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Chapter 1

General introduction

In this report I will present some selected results of my research activities. I will start with the description of my global research objectives in Section 1.1. In Section 1.2, I will discuss my research activities related to my main research topic, which is realization theory and its applications to system identification and model reduction. In Section 1.3, I will present my research activities on those topics which fall outside realization theory and its applications. Finally, in Section 1.4 I will describe the structure of the report 1.1 Global research objectives: reliable models for control of complex cyber-physical systems

The focus of my research has been the development of reliable models for control, fault detection and prediction of complex cyber-physical systems. Therefore, the topic of my research falls within control theory. Cyber-physical systems (abbreviated as CPS) [8,[START_REF] Tarraf | Control of Cyber-Physical Systems[END_REF][START_REF] Lee | The past, present and future of cyber-physical systems: A focus on models[END_REF] are systems combining computer software with physical hardware and they are an integral part of modern technology (e.g., automotive industry, aerospace, smart buildings, smart grids, manufacturing systems, mechatronics, networked control systems). Control, fault detection and prediction of cyber-physical systems have been subject of intensive research. However, much remains to be done when it comes to finding models for such systems.

When describing my research philosophy, for the simplicity of presentation I will talk about modeling for controller synthesis. However the same ideas apply when building models for other purposes, such as fault detection and prediction. To begin with, notice that in order to build provenly correct controllers, mathematical models of the to be controlled plant are used. The model is usually a dynamical system in the mathematical sense, and so is the controller. It is then shown by formal proof that the interconnection of the controller and the model, which is a dynamical system itself with known equations, has the desired properties. As a rule, it can also be shown that these properties will still hold if the plant's model is slightly changed.

The problem with this approach is that it guarantees the correctness of the controller for the model, not for the real plant. Hence, after designing the controller, extensive testing is still required. However, this approach has the advantage that if the designed controller does not work well on the physical plant, then there is a clear a way to improve it. Namely, one should use a more accurate model of the plant or improve the controller by making it less sensitive to the modeling error.

That is, the ideal workflow proposed by control theory/engineering methods is as follows:

• Step 1 (Modeling for control) Construct a model of the plant.

•

Step 2 (Model-based controller synthesis) Use the model to compute a controller meeting the control objectives.
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Step 3 (Testing) Test the controller on the physical plant or on , if the control objectives are not met, then go back to Step 1 and construct a more realistic model or a more robust controller.

The workflow suggests the importance of being able to construct good models. Indeed, from a practical point of view, the theoretical guarantees of Step 2 are meaningful, only if they help to reduce the number and cost of each iteration. In order to achieve this, methods for carrying out the modeling step of Step 1 are required. In a nutshell, my research has been centered around the theoretical questions of modeling and its interplay with controller synthesis, i.e., the interplay of Step 1. and Step 2.. The practical relevance of control theory is to a large extent determined by the presence of suitable modeling methods 1 .

For a modeling framework to be suitable for controller synthesis, it should provide a class of mathematical models, algorithms and theory to accomplish the following goals: O1: Learning from data: black-box and gray-box system identification. There should be algorithms for estimating models from measurement data. These methods should allow the use of prior knowledge for constructing models. The problem for learning models is called system identification in control theory community.

O2: Model reduction: simplifying models. There should be algorithms for simplifying existing models, i.e. replacing them by a simpler model observable behavior of which is close to the original one. The problem of simplifying models is called model reduction in control theory community.

O3: Compatibility with controller synthesis: models suitable for controller, theoretical guarantees, invariance w.r.t. modeling methods. First of all, both system identification and model reduction methods should result in models which can be used for controller synthesis. Second, there should be theoretical guarantees that a controller calculated based on a model obtained via system identification or model reduction will achieve the desired control objectives for the underlying system. More precisely, for system identification, we would like to have theoretical guarantees that if sufficient amount of measurements are available, then any controller synthesized for the model learned from data will also achieve the control objectives when applied to the true physical system. In other words, for a sufficiently large number of measurements the model learned from data is good enough for controller synthesis. Likewise, for a simplified model obtained from model reduction, we would like to have theoretical guarantees that the controller synthesized based on this model will work for the original model as well. Furthermore, if two system identification or model reduction methods result in two different models with the same observable behavior, we would like to have guarantees that controller synthesized for one of them will work for the other model as well, i.e., for observationally equivalent models it should not matter which one is used for controller synthesis.

The motivation for these requirements is quite intuitive. Clearly, in the absence of methods for learning models from data or for simplifying overly complex models, modeling becomes too difficult and there is little to be gained from using model based methods instead of just tuning controllers in a ad-hoc fashion. If the models generated by system identification or model reduction are not in a form which is suitable for controller synthesis, then there is little use in building those models.

In the absence of theoretical guarantees for system identification and model reduction, the modeling step becomes completely ad-hoc: if the controller synthesized based on the current model fails, it is not clear if the model class has to be changed, the amount of data used to find the model has to be increased or another estimation method has to be used. In this way, whatever is gained due to theoretically solid control synthesis methods will be lost when trying to find good models. That is, instead of ad-hoc tuning of the controller, the user will tune the model in a ad-hoc manner. The usefulness of such an approach is dubious.

GLOBAL RESEARCH OBJECTIVES: RELIABLE MODELS FOR CONTROL OF COMPLEX CYBER-PHYSICAL SYSTEMS

Finally, if two models obtained via systems identification or model reduction are observationally equivalent, then there is no way of deciding which one is the better, so either model should lead to a correct controller.

Unfortunately, a coherent modeling framework as discussed above is available only for a very small class of systems. Namely, such a framework exists for classical Linear Time-Invariant (LTI) model. Even for that case there are gaps in the existing theory. However, linear time-invariant models are not suitable for representing the behavior of more complex cyber-physical systems.

The high-level objective of my research was to accomplish the goals above (O1,O2,O3) for various model classes which are more general than linear time-invariant models and which are suitable for representing larger classes of cyber-physical systems. That is, the objective is to come up with a methodology containing system identification and model reduction algorithms along with theoretical guarantees that the models produced by those algorithms are useful for controller synthesis for cyber-physical systems. So far, I have been focusing on the following model classes: Hybrid Systems, Stochastic Bilinear Systems, and Linear Parameter-Varying (LPV) Systems. In order to achieve the stated goals for these model classes, I used realization theory and developed it further when it was necessary.

The goal of realization theory is to characterize the relationship between the observed behavior and the internal structure of the models. More precisely, realization theory attempts to answer the following questions for a given class of dynamical systems:

• Existence of a realization, realization algorithm When is it possible to construct a dynamical system of the given class which generates the specified input/output behavior ? Can we provide an algorithm for constructing such a dynamical system from the input-output behavior ?

• Minimality How to characterize minimal dynamical systems which generate the specified input/output behavior ? By minimal we mean minimal dimensional, i.e. with the least number of state variables. Are minimal dynamical systems unique in some sense ? Do minimal dynamical systems have structural properties which are useful for control, i.e., can they be driven to a desired state by using control inputs (controllability) and can their internal state be estimated from the observed behavior (observability). Can we propose algorithms for checking minimality ?

The standard answers to this are usually as follows. One has to find a class of dynamical systems and a class of algebraic structures together with a suitable notion of dimension and basis elements such that the following holds. The algebraic structure (Hankel-structure) generated by the input-output data has a finite dimension, if and only if the input-output behavior can be generated by a dynamical system from the designated class.

The dynamical system then can be constructed from a basis of the Hankel-structure. Moreover, minimality is usually equivalent to observability and controllability. In addition, minimal dynamical systems realizing the same behavior are isomorphic. Note that for each class of systems the notions of minimality, isomorphism, controllability, observability, Hankel-structure have to be defined separately, and the above results have to be proven separately. This means that for control, it is enough to work with minimal dynamical systems, as such systems can indeed be controlled, and their states can be observed, hence controllers can be built. Moreover, due to the fact that minimal representations are isomorphic, the resulting controller will not depend on the choice of the dynamical system, as long as it represents the same input-output behavior. Furthermore, the parameters of such models could be recovered from input-output measurements, hence such models could be learned from data. Moreover, system identification and model reduction algorithms tend to result in minimal systems. That is, minimal models are likely candidates for models for which a package of system identification and model reduction algorithms can be constructed, such that the models produced by these algorithms are useful for control. Furthermore, algorithms for constructing models from input-output data actually give rise to system identification algorithms, and algorithms for transforming models to minimal ones give rise to model reduction algorithm. Realization theory is also used for proving theoretical correctness of system identification and model reduction algorithms.

That is, realization theory provides the theoretical foundations for designing the desired package of theoretically sound system identification and model reduction algorithms which are useful for control.
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In the next section, Section 1.2, I will present my research activities on realization theory and its application to system identification and model reduction.

Principal research topics: realization theory and its applications

In the past decade the focus of my research was realization theory and its applications to model reduction and system identification. Within realization theory, I focused on stochastic bilinear and linear parameter-varying (LPV) systems, and to a lesser extent on hybrid systems. Within application of realization theory, I focused on using my results on realization theory of hybrid, LPV and stochastic bilinear systems to model reduction and system identification. In addition, I made some excursions to realization theory of semi-algebraic systems, i.e., systems which are defined by polynomial equations and inequalities, and later, using the latter results, I also worked on realization theory of recurrent neural networks. The reason for focusing on LPV, bilinear, hybrid and semi-algebraic systems is that they can be used to model a wide class of cyber-physical systems, including those which exhibit nonlinear behavior, while at the same time they can be treated with numerical algorithms. This is especially true for bilinear and LPV systems, which encode complex behavior by a finite collection of matrices. Moreover, bilinear and LPV systems overlap with the class of the hybrid systems, the overlap corresponds to the class of linear switched systems and jump-Markov linear systems. More precisely, linear switched systems/jump-Markov linear systems can be viewed as LPV systems whose scheduling signals take values from a finite set. Furthermore, deterministic bilinear systems can be viewed as LPV systems without control inputs. In particular, bilinear systems contain deterministic autonomous switched systems as a special case. Likewise, stochastic bilinear systems can be viewed as stochastic LPV systems without control inputs, and they contain autonomous jump-Markov linear systems as a special case. Finally, all these system classes can be viewed as subclasses of semi-algebraic systems. These relationships are illustrated on Figure 1.1. Note that on Figure 1.1 the deterministic bilinear and switched systems are not viewed as special cases of their stochastic counterparts. This is motivated by the fact that from the point of view of realization theory and system identification the deterministic case is not really a special case of the stochastic one: in stochastic realization theory the external behavior is always a process or pair of processes, while in the deterministic case it is an input-output relation.

Below I will describe my research activities in the past dozen of years in mode detail.

Realization theory

I worked on realization theory of following system classes:

Stochastic bilinear systems and jump-Markov systems. I worked on realization theory of stochastic bilinear systems [START_REF] Petreczky | Realization theory of stochastic jump-markov linear systems[END_REF][START_REF] Petreczky | Realization theory for a class of stochastic bilinear systems[END_REF] with René Vidal (Johns Hopkins University), resulting in a fairly complete theory. These results turned out to be useful for realization theory and identification of stochastic LPV systems and of stochastic jump-Markov systems. In particular, existence of a realization by stochastic bilinear systems was characterized, along with minimality of such realizations. In addition, a formal definition of a stochastic bilinear realization in forward innovation form was proposed, and it was shown that minimal stochastic bilinear systems in forward innovation realizing the same output are isomorphic, and any stochastic bilinear system can be converted to a minimal one in forward innovation form while preserving its output process. Moreover, a covariance realization algorithm was formulated, which calculates a minimal stochastic bilinear realization in forward innovation form for a given process. These results are relevant for theoretical analysis of system identification algorithms, especially for subspace methods, as it was demonstrated in [START_REF] Mejari | Realization and identification algorithm for stochastic LPV state-space models with exogenous inputs[END_REF][START_REF] Mejari | Consistent and computationally efficient estimation for stochastic LPV statespace models: realization based approach[END_REF].

LPV systems. I worked on realization theory of deterministic LPV state-space models with affine dependence [START_REF] Petreczky | Realization theory for LPV state-space representations with affine dependence[END_REF], in collaboration Roland Tóth (Eindhoven University of Technology) and Guillaume Mercère (Université de Poitiers). I also worked on realization theory of stochastic LPV state-space models with affine dependence [START_REF] Mejari | Realization and identification algorithm for stochastic LPV state-space models with exogenous inputs[END_REF] in collaboration with Manas Mejari (Université de Lille). Manas Mejari was a postdoc LPV systems under my supervision and this work was funded by the project CPER Data 'Machine learning meets control'. Furthermore, I worked on the question of preserving minimality while converting LPV models to LFR models [5]. This is a joint work with my PhD student Ziad Alkhoury (Université de Poitiers/ École des Mines de Douai (IMT-Lille-Douai) and his co-advisor Guillaume Mercère (Université de Poitiers). I also worked on embedding non-linear models to LPV state-space models [1] together with Abbas Hossam (Electrical Engineering Department, Faculty of Engineering, Assiut University, Egypt), Roland Tóth (Eindhoven University of Technology), Nader Meskin (Department of Electrical Engineering,College of Engineering, Qatar University,Qatar), Javad Mohammadpour Velni (School of Electrical and Computer Engineering, The University of Georgia, GA, USA).

Realization theory of neural networks. I explored realization theory of recurrent neural networks by embedding them into rational systems (systems whose right-hand side are fractions of polynomials) and using realization theory of rational systems. This work was done in collaboration with Thibault Defourneau, who had a postdoctoral appointment under my supervision, and resulted in [START_REF] Defourneau | Realization theory of recurrent neural networks and rational systems[END_REF]. This work was funded by the regional project CPER Data 'Machine learning meets control'. The significance of these results is that they represent an alternative approach towards realization theory of RNNs and that they open up the possibility of studying RNNs through system classes which are perhaps easier to handle theoretically. In particular, the obtained results allowed us to formulate sufficient conditions for existence of a RNN representing a certain behavior and minimality of RNNs. In turn, these results give an insight to what can be expected for RNNs.
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Semi-algebraic systems, rational and Nash systems. I worked on realization theory of rational and Nash systems [START_REF] Nemcova | Realization theory of nash systems[END_REF][START_REF] Nemcova | System reduction and system identification of rational systems[END_REF][START_REF] Nemcova | Realization theory of nash systems[END_REF][START_REF] Nemcova | Local nash realizations[END_REF][START_REF] Nemcova | Unified framework for continuous and discrete time nash realizations[END_REF][START_REF] Nemcova | Observability reduction algorithm for rational systems[END_REF], leading to necessary conditions for existence of a realization and conditions for minimality, and an observability reduction algorithm. Nash systems are a subclass of semialgebraic systems, where the right-hand sides of the equations are semi-algebraic and smooth functions. This work was done in collaboration Jana Nemcova (Institute of Chemical Technology, Prague) and Jan van Schuppen (Delft University of Technology). This line of research has not resulted in a complete theory.

In [START_REF] Petreczky | Realization theory of discrete-time semi-algebraic hybrid systems[END_REF] a non-trivial necessary condition for existence of a realization is proposed for discrete-time semialgebraic systems defined by polynomial equations and inequalities. This work was done in collaboration with René Vidal (Johns Hopkins University).

Spaces of nonlinear and hybrid systems. In [START_REF] Petreczky | Metrics and topology for nonlinear and hybrid systems[END_REF][START_REF] Petreczky | Spaces of nonlinear and hybrid systems representable by recognizable formal power series[END_REF], I worked on definition distance and topology for a large class of hybrid systems. This work was carried out in collaboration with René Vidal (Johns Hopkins University) and Ralf Peeters (Maastricht University). We showed that the space of systems forms a Nash manifold. The topology of this manifold is compatible with a distance, for which an explicit formula exists.

The coordinate charts of the manifold correspond to local canonical forms.

Hybrid systems. I continued working on realization theory of hybrid systems, leading to several results which were not included into my PhD thesis: [START_REF] Petreczky | Realization theory for discrete-time linear switched systems[END_REF][START_REF] Petreczky | Realization theory of discrete-time linear hybrid system[END_REF][START_REF] Petreczky | Realization theory of discrete-time semi-algebraic hybrid systems[END_REF][START_REF] Petreczky | Observability reduction of piecewise-affine hybrid systems[END_REF]. Among these publications, [START_REF] Petreczky | Realization theory for discrete-time linear switched systems[END_REF][START_REF] Petreczky | Realization theory of discrete-time linear hybrid system[END_REF] dealt with extending the results of my PhD thesis to discrete-time systems with external switching, and the results represent a fairly complete realization theory for the systems in question. This work was carried out in collaboration with Laurent Bako (Laboratoire Ampère, École Centrale de Lyon) and Jan H. van Schuppen (Delft University of Technology). In contrast, [START_REF] Westra | Identification of piecewise linear models of complex dynamical systems[END_REF][START_REF] Petreczky | Realization theory of discrete-time semi-algebraic hybrid systems[END_REF][START_REF] Petreczky | Observability reduction of piecewise-affine hybrid systems[END_REF] dealt with hybrid systems with autonomous switching, and the results are partial.

In [START_REF] Petreczky | Observability reduction of piecewise-affine hybrid systems[END_REF] an observability reduction method is proposed for piecewise-affine hybrid systems in continuoustime. All this work was carried out in collaboration with Ralf Peeters, Ronald Westra (Maastricht University), and Jan H. van Schuppen (Delft University of Technology) respectively. Some other publications which appeared after my PhD present significantly revised versions of the results included into my PhD thesis: [START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach: Part i[END_REF][START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach: Part ii[END_REF][START_REF] Petreczky | Realization theory for linear hybrid systems[END_REF][START_REF] Petreczky | Partial-realization of linear switched systems: A formal power series approach[END_REF][START_REF] Petreczky | Span-reachability and observability of bilinear hybrid systems[END_REF][START_REF] Petreczky | Realization theory of linear hybrid systems[END_REF].

Application of realization theory

In addition to developing realization theory for bilinear and LPV systems, I also worked on its application to model reduction and system identification. In terms of model reduction, I focused more on linear switched systems, which an be viewed a subclass of LPV systems. However, first results on LPV systems were derived too. In system identification, I focused more on LPV systems. Below I wll describe by research on these topic in more detail.

System identification. I used the previously derived results on realization theory to derive new results on system identification of hybrid and LPV systems:

Identification of hybrid systems. In [START_REF] Petreczky | Identifiability of discrete-time linear switched systems[END_REF][START_REF] Petreczky | Minimality and identifiability of sarx systems[END_REF][START_REF] Petreczky | Minimality and identifiability of sarx systems[END_REF] I developed a computationally effective characterization of identifiable parameterization of linear switched systems in collaboration with Laurent Bako (IMT-Lille-Douai, École Centrale Lyon), Stéphane Lecoeuche, Koffi Motchon (IMT-Lille-Douai) and Jan H. van Schuppen (Delft University of Technology). In [START_REF] Petreczky | On the notion of persistence of excitation for linear switched systems[END_REF] I also developed a characterization of persistence of excitation of switching signals in collaboration with Laurent Bako. The analysis relies on realization theory. System identification of hybrid systems was applied to fault detection of rails in [START_REF] Guepie | Eddy current signatures classification by using time series: a system modeling approach[END_REF], the latter was a joint work with Stéphane Lecoeuche and Blaise Guepie ((IMT-Lille-Douai).

Identification of LPV systems. I worked on system identification of LPV systems, more precisely, on identifiability of LPV systems. This work was part of the PhD thesis of Ziad Alkhoury, whom I co-advised with Guillaume Mercère (Université de Poitiers). The results were published in [7,6]. Furthermore, I

Other research directions not related to realization theory

In addition to realization theory and its application to system identification and model reduction, I made a number of excursions to other domains. This was motivated by applications I came across and by the desire to explore the application of realization theory to control design and estimation.
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Optimal control and minimax observers for linear descriptor systems. I worked on this topic, in collaboration with Serhiy Zhuk (IBM Research Dublin) resulting in the following publications [START_REF] Petreczky | Solutions of differential-algebraic equations as outputs of lti systems: Application to lq control problems[END_REF][START_REF] Zhuk | Minimax observers for linear differential-algebraic equations[END_REF]. This work used several results from realization theory of linear descriptor systems.

In addition to being a non-trivial application of realization theory, this work is a first step towards addressing realization theory of hybrid/LPV descriptor models with a bounded noise. The latter is expected to be useful for extending realization theory for hybrid/LPV systems to systems with bounded noise and algebraic constraints. Indeed, in many applications the assumption that the noise is stochastic is not realistic and the model may contain algebraic equations in addition to difference/differential equations. Minimax observers are the deterministic counterpart of Kalman filters. Since Kalman filters were crucial in developing realization theory for stochastic linear systems and stochastic bilinear/LPV/jump-Markov systems [START_REF] Ma | A closed form solution to the identification of hybrid ARX models via the identification of algebraic varieties[END_REF], it is expected that minimax observer will play a similarly crucial role in realization theory of deterministic systems with bounded noise.

Stability analysis. I worked on stability analysis of sampled-data systems in collaboration with Laurentiu Hetel, Jean-Pierre Richard (CRIStAL), Hassan Omran ( École Centrale de Lyon) and Franc ¸oise Lamnabhi-Lagarrigue (SUPELEC). This work was published in [START_REF] Omran | Dissipativity-based approach for stability analysis of nonlinear sampled-data systems with input-affine control[END_REF]. This work was relevant for me as it allowed me to understand better the relationship between stability and dissipativity conditions of sampled-data systems with their structural properties, such as observability, controllability,minimality. In turn, this is necessary in order to apply realization theory to control, as planned in the original work plan. Note that sampled-data control systems are an important class of hybrid/LPV systems with many additional properties, hence they are a logical choice for starting to explore the relationship between stability/dissipativity and structural properties (observability,controllability,minimality) of hybrid/LPV systems.

Observer design. With my colleagues from CRIStAL, Laurentiu Hetel, Denis Efimov and Luciene Etienne (now at IMT-Lille-Douai) I worked on observer design for sampled-data control systems, resulting in the following publications [START_REF] Etienne | Observer synthesis under time-varying sampling for lipschitz nonlinear systems[END_REF][START_REF] Etienne | Observer analysis and synthesis for lipschitz nonlinear systems under discrete time-varying measurements[END_REF]. I worked on observer design of rational systems with Jana Nemcova (Institute of Chemical Technology, Prague) and Jan van Schuppen (Delft University of Technology) [START_REF] Nemcova | Rational observers of rational systems[END_REF]. With Mohamed Djemai (Université of Valenciennes) and his co-worker I also worked on observer design for Petri-nets using theory of singular linear systems [13]. My motivation for participating in this work was to better understand the relationship between observability, as defined in realization theory, and observer design for networked and rational control systems respectively. As it was mentioned above, sampled-data control systems are an important special class of hybrid/LPV system, so it was a logical to start studying the relationship between observer design and observability with sampled-data systems.

Hybrid and discrete-event control of mechatronics systems. In [START_REF] Theunissen | Application of supervisory control synthesis to a patient support table of a magnetic resonance imaging scanner[END_REF][START_REF] Petreczky | Sampled-data control of hybrid systems with discrete inputs and outputs[END_REF][START_REF] Petreczky | Control of input/output discrete-event systems[END_REF]38] we investigated control problems arising in certain mechatronics applications (printers, MRI scanners, etc.). In these applications, the underlying plant is a hybrid or discrete-event system and the control objectives are discrete (can be expressed by logical formulae). This work was done in collaboration with Rolf J. M. Theunissen Dirk A. van Beek, Jacobus E. Rooda, Ramon R. Schiffelers, Esmée Bertens (Eindhoven University of Technology), Jan H. van Schuppen (Delft University of Technology), and Roland Faber (Océ).

Application of control theory to water management. In [START_REF] Horváth | Transport of Water versus Transport over Water -Exploring the dynamic interplay between transport and water[END_REF][START_REF] Horváth | Mpc control of water level in a navigation canal -the cuinchy-fontinettes case study[END_REF][START_REF] Horváth | Model predictive control of water levels in a navigation canal affected by resonance waves[END_REF] I investigated the application of model predictive control for controlling the locks of navigable canals. The control objective was to maintain the water level high enough to allow navigation. This work was done in collaboration with Eric Duviella, Lala Rajaoarisoa, Klaudia Horvath (IMT-Lille-Douai), Karine Chuquet (VNF), and Joaquim Blesa (Universitat Politècnica de Catalunya).
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In the third part (Chapter 7), I will present my plans for future research. The manuscript ends by presenting a short summary and conclusions in Chapter 8. Finally, in Appendix A, I present my CV with a complete list of my publications and a detailed overview of my service to scientific community (editorial activities, organization of workshops and invited sessions), of my participation in funded projects, and my role in advising PhD students and postdoctoral researchers.

Part I

Selected topics on realization theory: realization theory of LPV and bilinear systems

Introduction

First, I will briefly recall some important milestones in the development of realization theory, on which my own contribution was based on. Second, I will explain the relationship between my own contribution and the existing literature.

A brief history of realization theory

As it was mentioned before, realization theory was originally championed by the founder of modern control theory, R.E. Kalman, [START_REF] Kalman | Introduction to the algebraic theory of linear dynamical systems[END_REF][START_REF] Kalman | Advanced theory of linear systems[END_REF]. Below, I will review those results in realization theory which were relevant for my own research on the subject.

Reaization theory of linear systems

Deterministic linear systems. Realization theory was first worked out for deterministic linear time-invariant systems (LTI systems for short) resulting in a large body of literature. We will not present a historical overview of the various papers which appeared in the literature, such an overview can be found for example in [START_REF] Kailath | Linear Systems[END_REF][START_REF] Kalman | Topics in mathematical system theory[END_REF][START_REF] Schutter | Minimal state-space realization in linear system theory: an overview[END_REF] and the references therein. In a nutshell, the main results of realization theory of LTI systems are as follows. For LTI systems input-output behavior is traditionally formalized as input-output maps. Later on, a more general formal framework was proposed, the so called behavioral approach [START_REF] Willems | An Introduction to Mathematical Systems Theory: A Behavioral Approach[END_REF][START_REF] Willems | On interconnections, control, and feedback[END_REF][START_REF] Willems | The behavioral approach to open and interconnected systems[END_REF], however, for the sake of simplicity we will stick to the traditional framework. The input-output maps which can potentially be represented by LTI systems turned out to be the ones which correspond to proper rational transfer functions, if interpreted in the frequency domain. It turns out that the existence of a LTI realization is equivalent to the finite rank property of the classical infinite Hankel-matrix [START_REF] Kailath | Linear Systems[END_REF][START_REF] Kalman | Topics in mathematical system theory[END_REF]. The entries of the Hankel-matrix, the so called Markov-parameters, they can be viewed as outcomes of input-output experiments. If the rank of the Hankelmatrix is finite, then a minimal linear system can be computed from a finite sub-matrix of the Hankel-matrix. The corresponding algorithm is known as Kalman-Ho realization algorithm [START_REF] Kailath | Linear Systems[END_REF][START_REF] Kalman | Topics in mathematical system theory[END_REF]. Moreover, all minimal linear state-space representations of a certain input-output map are controllable and observable . Conversely, every controllable and observable state-space representation is minimal. Furthermore, all such minimal statespace representations are isomorphic and one can compute them directly from input-output data. For a detailed discussion see for example [START_REF] Kailath | Linear Systems[END_REF][START_REF] Kalman | Topics in mathematical system theory[END_REF].

Stochastic linear systems. Later on, realization theory was extended to stochastic linear time-invariant systems (stochastic LTI) without inputs, see the monographs [START_REF] Caines | Linear Stochastic Systems[END_REF][START_REF] Lindquist | Linear Stochastic Systems: A Geometric Approach to Modeling, Estimation and Identification[END_REF] and the references therein. The main idea behind this extension was to show that the covariances of the output process of a stochastic LTI are the Markovparameters of a deterministic LTI system, and conversely, that any minimal deterministic LTI system whose Markov-parameters are the covariances give rise to a stochastic LTI system whose output is the given output process. Incidentally, the latter relationship is closely related to dissipativity and solution of LMIs. Moreover, it turned out that minimal deterministic LTI systems whose Markov-parameters are the covariances of the output process actually give rise to stochastic LTI systems in the so called forward innovation form, i.e., stochastic LTI systems whose noise process is the innovation process of their output process. Recall that the innovation process is the difference between the current output and the best possible (linear) prediction of the current output. Furthermore, it was shown that minimal stochastic LTI systems in forward innovation form are isomorphic, if they represent the same output process. In addition, the matrices of a minimal stochastic LTI system can be calculated from the output covariances, using the so called covariance realization algorithm, which is the combination of Ho-Kalman realization algorithm applied to covariances and solving an algebraic Riccati equation or LMI. These results were later extended to stochastic LTI systems with inputs, see [START_REF] Lindquist | Linear Stochastic Systems: A Geometric Approach to Modeling, Estimation and Identification[END_REF][START_REF] Katayama | Subspace Methods for System Identification[END_REF] and the references therein.

Role of realization theory in control and system identification Realization theory of LTI systems (both deterministic and stochastic) played a significant role in control, system identification and model reduction of these systems. For control design, the fact that any LTI system could be brought to a minimal one, while preserving input-output behavior means that it is enough to work with minimal LTI systems, if the only information about the underlying plant is its input-output behavior. Indeed, in the latter case, there is no a-priori reason for not using minimal LTI systems as models for the plant, as minimal LTI systems are indistinguishable from any other class of LTI systems based solely on the observed input-output behavior. The fact that such systems are controllable and observable means that controller synthesis for such systems is easy, as existence of a feedback controller guaranteed by controllability, and existence of an observer is guaranteed by observability. Moreover, due to the fact that minimal representations are isomorphic, the resulting controller will not depend on the choice of the state-space representation. Moreover, minimality turned out to be a useful technical property for relating various properties of input-output behavior to properties of state-space representations. For example, for minimal LTI systems dissipativity with respect to a supply rate, which is a property of the input-output behavior, is equivalent to the existence of a quadratic storage function, and the latter is equivalent to the existence of a solution of an LMI [START_REF] Willems | Dissipative dynamical systems part ii: Linear systems with quadratic supply rates[END_REF]. In turn, such a correspondence is useful for characterizing conservativeness of LMI based approaches, and leads to such important results as Kalman-Yakubovich-Popov Lemma and Real Bounded Lemma [START_REF] Willems | Dissipative dynamical systems part ii: Linear systems with quadratic supply rates[END_REF][START_REF] Faurre | Opérateurs rationnels positifs: application à l'hyperstabilité et aux processus aléatoires[END_REF]. Note that it is exactly the implication that dissipativity implies existence of storage functions which is the most challenging one, and it is precisely realization theory which allows the proof of that direction. Furthermore, linear realization theory turned out to be of fundamental importance for system identification see [START_REF] Van Overschee | Subspace Identification for Linear Systems[END_REF][START_REF] Caines | Linear Stochastic Systems[END_REF][START_REF] Katayama | Subspace Methods for System Identification[END_REF] and the references therein. In particular, the Kalman-Ho realization algorithm gave rise for subspace identification algorithms e.g., [START_REF] Van Overschee | Subspace Identification for Linear Systems[END_REF][START_REF] Katayama | Subspace Methods for System Identification[END_REF], identifiability analysis, e.g., [START_REF] Glover | Parametrizations of linear dynamical systems: canonical forms and identifiability[END_REF][START_REF] Hanzon | Identifiability, recursive identification and spaces of linear dynamical systems[END_REF][START_REF] Van Den Hof | Structural identifiability of linear compartmental systems[END_REF], theory of identifiable local canonical forms and recursive parametric system identification algorithms, e.g. [START_REF] Hanzon | Identifiability, recursive identification and spaces of linear dynamical systems[END_REF][START_REF] Peeters | System Identification Based on Riemannian Geometry: Theory and Algorithms[END_REF][START_REF] Mckelvey | Data driven local coordinates for multivariable linear systems and their application to system identification[END_REF]. Minimality and minimization algorithms are closely related to balanced truncation for linear systems, and the notion of Markov-parameters is essential to model reduction by moment matching, [12]. In fact, system identification and model reduction are the main application domains of realization theory.

Extending realization theory beyond LTI systems

Motivated by the success of realization theory for LTI systems, there were several attempts to extend realization theory to other classes of systems. When extending realization theory to other classes of systems, the aim was to show, to the extent it was possible, the same results as for LTI systems. That is, minimality was shown to be equivalent to counterparts of controllability and observability, minimal realizations were shown to be isomorphic in a certain sense. Likewise, existence of a realization was shown to be equivalent to finiteness of the dimension of a suitably defined algebraic structure which is generated by the input-output behavior. Finally, constructive procedures were formulated for converting a system to minimal ones and for constructing them from input-output behaviors.

Time varying linear systems, linear systems over rings. One direction was to extend LTI realization theory to other classes of linear systems. Since realization theory of linear systems is algebraic in nature, it can be extended to systems matrices of which are defined over any field [START_REF] Kalman | Introduction to the algebraic theory of linear dynamical systems[END_REF]. The latter is relevant for systems describing codes [START_REF]Connections between linear systems and convolutional codes[END_REF], and for time-varying and LPV systems [START_REF] Kamen | Algebraic theory of linear time-varying systems[END_REF][START_REF] Tóth | Modeling and identification of linear parameter-varying systems[END_REF]. There are extensions to systems defined on rings [START_REF] Sontag | Linear systems over commutative rings: A survey[END_REF]. There are also extensions of realization theory to infinite-dimensional systems [START_REF] Jacob | A review on realization theory for infinite-dimensional systems[END_REF], the latter class of systems included partial-differential equations and systems with delays. It is also possible to reformulate realization theory in terms of modules over ring of polynomials [START_REF] Kalman | Introduction to the algebraic theory of linear dynamical systems[END_REF]. These extensions did not give rise to such deep applications to control, system identification and model reduction as realization theory of LTI systems.

Deterministic and stochastic bilinear systems. Realization theory was extended to deterministic bilinear systems, leading to a theory which follows closely realization theory of LTI systems, see [START_REF] Sontag | Realization theory of discrete-time nonlinear systems: Part I -the bounded case[END_REF][START_REF] Sontag | Polynomial Response Maps[END_REF][START_REF] Isidori | Direct construction of minimal bilinear realizations from nonlinear input-output maps[END_REF][START_REF] Isidori | Nonlinear Control Systems[END_REF][START_REF] Isidori | Realization and structure theory of bilinear dynamical systems[END_REF] and the references therein. In particular, for bilinear systems minimality is equivalent to span-reachability (the linear span of reachable states is the full state space) and observability, minimal realizations of the same inputoutput map are related by a linear isomorphism, existence of a bilinear realization is equivalent to the rank of a suitably defined Hankel-matrix. Furthermore, any bilinear system can be converted to minimal one while preserving input-output behavior, and a minimal bilinear realization can be computed from the Hankel-matrix. The latter matrix is constructed using input-output data, more precisely, from counterparts of Markov-parameters, which, in turn, can be obtained from suitable input-output experiments. More precisely, they represent the high-order derivatives of the output with respect to the time (continuous-time case) and/or input values. Partial results on extending realization theory of bilinear systems to the stochastic case appeared in [START_REF] Desai | Realization of bilinear stochastic systems[END_REF][START_REF] Frazho | On stochastic bilinear systems[END_REF][START_REF] Popescu | Positive-definite functions on free semigroups[END_REF] and the references therein.

Analytic and smooth systems. Realization theory was also extended to analytic and smooth non-linear systems [START_REF] Celle | Realizations of nonlinear analytic input-output maps[END_REF][START_REF] Jakubczyk | Construction of formal and analytic realizations of nonlinear systems[END_REF][START_REF] Jakubczyk | Existence and uniqueness of realizations of nonlinear systems[END_REF][START_REF] Jakubczyk | Realization theory for nonlinear systems, three approaches[END_REF][START_REF] Fliess | Realizations of nonlinear systems and abstract transitive lie-algebras[END_REF][START_REF] Sussman | Existence and uniqueness of minimal realizations of nonlinear systems[END_REF][START_REF] Fliess | Functionnelles causales non linéaires et indéterminées non commutatives[END_REF][START_REF] Isidori | Nonlinear Control Systems[END_REF][START_REF] Reutenauer | The local realization of generating series of finite lie-rank[END_REF][START_REF] Celle | Existence of realizations of nonlinear analytic input-output maps[END_REF][START_REF] Celle | Realizations of nonlinear analytic input-output maps[END_REF][START_REF] Gauthier | Existence and uniqueness of minimal realizations in the c ∞ case[END_REF] and the references therein. More precisely, the characterization of minimality in terms of controllability and observability conditions and isomorphism of minimal realization still carries over to analytic and smooth non-linear systems even though there are several technical subtleties [START_REF] Isidori | Nonlinear Control Systems[END_REF]. Generalization of Hankel-rank conditions are also available [START_REF] Celle | Realizations of nonlinear analytic input-output maps[END_REF][START_REF] Jakubczyk | Construction of formal and analytic realizations of nonlinear systems[END_REF][START_REF] Jakubczyk | Existence and uniqueness of realizations of nonlinear systems[END_REF][START_REF] Jakubczyk | Realization theory for nonlinear systems, three approaches[END_REF]. In fact, for analytic input affine non-linear systems the theoretical framework of generating (Fliess) series [START_REF] Fliess | Realizations of nonlinear systems and abstract transitive lie-algebras[END_REF][START_REF] Fliess | Functionnelles causales non linéaires et indéterminées non commutatives[END_REF][START_REF] Isidori | Nonlinear Control Systems[END_REF] gives rise to counterparts of Markov-parameters, which allows to define Hankel-matrices and their Lie-rank [START_REF] Jakubczyk | Realization theory for nonlinear systems, three approaches[END_REF][START_REF] Fliess | Realizations of nonlinear systems and abstract transitive lie-algebras[END_REF][START_REF] Fliess | Functionnelles causales non linéaires et indéterminées non commutatives[END_REF][START_REF] Isidori | Nonlinear Control Systems[END_REF]. However, the characterization of existence of a realization has only partially been solved and the problem of finding a realization algorithms has not been completely solved either, see [START_REF] Jacob | Local and Minimal Realization of Nonlinear Dynamical Systems and Lyndon Words[END_REF][START_REF] Oussous | Scratchpad implementation of the local minimal realization of dynamic systems[END_REF][START_REF] Oussous | Macsyma computation of local minimal realization of dynamical systems of which generating power series are finite[END_REF] and the references therein. Note that the geometric characterization of controllability and observability for nonlinear systems turned out to be useful not only for realization theory, but also for control, giving rise to the field of geometric control theory [START_REF] Isidori | Nonlinear Control Systems[END_REF][START_REF] Van Der Schaft | Nonlinear Dynamical Control Systems[END_REF]. Realization theory of nonlinear systems with polynomial/rational systems was also addressed, see [22,[START_REF] Sontag | Polynomial Response Maps[END_REF][START_REF] Sontag | Realization theory of discrete-time nonlinear systems: Part I -the bounded case[END_REF]23,[START_REF] Nemcova | Realization theory for rational systems: The existence of rational realizations[END_REF][START_REF] Nemcova | Realization theory for rational systems: Minimal rational realizations[END_REF][START_REF] Wang | Algebraic differential equations and rational control systems[END_REF] and the references therein, leading to conditions on minimality and existence of a realization. However, the computational aspects have not been worked out in detail, and a lot of subtle technical issues remain open.

Hybrid and LPV systems. The realization problem for hybrid systems was first formulated in [START_REF] Grossman | An algebraic approach to hybrid systems[END_REF], but no theory was developed. Realization theory for linear and bilinear switched systems with linear reset maps was developed in [START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF][START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach: Part i[END_REF][START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach: Part ii[END_REF][START_REF] Petreczky | Realization theory for linear hybrid systems[END_REF][START_REF] Petreczky | Partial-realization of linear switched systems: A formal power series approach[END_REF][START_REF] Petreczky | Span-reachability and observability of bilinear hybrid systems[END_REF]. The latter work was partially based on my PhD thesis. Realization theory for LPV was investigated in [START_REF] Tóth | The behavioral approach to linear parameter-varying systems[END_REF] using a behavioral setting, and for LFR systems in [33,32,34]. Partial results on realization theory of discrete-time LPV systems with affine dependence were developed in [START_REF] Tóth | On the state-space realization of LPV input-output models: practical approaches[END_REF].

Application of realization theory for non-LTI systems. Realization theory for bilinear and analytic systems was used for identifiability analysis, see [START_REF] Walter | Identifiability of state space models[END_REF][START_REF] Vajda | Similarity transformation approach to identifiability analysis of nonlinear compartmental models[END_REF][START_REF] Peeters | Identifiability of homogeneous systems using the state isomorphism approach[END_REF]. Moreover, realization algorithms for bilinear systems were used for subspace identification algorithms [START_REF] Verdult | Nonlinear system identification: a state space approach[END_REF][START_REF] Favoreel | Subspace methods for identification and control of linear and bilinear systems[END_REF][START_REF] Santos | Identification of bilinear systems with white noise inputs: An iterative deterministic-stochastic subspace approach[END_REF] and the references therein. The results on realization theory of LFR and LPV systems [33,32,[START_REF] Tóth | On the state-space realization of LPV input-output models: practical approaches[END_REF] were applied to model reduction of these systems [34,[START_REF] Tóth | On the state-space realization of LPV input-output models: practical approaches[END_REF].

My research on realization theory

Novelty, open questions. Despite these developments several open questions remained at the moment when I started my independent research career. In particular, the discrete-time version of realization theory of linear switched systems was not developed. There were no results on realization theory of jump-Markov linear switched systems with stochastic switching and stochastic additive noise. Furthermore, there were no results on hybrid systems with autonomous, state-dependent, switching, especially in continuous-time. Realization theory of stochastic bilinear systems was only partially developed: results concerned only white noise inputs, no characterization of minimality or existence was available, published proofs of the correctness of the realization algorithm contained gaps. Realization of LPV systems with affine dependence was only partially developed: while a realization algorithm was formulated in [START_REF] Tóth | On the state-space realization of LPV input-output models: practical approaches[END_REF], the rest of the theory was not developed.

My work on realization theory was aimed at filling these gaps.

Brief overview of my recent research on realization theory. I worked on realization theory of hybrid systems [START_REF] Petreczky | Realization theory for discrete-time linear switched systems[END_REF][START_REF] Petreczky | Realization theory of discrete-time linear hybrid system[END_REF][START_REF] Petreczky | Realization theory of discrete-time semi-algebraic hybrid systems[END_REF][START_REF] Petreczky | Observability reduction of piecewise-affine hybrid systems[END_REF], extending previous results to the discrete-time case and to systems with state-dependent switching. These results were derived in collaboration with several co-authors: Jan H. van Schuppen, Laurent Bako, René Vidal. I developed for linear switched systems to develop realization theory for LPV systems with affine dependence on parameters [START_REF] Petreczky | Realization theory for LPV state-space representations with affine dependence[END_REF] and for stochastic bilinear and linear jump-Markov systems [START_REF] Petreczky | Realization theory for a class of stochastic bilinear systems[END_REF]. The work on LPV realization theory was done in collaboration with Guillaume Mercère, Roland Tóth, Pepijn Cox.

The work on stochastic bilinear systems and jump-Markov systems was carried out in collaboration with René Vidal. A more elaborate discussion on the novelty of my work on realization theory of LPV systems and stochastic bilinear systems will be presented in Chapter 2 and Chapter 3 respectively. Note that realization theory of linear/bilinear switched and hybrid systems with external switching relies on the same algebraic tool as realization theory of bilinear systems, namely, on the theory of recognizable formal power series [37,[START_REF] Kuich | Semirings, Automata, Languages[END_REF][START_REF] Sontag | Polynomial Response Maps[END_REF]. Note that the latter theory is also present in computer science, and it is related to weighted and probabilistic automata [START_REF] Kuich | Semirings, Automata, Languages[END_REF]. In addition, the same tools are also used for noncommutative nD systems which arise in robust control [16,33,32,[START_REF] Kaliuzhnyi-Verbovetskyi | Foundations of Free Noncommutative Function Theory[END_REF] and the references therein. As a result, the resulting theory is quite complete and parallels closely that of LTI and bilinear systems. In particular, minimality is shown to be equivalent to span-reachability and observability, minimal realizations of the same input-output behavior are isomorphic, and existence of a realization by a linear/bilinear switched/hybrid system is equivalent to a finite rank condition of a suitably defined Hankel-matrix. Note that the Hankel-matrix is defined via counterparts of Markov-parameters. For linear switched/hybrid systems they are impulse responses (discrete-time) or high-order derivatives of impulse responses along various switching signals. Moreover, algorithms were formulated for transforming a system to a minimal one and for computing a minimal realization from the Hankel-matrix.

Contents of Part I

In order to give a glimpse of my research on realization theory after completing my PhD, I will present two topics, which I think are representative of my work in that direction. The first topic (Chapter 2) is realization theory of linear parameter-varying systems with affine dependence on parameters, the second one (Chapter 3) is realization theory of stochastic bilinear systems. The reason for this choice is twofold. First, I believe that these two results are the most significant ones among the various results I have obtained in realization theory. Second, these results have been used in system identification and model reduction. Hence, it is possible to demonstrate the interaction between realization theory and system identification on the example of these results. Finally, these results rely heavily on my previous results on realization theory of linear switched systems [START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF][START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach: Part i[END_REF][START_REF] Petreczky | Partial-realization of linear switched systems: A formal power series approach[END_REF][START_REF] Petreczky | Span-reachability and observability of bilinear hybrid systems[END_REF][START_REF] Petreczky | Realization theory of linear hybrid systems[END_REF].

Chapter 2

Realization theory of LPV systems

Introduction

In this chapter we present a realization theory for LPV state-space representations with affine static dependence of coefficients, abbreviated as LPV-SSA. Linear parameter-varying (LPV) systems are linear systems where the coefficients are functions of a time-varying signal, the so-called scheduling variable. That is, LPV systems are a class of mathematical models having a certain structure (linear and time-varying). Control design and system identification of LPV systems is a popular topic [START_REF] Rugh | Research on gain scheduling[END_REF][START_REF] Mohammadpour | Control of Linear Parameter Varying Systems with Applications[END_REF][START_REF] Vizer | Linear fractional LPV model identification from local experiments: an H ∞ -based optimization technique[END_REF][START_REF] Tóth | Modeling and identification of linear parameter-varying systems[END_REF][START_REF] Tóth | On the state-space realization of LPV input-output models: practical approaches[END_REF]17,[START_REF] Van Wingerden | Subspace identification of bilinear and LPV systems for openand closed-loop data[END_REF][START_REF] Santos | Identification of LPV systems using successive approximations[END_REF][START_REF] Sznaier | An LMI approach to the identification and (in)validation of LPV systems[END_REF][START_REF] Verdult | Subspace identification of multivariable linear parameter-varying systems[END_REF]47]. LPV-SSAs are linear state-space representations, matrices of which are affine functions of the scheduling variables. LPV-SSAs are popular models for control synthesis, model reduction and system identification. This popularity is due to the existence of efficient control synthesis algorithms for LPV-SSAs [START_REF] Rugh | Research on gain scheduling[END_REF][START_REF] Mohammadpour | Control of Linear Parameter Varying Systems with Applications[END_REF].

In this chapter we will consider both the discrete-time (DT) and the continuous-time (CT) cases. Realization theory of LPV-SSAs is fairly complete. In particular, there exist necessary and sufficient condition for an inputoutput map to admit a realization by an LPV-SSA. This condition involves the rank of a suitably defined Hankelmatrix. In addition, a minimal LPV-SSA realization of an input-output map can be calculated from the Hankelmatrix using a Ho-Kalman-like realization algorithm. Moreover, minimality is equivalent to observability and span-reachability and that all minimal LPV-SSA realizations of the same input-output map are isomorphic. The latter isomorphism is linear and does not depend on the scheduling variable.

Realization theory of LPV-SSA models can be solved using realization theory of linear switched systems [START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF][START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach: Part i[END_REF][START_REF] Petreczky | Partial-realization of linear switched systems: A formal power series approach[END_REF][START_REF] Petreczky | Realization theory for discrete-time linear switched systems[END_REF][START_REF] Petreczky | Realization theory of linear hybrid systems[END_REF]. Conversely, linear switched systems are a subclass of LPV-SSAs, and when the results of realization theory of LPV-SSAs are applied to linear switched systems, one arrives at the same results as in [START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF][START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach: Part i[END_REF][START_REF] Petreczky | Partial-realization of linear switched systems: A formal power series approach[END_REF][START_REF] Petreczky | Realization theory for discrete-time linear switched systems[END_REF][START_REF] Petreczky | Realization theory of linear hybrid systems[END_REF].

Many aspects of realization theory of LPV systems were addressed before. However, a complete realization theory of LPV systems with affine dependence was lacking. In [START_REF] Tóth | Modeling and identification of linear parameter-varying systems[END_REF][START_REF] Tóth | The behavioral approach to linear parameter-varying systems[END_REF], realization theory was developed for LPV state-space representations where the system matrices depend on the parameters in a meromorphic and dynamic way, i.e., the matrices are meromorphic functions of the scheduling variables and their derivatives (in continuous-time), or of the current and future values of the scheduling variables (discrete-time). The system theoretic transformations (passing from an input-output to a state-space representation, transforming a statespace representation to a minimal one, etc.) of [START_REF] Tóth | Modeling and identification of linear parameter-varying systems[END_REF][START_REF] Tóth | The behavioral approach to linear parameter-varying systems[END_REF] introduce LPV models with a dynamic and nonlinear dependence on the parameters. In [35], using [START_REF] Conte | Algebraic Methods for Nonlinear Control Systems[END_REF], realizability of LPV input-output model by LPV state-space representations with a nonlinear (hence not necessarily affine) and static dependence is studied. In contrast, we deal with the realizability of input-output maps and not of input-output equations, and we are interested in LPV state-space representations with affine and static dependence on the parameter. That is, [START_REF] Tóth | Modeling and identification of linear parameter-varying systems[END_REF][START_REF] Tóth | The behavioral approach to linear parameter-varying systems[END_REF]35] do not solve the realization problem for LPV-SSAs, in contrast to the results presented in this chapter. Some elements of realization theory of LPV-SSAs, such as Hankel-matrices and Markov-coefficients of LPV-SSAs, appeared in [START_REF] Van Wingerden | Subspace identification of bilinear and LPV systems for openand closed-loop data[END_REF][START_REF] Verdult | Subspace identification of multivariable linear parameter-varying systems[END_REF][START_REF] Tóth | On the state-space realization of LPV input-output models: practical approaches[END_REF]. However, in contrast to [START_REF] Van Wingerden | Subspace identification of bilinear and LPV systems for openand closed-loop data[END_REF][START_REF] Verdult | Subspace identification of multivariable linear parameter-varying systems[END_REF][START_REF] Tóth | On the state-space realization of LPV input-output models: practical approaches[END_REF], in the current chapter, these concepts are defined directly for input-output maps, and they are used to characterize existence of an LPV-SSA realization of an input-output map. In fact, the finite rank of the Hankel-matrix represents the necessary and sufficient condition for the existence of an LPV-SSA realization. In addition, we discuss the conditions for the correctness of the realization algorithm in more details. The Kalman-Ho realization algorithm was discussed in [START_REF] Tóth | On the state-space realization of LPV input-output models: practical approaches[END_REF], but it was formulated with the assumption that an LPV-SSA realization exists. Moreover, the conditions under which the algorithm yields a true realization of the input-output function were not discussed in detail. Extended observability and reachability matrices were also presented in [START_REF] Tóth | Modeling and identification of linear parameter-varying systems[END_REF][START_REF] Rugh | Linear System theory[END_REF], but their system-theoretic interpretation and their relationship with minimality were not explored. This chapter is based on [START_REF] Petreczky | Realization theory for LPV state-space representations with affine dependence[END_REF].

In Section 2.2 we present the notation used in this and subsequent chapters. In Section 2.3 we present the definition of LPV-SSAs, input-output maps, equivalence and minimality. In Section 2.4 we present the relationship between LPV-SSA and linear switched systems. In Section 2.5 we present the main results on minimality and in Section 2.6 the main results on existence of a realization. Finally, in Section 2.7 realization algorithms similar to the Ho-Kalman algorithm will be discussed and their correctness analyzed.

Notation used in the technical part of the manuscript

In this chapter, and later on, throughout the manuscript, the following notation will be used.

Spaces of functions

We denote by AC(R + , R n ) the set of all absolutely continuous functions of the form f : R + → R n . We denote by PC(R + , R m ) the set of piecewise-continuous functions of the form f : R + → R n , i.e. functions f : R + → R n which have finitely many points of discontinuity on each finite interval and at each point of discontinuity, the left-and right-hand side limits exists and are finite.

Standard basis vectors

For each j = 1, . . . , m, e j is the jth unit vector of R m , i.e. e j = (δ 1, j , . . . , δ n, j ), δ i, j is the Kronecker symbol.

Time axis, ξ operator Let T = R + 0 = [0, +∞) be the time axis in the continuous-time (CT) case and T = N in the discrete-time (DT) case. Note that in both cases we exclude negative time instances.

Denote by ξ the differentiation operator d dt (in CT) and the forward time-shift operator q (in DT), i.e., if

z : T → R n , then (ξ z)(t) = d dt z(t), if T = R + 0 , and (ξ z)(t) = z(t + 1), if T = N.
Denote by ξ k the k-fold application of ξ , i.e., for any z : T → R n , ξ 0 z = z, and ξ k+1 z = ξ (ξ k z) for all k ∈ N Set of infinite sequences Denote by X N the set of all functions of the form f : N → X.

Notation from automata theory: words The notation described below is standard in automata theory, see [START_REF] Gécseg | Algebraic theory of automata[END_REF][START_REF] Eilenberg | Automata, Languages and Machines[END_REF].

Set of strings (words) over an alphabet. Consider a set X which will be called the alphabet. Denote by X + the set of finite sequences of elements of X, i.e. each element w ∈ X + is of the form w = a 1 a 2 • • • a k for some a 1 , a 2 , . . . , a k ∈ X and k ∈ N, k > 0. Let ε / ∈ X + be a symbol, which we will call the empty sequence or empty word. Denote by X * the set X + ∪ {ε}. The elements of X * will be referred to as strings or words over X.

Length of a string. If w ∈ X + , w = a 1 a 2 • • • a k for some a 1 , a 2 , . . . , a k ∈ X, then a i is called the ith letter of w, for i = 1, . . . , k and k is called the length w. By convention, the length of ε is defined to be zero. The length of a word w ∈ X * is denoted by |w|.

Concatenation of words. For any two words w, v ∈ X * , we define the concatenation wv ∈ X * of w and v as fol-

lows. If w, v ∈ X + are of the form v = v 1 v 2 • • • v k , k > 0 and w = w 1 w 2 • • • w m , m > 0, v 1 , v 2 , . . . , v k , w 1 , w 2 , . . . , w m ∈ X, then define vw = v 1 v 2 • • • v k w 1 w 2 • • • w m . If v = ε and w ∈ X * , then define vw = w. Similarly, if w = ε and v ∈ X * , 2.3. PRELIMINARIES then define vw = v.
With the operation of concatenation, X * forms a semi-group whose unit element is ε. For a ∈ X and k ∈ N, k > 0, we denote by a k the sequence k-times aa • • • a; by convention a 0 = ε. Definition 2.1 (Lexicographic ordering). Assume that X be a finite subset of integers. We define a lexicographic ordering ≺ on X * as follows. For any v, s ∈ X * , v ≺ s, if either |v| < |s| or 0 < |v| = |s|, v = s and for some l ≤ |s|, v l < s l with the usual ordering of integers and v i = s i for i = 1, . . . , l -1. Here v i and s i denote the ith letter of v and s respectively. Note that ≺ is a complete ordering and

X * = {v 1 , v 2 , . . .} with v 1 ≺ v 2 ≺ . . .. Note that v 1 = ε and for all 0 < i ∈ N, q ∈ X, v i ≺ v i q.
Denote by N(M) the number of sequences from X * of length at most M. It then follows that

|v i | ≤ M if and only if i ≤ N(M).
Products of matrices indexed by words Notation 2.1. Consider a collection of matrices {A q ∈ R n×n } q∈X . For any v ∈ X * , define the matrix A v ∈ R n×n as follows. If v = ε, then A ε = I n is the identity matrix, and

if v = q 1 • • • q k with q 1 , . . . , q k ∈ X, k > 0, then A v = A q k A q k-1 • • • A q 1 .

Preliminaries

An LPV state-space (SS) representation with affine linear dependence on the scheduling variable (abbreviated as LPV-SSA) is a continuous-time (CT) or discrete-time (DT) state-space representation of the form

Σ (ξ x)(t) = A(p(t))x(t) + B(p(t))u(t), y(t) = C(p(t))x(t) (2.1)
where x(t) ∈ X = R n x is the state, y(t) ∈ Y = R n y is the output, u(t) ∈ U = R n u is the input, and p(t) ∈ P ⊆ R n p is the value of the scheduling variable at time t, and A, B,C are matrix valued functions on P defined as

A(p) = A 0 + D ∑ i=1 A i p i , B(p) = B 0 + D ∑ i=1 B i p i , C(p) = C 0 + D ∑ i=1 C i p i , (2.2) 
for every p = [ p 1 p 2 • • • p n p ] ∈ P, with constant matrices A i ∈ R n x ×n x , B i ∈ R n x ×n u , C i ∈ R n y ×n x for all i ∈ {0, . . . , n p }. Recall from Section 2.2 that (ξ x)(t) = d dt x(t)
in CT, and (ξ x)(t) = x(t + 1) in DT. Intuitively, p corresponds to varying-operating conditions, nonlinear/time-varying dynamical aspects and /or external effects influencing the plant behavior and it is allowed to vary in the set P, see [START_REF] Tóth | Modeling and identification of linear parameter-varying systems[END_REF].

In the sequel, we use the tuple

Σ = (P, {A i , B i ,C i , D i } n p i=0
) to denote an LPV-SSA of the form (2.1) and use dim (Σ) = n x to denote its state dimension.

In order to formulate the main result, we have to define what we mean by input-output function of an LPV-SSA. To this end, define the following spaces. Denote by X the set of state-trajectories, U the set of input trajectories, Y the set of output trajectories and P the set of scheduling signals.

For the continous-time case, X = AC(R + 0 , X) is the set of absolutely continuous functions on the real time axis R + with values in the state-space X, and Y = PC(R + 0 , Y), U = PC(R + 0 , U), P = PC(R + 0 , P) are the sets of piecewise continous functions with values in the set of outputs Y, inputs U and scheduling variables P respectively.

In the discrete-time case X = X N , Y = Y N , U = U N , P = P N , i.e., they are the sets of functions (sequences) defined on natural numbers N with values in X, Y, U and P respectively.
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By a solution of Σ we mean a tuple of trajectories (x, y, u, p) ∈ (X , Y , U , P) such that (2.1) holds for all t ∈ T. For an initial state x o ∈ X define the input-to-state map X Σ,x o and the input-output map Y Σ,x o of Σ induced by x o as

X Σ,x o : U × P → X , Y Σ,x o : U × P → Y , (2.3) 
such that for any (x, y, u, p) ∈ X × Y × U × P, x = X Σ,x o (u, p) and y = Y Σ,x o (u, p) holds if and only if (x, y, u, p) is a solution of (2.1) and x(0) = x o . We say that Σ is span-reachable from the zero initial state (span-reachable for short), if

Span{X Σ,0 (u, p)(t) | (u, p) ∈ U × P,t ∈ T}=X.
That is, span-reachability means that the linear span of all the states reachable from the zero initial with some input and some scheduling generates the whole state-space.

We say that Σ is observable, if for any two initial states xo

, xo ∈ R n x , Y Σ, xo = Y Σ, xo implies xo = xo .
That is, observability means that for any two distinct states of the system, the resulting outputs will be different for some input and scheduling signals.

Let Σ of the form (2.1) and Σ = (P,

{A i , B i ,C i } n p i=0 ) with dim(Σ) = dim(Σ ) = n x . A nonsingular matrix T ∈ R n x ×n x is said to be an isomorphism from Σ to Σ , if ∀i ∈ {0, . . . , n p } : A i T = TA i , B i = T B i , C i T = C i ,
We formalize the input-output behavior of LPV-SSAs as maps of the form

F : U × P → Y . (2.4) 
While any input-output map of an LPV-SSA induced by some initial state is of the above form, the converse is not true. Moreover, for the sake of simplicity, we will concentrate on input-output maps which can be induced by an LPV-SSA from the zero initial state. That is, the LPV-SSA Σ is a realization of an input-output map F of the form (2.4), if F = Y Σ,0 . An LPV-SSA Σ is a minimal realization of F, if Σ is a realization of F , and for every LPV-SSA Σ which is a realization of F, dim (Σ) ≤ dim (Σ ).

To make our terminology less cumbersome, we will refer to the input-output map of an LPV-SSA Σ induced by the zero initial state as the input-output map of Σ. That is, the input-output map of Σ is the input-output map Y Σ,0 induced by the zero initial state, and it is denoted by Y Σ . We say that an LPV-SSA Σ is minimal, if it is a minimal LPV-SSA realization of its own input-output map F = Y Σ,0 . We say that two LPV-SSAs Σ 1 , Σ 2 are input-output equivalent, if their input-output maps are equal, i.e., Y Σ 1 ,0 = Y Σ 2 ,0 .

All the notions introduced above can be extended to include non-zero initial states, see [START_REF] Petreczky | Realization theory for LPV state-space representations with affine dependence[END_REF].

LPV-SSAs and linear switched systems

In this section we will present the relationship between LPV-SSA and linear switched systems (abbreviated by LSS in the sequel). We will use the terminology of [START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF][START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach: Part i[END_REF][START_REF] Petreczky | Partial-realization of linear switched systems: A formal power series approach[END_REF][START_REF] Petreczky | Realization theory for discrete-time linear switched systems[END_REF][START_REF] Petreczky | Realization theory of linear hybrid systems[END_REF], when discussing LSSs, see Appendix B for a brief overview. If P is finite, then an LPV-SSA can naturally be interpreted as a LSS, and vice versa, and LSS can easily be viewed as an LPV-SSA scheduling space of which is finite, and the definitions above coincide with the corresponding definitions for LSSs. Hence, realization theory of LPV-SSA clearly implies realization theory of LSSs. In fact, we can identify an LPV-SSA of the form (2.1) with the LSS

S(Σ) : ξ z(t) = A σ (t) z(t) + B σ (t) v(t) υ(t) = C σ (t) z(t)
(2.5)

REACHABILITY, OBSERVABILITY, MINIMALITY

where σ (t) ∈ Q, Q = {0, . . . , n p } is the set of discrete mode, and for each discrete mode i ∈ Q, the linear system belonging to this discrete mode is determined by the matrices (A i , B i ,C i ) of the LPV-SSA. The S(Σ) above can also be viewed as an LPV-SSA

(P sw , Âi , Bi , Ĉi n p i=0
), P sw = {0, e 1 , . . . , e n p }, e i is the ith standard unit vector of R n p , and

( Â0 , B0 , Ĉ0 ) = (A 0 , B 0 ,C 0 ), ( Âi , Bi , Ĉi ) = (A i -A 0 , B i -B 0 ,C i -C 0 ), i = 1, . . . , n p .
This latter point of view was used in [START_REF] Petreczky | Realization theory for LPV state-space representations with affine dependence[END_REF]. We call S(Σ) the LSS associated with the LPV-SSA Σ.

In particular, if A 0 = 0, B 0 = 0,C 0 = 0 and P contains 0 and the standard basis unit vectors {e 1 , . . . , e n p }, then the LSS associated with Σ is just the restriction of Σ to scheduling signals which take as values the unit vectors.

Conversely, with any LSS

H (ξ x)(t) = A σ (t) x(t) + B σ (t) u(t) y(t) = C σ (t) x(t) (2.6)
defined over the set of discrete modes Q = {0, . . . , n p }, with A q ∈ R n×n , B q ∈ R n×m , C q ∈ R p×n , q ∈ Q, we can associate the LPV-SSA L(H) of the form (2.1) such that the matrix functions A, B,C satisfy (2.2). We call L(H) the LPV-SSA associated with the LSS H. Note that H can also be viewed as an LPV-SSA

(P sw , Âi , Bi , Ĉi n p i=0 ), P sw = {0, e 1 , . . . , e n p } ( Â0 , B0 , Ĉ0 ) = (A 0 , B 0 ,C 0 ), ( Âi , Bi , Ĉi ) = (A i -A 0 , B i -B 0 ,C i -C 0 ), i = 1, . . . , n p .
Moreover, the LSS associated with the LPV-SSA L(H) is the LSS H itself. In the same manner, if we consider an LPV-SSA Σ and the LSS S(Σ) associated with S(Σ), then the LPV-SSA associated S(Σ) is Σ itself.

The correspondence between LPV-SSAs and LSSs described above make it possible to develop realization theory of LPV-SSA based on that of LSSs. In particular, the conditions for minimality, observability and spanreachability for LPV-SSA can be derived from the corresponding results for LSSs. There is a one-to-one correspondence between input-output maps of LPV-SSAs and their associated LSSs, hence conditions for existence of a realization by an LPV-SSA can be derived from the corresponding conditions for LSSs.

Below we will elaborate on this results in more details.

Reachability, observability, minimality

The results on (span-)reachability, observability and minimality for LPV-SSAs rely on those of for LSSs presented in [START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF][START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach: Part i[END_REF][START_REF] Petreczky | Partial-realization of linear switched systems: A formal power series approach[END_REF][START_REF] Petreczky | Realization theory for discrete-time linear switched systems[END_REF][START_REF] Petreczky | Realization theory of linear hybrid systems[END_REF] (see also Theorem B.2 of Appendix B) and on the following relationship Theorem 2.1 ( [START_REF] Petreczky | Realization theory for LPV state-space representations with affine dependence[END_REF]). Let Σ be an LPV-SSA.

• Σ is span-reachable if and only if the associated LSS S(Σ) is span-reachable.

• Σ is minimal if and only if the associated LSS S(Σ) is minimal.

• Two LPV-SSAs Σ 1 and Σ 2 are input-output equivalent, if and only if the associated LSSs S(Σ 1 ) and S(Σ 2 ) are input-output equivalent.

• Two LPV-SSAs Σ 1 and Σ 2 are isomorphic if and only if the LSSs S(Σ 1 ) is isomorphic to S(Σ 2 ).

Using Theorem 2.1, the results on minimality of LSSs from [START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF][START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach: Part i[END_REF][START_REF] Petreczky | Partial-realization of linear switched systems: A formal power series approach[END_REF][START_REF] Petreczky | Realization theory for discrete-time linear switched systems[END_REF][START_REF] Petreczky | Realization theory of linear hybrid systems[END_REF] (see Theorem B.1 of Appendix B) the following characterization of minimal LPV-SSA realizations can be derived.
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Theorem 2.2 (Minimal realizations, [START_REF] Petreczky | Realization theory for LPV state-space representations with affine dependence[END_REF]). Assume that F is an input-output map of the form (2.4). Assume that the LPV-SSA Σ is a realization of F. Then Σ is a minimal realization of F, if and only if Σ is observable and span-reachable. Any two minimal LPV-SSA realizations of F are isomorphic.

Note that Theorem 2.2 does not exclude the possibility that two LPV state-space representations of the same input-output map are related by a non-constant isomorphism, if these state-space representations are not minimal or they are not LPV-SSAs, see [START_REF] Kulcsár | On the similarity state transformation for linear parameter-varying systems[END_REF].

In fact, since observability respectively span-reachability of an LPV-SSA are equivalent with observability respectively span-reachability of the associated LSS, we can use the algebraic rank conditions and geometric conditions from [START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF][START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach: Part i[END_REF][START_REF] Petreczky | Partial-realization of linear switched systems: A formal power series approach[END_REF][START_REF] Petreczky | Realization theory for discrete-time linear switched systems[END_REF][START_REF] Petreczky | Realization theory of linear hybrid systems[END_REF] (Theorem B.2 of Appendix B) to formulate necessary and sufficient conditions for span-reachability and observability of LPV-SSAs. As a particular example, we present below a set of conditions which rely on the rank of extended observability and reachability matrices as defined in [START_REF] Tóth | On the state-space realization of LPV input-output models: practical approaches[END_REF]. Definition 2.2 (Ext. reachability & observability matrices). The n-step extended reachability matrices R n of Σ, n ∈ N, are defined recursively as follows

R 0 = B 0 . . . B n p , R n+1 = R 0 A 0 R n . . . A n p R n .
(2.7a)

The extended n-step observability matrices O n of Σ, n ∈ N, are defined recursively as follows

O 0 = C 0 . . . C n p , O n+1 = O 0 A 0 O n . . . A n p O n . (2.8) 
We can now present the following characterization of span-reachability and observability of LPV-SSAs.

Theorem 2.3 (Rank conditions, [START_REF] Petreczky | Realization theory for LPV state-space representations with affine dependence[END_REF]). The LPV-SSA Σ is span-reachable, if and only if rank {R n x -1 } = n x , and Σ is observable, if and only if rank

{O n x -1 } = n x .
Theorem 2.1 indicates that we can use the minimization algorithms for LSSs described in [START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF][START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach: Part i[END_REF][START_REF] Petreczky | Partial-realization of linear switched systems: A formal power series approach[END_REF][START_REF] Petreczky | Realization theory for discrete-time linear switched systems[END_REF][START_REF] Petreczky | Realization theory of linear hybrid systems[END_REF]. To this end, it is sufficient to calculate the LSS associated with the given LPV-SSA, apply to this latter LSS the minimization algorithm from [START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF][START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach: Part i[END_REF][START_REF] Petreczky | Partial-realization of linear switched systems: A formal power series approach[END_REF][START_REF] Petreczky | Realization theory for discrete-time linear switched systems[END_REF][START_REF] Petreczky | Realization theory of linear hybrid systems[END_REF], and then calculate the LPV-SSA which is associated with the LSS produced by the minimization algorithm in the previous step. The resulting LPV-SSA will be a minimal dimensional realization of the input-output function of the original LPV-SSA.

There are several versions of the minimization algorithm for LSSs. One of them uses Kalman-decomposition [START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF]260]. This latter minimization algorithm can be reformulated in terms of extended reachability and observability matrices. For the sake of completeness, and in order to illustrate the discussion above, below we present that particular algorithm, formulated directly in terms of LPV-SSAs and the n-step extended reachability and observability matrices.

Choose a basis

{b i } n x i=1 ⊂ R n x such that Span{b 1 , . . . , b r }=Im{R n x -1 } and Span{b r m +1 , . . . , b r }=(Im{R n x -1 }∩ ker{O n x -1 }) for some r, r m ≥ 0. Define T = b 1 b 2 . . . b n x -1 , and let Âi = TA i T -1 , Bi = T B i , Ĉi = C i T -1 , i = 0, 1, . . . , n p Then it is easy to see that Âi =   A m i 0 A i A i  A i 0 0 A i   , Bi =   B m i B i 0   , Ĉi =   (C m i ) 0 (C i )   , (2.9) 
where

A m i ∈ R r m ×r m , B m i ∈ R r m ×n u , C m i ∈ R n y ×r m , A i ∈ R (n-r)×(n-r) , B i ∈ R (r-r m )×n u , C i ∈ R n y ×(n-r) . Clearly, Σ = (P, { Âi , Bi , Ĉi } n p i=0
) is isomorphic to Σ and can be viewed as the Kalman-decomposition of Σ. The following corollary explains how to use the transformation above for minimizing LPV-SSAs.

EXISTENCE OF A REALIZATION, SUB-MARKOV PARAMETERS AND HANKEL-MATRIX

Corollary 2.1 (Minimization). With the notation of (2.9), the LPV-SSA Σ m = (P,

{A m i , B m i ,C m i } n p i=0 ) is a minimal realization of F = Y Σ .
In order to illustrate the procedure above, we present the following example.

Example 2.1 (Illustrative example). Consider an LPV-SSA Σ as in (2.1), with P = R,

A 0 =   0 1 -1 -1 0 1 -1 1 0   , B 0 =   1 0 0   ,C 0 =   1 -1 -1   , A 1 =   1 -1 -1 -1 2 0 -1 0 2   , B 1 =   0 1 1   ,C 1 =   2 -2 -2   .
It is easy to see that rank{R 2 } = 2 and

rank{O 2 } = 1. If we set, b 1 = 1 0 0 , b 2 = 2 1 1 , b 3 = 0 0 1 , then {b 1 , b 2 } span Im{R 2 } and b 2 spans Im{R 2 } ∩ ker{O 2 }.
If we apply the basis transformation

T = b 1 b 2 b 3 -1 , then we obtain the matrices Âi = TA i T -1 , Bi = T B i , Ĉi = C i T -1 , i = 0, 1 which are of the form (2.9), with A m 0 = 2, A m 1 = 3, B m 0 = 1, B m 1 = -2, C o 0 = 1,C m 1 = 2 By Corollary 2.1, Σ m = (P, {A m i , B m i ,C m i } n p i=0
) is a minimal realization of the input-output function Y Σ,0 = F from the initial state zero.

The matrix T and hence Σ m can easily be computed from Σ. Note that for computing Σ m , or checking the rank conditions of Theorem 2.3, it is not necessary to compute the matrices R n x -1 and O n x -1 , instead it is sufficient to compute a basis of Im{R n x -1 } and ker{O n x -1 }, which can be done in polynomial time w.r.t. n p and n x [28, Algorithm 1 -Algorithm 2].

Existence of a realization, sub-Markov parameters and Hankel-matrix

In order to formulate conditions of existence of an LPV-SSA realization, we have to define the class of inputoutput maps which could potentially arise from LPV-SSAs. This class of input-output maps will be the one which has impulse response representation (IIR).

To this end, we will use the following notation. In accordance with the notation defined in Section 2.2, we will denote by {0, 1, . . . , n p } * the set of all finite sequences of elements of {0, 1, . . . , n p } (i.e. words over the finite alphabet I 0,n p ). We will use the notation and terminology of Section 2.2 regarding words, the empty word, the length and concatenation of two words, etc. Let F be of the form (2.4). For the purposes of this chapter it is sufficient to know that if F has impulse response representation (IIR) , then

F(u, p)(t) = t 0 (h F p)(δ ,t)u(δ ) dδ continuous-time ∑ t-1 δ =0 (h F p)(δ ,t)u(δ ) discrete-time (2.10)
for a suitable parameter-dependent function (h F p)(δ ,t) which will be discussed below. Intuitively, in discretetime (DT) the latter function is a linear combination of products of the entries of p(t), . . . , p(δ ). In continuoustime, this function is a linear combination of iterated integrals of past values of p. More precisely, we assume that there exists functions, called the sub-Markov parameters of F,

θ i, j,F : {0, 1, . . . , n p } * → R n y ×n u , i, j ∈ {0, 1, . . . , n p }, (2.11) 
such that the following holds. In discrete-time

(h F p)(δ ,t) = n p ∑ i, j=0 p i (t)p j (δ ) θ i, j,F (ε) + n p ∑ s 1 ,...,s t-δ -1 =0 θ i, j,F (s 1 • • • s t-δ -1 )Π k i=1 p s i (t + δ ) , (2.12) 
and in continuous-time,

(h F p)(δ ,t) = n p ∑ i, j=0 p i (t)p j (δ ) θ i, j,F (ε)+ + ∞ ∑ k=1 n p ∑ s 1 ,...,s k =0 θ i, j,F (s 1 • • • s k ) t δ p s k (τ 1 ) τ 1 δ p s k-1 (τ 2 ) • • • τ k-1 δ p s k (τ k )dτ 1 • • • dτ k (2.13)
Note that in discrete-time the sum in (2.12) are actually finite, while for continuous-time the sum in (2.13) is infinite. For the convergence of the latter we need to impose some mild constraints on θ i, j , see [START_REF] Petreczky | Realization theory for LPV state-space representations with affine dependence[END_REF] for more details. These conditions hold automatically for input-output functions which arise from LPV-SSAs. That is, (h p)(δ ,t) is sum of products (DT) or iterated integrals (CT) of scheduling signals, and the sub-Markov parameters Example 2.2 (Illustrative example w s p). In order to illustrate the notation above, consider the case when n p = 1. In this case, for discrete-time, (h F p)(2, 5) is of the form θ 0,0,F (00) + p(4)θ 0,0,F (01 (11).

) + • • • + p(2)p(5)p(3)p(4)θ 1,1,F
For continuous-time, (h F p)(2, 5) is of the form θ 0,0,F (ε) + • • • + p(5)p(2)θ 1,1,F (ε) + • • • + + p(2)p(5)θ 1,1,F (101) 5 2 p(s 1 ) s 1 2 s 2 2 p(s 3 )ds 3 ds 2 ds 1 + • • • . That is, in discrete-time, (h F p)(2, 5) is a polynomial of p(2), p (3) 
, p(4), p(5), while in continuous-time, it is an infinite sum of iterated integrals.

Example 2.3 (Illustrative example: IIR representation). Next, we illustrate how the sub-Markov parameters and the maps (h F p), (g F p) relate to F. Let n u = n y = 1 and let F be an input-output map of the form (2.4) in continuous-time defined as follows:

F(u, p)(t) = t 0 (1 + 2p(t))e 2(t-τ)+2 t τ p(s)ds (1 -2p(τ))u(τ)dτ
Then F admits an IIR with

(h F p)(τ,t) = (1 + 2p(t))e 2(t-τ)+3 t τ p(s)ds (1 -2p(τ)),
and for every s ∈ I * 0,n p which contains k 0's and l 1's, θ

F (s) = 2 k 3 l 1 -2 2 -4 . The LPV-SSA Σ from Example 2.1 is a realization of F
We can show that there is a one-to-one correspondence between input-output maps admitting an IIR and sub-Markov parameters. It turns out that any input-output map which is realizable by an LPV-SSA admits an IIR, and the sub-Markov parameters can be expressed via the matrices of this LPV-SSA realization. More precisely, if an LPV-SSA of the form (2.1) is a realization of the input-output map F, then F has an IIR such that for any p ∈ P,

(h F p)(s,t) = C p(t) Φ p (t, s)B p(s)
where Φ p : {(t, τ) ∈ T × T | τ ≤ t} → R n x ×n x is defined as follows. In discrete-time,

Φ p (t, s) = A(p(t -1))A(p(t -2)) • • • A(p(s + 1)).
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In continuous-time,

X p,s : [s, ∞) t → Φ p (t, s)
is the unique absolutely continous matrix-valued function which satisfies d dt X p,s (t) = A(p(t))X p,s (t), X p,s (s) = I n .

Note that sub-Markov parameters are closely related to generating Fliess-series used in non-linear systems theory [START_REF] Isidori | Nonlinear Control Systems[END_REF][START_REF] Fliess | Functionnelles causales non linéaires et indéterminées non commutatives[END_REF], more specifically, the sub-Markov parameters play the role similar to generating series in the Fliess-series expansion of the input-output function F. If say θ i, j,F = 0 for i = 0 or j = 0, and we assume single input, i.e., n u = 1, then existence of IIR means that the function which maps the restriction of p to (δ ,t) to (h F p)(δ ,t) has a Fliess-series expansion with θ 0,0,F being the corresponding generating series. In general case, θ i, j,F p i (t)p j (δ ) can be viewed as the generating series of the Fliess-series expansion of the (i, j)th entry of (h F p)(δ ,t). Just like in the case of generating series for Fliess-series expansion, it turns out that the sub-Markov parameters uniquely determine the corresponding input-output function. In fact, the existence of an LPV-SSA realizing an input-output function can be shown to be equivalent to the sub-Markov parameters being of a certain form, as explained below.

Lemma 2.1 (Existence of the IIR, [START_REF] Petreczky | Realization theory for LPV state-space representations with affine dependence[END_REF]). The LPV-SSA Σ of the form (2.1) is a realization of an input-output map F, if and only if F has an IIR and for all i, j ∈ {0, 1, 2, . . . ,

n p }, s ∈ {0, 1, 2, n p } * , θ i, j,F (s) = C i A s B j , (2.14) 
where A s is defined as in Notation 2.1, Section 2.2, i.e. for s = ε, A s is the identity matrix, and for s =

s 1 s 2 • • • s n , s 1 , . . . , s n ∈ {0, 1, . . . , n p }, n > 0, A s = A s n A s n-1 • • • A s 1 .
The lemma above allows us to formulate a link between sub-Markov parameters of LPV-SSAs and generalized Markov parameters of linear switched systems. Let us consider the LSS S(Σ) associated with the LPV-SSA Σ and let us recall from [START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF][START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach: Part i[END_REF][START_REF] Petreczky | Partial-realization of linear switched systems: A formal power series approach[END_REF][START_REF] Petreczky | Realization theory for discrete-time linear switched systems[END_REF][START_REF] Petreczky | Realization theory of linear hybrid systems[END_REF] or Appendix B the notion of generalized Markov parameters of the input-output function of S(Σ) induced by the initial state zero. In fact, (2.14) means that sub-Markov parameters of the input-output map of an LPV-SSA Σ correspond to the Markov parameters of the input-output map of the associated LSS S(Σ). This allows to relate the problem of existence of a LPV-SSA realization with the problem of existence of a LSS realization of a certain associated input-output function which acts on switching signals instead of scheduling signals. Moreover, using the correspondence between generalized Markov parameters of input-output functions of LSSs and sub-Markov parameters we can formulate Ho-Kalman-like realization algorithms similar to those described in [START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF][START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach: Part i[END_REF][START_REF] Petreczky | Partial-realization of linear switched systems: A formal power series approach[END_REF][START_REF] Petreczky | Realization theory for discrete-time linear switched systems[END_REF][START_REF] Petreczky | Realization theory of linear hybrid systems[END_REF].

More precisely, we can define the switched input-output function S(F) associated with F as follows. Let Q = {0, 1, . . . , n p } be the set of discrete modes, let σ : T → Q be a switching signal and let u ∈ U be a control input. For continuous-time, assume that for any q ∈ Q, σ -1 (q) is either an empty set or an interval of the form [s, τ), s < τ, s, τ ∈ T. The define S(F)(u, p) = y as follows:

y(t) = ∑ t-1 j=0 θ σ (t),σ ( j)),F (σ j+1 • • • σ t-1 )u( j) discrete-time ∑ k i=0 T i 0 G q k •••q i (T i -T i-1 -s, T i+1 -T i , . . . , T k -T k-1 )u(s + T i ) continuous-time (2.15)
where in continuous-time, σ (s) = q i for s

∈ [T i-1 , T i ), 0 = T 0 < T 1 < • • • < T k-1 < T k = t, and 
G q k ,...,q i (τ i , . . . , τ k ) = ∞ ∑ j i ,..., j k =0 θ q k ,q i ,F (q j i i • • • q j k k ) k ∏ r=i τ j i r j r ! (2.16)
with q l stands for the sequences consisting of l copies of q, and q 0 is the empty sequence. Note that the additional requirements [START_REF] Petreczky | Realization theory for LPV state-space representations with affine dependence[END_REF] on IIR means that the infinite sum in (2. 16) is absolutely convergent. Using the terminology CHAPTER 2. REALIZATION THEORY OF LPV SYSTEMS of [START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF][START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach: Part i[END_REF][START_REF] Petreczky | Partial-realization of linear switched systems: A formal power series approach[END_REF][START_REF] Petreczky | Realization theory for discrete-time linear switched systems[END_REF][START_REF] Petreczky | Realization theory of linear hybrid systems[END_REF], S(F) admits a generalized kernel representation and its Markov-parameters satisfy S S(F) i, j

= θ i, j,F for all i, j ∈ {0, 1, . . . , n p } = Q. Note that since Markov parameters determine an input-output map admitting a generalized kernel representation uniquely, S(F), if exists, is unique. Finally, the existence of S(F) for discrete-time is obvious, and for continuous-time is proven in [START_REF] Petreczky | Realization theory for LPV state-space representations with affine dependence[END_REF]. The LPV-SSA realizations of F and the LSS realizations of S(F) are related as follows.

Theorem 2.4 ( [START_REF] Petreczky | Realization theory for LPV state-space representations with affine dependence[END_REF]). An LPV-SSA Σ is a realization of F, if and only if the associated LSS S(Σ) is a realization of S(F). An LSS H is a realization of S(F) if and only if the associated LPV-SSA L(H) is a realization of F.

That is, existence of an LPV-SSA realization of the input-output map F is equivalent to existence of an LSS realization of the associated switched input-output map S(F). This means that we can re-use the results of [START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF][START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach: Part i[END_REF][START_REF] Petreczky | Partial-realization of linear switched systems: A formal power series approach[END_REF][START_REF] Petreczky | Realization theory for discrete-time linear switched systems[END_REF][START_REF] Petreczky | Realization theory of linear hybrid systems[END_REF] on existence of an LSS realization and to calculate an LPV-SSA realization.

For the sake of completeness, we state the results below. Define the Hankel-matrix of F as 

H F =      θ F (v 1 v 1 ) θ F (v 2 v 1 ) • • • θ F (v k v 1 ) • • • θ F (v 1 v 2 ) θ F (v 2 v 2 ) • • • θ F (v k v 2 ) • • • θ F (v 1 v 3 ) θ F (v 2 v 3 ) • • • θ F (v k v 3 ) • • • . . . . . . • • • . . . • • •      , where v 1 ≺ v 2 ≺ • • •
θ F (s) =      θ 0,0,F (s) • • • θ 0,n p ,F (s) θ 1,0,F (s) • • • θ 1,n p ,F (s) . . . • • • . . . θ n p ,0,F (s) • • • θ n p ,n p ,F (s)      . (2.17) 
Note that θ F (s) coincides with the matrix which is obtained from the Markov-parameter M S(F) (s) of S(F) as defined in [205, eq. (3.14)] by removing the first column of M S(F) (s), if we identify q ∈ Q with the integer q + 1, for all q ∈ Q. Alternatively, θ F coincides with the matrix M S(F) (s) defined in (B.9) of Appendix B. Note that the latter column has all zero elements, as it corresponds to the effect of the initial state, and the latter is zero in out setting. Hence, the Hankel-matrix H F equals the Hankel-matrix H S(F) of the associated switched inputoutput map S(F) as defined in [START_REF] Petreczky | Realization theory of linear hybrid systems[END_REF]Definition 26], after removing the all zero columns which arise from the first column of M S(F) . Alternatively, H F coincides with the the matrix H S(F as defined in Definition B.2 of Appendix B. Then using [205, Theorem 3] (Theorem B.3 of Appendix B), and the one-to-one correspondence between LSS realizations of S(F) we can state the following characterization of existence of a LPV-SSA realization.

Theorem 2.5 (Existence of a realization [START_REF] Petreczky | Realization theory for LPV state-space representations with affine dependence[END_REF]). An input-output map F has a LPV-SSA realization, if and only if F has an IIR and rankH F = n F < ∞. Any minimal LPV-SSA realization of F has a state dimension which equals n F .

In addition to existence results, the correspondence between LPV-SSAs and LSSs allows us to use realization algorithms for LSSs for LPV-SSAs. This will be discussed in the next section.

Ho-Kalman realization algorithms

The correspondence between LSSs and LPV-SSA also allows us to formulate Ho-Kalman-like algorithm for computing a minimal LPV-SSA realization of an input-output map. in particular, [205, Algorithm 1] (see also Algorithm 12 in Appendix B). More precisely, by reinterpreting the sub-Markov parameters of a potential inputoutput function of a LPV-SSA as generalized Markov-parameters of the associated switched input-output function, we can compute a minimal LSS from a finite Hankel-like matrix constructed from sub-Markov parameters, 2.7. HO-KALMAN REALIZATION ALGORITHMS as described in [START_REF] Petreczky | Realization theory of linear hybrid systems[END_REF]Algorithm 1] or Algorithm 12 in Appendix B. We can then compute the LPV-SSA associated with the thus computed LSS. Moreover, we are able to analyze the correctness of the resulting realization algorithm.

For the sake of completeness, and because we will use it in Chapter 5 we will present the realization algorithm in details. More precisely, we can define the following finite sub-matrices H F,L,M of the Hankel-matrix

H F,L,M =      θ F (v 1 v 1 ) θ F (v 2 v 1 ) • • • θ F (v N(M) v 1 ) θ F (v 1 v 2 ) θ F (v 2 v 2 ) • • • θ F (v N(M) v 2 ) . . . . . . • • • . . . θ F (v 1 v N(L) ) θ F (v 2 v N(L) ) • • • θ F (v N(M) v N(L) )      , (2.18) 
where θ F is the matrix of sub-Markov parameters defined in (2.17 such that C v i ∈ R n×((n p +1)n u ) , i = 1, 2, . . . , N(N + 1), i.e. C v i ∈ R n×((n p +1)n u ) , i = 1, 2, . . . , N(N + 1) are the block columns of R. Define R, R q ∈ R n×J N , J N = N(N)n u (n p + 1), q ∈ Q as follows

R = C v 1 , . . . , C v N(N) , R q = C v 1 q , . . . , C v N(N)q .
Note that for any i ∈ {1, . . . , N(N)} there exists j = j(i, q) ∈ {2, . . . , N(N + 1)} such that v i q = v j , hence R q is well defined.

3: Return Σ N = (P, {A i , B i ,C i } n p i=0 such that • B 0 , . . . , B n p is formed by the first n u (n p + 1) columns of R • C T 0 , C T 2 , . . . , C T n p
T is the the first n y (n p + 1) rows of O

• A q = R q R + , q = 0, 1, . . . , n p , where R + is the Moore-Penrose pseudo-inverse of R.

If rankH F,N,N+1 = n and H F,N,N+1 = USV is the SVD decomposition of H F,N,N+1 with S being the n × n diagonal matrix, then define O = US 1/2 and R = S 1/2 V .

The following theorem gives conditions under which the state-space representation returned by Algorithm 1 is a realization of the map F. 
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The procedure outlined above is a variation of the Ho-Kalman-like realization algorithm described in [START_REF] Tóth | On the state-space realization of LPV input-output models: practical approaches[END_REF], and hence the discussion above gives sufficient conditions for the correctness of the realization algorithm in [START_REF] Tóth | On the state-space realization of LPV input-output models: practical approaches[END_REF]. A detailed presentation of the realization procedure described above and the corresponding correctness analysis can be found in [START_REF] Petreczky | Realization theory for LPV state-space representations with affine dependence[END_REF].

Note that sub-Markov parameters can be computed from the responses of F, in fact, from input-output data, see [START_REF] Cox | Towards efficient maximum likelihood estimation of lpv-ss models[END_REF] and Chapter 5. This then suggests that the realization algorithm Algorithm 1 could be used for system identification, by applying it to sub-Markov parameters based on data. This approach will be discussed in Chapter 5 and it was explored in [START_REF] Cox | Towards efficient maximum likelihood estimation of lpv-ss models[END_REF]. One of the challenges with this approach is the choice of the integer N: Theorem 2.6 suggests that in Algorithm 1 the integer N should be chosen to be larger than or equal to the dimension of a LPV-SSA realization of F. However, this latter choice results in an algorithm which scales badly with the size of systems, H F,N,N+1 grows exponentially with N.

In order to address the problem above, and because it is interesting on its own right and it has other applications, below we present a modification of Algorithm 1 which uses the notion of selections. Selections play an important role in the application of realization theory to model reduction and system identification, but also in the study of geometry and topology of spaces of systems [START_REF] Petreczky | Spaces of nonlinear and hybrid systems representable by recognizable formal power series[END_REF]. We will present only the SISO case (n u = n y = 1), the full MIMO case was discussed in [START_REF] Petreczky | Spaces of nonlinear and hybrid systems representable by recognizable formal power series[END_REF]30] for LSSs and in [START_REF] Cox | Towards efficient maximum likelihood estimation of lpv-ss models[END_REF] for LPV-SSAs.

We will call any subset α ⊆ Q * × Q, where Q = {0, 1, . . . , n p }, a selection. Finite selections will be used to define Hankel-like matrices, entries of which are Markov parameters.

Assume that α and β are selection respectively and assume that α and β are both finite sets of cardinality n and l respectively. Fix a enumeration of the elements of α and β as follows.

α = {(u i , q i )} n i=1 , β = {(v j , σ j )} l j=1 , (2.19) 
Let us now define the matrix H F,α,β ∈ R n×l as follows:

H F,α,β =      θ q 1 ,σ 1 ,F (v 1 u 1 ) θ q 1 ,σ 2 ,F (v 2 u 1 ) • • • θ q 1 ,σ l ,F (v l u 1 ) θ q 2 ,σ 1 ,F (v 1 u 2 ) θ q 2 ,σ 2 ,F (v 2 u 2 ) • • • θ q 2 ,σ l ,F (v l u 2 ) . . . . . . • • • . . . θ q n ,σ 1 ,F (v 1 u n ) θ q n ,σ 2 ,F (v 2 u n ) • • • θ q n ,σ l ,F (v l u n )      (2.20)
If α, β has the same cardinality, then the matrix H F,α,β is a square one. Intuitively, the rows of H F,α,β are indexed the elements of α, and the columns by the elements of β . In order to present the algorithm, we define the matrices H q,F,α,β ∈ R n×l , H F,α,q ∈ R n×1 and H q,F,β ∈ R 1×n :

H q,F,α,β =      θ q 1 ,σ 1 ,F (v 1 qu 1 ) θ q 1 ,σ 2 ,F (v 2 qu 1 ) • • • θ q 1 ,σ l ,F (v l qu 1 ) θ q 2 ,σ 1 ,F (v 1 qu 2 ) θ q 2 ,σ 2 ,F (v 2 qu 2 ) • • • θ q 2 ,σ l ,F (v l qu 2 ) . . . . . . • • • . . . θ q n ,σ 1 ,F (v 1 qu n ) θ q n ,σ 2 ,F (v 2 qu n ) • • • θ q n ,σ l ,F (v l qu n )      (2.21) H F,α,q = θ q 1 ,q,F (u 1 ) θ q 2 ,q,F (u 2 ) . . . θ q n ,q,F (u n ) T (2.22) H q,F,β = θ q,σ 1 ,F (v 1 ) θ q,σ 2 ,F (v 2 ) . . . θ q,σ l ,F (v l ) (2.

23)

Algorithm 2 Realization algorithm for LPV-SSA with selections

1: Consider the factorization H F,α,β = O n m R n m such that O n m is full column rank, R n m is full row rank and rank O n = rank R n = n m . 2: Define Âq = O + n m H q,F,α,β R + n m , Bq = O + n m H F,α,q , Ĉq = H q,F,β R + n m , where O + n m , R + n m is the Moore-Penrose in- verse of O n and R n respectively. 3: Return Σ = (P, {( Âi , Bi , Ĉi )} n p i=0 ).

CONCLUSIONS

The algorithm above can be shown to be correct, i.e., to result in an LPV-SSA realization of F, under suitable hypotheses.

Lemma 2.2 (Adapted from [START_REF] Cox | Towards efficient maximum likelihood estimation of lpv-ss models[END_REF], correctness of the realization algorithm with selections from Algorithm 2). If n m is the dimension of a minimal LPV-SSA realization of F, then the LPV-SSA Σ defined in Algorithm 2 is a minimal realization of F. Moreover, if n m is the dimension of a minimal F realization of f , then there exists a pair of selections α, β ⊆ Q * × Q such that the cardinality of the sets α, β is n m and rank H F,α,β = n m .

From [START_REF] Petreczky | Partial-realization of linear switched systems: A formal power series approach[END_REF] and the correspondence between LPV-SSAs and LSSsit follows that we can choose

α N = β N = {(v, q) | v ∈ Q * , |v| ≤ N, q ∈ Q}
, where N is any integer not smaller than the dimension of a minimal LPV-SSA realization of F. Note that the number of elements of α and β can be chosen as the dimension of the supposed LPV-SSA realization of the input-output function. This is the main advantage of Algorithm 2 in comparison with Algorithm 1. More precisely, the number of sub-Markov parameters which are necessary for Algorithm 1 grows exponentially with the integer N, and the latter integer is chosen based on the supposed dimension of a LPV-SSA realization of the input-output function at hand. In contrast, Algorithm 2 requires n sub-Markov parameters, where n is the supposed dimension of a LPV-SSA realization of the input-output function. This means that Algorithm 2 scales well with the size of the underlying system. Moreover, it is more practical for system identification algorithm, as it requires the estimation of a smaller number of sub-Markov parameters. These issues were discussed in [START_REF] Cox | Towards efficient maximum likelihood estimation of lpv-ss models[END_REF] and will briefly be reviewed in Chapter 5.

Note that Algorithm 2 can also be adapted to LSSs, by using the relationship between LSSs and LPV-SSAs. This adaptation is presented in Algorithm 13 in Appendix B.

Conclusions

I have presented a brief overview of my contribution to realization theory of LPV systems. More precisely, I have presented a complete realization theory for LPV-SSAs, which mirrors the results for LTI, bilinear [START_REF] Isidori | Nonlinear Control Systems[END_REF] and switched linear systems [START_REF] Petreczky | Partial-realization of linear switched systems: A formal power series approach[END_REF][START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach: Part i[END_REF]. The results of this chapter turned out to be useful for model reduction and system identification [5,7,[START_REF] Cox | Estimation of lpv-ss models with static dependency using correlation analysis[END_REF][START_REF] Cox | Towards efficient maximum likelihood estimation of lpv-ss models[END_REF]28], presented in Chapter 4 -5. Future work will be directed towards extending the results to the behavioral setting [START_REF] Willems | The behavioral approach to open and interconnected systems[END_REF] and to LFT/LFR systems [5,33,32].

Chapter 3

Realization theory of stochastic bilinear systems

Introduction

In this chapter, we discuss realization theory for a class of stochastic bilinear systems. This class includes subclasses of jump-linear system with stochastic switching, autonomous stochastic LPV systems and stochastic bilinear systems with white noise input. In contrast to previous chapters, where we were looking for representations of input-output maps, in this chapter we are interested in representations of discrete-time stochastic processes.

More precisely, we will introduce the class of generalized bilinear systems (GBS for short). Roughly speaking, a GBS is a discrete-time system bilinear system equipped with an additive noise term. The motivation for GBSs is that they include stochastic bilinear, LPV and jump-Markov systems as special cases.

The results of this chapter are similar in spirit to those of stochastic realization theory for linear systems and they appeared in [START_REF] Petreczky | Realization theory for a class of stochastic bilinear systems[END_REF]. More specifically, we provide a necessary and sufficient condition for processes to have a realization by a GBS in terms a finite rank condition for the Hankel-matrix defined for this process. We also give a characterization of minimal GBSs in terms of rank conditions for their reachability and observability matrices, and we show that any two minimal realizations of the same output and inputs are related by a linear isomorphism, if both these realizations are in the so called forward innovation form. We show that any GBS realization of a given process can be converted to a minimal one in forward innovation form. We present a realization algorithm for computing a minimal GBS realization from the covariances of the output process.

The results of this chapter use realization theory of LSSs, or which is equivalent, from realization theory of recognizable formal power series/bilinear systems. The latter was used [START_REF] Petreczky | Realization theory for a class of stochastic bilinear systems[END_REF], but for the sake of consistency, we prefer to use realization theory of LSSs, which, in our opinion, is also more intuitive.

Realization theory for stochastic bilinear systems was addressed [START_REF] Desai | Realization of bilinear stochastic systems[END_REF][START_REF] Frazho | On stochastic bilinear systems[END_REF][START_REF] Gy | Bilinear state space realization for polynomial stochastic systems[END_REF][START_REF] Gy | Bilinear stochastic models and related problems of nonlinear time series analysis[END_REF][START_REF] Popescu | Positive-definite functions on free semigroups[END_REF]. However, [START_REF] Desai | Realization of bilinear stochastic systems[END_REF] addresses only the weak realization problem, it presents only sufficient conditions for existence of a weak realization, and it considers only bilinear systems whose inputs are white noise stochastically independent of the noise process of the system. Moreover, [START_REF] Desai | Realization of bilinear stochastic systems[END_REF] skips a lot of mathematical details, including the proof of correctness of the realization algorithm. Hence, the contribution of this chapter is new even for the class of systems from [START_REF] Desai | Realization of bilinear stochastic systems[END_REF]. As to [START_REF] Frazho | On stochastic bilinear systems[END_REF][START_REF] Popescu | Positive-definite functions on free semigroups[END_REF], they concentrate on the weak realization problem for infinite dimensional bilinear systems, but they do not address the finite-dimensional case, the strong realization problem or minimality. In [START_REF] Gy | Bilinear state space realization for polynomial stochastic systems[END_REF][START_REF] Gy | Bilinear stochastic models and related problems of nonlinear time series analysis[END_REF], the strong realization problem was addressed for a special class for bilinear systems with known noise.

There exist a number of papers on identification of bilinear systems, see e.g., [START_REF] Chen | New subspace identification method for bilinea systems[END_REF][START_REF] Favoreel | Subspace methods for identification and control of linear and bilinear systems[END_REF][START_REF] Verdult | Identification of multivariable bilinear state space systems based on subspace techniques and separable least squares optimization[END_REF][START_REF] Verdult | Subspace identification of multivariable linear parameter-varying systems[END_REF][START_REF] Santos | Identification of bilinear systems with white noise inputs: An iterative deterministic-stochastic subspace approach[END_REF]. However, all these papers study the identification problem and not the realization problem. Our results will be useful for analyzing consistency of subspace identification algorithms for bilinear and LPV systems. For example, our result on isomorphism of minimal realizations provides sufficient conditions for the well-posedness of the identification CHAPTER 3. REALIZATION THEORY OF STOCHASTIC BILINEAR SYSTEMS problem studied in the cited papers. Indeed, note that all the cited papers use try to estimate the state of a timevarying Kalman filter of the bilinear system. In this chapter we show that any GBS can be transformed to a minimal GBS in forward innovation form, whose stationary Kalman-filter is the system itself. This provides a theoretical justification for assuming that it is sufficient to estimate the state of the Kalman-filter. The results on minimality help us to establish that it is sufficient to work with minimal GBSs, and that all minimal GBS realization of the same output and input processes are isomorphic in some sense, i.e. it is sufficient to find a GBS system matching the output and inputs up to a similarity transformation. This also opens up the possibility to characterize the geometry and topology of the space of minimal GBSs, like it was done in [START_REF] Peeters | System Identification Based on Riemannian Geometry: Theory and Algorithms[END_REF][START_REF] Hanzon | On the differentiable manifold of fixed order stable linear systems[END_REF]. This is important when trying to show consistency of the algorithms [START_REF] Chen | New subspace identification method for bilinea systems[END_REF][START_REF] Favoreel | Subspace methods for identification and control of linear and bilinear systems[END_REF][START_REF] Verdult | Identification of multivariable bilinear state space systems based on subspace techniques and separable least squares optimization[END_REF][START_REF] Verdult | Subspace identification of multivariable linear parameter-varying systems[END_REF][START_REF] Santos | Identification of bilinear systems with white noise inputs: An iterative deterministic-stochastic subspace approach[END_REF].

Outline of the chapter The chapter is organized as follows. In Section 3.2 we present an informal description of the class of GBSs and we define the realization problem for GBSs. We also explain the relationship between GBSs and stochastic bilinear systems, jump-Markov linear systems and LPV systems. In Section 3.3 we present an informal description of the solution to the stochastic realization problem. In Section 3.4 we present the formal problem formulation. In Section 3.5 we present our solution to the GBS realization problem as well as applications to several classes of systems. In Section 3.7 we discuss some consequences of the results of Section 3.5 for system identification. In particular, we address the existence of a realization in forward innovation form and its relationship with filtering. In addition, we show that that under mild assumptions the solution to the strong realization problem (Problem 3.1) implies finding a state-space representation of the input-output relation {µ q } q∈Q → y.

Informal definition of GBSs, problem formulation, preliminaries

We start by introducing informally the class of systems considered. Let Q be a finite set. Consider a collection {µ q } q∈Q of R-valued stochastic processes, i.e. for each q ∈ Q, µ q is a R valued stochastic process. We will call the stochastic processes µ q , q ∈ Q input processes. A generalized bilinear system (GBS) with respect to {µ q } q∈Q is a system of the form

G    x(t + 1) = ∑ q∈Q (A q x(t) + K q v(t))µ q (t) ỹ(t) = Cx(t) + Dv(t). (3.1)
where A q ∈ R n×n , K q ∈ R n×m , C ∈ R p×n and D ∈ R p×m are the system matrices, ỹ, x, v are stochastic processes taking values in R p , R n and R m respectively, We call x the state process, ỹ the output process, v the noise process, and {µ q } q∈Q the collection input processes of G . We will identify G with the tuple

G = (n, p, m, Q, x, v, {µ q } q∈Q , ỹ,C, D, {A q , K q } q∈Q ) (3.2)
The integer n is called the dimension of G .

Subclasses of GBSs: stochastic bilinear systems, jump-Markov linear systems, stochastic LPV systems As it was pointed out above, the motivation for studying the realization problem for GBSs is that they include stochastic bilinear, LPV and jump-Markov systems.

In particular, if Q = {0, 1, . . . , d}, µ 0 = 1, then GBSs are stochastic bilinear systems from [START_REF] Desai | Realization of bilinear stochastic systems[END_REF][START_REF] Frazho | On stochastic bilinear systems[END_REF][START_REF] Gy | Bilinear state space realization for polynomial stochastic systems[END_REF][START_REF] Gy | Bilinear stochastic models and related problems of nonlinear time series analysis[END_REF][START_REF] Chen | New subspace identification method for bilinea systems[END_REF][START_REF] Favoreel | Subspace methods for identification and control of linear and bilinear systems[END_REF][START_REF] Verdult | Identification of multivariable bilinear state space systems based on subspace techniques and separable least squares optimization[END_REF][START_REF] Verdult | Subspace identification of multivariable linear parameter-varying systems[END_REF][START_REF] Santos | Identification of bilinear systems with white noise inputs: An iterative deterministic-stochastic subspace approach[END_REF] or autonomous LPV systems, if we identify µ q , q ∈ Q with the scheduling parameter. In this case, (3.1) becomes

x(t + 1) = A(µ(t))x(t) + K(µ(t))v(t)) ỹ(t) = Cx(t) + Dv(t).
(3.3)
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where µ(t) = (µ 1 (t), . . . , µ d (t)) T and A(µ(t)

) = A 0 + ∑ d i=1 A i µ(t), K(µ(t)) = K 0 + ∑ d i=1 K i µ i (t).
In this case, it is usually assumed that {µ i } d i=1 are zero mean white noise processes which are mutually uncorrelated. Jump-Markov linear systems (switched systems with stochastic switching) can be encoded by GBSs as follows. Consider a jump-Markov linear system without input [START_REF] Costa | Discrete-Time Markov Jump Linear Systems[END_REF] of the form

x(t + 1) = M θ(t) x(t) + B θ(t) v(t) ỹ(t) = Cx(t) + Dv(t) (3.4)
where x is the state process, ỹ is the output process, v(t) is the noise process, and θ is the switching processes taking values in a finite set Θ, and M q , B q , q ∈ Θ, C, D are matrices of appropriate dimension. Assume θ is taking its values in a finite set Θ. Two cases should be distinguished. The first one is when θ(t) are independent and identically distributed (i.i.d for short). In this case, we can take Q = Θ and µ q (t) = χ(θ(t) = q), where χ is the indicator function, i.e., χ(A) equals 1 when A holds, and it is zero otherwise, and A q = M q , K q = B q . With this identification, (3.4) becomes (3.1).

The second case is when θ is a stationary and ergodic Markov process whose state space is the finite set Θ, and with transition probabilities P(θ(t) = q 2 | θ(t -1) = q 1 ) = p (q 2 ,q 1 ) > 0, q 1 , q 2 ∈ Θ. Let us take Q = Θ × Θ, µ (q 2 ,q 1 ) (t) = χ(θ(t + 1) = q 2 , θ(t) = q 1 ) for all q 1 , q 2 ∈ Θ,t ∈ Z. In this case, let us define A (q 2 ,q 1 ) = M q 1 , K (q 2 ,q 1 ) = B q 1 and then (3.4) becomes (3.1). Note that is in this case the GBS which is derived from the jump-Markov linear system differs from the original one in the sense that its system matrices in the state update equation could depend not only on the current discrete state, but also on the next one. This is not the case for the GBS obtained directly from the jump-Markov linear system, but it might be the case when the latter GBS is transformed to say a minimal one. This technical issue does not effect the realization problem for jump-Markov linear systems, see Subsection 3.6.4 later in the chapter.

The framework of GBSalso allows to combine stochastic bilinear systems with jump-Markov systems, and deal with stochastic switched bilinear/LPV systems with Markovian switching [START_REF] Petreczky | Realization theory for a class of stochastic bilinear systems[END_REF].

To sum up, GBSs contain as special cases many widely used system classes. Note that the examples discussed above involved mostly systems without control inputs. This is especially the case for LPV and jump-Markov linear systems. However, in many cases,a stochastic systems with control input can be represented as a parallel interconnection of a deterministic and an autonomous stochastic system. The deterministic part depends only on the control input but not the noise, and the stochastic part depends only on the noise but not on the control input. The realization problem then can be solved by solving the realization problem for the deterministic and stochastic parts separately. For stochastic LPV systems this decomposition was worked out in [START_REF] Mejari | Realization and identification algorithm for stochastic LPV state-space models with exogenous inputs[END_REF]. We believe that a similar approach will work for other relevant system classes as well. In particular, this hypothesis means that the main bottleneck towards developing realization theory for stochastic systems is solving the realization problem for systems without control inputs. The general case then follows by combining the solution for stochastic autonomous systems with that of for deterministic systems.

The realization problem for GBSs. In this chapter we will be interested in realization theory of GBSs, hence we should define what we mean by a realization by a GBS.

Definition 3.1 (Realization by GBS).

A GBS G w.r.t. {µ q } q∈Q is said to be a realization of the stochastic processes

y if output process of G equals y. That is, if G is of the form (3.2), then G is a realization of y, if ỹ = y.
In this chapter we will be interested in existence of a GBS realizations of a process and characterization of minimal dimensional GBS realizations. Some remarks are in order. Note that the choice of the input processes may play a role in existence of a GBS realization. More precisely, let { μq } q∈Q another collection of input processes. In principle, it may happen that a process y has a realization by a GBS w.r.t. { μq } q∈Q , but there exists no GBS w.r.t. {µ q } q∈Q . It may also happen, that a GBS w.r.t. { μq } q∈Q is minimal dimensional among all those GBSs w.r.t. { μq } q∈Q which are realizations of y, but there exist a GBSw.r.t. {µ q } q∈Q which is a realization of y and which has a smaller dimension. That is, strictly speaking, we whenever we speak of a GBS realization of y, we should indicate the input processes of that GBS. However, such an approach would make the presentation cumbersome. For the ease of discussion, in the sequel, unless stated otherwise, the input process {µ q } q∈Q will be fixed, and by a GBS we will always mean a GBS with respect to {µ q } q∈Q . In particular, by a GBS realization of y we will always mean a GBS w.r.t. {µ q } q∈Q which is a realization of y. Moreover, by a minimal dimensional (or simply minimal) GBS realization of y we mean a GBS w.r.t. {µ q } q∈Q which is a realization of y and dimension of which is not larger than the dimension of any other GBS w.r.t. {µ q } q∈Q which is a realization of y. In this chapter, we consider the following realization problem.

Problem 3.1 (Strong realization problem for GBSs). Given a process y find conditions for existence of a GBS G which is a realization of y, as well as conditions for a GBS to be a minimal dimensional realization of y. Formulate algorithms for computing a minimal dimensional GBS realization of y.

The proposed problem is a direct counterpart of the well known strong realization problem for linear stochastic systems [START_REF] Katayama | Subspace Methods for System Identification[END_REF][START_REF] Lindquist | Linear Stochastic Systems: A Geometric Approach to Modeling, Estimation and Identification[END_REF][START_REF] Lindquist | On the stochastic realization problem[END_REF]. Similarly to linear systems [START_REF] Katayama | Subspace Methods for System Identification[END_REF][START_REF] Lindquist | Linear Stochastic Systems: A Geometric Approach to Modeling, Estimation and Identification[END_REF][START_REF] Lindquist | On the stochastic realization problem[END_REF], we can also formulate the concept of a weak realization for GBS. Informally, a GBS G is a weak realization of y, if certain covariances of the output of G equal the corresponding covariances of y. The weak realization problem is to find conditions for existence and minimality of a weak realization of a process y and formulate algorithms for computing a minimal dimensional weak realization of y. Clearly, if G is a realization of y, then it is also a weak realization of y. Hence, a solution of Problem 3.1 also solves the weak realization problem. We refer the reader to [START_REF] Petreczky | Realization theory for a class of stochastic bilinear systems[END_REF] for details on the weak realization problem for GBSs.

Note that the realization problem of Problem 3.1 is different from the realization problem for deterministic systems which have been discussed so far. In Problem 3.1, we fix the input processes {µ q } q∈Q , and we are interested in GBSs which are driven by these fixed inputs, and whose output is y. This is consistent with the traditional formulation of the realization problem for stochastic systems with inputs [START_REF] Katayama | Subspace Methods for System Identification[END_REF][START_REF] Lindquist | Linear Stochastic Systems: A Geometric Approach to Modeling, Estimation and Identification[END_REF], but it is different from deterministic realization problem, where a state-space representation of an input-output relation {µ q } Q → y is sought after. Note that from the point of view of system identification, the problem formulation with a fixed input is the most natural one. Indeed, in system identification, only the response of the system to one particular input is known. Therefore, in system identification, constructing a state-space representation and a noise process which is consistent with an input and an output process is the best we can do. The general relationship between these two problems is still open even for linear systems, and for this reason we will not attempt to explore it for GBSs. However, for certain classes of GBSs, they are equivalent.More precisely, since minimal GBSs in forward innovation form realizing the same process will be shown to be isomorphic, so this system class the two formulations are closely related: if two such systems yield the same output process for some input (satisfying certain properties), they will yield the same output process for any other input. In particular, the assumption that the input is stochastic and it satisfies some technical properties is analogous to persistence of excitation: in order to be able to reconstruct a state-space representation of a system, we need the knowledge of the input-output behavior for sufficiently rich input signals. Once the state-space representation is found, it remains valid for any other input signal. We will elaborate on in it Section 3.7.

Notation and terminology Throughout the chapter, we use the standard terminology and notation of probability theory, see [43]. Throughout the chapter, we fix a probability space (Ω, F , P) (F is a σ -algebra over Ω, and P is a probability measure on F ). All the random variables and stochastic processes should be understood with respect to this probability space. Moreover, all the stochastic processes considered in this chapter are discrete-time processes with the time axis Z, where Z is the set of integers. We denote the expectation of a random variable z by E[z]. We denote the conditional expectation of z w.r.t. to a q-algebra G by E[z | G ].

Informal description of the solution: relationship between GBSs and linear switched systems.

The basic idea is to relate the realization problem for GBSs with the realization problem for linear switched systems (abbreviated by LSS in the sequel). We will use the terminology of [START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF][START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach: Part i[END_REF][START_REF] Petreczky | Partial-realization of linear switched systems: A formal power series approach[END_REF][START_REF] Petreczky | Realization theory for discrete-time linear switched systems[END_REF][START_REF] Petreczky | Realization theory of linear hybrid systems[END_REF] when discussing LSSs, see Appendix B for an overview. More precisely, recall from [START_REF] Caines | Linear Stochastic Systems[END_REF][START_REF] Lindquist | Linear Stochastic Systems: A Geometric Approach to Modeling, Estimation and Identification[END_REF][START_REF] Katayama | Subspace Methods for System Identification[END_REF] that there is a correspondence between stochastic LTI state-space representations of y and deterministic LTI state-space representations of deterministic input-output maps f y . This correspondence is such that the Markov parameters of f y are covariances E[y(t + k)y T (t)] of y. Moreover, this correspondence preserves minimality. We extend this idea to GBSs by establishing a correspondence between GBSs realizations of y and LSS realizations of a deterministic input-output map f y . Similarly to the linear case, the Markov-parameters of f y will be equal to certain covariances of y and {µ q } q∈Q . Below we present the basic steps, without discussing the assumptions which are necessary to make those steps mathematically well posed. That latter will be done in subsequent sections.

As the first step, we will argue that if y has a realization by an GBSs G of the form (3.2), then the covariance matrices

Λ y w , w = q 1 • • • q k ∈ Q, k ≥ 1, defined below Λ y q 1 •••q k = 1 p(µ q 1 ) • • • p(µ q k ) E[y(t)y T (t -k)µ q 1 (t -k) • • • µ q k (t -1)], (3.5) 
correspond to the Markov parameters of a LSS

Σ G      z(t + 1) = p(µ q )A q(t) z(t) + B q (t)w(t) y(t) = Cz(t) (3.6) 
which we will call the LSS associated with G . Here q(t) takes values in Q. The number p(µ q ) from (3.5) are suitable numbers defined uniquely by the process {µ q } q∈Q . For example, {µ q } q∈Q are i.i.d. processes, then typically p(µ

q ) = E[µ 2 q (t)]. If Q = Θ×Θ, µ (q 2 ,q 1 ) (t) = χ(θ(t +1) = q 2 , θ(t) = q 1
) for all q 1 , q 2 ∈ Θ,t ∈ Z, where θ(t) is an ergodic Markov process taking values in a finite set Θ, then p(µ (q 1 ,q 2 ) ) is the transition probability of Θ.

The matrices B q of (3.6) are defined as follows:

∀q ∈ Q : B q = 1 p(µ q ) (A q P q C T + K q Q q D T ) (3.7) 
where {P q = E[x(t)x T (t)µ 2 q (t)]} q∈Q is the unique collection of positive semi-definite matrices {P q } q∈Q which satisfy the Lyapunov-like equation

P q = p(µ q ) ∑ q 1 ∈Q,q 1 q∈L (A q 1 P q 1 A T q 1 + K q 1 Q q 1 K T q 1 ), (3.8) 
where

Q q 1 = E[v(t)v T (t)µ 2 q 1 (t)], q 1 ∈ Q. In this case, - Λ y qw = CA w B q p(µ w ), E[y(t)y T (t)µ 2 q (t)] = (CP q C T +CQ q D T ) (3.9) for all q ∈ Q, w ∈ Q * , where p(µ ε ) = 1 and p(µ q 1 •••q k ) = p(µ q 1 )p(µ q 2 ) • • • p(µ q k ) for all q 1 , . . . , q k ∈ Q.
We can also relate potential input-output maps of deterministic LSS with covariances of y. More precisely, let us define the input-output map

f y : U × Q → Y , where U = (R p ) N , Q = Q N , (Y = R p ) N , i.e., U , Q, Y
are the sets of all functions from the set of natural numbers N to the sets R p , Q and R p respectively. Note that U and Y coincide in our case, however, we prefer to denote them by different symbols as they represent the space of continuous input and output spaces of the input-output map f y . The input-output map f y is defined as follows: for all u ∈ U , σ ∈ Q:

f y (u, σ (t) = t-1 ∑ i=0 Λ y σ (i)•••σ (t-1) u(i). (3.10) 
We will call f y the input-output map associated with y. Let us recall from [START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF][START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach: Part i[END_REF][START_REF] Petreczky | Partial-realization of linear switched systems: A formal power series approach[END_REF][START_REF] Petreczky | Realization theory for discrete-time linear switched systems[END_REF][START_REF] Petreczky | Realization theory of linear hybrid systems[END_REF] or Appendix B the notion of generalized Markov parameters of the input-output function. From the definition of Markovparameter M f y and S f y q 1 ,q 2 [209, Definition 11,eq. ( 7)] or Appendix B.51 of input-output maps it follows that

S f y q 1 ,q 2 (v) = Λ y q 2 v
That is, a GBS is a realization of y, if the associated LSS is a realization of the input-output map f y associated with y.

The attentive reader might have noticed that the definitions above are well-posed only if suitable technical assumptions are made G . In particular, we have to make sure that the right-hand side of (3.5) does not depend on

t, that E[y(t)y T (t)µ 2 q (t)], Q q = E[v(t)v T (t)µ 2 q (t)]
, and

P q = E[x(t)x T (t)µ 2 q (t)],
do not depend on t, and that (3.8) has a unique solution which equals {P q } q∈Q . Later on in the chapter we will introduce these technical assumptions. The input processes {µ q } q∈Q which satisfy these assumption will be called admissible, the processes y, x, v will be called ZMWSSI with respect to {µ q } q∈Q , and the GBSs with input processes {µ q } q∈Q satisfying these technical assumptions will be called stationary GBSs.

Next, we show that we can construct a GBS realization of y from a LSS realization of the associated inputoutput map f y . By looking at the equations (3.9) it is clear that if we find a LSS realization Σ of f y , then the matrices C and A q of the GBS will be the same as those of Σ. The difficulty is to define the noise gain K q and the noise process v of the GBS. Since we have only y at our disposal, we have to define v as some function of y. We will define v as the innovation process e of y with respect to {µ q } q∈Q : e(t) = y(t)ŷ(t), where ŷ(t) is the element of the the closure of linear space generated by the random variables of the form 22 ] is minimal. By closure we mean closure in the topology of mean-square integrable random variables. We will present the precise definition later on. It suffices to note that e(t) is well defined if y is a ZMWSSI process with respect to {µ q } q∈Q (the notion of ZMWSSI processes will be defined later). The definition of e(t) is similar to the classical definition of the innovation process for linear systems: however, instead of looking at the difference of y(t) and its best linear prediction with respect to past outputs, we define e(t) as the difference between y(t) and the best linear prediction of y(t) based on products of past inputs and outputs. We will say that a stationary GBS G of the form (3.2) is in forward innovation form, if its noise process v is the innovation process e of its output ŷ with respect to its input processes {µ q } q∈Q and D is the identity matrix.

y(t -k)µ q 1 (t -k) • • • µ q k (t -1), q 1 , . . . , q k ∈ Q, k ≥ 1 such that E[ y(t) -ŷ(t)
Let Σ be a minimal LSS realization of f y of the form

Σ x(t + 1) = Āσ(t) x(t) + Bσ(t) u(t) y(t) = Cσ(t) x(t) , (3.11) 
where σ (t) ∈ Q is the switching signal, x(t), u(t), y(t) are the state, input and output signals of the LSS Σ respectively.

By renaming the elements of Q, without loss of generality, we can assume that Q = {1, . . . , D}. Recall from [START_REF] Petreczky | Realization theory of linear hybrid systems[END_REF]Definition 23] the definition of the observability matrix O(Σ) of Σ, 

O(Σ) = ( C Āv 1 ) T , ( C Āv 2 ) T , . . . , ( C Āv N(n-1) ) T T ∈ R pDN(n-
Ô(Σ) = ( C Āv 1 ) T , ( C Āv 2 ) T , . . . , ( C Āv N(n-1) ) T T ∈ R pDN(n-1)×n . (3.13)
Note that the rank of Ô(Σ) is the same as the rank of O(Σ), since their row-spaces are the same. Since Σ is observable and its observability matrix is full column rank, hence Ô(Σ) is also full column rank. Thus Ô(Σ) has a left inverse. Let Y n (t) be formed by the products of future outputs and inputs:

Y n (t) = (z y+ v 1 (t)) T , (z y+ v 2 (t)) T . . . (z y+ v N(n-1) (t)) T T , (3.14) 
with z y+ v 1 (t) = z y+ ε (t) = y T (t) and z y+ v i , i > 1 is as defined in (3.15). We used the ordered enumeration v 1 , v 2 , . . . , and integer N(n -1) defined after Definition 2.1, where

z y+ ε (t) = y(t), z y+ q 1 •••q k (t) = y(t + k) k ∏ i=1 µ q i (t + k -i) p(µ q i ) . (3.15)
Intuitively, the random z y+ w (t) represents the product of future outputs with past inputs. Let x(t) be the element of the closure of the linear space generated by y(t

-k)µ q 1 (t -k) • • • µ q k (t -1), q 1 , . . . , q k ∈ Q, k ≥ 1 such that E[ Ô-1 (Σ)Y n (t) -x(t) 2 2
] is minimal, i.e., x(t) is the orthogonal projection (in the sense to be defined later) of the product of future outputs and inputs to the linear space generated by the products of past outputs and inputs.

For each q ∈ Q, define a matrix K q ∈ R n×p such that

K q = (B q p(µ q ) - 1 p(µ q ) A q P q C T )Q -1 q , (3.16 
)

P q = E[x(t)x T (t)µ 2 q (t)],
and

Q q = (E[y(t)y T (t)µ 2 q (t)] -CP q C T ) = E[e(t)e(t)µ 2 q (t)]. (3.17) Define the GBS G Σ =(n, p, p, Q, x, e, {µ q } q∈Q , y,C, I p , { 1 p(µ q ) A q , K q } q∈Q ). (3.18) 
The GBS G Σ is called the GBS associated with the LSS Σ. Note that G Σ is in forward innovation form, and its state is the projection of products of future outputs with inputs on the products of past outputs with inputs. Note that the transition from GBSs to LSS and back preserves dimension and the state-space. Hence, minimality of GBSs is equivalent to minimality of the corresponding LSSs. Hence, we can use [209, Theorem 1] (alternatively Theorem B.1 of Appendix B) to characterize minimality of GBSs. In general, minimal GBSs realizations of the same output and input processes y will not be isomorphic, although their LSSsis. The reason behind it is that different GBSs realizations with the same matrices C, A q but different noises and noise gain matrices may yield the same associated LSS. However, if we fix the noise process to be the innovation process of y, then this source of freedom in the choice of GBS realizations disappears. In fact, it can be shown that all minimal GBS realizations of y in forward innovation form are isomorphic. This situation parallels that of for stochastic linear systems described in [START_REF] Caines | Linear Stochastic Systems[END_REF][START_REF] Lindquist | Linear Stochastic Systems: A Geometric Approach to Modeling, Estimation and Identification[END_REF][START_REF] Katayama | Subspace Methods for System Identification[END_REF].

In addition, existence of a GBS realization of y is equivalent to existence of a LSS realization of the associated input-output map f y . In turn, the latter can be characterized by a finite rank condition of the Hankel-matrix of f y , CHAPTER 3. REALIZATION THEORY OF STOCHASTIC BILINEAR SYSTEMS see [START_REF] Petreczky | Realization theory for discrete-time linear switched systems[END_REF]Theorem 2], Theorem B.3 of Appendix B. Note that this Hankel-matrix can be constructed from the covariances Λ y w . In fact, by using [START_REF] Petreczky | Realization theory for discrete-time linear switched systems[END_REF]Algorithm 1] or the adaptation of the reduced-basis realization algorithm from [START_REF] Cox | Towards efficient maximum likelihood estimation of lpv-ss models[END_REF], we can compute a minimal LSS realization Σ of f y from finitely many covariances Λ y w . In turn,we can compute from Σ the associated GBS realization G Σ of y, which will be minimal and in forward innovation form. In this way we obtain a counterpart of the covariance realization algorithm for linear systems, see [START_REF] Caines | Linear Stochastic Systems[END_REF][START_REF] Lindquist | Linear Stochastic Systems: A Geometric Approach to Modeling, Estimation and Identification[END_REF][START_REF] Katayama | Subspace Methods for System Identification[END_REF]. That is, a minimal GBS realization of y in forward innovation form can be computed from a finite number of covariances of y and {µ q } q∈Q .

Note that in the discussion above we could have used LPV-SSAs instead of LSSs, as these two system classes are closely related, see Section 2.4. Indeed, assume that Q = {1, . . . , D}. We can then identify the LSS (3.6) with the LPV-SSA (3.11) and adapt the discussion accordingly. Which formalism is used, LSSs or LPV-SSA is largely matter of taste. In this chapter we prefer to stick to LSSs, as the latter formalism seems more natural to us.

(R D , { p(µ q )A i , B i ,C i } D i=0 ), where A 0 = B 0 = 0, C 0 = 0, C i = C, i ∈ Q. Conversely, we can use the LPV-SSA (R D , { Āi , Bi , Ci } D i=0 ), with Ā0 = 0, B0 = 0, C0 = 0, Ci = C, i ∈ Q instead of

Mathematical framework

In order for the realization problem to be meaningful, a number of assumptions have to be made on the input and output processes and GBSs. In this section we will present these assumptions.

We denote by H 1 the Hilbert-space of square integrable real valued random variables with the scalar product z, x = E[zx].

Definition 3.2 (ZMSI). A stochastic process z is called zero mean and square integrable (abbreviated by ZMSI

), if E[z(t)] = 0 and E[z T (t)z(t)] < +∞.
Recall that a process z is wide sense stationary, if for every s,t, k ∈ Z, the expectations

E[z(t + k)z T (s + k)], E[z(t + k)]
exist and their value is independent of k. In the sequel, we use the notation and terminology regarding finite sequences of elements of Q introduced in Section 2.2.

In the sequel, we will be interested in GBSs input processes of which are admissible [START_REF] Petreczky | Realization theory for a class of stochastic bilinear systems[END_REF]. For the formal definition, we refer to [START_REF] Petreczky | Realization theory for a class of stochastic bilinear systems[END_REF]. For the purposes of this chapter, it is sufficient to know that if a collection {µ q } q∈Q is admissible, then the following holds. For each word w ∈ Q + of the form w = q 1 q 2

• • • q k ∈ Q + , k ≥ 1, q 1 , . . . , q k ∈ Q, define the process µ w as ∀t ∈ Z : µ w (t) = µ q 1 (t -k + 1)µ q 2 (t -k + 2) • • • µ q k (t). (3.19) 
• there exists a set L ⊆ Q + , such that µ w = 0 for all w / ∈ L,

• for each w, v ∈ Q + , the process µ w , µ v T is wide-sense stationary,

• the linear span of {µ q } q∈Q contains the constant 1 random variable, and

• there exists a set L ⊆ Q + , such that the conditional expectation of µ vq (t)µ wq (t) with respect to past values

{µ q (s)} s<t is either zero if q = q or it is p(µ q )µ v (t -1)µ w (t -1)
for some positive real numbers p(µ q ) > 0.

That is, the random variable {µ w (t)} w∈Q + are mutually orthogonal for each fixed time instance t, and they have a Markov-like property: the conditional expectation of µ vq (t)µ wq (t) with respect to the past values of {µ q } depends only on the past values µ v (t -1)µ w (t -1) and a number p q . Intuitively, p q is such that if z(t) is a random process which is conditionally independent of future inputs with respect to the past outputs, then

E[(z(t)µ wq (t))(z(t)µ vq (t))] = p q E[(z(t)µ w (t -1))(z(t)µ T v (t - 1 
)], i.e., p q describes a recursion for the covariances of the random variables z(t)µ w (t) and the recursion is on the length of w.

Below we present some examples of admissible input processes.

MATHEMATICAL FRAMEWORK

Example 3.1 (Zero mean i.i.d. input). Let Q = {0, 1, . . . , d}, µ 0 = 1, and assume that for each i = 1, . . . , d, µ i is a zero mean and it is an i.i.d. process. and for each t ∈ Z, µ(t) is square integrable and E[µ 2 q (t)] = p(µ q ). then {µ q } q∈Q is a collection of admissible input processes.

Example 3.2 (Discrete valued i.i.d process). Assume there exists an i.i.d process θ which takes its values from a finite set Q. Let µ q (t) = χ(θ(t) = q) for all q ∈ Q, t ∈ Z. Let S = Q × Q, L = Q + and p(µ q ) = P(θ(t) = q), α q = 1 for all q ∈ Q. Then {µ q } q∈Q is a collection of admissible input processes.

Example 3.3 (Markov chain).

Assume that θ is a stationary and ergodic Markov process whose state space is the finite set Θ. Assume P(θ

(t) = q 2 | θ(t -1) = q 1 ) = p (q 2 ,q 1 ) > 0, q 1 , q 2 ∈ Θ. Let us take Q = Θ × Θ, µ (q 2 ,q 1 ) (t) = χ(θ(t +1) = q 2 , θ(t) = q 1 )
for all q 1 , q 2 ∈ Θ,t ∈ Z. Then {µ q } q∈Q with p(µ q ) = p (q 2 ,q 1 ) , q = (q 2 , q 1 ) and α q = 1 for all q ∈ Q is a collection of admissible input processes.

For the rest of the chapter, unless stated otherwise, {µ q } q∈Q is assumed to be admissible. In order to understand why admissible input processes are necessary, we will introduce the class of ZMWSSI processes with respect to {µ q } q∈Q (ZMWSSI w.r.t. {µ q } q∈Q for short, or ZMWSSI if {µ q } q∈Q is clear from the context), see [START_REF] Petreczky | Realization theory for a class of stochastic bilinear systems[END_REF] for a complete definition. As it was mentioned above, {µ q } q∈Q is assumed to be admissible, and the notion of a ZMWSSI process w.r.t. {µ q } q∈Q is defined only for admissible input processes {µ q } q∈Q . For the purposes of this chapter, it is sufficient to remember the following. Let us define the processes

∀t ∈ Z : z r w (t) = r(t -|w|)µ w (t -1) 1 p(µ w ) . (3.20) 
where p(µ ε ) = 1 and if w = vq for some v ∈ Q * and q ∈ Q, then p(µ w ) = p(µ v )p(µ q ), and the covariances

∀w ∈ Q + : Λ r w = E[r(t)(z r w (t)) T ], ∀w, v ∈ Q + : T r v,w = E[z r v (t)(z r w (t)) T ]. (3.21) 
Note that if y is ZMWSSI, then the notation of (3.21) applied to y is consistent with the notation of (3.5). Then r is a ZMWSSI process with respect to (w.r.t.) {µ q } q∈Q , if

• the right-hand side of (3.21) does not depend on t,

• the future values of {µ q (s)} s≥t of {µ q } q∈Q do not depend on the past values {r(s)} s≤t of r; more precisely, the σ -algebras generated by {r(s)} s≤t and {µ q (s)} q∈Q,s≥t respectively are conditionally independent with respect to the σ algebra generated by {µ q (s)} s<t ;

If r is ZMWSSI w.r.t. {µ q } q∈Q , then the following recursion holds:

T r q,q = 0, if q = q (3.22) T r wq,vq = T r w,v if q = q and wq, vq ∈ L 0 otherwise, (3.23) T r wq,q = (Λ r w ) T if q = q 0 if q = q . (3.24)
That is, if we interpret Q + as an additional time axis, then z r w are wide-sense stationary w.r.t. to both t and w. In order to develop realization theory, we have restrict attention to admissible inputs and to GBSs for which the state and noise processes are ZMWSSIw.r.t. the admissible inputs. We will call such GBSs stationary GBSs. More precisely, we will say that a GBS of the form (3.2) is stationary w.r.t. {µ q } q∈Q (stationary, if {µ q } q∈Q clear from the context, if the following conditions hold:

1. {µ q } q∈Q are admissible inputs, 2. The joint state and noise process x T , v T T is ZMWSSIwith respect to {µ q } q∈Q .

3. ∀w ∈ Q + ,t ∈ Z : E[v(t -|w|)µ w (t -1)v T (t)] = 0. 4. ∀w ∈ Q + ,t ∈ Z : E[x(t -|w|)µ w (t -1)v T (t)] = 0 and ∀q ∈ Q,t ∈ Z : E[x(t)µ 2 q (t)v T (t)] = 0.
5. The matrix ∑ q∈Q p(µ q )A q ⊗ A q is stable, i.e., all its eigenvalues are inside the open unit disk.

Intuitively, Part 2 requires that the input and noise processes are wide sense stationary and conditionally independent from the future inputs given the past inputs. Part 3 -4 require the noise process to be uncorrelated and the past state and future and present noises to be uncorrelated. Part 5 is a stability condition, which is necessary for the state process to be wide sense stationary. It could be tempting to simplify the definition of stationarity by requiring the noise process to be completely independent of the inputs and of the past states. Unfortunately, this would be too restrictive for realization theory, since the realization algorithm yields a system whose noise process is uncorrelated with but not necessarily independent of the past inputs. More precisely, in realization theory we would like to construct a system from y(t) which satisfies our chosen set of assumptions. However, in a system constructed from y(t), the noise process v(t) and the state x(t) must be functions of past outputs and inputs, as we have no other information at our disposal. Hence, the noise process will then depend on the past inputs, and if the inputs are not independent, for example, they are a Markov process, it will depend on future inputs too. Similarly, as both the noises and states depend on past inputs and outputs, in general, they will not be independent. The best we can hope for is to replace independence by zero correlation. Since our processes are not Gaussian, the latter does not translate into independence. The reason why we cannot assume Gaussian distribution of the state and noise, is the presence of products of inputs and states (noises) in (3.1): products of Gaussian are not Gaussian.

Note that the state of a stationary GBS is uniquely determined by the system matrices, and past inputs and noises. To state this relationship, let us recall from Notation 2.1, Section 2.2 the notation for products of matrices indexed by sequences, applied to {A q } q∈Q and X = Q. If a GBS G of the form (3.1) is stationary, then

x(t) = ∞ ∑ N=0 ∑ w∈Q * ,|w|=N,q∈Q p(µ qw )A w K q z v qw (t). ỹ(t) = ∞ ∑ N=0 ∑ w∈Q * ,|w|=N,q∈Q p(µ qw )A w K q z v qw (t). (3.25) 
for all t ∈ Z, where the infinite sum on the right-hand converges in the mean-square sense. In fact, in [START_REF] Petreczky | Realization theory for a class of stochastic bilinear systems[END_REF]Lemma 3] it is shown that in order to define a stationary GBS, it is sufficient to define the system matrices and a noise process in such a way that they satisfy the corresponding conditions of a stationary GBS then this choice uniquely determines the state process, which will satisfy (3.25).

Formal description of the relationship with realization theory of LSS

In this section we present the formal description of the relationship between the realization problem for GBSs and that of for LSSs.

Recall from Section 3.3 the informal definition of a LSS associated with a stationary GBS. The formal definition is as follows.

Definition 3.3 (LSS associated with a GBS).

Let G be a stationary GBS realization of y of the form (3.1). Define the LSS Σ G associated with G as Σ G = (n, {( p(µ q )A q , B q ,C q ) | q ∈ Q}), where C q = C for all q∈ Q, and the
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matrices B q , q ∈ Q are defined as follows:

B q = 1 p(µ q ) (A q P q C T + K q Q q D T ) (3.26)
where

{P q = E[x(t)x T (t)µ 2 q (t)]} q∈Q . Remark 3.1 (Computation of Σ G ).
Note that in order to compute the matrices {B q } q∈Q from Definition 3.3, we can use the fact from [START_REF] Petreczky | Realization theory for a class of stochastic bilinear systems[END_REF] that {P q = E[x(t)x T (t)µ 2 q (t)]} q∈Q is the unique collection of positive semi-definite matrices {P q } q∈Q which satisfy the Lyapunov-like equation

P q = p(µ q ) ∑ q 1 ∈Q,q 1 q∈L (A q 1 P q 1 A T q 1 + K q 1 Q q 1 K T q 1 ), (3.27) 
where

Q q 1 = E[v(t)v T (t)µ 2 q 1 (t)], q 1 ∈ Q.
In turn, we can use [START_REF] Petreczky | Realization theory for a class of stochastic bilinear systems[END_REF]Lemma 5] to note that P q = lim N→∞ P N q , where the sequence {P N q } q∈Q,0≤N∈Z is defined by P 0 q = 0 and

P N+1 q = p(µ q ) ∑ q 1 ∈Q,q 1 q∈L (A q 1 P N q 1 A T q 1 + K q 1 Q q 1 K T q 1 ) (3.28) 
First, we show that the LSS associated with a GBS G are realizations of the input-output map f y associated with the output y of G . To this end, we need to recall from [START_REF] Petreczky | Balanced truncation for linear switched systems[END_REF] or Appendix B.6 that a LSS (n, {A q , B q ,C q } q∈Q ) is called strongly stable, if the eigenvalues of the matrix ∑ q∈Q A q ⊗ A q are all inside the unit circle. Strongly stable LSS are closed under minimization and have a number of useful properties [START_REF] Petreczky | Balanced truncation for linear switched systems[END_REF].

More precisely, using [START_REF] Petreczky | Realization theory for a class of stochastic bilinear systems[END_REF]Lemma 4], [START_REF] Petreczky | Balanced truncation for linear switched systems[END_REF]Lemma 11] [209, Lemma 1] we can derive the following.

Lemma 3.1 (From GBS to LSS). If G stationary GBS which is a realization of y, then y is ZMWSSI w.r.t. {µ q } q∈Q and the LSS Σ G is a realization of the input-output map f y . Moreover, Σ G is strongly stable.

The converse of Lemma 3.1 also holds. That is, we can show that LSS realizations of the input-output map f y give rise to GBS realizations of the process y. In order to state this result formally, we will need a mild technical assumption on y. Definition 3.4 (SII process). A process y is said to be square integrable (SII) with respect to {µ q } q∈Q (SII w.r.t. {µ q } q∈Q for short, or SII if {µ q } q∈Q is clear from the context), if for all w ∈ Q + , the process z y+ w defined in (3.15), i.e.,

z y+ ε (t) = y(t), z y+ q 1 •••q k (t) = y(t + k) k ∏ i=1 µ q i (t + k -i) p(µ q i ) , q 1 , . . . , q k ∈ Q, k > 0 is square integrable.
Remark 3.2 (Conditions for y being SII). One may wonder when y is SII. Below we present a class of process which are SII. One case is when y zero mean wide-sense stationary and square integrable, and µ q is essentially bounded for all q ∈ Q, i.e., there exists a constant K > 0 such that |µ q (t)| ≤ K almost everywhere for all q ∈ Q,t ∈ Z, then y is SII. This is the case when for example µ q arises from a discrete valueIn this case, for any w

∈ Q + we have E[(z y,+ w (t)) T z y,+ w (t)] ≤ E[y T (t + |w|)y(t + |w|)]K 2 1 p w < +∞.
Another case is when y(t) is zero mean wide-sense stationary and square integrable, and µ w (t) have finite fourth order moments. In this case, by Hölders inequality, we have E

[(z y+ w (t)) T z y+ w (t)] ≤ (E[(y T (t + k)y(t + k)) 2 ]E[µ 4 w (t + k)]) 1/2 < +∞,
where The right-hand side of the inequality above is finite by assumption. This assumption was made in [START_REF] Desai | Realization of bilinear stochastic systems[END_REF]. In particular, if the inputs are bounded, and y is ZMWSSI, then y is SII. Now we are ready to state the result relating LSS realizations of f y with GBS realizations of y. Lemma 3.2 (From LSS to GBS). If y is ZMWSSI and SII w.r.t. {µ q } q∈Q , f y has a realization by a strongly stable LSS then y has a realization by stationary GBS.

The proof of Lemma 3.2 is constructive, as it relies on the notion of a GBS realization G Σ associated with a minimal LSS realization of f y . The latter was already mentioned in Section 3.3. Below we will review the definition of the GBS associated with a LSS and discuss how to compute it. The construction of the latter GBS is instrumental for developing realization algorithms for GBSs. Moreover, the construction of the GBS also introduces the notion of forward innovation form, which is interesting on its own right.

In order to continue the discussion, we need the notion of forward innovation process and GBS in forward innovation form. To this end, we introduce the following notation. Notation 3.1 (Orthogonal projection E l ). Let Z be a subset of square integrable random variables in R p and let M be the Hilbert space generated by the coordinates of the elements of Z. Let z be a square integrable random variable with values in R k . We denote by E l [z | Z] the orthogonal projection of z onto the subspace M. By the orthogonal projection of z onto M we mean the vector-valued random variable z * = (z * 1 , . . . , z * k ) such that z * i ∈ M is the orthogonal projection of the ith coordinate z i of z onto M, as it is usually defined for Hilbert spaces. Definition 3.5 (Forward innovation process). The forward innovation process of y w.r.t. {µ q } q∈Q (or simply the innovation process is {µ q } q∈Q is clear from the context) is defined as the process e:

∀t ∈ Z : e(t) = y(t) -E l [y(t) | {z y w (t)} w∈Q + ]. (3.29) 
We say that y is full rank, if for each q ∈ Q the covariance matrix E[e(t)e T (t)µ 2 q (t)] is invertable. Now we are ready to define the notion of GBS in forward innovation form. Definition 3.6 (GBS in forward innovation form). Let G be a stationary GBS of the form (3.1) which is a realization of y. We say that G is in forward innovation form, if v = e and D = I p , i.e. the noise process of G is the forward innovation process of y.

Intuitively, the innovation process e is the prediction error of the best linear predictor of y, if the prediction is done based on the products of the past values of y with the past inputs. Hence GBS realization of y in forward innovation can be seen as a Kalman-filter for predicting the current value of y.

Now we are in position to review the notion of the GBS associated with a minimal LSS realization of f y . To this end assume that y is ZMWSSI and SII, and let Σ = (n, {(A q , B q ,C q ) | q ∈ Q}) be a strongly stable LSS realization of f y . Since minimization preserves strong stability, see [START_REF] Petreczky | Balanced truncation for linear switched systems[END_REF]Theorem 3] or Theorem B.5, Appendix B.6, we can assume that Σ is minimal. In this case, C q 1 = C q 2 for all q 1 , q 2 ∈ Q. Indeed, for all w ∈ Q + , C q 1 A w B q = S f y q 1 ,q (w) = Λ y qw = S f y q 2 ,q (w) = C q 2 A w B q , i.e., C q 1 x = C q 2 x for any x ∈ ImR(S ). Since Σ is minimal and thus span-reachable, R(Σ) = R n and hence C q 1 = C q 2 . In the sequel, we denote by C the matrix C q , q ∈ Q.

Using the discussion above, we can define the GBS associated with Σ as follows.

Definition 3.7 (GBS associated with Σ). Let Σ = (n, {(A q , B q ,C q ) | q ∈ Q}) be a minimal strongly stable LSS realization of f y . The GBS associated with the Σ is defined as

G Σ = (n, p, p, Q, x, e, {µ q } q∈Q , y,C, I p , { 1 p(µ q ) A q , K q } q∈Q ), (3.30) 
where C q = C for all q ∈ Q, and

∀t ∈ Z : x(t) = E l [ O -1 (Σ)(Y n (t)) | {z y w (t)} w∈Q + ], (3.31) 
where Y n (t) is as in

(3.14), i.e., Y n (t) = (z y+ v 1 (t)) T , (z y+ v 2 (t)) T . . . (z y+ v N(n-1) (t)) T T where z y+ v (t), v ∈ Q * is as in (3.15), and O -1 (Σ) is a left inverse of O(Σ)
, and O(Σ) is defined in the same way as the observability matrix O(Σ) of Σ (see

(B.5) in Appendix B), but with C 1 instead of C 2 3 4 , i.e., O(Σ) = (C 1 A v 1 ) T , (C 1 A v 2 ) T , . . . , (C 1 A v N(n-1) ) T T ∈ R pN(n-1)×n (3.32)
and K q satisfies (3.16), i.e.

K q = (B q p(µ q ) - 1 p(µ q ) A q P q C T ) E[e(t)e(t)µ 2 q (t)] -1 , P q = E[x(t)x T (t)µ 2 q (t)]. Remark 3.3 (Computing G Σ ).
In order to compute the matrices of G Σ we can proceed as follows: compute the sequence {P N q , K N q } 0≤N∈Z,q∈Q as follows: set P0 q = 0 and for all i = 0, . . . ,

N P i+1 q = ∑ q 1 ∈Q,q 1 q∈L p(µ q )(A q 1 P i q 1 A T q 1 + K i q 1 Q i q 1 (K i q 1 ) T ) Q i q = (p(µ q )T y q,q -CP i q C T ) K i q = (B q p(µ q ) -A q P i q C T )(Q i q ) -1 .
Then from [START_REF] Petreczky | Realization theory for a class of stochastic bilinear systems[END_REF]Theorem 3] it follows K q = lim N→∞ K N q , P q = lim N→∞ P N q , q ∈ Q. Based on [START_REF] Petreczky | Realization theory for a class of stochastic bilinear systems[END_REF]Theorem 4] we can state the following relationship between Σ and the GBS associated with Σ.

Lemma 3.3. The GBS G Σ is stationary and it is a realization of y in forward innovation form.

Note that [START_REF] Petreczky | Realization theory for a class of stochastic bilinear systems[END_REF]Theorem 4] states the result in terms of representations of recognizable formal power series instead of discrete-time LSSs. However, there is a one-to-one correspondence between the two, see [START_REF] Petreczky | Realization theory for discrete-time linear switched systems[END_REF], so the statement of Lemma 3.3 and [226,Theorem 4] are equivalent. Lemma 3.2 is an easy consequence of Lemma 3.3. Indeed, assume that there exists a strongly stable realization of f y . Then by [START_REF] Petreczky | Balanced truncation for linear switched systems[END_REF]Theorem 3] or Theorem B.5 from Appendix B.6, any minimal LSS realization of f y is also strongly stable. Let then Σ be a minimal realization of f y . Then Σ is strongly stable and by Lemma 3.3 G Σ is a stationary GBS realization of y.

Notice that the LSS associated with a GBS G has the same state-space dimension as G . Conversely, the GBS G Σ has the same state-space dimension as the LSS Σ. Moreover, the LSS associated with G Σ is Σ itself. This means that we can state the following result relating minimal LSS realizations of f y and minimal stationary GBS realizations of y. Lemma 3.4. A stationary GBS G is a minimal realization of y, if and only if the associated LSS Σ G is minimal. In particular, the GBS G Σ from Lemma 3.3 is a minimal realization of y. Lemma 3.4 follows from [226, Appendix.D, Proof of Theorem 2], by using the correspondence between representations of recognizable formal power series and discrete-time LSSs [START_REF] Petreczky | Realization theory for discrete-time linear switched systems[END_REF].

The correspondence between GBSs and LSS described above allow us to derive a fairly complete realization theory of GBSs using realization theory of LSSs. These results will be reviewed briefly in the next section.

Main results on realization theory of GBSs

Below we will discuss conditions for existence and minimality of GBSs and minimal realization algorithms for GBSs. The results to be presented below are based on the correspondence between GBSs and LSSs.

Existence of a realization

In order to formulate conditions for existence of GBSs, we need to define the notion of a Hankel-matrix defined from covariances of y. To this end, without loss of generality we assume that Q = {1, . . . , D} and define the map

Ψ y : Q * → R p×pD as ∀w ∈ Q * : Ψ y (w) = Λ y 1w , Λ y 2w , .
. . Λ y Dw , and using the lexicographic ordering of Definition 2.1 define the Hankel-like matrix H y,i, j of y as

H y,i, j =      Ψ y (v 1 v 1 ), Ψ y (v 2 v 1 ), • • • Ψ y (v N( j) v 1 ) Ψ y (v 1 v 2 ), Ψ y (v 2 v 2 ), • • • Ψ y (v N( j) v 2 ) . . . . . . • • • . . . Ψ y (v 1 v M(i) ), Ψ y (v 2 v M(i) ), • • • Ψ(v N( j) v N(i) )      (3.33)
We say that the covariance sequence Ψ y is recognizable, if sup 0≤i, j∈Z,i, j≥1 rankH y,i, j = n < +∞ for some positive integer n Ψ y is square summable, if

Ψ y (ε) 2 F + ∞ ∑ k=1 ∑ q 1 ∈Q • • • ∑ q k ∈Q Ψ y (q 1 q 2 • • • q k ) 2 F (3.34)
is convergent, where • F is the Frobenius norm. We can then state the following necessary and sufficient conditions for existence of a stationary GBS realization.

Theorem 3.1 (Necessary and sufficient conditions for existence of a GBS realization). Assume y is SII w.r.t. {µ q } q∈Q . Then y has a realization by a stationary GBS if and only if y is ZMWSSI and the covariance sequence Ψ y is recognizable and square summable. . Indeed, notice that rankH y,i, j = rankH f y ,i, j , where H f y ,i, j is the Hankel-matrix defined in [START_REF] Petreczky | Realization theory for discrete-time linear switched systems[END_REF]Definiton 13] ((B.12) of Appendix B) In fact, H y,i, j is obtained from H f y ,i, j by keeping the first p rows of each block row

M f (v 1 v r ) M f (v 2 v r ) • • • M f (v N(M) v r ) .
It is easy to see that rankH f y ,i, j = sup i, j rankH f y ,i, j , and hence Ψ y being recognizable is equivalent to f y being realizable by an LSS. Note that Ψ y is square summable if and only if ∑ w∈Q * M f y (w) 2 F is convergent, which [START_REF] Petreczky | Metrics and topology for nonlinear and hybrid systems[END_REF] means that f y it is realizable by a strongly stable discrete-time LSS, if it is realizable by an LSS at all.

Minimality of GBSs

Having established conditions for existence of a GBS realization, we turn to the question of minimality. We will call a stationary GBS G a minimal realization of y if it realizes y and it has the minimal dimension among all possible stationary GBS realizations of y.

Let G be a stationary GBS of the form (3.1). For each k = 0, . . . , n -

1 define the k-step observability ma- trix O k (G ) and the k-step reachability matrix R k (G ) of G recursively as follows: O 0 (G ) = C, and R 0 (G ) = B 1 . . . B D
, where B q is as in (3.7), and for k > 0

O k (G )= C T , (O k-1 (G )A 1 ) T , (O k-1 (G )A 2 ) T , • • • , (O k-1 (G )A D ) T T , R k (G )= R 0 (G ), A 1 R k-1 (G ), A 2 R k-1 (G ), • • • , A D R k-1 (G ) T .
We say that G satisfies the observability rank condition, if rank O n-1 (G ) = n, and we say that G satisfies the reachability rank condition if rank R n-1 (G ) = n.
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Consider a stationary GBSs G of the form (3.1), and let Ĝ = (n, p, m, Q, x, v, ŷ, Ĉ, D, { Âq , K q } q∈Q ) another stationary GBS. An isomorphism from G to Ĝ is a non-singular matrix T ∈ R n×n such that x = T x, Dv = Dv, and

CT -1 = Ĉ, TA q T -1 = Âq , ∀q ∈ Q, T K q v(t)µ q (t) = Kq v(t)µ q (t), ∀q ∈ Q,t ∈ Z. If, in addition, m = m, v = v and D = D and T K q = Kq , q ∈ Q, then we call T a strong isomorphism from G to Ĝ .
With the above notions of reachability and observability of GBSs, we can state the following characterization of minimality from [START_REF] Petreczky | Realization theory for a class of stochastic bilinear systems[END_REF]Theorem 2]. Theorem 3.2 (Minimality of GBSs). Assume y is ZMSII w.r.t. {µ q } q∈Q .

• (i) A stationary GBS realization of y is a minimal realization of y if and only if it satisfies the observability and the controllability rank conditions.

• (i) If G and Ĝ are minimal GBS realizations of y in forward innovation form, then there exists an isomorphism from G to Ĝ . If y is in addition full rank, then this isomorphism is a strong one.

• (iii) If y has a realization by a stationary GBS, then it has a minimal GBS realization in forward innovation form.

Part (i) of Theorem 3.2 is a direct consequence of Lemma 3.4 and that minimality of LSSs is equivalent to their span-reachability and observability [START_REF] Petreczky | Realization theory for discrete-time linear switched systems[END_REF]Theorem 1] 

(Theorem B.1 of Appendix B). Note that O k (G ) and R k (G ) correspond to the spaces W k and V k of the associated LSS Σ G defined in [205, Remark 1] (Remark B.1 of Appendix B)
, and the observability/reachability rank condition for GBS is equivalent to W * = {0}, V * = R n , which in turn are equivalent to observability/span-reachability of Σ G . Part (ii) is a consequence of isomorphism of minimal LSSs, the argument is not entirely trivial, see [START_REF] Petreczky | Realization theory for a class of stochastic bilinear systems[END_REF] for the proof. Part (iii) is a direct consequence of the second statement of Lemma 3.4.

Remark 3.4. Note that we define isomorphism between GBSs as a linear transformation which is constant, i.e. it does not depend on the inputs. Theorem 3.2 implies that such state-space transformations are sufficient to relate minimal GBSs in forward innovation form which realize the same output.

For the linear case, i.e. Q = {0}, µ 0 = 1, Theorem 3.2 boils down to well known results [163, Theorem 6.5.2,Theorem 6.5.4,Theorem 6.6.1,Theorem 8.7.4].

Realization and minimization algorithms

Below we present algorithms for checking minimality of GBSs and for transforming a stationary GBS to a minimal one with the same output. Moreover, we present a Ho-Kalman-like algorithm for computing a minimal stationary GBS realization of y from covariances {Λ y w } w∈Q + ,|w|≤N , {T y σ ,σ } σ ∈Q of y.

Checking minimality

In order to check minimality of a GBS G , the LSS Σ G associated with GBS G has to be computed and its minimality checked as indicated in [205, Theorem 1 and Remark 1] (Remark B.1 and Theorem B.2 of Appendix B). In order to compute Σ G we can process as explained in Remark 3.1. That is, in order to compute Σ G , we have to calculate B q , q ∈ Q from (3.7), and for that we have to compute the state-covariances {P q } q∈Q from (3.8). By [START_REF] Petreczky | Realization theory for a class of stochastic bilinear systems[END_REF]Lemma 5] this can be done as follows. P q = lim N→∞ P N q , where the sequence {P N q } q∈Q,0≤N∈Z is defined by P 0 q = 0 and

P N+1 q = p(µ q ) ∑ q 1 ∈Q,q 1 q∈L (A q 1 P N q 1 A T q 1 + K q 1 Q q 1 K T q 1 ) (3.35)

Minimization algorithm

In order to transform a GBS G to a minimal one, we can proceed as follows: In order to compute the covariances {T y q,q } q∈Q which are necessary to apply Remark 3.3, use the formula (3.35) for G and set P q = lim N→∞ P N q and then use (3.9). 4: return G m

Algorithm

Covariance realization algorithm

Using a finite number of covariances {Λ y w } w∈Q + ,|w|≤N+2 and {T y q,q } q∈Q we can compute a GBS G realization of y as follows.

Algorithm 4 Covariance realization algorithm Input: Integer N > 0 and covariances {Λ y w } w∈Q + ,|w|≤N+2 and {T y q,q } q∈Q Output: A GBS G N . 

return G N = G Σ N .
If N is larger than the dimension of a GBS realization of y, then G N will be a minimal realization of y.

Applications to JMLS

To illustrate the usefulness of our results, we apply them to jump-Markov linear systems.

To start with, consider the special case when θ is an i.i.d process which takes its values from a finite set Q, and µ q (t) = χ(θ(t) = q) for all q ∈ Q, t ∈ Z, see Example 3.2. Then {µ q } q∈Q is a collection of admissible input processes. With this choice of the input processes, stationary GBSs correspond to a subclass of jump-Markov linear systems with i.i.d switching, abbreviated by JMLSIID. Since µ q (t) takes only values 0 and 1, from Remark 3.2 it follows that if y is ZMWSSI, then y is SII. Hence, in Theorem 3.1 -3.2 the assumption that y is SII can be dropped and the expression 'stationary GBS' can be replaced by JMLSIID. The algorithms from Section 3.6.3 remain valid for JMLSIIDs too.

Assume that θ is a stationary and ergodic Markov process taking its values in a finite set Θ = {1, . . . , d}. Define Q and {µ q } q∈Q as in Example 3.3. Then {µ q } q∈Q is an admissible collection of input processes. A stationary GBSs of the form (3.1) can then be written as

x(t + 1) = A (θ(t+1),θ(t)) x(t) + K (θ(t+1),θ(t)) v(t), ŷ(t) = Cx(t) + Dv(t)
, and hence it can be regarded as a jump-Markov linear systems. We refer to this subclass simply as jump-Markov linear systems or JMLS for short. Note that according to the standard definition [START_REF] Costa | Discrete-Time Markov Jump Linear Systems[END_REF], the state transition matrices of a jump-Markov linear system depend only on the current value of θ. More precisely, [START_REF] Costa | Discrete-Time Markov Jump Linear Systems[END_REF] considers systems of the form z(t

+ 1) = F θ(t) z(t) + G θ(t) w(t), ŷ(t) = H θ(t) z(t) + L θ(t) w(t)
, where F q , L q , H q , G q , q ∈ Θ are matrices of suitable dimensions.

CONSEQUENCES FOR SYSTEM IDENTIFICATION: WEAK REALIZATIONS, GBSS AS OPTIMAL FILTERS, REALIZATION OF INPUT-OUTPUT RELATION VS. OUTPUT PROCESS

Such a system can be transformed a JMLS of the form (3.1) with the same output process ŷ, see [START_REF] Petreczky | Realization theory of stochastic jump-markov linear systems[END_REF]Remark 9]. Conversely, a JMLS of the form (3.1) can be viewed as a jump-Markov system x(t +1) = A θ(t) x(t)+K θ(t) v(t), ŷ(t) = Cx(t) + Dv(t) in the sense of [START_REF] Costa | Discrete-Time Markov Jump Linear Systems[END_REF], driven by the Markov process θ(t) = (θ(t + 1), θ(t)). Alternatively, a JMLS can be converted to a system of the type [START_REF] Costa | Discrete-Time Markov Jump Linear Systems[END_REF] driven by the same Markov process θ and producing the same output, see [START_REF] Petreczky | Realization theory of stochastic jump-markov linear systems[END_REF]Remark 10]. That is, JMLS and the systems from [START_REF] Costa | Discrete-Time Markov Jump Linear Systems[END_REF] represent the same set of output processes. In fact, [START_REF] Petreczky | Realization theory of stochastic jump-markov linear systems[END_REF][START_REF] Petreczky | Realization theory of stochastic jump-markov linear systems[END_REF] uses realization theory of JMLS to solve the realization problem for a class of systems which contains the systems considered in [START_REF] Costa | Discrete-Time Markov Jump Linear Systems[END_REF]. From boundedness of {µ σ } σ ∈Σ and Remark 3.2 it follows that in Theorem 3.1 -Theorem 3.2 the assumption that y is SII can be dropped and the expression 'stationary GBS' can be replaced by 'JMLS'. The algorithms discussed in Section 3.6.3 remain valid for JMLSs too. That is, the results of this chapter yield a complete realization theory for JMLSs.

3.7 Consequences for system identification: weak realizations, GBSs as optimal filters, realization of input-output relation vs. output process

In this section we would like to discuss some implications of the results of this chapter which we believe are of fundamental importance for system identification. In particular, in Subsection 3.7.1 we show that GBSs can be interpreted not only as devices generating an output process, but also as partial parameterizations of probability distributions (high-order moments) and as optimal filters which predict current outputs based on past outputs and scheduling signals. In particular, in Subsection 3.7.1 we introduce the notion of a weak realization. In Subsection 3.7.2 we discuss the relationship between the realization problem formulated in Problem 3.1 and the problem of realizing the input-output relation {µ q } q∈Q → ỹ induced by a GBS.

Interpretations of GBS and their role in system identification

Recall from [START_REF] Caines | Linear Stochastic Systems[END_REF][START_REF] Lindquist | Linear Stochastic Systems: A Geometric Approach to Modeling, Estimation and Identification[END_REF][START_REF] Katayama | Subspace Methods for System Identification[END_REF] that there are three views of linear stochastic systems:

• Stochastic systems as generators of an output process.

• Stochastic systems as parameterizations of probability distributions of the output process.

• Stochastic system as optimal filter, for predicting the current value of an output process based on its past values.

For stochastic LTI systems all three views are equivalent. However, for other classes of systems the equivalence is far from obvious. Below we will discuss the relationship between these three interpretations for GBSs.

Recall that if G is a stationary GBS realization of y, then the moments {Λ y w } w∈Q + , {T y q,q } q∈Q satisfy (3.9). That is, the matrices and noise variances of a stationary G realization of y determine some higher order order moments of y. Note that these higher order moments do not determine the probability distribution of y uniquely. This is in contrast with outputs of Gaussian stochastic linear time-invariant systems. However, the matrices of G together with the noise variance can be viewed as finite encodings of the infinite number of moments {Λ y w } w∈Q + , {T y q,q } q∈Q of y, and hence as a partial parameterization of the probability distribution of y.

Conversely, consider a tuple S = ({A q , K q , Q q } q∈Q ,C, D), such that ∑ q∈Q p(µ q )A q ⊗ A q is stable and Q q = Q T q > 0 for all q ∈ Q. It then follows from [START_REF] Petreczky | Realization theory for a class of stochastic bilinear systems[END_REF]Lemma2] that (3.8) has a unique solution and hence {B q } q∈Q from (3.7) are well defined. We will say that S is a weak realization of y, if {Λ y w } w∈Q + , {T y q,q } q∈Q satisfy (3.9). The intuition behind this definition is as follows. Assume that S = ({A q , K q , Q q } q∈Q ,C, D) is a weak realization of y, and consider the GBS G S = (n, p, m, Σ, x, v, {µ q } q∈Q , ỹ,C, D, {A q , K q } q∈Q ) such that v is white noise (zero mean, i.i.d.) and the σ -algebras generated by {µ q (t)} q∈Q,t∈Z and {v(t)} t∈Z are independent and

E[v(t)v T (t)µ 2 q (t)] = Q q .
It then follows v is ZMWSSI and that G is well defined and the processes x and ỹ are uniquely determined by the elements of the tuple Σ and the process v, see [START_REF] Petreczky | Realization theory for a class of stochastic bilinear systems[END_REF]Lemma 3]. Moreover, certain moments of the output ỹ of G coincides with those of y: Λ ỹ w = Λ y w and T ỹ q,q = T y q,q , w ∈ Q + , q ∈ Q. That is, a weak realization of y is a finite encoding of the infinite number of moments {Λ y w } w∈Q + , {T y q,q } q∈Q of y. Note that if S = ({A q , K q , Q q } q∈Q ,C, D) is a weak realization of y, then it determines uniquely the covariances {T y q,q } q∈Q and the LSS Σ S = (n, { p(u q )A q , B q ,C q = C} q∈Q ) where {B q } q∈Q is defined by (3.7), (3.8), and Σ S is a realization of f y . In turn, Σ S and {T y q,q } q∈Q can be used to calculate the GBS G Σ S associated with the LSS Σ S , as defined in (3.18), and G Σ S is a realization of y in forward innovation form. That is, any weak realization of y yields a GBS realization of y in forward innovation form.

That is, any GBS realization of y can be mapped to a weak realization of y, and the latter is a finite encoding of the infinite number of moments {Λ y w } w∈Q + , {T y q,q } q∈Q . Conversely, any weak realization of y can be mapped to a realization of y.

In other words, stationary GBSs can be viewed both as generators of output processes but also as (partial) parameterizations probability distributions.

Next, we will argue that GBS realizations of y can be viewed as predictors. To this end, let G be a stationary GBS realization of y in forward innovation form and assume that G is of the form (3.1). First note that that G can be interpreted as a linear filter which predicts the value y(t) based on {z y w (t)} w∈Q + , i.e., based on products of past values of {y(s)} s<t with past values of the input process {µ q (s)} q∈Q,Z s<t . Indeed, we can formally rewrite the equations (3.1) with D = I and v = e as follows: e(t) = y(t) -Cx(t) and hence

x(t + 1) = ∑ q∈Q (A q -K q C)x(t) + K q y(t))µ q (t), ŷ(t) = Cx(t), (3.36) 
where

ŷ(t) = E l [y(t) | {z y w (t)} w∈Q + ] is the orthogonal projection of y(t) onto {z y w (t)} w∈(Q) + . Set Ãq = A q -K q C. Note that if ∑ q∈Q p(µ q ) Ãq
⊗ Ãq is stable, then by repeating the steps of the proof of [START_REF] Petreczky | Realization theory for a class of stochastic bilinear systems[END_REF]Lemma1] it can be shown that

x(t) = ∞ ∑ N=0 ∑ w∈Q * ,q∈Q,|w|=N p(µ qw ) Ãw K q z y qw (t), ȳ(t) = ∞ ∑ N=0 ∑ w∈Q * ,q∈Q,|w|=N p(µ qw )C Ãw K q z y qw (t), (3.37) 
and view G as a predictor which maps past values {y(s), µ(s)} t-1 s=-∞ to the estimate of ŷ(t) such that the prediction error variance E[ ŷ(t) -y(t) 2 ] is minimal.

In fact, more is true, as

z ŷ+ v (t) = E l [z y+ v (t) | {z y w (t)} w∈(Q) + ]
for any v ∈ Q + , and hence G can be viewed as the best linear predictor from the products of past values of y and {µ q } q∈Q to the products of future values of y and {µ q } q∈Q .

Similarly to the linear case, G can also be interpreted as a filter using only finite past starting from t f to predict the current value of y, i.e., it predicts y(t) based on products of past values of {y(s)} t-1 s=t f with past values of the input signal {µ(s)} t-1 s=t-t f . More precisely, let us define x G (t | t f ) and y G (t | t f ) recursively as follows:

x G (t f | t f ) = 0 and for all k ≥ t f x G (t + 1 | t f ) = ∑ q∈Q (A q -K q C)x G (t | t f ) + K q y(t))µ q (t), y G (t | t f ) = Cx G (t | t f ). (3.38) If ∑ q∈Q p(µ q )(A q -K q C) ⊗ (A q -K q C) is stable, then from (3.37) it follows that lim t-t f →∞ x G (t | t f ) -x(t) = lim t-t f →∞ ∑ w∈Q * ,q∈Q,|wq|≥t-t f C Ãw K q z y qw (t) = 0,
and hence lim 

t-t f →+∞ y G (t | t f ) -ŷ(t) = 0, E[ y(t) -y G (t | t f ) 2 ] ≥ E[ y(t) -ŷ(t) 2 ], lim t-t f →+∞ E[ y(t) -y G (t | t f ) 2 ] = E[ y(t) -ŷ(t) 2 . ( 3 

The stochastic realization problem versus realization of an input-output relation

Finally, we remark that the existence and uniqueness of GBS realizations in forward innovation form provides the following justification for the realization problem formulated in Problem 3.1, which in turn, will also serve as a justification for the identification problem for stochastic LPV.

Intuitively, we would like to be able to say that if y is the output response of an unknown stationary GBS G 0 to the admissible input processes {u q } q∈Q , then any minimal GBS realization G of y will have the property that G 0 and G produce the same output response to any inputs, and not only to {u q } q∈Q . In general, we cannot prove this. However, if we restrict attention to minimal realizations in forward innovation form, then this intuition holds true.

Note that restricting attention to minimal realizations in forward innovation form can be justified as follows. If the only thing we can observe of G 0 is its response y to the admissible input process {u q } q∈Q , then based on this data we cannot falsify the hypothesis that G 0 is a minimal GBS in forward innovation form. For even if it is not, it can always be brought to such a form without changing the observations. That is, based on our observations we have to remain agnostic about this assumption.

In order to show that two minimal GBS realizations of y in forward innovation form will generate the same output for all choices of input processes, we have to define formally the input-output behavior of a GBS. The difficulty lies in the fact that the equations (3.2) are defined for negative time instances too and existence of a solution to (3.2) cannot be guaranteed for all input processes. In order to address this problem, we will associate with every GBS an LPV-SSA. This LPV-SSA corresponds to interpreting (3.2) for positive times. Then the state process x(t) of the GBS corresponds to the solution of this LPV-SSA , obtained by feeding to the LPV-SSA the noise v and interpreting {µ q } q∈Q as scheduling signal, waiting t +t f time instances and letting t f → +∞. In other words, the state of GBS is the steady-state behavior of the corresponding LPV-SSA. Then the input-output map of this LPV-SSA can be viewed as a formalization of the input-output relation {µ q } q∈Q → ỹ induced by the GBS. We then argue that the LPV-SSAs associated with any two minimal GBS realizations of y in forward innovation form are input-output equivalent.

The details are as follows. Assume without loss of generality that Q = {1, . . . , D} and let G be a stationary GBS of the form (3.2). Set (3.25) it follows that lim t f →+∞ σ t f ỹ(t + t f ) = y(t) in the mean square sense for all t. That is, y(t) can be viewed as an approximation of the output of the LPV-SSA L G obtained from the following experiment: we feed in the control input σ t f v and the scheduling signal σ t f µ, we wait t f time instants for the system to get close to a steady regime and then we measure the output at time t + t f . In other words, y(t) represents the steady state response of a LPV-SSA excited by a white noise control input and scheduling signal µ. If G is in forward innovation form, and Ĝ is any other minimal realization of y in forward innovation form, then by Theorem 3.2, Ĝ and G are isomorphic, and hence so are the associated LPV-SSAs L G and L Ĝ . In particular, L G and L Ĝ are input-output equivalent.

P = R D , A 0 = 0, K 0 = 0, C 0 = C, D 0 = I, C i = 0, D i = 0, i ∈ Q, and consider the LPV- SSA L G = (P, {A i , K i ,C i , D i } D i=0 ). For a fixed t f ∈ N consider the stochastic processes σ t f v : N t → v(t -t f ), and σ t f µ : N t → (µ 1 (t -t f ), . . . , µ D (t -t f ) defined on N. Let σ t f ỹ be the output response of the LPV-SSA L G to σ t f v and σ t f µ, i.e., σ t f ỹ = Y L G (σ t f v, σ t f µ). From
This suggests that we can view outputs of a stationary GBS as the steady-state behavior of a LPV-SSA driven by a white noise input and a suitable scheduling signal. If the corresponding noise process is the innovation process of y and the GBS is minimal, then the matrices of any minimal GBS realization of y in forward innovation form will determine an LPV-SSA, such that this LPV-SSA has the same input-output map as the original one which was used to generate y. That is, we use admissible stochastic input processes only to find an LPV-SSA which has the same input-output behavior as the original one. This will turn out to be important for system identification of LPV systems, since when they are used for control, the scheduling signal is deterministic. The discussion above indicates that as long as the observed scheduling signal can be viewed as a sample path of an admissible input process in the sense defined in this chapter, we can use the corresponding output to identify the response of the underlying LPV system to any scheduling signal, including those which are deterministic. That is, stochasticity of the scheduling signal is not a restriction of the type of system we consider, but it is a persistence of excitation condition for the identification experiment.

The discussion above also brings forward an additional argument in favor of the hypothesis that the data generating system is a GBS in forward innovation form. Namely, we can formulate the following two technical results.

Lemma 3.5 (Invertable GBSs are in forward innovation form). Assume that G is of the form (3.2), D = I, G is stationary and it is a realization of y, and assume that the matrix ∑ q∈Q p(µ q )(A q -B q C) ⊗ (A q -B q C) is stable (all its eigenvalues are inside the complex unit disk). Then v is the innovation process of y w.r.t. {µ q } q∈Q and G is a realization of y in forward innovation form.

Proof of Lemma 3.5. Note that we can write v(t) = y(t) -Cx(t) and hence the first equation of (3.36) holds, i.e., x(t + 1) = ∑ q∈Q (A q -K q C)x(t) + K q y(t))µ q (t). Since ∑ q∈Q p(µ q ) Ãq ⊗ Ãq , Âq = A q -K q C, is stable, then by repeating the steps of the proof of [START_REF] Petreczky | Realization theory for a class of stochastic bilinear systems[END_REF]Lemma1] it can be shown that 

x(t) = ∑ ∞ N=0 ∑ w∈Q * ,q∈Q,|w|=N p(µ qw ) Ãw K q z y qw (t
G = (R D+1 , {A i , K i ,C i } D i=0 ), A 0 = 0, K 0 = 0, C 0 = C, D 0 = I,, C i = 0, D i = 0, i = 1, . . . , D is minimal.
Proof of Lemma 3.6. Note that G is minimal if and only if the observability and reachability matrices satisfy the following rank conditions rank O n-1 (G ) = n and rank R n-1 (G ) = n . Note that the rows of the extended observability matrix O n-1 of the associated LPV-SSA L G are either zero or they coincide with the rows of the observability matrix O n-1 (G ), i.e., rank O n-1 (G ) = rank O n-1 . That is, by Theorem 2.3, G satisfies the observability rank condition if and only if the LPV-SSA L G is observable. We will show that ImR n-1 (G ) = ImR n-1 , where R n-1 is the extended controllability matrix of the LPV-SSA L G . From this, using Theorem 2.3 it follows that G satisfies the reachability rank condition if and only if L G is span-reachable. Then the statement of the lemma follows from Theorem 3.2 and Theorem 2.2.

We show that Im R n-1 (G ) = Im R n-1 . To this end, from (3.25) it follows that x(t) belongs to the linear space generated by the columns of

A w K q , w ∈ Q * , q ∈ Q. Since B q = E[x(t)(z y q (t)) T ],
it then follows that the columns of B q also belong to the linear space generated by the columns of A w K q , w ∈ Q * , q ∈ Q. Therefore, the columns of A v B q , v ∈ Q * , q ∈ Q also belong to the linear space generated by the columns of A w K q , w ∈ Q * , q ∈ Q. In turn, using the correspondence between LPV-SSAs and LSSs described in Chapter 2 and [205, Theorem 2 and Remark 1], it is easy to see that latter subspace equals

Im R n-1 . That is, Im A v B q is a subspace of Im R n-1 , and therefore Im R n-1 (G ) ⊆ Im R n-1 . Conversely, from [226, eq. (37), proof of Theorem 4] it follows that E[x(t)z y qv (t)] = p(µ w )A v B q , i.e., for every w ∈ Q + , the columns E[x(t)(z y w (t)) T ] belong to the space generated by A v B q , q ∈ Q, v ∈ Q * .
Notice that by [205, Theorem 2 and Remark 1] applied to the LSS Σ G , the latter space equals ImR n-1 (G ). Since the elements of z e q (t) are limits of finite linear combinations of the rows of {z y w (t)} w∈Q + , it then follows that the columns of E[x(t)(z e (t)) T ] are the limits of finite linear combinations of columns of E[x(t)(z y w (t)) T ], w ∈ Q + , and hence the columns of

E[x(t)(z y w (t)) T ], w ∈ Q + also belong to ImR n-1 (G ). From [226, Proof of Theorem 4] it follows that K q Q q = E[x(t)(z e q (t)) T ],
where Q q = E[e(t)e T (t)µ 2 q (t)], and hence the columns of K q Q q belong to ImR n-1 (G ). Since Q q is non-singular, it then follows that the columns of K q belong to ImR n-1 (G ). Since ImR n-1 (G ) is A q -invariant for all q ∈ Q and A 0 = 0, it then follows that ImA v K q ⊆ ImR n-1 for all v ∈ I * 0,n p , q ∈ I 0,n p , and thus ImR n-1 ⊆ ImR n-1 (G ).

CONCLUSIONS AND FURTHER WORK

The results of Lemma 3.5 and Lemma 3.6 suggests the following sufficient conditions that the system generating y is a minimal one in forward innovation form. Assume that the observed output y is generated by a minimal

LPV-SSA Σ = (R D+1 , {A i , K i ,C i , D i } D i=0
) driven by white noise v, such that C i = 0, D i = 0, i = 1, . . . , D, D 0 = I, A 0 = 0, K 0 = 0 and ∑ D q=1 p(µ q )(A q -K q C 0 ) ⊗ (A q -K q C 0 ) and ∑ q∈Q p(µ q )A q ⊗ A q are stable. It then follows that the GBS G = (n, p, p, x, v, y, {A i , K i } D i=1 ,C, I) is a minimal GBS realization of y in forward innovation form, and the LPV-SSA associated with any minimal GBS realization of y in forward innovation form is isomorphic with Σ. In particular, any minimal GBS realization of y in forward innovation form has the same input-output behavior as the system which generated y. Note that the assumptions on the LPV-SSA system which generates y are very mild. Indeed, we assume minimality, some stability conditions on the matrices, and a few other conditions on the matrices, i.e., the assumptions are purely assumptions on the matrices. That is, the assumption that the observations are generated by minimal GBSs in forward innovation form are reasonable not only because it cannot be falsified based on observations, but also because it can be replaced by a sufficient condition which represents some mild assumptions on the matrices of the underlying system. In fact, these assumptions are mainly stability assumptions, as explained in the remark below. Remark 3.5. In fact, we could drop the assumption that Σ is minimal: if it is not, we can replace it by a minimal LPV-SSA

Σ m = (R D+1 , {A m i , K m i ,C m i , D m i } D i=0
) which is input-output equivalent. We can easily adapt the proof of [START_REF] Petreczky | Realization theory for a class of stochastic bilinear systems[END_REF]Theorem 6] 

to show that if C i = 0, D i = 0, i = 1, . . . , D, D 0 = I, A 0 = 0, K 0 = 0 and ∑ D q=1 p(µ q )(A q -K q C) ⊗ (A q -K q C) and ∑ q∈Q p(µ q )A q ⊗ A q are stable, then C m i = 0, A m i = 0, K m i = 0, D m i = 0, i = 1, . . . , D, D m 0 = I and ∑ D q=1 p(µ q )(A m q -K m q C m 0 ) ⊗ (A m q -K m q C m 0
) and ∑ q∈Q p(µ q )A m q ⊗ A m q are stable.

Conclusions and further work

I have presented selected results from my work on realization theory of a class of stochastic bilinear systems, which includes autonomous stochastic LPV and jump-Markov systems. These results are based on applying realization theory of deterministic linear switched systems. In [START_REF] Mejari | Consistent and computationally efficient estimation for stochastic LPV statespace models: realization based approach[END_REF] the results of this chapter were used to propose a statistically consistent system identification algorithm. In [START_REF] Mejari | Realization and identification algorithm for stochastic LPV state-space models with exogenous inputs[END_REF] these results were extended to classes of stochastic LPV systems with control input, and a statistically consistent system identification algorithm was proposed. The application of the results of this chapter to jump-Markov systems with control inputs remains an open problem. We conjecture that the results of this chapter can also be extended to continuous-time case, but that extension remains a topic of future research.

Introduction

In the second part of the manuscript I present some of my contributions to applications of realization theory of linear switched, LPV and stochastic bilinear systems. More precisely, I will discuss my work on model reduction of linear switched systems (Chapter 4), on system identification of linear parameter-varying systems (Chapter 5), and on reverse engineering of network structures (Chapter 6). Below I will briefly describe the contents of each Chapters 4 -6 and the role of realization theory in each of them.

Chapter 4: model reduction

In Chapter 4, I present an overview of my work on model reduction of linear switched systems.

Novelty At the moment when I started working on model reduction of switched systems there were few results on this topic, see for example [START_REF] Gao | Model simplification for switched hybrid systems[END_REF][START_REF] Zhang | µ-Dependent model reduction for uncertain discrete-time switched linear systems with average dwell time[END_REF][START_REF] Zhang | H-infinity model reduction for uncertain switched linear discrete-time systems[END_REF][START_REF] Zheng-Fan | Stability analysis and H ∞ model reduction for switched discrete-time time-delay systems[END_REF]44,[START_REF] Birouche | Model reduction for discrete-time switched linear time-delay systems via the H ∞ stability[END_REF]46,[START_REF] Papadopoulos | Model reduction of switched affine systems[END_REF][START_REF] Monshizadeh | A simultaneous balanced truncation approach to model reduction of switched linear systems[END_REF]. Most of the papers proposed various modifications of balanced truncation algorithms. However, the available results did not provide any error bounds on the difference between the input-output behavior of the original and the reduced models. Moreover, there were no algorithms based on moment matching using Markov parameters or multivariate Laplace transforms. My work on model reduction was aimed at filling these gaps.

Contents of the chapter

The methods presented in Chapter 4 can be divided into the following categories:

• Moment matching based on Markov parameters.

• Balanced truncation.

• Moment matching in frequency domain, based on multivariate Laplace transform.

The results on moment matching based on Markov-parameters described in Chapter 4 originate from the PhD thesis of Mert Bastug [24], whom I co-advised together with John Leth and Rafael Wisniewski. The other results were derived in collaboration with John Leth, Rafael Wisniewski, Ion Victor Gosea, Athanasios Antoulas, Christophe Fiter.

Role of realization theory

The results of Chapter 4 rely heavily on realization theory. Indeed, the methods based on matching Markov parameter rely on the notion of Markov parameters for linear switched systems and the latter notion originates from realization theory. Moreover, the model reduction algorithm itself is closely related to partial realization algorithm. The methods based on balanced truncation use the relationship between observability/reachability and minimality, and they can be viewed as a numerical implementation of the minimization algorithm. In turn, characterization of minimality is an integral part of realization theory. Furthermore, realization theory is necessary to show that the notion of singular values of grammians is independent of the choice of state-space representation. In turn, singular values of grammians play a central role in analytic error bounds for the approximation error in balanced truncation. Hence, in order to show that the performance of balanced truncation does not depend on the choice of the state-space representation, i.e., balanced truncation gives the same result for any state-space representation of the given input-output behavior, realization theory is necessary.

Chapter 5: system identification

In Chapter 5 I present some selected results on system identification of LPV systems which are based on my work on realization theory.

Novelty At the moment when I started working on system identification of LPV systems, it was already a mature topic with a rich literature, see [18,[START_REF] Laurain | Refined instrumental variable methods for identification of LPV Box-Jenkins models[END_REF][START_REF] Mejari | A bias-correction method for closed-loop identification of Linear Parameter-Varying systems[END_REF][START_REF] Piga | LPV system identification under noise corrupted scheduling and output signal observations[END_REF][START_REF] Felici | Subspace identification of MIMO LPV systems using periodic scheduling sequence[END_REF][START_REF] Verdult | Subspace identification of multivariable linear parameter-varying systems[END_REF][START_REF] Tanelli | Identification of LPV state-space models for automatic web service systems[END_REF][START_REF] Van Wingerden | Subspace identification of Bilinear and LPV systems for openand closed-loop data[END_REF][START_REF] Verdult | Kernel methods for subspace identification of multivariable LPV and bilinear systems[END_REF]49,[START_REF] Ghosh | Optimal identification experiment design for LPV systems using the local approach[END_REF][START_REF] Khalate | Optimal experimental design for LPV identification using a local approach[END_REF][START_REF] Tóth | Identification and Modeling of Linear Parameter-Varying Systems[END_REF] and the references therein. In particular, there is a significant literature on subspace identification of LPV systems, see [START_REF] Van Wingerden | Subspace identification of Bilinear and LPV systems for openand closed-loop data[END_REF][START_REF] Felici | Subspace identification of MIMO LPV systems using periodic scheduling sequence[END_REF][START_REF] Verdult | Subspace identification of multivariable linear parameter-varying systems[END_REF][START_REF] Verdult | Kernel methods for subspace identification of multivariable LPV and bilinear systems[END_REF][START_REF] Pepijn | Linear parameter-varying subspace identification: A unified framework[END_REF] and the references therein. However, when I started research on LPV system identification, the existing literature did not address the problem of identifiability of LPV state-space representations, nor there were results on statistical consistency of subspace identification algorithms. In fact, for the case of LTI systems both topics required results from realization theory. Moreover, subspace identification methods suffered from curse of dimensionality and required strong assumptions on observability to work. My research in this topics was aimed at filling these gaps.

Contents of the chapter In Chapter 5 I will discuss

• identifiability analysis of determinsitic LPV systems • subspace identification of deterministic and stochastic LPV systems using reduced basis of the Hankelmatrix.

The result on identifiability of LPV systems originate from the PhD thesis of Ziad Alkhoury, whom I co-advised with Guillaume Mercère. By identifiability of a parameterizations we mean that there exist no two parameter values for which the corresponding models have the same input-output behavior. In Chapter 5 we present constructive conditions for identifiability of LPV state-space parameterizations.

The results on subspace identification algorithm were derived in collaboration with Pepijn Cox, Roland Tóth and Manas Mejari. For deterministic LPV systems one uses modifications of the realization algorithm from Chapter 2. For purely stochastic LPV systems without inputs one uses the realization algorithm from Chapter 3 applied to empirical covariances. Finally, stochastic LPV systems with inputs can be decomposed into a stochastic and a deterministic part. The stochastic part does not depend on the control input and its dynamics is driven by a stochastic noise process. The deterministic part is driven by the control input and has no additive noise terms. This decomposition also translates to the output of the system, as the latter is the sum of a stochastic process which does not depend on the control input and a process which depends only on the control input. The former is the output of the stochastic subsystem, the latter is the output of the deterministic one. As a result, in order to identify a stochastic LPV state-space representation it is sufficient to identify an autonomous stochastic LPV state-space representation of the stochastic component of the output, and a deterministic LPV state-space representation of the deterministic component of the output. We then propose subspace identification algorithms for identifying both components. The thus derived system identification algorithm can be shown to be statistically consistent.

Role of realization theory Identifiability of LPV systems relies on realization theory of LPV systems presented in Chapter 2. More precisely, the characterization of identifiable parameterizations is based on characterizing parameterizations of minimal LPV state-space representations and formulating conditions for excluding isomorphic copies of the same state-space representation within the parameterization. From realization theory of LPV systems presented in Chapter 2 it follows that two minimal state-space representations have the same input-output behavior if and only if they are related by an isomorphism which does not depend on the state. As it was noted above, subspace identification for LPV systems relies on the realization algorithm for deterministic LPV state-space representations from Chapter 2 and on stochastic realization theory of generalized bilinear systems presented in Chapter 3. Moreover, the results of Chapter 3 lead to a proof of existence of a state-space representation in forward innovation form. The latter is often taken as a starting point for subspace identification of LPV systems, but its existence is usually not proven formally.

Chapter 6: Granger-causality for network identification

In Chapter 6 the application of stochastic realization theory to reverse engineering of network structure of dynamical systems is discussed.

Novelty The problem of network identification, i.e. identifying a dynamical system with a (partially) known network graph is a topic which has gained increased popularity, without claiming completeness we mention [START_REF] Weerts | Identifiability and Identification Methods for Dynamic Networks[END_REF][START_REF] Dankers | System Identification in Dynamic Networks[END_REF][START_REF] Weerts | Identifiability of linear dynamic networks[END_REF][START_REF] Van Den Hof | Identification of dynamic models in complex networks with prediction error methods-basic methods for consistent module estimates[END_REF][START_REF] Nordling | On sparsity as a criterion in reconstructing biochemical networks[END_REF][START_REF] Julius | Genetic network identification using convex programming[END_REF][START_REF] Kang | Discriminating direct and indirect connectivities in biological networks[END_REF][START_REF] Valdes-Sosa | Effective connectivity: Influence, causality and biophysical modeling[END_REF][START_REF] Gonc ¸alves | Dynamical structure functions for the reverse engineering of lti networks[END_REF][START_REF] Howes | Dynamical structure analysis of sparsity and minimality heuristics for reconstruction of biochemical networks[END_REF][START_REF] Yuan | On minimal realisations of dynamical structure functions[END_REF]. Some of the paper assume that the underlying system consists of several subsystems, each with a separate transfer function, the transfer functions can exchange measurable signals, the presence/absence of such signals is determined by the network graph of the system, and the goal is to identify the transfer function of each node [START_REF] Weerts | Identifiability and Identification Methods for Dynamic Networks[END_REF][START_REF] Dankers | System Identification in Dynamic Networks[END_REF][START_REF] Weerts | Identifiability of linear dynamic networks[END_REF][START_REF] Van Den Hof | Identification of dynamic models in complex networks with prediction error methods-basic methods for consistent module estimates[END_REF]50]. The latter problem is well-posed and practically relevant. However, in many applications the goal is to identify the network graph of the underlying state-space representation [START_REF] Nordling | On sparsity as a criterion in reconstructing biochemical networks[END_REF][START_REF] Julius | Genetic network identification using convex programming[END_REF][START_REF] Kang | Discriminating direct and indirect connectivities in biological networks[END_REF][START_REF] Valdes-Sosa | Effective connectivity: Influence, causality and biophysical modeling[END_REF].

In contrast to the problem of identifying transfer functions at a node of a network, the problem of identifying the network graph of state-space representations is ill-posed in general, as state-space representations with different network graphs could have the same observed behavior. Motivated by this observation, several author tried to define the network graph of a system independently of the underlying state-space representation [START_REF] Gonc ¸alves | Dynamical structure functions for the reverse engineering of lti networks[END_REF][START_REF] Howes | Dynamical structure analysis of sparsity and minimality heuristics for reconstruction of biochemical networks[END_REF][START_REF] Yuan | On minimal realisations of dynamical structure functions[END_REF], but the resulting definitions did not solve the problem of finding the network graph of the underlying state-space representation.

Another approach is to abandon the idea of finding the network graph of the state-space representation, and focus instead on the problem of deciding if a state-space representation with a certain network graph could exist for the observed behavior. In other words, instead of trying to estimate the network graph from the observed data, we try to decide if a certain network graph is consistent with the data. This is useful in systems biology and neuroscience, as it allows to estimate from the observed data the likelihood of the presence/absence of an interaction between subsystems. In turn, this likelihood can be used to guide experiment design. More precisely, since biology is an empirical science, in order to prove the presence or absence of an interaction, experiments have to be carried out anyway. It is then reasonable to focus on experiments which can prove/refute the presence of most likely interactions.

However, at the moment when I started working on this topic, there was no formal correspondence between the observed behavior and the existence of a state-space representation with a certain network graph. My goal was to close this gap. This was done by establishing a formal correspondence between Granger-causality of observed processes and the existence of stochastic linear and bilinear state-space representation with a given network graph.

There is a rich literature on characterizing Granger-causality in terms of transfer functions [START_REF] Granger | Economic processes involving feedback[END_REF][START_REF] Caines | Feedback between stationary stochastic processes[END_REF][START_REF] Caines | Weak and strong feedback free processes[END_REF][START_REF] Gevers | On jointly stationary feedback-free stochastic processes[END_REF]21,[START_REF] Solo | State-space analysis of Granger-Geweke causality measures with application to fMRI[END_REF][START_REF] Dimovska | Granger-causality meets causal inference in graphical models: Learning networks via non-invasive observations[END_REF] or VAR models [START_REF] Eichler | A graphical approach for evaluating effective connectivity in neural systems[END_REF][START_REF] Eichler | Granger causality and path diagrams for multivariate time series[END_REF][START_REF] Eichler | Graphical modelling of multivariate time series[END_REF]. However, the problem of relating Granger-causality with stochastic linear and bilinear state-space representations has not been addressed in the literature before. The results discussed in Chapter 6 fill this gap.

Contents of the chapter In Chapter 6 two types of systems were considered: stochastic linear time-invariant state-space representations (sLTI for short), and generalized stochastic bilinear systems. In both cases it was shown that existence of Granger-acausality relations between components is equivalent to existence of a statespace representation with a certain network graph. By network graph we mean the directed graph, nodes of which are subsystems, and there is an edge from one node to another, if the state of the sub-system corresponding to the source nodes is present in the update equation of the subsystem which corresponds to the second node. For sLTI systems the classical definition of Granger-causality was used, for stochastic bilinear systems a new definition was proposed. Note that the classical definition of Granger-causality is equivalent to absence of feedback, and it plays an important role in proving consistency of open-loop identification algorithms. The same is expected for Granger-causality for stochastic bilinear systems. The results of Chapter 6 originate from the PhD thesis [START_REF] Jozsa | Relationship between Granger non-causality and network graphs of state-space representations[END_REF] of Mónika Józsa, whom I co-advised with Kanat M. Camlibel.

Role of realization theory

The results of Chapter 6 rely on classical stochastic realization theory for linear systems and on the results of Chapter 3 on stochastic bilinear systems.

Chapter 4

Model reduction of linear switched systems

Introduction

The goal of this chapter is to give an overview of my work on application of realization theory to model reduction of linear switched systems (LSS for short). Linear switched systems represent the simplest subclass of hybrid systems. Recall that a hybrid system is a finite collection of continuous-state dynamical systems, indexed by a set of so called discrete modes (or states). The state of each dynamical system is governed by a set of differential or difference equations. The operating discrete mode in any time instant can be chosen arbitrarily, or it may depend on the value of the continuous state or other constraints, which are referred to as guards. The transitions between the discrete states may result in a jump in the state of the underlying continuous dynamical system. This jump is defined by the application of the so called reset maps. LSSs [START_REF] Liberzon | Switching in Systems and Control[END_REF]260] are the simplest and most widely studied subclass of hybrid systems, for which the continuous subsystems are linear systems, and the change of the discrete state is externally generated.

Model reduction is the field of replacing complex model by simpler ones such that the resulting simpler model can be used for control engineering. As a rule, the simpler model is a dynamical system with less state variables (of smaller order) than the original model, and it is referred to as the reduced model. Model reduction is a mature field with an extensive literature [11]. Most of the literature on model reduction deals with linear systems. For linear systems, model reduction techniques can be grouped in two large categories: model reduction with balanced truncation and model reduction based on moment matching [11].

Roughly speaking, methods based on balanced truncation remove states which are difficult to observe or to control. As a rule, balanced truncation methods for linear system come with analytic bounds on the approximation error of the original model by the reduced order one. Usually, one uses the standard H ∞ , H 2 norms to measure the difference of output responses.

Moment matching methods rely on removing the states which do not contribute to the filtered output response for certain inputs. For example, one may wish to restrict attention to output responses for inputs with certain frequency, or components of the outputs lying in a certain frequency range, or the first couple of time instants of the impulse response. In contrast to balanced truncation, for moment matching methods there are no analytical error bounds for the difference of output responses of the reduced and the original model. Intuitively, the reasons for this is quite clear: in balanced truncation we remove states which do not contribute to the input-output behavior either because the have little influence on the outputs or because they are not sensitive to control inputs, hence we can claim that for any input, the outputs of the original and reduced model should be similar. In moment matching we want to make sure that the (filtered) response of the reduced model to certain inputs is similar to that of the original model, we do not aim at making the (unfiltered) response of the reduced model close to that of the original one for all inputs.

These methods can be extended LSSs. When I started working on this topic there was already a fair amount of literature on model reduction of LSSs. The model reduction methods for LSSs available at that time could be grouped into the following categories.

LMI-based methods. These methods compute the matrices of the reduced order model by solving a set of LMI. The advantage of this approach that error bounds are available. The disadvantage is that the proposed conditions are only sufficient, and the trade-off between the dimension of the reduced model and the error bound is not clear. Moreover, the computational complexity of solving those LMIs might be too high. Without claiming completeness, we mention the following papers [START_REF] Gao | Model simplification for switched hybrid systems[END_REF][START_REF] Zhang | µ-Dependent model reduction for uncertain discrete-time switched linear systems with average dwell time[END_REF][START_REF] Zhang | H-infinity model reduction for uncertain switched linear discrete-time systems[END_REF][START_REF] Zheng-Fan | Stability analysis and H ∞ model reduction for switched discrete-time time-delay systems[END_REF].

Methods based on local grammians. These algorithms are based on finding observability/controllability grammians for each linear subsystem. For these methods often there are no error bounds and the reduced order model need not be well-posed. Examples of such papers include [START_REF] Monshizadeh | A simultaneous balanced truncation approach to model reduction of switched linear systems[END_REF][START_REF] Papadopoulos | Model reduction of switched affine systems[END_REF]44,[START_REF] Birouche | Model reduction for discrete-time switched linear time-delay systems via the H ∞ stability[END_REF]46,109]. When I started working on model reduction of LSSs, there were no analytic error bounds available for these type of methods when applied to deterministic LSSs.

Methods based on common grammians. These methods rely on finding the same observability/controllability grammian for each linear subsystem. These grammians are derived as solutions of a suitable LMI. Such algorithms were described in [START_REF] Shaker | Generalized gramian framework for model/controller order reduction of switched systems[END_REF][START_REF] Shaker | Model reduction of switched systems based on switching generalized gramians[END_REF][START_REF] Duff | New Gramians for switched linear systems: reachability, observability, and model reduction[END_REF]. These algorithms apply only to LSSs which have a global quadratic Lyapunov function. At the moment when I started working on model reduction, there were no analytic error bounds available for these methods.

Finally, it is worth mentioning that model reduction is related to the notion of approximate bisimulation introduced in [START_REF] Girard | Approximate bisimulation: A bridge between computer science and control theory[END_REF][START_REF] Pola | Control of cyber-physical-systems with logic specifications: A formal methods approach[END_REF][START_REF] Tabuada | Approximate reduction of dynamic systems[END_REF][START_REF] Tabuada | Verification and Control of Hybrid Systems: A Symbolic Approach[END_REF]. While the general goal of model reduction and of finding approximate simulation relations is the same (both aim at replacing a complex model by a simpler one), the details are very different. In particular, in model reduction, the aim is to replace a model with a model of the same type but with less states. For example, a switched system is replaced by another switched system with a smaller number of states. In contrast, the goal in using approximate simulation relations is to replace a hybrid/nonlinear system by a finite-state transition system, which is approximately similar to the original system.

In my research on model reduction I focused on the following topics: Analytic error bounds and new algorithms for balanced truncation In [START_REF] Petreczky | Balanced truncation for linear switched systems[END_REF] error bounds were provided for balanced truncation based on common grammians for LSSs. In [START_REF] Gosea | Balanced truncation for linear switched systems[END_REF]108] balanced truncation methods based on local grammians were proposed together with analytic error bounds for LSSs with linear reset maps. In [START_REF] Petreczky | Model reduction for linear switched systems with autonomous switching[END_REF] this was extended to piecewise-linear systems with autonomous switching.

Moment matching. The idea behind these algorithms is to find a reduced order linear switched system such that certain coefficients of the series expansions of the input-output maps of the original and the reduced order system coincide. The series expansion can be the Taylor series with respect to switching times, in which case the so-called Markov parameters are matched. Alternatively, the series expansion can be a Laurent-series expansion of a multivariate Laplace transform of the input-output map around a certain frequency. The former approach was pursued in [31,30,24] , the latter in [START_REF] Gosea | Data-driven model order reduction of linear switched systems in the loewner framework[END_REF]. While those methods do not allow for analytical error bounds, under suitable assumption it can be guaranteed that the reduced model will have the same input-output behavior for certain switching signals [31,30,24].

My main contribution to model reduction was the development of analytic error bounds for balanced truncation of LSSs and the development of moment matching algorithms for LSSs.

In this chapter I will discuss selected topics on model reduction I worked on. For the sake of simplicity, I will discuss in detail only LSSs in continuous time and without reset maps. Most of the presented results are true for the discrete-time case too, and some can be extended to include LSSs with reset maps which are not identity. I will cite the relevant literature on these extensions.

Realization theory is relevant for model reduction in many ways. First, minimization and realization algorithms can be viewed as simple model reduction algorithms. Moreover, the relationship between span-reachability, observability and minimality is closely related to the existence of grammians which are used in balanced truncation. Realization theory is even more critical for moment matching, as the latter can be viewed as partial 4.2. DEFINITION AND NOTATION realization algorithm. We will elaborate on the relationship between realization theory and model reduction when presenting the particular methods.

This chapter is based on [START_REF] Petreczky | Model reduction and realization theory of linear switched systems[END_REF].

In Section 4.3 we discuss the basic principle of model reduction. In Section 4.4 we present balanced truncation and in Section 4.5 we discuss moment matching for LSSs.

Throughout the chapter we will use notation and terminology of [START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach: Part i[END_REF][START_REF] Petreczky | Partial-realization of linear switched systems: A formal power series approach[END_REF][START_REF] Petreczky | Realization theory for discrete-time linear switched systems[END_REF][START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF] for LSSs., see Appendix B for an overview. For the convenience of the reader, in order to keep the chapter self-contained, in Section 4.2 we briefly recall the basic terminology and notation for LSSs.

Definition and notation

We follow the presentation of [START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach: Part i[END_REF][START_REF] Petreczky | Balanced truncation for linear switched systems[END_REF] and Appendix B. A linear switched system (LSS) is a control system of the form

Σ (ξ x)(t) = A σ (t) x(t) + B σ (t) u(t) y(t) = C σ (t) x(t) (4.1)
where x(t) ∈ R n is the state at time t, σ (t) ∈ Q is the discrete mode at time t, y(t) ∈ R p is the output at time t, and u(t) ∈ R m is the continuous-valued input at time t, and (ξ x)(t) = d dt x(t) in the continuous-time case, and (ξ x)(t) = x(t + 1) in the discrete-time. The set Q is a finite one, and it is referred to as the set of discrete modes. Moreover, A q ∈ R n×n , B q ∈ R n×m , C q ∈ R p×n are the matrices of the linear system in the discrete state q ∈ Q. The following notation

Σ = (n, {(A q , B q ,C q ) | q ∈ Q})
is used as a short-hand representation for LSSs of the form (4.1). The number n is called the dimension (order) of Σ and will be denoted by dim Σ.

The solution of a LSS is defined as follows. Recall the notation of Section 2.2 and let us introduce the following notation. We write U , Q, X and Y to denote either PC(R + , R m ), PC(R + , Q), AC(R + , R n ) and PC(R + , R p ). Then a solution of (4.1) is a tuple (x, u, σ , y) ∈ X × U × Q × Y , such that (x, y, σ , y) satisfy (4.1). Note that for every initial state x 0 ∈ R n , input u ∈ U and switching signal σ ∈ Q there is a unique state trajectory x and output trajectory y, such that (x, u, σ , y) is a solution. We can define the input-output map of an LSS induced by the initial state x 0 as the map Y Σ,x 0 : U × Q → Y such that Y Σ,x 0 (u, σ ) = y, where (x, u, σ , y) is the unique solution of the LSS (4.1) such that x(0) = x 0 . We formalize the input-output behavior of Σ as a the input-output map of Σ induced by the initial state x 0 = 0. This is done for the sake of simplicity, see Appendix B.2 for more comments on the subject. We call the input-output map Y Σ,0 induced by the initial state 0 of Σ the input-output map of Σ, and we denote Y Σ,0 by Y Σ . That is, a potential input-output map of a LSS is a function of the form

f : U × Q → Y . (4.2)
The LSS Σ is a realization of an input-output map f of the form

(4.2) , if Y Σ = f , i.e. if the input-output map of Σ coincides with f . If Σ is a realization of f , then Σ is a minimal realization of f , if for any LSS realization Σ of f , dim Σ ≤ dim Σ. Two LSSs Σ 1 , Σ 2 are said to be input-output equivalent, if their input-output maps are equal, i.e. Y Σ 1 = Y Σ 2 . A LSS Σ is said to be minimal, if it is a minimal realization of its own input-output map f = Y Σ .

Model reduction

In model reduction, we would like to find LSSs of smaller dimension, input-output maps of which are close (but not necessarily equal) to that of the original LSS. This is in contrast to realization theory, where we were interested in finding a minimal LSS with exactly the same input-output map as the original one. The latter is a special case of the former. Model reduction algorithms follow the following general pattern.

CHAPTER 4. MODEL REDUCTION OF LINEAR SWITCHED SYSTEMS

Algorithm 5 Mode reduction/minimization algorithm Inputs: Σ = (n, {A q , B q ,C q } q∈Q ), matrices V ∈ R n×r 1 , W ∈ R r 2 ×n .

1: Let r = rank WV and let S ∈ R r×r 2 , T ∈ R r 1 ×r , SWV T = I r .

2: Āq = SWA q V T , Cq = C q V T , Bq = SW B q .

3: return Σ = (r, { Āq , Bq , Cq } q∈Q ).

Intuitively, Algorithm 5 restricts the system to the set ImV and then merges those of its states x 1 , x 2 for which x 1x 2 ∈ kerW . Intuitively, V * is the linear subspace generated by the the states of Σ which are reachable from the zero initial state, i.e., V * are generated by states of the form x(t), where (x, u, σ , y) is a solution of Σ, x(0) = 0, and t is a time instance. Similarly, W * is the subspace of all unobservable states of Σ, i.e., a state x 0 belongs to W * , if and only if the input-output map Y Σ,x 0 generated by x 0 is zero.

If kerW = W * and ImV = V * , with W * , V * from Definition B.1, then the LSS Σ returned by Algorithm 5 is a minimal LSS which is input-output equivalent to Σ, i.e., Algorithm 5 is just an implementation of Procedure B.3. Algorithms for computing such matrices W,V such that kerW = W * and ImV = V * are described in [START_REF] Petreczky | Realization theory of linear hybrid systems[END_REF]Remark 1].

In case of model reduction, Algorithm 5 can again be used. However, instead of applying it with matrices W and V such that kerW = W * and ImV = V * , we use matrices W,V such that kerW ⊆ W * and ImV ⊆ V * , i.e., we restrict the system to a subset of the set of reachable states, or we merge states which do not produce the same input-output behavior. The resulting LSS model will no longer be a realization of f , but its input-output map will approximate f in a suitable sense. Depending on the method we use, we will either be able to provide a global error bound on the difference between the input-output maps of the original model and the reduced one, or state that for certain switching sequences the two input-output maps coincide. We will elaborate on various methods below.

Model reduction by balanced truncation

Let Σ be a LSS of the form (2.6), and assume that Σ is quadratically stable, i.e., there exists a matrix P > 0 such that ∀q ∈ Q : A T q P + PA q < 0. In this case Σ is globally uniformly asymptotically (exponentially) stable [START_REF] Liberzon | Switching in Systems and Control[END_REF] with the Lyapunov function V (x) = x T Px. A matrix Q will be called an observability grammian, if

∀q ∈ Q : A T q Q + QA q +C T q C q ≤ 0, Q > 0. ( 4.3) 
Likewise, a matrix P will be called controllability grammians, if ∀q ∈ Q : A q P + PA T q + B q B T q ≤ 0, P > 0. (4.4)

Note that in contrast to the linear case, controllability/observability grammians for LSSs are not unique, since they are solutions of LMIs and not of Lyapunov equation. The procedure for balanced truncation is as follows. We apply Algorithm 5 with the following choice of W and V . Find U such that P = UU T and find an orthogonal L such that U T QU = LΛ 2 L T , where

Λ = diag(σ 1 , . . . , σ n ) and σ 1 ≥ . . . ≥ σ n ≥ 0. Pick r ≤ n. Define W = I r 0 Λ 1/2 L T U -1 , V = ULΛ -1/2 I r 0 .

MODEL REDUCTION BY BALANCED TRUNCATION

Then rank W = rank V = r, rank WV = r, S = T = I r . The intuition behind the procedure above is similar to that of balanced truncation for linear systems: By applying the transformation S = Λ 1/2 L T U -1 to Σ, we obtain a LSS Σ bal = (n, {S A q S -1, S B q ,CS -1 } q∈Q ), such that Λ = S -T QS -1 = S PS T is both an observability and a reachability grammian. We obtain Σ from Σ bal by taking the upper-left r × r, r × m, p × r, blocks of A q , B q , C q , q ∈ Q respectively. That is, we discard those states which correspond to small values of the diagonals of Λ. The intuition behind it is that the discarded states are either difficult to reach (it requires high energy input to reach them) or difficult to observe (their contribution to the energy of the output is small). More precisely, let us fix an integer r > 0 which represents the desired state dimension of the reduced order model. Let ( x, u, σ , ỹ) be a solution of Σ bal such that x(0) = 0, assume that for all t > τ 0 , u(t) = 0. It then can be shown [START_REF] Petreczky | Balanced truncation for linear switched systems[END_REF] 

that r ∑ i=1 x2 i (τ 0 ) 1 σ i + n ∑ i=r+1 1 σ i x2 i (τ 0 ) ≤ τ 0 0 u(s) 2 ds r ∑ i=1 x2 i (τ 0 )σ i + n ∑ i=r+1 σ i x2 i (τ 0 ) ≥ ∞ τ 0 ỹ(s) 2 ds (4.5)
and xi (τ 0 ) denotes the ith component of x(τ 0 ). The numbers σ 1 , . . . , σ n are called singular values of the pair (P, Q) and they are the square roots of the eigenvalues of the product PQ.

That is, if σ r+1 , . . . σ n are small, and the energy of u is small, i.e., τ 0 0 u(s) 2 ds is small, then the values xr+1 (τ 0 ), . . . , xn (τ 0 ) have to be small due to the first inequality, and they contribute little to the output starting from the time instance T 0 due to the second inequality. That is, only the first r components of x are relevant for the input-output behavior. Hence, by discarding the last nr state components we can expect to get a LSS, input-output behavior of which is close to the original one.

This intuition can be formalized as the error bound below.

Theorem 4.1 (Error bound for balanced truncation [START_REF] Petreczky | Balanced truncation for linear switched systems[END_REF]). For any

σ ∈ Q, u ∈ U such that ∞ 0 u(s) 2 2 ds < +∞, ∞ 0 Y Σ (u, σ )(s) -Y Σ(u, σ )(s) 2 ds ≤ (2 n ∑ k=r+1 σ k ) 2 ∞ 0 u(s) 2 ds
Further extensions The results discussed above also hold for discrete-time LSSs [START_REF] Petreczky | Balanced truncation for linear switched systems[END_REF]. The assumption that P, Q do not depend on q ∈ Q implies quadratic stability, which is a quite restrictive assumption. In [START_REF] Gosea | Balanced truncation for linear switched systems[END_REF] this assumption was replaced by local stability of the linear subsystems. Moreover, an error bound similar to Theorem 4.1 was derived in [START_REF] Gosea | Balanced truncation for linear switched systems[END_REF], but it holds only for switching signals with a sufficiently large dwell time. Note that [START_REF] Gosea | Balanced truncation for linear switched systems[END_REF] allows for LSSs with non-trivial linear reset maps. Extension of [START_REF] Gosea | Balanced truncation for linear switched systems[END_REF] to arbitrary switching was developed in [108]. Finally, balanced truncation was extended to linear switched systems with autonomous switching [START_REF] Petreczky | Model reduction for linear switched systems with autonomous switching[END_REF].

Relationship with realization theory First, the existence of positive definite grammians P, Q is a necessary (but not sufficient) condition for minimality of quadratically stable LSSs [START_REF] Petreczky | Balanced truncation for linear switched systems[END_REF]: the kernels of positive semidefinite observability (resp. controllability) grammians are contained in the set of unobservable states (resp. states which are not in the span of reachable states). Intuitively, when the grammians are positive definite, we can bring them to a balanced form and then identify the states corresponding to small singular values with unobservable/unreachable states. Then balanced truncation can be thought of as a numerical implementation of the minimization procedure Procedure B.3. Theorem 4.1 provides means to evaluate the effect of the discarded 'small" singular values on the approximation error.

Realization theory is also necessary to show that balanced truncation well posed. More precisely, the application of balanced truncation relies on the availability of a quadratically stable LSS and by Theorem 4.1, the quality of the reduced model relies on the singular values of the observability/controllability grammians. If the original model is not quadratically stable, then one may wonder if there exist input-output equivalent quadratically stable models. Using realization theory it is shown in [START_REF] Petreczky | Balanced truncation for linear switched systems[END_REF] that in order to decide if balanced truncation can be applied, it is sufficient to transform the original model to a minimal one (which also makes sense for the purposes of model reduction), and then to check if the minimal model is quadratically stable. Moreover, any minimal model can be used for balanced truncation without introducing more conservativity. Indeed, in [START_REF] Petreczky | Balanced truncation for linear switched systems[END_REF] it is shown that the singular values of any pair of controllability/observability grammians for any LSS are not smaller than the singular values of some pair of grammians of a minimal input-output equivalent LSS. Moreover, due to isomorphism, all controllability/observability grammians of minimal input-output equivalent LSSs are related by a similarity transform and have the same singular values.

Finally, realization theory and the notion of Hankel-matrix can be used to relate singular values of grammians to norms of a Hankel-operator [START_REF] Petreczky | Balanced truncation for linear switched systems[END_REF].

Moment matching

Consider a LSS Σ of the form (2.6), and let us denote its input-output map by f . For the sake of simplicity, we assume that p = m = 1, i.e., we deal only with the SISO case, and we consider systems only in continuous-time. Recall from that since f is realizable by a LSS then f has to have a generalized kernel representation, see [START_REF] Petreczky | Realization theory of linear hybrid systems[END_REF]Definition 24], Appendix B.5, i.e. there must exist a sequence of analytic functions {G f v } v∈Q + , such that for any switching signal σ and input u,

f (u, σ )(t) = t 0 G f (σ , s,t)u(s)ds and if σ (τ) = q i for τ ∈ [T i-1 , T i ), T 0 = 0 < T 1 < • • • < T k , i = 1, 2, . . ., then G f (σ , s,t) = G f q i •••q k (T i -s, T i+1 -T i , T i+2 -T i+1 , . . . ,t -T k-1 ) if s ∈ [T i-1 , T i ) and t ∈ (T k-1 , T k ] for some integers 0 < i < k. That is, G f q k , G f q k-1 q k , G f q 1 •••q k determine
the response of the input-output function f to the switching signal which switches through the discrete states q 1 , q 2 , . . . , q k . The idea of moment matching is to find a reduced order LSS Σ such that for certain sequences

v ∈ Q + , G f v is close to G Y Σ v .
Intuitively, this means that the input-output map of Σ will be close to that f . In Subsection 4.5 we present the Markov-parameter based approach [24,30,31], where we look for a reduced order model Σ such that certain Taylor-series coefficients of G Y Σ v (Markov parameters of Y Σ) and G f v (Markov parameters of f ) coincide. In Subsection 4.5 we present the frequency-domain based approach [START_REF] Gosea | Data-driven model order reduction of linear switched systems in the loewner framework[END_REF], where we consider multi-variate Laplace transforms H f v of G f v and we look for reduced order models Σ such that the Laplace transform

H Y Σ v of the function G Y Σ
v coincides with H f v for some complex values.

Matching Markov parameters

The basic idea of model reduction algorithms based matching Markov-parameters is to reduce the dimension of the original model while preserving certain high-order derivatives of the elements of the generalized kernel representation {G f v } v∈Q + of its input-output map f . More precisely, recall from Appendix B.5 or [START_REF] Petreczky | Realization theory of linear hybrid systems[END_REF]Definition 25] the notion of a Markov parameter S f q,q 0 (v), v ∈ Q * : S f q,q 0 (ε) = G f q 0 q (0, 0), S f (q, q 0 )(q

1 q 2 • • • q k ) = d dt 1 • • • d dt k G f q 0 q 1 •••q k (0,t 1 , . . . ,t k , 0)| t 1 =•••=t k =0
for all q, q 0 , q 1 , . . . , q k ∈ Q, k ≥ 1. In fact, S f q, 0 (v), v ∈ Q * are the Taylor series expansion of G f q 1 ,...,q k , i.e., for all q 1 , . . . ,

q k ∈ Q, k ≥ 1, α 1 , . . . , α k ∈ N, d α 1 dt α 1 1 • • • d α k dt α k k G f q 1 •••q k (t 1 , . . . ,t k )| t 1 =t 2 =•••t k =0 = S q 1 ,q k (q α 1 1 • • • q α k k )
4.5. MOMENT MATCHING Furthermore, recall from [30] or from Appendix B.5 the notion of selection. More precisely, for the particular case of SISO systems, we call any subset α ⊆ Q * × Q a selection. Let α and β be two selections. Consider a LSS Σ. Then Σ is called a (α, β )-partial realization of f , if for every (v, q 0 ) ∈ β , (u, q) ∈ α, S Y Σ q,q 0 (vu) = S f q,q 0 (vu)

(4.6)
That is, Σ is an (α, β )-partial realization of f , if those Markov-parameters of f and of the input-output map Y Σ of Σ which are indexed by (α, β ) coincide. This means that certain high-order derivatives of {G f v } v∈Q + and of {G Y Σ v } v∈Q + are the same. That is, a (α, β )-partial realization of f can be viewed as an LSS input-output map of which approximates f . If

α = Q * × Q or β = Q * × Q, then any (α, β )-partial realization of f is a realization of f .
The idea behind moment matching is then to replace a LSS Σ by a reduced order LSS Σ such that Σ is a (α, β )partial realization of the input-output map f = Y Σ of Σ. The various algorithms differ in the way the selections α, β are chosen. The moment matching algorithms which produce (α, β )-partial realizations arise from Algorithm 5 by a suitable choice of the matrices W and V . In order to explain these choices in more detail, we introduce the following definitions. Define the subspaces

O α (Σ) = (v,q)∈α kerC q A v , R β (Σ) = Span{A w B q 0 | (w, q 0 ) ∈ β }.
The matrices W and V can be chosen as follows. There are two strategies for choosing α, β . The first one is to choose α (resp. β ) to be finite such that dim O α (Σ) = nr (resp. dim R β (Σ) = r), and in this case the reduced order model will have dimension r. In this case, O α (Σ) = ker O α (resp. R β (Σ) = R β ), where

O α = C s 1 A T v 1 . . . C s r A T v r T , R β = A w 1 B q 1 . . . A w r B q r where α = {(v i , s i )} r i=1 , β = {(w i , q i )} r i=1
. Using these matrix representations the matrices W and V described above can easily be computed.

The second option for choosing selections is to choose (α, β ) to be consistent with a certain set of switching signals. In this latter case, the dimension of the reduced order model cannot be fixed in advance, but it is known that the reduced order model will have the same input-output behavior along those switching sequences which belong to this designated set. More precisely, assume that the switching signal σ ∈ Q has the property that σ

(s) = q i , s ∈ [T i-1 , T i ), T 0 = 0, T i = ∑ i r=1 t r for some q i ∈ Q, 0 < t i ∈ R + , 0 < i ∈ N.
We will say that a selection (α, β ) is consistent with σ , if for every i > 0, for every ω i , . . . , ω k ∈ N,

((q i ) ω i (q i+1 ) ω i+1 • • • (q k ) ω k , q i ) ∈ β , ((q 1 ) ω 1 (q 2 ) ω 2 • • • (q i ) ω i , q i ) ∈ α.
It then turns out that if the selection (α, β ) is consistent with a switching signal σ , then all (α, β )-partial realizations have the same input-output behavior along the switching signal σ . The latter observation then characterizes the effect of moment matching algorithms which use selections. The formal theorem is as follows.

Theorem 4.2 (Properties of moment matching using selections [30]). Assume that (α, β ) is consistent with σ and Σ is (α, β )-partial realization of f . Then Y Σ(u, σ ) = f (u, σ ), for all u ∈ U .

Note that for a pair of selections to be consistent with a switching signal (or a set of switching signals), the selections involved have to be infinite sets. If the prefixes of the sequences of discrete modes of the desired switching signals form a regular language, then there exist algorithms to compute matrix representations of O α (Σ), R β (Σ), see [30,31].

Further extensions. The model reduction method described above was extended to LPV models [28] and bilinear systems [START_REF] Petreczky | Moment matching for bilinear systems with nice selections[END_REF]. In addition, the method above was applied to LSSs arising from asynchronous sampling of linear time-invariant systems [25].

Relationship with realization theory. To begin with, the whole idea of matching Markov parameters relies on the notion of Markov-parameters and partial-realization, which are integral parts of realization theory. In fact, the result of the Ho-Kalman realization algorithm from Algorithm 13 is isomorphic to the LSS returned by Algorithm 5 with the choice of the matrices W and V as described in option (C) above. That is, moment matching is just a reformulation of Ho-Kalman algorithm when the latter is applied to finite Hankel-matrices, rank of which is not maximal. The partial realization algorithm of [START_REF] Petreczky | Partial-realization of linear switched systems: A formal power series approach[END_REF] is a particular instance of this model reduction method,

if α = β = {v ∈ Q * | |v| ≤ N} × Q is chosen.
Furthermore, Theorem 4.2 and its counterpart for the discrete-time case [31] can be viewed as extensions of realization theory of LSSs with constrained switching [START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF][START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach: Part i[END_REF].

Moment matching in frequency domain

By applying multivariate Laplace transform of the functions {G f v } v∈Q + we can define a sequence of functions {H f v } v∈Q + of complex variables as follows:

H f v (s 1 , . . . , s k ) = ∞ 0 • • • ∞ 0 G v (t 1 , . . . ,t k )e s 1 t 1 +•••+s k t k dt 1 • • • dt k (4.7) 
for all Re(s i ) > s 0 for a suitable s 0 ∈ R, where k = |v|. If f has a realization by a LSS Σ of the form (2.6) then by [START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach: Part i[END_REF],

G f q 1 •••q k (t 1 , . . . ,t k ) = C q k e A q k t k • • • e A q 1 t 1 B q 1 , and hence H f q 1 ,q 2 ,...,q k (s 1 , s 2 , . . . , s k ) = C q k Φ q k (s k )Φ q k-1 (s k-1 ) • • • Φ q 1 (s 1 )B q 1 , (4.8) 
where Φ q (s) = (sI n -A q ) -1 , q j ∈ Q, 1 j k. We call the functions {H f v } v∈Q + the generalized transfer functions of the input-output map f [START_REF] Gosea | Data-driven model order reduction of linear switched systems in the loewner framework[END_REF].

Let Γ and Θ be finite sets of tuples so that

Γ, Θ ⊆ {(v, µ) | v ∈ Q + , µ ∈ C k , k = |v|}.
We will say that a LSS Σ is a (Γ, Θ)-partial realization of f , if for every (w, µ) ∈ Γ, (v, λ ) ∈ Θ,

H f wv (µ, λ ) = H Y Σ wv (µ, λ ).
Intuitively, Σ being a (Γ, Θ)-partial realization of f means that the generalized transfer functions f and that of the input-output map of Σ coincide for some switching sequences and some frequencies.

Our goal is to find a LSS Σ such that Σ is a (Γ, Θ)-partial realization of f , and the dimension of Σ is smaller than that of Σ.

To this end, for any

v = q 1 • • • q k ∈ Q + , q 1 , . . . , q k ∈ Q, define r((v, µ) = Φ q k (µ k ) • • • Φ q 1 (µ 1 )B q 1 , o((v, µ)) = C q k Φ q k (µ k ) • • • Φ q 1 (µ 1 ).

CONCLUSIONS

for any µ = (µ 1 , . . . , µ k ) ∈ C k . Assume that the cardinality of Γ and Θ are both r and consider an enumeration

Γ = {(w i , µ i )} r i=1 Θ = {(v i , λ i )} r i=1 of these sets. Define the matrices R = r((w 1 , µ 1 )) . . . r((w k , µ r )) , O = o((v 1 , λ 1 )) T . . . o((v k , λ r )) T T .
Assume that rank OR = r. We can apply Algorithm 5 with W = O, V = R resulting in a LSS Σ which will be a (Γ, Θ)-partial realization of f . The formal theorem is as follows.

Theorem 4.3 (Correctness of frequency domain moment matching [START_REF] Gosea | Data-driven model order reduction of linear switched systems in the loewner framework[END_REF]). With the notation and assumptions above, the LSS Σ is a (Γ, Θ)-partial realization of f .

The method described above has an alternative formulation in terms of generalized Loewner matrices [START_REF] Gosea | Data-driven model order reduction of linear switched systems in the loewner framework[END_REF], thus extending the well-known Loewner-matrix based model reduction method for linear systems.

Further extensions The results described above were extended to LPV systems in [START_REF] Gosea | Reduced-order modeling of lpv systems in the loewner framework[END_REF].

Relationship with realization theory The reformulation of this method in terms of generalized Loewner matrices yields a partial realization algorithm, as it depends on data which can directly be obtained from Laplace transforms of the input-output map. In a way, this method is the first step towards a reformulation of realization theory of LSSs in frequency domain.

Conclusions

In this chapter I presented a brief overview of my contribution to model reduction of linear switched systems. It is well known that for linear systems there is a deep connection between these two disciplines. As the results of this chapter demonstrate, the same holds for linear switched systems too. There are many possible directions for future research. A particularly natural one is to extend the results of this chapter to hybrid systems with state-dependent switching, for example to piecewise linear systems. The latter can be viewed as a feedback interconnection of a linear switched system with an discrete event generator, hence we are hopeful that the results of this chapter will be useful for such an extension.

Chapter 5

Identification of LPV systems

In this chapter I present a selection of topics related to systems identification which I worked on. I will concentrate on LPV systems, and on those topics which rely on system identification. The reason for concentrating on LPV systems is that my work on system identification mostly concerned linear switched systems with external switching and LPV systems. The former is a subclass of the latter, hence, it seems more straightforward to discuss the results for the more general system class.

System identification of LPV systems is a very active research area, without claiming completeness one can mention mention [18,[START_REF] Laurain | Refined instrumental variable methods for identification of LPV Box-Jenkins models[END_REF][START_REF] Mejari | A bias-correction method for closed-loop identification of Linear Parameter-Varying systems[END_REF][START_REF] Piga | LPV system identification under noise corrupted scheduling and output signal observations[END_REF][START_REF] Felici | Subspace identification of MIMO LPV systems using periodic scheduling sequence[END_REF][START_REF] Verdult | Subspace identification of multivariable linear parameter-varying systems[END_REF][START_REF] Tanelli | Identification of LPV state-space models for automatic web service systems[END_REF][START_REF] Van Wingerden | Subspace identification of Bilinear and LPV systems for openand closed-loop data[END_REF][START_REF] Verdult | Kernel methods for subspace identification of multivariable LPV and bilinear systems[END_REF]49,[START_REF] Ghosh | Optimal identification experiment design for LPV systems using the local approach[END_REF][START_REF] Khalate | Optimal experimental design for LPV identification using a local approach[END_REF][START_REF] Tóth | Identification and Modeling of Linear Parameter-Varying Systems[END_REF][START_REF] Pepijn | Linear parameter-varying subspace identification: A unified framework[END_REF][START_REF] Lopes Dos Santos | Linear Parameter-Varying System Identification: new developments and trends[END_REF][START_REF] Lopes Dos Santos | Subspace Identification of Linear Parameter Varying Systems with Innovation-Type Noise Models[END_REF]. Within LPV system identification, a large portion of the literature is focused on identifying input-output LPV models, see for example [49,[START_REF] Laurain | Refined instrumental variable methods for identification of LPV Box-Jenkins models[END_REF]18,[START_REF] Piga | LPV system identification under noise corrupted scheduling and output signal observations[END_REF][START_REF] Dankers | Informative data and identifiability in LPV-ARX prediction-error identification[END_REF]. My own work was focused on LPV state-space representations. The existing methods in system identification of LPV state-space representations can be divided into two categories: parametric identification methods and subspace identification methods. Without claiming completeness, for parametric methods we refer to [START_REF] Wills | System identification of linear parameter varying state-space models[END_REF][START_REF] Lee | Identification of linear parameter varying systems using non linear programming[END_REF][START_REF] Lee | Identifiability issues for parameter varing and multidimensional linear systems[END_REF][START_REF] Syed Zeeshan Rizvi | Statespace LPV model identification using kernelized machine learning[END_REF]42,19,[START_REF] Novara | Set membership identification of state-space LPV systems[END_REF], and for subspace methods to [START_REF] Van Wingerden | Subspace identification of Bilinear and LPV systems for openand closed-loop data[END_REF][START_REF] Felici | Subspace identification of MIMO LPV systems using periodic scheduling sequence[END_REF][START_REF] Verdult | Subspace identification of multivariable linear parameter-varying systems[END_REF][START_REF] Verdult | Kernel methods for subspace identification of multivariable LPV and bilinear systems[END_REF][START_REF] Santos | Identification of bilinear systems with white noise inputs: An iterative deterministic-stochastic subspace approach[END_REF][START_REF] Pepijn | Linear parameter-varying subspace identification: A unified framework[END_REF] and the references therein. In the case of parametric methods, the sought after state-space representation is assumed to be a member of a parameterized family of state-space representations, and the task is to estimate the correct value of the parameter from data. In the case of subspace methods, the state-space representation is assumed to be a black-box, and the system matrices are estimated up to an isomorphism. This division is not very strict, as subspace methods could be viewed as a particular instance of parametric methods, and prediction error minimization (PEM) methods [START_REF] Wills | System identification of linear parameter varying state-space models[END_REF] can be applied to black-box models. However, for the purposes of our discussion, such a classification is useful. Another way of classifying LPV state-space identification methods is whether they are local or global. Local methods aim at identifying the LTI model for each constant value of the scheduling signal and then merge the resulting family of LTI models, again, without claiming completeness we can mention [START_REF] Zhang | Lpv system common state basis estimation from independent local lti models[END_REF][START_REF] Ghosh | Optimal identification experiment design for LPV systems using the local approach[END_REF][START_REF] Vizer | An H ∞ -norm-based approach for operating point selection and LPV model identification from local experiments[END_REF] and the references therein. This is in contrast to global methods, where the LPV state-space representation is estimated using time-varying scheduling signals. In this chapter, I will focus on global methods.

My work on LPV system identification was centered around the following two problems:

• Characterizing identifiability of LPV state-space representations.

• Proving statistical consistency of subspace algorithms and overcoming the curse of dimensionality and weakening the usual observability assumptions made for subspace methods.

When I started research on LPV system identification, the existing literature did not completely solve the problem of characterizing identifiability of LPV state-space representations, despite the pioneering work [START_REF] Lee | Identifiability issues for parameter varing and multidimensional linear systems[END_REF]. Identifiability is important for parametric methods, as finding the best parameter estimate for non-identifiable parameterizations is conceptually and numerically problematic [START_REF] Mckelvey | Data driven local coordinates for multivariable linear systems and their application to system identification[END_REF][START_REF] Wills | On gradient-based search for multivariable system estimates[END_REF][START_REF] Vayssettes | A new parametrisation of matrix fraction descriptions to improve gradientbased optimisation methods[END_REF]. In addition, when I started working on LPV system identification, there were no results on statistical consistency of subspace identification algorithms. Moreover, most of the available subspace identification algorithms suffered from curse of dimensionality and they relied on quite strong observability assumptions about the underlying data-generating model. My research in this topics was aimed at filling these gaps. In fact, similarly to the case of LTI systems, addressing both issues for LPV state-space representations required results from realization theory.

In this chapter we will consider deterministic and stochastic LPV systems. For deterministic LPV systems, we consider state-space representations with affine dependence on parameters (LPV-SSA) from Chapter 2, and we present results on identifiability analysis and a deterministic subspace identification algorithm. The results on identifiability are based on the paper [5] and PhD thesis [4], the results on subspace identification are based on [START_REF] Cox | Towards efficient maximum likelihood estimation of lpv-ss models[END_REF]. The results of the deterministic case rely on realization theory of LPV-SSAs presented in Chapter 2. The stochastic case is based on the results of [START_REF] Mejari | Consistent and computationally efficient estimation for stochastic LPV statespace models: realization based approach[END_REF][START_REF] Mejari | Realization and identification algorithm for stochastic LPV state-space models with exogenous inputs[END_REF] and it uses the results of Chapter 2 on realization theory of stochastic bilinear systems. In this chapter, we will deal only with discrete-time systems, as they are simpler and most of the existing literature on system identification of LPV and switched systems deals with the discretetime case. As it was mentioned before, linear switched systems can be viewed as LPV systems with scheduling variables taking values in a finite set. Hence, the results of this chapter can directly be applied to linear switched systems.

The chapter is organized as follows. In Section 5.1 we deal with system identification of deterministic LPV-SSAs. In Section 5.2 we present stochastic subspace identification algorithms. In each section, we will discuss the role of realization theory in the topic discussed in that particular section.

System identification of deterministic LPV-SS systems

The presentation of this section is based on [START_REF] Cox | Towards efficient maximum likelihood estimation of lpv-ss models[END_REF]5]. We will use the notation and terminology introduced in Chapter 2, in particular, in Section 2.2 and Section 2.3. The system identification problem can be formulated in various ways. First, we start with an intuitive and informal problem formulation. Problem 5.1 (System identification: informal). Let (u, p, y) ∈ U × P × Y be signals such that for some x, (x, u, p, y) is a solution of an unknown LPV-SSA Σ true . Based on the data {u(t), p(t), y(t)} N t=0 find a LPV-SSA

Σ N = (P, A N i , B N i ,C N i n p i=0
) such that for large enough N, the input-output behavior of Σ N is close enough to the input-output behavior of Σ true .

Intuitively, Σ true can be thought of as the true LPV-SSA which generates the observations. The problem above is ill-posed. First of all, we did not specify what we mean my input-output behavior. Second, we did not specify how to compare them. The most natural definition of input-output behavior would be that of the behavioral approach [START_REF] Willems | An Introduction to Mathematical Systems Theory: A Behavioral Approach[END_REF], which was extended to LPV systems [START_REF] Tóth | Identification and Modeling of Linear Parameter-Varying Systems[END_REF], i.e., in this case the input-output behavior of an LPV-SSA Σ is B(Σ) = {( ũ, p, ỹ) | ∃ x ∈ X : (x, ỹ, ũ, p) is a solution of Σ}. However, this approach presents a number of conceptual and technical difficulties. Instead, in order to keep the discussion simple, we follow the classical approach in system identification and we formalize the input-output behavior of a LPV-SSA Σ as the input-output map of Σ induced by the zero initial state. We then compare the input-output behavior of Σ N and Σ * by comparing the system matrices of Σ N with the system matrices of a LPV-SSA realization of F = Y Σ true ,0 . That is, we would like the system matrices of Σ N to be close to the system matrices of a LPV-SSA Σ * such that Σ * is a realization of F. In this way, we ensure that for any scheduling signal and input, the output of Σ N will be close to that of Σ * , which, in turn, by virtue of Σ * being a realization of F, will be equal to the output of the true system Σ true . Note that the output responses of Σ N and Σ * could be close even if the system matrices are different. In fact, two LPV-SSAs could have the same input-output map while their system matrices are very far from each other. For this, it is sufficient to apply a linear state-space transformation to them. However, if the system matrices are close, then the output responses to the same input and scheduling signal will also be close, so the proposed approach is meaningful, even if it is conservative.

We then arrive to the following problem formulation.

Problem 5.2 (System identification: deterministic and non-parametric). Consider an LPV-SSA input-output map F of the form (2.4) and assume that it has an LPV-SSA realization. Let (u, p, y) ∈ U × P × Y be signals such that y = F(u, p). Based on the data {u(t), p(t), y(t)} N t=0 find a LPV-SSA Σ N = (P,

A N i , B N i ,C N i n p i=0
) such that for all i ∈ I 0,n p , the limits

A i = lim N→∞ A N i , B i = lim N→∞ B N i , lim N→∞ C N i = Ci
exist, and

Σ * = (P, {A i , B i ,C i } n p i=0 ) is a realization of F.
That is, based on measurements {u(t), p(t), y(t)} N t=0 find an LPV-SSA Σ N such that for large enough N, the input-output maps of Σ N should be close enough to F, or, in other words, Σ T should be close to a true realization of F. Often, the goal is not to find just an approximate LPV-SSA realization of F, but to find a realization with a particular structure, i.e., an element of a parameterization. In order to formalize this concept, we introduce the following terminology. Definition 5.1 (LPV parameterization). Let Θ ⊆ R n θ for some integer n θ > 0 and let us fix the integers n x , n u , n y , n p . An LPV-SS parameterization Π is a map

Π : Θ → (R n x ×n x × R n x ×n u × R n y ×n x ) n p +1 .
(5.1)

The interpretation of a parameterization is as follows. For every θ ∈ Θ, Π(θ ) is of the form

{(A i (θ ), B i (θ ),C i (θ )} n p i=0 , for some A i (θ ) ∈ R n x ×n x , B i (θ ) ∈ R n x ×n y ,C i (θ ) ∈ R n y ×n x for all i ∈ I 0,n p . Then, Π(θ ) can be associated with an LPV-SSA Σ Π (θ ) = (P, {A i (θ ), B i (θ ),C i (θ )} n p i=0
), i.e., Π can be viewed as a map which associates an LPV-SS model with each value θ ∈ Θ and the matrices of this LPV-SS model are functions of θ . Note that we can also view Π as a map Π : Θ → R N , N = n x (n x + n y + n u )(n p + 1), by storing the matrices {A i (θ ), B i (θ ),C i (θ )} n p i=0 for θ ∈ Θ as vectors. Note that if Θ = R N and Π is the identity map, then the image of Π contains all LPV-SSA representations of dimension n x .

The motivation for introducing parameterizations is as follows. Often, instead of looking for an approximate LPV-SSA realization of F in general, one wants to find an approximate LPV-SSA realization from a particular parameterization. This is the case, for example, if a LPV-SSA realization of F could in principle be derived from the first principles, but some of the physical quantities involved are unknown. This leads us to the following reformulation of the identification problem. Problem 5.3 (System identification: deterministic and parametric setting). Let Π be a LPV-SSA parameterization of the form (5.1) and consider the signals (u, p, y) ∈ U × P × Y such that y = F(u, p). Based on the data {u(t), p(t), y(t)} N t=0 find θ N ∈ Θ, such that lim N→∞ θ N = θ * and Π(θ * ) is a realization of F.

Intuitively, the parametric system identification problem is to find a parameter θ N based on the measurements , such that the corresponding LPV-SSA Π(θ N ) is close to a realization of F, at least for a large N. This is expressed by the requirement that lim N→∞ θ N = θ * and Π(θ * ) is a realization of F. The same intuition could have been formalized is a less restrictive manner, but for the purposes of this chapter the formalization above is sufficient. The parameter θ * can be viewed as the parameter corresponding to a true realization of F, to the exact model of underlying system.

The non-parametric system identification problem Problem 5.2 is a special case of Problem 5.3 if we take the trivial parameterization Π(θ ) = θ , ∀θ ∈ Θ = R N . However, as we shall see later, viewing Problem 5.2 as a special case of Problem 5.3 is not very useful for a number of practical reasons.

The standard approach to solving problem Problem 5.3 is as follows. First, we define a loss function

N (θ , {u(t), p(t), y(t)} N t=0 )
which measures the difference between the actual output y(t) and the output ŷ(t) of the LPV-SSA Π(θ ), when the latter is started from some initial state and fed the scheduling variables and inputs {u(t), p(t)} N t=0 . A typical choice of the loss function N (θ , {u(t), p(t), y(t)} N t=0 ) is as follows:

N (θ , {u(t), p(t), y(t)} N t=0 ) = 1 N N ∑ t=0 y(t) -Y Π(θ ),0 (u, p)(t) 2 2 , (5.2) 
Then we choose θ T be the solution of the following optimization problem

θ T = argmin θ ∈Θ T (θ , {u(t), p(t), y(t)} N t=0 ). (5.3)
That is, the identification problem of Problem 5.2 can be reduced to the optimization problem in (5.3), where θ N is chosen in such a way that it gives the smallest possible difference between the actual measured output and the one predicted by Π(θ N ), i.e., Π(θ N ) is model which explains the data best among all the models described by the parameterization Π. So far we have not required that there should be a one-to-one relationship between the parameters θ and the input-output behavior of Π(θ ), i.e., it could happen that Y Π(θ 1 ) = Y Π(θ 2 ) for some θ 1 , θ 2 . If this is the case, then we have to deal with two problems:

1. Non-uniqueness of the true model. It can happen that the set D(F) = {θ | Π(θ ) is a realization of F} contains several elements and hence the choice of θ * to which the estimates θ T have to converge is not unique. In principle, this need not be a problem. However, non-uniqueness of θ * makes the proof of convergence technically difficult, especially if D F is a connected set. Moreover, if the parameters have a physical meaning and we would like to estimate them from data, then this becomes impossible, as there are several possible parameter values which are consistent with any measured data.

2.

Local and global minim.a In this case, for most of reasonably defined loss functions, in particular for the one of (5.2), N (θ 1 , {u(t), p(t), y(t)} N t=0 ) = N (θ 2 , {u(t), p(t), y(t)} N t=0 ), and hence the optimization problem (5.3) has several solutions. In turn, this leads to numerical instability for most of the known optimization algorithms or convergence to a local minimum or lack of convergence.

For this reason, when it comes to parametric identification, one would like to avoid the situation when there are several parameters such that the corresponding models have the same input-output behavior. This prompts us to recall the following definition from [5] Definition 5.2 (Structural identifiability,). An LPV-SS parameterization Π of the form (5.1) is called structurally identifiable if, for any two distinct parameters θ 1 , θ 2 ∈ Θ, θ 1 = θ 2 , the input-output maps of the corresponding LPV-SSAs Σ Π (θ 1 ) and Σ Π (θ 2 ) generated by zero initial states are different, i.e., Y Σ Π (θ 1 ),0 = Y Σ Π (θ 2 ),0 .

In other words, structural identifiability means that, for every two different parameters, there exists a sequence of inputs and scheduling parameter values (u, p) ∈ U ×P, such that the corresponding outputs are different. That is, in Problem 5.3 we want to deal only with structurally identifiable parameterizations. It is now easy to see why considering the trivial parameterization where Π is the identity is not suitable for Problem 5.3. Namely, the trivial parameterization is not structurally identifiable.

Realization theory can be used for solving Problem 5.2 and Problem 5.3 as follows. First, the Kalman-Ho-like realization algorithm can be used to get a identification algorithm for solving Problem 5.2 along with a persistence of excitation condition. Second, the theory of minimality can be used to find conditions for checking structural identifiability and to come up with structurally identifiable parameterizations.

This section is structured as follows. In Subsection 5.1.1 we present a subspace-like algorithm based on the Kalman-Ho-like algorithm from Chapter 2 and conditions for persistence of excitation. In Subsection 5.1.2 we discuss the application of realization theory to identifiability.

Deterministic subspace identification algorithm LPV-SSA

In this section we present subspace identification algorithms for deterministic LPV-SSAs. This section is based on [START_REF] Cox | Towards efficient maximum likelihood estimation of lpv-ss models[END_REF].

Recall from Section 2.6, Chapter 2 that a LPV-SSA realization of F can be calculated from the Hankelmatrix H F,N,N+1 using Algorithm 1, or from the matrices H F,α,β H q,F,α,β H q,F,α H F,β ,q for some selections α, β using Algorithm 2. Recall that these matrices can be constructed from the sub-Markov parameters of F. Hence, one approach for solving Problem 5.2 is to estimate the sub-Markov parameters from the measured data {u(t), p(t), y(t)} N t=0 and then apply Algorithm 1 or Algorithm 2. Notice that if F has a realization by a LPV-SSA, it has a IIR representation and hence if y = F(u, p), then

y(t) = t-1 ∑ δ =0 (h F p)(δ ,t)u(δ ) = t-1 ∑ δ =0 ∑ i δ ,...,i t ∈I 0,np θ i t ,i δ ,F (i δ +1 • • • i t-1 )p i t (t) • • • p i δ (δ )u(δ ).
(5.4)

In order to estimate the sub-Markov parameters of F from {u(t), p(t), y(t)} N t=0 , equation (5.4) has to be solved with the sub-Markov parameters θ i t ,i δ ,F (i δ +1 • • • i t-1 ) being treated as indeterminate to be found.

There are two ways of doing so. The first one is to assume that for some n b , if

(h F p)(δ ,t) = 0, if t -δ > n b
or, which is equivalent, that

θ i t ,i δ ,F (i δ +1 • • • i t-1 ) = 0, if t -δ > n b .
If F has a realization by a stable LPV-SSA of the form (2.1), then for large enough n b , for t -δ ≥ n b ,

θ i t ,i δ ,F (i δ +1 • • • i t-1 )
is going to be close to zero [START_REF] Cox | Towards efficient maximum likelihood estimation of lpv-ss models[END_REF], so this assumption will approximately be true. In this case, (5.4) can be written as

y(t) = n b ∑ δ =1 ∑ i t-δ ,...,i t ∈I 0,np θ i t ,i t-δ ,F (i t-δ +1 • • • i t-1 )p i t (t) • • • p i t-δ (t -δ )u(t -δ ),
for all t ≥ n b . That is, we can formulate the following linear regression problem

Y N = Φ N θ N (5.5)
where

Y N = y T (n b + 1) y T (n b + 2) . . . y T (N)
T and Φ N is a suitable matrix constructed from the products p i t (t) • • • p i t-δ (tδ )u(tδ ), and θ N is the vector constructed from the entries of

θ i t ,i t-δ ,F (i t-δ +1 • • • i t-1 ), n b ≤ t ≤ N, δ = 1, . . . , n b i t-δ , .
. . , i t ∈ I 0,n p , see [START_REF] Cox | Towards efficient maximum likelihood estimation of lpv-ss models[END_REF] for more details. Since Y N and Φ N are known, the equation (5.5) can be solved in the least squares sense, leading to the following system identification algorithm by combining the solution of (5.5) with Algorithm 1 or Algorithm 2. Below we will present only the SISO case in order to avoid excessive notation, and only the version using Algorithm 2 as Algorithm 1 can be viewed as a special case of Algorithm 2:

Algorithm 6 Deterministic subspace identification algorithm based on finite impulse response 1: Solve (5.5) and denote the entry of the solution θ N which corresponds to

θ i t ,i t-δ ,F (i t-δ +1 • • • i t-1 ), by θ N i t ,i t-δ ,F (i t-δ +1 • • • i t-1
), for all i t-δ , . . . , i t ∈ I 0,n p , n b ≤ t ≤ N for all δ = 1, . . . , n b . 2: Choose nice selection α, β ⊆ {v ∈ I * 0,n p | |v| ≤ n} × I 0,n p and construct the matrices

H N F,α,β , H N q,F,α,β , H N F,α,q
and H N q,F,β by replacing in (2.20) -(2.23) every occurrence of θ r 1 ,r 2 ,F (h), r 1 , r 2 ∈ I 0,n p , h ∈ I * 0,n p by θ N r 1 ,r 2 ,F (h). 3: Let Σ N be the LPV-SSA returned by Algorithm 2 when applied to H N F,α,β H N q,F,α,β , H N F,α,q and H N q,F,β . 4: return Σ N Lemma 5.1 (Correctness of Algorithm 6). Assume that rankH F,α,β equals the dimension of a minimal LPV-SSA realization of F, and assume that θ i k ,i 0 F (i 1 • • • i k-1 ) = 0 for any i 0 , . . . , i k ∈ I 0,n p , k ≥ n b , and that the matrix Φ N from (5.5) is full column rank. Then Σ N returned by Algorithm 6 is a realization of F.

That is, under suitable conditions Algorithm 6 solves Problem 5.2. Moreover, it solves it for a finite number of data points, i.e., for large enough N the estimate Σ N is an exact realization of F, not an approximate one. As it is to be expected, the corresponding conditions are quite strong.

More precisely, the condition that rankH F,α,β equals the dimension of a minimal LPV-SSA realization of F is not at all restrictive. In fact, it is known that if F has a minimal LPV-SSA realization of dimension n, then there exists selections α, β ⊆ I 0,n p × {v ∈ I * 0,n p | |v| ≤ n -1} such that rankH F,α,β = n. That is, once the likely order of a minimal realization of F is fixed, one can always find suitable selections. In fact, the number of such selections is finite, so suitable selections can always be found by exhaustive search, although the runtime complexity of this is high. In practice, more intelligent search techniques are preferable.

The second requirement is that i

θ i k ,i 0 F (i 1 • • • i k-1 ) = 0
for any i 0 , . . . , i k ∈ I 0,n p , k ≥ n b . This is more problematic, since it means that long enough product of the system matrices of any minimal LPV-SSA representation of F must be zero. However, if F has a quadratically stable LPV-SSA representation, then this condition will hold approximately. Of course, in this case Lemma 5.1 no longer holds, but an asymptotic version of Lemma 5.1 can probably be formulated. The condition that Φ N must be of full column rank is reminiscent of persistence of excitation condition, it remains a topic of future research to investigate the choice of signals u, p which satisfy this condition. Algorithm 6 was tested on numerical examples, and it performs well, especially when combined with parametric system identification algorithms, for more details see [START_REF] Cox | Towards efficient maximum likelihood estimation of lpv-ss models[END_REF].

Another option is to use the statistical properties of the signals u, p, y. More precisely, assume that µ, u, y are stochastic processes such that y(t) = F (µ, u)(t) for all t ∈ N and assume that p, u, y are sample paths µ, u, y. From (5.4) it then follows that

y(t) = t-1 ∑ δ =0 ∑ i δ ,...,i t ∈I 0,np θ i t ,i δ F (i δ +1 • • • i t-1 )µ i t (t) • • • µ i δ (δ )u(δ ), (5.6) 
where µ q (t) denotes the qth component of µ(t) if q = 1, . . . , n p and µ 0 (t) = 1 otherwise. Assume now the following:

Assumption 1.

1. u(t) are identically distributed and independent and zero mean with covariance Q u = E[u(t)u T (t)] > 0, and 2. the random variables µ(t) are also identically distributed and independent and that E[µ j (t)µ i (t] = 0 for i = j, E[µ 2 j (t)] = π j , i, j ∈ I 0,n p , and 3. the σ -algebras generated by the random variables {µ(t)} ∞ t=0 and {u(t)} ∞ t=0 are independent.

That is, u is white noise, and µ is either zero mean white noise or it is a binary noise, but independent of u. It then follows that for any j 0 , . . . , j t ∈ I 0,n p ,

E[y(t)µ j t (t) • • • µ j 0 (0)u T (0)] = t-1 ∑ δ =0 ∑ i δ ,...,i t ∈I 0,np θ i t ,i δ F (i δ +1 • • • i t-1 )E[µ i t (t) • • • µ i δ (δ )µ j t (t) • • • µ j 0 (0)u(δ )u T (0)]. Notice that E[µ i t (t) • • • µ i δ (δ )µ j t (t) • • • µ j 0 (0)u(δ )u T (0)] = E[µ i t (t) • • • µ i δ (δ )µ j t (t) • • • µ j 0 (0)]E[u(δ )u T (0)] and E[u(δ )u T (0)] = 0 if δ = 0 Q u , if δ = 0 Moreover, E[µ i t (t) • • • µ i δ (δ )µ j t (t) • • • µ j 0 (0)] = Π t k=0 E[µ i k (k)µ j k (k)] = 0 if i 0 • • • , i t = j 0 • • • j t .
it follows that under Assumption 1,

E[y(t)µ j t (t) • • • µ j 0 (0)u T (0)] = θ j t , j 0 F ( j 1 • • • j t-1 )π j 0 • • • π j t Q u ,
and therefore

θ j t , j 0 F ( j 1 • • • j t-1 ) = 1 π j 0 • • • π j t E[y(t)µ j t (t) • • • µ j 0 (0)u T (0)]Q -1 u .
(5.7)

That is (5.7) allows us to express the sub-Markov parameters of F through the expected values

E[y(t)µ j t (t) • • • µ j 0 (0)u T (0)].
The latter can be estimated from the signals (u, p, y) using the empirical covariances

Ê j 0 ••• j t ,N = 1 N -t -1 N ∑ k=t y(k)p j t (k) • • • p j 0 (k -t)u T (k -t), arriving at θ N j t , j 0 ,F ( j 1 • • • j t-1 ) = 1 π j 0 • • • p j t 1 N -t -1 N ∑ k=t y(k)p j t (k) • • • p j 0 (k -t)u T (k -t)Q -1 u . (5.8) 
We can then propose the following system identification algorithm based on Algorithm 1 or Algorithm 2. We will present only the SISO case in order to avoid excessive notation, and only the version using Algorithm 2 as Algorithm 1 can be viewed as a special case of Algorithm 2.

Algorithm 7 Deterministic subspace identification algorithm based on covariances 1: Choose selections α, β as defined in (2. 19). 2: Construct the matrices H N f ,α,β , H N q,F,α,β , H N F,α,q and H N q,F,β by replacing in (2.20) -(2.23) every occurrence of θ r 1 ,r 2 ,F (h), r 1 , r 2 ∈ I 0,n p , h ∈ I * 0,n p by θ N r 1 ,r 2 ,F (h) calculated from (5.8). Note that only a finite number of θ N r 1 ,r 2 ,F (h) has to be calculated. 3: Let Σ N be the LPV-SSA returned by Algorithm 2 when applied to H N F,α,β H N q,F,α,β , H N F,α,q and H N q,F,β . 4: return Σ N We can state the following results on consistency of Algorithm 7.

Lemma 5.2 (Consistency of Algorithm 7, adapted from [START_REF] Cox | Towards efficient maximum likelihood estimation of lpv-ss models[END_REF]). If rank H F,α,β equals the dimension n m of a minimal LPV-SSA realization of F, and the selections α and β contain exactly n m elements each, and in Algorithm 2 the matrix O n m is chosen as O n m = H N F,α,β and R n m is the identity matrix, and

lim N→∞ 1 N -t + 1 N ∑ k=t y(k)p j t (k) • • • p j 0 (k -t)u(k -t) = E[y(t)µ j t (t) • • • µ j 0 (0)u T (0)]
(5.9) for all j 0 , . . . , j t ∈ I 0,n p , t ≥ 1, then the LPV-SSA Σ N = (P,

A N i , B N i ,C N i n p i=0
) returned by Algorithm 7 has the following property:

lim N→∞ (A N i , B N i ,C N i ) = (A i , B i ,C i ), i ∈ I 0,n p and the LPV-SSA Σ * = (P, {A i , B i ,C i } n p i=0 ) is a realization of F.
The condition that rankH F,α,β equals the dimension of a minimal LPV-SSA realization of F is not very restrictive: in fact, we know that if F has an LPV-SSA realization of dimension n then there exist nice selection α, β ⊆ I 0,n p × (I 0,n p ) ≤n of cardinality n for which this condition holds.

If (u, µ, y) are jointly ergodic, then (5.9) holds with probability one i.e., for almost all choices of the sample paths (u, p, y) of (u, µ, y). It is not clear under which conditions (u, µ, y) are jointly ergodic. However, in [START_REF] Petreczky | On the notion of persistence of excitation for linear switched systems[END_REF] it was shown that if • µ(t) is chosen to be binary white noise, i.e. µ i (t) = ξ (σ (t) = i), i = 1, . . . , n p and σ (t) is an i.i.d. process taking values in {1, . . . , n p } and P(σ (t) = i) = 1 n p for all i = 1, . . . , n p , and

• u and µ satisfy Part 1 and Part 3 of Assumption 1, and

• (u, p) is a sample path of (u, µ),
then for y = F(u, p) condition (5.9) holds, provided F can be realized by a quadratically stable LPV-SSA. Algorithm 7 was tested on numerical examples, Algorithm 6 and it performs well, especially when combined with parametric system identification algorithms, for more details see [START_REF] Cox | Towards efficient maximum likelihood estimation of lpv-ss models[END_REF] Remark 5.1 (Persistence of excitation). Note that the conditions of Lemma 5.1 and Lemma 5.2 can be viewed as conditions for persistence of excitation of the scheduling signal and the inputs. In case of Lemma 5.1 the condition that Φ N is of full column rank is a persistence of excitation condition which depends only on the choice of the scheduling signal and the input signal. For Lemma 5.2, the condition that (5.9) holds can also be viewed as a persistence of excitation condition, as it depends on the measured data. In fact, as it was noted above, [START_REF] Petreczky | On the notion of persistence of excitation for linear switched systems[END_REF] provides sufficient conditions on the scheduling signal and the input signal for (5.9) to hold.

Role of realization theory

The subspace identification algorithms discussed in this section rely on realization theory, more precisely, on Ho-Kalman realization algorithms for LPV-SSAs. In fact, they are nothing but an application of the latter algorithms to Hankel-matrices, entries of which are estimates of the corresponding sub-Markov parameters. The consistency of these algorithms is a consequence of realization theory of LPV-SSAs.

Identifiability of LPV-SSA

In this section, we present necessary and sufficient conditions for identifiability. These conditions rely on the properties of minimal LPV-SSA realizations, in particular, on the fact the minimal LPV-SSA realizations of the same input-output map are isomorphic. The results of this section were published in [5].

As the first step, we will restrict attention to parameterizations which are so called structurally minimal.

Definition 5.3 (Structural minimality).

A LPV-SSA parameterization Π of the form (5.1) is called structurally minimal if, for all θ ∈ Θ, the LPV-SSA Σ Π (θ ) is minimal.

The reason why we restrict our attention to structurally minimal parameterizations is as follows. First, any parameterization can be transformed into a structurally minimal one by minimizing the corresponding LPV-SSA. Second, for structurally minimal parameterizations, it is easy to find conditions for identifiability. Theorem 5.1 (Identifiability of LPV-SSAs [5]). Let Π be a structurally minimal LPV-SSA parameterization of the form (5.1). Then Π is structurally identifiable, if and only if both conditions below are satisfied (i) the map Π is injective, (ii) for every θ 1 , θ 2 ∈ Θ, if θ 1 = θ 2 , then there exists no isomorphism from Σ Π (θ 1 ) to Σ Π (θ 2 ).

That is, (i) and (ii) are necessary and sufficient conditions for structural identifiability of Π. The proof of Theorem 5.1 relies on the fact that minimal LPV-SSA realizations of the same input-output map are isomorphic. An alternative formulation of Theorem 5.1, which leads to a computationally efficient condition, can be derived as follows. Let Π be a structurally minimal LPV-SSA parameterization of the form (5.1). Let us introduce the following notation. Notation 5.1 (vec(T )). For a matrix T ∈ R n×m , denote by vec(T ) the vector obtained by stacking up the elements of T column-wise, i.e., vec(T ) = T 11 , . . . , T n1 , . . . , T 1n , . . . , T nm T .

Notation 5.2 (vec -1 (X)). For a vector X ∈ R nm , we denote by vec -1 (X) the unique matrix T ∈ R n×m such that X = vec(T ).

With the notation above, we identify Π(θ

) = {A i (θ ), B i (θ ),C i (θ )} n p i=0 with the point       vec( A T 0 (θ ),• • • ,A T n p (θ ) T ) vec( B T 0 (θ ),• • • , B T n p (θ ) T ) vec( C T 0 (θ ),• • • ,C T n p (θ ) T )       ∈ R N .
where vec(X) is a column-wise vector representation of the matrix X. Using this correspondence, the parameterization Π will be called structurally continuous (structurally smooth, respectively) if the map Π : Θ → R N is continuous (smooth, respectively). Furthermore, we will need the following notation.

Notation 5.3 ( GL(n x )). Define the set GL(n x ) as follows:

GL(n x ) = {X ∈ R n 2 x | ∃T ∈ GL(n x ) : X = vec(T )}.
Note that if T ∈ GL(n x ), then vec(T -1 ) is well defined and it it just the vector representation of the inverse matrix of T . This should not be confused with vec -1 (X) for some X ∈ GL(n x ). In the latter case, vec -1 (X) is the invertible matrix whose vector representation is X. That is, vec(T -1 ) is a vector and vec -1 (X) is a matrix.

Define the map

F : GL(n x ) × Θ → R N (T , θ ) →                    vec(T A 0 (θ )T -1 ) . . . vec(T A n p (θ )T -1 ) vec(T B 0 (θ )) . . . vec(T B n p (θ )) vec(C 0 (θ )T -1 ) . . . vec(C n p (θ )T -1 )                    , (5.10) 
where

Σ Π (θ ) = (P, {A i (θ ), B i (θ ),C i (θ )} n p i=0
) and N = n x (n x + n y + n u )(n p + 1). Note that for all T ∈ GL(n x ), T can be seen as an isomorphism from Σ Π (θ ) to F(T , θ ).

Theorem 5.2 (Reformulation of identifiability). With the assumptions of Theorem 5.1, Π is structurally identifiable if and only if F is injective.

The reason for reformulating Theorem 5.1 into Theorem 5.2 and introducing the map F is that it allows for a systematic procedure to verify structural and local structural identifiability of LPV-SS parameterizations in a computationally effective way. In order to present the details, we need the following definition.

Definition 5.4 (Local structural identifiability). Let us assume that

Θ is an open subset of R n θ and let Π be a LPV-SSA parameterization of the form (5.1). We say that Π is locally structurally identifiable at θ 0 , if there exists an open neighborhood W ⊆ Θ of θ 0 such that the LPV-SSA parameterization Π| W : W θ → Π(θ ) is structurally identifiable.

Local structural identifiability is of prime interest because it is a necessary condition for the local convergence of many identification algorithms using non-linear optimization techniques (see [START_REF] Vizer | An H ∞ -norm-based approach for operating point selection and LPV model identification from local experiments[END_REF]36,[START_REF] Vizer | A local approach framework for black-box and gray-box LPV system identification[END_REF]).

Definition 5.5 (Local injectivity).

Assume that F is a map of the form (5.10). We say the F is locally injective at (I, θ 0 ), if there exist open sets S ⊆ GL(n x ), W ⊆ Θ such that I ∈ S, θ 0 ∈ W and the restriction F| S×W of F to S ×W is injective.

Before presenting the characterization of local structural identifiability, we would like to investigate the partial derivatives of F. Notice that the set GL(n x ) is an open subset of R n 2

x . Note that the correspondence GL(n x ) X → vec(X) is one-to-one. Then F can be identified with the map

F : GL(n x ) × Θ (X, θ ) → F(vec -1 (X), θ ).
If Π is a smooth parameterization, then F is a smooth function defined on an open subset of R n 2

x × Θ, and then it makes sense to investigate the partial derivatives of F. In order to avoid excessive notation, we will tacitly identify F with F, and denote the Jacobian matrices

∂ F ∂ X (X, θ ) and ∂ F ∂ θ (X, θ ) by ∂ F ∂ T (vec(X), θ ), ∂ F ∂ θ (vec(X), θ ), respectively.
Theorem 5.3 (Local identifiability). Let Π be a structurally minimal LPV-SSA parameterization of the form (5.1):

1. Assume that Π is a continuous parameterization. The parameterization Π is locally structurally identifiable at θ 0 ∈ Θ, if and only if F, defined in (5.10), is locally injective at (I, θ 0 ).

2. Assume Π is a smooth parameterization. If the matrix

M F (θ 0 ) = ∂ F ∂ T (I, θ 0 ) ∂ F ∂ θ (I, θ 0 ) , (5.11) 
is full column rank, then Π is locally structurally identifiable at θ 0 .

Note that

∂ F ∂ T (I, θ ) =                       L (A 0 (θ )) . . . L (A n p (θ )) B 0 (θ ) T ⊗ I . . . B n p (θ ) T ⊗ I -I ⊗C 0 (θ ) . . . -I ⊗C n p (θ )                       , ∂ F ∂ θ (I, θ ) =                        ∂ vec(A 0 (θ )) ∂ θ . . . ∂ vec(A np (θ )) ∂ θ ∂ vec(B 0 (θ )) ∂ θ . . . ∂ vec(B np (θ )) ∂ θ ∂ vec(C 0 (θ )) ∂ θ . . . ∂ vec(C np (θ )) ∂ θ                       
Hence, rank of the matrix M F (θ 0 ) in Eq. (5.11) can be checked numerically, and thus the condition of the theorem is computationally effective. Intuitively, the first statement of Theorem 5.3 stems from the observation
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that local injectivity of F means that if the parameterization is restricted to a neighborhood of θ 0 , then no two LPV-SSAs corresponding to distinct parameter values can be isomorphic. The second statement of Theorem 5.3 relies on the observation that the condition that M F (θ 0 ) is full rank guarantees that F is locally injective at (I, θ 0 ). While Theorem 5.3 gives computationally effective sufficient conditions for local structural identifiability, it does not allow us to check structural identifiability on the whole parameter space. The latter is important because local structural identifiability guarantees only that the parameter estimation problem is well-posed on a neighborhood of the nominal value. If the parameter estimation problem is formulated as an optimization problem of a cost function, then local structural identifiability may give us a hope that the optimization algorithm will converge to the true solution if it is initialized properly, i.e., if it starts not far from the true value. However, local structural identifiability does not tell us anything about the global behavior of optimization algorithms: the algorithms may converge to one of several solutions, based on the initial values (which are thus required a priori) and the measured data. Thus, it is desired to generalize the condition of Theorem 5.3 to structural identifiability. This is done below, where we present computational effective characterization of global identifiability.

Theorem 5.4 (Computationally effective conditions for global identifiability [5]). Let Π be a structurally minimal LPV-SSA parametrization of the form (5.1), and assume that Θ = R n θ and that Π, viewed as a map Π :

Θ → R N , is affine. Then Π is structurally identifiable if ∀θ , θ ∈ Θ : det Y (θ , θ )Y (θ , θ ) = 0, (5.12) 
where

Y (θ , θ ) = Z(θ , θ ) 0 ∂ F ∂ θ (I, θ ) 0 Z( θ , θ ) -∂ F ∂ θ (I, θ ) , (5.13) 
and

Z(θ , θ ) =                    A 0 (θ ) T ⊗ I -I ⊗ A 0 ( θ ) . . . A n p (θ ) T ⊗ I -I ⊗ A n p ( θ ) B 0 (θ ) T ⊗ I . . . B n p (θ ) T ⊗ I -I ⊗C 0 ( θ ) . . . -I ⊗C n p ( θ )                    . (5.14)

Role of realization theory

Realization theory, especially the results on minimality allowed us to propose conditions for global and local structural identifiability. More precisely, the proposed conditions for identifiability all rely on the fact that inputoutput equivalent minimal LPV-SSA are isomorphic. The identifiability conditions provide conditions when there are no isomorphic elements in the parametrization.

Stochastic subspace identification algorithm

Since any model is wrong, it is a standard practice in system identification to aim at estimating the parameters of state-space representations which a noise term. This noise term is supposed to capture modeling errors. Historically, the noise term was assumed to be a stochastic process, in fact, it was assumed to be a white noise process with a certain variance. Traditionally, system identification algorithms also aimed at estimating this variance. For linear systems, this was useful for several reasons. For linear models the variance of the noise gives an indication of the error between the output predicted by the model and the actual one. Moreover, stochastic linear systems with known noise variances are useful for stochastic optimal control. For non-linear systems, the rational for using stochastic noise terms is less clear. For example, control synthesis methods for LPV systems rely on robust control, in which the noise is assumed to be deterministic of bounded energy. Nevertheless, the system identification literature for nonlinear systems, including LPV systems, tends to use the assumption that the noise is stochastic. Reconciling this assumption with the requirements for robust control is a topic of future research.

In this section we will discuss system identification algorithms for stochastic LPV systems. More precisely, in Subsection 5.2.1 consider first the system identification problem for GBSs, generalized bilinear systems (GBSs) introduced in Chapter 3. The latter problem is motivated by the fact that identification of autonomous stochastic LPV-SSA systems can be viewed as a special case of identification of GBSs. In Subsection 5.2.2 we discuss the system identification problem for stochastic LPV-SSA with inputs, and we briefly discuss how to decompose that problem into identifying deterministic LPV-SSAs and identifying autonomous stochastic LPV-SSAs.

Stochastic subspace identification of GBSs

In this section we will consider subspace identification of stationary GBSs of the form (3.2). This section is partially based on [START_REF] Mejari | Consistent and computationally efficient estimation for stochastic LPV statespace models: realization based approach[END_REF]. For the sake of simplicity we consider inputs of the following two forms: Assumption 2. We assume that Q = {1, . . . , D} and µ(t) = (µ 1 (t), . . . , µ D (t)) T and either

• White noise scheduling signal: µ 1 = 1, p(µ 1 ) = 1, E[µ i (t)] = 0, E[µ i (t)µ j (t)] = 0, i, j = 0, E[µ 2 i (t)] = p(µ i ) > 0, i, j = 2, . . . , D, or
• Binary white noise scheduling signal: there exists a process θ(t) which is i.i.d process and which takes its values from a finite set {1, . . . , n p }, and µ q (t) = χ(θ(t) = q) for all q = 1, . . . , n p , t ∈ Z, and p(µ i ) = P(θ(t) = i).

The former case also corresponds to bilinear systems with a white noise input or stochastic LPV-SSAs, for the latter see Subsection 5.2.2 for a detailed explanation, while the latter corresponds to stochastic switched systems. Note that in both cases, {µ q } q∈Q is an admissible input in the sense defined in Section 3.4, Chapter 3.

For GBSs we can formulate an identification problem. Intuitively, what we would like to do is to estimate the matrices of a GBS realization of y based on finite number of samples of y and the input process µ, under the hypothesis that µ satisfies Assumption 2 and y has a realization by a stationary GBS driven by the scheduling signal µ. Problem 5.4 (System identification for GBS). Let µ be a process satisfying Assumption 2 and let y be a process such that y has a realization by a stationary GBS with input process {µ q } q∈Q . Assume that (y, p) ∈ (R p ) N × (R D ) N , is a sample path of (y, µ), i.e., there exists ω ∈ Ω such that for all t ∈ N, y(t) = y(t)(ω), p(t) = µ(t)(ω). Based on the data {p(t), y(t)} N t=0 find matrices

({A N i , K N i , Q N i } n p i=1 ,C, D) such that for all i ∈ I 0,n p , the matrices A N i , K N i , Q N i converge to matrices A i , K i ,C i , Q i respectively, and the matrices C N , D N converge to C, D respectively, as N → ∞, such that G * = (n x , n y , n v , x, v, {µ q } q∈Q , y, {A q , K q } q∈Q ,C, D) is a stationary GBS realization of y and E[v(t)v T (t)µ 2 i (t)] = Q i .
Some remarks are in order. Recall the notion of weak realization from Subsection 3.7.1 of Chapter 3. Intuitively, the problem formulation says that for large enough N, the

({A N q , K N q , Q N q } q∈Q ,C N , D N )
is an approximation of a weak realization of y, i.e., for large enough N, the second-order moments predicted by

({A N q , K N q } q∈Q ,C N , D N )
1. we choose selections α, β such that rank H f y ,α,β = n, where n is the dimension of a minimal stationary GBS realization of y, 2. We approximate the covariances necessary to construct the matrices H f y ,α,β , H q, f y ,α,β , H q, f y ,α , H f y ,β ,q by empirical covariances, and apply the covariance realization algorithm from Subsection 3.6.3 to the thus obtained matrices.

In order to formalize the algorithm, we introduce the following notation: For all w = q 1 q 2 • • • q r ∈ Q + , r > 0, define

p w (t) = p q 1 (t -k + 1)p q 2 (t -k + 2) • • • p q r (t) z w (t) = y(t -|w|)p w (t -1) 1 p(µ w ) (5.16)
and define the empirical covariances

N Λ w = 1 N -|w| N ∑ t=|w| y(t)z w (t) N T y q,q = 1 N + 1 N ∑ t=0 z q (t)z T q (t)
(5.17)

for every w ∈ Q + , q ∈ Q. The resulting algorithm is formalized in Algorithm 8, for the single output case p = 1. Below, we will state statistical consistency of the subspace identification algorithm described in Algorithm 8. 2. The signals y : N → R p and p : N → R D are sample paths of of the processes y and µ respectively such that for all w ∈ Q + , q ∈ Q,

Λ y w = lim L→∞ L Λ w T y q,q = lim L→∞ L T y q,q
(5.18)

where L Λ w , L T y q,q are defined as in (5.17)

Then the result of Algorithm 8 satisfies the following for all q ∈ Q:

Kq = lim M→∞ lim N→∞ N KM q , Qq = lim M→∞ lim N→∞ N hatQ M q , Pq = lim M→∞ lim N→∞ N PM q , Âq = lim N→∞ N Âq , Ĉ = lim N→∞ N Ĉ,
and the GBS G = (n, p, p, x, e, {µ q } q∈Q , y, { Âσ , Kσ } σ , Ĉ, I p ) is a minimal realization of y in forward innovation form, and for all q ∈ Q,

Qq = E[e(t)e T (t)µ 2 q (t)], Pq = E[x(t)x T (t)µ 2 q (t)].

Algorithm 8 Identification of GBSs

Input: Observations sequence {y(t), p(t)} N t=0 , and nice selection (α, β ) of the form (2.19), maximum number of iterations M > 0.

1: Compute approximate covariances N Λ w , N T y q,q are defined as in (5.17), for all q ∈ Q and for every w ∈ Q + , such that w = ivu or w = iv or w = iu or w = ivqu for some words v, u ∈ Q * , i, q ∈ Q, (u, k) ∈ α, (v, l) ∈ β for some k, l ∈ Q, and 2: Construct empirical Hankel matrix N H α,β , N H q,α,β , N H q,α , N H β ,q σ ∈ I 0,n p , by replacing S f y q 1 ,q 2 (v) by N Λ q 2 v in (B.14)-(B.17), i.e., for all i = 1, . . . , n, j = 1, . . . , l,

N H α,β i, j = N Λ σ j v j u i N H q,α,β i, j = N Λ σ j v j qu i , i = 1, . . . , n, j = 1, . . . , l N H α,q i = N Λ qu i , i = 1, . . . , n N H q,β j = N Λ σ j v j j = 1, . . . , l
3: Run Algorithm 13 from Chapter 2 with: N H α,β instead of H f α,β ; N H q,α,β instead of H f q,α,β , N H q,α instead of H f q,α , N H β ,q instead of H f β ,q , q ∈ I 0,n p , and let the LSS returned by Algorithm 13 be ΣT = (n m , {( N Âq , N Bq , N Ĉ | q ∈ Q}).

4: Set N P0 q = 0 and

for i = 1, . . . , M do N Pi+1 q = ∑ q 1 ∈I 0,np µ q N Âq 1 N Pi q 1 ( N Âq 1 ) T + ( N Ki q 1 ) Qi q 1 ( N Ki ) T q 1 N Qi q = p σ N T y σ ,σ -N Ĉ( N P) i q 1 ( N Ĉ) T N Ki q = N Bq √ p σ -N Âq N Pi q ( N Ĉ) T N Qi q -1 5: return ({ N Âq , N KM q , N QM q , N PM q } q∈Q , N Ĉ)
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Remark 5.2 (Algorithm 8). Theorem 5.5 was deliberately formulated in a non statistical language. It can readily be reformulated into the language of statistics as follows. Let us fix selections α, β such that rank H f y ,α,β = n m , where n m is the state-space dimension of a minimal GBS realization of y. Then Algorithm 8 can be viewed as a map E N : {y(t), p(t)} N t=0 → ({ N Âq , N KM q , N QM q } q∈Q , N Ĉ). We can view E N as a series of statistical estimators which estimate the parameters θ = ({A q , K q , Q q } q∈Q ,C, I) of a weak GBS realization of y, which, in turn, determine the second order moments of y. If (y, µ) are jointly ergodic, then Theorem 5.5 says that

lim N→∞ E N (y(t), µ(t)) = θ 0 = ({ Âq , Kq , Qq } q∈I 0,np , Ĉ, I),
where θ 0 is the vector of parameters of a stationary GBS realization of y, i.e., E N is a consistent estimator of a stationary GBS realization of y.

That is, Algorithm 8 is a statistically consistent subspace identification algorithm for GBSs. To the best of our knowledge, Algorithm 8 is the first subspace identification algorithm for GBSs, whose statistical consistency has been proven formally.

Identification of stochastic LPV-SSA with inputs and its relationship with identification of GBSs and of deterministic LPV-SSA

Below we will explain the relationship between identification of stochastic LPV-SSA and that of GBSs explained in Subsection 5.2.1. This section is partially based on [START_REF] Mejari | Realization and identification algorithm for stochastic LPV state-space models with exogenous inputs[END_REF]. As it was pointed out above, a GBS can be viewed as an autonomous stochastic LPV-SSA, i.e., LPV-SSA without control inputs. Below we will discuss the relationship between identifying stochastic LPV-SSAs with control inputs and identifying GBSs. Consider stochastic LPV-SSA is a system of the form

x(t + 1) = n p ∑ i=0 (A i x(t) + B i u(t) + K i v(t))p i (t), y(t) = Cx(t) + Du(t) + Gv(t) (5.19)
where,

A i ∈ R n x ×n x , B i ∈ R n x ×n u , K i ∈ R n x ×n v , i ∈ I 0,n p , C ∈ R n y ×n x and D ∈ R n y ×n u , i ∈ I 0,n p , G ∈ R ny×n v are real constant matrices, v is a white noise process, i.e., E[v(t)v T (s)] = 0, s = t, u(t) is the control input, x(t)
is the state process and y(t) is the output, p(t) = (p 1 (t), . . . , p n p (t)) T , p 0 (t) = 1, is the scheduling signal.

In order to deal with identification of (5.19), it will be useful to think of a stochastic LPV-SSA as the combination of a deterministic component:

x d (t + 1) = n p ∑ i=0 (A d i x d (t) + B d i u(t))p i (t) y d (t) = C d x d (t) + D d u(t) (5.20)
and a stochastic components

x s (t + 1) = n p ∑ i=0 (A s i x s (t) + K s i v(t))p i (t), y s (t) = C s x s (t)+G s v(t)
(5.21) 90
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Clearly, these two views are equivalent: a system of the form (5.19) can be rewritten as (5.20), (5.21) and (5.22) by taking

A s i = A d i = A i , C s i = C d i = C i , B d i = B i , K s i = K i , i ∈ I 0,n p , D d = D, G s = G, . In this case x(t) = x d (t) + x s (t),
and in which case the state and output process satisfy

y(t) = y d (t) + y s (t). (5.22)
That is, the output of a stochastic LPV-SSA is the sum of a deterministic and a stochastic components. The deterministic component is generated by LPV-SSA driven by the control input, while the stochastic component is generated by a LPV-SSA input of which is a noise processes. Intuitively, the deterministic component describes the response of a nominal system to the control input and scheduling signal, while the stochastic component models the model error and measurement uncertainty. Under suitable assumptions the decomposition of y into the sum of y d and y s can be shown to be independent of the choice of the state-space representation (5.19), see [START_REF] Mejari | Realization and identification algorithm for stochastic LPV state-space models with exogenous inputs[END_REF] for more details Conversely, from (5.20), (5.21) and (5.22) we can construct a system of the form (5.19) as follows: and

x(t) = x d (t) x s (t) , A i = A d i 0 0 A s i , B i = B d i 0 , K i = 0 K s i , D = D d , C = C d C s
and the output y of the constructed stochastic LPV-SSA (5.19) will satisfy (5.22).

That is, we can identify a stochastic LPV-SSA (5.19) with a tuple

(Σ d , Σ s , v)
where

Σ d = (P, {A d i , B d i ,C d i , D d i } n p i=0 ), C d 0 = C d , D d 0 = D d , (C d i , D d i ) = (0, 0), i = 1, . . . , n p Σ s = (P, {A s i , K s i ,C s i , G i } n p i=0 ), C s 0 = C s , G 0 = G, (C s i , G i ) = (0, 0), i = 1, . . . , n p
are LPV-SSA, and v is the stochastic noise process. In the sequel, we will identify a LPV-SSA

(P, { Ãi , Bi , Ci , Di } n p i=0 )
for which the matrices Ci , Di are zero for all i = 1, . . . , n p and C0 = C, D0 = D0 with the tuple

(P, { Ãi , Bi } n p i=0 , C, D).
In particular, since the matrices C d i ,D d i , G i ,C i s are zero for i = 1, . . . , n p , we will use the notation

Σ d = (P, {A d i , B d i } n p i=0 ,C d , D d ) Σ s = (P, {A s i , K s i } n p i=0 ,C s , G)
and we will refer to Σ d as the deterministic component, and Σ s as the stochastic component of the stochastic LPV-SSA.

The correspondence above allows us to specify what we mean by the input-output behavior of the stochastic LPV-SSA (5.19). In turn, the latter is important in order to formulate the system identification problem.

More precisely, we will proceed as follows: we will define the input-output behavior of (5.19) via the inputoutput functions of the deterministic LPV-SSA Σ s and Σ d defined above. Note that we could identify the inputoutput behavior of a deterministic LPV-SSA with the input-output map generated by the zero initial state, and we could define all the signals on the positive time axis. However, if we assume the presence of a stochastic noise, then there is no reason to assume that the noise has ever been absent in the past. On the contrary, the natural assumption is that the noise has always been present, hence the state and output at the beginning of observations represent some sort of steady state behavior which arises from feeding in the noise in the infinite past. For linear time-invariant systems the situation is simillar, and the classical solution is to assume that the state and output signals involved are defined for negative time instances too, and to assume that the system is stable. In this case, we can define the behavior of the system started in the infinite past as a limit of behaviors starting from some finite time instance t 0 in the past, as t 0 → +∞. In addition, it solves the problem of possibly non-zero initial state, as the effect of any initial state is absent in this case. We will take a similar approach for LPV systems.

To this end, we introduce the following definitions. We will say that a LPV-SSA

(P, { Ãi , Bi , Ci , Di } n p i=0 ) is {p q } n p
q=1 -stable, if the matrix

(n p + 1)( Ãs 0 ⊗ Ãs 0 + ( n p ∑ q=1 p 2 q Ãs q ⊗ Ãs q )) is stable. Let us call a tuple (Σ s , v) stationary stochastic autonomous LPV-SSA, if Σ s is a LPV-SSA such that • Σ s is {p q } D q=1 -stable, and • P = [-p 1 , p 1 ] × • • • × [-p n p , p n p ], and
• v is a white noise process taking values in the space R n v , i.e., v is zero mean square integrable wide-sense stationary with

E[v(s)v T (t)] = 0, s = t and E[v(t)v T (t)] = Q, s,t ∈ Z.
Let us call the triple (Σ d , Σ s , v) a stationary stochastic LPV-SSA, if (Σ s , v) is a stationary stochastic autonomous LPV-SSA. We will first define the input-output behavior of stationary stochastic autonomous LPV-SSA, and then we will use it to define the input-output behavior of stationary stochastic LPV-SSAs.

To third end, for a set X, let us denote by X Z the set of all functions Z → X. Then for any p ∈ P Z , if p i (t) ∈ [-p i , p i ], i = 1, . . . , n p , and v is a white noise process, then similarly to the proof of [START_REF] Petreczky | Realization theory for a class of stochastic bilinear systems[END_REF]Lemma 3] it can be shown that for all t ∈ Z the limit

y s (t) = lim t 0 →∞ Y Σ s ,0 (σ t p, σ t v)(t 0 + t) x s (t) = lim t 0 →∞ X Σ s ,0 (σ t p, σ t v)(t 0 + t)
converges in mean square sense, where Y Σ s ,0 and Y Σ s ,0 are the input-output and input-to-state maps of Σ s induced by the zero initial state, as defined in Chapter 2, and σ t p(s) = p(s + t), σ t v(s + t) 1 .

Let us denote by Y the set of all random variables with values in R p and assume that

P = [-p 1 , p 1 ] × • • • × [-p n p , p n p ].
Then for a stationary autonomous LPV-SSA (Σ s , v), we define the map

Y Σ s ,v : P Z → Y Z
1 To be very precise, note that σ t p : N s → p(s + t) ∈ P and we can define the map σ t v : Ω ω → (N s → v(s + t)(ω)) ∈ (R nv ) N and hence Y Σs,0 (σ t p, σ t v)(t 0 + t) and X Σs,0 (σ t p, σ t v)(t 0 + t) can naturally be identified with the random variables Ω ω → Y Σs,0 (σ t p, σ t v(ω))(t 0 + t) and Ω ω → X Σs,0 (σ t p, σ t v(ω))(t 0 + t) respectively. [START_REF] Frazho | On stochastic bilinear systems[END_REF] 
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Y Σ s ,v (p)(t) = lim t 0 →∞ Y Σ s ,0 (σ t p, σ t v)(t 0 + t).
We will call the map Y Σ s ,v the input-output map of (Σ s , v). We will say that (Σ s , v) is a realization of a function

F s : P Z → Y Z , if F s = Y Σ s ,v .
Let (Σ d , Σ s , v) be a stationary stochastic LPV-SSA. Then we define its input-output map as the map

Y Σ d ,Σ s ,v : U × P Z → Y Z such that Y Σ d ,Σ s ,v (u, p)(t) = Y Σ d (u, p| N )(t) + Y Σ s ,v (p)(t) t ≥ 0 Y Σ s ,v (p)(t) t < 0
where p| N denotes the restriction of p to N, i.e., p| N : N s → p(s).

It is then easy to see that for the system (5.19), if x d (0) = 0 and u(t) = 0 for t < 0, then

y(t) = Y Σ d ,Σ s ,v (u, p)(t),
for all t > 0.

That is, for negative times the output of a stochastic LPV-SSA is its steady state response due to the presence of noise, while for nonnegative time its output is the sum of the response to control inputs and the response to the noise.

We will say that

(Σ d , Σ s , v) is a realization of a function F : U × P Z → Y Z , if Y Σ d ,Σ s ,v = F .
Notice that F can be realized by a stochastic LPV system, if and only if we can decompose it as follows:

F (u, p) = F d (u, p| N ) + F s (p) (5.23)
such that F d is an input-output map of a LPV-SSA and F s is the input-output map of an autonomous stochastic LPV-SSA. In particular, F (0, p)(t) = F s (p)(t) and F d (u, p| N )(t) = F (u, p)(t) -F (0, p)(t) for all t ∈ N.

The idea behind this definition is as follows: Y Σ d ,Σ s ,v,µ,u = F captures the output response of (5.19) to any scheduling signal and control input, without assuming that latter signals being stochastic. By saying that we would like to find approximate realizations of F we capture the intuition that the estimated model should approximate the output response of the underlying system to any scheduling signal and control input, and not only to the signal µ and u used for system identification.

Assume now that we would like to estimate a stationary stochastic LPV-SSA realization (Σ d , Σ s , v) of F from data collected during system identification experiments. For the sake of simplicity assume that we can make two system identification experiments:

• one with zero control inputs, and

• one with a nonzero control input. and that the scheduling signal in both experiments is the same and it is a sample of a stochastic process. Moreover, we assume that the data is generated by a stationary stochastic LPV-SSA realization of F . Assumption 3 (Identification experiment stochastic LPV-SSA). Assume that F has a realization by a stochastic LPV-SSA realization (Σ d , Σ s , v) and assume there exist a stochastic process µ defined on the same oe underlying probability space (Ω, P, F ) as the noise process v, such that the following holds:

• µ satisfies the conditions of Assumptions 2, and

• (Σ s , v
) is a stationary autonomous stochastic LPV-SSA, and
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• Σ s is a minimal LPV-SSA, G = I n y , and

• ∑ q∈Q (p(µ q )) 2 (A s q -K s q C s ) ⊗ (A s q -K s q C s
) is a stable matrix, i.e. all its eigenvalues are inside the unit disk, and

• µ(t) ∈ P, t ∈ Z, and • v is an ZMWSSI processes w.r.t. {µ q } q∈Q , see Chapter 3 for the definition of ZMWSSI processes.

Furthermore, assume that we observe the signals

p ∈ P Z , u ∈ U , y, y s ∈ Y (5.24)
which are samples of the stochastic processes µ, u, y and y s respectively, i.e. for some ω ∈ Ω,

p(t) = µ(t)(ω), u(t) = u(t)(ω), y(t) = y(t)(ω), y s (t) = y s (t)(ω) (5.25)
where for all t ∈ Z,

y s (t) = F (0, µ)(t) y(t) = F (u, µ)(t) (5.26)
2 That is, ŷ is a sample of F (0, µ) and y is a sample of F (u, µ)(t) and p is the sample of µ, corresponding to the same random event.

Problem 5.5 (Identification problem). If Assumption 3 holds, given any N, compute from the dataset

{y(t), y s (t), p(t), u(t)} N t=1 the matrices { Âd,N i , Âs,N i , Bd,N i , Ks,N i , Q N i } n p i=0
, Ĉd,N i , Ĉs,N i , DN , ĜN such that the limits below exist, i=0 , Ĉs,N , ĜN from {y s (t), p(t)} N t=0 such that the limits (5.27) exist and for Σs from (5.29) and for some noise process v for which (5.31), ( Σs , v) is a stationary autonomous stochastic LPV-SSA which is a realization of F s .

( Âs i , Ks i , Q i ) = lim N→∞ ( Âs,N i , Ks,N i , Q N i ), i ∈ I 0,n p , ( Ĉs , Ĝ) = lim N→∞ ( Ĉs,N , ĜN ) (5.27) ( Âd i , Bd i ) = lim N→∞ ( Âd,N i , Bd,N i ) i ∈ I 0,
E[v(t)v(t)µ 2 (t)] = Q i , i ∈ I 0,n p . ( 5 
Solving Problem 5.6 amounts to solving Problem 5.2 and can be done using the methods discussed in Subsection 5.1.1. We will explain how to reduce Problem 5.7 to solving the identification Problem 5.4 for GBSs. To this end, notice that if the stochastic autonomous LPV-SSA (Σ s , v) satisfies Assumption 3, then we can define GBS

G Σ s ,v = (n x , n y , n v , Q, x s , v, {µ q } q∈Q , y s ,C s , D s , {A s i , K s i } D i=1 )
where Q = {0, . . . , D}, where

y s (t) = Y Σ,v (µ)(t) = F s (µ)(t) = F (0, µ)(t) and x s (t) = X Σ,v (µ)(t)
, and this GBS will be stationary. That is, with assumptions of Assumption 3, the stationary GBS G Σ s ,v is a realization of (y s , µ).

Recall from Subsection 3.7.2 the correspondence between LPV-SSAs and stationary GBSs. It then follows that Σ s is the LPV-SSA corresponding to G Σ s ,v . Recall from Assumption 3 that Σ s is a minimal LPV-SSA and it satisfies the conditions above and the condition that G = I n y and ∑ q∈Q (p(µ q )) 2 (A s q -K s q C s ) ⊗ (A s q -K s q C s ) is stable, As it was noted in Subsection 3.7.2, then G Σ s ,v is a minimal realization of y s in forward innovation form, and hence v is the innovation process of y s in the sense defined in Chapter 3. Hence, any minimal stationary GBS realization G of y s will yield an LPV-SSA Σ G such that Σ G is isomorphic to Σ s . In particular, (Σ G , v) will be a stochastic autonomous LPV-SSA which is a realization of

Y Σ s ,v = F s . Assume now that the matrices { Âs,N i , Ks,N i , Q N i } n p i=0
, Ĉs,N , ĜN computed from {y s (t), p(t)} N t=0 are such that G N = I n y and the limits (5.27) exist and Ĝ = (n, n y , n y , Q, x, v, y s , Ĉs , I n y , { Âs q , Ks q } q∈Q ), is a realization of y s in forward innovation form and v is the innovation process of y s and it satisfies (5.31). Consider Σs from (5.29). Then Σs is the LPV-SSA associated with Ĝ , and by the discussion above ( Σs , v) is a stationary autonomous stochastic LPV-SSA which is a realization of F s . That is, a solution to Problem 5.4 gives rise to a solution of Problem 5.7.

To sum up, in order to solve Problem 5.5, it is sufficient to 1. solve Problem 5.2 for data {u(t), p(t), y(t)y s (t)} N t=0 using the methods discussed in Subsection 5.1.1.

2. solve Problem 5.4 for data {p(t), y s (t)} N t=0 using the methods discussed in Subsection 5.2.1.

In other words, under some mild assumptions, the problem of identifying a stochastic autonomous LPV-SSA can be reduced to the problem of identifying a stationary GBS. The most important of these assumptions is that the observed scheduling signal behaves as a sample path of a stochastic process. In fact, even this assumption could be further weakened by requiring that the sample covariances constructed using the observed scheduling signal converge to covariances of some stochastic process, [START_REF] Mejari | Realization and identification algorithm for stochastic LPV state-space models with exogenous inputs[END_REF]. We can view these assumptions as persistence of excitation assumptions for the scheduling signal. In particular, when applied to stochastic LPV-SSAs with inputs, this assumption does not mean that the scheduling signal of the estimated model is assumed to be stochastic. Hence, the usual techniques of robust control still apply. Finally, if the scheduling signal is an external input (this might be the case for switched systems, for example), then we can actually generate scheduling signals as sample paths of suitable stochastic processes. The only slight issue is that the thus generated signals are applied starting from a certain initial time instance, not from -∞. In practice, this is not an issue, as it is sufficient to run the system long enough with the generated scheduling signal.

We note that in the discussion above we assumed that two distinct identification experiments can be performed: one with zero control input, and another one with a sufficiently rich non-zero control input. In fact, the principle that the identification of a stochastic LPV-SSA can be reduced to the identification of the deterministic and stochastic components can be extended to the case of one single control experiment, see [START_REF] Mejari | Realization and identification algorithm for stochastic LPV state-space models with exogenous inputs[END_REF] for details.

Finally, the discussion above sheds some more light on the notion of stochastic LPV-SSAs in innovation form: namely, if the stochastic component of an LPV-SSA satisfies the conditions which guarantee that the corresponding stationary GBS is a minimal one in forward innovation form, then from the point of view of identification it behaves similarly to stochastic linear time-invariant state-space representations in forward innovation form. This suggests that we define the innovation form of an LPV-SSA by requiring that the stochastic component should be such that the corresponding GBS is in forward innovation form. The implications of such a definition remain a topic of future research.

Role of realization theory

We could see that the covariance realization algorithm from Subsection 3.6.3 can be used to derive a subspace identification algorithm GBSs and stochastic LPV-SSAs, and to show that the derived algorithm is a statistically consistent estimator. This is not the only use of realization theory. Another consequence of realization theory that it provides a mathematical formalization of the concept of innovation representation for GBS and for stochastic LPV-SSAs. This also justifies and formalizes in a rigorous manner the widespread assumption made in LPV subspace identification literature that the generator of the output is in innovation form [START_REF] Van Wingerden | Subspace identification of Bilinear and LPV systems for openand closed-loop data[END_REF][START_REF] Santos | Identification of bilinear systems with white noise inputs: An iterative deterministic-stochastic subspace approach[END_REF][START_REF] Favoreel | Subspace identification of bilinear systems subject to white inputs[END_REF]. More generally, it helps to propose a coherent formalization of the identification problem for LPV systems and find assumptions which are relevant for both control and for system identification. For example, it allows to reduce the problem of identification of stochastic LPV-SSAs to the problem of identification of GBSs, i.e., to relate the case when the scheduling signal is stochastic with the case of deterministic scheduling signals. This work is not yet finished, and a lot more remains to be done.

Conclusions and further work

In this chapter I have presented a selection of my contributions to identification of LPV systems. Namely, I presented selected results from my work on identifiability analysis of deterministic LPV-SSAs and on subspace identification of deterministic LPV-SSAs and of autonomous stochastic LPV-SSAs. These contributions relied on realization theory of LPV and stochastic generalized bilinear systems (GBS). More precisely, realization theory of deterministic LPV-SSAs was shown to be useful for identifiability analysis and deterministic subspace algorithms which are provenly consistent. Realization theory of GBSs was shown to be useful for statistically consistent subspace identification algorithms for GBSs and for stochastic LPV-SSAs. There are other potential applications of realization theory to system identification. For example, in [START_REF] Petreczky | Metrics and topology for nonlinear and hybrid systems[END_REF][START_REF] Petreczky | Spaces of nonlinear and hybrid systems representable by recognizable formal power series[END_REF] the notion of distance between linear switched systems was investigated and it was shown that the space of minimal linear switched systems forms a smooth (analytic, Nash) manifold. Moreover, explicit expression for the coordinate charts were presented and it was shown that these coordinate charts also represent identifiable canonical forms. In particular, it shows that there are no global identifiable parameterizations for linear switched systems, even in the SISO case. These results relied heavily on realization theory, in particular, on realization algorithms using selections. In fact, coordinate charts of the manifold of minimal state-space representations correspond to different choices of selections. Another application of realization theory are conditions for persistence of excitation of linear switched systems [START_REF] Petreczky | On the notion of persistence of excitation for linear switched systems[END_REF], and conditions on minimality and identifiability of switched autoregressive models [START_REF] Petreczky | Minimality and identifiability of sarx systems[END_REF][START_REF] Petreczky | Minimality and identifiability of sarx systems[END_REF].

Chapter 6

Reverse engineering of network structure for stochastic linear and bilinear systems

Introduction

In this chapter we are interested in the problem of reverse engineering of the network graph of a stochastic dynamical system. By reverse engineering of the network graph we mean finding out the network graph of a system based on the observed output of the system. This problem arises in several domains such as systems biology [START_REF] Nordling | On sparsity as a criterion in reconstructing biochemical networks[END_REF][START_REF] Julius | Genetic network identification using convex programming[END_REF][START_REF] Kang | Discriminating direct and indirect connectivities in biological networks[END_REF][START_REF] Valdes-Sosa | Effective connectivity: Influence, causality and biophysical modeling[END_REF], neuroscience [START_REF] Roebroeck | Causal time series analysis of functional magnetic resonance imaging data[END_REF], smart grids [48,[START_REF] Zhang | Multi-agent system based integrated solution for topology identification and state estimation[END_REF], etc.

To solve this problem, we first need to understand when the observed behavior can be realized by a system with a specific network graph. More precisely, we would like to decide, based on observed data, if the observed behavior can be realized by a system with a specific network graph. To this end, we need to:

• propose a formal mathematical definition of the concept of network graph, and

• relate this definition to the statistical properties of the observed data.

Informally, by the network graph of a system we mean a directed graph, whose nodes correspond to subsystems, such that each subsystem generates a component of the output process. There is an edge from one node to the other, if the subsystem corresponding to the source node sends information to the subsystem corresponding to the target node.

In this chapter, we will consider two types of dynamical systems: stochastic linear state-space representations without inputs (abbreviated by sLTI-SS) and generalized bilinear systems (abbreviated as GBSs) from Chapter 3.

For these systems network graphs are defined as follows. Let y be an output process of a sLTI-SS or of a GBS and denote the system that represents y by S . Assume that y is partitioned such that y = y T 1 , . . . , y T n T and consider the subsystems S i , i = 1, . . . , n of the system S such that S i generates the component y i . Then, the network graph has nodes {1, . . . , n} and there is an edge from node i to node j, if the noise and the state process of S i serve as an input of S j . In fact, for the systems at hand, an edge (i, j) in the network graph corresponds to non-zero blocks in certain matrix parameters of the system. Similarly, the lack of this edge corresponds to zero blocks in those matrices. Intuitively, an edge in the network graph means that information can flow from the subsystem corresponding to a source node to the subsystem corresponding to the target node, but there is no information flowing the other way around. Figure 6.1 illustrates the network graph of a sLTI-SS representation having the three-node star graph as its network graph. This approach offers an intuitive mechanistic explanation of how one component of the output process influences the other. However, the same output process can be generated by systems with different network graphs. As a result, the presence of an interaction between two

S 3 x 3 (t + 1) = α 33 x 3 (t) + β 33 e 3 (t) y 3 (t) = γ 33 x 3 (t) + e 3 (t) S 1 x 1 (t + 1) = ∑ i=1,3 α 1i x i (t) + β 1i e i (t) y 1 (t) = ∑ i=1,3 γ 1i x i (t) + e 1 (t) S 2 x 2 (t + 1) = ∑ i=2,3 α 2i x i (t) + β 2i e i (t) y 2 (t) = ∑ i=2,3 γ 2i x i (t) + e 2 (t)
x 3 , e 3 x 3 , e 3 T with the three-node star graph as its network graph: The state and noise process of subsystem S 3 serves as an input to subsystems S 1 and S 2 .

output components depends on the exact dynamical system representing the output process. For this reason, it is not a-priori clear how to relate statistical properties of the outputs to the existence of a sLTI-SS or GBSs.

In order to translate existence of a state-space representation with a certain network graph to statistical properties of outputs, we use Granger causality [START_REF] Granger | Economic processes involving feedback[END_REF]. Intuitively, y 1 Granger causes y 2 , if the best linear predictions of y 2 based on the past values of y 1 and y 2 are better than those only based on the past values of y 2 . More generally, consider an output process y = y T 1 , . . . , y T n T of a dynamical system. We consider a graph nodes of which correspond to the components y i and there is no edge from the node labeled by y i to the node labeled by y j , if y i does not Granger-cause y j in a suitable sense (conditional Granger-causality, GB-Granger causality, etc.). We will try to relate this graph with the network graph of a suitable state-space representation. Conditional Granger non-causality is a general form of Granger non-causality: Informally, y i conditionally does not Granger cause y j with respect to z if the knowledge of the past values of y i , y j and z does not yield a more accurate prediction of the future values of y j than the knowledge of the past values of only y j and z. In this case, when defining the graph above, we will require that there is no edged from the node y i to the node y j , if y i does not conditional Granger-cause y j with respect to a suitably defined variable z, components of which are chosen from the output components y k , k = i, k = j.

The notion of GB-Granger causality will be used only for outputs generated by GBSs driven by some input process {µ q } q∈Q . Intuitively, y 1 does not GB-Granger cause y 2 , if the knowledge of the products of past value of y 1 and y 2 with the past vales of {µ q } q∈Q does not yield a more accurate prediction of future values y 2 than the knowledge of the products of past values of y 2 with the past value of {µ q } q∈Q .

Relationship between the two approaches: main results of the chapter In this chapter we relate Grangercausality with existence of a state-space representations with a certain network graph. The chapter is based on the thesis [START_REF] Jozsa | Relationship between Granger non-causality and network graphs of state-space representations[END_REF], and the publications [START_REF] Jozsa | Relationship between Granger non-causality and network graph of state-space representations[END_REF][START_REF] Jozsa | Causality and network graph in general bilinear state-space representations[END_REF][START_REF] Jozsa | Causality based graph structure of stochastic linear statespace representations[END_REF][START_REF] Jozsa | Relationship between causality of stochastic processes and zero blocks of their joint innovation transfer matrices[END_REF].

In particular,we show that a process y = y T 1 , y T

2

T has a sLTI-SS realization in the so-called block triangular form if and only if y 1 does not Granger cause y 2 . Informally, a sLTI-SS representation in block triangular form is a system whose network graph has two nodes, corresponding to two subsystems generating y 1 and y 2 , and an edge from the node associated with y 2 to the node associated with y 1 . We can also give conditions for the minimality of the representations and present algorithms on the construction of the representations. This result can be extended to more general graphs with 3 and more nodes [START_REF] Jozsa | Relationship between Granger non-causality and network graph of state-space representations[END_REF][START_REF] Jozsa | Causality based graph structure of stochastic linear statespace representations[END_REF]. More precisely, let y = y T 1 , y T 2 . . . , y T n T and let us define the graph G y associated with y as follows. We associate each component y i of y with the node i of G y and there is no edge from node i to node j, if y i does not conditionally Granger cause y j with respect to the collection of the components of y that correspond to the parent nodes of i. We then show 6.2. GRANGER CAUSALITY: LINEAR CASE

S 2 S 1 S {µ q } q∈Q y = y 1 y 2 {µ q } q ∈Q y 2 {µ q } q∈Q y 1        Figure 6
.2: Illustration of the results: Cascade interconnection structure in a GBS S with input {µ q } q∈Q and output y decomposed into subsystems S 1 and S 2 in the presence of GB-Granger non-causality from y 1 to y 2 with respect to {µ q } q∈Q that there exist an LTI-SS representation of y whose network graph equals G y , and conversely, if there exists a LTI-SS representation of y with a network graph G , then G coincides with G y .

The relationship described above for graphs with 2 nodes was extended to GBSs in [START_REF] Jozsa | Causality and network graph in general bilinear state-space representations[END_REF]. More precisely, it can be shown that a process y = y T 1 , y T

2

T admits a specific GBS realization in block triangular form if and only if y 1 does not GB-Granger cause y 2 . The network graph of a GBS realization of y in block triangular form has two nodes, corresponding to two subsystems generating y 1 and y 2 , and an edge from the node associated with y 2 to the node associated with y 1 , see Figure 6.2. The results of this chapter partially settle a long dispute in neuroscience [START_REF] Roebroeck | Causal time series analysis of functional magnetic resonance imaging data[END_REF][START_REF] Valdes-Sosa | Effective connectivity: Influence, causality and biophysical modeling[END_REF][START_REF] Friston | Dynamic causal modeling[END_REF][START_REF] Goebel | Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping[END_REF]. There, the purpose is to detect and model interactions between brain regions using e.g., fMRI, EEG, MEG data. For this purpose, both statistical method (Granger causality) based methods [START_REF] Goebel | Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping[END_REF] and state-space based methods [START_REF] Friston | Dynamic causal modeling[END_REF] were used. In the former case, the presence of an interaction was identified with the presence of a statistical relationship (Granger causality) between the outputs associated with various brain regions. In the latter case, the presence of an interaction was interpreted as the presence of an edge in the network graph of a state-space representation, whose parameters were identified from data. However, the formal relationship between these methods was not always clear. This has lead to a lively debate regarding the advantages/disadvantages of both methods [START_REF] Valdes-Sosa | Effective connectivity: Influence, causality and biophysical modeling[END_REF][START_REF] David | fMRI connectivity, meaning and empiricism: Comments on: Roebroeck et al. the identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution[END_REF][START_REF] Roebroeck | Reply to friston and david: After comments on: The identification of interacting networks in the brain using fmri: Model selection, causality and deconvolution[END_REF]. The results of this chapter indicate that the two approaches are equivalent under some assumptions.

Besides the concept of network graph introduced in this chapter, there are several other notions for describing the structure of a system or the network of subsystems in a system. Examples of such notions are: feedback modeling [START_REF] Caines | Feedback between stationary stochastic processes[END_REF][START_REF] Caines | Weak and strong feedback free processes[END_REF][START_REF] Gevers | On jointly stationary feedback-free stochastic processes[END_REF][START_REF] Hsiao | Autoregressive modelling and causal ordering of econometric variables[END_REF], dynamical structure function [START_REF] Gonc ¸alves | Dynamical structure functions for the reverse engineering of lti networks[END_REF][START_REF] Howes | Dynamical structure analysis of sparsity and minimality heuristics for reconstruction of biochemical networks[END_REF][START_REF] Yuan | On minimal realisations of dynamical structure functions[END_REF], dynamic causal modeling [START_REF] Friston | Dynamic causal modeling[END_REF][START_REF] Havlicek | Physiologically informed dynamic causal modeling of fMRI data[END_REF][START_REF] Penny | Comparing dynamic causal models[END_REF], and causality graphs [START_REF] Eichler | Granger causality and path diagrams for multivariate time series[END_REF][START_REF] Eichler | Graphical modelling of multivariate time series[END_REF]. Also, besides Granger and GB-Granger causality, there are several examples for statistical notions that have essential role to understand the relation between stochastic processes. We can mention here conditional orthogonality [START_REF] Caines | Conditional orthogonality and conditional stochastic realization[END_REF][START_REF] Caines | Bayes nets of time series: Stochastic realizations and projections[END_REF], transfer entropy [20] and directional mutual information [START_REF] Massey | Causality, feedback and directed information[END_REF][START_REF] Kramer | Directed information for channels with feedback[END_REF]. For a detailed discussion on the relationship between the results of this chapter and the cited papers see [START_REF] Jozsa | Relationship between Granger non-causality and network graphs of state-space representations[END_REF]. We would also like to mention [START_REF] Kempker | Coordination Control of Linear Systems[END_REF][START_REF] Kempker | Construction and minimality of coordinated linear systems[END_REF][START_REF] Ran | Coordinated linear systems[END_REF][START_REF] Pambakian | LQG coordination control[END_REF] on coordinated LTI-SSs, which served as inspiration for certain classes of sLTI-SSs studied in this chapter.

Finally, there is a large body of literature on identifying transfer functions which are interconnected according to some graph [START_REF] Weerts | Identifiability and Identification Methods for Dynamic Networks[END_REF][START_REF] Dankers | System Identification in Dynamic Networks[END_REF][START_REF] Weerts | Identifiability of linear dynamic networks[END_REF][START_REF] Van Den Hof | Identification of dynamic models in complex networks with prediction error methods-basic methods for consistent module estimates[END_REF]50] and where all the signals exchanged by the transfer functions can be observed. This latter problem is quite different from the problem considered in this chapter.

Outline: In Section 6.2 we present an overview of main results on the relationship between Granger-causality and network structure of sLTI-SSs. In Section 6.3 we present an overview of the results relating GB-Granger causality with the network structure of GBSs.

Granger causality: linear case

We will present an overview of the main result relating the graph defined by Granger-causality relationships with the network graph of sLTI-SSs. We start with the case of two processes in Subsection 6.2.2. Then in Subsection 6.2.3 we continue with the case of arbitrary number of processes network graph of which is start shaped. The most general case is treated in Subsection 6.2.4. We conclude by discussing briefly in Subsection 6.2.5 the application of the results to reverse engineering of network graphs. Before presenting the main results, in Subsection 6.2.1 we will introduce the necessary notation and terminology and briefly recall the relevant results from realization theory of sLTI-SS.

Technical preliminaries: linear stochastic realization theory

The notation and presentation of this section follows those of [START_REF] Jozsa | Relationship between Granger non-causality and network graph of state-space representations[END_REF].

The discrete-time axis is the set of integers Z. The random variable of a process z at time t is denoted by z(t). If z(t) is k-dimensional (for all t ∈ Z), then we write z ∈ R k and we call k = dim(z) the dimension of z. The n × n identity matrix is denoted by I n or by I when its dimension is clear from the context. We denote by H the Hilbert space of zero-mean square-integrable random variables, where the inner product between two random variables y, z is the covariance matrix E[yz T ]. The Hilbert space generated by a set U ⊂ H is the smallest (w.r.t. set inclusion) closed subspace of H which contains U. Consider a zero-mean square-integrable process z ∈ R k . Then H z t-, H z t+ , H z t , t ∈ Z are the Hilbert spaces generated by the sets

{ T z(s) | s ∈ Z, s < t, ∈ R k }, { T z(s) | s ∈ Z, s ≥ t, ∈ R k }, and { T z(t)| ∈ R k }, respectively. If z 1 ,. . ., z n are vector valued processes, then z = z T 1 ,. . ., z T n T denotes the process defined by z(t) = z T 1 (t), . . . , z T n (t) T , t ∈ Z.
If z(t) ∈ H is a random variable and U is a closed subspace in H , then we denote by E l [z(t) |U] the orthogonal projection of z(t) onto U. The orthogonal projection onto U of a random variable

z(t) = [z 1 (t), . . . , z k (t)] T taking values in R k is denoted by E l [z(t)|U] and defined element-wise as E l [z(t)|U] := [ẑ 1 (t), . . . , ẑk (t)] T , where ẑi (t) = E l [z i (t)|U], i = 1, . . . , k. That is, E l [z(t)|U]
is the random variable with values in R k obtained by projecting the coordinates of z(t) onto U. Accordingly, the orthogonality of a multidimensional random variable to a closed subspace in H is meant element-wise. The orthogonal projection of a closed subspace U ⊆ H onto a closed subspace V ⊆ H is written by E l [U|V ] := {E l [u|V ], u ∈ U}. Note that for jointly Gaussian processes y and z the orthogonal projection E l [y(t)|H z t ] is equivalent with the conditional expectation of y(t) given z(t). A stochastic process is called zero-mean square-integrable with rational spectrum (abbreviated by ZMSIR) if it is weakly-stationary, square-integrable, zero-mean, full rank, purely non-deterministic, and its spectral density is a proper rational function.

A stochastic stochastic time-invariant linear state-space representation) (sLTI-SS for short) is a stochastic dynamical system of the form

x(t + 1) = Ax(t) + Bv(t) ŷ(t) = Cx(t) + Dv(t) (6.1) 
where

A ∈ R n×n , B ∈ R n×m ,C ∈ R p×n , D ∈ R p×m for n ≥ 0, m, p > 0 and x ∈ R n , y ∈ R p , v ∈ R m are ZM- SIR processes.
The processes x, y and v are called state, output and noise process, respectively. Furthermore, we require that A is stable (all its eigenvalues are inside the open unit circle) and that for any

t, k ∈ Z, k ≥ 0, E[v(t)v T (t -k-1)] = 0, E[v(t)x T (t -k)] = 0, i.e., v (t 
) is white noise and uncorrelated with x(tk). In (6.1) the state process x is uniquely determined by the noise process v and the system matrices A, B,C, D so that

x(t)=∑ ∞ k=0 A k Bv(t-k)
, where the convergence of the infinite sum is understood in the mean square sense. Hence, an sLTI-SS of the form (6.1) will be identified with the tuple (A, B,C, D, v). Following the classical terminology, we call the dimension of the state process the dimension of (6.1). We will say that the sLTI-SS of the form (6.1) is a realization of a process y, if ŷ = y, if the output process of the sLTI-SS equals y. A sLTI-SS realization of y is called minimal realization of y, if it has minimal dimension among all sLTI-SSs which are realizations of y.

sLTI-SS realizations of a given process y are strongly related to LTI-SS realizations of the covariance sequence

{Λ y k := E[y(t + k)y T (t)]} ∞ k=0 ,
see [START_REF] Lindquist | Linear Stochastic Systems: A Geometric Approach to Modeling, Estimation and Identification[END_REF]Section 6.2]. Below we briefly sketch this relationship, as it plays an important role in deriving the AND BILINEAR SYSTEMS Algorithm 10 Minimal Kalman representation in causal block triangular form based on output covariances

Input {Λ y k := E[y(t + k)y T (t)]} 2N k=0 : Covariance sequence of y = y T 1 , y T 2 T
Output {A, K,C}: System matrices of (6.8)

Step 1 Apply Algorithm 9 with input {Λ y k } 2N k=0 and denote its output by { Â, K, Ĉ}.

Step 2 Let Ĉ = ĈT 1 ĈT 2
T be such that Ĉi ∈ R r i ×n . Calculate a non-singular matrix T such that

T ÂT -1 = A 11 A 12 0 A 22 , Ĉ2 T -1 = 0 C 22 , (6.9) 
where

(A 22 ,C 22 ) is observable. Step 3 Set A := T ÂT -1 , K := T K, C := ĈT -1 . Remark 6.2 (Correctness of Algorithm 10). Consider a ZMSIR process y = [y T 1 , y T 2 ] T with covariance sequence {Λ y k } ∞ k=0 .
Let e be the innovation process of y and N be any number larger than or equal to the dimension of a minimal sLTI-SS realization of y. If y satisfies condition 1 of Theorem 6.1 and {A, K,C} is the output of Algorithm 10 with input {Λ} 2N k=0 , then (A, K,C, I, e) is a minimal sLTI-SS realization of y in causal block triangular form.

Conditional Granger causality and sLTI-SS in coordinated form

The result above can be generalized to more than two output processes. Let us start by presenting the generalization to the case when the network graph is star like Figure 6.3.

n 1 2 • • • n -1 Figure 6.3: Start-like network graph
To this end, in the sequel, we assume that y = [y T 1 , . . . , y T n ] T is a ZMSIR process, where n ≥ 2, y i ∈ R r i , and r i > 0 for i = 1, . . . , n. We introduce following definition, which describes a subset of those sLTI-SSs, network graph of which is as in Figure 6.3. Definition 6.3. A sLTI-SS (A, K,C, I, e = [e T 1 , . . . , e T n ] T , y) realization of y, where e i ∈ R r i , i = 1, . . . , n, is called a 6.2. GRANGER CAUSALITY: LINEAR CASE sLTI-SS in coordinated form, if e is the innovation process of y, and

A =        A 11 0 • • • 0 A 1n 0 A 22 • • • 0 A 2n . . . . . . . . . . . . . . . 0 0 • • • A (n-1)(n-1) A (n-1)n 0 0 • • • 0 A nn        K =        K 11 0 • • • 0 K 1n 0 K 22 • • • 0 K 2n . . . . . . . . . . . . . . . 0 0 • • • K (n-1)(n-1) K (n-1)n 0 0 • • • 0 K nn        C =        C 11 0 • • • 0 C 1n 0 C 22 • • • 0 C 2n . . . . . . . . . . . . . . . 0 0 • • • C (n-1)(n-1) C (n-1)n 0 0 • • • 0 C nn       
(6.10) where A i j ∈ R p i ×p j , K i j ∈ R p i ×r j ,C i j ∈ R r i ×p j and p i ≥ 0 for i, j = 1, . . . , n. If, in addition, for each i = 1, . . . , n -1

A ii A in 0 A nn , K ii K in 0 K nn , C ii C in 0 C nn , I r i +r n , e i e n (6.11) 
is a minimal sLTI-SS realization of [y T i , y T n ] T in causal block triangular form, then (A, K,C, I, e, y) is called a sLTI-SS in causal coordinated form.

If n = 2, then Definition 6.3 coincides with Definition 6.2 of sLTI-SS in block triangular form. Furthermore, if (A, K,C, I, e) is a sLTI-SS in causal coordinated form, then the dimensions of the block matrices A i j , K i j ,C i j , i, j = 1, . . . , n are uniquely determined by y. Definition 6.3 is based on the deterministic terminology [START_REF] Kempker | Coordination Control of Linear Systems[END_REF][START_REF] Ran | Coordinated linear systems[END_REF] and on the definition of Gaussian coordinated systems [START_REF] Kempker | Coordination Control of Linear Systems[END_REF][START_REF] Pambakian | LQG coordination control[END_REF] . The term coordinated is used because the sLTI-SS at hand can be viewed as consisting of several subsystems; one of which plays the role of a coordinator and the others play the role of agents. More precisely, let (A, K,C, I, e, y) be a sLTI-SS in coordinated form as in (6.10) and let x = [x T 1 , . . . , x T n ] T be its state such that x i ∈ R p i , i = 1, . . . , n. Then, for i = 1, . . . , n -1 S a i x i (t + 1) = ∑ j={i,n} A i j x j (t) + K i j e j (t) y i (t) = ∑ j={i,n} C i j x j (t) + e i (t) (6.12)

S c x n (t + 1) = A nn x n (t) + K nn e n (t) y n (t) = C nn x i (t) + e n (t) . (6.13) 
Notice that subsystem S a i generates y i as output, has x i , e i as its state and noise process and takes x n , e n as its inputs, thus takes inputs from subsystem S c . In contrast, S c is autonomous, generating y n as output and having

x n , e n as its state and noise process but not taking input from subsystems S a i , i = 1, . . . , n -1 (see Figure 6.4). We call S c the coordinator and S a i with i = 1, . . . , n -1 the agents. Intuitively, the agents do not communicate with each other, only the coordinator sends information (x n and e n ) to all agents and does not receive information from them. Next,we define the notion of conditional Granger-causality, which will play a central role in characterizing existence of sLTI-SS realizations in coordinated form. Definition 6.4. Consider a ZMSIR process y = [y T 1 , y T 2 , y T 3 ] T . We say that y 1 conditionally does not Granger cause y 2 with respect to y 3 , if for all t, k ∈ Z, k ≥ 0

E l [y 2 (t + k) | H y 2 ,y 3 t- ] = E l [y 2 (t + k) | H y 1 ,y 2 ,y 3 t- ].
Otherwise, we say that y 1 conditionally Granger causes y 2 with respect to y 3 .

New we are ready to state the main result relating conditional Granger-causality with existence of sLTI-SSs in coordinated form. AND BILINEAR SYSTEMS

S c S a 1 S a 2 • • • S a n-1
x n , e n x n , e n x n , e n Figure 6.4: Network graph of a sLTI-SS in coordinated form: S c is the coordinator (6.13) and S a i , i = 1, . . . , n-1 are the agents (6.12). Theorem 6.2 (Conditional Granger-causality and star-shaped network graphs, [START_REF] Jozsa | Relationship between Granger non-causality and network graph of state-space representations[END_REF][START_REF] Jozsa | Relationship between Granger non-causality and network graphs of state-space representations[END_REF]). Consider the following statements for a ZMSIR process y = [y T 1 , . . . , y T n ] T :

1. y i does not Granger cause y n , i = 1, . . . , n -1;

2. y i conditionally does not Granger cause y j with respect to y n , i, j = 1, . . . , n -1, i = j;

3. there exists a minimal sLTI-SS realization of y in causal coordinated form;

4. there exists a sLTI-SS realization of y in causal coordinated form;

5. there exists a sLTI-SS realization of y in coordinated form;

Then, the following hold:

• 1 and 2 ⇐⇒ 4.

• If, in addition, y is coercive, then we have: 1 and 2 ⇐⇒ 4 ⇐⇒ 5.

It is possible to formulate an algorithm for computing a sLTI-SS in coordinated form from the covariances of y or any sLTI-SS realization of y, see [START_REF] Jozsa | Relationship between Granger non-causality and network graph of state-space representations[END_REF][START_REF] Jozsa | Relationship between Granger non-causality and network graphs of state-space representations[END_REF]. In fact, Theorem 6.2 and the corresponding algorithm for calculating a sLTI-SS in coordinated form can be used to formulate statistical tests for checking (conditional) Granger causality relationships, see [START_REF] Jozsa | Relationship between Granger non-causality and network graphs of state-space representations[END_REF]Chapter 7].

Directted acyclic graphs induced by Granger causality relations

To conclude, we present the general case, where the graph induced by Granger causality relations is a directed acyclic graph. To this end, we define the class of transitive acyclic graphs. Definition 6.5 (TADG). A directed graph G = (V, E), with set of nodes V = {1, . . . , k} and set of directed edges E ⊆ V × V is called acyclic if there is no cycle i.e., closed directed path. Furthermore, it is transitive if for i, j, l ∈ V the implication (i, j), ( j, l) ∈ E =⇒ (i, l) ∈ E holds. The class of transitive acyclic directed graphs is denoted by TADG.

For convenience we make the following assumption that applies for all ZMSIR processes throughout this section.

Assumption 4. For a process y = [y T 1 , . . . , y T n ] T , we assume that none of the components of y is a white noise process, or equivalently, the dimension of a minimal sLTI-SS realization of y i is strictly positive for all i ∈ {1, . . . , n}.

GRANGER CAUSALITY: LINEAR CASE

For a TADG G = (V = {1, . . . , n}, E), the set of nodes V has a so-called topological ordering. By topological ordering we mean an ordering on V such that if (i, j) ∈ E is a directed edge then i > j. Throughout this chapter we use integers to represent nodes of graphs and, without the loss of generality, we assume the following: Assumption 5. Consider a TADG G = (V, E) where V = {1, . . . , n}. Then (i, j) ∈ E implies i > j.

The class of TADGs will be used to define the class of sLTI-SS in forward innovation form network graph of which is a TADG. To define this class of sLTI-SSs formally, we need to introduce some new terminology. Notation 6.1 (parent and non-parent succeeding nodes). Let G = (V = {1, . . . , n}, E) be a TADG and consider a node j ∈ V . The set of parent nodes {i ∈ V |(i, j) ∈ E} of j is denoted by I j . In addition, the set of non-parent succeeding (with respect to the topological ordering of V ) nodes {i ∈ V |i > j, (i, j) / ∈ E} of j is denoted by Īj .

The topological ordering on the set of nodes of a TADG graph implies that I j , Īj ⊆ { j + 1, . . . , n} for all j ∈ {1, . . . , n -1}. Furthermore, from the definition of Īj , we have that I j ∪ Īj = { j + 1, . . . , n}. The next notation helps in referring to components of processes beyond the original partitioning of those processes. Notation 6.2 (sub-process). Consider the finite set V = {1, . . . , n} and a tuple J = ( j 1 , . . . , j l ) where j 1 , . . . , j l ∈ V . Then for a process y = y T 1 , . . . , y T n T , we denote the sub-process [y T j 1 , . . . , y T j l ] T by y j 1 ,..., j l or by y J . By abuse of terminology, if J is a subset of V and not a tuple, then y J will mean process y α , where α is the tuple obtained by taking the elements of J in increasing order, i.e. if J = { j 1 , . . . , j k }, j 1 < j 2 < • • • j k , then α = ( j 1 , . . . , j k ). However, y α,β always means [y T α , y T β ] T regardless the topological order between the elements of α and β .

Next, we introduce what we mean by partition of matrices. Call the set {p i , q i } k i=1 a partition of (p, q), where p, q > 0, if ∑ k i=1 p i = p and ∑ k i=1 q i = q, where p i , q i > 0 for i = 1, . . . , k. Definition 6.6 (partition of a matrix). Let {p i , q i } k i=1 be a partition of (p, q) for some p, q > 0. Then the partition of a matrix M ∈ R p×q with respect to {p i , q i } k i=1 is a collection of matrices {M i j ∈ R p i ×q j } k i, j=1 , such that

M =    M 11 • • • M 1k . . . . . . . . . M k1 • • • M kk    .
In Definition 6.6, the indexing of matrix M refers to the blocks of M and does not refer directly to the elements of M. It is parallel to the component-wise indexing of processes where the components can be multidimensional. Notation 6.3 (sub-matrix). Consider the partition {M i j ∈ R p i ×q j } k i, j=1 of a matrix M ∈ R p×q with respect to the partition {p i , q i } k i=1 of (p, q). Furthermore, consider the tuples I = (i 1 , . . . , i n ) and J = ( j 1 , . . . , j m ) where i 1 , . . . , i n , j 1 , . . . , j m ∈ {1, . . . , k}. Then by the sub-matrix of M indexed by IJ we mean

M IJ :=    M i 1 j 1 • • • M i 1 j m . . . . . . . . . M i n j 1 • • • M i n j m   
We are now ready to define sLTI-SSs which have a so-called TADG-zero structure: be a p-dimension sLTI-SS realization of y ∈ R r in forward innovation form. Consider the partition of

• A with respect to {p i , p i } n i=1 , • K with respect to {p i , r i } n i=1 , • C with respect to {r i , p i } n i=1 where {p i , r i } n
i=1 is a partition of (p, r). Then we say that (A, K,C, I, e) has G-zero structure if A i j = 0, K i j = 0, C i j = 0 for all ( j, i) / ∈ E.

If, in addition, for all j ∈ V , the tuple J := ( j, Īj , I j ) defines a sLTI-SS

(A JJ , K JJ ,C JJ , I, [e T j , e T Īj , e T I j ] T )
which is a realization of [y T j , y T Īj , y T I j ] T in causal coordinated form (see Definition 6.3), then we say that (A, K,C, I, e) has causal G-zero structure.

Besides saying that a sLTI-SS has G-zero structure or causal G-zero structure, we also say, sLTI-SS with G-zero structure or with causal G-zero structure.

Consider the TADGs G 1 = ({1, 2}, {(2, 1)}) and G 2 = ({1, 2, . . . , n}, {(n, 1), (n, 2), . . . , (n, n -1)}). If the graph G in Definition 6.7 is G 1 , then Definition 6.7 coincides with Definition 6.2 considering ZMSIR processes that satisfy Assumption 4. In a similar manner, if the graph G in Definition 6.7 is G 2 then it coincides with Definition 6.3 considering ZMSIR processes that satisfy Assumption 4.

If a p-dimensional sLTI-SS (A, K,C, I, e) of y ∈ R r has causal G-zero structure, where G = (V, E) is a TADG, then the partition {p i , r i } n i=1 of (p, r) in Definition 6.7 is uniquely determined by y. A sLTI-SS with TADG-zero structure can be viewed as consisting of subsystems where each subsystem generates a component of y = [y T 1 , . . . , y T n ] T . More precisely, let G = (V = {1, . . . , n}, E) be a TADG and (A, K,C, I, e, y) be a p-dimensional sLTI-SS with G-zero structure where A, K and C are partitioned with respect to a partition {p i , q i } k i=1 of (p, q). Furthermore, let x = [x T 1 , . . . , x T n ] T be its state such that x i ∈ R p i , i = 1, . . . , n. Then the sLTI-SS with output y j , j ∈ V is in the form of S j

x j (t + 1) = A j j x j (t) + A jI j x I j (t) + K jI j e I j (t) + K j j e j (t) y j (t) = C j j x j (t) +C jI j x I j (t) + e j (t). (

Notice that if (i, j) ∈ E, i.e., i is a parent node of j, then subsystem S j takes inputs from subsystem S i , namely the state and noise processes of S i . In contrast, if ( j, i) / ∈ E, S j does not take input from S i . Intuitively, it means that the subsystems communicate with each other as it is allowed by the directed paths of the graph G. Note that from transitivity, if there is a directed path from i ∈ V to j ∈ V then there is also an edge (i, j) ∈ E. Example 6.1. Take the TADG graph G = ({1, 2, 3, 4}, {(4, 1), (4, 2), (3, 1), (2, 1)}) and a process

[y T 1 , y T 2 , y T 3 , y T 4 ] T with innovation process [e T 1 , e T 2 , e T 3 , e T 4 ] T . Then a sLTI-SS with G-zero structure of [y T 1 , y T 2 , y T 3 , y T 4 ] T is given by     x 1 (t + 1) x 2 (t + 1) x 3 (t + 1) x 4 (t + 1)     =     A 11 A 12 A 13 A 14 0 A 22 0 A 24 0 0 A 33 0 0 0 0 A 44         x 1 (t) x 2 (t) x 3 (t) x 4 (t)     +     K 11 K 12 K 13 K 14 0 K 22 0 K 24 0 0 K 33 0 0 0 0 K 44         e 1 (t) e 2 (t) e 3 (t) e 4 (t)         y 1 (t) y 2 (t) y 3 (t) y 4 (t)     =     C 11 C 12 C 13 C 14 0 C 22 0 C 24 0 0 C 33 0 0 0 0 C 44         x 1 (t) x 2 (t) x 3 (t) x 4 (t)     +     e 1 (t) e 2 (t) e 3 (t) e 4 (t)     , (6.15) 
6.2. GRANGER CAUSALITY: LINEAR CASE where A i j ∈ R p i ×p j , K i j ∈ R p i ×r j ,C i j ∈ R r i ×p j and y i , e i ∈ R r i , x i ∈ R p i for some p i > 0, i, j = 1, 2, 3, 4. The network graph of this sLTI-SS is the network of the sLTI-SSs S 1 , S 2 , S 3 , S 4 defined in (6.14), generating y 1 , y 2 , y 3 and y 4 , respectively. See Figure 6.5 for illustration of this network graph.

x4(t + 1) = A44x4(t) + K44e4(t) y4(t) = C44x4(t) + e4(t) x3(t + 1) = A33x3(t) + K33e3(t) y3(t) = C33x3(t) + e3(t) x2(t + 1) = ∑i=2,4 (A2ixi(t) + K2iei(t)) y2(t) = ∑i=2,4 C2ixi(t) + e2(t) x1(t + 1) = ∑ 4 i=1 (A1ixi(t) + K1iei(t)) y1(t) = ∑ 4 i=1 C1ixi(t) + e1(t) (x 4 , e 4 ) (x 4 , e 4 ) (x 3 , e 3 ) (x 2 , e 2 )
Theorem 6.3 (General network structure, [START_REF] Jozsa | Relationship between Granger non-causality and network graphs of state-space representations[END_REF][START_REF] Jozsa | Causality based graph structure of stochastic linear statespace representations[END_REF]). Consider the following statements for a TADG G = (V = {1, . . . , n}, E) and a process y = [y T 1 , . . . , y T n ] T : 1. y has G-consistent causality structure; 2. there exists a sLTI-SS realization of y with causal G-zero structure;

3. there exists a sLTI-SS realizayion of y with G-zero structure; Then, the following hold:

• 1 =⇒ 3; • 2 =⇒ 1.
• If, in addition, y is coercive, then we have 1 ⇐⇒ 2 ⇐⇒ 3.

The proof of Theorem 6.3 is constructive and it leads to an algorithm for computing a sLTI-SS realization of y from any sLTI-SS realization of y or from the covariances of y, see [START_REF] Jozsa | Causality based graph structure of stochastic linear statespace representations[END_REF][START_REF] Jozsa | Relationship between Granger non-causality and network graphs of state-space representations[END_REF] for more details.

Reverse engineering of the network graph

The results described above were used to develop statistical hypothesis tests for checking various Grangercausality based on data. The essence of those methods is to use empirical covariances of the observed processes to calculate a sLTI-SS in causal block triangular form, causal coordinated form, or with causal G-zero structure respectively. In the ideal case, when true covariances are used, suitable blocks of the matrices of such a sLTI-SS should be zero, if the corresponding Granger-causality relationships hold. When approximate covariance are used, the corresponding blocks are not zero, due to approximation error. The statistical hypothesis testing relies on checking if those blocks are significantly different from zero. Details of this approach can be found in [START_REF] Jozsa | Relationship between Granger non-causality and network graphs of state-space representations[END_REF]Chapter 7]. This statistical hypothesis testing procedure can also be viewed as a procedure for reverse engineering of the network graph. Note that the problem of discovering the network graph from data is in principle ill-posed, as systems with different network graphs can generate the same observed behavior. However, let us consider the weaker problem of deciding if observed behavior is consistent with the hypothesis that the underlying system has a particular network graph. That is, we want to decide if there exists a system with the given network graph which can generate the observed data. This problem is well-posed. The hypothesis testing procedure described above could be used to solve this weaker problem.

Granger causality: bilinear case

In this section we will use the terminology and notation of Chapter 3. In particular, we will use the notion of admissible inputs, ZMWSSI processes, and the processes z y+ v , z y v defined in (3.15) and (3.20) respectively. More precisely, we consider the processes ({µ q } q∈Q , y = [y T 1 , y T 2 ] T ), where {µ q } q∈Q is admissible and y is ZMWSSI w.r.t. {u q } q∈Q .

We would like to relate the existence of a GBS realization of y with a network graph consisting of two nodes and one edge to Granger-causality-like properties of y 1 and y 2 . Recall from [START_REF] Caines | Linear Stochastic Systems[END_REF][START_REF] Lindquist | Linear Stochastic Systems: A Geometric Approach to Modeling, Estimation and Identification[END_REF][START_REF] Katayama | Subspace Methods for System Identification[END_REF] that sLTI-SS realizations of y in forward innovation form can be viewed as optimal predictors which map past values of y to its best linear prediction. Since the classical definition of Granger-causality imposed conditions on such optimal linear predictors, it was possible to translate Granger-causality among components of y to properties of sLTI-SS realizations of y. If we try to extend the same idea to GBSs, then we have to deal with the problem that a GBS realization of y in forward innovation form is not a linear predictor based on past values of y, but it is a linear predictor from the past outputs and inputs z y v (t) to the future outputs and inputs z y+ v (t), see This motivates our extension of Granger causality, where we use the process z y+ w (t) rather than y(t + |w|) and z y v (t) rather than y(t -|v|), v, w ∈ Q + : Definition 6.8 (GB-Granger causality). We say that y 1 does not GB-Granger cause y 2 w.r.t.

{µ q } q∈Q if for all v ∈ Q * and t ∈ Z E l [z y 2 + v (t) | {z y w (t)} w∈Q + ] = E l [z y 2 + v (t) | {z y 2 w (t)} w∈Q + ]. (6.16) 
Otherwise, y 1 GB-Granger causes y 2 w.r.t. {µ q } q∈Q . Here we used Notation 3.1 from Chapter 3.

Informally, y 1 does not GB-Granger cause y 2 , if the best linear predictions of the future of y 2 w.r.t. {u q } q∈Q along v is the same based on the past of y or based on the past of y 2 w.r.t. {u q } q∈Q along {w} w∈Q + . Remark 6.3. If y 1 does not GB-Granger cause y 2 then it implies that y 1 does not Granger causes y 2 . Moreover, in the specific case, when Q = {1} and u 1 (t) ≡ 1, z y+ v (t) = y(t + |v|) and z y w (t) = y(t -|w|) and thus Definitions 6.1 and 6.8 coincide. The relationship between GB-Granger causality and other concepts of causality, such as conditional independence [9], seems to be more involved and remains a topic of future research.

Next, we present the result on the relationship between GB-Granger causality and network graphs of GBSs. The GBS in question are minimal ones in forward innovation form that can be constructed algorithmically (see Algorithm 11 later on in this section). Theorem 6.4 (GB-Granger causality and network graphs with 2 nodes ). Consider a GBS realization of y = [y T 1 , y T 2 ] T ) and let e = [e T 1 , e T 2 ] T be the innovation process of y w.r.t. {u q } q∈Q , where e i ∈ R k i ,i = 1, 2. Then, y 1 does not GB-Granger cause y 2 w.r.t. {u q } q∈Q if and only if there exists a GBS G of the form (3.2), such that G is a minimal realization of y in forward innovation form and for all q ∈ Q,

A q = A q,11 A q,12 0 A q,22 , K q = K q,11 K q,12 0 K q,22 , C = C 11 C 12 0 C 22 , (6.17) 
where A q,i j ∈ R n i ×n j , K q,i j ∈ R n i ×k j , C i j ∈ R k i ,n j , q ∈ Q, i, j = 1, 2 for some n 1 ≥ 0, n 2 > 0 and

G 2 = (n 2 , p, p, Q, x, e, {µ q } q∈Q , y 2 ,C 22 , I, {A q,22 , K q,22 } q∈Q ),
is a minimal GBS realization of y 2 in forward innovation form.

If Q = {1} and u 1 (t) ≡ 1, then GBS reduce to sLTI-SSs and Definitions 6.1 and 6.8 coincide. As a result, Theorem 6.17 reduces to earlier results on sLTI-SSs and Granger causality (see [START_REF] Jozsa | Relationship between Granger non-causality and network graph of state-space representations[END_REF]Theorem 1]). {u q } q∈Q y Figure 6.6: Cascade interconnection of a GBS realization in forward innovation form with system matrices as in (6.17).

A GBS realization of y of the form (3.2) in forward innovation form which satisfies (6.17) can be viewed as a cascade interconnection of two subsystems. Define the subsystems S 1

x 1 (t + 1) = ∑ q∈Q (A q,11 x 1 (t) + K q,11 e 1 (t))u q (t) + ∑ q∈Q (A q,12 x 2 (t) + K q,12 e 2 (t))u q (t)

y 1 (t) = ∑ 2 i=1 C 1i x i (t)) + e 2 (t) S 2 x 2 (t + 1) = (A q,22 x 2 (t) + K q,22 e 2 (t))u q (t) y 2 (t) = C 22 x 2 (t) + e 2 (t)
Notice that S 2 sends its state x 2 and noise e 2 to S 1 as an external input while S 1 does not send information to S 2 . The corresponding network graph is illustrated in Figure 6.6.

The necessity part of the proof of Theorem 6.4 is constructive, and it is based on calculating a GBS realization in innovation form described in Theorem 6.4 from the observed behavior, i.e., from output covariances. For this calculation, we present Algorithm 11.

Algorithm 11 Block triangular minimal GBS

Input {Λ y w := E[y(t)(z y w (t)) T ]} w∈Q + ,|w|≤n and {T y q,q := E[z y q (t)(z y q (t)) T ]} q∈Q Output ({A q , K q } q∈Q ,C)

Step 1 Apply Algorithm 4 from Subsection 3.6.3, Chapter 3 to compute a minimal GBS realization G = (n, p, m, Q, x, e, {µ q } q∈Q , y,C, I, { Ãq , Kq } q∈Q ) of y in forward innovation form.

Step 2 Define the sub-matrix consisting of the last k 2 rows of C by C2 ∈ R k 2 ×n and define the observability matrix ÕN(n)

ÕN(n) = ( C2 Ãv 1 ) T • • • ( C2 Ãv k ) T T ,
where we used the lexicographic ordering (≺) on Q * from Chapter 2, Notation 2.1. If ÕN(n) is not of full column rank then define the non-singular matrix

T -1 = T 1 T 2 such that the columns of T 1 ∈ R n×n 1 is the kernel of ÕN(n) . If ÕN(n) is of full column rank, then set T = I. Define the matrices A q = T Ãq T -1 , K q = T Kq for q ∈ Q and C = CT -1 . return ({A q , K q } q∈Q ,C).
Remark 6.4. It follows that if y 1 does not GB-Granger cause y 2 , then Algorithm 11 calculates the system matrices of a GBS realization described in Theorem 6.4, if y can be realized by a stationary GBS of dimension n. Hence, Algorithm 11 provides a constructive proof of the necessity part of Theorem 6.4, by calculating a minimal GBS realization in forward innovation form that characterizes GB-Granger non-causality. AND BILINEAR SYSTEMS Remark 6.5 (Checking GB-Granger causality). Algorithm 11 can be used for checking GB-Granger causality as follows. Apply Algorithm 11 and check if the matrices {A q , K q } q∈Q and C returned by Algorithm 11 satisfy,

A q = A q,11 A q,12 0 A q,22 C = C 11 C 12 0 C 22 , K q = K q,11 K q,12 0 K q,22 ,
where A q,i j ∈ R n i ×n j , C i j ∈ R k i ×n j , K i, j ∈ R n i ,k j , i, j = 1, 2 for some n 1 ≥ 0, n 2 > 0, and if

S 2 = (n 2 , p, p, Q, x 2 , e, {µ q } q∈Q , y 2 ,C 22 , I, {A q,22 , K q,22 } q∈Q )
is a minimal GBS realization of y 2 in forward innovation form. By Theorem 6.4 both tests are positive, if and only if y 1 does not GB-Granger cause y 2 . We check whether S 2 is a minimal GBS realization in innovation form as follows. We use Subsection 3.6.3 compute a minimal GBS realization S2 of y 2 in forward innovation form and the covariances Qq = E[v(t)v T (t)u 2 q (t)], q ∈ Q of the innovation process v of y 2 . Then, S 2 is a minimal GBS realization in forward innovation form, if and only if S 2 and S2 have the same dimension and the same noise process, i.e., v = e 2 . For checking the latter, we remark that v(t) = e 2 (t) if and only if for all i = 1, . . . , k 2 , ∑ q∈Q α 2 q Qq,ii = ∑ q∈Q α 2 q Q q,(k 1 +i)(k 1 +i) , where {α q } q∈Q are such that ∑ q∈Q α q µ q = 13 and Q q,rl , Qq,kl denotes the (k, l)th entry of the matrix Q q , Qq respectively.

Note that the covariances used as inputs of Algorithm 11 could be estimated from sampled data, the procedure above could be a starting point of a statistical test for checking GB-Granger causality, similar to the one of Granger causality in [START_REF] Jozsa | Relationship between Granger non-causality and network graphs of state-space representations[END_REF]. This remains a topic of future research.

Role of realization theory

The results of Section 6.2 depend on stochastic realization theory [START_REF] Lindquist | Linear Stochastic Systems: A Geometric Approach to Modeling, Estimation and Identification[END_REF] of sLTI-SSs. In particular, the existence of minimal of sLTI-SSs in forward innovation form is the main tool which allows us to related Granger-causality with the network graph of sLTI-SS realizations. Note that the notion of Granger-causality plays an important role in realization theory of sLTI-SSs with inputs. The relationship between the results of Section 6.2 and realization theory of sLTI-SSs with inputs remains a topic of future research. Likewise, the results of Section 6.3 rely on realization theory of GBSs, and especially on the existence of minimal GBSs in forward innovation form. Both for sLTI-SSs and for GBSs, the algorithms for checking Granger-causality rely on covariance realization and minimization algorithms.

Conclusions and future work

In this chapter we have presented an overview of results on the relationship between network graphs of state-space representations and Granger causality relations among their outputs. We have discussed in detail the results on sLTI-SS and GBSs. Similar results can be formulated for the relationship between transfer functions and Granger causality relations, [START_REF] Jozsa | Relationship between causality of stochastic processes and zero blocks of their joint innovation transfer matrices[END_REF]. These results could be used for developing statistical hypothesis testing for deciding if the network graph of the system which generates the data has certain interconnections [START_REF] Jozsa | Relationship between Granger non-causality and network graphs of state-space representations[END_REF].

There are many potential directions for further research. First of all, it would be desirable to extend the results to sLTI-SSs and to LPV-SSAs/LSSs with control inputs. Reformulations of the results in purely deterministic setting would also be of interest. The latter would require reformulating Granger-causality for the deterministic setting. Another direction would be the use of statistical notions which are different from Granger-causality. That remains topic of future research as well. Finally, more work needs to be done on statistical hypothesis 6.5. CONCLUSIONS AND FUTURE WORK testing methods for deciding if the data could be generated by a system with a certain network graph. The latter problem is essentially the well-posed version of the generally ill-posed problem of reverse engineering of network graphs. First steps towards this goal were made in [START_REF] Jozsa | Relationship between Granger non-causality and network graphs of state-space representations[END_REF]. However, a formal theoretical analysis and experimental validation of the methods from [START_REF] Jozsa | Relationship between Granger non-causality and network graphs of state-space representations[END_REF] is still lacking.

Part III

Future research

Chapter 7

Future research directions

Recall that my global research objective is to provide algorithms and theory for building models for control. In fact, I plan to continue this research program, since there exist several open problems which need to be solved. In this chapter, I will first describe some of these open research problems which I plan to work on. This line of research represents Axis A (reliable models for control of cyber-physical systems) of my future research. In addition, I will also work on some new research topics, which represent a departure from my previous research: namely

• Axis B: Reliable AI (artificial intelligence) for cyber-physical systems.

There is an increasing need for solving decision making problems for cyber-physical systems which involve models from artificial intelligence. Traditionally, this topic is studied in computer science/artificial intelligence, and significant progress has been made. However, when AI algorithms are applied to cyber-physical systems, the behavior of physical components should be taken into account. This calls for methods and theory for constructing such models from data and for simplifying them. In turn, this is likely to require elements of control theory to be integrated into the analysis of such algorithms. Think for example of obstacle detection and collision avoidance of autonomous vehicles. In a way, the general research program of Subsection 1.1 still applies, with the difference that instead of gearing modeling methods and theory towards controller synthesis we gear them towards more general decision making algorithms. The challenges remain the same: we would like to develop methods for learning models from data, such that the resulting models can be proven to be useful for decision making. In particular, I plan to focus on analyzing machine learning algorithms which are applied to dynamical systems. This includes learning recurrent neural networks and reinforcement learning.

• Axis C: Reverse engineering of network topology of interconnected systems.

The goal is to provide theoretical guarantees and algorithms for learning the network topology of interconnected systems. This is motivated by the large number of applications of this problem in systems biology and neuroscience.

Note that while these two topics seem distant, they both require the same methodological tools, hence my interest in them. In particular, both axis B and C will use results from axis A, more precisely, from sub-axis A1 which deals with structural properties of cyber-physical systems. The relationship between different axes is illustrated in Figure 7.1. In Section 7.1 I will describe my research program for pursuing the objective of Subsection 1.1. In Section 7.2 I will discuss the research program for the two emerging topics discussed above. 

Axis A: reliable models for control of cyber-physical systems

This research axis represents the continuation of the past research activities. Recall that the high-level goal of the past research activities was to come up with model reduction and system identification algorithms for which there are theoretical guarantees that the resulting models are useful for control.

When it comes to cyber-physical systems, existing results are still inadequate and there are still many open questions. For the simplicity of presentation we will concentrate on cyber-physical systems which can be modeled by polynomial, LPV and hybrid systems, as they have been the focus of my past research efforts. Note that while the category of cyber-physical systems is an engineering concept, their theoretical analysis is done by choosing a model class which can represent them sufficiently faithfully and analyzing the mathematical properties of the elements of that model class. In our case, we will concentrate on polynomial,LPV and hybrid systems, as they are capable of modeling a wide range of cyber-physical systems.

While there is a great body of literature on control, system identification and model reduction of polynomial, LPV and hybrid systems [START_REF] Tóth | Identification and Modeling of Linear Parameter-Varying Systems[END_REF][START_REF] Tanelli | Identification of LPV state-space models for automatic web service systems[END_REF][START_REF] Mohammadpour | Control of Linear Parameter Varying Systems with Applications[END_REF][START_REF] Lauer | Hybrid System Identification: Theory and Algorithms for Learning Switching Models[END_REF][START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF]260] the existing results do not yet form a comprehensive theoretical package. While the literature on control is relatively mature, the existing results on identification and model reduction tend to focus more on algorithms, and less so on their theoretical justification. Moreover, the theoretical results are not always of the form which is informative for control. More precisely, recall that the ultimate goal is to produce theoretical guarantees for the whole processes of control design, starting with modeling based on data and ending up with the actual controller synthesis. This means that we should be able to provide guarantees that if the cyber-physical system can be modeled by a certain class of polynomial/LPV/hybrid systems, then the modeling step will yield a model such that the controller synthesized based on that model will work when interconnected with the true hypothetical model.

As it was explained in Subsection 1.1, for systems identification, the theoretical guarantees usually take the form of consistency results, i.e., proofs that the model produced by system identification algorithms converges 7.1. AXIS A: RELIABLE MODELS FOR CONTROL OF CYBER-PHYSICAL SYSTEMS to a true model as the number of data points available for learning increases. For model reduction, theoretical guarantees tend to take the form of analytic error bounds which characterize the difference between the inputoutput behavior of the original model and the reduced one, or proofs that the reduced order model has exactly the same output response as the original one for some inputs. Despite the past research efforts, there are still many open problems. In particular, I would like to address the following challenges:

• Extending theoretical guarantees to a larger class of system identification and model reduction algorithms. For many popular system identification and model reduction algorithms no analytical error bounds exist. Moreover, there is a gap between the class of models for which there exist theoretical error bounds for system identification and model reduction algorithms and the class of models used for control design. For example, in LPV system identification often stochastic models are considered, and the statistical parameters (variance, etc.) of the stochastic component are analyzed, while controller design methods often work with deterministic uncertainties.

• Few theoretical results on how to convert theoretical guarantees for the model into guarantees for controllers.

There are few explicit results relating the error bounds for model reduction and system identification with the correctness of control design. Even when error bounds for system identification and model reduction algorithms are available, there is little systematic theory explaining how to use these error bounds for controller design.

• For certain applications, the models and assumptions used in system identification/model reduction are too restrictive.

For instance, most of the results on LPV/hybrid system identification assume that the scheduling signal/switching signal is externally generated and that it satisfies some persistence of excitation condition. However, in many cases these signals often depend on the state of the underlying system. In turn, this means that they cannot be chosen arbitrarily, and hence it may be impossible to design identification experiments for which the persistence of excitation condition holds. Often, the the persistence of excitation condition involves the measured output too, which means that it is completely unclear how to design the experiment in order to get persistently exciting measurement data. Another problem is that in hybrid systems the switching signal may be unobservable and dependent on the unmeasured state of the underlying system. For this case, there are few theoretical guarantees, and they all tend to assume some richness of the measured data (output). However, it is not at all clear how to design the corresponding identification experiment to achieve it.

In order to address these shortcomings, the research will aim at achieving the following goals.

• (O1) Control-oriented theoretical guarantees for system identification and model reduction algorithms.

• (O2) Theoretical guarantees for controller synthesis which take into account the modeling error of the models produced by system identification and model reduction algorithms.

• (O3) Developing theoretically sound system identification and model reduction algorithms for more realistic model classes.

The research can be divided into fundamental and methodological parts. The goal of the methodological part is to achieve the cited research objectives. The goal of the fundamental part is to lay the theoretical foundations for the methodological part. More precisely, fundamental research will be directed to developing realization theory for model classes for which such a theory is lacking and applying it to understand the structural properties of these model classes. The methodological part will be directed towards applying the results of the fundamental research to achieve the stated goals. The goal of this research axis is to study the realization theory and the related fundamental structural of various classes of state-space representations. This axis can be further divided into the following axis:

• Extending realization theory to more general model classes.

• Applying realization theory for studying structural properties which are relevant for modeling (system identification and model reduction.

• Applying realization theory for studying structural properties which are relevant for control synthesis.

The main idea is that we develop realization theory for those model classes for which such a theory does not exist, and then we use realization theory to develop further fundamental theoretical results, which in turn will be useful for proposing an integrated approach for modeling and control. Below we discuss these research axes one by one. This problem remains open, yet it is important as hybrid systems with autonomous switching are widely used in applications. Moreover, a widely used subclass of recurrent neural networks also falls into the category of hybrid systems with autonomous switching, so the topic is also relevant for machine learning.

Axis A1.1.2: Realization theory of quasi-LPV systems.

A quasi-LPV system is an LPV system where the scheduling parameter depends on the input and state. Such systems are widespread in practice, as non-linear systems are often modeled as quasi-LPV systems.

Once a quasi-LPV model is obtained, for control purposes it can treated as an LPV model, and the controller designed for the LPV model will also work for the original quasi-LPV model, since the trajectories of the latter are contained in the set of the trajectories of the former. Despite its wide-spread use, there are few systematic procedures for transforming a non-linear model to a quasi-LPV, or constructing a quasi-LPV model from data, and little is known about the relationship between the structural properties of the quasi-LPV (minimality,observability,controllability) and those of the original non-linear model. Realization theory of quasi-LPVs would shed a light on these questions. Note that if we allow the scheduling parameter to be a discontinuous function of the state and the scheduling parameter takes values from a finite set, then quasi-LPV becomes a piecewise-linear hybrid system with autonomous switching. Hence, the proposed research topic is closely related to realization theory of hybrid systems with autonomous switching.

Axis A1.1.3: Realization theory for hybrid/LPV systems with stochastic noise.

Most of existing results on realization theory of hybrid/LPV systems deals with models which contain no noise. There is a recent extension of realization theory to hybrid/LPV systems with stochastic noise, see [START_REF] Petreczky | Realization theory for a class of stochastic bilinear systems[END_REF], but the results are still incomplete as they do not allow for deterministic linear inputs. For this reason, I plan to work further on realization theory of hybrid/LPV systems with stochastic noise.

Axis A1.1.4: Realization theory for hybrid/LPV systems with bounded deterministic noise and its relationship with stochastic noise. For many applications the assumption that the noise is stochastic is not necessarily justified. For these applications, it is often more natural to assume that the noise is deterministic and has a bounded amplitude or energy. Moreover, there is a rich theory and tool-set for robust control of systems with bounded noise, especially for LPV and piecewise-affine systems. For this reasons, it would be desirable to develop realization theory for hybrid/LPV systems with bounded noise. Furthermore, it would be desirable to establish a formal equivalence between the case of deterministic and stochastic noise. One option is to think of a stochastic noise as the modeling error which arises due to the use of stochastic inputs.

This would be especially useful for system identification of hybrid/LPV systems. Right now, the standard assumption in hybrid/LPV system identification is that the noise is stochastic, and a lot of attention is devoted to estimating the statistical properties of this stochastic noise. However, system identification is done in order to have models for control, and most of available tools for hybrid/LPV control can handle only bounded deterministic noise. This is especially true for LPV models, as they are often used exactly because they are convenient for using tools from robust control. So there is a discrepancy between the class of models considered in system identification and the class of models used in control design. I believe that the existing system identification algorithms are probably quite adequate even when they are applied to systems with a bounded deterministic noise. In this case, the estimated noise statistics is likely to represent a bound on the amplitude/energy of the deterministic noise. In fact, the presence of stochastic noise could be explained by assuming that the input used for the identification experiment is a sample path of a stochastic process and that the noise process represents the prediction error of the output. In turn, using stochastic inputs for identification might be necessary to ensure persistence of excitation.

I am especially optimistic about LPV system identification algorithms, as they have been extensively tested on practical applications, and hence are likely to deliver adequate models in most of cases. So the task is not so much to design completely new system identification algorithms, but to reinterpret existing ones. In order to do so, parallels between stochastic and deterministic case have to be established, which amounts to developing realization theory of hybrid/LPV systems with a bounded deterministic noise. The results presented in [START_REF] Petreczky | Solutions of differential-algebraic equations as outputs of lti systems: Application to lq control problems[END_REF][START_REF] Zhuk | Minimax observers for linear differential-algebraic equations[END_REF]. are expected to be useful for achieving this goal.

Axis A1.1.5: Realization theory and algorithms for polynomial systems. I plan to continue working on realization theory and algorithms for polynomial systems, especially for semialgebraic systems, i.e. systems determined by polynomial equations and inequalities. These systems lack a complete realization theory and the existing procedures for minimization and construction of a realization are not algorithmically effective. This line of research overlaps with realization theory of recurrent neural networks (Section 7.2.1), hybrid systems with autonomous switching , and quasi-LPV systems, as all these system classes overlap with the class of semi-algebraic systems. Indeed, piecewise-linear hybrid systems are semi-algebraic by definition, and so are quasi-LPV systems where the matrices are polynomial/rational functions of the scheduling parameters.

Axis A1.1.6: Behavioral approach for realization theory of hybrid/polynomial/LPV systems.

Most of the existing work on realization theory uses input-output functions as a formalization of the observed behavior of a state-space representation. However, in general, this formalization is not satisfactory, as it tacitly assumes that the solutions of the state-space representation start from a particular initial state.

Intuitively, this might be approximately true for state-space representations which are stable in a suitable sense. This assumption is also suitable for identification purposes, if only one long time-series is available for identifying a state-space representation. However, in general, this assumption is not the most realistic one, especially for control. Instead, it is much more natural to model the observed behavior as sets of timed signals, i.e., adopt the behavioral approach of J.C. Willems [START_REF] Willems | An Introduction to Mathematical Systems Theory: A Behavioral Approach[END_REF]. All the questions of realization theory (existence of a state-space representation, minimality, etc.) can easily be reformulated in the language of the behavioral approach. For LTI state-space representations a fairly complete realization theory in the behavioral setting was developed [START_REF] Willems | Input-output and state-space representations of finite-dimensional linear time-invariant systems[END_REF][START_REF] Willems | From time series to linear system-part i. finite dimensional linear time invariant systems[END_REF][START_REF] Willems | From time series to linear system-part ii. exact modelling[END_REF] and partially extended to various other system classes [START_REF] Zerz | Behavioral systems theory: A survey[END_REF], in particular to LPV systems [START_REF] Tóth | Identification and Modeling of Linear Parameter-Varying Systems[END_REF][START_REF] Tóth | The behavioral approach to linear parameter-varying systems[END_REF]. However, much remains to be done, even for hybrid and LPV systems. For instance, the results of [START_REF] Tóth | Identification and Modeling of Linear Parameter-Varying Systems[END_REF][START_REF] Tóth | The behavioral approach to linear parameter-varying systems[END_REF] concern LPV state-space representation with a dynamic and rational dependence on the scheduling parameters. However, for control purposes, LPV state-space repre-sentations with a static and affine dependence are preferable, and the results of [START_REF] Tóth | Identification and Modeling of Linear Parameter-Varying Systems[END_REF][START_REF] Tóth | The behavioral approach to linear parameter-varying systems[END_REF] do not yield a realization theory for the latter class of state-space representations.

Axis A1.2: Application of realization theory to structure theory of models relevant for model reduction and system identification

The goal of this research axis is to apply realization theory for studying certain structural properties of models. These properties are useful for analyzing system identification and model reduction algorithms and they are as follows:

Axis A1.2.1: Manifold structure of spaces of systems and distances between systems.

The goal is to study the topology and geometry of spaces of state-space representations belonging to various model classes, for example LPV state-space representations with an affine dependence on parameters, linear switched systems, etc. More precisely, let us fix a model class and a state-space dimension and let us identify any two minimal dimensional state-space representations from the fixed model class and of the fixed dimension, if these two state-space representations have the same input-output behavior. The corresponding space will be composed of equivalence classes of state-space representations with the same input-output behavior. Alternatively, we might identify each point of this space with the input-output behavior of a state-space representation. We would like to see if we can show that this space has the structure of a finite-dimensional (smooth, algebraic, etc.) manifold, if it is metrizable and if the corresponding distance has a system-theoretic interpretation (for example, in the sense of induced L 2 norm, etc.). Moreover, there should be a finite number of local coordinate charts and they should be computable. Ideally, the corresponding distance should be a Riemannian one and computable too.

Realization theory is necessary for this for the following reasons: first, it allows to characterize equivalence classes of minimal state-space representations, second, realization algorithm might give rise to computable coordinate charts [START_REF] Petreczky | Spaces of nonlinear and hybrid systems representable by recognizable formal power series[END_REF][START_REF] Petreczky | Metrics and topology for nonlinear and hybrid systems[END_REF].

While some preliminary results for linear switched systems exist, [START_REF] Petreczky | Spaces of nonlinear and hybrid systems representable by recognizable formal power series[END_REF][START_REF] Petreczky | Metrics and topology for nonlinear and hybrid systems[END_REF], I would like to work out this topic further and to extend it to other model classes such as (quasi-)LPV systems, polynomial systems and hybrid systems with autonomous switching.

Axis A1.2.2: Identifiability of parameterizations, identifiable canonical forms.

The goal is to study conditions for identifiability of parameterizations of various model classes. Recall from Chapter 5 that a parameterization is identifiable, if any two elements of the parameterizations have different input-output behaviors, i.e., their output responses are different for some input. Clearly, non-identifiable parameterizations are not suitable for system identification, as it was discussed in Chapter 5. This brings the following two questions: how to decide if a given parameterization is identifiable and how to come up with identifiable parameterizations. In Chapter 5 it was shown how realization theory can be used to answer the first question for LPV/linear switched state-space representations. I would like to use the same proof technique to analyze identifiability for other classes of models, such as hybrid systems with autonomous switching and polynomial systems.

The second question, i.e., the existence and construction of identifiable canonical forms has not been studied systematically even for linear switched systems or LPV systems. One obvious option for choosing such parameterizations is to choose local coordinate charts of the manifold of systems as defined in Axis A1.2.3.

Other options remain to be explored.

Axis A1.2.3: Persistence of excitation.

The goal of this research axis is to explore the notion of universal inputs and persistence of excitation for hybrid,LPV, and polynomial systems. Some preliminary work was done in [START_REF] Petreczky | On the notion of persistence of excitation for linear switched systems[END_REF], but much more needs to be done. There are many technical definitions of persistence of excitation. Here by a persistently exciting input signal we mean an input signal such that it is possible to construct a model of the whole input-output behavior from the output response of the system to this particular input signal. Clearly, the class of persistently exciting signals depends on the choice of the class of models. The concept of persistence of excitation is necessary for input design for the system identification experiments. Whatever input signal is used for system identification, it should be persistently exciting, since the goal of any system identification experiment is to generate data for estimating a model of the underlying system. Realization theory can be used for this purpose as follows. In the process of developing realization theory various generalizations of the notion of Markov-parameters emerge. The generalizations of Markov-parameters have two things in common: first, they allow to encode the input-output behavior by a sequence of numbers (generalized Markov-parameters), second these numbers can be constructed from the input-output behavior. Persistently exciting input signals then are those input signals which allow the construction of these generalized Markov-parameters from the corresponding output response. This approach was used in [START_REF] Petreczky | On the notion of persistence of excitation for linear switched systems[END_REF] for linear switched systems, and I am hopeful that it can be extended to other model classes too.

Axis A1.2.4: Minimization algorithms, calculating observable/reachable/minimal subsystems and their properties.

The goal of this research axis is to further develop algorithms for transforming a state-space representation to a minimal one while preserving its input-output behavior, and to study the theoretical properties of these algorithms. In particular, it is of interest to understand how to calculate observable/reachable/minimal subsystems of a state-space representation. Usually, minimization algorithms boil down to a rank/dimension test, and the latter boils down to deciding if a number is zero. The numerical implementation of such a procedure then depends on the choice of a cut-off threshold. In fact, such algorithms can be viewed as simple model reduction algorithms. Furthermore, many model reduction algorithms can be viewed as implementations of a minimization algorithm with a large cut-off threshold. For these reasons, it is important to understand these algorithms and their properties.

Axis A1.2.5: (Partial-) realization algorithms and their properties: continuity, correctness, etc. The goal of this research axis is to develop further realization algorithms, including partial realization algorithms, and to study their theoretical properties. Usually, realization algorithms act on a finite number of input data (Markov-like parameters) and they return a state-space realization of the underlying inputoutput map if the input data is adequate, more specifically, enough Markov-like parameters are provided.

The minimal number of Markov-like parameters often depends on the dimension of the minimal statespace representation of the underlying input-output map and they algorithm returns a minimal dimensional state-space representation.

Realization algorithms can be used for system identification. The idea is to estimate the necessary Markovlike parameters from data and to use the estimated values of these parameters as inputs to a realization algorithm. The model returned by the realization algorithm is then the output of the system identification algorithm. Partial realization algorithms can be used for (data-driven) model reduction: the reduced-order model can be calculated by applying the realization algorithm to a smaller number of Markov-like parameters than the one which is necessary to calculate an exact state-space representation of the underlying input-output behavior.

In order to analyze the correctness of such system identification and model reduction algorithms, the following questions need to be answered:

• We need to determine the number of Markov-like parameters which is necessary to calculate a minimal state-space representation. If the number of Markov-like parameters is smaller than this number, then we need to understand the relationship between the input-output map of the states-space representation calculated by the realization algorithm and the true input-output map. Ideally, the former should be an approximation of the latter in some suitable topology, for example the one studied in Axis 1.2.1.

• We need to understand if the realization algorithm is continuous in Markov-like parameters, if we use the topology of state-space representations studied in Axis 1.2.1. That is, if a small perturbations in the input parameters will lead to small changes in the model produced by the realization algorithm.

Axis A1.2.6: Reinterpreting stochastic realization theory in terms of deterministic input-output behaviors.

Traditionally, in stochastic realization theory stochastic state-space representations are viewed as representations of a pair of input and output processes, or a parameterization of the probability of the output process. This interpretation is justified from the point of view of the subsequent use of stochastic models in system identification. Indeed, in system identification, the assumption is that the data is a finite portion of a sample path of the input and output processes. While the behavior of the underlying system is well defined for all inputs, what we measure is a sample of its response to a particular input process. Hence, it is quite natural to aim at finding a representation of a particular pair of input and output processes. Therefore, the usual formalization of stochastic realization problem represents a natural abstraction of the system identification problem. Moreover, this abstraction allows us to use the language and tools of statistics to analyze system identification algorithms. In turn, stochastic realization theory is a necessary theoretical tool for using statistical concepts.

While such a point of view is justified from the point of view of statistics, it is not always useful for controller synthesis.

First of all, the control input need not be stochastic, and in fact the underlying physical system need not be stochastic. Second, even if the stochasticity assumption is justified, is not sufficient that the model is a valid representation of a certain pair of input and output processes. For control we need something stronger, namely, that for all inputs (not necessarily stochastic ones) the output response of the model should be close to the true one. This is especially problematic for model classes for which robust control techniques are used, for example for LPV/hybrid models. In this case, the stochastic model generated by stochastic realization algorithms/system identification algorithms cannot be directly used for control.

The goal of this research axis is to bridge this gap, and to argue that under suitable assumptions stochastic state-space representations of the same pair of input and output processes have the same input-output behavior, i.e., the two state-space representations generate the same output for all inputs, not only for a particular stochastic input.

The main idea is to argue that stochasticity arises from the use of stochastic inputs. That is, we assume that the physical process can be modeled by models which admit deterministic inputs (and which are possibly equipped with a deterministic or stochastic noise process). However, by feeding a stochastic input to these models we get stochastic outputs, and such models then become representations of a concrete pair of stochastic input and output processes. In turn, the motivation for using stochastic inputs is that the sample paths of stochastic inputs can be viewed as means to generate persistently exciting input signals; for linear systems this is well-known, for switched and LPV systems see [START_REF] Petreczky | On the notion of persistence of excitation for linear switched systems[END_REF][START_REF] Cox | Towards efficient maximum likelihood estimation of lpv-ss models[END_REF]. Conversely, statespace representations of the pair of the stochastic input and output processes can be reinterpreted as models defining input-output relations.

Under suitable minimality assumptions, and assuming that the noise process driving the system is the innovation noise, we can then show that minimal state-space representations of the stochastic input and output processes generate the same input-output relation as the original system.

Note that there is a long tradition in system identification to view models as predictors of outputs based on past outputs and inputs, [START_REF] Ljung | System Identification: Theory for the user[END_REF]. Here, this view becomes an important technical tool.Indeed, we need to assume that the original system can be modeled by a model where the noise is the innovation process, at least when the designated stochastic input signal is used. Furthermore, we have to assume that the model returned by system identification algorithms is in innovation form. In turn, models in innovation form can be viewed as predictors.
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Note that the original noise process need not be assumed to be stochastic either. If it is assumed to be a function of past outputs and inputs, which is the case if it represents unmodeled dynamics, then under suitable technical stability assumptions, the noise becomes stochastic, if stochastic input is used.

The stochasticity of the input-output pair then means that the identification problem can legitimately viewed as a statistical estimation problem, and all the statistical analysis is justified and meaningful. However, the resulting model can be shown to be an adequate representation of the entire input-output behavior of the underlying system.

In other words, from the fact that system identification algorithms are statistically consistent we can derive that the models returned by system identification algorithms will be adequate models for the underlying, possibly deterministic, input-output behavior, provided that the number of data points is large enough.

These ideas were partially developed in Subsection 3.7.2, Chapter 3 and for LPV-SSA models in Subsection 5.2.2, Chapter 5.

In order to accomplish the technical part of this research program, (stochastic) realization theory will be necessary, that is, we will need the results of axes A1.1.1-A1.1.4. We will also need the results of axes A2.1.1-A2.1.3. Finally, axes A1.1.6 will also be necessary for a proper formalization of the results in the language of behaviors [START_REF] Willems | An Introduction to Mathematical Systems Theory: A Behavioral Approach[END_REF].

Axis A1.2.7: Relationship between input-output and state-space models for hybrid, polynomial and (quasi) LPV systems.

Many dynamical models come in input-output form, i.e., in the form of equations relating high-order derivatives or time shifts of outputs and inputs. Such models often arise from the first principles and they are often preferred in system identification, as estimating such models tends to be easier than estimating state-space representations. However, for controller synthesis, state-space models are preferable. Hence, it is of interest to be establish equivalence between various input-output equations and state-space representations along with algorithms for converting state-space representations to input-output equations and vice versa. While for LTI systems such an equivalence and algorithms are well known, this remains an open problem for LPV, hybrid and certain classes of polynomial systems.

Axis A1.3: Structural properties of models relevant for controller synthesis

The goal of this research axis is to investigate those structural properties which are relevant for controller synthesis. Traditionally, state-space representations are used for controller synthesis, hence in this axis only models in state-space representation form are considered. The main goal is to find a subclass M of state-space representations from the designated class S , such that • (A1.3.I) Any state-space representation from S can be transformed to a state-space representation from M while preserving input-output behavior.

• (A1.3.II) If a control synthesis algorithm can generate a suitable controller for a plant model from M , then the same algorithm will generate a suitable controller for a model of the plant such that this model belongs to S . By suitable we mean that the interconnection of the controller with the plant model satisfies the the control objectives. In particular, if a control synthesis problem has a solution for a state-space representation from M , then it has a solution for some input-output equivalent state-space representation from S .

• (A1.3.III) If a controller achieves the control objectives when interconnected with a model m from the class M , then it achieves the similar (close enough) control objectives when interconnected with any other model from M input-output behavior of which is close enough to that of m.

That is, we would like to show that for controller synthesis, it is sufficient to work with state-space representations from M , and for the outcome of controller synthesis is does not matter which element of M is used as long as it represents the input-output behavior of the plant in question. If S is the class of LTI state-space representations, then the class M is the class of minimal-dimensional state-space representations and the criteria (A1.3.I)-(A1.3.III) are met. Roughly speaking, the goal of this research axis is to show that for other choices of S (linear switched systems, LPV with affine dependence on parameters, etc.), the class M of minimal dimensional state-space representations has the same property. The reason why minimal dimensional models are expected to play the role of M is as follows. If M allows models which are not minimal dimensional, then these models will necessarily contain components which do not depend on the input-output behavior of the model. The presence of such components mean that the requirement (A1.3.III) cannot be guaranteed, since those components can be chosen arbitrarily, and hence it is impossible to say anything about the behavior of those components under the influence of the controller at hand. These properties are relevant for integrating modeling (systems identification and model reduction) with control for the following reasons. Different system identification and model reduction algorithms applied to the same data/system tend to result in different models, but all these models have roughly the same input-output behavior. Hence, the controller synthesized based on any such model should achieve the control objective for the true plant. A necessary condition for this is that the controller provenly achieves the control objective when interconnected with any model from the class M , as long as the latter model has the same or similar input-output behavior as the model which was used to calculate the controller. This then means that the outcome of any correct system identification/model reduction algorithm can be used for controller synthesis, and the thus calculated controller will work for the plant. By correctness of a system identification we mean that as the number of data points grow, the input-output behavior of the model returned by the algorithm converges to the input-output behavior of the data generating system. That is, the returned model can represent the true input-output behavior with any desired accuracy if a sufficiently large number of data points are used. By correctness of a model reduction algorithm we mean that the distance between the input-output behavior of the model returned by the algorithm and that of the original model is within a certain designated accuracy level. The right notion of distance to be used is application specific. The tacit assumption behind this reasoning is that the plant can be identified with a model from M . This assumption may be problematic, but in the absence of any further knowledge about the system there is no way to falsify it.

In order to realize this program, we will organize the research along the following axis.

Axis A1.3.1; Observability, reachability, existence of observers/controllers. The goal of this research axis is to relate structural properties such as minimality, controllability and reachability of hybrid/LPV/polynomials systems with the existence of a controller (possibly with partial observation) achieving a certain control objective and with the existence of an observer. Here, observability and reachability are understood in the sense of realization theory, i.e., as the structural properties which are necessary and sufficient for a state-space representation to be minimal dimensional. More precisely, we would like to show that any controller can influence only on the reachable subsystem of the state-space representation and any observer (output based controller) reacts only to the observable subsystem of the state-space representation. From this it then follows that any controller with partial observations acts only on the minimal subsystem of the plant model. This research axis is going to be useful to show that minimal state-space representations satisfy a weaker version of (A1.2.II), i.e., that if a control objective can be achieved for a state-space representation, then it can be achieved for a minimal state-space representation.

Axis A1.3.2: Relationship between dissipativity, input-to-output stability and internal stability of minimal state-space representations.

The goal of this axis is to relate dynamic properties of the input-output behavior such as input-to-output stability and dissipativity with the corresponding properties of their hybrid/LPV/polynomial state-space representations. In particular, we would like to show that input-to-output stability/dissipativity implies existence of a Lyapunov function/storage function of the minimal state-space representation. As a consequence, input-to-output stability then implies internal stability for minimal state-space representations.

That is, we are interested in counterparts of Bounded Real and Positive Real Lemma (with possibly with non-quadratic storage functions). These properties are useful for understanding the pitfall of using nonminimal models. They are also useful for proving property (A2.1.II): indeed, many controller synthesis algorithms attempt to find a Lyapunov function or a storage function for the closed-loop system, hence it is of interest to show that if the closed-loop input-output behavior is input-to-output stable or dissipative, and the plant is modeled by a minimal state-space representation, then such a Lyapunov function or storage function exists.

These results will also be useful for showing (A2.1.III): they can also be used to show that the same controller can achieve the control objectives for two different state-space representations with close enough input-output behavior. The difficult part in such reasonings is that control objectives often include internal stability. Note it is relatively easy to conclude if two models have a close enough input-output behavior, then the closed-loop input-output behaviors will also be close enough, if the models are interconnected with the same controller. Hence, it is relatively easy to argue that if a controller meets the control objectives for the input-output behavior with one plant then it meets those objectives when interconnected with another plant with a similar input-output behavior. It is much more difficult to argue that the control objectives which concern the properties of the state-space representation, such as internal stability, will also be satisfied.

The results of this research axis allow us to do just that, by connecting the properties of the state-space representation with those of its input-output behavior.

Axis A1.3.3: Robustness of controllers in the topology of systems.

Finally, we would like to show that if a controller satisfies the control objectives when interconnected with a plant modeled by a state-space representation m from M , then it will also meet sufficiently similar control objectives when interconnected a plant which can be modeled by an element of M which is close enough to m in the topology of spaces of systems to be investigated in Axis A1.2.1. This then helps to show property (A2.1.III) completely. Ideally, explicit error bounds using the distances defined in Axis A1.2.1 should be derived, such that if the distance between two models is smaller than the error bound, then the controller which achieves the control objectives for one of the models, will achieve the close enough control objectives for the other one. Moreover, a suitable topology on the control objectives should be found too.

Axis A2: Methodological research: control-oriented and theoretically sound system identification and model reduction algorithms

The goal of this research axis is to derive theoretical guarantees for system identification and model reduction algorithms, such that the derived theoretical guarantees are likely to be useful for control. This will be achieved by developing theoretical guarantees for existing algorithms and by formulating new algorithms.

Axis A2.1: System identification: algorithms and theoretical guarantees

In system identification I plan to organize the research along the following topics:

Axis A2.1.1: Statistical analysis of existing system identification algorithms: consistency, variance.

The goal is to analyze the statistical properties of existing system identification algorithm for LPV/hybrid/polynomial systems. We view system identification algorithms as estimators, and we investigate its statistical properties such asymptotic consistency and variance. That is, we want to find conditions which guarantee that the model returned by a system identification algorithm converges to a true one as the number of data points tend to infinity, and we would also like to have estimate on the variance of the estimated models.

There are two approaches for proving such results:

• For system identification algorithms which are based on realization algorithms (subspace identification, covariance realization) we try to prove that as the number of data points tend to infinity, the identification algorithm behaves more and more like a realization algorithm. For example, if the algorithm is based on estimating output covariances and applying a covariance realization algorithm to the estimates, then we will try to show that the estimates converge to the true covariances and hence, if the realization algorithm is continuous, then the model generated by the identification algorithm converges a true one. This approach was taken for example for a particular version of subspace algorithms for linear systems [START_REF] Lindquist | Linear Stochastic Systems: A Geometric Approach to Modeling, Estimation and Identification[END_REF] and for LPV systems [START_REF] Mejari | Consistent and computationally efficient estimation for stochastic LPV statespace models: realization based approach[END_REF][START_REF] Mejari | Realization and identification algorithm for stochastic LPV state-space models with exogenous inputs[END_REF].

• For parametric system identification algorithms the proof might be constructed as follows. Such algorithms are based on minimizing an empirical cost function which depends on data. Then, under the assumption of identifiability of the parameterizations and informativity of the signals, one has to show that the minimum of the empirical cost function converges to the true parameter. The latter can be shown by showing the the empirical cost function converges to a cost function unique minimum of which is the true parameter.

This axis relies on axis A1.2. Indeed, realization algorithms from A1.2.5 allow the proof of consistency of identification algorithms which are based on realization algorithms from axis A1.2.5. Furthermore, in order to formalize the notion of consistency, the concepts on distances and topology for the space of models from axis A1.2.1 will be necessary. In fact, we define consistency as follows: the sequence of models returned by the identification algorithm when applied to an increasing number of data points converges to a true model, and the convergence is understood in the sense of the topology from axis A1.2.1.

Moreover, the concepts of persistence of excitation (axis A1.2.3) and the continuity of realization algorithms (axis A1.2.4) will be indispensable for formulating the proofs of consistency. The former is necessary to show that the identification algorithm is related to the realization algorithm, as persistence of excitation means exactly that the Markov-parameter-like numbers can be recovered from data. Continuity of realization algorithms will be indispensable for showing that as the number of data points increase, the result of applying the system identification algorithm to estimates of Markov-parameters will converge to the application of the realization algorithm to the true Markov-parameters.

Finally, for parametric identification algorithms the assumption that the parameterization is identifiable is likely to be necessary for proving consistency. In order to ensure that this assumption is satisfied, the use of identifiable canonical forms is likely to be required. These topics are investigated in axis A1.2.2.

Axis A1.2.7 is relevant because many of the system identification algorithms are formulated for inputoutput models, and it is of interest to reinterpret them for state-space models.

The research of this axis is a continuation of the classical research in system identification.

Axis A2.1.2: Non-asymptotical (PAC,PAC-Bayesian) error bounds for system identification algorithms inspired by machine learning. The goal of this research axis is to develop error bounds which characterize the difference between the true behavior of the system and the behavior of a model returned by the system identification algorithm. Again, the focus is on model classes for which realization theory exists and on existing system identification algorithms. In particular, inspired by machine learning [START_REF] Guedj | A Primer on PAC-Bayesian Learning[END_REF], we aim at developing Probably Approximately Correct (PAC) [START_REF] Shalev-Shwartz | Understanding machine learning: From theory to algorithms[END_REF] and PAC-Bayesian [START_REF] Guedj | A Primer on PAC-Bayesian Learning[END_REF] error bounds for system identification of several known model classes, and to analyze existing system identification algorithms in the light of those error bounds. Such error bounds were recently proposed for ARX model identification [START_REF] Shalaeva | Improved pac-bayesian bounds for linear regression[END_REF] we hope to extend them to other model classes. The advantage of such error bounds is that they express the difference between the estimated and true model as a function of the number of data points and experimental conditions (e.g., persistence of excitation of inputs). This allows more precise statements regarding the number of data points and experimental conditions which are required for estimating a model which is accurate enough.

This research axis can be seen as a continuation of axis A2.1.1: axis A2.1.1 aims at showing that as we are taking more and more data points, the resulting model will get closer and closer to a true one, while the present research axis attempts to give an upper bound on the distance between the learned model and a true one based on the number of data points.

underlying system, i.e., they recreate approximately not only the output generated to the stochastic input used for system identification, but the output for any other possible control input.

Axis A2.1.5: System identification algorithms for deterministic systems.

The goal of this research axis is to develop system identification algorithms and to analyze their correctness in a deterministic setting. It is assumed that the models at hand are purely deterministic, uncertainty is modeled as a deterministic noise, and the goal is to show that the model returned by the system identification algorithm converges to a true one as the number of data points tends to infinity.

This research axis a complementary to the previous ones: axes A2.1.1-A2.1.3 aim at studying system identification algorithms in a stochastic setting, while axis A2.1.4 aims at translating stochastic results into a deterministic setting. In contrast, the aim of the present axis is to skip statistical analysis altogether. This approach is motivated by the behavioral approach to system identification [START_REF] Markovsky | Exact and Approximate Modeling of Linear Systems: A Behavioral Approach (Mathematical Modeling and Computation)[END_REF] and bears certain similarity with the system identification methods with bounded noise [START_REF] Milanese | Bounding Approaches to System Identification[END_REF]. In a way, we aim at further extending [START_REF] Markovsky | Exact and Approximate Modeling of Linear Systems: A Behavioral Approach (Mathematical Modeling and Computation)[END_REF] to LPV/hybrid models. Note that there is a significant literature on the extension of the methods [START_REF] Milanese | Bounding Approaches to System Identification[END_REF] to LPV models, without claiming completeness see for example [START_REF] Cerone | Set-membership LPV model identification of vehicle lateral dynamics[END_REF].

This research axis will require realization theory of models with bounded deterministic noises and realization theory with a behavioral approach, hence Axis A2.2: Model reduction: algorithms and theoretical guarantees

The goal is similar to the one formulates for system identification. Namely, we would like to derive theoretical guarantees for the existing model reduction algorithms and to derive new model reduction algorithms which are applicable to more realistic classes of models. More precisely, I plan to investigate the following topics.

Axis A2.2.1: Theoretical guarantees for model reduction algorithms: global error bounds. The goal of this research axis is to provide analytical bounds for the difference between the input-output behavior of the original and the reduced-order models. Roughly speaking, for any input signal we would like have an analytic upper bound on the difference between the output responses of the original and reducedorder model to this input. Examples of such error bounds are the ones derived for balanced truncation [12], and extended to linear time-varying, LPV and switched systems [START_REF] Sandberg | Model reduction for linear time-varying systems[END_REF][START_REF] Wood | Approximation of linear parameter-varying systems[END_REF]40,[START_REF] Petreczky | Balanced truncation for linear switched systems[END_REF][START_REF] Gosea | Balanced truncation for linear switched systems[END_REF]. Most of the existing error bounds are L 2 error bounds, which are not always useful for control synthesis. Hence, it is of interest to extend them to other norms. Moreover, for many model reduction algorithms and model classes there are no comparable error bounds. For deriving global error bounds, the various distances of models from axis A1.2.1 will be necessary. Moreover, global error bounds tacitly imply stability, and their proofs rely on the notion of dissipativity, hence the results of axis A1.2.2 will be useful for deriving global error bounds. Furthermore, balanced truncation is intimately related to observability and reachability and minimization algorithms, hence the corresponding results from axis A1.2.4 and axis A1.3.1 will be necessary.

Axis A2.2.2: Theoretical guarantees for model reduction algorithms: restricted input-output behavior.

Another type of theoretical guarantee is a proof that the reduced-order model and the original model generate the same (possibly filtered) response to some inputs. These types of guarantees are natural for the so called moment matching algorithms, and they were derived for various algorithms for linear, nonlinear, and switched systems [12,14,30,31,[START_REF] Gosea | Data-driven model order reduction of linear switched systems in the loewner framework[END_REF]. The goal of this axis to continue research for such guarantees, one possible direction is to derive similar results for Loewner-based model reduction for switched systems [START_REF] Gosea | Data-driven model order reduction of linear switched systems in the loewner framework[END_REF], and for LPV/bilinear systems [START_REF] Petreczky | Moment matching for bilinear systems with nice selections[END_REF].

In order to derive the desired results, the notion of Markov-parameters and their relationship with the inputoutput behavior will be required. Hence, we will need realization theory and partial realization algorithms from axis A2.1.6. We might also run into issues related to persistence of excitation, i.e. the relationship between Markov-parameters and output response to certain inputs. That is, axis A1.2.3 might be useful.

Axis A2.2.3: Extension of model reduction algorithms to more realistic models. The goal of this axis is to extend model reduction algorithms to new model classes. In particular, I plan to work on model reduction for hybrid systems with autonomous switching, polynomial and LPV state-space representations. For the latter class, the challenge is to develop methods which are more computationally efficient than the current methods based on balanced truncation, and which can also be applied to models which are not quadratically stable. Candidates for such algorithms are methods based on moment matching, in particular, I plan to extend the model reduction methods developed for switched systems [30,31,[START_REF] Gosea | Data-driven model order reduction of linear switched systems in the loewner framework[END_REF]. In the light of the close relationship between LPV state-space representations and switched systems described in Chapter 2, the extension is likely to be feasible. A notable subclass of LPV/hybrid models are those which arise in networked systems, where the plant can be modeled by a linear system. In those models, the scheduling variable/switching represents delays and communication constraints, and those models have a very rich structure. First steps towards model reduction algorithms were already made in [27,26,25].

The notion of Markov-parameters, minimization and realization algorithms were central to moment matching for linear [12] linear switched [30,31] and LPV/bilinear systems [28,[START_REF] Petreczky | Moment matching for bilinear systems with nice selections[END_REF], and we expect the same for other system classes. Moreover, the notions of minimality, reachability, observability were necessary for methods based on balanced truncation. That is, the results of axes A1.2.4-A1.2.5 are indispensable for the present axis. Furthermore, the notion of internal stability and dissipativity are central for methods based on balanced truncation, hence axes A1.3.2 will also be necessary for the present axis. Finally, the distances developed in axis A1.2.1 will also be necessary for global error bounds.

Axis A2.2.4: Combining system identification and model reduction: data-driven model reduction.

The goal is to combine system identification and the model reduction algorithms into one single algorithm which the could be used for calculating a reduced-order model directly from data. This is especially interesting for systems which can be modeled by PDEs; in that case it is of interest to calculate a finitedimensional approximate model directly from data. However, for such a model to be useful for control and simulation, its size should be reasonable, and hence a tradeoff between modeling accuracy and size should be achieved. The latter is central to model reduction too. Hence this axis is a closely related to Axis A2.1.3. A particularly promising candidate for data-driven model reduction is the Loewner-framework [12,10], which was recently extended to switched systems [START_REF] Gosea | Data-driven model order reduction of linear switched systems in the loewner framework[END_REF]. The challenge is to extend these methods to LPV systems and hybrid systems with autonomous switching and to adapt them to the use of realistic data. Note that the extension [START_REF] Gosea | Data-driven model order reduction of linear switched systems in the loewner framework[END_REF] uses data which is difficult to measure in practice.

Axis A2.3: Integrating system identification, model reduction and control

The goal of this axis is to integrate the results of axes A2.1 and A2.2 into control design. That is, we would like to provide theoretical guarantees that the models obtained via system identification or model reduction are good enough for control. More precisely, we would like to show that the controller designed based on a hybrid/LPV/polynomial model obtained by system identification or model reduction will also work for the true system, assuming that the true system can adequately be described by a hybrid/LPV/polynomial model. This research axis is divided into the following directions:

Axis A2.3.1: Asymptotic guarantees for using system identification for control.

The main idea is to use the continuity of controllers in the topology of models and the asymptotic consistency of identification algorithms to show that for a large enough number of data points, the controller synthesized based on the identified model will achieve the control objectives when applied to the true plant.

The argument is as follows: if a large enough number of data points is used, the identified model will be sufficiently close to a true model of the plant. If the controller synthesis algorithm is provenly correct, then the interconnection of controller with the model will satisfy the control objectives. The consistency of the identification algorithm means that for a sufficiently large number of data points, the model is close enough to a true model of the plant. Hence, if the controller is continuous in the topology of models, then the behavior of the interconnection of the controller with the plant will be sufficiently close to the behavior of the interconnection of the controller with the identified model. Hence, if the control objectives are robust, i.e., if a model satisfies them then a sufficiently close model will also satisfy them, then the interconnection of the controller with the plant should satisfy these control objectives too.

That is, in this axis, axes A2.1.1 and A1.3.3 meet. There several challenges, the following two issues seem to be the most significant:

• Formalization. The argument described above needs to be formalized mathematically. In particular, suitable formal definitions for distances between models should be proposed, and a formal proof should be provided that as the model used for controller synthesis converges to the true one, then the behavior of the closed-loop system converges to the desired one. In particular, formal statement should be provided which characterize the modeling error under which the controller computed from the identified model still achieves the control objectives for the true system.

• Reconciling assumptions of system identification and control design: stochastic vs. deterministic, input-output maps vs. behaviors.

As it was noted before, consistency results for system identification algorithms tend to be stochastic, and the formalization of the input-output behavior tends to be done in terms of input-output functions. However, for control purposes, it is often more adequate to work with deterministic systems (with possibly bounded deterministic noise) and with deterministic error bound/consistency guarantees. Moreover, the formalization in terms of behaviors is preferable to that of input-output maps, as it is more realistic for control, see axis A1.1.7.

The stochastic nature of consistency analysis of identification algorithms has to be dealt with. One option is to provide stochastic guarantees, guarantees which hold with certain probability. Note that even if the model is deterministic, the input signal may very well be stochastic, hence the consistency analysis of the system identification algorithm will be stochastic.

For the reinterpretation in terms of behaviors, the results of A2.1.4 will have to be used together with A2.1.1. Alternatively, the results of A2.1.5 might be used directly too. Moreover, system identification for new model classes will be necessary, i.e., A2.1.3 will be used. Finally, for the formalization of the results and the formal proofs, we will use axis A1.3, as we will need the properties (A1.3.I)-(A1.3.III).

• Dealing with realistic model classes.

Another issue is that for this axis, the model classes generated by system identification should be realistic and should be useful for control. In particular, model classes such as hybrid systems with autonomous switching and quasi-LPV should be covered. That is, system identification for new model classes will be necessary, i.e., A2.1.3 will be used This research axis is likely to rely heavily on axis A2.1.3.

Axis A2.3.2: Non-asymptotic guarantees for using system identification for control.

The goal of this research axis is similar to the one of A2.3.1, but instead of just showing that for a large enough number of data points the controller built using the identified model will meet the control objectives, we would like to have more precise results regarding the number of data points which is necessary. In a way, the results of A2.3.1 are just a sanity check, showing that combining system identification and control synthesis makes sense. However, they do not give the user any guidance on the number of data points which has to be chosen. In this axis, the goal is to derive bounds on the number of data points which guarantee that the controller synthesized based on the plant model learned from those data points will satisfy the control objectives for the true plant. Note that the controller synthesis could be done with modified control objectives in order to take into account model uncertainty: for instance, if we know that the L 2 distance between the true model and the identified one is less than d 1 and we want the L 2 norm of the closed loop system to be smaller than γ, then the controller synthesized for the identified plant should achieve a closed-loop L 2 gain which is smaller than γd 1 . In order to achieve this goal, the results of axes A2. The goal of this research axis is to combine theoretical guarantees for model reduction algorithms and for controller synthesis, i.e., to show that the controller synthesized using a reduced-order model will achieve the desired control objectives for the original model too. As in the case of Axis 2.3.2, this may require changing the control objectives used for controller synthesis, so that they take into account the modeling error. Recall that the theoretical guarantees for model reduction can take the form of error bounds for the difference between the original and reduce-order model,or they can come in the form of guarantees that the restricted input-output behavior the reduced-order model and the original one coincide. Both approaches should be explored. The latter approach is especially useful for formal methods and symbolic control. One of the bottlenecks in applying formal method and symbolic control for large-scale systems is that the corresponding methods do not scale-up sufficiently well for large systems. Model reduction of hybrid systems could be very useful for solving this problem. Preliminary steps in this direction were made in [31]. I would like to explore further the use of model reduction for producing models which are sufficiently small for existing tools in formal methods and symbolic control.

This research will use the results of axes A2. • apply model reduction to it, and then

• perform controller synthesis based on the reduced-order model with possibly adapted control objectives so that they take into account modeling error, then the resulting controller will achieve the original control objectives for the plant. That is, we plan to combine axes A2. 

Interplay between fundamental and methodological research

The fundamental and theoretical research axes interact in a variety of ways. As it was pointed out, axis A1 is necessary to accomplish the tasks described in A2. The detailed relationship between various axes was discussed in their description. However, to make the relationship more clear, in Figure 7.2 we summarize it in a diagram.

Emerging research directions:axes B and C

In addition to the research explained in Section 7.1, I plan to work on a few research topics, which represent a departure from the topics of Section 7.1. The first such is a direct continuation of Section 7.1, in the sense that instead of focusing on reliable models for controller synthesis, its high-level objective is to generate reliable models for more high-level decision making algorithms of the type for which artificial intelligence is used. This research direction is described in Subsection 7.2.1. The second emerging topic is the detection of the graph Integrating system identification, model reduction and control (A2.3) of interconnections of a network of dynamical systems. My interest in the latter topic is motivated by need of systems biology, especially of neuroscience. Of course, this topic might be of interest in many other domains, such as economics or sociology, which try to represent a black box system as an interconnection of several simpler subsystems. In particular, such results can be of interest for control, as they may allow estimating distributed models of the plant, which in turn, may allow the use of decentralized controllers. However, this is more of a useful side effect than the main objective of the research. What both directions have in common is that structure theory in general, and realization theory in particular, seems to be useful for both topics.

Axis B:

Reliable AI for cyber-physical systems: using control theory for machine learning

Machine learning and control theory are two closely related subjects with common roots. Nevertheless, in the past couple of decades, they developed separately. Recently, the two topics started to converge again: control theorists are becoming increasingly interested in using machine learning techniques, while researcher in machine learning start looking at control problems and at possibilities to use results from control theory for machine learning.

In the control theory community, machine learning techniques are increasingly adopted in system identification, see the description of axis A2. 1.2 and [168, 197, 290, 89, 51, 15, 239, 232, 156, 253] for some examples.

In fact, major control theory conferences include tracks on machine learning, speakers from the machine learning community are invited as plenary speakers to major control theory conference and entire research projects which involve machine learning are financed.

From the side of machine learning, there is a renewed interest in control theory. Part of this interest stems from the popularity of reinforcement learning [START_REF] Boyan | Generalization in reinforcement learning: Safely approximating the value function[END_REF][START_REF] Sutton | Reinforcement learning: An introduction[END_REF][START_REF] Sutton | A convergent o(n) temporal-difference algorithm for offpolicy learning with linear function approximation[END_REF], which shares its roots with adaptive control [39,[START_REF] Mosca | Optimal, Predictive and Adaptive Control[END_REF][START_REF] Poznyak | Self-Learning Control of Finite Markov Chains[END_REF]. Other source of interest is the desire to apply machine learning to cyber-physical systems. The challenge there is twofold. First, these applications tend to be safety critical, and hence there is an increased need in theoretical Axis B3: Theoretical limits of reinforcement learning algorithms.

The objective of this axis is to study the theoretical limits of reinforcement learning algorithms from machine learning [START_REF] Kailasam | Improved regret bounds for undiscounted continuous reinforcement learning[END_REF], using results from adaptive control and system identification. In particular, we would like to investigate reinforcement learning algorithms applied to linear and piecewise-linear dynamical systems. The latter represent a simple but powerful class of state-space representations with infinite and uncountable statespaces. Note that the use of finite state-and action-spaces is a limiting factor in scalability of reinforcement learning algorithms, so this line of research has the potential to deliver algorithms which scale up for larger systems. Since reinforcement learning and adaptive control a closely related, based on the analogy with adaptive control it is likely that this research axis will rely on such concepts as identifiability, minimality, persistence of excitation, i.e., concepts developed in research axis A1.2. It is also expected that learnability results from axis B1 will be useful too.

Axis C: Reverse engineering of network topology of interconnected systems

I plan to continue working on the problem of reverse engineering of the network topology of interconnected systems, by further extending the results presented in Chapter 6.

More precisely, in Chapter 6 existence of a state-space representation with a certain network structure was characterized by the presence of certain statistical relationships (Granger-causality). This opens up the possibility of reverse engineering the network structure of a system based on data. More precisely, the presence of Grangercausality relationships can be checked based on observed data. In fact, it can be cast into the framework of hypothesis testing. If the hypothesis of the presence of Granger-causality is accepted based on the data, then we can say that there exists a state-space representation of the observed behavior which has a certain network graph structure. This means that that the true underlying system may have such a network graph structure. If the hypothesis is rejected, that there does not exist a state-space representation with such a network structure, hence, the true system cannot have such a network structure either. In other words, the results of Chapter 6 allow us to test if a certain hypothesis regarding the network structure of the true system is consistent with data. This is not entirely reverse engineering, as we do no reconstruct the network structure, we merely say if a certain network structure is possible based on our observations. However, systems with different network structures can generate the same observations, so in general the problem of reverse engineering of the network structure is not well posed. Moreover, for applications in system biology, the presence of a certain network structure has to be proven experimentally anyway. It is then useful to have a procedure to eliminate hypotheses on the presence of a certain network structure by statistical means, as it allows to guide the experiments and avoid the ones which are not likely to lead to a positive result.

This research program was partially carried out for linear systems: the relationship between Granger-causality and the existence of a certain network structure is quite well understood, at least for the case of autonomous stochastic state-space representations. There are some preliminary steps on hypothesis testing for checking Granger-causality [133, Chapter 7], see also Subsection 6.2.5 of Chapter 6, but much more work needs to be done.

The next step would be to extend the results of Chapter 6 to linear systems with inputs, nonlinear, LPV and switched systems, and to develop statistically sound hypothesis testing for deciding if a certain network graph is consistent with data. Finally, it would be of interest to apply the results real data from neuroscience (fMRI, EEG) and systems biology.

More precisely, I plan to work along the following axes:

Axis C1: Relationship between Granger-causality and the network structure for stochastic nonlinear, LPV and switched systems with inputs

The results described in Chapter 6 apply only to linear and bilinear systems without linear input terms. We would like to extend those results to systems with inputs, and to more general models, such as polynomial/LPV/hybrid models. The latter is especially useful, as one of the main application of this research is the study of brain connectivity [START_REF] Roebroeck | Causal time series analysis of functional magnetic resonance imaging data[END_REF][START_REF] Valdes-Sosa | Effective connectivity: Influence, causality and biophysical modeling[END_REF][START_REF] Friston | Dynamic causal modeling[END_REF][START_REF] Goebel | Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping[END_REF]. There, EEG and fMRI data is used to build hypothesis on the connectivity of brain regions. However, fMRI data is normally modeled as an output of cascade interconnection of a bilinear system with heamodynamic model, and the bilinear systems themselves contain linear input terms. Hence, it would be desirable to extend those results to models which can cover completely the existing models used for fMRI data. This research axis will rely heavily on (stochastic) realization theory of these model classes, to be developed in axes A1.1.1-A1.1.5.

Axis C2: Deterministic reformulation of Granger-causality and its relationship with the network structure of linear, nonlinear, hybrid and LPV models For many systems, the assumption that the system is stochastic is not valid. Even when it could be valid, in many experimental settings the amount of data is not sufficient to estimate stochastic models in a reliable manner. This might be the case for some applications in neuroscience and in system biology. In this case, deterministic models are a better choice. However, the existing concepts of Granger-causality apply only to stochastic models. The challenge is to extend these concepts to the deterministic case in such a manner that the extension represents a meaningful formalization of causality and that it is equivalent to connectivity structure of the model.

For this research axis, we are likely to need elements of behavioral approach, hence, in addition to axes A1.1.1-A1.1.5 we will also use axis A1.1.7.

Axis C3: Testing the consistency of a network graph with data

The previous axes C1-C2 only establish an equivalence between Granger-causality relationships of the observed signals, and existence of a state-space representation with a certain network structure. As it was explained above, this relationship could be used for deriving a hypothesis testing procedure for the presence of Granger-causality relationships among the observed processes. Checking Granger-causality relationship can be done by comparing variances of the innovation noise for various processes, see [START_REF] Jozsa | Relationship between Granger non-causality and network graphs of state-space representations[END_REF]Chapter 7], see also Subsection 6.2.5 of Chapter 6. The goal of this axis is to further extend the existing results on testing hypotheses regarding the presence of a certain network structure. The main research goals are to make the existing algorithms statistically sound and to extend them to other classes of models (linear systems with inputs, LPV and switched systems, etc.). This axis will rely on the results of axes C1-C2. For checking Granger-causality, we will need the notion of state-space realization in forward innovation form, and the ability to calculate such state-space representations from data, see [START_REF] Jozsa | Relationship between Granger non-causality and network graphs of state-space representations[END_REF]Chapter 7]. Hence, we will need (stochastic) realization algorithms, and this axis A1 will be required for this axis. Moreover, we will have to calculate state-space models from data, and hence the results of axis A2 will be used.

Axis C4: Applications to neuroscience and systems biology

The goal of this research axis is to apply the results of the previous axes to exploring the network graph for neuroscience and systems biology. As it was pointed out in Chapter 6, this problem arises in neuroscience, when studying brain connectivity, [START_REF] Roebroeck | Causal time series analysis of functional magnetic resonance imaging data[END_REF][START_REF] Valdes-Sosa | Effective connectivity: Influence, causality and biophysical modeling[END_REF][START_REF] Friston | Dynamic causal modeling[END_REF][START_REF] Goebel | Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping[END_REF], and in system biology, when studying gene regulation networks [START_REF] Nordling | On sparsity as a criterion in reconstructing biochemical networks[END_REF][START_REF] Julius | Genetic network identification using convex programming[END_REF][START_REF] Kang | Discriminating direct and indirect connectivities in biological networks[END_REF]. In particular, the use of Granger-causality and network graphs of state-space representations are both well established in neuroscience [START_REF] Valdes-Sosa | Effective connectivity: Influence, causality and biophysical modeling[END_REF][START_REF] David | fMRI connectivity, meaning and empiricism: Comments on: Roebroeck et al. the identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution[END_REF][START_REF] Roebroeck | Reply to friston and david: After comments on: The identification of interacting networks in the brain using fmri: Model selection, causality and deconvolution[END_REF]. However, the mathematical foundations of both methods have not been investigated in depth. The previous axes C1-C3 can be viewed as the theoretical foundations for applying these methods. The goal of this axis is then apply the theoretical results to real data and to evaluate their relevance and efficiency.

Note that for systems biology and for neuroscience the theoretical foundations of the methods are important, because in both cases the goal is to find the truth about the system under study, and in both cases experimental validation of the results is difficult. The latter is especially the cases in neuroscience, where the goal is to study the connectivity between brain regions in humans. There, the results of experiments on animals are difficult to extrapolate to humans, and such experiments are costly, and it is impossible to make experiments on humans. Hence, experimental validation of the ground truth can take place only by observing neurological disorders, where it is known that the connection between brain regions becomes broken, and hence it becomes a byproduct of trying to give medical treatment to such patients. When methods are used which are theoretically not sound, then the probability of deriving a false conclusion from data is high, and it is then very difficult to falsify such false conclusions using experiments. For this reason, it is preferable to avoid methods which are theoretically questionable.

Interplay between research axes A,B,C

While research axes B and C are quite distinct, they both rely on fundamental structural properties developed in Axis A. As such, they can be viewed as particular applications of Axis A. The relationship between various axis is illustrated on Figure 7.3 below.

Conclusions

In this chapter I have presented my plan for future research. The high-level goal of future research is to provide theoretical foundations for model-based design of decision making algorithms, i.e., algorithms which use mathematical models of the underlying phenomenon to predict its behavior and change according to some objectives. To this end, two questions have to be dealt with:

1. assuming that the model is an adequate representation of the phenomenon, can we guarantee that the decision making algorithm based on this model will achieve the desired objectives, 2. can we guarantee that the model is an adequate representation of the underlying phenomenon.

I plan to concentrate on the latter problem: how to get model from data or from other more complex models in such a manner that they represent adequately the underlying phenomenon. Controller synthesis is a particular case of decision making algorithms, and due to my background, a significant part of my efforts will be directed for contribution theoretical foundations of modeling for control. In particular, I plan to continue contributing to theoretical foundations of systems identification and model reduction for control. What distinguishes the proposed research from the one already carried by other researchers is that it relies heavily on structural, algebraic properties of models, in particular on realization theory. In fact, part of the proposed research focuses on further developing realization theory. That is, the proposed research could be summed up as follows: developing realization theory and applying it theoretical foundations of system identification and model reduction algorithms. Moreover, I plan to concentrate on those theoretical questions which are relevant for controller synthesis.

In addition to theoretical foundations of modeling for control, I plan to work on two other topics: namely, application of control and systems theory to machine learning (PAC, PAC-Bayesian, RNN, reinforcement learning), and reverse engineering of network graphs of interconnected dynamical systems. While these two topics are not related at a first glance, realization theory is relevant for both topics.

That is, future research is organized around realization theory and its applications. This choice is motivated by my desire to have a high degree of continuity with the past research activities while exploring significantly new topics. 

Summary and general conclusions

In this manuscript I have presented some selected topics I have worked on in the past decade. More precisely, I have presented an overview of my work on realization theory and some of its applications to system identification and model reduction. In my research I focused on classes of dynamical systems (hyrid systems, linear parametervarying systems, bilinear systems) which can be used to represent cyber-physical systems, i.e., systems which combine physical systems with digital computers. The manuscript starts with a general introduction in Chapter 1, where I explain my research philosophy, my motivation to study realization theory and past research activities. The first chapter is followed by 5 technical chapters, grouped in 2 parts: the first part presents some selected topics on realization theory, the second part presents some applications of realization theory to system identification and model reduction. The manuscript is concluded with the description of future research plans. The manuscript contains two appendices: one appendix contains my detailed CV, the other one contains some background technical material on realization theory of linear switched systems.

As it was discussed in Section 1.1, Chapter 1, the motivation for studying realization theory and its applications is the need to develop mathematically correct methods for building models of cyber-physical systems. Moreover, the built models should be suitable for designing decision algorithms. In particular, the models should be suitable for controller synthesis and fault detection. Such models can be built either from data or from more complex models, which are derived from domain knowledge. Building models from data is the topic of system identification. Computing simplified models from complex one, while preserving relevant properties, is the topic of model reduction. That is, what we need are formal proofs of correctness of system identification and model reduction algorithms. In turn, for the latter tasks it is useful to thoroughly understand the relationship between observed behavior and structure of models representing them, which is the topic of realization theory. In addition, realization theory helps to relate properties of input-output behaviors with those of the underlying models, which is itself useful for controller synthesis.

In the past decade my goal was to apply realization theory of hybrid systems to model reduction and system identification, and to extend realization theory to other system classes.

In order for realization theory of hybrid systems to be useful for system identification, it had to be extended to the discrete-time case, and stochastic noise and switching had to be taken into account. The need to extend realization theory to discrete-time hybrid systems was motivated my work on realization theory of discrete-time switched systems. I also contributed to other realization theory of some other classes of hybrid systems (semialgebraic discrete-time hybrid systems, continuous-time linear systems with unknown switching, etc.).

It turned out that the realization problem linear parameter-varying (LPV) systems can be developed using realization theory of linear switched systems. Considering the widespread use of LPV systems in applications and the increased need for system identification of LPV systems, this observation motivated me to explore realization theory and system identification of LPV systems. I presented this work in Chapter 2 of this manuscript. In technical terms, these results required non-trivial application of the theory of Fliess-series expansion of input-output maps of nonlinear systems.

The need to include stochastic noise and stochastic switching for analyzing identification algorithms for hybrid systems lead to the study of jump-Markov systems. The latter inspired the development of realization theory of generalized stochastic bilinear systems, which includes jump-Markov systems and stochastic LPV systems as a special case. In technical terms, this work required a non-trivial extension of the geometric (Hilbert-space based) realization theory of stochastic linear systems, and its merger with realization theory of discrete-time linear switched systems. For this reason, these results were included in Chapter 3, where I presented an overview of realization theory of generalized stochastic bilinear systems, and its application to realization theory of jump-Markov systems.

In parallel to extending realization theory, I also worked on applying existing results to model reduction and system identification. In particular, I worked on applying realization theory of linear switched systems to analyzing model reduction algorithms and to propose new ones. An overview of my work on model reduction of linear switched systems was presented in Chapter 4. My research on model reduction was centered around the following two approaches: balanced truncation and moment matching. In balanced truncation states which are difficult to control and to observer are removed. My work on balanced truncation was aimed at proving analytical bounds for the difference between the input-output behavior of the original and the reduced models. Realization theory served as an important theoretical tool for showing that balanced truncation methods are wellposed (their result does not depend on the choice of the state-space representation) and for providing intuition for the definition of reachability/observability grammians. The proofs of the error bounds relied on proving that the error system is dissipative for a well-chosen storage function. Moment matching was based on calculating a reduced-order model while preserving certain Markov-parameters of the original model. The very idea of this approach relies on realization theory, namely, on the notion of Markov-parameters. The corresponding model reduction algorithms are variations of the realization algorithm developed for linear switched systems.

Another major application of realization I worked was system identification of hybrid systems, and later LPV systems. First I focused on persistence of excitation and structural identifiability of linear switched systems. However, due to the close relationship between realization theories of LPV and switched systems, I soon started focusing more on structural identifiability and subspace identification of LPV systems. For the latter, realization theory of generalized stochastic bilinear systems turned out to be useful, as it allowed to develop elements of realization theory of stochastic LPV systems and to formulate statistically consistent subspace identification methods. Note that the subspace identification algorithms relied on first estimating Markov-parameters/output covariances and then applying the realization algorithm for LPV/generalized stochastic bilinear systems. In that respect, they differ from many other subspace identification algorithms for LPV systems found in the literature. An overview of my research on identifiability and subspace identification of LPV systems was presented in Chapter 5.

In addition to classical system identification for LPV systems, I also worked on reverse engineering of the network structure of interconnected systems. This work was presented in Chapter 6. The aim was to establish a relationship between statistical properties (Granger-causality) of the observed output and the communication graph of the model which generates those outputs. First, the case of outputs generated by stochastic LTI models was considered, later similar results were derived for outputs generated by stochastic generalized bilinear systems. This work is a non-trivial application of stochastic realization theory. Moreover, due to the use of Grangercausality, which is an equivalent formulation of feedback freeness, these results are expected to be useful for analyzing identification algorithms for generalized bilinear systems with additive inputs. The latter includes stochastic LPV systems and jump-Markov linear systems. This research direction can be viewed as a particular case of system identification in the broad sense of the word, as the original goal was to indeed find the network structure from data. However, the latter problem is ill-posed, as in general, the network structure cannot be uniquely determined from data. Instead, the best what we can do is to determine if a certain network structure is consistent with data, i.e., if there exists a model of the observed data with a given network structure. Even for the latter case, the derived results represent only first steps and further research is required to derive efficient and well-founded statistical hypothesis testing methods.

As it was mentioned in Section 1.3 of Chapter 1, in addition to the topics mentioned above, I also worked on several others, such as theory of descriptor systems, symbolic control of hybrid systems, discrete-event systems and their applications, applications of control theory to water networks, stability analysis and observer design of sampled-data systems, machine learning. The results were not included in the manuscript as they are either recent research directions or they are less representative of my main research interests.

My plans for future research can be divided into the following directions. First, I would like to continue working on reliable modeling for control of cyber-physical systems. In particular, I would like to further develop realization theory of hybrid and LPV systems, and use it for developing the theoretical foundations of system identification and model reduction of these systems. In addition, I would like to explore the interplay between the structural properties of these systems (controllability, observability, minimality) and control synthesis. The second research direction is the development of reliable machine learning algorithms for cyber-physical systems. In particular, I would like to work on formal mathematical proof of correctness (consistency) of machine learning algorithms when applied to cyber-physical systems. At a first glance it represents a departure from my previous research, however, this is not entirely the case, as machine learning applied to physical systems can be viewed as a particular case of system identification. In fact, many of the challenges are similar. In particular, I expect that developing realization theory for neural networks will be useful for this research direction. I have already done some preliminary work in this direction. Another future research direction is the reverse engineering of network structures, that is, the continuation of the topic discussed in Chapter 6. In addition to theoretical work I also plan to explore applications of reverse engineering of network structures to neuroscience and systems biology. A detailed description of my plans for future research was presented in Chapter 7.

The results discussed in Chapter 2 -6 were derived in collaboration with a large number of researchers from several countries, and are partially based on the work of PhD students and postdocs I co-advised. In particular, Chapter 4 -6 each include results from PhD theses I co-advised. More precisely: Chapter 2 (realization theory of LPV systems) was developed in collaboration with Guillaume Mercère (Université de Poitiers,France) and Roland Tóth (Eindhoven University of Technology, The Netherlands).

Chapter 3 (realization theory of generalized stochastic bilinear systems) was carried out in collaboration with René Vidal (Johns Hopkins University, USA), and was started when I had a postdoc position under his supervision.

Chapter 4 (model reduction of hybrid systems):

• the results on moment matching using Markov-parameters were part of the PhD thesis of Mert Bastug (Aalborg University , Denmark and IMT-Lille-Douai, France), whom I co-advised with John Leth and Rafael Wisniewski (Aalborg University, Denmark)

• the results on balanced truncation and moment matching in frequency domain were derived in collaboration with John Leth, Rafael Wisniewski, Ion Victor Gosea (Max Planck Institute, Germany), Athansios C. Antoulas (Max Planck Instute, Germany and Rice University, USA) and Christophe Fiter (CRIStAL, France).

Chapter 5 (identifiability and subspace identification of LPV systems):

• Identifiability of LPV systems was the topic of the PhD thesis of Ziad Alkhoury (Université de Poitiers and IMT-Lille-Douai,France), whom I co-advised with Guillaume Mercère,

• The results on reduced basis subspace identification algorithm for deterministic LPV systems were developed in collaboration with Roland Tóth and Pepijn Cox (Eindhoven University of Technology, The Netherlands).

• Subspace identification algorithms for stochastic LPV were developed in collaboration with Manas Mejari (CRIStAL, France), of whom I was the advisor during his postodoctoral appointment, Chapter 6 (reverse engineering of networks) is based on the PhD thesis of Mónika Józsa (Groningen University, The Netherlands, IMT-Lille-Douai,France), whom I co-advised with Kanat Camlibel (Groningen University, The Netherlands).

Remark B.2 (Minimal LSS may have non-minimal subsystems). Note that observability (span-reachability) of an LSS does not imply observability (reachability) of any of its linear subsystems. In fact, it is easy to construct a counter example [START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach: Part i[END_REF]: Σ = (n, {(A q , B q ,C q ) | q ∈ Q}), Q = {q 1 , q 2 }, p = m = 1 and

A q 1 =   0 1 0 0 0 0 0 0 1   , B q 1 =   0 1 0   , C q 1 =   1 1 0   T , A q 2 =   0 0 0 0 0 0 0 1 0   , B q 2 =   0 0 0   , C q 2 =   0 0 1   T
It is easy to see that Σ is span-reachable and observable, yet none of the subsystems are reachable or observable. Together with Theorem B.1, which states that minimal realizations are unique up to isomorphism, this implies that there exist LSSs which cannot be converted to an equivalent LSS where all (or some) of the linear subsystems are observable (or reachable). and G satisfies a number of technical conditions. For the continous-time case, these conditions are elaborated in [START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach: Part i[END_REF][START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF], for the discrete-time case these conditions are described in [START_REF] Petreczky | Realization theory for discrete-time linear switched systems[END_REF]. These conditions imply that there exists maps S f q 1 ,q 2 : Q * → R p such that for the discrete-time case G f (σ , s,t) = S σ (t),σ (s) (ε) s = t -1 S σ (t),σ (s) (σ (s + 1) • • • σ (t -1)) s < t -1 For the continuous-time case, the conditions on G f imply that G f (σ , s,t) depends analytically t 1 , . . . ,t k , where s = t 0 ≤ t 1 < t 2 < • • • < t k < t = t k+1 and σ restricted to [t i ,t i+1 ) equals the constant q i ∈ Q, i = 0, . . . , k and S f q 0 ,q k are the coefficients of the Taylor series expansion of G f (σ , s,t), if the latter is viewed as an analytic function of τ i = t it i-i , i = 1, . . . ,t k , i.e., S f q,q 0 (ε) = G f q 0 q (0, 0), S f (q, q 0 )(q

1 • • • q k ) = d dt 1 • • • d dt k G f q 0 q 1 •••q k (0,t 1 , . . . ,t k , 0)| t 1 =•••t k =0
For the precise definition, see [START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach: Part i[END_REF], or [START_REF] Petreczky | Realization theory of linear hybrid systems[END_REF]Definition 25].

In both cases (CT and DT), the functions {S f r,q } r,q∈Q uniquely determine G f and hence f , and conversely, the values of {S f r,q } can uniquely be recovered from the values of f . For the discrete-time case,

S f r,q (v) = f (u 1 , σ )(t) . . . f (u m , σ )(t) ,
where u i (0) is the ith standard unit vector of R m , and u i (s) = 0 for all s > 0, i = 1, . . . , m, and t and σ are defined as follows: if v = ε, then t = 1 and σ is any element of Q such that σ (0) = q and σ (1) = r; if v = q 1 • • • q k , q 1 , . . . , q k ∈ Q and k > 0, then t = k + 1 and σ ∈ Q is such that σ (0) = q, σ (t) = r and σ (i) = q i for all i = 1, . . . ,t -1.

For the continous-time case, similar formulas can be stated: for any v = q 1 q 2 • • • , q k ∈ Q * , q 1 , . . . , q k ∈ Q, k > 0 and u ∈ U , define the map f u,v : R k + → R p as follows where σ ∈ Q is such that for any i = 0, . . . , k -1, the restriction of σ to [T i , T i+1 ) is q i+1 ∈ Q, T 0 = 0, T i = ∑ i j=1 t j . In other words, f u,q 1 •••q k (t 1 , . . . ,t k ) is the output before the k + 1th switch, if in every discrete mode q i the system stays for t i time. Let u j be the constant function which takes as value the jth standard unit vector of R m .

S f

q,q 0 (v) =

d dt 0 d dt 1 • • • d dt k
f u 1 ,q 0 vq (t 0 ,t 1 , . . . ,t k , 0)) . . . f u 1 ,q 0 vq (t 0 ,t 1 , . . . ,t k , 0))

| t 0 =•••=t k =0 if |v| = k > 0,
S f q,q 0 (ε) = d dt 0 f u 1 ,q 0 q (t 0 , 0)) . . . f u 1 ,q 0 vq (t 0 , 0))

| t 0 =0 (B.8)
Then for any v ∈ Q * , M f (v) is defined as Φ σ : {(t, τ) ∈ T × T | τ ≤ t} → R n×n , such that in DT, Φ σ (t, s) = A(σ (t -1))A(σ (t -2)) • • • A(σ (s + 1)), and in CT X σ ,s : [s, ∞) t → Φ σ (t, s) is the unique absolutely continous matrix-valued function which satisfies d dt X σ ,s = A(σ (t))X σ ,s and X σ ,s (s) = I n .

M f (v) =       S f 1,1 (v), • • • , S f 1,D (v) S f 2,1 (v), • • • , S f 2,D (v) . . . • • • . . .
Similarly to the linear case, the Markov-parameters M f can be written as products of the matrices of an LSS realization. To present this result, we need the following notation. If v = q 1 • • • q k with q 1 , . . . , q k ∈ Q, k > 0, then Using the notation of (B.8), we can rewrite (B.10) as S f q,q 0 (v) = C q A v B q 0 , ∀q, q 0 ∈ Q. 

A v = A q k A q k-1 • • • A q 1 if k > 0, A ε = I n
M f (ε) = C 1 B 1 C 1 B 2 C 2 B 1 C 2 B 2 = 1 0 0 0 M f (i) = C 1 A i B 1 C 1 A i B 2 C 2 A i B 1 C 2 A i B 2 = 1 0 0 0 , (B. 11 
)
where i = 1, 2.

Next we define the notion of the Hankel-matrix of f . Similarly to the linear case, the entries of the Hankelmatrix are be formed by the Markov parameters of f . For the definition of the Hankel-matrix of f , we will use lexicographical ordering on the set of sequences Q * . Definition B.2 (Hankel-matrix). Consider the lexicographic ordering ≺ of Q * from Define 2.1. Define the Hankel-matrix H f of f as the following infinite matrix

H f =      M f (v 1 v 1 ) M f (v 2 v 1 ) • • • M f (v k v 1 ) • • • M f (v 1 v 2 ) M f (v 2 v 2 ) • • • M f (v k v 2 ) • • • M(v 1 v 3 ) M f (v 2 v 3 ) • • • M f (v k v 3 ) • • • . . . . . . • • • . . . • • •      ,
i.e. the pD × (mD + 1) block of H f in the block row i and block column j equals the Markov-parameter M f (v j v i ) of f . The rank of H f , denoted by rankH f , is the dimension of the linear span of its columns.

In other words, the lth block column of H f is the sequence of Markov-parameters {M f (v l v k )} ∞ k=1 . If |Q| = 1, then H f coincides with the Hankel-matrix as it was defined for linear systems.

Theorem B.3 (Existence, [START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF][START_REF] Petreczky | Realization theory for discrete-time linear switched systems[END_REF][START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach: Part i[END_REF]). The input-output map f has a realization by an LSS if and only if f has a GKR and rankH f < +∞. A minimal realization of f can be constructed from H f .

In fact, we can formulate a Kalman-Ho-like realization algorithm for LSSs. To this end, for every M, L ∈ N, we define the following sub-matrix of the Hankel-matrix H f :

H f ,L,M =      M f (v 1 v 1 ) M f (v 2 v 1 ) • • • M f (v N(M) v 1 ) M f (v 1 v 2 ) M f (v 2 v 2 ) • • • M f (v N(M) v 2 ) . . . . . . • • • . . . M f (v 1 v N(L) ) M f (v 2 v N(L) ) • • • M f (v N(M) v N(L) )      . (B.12)
Recall from Definition 2.1 that N(K) is the unique integer such that {v 1 , . . . , v N(K) } is the set of all element of Q * of length at most K. Intuitively, H f ,L,M is the sub-matrix of H f , obtained by keeping the columns of H f indexed by words of length at most M and keeping the rows indexed by words of length at most L. In contrast to H f , the matrix H f ,L,M is a finite matrix, albeit a very large one: its size is exponential in M and L. We are now read to state the realization algorithm in Algorithm 12. such that C v i ∈ R n×(Dm) , i = 1, 2, . . . , N(N + 1), i.e. C v i ∈ R n×(Dm) , i = 1, 2, . . . , N(N + 1) are the block columns of R. Define R, R q ∈ R n×J N , J N = N(N)mD, q ∈ Q as follows

R = C v 1 , . . . , C v N(N) ,
R q = C v 1 q , . . . , C v N(N)q .

Note that for any i ∈ {1, . . . , N(N)} there exists j = j(i, q) ∈ {2, . . . , N(N + 1)} such that v i q = v j , hence R q is well defined. 3: Construct Σ N = (n, {(A q , B q ,C q ) | q ∈ Q}) such that 

A q = R q R + ,
where R + is the Moore-Penrose pseudo-inverse of R.

4: Return Σ N

The following theorem gives conditions under which the state-space representation returned by Algorithm 12 is a realization of the map f .
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 11 Realization algorithm Inputs: an integer N > 0 and the Hankel-matrix H F,N,N+1 . Output: LPV-SSA Σ N Compute a decomposition H F,N,N+1 = OR, where O ∈ R I N ×n and R ∈ R n×J N+1 and rank R = rank O = n, I N = N(N)n y (n p + 1) and J N+1 = N(N + 1)n u (n p + 1). 2: Consider the decomposition R = C v 1 , . . . , C v N(N+1) ,

Theorem 2 . 6 (

 26 [START_REF] Petreczky | Realization theory for LPV state-space representations with affine dependence[END_REF], correctness of Ho-Kalman algorithm Algorithm 1). If rankH F,N,N = rankH F , then Algorithm 1 returns a minimal realization of F. The condition rankH F,N,N = rankH F holds for a given N, if there exists a LPV-SSA realization Σ of F such that dim Σ ≤ N + 1.

Theorem 3 .

 3 1 is a reformulation of [226, Theorem 1], and it is a direct consequence of Lemma 3.1, Lemma 3.2 and [209, Theorem 2] (Theorem B.3 of Appendix B)

  Algorithm 5 can be viewed as a generalization of minimization algorithm [205, Procedure 3], [209, Procedure 3], Procedure B.3 in Appendix B. More precisely, recall from [205, Definition 21], Definition B.1, Appendix B the definition of the subspaces W * , V * for the LSS Σ.

(

  A) kerW = O α (Σ) and V = I n . Then Algorithm 5 returns a (α, {ε} × Q)-partial realization of f [30, Theorem 3]. (B) ImV = R β (Σ) and W = I n . Then Algorithm 5 returns a ({ε} × Q, β )-partial realization of f , [30, Theorem 2]. (C) kerW = O α (Σ), ImV = R β (Σ), rank W = rank V = rank WV . Then Algorithm 5 returns (α, β )-partial realization of f , [30, Theorem 4].

Theorem 5 . 5 (

 55 Consistency of subspace identification[START_REF] Mejari | Consistent and computationally efficient estimation for stochastic LPV statespace models: realization based approach[END_REF]). Assume that 1. The nice selection pair (α, β ) is such that rank H f y ,α,β = n m , and the cardinality of α and of β is the same and it equals n m , where n m is the state-space dimension of a minimal stationary GBS realization of y. Moreover, in Step 3 of Algorithm 8, Algorithm 13 is used with the following choice of matrices O n m and R n m : O n m = N H α,β and R n m is the n m × n m identity matrix.

e 1 e 2 e 3 Figure 6 . 1 :

 2361 Figure 6.1: LTI-SS representation of a process y = [y T1 , y T 2 , y T 3 ] T with the three-node star graph as its network graph: The state and noise process of subsystem S 3 serves as an input to subsystems S 1 and S 2 .

Definition 6 . 7 (

 67 G-zero structure). Consider a process y = y T 1 , . . . , y T n T and a TADG G = (V = {1, . . . , n}, E).Let(A, K,C, I, e)

Figure 6 . 5 :

 65 Figure 6.5: Network graph of the sLTI-SS (6.15) with G-zero structure

Figure 7

 7 Figure 7.1: Relationship between axes,

7. 1 . 1

 11 Axis A1: Fundamental research: further research on realization theory and structure theory

Axis A1. 1 :

 1 Extending realization theory to more general classes of LPV and hybrid systemsThe goal of this research axis is to extend realization theory to model classes which are more realistic. In particular, I plan to address the following topics Axis A1.1.1: Realization theory of hybrid systems with autonomous switching.

Figure 7 . 2 :

 72 Figure 7.2: Relationship between sub-axes of axis A,

Figure 7 . 3 :

 73 Figure 7.3: Relationship between axes A, B and C,

  f u,v (t 1 ,t 2 , . . . ,t k ) = f (u, σ )(

9 )

 9 The value of M f are called the Markov parameters of f , and M f (v) is called the Markov parameter of f indexed by v ∈ Q * . Note that the Markov-parameters of f determine f uniquely,B.5. EXISTENCE OF A REALIZATION, KALMAN-HO ALGORITHMIf Σ be of the form (B.1), and Σ is a realization of f , then G f (σ , s,t) = C σ (t) Φ σ (t, s)B σ (s)

Lemma B. 1 (

 1 [START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF][START_REF] Petreczky | Realization theory for discrete-time linear switched systems[END_REF][START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach: Part i[END_REF]). Then Σ is a realization of f , if and only if f has a GKR, and for all v∈ Q * , M f (v) = CA v B 1 , B 2 , • • • , B D , (B.10)where C = C T 1 , C T 2 , . . . , C T D T ∈ R pD×n .

Example B. 1 . 1 ,

 11 Consider the linear switched system of the form (B.1), where Q = {1, 2}, and A Consider the input-output map f = Y Σ of Σ. Let us compute the Markov-parameters M f (ε), M f (1) and M f (2) of f . Since Σ is a realization of f , we can use (B.10)

Algorithm 12 1 :

 121 Realization algorithm Inputs: an integer N > 0 and the Hankel-matrix H f ,N,N+1 . Output: LSS Σ N Compute a decomposition H f ,N,N+1 = OR, where O ∈ R I N ×n and R ∈ R n×J N+1 and rankR = rankO = n, I N = N(N)pD and J N+1 = N(N + 1)(mD). 2: Consider the decomposition R = C v 1 , . . . , C v N(N+1) ,

B 1 ,

 1 . . . , B D = the first mD columns of R C T 1 , C T 2 , . . . , C T D T = the first pD rows of O ∀q ∈ Q :

  is the lexicographic ordering of {0, 1, . . . , n p } * , as defined in Definition 2.1 for X = {0, 1, . . . , n p }, and θ F : {0, 1, . . . , n p } * → R n y ×n u such that for all s ∈ {0, 1, . . . , n p }

* ,

  ). Recall from Definition 2.1, Section 2.2 that N(K) is the unique integer such that {v 1 , . . . , v N(K) } is the set of all element of Q * of length at most K. Intuitively, H F,L,M is the sub-matrix of H F , obtained by keeping the columns of H F indexed by words of length at most M and keeping the rows indexed by words of length at most L. The matrix H F,L,M corresponds to the matrix H S(F),L,M defined in (B.12) in Appendix B, or to the matrix defined in[205, eq. (3.17)] for f = S(F).We are now ready to state the realization algorithm Algorithm 1 based on [205, Algorithm 1], or, alternatively, Algorithm 12 of Appendix B. One way to compute the factorization H F,N,N+1 = OR in Algorithm 1 is as follows.

  3 Minimization algorithm Input: GBS G Output: Minimal GBS G m 1: Compute the associated LSS Σ G . 2: Transform it to a minimal LSS Σ m as explained in [209, Procedure 3] (see Procedure B.3 of Appendix B). 3: Let G m = G Σ m , where G Σ m is the GBS associated with Σ m , and G Σ m is computed as explained in Remark 3.3.

1 :

 1 Construct the Hankel-matrix H f y ,N,N+1 from {Λ y w } w∈Q + ,|w|≤N+2 . 2: Compute a minimal LSS Σ N from H f y ,N,N+1 using [209, Algorithm 1] (Algorithm 12 of Appendix B) or an adaptation of Algorithm 2 to LSSs (Algorithm 13 of Appendix B). 3: Compute the GBS G Σ N associated with Σ N as explained in Remark 3.3.

4: 

  .39) FILTERS, REALIZATION OF INPUT-OUTPUT RELATION VS. OUTPUT PROCESS In particular, for any t f , for large enough t, y G (t | t f ) can be made arbitrarily close to the best linear prediction of y(t) based on {z y w (t)} w∈Q + ,|w|≤t f . In other words, a GBS realization in forward innovation form is asymptotically the best linear predictor in {z y w (t)} w∈Q + ,|w|≤t f for y(t) as tt f → +∞.

  ), and hence the elements of x(t) belong to the Hilbert-space generated by {z y Lemma 3.6 (Minimality conditions for GBS in innovation form). Assume that G is of the form (3.2) is stationary realization of y in forward innovation form, and that y is full rank. Then G is a minimal realization of y, if and only if the associated LPV-SSA L

w (t)} w∈Q + . Note that E[v(t) | {z y w (t)} w∈Q + ] = 0, see the proof of [226, eq. (37), proof of Theorem 4], hence, E[y(t) | {z y w (t)} w∈Q + ] = Cx(t) and therefore e(t) = v(t).

  .31) Recall the decomposition (5.23) of F . Note that in the problem formulation above ( Σs , v) is necessarily is a realization of the stochastic component F s of F , and Σd is necessarily a realization of the deterministic component F d of F . Moreover, Σs and the variances {Q i } Problem 5.6 (Identification of the deterministic component). Compute the matrices { Âd,N

	5.2. STOCHASTIC SUBSPACE IDENTIFICATION ALGORITHM
	n p i=0 , Ĉd,N , DN t=0 such that the limits (5.28) exist and Σd from (5.30) is a realization of F d . from {y(t) -y s (t), p(t), u(t)} N
	Problem 5.7 (Identification of the stochastic component). Compute the matrices { Âs,N i , Ks,N i , Q N i } n p
	n p i=0 of {v(t)µ 2 i (t)} n p i=0 depend only on { Âs,N i , Ks,N i , Q N i } n p i=0 , i , ĜN . Likewise, Σd depends only on the matrices { Âd,N Ĉs,N i , Bd,N i } n p i=0 , Ĉd,N i , DN .
	That is, in order to solve Problem 5.5, it is sufficient to solve the following two problems.

i , Bd,N i }

Note that the modeling and controller synthesis step can be merged, leading to adaptive control[START_REF] Sastry | Adaptive Control: Stability, Convergence, and Robustness[END_REF]. For the sake of simplicity I stick to the workflow above. Note that the scientific challenges which arise in modeling for control do not disappear when using adaptive control, in fact, they tend to become even greater.

In the notation of[START_REF] Petreczky | Realization theory for discrete-time linear switched systems[END_REF], S f y q 1 ,q

(v) corresponds to S y f (q 2 vq 1 )

Here, without loss of generality, we assume that Q = {1, . . . , D} (otherwise, the elements of Q can be suitably renamed

Alternatively, O(Σ) is obtained from the observability matrix O(Σ) of Σ by taking the first p rows of the block CA v i , i = 1, . . . , N(n -1) and deleting the other rows of the same block. Note that the deleted rows are equals to one of the first p rows of the block CA v i .

Since Σ is minimal, it is observable and its observability matrix is full column rank, hence it has a left inverse.

F (0, µ)(t) and F (u, µ)(t) can naturally be identified with the random variable: Ω ω → F (0, µ( ω))(t)( ω) and Ω ω → F (u, µ( ω))(t)( ω), where µ( ω) : Z s → µ(s)( ω).

Such {α q } q∈Q exist due to the definition of admissible inputs, seeSection 3.4 
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Part II

Selected topics on application of realization theory

STOCHASTIC SUBSPACE IDENTIFICATION ALGORITHM

will be close to that of y;

, is an approximate realization of y in the weak sense: the covariances Λ y N w , T y N q,q of the output y N of Σ N are close to the corresponding covariances Λ y w , T y q,q of y for all w ∈ Q + , q ∈ Q. This follows from the fact that the matrices C N , D N , A N i , K N i , Q N i are close to the matrices C, D, A i , K i , Q i , i ∈ I 0,n p and the equation (3.9) applied to G * and G N respectively. That is, the output y N of G N is close to the process y in the sense that some of its second order moments are close to those of y. Intuitively, this means that the probability distributions of y N and y are close in some sense.

This intuition is not very satisfactory, as in general close second order moments do not formally imply that the probability distributions are close. For the linear case n p = 1, µ 1 = 1, this intuition is more satisfactory. Indeed, in that case, if the noise process v N and v are Gaussian, then so are y N and y. Then the cross covariances Λ y w = E[y(t + |w|)y T (t)], Λ y N w = E[y N (t + |w|)y T N (t)], T y q,q = E[y(t)y T (t)], T q,q y N = E[y(t)y T (t)] determine the joint probability distributions of y respectively y N uniquely. That is, if these cross-covariances are close, then so are the probability distributions of y and y N respectively.

Another way of making sense of Problem 5.4 is to use the interpretation of GBSs as predictors, as described in Subsection 3.7.1, Chapter 3. Recall that any stationary GBS can be transformed into a GBSin forward innovation form, moreover, the matrices and the noise covariance of the latter are determined by the matrices and the noise covariance of the former. In fact, recall from Subsection 3.7.1 that any the weak realization ({A N q , K N q , Q N q } q∈Q ,C N , D N ) can be used to calculate the matrices of a GBS in forward innovation form using (3.18) applied to the LSS defined (3.6). Note that the matrices of the GBS in forward innovation form are continuous functions of ({A N q , K N q , Q N q } q∈Q ,C N , D N ), and hence without loss of generality we can assume that D N = I, D = I, and G * is in forward innovation form and G N = (n x , n y , n v , x N , v N , {µ q } q∈Q , y N , {A N q , K N q } q∈Q ,C N , D N ) is in forward innovation form. Then G * can be viewed as predictors, which predict the value of y(t) based on past values of y and {µ q } q∈Q . By replacing A i , K i ,C by A N i , K N i ,C N in (3.38), G N also give rise to a linear predictor of y(t) based on past values of y(s) and {µ q (s)} q∈Q , s ∈ [tt f ,t).

More precisely, let us denote by x G N (t | t f ) and y G ( f | t f ) the processes defined as in (3.38), but with A i , K i ,C replaced by A N i , K N i ,C N , i.e., x G N (t f | t f ) = 0 and for all k ≥ t f

(5.15)

, for large enough N, G N produces predictions of y(t) which is arbitrarily close to the predictions produced by G , and the latter is asymptotically optimal as the prediction horizon goes to ∞.

Recall from Subsection 3.6.3, Chapter 3 that a stationary GBS realization of y in forward innovation form can be computed from the covariances {T y q,q } q∈Q and {Λ y w } w∈Q + ,|w|≤2n-1 . More precisely, recall from Section 3.3, Chapter 3 that we can associate the deterministic input-output map f y defined in (3.10) with the process y, and recall that there is a correspondence between LSSs realizations of f y and stationary GBS realizations of y. It is easy to see that if in Step 2 of the covariance realization algorithm Algorithm 4 from Subsection 3.6.3, Algorithm 13 from Appendix B is used, then instead of H y,k,k+1 , it is sufficient to use the Hankel-like matrices H f y ,α,β , H q, f y ,α,β , H q, f y ,α , H f y ,β ,q from (B.14)-(B.17) for some selections α, β , such that rank H f y ,α,β = n where n is the dimension of a minimal stationary GBS realization of y.

The latter version of the covariance realization algorithm inspires the following system identification algorithm: 6.2. GRANGER CAUSALITY: LINEAR CASE results of the paper. Consider a sLTI-SS (A, B,C, D, v) which is a realization of y. Denote the (time-independent 1 ) noise variance matrix by Λ v 0 = E[v(t)v T (t)]. Then, the variance matrix Λ x 0 = E[x(t)x T (t)] of the state process x of (A, B,C, D, v) is the unique symmetric solution of the Lyapunov equation

and the covariance G := E[y(t)x T (t + 1)] satisfies

In light of this, the Markov parameters of the input-output map of the LTI-SS (A, G T ,C,

Therefore, sLTI-SS realizations of y yield LTI-SSs Markov parameters of which are the covariances {Λ y k } ∞ k=0 of y. Conversely, deterministic LTI-SS systems whose Markov parameters are the covariances {Λ y k } ∞ k=0 yield an stochastic linear system of y. To this end, we use the following terminology: Recall that H y t-denotes the Hilbert space generated by y(tk), k > 0. We call the process

the (forward) innovation process of y. Assume now that (A, G T ,C, Λ y 0 ) is a stable minimal deterministic LTI-SS system whose Markov parameters are the covariances of y, i.e., (6.4) holds. Let Σ x be the minimal symmetric solution 2 of the algebraic Riccati equation

where ∆(Σ) = (Λ y 0 -CΣC T ) and set K as

Proposition 6.1. [147, Section 7.7] Let K be as in (6.6) and e be the innovation process of y. Then the following sLTI-SS realization of y is minimal:

Note that if x is the state of (A, K,C, I, e), then

and K is the gain of the steady-state Kalman filter [START_REF] Lindquist | Linear Stochastic Systems: A Geometric Approach to Modeling, Estimation and Identification[END_REF]Section 6.9]. This motivates the following definition: Let e, y∈R p be ZMSIR processes and A∈R n×n , K ∈R n×p ,C∈R p×n , D∈R p×p . A sLTI-SS (A, K,C, D, e) such that it is a realization of y and where e is the innovation process of y and D = I p is called forward innovation representation of y or a stochastic LTI realization of y in forward innovation form A forward innovation representation of y called minimal forward innovation representation, if it is a minimal dimensional stochastic LTI realization of y. The representation in Proposition 6.1 is a minimal forward innovation representation, thus we conclude that Proposition 6.2. Every ZMSIR process y has a minimal forward innovation representation.

1 stationarity implies that the (co)variance matrices are time-independent 2 for any other symmetric solution Σ, the matrix Σ-Σ is positive definite AND BILINEAR SYSTEMS In the sequel, we will use the following covariance realization algorithm for computing a minimal forward innovation representation of y. 

where R + is the Moore-Penrose pseudo-inverse of R.

Step 4 Find the minimal symmetric solution Σ x of the Riccati equation (6.5) (see e.g., [START_REF] Katayama | Subspace Methods for System Identification[END_REF]Section 7.4.2]).

Step 5 Set K as in (6.6) and define Λ e 0 := Λ y 0 -CΣ x C T . Remark 6.1 (Correctness of Algorithms 9). Consider a ZMSIR process y with covariance sequence {Λ y k } ∞ k=0 and a sLTI-SS ( Ã, B, C, D, v), which is a realization of y. Let e be the innovation process of y and N be larger than or equal to the dimension of a minimal stochastic linear system of y. Proposition 6.3 shows that minimality of a sLTI-SS (A, K,C, I, e) realization of y in forward innovation form can be characterized by minimality of the deterministic system (A, K,C, I). In general, the characterization of minimality in stochastic linear systems is more involved, and it is related to the minimality of the deterministic LTI-SS system (A, G T ,C, Λ y 0 ) associated with the stochastic stochastic linear system ([163, Corollary 6.5.5]). The following Proposition shows that minimal sLTI-SS realizations of y in forward innovation form are isomorphic. Isomorphism is defined as follows: two sLTI-SS (A, K,C, I, e) and ( Ã, K, C, I, e) are isomorphic if there exists a non-singular matrix T such that A = T ÃT -1 , K = T K and C =CT -1 . Again, in general, the result does not apply for stochastic linear systems. Proposition 6.4. [163, Theorem 6.6.1] If (A, K,C, I, e) and ( Ã, K, C, I, e) are minimal sLTI-SS realizations of y in forward innovation form, then they are isomorphic.

Classical Granger causality between two processes

Below we discuss the relationship between Granger-causality and existence of an sLTI-SS realization in so called block triangular form. The latter class of sLTI-SS will be defined later. The systems of that class have the property that their network graph has two nodes and one edge. We will follow the presentation of [START_REF] Jozsa | Relationship between Granger non-causality and network graph of state-space representations[END_REF].

We 

where A i j ∈ R p i ×p j , K i j ∈ R p i ×r j ,C i j ∈ R r i ×p j and p i ≥ 0 for i, j = 1, 2. If, in addition, (A Algorithm 10 below shows how to calculate minimal sLTI-SS in causal block triangular form from the covariance sequence of the output process.

AXIS A: RELIABLE MODELS FOR CONTROL OF CYBER-PHYSICAL SYSTEMS

The role of axes A1.2 is the same as for A2.1.2, with the exception that the notion of distance between models (axis A1.2.1) is even more indispensable.

Axis A2.1.3: Theoretically sound new system identification algorithms for more realistic model classes.

The objective is to derive new system identification algorithms which apply to more realistic model classes and then execute for them the research program described in axes A2.1.1-A2.1.2. That is, this axis can be viewed as an extension of A2.1.1-A2.2.2 to new system identification algorithms and new model classes.

Possible extensions include

• Black-box/gray-box system identification algorithms for LPV systems based on realization algorithms, together with the corresponding theoretical guarantees, preliminary results in that direction are in [START_REF] Mejari | Consistent and computationally efficient estimation for stochastic LPV statespace models: realization based approach[END_REF][START_REF] Mejari | Realization and identification algorithm for stochastic LPV state-space models with exogenous inputs[END_REF] and they were also discussed in Chapter 5.

• Realization theory based system identification algorithms for polynomial/quasi-LPV systems and hybrid systems with autonomous switching, for some preliminary steps see [START_REF] Petreczky | Realization theory of discrete-time semi-algebraic hybrid systems[END_REF][START_REF] Westra | Identification of piecewise linear models of complex dynamical systems[END_REF].

• System identification for aperiodically sampled sampled-data and quantized systems, in particular, networked control systems, [START_REF] Wang | System Identification with Quantized Observations[END_REF][START_REF] Garnier | Identification of Continuous-time Models from Sampled Data[END_REF][START_REF] Joo P Hespanha | A survey of recent results in networked control systems[END_REF][START_REF] Hetel | Recent developments on the stability of systems with aperiodic sampling: An overview[END_REF]: such systems can be represented as LPV/hybrid systems, but they have a number of particular properties.

• System identification for finite-dimensional approximations of infinite dimensional models. This is relevant for identifying systems which can be modeled by PDE: in practice, one uses finite dimensional approximations of such PDEs, and hence it makes more sense to try to estimate a finitedimensional approximation from data, rather than to estimate the parameters of a PDE.

This axis relies on the realization algorithms to be developed and analyzed in A1.2.5. As it was explained in the description of axis A2.1.1, in order to reformulate these realization algorithms as system identification algorithms and prove their consistency, we will need the notion of persistence of excitation (axis A1.2.3). Moreover, in order to formally state consistency results, we will have to use the notion of topology for the space of models from axis A1.2.1.

Axis A2.1.4: Control-oriented reinterpretation system identification algorithms in terms of (deterministic) input-output behaviors.

The goal of this axis is to bridge the gap between a purely statistical interpretation of the models generated by system identification algorithms, and the needs of controller synthesis. As such, this research axis is a logical continuation of the research axis A2.1.1-A2.1.3.

In axes A2.1.1-A2.1.3 we followed the classical approach of viewing system identification as a statistical estimation problem. In particular, the underlying models are assumed to be essentially stochastic, and they are interpreted as parameterizations of the probability distributions of stochastic processes from which the data used for identification was sampled. That is, even if stochastic consistency is shown, it just says that the identified model will represent approximately correctly the output response to the particular stochastic input, sample of which was used for system identification. It says nothing about the response of the model to other inputs. As it was pointed out in axis A1.2.6 this is not a sufficient guarantee for control purposes.

There are two ways to deal with it: to dismiss altogether the use of the statistical approach for models which are intended for deterministic control, and with it a large body of the existing literature, or to try to reinterpret the statistical results from a deterministic perspective. Many of the existing system identification algorithm have a statistical justification but their result is used for deterministic controller synthesis. For this reason, I believe that the second approach is more reasonable, and that the discrepancy described above is often an artifact, which is a consequence of the use of (pseudo-random) inputs rather than a consequence of physical reality.

In this axis we plan to use the results of axis A1.2.6 for showing that stochastic state-space representations returned by system identification algorithms are approximations for the entire input-output behavior of the

EMERGING RESEARCH DIRECTIONS:AXES B AND C

guarantees. Second, the physical part of such systems tends to be dynamic and it can often be modeled from the first principles. In turn, the control community has experience in dealing with dynamical systems which partially arise from first principles, and proving their properties. This experience is likely to be relevant. In particular, researchers in machine learning have also shown interest in control theory due to the need to:

• learn dynamical models of time-series [START_REF] Sapankevych | Time series prediction using support vector machines: a survey[END_REF][START_REF] Suykens | Least squares support vector machines[END_REF],

• analyze correctness and robustness of machine learning algorithms [START_REF] Hardt | Gradient Descent Learns Linear Dynamical Systems[END_REF][START_REF] Lessard | Analysis and Design of Optimization Algorithms via Integral Quadratic Constraints[END_REF]41], especially when applied to cyber-physical systems.

The objective of this research axis is to explore the application of control and systems theory to the analysis of machine learning algorithms. More precisely, I plan to investigate the following topics.

Axis B1: Theoretical limits for learning dynamical models from time series

The goal of this research axis is to combine systems identification and realization theory with the general results of the general results of [START_REF] Ryabko | Discrimination between B-processes is impossible[END_REF][START_REF] Ryabko | Testing composite hypotheses about discrete ergodic processes[END_REF] to understand which classes of dynamical systems can at all be learned from data. This axis relies both on system identification (Axis A2.1) and on realization theory (Axis A1). The latter is necessary both indirectly, via axis A2.1 and directly, in order to be able to use the topological and geometric structure of the space equivalence classes of minimal systems (Axis A1.2.1).

Axis B2: Theoretical guarantees for learning recurrent neural networks using realization theory

Recurrent neural networks (RNNs) are the most popular class of models used in deep learning when one needs to process sequential data. The high-level objective of this axis is to come up with theoretical guarantees for the correctness of learning algorithms for RNNs. In order to achieve it, we propose to use results from control theory and systems identification. More precisely, note that an RNN can be viewed as a dynamical system equipped with an internal state, input and output. Learning such an RNN from data is equivalent to estimating the parameters of the RNN, viewed as a dynamical system. Estimating parameters of dynamical systems from data is the subject of system identification. In particular, the research program of axis A2.1, especially A2.1.1-A2.1.3 becomes relevant, and it can be carried out for RNNs. That is, we would like to show asymptotic consistency for learning algorithms, and to derive PAC and PAC-Bayesian error bounds for the problem of learning RNNs.

In order to do, so we need to develop realization theory for RNNs. That is, we would like to answer the following questions:

1. Which class of observed behaviors (input-output maps) can be represented by a RNN.

2. How can we characterize minimal RNNs (RNNs of the least complexity) representing a certain observed behavior ?

3. What is the appropriate definition of minimality (smallest number of neurons, etc.) for RNNs, are minimal RNNs are related by some transformation ?

4. Is there are constructive procedure for constructing an RNN representation from input-output behavior which can be proven to be mathematically correct ?

We expect that the answer to these questions will allow us to answer the questions described in axes A1.2.1-A1.2.4 and then use them for solving the research problems described in A2.1.1-A2.1.2 for RNNs. In turn, the solution of the research problems described in A2.1.1-A2.2.2 are exactly the theoretical guarantees which are sought after. In fact, axis A2.1.2 can be viewed as an integral part of the present research axis. Axis B1 could be relevant in order to understand learnability issues for RNNs.

There are already some preliminary results in this direction, see [START_REF] Sontag | Recurrent neural networks: Some systems-theoretic aspects[END_REF]3,2,[START_REF] Defourneau | Realization theory of recurrent neural networks and rational systems[END_REF][START_REF] Shalaeva | Improved pac-bayesian bounds for linear regression[END_REF].

A more detailed overview of the PhD students and postdocs I advised is presented in Appendix A. In addition to the collaborations described above, I also worked together with a number of other researchers on topics which were not discussed in the manuscript. For a detailed overview of my other collaborations see Appendix A. • I evaluated several project proposals for the region Grand Est (France).

A.4 Scientific collaboration

Membership in PhD defense committees

• Opponent PhD thesis of Dobriborsci Dmitrii, ITMO University, St. Petersburg, December 2019.

• Assesor of the PhD thesis of Gabrielle Fiore, University of L'Aqueilla, May 2017.

• PhD defense and evaluation committee of Ivo Bleylevens, December 09, 2010, Maastricht University.

• PhD defense committee of Jana Nemcova, December 02, 2009, Vrije Universiteit, Amsterdam.

A.7 Teaching experience

PhD level courses • Calculus II (Maastricht University, Spring 2010,2011).

• Capita Selecta -Selected topics (Maastricht University, Spring 2010, 2011).

• Advanced Programming (Java), exercise classes (Ecole des Mines de Douai, Fall 2011, 2012).

• Programming and algorithms (Java) (Ecole des Mines de Douai, Fall 2012, 2013).

• Automatic control (discrete-event systems), exercise classes (Ecole des Mines de Douai, Fall 2012, Fall 2013).

• Programming and algorithms (Java):online course (Ecole des Mines de Douai, Fall 2014).

• Matlab for engineers, (Ecole des Mines de Douai, Winter 2013, Winter 2014).

• Programming and algorithms (Java), lab and execise classes (IMT Lille Douai, Fall 2018).

Co-supervised MSc. and BSc. thesis projects

2009

'Supervisory control theory applied to exception handling in Oce printers', Esmeé Bertens, MSc. thesis, Eindhoven University of Technology, Océ.

Appendix B

Review of realization theory of linear switched systems

B.1 Introduction

For the convenience of the reader in this chapter we present an overview of realization theory of linear switched systems published in [START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach: Part i[END_REF][START_REF] Petreczky | Partial-realization of linear switched systems: A formal power series approach[END_REF][START_REF] Petreczky | Realization theory for discrete-time linear switched systems[END_REF][START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF].

B.2 Linear switched systems: basic definition

We follow the presentation of [START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach: Part i[END_REF][START_REF] Petreczky | Balanced truncation for linear switched systems[END_REF]. A linear switched system (LSS) is a control system of the form

where x(t) ∈ R n is the state at time t, σ (t) ∈ Q is the discrete mode at time t, y(t) ∈ R p is the output at time t, and u(t) ∈ R m is the continuous-valued input at time t, and (ξ x)(t) = d dt x(t) in the continuous-time case, and (ξ x)(t) = x(t + 1) in the discrete-time. The set Q is a finite one, and it is referred to as the set of discrete modes. Moreover, A q ∈ R n×n , B q ∈ R n×m , C q ∈ R p×n are the matrices of the linear system in the discrete state q ∈ Q.

The following short-hand notation

is used as a short-hand representation for LSSs of the form (B.1). The number n is called the dimension (order) of Σ and will be denoted by dimΣ.

Intuitively, an LSS is just a control system which switches among finitely many linear time-invariant systems. The switching signal is part of the input. Whenever a switch occurs, the continuous state remains the same, only the differential equation governing the state and output evolution changes. That is, whenever we switch to a new linear system, we start the new linear system from the state which is the final state of the previous linear system. For all this to make sense, all the linear systems should have the same input, output and state-spaces. Finally, we do not have discrete outputs, only continuous ones.

In order to define formally the solution of a switched system (B.1), we have to put some additional restrictions of σ , x, y, u. To this end, recall the notation of Section 2.2 and let us introduce the following notation.

If we fix an initial state x 0 ∈ R n , then every input u and switching signal σ give rise to a unique state trajectory x and output trajectory y, such that (x, u, σ , y) satisfies (B.1) and such that x(0) = x 0 . We can define the inputoutput map of an LSSinduced by the initial state x 0 as the map Y Σ,x 0 : U × Q → Y such that Y Σ,x 0 (u, σ ) = y, where (x, u, σ , y) is the unique solution of the LSS(B.1) such that x(0) = x 0 . That is, every initial state of the the LSS gives rise to an input-output map.

There are several ways to model the input-output behavior of an LSS Σ:

• as the set B(Σ) of tuples (u, σ , y) such that there exists a state trajectory x of Σ such that (x, u, σ , y) is a solution of Σ,

• as the set {Y Σ,x | x ∈ R n } of input-output maps of Σ induced by all possible initial states of Σ,

• as the input-output map Y Σ,x 0 induced by a particular initial state x 0 of Σ.

For the sake of simplicity, we will adopt the third approach. In principle, this would imply that in addition specifying the matrices of Σ we would have to specify an initial state too. Again, for the sake of simplicity, we will consider the the initial state is zero. That is, we formalize the input-output behavior of Σ as a the input-output map of Σ induced by the initial state x 0 = 0. We call the input-output map Y Σ,0 induced by the initial state 0 of Σ the input-output map of Σ, and we denote Y Σ,0 by Y Σ . We would like to stress that the assumption that the initial state is zero is not essential, it is made in order to avoid notational and terminological difficulties, the general case is treated in [START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach: Part i[END_REF].

We model the input-output behavior of a system (not necessarily of a finite-dimensional LSS) as a function

In the rest of this section, functions of the form (B.3) will be called input-output maps . Such a function captures the behavior of a black-box, which reacts to piecewise-continuous inputs and switching sequences by generating outputs in R p . Next, we define what it means that this black-box can be modeled as an LSS, i.e. that an LSS is a realization of f . The LSS Σ is a realization of an input-output map f of the form (B.3) , if Y Σ = f , i.e. if the input-output map of Σ coincides with f . If Σ is a realization of f , then Σ is a minimal realization of f , if for any LSS realization Σ of f , dim Σ ≤ dim Σ. Two LSSs Σ 1 , Σ 2 are said to be input-output equivalent, if their input-output maps are equal, i.e.

B.3 Characterization of minimality by reachability and observability

We start by presenting the main results on minimality of LSSs . To this end, we need to introduce the notions of observability, span-reachability and isomorphism. In the subsequent discussion, Σ denotes a LSS of the form (B.1). An LSS Σ is said to be observable , if for any two distinct states x 1 = x 2 ∈ R n , the input-output maps induced by x 1 and x 2 are different, i.e., if

The LSS Σ is said to be reachable, if Reach 0 (Σ) = R n . The LSS Σ is span-reachable if R n is the smallest vector space containing Reach 0 (Σ). We note that span-reachability and reachability are the same in continuoustime, see [260].

Next, we recall the notion of LSS morphism. Consider two LSSs

ALGEBRAIC AND GEOMETRIC CHARACTERIZATION OF REACHABILITY AND OBSERVABILITY, MINIMIZATION ALGORITHM

and

An LSS morphism S from Σ 1 to Σ 2 , denoted by S : Σ 1 → Σ 2 , is an n a × n matrix, such that ∀q ∈ Q : A a q S = S A q , B a q = S B q , C a q S = C q .

The LSS morphism S is said to be an isomorphism, if the matrix S is square and invertible.

The following theorem summarizes various results on minimality, see [START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF][START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach: Part i[END_REF][START_REF] Petreczky | Realization theory for discrete-time linear switched systems[END_REF].

Theorem B.1 (Minimality, [START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF][START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach: Part i[END_REF][START_REF] Petreczky | Realization theory for discrete-time linear switched systems[END_REF]). A LSS Σ is minimal, if and only if it is span-reachable and observable. If Σ 1 and Σ 2 are two minimal LSSs, and Σ 1 and Σ 2 are input-output equivalent, then Σ 1 and Σ 2 are isomorphic.

The usefulness of Theorem B.1 becomes more apparent after presenting an algorithm for minimization of LSSs, i.e. for converting an LSS into a minimal one while preserving its input-output map. This means that as far as the external behavior is concerned, we can always replace an LSS with a minimal one. Moreover, this minimal LSS will have such nice properties as observability and span-reachability. Finally, the fact that minimal and equivalent LSSs are isomorphic is important for system identification: it means that while several LSSs can produce the same observed behavior, as long as we restrict attention to minimal LSSs, all possible models fitting the observed behavior are essentially the same (isomorphic).

In fact, any LSS can be transformed to a minimal LSS with the same input-output behavior. In order to formulate the minimization algorithm, we will present a geometric and algebraic characterization of span-reachability and observability. This will be done in the next section.

B.4 Algebraic and geometric characterization of reachability and observability, minimization algorithm

Below we present an algebraic characterization of span-reachability and observability. This characterization is similar to the well-known conditions on the rank of controllability and observability matrices of LTI systems, and similarly to the LTI case, it allows us to formulate a minimization algorithm for LSSs.

In order to present these conditions, we recall from [START_REF] Petreczky | Balanced truncation for linear switched systems[END_REF] the definition of the following spaces Definition B.1 (W * and V * ). Let V * = V * (Σ) be the smallest subspace (with respect to the inclusion) of R n which satisfies A q V * ⊆ V * and ImB q ⊆ V * for any q ∈ Q. We will call V * (Σ) the reachable subspace of Σ. Let W * = W * (Σ) be the largest subspace (with respect to inclusion), such that W * ⊆ kerC q and A q W * ⊆ W * , for any q ∈ Q. We will call W * the unobservable subspace of Σ.

Remark B.1 (Computing V * , W * ). It is not difficult to see that the spaces V * and W * can be computed as follows. Set V 0 to the space spanned by x 0 and the columns of B q and define V k recursively as follows:

The above steps can be implemented, see [START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF]29]. We can also define an explicit matrix representation of the spaces V * and W * too. To this end, we will use the notation and terminology for sequences of letters, their length and lexicographic ordering from Section 2.2. In particular, Q * will denote the set of all finite sequences of the elements of Q, and without loss of generality we assume that Q = {1, . . . , D} and let v 1 ≺ v 2 ≺ . . . be lexicographic ordering on the sequences from Q * as defined in Definition 2.1 for X = Q. Recall that N(M) denotes the number of sequences from Q * of length at most M, and that |v i | ≤ M if and only if i ≤ N(M). Furthermore, we will need the following notation for products of square matrices {A q } q∈Q indexed by sequences from Q * , as defined in Notation 2.1, Section 2.2. We are now in position to define the matrix representation of V * and W * .

Define the controllability matrix of Σ as Dm+1) . Define the observability matrix of Σ as In other words, the controllability matrix can be viewed as a matrix representation of V * and the observability matrix can be viewed as a matrix representation of the orthogonal complement of W * . Theoretically, the controllability and the observability matrices could be used to compute the spaces W * , V * , but this approach would not be very practical, as the size of the matrices involved is exponential in the number of continuous states. For this reason, it is more practical to use the ideas of Remark B.1. We are now ready to state the algebraic and geometric conditions for span-reachability and observability.

Theorem B.2 ([260, 203, 205, 209]). . Let Σ = (n, {(A q , B q ,C q ) | q ∈ Q}) be an LSS .

The proof of Theorem B.2 can be found in [260,[START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach: Part i[END_REF][START_REF] Petreczky | Balanced truncation for linear switched systems[END_REF]. The intuition behind it is as follows: V * is simply the span of all reachable states, and

We are now able to recall from [START_REF] Petreczky | Balanced truncation for linear switched systems[END_REF] the following algorithms for converting a LSS to a reachable, observable and minimal one respectively, while preserving input-output behavior. We follow the presentation of [START_REF] Petreczky | Balanced truncation for linear switched systems[END_REF].

Procedure B.1 (Reachability reduction). Assume that dim V * = r and choose a basis b 1 , . . . , b n of R n such that b 1 , . . . , b r span V * . It is easy to see that in this new basis, the matrices A q , B q ,C q can be rewritten as

It is easy to see that Σ R is span-reachable, and it is input-output equivalent to Σ. Intuitively, Σ R is obtained from Σ by restricting the dynamics and the output map of Σ to the subspace V * . Procedure B.2 (Observability reduction). Assume that dim W * = no, and let b 1 , . . . , b n be a basis in R n such that b o+1 , . . . , b n span W * . In this new basis, the matrices A q , B q , C q can be rewritten as

Finally, by combining Procedures B.1 -B.2 and using Theorem B.1, we can formulate the following procedure for minimization of LSSs. A more detailed description of the algorithms described in Procedure B.1 -B.3 can be found in [START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF].

B.5 Existence of a realization, Kalman-Ho algorithm

In this section we present conditions on existence of a LSS realization of an input-output map and an algorithm for computing a LSS realization from input-output data. In this section, f denotes an input-output map of the form (B.3). Note that at this point we do not assume that f is an input-output map of an LSS. We start with defining the concept of Markov-parameters and the Hankel-matrix of f . The former is used to define the latter. Similarly to the the linear case, these concepts are defined using only input-output data. The Hankel-matrices are then used for characterizing the existence of a LSS realization and for computing such a realization from input-output data. This is precisely the reason that the Hankel-matrix is defined without the assumption that an LSS realization exists. In this section, we will tacitly assume that Q = {1, 2, . . . , D}. This can be done without loss of generality.

We start with defining the Markov-parameters of f . To this end, we assume that f has a generalized kernel representation (in the sequel abbreviated as GKR), that is, there exists a function G [START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF][START_REF] Petreczky | Partial-realization of linear switched systems: A formal power series approach[END_REF]). If rankH f ,N,N = rankH f , then Algorithm 12 returns a minimal realization of f . The condition rankH f ,N,N = rankH f holds for a given N, if there exists a LSS realization Σ of f such that dim Σ ≤ N +1.

Remark B.3 (Determining a correct value for N). In order to ensure that Algorithm 12 yields a correct realization of f , we need to select a value of N, such that rankH f ,N,N = rankH f holds. If rankH f ,N,N = rankH f is not satisfied, then the LSS returned by Algorithm 12 might fail to be a realization of f . By Theorem B.4, one option is to select N such that N is larger than the dimension of a LSS realization of f . Another, more practical, possibility is to assume that f has a realization by a minimal LSS of dimension n and then choose the smallest N such that rankH f ,N,N = n. Numerical experiments show that in this way one can often take N to be much smaller than n. This is important, since the size of H f ,N,N is exponential in N. Of course, if no knowledge is available on LSS realization of f , then choosing N becomes difficult.

Note that H f ,N,N can be computed from the responses of f . However, in principle, the computation of H f ,N,N requires an exponential number of input/output experiments involving different switching sequences. This is clearly not very practical. It would be more practical to build H f ,N,N based on the response of f to a single switching sequence. Preliminary results on the latter approach, for the discrete-time case, can be found in [START_REF] Petreczky | On the notion of persistence of excitation for linear switched systems[END_REF].

Remark B.4. One way to compute the factorization H f ,N,N+1 = OR in Algorithm 12 is as follows. If rankH f ,N,N+1 = n and H f ,N,N+1 = USV is the SVD decomposition of H f ,N,N+1 with S being the n × n diagonal matrix, then define O = US 1/2 and R = S 1/2 V .

Note that the size of the matrix H f ,N,N+1 grows exponentially with N. This renders Algorithm 12 impractical. There is a way to get around it, by using so called selections, which will play an important role in the application of realization theory to model reduction and system identification.

We will present only the SISO case (p = m = 1), the full MIMO case was discussed in [START_REF] Petreczky | Spaces of nonlinear and hybrid systems representable by recognizable formal power series[END_REF]30]. We will call any subset α ⊆ Q * × Q a selection. Finite selections will be used to define Hankel-like matrices, entries of which are Markov parameters.

Assume that α and β are selection respectively and assume that α and β are both finite sets of cardinality n and l respectively. Fix a enumeration of the elements of α and β as follows. α = {(u i , q i )} n i=1 , β = {(v j , σ j )} l j=1 , (B.13)

Let us now define the matrix H f ,α,β ∈ R n×l as follows:

H f ,α,β i, j = S f q i ,σ j (v j u i ) i = 1, . . . , n, j = 1, . . . , l (B.14)

If α, β has the same cardinality, then the matrix H f ,α,β is a square one. Intuitively, the rows of H f ,α,β are indexed the elements of α, and the columns by the elements of β . In order to present the algorithm, we define the matrices H q, f ,α,β ∈ R n×l , H f ,α,q ∈ R n×1 and H q, f ,β ∈ R 1×l :

H q, f ,α,β i, j = S f q i ,σ j (v j qu i ), i = 1, . . . , n, j = 1, . . . , l (B.15)

H f ,α,q i = S f q i ,q (u i ), i = 1, . . . , n (B.16)

H q, f ,β j = S f q,σ j (v j ) j = 1, . . . , l (B.17 Lemma B.2 (Adapted from [START_REF] Cox | Towards efficient maximum likelihood estimation of lpv-ss models[END_REF], Ho-Kalman algorithm). If n m is the dimension of a minimal LSS realization of f , then the LSS Σ defined in Algorithm 13 is a minimal realization of f . Moreover, if n m is the dimension of a minimal LSS realization of f , then there exists a pair of selections α, β ⊆ Q * × Q such that the cardinality of the sets α, β is n m and rankH f ,α,β = n m .

From [START_REF] Petreczky | Partial-realization of linear switched systems: A formal power series approach[END_REF] it follows that we can choose α N = β N = {(v, q) | v ∈ Q * , |v| ≤ N, q ∈ Q}, where N is any integer not smaller than the dimension of a minimal LSS realization of f .

B.6 Stability and minimality

Stability of LSSs is a classical research topic with a very rich literature [START_REF] Liberzon | Switching in Systems and Control[END_REF]260]. The purpose of this section is to recall some results on preservation of stability under minimization, i.e., to recall results which state that if an LSS is stable in some sense, then the corresponding minimal LSS will also be stable.

More precisely, we will concentrate on quadratically stable LSSs. Informally, a quadratically stable LSS is a LSS which admits a common quadratic Lyapunov function. Formally, a LSS of the form (B.1) quadratically stable, if there exists a positive definite matrix P > 0 such that ∀q ∈ Q : S(q, Σ, P) < 0, (B.18a) where

• in continuous-time (Lyapunov equation) S(q, Σ, P) = A T q P + PA q , (B.18b)

• in discrete-time (Stein equation) S(q, Σ, P) = A T q PA q -P. (B.18c)

For discrete-time LSSs it will be useful to introduce the notion of strong stability [START_REF] Petreczky | Balanced truncation for linear switched systems[END_REF], which will be used later on for jump-Markov systems and for model reduction: LSS Σ of the form (B.1) is strongly stable, if the matrix ∑ q∈Q A T q ⊗ A T q is a stable matrix (all its eigenvalues lie inside the unit disc), where ⊗ denotes Kronecker product. From [START_REF] Costa | Discrete-Time Markov Jump Linear Systems[END_REF] it follows that if Σ is strongly stable if and only if for any G > 0, there exists a unique P > 0 such that P = ∑ q∈Q A T q PA q + G . In particular, P -A T q PA q > 0 for all q ∈ Q, i.e., Σ is quadratically stable. It then follows [START_REF] Liberzon | Switching in Systems and Control[END_REF]260] that a quadratically stable LSS is globally uniformly asymptotically stable and its input-output map has a finite L 2 gain, and it is also BIBO stable. We can then state the following result.

Theorem B.5 ([227]). If an input-output map f has a realization by a quadratically stable LSS (respectively strongly stable LSS), then all minimal LSS realizations of f are quadratically stable (respectively strongly stable).