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A B S T R A C T

The recent rise of Artificial Intelligence (AI) has found a wide range of appli-
cations essentially integrating it. The goal is the improvement of the provided
services and ultimately a more convenient life for everyone. Although AI has
had some bad days in the past, it is now more mature than ever and it is gaining
more and more ground in almost any field of our lives. However, there is a
question that still persists and remains unanswered: how trustworthy AI really
is?

The answer to this question is a combination of multiple factors such as the
quality of the AI application, the ethics of the people who implemented it and
those using it, etc. Among these factors, there is one standing out and needs to
be thoroughly considered before the employment of AI in the field, especially
in mission- and safety-critical applications like autonomous vehicles. This is
no other than the dependability of the systems hosting the operation of AI
applications, or the AI hardware accelerators.

At first sight, there might seem that there is no problem, as Artificial Neural
Networks (ANNs), and particularly the biology-inspired Spiking Neural Net-
works (SNNs) are believed to be resilient structures just like their biological
counterparts. The human brain for instance is known to be remarkably capable
of tolerating faults that may occur in the neurons or synapses, retaining its
functionality intact. However, although SNNs become heir of this property to
some extent, an assumption of inherent fault tolerance is rather naive when
considering that electronics do not operate the same way as biology. Hence, a
defect of an electronic component or a fault occurring either during the fabrica-
tion of an Integrated Circuit (IC) or after its deployment in the field can have a
disastrous effect on the performance of the executed AI application, threatening
in this way the safety of the surrounding people and the environment.

Because of these, it is made evident that a methodological exploration of the
dependability characteristics of AI hardware accelerators and neuromorphic
platforms, i.e., accelerators hosting the training and/or inference of SNNs, is of
utmost importance. First, a resilience analysis of the SNN and its neuromorphic
chip against hardware-level faults helps in the study of the system’s reliability
by pinpointing the critical parts. Next, these parts need to be protected with a
fault tolerance strategy that allows the network to tolerate some of the faults
proactively and the rest reactively after testing and mitigating the effects of the
detected faults.

This thesis tackles the subjects of testing and fault tolerance in SNNs and their
neuromorphic implementations on hardware. It starts with a defect-oriented
taxonomy of faulty behaviors of a spiking neuron at transistor level, which
forms the basis of a behavioral-level fault model specific to SNNs, yet agnostic
to the circuit design and architecture. Based on this, a series of large-scale
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fault injection experiments is conducted through a hardware-accelerated fault
injection framework designed for SNNs, aiming at analyzing their resilience.
Leveraging the results of these experiments, a cost-effective fault tolerance
strategy for SNNs is proposed. Also, a neuromorphic hardware experimentation
platform is presented, on which a reliability assessment of SNNs running on
actual neuromorphic hardware is performed. After the assessment, the platform
is equipped with an on-line on-chip testing mechanism that detects faults in real
time. Finally, a compact functional test-set generation technique is demonstrated
to address the problem of testing neuromorphic hardware in a generalized way.
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R É S U M É

L’essor récent de l’Intelligence Artificielle (IA) a trouvé un large éventail d’ap-
plications cibles. L’objectif est l’amélioration des services fournis au final une
vie plus simple pour tous. Après avoir connu de mauvais jours, l’IA revient
sur le devant de la scène, plus mature que jamais, et gagne de plus en plus de
terrain dans presque tous les domaines de notre vie. Cependant, une question
persiste et reste sans réponse : dans quelle mesure l’IA est-elle vraiment digne
de confiance ?

La réponse à cette question est une combinaison de multiples facteurs tels
que la qualité de l’IA, l’éthique des personnes qui l’ont mise en œuvre et de
celles qui l’utilisent, etc. Parmi ces facteurs, il en est un qui se démarque et qui
doit être examiné de manière approfondie, en particulier dans les applications
critiques pour la mission et la sûreté telle que les véhicules autonomes. Il s’agit
de la fiabilité des systèmes hébergeant l’IA, ou de leurs accélérateurs matériels.

On peut croire, à première vue, qu’il n’y a pas de problème, car les réseaux
neuronaux artificiels (ANNs : Artificial Neural Networks en anglais), et en parti-
culier les réseaux neuronaux à impulsions (SNNs : Spiking Neural Networks
en anglais) d’inspiration biologique, sont considérés comme des structures ré-
silientes, tout comme leurs homologues biologiques. Le cerveau humain, par
exemple, est connu pour être remarquablement capable de tolérer les défauts
qui peuvent se produire dans les neurones ou les synapses, en conservant sa
fonctionnalité intacte. Cependant, bien que les SNNs héritent de cette propriété
dans une certaine mesure, l’hypothèse d’une tolérance inhérente aux fautes
est plutôt naïve si l’on considère que l’électronique ne fonctionne pas de la
même manière que la biologie. Ainsi, le défaut d’un composant électronique
ou une faute survenant pendant la fabrication d’un circuit intégré ou après son
déploiement peut avoir un effet désastreux sur les performances de l’applica-
tion exécutée, menaçant ainsi la sécurité des personnes environnantes et de
l’environnement.

Pour ces raisons, il est évident qu’une exploration méthodologique des ca-
ractéristiques de fiabilité des accélérateurs matériels d’IA et des plateformes
neuromorphiques, c’est-à-dire des accélérateurs hébergeant l’entraînement et/ou
l’inférence de SNNs, est de la plus haute importance. Tout d’abord, une ana-
lyse de la résilience du SNN et de sa puce neuromorphique contre les fautes
au niveau matériel aide à l’étude de la fiabilité du système en identifiant les
parties critiques. Ensuite, ces parties doivent être protégées par une stratégie
de tolérance aux fautes qui permet au réseau de tolérer certaines des fautes de
manière proactive et le reste de manière réactive après avoir testé et atténué les
effets des fautes détectées.

Cette thèse aborde les sujets du test et de la tolérance aux fautes dans les
SNNs et leurs implémentations neuromorphiques matérielles. Elle commence
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par une taxonomie des comportements défectueux d’un neurone à impulsions
au niveau des transistors, qui forme la base d’un modèle de fautes au niveau
comportemental spécifique aux SNNs, mais agnostique à la conception et à
l’architecture du circuit. Sur cette base, une série d’expériences d’injection de
fautes à grande échelle est menée par le biais d’un framework d’injection de
fautes accéléré matériellement conçu pour les SNNs, dans le but d’analyser
leur résilience. En s’appuyant sur les résultats de ces expériences, une stratégie
de tolérance aux fautes efficace pour les SNNs est proposée. Une plateforme
d’expérimentation de matériel neuromorphique est également présentée, sur
laquelle une évaluation de la fiabilité des SNNs fonctionnant sur du matériel
neuromorphique réel est effectuée. Après l’évaluation, la plateforme est équipée
d’un mécanisme de test sur puce et en ligne qui détecte les défauts en temps
réel. Enfin, une technique compacte de génération de test-set fonctionnel est
démontrée pour répondre au problème du test de matériel neuromorphique
d’une manière généralisée.
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A C K N O W L E D G M E N T S

“As you set out for Ithaka
hope the voyage is a long one,

full of adventure, full of discovery.”

— Konstantinos Kavafis

Pursuing a PhD degree is not only about research; it’s a true voyage in the
world of knowledge. And as in every journey, discovery is its basis and is
essential in order to learn and understand the purpose. Besides, it is not the
destination that matters but the journey itself, the adventure that is unrolled
while heading toward the destination. During this, a lot of people come and go,
each one contributing in their own way to the arrival at the final destination.
Acknowledging these people’s contribution and thanking them for that is the
least act of appreciation someone can show in return. Before that though, let me
start with how this wonderful philosophical voyage began.

It is June 2019 when a senior student at the Electrical and Computer Engineer-
ing department of the Polytechnic School of Aristotle University of Thessaloniki
is finalizing his engineering thesis and preparing for the approaching exams of
the final semester. And then, prof. Alkis Hatzopoulos, forwards to his students
an email of prof. Haralampos Stratigopoulos, with the latter announcing the
opening of a PhD position at Sorbonne Univerisity for which he was seeking a
student. His proposal had just been accepted by Sorbonne Center for Artificial
Intelligence (SCAI) and advanced to the final round before approval. So, the
selected for the position student had to compete through a short interview with
other 19 Artificial Intelligence (AI)-related topics and convince the jury that the
topic was worth one of the ten granted fellowships.

Without spending a single moment, I directly replied to the email and a few
days later I’m in prof. Hatzopoulos office discussing with prof. Stratigopoulos
about the PhD. I remember the two first things I said: (i) I haven’t got my diploma
yet and (ii) I speak no French. Thankfully, none of these was a constraining
factor and after a closer discussion with Haralampos, I was his choice for the
position. Having no time to lose as the final interview was only two weeks
ahead, we started preparing while in parallel the exams in Aristotle University
were in progress. Eventually, everything goes fine with the exams and shortly
after I find myself in Paris before the jury of SCAI. Let me mention at this point
that the interview took place in the 20

th+ floor of Tour Zamansky, France’s third
highest building, which means that the view was better than any existing carte
postale of the city of lights... Trying not to get distracted by the beauty of Paris,
I turn my head the other way and start the presentation. Minutes passed like
seconds and now we’re waiting for the results. Of course, I had planned a few
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days of vacation after the interview, since this was my first time in the city. After
a lunch with Haralampos, I calmly head back to my hotel not expecting to have
the results soon as it was a summer Friday afternoon at the end of June. But no!
The results were ready a couple of hours later and before I make it back to the
hotel, Haralampos calls me to announce the great news. I can’t hide that this
was the best day of my (professional) life and the weekend that followed the
most relaxing and peaceful I ever had.

First and before all, I would like to warmly thank from the deepest of my
heart Haralampos Stratigopoulos for trusting me and giving me this amazing
opportunity. Honestly, having discussed with many other PhD students, it is not
often the case to hear the best about student-supervisor relationships. Maybe my
case was an outlier as I believe Haralampos was the best supervisor someone can
have. He was always there during my PhD willing to help, explain, and teach.
His guidance was essential and his involvement to the right extend: neither too
much being intrusive, nor too little to feel abandoned. As his student, I learnt a
lot of useful things by his side that I believe will shape my future career and
contribute to my professional development. But beyond all lessons, Haralampos
showed me what being a good professor is about, not only professionally but
also humanly by respecting and treating everyone nicely, patiently, and selflessly.
For all these, I am more than grateful to have had Haralampos as my mentor
during this voyage.

A special thank you to prof. Alkis Hatzopoulos as well, who trusted me
from the first moment and recommended me to Haralampos without any
hesitations. It is more than fascinating the fact that the academic community can
be so bonded with mutual cooperation and communication among universities
worldwide. Prof. Hatzopoulos was my engineering thesis supervisor, so in a
way, he prepared me for moving forward toward pursuing a higher academic
degree with all the difficulties it may hide.

Another vital contribution to the realization of this PhD was the one of SCAI
and the colleagues who work there. SCAI was founded right before my voyage
started and as one of its very first ten students, I feel but proud if I have
contributed the slightest at its scientific development and recognition through
my work and effort. I would also like to thank Prof. Gérard Biau (director) and
Dr Xavier Fresquet (deputy director) for all their help throughout these years
and for their educational and scientific initiatives, which made the presence of
SCAI strong in the scientific community. Also, the whole team of SCAI was very
warm and I really enjoyed every meeting and every moment with my fellow
students there, whose work is always admiring to hear about.

Luis A. Camuñas Mesa played a major role in the realization of this PhD with
his essential contributions. Thank you Luis for the circuits you provided us with,
which enabled the experiments performed as part of the work of this thesis; the
multiple meetings to explain us the details of the various functionalities of the
circuits; and your patience to answer all our questions. Once again, you proved
the nice values of cooperation beyond the borders of a university or a country. I
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can also say that the Spanish comments in the designs taught some basics of the
language and made me eager to actively start learning it!

When I started my voyage I saw it as something ordinary rather than a
adventure full of surprises. Yet, there were many hidden surprises waiting to
be unravelled in the way. The most important of them was when I met Sarah
A. ElSayed, my twin sister albeit a few years older, as she used to say. Sarah
was undeniably a source of inspiration for me, who literally made me view the
world through a new pair of eyes. I will never forget the endless conversations,
debates, cultural exchanges, etc., which could last until late at the office. It was
my honor to work with you Sarah and definitely I hope that we will have this
opportunity again at some point in time and space. Beyond all, I feel more than
happy to have met such a great friend for life.

Sharing an office with other students and researchers is a nice experience.
Either working on the same project, or on a similar research field, it is always
interesting to learn about the work of colleagues and hear about their successes.
The office 415 was one of these places where I made amazing friends and I am
grateful to have shared it with them. Antonis the Grand Maître who turned
chess into the sport of the lab and made us only dreaming a victory against him;
Julian who was taking care to make our day with his endless positive energy;
Gabriel who was the ”serious“ of the office and who helped me meet closer the
French culture; Spyros who I know since high school and we had once again
the opportunity to work together. Of course I cannot skip all these amazing
colleagues that I worked with during these years: Engin, Mohamed, Paul, and
Shaima. Thank you all for sharing the journey with me.

However, the borders of an office were not enough to keep me from making
more friends. Ilias with whom we explored every corner of Paris and travelled
in almost every place of France; Alan who was always in to every plan and
showed me the amazing Mexican culture; Maxime who was the ”teaser“ of the
lab (in a good way) and the most cheerful person I have ever met; Clara and
Mathuran whose good vibes were brightening our days. Ning, Andrien, Rieul,
Thomas, Nathan, Jonathan, Baptiste, Aymeric, and Abdelrahman were also
some of the amazing friendships I built during my journey.

Outside the professional environment, the journey continued and actually
was augmented as I lived for three years in the Cité Internationale Universitaire de
Paris (CIUP); a multicultural campus with tens of residences of countries from
all around the world, endless green spaces, and full of sport and cultural events.
I had the opportunity to stay in the Portuguese and the Dutch houses where I
learnt a lot not only about the cultures of these two countries but also for many
more, since there was a huge variety in the nationalities of the residents. It was
more than fascinating to meet so many people coming from different parts of the
world and studying on various disciplines. Some of the greatest friendships that
were born during my stay were these of Tasos, who is coming from a neighbor
city of my hometown in Greece but we met so far away, Dimitris, and Anastasia,
with all of whom I had an awesome time and enjoyed our endless conversations
and adventures.
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by teaching me how to dream and follow my ambitions. Thank you mom and
dad for believing in me. My sister Vasilina is the only person in the world that
was, is, and will be standing by my side for life. Although younger, I have to
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1 I N T R O D U C T I O N

“Artificial Intelligence is the new electricity.”

— Andrew Ng

The curiosity to explore, discover, and comprehend has been an integral
part of human nature since the very beginning of its existence. It is nothing more
than the desire deriving from deep within us to evolve; to go up; to reach further.
And there is no better way to keep the hungriness of this unending desire fed
than observation. Nature offers endless sources for inspiration, amongst which
the most intriguing and challenging so far being the brain. That same thing
defining our consciousness and logic, we use it in an effort to understand and
replicate its own functionality in order to create a new form of intelligence, an
artificial one.

And now that human evolution has eventually reached this point, new ques-
tions arise as we keep exploring the uncharted waters brought by Artificial
Intelligence (AI) such as can we actually rely on it and trust it?

1



2 introduction

1.1 artificial intelligence : industry v4 .0

Human history has repeatedly shown that advancing is the cornerstone to a
thriving society. Throughout evolution, humans have never seized to seek for
improvements in all the aspects of their lives. A proof to this are the numerous
breakthroughs whose outcome has contributed in redefining society in order for
it to move forward.

Out of the plethora of technological advancements, there are three of them
that left an enormous footprint on the shaping of the modern world. During less
than three centuries, three revolutionary steps were taken and brought society
into the future. Namely, the so-called industrial revolutions are composed of (i)
the mechanization of production; (ii) the emergence of new sources of energy,
i.e., electricity and fossil fuels; and (iii) nuclear energy.

What is arguably the forth component of the equation, is AI, although yet
in its infant steps. With its full potential waiting to be unrolled, AI has met a
rapid growth over the past years and can already find applications anywhere in
almost any field, ranging from entertainment to medicine.

1.1.1 The Chronology of Thinking Machines

Since the dawn of computers, a “thinking” machine has been many people’s
dream. Alan Turing was the first to substantially pioneer in the field of AI in the
mid-20th century. During his public lecture in London in 1947, he referred to
computer intelligence as a machine that can learn from experience and that the
mechanism to achieve this is the possibility of letting the machine alter its own
instructions. His later work was a source of inspiration to many researchers in
the AI community.

In 1950 Turing defined intelligence through his homonymous test [2], illus-
trated in Fig. 1.1. According to the Turing Test, or the Imitation Game as he
named it, interrogators pose questions to a computer and a human and receive
a written response. The goal is to determine which is the computer. The in-
terrogators are free to ask anything as penetrating and wide-ranging as they
like, while the computer is permitted to do anything possible to force a wrong
identification. At the end of the experiment, if a sufficient proportion of the
interrogators are not in position to differentiate the computer from the human
being, then the computer is considered intelligent. Ever since there have been
endless trials of AI algorithms to pass the Turing Test but none of them have yet
actually succeeded.

The first successful AI programs were structured around mastering “mind
sports”, like chess and checkers, already from the 1950s [3]. Chess for example
has always been a challenging game with clearly defined problems, allowing for
reasoning and testing problem solving methods. A naive chess-playing computer
would play by foreseeing all the available moves up to a depth that the game
is over. However, this approach is practically impossible as this would involve
examining an astronomically large number of moves. Therefore, developing a
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Figure 1.1: The Turing Test. Player C, the interrogator, is given the task of trying to
determine which player – A or B – is a computer and which is a human [1].

heuristic strategy for playing this kind of games would indeed require some
intelligence to win. Having said that, chess does not make the best fit in the
search of an intelligent system nowadays, since technology advanced and already
in 1997 the reigning chess world champion, Garry Kasparov, was defeated by
the Deep Blue computer of IBM, a massively parallel system with multiple levels
of parallelism which could examine millions of possible moves per second and
thus look ahead as many as 14 turns of play [4]. However, although fascinating,
this cannot be considered an advancement in AI.

Another great milestone, which also shaped the modern form of AI, was in
1943 when the neurophysiologist Warren McCulloch and the mathematician
Walter Pitts, published their work on neural nets and automatons [5]. According
to it, each neuron in the brain is a simple digital processor and the brain as
a whole is a form of computing machine. They proposed the “binary neuron”
model, which, a decade later, was employed to bring the first Artificial Neural
Network (ANN) to life by Belmont Farley and Wesley Clark [6]. Albeit limited by
the early stage of the technology at the time, they managed to train a two-layer
network consisting of 128 neurons to recognize simple patterns.

A few years later, Frank Rosenblatt’s research on percerptrons [7], as he used
to call neural networks, contributed to form the base of modern ANNs. More
specifically, he aimed at generalizing the training procedure of neural networks,
so that it could be applied to multi-layer networks, as well. The back-propagating
error correction, or back-propagation as it is known today, is the most dominant
training technique and is now in everyday use in the world of ANNs.

During the years that followed, the AI community never rested and contribu-
tions continued to arise in theoretical, philosophical, and applied levels. There
was made progress on the domains of natural language processing and robotics,



4 introduction

Figure 1.2: The architecture of LeNet-5 [8].

Figure 1.3: The architecture of AlexNet [10].

while also a lot of programming languages were designed and suited well the
needs of AI applications, like LISP and PROLOG.

In the 1990s, a refreshing wind was blowing for AI that was about to drastically
change it. Yann LeCun et al. created the LeNet network [9], one of the earliest
Convolutional Neural Networks (CNNs), and promoted the development of deep
learning. It was the first time that the back-propagation algorithm was applied
on a practical application to recognize handwritten arithmetic digits. The final
result of LeNet-5 was published in 1998 [8] and was shown to outperform all the
other methods of handwritten character recognition in paper. Fig. 1.2 presents
the architecture of LeNet-5. The success of this research was great making a big
impact on the field of AI that initiated and inspired a wave of people to study
neural networks.

LeNet was the starting point for a large number of neural network architec-
tures that followed up. In 2012, AlexNet [10], a deep CNN shown in Fig. 1.3,
was the winner of the ImageNet Large Scale Visual Recognition Challenge of
that year with a clear difference over the runner-up. ImageNet is a huge dataset
consisting of more than 14 million images containing objects of more than 20

thousand categories. The results showed that the depth of the model, i.e., the
number of layers consisting it, was essential for its high performance, leading
the way towards Deep Neural Networks (DNNs).

Nowadays, deep architectures have become the mainstream of neural networks
with depths reaching hundreds of layers of various types, e.g., convolutional,
dense, pooling, etc. Some examples of the most famous and widely-used DNN

models include the VGGNet [12] and ResNet [13] variations, and the GoogLeNet,
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Figure 1.4: The architecture of GoogLeNet, or Inception Network [11].
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Figure 1.5: Timeline of AI winters.

or Inception Network [11], amongst many others just to name a few. However,
deeper does not necessarily mean better. Thus, concurrently to the improvement
of neural network architectures, machine learning techniques keep improving
as well with more and more concepts being proposed constantly.

AI continues to emerge in very high speeds with more and more applica-
tions being adopted everywhere. A typical example is ChatGPT, an intelligent
conversational agent that can answer followup questions, admit its mistakes,
challenge incorrect premises, and reject inappropriate requests in a dialogue
format. Since the application was released in November, 2022, and until the
moment of writing this thesis, it has gained more than 100 million users in two
months becoming the all-time fastest growing app.

It is evident that people rely more and more on AI which continues to grow
and spreads in tremendous speed. The future of AI looks bright and we cannot
but await to discover what lies within it. Just like every trend though, it must be
treated with caution before it is ready to be used widely in a reliable way.

1.1.2 The AI Winters & the Transition towards an AI Spring

It is common for emerging technologies to be surrounded by hype. Over-inflated
promises by developers, unnaturally high expectations from end-users, and
extensive promotion in the media [14] are the leading factors to cause a bubble.
Soon the situation explodes and hype is replaced by pessimism in the community,
which extends to the media, causing disappointment and criticism that result in
funding cuts and people’s interest moving away.

A similar situation happened with AI in the second half of the 20th century,
which was described as the AI winter as an analogy to the nuclear winter. By
taking a closer look at the timeline of AI (Fig. 1.5), we can distinguish two such
major periods followed by a calmer post-AI winter that prepared the current AI

spring.

1.1.2.1 AI Winter I, 1973-1980

Already from the early 1970s, people have started questioning AI and its capa-
bilities. The recent failure of AI research to effectively respond to community’s
expectations in domains such as robotics and natural language processing, led
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to a disappointment and abandonment of AI. Lighthill’s report in 1973 [15]
depicted these opinions in a rather pessimistic view of AI, causing funding cuts,
the most severe of which being the British government’s decision to end support
for relevant research in most universities of the country. According to the report,
AI researchers had failed to address the combinatorial explosion when solving
problems within real-world domains. That is, the report states that AI techniques
may work within the scope of small problem domains, but the techniques would
not scale up well to solve more realistic problems.

1.1.2.2 AI Winter II, 1988-1993

After the exaggeration of pessimism that caused the first AI winter, AI makes a
come back with more enthusiasm in the community than ever. This is mainly
attributed to the rise of expert systems, which were very rapidly adopted by
corporations around the world in the early 1980s. In an effort to replace human
experts, expert systems are computers emulating the human decision-making
abilities [16]. They do so by reasoning through knowledge bases that represent
facts and rules, mainly in an if–then structure, rather than through conventional
procedural code.

Already by the first half of the decade, the use of expert systems was calculated
to have saved tens of millions of dollars to the companies who employed
them, causing more and more to start developing and deploying them. A new
industry grew up to support expert systems, including both software and
hardware companies, who built specialized computers optimized for the LISP
programming language. Soon, the AI industry boomed from a few million
dollars in 1980 to billions of dollars at the end of the decade [17].

Though, the extremely high cost and complicated architectures required by the
expert systems led some companies to start seeking for alternative solutions. As
a result, simpler and cheaper workstations appeared and LISP was soon adjusted
in order to be portable to all UNIX systems allowing desktop computers to
offer a simpler and more popular architecture to run LISP applications on. This
in combination with the very expensive maintenance of expert systems made
many companies to abandon the field, leading the billion-dollar AI industry to a
new collapse. Once again, the hype of AI had taken over and was succeeded by
disappointment.

1.1.2.3 Post-AI Winter, 1994-2011

After the successive AI winters, the field kept moving forward with small but
steady steps. AI found purpose as part of larger systems, assisting in sub-tasks
necessary to carry out the overall operation. A lot of applications had silently
embedded cutting edge - for the time - AI or other technologies that have
developed from subdivisions of it, like fuzzy logic controllers that were used in
automobiles.

The “cold” past of AI though is still haunting it and its reputation remains
a midsummer night’s dream. It is very often for the researchers in 1990s and
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2000s to deliberately call their work by other names, such as cognitive systems,
computational intelligence, etc., in order to avoid the stigma that was still present
in the field. This was also an effort to emphasize that their work aimed at a
particular sub-problem and not a global intelligent solution, as AI had already
failed to reach these false promises of the past.

In general, during the post-winter period, AI did not stop to progress and was
integrated in real-world applications, breaking down the myth that AI had failed.
Computer scientists and companies may have avoided the term in an effort to
seek for funding and not be viewed as dreamers but this let huge investments
to take place at both state and private level, which by the end of the decade had
reached again an amount of magnitude of billions in the USA and the European
Union. People have also started to find again meaning in AI after the success of
practical applications in fields like language translation and image recognition,
which prove that AI can become a powerful tool.

1.1.2.4 AI Spring, 2012-now

Already by the mid-2000s the scene of AI has started to heat up, getting ready for
the upcoming “AI spring”. Starting from 2012, the interest in the field of machine
learning is substantially increased from both the research community and the
corporate world, especially thanks to the revolution of deep learning. AI starts
to develop more rapidly than ever establishing itself in general everyday-life
applications, like language translation and search engines, as well as giving
other sectors new aspects, like the car industry where the deployment of AI gave
birth to the autonomous cars.

Although the advances occurred since the beginning of the AI spring seem to
live the AI winter far behind in the past, concerns are still raised occasionally that
a new winter could await due to overly ambitious or unrealistic promises given
by scientists and commercial vendors. On the contrary, AI has strongly rooted
in society and has found itself a purpose. Having said that, new hypes may
arrive causing ups and downs in the interest to AI and its reputation, however, a
collapse of the field seems now quite an impossible future for the technology.
Of course, an “AI summer”, where AI is deeply established in a way that people
depend on it and is really intelligent, may still be very far away and the path
towards it looks challenging and tough but at the same time it is more than
fascinating to experience its true potentials being unfolded.

1.1.3 Breathing New Life into AI

Reviewing the history of AI shows that its potential was understood very early.
Besides, this is why it soon became a hype and over-enthusiasm was formed
around it. But what were the reasons behind the failure of AI to fulfill people’s
expectations and in fact twice? There are many factors that played a major
role and led to this but there are some that are attributed to the technology’s
immaturity and inefficacy to serve the needs of AI. Amongst them, the following
two can be distinguished:
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(a) CPU vs. GPU/FPGA (b) CPU/GPU/FPGA vs. ASIC

Figure 1.6: AI hardware accelerators comparison.

• insufficient computing capability;

• inadequately large data and wide access to it.

1.1.3.1 AI Hardware Accelerators

The immense complexity that lies within the highly distributed processing of
information required by AI algorithms, makes traditional computer hardware,
such a Central Processing Unit (CPU), look totally powerless. It is true after all
that fairly simple neural networks require significant computing capacity even
by today’s standards.

The AI community is forced to look for and employ other means that would
allow for an effective realization of ANNs. In an effort to do so, a new purpose
is given to an already used computer component, the Graphics Processing
Unit (GPU). It is made obvious that if the parallelization characteristics of GPUs

are exploited, then the processing of an ANN, and more particularly the training
procedure, would be significantly accelerated.

AlexNet [10] proves this theory in practice and in great extend when the DNN

utilizes a GPU to achieve the high performance that was a prerequisite because
of the network’s great depth. However, although AlexNet is considered the
precursor of deep learning, it was not the first neural network to employ a GPU.
Already since mid-2000s this technique has been applied [18]–[20] to speed up
the calculations of ANNs, mainly CNNs, outperforming conventional processors.

There are many strong points of GPUs that make them are the perfect candidate
for AI processing. One of them is their ability to access memory in a 2-D manner,
i.e., row access and column access to memory take the same amount of time,
even with very large matrices containing several thousand rows and columns
[19]. Another advantage is that GPUs contain a huge amount of processing cores
that allows for a very large scale of process distribution, which is also a common
characteristic of ANNs where each neuron is a separate processing element and
completely independent from the rest of the neurons in the same layer. In other
words, the enormous matrix Multiply-and-Accumulate (MAC) operations needed
for the calculation of a layer’s activation, can be carried out in parallel if we
exploit the full capabilities of GPUs.
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Despite their advantages, GPUs remain a general purpose processing unit.
Therefore, a logical question that is raised in the effort to accelerate AI com-
putations, is why not design a custom hardware architecture to perform the
processing in the optimal way possible. The answer is simple and is no other than
complexity of realization. As noted in [18] in 2005, using dedicated hardware to
do machine learning typically ends up in disaster because of cost, obsolescence,
and poor software.

A few years later this belief is reassessed as the maturation of Field Pro-
grammable Gate Arrays (FPGAs) during the 2010s transcends the aforementioned
difficulties and makes dedicated AI hardware feasible in an elegant way. FPGAs

soon begin to be used more and more often for AI acceleration until the problem
of hosting the training and the inference of a DNN has become as simple as
flushing a pre-designed hardware Intellectual Property (IP), many of which are
offered as a publicly available open-source implementation.

FPGAs, as re-configurable devices, are by definition generic, so that their hard-
ware components can be rearranged to implement a given circuit. This holds
them back from fully leveraging the potentials of dedicated AI hardware. Con-
sidering also the advancements in Very Large Scale Integration (VLSI) Integrated
Circuits (ICs), where integration has reached the scale of one-digit nanometer
architectures, the way is paved for the implementation of Application Specific
Integrated Circuit (ASIC) AI accelerators. The cost-energy-performance trade-off
is increased over one magnitude with custom chip solutions, which is made evi-
dent by the relevant innovation proposed by leading companies and universities
in the field in the late 2010s, such as Google’s Tensor Processing Unit (TPU) [21],
Apple’s Neural Engine, and MIT’s Eyeriss [22].

1.1.3.2 AI at the Edge

Beyond speeding up training and inference on complex DNN models, there is
also an incentive to design ASIC AI hardware accelerators that can fit inside the
resource-constrained Internet-of-Things (IoT) edge devices. IoT is an example of
edge computing, which is to push the computation, or specifically for AI the
execution of AI algorithms, from the cloud closer to the user, i.e., to the edge.

AI at the edge holds so much promise because it can be applied to practically
any electronic device, from self-driving cars that see pedestrians in the road
to coffee makers that respond to voice commands. Motivated by concerns of
availability, privacy, latency, network bandwidth, low power, and low cost,
applications that require any combination of the above will eventually migrate
to AI inference at the edge.

Opposed to the mainstream approach that wants AI to run in the cloud on
giant server farms of GPUs and FPGAs, or clusters of them, the key point of AI

at the edge is that all the processing is restricted locally to the hosting device,
which allows for plenty of improvements. The most important of them are listed
below:
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Figure 1.7: The edge computing infrastructure.

• Availability: The system is continuously available since no external factor,
such as an internet connection interruption, can affect it and therefore
undermine its operation.

• Privacy & Security: Sensitive data are persisted at a local level and thus
they do not have to be sent over the internet, ensuring the privacy and
enhancing the security of the application.

• Speed: The overall application time is shorter as there is no need to wait for
the data to be sent in the cloud and then receive back the results, resulting
in low latency.

• Bandwidth: The off-line processing does not occupy any bandwidth, al-
lowing this way for more devices to be simultaneously connected.

• Energy consumption: A significant amount of energy is saved after reduc-
ing the power-hungry data transfers that are needed.

The large and power-hungry GPUs and FPGAs are the worst match for the
small battery-powered IoT devices. On the contrary, ASICs can become very small
and achieve very low energy consumption, which makes them the ideal choice
if the aforementioned advantages are to be achieved.

1.1.3.3 Big Data

The bloom of the digital era, brought new perspectives for AI into light. The
information storage switched from analog to digital, with the latter growing
exponentially in capacity, which by the end of 2000s had almost completely
dominated the global market. Not only this but the generated data met an
exponential growth as well. As of 2012, 2.5 exabytes (2.5× 260 bytes) of data were
generated daily. This number continued only to grow, and as the International
Data Group (IDC) reported, the global data volume grew from 4.4 zettabytes
(4.4×270 bytes) to ten times higher between 2013 and 2020. By 2025, IDC predicts
that there will be 163 zettabytes of data around the world. This explosion
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is mainly a result of data collected by devices such as mobile phones and
information-sensing devices, which already count tens of billions worldwide,
far outnumbering the human population of the earth.

Of course the size of the data alone is of no importance. What differentiates
the big data is a combination of characteristics, or the “5 Vs”:

• Volume: The quantity of generated and stored data. It determines the value
and potential insight.

• Variety: The type and nature of the data, i.e., structured, semi-structured,
unstructured.

• Velocity: The speed at which the data is generated and processed.

• Veracity: The truthfulness or reliability of the data, which refers to the
data quality and the data value [23].

• Value: The worth in information that can be achieved by the processing
and analysis of large datasets.

Big data is comprised by data sets that are too large and complex to be dealt
with traditional software tools within a tolerable elapsed time. The insights
embedded in such data sets, that are diverse, complex, and of a massive scale,
can become a source of knowledge if extracted properly. A technique that helped
in this is machine learning.

It is no coincidence the fact that the first large data sets, like the ImageNet,
begin to pop up from the late 2000s. It was not until then that the digital world
was ready enough to qualitatively capture, widely distribute, and efficiently
process big data. The great statistical power offered by the huge number of
fields (rows) of big data sets, enabled DNN architectures to be trained efficiently,
leaving behind problems caused by inadequate data sets, like over-fitting. In fact,
it would never have been possible for deep architectures to work without setting
their depth according to the size of data from which they extract information.

1.1.4 Neuromorphic Engineering: An Artificial Brain?

It has always been a challenge for technology the way in which animal brains
engage with their world effortlessly. Despite the technological advancements
in computer science, electronics, machine learning, and other relevant fields,
a system with skills comparable to those of the simplest intelligent being still
seems unreachable. It is true that brains far outperform computers across a wide
spectrum of tasks, particularly from the aspect of power consumption. A bee,
for instance, demonstrates remarkable navigational and social capabilities at
the same time that searches for nectar, and all this is the result of the power of
less than a million neurons, burning less than a milliwatt. This performance
is many orders of magnitude more task-competent and power-efficient than
current neuronal simulations or autonomous robots [24].
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Figure 1.8: Comparison of power-area performance among biological neurons, silicon
neurons, and digital computers [29].

In an attempt to mimic the operation of neural computing systems, neuro-
morphic engineering was introduced by Carver Mead in the late 1980s [25].
Neuromorphic engineering studies the use of electronic neural networks whose
architectures and operations are based on those of biological nervous systems
[26] and, unlike in the classic von Neumann architectures, the computational
load is distributed among a multitude of artificial neurons.

Similar to biological cognitive systems, a real-time response is a fundamen-
tal requirement in neuromorphic engineering. Even with the current super-
computers though, simulating a large network of a neurobiological system is
unrealistic in terms of time [27]. For example, a 2009 “cat-scale” neural simu-
lation of 1 billion neurons and 10 trillion synaptic connections ran 700 times
slower than real time, while burning about 2 megawatts [28]. Hence, the ineffi-
ciency of digital computers to compete with neurobiological systems, led to the
advent of analog VLSI implementations of silicon neurons. As shown in Fig. 1.8,
the power-area performance of silicon neurons lies between this of biological
neurons and digital computers [29].

In his original contribution to the evolution of neuromorphic engineering,
Mead emphasized that the physics of neural computation remain analog, rather
than digital. Thus, instead of operating the transistors as on-off switches, he
exploited their analog properties when operating in the sub-threshold region.
This way, Complementary Metal-Oxide-Semiconductor (CMOS) transistors con-
sume only a low level of power and also their output current vs. input voltage
characteristic is similar to the sigmoid input-output characteristic of the neuronal
ion channels [29].

Today’s neuromorphic ICs include various digital and mixed-signal designs,
too, rather than purely analog ones as in the beginning of neuromorphic engi-
neering. Some of the most famous chips include IBM’s TrueNorth [30], Intel’s
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Loihi [31], and ETH’s ROLLS neuromorphic processor [32]. These chips offer
compact designs that incorporate large numbers of neurons and synapses to
implement Spiking Neural Networks (SNNs) with a very low power consump-
tion. For example, TrueNorth offers up to 1 million neurons and 256 million
synapses with a power density of 20mW/cm2. However, their user base still con-
sists mostly of universities and industrial research groups [33]. It is also worth
mentioning SpiNNaker [34], a massively parallel, multi-processor architecture
for modeling and simulating large-scale SNNs.

Although many improvements are offered by neuromorphic engineering, it is
not yet as mature as the AI hardware accelerators for conventional ANNs. Before
industry is ready to adopt neuromorphic technology and employ it in the field,
many obstacles would have to be overcome. That involves progress in the field
of SNNs as well as the capture of data in neuromorphic, or spiking form. The
specific advantages of SNNs, along with the challenges they face, will be further
discussed in Chapter 2. The one thing that is for sure though is that the arrival
of an artificial brain is not foreseen in the close future.

1.2 criticality of ai applications

With AI expanding its applications in increasing speed, more and more fields em-
ploy it in order to improve the quality of the provided services and consecutively
the quality of life. These services can be categorized in a wide range, sometimes
involving entertainment purposes or simplification of a fairly simple task. In
this case the outcome of an AI application can be described as “innocent”, since
it can have no impact on the users and their environment. If someone in France,
for example, asks the AI assistant of their phone for an Italian restaurant and the
latter replies with a restaurant located in Italy, then no one would take the next
plane to go there. Even at the extreme scenario that this happened, no harm no
foul.

On the contrary, if the AI-powered autopilot driving an autonomous car
misinterprets a pedestrian with a dove, then this is serious. It could harm
irreversibly not only the passengers of the car but also the people nearby,
resulting in an accident with human and material damages. Hence, the evident
need of being well prepared for critical situations is an integral parameter of an
AI system in order to avoid the worst ethical consequences and ensure safety.

1.2.1 AI Hardware in Safety-Critical Applications

In the near future, many safety- and mission-critical applications are expected to
materialize and exploit the advantages of AI hardware. In this context, the killer
application is autonomous-driving vehicles, whose safety needs to be ensured
before anything, even in the case where a system has broken down. There are
already standards that take care of that, which also evolve and get adjusted
in order to suit the technological advancements of the market. In the case of
automotive there is the ISO 26262, titled “Road vehicles – Functional safety”
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[35], which was proposed as an adaptation of the functional safety standard IEC
61508 [36] in 2011 and was revised in 2018 to include all type of vehicles.

As made evident by the title of the standard, its goal is to set the metrics for
functional safety in automotive applications. To do so, it provides a vocabulary
of definitions, with particular emphasis on the terms of fault, error, and failure.
It considers that “A fault can manifest itself as an error ... and the error can
ultimately cause a failure” [35]. As demanded by the standard, there must be
no more than 0.2 failures per billion operating hours. This might sound strict
but realizing the extend of the number of cars being driven every second in the
streets, then it is easy to reconsider the strictness of the rule.

More specifically, functional safety is defined as the absence of unreasonable
risk due to hazards, which are potential sources of harm, i.e., physical injury or
health damage, caused by a malfunctioning behaviour of the system. The term
malfunction corresponds to a terminated or unintended behaviour with respect
to the system’s design intent. In the case of termination of an intended behaviour
of a component or system due to a fault manifestation, there is a failure. A fault
is any abnormal condition that can cause a component or system to fail and
a system is fault tolerant if it is able to deliver a specified functionality in the
presence of one or more specified faults. Finally, an error is simply a discrepancy
between a computed, observed or measured value or condition, and the true,
specified or theoretically correct value or condition.

In other words, functional safety is reduced by a resulting malfunction that has
a hazardous effect. Keeping that in mind, equipping AI hardware with Built-In
Self-Test (BIST) mechanisms to regularly monitor the system during its normal
operation becomes essential in order to detect faults in real time before they
cause a failure or a malfunction, so that any consequent hazard is avoided.

1.2.2 Reliability Concerns over AI Hardware

The obscurity in the operation of the majority of AI systems has raised concerns
over its integration into our lives, questioning this way its trustworthiness.
Numerous are the examples that amplify the major preoccupation nowadays
about whether AI systems are to be trusted. Since the beginning of allowance
of tests involving autonomous vehicles on public roads in the mid-2010s, there
have been counted plenty of incidents.

The high peak of accidents was a fatal one that costed the life of Elaine
Herzberg - the first person to die by a self-driving car - in 2018. The woman
was pushing a bicycle across a four-lane road in Tempe, Arizona, United States,
when she was struck by an Uber test vehicle. The AI system of the car spotted
and recognized successfully that someone was crossing the road but the low
confidence of the system for such an unlike event was not enough to trigger
the decision threshold and thus it was discarded. The human safety backup
driver sitting in the driver’s seat was also incapable of avoiding the collision
from happening and was later found guilty for negligent homicide.
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Considering all the possible things that can go wrong during the operation
of any AI system, no matter the field of application, it is easy to see that
incidents like the aforementioned one are only the tip of the iceberg. The
concerns cannot but increase when taking into account other potential safety
threats that can potentially result in a malfunctioning system, like unfair bias
and adversarial attacks. But first and beyond all, there is an urgent need to focus
on the dependability of AI hardware, in a sense that the system constantly operates
as it was indented to by its design, which has been customarily overlooked so
far.

A first logical thought that comes to mind is that SNNs are already fault
tolerant, as they derive from biological neural networks. The brain is known to
be capable of tolerating a finite number of faults in the neurons and synapses
and even able to regenerate or rewire network elements to make up for a larger
damage. Modeled after the immensely parallel architecture and operation prin-
ciples of biological neural networks, SNNs indeed inherit some of the remarkable
fault-tolerance capabilities of their biological counterparts. Moreover, it is fre-
quent to contain more computational units than the minimum requirements of a
certain cognitive task, a property known as over-provisioning [37], which adds
a certain degree of robustness [38].

However, arguing that this assumption is true based only on architecture
resemblance to biology or over-provisioning is somewhat imprudent. In fact,
electronics do not share the same principles of operation as biology and hence
hardware-accelerated neural networks are vulnerable to hardware-level faults,
which may result from manufacturing defects, process variations, aging, and
Single-Event Upsets (SEUs). To this end, the cognitive capabilities of a neural
network can become quite fragile, risking the degradation of the network’s
performance due to constraints and imperfections of the VLSI technologies.

1.3 motivation

With the foreseen industrialization and high-volume production of AI hard-
ware in the coming years, special attention must be attributed to the reliability
and functional safety of neuromorphic systems, particularly when safety- and
mission-critical applications are concerned. The safety standards declared by
the industry, e.g., ISO 26262, help in regulating the requirements for avoiding
unreasonable risks but putting them into effect is a challenging process and not
so straightforward.

To do so, there is a need for exploration of the yet overlooked domains of
reliability and functional safety of AI hardware [39]. There are many reasons
that can cause faults to occur in a hardware accelerator. Thus, knowing how
these faults are manifested abstractly on behavioral level of the circuit, it is an
essential tool for understanding how the performance is affected. Then, mea-
suring the performance degradation allows for a quantification of the inherent
fault tolerance capabilities of ANNs, which also enhances the explainability of
the system.
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Hardware testing is a well studied domain of electronics. Particularly for
digital designs, BIST mechanisms are standardized with many online and offline
schemes proposed over the years to test a circuit. The error-correction part
is also well covered by algorithms and mechanisms that compensate for the
errors caused by faults, usually transient. However, testing efficiency and fault
tolerance can be largely improved if the architectural particularities of hardware
neural networks are exploited, targeting only those fault scenarios that have a
measurable effect on performance [40].

Concerning SNNs, which are the focus of this thesis, there is even a larger gap
in the literature. Mainly because of the difficulties that the networks of this type
express in their training, coding schemes, data representation, etc., they have
met slower progress although they exist for many decades. It is usual to make
adaptations of architectures and algorithms meant for conventional ANNs in
order to aid in the faster integration of SNNs. However, once again it is not solid
to assume that the specific characteristics, and particularly the robustness, of a
technique that works for a given type of ANNs will be guaranteed if generalized
for SNNs.

To this end, the motivation behind this thesis is first to explore the reliability
and functional safety of AI hardware, and also propose fault tolerance strategies
that can boost the dependability of the related systems. With the focus set on
SNN applications, this thesis aims at unraveling the vulnerabilities of this type
of neural networks and the corresponding neuromorphic hardware designed to
host their computations, in order to contribute in the better understanding of
their robustness and provide a know-how for augmenting it.

1.4 toward trustworthy ai

Trust in development, deployment and use of AI systems is a prerequisite for
people and societies, without which unwanted consequences may ensue and the
uptake of AI might be hindered. Hence, to truly enable the vast socioeconomic
benefits that these systems can bring, it is essential for them to be trustworthy.
In an effort to shape the foundations of trustworthy AI, the European Union
proposed the Ethics Guidelines for Trustworthy AI in 2019 [41].

The key point toward this direction is to think of AI as a human-centric means
to increase human flourishing. Its only and one purpose is to serve humanity
and the common good, with the goal of improving human and society welfare
through progress and innovation. Without this principle in mind, AI systems
could give rise to certain risks, threatening in this way fundamental values and
rights, like individual freedom, personal integrity, and equal access.

1.4.1 A Multi-Dimensional Problem

A balanced and prosperous assimilation of AI entails seeking to maximize the
benefits of AI systems while at the same time preventing and minimizing their
risks. The latter depends on various factors and therefore it consists a multi-
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Figure 1.9: The framework for trustworthy AI as proposed by the EU [41].

dimensional problem. The achievement of trustworthiness in AI can be broken
down to three components, which should be met throughout the system’s
entire life cycle, and each of which is necessary but not sufficient in itself. More
specifically, an AI system should be [41]:

1. lawful, complying with all applicable laws and regulations;

2. ethical, ensuring adherence to ethical principles and values;

3. robust, both from a technical and social perspective since, even with good
intentions, AI systems can cause unintentional harm.

Fig. 1.9 demonstrates the above as part of the framework proposed by the
EU that consists of the foundations, the realization, and the assessment of
trustworthy AI.

1.4.1.1 Lawful AI

Operating in a lawful world, AI systems cannot be the exception to any law
and thus they need to abide by all the laws of the society that surrounds them.
If the rules are respected, the first step is set in order to gain the trust of the
system’s users, as any malignant action against persons, their well-being, or
their interests is ensured to be avoided. AI should not in any way be used as a
means to undermine people’s rights, harm them, or profit against them.
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The law provides obligations not only with reference to what cannot be done,
but also with reference to what should be done and what may be done. Apart
from prohibiting certain actions, it designates the good practices to address
areas like data protection, non-discrimination, freedom of the arts and sciences,
etc.

1.4.1.2 Ethical AI

It is quite common that ethics fall within the jurisdiction of law, as many ethical
principles are already to a large extend reflected in existing legal requirements.
However, there is not always a clear line separating what should be done from
what can be done with technology, allowing for cases where ethical norms are
not necessarily legally binding yet crucial to ensure trustworthiness.

As with any powerful technology, AI poses ethical challenges, since it in-
evitably makes an impact on people and society. Concerns are raised on whether
the good life of individuals is threatened in terms of quality of life or human
autonomy and freedom. And this is where AI ethics enters the equation so that
to identify how AI can halt these concerns and ensure the fairness of AI systems,
which need to be in line with ethical values. Of course, this cannot function as
a substitute for ethical reasoning and so an ethical mind-set is still something
we need to build and maintain through public debate, education and practical
learning.

Having as a base the human dignity, a human-centric approach of AI should
respect human fundamental rights with goal to improve individual and collective
well-being. Fig. 1.9 presents four ethical principles that, if adhered by AI systems,
can set the foundations for a trustworthy AI. Non-hierarchically, these principles
are:

• Respect for human autonomy: Human choice must be firmly preserved,
allowing the humans interacting with AI systems to keep full and effective
self-determination over themselves and be able to partake in the democratic
process.

• Prevention of harm: Human dignity as well as mental and physical in-
tegrity must be protected, so that AI systems never adversely affect in any
way human beings, the natural environment, and all living beings, e.g.,
neither cause nor exacerbate harm.

• Fairness: Individuals and groups should be free from unfair bias, dis-
crimination and stigmatization. AI systems should ensure equal and just
distribution of both benefits and costs, while balancing competing interests
and objectives. Fairness also entails the ability to contest and seek effective
redress against decisions made by AI systems.

• Explicability: Processes need to be transparent, the capabilities and pur-
pose of AI systems openly communicated, and decisions explainable. This
is also essential to prevent an AI system performing a critical application
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from outputting an erroneous or inaccurate result that may lead to severe
consequences.

It is possible that some of the above principles can be in conflict with some
others. For example, AI systems used for predictive policing, they can help reduce
crime (principle of prevention of harm), but in ways that entail surveillance
activities that impinge on individual liberty and privacy (principle of human
autonomy). Hence, there is not always a right solution based on these principles.
Because of this, ethical dilemmas should be approached via reasoned reflection
based on evidence rather than intuition.

The principles outlined previously must be translated into concrete require-
ments to achieve trustworthy AI, whose implementation should occur through-
out an AI system’s entire life cycle and depends on the specific application.
Building on the four ethical principles, the realisation of trustworthy AI entails
the following non-exhaustive list of key requirements without imposing any
hierarchy as defined by the EU [41] and depicted on Fig. 1.9:

• Human agency and oversight, including fundamental rights, human agency
and human oversight;

• Technical robustness and safety, including resilience to attack and security,
fall back plan and general safety, accuracy, reliability and reproducibility;

• Privacy and data governance, including respect for privacy, quality and
integrity of data, and access to data;

• Transparency, including traceability, explainability and communication;

• Diversity, non-discrimination and fairness, including the avoidance of un-
fair bias, accessibility and universal design, and stakeholder participation;

• Societal and environmental well-being, including, sustainability and envi-
ronmental friendliness, social impact, society and democracy;

• Accountability, including auditability, minimization and reporting of
negative impact, trade-offs and redress.

To implement the above requirements, both technical, e.g., proposed architec-
tures, testing and validating, and non-technical methods, e.g., regulation and
standardization, can be employed during all stages of an AI system’s life cycle,
accompanied by an evaluation of these methods on an ongoing basis in order
to update the implementation processes accordingly. Finally, the realization of
trustworthy AI is a continuous process, as AI systems are evolving and acting in
a dynamic environment.

1.4.1.3 Robust AI

Complying with the law and being in line with the ethical principles are not
enough for an AI system to be worthy of trust by individuals and society. It
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is also necessary that AI systems are robust, or in other words designed in a
way such that they reliably behave as intended while minimizing unintentional
and unexpected harm and preventing unacceptable harm. Technical robustness
and safety are closely linked to the principle of prevention of harm, thus, it is
evident that ethical and robust AI are intertwined and complement each other.

A reliable AI system needs to work properly with a range of inputs and
in a range of situations. It is also critical that the results of the system are
reproducible, so that to verify whether an AI experiment exhibits the same
behavior when repeated under the same conditions. This helps in understanding
and describing what an AI system does.

Another aspect of robustness is accuracy, which is the AI system’s ability to
make correct judgements depending the form of its application, e.g., correctly
classifying information, making correct predictions, decisions, etc. A well-formed
evaluation process can mitigate the unintended risks deriving from potential
inaccurate predictions.

Vulnerabilities are innate to AI systems, like in all software and hardware
systems. Therefore, AI systems should be protected against adversaries trying to
exploit vulnerabilities with an ultimate goal of undermining the right operation
of the system causing corruptions in the data, model or infrastructure. For an AI

system to be considered secure, steps should be taken to prevent and mitigate
any malicious intentions for erroneous decisions or even physical harm.

Finally, AI systems should be equipped with safeguards that enable a fallback
plan in case the system is facing a problem, so that the system will continue
operating properly without putting at risk living beings or the environment. In
the scenario that this cannot be ensured by a predefined procedure, the system
should halt its operation and ask for a human intervention. It is also important
to clarify and assess potential risks a priori, so that the AI system is prepared for
various scenarios.

1.4.2 Robustness through Dependability

In the previous section, robust AI was described in an abstract level. Ensuring the
robustness of an AI system can become a complicated procedure, thereby a more
solid definition is necessary in order to accurately measure it. For this reason,
dependability is employed as a means to define and measure the robustness of a
system in a more accurate way. Dependability is a broad term used to define the
ability of a system to deliver its intended service.

As described in Section 1.2.1, the service of the system is subject to intrinsic,
e.g., faults, or extrinsic effects, e.g., adversary attacks, that can lead to its mal-
function or failure. Dependability of a system is the ability to avoid such service
deviations from the intended one that exceed an acceptance level throughout
the life cycle of deployment.

There is a wide spectrum of attributes encompassed within dependability,
some of which were described in Section 1.4.1.3. Here, a more thorough defini-
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Figure 1.10: Dependability and security attributes of a system [42].

tion is given with quantities to measure dependability from various perspectives.
A list of these attributes can be found below [39], [42]:

• Reliability denotes the continuity of the correct service and its level is
commonly specified in terms of mean time to failure, MTTF;

• Maintainability denotes the ability to repair a given service failure and is.
commonly specified in terms of mean time to repair, MTTR;

• Availability denotes the readiness for correct service and it can be ex-
pressed as a function of reliability and maintainability as MTTF

MTTF+MTTR ;

• Functional safety denotes the absence of unreasonable risk due to hazards
caused by malfunctions or failures;

• Integrity denotes the absence of improper system alterations;

• Security denotes the ability to prevent risks related to malicious intrusions
into a system.

When addressing security, an additional attribute has great prominence,
confidentiality, i.e., the absence of unauthorized disclosure of information. While
highly related with dependability, security is often not characterized as a single
attribute of dependability. Instead security is considered a composite notion
combining the attributes of confidentiality, integrity and availability [42]. Fig.
1.10 summarizes the relationship between dependability and security in terms
of their principal attributes.

It is not unlikely that the aforementioned attributes cause some confusion,
since they are quite close to each other and all contribute to the dependability of
the system. Also, the broadness that characterizes dependability is not easily
covered in all its attributes, no matter how extensive this thesis can be. Therefore,
the focus, as the title suggests, is on functional safety and reliability of AI systems.
In an effort to simplify the above definitions, following are some differences
among them [39].

functional safety vs . (traditional) safety

Functional safety is part of the overall safety of a system. The key differ-
ence between the two is that functional safety depends on automatic protection
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triggered in the event of a failure. This automatic protection needs to respond
correctly to its inputs and have predictable responses to failure in a predictable
manner (fail-safe). This includes human errors, hardware failures, and opera-
tional/environmental stress.

For example, let us consider the protection of a building against fire. Tradi-
tional safety would be simply using fireproof materials to construct the building.
On the other hand, if a fire protection system is installed, which is an intended
function designed for fighting fire, then this is functional safety.

For the sake of completeness, another part of safety is the safety of the intended
functionality, i.e., the absence of risks caused by performance limitations of the
intended behaviors or by reasonably foreseeable misuse by the user.

functional safety vs . reliability

Target of reliability is to decrease fault occurrences as much as possible, while
functional safety aims at ensuring correct/acceptable behavior of the system
despite the presence of a fault. A higher level of reliability implies an increase
in the quality of design/production process, e.g., by selecting higher quality
components. Functional safety faces “unknown” and “unpredictable” situations,
thereby it must be conservative, e.g., functional safety standards require less
strict failure rates with respect to the numbers used for reliability computation.

functional safety vs . availability

It is no surprise that functional safety is in contradiction with availability,
since the two can have different targets. For instance, in the extreme case,
the safest car is the one that always stays in the garage and is never driven.
Theoretically, this way the safety is “maximized” but availability is absent as the
“correct service” implied by the latter is never in use, accepting even a broken,
unusable car.

It is evident that usually there is a trade-off between the two attributes, which
should be carefully decided in order not to affect availability but at the same
time not undermine the safety of the system. An over-sensitive safety device
could cause nuisance trips, which is when no real danger exists but the safety
mechanism is triggered.

functional safety vs . security

While security aims at protecting the system from unintended or unautho-
rized access, change or destruction, such an unwanted scenario could seriously
jeopardize the operation of the system and consequently lead to a potential cause
of danger, risk or injury to people or the environment by the system, which is
what functional safety aims at preventing. Therefore, it is clear that safety and
security are interlinked; there is no safety without security and vice-versa.
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Figure 1.11: Proposed methodology to ensure the reliability of SNNs.
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1.5 research methodology

The reliability and the functional safety of a system are implicitly linked with the
capability of the system to withstand faults, i.e., the fault tolerance of the system.
As mentioned in section 1.2.1, for a system to be fault tolerant, it must be able
to deliver its functionality no matter the presence of faults. In this way, both the
continuity of the correct service (reliability) and the avoidance of unreasonable
risk (functional safety) are ensured.

Throughout this thesis, the work has been focused on building a framework
that will allow SNNs to be fault tolerant. Fig. 1.11 summarizes our proposed
methodology, which has been validated on SNNs being simulated in software
and running on actual neuromorphic hardware. The methodology is separated
in three main parts as shown in Fig. 1.11, namely fault modeling, fault injection,
and testing and fault tolerance.

1.5.1 Fault Modeling

The first step is to know what can go wrong within the neuromorphic processor.
To do so, we perform detailed fault simulations at transistor-level on the com-
ponents consisting it, e.g., on the spiking neuron design. We then exploit the
faulty behaviors of the system, that resulted from the fault simulations, in order
to produce a behavioral-level fault model and a fault taxonomy specific to SNNs.

For the derived fault model to be efficient, there are some requirements needed
to be satisfied, so that the fault model is:

• consistent with manufacturing defects and faults that can happen in the
field such as aging effects and soft errors;

• at behavioral level to allow for large-scale fault injections in deep networks
and simplify their fault simulations;

• abstract, meaning it can be used to test any SNN regardless of its architec-
ture or implementation.

1.5.2 Fault Injection

Using the derived behavioral-level fault model, faults are injected into SNN

designs across all layers of the networks. The fault injection experiments are
automated by simulating the faulty instances of the networks in our accelerated
fault injection framework, or by running them on actual hardware in our neu-
romorphic experimentation platform. The goal is to monitor the effects of the
injected faults on the networks under study, allowing for a reliability assessment
that exposes the vulnerabilities of the networks and provides knowledge of how
the system will operate when being faulty.

The reliability assessment of a SNN can be a helpful tool so as to:

• determine the severity of the fault types, e.g., catastrophic, benign;
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• pinpoint the critical parts of the network to allow for a more targeted
hardening;

• understand the propagation of faults across the layers of the network.

1.5.3 Testing & Fault Tolerance

The findings of the reliability assessment are used to develop cost-effective
fault tolerance strategies that focus on the critical parts of the design. The fault
tolerance strategies are composed of an initial passive part and a second active
part. The purpose of the passive fault tolerance is to eliminate and nullify the
effect of some of the faults proactively. The rest of the faults that persist after
the passive part are addressed reactively by an active fault tolerance technique.
This requires the presence of on-die BIST mechanisms that can operate either
on-line by monitoring the operation of the system’s components, or off-line by
performing periodical tests. If a malfunction is detected, the error mitigation
mechanisms are triggered in order to deal with the corresponding fault and
avoid any undesired effects on the operation of the system.

1.6 thesis structure

The work carried out as part of this thesis concerns the reliability and the
functional safety of SNNs and the neuromorphic hardware used to host their
operations. After studying the resilience of SNNs and neuromorphic systems,
the goal is to harden them against faults, hence enhancing their fault tolerance.
The outcome of the thesis is the methodology described in 1.5 and the imple-
mented work follows the corresponding flow. Before that though, there precedes
an introduction to the principles of SNNs in Chapter 2. Also, each chapter is
accompanied by a corresponding literature review on the related state-of-the-art
contributions where applicable.

Chapter 3 presents a behavioral-level fault model of a spiking silicon neuron
design after Monte Carlo (MC) and defect simulations at transistor level. The
derived taxonomy of faulty behaviors leads to a fault model that is independent
to the used hardware accelerator, thus allowing for large-scale fault injection
experiments network-wise. Chapter 4 exposes the critical parts of deep convo-
lutional SNNs by forming a resilience analysis based on the results of the fault
injection experiments that were automated and accelerated by our fault injection
framework for SNNs in Python.

Despite the fault model being pragmatic in terms of hardware, the simulation
so far was performed in software, thus inevitably leaving outside some blocks of
a realistic neuromorphic design, e.g., the inter-neuron communication modules.
To address this, Chapter 5 introduces a neuromorphic hardware experimentation
platform designed for SNNs, which is then used in Chapter 6 in order to conduct
fault injection experiments on actual neuromorphic hardware, allowing to shape
a more concrete reliability analysis of the respective systems.
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Continuing with the testing of neuromorphic circuits, Chapter 7 shows a
testing methodology to find a compact and high-coverage functional test-set
based on a metric that evaluates the proneness of each sample in the dataset to
misclassification.

Chapter 8 leverages the fault resilience results of Chapter 4 to propose a cost-
effective fault tolerance strategy consisting of a proactive part, which passively
nullifies the effect of some critical faults, and a reactive one, which tests for the
rest of the faults with on-line and off-line schemes and then activates the error
mitigation mechanism if any faults were detected.

Chapter 9 exploits the results of the reliability assessment of Chapter 6 to pro-
pose an on-line testing mechanism that detects in real time abnormal operation
of the neuromorphic design.

Finally, Chapter 10 concludes the thesis providing also perspectives and
directions for future work.





2 A B R I E F I N T R O D U C T I O N T O
S P I K I N G N E U R A L N E T W O R K S

While brain outperforms the most sophisticated architectures of ANNs, it
remains a challenge to keep improving AI algorithms. In an effort to bridge the
gap between biology and Machine Learning (ML), SNNs emerged bringing the
principles of operation of neurobiological systems to AI. SNNs, also known as the
third generation of neural networks [43], are a special type of neural networks in
a sense of information encoding and processing. The neurons comprising a SNN

use unit instantaneous signals, called spikes, in order to transmit information to
their neighbor neurons. Sequences of spikes, or spike trains, are then propagated
to the network through layers of neurons linked via weighted connections, called
synapses, in order to encode and process information.

Though the full potentials of SNNs are yet to be exploited, mainly due to the
difficulties with training and representing data, AI could reach new high levels.
This chapter makes a brief introduction to the basics of SNNs, concerning infor-
mation processing, learning, and implementation on neuromorphic hardware.
At the end of the chapter, a concise comparison between conventional ANNs and
SNNs is reported, as well.

29
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Figure 2.1: Operation of the leaky I&F spiking neuron.

2.1 information processing

The primary means of communication among spiking neurons is a spike. Spikes
are modeled after the electrical pulses, called action potentials, generated and
propagated by biological neurons. They are abrupt momentary (∼ 1ms) and
short (∼ 100mV) changes of the state of the neuron, hence expressed as a sum
of delta functions, called spike trains, S(t) =

∑
f δ(t− tf), where tf represents

the fth firing time of the neuron. From this, it is evident that SNNs incorporate
the concept of time within their computations, allowing to exploit the temporal
characteristics of the data as well. Another powerful feature of spikes is their
shape which holds no information at all but instead it is the timing of spikes
that carries all the neural information.

Spiking neurons can be seen as simple computing elements which accumulate
the incoming spike activity at their input when triggered accordingly. The basic
theory wants the inner state, called membrane potential, of a spiking neuron to be
affected (positively or negatively) when such an event occurs. When a certain
threshold is reached, the neuron fires a spike at its output, which, after weighted
by the neuron’s post-synaptic connections, or synapses, is used to stimulate other
neurons.

Throughout the history of neural networks there have been many neuron
models proposed after their biological counterparts. The first objective was an
accurate simulation of biological neural systems, which led to the creation of
biologically plausible models. These models were usually very complex in order
to cover all the neural activities. For example, the famous and classic Hodgkin-
Huxley model [44] uses four-dimensional nonlinear differential equations to
describe neural behavior.

Because of this complexity and the expensive implementation it requires,
biologically plausible models gave their place to biologically inspired models,
whose target is to replicate neural behaviors without the obligation of emulating
the physical activity of biological systems. Therefore, the needed computations
are simpler making these models more efficient in modeling large-scale systems.
Some examples are the FitzHugh–Nagumo [45], [46] and the Izhikevich models
[47].

Yet, the purpose of SNNs as computational units is usually not to simulate
the brain activity. Thus, simpler models emerged in order to minimize the
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computational complexity but incorporate the neuronal dynamics. The prevalent
spiking neuron model and one of the least computationally complex, hence
hardware-friendly, is the Integrate-and-Fire (I&F) model [48]. Initially, the neuron
is at a resting state, where the membrane potential is set to a low value. The
neuron integrates the incoming spikes from the synapses at its input and the
membrane potential is increased correspondingly. Once the potential exceeds
the specified threshold, the neuron fires a spike, which is propagated to the
next layer of neurons via the synapses connected to its output, and the neuron
is reset to its resting state again. The refractory period is the time in-between
successive spikes regulating the maximum possible spiking frequency of the
neuron. An extension to the aforementioned model is the leaky I&F neuron,
where the potential is periodically brought closer to the resting state during
the idle time of the neuron, so if there are no incoming spikes, the neuron is
gradually reset. The operation of the leaky I&F neuron is demonstrated in Fig. 2.1.
There exist also generalized versions of the I&F neuron, like the Spike Response
Model (SRM) [49] which performs the neural behavior in the form of response
kernels, so that the model is adjustable to accommodate for computational needs
and precision depending on the application.

Similarly to the conventional ANNs, both feed-forward and recurrent topolo-
gies of SNNs exist. In a feed-forward SNN, spikes propagate in only one direction,
from input to output. Addition of feedback loops allows the spikes to flow in
both directions, giving new properties in recurrent neural networks such as
associative memory and context-dependent pattern classification like speech
recognition [27]. Hybrid networks containing both strictly feed-forward sub-
populations along with recurrent ones are also possible. Interactions between
the sub-populations may be one-directional or reciprocal [50]. One of the most
popular hybrid SNNs is the synfire chain, a mechanism for representing relation-
ships between delayed events [51], so as to mimic the way humans learn by
linking a signal with a subsequent action.

Regardless the utilized neuron model and the topology of the network, ques-
tions still persist about how information is encoded in the neuron signals and
processed by the neurons. Once again, biology holds the key to answer these
questions and already in 1926, Edgar Andrian illustrated the idea that the neural
information is encoded in the firing rate [52]. Experiments he performed on
frogs, showcased that neurons responded with more spikes when the force of
the applied stimuli increased. This type of neural code consists of the rate coding
schemes, where the activity level of neurons is converted into a firing rate. A
frequently used scheme that falls within this category is the spike count scheme,
where the greater number of spikes averaged over time produced by a neuron,
the more “benefitted” the neuron is.

Recent neurophysiological results, though, suggest that efficient processing of
information is more likely to be based on the precise timing of action potentials
rather that on their firing rate [50]. The human ability for instance, to recognize
visual scenes in just a few hundred milliseconds [53], pinpoints that the timing
of individual spikes carries important information in order to allow for such a
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high-speed neural processing. This led to the creation of spike coding schemes,
like the time-to-first-spike where information is encoded in the latency between
the beginning of stimulus and the time of the first spike response, enabling
ultra-fast information processing.

2.2 learning

Electrophysiological experiments have shown that the synaptic weights char-
acterizing each synapse are not constant parameters. In neuroscience, synaptic
plasticity is a term employed to express such changes of the synaptic weights
that consequently alter the postsynaptic response of a neuron to an arrival of a
spike. With the appropriate stimulation, these changes can last for days. This
effect is called long-term potentiation or depression of synapses depending on
whether the stimulation paradigm leads to a persistent increase or decrease of
the synaptic weight, correspondingly. In the formal theory of neural networks,
the synaptic weights are considered adjustable parameters so as to optimize the
performance of a network for a given task. The process of parameter adaptation
is called learning and the procedure for adjusting the weights is referred to as a
learning rule [54].

In 1949, D. Hebb postulated that there is a correlation between two neurons
that are simultaneous active, hence their coupling weight is strengthened. Simply
put, “neurons that fire together, wire together” [55]. In general, correlation-based
learning is now known as Hebbian learning. Although Hebb formulated his
principle on purely theoretical grounds, later studies on synaptic plasticity [56],
[57] proved that the resulting change in the synaptic weight is a function of the
difference between the firing times of the pre- and postsynaptic neurons. This
observation has given rise to the term Spike-Timing-Dependent Plasticity (STDP),
which, particularly for SNNs, constitutes the most intensively studied learning
mechanism. More specifically, the synapse is strengthened if the presynaptic
spike occurs shortly before the postsynaptic neuron fires, but the synapse is
weakened if the sequence of spikes is reversed [54]. This is in accordance with
the Hebbian learning rule, and the vice versa, called anti-Hebbian plasticity, is
also possible.

One of the limits of Hebbian learning is that it is unsupervised, as there is
no notion of “good” or “bad” changes of a synapse. There is no feedback that
could allow to distinguish between actions that do and those that do not lead
to a successful outcome. To accommodate for this limiting factor, reward-based
learning or reinforcement learning is employed, similarly to what happens with
animals that are in position to learn complex action sequences if the desired
behavior is awarded. In order to solve this problem, Reward-modulated Spike-
Timing-Dependent Plasticity (R-STDP) takes into account two important aspects.
First, rules of synaptic plasticity must consider the success of an action, and
second, the synapses need to play a role of a short-term memory that stores past
actions, since success often comes with a delay of a few seconds after an action
has been taken [54].
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Since the early years of machine learning, and particularly ANNs, supervised
learning techniques, like the back-propagation algorithm, have been a very suc-
cessful concept and consist the mainstream in the training of conventional
ANNs. However, the discontinuity and non-differentiability characterizing the
information processing within SNNs creates incompatibility with the standard
error back-propagation algorithm. To compensate these issues, there have been
various techniques proposed over the recent years.

One of the most classic adaptations of supervised learning for SNNs is to use
a conventional ANN to train an equivalent shadow network. Technically, this is a
form of converting an ANN trained with state-of-the-art learning methods to a
SNN with the cost of some loss of accuracy. There have been proposed different
approaches to overcome the loss of accuracy such as scaling the weights [58],
[59] and constraining the network parameters [60].

Other proposed approaches train directly on the SNN by approximating the
derivative of the spike function in various ways. For example, SpikeProp [61]
keeps track of the membrane potential of spiking neurons only at spike times
and back-propagates errors based on that but is prone to end up with a “dead
network” meaning that no learning occurs when none of the neurons spike. To
avoid such scenarios, other methods [62], [63] suggest to back-propagate errors
based on the membrane potential at a single time step only. The problem in this
case is that the temporal dependency between spikes is ignored, since the error
is credited to the input signals at the given time step only, thus neglecting the
effect of earlier spike inputs [64].

Another supervised learning technique is Spike LAYer Error Reassignment
(SLAYER); a general method of error back-propagation for SNNs [64]. SLAYER

distributes the credit of error back through the network’s layers, like in the
traditional back-propagation algorithm for ANNs. Unlike back-propagation,
SLAYER takes into account the fact that a spiking neuron’s current state depends
on its previous states and those of its presynaptic neurons, as well. Thus, it also
distributes the credit of error back in time, allowing to simultaneously learn both
synaptic weights and axonal delays. To estimate the derivative of the spiking
function, it uses the probability of a change in the spiking state of a neuron, i.e.,
spiking or non-spiking state.

For methods that train directly a SNN, like SLAYER, to work, the input to
the network needs to be in a neuromorphic form, too, i.e., in a spike train
representation. To achieve this, the most precise and loss-less method is to create
a neuromorphic dataset using a neuromorphic sensor, like a Dynamic Vision
Sensor (DVS) for visual recognition applications. A DVS resembles the retina of
the human eye and is composed by pixels that behave similarly to a spiking
neuron and respond to changes in the brightness. If the brightness of a pixel
has changed sufficiently, a spike is generated. Spikes can have a positive or
negative polarity corresponding to changes from low to high brightness and vice
versa, respectively. Each pixel operates independently and reports the brightness
changes as they occur. Sensors like this provide a timing resolution in the scale
of microseconds and consume the minimal power of some tens of milliwatts.
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Table 2.1: Main characteristics of four large neuromorphic platforms [27].

Architecture
IBM

TrueNorth
Intel
Loihi

ROLLS SpiNNaker

Type Digital Digital Analog ARM CPU

Neurons 106 217 1− 28 103 per core

Synapses
per neuron

28 210 28 − 217 103

On-chip
learning

rules

None
STDP,

R-STDP

STDP,
short-term
plasticity

Any

Power1(mW) 63 110 4 103 per CPU

Size (mm2) 430 60 51.4 102

CMOS
process (nm)

28 14 180 130

Because though producing new recordings and creating new datasets is a
very challenging procedure, methods to convert existing static image datasets to
neuromorphic ones have been proposed. According to [65], the images of the
dataset are successively presented on the screen of a computer for a short period
of time and a DVS performs saccades, i.e., quick, simultaneous movements
like the ones of an eye, in order to capture changes in the pixel intensities.
Using an actual sensor, instead of approximating its operation, is more credible
as noise is inherently included in the result. Also, by selecting to move the
sensor rather than the image is more biologically realistic and eliminates timing
artifacts introduced by monitor updates. The resulted datasets, e.g., N-MNIST
and N-Caltech101, are neuromorphic versions of classic datasets in the literature,
allowing this way for a more direct and valid performance comparison between
an ANN and a SNN.

2.3 neuromorphic implementation

The first implementation of a silicon neuron dates back in the 1940s, soon after
the first artificial neuron model proposed by McCulloch and Pitts [5]. Since then,
many other designs have followed both in digital and analog implementations
[48]. As mentioned in Section 1.1.4, such neurons consist the fundamental
elements of neuromorphic hardware accelerators on ASICs [30]–[32], [34] or
FPGAs [66]–[68]. The main characteristics of four large neuromoprhic platforms
are elaborated below and summarized in Table 2.1.

IBM TrueNorth [30] is a fully digital neuromorphic processor consisting of 1

million leaky I&F spiking neurons interconnected with up to 256 synapses each
by an event-driven routing infrastructure. The neurons are organized in a mesh

1 Measurements related to power are not from the same benchmark so they cannot be compared
directly.
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Figure 2.2: The Intel Loihi 2 die.

of 4096 parallel and distributed neurosynaptic cores. The chip is well-suited for
applications that use complex low-power neural networks in real time and was
tested on an multi-object detection and classification application, during which
the chip consumed 63mW.

Intel Loihi [31] is also a digital neuromorphic processor based on a many-
core mesh arrangement comprising 128 neuromorphic cores, each of which
implements 1024 leaky I&F spiking neurons, named spiking neural units. A
great advantage of the chip is its capability to scale-up thanks to its off-chip
communication interfaces that hierarchically extend the mesh in four planar
directions to other chips. The mesh communication protocol supports scaling
to 4096 on-chip cores and up to 16384 chips, which allows for the training
and inference of deep SNN architectures. [69] uses a two layer neural network
keyword spotter trained to recognize a single phrase as a benchmark to calculate
the mean power consumption of the chip, which is 110mW. Four years after
Loihi’s release in 2017, a second generation chip succeed it with 8× more
neurons (a total of 220 neurons) and 3-D mesh scaling. The die of Intel Loihi 2 is
shown in Fig. 2.2.

The ROLLS neuromorphic processor [32] is a mixed-signal VLSI device. Its
purpose varies from exploring the properties of computational neuroscience
to building brain-inspired computing systems. The 256 I&F spiking neurons
with biologically plausible dynamics and the 131072 synapses comprising the
processor are implemented on the analog domain and are combined with digital
circuits, mainly for handling the inter-neuron communication. The synapses
are organized in a 256× 512 array, half of which are learning synapses mod-
eling the long-term potentiation/depression mechanisms and the other half are
short-term plasticity synapses with programmable synaptic weights. By default,
each neuron is connected to a specific set of 512 synapses but it is possible to
reallocate synapses, with the extreme case of connecting all of them to a single
neuron and leaving the remaining neurons unused. Typically, the chip consumes
approximately 4mW.

SpiNNaker [34] is a massively parallel multiprocessor architecture for model-
ing large-scale SNNs in real time. Unlike the previously mentioned neuromorphic
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chips, SpiNNaker is structured upon processing nodes where each node incorpo-
rates 18 ARM microprocessor cores and two routers. One router is responsible
for the communication among the node’s microprocessor cores while the second
handles the communications with other nodes and the peripherals. The com-
munications infrastructure is also the key innovation of the architecture, as it
is optimized to carry very large numbers of very small packets, in contrast to
the conventional cluster communications system. Each of the cores is capable of
simulating up to 1000 neurons and around 1000 synapses while consuming 1W.
The limit of integration comes up to 65536 nodes, resulting in a total of more
than 1 million cores. Because of its CPU-based structure, the platform provides a
lot of flexibility in terms of spiking neuron models and learning rules.

From a hardware perspective, there is a belief that SNNs offer faster inference
and lower energy consumption compared to ANNs thanks to their asynchronous
operation which results in a sparser activity. The above statement is verified
by the aforementioned state-of-the-art neuromoprhic architectures and is the
reason that neuromorphic computing is an appealing and promising technology.
Its advantages can be summed up as follows:

• Power efficiency: The sparse spiking activity of the neurons can lead to
huge power savings in neuromorphic ICs. As opposed to the per layer
activation-based operation of conventional ANNs, SNNs process spikes as
they come, thus the neurons are working only when there is something
to be processed, otherwise they are idle. This event-driven operation
allows for very low power consumption in neuromorphic architectures at
a magnitude of some tens of milliwatts, even for ASICs made up of billions
of transistors.

• Computation speed: A great advantage of SNNs is their ability to process
substantial amount of data using a relatively small number of spikes. This
property is mainly attributed to the asynchronous information processing
performed by the spiking neurons. The first output spikes in a SNN start
to emerge as the input events still flow in, already after the first few input
events. The event-driven sensing and processing allows for the input and
output event flows of a processing stage to be (in practice) simultaneous
or coincident in time, which is called the pseudo-simultaneity property [70].

• Noise robustness: As discussed in Section 2.1, the shape of a spike carries
no information, while the only important aspect is the presence of a
spike. Moreover, the scope of a spike is only within the postsynaptic
neurons, since the latter will generate their own, hence leading to a kind of
regeneration of signals at every neuron [71]. This gives SNNs the advantage
of noise robustness, similar to the one observed in digital systems.

Neuromorphic chips can incorporate millions of neurons which operate and
fire spikes asynchronously to each other. It is evident that in such a highly
complex system, connectivity and communication challenges are posed, acting
restrictively for the implemented network to some extend, e.g., allowing a finite
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Table 2.2: Comparison of features between conventional ANNs and SNNs [72].

Feature ANN SNN

Data processing Frame-based Spike-based
Time processing Sampled Continuous
Time resolution Low High

Latency High Low
Recognition speed Low High

Recognition accuracy Higher Lower
Neuron model complexity Low High

Hardware multiplexing Possible Not possible
System scale-up Ad hoc Adding modules

Power consumption High Ultra low

number of synapses per neuron. Unlike the brain which facilitates its 3-D volume
to easily build synaptic connections, a neuromorphic architecture handles the
inter-neuron transmission of information via representation and communication
protocols, like the Address Event Representation (AER).

The AER protocol makes use of the fact that spikes carry no information other
than the fact that neuron n fired at time tf. Each neuron is assigned an address
which is unique either globally in the chip, or locally in a sub-cluster of neurons.
According to the protocol, a spike is represented under the form of an event
containing (i) the address of either the neuron that generated it, or the ones that
the spike is destined to, and (ii) the exact timestamp of the firing. This allows
the neurons to be triggered only when there is an event associated to them and
eliminates the need for huge synaptic connections, thus efficiently allocating
hardware resources where and when needed.

2.4 comparison with conventional anns

The discussion on the relative performance between ANNs and SNNs is not trivial
due to fundamental differences characterizing them, e.g., input of sequence
of static frames versus continuous-time event flow. A comparison of the main
distinctive features between traditional ANNs and SNNs is summarized in Table
2.2.

The primary structural difference between conventional and spiking networks
concerns the way the processing of data is carried out. ANNs operate upon a
frame-based logic whereas SNNs are spike-based. The capture and processing
of framed input data premises a segmentation of the computation time steps
using samples of the incoming information, which reduces significantly the time
resolution in temporal or spatiotemporal applications. On the other hand, spikes
arrive whenever a change occurs providing a continuous time processing with
very detailed resolution in time in microsecond scale.
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Based on the above, latency, i.e., the time needed by the neural network to
make a decision, is a distinguishing feature. In ANNs the computation of each
stage, i.e., the activation of each layer, must be completed before propagating
the results to the next one and so forth, resulting in a sequential computation
between successive layers. The asynchronous nature of SNNs removes this limit
allowing for massively parallel architectures. More specifically, computation is
performed spike by spike, so that output spikes in a computational layer are
generated as soon as enough spikes evidencing the existence of a certain feature
have been collected [72]. The latency between the input and output spike flows
of a processing SNN convolution layer has been measured to be as low as 155 ns
[73].

The latency is also of high importance when considering the recognition speed of
a neural network. Hence, as discussed in Section 2.3, SNNs are characterized by a
high computation speed, if the appropriate neural coding is used, as they process
each input spike in (almost) real time, which, in cooperation with the low latency,
leads to a very fast recognition, or decision making. ANNs, on the contrary are
strongly dependent on the computation capabilities of the hardware and the
network complexity, as it regulates the number of total operations to be carried
out. However, quicker recognition speed does not imply higher recognition
accuracy and this is a basic point where conventional ANNs outperform SNNs

over a given task, thereby making them the dominant neural network type. This
is not a discouraging factor though as training techniques advance for SNNs as
well, bringing the error increment for the same deep architecture down to only
0.15% for the ImageNet dataset and 0.38% for the CIFAR10 dataset [74].

Continuing with the downsides of SNNs, the addition of the time variable leads
to a higher neuron model complexity than the one of the level-based ANN neurons.
Also, the time-sampled computation of ANNs, allows for time multiplexing of
the available hardware resources by fetching data and storing intermediate
variables [72]. In SNNs, where spikes need to be processed in real time, there is
no room for multiplexing. If though a system scale-up is needed, because of the
highly parallel structure of the neuromorphic chips, a modular expansion of the
hardware resources is possible, e.g., by adding more computation units or by
combining multiple chips.

Finally, as it has been already pointed out, the power consumption of SNN

architectures implemented on neuromorphic ICs can achieve ultra low levels
benefiting from the power efficiency of sparse spike representations and the
use of efficient coding strategies. Conversely, the determinant factor of ANNs

power is the consumption of the hardware accelerator hosting the network’s
calculations and the memory read/write operations.



3 H A R D WA R E - L E V E L
FA U LT M O D E L I N G

Biological neural networks are a remarkably resilient structure. Their per-
formance remains exemplary even under the worst circumstances, while even
in the case of a damage, operation can continue uninterrupted and unabated.
In a trial to imitate nature, SNNs were inspired to mimic the behavior of their
biological counterparts. This leads to the reasonable assumption that SNNs are
inherently fault-tolerant; a fact that is true up to a certain extend. The circuit
though that hosts the SNN calculations, i.e., the neuromorphic processor, is sus-
ceptible to transistor-level faults, which consequently may lead to a degradation
of the performance of the network and its cognition ability.

Such scenarios make evident the need to assess the reliability of neuromorphic
processors to hardware-level faults in a variety of applications, including safety-
critical ones, before their deployment in the field. This is a first and mandatory
step for developing cost-effective fault tolerance techniques and entails per-
forming large-scale fault simulation experiments. However, transistor-level fault
simulation is prohibitive and fault simulation should be carried out at a higher
abstraction level.

This chapter presents a bottom-up approach starting from transistor-level
simulations for developing a neuron behavioral-level fault model that can be
readily employed for performing behavioral-level fault simulation of deep SNNs

[75].
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3.1 the spiking neuron

3.1.1 Behavioral Model

The I&F model is nowadays one of the most dominant and widely used for
describing spiking neurons [76]. It offers enough complexity to capture the
characteristics of biological neural processing, while being simple enough for
analysis and intuitive understanding of its dynamics.

The I&F model explains the dynamics of a neuron through its membrane
potential, Vm:

Cm · dVm

dt
= Isyn + Iinj, (3.1)

where Cm is the membrane capacitance, Isyn is the post-synaptic current fed to
the neuron, and Iinj is the current injected into the neuron either externally or
through a positive feedback path.

The simplicity of the I&F model comes from the separation of the sub-threshold
integration dynamics from the spike generation mechanism. Since a spike is a
momentary surge in voltage whose form holds no information, the shape of the
spike is not formally stated in the model. Instead, the spike generation behavior
is characterized by a firing time tf and a threshold criterion, i.e., the neuron
produces a spike at time tf when Vm reaches the threshold value, Vref:

tf : Vm(tf) = Vref (3.2)

As soon as the neuron fires, the membrane potential is reset to a value Vreset <

Vref:

lim
t→tf;t>tf

Vm(t) = Vreset (3.3)

For t > tf, the neuron dynamics again follow Eq. (3.1) until the next time Vm

reaches Vref.

3.1.2 Transistor-Level Design

Fig. 3.1 shows the transistor-level design of the I&F neuron used in this thesis.
It is designed in the ams 0.35µm technology, and was originally part of a
neuromorphic cortical-layer processing chip for spike-based processing systems
[77]. The microchip performs 2-D convolutions on video inputs decoded using
the AER protocol in real time.

The neuron takes the input current spikes Isyn coming from the synapses,
integrates them on capacitor Cm, and fires a spike at the output Vspike when
the capacitor voltage Vm reaches a certain threshold Vref. The circuit has an
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Figure 3.1: I&F neuron circuit.

extra set of input/output nodes, namely the Ack and Rqst nodes, which are
used by the AER communication protocol.

The main blocks are a comparator and a set of inverters that control the
signal flow. During the charging time of the capacitor the circuit is inactive,
transistors Mp1 and Mn4 are off, and transistor Mp2 is on. Since the comparator
is constantly following Vm and comparing it to Vref, its bias current is kept
low through transistor Mn1 to minimize power consumption. As Vm increases
towards Vref, node n1 starts changing state and switches on two transistors:

• Transistor Mp1, which slowly introduces a positive feedback current that
accelerates the charging of the capacitor.

• Transistor Mn3 through node n2, which offers a brief surge in the com-
parator bias current.

Combined, these actions speed up the transition time of the comparator output.
Once the transition is complete, i.e. node n1 is low and node n2 is high, node

n3 goes low and an output request signal is sent to the AER communication block
by pulling up line Rqst. After a few nanoseconds, the AER block acknowledges
back the request and the Ack input pulls node n4 up and turns on transistor
Mp3 which produces the output spike of the neuron. Node n4 has three main
effects on the neuron circuit:

1. It turns transistor Mn2 on to keep the comparator bias current high during
the back transitioning.

2. It turns off transistor Mp2 which cuts off the positive feedback path to the
capacitor.

3. It turns transistor Mn4 on to reset Vm to Vreset so the capacitor is able to
charge again.

3.2 fault simulation setup

In order to build a taxonomy of neuron faulty behaviors, which will allow for a
behavioral-level fault model for the spiking neuron, we perform:
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• MC simulation with 1000 runs using the technology Process Design Kit
(PDK), considering both global and local process variations.

• Structural defect simulation in an automated workflow using the mixed-
signal defect simulator Tessent®DefectSim by Mentor®, A Siemens Busi-
ness [78].

In analog VLSI circuits, hard faults refer to physical defects caused by for-
eign particles on the wafer surface, wafer mishandling (e.g., scratching, and
over- or under-itching), mask misalignment, etc. Soft faults, on the other hand,
happen due to the inherent variability of the VLSI manufacturing process, e.g.,
local geometric deformations (i.e., variation in the effective channel length and
width), doping concentration variations, etc. To enable the efficient simulation,
detection, and effective mitigation of these faults, they need to be modeled into
the transistor-level. The fault model should be able to sufficiently quantify the
dominant faults that affect the circuit.

We consider a standard defect model for the transistors that includes stuck-on
and stuck-off behaviors. Stuck-on is modeled with a short-circuit across the
drain and source terminals implemented with a default small resistance of
10Ω. Stuck-off is modeled with an open-circuit in the gate terminal. Since the
simulator cannot handle ideal opens and since a very high series-resistance
would have no effect, a gate open is implemented with a weak pull-up or
pull-down gate voltage. In particular the gate-to-source voltage is controlled
by the drain-to-source voltage with a gain coefficient set to a default value of
0.5 [79]. Finally, for passive elements, i.e., resistors and capacitors, the defect
model includes large variations of ±50%. For our neuron, the defect model size
is Ndefects = 46.

3.3 spiking neuron faulty behaviors

To stimulate the neuron, an input current pulse of 10µs width was used, shown
in Fig. 3.2a. In a fault-free scenario, the neuron should start spiking at regular
intervals after the input stimulus begins and stop spiking once the input stimulus
is over, as shown in Fig. 3.2b.

Simulation experiments revealed different types of faulty behaviours ranging
from catastrophic, i.e. the neuron is clearly non-functional, to parametric, i.e. the
neuron still produces an output spike train but it shows variations in timing
parameters with respect to the nominal response. Catastrophic faulty behaviors
were observed in 31 defect simulations, while parametric faulty behaviors were
observed across the 1000 MC runs and in the rest 15 defect simulations.

3.3.1 Catastrophic Faults

We observe six different catastrophic faulty behaviors. These faults are consid-
ered fatal to the circuit operation. The neuron is not spiking correctly in response
to the input stimulus, and it is considered defective. These faults are observed
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Figure 3.2: Nominal operation of I&F neuron.

only as a result of physical defects in the circuit elements, and they are listed
next, along with an example of a root-cause defect.

1. Saturated Output
A state where the neuron is constantly firing regardless of the presence of
an input stimulus. Fig. 3.3 shows a saturated output caused by a stuck-on
transistor Mp1. This defect triggers a constant high feedback current to
the capacitor, so the capacitor is always charging even without a current
from the synapse.
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Figure 3.3: Saturated output caused by a stuck-on Mp1 transistor.

2. Dead Output
A state where the neuron output is stuck-at-0 when it should be spiking.
The red curve in Fig. 3.4 shows a dead output caused by a stuck-on
transistor Mn4. The capacitor cannot charge since it is constantly held at
its reset value and, thereby, the neuron is incapable of spiking.

3. Stuck-at-X output
A state where the neuron output gets stuck at an arbitrary DC value
between the supply voltage Vdd and ground. The blue curve in Fig. 3.4
shows such a faulty behavior caused by a stuck-off transistor Mp3. This
defect isolates the neuron output from the Ack signal and, in the case of
an ideal stuck-off, it turns the output node into a floating node which can
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settle to any DC value. Given our modeling of stuck-off transistor, the
neuron node ends up settling at 1.1 V.
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Figure 3.4: Dead (or stuck-at-0) output caused by a stuck-on Mn4 transistor and stuck-
at-X output caused by a stuck-off Mp3 transistor.

4. Stuck-at-1 output
A state where the neuron output gets stuck at Vdd. This faulty behavior can
be produced even in the absence of an input stimulus, or it gets triggered
once an input stimulus comes along. An example root-cause defect for the
former case is a stuck-on transistor Mn6, as shown with the dotted red
curve in Fig. 3.5, while an example root-cause defect for the latter case is a
stuck-off transistor Mn5, as shown with the blue curve in Fig. 3.5. A stuck-
on transistor Mn6 forces node n1 to be permanently low and, thereby,
node n2 to be permanently high. In the start-up, Ack is high, thus n3

enables the Rqst and Ack goes low producing a spike. When Ack goes low,
node n3 is floating but retains its low value, thus Ack is permanently set
low and the output gets stuck-at-1. On the other hand, a stuck-off transistor
Mn5 cuts off Vref from the comparator input. According to our modeling
of stuck-off transistor, the gate voltage of Mn5 varies with time and is
set equal to VG,Mn5

(t) = (VD,Mn5
(t) + VS,Mn5

(t))/2, where VD,Mn5
(t)

and VS,Mn5
(t) are the drain and source voltages of Mn5, respectively.

Initially the comparator output is high, and the capacitor keeps charging.
At some point t = ts, Vm exceeds VG,Mn5

and the neuron eventually
spikes. At the time of spiking VG,Mn5

(ts) is lower than Vreset, thus node
n1 gets permanently stuck at a low value and the output gets stuck-at-1
as explained above for the stuck-on transistor Mn6.
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Figure 3.5: Stuck-at-1 output caused by a stuck-on Mn6 transistor (without requiring
input stimulus) and by a stuck-off Mn5 transistor (triggered with input
stimulus).

5. Ghost-spike firing
A state where the neuron generates extra spike(s) that is(are) not a result of
the membrane potential exceeding the reference voltage. We refer to these
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spikes as "ghost" spikes. Fig. 3.6 shows such a faulty behavior caused by a
stuck-off transistor Mp4. When the neuron spikes, the path from node n3

to ground gets cut-off. Node n3 is floating since the defect isolates node
n3 from node n2. Because of our defect model, node n3 will eventually
be weakly pulled up to Vdd. Simulations show that it first gets weakly
pulled up to Vdd stopping spiking and then again it is weakly pulled down
to ground producing a second ghost spike before it is finally stabilized
bringing the neuron to its resting state.
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Figure 3.6: Output with ghost spikes caused by a stuck-off Mp4 transistor.

6. Long-duration spike firing
A state where the neuron produces spikes of longer duration. Fig. 3.7 shows
such a faulty behavior caused by a stuck-off transistor Mp5. When signal
Ack goes low and the neuron spikes, node n4 does not go immediately
high to instantaneously reset the membrane potential and restart the
integration. Instead, node n4 is initially weakly pulled up to Vdd and
gradually increases. As a result, the capacitor starts resetting but at a slow
rate, thus extending the duration of the output spike.
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Figure 3.7: Long-duration spikes caused by a stuck-off Mp5 transistor.

Table 3.1 provides a summary of catastrophic faulty behaviors and shows the
number of defects that produce them.

3.3.2 Parametric Faults

As for the parametric faulty behaviors, we consider two types of timing parame-
ters, namely the time-to-first-spike and the firing rate. It should be noticed that
such timing variations may not be problematic at network-level, i.e., they may
be accommodated during training.

Fig. 3.8 shows the histograms of the time-to-first-spike and the firing rates ob-
served across the MC runs and the defect simulations, excluding the simulations
that led to a catastrophic faulty behavior as discussed above. Results suggest
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Table 3.1: Catastrophic faulty behaviors resulting from defect simulation.

Catastrophic
faulty

behavior

Number of defect
simulations producing it

(Ndefects = 46)

Example
neuron

response

Saturated 5 Fig. 3.3

Dead 12 Fig. 3.4

Stuck-at-X 1 Fig. 3.4

Stuck-at-1 10 Fig. 3.5

Ghost-spike firing 1 Fig. 3.6

Long-duration
spike firing

2 Fig. 3.7

a correlation between the time it takes for the neuron to fire its first spike and
the firing rate, i.e., a neuron that produces a first spike faster has a higher firing
rate, and vice versa. This neuron is implemented with no adaptation mechanism
and simulated with the initial condition for the capacitor voltage set equal to
the reset value, hence the time-to-first-spike is equal to the inter-spike interval,
which is the inverse of the firing frequency.

This data was collected from 1000 MC runs and 15 defects that result in timing
variations. As evident from the figure, the timing parameters of the circuit are
very sensitive to process variations and mismatch. Time-to-first-spike values are
distributed around a mean value of 0.702µs with a standard deviation of 0.1µs,
Fig. 3.8a. Similarly, firing frequencies are also normally distributed around a
mean value of 1.38MHz and vary with a standard deviation of 94kHz, Fig. 3.8b.

On the other hand, out of 46 physical defects, only 15 result in timing vari-
ations, as shown in red in both parts of Fig. 3.8. Some of these variations are
barely noticeable, i.e., they cause a change in the time-to-spike that is so small
that the firing frequency is not affected. An example is a stuck-off transistor
Mp2. This transistor is on in the idle state of the circuit, and once the neuron
spikes, it is responsible for cutting off the positive feedback path to the capacitor.
When it is stuck-off, the feedback path is cut from the start and the capacitor
charges only through the synaptic input. Since this feedback current is applied
to accelerate the charging rate of the capacitor, its absence has very small effect
on the actual circuit operation, and the neuron spikes with a frequency almost
equal to the nominal value.

Other defects can lead to a clear change in the firing frequency, albeit without
affecting the functionality of the neuron. For example, a 50% decrease in the
membrane capacitance results in a similar decrease of the integration time
constant, i.e., the charging speed of the capacitor. This entails that the capacitor
reaches the reference voltage faster than the nominal case, thus producing an
earlier first spike and by definition, spike at a higher firing rate of over 2 MHz.
Other defects that can lead to an apparent variation in the circuit timing are
stuck-off defects in transistors Mn1, Mn2 and Mn3. As explained in section 3.1.2,
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Figure 3.8: Histograms of timing variations.

these three transistors form a dynamic biasing circuit for the comparator that
momentarily change its bias current to control the transition rate. Consequently,
when one of them gets stuck-off, the transition rate of the comparator is affected
and ends up altering the firing rate of the neuron.

3.4 behavioral-level fault model

Based on the experiments conducted in this work, we propose a fault model
according to the different faulty behaviors observed in Section 3.3. This model
can be used to test spiking neurons based on the I&F model in a complete
network.

At the behavioral level, these faults can be recreated depending on their types.
Parametric faulty behaviors are emulated by manipulating the model parameters
described in Section 3.1.1. For example, timing variations can be represented
as changes in either the membrane capacitance Cm in Eq. (3.1), the reference
voltage Vref in Eq. (3.2) or the reset voltage Vreset in Eq. (3.3). Catastrophic
faults on the other hand are modeled a little differently. For example, a dead
output or an output that is stuck-at-1 or stuck-at-X can be simulated just by
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forcing the neuron output to take the respective value. A saturated output is
obtained by forcing a high constant input current applied from the start, so the
neuron is spiking all the time. A delay in the resetting mechanism of the neuron
would produce output spikes with long duration. Finally, the ghost-spike firing
can be recreated by simply adding ghost spikes to the nominal spike train after
decreasing their widths.

The above idea is illustrated in more detail in Chapter 4, where the faulty
behaviors are simulated by faulty instances of a network’s elements, i.e., neurons
and synapses, located anywhere across its boundaries. The faults are injected
in the network with the fault injection framework that we developed for SNNs

by customizing the computational flow of the targeted elements, causing the
corresponding outputs to be faulty in a similar manner to the one previously
described. At the end of the experiments, the impact of each fault is measured
in order to assess the resilience of the underlying network.



4 S N N FA U LT I N J E C T I O N
F R A M E W O R K

The derived behavioral-level fault model of the I&F neuron from Chapter
3 is a realistic approach of how a spiking neuron can come to a failure. The
neurons of a network along with the other components, i.e., synapses, can fail
and therefore affect the network’s operation and interfere with its performance.

In order to form a complete picture of a network’s vulnerabilities, a series
of large-scale fault injection experiments is conducted network-wise across the
layers of neurons and the synapses connecting them. Each fault injection exper-
iment pinpoints the critical fault types and locations throughout the network.
After all the experiments are performed, a complete resilience analysis of the
network can be shaped by leveraging the experimental results. To automate
the fault injection procedure, we have developed a fault injection framework
specifically for SNNs, which is accelerated on a GPU [80].

This chapter describes the SNN fault injection framework and demonstrates
it on two custom-designed deep convolutional SNNs that solve the recognition
tasks of (i) handwritten arithmetic digits and (ii) hand/arm gestures, such as
hand waiving.

49
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4.1 related work on fault injection experiments and frame-
works

An important step towards reliable AI design is assessing the effect of hardware-
level faults on the network performance. Hardware-level faults include process
variations, manufacturing defects, aging phenomena, soft errors, etc. Recent
fault injection experiments in AI hardware accelerators have shown that they
can be highly vulnerable to hardware-level faults especially when those are
happening after training the neural network [81]–[88], since such faults can have
detrimental effect on the inference when occurring in the field of application
and can seriously jeopardize it.

Several fault injection experiments have been reported in the literature for
various DNN models running on different types of AI hardware accelerators.
Transistor-level fault simulations can be performed only at neuron-level [85] or
for small-size networks [89]. In general, performing large-scale fault injection
experiments necessitates the use of a fault model of higher abstraction in order to
make simulation traceable. This also enables a reliability analysis at higher-level
independent of the specific hardware implementation. To this end, fault injection
experiments have been performed using behavioral-level faults at the synapse
and neuron level [84], static and transient bit flips in data-paths and memories
[81], [82], [87], and stuck-at faults at gate-level [83], at quantizing activations
[90], or at the conductance of memristors in memristor crossbars [91].

To perform fault injection experiments, there exist several works that use
customized fault injection frameworks for SNNs [84], [92]–[94] but they support
a specific fault model and none of them has been made public until today.
Software-level fault injection frameworks have also been developed for ANNs,
ranging from basic ones [81], [82], [95], [96] to more elaborate ones aiming
at improving the one-to-one mapping between hardware and software fault
injection [97], reproducing more complex fault models, i.e., extracted from
radiation tests [98], or speeding up the analysis by reducing the fault injection
space [99], [100]. Another possibility is to use generic fault injection tools [101],
[102] to emulate fault effects in the hardware platform, i.e., GPU, running the
application. Such fault injection frameworks are crucial towards the testability
and dependability of AI hardware accelerators [39].

4.2 description of the fault injection framework

The growth of machine learning during the last decades had a great impact on
programming languages as well, leading to many new frameworks designed for
easily developing AI applications. One of the most established languages in the
scientific community for this task is Python, which already contains a plethora of
frameworks, like TensorFlow [103], Keras [104], Theano [105], Pytorch [106], and
more. Each one of them implements its own approach on solving AI problems,
emphasizing on different aspects each time and trading off between others, e.g.
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Figure 4.1: The fault injection framework built on top of the SLAYER and PyTorch
frameworks accelerated on a GPU.

simplicity and modularity. This makes it clear that the selection is left to the
designer based on their preferences and the needs of the application.

Therefore, we selected PyTorch to work with in the fault injection frame-
work. PyTorch is a machine learning library in Python used for designing DNN

architectures. It is optimized to perform dynamic tensor computations with
automatic differentiation and GPU acceleration, and does so while maintaining
performance comparable to the fastest current libraries for deep learning [106].

Despite the huge variety of AI frameworks, none of them has integrated
support for SNNs. To this end, in our fault injection framework, we have chosen
to work with the SLAYER framework [64] which is completely built on PyTorch,
inheriting all its benefits and capabilities. Moreover, it uses the SRM model for
the spiking neurons described in Section 4.2.1 and implements learning with
a variation of the back-propagation algorithm. A synopsis of the employed
frameworks is illustrated in Fig. 4.1.

Fault injection and simulation are performed by customizing the flow of
computations according to the behavioral modeling of the faults described in
Section 4.2.2. The fault injection methodology is described in Section 4.2.3. Fault
simulation acceleration is achieved first by considering a behavioral model
of the SNN and performing fault injection at this level independently of the
hardware implementation, and second by running training and inference on a
GPU. Note that a traditional CPU-only system is proven to be largely inefficient
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for the complexity of a large-scale fault injection campaign even at this abstract
representation.

For the execution of the experiments we used the same system setup, consist-
ing of an Intel Xeon W-2133 CPU, a Nvidia Quadro RTX 4000 GPU, and 32 GB of
RAM. Inference and training times with injected faults are similar to the average
fault-free inference and training times regardless the type of the injected fault.

4.2.1 The Spike Response Model

The spiking neurons of the simulated networks are modeled after the SRM; a
generalization of the ubiquitous I&F model in a sense that the parameters of the
model are replaced by (parametric) functions of time, called filters [54].

In the SRM, the state of the neuron at any given time is determined by the
value of its membrane potential, u(t), and this potential must reach a certain
threshold value, ϑ, for the neuron to produce an output spike. The membrane
potential of a neuron j in layer l is calculated as:

ul
j(t) =

∑
i

ωl−1,l
i,j (ε ∗ sl−1

i )(t) + (v ∗ slj)(t) (4.1)

where sl−1
i (t) is the pre-synaptic spike train coming from neuron i in the

previous layer l− 1, slj(t) is the output spike train of the neuron, ωl−1,l
i,j is the

synaptic weight between the neuron and the neuron i in the previous layer l− 1,
ε(t) is the synaptic kernel, and v(t) is the refractory kernel.1

In Eq. (4.1), the spiking action of the neuron is described in terms of the
neuron’s response to the input pre-synaptic spike train and the neuron’s own
output spikes. The incoming spikes by the neurons in the previous layer are
scaled by their respective synaptic weights and fed into the post-synaptic neuron.
The response of the neuron to the input spikes is defined by the synaptic
kernel ε(t) which distributes the effect of the most recent incoming spikes on
future output spike values, hence introducing temporal dependency. For our
experiments, we use the form [64]:

ε(t) =
t

τs
· e(1−

t
τs

) ·H(t) (4.2)

where H(t) is the unit step function and τs is the time constant of the synaptic
kernel. The second term in Eq. (4.1) incorporates the refractory effect of the
neuron’s own output spike train onto its membrane potential through the
refractory kernel. The form used here is:

1 Eq. (4.1) holds for any neuron no matter the type of the layer; however, in convolutional layers
neurons are arranged in a 3-D representation, i.e., width × height × channels, and, thereby, we
either need to consider a flat indexing or 3-D indexes.
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v(t) = −2ϑ
t

τref
· e(1−

t
τref

) ·H(t) (4.3)

where τref is the time constant of the refractory kernel.
When u(t) > ϑ the neuron fires a spike, e.g. slj(t) = 1. If u(t) < ϑ, then the

neuron remains silent, e.g. slj(t) = 0.

4.2.2 Fault Modeling

We treat the SNN as a distributed system where neurons are discrete entities
that can fail independently. We use the neuron fault model proposed in Chapter
3 to describe faults at behavioral-level and make fault simulation for deep
SNNs traceable. Because this fault model is generated by performing detailed
transistor-level simulations at neuron-level and collecting all types of faulty
behaviors, it becomes independent of the hardware implementation, which
helps us draw general conclusions. The most systematic faulty behaviors are
adapted to our neuron model of Section 4.2.1.

4.2.2.1 Neuron Faults

We define five fault types for a neuron. The first two types, namely dead and
saturated neuron, explicitly act on the output spike train, while the last three
types, namely neuron timing variations, threshold perturbation, and refractory
period perturbation are parametric faults that act on internal parameters of the
neuron and implicitly affect the output spike train.

1. Dead neuron: A fault in the neuron that leads to a halt in its computations
and a zero-spike output. This fault is modeled by forcing the output spike
train to be always low.

2. Saturated neuron: A fault that causes the neuron to be firing all the time,
even without any external stimuli. This fault is modeled by skipping the
computations and forcing the output to be high at every time step.

3. Neuron timing variations: A fault that results in timing variations of the
output spike train, i.e. time-to-first-spike and firing rate. This parametric
fault is modeled by varying the value of τs in Eq. (4.2).

4. Threshold perturbation: A fault in the value of the threshold at which the
neuron spikes, which can change the frequency of spiking or eventually
cause the neuron to be stuck either at a saturated or a dead state. We
model this fault as a deviation in the value of ϑ.

5. Refractory period perturbation: A fault that can influence the refractory
mechanism of a spiking neuron and eventually restrain the output of
the neuron or completely stop it from firing. This fault is modeled as a
variation in the value of τref in Eq. (4.3).
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Additional faulty behaviors observed in Chapter 3, i.e., neuron stuck at an
intermediate output value, ghost-spike firing, and long-duration spike firing,
are specific to the spiking neuron employed and, thereby, are not considered
herein.

4.2.2.2 Synapse Faults

Synapses transfer signals from neurons in layer l to neurons in layer l+1, and they
determine the significance of each signal on the recipient neuron through the
weights. Therefore, weight errors can be used to model faults in the synapses.
Here we define three synaptic fault types, namely dead, saturated, and bit-
flipped synapse.

1. Dead synapse: A fault interpreted as a cut in the synapse circuit that
obstructs the transmission of signal from neuron i in layer l to neuron j in
layer l+1. This fault is equivalent to -and modeled as- a zero weight.

2. Saturated synapse: A fault that causes a synapse to transfer the signal from
neuron i in layer l to neuron j in layer l+1 with a weight of high absolute
value far beyond the tails of the nominal weight distribution resulting
from training. A weight can have either positive or negative sign and a
fault can push it towards the positive or negative maxima. Therefore, we
consider both positive and negative saturation. This fault is modeled by
assuming a relatively large absolute weight value.

3. Bit-flipped synapse: A fault where one or more of the q bits of the quan-
tized synaptic weight is flipped. The binary value is then mapped back to
a real one. This fault model essentially corresponds to a hardware-aware
synapse fault.

4.2.3 Fault Injection Methodology

Fault injection is performed by customizing the flow of computations in the
SLAYER and PyTorch frameworks. Fig. 4.2 illustrates how neuron faults are in-
jected in layer l and synapse faults are injected in the synaptic matrix connecting
layer l with layer l+ 1.

In particular, if neuron nx in layer l is dead, then its spike train output
calculation is bypassed and its output is forced permanently to 0, e.g. slx = 0.
If neuron ny in layer l is saturated, then its spike train output calculation is
bypassed and its output is forced permanently to 1, e.g. sly = 1.

For a fault in the synapse connecting neuron i in layer l to neuron j in layer
l+ 1, we modify the synapse weight, e.g. ωl,l+1

i,j = ω̄l,l+1
i,j , where ω̄l,l+1

i,j is 0 for
a dead synapse fault, has a relatively high positive value for a positive saturation
fault, or has a relatively low negative value for a negative saturation fault.

For parametric faults in neurons we cannot simply modify the parameters
of a single neuron since the parameters are set initially and shared among all
neurons in the network. Our approach, as illustrated in Fig. 4.2, is to create a
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Figure 4.2: The fault injection methodology.

dummy faulty layer (dfl) identical to layer l with the exception that all neurons
have the target parametric fault. The neurons in dfl are driven by the incoming
spike trains from the neurons in layer l− 1. Then, the output spike train of the
neuron nz in layer l where the parametric fault is to be injected is replaced by
the output spike train of the corresponding neuron n

′
z in dfl, e.g. slz = sdflz .

The fault injection and simulation procedures are non-intrusive to the inner
part of the network operations, meaning that the neuron model remains unaf-
fected. It is only the outcome of the calculations that is altered according to the
injected fault’s desired effect.

Faults can be injected in a flexible way in the network in terms of fault
application time, fault position, fault number, and fault effect. To allow this and
automate the fault injection process in order to cover as many experiment types
as possible, we have equipped the framework with the following tools:

• Pre/Post-training fault injection: Faults can be injected at any point of the
SNN simulation either before or during or after the training of the network.

• Permanent/Transient fault injection: Faults can exist permanently in the
network, or they can have a transient effect by being deactivated anytime
during the simulation.

• Multiple fault injection: Multiple faults can be simultaneously injected at
any positions, which may also concern different layers across the network.

• Successive fault injections: A single fault or a set of faults is successively
injected to a range of positions across the network. In other words, the
fault(s) is(are) injected to the first position of the given ones, the effects
are evaluated, the injection continues with the next position, and so on.
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Figure 4.3: Architecture of the SNN for the N-MNIST dataset.

This feature allows for a failure analysis of a network. In this case, the
necessary simulation time may be accelerated and the calculations may be
reduced by storing the output of the last non-faulty layer and using it as a
start for the feed-forward operation in order to avoid a massive repetition
of calculations at the non-faulty, unaffected part of the network.

4.3 case studies

As case studies, we use two convolutional SNNs performing two different cog-
nitive tasks, namely a SNN trained to classify the N-MNIST dataset [65] and
a SNN trained to classify IBM’s DVS gesture dataset [107]. Their architectures
are shown in Figs. 4.3 and 4.4, respectively. In each case, the winning class is
declared based on the most triggered neuron at the output layer.

4.3.1 N-MNIST SNN

The N-MNIST dataset is a neuromorphic, i.e., spiking, version of the MNIST
dataset [108], which comprises images of handwritten arithmetic digits in gray-
scale format [65]. It consists of 70000 sample images that are generated from the
saccadic motion of a DVS in front of the original images in the MNIST dataset.
The samples in the N-MNIST dataset are not static, i.e. they have a duration
in time of 300ms each. The dataset is split into a training set of 60000 samples
and a testing set of 10000 samples. The SNN architecture is inspired from the
LeNet-5 network [8] and is shown in Fig. 4.3. The classification accuracy on the
testing set is 98.08%, which is comparable to the performance of state-of-the-art
level-based DNNs.

4.3.2 Gesture SNN

The IBM’s DVS128 gesture dataset consists of 29 individuals performing 11 hand
and arm gestures in front of a DVS, such as hand waving and air guitar, under 3
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Figure 4.4: Architecture of the SNN for the IBM’s DVS128 gesture dataset.

different lighting conditions [107]. Samples from the first 23 subjects are used
for training and samples from the last 6 subjects are used for testing. In total,
the dataset comprises 1342 samples, each of which lasts about 6s, making the
samples 20× longer than of those in N-MNIST. Due to computation limitations
of the neuromorphic simulation, we trimmed the length of the samples to
about 1.5s. We used the architecture proposed in [64], shown in Fig. 4.4. The
network performs with an 82.2% accuracy on the testing set, which is acceptable
considering the shortened samples of the dataset and the shallower architecture
compared to the architecture in [107].

4.4 layer criticality

By default, the convolution layers are not fully-connected, thus having a reduced
number of synaptic connections. For example, in the N-MNIST SNN, if we were
to fully connect the input to layer SC1, there would be 4624× more synapses.
Instead, kernels are used in order to scan the input image or the neuron outputs
of the previous convolution layer. In this way, the synaptic connections are
recycled and a fault occurring in a synapse of a kernel will be affecting all
neurons of the next layer for the specific channel corresponding to the kernel.
Moreover, a synapse fault is of greater impact than a neuron fault in convolution
layers. However, although these faults will propagate to the following layers,
they do not have a significant effect since there are many kernels used in each
layer. If a kernel contains a fault, then the network only loses its ability to
recognize a very specific pattern or shape associated with this kernel.

4.5 faults occurring after training

This case considers faults that occur in an already trained network, thus affecting
the network performance during inference. Under this scenario, it is likely that
a single fault may have detrimental effect on the performance. In fact, the effect
of a fault depends on many factors. For example, considering a neuron, it
depends on the location of the neuron in the network hierarchy, as well as on the
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Figure 4.5: Effect of neuron faults on classification accuracy:
(a) N-MNIST SNN; (b) Gesture SNN.

weights of subsequent synaptic connections. Therefore, for this part of the study,
fault injection is performed on a per-neuron and a per-synapse basis, i.e. we
consider a single fault assumption where one fault is injected at a time affecting
one element at a time. In Chapter 8 we will show how multiple neuron fault
scenarios can be covered as well in a great extend.

The metric used to evaluate the fault severity is the classification accuracy
drop of the faulty network with respect to the baseline classification accuracy of
the fault-free network, computed on the testing set.

4.5.1 Neuron Fault Injection Results

The effect of dead and saturated neuron faults on the classification accuracy is
shown in Figs. 4.5a and 4.5b for the N-MNIST and gesture SNNs, respectively.
The x-axis shows the different layers and for each layer we show two columns
each corresponding to a fault type: dead and saturated neuron. Pooling layers
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SPX in the gesture SNN aggregate regions of spikes of their previous convolution
layers and do not contain any neurons, thus they are excluded from the analysis.
A column is a colored bar possibly separated into chunks of different colors.
Each chunk of the bar corresponds to a specific classification accuracy according
to the color shading shown at the bottom of Fig. 4.5, and the projection on
the y-axis shows the percentage of neurons for which the fault results in this
classification accuracy.

The effect of perturbed neurons is shown in Figs. 4.6-4.8. For a given layer,
we vary the corresponding parameter of one neuron at a time. We demonstrate
the per-layer average, minimum, and maximum classification accuracy observed
across all faulty neurons for parametric values expressed in % of the nominal
value.

Following are some brief observations that can be made regarding the effect of
different neuron fault types. The general conclusions are that saturation neuron
faults are the most lethal, and that the impact of all neuron fault types may be
severe for the last hidden and output layers.

4.5.1.1 Dead Neurons

Dead neuron faults may impact classification accuracy only for the neurons in the
last hidden and output layers. In the output layer, a dead neuron implies always
misclassifying samples of the class corresponding to the neuron. For example,
as it can be seen for the N-MNIST SNN in Fig. 4.5a, a dead neuron in the output
layer SF5 directly drops the classification rate to (1− 1

#classes) ∗ 100% = 90%.

4.5.1.2 Saturated Neurons

Saturation neuron faults, on the other hand, may impact classification accuracy
for neurons at any layer, as shown in the gesture SNN. In the output layer,
a saturated neuron implies always selecting the corresponding class of the
saturated neuron, thus samples from all other classes are always misclassified.
This means that only one class is correctly predicted at all times regardless of
the input. For example, as it can be inferred from Fig. 4.5b the accuracy of the
gesture SNN with a saturated neuron fault at the output layer drops to a value
of 1

#classes ∗ 100% = 9.1%.
We also observe that the effect of saturated neuron faults is magnified for

layers that have a smaller number of outgoing synapses, i.e., compare SC1 and
SC2 layers in the gesture SNN, where the synapses connecting SC1 and SC2 are
much less than those connecting SC2 and SF3.

4.5.1.3 Neuron Timing Variations

Neuron timing variations have an impact only for the last hidden and output
layers, thus for simplicity Figs. 4.6a and 4.6b exclude all other layers. For the
N-MNIST SNN, large variations in τs must occur to observe a drop in the
classification accuracy of no more than 10%, i.e. more than 80% reduction for the
hidden layer SF4 and more than 50% reduction or 100% increase for the output



60 snn fault injection framework

0 50 100 150 200 250 300 340

s (% ofnominal value)

0

20

40

60

80

100

Range max-min SF5
Range max-min SF4
SC3
SF4
SF5

C
la

ss
if
ic

at
io

n
ac

cu
ra

cy
(%

)

(a)

(a)(b)

Figure 4.6: Effect of neuron timing variations: (a) N-MNIST SNN; (b) Gesture SNN.

layer SF5. For the gesture SNN, we observe that this fault type can seriously
affect the output layer SF4, while the last hidden layer contributes to significant
classification accuracy drop only when τs reduces by more than 50%. A smaller
τs implies a narrower synaptic kernel in Eq. (4.2), i.e., a decreased integration
time window, thus reducing the value that the membrane potential can reach.
As a result, the spiking probability is reduced and at the extreme the neuron
could end up as a dead neuron. Similarly, it can be argued that a higher τs

increases the spiking probability and at the extreme the neuron could end up as
a saturated neuron.

4.5.1.4 Neuron Threshold Perturbation

Fig. 4.7 demonstrates the effect of threshold perturbation faults for each of the
three layers SC3, SF4, and SF5 of the N-MNIST SNN. Small thresholds trigger
spiking at lower values of the membrane potential and the neuron may spike
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Figure 4.7: Effect of threshold perturbation faults on the N-MNIST SNN.
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Figure 4.8: Effect of refractory period faults on the N-MNIST SNN.

more than usual. In the extreme, the neuron could end up as a saturated neuron.
On the other hand, a high threshold requires higher values of the membrane
potential for spiking and in the extreme the neuron could end up as a dead
neuron. For layer SF5 it is evident that classification accuracy drops drastically
as ϑ starts reducing below 50% of the nominal value, while even very large
values of ϑ do not cause the accuracy to fall below 90%. As for layers SC3 and
SF4, threshold perturbation faults have no obvious effect.

4.5.1.5 Neuron Refractory Period Perturbation

Fig. 4.8 demonstrates the effect of refractory period faults for each of the three
layers SC3, SF4, and SF5 of the N-MNIST SNN. In general, the minimum interval
between two consecutive output spikes cannot be lower than the refractory
period. If the refractory period is too high, the neuron has a hard time spiking
and could end up with a dead output. On the other hand, if it gets too short, the
neuron will be allowed to spike more than usual and might lead to a saturated
output. Results show that for layer SF5 τref must drop below 30% of the nominal
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value for the classification accuracy to start decreasing and that τref values below
15% result in severe classification accuracy drop down to 10%. Similar to the
other two parametric faults, layers SC3 and SF4 are hardly affected by refractory
period faults.

4.5.2 Synapse Fault Injection Results

For synapse faults, fault space reduction becomes of utmost importance since
the number of synapses can be in the order of several millions. We performed
an analysis for the dead and positively saturated synapses on the N-MNIST
SNN to validate the hypothesis that only the last hidden and output layers are
affected and the result is presented in Fig. 4.9. Concerning the effect of the
bit-flip synapse fault on the classification accuracy, it is shown in Fig. 4.10 for
the gesture SNN. Each box in Figs. 4.9 and 4.10 corresponds to one synapse
connecting two neurons in two subsequent layers j− 1 and j, with the neuron
numbers for layers j− 1 and j shown in the row and columns, respectively. The
classification accuracy in the presence of a synapse fault is shown with the box
color according to the color map at the bottom of the figures.

There follow some observations concerning the effect of the various synapse
faults on the two case studies. Similarly to neuron fault types, the saturation
synapse faults cause the most serious impact on the networks’ performance,
while the effect of any synapse fault becomes noticeable only at the last hidden
and output layers.

4.5.2.1 Dead Synapses

Dead synapses just reduce the firing activity of the post-synaptic neuron. As it
can be seen from Figs. 4.9a and 4.9c, they have no impact on the classification
accuracy for none of the network’s layers. These findings were corroborated on
the gesture SNN as well.

4.5.2.2 Positively Saturated Synapses

Figs. 4.9b and 4.9d show that positively saturated weights can seriously affect the
synapses connecting the last two layers SF4-SF5, while few such critical synapse
faults are observed for layers SC3-SF4. Synapse faults in previous layers have no
impact and are excluded from Fig. 4.9. The reason behind this observation is
that positive saturated weights could cause the post-synaptic neuron to always
fire, i.e, saturate.

4.5.2.3 Bit-Flipped Synapses

Fig. 4.10 presents the effect of the hardware-aware synapse fault model of bit-
flips on the quantized synaptic weights connecting the last two layers SF3-SF4

of the gesture SNN. As shown, a bit-flipped synapse has a smaller impact on the
performance of the network. We observe that only bit flips in the first two Most
Significant Bits (MSBs) 7 and 6 cause a classification accuracy drop, while for bit
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(a) Dead synapses between SC3-SF4.

(b) Positively saturated synapses between SC3-SF4.

(c) Dead synapses between SF4-SF5.

(d) Positively saturated synapses between SF4-SF5.
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Figure 4.9: Effect of synapse faults on the classification accuracy of the N-MNIST SNN.
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(a) Bit 7 (MSB).

(b) Bit 6.

(c) Bit 5.
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Figure 4.10: Effect of bit-flip synapse faults between SF3-SF4 for the gesture SNN.



4.6 faults occurring before training 65

5 the baseline accuracy is observed. Bit-flips for bit positions 0-4 have no effect
and are not shown in Fig. 4.10.

4.6 faults occurring before training

This case considers faults that occur before the network is trained, effectively
altering the architecture of the network and its ability to learn the specific task.
Under this scenario, it is intuitively expected that for the majority of single faults,
the neural network will show great resilience as it has a strong ability to learn
around faults, i.e. bypassing the undesired behavior of its faulty part. Therefore,
for this part of the study, we need to consider a multiple fault assumption
serving as a first order analysis on the most influential faults and setting out to
find the fault density beyond which the learning capacity starts degrading.

We confirmed that training the N-MNIST network with one fault or even a
few tens of faults injected into neurons of layers SC3 and SF4 or into synapses
connecting layers SC3 and SF4 and layers SF4 and SF5 has no effect on the
classification accuracy. In contrast, in the case of layer SF5, neuron faults have
a drastic and pre-determined effect, as discussed in Section 4.5, that cannot
be masked by training. For these reasons, in this experiment we exclude layer
SF5, and we set out to find the number of fault injections or fault density, i.e.
the maximum inherent fault tolerance capability, beyond which classification
accuracy starts degrading.

More specifically, we consider only the case of neuron faults in layers SC3

and SF4 since, as it has been shown in Section 4.5, faults in neurons are much
more likely to cause classification accuracy degradation compared to faults in
synapses. Furthermore, among all neuron fault types, we consider only dead
and saturated faults since their impact is far greater compared to parametric
faults, and when parametric faults become severe, then the neuron approximates
either a dead or a saturated neuron.

The fault injection is performed using batches of faults in an accumulative
way. More specifically, each batch contains 10 faults that are randomly selected
amongst the dead and saturated types and injected across 10 randomly selected
neurons in layers SC3 and SF4. After that, the network is trained and the
classification accuracy is evaluated for the first batch of faults. Then, a second
non-overlapping batch of faults is added to the first batch to include 20 faults in
total, and so forth. Overall, we performed training with k ∗ 10 faults injected at
a time, where k = 1, · · · , 17. Each training experiment is repeated 10 times and
the average classification accuracy is reported.

The results of this experiment are shown in Fig. 4.11. These results show
that the network is capable of masking faults during its training. For up to 100

simultaneous faults, the final classification accuracy on the testing set after 20

training epochs reaches the fault-free value of around 98%. However, as the
number of faults increases, we notice a slowing down in the learning curve. For
110 or more faults, we observe a drop in the classification accuracy that worsens
with the increase in fault density. For example, for 130 faults the classification
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Figure 4.11: Classification accuracy drop as a function of fault density. Only dead and
saturated faults in layers SC3 and SF4 of the N-MNIST SNN are considered.

accuracy drops by about 10%, whereas for 170 faults the classification accuracy is
stuck at 10% from the first learning epoch, implying that the network performs
a random classification. As a conclusion, the SNN can tolerate up to about 100

faulty neurons in layers SC3 and SF4 out of the 170 neurons in these two layers,
which is arguably a high defect density. This shows that for the specific cognitive
task the network presents a lot of redundancy and can be pruned to save area
and power.
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Chapters 3 and 4 focused on the SNN resilience from a software point of
view. Although the injected faults were derived from a hardware design, the
neurons and synapses were considered isolated from each other. The use of
actual neuromorphic hardware to perform the network’s calculations imposes
new challenges that cannot be simulated in software. The reason behind this
stands in the practical components that build up the system and are used for
second-role operations, like the transmission of the spikes among the neurons.
In terms of software, tensors are used to hold the synaptic weights and the
states of the neurons and are updated after a relevant operation. On the other
hand, concerning a hardware approach, neurons of different layers need to
communicate with each other in order to pass the generated information, i.e.,
spike trains, and this subpart of the system may fail equivalently.

This chapter presents a neuromorphic hardware experimentation platform
used to accelerate the inference of convolutional SNNs and which constitutes the
basis of the experiments held as part of the neuromorphic hardware reliability
analysis in Chapter 6, the on-line testing procedure in Chapter 9, and was
used to validate the compact functional test generation approach in Chapter
7. The hardware accelerator is designed in Very High-Speed Integrated Circuit
Hardware Description Language (VHDL) and is implemented on a FPGA board
as part of an ARM-based embedded system that complements the utilization
and evaluation of the accelerator.

67
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5.1 neuromorphic hardware architecture

The building block of the SNN is an event-driven configurable convolutional node
proposed in [66] as a generic block that can be used to build multi-layer feature
maps for convolutional SNNs communicating through the AER protocol. This
section presents the node along with a brief description of its most important
features.

5.1.1 The Convolutional Node

The node consists of three main blocks, namely a convolutional unit, an internal
configuration block, and a router, as shown in Fig. 5.1. The ports of the node are
optimized for a 2-D layout, an efficiently adopted structure in hardware CNNs

since it optimizes the use of on-chip space. Each node has four bidirectional
ports connecting it to its immediate neighbors to the north, south, east, and
west.

5.1.1.1 The Convolutional Unit

Shown in Fig. 5.2, the convolutional unit consists of an array of I&F neurons
representing pixels, three main memory blocks (i.e., kernel memory, neuron
memory, and rate-saturation memory), First-In-First-Out (FIFO) input and output
registers, a controller block, and a Serial Peripheral Interface (SPI) block.

The convolutional unit is where the convolution of an input flow of events
evin(t, x,y,p,k) and a kernel wk(x,y) takes place to produce an output flow of
events evout(t, x,y,p), where t is time, x and y are the pixel address coordinates,
p is the polarity of the event, and k is the kernel ID in the kernel memory. In
addition, the unit has two more important features: global leakage and rate
saturation. Leakage is the decay of the neuron membrane potential in between
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Figure 5.2: The convolutional unit.

incoming spikes and it is implemented by forcing the neuron state to converge
towards the reset value after a certain time interval, which is determined by a
global counter. The rate saturation feature, on the other hand, is the imposition
of the minimum refractory period property found in biological neural networks,
i.e., the neuron is not allowed to produce an output spike for a certain period
after the last output spike, hence controlling the maximum spiking frequency of
a neuron.

With every incoming event read from the input FIFO register, a convolution
operation is executed and the values of the corresponding pixels are updated and
compared to the positive and negative thresholds. If the value of a threshold is
reached by a pixel and the condition imposed by the rate saturation mechanism
is fulfilled, the pixel produces an output event with address (xout,yout) and
polarity pout and writes it in the output FIFO register.

To control the traffic, a signal is activated when the registers get full, and
the incoming events are discarded until there is room for more events in the
register. While this implies that the output events would get down-sampled and
some information will eventually be lost, the spatio-temporal correlation of the
passing events is preserved, keeping the integrity of the carried information.

5.1.1.2 The Router

In hardware implementations of neural networks, the highly dense connec-
tivity required between neurons poses a challenge in terms of on-chip area.
Routers handle the transmission of events from their origin to their destination,
hence providing a practical solution to this problem [109]. In this design, the
destination-driven addressing scheme is adopted, which means that for every
event, there is a routing header that carries the x and y coordinates of the
destination node in the mesh distribution of the network.
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5.1.1.3 The Configuration Block

The convolutional node has a set of adjustable parameters that need to be
configured prior to the inference operation of the network. Some parameters
belong to the convolutional unit, such as the neuron threshold and the kernel
weights. Others belong to the router, such as the local address of the node and
the routing table information necessary for redirecting events through the ports
of the node. Each parameter value is sent to the node through a SPI, with an
index indicating its identity. The configuration block interprets the parameter
identities and handles their allocation in their corresponding locations in the
different memory blocks.

5.1.2 Memory Hierarchy

As discussed in Section 5.1, the generic convolutional node used as a building
block in this hardware implementation is configurable through a set of modi-
fiable parameters. These parameters are stored in mutually exclusive memory
blocks inside the node, which are the subject of our reliability experiments. The
parameters have an 8-bit representation in hardware and can be categorized
into:

1. Splitter Parameters:
The splitter is parametrized by the number of input event copies to generate
and send to each first-layer node, as well as the node addresses. Splitter
parameters make up 0.52% of the used memory. Splitter parameters are
stored in registers with a total size of 12B, making up about 0.013% of the
entire memory.

2. Router Parameters:
The router needs two important settings, namely the local address of the
node and the routing information necessary for redirecting events through
its ports, i.e., addresses of next-layer nodes and the direction towards them
(down, right). The router also carries the kernel ID information so that
the correct kernels corresponding to each event can be retrieved from the
memory. Router parameters make up 12.39% of the used memory. These
parameters are also stored in registers with a total size of 298B and make
up a little over 0.3% of the entire memory.

3. Neuron Parameters:
Neuron parameters govern the key features of the I&F neurons within the
node. They include the neuron threshold, the leakage pulse amplitude and
period, and the refractory period. These parameters are set for the whole
node, i.e., they are global to the whole array of neurons inside a node.
Neuron parameters make up 7.8% of the used memory. These parameters
are again stored in registers with a total size of 180B, occupying less than
0.2% of the entire memory.



5.2 embedded system design 71

Figure 5.3: Embedded neuromorphic hardware accelerator platform.

4. Kernel Parameters:
Every node of the network has a specific number of kernels and needs two
parameters per kernel, namely the kernel size, which defines the size of
the word needed to store each kernel, and the center-shift of the kernel
which determines whether the kernel is applied to the pixels in the zone
around the one given by the event destination address or it is shifted to
another pixel. Kernel parameters make up 10.75% of the used memory.
These parameters are stored in a RAM of size 2.25KB, making up around
2.5% of the entire memory.

5. Kernel Weights:
The number of kernel weights per kernel is determined by the kernel size,
i.e., a n× k kernel has n ∗ k weights. The kernel weights considering all
kernels in all nodes of the network make up 68.55% of the used memory.
The kernel weights necessary for the convolution process with the input
events are stored in a RAM of size 88KB that makes up about 97% of the
entire memory. This kernel memory size is determined by the number of
kernels and the maximum acceptable size of each kernel.

5.2 embedded system design

Like the majority of ASICs, our SNN hardware accelerator is a complex circuit
that does not stand on its own. Thus, it is necessary to have a controlling
system that is in position to communicate with the hardware design via its
Input/Output (I/O) pins. For this, we make use of the ARM Cortex A53 on-
board processor of the Zynq®UltraScale+TM MPSoC ZCU104 FPGA board, where
the accelerator design is flushed. To automate the whole procedure of the
configuration, injection, and evaluation of the network, we built a framework to
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support these operations. Fig. 5.3 summarizes the embedded system design and
how its building components cooperate.

5.2.1 Controlling Processor

Controlling a high-performance circuit, like a SNN hardware accelerator, is a
very demanding procedure and can become quite challenging. The huge amount
of events consisting a neuromorphic dataset creates the need for a high input
and output throughput in the circuit. The average time between successive
input events in only a few nanoseconds, leaving only tiny time windows for
the controller to perform the needed operations to set the next input and store
any output that might have be raised asynchronously. It is evident that the
communication with the circuit is required to be fast enough, so that it does
not interfere with its operation. This way, any time delays are avoided and
the temporal dependencies of the spike trains, that play a major role in the
processing of SNNs, remain intact.

For the reasons above, and in order to have a more compact solution, we
selected to create a standalone system application in C running on the quad-core
on-board processor of the platform. We also exploit the benefits of the multiple
cores in order to parallelize some of the tasks where possible and thus execute
them without affecting each other, e.g., there is no need to wait for a store
operation of an output event to finish before sending a new input event request.
This becomes more evident for the more demanding operations related to the
on-line testing features of the platform, which are explained in details in Chapter
9.

To automate the reliability analysis, as presented in details in Chapter 6, the
platform supports a batch mode during which a group of experiments is loaded
at once to the SD card. The C application iterates over the experiments and
executes them successively, after resetting the SNN accelerator at the end of each
experiment in order to generate independent results. For each experiment, the
following actions are coordinated by the controlling application:

1. The configuration of the SNN. During this step, the configuration file of
the experiment containing the values of all the parameters mentioned in
Section 5.1.2 is read from the SD card and the values are written in the
corresponding memories sequentially via the SPI of the SNN accelerator.

2. The generation of the input spiking events according to the dataset. The
dataset file, stored in AEDAT format, is read from the SD card. When the
execution time reaches the timestamp of the next event in the line, a spiking
event is generated. The controlling application then sends an input request
signal to the SNN accelerator and waits for an input acknowledgment
signal before it sends over the event.

3. The monitoring of the output spiking events and their storage to the
SD card. The SNN accelerator may produce an output event at any time.
Whenever this happens, it sends an output request signal to the controlling
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application and the latter acknowledges its successful reading after having
stored it.

5.2.2 Support Framework

The setup of a SNN and its necessary components before its deployment on the
platform, as well as the post-analysis of the experimental results, do not run
concurrently to the inference of the network, and therefore these operations are
handled by an external support framework. The support framework is designed
in MATLAB and is responsible for all these operations taking place before and
after the execution of an experiment. The major tasks handled by the framework
are listed below:

• Generation of the configuration data for the nominal SNN. The configura-
tion file containing all the information to be stored on the accelerator’s
memories is exported in a binary format. The configuration file can be
then stored to the SD card for a fault-free experiment, or be passed to the
next script for a fault injection experiment.

• Injection of one or multiple faults into the configuration data to generate
faulty versions of the SNN. The resulted files are stored to the SD card. A
detailed description of the fault model is presented in Section 6.2.

• Training of the classifiers used for the on-line testing of the hardware
accelerator (see Ch. 9).

• Processing of the output spiking events written to the SD card in order
to classify the results. The winning class is the one whose node produces
the largest sum of spikes. Note that spikes have either a positive, or a
negative polarity, thus the absolute number of spikes is different than the
sum of the spikes’ polarities. This step also calculates the SNN recognition
accuracy over the testing set.





6 R E L I A B I L I T Y A S S E S S M E N T O F
N E U R O M O R P H I C H A R D WA R E

The transfer of neural networks into hardware unavoidably makes them
susceptible to hardware-level faults, despite the parallelism and sparsity that
defines them. Hardware-level faults can occur either during manufacturing,
such as physical defects and process-induced variations, or in the field due to
environmental factors and aging. The performance under fault scenarios needs
to be assessed so as to develop cost-effective fault-tolerance schemes.

In Chapters 3 and 4, resilience characteristics of SNNs have been studied
by performing fault injection at transistor-level for single neurons and in a
behavioral-level model for entire networks, respectively. Although experimenting
on higher abstraction models allows flexibility, the particularities of a hardware
implementation are not taken into consideration.

In this chapter, we assess the resilience characteristics of actual neuromorphic
hardware, and particularly of the neuromoprhic hardware accelerator for SNNs

that was presented in Chapter 5. The fault injection experiments pinpoint the
parts of the design that need to be protected against faults, as well as the parts
that are inherently fault-tolerant [110].
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Figure 6.1: Convolutional SNN for poker card symbol recognition.

6.1 case study

The SNN used in this work is built to classify a dataset representing the 4 poker
card symbols [111]. A deck of 40 poker cards was presented in front of a DVS

for a period of around 1 s. The events were recorded and processed in order
to generate 40 samples of 32× 32 pixel windows showing only the centered
symbols. The resulting stimulus has a total of 174644 events, a duration of
950 ms, and an average speed of 184K events per second. In our experiments,
we use a version of the dataset slowed down to 1% of the original speed in order
to ensure a scenario where no input events are discarded.

The convolutional SNN is designed and trained in software in a frame-based
format using backpropagation, and then transformed into the equivalent spiking
form [111]. Afterwards, the weights and parameters are scaled, rounded, and
then tuned to make up for the discrepancies between hardware and software
implementations using simulated annealing as an optimization algorithm [66].

As shown in Fig. 6.1, the SNN consists of 4 convolutional layers (C1, C2, C3,
and C4) made up of 22 convolutional nodes. The first 2 layers are followed by
2 sub-sampling layers (S1 and S2). The network has 94 kernels in total, where
layer C1 has 1 kernel per node, layer C2 has 6 kernels per node, layer C3 has 4

kernels per node, and layer C4 has 8 kernels per node.
The 2-D hardware layout of the FPGA implementation is shown in Fig. 6.2,

where the nodes are arranged in a 6× 4 mesh with bidirectional connections
between the routers of each block and its immediate neighbors. Every node
carries an identification corresponding to its x and y address in the mesh, and
its color indicates the respective layer in the network. Nodes (5,4) and (6,4) are
extra nodes added for routing purposes but do not perform any processing.
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Figure 6.2: 2-D mesh SNN implementation on the FPGA.

Input events do not have any specified destination address and they need to
be sent to all nodes of the first layer. Therefore, there is an extra splitter block at
the input side, which creates 6 copies of every incoming event, adds the address
of a node in the input layer to each copy, and delivers them to the corresponding
nodes. At the output side, there is a merger block which simply forwards events
from the 4 nodes of the output layer to the output of the network without
altering them.

6.2 fault model

The fault model consists of permanent bit-flips in the memories mentioned in
5.1.2. Bit-flips are injected in two different ways, in particular with a Bit-Error
Rate (BER) probability, leading to a multiple-bit fault scenario with uniform
random distribution of bit-flips, or considering a single-bit fault scenario. In
the former scenario, assigning different BER probabilities helps assessing the
BER that can be tolerated by the SNN. We consider BER probabilities up to 10−1.
This value is justified for memristor-based implementations since memristors
have low yield and endurance, reduced-voltage memory operation, and harsh
environments. The maximum tolerated BER depends on the criticality of the
application. In the latter scenario, we study the effect of single bit-flips parameter-
by-parameter, layer-by-layer, and for different bit positions. The goal is to identify
critical parts of the design, as well as critical bit positions.

6.3 reliability analysis

For each fault injection experiment we evaluate the SNN recognition rate and
compare it with the baseline value for the nominal design which is 85± 2.5%.
We consider that an accuracy drop to 82.5% is still acceptable.

Each fault injection experiment takes approximately 2 minutes including (i)
the configuration time, (ii) the execution time, and (iii) the storing time. In the
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Figure 6.3: Network accuracy for different BER values.

multiple-fault scenario, for a given BER value, we perform 100 repetitions. As
the total memory size is 18464 bits, it is very time-consuming to perform all
single bit-flip scenarios even in hardware where run-time is accelerated. Thus,
for the kernel weights in the first three layers C1, C2, and C3 that occupy the
largest fraction of the memory, we perform fault sampling, randomly selecting
20%, 10%, 10% fault locations, respectively. For the rest of the parameters we
perform exhaustive fault injection. In total, we performed 11925 fault injections
which took approximately 16.5 days of simulation time.

We visualize summary statistics using box plots of the network accuracy
versus BER (Figs. 6.3 and 6.5), or bit position (Fig. 6.4). The bottom and top edges
of the box indicate the 25th and 75th percentile, respectively, the whiskers extend
to the most extreme data points not considered outliers, and the outliers are
plotted individually using the ‘o’ symbol and are not always aligned vertically
for illustration purpose. We also report the median shown with a dotted circle
and the average accuracy across repetitions of the same experiment. Experiments
with 0% accuracy correspond to an application crash as the result of fatal errors
which made the system unable to respond to any incoming event activity, i.e.,
the impact on the network is catastrophic.

6.3.1 Global Fault Injection Results

Fig. 6.3 shows the accuracy versus BER in the case where bit-flips are injected
uniformly at random across the entire network. As it can be seen, the accuracy
drops with increasing BER and beyond 10−4 the drop is below the tolerated zone
shown with green color. This shows that the maximum tolerated BER is 10−5 or
less. We also observe that for moderate BER values the variance of the accuracy
increases as BER increases, which shows that accuracy drop is largely dependent
on the combinations of faulty bits and their locations. Another observation is
that for BER=10−5 there is a network instance that performs with accuracy
higher than 95%. In essence, performing random multiple bit-flips is equivalent
to a random brute-force training. Interestingly, a combination of bit-flips resulted
in small perturbations of network parameters that improved the result of the
original training algorithm.
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(a)

(b)

(c)

Figure 6.4: Single bit-flips layer-by-layer: (a) Router Parameters; (b) Neuron Threshold;
(c) Kernel Weights.

6.3.2 Targetted Fault Injection Results

The outliers for moderate BER values of 10−4 and 10−5 in Fig. 6.3 are due to
faults occurring is the smaller yet far more critical memory blocks storing splitter,
router, and kernel parameters. In fact, the network is susceptible even to single
bit-flips affecting these parameters. Faults in the splitter may lead to generated
addresses that do not correspond to a valid node inside the mesh, and this
leads to input events not reaching any destination address and, thereby, not
being processed. For several experiments, the network was unresponsive, i.e,
there were no output spiking events. Faults in the kernel parameters change
the kernel’s size and center-shift and faults in the router parameters change
the routing of the spikes. Thus, such faults essentially result in a structurally
different network architecture. For example, Fig. 6.4a shows single bit-flips in the
router parameters layer-by-layer and across different bit positions. The network
is very sensitive and the bit position where the flip occurs is irrelevant. Thus, we
conclude that splitter, router, and kernel parameters are critical and protecting
them is of utmost importance.

Figs. 6.4b and 6.4c show results for single bit-flips layer-by-layer for the neuron
threshold and kernel weights, respectively. For the single-bit fault scenario,
among the different neuron parameters, accuracy drop was observed only for
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(a)

(b)

Figure 6.5: Multiple bit-flips for different BER values layer-by-layer: (a) Neuron Parame-
ters; (b) Kernel Weights.

the neuron threshold, thus Fig. 6.4b shows results only for the neuron threshold.
Figs. 6.5a and 6.5b show results for multiple bit-flips with different BER values
layer-by-layer for the neuron parameters and kernel weights, respectively.

From Fig. 6.4b we observe that the network performance is sensitive to single
bit-flips in the neuron threshold only if these occur in the 3 MSBs, while the last
layer C4 shows no vulnerability. From Fig. 6.5a we observe that layers C1 to C3

start showing vulnerability for BER values larger than 10−2. Thus, if such high
failure rates are expected, neuron parameters must be protected too.

Regarding kernel weights, from Fig. 6.4c we observe that the network sensi-
tivity increases with the layer number. Thus, some faults in the beginning of
the network tend not to propagate. Another observation is that single faults
affecting Least Significant Bits (LSBs) can be tolerated. For the first layer C1 the
first 3 MSBs are critical, while for the last layer C4 the first 4 MSBs are critical.
From Fig. 6.5b we observe that the network can tolerate up to a BER of 10−5.
These results show that leaving unprotected the 4 LSBs of the kernel weights,
which always occupy the largest fraction of the memory, is feasible, leading to
significant cost reduction in fault tolerance schemes.



7
C O M PA C T F U N C T I O N A L
T E S T I N G F O R
N E U R O M O R P H I C C I R C U I T S

In this chapter, the problem of testing AI hardware accelerators implement-
ing SNNs is addressed in a generalized way [112]. We define a metric to quickly
rank available samples for training and testing based on their fault detection
capability. The metric measures the inter-class spike count difference of a sample
for the fault-free design. In particular, each sample is assigned a score equal
to the spike count difference between the first two top classes. The hypothesis
is that samples with small scores achieve high fault coverage because they are
prone to misclassification, i.e., a small perturbation in the network due to a fault
will result in these samples being misclassififed with high probability. We show
that the proposed metric correlates with the per-sample fault coverage and that
retaining a set of high-ranked samples in the order of ten achieves near perfect
fault coverage for critical faults that affect the SNN accuracy. The proposed test
generation approach is demonstrated on the N-MNIST and IBM’s DVS128 Ges-
ture SNNs (see Chapter 4) and on the SNN for the poker card-symbol recognition
(see Chapter 6) using the hardware experimented platform described in Chapter
5. Finally, the fault space is reduced so as to offer a faster test generation time.
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7.1 related work on testing ai hardware accelerators

High-volume manufacturing of ASIC AI hardware accelerators is foreseen in the
near future. On-die neural networks have been explored in the past for building
an on-die “test brain” that classifies chips as functional or faulty [113]. The
“inverse” problem, i.e., how to efficiently test AI hardware accelerators, however,
is an emerging problem [114]–[116].

In general, existing and proven test methods for traditional computing devices
can be portable to AI hardware accelerators. Nevertheless, the unique architec-
tural features of AI hardware accelerators make these test methods less efficient
and give rise to new test challenges. For instance, AI hardware accelerators
usually consist of multiple identical cores, e.g., the MAC units (also referred to
as Process Elements (PEs)), which are too small to implement traditional Design-
for-Test (DfT) techniques, e.g., scan test, with reasonable overhead. Another
characteristic of AI hardware accelerators is that they are memory-hungry, with
the memory storage being dominated by the synapse weights which can be in
the order of millions. Testing large embedded memories with today’s Memory
Built-In Self-Test (MBIST) tools can pose large Power-Performance-Area (PPA)
penalties.

Traditional fault models, such as stuck-at, delay, and cell-aware fault models,
can be reused as well in the context of AI hardware accelerator testing, but
emerging in-memory computing architectures based on memristive crossbars
[117] or SNNs [118]–[120] for example, require new fault models. Moreover, fault
models for AI hardware accelerators could be defined in software at a higher-
abstraction behavioral-level, i.e., variations in neuron outputs and synapse
weight values [40], aiming at speeding up test generation (see Chapter 4). This
is because software and hardware implementations of neural networks closely
match together [97].

Most faults are benign, that is, they affect a component that does not take
part in the computation, they are completely masked thanks to the information
propagation through the network, they change the order of the top predicted
classes but not the top-1 class, or they lead to inaccurate predictions for only
a tiny fraction of the inputs and in this sense they can be tolerated. However,
some faults remain critical and can lead to a large drop of correct classification
percentage, and test efforts can focus on these critical faults to reduce test time
[116]. This fault behavior has been demonstrated in several recent fault injection
experiments at software level [80], [84], [92]–[94], [121], [122] and in AI hardware
accelerators [81], [82], [86], [87], [97], [110], [123], which show that there is some
inherent fault tolerance since many faults are benign. Fault tolerance is further
discussed in Chapter 8.

Test methods that take into account the architectural particularities of AI

hardware accelerators have started surfacing recently. DfT methods suited for
AI hardware accelerators based on large arrays of small PEs are proposed in
[114], [124]. Test generation algorithms aiming at creating a compact set of
functional tests that can detect the presence of faults are proposed in [125], [126],
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[93]. Symptom detectors that detect some anomaly in intermediate nodes, i.e.,
high neuron activation, are proposed in [80], [81], [88], [94]. Selective Triple
Modular Redundancy (TMR) applied to the most critical neural network layers
is proposed in [80], [90], [127]. Algorithmic-based error detection and correction
methods using checksum arithmetic are discussed in [86], [128]–[131]. On-line
test methods are proposed in [132] based on Software Test Libraries (STL), in
[133] based on a simplified metric of dynamic power consumption, and in [134]
based on encrypting weights in the memory with an encryption algorithm that
spreads single bit-flips extending them to multiple bit-flips and checking if the
padding bytes used for the encryption to work properly are correctly decrypted.

Specifically now for SNNs, in [80], [94], symptom detectors are designed
for testing for the two main catastrophic fault mechanisms in SNNs, namely
neuron saturation and large synapse weight drifts. The symptom detector that
we propose will be described in more detail in Chapter 8. In [85], a BIST for
biological spiking neurons is proposed where the neuron is exercised from its
bias voltages to span the entire range of operation and output all possible firing
patterns. If a pattern is missing, then the neuron is labelled faulty. And finally,
a functional test generation method for SNNs is proposed in [93]. Functional
test generation methods for AI hardware accelerators, including [93], which are
directly related to the work presented herein, will be discussed in greater detail
at the end in Chapter 7.7.

7.2 proposed functional test generation algorithm

Functional test generation aims at either identifying or generating new input
samples that are capable of sensitizing the fault and propagating its effect to the
output, leading to a different prediction with respect to that of the nominal fault-
free network. As shown in Fig. 7.1 using as an example an image recognition
cognitive task, these samples could be original images from training and testing
sets [125], [126], adversarial examples generated from original images [93], or
synthetic images generated from original images [135], [136]. The proposed
algorithm for SNNs selects tests from the set of available samples in the training
and testing sets.

Let us consider an SNN employed for an N-class classification cognitive task.
The SNN has N neurons in the output layer each corresponding to one class.
We consider that the SNN uses the firing rate as classification criterion, i.e., the
winning class is the one whose corresponding neuron produces the largest
number of spikes within a given duration interval.

Let us consider also a set of input samples of cardinality M. For a given
sample ti, i = 1, · · · ,M, let n

j
i denote the spike count for output neuron j,

j = 1, · · ·N. We rank the values n
j
i from high to low, resulting in the ordered set

{n
(1)
i ,n(2)

i ,n(3)
i , · · · }, i.e., the neuron that produces n

(1)
i spikes corresponds to

the top-1 class, the neuron that produces n
(2)
i spikes corresponds to the top-2

class, and so forth.
Then, we define the margin
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Figure 7.1: Functional test generation. The street images are from [136]. The chip image
is from [113].

Xi = n
(1)
i −n

(2)
i , (7.1)

i.e., Xi is the difference in spike count between neurons corresponding to the
top-1 and top-2 classes. The quality metric of sample ti is defined by the score

qi =
1

Xi
(7.2)

The rationale is that samples with high scores (or, equivalently, small margins)
are likely to be distinguishing samples, i.e., they are prone to producing different
top-1 class predictions for the nominal and faulty networks. This is based on
the intuition that when the first top classes are close in terms of firing rate, the
network has low confidence in its decision and it is likely that a fault will alter
the class ranking for this particular sample. In other words, this sample lies close
to the multi-class classification hyper-boundary and is likely to be misclassified
when a fault occurs.

Let us consider now the ranking of samples based on their scores from high
to low, resulting in the ordered set
{t(1), t(2), · · · , t(i), · · · , t(M)}, where t(1) is the sample with the highest score,
and so forth. A functional test set of size T can be generated by considering the
first T higher-score samples in this ordered set.

As we will see in our experimental results, the score in Eq. (7.2) directly
correlates with the per-sample fault coverage, i.e., the samples fault coverage
is shown to increase linearly with the samples score. To this end, the proposed
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algorithm first performs M inferences, i.e., one inference per available sample,
on the nominal network, then ranks the samples according to their score. Next,
starting from the top ranked sample and sequentially adding the next top
ranked samples, it evaluates the cumulative fault coverage. In each step, the
detected faults are dropped from the fault list. Let Nuf(i) denote the number of
undetected faults at the beginning of iteration i where the i-th ranked sample
is examined, i.e., Nuf(1) = K for a fault model of size K. The algorithm stops
adding samples when the fault coverage saturates. Our experimental results
show that the size of the resultant test set needs to be in the order of few tens
of samples for reaching 100% fault coverage for critical faults. For a test set of
cardinality T , the total number of inferences which dominates the test generation
time is

Ninf = M+

T∑
i=1

Nuf(i) (7.3)

where the first term corresponds to test generation and the second term to fault
coverage evaluation.

Finally, for a fault model of size K, let Fk denote fault k. We define the
following indicator function for test ti

Iti(Fk) =

{
1 : Fk is detected

0 : otherwise
(7.4)

where detection means that the responses of the nominal fault-free network and
the faulty network with fault Fk injected differ, i.e., a different class is predicted.

The fault coverage of test ti indicates the percentage of faults detected by this
particular test. It is defined as

FC(ti) =

∑K
k=1 I

ti(Fk)

K
(7.5)

Considering a test set of cardinality T denoted by {t1, · · · , tT }, its global fault
coverage is defined as

FC =

∑K
k=1 min(1,

∑T
i=1 I

ti(Fk))

K
(7.6)

7.3 snn case studies

As case studies, we use three convolutional SNNs performing three different
cognitive tasks, namely a SNN trained to classify the N-MNIST dataset [65], an
SNN trained to classify IBM’s DVS128 Gesture dataset [107], and a SNN trained
to classify the 4 poker card symbols [66]. The networks are explained in detail
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in Sections 4.3 and 6.1. respectively, and their architectures are shown in Figs.
4.3, 4.4, and 6.1, respectively. In each case, the winning class is declared based
on the most triggered neuron at the output layer.

7.4 fault space reduction

The common conclusion of several published fault injection and reliability
experiments for ANNs [81], [82], [86], [87], [97], [123] and SNNs [80], [84], [92]–
[94], [110], [122] is that not all faults are equal. A large number of faults are
either completely masked or they induce a negligible drop in the network
classification accuracy. Such benign faults can be excluded to reduce the fault
space and speed up fault simulation that is invoked several times during test
generation. Including all faults can quickly make fault simulation intractable,
even for small-size networks. For example, for the N-MNIST and IBM’s DVS128

Gesture SNNs the number of neurons is 1756 and 25099, respectively, and the
number of synapses is 57488 and 1059616, respectively. Consequently, a prudent
elimination of benign faults is required so as to avoid inadvertently excluding
critical faults.

In the context of this work, we define benign and critical faults in a more strict
fashion. A fault is considered benign if the response of the nominal network
and the network in the presence of the fault match on a sample-by-sample basis
with a certain tolerance, e.g., a 0% tolerance requires an exact match between
both responses. If the number of mismatched samples between the nominal
network response and that of the faulty network is above the tolerance, the fault
is considered critical.

7.4.1 Behavioral-Level Fault Model

For SNNs, in Chapter 8, it is shown that training with dropout [137] offers proac-
tive fault resilience against dead neuron faults and neuron timing variations.
Dropout was originally proposed to prevent over-fitting and reduce the gener-
alization error on unseen data. It has its roots on the observation that model
combination, a.k.a. ensemble learning, nearly always improves performance.
In this regard, it temporarily removes neurons and their associated synapse
connections during training with some probability that could vary from one
layer to another, which is equivalent to combining many “thinned" scaled-down
models during one training session. Dropout achieves fault resilience because it
equalizes the importance of neurons and distributes the neuron activity across
the network. Thus, if a neuron becomes dead or it presents timing variations,
the impact is inherently tolerated [80]. In contrast, a neuron saturation fault is
not compensated because a neuron constantly firing is likely to severely perturb
the propagating spike trains [80], [94].

As an example, Fig. 7.2 shows for the N-MNIST SNN the effect of neuron faults
in the last 3 layers on the network classification accuracy. Each row corresponds
to a layer and each rectangle within a row corresponds to a neuron in this layer.
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(a) Dead neuron faults.

(b) Saturated neuron faults.

0 10 20 30 40 50 60 70 80 90 100

Figure 7.2: Effect of neuron faults on the classification accuracy of the N-MNIST SNN.

The color of the rectangle shows the accuracy when this particular neuron is
faulty based on the color map shown at the bottom of Fig. 7.2. As it can be
seen, dead neuron faults are benign except in the last layer. Layers SC1 and SC2

are not shown due to their high neuron count. Similarly, timing variations are
proven benign apart from the last layer [80]. The same findings were obtained
for the gesture SNN.

As for synapse faults, fault space reduction becomes of utmost importance
since the number of synapses can be in the order of several millions. In [93],
only the last layer synapse faults were considered arbitrarily. In Chapter 4 we
performed an analysis for the N-MNIST SNN to validate this hypothesis. The
result is shown in Fig. 4.9. We assumed extreme synapse faults, namely dead
synapses and positively saturated weights. As it can be seen, only positively
saturated weights appear to be critical, and this holds primarily for the synapses
connecting the last two layers SF4-SF5, while few such critical synapse faults
are observed for layers SC3-SF4. Synapse faults in previous layers have no
impact and are excluded from Fig. 4.9. The reason behind this observation is
that positive saturated weights could cause the post-synaptic neuron to always
fire, i.e, saturate. In contrast, dead synapses just reduce the firing activity of
the post-synaptic neuron, while we know that with dropout dead neuron faults
are benign. These findings were corroborated on the gesture SNN as well. Note
that such extreme faults are not realistic from a hardware perspective since real-
weighted synapses after model training in software are quantized and stored
as digital words in an on-die memory. Using the hardware-aware synapse fault
model, i.e., bit-flips on quantized weights resulting in weight perturbation, has
a smaller impact as shown in Fig. 4.10 for the gesture SNN considering synapses
connecting the last two layers SF3-SF4. We observe that only bit flips in the first
two MSBs 7 and 6 can be critical, while for bit 5 the baseline accuracy is observed.
Bit-flips for bit positions 0-4 are benign and are not shown in Fig. 4.10.

From these fault injection experiments we can conclude about the criticality
of fault types occurring at different locations in the network. Critical faults most
likely can only be neuron saturation faults at any point in the network, dead
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neuron faults in the last two layers, and synapse faults in the last two layers. Still,
many of these faults will end up being benign. The rest of the faults are benign
with a very high probability and could be excluded from fault simulation.

7.4.2 Hardware-Level Fault Model

A detailed reliability analysis for the poker card symbols SNN implemented on
neuromorphic hardware was presented in Chapter 6. The used fault model is
the one described in Section 6.2 and fault injection was performed on the actual
hardware presented in Chapter 5. Critical bit-flip faults were located across
different network parameters and bit positions. For example, it was shown
that bit-flips in the 4 LSBs of synapse weights are benign which can help to
significantly reduce the fault space by nearly 50% since synapse weights occupy
most of the memory size.

7.5 results

Thanks to the acceleration of fault injection on hardware, i.e., using a GPU for the
N-MNIST and gesture SNNs and the FPGA-based SNN hardware accelerator for
the poker card symbols SNN, we considered a conservative fault space reduction
only for the synaptic faults and only in the N-MNIST and gesture SNNs. In
particular, we considered only the synapse faults in the last two layers. The
results are grouped per SNN in Figs. 7.3-7.5.

Figs. 7.3a, 7.4a, and 7.5a show the average per-sample fault coverage as a func-
tion of the margin value. Samples with identical margin values are grouped. For
each sample, the average fault coverage is computed across all faults separately
for each fault type, i.e., dead neuron, saturated neuron, and synapse faults for
the N-MNIST and gesture SNNs, and single bit-flip and multiple bit-flip faults
with BER=10−4 for the poker card symbols SNN. Then, fault coverage values
are averaged again across all samples within the same group. A clear trend is
observed, i.e., samples with low margin, or equivalently with high score, tend
to achieve a higher fault coverage. This proves the suitability of the chosen
fault-agnostic metric for ranking samples according to their fault detection
capability. We also observe that the fault coverage rapidly increases when the
margin decreases for small margin values, while for large margin values, fault
coverage values are flattened or show a small fluctuation. This means that input
samples with relatively large margin values may show small deviation in their
fault detection capability, whereas for input samples with small margin values,
the deviation can be significant. Note also that a flat fault coverage curve does
not necessarily imply that adding more samples with larger margins to the test
set is meaningless since they may be achieving the same fault coverage, but at
the same time they may be detecting a different set of faults compared to the
faults already detected by samples of higher ranking.

Figs. 7.3b, 7.4b, and 7.5b show for the different fault types the number of
benign and critical faults by varying the error tolerance. By increasing the



7.5 results 89

0 2 4 6 8 10
Margin Value

0

10

20

30

40

50

60
S

am
p

le
 F

au
lt

 C
o

ve
ra

g
e 

%

Saturated Neuron Faults
Dead Neuron Faults
Synapse Faults

(a) Relationship between the margin of a
sample and the percentage of faults it

covers.

10-1 100 101
Tolerance (%)

102

103

104

105

# 
o

f 
B

en
ig

n
 F

au
lt

s

101

102

103

104

# 
o

f 
C

ri
ti

ca
l F

au
lt

s

Saturated Neurons

Dead Neurons

Synapses

Benign Critical

(b) Change in number of critical &
benign faults with the tolerance.

(c) Cumulative fault coverage of benign
synaptic faults.

(d) Cumulative fault coverage of critical
synaptic faults.

0 20 40 60 80 100

Number of Samples

0

20

40

60

80

100

G
lo

b
al

 F
au

lt
 C

o
ve

ra
g

e 
%

0% Tol
0.05% Tol
0.1% Tol
0.2% Tol
0.5% Tol
1% Tol

(e) Cumulative fault coverage of benign
dead neuron faults.

0 50 100 150

Number of Samples

0

20

40

60

80

100

G
lo

b
al

 F
au

lt
 C

o
ve

ra
g

e 
%

0% Tol
0.05% Tol
0.1% Tol
0.2% Tol
0.5% Tol
1% Tol

(f) Cumulative fault coverage of critical
dead neuron faults.
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(g) Cumulative fault coverage of benign
saturated neuron faults.
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Figure 7.3: N-MNIST SNN.
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(d) Cumulative fault coverage of critical
synaptic faults.
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(e) Cumulative fault coverage of benign
dead neuron faults.
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(f) Cumulative fault coverage of critical
dead neuron faults.
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(g) Cumulative fault coverage of benign
saturated neuron faults.
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(h) Cumulative fault coverage of critical
saturated neuron faults.

Figure 7.4: Gesture SNN.
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(c) Cumulative fault coverage of single
bit-flip faults.
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(d) Cumulative fault coverage of
multiple bit-flip faults at BER=10−4.

Figure 7.5: Poker card symbols SNN.

tolerance from 0%, some critical faults are labelled as benign, thus the number
of benign faults increases and the number of critical faults drops. The number
of truly benign faults, i.e., none of the samples is misclassifed when these faults
occur, is shown in Figs. 7.3b, 7.4b, and 7.5b for tolerance 0%. Fault type criticality
for a given tolerance value can be assessed by examining the percentages of
benign and critical faults. For tolerance 0% we observe that for all fault types,
faults turn out to be more critical than benign, while for dead neuron faults,
as expected, the critical and benign fault populations are more balanced. For
all fault types, we observe that there is a tolerance value for which the critical
and benign curves cross, which means that there is a certain tolerance value for
which benign faults start outnumbering critical faults.

In Figs. 7.3c-7.3h, 7.4c-7.4h, and 7.5c-7.5d we rank the samples in an ascending
order according to their scores, and we show the global cumulative fault coverage
as we add samples in the test set for the different fault types. Two general
conclusions can be drawn here. First, for the critical faults, the global cumulative
fault coverage curves quickly reach 100%, while the convergence speed in general
increases with the tolerance. This is because higher tolerance means less critical
faults and, thereby, smaller test effort to reach 100% fault coverage. The number
of samples required to achieve 100% coverage varies from one SNN to another
and from one fault type to another. Second, for the benign faults, the global
cumulative fault coverage is not expected to reach 100% since many faults are
truly benign. For tolerance 0%, the benign fault coverage is by definition zero.
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We also observe that the global cumulative fault coverage curves quickly saturate.
The number of samples at the saturation point corresponds to the number of
samples needed for detecting all benign faults that are not truly benign.

Table 7.1 extracts some representative results from Figs. 7.3c-7.3h, 7.4c-7.4h,
and 7.5c-7.5d, summarizing for each SNN and for three representative tolerance
values the two most interesting quantities, i.e., the number of samples required
to reach 100% fault coverage for critical faults and the number of samples
required to detect all benign faults that are not truly benign. For example, for
the N-MNIST SNN, we observe that the most highly ranked sample alone can
detect all critical synapse faults for any tolerance value. To reach 100% fault
coverage for critical dead neuron and saturated neuron faults for 0% tolerance,
150 and 33 samples are required, respectively. The required number of samples
drops as the tolerance increases, i.e., for 0.2% tolerance 36 and 33 samples are
required and for tolerance 0.5% 36 and 9 samples are required. Also from the
cumulative benign fault coverage curves, we observe that, in general, for any
tolerance value, the saturation point is reached before the maximum number of
150 samples required for detecting all critical faults at 0% tolerance, i.e., for 0.2%
tolerance saturation is observed from 92, 33, and 1 samples onwards for benign
dead neuron, saturated neuron, and synapse faults, respectively. For the gesture
SNN, the number of samples required to achieve 100% critical fault coverage
is 66, 35, and 28, for tolerance values 0%, 2%, and 4%, respectively. For these
test sets, maximum coverage for not truly benign faults is achieved, except for
tolerance 4% where an additional 31-28=3 samples from the ordered list need
to be included. For the poker card symbols SNN, 6 samples suffice to detect all
critical and not truly benign faults for any fault type.

Overall, results show that in all cases a compact functional test set is found
that is capable of detecting all critical faults for any tolerance value, and as
an auxiliary benefit it detects all benign faults that result in even the smallest
accuracy drop, i.e. one sample is misclassified. Taking as an example the N-
MNIST SNN for which 70, 000 samples are available from the training and testing
sets, the functional test set required to achieve 100% critical fault tolerance for all
fault types is compacted to 150/(7 · 104) = 0.214% and 36/(7 · 104) = 0.051% of
the combined size of the training and testing sets for tolerance 0% and tolerance
> 0%, respectively, where the maximum number of required samples across the
three fault types is used.

7.6 discussion

7.6.1 Generality

The proposed functional test generation method is generic, treating the SNN

architecture as a black-box. In this regard, the method is virtually applicable
to any SNN hardware accelerator and neuromorphic computing hardware plat-
form, including for example the SpiNNaker [34], TrueNorth [30], Loihi [31],
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Table 7.1: Number of samples needed to reach the maximum fault coverage for different
fault types at different tolerance values.

% Tolerance
Neuron Faults Synapse Faults

Dead Saturated Benign Critical
Benign Critical Benign Critical

0 - 150 - 33 - 1

0.2 92 36 33 33 1 1

0.5 92 36 17 9 1 1

(a) NMNIST SNN.

% Tolerance
Neuron Faults Synapse Faults

Dead Saturated Benign Critical
Benign Critical Benign Critical

0 - 32 - 25 - 66

2 13 28 31 19 35 35

4 13 28 31 15 32 28

(b) Gesture SNN.

% Tolearance Single Bit-Flips Multiple Bit-Flips

Benign Critical Benign Critical

0 - 6 - 6

2.5 6 6 6 6

5 6 6 6 6

(c) Poker card symbols SNN.

BrainScaleS [138], Neurogrid [139], FPGA-based implementations [66], and
application-specific small-scale chips [32], [77], [140]–[143].

7.6.2 Test Generation Effort

The proposed test generation algorithm can be decomposed into two steps:

1. The ranking of available input samples according to their fault coverage
ability.

2. The fault coverage assessment of a test set composed of highly ranked
input samples.

Step (1) is agnostic to the fault model, using only inference data, i.e., number
of spikes per output class for each sample in the training and testing sets from a
pre-trained SNN model. This information is already available from the training
phase, thus step (1) can be completed very fast independently of the SNN and
dataset sizes.

Step (2) requires fault simulation, thus the effort is proportional to the SNN

size. The number of fault locations increases with the increase in the SNN size
and, thereby, the number of functional tests required to achieve the desired fault
coverage is likely to increase as well. For large SNNs, fault simulation effort may
rapidly explode as explained in Section 7.4. For this reason, the fault space needs
to be conservatively reduced by considering the impactful fault locations, i.e.,
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neurons in last layer, saturation neuron faults, and synaptic connections in the
last layers. Note, however, that the highest ranked input sample will detect a
very high number of faults and in each step, by adding the next highest ranked
input sample, the cumulative global fault coverage rises quickly. This behavior
was observed in the results in Section 7.5. In each step, we exclude from the
simulation the faults already detected by previous input samples in the ranked
order. This way, fault simulation is not exhaustively repeated for every input
sample and it can become tractable even for large size SNNs. Note also that step
(2) is an one-time effort and can be significant for traditional computing chips
as well. Once the functional test set is generated, it will be used as a fixed test
program in high-volume production. As a final observation, the effort in step (2)
is not related to the dataset size. A large dataset size means more input samples,
thus a larger pool of functional tests to choose from. In fact, a larger dataset size
may lead to a more compact functional test set.

7.6.3 Other Metrics for Grading Functional Tests

The metric used for grading functional tests is based on spike-count difference
for the first two top classes, i.e., the only relevant aspect of a spike train is its
total number of spikes. In principle, any metric that quantifies the distance
between two spike trains can be used. Several such metrics have been proposed
in the past generalizing the distance measure to include the temporal structure
in the spike trains [144]–[148]. For example, in the Victor-Purpura metric [144],
the distance is defined as the minimum cost required to transform one spike
train into the other via a path of elementary steps. The cost equals the sum of
the costs assigned to each of the allowed elementary steps. In our context, the
cost is inversely proportional to the score of the functional test. There are two
kinds of elementary steps: (a) adding or deleting a spike which is assigned a
cost of 1; and (b) shifting in time the occurrence of a single spike by an amount
∆t which is assigned a cost of q ∗ |∆t|, where q is a parameter that expresses the
relative sensitivity of the metric to precise timing of spikes. The two extreme
cases are q = 0 and q = ∞ (or very large q). By setting q = 0, we recover the
spike-count difference metric used in this work. This is because for two spike
trains with number of spikes n1 and n2 > n1, we can align the first n1 spikes
with zero cost, then transform the second spike train to the first by deleting
its last n2 −n1 spikes with cost n2 −n1. In the limit q = ∞, it is less costly to
add or delete spikes than to shift a spike and so the distance between two spike
trains becomes the total number of non-synchronous spikes.

7.7 related work on functional test generation for ai hard-
ware accelerators and comparison

The DeepXplore [135] and DeepTest [136] algorithms generate error-inducing
corner test cases, which are then used for re-training the ANN aiming at improv-
ing classification accuracy. The criterion is maximizing neuron coverage, such
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that ideally for each neuron there is a test that makes it highly active. In the
end, the generated synthetic samples represent real-world samples. For example,
[136] starts with a subset of the testing set, called “seeds”, then performs realistic
transformations of seed images, such as changing brightness, changing contrast,
rotation, blurring, fog effect, rain effect, etc. These test generation algorithms
target improving classification performance and not hardware-level fault detec-
tion. However, it would be interesting to investigate whether synthetic samples
generated in this fashion can also achieve high fault coverage.

In [125], a methodology to derive a diminutive set of functional test patterns
for systolic array-based ANN accelerators is proposed. Two functional test pattern
generation algorithms are proposed, namely an ANN model-agnostic algorithm
and an ANN model-aided confidence-based algorithm. The ANN model-agnostic
algorithm rates samples in the testing set based on their similarity to other
samples belonging to different output classes. The similarity metric used is aver-
age pixel intensity. The ANN model-aided confidence-based algorithm searches
for samples in the testing set that have been predicted correctly but with least
confidence score. The proposed method in our work concerns SNNs and chooses
samples that are prone to misclassification based on a different SNN-specific
similarity metric defined based on the output spike trains.

In [126], it is proposed to rank and select a small subset of samples from
the training set making the hypothesis that samples that require more neural
network parameter tuning during training than others will be more sensitive to
changes in neural network parameters due to faults. Tuning effort per sample is
approximated with the change in the loss function in each training step. In the
case where the model is pre-trained, a black-box approach is proposed to rank
samples based on the difference in the loss function of a randomly initialized
neural network instance and the pre-trained neural network. The methodology
is demonstrated for memristive crossbar-based ANN hardware accelerators.

A functional test generation algorithm for SNNs is proposed in [93]. The
algorithm produces a test set containing a mixture of available samples and ad-
versarial examples. An adversarial example is generated by perturbing available
samples by adding a minimum amount of noise such that the predictions of the
nominal and faulty SNNs are differentiated. The algorithm starts by injecting a
fault and examining if any of the available samples detects it. If not, up to D ad-
versarial examples are generated, where D is a user-defined variable, aiming at
finding one that detects the fault. If any available sample or adversarial example
is found that detects the fault, then this successful test is tried out on all faults.
It is placed in the kept list and the detected faults are dropped from the list. The
algorithm reiterates targeting the next undetected fault. Since the number of
synapse faults is too high, to solve the scalability issue only the last layer synapse
faults are considered. In this work, we performed an experiment in Section 7.4
to justify fault space reduction. Furthermore, the algorithm in [93] follows a
greedy approach where tests are repeatedly evaluated on the undetected faults,
combining test generation with fault coverage estimation. Thus, the number of
inferences required, i.e., the test generation time, is a summation over tests and
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faults. On the contrary, the proposed algorithm in this paper dissociates test
generation with fault simulation. Tests are first ranked by performing inference
on the fault-free network, then fault coverage is computed only for the highly
ranked tests. Thanks to the fault model agnostic ranking, the proposed method
reduces dramatically the number of inferences. Finally, in the algorithm in [93],
adversarial examples are useful for detecting benign faults since all critical
faults are covered by original samples before entering the adversarial example
generation loop. Adversarial example generation can be also seemingly added
to the proposed algorithm in our work as a second step to boost benign fault
detection.



8 N E U R O N FA U LT
T O L E R A N C E S T R AT E G Y

By leveraging the observations made from the fault injection experiments
in Chapter 4, in this chapter, we propose a neuron fault tolerance strategy for
SNNs, optimized for low area and power overhead [80]. The fault tolerance
strategy is composed of a preparatory passive part and a second-step active
part. First, the network is prepared to passively eliminate some of the faults
proactively. The rest of the faults, that cannot be confronted in the first step,
are detected by on-die monitors, which are embedded within the network’s
components in a discreet way in terms of occupied area and power consumption
and offer both an on-line and an off-line BIST mechanism. After a fault has been
detected, the error mitigation mechanisms are activated and the performance of
the network is recovered.

97
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8.1 related work on fault tolerance

The fault injection experiments conducted in Chapter 4 and the related work
mentioned in sec 4.1 demonstrate that equipping AI hardware accelerators with
a preventative fault tolerance strategy is a crucial requirement for mitigating
risks in AI systems. The goal is to identify critical fault types and fault locations
in the SNN architecture and, subsequently, take action to render the design fault-
tolerant. Fault tolerance techniques can be proactive or reactive, and typically
each can address a subset of fault types and locations.

Proactive techniques aim at making the SNN tolerate by design a number or
certain types of faults. One approach is to perform fault-aware training where
faults are injected during training epochs, for example as synapse weight pertur-
bations, aiming at maximizing simultaneously accuracy and fault tolerance [92],
[122], [149]. An advantage of this approach is that it allows margin for voltage
reduction in the memory, thereby helping to reduce the energy consumption
[39]. A second approach is to derive the memory fault map via testing, then
prioritize placing of MSBs of network parameters on non-faulty memory cells
[122]. A third approach is to adopt training algorithms that naturally offer fault
tolerance [92].

Reactive fault tolerance techniques are implemented at hardware-level and,
in general, are composed of two mechanisms, namely a self-test mechanism
for fault detection and a fault-mitigation strategy following a fault occurrence.
One approach is to focus on the most lethal faults, which include the saturated
neuron fault and large synapse weight increases, shown in Chapter 4. This
approach is the one used in Section 8.3 and in a similar, more recent work [94],
where a neuron saturation detector is attached to each neuron and silences the
neuron if it exhibits saturation behavior. For large synapse weight increases, it
is proposed to replace the weight with a predefined value, for example a zero
value [94]. These fault-mitigation approaches essentially translate a critical fault
into a benign fault. Finally, another approach is to perform on-line re-learning
by disabling components for which re-learning cannot make up for the damage
[121].

In this context, standard fault-tolerance techniques for regular VLSI circuits
can be employed, such as TMR and Error Correction Codes (ECCs) for memories.
However, efficiency can be largely improved by exploiting the architectural par-
ticularities of AI hardware accelerators and targeting only those fault scenarios
that have a measurable effect on performance [40]. One approach is to perform
re-training to learn around faults, but this requires access to the training set and
extra resources on-chip, thus it is impractical at chip-level.

The work in [92] studies the resilience of feed-forward SNNs to dead synapse
faults when trained with different algorithms. Synapses are selected to be faulty
at random with different fault rates. Three of scikit-learn’s toy datasets are used:
iris, wine, and breast cancer. Results show that resilience characteristics depend
largely on the training algorithm and in all cases the accuracy drops rapidly with
increasing fault rates. It is shown how to modify an evolutionary optimization-
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based training algorithm so as to improve fault tolerance. In particular, the fitness
function is re-designed to become a weighted sum of the baseline accuracy and
the average accuracy obtained on versions of the SNN with dead synapse faults.
The resilience is improved but the baseline accuracy is not recovered.

In [122], fault injection is performed in a Python-based SNN model. The fault
model is bit-flips in the memories storing the weights of the network. A uniform
random distribution with different rates is considered. Fault-tolerance schemes
to mitigate memory failures are also proposed, namely Fault-Aware Mapping
(FAM) and Fault-Aware Training and Mapping (FATM). First, the memory fault
map, i.e., the location of the faulty memory cells, is derived using testing.
FAM consists in identifying the memory segment with the highest number of
subsequent non-faulty cells and prioritize placing the MSBs of the weight in this
segment, which is done using a circular shift. FATM follows FAM and consists
in performing re-training while considering bit-flips for different rates during
training epochs. In this way, the network adapts its accuracy to different bit-flip
probabilities.

In [121], re-learning is proposed as a reactive fault tolerance strategy for
a high-level biologically-inspired model of the cortical structure of the brain,
which is deployed on a GPU. The fault model considers neuron stuck-at faults,
i.e., neurons that do not fire when they should (stuck-at-0) or they fire when
they should not (stuck-at-1). Concerning the stuck-at-0 neurons, the re-learning
of the network can easily accommodate their absence with the neighbor neurons
covering up for them. Stuck-at-1 neurons, on the other hand, can severely
degrade the performance, thus they are disabled, i.e., converted to stuck-at-0
neurons, and the network re-learns. In order to detect a stuck-at-1 neuron, a
voting scheme is used after interrupting the operation and recomputing the
response of the winning layer of neurons on two neighboring layers.

8.2 passive fault tolerance using dropout

As a first step, we aimed at implementing a passive fault tolerance such that the
SNN is by construction capable of withstanding some faults without any area
and power overheads. To this end, we discovered that training the SNN with
dropout [137] can nullify the effect of dead neuron faults and neuron timing
variations in all hidden layers. In this way, active fault tolerance, which implies
area and power overheads, gets simplified since it will need to focus solely on
saturation neuron faults in the hidden layers and on all fault types only for the
output layer.

The dropout training technique was originally proposed to prevent overfitting
and reduce the generalization error on unseen data. The idea is to temporarily
remove neurons during training with some probability p, along with their
incoming and outgoing connections. At test time, the final outgoing synapse
weights of a neuron are multiplied by p. For a network with n neurons, there
are 2n “thinned" scaled-down networks, and training with dropout combines
exponentially many thinned network models. The motivation is that model
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Figure 8.1: Effect of neuron faults on classification accuracy with and without dropout:
(a) N-MNIST SNN; (b) gesture SNN.

combination nearly always improves performance, and dropout achieves this
efficiently in one training session.

For the N-MNIST SNN we used p=10% in the input and SC1 layers, 20% in
layers SC2 and SC3, and 50% in layer SF4. Training with dropout resulted in a
slight improvement in the classification accuracy from 98.08% to 98.31%. For the
gesture SNN we used p=50% only in layer SF3. In this case, dropout increased
significantly the classification accuracy from 82.2% to 87.88%.

The beneficial effect of dropout on passively nullifying the effect of dead
neuron faults is shown for each layer in Figs. 8.1a and 8.1b for the N-MNIST
and gesture SNNs, respectively. For example, this is made largely evident by
comparing the classification accuracy in the presence of dead faults for layer SF4

of the N-MNIST SNN and layer SF3 for the gesture SNN. The beneficial effect on
nullifying the effect of neuron timing variations for the last hidden layer even
for extreme variations of τs is shown in Figs. 8.2b and 8.3b for the N-MNIST
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Figure 8.2: Effect of neuron timing variations for the N-MNIST SNN:
(a) without dropout; (b) with dropout.

(a)
(a)

(b)
(b)

Figure 8.3: Effect of neuron timing variations for the gesture SNN:
(a) without dropout; (b) with dropout.

and gesture SNNs, respectively. As can be seen, variations in τs from 1% to 300%
have now no effect.

The reason behind this result is that dropout essentially equalizes the im-
portance of neurons across the network, resulting in more uniform and sparse
spiking activity across the network. Therefore, if a neuron in a hidden layer be-
comes dead or shows excessive timing variations, this turns out to have no effect
on the overall classification accuracy. On the contrary, dropout may magnify the
effect of saturation neuron faults, i.e. layer SF3 of the gesture SNN. Finally, we
observe that dropout does not compensate for faults in the output layer since in
this layer there is one neuron per class and any fault will either overshadow this
class or cause it to dominate the other classes, while in the layer SC1 of the same
network and in the SF4 of the N-MNIST network, the saturation faults affect the
performance less after dropout.

Following a training that employs dropout, the network is left with the
vulnerability of the output-layer neurons and the risk posed on the overall
performance by a saturated neuron in a hidden layer. This means that a cost-
effective strategy to implement fault-tolerance into a neural network would be
to solely focus on these two cases.
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Figure 8.4: Offline self-test scheme.

8.3 active fault tolerance in hidden layers

As explained in Section 8.2, active fault tolerance in hidden layers needs only
to address neuron saturation. We propose two self-test schemes for neuron
saturation detection, namely an offline scheme that can run during idle times of
operation and an online scheme that can run concurrently with the operation.
Regarding the fault recovery mechanism, we propose the “fault hopping" con-
cept to simplify the hardware implementation, and we propose two recovery
mechanisms at neuron-level and system-level.

8.3.1 Offline Self-Test

The offline self-test scheme is illustrated in Fig. 8.4. Neuron saturation is declared
based on the neuron’s activity in the absence of an input. A multiplexer is
assigned to every neuron to switch between self-test and normal operation
modes. During normal operation, neurons are receiving inputs from the previous
layer through synapses, processing them and propagating them to the next layer.
When the test enable signal is on, a short internally-generated current pulse
is applied to all the neurons simultaneously as a test stimulus, thus test time
for the complete network is very short. The neuron outputs are paired with a
delayed version of the test enable signal through an AND gate. This is to ensure
that any activity detected is uncorrelated with the input of the neuron and is
indeed a result of saturation. The output of an AND gate going high indicates
neuron saturation. This is captured by the latch which raises an error flag signal.
A simulation is shown in Fig. 8.4 using the I&F neuron presented in Fig. 3.1. This
self-test scheme adds a multiplexer, an AND gate, and a latch per neuron, thus
the area overhead of the test circuitry is relatively small compared to a single
neuron. It can detect aging-induced errors, possibly with some latency.
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Figure 8.5: Online self-test scheme.

8.3.2 Online Self-Test

The online self-test scheme is illustrated in Fig. 8.5. It is applied on a per-neuron
basis and takes advantage of the temporal dependency between the input and
output of a spiking neuron. In particular, we count the number of spikes a
neuron produces after every single input spike using a counter whose reset
port is connected to the input of the neuron. In fault-free operation, the neuron
needs to integrate multiple input spikes before it can produce a spike of its own,
hence the counter is always reset, and the flag signal stays at zero. On the other
hand, a saturated neuron will produce spikes with higher frequency than usual,
causing the counter to overflow before an incoming spike resets it again. A latch
is set when overflow happens and an error flag is raised and maintained. Based
on our simulations, 23 uncorrelated spikes clearly indicate saturation, thus it
suffices to use a 3-bit counter. Fig. 8.5 shows a simulation using the I&F neuron
of Fig. 3.1. This online self-test scheme entails an area overhead comprised of
a counter and a latch per neuron. All neurons are monitored individually and
neuron saturation is detected in real-time.

8.3.3 Recovery Mechanism

The recovery mechanism is activated once neuron saturation is detected. We
propose the concept of “fault hopping" where the critical saturation neuron fault
is artificially translated to a dead neuron fault. The network is repaired since a
dead neuron fault has no effect after dropout. This approach leads to an elegant
hardware implementation and saves significant costs as opposed to the standard
approach, which is to duplicate or triplicate neurons, or provision the SNN with
spare neurons that are kept “fresh" and switch the connections of a detected
saturated neuron to a spare neuron [40]. We propose two recovery mechanisms
based on the concept of “fault hopping", at neuron-level and at system-level.

Neuron-level recovery is implemented by switching-off the saturated neuron.
For example, for the I&F neuron in Fig. 3.1, this can be achieved by connecting a
single extra transistor MC in the tail part of the comparator inside the neuron as
shown with red in Fig. 8.6. This transistor is controlled by the neuron error flag
signal. When the neuron gets saturated, the biasing connection of the comparator
is suddenly ceased, which deactivates the neuron tying its output to zero. The
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Figure 8.6: I&F neuron design showing the recovery operation at neuron-level.

area overhead is only one transistor per neuron and an auxiliary advantage is
that faulty neurons get deactivated; thus, they stop consuming power.

System-level recovery is implemented by setting the outgoing synapse weights
of the saturated neuron to zero. In this way, the saturated spike train gets trapped
and does not propagate to neurons in the next layer. Typically, the communica-
tion between neurons in SNNs is performed by a controller that implements the
AER protocol [24], like in the neuromorphic hardware experimentation platform
presented in Chapter 5. AER controllers perform multiplexing/demultiplexing of
spikes generated from or delivered to all neurons in a layer onto a single commu-
nication channel. Rather than delivering the actual spike, the controller encodes
the address of the neuron that spiked and translates it into the addresses of
the destination neurons, and then the weights corresponding to every synaptic
connection are loaded accordingly. By leveraging this operation, the system-
level recovery approach is based on equipping the controller with the ability to
recognize the neuron error flag and update the outgoing synaptic weights to
zero. This system-level recovery mechanism has a minimal area overhead since
it is reused across all neurons. However, compared to the neuron-level recovery
mechanism, saturated neurons stay on continuing consuming power.

8.4 active fault tolerance in the output layer

As for the most critical output layer, we propose to directly use TMR for a
seamless recovery solution from any single fault type. In particular, a group
of three identical neurons vote for the decision of a certain class, as shown in
Fig. 8.7. The voter is a simple 4-gate structure that propagates the output upon
which the majority of neurons agree. This means that a faulty neuron in the
group, be it dead, saturated or showing excessive timing variations, is outvoted
and bypassed. Performing TMR only in the last layer will result in negligible
increase in the area and power overhead and a reasonable overhead to pay to
ensure strong fault tolerance. The reason is that the number of neurons in the
output layer is typically small compared to the size of the whole network. For
example, in the N-MNIST SNN, the output layer neurons account for about 0.57%
of the neurons in the whole network. This percentage gets even less for the more
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Figure 8.8: Fault tolerance for multiple fault scenarios: (a) N-MNIST SNN; (b) gesture
SNN.

complicated gesture SNN, where the output layer represents around 0.04% of
the total number of neurons.

8.5 multiple fault scenario

So far, we have discussed fault tolerance considering a single fault assumption.
Moreover, our experiments have shown that neuron timing variations start
having an effect when the neuron approaches a dead or a saturated one, and
our proposed fault tolerance strategy suggests turning a saturated neuron
into a dead one. Hence, all faults eventually fold back to a dead neuron fault,
arising the question of what percentage of dead neuron faults can the network
withstand. Figs. 8.8a and 8.8b show the classification accuracy as a function
of the percentage of dead neurons considering the last hidden layer, which
is the most critical amongst all hidden layers, for the N-MNIST and gesture
SNNs, respectively. Fig. 8.8 shows the baseline nominal classification accuracy
with and without dropout and how the classification accuracy drops with the
increase of dead neuron rate. As the results show, the SNNs employing dropout
can withstand larger rates of dead neurons. More specifically, the N-MNIST SNN

does not lose any classification accuracy with a dead neuron rate of up to 40%.
As for the gesture SNN, the classification accuracy drops faster, but it is still able
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to perform with over 80% classification accuracy at a dead neuron rate of 20%,
which corresponds to 102 neurons.



9 O N - L I N E T E S T I N G O F
N E U R O M O R P H I C H A R D WA R E

By exploiting the results of the reliability analysis presented in Chapter 6,
we propose an on-line testing methodology for neuromorphic hardware support-
ing SNN functionality. Testing aims at detecting in real-time abnormal operation
due to hardware-level faults, as well as screening of outlier or corner inputs that
are prone to misprediction. Testing is enabled by two on-chip classifiers that
prognosticate based on a low-dimensional set of features extracted with spike
counting, whether the network will make a correct prediction. The system of
classifiers is capable of evaluating the confidence of the decision, and when the
confidence is judged low a reply operation helps to resolve the ambiguity.

This chapter demonstrates the above testing methodology by fully embedding
it in the FPGA-based neuromorphic hardware platform described in Chapter 5. It
operates in the background being totally non-intrusive to the network operation,
while offering a zero-latency test decision for the vast majority of inferences
[150].

107
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9.1 proposed testing approach

Summarizing the state-of-the-art we make the following observations:

1. Proactive fault tolerance methods [80], [92], [122], [149] cannot compensate
the effect of all faults, thus a number of faults remain critical and a
dedicated test procedure is desired.

2. On-line concurrent error detection is implemented at the component-level,
i.e., checking the status of synapses and neurons individually [80], [85],
[94]. This approach may result in large overhead.

3. Functional testing based on selected fault-sensitizing inputs [93], [112] is
primarily a post-manufacturing testing approach but can also be executed
on-line periodically in idle times by storing the functional tests in an on
chip memory. Besides the memory overhead, the assumption is that the
memory remains fault-free. Moreover, this approach does not guarantee
high safety standards as it misses transient errors and detects permanent
errors with latency.

4. Testing approaches are demonstrated for hardware-level fault detection
only, while their utilisation for outlier and corner input detection is not
studied so far.

The primary objective of the proposed testing approach is to detect in real-
time any abnormality in the SNN operation, either it is due to a fault occurring
or due to an outlier or corner input.

Testing, in general, can be viewed as checking a set of symptoms that point
to abnormal operation. We postulate that defining symptoms at the output of
neurons is a good strategy since information flows in the form of spike trains
and for the SNN prediction to be affected the output spike train of at least one
neuron in the network should be appreciably altered.

However, checking the output of every single neuron results in test resources
with large overhead. To this end, we propose defining symptoms at a higher-
level of hierarchy in the network, specifically at the output of each feature map.
By construction, according to the AER protocol, a feature map outputs a flow of
spiking events e(t,d), where t is the time of the event and d is the sender or
the recipient neuron coordinates. Illustrated in Fig. 9.1a, we propose to project
the spike events of neurons of the feature map in time, consider a pre-defined
time window that is dependent on the duration of the input, and define a test
parameter at the feature map-level equal to the count of accumulated spike events
during the time window. The premise is that an abnormal operation will be
manifested in the cumulative spiking activity at the output of at least one feature
map both in terms of the number of produced spikes and the spike frequency,
causing some test parameters to drift away from their expected values. This drift
is a symptom of abnormal operation. In this way, we drastically reduce the test
parameter dimensionality from the neuron size to the feature map size. In fact,
it may not be necessary to consider all feature maps since an abnormal spiking
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(a) Feature map extractor.

(b) Network-level test.

Figure 9.1: Principle of operation.

activity at the output of a feature map will propagate and spread through the
network, thus it may be detectable at the output of feature maps in the next
network hierarchy levels.

Next step is making a test decision based on the test parameters. We postulate
that checking their combination across the network can be a better test criterion
as opposed to checking them individually. This can be done by training a
single one-class classifier to map the test parameters to an one-bit test decision
addressing the complete network. In machine learning terminology, the test
parameters serve as the input features of the classifier, not to be confused with
the feature extraction performed by each feature map in the SNN. The classifier
is trained on the fault-free network using the available training input samples.
Each input is presented to the network and test parameters are collected at
the outputs of the feature maps. This is an one-off effort that is already spent
during training. The classifier will learn the area in the test parameter space that
corresponds to normal operation, enclosing it with a classification boundary, as
shown for example with the yellow classifier in Fig. 9.1b. In abnormal operation,
the combination of test parameters will drift outside the classification boundary
and the classifier will flag an error detection.
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The performance of a classifier is assessed based on two metrics, namely false
negatives or test escapes, i.e., abnormal operation goes undetected, and false
positives or overkill, i.e., flagging an error when there is actually none. However,
a single classifier is likely incapable of perfectly distinguishing normal from
abnormal operation and is bounded to making errors. Using a single classifier,
the classifier establishing the optimal trade-off between test escapes and overkill
would have been decided based on test economics.

To this end, we adopt a two-tier test approach originally proposed for analog
circuits [151]. We propose to avoid using a single classifier making a deterministic
decision and instead use a system of two classifiers, as shown in Fig. 9.1b.
The yellow classifier is designed to be strict, i.e., in its inner area it encloses
only feature patterns corresponding to normal operation. The blue classifier
is designed to be lenient, i.e., feature patterns falling in its outer area for sure
correspond to abnormal operation. If the decision of the two classifiers agrees,
i.e., the footprint of the feature pattern lies into the inner area of the yellow
classifier or into the outer area of the blue classifier, in other words it lies outside
the grey zone between the two boundaries, then this decision is deterministic
and can be trusted. In contrast, if the footprint lies into the grey zone, then
the test decision has low confidence. Essentially, the grey zone serves as a
guard-band.

To deal with low confidence decisions, we need an extra fast test to make
a final decision with incontestable accuracy. For this purpose, we investigate
the different scenarios to understand how the system of the two classifiers
responds in each case. The input of the SNN can be typical or can be an outlier
or corner input that is foreign to the bulk of the training set and, thereby, is
prone misprediction. On the other hand, the SNN can be fault-free or contain a
fault. The case of fault occurrence or an outlier or corner input will be flagged
by the yellow classifier by construction. The problem lies in the fact that the
yellow classifier can also inadvertently flag an error for a typical input and a
fault-free SNN.

We observed experimentally that this latter scenario happens due to the
stochasticity of the SNN. More specifically, a neuromorphic design is by nature
asynchronous, meaning that a neuron might receive a spike event at its input
or fire one at its output anytime. On the other hand, the controlling processor
operates synchronously based on a clock. The synchronization between the
two could potentially create some micro-delays in their communication, which
propagate during the inference of the SNN. Given that the decision-making
in a SNN is based on the temporal characteristics of the spike trains, these
delays result in a variance of the triggering time of neurons and, thereby, in a
stochasticity at their output spike trains.

To understand the effect of stochasticity, using our case study described in
Chapter 6, we repeated the SNN inference multiple times for each sample of the
training set. We observed that the scenario where the yellow classifier flags an
error for a typical input and fault-free SNN occurs for a handful of repetitions for
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a few samples. The footprint of the feature pattern of these samples lies closer to
the boundary of the yellow classifier, thus they can be marginally misclassified.

Based on this observation, to make a final decision when the system has
low confidence, the strategy that we propose is to perform a replay operation
presenting the input sample to SNN a number of times. If a repetition is found
where the yellow classifier predicts normal operation, then the SNN prediction
can be trusted to be correct. For normal operation, which is the prevalent
scenario, typically one reply operation will suffice.

Based on this observation, to make a final decision when the system has low
confidence, the strategy that we propose is to perform one replay operation
presenting the same input sample to the SNN a second time. If now the yellow
classifier predicts normal operation, then the SNN prediction can be trusted to
be correct. Otherwise, the system flags an error.

9.2 case study

As case study we use the convolutional SNN presented in Chapter 6 designed
for recognizing the symbol on poker cards.

9.2.1 Classifiers

Each classifier is implemented with a Support Vector Machine (SVM) using a
Radial Basis Function (RBF) kernel. The two hyper-parameters are ν, which
controls the trade-off between overfitting and generalization of the SVM in one-
class learning, and γ, which is the coefficient of the RBF kernel [152]. A small
value of ν leads to fewer support vectors and, therefore, a smoother decision
boundary, while a large value leads to more support vectors and, therefore, a
curvy decision boundary [152]. We use the cross-language LIBSVM library [153].
The two SVM models are trained in MATLAB and then they are loaded by the C
application running on the processor.

9.2.2 Dataset Categorization

To account for the SNN stochasticity, for a given input sample, the SNN inference
is repeated multiple times and the samples are categorized as follows:

• Group 1: Samples whose class is consistently correctly predicted.

• Group 2: Samples whose class is consistently erroneously predicted.

• Group 3: Samples that are ambiguously predicted during the multiple
repetitions due to the SNN stochasticity.

The two SVMs are trained using samples in Group 1 increasing also the
training set size for the SVMs. As we care about the impact of faults when the
SNN correctly predicts an input sample, the fault detection capability of the
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Figure 9.2: Pareto front curve test escape vs. overkill for SVM trained with different
pairs of hyper-parameter values ν and γ.

SVMs is assessed on Group 1 only. Group 2 comprises the outlier input samples
that the SNN did not learn to predict correctly after training. Group 3 comprises
corner input samples for which the SNN prediction has high variance and
can end up being incorrect. Groups 2 and 3 are not used for evaluating fault
detection as the SNN already makes or is prone to making a wrong prediction
anyways.

9.2.3 Fault Model

The fault model consists of permanent bit-flips in the memories that store the
various SNN parameters of the neuromorphic design (i.e., synapse weights,
neuron parameters, feature map parameters), similar to Section 6.2. We consider
two scenarios, namely single bit-flips across different bit positions and multiple
bit-flips uniformly distributed with a BER probability from 10−6 to 10−1. In total,
we consider 7404 SNN instances with single faults and 6278 SNN instances with
multiple faults.

To assess the criticality of a fault, we consider its impact on the SNN classifica-
tion result. Faults are categorized into:

• Critical faults: For a given input sample, a fault is critical if the predicted
class of the faulty SNN is different than this of the fault-free SNN.

• Benign faults: For a given input sample, a fault is benign if the predicted
class of the faulty SNN matches this of the fault-free SNN.

9.3 experimental results

First we consider a single SVM and we assess the performance based on the
resultant test escape and overkill. The trade-off is explored in Fig. 9.2 showing
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Figure 9.3: Performance of system with two SVM.

the Pareto front by training different SVMs while varying the combination of ν
and γ values. The two end points marked in the Pareto front correspond to test
escape for zero overkill and overkill for zero test escape, respectively. These two
SVMs are the selected blue and yellow classifiers, respectively, shown in Fig. 9.1.

Fig. 9.3 shows the performance of the system of two SVMs for samples in
Group 1. Rows correspond to the SNN status (i.e., critical fault, benign fault,
fault-free) and the columns correspond to the on-line test decision. Out of all
faults, (8.8+ 0+ 1.35) = 10.15% are critical and (17.02+ 56.97+ 15.86) = 89.85%
are benign. As it can be seen, (8.8/10.15) ∗ 100 = 86.7% of critical faults are
detected in real-time, while test escape and overkill are both zero for the one-shot
decisions. However, the system has low confidence for (1.35/10.15) ∗ 100 = 13.3%
of critical faults and 0.31% of fault-free inferences. Regarding benign faults,
(17.02/89.85) ∗ 100 = 18.94% are proactively detected, (56.97/89.85) ∗ 100 =

63.41% are classified as no fault, and for (15.86/89.85) ∗ 100 = 17.65% the system
has low confidence. With a replay operation all uncertainties are lifted. The
0.31% of fault-free inferences that were previously flagged as low-confidence are
now flagged as “no-fault" since their footprint jumps inside the yellow boundary.
Whereas, the inferences with the 13.3% of critical faults and 17.65% of benign
faults that were previously flagged as low-confidence, are now flagged as “fault"
since their footprint remains inside the grey zone.

Regarding the outlier and corner samples from Groups 2 and 3, the yellow
SVM flags an error in all cases, thus the system successfully warns when SNN

outputs incorrect predictions. Considering the system of two SVMs, all samples
in Group 3 and 59.98% of samples in Group 2 lie in the low-confidence grey
zone, while for the rest 40.02% of samples in Group 2 an error is flagged directly.
The uncertainty is lifted with the replay operation as all these samples remain
in the grey zone.
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As a final note, deterministic one-shot decisions are completed without delay-
ing the next SNN inference, while whenever there is a low-confidence decision
there is a delay equal to the time of one inference due to the replay operation.
The SVMs run in software on a second processor core, in parallel with the SNN

operation. Thus, they are totally transparent to the SNN without interrupting
or interfering with it. The only overhead in our hardware implementation is
the utilization of the extra processor core dedicated to the SVMs that increases
power consumption.



10 C O N C L U S I O N S

The last years have been characterized by a great improvement and a rapid
evolution of AI, with numerous applications already embedding AI and many
of them actually depending highly on it. The complexity of these applications
requires very deep architectures of neural networks in order to satisfy the
workload, which on their turn render necessary the employment of powerful
hardware accelerators.

With this steep integration of AI in many fields, it is reasonable for questions
to arise about the reliability of such applications. A starting point in an effort
to answer them is to design more trustworthy neural networks based on the
knowledge on what could fail in the network and how. Therefore, the network
would be reinforced to withstand unwanted scenarios and avoid the worst
consequences.

To achieve that, it is essential to remember that SNNs make up another human
invention whose roots originate in biology. Thus, being inspired by the way a
living brain works, a lot of remarkable characteristics emanate naturally and are
inherited intact. However, since an imitation is very difficult to equal its original,
the SNNs lack the great extend achieved by their biological counterparts in
various of their features, with one of these being the fault tolerance capabilities.
Consequently, when a structural component of a network, i.e. a neuron or a
synapse, fails to operate properly, the cognition ability of the network is at risk
and its performance may be degraded.

Trusting AI requires trusting the hardware accelerator on which the SNN is
running, too. Taking into consideration that electronics and biology do not share
any similarities in their fundamental principals, SNNs are inevitably susceptible
to hardware-level faults.

As a conclusion, it is evident that neural networks and the AI hardware
accelerators destined for them have a lot of vulnerabilities and addressing them
is of utmost importance in order to ensure a reliable future for and with AI.

10.1 thesis contributions

The purpose of this thesis was to explore the domain of reliability of AI hardware
with the focus being on SNNs, so that more concrete answers can be provided
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to the aforementioned questions. To this extend, the thesis contributions can be
summarized as follows:

chapter 3 : We performed MC analysis and defect simulation for an analog I&F

neuron at transistor level. Then we observed and categorized the resulting
faulty behaviors to translate transistor-level faults into behavioral-level
faults and errors. We then used our observations to form a comprehensive
behavioral-level fault model that can be used to test spiking neurons
regardless their implementation.

chapter 4 : We developed a GPU-accelerated fault injection framework to sim-
ulate faulty SNNs and observe the effects of the faulty behaviors at network
level. The modeling of the neurons is quite modifiable, so that a range
of faults and defects is covered, while the fault models derive from the
ones described in Chapter 3. This way, a customization on the flow of
computations is enough to accurately achieve the desired effects of the
injected fault(s) on the network’s performance. Using the fault injection
framework, we inject a series of faults on two deep convolutional SNNs

designed for the classification of the N-MNIST and the IBM’s DVS128

Gesture datasets, accordingly. With the outcome of the experiments, we
evaluate and demonstrate the criticality of faults and the severity of their
effect on each network’s performance, which concludes to a large-scale
analysis of the resiliency of the two networks under study.

chapter 5 : We implemented a neuromorphic hardware experimentation plat-
form specifically for SNNs. The base of the platform is the configurable
event-driven SNN hardware architecture designed in VHDL and flushed
on an FPGA board. Aside the network in hardware, we have built a support
framework in MATLAB to set up and configure the network, perform the
fault injection, map the network’s faulty instance back into the hardware,
and analyze the experimental results. All these come as an embedded
system application operating under the aid of an on-board microprocessor
that handles and monitors the underlying network.

chapter 6 : We used the experimentation platform from Chapter 5 to perform
a fault injection experiment and fault resilience analysis for the SNN hard-
ware accelerator. We then assessed the fault criticality on actual hardware
to find that certain SNN parameters, i.e., splitter, router, and kernel pa-
rameters, are critical and must be protected, while for others, i.e., neuron
threshold and kernel weights, the network shows some degree of resilience
to faults occurring in LSBs. Therefore, these parameters can be the subject of
selective fault tolerance reducing the cost of an all-around fault-tolerance.

chapter 7 : We presented a method to generate compact functional test sets
for SNN hardware accelerators. A fault-agnostic metric is proposed to rank
the available samples based on their fault coverage capability without
performing any fault injection experiments. The functional test set is
generated by performing inference only once for each available sample in
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the training and/or testing sets and recording the output neuron spiking
activity, i.e., an effort that is spent already during training. Thereafter,
fault injection experiments are performed using only the highly ranked
samples to compute fault coverage given a fault model. Results collected
from our three SNN case studies as presented in Chapters 4 and 6, show
that the proposed method generated highly compact functional test sets
that can detect all faults resulting in even the smallest accuracy drop, i.e.,
one sample is misclassified.

chapter 8 : We leveraged the findings from the fault injection experiments
from Chapter 4 to build a cost-effective neuron fault tolerance strategy
for SNNs. The fault-tolerance strategy is a two-step procedure. In a first
preparatory step, the SNN is trained using dropout which makes some
neuron fault types for some layers passive. In a second step, we perform
active fault tolerance to detect and recover from the remaining neuron
faults in all layers. For hidden layers, we propose off-line and on-line fault
detection schemes, a “fault hopping" concept to simplify the error recovery
mechanism, and two different neuron-level and system-level recovery
mechanisms. For the small output layer we simply use TMR.

chapter 9 : We presented a generic on-line testing methodology virtually
applicable to any SNN hardware accelerator design and cognitive task. Two
classifiers monitor the cumulative spike count at the output of feature maps
of the SNN and are trained to detect in real-time outlier or corner inputs
that are prone to misprediction, as well as hardware-level faults. This
is achieved without generating any overkill thanks to the simultaneous
assessment of the confidence in the decision. Whenever the confidence is
low, a single replay operation suffices to resolve the ambiguity and make
an accurate final decision. The methodology is fully demonstrated on our
neuromorphic hardware experimentation platform presented in Chapter
5. It is shown that it enables trustworthy operation with zero-latency
transparent decisions for over 99.6% of the SNN inferences, while for the
rest the decision is made with a delay of one inference. The only overhead
is the power consumption from the utilization of a second processor core
dedicated to the integration of the two classifiers.

10.2 future perspectives

Research is an ongoing process with many sub-parts popping up while going
deeper in a domain. As extensive as a PhD thesis can be, there is always space
for improvement and further exploration.

The fault injection framework presented in Chapter 4 was first developed to
serve our experiments. The goal, which is already in the making, is to deliver
it as a Python library ready to be easily used under the specification of a few
commands by the user. It will be fast, meaning that the training or the inference
times of a network will be affected in the slightest way possible, so that there is
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no time overhead added to the application. The framework will be open-source
and its code publicly available for everyone to use, contributing to the respective
research field or serving as an industrial tool.

Another extension to the fault injection framework would be its integration
with the experimentation platform presented in Chapter 5, so as to provide (i) a
direct support for neuromorphic hardware; (ii) a unified working environment
(no need for the current platform’s assistive MATLAB framework); and (iii) an
extra layer of acceleration by inserting the hardware in the loop for the training
and inference of the studied network. This way the user experience is simplified
and also the hardware plays an active role in all the experiments.

For the hardware oriented experiments, only the experimentation platform
of Chapter 5 was considered. Although similar results are expected on the
reliability analysis of the same and other networks on different platforms, e.g.,
if access to Loihi or SpiNNaker is granted, it would be interesting to verify
this assumption. Also, applying the on-line testing method of Chapter 9 in
more hardware platforms, helps in uncovering its portability and generality as a
global testing mechanism.

Concerning the fault tolerance strategy proposed in Chapter 8, the next step
would be to demonstrate it on actual neuromorphic hardware. For example, in
architectures like our experimentation platform that groups the spiking neurons
in nodes, it would be more convenient to check if nodes behave similarly to
neurons, e.g., dead and saturated nodes, and if yes, modify the reactive fault
tolerance strategy, so that it accommodates the needs of such designs.
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