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Résumé

Dans cette thèse, nous étudions le problème de la reconstruction automatique en 3D

des mouvements d’une personne agissant dans une scène complexe avec un objet,

à partir d’une seule vidéo RVB. Nous développons une méthode complète pour

établir une correspondance entre les images vidéo 2D et une interprétation 3D de

la scène, qui est représentée par les poses 3D de la personne et de l’objet manipulé,

les positions des contacts avec l’objet et avec l’environnement, et les forces de

contact exercées à ces interfaces. Ce problème est difficile pour de multiples raisons,

en particulier, des occlusions, des ambiguïtés de profondeur et des propriétés

d’apparence des objets longiligne sans texture tels que la bêche ou le marteau.

Les principales contributions de cette thèse sont les suivantes. Dans un premier

temps, nous introduisons une approche pour estimer conjointement le mouvement

et les forces impliqués dans la vidéo en formulant un problème d’optimisation avec

contrainte de trajectoire minimisant une fonction de perte, composite, intégrée

dans le temps. Les variables de décision de ce problème sont les trajectoires de

la personne et de l’outil qu’il manipule, ainsi que les forces d’interaction entre la

personne, l’outil et l’environnement. Les variables permettent une modélisation

physique de la scène, du mouvement des corps sans l’action des faces aux points de

contact. Les fonctions de perte portent sur les articulations de la personne et les

points clé de l’objet en cherchant à minimiser la vraisemblance des observations

dans l’image. Le problème est soumis à plusieurs contraintes exprimant les lois de
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la mécanique, qui incluent les modèles de contact et de frottement et l’équation

dynamique lagrangienne. Deuxièmement, nous développons une méthode pour

reconnaître automatiquement à partir de la vidéo d’entrée la position 2D et les

instants de contact entre la personne et l’objet ou le sol. Pour ce faire, nous

proposons de reconnaître automatiquement les contacts dans la vidéo d’entrée

à l’aide d’un réseau neuronal convolutif (en anglais CNN) entraîné à partir de

données de contact annotées manuellement qui combinent à la fois des images

fixes et des vidéos récoltées sur Internet. Ainsi, au lieu de modéliser les états de

contact en tant que variables binaires lors de l’optimisation, nous conservons un

problème d’optimisation de trajectoire sans variable mixte binaire, d’une complexité

algorithmique acceptable, tant en permettant à la reconstruction de s’adapter à des

changements de contact complexes sans connaissance préalable. Troisièmement,

nous validons expérimentalement notre approche sur un jeu de données vidéo-

MoCap récent capturant des actions typiques de parkour et équipé de forces et

de trajectoires de vérité au sol. Nous démontrons également les avantages de

notre approche sur un nouvel ensemble de données de vidéos Internet montrant des

personnes manipulant une variété d’outils dans des environnements sans contraintes.

Les expériences montrent que notre méthode améliore les résultats à la fois sur

l’estimation de la pose humaine 3D et la localisation de l’objet 2D, et réalise des

estimations de force raisonnables sur ces données.



Abstract

In this thesis, we investigate the problem of automatically reconstructing the 3D

dynamic scene depicting a person interacting with a tool in a single RGB video.

The objective is to obtain a 3D interpretation of the scene represented by the 3D

poses of the person and the manipulated object over time, the contact positions

and the contact forces exerted on the human body. This problem is challenging

because of occlusions, depth ambiguities and the thin, texture-less nature of the

manipulated tools such as the spade or the hammer. The main contributions of this

thesis are as follows. First, we introduce an approach to jointly estimate the motion

and the actuation forces of the person on the manipulated object by modeling

the contacts and the dynamics of the interactions. This is cast as a large-scale

trajectory optimization problem by minimizing a set of loss functions integrated

over time and summed over person joints and object keypoints. The problem is

subject to several constraints based on the laws of physics, which include contact

and friction models and the Lagrangian dynamics equation. Second, we develop

a method to automatically recognize from the input video the 2D position and

timing of contacts between the person and the object or the ground. Instead of

modeling contact states as binary variables during optimization, we automatically

recognize contacts in the input video using a convolutional neural network (CNN)

trained from manually annotated contact data that combine both still images and

videos harvested from the Internet, thereby significantly reducing the complexity
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of the optimization. Third, we validate our approach on a recent video-MoCap

dataset capturing typical parkour actions and equipped with ground truth forces

and trajectories. We also demonstrate the benefits of our approach on a new dataset

of Internet videos showing people manipulating a variety of tools in unconstrained

environments. The experiments show that our method improves results on both

3D human pose estimation and 2D object localization, and achieves reasonable

force estimates on this data.
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Chapter 1

Introduction

People can easily learn how to complete a manipulation task by observing other

people performing the task or by watching an instructional video on the Internet.

For example, for renovating an overgrown yard, one can find videos online with

demonstrations of how to cut grass with a scythe, how to dig in hard soil with a

shovel or spade, or how to break out old concrete paths with a sledgehammer in an

efficient way. By watching such videos, people can imitate and perform the tool

manipulation techniques in a different context, i.e. in a different environment using

tools of different sizes and models. This process of watching and imitating involves

highly advanced visual intelligence capabilities. These include the recognition

and the interpretation of the 3D motion and dynamics of human demonstrators

from instructional videos and the manipulated objects (scythe, shovel, spade and

sledgehammer in these examples), as well as the interactions that are required to

achieve these tasks.

An interesting question naturally arises: Is it possible to design a computer

algorithm that can automate such visual understanding capabilities? In this thesis,

we attempt to seek an answer to this question.

3



4 CHAPTER 1. INTRODUCTION

Figure 1-1: Goal of this thesis. We seek to develop a framework for automatic
estimation of person and object 3D motion and forces, together with their interac-
tions from a single RGB video. Top: An input sequence of video frames capturing
the task of breaking old concrete path with a sledgehammer. Bottom: Output
3D motion of the person and the hammer (represented by joints and links) and the
recovered contact forces (shown as yellow arrows).

1.1 Goal

The scientific goal of this thesis is to develop a framework for understanding

instructional videos which involve tool manipulation. Given a single unconstrained

video as input, we would like to extract information about the person-object

dynamics and their interaction that are sufficient to describe the tool manipulation

skill demonstrated in the video.

Modelling and understanding person-object interactions has been an active

research topic in computer vision and robotics. But existing work cannot be directly

applied to achieve our goal. For example, in computer vision community, most

action recognition approaches usually model person-object interactions and contacts

in the 2D image space but not the 3D real world space. The work from robotics

and computer animation community usually considers person-object interaction in

a simulated 3D space, and model the problem as an optimal control problem, which
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(a) HoloLens 2, a pair of mixed reality smart
glasses developed by Microsoft.

(b) Step-by-step holographic instructions for
generator assembly with Hololens 21.

Figure 1-2: Motivating application I: Automatic guidance via smart
glasses. The guiding instructions for manipulation actions could be learnt from
instructional video data on the Internet.

is usually transcribed into a high-dimensional numerical optimization problem,

seeking to minimize an objective function under contact and feasibility constraints.

The contact information in such formulations is either assumed to be constant or

considered as an optimization variable, which is often discrete and known to be

extremely hard to optimize.

To overcome these limitations, we propose in this thesis to put the scientific tools

in computer vision and robotics into a single, unified framework. More precisely,

given an input RGB video, we would like to estimate the person and object 3D

motion and the actuation forces directly from RGB without manually annotating

the contact phases. An illustration of this goal is shown in Figure 1-1.

1.2 Motivation

Understanding complex person-object interactions from video is a key step toward

the goal of building autonomous machines which can learn how to interact with
1Put mixed reality to work with Dynamics 365(https://dynamics.microsoft.com/en-us/

mixed-reality/guides/)

https://dynamics.microsoft.com/en-us/mixed-reality/guides/
https://dynamics.microsoft.com/en-us/mixed-reality/guides/


6 CHAPTER 1. INTRODUCTION

Figure 1-3: Motivating application II: Smart assistive robots. Imagine a
smart robot that is able to search for instructional video data online and to learn
by itself how to accomplish a variety of object manipulation tasks. The humanoid
robot Talos, shown in the image on the left, is 1.75 meters tall, weighs 95 kg and
is able to stand on its own two legs. The image on the right shows Talos holding
tools in its hands. An example of initial work in this direction demonstrating how
to transfer tool manipulation skills from an instructional video to a robot is shown
in Figure 1-4.

the physical world by simply observing people. These types of machines would

make great changes in both industrial production and everyday life.

One application with a wide potential impact is automatic guidance. Imagine

a virtual assistant in the form of smart glasses, for example, as the one shown

in Figure 1-2. Such smart glasses have a wide range of applications such as (i)

guiding children through simple games to improve their manipulation and language

skills, (ii) helping elderly people to achieve everyday tasks, or (iii) facilitating the

training of new workers in industry for highly-specialized machinery maintenance,

as illustrated in Figure 1-2b.

In addition, such visual intelligence capabilities will be essential for constructing

smart assistant robots that automatically learn new skills by just observing people.

The concept is illustrated by two examples in Figure 1-3 and Figure 1-4. One
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8 CHAPTER 1. INTRODUCTION

possible solution to achieve this goal is to extract 3D information from Internet

instructional videos, from which one can learn a policy which achieves a specific

task and can be transferred to a robot.

In this thesis, we make a step towards these exciting applications. Our goal

is to develop new models and algorithms that capture dynamic person-object

interactions from instructional videos on the Internet.

Figure 1-5: Challenge I: Depth ambiguities. The image on top shows an input
image with close-up at the person’s hands. The hands could be open or closed as
shown on the bottom row. Modelling contacts with the tool can help disambiguate
the two solutions.
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Figure 1-6: Challenge II: Modelling and recognizing contacts. Top row
shows a sequence of frames capturing the process of a person grasping a barbell
bar. Bottom row shows close-up at the person’s left hand, with different color
indicating different contact states (green: in contact, red: not in contact).

1.3 Challenges

The potential applications are exciting. However, there is also a range of difficult

challenges and scientific problems that need to be addressed:

1. Dealing with depth ambiguities. As shown in Figure 1-5, there are

inherent ambiguities in the 2D-to-3D mapping from a single view: multiple

3D human poses correspond to the same 2D input.

2. Recognizing and modelling contacts. As shown in Figure 1-6, human-

object interactions often involve contacts, resulting in discontinuities in the

motion of the object and the human body part in contact. For example, one

must place a hand on the hammer handle before picking the hammer up.

The contact motion strongly depends on the physical quantities such as the
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Figure 1-7: Challenge III: Hard to recognize tools due to their thin,
texture-less nature and occlusions. Two examples showing the cases where
the tools are hard to recognize due to occlusion of person and background.

mass of the object and the contact forces exerted by the hand, which renders

modelling of contacts a very difficult task.

3. Tool recognition. As shown in Figure 1-7, the tools we consider in this

work, such as hammer, scythe, or spade, are particularly difficult to recognize

due to their thin structure, lack of texture, and frequent occlusions by hands

and other parts of human body.

1.4 Contributions

The contributions of this thesis are summarized as follows:

1. Estimating human-object 3D motion and contact forces from a

single video. The first and key contribution of this thesis is an approach,

which can jointly estimate the 3D motion of a person-object interaction

together with the actuation forces exerted by the person on the manipulated

object. This is achieved by modelling contacts and the dynamics of the

interactions. It is cast as a large-scale trajectory optimization problem under

the constraints of contact force models and the dynamics.
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2. Recognizing contacts from image pixels. We have developed a method

to automatically recognize from the input video the 2D position and timing of

contacts between the person and the object or the ground, thereby significantly

simplifying the complexity of the optimization.

3. Estimating object 2D endpoints from image. We have developed a

method to estimate the 2D location of the endpoints of several classes of stick-

like objects. The method is built on top of object instance segmentation and

is trained from large amounts synthetically generated training data requiring

only minimal manual annotations.

4. Collecting and annotating new datasets for evaluating human 3D

motion and forces. Moreover, we have collected and annotated a new

dataset of Internet videos showing people manipulating a variety of tools in

unconstrained environments. In addition, we adopted a recent video-MoCap

dataset capturing typical parkour actions, post-processed the original data to

obtain the ground truth human 3D motion and contact forces to validate our

method.

1.5 Outline of the thesis

The remainder of this thesis is structured as follows:

In Chapter 2, we provide a review of the relevant methods for solving problems

related to our goal. The problems include estimating human 3D pose and object

6D pose from image pixels from a single viewpoint, optimizing 3D trajectories of a

human subject and the manipulated object under physics constraints, manipulating

objects with a robot or character animation.

Chapter 3 addresses the problem of extracting 2D measurements from video.

This problem breaks down into sub-problems of 2D human pose estimation, contact
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recognition (contribution 2) and object 2D endpoint estimation (contribution 3).

In Chapter 4, we solve the problem of estimating human and object 3D motion

from the 2D measurements by formulating a trajectory optimization problem under

physical constraints (contribution 1). We provide details on how we formulate the

optimization problem, discretize it into a numerical problem and solve it.

Chapter 5 presents quantitative and qualitative evaluation of the reconstructed

3D person-object interactions. We first introduce the Handtool dataset and the

post-processed LAAS Parkour dataset for evaluating the quality of 3D motion and

force estimation (contribution 4). Then we provide a comprehensive study on the

proposed method using these two datasets.

Finally, Chapter 6 concludes this thesis by presenting the main obtained results

and possible future research directions.

1.6 Publications, software and data

Two research papers have been published during the preparation of this thesis:

• The main parts of Chapter 3 and Chapter 4 were accepted for an oral

presentation at the International Conference on Computer Vision and Pattern

Recognition 2019 (CVPR’19) [Li et al., 2019]. This paper was also selected

among the best paper finalists at the conference.

• An extended version of the CVPR paper has been published at the the

International Journal of Computer Vision (IJCV) [Li et al., 2022].

• The new datasets used for evaluating 3D motion and forces are available

online at https://github.com/zongmianli/Handtool-dataset (the Hand-

tool dataset) and https://github.com/zongmianli/Parkour-dataset (the

LAAS Parkour dataset).

https://github.com/zongmianli/Handtool-dataset
https://github.com/zongmianli/Parkour-dataset
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• All the software developed during this thesis is available online at https://

github.com/zongmianli/Estimating-3D-Motion-Forces under an open-

source licence.

https://github.com/zongmianli/Estimating-3D-Motion-Forces
https://github.com/zongmianli/Estimating-3D-Motion-Forces
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Chapter 2

Related work

In this chapter, we review recent work in both computer vision and robotics

literature that are related to the topic of this thesis. We begin by reviewing

methods for estimating human and object pose from single images in Section 2.1

and Section 2.2, respectively. Then we follow in Section 2.3 with a brief review

of recent work in learning from instructional videos. Finally, in Section 2.4 we

discuss methods for estimating 3D robot-object interactions in optimal control and

robotics, typically assuming rigid body models.

2.1 Human pose estimation

Single-view 3D pose estimation aims to recover the 3D joint configuration of

the person from the input image. Recent human 3D pose estimators either attempt

to build a direct mapping from image pixels to the 3D joints of the human body or

break down the task into two stages: estimating pixel coordinates of the joints in

the input image and then lifting the 2D skeleton to 3D.

The existing direct mapping approaches either rely on generative models to

search the state space for a plausible 3D skeleton that aligns with the image

15



16 CHAPTER 2. RELATED WORK

Figure 2-1: The architecture of Human Mesh Recovery [Kanazawa et al.,
2018]. An input image I is passed through a convolutional encoder. This is sent
to an iterative 3D regression module that infers the latent 3D representation of the
human that minimizes the joint reprojection error. The 3D parameters are also
sent to the discriminator D, whose goal is to tell if these parameters come from a
real human shape and pose. Figures are taken from Kanazawa et al. [2018].

evidence [Sidenbladh et al., 2000; Gammeter et al., 2008; Gall et al., 2010] or, more

recently, extract deep features from images and learn a regressor from the 2D image

to the 3D pose [Kanazawa et al., 2018; Moreno-Noguer, 2017; Pavlakos et al., 2017;

Tekin et al., 2016]. We illustrate the work of Kanazawa et al. [2018] in Figure 2-1

as a typical example of direct approach. In particular, Kanazawa et al. [2018] train

a single-image pose estimator using in-the-wild images that only have ground truth

2D annotations, together with an unpaired dataset of static 3D human shapes and

poses through adversarial training. The follow-up work [Kanazawa et al., 2019]

shows that the models can be further extended to learn 3D human dynamics from

2D in-the-wild video data collected from Instagram.

On the other hand, two-stage approaches have been shown to be very effective

for the task of single-view 3D pose estimation [Akhter and Black, 2015; Zhou et al.,

2016; Bogo et al., 2016; Chen and Ramanan, 2017], and have achieved competitive

results [Martinez et al., 2017; Xiang et al., 2019] on 3D human pose benchmarks
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such as Ionescu et al. [2014]. The output can have an impressive level of detail

including face deformations and position of individual fingers [Xiang et al., 2019].

The good performance of two-stage approaches is built on top of the recent progress

in 2D human pose estimation [Newell et al., 2016, 2017; Insafutdinov et al., 2016].

In particular, the work of Openpose [Cao et al., 2017] has drawn great attention.

The overall pipeline of Openpose is illustrated in Figure 2-2.

Figure 2-2: The overall pipeline of Openpose [Cao et al., 2017]. The method
(a) takes the entire image as the input for a CNN to jointly predict (b) confidence
maps for body part detection and (c) Part affinity fields (PAFs) for part association.
(d) The parsing step performs a set of bipartite matchings to associate body part
candidates, which are (e) finally assembled into full body poses for all people in
the image. Figures adopted from Cao et al. [2017].
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To deal with depth ambiguities, both the direct and the two-stage 3D pose

estimators often rely on good pose priors. The priors can be either hand-crafted or

learnt from large-scale motion capture data [Zhou et al., 2016; Bogo et al., 2016;

Kanazawa et al., 2018; Kocabas et al., 2020]. Others have looked at incorporat-

ing physical constraints. Examples include incorporating geometric constraints

representing the proximity to the ground plane or collisions between different peo-

ple [Zanfir et al., 2018], or, closer to our work, modelling the dynamics of the human

motion and the contacts with the ground [Rempe et al., 2020; Shimada et al., 2020,

2021]. However, unlike our work, these approaches do not consider explicit physical

models for 3D interactions between the person and the manipulated object.

Understanding human-object interactions involves both recognition of

actions and modelling of interactions. In action recognition, most existing ap-

proaches that model human-object interactions do not consider 3D, instead model

interactions and contacts in the 2D image space [Gupta et al., 2009; Delaitre

et al., 2011; Yao and Fei-Fei, 2012; Prest et al., 2013]. Recent works in scene

understanding [Jiang et al., 2013; Fouhey et al., 2014] consider interactions in 3D

but have focused on static scene elements rather than manipulated objects as we

do in this work. Tracking 3D poses of people interacting with the environment has

been demonstrated for bipedal walking [Brubaker et al., 2007, 2009] or in sports

scenarios [Wei and Chai, 2010]. However, these works do not consider interactions

with objects. Furthermore, Wei and Chai [2010] requires manual annotation of the

input video and does not model the manipulated object. Figure 2-3 illustrates the

motion reconstruction approach described in Wei and Chai [2010].
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Figure 2-3: VideoMocap is a video-based motion modelling technique that is
capable to reconstruct physically realistic human motion from monocular video
sequences. As shown in the image on the left, this method requires manual
annotation of a set of 2D person joints (marked by red dots) and contact points
(green dots) to be able to handle the interaction between the human subject and
the environment. In addition, this method does not model the manipulated object
(barbell in this example) and the ground. Images reproduced from Wei and Chai
[2010].

2.2 Object pose estimation

Object 3D pose estimation methods often require depth or RGB-D data as

input [Tejani et al., 2014; Doumanoglou et al., 2016; Hinterstoisser et al., 2016],

which is restrictive since depth information is not always available (e.g. for outdoor

scenes or specular objects), as is the case of our instructional videos. Recent

work has also attempted to recover object pose from RGB input only [Brachmann

et al., 2016; Rad and Lepetit, 2017; Xiang et al., 2017; Li et al., 2018; Oberweger

et al., 2018; Grabner et al., 2018; Rad et al., 2018]. However, we found that the

performance of these methods is limited for the stick-like objects we consider in this

work. Instead, we recover the 3D pose of the object via localizing and segmenting

the object in 2D, and then jointly recovering the 3D trajectory of both the human

limbs and the object. As a result, both the object and the human pose help each

other to improve their joint 3D trajectory by leveraging the contact constraints.
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2.3 Instructional videos

Our work is also related to recent efforts in learning from Internet instructional

videos [Malmaud et al., 2015; Alayrac et al., 2016] that aim to segment input

videos into clips containing consistent actions, or learn video-language representa-

tions [Miech et al., 2019, 2020].

In contrast, we focus on extracting a detailed representation of the object

manipulation in the form of a 3D person-object trajectory with contacts and

underlying interaction forces.

2.4 Optimal control and robotics

There is also related work on modelling person-object interactions in robotics [Tassa

et al., 2012] and computer animation [Boulic et al., 1990]. Similarly to people,

humanoid robots interact with the environment by creating and breaking con-

tacts [Herdt et al., 2010], for example, during walking. Typically, generating

artificial motion is formulated as an optimal control problem, transcribed into a

high-dimensional numerical optimization problem, seeking to minimize an objective

function under contact and feasibility constraints [Diehl et al., 2006; Schultz and

Mombaur, 2010]. A known difficulty is handling the non-smoothness of the resulting

optimization problem introduced by the creation and breaking of contacts [Wester-

velt et al., 2003]. Due to this difficulty, the sequence of contacts is often computed

separately and not treated as a decision variable in the optimizer [Kuffner et al.,

2005; Tonneau et al., 2018a]. Recent work has shown that it may be possible to

decide both the continuous movement and the contact sequence together, either by

implicitly formulating the contact constraints [Posa et al., 2014] or by using invari-

ances to smooth the resulting optimization problem [Mordatch et al., 2012; Winkler

et al., 2018]. As a quick example, we illustrate in Figure 2-4 the contact-invariant
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Figure 2-4: Contact-invariant optimization. This approach enables simultane-
ous optimization of contacts and behavior, by augmenting the search space with
scalar variables that indicate whether a potential contact should be active in a
given phase of the movement. Figure reproduced from Mordatch et al. [2012]

optimization approach proposed by Mordatch et al. [2012].

Learning-based approaches are also emerging in recent years. It is shown that

reinforcement learning is capable of learning robust control policies to imitate a

broad range of human motion. For example, in the pioneering work of Peng et al.

[2018], control policies are learnt directly from RGB video to imitate the action of

back-flipping demonstrated by human actors. Figure 2-5 illustrates the approach

of Peng et al. [2018] with an Atlas robot in simulation.

In this thesis, we take advantage of rigid-body models introduced in robotics and

formulate the problem of estimating 3D person-object interactions from monocular

video as an optimal control problem under contact constraints. We overcome

the difficulty of contact irregularity by first identifying the contact states from

the visual input, and then localizing the contact points in 3D via our trajectory

estimator. This allows us to treat multi-contact sequences (like walking) without

manually annotating the contact phases.
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Chapter 3

Extracting 2D measurements

from video

As described in Section 1.5 (Outline of the thesis), our approach has two main

stages: the recognition stage and the estimation stage. In this chapter, we describe

in detail the first, recognition stage of our approach, in which three types of 2D

measurements are extracted from the input video.

In particular, we estimate: (i) the 2D positions of a set of predefined human

joints in Section 3.1, (ii) the 2D endpoints positions of a stick-like object in

Section 3.2, and (iii) the contact states of the human joints that can potentially

touch the object in Section 3.3. Finally, in Section 3.4, we summarize the limitations

and the typical failure modes of the proposed approach and discuss possible ways

of addressing them.

3.1 Estimating 2D human joints

For estimating 2D human joints from video, we use the recent human 2D pose

estimator Openpose [Cao et al., 2017] which achieved excellent performance on

23
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the MPII Multi-Person benchmark [Andriluka et al., 2014]. Taking a pre-trained

Openpose model, we do a forward pass on the input video in a frame-by-frame

manner. As such we obtain an estimate of the 2D trajectory of human joints

observed in the image. Example qualitative results are shown in the column on the

right in Figure 3-1.

In particular, we have adapted the original implementation of Openpose (without

hands and facial landmarks) to the scenario of object manipulation in instructional

videos. The following post-processing steps are appended to the testing module

of Openpose: We assume that there is at most one person in the input image or

video frame. When multiple human instances are present, only the one detected

with the highest confidence score are preserved, while the others are ignored. Due

to the heavy occlusion during person-object interaction, the predicted PAFs (part

affinity fields as explained eariler in Chapter 2) may not be correct. As a result,

some joints (often hands, ankles) may be missing or mis-detected, e.g. associated

to another person in the background. To address this problem and deal with such

occlusions we have modified the bottom-up parsing step compared to the original

implementation.
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Figure 3-1: Estimating 2D human joints from single image. Example
qualitative results. Left: Input video frames. Right: Frames with estimated
Openpose 2D joints.
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3.2 Estimating 2D object keypoints from video

The objective is to estimate the 2D position of the manipulated object in each

video frame. To achieve this, we build on instance segmentation, computed by

Mask R-CNN [He et al., 2017]. We train Mask R-CNN separately for each object

class (i.e., barbell, hammer, scythe and spade) and apply it to the corresponding

videos. Using the inferred segmentation masks and bounding boxes, we estimate

the 2D location of the object endpoints (i.e. its two extremities) in each frame. The

resulting 2D endpoint coordinates are used as input to the trajectory optimizer

described in detail in Chapter 4. Details are given next.

In order to generate training data for the instance segmentation, we used two

different approaches. In the case of barbell, hammer and scythe, we created a 3D

model for each object class (i.e. one model for all barbell instances, for example),

roughly approximating the shape of the corresponding object instances in the

videos, and computed the mask of the model shape in 2D from multiple viewpoints

using a perspective camera. For spade, we collected a small number (13) of still

images capturing different instances of person-spade manipulation similar to those

in the considered videos, and annotated 2D masks of the spade in them. Then

we augmented the resulting 2D shape masks to train a separate Mask R-CNN

model for each object class. In order to handle the variation of object poses in the

videos, we augmented the training set by random 2D geometric transformations

(translation, rotation, scale, flip). In addition, to handle the intra-class variation of

instance surface appearance as well as changes caused by illumination, we applied

domain randomization [Loing et al., 2018; Tobin et al., 2017]: the geometrically

transformed 2D mask was filled with a random (foreground) image and pasted on

another random (background) image; the random images were taken from the MS

COCO dataset [Lin et al., 2014]. Starting with a Mask R-CNN [Abdulla, 2017]

model pre-trained on the MS COCO dataset, we trained a separate model for each
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object class by fine-tuning the head layers using the corresponding augmented

training set.

At test time, we use the segmentation masks and bounding boxes from the

trained Mask R-CNN to estimate the 2D coordinates of the object endpoints. In

our set-up, the Mask R-CNN is constrained to output no more than one segmented

instance per image frame. The endpoints are calculated as the intersection of a

line fitted through the segmentation mask (estimate of object’s main axis) and the

bounding box (estimate of object’s extremities). However, we discard the endpoints

if the distance of either wrist joint from the line segment between the endpoints is

larger than a threshold (incorrect segmentation of the manipulated object). The

relative orientation of the object (i.e. which endpoint corresponds to the “head”

of the tool and which to its “handle”, for example) is determined by the relative

proximity of each endpoint to the wrist joints (hammer) or by the relative spatial

location of the endpoints in the video frames (barbell, scythe, spade). Figure 3-2

illustrates the output of our object localization and endpoint detection.
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Figure 3-2: Detecting and localizing objects in video frames. Example
qualitative results. Left: Input video frame (top to bottom: barbell, hammer,
scythe, spade). Right: Output object mask (magenta) and object endpoints
(yellow and cyan circles, corresponding to the “head” and the “handle” of the tool,
respectively, where applicable).
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3.3 Recognizing person-object contact points

We wish to recognize and localize contact points between the person and the

manipulated object or the ground. This is a challenging task due to the large

appearance variation of the contact events in the video.

3.3.1 Proposed approach

However, we demonstrate here that a good performance can be achieved by training

a contact recognition CNN module from manually annotated contact data that

combine both still images and videos harvested from the Internet. In detail,

the contact recognizer operates on the 2D human joints predicted by Openpose

(Section 3.1). As shown in Figure 3-3, given 2D joints at video frame 𝑖, we crop

fixed-size image patches around a set of joints of interest, which may be in contact

with an object or ground. Based on the type of human joint, we feed each image

patch to the corresponding CNN to predict whether the joint appearing in the

patch is in contact or not. The output of the contact recognizer is a sequence 𝛿𝑗𝑖

encoding the contact states of human joint 𝑗 at video frame 𝑖, i.e. 𝛿𝑗𝑖 = 1 if joint 𝑗

is in contact at frame 𝑖 and zero otherwise. Note that 𝛿𝑗𝑖 is the discretized version

of the contact state trajectory 𝛿𝑗 presented previously.

Our contact recognition CNNs are built by replacing the last layer of an

ImageNet pre-trained Resnet model [He et al., 2016] with a fully connected layer

that has a binary output. We have trained separate models for five types of joints:

hands, knees, foot soles, toes, and neck. To construct the training data, we collect

still images of people manipulating tools using Google image search. We also collect

short video clips of people manipulating tools from Youtube in order to also have

non-contact examples. We run Openpose pose estimator on this data, crop patches

around the 2D joints, and annotate the resulting dataset with contact states.
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Neck

Hands

Knees

Soles / toes

CNN

CNN

CNN

CNN

Figure 3-3: The main contact recognition steps. Given estimated 2D human joints,
we crop image patches around a set of joints of interest, which includes neck, hands,
knees, foot soles and toes. Based on the type of human joint, we feed each image
patch to the corresponding CNN to predict whether the joint appearing in the
patch is in contact (shown in green on the right) or not (shown in red) with the
environment.

3.3.2 Evaluation

In this section, we evaluate the quality of our contact recognizers that is described

previously.

To form the test set, we annotate contact states in the entire Handtool dataset

and a subset of the Parkour dataset obtained by sampling every 5-th frame.

Following the same annotation process as done for training, we have cropped image

patches around individual human joints in the test set. This results in a separate

test set for each of the five joint types: hand, sole, toes, neck and knee. The

neck and the knee test sets include only patches from the Handtool dataset as the

Parkour dataset does not consider these types of contacts.
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Figure 3-4: Precision-recall curves of our trained models for recognizing the hand-,
sole-, toes-, neck-, and knee-contact state.

We evaluate each contact recognizer using a precision-recall curve on its corre-

sponding test set. The positive class means the joint is “in contact”. The evaluation

results are shown in Fig. 3-4. Each precision-recall curve is also summarized using

average precision (AP). The results demonstrate good quality of our contact recog-

nition models despite the appearance variation present in both the Handtool and

Parkour datasets.

Finally, we present some qualitative examples of our contact recognition CNNs,

tested on the Handtool dataset. The results are illustrated in Figure 3-5.
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Figure 3-5: Recognizing contact states. Example qualitative results on the
Handtool dataset. Left: Input video frames. Right: Output contact states (green
in contact versus red not in contact).
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3.4 Discussion of limitations and failure modes

While the proposed methods achieve good performance in extracting 2D measure-

ments, they may still encounter difficulties in some challenging situations. In this

section, we summarize the typical failure modes of the three proposed components

in the recognition stage. We analyze these problems and discuss possible ways of

alleviating or overcoming them.

Limitations in estimating human 2D joint positions. Our human 2D pose

estimation module has inherited some problems from Openpose [Cao et al., 2017],

based on which it is developed. As mentioned earlier, Openpose is a multi-person 2D

pose estimator which will return multiple human subjects when multiple people are

present in the input image. Assuming the scenario of a single person manipulating

a tool, our method will only keep the main human subject in the foreground while

ignoring the others in the background. This is done by ranking the confidence

scores of all detected subjects and keeping the one with the highest score. An

example is shown in Figure 3-6a, where our pose estimation module successfully

focuses on the subject of interest (SoI in short) in grey lifting the barbell, while all

the other people are ignored. However, this strategy may fail to focus on the SoI if

the person’s confidence score is low while another high-confident human instance is

detected. Figure 3-6b illustrates such a failure example from the same input video.

In this particular case, the SoI’s body and facial features are hidden when they

grip the barbell bar, and therefore the person in the back is detected instead.

Related to this is the problem of partial occlusion. To address the problem of

partial occlusion and to increase the number of detected joints, we have redesigned

the strategy of the bottom-up parsing step in the original implementation of

Openpose. However, this may lead to the problem of body joint assignment when

multiple people are present. As shown in Figure 3-6c, the upper body joints of the



34 CHAPTER 3. EXTRACTING 2D MEASUREMENTS FROM VIDEO

SoI are not detected due to occlusion, and our software has detected and incorrectly

assigned the wrong joints to the SoI.

Limitations of estimating object 2D keypoints. Videos capturing object

manipulation scenes usually include heavy occlusions between human limbs and the

manipulated tool. Our instance segmentation network may fail to detect the object

when it is occluded by the person’s body at certain frames in the input video. In

this case, the estimated 2D endpoint sequences include incorrect observations at

those frames with heavy occlusions. This is shown in the first example in Figure 3-7

where the hammer’s handle tip is completely occluded by the person’s left hand

(see the input image on the left). This leads to an incorrect segmentation of the

hammer handle followed by an incorrect estimate of the 2D location of the handle

tip (marked by a cyan circle in the output visualization on the right).

Another typical failure mode is the incorrect labelling of the head and the

handle tips of the stick-like tool which we are considering. As shown in the second

row of Figure 3-7, the object segmentation is correct but the handle tip held by

the person’s left hand is labelled as a hammer head.

Finally, the 2D keypoint estimation module presented in this chapter can only

deal with stick-like objects. More objects, for example in box-like shapes, can no

longer be described by only two keypoints.

Limitations of recognizing contacts. Our contact recognizer works well in

the type of instructional videos and environments we consider, but may struggle to

generalize to new environments.

Currently, the proposed contact recognition network only handles three types

of contacts: the contact between a person hand and a stick-like handle, the contact

between foot/knee and the ground and the contact between neck and the barbell

bar. The datasets used for training only contain these three types of contacts.
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More complicated contacts such as self-body contacts of a person clapping his/her

hands are considered to be less important and are ignored, although they can also

affect the dynamics of the person’s movement.

The size of the training data is limited due to the difficulty of collecting object

manipulating videos and annotating the contacts manually. Therefore, our contact

recognition network achieves better performance on videos that are captured in

similar environments as those contained in the training videos. In addition, the

training data does not contain appearance variations of human limbs, e.g. hand

size, skin color, etc.
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(a) Subject of interest (SoI) detection in success.

(b) Failure due to multiple human subjects. This is because the SoI’s confidence
score is lower than the score of the person in the back.

(c) Failure due to incorrect body part assignment. The upper body joints of the
SoI are occluded and hence undetected.

Figure 3-6: Typical failure modes in estimating human 2D joint positions.
The example frames are from the same input video with multiple human instances
in the background.
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Figure 3-7: Typical failure modes in object 2D endpoint estimation. The
yellow and cyan circles correspond to the “head” and the “handle” of the tool,
respectively. Top: An example frame showing incorrect object mask estimation,
which leads to incorrect localization of the handle (cyan circle). Bottom: An
example with correct position of predicted endpoints but flipped head and handle
of the tool.
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Chapter 4

Estimating 3D motion and forces

using 2D measurements

In this chapter, we describe the second, estimation, stage of our approach. In

particular, we develop a model for reliably estimating the 3D person-object motion

and contact forces from the 2D measurements obtained in the recognition stage

described in Chapter 3. Contrary to the deep learning approaches used in Chapter 3,

in this chapter we rely on numerical optimization to jointly estimate the person-

object 3D motion and forces under physics constraints. In particular, we formulate a

large-scale trajectory optimization problem to model the dynamics of 3D movement

of the person, the manipulated object, and their interaction with created and

broken physical contacts.

4.1 Parametric human and object models

Human model. We model the human body as a multi-body system consisting

of a set of rotating joints and rigid links connecting them. We adopt the joint

definition of the SMPL model [Loper et al., 2015] and approximate the human

39
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MEASUREMENTS

Figure 4-1: An illustration of our parametric human model in the reference posture.
The skeleton in grey consists of one free-floating basis joint corresponding to the
pelvis, and 23 spherical joints representing the major moving joints of human body.
The colored spheres are 18 virtual markers that correspond to 18 OpenPose joints.
Each marker is associated to a semantic joint in our model.

skeleton as a kinematic tree with 24 joints: one free-floating joint and 23 spherical

joints. Figure 4-1 illustrates our human model in a canonical pose. A free-floating

joint consists of a 3-dof translation in R3 and a 3-dof rotation in 𝑆𝑂(3); we model

the pelvis by a free-floating joint to describe the person’s body orientation and

translation in the world coordinate frame. A spherical joint is a 3-dof rotation;

it represents the relative rotation between two connected links in our model. In

practice, we use unit quaternions to represent 3D rotations and axis-angles to
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describe angular velocities. As a result, the configuration vector of our human

model 𝑞h is a concatenation of the configuration vectors of the 23 spherical joints

(dimension 4) and the free-floating pelvis joint (dimension 7), hence of dimension

99. The corresponding human joint velocity 𝑞h is of dimension 23 × 3 + 6 = 75 (by

replacing the quaternions with axis-angles). For simplicity, in the main paper we

do not distinguish this difference in dimension and consider both 𝑞h and 𝑞h to be

represented using axis-angles, hence of the same dimension 𝑛h
𝑞 = 75. In addition,

based on these 24 joints, we define 18 “virtual markers” (shown as colored spheres

in Figure 4-1) that represent the 18 OpenPose joints. These markers are used

instead of the 24 joints to compute the re-projection errors with respect to the

OpenPose 2D detections.

Object models. All four objects, namely barbell, hammer, scythe and spade, are

modeled as a non-deformable rigid line stick. The configuration 𝑞o represents the

6-dof displacement of the stick handle, as illustrated in Figure 4-2. In practice, 𝑞o

is a 7-dimensional vector containing the 3D translation and 4D quaternion rotation

of the free-floating handle end. The object joint velocity 𝑞o is of dimension 6 (by

replacing the quaternion with an axis-angle). The handtools that we are modelling

have the stick handle as the contact area. We ignore the handle’s thickness and

represent the contact area using the line segment between the two endpoints of the

handle. Depending on the number of human joints in contact with the object, we

associate the same number of contact points to the object’s local coordinate frame.

These contact points can be located at any point along the feasible contact area. In

practice, all object contact points together with the endpoint corresponding to the

head of the handtool are implemented as “virtual” prismatic joints of dimension 1.
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Figure 4-2: All the four types of handtools are represented by a single parametric
object model, as shown in the image. The object model consists of 1 free-floating
basis joint corresponding to the handle end point (red sphere), 1 prismatic joint
corresponding to the head of the tool (green sphere), and several prismatic joints
corresponding to the location of the contact points (grey translucent spheres in
the middle). The contact points should lie on the feasible contact area (grey stick)
formed by the two endpoints.

4.2 Assumptions

The proposed problem is difficult, yet feasible to solve under a number of reasonable

assumptions on the physical properties of the person, the manipulated object and

the scene.

First of all, we assume that there is at most one person that appears in the input

video. We adopt the mass properties of the full-body anatomical human model

described in [Maldonado, 2018]. This model captures the body weight statistics of

an average human adult. Our approach applies the same body mass distribution

to any input video despite the variation of shape of the person in the video.

If there is an object manipulated by the person, we assume that the object is

rigid, non-articulated and has a stick-like shape. We apply a single object mass
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distribution to any input video with the same type of object. For example, we

assume that all sledgehammers share the same head weight. Our method can

also handle input videos without the manipulated object. In this case, we only

model contacts between the person and the ground, with no object model and the

corresponding 2D inputs.

We further assume the camera is static with canonical (or known) intrinsic

parameters. Most body joints, especially the ones that may interact with the

environment (e.g. hands, feet, knees, etc) should be visible at least in a short

period of time in the input video. We assume that the gravity is perpendicular to

the ground plane, but the model can be tuned to fit other cases such as a sloping

ground.

In the subsequent sections, we will include an object model in our formulation,

but as discussed above the object is not necessary for the model to be applied.

4.3 Proposed approach

Let 𝑇 be the duration of the input video clip depicting person manipulating

an object. We encode the 3D poses of the human and the object, including

joint translations and rotations, in the configuration vectors 𝑞h and 𝑞o, for the

human and the object respectively. We define a constant set of 𝐾 contact points

between the human body and the object (or the ground plane). Each contact point

corresponds to a human segment, and is activated whenever that human segment is

recognized as in contact. At each contact point, we define a contact force 𝑓𝑘, whose

value is non-zero whenever the contact point 𝑘 is active. The state of the complete

dynamical system is then obtained by concatenating the human and the object joint

configurations 𝑞 and velocities 𝑞 as 𝑥 :=
(︁
𝑞h, 𝑞o, 𝑞h, 𝑞o

)︁
. Let 𝜏h

m be the joint torque

vector describing the actuation by human muscles. This is a 𝑛𝑞 − 6 dimensional
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vector where 𝑛𝑞 is the dimension of the human body configuration vector. We

define the control variable 𝑢 as the combination of the joint torque vector together

with the contact forces at the 𝐾 contact point, 𝑢 :=
(︁
𝜏h

m, 𝑓𝑘, 𝑘 = 1, ..., 𝐾
)︁
. To deal

with sliding contacts, we further define a contact state 𝑐 that consists of the relative

positions of all the contact points with respect to the object (or ground) in the 3D

space.

Our goal is two-fold. We wish to (i) estimate smooth and consistent human-

object and contact trajectories 𝑥 and 𝑐, while (ii) recovering the control 𝑢 which

gives rise to the observed motion2. This is achieved by jointly optimizing the 3D

trajectory 𝑥, contacts 𝑐, and control 𝑢 given the measurements (2D positions of

human joints and object endpoints together with contact states of human joints)

obtained from the input video. The intuition is that the human and the object’s

3D poses should match their respective projections in the image while their 3D

motion is linked together by the recognized contact points and the corresponding

contact forces. In detail, we formulate person-object interaction estimation as an

optimal estimation problem with contact and dynamics constraints:

minimize
𝑥,𝑢,𝑐

∑︁
𝑒∈{h,o}

∫︁ 𝑇

0
𝑙𝑒 (𝑥, 𝑢, 𝑐) d𝑡, (4.1)

subject to 𝜅(𝑥, 𝑐) = 0 (contact motion model), (4.2)

𝑥̇ = 𝑓 (𝑥, 𝑐, 𝑢) (full-body dynamics), (4.3)

𝑢 ∈ 𝒰 (force model), (4.4)

where 𝑒 denotes either ‘h’ (human) or ‘o’ (object), and the constraints (4.2)-(4.4)

must hold for all 𝑡 ∈ [0, 𝑇 ]. The loss function 𝑙𝑒 is a weighted sum of multiple costs

capturing (i) the data term measuring simultaneously the consistency between

the observed and re-projected 2D joint and object endpoint positions and the
2In this paper, trajectories are denoted as underlined variables, e.g. 𝑥, 𝑢 or 𝑐.
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discrepancy of the estimated 3D joint positions with respect to some reference

positions, (ii) the prior on the human 3D poses, (iii) the physical plausibility of the

motion and (iv) the temporal smoothness of the estimated trajectory. Next, we

describe these cost terms as well as the insights leading to their design choices. For

simplicity, we ignore the superscript 𝑒 when introducing a cost term that exists

for both the human 𝑙h and the object 𝑙o component of the loss. We describe the

individual terms using continuous time notation as used in the overall problem

formulation (4.1). A discrete version of the problem as well as the optimization

and implementation details are relegated to Section 4.4.

4.3.1 Data term: enforcing 2D and 3D consistency

Given the 2D locations of human joints and object endpoints predicted from image,

we wish to optimize a 3D pose trajectory that consolidates these 2D measurements.

This is done by minimizing the re-projection error of the estimated 3D human

joints and 3D object endpoints with respect to the 2D measurements obtained in

each video frame. In detail, let 𝑗 = 1, ..., 𝑁 be human joints or object endpoints

and 𝑝2D
𝑗 their 2D position observed in the image. We minimize the 2D consistency

loss 𝑙2D:

𝑙2D =
∑︁

𝑗

𝜌
(︁
𝑝2D

𝑗 − 𝑃cam(𝑝𝑗(𝑞))
)︁

, (4.5)

where 𝑃cam is the camera projection matrix and 𝑝𝑗 the 3D position of joint or

object endpoint 𝑗 induced by the person-object configuration vector 𝑞. To deal

with outliers, we use the robust Huber loss, denoted by 𝜌.

In addition, we employ a direct 3D consistency loss if a reference 3D pose

trajectory is available:

𝑙3D =
∑︁

𝑗

𝜌
(︁
𝑝3D

𝑗 − 𝑝𝑗(𝑞)
)︁

, (4.6)
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where 𝑝3D
𝑗 denotes the reference 3D position of joint 𝑗. In our case, the reference

human 3D poses are computed using the HMR estimator [Kanazawa et al., 2018].

But it is possible to use other pose estimators instead.

In practice, we find that minimizing a weighted sum of the 2D and 3D consistency

losses achieves good performance. The data term is finally expressed as:

𝑙data = 𝑤2D𝑙2D + 𝑤3D𝑙3D, (4.7)

where 𝑤2D and 𝑤2D are non-negative scalars.

4.3.2 Prior on 3D human poses

A single 2D skeleton can be a projection of multiple 3D poses, many of which

are unnatural or impossible exceeding the human joint limits. To resolve this, we

incorporate into the human loss function 𝑙h a pose prior similar to Bogo et al. [2016].

The pose prior is obtained by fitting the SMPL human model [Loper et al., 2015]

to the CMU MoCap dataset using MoSh [Loper et al., 2014] and fitting a Gaussian

Mixture Model (GMM) to the resulting SMPL 3D poses. We map our human

configuration vector 𝑞h to a SMPL pose vector 𝜃 and compute the likelihood under

the pre-trained GMM

𝑙h
pose = − log

(︁
𝑝(𝑞h; GMM)

)︁
. (4.8)

During optimization, 𝑙h
pose is minimized in order to favor more plausible human

poses against rare or impossible ones.
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4.3.3 Physical plausibility of the motion

Human-object interactions involve contacts coupled with interaction forces, which

are not included in the data-driven cost terms (4.7) and (4.8). Modeling contacts

and physics is thus important to reconstruct object manipulation actions from the

input video. Next, we outline models for describing the motion of the contacts and

the forces at the contact points. Finally, the contact motions and forces, together

with the system state 𝑥, are linked by the laws of mechanics via the dynamics

equations, which constrain the estimated person-object interaction. This full body

dynamics constraint is detailed at the end of this subsection.

Contact motions. In the recognition stage, our contact recognizer predicts,

given a human joint (for example, left hand, denoted by 𝑗), a sequence of contact

states 𝛿𝑗 : 𝑡 −→ {1, 0}. Similarly to Carpentier and Mansard [2018b], we call a

contact phase any time segment in which 𝑗 is in contact, i.e., 𝛿𝑗 = 1. Our key idea

is that the 3D distance between human joint 𝑗 and the active contact point on the

object (denoted by 𝑘) should remain zero during a contact phase:

⃦⃦⃦
𝑝h

𝑗 (𝑞h) − 𝑝c
𝑘(𝑥, 𝑐)

⃦⃦⃦
= 0 (point contact), (4.9)

where 𝑝h
𝑗 and 𝑝c

𝑘 are the 3D positions of joint 𝑗 and object contact point 𝑘,

respectively. Note that position of the object contact point 𝑝c
𝑘(𝑥, 𝑐) depends

on the state vector 𝑥 describing the human-object configuration and the relative

position 𝑐 of the contact along the object. The position of contact 𝑝c
𝑘 is subject

to a feasible range denoted by 𝒞. For stick-like objects such as hammer, 𝒞 is

approximately the 3D line segment representing the handle. For the ground, the

feasible range 𝒞 is a 3D plane. In practice, we implement 𝑝c
𝑘 ∈ 𝒞 by putting a

constraint on the trajectory of relative contact positions 𝑐.
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Equation (4.9) applies to most common cases where the contact area can be

modeled as a point. Examples include the hand-handle contact and the knee-ground

contact. To model the planar contact between the human sole and ground, we

approximate each sole surface as a planar polygon with four vertices, and apply

the point contact model at each vertex. In our human model, each sole is attached

to its parent ankle joint, and therefore the four vertex contact points of the sole

are active when 𝛿ankle = 1.

The resulting overall contact motion function 𝜅 in problem (4.1) is obtained by

unifying the point and the planar contact models:

𝜅(𝑥, 𝑐) =
∑︁

𝑗

∑︁
𝑘∈𝜑(𝑗)

𝛿𝑗

⃦⃦⃦
𝑇 (𝑘𝑗)

(︁
𝑝h

𝑗 (𝑞h)
)︁

− 𝑝c
𝑘(𝑥, 𝑐)

⃦⃦⃦
, (4.10)

where the external sum is over all human joints. The internal sum is over the set

of active object contact points mapped to their corresponding human joint 𝑗 by

mapping 𝜑(𝑗). The mapping 𝑇 (𝑘𝑗) translates the position of an ankle joint 𝑗 to its

corresponding 𝑘-th sole vertex; it is an identity mapping for non-ankle joints.

Contact forces. During a contact phase of the human joint 𝑗, the environment

exerts a contact force 𝑓𝑘 on each of the active contact points in 𝜑(𝑗). 𝑓𝑘 is always

expressed in contact point 𝑘’s local coordinate frame. We distinguish two types

of contact forces: (i) 6D spatial forces exerted by objects and (ii) 3D linear forces

due to ground friction. In the case of object contact, 𝑓𝑘 is an unconstrained 6D

spatial force with 3D linear force and 3D moment. In the case of ground friction,

𝑓𝑘 is constrained to lie inside a 3D friction cone 𝒦3 (also known as the quadratic

Lorentz “ice-cream” cone [Carpentier and Mansard, 2018b]) characterized by a

positive friction coefficient 𝜇. In practice, we approximate 𝒦3 by a 3D pyramid

spanned by a basis of 𝑁 = 4 generators, which allows us to represent 𝑓𝑘 as the
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convex combination

𝑓𝑘 =
𝑁∑︁

𝑛=1
𝜆𝑘𝑛𝑔(3)

𝑛 , (4.11)

where 𝜆𝑘𝑛 ≥ 0 and 𝑔(3)
𝑛 with 𝑛 = 1, 2, 3, 4 are the 3D generators of the contact

force. We sum the contact forces induced by the four sole-ground contact points

and express a unified contact force in the ankle’s frame:

𝑓𝑗 =
4∑︁

𝑘=1

⎛⎜⎝ 𝑓𝑘

𝑝𝑘 × 𝑓𝑘

⎞⎟⎠ =
4∑︁

𝑘=1

𝑁∑︁
𝑛=1

𝜆𝑗𝑘𝑛𝑔
(6)
𝑘𝑛 , (4.12)

where 𝑝𝑘 is the position of contact point 𝑘 expressed in joint 𝑗’s (left/right ankle)

frame, × is the cross product operator, 𝜆𝑗𝑘𝑛 ≥ 0, and 𝑔
(6)
𝑘𝑛 are the 6D generators of

𝑓𝑗 . Additional details including the expressions of 𝑔(3)
𝑛 and 𝑔

(6)
𝑘𝑛 can be found at the

end of the chapter in Section 4.5

Full body dynamics. The full-body movement of the person and the manipu-

lated object is described by the Lagrange dynamics equation:

𝑀(𝑞)𝑞 + 𝑏(𝑞, 𝑞) = 𝑔(𝑞) + 𝜏, (4.13)

where 𝑀 is the generalized mass matrix, 𝑏 covers the centrifugal and Coriolis effects,

𝑔 is the generalized gravity vector and 𝜏 represents the joint torque contributions. 𝑞

and 𝑞 are the joint velocities and joint accelerations, respectively. Note that (4.13)

is a unified equation which applies to both human and object dynamics, hence

we drop the superscript 𝑒 here. Only the expression of the joint torque 𝜏 differs

between the human and the object and we give the two expressions next.

For human, it is the sum of two contributions: the first one corresponds to the

internal joint torques (exerted by the muscles for instance) and the second one
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comes from the contact forces:

𝜏h =

⎛⎜⎝06

𝜏h
m

⎞⎟⎠ +
𝐾∑︁

𝑘=1

(︁
𝐽h

𝑘

)︁𝑇
𝑓𝑘, (4.14)

where 𝜏h
m is the human joint torque exerted by muscles, 𝑓𝑘 is the contact force at

contact point 𝑘 and 𝐽h
𝑘 is the Jacobian mapping human joint velocities 𝑞h to the

Cartesian velocity of contact point 𝑘 expressed in 𝑘’s local frame. Let 𝑛h
𝑞 denote

the dimension of 𝑞h, 𝑞h and 𝑞h, then 𝜏h
m and 𝐽h

𝑘 are of dimension 𝑛ℎ
𝑞 − 6 and 3 × 𝑛ℎ

𝑞 ,

respectively. We model the human body and the object as two free-floating base

systems. In the case of human body, the six first entries in the configuration vector

𝑞 correspond to the 6D pose of the free-floating base (translation + orientation),

which is not actuated by any internal actuators such as human muscles. This

constraint is taken into consideration by adding the zeros in Eq. (4.14).

In the case of the manipulated object, there is no actuation other than the

contact forces exerted by the human. Therefore, the object torque is expressed as

𝜏 o = −
∑︁

object contact 𝑘

(𝐽o
𝑘 )𝑇 𝑓𝑘, (4.15)

where the sum is over the object contact points, 𝑓𝑘 is the contact force, and 𝐽o
𝑘

denotes the object Jacobian, which maps from the object joint velocities 𝑞o to the

Cartesian velocity of the object contact point 𝑘 expressed in 𝑘’s local frame. 𝐽o
𝑘 is

a 3 × 𝑛o
𝑞 matrix where 𝑛o

𝑞 is the dimension of object configuration vectors 𝑞o, 𝑞o

and 𝑞o.

We concatenate the dynamics equations of both human and object to form

the overall dynamics in Eq. (4.3) in problem (4.1), and include a muscle torque

term 𝑙h
torque = ‖𝜏h

m‖2 in the overall cost. Minimizing the muscle torque acts as a

regularization over the energy consumption of the human body.
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4.3.4 Enforcing the trajectory smoothness

Regularizing human and object motion. Taking advantage of the temporal

continuity of video, we minimize the sum of squared 3D joint velocities and

accelerations to improve the smoothness of the person and object motion and to

remove incorrect 2D poses. We include the following motion smoothing term to

the human and object loss in (4.1):

𝑙smooth =
∑︁

𝑗

(︁
‖𝜈𝑗(𝑞, 𝑞)‖2 + ‖𝛼𝑗(𝑞, 𝑞, 𝑞)‖2

)︁
, (4.16)

where 𝜈𝑗 and 𝛼𝑗 are the spatial velocity and the spatial acceleration3 of joint 𝑗,

respectively. In the case of object, 𝑗 represents an endpoint on the object. By

minimizing 𝑙smooth, both the linear and angular movements of each joint/endpoint

are smoothed simultaneously.

Regularizing contact motion and forces. In addition to regularizing the

motion of the joints, we also regularize the contact states and control by minimizing

the velocity of the contact points, the temporal variation of the contact forces and

the magnitude of the contact forces. The goal is achieved by the minimizing the

temporal variation of the contact positions and the contact forces. In addition, we

regularize the magnitude of the contact forces according to their locations: we use

higher weight penalties for hand contact forces and smaller weight penalties for

ground contact forces. As such to favor bigger ground contact forces when both

hand and ground contacts are recognized. The is implemented by including the

3Spatial velocities (accelerations) are minimal and unified representations of linear and angular
velocities (accelerations) of a rigid body [Featherstone, 2008]. They are of dimension 6.
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following contact smoothing term in the cost function in problem (4.1):

𝑙c
smooth =

∑︁
𝑗

∑︁
𝑘∈𝜑(𝑗)

(︁
𝜔𝑘‖𝑐̇𝑘‖2 + 𝛾𝑘‖𝑓𝑘‖2 + 𝜁𝑘‖𝑓𝑘‖2

)︁
, (4.17)

where 𝑐̇𝑘 and 𝑓𝑘 represent, respectively, the temporal variation of the position

and the contact force at contact point 𝑘. 𝑓𝑘 is the contact force at contact point

𝑘. 𝜔𝑘, 𝛾𝑘 and 𝜁𝑘 are scalar weights of the regularization terms. Note that some

contact points, for example the four contact points of the human sole during the

sole-ground contact, should remain fixed with respect to the object or the ground

during the contact phase. To tackle this, we use a higher 𝜔𝑘 for sole contact points

to prevent the foot sole form sliding. We also found important to use higher 𝜁𝑘 for

hand contact forces and smaller 𝜁𝑘 for ground contact forces to favor larger ground

contact forces when both hand and ground contacts are recognized.

4.4 Optimization

4.4.1 Conversion to a numerical optimization problem

We convert the continuous problem (4.1) into a discrete nonlinear optimization prob-

lem using the collocation approach [Biegler, 2010]. All trajectories are discretized

and the constraints (4.2), (4.3), (4.4) are only enforced on the “collocation” nodes

of a time grid matching the discrete sequence of video frames. The optimization

variables are the sequence of human and object poses [𝑥0...𝑥𝑇 ], torque and force

controls [𝑢1...𝑢𝑇 ], contact locations [𝑐0...𝑐𝑇 ], and the ground plane. We replace

the integral in the objective function by a sum over video frames, and rewrite

the cost and constraint terms which include derivatives of the state (e.g. joint

accelerations) by approximating the derivatives with the backward finite difference

scheme (e.g. 𝑎𝑡 := (𝑣𝑡 − 𝑣𝑡−1)/Δ𝑡, with Δ𝑡 the duration between two video frames).
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The resulting problem is nonlinear, constrained and sparse (due to the sequential

structure of trajectory optimization).

The problem after discretization becomes a large, sparse and non-linear opti-

mization problem. This is because the discretized objective function becomes a

sum of terms that each depend on one time sample (denoted by 𝑖) and a subset

of the variables [𝑥𝑖, 𝑢𝑖, 𝑐𝑖] corresponding to 𝑖. Only a few regularization terms, e.g.

the motion smoothing term (4.16) and the contact smoothing term (4.17), may

depend on two or three successive frames. The problem sparsity is important to

take into account, as it significantly reduces the complexity of computation from

𝒪(𝑇 3) (without sparsity) to 𝒪(𝑇 ) (using the problem sparsity).

Solving the problem. We solve the problem using the Levenberg-Marquardt

algorithm. We rely on the Ceres solver [Agarwal et al., 2012], which is dedicated

to solving sparse estimation problems (e.g. bundle adjustment [Triggs et al., 1999]),

and on the Pinocchio software [Carpentier et al., 2019, 2015–2019] for the efficient

computation of kinematic and dynamic quantities and their derivatives [Carpentier

and Mansard, 2018a]. As Ceres solver only allows to define bound constraints,

hence we implement our nonlinear constraints as penalties in the cost function.

Multi-stage optimization. In practice, we find that solving the optimization

problem all at once usually leads to poor local minima. Instead we design a

multi-stage optimization strategy taking inspiration in multi-stage optimization

used for planning motion of humanoid robots [Tonneau et al., 2018b; Carpentier

et al., 2017]. In detail, we solve a cascade of sub-problems composed of four stages.

In stage 1, we solve the discretized version of problem (4.1) only for the person’s

kinematic variables (𝑞h, 𝑞h, 𝑞h) by “freezing” all variables and constraints related

to the object, the ground plane, and the dynamics in Equations (4.3) and (4.4).

This gives us a rough estimate of the person’s 3D trajectory.
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In stage 2, we recover the 3D position of the ground plane given the estimated

3D trajectory of the person and the contact states recognized from the input video

sequence. In detail, we “unfreeze” the 3D position 𝑞g of the ground plane and

jointly solve for the trajectory of the person 𝑞h and the position of the ground

plane 𝑞g.

Stage 3 is dedicated to initializing the object’s 3D trajectory. This is achieved by

solving for the object’s kinematic variables (𝑞o, 𝑞o, 𝑞o) under the contact constraints,

while keeping the other variables fixed. Note that the location of the manipulated

object varies significantly across the Handtool dataset. To address this, we sample

four initialization options with different pre-defined 3D object orientations. We run

stage 3 of the optimization for each initialization and pick among the four resulting

solutions the one with the lowest cost.

Finally, in stage 4, we solve for the complete set of kinematic and control

variables all at once, starting from the values provided by the previous stages.

It is possible to continue improving the solution by pursing the aforementioned

alternative descent scheme, but we found that a single pass was already sufficient

to obtain good results.

Setting hyper-parameters. Hyper-parameters of our trajectory estimator, in-

cluding the weights used for the cost terms, the camera model, the number of

iterations, etc., are determined by following a combination of manual adjustment

and a grid search: given a parameter of interest and a search grid, we run the

optimization on a set of validation videos with known ground-truth 3D motion,

evaluate the joint errors at every grid point, and update the hyper-parameter with

the value leading to the lowest error. The same process is repeated in an iterative

manner for the different hyper-parameters until the model outputs reasonable

results on all the validation videos.
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Run time. We report run time of trajectory optimization on a MacBook Pro

2016 (with 2.9GHz Intel Core i5 and 8GB memory). The optimization takes on

average 3.23 seconds per frame. In detail, the four stages of the optimization, from

stage 1 to stage 4, take on average 0.40, 0.02, 0.31 and 2.50 seconds per frame,

respectively. When the pose of the object is not modeled, which is the case of one

of our datasets introduced in the experimental section, the optimization is faster

as stage 3 is skipped. By default, the optimization is run on the whole input video

(around 100 frames in our datasets). We also provide an interface for running the

optimization in a sliding window manner, which allows applying our method on

longer videos.

4.4.2 Limitations

The proposed approach makes a good attempt in understanding human-object

interactions from unconstrained videos. However, it still has several limitations

which we discuss next.

First, our object model is currently limited to rigid, stick-like tools. Modeling

other types of rigid objects, e.g. boxes, would require recognizing and modelling

other object shapes. This is technically possible with our model but we leave it for

future work. Recognizing and modelling interactions with non-rigid objects such as

cloth is still an open challenge.

Second, the proposed method models the hand-object contact at a relatively

coarse level by taking into account only a single joint location (the wrist). While

this is reasonable for the type of objects considered in this thesis, it is relatively

coarse for a more fine-grained manipulation tasks of smaller objects such as pencils

or cups.

Third, we initialize our model with [Kanazawa et al., 2018] to provide the size

and shape of the depicted person, but then use only the body skeletal rig in the
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estimation stage. A mesh-based representation could be more descriptive.

Finally, our method does not consider object-object and object-ground interac-

tions. For example, in the case of breaking concrete with a hammer, our method

does not currently model the contact force exerted on the hammer by the concrete.

Modeling the interactions between the object and the environment is an exciting

direction of future work.

4.5 Appendix: generators of the ground contact

forces

In this section, we describe the 3D-generators 𝑔(3)
𝑛 and the 6D-generators 𝑔

(6)
𝑘𝑛 for

computing the contact forces exerted by the ground on the person joints. Remind

that we model different types of contact depending on the type of the joint in

contact.

We model the planar contacts between the human sole and the ground plane

by fitting the point contact model (given by Eq. (4.9)) at each of the four sole

vertices. For other types of ground contact, e.g. the knee-ground contact, we apply

the point contact model directly at the human joint. We model the ground as a

plane in Cartesian space: 𝐺 = {𝑝 ∈ R3|𝑎𝑇 𝑝 = 𝑏}, where 𝑎 is a unit vector of the

ground normal satisfying 𝑎 ∈ R3 and 𝑎 ̸= 0, 𝑏 is a scalar. We denote by 𝜇 (𝜇 > 0)

the coefficient of friction between foot sole and ground.

In the following discussions, we first provide the expression of the 3D generators

𝑔(3)
𝑛 for modeling point contact forces and then derive the 6D generators 𝑔

(6)
𝑘𝑛 for

modeling planar contact forces.

3D generators 𝑔(3)
𝑛 for point contact forces. Let 𝑝𝑘 be the position of a

contact point 𝑘 located on the ground surface, i.e. 𝑎𝑇 𝑝𝑘 = 𝑏. We define at contact
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Figure 4-3: An illustration of the 3D Coulomb friction cone at the contact point 𝑝𝑘

(the green area) and its linear approximation (the pyramid shape). The ground
plane is represented by the brown area.

point 𝑘 a right-hand coordinate frame 𝐶 whose 𝑥𝑧-plane overlaps the plane 𝐺 and

whose 𝑦-axis points towards the gravity direction, i.e., the opposite direction to the

ground normal 𝑎, as shown in Figure 4-3. During point contact, it is a common

assumption that the ground exerts only linear contact forces (denoted by 𝑓) at the

position of contact. In other words, the spatial contact force expressed in the local

frame 𝐶 can be expressed as:

𝐶𝜑 =

⎛⎜⎝ 𝑓

03×1

⎞⎟⎠ . (4.18)
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The 3D Coulomb friction cone and the pyramid approximation are also illus-

trated in Figure 4-3. To prevent the contact point from sliding, the contact force

must satisfy the following contact-stability conditions:

• 𝑓 · 𝑎 > 0, which means that the contact force 𝑓 must point from the environ-

ment (ground) to the robot.

• ‖𝑓 − (𝑓 · 𝑎)𝑎‖ ≤ (𝑓 · 𝑎)𝜇, which means that the magnitude of the tangential

component of 𝑓 (which includes the friction force) must not exceed the

magnitude of the normal component of 𝑓 , otherwise the contact switches to

the sliding mode.

The second condition requires that the contact force 𝑓 lies in a second-order “ice-

cream” cone, or more formally a 3D Coulomb friction cone. We denote the Coulomb

friction cone by the symbol 𝒦3.

In fact, the two contact-stability conditions can be unified into a single constraint

if we define 𝜃 as half of the apex angle of 𝒦3 and let 𝜇 = tan 𝜃. The contact-stability

condition is rewritten as:

‖𝑓 − (𝑓 · 𝑎)𝑎‖ ≤ (𝑓 · 𝑎) tan 𝜃.

In our case, we assume that the ground normal 𝑎 = (0, −1, 0)𝑇 as shown in

Figure 4-3. The contact-stability condition becomes:

𝒦3 = {𝑓 = (𝑓𝑥, 𝑓𝑦, 𝑓𝑧)𝑇 |
√︁

𝑓 2
𝑥 + 𝑓 2

𝑧 ≤ −𝑓𝑦 tan 𝜃}.

It is a common practice to approximate the friction cone 𝒦3 by the pyramid

𝒦3′ = {𝑓 =
4∑︁

𝑛=1
𝜆𝑛𝑔(3)

𝑛 |𝜆𝑛 ≥ 0},
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in which the approximation is represented as the linear combination of four 3D-

generators:

𝑔
(3)
1 = (sin 𝜃, − cos 𝜃, 0)𝑇 , (4.19)

𝑔
(3)
2 = (− sin 𝜃, − cos 𝜃, 0)𝑇 , (4.20)

𝑔
(3)
3 = (0, − cos 𝜃, sin 𝜃)𝑇 , (4.21)

𝑔
(3)
4 = (0, − cos 𝜃, − sin 𝜃)𝑇 . (4.22)

In other words, we are approximating the 3D Coulomb friction cone 𝒦3 with

the conic hull 𝒦3′ spanned by 4 points on the boundary of 𝒦3, namely, 𝑔(3)
𝑛 with

𝑛 = 1, 2, 3, 4. The approximation is illustrated in Figure 4-3 using the inverted

pyramid with grey strokes.

6D generators 𝑔
(6)
𝑘𝑛 for planar (sole) contact forces. Here we show how to

obtain the 6D generator 𝑔
(6)
𝑘𝑛 from 𝑔(3)

𝑛 and the contact point position 𝑝𝑘. As

described earlier, we approximate human sole as a rectangle area with 4 contact

points. We assume that the sole overlaps the ground plane 𝐺 during contact.

Similar to the point contact, we define 5 parallel coordinate frames 𝐶𝑘, one at

each of the four sole contact points, plus a frame 𝐴 at the ankle joint. Note that

the frames 𝐶𝑘 and 𝐴 are parallel to each other, i.e., there is no rotation but only

translation when passing from one frame to another. We can write the contact

force at contact point 𝑘 as the 6D spatial force

𝐶𝑘𝜑𝑘 =
4∑︁

𝑛=1
𝜆𝑘𝑛

⎛⎜⎝ 𝑔(3)
𝑛

03×1

⎞⎟⎠ , with 𝜆𝑘𝑛 ≥ 0. (4.23)

We denote by 𝐴𝑝𝑘 the position of contact point 𝑐𝑘 in the ankle frame 𝐴, and by
𝐴𝑋*

𝐶𝑘
the matrix converting spatial forces from frame 𝐶𝑘 to frame 𝐴. We can then
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express the contact force in frame 𝐴:

𝐴𝜑 =
4∑︁

𝑘=1

𝐴𝑋*
𝐶𝑘

𝐶𝑘𝜑𝑘 (4.24)

=
4∑︁

𝑘=1

⎛⎜⎝𝐼3
𝐴𝑝𝑘×

03 𝐼3

⎞⎟⎠
−𝑇

𝐶𝑘𝜑𝑘 (4.25)

=
4∑︁

𝑘=1

4∑︁
𝑛=1

𝜆𝑘𝑛𝑔
(6)
𝑘𝑛 , (4.26)

where

𝑔
(6)
𝑘𝑛 =

⎛⎜⎝ 𝑔(3)
𝑛

𝐴𝑝𝑘 × 𝑔(3)
𝑛

⎞⎟⎠ . (4.27)



Chapter 5

Experiments

In this chapter, we present quantitative and qualitative evaluation of the recon-

structed 3D person-object interactions. Since we focus on not only human poses

but also object poses and contact forces, evaluating our results is difficult due to the

lack of ground truth forces and 3D object poses in standard 3D pose benchmarks

such as Ionescu et al. [2014]. Consequently, we evaluate our motion and force

estimation quantitatively on a recent Biomechanics video/MoCap dataset capturing

challenging dynamic parkour motions [Maldonado et al., 2017]. In addition, we

report joint errors on our newly collected dataset of videos depicting handtool

manipulation actions. Furthermore, we show qualitative results on both datasets

to demonstrate the quality of our motion/force estimation. Finally, we discuss the

main failure modes of our method.

5.1 Parkour dataset

This dataset contains RGB videos capturing human subjects performing four typical

parkour actions: kong-vault, moving-up, pull-up and safety-vault. These are highly

dynamic motions with rich contact interactions with the environment. Half of the

61
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videos in the dataset are provided with ground truth 3D motion and contact forces

captured with a Vicon motion capture system and force sensors. Due to the blur of

fast motion in the parkour actions, this dataset is challenging for computer vision

algorithms.

Evaluation set-up. We evaluate our method on the 28 parkour sequences with

ground truth 3D motion and contact forces, while the remaining videos are used

for training the contact recognizer. We evaluate the accuracy of the recovered

3D human poses using the common approach of computing the mean per joint

position error (MPJPE) of the estimated 3D pose with respect to the ground truth

after rigid alignment [Gower, 1975]. For evaluating contact forces we express the

estimated and the ground truth 6D forces at the position of the contact aligned

with the world coordinate frame provided in the dataset. We split the 6D force

into linear and moment components and report the average Euclidean distance of

the linear force and the moment with respect to the ground truth.

Results. We report joint errors for different actions in Table 5.1 and compare

results with the HMR [Kanazawa et al., 2018] method, which is used to warm-start

our method. To make it a fair comparison, we use the same Openpose 2D joints as

input. In addition, we evaluate the SMPLify [Bogo et al., 2016] 3D pose estimation

method. We also compare results with the previous version of this work [Li et al.,

2019], which uses slightly different regularization of the estimated trajectory and

forces. We report results for two variants of our approach. The first variant

(“generic model”) uses the same hyperparameters of the cost-function for all actions.

The second variant (“action-specific models”) uses action-specific hyperparameters

adapted for each action (e.g. to regularize more strongly the motion of the legs in

actions where legs are not used). Starting from the hyper-parameters of the generic

model, the action-specific hyper-parameters are obtained by performing grid search,
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as described in Section 4.4 but here using validation videos of only one action class.

The results show that our generic model outperforms all the baseline methods by

more than 10mm on average on this challenging data, and that our action-specific

models always achieve better performance on the corresponding actions compared

to the baselines.

The force estimation results are summarized in Table 5.2 where we also report

results of the previous version of this work [Li et al., 2019], which produces similar

results. We observe higher errors of the estimated moments at hands (compared to

soles), which we believe is due to the challenging nature of the Parkour sequences

where the entire person’s body is often supported by hands. In this case, the hand

may exert significant force and torque to support the body, and a minor shift

in the force direction may lead to significant errors. In Figure 5-1, we also show

an example of temporal evolution of the magnitude of the estimated linear force

and torque compared with the ground truth coming from the force sensors. The

estimates correspond fairly well to the ground truth. We believe the spurious peak

in the estimate around frame 40 is due to the error in contact recognition, which

produces a spurious linear force and a small torque.



65
Li

ne
ar

 fo
rc

e 
(N

)
To

rq
ue

 (N
.m

) 
In

pu
t v

id
eo

25 30 35 40

Figure 5-1: Example of temporal evolution of the magnitude of the estimated linear
force (top) and torque (middle) at the person’s left hand compared with the ground
truth coming from the force sensors on an example sequence from the Parkour
dataset. The x-axis represents time (here frame numbers). Sample frames from
the sequence with their corresponding frame numbers are shown at the bottom.
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5.2 Handtool dataset

In addition to the Parkour data captured in a controlled set-up, we would like to

demonstrate generalization of our approach to the “in the wild” Internet instruc-

tional videos. For this purpose, we have collected a dataset of object manipulation

videos, which we refer to as the Handtool dataset. The dataset contains videos of

people manipulating four types of tools: barbell, hammer, scythe, and spade. For

each type of tool, we chose among the top videos returned by YouTube five videos

covering a range of actions. We then cropped short clips from each video showing

the whole human body and the tool.

Evaluation of 3D human poses. For each video in the Handtool dataset, we

have manually annotated the 3D positions of the person’s left and right shoulders,

elbows, wrist, hips, knees, and ankles, for the first, the middle, and the last frame.

The 3D annotation is done using the Berkeley Human Annotation Tool [Bourdev

and Malik, 2011], by following these three steps: (i) annotate the 2D joint locations

in the image, (ii) specify the relative depth ordering for linked joints, and (iii) run

the optimization approach described in Taylor [2000] to obtain a 3D stick figure.

This annotation process is repeated until the 3D figure is visually correct according

to the annotator. We evaluate the accuracy of the recovered 3D human poses

by computing their MPJPE after rigid alignment. Quantitative evaluation of the

recovered 3D poses is shown table 5.3. On average, our generic model (the same

as for the Parkour dataset) outperforms all the baselines on this dataset. Our

action-specific models achieve on average even better performance. Our approach

achieves the best results on all individual actions except on scythe. After manual

inspection of the results, we believe that this is due to the inaccuracy of the 3D

model of the scythe, which is represented as a 3D line segment without explicitly

modelling the handle of the scythe, which in turn affects the accuracy of the



67

Method Barbell Spade Hammer Scythe Avg
SMPLify [Bogo et al., 2016] 130.69 135.03 93.43 112.93 118.02
HMR [Kanazawa et al., 2018] 105.04 97.18 96.34 115.42 103.49
Li et al. [2019] 104.23 95.21 95.87 114.22 102.38
Ours (generic model) 83.95 89.21 91.78 125.12 97.51
Ours (action-specific models) 83.12 88.89 90.23 114.13 94.09

Table 5.3: Mean per joint position error (in mm) of the recovered 3D human poses
for each tool type on the Handtool dataset.

Method Barbell Hammer Scythe Spade
Mask R-CNN [He et al., 2017] 33/42/54 35/44/45 63/72/76 54/79/93
Ours (generic model) 47/72/96 63/91/98 51/87/98 56/85/99

Table 5.4: The percentage of endpoints for which the estimated 2D location lies
within 25/50/100 pixels (in 600×400 pixel image) from the manually annotated
ground truth location.

estimated 3D human poses (via the person-object contact model).

However, the differences between the methods are reaching the limits of the

accuracy of the manually provided 3D human pose annotations on this dataset.

For example, Marinoiu et al. [2013] point out that manual 3D annotation errors

can range up to 100 mm per joint [Ionescu et al., 2014].

Evaluation of 2D object poses. To evaluate the quality of estimated object

poses, we manually annotated 2D object endpoints in every 5th frame of each

video in the Handtool dataset and calculated the 2D Euclidean distance (in pixels)

between each manually annotated endpoint and its estimated 2D location provided

by our method. The 2D location is obtained by projecting the estimated 3D tool

position back to the image plane. We compare our results to the output of the

Mask R-CNN instance segmentation baseline [He et al., 2017] (which provides

initialization for our person-object interaction model). In Table 5.4 we report for
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both methods the percentage of endpoints for which the estimated endpoint location

lies within 25, 50, and 100 pixels from the annotated ground truth endpoint location.

The results demonstrate that our approach provides in most cases more accurate

and stable object endpoint locations compared to the Mask R-CNN baseline thanks

to modelling the interaction between the object and the person. Lower results of

our approach for scythe for the strict 25 pixel threshold can be again attributed to

the inaccuracy of the 3D scythe model approximated only as a 3D line segment.

5.3 Ablation study

To gain further insight into the improvements over the conference version of this

work [Li et al., 2019], we perform an ablation study of (i) the newly introduced

person 3D consistency loss (4.6) (also referred to as the 3D data term) and (ii)

the new force regularization term (4.17), which smooths not only the temporal

variation but also the magnitude of the estimated contact forces. These experiments

are done using the Parkour dataset which has precise and dense ground truth for

the 3D motion and contact forces captured by MoCap and force sensors. Unless

otherwise mentioned, the experiments are based on the generic model described

previously.

Ablation of the 3D data term. In this ablation, we remove the 3D data

term (4.6) from the generic model while keeping the rest of the cost terms and

the related parameters. The results are reported in Table 5.5, where we compare

the mean per joint position error (MPJPE) of the ablated model with the original

generic model. The results show that on average the new 3D data term improves

the 3D pose estimates, though the improvement is relatively minor. Qualitatively,

we have observed that the 3D data term plays the role of a pose prior that

encodes, for example, the relative depth of the different joints (e.g. between the
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person’s left and right hand), which is captured in the strong 3D prior of the HMR

approach [Kanazawa et al., 2018].

Ablation of force regularization. The new force regularization term (4.17)

smooths not only the temporal variation of the estimated contact forces [Li et al.,

2019] but also the magnitude of the estimated contact forces. Therefore, we evaluate

and compare two ablated models against our generic model. In the first ablated

model (Ours (no force regularization)), we remove both terms regularizing the

temporal variation and the magnitude of the estimated contact forces (i.e. the

second and the third term in Eq. (4.17)). In the second ablated model (Ours

(no ‖𝑓𝑘‖2 in (4.17))), we only remove the third term regularizing the magnitude

of the estimated contact forces, i.e. this model regularizes only the temporal

variation of the estimated contact forces. Note that this form of force regularization

was used in the conference version of this work [Li et al., 2019]. Quantitative

results are reported in Table 5.6 and clearly show the benefit of regularizing both

the temporal variation and the magnitude of the estimated contact forces (Ours

(generic model)), which results in the lowest errors. While we cannot compute force

estimation errors on the Handtool dataset due to the lack of ground truth data, we

can still perform a simple ablation analysis by plotting the temporal variation of

the estimated linear forces and torques with and without the force regularization

terms. This is shown on an example video sequence for the left-hand contact force

in Figure 5-2. Please note how the regularization of both the temporal variation and

magnitude of the estimated forces (4.17) effectively smoothes the estimated forces

reducing their abrupt temporal changes and unrealistic magnitudes. Figure 5-2(d)

also compares the output of our model with and without force regularization at

two example frames. In particular, frame #10 corresponds to the case where

the model without force regularization outputs a linear force with an unrealistic
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orientation and magnitude (highlighted with a bold yellow line in the image)

whereas the regularized model outputs a more realistic force estimate in terms of

both the orientation and magnitude. Similarly, for frame #51 the model with force

regularization outputs a torque with a smaller and hence more realistic magnitude.
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Figure 5-2: Plots of the estimated linear contact force (a) and torque (b) at the
right hand for an example video from the Handtool dataset. In all plots the x-axis
represents time (in frame numbers). In both (a) and (b), the top plot is without
force regularization and the bottom plot is with force regularization (i.e. the generic
model). (c) shows example frames with their corresponding frame numbers. (d)
shows the estimated 3D scene at two sample frames with the highlighted linear
contact force (bold yellow) and torque (bold white) at the right hand. Please
note how force regularization effectively smoothes the estimated forces and torques
reducing their unrealistic abrupt temporal changes and large magnitudes (note the
different scales of the y-axis in the different plots).
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5.4 Qualitative results

Here we show qualitative examples. Additional video results are available on

our Project webpage [2021].

Figure 5-3 shows a collection of qualitative results at sampled video frames in

the Handtool (top four rows) and the Parkour (bottom four rows) datasets. For

each sample, we first show the original frame (left image), followed by the estimated

3D motion and forces from the original viewpoint (middle image), and the same

3D scene from a different viewpoint (right image). Note that for the Parkour

dataset we recognize the contact states of human joints but do not recognize and

model the pose of the object (the metal construction) the person is interacting

with. In addition to results for individual frames from different videos, we provide

in Figure 5-4 results for two sequences of frames to demonstrate the continuity

of the reconstructed actions. The sequences demonstrate that the outputs of our

method are temporally consistent and smooth.

Figure 5-5 shows a comparison of our model with the baseline HMR ap-

proach [Kanazawa et al., 2018]. In the first example (hammering action), the

person’s hands holding the hammer are restricted to be on the handle by our

contact model, thus reducing the depth ambiguity compared to 3D human poses

provided by the baseline HMR [Kanazawa et al., 2018] estimator, which often

outputs open arms. The second example shows an “outlier” frame of a Parkour

video where HMR fails to estimate correct human body orientation due to heavy

occlusion and motion blur. In this case, our method relies on the model of dynamics

and the pose prior to synthesize the person’s motion in between good predictions.

Due to these reasons, we observe that our method often predicts better poses than

the baseline methods that are applied to individual frames and do not model the

temporal interaction between the person and the tool.

The qualitative results also demonstrate that our model predicts reasonable
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contact forces. The directions of the contact forces exerted on the person’s hands are

consistent with the object’s motion trajectory and gravity, and the ground reaction

forces generally point towards the direction opposite to gravity. Specifically, in the

video with the person practicing back squat with barbell (see the left example in

the second row of Figure 5-3), the reconstructed object contact forces and ground

reaction forces are distributed evenly on the person’s hands, and knees, respectively.

Another example is scythe (third row of Figure 5-3, right), where the distribution

of ground reaction forces at the person’s feet follows the swings of the body while

cutting the grass. In the shown frame the person’s center of mass is above their

right leg, leading to larger contact force at the right leg.

5.5 Failure modes

During the experiments we found three typical cases in which the estimation stage

of the proposed approach may fail to output good results. The failure modes are

illustrated in Figure 5-6.

Missing object 2D endpoint detection. The estimated object 2D endpoints

are often very noisy due to heavy occlusions between human limbs and the manip-

ulated object. To solve this problem, we filter out the detected endpoints with low

confidence scores at the output of the recognition stage. However, this measurement

may produce missing observations in the estimated 2D endpoint sequences. An

extreme example is shown in Figure 5-6 in the first row, where there is no predicted

endpoint at all. This is because the barbell handle is completely occluded as seen

in the input frame on the left. In this case, our contact motion model can infer the

position of the barbell handle from the position of hands, but the results are often

not very accurate.
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Contact recognition errors. The second row of Figure 5-6 shows an example

with incorrectly estimated contact state. In this case, the person’s right knee is

incorrectly recognized as not in contact. This has lead to incorrect force estimation

in the output.

Incorrectly localized human joints in the image. We observe that our

method struggles to estimate correct 3D poses if the quality of 2D detection is too

low. An example is shown in the bottom row of Figure 5-6 where the 2D detection

of the person’s left foot is missing. This has lead to errors in estimating the 3D

location of the person’s left leg.
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Figure 5-3: Example qualitative results on the Handtool (rows 1-4) and Parkour
(rows 5-6) datasets. Rows from top to bottom: hammer, barbell, scythe,
spade, muscle-up and pull-up. Each example shows the input frame (left) and
two different views of the output 3D pose of the person and the object (middle,
right). The yellow and the white arrows in the output show the contact forces and
moments, respectively. The length of the arrow represents the magnitude of the
force normalized by gravity.
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Figure 5-4: Example qualitative results on image sequences. Columns 1-3: muscle-
up (Parkour dataset), Columns 4-6: hammer (Handtool dataset). Additional
video results are available at the Project webpage [2021].
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(a) Hammering example

(b) Parkour example

Figure 5-5: Qualitative comparison with the baseline HMR estimator [Kanazawa
et al., 2018]. In each example, the top row shows the input frame (left) and the
output of our method from two different viewpoints (middle, right). The bottom
row shows the estimated 2D joints (left) and the output of the HMR baseline
shown from two different viewpoints (middle, right). In the hammering example
(a) the person’s hands holding the hammer are restricted to be on the handle by
our contact model, thus reducing the depth ambiguity compared to 3D human
poses provided by the baseline HMR [Kanazawa et al., 2018] estimator, which often
outputs open arms. The example (b) shows an “outlier” frame of a Parkour video
where HMR fails to estimate correct human body orientation w.r.t the camera due
to heavy occlusion and motion blur.
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Figure 5-6: Main failure modes of our method. Top row: missing object 2D
endpoint detection. The handle of the barbell is not detected, which affects the
3D output of our model. Middle row: contact recognition errors. The person’s
right knee is incorrectly recognized as not in contact (red), leading to incorrect
force estimates shown on the right. Bottom row: incorrect 2D human joints. The
missing 2D detection of the person’s left foot has lead to errors in estimating the
3D location of the left leg.
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Chapter 6

Discussion and future work

In this final chapter, we summarize the main contributions of the thesis and discuss

possible research directions for future work.

6.1 Contributions of the thesis

In this thesis, we have developed a visual recognition system which automatically

reconstructs the 3D dynamic scene depicting a human subject interacting with

a tool given a single RGB video. In particular, the system takes as input video

frames together with a simple object model, and outputs a 3D motion of the person

and the object including contact forces and torques actuated by the human limbs.

The major contributions are summarized below:

• In Chapter 3, we have developed models and methods for extracting three

types of 2D measurements from the input RGB video: (i) the 2D positions of

a set of predefined human joints, (ii) the 2D endpoint positions of a stick-like

object, and (iii) the contact states of the human joints that can potentially

touch the object. These models are collectively referred to as the recognition

stage of the proposed system.

81
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• In Chapter 4, we have developed a model for reliably estimating the 3D

person-object motion and contact forces from the 2D measurements obtained

in the recognition stage. In particular, we rely on numerical optimization

to jointly estimate the person-object 3D motion and forces under physics

constraints. The research problem is formulated as a large-scale trajectory

optimization problem to model the dynamics of 3D movement of the person,

the manipulated object, and their interaction with created and broken physical

contacts.

• In Chapter 5, we have validated our approach on a recent video MoCap

dataset with ground truth contact forces. In addition, we have collected a new

dataset of unconstrained instructional videos depicting people manipulating

different objects and have demonstrated benefits of our approach on this data.

Our work opens up the possibility of large-scale learning of human-object

interactions from Internet instructional videos.

6.2 Future work

In this final part, we analyze possible future research directions for improving the

work presented in this thesis. We divide the discussion into two parts based on the

two stages of our proposed system.

Improving the 2D recognition stage.

• Estimation of human 2D poses. We have redesigned the strategy of the

bottom-up parsing step in the original implementation of Openpose to deal

with the interference of human instances in background. The method has

been shown to be successful overall on the testing data, but may fail to track

the subject of interest due to occlusion, e.g., of half of a body. We propose to
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investigate more recent human pose estimators, for example, PARE [Kocabas

et al., 2021], which has been shown to be robust to heavy occlusion.

• Estimation of object 2D keypoints. The proposed object 2D keypoint

estimation module requires the objects to be of a stick-like shape, which is a

relatively strong assumption. One possible way to overcome this limitation is

to investigate more recent object estimators that are able to determine more

than two keypoints, e.g. CosyPose [Labbe et al., 2020] and MegaPose [Labbé

et al., 2022]. This interesting direction has already been investigated by some

recent work [Zorina et al., 2021].

• Contact recognition. Another interesting direction is improving the quality

of contact recognition. This can be done by scaling up the training data to

fine-tune the contact recognition networks. Alternatively, we can leverage

more recent contact recognizers, such as Shan et al. [2020], which models

hand-object contact and trains a hand contact recognizer on a much larger

dataset. In Cao et al. [2021], the authors propose a method to recognize more

different types of hand-object contact from 2D images.

Improving the 3D person-object trajectory estimation.

• More generic 3D object model. Our object model is currently limited

to rigid, stick-like tools. This assumption is relatively strong, which makes

our approach hard to be applied to actions involving objects with big volume,

such as moving a cardboard box. Modeling other types of rigid objects, e.g.

boxes, would require recognizing and modelling other object shapes. This

direction is very interesting and technically possible with our model, but we

leave it for future work.

It is also very interesting to model non-rigid objects such as cloth. However,
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recognizing and modelling interactions with non-rigid objects is still an open

challenge.

• Human body representation. In the estimation stage of our approach,

we use the body skeletal rig to represent the size and shape of the depicted

person. As a possible future direction, using a mesh-based representation

instead would be more descriptive than the skeletal rig considered in this

thesis.

• Modeling different types of contact. In the proposed approach, we

model the hand-object contact at a relatively coarse level by taking into

account only a single joint location (the wrist). Although this is reasonable

for the type of stick-like objects considered in this thesis, it is too coarse for

a more fine-grained manipulation of smaller objects such as pencils or cups.

The next step would be handling more sophisticated contact motion such as

grasping a paper or a box, etc.

Finally, our method does not consider object-object and object-ground con-

tacts. For example, in the case of breaking concrete with a hammer, our

method does not currently model the contact force exerted on the hammer

by the concrete. Modeling the contacts and interactions between the ob-

ject and the environment is an exciting research topic that could be further

investigated for future work.
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RÉSUMÉ

Dans cette thèse, nous étudions le problème de la reconstruction automatique en 3D des mouvements d’une personne

agissant dans une scène complexe avec un objet, à partir d’une seule vidéo RVB. Nous développons une méthode

complète pour établir une correspondance entre les images vidéo 2D et une interprétation 3D de la scène, qui est

représentée par les poses 3D de la personne et de l’objet manipulé, les positions des contacts avec l’objet et avec

l’environnement, et les forces de contact exercées à ces interfaces. Les principales contributions de cette thèse sont

les suivantes. Dans un premier temps, nous introduisons une approche pour estimer conjointement le mouvement et

les forces impliqués dans la vidéo en formulant un problème d’optimisation avec contrainte de trajectoire minimisant une

fonction de perte, composite, intégrée dans le temps. Deuxièmement, nous développons une méthode pour reconnaître

automatiquement à partir de la vidéo d’entrée la position 2D et les instants de contact entre la personne et l’objet ou le sol.

Troisièmement, nous validons expérimentalement notre approche sur un jeu de données vidéo-MoCap récent capturant

des actions typiques de parkour et équipé de forces et de trajectoires de vérité au sol.

MOTS CLÉS

Vision par ordinateur, robotique, apprentissage profond, estimation de pose 3D.

ABSTRACT

In this thesis, we investigate the problem of automatically reconstructing the 3D dynamic scene depicting a person inter-

acting with a tool in a single RGB video. The objective is to obtain a 3D interpretation of the scene represented by the

3D poses of the person and the manipulated object over time, the contact positions and the contact forces exerted on the

human body. The main contributions of this thesis are as follows. First, we introduce an approach to jointly estimate the

motion and the actuation forces of the person on the manipulated object by modeling the contacts and the dynamics of

the interactions. Second, we develop a method to automatically recognize from the input video the 2D position and timing

of contacts between the person and the object or the ground. Third, we validate our approach on a recent video-MoCap

dataset capturing typical parkour actions and equipped with ground truth forces and trajectories.

KEYWORDS

Computer vision, robotics, deep learning, 3D pose estimation.
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