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Relaxation and homogenization of unbounded
integrals in calculus of variations

Omar Anza Hafsa

Rapporteurs:

Jean-François Babadjian - Université Paris Saclay
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Jury:

Jean-François Babadjian - Université Paris Saclay
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Lionel Thibault - Université de Montpellier (président)





Remerciements
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Introduction

In this descriptive manuscript, we present our works on the calculus of variations. By this
we mean the study of problems involving the minimization of integral functionals. We are
interested in relaxation, homogenization and dimension reduction in frameworks going beyond
polynomial growth conditions as well as in frameworks going beyond the Euclidean setting.

An integral functional of the calculus of variations can be interpreted in the context of
hyperelasticity as an energy of a material occupying the closure of an open set. The relation
with nonlinear elasticity comes from the fact that within the framework of hyperelasticity
one can formally replace the equilibrium equations by problems of minimization of integral
functionals. In hyperelasticity, there are two basic conditions on the stored energy function
which are incompatible with polynomial growths: the need for an infinite energy to reduce a
finite volume of a matter to a zero volume and the non-interpenetration of the matter, i.e. to
prevent the determinants of the strain gradients to be nonpositive.

We have chosen to present three directions of research in which we have made contributions.
We have structured this report along these three axes. We first give the essential motivations
for each of these directions.

We have been interested in dimension reduction problems since our doctoral studies. One of
the founding results is the Le Dret-Raoult [LR93] theorem which, under polynomial growths,
shows the Γ-convergence toward a nonlinear membrane model. However the polynomial
growths are not compatible with the two basic conditions of hyperelasticity. Our work in this
area has focused on taking into account these conditions. To go beyond polynomial growths
and allow the integrands to take the infinite value, we have introduced the notion of ample
integrands which is adapted to this type of problems. These class of integrands can take the
infinite value on not too large subsets of matrices, so that the quasiconvex envelope is finite.
We have also studied the relaxation of integral functionals of the calculus of variations with
ample integrands and we obtained, for example, a relaxation result where we could take into
account the following singular behavior of the stored energy function:

lim
detF→0

f(F ) =∞.

Motivated by similar reasons, we have studied the relaxation and the homogenization of
unbounded integral functionals of the calculus of variations, in particular those having a convex
effective domain (bounded and non bounded). In the scalar case a wide literature exists on
relaxation and homogenization problems with constraints on the gradient, see the book [CD02]
and the reference therein. However, the techniques cannot be easily generalized to tackle
problems in the vectorial case. The constraints on the gradient linked to the conditions of
hyperelasticity cannot be treated with methods resulting from the scalar case. It is then of
interest to develop techniques in the vectorial case for the relaxation and the homogenization
of integrals when the integrands can take the infinite value. The difference with the scalar
case is that the central notion involved is quasiconvexity and not convexity. This leads to
significant technical complications. To deal with the case where the effective domain is no
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longer necessarily bounded, we have considered G-growth assumptions on the integrands, i.e.
we replaced the polynomial growth conditions by growths governed by a convex function G,
and then we studied the case where G is quasiconvex and verifies additional hypothesis. We
have introduced the notion of radially uniformly upper semicontinuous function allowing to
radially extend the integrands on the boundary of their domains. The reason is that during
the relaxation (or the homogenization) process, the weak limits of the sequences of gradients
may eventually concentrate on the boundary of the effective domain.

For a long time we have been interested to go beyond the Euclidean framework in the problems
of minimization of integral functionals. The reason is to place ourself in an appropriate
framework for the study of thin structures in hyperelasticity. Indeed, the only existing theory
of elasticity is three-dimensional, so it is important to develop a mathematical framework
for low-dimensional elastic structures (see [BBS97]). The setting of metric measure spaces is
appropriate, since the support of a Borel measure can be interpreted as a low-dimensional
hyperelastic structure with its singularities like for example thin dimensions, corners, junctions,
etc. Another motivation is the development of the calculus of variations on ‘singular’ spaces,
which are of interest to geometers or physicists, like Carnot groups, Gromov-Hausdorff limit
spaces, spaces satisfying generalized Ricci bounds etc.

Next, we give an introduction to each chapter.

Chapter 1: Calculus of variations in Cheeger-Sobolev spaces. In this first chapter, we present
our works concerning lower semicontinuity, relaxation and Γ-convergence of integral functionals
defined on Cheeger-Sobolev spaces. Similarly to the Euclidean case, it is important to find
the necessary conditions for the lower semicontinuity of integrals of the calculus of variations
defined on Cheeger-Sobolev spaces. We introduce the H1,p

µ -quasiconvexity as a necessary
condition playing an analogous role to the one of W 1,p-quasiconvexity in the Euclidean case.
It required a totally different technique of proof from the one of the Euclidean case. We
then state an integral representation result obtained recently for local functionals defined on
Cheeger-Sobolev spaces. Here again, it was necessary to develop a technique of proof different
from that usually used in the Euclidean framework. We explain this method in the section 4
of this chapter, it is based on the Vitali envelope of the local Dirichlet minimization problems
associated with the functional which reduces the proof of the upper and lower bounds to
cut-off techniques. We present also a relaxation result which is a consequence of our integral
representation result and of the application of De Giorgi-Letta criterion [DL77]. In Section 3,
we give a brief overview of our work on Γ-convergence of integrals defined on Cheeger-Sobolev
spaces.

Chapter 2: Relaxation and homogenization of unbounded integrals. We present our works on
the relaxation and homogenization of unbounded integrals. We begin by an exposition of the
notion of radially uniformly upper semicontinuous function. Then we present relaxation and
homogenization results when the effective domain is bounded convex with nonempty interior.
The difficulty here is that in the vectorial case we do not have a natural way to approximate
quasiconvex integrand which can take the infinite value by quasiconvex integrand having
polynomial growths. Next, we present our works on the homogenization with G-growths,
i.e. when the growths are governed by a convex integrand G first, and then a quasiconvex
integrand verifying additionnal hypothesis. Here, the effective domain is not necessarily
bounded. While in the case where the growth G is convex, we use the approximation by
continuous piecewise affine functions of Sobolev functions to prove the upper bound, when G is
quasiconvex we use techniques described in Section 4 of Chapter 1 based on the representation
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of the Vitali envelope. Then we end the chapter by a brief exposition of a relaxation result in
Cheeger-Sobolev spaces with G-growths.

Chapter 3: Relaxation, homogenization and dimension reduction with ample integrands. In this
last chapter, we present our works on relaxation, homogenization and dimension reduction with
ample integrands. We first introduce the ample integrands which appear naturally in reduction
dimension problems. These class of integrands can take the infinite value on not too large
subsets of matrices, so that the quasiconvex envelope is finite. We have obtained relaxation
results with ample integrands which can be applied to the conditions determinant not equal to
zero, i.e. |detF | 6= 0 with F ∈M33 = M, and cross-product not equal to zero, i.e. |F1∧F2| 6= 0
with F = (F1|F2) ∈ M32. This last condition appearing naturally in the 3D-2D passage by
Γ-convergence. We then present two results on homogenization with ample integrands. The
proof of the first homogenization result essentially follows the same spirit as the one of the
relaxation result. However, we need a continuity assumption on the space variable, which is
unsatisfactory for homogenization problems. We present a second homogenization result in
which we do not need to assume any continuity assumption with respect to space variable.
The last part of this chapter is devoted to the presentation of 3D-2D passage by Γ-convergence
with determinant conditions. We show how to obtain in a simple way a Γ-convergence result,
under determinant condition of the type |detF | 6= 0, by using the Le Dret-Raoult result. Then
we show our work on the 3D-2D passage by Γ-convergence under the two basic conditions
of hyperelasticity. In fact, the determinant condition of non-interpenetration of the matter
detF > 0 is transformed, during the passage 3D-2D, into the condition |F1 ∧ F2| 6= 0 for
F = (F1|F2|F3) ∈M which is, as we mentioned above, an ‘ample condition’.
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CHAPTER 1

Calculus of variations in Cheeger-Sobolev spaces

This chapter is devoted to the presentation of the work on the extension of the calculus of
variations in the setting of metric measure spaces. In Section 1 the Cheeger-Sobolev spaces are
introduced and allow to define integral functionals of the calculus of variations in a similar way
to the Euclidean framework. Then we present our work on Lpµ-lower semicontinuity of integral
functionals defined on Cheeger-Sobolev spaces. We introduce a necessary condition for the
lower semicontinuity which will play the same role as quasiconvexity in the Euclidean setting.
In Section 2 we give an exposition of our work on integral representation and relaxation of
local functionals defined on Cheeger-Sobolev spaces. In Section 3 we present our works on
Γ-convergence. We give, in Section 4, a description reduced to essential features of the methods
for establishing lower and upper bound in relaxation and Γ-convergence problems. These
methods are useful when we cannot use approximation of Sobolev functions by smoother ones,
this is a priori the case in the framework of metric measure spaces.

The works involved in this chapter are [AM22; AM20a; AM20b; AM18; AM17; AM15].

1. Lower semicontinuity and H1,p
µ -quasiconvexity

Let p > 1 be a real number, let (X, d, µ) be a metric measure space, where µ is a nontrivial
locally finite Borel regular measure on X and (X, d) is a separable metric space. In what
follows, we assume that µ is doubling, i.e. there exists a constant Cd (called doubling constant)
such that

∀x ∈ X ∀ρ > 0 µ(Bρ(x)) ≤ Cdµ(B ρ
2
(x)). (1.1)

The metric measure space (X, d, µ) enjoys a (1, p)-Poincaré inequality with p ∈]1,∞[ if there
exist Cp > 0 and σ ≥ 1 such that for every x ∈ X and every ρ > 0,

−
ˆ
Bρ(x)

∣∣∣∣∣f(y)−−
ˆ
Bρ(x)

fdµ

∣∣∣∣∣ dµ(y) ≤ ρCp

(
−
ˆ
Bσρ(x)

gpdµ

) 1
p

(1.2)

for every f ∈ Lpµ(X) and every generalized upper gradient (p-weak upper gradient) g ∈ Lpµ(X)
for f (see Definition A.2).

The following result is essentially due to Cheeger [Che99, Theorem 4.38] (see also Keith
[Kei04, Definition 2.1.1 and Theorem 2.3.1]) who made a major breakthrough in the analysis
of metric measure space by establishing the existence of a differential structure on general
enough metric measure spaces. We denote by Lip(X) the algebra of Lipschitz functions from
X to R.

Theorem 1.1. If µ is doubling, i.e. (1.1) holds, and X enjoys a (1, p)-Poincaré inequality,
i.e. (1.2) holds, then there exist a countable family {(Xk, γ

k)}k∈N of µ-measurable disjoint

subsets Xk of X with µ(X \
⋃
k∈NXk) = 0 and of functions γk = (γk1 , · · · , γkN(k)) : X −→RN(k)

with γki ∈ Lip(X) satisfying the following properties:

13



Relaxation and homogenization of unbounded integrals in calculus of variations

Figure 1.1. Illustration of an example of a metric measure space X.

(i) there exists an integer N ≥ 1 such that N(k) ∈ {1, · · · , N} for all k ∈ N;

(ii) for every k ∈ N and every f ∈ Lip(X) there is a unique Dk
µf ∈ L∞µ

(
Xk;RN(k)

)
such

that for µ-a.e. x ∈ Xk

lim
ρ→0

1

ρ
‖f − fx‖L∞µ (Bρ(x)) = lim

ρ→0
sup

y∈Bρ(x)

∣∣f(y)− f(x) +Dk
µf(x) · (γk(y)− γk(x))

∣∣
ρ

= 0,

where fx ∈ Lip(X) is given by fx(y) := f(x) +Dk
µf(x) · (γk(y)− γk(x)); in particular

Dk
µfx(y) = Dk

µf(x) for µ-a.a. y ∈ Xk;

(iii) the operator Dµ : Lip(X)→ L∞µ (X;RN ) given by

Dµf :=
∑
k∈N

1Xk D
k
µf,

where 1Xk denotes the characteristic function of Xk, is linear and, for each f, g ∈ Lip(X),
one has

Dµ(fg) = fDµg + gDµf ;

We set M = Rm×N where N is given by Theorem 1.1 (i). Let Lip(X;Rm) := [Lip(X)]m. Let
∇µ : Lip(X;Rm)−→ L∞µ (X;M) given by

∇µu :=

 Dµu1
...

Dµum

 with u = (u1, · · · , um).

Definition 1.2. The p-Cheeger–Sobolev space H1,p
µ (X;Rm) is defined as the completion of

the space of Lipschitz functions Lip(X;Rm) with respect to the norm

‖u‖
H1,p
µ (X;Rm)

:= ‖u‖Lpµ(X;Rm) + ‖∇µu‖Lpµ(X;M). (1.3)

Since ‖∇µu‖Lpµ(X;M) ≤ ‖u‖H1,p
µ (X;Rm)

for all u ∈ Lip(X;Rm) the linear map ∇µ from

Lip(X;Rm) to Lpµ(X;M) has a unique extension to H1,p
µ (X;Rm) which will still be denoted

by ∇µ.

For more details on the various possible extensions of the classical theory of the Sobolev
spaces to the setting of metric measure spaces, we refer to [Hei07, pp. 10–14] and [Hei+15]
(see also [Che99; Sha00; GT01; Haj03]).
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This allows us to define integral functionals of the calculus of variations on Cheeger-Sobolev
spaces H1,p

µ (X;Rm) on X by

H1,p
µ (X;Rm) 3 u 7−→ I(u) =

ˆ
X
f (x,∇µu(x)) dµ(x) (1.4)

where f : X ×M−→ [0,∞] is a Borel measurable integrand.

In the setting of Euclidean space (X, d, µ) = (Ω, | · − · |,LNbΩ) where Ω ⊂ RN is a bounded
open subset and LNbΩ is the Lebesgue measure on Ω, a necessary condition on finite integrands
for the sequential weak lower semicontinuity of (1.4) is the quasiconvexity of f(x, ·). This
condition was introduced by Morrey [Mor52] (see also [Dac08; AF84; Mar85]). Later a
generalisation for not necessarily finite integrand, called W 1,p-quasiconvexity, was developped
by Ball and Murat [BM84]. An interesting problem was to find necessary conditions in the spirit

of [Mor52] and [BM84] for the sequential weak lower semicontinuity of (1.4) in H1,p
µ (X;Rm).

The main difficulty is that we do not have a natural “periodic” structure on X allowing to
mimic the proof of [BM84] (or [Mor52]). It means that we need completely new arguments
to answer this problem. Cheeger [Che99, Theorem 3.7] in his seminal paper shows that a
Lipschitz function f : X −→ R, defined on a metric measure space with doubling measure and
satisfying a (1, p)-Poincaré inequality, is asymptotically generalized linear: for µ-a.e. x ∈ X

(gf )p(x) = lim
ρ→0

inf
φ∈H1,p

µ,0(Bρ(x))
−
ˆ
Bρ(x)

(gf+φ)p(y)dµ(y) (1.5)

where gf is the minimal generalized upper gradient (see Definition A.2 (ii)). Since the definition
of the minimal generalized upper gradient, the functional

f 7−→ |gf |pLpµ(Bρ(x))
:=

ˆ
Bρ(x)

(gf )p(y)dµ(y) (1.6)

is Lpµ(X)-lower semicontinuous, this is due to Rellich’s theorem see [Che99, Theorem 2.5]. In
fact, observing the proof of Cheeger of [Che99, Theorem 3.7], we see that (1.5) is in some sense
a necessary condition of the lower semicontinuity of (1.6). Now, taking inspiration from the
arguments above, we introduce the following condition playing the role of W 1,p-quasiconvexity,
by saying that a Borel measurable function f : X ×M−→ [0,∞] is H1,p

µ -quasiconvex at ξ ∈M
if for µ-a.e. x ∈ X

f(x, ξ) ≤ lim
ρ→0

inf
φ∈H1,p

µ,0(Bρ(x);Rm)
−
ˆ
Bρ(x)

f(y, ξ +∇µφ(y))dµ(y). (1.7)

The formula on the right hand side of (1.7) already appears in our previous works [AM15;
AM18; AM17] in relaxation and homogenization problems. We proved the following result.

Theorem 1.3 ([AM20a, Theorem 2]). Let f : X × M −→ [0,∞] be a p-coercive Borel
measurable integrand, i.e. satisfying for some c > 0, for µ-a.e. x ∈ X and for every ξ ∈M

f(x, ξ) ≥ c |ξ|p . (1.8)

Assume that for every u, {uε}ε>0 ⊂ H1,p
µ (X;Rm) satisfying limε→0 ‖uε − u‖Lpµ(X;Rm) = 0, it

holds

lim
ε→0

ˆ
X
f(x,∇µuε)dµ ≥

ˆ
X
f(x,∇µu)dµ. (1.9)

Then f is H1,p
µ -quasiconvex at every ξ ∈M satisfying f(·, ξ) ∈ L1

µ(X).
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The proof uses a Vitali covering of the set where (1.7) does not hold. Then using the

p-coercivity we can construct a sequence of H1,p
µ (X;Rm) which strongly converges to 0 in

Lpµ(X;Rm). The last step consists in using the lower semicontinuity of I and the finitness
condition f(·, ξ) ∈ L1

µ(X) to conclude that set is necessarily of zero measure.

Perspective 1. It is of interest to search the general conditions on X allowing to remove
the coercivity condition (1.8) in Theorem 1.3. More precisely, to find the general conditions

on X in order to have: if for every u, {uε}ε>0 ⊂ H1,p
µ (X;Rm) satisfying uε⇀u weakly in

H1,p
µ (X;Rm), it holds

lim
ε→0

ˆ
X
f (x,∇µuε) dµ ≥

ˆ
X
f(x,∇µu)dµ, (1.10)

then f is H1,p
µ -quasiconvex at every ξ ∈M.

Remarks 1.4. A Borel measurable function f : X ×M −→ [0,∞] is H1,p
µ -quasiconvex at

ξ ∈M satisfying f(·, ξ) ∈ L1
µ,loc(X) if and only if for µ-a.e. x ∈ X

f(x, ξ) = lim
ρ→0

inf
φ∈H1,p

µ,0(Bρ(x);Rm)
−
ˆ
Bρ(x)

f(y, ξ +∇µφ)dµ,

i.e. we can replace ‘limρ→0’ by ‘limρ→0’.

A stronger necessary condition for the lower semicontinuity is given by:

Proposition 1.5 ([AM20a, Corollary 1]). Let f : X ×M −→ [0,∞] be a p-coercive Borel

measurable integrand. Assume that for every u, {uε}ε>0 ⊂ H1,p
µ (X;Rm) satisfying limε→0 ‖uε−

u‖Lpµ(X;Rm) = 0, it holds

lim
ε→0

ˆ
O
f(x,∇µuε)dµ ≥

ˆ
O
f(x,∇µu)dµ (1.11)

for all open set O ∈ O(X) satisfying µ(O) <∞.

Let u ∈ H1,p
µ (X;Rm) be such that1 f(·,∇µu(·)) ∈ L1

µ,loc∗(X). Then for µ-a.e. x ∈ X

f(x,∇µu(x)) = lim
ρ→0

inf
φ∈H1,p

µ,0(Bρ(x);Rm)
−
ˆ
Bρ(x)

f(y,∇µu+∇µφ)dµ. (1.12)

To prove that H1,p
µ -quasiconvexity is sufficient when we assume p-growth on the integrand,

we need further assumptions on the metric space X: we say that the metric measure space
(X, d, µ) satisfies the annular decay property (which was introduced independently by [Buc99,
p. 521 and §2 p. 524] and [CM98]) if

(ADX) there exist η > 0 and K ≥ 1 such that for every x ∈ X, every ρ > 0 and every τ ∈]0, 1[,

µ(Bρ(x) \Bτρ(x)) ≤ K(1− τ)ηµ(Bρ(x)).

We need also the following property of Alexandrov type (or of Portmanteau type):

(ALX) for every open set O ∈ O(X) and for every sequence {mn}n∈N of nonnegative Borel
regular measures on O satisfying supn∈Nmn(O) <∞ there exist a subsequence (not

1By L1
µ,loc∗(X) we denote the vector space of all measurable functions u : X → R such that

´
B
|u|dµ <

∞ for all open ball B ⊂ X satisfying µ(B) <∞.
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relabelled) {mn}n∈N and m a locally finite Borel regular measure on O such that

lim
n→∞

mn(V ) ≥ m(V ) for all open set V ⊂ O.

lim
n→∞

mn(B) ≤ m(B) for all closed ball B ⊂ O.

Remarks 1.6. The annular decay property holds, for instance, when the metric space is a
length space, i.e. metric space in which the distance between points is the infimum of lenghts of
rectifiable paths joining those points, see [Buc99, Corollary 2.2], [CM98, Lemma 3.3], [Che99,
Proposition 6.12] and [Hei+15, Proposition 11.5.3, p. 328]). We remark that, when the annular
decay property holds, the boundary of balls is of zero measure. If X is compact or locally
compact then the property (ALX) holds.

We proved the following characterization of the lower semicontinuity of (1.4):

Theorem 1.7 ([AM20a, Theorem 6]). Assume that (X, d, µ) satisfies (ADX), (ALX) and µ
is finite. Let f : X ×M−→ [0,∞] be a Borel measurable integrand such that for µ-a.e. x ∈ X
the function f(x, ·) is lower semicontinuous. Assume that there exist c, C > 0 and A ∈ L1

µ(X)
such that for µ-a.e. x ∈ X

c|ξ|p ≤ f(x, ξ) ≤ A(x) + C(1 + |ξ|p) for all ξ ∈M.

Then f is H1,p
µ -quasiconvex if and only if I(·) is lower semicontinuous with respect to the

strong convergence of Lpµ(X;Rm).

Perspective 2. The property (ALX) is a nice tool when we have to show a lower bound in
lower semicontinuity, relaxation or generally in Γ-convergence problems. In fact, if for instance
we assume that X is complete, then µ is a Radon measure (see Remark 1.8 below) and since
the measures involved in the proof of Theorem 1.7 are of the type:

νn := f(·,∇µun(·))µbO and λn := |∇µun|p µbO
these are also Radon ([Hei+15, Remark 3.3.43, p. 67]), so we can use (ALX) with νn and λn
in the proof. In fact, for the proof of Theorem 1.7 we need a weaker version of (ALX):

(AL′X) for every open set O ∈ O(X) and for every sequence {mn}n∈N of nonnegative Borel
regular measures on O satisfying supn∈Nmn(O) <∞ and mn � µ for all n ∈ N there
exist a subsequence (not relabelled) {mn}n∈N and m a locally finite Borel regular
measure on O such that

lim
n→∞

mn(V ) ≥ m(V ) for all open set V ⊂ O.

lim
n→∞

mn(B) ≤ m(B) for all closed ball B ⊂ O.

It is interesting to find a characterization of metric spaces such that (AL′X) holds.

2. Integral representation and relaxation

The integral representation of functionals is an important subject in the calculus of variations.
We became interested in extending to metric measure spaces the classical integral representation
theorems [BD85; Bou+02]. New arguments are needed, since the proof of [BD85] rests upon
existence and approximation properties of continuous piecewise affine functions. The integral
representation result of [Bou+02, Theorem 2, p. 189] shows that the integrand can be written
as limit, when the radius of balls goes to zero, of the average of minimization Dirichlet problems
associated with the functional on small balls. The strategy of the proof, known as the ‘global
relaxation method’, uses mainly an intermediate representation result of an envelope, similar
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to the Carathéodory construction in measure theory, of local minimization Dirichlet problems
associated with the functional, see Section 4 for an exposition of the method. One of the
advantages of this method is to avoid the use of approximation by continuous piecewise affine
functions. It can therefore be adapted more easily to the framework of Cheeger-Sobolev spaces
(we have used this technique in [AM15; AM17; AM18]).

We denote by Ω ⊂ X an open set with finite measure µ(Ω) < ∞ and by O(Ω) the class
of all open subsets of Ω. We assume that µ is doubling, (X, d, µ) enjoys a (1, p)-Poincaré
inequality, (X, d) is a complete separable metric space, and (X, d, µ) satisfies the annular decay
property (ADX).

Remarks 1.8. Note that µ is then a Radon measure since X is complete, see [Hei+15,
Proposition 3.3.44, p. 67]. Remark also that X is locally compact since a complete metric
space with µ doubling is proper, i.e. every closed ball is compact.

We proved the following integral representation theorem in Cheeger-Sobolev spaces:

Theorem 1.9 ([AM22, Theorem 1]). Let F : H1,p
µ (Ω;Rm)×O(Ω)→ [0,∞] satisfy

(H1) for every u ∈ H1,p
µ (Ω;Rm) the set function F (u, ·) is the restriction to O(Ω) of a positive

Radon measure;

(H2) F (·, O) is local, i.e. F (u,O) = F (v,O) whenever u = v µ-a.e. in O for all (u, v) ∈
H1,p
µ (Ω;Rm)2 and all O ∈ O(Ω);

(H3) F (u+ z,O) = F (u,O) for all z ∈ Rm, all u ∈ H1,p
µ (Ω;Rm) and all O ∈ O(Ω);

(H4) there exist c > 0, b ≥ 0 and a ∈ L1
µ(Ω) such that for every (u,O) ∈ H1,p

µ (Ω;Rm)×O(Ω)

c

ˆ
O
|∇µu(x)|p dµ(x) ≤ F (u,O) ≤

ˆ
O
a(x) + b |∇µu(x)|p dµ(x)

where ∇µu is the µ-gradient of u.

(H5) for every O ∈ O(Ω) the functional F (·, O) is Lpµ-lower semicontinuous, i.e. for every

u ∈ H1,p
µ (Ω;Rm) and {un}n∈N ⊂ H1,p

µ (Ω;Rm) satisfying limn→∞ ‖un − u‖Lpµ(Ω;Rm) = 0

we have

lim
n→∞

F (un, O) ≥ F (u,O).

Then there exists a Borel measurable function f : Ω×M−→ [0,∞], with M = Rm×N where
N is given by Theorem 1.1 (i), such that

(i) for every O ∈ O(Ω) and every u ∈ H1,p
µ (Ω;Rm)

F (u,O) =

ˆ
O
f(x,∇µu(x))dµ(x);

(ii) for every k ∈ N, for µ-a.e. x ∈ Ω ∩ Ωk and every ξ ∈M

f(x, ξ) := lim
ρ→0

inf
ϕ∈H1,p

µ,0(Bρ(x);Rm)

F (ξ · γk(·) + ϕ,Bρ(x))

µ(Bρ(x))
;

(iii) the function f is H1,p
µ -quasiconvex, i.e. for every ξ ∈M and for µ-a.e. x ∈ Ω

f(x, ξ) = lim
ρ→0

inf
ϕ∈H1,p

µ,0(Bρ(x);Rm)
−
ˆ
Bρ(x)

f(y, ξ +∇µϕ(y))dµ(y);

18
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(iv) for µ-a.e. x ∈ Ω and for every ξ ∈M we have

c|ξ|p ≤ f(x, ξ) ≤ a(x) + b|ξ|p (1.13)

where c > 0, b ≥ 0 and a ∈ L1
µ(Ω) are given by (H4);

(v) if there exists a Borel measurable function f̃ : Ω ×M −→ [0,∞] such that for every

O ∈ O(Ω) and every u ∈ H1,p
µ (Ω;Rm)

F (u,O) =

ˆ
O
f̃(x,∇µu(x))dµ(x)

then for µ-a.e. x ∈ Ω and for every ξ ∈M

f̃(x, ξ) = f(x, ξ).

Perspective 3. It would be interesting to search the general conditions on X such that the
conclusions of Theorem 1.9 still hold when we replace condition (H4) by:

(H′4) there exist b ≥ 0 and a ∈ L1
µ(Ω) such that for every (u,O) ∈ H1,p

µ (Ω;Rm)×O(Ω)

0 ≤ F (u,O) ≤
ˆ
O
a(x) + b |∇µu(x)|p dµ(x)

and condition (H5) by:

(H′5) for every O ∈ O(Ω) the functional F (·, O) is sequentially weakly lower semicontinuous

on H1,p
µ (Ω;Rm), i.e. for every u ∈ H1,p

µ (Ω;Rm) and {un}n∈N ⊂ H1,p
µ (Ω;Rm) satisfying

un⇀u in H1,p
µ (Ω;Rm) we have

lim
n→∞

F (un, O) ≥ F (u,O).

When the functional is not necessarily Lpµ-lower semicontinuous we need to consider its
envelope defined by

H1,p
µ (Ω;Rm) 3 u 7−→ F (u,O) := inf

{
lim
n→∞

F (un, O) : un → u in Lpµ(Ω;Rm)

}
.

We have the following relaxation theorem:

Theorem 1.10 ([AM22, Theorem 2]). Let F : H1,p
µ (Ω;Rm) × O(Ω) −→ [0,∞] satisfying

(H1)-(H4). Then there exists a Borel measurable function f : Ω×M−→ [0,∞] such that

(i) for every O ∈ O(Ω) and every u ∈ H1,p
µ (Ω;Rm)

F (u,O) =

ˆ
O
f(x,∇µu(x))dµ(x);

(ii) for every k ∈ N, for µ-a.e. x ∈ Ω ∩ Ωk and for every ξ ∈M

f(x, ξ) := lim
ρ→0

inf
ϕ∈H1,p

µ,0(Bρ(x);Rm)

F (ξ · γk(·) + ϕ,Bρ(x))

µ(Bρ(x))
;

(iii) the function f is H1,p
µ -quasiconvex;

(iv) for µ-a.e. x ∈ Ω and for every ξ ∈M we have

c|ξ|p ≤ f(x, ξ) ≤ a(x) + b|ξ|p

where c > 0, b ≥ 0 and a ∈ L1
µ(Ω) are given by (H4).
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Theorem 1.10 is an extension of the relaxation result obtained in [AM15, Corollary 2.29, p.
79], where we additionally assumed that X is a compact length space. It is also an extension
of [AM17, Corollary 2.4, p. 384], where we additionally assumed that X is a locally compact
length space. The proof of Theorem 1.10 is more classical and uses the De Giorgi-Letta
criterion [DL77] (see also [But89, Lemma 3.3.6 p. 105]) which establishes sufficient conditions
for an increasing set function defined on open subsets to be the restriction of a regular Borel
measure.

Perspective 4. It would be interesting to search general conditions on X such that the
conclusions of Theorem 1.10 still hold when we replace condition (H4) by (H′4).

Remarks 1.11. Let f : Ω×M−→ [0,∞] be a Borel measurable function which satisfies the
polynomial growths (1.13). Assume that I given by (1.4) is Lpµ-lower semicontinuous. Then
by using Proposition 1.5, we have for every u ∈ Lip0(Ω;Rm) and for µ-a.e. x ∈ X

f(x,∇µu(x)) = lim
ρ→0

inf
φ∈H1,p

µ,0(Bρ(x);Rm)
−
ˆ
Bρ(x)

f(y,∇µu+∇µφ)dµ.

In fact, by using the proof of Theorem 1.9 we can see that µ-a.e. x ∈ X

lim
ρ→0

inf
φ∈H1,p

µ,0(Bρ(x);Rm)
−
ˆ
Bρ(x)

f(y,∇µu+∇µφ)dµ = f̃(x,∇µu(x))

and that the function f̃(x, ξ) := limρ→0 inf
φ∈H1,p

µ,0(Bρ(x);Rm)
−́
Bρ(x) f(y, ξ + ∇µφ)dµ is Borel

measurable. So, we can use [AM22, Corollary 2] which is a version of an Alberti result [Alb91]
on the uniqueness of Borel integrands, to have the following condition: for µ-a.e. x ∈ X and
for all ξ ∈M

f(x, ξ) = f̃(x, ξ)

which is a necessary condition stronger than H1,p
µ -quasiconvexity in this setting. It follows

from Theorem 1.7 that the H1,p
µ -quasiconvexity implies the lower semicontinuity, so the H1,p

µ -
quasiconvexity is equivalent in this context to the condition: for µ-a.e. x ∈ X and for all
ξ ∈M

f(x, ξ) = lim
ρ→0

inf
φ∈H1,p

µ,0(Bρ(x);Rm)
−
ˆ
Bρ(x)

f(y, ξ +∇µφ)dµ.

3. Γ-convergence

Let Ω ⊂ X be a nonempty open set. For each ε > 0, we consider Eε : H1,p
µ (Ω;Rm)×O(Ω)−→

[0,∞] defined by

Eε(u,O) :=

ˆ
O
fε(x,∇µu(x))dµ(x), (1.14)

where fε : Ω×M−→ [0,∞] is a Borel measurable integrand depending on ε > 0, not necessarily
convex with respect to ξ ∈ M, and having p-growth, i.e. there exist c, C > 0, which do not
depend on ε, such that

c|ξ|p ≤ fε(x, ξ) ≤ C(1 + |ξ|p) (1.15)

for all x ∈ Ω and all ξ ∈M. We deal with the problem of computing the Γ-convergence with
respect to the strong convergence of Lpµ(Ω;Rm) of {Eε}ε>0 as ε→ 0 toward E : H1,p

µ (Ω;Rm)×
O(Ω)−→ [0,∞] of the type

E(u,O) =

ˆ
O
f(x,∇µu(x))dµ(x) (1.16)
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with f : Ω ×M −→ [0,∞] not depending on ε. For each ε > 0 and each ρ > 0, let fε,ρ :
Ω×M−→ [0,∞] be given by

fε,ρ(x, ξ) := inf

{ˆ
–
Bρ(x)

fε(y, ξ +∇µw(y))dµ(y) : w ∈ H1,p
µ,0(Bρ(x);Rm)

}
.

We assume here that µ is doubling, (X, d, µ) enjoys a (1, p)-Poincaré inequality, (X, d) is a
complete separable metric space, and (X, d, µ) satisfies the annular decay property (ADX).
We proved the following result:

Theorem 1.12 ([AM17, Theorem 2.2 and Remark 4.2]). If (1.15) holds then for every

u ∈ H1,p
µ (Ω;Rm), the set function

Γ(Lpµ)- lim
n→∞

Eε(u, ·) : O(Ω)−→ [0,∞]

can be uniquely extended to a finite positive Radon measure on O which is absolutely continuous
with respect to µ, and

Γ(Lpµ)- lim
ε→0

Eε(u,O) ≥
ˆ
O

lim
ρ→0

lim
ε→0

fε,ρ(x,∇µu(x))dµ(x)

and

Γ(Lpµ)- lim
ε→0

Eε(u,O) =

ˆ
O

lim
ρ→0

lim
ε→0

fε,ρ(x,∇µu(x))dµ(x)

for all O ∈ O(Ω).

Theorem 1.12 can be seen as a partial Γ-convergence result. The method of the proof follows
the lines described in Section 4 below. What we can see is that if for µ-a.e. x ∈ Ω and for all
u ∈ H1,p

µ (Ω;Rm) it holds

lim
ρ→0

lim
ε→0

fε,ρ(x,∇µu(x)) = lim
ρ→0

lim
ε→0

fε,ρ(x,∇µu(x)) (1.17)

then we have Γ-convergence and

Γ(Lpµ)- lim
ε→0

Eε(u,O) =

ˆ
O

lim
ρ→0

lim
ε→0

fε,ρ(x,∇µu(x))dµ(x).

To go further, we developed in [AM20b] and [AM17] a framework by mimicking what happens
in Euclidean spaces for the periodic (and the stochastic) homogenization. First, we assume the
existence of a sequence of homeomorphism {hn}n∈N on X which plays the role of ‘dilations’
x 7→ x

εn
with εn → 0 as n → ∞. Then, we set fn(x, ξ) = f(hn(x), ξ) for all (x, ξ) ∈ X ×M.

We also assume the existence of a subgroup G of the homeomorphisms of X which is acting on
X and is playing the role of ZN acting on RN . The measure µ is assumed to be G-invariant,
i.e. µ(g(A)) = µ(A) for all (g,A) ∈ G × B(X) where B(X) is the Borel σ-algebra of (X, d).
We assume that there exists U ∈ B(X) of positive measure such that µ(∂U) = 0 which plays
the role of ‘unit cell’ in Euclidean spaces. We also make a meshability assumption with respect
the Borel sets {hk(U)}k∈N∗ , roughly we assume that each hk(U) can be approximated, from
below and above, by finite unions of g ◦ hk(U) with g ∈ G. Now, for each ξ ∈M we consider
the subadditive (i.e. for every A,B ∈ B(X) it holds Sξ(A ∪ B) ≤ Sξ(A) + Sξ(B) whenever
A ∩B = ∅) function Sξ : B(X)−→ [0,∞] defined by

Sξ(A) := inf

{ˆ
Å
f(y, ξ +∇µw(y))dµ(y) : w ∈ H1,p

µ,0

(
Å;Rm

)}
,
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where Å denotes the interior of A. We proved that for every ρ > 0

lim
n→∞

fn,ρ(x, ξ) = lim
n→∞

Sξ(hn(Bρ(x)))

µ(hn(Bρ(x)))
= inf

k∈N∗
Sξ(hk(U))

µ(hk(U))
= fhom(ξ).

We then see that (1.17) holds, i.e. for µ-a.e. x ∈ Ω and for all u ∈ H1,p
µ (Ω;Rm)

lim
ρ→0

lim
n→∞

fn,ρ(x,∇µu(x)) = lim
ρ→0

lim
n→∞

fn,ρ(x,∇µu(x)) = fhom(∇µu(x)).

Perspective 5. Homogenization in Cheeger-Sobolev spaces is at the beginning of its
development. The abstract framework for the deterministic and stochastic homogenization
developed in [AM20b] and [AM17] is a first attempt in this direction. It will be interesting to
find new methods for homogenization adapted to metric measure spaces.

4. About the techniques to prove Γ-convergence results

In this section, we give a quick explanation of the main techniques we used to prove relaxation
and Γ-convergence results.

4.1. General scheme for establishing upper bound. This part is devoted to present
the general strategy for establishing the upper bound for the problems of relaxation,
homogenization, and more generally of Γ-convergence of family of (variational) functionals

{Fε}ε>0, Fε : H1,p
µ (Ω;Rm) × O(Ω) −→ [0,∞]. The method which was first introduced by

[BFM98] in the Euclidean setting and named ‘Global method of relaxation’, allows to avoid
any approximation arguments when we want to establish an upper bound under integral form:

Γ(Lpµ)- lim
ε→0

Fε(u,O) ≤
ˆ
O
g(x,∇µu(x))dµ(x).

We consider the set function G : H1,p
µ (Ω;Rm)×O(Ω)−→ [0,∞]

G(u,O) := lim
ε→0

mε(u,O) where mε(u,O) := inf
ϕ∈H1,p

µ,0(O;Rm)
Fε(u+ ϕ,O). (1.18)

We cannot expect that G(u, ·) is a measure even if Fε(u, ·) is the restriction of a positive
Radon measure, it is the reason that the Vitali envelopes (1.19) and (1.20) of G(u, ·) have
been introduced. In the following, we present the integral representation of the Vitali envelope
of a set function defined on open subsets of Ω, it is partly inspired by [BB00; BFM98; DM86].
For each open set O ⊂ Ω, we denote by Bal(O) ⊂ O(O) the class of all open balls B of O. Let
G : Bal(Ω)−→R be a set function. We define the lower Vitali envelope of G with respect to µ

O(Ω) 3 O 7−→ G∗−(O) := sup
ε>0

inf

{∑
i∈I

G(Bi) : {Bi}i∈I ∈ V
ε(O)

}
(1.19)

and the upper Vitali envelope with respect to µ

O(Ω) 3 O 7−→ G∗+(O) := inf
ε>0

sup

{∑
i∈I

G(Bi) : {Bi}i∈I ∈ V
ε(O)

}
, (1.20)

where for every ε > 0

Vε(O) :=

{
{Bi}i∈I ⊂ Bal(O) : I is countable, µ

(
O \ ∪

i∈I
Bi

)
= 0, Bi ⊂ O,

0 < diam(Bi) ≤ ε and Bi ∩Bj = ∅ for all i 6= j

}
.

22
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Remarks 1.13. If G is the trace on Bal(Ω) of a positive Borel measure λ on Ω which is
absolutely continuous with respect to µ then G∗±(O) = λ(O) for all O ∈ O(Ω).

Let G : Bal(Ω)→ R be a set function. Define the lower and the upper derivatives at x ∈ Ω
of G with respect to µ as follows

D−µG(x) := lim
ρ→0

inf

{
G(B)

µ(B)
: x ∈ B ∈ Bal(Ω), 0 < diam(B) ≤ ρ

}
;

D+
µG(x) := lim

ρ→0
sup

{
G(B)

µ(B)
: x ∈ B ∈ Bal(Ω), 0 < diam(B) ≤ ρ

}
.

We say that G is µ-differentiable in O ∈ O(Ω) if for µ-a.e. x ∈ O it holds

−∞ < D−µG(x) = D+
µG(x) <∞.

Under domination and subadditivity conditions (see conditions (i) and (ii) below), a set
function defined on open sets is µ-differentiable, and the lower and upper Vitali envelopes are
equal and admit an integral representation with density its derivative.

Theorem 1.14 ([AM18, Theorem 3.17, p. 65]). Let G : O(Ω)−→ R satisfy:

(i) there exists a positive Radon measure α on Ω absolutely continuous with respect to µ,
i.e. α� µ, satisfying

|G(O)| ≤ α(O) for all O ∈ O(Ω);

(ii) for every U, V,O ∈ O(Ω) with U ∩ V = ∅, U ⊂ O, V ⊂ O and µ(O \ (U ∪ V )) = 0 it
holds

G(O) ≤ G(U) +G(V ).

Then G is µ-differentiable with Ω 3 x 7−→ limρ→0
G(Bρ(x))
µ(Bρ(x)) ∈ L

1
µ(Ω) and for every O ∈ O(Ω)

G∗+(O) = G∗−(O) =

ˆ
O

lim
ρ→0

G(Bρ(x))

µ(Bρ(x))
dµ(x). (1.21)

Now, in pratical case (1.18), each functional Fε(u, ·) is the restriction to open sets of a
positive Radon measure. Often, it is an integral Fε(u,O) =

´
O fε(x,∇µu(x))dµ(x), and

satisfies Fε(u, ·) ≤ αu(·) where αu � µ is a positive Radon measure, for instance p-growth
i.e. αu = (a(·) + b |∇µu(·)|p)µ (see [AM15; AM17; AM22]) or G-growth (see [AM18]) i.e.
αu = β(1 +G(·,∇µu(·)))µ. Then by applying Theorem 1.14 we show that for every O ∈ O(Ω)

and every u ∈ H1,p
µ (Ω;Rm) we have

G∗−(u,O) =

ˆ
O

lim
ρ→0

lim
ε→0

mε(u,Bρ(x))

µ(Bρ(x))
dµ(x).

The strategy to obtain the upper bound is then to show, by using p-coercivity and Poincaré
inequality, thatˆ

O
lim
ρ→0

lim
ε→0

mε(u,Bρ(x))

µ(Bρ(x))
dµ(x) = G∗−(u,O) ≥ Γ(Lpµ)- lim

ε→0
Fε(u,O)

then we show, by using cut-off techniques and the growth conditions, that for µ-a.e. x ∈ Ω

lim
ρ→0

lim
ε→0

mε(u,Bρ(x))

µ(Bρ(x))
≤ lim

ρ→0
lim
ε→0

mε(ux, Bρ(x))

µ(Bρ(x))
(1.22)
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where ux ∈ H1,p
µ (Ω;Rm) is given by ux(y) := u(x) +∇µu(x) · (γk(y)− γk(x)) and satisfies

∇µux(y) = ∇µu(x) for µ-a.a. y ∈ X and lim
ρ→0

1

ρ

(
−
ˆ
Bρ(x)

|u(y)− ux(y)|p dµ(y)

) 1
p

= 0.

(1.23)
In fact, we replace u by (its local approximation around x) ux on the boundary of the ball
Bρ(x), this part of the proof involves Lpµ-differentiability arguments as the right hand side of

(1.23) and compactness imbeddings theorems when for instance p > κ = ln(Cd)
ln(2) (or p > N in

the Euclidean case). It follows that

Γ(Lpµ)- lim
ε→0

Fε(u,O) ≤
ˆ
O
g(x,∇µu(x))dµ(x)

where g(x,∇µu(x)) := limρ→0 limε→0
mε(ux,Bρ(x))
µ(Bρ(x)) µ-a.e. x ∈ Ω.

4.2. General scheme for establishing lower bound. Here, we give a description of
a usual method (called the localization method or blow-up method which was introduced
by [FM92]) to show the lower bound in the Γ-convergence problems. We place ourselves
under the assumption (ALX). To show the lower bound for Γ-limit inf, we first assume that
Γ(Lpµ)- limε→0 Fε(u,O) <∞, so there exists a sequence {uε}ε>0 such that

lim
ε→0

Fε(uε, O) = Γ(Lpµ)- lim
ε→0

Fε(u,O) and sup
ε>0

Fε(uε, O) <∞. (1.24)

We assume that Fε(v, ·)bO is the trace of a Borel measure for all v ∈ H1,p
µ (X;Rm). For each

ε > 0 we set Θε := Fε(uε, ·). Note that since (1.24) this sequence is uniformly bounded
supε>0 Θε(O) <∞. There exists a Borel measure Θ (in the Euclidean setting, Θ is the weak∗

limit of a subsequence of {Θε}ε>0) such that

Γ(Lpµ)- lim
ε→0

Fε(u,O) = lim
ε→0

Fε(uε, O) = lim
ε→0

Θε(O) ≥ Θ(O) =

ˆ
O

dΘ

dµ
(x)dµ(x) + Θs(O)

where we used the Lebesgue decomposition theorem and the Radon-Nikodym theorem to write
Θ = dΘ

dµµbO+Θs for some nonnegative Borel measure Θs mutually singular with respect to

µbO and with for µ-a.e. x ∈ O
dΘ

dµ
(x) = lim

ρ→0

Θ(Bρ(x))

µ(Bρ(x))
.

Since (ALX) and Θ(O) < ∞ we can write (Θ(∂Bρ(x)) = 0 for all ρ outside a countable set
possibly depending on x ∈ O) for µ-a.e. x ∈ O

dΘ

dµ
(x) = lim

ρ→0
lim
ε→0

Θε(Bρ(x))

µ(Bρ(x))
= lim

ρ→0
lim
ε→0

Fε(uε, Bρ(x))

µ(Bρ(x))
.

it follows that

Γ(Lpµ)- lim
ε→0

Fε(u,O) ≥
ˆ
O

lim
ρ→0

lim
ε→0

Fε(uε, Bρ(x))

µ(Bρ(x))
dµ(x)

Now, to go further, we show, when it is possible, by using cut-off techniques and the growth
conditions that for µ-a.e. x ∈ O

lim
ρ→0

lim
ε→0

Fε(uε, Bρ(x))

µ(Bρ(x))
≥ lim

ρ→0
lim
ε→0

mε(ux, Bρ(x))

µ(Bρ(x))
. (1.25)

In fact, we try to replace uε by a new function which coincides with ux on the boundary of the
ball Bρ(x), this part is technical and involves Lpµ-differentiability arguments and compactness
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imbeddings when for instance p > κ (or p > N in the Euclidean case), and sometimes, under
p-growths, we have to use the thin layers technique of De Giorgi [De 75].

4.3. A way to prove Γ-convergence results. If we compare the inequalities (1.22) and
(1.25) we see that, to get a Γ-convergence result, it is sufficient to show for µ-a.e. x ∈ O

lim
ρ→0

lim
ε→0

mε(ux, Bρ(x))

µ(Bρ(x))
= lim

ρ→0
lim
ε→0

mε(ux, Bρ(x))

µ(Bρ(x))
(1.26)

this is an important difficulty in the Γ-convergence problems (note that, we already presented
this equality in (1.17)).

If we place ourselves in the Euclidean setting, i.e. (X, d, µ) = (RN , | · − · |,LN ) and we
deal with periodic homogenization problems Fε(uε, O) =

´
O f(x/ε,∇uε(x))dx (It also works

for stochastic homogenization problems. The only difference is that we need some Lipschitz
regularity assumptions (on the integrand) allowing the Γ-limit to hold in a full probability
set not depending on Sobolev functions), a way for the equality to hold is to use subadditive
theorems. Now, for each ξ ∈M we consider the subadditive function Sξ : B

(
RN
)
−→ [0,∞]

defined by

Sξ(A) := inf

{ˆ
Å
f(y, ξ +∇w(y))dLN (y) : w ∈W 1,p

0

(
Å;Rm

)}
,

we see that for every ε, ρ > 0 we have

Sξ
(

1
εBρ(x)

)
LN

(
1
εBρ(x)

) =
mε(lξ, Bρ(x))

LN (Bρ(x))
,

if supA∈B(RN ), LN (A)>0 Sξ(A)/LN (A) <∞ then Akcoglu-Krengel subadditive theorem [AK81]

(see also [LM02] and [AM20b]) says that for every ρ > 0 the following limit exists and then
gives a way to have (1.26):(

lim
ε→0

mε(lξ, Bρ(x))

LN (Bρ(x))
=

)
lim
ε→0

Sξ
(

1
εBρ(x)

)
LN

(
1
εBρ(x)

) = inf
k∈N∗

Sξ(kY )

kN
.
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CHAPTER 2

Relaxation and homogenization of unbounded integrals

In this chapter, we present our works concerning the extension of relaxation and
homogenization results to the case of unbounded integrals, i.e. when the integrand
does not have necessarily p-growth. Section 1 gives a presentation of the concept of radially
uniformly upper semicontinuous functions. This class of functions is of interest when we want
to establish the upper bound in relaxation or Γ-convergence problems. Indeed, one of the
difficulties to establish the upper bound is that the weak limits of the sequences of gradients
may concentrate on the boundary of the effective domain which is assumed to be convex. It
is well known that a convex set with nonempty interior is star-shaped, i.e. every point of
the boundary can be brought back radially inside the interior. The strategy is then, first
to establish the upper bound when the gradient is uniformly contained in the interior of
the effective domain. Then we can prove the upper bound if we can extend radially to the
boundary the upper bound obtained for gradient in the interior of the effective domain, this is
exactly what radially uniformly upper semicontinuous functions do. In Section 2 we present
relaxation and homogenization results of unbounded integral functionals when the effective
domain of the integrand is a bounded convex set with nonempty interior. Section 3 presents
our works on homogenization when the effective domain is convex but not necessarily bounded.
To deal with this case, we have considered G-growth assumptions on the integrands, i.e. we
replaced the polynomial growth conditions by growths governed by either a convex function G
or a quasiconvex function G satisfying additional hypothesis. Finally Section 4 gives a brief
description of a relaxation result in Cheeger-Sobolev spaces with G-growth depending on the
space variable x ∈ X.

The works involved in this chapter are [AM18; AMZ15; AM14; AM12a; AM11; Anz10].

1. Radially uniformly upper semicontinuous functions

In relaxation or homogenization theory, for convex constraints and when the lower
semicontinuous envelope is convex, the radial representation on the boundary holds and
allows, under some additional requirements, to extend the integral representation to the
whole effective domain of the functional (see for instance [CD02]). However, even for convex
constraints, the lower semicontinuous envelope is not necessarily convex in the vectorial case.
Therefore, the need for a generalization of the radial representation to a nonconvex setting
comes naturally.

The analysis of how the convexity concept plays (see [Roc70, Theorem 7.5, p. 57]) to obtain
the radial limit representation involves a uniform upper semicontinuity property, more precisely,
when f : V →]−∞,∞] is convex (V is a vector space) we may write

sup
u∈domf

f(tu+ (1− t)u0)− f(u)

1 + |f(u0)|+ |f(u)|
≤ 1− t (2.1)

for any u0 ∈ domf . The left hand side of (2.1) is a kind of uniform semicontinuity modulus
which is lower than 0 when t→ 1.

27



Relaxation and homogenization of unbounded integrals in calculus of variations

Let V be an Hausdorff topological vector space. For a function f : V−→]−∞,∞] we denote
its effective domain by

domf := {u ∈ V : f(u)<∞} .
For each a>0, D ⊂ domf and u0 ∈ D, we define ∆′f,D, ∆a

f,D,u0
: [0, 1]−→]−∞,∞] by

∆a
f,D,u0(t) := sup

u∈D

f(tu+ (1− t)u0)− f(u)

a+ |f(u)|
and ∆′f,D(t) := sup

u∈D
(f(tu+ (1− t)u0)− f(u)).

If D = domf then we write ∆a
f,u0

:= ∆a
f,D,u0

.

Definition 2.1. (i) [AM14, Definition 2.1] Let D ⊂ domf and u0 ∈ D. We say that f is
radially uniformly upper semicontinuous in D relative to u0, if there exists a>0 such
that limt→1 ∆a

f,D,u0
(t) ≤ 0.

If D = domf then we simply say that f is ru-usc relative to u0 ∈ domf .

(ii) [Anz10, Section 1.2] Let D ⊂ domf and u0 ∈ D. We say that f is strongly radially
uniformly upper semicontinuous in D relative to u0, if limt→1 ∆′f,D(t) ≤ 0.

If D = domf then we simply say that f is strongly ru-usc relative to u0 ∈ domf .

(iii) [AM14, Definition 2.1] We say that D ⊂ V is a strongly star-shaped set relative to
u0 ∈ D, if

∀t ∈ [0, 1[ tD + (1− t)u0 ⊂ D,

where D is the closure of D in V .

Radially uniformly upper semicontinuous (resp. strongly radially uniformly upper
semicontinuous) will be abbreviated to ru-usc (resp. strongly ru-usc) in what follows.

When D ⊂ domf is star-shaped relative to u0 ∈ D and f is ru-usc in D relative to u0 ∈ D,
we say that f is ru-usc in the star-shaped set D relative to u0 ∈ D.

Remarks 2.2. (1) Let u0 ∈ V . One has D strongly star-shaped relative to u0 ∈ D if and
only if D − {u0} is strongly star-shaped relative to 0 ∈ D, and f is ru-usc in D relative
to u0 ∈ D if and only if f(·+ u0) is ru-usc in D − {u0} relative to 0 ∈ D − {u0}.

(2) Note that ∆a
f(·+u0),D−{u0},0(·) = ∆a

f,D,u0
(·).

(3) If f is strongly ru-usc in D relative to u0 ∈ D then it is ru-usc in D relative to u0 ∈ D.
If f is ru-usc in D relative to u0 ∈ D and supD f < ∞ then f is strongly ru-usc in D
relative to u0 ∈ D.

(4) If f is ru-usc in D relative to 0 ∈ D then for some a > 0 and for every u ∈ D ⊂ domf
and t ∈ [0, 1[ it holds

f(tu) =
f(tu)− f(u)

a+ |f(u)|
(a+ |f(u)|) + f(u) ≤ ∆a

D,f,0(t)(a+ |f(u)|) + f(u)

letting t→ 1 we obtain limt→1 f(tu) ≤ f(u).

When D = domf and 0 ∈ domf we simply write ∆a
f (t) instead of ∆a

f,domf,0 and ∆′f (t) for

∆′f,domf .

From now, we will always assume that u0 = 0, and we simply write D is strongly star-shaped
and f is ru-usc in D, and when D = domf then we write f is ru-usc.

We set
∀u ∈ V f̂(u) := lim

t→1−
f(tu).
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A preliminary version of this result appeared in [AM11] (see also [AMZ15]):

Theorem 2.3 ([AM14]). Let f : V −→ [0,∞] be a function and let D ⊂ domf be a strongly

star-shaped relative to 0 ∈ D. Assume that f is ru-usc in D. Then f̂(u) = limt→1− f(tu) for

all u ∈ D and f̂ is ru-usc in D ∩ domf̂ . Moreover, f(u) ≤ f̂(u) ≤ f(u) for all u ∈ D.

Remarks 2.4. If D = domf then f̂ is ru-usc in its effective domain domf̂ since f ≤ f̂ ≤ f
implies domf ⊂ domf̂ ⊂ domf ⊂ domf .

Now, we can write the parametric version of the ru-usc property. Let (X,X , ν) be a measure
space. For a function f : X × V −→ [0,∞] we denote the effective domain of f(x, ·) by

Fx := {u ∈ V : f(x, u)<∞} .

For each a ∈ L1
loc,ν(X; ]0,∞[), we set for every t ∈ [0, 1]

∆a
f (t) := sup

x∈X
sup
u∈Fx

f(x, tu)− f(x, u)

a(x) + f(x, u)
and ∆′f (t) := sup

x∈X
sup
u∈Fx

(f(x, tu)− f(x, u)).

Definition 2.5. (i) [AM11, Definition 3.1] We say that f is radially uniformly upper
semicontinuous, if there exists a ∈ L1

loc,ν(X; ]0,∞[) such that limt→1 ∆a
f (t) ≤ 0.

(ii) [AM12a, Definition 4.1] We say that f is strongly radially uniformly upper semicontinuous,
if limt→1 ∆′f (t) ≤ 0.

We proved the following representation result of the lower semicontinuous envelope on the
boundary of its effective domain:

Theorem 2.6 ([AM11; AMZ15]). Let f : X×V −→ [0,∞] be a ru-usc (resp. strongly ru-usc)
function such that Fx is star-shaped relative to 0 ∈ Fx for all x ∈ X. Let x ∈ X. If f(x, ·) is

lower semicontinuous on Fx then f̂(x, ·) is ru-usc (resp. strongly ru-usc), is equal to the lower
semicontinuous envelope of f(x, ·) and for every u ∈ V

f̂(x, u) =



f(x, u) if u ∈ Fx

lim
t→1−

f(x, tu) if u ∈ ∂Fx

∞ if u ∈ V \ Fx.

Perspective 6. It is of interest to extend Theorem 2.6 to the Γ-convergence setting, i.e.
instead of extending the lower semicontinuous envelope, to extend the Γ-limit when it exists
of a sequence of functions.

2. Relaxation and homogenization of unbounded integrals with bounded

convex effective domain

In the following we give a quick summary of key definitions related to quasiconvex functions.

Definition 2.7. (1) We say that a Borel measurable function g : M−→[0,∞[ is quasiconvex
if for every ξ ∈M we have

g(ξ) = inf

{ˆ
Y
g(ξ +∇φ(y))dy : φ ∈W 1,∞

0 (Y ;Rm)

}
where Y =]0, 1[N .
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(2) The quasiconvex envelope of f : M−→ [0,∞] is the function Qf : M−→ [0,∞] defined by

Qf(ξ) := sup {g(ξ) : g : M−→ [0,∞[ is quasiconvex and g ≤ f} .
(3) For a Borel measurable f : M−→ [0,∞] we set Z∞f : M−→ [0,∞] defined by

Z∞f(ξ) := inf

{ˆ
Y
f(ξ +∇φ(y))dy : φ ∈W 1,∞

0 (Y ;Rm)

}
.

(For more properties of Z∞f see Section 1 in Chapter 3.)

(4) We say that h : M−→ [0,∞] is sup-quasiconvex if there exists a nondecreasing sequence
{hn}n∈N, hn : M−→ [0,∞[ satisfying

(i) hn is quasiconvex for all n ∈ N;

(ii) for every n ∈ N there exists αn>0 such that hn(ξ) ≤ αn(1 + |ξ|) for all ξ ∈M;

(iii) for every ξ ∈M one has h(ξ) = supn∈N hn(ξ).

Remarks 2.8. (1) The function g : M−→ [0,∞[ is continuous when it is quasiconvex.

(2) The quasiconvex envelopeQf is lower semicontinuous as supremum of continuous functions
and satisfies

Qf(ξ) = inf

{ˆ
Y
Qf(ξ +∇φ(y))dy : φ ∈W 1,∞

0 (Y ;Rm)

}
.

2.1. Relaxation theorems. This subsection is devoted to the description of our work on the
relaxation of integral functionals of the calculus of variations in Sobolev spaces with bounded
constraints on the gradient. Let Ω ⊂ RN be a bounded open set with Lipschitz boundary.
Let f : M −→ [0,∞] be a Borel measurable function. The effective domain of f is the set
domf := {ξ ∈M : f(ξ)<∞}. We consider a bounded convex subset C ⊂M such that

0 ∈ intC and domf ⊂ C,
where intC is the interior of C. Let I : L1(Ω;Rm)−→ [0,∞] be the integral functional defined
by

I(u) :=


ˆ

Ω
f(∇u(x))dx if u ∈W 1,∞(Ω;Rm)

∞ if u ∈W 1,∞(Ω;Rm) \ L1(Ω;Rm).

We studied the problem of the integral representation of the relaxation of I

I(u) := inf

{
lim
n→∞

ˆ
Ω
f(∇un(x))dx : un → u in L1(Ω;Rm)

}
.

We have proved the following two theorems. The first result allows to consider a singular
behavior at the boundary of the convex set, i.e. limξ→∂C f(ξ) =∞, an illustration is given by
Figure 2.1. For instance, the result applies for integrand of the type

M 3 ξ 7−→ f(ξ) :=


g(ξ) +

1

1− |ξ|s
si |ξ|<1

∞ si |ξ| ≥ 1

where g : M−→ [0,∞[ is uniformly continuous and s ∈ [1,∞[.

Theorem 2.9 ([Anz10, Theorem 1.1. and Theorem 1.2.]). Assume that

(H1) f is locally bounded in intC, i.e. supξ∈K f(ξ)<∞ for all compact subsets K ⊂ intC;
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Mémoire de synthèse HDR Relaxation and homogenization of unbounded integrals in calculus of variations

f

∞ ∞

domf ⊂ C

Figure 2.1. A possible
singular behavior of f in
Theorem 2.9.

f

∞ ∞

domf ⊂ C

Figure 2.2. A possible
behavior of f in Theorem 2.10.

(H2) for every α>0 there exists a compact subset Kα ⊂ intC such that infξ∈C\Kα Z∞f(ξ) ≥ α;

(H3) Z∞f is strongly ru-usc in domf (relative to 0).

Then

(i) Qf is sup-quasiconvex and Qf(ξ) =

 Z∞f(ξ) if ξ ∈ intC

∞ otherwise;

(ii) I(u) =


ˆ

Ω
Qf(∇u(x))dx if u ∈W 1,∞(Ω;Rm)

∞ if u ∈W 1,∞(Ω;Rm)\L1(Ω;Rm).

The second result allows to consider the case of integrands which are bounded on intC, an
illustration is given by Figure 2.2.

Theorem 2.10 ([Anz10, Theorem 1.3. and Theorem 1.4.]). Assume that

(H1) f is bounded in intC, i.e. supξ∈intC f(ξ)<∞;

(H2) for every ξ ∈ ∂C it holds lim[0,1[3t→1 f(tξ) ≤ f(ξ);

(H3) Z∞f is strongly ru-usc in domf (relative to 0).

Then

(i) Qf is sup-quasiconvex and Qf = Ẑ∞f = Z∞f ;

(ii) I(u) =


ˆ

Ω
Qf(∇u(x))dx if u ∈W 1,∞(Ω;Rm)

∞ if u ∈W 1,∞(Ω;Rm)\L1(Ω;Rm).

The proofs of Theorems 2.9 and 2.10 are based on two main ingredients. To establish the
lower bound, we use a result of [Mül99a] which states that a sequence of gradients converging
in L1 to C can be modified on a small set in a such way that the new sequence converges
in L∞ to C. This result allows to show that the quasiconvex envelope of f is the supremum
of a nondecreasing sequence of functions with p-growth. Then the lower bound is obtained
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by using the convergence monotone theorem and classical lower semicontinuity results with
p-growth (see for instance [AF84]). For the upper bound, we first assume that the gradients are
compactly contained in the interior of C, then using approximation by continuous piecewise
affine functions of Sobolev functions and the continuity property of Z∞f we can establish the
upper bound for these particular gradients. Eventually, we use the ru-usc property of Z∞f to
extend the upper bound inequality to all gradients, i.e. those contained in C.

Perspective 7. One interesting further investigation is to obtain relaxation results under
star-shaped C but non necessarily convex. For instance, it would be interesting to prove
relaxation results when C is the union of two bounded convex sets with the interior of their
intersection is nonempty.

2.2. Homogenization of unbounded integrals with bounded convex effective

domain.Now, we present the problem of homogenization of unbounded integrals Iε :
W 1,∞

0 (Ω;Rm)−→ [0,∞] defined by

Iε(u) :=

ˆ
Ω
f
(x
ε
,∇u(x)

)
dx

where ε > 0 and f : RN ×M−→ [0,∞] is a Borel measurable function which is 1-periodic with
respect to its first variable, i.e.

(H1) f(x+ z, ξ) = f(x, ξ) for all (x, z, ξ) ∈ RN × ZN ×M,

and infinite outside of a convex bounded set C ⊂M satisfying 0 ∈ intC, i.e.

(H2) domf(x, ·) = C for all x ∈ RN where domf(x, ·) the effective domain of f(x, ·).
We consider the following three assertions:

(H3) f is locally bounded in C, i.e. supx∈RN supξ∈tC f(x, ξ) <∞ for all t ∈ [0, 1[;

(H4) f is singular on the boundary ∂C of C, i.e.

lim
t→1

inf
x∈RN

inf
ξ∈C\tC

f(x, ξ) =∞;

(H5) f is strongly ru-usc, i.e. limt→1 ∆f (t) := limt→1 supx∈RN supξ∈C f(x, tξ)− f(x, ξ) ≤ 0.

Theorem 2.11 ([AM12a, Corollary 2.3, p. 189]). Let f : RN × M −→ [0,∞] be
a Borel measurable function satisfying(H1)-(H5). Then Γ(L1)- lim

ε→0
Iε = Ihom. where

Ihom : W 1,∞(Ω;Rm)−→ [0,∞] is defined by

Ihom(u) :=

ˆ
Ω
fhom(∇u(x))dx

with fhom : M−→ [0,∞] given by fhom = H∞f = Ĥ∞f where H∞f : M−→ [0,∞] is defined by

H∞f(F ) := inf
k∈N∗

inf
φ∈W 1,∞

0 (kY ;Rm)
−
ˆ
kY
f(y, F +∇φ(y))dy.

and H∞f its lower semicontinuous envelope.

The extension into the setting of periodic homogenization of Theorems 2.9 and 2.10 involved
some difficulties. The strategy of the proof is similar to the one of the previous relaxation
results Theorems 2.9 and 2.10. To adapt the techniques in the context of homogenization,
we had to prove a Γ-limit inf lower bound for periodic integrals with 1-growth and for the
weak∗ convergence in W 1,∞(Ω;Rm), this played the role of the classical lower semicontinuity
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Approx. formula
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Figure 2.3. Schematic representation of the successive steps of the proof of
the Γ-limit sup of Theorem 2.11.

results that we used for the relaxation results. For the upper bound, we prove that for every
u ∈W 1,∞(Ω;Rm)

Γ(L1) lim
ε→0

-Iε(u) ≤
ˆ

Ω
ẐH∞f(∇u(x))dx.

where ZH∞f(F ) := inf
{´

Y H∞f(F +∇φ(y))dy : φ ∈ Aff0(Y ;Rm)
}

. In fact, we can show
that ZH∞f is strongly ru-usc since f is assumed to be strongly ru-usc (see [AM12a, Propositions
3.6 and 3.7]), therefore we can show

lim
t→1

ˆ
Ω
ZH∞f(t∇u(x))dx ≤

ˆ
Ω
ZH∞f(∇u(x))dx.

Using an approximation result of [DM99, Theorem 10.16 and Corollary 10.21] we can find a
sequence {uε}ε ∈W 1,∞(Ω;Rm) and a sequence of open subsets {Ωε}ε of Ω such that uεbΩε is a
continuous piecewise affine function, ∇uε(x) ∈ (t+ ε)C LN -a.e. x ∈ Ω, limε→0 LN (Ω \Ωε) = 0
and uε → tu strongly in W 1,1(Ω;Rm). Then we show that

lim
ε→0

ˆ
Ω
ZH∞f(∇uε(x))dx =

ˆ
Ω
ZH∞f(t∇u(x))dx.

Now, we can work on each open subsets Ωε,i ⊂ Ωε where the gradient ∇uε = ξi is constant,
the rest of the proof consists in using approximation formula ZH∞f(ξi) by H∞f (see [AM12a,
Proposition 3.19] or Lemma 3.16) and a similar approximation formula for H∞f by f adapted
from [Mül87, Lemma 2.1(a)]:

Lemma 2.12 ([AM12a, Proposition 3.20]). Let t ∈]0, 1[, let ξ ∈ M and let O ⊂ RN be a

bounded open set. If ξ ∈ tC then there exists {φε}ε ⊂W 1,∞
0 (O;Rm) such that:

(a) lim
ε→0
‖φε‖L1(O;Rm) = 0;

(b) lim
ε→0
−
ˆ
O
f
(x
ε
, ξ +∇φε(x)

)
dx = H∞f(ξ).

The Figure 2.3 gives a schematic representation of the differents steps of the proof of the
upper bound.

We present an example (see [AM12a]) in the case N = m. Let B be the unit open ball in M
(note that detF > 0 whenever F ∈ I + B). Given a continuous function g : M−→ [0,∞[ and a
convex function h : [0, 1[−→[0,∞[ such that there exist c > 0 and p > 0

h(t) ≥ ctp

1− tp
for all t ∈ [0, 1[, (2.2)

we consider Φ : M−→ [0,∞] defined by

Φ(ξ) :=

{
g(I + ξ) + h(|ξ|) if ξ ∈ B
∞ otherwise,
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where I denotes the identity matrix in M. Given a 1-periodic function a ∈ L∞
(
RN
)

such that

α ≤ a(x) ≤ β for all x ∈ RN and some β > α > 0, we define f : RN ×M−→ [0,∞] by

f(x, ξ) := a(x)Φ(ξ).

Such a f satisfies the assumptions of Theorem 2.11 (here C = B) as well as some (but
not all) conditions of hyperelasticity, i.e. the non-interpenetration of the matter: for every
(x, ξ) ∈ RN × B, f(x, ξ) < ∞ if and only if det(I + ξ) > 0, and the necessity of an infinite
amount of energy to reduce a finite volume of matter into zero volume: for every x ∈ RN ,
f(x, ξ) → ∞ as det(I + ξ) → 0. However, the material frame-indifference condition is not
satisfied, indeed the rotation of angle π

2 does not belong to I+B (because Φ(R−I) =∞ > Φ(0)
with R the rotation of angle π

2 ).

3. Homogenization of unbounded integrals with G-growth

This section is devoted to present our works on the homogenization of periodic unbounded
integrals on W 1,p(Ω;Rm) with p > N . Here, the constraints on gradient are now not necessarily
bounded. Let Ω ⊂ RN be a nonempty bounded open set with Lipschitz boundary. We consider
the periodic homogenization problem of integral functionals by Γ-convergence. More precisely,
for each ε>0, we define Iε : W 1,p(Ω;Rm)−→ [0,∞] by

Iε(u) :=

ˆ
Ω
f
(x
ε
,∇u(x)

)
dx,

where the integrand f : RN ×M−→ [0,∞] is Borel measurable and 1-periodic with respect
to the first variable. Nonconvex homogenization by Γ-convergence of the family {Iε}ε>0 was
mainly studied in the framework of p-polynomial growth conditions on f . Unfortunately,
this framework is not compatible with two basic conditions of hyperelasticity: the non-
interpenetration of the matter, i.e. f(x, ξ) =∞ if and only if det(I + ξ) ≤ 0, and the necessity
of an infinite amount of energy to reduce a finite volume into zero volume, i.e. for every x ∈ RN ,
f(x, ξ) → ∞ as det(I + ξ) → 0. At present, it seems difficult to take these conditions into
account in homogenization problems. Generally, the attempts to go beyond the p-polynomial
growth are not easy due to the lack of available techniques. However, in the scalar case,
we refer to the book [CD02] where relaxation and homogenization of unbounded functionals
were studied (see also [Car+02; Car+04; CCP06; De 07]). In the vectorial case, i.e. when
min(N,m)> 1, the homogenization with convex growth see (H1) (G independent of x) on
f was studied in [AM11]. When the convex growth G depends upon the space variable x,
the stochastic homogenization problem was studied in [DG16] and their result generalize
substantially our work [AM11].

We consider the following assertions:

(H1) G-growth conditions, i.e. there exist α, β > 0 such that for every x ∈ RN and every
ξ ∈M

αG(ξ) ≤ f(x, ξ) ≤ β(1 +G(ξ));

(H2) f is p-coercive, i.e. there exists c>0 such that for every (x, ξ) ∈ RN ×M
c|ξ|p ≤ f(x, ξ),

where G : M−→ [0,∞] is a Borel measurable function. Denote by G the effective domain of
G, i.e. G = {ξ ∈M : G(ξ)<∞}. We can remark that (H1) implies that the effective domain
of f is independent of x and domf(x, ·) = G for all x ∈ RN .

We consider the following conditions on G:
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(C1) 0 ∈ int(G);
(C2) there exists C > 0 such that for every ξ, ζ ∈M and every t ∈]0, 1[

G(tξ + (1− t)ζ) ≤ C(1 +G(ξ) +G(ζ));

(C3) G is W 1,p-quasiconvex, i.e. for every ξ ∈M

G(ξ) = inf

{ˆ
Y
G(ξ +∇ϕ(x))dx : ϕ ∈W 1,p

0 (Y ;Rm)

}
where Y =]0, 1[N .

Note that (C2) implies that G is convex but G is not necessarily convex. The condition (C2)
prevents the possible “strong bumps” of G.

Theorem 2.13 ([AMZ15, Theorem 1.1]). Assume that p>N . Assume that (C1)-(C3), (H1)
and (H2) hold. If f is periodically ru-usc then {Iε}ε>0 Γ-converges with respect to the strong
topology of Lp(Ω;Rm) to Ihom : W 1,p(Ω;Rm)−→ [0,∞] defined by

Ihom(u) :=

ˆ
Ω
fhom(∇u(x))dx, (2.3)

with fhom = Ĥf = Hf where Hf is the Braides-Müller homogenization formula (3.8) and Hf
its lower semicontinuous envelope.

Theorem 2.13 is an extension of the homogenization result in [AM11], to the case where f
has quasiconvex growth conditions. When the growth G is convex (then (C2) and (C3) are
fulfilled) we proved the following result.

Theorem 2.14 ([AM11, Corollary 2.2, p. 170]). Assume that G is convex. Let f : RN ×M→
[0,∞] be a Borel measurable function. Assume that f is periodically ru-usc and satisfies (H1)
and (H2). If (C1) holds, p > N and Ω is strongly star-shaped then {Iε}ε>0 Γ-converges with
respect to the strong topology of Lp(Ω;Rm) to Ihom : W 1,p(Ω;Rm) −→ [0,∞] given by (2.3)

with fhom = Ĥf = Hf .

The assumption that f is periodically ru-usc allows to consider a suitable extension (in a radial
way) of the homogenized integrand to the boundary ∂G of G. The reason is that the weak
limits of the sequences of gradients can be located at ∂G during the homogenization process
by Γ-convergence. The assumption that p>N allows, by using the p-coercivity condition (H2)
and Sobolev compact imbedding, to work with the convergence in L∞(Ω;Rm) instead of
Lp(Ω;Rm). Moreover, the functions of W 1,p(Ω;Rm) are almost everywhere differentiable in
Ω since Sobolev imbedding. When it is combined with the fact that G has a local upper
bound property, i.e. sup|ξ|≤rG(ξ) <∞ for some r > 0 (see Remark 2.17), it allows to obtain
suitable lower and upper bounds. The main difficulty for proving Theorem 2.13 comes from
the proof of the Γ-limit sup. In the setting of convex growth conditions on f we can use
mollifier techniques to construct approximations of Sobolev functions by smooth ones (and
then use continuous piecewise affine functions). The steps of the proof follows the same lines
as the one of Theorem 2.11. Indeed, we prove that for every u ∈W 1,p(Ω;Rm)

Γ(Lp) lim
ε→0

-Iε(u) ≤
ˆ

Ω
ẐHf(∇u(x))dx.

where ZHf(F ) := inf
{´

Y Hf(F +∇φ(y))dy : φ ∈ Aff0(Y ;Rm)
}

. In fact, we can show that
ZHf is ru-usc since f is assumed to be ru-usc (see [AM11, Propositions 3.6 and 3.7]), therefore
we can show

lim
t→1

ˆ
Ω
ZHf(t∇u(x))dx ≤

ˆ
Ω
ZHf(∇u(x))dx.

35



Relaxation and homogenization of unbounded integrals in calculus of variations
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Figure 2.4. Schematic representation of the successive steps of the proof of
the Γ-limit sup of Theorem 2.14.

Using an approximation result of [Mül87, Lemma 3.6] we can find a sequence {uε}ε ∈ Aff(Ω;Rm)
such that ∇uε(x) ∈ intG LN -a.e. x ∈ Ω, uε → tu strongly in W 1,p(Ω;Rm) and G(∇uε) →
G(∇u) in L1(Ω), then we prove the following general approximation result for nonconvex
integrand.

Lemma 2.15 ([AM11, Propositions 3.15 and 3.16]). Let L : M−→ [0,∞] be a Borel measurable
function with G-convex growth, i.e. there exist a convex function G : M−→ [0,∞] and α, β > 0
such that

αG(ξ) ≤ L(ξ) ≤ β(1 +G(ξ))

for all ξ ∈ M. Let Ω ⊂ Rd be a bounded open set with Lipschitz boundary which is strongly
star-shaped and let u ∈W 1,p(Ω;Rm) be such thatˆ

Ω
L(∇u(x))dx <∞.

(i) If L is ru-usc and continuous on int(G) then there exists {un}n ⊂ Aff(Ω;Rm) such that
limn→∞ ‖un − u‖W 1,p(Ω;Rm) = 0 and

lim
n→∞

ˆ
Ω
L(∇un(x))dx ≤

ˆ
Ω
L(∇u(x))dx.

(ii) If L is continuous on int(G) and LN ({x ∈ Ω : ∇u(x) /∈ intG}) = 0 then there exists
{un}n ⊂ Aff(Ω;Rm) such that limn→∞ ‖un − u‖W 1,p(Ω;Rm) = 0 and

lim
n→∞

ˆ
Ω
L(∇un(x))dx =

ˆ
Ω
L(∇u(x))dx.

Then1 by using Lemma 2.15 (ii) we have

lim
ε→0

ˆ
Ω
ZHf(∇uε(x))dx =

ˆ
Ω
ZHf(t∇u(x))dx.

Now, we can work on each open subsets Ωε,i ⊂ Ωε where the gradient ∇uε = ξi is constant,
the rest of the proof consists in using approximation formula ZHf(ξi) by Hf (see [AM11,
Proposition 3.17] or Lemma 3.16) and a similar approximation formula for Hf by f adapted
from [Mül87, Lemma 2.1(a)] (see [AM11, Proposition 3.18]).

We had to develop other techniques to deal with quasiconvex growth or more general growth.
The strategy we used involves the Vitali envelope of local Dirichlet minimization problems
associated to the family {Iε}ε>0 which reduces the proof of the upper bound to cut-off
techniques, avoiding any approximation arguments by continuous piecewise affine functions.
We refer to Section 4 where we exposed this method.

As an illustration, we present an example ([AMZ15]) in the case where N = m = 2. Consider
a the following convex set G ⊂M22 defined by

G :=
{
ξ ∈M22 : min(1 + ξ11, 1 + ξ22)>max(|ξ12|, |ξ21|)

}
1If C ⊂ M is convex with 0 ∈ intC then tC ⊂ intC for all t ∈ [0, 1[.

36
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where every ξ ∈M22 is denoted by ξ :=

(
ξ11 ξ12

ξ21 ξ22

)
, it has the following properties:

(i) 0 ∈ int(G);

(ii) det(I + ξ)>0 for all ξ ∈ G;

(iii) tr(cof(I + ξ)ᵀ(I + ζ))>0 for all ξ, ζ ∈ G.

The frame-indifference condition is not satisfied by I+G. Indeed, due to the frame-indifference
condition, we should have2

SO(2)(I + G) ⊂ I + G, (2.4)

but this is not true. Assume that a such I + G satisfying (2.4) exists then SO(2) ⊂ I + G
since (i). Choose any rotation matrix I + ζ with angle θ ∈ [π2 ,

3π
2 ] and ξ = 0, then

tr(cof(I + ξ)ᵀ(I + ζ)) = tr(I + ζ) ≤ 0,

so (iii) cannot be satisfied.

Let G : M22 −→ [0,∞] be defined by

G(ξ) :=

 |ξ|p +
1

det(I + ξ)
if ξ ∈ G

∞ otherwise.
(2.5)

The function G satisfies (C1), (C2) and (C3). Let f : R2 ×M22 −→ [0,∞] be defined by

f(x, ξ) :=

 Φ(x, ξ) +
1

det(I + ξ)
if ξ ∈ G

∞ otherwise,
(2.6)

where Φ : R2 ×M22 → [0,∞] is a quasiconvex function, 1-periodic with respect to its first
variable and of p-polynomial growth, i.e. there exist c, C > 0 such that

c|ξ|p ≤ Φ(x, ξ) ≤ C(1 + |ξ|p) (2.7)

for all (x, ξ) ∈ R2 ×M22. Such a f is consistent with the assumptions of Theorem 2.13 as well
as with the two basic conditions of hyperelasticity, i.e. the non-interpenetration of the matter
and the necessity of an infinite amount of energy to compress a finite volume of matter into
zero volume.

Perspective 8. It would be interesting to extend the result of Duerinckx and Gloria [DG16]
to the case of quasiconvex growth depending on x satisfying the bump condition (C2). In our
opinion, a three dimensional example, i.e. when N = m = 3, similar to the example above
would be more convincing.

4. Relaxation of unbounded integrals with G-growth in Cheeger-Sobolev

spaces

Let (X, d, µ) be a metric measure space, where (X, d) is a length space which is separable
and compact, and µ is a positive Radon measure on X. We assume that µ is doubling with
Cd ≥ 1 denoting the doubling constant and that X enjoys a weak (1, p)-Poincaré inequality

with 1 < p < ∞. We suppose p > κ := ln(Cd)
ln(2) , in fact this condition plays the same role as

p > N in the Euclidean setting, and allows to have a L∞µ -compactness result similarly to the
Euclidean case ([AM18, Corollaries 3.10 and 3.11, p. 62-63]).

2SO(2) is the special orthogonal group of 2× 2 matrices.
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Let E : H1,p
µ (X;Rm)×O(X)→ [0,∞] be the integral functional defined by

E(u,O) :=

ˆ
O
f(x,∇µu(x))dµ(x)

where f : X ×M→ [0,∞] is a Borel measurable function. We assume that f has G-growth,
i.e.

(H1) there exist α, β > 0 such that for every (x, ξ) ∈ X ×M

αG(x, ξ) ≤ f(x, ξ) ≤ β(1 +G(x, ξ))

where G : X ×M→ [0,∞] is a Borel measurable function satisfying the following conditions:

(H2) G is p-coercive, i.e. there exists c > 0 such that G(x, ξ) ≥ c|ξ|p for all (x, ξ) ∈ X ×M;

(H3) there exists r > 0 such that sup|ξ|≤rG(·, ξ) ∈ L1
µ(X);

(H4) there exists C > 0 such that for every x ∈ X, every t ∈]0, 1[ and every ξ, ζ ∈M,

G(x, tξ + (1− t)ζ) ≤ C(1 +G(x, ξ) +G(x, ζ)).

Let G,G : H1,p
µ (X;Rm)−→ [0,∞] be the functionals defined by:

G(u) :=

ˆ
X
G(x,∇µu(x))dµ(x) and G(u) := inf

{
lim
n→∞

G(un) : un
Lpµ→ u

}
.

We consider the following additional assertions:

(H5) domG = domG;

(H6) if u ∈ domG then lim
r→0
−
ˆ
Qr(x)

∣∣G(y,∇µu(x))−G(x,∇µu(x)
∣∣dµ(y) = 0 µ-a.e. x ∈ X.

In addition, we need to suppose that L is radially uniformly upper semicontinuous, i.e.

(H7) there exists a ∈ L1
µ(X; ]0,∞]) such that limt→1− ∆a

f (t) ≤ 0

Remarks 2.16. If(H4) holds then domG(x, ·) is convex. The condition(H4) prevents the
possible ‘strong bumps’ of G. If (H1) and (H4) hold then domf(x, ·) = domG(x, ·) and so
domf(x, ·) is convex. If (H1) is satisfied then domE(·, X) = domG, and so domE(·, X) = domG
when (H5) holds.

Remarks 2.17. If (H4) holds and if 0 ∈ int
(
{ξ ∈M : G(·, ξ) ∈ L1

µ(X)}
)

then (H3) is verified,
see [AM12b, Lemma 4.1]. We can generalize this local upper bound property as follows.

Lemma 2.18. Let (M,M, ν) be a finite complete measure space and d ∈ N∗. Let L :
M × Rd −→ [0,∞] be a (M⊗B(Rd),B([0,∞]))-measurable function. Assume that

(U1) there exists r > 0 such that
´
M L(x, v)dν(x) <∞ whenever |v|∞ ≤ r for all v ∈ Rd;

(U2) there exists a nondecreasing concave function Φ : R+−→R+ such that for every (x, v, w) ∈
M × domL(x, ·)× domL(x, ·) we have

sup
t∈]0,1[

L(x, tv + (1− t)w) ≤ Φ(max(L(x, v), L(x,w))).

Then ˆ
M

sup
|v|∞≤r

L(x, v)dν(x) <∞.

38
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Let Qµf : X ×M−→ [0,∞] be given by

Qµf(x, ξ) := lim
ρ→0

inf

{
−
ˆ
Qρ(x)

f(y, ξ +∇µw(y))dµ(y) : w ∈ H1,p
µ,0(Qρ(x);Rm)

}
.

The following result is a relaxation theorem with G-growth. Such problem with x-dependent
G was studied in the Euclidean case in [AM12b], and the techniques of the proof broadly
follow the methods exposed in Section 4.

Theorem 2.19 ([AM18, Theorem 3.3]). If p > κ and(H1)-(H7) hold then

E(u,X) =


ˆ
X
Q̂µf(x,∇µu(x))dµ(x) if u ∈ domG

∞ if u ∈ H1,p
µ (X;Rm) \ domG

(2.8)

where Q̂µf : X ×M−→ [0,∞] is given by Q̂µf(x, ξ) = lim
t→1−

Qµf(x, tξ).

s
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CHAPTER 3

Relaxation, homogenization and dimension reduction with

ample integrands

This chapter presents the works on relaxation, homogenization and dimension reduction
with ample integrands. More precisely, Section 1 gives an exposition of our works on ample
integrands, such integrands can incorporate singular behavior, for instance in the setting
of hyperelasticity, the necessity of an infinite amount of energy to reduce a finite volume
to a zero volume. In Section 2 we present our relaxation results with ample integrands.
In Section 3 we state our homogenization theorems with ample integrands. Two differents
homogenization results are presented, the first one involves some assumptions which make
the integrand continuous with respect to the space variable, while the second result allows
possible discontinuities with respect to the space variable of the integrand. Section 4 provides
an exposition of our works on the 3D-2D passage by Γ-convergence which take into account
the determinant conditions of hyperelasticity.

The works involved in this chapter are [ACM17; AM12c; ALM11; AM08a; AM08b; AM07;
AM06].

1. Ample integrands

Let f : M−→ [0,∞] be a Borel measurable function which can take the infinite value. We set
Z∞f,Zf : M−→ [0,∞] defined by

Z∞f(F ) := inf

{ˆ
Y
f(F +∇φ(y))dy : φ ∈W 1,∞

0 (Y ;Rm)

}
;

Zf(F ) := inf

{ˆ
Y
f(F +∇φ(y))dy : φ ∈ Aff0(Y ;Rm)

}
.

Note that f ≥ Zf ≥ Z∞f ≥ Qf . Indeed, when g : M −→ [0,∞[ is quasiconvex and finite
with g ≤ f we have g = Z∞g ≤ Z∞f which, by taking the supremum over all g ≤ f , gives
Qf ≤ Z∞f .

In the following example, we can see that the envelope Z∞f is finite although f is not and
has a singular behavior at 0 (see Figure 3.1). We assume that m = N = 1 and p > 1. Let
f : R−→ [0,∞] be defined by

f(x) :=


|x|p +

1

|x|
if x 6= 0

∞ if x = 0.

It is easy to see that Z∞f ≤ g where

g(x) :=


p
− p
p+1 + p

1
p+1 if |x| < p

− 1
p+1

f(x) if |x| ≥ p−
1
p+1 .
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f

g = f c = Z∞f

Figure 3.1. Illustration of the functions f and Z∞f .

The function g is convex and finite with g ≤ f . It follows that Z∞f is finite, so it is convex
(and continuous) since Remark 3.5. The greatest convex function which is lower than f is
denoted by f c with f c ≤ Z∞f since Jensen inequality. We have then g = f c = Z∞f , that

means Z∞f(x) ≤ C(1 + |x|p) for all x ∈ R, with C := max(1, p
1
p+1 ) > 0.

Motivated by this fact, we introduced a novel class of integrands which are called amples (a
word borrowed from the terminology used by Gromov [Gro86]). This class of functions can
take the infinite value but not on too large subsets of matrices, so that the Z∞ envelope is finite
everywhere or more strongly admitting p-growths (therefore, a better and more suggestive
terminology should be ‘Z∞-finite integrands’ or ‘Z∞-p-growths integrands’ instead of ample
integrands).

Definition 3.1. We say that f : M−→ [0,∞] is weakly ample if Z∞f is finite, i.e. Z∞f(ξ) <
∞ for all ξ ∈M.

When f is continuous and finite then Qf = Zf = Z∞f (see [Dac82]), we have extended this
fact to integrands which are not necessarily finite.

Theorem 3.2 ([AM07] (see also [AM08a])). If f is weakly ample then Qf = Z∞f . If Zf is
finite then f is weakly ample and Qf = Z∞f = Zf .

Assume for instance that Zf is finite. Using Proposition 3.3 below, the function Zf is
continuous, so Q(Zf) = Z(Zf) = Z∞(Zf). The Lemma 3.4 (2) below gives Zf ≥ Z∞f ≥
Qf ≥ Q(Zf) = Zf = Z∞(Zf).

The proof of Theorem 3.2 is based on the following result of Fonseca [Fon88].

Proposition 3.3. Let f : M −→ [0,∞] be a Borel measurable function. Then Z∞f (resp.
Zf) is continuous in int(domZ∞f) (resp. int(domZf)).

The following Lemma 3.4 (1) can be used to prove Proposition 3.3 (see [Fon88] or [Mül99b,
Lemma 4.3]).

Lemma 3.4. Let f : M−→ [0,∞] be a Borel measurable function.

(1) Let V ⊂ M be a nonempty open set. We assume that f is finite in V . Then for every
ξ ∈ V

Zf(ξ) ≤ tZf(ξ + (1− t)d⊗ ν) + (1− t)Zf(ξ − td⊗ ν)

for all t ∈]0, 1[, all d ∈ Rm and all ν ∈ RN .

(2) It holds Z[Z∞f ] = Z∞f and Z[Zf ] = Zf .
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Remarks 3.5. When Z∞f (resp. Zf) is finite then Z∞f (resp. Zf) is continuous and
rank-one convex since Proposition 3.3 and Lemma 3.4 (1).

Assume that m = N = 3 and consider the following determinant condition on f : M−→ [0,∞]
(allowing behavior of the type (3.5)):

∀δ > 0 ∃c > 0 ∀F ∈M |detF | ≥ δ =⇒ f(F ) < c. (3.1)

Theorem 3.6 ([AM08a] (see also [AM09])). Assume that m = N = 3. If (3.1) holds then
Zf is finite. In particular, f is weakly ample.

Now, we need a stronger definition of amplitude in order to prove relaxation theorems. Let
p ∈ [1,∞[.

Definition 3.7. [AM12c, Definition 2.11] We say that f is p-ample if Z∞f has p-growth, i.e.
there exists C > 0 such that Z∞f(F ) ≤ C(1 + |F |p) for all F ∈M.

We denote by Rf the rank-one convex envelope of f , i.e. the greatest rank-one convex
function which is lower than f . The following result is due to [Ben96] (see also [AM09;
AM12c]).

Proposition 3.8. Assume that N ≤ m and

∃α > 0 ∃β > 0 ∀F ∈M v(F ) ≥ α =⇒ f(F ) ≤ β(1 + |F |p) (3.2)

where v(F ) is the product of the N singular values of F . Then Rf has p-growth.

Remarks 3.9. If m = N then v(F ) = |detF | for all F ∈ M. If N = 2 and m = 3 then
v(F ) = |F1 ∧ F2| for all F = (F1|F2) ∈M32 where M32 = R3×2 and (3.2) becomes

∃α > 0 ∃β > 0 ∀F ∈M |F1 ∧ F2| ≥ α =⇒ f(F ) ≤ β(1 + |F |p). (3.3)

The following lemma is due to [DR04] (see also [CP98]).

Lemma 3.10. Assume that m = N . Let F ∈M and α > 0. Then

|detF | < α =⇒ (∃ϕ ∈W 1,∞
0 (Y ;RN ) |det(F +∇ϕ(y))| = α a.e. in Y ).

Assume that m = N and consider the following determinant condition on f : M−→ [0,∞]
(allowing behavior of the type (3.5)):

∃α > 0 ∃β > 0 ∀F ∈M |detF | ≥ α =⇒ f(F ) ≤ β(1 + |F |p). (3.4)

From Lemma 3.10 and Proposition 3.8 we can deduce the following result.

Theorem 3.11 ([AM12c]). Assume that m = N . If (3.4) holds then f is p-ample (i.e. Z∞f
has p-growth).

Indeed, from (3.4) there exist α, β > 0 such that Z∞f(F ) ≤ f(F ) ≤ β(1+ |F |p) for all F ∈M
with |detF | ≥ α. Now, consider F ∈ M with |detF | < α, then by using Lemma 3.10 there

exists ϕ ∈W 1,∞
0 (Y ;RN ) satisfying |det(F +∇ϕ(y))| = α a.e. in Y . By definition of Z∞f and

the growth in (3.4) we have

Z∞f(F ) ≤
ˆ
Y
f(F +∇ϕ(y))dy ≤ β

(
1 +

ˆ
Y
|F +∇ϕ(y)|pdy

)
<∞.

Thus f is weakly ample. By using Remark 3.5 we see that Z∞f is rank-one convex, so
Z∞f ≤ Rf and Rf has p-growth since Proposition 3.8 and Remarks 3.9.

Now, combining Theorem 3.6, Proposition 3.8 and Remark 3.5, we have proved the following
result.
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Theorem 3.12 ([AM12c]). Assume that m = N = 3 and (3.1) holds. Then Zf has p-growth,
in particular f is p-ample.

In [AM08a] we proved the same result as Theorem 3.12 under additional assumptions.

Theorem 3.13 ([AM12c]). Assume that (3.4) holds. If Zf is finite, then Zf has p-growth,
in particular f is p-ample.

Perspective 9. It would be interesting to know whether it is true that the functions
f : M−→ [0,∞] such that Qf has p-growth are ample.

2. Relaxation theorems with ample integrands

Let p > 1. We consider the integral functional I : W 1,p(Ω;Rm)−→ [0,∞] defined by

I(u) :=

ˆ
Ω
f(∇u(x))dx

where Ω ⊂ RN is a bounded open set and f : M −→ [0,∞] is a Borel measurable function.
The lower semicontinuous envelope I with respect to the Lp distance is defined by

I(u) = inf

{
lim
ε→0

I(uε) : uε → u in Lp(Ω;Rm)

}
.

Here, we present our works concerning the relaxation of integrals I when f is p-ample. It is
about finding the conditions of the integral representation of I. The most interesting singular
behavior for us being

lim
detF→0

f(F ) =∞, (3.5)

which means, in the setting of hyperelasticity, the requirement of an infinite energy to crush
the material down to zero volume.

Dacorogna proved in [Dac82] the following relaxation theorem.

Theorem 3.14. If f is continuous and has p-growth then

∀u ∈W 1,p(Ω;Rm) I(u) =

ˆ
Ω
Qf(∇u(x))dx. (3.6)

We have extended the Dacorogna relaxation theorem to the case of p-ample integrands.

Theorem 3.15 ([AM07; AM08a]). If f is p-ample then (3.6) holds. If Zf has p-growth
then (3.6) holds and moreover I(u) = IAff(u) where

IAff(u) := inf

{
lim
n→∞

I(un) : Aff(Ω;Rm) 3 un → u in Lp(Ω;Rm)

}
.

The proof is based on the following lemma whose proof follows from Vitali covering theorem.

Lemma 3.16. Let f : M −→ [0,∞] be a Borel measurable function and let O ⊂ RN be

a nonempty open bounded. For every F ∈ M there exists {φk}k∈N ⊂ W 1,∞
0 (O;Rm) (resp.

Aff0(O;Rm)) such that

lim
k→∞

−
ˆ
O
f(F +∇φk(x))dx = Z∞f(F ) (resp. Zf(F )) and φk → 0 in Lp(O;Rm).
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If f is p-ample then Z∞f has p-growth and is continuous since Remark 3.5, by Theorem 3.14
we have for every u ∈W 1,p(Ω;Rm)

Z∞I(u) = inf

{
lim
n→∞

ˆ
Ω
Z∞f(∇un(x))dx : un → u in Lp(Ω;Rm)

}
=

ˆ
Ω
Q(Z∞f)(∇u(x))dx

=

ˆ
Ω
Qf(∇u(x))dx

where the last equality is due to Theorem 3.2. Now, it is sufficient to show that Z∞I ≥ I.
This follows from Lemma 3.16, which allows to show that for every u ∈W 1,p(Ω;Rm)

I(u) = Z∞IAff(u) = inf

{
lim
n→∞

ˆ
Ω
Z∞f(∇un(x))dx : Aff(Ω;Rm) 3 un → u in Lp(Ω;Rm)

}
.

The last step consists in establishing Z∞IAff = Z∞I by using the strong density of Aff(Ω;Rm)
in W 1,p(Ω;Rm).

3. Homogenization with ample integrands

Let p > 1. Let {Iε}ε>0, Iε : W 1,p(Ω;Rm)−→ [0,∞] be defined by

Iε(u) :=

ˆ
Ω
f
(x
ε
,∇u(x)

)
dx

where Ω ⊂ RN is a nonempty bounded open set and f : RN×M−→[0,∞] is a Borel measurable
function which is p-coercive, i.e.

∃c > 0 ∀(x, F ) ∈ RN ×M f(x, F ) ≥ c|ξ|p,

and 1-periodic (with respect to the first variable), i.e.

∀(x, F ) ∈ RN ×M ∀z ∈ ZN f(x+ z, F ) = f(x, F ).

Braides [Bra85] and Müller [Mül87] proved the following homogenization theorem.

Theorem 3.17. Assume that f is p-coercive, 1-periodic, and has p-growth, i.e.

∃C > 0 ∀(x, F ) ∈ RN ×M f(x, F ) ≤ C(1 + |F |p).

Then {Iε}ε>0 Γ(Lp)-converges toward Ihom : W 1,p(Ω;Rm)−→ [0,∞] given by

Ihom(u) =

ˆ
Ω
Hf(∇u(x))dx (3.7)

where Hf : M−→ [0,∞] is the Braides-Müller homogenization formula given by

Hf(F ) := inf
k∈N∗

inf
φ∈W 1,p

0 (kY ;Rm)
−
ˆ
kY
f(y, F +∇φ(y))dy. (3.8)

We present here some extensions of the Braides-Müller homogenization theorem for ample
integrands.

Definition 3.18. We say that f is p-ample if there exists C > 0 such that Z∞f(x, F ) ≤
C(1 + |F |p) for all (x, F ) ∈ RN ×M.

We have proved the following homogenization result which is compatible with the singular
behavior

∀x ∈ RN lim
detF→0

f(x, F ) =∞. (3.9)
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Theorem 3.19 ([ALM11, Theorem 3.2]). Assume that f is p-ample, p-coercive, 1-periodic,
and satisfies for some ω : [0,∞[−→[0,∞[ continuous at 0 with ω(0) = 0

∀(x1, x2, F ) ∈ RN × RN ×M f(x, F ) ≤ ω(|x1 − x2|)(1 + f(x2, F )) + f(x2, F ). (3.10)

Then {Iε}ε>0 Γ(Lp)-converges toward Ihom defined by (3.12) and Hf defined by (3.8).

The proof is based on the well known result in the theory of Γ-convergence that we can
replace Iε by the relaxation Iε in the Γ(Lp)-limit inf and sup, i.e.

Γ(Lp)- lim
ε→0

Iε = Γ(Lp)- lim
ε→0

Iε and Γ(Lp)- lim
ε→0

Iε = Γ(Lp)- lim
ε→0

Iε

where for each ε > 0

Iε(u) = inf

{
lim
n→∞

Iε(un) : W 1,p(Ω;Rm) 3 un → u in Lp(Ω;Rm)

}
. (3.11)

With the help of the Serrin type condition (3.10), we proved the following relaxation which is
an extension of Theorem 3.15 for x-dependent integrand

Iε(u) =

ˆ
Ω
Z∞f

(x
ε
,∇u(x)

)
dx

for all ε > 0 and all u ∈W 1,p(Ω;Rm). The integrand Z∞f has p-growth and inherites of all
the assumptions of f , we can then apply the Braides-Müller homogenization theorem to obtain
that for every u ∈W 1,p(Ω;Rm)

Γ(Lp)- lim
ε→0

Iε(u) =

ˆ
Ω
H(Z∞f)(∇u(x))dx.

The last step consists in showing that H(Z∞f) = Hf which is a consequence of a relaxation

theorem similar to the one described above with W 1,p(Ω;Rm) replaced by W 1,p
0 (Ω;Rm)

in (3.11).

The Serrin type condition (3.10) implies that f(·, F ) is continuous which is not a realistic
assumption for homogenization problems. Thus in [ACM17] some attempts to remove the
continuity assumption with respect to the first variable were developed. In the following, we
present one of these results.

We consider the following assumptions:

(H1) there exists C > 0 such that for every nonempty bounded open set O ⊂ RN and every
F ∈M

mAff(lF , O)

LN (O)
:= inf

φ∈Aff0(O;Rm)
−
ˆ
O
f(y, F +∇φ(y))dy ≤ C(1 + |F |p)

where lF (x) := Fx for all x ∈ RN ;

(H2) for a.e. x ∈ RN and for every F ∈M

Z̃f(x, F ) := lim
ρ→0

mAff(lF , Bρ(x))

LN (Bρ(x))
≤ f(x, F );

(H3) for every F ∈M it holds Z
(
HAff

(
Z̃f
))

(F ) ≤ H
(
Z̃f
)

(F ) where

HAff

(
Z̃f
)

(F ) := inf
k∈N∗

inf
φ∈Aff0(kY ;Rm)

−
ˆ
kY
Z̃f(y, F +∇φ(y))dy.
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Theorem 3.20 ([ACM17, Theorem 2.33]). Assume that f is p-coercive, 1-periodic, and
satisfies (H1), (H2) and (H3). Then {Iε}ε>0 Γ(Lp)-converges toward Ihom : W 1,p(Ω;Rm)−→
[0,∞] given by

Ihom(u) =

ˆ
Ω
H
(
Z̃f
)

(∇u(x))dx. (3.12)

Theorem 3.20 applies to integrand of the form f(x, F ) = a(x)H(F ) where a ∈ L∞(RN ;Rm) is
1-periodic, lower semicontinuous and a(·) ≥ η for some η > 0, and H : M−→ [0,∞] is upper
semicontinuous, p-coercive and satisfies the determinant condition (3.4).

The strategy of the proof of Theorem 3.20 is different from the one of Theorem 3.19. In fact,

(H1) and (H2) implies that Z̃f has p-growth and is lower than f , and it is easy to see that Z̃f
is 1-periodic, so we can apply the Braides-Müller homogenization theorem to obtain a lower
bound of the Γ(Lp)-limit inf

Γ(Lp)- lim
ε→0

Iε(u) ≥
ˆ

Ω
H
(
Z̃f
)

(∇u(x))dx.

For the Γ(Lp)-limit sup, since Z
(
HAff

(
Z̃f
))

has p-growth and then is continuous, using

the strong density of continuous piecewise affine Aff(Ω;Rm) in W 1,p(Ω;Rm), it is sufficient to
show for every u ∈ Aff(Ω;Rm)

Γ(Lp)- lim
ε→0

Iε(u) ≤
ˆ

Ω
Z(HAff

(
Z̃f
)

)(∇u(x))dx.

We prove first that for every u ∈ Aff(Ω;Rm) there exists a sequence {uε}ε>0 ⊂ Aff(Ω;Rm) of
continuous piecewise affine functions such that uε → u in Lp(Ω;Rm) and

lim
ε→0

ˆ
Ω
Z̃f
(x
ε
,∇uε(x)

)
dx =

ˆ
Ω
Z
(
HAff

(
Z̃f
))

(∇u(x))dx.

For the second step we use the strategy involving Vitali envelope exposed in Section 4 to show
that for every ε > 0 and every u ∈ Aff(Ω;Rm)

Iε(u) ≤
ˆ

Ω
Z̃f
(x
ε
,∇u(x)

)
dx.

Perspective 10. We proved in [ACM17] that the condition (H3) holds when Z̃f has p-

growth, i.e. supx∈RN ,F∈M
Z̃f(x,F )
1+|F |p <∞, and Z̃f(x, ·) is upper semicontinuous for a.e. x ∈ RN .

The condition (H3) is related to the method of the proof of the upper bound, i.e. the use of
the approximation of Sobolev functions by continuous piecewise affine functions. It would be
interesting to try to find a new method to prove the upper bound in Theorem 3.20 without
condition (H3).

4. 3D-2D passage with determinant type constraints

Let f : M → [0,∞] be a Borel measurable and p-coercive (with p > 1) function. For each
ε > 0, let Iε : W 1,p(Σε;R3)−→ [0,∞] be defined by

Iε(φ) :=
1

ε

ˆ
Σε

f(∇φ(x, x3))dxdx3

where Σε := Σ×]− ε
2 ,

ε
2 [⊂ R3 with Σ ⊂ R2 Lipschitz, open and bounded, and a point of Σε is

denoted by (x, x3) with x ∈ Σ and x3 ∈]− ε
2 ,

ε
2 [. The problem of 3D-2D passage is to pass to
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Σ

Σε

- ε2

ε
2

ε→ 0

Figure 3.2. Illustration of a 3D-2D passage.

the limit as ε→ 0 by Γ-convergence to obtain Imem : W 1,p(Σ;R3)−→ [0,∞] given by

Imem(ψ) :=

ˆ
Σ
fmem(∇ψ(x))dx

where fmem : M23 −→ [0,∞] with M23 = R2×3 (see Figure 3.2).

In our works [Anz05; AM06; AM08b] we used the Γ(π)-convergence which is a variation of
Γ-convergence, and which seems to us well adapted to dimension reduction problems, it was
introduced by Anzellotti, Baldo and Percivale [ABP94] (see also [ABP91]). Let π = {πε}ε be
the family of Lp-continuous maps πε : W 1,p(Σε;R3)−→W 1,p(Σ;R3) defined by

πε(φ) :=
1

ε

ˆ ε
2

− ε
2

φ(·, x3)dx3.

Definition 3.21. We say that {Iε}ε Γ(π)-converge to Imem as ε→ 0, and we write

Imem = Γ(π)- lim
ε→0

Iε,

if and only if for every ψ ∈W 1,p(Σ;R3)

(Γ(π)- lim
ε→0

Iε)(ψ) = (Γ(π)- lim
ε→0

Iε)(ψ) = Imem(ψ)

with Γ(π)- lim
ε→0

Iε,Γ(π)- lim
ε→0

Iε : W 1,p(Σ;R3)−→ [0,∞] respectively given by

Γ(π)- lim
ε→0

Iε(ψ) := inf

{
lim
ε→0

Iε(φε) : πε(φε)→ψ in Lp(Σ;R3)

}
,

Γ(π)- lim
ε→0

Iε(ψ) := inf
{

lim
ε→0

Iε(φε) : πε(φε)→ψ in Lp(Σ;R3)
}
.

For each ε > 0, consider Iε : W 1,p(Σ;R3) −→ [0,∞] defined by Iε(ψ) := inf
{
Iε(φ) :

πε(φ) = ψ
}
. It is not difficult to show (see [ABP94]) that Imem = Γ(π)- lim

ε→0
Iε if and only if

Imem = Γ- lim
ε→0
Iε.

Let f0 : M3×2 −→ [0,∞] be defined by

f0(ξ) := inf
ζ∈R3

f(ξ | ζ).

Le Dret-Raoult in their seminal papers [LR93; LR95] have proved the following result:
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Theorem 3.22. If f is continuous and has p-growth, i.e.

∃C > 0 ∀F ∈M f(F ) ≤ C(1 + |F |p)

then

∀ψ ∈W 1,p(Σ;R3) Γ(π)- lim
ε→0

Iε(ψ) =

ˆ
Σ
Qf0(∇ψ(x))dx.

Although Theorem 3.22 is not compatible with the singular behavior (3.5), it established
a suitable variational framework to deal with dimensional reduction problems, it has been
the starting point for many works on the subject. By using Theorem 3.22 we can prove the
following result of which a preliminary version under additionnal assumptions was proved in
[AM06].

Theorem 3.23 ([AM12c] (see also [AM09])). Assume that (3.4) holds. Then for every
ψ ∈W 1,p(Σ;R3)

Γ(π)- lim
ε→0

Iε(ψ) =

ˆ
Σ
Qf0(∇ψ(x))dx.

Let us outline the proof. As the Γ(π)-limit is stable by substituting Iε by its relaxed functional
Iε, i.e. Iε : W 1,p(Σε;R3)−→ [0,∞] given by

Iε(φ) := inf

{
lim
n→∞

Iε(φn) : φn→φ in Lp(Σε;R3)

}
,

it suffices to prove that for every ψ ∈W 1,p(Σ;R3)

Γ(π)- lim
ε→0

Iε(ψ) =

ˆ
Σ
Qf0(∇ψ(x))dx.

As f satisfies (3.4) it is p-ample by Theorem 3.11, and so by Theorem 3.15 and Theorem 3.2
we have for every ε > 0 and every φ ∈W 1,p(Σε;R3)

Iε(φ) =
1

ε

ˆ
Σε

Qf(∇φ(x, x3))dxdx3

with Qf = Z∞f . Applying the Le Dret-Raoult theorem we deduce that

∀ψ ∈W 1,p(Σ;R3) Γ(π)- lim
ε→0

Iε(ψ) =

ˆ
Σ
Q[Qf ]0(∇ψ(x))dx

with [Qf ]0 : M32 → [0,∞] given by [Qf ]0(ξ) := infζ∈R3 Qf(ξ | ζ). Finally, we prove that
Q[Qf ]0 = Qf0.

Perspective 11. It would be interesting to consider the problem of reduction dimension
and homogenization simultaneously under the determinant condition (3.4). It was studied
in the p-growth case by [Shu00] (see also [BFF00; BF05]). More precisely, let δ, ε ∈]0, 1[, we
consider a periodic distribution of heterogeneities on Σ with size δ > 0. For each s := (δ, ε) ∈
R+ := R∗+ × R∗+ we consider the integral functional Es : W 1,p(Σε;R3)−→ [0,∞] defined by:

Es(u) :=
1

ε

ˆ
Σε

f
(x
δ
,∇u(x, x3)

)
dxdx3

where f : R2 ×M −→ [0,∞] is a Borel measurable function 1-periodic with respect to the
space variable. In [Shu00], a comprehensive study has been carried out by taking into account
all the possible limits behavior of the ratio ε/δ when R+ 3 s→ 0. It would be interesting to
extend the study to ample integrands.
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f

detF

f0

|F1 ∧ F2|

Zf0

Figure 3.3. The passage from f to f0 and then to Zf0.

The following theorem is a 3D-2D passage by Γ-convergence with the assumptions on
f compatible with the two basic conditions of hyperelasticity. It is the result of several
contributions, the attempt of Percivale in 1991 (see [Per91]), the works in the p-growth case
of Le Dret and Raoult (see [LR93; LR95]) and especially the important contributions of Ben
Belgacem (see [Ben96; Ben97; Ben00]) who paved the path of the proof.

Theorem 3.24 ([AM08b] (see also [AM12c; AM09])). Assume that

(D1) f is continuous;

(D2) f(F ) =∞ ⇐⇒ detF ≤ 0 for all F ∈M33;

(D3) ∀δ > 0 ∃cδ > 0 ∀F ∈M33 (detF ≥ δ =⇒ f(F ) ≤ cδ(1 + |F |p)).

Then for every ψ ∈W 1,p(Σ;R3)

Γ(π)- lim
ε→0

Iε(ψ) =

ˆ
Σ
Qf0(∇ψ(x))dx.

It is easy to see that if f satisfies (D1), (D2) and (D3) then f0 is continuous and

∀α > 0 ∃βα > 0 ∀F ∈M32 (|F1 ∧ F2| ≥ α =⇒ f0(ξ) ≤ βα(1 + |ξ|p)). (3.13)

Somehow the one-sided constraint (D3) is mirrored in (3.13) by passing to f0 which turns out
to be an ‘ample condition’ (see Figure 3.3).

Theorem 3.25 ([AM07] (see also [AM08a; AM09; AM12c])). If f0 satisfies (3.3) then Zf0

has p-growth.

Since (3.13) implies (3.3), Zf0 has p-growth. Let I, I : W 1,p(Σ;R3)−→ [0,∞] be defined by:

I(ψ) :=

ˆ
Σ
f0(∇ψ(x))dx and I(ψ) := inf

{
lim
n→∞

I(ψn) : ψn→ψ in Lp(Σ;R3)

}
As Zf0 has p-growth, by Theorem 3.15 we have for every ψ ∈W 1,p(Σ;R3)

I(ψ) =

ˆ
Σ
Qf0(∇ψ(x))dx.
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By using an interchange of infimum and integral result that we developed in [AM03], we can
show the following representation of I:

∀ψ ∈ C1
∗ (Σ;R3) I(ψ) = inf

j≥1

{
inf

ζ∈C(Σ;R3), det(∇ψ(·)|ζ(·))≥ 1
j

ˆ
Σ
W (∇ψ(x)|ζ(x))dx

}
. (3.14)

With the help of (3.14) we can show the following inequalities:

Γ(π)- lim
ε→0

Iε ≤ Idiff∗ and I ≤ Γ(π)- lim
ε→0

Iε

where Idiff∗ : W 1,p(Σ;R3)−→ [0,∞] is defined by

Idiff∗(ψ) := inf

{
lim
n→∞

I(ψn) : C1
∗ (Σ;R3) 3 ψn→ψ in Lp(Σ;R3)

}
with C1

∗ (Σ;R3) is the set of C1-immersions from Σ to R3, i.e.

C1
∗ (Σ;R3) :=

{
ψ ∈ C1(Σ;R3) : ∀x ∈ Σ ∂1ψ(x) ∧ ∂2ψ(x) 6= 0

}
.

To prove Theorem 3.24 it is sufficient to show that Idiff∗ ≤ I.

Let IAffli
,RI,RIAffli

: W 1,p(Σ;R3)−→ [0,∞] be respectively defined by:

• IAffli
(ψ) := inf

{
lim
n→∞

I(ψn) : Aff li(Σ;R3) 3 ψn→ψ in Lp(Σ;R3)

}
;

• RI(ψ) := inf

{
lim
n→∞

ˆ
Σ
Rf0(∇ψn(x))dx : ψn→ψ in Lp(Σ;R3)

}
;

• RIAffli
(ψ) := inf

{
lim
n→∞

ˆ
Σ
Rf0(∇ψn(x))dx : Aff li(Σ;R3) 3 ψn→ψ in Lp(Σ;R3)

}
with Aff li(Σ;R3) :=

{
ψ ∈ Aff(Σ;R3) : ψ is locally injective

}
. Ben Belgacem in his

thesis [Ben96] implemented the following strategy: as RI ≤ I, a way for proving Idiff∗ ≤ I is
to establish the following three inequalities:

Idiff∗ ≤ IAffli
≤ RIAffli

≤ RI. (3.15)

More precisely, the first inequality follows by using the fact that f0 is continuous and
satisfies (3.13) together with the result ([Ben96], see also [AM09]) that we can approximate
strongly in W 1,p(Σ;R3) a locally injective continuous piecewise affine function ψ ∈ Aff li(Σ;R3)
by a sequence of C1-immersions {ψn}n≥1 ⊂ C1

∗(Σ;R3) satisfying |∂1ψn(x) ∧ ∂2ψn(x)| ≥ δ for
all x ∈ Σ, all n ≥ 1 and for some δ > 0. The second inequality is obtained by exploiting
the Kohn-Strang representation of the rank-one convex envelope Rf0 of f0 (see [Ben96], see
also [AM12c; AM09]). Finally, using Remarks 3.9 and Proposition 3.8 we see that Rf0 has
p-growth and so is continuous, we then establish the last inequality by using the strong density
of Aff li(Σ;R3) in W 1,p(Σ;R3) which is a consequence of [GÈ71] (see also [AM09]). We can
summarize the previous arguments by indicating for each inequality as subscript the (main)
result we have been used to prove it:

Idiff∗ ≤
[Ben96]

IAffli
≤

[KS86]
RIAffli

≤
[GÈ71]

RI.

Perspective 12. It would be interesting to search a different strategy for the proof of
Idiff∗ ≤ I rather than using the sequence of inequalities (3.15).
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Appendix

A. Some definitions

Heinonen and Koskela introduced in [HK98] the upper gradient.

Definition A.1. A Borel function g : X −→ [0,∞] is said to be an upper gradient for f :

X−→R if |f(c(1))− f(c(0))| ≤
´ 1

0 g(c(s))ds for all continuous rectifiable curves c : [0, 1]−→X.

The concept of upper gradient has been generalized by Cheeger as follows (see [Che99,
Definition 2.8]).

Definition A.2.

(i) A function g ∈ Lpµ(X) is said to be a generalized upper gradient (or a p-weak upper
gradient) for f ∈ Lpµ(X) if there exist {fn}n ⊂ Lpµ(X) and {gn}n ⊂ Lpµ(X) such that for
each n ≥ 1, gn is an upper gradient for fn, fn → f in Lpµ(X) and gn → g in Lpµ(X).

(ii) A minimal generalized upper gradient for f ∈ Lpµ(X) is a generalized upper gradient gf ,
such that |f |1,p = |f |Lpµ(X) + |gf |Lpµ(X), where

|f |1,p = |f |Lpµ(X) + inf

{
lim
n→∞

|gn|Lpµ(X) : {gn}n∈N ∈ G(f)

}
with

G(f) :=
{
{gn}n∈N : ∃{fn}n∈N lim

n→∞
|fn − f |Lpµ(X) and ∀n ∈ N fn is an upper gradient for gn

}
.

We give the definition of Γ-convergence ([DF75]) on a metric space, see [Dal93; BD98] for
more details.

Definition A.3. Let (M, δ) be a metric space. Let {Eε}ε>0, Eε : M −→ [0,∞] be a family
of functions. We say that {Eε}ε>0 Γ(δ)-converge if Γ(δ)- limε→0Eε(u) = Γ(δ)- limε→0Eε(u),
where

Γ(δ)-lim
ε→0

Eε(u) := inf

{
lim
ε→0

Eε(uε) : uε
δ→u

}
and

Γ(δ)-lim
ε→0

Eε(u) := inf
{

lim
ε→0

Eε(uε) : uε
δ→u
}

with

lim
ε→0

Eε(uε) := inf

{
lim
n→∞

Eεn(uεn) : {εn}n∈N ⊂]0,∞[, εn → 0

}
lim
ε→0

Eε(uε) := sup
{

lim
n→∞

Eεn(uεn) : {εn}n∈N ⊂]0,∞[, εn → 0
}

for all u ∈M . In this case {Eε}ε>0 Γ(δ)-converge towards E0 : X −→ [0,∞] with

E0 := Γ(δ)- lim
ε→0

Eε = Γ(δ)- lim
ε→0

Eε.
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B. Some proofs

Proof of Theorem 2.3. Fix u ∈ D. We can assume that limt→1− f(tu) < ∞. Let
τ ∈]0, 1[. There exists t ∈]τ, 1[ such that

lim
t→1

f(tu) ≥ inf
t∈]τ,1[

f(tu) > τ − 1 + f(tu).

Now, since τ
t < 1 we can write

f(τu) ≤ ∆a
D,f

(τ
t

)
(a+ f(tu)) + f(tu) ≤ ∆a

D,f

(τ
t

)
(a+ lim

t→1
f(tu) + 1− τ) + lim

t→1
f(tu) + 1− τ.

Letting τ → 1 we have τ
t → 1 and then using the ru-usc property, we obtain

lim
τ→1

f(τu) ≤ lim
t→1

f(tu).

Assume in addition that f̂(u) <∞. It is direct to see that for every s ∈]0, 1[

f̂(su) ≤ lim
t→1

[
∆a
D,f (s)(a+ f(tu)) + f(tu)

]
= ∆a

D,f (s)
(
a+ f̂(u)

)
+ f̂(u),

which yields ∆a
D∩domf̂ ,f̂

(s) ≤ ∆a
D,f (s) and we finish by letting s→ 1.

Finally, the last inequalities hold since (4) and the definitions of f̂ and of the lower
semicontinuous envelope of f .�

Proof of Theorem 2.6. Let x ∈ X and u ∈ Fx. Since f is ru-usc, we have f̂(x, u) ≤
f(x, u), see Remarks 2.2 (4). For each t ∈ [0, 1[, tu ∈ Fx and tu→ u as t→ 1, then by lower

semicontinuity f̂(x, u) = limt→1− f(x, tu) ≥ f(x, u). By Theorem 2.3 and Remark 2.4 f̂ is

ru-usc. We know that f ≤ f̂ since Remark 2.4. Let u ∈ V be such that f(x, u) <∞. There
exists a sequence un → u such that limn→∞ f(un) = f(u), it follows that un ∈ Fx for all n ∈ N
and u ∈ Fx. Since tun ∈ Fx and tu ∈ Fx for all t ∈ [0, 1[, we have by the lower semicontinuity
of f(x, ·) on Fx and the ru-usc property

f(x, u) ≥ f(x, u) + (a+ f(x, u)) lim
t→1

∆a
f (t) ≥ lim

t→1
lim
n→∞

f(x, tun) ≥ lim
t→1

f(x, tu) = f̂(x, u).�

Proof of Lemma 2.18. Let Sr :=
{
v = (v1, . . . , vd) ∈ Rd : ∀k ∈ {0, . . . , d} vk ∈

{−r, 0, r}
}

. Since (U1) we have L∗(x) := supv∈Sr L(x, v) < ∞ for all x ∈ M (Note that L∗

is (M,B([0,∞])-measurable as a supremum of a finite family of (M,B([0,∞])-measurable
functions.). The set {(x, v) ∈M ×Rd : L(x, v) = L∗(x)}∩ (M ×Sr) belongs toM⊗B(Rd), so
there exists a (M,B(Rd))-measurable function u : M −→Sr such that L∗(x) = L(x, u(x)) (see
[CV77, p. 86]). For each v ∈ Sr set Mv := {x ∈M : u(x) = v} ∈ M. The family {Mv}v∈Sr is
a measurable partition of M , i.e. it is pairwise disjoint and satisfies ∪v∈SrMv = M . So, by
using (U1) we haveˆ

M
L∗(x)dν(x) =

ˆ
M
L(x, u(x))dν(x) =

∑
v∈Sr

ˆ
Mv

L(x, u(x))dν(x)

=
∑
v∈Sr

ˆ
Mv

L(x, v)dν(x)

≤
∑
v∈Sr

ˆ
M
L(x, v)dν(x) <∞. (B.1)
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We define d equivalence relations on Rd. Let (v, w) ∈ Rd × Rd. For each i ∈ {1, . . . , d− 1},
we say that v ∼i w if there exists u = (u1, . . . , uk, . . . , ud) ∈ Sr such that

v − w =

d∑
k=i+1

ukek

where {ek}dk=1 is the standard basis of Rd. When i = d, we say that v ∼d w if v = w. We

denote by [v]i the equivalence class of v for the relation ∼i for all i ∈ {0, . . . , d}. Let v ∈ Rd
satisfy |v|∞ ≤ r. We claim that is enough to show that for every x ∈M

∀i ∈ {1, . . . , d} ∀w ∈

[
i∑

k=1

vkek

]
i

L(x,w) ≤ Φi(L∗(x)). (B.2)

where we set for every t ∈ R+

Φ1(t) := Φ(t) and Φi(t) := Φ(Φi−1(t)) for all i ≥ 2.

Indeed, when i = d we have
[∑d

k=1 vkek

]
d

= {v}, so by using (B.2) we get for every x ∈M

L(x, v) ≤ Φd (L∗(x)) ,

and then taking the supremum over all v ∈ Rd satisfying |v|∞ ≤ r and integrating over M , we
obtain ˆ

M
sup
|v|∞≤r

L(x, v)dν(x) ≤
ˆ
M

Φd (L∗(x)) dν(x).

Now, we can use the Jensen inequality since Φd is still concave and the finitness of the last
term is a consequence of (B.1)ˆ

M
Φd (L∗(x)) dν(x) ≤ ν(M)Φd

(
−
ˆ
M
L∗(x)dν(x)

)
<∞.

Fix x ∈ M . Let us prove (B.2) by induction. Let w ∈ [v1e1]1. There exists u =

(u1, . . . , uk, . . . , ud) ∈ Sr such that w = v1e1 +
∑d

k=1 ukek, which can be rewritten as

w =
|v1|
r

(
sign(v1)re1 +

d∑
k=2

ukek

)
+

(
1− |v1|

r

)(
0 +

d∑
k=2

ukek

)
.

By (U2) and using the fact that Φ is nondecreasing, we have

L(x,w) ≤ Φ

(
max

(
L

(
x, sign(v1)re1 +

d∑
k=2

ukek

)
, L

(
x,

(
d∑

k=2

ukek

))))
≤ Φ(L∗(x)).

So, we proved that L(x,w) ≤ Φ(L∗(x)) for all w ∈ [v1e1]1.

Let i ∈ {1, . . . , d}. Assume that

∀j ∈ {1, . . . , i} ∀w ∈

[
j∑

k=1

vkek

]
j

L(x,w) ≤ Φj(L∗(x)). (B.3)

Let w ∈
[∑i+1

k=1 vkek

]
i+1

. We are going to show that L(x,w) ≤ Φi+1(L∗(x)). There exists

u = (u1, . . . , uk, . . . , ud) ∈ Sr such that w =
∑i+1

k=1 vkek +
∑N

k=i+2 ukek, which can be rewritten
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as

w =
|vi+1|
r

(
i∑

k=1

vkek + sign(vi+1)r +

d∑
k=i+2

ukek

)
+

(
1− |vi+1|

r

)( i∑
k=1

vkek +

d∑
k=i+2

ukek

)
.

By (U2), it follows that

L(x,w) ≤ Φ

(
max

(
L

(
x,

i∑
k=1

vkek + sign(vi+1)r +

d∑
k=i+2

ukek

)
, L

(
x,

i∑
k=1

vkek +

d∑
k=i+2

ukek

)))
.

We see that
i∑

k=1

vkek + sign(vi+1)r +
d∑

k=i+2

ukek ∈

[
i∑

k=1

vkek

]
i

and
i∑

k=1

vkek +
d∑

k=i+2

ukek ∈

[
i∑

k=1

vkek

]
i

,

so, by (U2) and using the fact that Φ is nondecreasing, we have by using (B.3)

L(x,w) ≤ Φ
(

Φi(L∗(x))
)

= Φi+1(L∗(x)).�

56



References

[ABP91] E. Acerbi, G. Buttazzo, and D. Percivale. A variational definition of the strain
energy for an elastic string. J. Elasticity 25.2 (1991), pp. 137–148.

[AF84] E. Acerbi and N. Fusco. Semicontinuity problems in the calculus of variations.
Arch. Rational Mech. Anal. 86.2 (1984), pp. 125–145.

[AK81] M. A. Akcoglu and U. Krengel. Ergodic theorems for superadditive processes. J.
Reine Angew. Math. 323 (1981), pp. 53–67.

[Alb91] G. Alberti. A Lusin type theorem for gradients. J. Funct. Anal. 100.1 (1991),
pp. 110–118.

[AM09] O. Anza Hafsa and J.-P. Mandallena. Relaxation et passage 3D-2D avec contraintes
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[GÈ71] M. L. Gromov and J. M. Èliašberg. Construction of nonsingular isoperimetric
films. Trudy Mat. Inst. Steklov. 116 (1971), 18–33, 235, (Translated in Proc.
Steklov Inst. Math. 116 (1971) 13–28).

[Gro86] M. Gromov. Partial differential relations. Vol. 9. Ergebnisse der Mathematik und
ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Berlin:
Springer-Verlag, 1986, pp. x+363.

[Haj03] P. Haj lasz. Sobolev spaces on metric-measure spaces. Heat kernels and analysis
on manifolds, graphs, and metric spaces (Paris, 2002). Vol. 338. Contemp. Math.
Amer. Math. Soc., Providence, RI, 2003, pp. 173–218.

[Hei07] J. Heinonen. Nonsmooth calculus. Bull. Amer. Math. Soc. (N.S.) 44.2 (2007),
pp. 163–232.

[HK98] J. Heinonen and P. Koskela. Quasiconformal maps in metric spaces with controlled
geometry. Acta Math. 181.1 (1998), pp. 1–61.

[Hei+15] J. Heinonen, P. Koskela, N. Shanmugalingam, and J. T. Tyson. Sobolev spaces
on metric measure spaces. Vol. 27. New Mathematical Monographs. An approach
based on upper gradients. Cambridge University Press, Cambridge, 2015,
pp. xii+434.

[Kei04] S. Keith. A differentiable structure for metric measure spaces. Adv. Math. 183.2
(2004), pp. 271–315.

[KS86] R. V. Kohn and G. Strang. Optimal design and relaxation of variational problems.
II. Comm. Pure Appl. Math. 39.2 (1986), pp. 139–182.

[LR93] H. Le Dret and A. Raoult. Le modèle de membrane non linéaire comme limite
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