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Synthèse en Français

Le modèle standard de la physique des particules est l’aboutissement de la compréhension
humaine des éléments fondamentaux de l’univers et de leur interaction. Cependant, il
manque encore quelques pièces au modèle, comme les solutions au problème de la hiérarchie,
et les mécanismes qui sous-tendent les masses des neutrinos ou la matière noire.

Tout cela nécessite une nouvelle physique et de nouvelles théories au-delà du modèle
standard ( BSM). Pour repousser ces frontières, il faut constamment améliorer à la fois les
capacités expérimentales et les capacités de recherche. Depuis la découverte du boson de
Higgs, les dix dernières années ont vu une croissance explosive des technologies matérielles
et logicielles. Les méthodes d’apprentissage automatique ( ML) ont été largement adoptées
et ont donné de bons résultats dans de nombreux domaines, avec l’aide de processeurs
graphiques ( GPU) de plus en plus puissants. Cette recherche doctorale vise à étudier
l’efficacité potentielle de l’application des méthodes de réseaux neuronaux ( NN) pour
apporter des améliorations dans plusieurs domaines de l’ HEPP.

Du côté du détecteur, je me suis concentré sur l’évaluation de la faisabilité du système
de déclenchement de l’acquisition de données au niveau du matériel pour le détecteur
de muons New Small Wheel (NSW) récemment installé dans ATLAS. Le processeur de
déclenchement ( TP) fonctionne in-situ sur le matériel Field-Programmable Gate Array
(FPGA) dans un délai de 200 ns prévu pour prendre une décision de déclenchement de
niveau 0 ( L0). Ces exigences sont très strictes et, étant donné que l’inférence des réseaux
neuronaux est gourmande en ressources, le modèle a été spécifiquement conçu pour atténuer
ces limitations inhérentes. Enfin, un modèle convolutif ( CNN) a été choisi pour interpréter
les réponses reçues des huit départs de détecteurs MicroMegas ( MM) en étant entraîné
à reproduire les variabilités liées à la probabilité d’un tir de muons provenant du point
d’interaction ( IP).

Le deuxième thème principal de cette thèse consiste à explorer les méthodes d’apprentissage
non supervisé comme moyen de recherche agnostique des signaux BSM. Ayant accès à des
données générées par des processus bien compris du modèle standard, un réseau neuronal
est entraîné à comprimer les événements dans un format plus petit et à l’utiliser pour
reconstruire l’événement original. Ce type de modèle est appelé un autoencodeur ( AE),
et une grande erreur de reconstruction d’un événement a est un indicateur potentiel que
l’événement ne fait pas partie de la même distribution que les données d’apprentissage,
c’est-à-dire les données SM. La combinaison d’un tel modèle avec une estimation de la

1



densité de probabilité basée sur un réseau de neurones donne lieu à un ensemble appelé
autoencodeur probabiliste ( PAE), qui est la technique centrale utilisée dans cette recherche.
Le PAE a été testé en tant qu’outil potentiel pour identifier une nouvelle physique de
manière indépendante du modèle dans le contexte de la physique des jets et a donné des
résultats prometteurs.

Le modèle standard et le détecteur ATLAS

Le modèle standard ( SM) a été établi dans le but de créer un cadre unifié pour la physique
des particules. Il comprend 17 particules élémentaires dans un formalisme mathématique
de théorie quantique des champs ( QFT) invariant sous des transformations d’étalonnage
locales. Chacune de ces symétries est associée à l’une des trois interactions fondamentales.
La gravité est notamment absente de ce cadre théorique.

Malgré l’énorme succès et la précision des théories QED, QCD et Electroweak, le modèle
standard a encore besoin de certains éléments importants pour devenir une théorie complète.
Il existe des phénomènes observés et encore inexpliqués que le modèle standard n’a pas
encore élucidés:

• L’une des quatre forces fondamentales connues, la gravité, n’est pas incluse dans le
modèle standard. La gravité est mieux décrite par la relativité générale, qui suppose
que l’espace-temps est courbe. Cependant, toutes les tentatives de modélisation de
la gravité en tant que théorie quantique des champs génèrent des divergences. Pour
inclure la gravité, il faudrait également trouver une particule qui sert de médiateur
aux interactions gravitationnelles, ce qui n’a été identifié jusqu’à présent par aucune
expérience de pointe.

• Les neutrinos sont considérés comme sans masse par le modèle standard, ce qui a été
réfuté expérimentalement par des études sur les oscillations des neutrinos [1, 2]. Même
si le Modèle standard est suffisamment flexible pour permettre des expansions qui
fixeraient les masses des neutrinos, le mécanisme spécifique par lequel les neutrinos
acquièrent une masse s’avère toujours difficile à identifier.

• En ce qui concerne l’ajustement des paramètres du modèle standard, il existe un
problème de hiérarchie. Lors du calcul de la masse du boson de Higgs, les termes
correctifs sont proportionnels aux échelles d’énergie respectives, il serait donc rais-
onnable que la masse du boson de Higgs ne soit pas éloignée de la masse de Planck.
Cependant, les mesures expérimentales montrent que la masse de Higgs est inférieure
à cette attente d’un ordre de 1017. L’alignement de ces deux nombres implique des
annulations qui ne sont souvent pas considérées comme "naturelles".
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• Il existe de fortes preuves indirectes suggérant que la matière noire fait partie de
notre univers, mais le modèle standard est incapable d’en fournir une explication. La
difficulté d’observer les candidats à la matière noire provient du fait qu’ils ne peuvent
pas interagir de manière électromagnétique. Cela devrait encore permettre d’autres
voies expérimentales de détection, mais le modèle standard n’offre aucun aperçu de la
matière noire et de son comportement.

Les théories Beyond Standard Model (BSM) visent à introduire des modifications permettant
de résoudre certains des problèmes SM ou à fournir des cadres entièrement nouveaux et
plus généraux dans une tentative de généralisation de sa forme actuelle.

L’un de ces développements théoriques prometteurs est le Supersymmetry (SUSY) [3].
Il introduit la symétrie boson-fermion qui implique de doubler effectivement le nombre
de particules dans le SM en ajoutant un superpartener à chaque particule existante. Les
tentatives de modélisation de SUSY dans le SM tout en limitant autant que possible le
nombre de particules et d’interactions se sont manifestées par les extensions suivantes :
Minimal Supersymmetric Standard Model (MSSM) [4] et Next-to- Minimal Supersymmetric
Standard Model (NMSSM) [5]. SUSY aborde le problème de la hiérarchie et fournit des
candidats à la matière noire, mais, à l’heure où nous écrivons ces lignes, aucune preuve
expérimentale définitive n’a été trouvée pour la confirmer.

De la même manière que les interactions électromagnétiques et faibles peuvent être mod-
élisées par un cadre unifié, les modèles de type Grand Unified Theory (GUT), tentent de
rassembler toutes les interactions fondamentales dans un cadre unifié. Ils représentent une
classe entière de modèles BSM, chaque variante étant conçue pour aborder des phénomènes
légèrement différents. Bien qu’on puisse dire qu’ils sont tombés en désuétude ces derniers
temps, l’intérêt et le potentiel de prédictions expérimentalement testables demeurent.

Une tentative de résoudre l’incompatibilité apparente entre la SM et la relativité générale,
vient de Loop Quantum Gravity (LQG). [6]. Elle tente d’intégrer la gravité par un traitement
géométrique plutôt que de l’introduire comme une force fondamentale. Pour ce faire, elle
décrit l’espace et le temps au niveau le plus fondamental en termes de boucles finies. LQG
emprunte des idées à théorie des cordes mais ne nécessite pas autant de dimensions, étant
généralement formulée en termes de trois ou quatre dimensions. Certaines formulations
tiennent également compte de SUSY, d’autres non.

Le détecteur ATLAS

La collaboration ATLAS mène de nombreuses études couvrant un large éventail de la
physique. Le programme scientifique comprend la vérification des prédictions du modèle
standard ( SM), ainsi que des mesures de précision de ses paramètres physiques, tels que
les masses et les durées de vie moyennes des particules, et les constantes de couplage des
interactions fondamentales. Les hautes énergies offertes par le LHC permettent au détecteur
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ATLAS d’étudier les propriétés des particules les plus massives, telles que le quark top et
le boson de Higgs. Le détecteur ATLAS a été conçu comme un dispositif polyvalent, avec
pour mission d’étudier les collisions proton-proton (pp) et noyau-nucléus (A + A).

Figure 1.: Représentation schématique des sous-systèmes du spectromètre à muons ATLAS [7].

Par rapport au point d’interaction ( IP), le détecteur ATLAS est symétrique dans la direc-
tion avant-arrière du faisceau de particules, couvrant approximativement un angle solide
complet. Il présente une granularité complexe, impliquant de nombreux sous-systèmes
effectuant différentes tâches de détection. Pour une représentation plus facile, ces différents
sous-systèmes peuvent être considérés comme des couches, puisque leur disposition par
rapport au point central est associée à leur rôle fonctionnel. Au plus près du IP, nous avons
les systèmes de détection à l’intérieur de celui-ci, impliqués dans le traçage des particules
résultant des collisions. Ici, des détecteurs de haute précision avec des pixels et des bandes
sont mis en œuvre pour mesurer le momentum et les sommets. Plus loin de l’ IP, le sous-
système suivant est le calorimètre électromagnétique ( EM) à argon liquide ( LAr), dont
la tâche principale consiste à mesurer à haute résolution les énergies et les positions. Plus
loin encore, on trouve le calorimètre hadronique Tile, qui couvre principalement la région
centrale du détecteur ATLAS. Les deux calorimètres sont entourés par le spectromètre à
muons, composé de trois couches de bacs de poursuite de haute précision, qui permettent
d’obtenir une précision exceptionnelle dans les mesures de résolution des impulsions de
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muons.

Étant donné l’importance d’identifier correctement les muons d’état final à haute impulsion
au LHC, la collaboration ATLAS a conçu le spectromètre à muons avec des capacités de
déclenchement et de mesure d’impulsion à haute résolution. Le spectromètre utilise la
déviation magnétique des traînées de muons à l’aide d’un arrangement de trois aimants
toroïdaux supraconducteurs pour effectuer les mesures de déclenchement et de pT. Un
toroïde de baril ( BT) entourant le calorimètre hadronique est responsable de la déviation
des trajectoires de muons dans la plage de pseudorapidité |η| ≤ 1.0, tandis que pour la
plage 1.4 ≤ |η| ≤ 2.7, la même fonction est assurée par deux toroïdes d’extrémité ( ECTs)
plus petits placés à chaque extrémité du BT. Les BT et les ECTs synergisent leur effet dans
la région de transition 1.0 ≤ |η| ≤ 1.4, générant une déflection magnétique de leur influence
combinée [8].

Au cours du Run 1 et du Run 2, le spectromètre à muons utilisait déjà plusieurs types
différents de technologies de détection. Les tubes à dérive surveillée ( MDT) étaient les
principaux instruments pour les mesures de précision dans la majeure partie de la plage
de pseudo-apidité, sauf pour les valeurs η élevées, où des chambres à bande cathodique
spéciales ( CSC) ont été utilisées en raison de leur granularité plus élevée. En ce qui concerne
la gâchette, l’histoire est similaire, avec des chambres à plaques résistives desservant la
région de |η| ≤ 2.4 et des chambres à gap mince ( TGC) couvrant la région aux extrémités [8].
Le schéma général du spectromètre à muons est représenté sur la figure 1.

Comme tous les détecteurs ont beaucoup de canaux de lecture et un taux de collision très
élevé, l’expérience ATLAS ne peut pas stocker physiquement chaque événement de collision.
En plus des limitations techniques, tous les processus physiques ne présentent pas le même
intérêt pour la recherche. Depuis sa conception, le détecteur ATLAS a été conçu pour
mettre en œuvre des mécanismes de présélection permettant de décider rapidement si un
événement mérite d’être conservé ou non. Ce type de processus est communément appelé
"trigger".

Déclencheur d’acquisition de données basé sur l’apprentissage
automatique pour la "New Small Wheel"

Compte tenu du caractère récent de ce type de technologie logicielle et du fait que les
ressources des FPGA de la génération actuelle sont encore très limitées par rapport au
matériel dédié aux ML, la première étape de cette recherche et développement doit être
une preuve de concept. Dans cette optique, le prototype initial vise à mettre en œuvre
des modèles de réseaux neuronaux au niveau matériel qui, en utilisant uniquement les
capacités de calcul du FPGA, parviennent à reproduire le comportement du déclencheur
de la phase I actuellement mis en œuvre sans dépasser le budget temps. Dans la mesure
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Figure 2.: Diagramme de flux de données du système de déclenchement ATLAS [9].

de la contribution de cette thèse, seuls les détecteurs MicroMegas ont été modélisés jusqu’à
présent, car un échec avec cette configuration simplifiée invaliderait la méthode pour le
sTGC plus complexe.

Simulation de données

La géométrie NSW est déjà mise en œuvre dans ATHENA [10], ce qui permet de réaliser des
simulations Monte Carlo (MC) GEANT4 des trajectoires des muons à travers les détecteurs
nouvellement installés. La figure 3 montre le résultat d’une telle simulation en termes
d’impacts de MicroMegas, projetés en 2D sur le plan xy. Les petits secteurs sont représentés
en bleu, tandis que les grands secteurs sont représentés en rouge. Quel que soit le type de
secteur, tous les circuits imprimés MM sont mis en évidence individuellement.

Pour simplifier davantage la mise en place de la preuve de concept, on considère un
seul secteur et on donne aux plans des formes rectangulaires, en conservant l’espacement
des bandes de 0.4 mm. Le nombre de bandes est arrondi à 8800, tout en préservant la
configuration du plan stéréo avec des bandes inclinées de 1.5◦ et de 1.5◦ (par rapport à
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Figure 3.: Position des impacts de muons simulés par GEANT4 dans le plan xy de NSW

l’axe des x). Ces changements sont reflétés dans la figure 5, où le bleu argenté montre les
plans X, les plans représentés par le U orange ont des bandes inclinées à 1.5◦, et les plans V
représentés par le rose ont des bandes inclinées à −1.5◦.

L’utilisation de cette configuration a également nécessité moins de ressources informatiques
pour la simulation, permettant l’utilisation d’outils logiciels plus simples. La base de code
publique GitHub de A. Wang [11] a été utilisée comme point de départ pour développer
un code de simulation reproduisant la configuration simplifiée choisie. Un échantillon de
données de réponse du détecteur MM a été généré pour un million de trajectoires de muons
simulées, avec des représentations ROOT [12] contenant les emplacements d’impact en
termes de numéro de bande et de plan, ainsi que les ∆θ associés à la trajectoire.

7



7100 7150 7200 7250

2290

2300

2310

2320

2330

2340

2350
Strips Fired
Muon Track

Micromegas XZ-plane

Plane z-coordinate

St
ri

p 
N

o.

Figure 4.: La trajectoire des muons à travers un secteur MicroMegas est représentée en vert, les
bandes déclenchées étant représentées par des lignes horizontales rouges

Algorithme de déclenchement basé sur un réseau neuronal

Les traces de muons à travers un secteur de MM montrent une strucuture bien défini en
termes de nombre de bandes et de couches et il peut être représenté visuellement, comme le
montre la Figure 4. Cela a incité à explorer les algorithmes de vision par ordinateur qui sont
spécialisés dans l’identification de motifs géométriques. En termes de Machine Learning,
cela peut être réalisé par des modèles Convolutional Neural Network (CNN) qui prennent
des images en entrée.

Le état du détecteur peut être encodé sous forme d’image si nous tenons compte de toutes les
bandes à travers les huit couches à un moment donné. Une matrice binaire éparse M8800×8
peut englober toutes les informations MM puisqu’elle contient un élément distinct pour
chaque bande. Ainsi, si la bande i dans le plan j a enregistré un succès, Mi,j = 1 et sinon la
valeur serait 0. En traitant tous ces éléments de matrice comme des pixels, on obtient une
image très étroite contenant l’emplacement de chaque hit enregistré.

Avec la matrice M8800×8 comme entrée du modèle, l’étape suivante consiste à définir une
cible. Les premières itérations ont testé cette approche dans un scénario de classification, le
réseau étant chargé de différencier les punaises cosmiques des muons rapides. Cette tâche
s’est avérée triviale pour un CNN et l’étape suivante a consisté à tenter une régression de
la mesure de la qualité des traces ∆θ.
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Figure 5.: Représentation 3D d’une trajectoire de muons dans la configuration simplifiée de
l’assemblage MM

S’adapter aux limites des ressources du FPGA implique de trouver un équilibre entre le
nombre de paramètres du modèle et ses performances. La matrice d’occurrences étant assez
grande, puisqu’elle contient 8800 de bandes, il a fallu recourir à des techniques créatives de
réduction de la dimensionnalité. Ainsi, les blocs de construction du modèle étaient des blocs
de convolution qui contiennent une couche de convolution, une couche de mise en commun
maximale Rectified Linear Unit (ReLU) d’activation. La figure 6 montre le premier de ces
block, appliqué à la matrice d’entrée.

Lors du prototypage, un réseau comportant trois blocs de convolution a semblé être le meilleur
compromis entre les performances de régression et la complexité du modèle. Le Max Pooling
a été fortement appliqué afin de réduire la dimensionnalité verticale de l’entrée d’un facteur
quatre, après chaque bloc. Le modèle complet est représenté dans la figure 7, contenant une
chaîne de trois blocs convolutifs dont la sortie finale est aplatie et utilisée pour calculer la
cible prédite : ∆θ.

La conception de cette architecture a donné la priorité à un petit nombre de paramètres, afin
de faciliter le déploiement de FPGA. Le tableau 1 montre chaque couche du modèle ainsi
que le nombre de paramètres entraînables qui lui sont associés. Batch Normalisation [13] et
dropout [14] ont été utilisés à des fins de régularisation.
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Figure 6.: Bloc convolutif montrant l’entrée et la sortie de l’opération de convolution et de la mise en
commun max.

Figure 7.: Architecture de réseau neuronal déployée dans la régression ∆Θ.

L’apprentissage du modèle a utilisé l’optimiseur Adam [15] avec les paramètres par défaut
et a été facilité par l’accélération Graphics Processing Unit (GPU) d’une carte Nvidia Tesla
V100S. La taille des lots a été fixée à 500 et l’ensemble de données a été réparti à 80% entre la
formation, la validation et le test. La fonction de perte était l’erreur quadratique moyenne et
le processus de formation n’a montré aucun signe de surajustement en termes de différence
entre la perte de formation et de validation.

Résultats

Le modèle entraîné a été évalué sur les données réservées aux tests, en mesurant le Erreur
Absolue Moyenne ( MAE) des prédictions. L’erreur absolue moyenne en pourcentage MAPE
n’aurait pas pu être utilisé de manière fiable compte tenu de la petitesse des valeurs cibles.
La figure 8 résume les performances de la régression.
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Type Shape Parameters
InputLayer [(None, 8800, 8, 1)] 0
BatchNormalization (None, 8800, 8, 1) 4
Conv2D (None, 8800, 8, 8) 80
MaxPooling2D (None, 2200, 8, 8) 0
ReLU (None, 2200, 8, 8) 0
Conv2D (None, 2200, 8, 16) 1168
MaxPooling2D (None, 550, 8, 16) 0
ReLU (None, 550, 8, 16) 0
Conv2D (None, 548, 6, 32) 4640
ReLU (None, 548, 6, 32) 0
MaxPooling2D (None, 34, 3, 32) 0
Flatten (None, 3264) 0
Dropout (None, 3264) 0
Dense (None, 1) 3265
Rescaling (None, 1) 0

Table 1.: Couches et nombre de paramètres de la régression CNN ∆θ.

(a) Distribution cumulée de la valeur absolue du test
∆θ.

(b) Distribution cumulative en log-binning de
l’erreur absolue de prédiction du test ∆θ.

Figure 8.: La distribution des valeurs de ∆θ de l’ensemble de données de test à côté de la distribution
des erreurs absolues de prédiction de ∆θ du modèle
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En termes d’erreurs absolues, neuf pistes de muons sur dix présentent des erreurs de
prédiction absolues inférieures à 0, 01 rad, comme le montre la figure 8(b). Cette distribution
cumulative d’erreurs présente un binning logarithmique et exprime le nombre de bin comme
une fraction cumulative du nombre total de points de données. Un examen plus approfondi
de la figure 8(a) montre que les valeurs de ∆θ pour 50% des pistes sont inférieures à 0, 01 rad.
Ici encore, la distribution est un comptage cumulatif de la fraction des événements dans le
log-binning.

Lorsqu’on les interprète ensemble, il apparaît que pour les trajectoires de ∆θ ≤ 0, 01 rad,
la prédiction du modèle peut comporter des erreurs allant jusqu’à 100%. Cela ne devrait
cependant pas être aussi inquiétant qu’il n’y paraît, puisque les plus petites pistes ∆θ sont
par définition les plus susceptibles d’être des prompt muons. Une erreur de régression plus
élevée sur celles-ci est très peu susceptible d’introduire des déclenchements erronés.

Ce modèle montre que les modèles CNN sont une solution potentielle pour le processeur de
déclenchement NSW, au moins dans le cas des détecteurs MicroMegas. La prochaine étape
logique est le déploiement sur du matériel FPGA simulé, puis physique. Les premières
tentatives de migration FPGA ont été réussies sur des cartes accélératrices Xillinx Alveo
U220. Ce processus a nécessité la quantification du modèle et l’exclusion des couches de
régularisation (dropout et normalisation par lots), mais il n’a pas eu de coût significatif en
termes de précision de régression. Au moment de la rédaction de cet article, des études sur
la synchronisation de l’inférence sont en cours, les goulots d’étranglement du pipeline de
données du logiciel Alveo posant de légers défis techniques.

Recherche de BSM (physique au-delà du modèle standard) à l’aide
de méthodes de détection des anomalies

La recherche de phénomènes physiques au-delà du modèle standard ( BSM) est l’un des
domaines de recherche les plus actifs en physique des hautes énergies ( HEPP). La manière
établie d’effectuer ce type de recherche dépend principalement de l’utilisation d’analyses
spécifiques complexes qui tentent de vérifier les prédictions de certains modèles théoriques
à l’aide de données expérimentales réelles. Avec une multitude de modèles parmi lesquels
choisir et des quantités de données toujours plus importantes, l’éventail des recherches
possibles en matière de BSM s’élargit et il devient de plus en plus difficile de s’y retrouver.
Bien qu’elle soit parfois très fructueuse, comme dans le cas de la découverte du boson de
Higgs, cette approche exige un travail très spécialisé qui peut ne pas être réellement rentable,
sauf si les prédictions du modèle de base peuvent être démontrées ou réfutées avec succès.
Compte tenu des défis mentionnés ci-dessus, une partie de la communauté de la physique
des particules se tourne vers d’autres moyens de recherche des signaux BSM.
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Figure 9.: Stratégie de recherche BSM utilisant des méthodes de détection d’anomalies basées sur les
réseaux neuronaux

Les méthodes basées sur l’apprentissage automatique pour détecter les anomalies non
supervisées et semi-supervisées se sont avérées extrêmement utiles dans un large éven-
tail d’applications. Cela soulève la question de savoir si une telle approche pourrait être
développée pour les recherches indépendantes du modèle des signaux BSM. Compte tenu
des énormes quantités de données recueillies par ATLAS au cours de ses années de fonction-
nement, la détection d’anomalies basée uniquement sur les données pourrait permettre de
trouver des signaux inhabituels indiquant une nouvelle physique.

L’un des principaux objectifs de recherche de cette thèse était d’explorer des méthodes non
supervisées basées sur le ML pour identifier les jets présentant des anomalies. La figure 9
donne un aperçu de la stratégie de recherche BSM utilisant ce type de cadre et montre trois
étapes principales :

• Un modèle de réseau neuronal ( NN) est entraîné pour générer des scores d’anomalie
qui représentent une évaluation quantitative du degré de dissimilarité de certains
événements par rapport à d’autres.

• L’application d’un seuil défini par l’utilisateur à la distribution des scores d’anomalie
permet d’obtenir un sous-échantillon contenant les données les plus anormales.

• Comparez les propriétés de l’ensemble de données original et du sous-échantillon
anormal. Dans le scénario de recherche BSM, les distributions de masse invariantes
d’objets physiques, lorsqu’elles sont placées les unes au-dessus des autres, peuvent
révéler une résonance liée à une nouvelle particule.

13



Apprentissage non supervisé

L’approche supervisée de l’apprentissage automatique utilise des cibles de sortie connues
pour les données de formation, mais ces informations ne sont pas toujours accessibles. Les
modèles ML tentent d’identifier les modèles de données qui sont étroitement liés aux cibles
de prédiction, mais ces modèles inhérents peuvent exister même en l’absence d’une étiquette
de formation bien établie. L’apprentissage non supervisé se réfère exactement à ce scénario,
où le ML est utilisé pour rechercher la structure sous-jacente des données et les relations
entre les observations, sans accès aux variables dépendantes.

Dans le contexte de l’utilisation de la recherche BSM, certaines recherches suggèrent qu’une
combinaison des deux classes de méthodes peut être plus performante que l’utilisation de
l’une d’entre elles individuellement [16].

Il pourrait y avoir de nombreuses façons de combiner un autoencodeur ( AE) avec l’estimation
de densité, mais un ensemble particulièrement intéressant qui y parvient est l’autoencodeur
probabiliste ( PAE) [17]. Le PAE consiste en un modèle AE dont l’espace latent est mappé
dans un espace distribué normal par un modèle de type Normalizing Flow (NF) [18]. La
figure ?? montre un diagramme de l’architecture du PAE.

Dans le modèle d’autoencodeur probabiliste, l’autoencodeur et le modèle de Normalizing
Flow peuvent travailler ensemble pour tenter de fournir une estimation de la probabilité
des entrées p(x⃗). NF est déjà capable de fournir une fonction de densité traçable pour la
représentation latente pγ (⃗z), mais malheureusement, comme la propriété d’injectivité n’est
pas applicable pour le codeur fϕ, les densités d’entrée et de codage ne sont pas identiques
: p(x⃗) ̸= pγ (⃗z). Pour parvenir à une approximation de p(x⃗), nous commençons par écrire
la probabilité conjointe p(x⃗, z⃗) comme un produit de probabilités conditionnelles selon
l’équation 0.1 [17].

p(x⃗, z⃗) = pθ(x⃗|⃗z)pγ (⃗z) (0.1)

Ensuite, p(x⃗) peut être isolé en marginalisant sur z, comme dans l’équation 0.2. Cependant,
cette intégrale n’est pas directement traitable et nécessitera une certaine approximation.

p(x⃗) =
∫

pθ(x⃗|⃗z)pγ (⃗z)d⃗z (0.2)

La probabilité implicite pθ(x⃗|⃗z) est supposée avoir une forme gaussienne, comme l’indique la
référence [17], tandis que la matrice de covariance œ est diagonale, et ses éléments non nuls
sont représentés par les erreurs moyennes de reconstruction pour chaque caractéristique.
Cette probabilité étant définie, l’intégrale de l’équation 0.2 peut être calculée en utilisant
l’approximation de Laplace [19]. Selon les auteurs de l’article original sur l’auto-encodeur
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probabiliste, les termes hessiens introduits par la méthode de Laplace réduisent la stabilité
numérique, ils seront donc abandonnés à partir de maintenant.

En prenant tout cela en compte, l’équation 0.3 montre la formule résultante pour l’approximation
de p(x⃗).

ln p(x⃗) ≈ −1
2
||⃗x − x⃗′||2σ⃗◦−2 − 1

2
bγ (⃗z)

2 + ln |detJγ| (0.3)

En analysant ce score, le premier terme peut être reconnu comme l’erreur quadratique
moyenne ( MSE) de l’autoencodeur, et σ⃗ est la diagonale de la matrice de covariance de
la vraisemblance implicite. L’autre terme du score d’anomalie est la vraisemblance de la
représentation de l’espace latent, fournie par le modèle de Normalizing Flow.

Pour la détection des anomalies, un autoencodeur probabiliste entraîné fournit plusieurs
indicateurs potentiels pour la classification. On peut considérer à la fois la probabilité de
la représentation latente et l’erreur de reconstruction de l’autoencodeur, ou quelque chose
comme ||⃗x− gθ (⃗z

′)||2, qui utilise la densité NF indirectement par optimisation logarithmique
négative de la log-vraisemblance requise pour trouver z⃗′. Un autre choix évident serait
d’estimer la vraisemblance des données d’entrée ln p(x⃗). Compte tenu de cette flexibilité
en termes de scores d’anomalies, l’autoencodeur probabiliste peut utiliser efficacement les
informations relatives à la densité et à l’erreur de reconstruction en même temps, ce qui en
fait un bon et précieux candidat pour d’éventuelles recherches BSM non supervisées ou
semi-supervisées.

Résultats

Bien que plusieurs approches aient été expérimentées, l’autoencodeur probabiliste ( PAE) a
fini par être le principal point de mire, étant donné le grand nombre de scores d’anomalie
potentiels qui peuvent en être dérivés. En utilisant la stratégie générale décrite au début
de ce chapitre, un flux de travail complet de détection d’anomalies a été développé pour
rechercher les signaux BSM inclus dans les ensembles de données Olympics [20] du LHC.
Puisque la stratégie consiste à rechercher des résonances dans le spectre mjj après avoir
sélectionné les événements en fonction du score d’anomalie, il est particulièrement important
de s’assurer que le score d’anomalie n’est pas corrélé avec la masse invariante du système à
deux jets.

Une fois que le score d’anomalie le plus prometteur est identifié, l’étape suivante consiste à
mettre en œuvre la méthode d’analyse complète de l’ensemble de données Black Box. En
appliquant une division de la distribution des scores d’anomalie pour sélectionner un sous-
échantillon des événements les plus anormaux, ce sous-échantillon est ensuite comparé aux
données complètes de l’ensemble de données Black Box. Si les deux distributions normalisées
de mjj sont analysées côte à côte, on s’attend à trouver un excès correspondant au signal BSM
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dans le sous-échantillon enrichi en anomalies. Cet excès est recherché à l’aide de l’algorithme
Bump Hunter [21], qui, en plus de faciliter la recherche de résonances, est également capable
de calculer la signification des résultats. Afin d’intégrer de manière transparente la chasse
aux bosses dans la base de code d’analyse de PYTHON [22] et de JUPYTER Notebook [23],
la bibliothèque PYBUMPHUNTER a été utilisée pour les fonctionnalités et les performances
qu’elle offre.

20 40 60 80

0

0.05

0.1

0.15

0.2

Mass sculpting

Percentile Cut

Je
ns

en
–S

ha
nn

on

(a) Biais de masse calculé à chaque seuil de
score d’anomalie percentile et exprimé en ter-
mes de divergence JS

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

AUC:0.82
AUC:0.82
AUC:0.77
AUC:0.76
AUC:0.84

ROC curves

Signal efficiency

B
ac

kg
ro

un
d 

R
ej

ec
tio

n

(b) Performances en matière de détection des
anomalies, exprimées par la courbe ROC.

Figure 10.: Mesures de performance pour les scores d’anomalies potentielles accessibles par
l’ensemble PAE.

Évaluation quantitative du biais du score d’anomalie par rapport à mjj impliquant la di-
vergence Jensen-Shannon ( JS) [24]. Après la formation, les scores d’anomalie ont d’abord
été extraits sur l’ensemble de formation conçu pour être exempt de signaux. Ensuite, des
seuils successifs couvrant tous les percentiles de la distribution des scores d’anomalie ont
été appliqués. Pour chacun de ces seuils, on a calculé la divergence JS entre les spectres mjj
de l’échantillon d’entraînement complet et du sous-échantillon au-dessus du seuil. L’objectif
ici est de déterminer dans quelle mesure la distribution de mjj est affectée par le score
d’anomalie. Comme la divergence JS mesure la distance entre ces deux distributions, un
score non biaisé montrerait des valeurs faibles pour la divergence JS dans ce scénario, quel
que soit le seuil, puisqu’il n’y a pas de résonance à trouver dans ce scénario.

Les graphiques de la déformation de la distribution de masse exprimée sous forme de
divergence JS en fonction du seuil percentile du score d’anomalie sont présentés dans la
Figure 10(a). Un comportement commun, quel que soit le score en question, est la forte
augmentation de la divergence JS aux derniers percentiles. Cela peut très probablement
être attribué aux fluctuations statistiques qui deviennent de plus en plus prononcées à
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Figure 11.: Résultats de la recherche de bump hunting après comparaison des données de la boîte
noire 1 avec le sous-échantillon d’événements anormaux dans le 99e percentile. Des couleurs sur le
graphique ont été ajoutées à la fin pour confirmer la présence d’un vrai signal BSM.

mesure que de moins en moins d’événements franchissent le seuil du score d’anomalie.
Sans tenir compte de cela, il est clair que les probabilités logarithmiques négatives des deux
modèles NF introduisent des quantités significatives de biais mjj. D’autre part, les scores
d’anomalie basés sur la reconstruction ajoutent nettement moins de distorsion de masse. Il
est intéressant de noter que le score PAE semble être généralement le moins biaisé de tous,
moins que l’un des deux scores qu’il incorpore.

Le pouvoir de discrimination du signal du score d’anomalie est aussi important que le fait
d’avoir une déformation minimale de la masse. Si l’ensemble de données de test synthétiques
est équilibré entre les classes étiquetées, les scores d’anomalie peuvent être évalués en tant
que classificateurs à travers le prisme d’indicateurs de performance conventionnels tels que
la courbe Receiver Operating Characteristics (ROC) et l’aire sous celle-ci. Si l’on juge les
scores d’anomalie par la valeur de l’aire sous la courbe ROC ( AUC), leurs performances
semblent assez similaires, comme le montre la figure 10(b). Bien que ces valeurs AUC
ne soient pas comparables à celles d’un modèle de classification supervisé, elles sont tout
de même respectables étant donné qu’il s’agit d’une méthode semi-supervisée. Les scores
d’anomalie basés sur la reconstruction sont parmi les plus faibles, tandis que les estimations
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de densité sont plus fortes, avec de petites différences entre elles.

Résumée dans la figure 10, la comparaison des performances du score d’anomalie a donné
des résultats intéressants. Le score PAE est le moins biaisé, tout en ayant l’un des meilleurs
chiffres de mérite pour le pouvoir discriminatoire. Bien que l’estimation PAE de la log-
vraisemblance négative des données d’entrée soit basée à la fois sur l’erreur de reconstruction
de l’autoencodeur et sur la densité de flux de normalisation, elle n’hérite d’aucun des
biais mjj de ces composantes, tout en empruntant les performances de classification des
meilleures.

La configuration la plus performante a été testée sur la Black Box 1, et les résultats sont
présentés dans la figure 11. La déformation de la distribution de masse invariante semble
inévitable, quelle que soit la configuration utilisée. Malgré cela, le modèle est capable de
trouver le signal dans l’ensemble de données de la boîte noire 1 de manière reproductible.
Une fois le contenu de l’ensemble de données révélé, le contenu du signal de la bosse-ulu
est immédiatement évident. La sélection des événements basée sur le score d’anomalie
donne un échantillon avec S/B = 1, 19% (signal sur fond), ce qui est un ordre de grandeur
supérieur à S/B = 0, 08%.

Conclusions

Le potentiel de progrès dans le domaine de la High-Energy Particle Physics (HEPP) est
encore important. Bien que l’ Standard Model (SM) fournisse une description exception-
nellement bonne des aspects les plus fondamentaux de la nature, certains phénomènes
doivent encore être expliqués. Des théories concurrentes concernant la physique Beyond
Standard Model (BSM) proposent des explications pour plusieurs mystères restants tels que
les masses des neutrinos, la matière noire ou la gravité quantique. Cependant, les preuves
expérimentales nécessaires ne sont pas encore disponibles pour les prouver ou les réfuter
toutes.

Bénéficiant de l’expérience A Toroidal LHC Apparatus (ATLAS) au CERN et y contribuant,
cette thèse a couvert deux sujets majeurs relatifs à l’état actuel de High-Energy Particle
Physics (HEPP).

En ce qui concerne la prise de données et la détection de particules, j’ai développé, dans
le cadre de ma thèse, un prototype d’algorithme de trigger basé sur le Machine Learning
et ciblant les détecteurs MicroMegas (MM) déployés avec le New Small Wheel (NSW). L’
Research and Development (R&D) sur ce front n’en étant qu’à ses débuts, le prototype actuel
sert de preuve de concept attestant de la faisabilité de l’approche. L’itération actuelle déploie
avec succès un Convolutional Neural Network (CNN) qui utilise les signaux du détecteur
pour estimer la variable la plus pertinente impliquée dans le NSW trigger décision.
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Enfin, j’ai conçu et étudié un flux de travail d’analyse de détection d’anomalie indépendant
du modèle visant des applications dans la recherche de la physique Beyond Standard Model.
La méthodologie proposée repose sur l’utilisation d’un ensemble Neural Network pour
générer des score d’anomalie conçus pour être sensibles à la présence de BSM signaux qui ne
sont pas connus a priori. Le modèle Probabilistic Autoencoder (PAE) a été choisi comme
principal modèle d’intérêt et plusieurs scores d’anomalie potentiels qui pourraient en être
dérivés ont été testés sur des ensembles de données synthétiques. L’accent a été mis sur
l’atténuation des biais potentiels du modèle afin de réduire la probabilité de trouver de faux
signaux. Les résultats obtenus sur le jeu de données Black Box 1, qui fait partie du défi LHC
Olympics, mettent en évidence les performances de la méthode en matière de détection des
anomalies. Dans un scénario semi-supervisé, le score d’anomalie PAE a été utilisé pour
obtenir une augmentation d’un ordre de grandeur du rapport entre le signal de l’échantillon
et le contenu du fond. Bien qu’un certain biais ait été introduit en ce qui concerne la masse
du dijet, le déploiement des algorithmes bump hunting sur la distribution mjj de l’échantillon
enrichi en anomalies a permis une identification correcte du signal BSM par rapport au
fond de référence complet Black Box 1.

Bien que j’aie fourni des résultats tangibles pour les sujets abordés, mon intérêt pour ceux-ci
est loin d’être épuisé. Il existe plusieurs projets que je considère comme une continuation
potentielle du travail effectué jusqu’à présent.

Le prototype de déclencheur de preuve de concept MicroMegas pour le modèle ATLAS
New Small Wheel (NSW) permet de poursuivre le développement des algorithmes de
déclenchement. Une prochaine étape importante serait l’ajout de données small-strip Thin-
Gap Chambers au prototype actuel. Avec le Long Shutdown 3 qui débutera fin 2025 et
durera jusqu’en 2029, un déclencheur complet basé sur le Machine Learning pourrait être
achevé à temps pour le prochain cycle de prise de données.

Comme pour les recherches BSM indépendantes du modèle, l’approche Probabilistic Au-
toencoder peut encore être optimisée en termes de réduction du biais introduit par le modèle.
Il existe des stratégies potentielles qui n’ont pas encore été explorées, comme les techniques
de décorrélation de masse et l’utilisation de caractéristiques jet supplémentaires.
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Introduction

The existence of yet unexplained phenomena in particle physics presents a great opportunity
for research progress in the High-Energy Particle Physics (HEPP) field. While there are
many Beyond Standard Model (BSM) models proposing several different solutions to
the SM limitations, experimental evidence is necessary to validate their validity. Pushing
those frontiers implies constant improvements both in the experimental data acquisition
capabilities and data analysis methodology. Machine Learning (ML) methods have seen
widespread adoption and success across many fields, aided by the increasingly better
performing Graphics Processing Unit (GPU) hardware acceleration. This Ph.D.research
aims to study the potential effectiveness of applying Neural Network (NN) implementations
to improve different areas of HEPP.

A general overview of the current state of the Standard Model is presented in Chapter 1,
alongside a small discussion on its limitations and a few proposed solutions. Chapter 2
introduces the Large Hadron Collider machine and further focuses on the A Toroidal LHC
Apparatus (ATLAS) experiment. All major subdetector systems of the ATLAS Detector are
covered in detail. The interplay between those systems leads to the reconstruction of hard
scattering pp collision events. Some of the intricacies of the physics object reconstruction
process from the detector signals are described in Chapter 3.

As part of the qualification process towards becoming an ATLAS author, I have undertaken a
study related to electron identification performance. This part of the work is concerned with
isolating the heavy-flavour sources of background electrons and has Chapter 4 dedicated to
it.

There are two main areas of personal contributions, both involving the use of Machine
Learning models. Thus, Chapter5 introduces the general aspects of Machine Learning and
Neural Network (NN) models.

On the detector side, my work focused on evaluating the feasibility of a hardware-level
trigger for the newly installed ATLAS New Small Wheel (NSW) end-cap muon detector.
The Trigger Processor (TP) operates in-situ on Field-Programmable Gate Array (FPGA)
hardware. Chapter 6 presents a feasibility study for a Machine Learning based muon trigger
algorithm targeting future upgrades of the New Small Wheel. A Convolutional Neural
Network (CNN) approach was chosen to interpret hits from the NSW’s eight MicroMegas
(MM) detector planes and trained to output quantities related to the likelihood for a muon
track to originate from the interaction point (IP).
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The second main topic of this thesis involves the exploration of unsupervised learning as a
means to model-agnostic BSM searches. A Neural Network ensemble called Probabilistic
Autoencoder (PAE) was the central technique employed in my research. Chapter 7 presents
the inner workings of the PAE model as well as how it can be deployed within a full
anomaly detection analysis workflow. This approach was tested in the context of jet physics,
being applied to challenging anomaly detection benchmark scenarios.
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1. Theoretical Basis in High Energy Physics

Even before the conception of the scientific method, humans were interested in understand-
ing the fundamental building blocks of our world. Early models of the universe can be
traced as far back as ancient Greece where many philosophers’ fascination with ontology
spawned theories belonging to the realm of physics and even metaphysics. While Demo-
critus is credited as the first to bring forth the idea of fundamental indivisible particles testing
such a hypothesis was far out of reach for the people of the time. The whole endeavour
of fundamental physics research has historically been limited by experimental capabilities
and as such, technological progress often allowed finer aspects of the universe to be probed.
Humans needed millennia to develop the necessary tools both on the experimental and
theoretical fronts before J.J Thomson discovered in 1897 the first elementary particle: the
electron.

Scientists of the 20th century set the stage for the emergence of particle physics as a field
with the developments of quantum mechanics and relativity. While the theoretical tools
were carefully being assembled, engineering science saw unprecedented levels of growth.
Particle accelerators were being built for the first time in history and thus enabled many
models to be tested and incrementally improved. All of those endeavours culminated with
the establishment of the Standard Model (SM). This chapter was elaborated using Quark
& Leptons: An Introductory Course In Modern Particle Physics Halzen and Martin [25] and
‘Review of Particle Physics’ Workman et al. [26] as the main bibliographical sources.

1.1. The Standard Model

During the 20th century the scientific community saw many breakthroughs in fundamental
physics, such as Yang-Mills theory [27], violation of parity conservation [28], asymptotic
freedom of strong interactions [29], unification of the electromagnetic and weak force [30], the
development of the Higgs mechanism [31, 32] and many others. Building on this newfound
knowledge, the Standard Model (SM) was established in an attempt to create a unified
framework for particle physics. It comprises 17 elementary particles under a Quantum Field
Theory (QFT) mathematical formalism that is invariant under local gauge transformations.
Each of these gauge symmetries is associated with one of three fundamental interactions.
Gravity is notably missing from this theoretical framework.
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1.1.1. Elementary Particles

A representative diagram of the Standard Model constituents is displayed in Figure 1.1,
showing the 17 SM particles’ names and symbols, grouped by their type. The outer layer in
this diagram represents all particles that make up matter, the fermions.

Figure 1.1.: Graphical depiction of the Standard Model (SM) particles colour-coded by type [33].

As the name suggests, fermions follow the Fermi-Dirac statistics, obeying Pauli’s exclusion
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1.1. The Standard Model

principle stating that identical particles can not occupy the same quantum state within
the same system. All fermions share the same 1

2 value for their spin and they are further
subdivided into additional categories such as quarks and leptons. Those two categories are
represented in Figure 1.1 by different colours, but fundamentally the criteria for this division
amount to whether or not a particle is subject to the strong interaction. Quarks are strong
interacting fermions thus necessarily carrying a colour charge. This makes them subject to
colour confinement, implying that they can not exist in an isolated state. As a consequence,
quarks have never been directly observed as they always group together forming hadrons.
One notable exception is the top quark whose half-life is so small that it ends up decaying
before being able to undergo hadronisation. Quarks are the only elementary particles subject
to all types of fundamental interactions. Most matter in the universe is made up of u and
d quarks as they form the most stable baryons: the proton and neutron. All other quarks
are significantly more massive and thus the hadrons they form have vastly lower lifetimes
before decaying.

Category Particle Name Symbol Mass Spin Electric Charge
Quarks up u 2.2 MeV 1

2 + 2
3

down d 4.7 MeV 1
2 - 1

3
charm c 1.3 GeV 1

2 + 2
3

strange s 93.4 MeV 1
2 - 1

3
top t 173.2 GeV 1

2 + 2
3

bottom b 4.2 GeV 1
2 - 1

3
Leptons electron e 0.511 MeV 1

2 −1
muon µ 105.7 MeV 1

2 −1
tau τ 1776.9 MeV 1

2 −1
electron neutrino νe 0 1

2 0
muon neutrino νµ 0 1

2 0
tau neutrino ντ 0 1

2 0
Gauge bosons gluon g 0 1 0

photon γ 0 1 0
Z boson Z 91.2 GeV 1 0
W boson W± 80.4 GeV 1 ±1

Higgs Higgs boson H 125.2 GeV 0 0
Table 1.1.: Standard Model particles (excluding antiparticles) and some observables associated with
them [26]

Some fermions don’t carry colour charges and thus not being subject to strong interactions;
they are known as leptons. They get further divided corresponding to their electric charge.
The charged leptons e, µ and τ interact both electromagnetically and weakly while their
associated neutrinos (νe, νµ and ντ) are subject only to the weak interaction. This trait of
neutrinos makes them especially hard to detect as opposed to their charged counterparts.
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1. Theoretical Basis in High Energy Physics

They are also considered massless within the current framework of the SM. As was the case
with quarks, only the lighter leptons are stable, such as the electron and neutrinos.

The inner circle from Figure 1.1, depicted in blue, shows the vector bosons. Bosons are
the force carriers mediating particle interactions and their name is suggestive of the Bose-
Einstein statistics, which allows multiple identical particles to be aggregated in the same
quantum state. Electromagnetic interactions are associated with the photon while gluons
are responsible for the strong force keeping quarks bundled together. The remaining two
massive bosons Z and W are the carriers of the weak force. The Higgs boson could be
thought of as belonging to its own category since it’s the only scalar boson and is associated
with the field that gives the other fundamental particles their mass. In Figure 1.1 the Higgs
boson occupies the centre alone since there is no other particle similar to it. Table 1.1 lists
all of the Standard Model particles, as well as some observables associated with them,
such as mass, elementary electric charge and spin. For every particle in the SM, there
is a corresponding antiparticle with the same properties except for its physical charges
having the opposite sign. Antiparticles are not directly shown in Table 1.1 since in this
representation they would only differ in name and the sign of the electric charge.

1.1.2. Fundamental Interactions

Within the SM framework, elementary particles are formalized as quantum fields appearing
in the Lagrangian, while the fundamental interactions are encoded as interaction terms in
the definition of Lagrangian density. Each of the SM fundamental forces is modelled by
their own QFT although, the electromagnetic and weak forces have been unified under the
same definition of Electroweak theory.

Electromagnetic Interaction

Quantum Electrodynamics (QED) encompasses the foundational knowledge surround-
ing electromagnetism. All particles possessing electric charge are interacting via photon
exchanges.

The dynamics of free spin-1/2 fermions can be described by the Dirac Lagrangian in Equa-
tion 1.1. Notation-wise, ψ is the Dirac spinor, m is the mass and the Dirac matrices are
denoted as γµ. ψ̄ = ψ†γ0 is known as the Dirac adjoint.

L0 = ψ̄
(
iγµ∂µ − m

)
ψ (1.1)

In the Lagrangian, the γµ Dirac 4 × 4 matrices from Equation 1.3 can be expressed in terms
of the Pauli matrices, shown in Equation 1.2.

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 i
−i 0

]
, σ3 =

[
1 0
0 −1

]
(1.2)
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1.1. The Standard Model

γ0 =

[
0 I
−I 0

]
, γi =

[
0 σi

−σi 0

]
, γ5 =

[
−I 0
0 I

]
(1.3)

Under global gauge transformations, the Lagrangian from Equation 1.1 is indeed invariant,
but this no longer applies for local U(1) transformations. Enforcing local invariance under
transformations, as shown in Equation 1.4, involves the addition of a vectorial gauge field
that is massless.

ψ(x) → ψ′(x) = eiα(x)ψ(x) (1.4)

The gauge field Aµ(x) transformation is described in Equation 1.5. On top of that, the
covariant derivative Dµ(x) is also introduced in Equation 1.6.

Aµ(x) → A′
µ(x) = Aµ(x) +

1
e

∂µα(x) (1.5)

Dµ(x) = ∂µ − ieAµ(x) (1.6)

Using those two, the field strength tensor can be expressed as in Equation 1.7, which is the
last piece needed before defining the QED Lagrangian.

Fµν = ∂µ Aν − ∂ν Aµ (1.7)

With local U(1) symmetry taken care of, the QED Lagrangian is expressed by Equation 1.8

L = ψ̄
(
iγµDµ − m

)
ψ − 1

4
FµνFµν (1.8)

A nicer way of representing the QED Lagrangian is shown in Equation 1.9, using the
notations introduced so far as well as the electromagnetic charge current density jµ defined
in Equation 1.10.

L = ψ̄
(
iγµ∂µ − m

)
ψ︸ ︷︷ ︸

free lagrangian

− ejµ Aµ︸ ︷︷ ︸
interaction term

− 1
4

FµνFµν︸ ︷︷ ︸
kinetic term

(1.9)

Symmetry, according to Noether’s theorem [34], is associated with a conserved quantity,
which in QED is the electromagnetic charge. This charge, represented as q in the QED
Lagrangian, can be calculated by integrating j0 (from Equation 1.10) over the spatial coordin-
ates.

27



1. Theoretical Basis in High Energy Physics

jµ = ψ̄γµψ (1.10)

QED, thus describes the interactions between the Dirac fields ψ and the photon field Aµ(x),
which emerged as a consequence of U(1) symmetry.

Strong Interaction

Quarks and gluons carry a different type of charge, colour charge, which allows them to
interact via the strong force. Modelling for this type of interaction is provided by Quantum
Chromodynamics (QCD), founded on Yang-Mills theory [27], which extends the QED
formalism to groups that are not abelian. Within this framework, the symmetry group
is SU(3), which, unlike in QED, is non-abelian. Since there are eight group generators
associated with the SU(3) Lie algebra, just as many gauge fields require being introduced.

ψ(x) → ψ′(x) = U(x)ψ = eiαa(x)ta ψ (1.11)

Fermionic fields associated with flavour quarks are represented by triplets – three-dimensional
vectors. The number of vector components comes from the three colour states: red, green and
blue. Under a transformation U(x), the quark field ψ behaves as stated in Equation 1.11. The
Gell-Mann matrices ta represent the group generators, having the commutation relationship:
[ta, tb] = i fabctc.

Similarly to the QED’s case, new fields are introduced: the gluon fields, as well as a covariant
derivative, defined in Equation 1.12.

Dµ = ∂µ + igstaGa
µ (1.12)

The requirements for how the gluon fields behave under a transformation U(x) are sum-
marized by Equation 1.13.

Ga
µ → G′a

µ = U(x)Ga
µtaU†(x) +

i
gs
(dµU(x))U†(x) (1.13)

Equation 1.14 accounts for the previously introduced requirements and defines the field
strength tensor. It depends on fabc which are structure constants, generalizing the asymmetry
of the Levi-Civita symbol ϵijk to the SU(3) group.

Gµν
a = ∂µGν

a − ∂νGµ
a − gs fabcGµ

b Gν
c (1.14)
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1.1. The Standard Model

Lastly, the QCD Lagrangian density can be derived, as in Equation 1.15, using the previously
shown elements.

L = ψ̄
(
iγµDµ − m

)
ψ − 1

4
Gµν

a Ga
µν (1.15)

A noteworthy aspect of QCD is the presence of self-interaction, founded on the fact that the
gluons also carry colour charge themselves.

Electroweak Interaction

The remaining fundamental interaction is called the weak force and manifests itself as
nuclear processes such as beta decay. Theoretical physics was, however, able to formalize it
under a unified framework that includes electromagnetism as well [27, 30–32]. This is called
Electroweak (EW) theory.

In the context of weak interactions, the symmetry group is SU(2) and introduces the
conserved quantum number T3 called weak isospin. EW theory is chiral, which requires
treating separately the two components of the fermionic fields. Left-handed fermions, with
T3 = 1/2, are represented by doublets ψL while the right-handed ones, T3 = 0, are singlets
ψR. They behave differently under SU(2)L and U(1)Y local transformations. The covariant
derivative is consequently acting on the left-handed field according to Equation 1.16 and on
the right-handed fields as shown in Equation 1.17

DµψL = (∂µ + ig
σi
2

W i
µ + ig′

Y
2

Bi
µ)ψL (1.16)

DµψR = (∂µ + ig′
Y
2

Bi
µ)ψR (1.17)

Pauli matrices σ are used in Equation 1.16, while g and g′ are coupling constants for the W i

and Bµ boson fields. The field strength tensors are shown in Equations 1.18 and 1.19. In
Equation 1.19 ϵijk represents the Levi-Civita symbol.

Bµν = ∂µBν − ∂νBµ (1.18)

W i
µν = ∂µWν

i − ∂νWµ
i − ϵijkWµ

j Gν
k (1.19)

Accounting for those, the EW Lagrangian can be put together as Equation 1.20 shows, where
the sum over j covers the L doublet and two R singlets.
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1. Theoretical Basis in High Energy Physics

L =
3

∑
j=1

ψ̄j[iγ
µDµ]ψj −

1
4

Wµν
i W i

µν −
1
4

BµνBµν (1.20)

Using those ingredients, the massive W± boson arises from linear combinations between W1
and W2 as shown in Equation 1.21.

W± =
1√
2
(W1 ∓ iW2) (1.21)

Lastly, by applying a rotation of θ the massless vector field A associated with the photon
as well as the massive weak neutral Z can be recovered. Equation 1.22 shows this last step,
where θ is known as the Weinberg angle [30].

(
A
Z0

)
=

(
cos θ sin θ

− sin θ cos θ

)(
B

W3

)
(1.22)

1.1.3. The Brout–Englert–Higgs Mechanism

One of the most important additions to the SM is embodied by the Higgs boson. The
Electroweak (EW) Lagrangian is notably missing masses for its gauge fields and the reason
for it lies within the SU(2) × U(1) symmetry. Adding boson masses would break this
gauge symmetry while adding fermion masses is forbidden by the chiral symmetry require-
ment. The Higgs mechanism involves spontaneous symmetry breaking by separating the local
symmetries of the Lagrangian from the symmetries of the quantum vacuum state (lowest
possible energy) [35].

At the basis of this mechanism, the Higgs field, which is a complex SU(2) doublet, is defined
in Equation 1.23. (

ϕ+

ϕ0

)
=

1√
2

(
ϕ1 + iϕ2
ϕ3 + iϕ4

)
(1.23)

The Lagrangian for such a field can be created as Equation 1.24 shows, with V(ϕ) represent-
ing the potential energy.

L = (Dµϕ)†(Dµϕ)− V(ϕ) (1.24)

Choosing the most general renormalisable form for the potential, one could represent it as it
is shown in Equation 1.25.
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V(ϕ) = µ2ϕ†ϕ + λ(ϕ†ϕ)2 (1.25)

It is apparent how the sign of µ2 from Equation 1.25 has a strong impact on the potential’s
shape. A negative µ2 allows for an infinite number of minimal energy states, encircling the
origin of the complex plane. Figure 1.2 gives a visual representation of the Higgs field in this
scenario. In the opposite scenario where µ2 ≥ 0 has a single lowest energy state at ϕ = 0,
which yields a QED-equivalent theory.

Figure 1.2.: The shape of the Higgs potential relative to the real and imaginary parts of the Higgs
field’s ϕ0 component [36]

.

ϕ0 ≡ 1√
2

(
0
v

)
(1.26)

⟨ϕ⟩ =

√
−µ2

λ
(1.27)

Equation 1.27 shows the non-zero vacuum expectation value ⟨ϕ⟩ associated with the minima

of the Higgs field, which is shown in Equation 1.26, where v = −µ2

λ . States at this point of
minima break the SU(2)× U(1) gauge symmetry.
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The Lagrangian takes the form represented in Equation 1.28 after the chosen form of the
potential is substituted in.

L = (∂µϕ)†(∂µϕ)− µ2ϕ†ϕ + λ(ϕ†ϕ)2 (1.28)

Introducing the requirement of SU(2) gauge invariance implies the covariant derivative
taking the form shown in Equation 1.29.

Dµ = ∂µ + igτaWa
µ (1.29)

Thus, the three boson fields W i
µ will transform described in Equation 1.31 under the infin-

itesimal transformation from Equation 1.30

ϕ(x) → ϕ′(x) = (1 + α(x)
τ

2
)ϕ(x) (1.30)

Wµ → Wµ −
1
g

∂µα − α × Wµ (1.31)

Thus, Equation 1.32 describes the gauge-invariant Lagrangian, where Wµν = ∂µWν − ∂νWµ −
gWµ × Wν are the kinetic energy terms associated with the gauge fields.

L = (∂µϕ +
ig
2

τ · Wµϕ)†(∂µϕ +
ig
2

τ · Wµϕ)− µ2ϕ†ϕ + λ(ϕ†ϕ)2 − 1
4

WµνWµν (1.32)

Following through, the field minimum shown in Equation 1.26 is substituted in the Lag-
rangian expression from Equation 1.32. Using the absolute square notation as shorthand for
the product between the object and its adjoint, Equation 1.33 shows the relevant term from
the lagrangian after the substitution.

∣∣∣ig1
2

τWµϕ
∣∣∣2 =

g2

2

∣∣∣∣∣
(

W3
µ W1

µ − iW2
µ

W1
µ + iW2

µ W3
µ

)(
0
v

)∣∣∣∣∣
2

=
g2v2

2
[(W1

µ)
2 + (W2

µ)
2 + (W3

µ)
2]

(1.33)

Relating Equation 1.33 to how boson mass terms regularly look, the mass can be recovered
as 1

2 gv. Through this mechanism of spontaneous symmetry breaking the Standard Model is
able to generate masses for gauge fields, explaining the massive bosons: W± and Z0.
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1.2. Beyond the Standard Model

In spite of the huge success and accuracy of QED, QCD and Electroweak theories, the
SM is still missing some important pieces before becoming a Theory of Everything. There
are several still unexplained observed phenomena that the Standard Model is unable to
account for adequately.

1.2.1. Issues with The Standard Model

• One of the four known fundamental forces, namely gravity, is not included in the
SM. Gravity is best described by general relativity, which assumes that spacetime is
curved. However, all attempts to model gravity as a QFT are yielding divergences.
The inclusion of gravity would also require finding a particle mediating gravitational
interactions, which, so far, has not been identified by any state-of-the-art experiments.

• Neutrinos are considered massless by the SM, which was experimentally disproved
by studies on neutrino oscillations [1, 2]. Even though the SM is flexible enough to
allow expansions that would fix neutrino masses, the specific mechanism through
which neutrinos acquire mass is still proving to be elusive.

• In terms of fine-tuning the SM parameters, there is the hierarchy problem. When
calculating the Higgs mass, contributions from all energy scales ought to be taken into
account. The corrective terms are proportional to their respective scales so it would
be reasonable for the Higgs mass to not be far off the Planck mass. Experimental
measurements, however, show the Higgs mass to be less than this expectation by an
order of 1017. Bringing those two numbers in line implies cancellations that are often
not considered natural.

• There is strong indirect evidence suggesting dark matter to be part of our universe,
but the SM is unable to provide any explanation for it. The difficulty in observing
candidates for dark matter comes from the fact they are inherently unable to interact
electromagnetically. This should still allow other experimental avenues for detection,
however, the SM does not provide any insights into what dark matter is or how it
behaves.

• Recent studies in b-physics [37] are casting doubt on lepton universality. The SM
predicts all charged leptons to behave identically in terms of weak interaction strength.
However, experimental measurements of the ratio between B+ → K+µ+µ− and
B+ → K+e+e− branching fractions seem to suggest a different behaviour, unaccounted
for by the current formulation of the Standard Model.
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1.2.2. Possible Extensions

Although the Standard Model provides the best available description of fundamental
physics, considering that it is not yet fully complete, there are several theories designed to
fill out its few remaining gaps. Those aptly named Beyond Standard Model (BSM) theories
aim to introduce alterations that allow solving some of the SM issues or provide entirely
new, more general frameworks in an attempt to generalize its current form.

One such promising theoretical development is Supersymmetry (SUSY) [3]. It introduces
boson-fermion symmetry which implies effectively doubling the number of particles in
the SM by adding a super-partner to every existing one. Attempts to model SUSY into the
SM while limiting as much as possible the number of particles and interactions manifested
as the following extensions: Minimal Supersymmetric Standard Model (MSSM) [4] and
Next-to- Minimal Supersymmetric Standard Model (NMSSM) [5]. SUSY addresses the
hierarchy problem as well as providing dark matter candidates, but, at the time of writing,
no definitive experimental evidence has been found confirming it.

In a similar fashion that the electromagnetic and weak interactions can be modelled by a
unified framework, models of the Grand Unified Theory (GUT) type, attempt to bring
together all fundamental interactions under a unified framework. They represent an entire
class of BSM models, each variant tailored to tackle slightly different phenomena. While
they have arguably fallen out of favour in recent times there is still interest and potential for
experimentally testable predictions [38].

An attempt to fix the apparent incompatibility of the SM and general relativity, comes from
Loop Quantum Gravity (LQG) [6]. It attempts to incorporate gravity through geometric
treatment rather than introducing it as a fundamental force. This is achieved by describing
space and time at the most fundamental level in terms of finite loops. LQG borrows ideas
from string theory but does not require as many dimensions, usually being formulated in
terms of three or four dimensions. Some formulations also account for SUSY while others
don’t.
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European Organization for Nuclear Research (CERN) is one of the leading organizations
doing fundamental research in High-Energy Particle Physics (HEPP). In this field of study,
particle accelerators play an important role in finding experimental evidence since the
energies required are far beyond what we encounter in our everyday life. For this reason,
CERN built the world’s biggest particle accelerator to date, the Large Hadron Collider
(LHC). Since 2008 it was used with great success towards deepening our understanding of
the fundamental laws governing our universe, one of the most notorious discoveries being
the Higgs boson. This chapter gives a general overview of the LHC and details the various
aspects of the ATLAS Detector with a heightened focus on the features closely related to this
thesis’ main topics of research. Section 2.1 describes the LHC in broader terms, preparing
the ground for the ATLAS Detector description from section 2.2. The New Small Wheel
(NSW) is one of the main research topics presented in this work, so section 2.3 is dedicated
entirely to its hardware description. All technical documentation is sourced from the official
design reports: LHC Design Report [39, 40], ‘The ATLAS Experiment at the CERN Large
Hadron Collider’ [41], ATLAS Muon Spectrometer: Technical Design Report [8] and ATLAS New
Small Wheel: Technical Design Report [42].

2.1. The Large Hadron Collider

Spanning 27 kilometres, the LHC complex incorporates numerous subsystems in order to
achieve its many functionalities, as illustrated in figure 2.1. Apart from the main ring, there
are several other elements to the accelerator complex, providing increasingly larger energies
to the protons before they could be injected into the LHC.

There is a set succession of several apparatuses designed to speed up particle beams before
entering the LHC. When accelerating protons, hydrogen gas is used as the primary source.
Using an electric field, the electrons are stripped away from the nucleus and the resulting
protons are accelerated up to an energy of 50 MeV by the linear accelerator: Linac 2, the first
in this chain. From here the beam ends up in the Proton Synchrotron Booster (BOOSTER),
where it is accelerated up to 1.5 GeV. Next up in the acceleration chain is the Proton
Synchrotron (PS) that increases the energy furthermore towards 25 GeV. The resulting beam
is injected into the Super Proton Synchrotron (SPS) and here the energies obtained are
around 450 GeV [40].

35



2. The ATLAS detector at the LHC

LINAC 2

North Area

LINAC 3
Ions

East Area

TI2
TI8

TT41TT40

CLEAR

TT2

TT10

TT66

e-

ALICE

ATLAS

LHCb

CMS

SPS

TT20

n

p

p

RIBs
p

1976 (7 km)

ISOLDE
1992

2016

REX/HIE
2001/2015

IRRAD/CHARM

BOOSTER
1972 (157 m)

AD
1999 (182 m)

LEIR
2005 (78 m)

AWAKE

n-ToF
2001

LHC
2008 (27 km)

PS
1959 (628 m)

2011

2016

2015

HiRadMat

GIF++
CENF

p (protons) ions RIBs (Radioactive Ion Beams) n (neutrons) –p (antiprotons) e- (electrons)

2016 (31 m)
ELENA

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear 

Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE - Radioactive 

EXperiment/High Intensity and Energy ISOLDE // LEIR - Low Energy Ion Ring // LINAC - LINear ACcelerator // n-ToF - Neutrons Time Of Flight // 

HiRadMat - High-Radiation to Materials // CHARM - Cern High energy AcceleRator Mixed field facility // IRRAD - proton IRRADiation facility // 

GIF++ - Gamma Irradiation Facility // CENF - CErn Neutrino platForm

2017

The CERN accelerator complex
Complexe des accélérateurs du CERN

Figure 2.1.: Schematic of the LHC [43]

Besides protons collision, CERN also uses heavy lead ions for other experiments such as
ALICE. From a source of vaporised lead, the ions are accelerated by Linac 3 and then sent to
the Low Energy Ion Ring (LEIR). After this point, the lead ions are injected into the PS and
from there they follow the same steps in the acceleration chain as protons.

The last element in the acceleration chain is the LHC ring. Two beams of particles from the
SPS are injected into the LHC: one travels clockwise and the other anticlockwise. Proton
beams needed about 20 minutes to reach their Run 2 maximum energy of 6.5 TeV and
after that point, they are brought into collision at one of the main sites where the event is
recorded by the available particle detectors.

One of the challenges posed by the centre-of-mass energy target of
√

s = 14 TeV is bending
the beams across the ring. In order to achieve this, a lot of engineering effort went into
designing the superconducting dipole magnet system shown in Figure 2.3. Those are

36



2.1. The Large Hadron Collider

so-called two-in-one magnets since the system involves two separate dipoles with field
orientations in opposite directions. For the LHC’s bending radius of R = 2804 m, the
necessary field for bending 7 TeV beams is about B = 8.33 T [44]. Those numbers are derived
using the following approximation:

E = 0.3BR (2.1)

Equation 2.1, implies the energy expressed in GeV, the magnetic flux density B in Tesla and
R in meters. Additionally, to ensure beam focusing and stability, quadrupole magnets are
also deployed all along the main ring as part of FODO cells. As illustrated in Figure 2.2,
this arrangement of quadrupole magnets alternates between focusing the beam closer to the
beamline and defocusing it in order to correct its trajectory.

QF QD QF 

Figure 2.2.: Conceptual drawing of a FODO cell featuring a particle’s trajectory with a dashed red
line and the beam envelope with a blue solid line. QF are focusing quadrupoles while QD represents
a defocusing quadrupole [44]

When adding together all of those magnets alongside the other thousands of multipoles
in charge of further improving the beam focusing and all the normal magnets used for
squeezing the beams before the collisions, the total count exceeds 9000. Magnets alone
represent around 90% of the LHC’s cold mass.

Sustaining the required magnetic field necessitates large amounts of electric current, topping
up at 11800 A. As such, cooling the superconducting infrastructure to the nominal temper-
ature of 1.5 K is the second major challenge. Pressurized helium II (He2) is the technical
coolant of choice for the LHC’s superconducting magnet system. Since some magnets in
the straight sections of the ring don’t need to operate at their maximum flux density values,
they can be operated at 4.5 K. To accommodate those requirements, the cryogenics system
has two stages of cooling. The first stage involves liquid helium at 4.5 K, being delivered
by eight compressor plants, each one able to maintain the temperature while providing
18 kW of cooling capacity. The magnets are immersed in a pressurized bath filled up with
this cooling agent. In tandem, the second stage of the cooling system makes use of the heat
exchange pipe (figure 2.3). By exchanging heat between the aforementioned helium bath
and this pipe, the temperature drops to 1.5 K. It takes three weeks to completely cool down
one of LHC’s sectors from room temperature to the nominal temperature for operation.

With all of those elements working together, the LHC is a truly complex machine whose
operation has reached increasingly larger collision rates. Considering that the beam is not
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Figure 2.3.: Cross-section of the LHC dipole system [45]

continuous, but rather split into several bunches, the main figure for quantifying those
collision rates consists of the instantaneous luminosity and is given by the following
formula:

Linst =
n2

b Nb frevγ

4πϵnβ∗ F (2.2)

In Equation 2.2 nb is the number of protons per bunch, Nb represents the number of bunches
and frev is the beam’s revolution frequency. The other parameters are the Lorentz factor
γ, the normalized beam emittance ϵn, the value of the beta function (one of the Twiss
parameters) at the IP β∗ and the geometric factor F. If the collisions are head-on, F will
take the value of 1, but it will decrease with higher crossing angles θc. For a Gaussian beam
with the corresponding Root Mean Squared (RMS) of its size in the crossing plane denoted
by σx and the longitudinal bunch length as σz, the expression for F is described by the
Equation 2.3.

F =
1√

1 + Φ2
(2.3)

where Φ = θcσz/2σx [39]. A list of the LHC’s design parameters relevant in pp collisions
could be found in Table 2.1.
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Parameter Symbol Value Units
Beam energy E 7 TeV
Bunch spacing τb 25 ns
Protons per bunch nb 1011

Bunches per beam Nb 2808
Revolution frequency frev 11245 s−1

Peak luminosity Lpeak 1034 cm−2 s−1
Normalized beam emittance ϵn 3.75 µm rad
Beta function at IP β∗ 0.55 m
Crossing angle at IP θc 300 µrad
Longitudinal bunch length σz 0.075 m
RMS beam size σx 16 µm

Table 2.1.: Design parameters of the LHC’s main accelerator ring for pp collisions [39]

The luminosity figure is useful in determining the number of events where a specific process
of interaction takes place. Knowing the cross-section of the process σp, the resulting number
of events N is given by Equation 2.4.

N = Lσp (2.4)

For those kinds of calculations, we use the integrated luminosity L rather than the instantan-
eous Linst, as defined in Equation 2.5.

L =
∫

Linstdt (2.5)

Finally, another key parameter is the pile-up, describing the number of simultaneous
processes taking place within the same bunch crossing. Since there are 1011 protons in
a bunch, it is expected to end up with more than one pp collision in any given event.
Equation 2.6 shows how the pile-up µ relates to the instantaneous luminosity (as defined in
Equation 2.2) and the inelastic cross section σinel.

µ =
Linstσinel

frev
(2.6)

The LHC’s collision sites for the resulting beams of protons (or heavy ions) are represented
by the main experiments listed below:

• A Large Ion Collider Experiment (ALICE)

As the name suggests, in the ALICE experiment heavy-ion collisions are primarily
studied. Its main purpose is to study the strongly interacting hadronic matter at
the highest energies available. Under these conditions, quark-gluon plasma can be
produced and studied.
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2. The ATLAS detector at the LHC

• A Toroidal LHC Apparatus (ATLAS)

The ATLAS experiment could be best described as being general-purpose. It is
deployed in the study of both proton-proton (pp) and Nucleus-Nucleus (A + A) collisions
and facilitates studies for a wide range of modern-day physics problems such as
searches for dark matter candidates and BSM physics processes.

• Compcat Muon Solenoid (CMS)

This is the other general-purpose experiment being held at LHC. Although it has
similar goals as the ATLAS experiment, the technical design is entirely different.

• LHCb

The main focus of LHCb is the study of b-physics. Having this sole purpose removes
the need for full coverage of the collision point. Thus, LHCb detectors are placed in
such a way as to find preponderantly forward-moving particles.

This thesis’ main subjects revolve entirely around the ATLAS experiment, which is going to
be described in more detail in the following section.

2.2. The ATLAS Detector

The ATLAS Detector has been built as a general-purpose apparatus tasked with probing
proton-proton (pp) and Nucleus-Nucleus (A + A) collisions.

Many studies are being conducted by the ATLAS Collaboration covering a wide range
of physics. The scientific program includes testing the predictions of the Standard Model
(SM) as well as precision measurements for its physical parameters such as particle’s masses
and mean lifetimes, but also coupling constants for the fundamental interactions. The high
energies provided by the LHC allow the ATLAS Detector to investigate the properties of
even of the most massive particles like top quark and the Higgs boson. Another important
area of study is the search for Beyond Standard Model (BSM) processes. Several analyses
were conducted, attempting to uncover evidence for particles predicted by BSM models
such as Supersymmetry (SUSY). Some other BSM topics of interest are imbalances between
the creation of matter and antimatter, unification of gravity with the SM and the search for
dark matter candidates.

Relative to the interaction point (IP), the ATLAS Detector is forward-backwards symmetric,
coving almost a full solid angle. It has complex granularity, involving many sub-systems
carrying out different detection purposes. For easier representation, those various sub-
systems could be thought of as layers, since their disposition relative to the centre is related
to their functionality. Closest to the IP, we have the inner detector systems involved
in tracking the particles resulting from the collision. Here high-precision pixel and strip
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detectors are deployed for momentum and vertex measurements. Farther away from the IP,
the next sub-system is the Liquid Argon (LAr) Electromagnetic (EM) calorimeter whose
main task involves high-resolution measurements of the energy and position. Farther still,
there is the hadronic Tile calorimeter, covering mainly the central region of the ATLAS
Detector. The two calorimeters are surrounded by the muon spectrometer consisting of
three layers of high-precision tracking chambers achieving excellent precision in muon
momentum resolution measurements.

2.2.1. Coordinate System

Given the overall shape of the ATLAS Detector, a cylindrical symmetry could easily be
ascribed to it. In order to avoid any potential confusion a clear and consistent coordinate
system is necessary. Within a Cartesian representation of the detector, an obvious choice for
the origin would be the interaction point (IP). Regarding the axes’ orientation, the beamline
is conventionally labelled as the z direction. Perpendicular to it, the x axis intersects the
centre of the LHC ring in the positive direction and the y axis is perpendicular to the
resulting xz plane, pointing towards the sky. While this Cartesian system may be useful for
describing the detector itself with its many constituent elements, when it comes to event
analysis, taking advantage of the rotational symmetry along the beamline simplifies the
representation a lot. A cylindrical coordinate (r, θ, ϕ) representation of physics objects
may be simpler than a Cartesian one, but four-vectors are the main mathematic tools used
in the study of relativistic kinematics. The momentum of any physics objects created
from collisions can be described by a four-vector p = (E, px, py, pz) and the best system of
coordinates for working with such objects would provide Lorentz invariant representations.
One such system is a spherical coordinate representation where the four-momenta vectors
would take the form of p = (E, pT, η, ϕ), where pT would be the transverse momentum, η

the pseudorapidity and ϕ the azimuthal angle. Equations 2.7-2.10 show the formulas for
deriving the components of the Lorentz invariant four-momentum.

pT =
√

p2
x + p2

y (2.7)

θ = arctan
pT

pz
(2.8)

η = − ln(tan
θ

2
) (2.9)

ϕ = arctan
px
py

(2.10)

Rapidity is often an important variable in particle physics when dealing with relativistic
speeds, but it is often harder to compute since it requires precise measurements of the

41



2. The ATLAS detector at the LHC

longitudinal momentum pz, as shown in Equation 2.11.

y =
1
2

ln
E + pz
E − pz

(2.11)

Fortunately, when a particle is moving very close to the speed of light, in other words when
E ≈ |p|, the rapidity converges towards the pseudorapidity y ≈ η. Thus, at the energies
where the LHC operates, pseudorapidity makes for a good kinematic variable.

∆R =

√
∆η2 − ∆ϕ2 (2.12)

Operating with those variables requires redefining the way of computing spatial distances
between four vectors. For this reason, the metric of choice in this coordinate system is the
∆R, showcased in Equation 2.12, where ∆η and ∆ϕ are the differences between the values of
η and ϕ, respectively.

2.2.2. Inner Detector

With the original design dating from 1997 [46, 47], the inner detector was always a crucial
part of the ATLAS experiment’s operation. The main point of this assembly is to perform
tracking. This means determining the tracks (trajectories) of the charged particles resulting
from the collision. Magnetic fields (B = 2T) are applied in this region to bend the trajectory
of those particles, allowing measurements of charge and momenta based on the subsequent
curvature. Having those tracks provides vital information in determining the primary
interaction point (primary vertex) as well as the subsequent decay vertices, allowing the
analysis teams to target specific interactions for their studies. In terms of coverage, tracks
are detected across the whole |η| < 2.5 range. As part of the inner detector, there are three
separate sub-systems whose synergistic functionalities achieve the full scope of the inner
detector ensemble. From the interaction point outwards the subsumed detectors are the
Pixel detector, the Semiconductor Tracker (SCT) and the Transition Radiation Tracker (TRT).
Layout-wise, Figure 2.4 shows schematic representations of the inner detector, with a full
cross-section along the z-direction displayed in Figure 2.4(a) and a cross-section of the r − η

plane in Figure 2.4(b).

The Pixel detector is situated millimetres away from the beamline and originally consisted
of three separate layers divided into (50 × 400) µm pixels. During the first Long Shutdown
an additional layer was introduced: the Insertable B-Layer (IBL). This addition was placed
closer to the IP than the other three and significantly improved data quality and tracking
performance [49].

Next in line, the Semiconductor Tracker (SCT), is made up of four layers all along the barrel
region, while at the end-caps it takes the form of parallel discs, nine on each side. The region
covered by this detector is where the aforementioned magnetic field is deployed through
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(a) Full inner detector layout (b) r − η plane cross section

Figure 2.4.: Computer generated representations of the ATLAS inner detector system [48].

solenoid magnets. As opposed to its Pixel counterpart, the detector elements deployed in
the SCT are strips rather than pixels. This allows coverage of a much bigger area.

At the outer region of the inner detector, the Transition Radiation Tracker (TRT) comprises
gas-filled straw tubes as the active detector volume. This only allows for position meas-
urements in the r − ϕ plane but provides a large number of points per track (around 36).
While this part of the inner detector provides a smaller spatial resolution, namely ≈ 130 µm,
it is still instrumental in tasks like electron identification, mitigating fakes from charged
mesons.

2.2.3. Calorimeters

For precise energy measurements as well as Missing Transverse Energy (MET) estimation,
ATLAS commissioned a complex calorimeter system [47]. While there are several types of
detector technologies deployed within ATLAS’ calorimeters, they all rely on the principles
of sampling calorimetry. Coverage in terms of pseudorapidity range extends up to |η| < 4.9.
There are two main calorimeter systems at play, each tasked with a different purpose.
For physics objects of interest such as electrons and photons, the Electromagnetic (EM)
calorimeter provides adequate granularity for measuring their energy. On the other hand,
jets and heavier particles the likes of hadrons are not stopped by the LAr and end up in the
Tile hadronic calorimeter where they are fully stopped and their energy is recorded. Layouts
of the two calorimeter systems are displayed in Figure 2.5

As suggested by its name, the Liquid Argon (LAr) calorimeter uses liquid Argon as the active
detection media alongside lead plates for absorbing the energy of highly energetic particles.
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2. The ATLAS detector at the LHC

(a) Liquid Argon (LAr) calorimeter [50]

(b) The Tile calorimeter alongside the LAr EM calorimeter [51]

Figure 2.5.: Computer generated representations of the ATLAS calorimeters.
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The liquid Argon gets ionized by incoming particle showers resulting in the interaction
between the particles of interest and the lead plates. Structurally, multiple elements are
making up the EM calorimeter. In the barrel region, there are two LAr half-barrels deployed
in the region covering |η| < 1.475. At the end-caps, there is a separate structure called LAr
EM end-cap (EMEC) which covers the pseudorapidity interval 1.375|η| < 3.2. LAr-based
elements are also deployed for hadronic calorimetry as the LAr hadronic end-cap (HEC)
and for calorimetry in the forward region as the LAr forward calorimeter (FCal). Figure 2.5(a)
shows the placement of all subsystems using LAr technologies for calorimetry.

The other big part of the calorimeter system of ATLAS is represented by the Tile calorimeter.
This one wraps around the LAr detectors, being deployed for hadronic calorimetry exclus-
ively. It also uses plates for absorption, but the material is steel instead of lead. The detection
media consists of scintillating tiles deployed as in the layout highlighted in Figure 2.5(b),
where three distinct regions could be distinguished: one central barrel that is fixed and two
extended barrels placed on either side of the detector.

2.2.4. Muon Spectrometer

Designing a complex system like the ATLAS Detector requires impressive amounts of
resources and planning. Akin to many other of its major parts, the Muon Spectrometer’s
specifications were meticulously detailed in the initial Technical Design Report (TDR) from
1997 [8].

Provided the importance of correctly identifying high-momentum final-state muons at the
LHC, the ATLAS Collaboration has designed the muon spectrometer with high-resolution
trigger and momentum measuring capabilities. The spectrometer uses the magnetic de-
flection of muon tracks in an arrangement of three sizable air-core superconducting toroid
magnets, in order to perform both triggering and pT measurements. There is the large Barrel
Toroid (BT) encompassing the hadronic calorimeter which is responsible for muon track
bending in the pseudorapidity range |η| ≤ 1.0, while for the 1.4 ≤ |η| ≤ 2.7 interval, the
same function is provided by two smaller End-Cap Toroids (ECTs), placed at both ends
of the BT. Both the BT and ECTs are synergizing their effect over the transition region
1.0 ≤ |η| ≤ 1.4, generating magnetic deflection from their combined influence [8].

During Run 1 and Run 2, the Muon Spectrometer was already making use of several
different types of detector technologies. Monitored Drift Tubes (MDT) were the primary
instruments for precision measurements across most of the pseudorapidity range. However,
at |η| ≥ 2, the MDT’s maximum count rate of 150 Hz/cm2 becomes insufficient, prompting
the deployment of special Cathode Strip Chambers (CSC) in the forward region which can be
operated reliably at rates up to 1 kHz/cm2. For triggering the story is similar, with Resistive-
Plate Chambers (RPC) serving the barrel region of |η| ≤ 2.4 and Thin-Gap Chambers (TGC)
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covering the end-cap region [8]. The general layout of the muon spectrometer is shown in
2.6.

Figure 2.6.: Schematic representation of the ATLAS Muon Spectrometer Subsystems [7]
. The barrel and end-cap toroids are labelled alongside some of the main detector

technologies used: Thin-Gap Chambers, Cathode Strip Chambers, Resistive-Plate
Chambers and Monitored Drift Tubes.

The design decisions shaping the Muon Spectrometer were consequences of the very clear
and ambitious set of initial requirements stated in the TDR [8]. In terms of performance,
the main goal of this system was to maximize the discovery reach for new physics, while
reducing systematic bias as much as possible. This also meant a solid discrimination power
against ever-increasing levels of charged and neutral particle backgrounds. From a physics
standpoint, such performance would imply:

• Momentum and mass resolutions hovering around 1% and pT resolution as uniform
as possible over the entire pseudorapidity spectrum.

• Measurement of a second coordinate in the non-bending plane.

• Pseudorapidity coverage targeting |η| ≈ 3 and ample hermeticity

• A selective trigger with multiple operating pT thresholds and strong efficiencies
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• Time resolution good enough to identify individual bunch-crossings

And finally, the whole system was foreseen also to be resilient to harsh environmental condi-
tions such as temperature gradients, strong magnetic fields and high levels of radiation.

While the Muon Spectrometer’s implementation and operation were successfully meeting
the requirements during the first two data-taking runs, some of the systems involved are
expected to struggle with the new operating parameters of the LHC throughout future runs.
The end-cap region, especially the inner part, necessitated substantial upgrades to be ready
for Run 3. Section 2.3 covers the upgrade schedule of the LHC and dives deeper into the
changes made to the end-cap regions of ATLAS Detector’s Muon Spectrometer.

2.2.5. Trigger and Data Acquisition

Figure 2.7.: Diagram of the ATLAS trigger system data flow [9].

With all of the different detectors having lots of readout channels and a very high bunch
crossing rate, the ATLAS experiment can not physically store every collision event. On
top of the technical limitations, there is also the fact that not all physics processes pose the
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same amount of research interest. From its very conception [47], the ATLAS Detector was
designed to implement preselection mechanisms in order to quickly decide if an event is
worth keeping or not. This type of process is commonly known as triggering.

The system set up in place for triggering the data acquisition operates at multiple levels with
different tradeoffs between the trigger decision’s delay and complexity [9]. Figure 2.7 shows
a general diagram encompassing the major elements of the Trigger and Data Acquisition
(TDAQ) system and the flow of data between them.

At the first level, the Level-1 (L1) trigger system operates on custom hardware ( FPGAs
and ASICs) which makes it possible to operate at rates as high as the bunch crossing rate of
40MHz. The data sources for the L1 trigger are the Tile and EM calorimeters for energy
information and the Muon Spectrometer since the presence of muons in the final state is one
of the telltale signs of many interesting processes.

After a delay of no more than 2.5 µs, the L1 trigger makes a decision and if it accepts the
event, the signal is passed to the Front End (FE) boards that perform broader detector
readout based on the Regions of Interest (RoIs) found by the L1. The second stage involves
the Level-2 (L2) trigger which is, in turn, part of the High-Level Trigger (HLT) system. With
initial preprocessing of the readout data performed by the Readout Drivers (RODs), the
L2 performs a more thorough event reconstruction, while using only readouts from the
RoIs. This step, akin to anything else falling into the umbrella of the HLT, uses CPUs for
processing.
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Figure 2.8.: CERN’s upgrade path towards the High-Luminosity LHC (HL-LHC) [52].
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Finally, after a second positive trigger decision, the HLT deploys its final system: the
Event Filter. This involves a full event reconstruction with the common analysis framework
ATHENA using all available detector data. It is the slowest of all trigger steps but nonetheless
important since accepted events would go to mass storage and potentially be used in physics
analysis.

2.3. The New Small Wheels

Figure 2.9.: Picture of the A- side NSW detector system being installed [53].

The LHC’s operation has been consistently and gradually upgraded ever since Run 1. If by
the end of 2011, the collider was operating at a centre-of-mass energy of just

√
s = 7 TeV,

Run 3 collisions are expected to take place consistently at
√

s = 13.6 TeV, starting 2022. While
the energy almost doubled over this period, the integrated luminosity increased 15-fold.
Those massive upgrades required the LHC experiments to undergo improvements as well
in order to keep up with the latest data-taking conditions. Figure 2.8 shows the evolution
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of the LHC’s centre-of-mass energy and luminosity during the last decade, alongside the
shutdown periods when the upgrades took place.

The end-cap region of the Muon Spectrometer consists of the so-called wheels, which are
visually represented in figure 2.10. Muon detection systems placed in those regions carry
the responsibility of measuring high-η muons. Unfortunately, this region is particularly
vulnerable to muon tracking performance issues generated by the increase in cavern back-
ground radiation associated with higher luminosity levels. Both the tracking resolution and
efficiency were expected to significantly degrade for Run 3 operating conditions in the Small
Wheel region of the Muon Spectrometer. On top of that, according to the NSW TDR [42],
around 90% of the triggered muons in the end-cap region turned out to be fake when
analyzing 2012 data. Those major issues prompted one of the most meaningful upgrades
to the ATLAS muon system with the installation of the New Small Wheel (NSW), which
took place during the Long Shutdown 2. By replacing the Small Wheels with this new
detection ensemble, both problems could be addressed at the same time. It comprises both
precision tracking and trigger detectors designed to successfully operate at the high data
rates expected in Run 3.

2.3.1. Layout of the New Small Wheels

As the name suggests, the NSW is a wheel-shaped ensemble of detectors, covering the ATLAS
Detector’s inner end-cap regions on both sides. Figure 2.9 shows one side of the NSW as it
is being installed during the second Long Shutdown of the ATLAS Detector. Measuring
about 10 m in diameter, the NSW is a gigantic piece of hardware, and, in order to facilitate its
construction and assembly, it is divided into 16 trapezoidal sectors. Every sector is designed
to be able to operate independently of the others, having its own individual set of electronics
for readout and monitoring. As a means of maximizing the coverage area and minimizing
the overlap between sectors, there are two different sector layouts differentiated by their
size: Small sectors and Large sectors. The sector types are deployed in alternation such as
no two Small or Large sectors are placed next to each other. In the final assembly, any of the
two NSW sides contains eight Large and eight Small sectors.

Regardless of the sector size, there are two different types of detector technologies employed
across the New Small Wheel (NSW): MicroMegas (MM) and small-strip Thin-Gap
Chambers (sTGC). Figure 2.12 contains a visual representation of the two different sector
layouts as part of the full NSW’s assembly, alongside the relative shape and size of the
detector modules for the two different technology types. The highlights in Figure 2.12 show
the area of the detector modules themselves as well as the size constraints for the envelope.
Envelopes also contain the electronics for powering, readout and monitoring, necessary for
detector operation. Proportionally accurate active area overlap diagrams are provided in
Figure 2.11, with 2.11(a) displaying sTGC modules’ overlap and 2.11(b) displaying MM
modules’ overlap.
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Figure 2.10.: Schematic representing a top view cross-section of one-quarter of the ATLAS detector
[42]. The Small Wheel region is outlined in blue while the Big Wheel region is in yellow.

In terms of the sectors’ structure, the NSW detector planes are grouped in two multilayers,
each one having four sTGC and four MM detector planes. The arrangement of those
layers places the sTGC planes at the beginning and the end of the layer sequence while
the MM planes are located in the middle, maximizing the distance between the groups of
sTGC layers. Thus, the NSW totals 16 detector planes, eight for each detector technology.
Given the complexity of this system, a hierarchical naming scheme was created in order to
simplify and clearly define the granularity of the detector. Appendix A dives deeper into
the terminology used to describe the NSW’s sector components.

With MicroMegas detectors’ excellent precision tracking and small-strip Thin-Gap Cham-
bers detectors’ ability to trigger within a single bunch crossing, the NSW is expected to be
able to provide efficiencies close to 100% for both online and offline track reconstruction
during Run 3 and beyond. The choice of eight planes per detector type comes as further
future-proofing of the NSW’s design, offering additional robustness to accommodate even
the expected data rates of the High-Luminosity LHC (HL-LHC). While the two detector
types are highly specialized for their task, using them together, in a complementary way,
maximizes the performance for both precision measurements and triggering.

The following two subsections are describing the main detector technologies and their
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(a) sTGC modules (b) MM modules

Figure 2.11.: Representation of active area overlap between small and large sectors [42].

implementation within the NSW. Since one of the primary research topics of the thesis re-
volves around MicroMegas detectors, a lot more details are provided in their corresponding
section 2.3.2, but the sTGC overview in 2.3.3 is sure to tackle the most important aspects of
its layout and functionality, as well.

2.3.2. MicroMegas Detectors

MicroMegas (MM) detectors first appeared in 1996 as designed and published by I. Gio-
mataris et. al. in [54]. They follow broadly the operating principles of gaseous ionization
detectors, featuring a small gas volume that incoming charged particles are ionizing. MM
detectors are mainly made out of a planar electrode and a metallic mesh, with a gas gap in
between measuring only a few millimetres and acting as a drift region. Primary electrons
created through ionization in the gas gap start drifting towards the amplification region
which is the space bounded by the readout electrodes and the mesh. Because of the amplific-
ation region’s high-voltage potential, its electric field is 50 − 100 times stronger than the one
in the drift region. This ensures that more than 95% of electrons end up passing through the
mesh. After that point an electron avalanche forms, generating a readout signal in fractions
of a nanosecond. Figure 2.13(a) offers an illustration of the entire process.

For use within ATLAS’s NSW, the general mode of functioning described above still
applies, but there have been made some slight alterations. One of the issues with the
original MM detectors is their susceptibility to spark emissions caused by the avalanching
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(a) Small sTGC sector (b) Small MM sector

(c) Large sTGC sector (d) Large MM sector

Figure 2.12.: Schematic layout of the NSW, highlighting sTGC and MM modules with yellow. Blue
highlights cover the area allowed for the module’s envelope and grey elements of this diagram show
the mechanical support structures, as referenced in the TDR [42].

(a) Components of a MM plane (b) Operating principle of the MM detector

Figure 2.13.: Schematic depiction of the MM structure and working principles [42].
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electrons. Those sparks would expose the detector to an increased risk of damage while
also increasing the dead time between readouts. As a prevention measure, the NSW MM
design includes between the copper readout strip and the avalanche region an insulating
layer with resistive strips on top. This is meant to shield the readout strip from the charges
created by the avalanche. For this to work, the readout channels are exposed indirectly to
the electrical signal, through a capacitor. Figure 2.14 shows a representation of the readout
board’s components and assembly.

Figure 2.14.: Configuration of the MM readout boards [42].

The other major difference of the NSW MM is related to the applied voltages. As opposed
to the original design where the mesh has negative high-voltage applied while the strips
are connected to ground, the ATLAS design features high positive voltage on the resistive
strips and an amplification mesh at ground potential. This compounds the other spark-
mitigation measures by allowing the mesh to carry out releasing current produced by the
spark. Table 2.2 contains the most important parameters of the MM detectors’ operation
and design. With those two MM design modifications the signal peak may be reduced
alongside the spark current intensity, but the NSW is set up to operate for the foreseeable
lifetime of the ATLAS Detector without requiring any more significant upgrades.

In terms of the layout of the MM planes, not all of them are identical. Every multiplet of four
layers contains two so-called η planes and to stereo planes. Both types are similar in most
regards, except for the strip inclination. The stereo layers have their strips angled at a ±1.5◦

relative to the η ones in order to enable the measurement of a second coordinate. Some finer
details concerning the terminology used are included in the appendix A.1. The figure A.2
in the appendix shows the configuration of PCBs for small A.2(a) and large A.2(b) sectors,
featuring an η layer on the left and a +1.5◦ stereo layer on the right. A NSW sector with
its two MM wedges contains a total of eight planes: four of which are standard η layers,
denoted by X for simplicity. The other four stereo layers are named according to the angle
of the strips: U with +1.5◦ inclination and V having −1.5◦. Thus, a muon passing through a
NSW sector will encounter, in succession, the following layer types: X X U V within the first
multiplet and U V X X within the second one. With such placement, the η-planes end up at
the very start and end of the NSW sector, since sTGC chamber is placed between the MM
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wedges. On the other hand, the stereo layer groups from the two MM modules are placed
as close to each other as the geometry allows.

Item/Parameter Characteristics Value
Mesh Stainless steel separate from

readout board
325 lines/inch

Amplification gap 128 µm
Drift/conversion gap 5 mm
Resistive strips Interconnected R = 10-20 MΩ/cm
Readout strip pitch 4/8 layers ±1.5◦

Total number of strips 2.1 M
Gas Ar : CO2 93 : 7
Voltage on resistive strips positive polarity 550V
Amplification Field 40kV/cm
Drift Field 600V/cm

Table 2.2.: Design and operating parameters of the MM detector [42]

Apart from its ATLAS applications, this technology is being used today in many other
particle physics applications, as elaborated by [55].

2.3.3. Small-strip Thin Gap Chamber Detectors

The small-strip Thin-Gap Chambers (sTGC) was designed to carry out the most important
trigger functions of NSW and help compound the precision measurements of MM detectors.
Similar technology has already been deployed in the ATLAS Detector’s with the Thin-Gap
Chambers (TGC) being a part of the Muon Spectrometer since its conception. Compared to
the TGC, whose uses and localization are restricted to the Barrel Region and are touched
upon in subsection 2.2.4, the sTGC was engineered to have a much better spatial resolution
(100 µm compared to 10 mm).

(a) Electronics of the sTGC (b) Layout of the sTGC

Figure 2.15.: Representations of sTGC’s main components [42].
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At its core, the sTGC readouts signals from three types of elements: pads, wires and strips.
Their placement is presented in Figure 2.15. As Figure 2.15(a) shows, the wires and strips are
perpendicular to each other and separated by a carbon-coated plane. On top of everything,
there are the pads with a large surface area coverage, whose signals are used to identify the
region of interest where wire and strip readout should be performed. An entire plane of
sTGC detectors, part of a small sector, can be seen in Figure 2.15(b).
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3. Object Reconstruction in ATLAS

The previous chapter introduced the many parts of the ATLAS Detector diving deeper
into their structure and purpose, but all of those elements have to work together in order
to reproduce in as much detail as possible the specifics of every triggered event. Detector
signals can not be used directly so they have to be refined, often using complex methods
to derive higher level information usable within ATLAS analysis. A suggestive diagram
representing how certain particles interact with the detector is shown in 3.1. While there
are many physics objects of interest, this chapter will dive deeper into the ones related to
the main topics of the thesis, namely: electrons, muons and jets. With previous sections
covering the data-taking infrastructure and the data flow up to permanent storage, the final
section will introduce the ATLAS data model and data analysis methodologies, providing
additional context for the data processing model and infrastructure employed by ATLAS.
The content of this chapter is based on the following major bibliographical sources: ATLAS
detector and physics performance: Technical Design Report, 1 [47] and ‘The ATLAS Experiment
at the CERN Large Hadron Collider’ [41].

3.1. Low-level Objects

There are several layers of abstraction in physics object reconstruction. Starting from the
lowest level illustrated by raw electrical signals coming from the ATLAS Detector, the data
becomes more and more refined as more processing is applied to it. Before tackling the
actual physics objects it is important to understand some intermediate representations that
are lower on the abstraction hierarchy.

3.1.1. Tracks

Tracking, in general, refers to position measurements and, within ATLAS, the Inner Detector
plays the biggest role in this task. Subsection 2.2.2 has already briefly covered the Inner
Detector’s structure. Track finding relies on signals from the Pixel and SCT detectors
and starts by clustering adjacent signals. The locations of those clusters are referred to as
space-points since they represent a location in 3D space [57]. Those go on to become seeds
for iterative combinatorics, attempting to form a track from any possible set of 3 points.
After scoring the quality of the tracks based on criteria such as the number of points and
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Figure 3.1.: Signatures of several physics objects of importance in ATLAS [56].

impact parameter, track candidates are ranked based on the score in descending order. The
combination method is purposely designed to allow the same cluster to be part of several
track candidates. To solve the inevitable ambiguities raised by this approach, a Neural
Network (NN) is used to predict cluster position, attempting to extrapolate and fit all track
candidates. Figure 3.2 shows a flowchart of track candidates through the ambiguity-solving
algorithm.

3.1.2. Vertices

Having found the tracks, vertices can be reconstructed as the intersection points between
them. The main point of interaction, namely the primary vertex is the most important one
to identify correctly. Unfortunately, high pile-up conditions make this process increasingly
difficult, due to the existence of many hard scattering vertices per event [58]. Thus, primary
vertex finding is also an iterative procedure, involving many recalculations through iterative
annealing fitting [59, 60]. Once the primary vertex is found, the procedure continues, looking
for new vertices using the remaining tracks until there are none left.
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Figure 3.2.: Schematic representation of the track finding process [57].

3.2. Electrons

Electron reconstruction primarily uses information from the EM calorimeters alongside
tracks recovered by the inner detector. [61]. There are two major challenges related to the
treatment of those particles. First of all, the reconstruction process has to be resilient to fakes,
since other types of physics object could also produce similar tracks and energy deposits
inside the calorimeter. Secondly, even after making sure that what has been reconstructed is
indeed an electron, it is still necessary to differentiate between prompt and non-prompt
electrons through a process referred to as identification (ID).

Figure 3.3 shows the ATLAS Detector subsystems that should generate readout signals from
interacting with an electron. The path of the electron is highlighted with a solid red line but
while interacting with the detector’s materials there is often Bremsstrahlung radiation being
emitted. This poses some additional difficulties because the radiated photons carry enough
energy to be able to convert into a e+e− pair, which will, in turn, bring forth another set of
signals in the detector.

3.2.1. Reconstruction

Due to the additional particles created through an electron’s interaction with the different
detector’s materials, what one could expect to be a straightforward trace (albeit bent by the
magnetic fields), becomes a cluster of track signals and energy deposits.

The reconstruction procedure begins with a fit of the signals from the inner detector and an
attempt to correlate the resulting track candidate with an energy cluster from the LAr EM
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Figure 3.3.: Schematic of ATLAS Detector elements that an electron would interact with, as of the
beginning of Run 2 [61].

calorimeter. Energy clusters are sought after first, using sliding windows to successively
scan regions of 3 × 5 towers. Each tower covers an area of ∆η × ∆ϕ = 0.025 × 0.025.

Track candidates that could be associated with a corresponding energy cluster undergo a
more rigorous fitting procedure using the ATLAS Global χ2 Fitter algorithm [62]. Finally,
an addition fit is performed based on a multitude of Kalman filters [63] that are meant to
increase the reconstruction performance by taking into account the losses in energy due to
the interaction with the detector. This algorithm is known as the Gaussian-sum filter (GSF)
method [64] and it is the last step in the process of reconstructing an electron candidate.

3.2.2. Identification

Once an electron candidate has been reconstructed, it is necessary to establish whether or
not it’s a prompt electron or not. All of the detector information previously used in the
reconstruction step is once again processed and re-analyzed in order to assess the likelihood
of the candidate being part of the signal or the background distribution. For this purpose, a
statistical model (likelihood) is the method of choice.

LS(x) =
n

∏
i=1

PS,i(xi) (3.1)

In Equation 3.1 LS(x) is the likelihood for the electron to be prompt and PS,i(xi) is the value
of the signal Probability Density Function (PDF) for the variable labeled i (PS,i) at value
xi. A similar likelihood model LB(x) is constructed for determining the probability of the
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electron to be non-prompt. The n variables in question making up the likelihood model are
displayed in Table 3.1; those are the components of the x vector. Any statistical correlations
between the quantities involved in the likelihood model are neglected.

The two likelihood probabilities LS and LB are combined into the main variable used for
prompt electron ID: the likelihood discriminant dL, as shown in Equation 3.2.

dL =
LS

LS + LB
(3.2)

Having this discriminant allows any analysis team to develop suitable event selection
models for their work by choosing a proper operating point. ATLAS has a dedicated
Combined Performance () group that designs and test those ID tools. According to their
publication for Run 2 data [61], the efficiencies of the dL discriminant’s main operating
points show the values displayed in Figure 3.4. The choice of the operating point involves a

(a) (b)

Figure 3.4.: Electron- ID efficiencies in Z → ee events for the three main operating points: Loose (blue
circle), Medium (red square), and Tight (black triangle) as a function of ET 3.4(a) and η 3.4(b). The
bottom side of both plots displays the event ratios for data vs. simulation [61]

tradeoff between a higher sample purity achievable through a Tight selection and a higher
sample size resulting from a Loose selection criteria.

3.3. Muons

Prompt leptons are generally important physics objects to reconstruct from collision
events. If the previous section tackled the reconstruction of the electron, for this thesis’s
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Type Description Notation
Hadronic leakage Ratio between ET in the first layer of the hadronic calor-

imeter and ET of the EM cluster
Rhad1

Ratio between ET in the whole hadronic calorimeter
and ET of the EM cluster

Rhad

EM calorimeter’s
third layer

Ratio between the energy in the third EM layer and the
total EM energy

f3

EM calorimeter’s
second layer

Lateral shower width wη2

Ratio of the sum of the energies of the cells contained
in a 3 × 3 × (η × ϕ) rectangle to the sum of the cell
energies in a 3 × 7 rectangle, both centred around the
most energetic cell

Rϕ

Ratio of the sum of the energies of the cells contained
in a 3 × 7 × (η × ϕ) rectangle to the sum of the cell
energies in a 7 × 7 rectangle, both centred around the
most energetic cell

Rη

EM calorimeter’s
first layer

Ratio of the energy difference between the maximum
energy deposit and the energy deposit in a secondary
maximum in the cluster to the sum of these energies

Eratio

Ratio of the energy measured in the first layer of the
EM calorimeter to the total energy of the EM cluster

f1

Track conditions Transverse impact parameter relative to the beam-line d0
Significance of transverse impact parameter d0sig
Momentum loss between the perigee and the last meas-
urement point divided by the momentum at perigee

∆p/p

Transition Ra-
diation Tracker
(TRT)

Likelihood probability based on transition radiation
measured by the TRT

eProbabilityHT

∆η between the EM cluster location in the first layer
and the extrapolated track

∆η1

∆ϕ between the EM cluster location in the second layer
and the momentum-rescaled track; it carries the same
sign as the particle’s charge

∆ϕres

Table 3.1.: Variables used in computing the likelihood discriminant for electron ID [61]
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purposes, it is important to discuss the muon as well. As opposed to electrons, muons are
significantly less interactive with the matter they encounter. In the muon’s case, neither
the LAr EM calorimeter nor the hadronic calorimeter is enough to completely stop it. This
fact, compounded by the existence of a dedicated muon-detecting system in the form of
the Muon Spectrometer, makes reconstructing muons somewhat less of a challenge. At the
same time, the correct identification (ID) of prompts is still necessary for the reconstructed
candidates.

3.3.1. Reconstruction

Tracks in the Muon Spectrometer are the first step of the reconstruction process. They come
in the form of straight lines of detector hits and get matched between the different stations
of the Muon Spectrometer. The atlas Global χ2 Fitter algorithm [62] is once again deployed
to backtrace the trajectory of the muon through the entire ATLAS Detector. This tool is
important because, even though the tracks from individual stations are usually straight,
when combining hits from multiple stations it is necessary to account for the magnetic fields
in between. After the ill-fitting hits are removed and the interaction point is added to the
mix, the quality of a second fit determines if a muon track is consistent or not [65]. This final
fit uses calorimeter information to estimate the muon’s energy loss and computes a first
estimation of its pT.

With a valid muon track candidate originating from the interaction point, the next step
involves adding signals from the other ATLAS detectors. Inner Detector tracks give the
most relevant information in this case. However, different detector stations have different
coverages in terms of η and there could also be tracks with missing traces or hits which
means that there are several particular ways to reconstruct the muon:

• combined muon: Those represent the best-case scenario where the tracks from the
Muon Spectrometer can be matched with tracks from the Inner Detector. For tracks
outside the |η| ≤ 2.5 coverage of the Pixel Detector hits from the Transition Radiation
Tracker (TRT) are used instead. Those cases are considered a subcategory of combined
muons and are referred to as sillicon-associdated forward muons (SiFs).

• inside-out combined muon: As the name suggests, if the algorithm finds clear tracks
within the Inner Detector that may be matched just with a few hits from the Muon
Spectrometer, the resulting physics object would be an inside-out muon. This scenario
mostly applies to low-pT muons that may not generate complete tracks in the Muon
Spectrometer.

• muon-spectrometer extrapolated muon: As opposed to the previous case, in this
instance, the Inner Detector tracks are missing altogether, but there is a clear set of
correlated tracks from the Muon Spectrometer stations. If this set of tracks’ trajectory
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can be extrapolated to the interaction point (IP), a muon-spectrometer extrapolated muon
will be reconstructed based on them.

• segment-tagged muon: The extrapolation could also happen the other way around,
starting from Inner Detector tracks and matching at least a segment from the Muon
Spectrometer. Muons reconstructed through this procedure are suggestively named
segment-tagged.

• calorimeter-tagged muon: Using calorimeter segments is a viable option considering
how much less ionization would a muon generate, compared to an electron. Matching
those energy deposits in the calorimeter with Inner Detector tracks, but without any
Muon Spectrometer hits results in a muon candidate that is calorimeter-tagged.

3.3.2. Identification

Once again, a reconstructed muon may or may not be a prompt muon and there is an
entire process of determining its origin, namely, muon identification (ID). Unlike electrons,
where an entire statistical model with measured PDFs is necessary for correct ID, muons’
identification criteria consist of a more straightforward set of rules. The hurdles here are
coming from all of the distinct muon candidate types introduced in the previous section.
Each of those types has its own set of requirements and on top of that, the requirements are
dependent on pT in most cases.

From the ATLAS analysis team member’s perspective, muon- ID and electron- ID tools
come similarly packaged as software. They also come with pre-defined working points
having similar names such as Loose, Medium or Tight, all carefully selected to correspond
to measured efficiencies. A more comprehensive summary of those rules corresponding to
certain muon- ID working points could be consulted in [65] but as a general rule, the number
of hits and segments is one of the main factors determining muon candidate quality.

Another thing worth noting is that in terms of background versus signal discrimination for
muons, as well as for electrons, isolation is a key property of prompt leptons. This refers to
a quantitative way of measuring detector signals in the vicinity either of tracks or clusters.
Lower such activity around the physics object of interest is useful in excluding hadronic
decays as the most likely source of the lepton. The most commonly used isolation variable is
the ratio between transverse momentum and the sum of pt reconstructed in the calorimeter
from all physics objects in a given ∆R radius.
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3.4. Jets

3.4. Jets

Hadronisation happens in all processes where free quarks or gluons are created. A particle
detector has no way of directly measuring any strongly interacting particle because they are
always confined together. Thus, whenever quarks or gluons undergo Quantum Chromo-
dynamics (QCD) interactions, what the detector sees is a cluster of secondary hadrons each
further following its separate decay chain. Those clumps of particles created in the process
of hadronisation are known as jets.

Given the nature of a jet and knowing the layout of the ATLAS Detector makes it clear
that the main systems involved in jet reconstruction are the two calorimeters, especially
the hadronic calorimeter. The shower created through hadronisation contains scores of
different particles that are very close together which means they can’t reliably be individually
reconstructed. The jet physics object is thus a composite one featuring the shape of a cone
rather than a track.

3.4.1. Particle Flow Algorithm

When it comes to reconstructing the hadronic showers as jets, the particle flow algorithm
takes advantage of the full granularity of both calorimeters. The first step involves the
so-called topological clusters [66]. Calorimeter cells with energy deposits several times
higher than the noise floor are considered the seeds of the topological clusters. Adjacent
cells signalling significant energy amounts are then progressively added to the seed clusters.
Finally, a check is performed on the topological clusters in order to divide them in two if
they show multiple local maxima in bins of energy.

Figure 3.5.: Flow chart diagram showcasing the steps employed by the particle flow algorithm [67].

Topological clusters in the calorimeters are combined with tracks recorded by the Inner
Detector before performing an overlap removal procedure. This entire process of subtrac-
tion and recombination is conventionally referred to as the particle flow algorithm [67]. A
schematic representation of the algorithm’s logic is shown in Figure 3.5. The tracks are
left unchanged in the end, while the algorithm’s output features a set of modified clusters
alongside the original ones.
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Tracks and topological clusters fall under the umbrella of particle flow objects and represent
the building blocks of jets. Particle flow information is used as the input to the final step in
jet reconstruction: jet clustering.

3.4.2. Jet Clustering

Jets are not fundamental objects, which implies that there is no universal method of jet
finding. The available literature [68] features many different jet clustering algorithms and
while some of them may be outdated, one could not find a single best approach for all
common applications.

There are two major approaches to jet finding: cone algorithms and sequential algorithms. The
former is revolving around the assumption that jets have inherently inflexible boundaries
that always take the shape of a cone, which simplifies computation. The latter allows for
more flexibility regarding the jet boundary, placing as much emphasis on momentum as
on the location in the ηϕ-plane, thus providing IRC safety, but at a higher computational
cost. With the significant increases in processing power seen across the past decade, cone
algorithms fell out of favour with the HEPP community while their better and more
processing-heavy counterparts took their place.

Even when it comes to sequential algorithms, there are still several to choose from, the
most used being: kt, Cambridge–Aachen and anti-kt. They all work iteratively computing a
distance measure dij between every two particles and identifying the pair with the minimum.
If the distance between those two objects is smaller than a given threshold, they are merged
into a composite object called pseudojet [69]. This process is repeated until there is nothing
left to merge and, at that point, all of the resulting pseudojets are promoted to the rank of
jets. For pp collisions, there is an additional distance variable supposed to evaluate the
distance between a pseudojet and the beamline.: diB When this distance is the smallest, the
pseudojet is recombined with the beam-jet instead. The expressions of the two distances could
be generalized between the three aforementioned sequential algorithms as follows.

dij = min(p2p
Ti , p2p

Tj)
∆R2

ij

R2 (3.3)

diB = p2p
Ti (3.4)

In Equations 3.3 and 3.4, the parameter p can take the values 1, 0 and −1 depending on the
algorithm used: kt, Cambridge–Aachen and anti-kt respectively. R is another parameter
related to the desired radius of the cone for the jets and ∆Rij is described by Equation 3.5.

∆R2
ij = (ηi − ηj)

2 + (ϕi − ϕj)
2 (3.5)

The use of diB determines the variant of the jet finding method which can be either inclusive
or exclusive. Inclusive variants use the cone radius R and as such if the distance between
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Figure 3.6.: Jet areas of the same event clustered with the three most popular sequential methods.
The areas are highlighted with solid colour while the constituent particles are represented as blue
dots; the size of the dot is proportional to particles’ pT [70, 71].

two pseudojets is greater than R, diB will always be greater than dij. In this scenario, instead
of merging the i constituent with a beam-jet, it is labelled as a jet itself. Since any stray
pseudojet is included in the final output it is often useful to apply pT cuts to select only what
could meaningfully be considered as a jet. For exclusive variants, either a jet-resolution dcut
or a number of jets njets parameter needs to be specified. Those two parameters signal the
stop of the recombination sequence: either when both diB and dij are below dcut or when
exactly njets have been found. Every constituent particle is either part of a final state jet or
the beam jet which is excluded from the output. A visual representation of the clustering
results while using the inclusive variant of each of the three methods on the same event is
shown in Figure 3.6.

3.4.3. Flavour tagging

Jets are the primary means of probing QCD interactions and may vary vastly in structure,
topology and kinematics. Unsurprisingly, all of those jet features are inherently related to
the interaction or decay that produced it. The process of identifying the physics process
behind a certain jet is known as tagging.

Tagging is meant to put a label on the jet based on the ancestral particle’s properties.
Depending on the mass of a decaying quark, the jet may be tagged as heavy or light. Tagging
could also occur based on flavour considering how important correctly pinning down this
information is to the study of many processes.

Considering the multitude of possible tags, correctly tagging a jet becomes a multi-class
classification problem. During most of ATLAS’ operation, there was an entirely different
method/tool for each tagging label. Nowadays, Neural Network (NN) powered models,
such as DL1 [72], are quickly improving, in a race to provide a unified tagging method for
multiple classes.
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By far the most common jet tagging task is b-tagging. The signature of the b-jet is mean-
ingfully distinct from the lighter counterparts and the b quark is frequently sought after by
many analyses, including the one in this thesis’ Chapter 4. Being so ubiquitous, b-tagging,
has a long history within ATLAS with many tools devoted to it [73, 74]. One of the first
approaches focused on tracks’ impact parameter information, creating a likelihood model
from MC-derived PDFs. The two algorithms using this method were IP2D and IP3D [72].
Another option involved a search for a secondary vertex within the jet and was packaged as
the SV1 algorithm [75]. More advanced vertex-finding procedures have also been employed.
The JETFITTER reconstruction tool has the fitting capabilities to model the full b quark decay
chain [76].

(a) (b)

Figure 3.7.: Background rejection versus the b-tagging efficiency for the several methods in tt events
[74]. In 3.7(a) the background is comprised by light-flavour jets while 3.7(b) shows rejection power
for a c-jet background.

While having multiple ways of b-tagging allows for greater flexibility, in order to make
sure no performance is left on the table, they could also be used together as part of an
ensemble method. The ATLAS Collaboration did that through the use of ROOT Toolkit
for Multivariate Data Analysis (TMVA) [77] to train a Boosted Decision Tree (BDT). This
algorithm is called internally MV2 [72] and was used extensively during Run 1 and Run 2.
There were several releases of this tool with names like MV2c00, MV2c10 and MV2c20 based
on the fraction of c-jet events used in the background training sample. Background rejection
plots for Run 2 data are displayed in Figure 3.7 where the rejection-efficiency curves are
computed for two different backgrounds.

68



3.4. Jets

Jets are also often found in the final states of events containing massive particles such
as the W boson or the top quark, as part of their hadronic decay chains. Those objects are
of particular interest since they may interfere, as a background source, with searches for
potential BSM boosted massive particles. For those reasons, t and W tagging is an active area
of research within the Jet and Emiss

T CP group. Several methods are being used for solving
this type of tagging, ranging from multivariate analysis (similar to b-tagging) to Machine
Learning (ML) models such as BDT and Deep Neural Network (DNN). A summary of
comparative performances is shown in Figure 3.8, as detailed in Reference [78].

(a) (b)

Figure 3.8.: Performance measured as the background rejection versus the signal efficiency for several
popular methods of W-tagging 3.8(a) and t-tagging 3.8(b), at the higher end of the pT spectrum [78].

For W-tagging, the BDT and DNN methods have similar performance, decisively above
cut-based approach involving the best discriminating variables: combined mass and D2
energy correlation variable. The green dot in Figure 3.8(a) shows the cut-based performance
optimized for a 50% efficiency working point.

Performance measurements differ when evaluating t-taggers, according to Figure 3.8(b). In
this case, the best two discriminating variables are the ratio between the 3-subjettines and
2-subjettines alongside the combined mass, but their discrimination power in the cut-based
approach is significantly worse than the BDT and DNN approaches. Additional methods
were tested for this task, such as Shower Deconstruction [79] which uses likelihood ratios,
HEPTOPTAGGER [80] and a DNN models trained directly on the jet constituents [81],
referred as TopoDNN in Figure 3.8(b).

All methods presented so far for tagging W and t jets make use of the substructure of the jet.
Inputs for both BDT and DNN models contain some high-level jet substructure variables,
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with the exception of TopoDNN, which still uses jet substructure, but accesses it directly by
using the jet constituents.

3.4.4. Jet Substructure

Jets are high-level physics objects carrying the same kinematic properties as particles.
However, since they are made up of multiple constituent particles, there is a lot of additional
information that can be extracted based on the constituents’ characteristics. Properties
based on this kind of lower-level information are commonly referred to as jet substructure
variables.

The constituents of a jet, may themselves be distributed between smaller-radius clusters, also
known as prongs. This type of property is reflected by quantities such as the N-subjettiness
τN [82] which can be interpreted as the extent to which a jet can be characterized as having
N subjets. In order to calculate τN , one starts by clustering the jet constituents into N smaller
subjets. For a jet with nc constituent particles, N-subjettiness is defined by Equation 3.6.

τN =
1
d0

nc

∑
k

min{∆Ri,k ; i = 1, N} (3.6)

∆R is defined in Equation 3.5 and the d0 factor is introduced for the purpose of normalization
and calculated as the sum of the transverse momentum of the constituents multiplied by
the radius of jet whose subjettiness is being evaluated. Using the ratio τi,i−1 := τi/τi−1 one
could effectively test jets for how likely they are to have exactly i prongs. The usefulness
of N-subjettiness is further compounded by the fact that, provided good subjet candidate
selection, it is Infrared and Collinear (IRC) safe.

Literature on jet substructure defines many such useful variables such as eccentricity
[83], planar flow [84], angularity [84] and many others. There are as well more modern
approaches attempting to provide complete descriptions of the substructure, such as Energy
Flow Polynomials [85].

Another way of representing substructure takes the form of jet images [86]. Jet reconstruc-
tion depends on calorimeter data which, as was previously discussed, is recorded in terms
of energy deposits measured by the calorimeter’s cells. This binning of energy deposits
can be projected as a flat image in ϕη-space. Starting from just a list of constituents and
summing their energy values over 0.1ϕ × 0.1η bins, the resulting 2D histogram becomes a
jet image.

Figure 3.9 shows an example of how a two-pronged jet may be represented as an image.
Before binning, the constituents were translated and rotated in ϕη-space in such a way that
jet’s primary subcluster is located at the origin and the second largest subcluster in terms
of total energy is underneath it on the vertical axis. Transformations such as those make it
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Figure 3.9.: Image of a two-pronged jet
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easier for Machine Learning models such as Convolutional Neural Network (CNN) to use
jet images as input.

3.5. The ATLAS Data Model

Considering the scale at which ATLAS operates, the data processing model has to keep
up with the ever-increasing amount of data while streamlining the processing as much as
possible through automation. The ATLAS Collaboration had to develop its own computing
infrastructure for both hardware and software in order to solve the uniquely challenging
problems that arise due to the scope of the experiment.

First of all, data is organized based on the conditions whereupon it was recorded. Successive
events with (near) constant LHC operating parameters are part of a Luminosity Block,
in groupings of around 105. All of the collision events part of the same LHC fill (beam)
comprise a Run. Higher on the ladder there are sub-periods containing multiple Runs and
being packed together into Periods. A LHC run, not to be confused with the previously
mentioned Run, contains all events within all periods between two Long Shutdowns. In
this data organization scheme, every event can be uniquely identified by the Run number
and the event number.

Not all of the data encapsulated within an event is always necessary and not all events
part of the same organizational unit are useful. The data volume available is so large that it
is prohibitively difficult to make it available to all members of the ATLAS Collaboration
across the world. In order to optimize both availability and storage space, the ATLAS
Event Data Model (EDM) [87] implements a data hierarchy comprising several stages
of processing. However, this introduces significant computational requirements for data
processing and distribution. All of those computing services are provided by the Worldwide
LHC Computing Grid (WLCG) [88], a global network of computing centres managing the
hundreds of petabytes of data collected by CERN’s experiments every year. The grid
encompasses a multi-tier infrastructure using both on-site and remote computing resources.
Raw data coming from the ATLAS Trigger and Data Acquisition (TDAQ) is sent to the
Tier-0 facility where it gets recorded to tape storage before being sent downstream for
further processing. This happens entirely on-site, at CERN, Tier-0 being the entry point
to the WLCG. The next step down the line is Tier-1, which facilitates both tape and disk
storage while acting as a distribution hub for Tier-2 centres as well as offering options for
reprocessing raw data based on the analysis needs. Finally, Tier-2 facilities of the gird take
on Monte Carlo (MC) simulations and additional data processing required for analysis [89].
Collaboration members and institutions can access the grid through their own computing
infrastructure whether that amounts to a personal computer or a university cluster. Those
are called Tier-3 even though technically they are not part of the WLCG.
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Figure 3.10.: Diagram of data model hierarchy featuring recorded detector data on the left and
simulated data on the right [90]. The colour coding relates to where the processing steps take place
within the WLCG hierarchy. Red bubbles are representative of ATLAS TDAQ and Tier-0 processing,
green is inclusive of both Tier-1 and Tier-2 while blue amounts to Tier-3 or any other local resources.

In terms of the EDM itself, the data format is different depending on the processing stage.
Figure 3.10 shows a visual representation of the data processing model featuring most
of the intermediate stages between raw data or Monte Carlo (MC) and analysis-ready
representations. At Tier-0 of the CERN grid, raw data is used to produce Event Summary
Data (ESD) files, which are C++ [91] objects that don’t make it to storage but are moreover
processed to produce slimmer Analysis Object Data (AOD) files. Tier-2 centres use the
AOD files to produce derivations, which are usually what the analysis teams are utilizing
in the form of Derived Analysis Object Data (DAOD) files. Simulated data follows most of
the same flow, with Raw Data Object (RDO) outputs of the digitization being the equivalent
of raw recorded data. However, in order to arrive at the digitization inputs, hard scattering
processes need to be simulated with MC event generators like PYTHIA or HERWIG, followed
by a GEANT4 simulation of the ATLAS Detector. All those computations are commonly
executed on Tier-2 grid hardware.

Hardware infrastructure is only one facet of the ATLAS data model. Software development
and services are the other big part of ATLAS computing. In order to ensure consistent
methodologies for interpreting and analyzing ATLAS data, a common analysis framework
is used, namely ATHENA [10]. Developed and maintained continuously since 2009, ATHENA

is a unified set of software tools covering most analysis tasks from basic reading and writing
ATLAS-specific file formats to complex use cases such as entire MC simulation chains, event
selection and filtering or jet tagging. Being constantly improved and maintained through
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an internal Continuous Integration (CI) pipeline, distributing it to the entire collaboration
reliably poses a real challenge. CERN has developed a custom read-only file system
accessible through a virtual application called CERN Virtual Machine File System (CVMFS)
[92, 93] in order to facilitate access to compiled common-use software and services such as
ATHENA, ROOT [12, 94] and RUCIO [95].
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While being part of the ATLAS Collaboration is both an honour and a privilege, obtaining
the Qualified Author status requires the completion of a Qualification Task (QT). This chapter
is meant to document the activities carried out within the e/γ Combined Performance (CP)
group that concluded my qualification as an ATLAS author. The results are also available as
an ATLAS internal note [96].

4.1. Context and Motivation

The bulk of this QT concerned studying the different sources of non-prompt electrons and
developing selection criteria for isolating the ones that originate from heavy-flavour decays.
In ATLAS, electron identification is generally performed using a likelihood discriminant
which is formed using variables constructed from measurements across the detector subsys-
tems that the electrons interact with the most. An in-depth description of this process was
presented and discussed in the e/γ group’s electron and photon performance paper [97],
published by the ATLAS Collaboration. Although many of the operating points of this
discriminant offer good performance in terms of background rejection, there is still room for
improvements, especially when it comes to rejecting heavy-flavour non-prompt electrons.

For the development of better electron identification (ID) methods, a good understanding
of the different types of non-prompts is highly desirable. Therefore, there are numerous
efforts in defining control regions for the several common possible sources.

My contribution focused on producing high-purity samples of heavy-flavour electron non-
prompts which are invaluable in the pursuit of superior electron- ID tools. With the growing
rate of adoption of NN-based methods across ATLAS, those samples could become instru-
mental in training and testing such models to improve certain physics objects’ identification
[98]. Most studies targeting electron- ID (with or without Machine Learning) should benefit
from the outcomes of this work. And, outside this scope, any ATLAS analysis where
heavy-flavour electrons are involved may borrow from the event selection model studied
here to generate their own samples.
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4.2. Analysis Strategy for Heavy-flavour Electron Background

The analysis explored the rather abundant tt process in an attempt to extract electrons
resulting from the hadronisation of heavy-flavour quarks. The implementation of the
selection algorithm was aided by the e/γ group’s software framework: the TAGANDPROBE-
FRAME [99]. This is the CP group’s internal implementation of the Tag and Probe Method,
which is more thoroughly described in section 4.2.1. A fork of this repository was created
and the necessary changes have been made in order to integrate this heavy-flavour electron
selection method.

Foremost, the selection process involved the application of event-level exclusion criteria,
habitually referred to as cuts, meant to ensure good data quality and efficient targeting of
the tt events. Those requirements entailed the following set of cuts:

• exclusion of events with no vertices containing more than two tracks 1

• matching the data to a Good Run List (GRL)

• skipping events where errors were generated in the process of physics objects’
reconstruction

In order to select for tt events, appropriate triggers needed to be chosen. In general, the
semileptonic and dilepton decay modes of the tt pair are the easiest to target since they include
at least one prompt electron and/or muon. As a consequence, the event-level selection
criteria incorporated the requirement of at least one electron or muon to be triggered. Further
tt content enrichment was obtained by implementing a cut on missing transverse energy of
Emiss

T ≥ 50 GeV, to account for the expected secondary W → ℓν decays.

Heavy-flavour electrons from tt events are in large part the result of the b → ℓ and
b → c → ℓ processes, which means that jet b-tagging is an important part of any analysis
attempting to isolate them. For this purpose, the MV2c10 tagger was used and configured
at its 77% efficiency working point. This tagging algorithm was developed by the Flavour
Tagging Working Group and its inner workings were presented in the ATLAS Public Note
covering b-tagging performance [100]. Alongside b-tagging, overlap removal techniques
are applied as well. At least two jets with pT ≥ 20 GeV are required to pass this procedure
for the event to be further considered.

4.2.1. The Tag and Probe Method

One of the most commonly used algorithms in physics performance studies is the so-called
Tag and Probe method. The main idea of this method is to use one set of physics objects called

1 All decay modes of the tt pair result in b-jets, which are often characterized by secondary vertices with high
track multiplicities.
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tags, whose selection narrows down the collection of possible interactions that may have
generated the event. Once the tags are found, a different selection is applied to find the
probes, which are the objects that we are interested in studying. This method was used in a
plethora of publications; a detailed description of it and its applications can be found in the
conference lecture [101], covering the ATLAS Common Analysis Framework.

In this heavy-flavour study, once the event-level cuts have been applied, the Tag and Probe
method was used to isolate the objects of interest. Firstly, the tags were chosen to be prompt
electrons or muons, whose presence confirms the event includes one of the targeted tt
decay modes. Table 4.1 shows the cuts that electrons and muons need to pass in order
to be considered tag objects. The fiducial cuts mean that the electron has to be central
(|η| ≤ 2.4), but also requires it to not be detected in the crack region. As for the muon’s
case, the combined label, indicates that there were multiple different detector sub-systems
involved in its reconstruction. Isolation cuts are expressed in terms of the ratio between
transverse momentum and the pTcone20 variable. This variable quantifies the sum of pT
reconstructed in the calorimeter from all physics objects in a radius of 0.2 (in units of ∆R).
However, the likelihood discriminant working point can not be easily described in terms
of efficiency, since it is not uniform with respect to the electron’s kinematics. Thus, for a
better understanding of what they mean, the Reference [97] would be the best source of
information.

Electron Muon
Passes overlap removal Passes overlap removal

Fiducial Cuts Is Central (|η| ≤ 2.4)
Object Quality Combined Muon

pT ≥ 27GeV pT ≥ 27GeV
Track Isolation (pTcone20/pT < 0.1) Muon Isolation (pTcone20/pT < 0.1)
Tight likelihood discriminant cut

Table 4.1.: Selection criteria for tag objects

If at least one tag object is found, the algorithm loops through all of the non-tag container
electrons searching for heavy-flavour candidates. Given that the goal was to maximize the
purity of the heavy-flavour sample, the following cuts have been chosen:

• Very Loose Likelihood Discriminant
Most reconstructed electrons are originating from light-flavour decays. The very loose
likelihood operating point was designed specifically to provide a good exclusion of
light flavour, while still keeping a considerable amount of heavy flavour.

• Loose Isolation
This has been implemented using the ISOLATIONSELECTIONTOOL developed by
ATLAS’ Isolation and Fake Forum and was described in Reference [102]. The Loose Fixed

77



4. Electron Identification Background

Cut working point was used to amplify the effects of the Very Loose Likelihood cut,
significantly increasing the purity of the resulting sample.

• Closeness to a b-tagged jet
The ∆R between the candidate probe and all of the existing b-jets was calculated,
requiring that the minimum ∆R found is ≤ 0.3 to confirm that the electron is inside of
a b-jet.

• Significance of transverse impact parameter d0 (d0sig)
For prompt electron tagging the value of d0sig plays an important role. In this analysis,
we use this parameter to achieve the opposite effects. Applying the cut d0sig ≥ 5
mitigates the prompt electron contamination of the output, furthermore increasing the
heavy-flavour purity.

The probes were also characterized based on the tt decay mode associated with the event.
This label was inferred based on the amount and type of tag objects found. A complete
overview of the naming scheme is shown in Table 4.2. When there is a single tag object found,
the probe label depends on its charge relative to the tag’s charge. Probes whose charge has the
same sign (SS) as the prompt lepton tag are much less likely to be prompt electrons due to
the nature of tt decays. Thus for some given data, if signal contamination is an issue, one
could exclude the opposite sign (OS) probes in an attempt to ameliorate the problem. Decay
modes of tt that involve τ leptons were not considered due to the additional difficulties
posed by their reconstruction.

Decay Mode Probe Label Details

Semileptonic

elOS Only one electron tag with opposite charge to the probe
elSS Only one electron tag with the same charge as the probe

muOS Only one muon tag with the same charge as the probe
muSS Only one muon tag with the same charge as the probe

Dilepton
el+el Two tag electrons

el+mu One tag electron and one tag muon
mu+mu Two tag muons

Table 4.2.: Probe labeling scheme

4.3. Heavy-flavour Selection Results

This section presents the outcome of the heavy-flavour event selection in both in ATLAS
real data and Monte Carlo (MC) simulation. Simulated events are by design perfectly
reconstructed, but accessing the relevant ancestral particle in the decay chain in order
to correctly match an electron to its background source is not a trivial task. In order to
evaluate the heavy-flavour content of the MC samples the IFFTRUTHCLASSIFIER tool
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Figure 4.1.: Pie chart of probe electrons IFF Type after the selection cuts applied on EGAM1 MC

(Reference [102]) was used, which labels electrons based on their source. As a part of
the e/γ group, the Isolation and Fake Forum (IFF) specializes in addressing issues of
misidentification of leptons and photons. The IFFTRUTHCLASSIFIER tool targets many
background categories, but the ones relevant to this study are the following2:

• IsoElectron: prompt electrons that are properly isolated

• CFIsoElectron: prompt electrons that are properly isolated but their charge was
flipped during reconstruction

• LFDecay: non-prompt physics objects originating from light flavour decays. The
IFFTRUTHCLASSIFIER does not provide a distinction between physics object types,
but this studies separates this category into LFDecay(had) which represents hadrons
and LFDecay(bkg) which covers all other object types

• BHadDecay: non-prompt electrons originating from decays of b-hadrons

• CHadDecay: non-prompt electrons originating from decays of c-hadrons

• TauHadDecay: non-prompt electrons originating from hadronic τ decays

• PromptMuon: prompt muons that are properly isolated

• PromptPhConv: electrons originating from the conversion prompt photons

• EleFromMuon: muons that are wrongly reconstructed as an electrons

• KnownUnknown: any lepton that the tool should be able to classify, but there is not
enough information contained by the event to do so

• Unknown: leptons that can not be attributed to any other category

2 The IFF tool labels consist of numbered classes, but, for readability, in this thesis they will be represented as
abbreviated text
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The MC sample was a tt EGAM1 derivation, which selects events with at least one well-
identified (Medium Likelihood) electron, deeming it not a perfect fit for this study. EGAM1
requirements imply that we can only access probes from the el+el, el+mu and single el decay
channels of tt. Unfortunately, no derivation covers all of the semileptonic and dileptonic
channels while also providing all of the necessary variables necessary for this selection
model. Thus, it was settled on EGAM1 for the most part, but there was also some success in
probing the muon channels with EXOT17 derivations. This other derivation is similar to
EGAM1, but its selection criteria apply to muons instead of electrons, requiring one prompt
muon with pT ≥ 50 GeV.

The heavy-flavour content of the probes passing the selection criteria is shown in Figure 4.1.
The results were obtained after applying the algorithm to a sample of 29.5 million EGAM1
tt events. In the Monte Carlo studies the heavy-flavour purity was found to have a value of
90.88%. To put this number in perspective, by counting all of the probes before applying the
conditional selection, we would have gotten a heavy-flavour content of about 3%. The set of
cuts applied on the probes was specifically designed to maximize purity, thus, this selection
model operated at a very high background rejection point (≈ 99.996%), representing the
percentage of heavy-flavour probes that are rejected by the cuts. However, the stringency
of the requirements also translates to a relatively low heavy-flavour efficiency: just shy of
1.3%.

Considering the numbers presented in the last paragraph, it is easy to conclude that a lot
of data is necessary in order to produce a consistent sample of high-purity heavy-flavour
electrons. Table 4.3 shows the yields in both real data and MC. The event yield is notably
lower in data compared to the Monte Carlo derivation, but this is easily explainable by the
fact that simulated data is comprised only of tt events, whilst real pp collisions can have a
multitude of other outcomes beside top quark pair production.

Dataset Total EGAM1 events Events Selected Probes Selected

MC 29,575,867 6,411,542 29,192
100% 21.67 % 9.87 × 10−3 e/evt

DATA18 245,106,731 9,061,847 23,856
100% 3.69 % 9.73 × 10−4 e/evt

Table 4.3.: Probe yields in real data and MC. The second column shows the total number of events
that went in the event selection. Column three presents in both relative and absolute terms the
number of events that passed the initial selection (i.e. a tag object was found). In the last column we
show the number of probes passing the cuts and their occurrence rate relative to the total number of
events

Probe yields are also greatly diminished in the data sample compared to the MC reference,
which likely means a low tt selection performance of the event-level cuts. The requirement
of a prompt lepton and two pjet

T ≥ 20 GeV jets is more accommodating to W+ jets events
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than tt, even at the upper end of the missing transverse energy spectrum (Emiss
T ≥ 50 GeV)

[103]. Cleaner tt signal regions in the lepton+jets channel could be achieved by requiring a
high overall jet multiplicity (≥ 4) in lieu of an invariant mass reconstruction procedure, as
exemplified by Reference [104]. In the context of the current analysis, the event-level cuts
aren’t stringent enough to cleanly separate tt from some of its main sources of background
like W+ jets, Multijet or Diboson (WW, ZZ, WZ). However, the additional constraints
introduced by tag selection and the subsequent search for probes are expected to provide
further background rejection that would be reflected in lower probe yields.

Figure 4.2.: The normalized distributions of heavy-flavour probes’ pT for MC (blue) vs DATA18
(orange).

Having established how this selection model behaves when applied to simulated data, it
is worthwhile to check if the same applies to real data. Figure 4.2 shows the normalized
pT distributions for the selected probes. It is important to note that probes coming from the
single muon and mu+mu channels have been excluded from the DATA18 histograms. Due
to the EGAM1 selection criteria, at least one tag electron should be present in every event.
This means that any contribution from events with only muon tags are unlikely to pass
the EGAM1 selection. The pT spectra in Figure 4.2 shows a good match between data and
MC, with the exception of a slight excess in real data probes above 35 GeV. One obvious
feature of these spectra is the sharp peak around 15 GeV. This shaping was found to be
caused exclusively by the combined effects of the probe cuts. When checking the probe pT
distribution in MC, before the cuts and including only the heavy-flavour electrons tagged
by their IFF type, there is no deviation from the expected spectrum shape. Figure 4.3(a)
shows the effects of all of the cuts, except for Very Loose Likelihood, on the pT distribution.
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Analyzing this, we deduced that the biggest culprit is the likelihood cut, although its effects
alone on the pT spectrum shape (shown in Figure 4.3(b)) were not as pronounced as one
would have expected. We concluded that the shaping effects of the Very Loose Likelihood are
somewhat amplified by the rest of the cuts, thus obtaining the distributions exhibited in
Figure 4.2.

(a) (b)

Figure 4.3.: Stacked pT histograms for three different sources of tt Monte Carlo heavy-flavour non-
prompt electrons: b-decays (violet), c-decays (liliac), non-prompt τ decays (pink). Here, (a) shows
the spectrum when applying all of the cuts except the likelihood and (b) shows what happens when
only the Very Loose Likelihood requirement is applied.

4.3.1. Shower Shape Variables

In this subsection, we show the spectra for several variables of importance in the electron-
ID process. The plots present the regions where the electrons picked by the heavy-flavour
non-prompt selection model are found in the shower shape variable space. We compared
the normalized distributions of those quantities after the probe selection for both simulated
and real data. For reference, the distributions for all probes before the selection cuts and
truth-matched probes to b-quarks (in MC only) are also included. The plots in this section
have been put together in order to arrive at a qualitative representation of the algorithm’s
effects on the variables relevant to electron identification. As stated in the previous section
DATA18 probes have been chosen only from events with at least one tag electron, the
exclusion of the other channels being justified by considering the EGAM1 skimming.

Figure 4.4(a) displays the distribution of transverse impact parameter values. Without the
heavy-flavour selection criteria, the shape of this spectrum resembles a zero-centred and
narrow Cauchy distribution. It appears the application of cuts resulted in the exclusion
of electrons whose d0 is in the vicinity of zero. Since there is a requirement specifically
targeting electrons for high significance values of this impact parameter, this shape of the d0
distribution is hardly surprising. The distribution of truth-matched electrons to b-hadron
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(a) Transverse impact parameter (b) Ratio of the energy in the third layer to the total
energy in the EM calorimeter

Figure 4.4.: Normalized distributions of d0 (a) and f3 (b), electron- ID variables. Electron samples
have been obtained by applying the selection model to EGAM1 derivations of Monte Carlo (blue)
and DATA18 (orange). The reference distributions are presented for all probes before the selection
(black) and probes truth-matched to b-quarks (Purple) for MC events only.

decays shows that indeed heavy-flavour probes should be more spread in terms of d0 but
there is no inherent discontinuity around the zero value.

The electron identification variable associated with the 3rd layer of the EM calorimeter is f3
energy ratio, whose distribution is shown in Figure 4.4(b). The range of this quantity, if we
were to look at all electrons indiscriminately, would be much broader (−0.03 ≤ f3 ≤ 0.47),
which is what we have in the histogram associated with all probes before the selection criteria
are applied. The heavy flavour non-prompt electrons selected with this method, in MC,
seem to settle around a mean of f̄3 ≈ 0.003 which is one order of magnitude lower than the
average f3 for all probe electrons in tt. DATA18 electrons’ distribution is slightly shifted to
the right, but this difference is present regardless of the existence of probe selection criteria.
A narrower lateral shower profile in simulation is a behaviour consistently found in most
studies (e.g. Ref. [105]). Another feature worthy of note is the high count of zero values. The
most likely cause of those was the electrons in the crack region (1.375 ≤ |η| ≤ 1.5), where
there is no 3rd layer of the calorimeter. The true distribution for electrons from b-jets shows
a similar shape relative to the one obtained by applying the cuts, with roughly the same
mean value, but a bit more spread.

Moving forward to variables concerning the 2nd layer of the EM calorimeter, the distribution
of lateral shower widths is presented in Figure 4.5(a). This distribution suffers several
changes after the application of probe selection cuts. Its mean gets slightly shifted towards
the left and there is a considerable narrowing effect induced by the cut-flow. The distribution
median for DATA18 is slightly shifted towards the right, but again this effect is present even
without the application of cuts. Regarding the true distribution of heavy-flavour electrons
from b-jets, the plot shows a similar density curve compared with the outcome of the probe
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(a) Lateral shower width along η (b) Ratio of the sum of the energies of the cells con-
tained in a 3 × 3 × (η × ϕ) rectangle to the sum of
the cell energies in a 3 × 7 rectangle, both centred
around the most energetic cell

Figure 4.5.: Normalized distributions of wη2 (a) and Rϕ (b), electron identification variables related to
the second layer of the Electromagnetic (EM) calorimeter. Electron samples have been obtained by
applying the selection model to EGAM1 derivations of Monte Carlo (blue) and DATA18 (orange).
The reference distributions are presented for all probes before the selection (black) and probes truth-
matched to b-quarks (Purple) for MC events only.

selection, but there is a notable difference concerning the right tail, which is much fatter for
the truth-matched electrons. When it comes to the other variable in this category, shown in
Figure 4.5(b), the distribution is being affected by selection cuts in a milder fashion. Its left
tail would have been concave were the probe cuts not been applied. On the other hand, the
narrowing effect of the cuts on the spectrum’s shape is once again present. Adding the truth
information into the mix, it is apparent that the selection cuts produce a stronger shaping,
manifested as a skimming of the left tail when compared to the true distribution.

The electron identification variables derived from energy deposits in the first EM calorimeter
layer are displayed in Figure 4.6. The plot on the left, namely Figure 4.6(a), shows the
distribution of the ratio of the energy difference between the maximum energy deposit and
the energy deposit in a secondary maximum in the cluster to the sum of these energies.
Judging by how left-skewed this distribution is, we can safely conclude that the heavy-
flavour non-prompt electrons are most likely to have values of Eratio closer to 1. This
statement was confirmed by the shape of the true distribution, which is left-skewed as well,
but with a significantly larger spread. In Figure 4.6(b) the distribution of ratios of the energy
measured in the first layer of the Electromagnetic calorimeter to the total energy of the
EM cluster. For the heavy-flavour electrons selected, this distribution becomes much more
light-tailed compared to the general case. Most probes were found around the mean value
f̄1 ≈ 0.36, but for a significant fraction of the electrons, the value of f1 is zero. Note that
for prompt electrons, at least, the mean value of f1 has a negative correlation with pT. The
values of zero or below are associated with the electrons either in the crack region or closer
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(a) (b)

Figure 4.6.: Normalized distributions of Eratio (a) and f1, (b), electron- ID variables related to the first
layer of the EM calorimeter. Electron samples have been obtained by applying the selection model
to EGAM1 derivations of MC (blue) and DATA18 (orange). The reference distributions are also
presented for all probes before the selection (black) and probes truth-matched to b-quarks (Purple) for
MC events only.

to the beamline (|η| ≥ 2.4). The shape of the truth-matched electrons’ distribution is similar
to the output of the selection cuts, but the mean is a bit closer to zero and again there is
more spread associated with the true distribution.

Finally, we looked at shower shape variables associated with track-cluster matching. Fig-
ure 4.7(a) presents the distribution of ∆η1. In MC, this is a symmetric, zero-centred distribu-
tion with a standard deviation of σ = 0.001. Compared to the same plot but for all tt probes,
this ∆η1 distribution has a roughly 20 times smaller σ, meaning that heavy-flavour electrons
tend to find themselves closer to the mean. However, DATA18 electrons seem to be a bit
more spread, the distribution showing some positive skew. This disagreement between real
data and MC is well known for prompt electrons and is caused by the deformations of the
calorimeter under its own weight, which is not taken into account by the simulation tools.
Regarding ∆ϕres, in Figure 4.7(b), the same behaviour was observed. The region richest in
heavy-flavour non-prompts is proximal to the value zero and the data-simulation mismatch
is way less pronounced. For both plots in Figure 4.7 the distribution of truth-matched
electrons to b-jets confirms that heavy-flavour non-prompts lie close to the value of zero in
terms of both ∆η1 and ∆ϕres. However, the probe selection cuts seem to be pretty stringent,
selecting a much narrower vicinity around zero, compared to the truth.

4.4. Conclusion of the Qualification Task

Exploring the different sources of electron fakes may result in compelling advantages
including, but not limited to, the improvement of electron identification tools. The Qualific-
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(a) ∆η between the cluster position in the first layer
of the EM calorimeter and the extrapolated track

(b) ∆ϕ between the cluster position in the second
layer of the EM calorimeter and the momentum-
rescaled track, extrapolated from the perigee, times
the charge q

Figure 4.7.: Normalized distributions of ∆η1 (a) and ∆ϕres (b), shower shape electron identification
variables related track-cluster matching. Electron samples have been obtained by applying the
selection model to EGAM1 derivations of MC (blue) and DATA18 (orange). The reference
distributions are presented for all probes before the selection (black) and probes truth-matched to
b-quarks (Purple) for MC events only.

ation Task was focused on the heavy-flavour non-prompt electrons and concluded with the
development of an event selection model aimed at creating high-purity samples of electrons
of this type. With a minimal set of cuts comprised of Very Loose Likelihood, Loose Isolation,
the significance of d0 and proximity to a b-jet, purities of over 90% were achieved, although,
with some compromises in heavy-flavour efficiency. This model was designed for targeting
the semileptonic and dilepton final states of tt, but it may be adapted to some other processes
with relative ease. Analyzing the distributions of shower shape variables provided a useful
understanding of the control regions where heavy-flavour electrons can be found, while
also highlighting the relevant features of those particular types of fakes. The study was
concluded with a presentation of this analysis within the e/γ group’s plenary meeting after
which my qualification as an ATLAS author was complete.

Both the selection model and the samples themselves have the potential to be improved
and extended. With the expected widening of adoption for Neural Network (NN) models
by Combined Performance groups, high-purity background data samples would become
increasingly valuable. As Run 3 starts, the ATLAS Collaboration will collect more and
more data, which would allow for even bigger heavy-flavour background samples. At the
same time, there is room for improvement in the event selection criteria. A subsequent more
in-depth study may be able to increase the signal efficiency of this method while minimizing
the shaping effects over the shower shape variables’ distributions.
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The bulk of my individual contribution is closely related to the application of Machine
Learning (ML) methods to physics problems. This chapter is meant to provide a general
introduction to this class of analysis models and methodologies. Section 5.1 aims to give an
overview of Machine Learning (ML) methods and their vast areas of applications, followed
by Section 5.2 which introduces Neural Network (NN) models. Lastly, Section 5.3 covers the
process of training ML models with a focus on gradient-based optimization. The content of
this chapter is closely related to my teaching activity, which I undertook for the duration of
my PhD program. I passed on this knowledge to several bachelor’s degree physics students
who showed a keen interest in computational physics and choose to follow internships at my
home institute IFIN-HH. In the elaboration of this chapter, the most relevant bibliographical
reference is the book Deep Learning by Goodfellow, Bengio and Courville [106].

5.1. Machine Learning Methods

Analyzing data from observations has always been an integral part of the scientific method,
regardless of the field. At the most fundamental level, the process of successfully formu-
lating and testing hypotheses is inextricably linked to the capabilities of identifying the
underlying patterns behind the observed data. As more and more knowledge is acquired
in any particular field of research, subsequent refinements of our understanding require
increasingly better technology for more precise measurements as well as a greater volume of
(often more complex) data. Data analysis itself can become progressively more demanding,
making exhaustive testing of the many possible underlying models to be unfeasible.

Pattern recognition concerns algorithmically uncovering underlying data regularities [107],
commonly by using a highly-parameterizable statistical model. The design and study of
those types of models fall under the umbrella of Machine Learning (ML), which also defines
the procedures for learning those parameters based on the available data. In most cases,
learning amounts to an optimization problem for a given objective. One such objective may
be classification, where the model is optimized to assign correct categorical labels to the
data points. However, the objective could just as well amount to mapping the data point
to a real-valued scalar, also known as regression. Generally, methods involving a known
desired output are categorized as Supervised Learning. There are applications where such
labels could not be known from the start and they pertain to the domain of Unsupervised
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Learning. Label availability is not necessarily a binary characteristic of a dataset. There are
middle-ground cases where labels could be partially available, covering only fractions of the
dataset. Methods specifically designed for such scenarios do exist and are usually referred
to as Semi-supervised Learning [108].

5.1.1. General Formalism and Terminology

A Machine Learning problem involves searching for the unknown mapping between a set
of input objects X and a set of targets Y , displayed in Equation 5.1. Most often than not, the
exact function g is not tractable, so the solution aims at finding an approximation f , as in
Equation 5.1, that is as close as possible to the truth.

Exact function: g : X → Y y = g(x) (5.1)

Approximation: f : X → Y f ≈ g (5.2)

This approximation f is learned based on the available examples in the dataset through a
process commonly referred to as training. For supervised learning models, the dataset,
defined in Equation 5.3, contains n pairs of examples xi ∈ X and yi ∈ Y , with yi = g(xi).

D = {(xi, yi); i = 1, n} (5.3)

The input objects xi may take many different forms, based on the nature of the recorded
observations, but they need to be independent. In most cases, observations themselves are
made up of multiple variables, conventionally called features. As Equation 5.4 describes,
an observation xi can be defined as a d-dimensional vector of scalar features xj

i . Most ML
models require the entire dataset to have uniform dimensionality, thus allowing the input
objects to be represented as points in R

d space (or even C
d in some cases [109]).

xi = (x(1)i , x(2)i , . . . , x(d)i ) (5.4)

Thus, the entire dataset, assuming a constant number of features, can be easily expressed as a
matrix. Equation 5.5 shows the matrix representation of the same dataset from Equation 5.3.
This object is often called model matrix or design matrix.

D =


x(1)1 x(2)1 . . . x(d)1

x(1)2 x(2)2 . . . x(d)2
...

...
. . .

...
x(1)n x(2)n . . . x(d)n

 (5.5)

Data representations aside, a model also needs a way to generate predictions. Typically, this
involves a set of model parameters P and a collection of mathematical rules that describe
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how the output is calculated for given inputs and said parameters. While the model’s
computation logic may be rigid, its parameters are variables that are being learned during
training, in an attempt to fit the dataset provided. The training of fitting process translates to
an optimization task whose end goal is to find the best possible set of parameters allowing
the model to approximate the true mapping g.

Lastly, we need to define what constitutes a good fit and how to measure its quality. The
function describing the goodness of fit may bear different but equivalent names across lit-
erature, such as objective function, cost function or loss function. It has the important
role of quantifying the errors of the predictions and is often the quantity undergoing the
optimization process during training. Denoting the model under the set of parameters P by
fP , a Mean Absolute Error (MAE) loss function could be written as shown in Equation 5.6.

L
(
fP (xi), yi

)
=

1
d

d

∑
j=1

∣∣ f (j)
P (xj

i)− y(j)
i

∣∣ (5.6)

Depending on the data, other loss functions better reflect the prediction error or be easier to
optimize. Regardless of the choice in the loss function, as long as it can be optimized, it can
also be used in finding the model parameters P̃ that best approximate the true underlying
mapping. Equation 5.7 is illustrative of the loss minimization procedure for model training.
Some of the more common loss functions are presented and discussed in Appendix B.

fP̃ = argmin
P

1
n

n

∑
i=1

L
(
fP (xi), yi

)
(5.7)

5.1.2. Models and Assumptions

Any algorithm using trainable parameters to infer a priori unknown information about new
data points is a Machine Learning model. One of the simplest classes of ML architectures
assumes a linear relationship between the input objects and the targets and is thus named
linear models. Equation 5.8 shows a linear model with d-dimensional inputs and a scalar
output.

fP (xi) = wTxi + b =
[
w(1) w(2) . . . w(d)

]


x(1)i

x(2)i
...

x(d)i

+ b (5.8)

Linear models, for every component of the output vector, have a set of weights w assigned
to each input feature and a bias term b. In the most general case, for d1 inputs and d2
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outputs, the model parameters are represented by the weights matrix W ∈ R
d1×d2 and the

bias vector b ∈ R
d2 , as in Equation 5.9 They can be used for regression problems as well as

classification, by setting a threshold for the output.

Pregression = {Wij; i = 1, d1, j = 1, d2} ∪ {bj; j = 1, d2} (5.9)

Other approaches involve different assumptions about the data. For example, one may
assume that for inputs with small distances between them, the targets would also be
proximal to each other. This kind of assumption is perfectly embodied by the k-Nearest
Neighbors (KNN) algorithm [110]. Denoting the set of k objects closest to the xi object in the
feature space by Dk

xi
, Equation 5.10 shows how such a model would generate predictions.

fP (xi) =
1
k ∑

i:xi∈Dk
xi

yi (5.10)

KNN is particularly interesting because the training dataset is used as the set model
parameters PKNN = D. There is no training process involved, but the value of k can be
tuned by the user. In this case, k is what is known as a hyperparameter.

If the opposite assumption from KNN is considered true, one might use a decision tree
algorithm instead. Those allow for predictions that are not continuous or uniform in any
way. There are several ways of creating decision trees, the most used one involving Iterative
Dichotomizer 3 (ID3) [111].

Choosing ML algorithms and models is synonymous with making implicit assumptions
about the problem and the data. On average, tested on all possible sets of problems, all
models and optimization methods will perform the same, as stated by the No Free Lunch
theorem [112].

5.2. Neural Networks

Many Machine Learning (ML) models can act as universal function approximators and
model architecture choice is data-assumption dependent. There are, however, other desirable
properties of ML models, like generalization power. Even a regressor decision tree, provided
enough depth, can approximate any arbitrary function, but it is unlikely to generalize well
when applied to data far outside the domain of the training set.

NN were developed in an attempt to increase the generalization power of the previous
ML models by borrowing ideas from biological networks of neurons. They are created by
stacking multiple linear models on top of each other and adding non-linear functions to
every layer’s output. The introduction of non-linear functions is mandatory since multiple
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linear models stacked together by themselves would be equivalent to a single-layered linear
model with different parameters.

Input

Hidden Hidden Hidden

Output

Figure 5.1.: Diagram of a Neural Network (NN) with three hidden layers

Figure 5.1 shows a fully-connected NN with inputs x ∈ R
3, outputs y ∈ R

2 and three
hidden layers in-between. The hidden layers contain intermediate representations of the input
data and a single such layer is necessary for the network to become a universal function
approximator [113]. In this graph representation of the network, layers are vectors and
their components are represented as nodes, which sometimes may also be called neurons.
Graph edges are unidirectional and represent the data flow through the network, they are
associated with the weights and biases of the previous nodes.

The model presented in Figure 5.1 is known as a feed-forward NN, meaning that the
values within a n-dimensional layer k are dependent on the values of the previous layer
k − 1. Values of the neurons are obtained by applying the weights and summing the
contributions from the neurons in the previous layer, followed by adding the bias term and
applying the non-linear function (called activation function). This process is described by
Equation 5.11. Note that for the following equations, the subscript would be used to index
vector components while the superscript indicates the layer number.

xk
i = f

( n

∑
i=1

wk−1
ij xk−1

i + bi

)
(5.11)

Equation 5.12 generalizes Equation 5.11 to an entire layer. This generalization is depicted in
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matrix form by Equation 5.13.

xk = f
(
Wk T × xk−1 − bk) (5.12)


xk

1

xk
2

xk
3
...

xk
n

 = f

(


wk
1,1 wk

2,1 wk
3,1 . . . wk

m,1

wk
1,2 wk

2,2 wk
3,2 . . . wk

m,2

wk
1,3 wk

2,3 wk
3,3 . . . wk

m,3
...

...
...

. . .
...

wk
1,n wk

2,n wk
3,n . . . wk

m,n




xk−1

1

xk−1
2

xk−1
3
...

xk−1
m

−


bk

1

bk
2

bk
3
...

bk
n


)

(5.13)

In terms of non-linear activation functions, sigmoid, the hyperbolic tangent and Rectified
Linear Unit (ReLU) are the most commonly used in NN models. The choice of activation
functions has a significant impact on the optimization process as well as overall model per-
formance. More extensive coverage of the definitions and properties of activation functions
can be found in Appendix C.

Even though a single hidden layer network can approximate arbitrary functions, deeper
models obtained by increasing the number of layers provide better outcomes than wide
models with more nodes per layer [114]. Deep Neural Network (DNN) models also have
an advantage in terms of parameter count scaling. Two fully connected layers with n nodes
require n2 parameters for weights and n bias terms. A change of a factor α ∈ N

∗ in the layer’s
widths will require more parameters than using α layers, as shown by Equation 5.14.

(αn)2 + αn ≥ α(n2 + n), α ≥ 1 (5.14)

5.3. Gradient-Based Optimization

The training process involves iteratively adjusting the parameters of the model in order
to get closer to the desired results. This translates into an optimization procedure that
attempts to find the minima of the model’s loss function and retrieve the set of parameters P̃
associated with the minimum loss. This process was previously shown in Equation 5.7, but
this section is going to provide further details about the optimization process itself. Several
optimization algorithms could be used but in most cases, gradient-based optimization
provides the fastest convergence rate, which is important, especially when exploring sizable
parameter spaces.

Computer science developments such as automatic differentiation [115] allowed complex
ML models to be easier to design and train. Since NN models are differentiable, gradient
descent is one of the best-known ways of training them [116–118]. It also allows for highly
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parallelizable model training, facilitated by modern Graphics Processing Unit (GPU) hard-
ware. Gradient descent involves using the gradient of the loss function to update model
parameters in an iterative process, as shown in Equation 5.15. The current iteration number
is represented by i, while D denotes the training dataset (defined in Equation 5.3)

Pi = Pi−1 − η∇L (Pi−1 |D) (5.15)

The η parameter is called learning rate and sets the magnitude of the parameter update. For
a Neural Network with n layers, the parameters would be the weights and biases of those
layers, as shown in Equation 5.16

P =
{

W1, W2, W3, . . . , Wn, b1, b2, b3, . . . , bn
}

(5.16)

5.3.1. Gradient Descent Algorithms

As with simpler types of models, DNN training requires computing the loss function
gradient ∇L with respect to every model parameter. For model inference the data passes
through the network sequentially, the values of a layer k depending on the values of the
previous layer. Gradient calculations, however, have to start from the output and propagate
backwards. Thus, this process is named backpropagation. An example of analytical gradient
computation using backpropagation is provided in Appendix D.

No gradient-based optimization method is guaranteed to locate the local minima of the loss
function, but the ML community is constantly developing better methods of navigating
the parameter space. Those algorithms using the gradient of the loss to apply parameter
updates are referred to as optimizeers.

Stochastic Gradient Descent (SGD) is one of the simpler optimizers, relying on the lo-
gic described by Equation 5.15, but using only a subset of the training data at each step.
Splitting a dataset in batches has become a procedure almost universally used in ML
because it accelerates the convergence towards the minima by significantly speeding up
computations.

Notable extensions of SGD exist, such as Root Mean Square Propagation (RMSProp) [119],
which on top of using bach computations, also adapts the learning rate η to each parameter’s
gradient magnitude. In order to avoid saddle points in the parameter space and increase the
likelihood of finding the global minima, some optimizers use momentum in the parameter
space to adjust the direction and magnitude of the gradient. The Adam optimizer [15] is one
of the most widely used because it keeps the idea of parameter-specific learning rates while
also using momentum.

Figure 5.2 shows how SGD, RMSProp and Adam attempt to find the minima of a 2-
dimensional parameter space, starting from the same point. Given the simplicity of the
problem, all methods arrive at the minima within the 100 optimization steps, but the paths
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Figure 5.2.: Toy example of different optimization algorithms attempting to find the local minima of
a 2D parameter space. The upper plot shows the algorithm’s path through the parameter space for
100 optimization steps. In the bottom plot, the value of the loss function is compared between the
three approaches, at every step.
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they take are significantly different. In the making of Figure 5.2, the reference learning rate
η was the same for all optimizers. SGD does not use adaptive learning rate, so the steps it
took were the largest of the bunch. As a consequence, SGD showed the fastest-decreasing
loss values, but it became increasingly less efficient after it arrived closer to the minima. In
contrast, RMSProp showed a smoother convergence due to the adaptive step size. Adam’s
behaviour is close to that of RMSProp, but the additional inclusion of momenta makes
its trajectory resemble a damped oscillation. While Adam was the slowest converging of
the three optimizers, it is also the one that landed closest to the point of minima, without
showing major fluctuations around its vicinity.

5.3.2. Model Training Heuristics

Optimizing a model to achieve minimum loss on the training dataset does not always relate
to good generalization power. In order to test this, the available data is split into multiple
datasets. The training dataset is used for gradient-based optimization, while there is another
dataset for testing purposes. Test data is never used in the training process but rather
evaluated after the training is complete. A model whose performance is similar on both the
training and testing datasets shows the ability to generalize well to new data points. The
opposite scenario is called overfitting, where a model may perform well on training data,
however, the performance is never translated to the test dataset evaluations.

Most models need more optimization steps than the number of batches in the training dataset.
It is a common practice to use the same data points multiple times during training. SGD
optimizers, as well as their extensions, involve batching the dataset, each batch corresponding
to a loss evaluation followed by a gradient-based parameter update. After all current batches
have been used, the training data is shuffled and new batches are created. This process is
repeated several times until the loss value stops decreasing. A full pass through the training
dataset’s batches is known as an epoch.

Overfitting can be assessed even during training, by designating another smaller dataset,
commonly referred to as validation data, which is used to evaluate the loss function at the end
of each epoch. The loss evaluation on the validation dataset is compared with the average
loss on the training dataset. As such, when those loss values start diverging, it is a clear
indication that the model is overfitted.

Early stopping the training process is one of the ways to prevent overfitting. Another
way would be to introduce model regularization. By introducing an additional penalty
term to the loss function, the model parameters are prevented from taking on large values.
Regularization terms added to the loss function are dependent on the model’s weights.
L1-regularization involves adding together the absolute values of the weights, as shown
in Equation 5.17. This type of penalty incentives sparsity throughout the model’s weights,
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effectively acting as a feature selection mechanism.

LL1 = L+ λ
p

∑
j=1

|wj| (5.17)

On the other hand, there is L2-regularization, which instead of introducing sparsity, enforces
the weights to have smaller values. Equation 5.18 displays a loss function with an L2-penalty
term.

LL2 = L+ λ
p

∑
j=1

w2
j (5.18)

In both scenarios, the λ hyperparameter controls how much regularization is applied.
Penalty terms corresponding to L1 and L2 are not mutually exclusive and can be applied
together, each with a different regularization parameter λ.
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6. New Small Wheel Machine Learning
Trigger

This chapter covers the Research and Development (R&D) for a New Small Wheel (NSW)
trigger algorithm based on Machine Learning (ML) deployed at the hardware level and
targeting the phase II upgrade of the ATLAS Detector. Before diving deeper into it, Section 6.1
will provide the general aspects of the muon trigger design, before and after the installation
of the New Small Wheel (NSW). The main bibliographical resources consist of the relevant
Technical Design Report (TDR) documents [42, 120, 121]. The next part, Section 6.2 will
showcase the research going into the design and testing of a muon trigger prototype, using
Machine Learning, for the MicroMegas NSW data.

6.1. ATLAS Muon Trigger

As previously discussed in Secion 2.2.5, the Level-1 (L1) trigger searches for, among others,
signatures from high-pT muons. This section is going to cover more in-depth the inner
workings of the ATLAS muon trigger focusing on the L1 component.

6.1.1. Original Design

In their first iteration, the Level-1 muon trigger used information from the Resistive-Plate
Chambers (RPC) and the Thin-Gap Chambers (TGC), while L2 trigger received information
from the regions containing possible trigger objects. These regions are called Regions of
Interest (RoIs) and the L2 trigger uses them for information on coordinates, energy, and
type of signatures in order to filter out unnecessary detector signals.

In terms of detector design, muon trigger chambers were chosen to have a timing accuracy
compatible with a clear identification of the bunch-crossing containing the muon candidate.
The trigger in both the barrel and the end-cap regions is based on signals from several
stations each. Muon candidates are found by searching for a coincidence of hits in the
different trigger stations within a road tracing back to the interaction point (IP). The system
was designed for concurrent operations within six thresholds, three associated with the
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low-pT trigger (6 − 9 GeV) and three associated with the high-pT trigger (9 − 35 GeV) [41],
as it is shown in Figure 6.1.

Figure 6.1.: Schematic representation of the L1 muon barrel and end-cap triggers showing tracks for
the low-pT and high-pT muons. [41]

Resistive-Plate Chambers (RPC) detectors in the barrel region have a space-time resolution
of 1 cm × 1 ns. They can work at an event rate of up to 1 kHz/cm2. As Figure 6.1 shows, the
Resistive-Plate Chambers stations are disposed as follows. There are two Barrel Middle
stations ( RPC1 and RPC2), arranged on either side of a Monitored Drift Tubes (MDT) and
one Barrel Outer station, ( RPC3) mounted on the inside MDT barrel outer stations. When
a hit is generated in the second RPC station, a search for a corresponding hit is made in the
first RPC station within a road tracing back to the IP. The width of the road is a function of
the cut on pT: the smaller the width of the road, the higher the cut on pT. This is motivated
by low-pT muons being subject to larger trajectory changes due to magnetic fields. Figure 6.1
also showcases muon roads associated with different pT thresholds. For the high-pT muons,
information from the third RPC chamber is used in conjunction with information from the
first two in order to establish their tracks throughout the detector.

On the other hand, the end-cap trigger uses the signals generated by Thin-Gap Chambers
(TGC) detectors, which have a weaker time resolution than the 2 ns of the RPCs but provide
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a bunch-crossing identification efficiency greater than 99% for the original 25 ns bunch
spacing of ATLAS. Thin-Gap Chambers detectors have a great rate capability of more
than 20 kHz/cm2 and are arranged in nine layers of gas volumes, grouped into four planes.
Located seven meters in the z-direction, the TGC inner station ( TGCI) consists of one plane
of doublet units. Seven meters further in the z-direction, there are seven layers arranged in
one plane of triplet chambers ( TGC1, closest to the IP) and two planes of doublet chambers
( TGC2, TGC3). This layout is included in Figure 6.1, as well.

The results from the muon barrel and end-cap trigger processors form the input to the Muon
to Central Trigger Processor Interface (MuCTPI). The information includes the position and
pT threshold for up to two muon track candidates. Additional functions of the MuCTPI
are to provide data to the L2 trigger and the data acquisition system for events selected by
L1. The Level-2 (L2) trigger system receives a subset of all muon candidate’s information
which is decoded as Regions of Interest. Those RoIs sent to L2 are ordered according
to decreasing pT. In the original ATLAS design, during the 2.5µs delay of L1-trigger, the
event data is buffered in the detector electronics’ memory. If the L1-trigger selects the event,
this data will be transferred to the High-Level Trigger for further processing.

6.1.2. New Small Wheel Phase I Trigger

With the installation of the New Small Wheel detectors, the barrel region is largely un-
affected, but the end-caps receive a significant upgrade. The trigger rate in this region is
expected to be reduced by about 30% by minimizing fake triggers coming from non-pointing
tracks [42], as indicated in Figure 6.2.

The track segments for the trigger system are produced by the newly deployed MicroMegas
(MM) and the small-strip Thin-Gap Chambers (sTGC) detectors, presented more thoroughly
in Subsection 2.3.2 and Subsection 2.3.3 respectively. In terms of the trigger algorithms, they
both work on similar principles, attempting to extrapolate local muon tracks back to the
IP.

Micromegas Trigger Logic

Since MicroMegas strip data has a good resolution provided by the 0.5 mm strip pitch, it is
not necessary to calculate layer centroids. Figure 6.3 gives a general overview of the trigger
logic, with 6.3 (a) reminding detector operating principles and 6.3 (b) showing the strip
configuration for the planes forming a quadruplet.

The MicroMegas trigger algorithm is illustrated in Figure 6.3 (c). At first, hits are trans-
formed into slopes of infinite-momentum tracks using LUTs. The entire area covered by
the plane is divided into slope roads which are binned in terms of pseudorapidity values of
straight tracks connected with the IP. The slope bins are mapped to several strip addresses
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Figure 6.2.: Schematic representation of the muon end-cap trigger. Out of the tracks shown in this
figure, only the one labelled A will be accepted because it connects with the interaction point [42]

each. Every bunch-crossing the number of strip hits within all slope roads is recomputed,
with hits remaining buffered for three bunch-crossings before being discarded. A track
candidate is defined as a multiple-layer coincidence within the same slope roads. Every
bunch-crossing, a coincidence check takes place and once a track candidate is found, its

local slope is calculated using the least square fit. Accounting for the known geometric
relationships between the IP and the MM planes, track candidate quality is assessed by
computing ∆θ = |θglobal − θlocal|. The higher the value of ∆θ, the less likely it is for the muon
track to originate from the IP. After being cross-checked with sTGC data, the candidate
muon track is projected through and matched with the segments from the Big Wheels
[122].

sTGC Trigger Logic

The sTGC detector is primarily used for triggering which means its associated trigger logic
is more complex than the one deployed for MM. A general overview of the sTGC trigger is
shown in Figure 6.4, with 6.4 (a) showcasing the elements of a layer and 6.4 (b) displaying
the quadruplet arrangement.

General trigger operation principles are schematically depicted in Figure 6.4 (c). Pads play
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Figure 6.3.: (a) Micromegas detector structure, (b) readout strips in quadruplet, (c) illustration
of segment reconstruction achieved with eight MM strip planes [122]. The Mx local track is
reconstructed from the strip hits while the Mx global track is similarly reconstructed, but accounts
for the interaction point as well.

an important role in this process, covering large areas and thus allowing their signals to be
used in narrowing down the region where strip readout happens. From those strip signals,
layer centroids are found by analyzing the amount and distribution of collected charge. In
the next step, quadruplet centroids are calculated by averaging the layer centroids, with
Look-up Tables (LUTs) further used to find the value of ∆θ for the segment. Similarly, the
R-index for the segment is determined by a different set of LUTs [122].

6.1.3. Phase II Trigger Prospects

While phase I brought major changes to the muon trigger system by introducing new detect-
ors, phase II does not aim to change detector layout and instead will improve the Trigger
and Data Acquisition (TDAQ) system. After the phase I upgrade, the entire trigger process
should be completed within a 1025 ns window starting from the time of the interaction.
Phase II operation is expected to accommodate longer latency in order to provide time for
more complex trigger algorithms to run.

The trigger scheme planned for the phase II upgrade foresees a potential two-level hardware-
based trigger system alongside the software-based HLT. This means the addition of a
Level-0 (L0) step before the L1. The L0 combined with L1 will have an increased latency
compared to the current system (6 µs compared with 2.5 µs) and also an increased acceptance
rate of 1 MHz (ten times more than before the upgrade). Thus, it will be possible to maintain
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Figure 6.4.: (a) sTGC detector structure, (b) readout strips and pads in quadruplet, (c) illustration of
segment reconstruction achieved with eight sTGC strip planes [122]

a pT threshold as low as pT ≥ 4 GeV despite the increased luminosity. In this scenario, the
L0 trigger rate should be 4 MHz and around 800 kHz for L1.

Using the increased latency of the first level trigger, the system could be improved by using
the Monitored Drift Tubes (MDT) data in the L0 muon trigger. This addition has the
potential to improve trigger selectivity. Fake coincidences may easily be rejected when
checked against the MDT data.

For the L0 muon trigger, as can be shown in Figure 6.5, the data goes from the muon
chambers to the trigger and readout electronics in the counting room. Detector data is
sent to the end-cap Sector Logic (SL) and barrel SL boards, which determine the trigger
candidates that are sent over to MDT trigger processor in order to obtain an improved
measurement of the muon momentum. Based on the values of the momentum, the muon
candidate can be accepted or rejected. The final muon L0 trigger decision is sent to the
ATLAS central trigger through the Muon to Central Trigger Processor Interface (MuCTPI)
board. [42]

During Run 3, the signals from the MicroMegas detectors and sTGC are processed
separately. Each NSW sector is making use of two Field-Programmable Gate Arrays
(FPGAs), one for each detector technology. FPGAs are preferred for this task because the
trigger decision requires very narrow time frames, considering a time between bunch-
crossings of 50 ns. The phase II upgrade presents an opportunity for data coming from both
detector technologies to be processed together on the same FPGA. A block diagram of the
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Figure 6.5.: Diagram representing the data flow for the L0 trigger. The muon trigger decision is made
by the SL boards from the barrel and end-cap. These boards use data collected from the muon trigger
chambers ( TGC and RPC), calorimeters and the MDT trigger processor. The trigger decisions made
by different SL modules are sent to the MuCTPI and the data associated with them is read out
through the Front End Link Interface eXchange (FELIX) and passed from the FELIX modules to the
HLT. [42]

NSW sector trigger processor off-detector board is shown in Figure 6.6. This implies that the
firmware needs to be redesigned. [123].

6.2. Hardware-Level Machine Learning Micromegas Trigger

With the phase II upgrade scheduled for the end of Run 3, planned software and hardware
contributions are already actively being developed. Regarding the NSW trigger algorithm,
there are several worthwhile potential options. In recent years there have been many
successful attempts at implementing Machine Learning (ML) algorithms on FPGAs and
this type of approach is worth exploring for such trigger applications as well. FPGA
firmware is designed at Register Transfer Level (RTL) which is inherently a very complex
low-level task. Using a Hardware Design Language (HDL) to implement ML would be a
cumbersome endeavour since a high-level software framework is invaluable to efficiently
designing Neural Network (NN) architectures. However, newer technologies are constantly
bridging this gap with tools like HLS4ML [124]. The idea of translating algorithms written in
higher-level languages into HDL code is not new. There have been tools for High-Level
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Figure 6.6.: Block diagram of the NSW trigger processor off-detector board after phase-II upgrade
[123]

Synthesis (HLS) being used both in industry and research during the last decade. HLS4ML is
just one of the currently available tools that push this concept into the realm of Machine
Learning. A conceptual representation of its workflow can be seen in Figure 6.7.

Figure 6.7.: Workflow for translating a machine learning model to an FPGA using HLS4ML [124]

Considering how recent this type of software technology is and the fact that current gen-
eration FPGA resources are still significantly limited when compared to dedicated ML
hardware, the first milestone of such Research and Development needs to be a proof-of-
concept. With this scope in mind, the initial prototype aims at deploying hardware-level
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Neural Network models that, using just the FPGA’s compute capabilities, successfully
manage to reproduce the behaviour of the currently implemented phase I trigger without
exceeding the time budget. To the extent of this thesis’s contribution, only the MicroMegas
detectors were modelled so far, since failure with this simplified setup would invalidate the
method for the more complex sTGC.

6.2.1. Data generation

The NSW geometry is already implemented within the ATHENA [10] framework, allowing
for Monte Carlo (MC) GEANT4 simulations of muon tracks through the newly installed
detectors. Figure 6.8 shows the outcome of such a simulation in terms of MicroMegas hits,
2D projected on the xy-plane. Small sectors are depicted with blue shades while big sectors
are shown in shades of red. Regardless of the sector type, all the MM Printed Circuit Boards
are outlined individually.

As Section 6.1 covered, a MM trigger processor FPGA receives information from an entire
sector, meaning that the MM hardware-trigger algorithm is not affected by what happens in
other parts of the NSW. The trigger logic for MM signals can be easily reduced to a purely
geometric problem involving computing slopes of local and global tracks. One such track is
represented in Figure 6.9. It is apparent that several strips end up firing in the vicinity of the
muon hit and the strip number and plane number are linearly dependent for the four outer
MM layers. Given the stereo angles for the U and V inner four layers, the strip number are
slightly shifted up and down respectively, when compared with the X layers.

In order to further simplify the proof-of-concept setup, only one sector is being considered
and planes are given rectangular shapes, keeping the 0.4 mm strip pitch. The number of
strips is rounded to 8800 while keeping the stereo plane’s configuration with 1.5◦ and −1.5◦

inclined strips (relative to the x-axis). Those changes are reflected in Figure 6.10, where the
slate blue shows X planes, the U orange depicted planes have strips angled at 1.5◦ and the V
represented with pink have −1.5◦ inlined strips.

Using this setup also required fewer computational resources for simulation by allowing
the use of lighter software tools. The public GitHub code-base of A. Wang [11] was used
as a starting point for developing the simulation code that replicates the chosen simplified
configuration. A data sample of MM detector responses for one million simulated muon
tracks was generated, with ROOT [12] outputs containing hit locations in terms of the strip
and plane number as well as the ∆θ associated with the track.

6.2.2. Neural Network Trigger

Muon tracks through a MM sector show a well-defined pattern in terms of the strip and
layer number and it can be visually represented, as Figure 6.9 shows. This prompted the

105



6. New Small Wheel Machine Learning Trigger

−4000 −2000 0 2000 4000

−4000

−2000

0

2000

4000

LM1 PCB1
LM1 PCB2
LM1 PCB3
LM1 PCB4
LM1 PCB5

LM2 PCB6
LM2 PCB7
LM2 PCB8

SM1 PCB1
SM1 PCB2
SM1 PCB3
SM1 PCB4
SM1 PCB5

SM2 PCB6
SM2 PCB7
SM2 PCB8

G4 Hits

NSW Micromegas XY-plane

X [mm]

Y 
[m

m
]

Figure 6.8.: GEANT4-simulated muon hits’ position within an xy-view of the NSW

exploration of computer vision algorithms which are specialized in identifying geometrical
patterns. In terms of Machine Learning, this can be achieved by Convolutional Neural
Network (CNN) models which take images as input.

The state of the detector can be encoded as an image if we account for all of the strips across
the eight layers at a given time. A sparse binary matrix M8800×8 can encompass all of the
MM information since it holds a distinct element for every strip. Thus, if the strip i within
the plane j registered a hit Mi,j = 1 and otherwise the value would be 0. Treating all those
matrix elements as pixels results in a very narrow image containing the location of every
registered hit.

With the M8800×8 matrix as the model input, the next step is to define a target. Early
iterations tested this approach in a classification scenario, with the network being tasked
with differentiating cosmic tracks from prompt muons. Such a task proved to be trivial for a
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Figure 6.9.: Muon track through a MicroMegas sector shown in green, with the fired strips shown as
red horizontal lines and the x-axis is labelled in mm.

CNN so the next step was to attempt a regression of the track quality measure ∆θ.

Fitting within the FPGA resource limitations implies finding a balance between the number
of model parameters and the model’s performance. The hit matrix being quite large, accom-
modating 8800 strips, prompted creative dimensionality reduction techniques. Thus, the
building blocks for the model were convolutional blocks which contain a convolution layer, a
max pooling layer Rectified Linear Unit (ReLU) activation. Figure 6.11 shows the first such
block, applied to the input matrix.

While prototyping, a network with three convolutional blocks seemed to be the best com-
promise between regression performance and model complexity. Max pooling was applied
heavily in order to reduce the vertical dimensionality of the input by a factor of four, after
each block. The full model is represented in Figure 6.12, containing a chain of three convo-
lutional blocks whose final output is flattened and used to compute the predicted target:
∆θ.

The design behind this architecture prioritized heavily a small number of parameters, to
facilitate FPGA deployment. Table 6.1 shows every layer of the model alongside how many
trainable parameters are associated with it. Batch normalization [13] and dropout [14] were
used for regularization purposes.

Model training made use of the Adam optimizer [15] with default parameters and was
facilitated by Graphics Processing Unit (GPU) acceleration by an Nvidia Tesla V100S board.
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Figure 6.10.: 3D representation of a muon track within the simplified MM assembly setup. The
values on all of the three axes are measured in mm.

Batch sizes were set to 500 while the dataset was split 80%/10%/10% between training,
validation and testing. The loss function was Mean Squared Error (MSE) and the training
process showed no signs of overfitting in terms of the difference between training and
validation loss.

6.2.3. Results

The trained model was evaluated on the data reserved for testing purposes, measuring the
Mean Absolute Error (MAE) of the predictions. Mean Absolute Percentage Error (MAPE)
could not have been used reliably considering how small the target values are. Distributions
for the absolute values of the target ∆θ versus the absolute values of its prediction errors
are shown individually in Figure 6.13. In terms of absolute errors, nine out of ten muon
tracks have absolute prediction errors less than 0.01 rad, as Figure 6.13(b) shows. This
cumulative distribution of errors features logarithmic binning and expresses the bin counts
as a cumulative fraction of the total number of data points. A closer look at Figure 6.13(a)
shows that ∆θ values for 50% of tracks are less than the 0.01 rad. The distribution here is
again cumulatively counting the fraction of events in log-binning.
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Figure 6.11.: Convolutional block showing the input and output of the convolution operation and
max pooling

Figure 6.12.: Neural Network architecture deployed in ∆Θ regression

A representation of the relationship between those quantities is provided in Figure 6.14,
which summarises the regression performance as a two-dimensional histogram of targets
versus errors. It is apparent that the regression model’s prediction errors take a broad range
of values, |∆θerror| sometimes exceeding the reference value altogether. It is also noteworthy
that, the smaller a track’s ∆θ is, the more error tolerance it has, as well, since ∆θ’s role is to
determine if the track passes the trigger decision and low ∆θ tracks are already the most
likely to trigger anyway.

Those results can be better placed in the context of the New Small Wheel (NSW) trigger
requirements through the lens of angular resolution. This is computed as the standard
deviation of Gaussian fit of the ∆θerror distribution. Both the error distribution and the fit
are shown in Figure 6.15. The fitted probability density function is decisively centred at 0,
having a standard deviation σ(∆θerror) = 19 mrad. For reference, the MicroMegas track
angular resolution is 70 mrad [42], but the NSW trigger requirements (which includes sTGC
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Type Shape Parameters
InputLayer [(None, 8800, 8, 1)] 0
BatchNormalization (None, 8800, 8, 1) 4
Conv2D (None, 8800, 8, 8) 80
MaxPooling2D (None, 2200, 8, 8) 0
ReLU (None, 2200, 8, 8) 0
Conv2D (None, 2200, 8, 16) 1168
MaxPooling2D (None, 550, 8, 16) 0
ReLU (None, 550, 8, 16) 0
Conv2D (None, 548, 6, 32) 4640
ReLU (None, 548, 6, 32) 0
MaxPooling2D (None, 34, 3, 32) 0
Flatten (None, 3264) 0
Dropout (None, 3264) 0
Dense (None, 1) 3265
Rescaling (None, 1) 0

Table 6.1.: Layers and parameter counts of the CNN ∆θ regression

(a) Cumulative distribution of test ∆θ’s absolute
value

(b) Cumulative log-binning distribution of test abso-
lute prediction error of ∆θ

Figure 6.13.: The distribution ∆θ values of the test dataset alongside the distribution of ∆θ’s absolute
prediction errors from the model

110



6.2. Hardware-Level Machine Learning Micromegas Trigger

1337 3724 2265 1182 781 334 67 1

1909 7359 4534 2609 1600 651 124 30

1627 5659 4969 2499 1545 672 150 36

1266 4662 3692 2769 1656 828 239 50

942 3464 2688 1904 2125 1011 290 69

648 2290 1842 1525 1533 1339 351 67

294 1144 1362 1237 1306 1065 425 96

0 407 1368 1795 2546 2549 1106 386

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

0

0.01

0.02

0.03

0

2000

4000

6000

Regression Error

Figure 6.14.: 2D histogram of absolute value for ∆θ versus the absolute values of the regression error.
The colour scale and bin labels denote the number of occurrences.

−0.06 −0.04 −0.02 0 0.02 0.04 0.06

0

5

10

15

20 Error Distribution
Gaussian Fit

pr
ob

ab
ili

ty
 d

en
si

ty
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as well) target an angular resolution of 1mrad. The NSW small-strip Thin-Gap Chambers
hardware is better suited for triggering, having ≤ 1 mrad average angular resolution in
segment reconstruction [42]. Thus, the current resolution of ∆θ regression may not be close
to fulfilling the requirements but is likely to be greatly improved by the inclusion of sTGC
information.

As this proof-of-concept attempts to validate the workflow from a technical perspective,
the next logical step is deployment on simulated and then physical FPGA hardware. First
FPGA migration attempts were successful on Xilinx Alveo U220 accelerator cards. This
process required model quantization and excluding the regularization layers (dropout and
batch normalization), but it did not come at a significant cost in regression accuracy. At the
time of writing, inference timing studies are still being conducted, with the data pipeline
bottlenecks of the Alveo software posing slight technical challenges.

Conclusions and Further Outlook

This chapter presents a feasibility study of a Machine Learning based trigger algorithm that
has an adequate size to be implemented on FPGA hardware for an eight-plane MicroMegas
detector assembly representative of the New Small Wheel (NSW) layout. With simulated
muon tracks and a Convolutional Neural Network approach, I have trained and evaluated
a trigger configuration at the software level. The results show that the convolutional method
is able to infer the most important trigger variable ∆θ up to a resolution of 19 mrad, while
not requiring a great number of parameters. The prototype’s hardware-level deployment
still needs some additional optimization to reduce inference time. On its own, the current
iteration of the model is not yet competitive with the existing trigger implementation but
still achieves its goal of validating the technical feasibility of the method. The findings are
indicative of a relevant potential for the CNN approach to eventually meet the requirements
for the NSW trigger processor. This work is going to be continued and extended to the
full NSW trapezoidal ATLAS geometry. Future iterations would incorporate information
from the small-strip Thin-Gap Chambers (sTGC) detectors, which is expected to improve
resolution.
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Searches for Beyond Standard Model (BSM) physics phenomena are one of the most active
areas of research in the field of High-Energy Particle Physics (HEPP). The established
way of performing these kinds of searches has primarily depended on the use of complex
targeted analyses that attempt to verify the predictions of certain theoretical models, using
real experimental data. With a plethora of models to choose from and progressively larger
amounts of data, the range of possible BSM searches grows wider and becomes increasingly
difficult to navigate. Although highly successful sometimes, as in the case of the Higgs
boson’s discovery, this approach requires a lot of highly specialized work that may, in fact,
not pay off, unless the underlying model’s predictions could be successfully demonstrated
or disproved. In light of those aforementioned challenges, some of the particle physics
community is turning to alternative ways of searching for BSM signals.

Unsupervised and semi-supervised anomaly detection methods, based on Machine Learn-
ing (ML), proved highly useful across a wide range of applications. This begs the question
if such an approach could be developed for model-independent searches of BSM signals.
Considering the vast amounts of data collected by ATLAS throughout its years of operation,
purely data-driven anomaly detection could potentially find outliers indicative of new
physics.
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Figure 7.1.: BSM search strategy using NN-based anomaly detection
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A major research objective for this thesis was the exploration of unsupervised ML-based
methods for anomalous jet tagging. An overview of the BSM search strategy using this
type of framework is represented in Figure 7.1, which showcases three main steps:

• A Neural Network (NN) model is trained to generate anomaly scores that represent a
quantitive assessment of how dissimilar certain events are, relative to the others.

• The application of a user-defined threshold on the distribution of anomaly scores
results in a subsample containing the most anomalous data points.

• The properties of the original data set and the anomalous subsampled are compared.
In the BSM search scenario, the physics object’s mass distributions when put side-by-
side may uncover a resonance related to a new particle.

7.1. Unsupervised Learning

The supervised approach to Machine Learning makes use of known output targets for the
training data, but such information is not always available. ML models attempt to identify
data patterns that are closely related to the prediction targets, but those inherent patterns
could exist even in the absence of a well-defined training label. Unsupervised learning
refers to this exact scenario where ML is deployed to look for underlying data structure and
relationships between observations, without having access to any dependent variables. As
well as providing a general introduction to the subject, this section will describe in more
detail the specific methods, relying on information from relevant bibliographical resources
[18, 106].

Unsupervised learning has two major areas of applications, one being outlier detectioin
[125] and the other closely related one being clustering. D. Hawkins [126] defines an outlier
as an observation that deviates so significantly from other observations as to arouse suspicion that
it was generated by a different mechanism. They may be the result of errors and faults in the
data and/or model, but there are also cases when the outliers are caused by an unknown
underlying process.

Within the domain of anomaly detection methods, one has several options to choose from.
The two main categories of models could be thought of as reconstruction-based and density-
based. Reconstruction refers to the ML model’s objective, meaning the reconstruction of
the entire event using a limited subset of the available information. The most notable NN
architecture design for reconstruction-based anomaly detection is the Autoencoder [106,
127], further discussed in Subsection 7.1.1. The other category of models involves density
estimation, the simplest example being Kernel Density Estimation (KDE) [128, 129].
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7.1.1. Autoencoders

An Autoencoder (AE) is a deep Neural Network that has input and output layers with the
same number of dimensions, with an intermediate informational bottleneck in between. This
bottleneck is materialized as a smaller-dimensional layer, holding a compressed representation
of the input data. The output of this layer often called the latent representation is used by
subsequent parts of the network in order to reconstruct the original input. Figure 7.2 shows
a visual diagram of an AE network. The training target is, thus, the original input, meaning
that no additional data labels are necessary [106].

Figure 7.2.: Schematic representation of the Autoencoder architecture

Autoencoder are useful for representation learning [130]. They may be conceived as having
two parts due to their symmetrical structure. The encoder takes the input and maps it
to the lower-dimensional latent space and the decoder uses the latent representation of the
data and attempts to map it back to the original space. Constraining the latent space’s
dimensionality forces the model to make assumptions about the data in order to efficiently
compress it. It may remove redundancies and correlations between features, similarly
to Principal Component Analysis (PCA) [131], but with the added benefit of potentially
modelling non-linear correlations as well.
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The size of the latent space is an important hyperparameter in this type of model. For datasets
with highly correlated features, having the latent representation half as large compared
to input space may show minimal reconstruction errors, but in other cases, even a 10%
reduction of the original representation’s size may make the model unable to reconstruct the
inputs. Unfortunately, there is no established heuristic for determining a priori the optimal
size of the latent space, which means several configurations need to be tested before arriving
at a desirable result. Some metrics for evaluating the AE model’s performance may be
the average reconstruction error, measured as the value of the loss function, as well as
qualitative assessments on how expressive are the latent space variables’ distributions. As
an extreme example, if the size of the latent space is too small or the data is too noisy, the
latent variables may collapse to constant values which are independent of the input. This lack
of expressivity would indicate an Autoencoder that was unable to identify any meaningful
latent representation and minimized the loss function just by virtue of always outputting
the average of the training dataset’s features.

Apart from data compression, the Autoencoder may also be applied to outlier detection.
The reconstruction error, which is often also the loss function, can effectively be used as an
anomaly score. The Autoencoder learns to minimize this loss for the training dataset, which
requires extracting the most suitable information as the latent representation. This means
that the model is making assumptions on feature relevance based on the data it sees during
training. For out-of-distribution data points, those assumptions may not apply anymore,
resulting in erroneous reconstruction. Thus, reconstruction error can be interpreted as
a measure of similarity between the observation under evaluation and the data used in
training the model.

Anomaly detection using Autoencoders may take different forms. If the data available
for training already contains unlabeled anomalies, one may train and evaluate the AE on
the same dataset, taking a fully unsupervised approach. However, some applications may
benefit from having anomaly-free data samples and use those for training before evaluating
the model on potentially anomaly-ridden datasets, this case falling under semi-supervised
learning. Use cases such as those require sufficiently large training data samples that reas-
onably cover the entire space of what would be considered "in distribution" observations.

7.1.2. Normalizing Flows

Non-parametric density estimation is a wide-reaching statistical problem with a long history
of developments [132]. Numerous more traditional methods can still seamlessly solve this
task today, such as Kernel Density Estimation (KDE) [128, 129] and k-Nearest Neighbors
(KNN) [110, 133]. However, as the data complexity increases to higher numbers of dimen-
sions, a lot of such methods can become very computationally demanding and/or start to
lose accuracy in their estimations. In an attempt to find better density estimation methods
that are also scalable to complex multidimensional datasets, ML-based approaches started
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to gain traction as possible solutions. One such model is called a Normalizing Flow (NF),
which can approximate an explicit density function for multivariate data. This is achieved
by learning a deterministic mapping between a know source p(z) distribution such as a
multivariate Gaussian and the target q(x) distributions.

The Normalizing Flow mapping can be formalized as a deterministic bijective transformation
T between q(x) and p(z). An illustrative example showcasing toy 2D distributions is shown
in Figure 7.3. The source distribution is the 2D Gaussian in Figure 7.3(a), and the target
distribution is shown in Figure 7.3(b).

(a) 2D Gaussian (b) Toy target data

Figure 7.3.: Toy example data with two-dimensional source and target distributions generated with
the SCIKIT-LEARN library [134]

Knowing the transformation T and using the bijectivity property allows transforming the
data back and forth between the original space and the Gaussian-distributed space. Coming
back to the toy example, Figure 7.4(a) introduces out-of-distribution points labelled as signal.
Although they are not well separated from the background points in terms of spatial distance,
once everything is transformed to the source space, the separation becomes apparent. Fig-
ure 7.4(b) shows the background and signal points after the inverse transformation T−1 was
applied.

It is easily apparent how this type of bijective transformation can be useful in anomaly
detection, but so far nothing has been said about how it is defined or learned. When
defining this bijective mapping the first important aspect is enforcing the conservation of
probability mass. In short, applying transformations to a distribution should not affect the
total probability. Mathematically, this requirement manifests as an additional factor, namely
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(a) Original data (b) Reverse transformation of the data

Figure 7.4.: Example outlier detection application on 2D toy data. Subfigure 7.4(a) shows data points
from the target background distributions alongside signal out-of-distribution data points in the original
space, while subfigure 7.4(b) shows the same datapoints after applying the reverse normalizing flow
transformation.

the determinant of the transformation’s Jacobian, applied to the transformed distribution, as
in Equation 7.1.

q(x) = p(z) |detJ (T(z))|−1 (7.1)

From a computational standpoint, calculating the determinant for an n× n arbitrary matrix is
expensive [135], having O(n3) complexity in Bachmann-Landau notation [136, 137]. Thus, to
ensure the scalability of the method, the bijective transformation needs to be chosen in such
a way that the determinant of its Jacobian is significantly faster to compute. Triangular maps
are a great solution since the determinant becomes just the product of the diagonal elements
and for the vast majority of distributions, there will always exist an increasing triangular
map facilitating a diffeomorphism between the source p(z) and target q(x) distributions
[138].

While requiring the mapping to be triangular has computational benefits, this translates to
using an autoregressive transformation, where the first variable of the target multivariate
distribution depends only on the first variable of the source multivariate distribution,
while the last variable of the target would depend on an all of the source’s variables. This
kind of relationship between the source and target distribution’s variables is illustrated in
Figure 7.5.

In practice, the order of a data point’s features is arbitrary, and, in order to prevent any
ordering biases, several triangular transformations are stacked together. The order of the
variables is permuted between every two mappings, ensuring that the output receives
contributions from every one of the input’s features. Thus, the Normalizing Flow can be
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Figure 7.5.: Schematic representation between the input z and output x of an autoregressive trans-
formation T, where x = T(z).

thought of as a chain of triangular bijective maps between the source and target distributions,
as Equation 7.2 shows.

z T(1)

−−→ z1
T(2)

−−→ z2 . . . T(k)

−−→ x (7.2)

With all intermediate bijective transformations being triangular, the conservation of probab-
ility mass requirements does not gain any significant complexity. Determinants for all of
those maps are needed, as shown in Equation 7.3, but they remain easy to compute due to
the triangularity of each individual map.

q(x) = p(z)
∣∣∣∇T(1)

∣∣∣−1 ∣∣∣∇T(2)
∣∣∣−1

. . .
∣∣∣∇T(k)

∣∣∣−1
(7.3)

Before talking about learning, one must first define the model’s parameters. In the case of the
Normalizing Flow, the simplest way of parametrising the transformations would be through
the use of affine functions [18]. Equation 7.4 exemplifies a simple scalar transformation
consisting of a scaling and a translation. In this example, αi and βi are the parameters to op-
timize for a component Ti of one of the triangular maps. However, the autoregressive nature
of the transformations implies that αi and βi may depend on the previous component’s Ti−1
parameters. A more detailed overview of how autoregressive affine transformations are
used by NF models can be found in Appendix E.

xi = Ti(zi) := αizi + βi (7.4)

119



7. BSM Searches using Anomaly Detection

Figure 7.6.: Step-by-step transformation of the toy dataset

Figure 7.7.: Step-by-step inverse transformation of the toy dataset

Normalizing Flow models using affine transformations are the most widely used [18], with
notable literature examples being Non-linear Independent Components Estimation (NICE)
[139], Inverse Autoregressive Flow (IAF) [140] and Masked Autoregressive Flow (MAF)
[141].

Training a Normalizing Flow is fully unsupervised, requiring just a sample from the target
distribution. Since the NF model can use its trainable parameters to compute the likelihood
of the input data, a great training objective would be to maximize this likelihood over the
training dataset, as shown in Equation 7.5. For numerical stability reasons, the logarithm of
the likelihood would be preferable instead, thus establishing the Negative log-likelihood
(NLL) as a good loss function choice.

T̂ = argmax
T

n

∏
i

p(zi) |detJ (T(zi))|
−1 (7.5)

Circling back to the previous toy data displayed in Figure 7.3, the Normalizing Flow can be
shown in action. Training a Masked Autoregressive Flow (MAF) containing four stacked
transformations on this toy data produces the results displayed in Figure 7.4. Since the affine
transformations only allow simple translations and rescaling, several of them are required
even in this 2D example.

Diving deeper into how the model works, Figure 7.6 shows the output of every MAF layer,
while the inverse transformation is shown step-by-step in Figure 7.7. The first layer of the
bijective mapping appears to just perform a rescaling of the distribution while the second
layer changes its shape before the third one rescales once again.
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7.1.3. Probabilistic Autoencoder

As discussed in the two previous subsections, reconstruction-based methods such as the
Autoencoder and density-based methods such as the Normalizing Flow, both have clear
uses in anomaly detection tasks. In the context of BSM search use, there is research
suggesting that a combination of both classes of methods may outperform using either of
them individually [16].

There could be many ways of combining an Autoencoder (AE) with density estimation, but
one particularly interesting ensemble that achieves this is the Probabilistic Autoencoder
(PAE) [17]. The PAE consists of an AE model whose latent space is mapped to normally-
distributed space by a Normalizing Flow model. Figure 7.8 shows a diagram of the PAE
architecture.

Figure 7.8.: Schematic of the Probabilistic Autoencoder Neural Network ensemble

Within the Probabilistic Autoencoder model, the Autoencoder and Normalizing Flow
can work together in an attempt to provide a likelihood estimate of the inputs p(x⃗). The
NF bγ is already able to provide a tractable density function for the latent representation
pγ (⃗z), but, unfortunately, since the property of injectivity is not enforceable for the encoder
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fϕ, the input and encoding densities are not the same: p(x⃗) ̸= pγ (⃗z). To arrive at an
approximation of p(x⃗), one starts by writing the joint probability p(x⃗, z⃗) as a product of
conditional probabilities according to Equation 7.6 [17].

p(x⃗, z⃗) = pθ(x⃗|⃗z)pγ (⃗z) (7.6)

Further next, p(x⃗) can be isolated by marginalizing over z, as in Equation 7.7. This integral
however is not directly tractable and will require some approximations.

p(x⃗) =
∫

pθ(x⃗|⃗z)pγ (⃗z)d⃗z (7.7)

The implicit likelihood pθ(x⃗|⃗z) is assumed to have a Gaussian form, as Reference [17]
dictates, while the covariance matrix σ is diagonal and its non-zero elements are represented
by the average per-feature reconstruction errors. Denoting by σi the diagonal elements of σ

and the decoder by gθ , the Gaussian prior can be written as shown in Equation 7.8, where n
represents the number of features for x⃗.

pθ(x⃗|⃗z) = (2π
n

∏
i=1

σ2
i )

− n
2 exp

(
−1

2

n

∑
i=1

[xi − gθ,i (⃗z)]
2

σ2
i

)
(7.8)

With this likelihood defined, the integral in Equation 7.7 can be computed using the Laplace
approximation [19]. According to the authors of the original Probabilistic Autoencoder
paper [17], the Hessian terms introduced by the Laplace method are reducing the stability of
the likelihood estimate so they will be dropped from this point forward.

Accounting for all this, Equation 7.9 shows the resulting formula for the p(x⃗) approxima-
tion.

ln p(x⃗) ≈ −1
2
||⃗x − x⃗′||2σ⃗◦−2 − 1

2
bγ (⃗z)

2 + ln |detJγ| (7.9)

Unpacking this score, the first term can be recognized as the Mean Squared Error (MSE) loss
of the Autoencoder and σ⃗ is the diagonal of the implicit likelihood’s covariance matrix. The
other term of the anomaly score is the likelihood of the latent space representation, provided
by the Normalizing Flow model.

Equation 7.9 contains an additional shortcut compared to the related publication [17], where
instead of x⃗′, which is the AE reconstruction of the input, gθ (⃗z

′) is used. Finding z⃗′ implies
optimizing z⃗ in order to minimize the negative log-likelihood of the posterior distribution,
as defined in Equation 7.10.
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NLL = argmin
z⃗

(− log pθ(x⃗|⃗z)− log pγ (⃗z)) (7.10)

This additional optimization step may be bypassed by assuming z⃗′ = fϕ(x⃗) resulting in an
easier to compute p(x⃗) estimation. The effect of this assumption on the input likelihood’s
performance as an anomaly score is going to be discussed in further sections.

Training a Probabilistic Autoencoder ensemble is done sequentially, starting with the
Autoencoder being trained normally. The fitted AE is used to infer the latent representation
of all training data points. Those latent representations are then used as training data for the
Normalizing Flow. Additionally, the average per-feature AE reconstruction error can be
evaluated, preferably on the validation dataset, in order to determine the values of σ⃗, which
are used for the likelihood estimation of the test data.

For anomaly detection purposes, a trained Probabilistic Autoencoder offers several poten-
tial metrics for discrimination. The likelihood of the latent representation as well as the
Autoencoder reconstruction error may be considered, or even something like ||⃗x − gθ (⃗z

′)||2,
which uses the NF’s density indirectly through the negative log-likelihood optimization
necessary for finding z⃗′. Another obvious choice would be the likelihood estimate of the
input ln p(x⃗). Given all this flexibility in anomaly scores, the Probabilistic Autoencoder can
effectively use both density and reconstruction error information at the same time, which
makes it a good worthwhile candidate for potential unsupervised or semi-supervised BSM
searches.

7.2. LHC Olympics Challange

Following the increase in interest for anomaly detection Machine Learning as a potential
model-independent way of searching for Beyond Standard Model (BSM) signals, the High-
Energy Particle Physics community started to create benchmark datasets for evaluating the
performance of such approaches. Challenges such as the Dark Machines Anomaly Score Chal-
lange [142] and LHC Olympics [20] provided open-access data samples containing fractions of
BSM signals among large amounts of events from simulations of well-understood Standard
Model (SM) processes.

The LHC Olympics challenge launch coincided with the start of my thesis, and, considering
my existing research focus on anomaly detection, it was a great opportunity for putting my
work to the test. Thus, the LHC Olympics datasets are the main benchmarks used in this
work.

Several datasets were provided, some of them labelled and some unlabeled, each of them
designed to test a different anomaly detection scenario. All LHC Olympics data revolved
around jet physics, with every event containing at least two jets in the final state. The data
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Figure 7.9.: Feynman diagram for the process generating the R&D and Black Box 1 signals [20].

format consists of four-vector particle flow information of all particles produced in every
event. There is no information provided on particle types or their mass. Data samples were
generated using PYTHIA [143], HERWIG++ [144] and DELPHES [145] simulations.

7.2.1. Benchmark Datasets

Before the challenge started, the R&D dataset [146] was published, containing one million
QCD events labelled as background and two smaller samples of 105 signal events obtained
from simulations of BSM processes with two and three final state jets respectively. This
data was meant for developing and validating anomaly detection methods, hence the use of
background and signal labels.

The challenging part of the LHC Olympics was applying the developed method to find the
BSM signal in the Black Box datasets. Those used the same data format but were initially
unlabeled, forcing any analysis to search for the signal in model-independent ways. As the
LHC Olympics challenge started, the following datasets were published [147]:

• Background-only training set ( 106 QCD events)

• Three different Black Boxes potentially containing BSM signals (106 total events each)

– Black Box 1: 3.823 TeV Z′ decaying into two jets (834 signal events)
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Figure 7.10.: Feynman diagram for the process generating the Black Box 3 signal [20].

– Black Box 2: QCD background only

– Black Box 3: 4.2 TeV Kaluza-Klein gravitron [148] decaying in dijet (1200 events)
and trijet (2000 events)

The Black Box 1 was released first containing the same type of signal as the R&D dataset, but
in a very small signal-to-background ratio: S/B ≈ 0.084%. Figure 7.9 shows the Feynman
diagram for the signal-generating process. The main difference between the R&D and Black
Box 1 data is the masses of the Z′ and its decay products which are mZ′ = 3.5 TeV, mX =

500 GeV, mY = 100 GeV for the former and mZ′ = 3.823 TeV, mX = 732 GeV, mY = 378 GeV
for the latter.
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Black Box 2 did not contain any signal making it a great test for model bias. While an
anomaly detection method may be very good at identifying outliers in data, it is just as
important to be able to tell when there aren’t any. Thus, looking for signals in Black Box 2 is
a good sanity check for potential biases of the model.

Lastly, the Black Box 3 dataset contained a BSM signal from a Kaluza-Klein graviton [148].
While the S/B ≈ 0.321% is larger than what is found in Black Box 1, the 4.2 TeV signal
particle has two decay modes, shown in Figure 7.10, one with a dijet final state and the other
one with three jets. To make things even more difficult the authors specifically tuned the
branching ratio in such a way finding only one of those decay modes would not be enough
to identify a significant excess.

The LHC Olympics challenge datasets also contained a background-only sample, which enables
the use of semi-supervised methods as well fully unsupervised ones. In practice, one may
have access to pure background samples via MC simulations, but there may always be small
miss-matches between real data and Monte Carlo. In order to account for this common
limitation, the background data is modelled slightly differently across all datasets. Thus,
a semi-supervised model trained on the pure background sample needs to be properly
adapted to those small differences.

7.2.2. Data Preparation

Datasets published for the LHC Olympics contain only low-level event information in the
form of lists of particle four-vectors. Using this data directly would be infeasible since the
analysis strategy uses properties of higher-level physics objects such as jet invariant mass.
Thus, the first step of data preparation should be jet clustering. Towards this end, the
authors of the challenge suggest using the anti-kt clustering algorithm [149] to select R = 1
radius jets with a threshold of pT ≥ 1.2 TeV. In terms of the software data processing was
done in PYTHON [22] with the PYJET library [71] deployed for clustering.

Once the jets are clustered, the next important step concerns feature selection. With PYJET

allowing PYTHON access to FASTJET [70] functionalities, a lot of jet features can be extracted
such as kinematics and invariant mass. On top of those, jet substructure was expressed
in terms of subjettinesses τ3, τ2 and τ1 definitions for those observables were introduced
in Subsection 3.4.4. Another substructure-related set of features comprised energy rings
which reflect the constituent’s energy distribution in terms of radius. Equation 7.11 shows
the formal definition for the energy ring i out of n total equal-thickness rings.

Ei =
1

Ejet
∑

k
Ek, where ∆Rjet,k ∈

[
i − 1

n
Rjet;

i
n

Rjet

]
and i = 1, n (7.11)

The full list of jet features goes as follows:
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• kinematics: (pT, η, ϕ, m)

• total energy: Ejet

• subjettinesses: τ1, τ2, τ3, τ32, τ21

• inclusive and exclusive subjet multiplicity1

• constituent particle multiplicity2

• ten energy rings with logarithmical thickness binning

In total there are 22 features per- jet and two event-level features: dijet combined mass
mjj and multiplicity of inclusive jets resulting from the initial clustering. Alternatively,
the events were also represented as a series of images of the clustered jets [86], following
the methodology introduced in Subsecrion 3.4.4. The full code used for clustering and
pre-processing of LHC Olympics data is publicly available [150].

7.3. Anomaly Detection Results

While several approaches were experimented with, the Probabilistic Autoencoder (PAE)
ended up being the main focus, considering the large number of potential anomaly scores
that can be derived from it. Using the general strategy introduced at the beginning of this
chapter, a full anomaly detection workflow was developed to search for the BSM signals
included in the LHC Olympics datasets. Since the strategy revolves around searching for
resonances on the mjj spectrum after anomaly score-based event selections, it is especially
important to ensure that the anomaly score is not correlated with the dijet invariant mass.
The methods deployed for mitigating such biases are described in Subsection 7.3.1.

The labelled R&D dataset allows in-depth studies of anomaly score performance. Susec-
tion 7.3.2 presents a comparative review of PAE-derived anomaly scores, evaluated by their
discrimination power as well as the amount of bias they introduce.

Once the most promising anomaly score is identified, the next step involves deploying the
full analysis method on the Black Boxes. By applying a cut on the anomaly score’s distribution
to select a subsample of most anomalous events, this subsample is then compared to the full
Black Box data. Looking at the two normalized mjj distributions side-by-side, one expects to
find an excess corresponding to the BSM signal in the anomaly-enriched subsample. This
excess is sought after with the Bump Hunter algorithm [21], which apart from facilitating
the resonance search, is also able to compute the significance of the findings. To seamlessly
integrate bump hunting into the PYTHON [22] and JUPYTER Notebook [23] analysis codebase,
the PYBUMPHUNTER library was used for the convenience and performance that it provides.

1 The number of inclusive and exclusive (dcut = 0.2) subjets as defined in Subsection 3.4.2
2 The number of constituent particles
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The results obtained by applying this analysis workflow to the Black Boxes datasets are
presented and discussed in Subsection 7.3.3. Finally, additional tweaks and optimizations
are discussed in Subsection 7.3.4.

7.3.1. Bias Mitigation Strategies
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Figure 7.11.: Dijet mass mjj distribution of the R&D dataset’s background QCD events (blue) and
its KNN density estimate (red)

Among all LHC Olympics datasets the events’ mjj distribution has a similar shape, peaking
around 2.7 TeV and having a long tail extending up to 9.5 TeV. While such distribution
makes physical sense, as mjj increases there are fewer and fewer data points left. Thus, a
naive density-based anomaly score may flag events at the upper and lower ends of this
spectrum as outliers. A reconstruction-based anomaly score may easily acquire a similar
bias since it doesn’t see enough of such examples in order to prioritize learning how to
reconstruct them. This means that from the start, mjj should not be used as a feature in
training.

In addition to this, the training data can be reweighted in such a way that less common
events in terms of mjj are awarded higher priorities in order to bring them in line with the
rest of the training dataset. The simplest means to this end would be to use a non-parametric
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density estimation algorithm, such as k-Nearest Neighbors (KNN) [133] and fit it to the
training data’s mjj distribution, as exemplified in Figure 7.11.

By inverting the values of the mjj density estimate for each data point a rescaling factor
is obtained which is further going to be referred to as the event weight. Multiplying the
value of the loss function by this weight has the same mjj uniformisation effect as selective
oversampling of the training data. A scatter plot of the weights obtained from the previously
shown KNN density is shown in Figure 7.12.

More often than not, even with such measures in place, the model may still learn to infer
mjj from jet features such as pT, E and η. Initial PAE prototypes suffered from this exact
issue. The best solution found was to apply uniformisation to all training features as well.
With the QuantileTransformer utility from the SCIKIT-LEARN library [134], a dedicated
transformation is applied to every quantile of each feature’s distribution such that the result
is a training dataset having the values of each feature be uniformly distributed without
breaking the relationships between features.

All of the aforementioned data manipulations were applied to the dataset used for training
the PAE model in order to minimize the biases of the results as much as possible. None of
those mitigation strategies seemed to negatively affect anomaly detection performance.

2000 3000 4000 5000 6000

5

1

2

5

10

2

5

100

2

Event weights relative to dijet mass

ev
en

t w
ei

gh
t [

lo
g 

sc
al

e]

Figure 7.12.: Scatter plot of R&D QCD events’ weight as a function of their dijet mass
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7.3.2. Anomaly Score Performance on the R&D Dataset

Several anomaly scores were evaluated on the R&D both in terms of their efficiency of
signal extraction as well as how much bias they are introducing. The PAE-derived chosen
for this comparison were:

• − log pz: the negative log-likelihood of the latent representation

• MSE: Mean Squared Error between the input and the PAE reconstruction

• MSE · σ◦−2: PAE reconstruction MSE divided by the average per-feature reconstruc-
tion error evaluated on the validation dataset

• PAE: the PAE estimate of the input data’s likelihood (Equation 7.9)

For reference, an additional anomaly score was tested, namely, the likelihood of the input
− log px according to a separate Normalizing Flow (NF) model, trained on the input features
as opposed to the latent space.

A single PAE model was trained on a synthetic dataset containing only QCD background
from the R&D dataset, while validation data consisted of a smaller but still pure background
sample. For testing, a separate dataset was prepared to contain equal amounts of QCD
background and dijet signal events.

Quantitative evaluation of the anomaly score’s bias relative to the mjj involved the Jensen-
Shannon (JS) divergence [24], which is defined in Appendix G. After training, the anomaly
scores were first inferred on the training set which was designed to be signal-free. Then,
successive thresholds were applied covering all percentiles of the anomaly score distribution.
For each of those thresholds, the JS-divergence between the mjj spectra of the full training
sample and the above-threshold subsample was computed. The goal here is to identify
how much is the mjj distribution sculpted by the anomaly score cut. Since JS-divergence
measures the distance between those two distributions, an unbiased score would show low
values for the JS-divergence in this scenario, regardless of the threshold, because there is no
resonance to be found in this scenario.

Mass sculpting plots of JS-divergence vs anomaly score percentile threshold are shown
in Figure 7.13(a). A common behaviour regardless of the score in question is the abrupt
increase in JS-divergence at the very last few percentiles. This can most likely be attributed
to statistical fluctuations becoming more and more pronounced as fewer and fewer events
pass the anomaly score threshold. Making abstraction of this, it is clear that the negative
log-likelihoods of both NF models are introducing significant amounts of mjj bias. On
the other hand, the reconstruction-based anomaly scores are adding decisively less mass
sculpting. Interestingly, the PAE score seems to be overall the least biased of the bunch, less
than any of the two scores that it incorporates.

130



7.3. Anomaly Detection Results

20 40 60 80

0

0.05

0.1

0.15

0.2

Mass sculpting

Percentile Cut

Je
ns

en
–S

ha
nn

on

(a) Mass sculpting

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

AUC:0.82
AUC:0.82
AUC:0.77
AUC:0.76
AUC:0.84

ROC curves

Signal efficiency
B

ac
kg

ro
un

d 
R

ej
ec

tio
n

(b) Receiver Operating Characteristics (ROC)
curves

Figure 7.13.: Performance metrics for the potential anomaly scores accessible through the PAE
ensemble and evaluated on the R&D dataset. Subfigure 7.13(a) shows the mass sculpting calculated
at every percentile of the anomaly score distribution and expressed in terms of JS-divergence.
Subfigure 7.13(b) the anomaly detection performance represented as ROC curves. The colour coding
is identical between the two plots and thus, the legend of the right-hand subfigure denotes the Area
Under the ROC Curve (AUC).

The anomaly score’s signal discrimination power is just as important as having minimal
mass sculpting. Provided the labelled class-balanced synthetic test data set, the anomaly
scores can be evaluated as classifiers through the lens of conventional performance indicators
such as the Receiver Operating Characteristics (ROC) curve and the area underneath it.
More detailed information about ROC curves can be found in Appendix F. Judging the
anomaly scores by the Area Under the ROC Curve (AUC) figure of merit their performance
looks fairly similar, as Figure 7.13(b) shows. While those AUC values may not stack well
against a supervised classification model, they are nonetheless respectable considering this is
a semi-supervised method. Reconstruction-based anomaly scores are the worst performers
while the Normalizing Flow densities and PAE score all appear to be better, with small
differences between them.

Summarized by Figure 7.13, the anomaly score performance comparison yielded interesting
results. The PAE score is the least biased while still having one of the best figures of merit
for discrimination power. Although the PAE estimation of the input data’s negative log-
likelihood is based on both Autoencoder reconstruction error and Normalizing Flow
density, it doesn’t inherit either of those components’ mjj biases, while also borrowing the
classification performance of the best one.
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Figure 7.14.: Results of Bump Hunting for resonances in Black Box 1 data, after applying a cut at the
99th percentile of the anomaly score distribution

7.3.3. Results on the Black Box Datasets

The PAE anomaly score performed well in synthetic tests, so the next step is to use it in
the full anomaly detection workflow. Anomaly scores were computed for all three Black
Boxes and after applying a cut on the 99th percentile of the anomaly score distribution,
PYBUMPHUNTER was deployed to scan for BSM signal excesses. The bump hunting
procedure was attempted on a narrower mass range of [3.2 TeV, 4.2 TeV] to exclude the peak
and the end of the tail of the mjj distribution.

Training the PAE directly on the Black Boxes didn’t provide the best results in terms of the
anomaly score’s signal extraction power so the background-only LHC Olympics challenge
dataset was used instead. To account for the slight differences in modelling between the
Black Boxes and this pure background sample event reweighting was done a bit differently.
Instead of fitting the KNN density estimator on the mjj distribution of the training data,
the Black Boxes mjj density was the one used. Then, this density estimate was used to
compute weights for the training pure-background sample’s events. This translates to a
semi-supervised approach.

Figure 7.14 show the PYBUMPHUNTER output when scanning the [3.2 TeV, 4.2 TeV] mass
range. The background in this plot is represented by the mjj distribution of the full Black Box

1 dataset while the data label denotes mjj of the subsample passing the cut 99th percentile of
the anomaly score distribution. The most significant data excess (≥ 3σ) is located at 3.86 TeV
which matches the Black Box 1 signal’s mass of 3.8 TeV.
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Figure 7.15.: Results of Bump Hunting for resonances in Black Box 2 data, after applying a cut at the
99th percentile of the anomaly score distribution

Noticeable fluctuations are observed in the data distribution which may be partly determined
by the stringency of the cut, which is discarding 99% of the Black Box 1 events over the
full mass range. However, statistical fluctuations may not be the only factor contributing to
this effect. Towards the very end of the selected mass range, the data-background mismatch
becomes larger, indicating that the PAE’s anomaly score still introduces some mjj bias.

The same procedure was applied to Black Box 2, and the results are shown in Figure 7.15. The
significance of the found excess is much smaller ≤ 1σ, but the data-background fluctuations
are still present. This further confirms that the model introduces some bias. Since the Black
Box 2 does not contain any signal, the significance of the found excess seems to allow the
differentiation between BSM signals and bias-induced signals.

Figure 7.16 shows the result for Black Box 3. Unfortunately, the PAE anomaly score is unable
to identify the BSM signal, finding no excess more significant than 0.5σ. The challenge
posed by the Black Box 3 lies in the mix of dijet and trijet final states of the bsm signal. Since
all models were trained on the features of two leading jets, it is not surprising that the trijet
channel can not be found. However, the data-background fluctuations seem to be minimal for
Black Box 3, the bias introduced not being significant enough to generate a fake bump.

7.3.4. Further Optimizations

While the Probabilistic Autoencoder (PAE) shows promising results on the LHC Olympics
Black Boxes, extensive optimization of hyperparameters was attempted in hopes of further
mitigating the mass sculpting while increasing the signal extraction power.
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Figure 7.16.: Results of Bump Hunting for resonances in Black Box 3 data, after applying a cut at the
99th percentile of the anomaly score distribution

Several variations of autoencoder depth and latent space size were attempted, as well
as introducing L1 and L2 regularization. The performance metrics evaluated were JS-
divergence at the 99th percentile cut and the S/B in the anomaly-enriched subsample.
Additionally, the model’s stability was evaluated through the standard deviation of those
metrics for the PAE trained using K-fold cross validation [151] on the R&D dataset.

Through this process, the optimal configuration for the Autoencoder was a 3-layer encoder
and decoder with a 5-dimensional latent space between them. A mix of λ = 10−5 L1 and
L2 regularization for both showed benefits in decreasing the variance of the performance
metrics between folds.

The best performing configuration was tested on Black Box 1 and the results are shown in
Figure 7.17.

Some amount of mass sculpting appears to be unavoidable, regardless of the PAE con-
figuration. Despite this fact, the model is capable of finding the Black Box 1 signal in a
reproducible fashion. After unblinding the dataset, the signal content of the bump is imme-
diately apparent. The anomaly-score event selection provides a sample with S/B = 1.19%
which is one whole order of magnitude higher than the initial S/B = 0.08%.

Conclusions and Future Outlook

This chapter introduced the Probabilistic Autoencoder (PAE) and its building blocks while
proposing a semi-supervised methodology for Beyond Standard Model searches that is
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Figure 7.17.: Results of bump hunting after comparing the Black Box 1 data, depicted as a green
line, with the subsample of 99th percentile anomalous events, depicted as coloured bars: blue for
background events and orange for signal events. Signal and background labels were added after the
fact, the unblinding being used to confirm the presence of real BSM signal.

centred around it. Out of the several anomaly score candidates that could be derived from
the PAE, the negative log-likelihood of the inputs was shown to introduce the smallest bias
while also being among the best performing in terms of anomaly detection. Furthermore,
the Probabilistic Autoencoder offers promising anomaly detection performance in the dijet
BSM search benchmark scenario provided by the Black Box 1. Mass sculpting remains one
of its main issues, but the signal discrimination power seems strong enough to make up
for it. Additional refinements of the method may bring further improvements in terms of
mjj bias mitigation. A more targeted feature selection and additional mass decorrelation
techniques such as DisCo [152] have yet to be explored. The method could also be extended
to a set of features properly covering trijet final states and thus probe the Black Box 3.

135





Conclusions

There is still plenty of progress potential in the field of High-Energy Particle Physics (HEPP).
While the Standard Model (SM) provides an exceptionally good description of the most
fundamental aspects of nature, there are some phenomena yet to be accounted for. Com-
peting theories concerning Beyond Standard Model (BSM) physics propose explanations
for several remaining mysteries such as neutrino masses, dark matter or quantum gravity.
However, the necessary experimental evidence is not yet available for proving or disproving
all of them.

Benefiting from and contributing to the A Toroidal LHC Apparatus (ATLAS) experiment at
CERN, this thesis covered three major topics relevant to the current state of High-Energy
Particle Physics (HEPP).

I successfully concluded and ATLAS authorship Qualification Task (QT) by producing high
purity samples for studying electron fakes heavy flavour sources. Alongside developing
the selection model, a subsequent study identified the control regions in terms of shower
shape variables for the selected heavy-flavour electrons. The results provided key insights
into how this type of electron background can be rejected while the sample produced facilit-
ated the training of Machine Learning models aiming to improve electron identification
performance.

Regarding data taking and particle detection, as part of the PhD thesis, I developed a
prototype for a Machine Learning based trigger algorithm targeting the MicroMegas (MM)
detectors deployed with the New Small Wheel (NSW). With the Research and Development
(R&D) on this front still being in its earlier stages, the current prototype acts as a proof-
of-concept attesting to the feasibility of the approach. The current iteration successfully
deploys a Convolutional Neural Network (CNN) which uses the signals from the detector
to estimate the most relevant variable involved in the NSW trigger decision.

Lastly, I designed and studied a model-independent anomaly detection analysis workflow
targeting applications in searches for Beyond Standard Model physics. The proposed
methodology relies on using a Neural Network ensemble to generate anomaly scores designed
to be sensitive to the presence BSM signals which are not known a priori. The Probabilistic
Autoencoder (PAE) was chosen as the main model of interest and several potential anomaly
scores that could be derived from it were tested on synthetic datasets. A large focus was
placed on mitigating potential model biases in order to reduce the likelihood of finding fake
signals. Results on the Black Box 1 dataset, part of the LHC Olympics challenge, showcase
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the anomaly detection performance of the method. In a semi-supervised scenario, the PAE
anomaly score was used to achieve an order of magnitude increase in the ratio between
the sample’s signal and background content. While there was some bias introduced with
respect to the dijet mass, deploying bump hunting algorithms to the mjj distribution of the
anomaly-enriched sample resulted in a correct identification of the BSM signal against the
full Black Box 1 reference background.

While I have provided tangible results for the topics pursued, my interest in them is far from
being exhausted. There are several endeavours that I consider worthwhile as a potential
continuation of the work done so far.

Studies on prompt electron identification performance and background sources continue
to be relevant in ATLAS’ e/γ group while Neural Network (NN) solutions are proposed
and studied. In this context, the analysis of heavy-flavour electron background could be
further extended to include the other background sources, thus aiding the development of
such models.

The proof-of-concept MicroMegas trigger prototype for the ATLAS New Small Wheel
(NSW) muon detector enables further trigger algorithm developments. An important next
milestone would be the addition of small-strip Thin-Gap Chambers data to the current
prototype. With Long Shutdown 3 starting at the end of 2025 and lasting until 2029, a
complete Machine Learning based trigger could be completed in time for the next data-
taking run.

As for model-independent BSM searches, the Probabilistic Autoencoder approach can
further be optimized in terms of reducing the bias introduced by the model. There are
potential strategies that haven’t yet been explored such as mass decorrelation techniques
and using additional jet features.
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A. New Small Wheel Naming Scheme

This appendix summarises the agreed-upon naming scheme used for defining the compon-
ents of the New Small Wheel (NSW), as defined in the Technical Design Report (TDR) [42].
A visual representation of this naming scheme is shown in figure A.1, displayed below.

Figure A.1.: Hierarchy of object types making up a NSW sector [42]
.

The explicit definition of the objects schematically represented in Figure A.1 is as follows:

• plane: the trapezoidal gas-filled active volume of a single planar detector element
using either MM or sTGC technology. Planes represent the smallest working particle-
detecting units comprising the NSW.

• multiplet: a group of four planes using identical detector technologies (either MM or
sTGC) placed in sequence across the z-direction.

• module: an arrangement of one or several multiplets along the r-coordinate that
constitutes an object independently produced as a single unit.

• station: an assembly of four modules (two MM and two sTGC stationed along the
z-axis)
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• wedge or supermodule: a collection of modules sharing the same detector type (either
MM or sTGC) and cover an entire sector in the r − ϕ plane

• sector: a 16th of the NSW on either side of the ATLAS Detector.

While those terms are equivalent between the two detector types, there is additional termin-
ology associated with each of them, individually.

A.1. MicroMegas

In terms of MicroMegas-specific granularity, the layers making up the multiplets are
distinguished by the angle of their strips relative to the perpendicular of the r-axis. Half of
the layers are η layers (denoted X), which means that their strips are perpendicular to the
r-coordinate, as such, the strip numbers are directly related to the η of the particle being
detected. Stereo layers feature slightly angled strips (1.5◦) relative to the X layers and are
denoted differently based on the sign of the angle. This results in two types of stereo layers:
U and V, with +1.5◦ and −1.5◦ strip inclination values. The figure A.2 configuration of
PCBs for small A.2(a) and large A.2(b) sectors, featuring an X layer on the left and a U stereo
layer on the right.

A.2. sTGC

The small-strip Thin-Gap Chambers deploys a more straightforward method for measuring
a second coordinate. Each sTGC plane contains three separate types of elements that
compound each other. The strips and wires are perpendicular to each other, unlike MM’
stereo angle. This enables position measurements in two dimensions but adds a lot of
readout channels at the same time. To prevent possible delays of the trigger decisions, the
pads cover large areas and can register hits quickly, delimiting a region called the sTGC
tower where readout takes place.
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(a) MM small sector planes

(b) MM large sector planes

Figure A.2.: Differences in partitioning of MM planes into PCBs between η and stereo layers. [42].
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B. Loss Functions

Loss functions are crucial to model training and optimization. Considering the output of a
model f trained to predict the output y based on the input x, the following notation will be
used for the model prediction ỹ = f(x). There are several choices for loss functions, some
of the most common being discussed below. Figure B.1 displays the values for those loss
functions as a function of the difference between the prediction and the target. A 1D linear
regression problem has been used in computing the loss values from Figure B.1. Cosine
similarity is computed as in Equation B.5 but without the minus sign.
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Figure B.1.: Loss function value dependence to the absolute error for a scalar value. Several loss
functions are plotted side-by-side.
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B. Loss Functions

Mean Absolute Error

Mean Absolute Error (MAE) is defined in Equation B.1 and involves just taking the dif-
ference between the model’s prediction and the true label in absolute value. It is a linear
function and this simplicity makes it easily understandable, but, at the same time, its
constant derivative makes it slower to optimize with gradient-based methods.

LMAE(ỹ, y) =
1
d

d

∑
j=1

∣∣y(j) − ỹ(j)∣∣ (B.1)

Mean Squared Error

One of the most popular choices, the Mean Squared Error (MSE) gives the squared value of
the prediction’s difference from true mapping. Equation B.2 shows how it is calculated. Due
to the squaring operation, MSE usually shows fast convergence time towards the optimal
parameter values during the training process.

LMSE(ỹ, y) =
1
d

d

∑
j=1

(
y(j) − ỹ(j))2 (B.2)

Mean Absolute Percentage Error

Equation B.3 describes the Mean Absolute Percentage Error (MAPE). It facilitates interpretab-
ility by its values being bound in the [0, 1] interval, thus allowing them to be represented
as a percentage. The downside of such an approach becomes apparent when the datasets’
target values y are close to 0. In such circumstances MAPE can go towards infinity while
MAE or MSE would be well-behaved functions. MAPE is designed for datasets where loss
divergence issues can be avoided and the emphasis falls under the relative value of the error
rather than the absolute.

LMAPE(ỹ, y) =
1
d

d

∑
j=1

∣∣∣∣y(j) − ỹ(j)

y(j)

∣∣∣∣ (B.3)

Mean Squared Logarithmic Error

Some models are required to produce outputs that could span several orders of mag-
nitude. In such cases, a MSE loss would have most of its value coming from errors of the
larger-valued targets, assuming a uniform distribution of relative errors. Mean Squared
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Logarithmic Error (MSLE) bypasses this issue by applying logarithms before calculating the
squared error, just like Equation B.4 is describing.

LMSLE(ỹ, y) =
1
d

d

∑
j=1

(
log(y(j) + 1)− log(ỹ(j))

)2 (B.4)

Cosine Similarity

Similarity metrics can be adapted into loss functions by adding a negative sign. Cosine
similarity loss is defined in Equation B.5. Cosine similarity ranges between −1 and 1, with
1 meaning that the vectors are completely identical. By adding the minus sign, cosine
similarity can be optimized by using the same loss minimization methods as all previous
functions.

Lcosine(ỹ, y) = − ỹ · y
|ỹ||y| (B.5)
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C. Activation Functions for Neural Networks

A Neural Network (NN)’s activation functions have to be non-linear, but there is no
ultimately best such function. Historically, the most used such functions were sigmoid
(Equation C.1) and the hyperbolic tangent (Equation C.2). They have the advantage of
constraining the output to the (0, 1) and (−1, 1) intervals, respectively. Constraints such as
those are useful for NN outputs because they can be easily rescaled to the interval of the
target outputs.
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Figure C.1.: Activation functions commonly used in Neural Network

A simpler and computationally inexpensive way of introducing non-linearities would be
Rectified Linear Unit (ReLU), which has become increasingly popular in the last decade and
is defined in Equation C.3. It behaves like a linear function, but only for positive values,
while all negative ones are mapped to zero.
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sigmoid(x) =
1

1 + e−x (C.1)

tanh(x) =
2

1 + e−2x = 2 sigmoid(2x)− 1 (C.2)

ReLU(x) =

{
0 if x < 0

x if x ≥ 0
(C.3)

Figure C.1 shows a plot of the aforementioned activation functions. The sigmoid and tanh
functions converge asymptotically to the bounds of their output interval for large positive
and negative values. Computing their derivatives, as displayed in Figure C.2, it is apparent
that for increasingly larger values, the gradients of sigmoid and tanh are vanishing.

−2 −1 0 1

0

0.002

0.004

0.006

0.008

0.01 sigmoid
tanh
ReLU

Figure C.2.: Derivatives of common activation functions

Vanishing gradients are a common issue that can negatively interfere with gradient-based
optimization methods. In order to prevent this behaviour sigmoid and tanh tend to not
be used for hidden layers, being replaced by ReLU. As Figure C.2 shows, ReLU has a
constant derivative in the positive domain which prevents gradients from vanishing. There
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are, however, potential issues with ReLU in the negative domain. Having a derivative
of 0 implies that the optimization algorithm could no longer update the parameters of a
negative-output neuron. In such a scenario, if the model assigns a large negative bias to a
neuron, it would no longer activate, nor be further optimized by the training process. This
is known as the dead ReLU problem.
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D. Backpropagation in Neural Networks

For this example a neural network with n layers, each having a single node, is considered.
The values computed by each neuron will be notated with xi, where i is the layer index.

Figure D.1.: Neural network with n layers of a single neuron

The loss function L0 is the Mean Squared Error (MSE) between the output ỹ(P) = xn and
the expected output y. Equation D.1 shows the loss function and its relation to the model
output. The model output is dependent on the parameter set P = (w1, b1, w2, b2, . . . , wn, bn),
wi and bi being the weight and bias associated with the neuron from the i-th layer. Note that
the input layer x0 does not have parameters associated with it.

L0
(
ỹ(P), y

)
=
(
ỹ(P)− y

)2 (D.1)

The output of the neuron in the layer i is calculated using Equation D.2. For simplicity,
shorthand notation from Equation D.3 is introduced.

xi = f (wixi−1 − bi) (D.2)

zi = (wix(i−1) − bi) =⇒ xi = f (zi) (D.3)

The parameter dependence of the final neuron is represented in Figure D.2. Gradients of the
loss function with respect to the parameters are calculated backwards starting with xn and
moving up the chain.

The general form of the gradient is shown in Equation D.4.

∇L0 =
[

∂L0
∂w1

∂L0
∂b1

∂L0
∂w2

∂L0
∂b2

. . . ∂L0
∂wn

∂L0
∂bn

]T
(D.4)

Backpropagation starts by finding the last two elements of our gradient ∂L0
∂wn

and ∂L0
∂bn

, using
the chain rule. Equation D.5 shows the gradient of the final layer’s weight term while
equation D.6 corresponds to the bias term.
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Figure D.2.: Parameter hierarchy relative to the loss function

∂L0

∂wn
=

∂zn
∂wn

∂xn
∂zn

∂L0

∂xn
= xn−1 f ′(xn) 2(xn − y) (D.5)

∂L0

∂bn
=

∂zn
∂bn

∂xn
∂zn

∂L0

∂xn
= 1 f ′(xn) 2(xn − y) (D.6)

From this point, the next gradient vector components are calculated, starting with ∂L0
∂xn−1

, in
Equation D.7.

∂L0

∂xn−1
=

∂zn
∂wn−1

∂xn
∂zn

∂L0

∂xn
= wn−1 f ′(xn) 2(xn − y) (D.7)

The chain rule is used to find weight ∂L0
∂wn−1

and bias ∂L0
∂bn−1

terms of the layer n − 1. Back-

propagation continues then with calculating ∂L0
∂xn−2

and sequentially moves up the chain until
all layers are taken into account and all components of ∇L0 are known.
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E. Affine Autoregressive Transformations in
Normalizing Flows

When defining this bijective mapping the first important aspect is enforcing the conservation
of probability mass, exemplified in Equation E.1.

p(y) = p(x)
∣∣∣∣∂f (x)

∂x

∣∣∣∣−1

(E.1)

For multivariate distributions, this conservation law can be generalized as Equation E.2.

p(y) = p(x) |detJ (T(x))|−1 (E.2)

Notation-wise if we use x = (x1, x2, x3, ..., xd) as the target distribution and z = (z1, z2, z3, ..., zd)

as the source, known-density distribution, the transformation can be defined as in Equa-
tion E.3.

T : R
d → R

d, x = T(z) (E.3)

The transformation T can be thought of as having d scalar components, one for every element
of x such as xi = Ti(z1, z2, . . . , zd). Plucking this into the definition of T, Equation E.4
arises.

T = (T1(z), T2(z), T3(z), ..., Td(z)) (E.4)

, where:

x1 = T1(z1, z2, . . . , zd)

x2 = T2(z1, z2, . . . , zd)

. . .

xd = Td(z1, z2, . . . , zd)

Applying transformations requires computing the determinant of the Jacobian shown in
Equation E.5.
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J (T(z)) = ∇zT(z) =


∂T1
∂z1

∂T1
∂z2

. . . ∂T1
∂zd

∂T1
∂z2

∂T2
∂z2

. . . ∂T2
∂zd

...
...

. . .
∂Td
∂zd

∂Td
∂zd

. . . ∂Td
∂zd

 (E.5)

However, matrix determinant computation is computationally expensive (O(d3) complex-
ity). Since the transformation parameters have to be learned, determinant computations
would be required at every step of the training process. This issue can be sidetracked by
using increasing triangular maps.

The theorem stated in Equation E.6, where T is a unique increasing triangular map, states
that such a triangular map is sure to exist regardless of the distributions chosen.

∀ p(z), q(x) ∃ T, q(x) = p(z) |detJ (z)|−1 (E.6)

Assuming a triangular form would imply the following variable transformation components
definition:

x1 = T1(z1)

x2 = T2(z1, z2)

. . .

xk = Tk(zi≤k)

. . .

xd = Td(z1, z2, . . . , zd)

With the triangular Jacobian shown in Equation E.7, the determinant computation can be
reduced to the product of the main diagonal elements.

∇zT(z) =


∂T1
∂z1

0 . . . 0
∂T1
∂z2

∂T2
∂z2

. . . 0
...

...
. . .

∂Td
∂zd

∂Td
∂zd

. . . ∂Td
∂zd

 (E.7)

The only thing left remains the parametrization of the bijective mapping. Using the probab-
ility chain rule the q(x) can be split as Equation E.8

q(x) = q1(x1)q2(x2|x1)q3(x3|x1, x2) . . . qd(xd|xi<d) (E.8)
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Then, each qi can be parametrized as a gaussian as shown in Equation E.9.

q(x) = N (µ1, σ2
1 )N (µ2, σ2

2 ) N (µ3, σ2
3 ) . . .N (µd, σ2

d ) (E.9)

Finally, the transformation can be defined, by components, as:

x1 = T1(z1) := σ1z1 + µ1

x2 = T2(z1, z2) := σ2(z1)z2 + µ2(z1)

x3 = T3(z1, z2, z3) := σ3(z1, z2)z3 + µ3(z1, z2)

. . .

xd = Td(z1, z2, . . . , zd) := σd(z<d)zd + µd(z<d)

µi, σi, with i ∈ (1, 2, . . . , d), are the trainable parameters while functions µi(z<i) and σi(z<i)

can be modelled as autoregressive networks.
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F. Classification Performance Metrics

Binary classification targets usually take on the value 0 to represent members of the negative
class and the value 1 to represent the members of the positive class. Classifier outputs lie
within the [0, 1] interval, indicating the likelihood of a data point belonging to a certain
class. The Receiver Operating Characteristics (ROC) curve is a common way of representing
the performance of a classification algorithm by relating its output to the true target value.
Figure F.1 shows an example of a classification algorithm output which will be used as a toy
example to illustrate how ROC curves work.

Figure F.1.: An example of a classification algorithm output distribution, the blue line represents the
threshold at 0.3

Before the trained model can be used for inference, a threshold needs to be applied. The
output values greater than the threshold would indicate that the input belongs to the positive
class and the output values below the threshold denote the input is a member of the negative
class. ROC curves provide a detailed illustration of how the model is expected to perform
at all different relevant thresholds.
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Before quantifying performance, the following terminology needs to be introduced. True
Positive (TP) denotes positive-class samples that are classified correctly while True Negative
(TN) corresponds to negative samples classified correctly. Conversely, misclassified points
fall into the False Positive (FP) and False Negative (FN) categories.

In the example from Figure F.1, the FP and FN samples are found in the area given by the
intersection of the two distributions. FP points would lie on the left side of the threshold
whereas FN examples would be on the right side. The areas of the distributions that do not
intersect represent the correctly classified events: TN (left of the threshold) and TP (right of
the threshold).

More general performance indicators can be obtained by expressing truth in terms of sample
fractions rather than absolute counts of observations. Such quantities are the True Positive
Rate (TPR) also called Sensitivity or Recall as in equation F.1.

TPR =
TP

TP + FN
(F.1)

Another useful term is Specificity defined in equation F.2 and based on it we define in
equation F.3 the True Negative Rate (TRN).

Specificity =
TN

TN + FP
(F.2)

FPR = 1 − Specificity =
FP

TN + FP
(F.3)

In order to get the ROC curve, we just need to plot FPR against TPR for every threshold
value as in figure F.2. This plot offers an overview of the accuracy of the classification
algorithm. In order to make comparisons between classifiers easier, we can use the Area
Under the ROC Curve (AUC) figure of merit. A value closer to 1 for the AUC relates to a
better classifier.

There is an inverse relationship between the amount of overlap between the two distributions
and the AUC as shown in the example from Figure F.3
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Figure F.2.: The ROC curve calculated for the distributions in figure F.1

Figure F.3.: A classification output with large overlaps between the distributions of the two classes
(left) and the ROC curve calculated for it (right)
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G. Elements of Information Theory

In digital communication, bits are the unit of measure for quantifying information. Before
using bits to transfer information one must first define a protocol for assigning them meaning,
a process sometimes referred to as encoding. There is much to be considered when encoding
data. For example, when transmitting information about an event occurring, it may be
useful to take into account its probability of occurrence. This probability is relevant because
a binary representation can be thought of as a series of successive yes/no questions of which
some of which may have varying degrees of redundancy. One may calculate the amount of
useful information using Equation G.1 [200].

amount of useful bits = − log2(p) (G.1)

where p is the probability of the event occurring.

As a basic example let’s consider we want to encode the colour of a ball drawn from a box.
There are four possible colours and the probability and encoding associated with each are
shown in Table G.1.

Table G.1.: Example of an encoding table

Colour Probability Encoding
Red 6.25% 00
Blue 13.75% 01

Green 30% 10
Yellow 50% 11

When a yellow ball is drawn, the two bits used to send the message are 11, but the amount
of useful bits is − log2(0.5) = 1, as obtained from equation G.1. Conversely, if a red ball is
drawn, the binary representation of the message would be 00, but the amount of useful bits
of information received is − log2(

1
16 ) = 4.

Information entropy of a data probability distribution is defined as the average amount of
information (in bits), obtained from sampling the probability distribution. If the distribution
is discrete, Equation G.2 should be applied.

H(P) = −∑
i

pi log2(pi) (G.2)
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where P is the distribution, i is the index for the possible values and pi is the probability of
sampling the value indexed by i.

For the example shown in Table G.1 we can calculate:

H ≈ 0.0625 ∗ 4 + 0.1375 ∗ 2.862 + 0.3 ∗ 1.7369 + 0.5 ∗ 1

≈ 1.66

Although we use two bits to send information, on average, 1.66 useful bits are received.

If we assume a different distribution Q for the data following distribution P the expected
message length can be obtained by calculating the cross-entropy as shown in equation
G.3.

H(P, Q) = −∑
i

pi log2(qi) (G.3)

Using the difference between entropy and cross-entropy, we can now define a measure
of how much the distributions P and Q are different from one another; this is called the
Kullback-Leibler (KL) divergence [201]. Equation G.4 shows the definition KL-divergence.

DKL(P||Q) = H(P, Q)− H(P) = −∑
i

pi log2(
qi
pi
) (G.4)

DKL is neither smooth nor upper bounded, which makes it sometimes difficult to use in data
analysis. In an attempt to avoid those inconveniences, a symmetric, [0, 1]-bounded version
of the KL-divergence can be defined, known as the Jensen-Shannon (JS) divergence [24]
and displayed in Equation G.5.

DJS(P||Q) =
1
2

DKL(P||P + Q
2

) +
1
2

DKL(Q||P + Q
2

) (G.5)
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Glossary

Symbols

IRC safety property of a quantity to be insensitive to the presence of soft QCD emissions
or collinear branching. 66

b-tagging the process of identification for jets containing b-hadrons, namely b-jets. 68, 69,
76, 200

DATA18 all data collected by the ATLAS Detector in 2018, as part of Run 2 . 80– 86, 201

A

ATLAS Collaboration the international group of physicists belonging to different univer-
sities and research centres who built and run the ATLAS Detector . 40, 45, 68, 72,
75, 86, 169

ATLAS Detector CERN’s general-purpose detector, designed to measure the broadest
possible range of signals at the LHC. 21, 35, 40, 41, 45, 47, 48, 50, 54, 55, 57, 59,
60, 63, 65, 73, 97, 146, 169, 172, 200

B

bunch at CERN’s LHC, the proton beams are not divided into chunks separated by gaps.
Those chunks are called commonly known as bunches. . 169

bunch-crossing the interaction between two bunches of protons, consisting of several pp
collisions. . 47, 97, 99, 100, 102, 170, 175

C

Combined Performance within the ATLAS Collaboration there are several so-called Com-
bined Performance (CP) groups, whose primary role is developing and maintaining
algorithms for identifying, measuring and reconstructing physics objects . 61, 75, 86,
169, 176

crack region The transition region between sub-systems where the detector performance
may be affected. For the ATLAS Electromagnetic (EM) calorimeter, it covers the
1.37 ≥ |η| ≤ 1.52 pseudorapidity interval . 77, 83, 84
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cut a selection criterion applied to data during analysis. Cutting on the distribution of an
observable involves choosing a threshold and selecting only the events having the
observable’s value above or below it.. 69, 76– 86, 98, 127, 130, 132– 134, 201, 203,
205

D

derivation a pre-selection of recorded events in order to cater for specific physics uses. It
involves skimming (removal of whole events based on specific criteria), thinning
(removal of individual physics objects that are not particularly aligned with the
derivation’s use case) and slimming (removal of variables associated with certain
objects, that are deemed irrelevant) . 73, 80, 85, 86, 201

E

emittance the area occupied by the beam’s particles in the phase space of position and
momentum. 38, 173

event the outcome of a fundamental interaction taking place between subatomic particles,
occurring in a very small time frame and a well-defined region of space. In ATLAS,
an event is the result of a bunch-crossing. 21, 36, 41, 48, 57, 58, 61, 67– 69, 72, 73,
75– 86, 99, 114, 123– 130, 132, 170, 172, 200, 201, 203, 205

F

fake physics objects that are miss-reconstructed and/or miss-identified as something
different than what they are. 43, 50, 59, 85, 86, 99, 102, 137, 171

FODO cell a structure of magnets containing alternating between focusing and defocusing
beam quadrupole lenses. 37, 199

G

Good Run List a set of Luminosity Blocks () that passed the data quality requirements
necessary to be labeled as good for physics analysis use . 76, 176

H

hermeticity a hermetic detector is designed to observe as many decay products as possible
from any event, through and expended coverage around the interaction point and
the inclusion of several different detector systems . 46

hyperparameter parameters associated with the configuration of a Machine Learning
(ML) model or with the learning process. They are not learned from data but rather
user-specified.. 90, 96, 116
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J

jet physics object representative of a narrow cone of particles resulting from the hadronisa-
tion of a quark of gluon . 19, 22, 57, 65– 71, 76, 80, 81, 114, 123, 124, 126, 127,
129, 133, 138, 169, 171, 200

jet tagging a jet classification task based on the underlying particle that produced the jet
and/or the properties of its constituent particles . 73

L

Long Shutdown a time during which the Large Hadron Collider (LHC) has no active beam.
During those times, the Large Hadron Collider (LHC) and its experiments are usually
undergoing significant hardware upgrades. . 19, 42, 50, 72, 138

Luminosity Block a time interval of data-taking where the experimental recording condi-
tions, specifically the instantaneous luminosity, are constant over the entire duration .
72, 170, 178

N

natural related to theoretical physics, naturalness is the property of models to have constant
parameters whose ratios don’t span several orders of magnitude and don’t require
very precise tuning in order to reliably explain observed phenomena. 33

non-prompt label assigned to a physics object, indicating that it’s not originating from
the main interaction generated by the collision. This includes both objects that are
correctly identified but are decay products of the prompt objects and fakes . 59, 61,
75, 79, 82, 83, 85, 86, 201

O

overlap removal an analysis procedure whose goal is to ensure that there aren’t multiple
physics objects reconstructed from the same detector signals. In jet reconstruction,
overlap removal enforces that no constituent particle is included more than a single
jet . 65, 76, 77

P

physics object entity reconstructed with the detector that corresponds to one or many
physical particles. They often are characterized by properties such as four-momentum,
electric charge and synthetic variables associated with the confidence of the recon-
struction’s outcome . 21, 41, 43, 57– 59, 61, 63– 65, 70, 75– 77, 79, 114, 126, 170–
172, 200
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prompt a physics object is considered prompt if it originated from the primary vertex of the
collision, as opposed to being a decay product of another prompt physics objects . 12,
59– 61, 63, 64, 76, 79, 80, 84, 85, 138, 171

R

Run 1 the first data-taking period was performed between 2010-2011 at 7 TeV and during
2012 at 8 TeV . 45, 49, 68

Run 2 the second data-taking period performed between 2015 and 2018 at the same centre-
of-mass energy of

√
s = 13 TeV . 36, 45, 60, 61, 68, 169, 200

Run 3 the third data-taking period scheduled between 2021 and 2025 at a constant expected
centre-of-mass energy of

√
s = 13.6 TeV . 47, 49– 51, 86, 102, 103

S

shower a cascade of secondary particles produced in the interaction of a high-energy
particle with matter or by a hard scattering process started by elementary particles
carrying colour charge. . 65, 82– 86, 201

side in the context of the ATLAS Detector, the two ends of the detector all called sides.
Those are called A-side and C-side, B denoting the central barrel region. As a point of
reference, A-side is located along the positive z-axis, in the direction of the Geneva
Airport.. 49, 50, 146, 200

stereo a stereo view generally denotes two different representations of the same underlying
entity from distinct viewpoints. In the context of the MicroMegas detector planes
deployed within the New Small Wheel (NSW), the stereo planes are referencing the
same concept. The observed entity is the muon in this case, and due to the different
angles of the two stereo detector layers, two unique viewpoints of the same muon track
are recorded at the same time.. 54, 55, 105, 146, 147, 203

T

trigger system designed for preliminary physics object reconstruction and identification.
Its main use consists of quickly singling out event that may be interesting for physics
analysis. The trigger decision determines if the recorded events are kept or discarded. .
18, 21, 45, 76, 137

Twiss parameters also referred to as Courant-Snyder parameters [202] describe a particle
beam in terms of the positions and velocities of its constituent particles. While moving
through the accelerator ring, every particle’s position x and velocity ẋ alongside a
given axis will always be bound by an ellipse in the phase space. The equation of
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Glossary

this ellipse is given by γx2 + 2αxẋ + βẋ2 = ϵ, where ϵ in the emittance and the twiss
parameters are: γ, α and β.. 38
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Acronyms

A

AE Autoencoder. 1, 14, 114– 116, 121– 123, 131, 134, 203

ALICE A Large Ion Collider Experiment. 36, 39

AOD Analysis Object Data. 73, 176

ASIC Application-Specific Integrated Circuit. 48

ATLAS A Toroidal LHC Apparatus. 1, 3– 6, 18, 19, 21, 40, 42– 47, 50– 52, 54, 55, 57,
58, 60, 61, 63, 64, 67, 68, 72, 73, 75– 78, 86, 97, 99, 102, 112, 113, 137, 138, 169,
170, 199– 201

AUC Area Under the ROC Curve. 17, 131, 164, 203

B

BC bunch-crossing. 100, 102

BDT Boosted Decision Tree. 68, 69

BOOSTER Proton Synchrotron Booster. 35

BSM Beyond Standard Model. 1, 3, 12– 15, 17– 19, 21, 22, 34, 40, 69, 113, 114, 121,
123, 124, 126, 127, 132– 135, 137, 138, 199, 203

BT Barrel Toroid. 5, 45

C

CERN European Organization for Nuclear Research. 18, 35, 36, 48, 72– 74, 137, 169,
176, 200

CI Continuous Integration. 74

CMS Compcat Muon Solenoid. 40

CNN Convolutional Neural Network. 1, 8, 11, 12, 18, 21, 72, 106, 107, 110, 112, 137,
205
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CP Combined Performance. 61, 69, 75, 76, 169

CPU Central Processing Unit. 48

CSC Cathode Strip Chambers. 5, 45, 46

CVMFS CERN Virtual Machine File System. 74

D

DAOD Derived Analysis Object Data. 73

DNN Deep Neural Network. 69, 92, 93

E

ECTs End-Cap Toroids. 5, 45

EDM Event Data Model. 72, 73

EM Electromagnetic. 4, 41, 43– 45, 48, 59, 62, 63, 83– 86, 169, 176, 201

EMEC LAr EM end-cap. 45

ESD Event Summary Data. 73

EW Electroweak. 29, 30

F

FCal LAr forward calorimeter. 45

FE Front End. 48

FELIX Front End Link Interface eXchange. 103, 202

FN False Negative. 164

FP False Positive. 164

FPGA Field-Programmable Gate Array. 1, 5, 9, 12, 21, 48, 102– 105, 107, 112, 202

FPR False Positive Rate. 164

G

GPU Graphics Processing Unit. 1, 10, 21, 93, 107

GRL Good Run List. 76

GSF Gaussian-sum filter. 60
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Acronyms

GUT Grand Unified Theory. 3, 34

H

HDL Hardware Design Language. 103

HEC LAr hadronic end-cap. 45

HEPP High-Energy Particle Physics. 1, 12, 18, 21, 35, 66, 113, 123, 137

HL-LHC High-Luminosity LHC. 48, 51, 200

HLS High-Level Synthesis. 103

HLT High-Level Trigger. 48, 49, 99, 101, 103, 202

I

IAF Inverse Autoregressive Flow. 120

IBL Insertable B-Layer. 42

ID identification. 59, 61– 64, 75, 82, 83, 85, 200, 201, 205

ID3 Iterative Dichotomizer 3. 90

IFF Isolation and Fake Forum. 79, 81, 201

IP interaction point. 1, 4, 21, 38– 42, 64, 97– 100, 170, 202

IRC Infrared and Collinear. 66, 70, 169

J

JS Jensen-Shannon. 16, 130, 131, 134, 168, 203

K

KDE Kernel Density Estimation. 114, 116

KL Kullback-Leibler. 168

KNN k-Nearest Neighbors. 90, 116, 128, 129, 132, 203

L

L0 Level-0. 1, 101– 103, 202

L1 Level-1. 48, 97– 99, 101, 102, 202

L2 Level-2. 48, 97, 99
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Acronyms

LAr Liquid Argon. 4, 41, 43– 45, 59, 63, 176, 177

LB Luminosity Block. 170

LEIR Low Energy Ion Ring. 36

LHC Large Hadron Collider. 3, 5, 15, 18, 21, 35– 42, 45, 47– 51, 72, 137, 169, 171, 175,
177, 180, 199, 200, 205

LQG Loop Quantum Gravity. 3, 34

LUT Look-up Table. 99, 101

M

MAE Mean Absolute Error. 10, 89, 108, 150

MAF Masked Autoregressive Flow. 120

MAPE Mean Absolute Percentage Error. 10, 108, 150

MC Monte Carlo. 6, 68, 72, 73, 78– 86, 105, 126, 201, 205

MDT Monitored Drift Tubes. 5, 45, 46, 98, 102, 103, 202

MET Missing Transverse Energy. 43

MicroMegas MICRO-MEsh GAseous Structure. 52, 172

ML Machine Learning. 1, 5, 8, 13, 14, 18, 19, 21, 69, 72, 75, 87– 90, 92, 93, 97, 103,
104, 106, 112– 114, 116, 123, 137, 138, 170

MM MicroMegas. 1, 6– 8, 12, 18, 19, 21, 50– 55, 97, 99– 102, 105– 109, 112, 137, 138,
145– 147, 200, 202, 203, 205

MSE Mean Squared Error. 15, 108, 122, 130, 150, 157

MSLE Mean Squared Logarithmic Error. 150

MSSM Minimal Supersymmetric Standard Model. 3, 34, 178

MuCTPI Muon to Central Trigger Processor Interface. 99, 102, 103, 202

N

NF Normalizing Flow. 14, 15, 17, 117– 123, 130, 131

NICE Non-linear Independent Components Estimation. 120

NLL Negative log-likelihood. 120

NMSSM Next-to- Minimal Supersymmetric Standard Model. 3, 34
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Acronyms

NN Neural Network. 1, 13, 19, 21, 22, 58, 67, 69, 75, 86, 87, 90– 93, 103, 105, 109,
113– 115, 121, 137, 138, 153, 176, 201– 204

NSW New Small Wheel. 1, 6, 7, 12, 18, 19, 21, 35, 49– 55, 97, 99, 102, 103, 105, 106,
109, 112, 137, 138, 145, 146, 172, 199, 200, 202, 203

O

OS opposite sign. 78

P

PAE Probabilistic Autoencoder. 2, 14– 19, 22, 121– 123, 127, 129– 135, 137, 138, 199, 203

PCA Principal Component Analysis. 115

PCB Printed Circuit Board. 54, 105, 146, 147, 203

PDF Probability Density Function. 60, 64, 68

PS Proton Synchrotron. 35, 36

Q

QCD Quantum Chromodynamics. 2, 28, 29, 33, 65, 67, 124, 125, 128– 130, 169, 203

QED Quantum Electrodynamics. 2, 26– 28, 31, 33

QFT Quantum Field Theory. 2, 23, 26, 33

QT Qualification Task. 75, 85, 137

R

R&D Research and Development. 18, 97, 104, 124, 125, 127– 131, 134, 137, 203

RDO Raw Data Object. 73

ReLU Rectified Linear Unit. 9, 92, 107, 153– 155

RMS Root Mean Squared. 38, 39

RMSProp Root Mean Square Propagation. 93, 95

ROC Receiver Operating Characteristics. 16, 17, 131, 163– 165, 175, 203, 204

ROD Readout Driver. 48

RoI Region of Interest. 48, 97, 99

RPC Resistive-Plate Chambers. 45, 46, 97, 98, 103, 202
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RTL Register Transfer Level. 103

S

SCT Semiconductor Tracker. 42, 43, 57

SGD Stochastic Gradient Descent. 93, 95

SiF sillicon-associdated forward muon. 63

SL Sector Logic. 102, 103, 202

SM Standard Model. 1– 3, 18, 21, 23– 26, 30, 32– 34, 40, 123, 137, 199, 205

SPS Super Proton Synchrotron. 35, 36

SS same sign. 78

sTGC small-strip Thin-Gap Chambers. 6, 19, 50– 56, 99, 100, 102, 105, 109, 112, 138,
145, 146, 200

SUSY Supersymmetry. 3, 34, 40

T

TDAQ Trigger and Data Acquisition. 48, 72, 73, 101, 201

TDR Technical Design Report. 45, 46, 50, 53, 97, 145, 200

TGC Thin-Gap Chambers. 5, 19, 45, 46, 50, 51, 55, 97– 99, 103, 112, 138, 146, 180, 202

TMVA ROOT Toolkit for Multivariate Data Analysis. 68

TN True Negative. 164

TP True Positive. 164

TP Trigger Processor. 1, 21

TPR True Positive Rate. 164

TRN True Negative Rate. 164

TRT Transition Radiation Tracker. 42, 43, 62, 63

V

VM Virtual Machine. 74, 176

W

WLCG Worldwide LHC Computing Grid. 72, 73, 201
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