Introduction

In this descriptive manuscript, we present our works on the calculus of variations. By this we mean the study of problems involving the minimization of integral functionals. We are interested in relaxation, homogenization and dimension reduction in frameworks going beyond polynomial growth conditions as well as in frameworks going beyond the Euclidean setting. An integral functional of the calculus of variations can be interpreted in the context of hyperelasticity as an energy of a material occupying the closure of an open set. The relation with nonlinear elasticity comes from the fact that within the framework of hyperelasticity one can formally replace the equilibrium equations by problems of minimization of integral functionals. In hyperelasticity, there are two basic conditions on the stored energy function which are incompatible with polynomial growths: the need for an infinite energy to reduce a finite volume of a matter to a zero volume and the non-interpenetration of the matter, i.e. to prevent the determinants of the strain gradients to be nonpositive. We have chosen to present three directions of research in which we have made contributions. We have structured this report along these three axes. We first give the essential motivations for each of these directions. We have been interested in dimension reduction problems since our doctoral studies. One of the founding results is the Le Dret-Raoult [START_REF] Dret | Le modèle de membrane non linéaire comme limite variationnelle de l'élasticité non linéaire tridimensionnelle[END_REF] theorem which, under polynomial growths, shows the Γ-convergence toward a nonlinear membrane model. However the polynomial growths are not compatible with the two basic conditions of hyperelasticity. Our work in this area has focused on taking into account these conditions. To go beyond polynomial growths and allow the integrands to take the infinite value, we have introduced the notion of ample integrands which is adapted to this type of problems. These class of integrands can take the infinite value on not too large subsets of matrices, so that the quasiconvex envelope is finite. We have also studied the relaxation of integral functionals of the calculus of variations with ample integrands and we obtained, for example, a relaxation result where we could take into account the following singular behavior of the stored energy function:

lim detF →0 f (F ) = ∞.
Motivated by similar reasons, we have studied the relaxation and the homogenization of unbounded integral functionals of the calculus of variations, in particular those having a convex effective domain (bounded and non bounded). In the scalar case a wide literature exists on relaxation and homogenization problems with constraints on the gradient, see the book [START_REF] Carbone | Unbounded functionals in the calculus of variations[END_REF] and the reference therein. However, the techniques cannot be easily generalized to tackle problems in the vectorial case. The constraints on the gradient linked to the conditions of hyperelasticity cannot be treated with methods resulting from the scalar case. It is then of interest to develop techniques in the vectorial case for the relaxation and the homogenization of integrals when the integrands can take the infinite value. The difference with the scalar case is that the central notion involved is quasiconvexity and not convexity. This leads to significant technical complications. To deal with the case where the effective domain is no longer necessarily bounded, we have considered G-growth assumptions on the integrands, i.e. we replaced the polynomial growth conditions by growths governed by a convex function G, and then we studied the case where G is quasiconvex and verifies additional hypothesis. We have introduced the notion of radially uniformly upper semicontinuous function allowing to radially extend the integrands on the boundary of their domains. The reason is that during the relaxation (or the homogenization) process, the weak limits of the sequences of gradients may eventually concentrate on the boundary of the effective domain.

For a long time we have been interested to go beyond the Euclidean framework in the problems of minimization of integral functionals. The reason is to place ourself in an appropriate framework for the study of thin structures in hyperelasticity. Indeed, the only existing theory of elasticity is three-dimensional, so it is important to develop a mathematical framework for low-dimensional elastic structures (see [START_REF] Bouchitte | Energies with respect to a measure and applications to low-dimensional structures[END_REF]). The setting of metric measure spaces is appropriate, since the support of a Borel measure can be interpreted as a low-dimensional hyperelastic structure with its singularities like for example thin dimensions, corners, junctions, etc. Another motivation is the development of the calculus of variations on 'singular' spaces, which are of interest to geometers or physicists, like Carnot groups, Gromov-Hausdorff limit spaces, spaces satisfying generalized Ricci bounds etc.

Next, we give an introduction to each chapter.

Chapter 1: Calculus of variations in Cheeger-Sobolev spaces. In this first chapter, we present our works concerning lower semicontinuity, relaxation and Γ-convergence of integral functionals defined on Cheeger-Sobolev spaces. Similarly to the Euclidean case, it is important to find the necessary conditions for the lower semicontinuity of integrals of the calculus of variations defined on Cheeger-Sobolev spaces. We introduce the H 1,p µ -quasiconvexity as a necessary condition playing an analogous role to the one of W 1,p -quasiconvexity in the Euclidean case. It required a totally different technique of proof from the one of the Euclidean case. We then state an integral representation result obtained recently for local functionals defined on Cheeger-Sobolev spaces. Here again, it was necessary to develop a technique of proof different from that usually used in the Euclidean framework. We explain this method in the section 4 of this chapter, it is based on the Vitali envelope of the local Dirichlet minimization problems associated with the functional which reduces the proof of the upper and lower bounds to cut-off techniques. We present also a relaxation result which is a consequence of our integral representation result and of the application of De Giorgi-Letta criterion [START_REF] Giorgi | Une notion générale de convergence faible pour des fonctions croissantes d'ensemble[END_REF]. In Section 3, we give a brief overview of our work on Γ-convergence of integrals defined on Cheeger-Sobolev spaces.

Chapter 2: Relaxation and homogenization of unbounded integrals. We present our works on the relaxation and homogenization of unbounded integrals. We begin by an exposition of the notion of radially uniformly upper semicontinuous function. Then we present relaxation and homogenization results when the effective domain is bounded convex with nonempty interior. The difficulty here is that in the vectorial case we do not have a natural way to approximate quasiconvex integrand which can take the infinite value by quasiconvex integrand having polynomial growths. Next, we present our works on the homogenization with G-growths, i.e. when the growths are governed by a convex integrand G first, and then a quasiconvex integrand verifying additionnal hypothesis. Here, the effective domain is not necessarily bounded. While in the case where the growth G is convex, we use the approximation by continuous piecewise affine functions of Sobolev functions to prove the upper bound, when G is quasiconvex we use techniques described in Section 4 of Chapter 1 based on the representation of the Vitali envelope. Then we end the chapter by a brief exposition of a relaxation result in Cheeger-Sobolev spaces with G-growths.

Chapter 3: Relaxation, homogenization and dimension reduction with ample integrands. In this last chapter, we present our works on relaxation, homogenization and dimension reduction with ample integrands. We first introduce the ample integrands which appear naturally in reduction dimension problems. These class of integrands can take the infinite value on not too large subsets of matrices, so that the quasiconvex envelope is finite. We have obtained relaxation results with ample integrands which can be applied to the conditions determinant not equal to zero, i.e. |detF | = 0 with F ∈ M 33 = M, and cross-product not equal to zero, i.e.

|F 1 ∧ F 2 | = 0 with F = (F 1 |F 2 ) ∈ M 32 .
This last condition appearing naturally in the 3D-2D passage by Γ-convergence. We then present two results on homogenization with ample integrands. The proof of the first homogenization result essentially follows the same spirit as the one of the relaxation result. However, we need a continuity assumption on the space variable, which is unsatisfactory for homogenization problems. We present a second homogenization result in which we do not need to assume any continuity assumption with respect to space variable. The last part of this chapter is devoted to the presentation of 3D-2D passage by Γ-convergence with determinant conditions. We show how to obtain in a simple way a Γ-convergence result, under determinant condition of the type |detF | = 0, by using the Le Dret-Raoult result. Then we show our work on the 3D-2D passage by Γ-convergence under the two basic conditions of hyperelasticity. In fact, the determinant condition of non-interpenetration of the matter detF > 0 is transformed, during the passage 3D-2D, into the condition

|F 1 ∧ F 2 | = 0 for F = (F 1 |F 2 |F 3 ) ∈ M
which is, as we mentioned above, an 'ample condition'.

CHAPTER 1

Calculus of variations in Cheeger-Sobolev spaces

This chapter is devoted to the presentation of the work on the extension of the calculus of variations in the setting of metric measure spaces. In Section 1 the Cheeger-Sobolev spaces are introduced and allow to define integral functionals of the calculus of variations in a similar way to the Euclidean framework. Then we present our work on L p µ -lower semicontinuity of integral functionals defined on Cheeger-Sobolev spaces. We introduce a necessary condition for the lower semicontinuity which will play the same role as quasiconvexity in the Euclidean setting. In Section 2 we give an exposition of our work on integral representation and relaxation of local functionals defined on Cheeger-Sobolev spaces. In Section 3 we present our works on Γ-convergence. We give, in Section 4, a description reduced to essential features of the methods for establishing lower and upper bound in relaxation and Γ-convergence problems. These methods are useful when we cannot use approximation of Sobolev functions by smoother ones, this is a priori the case in the framework of metric measure spaces. The works involved in this chapter are [AM22; AM20a; AM20b; AM18; AM17; AM15].

1.

Lower semicontinuity and H 1,p µ -quasiconvexity Let p > 1 be a real number, let (X, d, µ) be a metric measure space, where µ is a nontrivial locally finite Borel regular measure on X and (X, d) is a separable metric space. In what follows, we assume that µ is doubling, i.e. there exists a constant

C d (called doubling constant) such that ∀x ∈ X ∀ρ > 0 µ(B ρ (x)) ≤ C d µ(B ρ 2 (x)). (1.1)
The metric measure space (X, d, µ) enjoys a (1, p)-Poincaré inequality with p ∈]1, ∞[ if there exist C p > 0 and σ ≥ 1 such that for every x ∈ X and every ρ > 0,

- ˆBρ(x) f (y) -- ˆBρ(x) f dµ dµ(y) ≤ ρC p - ˆBσρ(x) g p dµ 1 p (1.2)
for every f ∈ L p µ (X) and every generalized upper gradient (p-weak upper gradient) g ∈ L p µ (X) for f (see Definition A.2). The following result is essentially due to Cheeger [Che99, Theorem 4.38] (see also Keith [Kei04, Definition 2.1.1 and Theorem 2.3.1]) who made a major breakthrough in the analysis of metric measure space by establishing the existence of a differential structure on general enough metric measure spaces. We denote by Lip(X) the algebra of Lipschitz functions from X to R.

Theorem 1.1. If µ is doubling, i.e. (1.1) holds, and X enjoys a (1, p)-Poincaré inequality, i.e. (1.2) holds, then there exist a countable family

{(X k , γ k )} k∈N of µ-measurable disjoint subsets X k of X with µ(X \ k∈N X k ) = 0 and of functions γ k = (γ k 1 , • • • , γ k N (k) ) : X -→ R N (k) with γ k i ∈ Lip(X)
satisfying the following properties: (i) there exists an integer

N ≥ 1 such that N (k) ∈ {1, • • • , N } for all k ∈ N;
(ii) for every k ∈ N and every f ∈ Lip(X) there is a unique

D k µ f ∈ L ∞ µ X k ; R N (k) such that for µ-a.e. x ∈ X k lim ρ→0 1 ρ f -f x L ∞ µ (Bρ(x)) = lim ρ→0 sup y∈Bρ(x) f (y) -f (x) + D k µ f (x) • (γ k (y) -γ k (x)) ρ = 0, where f x ∈ Lip(X) is given by f x (y) := f (x) + D k µ f (x) • (γ k (y) -γ k (x)); in particular D k µ f x (y) = D k µ f (x) for µ-a.a. y ∈ X k ; (iii) the operator D µ : Lip(X) → L ∞ µ (X; R N ) given by D µ f := k∈N 1 X k D k µ f,
where 1 X k denotes the characteristic function of X k , is linear and, for each f, g ∈ Lip(X), one has

D µ (f g) = f D µ g + gD µ f ; We set M = R m×N where N is given by Theorem 1.1 (i). Let Lip(X; R m ) := [Lip(X)] m . Let ∇ µ : Lip(X; R m ) -→ L ∞ µ (X; M) given by ∇ µ u :=    D µ u 1 . . . D µ u m    with u = (u 1 , • • • , u m ).
Definition 1.2. The p-Cheeger-Sobolev space H 1,p µ (X; R m ) is defined as the completion of the space of Lipschitz functions Lip(X; R m ) with respect to the norm

u H 1,p µ (X;R m ) := u L p µ (X;R m ) + ∇ µ u L p µ (X;M) . (1.3) Since ∇ µ u L p µ (X;M) ≤ u H 1,p µ (X;R m
) for all u ∈ Lip(X; R m ) the linear map ∇ µ from Lip(X; R m ) to L p µ (X; M) has a unique extension to H 1,p µ (X; R m ) which will still be denoted by ∇ µ .

For more details on the various possible extensions of the classical theory of the Sobolev spaces to the setting of metric measure spaces, we refer to [Hei07, pp. 10-14] and [START_REF] Heinonen | New Mathematical Monographs. An approach based on upper gradients[END_REF] (see also [START_REF] Cheeger | Differentiability of Lipschitz functions on metric measure spaces[END_REF][START_REF] Shanmugalingam | Newtonian spaces: an extension of Sobolev spaces to metric measure spaces[END_REF][START_REF] Gol'dshtein | Axiomatic theory of Sobolev spaces[END_REF][START_REF] Haj | Sobolev spaces on metric-measure spaces. Heat kernels and analysis on manifolds, graphs, and metric spaces[END_REF]). This allows us to define integral functionals of the calculus of variations on Cheeger-Sobolev spaces H 1,p µ (X; R m ) on X by

H 1,p µ (X; R m ) u -→ I(u) = ˆX f (x, ∇ µ u(x)) dµ(x) (1.4)
where f :

X × M -→ [0, ∞] is a Borel measurable integrand.
In the setting of Euclidean space (X,

d, µ) = (Ω, | • -• |, L N Ω )
where Ω ⊂ R N is a bounded open subset and L N Ω is the Lebesgue measure on Ω, a necessary condition on finite integrands for the sequential weak lower semicontinuity of (1.4) is the quasiconvexity of f (x, •). This condition was introduced by Morrey [START_REF] Morrey | Quasi-convexity and the lower semicontinuity of multiple integrals[END_REF] (see also [START_REF] Dacorogna | Direct methods in the calculus of variations[END_REF][START_REF] Acerbi | Semicontinuity problems in the calculus of variations[END_REF][START_REF] Marcellini | Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals[END_REF]). Later a generalisation for not necessarily finite integrand, called W 1,p -quasiconvexity, was developped by Ball and Murat [START_REF] Ball | W 1,p -quasiconvexity and variational problems for multiple integrals[END_REF]. An interesting problem was to find necessary conditions in the spirit of [START_REF] Morrey | Quasi-convexity and the lower semicontinuity of multiple integrals[END_REF] and [START_REF] Ball | W 1,p -quasiconvexity and variational problems for multiple integrals[END_REF] for the sequential weak lower semicontinuity of (1.4) in H 1,p µ (X; R m ). The main difficulty is that we do not have a natural "periodic" structure on X allowing to mimic the proof of [START_REF] Ball | W 1,p -quasiconvexity and variational problems for multiple integrals[END_REF] (or [START_REF] Morrey | Quasi-convexity and the lower semicontinuity of multiple integrals[END_REF]). It means that we need completely new arguments to answer this problem. Cheeger [Che99, Theorem 3.7] in his seminal paper shows that a Lipschitz function f : X -→ R, defined on a metric measure space with doubling measure and satisfying a (1, p)-Poincaré inequality, is asymptotically generalized linear: for µ-a.e. x ∈ X

(g f ) p (x) = lim ρ→0 inf φ∈H 1,p µ,0 (Bρ(x)) - ˆBρ(x) (g f +φ ) p (y)dµ(y) (1.5)
where g f is the minimal generalized upper gradient (see Definition A.2 (ii)). Since the definition of the minimal generalized upper gradient, the functional

f -→ |g f | p L p µ( Bρ(x)) := ˆBρ(x) (g f ) p (y)dµ(y) (1.6)
is L p µ (X)-lower semicontinuous, this is due to Rellich's theorem see [Che99, Theorem 2.5]. In fact, observing the proof of Cheeger of [Che99, Theorem 3.7], we see that (1.5) is in some sense a necessary condition of the lower semicontinuity of (1.6). Now, taking inspiration from the arguments above, we introduce the following condition playing the role of W 1,p -quasiconvexity, by saying that a Borel measurable function f :

X × M -→ [0, ∞] is H 1,p µ -quasiconvex at ξ ∈ M if for µ-a.e. x ∈ X f (x, ξ) ≤ lim ρ→0 inf φ∈H 1,p µ,0 (Bρ(x);R m ) - ˆBρ(x) f (y, ξ + ∇ µ φ(y))dµ(y).
(1.7)

The formula on the right hand side of (1.7) already appears in our previous works [AM15; AM18; AM17] in relaxation and homogenization problems. We proved the following result.

Theorem 1.3 ([AM20a, Theorem 2]). Let f : X × M -→ [0, ∞] be a p-coercive Borel measurable integrand, i.e. satisfying for some c > 0, for µ-a.e. x ∈ X and for every ξ ∈ M f (x, ξ) ≥ c |ξ| p .

(1.8)

Assume that for every u,

{u ε } ε>0 ⊂ H 1,p µ (X; R m ) satisfying lim ε→0 u ε -u L p µ (X;R m ) = 0, it holds lim ε→0 ˆX f (x, ∇ µ u ε )dµ ≥ ˆX f (x, ∇ µ u)dµ.
(1.9)

Then f is H 1,p µ -quasiconvex at every ξ ∈ M satisfying f (•, ξ) ∈ L 1 µ (X).
The proof uses a Vitali covering of the set where (1.7) does not hold. Then using the p-coercivity we can construct a sequence of H1,p µ (X; R m ) which strongly converges to 0 in L p µ (X; R m ). The last step consists in using the lower semicontinuity of I and the finitness condition f (•, ξ) ∈ L 1 µ (X) to conclude that set is necessarily of zero measure.

Perspective 1. It is of interest to search the general conditions on X allowing to remove the coercivity condition (1.8) in Theorem 1.3. More precisely, to find the general conditions on X in order to have: if for every u,

{u ε } ε>0 ⊂ H 1,p µ (X; R m ) satisfying u ε u weakly in H 1,p µ (X; R m ), it holds lim ε→0 ˆX f (x, ∇ µ u ε ) dµ ≥ ˆX f (x, ∇ µ u)dµ, (1.10) then f is H 1,p µ -quasiconvex at every ξ ∈ M. Remarks 1.4. A Borel measurable function f : X × M -→ [0, ∞] is H 1,p µ -quasiconvex at ξ ∈ M satisfying f (•, ξ) ∈ L 1 µ,loc (X) if and only if for µ-a.e. x ∈ X f (x, ξ) = lim ρ→0 inf φ∈H 1,p µ,0 (Bρ(x);R m ) - ˆBρ(x) f (y, ξ + ∇ µ φ)dµ,
i.e. we can replace 'lim ρ→0 ' by 'lim ρ→0 '.

A stronger necessary condition for the lower semicontinuity is given by:

Proposition 1.5 ([AM20a, Corollary 1]). Let f : X × M -→ [0, ∞] be a p-coercive Borel measurable integrand. Assume that for every u, {u ε } ε>0 ⊂ H 1,p µ (X; R m ) satisfying lim ε→0 u ε - u L p µ (X;R m ) = 0, it holds lim ε→0 ˆO f (x, ∇ µ u ε )dµ ≥ ˆO f (x, ∇ µ u)dµ (1.11) for all open set O ∈ O(X) satisfying µ(O) < ∞. Let u ∈ H 1,p µ (X; R m ) be such that 1 f (•, ∇ µ u(•)) ∈ L 1 µ,loc * (X). Then for µ-a.e. x ∈ X f (x, ∇ µ u(x)) = lim ρ→0 inf φ∈H 1,p µ,0 (Bρ(x);R m ) - ˆBρ(x) f (y, ∇ µ u + ∇ µ φ)dµ.
(1.12)

To prove that H 1,p µ -quasiconvexity is sufficient when we assume p-growth on the integrand, we need further assumptions on the metric space X: we say that the metric measure space (X, d, µ) satisfies the annular decay property (which was introduced independently by [Buc99, p. 521 and §2 p. 524] and [START_REF] Colding | Liouville theorems for harmonic sections and applications[END_REF]) if (AD X ) there exist η > 0 and K ≥ 1 such that for every x ∈ X, every ρ > 0 and every τ ∈]0, 1[,

µ(B ρ (x) \ B τ ρ (x)) ≤ K(1 -τ ) η µ(B ρ (x)).
We need also the following property of Alexandrov type (or of Portmanteau type): Remarks 1.6. The annular decay property holds, for instance, when the metric space is a length space, i.e. metric space in which the distance between points is the infimum of lenghts of rectifiable paths joining those points, see [Buc99, Corollary 2.2], [CM98, Lemma 3.3], [Che99, Proposition 6.12] and [Hei+15, Proposition 11.5.3, p. 328]). We remark that, when the annular decay property holds, the boundary of balls is of zero measure. If X is compact or locally compact then the property (AL X ) holds.

We proved the following characterization of the lower semicontinuity of (1.4):

Theorem 1.7 ([AM20a, Theorem 6]). Assume that (X, d, µ) satisfies (AD X ), (AL X ) and µ is finite. Let f : X × M -→ [0, ∞] be a Borel measurable integrand such that for µ-a.e. x ∈ X the function f (x, •) is lower semicontinuous. Assume that there exist c, C > 0 and

A ∈ L 1 µ (X) such that for µ-a.e. x ∈ X c|ξ| p ≤ f (x, ξ) ≤ A(x) + C(1 + |ξ| p ) for all ξ ∈ M. Then f is H 1,p
µ -quasiconvex if and only if I(•) is lower semicontinuous with respect to the strong convergence of L p µ (X; R m ).

Perspective 2. The property (AL X ) is a nice tool when we have to show a lower bound in lower semicontinuity, relaxation or generally in Γ-convergence problems. In fact, if for instance we assume that X is complete, then µ is a Radon measure (see Remark 1.8 below) and since the measures involved in the proof of Theorem 1.7 are of the type:

ν n := f (•, ∇ µ u n (•))µ O and λ n := |∇ µ u n | p µ O
these are also Radon ([Hei+15, Remark 3.3.43, p. 67]), so we can use (AL X ) with ν n and λ n in the proof. In fact, for the proof of Theorem 1.7 we need a weaker version of (AL X ): 

(AL X )
m n (V ) ≥ m(V ) for all open set V ⊂ O. lim n→∞ m n (B) ≤ m(B) for all closed ball B ⊂ O.
It is interesting to find a characterization of metric spaces such that (AL X ) holds.

Integral representation and relaxation

The integral representation of functionals is an important subject in the calculus of variations. We became interested in extending to metric measure spaces the classical integral representation theorems [START_REF] Buttazzo | Integral representation and relaxation of local functionals[END_REF][START_REF] Bouchitté | A global method for relaxation in W 1,p and in SBV p[END_REF]. New arguments are needed, since the proof of [START_REF] Buttazzo | Integral representation and relaxation of local functionals[END_REF] rests upon existence and approximation properties of continuous piecewise affine functions. The integral representation result of [Bou+02, Theorem 2, p. 189] shows that the integrand can be written as limit, when the radius of balls goes to zero, of the average of minimization Dirichlet problems associated with the functional on small balls. The strategy of the proof, known as the 'global relaxation method', uses mainly an intermediate representation result of an envelope, similar to the Carathéodory construction in measure theory, of local minimization Dirichlet problems associated with the functional, see Section 4 for an exposition of the method. One of the advantages of this method is to avoid the use of approximation by continuous piecewise affine functions. It can therefore be adapted more easily to the framework of Cheeger-Sobolev spaces (we have used this technique in [AM15; AM17; AM18]). We denote by Ω ⊂ X an open set with finite measure µ(Ω) < ∞ and by O(Ω) the class of all open subsets of Ω. We assume that µ is doubling, (X, d, µ) enjoys a (1, p)-Poincaré inequality, (X, d) is a complete separable metric space, and (X, d, µ) satisfies the annular decay property (AD X ).

Remarks 1.8. Note that µ is then a Radon measure since X is complete, see [Hei+15, Proposition 3.3.44, p. 67]. Remark also that X is locally compact since a complete metric space with µ doubling is proper, i.e. every closed ball is compact.

We proved the following integral representation theorem in Cheeger-Sobolev spaces:

Theorem 1.9 ([AM22, Theorem 1]). Let F : H 1,p µ (Ω; R m ) × O(Ω) → [0, ∞] satisfy (H 1 ) for every u ∈ H 1,p µ (Ω; R m ) the set function F (u, •) is the restriction to O(Ω) of a positive Radon measure; (H 2 ) F (•, O) is local, i.e. F (u, O) = F (v, O) whenever u = v µ-a.e. in O for all (u, v) ∈ H 1,p µ (Ω; R m ) 2 and all O ∈ O(Ω); (H 3 ) F (u + z, O) = F (u, O) for all z ∈ R m , all u ∈ H 1,p µ (Ω; R m ) and all O ∈ O(Ω); (H 4 ) there exist c > 0, b ≥ 0 and a ∈ L 1 µ (Ω) such that for every (u, O) ∈ H 1,p µ (Ω; R m ) × O(Ω) c ˆO |∇ µ u(x)| p dµ(x) ≤ F (u, O) ≤ ˆO a(x) + b |∇ µ u(x)| p dµ(x)
where ∇ µ u is the µ-gradient of u.

(H 5 ) for every O ∈ O(Ω) the functional F (•, O) is L p µ -lower semicontinuous, i.e. for every u ∈ H 1,p µ (Ω; R m ) and {u n } n∈N ⊂ H 1,p µ (Ω; R m ) satisfying lim n→∞ u n -u L p µ (Ω;R m ) = 0 we have lim n→∞ F (u n , O) ≥ F (u, O).
Then there exists a Borel measurable function

f : Ω × M -→ [0, ∞], with M = R m×N where N is given by Theorem 1.1 (i), such that (i) for every O ∈ O(Ω) and every u ∈ H 1,p µ (Ω; R m ) F (u, O) = ˆO f (x, ∇ µ u(x))dµ(x); (ii) for every k ∈ N, for µ-a.e. x ∈ Ω ∩ Ω k and every ξ ∈ M f (x, ξ) := lim ρ→0 inf ϕ∈H 1,p µ,0 (Bρ(x);R m ) F (ξ • γ k (•) + ϕ, B ρ (x)) µ(B ρ (x)) ; (iii) the function f is H 1,p µ -quasiconvex, i.e. for every ξ ∈ M and for µ-a.e. x ∈ Ω f (x, ξ) = lim ρ→0 inf ϕ∈H 1,p µ,0 (Bρ(x);R m ) - ˆBρ(x) f (y, ξ + ∇ µ ϕ(y))dµ(y);
(iv) for µ-a.e. x ∈ Ω and for every ξ ∈ M we have

c|ξ| p ≤ f (x, ξ) ≤ a(x) + b|ξ| p (1.13)
where c > 0, b ≥ 0 and a ∈ L 1 µ (Ω) are given by (H 4 );

(v) if there exists a Borel measurable function f : Ω × M -→ [0, ∞] such that for every O ∈ O(Ω) and every u ∈ H 1,p µ (Ω; R m ) F (u, O) = ˆO f (x, ∇ µ u(x))dµ(x)
then for µ-a.e. x ∈ Ω and for every ξ ∈ M

f (x, ξ) = f (x, ξ).
Perspective 3. It would be interesting to search the general conditions on X such that the conclusions of Theorem 1.9 still hold when we replace condition (H 4 ) by:

(H 4 ) there exist b ≥ 0 and a ∈ L 1 µ (Ω) such that for every (u, O) ∈ H 1,p µ (Ω; R m ) × O(Ω) 0 ≤ F (u, O) ≤ ˆO a(x) + b |∇ µ u(x)| p dµ(x)
and condition (H 5 ) by:

(H 5 ) for every O ∈ O(Ω) the functional F (•, O) is sequentially weakly lower semicontinuous on H 1,p µ (Ω; R m ), i.e. for every u ∈ H 1,p µ (Ω; R m ) and {u n } n∈N ⊂ H 1,p µ (Ω; R m ) satisfying u n u in H 1,p µ (Ω; R m ) we have lim n→∞ F (u n , O) ≥ F (u, O).
When the functional is not necessarily L p µ -lower semicontinuous we need to consider its envelope defined by

H 1,p µ (Ω; R m ) u -→ F (u, O) := inf lim n→∞ F (u n , O) : u n → u in L p µ (Ω; R m ) .
We have the following relaxation theorem:

Theorem 1.10 ([AM22, Theorem 2]). Let F : H 1,p µ (Ω; R m ) × O(Ω) -→ [0, ∞] satisfying (H 1 )-(H 4 ). Then there exists a Borel measurable function f : Ω × M -→ [0, ∞] such that (i) for every O ∈ O(Ω) and every u ∈ H 1,p µ (Ω; R m ) F (u, O) = ˆO f (x, ∇ µ u(x))dµ(x); (ii) for every k ∈ N, for µ-a.e. x ∈ Ω ∩ Ω k and for every ξ ∈ M f (x, ξ) := lim ρ→0 inf ϕ∈H 1,p µ,0 (Bρ(x);R m ) F (ξ • γ k (•) + ϕ, B ρ (x)) µ(B ρ (x)) ;
(iii) the function f is H 1,p µ -quasiconvex; (iv) for µ-a.e. x ∈ Ω and for every ξ ∈ M we have

c|ξ| p ≤ f (x, ξ) ≤ a(x) + b|ξ| p
where c > 0, b ≥ 0 and a ∈ L 1 µ (Ω) are given by (H 4 ).

Theorem 1.10 is an extension of the relaxation result obtained in [AM15, Corollary 2.29, p. 79], where we additionally assumed that X is a compact length space. It is also an extension of [AM17, Corollary 2.4, p. 384], where we additionally assumed that X is a locally compact length space. The proof of Theorem 1.10 is more classical and uses the De Giorgi-Letta criterion [START_REF] Giorgi | Une notion générale de convergence faible pour des fonctions croissantes d'ensemble[END_REF] (see also [But89, Lemma 3.3.6 p. 105]) which establishes sufficient conditions for an increasing set function defined on open subsets to be the restriction of a regular Borel measure.

Perspective 4. It would be interesting to search general conditions on X such that the conclusions of Theorem 1.10 still hold when we replace condition (H 4 ) by (H 4 ).

Remarks 1.11. Let f : Ω × M -→ [0, ∞] be a Borel measurable function which satisfies the polynomial growths (1.13). Assume that I given by (1.4) is L p µ -lower semicontinuous. Then by using Proposition 1.5, we have for every u ∈ Lip 0 (Ω; R m ) and for µ-a.e. x ∈ X

f (x, ∇ µ u(x)) = lim ρ→0 inf φ∈H 1,p µ,0 (Bρ(x);R m ) - ˆBρ(x) f (y, ∇ µ u + ∇ µ φ)dµ.
In fact, by using the proof of Theorem 1.9 we can see that µ-a.e. x ∈ X

lim ρ→0 inf φ∈H 1,p µ,0 (Bρ(x);R m ) - ˆBρ(x) f (y, ∇ µ u + ∇ µ φ)dµ = f (x, ∇ µ u(x))
and that the function

f (x, ξ) := lim ρ→0 inf φ∈H 1,p µ,0 (Bρ(x);R m ) - ´Bρ(x) f (y, ξ + ∇ µ φ)dµ is Borel measurable. So, we can use [AM22, Corollary 2] which is a version of an Alberti result [Alb91]
on the uniqueness of Borel integrands, to have the following condition: for µ-a.e. x ∈ X and for all ξ

∈ M f (x, ξ) = f (x, ξ)
which is a necessary condition stronger than H 1,p µ -quasiconvexity in this setting. It follows from Theorem 1.7 that the H 1,p µ -quasiconvexity implies the lower semicontinuity, so the H 1,p µquasiconvexity is equivalent in this context to the condition: for µ-a.e. x ∈ X and for all

ξ ∈ M f (x, ξ) = lim ρ→0 inf φ∈H 1,p µ,0 (Bρ(x);R m ) - ˆBρ(x) f (y, ξ + ∇ µ φ)dµ.

Γ-convergence

Let Ω ⊂ X be a nonempty open set. For each ε > 0, we consider

E ε : H 1,p µ (Ω; R m ) × O(Ω) -→ [0, ∞] defined by E ε (u, O) := ˆO f ε (x, ∇ µ u(x))dµ(x), (1.14) 
where

f ε : Ω × M -→ [0, ∞]
is a Borel measurable integrand depending on ε > 0, not necessarily convex with respect to ξ ∈ M, and having p-growth, i.e. there exist c, C > 0, which do not depend on ε, such that

c|ξ| p ≤ f ε (x, ξ) ≤ C(1 + |ξ| p ) (1.
15) for all x ∈ Ω and all ξ ∈ M. We deal with the problem of computing the Γ-convergence with respect to the strong convergence of

L p µ (Ω; R m ) of {E ε } ε>0 as ε → 0 toward E : H 1,p µ (Ω; R m ) × O(Ω) -→ [0, ∞] of the type E(u, O) = ˆO f (x, ∇ µ u(x))dµ(x) (1.16) with f : Ω × M -→ [0, ∞] not depending on ε. For each ε > 0 and each ρ > 0, let f ε,ρ : Ω × M -→ [0, ∞] be given by f ε,ρ (x, ξ) := inf ˆ-Bρ(x) f ε (y, ξ + ∇ µ w(y))dµ(y) : w ∈ H 1,p µ,0 (B ρ (x); R m ) .
We assume here that µ is doubling, (X, d, µ) enjoys a (1, p)-Poincaré inequality, (X, d) is a complete separable metric space, and (X, d, µ) satisfies the annular decay property (AD X ).

We proved the following result:

Theorem 1.12 ([AM17, Theorem 2.2 and Remark 4.2]). If (1.15) holds then for every u ∈ H 1,p µ (Ω; R m ), the set function

Γ(L p µ )-lim n→∞ E ε (u, •) : O(Ω) -→ [0, ∞]
can be uniquely extended to a finite positive Radon measure on O which is absolutely continuous with respect to µ, and

Γ(L p µ )-lim ε→0 E ε (u, O) ≥ ˆO lim ρ→0 lim ε→0 f ε,ρ (x, ∇ µ u(x))dµ(x)
and

Γ(L p µ )-lim ε→0 E ε (u, O) = ˆO lim ρ→0 lim ε→0 f ε,ρ (x, ∇ µ u(x))dµ(x) for all O ∈ O(Ω).
Theorem 1.12 can be seen as a partial Γ-convergence result. The method of the proof follows the lines described in Section 4 below. What we can see is that if for µ-a.e. x ∈ Ω and for all

u ∈ H 1,p µ (Ω; R m ) it holds lim ρ→0 lim ε→0 f ε,ρ (x, ∇ µ u(x)) = lim ρ→0 lim ε→0 f ε,ρ (x, ∇ µ u(x))
(1.17) then we have Γ-convergence and

Γ(L p µ )-lim ε→0 E ε (u, O) = ˆO lim ρ→0 lim ε→0 f ε,ρ (x, ∇ µ u(x))dµ(x).
To go further, we developed in [START_REF] Hafsa | On subadditive theorems for group actions and homogenization[END_REF] and [START_REF] Hafsa | Γ-convergence of nonconvex integrals in Cheeger-Sobolev spaces and homogenization[END_REF] a framework by mimicking what happens in Euclidean spaces for the periodic (and the stochastic) homogenization. First, we assume the existence of a sequence of homeomorphism {h n } n∈N on X which plays the role of 'dilations'

x → x εn with ε n → 0 as n → ∞. Then, we set f n (x, ξ) = f (h n (x), ξ) for all (x, ξ) ∈ X × M.
We also assume the existence of a subgroup G of the homeomorphisms of X which is acting on X and is playing the role of Z N acting on R N . The measure µ is assumed to be G-invariant, i.e. µ(g(A)) = µ(A) for all (g, A) ∈ G × B(X) where B(X) is the Borel σ-algebra of (X, d). We assume that there exists U ∈ B(X) of positive measure such that µ(∂U) = 0 which plays the role of 'unit cell' in Euclidean spaces. We also make a meshability assumption with respect the Borel sets {h k (U)} k∈N * , roughly we assume that each h k (U) can be approximated, from below and above, by finite unions of g • h k (U) with g ∈ G. Now, for each ξ ∈ M we consider the subadditive (i.e. for every

A, B ∈ B(X) it holds S ξ (A ∪ B) ≤ S ξ (A) + S ξ (B) whenever A ∩ B = ∅) function S ξ : B(X) -→ [0, ∞] defined by S ξ (A) := inf ˆÅ f (y, ξ + ∇ µ w(y))dµ(y) : w ∈ H 1,p µ,0 Å; R m ,
where Å denotes the interior of A. We proved that for every ρ > 0

lim n→∞ f n,ρ (x, ξ) = lim n→∞ S ξ (h n (B ρ (x))) µ(h n (B ρ (x))) = inf k∈N * S ξ (h k (U)) µ(h k (U)) = f hom (ξ).
We then see that (1.17) holds, i.e. for µ-a.e. x ∈ Ω and for all u ∈ H 1,p µ (Ω; R m ) lim

ρ→0 lim n→∞ f n,ρ (x, ∇ µ u(x)) = lim ρ→0 lim n→∞ f n,ρ (x, ∇ µ u(x)) = f hom (∇ µ u(x)).
Perspective 5. Homogenization in Cheeger-Sobolev spaces is at the beginning of its development. The abstract framework for the deterministic and stochastic homogenization developed in [START_REF] Hafsa | On subadditive theorems for group actions and homogenization[END_REF] and [START_REF] Hafsa | Γ-convergence of nonconvex integrals in Cheeger-Sobolev spaces and homogenization[END_REF] is a first attempt in this direction. It will be interesting to find new methods for homogenization adapted to metric measure spaces.

About the techniques to prove Γ-convergence results

In this section, we give a quick explanation of the main techniques we used to prove relaxation and Γ-convergence results.

4.1. General scheme for establishing upper bound. This part is devoted to present the general strategy for establishing the upper bound for the problems of relaxation, homogenization, and more generally of Γ-convergence of family of (variational) functionals

{F ε } ε>0 , F ε : H 1,p µ (Ω; R m ) × O(Ω) -→ [0, ∞].
The method which was first introduced by [BFM98] in the Euclidean setting and named 'Global method of relaxation', allows to avoid any approximation arguments when we want to establish an upper bound under integral form:

Γ(L p µ )-lim ε→0 F ε (u, O) ≤ ˆO g(x, ∇ µ u(x))dµ(x).
We consider the set function G : 

H 1,p µ (Ω; R m ) × O(Ω) -→ [0, ∞] G(u, O) := lim ε→0 m ε (u, O) where m ε (u, O) := inf ϕ∈H 1,p µ,0 (O;R m ) F ε (u + ϕ, O). (1.18) We cannot expect that G(u, •) is a measure even if F ε (u, •) is
O(Ω) O -→ G * -(O) := sup ε>0 inf i∈I G(B i ) : {B i } i∈I ∈ V ε (O) (1.19)
and the upper Vitali envelope with respect to µ

O(Ω) O -→ G * + (O) := inf ε>0 sup i∈I G(B i ) : {B i } i∈I ∈ V ε (O) , (1.20)
where for every ε > 0

V ε (O) := {B i } i∈I ⊂ Bal(O) : I is countable, µ O \ ∪ i∈I B i = 0, B i ⊂ O, 0 < diam(B i ) ≤ ε and B i ∩ B j = ∅ for all i = j .
Remarks 1.13. If G is the trace on Bal(Ω) of a positive Borel measure λ on Ω which is absolutely continuous with respect to µ then

G * ± (O) = λ(O) for all O ∈ O(Ω).
Let G : Bal(Ω) → R be a set function. Define the lower and the upper derivatives at x ∈ Ω of G with respect to µ as follows

D - µ G(x) := lim ρ→0 inf G(B) µ(B) : x ∈ B ∈ Bal(Ω), 0 < diam(B) ≤ ρ ; D + µ G(x) := lim ρ→0 sup G(B) µ(B) : x ∈ B ∈ Bal(Ω), 0 < diam(B) ≤ ρ .
We say that

G is µ-differentiable in O ∈ O(Ω) if for µ-a.e. x ∈ O it holds -∞ < D - µ G(x) = D + µ G(x) < ∞.
Under domination and subadditivity conditions (see conditions (i) and (ii) below), a set function defined on open sets is µ-differentiable, and the lower and upper Vitali envelopes are equal and admit an integral representation with density its derivative.

Theorem 1.14 ([AM18, Theorem 3.17, p. 65]). Let G : O(Ω) -→ R satisfy:

(i) there exists a positive Radon measure α on Ω absolutely continuous with respect to µ, i.e. α µ, satisfying

|G(O)| ≤ α(O) for all O ∈ O(Ω); (ii) for every U, V, O ∈ O(Ω) with U ∩ V = ∅, U ⊂ O, V ⊂ O and µ(O \ (U ∪ V )) = 0 it holds G(O) ≤ G(U ) + G(V ). Then G is µ-differentiable with Ω x -→ lim ρ→0 G(Bρ(x)) µ(Bρ(x)) ∈ L 1 µ (Ω) and for every O ∈ O(Ω) G * + (O) = G * -(O) = ˆO lim ρ→0 G(B ρ (x)) µ(B ρ (x)) dµ(x). (1.21) Now, in pratical case (1.18), each functional F ε (u, •) is the restriction to open sets of a positive Radon measure. Often, it is an integral F ε (u, O) = ´O f ε (x, ∇ µ u(x))dµ(x), and satisfies F ε (u, •) ≤ α u (•) where α u µ is a positive Radon measure, for instance p-growth i.e. α u = (a(•) + b |∇ µ u(•)| p )µ (see [AM15; AM17; AM22]) or G-growth (see [AM18]) i.e. α u = β(1 + G(•, ∇ µ u(•)))µ.
Then by applying Theorem 1.14 we show that for every O ∈ O(Ω) and every u ∈ H 1,p µ (Ω; R m ) we have

G * -(u, O) = ˆO lim ρ→0 lim ε→0 m ε (u, B ρ (x)) µ(B ρ (x)) dµ(x).
The strategy to obtain the upper bound is then to show, by using p-coercivity and Poincaré inequality, that ˆO lim

ρ→0 lim ε→0 m ε (u, B ρ (x)) µ(B ρ (x)) dµ(x) = G * -(u, O) ≥ Γ(L p µ )-lim ε→0 F ε (u, O)
then we show, by using cut-off techniques and the growth conditions, that for µ-a.e. x ∈ Ω lim

ρ→0 lim ε→0 m ε (u, B ρ (x)) µ(B ρ (x)) ≤ lim ρ→0 lim ε→0 m ε (u x , B ρ (x)) µ(B ρ (x)) (1.22) where u x ∈ H 1,p µ (Ω; R m ) is given by u x (y) := u(x) + ∇ µ u(x) • (γ k (y) -γ k (x)
) and satisfies

∇ µ u x (y) = ∇ µ u(x) for µ-a.a. y ∈ X and lim ρ→0 1 ρ - ˆBρ(x) |u(y) -u x (y)| p dµ(y) 1 p = 0.
(1.23) In fact, we replace u by (its local approximation around x) u x on the boundary of the ball B ρ (x), this part of the proof involves L p µ -differentiability arguments as the right hand side of (1.23) and compactness imbeddings theorems when for instance p > κ = ln(C d ) ln(2) (or p > N in the Euclidean case). It follows that

Γ(L p µ )-lim ε→0 F ε (u, O) ≤ ˆO g(x, ∇ µ u(x))dµ(x)
where g(x,

∇ µ u(x)) := lim ρ→0 lim ε→0 mε(ux,Bρ(x)) µ(Bρ(x))
µ-a.e. x ∈ Ω.

4.2. General scheme for establishing lower bound. Here, we give a description of a usual method (called the localization method or blow-up method which was introduced by [START_REF] Fonseca | Quasi-convex integrands and lower semicontinuity in L 1[END_REF]) to show the lower bound in the Γ-convergence problems. We place ourselves under the assumption (AL X ). To show the lower bound for Γ-limit inf, we first assume that

Γ(L p µ )-lim ε→0 F ε (u, O) < ∞, so there exists a sequence {u ε } ε>0 such that lim ε→0 F ε (u ε , O) = Γ(L p µ )-lim ε→0 F ε (u, O) and sup ε>0 F ε (u ε , O) < ∞. (1.24)
We assume that

F ε (v, •) O is the trace of a Borel measure for all v ∈ H 1,p µ (X; R m ). For each ε > 0 we set Θ ε := F ε (u ε , •). Note that since (1.24) this sequence is uniformly bounded sup ε>0 Θ ε (O) < ∞.
There exists a Borel measure Θ (in the Euclidean setting, Θ is the weak * limit of a subsequence of

{Θ ε } ε>0 ) such that Γ(L p µ )-lim ε→0 F ε (u, O) = lim ε→0 F ε (u ε , O) = lim ε→0 Θ ε (O) ≥ Θ(O) = ˆO dΘ dµ (x)dµ(x) + Θ s (O)
where we used the Lebesgue decomposition theorem and the Radon-Nikodym theorem to write Θ = dΘ dµ µ O +Θ s for some nonnegative Borel measure Θ s mutually singular with respect to µ O and with for µ-a.e. x ∈ O dΘ dµ

(x) = lim ρ→0 Θ(B ρ (x)) µ(B ρ (x)) .
Since (AL X ) and Θ(O) < ∞ we can write (Θ(∂B ρ (x)) = 0 for all ρ outside a countable set possibly depending on

x ∈ O) for µ-a.e. x ∈ O dΘ dµ (x) = lim ρ→0 lim ε→0 Θ ε (B ρ (x)) µ(B ρ (x)) = lim ρ→0 lim ε→0 F ε (u ε , B ρ (x)) µ(B ρ (x)) . it follows that Γ(L p µ )-lim ε→0 F ε (u, O) ≥ ˆO lim ρ→0 lim ε→0 F ε (u ε , B ρ (x)) µ(B ρ (x)) dµ(x)
Now, to go further, we show, when it is possible, by using cut-off techniques and the growth conditions that for µ-a.e. x ∈ O 

lim ρ→0 lim ε→0 F ε (u ε , B ρ (x)) µ(B ρ (x)) ≥ lim ρ→0 lim ε→0 m ε (u x , B ρ (x)) µ(B ρ (x)) . ( 1 
m ε (u x , B ρ (x)) µ(B ρ (x)) = lim ρ→0 lim ε→0 m ε (u x , B ρ (x)) µ(B ρ (x)) (1.26)
this is an important difficulty in the Γ-convergence problems (note that, we already presented this equality in (1.17)).

If we place ourselves in the Euclidean setting, i.e. (X,

d, µ) = (R N , | • -• |, L N )
and we deal with periodic homogenization problems F ε (u ε , O) = ´O f (x/ε, ∇u ε (x))dx (It also works for stochastic homogenization problems. The only difference is that we need some Lipschitz regularity assumptions (on the integrand) allowing the Γ-limit to hold in a full probability set not depending on Sobolev functions), a way for the equality to hold is to use subadditive theorems. Now, for each ξ ∈ M we consider the subadditive function

S ξ : B R N -→ [0, ∞] defined by S ξ (A) := inf ˆÅ f (y, ξ + ∇w(y))dL N (y) : w ∈ W 1,p 0 Å; R m ,
we see that for every ε, ρ > 0 we have

S ξ 1 ε B ρ (x) L N 1 ε B ρ (x) = m ε (l ξ , B ρ (x)) L N (B ρ (x)) , if sup A∈B(R N ), L N (A)>0 S ξ (A)/L N (A) < ∞ then Akcoglu-Krengel subadditive theorem [AK81]
(see also [START_REF] Licht | Global-local subadditive ergodic theorems and application to homogenization in elasticity[END_REF] and [START_REF] Hafsa | On subadditive theorems for group actions and homogenization[END_REF]) says that for every ρ > 0 the following limit exists and then gives a way to have (1.26):

lim ε→0 m ε (l ξ , B ρ (x)) L N (B ρ (x)) = lim ε→0 S ξ 1 ε B ρ (x) L N 1 ε B ρ (x) = inf k∈N * S ξ (kY ) k N .
CHAPTER 2

Relaxation and homogenization of unbounded integrals

In this chapter, we present our works concerning the extension of relaxation and homogenization results to the case of unbounded integrals, i.e. when the integrand does not have necessarily p-growth. Section 1 gives a presentation of the concept of radially uniformly upper semicontinuous functions. This class of functions is of interest when we want to establish the upper bound in relaxation or Γ-convergence problems. Indeed, one of the difficulties to establish the upper bound is that the weak limits of the sequences of gradients may concentrate on the boundary of the effective domain which is assumed to be convex. It is well known that a convex set with nonempty interior is star-shaped, i.e. every point of the boundary can be brought back radially inside the interior. The strategy is then, first to establish the upper bound when the gradient is uniformly contained in the interior of the effective domain. Then we can prove the upper bound if we can extend radially to the boundary the upper bound obtained for gradient in the interior of the effective domain, this is exactly what radially uniformly upper semicontinuous functions do. In Section 2 we present relaxation and homogenization results of unbounded integral functionals when the effective domain of the integrand is a bounded convex set with nonempty interior. Section 3 presents our works on homogenization when the effective domain is convex but not necessarily bounded. To deal with this case, we have considered G-growth assumptions on the integrands, i.e. we replaced the polynomial growth conditions by growths governed by either a convex function G or a quasiconvex function G satisfying additional hypothesis. Finally Section 4 gives a brief description of a relaxation result in Cheeger-Sobolev spaces with G-growth depending on the space variable x ∈ X. The works involved in this chapter are [AM18; AMZ15; AM14; AM12a; AM11; Anz10].

Radially uniformly upper semicontinuous functions

In relaxation or homogenization theory, for convex constraints and when the lower semicontinuous envelope is convex, the radial representation on the boundary holds and allows, under some additional requirements, to extend the integral representation to the whole effective domain of the functional (see for instance [START_REF] Carbone | Unbounded functionals in the calculus of variations[END_REF]). However, even for convex constraints, the lower semicontinuous envelope is not necessarily convex in the vectorial case. Therefore, the need for a generalization of the radial representation to a nonconvex setting comes naturally. The analysis of how the convexity concept plays (see [Roc70, Theorem 7.5, p. 57]) to obtain the radial limit representation involves a uniform upper semicontinuity property, more precisely, when f : V →] -∞, ∞] is convex (V is a vector space) we may write

sup u∈domf f (tu + (1 -t)u 0 ) -f (u) 1 + |f (u 0 )| + |f (u)| ≤ 1 -t (2.1)
for any u 0 ∈ domf . The left hand side of (2.1) is a kind of uniform semicontinuity modulus which is lower than 0 when t → 1.

Let V be an Hausdorff topological vector space. For a function f : V -→] -∞, ∞] we denote its effective domain by domf := {u ∈ V : f (u) < ∞} .

For each a > 0, D ⊂ domf and

u 0 ∈ D, we define ∆ f,D , ∆ a f,D,u 0 : [0, 1]-→] -∞, ∞] by ∆ a f,D,u 0 (t) := sup u∈D f (tu + (1 -t)u 0 ) -f (u) a + |f (u)| and ∆ f,D (t) := sup u∈D (f (tu + (1 -t)u 0 ) -f (u)).
If D = domf then we write ∆ a f,u 0 := ∆ a f,D,u 0 . Definition 2.1.

(i) [AM14, Definition 2.1] Let D ⊂ domf and u 0 ∈ D. We say that f is radially uniformly upper semicontinuous in D relative to u 0 , if there exists a > 0 such that lim t→1 ∆ a f,D,u 0 (t) ≤ 0. If D = domf then we simply say that f is ru-usc relative to u 0 ∈ domf .

(ii) [Anz10, Section 1.2] Let D ⊂ domf and u 0 ∈ D. We say that f is strongly radially uniformly upper semicontinuous in D relative to u 0 , if lim t→1 ∆ f,D (t) ≤ 0.

If D = domf then we simply say that f is strongly ru-usc relative to u 0 ∈ domf .

(iii) [AM14, Definition 2.1] We say that D ⊂ V is a strongly star-shaped set relative to

u 0 ∈ D, if ∀t ∈ [0, 1[ tD + (1 -t)u 0 ⊂ D,
where D is the closure of D in V .

Radially uniformly upper semicontinuous (resp. strongly radially uniformly upper semicontinuous) will be abbreviated to ru-usc (resp. strongly ru-usc) in what follows. When D ⊂ domf is star-shaped relative to u 0 ∈ D and f is ru-usc in D relative to u 0 ∈ D, we say that f is ru-usc in the star-shaped set D relative to u 0 ∈ D. 

f (• + u 0 ) is ru-usc in D -{u 0 } relative to 0 ∈ D -{u 0 }. (2) Note that ∆ a f (•+u 0 ),D-{u 0 },0 (•) = ∆ a f,D,u 0 (•). (3) If f is strongly ru-usc in D relative to u 0 ∈ D then it is ru-usc in D relative to u 0 ∈ D. If f is ru-usc in D relative to u 0 ∈ D and sup D f < ∞ then f is strongly ru-usc in D relative to u 0 ∈ D.
(4) If f is ru-usc in D relative to 0 ∈ D then for some a > 0 and for every u ∈ D ⊂ domf and t ∈ [0, 1[ it holds

f (tu) = f (tu) -f (u) a + |f (u)| (a + |f (u)|) + f (u) ≤ ∆ a D,f,0 (t)(a + |f (u)|) + f (u) letting t → 1 we obtain lim t→1 f (tu) ≤ f (u).
When D = domf and 0 ∈ domf we simply write ∆ a f (t) instead of ∆ a f,domf,0 and ∆ f (t) for ∆ f,domf .

From now, we will always assume that u 0 = 0, and we simply write D is strongly star-shaped and f is ru-usc in D, and when D = domf then we write f is ru-usc. We set ∀u ∈ V f (u) := lim

t→1 - f (tu).
A preliminary version of this result appeared in [START_REF] Hafsa | Homogenization of nonconvex integrals with convex growth[END_REF] (see also [START_REF] Hafsa | Homogenization of unbounded integrals with quasiconvex growth[END_REF]):

Theorem 2.3 ([AM14]
). Let f : V -→ [0, ∞] be a function and let D ⊂ domf be a strongly star-shaped relative to 0

∈ D. Assume that f is ru-usc in D. Then f (u) = lim t→1 -f (tu) for all u ∈ D and f is ru-usc in D ∩ dom f . Moreover, f (u) ≤ f (u) ≤ f (u) for all u ∈ D. Remarks 2.4. If D = domf then f is ru-usc in its effective domain dom f since f ≤ f ≤ f implies domf ⊂ dom f ⊂ domf ⊂ domf .
Now, we can write the parametric version of the ru-usc property. Let (X, X , ν) be a measure space. For a function f : X × V -→ [0, ∞] we denote the effective domain of f (x, •) by

F x := {u ∈ V : f (x, u) < ∞} . For each a ∈ L 1 loc,ν (X; ]0, ∞[), we set for every t ∈ [0, 1] ∆ a f (t) := sup x∈X sup u∈Fx f (x, tu) -f (x, u) a(x) + f (x, u) and ∆ f (t) := sup x∈X sup u∈Fx (f (x, tu) -f (x, u)).
Definition 2.5. (i) [AM11, Definition 3.1] We say that f is radially uniformly upper semicontinuous, if there exists a ∈ L 1 loc,ν (X; ]0, ∞[) such that lim t→1 ∆ a f (t) ≤ 0. (ii) [AM12a, Definition 4.1] We say that f is strongly radially uniformly upper semicontinuous, if lim t→1 ∆ f (t) ≤ 0.

We proved the following representation result of the lower semicontinuous envelope on the boundary of its effective domain:

Theorem 2.6 ([AM11; AMZ15]). Let f : X × V -→ [0, ∞] be a ru-usc (resp. strongly ru-usc) function such that F x is star-shaped relative to 0 ∈ F x for all x ∈ X. Let x ∈ X. If f (x, •) is lower semicontinuous on F x then f (x, •) is ru-usc (resp. strongly ru-usc), is equal to the lower semicontinuous envelope of f (x, •) and for every u ∈

V f (x, u) =              f (x, u) if u ∈ F x lim t→1 - f (x, tu) if u ∈ ∂F x ∞ if u ∈ V \ F x .
Perspective 6. It is of interest to extend Theorem 2.6 to the Γ-convergence setting, i.e. instead of extending the lower semicontinuous envelope, to extend the Γ-limit when it exists of a sequence of functions.

Relaxation and homogenization of unbounded integrals with bounded convex effective domain

In the following we give a quick summary of key definitions related to quasiconvex functions. Definition 2.7. (1) We say that a Borel measurable function g : M-→[0, ∞[ is quasiconvex if for every ξ ∈ M we have

g(ξ) = inf ˆY g(ξ + ∇φ(y))dy : φ ∈ W 1,∞ 0 (Y ; R m ) where Y =]0, 1[ N .
(2) The quasiconvex envelope of f :

M -→ [0, ∞] is the function Qf : M -→ [0, ∞] defined by Qf (ξ) := sup {g(ξ) : g : M -→ [0, ∞[ is quasiconvex and g ≤ f } .
(3) For a Borel measurable f :

M -→ [0, ∞] we set Z ∞ f : M -→ [0, ∞] defined by Z ∞ f (ξ) := inf ˆY f (ξ + ∇φ(y))dy : φ ∈ W 1,∞ 0 (Y ; R m ) .
(For more properties of Z ∞ f see Section 1 in Chapter 3.) (4) We say that h : M -→ [0, ∞] is sup-quasiconvex if there exists a nondecreasing sequence

{h n } n∈N , h n : M -→ [0, ∞[ satisfying (i) h n is quasiconvex for all n ∈ N;
(ii) for every n ∈ N there exists α n > 0 such that h n (ξ) ≤ α n (1 + |ξ|) for all ξ ∈ M;

(iii) for every ξ ∈ M one has h(ξ) = sup n∈N h n (ξ).

Remarks 2.8. (1) The function g : M -→ [0, ∞[ is continuous when it is quasiconvex.

(2) The quasiconvex envelope Qf is lower semicontinuous as supremum of continuous functions and satisfies 

Qf (ξ) = inf ˆY Qf (ξ + ∇φ(y))dy : φ ∈ W 1,∞ 0 (Y ; R m ) .
I(u) :=      ˆΩ f (∇u(x))dx if u ∈ W 1,∞ (Ω; R m ) ∞ if u ∈ W 1,∞ (Ω; R m ) \ L 1 (Ω; R m ).
We studied the problem of the integral representation of the relaxation of I

I(u) := inf lim n→∞ ˆΩ f (∇u n (x))dx : u n → u in L 1 (Ω; R m ) .
We have proved the following two theorems. The first result allows to consider a singular behavior at the boundary of the convex set, i.e. lim ξ→∂C f (ξ) = ∞, an illustration is given by Figure 2.1. For instance, the result applies for integrand of the type

M ξ -→ f (ξ) :=      g(ξ) + 1 1 -|ξ| s si |ξ| < 1 ∞ si |ξ| ≥ 1 where g : M -→ [0, ∞[ is uniformly continuous and s ∈ [1, ∞[.
Theorem 2.9 ([Anz10, Theorem 1.1. and Theorem 1.2.]). Assume that

(H 1 ) f is locally bounded in intC, i.e. sup ξ∈K f (ξ) < ∞ for all compact subsets K ⊂ intC; f ∞ ∞ domf ⊂ C Figure 2.1. A possible singular behavior of f in Theorem 2.9. f ∞ ∞ domf ⊂ C Figure 2.2. A possible behavior of f in Theorem 2.10.
(H 2 ) for every α > 0 there exists a compact subset

K α ⊂ intC such that inf ξ∈C\Kα Z ∞ f (ξ) ≥ α; (H 3 ) Z ∞ f is strongly ru-usc in domf (relative to 0). Then (i) Qf is sup-quasiconvex and Qf (ξ) =    Z ∞ f (ξ) if ξ ∈ intC ∞ otherwise; (ii) I(u) =      ˆΩ Qf (∇u(x))dx if u ∈ W 1,∞ (Ω; R m ) ∞ if u ∈ W 1,∞ (Ω; R m )\L 1 (Ω; R m ).
The second result allows to consider the case of integrands which are bounded on intC, an illustration is given by Figure 2.2.

Theorem 2.10 ([Anz10, Theorem 1.3. and Theorem 1.4.]). Assume that

(H 1 ) f is bounded in intC, i.e. sup ξ∈intC f (ξ) < ∞; (H 2 ) for every ξ ∈ ∂C it holds lim [0,1[ t→1 f (tξ) ≤ f (ξ); (H 3 ) Z ∞ f is strongly ru-usc in domf (relative to 0). Then (i) Qf is sup-quasiconvex and Qf = Z ∞ f = Z ∞ f ; (ii) I(u) =      ˆΩ Qf (∇u(x))dx if u ∈ W 1,∞ (Ω; R m ) ∞ if u ∈ W 1,∞ (Ω; R m )\L 1 (Ω; R m ).
The proofs of Theorems 2.9 and 2.10 are based on two main ingredients. To establish the lower bound, we use a result of [START_REF] Müller | A sharp version of Zhang's theorem on truncating sequences of gradients[END_REF] which states that a sequence of gradients converging in L 1 to C can be modified on a small set in a such way that the new sequence converges in L ∞ to C. This result allows to show that the quasiconvex envelope of f is the supremum of a nondecreasing sequence of functions with p-growth. Then the lower bound is obtained by using the convergence monotone theorem and classical lower semicontinuity results with p-growth (see for instance [START_REF] Acerbi | Semicontinuity problems in the calculus of variations[END_REF]). For the upper bound, we first assume that the gradients are compactly contained in the interior of C, then using approximation by continuous piecewise affine functions of Sobolev functions and the continuity property of Z ∞ f we can establish the upper bound for these particular gradients. Eventually, we use the ru-usc property of Z ∞ f to extend the upper bound inequality to all gradients, i.e. those contained in C.

Perspective 7. One interesting further investigation is to obtain relaxation results under star-shaped C but non necessarily convex. For instance, it would be interesting to prove relaxation results when C is the union of two bounded convex sets with the interior of their intersection is nonempty.

2.2.

Homogenization of unbounded integrals with bounded convex effective domain.Now, we present the problem of homogenization of unbounded integrals

I ε : W 1,∞ 0 (Ω; R m ) -→ [0, ∞] defined by I ε (u) := ˆΩ f x ε , ∇u(x) dx
where ε > 0 and f : R N × M -→ [0, ∞] is a Borel measurable function which is 1-periodic with respect to its first variable, i.e.

(H 1 ) f (x + z, ξ) = f (x, ξ) for all (x, z, ξ) ∈ R N × Z N × M,
and infinite outside of a convex bounded set C ⊂ M satisfying 0 ∈ intC, i.e.

(H 2 ) domf (x, •) = C for all x ∈ R N where domf (x, •) the effective domain of f (x, •).

We consider the following three assertions: 

(H 3 ) f is
I hom : W 1,∞ (Ω; R m ) -→ [0, ∞] is defined by I hom (u) := ˆΩ f hom (∇u(x))dx with f hom : M -→ [0, ∞] given by f hom = H ∞ f = H ∞ f where H ∞ f : M -→ [0, ∞] is defined by H ∞ f (F ) := inf k∈N * inf φ∈W 1,∞ 0 (kY ;R m ) - ˆkY f (y, F + ∇φ(y))dy.
and H ∞ f its lower semicontinuous envelope.

The extension into the setting of periodic homogenization of Theorems 2.9 and 2.10 involved some difficulties. The strategy of the proof is similar to the one of the previous relaxation results Theorems 2.9 and 2.10. To adapt the techniques in the context of homogenization, we had to prove a Γ-limit inf lower bound for periodic integrals with 1-growth and for the weak * convergence in W 1,∞ (Ω; R m ), this played the role of the classical lower semicontinuity results that we used for the relaxation results. For the upper bound, we prove that for every

ZH ∞ f ZH ∞ f Ru-usc W 1,∞ (Ω; R m ) ZH ∞ f ZH ∞ f Continuity Aff(Ωε; R m ) ZH ∞ f H ∞ f Approx. formula H ∞ f f Approx. formula
u ∈ W 1,∞ (Ω; R m ) Γ(L 1 ) lim ε→0 -I ε (u) ≤ ˆΩ ZH ∞ f (∇u(x))dx.
where

ZH ∞ f (F ) := inf ´Y H ∞ f (F + ∇φ(y))dy : φ ∈ Aff 0 (Y ; R m ) .
In fact, we can show that ZH ∞ f is strongly ru-usc since f is assumed to be strongly ru-usc (see [AM12a, Propositions 3.6 and 3.7]), therefore we can show

lim t→1 ˆΩ ZH ∞ f (t∇u(x))dx ≤ ˆΩ ZH ∞ f (∇u(x))dx.
Using an approximation result of [DM99, Theorem 10.16 and Corollary 10.21] we can find a sequence 

{u ε } ε ∈ W 1,∞ (Ω; R m ) and a sequence of open subsets {Ω ε } ε of Ω such that u ε Ωε is a continuous piecewise affine function, ∇u ε (x) ∈ (t + ε)C L N -a.e. x ∈ Ω, lim ε→0 L N (Ω \ Ω ε ) = 0 and u ε → tu strongly in W 1,1 (Ω; R m ). Then we show that lim ε→0 ˆΩ ZH ∞ f (∇u ε (x))dx = ˆΩ ZH ∞ f (t∇u(x))dx.
} ε ⊂ W 1,∞ 0 (O; R m ) such that: (a) lim ε→0 φ ε L 1 (O;R m ) = 0; (b) lim ε→0 - ˆO f x ε , ξ + ∇φ ε (x) dx = H ∞ f (ξ).
The Figure 2.3 gives a schematic representation of the differents steps of the proof of the upper bound. We present an example (see [START_REF] Hafsa | Homogenization of unbounded singular integrals in W 1,∞[END_REF]) in the case N = m. Let B be the unit open ball in M (note that detF > 0 whenever F ∈ I + B). Given a continuous function g : M -→ [0, ∞[ and a convex function h : [0, 1[-→[0, ∞[ such that there exist c > 0 and p > 0

h(t) ≥ ct p 1 -t p for all t ∈ [0, 1[, (2.2) we consider Φ : M -→ [0, ∞] defined by Φ(ξ) := g(I + ξ) + h(|ξ|) if ξ ∈ B ∞ otherwise,
where I denotes the identity matrix in M. Given a 1-periodic function a ∈ L ∞ R N such that α ≤ a(x) ≤ β for all x ∈ R N and some β > α > 0, we define f :

R N × M -→ [0, ∞] by f (x, ξ) := a(x)Φ(ξ).
Such a f satisfies the assumptions of Theorem 2.11 (here C = B) as well as some (but not all) conditions of hyperelasticity, i.e. the non-interpenetration of the matter: for every (x, ξ) ∈ R N × B, f (x, ξ) < ∞ if and only if det(I + ξ) > 0, and the necessity of an infinite amount of energy to reduce a finite volume of matter into zero volume: for every x ∈ R N , f (x, ξ) → ∞ as det(I + ξ) → 0. However, the material frame-indifference condition is not satisfied, indeed the rotation of angle π 2 does not belong to I +B (because Φ(R -I) = ∞ > Φ(0) with R the rotation of angle π 2 ).

Homogenization of unbounded integrals with G-growth

This section is devoted to present our works on the homogenization of periodic unbounded integrals on W 1,p (Ω; R m ) with p > N . Here, the constraints on gradient are now not necessarily bounded. Let Ω ⊂ R N be a nonempty bounded open set with Lipschitz boundary. We consider the periodic homogenization problem of integral functionals by Γ-convergence. More precisely, for each ε > 0, we define

I ε : W 1,p (Ω; R m ) -→ [0, ∞] by I ε (u) := ˆΩ f x ε , ∇u(x) dx,
where the integrand f : R N × M -→ [0, ∞] is Borel measurable and 1-periodic with respect to the first variable. Nonconvex homogenization by Γ-convergence of the family {I ε } ε>0 was mainly studied in the framework of p-polynomial growth conditions on f . Unfortunately, this framework is not compatible with two basic conditions of hyperelasticity: the noninterpenetration of the matter, i.e. f (x, ξ) = ∞ if and only if det(I + ξ) ≤ 0, and the necessity of an infinite amount of energy to reduce a finite volume into zero volume, i.e. for every x ∈ R N , f (x, ξ) → ∞ as det(I + ξ) → 0. At present, it seems difficult to take these conditions into account in homogenization problems. Generally, the attempts to go beyond the p-polynomial growth are not easy due to the lack of available techniques. However, in the scalar case, we refer to the book [START_REF] Carbone | Unbounded functionals in the calculus of variations[END_REF] where relaxation and homogenization of unbounded functionals were studied (see also [Car+02; Car+04; CCP06; De 07]). In the vectorial case, i.e. when min(N, m) > 1, the homogenization with convex growth see (H 1 ) (G independent of x) on f was studied in [START_REF] Hafsa | Homogenization of nonconvex integrals with convex growth[END_REF]. When the convex growth G depends upon the space variable x, the stochastic homogenization problem was studied in [START_REF] Duerinckx | Stochastic homogenization of nonconvex unbounded integral functionals with convex growth[END_REF] and their result generalize substantially our work [START_REF] Hafsa | Homogenization of nonconvex integrals with convex growth[END_REF].

We consider the following assertions:

(H 1 ) G-growth conditions, i.e. there exist α, β > 0 such that for every x ∈ R N and every

ξ ∈ M αG(ξ) ≤ f (x, ξ) ≤ β(1 + G(ξ)); (H 2 ) f is p-coercive, i.e. there exists c > 0 such that for every (x, ξ) ∈ R N × M c|ξ| p ≤ f (x, ξ),
where G : M -→ [0, ∞] is a Borel measurable function. Denote by G the effective domain of G, i.e. G = {ξ ∈ M : G(ξ) < ∞}. We can remark that (H 1 ) implies that the effective domain of f is independent of x and domf (x, •) = G for all x ∈ R N .

We consider the following conditions on G:

(C 1 ) 0 ∈ int(G); (C 2 ) there exists C > 0 such that for every ξ, ζ ∈ M and every t ∈]0, 1[

G(tξ + (1 -t)ζ) ≤ C(1 + G(ξ) + G(ζ)); (C 3 ) G is W 1,p -quasiconvex, i.e. for every ξ ∈ M G(ξ) = inf ˆY G(ξ + ∇ϕ(x))dx : ϕ ∈ W 1,p 0 (Y ; R m ) where Y =]0, 1[ N .
Note that (C 2 ) implies that G is convex but G is not necessarily convex. The condition (C 2 ) prevents the possible "strong bumps" of G.

Theorem 2.13 ([AMZ15, Theorem 1.1]). Assume that p > N . Assume that (C 1 )-(C 3 ), (H 1 ) and (H 2 ) hold. If f is periodically ru-usc then {I ε } ε>0 Γ-converges with respect to the strong topology of L p (Ω; R m ) to

I hom : W 1,p (Ω; R m ) -→ [0, ∞] defined by I hom (u) := ˆΩ f hom (∇u(x))dx, (2.3)
with f hom = Hf = Hf where Hf is the Braides-Müller homogenization formula (3.8) and Hf its lower semicontinuous envelope.

Theorem 2.13 is an extension of the homogenization result in [START_REF] Hafsa | Homogenization of nonconvex integrals with convex growth[END_REF], to the case where f has quasiconvex growth conditions. When the growth G is convex (then (C 2 ) and (C 3 ) are fulfilled) we proved the following result.

Theorem 2.14 ([AM11, Corollary 2.2, p. 170]). Assume that G is convex. Let f : R N × M → [0, ∞] be a Borel measurable function. Assume that f is periodically ru-usc and satisfies (H 1 ) and (H 2 ). If (C 1 ) holds, p > N and Ω is strongly star-shaped then {I ε } ε>0 Γ-converges with respect to the strong topology of L p (Ω; R m ) to I hom : W 1,p (Ω; R m ) -→ [0, ∞] given by (2.3) with f hom = Hf = Hf .

The assumption that f is periodically ru-usc allows to consider a suitable extension (in a radial way) of the homogenized integrand to the boundary ∂G of G. The reason is that the weak limits of the sequences of gradients can be located at ∂G during the homogenization process by Γ-convergence. The assumption that p > N allows, by using the p-coercivity condition (H 2 ) and Sobolev compact imbedding, to work with the convergence in L ∞ (Ω; R m ) instead of L p (Ω; R m ). Moreover, the functions of W 1,p (Ω; R m ) are almost everywhere differentiable in Ω since Sobolev imbedding. When it is combined with the fact that G has a local upper bound property, i.e. sup |ξ|≤r G(ξ) < ∞ for some r > 0 (see Remark 2.17), it allows to obtain suitable lower and upper bounds. The main difficulty for proving Theorem 2.13 comes from the proof of the Γ-limit sup. In the setting of convex growth conditions on f we can use mollifier techniques to construct approximations of Sobolev functions by smooth ones (and then use continuous piecewise affine functions). The steps of the proof follows the same lines as the one of Theorem 2.11. Indeed, we prove that for every u

∈ W 1,p (Ω; R m ) Γ(L p ) lim ε→0 -I ε (u) ≤ ˆΩ ZHf (∇u(x))dx.
where ZHf (F ) := inf ´Y Hf (F + ∇φ(y))dy : φ ∈ Aff 0 (Y ; R m ) . In fact, we can show that ZHf is ru-usc since f is assumed to be ru-usc (see [AM11, Propositions 3.6 and 3.7]), therefore we can show lim Using an approximation result of [Mül87, Lemma 3.6] we can find a sequence

t→1 ˆΩ ZHf (t∇u(x))dx ≤ ˆΩ ZHf (∇u(x))dx. ZHf ZHf Ru-usc W 1,p (Ω; R m ) ZHf ZHf Continuity Aff(Ω; R m ) ZHf Hf Approx. formula Hf f Approx. formula
{u ε } ε ∈ Aff(Ω; R m ) such that ∇u ε (x) ∈ intG L N -a.e. x ∈ Ω, u ε → tu strongly in W 1,p (Ω; R m ) and G(∇u ε ) → G(∇u) in L 1 (Ω)
, then we prove the following general approximation result for nonconvex integrand.

Lemma 2.15 ([AM11, Propositions 3.15 and 3.16]). Let L : M -→ [0, ∞] be a Borel measurable function with G-convex growth, i.e. there exist a convex function

G : M -→ [0, ∞] and α, β > 0 such that αG(ξ) ≤ L(ξ) ≤ β(1 + G(ξ)) for all ξ ∈ M. Let Ω ⊂ R d be
a bounded open set with Lipschitz boundary which is strongly star-shaped and let u ∈ W1,p (Ω; R m ) be such that ˆΩ L(∇u(x))dx < ∞.

(i) If L is ru-usc and continuous on int(G) then there exists

{u n } n ⊂ Aff(Ω; R m ) such that lim n→∞ u n -u W 1,p (Ω;R m ) = 0 and lim n→∞ ˆΩ L(∇u n (x))dx ≤ ˆΩ L(∇u(x))dx.
(ii) If L is continuous on int(G) and L N ({x ∈ Ω : ∇u(x) / ∈ intG}) = 0 then there exists

{u n } n ⊂ Aff(Ω; R m ) such that lim n→∞ u n -u W 1,p (Ω;R m ) = 0 and lim n→∞ ˆΩ L(∇u n (x))dx = ˆΩ L(∇u(x))dx.
Then 1 by using Lemma 2.15 (ii) we have lim ε→0 ˆΩ ZHf (∇u ε (x))dx = ˆΩ ZHf (t∇u(x))dx. Now, we can work on each open subsets Ω ε,i ⊂ Ω ε where the gradient ∇u ε = ξ i is constant, the rest of the proof consists in using approximation formula ZHf (ξ i ) by Hf (see [AM11, Proposition 3.17] or Lemma 3.16) and a similar approximation formula for Hf by f adapted from [Mül87, Lemma 2.1(a)] (see [AM11, Proposition 3.18]). We had to develop other techniques to deal with quasiconvex growth or more general growth. The strategy we used involves the Vitali envelope of local Dirichlet minimization problems associated to the family {I ε } ε>0 which reduces the proof of the upper bound to cut-off techniques, avoiding any approximation arguments by continuous piecewise affine functions. We refer to Section 4 where we exposed this method.

As an illustration, we present an example ([AMZ15]) in the case where N = m = 2. Consider a the following convex set G ⊂ M 22 defined by

G := ξ ∈ M 22 : min(1 + ξ 11 , 1 + ξ 22 ) > max(|ξ 12 |, |ξ 21 |)
where every ξ ∈ M 22 is denoted by ξ := ξ 11 ξ 12 ξ 21 ξ 22 , it has the following properties:

(i) 0 ∈ int(G);

(ii) det(I + ξ) > 0 for all ξ ∈ G;

(iii) tr(cof(I + ξ)

(I + ζ)) > 0 for all ξ, ζ ∈ G.
The frame-indifference condition is not satisfied by I +G. Indeed, due to the frame-indifference condition, we should have2 

SO(2)(I + G) ⊂ I + G,
(2.4) but this is not true. Assume that a such I + G satisfying (2.4) exists then SO(2) ⊂ I + G since (i). Choose any rotation matrix

I + ζ with angle θ ∈ [ π 2 , 3π 2 ] and ξ = 0, then tr(cof(I + ξ) (I + ζ)) = tr(I + ζ) ≤ 0, so (iii) cannot be satisfied. Let G : M 22 -→ [0, ∞] be defined by G(ξ) :=    |ξ| p + 1 det(I + ξ) if ξ ∈ G ∞ otherwise.
(2.5)

The function G satisfies (C 1 ), (C 2 ) and (C 3 ). Let f : R 2 × M 22 -→ [0, ∞] be defined by

f (x, ξ) :=    Φ(x, ξ) + 1 det(I + ξ) if ξ ∈ G ∞ otherwise, (2.6) 
where Φ : R 2 × M 22 → [0, ∞] is a quasiconvex function, 1-periodic with respect to its first variable and of p-polynomial growth, i.e. there exist c, C > 0 such that

c|ξ| p ≤ Φ(x, ξ) ≤ C(1 + |ξ| p ) (2.7)
for all (x, ξ) ∈ R 2 × M 22 . Such a f is consistent with the assumptions of Theorem 2.13 as well as with the two basic conditions of hyperelasticity, i.e. the non-interpenetration of the matter and the necessity of an infinite amount of energy to compress a finite volume of matter into zero volume.

Perspective 8. It would be interesting to extend the result of Duerinckx and Gloria [DG16] to the case of quasiconvex growth depending on x satisfying the bump condition (C 2 ). In our opinion, a three dimensional example, i.e. when N = m = 3, similar to the example above would be more convincing.

Relaxation of unbounded integrals with G-growth in Cheeger-Sobolev spaces

Let (X, d, µ) be a metric measure space, where (X, d) is a length space which is separable and compact, and µ is a positive Radon measure on X. We assume that µ is doubling with C d ≥ 1 denoting the doubling constant and that X enjoys a weak (1, p)-Poincaré inequality with 1 < p < ∞. We suppose p > κ := ln(C d ) ln(2) , in fact this condition plays the same role as p > N in the Euclidean setting, and allows to have a L ∞ µ -compactness result similarly to the Euclidean case ([AM18, Corollaries 3.10 and 3.11, p. 62-63]).

CHAPTER 3

Relaxation, homogenization and dimension reduction with ample integrands

This chapter presents the works on relaxation, homogenization and dimension reduction with ample integrands. More precisely, Section 1 gives an exposition of our works on ample integrands, such integrands can incorporate singular behavior, for instance in the setting of hyperelasticity, the necessity of an infinite amount of energy to reduce a finite volume to a zero volume. In Section 2 we present our relaxation results with ample integrands. In Section 3 we state our homogenization theorems with ample integrands. Two differents homogenization results are presented, the first one involves some assumptions which make the integrand continuous with respect to the space variable, while the second result allows possible discontinuities with respect to the space variable of the integrand. Section 4 provides an exposition of our works on the 3D-2D passage by Γ-convergence which take into account the determinant conditions of hyperelasticity. The works involved in this chapter are [ACM17; AM12c; ALM11; AM08a; AM08b; AM07; AM06].

Ample integrands

Let f : M -→ [0, ∞] be a Borel measurable function which can take the infinite value. We set

Z ∞ f, Zf : M -→ [0, ∞] defined by Z ∞ f (F ) := inf ˆY f (F + ∇φ(y))dy : φ ∈ W 1,∞ 0 (Y ; R m ) ; Zf (F ) := inf ˆY f (F + ∇φ(y))dy : φ ∈ Aff 0 (Y ; R m ) . Note that f ≥ Zf ≥ Z ∞ f ≥ Qf . Indeed, when g : M -→ [0, ∞[ is quasiconvex and finite with g ≤ f we have g = Z ∞ g ≤ Z ∞ f which, by taking the supremum over all g ≤ f , gives Qf ≤ Z ∞ f .
In the following example, we can see that the envelope Z ∞ f is finite although f is not and has a singular behavior at 0 (see Figure 3.1). We assume that m = N = 1 and p > 1. Let f : R -→ [0, ∞] be defined by

f (x) :=      |x| p + 1 |x| if x = 0 ∞ if x = 0.
It is easy to see that Z ∞ f ≤ g where

g(x) :=      p -p p+1 + p 1 p+1 if |x| < p -1 p+1 f (x) if |x| ≥ p -1 p+1 . Remarks 3.5. When Z ∞ f (resp. Zf ) is finite then Z ∞ f (resp. Zf
) is continuous and rank-one convex since Proposition 3.3 and Lemma 3.4 (1).

Assume that m = N = 3 and consider the following determinant condition on f : M -→ [0, ∞] (allowing behavior of the type (3.5)):

∀δ > 0 ∃c > 0 ∀F ∈ M |detF | ≥ δ =⇒ f (F ) < c. (3.1) 
Theorem 3.6 ([AM08a] (see also [START_REF] Hafsa | Relaxation et passage 3D-2D avec contraintes de type déterminant[END_REF])). Assume that m = N = 3. If (3.1) holds then Zf is finite. In particular, f is weakly ample.

Now, we need a stronger definition of amplitude in order to prove relaxation theorems. Let

p ∈ [1, ∞[. Definition 3.7. [AM12c, Definition 2.11] We say that f is p-ample if Z ∞ f has p-growth, i.e. there exists C > 0 such that Z ∞ f (F ) ≤ C(1 + |F | p ) for all F ∈ M.
We denote by Rf the rank-one convex envelope of f , i.e. the greatest rank-one convex function which is lower than f . The following result is due to [START_REF] Belgacem | Modélisation de structures minces en élasticité non linéaire[END_REF] (see also [START_REF] Hafsa | Relaxation et passage 3D-2D avec contraintes de type déterminant[END_REF][START_REF] Hafsa | Relaxation and 3d-2d passage theorems in hyperelasticity[END_REF]).

Proposition 3.8. Assume that N ≤ m and ∃α > 0 ∃β > 0 ∀F ∈ M v(F ) ≥ α =⇒ f (F ) ≤ β(1 + |F | p ) (3.2)
where v(F ) is the product of the N singular values of F . Then Rf has p-growth.

Remarks 3.9. If m = N then v(F ) = |detF | for all F ∈ M. If N = 2 and m = 3 then v(F ) = |F 1 ∧ F 2 | for all F = (F 1 |F 2 ) ∈ M 32 where M 32 = R 3×2 and (3.2) becomes ∃α > 0 ∃β > 0 ∀F ∈ M |F 1 ∧ F 2 | ≥ α =⇒ f (F ) ≤ β(1 + |F | p ). (3.3)
The following lemma is due to [START_REF] Dacorogna | Existence of solutions for some implicit partial differential equations and applications to variational integrals involving quasiaffine functions[END_REF] (see also [START_REF] Celada | Functions with prescribed singular values of the gradient[END_REF]). Assume that m = N and consider the following determinant condition on f : M -→ [0, ∞] (allowing behavior of the type (3.5)):

∃α > 0 ∃β > 0 ∀F ∈ M |detF | ≥ α =⇒ f (F ) ≤ β(1 + |F | p ). (3.4)
From Lemma 3.10 and Proposition 3.8 we can deduce the following result. 

Z ∞ f (F ) ≤ ˆY f (F + ∇ϕ(y))dy ≤ β 1 + ˆY |F + ∇ϕ(y)| p dy < ∞.
Thus f is weakly ample. By using Remark 3.5 we see that Z ∞ f is rank-one convex, so Z ∞ f ≤ Rf and Rf has p-growth since Proposition 3.8 and Remarks 3.9. Now, combining Theorem 3.6, Proposition 3.8 and Remark 3.5, we have proved the following result.

Theorem 3.12 ( [START_REF] Hafsa | Relaxation and 3d-2d passage theorems in hyperelasticity[END_REF]). Assume that m = N = 3 and (3.1) holds. Then Zf has p-growth, in particular f is p-ample.

In [START_REF] Hafsa | Relaxation theorems in nonlinear elasticity[END_REF] we proved the same result as Theorem 3.12 under additional assumptions.

Theorem 3.13 [START_REF] Hafsa | Relaxation and 3d-2d passage theorems in hyperelasticity[END_REF]). Assume that (3.4) holds. If Zf is finite, then Zf has p-growth, in particular f is p-ample.

Perspective 9. It would be interesting to know whether it is true that the functions f : M -→ [0, ∞] such that Qf has p-growth are ample.

Relaxation theorems with ample integrands

Let p > 1. We consider the integral functional I : W 1,p (Ω; R m ) -→ [0, ∞] defined by

I(u) := ˆΩ f (∇u(x))dx
where Ω ⊂ R N is a bounded open set and f : M -→ [0, ∞] is a Borel measurable function. The lower semicontinuous envelope I with respect to the L p distance is defined by

I(u) = inf lim ε→0 I(u ε ) : u ε → u in L p (Ω; R m ) .
Here, we present our works concerning the relaxation of integrals I when f is p-ample. It is about finding the conditions of the integral representation of I. The most interesting singular behavior for us being lim

detF →0 f (F ) = ∞, (3.5) 
which means, in the setting of hyperelasticity, the requirement of an infinite energy to crush the material down to zero volume. Dacorogna proved in [START_REF] Dacorogna | Quasiconvexity and relaxation of nonconvex problems in the calculus of variations[END_REF] the following relaxation theorem. 

I Aff (u) := inf lim n→∞ I(u n ) : Aff(Ω; R m ) u n → u in L p (Ω; R m ) .
The proof is based on the following lemma whose proof follows from Vitali covering theorem.

Lemma 3.16. Let f : M -→ [0, ∞] be a Borel measurable function and let O ⊂ R N be a nonempty open bounded. For every F ∈ M there exists

{φ k } k∈N ⊂ W 1,∞ 0 (O; R m ) (resp. Aff 0 (O; R m )) such that lim k→∞ - ˆO f (F + ∇φ k (x))dx = Z ∞ f (F ) (resp. Zf (F )) and φ k → 0 in L p (O; R m ).
If f is p-ample then Z ∞ f has p-growth and is continuous since Remark 3.5, by Theorem 3.14 we have for every u ∈ W 1,p (Ω; R m )

Z ∞ I(u) = inf lim n→∞ ˆΩ Z ∞ f (∇u n (x))dx : u n → u in L p (Ω; R m ) = ˆΩ Q(Z ∞ f )(∇u(x))dx = ˆΩ Qf (∇u(x))dx
where the last equality is due to Theorem 3.2. Now, it is sufficient to show that Z ∞ I ≥ I. This follows from Lemma 3.16, which allows to show that for every u ∈ W 1,p (Ω; R m )

I(u) = Z ∞ I Aff (u) = inf lim n→∞ ˆΩ Z ∞ f (∇u n (x))dx : Aff(Ω; R m ) u n → u in L p (Ω; R m ) .
The last step consists in establishing Z ∞ I Aff = Z ∞ I by using the strong density of Aff(Ω; R m ) in W 1,p (Ω; R m ).

Homogenization with ample integrands

Let p > 1. Let {I ε } ε>0 , I ε : W 1,p (Ω; R m ) -→ [0, ∞] be defined by

I ε (u) := ˆΩ f x ε , ∇u(x) dx
where Ω ⊂ R N is a nonempty bounded open set and f : R N ×M-→[0, ∞] is a Borel measurable function which is p-coercive, i.e.

∃c > 0 ∀(x, F ) ∈ R N × M f (x, F ) ≥ c|ξ| p ,
and 1-periodic (with respect to the first variable), i.e.

∀(x, F ) ∈ R N × M ∀z ∈ Z N f (x + z, F ) = f (x, F ).
Braides [START_REF] Braides | Homogenization of some almost periodic coercive functional[END_REF] and Müller [START_REF] Müller | Homogenization of nonconvex integral functionals and cellular elastic materials[END_REF] proved the following homogenization theorem.

Theorem 3.17. Assume that f is p-coercive, 1-periodic, and has p-growth, i.e.

∃C > 0 ∀(x, F ) ∈ R N × M f (x, F ) ≤ C(1 + |F | p ).
Then {I ε } ε>0 Γ(L p )-converges toward I hom : W 1,p (Ω; R m ) -→ [0, ∞] given by

I hom (u) = ˆΩ Hf (∇u(x))dx (3.7)
where Hf : M -→ [0, ∞] is the Braides-Müller homogenization formula given by

Hf (F ) := inf k∈N * inf φ∈W 1,p 0 (kY ;R m ) - ˆkY f (y, F + ∇φ(y))dy. (3.8)
We present here some extensions of the Braides-Müller homogenization theorem for ample integrands.

Definition 3.18. We say that f is p-ample if there exists

C > 0 such that Z ∞ f (x, F ) ≤ C(1 + |F | p ) for all (x, F ) ∈ R N × M.
We have proved the following homogenization result which is compatible with the singular behavior ∀x ∈ R N lim detF →0

f (x, F ) = ∞.

(3.9)

Theorem 3.19 ([ALM11, Theorem 3.2]). Assume that f is p-ample, p-coercive, 1-periodic, and satisfies for some ω : [0, ∞[-→[0, ∞[ continuous at 0 with ω(0) = 0

∀(x 1 , x 2 , F ) ∈ R N × R N × M f (x, F ) ≤ ω(|x 1 -x 2 |)(1 + f (x 2 , F )) + f (x 2 , F ). (3.10)
Then {I ε } ε>0 Γ(L p )-converges toward I hom defined by (3.12) and Hf defined by (3.8).

The proof is based on the well known result in the theory of Γ-convergence that we can replace I ε by the relaxation I ε in the Γ(L p )-limit inf and sup, i.e. Γ(L p )-lim ε→0

I ε = Γ(L p )-lim ε→0 I ε and Γ(L p )-lim ε→0 I ε = Γ(L p )-lim ε→0 I ε
where for each ε > 0

I ε (u) = inf lim n→∞ I ε (u n ) : W 1,p (Ω; R m ) u n → u in L p (Ω; R m ) .
(3.11)

With the help of the Serrin type condition (3.10), we proved the following relaxation which is an extension of Theorem 3.15 for x-dependent integrand

I ε (u) = ˆΩ Z ∞ f x ε , ∇u(x) dx
for all ε > 0 and all u ∈ W 1,p (Ω; R m ). The integrand Z ∞ f has p-growth and inherites of all the assumptions of f , we can then apply the Braides-Müller homogenization theorem to obtain that for every

u ∈ W 1,p (Ω; R m ) Γ(L p )-lim ε→0 I ε (u) = ˆΩ H(Z ∞ f )(∇u(x))dx.
The last step consists in showing that H(Z ∞ f ) = Hf which is a consequence of a relaxation theorem similar to the one described above with W 1,p (Ω; R m ) replaced by W 1,p 0 (Ω; R m ) in (3.11). The Serrin type condition (3.10) implies that f (•, F ) is continuous which is not a realistic assumption for homogenization problems. Thus in [ACM17] some attempts to remove the continuity assumption with respect to the first variable were developed. In the following, we present one of these results. We consider the following assumptions:

(H 1 ) there exists C > 0 such that for every nonempty bounded open set O ⊂ R N and every

F ∈ M m Aff (l F , O) L N (O) := inf φ∈Aff 0 (O;R m ) - ˆO f (y, F + ∇φ(y))dy ≤ C(1 + |F | p )
where l F (x) := F x for all x ∈ R N ;

(H 2 ) for a.e. x ∈ R N and for every

F ∈ M Zf (x, F ) := lim ρ→0 m Aff (l F , B ρ (x)) L N (B ρ (x)) ≤ f (x, F ); (H 3 ) for every F ∈ M it holds Z H Aff Zf (F ) ≤ H Zf (F )
where

H Aff Zf (F ) := inf k∈N * inf φ∈Aff 0 (kY ;R m ) - ˆkY 
Zf (y, F + ∇φ(y))dy.

Theorem 3.20 ([ACM17, Theorem 2.33]). Assume that f is p-coercive, 1-periodic, and satisfies (H 1 ), (H 2 ) and (H 3 ). Then {I ε } ε>0 Γ(L p )-converges toward I hom : W 1,p (Ω; R m ) -→ [0, ∞] given by I hom (u) = ˆΩ H Zf (∇u(x))dx.

(3.12) Theorem 3.20 applies to integrand of the form f (x, F ) = a(x)H(F ) where a ∈ L ∞ (R N ; R m ) is 1-periodic, lower semicontinuous and a(•) ≥ η for some η > 0, and H : M -→ [0, ∞] is upper semicontinuous, p-coercive and satisfies the determinant condition (3.4).

The strategy of the proof of Theorem 3.20 is different from the one of Theorem 3.19. In fact, (H 1 ) and (H 2 ) implies that Zf has p-growth and is lower than f , and it is easy to see that Zf is 1-periodic, so we can apply the Braides-Müller homogenization theorem to obtain a lower bound of the Γ(L p )-limit inf

Γ(L p )-lim ε→0 I ε (u) ≥ ˆΩ H Zf (∇u(x))dx.
For the Γ(L p )-limit sup, since Z H Aff Zf has p-growth and then is continuous, using the strong density of continuous piecewise affine Aff(

Ω; R m ) in W 1,p (Ω; R m ), it is sufficient to show for every u ∈ Aff(Ω; R m ) Γ(L p )-lim ε→0 I ε (u) ≤ ˆΩ Z(H Aff Zf )(∇u(x))dx.
We prove first that for every u ∈ Aff(Ω; R m ) there exists a sequence {u ε } ε>0 ⊂ Aff(Ω; R m ) of continuous piecewise affine functions such that u ε → u in L p (Ω; R m ) and

lim ε→0 ˆΩ Zf x ε , ∇u ε (x) dx = ˆΩ Z H Aff Zf (∇u(x))dx.
For the second step we use the strategy involving Vitali envelope exposed in Section 4 to show that for every ε > 0 and every u ∈ Aff(Ω; R m )

I ε (u) ≤ ˆΩ Zf x ε , ∇u(x) dx.
Perspective 10. We proved in [START_REF] Hafsa | Homogenization of nonconvex unbounded singular integrals[END_REF] that the condition (H 3 ) holds when Zf has pgrowth, i.e. sup x∈R N ,F ∈M Zf (x,F ) 1+|F | p < ∞, and Zf (x, •) is upper semicontinuous for a.e. x ∈ R N . The condition (H 3 ) is related to the method of the proof of the upper bound, i.e. the use of the approximation of Sobolev functions by continuous piecewise affine functions. It would be interesting to try to find a new method to prove the upper bound in Theorem 3.20 without condition (H 3 ).

3D-2D passage with determinant type constraints

Let f : M → [0, ∞] be a Borel measurable and p-coercive (with p > 1) function. For each ε > 0, let

I ε : W 1,p (Σ ε ; R 3 ) -→ [0, ∞] be defined by I ε (φ) := 1 ε ˆΣε f (∇φ(x, x 3 ))dxdx 3 where Σ ε := Σ×] -ε 2 , ε 2 [⊂ R 3 with Σ ⊂ R 2
Lipschitz, open and bounded, and a point of Σ ε is denoted by (x, x 3 ) with x ∈ Σ and

x 3 ∈] -ε 2 , ε 2 [. The problem of 3D-2D passage is to pass to Σ Σ ε -ε 2 ε 2 ε → 0 Figure 3.2.
Illustration of a 3D-2D passage.

the limit as ε → 0 by Γ-convergence to obtain I mem : W 1,p (Σ; R 3 ) -→ [0, ∞] given by

I mem (ψ) := ˆΣ f mem (∇ψ(x))dx where f mem : M 23 -→ [0, ∞] with M 23 = R 2×3 (see Figure 3.2).
In our works [Anz05; AM06; AM08b] we used the Γ(π)-convergence which is a variation of Γ-convergence, and which seems to us well adapted to dimension reduction problems, it was introduced by Anzellotti, Baldo and Percivale [START_REF] Anzellotti | Dimension reduction in variational problems, asymptotic development in Γ-convergence and thin structures in elasticity[END_REF] (see also [START_REF] Acerbi | A variational definition of the strain energy for an elastic string[END_REF]). Let π = {π ε } ε be the family of L p -continuous maps π

ε : W 1,p (Σ ε ; R 3 ) -→ W 1,p (Σ; R 3 ) defined by π ε (φ) := 1 ε ˆε 2 -ε 2 φ(•, x 3 )dx 3 .
Definition 3.21. We say that {I ε } ε Γ(π)-converge to I mem as ε → 0, and we write

I mem = Γ(π)-lim ε→0 I ε , if and only if for every ψ ∈ W 1,p (Σ; R 3 ) (Γ(π)-lim ε→0 I ε )(ψ) = (Γ(π)-lim ε→0 I ε )(ψ) = I mem (ψ) with Γ(π)-lim ε→0 I ε , Γ(π)-lim ε→0 I ε : W 1,p (Σ; R 3 ) -→ [0, ∞] respectively given by Γ(π)-lim ε→0 I ε (ψ) := inf lim ε→0 I ε (φ ε ) : π ε (φ ε )→ψ in L p (Σ; R 3 ) , Γ(π)-lim ε→0 I ε (ψ) := inf lim ε→0 I ε (φ ε ) : π ε (φ ε )→ψ in L p (Σ; R 3 ) .
For each ε > 0, consider

I ε : W 1,p (Σ; R 3 ) -→ [0, ∞] defined by I ε (ψ) := inf I ε (φ) : π ε (φ) = ψ . It is not difficult to show (see [ABP94]) that I mem = Γ(π)-lim ε→0 I ε if and only if I mem = Γ-lim ε→0 I ε . Let f 0 : M 3×2 -→ [0, ∞] be defined by f 0 (ξ) := inf ζ∈R 3 f (ξ | ζ).
Le Dret-Raoult in their seminal papers [LR93; LR95] have proved the following result:

Theorem 3.22. If f is continuous and has p-growth, i.e.

∃C > 0 ∀F ∈ M f (F ) ≤ C(1 + |F | p ) then ∀ψ ∈ W 1,p (Σ; R 3 ) Γ(π)-lim ε→0 I ε (ψ) = ˆΣ Qf 0 (∇ψ(x))dx.
Although Theorem 3.22 is not compatible with the singular behavior (3.5), it established a suitable variational framework to deal with dimensional reduction problems, it has been the starting point for many works on the subject. By using Theorem 3.22 we can prove the following result of which a preliminary version under additionnal assumptions was proved in [START_REF] Hafsa | The nonlinear membrane energy: variational derivation under the constraint "det∇u = 0[END_REF].

Theorem 3.23 ( [START_REF] Hafsa | Relaxation and 3d-2d passage theorems in hyperelasticity[END_REF] (see also [START_REF] Hafsa | Relaxation et passage 3D-2D avec contraintes de type déterminant[END_REF])). Assume that (3.4) holds. Then for every

ψ ∈ W 1,p (Σ; R 3 ) Γ(π)-lim ε→0 I ε (ψ) = ˆΣ Qf 0 (∇ψ(x))dx.
Let us outline the proof. As the Γ(π)-limit is stable by substituting I ε by its relaxed functional I ε , i.e.

I ε : W 1,p (Σ ε ; R 3 ) -→ [0, ∞] given by I ε (φ) := inf lim n→∞ I ε (φ n ) : φ n →φ in L p (Σ ε ; R 3 ) , it suffices to prove that for every ψ ∈ W 1,p (Σ; R 3 ) Γ(π)-lim ε→0 I ε (ψ) = ˆΣ Qf 0 (∇ψ(x))dx.
As f satisfies (3.4) it is p-ample by Theorem 3.11, and so by Theorem 3.15 and Theorem 3.2 we have for every ε > 0 and every φ ∈ W 1,p (Σ ε ; R 3 )

I ε (φ) = 1 ε ˆΣε Qf (∇φ(x, x 3 ))dxdx 3 with Qf = Z ∞ f . Applying the Le Dret-Raoult theorem we deduce that ∀ψ ∈ W 1,p (Σ; R 3 ) Γ(π)-lim ε→0 I ε (ψ) = ˆΣ Q[Qf ] 0 (∇ψ(x))dx with [Qf ] 0 : M 32 → [0, ∞] given by [Qf ] 0 (ξ) := inf ζ∈R 3 Qf (ξ | ζ). Finally, we prove that Q[Qf ] 0 = Qf 0 .
Perspective 11. It would be interesting to consider the problem of reduction dimension and homogenization simultaneously under the determinant condition (3.4). It was studied in the p-growth case by [START_REF] Shu | Heterogeneous thin films of martensitic materials[END_REF] (see also [START_REF] Braides | 3D-2D asymptotic analysis for inhomogeneous thin films[END_REF][START_REF] Babadjian | Spatial heterogeneity in 3D-2D dimensional reduction[END_REF]). More precisely, let δ, ε ∈]0, 1[, we consider a periodic distribution of heterogeneities on Σ with size δ > 0. For each s :

= (δ, ε) ∈ R + := R * + × R * + we consider the integral functional E s : W 1,p (Σ ε ; R 3 ) -→ [0, ∞] defined by: E s (u) := 1 ε ˆΣε f x δ , ∇u(x, x 3 ) dxdx 3
where f : R 2 × M -→ [0, ∞] is a Borel measurable function 1-periodic with respect to the space variable. In [START_REF] Shu | Heterogeneous thin films of martensitic materials[END_REF], a comprehensive study has been carried out by taking into account all the possible limits behavior of the ratio ε/δ when R + s → 0. It would be interesting to extend the study to ample integrands.

f detF f 0 |F 1 ∧ F 2 | Zf 0 Figure 3.3.
The passage from f to f 0 and then to Zf 0 .

The following theorem is a 3D-2D passage by Γ-convergence with the assumptions on f compatible with the two basic conditions of hyperelasticity. It is the result of several contributions, the attempt of Percivale in 1991 (see [START_REF] Percivale | The variational method for tensile structures[END_REF]), the works in the p-growth case of Le Dret and Raoult (see [START_REF] Dret | Le modèle de membrane non linéaire comme limite variationnelle de l'élasticité non linéaire tridimensionnelle[END_REF][START_REF] Dret | The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity[END_REF]) and especially the important contributions of Ben Belgacem (see [START_REF] Belgacem | Modélisation de structures minces en élasticité non linéaire[END_REF][START_REF] Belgacem | Une méthode de Γ-convergence pour un modèle de membrane non linéaire[END_REF][START_REF] Belgacem | Relaxation of singular functionals defined on Sobolev spaces[END_REF]) who paved the path of the proof. 

(D 2 ) f (F ) = ∞ ⇐⇒ detF ≤ 0 for all F ∈ M 33 ; (D 3 ) ∀δ > 0 ∃c δ > 0 ∀F ∈ M 33 (detF ≥ δ =⇒ f (F ) ≤ c δ (1 + |F | p )).
Then for every ψ

∈ W 1,p (Σ; R 3 ) Γ(π)-lim ε→0 I ε (ψ) = ˆΣ Qf 0 (∇ψ(x))dx.
It is easy to see that if f satisfies (D 1 ), (D 2 ) and (D 3 ) then f 0 is continuous and

∀α > 0 ∃β α > 0 ∀F ∈ M 32 (|F 1 ∧ F 2 | ≥ α =⇒ f 0 (ξ) ≤ β α (1 + |ξ| p )). (3.13)
Somehow the one-sided constraint (D 3 ) is mirrored in (3.13) by passing to f 0 which turns out to be an 'ample condition' (see Figure 3.3). More precisely, the first inequality follows by using the fact that f 0 is continuous and satisfies (3.13) together with the result ( [START_REF] Belgacem | Modélisation de structures minces en élasticité non linéaire[END_REF], see also [START_REF] Hafsa | Relaxation et passage 3D-2D avec contraintes de type déterminant[END_REF]) that we can approximate strongly in W 1,p (Σ; R 3 ) a locally injective continuous piecewise affine function ψ ∈ Aff li (Σ; R 3 ) by a sequence of C 1 -immersions {ψ n } n≥1 ⊂ C 1 * (Σ; R 3 ) satisfying |∂ 1 ψ n (x) ∧ ∂ 2 ψ n (x)| ≥ δ for all x ∈ Σ, all n ≥ 1 and for some δ > 0. The second inequality is obtained by exploiting the Kohn-Strang representation of the rank-one convex envelope Rf 0 of f 0 (see [START_REF] Belgacem | Modélisation de structures minces en élasticité non linéaire[END_REF], see also [START_REF] Hafsa | Relaxation and 3d-2d passage theorems in hyperelasticity[END_REF][START_REF] Hafsa | Relaxation et passage 3D-2D avec contraintes de type déterminant[END_REF]). Finally, using Remarks 3.9 and Proposition 3.8 we see that Rf 0 has p-growth and so is continuous, we then establish the last inequality by using the strong density of Aff li (Σ; R 3 ) in W 1,p (Σ; R 3 ) which is a consequence of [G È71] (see also [START_REF] Hafsa | Relaxation et passage 3D-2D avec contraintes de type déterminant[END_REF]). We can summarize the previous arguments by indicating for each inequality as subscript the (main) result we have been used to prove it:

I diff * ≤ [Ben96] I Aff li ≤ [KS86] RI Aff li ≤ [G È71] RI.
Perspective 12. It would be interesting to search a different strategy for the proof of I diff * ≤ I rather than using the sequence of inequalities (3.15). Letting τ → 1 we have τ t → 1 and then using the ru-usc property, we obtain lim Finally, the last inequalities hold since (4) and the definitions of f and of the lower semicontinuous envelope of f . Proof of Theorem 2.6. Let x ∈ X and u ∈ F x . Since f is ru-usc, we have f (x, u) ≤ f (x, u), see Remarks 2.2 (4). For each t ∈ [0, 1[, tu ∈ F x and tu → u as t → 1, then by lower semicontinuity f (x, u) = lim t→1 -f (x, tu) ≥ f (x, u). By Theorem 2.3 and Remark 2.4 f is ru-usc. We know that f ≤ f since Remark 2.4. Let u ∈ V be such that f (x, u) < ∞. There exists a sequence u n → u such that lim n→∞ f (u n ) = f (u), it follows that u n ∈ F x for all n ∈ N and u ∈ F x . Since tu n ∈ F x and tu ∈ F x for all t ∈ [0, 1[, we have by the lower semicontinuity of f (x, •) on F x and the ru-usc property f (x, u) ≥ f (x, u) + (a + f (x, u)) lim where we set for every t ∈ R + Φ 1 (t) := Φ(t) and Φ i (t) := Φ(Φ i-1 (t)) for all i ≥ 2.

Indeed, when i = d we have . We are going to show that L(x, w) ≤ Φ i+1 (L * (x)). There exists u = (u 1 , . . . , u k , . . . , u d ) ∈ S r such that w = i+1 k=1 v k e k + N k=i+2 u k e k , which can be rewritten
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 11 Figure 1.1. Illustration of an example of a metric measure space X.

(

  AL X ) for every open set O ∈ O(X) and for every sequence {m n } n∈N of nonnegative Borel regular measures on O satisfying sup n∈N m n (O) < ∞ there exist a subsequence (not relabelled) {m n } n∈N and m a locally finite Borel regular measure on O such that lim n→∞ m n (V ) ≥ m(V ) for all open set V ⊂ O. lim n→∞ m n (B) ≤ m(B) for all closed ball B ⊂ O.

  the restriction of a positive Radon measure, it is the reason that the Vitali envelopes (1.19) and (1.20) of G(u, •) have been introduced. In the following, we present the integral representation of the Vitali envelope of a set function defined on open subsets of Ω, it is partly inspired by [BB00; BFM98; DM86]. For each open set O ⊂ Ω, we denote by Bal(O) ⊂ O(O) the class of all open balls B of O. Let G : Bal(Ω) -→ R be a set function. We define the lower Vitali envelope of G with respect to µ

  Remarks 2.2. (1) Let u 0 ∈ V . One has D strongly star-shaped relative to u 0 ∈ D if and only if D -{u 0 } is strongly star-shaped relative to 0 ∈ D, and f is ru-usc in D relative to u 0 ∈ D if and only if

2. 1 .

 1 Relaxation theorems. This subsection is devoted to the description of our work on the relaxation of integral functionals of the calculus of variations in Sobolev spaces with bounded constraints on the gradient. Let Ω ⊂ R N be a bounded open set with Lipschitz boundary. Let f : M -→ [0, ∞] be a Borel measurable function. The effective domain of f is the set domf := {ξ ∈ M : f (ξ) < ∞}. We consider a bounded convex subset C ⊂ M such that 0 ∈ intC and domf ⊂ C, where intC is the interior of C. Let I : L 1 (Ω; R m ) -→ [0, ∞] be the integral functional defined by

Figure 2 . 3 .

 23 Figure 2.3. Schematic representation of the successive steps of the proof of the Γ-limit sup of Theorem 2.11.

Figure 2 . 4 .

 24 Figure 2.4. Schematic representation of the successive steps of the proof of the Γ-limit sup of Theorem 2.14.
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 10 Assume that m = N . Let F ∈ M and α > 0. Then |detF | < α =⇒ (∃ϕ ∈ W 1,∞ 0 (Y ; R N ) |det(F + ∇ϕ(y))| = α a.e. in Y ).

Theorem 3 .

 3 11 ([AM12c]). Assume that m = N . If (3.4) holds then f is p-ample (i.e. Z ∞ f has p-growth). Indeed, from (3.4) there exist α, β > 0 such that Z ∞ f (F ) ≤ f (F ) ≤ β(1 + |F | p ) for all F ∈ M with |detF | ≥ α.Now, consider F ∈ M with |detF | < α, then by using Lemma 3.10 there exists ϕ ∈ W 1,∞ 0 (Y ; R N ) satisfying |det(F + ∇ϕ(y))| = α a.e. in Y . By definition of Z ∞ f and the growth in (3.4) we have

Theorem 3. 14 .

 14 If f is continuous and has p-growth then ∀u ∈ W 1,p (Ω; R m ) I(u) = ˆΩ Qf (∇u(x))dx. (3.6) We have extended the Dacorogna relaxation theorem to the case of p-ample integrands. Theorem 3.15 ([AM07; AM08a]). If f is p-ample then (3.6) holds. If Zf has p-growth then (3.6) holds and moreover I(u) = I Aff (u) where

  Theorem 3.24 ([START_REF] Hafsa | The nonlinear membrane energy: variational derivation under the constraint "det∇u > 0[END_REF] (see also [AM12c; AM09])). Assume that (D 1 ) f is continuous;

Theorem 3 .

 3 25 ([START_REF] Hafsa | Relaxation of variational problems in two-dimensional nonlinear elasticity[END_REF] (see also [AM08a; AM09; AM12c])). If f 0 satisfies (3.3) then Zf 0 has p-growth.Since (3.13) implies (3.3), Zf 0 has p-growth. Let I, I : W 1,p (Σ; R 3 ) -→ [0, ∞] be defined by:I(ψ) := ˆΣ f 0 (∇ψ(x))dx and I(ψ) := inf lim n→∞ I(ψ n ) : ψ n →ψ in L p (Σ; R 3 )As Zf 0 has p-growth, by Theorem 3.15 we have for every ψ ∈ W 1,p (Σ; R 3 )I(ψ) = ˆΣ Qf 0 (∇ψ(x))dx.By using an interchange of infimum and integral result that we developed in[START_REF] Hafsa | Interchange of infimum and integral[END_REF], we can show the following representation of I:∀ψ ∈ C 1 * (Σ; R 3 ) I(ψ) = inf j≥1 inf ζ∈C(Σ;R 3 ), det(∇ψ(•)|ζ(•))≥ 1 j ˆΣ W (∇ψ(x)|ζ(x))dx . (3.14)With the help of (3.14) we can show the following inequalities:Γ(π)-lim ε→0 I ε ≤ I diff * and I ≤ Γ(π)-lim ε→0 I εwhereI diff * : W 1,p (Σ; R 3 ) -→ [0, ∞] is defined by I diff * (ψ) := inf lim n→∞ I(ψ n ) : C 1 * (Σ; R 3 ) ψ n →ψ in L p (Σ; R 3 ) with C 1 * (Σ; R 3 ) is the set of C 1 -immersions from Σ to R 3 , i.e. C 1 * (Σ; R 3 ) := ψ ∈ C 1 (Σ; R 3 ) : ∀x ∈ Σ ∂ 1 ψ(x) ∧ ∂ 2 ψ(x) = 0 .To prove Theorem 3.24 it is sufficient to show that I diff * ≤ I.Let I Aff li , RI, RI Aff li : W 1,p (Σ; R 3 ) -→ [0, ∞]be respectively defined by:• I Aff li (ψ) := inf lim n→∞ I(ψ n ) : Aff li (Σ; R 3 ) ψ n →ψ in L p (Σ; R 3 ) ; • RI(ψ) := inf lim n→∞ ˆΣ Rf 0 (∇ψ n (x))dx : ψ n →ψ in L p (Σ; R 3 ) ; • RI Aff li (ψ) := inf lim n→∞ ˆΣ Rf 0 (∇ψ n (x))dx : Aff li (Σ; R 3 ) ψ n →ψ in L p (Σ; R 3 )with Aff li (Σ; R 3 ) := ψ ∈ Aff(Σ; R 3 ) : ψ is locally injective . Ben Belgacem in his thesis[START_REF] Belgacem | Modélisation de structures minces en élasticité non linéaire[END_REF] implemented the following strategy: as RI ≤ I, a way for proving I diff * ≤ I is to establish the following three inequalities:I diff * ≤ I Aff li ≤ RI Aff li ≤ RI.(3.15)

Ef

  n→∞ |f n -f | L p µ (X)and ∀n ∈ N f n is an upper gradient for g n . We give the definition of Γ-convergence ([DF75]) on a metric space, see [Dal93; BD98] for more details.Definition A.3. Let (M, δ) be a metric space. Let {E ε } ε>0 , E ε : M -→ [0, ∞] be a family of functions. We say that {E ε } ε>0 Γ(δ)-converge if Γ(δ)-lim ε→0 E ε (u) = Γ(δ)-lim ε→0 E ε (u), where Γ(δ)-lim ε→0 E ε (u) := inf lim ε→0 E ε (u ε ) : u ε δ ε (u ε ) := inf lim n→∞ E εn (u εn ) : {ε n } n∈N ⊂]0, ∞[, ε n → 0 lim ε→0 E ε (u ε ) := sup lim n→∞ E εn (u εn ) : {ε n } n∈N ⊂]0, ∞[, ε n → 0 for all u ∈ M . In this case {E ε } ε>0 Γ(δ)-converge towards E 0 : X -→ [0, ∞] with E 0 := Γ(δ)-lim ε→0 E ε = Γ(δ)-lim ε→0 E ε . B. Some proofs Proof of Theorem 2.3. Fix u ∈ D. We can assume that lim t→1 -f (tu) < ∞. Let τ ∈]0, 1[. There exists t ∈]τ, 1[ such that lim t→1 f (tu) ≥ inf t∈]τ,1[ f (tu) > τ -1 + f (tu).Now, since τ t < 1 we can write f (τ u) ≤ ∆ a D,f τ t (a + f (tu)) + f (tu) ≤ ∆ a (tu) + 1 -τ ) + lim t→1 f (tu) + 1 -τ.

f

  (τ u) ≤ lim t→1 f (tu). Assume in addition that f (u) < ∞. It is direct to see that for every s ∈]0, 1[ f (su) ≤ lim t→1 ∆ a D,f (s)(a + f (tu)) + f (tu) = ∆ a D,f (s) a + f (u) + f (u), which yields ∆ a D∩dom f , f (s) ≤ ∆ a D,f(s) and we finish by letting s → 1.

  , tu n ) ≥ lim t→1 f (x, tu) = f (x, u). Proof of Lemma 2.18. Let S r := v = (v 1 , . . . , v d ) ∈ R d : ∀k ∈ {0, . . . , d} v k ∈ {-r, 0, r} . Since (U 1 ) we have L * (x) := sup v∈Sr L(x, v) < ∞ for all x ∈ M (Note that L * is (M, B([0, ∞])-measurable as a supremum of a finite family of (M, B([0, ∞])-measurable functions.). The set {(x, v) ∈ M × R d : L(x, v) = L * (x)} ∩ (M × S r ) belongs to M ⊗ B(R d ), so there exists a (M, B(R d ))-measurable function u : M -→ S r such that L * (x) = L(x, u(x)) (see [CV77, p. 86]). For each v ∈ S r set M v := {x ∈ M : u(x) = v} ∈ M. The family {M v } v∈Sr is a measurable partition of M , i.e. it is pairwise disjoint and satisfies ∪ v∈Sr M v = M . So, by using (U 1 ) we have ˆM L * (x)dν(x) = ˆM L(x, u(x))dν(x) = v∈Sr ˆMv L(x, u(x))dν(x) = v∈Sr ˆMv L(x, v)dν(x) ≤ v∈Sr ˆM L(x, v)dν(x) < ∞. (B.1) We define d equivalence relations on R d . Let (v, w) ∈ R d × R d . For each i ∈ {1, . . . , d -1}, we say that v ∼ i w if there exists u = (u 1 , . . . , u k , . . . , u d ) ∈ S r such that v -w = d k=i+1 u k e k where {e k } d k=1 is the standard basis of R d . When i = d, we say that v ∼ d w if v = w. We denote by [v] i the equivalence class of v for the relation ∼ i for all i ∈ {0, . . . , d}. Let v ∈ R d satisfy |v| ∞ ≤ r. We claim that is enough to show that for every x ∈ M ∀i ∈ {1, . . . , d} ∀w ∈ i k=1 v k e k i L(x, w) ≤ Φ i (L * (x)). (B.2)

d k=1 v k e k d =

 d {v}, so by using (B.2) we get for every x ∈ M L(x, v) ≤ Φ d (L * (x)) , and then taking the supremum over all v ∈ R d satisfying |v| ∞ ≤ r and integrating over M , we obtain ˆM sup|v|∞≤r L(x, v)dν(x) ≤ ˆM Φ d (L * (x)) dν(x).Now, we can use the Jensen inequality since Φ d is still concave and the finitness of the last term is a consequence of (B.1)ˆM Φ d (L * (x)) dν(x) ≤ ν(M )Φ d -ˆM L * (x)dν(x) < ∞.Fix x ∈ M . Let us prove (B.2) by induction. Let w ∈ [v 1 e 1 ] 1 . There exists u = (u 1 , . . . , u k , . . . , u d ) ∈ S r such that w = v 1 e 1 + d k=1 u k e k , which can be rewritten asw = |v 1 | r sign(v 1 )re 1 + d k=2 u k e k + 1 -|v 1 | r 0 + d k=2 u k e k .By (U 2 ) and using the fact that Φ is nondecreasing, we haveL(x, w) ≤ Φ max L x, sign(v 1 )re 1 + d k=2 u k e k , L x, d k=2 u k e k ≤ Φ(L * (x)).So, we proved that L(x, w) ≤ Φ(L * (x)) for all w ∈ [v 1 e 1 ] 1 . Let i ∈ {1, . . . , d}. Assume that ∀j ∈ {1, . . . , i} ∀w ∈ j k=1 v k e k j L(x, w) ≤ Φ j (L * (x)). (B.3) Let w ∈ i+1 k=1 v k e k i+1

for every open set O ∈ O(X) and for every sequence {m n } n∈N of nonnegative Borel regular measures on O satisfying sup n∈N m n (O) < ∞ and m n µ for all n ∈ N there exist a subsequence (not relabelled) {m n } n∈N and m a locally finite Borel regular measure on O such that lim n→∞

  

  (or p > N in the Euclidean case), and sometimes, under p-growths, we have to use the thin layers technique of De Giorgi [De 75].4.3.A way to prove Γ-convergence results. If we compare the inequalities (1.22) and (1.25) we see that, to get a Γ-convergence result, it is sufficient to show for µ-a.e. x ∈ O

	lim ρ→0	lim ε→0

.25)

In fact, we try to replace u ε by a new function which coincides with u x on the boundary of the ball B ρ (x), this part is technical and involves L p µ -differentiability arguments and compactness imbeddings when for instance p > κ

By L 1 µ,loc * (X) we denote the vector space of all measurable functions u : X → R such that ´B |u|dµ < ∞ for all open ball B ⊂ X satisfying µ(B) < ∞.

If C ⊂ M is convex with 0 ∈ intC then tC ⊂ intC for all t ∈ [0, 1[.

SO(2) is the special orthogonal group of 2 × 2 matrices.
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Appendix

A. Some definitions B. Some proofs

Let E : H 1,p µ (X; R m ) × O(X) → [0, ∞] be the integral functional defined by

where f : X × M → [0, ∞] is a Borel measurable function. We assume that f has G-growth, i.e.

(H 1 ) there exist α, β > 0 such that for every (x, ξ)

where G : X × M → [0, ∞] is a Borel measurable function satisfying the following conditions:

(H 2 ) G is p-coercive, i.e. there exists c > 0 such that G(x, ξ) ≥ c|ξ| p for all (x, ξ) ∈ X × M;

(H 3 ) there exists r > 0 such that sup |ξ|≤r G(•, ξ) ∈ L 1 µ (X); (H 4 ) there exists C > 0 such that for every x ∈ X, every t ∈]0, 1[ and every ξ, ζ ∈ M,

be the functionals defined by:

We consider the following additional assertions:

In addition, we need to suppose that L is radially uniformly upper semicontinuous, i.e.

(H 7 ) there exists a ∈ L 1 µ (X; ]0, ∞]) such that lim t→1 -∆ a f (t) ≤ 0 Remarks 2.16. If(H 4 ) holds then domG(x, •) is convex. The condition(H 4 ) prevents the possible 'strong bumps' of G. If (H 1 ) and (H 4 ) hold then domf (x, •) = domG(x, •) and so domf (x, •) is convex. If (H 1 ) is satisfied then domE(•, X) = domG, and so domE(•, X) = domG when (H 5 ) holds.

Remarks 2.17. If (H 4 ) holds and if 0

We can generalize this local upper bound property as follows.

Lemma 2.18. Let (M, M, ν) be a finite complete measure space and d ∈ N * . Let L :

The following result is a relaxation theorem with G-growth. Such problem with x-dependent G was studied in the Euclidean case in [START_REF] Hafsa | On the relaxation of unbounded multiple integrals[END_REF], and the techniques of the proof broadly follow the methods exposed in Section 4.

Theorem 2.19 ([AM18, Theorem 3.3]). If p > κ and(H 1 )-(H 7 ) hold then

where

The function g is convex and finite with g ≤ f . It follows that Z ∞ f is finite, so it is convex (and continuous) since Remark 3.5. The greatest convex function which is lower than f is denoted by f c with f c ≤ Z ∞ f since Jensen inequality. We have then

p+1 ) > 0. Motivated by this fact, we introduced a novel class of integrands which are called amples (a word borrowed from the terminology used by Gromov [START_REF] Gromov | Partial differential relations[END_REF]). This class of functions can take the infinite value but not on too large subsets of matrices, so that the Z ∞ envelope is finite everywhere or more strongly admitting p-growths (therefore, a better and more suggestive terminology should be 'Z ∞ -finite integrands' or 'Z ∞ -p-growths integrands' instead of ample integrands). Definition 3.1. We say that f :

When f is continuous and finite then Qf = Zf = Z ∞ f (see [START_REF] Dacorogna | Quasiconvexity and relaxation of nonconvex problems in the calculus of variations[END_REF]), we have extended this fact to integrands which are not necessarily finite.

Theorem 3.2 ([AM07] (see also [START_REF] Hafsa | Relaxation theorems in nonlinear elasticity[END_REF])). If f is weakly ample then Qf = Z ∞ f . If Zf is finite then f is weakly ample and Qf = Z ∞ f = Zf .

Assume for instance that Zf is finite. Using Proposition 3.3 below, the function Zf is continuous, so

The proof of Theorem 3.2 is based on the following result of Fonseca [START_REF] Fonseca | The lower quasiconvex envelope of the stored energy function for an elastic crystal[END_REF].

The following Lemma 3.4 (1) can be used to prove Proposition 3.3 (see [START_REF] Fonseca | The lower quasiconvex envelope of the stored energy function for an elastic crystal[END_REF] or [Mül99b, Lemma 4.3]).

Lemma 3.4. Let f : M -→ [0, ∞] be a Borel measurable function.

(1) Let V ⊂ M be a nonempty open set. We assume that f is finite in V . Then for every (i) A function g ∈ L p µ (X) is said to be a generalized upper gradient (or a p-weak upper gradient) for f ∈