = 1, . . . ,m, and t and σ are defined
as follows: if v = ε , then t = 1 and σ is any element of Q such that σ(0) = q and σ(1) = r; if v = q1 · · ·qk,
q1, . . . ,qk ∈ Q and k > 0, then t = k + 1 and σ ∈ Q is such that σ(0) = q,σ(t) = r and σ(i) = qi for all i =
1, . . . , t−1.

For the continous-time case, similar formulas can be stated: for any v = q1q2 · · · ,qk ∈ Q∗, q1, . . . ,qk ∈ Q,
k > 0 and u ∈U , define the map fu,v : Rk

+→ Rp as follows

fu,v(t1, t2, . . . , tk) = f (u,σ)(
k

∑
j=1

t j).

where σ ∈Q is such that for any i = 0, . . . ,k−1, the restriction of σ to [Ti,Ti+1) is qi+1 ∈Q, T0 = 0, Ti = ∑
i
j=1 t j.

In other words, fu,q1···qk(t1, . . . , tk) is the output before the k+1th switch, if in every discrete mode qi the system
stays for ti time. Let u j be the constant function which takes as value the jth standard unit vector of Rm.

S f
q,q0

(v) =
d

dt0

d
dt1
· · · d

dtk

[
fu1,q0vq(t0, t1, . . . , tk,0)) . . . fu1,q0vq(t0, t1, . . . , tk,0))

]
|t0=···=tk=0 if |v|= k > 0,

S f
q,q0

(ε) =
d

dt0

[
fu1,q0q(t0,0)) . . . fu1,q0vq(t0,0))

]
|t0=0

(B.8)

Then for any v ∈ Q∗, M f (v) is defined as

M f (v) =


S f

1,1(v), · · · , S f
1,D(v)

S f
2,1(v), · · · , S f

2,D(v)
... · · ·

...
S f

D,1(v), · · · , S f
D,D(v)

 . (B.9)

The value of M f are called the Markov parameters of f , and M f (v) is called the Markov parameter of f indexed
by v ∈ Q∗. Note that the Markov-parameters of f determine f uniquely,
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If Σ be of the form (B.1), and Σ is a realization of f , then

G f (σ ,s, t) =Cσ(t)Φσ (t,s)Bσ(s)

Φσ : {(t,τ) ∈ T×T | τ ≤ t}→ Rn×n, such that in DT, Φσ (t,s) = A(σ(t−1))A(σ(t−2)) · · ·A(σ(s+1)), and in
CT Xσ ,s : [s,∞) 3 t 7→Φσ (t,s) is the unique absolutely continous matrix-valued function which satisfies d

dt Xσ ,s =
A(σ(t))Xσ ,s and Xσ ,s(s) = In.

Similarly to the linear case, the Markov-parameters M f can be written as products of the matrices of an LSS
realization. To present this result, we need the following notation. If v = q1 · · ·qk with q1, . . . ,qk ∈ Q, k > 0, then

Av = Aqk Aqk−1 · · ·Aq1 if k > 0, Aε = In

Lemma B.1 ([202, 209, 203]). Then Σ is a realization of f , if and only if f has a GKR, and for all v ∈ Q∗,

M f (v) = C̃Av
[
B1, B2, · · · , BD

]
, (B.10)

where C̃ =
[
CT

1 , CT
2 , . . . , CT

D
]T ∈ RpD×n.

Using the notation of (B.8), we can rewrite (B.10) as S f
q,q0(v) =CqAvBq0 , ∀q,q0 ∈ Q.

Example B.1. Consider the linear switched system of the form (B.1), where Q = {1,2}, and

A1 =

0 0 0
0 1 0
1 0 1

 ,B1 =

0
1
1

 ,C1 =

0
0
1

T

,

A2 =

0 1 1
0 0 0
0 0 1

 ,B2 =

0
1
0

 ,C2 =

0
0
0

T

,

Consider the input-output map f =YΣ of Σ. Let us compute the Markov-parameters M f (ε), M f (1) and M f (2) of
f . Since Σ is a realization of f , we can use (B.10)

M f (ε) =

[
C1B1 C1B2
C2B1 C2B2

]
=

[
1 0
0 0

]
M f (i) =

[
C1AiB1 C1AiB2
C2AiB1 C2AiB2

]
=

[
1 0
0 0

]
,

(B.11)

where i = 1,2.

Next we define the notion of the Hankel-matrix of f . Similarly to the linear case, the entries of the Hankel-
matrix are be formed by the Markov parameters of f . For the definition of the Hankel-matrix of f , we will use
lexicographical ordering on the set of sequences Q∗.

Definition B.2 (Hankel-matrix). Consider the lexicographic ordering ≺ of Q∗ from Define 2.1. Define the
Hankel-matrix H f of f as the following infinite matrix

H f =


M f (v1v1) M f (v2v1) · · · M f (vkv1) · · ·
M f (v1v2) M f (v2v2) · · · M f (vkv2) · · ·
M(v1v3) M f (v2v3) · · · M f (vkv3) · · ·

...
... · · ·

... · · ·

 ,
i.e. the pD× (mD+1) block of H f in the block row i and block column j equals the Markov-parameter M f (v jvi)
of f . The rank of H f , denoted by rankH f , is the dimension of the linear span of its columns.
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In other words, the lth block column of H f is the sequence of Markov-parameters {M f (vlvk)}∞
k=1. If |Q|= 1,

then H f coincides with the Hankel-matrix as it was defined for linear systems.

Theorem B.3 (Existence, [202, 209, 203]). The input-output map f has a realization by an LSS if and only if f
has a GKR and rankH f <+∞. A minimal realization of f can be constructed from H f .

In fact, we can formulate a Kalman-Ho-like realization algorithm for LSSs. To this end, for every M,L ∈ N,
we define the following sub-matrix of the Hankel-matrix H f :

H f ,L,M =


M f (v1v1) M f (v2v1) · · · M f (vN(M)v1)

M f (v1v2) M f (v2v2) · · · M f (vN(M)v2)
...

... · · ·
...

M f (v1vN(L)) M f (v2vN(L)) · · · M f (vN(M)vN(L))

 . (B.12)

Recall from Definition 2.1 that N(K) is the unique integer such that {v1, . . . ,vN(K)} is the set of all element of Q∗

of length at most K. Intuitively, H f ,L,M is the sub-matrix of H f , obtained by keeping the columns of H f indexed
by words of length at most M and keeping the rows indexed by words of length at most L. In contrast to H f , the
matrix H f ,L,M is a finite matrix, albeit a very large one: its size is exponential in M and L. We are now read to
state the realization algorithm in Algorithm 12.

Algorithm 12 Realization algorithm
Inputs: an integer N > 0 and the Hankel-matrix H f ,N,N+1.
Output: LSS ΣN

1: Compute a decomposition H f ,N,N+1 = OR, where O ∈ RIN×n and R ∈ Rn×JN+1 and rankR = rankO = n,
IN = N(N)pD and JN+1 = N(N +1)(mD).

2: Consider the decomposition
R =

[
Cv1 , . . . , CvN(N+1)

]
,

such that Cvi ∈ Rn×(Dm), i = 1,2, . . . ,N(N + 1), i.e. Cvi ∈ Rn×(Dm), i = 1,2, . . . ,N(N + 1) are the block
columns of R. Define R,Rq ∈ Rn×JN , JN = N(N)mD, q ∈ Q as follows

R =
[
Cv1 , . . . , CvN(N)

]
,

Rq =
[
Cv1q, . . . , CvN(N)q

]
.

Note that for any i ∈ {1, . . . ,N(N)} there exists j = j(i,q) ∈ {2, . . . ,N(N +1)} such that viq = v j, hence Rq
is well defined.

3: Construct ΣN = (n,{(Aq,Bq,Cq) | q ∈ Q}) such that[
B1, . . . ,BD

]
=

the first mD columns of R[
CT

1 , CT
2 , . . . , CT

D
]T

= the first pD rows of O

∀q ∈ Q : Aq = RqR+
,

where R+ is the Moore-Penrose pseudo-inverse of R.
4: Return ΣN

The following theorem gives conditions under which the state-space representation returned by Algorithm 12
is a realization of the map f .
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B.5. EXISTENCE OF A REALIZATION, KALMAN-HO ALGORITHM

Theorem B.4 ([202, 219]). If rankH f ,N,N = rankH f , then Algorithm 12 returns a minimal realization of f . The
condition rankH f ,N,N = rankH f holds for a given N, if there exists a LSS realization Σ of f such that dimΣ≤N+1.

Remark B.3 (Determining a correct value for N). In order to ensure that Algorithm 12 yields a correct realization
of f , we need to select a value of N, such that rankH f ,N,N = rankH f holds. If rankH f ,N,N = rankH f is not satisfied,
then the LSS returned by Algorithm 12 might fail to be a realization of f . By Theorem B.4, one option is to select
N such that N is larger than the dimension of a LSS realization of f . Another, more practical, possibility is
to assume that f has a realization by a minimal LSS of dimension n and then choose the smallest N such that
rankH f ,N,N = n. Numerical experiments show that in this way one can often take N to be much smaller than n.
This is important, since the size of H f ,N,N is exponential in N. Of course, if no knowledge is available on LSS
realization of f , then choosing N becomes difficult.

Note that H f ,N,N can be computed from the responses of f . However, in principle, the computation of H f ,N,N
requires an exponential number of input/output experiments involving different switching sequences. This is
clearly not very practical. It would be more practical to build H f ,N,N based on the response of f to a single
switching sequence. Preliminary results on the latter approach, for the discrete-time case, can be found in [206].

Remark B.4. One way to compute the factorization H f ,N,N+1 =OR in Algorithm 12 is as follows. If rankH f ,N,N+1 =
n and H f ,N,N+1 =USV is the SVD decomposition of H f ,N,N+1 with S being the n×n diagonal matrix, then define
O =US1/2 and R = S1/2V .

Note that the size of the matrix H f ,N,N+1 grows exponentially with N. This renders Algorithm 12 impractical.
There is a way to get around it, by using so called selections, which will play an important role in the application
of realization theory to model reduction and system identification.

We will present only the SISO case (p = m = 1), the full MIMO case was discussed in [214, 30]. We will call
any subset α ⊆Q∗×Q a selection. Finite selections will be used to define Hankel-like matrices, entries of which
are Markov parameters.

Assume that α and β are selection respectively and assume that α and β are both finite sets of cardinality n
and l respectively. Fix a enumeration of the elements of α and β as follows.

α = {(ui,qi)}n
i=1, β = {(v j,σ j)}l

j=1, (B.13)

Let us now define the matrix H f ,α,β ∈ Rn×l as follows:[
H f ,α,β

]
i, j =S f

qi,σ j(v jui) i = 1, . . . ,n, j = 1, . . . , l (B.14)

If α,β has the same cardinality, then the matrix H f ,α,β is a square one. Intuitively, the rows of H f ,α,β are indexed
the elements of α , and the columns by the elements of β .

In order to present the algorithm, we define the matrices Hq, f ,α,β ∈Rn×l , H f ,α,q ∈Rn×1 and Hq, f ,β ∈R1×l :[
Hq, f ,α,β

]
i, j = S f

qi,σ j(v jqui), i = 1, . . . ,n, j = 1, . . . , l (B.15)[
H f ,α,q

]
i = S f

qi,q(ui), i = 1, . . . ,n (B.16)[
Hq, f ,β

]
j = S f

q,σ j(v j) j = 1, . . . , l (B.17)

Algorithm 13 Realization algorithm for LSSswith nice selections

Consider the factorization H f ,α,β = OnmRnm such that Onm is full column rank, Rnm is full row rank and
rankOn = rankRn = nm.
Define

Âq = O+
nmHq, f ,α,β R+

nm , B̂q = O+
nmH f ,α,q, Ĉq = H f

q, f ,β R+
nm

and O+
nm ,R

+
nm is the Moore-Penrose inverse of On and Rn respectively.

return Σ̂ = (nm,{(Âq, B̂q,Ĉq) | q ∈ Q}).
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APPENDIX B. REVIEW OF REALIZATION THEORY OF LINEAR SWITCHED SYSTEMS

Lemma B.2 (Adapted from [66], Ho-Kalman algorithm). If nm is the dimension of a minimal LSS realization of
f , then the LSS Σ̂ defined in Algorithm 13 is a minimal realization of f . Moreover, if nm is the dimension of a
minimal LSS realization of f , then there exists a pair of selections α,β ⊆ Q∗×Q such that the cardinality of the
sets α,β is nm and rankH f ,α,β = nm.

From [219] it follows that we can choose αN = βN = {(v,q) | v ∈ Q∗, |v| ≤ N,q ∈ Q}, where N is any integer
not smaller than the dimension of a minimal LSS realization of f .

B.6 Stability and minimality
Stability of LSSs is a classical research topic with a very rich literature [161, 260]. The purpose of this section is
to recall some results on preservation of stability under minimization, i.e., to recall results which state that if an
LSS is stable in some sense, then the corresponding minimal LSS will also be stable.

More precisely, we will concentrate on quadratically stable LSSs. Informally, a quadratically stable LSS is
a LSS which admits a common quadratic Lyapunov function. Formally, a LSS of the form (B.1) quadratically
stable, if there exists a positive definite matrix P > 0 such that

∀q ∈ Q : S(q,Σ,P)< 0, (B.18a)

where

• in continuous-time (Lyapunov equation)

S(q,Σ,P) = AT
q P+PAq, (B.18b)

• in discrete-time (Stein equation)
S(q,Σ,P) = AT

q PAq−P. (B.18c)

For discrete-time LSSs it will be useful to introduce the notion of strong stability [227], which will be used later
on for jump-Markov systems and for model reduction: LSS Σ of the form (B.1) is strongly stable, if the matrix
∑q∈Q AT

q ⊗AT
q is a stable matrix (all its eigenvalues lie inside the unit disc), where ⊗ denotes Kronecker product.

From [64] it follows that if Σ is strongly stable if and only if for any G > 0, there exists a unique P > 0 such that
P = ∑q∈Q AT

q PAq +G . In particular, P−AT
q PAq > 0 for all q ∈ Q, i.e., Σ is quadratically stable.

It then follows [161, 260] that a quadratically stable LSS is globally uniformly asymptotically stable and its
input-output map has a finite L2 gain, and it is also BIBO stable. We can then state the following result.

Theorem B.5 ([227]). If an input-output map f has a realization by a quadratically stable LSS (respectively
strongly stable LSS), then all minimal LSS realizations of f are quadratically stable (respectively strongly stable).
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[150] A. Khalate, X. Bombois, R. Tóth, and R. Babuska. Optimal experimental design for LPV identification
using a local approach. In Proceedings of the IFAC Symposium on System Identification, 2009.

[151] Gerhard Kramer. Directed information for channels with feedback. PhD thesis, Swiss Federal Institute of
Technology Zürich, 1998.
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[263] R. S. Sutton, H. R. Maei, and Cs. Szepesvári. A convergent o(n) temporal-difference algorithm for off-
policy learning with linear function approximation. In Advances in neural information processing systems,
pages 1609–1616, 2009.

[264] J.A.K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vandewalle. Least squares support
vector machines, 2002.

[265] M. Sznaier and C. Mazzaro. An LMI approach to the identification and (in)validation of LPV systems.
In S.O.R. Moheimani, editor, Perspectives in robust control. Lecture Notes in Control and Information
Sciences, volume 268, pages 327–346. Springer, London, 2001.

[266] P. Tabuada. Verification and Control of Hybrid Systems: A Symbolic Approach. Springer-Verlag, 2009.

[267] P. Tabuada, A. D. Ames, A. Julius, and G. J. Pappas. Approximate reduction of dynamic systems. Systems
and Control Letters, 57(7):538–545, 2008.

[268] M. Tanelli, D. Adagna, and M. Lovera. Identification of LPV state-space models for automatic web service
systems. IEEE Transactions on Controls Systems Technology, 19:93–103, 2011.

[269] D.C. Tarraf. Control of Cyber-Physical Systems, volume 449 of Lecture Notes in Control and Information
Sciences. Springer,Heildelberg, 2013.

[270] Gy. Terdik. Bilinear state space realization for polynomial stochastic systems. Comput. Math. Appl.,
22(7):69–83, 1991.

189



BIBLIOGRAPHY

[271] Gy. Terdik. Bilinear stochastic models and related problems of nonlinear time series analysis. In Lecture
Notes in Statistics, number 142. Springer,New-York, 1999.

[272] R.J.M Theunissen, M. Petreczky, R.R.H Schiffelers, D.A. van Beek, and J.E. Rooda. Application of
supervisory control synthesis to a patient support table of a magnetic resonance imaging scanner. IEEE
Transaction on Automation Science and Engineering, 11:20 –32, 2014.

[273] R. Tóth. Identification and Modeling of Linear Parameter-Varying Systems. Springer Verlag. Lecture
Notes in Control and Information Sciences 403, 2010.
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[310] Y. Yuan, K. Glover, and J. Gonçalves. On minimal realisations of dynamical structure functions. Automat-
ica, 55:159–164, 2015.

[311] E. Zerz. Behavioral systems theory: A survey. International Journal of Applied Mathematics and Com-
puter Science, 18(3):265 – 270, 2008.

[312] L. Zhang, E. Boukas, and P. Shi. µ-Dependent model reduction for uncertain discrete-time switched linear
systems with average dwell time. International Journal of Control, 82(2):378–388, 2009.

[313] L. Zhang, P. Shi, E. Boukas, and C. Wang. H-infinity model reduction for uncertain switched linear
discrete-time systems. Automatica, 44(8):2944–2949, 2008.

[314] Qinghua Zhang and Lennart Ljung. Lpv system common state basis estimation from independent local
lti models. IFAC-PapersOnLine, 48(28):190–195, 2015. 17th IFAC Symposium on System Identification
SYSID 2015.

[315] W. Zhang, W. Liu, C. Zang, and L. Liu. Multi-agent system based integrated solution for topology identi-
fication and state estimation. IEEE Transactions on Industrial Informatics, 13(2):714–724, 2017.

[316] L. Zheng-Fan, C. Chen-Xiao, and D. Wen-Yong. Stability analysis and H∞ model reduction for switched
discrete-time time-delay systems. Mathematical Problems in Engineering, 15, 2014.

[317] S. Zhuk and M. Petreczky. Minimax observers for linear differential-algebraic equations. IEEE Transac-
tions on Automatic Control, 62:4104–4108, 2017.

192


