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Chapter 1

Introduction

What is the nature of the reality of the world around us? What is space, time and matter?
What are their origins? To find an answer to these questions is the deep desire of man to
understand his existence and environment. Physics provides some answers to these conceptual
questions. The discovery of the subatomic world reveals the unsuspected existence of a physical
reality that is both rich and conceptually counterintuitive and mysterious.

Through quantum physics, our classical perception of reality is completely turned upside
down. Now in the information era, quantum information will have a conceptual repercussion on
the foundations of physics. The purpose of this manuscript is to understand two fundamental
concepts of quantum physics through the lens of information, the compatibility of quantum
measurements and nonlocality.

The discovery of quantum theory in the last century led to significant development in un-
derstanding physical reality. One of the first results of this theory is to understand the stability
and the existence of matter. Historically two different approaches to the quantum theory are
established which are today known as the Schrödinger and the Heisenberg formulations. In
the Schrödinger approach [3], we can associate to a physical quantum system a wave function
which is a solution of the renowned Schrödinger equation. With this solution,we can deduce the
configuration probability of the system. The Heisenberg formulation of the quantum theory is
described by matrices or operators and is known as matrix mechanics [4]. The two approaches
lead to the exact physical predictions and the unification of the two formulations in the modern
and complete mathematical framework based on Hilbert space was established by von Neumann
[5, 6] and Dirac [7, 8].

In this thesis, we shall focus on two fundamental concepts of the quantum theory, the
(in)compatibility of quantum measurements, Bell inequality violations, and the connections
between the two. It is well known that one of the fundamental differences between quantum
theory and classical physics is the existence of incompatible measurements. We say that two
measurements are compatible if we can measure them at the same time; if they are not, we say
they are incompatible. The other notion we shall address in this thesis is the nonlocality of
quantum theory: at the quantum level the locality principle is not respected. In the first part,
of this thesis from Chapter 2 to Chapter 7, we give the essential material needed for the second
part. Chapter 8 and 9, are based on the articles produced during this thesis. In Chapter 2,
we will give a brief introduction to quantum information theory, we will recall the axioms of
the quantum theory, the density matrix formalism generalizing the pure state description, the
fundamental concept of quantum channels, and we will end with two different approaches of the
quantum theory the algebraic quantum theory and generalized probabilistic theories (GPT). In
Chapter 3, we will give a brief introduction to the theory of tensor norms on Banach spaces. We
will start by recalling the abstract definition of Banach spaces, then we will introduce the theory
of tensor products of Banach spaces. This chapter will play a crucial role in the nonlocality
framework and in understanding the link between incompatibility and nonlocality. In Chapter
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4, we give an introduction to nonlocality and Bell inequalities, we introduce the framework of
nonlocal games, and we end this chapter by showing the intrinsic link between nonlocality and
tensor norms.

Chapter 5 is based on [1], where we shall introduce the standard notion of compatibility.
We will introduce the new notion of compatibility dimension, which is used to analyze the effect
of the Hilbert space dimension on the compatibility of quantum measurements. Intuitively, the
compatibility dimension asks if for a given tuple of incompatible measurements in a given Hilbert
space, can we find a subspace with reduced dimension so that they become compatible. This
question was analyzed in [1] where several bounds were obtained with illustrative examples. We
will introduce different types of noise models known in the literature that make incompatible
measurements compatible by constructing noisy measurements given as a convex combination
of the original measurement and a trivial operator. We will explore also the link between
the noise model and approximate quantum cloning. As an application of the compatibility
dimension, we will see that certain incompatible noisy projective measurements constructed
from mutually unbiased bases become compatible if one reduces the Hilbert space dimension.
More precisely, one can find a subspace of dimension less than the square root of the dimension
of the original Hilbert space and an isometry constructed from a third mutually unbiased basis
that makes the noisy projective mutually unbiased basis measurement compatible. We conclude
this chapter by introducing the formulation of compatibility with the tensor norm formalism
known as the compatibility (tensor) norm. The compatibility norm was first introduced in the
context of generalized probabilistic theories, where a formulation of compatibility was introduced
and analyzed with the tensor norm framework. If one reduces the generalized probabilistic
theory formalism to the usual quantum mechanical one, we obtain a compatibility tensor norm
framework in the quantum mechanical setting. The compatibility norm will become relevant in
analyzing the intrinsic link between incompatibility and nonlocality.

Chapter 6 is based on [2], where we made the link between (in)compatibility of quantum
measurements and nonlocality. It was shown in [9] that incompatibility is equivalent to Bell
inequality violation for the CHSH game, and the question remained open if this equivalence
holds for other games. In this chapter, we will go beyond the CHSH game, for that we will
take the point of view of nonlocal games. In this setting, to analyze the effect of the incom-
patibility of Alice’s measurement on the nonlocal effects, we fix Alice’s measurements. From
her measurements, she will construct a tensor and compute the G-Bell-(non)locality norm and
the compatibility tensor norm. The new notion of the G-Bell-(non)locality captures the vi-
olation of a Bell inequality corresponding to the game G. The G-Bell-(non)locality norm is
computed by optimizing Bob’s measurements over the shared quantum state. We say that Al-
ice’s measurements are G-Bell-local if it is less than the classical value of the game, which is
the maximal expectation of winning the game in the classical setting. We have shown, using
some inequalities, that the compatibility tensor norm and the G-Bell-(non)locality norm are,
in general, not equal. However, in [9], for the CHSH game, the authors have shown that they
are equivalent; by translating this result in our context, we see that the two norms are equal.
With the strong equivalence in the sense of [9], we have shown that with sufficient conditions,
the only game satisfying this equivalence is the CHSH game. In Chapter 7, we will conclude
the thesis by reviewing the contributions, and we will end with some open questions and future
research directions.
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Chapter 2

Quantum information theory

The contradiction between experiments and the well-established theories at the beginning of
the twentieth century, like the black body radiation, led Max Planck to the discovery of the
quantum theory. Several developments and applications of quantum theory were explored in the
last century. This has led to the discovery of the transistor, which is an important technological
component in all our devices used today. Despite the all astonishing applications of quantum
theory today, many fundamental concepts and questions are not yet answered. Nowadays
quantum theory proceeds to a second quantum revolution in the era of information where
understanding how information propagates inside a quantum physical device becomes very
crucial. In this sense, for a given physical quantum system, what are the possible operations or
protocols to observe certain phenomena? Knowing what are the different possibilities that can
be obtained from the information encoded in a physical system is at the heart of the current
development of quantum information theory.

In this chapter, we shall give a brief overview of concepts and tools used in quantum infor-
mation theory. For that, in Section 2.1 we shall recall the postulates of the quantum theory in
the setting of pure states. In Section 2.2 we shall recall the postulates of the quantum theory in
the density matrix formalism. In Section 2.3 we will introduce the composite system framework.
In Section 2.4 we will introduce the formalism of quantum channels that plays a crucial role in
quantum information theory. In Section 2.5 we will introduce different approaches to quantum
theory where we will restrict ourselves to the algebraic approach, and the GPT approach. This
material can be found in standard textbook [10–18] and the lectures [19, 20].

2.1 Quantum postulates

At the microscopic level, nature is governed by quantum mechanical principles. In the following
section, we shall recall the basic standard principles of quantum mechanics in finite dimension1.

2.1.1 Quantum state

To a physical system S, we associate a complex finite-dimensional Hilbert space H. Since for a
system with a finite number of levels, the Hilbert space of such systems is of finite dimension,
we shall assume that H ∼= Cd. But for more complicated physical systems like the harmonic
oscillator, light, and spin systems, the Hilbert spaces are infinite-dimensional.

A quantum state is a normalized vector |ψ⟩ on H that encodes all the information of the
physical system. Two vectors |ψ⟩ and |φ⟩ on H describe the physical system if

|ψ⟩ = λ |φ⟩
1All the postulates hold in infinite dimensional spaces describing continuous systems.
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with λ ∈ C∗, and by the normalisation condition the vectors |ψ⟩ and |φ⟩ are defined up to a
global phase.

2.1.2 Observable

Observables in quantum mechanics that characterize physical measurable quantity like the energy
of the system are described by selfadjoint operators A = A∗ ∈ B(H) ∼= Md(C).

In finite-dimensional Hilbert spaces, the spectral decomposition of an observable A is given
by

A =
∑
i

λiPi,

where λi ∈ R are the eigenvalues of A and Pi are orthogonal projections2. The probability
distribution of obtaining the outcome λi when measuring the observable A on a quantum system
in a state |ψ⟩ is given by the Born rule:

P(λi) := ∥Pi |ψ⟩ ∥2,

The measurement of the outcome λi induces a change of the quantum state given by

|ψ′⟩ := Pi |ψ⟩
∥Pi |ψ⟩ ∥

.

This is known as the wave function collapse.

2.1.3 Dynamics

The evolution of the quantum systems is governed by a unitary matrix U ∈ U(H) : |ψ′⟩ = U |ψ⟩.
An initial state |ψ(t0)⟩ is evolved at a time t to a state |ψ(t)⟩ where we have

|ψ(t)⟩ := U(t, t0) |ψ(t0)⟩ .

The unitary matrix U(t, t0), is given by

U(t, t0) = e−iH(t−t0),

where H ∈ B(H) is a self-adjoint operator known as the Hamiltonian of the quantum system.
This is known as the Schrödinger picture; equivalently there exists another representation where
the evolution is on the observables and the quantum state is fixed (this is known as the Heisenberg
picture).

2.2 Density matrix formalism

Generally, a quantum system is completely described by density matrices that we shall denote
by ρ. The density matrix formalism was established historically to describe a statistical mix-
ture with a probability distribution of pure states. Density matrices are positive semi-definite
matrices of trace one. We shall denote the set of such matrices by M1,+

d
3 which is given by

M1,+
d :=

{
ρ ∈ Md(C) : ρ ≥ 0 ; Tr ρ = 1

}
.

The mathematical formalism with density matrices or the mixed state description generalizes
the one introduced previously with the ket vectors or the pure state formalism. The set of density

2Also the projectors are known in the literature as von Neumann measurement or projective valued measure
or simply PVM.

3Generally, they are trace-class operators T (H); see Subsection 2.5.1.
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matrices is a convex set, where its extreme points are just projectors of rank one [10, Proposition
2.11]. We shall denote the projectors as |ψ⟩⟨ψ|, where ⟨ψ| is the dual vector of |ψ⟩.

As before, the evolution of the quantum system is given by a unitary U ∈ U(H), where the
evolution of a state ρ0 at t0 to ρt at t is given by

ρt = U(t, t0) ρ0 U
∗(t, t0).

The probability of observing the outcome λi, the eigenvalue of an observable A is given by

P(λi) = Tr(Pi ρ) = ⟨Pi , ρ⟩HS .

where we have used the Hilbert-Schmidt scalar product defined on Md(C) as follows:

⟨·, ·⟩HS : Md(C)×Md(C) → C,
(A,B) → ⟨A ,B⟩HS := Tr(A∗B).

The measurement procedure induces a change in the quantum state, where the resulting quan-
tum state is given by

ρ′ =
Pi ρPi
Tr(Pi ρ)

.

Actually, those types of measurements are very specific and are known as projective measure-
ment, but in general, the measurement process is described by Positive operator Valued Measure
or briefly POVM. The POVMs elements are positive operators that sum up to the identity and
we have the following definition

Definition 2.2.1. A positive operator valued measure (POVM) on Md with k outcomes is a
k-tuple A = (A1, . . . , Ak) of self-adjoint operators from Md which are positive semidefinite and
sum up to the identity:

∀i ∈ [k]4, Ai ≥ 0 and

k∑
i=1

Ai = Id.

When measuring a quantum state ρ with the apparatus described by A, we obtain a random
outcome from the set [k]:

∀i ∈ [k], P(outcome = i) = Tr[ρAi].

The vector of outcome probabilities (Tr[ρAi])
k
i=1 is indeed a probability vector; note that

the properties of the operators Ai, called quantum effects, are tailor-made for this. This math-
ematical formalism used to describe quantum measurements (or POVMs, or meters) does not
account for what happens with the quantum particle after the measurement. One can think
that the particle is destroyed in the process of measurement (see Figure 2.1) and thus only the
outcome probabilities are relevant. In this thesis, we shall use the POVM formalism since it is
the most general way of extracting classical information from a quantum system.

2.3 Composite systems

In this section, we shall introduce the tensor product structure of quantum mechanics. Such
structure arises when one wants to describe a composite system of two subsystems or more.
More precisely, we consider a physical system SAB composed by two subsystems SA and SB
described by their respective Hilbert space HA

∼= CdA and HB
∼= CdB . We shall associate to

the physical system SAB the total Hilbert space HAB which is given by the tensor product of
HA and HB and we have HAB = HA ⊗HB.

4In this thesis, we use the notation [k] for the set {1, · · · , k}.
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Figure 2.1: Diagrammatic representation of a quantum measurement apparatus. The device
has an input canal and a set of k LEDs which will turn on when the corresponding outcome
is achieved. After the measurement is performed, the particle is destroyed, and the apparatus
displays the classical outcome (here, 2).

2.3.1 Pure states

One of the simplest examples that we can provide is that of two qubits. Let the first subsystem
SA be described by HA

∼= C2 and the second subsystem SB described HB
∼= C2. Hence, the

total Hilbert space associated to the system SAB is given by HAB = HA ⊗HB
∼= C4.

The tensor product structure in quantum mechanics induces two important fundamental
classes of quantum states, known as separable states and entangled states. To illustrate that,
let us consider the following two quantum states |ψ⟩ and |φ⟩ in HA ⊗HB given by

|ψ⟩ := 1

2
(|0⟩+ |1⟩)⊗ (|0⟩+ |1⟩) and |φ⟩ := 1√

2
(|0, 0⟩+ |1, 1⟩).

where we have used |i, j⟩ instead of |i⟩ ⊗ |j⟩. Note that the state |ψ⟩ is separable: it is written
as the tensor product. We remark that the state |φ⟩ cannot be written as a |φA⟩ ⊗ |φB⟩ with
|φA⟩ ∈ HA and |φB⟩ ∈ HB. In general, we say that a state, that cannot be written as a tensor
product of two states in each subsystem is entangled, contrary to those that can be written as
the tensor product of the states of each subsystem which are called separable state (state like
the quantum state |ψ⟩).

2.3.2 Mixed states

As we have seen, density matrices can encode all the information about a physical system. In
this more general setting, we can also describe a composite system, where we can imagine that
during some experiments we want to measure a physical observable in a subregion of the total
quantum system and the other part is inaccessible. For that, we should consider as before, a
total system SAB where the total Hilbert space is HAB = HA ⊗HB. The quantum state of the
total system is given by ρAB, assuming that in an experimental setting, we only have access
to the physical subsystem SA, and we want to perform the measurement A ∈ B(HA). This
operation from a mathematical point of view can be done by a partial trace.

Definition 2.3.1. Let the finite dimensional Hilbert spaces HA and HB. Let the quantum state
ρAB in HAB and the observable A = A∗ ∈ B(HA). The measurement of A on the subsystem SA
is on σA ∈ M1,+

dA
defined by:

Tr[AσA] := TrA[ATrB(ρAB)] = TrAB[ρAB(A⊗ IB)].

where σA = TrA[ρAB], TrAB[·] is the trace over the total Hilbert space HAB, and TrA[·],TrB[·]
is the trace over their respective Hilbert space HA and HB.

As before for pure states, the tensor product generates an important class of quantum
states. We shall distinguish two classes of quantum states in a composite system SAB. We
have entangled state and the separable state, for that let ρA quantum state in HA, ρB in HB,
and the total quantum state ρAB in HAB. We have the following definition that establishes the
difference between the separable and the entangled ones.
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Definition 2.3.2. A quantum state ρAB ∈ M1,+
dAdB

is said to be:

• Product, if ρAB = ρA ⊗ ρB.

• Separable, if it is a convex combination of product states:

ρAB =
∑
x

px ρ
x
A ⊗ ρxB

with px ≥ 0 and
∑

x px = 1.

• Entangled, if is not separable.

Above dA and dB are the dimensions of the Hilbert spaces HA and HB respectively.

The tensor product structure in quantum mechanics provides several important phenomena
that distinguish completely the classical reality from the quantum one. Such phenomena are
known as nonlocal effects in the sense if we create a pair of the entangled state and if we perform
a measurement on one of the particles the outcome result on the other is completely determined.
We will elaborate in Chapter 4 in great detail on the role played by the tensor product in the
nonlocality context in general. Also, we shall see in the Subsection 2.5.2 how different notions
of tensor products allow for different classes of states in GPTs.

2.4 Quantum Channels

Quantum channels are a very fundamental mathematical tool in quantum information theory.
From a physical point of view, they represent the possible operations that we can perform
on a physical system, generalizing the arbitrary dynamics of closed quantum systems from
Postulate 2.1.3. From a mathematical point of view, such an operation is a subset of a more
general class of maps known as completely positive maps. In the following, we shall give the
definition of completely positive maps, which moreover, if they are also trace-preserving, are
known as quantum channels. We shall give a brief application of the quantum channels that
makes the quantum theory intrinsically different from the classical theory: the impossibility
of perfect quantum cloning. At the end of this subsection, we shall introduce the dual maps
of completely positive maps which can be understood physically as evolution map in the dual
picture (Heisenberg picture).

One can say naively that the notion of completely positive maps is just a generalization of
that of positive maps. They provide a very rich formalism from structural and mathematical
points of view. Before giving the definition of the completely positive maps and quantum
channels, we shall recall the definition of unital and positive maps.

Definition 2.4.1. A linear map Φ : Md(C) → MD(C) is said to be unital if it satisfies the
following condition

Φ(Id) = ID.

Definition 2.4.2. A linear map Φ(·) : Md(C) → MD(C) is said to be positive if it satisfies
the following property:

X ∈ Md(C) , X ≥ 0 =⇒ Φ(X) ≥ 0.

We recall that X ≥ 0 if σ(X)5 ⊆ [0,∞[. Another equivalent way of defining X ≥ 0 ⇐⇒
∃Y ∈ Md(C), such that X = Y ∗Y. Such a matrix X is called positive semidefinite.

Now we are ready to introduce complete positive maps, which can be understood as a gen-
eralization of positive maps. If we add a trace preservation condition, the induced maps are
known as quantum channels.

5We recall σ(X) is the spectrum of X defined as the set of complex numbers z such that X − zI is not
invertible.
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Definition 2.4.3. A linear map Φ(·) : Md(C) → MD(C) is called completely positive if for
all K ≥ 1 and X ∈ Md(C)⊗MK(C), we have

X ≥ 0 =⇒ [Φ⊗ idK ](X) ≥ 0,

where idK denotes the identity map on MK(C). In other words, Φ is completely positive if
∀K ≥ 1 the map Φ⊗ IdK is positive.

Definition 2.4.4. The completely positive map Φ(·), is a quantumm channel if it is trace
preserving:

∀Y ∈ Md(C), TrΦ(Y ) = TrY.

Actually, there exists an equivalent way of describing quantum channels, that not required
the use of the tensor product structure, and we have the following theorem known as the Choi
decomposition that was first derived by Choi in [21].

Theorem 2.4.5. [22, Theorem 2.21] A linear map Φ(·) : Md(C) → Md(C) is a quantum
channel if only if ∃{Li}ki=1 ⊂ Md(C) satisfying the following conditions:

∀X , Φ(X) =
k∑
i=1

LiXL
∗
i ,

and
k∑
i=1

L∗
iLi = Id.

All that we have seen from the beginning of this section, are the possible operation that
we can act with quantum states. Those types of operations can be interpreted as the possible
transformation in the Schrödinger representation. As we know the existence of a dual represen-
tation, the Heisenberg one deals more with the observable and fixed quantum states. We can
ask by this duality, what are the possible transformation in the Heisenberg picture?

For that, in general let X ∈ Md and Y ∈ MD and a linear map Φ(·) : Md → MD where

⟨Y,Φ(X)⟩HS = ⟨Φ∗(Y ), X⟩HS .

with Φ∗(·) : MD → Md is the dual map of Φ(·).
This duality allows passing from the Schrödinger to the Heisenberg representation. If the

map Φ(·) is trace preserving it induces a unital dual map Φ∗(·) while if it is completely positive
it induces a complete positive map [10, Section 4.1.2]. Hence if one acts on a quantum state
by completley positive trace-preserving map it induces a completely positive unital map. As an
application of quantum channels, we turn to one of the major differences between the classical
and the quantum theory: a quantum state cannot be copied, while for classical states, we can
make as many copies as we want. More precisely we have the no-cloning theorem which can be
formulated as follows:

Theorem 2.4.6. [23] For any number of clones g ≥ 2, there is no quantum channel Φ : Md →
M⊗g

d with the property that

∀ρ ∈ M1,+
d , ∀j ∈ [g], Tr[g]\{j}Φ(ρ) = ρ.

where Tr[g]\j [·] is the trace over all the elements excepts the j one.

In order to avoid this problem, several works have been investigated, the situation where
instead of requiring as an output perfect clones, one can obtain copies with some noise and it
is known as the approximate quantum cloning that we will introduce in Chapter 5.
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2.5 Different approaches to quantum theory

The development of the quantum theory has led to different approaches to the theory. In this
section, we shall introduce only two different approaches to quantum theory. The first one, the
oldest one, is the algebraic quantum mechanics. This formulation was established with the birth
of the quantum theory, see [24] for a historical overview. This approach is also used in quantum
field theory and quantum statistical mechanics [16, 18].

The second approach that we shall mention is the general probabilistic theory [25]. This
approach was developed in order to understand quantum theory from an axiomatic point of
view. Its goal is to describe with a minimal amount of axioms a physical theory, including
finite-dimensional quantum theory as a special case, but also allowing for more general and
exotic physical theories.

2.5.1 Algebraic approach

The algebraic approach to quantum theory is based on the C∗-algebraic framework, see for
example [16–18] and the lectures [26, 27]; in this approach, the Hilbert space appears in the
theory as secondary. The main objects used in this framework are operators and their represen-
tations. Generally, the algebraic approach becomes relevant when one uses an infinite number of
degrees of freedom (see eg [18]) that appear when one studies quantum field theory or quantum
statistical physics, which are far beyond this thesis. However, we will see in Chapter 4 that a
famous conjecture in operator algebras was recently solved by using techniques and concepts
from nonlocal games.

Before introducing C∗-algebras, we recall the definition of a Banach algebra. A Banach
algebra is a Banach space6 with an operation ◦ satisfying the following condition ∀x, y ∈ X , ∥x◦
y∥ ≤ ∥x∥∥y∥. We note a Banach algebra by A. An involution is a map ∗ : A → A satisfying
the following properties ∀x, y ∈ A ,∀α ∈ C , (x + y)∗ = x∗ + y∗ , (αx)∗ = ᾱx∗ , (xy)∗ = y∗x∗7.
We call a Banach algebra equipped with an evolution operation as involutive Banach algebra.

Definition 2.5.1. A C∗-algebra8 is an involutive Banach algebra satisfying the following prop-
erty

∀x ∈ A ∥x∗x∥ = ∥x∥2.

We shall recall a linear functional ω(·) on a C∗-algebraA is a map ω(·) : A → C satisfying the
following properties x, y ∈ A, λ ∈ C , ω(x+ y) = ω(x) + ω(y) , ω(λx) = λω(x) , ω(x∗) = ω(x).

Definition 2.5.2. A state is a linear functional satisfying

∀x ∈ A ω(x∗x) ≥ 0.

A state is said to be faithful if ω(x∗x) = 0 =⇒ x = 0.

A representation πω(.) : A → B(Hω), is an involutive homomorphism satisfying the following
properties πω(xy) = πω(x)πω(y), πω(x+ y) = πω(x) + πω(y) and πω(x

∗) = πω(x)
∗ on a Hilbert

space Hω
9.

The GNS theorem assures that for each state ω(·) one can associate to it a representation
on a Hilbert space Hω, a representation of the algebra A on the bounded operators of Hω and
a unique vector Ωω ∈ Hω.

6Banach space, is a vector space X (not necessarily finite) on C endowed with a norm ∥x∥ < ∞ for all x ∈ X.
7We have used the notation xy instead of x ◦ y.
8We shall only work with unital C∗-algebras i.e., I ∈ A =⇒ ω(I) = 1.
9The Hilbert space Hω is not necessarily finite dimensional.
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Theorem 2.5.3. (GNS 10 theorem) [17, Theorem 9.14 Chapter 1]
Given a C∗-algebra A and a state ω, then there exist a unique representation (Hω, πω,Ωω)

such that ∀A ∈ A we have
ω(A) = ⟨Ωω, πω(A)Ωω⟩.

We call the triple (Hω, πω,Ωω) a representation induced by ω. Hence, there is a natural
correspondence between C∗-algebras and bounded operators. From this theorem, we can observe
that the Hilbert space plays a secondary role not a fundamental one. One last class of algebraic
objects that play a fundamental role in quantum mechanics and quantum field theory 11 are
the von Neumann algebras.

Definition 2.5.4. [17, Definition 3.2, Chapter 2] A von Neumann algebra is a sub-algebra
Ã ⊆ B(H) which is equal to its bicommutant:

Ã′′ = Ã.

Above the commutant of Ã is defined by Ã′ := {C ∈ B(H)|∀A ∈ Ã : AC = CA} and the
bicommutant is (Ã′)′. A von Neumann algebra is called a factor if the center C of Ã contains
only multiples of the identity C := Ã ∩ Ã′ = CI.

2.5.2 Generalised probabilistic theories

A generalized probabilistic theory (or simply GPT), is an attempt to understand what makes
quantum theory the quantum theory. The aim of this approach is to define all the concepts used
in quantum theory with a minimal amount of axioms. It turns out that the finite dimensional
quantum theory is an example of a GPT. In the following, we shall briefly give a definition of
state space, effect, and the tensor product structure of a GPT; for more details and a complete
introduction to the topic, see [20] and the references therein. The motivation of this part will
become relevant in Chapter 5 with the notion of compatibility tensor norms, which was first
introduced in the context of GPTs. The starting point of the work [2], was the observation of
reducing the compatibility tensor norm from GPT [28] in the context of quantum mechanics. In
turn, thsis gives a natural framework that unifies quantum nonlocality with the incompatibility
of quantum measurement.

Definition 2.5.5. In a GPT, a state space K is a:

• Set of points which is:

• Convex,

• Bounded,

• Subset of a real, finite-dimensional vector space with Euclidean topology.

If we want to model the outcomes of a given measurement on a given state in K, we use the
notion of an effect.

Definition 2.5.6. An effect f is defined as an affine function f : K → [0, 1]

f(λx+ (1− λ)y) = λf(x) + (1− λ)f(y).

∀x, y ∈ K and λ ∈ [0, 1].
We denote the set of all effects on K by A(K); this set is known as effect algebra.

10GNS, stands for Gelfand, Naimark, and Segal.
11In quantum theory they are reduced to bounded operators on Hilbert spaces. However, in quantum field

theory and quantum statistical physics, they become relevant when one considers infinite degrees of freedom.
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Actually, the effect algebra A(K) has a nice ordering structure, see [20, Lemma 3.12]. From
this lemma, we define the set analogous to the measurement used in the usual quantum theory
in the sense that the outcomes are in the set [0, 1], which motivates the following proposition

Proposition 2.5.7. [20] The measurement set E(K) in GPT is given by:

E(K) = {f ∈ A(K) : 0 ≤ f ≤ IK}

In the above definitions, we have described the notion of state and the notion of effects.
Actually, all the concepts used in the quantum theory can also be defined and analyzed in the
setting of GPT, such as the notion of the channels, the compatibility of effects [29] and the
compatibility of channels [25]. As we have seen in the quantum theory to describe a bipartite
system one needs the tensor product structure. In GPTs, we can also consider the case of a
bipartite system composed from two state spaces KA and respectively KB. It turns out that
if we want to consider both spaces, a tensor product structure is needed where the bipartite
system KAB = KA ⊗ KB should be a valid state space in the sense of Definition 2.5.5. The
composite state space KAB lies between a maximal and a minimal tensor product of KA and
KB. More precisely we have

KA ⊗min KB ⊆ KA ⊗KB ⊆ KA ⊗max KB

with the minimal tensor product of KA and KB is given by

KA ⊗min KB := conv({xA ⊗ xB : xA ∈ KA, xB ∈ KB}),

and the maximal tensor product is given by

KA ⊗max KB := {φ ∈ A(KA)
∗ ⊗A(KB)

∗ : ⟨φ, fA ⊗ fB⟩ ≥ 0, ∀fA ∈ E(KA), ∀fB ∈ E(KB),

⟨φ, IKA
⊗ IKB

⟩ = 1}.

We shall mention that the tensor product in the quantum theory is a particular one:

QMA ⊗min QMB ⊂ QMAB ⊂ QMA ⊗max QMB.

The notions of minimal and maximal tensor products of GPTs are related also to the injective
and projective tensor norms that we shall introduce in Subsections 3.2.2 and 3.2.1. One impor-
tant result that was recently shown in [30] is that the equality between the maximal and the
minimal tensor product hold if and only if one of the spaces KA or KB is a simplex.
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Chapter 3

Tensor norms on Banach spaces

In this chapter, we will give basic definitions and examples of finite dimensional Banach spaces,
along with some fundamental theorems, for a more general introduction to the theory, see [31,
32]. We will recall the basic notion of tensor product in Section 3.1, and we shall expose briefly
the theory of the tensor product of Banach spaces in Section 3.2, where we shall only focus on
the finite-dimensional spaces, see for example [33] for an introduction. We will introduce the
projective tensor norm and injective tensor norm and we will end with a general definition of
tensor norms on Banach spaces [34]. The theory of tensor products on Banach spaces will play
an important role in the nonlocality context in Chapter 4 and will be the key to understanding
the link between incompatibility and nonlocality in Chapter 6.

3.1 Banach spaces

We will start this chapter by fixing the notations. We recall that a finite-dimensional Banach
space is a vector space X, endowed with a norm ∥ · ∥X , and we write (X, ∥ · ∥X). In the
following we will use X, Y, Z to denote different Banach spaces with there respective norms
∥ ·∥X , ∥ ·∥Y , ∥ ·∥Z . Let us recall some basic Banach spaces that will be used in this manuscript.

We note the space of linear maps from the vector space X to Y by L(X,Y ). In particular if
we consider two Banach spaces (X, ∥ · ∥X) and (Y, ∥ · ∥Y ) we shall denote the space of all linear
maps from X to Y by L(X,Y ) and we have

φ ∈ L(X,Y ) , φ : (X, ∥ · ∥X) → (Y, ∥ · ∥Y ).

Remark 3.1.1. We will use the usual convention of writing L(X) instead of L(X,X). We
recall that the dual vector space X∗ can be identified with L(X,C). Its elements are known as
one forms.

Actually, we can endow the space of a linear map from X to Y , with a norm structure
defined by:

φ ∈ L(X,Y ) , ∥φ∥X→Y := sup{ ∥φ(x)∥Y , ∥x∥X ≤ 1}.

Hence the space of linear maps forms a new Banach space with the norm above.
In particular, the dual space of forms X∗ = L(X,C) is a Banach space endowed with the

following norm:
∥φ∥X∗ := sup{ |φ(x)|, ∥x∥X ≤ 1}. (3.1)

We note the dual normed space as (X∗, ∥ · ∥X∗).
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3.1.1 Examples of Banach spaces

We shall introduce now some well-known Banach spaces such as ℓNp (R) spaces and their non-

commutative analog SNp (R) spaces defined on the vector space of matrices. We shall also recall
the Hölder theorem.

We recall that ℓNp (R) are vector spaces RN endowed with the norm ∥·∥p for given p satisfying
1 ≤ p ≤ +∞.

Definition 3.1.2. The Banach space ℓNp (R) defined by ℓNp (R) = (RN , ∥ · ∥p) where the norm
∥ · ∥p is defined as follow:

∥ · ∥p : RN → R+,

x→ ∥x∥p :=


(∑N

i=1 |xi|p
) 1

p
if 1 ≤ p <∞

sup
{
|xi|, i ∈ {1, · · · , N}

}
if p = ∞.

Theorem 3.1.3. (Hölder theorem [35]) Let x ∈ ℓNp (R) and y ∈ ℓNq (R) for given integer p and
q satisfying 1 ≤ p, q ≤ +∞ satisfying the following condition

1

p
+

1

q
= 1.

Then

|⟨x, y⟩| ≤
N∑
i=1

|xi yi| ≤ ∥x∥p ∥y∥q.

Remark 3.1.4. The above inequality reduces to Cauchy-Schwarz inequality for p = q = 2.

By the Hölder theorem we can identify the dual space for a given ℓNp (R) (see [35]):

(ℓNp (R))∗ = (RN , ∥ · ∥p)∗ = ℓNq (R) = (RN , ∥ · ∥q),

for given p and q satisfying 1 ≤ p, q ≤ +∞ and 1
p +

1
q = 1.

Example 3.1.5. The two examples that we shall mostly be interested in are ℓN1 (R) and ℓN∞(R)
(see for example [35]).

• The space ℓN1 (R) = (RN , ∥ · ∥1), where the norm is given by

∀x ∈ RN , ∥x∥1 =
N∑
i=1

|xi|.

• The space ℓN∞(R) = (RN , ∥ · ∥∞), where the norm is given by

∀x ∈ RN , ∥x∥∞ = max
i

|xi|.

Remark 3.1.6. As we are working in finite-dimensional vector spaces, all the norms are equiv-
alent, given rise to the same topology.

In the following, we will introduce the noncommutative analogs of ℓNp (R) spaces. We can
endow the space of complex matrices MN (C) with a norm. We will introduce the analog of the
Hölder inequality in the non-commutative setting, and some examples to illustrate the structure
of such spaces.

Let MN (C) be the space of matrices, we can endow it with a norm known as the Schattern
p−norm and denote the Banach space by SNp (C) := (MN (C), ∥ · ∥p).
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Definition 3.1.7. The Banach space SNp (C) = (MN (C), ∥ · ∥p) for 1 ≤ p ≤ +∞,

∥ · ∥p : MN (C) → R+,

M → ∥M∥p :=


(
Tr |M |p

) 1
p

if 1 ≤ p <∞.

sup
{
∥M · x∥, ∥x∥ ≤ 1

}
if p = ∞.

where |M | :=
√
(M∗M) and ∥ · ∥ is the euclidean norm of vector in CN .

We have the following non-commutative version of the Hölder theorem.

Theorem 3.1.8. (Hölder theorem [22, Proposition 1.17]) Let M ∈ SNp (C) and N ∈ SNq (C) for
given integer p and q satisfying 1 ≤ p, q ≤ +∞ satisfying the following condition

1

p
+

1

q
= 1.

Then
|⟨M,N⟩| = |Tr(M∗N)| ≤ ∥M∥p ∥N∥q.

Remark 3.1.9. The above inequality reduces to Cauchy Schwarz inequality for p = q = 2 with
the Hilbert-Schmidt scalar product ⟨M,N⟩ := Tr(M∗N).

By the Hölder theorem, we can identify the dual space for a given non-commutative SNp (C)
space. Hence we have the following duality between Banach spaces (see [22, Corollary 1.18]):

(SNp (C))∗ = (MN (C), ∥ · ∥p)∗ = SNq (C) = (MN (C), ∥ · ∥q),

for given p and q satisfying 1 ≤ p, q ≤ ∞ and 1
p +

1
q = 1.

Example 3.1.10. The two example that we shall consider are SN1 (C) and SN∞(C).

• The space SN1 (C) = (MN (C), ∥ · ∥1) where the norm is given by

∀M ∈ MN (C) , ∥M∥1 = Tr |M |.

• The space SN∞(C) = (MN (C), ∥ · ∥∞) where the norm is the natural operator norm given
by

∀M ∈ MN (C) , ∥M∥∞ = sup
∥x∥≤1

∥M · x∥,

where ∥ · ∥ = ∥ · ∥2 is the euclidean norm of vectors in CN .

3.2 Tensor products of Banach spaces

In this section, we shall introduce the tensor product structure on Banach spaces. To fix the
notations we shall recall the definition of tensor product structure in general. The main question
that we shall answer in this subsection is the following: given two Banach spaces (or more).
What is a natural norm to consider on the tensor product of their vector spaces?

We shall introduce the concept of tensor norm which is just a norm structure that we put on
the tensor product to make it a Banach space. We shall distinguish two types of norms known
as the projective tensor norm and the injective tensor norm. We shall recall the definitions of
the two norms, with some of their properties and some examples. We will introduce the general
main definition of a tensor norm, where we will see that the projective and the injective tensor
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norm play the role of the maximal and the minimal tensor norm that we can put on a given
tensor product space.

Let X, Y , and Z be three finite dimensional vector spaces. A bilinear map B is a map from
X × Y to Z:

B : X × Y → Z.

satisfying the following properties:

B(λ1x1 + λ2x2, y) = λ1B(x1, y) + λ2B(x2, y).

B(x, λ1y1 + λ2y2) = λ1B(x, y1) + λ2B(x, y2).

∀λ1, λ2 ∈ C, x, x1, x2 ∈ X and y, y1, y2 ∈ Y .
We shall note the space of biliniear maps from X × Y to Z as B(X × Y,Z). In particular if

Z = C, we shall note the space of bilineear forms as B(X × Y ) instead of B(X × Y,C).
The tensor product of two vector spaces X and Y is the space of linear functionals on

B(X × Y ), and we denote it by X ⊗ Y . The resulting tensor product space is defined up to
isomorphism, and we have the following identification, ∀x ∈ X, ∀y ∈ Y we have:

(x⊗ y)(B) = B(x, y).

for all B ∈ B(X × Y ).
With the construction above, we shall recall that we have a well-known identification between

bilinear maps and linear maps in finite-dimensional spaces.

L(X,Y ∗) = B(X × Y ) = (X ⊗ Y )∗.

Generally, a representation of a tensor is not unique, we say a tensor T ∈ X ⊗ Y is simple
if T = x⊗ y where x ∈ X and y ∈ Y , more generally a simple tensor T ∈

⊗M
i=1Xi decomposes

as T = x1 ⊗ · · · ⊗ xM where xi ∈ Xi.

Definition 3.2.1. The tensor rank or a rank of a tensor T ∈ X⊗Y is defined as the minimum
integer r, where the tensor is represented as the sum of simple tensors in X ⊗ Y :

T =

r∑
i=1

xi ⊗ yi.

Remark 3.2.2. In particular, a tensor of rank one is a simple tensor.

Remark 3.2.3. The definition 3.2.1 can be generalised for tensor T ∈
⊗M

i=1Xi, where the rank
of T is given by the minimum integer r such that T decomposes as:

T =
r∑
i=1

x1i ⊗ x2i ⊗ · · · ⊗ xMi .

where xji ∈ Xj .

Let the following finite dimensional Banach spaces (X, ∥ · ∥X) , (Y, ∥ · ∥Y ) and (Z, ∥ · ∥Z).
One can define the space of bounded bilinear maps as the space of bilinear maps B(X × Y, Z)
endowed with the following bounded norm

B ∈ B(X × Y,Z) , ∥B∥ := sup{∥B(x, y)∥Z ; ∥x∥X ≤ 1 , ∥y∥Y ≤ 1}.

Given two finite-dimensional Banach spaces (X, ∥ ·∥X) and (Y, ∥ ·∥Y ), if we construct the tensor
product of X ⊗ Y which norm we shall put on tensor structure of X ⊗ Y ? To answer this
question we shall introduce in the following the projective and the injective tensor norm and
the general notion of tensor norm.
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3.2.1 The projective tensor norm

In the following, we shall give a brief introduction to projective tensor norm, which is a norm
structure on the tensor product of two Banach spaces (X, ∥ · ∥X) and (Y, ∥ · ∥Y ).

Definition 3.2.4. Given two finite-dimensional Banach spaces X and Y with their respective
norms ∥ · ∥X and ∥ · ∥Y , and u ∈ X ⊗ Y , we define the projective tensor norm of u as:

∥u∥X⊗πY := inf

{
N∑
i=1

∥xi∥X∥yi∥Y : u =

N∑
i=1

xi ⊗ yi

}
,

where the infimum is taken over all the decomposition of u =
∑N

i=1 xi ⊗ yi where N is a finite
but arbitrary integer.

Such a norm endows the tensor product X ⊗ Y with a Banach space structure. We shall
denote the induced space by X ⊗π Y , which is the tensor product of X ⊗ Y endowed with the

projective norm. We note the Banach space X ⊗π Y :=
(
X ⊗ Y, ∥ · ∥X⊗πY

)
.

One can check easily that if we consider a simple tensor its projective norm is given by

u = x⊗ y ∈ X ⊗ Y =⇒ ∥u∥X⊗πY = ∥x∥X∥y∥Y .

Remark 3.2.5. The definition above can be extended for more than two Banach spaces. To
illustrate that, let us consider M Banach spaces (Xi, ∥ · ∥Xi), for i ∈ {1 · · ·M}. We can endow
the tensor product of all the M Banach spaces by the projective norm defined as

u ∈
M⊗
i=1

Xi , ∥u∥π := inf
{ r∑
k=1

∥x1k∥ · · · ∥xMk ∥ : r ∈ N , xik ∈ Xi , u =

r∑
k=1

x1k ⊗ · · · ⊗ xMk

}
.

where we have used the shorthand notation ∥ · ∥π instead of ∥ · ∥X1⊗π ···⊗πXM
.

The projective tensor norm satisfies the following fundamental property known as the metric
mapping property.

Definition 3.2.6. [33] Let the linear maps T ∈ L(X,Z) and S ∈ L(Y,W ) where (X, ∥ ·
∥X) , (Y, ∥ · ∥Y ) , (Z, ∥ · ∥Z) , (W, ∥ · ∥W ) are Banach spaces, we say the induced norm on X ⊗ Y
satisfies the metric mapping property if for all bilinear maps T ⊗ S the following holds:

∥T ⊗ S∥ ≤ ∥T∥ ∥S∥.

Lemma 3.2.7. Let the linear maps T ∈ L(X,Z) and S ∈ L(Y,W ), and the Banach spaces
X⊗πY and Z⊗πW . The projective norm satisfies the metric mapping property. More precisely
we have:

∥T ⊗ S : X ⊗π Y → Z ⊗π W∥ ≤ ∥T∥∥S∥.

where ∥T ⊗ S : X ⊗π Y → Z ⊗π W∥ := sup∥u∥X⊗πY ≤1 ∥(T ⊗ S)(u)∥.

Proof. The linear map T ⊗ S : X ⊗π Y → Z ⊗π W is defined by the canonical extension of
T ⊗ S : X ⊗ Y → Z ⊗W given by

(
T ⊗ S

) N∑
i=1

xi ⊗ yi =

N∑
i=1

T (xi)⊗ S(yi).
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Let u =
∑N

i=1 xi ⊗ yi ∈ X ⊗π Y and the map T ⊗ S : X ⊗π Y → Z ⊗π W , then we have:

u =
N∑
i=1

xi ⊗ yi , ∥(T ⊗ S)(u)∥ =
∥∥∥(T ⊗ S

)( N∑
i=1

xi ⊗ yi

)∥∥∥ =
∥∥∥ N∑
i=1

T (xi)⊗ S(yi)
∥∥∥

≤
N∑
i=1

∥T (xi)⊗ S(yi)∥ =
N∑
i=1

∥T (xi)∥∥S(yi)∥

≤ ∥T∥∥S∥
N∑
i=1

∥xi∥X∥yi∥Y .

Take now the supremum over all ∥u∥X⊗πY ≤ 1, and use the definition of ∥T ⊗ S : X ⊗π Y →
Z ⊗π W∥ to show the metric mapping property holds.

Example 3.2.8. The simplest example that we can provide to illustrate the projective tensor
norm is the following. Let u ∈ ℓN2 (R)⊗π ℓ

N
2 (R) one can check easily that

∥u∥ℓN2 (R)⊗πℓN2 (R) = Tr |U | = ∥U∥1

where U is the matrix representation of u on MN (R) ∼= RN ⊗ RN . We have the following
identification of Banach spaces:

ℓN2 (R)⊗π ℓ
N
2 (R) = (MN (R), ∥ · ∥1).

Remark 3.2.9. Generally is not easy to compute the projective tensor norms explicitly, concrete
computations can be done only on some specific examples.

Before ending this subsection, we shall answer the following question: what is the dual space
of the tensor product of two spaces endowed with a projective tensor norm ?

To answer this question, let the following Banach spaces (X, ∥·∥X) , (Y, ∥·∥Y ) and (Z, ∥·∥Z)
and a bounded bilinear map B ∈ B(X ×Y,Z). By using the duality between bilinear maps and
the tensor product structure, we have the following unique identification on the tensor product
X ⊗ Y .

Theorem 3.2.10. [33] Let B : X × Y → Z be a bounded bilinear mapping. Then there exists
a unique operator B̃ : X ⊗π Y → Z satisfying B̃(x ⊗ y) = B(x, y), for every x ∈ (X, ∥ · ∥X)
and y ∈ (Y, ∥ · ∥Y ). Such identification is an isometric isomorphism between the Banach spaces
B(X × Y, Z) and L(X ⊗π Y, Z).

The theorem above ensures the following identification between bounded bilinear maps from
X × Y to Z and linear maps from X ⊗π Y to Z:

B(X × Y,Z) = L(X ⊗π Y,Z).

In particular, if Z is a scalar field, we have the following identification of the space of bilinear
forms on X × Y and dual of X ⊗π Y :

B(X × Y ) =
(
X ⊗π Y

)∗
.

Such identification will lead us to another norm structure that we can put on the tensor
product of two (or more) Banach spaces known as the injective tensor norm, which we will
introduce in the following subsection.
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3.2.2 The injective tensor norm

In the following, we shall give a brief introduction to injective tensor norm, which is another
norm structure on the tensor product of two Banach spaces (X, ∥ · ∥X) and (Y, ∥ · ∥Y ).

Definition 3.2.11. Given two finite dimensional Banach spaces X and Y with their respective
norms ∥ · ∥X and ∥ · ∥Y , and u ∈ X ⊗ Y , we define the injective tensor norm of u as:

∥u∥X⊗εY := sup
∥λ∥X∗ , ∥σ∥Y ∗≤1

|⟨λ⊗ σ, u⟩|.

where λ ∈ X∗ and σ ∈ Y ∗ are linear forms.

Remark 3.2.12. In the definition above, we have used the duality bracket: ⟨λ⊗ σ, ·⟩ should be
understood as (λ⊗ σ)(·).

Such a norm endows the tensor product vector space X ⊗Y with a Banach space structure.
We shall denote the induced space by X ⊗ε Y which is the tensor product of X ⊗ Y endowed

with the injective norm, hence X ⊗ε Y :=
(
X ⊗ Y, ∥ · ∥X⊗εY

)
.

One can check easily if we consider a simple tensor its injective norm is given by the product
of the norms of the corresponding factors

u = x⊗ y ∈ X ⊗ Y =⇒ ∥u∥X⊗εY = ∥x∥X∥y∥Y .

Remark 3.2.13. The definition above can be extended to more than two Banach spaces. To
illustrate that, let us consider the M Banach spaces (Xi, ∥ · ∥Xi), for i ∈ {1 · · ·M}. We can
endow the tensor product of the M Banach spaces by the injective norm defined as

u ∈
M⊗
i=1

Xi , ∥u∥ε := sup
{
|⟨x1 ⊗ · · · ⊗ xM , u⟩|; xi ∈ X∗

i , ∥xi∥X∗
i
≤ 1
}
.

where we have used the shorthand notation ∥ · ∥ε instead of ∥ · ∥X1⊗ε···⊗εXM
.

Lemma 3.2.14. Consider the linear maps T ∈ L(X,Z) and S ∈ L(Y,W ), and the Banach
spaces X ⊗ε Y and Z ⊗εW . The projective norm satisfies the metric mapping property. More
precisely we have:

∥T ⊗ S : X ⊗ε Y → Z ⊗εW∥ ≤ ∥T∥∥S∥.

where ∥T ⊗ S : X ⊗ε Y → Z ⊗εW∥ := sup∥u∥X⊗εY ≤1 ∥(T ⊗ S)(u)∥.

Proof. Let u =
∑N

i=1 xi⊗yi ∈ X⊗εY . The injective norm of u satisfies the following inequality:

∥u∥X⊗εY = sup
∥λ∥X∗ ,∥σ∥Y ∗≤1

|⟨λ⊗ σ, u⟩| = sup
∥λ∥X∗ ,∥σ∥Y ∗≤1

∣∣∣ N∑
i=1

λ(xi)σ(yi)
∣∣∣ ≤ N∑

i=1

∥xi∥X∥yi∥Y .

By applying the bilinear map T ⊗ S on u we have:

u =
N∑
i=1

xi ⊗ yi , ∥(T ⊗ S)(u)∥ ≤ ∥T∥∥S∥
N∑
i=1

∥xi∥X∥yi∥Y

By taking the supremum over ∥u∥X⊗εY ≤ 1 in the definition of ∥T ⊗ S : X ⊗ε Y → Z ⊗εW∥,
we see that the metric mapping property holds.
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Example 3.2.15. The simplest example that we can provide to illustrate the injective tensor
norm is the following. For u ∈ ℓN2 (R)⊗ε ℓ

N
2 (R), one can check easily that

∥u∥ℓN2 (R)⊗εℓN2 (R) = sup
∥λ∥2 , ∥σ∥2≤1

⟨λ|U |σ⟩ = ∥U∥∞,

where U is the matrix representation of u in MN (R). We have the following identification of
Banach spaces

ℓN2 (R)⊗ε ℓ
N
2 (R) = (MN (R), ∥ · ∥∞).

Remark 3.2.16. Generally, is not easy to compute the injective tensor norms explicitly. Con-
crete computations can be done only on some specific examples.

Previously we have seen that the space of bilinear form on X ×Y can be identified with the
dual space of a projective tensor product of X and Y where (see for example [33])

B(X × Y ) =
(
X ⊗π Y

)∗
.

For finite-dimensional spaces, we can identify the injective and the projective tensor product
by duality: (

X ⊗π Y
)∗

= X∗ ⊗ε Y
∗.

With this identification, we say that the injective and the projective tensor norms are dual.

3.2.3 General tensor norms

In the following section, we will give the general description of norms defined on the tensor
product of two Banach spaces Banach spaces1 (X, ∥ · ∥X) and (Y, ∥ · ∥Y ). Such norms are known
as reasonable crossnorms or simply tensor norms.2

Definition 3.2.17. [33] Let (X, ∥ ·∥X), (Y, ∥ ·∥Y ) Banach spaces and consider their dual spaces
(X∗, ∥ · ∥X∗) and (Y ∗, ∥ · ∥Y ∗). We say that a norm α on X ⊗ Y is a reasonable crossnorm if it
has the following properties:

• For u = x⊗ y ∈ X ⊗ Y we have:

∥u∥X⊗αY ≤ ∥x∥X ∥y∥Y .

• For every φ ∈ X∗ and ψ ∈ Y ∗, the linear functional φ ⊗ ψ on X ⊗ Y is bounded and
satisfies:

∥φ⊗ ψ∥X∗⊗α∗Y ∗ ≤ ∥φ∥X∗ ∥ψ∥Y ∗ .

where α∗ is the dual norm of α defined on X∗ ⊗ Y ∗, see equation (3.1).

Remark 3.2.18. The tensor norm α endows the space X⊗Y with a norm, hence it is a Banach
space denoted by X ⊗α Y := (X ⊗ Y, ∥ · ∥X⊗αY ). The dual tensor norm α∗ is a tensor norm
that endows the space X∗⊗Y ∗ with a norm, hence it also becomes a Banach space that we shall
denote it by X∗ ⊗α∗ Y ∗ := (X∗ ⊗ Y ∗, ∥ · ∥X∗⊗α∗Y ∗). The two norms α and α∗ define a duality
between the Banach spaces X ⊗α Y and X∗ ⊗α∗ Y ∗:(

X ⊗α Y
)∗

= X∗ ⊗α∗ Y ∗.

Proposition 3.2.19. [33] Let X and Y Banach spaces.

1Or more than two.
2In this thesis the two terminologies are used.
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• A norm α on X ⊗ Y is a reasonable crossnorm if and only if:

∥u∥X⊗εY ≤ ∥u∥X⊗αY ≤ ∥u∥X⊗πY .

for every u ∈ X ⊗ Y .

• If α is a reasonable crossnorm on X⊗Y then ∥x⊗y∥X⊗αY = ∥x∥X ∥y∥Y for every x ∈ X
and y ∈ Y . Furthermore, for every φ ∈ X∗ and ψ ∈ Y ∗, the linear functional φ ⊗ ψ on
X ⊗α Y satisfies:

∥φ⊗ ψ∥X∗⊗α∗Y ∗ = ∥φ∥X∗ ∥ψ∥Y ∗ .

Remark 3.2.20. Previously, we have shown that the injective and the projective tensor norm
satisfy the metric mapping property.

3.2.4 Grothendieck constant

One of the most important results in the theory of tensor products of Banach spaces is due to
Grothendieck [36–38]. In the following subsection, we shall introduce the Grothendieck constant
that plays an essential role in different fields of physics, mathematics, and computer science; for
more details on the topic see Pisier’s extensive note on the subject [38]. Actually, there exist
different versions of Grothendieck’s theorem (see [38]), we will only give the statement that will
be useful in its tensor norm formulation. Before we give Grothendieck’s theorem, we shall define
the following reasonable norm that will play an important role in the setting of nonlocal games
in Chapter 4.

Definition 3.2.21. Let two finite-dimensional Banach spaces X and Y with their respective
norms ∥ · ∥X and ∥ · ∥Y , define the γ2 tensor norm of u ∈ X ⊗ Y by:

∥u∥X⊗γ2Y
:= inf

 sup
α∗∈B(X∗)

(
N∑
i=1

|α∗(xi)|2
) 1

2

sup
β∗∈B(Y ∗)

 N∑
j=1

|β∗(yj)|2
 1

2

: u =

N∑
i=1

xi ⊗ yi

 .

where the infimum is taken over all decompositions of u =
∑N

i=1 xi⊗yi with xi ∈ X and yj ∈ Y .
We write X ⊗γ2 Y = (X ⊗ Y, ∥ · ∥X⊗γ2Y

), the Banach space induced by the γ2 tensor norm on
X ⊗ Y .

As we have seen previously in this chapter, for a given tensor norm we have its natural dual
tensor norm. In the following, we will give the definition of the dual tensor norm of γ2.

Definition 3.2.22. Let the Banach space X ⊗γ2 Y and M ∈ X∗ ⊗ Y ∗, we define the dual γ∗2
norm of the γ2 norm as:

∥M∥X∗⊗γ∗2
Y ∗ := sup

{
|⟨M,u⟩| : ∥u∥X⊗γ2Y

≤ 1
}
.

We write the X∗ ⊗γ∗2
Y ∗ := (X∗ ⊗ Y ∗, ∥ · ∥X∗⊗γ∗2

Y ∗), the Banach space induced by the γ∗2 tensor

norm on X∗ ⊗ Y ∗.

In what follows we give one version of the statements of Grothendieck’s theorem where
X = Y = ℓN1 (R).

Theorem 3.2.23. [38](Grothendieck’s theorem)
Let M ∈ ℓN1 (R) ⊗ ℓN1 (R), then there exists a positive universal constant KR

G such that for
every natural number N the following inequality holds:

∥M∥ℓN1 (R)⊗γ∗2
ℓN1 (R) ≤ KR

G ∥M∥ℓN1 (R)⊗εℓN1 (R).
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As we have mentioned previously that there exists a different version of the theorem, where
here we have used the special Hilbert space as Banach space where the norm is induced by the
scalar product, and the other versions are defined for general Banach spaces. Also, we shall
mention that there exists a complex version of the theorem where the Grothendieck constant
becomes KC

G. Actually, the value of K
R
G and KC

G are not known exactly, computing their precise
values as being still an open problem. However it is known that KC

G < KR
G, and that KR

G verifies

1.67696 · · · ≤ KR
G <

π

2 log(1 +
√
2)

= 1.7822139781 · · · .

For more details and discussion on the value of KR
G and KC

G see [38] and for a brief introduction
of the different numerical values see [39].
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Chapter 4

Nonlocality in quantum theory

The quantum revolution of the 20th century has not only allowed us to understand the mi-
croscopic world but also to turn upside down the concepts that were most deeply rooted in
physics before quantum physics, such as locality. In classical physics, if two physical systems
are separate and do not interact with each other through a force or a signal, the set of transfor-
mations or experiments on one will not affect the other, this is what we define by the principle
of locality. We can ask ourselves the same question if we take two quantum systems: is the
principle of locality respected? It turns out that quantum mechanics is intrinsically nonlocal,
in the sense that any transformation and measurement on one of the two systems will affect
the other. Even if one separates them far enough, the two systems remain intrinsically con-
nected. One can think that in the microscopic world, the description of two systems must be
considered as a total system, no matter the physical distance separating them. This concept
was challenged by one of the fathers of quantum mechanics: Albert Einstein, with Podolsky
and Rosen in [40]. The question of whether quantum mechanics is really intrinsically non-local
has become more of a philosophical than a physical question. Then John Bell in his article
[41] shows that any theory respecting the concept of locality must also respect a very precise
statistical inequality. By using the principles of quantum mechanics, Bell’s inequality can be
violated. Thus Bell’s result shows explicitly that based on the principle of locality and those of
quantum mechanics quantum theory is intrinsically nonlocal, thus ending with a mathematical
criterion the philosophical. This fact was also confirmed experimentally by Alain Aspect1 in
[42], and more recently in [43].

In Section 4.1 we shall introduce the historical derivation of a Bell inequality for the
CHSH2experiments. In Section 4.2 we will give a general description of Bell inequality, we
will introduce the different types of correlations used and some of their mathematical proper-
ties where we give the known geometrical interpretation of a Bell inequality. In Section 4.3, we
introduce another point of view on Bell inequalities that can be understood as nonlocal games,
where such games represent thought experiments, and we will show that we can recover the
CHSH inequality and its violation in this framework. In Section 4.4, we will see that nonlocal
games can be intrinsically related to the structure of tensor products of Banach spaces, where
the Grothendieck constant plays a crucial role in separating the classical world description from
the quantum one.

4.1 Historical derivation

In this section, we shall introduce the notions of locality and nonlocality. We will see that if
a theory is described in a classical way, an inequality follows, while if one uses the intrinsic

1Thirty years later than Bells result, and allowed him recently to share the 2022 physics Nobel Prize with
John Clauser and Anton Zeillinger.

2CHSH stands for John Clauser, Michael Horne, Abner Shimony, and Richard Holt.
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quantum description of the world, the said inequality can be violated. In this section, we will
only focus on the CHSH inequality which is a particular Bell inequality.

In order to describe Bell’s inequality, we can imagine that for two sufficiently separate
physical systems, two physicists Alice and Bob will make a certain number of measurements
where they are not allowed to exchange any information. Thus the two physicists will start
collecting a certain number of results a and b corresponding to x and y respectively. The whole
system is described by a joint probability distribution between Alice and Bob, which corresponds
to the probability of answering a and b for a certain pair of inputs x and y that we will note
by: P(a b|x y).

If the systems are classical, the locality assumption assures the existence of some variables
λ, having a joint causal influence on both outcomes, and which fully account for the dependence
between the outcomes a and b. The variable λ actually characterizes all the uncontrolled physical
degrees of freedom, where it is natural to think that λ is sampled with a probability measure
µ. Due to locality constraints, the joint probability distribution P(a b|x y) factorizes as follows:

Pl(a b|x y) =
∫
Λ
dµ(λ)PA(a|x , λ)PB(b|y , λ).

with Pl(a b|x y) stands for the local joint probability distribution. In the equation above,
PA(a|x , λ) is Alice’s probability of observing the outcome a for a given measurement x and
the hidden random variable λ, and the same for Bob with PB(b|y , λ).

For simplicity, we can consider an experiment where there are only two measurement choices
by Alice and Bob x, y ∈ {0, 1} with only two possible outcomes a and b taking also two values
a, b ∈ {−1, 1}.

Let consider the following quantity:

S := ⟨a0 b0⟩+ ⟨a0b1⟩+ ⟨a1b0⟩ − ⟨a1b1⟩

with ⟨axby⟩ :=
∑

a,b a bP(a b|x y).
If Alice and Bob use the locality assumption of their theory one can show that the following

inequality holds:
S = ⟨a0b0⟩+ ⟨a0b1⟩+ ⟨a1b0⟩ − ⟨a1b1⟩ ≤ 2.

The inequality above is known as the CHSH inequality, are its physical meaning is very
profound. It says that for any physical theory with the locality assumption, the quantity Sl is
always bounded by 2. It is well known since John Bells’ work [41] that the quantum theory
violates this bound.

Let us assume that the external physical reality is governed by the principle of quantum
theory, and let us say that the two systems form an entangled pair

|ψ⟩ = 1√
2
(|0, 0⟩+ |1, 1⟩).

Alice performing a spin measurement σ = (σ1, σ2, σ3)
3on the direction x, hence she will per-

form the measurement x ·σ. Bob will also perform a spin measurement over another axis hence
he will perform y · σ. Using the formalism of the quantum theory the probability of obtaining
the result a and b for a given measurement x, y ∈ {0, 1}, Alice and Bob joint probability is given
by

PQ(a b|x y) = ⟨ψ|Aa|x ⊗Bb|y |ψ⟩ .

3We recall the Pauli matrices σ1 :=

[
0 1
1 0

]
, σ2 :=

[
0 −i
i 0

]
, σ3 :=

[
1 0
0 −1

]
.
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where Aa|x and Bb|y represent respectively Alice and Bob POVMs for a spin measurement in a
given direction x and y given by:

A0|x :=
1

2
(I + x · σ)

A1|x :=
1

2
(I − x · σ)

B0|y :=
1

2
(I + y · σ)

B1|y :=
1

2
(I − y · σ)

For a choice of x = 0, Alice should perform the measurement on the direction x = e1, while
if x = 1 she should perform the measurement on e2 direction. Also for Bob for the choice of
measurement on y = 0 he should do the measurement on y = 1√

2
(e2 − e1) and for y = 1 he

should measure on y = −1√
2
(e2 + e1).

One can check with the quantum probability distribution PQ(ab|xy) we obtain the following
result

⟨axby⟩Q =
∑
a,b

a bPQ(ab|xy) = −x · y.

We can construct the same quantity analogous to Sl which is given by

SQ = ⟨a0b0⟩Q + ⟨a0b1⟩Q + ⟨a1b0⟩Q − ⟨a1b1⟩Q = 2
√
2.4

we remark that
SQ > Sl,

hence we say we have a violation of the CHSH inequality.
This result illustrates perfectly the difference between local theory and quantum theory,

where it shows that one cannot find any local description of the quantum world.

4.2 Bell inequalities

As we have seen in the previous section, we can give a precise way to distinguish between classical
and quantum theory through the CHSH inequality. It turns out that the CHSH inequality is
a particular expression that mixes the expectation value of Alice and Bob measuring a and
b for given inputs x and y in the classical theory while its violation detects quantum effects.
In general, we study Bell inequalities (the CHSH one being a special case) that describe the
separation between the classical and the quantum world. In the following section, we shall
distinguish different types of strategies5 which are the probability distributions used by Alice
and Bob. We will introduce the classical set, quantum set, and the non-signaling set that
goes beyond the quantum mechanical description of nature. These represent respectively the
classical, quantum, and non-signaling probabilities that Alice and Bob will share as a strategy.
We will briefly introduce the mathematical meaning of Bell inequalities.

When Alice and Bob run their experiments6, one can imagine that they have some inputs
denoted by x, y ∈ {1, · · · , N} and some outputs a, b ∈ {1, · · · ,M}7. The output represents the
outcome when measuring the physical system, in the experiments the measurement apparatus

4Actually the protocol described to obtain the value 2
√

2 is the optimal one.
5This terminology will make complete sense when we will introduce the framework of nonlocal games in Section

4.3.
6They run their experiments but when they collect data, they are space-like separated and not allowed to

communicate.
7In general we can assume that Alice and Bob don’t have the same number of outputs.
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can be seen as a black box8 that takes some inputs and gives the outputs. Such a thought
experiment is known as a Bell scenario.

Definition 4.2.1. We define the classical set LN,M , the set of all classical probabilities given
by

LN,M :=
{
Pl(a b|x y)

∣∣∣Pl(a b|x y) = ∫
Λ
dµ(λ)PA(a|x , λ)PB(b|y , λ)

}
.

The classical set LN,M represents all the shared classical joint probabilities used by Alice and
Bob during the experiments.

If Alice and Bob perform experiments where quantum effects are not negligible, their joint
probability distribution is derived from the quantum formalism. They will share a quantum
state |ψ⟩ ∈ HA⊗HB with dA and dB being the dimensions of Alice and Bob’s respective Hilbert
space.

Their joint probability is given in general by

PQ(a b|x y) = ⟨ψ|Aa|x ⊗Bb|y |ψ⟩ .

where Aa|x denotes Alice’s POVMs: for a given measurement x, she got the outcome a satisfying
the normalisation condition

∑
aAa|x = IdA for all x ∈ {1, · · · ,M}. The same is for Bob’s

POVM Bb|y where for a given measurement y he obtains the outcome b with the normalization∑
bBb|y = IdB .

Definition 4.2.2. We define the quantum set QN,M , the set of all quantum probabilities, by

QN,M :=
{
PQ(a b|x y)

∣∣∣PQ(a b|x y) = ⟨ψ|Aa|x ⊗Bb|y |ψ⟩ ; Aa|x, Bb|y ≥ 0,

∀x
M∑
a=1

Aa|x = IdA ;∀y
M∑
b=1

Bb|y = IdB

}
.

The quantum set QN,M represents all the shared joint quantum probabilities used by Alice and
Bob during the experiments.

One can imagine also that Alice and Bob can use correlations that go beyond the quantum
setting. Since they are space-like and separated, they cannot communicate by exchanging signals
(this is not allowed by the principles of special relativity). The non signaling condition is given
by ∑

b

PNS(a b|x y) =
∑
b

PNS(a b|x y′) ∀a, x, y′, y.

and ∑
a

PNS(a b|x y) =
∑
a

PNS(a b|x′ y) ∀b, x, x′, y.

The non-signaling condition implies that Alice and Bob’s probability distribution are indepen-
dent in the following sense

P(a|x) =
∑
b

PNS(a b|x y)

does not depend on the question y that Bob received. Bob’s probability distribution is given by

P(b|y) =
∑
a

PNS(a b|x y),

and similarly, does not depend on the question x that Alice received. The non-signaling condi-
tion gives rise to correlations that go beyond the quantum setting.

8The black box could be understood as an operation where we don’t know the microscopic details of the
measurement apparatus.
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Definition 4.2.3. The non signaling set NSN,M , the set of all non signaling probabilities, is
given by

NSN,M =
{
PNS(a b|x y)

∣∣∣∑
a

PNS(a b|x y) =
∑
a

PNS(a b|x′ y)∀b, x, x′, y

and
∑
b

PNS(a b|x y) =
∑
b

PNS(a b|x y′)∀a, x, y′, y
}
.

The non-signaling set NSN,M represents all the shared joint non-signaling probabilities used by
Alice and Bob during the experiments.

We shall just mention a few properties of the space of correlations that we have considered
above and the mathematical description of a Bell inequality. Actually one can show that LN,M ⊂
QN,M ⊂ NSN,M . Let K a correlation set that can be either LN,M ,QN,M or NSN,M . It can be
seen easily that all the spaces of correlation are convex, P1,P2 ∈ K then µP1 + (1 − µ)P2 ∈ K
for µ ∈ [0, 1]. Actually, it was shown in [44] that LN,M and NSN,M are polytopes, defined
by a convex combination of finitely many extreme points. Bell inequalities are hyperplanes
separating the classical set LN,M . Actually searching for all Bell inequalities geometrically can
be understood as studying all the possible facets of the polytope LN,M . It turns out that such a
problem is a difficult task we shall just refer to the review paper [45] and the references therein
for more details.

4.3 Nonlocal games

We recall from Section 4.1, that when one uses the classical correlation set we obtain the famous
CHSH inequality, given by:

Sl = ⟨a0b0⟩l + ⟨a0b1⟩l + ⟨a1b0⟩l − ⟨a1b1⟩l ≤ 2.

If one uses the quantum correlation set one obtains a violation of the inequality above

SQ = ⟨a0b0⟩Q + ⟨a0b1⟩Q + ⟨a1b0⟩Q − ⟨a1b1⟩Q = 2
√
2 > Sl.

Actually, there exists another way of understanding Bell inequalities by using the framework of
nonlocal games.

4.3.1 General description

In this subsection, we shall present the nonlocal game framework. It will play an important
role in this manuscript since it gives a natural way of understanding Bell inequalities. We will
also show in the following section that the framework of nonlocal games is intrinsically related
to the structure of tensor products of Banach spaces.

As in any game, we need players and we need rules. In the nonlocal game framework, the
players are Alice and Bob9, and the referee dictates the rules of the game, which correspond
to a payoff. Before the game starts, Alice and Bob are allowed to choose a strategy for playing
the game, where the strategy consists of choosing one of the different correlation sets: either
classical, quantum, or non-signaling that will correspond respectively to the classical quantum
on non-signaling strategies. When they choose their strategies, they separate 10 and are not
allowed to communicate anymore. When the game starts, the referee asks a pair of questions to

9Actually we can add more players but for simplicity, we will restrict to only two players. However, in [46]
they have shown if we add only another player to the story, the maximal of the game with the quantum setting
diverges with the number of questions (see Theorem 4.4.12).

10They are space-like separated.
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Alice Bob

shared entanglement

shared randomness

Figure 4.1: Nonlocal game where Alice and Bob use classical (shared randomness) or quantum
(shared entanglement) strategies.

Alice and Bob. We shall denote the set of questions for Alice by X and for Bob by Y. The referee
chooses a pair of questions randomly with a probability distribution π : X ×Y → π(x, y) ∈ [0, 1]
where x ∈ X denotes the question that the referee sends to Alice and y ∈ Y to Bob. When Alice
and Bob receive their questions they generate some answers or outcomes a ∈ A and b ∈ B. The
referee will receive Alice’s and Bob’s answers and he will decide if they are correct or wrong;
this corresponds to the payoff. The payoff is given by V : X ×Y ×A×B → V (x, y, a, b) where
V (x, y, a, b) can be either 0 or 1 depending on whether the players lose or win the game; for an
illustration of a nonlocal game, see the Figure 4.1.

To summarise, a game G is completely characterized by G = (X ,Y,A,B, π, V ), with two
players Alice and Bob space like separated and a referee. As we have seen before, the players
Alice and Bob can either choose classical, quantum, or non-signaling strategies.

Alice’s and Bob’s expected payoff is given by

ω(G,P) =
∑

(x,y)∈X×Y

∑
(a,b)∈A×B

π(x, y)V (x, y, a, b)P(a b|x y)

=
∑

(x,y)∈X×Y

∑
(a,b)∈A×B

Ga,bx,y P(a b|x y).

with Ga,bx,y = π(x, y)V (x, y, a, b).

Definition 4.3.1. In this definition, we give the classical, quantum, and non-signaling values
of the game.

• The classical value of the game ω(G) is defined as the maximal payoff when the players
use the classical set, where Alice and Bob optimize over all possible classical probabilities:

ω(G) = sup
Pl(a b|x y)∈LN,M

|ω(G,Pl)|.

• The quantum value of the game ω∗(G) is defined as the maximal payoff when the players
use the quantum set, where Alice and Bob optimize over all possible quantum probabilities:

ω∗(G) := sup
PQ(a b|x y)∈QN,M

|ω(G,PQ)|.
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• The non-signaling value of the game ωNS(G) is defined as the maximal payoff when the
players use the non-signaling set, where Alice and Bob optimize over all possible non-
signaling probabilities:

ωNS(G) := sup
PNS(a b|x y)∈NSN,M

|ω(G,PNS)|.

Remark 4.3.2. In the rest of the manuscript, we will only focus on the classical and quantum
setting.

4.3.2 CHSH as a nonlocal game

The CHSH game can also be understood as a nonlocal game. There exist different ways of
obtaining the different classical and quantum values of the CHSH game. Here we will give the
first derivation of (in)compatibility11 and the CHSH inequality with the game description [47].
In this setting, as before Alice and Bob are space-like separated and not allowed to communicate.
The referee will ask respectively to Alice and Bob a tuple of questions from the question set X
and Y. And the players will give their respective answers from A and B. The CHSH game is
given by X = Y = A = B = {±1}, or two input two output games. The referee will choose the
questions uniformly, with π(x, y) = 1

4 , for all x, y. The payoff is given by

V (x, y, a, b) =

{
1 a⊕ b = x · y
0 otherwise

When calculating ω(GCHSH ,PQ), one can show easily that we obtain the following quantity

ω(GCHSH ,PQ) =
1

4

∑
a,b

∑
x,y

V (x, y, a, b) ⟨ψ|Aa|x ⊗Bb|y |ψ⟩

= ⟨ψ|A0 ⊗B0 +A0 ⊗B1 +A1 ⊗B0 −A1 ⊗B1 |ψ⟩ .

with Ai := A1|i −A−1|i and Bi := B1|i −B−1|i are respectively Alice’s and Bob’s measurement
observables12. Define the operator C as

C := A0 ⊗B0 +A0 ⊗B1 +A1 ⊗B0 −A1 ⊗B1.

One can easily compute C2:

C2 = 4IAB − [A0, A1]⊗ [B0, B1].

with IAB = IA ⊗ IB.
The optimization over the shared quantum correlation, is obtained by optimizing over all the

shared quantum states and measurement apparatuses, hence we shall be interested in computing
∥C2∥∞.

Remark that if [A0, A1] = 0 or [B0, B1] = 0, which is equivalent to the classical setting, we
obtain the classical inequality:

∥C2∥∞ = ∥C∥2∞ ≤ 4. ⇐⇒ ∥C∥∞ ≤ 2.

Hence the classical value of the game, corresponding to the maximal we can obtain using the
classical correlations, is

ω(GCHSH) ≤ 2.

11Compatibility here, means non-commutativity, but it is well known that they are not the same see Chapter
5.

12With (A1|i, A−1|i) is Alice’s PVM satisfying A1|i + A−1|i = Id and the same for Bob.
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Now in the quantum setting, we obtain the following bound

∥C2∥∞ = ∥A0 ⊗B0 +A0 ⊗B1 +A1 ⊗B0 −A1 ⊗B1∥
≤ 4 + 4∥A0∥∥A1∥∥B0∥∥B1∥ = 8.

Using again as before ∥C2∥∞ = ∥C∥2∞ we have

∥C∥∞ ≤ 2
√
2

where the maximal quantum value for the CHSH game is

ω∗(GCHSH) ≤ 2
√
2.

Tsirelson showed in [48] that the optimal violation of the CHSH game is obtained by performing
a measurement on Pauli matrices and uses a maximally entangled state. In this way we recover
the famous Bell inequality violation:

ω∗(GCHSH) = 2
√
2 > ω(GCHSH) = 2.

4.4 Nonlocal games and Tensor norms

In this section, we shall describe the intrinsic mathematical framework of Bell inequalities. Bell
inequalities are deeply related to the theory of tensor norms. In this subsection, we will give
an overview of such a description. In the framework of nonlocal games, they can be described
naturally in such a framework, where we will see also that the Grothendieck constant plays an
important role.

We recall from the Section 4.3 that a game G is given by G = (X ,Y,A,B, π, V ), with two
players Alice and Bob space like separated and a referee. The referee will ask a pair of questions
x ∈ X to Alice and y ∈ Y to Bob. In this section, we will only be allowed the players Alice
and Bob to choose either classical or quantum strategies, and their maximal classical and the
quantum expected payoff is given respectively by ω(G) and ω∗(G) (see Definition 4.3.1).

4.4.1 XOR games

In the following subsection, we shall investigate an important class of games known as XOR
games. XOR games or two-player XOR games are a class of games where Alice’s and Bob’s
answers are binary in the sense that A = B = {0, 1} and the payoff V (x, y, a, b) := 1

2(1 +
(−1)a⊕b⊕cx,y) with cx,y ∈ {0, 1}.

We shall compute the payoff of Alice and Bob in the XOR setting:

ω(G,P) =
∑

(x,y)∈X×Y

∑
(a,b)∈A×B

π(x, y)V (x, y, a, b)P(a b|x y)

=
∑

(x,y)∈X×Y

∑
(a,b)∈{0,1}2

π(x, y)
1

2
(1 + (−1)a⊕b⊕cxy)P(a b|x y)

=
1

2
+

1

2

∑
(x,y)∈X×Y

π(x, y)(−1)cx,y(P(0 0|x y) + P(1 1|x y)− P(0 1|x y)− P(1 0|x y))

=
1

2
+
β(G,P)

2
,

where we have defined the bias of the XOR game as

β(G,P) :=
∑

(x,y)∈X×Y

Gx,y (P(0 0|x y) + P(1 1|x y)− P(0 1|x y)− P(1 0|x y)) ∈ [−1, 1]
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and Gx,y := π(x, y)(−1)cx,y .
Generally in the setting of XOR games we are interested in computing the bias of the game

instead of the payoff; these quantities are related by β(G,P) = 2ω(G,P)− 1.
As for the classical and quantum value of the game, we shall introduce the classical bias

and the quantum bias13.

Definition 4.4.1. The classical bias β(G) of the XOR game is given as the maximal value of
the bias β(G,P) over the classical shared probabilities:

β(G) := sup
Pl(a b|x y)∈L

|β(G,Pl)|.

Definition 4.4.2. The quantum bias β∗(G) of the XOR game is given as the maximal value
of the bias β(G,P) over the quantum shared probabilities:

β∗(G) := sup
PQ(a b|x y)∈Q

|β(G,PQ)|.

In the following, we shall compute the classical and quantum bias, we will show that opti-
mization over the classical set and the quantum set is the same as optimizing on the classical
and the quantum correlation that we will introduce below.

The classical bias β(G) of the game is given by:

β(G) := sup
Pl(a b|x y)∈L

|β(G,PL)|

= sup
Pl(a b|x y)∈L

∣∣∣ ∑
(x,y)∈X×Y

Gx,y(P(0 0|x y) + P(1 1|x y)− P(0 1|x y)− P(1 0|x y))
∣∣∣

= sup
∣∣∣ ∑
(x,y)∈X×Y

Gx,y

∫
Λ
dµ(λ)

∑
(a,b)∈Z2×Z2

abPA(a|x, λ)PB(b|y, λ)
∣∣∣

= sup
∣∣∣ ∑
(x,y)∈X×Y

Gx,y

∫
Λ
dµ(λ)Ax(λ)By(λ)

∣∣∣
= sup

γx,y

∣∣∣ ∑
(x,y)∈X×Y

Gx,y γx,y

∣∣∣.
where we have used Ax(λ) =

∑
a∈{0,1} aPA(a|x, λ) , By(λ) =

∑
b∈{0,1} bPB(b|y, λ), and γx,y :=∫

Λ dµ(λ)Ax(λ)By(λ).
Remark that |Ax(λ)|, |By(λ)| ≤ 1, and the last supremum is on γx,y, which motivates the

following definition of classical correlation set.

Definition 4.4.3. We define the classical correlation set as

LN :=

{
γx,y

∣∣∣γx,y = ∫
Λ
Ax(λ)By(λ) dµ(λ); |Ax(λ)|, |By(λ)| ≤ 1

}
⊆ MN (R).

With the definition of classical correlation set above, we can give an equivalent definition of
the classical bias given in the Definition 4.4.4.

Definition 4.4.4. The classical bias β(G) of the XOR game is defined as:

β(G) := sup
γx,y∈LN

∣∣∣ ∑
(x,y)∈X×Y

Gx,y γx,y

∣∣∣.
13We can also consider the non-signaling bias “equivalent” to the non-signaling value of the game.
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Similarly to the classical bias β(G), we shall compute the quantum bias β∗(G) for XOR
games:

β∗(G) := sup
PQ(a b|x y)∈Q

|β(G,PQ)|

= sup
PQ(a b|x y)∈Q

∣∣∣ ∑
(x,y)∈X×Y

Gx,y(P(0 0|x y) + P(1 1|x y)− P(0 1|x y)− P(1 0|x y))
∣∣∣.

One can check easily that:

P(0 0|x y) + P(1 1|x y)− P(0 1|x y)− P(1 0|x y) = ⟨ψ|A0|x ⊗B0|y |ψ⟩+ ⟨ψ|A1|x ⊗B1|y |ψ⟩
− ⟨ψ|A0|x ⊗B1|y |ψ⟩ − ⟨ψ|A1|x ⊗B0|y |ψ⟩
= ⟨ψ|Ax ⊗By |ψ⟩

where we have defined Alice’s and Bob’s respective measurement observables by Ax := A0|x −
A1|x ∈ [−I, I] and By := B0|y −B1|y ∈ [−I, I].

Hence the quantum bias is given by

β∗(G) = sup
∣∣∣ ∑
(x,y)∈X×Y

Gx,y ⟨ψ|Ax ⊗By |ψ⟩
∣∣∣

= sup
γx,y

∣∣∣ ∑
(x,y)∈X×Y

Gx,y γx,y

∣∣∣,
where the last supremum is taken on γx,y.

The computation above motivates the following definition of the quantum correlation set.

Definition 4.4.5. We define the quantum correlation set as

QN :=
{
γx,y

∣∣∣γx,y = ⟨ψ|Ax ⊗By |ψ⟩ ; ∥ψ∥ = 1, ∥Ax∥∞, ∥By∥∞ ≤ 1
}
⊆ MN (R).

The definition of the quantum correlation set allows giving an equivalent formulation of the
Definition 4.4.2.

Definition 4.4.6. The quantum bias β∗(G) of an XOR game is defined as:

β∗(G) = sup
γx,y∈QN

∣∣∣ ∑
(x,y)∈X×Y

Gx,y γx,y

∣∣∣.
The classical bias and the quantum bias β(G) and β∗(G) describe respectively the maximal

value of the game by using classical or quantum correlations.

4.4.2 Nonlocality and Banach space theory

In this subsection, we will show the link between the bias of XOR game and the tensor product
of Banach spaces. We will show that depending on the classical or the quantum strategies one
can associate it with a specific norm on the tensor of the game G.

For the reader’s convenience, we shall recall the important concept that we have introduced
in Chapter 3. Let u ∈ X ⊗ Y , and α tensor norm on X ⊗ Y (see the definition 3.2.17 and the
proposition 3.2.19), we note the norm α of u as ∥u∥X⊗αY . We recall, the dual tensor norm α∗ of
a given tensor norm α on X ⊗ Y is given by u→ ∥u∥X⊗α∗Y := sup{|⟨v, u⟩| : ∥v∥X∗⊗αY ∗ ≤ 1}.

From the previous subsection, we have shown that the classical bias β(G) is given by

β(G) = sup
γx,y∈LN

∣∣∣ ∑
(x,y)∈X×Y

Gx,y γx,y

∣∣∣.
To put the link with the Banach space theory, we can rewrite the classical bias as

β(G) := sup
γ∈LN

|⟨G, γ⟩|
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Remark 4.4.7. Remark that the classical correlation set LN is the convex hull of (ax by)
N
x,y=1:

LN = Conv

{
(axby)

N
x,y=1

∣∣∣ax = by = ±1

}
Theorem 4.4.8. The classical bias is completely characterized by the injective norm of the
game G and we have:

β(G) = ∥G∥ℓN1 (R)⊗εℓN1 (R)

and, by duality, the classical correlation set is

LN = B
(
ℓN∞(R)⊗π ℓ

N
∞(R)

)
.

where B(X) is the unit ball of the Banach space X.

Proof. Start from the classical bias of a given game G:

β(G) = sup
γ∈LN

|⟨G, γ⟩| = sup
γx,y∈L

∣∣∣∣∑
x,y

Gx,yγx,y

∣∣∣∣
= sup

a,b∈B(ℓN∞(R))

∣∣∣∣∑
x,y

Gx,y⟨ex ⊗ ey, a⊗ b⟩
∣∣∣∣

= sup
a,b∈B(ℓN∞(R))

∣∣∣∣⟨G, a⊗ b⟩
∣∣∣∣ = ∥G∥ℓN1 (R)⊗εℓN1 (R).

By using the duality we have

∥G∥ℓN1 (R)⊗εℓN1 (R) = sup{⟨G, γ⟩; ∥γ∥ℓN∞(R)⊗πℓN∞(R) ≤ 1},

where we recall that (
ℓN1 (R)⊗ε ℓ

N
1 (R)

)∗
= ℓN∞(R)⊗π ℓ

N
∞(R),

hence trivially we have

γ ∈ B
(
ℓN∞(R)⊗π ℓ

N
∞(R)

)
= LN ,

which ends the proof of the theorem.

The theorem above shows that all the information of the classical bias is completely described
by the injective norm of two copies of ℓN1 (R).

To characterize in a similar way the quantum bias β∗(G), we shall recall the tensor norm γ2
from Definition 3.2.21.

Definition 4.4.9. Let two finite-dimensional Banach spaces X and Y with their respective
norms ∥ · ∥X and ∥ · ∥Y , define the tensor norm γ2 of u ∈ X ⊗ Y by:

∥u∥X⊗γ2Y
:= inf

 sup
α∗∈B(X∗)

(
N∑
i=1

|α∗(xi)|2
) 1

2

sup
β∗∈B(Y ∗)

 N∑
j=1

|β∗(yj)|2
 1

2

: u =
N∑
i=1

xi ⊗ yi

 .

where the infimum is taken over all decompositions of u =
∑N

i=1 xi⊗yi with xi ∈ X and yj ∈ Y .
We write X ⊗γ2 Y = (X ⊗ Y, ∥ · ∥X⊗γ2Y

) for the Banach space induced by the γ2 tensor norm
on X ⊗ Y .

Theorem 4.4.10. Let z be an N ×N real matrix. The following statements are equivalent:

• z is in the quantum correlation set: z ∈ QN .
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• There exists norm one vectors {ux}Nx=1 and {vy}Ny=1 in a real Hilbert space H, such that:

zx,y = ⟨ux, vy⟩.

In particular we have

β∗(G) = sup
∣∣∣ ∑
(x,y)∈X×Y

Gx,y⟨ux, vy⟩
∣∣∣,

where the supremum is taken over the vectors ux and vy in the unit sphere of the real Hilbert
space H.

With Theorem 4.4.10, Tsirelson has shown that the quantum bias can be written in a tensor
norm formulation.

Theorem 4.4.11. The quantum bias of the game G is completely described by the following
norm:

β∗(G) = sup
γ∈Q

{|⟨G, γ⟩|} = ∥G∥ℓN1 (R)⊗γ∗2
ℓN1 (R)

and by duality, the quantum correlation set is

QN = B
(
ℓN∞(R)⊗γ2 ℓ

N
∞(R)

)
,

where we recall from Definition 3.2.22 the dual norm ∥G∥ℓN1 (R)⊗γ∗2
ℓN1 (R) is given by:

∥G∥ℓN1 (R)⊗γ∗2
ℓN1 (R) := sup

{
|⟨G, γ⟩| : ∥γ∥ℓN∞(R)⊗γ2ℓ

N
∞(R) ≤ 1

}
.

To summarise, we have shown that the classical and the quantum bias of a given game G
can be completely characterized by a tensor norm on a Banach space. Hence all the information
about Alice and Bob winning a given game can be understood by computing the norm which
is a geometrical quantity associated with the game G. Before ending this subsection, we shall
recall the Theorem 3.2.23 of Grothendieck:

β∗(G) ≤ KR
G β(G).

where the inequality above can be understood geometrically as LN ⊂ QN ⊂ KR
G LN . The

Grothendieck constant is a number that was discovered for purely mathematical reasons and
now plays an important role in understanding the difference and the limitation between the
classical and the quantum worlds.

In this Chapter, we have seen that nonlocality is described in the nonlocal game framework
which is intrinsically linked to the theory of Banach spaces. We have shown that the classical
value and the quantum value of a game can be completely described by tensor norms associated
with a given game. The rate between the classical and quantum values of the game is bounded
by the famous Grothendieck constant where for example in the CHSH game KR

GCHSH
=

√
2.

We will end this section by giving two recent results that are among the most important
results at the intersection between nonlocality and Banach space theory. The first result that we
shall introduce answers the question of what happens if we add more players, and the second
result deals with a mathematical conjecture that was solved recently using techniques from
quantum information theory; we shall present its historical origin and development.

All that we have presented in this Chapter is restricted to the two-player setting of Alice
and Bob using dichotomic measurement apparatuses. One can ask what happens if we consider
more than two players. The answer to this question is very surprising. It was shown [49] for
the first time that if we only add another player Charlie, the ratio of the quantum bias over the
classical bias is unbounded and it diverges with the number of questions. The proof in [49] uses
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techniques of operator space theory [50]. The divergence result was established also in [46, 51,
52]. In the following, we shall give the result in [46] where the authors have shown the existence
of a 3−tensor T of dimension N2 ×N2 ×N2, for which the ratio of the quantum bias β∗(GT )
and the classical one β(GT ) associated to a game GT constructed from T grows with the number
of questions.

Theorem 4.4.12. [46] For any integer n and N = 2n there exists a three-player XOR game
GN with N2 questions per player, such that

β∗(GN ) ≥ Ω(
√
N log−

5
2 N)β(GN ).

Above, the symbol Ω denotes an asymptotic lower bound.

In a recent breakthrough, nonlocal games were used to establish the equality of two com-
plexity classes: MIP*=RE [53]. This result (of 206 pages.) answers a very old conjecture of
operator algebras that was asked by Alain Connes known as Connes’ embedding problem (CEP).
Several formulations of CEP were established (see [54] for a survey and the reference therein),
we shall briefly mention here the equivalence of CEP with Kinchberg’s conjecture14. It was
shown in [57] that Kinchberg’s conjecture is equivalent to Tsirelson’s problem in the setting of
nonlocal games. Tsirelson’s problem asks briefly if the quantum mechanical description of the
physical reality of two space-like separated systems is it the same as if one uses finite or infinite
dimensional Hilbert spaces. We will recall more precisely in what follows Tsirelson’s problem.
This problem is central and fundamental for nonlocal games or the physics community which
motivates our brief historical summary. To give a complete overview of the topic with all the
results far beyond this thesis also it can easily take the same amount of pages of this PhD
manuscript. Instead, we shall refer to [58] and the reference therein for an introduction to the
MIP*=RE paper.

We shall start by giving the statement of the CEP, we shall recall some definitions that we
have encountered in Section 2.5 and some results in operator algebras theory.

Definition 4.4.13. A von Neumann algebra is a bicommutant sub-algebra Ã ⊆ B(H):

Ã′′ = Ã.

where the commutant of Ã is defined by Ã′ := {C ∈ B(H)|∀A ∈ Ã : AC = CA} and the
bicommutant is (Ã′)′.

The motivation of this definition was established by von Neumann, where he showed the
following theorem.

Theorem 4.4.14. [17] Let A ⊆ B(H) be an algebra of operators such that I ∈ A and X ∈
A =⇒ X∗ ∈ A. Then A′′ = Āw = Ās = Āwk∗15.

This fundamental result is due to von Neumann known as the bicommutant theorem. The
importance of this theorem relies on the link between the algebraic property (bicommutant al-
gebra) and topology. The classification of von Neumann algebras was initiated by von Neumann
and Murray in [59] and ended with Alain Connes in [60]. However, a very important conjecture
in operator algebras remained open known as the Connes’ embedding problem.

The original problem is difficult to state here, however, there exists the simpler version of
the problem known as the matricial microstates problem, see [58]. The matricial microstates

14Kinchberg conjecture asks if the minimal and the maximal tensor product of two copies of C∗-algebra of a
free group F2 are the same? see [55] for the original formulation or [56, Appendix D].

15where Āw, Ās, Āwk∗
are the closure of A with respect to weak, strong and weak*- topology.
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problem starts from the following definition: given a C∗-algebra A and tracial sate ω16, n self-
adjoint elements h1, · · · , hn ∈ A of norm 1, an integer k and ε > 0, a (k, ε)-matricial microstate
is a matrix algebra Md and self-adjoint matrices H1, · · · , Hn ∈ Md of norm 1, such that

|ω(hi1 · · ·hij )− ωd(Hi1 · · ·Hij )| < ε.

holds for every possible product of j ≤ k elements. When this is true for (A, ω) for all n, k, ε,
we say that (A, ω) has matricial microstates. Informally the statement of this problem can be
understood as approximating a tracial state on an abstract algebra A by a normalised trace of
self-adjoint matrices in Md.

There exist several equivalent ways of introducing the CEP problem [54], one way that
can be relevant in this thesis is its link with the Tsirelson problem. As we have described in
this Chapter, nonlocality is described in the nonlocal game framework, where the players Alice
and Bob use either classical or quantum strategies by sharing a quantum state living in the
tensor product of Alice’s and Bob’s Hilbert space. However, there exists another description of
quantum strategies by using quantum states living in infinite dimensional Hilbert spaces. To
differentiate it from the tensor product strategy we shall denote it by Q′

N,M .
Alice and Bob play the game with a referee and they share the same infinite-dimensional

Hilbert space H. The quantum strategies are now given by the quantum set Q′
N,M , known as

the quantum commuting set, defined by:

Q′
N,M :=

{
PQ(a b|x y)

∣∣∣PQ(a b|x y) = ⟨ψ|Aa|xBb|y |ψ⟩
}

where Alice and Bob perform the measurement on the same Hilbert spaceH with their respective
POVM given respectively by{

Aa|x, 1 ≤ x ≤ N, 1 ≤ a ≤M
}
⊆ B(H) and

{
Bb|y, 1 ≤ y ≤ N, 1 ≤ b ≤M

}
⊆ B(H)

Moreover, the space-like separation of the two players means that their local measurement
apparatus commute [Aa|x, Bb|y] = 0. Tsirelson has shown that if N = M = 2 the quantum
commuting set and the quantum set are the same Q2,2 = Q′

2,2
17. Trivially we have QN,M ⊆

Q′
N,M , this can be easily shown by [Aa|x ⊗ IB, IA ⊗ Bb|y] = 0. The Tsirelson problem asks if

QN,M = Q′
N,M for all N and M . It turns out that asking whether using commuting strategies

or the tensor product strategies is equivalent to CEP [57]. The recent breakthrough paper
MIP*=RE [53] shows that the quantum commuting set and the quantum probability set QN,M

are not equivalent for all N and M by using tools and concepts from computer science. The
Tsirelson problem is false, the quantum commuting set and the quantum set are hence different,
and Connes conjecture is false.

16We say a state ω is tracial if ∀x, y ∈ A we have ω(xy) = ω(yx) (see [17]).
17More precisely Tsirelson has shown that Q2,2 = Qs

2,2 = Qa
2,2 = Q′

2,2. Qs
N,M stands for quantum spatial, where

Alice and Bob may have different finite-dimensional Hilbert spaces, and Qa
N,M for the quantum approximate set,

which is defined as the closure of the quantum set.
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Chapter 5

Compatibility of quantum
measurements

One fundamental difference between quantum theory and classical physics is the existence of
incompatible observables. Historically, the incompatibility of quantum measurements was un-
derstood as the non-commutativity of the observables, as introduced in the famous paper of
Heisenberg [4]. The existence of non-commutative observables allowed him to show his well-
known uncertainty principle. However, a new notion of incompatibility emerges with Busch
and Lahti in [61, 62] where the commutativity of the observables is very particular and restric-
tive from the quantum informational point of view. Other types of compatibility have been
explored recently, such as the compatibility of quantum channels [63, 64] or the compatibility
of quantum instruments [65]; for more recent development, see the reviews [66, 67]. Nowadays,
several works on understanding the (in)compatibility of quantum measurements become rele-
vant for applications such as the link between the incompatibility of quantum measurements
and Bell non locality1 established in [9]. The violations of Bell inequalities are important for
example in cryptography [45]. This chapter summarises some results obtained in [1] and gives
an introduction to the notion of compatibility. At the end of the chapter, a new point of view
on compatibility based on the tensor norms, is introduced and it will play later in Chapter 6 a
crucial role to understand the link between measurement (in)compatibility and Bell inequality
violations.

In Section 5.1 we will introduce the definition of compatibility and its formulation in terms
of Semidefinite programs and we will end this section by introducing the compatibility dimen-
sion [1]. In Section 5.2 we will introduce different types of noise models and their link with
approximate quantum cloning. We will end this chapter with Section 5.3, where we introduce
new criteria for compatibility using the tensor norm framework that will become relevant in
Chapter 6.

5.1 Definition and basic properties

As we have seen in Chapter 2, the measurements on a quantum system are generally described
by POVMs (see Definition 2.2.1). One of the key differences between the classical world and
the quantum one is the existence of incompatible measurements which describe measurements
that we cannot perform at the same time. In the following section, we will introduce the notion
of (in)compatibility of quantum measurements, we will see its formulation as an SDP. For a
general discussion and extensive introduction to the topic see for example [66].

Definition 5.1.1. Two POVMs A = (A1, . . . , Ak), B = (B1, . . . , Bl) on Md are called com-

1We will develop the link between the incompatibility of quantum measurements and Bell inequality violation
in the Chapter 6.
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Figure 5.1: The joint measurement of A and B is simulated by by a third measurement C,
followed by classical post-processing.

patible if there exists a joint POVM C = (C11, . . . , Ckl) on Md such that A and B are its
respective marginals:

∀i ∈ [k], Ai =
l∑

j=1

Cij .

∀j ∈ [l], Bj =

k∑
i=1

Cij .

More generally, a g-tuple of POVMs A = (A(1), . . . , A(g)) is called compatible if there exists a
POVM C with outcome set [k1]×· · ·× [kg] such that, for all x ∈ [g], the POVM A(x) is the x-th
marginal of C:

∀ix ∈ [kx], A
(x)
ix

=

k1∑
i1=1

· · ·
kx−1∑
ix−1=1

kx+1∑
ix+1=1

· · ·
kg∑
ig=1

Ci1i2···ig

=
∑

j∈[k1]×···×[kg ]
jx=ix

Cj.

As we have mentioned earlier, one can think of compatibility as commutativity but in gen-
eral, is it the same only for the case when one uses projective measurement instead of POVMs.
In the following proposition, we shall give the link between compatibility and commutativity.

Proposition 5.1.2. [68, 69] Let Ai and Bj two observables on a Hilbert space, if Ai and Bj
satisfies the following inequality:

∥[Ai, Bj ]∥ ≤ 4∥Ai −A2
i ∥ · ∥Bj −B2

j ∥.

then Ai, and Bj are compatible. In particular if Ai and Bj are PVM’s then they are compatible
if and only if

[Ai, Bj ] = 0. ∀i, j.

Pictorially, one can think of the joint measurement apparatus C as a big box, where one can
deduce all the measurements of the first POVM A and B (see Figure 9.3 for an illustration).
Alternatively, we can define compatible measurements, as the measurements arising from a
post-processing of a single POVM. The two definitions are equivalent, for more details see [66,
Section 3.1].

Proposition 5.1.3. An N -tuple of POVMs A = (A(1), . . . , A(N)) is compatible if and only if
there exists a joint POVM (Ck)k∈[K] and a family of conditional probabilities

(
px(·|·)

)
x∈[N ]

such

that
∀x ∈ [N ], ∀i ∈ [kx], A

(x)
i =

∑
k∈[K]

px(i|k)Ck.

46



Deciding whether tuples of measurements (POVMs) are compatible, is in general, a difficult
task. However, compatibility by using a computational method called semidefinite programing
or simply SDP. These are a type of convex optimization programs with positive constraints. For
a general introduction to convex optimization see [70]. In the following, we will introduce the
SDP formulation of compatibility in the case of POVMs with 2-outcomes which can be easily
generalized for more outcomes [9].

Proposition 5.1.4. [9, Proposition 1] Let two 2outcome POVMs {Q, I −Q} and {P, I − P},
where P,Q are d × d self-adjoint matrices satisfying 0 ≤ P,Q ≤ Id. The pair of POVMs are
compatible if and only if ε0 ≤ 1, where

ε0 := inf
{
ε : ∃δ ≥ 0 s.t. δ + I −Q− P ≥ 0, Q+ εI − δ ≥ 0, P + εI − δ ≥ 0

}
, (5.1)

with X ≥ 0 denotes the condition that X is a positive semidefinite matrix.

The above formula corresponds to the value of a semidefinite program encoding the existence
of a joint measurement for the POVMs {P, I−P} and {Q, I−Q}. Generally, every SDP comes
with a dual formulation2 given by:

Proposition 5.1.5. [9] Given the above optimization problem for deciding compatibility, its
dual formulation is given by:

ε∗ = sup
X,Y,Z≥0

{
Tr[X(Q+ P − I)]− Tr[Y Q]− Tr[PZ]withX ≤ Y + Z, Tr[Y + Z] = 1

}
,

Proof. Let us consider the following Lagrangian, corresponding the primal SDP (5.1).

L := ε− ⟨X, δ + I −Q− P ⟩ − ⟨Y, εI +Q− δ⟩ − ⟨Z, εI + P − δ⟩ − ⟨C, δ⟩.

Above X,Y, Z,C are positive semidefinite matrices which represent the constraints of the primal
optimization problem. Due to the strict feasibility of the SDP, we can compute its dual optimal
value which is the same as the optimal one of the primal (see [9]) satisfying Slater’s condition
(see [70]). Thus, we have the following equality:

inf
ε,δ

sup
X,Y,Z,C

L = sup
X,Y,Z,C

inf
ε,δ

L.

A simple calculation shows that

inf
ε,δ

L = ⟨X,Q+ P − I⟩ − ⟨Y,Q⟩ − ⟨P,Z⟩

with Tr[Y + Z] = 1 and Z + Y − X − C = 0 ⇐⇒ X ≤ Y + Z, which is precisely the dual
formulation from the statement.

Several approaches and attempts to understand the compatibility of quantum measurements
were explored in the literature, see [67] for a recent overview of the topic. The core article [1] is
devoted to understanding the effect of the Hilbert space dimension on the compatibility of the
quantum measurements. The notion of compatibility dimension was introduced and examples
were analyzed in [1, Section 4].

2Generally the dual formulation of an SDP is not necessarily equal to its primal, however in the case of the
compatibility they coincide due to the strict feasibility condition of the problem due to the positivity of the
POVMs [9].
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Definition 5.1.6. [1, Definition 4.4.4] Given a g-tuple of POVMs A = (A(1), . . . , A(g)) on a d-
dimensional quantum system, we define their compatibility dimension as the largest dimension
r for which there exists an isometry V : Cr → Cd reducing the POVMs to a compatible g-tuple:

R(A) := max{r ∈ [d] : ∃V : Cr → Cd isom. s.t. V ∗A(1)V, . . . , V ∗A(g)V are comp.}

Similarly, we define the strong compatibility dimension of a g-tuple of POVMs A as the
largest dimension r for which all isometries V : Cr → Cd reduce the POVMs to a compatible
g-tuple:

R̄(A) := max{r ∈ [d] : ∀V : Cr → Cd isom., V ∗A(1)V, . . . , V ∗A(g)V are comp.}

Bounds on the compatibility dimension were obtained in [1] by using algebraic techniques.
An application of the definition above is given in Theorem 5.2.5 in the following section 5.2. We
should mention that other definitions of compatibility dimensions were introduced and explored
in [71].

5.2 Noise models and cloning

In the following section, we will introduce different types of noise models that were considered
in the literature. We have seen in Chapter 2 that it follows from the principles of quantum
mechanics, that we cannot perfectly copy quantum states (this is known as the non-cloning
theorem). However, there exists a way to make aproximate copies that we shall investigate in
this section as well as its link with a noise model for quantum measurement. We will end this
section with an application of the compatibility dimension for noisy PVMs constructed from
mutually unbiased basis or simply MUB.

As we have described in the previous subsection, one of the fundamental differences be-
tween classical physics and quantum mechanics is the existence of incompatible measurements.
However, there exists a procedure that makes incompatible measurements as compatible as we
want. This is achieved by adding some classical noise to the POVMs. The noise is generally
given by a parameter t ∈ [0, 1] that will mix the original POVMs with a trivial measurement
operator. Intuitively, the more the parameter t grows the more POVMs become compatible.
In the following, we will introduce different noise model that were established (see [72] for an
extensive review). Also, we will introduce the connection between one of the noise models with
the asymmetric cloning problem, which is a way to go around the non-cloning theorem.

The first type of noise model that we will introduce is the white noise. Instead of mea-
suring the POVM A1, · · · , AN , one measures the noisy POVM A′

1, · · · , A′
N given by a convex

combination of A1, · · · , AN and the Id with some parameter t ∈ [0, 1]:

Ai → A′
i := t Ai + (1− t)

Id
N
, i ∈ [N ].

The new POVM (A′
1, · · · , A′

N ) corresponds to a device that performs the original measurement
with probability t and with probability 1−t outputs an outcome uniformly at random. Actually
the POVM I := ( IdN , · · · ,

Id
N ) is a trivial POVM: the measurements of I produces the same out-

come statistics for every quantum state. Other classes of trivial operators can be made where
the POVM I is a special one. The class of trivial POVMs are of the form E = (e1Id, · · · , eN Id)
with e := (e1, · · · , eN ) is a probability distribution, where the choice of a given distribution
specifies completely the type of noise model. Another type of noise model that was also consid-
ered in the literature (see [72]) is given by e := (Tr[A1]/d · Id, · · · ,Tr[AN ]/d · Id) that depends
on the initial POVM itself

Ai → A′
i := t Ai + (1− t)

Tr[Ai]

d
Id, i ∈ [N ].
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One can see immediately that this noise model is linear in Ai.

Remark 5.2.1. In all this description, we have only considered one noise parameter t. One can
actually study those different types of noise models with a vector of parameters t := (t1, · · · , tg) ∈
[0, 1]g when cloning g-tuples of POVMs

In what follows, we will introduce the connection between noise models and approximate
quantum cloning. We recall from Chapter 2 that the non-cloning theorem is one of the key con-
cepts that differentiate the classical world from the quantum one. As we have seen, technically
one cannot construct a quantum channel Φ : Md → M⊗g

d with the property that

∀ρ ∈ M1,+
d , ∀j ∈ {1, · · · , g}, Tr[g]\{j}Φ(ρ) = ρ.

Werner and Keyl in [73, 74] initiated a way to go around this obstruction by introducing what
is known as the symmetric approximate cloning, and later generalized to asymmetric quantum
cloning case [75–77] and more recently in [78]. Approximate quantum cloning (symmetric or
asymmetric) characterizes an imperfect cloning machine, where its role is to produce imperfect
clones (copies) for arbitrary input quantum states. The imperfection relies on the fact we act
with the quantum channel, and by taking the marginals of the channel we obtain a noisy residual
state described by a convex combination of the initial state and a trivial operator with some
parameter t ∈ [0, 1]. The asymmetric quantum cloning machine is characterized by a tuple of
parameters ti ∈ [0, 1]g and the symmetric case reduces to a single parameter t ∈ [0, 1]. Formally
we have the following definition of asymmetric quantum cloning:

Definition 5.2.2. The approximation parameters of physical 1 → g3 asymmetric cloners on
Cd are described by the following set:

Γclone(g, d) :=
{
t ∈ [0, 1]g : ∃Φ : Md → M⊗g

d quantum channel such that

∀ρ ∈ Md, ∀j ∈ [g], Tr[g]\{j}Φ(ρ) = tjρ+ (1− tj)
Id
d

}
.

The task of cloning quantum states can be reinterpreted in the Heisenberg picture of quan-
tum mechanics by looking at the dual map of a channel; this operation acts naturally on
quantum measurements. In this picture, the dual property of producing imperfect clones is
having noisy measurements. Let us define the asymmetric dual map for the POVMs and the
corresponding set of cloning parameters.

Consider the set of parameters for these dual maps:

Γ̃clone(g, d) :=
{
t ∈ [0, 1]g : ∃Ψ : M⊗g

d → Md unital and completely positive such that

∀X ∈ Md, ∀j ∈ [g], Ψ(I⊗(j−1) ⊗X ⊗ I⊗(g−j)) = tjX + (1− tj)
TrX

d
I
}
.

We have the following proposition, that shows the direct link between the asymmetric cloning
set and its dual version.

Proposition 5.2.3. [1, Proposition 4.3.4] The dual and the primal sets of cloning parameters
are identical: ∀g, d ≥ 2,

Γ̃clone(g, d) = Γclone(g, d).

There is a connection between the compatibility of POVMs and the approximate quantum
cloning devices: it was shown in [1] that if the parameters s ∈ Γclone(g, d) then a g-tuple of
POVMs are compatibly generalising the result in [79, Proposition III.3] to the case of more than
two POVMs.

3This notation denotes g copies obtained from one quantum state.
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Theorem 5.2.4. [1, Theorem 4.3.6] Let A = (A(1), . . . , A(g)) be a g-tuple of POVMs on Md

having, respectively, k1, . . . , kg outcomes. Define, for all x ∈ [g],

sx := 1− min
i∈[kx]

dλmin(A
(x)
i )

TrA
(x)
i

∈ [0, 1].

where λmin(·)denotes the smallest eigenvalue of an operator. If s ∈ Γclone(g, d), then the POVMs
in A are compatible.

Other approaches were established to understand the link between compatibility and asym-
metric quantum cloning by using tools from free spectrahedra theory in [80, 81].

In the following, we will introduce an application of compatibility dimension introduced in
[1]: if we consider incompatible noisy POVMs constructed from MUBs, we can find a Hilbert
space of smaller dimension on which they become compatible. For that we shall recall that a

set of g orthonormal bases
{
{|b(x)i ⟩}i∈[d]

}
x∈[g]

are called mutually unbiased (MUB) [82, 83] if

∀x ̸= y ∈ [g], ∀i, j ∈ [d], | ⟨b(x)i |b(y)j ⟩ |2 = 1

d
.

Consider two mutually unbiased bases {|a1⟩ , . . . , |ad⟩} and {|b1⟩ , . . . , |bd⟩} in Cd. Let us
introduce the noisy versions of the POVMs A and B.

Nλ[A] =

(
λ|a1⟩⟨a1|+ (1− λ)

Id
d
, . . . , λ|ad⟩⟨ad|+ (1− λ)

Id
d

)
Nµ[B] =

(
µ|b1⟩⟨b1|+ (1− µ)

Id
d
, . . . , µ|bd⟩⟨bd|+ (1− µ)

Id
d

)
.

The values (λ, µ) for which the POVMs above are compatible have been computed in [84,
85]: for (λ, µ) ∈ [0, 1]2, Nλ[A] and Nµ[B] are compatible iff

λ+ µ ≤ 1 or λ2 + µ2 +
2(d− 2)

d
(1− λ)(1− µ) ≤ 1.

We consider first the symmetric case λ = µ. In this situation, the POVMs Nλ[A] and Nλ[B]
are compatible if and only if

λ ≤ 1

2

(
1 +

1

1 +
√
d

)
. (5.2)

We shall show that for the same symmetric amount of noise and with a particular choice of an
isometry V : Cr → Cd, reducing the dimension of two incompatible noisy MUB measurements
renders them compatible.

Theorem 5.2.5. [1, Theorem 4.7.1] Consider two POVMs A,B corresponding to a pair of
mutually unbiased bases which can be extended to a triple of MUBs. For any 2 ≤ r <

√
d, there

exists a non-empty interval Λr,d ⊂ [0, 1] such that, for all λ ∈ Λr,d,

• the noisy MUB measurements Nλ[A], Nλ[B] are incompatible

• their reduced versions V ∗Nλ[A]V , V ∗Nλ[B]V are compatible,

where V : Cr → Cd is an isometry obtained by truncating a third MUB given by V :=∑r
k=1 |ck⟩ ⟨k| and

Λr,d :=

(
2 +

√
d

2(1 +
√
d)
,

2 + r

2(1 + r)

]
To summarize, restricting a pair of incompatible POVMs to a subspace of Cd of dimension r

renders them compatible. The previous theorem emphasizes the fact that the Hilbert space di-
mension plays a similar role to the amount of noise present in a POVM: reducing it (respectively
increasing noise parameters) makes the POVMs “more compatible”.
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5.3 Compatibility via tensor norms

In this section, we will introduce a new approach to compatibility based on a tensor norm
known as the compatibility norm. We will mention that the compatibility norm is a tensor
norm in the sense of Grothendieck and we will give a characterization of compatibility using
this tensor norm. We will end this section with a result relating to the white noise model and
the compatibility tensor norm.

The compatibility norm will play an important role to understand the link between incom-
patibility and nonlocality in Chapter 6. This approach was first established in the setting of
GPT4 in [86]. If we reduce it in the case of quantum theory the compatibility norm is defined
as follows [87, 88].

Definition 5.3.1. [87, Definition 3.1][The compatibility tensor norm] For a tensor A ∈ RN ⊗
Msa

d (C), we define the following quantity:

∥A∥c := inf

{∥∥∥ K∑
j=1

Hj

∥∥∥
∞

: A =

K∑
j=1

zj ⊗Hj , s.t. ∀j ∈ [K], ∥zj∥∞ ≤ 1 and Hj ≥ 0

}
.

Remark 5.3.2. In [86], the definition of the compatibility (tensor) norm is only valid in the
case of POVMs with two outcomes.

The quantity ∥ · ∥c is a tensor norm on (RN , ∥ · ∥∞)⊗ (Msa
d (C), ∥ · ∥∞) where we recall from

Chapter 3 that ∥ · ∥c should satisfy the following conditions

∥A∥ℓN∞(R)⊗εSd
∞(C) ≤ ∥A∥c ≤ ∥A∥ℓN∞(R)⊗πSd

∞(C)

with the injective norm and projective norm on ℓN∞(R)⊗ Sd∞(C) are respectively given by:

∥A∥ℓN∞(R)⊗εSd
∞(C) := sup

{
⟨x⊗ Y,A⟩, ∥x∥ℓN1 (R) ≤ 1, ∥Y ∥Sd

1 (C)
≤ 1
}
.

and
∥A∥ℓN∞(R)⊗πSd

∞(C) := inf
{∑

i

∥xi∥ℓN1 (R) ∥Yi∥Sd
1 (C)

; A =
∑
i

xi ⊗ Yi

}
.

more precisely we have the following proposition.

Proposition 5.3.3. [87, Proposition 3.3]
The ∥ · ∥c quantity is a tensor norm on (RN , ∥ · ∥∞)⊗ (Msa

d (C), ∥ · ∥∞).

The tensor norm ∥ · ∥c characterizes if the measurements with two outcomes are compatible.
The following theorem encodes in a geometrical sense the compatibility of the POVMs.

Theorem 5.3.4. [86, Theorem 9.2] Let A = (A1, . . . , AN ) be a N -tuple of self-adjoint d × d
complex matrices. Then:

1. A is a collection of dichotomic quantum observables (i.e. ∥Ai∥∞ ≤ 1 ∀i) if and only if
∥A∥ε ≤ 1, where ∥ · ∥ε is the ℓN∞ ⊗ε S

d
∞ tensor norm.

2. A is a collection of compatible dichotomic quantum observables if and only if ∥A∥c ≤ 1.

As we have seen in the previous Section 5.2, even if the POVMs are not compatible one can
add noise and ask for the minimal amount of noise needed to make them compatible, and how
it is related to the norm ∥ · ∥c.

4See Section 2.5 for an introduction.

51



Definition 5.3.5. [2, Definition 5.3.7] For two (binary) measurements P, Q, we define their
noise compatibility threshold as:

Γ(P,Q) := sup
{
η ∈ [0, 1] : Pη,Qη are compatible

}
.

with Pη = η(P, I − P ) + (1− η)(I/2, I/2) and the same for Qη.

The following proposition will give the relation between the noise compatibility threshold
and the compatibility tensor norm for the case of N measurement with two outcomes.

Proposition 5.3.6. [2, Proposition 5.5.12] For any N -tuple of dichotomic observables A =
(A1, A2, . . . , AN ) ̸= 0,

Γ(A) =
1

∥A∥c
.

The compatibility norm ∥ · ∥c allows quantifying in a geometrical manner the compatibility
of quantum devices. We will see in Chapter 6 that this formulation of compatibility is very
relevant to give a unified framework with nonlocality in the setting of nonlocal games, where
we will introduce another relevant norm ∥ · ∥G that will characterize nonlocality. By comparing
∥ · ∥c and ∥ · ∥G we will understand if the incompatibility of quantum measurement is equivalent
to the violation of the Bell inequality corresponding to the game G.
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Chapter 6

Incompatibility and nonlocality

The incompatibility of quantum measurements and Bell inequality violations are the two fun-
damental concepts that differentiate quantum theory from the classical description of physical
reality. It is well known that in order to observe a Bell inequality violation one needs to use
incompatible measurements. In [9] the authors have shown that using incompatible measure-
ments implies Bell inequality violation, hence incompatibility is equivalent to Bell inequality
violation. However, this result is only valid for the CHSH game. In general, it was conjectured
that incompatibility and Bell inequality violations are not equivalent [89, 90].

In this chapter, we will give a common framework for analyzing measurement incompatibility
and nonlocality. For that, we will consider Alice and Bob playing a nonlocal game, where
Alice’s measurements are fixed. If her measurements are incompatible, she wants to know if
she is violating any Bell inequality. For that, she will compute two tensor norms ∥ · ∥c and
∥ · ∥G of a tensor constructed from her measurement devices. Understanding the link between
incompatibility and nonlocality is translated in this framework by comparing the two norms
∥ · ∥c and ∥ · ∥G. The result in [9], is that for the CHSH game, incompatibility is equivalent
to the Bell inequality violation, which means in our framework that ∥ · ∥GCHSH

= ∥ · ∥c. The
question remained open for general games G.

In Section 6.1 we will introduce the general framework for a unified description of incompat-
ibility and nonlocality, where Alice’s measurements are fixed. In Section 6.2 we will introduce
the notion of G−Bell-(non)locality. This notion will characterize the observed nonlocal effect
on Alice’s side for fixed measurements. Mathematically, it is encoded by ∥ ·∥G and we will show
that it is a tensor norm. In Section 6.3 we will give the main results, where we will compare
the two norms ∥ · ∥G and ∥ · ∥c and we will show that if we want a strong equivalence between
incompatibility and Bell inequality violation in the spirit of [9], the only game satisfying it is
the CHSH game.

6.1 General framework

In this section, we will introduce a general framework to unify the incompatibility of quantum
measurement and Bell-inequality violations. The framework of nonlocal games, particularly
XOR games, was introduced in Chapter 4. In the usual setting, Alice and Bob are playing
against a Referee and they want to maximize their winning probability either by using classical
or quantum correlations. This is given respectively by the classical bias β(G) and the quantum
bias β∗(G), where we recall that the quantum bias is computed as an optimization on Alice’s
and Bob’s measurements, and on the shared quantum state (see Definition 4.4.2). It was shown
in [9] that the incompatibility of two 2outcome quantum measurements is equivalent to the
violation of the inequality corresponding to the CHSH game. In this section, we shall answer
the following question: Are there any other games allowing this equivalence with more than 2
binary measurements?
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To unify the incompatibility of quantum measurements and Bell inequality violations, we
shall use the natural framework of nonlocal games and particularly the XOR games generalizing
the CHSH one. But instead of optimizing on Alice’s measurement for the quantum bias, we
shall assume in this setting that Alice measurements are fixed. For a given game G, she asks
if she is violating any Bell inequality with incompatible measurements (see Figure 6.1 for a
representation of the thought experiment). To unify two fundamental notions of quantum
theory, the measurement incompatibility and Bell inequality violations, we will consider the
setting of nonlocal XOR games, where the rules of a correlation game are encoded in a real
N × N matrix G, and Alice’s dichotomic measurements are fixed, mathematically encoded by
POVMs.

The maximum value of the game G, when Alice’s measurements are fixed, is given by the
following quantity.

Definition 6.1.1. [2, Definition 5.6.1][The G-Bell-locality tensor norm] Let G an invertible
Bell functional and Alice’s N -tuple of dichotomic measurements A = (A1, . . . , AN ), we define
the following tensor norm:

∥A∥G := sup
∥ψ∥=1

sup
∥By∥≤1

〈
ψ
∣∣∣ N∑
x,y=1

Gxy Ax ⊗By

∣∣∣ψ〉 = λmax

[ N∑
y=1

∣∣∣∣ N∑
x=1

Gxy Ax

∣∣∣∣].
The quantity ∥A∥G is the maximum value of the game G, when optimizing over quantum

strategies, with Alice’s measurements being fixed.

Definition 6.1.2. [2, Definition 5.6.3] The measurements A = (A1, . . . , AN ) are called G-Bell-
local if there is no violation of the Bell inequality corresponding to G:

∥A∥G ≤ β(G).

with β(G) is the classical bias of the game. If this is not the case, we call Alice’s measurements
G-Bell-nonlocal.

Regarding compatibility, we are concerned with the same question as before: are Alice’s
dichotomic measurements compatible or not? We will use the compatibility formulation with
tensor norms (see Definition 5.3.1), that we recall for the reader’s convenience.

Definition 6.1.3. [87, Definition 3.1][The compatibility tensor norm] For a tensor A ∈ RN ⊗
Msa

d (C), we define the following quantity:

∥A∥c := inf

{∥∥∥ K∑
j=1

Hj

∥∥∥
∞

: A =
K∑
j=1

zj ⊗Hj , s.t. ∀j ∈ [K], ∥zj∥∞ ≤ 1 and Hj ≥ 0

}
.

The infimum above is taken over all the possible decomposition of A as sums of K simple tensors,
with K being an arbitrary finite integer.

The compatibility norm, together with the injective tensor product of ℓ∞ and S∞ norms,
completely characterize the compatibility of tuples of dichotomic quantum measurements [86,
87]. We shall also recall from Section 5 that the compatibility norm ∥ · ∥c is a tensor norm in
the following sense:

∥A∥ℓN∞(R)⊗εSd
∞(C) ≤ ∥A∥c ≤ ∥A∥ℓN∞(R)⊗πSd

∞(C)

where the injective and the projective norm are given respectively by:

∥A∥ℓN∞(R)⊗εSd
∞(C) = sup

{
⟨x⊗ Y,A⟩, ∥x∥ℓN1 (R) ≤ 1, ∥Y ∥Sd

1 (C)
≤ 1
}

and
∥A∥ℓN∞(R)⊗πSd

∞(C) = inf
{∑

i

∥xi∥ℓN1 (R) ∥Yi∥Sd
1 (C)

; A =
∑
i

xi ⊗ Yi

}
.
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Figure 6.1: Alice and Bob playing the XOR game with Alice’s measurements are fixed.

Proposition 6.1.4. [87, Proposition 3.3] Let A = (A1, . . . , AN ) be a N -tuple of self-adjoint
d× d complex matrices. Then:

1. A is a collection of dichotomic quantum observables (i.e. ∥Ai∥∞ ≤ 1 ∀i) if and only if
∥A∥ε ≤ 1.

2. A is a collection of compatible dichotomic quantum observables if and only if ∥A∥c ≤ 1.

The compatibility norm allows Alice to know whether her measurements are compatible
(∥A∥c ≤ 1) or not (∥A∥c > 1); in the latter case, the minimal quantity of white noise that needs
to be mixed in the measurements in order to render them compatible is 1/∥A∥c, providing an
operational interpretation of the compatibility norm.

To sum up, in the setting of tensor norms,

• Alice’s measurements are G-Bell-local if and only if ∥A∥G ≤ β(G) = ∥G∥ℓN1 ⊗εℓN1
.

• Alice’s measurements are compatible if and only if ∥A∥c ≤ 1.

In the rest of this section, we shall introduce the precise constructions, definitions, and
theorems associated with the notion of G-Bell-locality in Section 6.2. In the last Section 6.3
we will compare the two norms ∥ · ∥c and ∥ · ∥G to understand if the incompatibility of the
quantum measurements, equivalent to Bell inequality violation; mathematically this corresponds
to ∥ · ∥c = ∥ · ∥G.

6.2 G-Bell-(non)locality

In the following section, we will introduce the fundamental notion of G-Bell-locality, which will
play an important role to unify the concept of incompatibility and Bell inequality violation in
the setting of nonlocal games. For that, we shall assume that Alice’s measurements are fixed
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and she will calculate ∥ · ∥G. We will see that this quantity is obtained by optimization over
Bob’s measurements and all the shared quantum state. The main result of this section is that
the norm ∥ · ∥G is a tensor norm.

As we have described in Chapter 4, an XOR game is completely characterized by a N ×N
real matrix G. If Alice wants to know if she is violating any Bell inequality she will calculate
the following norm ∥A∥G associated with the N -tuple of her measurements apparatuses A =
(A1, · · · , AN ) ∈ RN ⊗Msa

d (C) where Ax = A0|x − A1|x is the observable corresponding to the
POVM (A0|x, A1|x).

Definition 6.2.1. [2, Definition 5.6.3] Consider a fixed N -input, 2-outcome nonlocal game G ∈
MN (R). Fix also Alice’s measurements, a N -tuple of binary observables A = (A1, . . . , AN ) ∈
Msa

d (C)N . The largest quantum bias of the game G, with Alice using the observable Ax to
answer question x ∈ [N ], is given by

∥A∥G := sup
∥ψ∥=1

sup
∥By∥≤1

〈
ψ
∣∣∣ N∑
x,y=1

Gxy Ax ⊗By

∣∣∣ψ〉,
where the suprema are taken over bipartite pure states ψ ∈ Cd⊗CD and over Bob’s observables
B = (B1, . . . , BN ) ∈ Msa

D (C)N , where D is a free dimension parameter.

Definition 6.2.2. [2, Definition 5.6.3] Given a nonlocal game G, we say that Alice’s measure-
ments A = (A1, . . . , AN ) are G-Bell-local if for any choice of Bob’s observables B and for any
shared state ψ, one cannot violate the Bell inequality corresponding to G:

∥A∥G ≤ β(G).

If this is not the case, we call Alice’s measurements G-Bell-nonlocal.

The physical intuition behind the definition above is that no matter the optimization overall
of Bob’s measurements and all shared quantum states if Alice cannot do better than the classical
bias β(G) then her measurements are local.

Lemma 6.2.3. [2, Lemma 5.6.4] Given a quantum game (Gxy)
N
{x,y=1} we can characterise the

following equivalent formulation of ∥A∥G :

∥A∥G = λmax

 N∑
y=1

∣∣∣∣ N∑
x=1

Gxy Ax

∣∣∣∣
 .

In the above lemma, we have a simpler equivalent definition of the (tensor) norm ∥A∥G.

Remark 6.2.4. In Definition 6.1.1, the dimension of Alice’s measurements is fixed (d), while
the dimension of Bob’s Hilbert space (D) is free. In the following, we will show that one can
assume, without loss of generality, that Alice and Bob have Hilbert spaces of the same dimension
(D = d suffices in the optimization problem).

Let us consider D ≥ d, a quantum state |ψ⟩ ∈ Cd⊗CD, and N binary measurement operators
B1, . . . , BN ∈ Msa

D (C). The idea is that the Schmidt decomposition of the bipartite pure quantum
state |ψ⟩ will induce a reduction of the effective dimension of Bob’s Hilbert space from D to d.
We start from the Schmidt decomposition of |ψ⟩

|ψ⟩ =
d∑
i=1

√
λi |ai⟩ ⊗ |bi⟩ .
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Note that in the equation above, the number of terms is bounded by the smallest of the two
dimensions, that is d. The orthonormal family {|bi⟩}i∈[d] spans a subspace of dimension d

inside CD. Consider an arbitrary orthonormal basis {|b̃i⟩}i∈[d] of Cd and the isometry

V : Cd → CD such that ∀i ∈ [d], V |b̃i⟩ = |bi⟩ .

Let us now introduce the quantum state

Cd ⊗ Cd ∋ |ψ̃⟩ :=
d∑
i=1

√
λi |ai⟩ ⊗ |b̃i⟩

and the measurement operators

Msa
d (C) ∋ B̃y := V ∗ByV, ∀y ∈ [N ].

The normalization of the state and the fact that the B̃y are contractions follow from the isometry
property of the operator V . We now have

〈
ψ
∣∣∣ N∑
x,y=1

Gxy Ax ⊗By

∣∣∣ψ〉 =
N∑

x,y=1

Gxy

d∑
i,j=1

√
λiλj⟨ai|Ax|aj⟩ ⟨bi|By|bj⟩︸ ︷︷ ︸

=⟨b̃i|V ∗ByV |b̃j⟩

=
N∑

x,y=1

Gxy

d∑
i,j=1

√
λiλj⟨ai|Ax|aj⟩⟨b̃i|B̃y|b̃j⟩

=
〈
ψ̃
∣∣∣ N∑
x,y=1

Gxy Ax ⊗ B̃y

∣∣∣ψ̃〉.
The above computation shows that any correlation that can be obtained with Bob’s Hilbert space
of dimension D can also be obtained with a Hilbert space of dimension d, equal to that of Alice.

The main result of this section is that the norm ∥A∥G is actually a tensor norm in the sense
of the Definition 3.2.17, where we have that:

∥A∥RN⊗εMsa
d (C) ≤ ∥A∥G ≤ ∥A∥RN⊗πMsa

d (C)

with (RN , ∥ · ∥G) and (Msa
d (C), ∥ · ∥∞).

We shall endow the (real) vector spaces RN and Msa
d (C) with their respective norm ∥ · ∥G

and the operator norm (or the Schatten-∞ norm, S∞). Note that there is an abuse of notation
here: we shall use ∥ · ∥G to denote norms on RN and on RN ⊗ Msa

d (C); the situation will
be clear from the context. We shall now investigate the properties of the ∥ · ∥G norm with
respect to this tensor product structure. We will consider that for given N -tuple of observables
(A1, A2, . . . , AN ), we associate the tensor

A :=

N∑
x=1

ex ⊗Ax ∈ RN ⊗Msa
d (C).

Definition 6.2.5. [2, Definition 5.6.6] Given p ∈ RN , we define the following quantity:

∥p∥G :=

N∑
y=1

∣∣∣∣ N∑
x=1

Gxy px

∣∣∣∣ = ∥G⊤p∥1.

Lemma 6.2.6. [2, Lemma 5.6.7] Given an invertible matrix G, the function RN ∋ p 7→ ∥p∥G
is a norm.
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By the Lemma 6.2.6, we endow RN with the norm ∥ · ∥G, obtaining a Banach space (RN , ∥ ·
∥G). In the following, we shall investigate the dual space of (RN , ∥ · ∥G). For that, we shall
compute the dual norm of ∥ · ∥G denoted by ∥ · ∥∗G.

Proposition 6.2.7. [2, Proposition 5.6.8] The dual norm ∥ · ∥∗G is given by:

∀p ∈ RN , ∥p∥∗G = max
y

∣∣∣ N∑
z=1

(G−1)yz pz

∣∣∣ = ∥G−1p∥∞.

In the following proposition, we will give the factorization property that all tensor norms
should satisfy if one considers tensors of rank one.

Proposition 6.2.8. [2, Proposition 5.6.9] Given A ∈ RN ⊗Msa
d (C) with RN and M sa

d (C) are
endowed with ∥ · ∥G and the natural operator norm respectively. Given the particular decompo-
sition A = p⊗B with p ∈ (RN , ∥ · ∥G) and B ∈ (Msa

d (C), ∥ · ∥∞), one has

∥p⊗B∥G = ∥p∥G∥B∥∞.

Now we are ready to give the main statement of the theorem in this section.

Theorem 6.2.9. [2, Theorem 5.6.10] For a fixed N -input, a 2-output invertible nonlocal game
G, the quantity ∥ · ∥G introduced in Definition 6.1.1, which characterizes the largest quantum
bias of the game G when one fixes Alice’s dichotomic measurements, is a reasonable crossnorm
on Msa

d (C)N ∼= RN ⊗Msa
d (C):

∥A∥RN⊗εMsa
d (C) ≤ ∥A∥G ≤ ∥A∥RN⊗πMsa

d (C)

with (RN , ∥ · ∥G) and (Msa
d (C), ∥ · ∥∞).

Where we recall the definitions of the projective and the injective norms in this setting:

∥A∥RN⊗πMsa
d (C) := inf

{ k∑
i=1

∥pi∥G ∥Xi∥∞, A =

k∑
i=1

pi ⊗Xi

}
.

∥A∥RN⊗εMsa
d (C) := sup

{
⟨π ⊗ α,A⟩; ∥π∥∗G ≤ 1, ∥α∥1 ≤ 1

}
.

with Msa
d (C) ∋ α→ ∥α∥1 = Tr |α| is the Schatten 1-norm (or the nuclear norm).

6.3 Incompatibility vs Nonlocality

In the setting of XOR games where Alice’s measurements are fixed, we have seen in Section
6.2 that if Alice wants to know if her measurements are local she will need to compute the
norm ∥ · ∥G and if this norm is less than or equal the classical bias β(G) then we say that her
measurements are G−Bell-local. In order to know if her measurements are compatible she will
compute the compatibility tensor norm ∥ · ∥c. The problem of understanding the link between
the incompatibility of quantum measurements and Bell inequality violation becomes natural, in
the sense that Alice should compare the two norms. We start with a reformulation, using the
language of tensor norms, of the following well-established fact: an observed violation of the Bell
inequality M implies necessarily the incompatibility of Alice’s measurements. Mathematically,
this corresponds to the upper bounding the M -Bell-locality norm of Alice’s measurements by
their compatibility norm.
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Theorem 6.3.1. [2, Theorem 5.8.1] Consider a N -input, 2-output nonlocal invertible game
G, corresponding to a matrix G ∈ MN (R). Then, for any N -tuple of self-adjoint matrices
A = (A1, . . . , AN ), we have

∥A∥G ≤ ∥A∥c∥G∥ℓN1 ⊗εℓN1
= ∥A∥c β(G). (6.1)

In particular, if Alice’s measurements A are G-Bell-nonlocal (in the sense of Definition 6.1.2),
then they must be incompatible.

Theorem 6.3.2. [2, Theorem 5.8.2] Consider a N -input, 2-output nonlocal game G, corre-
sponding to an invertible matrix G ∈ MN (R). Then, for any N -tuple of self-adjoint matrices
A = (A1, . . . , AN ), we have

∥A∥c ≤ ∥A∥G∥G−1∥ℓN∞⊗εℓN∞
. (6.2)

The two theorems above show that in general, we don’t have the following equality ∥ · ∥G =
∥ ·∥c. Putting together Theorems 6.3.1 and 6.3.2, we recover the main result from [9]: for N = 2
and the CHSH matrix

GCHSH =
1

2

[
1 1
1 −1

]
,

we have

β(GCHSH) = 1 and (GCHSH)
−1 =

[
1 1
1 −1

]
.

It follows thus, from Eqs. (6.1) and (6.2) that

∥ · ∥c = ∥ · ∥GCHSH
(6.3)

Up to this point, we have seen the following two inequalities relating the G-Bell-locality norm
∥ · ∥G and the compatibility norm ∥ · ∥c of a tuple of dichotomic quantum measurements:

∥A∥G ≤ ∥A∥c∥G∥ℓN1 ⊗εℓN1
and ∥A∥c ≤ ∥A∥G∥G−1∥ℓN∞⊗εℓN∞

.

In this section, we ask for which (invertible) nonlocal games G, these two inequalities, used
together, allow us to conclude that ∥·∥G = ∥·∥c. Such equality would prove a strong equivalence
of Bell inequality violations and incompatibility for the game G, in the spirit of [9].

First, note that, for an invertible game G and a non-zero tuple of measurements A, we have

∥A∥G ≤ ∥A∥c∥G∥ℓN1 ⊗εℓN1
≤ ∥A∥G∥G−1∥ℓN∞⊗εℓN∞

∥G∥ℓN1 ⊗εℓN1
,

hence
∥G−1∥ℓN∞⊗εℓN∞

∥G∥ℓN1 ⊗εℓN1
≥ 1. (6.4)

In order to deduce that ∥ · ∥G = ∥ · ∥c, one can require

β(G) = ∥G∥ℓN1 ⊗εℓN1
= 1 and ∥G−1∥ℓN∞⊗εℓN∞

= 1.

Up to rescaling, this is equivalent to requiring that the inequality (6.4) should be saturated.
We now study the equality case in (6.4), which can be seen as an “uncertainty relation” for the
nonlocal game G.

Theorem 6.3.3. [2, Theorem 5.9.6] The only invertible nonlocal games G ∈ MN (R) satisfying

∥G−1∥ℓ2∞⊗εℓ2∞
∥G∥ℓ21⊗εℓ21

= 1

have two questions (N = 2) and are variants of the CHSH game: G = aGCHSH for some
a ̸= 0. Hence, the CHSH game (and its permutation) is the only XOR game for which the
strong equivalence between incompatibility and nonlocality holds.
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Chapter 7

Conclusion

To summarise, (in)compatibility and nonlocality are two fundamental non-equivalent concepts.
We have investigated in Chapter 5 the compatibility of quantum measurements where we have
introduced the compatibility dimension as a new concept to understand the effect of the Hilbert
space dimension on the compatibility of the quantum measurements. As it was described in the
same chapter, to make incompatible measurements compatible, one can add noise, with several
noise models being established in the literature. In an ongoing project1, we introduce such a
noise model based on an indirect measurement process. During the process, the quantum state
is coupled with a probe, and the total evolution is taken as random. The measurement on the
probe will induce an effective noisy POVM, where the noise parameter is completely encoded
in the probe. From this thought experiment, we recover noisy effective POVMs different from
those introduced in the literature; we investigate how this type of noise model affects the
compatibility of the POVMs. In Chapter 6, we have developed a new framework to unify
the (in)compatibility of quantum measurement and nonlocality, based on the framework of
nonlocal games (XOR games) and tensor norms. Alice’s measurements apparatuses are fixed,
and she computes two norms describing respectively (in)compatibility of her measurements and
nonlocality. By comparing the norms, the only games satisfying the equality between the two
norms are (in a strong sense) the CHSH game and its permutations.

To conclude, the incompatibility of quantum measurements and quantum nonlocality are
fascinating topics to understand the limitations of quantum theory. Moreover, several directions
can be explored for further investigation. In this thesis we have explored the link between
the incompatibility of quantum measurements and nonlocality, using nonlocal games with two
players with N inputs and two outputs, with an invertible game G.

In what follows we shall give some extensions and open directions that can be addressed:

• One natural question to ask is if the invertibility of the game is a necessary condition,
can we find non-invertible games that give the equivalence between incompatibility and
nonlocality?

• In [9] the strong equivalence between incompatibility and nonlocality is given by the
equality of ∥ · ∥c = ∥ · ∥G; to satisfy it, it suffices to saturate the inequality given by the
equation (6.4). Can we relax this condition to find other matrices satisfying the inequality
(6.4)?

• Can we extend the framework to nonlocal games with N inputs and M outputs? Can we
define a compatibility norm for such games M -outcome measurements with M ≥ 3?

• It was shown in [91, 92] that the largest Bell violation diverges with the number of ques-
tions. One can ask if one of the two players uses incompatible measurements how it will

1Not included in this thesis.
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affect the Bell violation. If we use more compatible measurement, is it affected by how
much one can violate some given Bell inequality?

• The authors in [46, 49] have shown if we consider games with three players, N inputs,
and two outputs, have shown the maximal Bell violation diverges with the number of
questions. One can ask if we fix the measurement apparatus of one of the players, how it
will affect quantitatively the amount by which a Bell inequality is violated?
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Presentation of the papers
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Chapter 8

The compatibility dimension of
quantum measurements

This chapter is a reproduction of the paper [1].

We introduce the notion of compatibility dimension for a set of quantum measurements: it is the
largest dimension of a Hilbert space on which the given measurements are compatible. In the
Schrödinger picture, this notion corresponds to testing compatibility with ensembles of quantum
states supported on a subspace, using the incompatibility witnesses of Carmeli, Heinosaari, and
Toigo. We provide several bounds for the compatibility dimension, using approximate quantum
cloning or algebraic techniques inspired by quantum error correction. We analyze in detail the
case of two orthonormal bases, and, in particular, that of mutually unbiased bases.

8.1 Introduction

The process of measurement in quantum mechanics has many properties differentiating it from
what one encounters in classical theories. First of all, Born’s rule states that the outcome
of a quantum measurement is probabilistic, quantum theory predicting only the probability
distribution of possible outcomes. Heisenberg’s uncertainty principle gives a lower bound on
the joint precision with which values can be attributed to general quantum observables. Closely
related to the latter is the notion of quantum incompatibility : there exist quantum measurements
that cannot be performed simultaneously on an unknown quantum state. Incompatibility of
quantum measurements has received a lot of attention from both theorists (as a signature of
quantumness) and experimentalists (mainly due to the relation to Bell non-locality [9, 93, 94]).

For a pair of incompatible quantum measurements, it is well known that adding enough
noise renders them compatible [95, 96]. This has been a very fruitful direction of research, see
the recent review [97] and the connection to free spectrahedra [80, 81]. In this work, we study
a different approach to the same problem of making measurements compatible, by dimension
reduction. This can be understood in two equivalent ways:

• taking corners of the POVM elements (Heisenberg picture)

• restricting the sets of quantum states to a subspace (Schrödinger picture).

We introduce a measure of incompatibility of measurements from this perspective: the
compatibility dimension of a tuple of POVMs A(1), . . . , A(g) is the largest Hilbert space di-
mension r for which there exists an isometry V : Cr → Cd such that the reduced POVMs
V ∗A(1)V, . . . , V ∗A(g)V are compatible, see Definition 8.4.4. Similarly, we define the strong
compatibility dimension of a tuple of measurements as the largest dimension r for which all
isometries V : Cr → Cd reduce the POVMs to a compatible tuple.
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We study different examples and fundamental properties of these newly defined quantities.
Using analytic and algebraic techniques, we prove several bounds in the most relevant cases.
For the case of two von Neumann measurements, we relate the compatibility dimension to a
geometric quantity encoding the relative position of the vectors of the two bases. For two noisy
mutually unbiased bases, we show that, for some particular values of the noise parameters,
dimensionality reduction renders incompatible measurements compatible. To do so, we prove
along the way a generalization of a compatibility criterion [98] coming from quantum cloning.
We relate these dimensions to the notion of incompatibility witnesses introduced in [85, 99],
using the measurement / state duality. We use algebraic techniques inspired from the theory of
quantum error correction to prove very general lower bounds on the compatibility dimension.
Finally, we consider spin systems coming from Clifford algebras as an illuminating example.

The newly introduced measure, the compatibility dimension of a tuple of quantum measure-
ments, sheds light on the complex phenomenon of quantum incompatibility. It is a discrete
measure of incompatibility: compatible POVMs have maximal compatibility dimension (equal
to that of the ambient Hilbert space), while smaller compatibility dimensions indicate a higher
robustness of incompatibility. We provide a plethora of results regarding this measure, of both
analytical and algebraic flavor, focusing on important classes of POVMs, such as noisy mutually
unbiased von Neumann measurements. We leave a certain number of questions regarding the
compatibility dimension open, and hope that our work will stimulate further research in this
direction.

Our paper is organized as follows. In Section 9.3 we recall the main definitions and the
basic properties of quantum measurements, focusing on the notion of compatibility. We present
in Section 8.3 a generalization of a compatibility criterion using asymmetric cloning. Section
8.4 contains the main definitions of the paper, that of the (strong) compatibility dimension.
We switch to the Schrödinger picture in Section 8.5, relating the compatibility dimension to
incompatibility witnesses and discrimination of state super-ensembles. Sections 8.6 and 8.7 are
devoted to two important examples: von Neumann measurements and (noisy) mutually unbiased
bases. In Section 8.8 we use techniques inspired by quantum error correction to provide very
general lower bounds for the compatibility dimension. Finally, we study spin systems in Section
8.9, obtaining lower bounds for the strong compatibility dimension. We conclude with a list of
open questions and directions for further research.

8.2 Compatibility of quantum measurements

We gather in this section the main definitions and basic facts from the theory of quantum
measurements. In quantum mechanics, to quantum systems we associate a complex Hilbert
space H. In this paper, we shall focus on finite dimensional Hilbert spaces, so we shall write
H ∼= Cd for a positive integer d, the number of degrees of freedom of the quantum system. We
denote by Md the vector space of d× d complex matrices. The states of a quantum system are
mathematically modelled by density matrices

M1,+
d := {ρ ∈ Md : ρ ≥ 0 and Tr ρ = 1},

where ρ ≥ 0 means that the matrix ρ is positive semidefinite (i.e. ρ is self-adjoint and has
non-negative eigenvalues).

The measurement process is modelled in quantum mechanics by observables. This formalism
allows to obtain the probability distribution of the possible outcomes, as well as the state of
the system after the measurement (the wave function collapse). In this work, we are interested
in the probabilities of outcomes only, so we shall use the framework of POVMs. We write
[n] := {1, 2, . . . , n}.

Definition 8.2.1. A positive operator valued measure (POVM) on Md is a tuple A = (A1, . . . , Ak)
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of self-adjoint operators from Md which are positive semidefinite and sum up to the identity:

∀i ∈ [k], Ai ≥ 0 and

k∑
i=1

Ai = Id.

When measuring a POVM A on a quantum system in state ρ, we obtain a random outcome

∀i ∈ [k], P(outcome = i) = Tr[ρAi].

The properties of the POVM operators Ai (called quantum effects) ensure that the vector
(Tr[ρAi])

k
i=1 is a probability vector. Note that this mathematical formalism does not account

for what happens with the quantum particle after the measurement; we say that the particle is
destroyed in the process of measurement, see Figure 9.2.

1 2 3 k

· · ·

A

1 2 3 k

· · ·

A

Figure 8.1: Diagrammatic representation of a quantum measurement. Left: a quantum particle
enters a measurement apparatus. Right: after the measurement is performed, the particle is
destroyed, and the apparatus displays the classical outcome (here, 2).

An important class of POVMs are von Neumann measurements, where Ai = |ai⟩⟨ai|, i ∈ [d],
for an orthonormal basis {|ai⟩}di=1 of Cd. On the other side of the spectrum, there are trivial
POVMs, where Bj = qjId, for some probability vector q = (q1, . . . , qk). Note that for trivial
POVMs, the outcome probabilities are given by the vector q, independently of the quantum
state ρ that is being measured. The special case of equi-probability qj = 1/k will be of interest
in this paper: we define the notion of noisy POVMs, with respect to the random or uniform
noise model (see [97]).

Definition 8.2.2. For a POVM A and a parameter t ∈ [0, 1], we define the noisy version Nt[A]
of A by

Nt[A]i = tAi + (1− t)
Id
k
,

where k is the number of outcomes of A. In other words, Nt[A] is the convex combination, with
weight t, between A and the uniform trivial POVM (Id/k, . . . , Id/k).

Similarly, for g-tuples of POVMs A = (A(1), . . . , A(g)), we define

Nt[A] = (Nt1 [A
(1)], . . . ,Ntg [A

(g)]),

for a vector t ∈ [0, 1]g. If the vector t is constant, t = (t, t, . . . , t), we write Nt[A] := Nt[A].

Note that in the definition above, we allow POVMs having possibly different number of
outcomes.

Of central importance in this work will be the following notion.

Definition 8.2.3. Given an isometry V : Cr → Cd and a POVM A = (A1, . . . , Ak) on Md, we
define the reduced POVM on Mr

V ∗AV := (V ∗A1V, . . . , V
∗AkV ).

We record here the following result, which will be used later in the paper.
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Lemma 8.2.4. For a POVM A on Md and an isometry V : Cr → Cd, we have

V ∗Nt[A]V = Nt[V
∗AV ].

Proof. This simple fact follows from the special type of noise we use:

V ∗Nt[A]iV = tV ∗AiV + (1− t)
V ∗IdV

k
= tV ∗AiV + (1− t)

Ir
k

= Nt[V
∗AV ]i.

We introduce now the notion of compatibility for POVMs, which is central to this paper.
Physically, this notion is motivated by the following scenario. Suppose we want to measure two
different physical quantities (modelled by two POVMs A and B) on a given quantum particle
in a state ρ. Since the particle is destroyed after performing a given measurement, we cannot
measure simultaneously A and B. However, measuring A and B on ρ can be simulated by
measuring a different POVM C, and then classically post-processing the output of C to a pair
of outcomes (i, j) for A, respectively B, see Figure 9.3. Famously, there are pairs of POVMs
A and B for which there is no such C, like the position and momentum operators of a particle
in one dimension: it is impossible to attribute an exact value to both position and momentum
observables at the same time.

1 2 3 k

· · ·

1 2 3 l

· · ·

A

B

⇐⇒

1 2 3 k

· · ·

1 2 3 l

· · ·

A

B
1 2 3 kl

· · ·

C

Figure 8.2: The simultaneous measurement of A and B is simulated by the measurement of C
on a single copy of the quantum particle, followed by a classical post-processing of the output
of C.

Mathematically, we have the following important definition, see, e.g., the excellent review
paper [66].

Definition 8.2.5. Two POVMs A = (A1, . . . , Ak), B = (B1, . . . , Bl) on Md are called com-
patible if there exists a POVM C = (C11, . . . , Ckl) on Md such that A and B are its respective
marginals:

∀i ∈ [k], Ai =
l∑

j=1

Cij

∀j ∈ [l], Bj =

k∑
i=1

Cij .

If this is the case, the POVM C is called a joint measurement of A and B.
More generally, a g-tuple of POVMs A = (A(1), . . . , A(g)) is called compatible if there exists

a POVM C with outcome set [k1] × · · · × [kg] such that, for all x ∈ [g], the POVM A(x) is the
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x-th marginal of C:

∀ix ∈ [kx], A
(x)
ix

=

k1∑
i1=1

· · ·
kx−1∑
ix−1=1

kx+1∑
ix+1=1

· · ·
kg∑
ig=1

Ci1i2···ig

=
∑

j∈[k1]×···×[kg ]
jx=ix

Cj.

There is a lot of literature about the compatibility relation for quantum measurements,
see [66]. Let us just mention here that in the case of two POVMs A,B where at least one
of them is projective (i.e. the effect operators are projections), compatibility is equivalent to
commutativity [Ai, Bj ] = 0, for all (i, j) ∈ [k]× [l], see [100, Proposition 8].

Given a pair of incompatible POVMs A and B, it is always possible to render them com-
patible by mixing in some noise:

∀A,B POVMs, N1/2[A] and N1/2[B] are compatible.

Whether smaller amounts of noise suffice to render arbitrary POVMs compatible [96] is a very
important ongoing research question, see [97] for a recent review, and [80, 81] for a novel
approach based on free spectrahedra. In this work, we introduce and study a different method
of achieving compatibility of POVMs: instead of mixing in noise, we reduce their dimension.

8.3 Compatibility criteria from asymmetric cloning

We present now a generalization of the compatibility criterion from [98] to the case of several
POVMs and asymmetric noise parameters. We obtain a necessary condition for the compati-
bility of a tuple of POVMs, which is in a sense dual to the asymmetric cloning problem.

First, let us recall some basic facts about (asymmetric) cloning. It was shown that in
quantum mechanics we cannot make exact copies of an arbitrary unknown quantum state [23].
This fact was formulated as the no-cloning theorem, which is one of the fundamental differences
between the classical and the quantum worlds. To precisely state a quantitative version of this
fundamental fact, let us recall the basic definitions of completely positive maps and quantum
channels; we refer the reader interested in background material on quantum information theory
to the monograph [14].

Definition 8.3.1. A linear map Φ : Md → MD is called completely positive if for all K ≥ 1
and X ∈ Md ⊗MK , we have

X ≥ 0 =⇒ [Φ⊗ idK ](X) ≥ 0,

where idK denotes the identity map. If, moreover, the map Φ is trace preserving

∀Y ∈ Md, TrΦ(Y ) = TrY,

then Φ is called a quantum channel.

The no-cloning theorem can be precisely formulated as follows: for any number of clones
g ≥ 2, there is no quantum channel Φ : Md → M⊗g

d with the property that

∀ρ ∈ M1,+
d , ∀j ∈ [g], Tr[g]\{j}Φ(ρ) = ρ.

The relation above means that there is no universal 1 → g quantum cloner such that the j-th
marginal of the output is equal to the input, for all j ∈ [g].
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The asymmetric quantum approximate cloning problem asks whether a quantum channel
exists which approximately clones any input state. The degree of approximation can vary with
the index of the marginal (i.e. clone) in the asymmetric setting. Symmetric approximate cloning
was completely described in [101, 102] (using different figures of merit for the quality of the
clones), while the asymmetric case was studied in [103, 104]. Physically, approximate cloning
can be seen as a way to go around the obstruction from the no-cloning theorem by adding noise:
our goal is to produce imperfect, noisy copies of the original input state. We formalize the above
in the following definition (see also [80]).

Definition 8.3.2. The approximation parameters of physical 1 → g asymmetric cloners on Cd
are described by the following set:

Γclone(g, d) :=
{
s ∈ [0, 1]g : ∃Φ : Md → M⊗g

d quantum channel such that

∀ρ ∈ Md, ∀j ∈ [g], Tr[g]\{j}Φ(ρ) = sjρ+ (1− sj)
Id
d

}
.

The classical no-cloning theorem states that perfect clones are impossible: for all g, d ≥ 2,
(1, 1, . . . , 1) /∈ Γclone(g, d). In [104], the optimal asymmetric cloning parameters were computed
explicitly (see also [103] for an alternative approach, based on representation theory). Those
results, stated in term of fidelities, can be restated in our language of depolarizing channels
using [81, Proposition 6.5], which uses the twirling operation to symmetrize the marginals of
an optimal cloner.

Theorem 8.3.3. [104, Section 2.3, Theorem 1] For all g, d ≥ 2, the optimal asymmetric cloning
parameters are given by

∂Γclone(g, d) = {s ∈ (0, 1]g : ∀ε > 0, (1 + ε)s /∈ Γclone(g, d) }

=

{
s ∈ (0, 1]g : (g + d− 1)

[
g − d2 + d+ (d2 − 1)

g∑
i=1

si

]
=

(
g∑
i=1

√
si(d2 − 1) + 1

)2}
.

The task of cloning quantum states can be reinterpreted in the Heisenberg picture of quan-
tum mechanics by looking at the dual map of a channel; this operation acts naturally on
quantum measurements. In this picture, the dual property of producing imperfect clones is
having noisy measurements. Let us define the asymmetric dual map for the POVMs, and the
corresponding set of cloning parameters. Consider the set of parameters for this dual maps:

Γ̃clone(g, d) :=
{
s ∈ [0, 1]g : ∃Ψ : M⊗g

d → Md unital and completely positive such that (8.1)

∀X ∈ Md, ∀j ∈ [g], Ψ(I⊗(j−1) ⊗X ⊗ I⊗(g−j)) = sjX + (1− sj)
TrX

d
I
}
.

Proposition 8.3.4. The dual and the primal sets of cloning parameters are identical: ∀g, d ≥ 2,

Γ̃clone(g, d) = Γclone(g, d).

Proof. Let us prove the first inclusion Γ̃clone(g, d) ⊆ Γclone(g, d), the other one being similar. Let
s ∈ Γ̃clone(g, d), and consider the unital completely positive map Ψ : M⊗g

d → Md having the
tuple s as an approximation parameter. Let us define Φ := Ψ∗; since Ψ is unital and completely
positive, Φ is a quantum channel [14, Section 2.2]. For any quantum state ρ ∈ M1,+

d , any matrix
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X ∈ Md, and any j ∈ [g], we have

Tr
[(
Tr[g]\{j}Φ(ρ)

)
·X
]
= Tr

[
Φ(ρ) ·

(
I
⊗(j−1)
d ⊗X ⊗ I

⊗(g−j)
d

)]
= Tr

[
ρ ·Ψ

(
I
⊗(j−1)
d ⊗X ⊗ I

⊗(g−j)
d

)]
= Tr

[
ρ ·
(
sjX + (1− sj)

TrX

d
Id

)]
= sj Tr[ρX] + (1− sj)

TrX

d

= Tr

[(
sjρ+ (1− sj)

Id
d

)
·X
]
,

proving that, for all ρ and j, Tr[g]\{j}Φ(ρ) = sjρ+(1−sj) Idd . Hence, Φ = Ψ∗ is a valid quantum
cloner with parameter s, which finishes the proof.

We shall now use the above results on quantum cloning to generalize the following com-
patibility criterion. We denote by λmin(X) the minimal eigenvalue of a self-adjoint operator
X.

Proposition 8.3.5. [79, Proposition III.3] Consider two POVMs A and B on Md satisfying

λmin(Ai) ≥
1

2(d+ 1)
TrAi ∀i

λmin(Bj) ≥
1

2(d+ 1)
TrBj ∀j.

Then, A and B are compatible.

We provide next a generalization of the compatibility criterion above for g-tuples of POVMs
and asymmetric noise parameters.

Theorem 8.3.6. Let A = (A(1), . . . , A(g)) be a g-tuple of POVMs on Md having, respectively,
k1, . . . , kg outcomes. Define, for all x ∈ [g],

sx := 1− min
i∈[kx]

dλmin(A
(x)
i )

TrA
(x)
i

∈ [0, 1].

If s ∈ Γclone(g, d), then the POVMs in A are compatible.

Proof. Note first that the assumptions in the statement are equivalent to the following set of
inequalities:

∀x ∈ [g], ∀i ∈ [kx], λmin(A
(x)
i ) ≥ 1− sx

d
TrA

(x)
i . (8.2)

Let Ψ be the unital completely positive map appearing in the definition of Γ̃clone(g, d) ∋ s. Let
us define, for all x ∈ [g] such that sx > 0,

B
(x)
i :=

1

sx

(
A

(x)
i − (1− sx)

TrA
(x)
i

d
Id

)
, ∀i ∈ [kx].

If sx = 0, put B
(x)
i = Id/kx for all i ∈ [kx]. We claim that B = (B(x))x∈[g] form a tuple of

POVMs on Md. Indeed, it is easy to see that B(x) is normalized for all x, and that the positivity

of B
(x)
i follows from Eq. (8.2) for all i. Moreover, we have TrB

(x)
i = TrA

(x)
i for all x, i.
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Define, for i = (i1, . . . , ig) ∈ [k1]× · · · × [kg],

Ci := Ψ(B
(1)
i1

⊗ · · · ⊗B
(g)
ig

).

Since Ψ is (completely) positive and unital, it follows that C is a POVM on Md with k1 · · · kg
outcomes. From (8.1), it follows that the x-marginal of C is given by

∀ix ∈ [kx],
∑

i1,...,ix−1,ix+1,...,ig

Ci = Ψ
(
I
⊗(x−1)
d ⊗B

(x)
ix

⊗ I
⊗(g−x)
d

)
= sxB

(x)
ix

+(1−sx)
TrB

(x)
ix

d
Id = A

(x)
ix
,

showing that the POVMs A are compatible, with joint measurement C.

Note that Proposition 8.3.5 follows from Theorem 8.3.6 using the fact that(
d+ 2

2(d+ 1)
,
d+ 2

2(d+ 1)

)
∈ Γclone(2, d)

for all d ≥ 2.

8.4 Compatibility dimensions — definition and examples

This section contains the definition of the main objects we study in the paper: the different
notions of compatibility dimension.

We start with an example in order to provide some intuition about dimension reduction.
Consider A = {|i⟩⟨i|}5i=1 the von Neumann measurement in the computational basis of C5, and
the POVM B = (Bi)

5
i=1 given by

B1 =
1

2


1 1 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

, B2 =
1

2


1 −1 0 0 0
−1 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

B3 =
1

2


0 0 0 0 0
0 0 0 0 0
0 0 1 1 0
0 0 1 1 0
0 0 0 0 0

 , B4 =
1

2


0 0 0 0 0
0 0 0 0 0
0 0 1 −1 0
0 0 −1 1 0
0 0 0 0 0

 , B5 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

 .
Note that we have A5 = B5 = |5⟩⟨5|. On the two-dimensional space spanned by |1⟩, |2⟩ (resp. |3⟩,
|4⟩), the operators A1,2 and B1,2 (resp. A3,4 and B3,4) perform the von Neumann measurements
in the two bases below (left basis for A and right basis for B):

Since the projective measurements A,B do not correspond to the same orthonormal basis, they
are not compatible. However, one can render them compatible by considering their reduction
(see Definition 8.2.3) on a three-dimensional space. Indeed, consider the isometry V : C3 → C5

given by
V = |1⟩⟨1|+ |3⟩⟨2|+ |5⟩⟨3|. (8.3)
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We have
V ∗AV = (|1⟩⟨1|, 0, |2⟩⟨2|, 0, |3⟩⟨3|)

while

V ∗BV =

(
|1⟩⟨1|
2

,
|1⟩⟨1|
2

,
|2⟩⟨2|
2

,
|2⟩⟨2|
2

, |3⟩⟨3|
)
.

Hence, although the original POVMs A, B were incompatible, their reduced versions V ∗AV
and V ∗BV are commuting, hence compatible. From a physical perspective, we have found a
3-dimensional subspace E = Ran(V ) ⊆ C5 such that the POVMs A,B look compatible when
measuring quantum states supported on E. This connection with quantum states shall be
discussed in details in Section 8.5.

We now introduce the main quantities of interest in this work, starting with the most general
one. We recall that, in the theory of partial ordered sets, a down-set is a set X with the property
that if x ∈ X and y ⪯ x, then y ∈ X (“⪯” denotes the partial order relation).

Definition 8.4.1. Given a g-tuple of POVMs A = (A(1), . . . , A(g)), define their compatibility
down-set as

C(A) := {E ⊆ Cd |V ∗AV are compatible for some isometry V with Ran(V ) = E}. (8.4)

In other words, the compatibility down-set is the set of subspaces on which the POVMs A are
compatible.

We gather some basic facts about the sets C(A) in the following proposition. We denote by
Sr(Cd) the Grassmannian of all r-dimensional subspaces of Cd

Sr(Cd) := {E ⊆ Cd | dimE = r}

and we also write

S(Cd) =
d⊔
r=0

Sr(Cd)

for the full Grassmannian.

Proposition 8.4.2. The set C(A) has the following properties:

• C(A) is a down-set in the modular lattice S(Cd) of subspaces of Cd

• C(A) contains all the 1-dimensional subspaces

• the POVMs A are compatible if and only if C(A) = S(Cd)

• C(A) is graded by r = dimE:

C(A) =

d⊔
r=0

Cr(A),

where
Cr(A) := C(A) ∩ Sr(Cd).

• in Definition 8.4.1, the words “some isometry” can be replaced by “all isometries”.

Proof. Let us prove the first claim. Consider a subspace F ⊆ E of dimension dimF = s and
choose an isometry W : Cs → Cd such that RanW = F . Since F ⊆ E, we have W = V V ∗W .
We have thus W ∗AW = W ∗V (V ∗AV )V ∗W . The compatibility of W ∗AW follows then from
that of V ∗AV .

The fact that C(A) contains all vector lines follows from commutativity. Having Cd ∈ C(A)
is clearly equivalent to the compatibility of the POVMs in A.

The final claim follows from the observation that any two isometries V1,2 : Cr → Cd with
RanV1,2 = E are related via a unitary U : Cr → Cr by V2 = V1U , and from the fact that
conjugation by a global unitary does not change compatibility.
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Remark 8.4.3. The map A 7→ C(A) is an anti-order-morphism with respect to the pre- and
post-processing order relations on the set of tuples of POVMs, see [68, Section 5].

Since the lattice of subspaces of Cd is a cumbersome object to work with, we consider a
coarse-grained version of Definition 8.4.1, where we keep track only of the dimension of the
subspaces.

Definition 8.4.4. Given a g-tuple of POVMs A = (A(1), . . . , A(g)) on a d-dimensional quantum
system, we define their compatibility dimension as the largest dimension r for which there exists
an isometry V : Cr → Cd reducing the POVMs to a compatible g-tuple:

R(A) := max{r ∈ [d] : ∃V : Cr → Cd isom. s.t. V ∗A(1)V, . . . , V ∗A(g)V are comp.} (8.5)

= max{r ∈ [d] : Cr(A) ̸= ∅}.

Similarly, we define the strong compatibility dimension of a g-tuple of POVMs A as the
largest dimension r for which all isometries V : Cr → Cd reduce the POVMs to a compatible
g-tuple:

R̄(A) := max{r ∈ [d] : ∀V : Cr → Cd isom., V ∗A(1)V, . . . , V ∗A(g)V are comp.} (8.6)

= max{r ∈ [d] : Cr(A) = Sr(Cd)}.

We have the following simple observations, which follow directly from the definition.

Remark 8.4.5. For all g-tuples A of POVMs on Md, we have

1 ≤ R̄(A) ≤ R(A) ≤ d.

We also have R̄(A) = d ⇐⇒ R(A) = d ⇐⇒ A(1), . . . , A(g) are compatible quantum measure-
ments.

For the example of the two POVMs A,B introduced at the beginning of this section, using
the isometry V from (8.3), we have R(A,B) ≥ 3. On the other hand, using the isometry

W = |1⟩⟨1|+ |2⟩⟨2|+ |5⟩⟨3|,

we have W ∗AW = (|1⟩⟨1|, |2⟩⟨2|, 0, 0, |3⟩⟨3|), while

W ∗BW =

1

2

1 1 0
1 1 0
0 0 0

 , 1
2

 1 −1 0
−1 1 0
0 0 0

 , 0, 0,
0 0 0
0 0 0
0 0 1

 .

Note that the two POVMs W ∗AW,W ∗BW are incompatible, proving that R̄(A,B) ≤ 2; we
have thus provided an example where R̄ < R.

In this work, we shall focus mostly on the quantity R. Let us point out however that the
measure R̄ has been related in [80, 81] to the inclusion problem for different levels of the matrix
diamond and its generalizations into a free spectrahedron defined by A; we shall not pursue
these aspects in this work.

8.5 Restricted incompatibility witnesses

We provide in this section a characterization of the incompatibility dimension with the help of
incompatibility witnesses. This point of view is “dual” in some sense to the original definition
from Section 8.4, providing an operational interpretation of the dimensions R(A) and R̄(A) as
the size of the support of superensembles of quantum states allowing for an advantage in a state
discrimination protocol (see Theorem 8.5.4).
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Several notions of incompatibility witnesses have been considered in the literature, by [105],
[85], and [81]. We shall consider here the second listed approach, developed in [85, 99], which
has a very nice operational interpretation, in terms of state ensembles distinguishability, with
prior vs. posterior information. The same connection between incompatibility witnesses and
state ensemble distinguishability was discovered independently in [106–108].

Let us first describe the state discrimination protocols which provide the framework for in-
compatibility witnesses, following [99]. Recall that a state ensemble E is a set of quantum states
σ1, . . . , σk ∈ M1,+

d (C), together with a probability vector p = (p1, . . . , pk). We also consider
superensembles E, which are g-tuples of state ensembles (E(1), . . . , E(g)), together with a proba-
bility measure q = (q1, . . . , qg). Note that we do not require that the number of elements in each
ensemble (respectively k1, . . . , kg) is identical. We consider now two superensemble discrimina-
tion protocols, which differ only in the timing when the state ensemble label is communicated.
The main idea of the protocol is presented in Figure 8.3, while the details of the explicit steps
of the protocol are given in Table 8.1.

Alice chooses
ensemble label x

Alice chooses
state label i

Alice prepares

quantum state σ
(x)
i

Bob outputs
i′ = f(x, j)

Bob measures ρ
with POVM B

Bob receives
quantum state ρ

ρ = σ
(x)
i

x

x j

Figure 8.3: The superensemble discrimination protocol, with its two variants: prior information
and posterior information.

The input of the protocol is a superensemble E, and we shall be interested in the success
probability Pguess, of Bob correctly identifying to which ensemble element Alice’s state corre-
sponds to. In other words, we are interested in Bob’s best choice of a POVM B such that the
probability that the protocol succeeds (i.e. i = i′) is maximal. Let us consider the two scenarios
separately. In the scenario with prior information, Bob knows from which ensemble E(x) the
state ρ has been sampled, so he can choose B to be the POVM which discriminates best the
(weighted) states from E(x). We obtain

P priorguess(E) = sup

{
g∑

x=1

qx⟨E(x), B(x)⟩ : B(1), . . . , B(g) POVMs

}
,

where we use ⟨·, ·⟩ to denote the state ensemble-POVM duality:

⟨E(x), B(x)⟩ :=
kx∑
i=1

p
(x)
i Tr[σ

(x)
i B

(x)
i ].

In the scenario with posterior information, Bob does not have the knowledge of x at the
time he performs the quantum measurement, and it has been shown in [99, Eq. (13)] that

P postguess(E) = sup

{
g∑

x=1

qx⟨E(x), C(x)⟩ : C(1), . . . , C(g) compatible POVMs

}
,

The formula above can be understood as follows: since at the time he performs the measurement,
Bob does not know from which ensemble E(x) the state ρ is sampled from, his best bet is
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to perform a measurement with a large outcome set and then, once he learns the ensemble
label x, to perform a classical post-processing of his measurement outcome j and the ensemble
label x. This classical post-processing is equivalent to Bob measuring a joint POVM C of
compatible POVMs C(1), . . . , C(g), having respectively k1, . . . , kg outcomes, see [99, Proposition
1]. Since the set over which the supremum is considered is smaller in this scenario, we have
P priorguess(E) ≥ P postguess(E).

Step Prior information Posterior information

1 Alice chooses randomly an ensemble label x ∈ [g], using probabilities q

2 Alice chooses randomly a state label i ∈ [kx], using probabilities p(x)

3 Alice sends the quantum state ρ = σ
(x)
i to Bob

4 Alice sends the ensemble label x to Bob

5 Bob receives the (unknown) quantum state ρ

6 Bob chooses a POVM B and measures ρ, obtaining an output j

7 Alice sends the ensemble label x to Bob

8 Bob outputs i′ = f(x, j)

9 The protocol succeeds if i′ = i

Table 8.1: Superensemble discrimination protocols, with prior and posterior information. In
the prior information scenario, Alice sends Bob the ensemble label x before Bob makes his
measurement, allowing him to choose a POVM depending on the value x. In the posterior
information scenario, Bob only learns x after performing his measurement, which cannot depend
on x.

Next, Carmeli, Heinosaari and Toigo define incompatibility witnesses as follows.

Definition 8.5.1 ([85, 99]). An incompatibility witness is a superensemble E such that P priorguess(E) >
P postguess(E).

Incompatibility witnesses are used to detect incompatibility of g-tuples of POVMs in an
obvious manner: given A = (A(1), . . . A(g)), we have

g∑
x=1

qx⟨E(x), A(x)⟩ =: ⟨E,A⟩ > P postguess(E) =⇒ A are incompatible. (8.7)

Obviously, for any g-tuple of POVMs A, we have ⟨E,A⟩ ≤ P priorguess(E); the incompatibility
witness E detect the incompatibility of A only when

⟨E,A⟩ ∈ (P postguess(E),P priorguess(E)].

Importantly, Carmeli, Heinosaari and Toigo establish the following converse to (8.7).
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Theorem 8.5.2. [85, Theorem 2] A g-tuple A of POVMs on Md are compatible if and only
if, for all incompatibility witnesses E on Cd, we have

⟨E,A⟩ ≤ P postguess(E).

We discuss now the relation between a restricted notion of incompatibility witnesses and the
compatibility dimension we introduced in Section 8.4. We start with the following important
definition.

Definition 8.5.3. Given a subspace H ⊆ Cd, we say that a quantum state σ is supported on H
if Ran(σ) ⊆ H. Equivalently, σ is supported on H if PHσPH = σ, where PH is the orthogonal
projection on H. We say that an ensemble of quantum states E (resp. a superensemble E)
is supported on H if all the states σi ∈ E with pi > 0 are supported on H. We define the
corresponding notion for superensembles in a similar manner.

Our starting point is the following observation. Given an ensemble of quantum states sup-
ported on a subspace H and a POVM A, we have, for an isometry V : CdimH → Cd with
RanV = H:

⟨E , A⟩ =
k∑
i=1

piTr[σiAi] =
k∑
i=1

piTr[PHσiPHAi]

=

k∑
i=1

piTr[V V
∗σiV V

∗Ai] =

k∑
i=1

piTr[V
∗σiV V

∗AiV ] = ⟨V ∗EV, V ∗AV ⟩,

On the other hand, any (compatible) g-tuple of POVMs B = (B(1), . . . , B(g)) on MdimH can
be written as B = V ∗AV where A = (A(1), . . . , A(g)) is a (compatible) g-tuple of POVMs on

Md. Indeed it is enough to define A
(x)
i = V B

(x)
i V ∗ + Id−V V ∗

kk
for all i ∈ [kx], where kx is the

number of outcomes of B(x). This fact, together with the previous equation, immediately yields
Ppriorguess(E) = Ppriorguess(V ∗EV ) and Ppostguess(E) = Ppostguess(V ∗EV ) for all superesnsembles E supported
on H.

We have the following result, relating (super)ensembles supported on subspaces to the
(strong) compatibility dimension of POVMs.

Theorem 8.5.4. Given a g-tuple A of POVMs on Md and an integer r ∈ [d], we have R(A) ≥ r
if and only if there exists a subspace H ∈ Sr(Cd) (i.e. H ⊆ Cd with dimH = r) such that for
all superensembles E supported on H we have

⟨E,A⟩ ≤ P postguess(E).

Similarly, R̄(A) ≥ r if and only if for all superensembles E supported on subspaces of dimension
r, the relation above holds.

Proof. We shall only prove the first claim, leaving the proof of the second claim to the reader.
The condition R(A) ≥ r is equivalent to the existence of an isometry V : Cr → Cd such that
the POVMs V ∗AV are compatible. Let us fix such an isometry V : Cr → Cd with RanV = H
and start with the proof of the =⇒ implication. For a superensemble E supported on H, we
have

⟨E,A⟩ = ⟨V ∗EV, V ∗AV ⟩ ≤ P postguess(V
∗EV ) = P postguess(E),

proving the claim. The reverse implication follows the same reasoning: the equation above is
still true, and all superensembles E′ on Cr can be written as V ∗EV for some E supported on
H, namely E = V E′V ∗ .

To summarize, we have shown in this section that the compatibility dimensions of a g-tuple
of POVMs can be understood in terms of a superensemble distinguishability protocol, with
states having restricted support in Cd.
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8.6 Two orthonormal bases

We consider in this section the case of two von Neumann measurements A and B corresponding
to orthonormal bases in Cd, say {|ai⟩}di=1 and {|bi⟩}di=1. The first observation that we can make
is that we can assume, by a global unitary rotation, that one of the bases, say the first one, is
the computational (canonical) basis in Cd: |ai⟩ = |i⟩ for all 1 ≤ i ≤ d. Let U be the unitary
operator implementing the change of basis, such that the second basis is given by the columns
of U , {|ui⟩}di=1. With this notation, our task is now to compute, for some given unitary matrix
U ∈ Ud,

Z(U) := R
(
{|i⟩⟨i|}di=1, {|ui⟩⟨ui|}di=1

)
.

Consider now an isometry V : Cr → Cd and note that the operators Ãi = V ∗|i⟩⟨i|V and
B̃i = V ∗|ui⟩⟨ui|V have rank at most one. Compatibility of unit rank POVMs is essentially the
same as equality, up to permutation of effect operators and summing together collinear effects
[109, 110]. We have thus the following lower bound; we conjecture that the bound is tight for
generic, non-degenerate unitary matrices.

Proposition 8.6.1. For any unitary operator U ∈ Ud, we have

Z(U) ≥ max
z∈Cd

σ∈Sd

dimker(Pz,σ − U), (8.8)

where Sd is the symmetric group on d elements, and Pz,σ is the generalized permutation matrix
given by

Pz,σ(i, j) = zjδi,σ(j), ∀i, j ∈ [d].

Proof. First, note that in (8.8) one can consider the adjoint of the operator Pz,σ − U , since for
any matrix X ∈ Md, we have dimkerX = dimker(X∗). Consider a vector of scalars z ∈ Cd
and a permutation σ ∈ Sd, and let E = ker [(Pz,σ − U)∗] having dimension r := dimE. We
have then, for some isometry V : Cr → Cd with range E,

(Pz,σ − U)∗V = 0d×r =⇒ V ∗(Pz,σ − U) = 0r×d.

Hence, for any j ∈ [d], we have

V ∗ |uj⟩ = zjV
∗ |σ(j)⟩ =⇒ V ∗|uj⟩⟨uj |V = |zj |2V ∗|σ(j)⟩⟨σ(j)|V.

Hence, V ∗AV and V ∗BV are compatible POVMs, having collinear effect operators.

We leave the question of computing Z(U) open in the general case. Even the bound from
Eq. (8.8) seems to be hard to compute in general. A trivial lower bound is given by the largest
multiplicity of the eigenvalues of U , corresponding to taking a constant vector z and fixing
σ = id. A natural candidate for the vector z is the diagonal of U , i.e. zi = uii, a choice which
has the merit that the matrices Pz,id and U have identical diagonals. Imposing the additional
constraint |zi| = 1 (i.e. Pz,id is unitary) amounts to choosing zi = phase(uii) = uii/|uii|, in the
case of non-zero uii. These values are the solution of the following optimization problem:

argminz∈Cd ∥Pz,id − U∥22,

with or without the additional constraint that Pz,id is unitary. The problem above is similar in
nature to the bound from (8.8): the objective functions correspond to the matrices Pz,id and U
being close to each other.
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Example 8.6.2. In the case of the Fourier operator U = Fd given by Fd(α, β) = ωαβ with
ω = exp(2πi/d), we have, with the choice zi = 1 and σ = id,

Z(Fd) ≥ 1 + ⌊d/4⌋,

using the eigenvalue λ = 1 of Fd [111]. For example, in the case d = 4, a basis of the 2-
dimensional eigenspace associated to the eigenvalue λ = 1 is given by the following two vectors:

(1, 0, 1, 0) and (2, 1, 0, 1).

For the general case, the problem of constructing a “simple” eigenbasis of Fd has received a lot
of attention in the literature, see [112, 113].

8.7 Complementary bases

We shall consider in this section the problem of dimension reduction for the special case of two

(noisy) mutually unbiased bases. Recall that a set of g orthonormal bases
{
{|b(x)i ⟩}i∈[d]

}
x∈[g]

are called mutually unbiased (MUB) [82, 83] if

∀x ̸= y ∈ [g], ∀i, j ∈ [d], | ⟨b(x)i |b(y)j ⟩ |2 = 1

d
.

Such kind of bases are very important in quantum information theory. For example, it was
shown in [114] that density matrices can be completely determined by making measurement in
MUBs, and that this protocol is optimal, in the sense that the statistical error is minimized.
The construction of such bases is deeply related to number theory and prime numbers which
are very important for pure mathematical investigation while they have several applications in
quantum information theory, quantum cryptography and entanglement, tomography, etc.; see
[83].

Consider two mutually unbiased bases {|a1⟩ , . . . , |ad⟩} and {|b1⟩ , . . . , |bd⟩} in Cd, for example
the computational and the Fourier bases from Example 8.6.2. Let us introduce the noisy versions
of the POVMs

Nλ[A] =

(
λ|a1⟩⟨a1|+ (1− λ)

Id
d
, . . . , λ|ad⟩⟨ad|+ (1− λ)

Id
d

)
Nµ[B] =

(
µ|b1⟩⟨b1|+ (1− µ)

Id
d
, . . . , µ|bd⟩⟨bd|+ (1− µ)

Id
d

)
.

The values (λ, µ) for which the POVMs above are compatible have been computed in [84,
85]: for (λ, µ) ∈ [0, 1]2, Nλ[A] and Nµ[B] are compatible iff

λ+ µ ≤ 1 or λ2 + µ2 +
2(d− 2)

d
(1− λ)(1− µ) ≤ 1.

We consider first the symmetric case λ = µ. In this situation, the POVMs Nλ[A] and Nλ[B]
are compatible if and only if

λ ≤ 1

2

(
1 +

1

1 +
√
d

)
. (8.9)

We shall show that for the same symmetric amount of noise and with a particular choice of an
isometry V : Cr → Cd, reducing the dimension of two incompatible noisy MUB measurements
renders them compatible.

Theorem 8.7.1. Consider two POVMs A,B corresponding to a pair of mutually unbiased bases
which can be extended to a triple of MUBs. For any 2 ≤ r <

√
d, there exists a non-empty

interval Λr,d ⊂ [0, 1] (see Eq. (8.10)) such that, for all λ ∈ Λr,d,
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• the noisy MUB measurements Nλ[A], Nλ[B] are incompatible

• their reduced versions V ∗Nλ[A]V , V ∗Nλ[B]V are compatible,

where V : Cr → Cd is an isometry obtained by truncating a third MUB.

Before giving the proof of the theorem, note that a triple of MUBs exists in every dimension,
see [115, 116].

Proof. Consider a third basis {|ck⟩}dk=1 of Cd such that {ai}, {bj}, and {ck} form a set of three
mutually unbiased bases. We define V : Cr → Cd as V =

∑r
k=1 |ck⟩ ⟨k|; it is clear that V is an

isometry.
Note first that the range of parameters λ for which the noisy POVMs Nλ[A], Nλ[B] are

incompatible was computed in Eq. (8.9):

1

2

(
1 +

1

1 +
√
d

)
< λ ≤ 1.

We shall now compute the range of the parameter λ for which we can use Proposition 8.3.5
in its symmetric version for the reduced POVMs V ∗Nλ[A]V and V ∗Nλ[B]V to certify their
compatibility. Let us first calculate, for i ∈ [d], λmin(V

∗Nλ[A]iV ):

λmin(V
∗Nλ[A]iV ) =

1− λ

d
+ λ · λmin

 r∑
k,l=1

⟨ck|ai⟩ ⟨ai|cl⟩ |k⟩⟨l|

 .
Note that the operator in the bracket above has unit rank, hence the second term is null. We
have thus λmin(V

∗Nλ[A]iV ) = 1−λ
d , for all i ∈ [d]. A simple calculation gives

TrV ∗Nλ[A]iV =
r

d
.

The same calculation can be performed, and the same result is obtained, for V ∗Nλ[B]V . Putting
these together, we find that:

λ ≤ 2 + r

2(1 + r)
=⇒

{
λmin(V

∗Nλ[A]iV ) ≥ 1
2(1+r) TrV

∗Nλ[A]iV ∀i ∈ [d]

λmin(V
∗Nλ[B]jV ) ≥ 1

2(1+r) TrV
∗Nλ[B]jV ∀j ∈ [d],

showing that the assumptions of Proposition 8.3.5 hold, and thus that the POVMs V ∗Nλ[A]V
and V ∗Nλ[B]V are compatible for the respective range of λ.

Define now the interval

Λr,d :=

(
2 +

√
d

2(1 +
√
d)
,

2 + r

2(1 + r)

]
. (8.10)

From the computations above, we know that for all λ ∈ Λr,d, the POVMs satisfy the two points
in the statement; the interval Λr,d is non-empty as soon as 2 ≤ r <

√
d.

Let us now consider the asymmetric version of Theorem 8.7.1, where the amount on white
noise added to each POVM can be different. We first introduce a generalization of the compat-
ibility regions from [80, Section III] and [81, Definition 3.32].

Definition 8.7.2. Given a g-tuple A of d-dimensional POVMs, we define its restricted com-
patibility region to be the subset

[0, 1]g ∋ ∆(A; r) = {s ∈ [0, 1]g :∃V : Cr → Cd s.t. the reduced POVMs V ∗Ns1 [A
(1)]V,

V ∗Ns2 [A
(2)]V, . . . , V ∗Nsg [A

(g)]V are compatible}.
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Using the generalization of the cloning criterion to asymmetric noise parameters from The-
orem 8.3.6, we prove the following lower bound for the compatibility regions ∆(A, r) for tuples
of MUBs.

Proposition 8.7.3. For any g-tuple of MUBs A which can be extended to a (g + 1)-tuple of
MUBs, we have Γclone(g, r) ⊆ ∆(A; r).

Proof. Let s ∈ Γclone(g, r), and consider the isometry V :=
∑r

k=1 |ck⟩⟨k|, where {|ck⟩}dk=1 is the
(g + 1)-th MUB from the statement. To conclude, it is enough to verify the assumptions of
Theorem 8.3.6. The computations here are similar to the ones from Theorem 8.7.1. We have,
for all x ∈ [g] and i ∈ [d],

λmin(V
∗Nsx [A

(x)]iV ) =
1− sx
d

Tr(V ∗Nsx [A
(x)]iV ) =

r

d
.

Hence,

sx = 1− min
i∈[kx]

dλmin(V
∗Nsx [A

(x)]iV )

Tr(V ∗Nsx [A
(x)]iV )

satisfies the hypothesis of Theorem 8.3.6.

We leave the question of deriving upper bounds for the sets ∆(A, r) open.

8.8 Algebraic considerations

A simple way of using dimension reduction to render incompatible measurements compatible is
to ensure that, after the reduction, the POVM elements of the measurements are commutative.
Moreover, in the case of 2 POVMs, one can push this idea even further and render one of the
reduced POVMs trivial, ensuring thus compatibility. The overarching theme of this section is
to use the two algebraic characterizations of compatibility (commutativity and trivial POVMs)
to obtain very general dimension reduction results. The price to pay for this generality is that,
for some very specific situations, the results can be relatively weak, when compared with more
specialized techniques, such as the ones from Sections 8.6 and 8.7.

We start with a dimension reduction method by which POVMs are rendered commutative
(and thus compatible). The following construction has been introduced in [117, Theorem 3] and
further refined in [118, Proposition 2.4]. The connection with quantum error correction can be
understood as follows: on the code space, the POVM channels act like the identity (up to a
scalar), hence the reduced POVMs are trivial.

For the sake of completeness, we recall it here in full details and adapt it to our setting,
emphasizing the intermediate step related to commutative POVMs.

Definition 8.8.1. For a g-tuple of POVMs A = (A(1), . . . , A(g)) on Md, we define their com-
mutativity dimension as

T (A) := max{r ∈ [d] : ∃V : Cr → Cd isometry s.t.

∀x ̸= y ∈ [g], ∀i ∈ [kx], ∀j ∈ [ky], [V ∗A
(x)
i V, V ∗A

(y)
j V ] = 0}.

We recall the following result from [118], showing that tuples of matrices can be reduced to
commutative operators, when the dimension is large enough.
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Proposition 8.8.2. Consider m self-adjoint d× d matrices A1, . . . , Am and let

n+ 1 = dim spanR{A1, . . . , Am, Id}.

If d ≥ (n + 1)(r − 1), then there exist r orthonormal vectors x1, . . . , xr ∈ Cd such that, for all
s ∈ [m], ⟨xi|Asxj⟩ = 0, whenever i ̸= j ∈ [r]. In other words, the matrices A are diagonal when
restricted to the span of the vectors {x1, x2, . . . , xr}.

Proof. One can observe that if {B1, . . . , Bn} is a basis of spanR{A1, . . . , Am, Id}, then there
exist r orthogonal vectors x1, . . . , xr such that ⟨xi|Asxj⟩ = λsδij for all i, j ∈ [r] and s ∈ [m] iff
the same holds true for the matrices B1, . . . , Bn. The result follows then from the first part of
[118, Proposition 2.4].

We shall now use the result above for the set of effects of a g-tuple of POVMs, to find an
isometry reducing them to commuting POVMs. The following theorem combines Definition
8.8.1 with the lower bound from Proposition 8.8.2.

Theorem 8.8.3. Consider a g-tuple A = (A(1), . . . , A(g)), where A(x) = (A
(x)
1 , . . . , A

(x)
kx

) is a
POVM with kx outcomes. Let

n+ 1 := dim spanR{A
(x)
i }x∈[g],i∈[kx] ≤ 1− g +

g∑
x=1

kx.

Then, we have the following lower bound:

R(A) ≥ T (A) ≥ 1 +

⌊
d

n+ 1

⌋
≥ 1 +

⌊
d

1− g +
∑g

x=1 kx

⌋
. (8.11)

Proof. For any r ≤ T (A), there exists an isometry V : Cr → Cd such that the reduced effect

operators V ∗A
(x)
i V ∈ Mr commute with V ∗A

(y)
j V for all i, j and x ̸= y. In particular, the

reduced POVMs V ∗A(x)V are compatible: R(A) ≥ T (A). The second and third inequalities in
(8.11) follow from Proposition 8.8.2.

Remark 8.8.4. In the case where n ≥ d, the lower bound (8.11) is trivial.

Remark 8.8.5. In the definition of T (A) we only ask that reduced effects from different POVMs
commute, while the use of Proposition 8.8.2 guarantees that all the reduced effects commute. It
would be interesting to find out whether one can gain something by exploiting this fact.

Let us illustrate the previous result by the following striking corollary, corresponding to the
case d = 3, g = 2, k1 = k2 = 2.

Corollary 8.8.6. Any pair of qutrit effects can be reduced to a pair of commuting (and thus
compatible) qubit effects.

Example 8.8.7. Let us consider the following two qutrit effects, built from the computational
and the Fourier bases in C3:

E = |1⟩⟨1|+ |2⟩⟨2|
2

F = |f1⟩⟨f1|+
|f2⟩⟨f2|

2
,

where f1,2,3 are the columns of the Fourier matrix

F3 =
1√
3

1 1 1
1 ω ω2

1 ω2 ω

 ,
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with ω = exp(2πi/3), see also Example 8.6.2. The fact that the effects E,F are incompatible
(that is, the POVMs (E, I3 − E) and (F, I3 − F ) are incompatible) follows from the following
semidefinite program [70]:

minimize λ

subject to X ≥ 0

X ≤ E

X ≤ F

λI3 +X ≥ E + F.

In the SDP above, the variable X corresponds to the single free value of a joint POVM for E,F .
The effects E,F are compatible if and only if the value of the SDP above is smaller or equal
than one [9, Eq. (4)]. For our choice of E,F , it can be seen numerically that the value of the
program is ≈ 1.577, certifying the incompatibility of E and F .

We choose the isometry

V =

1 0
0 1√

2

0 ω√
2

 ,
for which the reduced effects read

V ∗EV =

[
1 0
0 1/4

]
and V ∗FV =

[
1/2 0
0 1/2

]
.

The reduced effects are commutative, hence compatible.

We now move on to another method by which incompatible POVMs can be rendered com-
patible by dimension reduction. This time, we shall consider a single POVM and “trivialize”
it by reducing it with an isometry. In the language of error correction, we are constructing a
subspace of the Hilbert space on which the measurement channel acts like the identity.

Definition 8.8.8. Given a single POVM A with k outcomes on Md, its scalar dimension is

S(A) := max{r ∈ [d] : ∃V : Cr → Cd isom. s.t. ∀i ∈ [k], V ∗AiV ∼ Ir}.

The definition above is related to the notion of higher rank (joint) numerical range in-
troduced in [119] for one matrix and generalized in [118] for several matrices. We recall the
following lower bound from [118, Proposition 2.4], which uses Tverberg’s theorem [120] (see also
[121]) to render the diagonal matrices from Proposition 8.8.2 multiples of the identity.

Proposition 8.8.9. Consider m self-adjoint d× d matrices A1, . . . , Am and let

n+ 1 = dim spanR{A1, . . . , Am, Id}.

If d ≥ (n+ 1)2(r − 1), then there exist r orthonormal vectors x1, . . . , xr ∈ Cd such that, for all
s ∈ [m], there exists a scalar λs ∈ R such that ⟨xi|Asxj⟩ = δijλs, for all i, j ∈ [r].

Proof. The statement follows from the second part of the proof of [118, Proposition 2.4], by
making the same observation as in the proof of Proposition 8.8.2.

We can gather the results above in the following theorem.
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Theorem 8.8.10. Consider a pair of POVMs A,B on Md. Let k be the number of outcomes
of the POVM A, and define

n+ 1 := dim spanR{Ai}i∈[k] ≤ k.

We have the following lower bound:

R(A,B) ≥ S(A) ≥ 1 +

⌊
d

(n+ 1)2

⌋
≥ 1 +

⌊
d

k2

⌋
. (8.12)

Proof. For any r ≤ S(A) (resp. r ≤ S(B)), there exists an isometry V : Cr → Cd such that
the POVM V ∗AV (resp. V ∗BV ) is trivial. In particular, the POVMs V ∗AV and V ∗BV are
compatible, and thus R(A,B) ≥ max(S(A), S(B)). The second inequality in (8.12) follows from
Proposition 8.8.9.

Remark 8.8.11. In the case where (n+1)2 ≥ d, the lower bound (8.12) is trivial. In particular,
if a POVM A has k linearly independent effects and k >

√
d, the bound (8.12) is trivial. Hence,

Theorem 8.8.10 is useful for POVMs with few outcomes.

Example 8.8.12. Going back to the two qubit effects from Example 8.8.7, note that the reduced
POVM (V ∗FV, I2 − V ∗FV ) is the trivial POVM (I2/2, I2/2).

To conclude, using ideas from the theory of quantum error correction, we have given in this
section two lower bounds on the compatibility dimension of a tuple of POVMs A:

• a first one in terms of the commutativity dimension T (A) of the tuple, Theorem 8.8.3;

• a second one in terms of the scalar dimensions S(A) and S(B) of any pair POVMs (A,B),
see Theorem 8.8.10.

We would like to point out that these very general results are useful in the regime where the
POVMs have few outcomes (or, rather, the span of the effect operators is low-dimensional).
The results in this section cannot be applied, for example, to the cases of (noisy) orthonormal
bases that were studied in Sections 8.6, 8.7.

8.9 Dimension dependent bounds and spin systems

We prove in this section results for isometry-independent reductions, corresponding to the notion
of strong compatibility dimension from Definition 8.4.4.

We recall the following compatibility criterion from [80, Section VIII] and [81, Section 7]
which guarantees the compatibility of noisy versions of POVMs, with a noise parameter depend-
ing on the dimension of the Hilbert space, and independent of the number of measurements.
We shall explicitly consider separately the case of 2-outcome (or dichotomic) POVMs, with the
example of maximally incompatible spin system measurements in mind.

Proposition 8.9.1. [80, Corollary VIII.4] and [81, Theorem 7.1] Let A(1), . . . , A(g) be g arbi-
trary 2-outcome POVMs on Md. Then, their noisy versions Ã(x) are compatible, where

Ã
(x)
i = N1/(2d)[A

(x)]i =
1

2d
A

(x)
i +

(
1− 1

2d

)
Id
2
. (8.13)

More generally, consider a g-tuple (B(x))gx=1, where B
(x) is a kx-valued POVM on Cd. Then,

their noisy versions B̃(x) are compatible, where

B̃
(x)
i = N1/(2d(kx−1)[B

(x)]i =
1

2d(kx − 1)
B

(x)
i +

(
1− 1

2d(kx − 1)

)
Id
kx
. (8.14)
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This compatibility criterion is of particular interest in the setting of our work, given the
dimension dependence of the noise parameters in the equations (8.13) and (8.14). Note that
for small values of g, the compatibility result above can be seen to follow from other type
of arguments, such as cloning [98]. We obtain the following universal lower bound on the
quantity R̄(·) from Definition 8.4.4, giving thus the first lower bound on the strong compatibility
dimension.

Theorem 8.9.2. Let A = (A(1), . . . , A(g)) be a g-tuple of 2-outcome POVMs on Md. Then,
for all 1 ≤ r ≤ d and t ∈ [0, 1/(2r)], we have R̄(Nt[A]) ≥ r.

More generally, consider a g-tuple B = (B(1), . . . , B(g)), where B(x) is a kx-valued POVM on
Cd. Then, for all 1 ≤ r ≤ d and t ∈ [0, 1]g such that tx ≤ 1/(2r(kx−1)), we have R̄(Nt[B]) ≥ r.

Proof. Let us prove the more general statement about the g-tuple B. Fix an integer r and a
vector t as in the statement. Consider also an arbitrary isometry V : Cr → Cd. From Lemma
8.2.4, we have that, for all x ∈ [g],

V ∗Ntx [B
(x)]V = Ntx [V

∗B(x)V ].

Using Proposition 8.9.1 and the condition on the vector t, we infer that the POVMs Nt[V
∗BV ]

are compatible, proving the claim.

Let us now use the previous result to obtain bounds on the strong compatibility dimension
of spin system measurements, which we introduce next. From a physical point of view [122,
Section 5.4], it was discovered by Dirac that the spin property appears naturally in his equation
when he was searching for a relativistic quantum equation of electrons. In his equation the
Clifford algebra appears as a particular representation of the homogeneous Lorentz group. Since
this representation contains naturally the spin one-half representation described by the Pauli
matrices, his equation presents the conceptual and the natural description of the spin as a
fundamental property. Mathematically, spin systems are sets of anti-commuting, self-adjoint,
unitary operators. The paradigmatic example of such operators are the Pauli matrices σX,Y,Z ∈
M2(C). Higher level spin systems are defined recursively, as follows. At level k = 0, we have a
single matrix,

F
(0)
1 := [1] ∈ M1(C).

At level k = 1, we have the Pauli matrices:

F
(1)
1 = σX =

[
0 1
1 0

]
, F

(1)
2 = σY =

[
0 −i
i 0

]
and F

(1)
3 = σZ =

[
1 0
0 −1

]
.

For larger levels, define recursively the matrices of size 2k+1

F
(k+1)
i = σX ⊗ F

(k)
i ∀i ∈ [2k + 1] and F

(k+1)
2k+2 = σY ⊗ I2k , F

(k+1)
2k+3 = σZ ⊗ I2k .

For example, at level 2, we have the five matrices

F
(2)
1 = σX⊗σX , F

(2)
2 = σX⊗σY , F

(2)
3 = σX⊗σZ , F

(2)
4 = σY⊗I2, F

(2)
5 = σZ⊗I2.

From the 2k + 1 matrices at level k, we construct 2k + 1 dichotomic POVMs

A
(x)
1 = (I2k+1 + Fx)/2 A

(x)
2 = (I2k+1 − Fx)/2, x ∈ [2k + 1].

We recall the following result from [80] regarding the noise robustness of the tuple A =
(A(x))x∈[2k+1]; note that the same result was derived in the symmetric case in [123].

Proposition 8.9.3. [80, Section VIII.B] For every k ≥ 1, the (2k + 1)-tuple of 2-outcome

POVMs Nt[A] acting on C2k+1
is compatible if and only if ∥t∥2 ≤ 1.
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Combining the previous result with Theorem 8.9.2, we obtain the following result, stating
that, for appropriate noise parameters, the strong compatibility dimension of a noisy spin
system POVM is neither 1 nor maximal. In other words, the noisy spin system POVMs are not
compatible, but all reductions to a non-trivial fixed dimension become compatible.

Proposition 8.9.4. For any r ≥ 2, k ≥ 2r2 + 1 ≥ 9, and all t ∈ (1/
√
2k + 1, 1/(2r)], the spin

system POVMs A at level k satisfy

r ≤ R̄(Nt[A]) ≤ 2k+1 − 1.

Proof. The statement about compatibility follows from t ≤ 1/(2r) and Theorem 8.9.2. The
incompatibility statement follows from Proposition 8.9.3 and

t >
1√

2k + 1
=⇒ ∥t(1, 1, . . . , 1︸ ︷︷ ︸

2k+1 times

)∥2 > 1.

The inequality between k and r ensures the existence of noise parameters for which the interval
in the statement is non-empty.

8.10 Conclusion

In this paper, we have introduced a new measure of the incompatibility of a pair (or a tuple)
of quantum measurements. The compatibility dimension of a set of POVMs is the maximal
dimension of a Hilbert space to which the restrictions of the given measurements are compatible.
A related notion, that of the strong compatibility dimension is defined in a similar manner, but
requiring that the restrictions to all Hilbert subspaces of that given dimension are compatible.

We then proceed to analyze the properties of these quantities, relating them to (in-)compatibility
criteria. We study several examples in details, such as pairs of von Neumann measurements and
mutually unbiased bases. We also provide lower bounds for these quantities using constructions
inspired from the theory of error correcting codes.

Several questions are left open. Importantly, good upper bounds on the (strong) compatibil-
ity dimensions are lacking. One would equally like to compute exactly these dimensions in very
simple cases, such as the measurements in the computational basis and the one in the Fourier
basis. The optimality of the algebraic techniques used in Sections 8.6 (the quantity Z(U)) and
8.8 is also left open.
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Chapter 9

Measurement incompatibility vs.
Bell nonlocality:an approach via
tensor norms

This Chapter is a reproduction of the paper [2].

Measurement incompatibility and quantum nonlocality are two key features of quantum the-
ory. Violations of Bell inequalities require quantum entanglement and incompatibility of the
measurements used by the two parties involved in the protocol. We analyze the converse ques-
tion: for which Bell inequalities is the incompatibility of measurements enough to ensure a
quantum violation? We relate the two questions by comparing two tensor norms on the space
of dichotomic quantum measurements: one characterizing measurement compatibility and the
second one characterizing violations of a given Bell inequality. We provide sufficient conditions
for the equivalence of the two notions in terms of the matrix describing the correlation Bell
inequality. We show that the CHSH inequality and its variants are the only ones satisfying it.

9.1 Introduction

Since its discovery, quantum mechanics was formalized as a theory with many foundational
aspects which differ significantly from classical mechanics. Some of these deep questions, and
their relation among them are still subject to investigation nowadays. Understanding these
notions and their interplay is crucial for the development of the second quantum revolution.

Two of the most important conceptual revolutions put forward by quantum mechanics are
the notions of nonlocality of correlations and the incompatibility of quantum measurements.
The latter notion, that of measurement incompatibility is one of the most unintuitive aspects
of the quantum world, when examined from a classical perspective: there exist (quantum)
measurements which cannot be performed simultaneously on a given quantum system.

It is well-known that quantum nonlocality is one of the fundamental aspects of quantum
theory that gives rise to a lot of questions about quantum reality. John Bell [124] gave a complete
answer to the debate about the nonlocality and elucidated the intrinsic probabilistic aspect of
quantum theory. The answer he provides is that any local theory must obey some inequality,
while if one applies the predictions of quantum mechanics, the aforementioned inequality can
be violated. This means that the quantum world is completely non-local, which, in turn, means
that there are phenomena that we could not understand with our classical macroscopic point
of view. Such conclusion provides a complete answer about the intrinsic reality of the quantum
world. Such violations of correlation inequalities were completely confirmed experimentally in
Alain Aspect’s experiment [125], and in a loophole-free manner in [43].
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In the modern language of quantum information theory, such correlation inequalities can
be understood as non-local games [126]. In such a game, two players, called traditionally Alice
and Bob, play cooperatively against a Referee. Alice and Bob are space-like separated, hence
once the game starts they can no longer communicate. However, they both know the rules of
the game, and they can meet before the game starts and make a strategy. Technically, the
games we consider are defined by a matrix M , which encodes the pay-off the players receive;
in particular, we shall consider in this work exclusively XOR games with N questions and two
answers.

Two scenarios are of particular importance for us: Alice and Bob are either allowed to use
classical strategies (where they share classical randomness) or quantum strategies (where they
share a bipartite entangled quantum state). It turns out that the optimal probabilities to win
the game with classical or, respectively, quantum strategies, can be formulated as two different
tensor norms of the matrix that encodes the rules of the game (seen as a 2−tensor). This
is one of the instances where tensor norms (and Banach space theory in general) has found
applications in the theory of non-local games.

The main goal of the current work is to relate, in a quantitative manner the notion of
measurement incompatibility to that of Bell inequality violations in a very general setting. Our
original motivation was the seminal work [9], where the authors connected, in a qualitative
manner, the incompatibility of Alice’s measurements in the CHSH game, with possible violations
of the CHSH inequality. Our results can be seen to build on this example, generalizing it in two
different directions:

• we go beyond the CHSH game, allowing all (reasonable) correlation XOR games

• we relate, in a quantitative manner, the largest possible violation of a Bell inequality to
the incompatibility robustness of Alice’s measurements.

In order to achieve these goals, our framework is different than the usual setting of non-local
games, in the respect that

Alice’s dichotomic measurements are fixed.

Optimizing over Bob’s choice of N dichotomic measurements and over the players’ shared en-
tangled state, we can express the quantum bias of the given non-local gameM as a tensor norm
of Alice’s N -tuple of measurements, which we denote by ∥A∥M . In particular, with Alice’s
choice of measurements fixed to be A, the players will violate the Bell inequality corresponding
to M if and only if ∥A∥M > β(M), where β(M) is the classical bias of the game.

On the quantum measurement (in-)compatibility side, we revisit the construction from [86],
where the compatibility of a N -tuple of dichotomic quantum measurements has been described
with the help of a tensor norm, dubbed ∥A∥c. We give a direct proveof the result showing that
N dichotomic measurements A = (A1, . . . , AN ) are compatible iff ∥A∥c ≤ 1. The value of the
compatibility norm ∥ · ∥c is related to the notion of compatibility robustness: the value of the
norm is precisely the quantity of (white) noise one needs to add to the tuple of dichotomic
measurements in order to render them compatible.

Having formulated the key physical principles of this work (quantum incompatibility and
Bell nonlocality), we get now to our main point: the relation between them. This question
has received already a lot of attention in the literature. The starting point is the equivalence
first observed in [9]: for the CHSH game [127] with two questions, Alice’s pair of measurements
are incompatible if and only if there exists an entangled state and a choice for Bob’s pair of
measurements such that they can obtain a violation of the CHSH Bell inequality. It is equally
well-known that the two notions are not equivalent in more general situations, see [89].

In this work, we provide a definitive answer to this question, using the framework of tensor
norms. More precisely, we express the following quantities as tensor norms:
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Figure 9.1: In this work, we relate measurement incompatibility with Bell inequalities using
the formalism of tensor norms. Pairwise connections having already been established in the
literature, we bring the three concepts together for the first time.

• incompatibility : how much (white) noise one needs to add to a tuple of dichotomic POVMs
to render them compatible

• quantum bias of a correlation game: what is the maximal value of the game (normalized
to have classical bias 1), when Alice’s tuple of dichotomic measurements are fixed.

We then discuss how these norms compare, and when they are equal see Figure 9.1. We
provide sufficient conditions for equality, and then show that only the CHSH game (and its
permutations) satisfy them, emphasizing the special role of the CHSH inequality.

Our paper is organised as follows. In Section 9.2 we (informally) state the main results
of our paper and their interpretation. In Section 9.3 we recall the notion of compatibility
for quantum measurements. We present in Section 9.4 the basic definitions of tensor norms
from Banach space theory, focusing on the examples needed in this work. In Section 9.5 we
introduce the framework of Bell nonlocality as non-local games and relate the values of these
games to tensor norms. In Section 9.6 we introduce the main definition of the nonlocality norm
∥A∥M that will characterise the violation of the Bell inequality. In Section 9.7 we introduce the
compatibility norm ∥A∥c that will characterise the compatibility of Alice’s measurement. We
present in Section 9.8 our main theorems, discussing also under which conditions the violation
of a Bell inequality implies measurement incompatibility. In our framework, we provide a
conceptual explanation of the main result in [9], and we also analyze new Bell inequalities, such
as different deformations of the CHSH inequality and the pure correlation part of the I3322 tight
Bell inequality; for the latter, the two notions are not equivalent, as noticed in [89].
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9.2 Main results

In this section, we introduce the main definitions and the main results of our work. Our goal
is to unify two fundamental notions of quantum theory, measurement incompatibility and Bell
inequality violations. To do so, we shall work in the framework of non-local games, where the
rules of a correlation game are encoded in a real N × N matrix M , and Alice’s dichotomic
measurements are fixed. Note that in this work we shall be considering general (not necessarily
projective) measurements, mathematically encoded by POVMs.

The maximum value of the game M , when Alice’s measurements are fixed, is given by the
following quantity.

Definition 9.2.1 (The M -Bell-locality tensor norm). Let M an invertible Bell functional and
Alice’s N -tuple of dichotomic measurements A = (A1, . . . , AN ), we define the following tensor
norm:

∥A∥M := sup
∥ψ∥=1

sup
∥By∥≤1

〈
ψ
∣∣∣ N∑
x,y=1

Mxy Ax ⊗By

∣∣∣ψ〉 = λmax

[ N∑
y=1

∣∣∣∣ N∑
x=1

Mxy Ax

∣∣∣∣].
The quantity ∥A∥M is the maximum value of the game M , when optimizing over quantum

strategies, with Alice’s measurements being fixed. The measurements A = (A1, . . . , AN ) are
called M -Bell-local there is no violation of the Bell inequality corresponding to M : ∥A∥M ≤
β(M), with β(M) being the classical bias of the game (which, importantly, can also be expressed
as a tensor norm). If this is not the case, we call Alice’s measurements M -Bell-non-local.

Regarding compatibility, we are concerned with the same question as before: are Alice’s
dichotomic measurements compatible or not? The following quantity was introduced, in the
more abstract setting of generalized probabilistic theories in [86], see also [87].

Definition 9.2.2 (The compatibility tensor norm). For a tensor A ∈ RN ⊗Msa
d (C), we define

the following quantity:

∥A∥c := inf

{∥∥∥ K∑
j=1

Hj

∥∥∥
∞

: A =

K∑
j=1

zj ⊗Hj , s.t. ∀j ∈ [K], ∥zj∥∞ ≤ 1 and Hj ≥ 0

}
.

The compatibility norm, together with the injective tensor product of ℓ∞ and S∞ norms,
completely characterize compatibility of tuples of dichotomic quantum measurements [86, 87].

Proposition 9.2.3. Let A = (A1, . . . , AN ) be a N -tuple of self-adjoint d× d complex matrices.
Then:

1. A is a collection of dichotomic quantum observables (i.e. ∥Ai∥∞ ≤ 1 ∀i) if and only if
∥A∥ε ≤ 1.

2. A is a collection of compatible dichotomic quantum observables if and only if ∥A∥c ≤ 1.

The compatibility norm allows Alice to know whether her measurements are compatible
(∥A∥c ≤ 1) or not (∥A∥c > 1); in the latter case, the the minimal quantity of white noise that
needs to be mixed in the measurements in order to render them compatible is 1/∥A∥c, providing
an operational interpretation of the compatibility norm.

To sum up, in the setting of tensor norms,

• Alice’s measurements are M -Bell-local if and only if ∥A∥M ≤ β(M) = ∥M∥ℓN1 ⊗εℓN1
.

• Alice’s measurements are compatible if and only if ∥A∥c ≤ 1.

To understand the relation between nonlocality and compatibility, we now have to compare
the two norms ∥ · ∥c and ∥ · ∥M .
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Theorem 9.2.4. Consider an N -input 2-output non-local game M , corresponding to a matrix
M ∈ MN (R). Then, for any N -tuple of self-adjoint matrices A = (A1, . . . , AN ), we have

∥A∥M ≤ ∥A∥c β(M) = ∥A∥c ∥M∥ℓN1 ⊗εℓN1
.

In particular, if Alice’s measurements A are M -Bell-non-local, then they must be incompatible.

In the theorem above, we have upper bounded theM -Bell-locality norm by the compatibility
norm that depends only on Alice’s measurement times the classical bias of the game. This in-
equality is a quantitative version of the well-known, qualitative fact that if Alice’s measurements
are compatible, she will never observe any Bell inequality violation (i.e. her measurements are
M -Bell-local).

One of our main contributions is to raise and answer the converse question: we want to
upper bound the compatibility norm by the M -Bell-locality norm. In physical terms, we are
asking whether, given a Bell inequality M and a tuple of measurements, can Alice observe
violations of M using her measurements? We have the following theorem, providing a (partial)
answer to this question.

Theorem 9.2.5. Let M ∈ MN (R) be an invertible matrix. Then, for any N -tuple of self-
adjoint matrices A = (A1, A2, . . . , AN ), we have

∥A∥c ≤ ∥A∥M∥M−1∥ℓN∞⊗εℓN∞
.

In the main theorems succinctly stated above, we have compared the compatibility tensor
norm and the M -Bell-locality norm. It was shown in [9] that for the CHSH game, the in-
compatibility of one party’s quantum measurements and the violation of a Bell inequality are
equivalent. In our setting, this equivalence can be understood as an equality of the compatibility
norm and the M -Bell-locality norm for MCHSH: we have

∥ · ∥c = ∥ · ∥MCHSH
.

Having restated this classical result in terms of an equality of tensor norms, it is natural to
ask whether this equality goes beyond the case of the CHSH inequality. Incompatibility and
Bell nonlocality are not, in general, equivalent, as it was shown in [90, 128].

From the main theorems above, any game M must satisfy ∥M∥ℓN1 ⊗εℓN1
· ∥M−1∥ℓN∞⊗εℓN∞

≥ 1.

If one wants to conclude ∥ · ∥c = ∥ · ∥M from these results, one needs to investigate the equality
case in the aforementioned inequality. We show that for any real and invertible matrix M , the
following holds.

Proposition 9.2.6. For any real and invertible matrix M , we have:

∥M−1∥ℓN∞⊗εℓN∞
∥M∥ℓN1 ⊗εℓN1

≥ N

ρ(ℓN∞, ℓ
N
∞)

≥
√
N

2
≥ 1.

For N ≥ 3, the last inequality above is strict.

The case N = 2 needs to be treated separately. We show that for N = 2 questions, the only
games achieving equality are the CHSH game and variants thereof. We summarize this in the
following theorem.

Theorem 9.2.7. The only invertible non-local game M ∈ MN (R) satisfying

∥M−1∥ℓN∞⊗εℓN∞
∥M∥ℓN1 ⊗εℓN1

= 1

have two questions (N = 2) and are variants of the CHSH game: M = aMCHSH for some a ̸= 0.
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9.3 Compatibility of quantum measurements

This section contains the main definitions and results from the theory of quantum measurements,
with the focus on (in-)compatibility and noisy measurements.

In Quantum Mechanics, a system is described by Hilbert space H. Here, we shall consider
only finite-dimensional Hilbert spaces: H ∼= Cd, for a positive integer d, which corresponds to
the number of degrees of freedom. For example, quantum bits (qubits) are described by the
space C2. Quantum states are formalized mathematically by density matrices:

M1,+
d := {ρ ∈ Md : ρ ≥ 0 and Tr ρ = 1},

where Md is the vector space of d×d complex matrices. Density matrices are positive semidef-
inite, a relation denoted by ρ ≥ 0.

Let us now discuss measurements in Quantum Mechanics. Historically, quantum measure-
ments were modelled by observables: Hermitian operators acting on the system Hilbert space.
The possible outcomes of the measurement are the eigenvalues of the observable, while the
probabilities of occurrence are given by the celebrated Born rule. This formalism not only
allows to obtain the probabilities of the different outcomes (via the Born rule), but also the
post-measurement state of the quantum system (the wave function collapse). In the current
research, we are only concerned with the former, and thus we shall use the more general frame-
work of Positive Operator Valued Measures (POVMs) [129]. We shall write [n] := {1, 2, . . . , n}
for the set of the first n positive integers.

Definition 9.3.1. A positive operator valued measure (POVM) on Md with k outcomes is a
k-tuple A = (A1, . . . , Ak) of self-adjoint operators from Md which are positive semidefinite and
sum up to the identity:

∀i ∈ [k], Ai ≥ 0 and

k∑
i=1

Ai = Id.

When measuring a quantum state ρ with the apparatus described by A, we obtain a random
outcome from the set [k]:

∀i ∈ [k], P(outcome = i) = Tr[ρAi].

The vector of outcome probabilities (Tr[ρAi])
k
i=1 is indeed a probability vector; note that

the properties of the operators Ai, called quantum effects, are tailor made for this. This math-
ematical formalism used to described quantum measurements (or POVMs, or meters) does not
account for what happens with the quantum particle after the measurement. One can think
that the particle is destroyed in the process of measurement (see Figure 9.2) and thus only the
outcome probabilities are relevant.

1 2 3 k

· · ·

A

1 2 3 k

· · ·

A

Figure 9.2: Diagrammatic representation of a quantum measurement apparatus. The device
has an input canal and a set of k LEDs which will turn on when the corresponding outcome
is achieved. After the measurement is performed, the particle is destroyed, and the apparatus
displays the classical outcome (here, 2).

Several important classes of POVMs will be discussed in this paper:
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• von Neumann measurements, where Ai = |ai⟩⟨ai|, i ∈ [d], for an orthonormal basis
{|ai⟩}di=1 of Cd;

• trivial measurements, where the matrices Ai are scalar multiples of the identity: Ai = piId,
for some probability vector p = (p1, p2, . . . , pk).

Let us now define the notion of compatibility for quantum measurements, which is central
to this paper. Historically, in the physics literature, the notion of compatbility was closely
related to that of commutativity of the quantum observables [130, 131]; indeed, sharp POVMs
are compatible if and only if the corresponding observables commute. In the modern setting,
suppose we want to measure two different physical quantities (modelled by two POVMs A and
B) on a given quantum particle in a state ρ. Having at our disposal just one copy of the particle,
we cannot, in general, measure simultaneously A and B. However, one can simulate measuring
A and B on ρ with the help of a third POVM C, by classically post-processing the output
of C to a pair of outcomes (i, j) for A, respectively B, see Figure 9.3. Importantly, there are
many pairs of POVMs A and B for which there is no such C, like the position and momentum
operators of a particle in one dimension: it is impossible to attribute simultaneously an exact
value to both position and momentum observables.

1 2 3 k

· · ·

1 2 3 l

· · ·

A

B

⇐⇒

1 2 3 k

· · ·

1 2 3 l

· · ·

A

B
1 2 3 kl

· · ·

C

Figure 9.3: The joint measurement of A and B is simulated by by a third measurement C,
followed by classical post-processing.

Mathematically, we can either consider general post-processings or marginalization. We
refer the reader to [68, 132] for more details.

Definition 9.3.2. Two POVMs A = (A1, . . . , Ak), B = (B1, . . . , Bl) on Md are called com-
patible if there exists a joint POVM C = (C11, . . . , Ckl) on Md such that A and B are its
respective marginals:

∀i ∈ [k], Ai =

l∑
j=1

Cij .

∀j ∈ [l], Bj =

k∑
i=1

Cij .

More generally, a g-tuple of POVMs A = (A(1), . . . , A(g)) is called compatible if there exists
a POVM C with outcome set [k1] × · · · × [kg] such that, for all x ∈ [g], the POVM A(x) is the
x-th marginal of C:

∀ix ∈ [kx], A
(x)
ix

=

k1∑
i1=1

· · ·
kx−1∑
ix−1=1

kx+1∑
ix+1=1

· · ·
kg∑
ig=1

Ci1i2···ig

=
∑

j∈[k1]×···×[kg ]
jx=ix

Cj.
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Note that the definition of compatibility given above can be formulated as a (feasibility)
semi-definite program (SDP) [70]. One can equivalently formulate the notion of compatibility
with more general post-processings.

Proposition 9.3.3. An N -tuple of POVMs A = (A(1), . . . , A(N)) is compatible if and only if
there exists a joint POVM (Ck)k∈[K] and a family of conditional probabilities

(
px(·|·)

)
x∈[N ]

such

that
∀x ∈ [N ], ∀i ∈ [kx], A

(x)
i =

∑
k∈[K]

px(i|k)Ck.

We now consider the simplest possible setting, that of two 2-outcome POVMs {Q, I − Q}
and {P, I − P}, where P,Q are d × d self-adjoint matrices satisfying O ≤ P,Q ≤ Id. The pair
of POVMs is compatible if and only if ε0 ≤ 1 [9], where

ε0 := inf
{
ε : ∃δ ≥ 0 s.t. δ + I −Q− P ≥ 0, Q+ εI − δ ≥ 0, P + εI − δ ≥ 0

}
, (9.1)

where δ is a positive semidefinite matrix. The above formula corresponds to the value of a
semidefinite program encoding the existence of a joint measurement for the POVMs {P, I −P}
and {Q, I − Q}. Generally, every SDP comes with a dual formulation. In our case the dual
SDP is given below [9]:

Lemma 9.3.4. Given the above optimization problem for deciding compatibility, its dual for-
mulation is given by:

ε∗ = sup
X,Y,Z≥0

{
Tr[X(Q+ P − I)]− Tr[Y Q]− Tr[PZ]withX ≤ Y + Z, Tr[Y + Z] = 1

}
,

Proof. Let us consider the following Lagrangian, corresponding the primal SDP (10.1).

L := ε− ⟨X, δ + I −Q− P ⟩ − ⟨Y, εI +Q− δ⟩ − ⟨Z, εI + P − δ⟩ − ⟨C, δ⟩

Above X,Y, Z,C are positive semidefinite matrices which represent the constraints of the primal
optimisation problem. Due to the strict feasibility of the SDP we can calculate its dual optimal
value is the same as the optimal one of the primal (Slater’s condition, see [70]). Thus, we have
the following equality:

inf
ε,δ

sup
X,Y,Z,C

L = sup
X,Y,Z,C

inf
ε,δ

L.

A simple calculation shows that

inf
ε,δ

L = ⟨X,Q+ P − I⟩ − ⟨Y,Q⟩ − ⟨P,Z⟩

with Tr[Y + Z] = 1 and Z + Y − X − C = 0 ⇐⇒ X ≤ Y + Z, which is precisely the dual
formulation from the statement.

In the following, we shall use the SDP value to describe the compatibility threshold of the
POVMs, that is the minimal quantity of noise that one needs to mix in, in order to render
the POVMs compatible; such quantities go in the literature under the name of robustness of
incompatibility [97].

Definition 9.3.5. For a given parameter η ∈ [0, 1], given two POVMs A = (A1, . . . , Ak), B =
(B1, . . . , Bl) on Md one define their noisy version as Aη := (Aη1, . . . , A

η
k), B

η := (Bη
1 , . . . , B

η
l )

with

∀i ∈ [k], Aηi := ηAi + (1− η)
I

k
.

∀j ∈ [l], Bη
j := ηBj + (1− η)

I

l
.
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Remark 9.3.6. In our simplified setting, we shall only consider POVMs with two outcomes
P = {P, I − P}, Q = {Q, I − Q} and their noisy versions. The definition given above can be
rewritten as follows:

Pη = {P η, I − P η},

and
Qη = {Qη, I −Qη}.

The measurements Pη and Qη can also be seen as convex mixtures of the measurement P and
Q with the trivial POVM I = ( I2 ,

I
2). One has Qη = ηQ+ (1− η)I and Pη = ηP + (1− η)I.

Let us now formalize the incompatibility robustness, in the symmetric case, where the same
amount of white noise (I/2, I/2) is mixed into the two POVMs; for the asymmetric version, see
the incompatibility regions defined in [80, Section III].

Definition 9.3.7. For two (binary) measurements P, Q, we define their noise compatibility
threshold as:

Γ(P,Q) := sup
{
η ∈ [0, 1] : Pη,Qη are compatible

}
.

Proposition 9.3.8. The noise compatibility threshold for two (binary) measurements P and Q
is given by:

Γ(P,Q) =
1

1 + 2ε∗
,

where ε∗ is the optimal value of the SDP from Lemma 9.3.4.

Proof. Recalling that Pη,Qη are compatible is equivalent to ∃δ ≥ 0 with the following condi-
tions:

ηQ+ (1− η)
I

2
− δ ≥ 0

ηP + (1− η)
I

2
− δ ≥ 0

δ − η(P +Q− I) ≥ 0

Where it is easy to see that is equivalent to

Q+ εI − δ′ ≥ 0

P + εI − δ′ ≥ 0

δ′ − (P +Q− I) ≥ 0

with δ′ := δ
η and ε = 1

2(
1
η − 1) ⇐⇒ η = 1

2ε+1 . By tacking the supremum over η to compute
the noise compatibility threshold Γ(P,Q) with the following constraints:

Q+ εI − δ′ ≥ 0

P + εI − δ′ ≥ 0

δ′ − (P +Q− I) ≥ 0

is given by

Γ(P,Q) = sup
{ 1

2ε+ 1

∣∣∣∃δ′ ≥ 0 , Q+ εI − δ′ ≥ 0, P + εI − δ′ ≥ 0, δ′ − (P +Q− I) ≥ 0
}

=
1

2 inf
{
ε
∣∣∣P,Q compatible

}
+ 1

=
1

2ε0 + 1
=

1

2ε∗ + 1

which ends the proof of the proposition.
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9.4 Tensor product of Banach spaces

In this section we wil give a brief overview of tensor norms with the aim of presenting Bell
inequalities in the tensor norm framework. Tensor norms provide the natural mathematical
framework for Bell inequalities, see the following survey [126] and the reference therein. Let
us start by recalling the projective and injective tensor norms for (finite-dimensional) Banach
spaces.

Definition 9.4.1. Given two finite-dimensional Banach spaces X and Y with their respective
norms ∥ · ∥X and ∥ · ∥Y , and z ∈ X ⊗ Y , we define the projective tensor norm of z as:

∥z∥X⊗πY := inf

{
N∑
i=1

∥xi∥X∥yi∥Y : z =
N∑
i=1

xi ⊗ yi

}
,

where the infimum is taken over all the decompositions of z =
∑N

i=1 xi ⊗ yi where N is a finite
but arbitrary integer. We write X ⊗π Y = (X ⊗ Y, ∥ · ∥X⊗πY ), the Banach space induced by the
projective tensor norm on X ⊗ Y .

Every Banach space comes with a dual:

Definition 9.4.2. Let X a finite-dimensional Banach space. The space of all bounded linear
functionals on X is called its dual space and denoted by X∗. It comes equipped with a norm:

∀φ ∈ X∗, ∥φ∥X∗ := sup
∥x∥X≤1

|φ(x)|.

We now introduce the other tensor norm of importance to us.

Definition 9.4.3. Given two finite-dimensional Banach spaces X and Y with their respective
norms ∥ · ∥X and ∥ · ∥Y , and z ∈ X ⊗ Y , we define the injective tensor norm of z as:

∥z∥X⊗εY := sup
α∈B(X∗),β∈B(Y ∗)

|⟨z, α⊗ β⟩|,

where B(X∗) and B(Y ∗) are the unit balls of X∗ and Y ∗.
We write X ⊗ε Y = (X ⊗ Y, ∥ · ∥X⊗εY ), the Banach space induced by the injective norm on

X ⊗ Y .

It is known that the projective and the injective tensor product play the role of maximal
and the minimal norm respectively that we can put naturally in the algebraic tensor product,
for that we give the following definition of a reasonable crossnorm.

Definition 9.4.4. Let z ∈ X ⊗ Y , we say that a norm α on X ⊗ Y given by ∥z∥X⊗αY is a
reasonable crossnorm (or a tensor norm) if for z = x⊗ y we have:

∥z∥X⊗αY ≤ ∥x∥X∥y∥Y

and the dual φ = φ1 ⊗ φ2 ∈ X∗ ⊗ Y ∗ satisfies

∥φ∥X∗⊗αY ∗ ≤ ∥φ1∥X∗∥φ2∥Y ∗ .

We write X ⊗α Y = (X ⊗ Y, ∥ · ∥X⊗αY ), the Banach space induced by α on X ⊗ Y .

The definition above can be found in [33, page 127], with the following equivalent statement.

Proposition 9.4.5. [33, Proposition 6.1] Consider two finite-dimensional Banach spaces X
and Y with their respective norms ∥ · ∥X and ∥ · ∥Y . A norm α on X ⊗ Y is a reasonable
crossnorm if and only if for all z ∈ X ⊗ Y , we have

∥z∥X⊗εY ≤ ∥z∥X⊗αY ≤ ∥z∥X⊗πY .
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Remark 9.4.6. The injective and the projective tensor norm are dual to each other, in the
following sense [33]:

∥z∥X⊗πY := sup
∥α∥X∗⊗εY ∗≤1

⟨α, z⟩,

∥z∥X⊗εY := sup
∥α∥X∗⊗πY ∗≤1

⟨α, z⟩.

In general, for each tensor norm ∥ · ∥X⊗αY we can define its dual tensor norm we note it by
α∗ and we have the following definition.

Definition 9.4.7. Consider two finite dimensional Banach spaces X and Y with their respective
norms ∥ · ∥X and ∥ · ∥Y . Let z ∈ X ⊗ Y and v ∈ X∗ ⊗ Y ∗, the dual tensor norm α∗ of a given
tensor norm α is defined by

∥z∥X⊗α∗Y := sup{|⟨v, z⟩|; ∥v∥X∗⊗αY ∗ ≤ 1}.

We write X ⊗α∗ Y = (X ⊗Y, ∥ · ∥X⊗α∗Y ), the Banach space induced by the norm α∗ on X ⊗Y .

Remark 9.4.8. With the definition above, we have the nice identification between the dual
space of the tensor product of two spaces endowed with a tensor norm α and the dual space of
each of the two spaces endowed with the dual norm α∗ where we have

(X ⊗α Y )∗ = X∗ ⊗α∗ Y ∗.

One last definition we want to recall that will play a fundamental role for Bell inequalities
which is the reasonable norm known as γ2 norm.

Definition 9.4.9. Given two finite-dimensional Banach spaces X and Y with their respective
norms ∥ · ∥X and ∥ · ∥Y , define the tensor norm γ2 of z ∈ X ⊗ Y by:

∥z∥X⊗γ2Y
:= inf

 sup
α∗∈B(X∗)

(
N∑
i=1

|α∗(xi)|2
) 1

2

sup
β∗∈B(Y ∗)

 N∑
j=1

|β∗(yj)|2
 1

2

: z =
N∑
i=1

xi ⊗ yi

 ,

where the infimum is taken over all decompositions of z =
∑N

i=1 xi⊗yi with xi ∈ X and yj ∈ Y .

9.5 Bell inequalities and non-local games

In this section we introduce the notion of non-local games and show how it incorporates the
non-local properties of the quantum world via the well-known Bell inequalities. We then recall
how the natural framework for these games is the metric theory of tensor products of finite-
dimensional Banach spaces.

The non-local aspect of quantum mechanics can be incorporated in the non-local game
framework. In this paper, we only consider non-local games with two players, Alice and Bob,
which are collaborating to win the game. During the game, a third person known as the Referee,
will ask a certain number of question to the players which are not allowed to communicate. The
two protagonists reply cooperatively to the referee with some answers. The referee will decide
to accept or reject the answers, declaring a win or a loss. Note that in this paper we are going
to consider games with arbitrary number of questions N , but only with two answers (+1 or
−1); in the general case, Alice and Bob can give answers from a fixed set of given cardinality.

During the game, players have access to a predetermined set of resources: this determines
the type of strategy they are permitted to use. In this work, we shall consider classical strategies
and quantum strategies.
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In classical strategies, the players share samples from a classical random variable that they
can use to produce their answers locally. When using quantum strategies, the players share a
bipartite quantum state, on which they can act locally with transformations and measurements.

We shall focus on correlation games, where the payoff of the game depends on the correlation
of the ±1 answers ab, weighted by real numbers Mxy depending on the question:

payoff =
∑

x,y∈[N ]

∑
a,b∈{±1}

Mxy ab · P(a, b|x, y),

where P(a, b|x, y) is the (strategy-dependent) probability that Alice and Bob answer respectively
a and b, when presented with the questions x, y ∈ [N ]. The matrix M ∈ MN (R) encodes the
rules of the game, and it is called the Bell functional [126]. In the following, we discuss the
optimal classical and quantum strategies for a given non-local game M .

Definition 9.5.1. The classical bias of the game M is defined as the optimisation problem

β(M) := sup
∣∣∣ N∑
x,y=1

∑
a,b∈{±1}

Mxy abPc(a, b|x, y)
∣∣∣

where the supremum is taken over all classical strategies

Pc(a, b|x, y) =
∫
Λ
PA(a|x, λ)PB(b|y, λ) dµ(λ).

Above, PA, resp. PB correspond to Alice’s, resp. Bob’s strategies, which can depend on the shared
random variable λ having distribution µ.

Introducing the expectation values with respect to the outputs a, b

Ax(λ) :=
∑

a∈{±1}

aPA(a|x, λ) and By(λ) :=
∑

b∈{±1}

bPB(b|y, λ),

we have

β(M) = sup
PA,PB ,µ

∣∣∣ N∑
x,y=1

∑
a,b∈{±1}

Mxy a b

∫
Λ
PA(a|x, λ)PB(b|y, λ) dµ(λ)

∣∣∣
= sup

Ax,By ,µ

∣∣∣ N∑
x,y=1

Mxy

∫
Λ
Ax(λ)By(λ) dµ(λ)

∣∣∣
= sup

γ

∣∣∣ N∑
x,y=1

Mxy γx,y

∣∣∣,
where the matrix γ = (γx,y) is a classical correlation matrix, containing the relevant information
from the set of classical strategies.

Definition 9.5.2. We define the set of classical correlations as

L :=

{
γx,y

∣∣∣ γx,y = ∫
Λ
Ax(λ)By(λ) dµ(λ); |Ax(λ)|, |By(λ)| ≤ 1

}
⊆ MN (R)

where λ is a random variable shared by Alice and Bob, following a probability distribution µ.

Using the definition above, the maximum payoff of a game M , using classical strategies, can
be understood as the maximum overlap of the Bell functional M defining the game with the set
of classical correlations.

97



Proposition 9.5.3. The classical bias of the game defined by a Bell functional M is:

β(M) = sup
γ∈L

{∣∣∣ N∑
x,y=1

Mxy γx,y

∣∣∣}.
We now move on to the quantum setting, where the players are allowed to use quantum

strategies, that is they are allowed to perform local operations on a shared entangled state.

Definition 9.5.4. The quantum bias of the game M is defined as the optimisation problem

β∗(M) := sup
∣∣∣ N∑
x,y=1

∑
a,b∈{±1}

Mxy a bPq(a, b|x, y)
∣∣∣

where the supremum is taken over all quantum strategies

Pq(a, b|x, y) = Tr
[
ρ (Aa|x ⊗Bb|y)

]
,

where ρ is a bipartite shared quantum state (of arbitrary dimension), and, for all questions x, y,
(A±|x), resp. (B±|y) are POVMs on Alice’s, resp. Bob’s quantum system.

Introducing the operators

Ax :=
∑

a∈{±1}

aAa|x and By :=
∑

b∈{±1}

bBb|y,

and performing a similar computation as in the case of classical strategies, we are led to following
definition and expression for the quantum bias of a non-local correlation game M .

Definition 9.5.5. We define the set of quantum correlations as

Q :=

{
γx,y

∣∣∣ γx,y = Tr

[
ρ · (Ax ⊗By)

]
; ∥Ax∥∞, ∥By∥∞ ≤ 1

}
⊆ MN (R).

Above, ρ is a bipartite quantum state of arbitrary dimension, and Ax, By are observables of
norm less than one.

Proposition 9.5.6. The quantum bias of the game defined by a Bell functional M is:

β∗(M) = sup
γ∈Q

{∣∣∣ N∑
x,y=1

Mxy γx,y

∣∣∣}.
Remark 9.5.7. The correlation games discussed above are also known in the literature as XOR
games, when the set of outputs is {0, 1} (instead of {±1}) [133].

Since classical correlations are a subset of the quantum correlations (corresponding to diago-
nal operators Ax, By), the quantum bias of the game must be always larger or equal the classical
bias. In some cases, the quantum bias β∗(M) is strictly larger than the classical one, which
can be understood physically as the existence of quantum correlations can not be reproduced
within a classical local hidden variable model. This motivates the following definition.

Definition 9.5.8. For a given non-local game described by a Bell functional M , we say that
we have a Bell violation if β∗(M) > β(M).

Now we will recall the results on the profound link between the classical bias of a game and
its quantum bias within their respective tensor norm description.
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Theorem 9.5.9. [126] Consider a non-local correlation game characterized by the matrix M ∈
MN (R).

• The classical bias of the game is equal to the injective tensor norm of M :

β(M) = ∥M∥ℓN1 (R)⊗εℓN1 (R).

• The quantum bias of the game is equal to the γ∗2 tensor norm of M :

β∗(M) = ∥M∥ℓN1 (R)⊗γ∗2
ℓN1 (R).

where we recall from the Definition 9.4.7 that

∥M∥ℓN1 (R)⊗γ∗2
ℓN1 (R) := sup

{
|⟨v,M⟩| ; ∥v∥ℓN∞(R)⊗γ2ℓ

N
∞(R) ≤ 1

}
.

Tsirelson showed in [134] the following theorem that links the classical and the quantum
bias of an XOR game with famous Grothendieck constant KR

G that plays a fundamental role in
the theory of tensor product of Banach spaces, see also [126, Corollary 3.3].

Theorem 9.5.10. Consider a non-local correlation game characterized by the matrix M ∈
MN (R).

β∗(M) ≤ KR
G β(M).

From the result above, one can easily see that Bell inequality violations (β∗(M) > β(M))
can be understood as tensor norm ratios. The result above shows the intrinsic link between Bell
inequality violation and tensor norms, which motivates our framework on using tensor norms.

Let us now discuss the CHSH non-local game [127].

Definition 9.5.11. The CHSH game is given by the particular Bell functional defined as the
following:

MCHSH =
1

2

[
1 1
1 −1

]
,

In this subsection, we recall the result of [9] where they made the link between the maximal
violation of Bell inequality and the compatibility of the quantum measurement in the CHSH
game. Precisely the maximal violation of the CHSH inequality is equivalent to the dual of
formulation of the compatibility problem as an SDP [9].

Theorem 9.5.12. Two dichotomic measurements A = (A0, A1), B = (B0, B1) are incompatible
if and only if they enable violation of the CHSH inequality. More precisely, the optimal value
of the CHSH inequality is related to

sup
ψ,B0,B1

⟨ψ|B |ψ⟩ = 1

Γ(A)
.

with

B :=
1∑

x,y=0

MCHSH(x, y)Ax ⊗By =
1

2
(A0 ⊗B0 +A0 ⊗B1 +A1 ⊗B0 −A1 ⊗B1).

and Γ(A) is the noise compatibility threshold.

Proof. The proof of this theorem is basically the following remark, where in [9] they have showed
that

sup
ψ,B0,B1

⟨ψ|B |ψ⟩ = 1 + 2ε∗.

By combining this result and the proposition 9.3.8 where Alice measurement apparatus are
described by the POVMs {Q, I −Q} and {P, I − P} which ends the proof.

99



9.6 The tensor norm associated to a game

In this section we will introduce the notion of nonlocality using our framework of tensor norms.
For that we consider as the previous section a fixed quantum game, and for fixed Alice mea-
surements we introduce the M -Bell-(non)locality notion. This quantity will characterise all the
observed non-local effects in Alice side. To do so she will calculate the following tensor norm
∥A∥M given by her fixed measurement apparatus. This quantity is obtained by optimizing over
all the shared quantum state and all Bob measurement apparatus. We say that Alice measure-
ment apparatus are M -Bell-local if such ∥A∥M is less than or equal the classical bias of the
game and if is not we say that her measurement are M -Bell non-local.

The physical motivation of such statement can be understood as the following, for a fixed
quantum game no matter the optimisation over all the shared quantum states and Bob mea-
surement we cannot do better than the classical bias of the game, which means that one cannot
do better than the classical setting even if we use the quantum strategies.
For that we will give the precise definition of ∥A∥M and theM -Bell-(non)locality notion. We will
show the main theorem of this section that ∥A∥M is a tensor norm in (RN , ∥·∥M )⊗(Md, ∥·∥∞)
for a fixed invertible quantum game M .

As a starting point, we give the two main definitions of this section.

Definition 9.6.1. Consider a fixed N -input, 2-outcome non-local game M ∈ MN (R). Fix also
Alice’s measurements, a N -tuple of binary observables A = (A1, . . . , AN ) ∈ Msa

d (C)N . The
largest quantum bias of the game M , with Alice using the observable Ax to answer question
x ∈ [N ], is given by

sup
∥ψ∥=1

sup
∥By∥≤1

〈
ψ
∣∣∣ N∑
x,y=1

Mxy Ax ⊗By

∣∣∣ψ〉 = sup
∥By∥≤1

λmax

[
N∑
x,y

Mxy Ax ⊗By

]
=: ∥A∥M ,

where the suprema are taken over bipartite pure states ψ ∈ Cd⊗CD and over Bob’s observables
B = (B1, . . . , BN ) ∈ Msa

D (C)N , where D is a free dimension parameter. We shall later show in
Theorem 9.6.10 that this quantity defines a (tensor) norm.

Remark 9.6.2. In the definition above, the dimension of Alice’s measurements is fixed (d),
while the dimension of Bob’s Hilbert space (D) is free. In the following we will show that one
can assume, without loss of generality, that Alice and Bob have Hilbert spaces of the same
dimension (D = d suffices in the optimization problem).

Let us consider D ≥ d, a quantum state |ψ⟩ ∈ Cd⊗CD, and N binary measurement operators
B1, . . . , BN ∈ Msa

D (C). The idea is that the Schmidt decomposition of the bipartite pure quantum
state |ψ⟩ will induce a reduction of the effective dimension of Bob’s Hilbert space from D to d.
We start from the Schmidt decomposition of |ψ⟩

|ψ⟩ =
d∑
i=1

√
λi |ai⟩ ⊗ |bi⟩ .

Note that in the equation above, the number of terms is bounded by the smallest of the two
dimensions, that is d. The orthonormal family {|bi⟩}i∈[d] spans a subspace of dimension d

inside CD. Consider an arbitrary orthonormal basis {|b̃i⟩}i∈[d] of Cd and the isometry

V : Cd → CD such that ∀i ∈ [d], V |b̃i⟩ = |bi⟩ .

Let us now introduce the quantum state

Cd ⊗ Cd ∋ |ψ̃⟩ :=
d∑
i=1

√
λi |ai⟩ ⊗ |b̃i⟩
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and the measurement operators

Msa
d (C) ∋ B̃y := V ∗ByV, ∀y ∈ [N ].

The normalization of the state and the fact that the B̃y are contractions follow from the isometry
property of the operator V . We now have

〈
ψ
∣∣∣ N∑
x,y=1

MxyAx ⊗By

∣∣∣ψ〉 =
N∑

x,y=1

Mxy

d∑
i,j=1

√
λiλj⟨ai|Ax|aj⟩ ⟨bi|By|bj⟩︸ ︷︷ ︸

=⟨b̃i|V ∗ByV |b̃j⟩

=
N∑

x,y=1

Mxy

d∑
i,j=1

√
λiλj⟨ai|Ax|aj⟩⟨b̃i|B̃y|b̃j⟩

=
〈
ψ̃
∣∣∣ N∑
x,y=1

MxyAx ⊗ B̃y

∣∣∣ψ̃〉.
The above computation shows that any correlation that can be obtained with Bob’s Hilbert space
of dimension D can also be obtain with a Hilbert space of dimension d, equal to that of Alice.

Definition 9.6.3. Given a non-local gameM , we say that Alice’s measurements A = (A1, . . . , AN )
are M -Bell-local if for any choice of Bob’s observables B and for any shared state ψ, one cannot
violate the Bell inequality corresponding to M :

∥A∥M ≤ β(M).

If this is not the case, we call Alice’s measurements M -Bell-non-local.

Instead of using definition 9.6.1 we will use another simple equivalent formulation of ∥A∥M .
To do so, we will consider ∥A∥M as an optimization problem using an SDP, and we will give its
equivalent formulation as a dual of the primal SDP.

Lemma 9.6.4. Given a quantum game (Mxy)
N
{x,y=1} we can characterise the following equiva-

lent formulation of ∥A∥M :

∥A∥M = λmax

 N∑
y=1

∣∣∣∣ N∑
x=1

Mxy Ax

∣∣∣∣
 .

Proof. Remark that the definition above is equivalent to

∥A∥M = sup
∥ψ∥=1

sup
∥By∥≤1

〈
ψ
∣∣∣ N∑
x,y=1

Mxy Ax ⊗By

∣∣∣ψ〉
with |ψ⟩ = √

ρ⊗ I
∑d

i=1 |ii⟩ and ρ is a density matrix (this is the classical purification trick in
quantum information theory, expressing any bipartite pure state as a local perturbation of the
maximally entangled state

∑
i |ii⟩). Then, one has

∥A∥M = sup
ρ≥0 ;Tr ρ=1

sup
∥By∥≤1

{ N∑
x,y=1

Mxy Tr
[√

ρAx
√
ρB⊤

y

]}

Using the following variable change B⊤
y = 2Sy − I for all y, we have

∥A∥M = sup
Sy , ρ

{ N∑
y=1

Tr
[√

ρA′
y

√
ρ (2Sy − I)

]}

101



where A′
y =

∑N
x=1Mxy Ax and the optimisation problem is on Sy for all y and ρ with the

following constraint : 0 ≤ Sy ≤ I and ρ ≥ 0 and Tr ρ = 1.
Then

∥A∥M = sup
Sy , ρ

{ N∑
y=1

Tr
[
A′
y(2

√
ρSy

√
ρ− ρ)

]
: 0 ≤ Sy ≤ I , ρ ≥ 0 , Tr ρ = 1

}
We consider now one last change of variable S′

y =
√
ρSy

√
ρ.

∥A∥M = sup
S′
y , ρ

{ N∑
y=1

Tr
[
A′
y(2S

′
y − ρ)

]
: 0 ≤ S′

y ≤ ρ , ρ ≥ 0 , Tr ρ = 1

}
where the optimisation problem now is on S′

y for all y and ρ with the constrained above.

We will formulate ∥A∥M as an SDP and we will compute its dual.
For that, we consider the following Lagrangian :

L =

N∑
y=1

Tr
[
A′
y (2S

′
y − ρ)

]
+ ⟨X, ρ⟩ +

N∑
y=1

⟨Xy, S
′
y⟩ + ε(1− Tr ρ) +

N∑
y=1

⟨ρ− S′
y, Zy⟩.

with X, Xy, ε, Zy are the constraints respectively for ρ ≥ 0, S′
y ≥ 0, Tr ρ = 1 and S′

y ≤ ρ.
Then by using the SDP duality one has

∥A∥M = sup
S′
y , ρ

inf
X ,Xy ,ε ,Zy

L = inf
X ,Xy ,ε ,Zy

sup
S′
y , ρ

L

with the following constraints:

• X ≥ 0 and ∀y Xy , Zy ≥ 0 are positive semidefinite matrices

• ε ∈ R is unconstrained

Using the duality given above and by tacking the suprema first over S′
y and ρ, we have:

sup
S′
y ,ρ

L =

{
ε , ∀y , 2A′

y +Xy − Zy = 0 and X −
∑N

y=1A
′
y − εI +

∑N
y=1 Zy = 0.

+∞

Now by tacking the infimum over the constraints

∥A∥M = inf
X ,Xy , ε , Zy

{
ε
∣∣∣ ∀y , 2A′

y +Xy − Zy = 0 ; X −
N∑
y=1

A′
y − εI +

N∑
y=1

Zy = 0

}

= inf
Xy , ε

{
ε
∣∣∣ ∀y , 2A′

y ≤ Zy and
N∑
y=1

A′
y + εI ≥

N∑
y=1

Zy

}
where in the last equality we have used that X ≥ 0, Zy ≥ 0. With the constraints on Zy and
Zy ≥ 2A′

y, we can choose Zy := 2(A′)+y with (A′)+y is the positive part of A′
y = (A′)+y − (A′)−y ;

this is the smallest (with respect to the positive semidefinite order) choice for Zy. Using the
optimal value above

∥A∥M = inf
ε

{
ε
∣∣∣ εI ≥

N∑
y=1

(A′)+y + (A′)−y

}
Then

∥A∥M = λmax

 N∑
y=1

∣∣∣∣ N∑
x=1

Mxy Ax

∣∣∣∣

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In the following, we shall exploit the new formulation of ∥A∥M and we will show in the
lemma below that ∥ · ∥M is a norm for any invertible game M .

Lemma 9.6.5. Given an invertible game M , the M -Bell-locality quantity ∥A∥M verifies the
following two properties:

∥A∥M ≥ 0,

∥A+A′∥M ≤ ∥A∥M + ∥A′∥M .

In particular, ∥ · ∥M is a norm.

Proof. To prove the first property we shall prove that :

• ∀α ∈ Rwe have ∥αA∥M = |α|∥A∥M .

• ∥A∥M = 0 =⇒ A = 0

Obviously we have

∥αA∥M = λmax

 N∑
y=1

∣∣∣∣ N∑
x=1

αMxy Ax

∣∣∣∣
 = |α|λmax

 N∑
y=1

∣∣∣∣ N∑
x=1

Mxy Ax

∣∣∣∣
 = |α|∥A∥M

For the second property we have

∥A∥M = λmax

 N∑
y=1

∣∣∣∣ N∑
x=1

Mxy Ax

∣∣∣∣
 = 0 =⇒

N∑
x=1

Mxy Ax = 0 =⇒ A = 0

where the first implication is due to the positivity of |M⊤A| and the second implication is
obtained by the assumption of the invertibility of M and thus M⊤.
For the second property we have

∥A+A′∥M = sup
∥ψ∥=1

sup
∥By∥≤1

〈
ψ
∣∣∣ N∑
x,y=1

Mxy (Ax +A′
x)⊗By

∣∣∣ψ〉

≤ sup
∥ψ∥=1

sup
∥By∥≤1

〈
ψ
∣∣∣ N∑
x,y=1

Mxy Ax ⊗By

∣∣∣ψ〉+ sup
∥ψ∥=1

sup
∥By∥≤1

〈
ψ
∣∣∣ N∑
x,y=1

Mxy A
′
x ⊗By

∣∣∣ψ〉
Hence we have

∥A+A′∥M ≤ ∥A∥M + ∥A′∥M .

In the last lemma we have shown that ∥A∥M is a norm (for an invertible Bell functional
M). We shall call this norm the M -Bell-locality norm.

The (real) vector spaces RN , resp. Msa
d (C) shall be endowed with the ∥ · ∥M , resp. the

operator norm (or the Schatten-∞ norm, S∞). Note that there is an abuse of notation here: we
shall use ∥·∥M to denote norms on RN and on RN⊗Msa

d (C); the situation will be clear from the
context. We shall now investigate the properties of the ∥ · ∥M norm with respect to this tensor
product structure. We will consider that for given N -tuple of observables (A1, A2, . . . , AN ), we
associate the tensor

A :=
N∑
x=1

ex ⊗Ax ∈ RN ⊗Msa
d (C).
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Definition 9.6.6. Given p ∈ RN , we define the following quantity:

∥p∥M :=
N∑
y=1

∣∣∣∣ N∑
x=1

Mxy px

∣∣∣∣ = ∥M⊤p∥1.

In the lemma below we will show that ∥ · ∥M is a norm.

Lemma 9.6.7. Given an invertible matrix M , the function RN ∋ p 7→ ∥p∥M is a norm.

Proof. Obviously we have ∥αp∥M = |α| ∥p∥M for all α ∈ R.
Now we will show that ∥p∥M = 0 =⇒ p = 0

∥p∥M =
N∑
y=1

∣∣∣∣ N∑
x=1

Mxy px

∣∣∣∣ = 0 =⇒
N∑
x=1

Mxy px = 0 ⇐⇒ (M⊤p)y = 0

by using the assumption that M is invertible we have necessarily p = 0, which ends the proof
of ∥p∥M ≥ 0.
Now we prove the triangle inequality ∥p+ p′∥M ≤ ∥p∥M + ∥p′∥M .
Let’s consider

∥p+ p′∥M =

N∑
y=1

∣∣∣∣ N∑
x=1

Mxy (px + p′x)

∣∣∣∣ ≤ N∑
y=1

∣∣∣∣ N∑
x=1

Mxy px

∣∣∣∣+ N∑
y=1

∣∣∣∣ N∑
x=1

Mxy p
′
x

∣∣∣∣ = ∥p∥M + ∥p′∥M

Thus we have shown that ∥ · ∥M is a norm.

By the Lemma 9.6.7, we endow RN with the norm ∥ · ∥M , obtaining a Banach space (RN , ∥ ·
∥M ). In the following, we shall investigate the dual space of (RN , ∥ · ∥M ). For that we shall
compute the dual norm of ∥ · ∥M denoted by ∥ · ∥∗M .

Proposition 9.6.8. The dual norm ∥ · ∥∗M is given by:

∀p ∈ RN , ∥p∥∗M = max
y

∣∣∣ N∑
z=1

(M−1)yz pz

∣∣∣ = ∥M−1p∥∞.

Proof. Let q, p ∈ RN we have

|⟨p, q⟩| =
∣∣∣ N∑
x=1

px qx

∣∣∣ = ∣∣∣ N∑
x,y,z=1

qxMxyM
−1
yz pz

∣∣∣ = ∣∣∣ N∑
y=1

( N∑
x=1

Mxy qy

)( N∑
z=1

M−1
yz pz

)∣∣∣
≤

N∑
y=1

∣∣∣ N∑
x=1

Mxy qx

∣∣∣∣∣∣ N∑
z=1

M−1
yz pz

∣∣∣ ≤ (max
y

∣∣∣ N∑
z=1

M−1
yz pz

∣∣∣) N∑
y=1

∣∣∣ N∑
x=1

Mxyqx

∣∣∣
= max

y

∣∣∣ N∑
z=1

M−1
yz pz

∣∣∣ ∥q∥M .
where we have used in the second equality that M ·M−1 = I. By taking the supremum over
∥q∥M ≤ 1, we have shown that ∥p∥∗M ≤ ∥M−1p∥∞. To show the converse inequality, note that

max
y

∣∣∣ N∑
z=1

M−1
yz pz

∣∣∣ = ⟨p, q⟩, for qz = ε(M−1)y0z

for some y0 ∈ [d] achieving the maximum, and ε = ±1. In order to conclude, we have to
establish that ∥q∥M ≤ 1. Indeed, we have

∥q∥M =
∑
y

∣∣∣∑
x

Mxyε(M
−1)y0x

∣∣∣ =∑
y

∣∣(M−1M)y0y
∣∣ = 1.
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The Banach space (RN , ∥·∥∗M ) is the dual of (RN , ∥·∥M ): (RN , ∥·∥M )∗ = (RN , ∥·∥∗M ). Now,
we are ready to show the main theorem of this section, that the norm RN⊗Msa

d (C) ∋ A→ ∥A∥M
is a tensor norm (or a reasonable crossnorm) in the sense of Definition 9.4.4. To this end, using
Proposition 9.4.5, it suffices to show that:

∥A∥RN⊗εMsa
d (C) ≤ ∥A∥M ≤ ∥A∥RN⊗πMsa

d (C)

where RN is endowed with the norm ∥ · ∥M and Msa
d with the norm ∥ · ∥∞. Before we show

that ∥A∥M is a tensor norm, we shall show the following proposition for tensors of rank one
A = p⊗B ∈ RN ⊗Msa

d .

Proposition 9.6.9. Given A ∈ RN ⊗Msa
d (C) with RN and M sa

d (C) are endowed with ∥ · ∥M
and the natural operator norm respectively. Given the particular decomposition A = p⊗B with
p ∈ (RN , ∥ · ∥M ) and B ∈ (Msa

d (C), ∥ · ∥∞), one has

∥p⊗B∥M = ∥p∥M∥B∥∞.

Proof. Given A = p⊗B one has

∥p⊗B∥M = λmax

[ N∑
y=1

∣∣∣∣ N∑
x=1

Mxy pxB

∣∣∣∣] = λmax[|B|]
N∑
y=1

∣∣∣∣ N∑
x=1

Mxy px

∣∣∣∣ = ∥B∥∞∥p∥M .

Above, we have used the following fact: for selfadjoint matrices B,

∥B∥∞ = max
λ eig. of B

|λ| = max
λ eig. of |B|

λ = λmax[|B|].

We now state and prove the following important result, establishing that the norm ∥ · ∥M is
indeed a tensor norm.

Theorem 9.6.10. For a fixed N -input, 2-output invertible non-local game M , the quantity
∥ · ∥M introduced in Definition 9.6.1, which characterizes the largest quantum bias of the game
M when one fixes Alice’s dichotomic measurements, is a reasonable crossnorm on Msa

d (C)N ∼=
RN ⊗Msa

d (C):
∥A∥RN⊗εMsa

d (C) ≤ ∥A∥M ≤ ∥A∥RN⊗πMsa
d (C)

with (RN , ∥ · ∥M ) and (Msa
d (C), ∥ · ∥∞).

Before we give the proof of the theorem we recall the definitions of the projective and the
injective norms in our setting:

∥A∥RN⊗πMsa
d (C) := inf

{ k∑
i=1

∥pi∥M ∥Xi∥∞, A =
k∑
i=1

pi ⊗Xi

}
.

∥A∥RN⊗εMsa
d (C) := sup

{
⟨π ⊗ α,A⟩; ∥π∥∗M ≤ 1, ∥α∥1 ≤ 1

}
.

with Msa
d (C) ∋ α→ ∥α∥1 = Tr |α| is the Schatten 1-norm (or the nuclear norm).

Proof. We shall prove first the easy direction: ∥A∥M ≤ ∥A∥RN⊗πMsa
d (C). Let us consider a

decomposition A =
∑k

i=1 pi ⊗Xi. We have

∥A∥M =
∥∥∥ k∑
i=1

pi ⊗Xi

∥∥∥
M

≤
k∑
i=1

∥pi ⊗Xi∥M =
k∑
i=1

∥pi∥M∥Xi∥∞,
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where the factorization property follows by Proposition 9.6.9. Hence we have

∥A∥M ≤ ∥A∥RN⊗πMsa
d (C).

We shall now prove that ∥A∥RN⊗εMsa
d (C) ≤ ∥A∥M . Let α = ±|φ⟩⟨φ| ∈ (Msa

d be an extremal

point of the unit ball of the S1 space and π ∈ (RN , ∥ · ∥∗M ). We have

|⟨π ⊗ α,A⟩| =
∣∣∣〈α, N∑

x=1

πxAx

〉∣∣∣ = ∣∣∣〈α, N∑
x,y,z=1

AzMzyM
−1
yx πx

〉∣∣∣
=

N∑
y=1

∣∣∣ N∑
z=1

Mzy ⟨α,Az⟩
∣∣∣∣∣∣∑
x=1

M−1
yx πx

∣∣∣ ≤ N∑
y=1

∣∣∣ N∑
z=1

Mzy ⟨α,Az⟩
∣∣∣max

y

∣∣∣∑
x=1

M−1
yx πx

∣∣∣
= ∥π∥∗M

N∑
y=1

∣∣∣ N∑
z=1

Mzy ⟨α,Az⟩
∣∣∣ = ∥π∥∗M

N∑
y=1

∣∣∣ N∑
z=1

⟨α,Mzy Az⟩
∣∣∣

= ∥π∥∗M
N∑
y=1

∣∣∣ N∑
z=1

Tr
[
αMzy Az

]∣∣∣ = ∥π∥∗M
N∑
y=1

∣∣∣ N∑
z=1

⟨φ| Mzy Az |φ⟩
∣∣∣

= ∥π∥∗M
N∑
y=1

∣∣∣ ⟨φ| ( N∑
z=1

Mzy Az

)+
|φ⟩ − ⟨φ|

( N∑
z=1

Mzy Az

)−
|φ⟩
∣∣∣

≤ ∥π∥∗M
N∑
y=1

[∣∣∣ ⟨φ| ( N∑
z=1

Mzy Az

)+
|φ⟩
∣∣∣+ ∣∣∣ ⟨φ| ( N∑

z=1

Mzy Az

)−
|φ⟩
∣∣∣]

= ∥π∥∗M
N∑
y=1

⟨φ|
∣∣∣ N∑
z=1

Mzy Az

∣∣∣ |φ⟩ .
By taking the supremum ∥π∥∗M ≤ 1 and ∥α∥S1 ≤ 1 on the last expression we have:

sup{|⟨π⊗α,A⟩|; ∥π∥∗M ≤ 1 , ∥α∥S1 ≤ 1} ≤ sup
∥φ∥=1

N∑
y=1

⟨φ|
∣∣∣ N∑
z=1

Mzy Az

∣∣∣ |φ⟩ = λmax

[ N∑
y=1

∣∣∣ N∑
z=1

Mzy Az

∣∣∣].
Hence we have

∥A∥RN⊗εMsa
d (C) ≤ ∥A∥M

which ends the proof of the theorem.

9.7 Dichotomic measurement compatibility via tensor norms

Having addressed in the previous sections the maximum value of a non-local gameM with fixed
dichotomic observables on Alice’s side A, we now turn to the second object of our study, quantum
measurement (in-)compatibility. We characterize compatibility of dichotomic measurements (or
quantum ) using tensor norms, following [86]. Recall that we associate a dichotomic POVM
(E, I−E) to the corresponding observable A = E− (I−E) = 2E−I. In other words, the effect
E corresponds to the “+1” outcome, while the effect I − E corresponds to the other outcome,
“−1”. This way, the set of dichotomic POVMs is mapped to the set of selfadjoint operators
−I ≤ A ≤ I.

To a N -tuple of observables (A1, A2, . . . , AN ), we associate the tensor

A :=
N∑
i=1

ei ⊗Ai ∈ RN ⊗Msa
d (C). (9.2)
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The (real) vector spaces RN , resp. Msa
d (C) shall be endowed with the ℓ∞, resp. the operator

norm (or the Schatten-∞ norm, S∞). On the tensor product space

RN ⊗Msa
d (C) ∼= [Msa

d (C)]N

we shall consider two tensor norms: the injective norm

∥X = (X1, X2, . . . , XN )∥ε =
N

max
i=1

∥Xi∥∞ (9.3)

and the compatibility norm, which was introduced in [86, Proposition 9.4]. We review next its
definition and its basic properties, in order to make the presentation self-contained. We note
however that the situation considered in [86, Section 9] is more general, going beyond the case
of quantum mechanics.

Definition 9.7.1. For a tensor X ∈ RN ⊗Msa
d (C), we define the following quantity, which we

call the compatibility norm of X:

∥X∥c := inf

∥∥∥
K∑
j=1

Hj

∥∥∥
∞

: X =
K∑
j=1

zj ⊗Hj , s.t. ∀j ∈ [K], ∥zj∥∞ ≤ 1 and Hj ≥ 0

 . (9.4)

Note that in the case of a single matrix (N = 1) we have ∥(X1)∥c = ∥X1∥∞, and that, in
general, we have

∥X∥c = inf

t : X =

K∑
j=1

zj ⊗Hj , s.t.

K∑
j=1

Hj = tId and ∀j ∈ [K], ∥zj∥∞ = 1, Hj ≥ 0

 .

Indeed, the condition ∥zj∥ = 1 can be imposed by replacing a non-zero term zj ⊗ Hj by
zj/∥zj∥∞ ⊗ ∥zj∥∞Hj , while the condition

∑
j Hj = tId can be imposed by adding the term

0⊗ (tId −
∑

j Hj) to the decomposition.

Proposition 9.7.2. The ∥ · ∥c quantity is a tensor norm on (RN , ∥ · ∥∞)⊗ (Msa
d (C), ∥ · ∥∞).

Proof. Let us start with the triangle inequality, ∥A + B∥c ≤ ∥A∥c + ∥B∥c. Consider optimal
decompositions

A =
∑
j

zj ⊗Hj

B =
∑
k

wk ⊗ Tk

such that
∥A∥c =

∥∥∥∑
j

Hj

∥∥∥ and ∥B∥c =
∥∥∥∑

k

Tk

∥∥∥.
Then,

A+B =
∑
j

zj ⊗Hj +
∑
k

wk ⊗ Tk

is a valid decomposition for A+B, hence

∥A+B∥c ≤
∥∥∥∑

j

Hj +
∑
k

Tk

∥∥∥ ≤
∥∥∥∑

j

Hj

∥∥∥+ ∥∥∥∑
k

Tk

∥∥∥ = ∥A∥c + ∥B∥c.
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The scaling equality ∥λA∥c = |λ|∥A∥c is straightforward, and left to the reader. Consider
now A such that ∥A∥c = 0. Then, for all ε > 0, there is a finite decomposition A =

∑
j zj ⊗Hj

such that ∥
∑

j Hj∥ ≤ ε. We have then, for all x ∈ [N ],

∥Ax∥ =
∥∥∥∑

j

zj(x)Hj

∥∥∥ ≤
∥∥∥∑

j

|zj(k)|Hj

∥∥∥ ≤
∥∥∥∑

j

Hj

∥∥∥ ≤ ε.

Taking ε→ 0 shows that Ax = 0 for all x, and thus A = 0.
The fact that the compatibility norm is bounded by the injective and projective norms is

established in [87, Proposition 3.3]. Finally, let us show that ∥ · ∥c factorizes on simple tensors.
To this end, consider a (non-zero) product tensor A = w ⊗ T with ∥w∥∞ = 1 (this can always
be enforced by absorbing the norm of w into T ). On the one hand, we have

∥A∥c ≤ ∥T∥ = ∥w∥∞∥T∥,

establishing one inequality. Consider now an optimal decomposition

w ⊗ T =
∑
j

zj ⊗Hj

with ∥zj∥∞ ≤ 1, Hj ≥ 0, and ∥w ⊗ T∥c = ∥
∑

j Hj∥. Consider an index k ∈ [N ] such that
∥w∥∞ = |w(k)|. We have then w(k)T =

∑
j zj(k)Hj and thus

∥w∥∞∥T∥ =
∥∥∥∑

j

zj(k)Hj

∥∥∥ ≤
∥∥∥∑

j

|zj(k)|Hj

∥∥∥ ≤
∥∥∥∑

j

Hj

∥∥∥ = ∥w ⊗ T∥c,

finishing the proof.

We specialize now [86, Theorem 9.2] to the case of quantum mechanics, showing that the
compatibility norm from Definition 9.7.1.

Theorem 9.7.3. Let A = (A1, . . . , AN ) be a N -tuple of self-adjoint d × d complex matrices.
Then:

1. A is a collection of dichotomic quantum observables (i.e. ∥Ai∥∞ ≤ 1 ∀i) if and only if
∥A∥ε ≤ 1, where ∥ · ∥ε quantity is the ℓN∞ ⊗ε S

d
∞ tensor norm.

2. A is a collection of compatible dichotomic quantum observables if and only if ∥A∥c ≤ 1.

Proof. The first statement is a direct consequence of (9.3). For the second statement, we shall
prove the two implications separately.

First, consider compatible dichotomic observables A1, . . . , AN , and their joint POVM X,
having Xε ≥ 0 indexed by sign vectors ε ∈ {±1}N , such that

∀i ∈ [N ], ∀s ∈ {±1}, Esi =
Id + sAi

2
=

∑
ε∈{±1}N : εi=s

Xε.

In particular, we have, for all i ∈ [N ],

Ai = −Id + 2
∑

ε∈{±1}N : εi=+1

Xε
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and thus

A =
N∑
i=1

ei ⊗Ai =
N∑
i=1

(−ei)⊗ Id + 2
∑

ε∈{±1}N

( ∑
i : εi=+1

ei

)
⊗Xε

=
∑

ε∈{±1}N

(
2
∑

i : εi=+1

ei −
∑
i

ei

)
⊗Xε

=
∑

ε∈{±1}N

(∑
i

εiei︸ ︷︷ ︸
=:zε

)
⊗Xε.

We have thus obtained above a decomposition of the tensor A with 2N terms, ∥zε∥∞ = 1 and∑
εXε = Id, proving that ∥A∥c ≤ 1.
For the reverse implication, start with a decomposition A =

∑
j zj ⊗ Hj with ∥zj∥∞ ≤ 1,

Hj ≥ 0 and
∑

j Hj = Id. One can recover the observables and the from this decomposition:

Ai =
∑
j

zj(i)Hj and E±
i =

∑
j

1± zj(i)

2
Hj .

One recognizes in the expression above the description of the compatibility of the POVMs
(E+

i , E
−
i )i∈[N ] as post-processing from Proposition 9.3.3:

E±
i =

∑
j

pi(±|j)Hj ,

where the conditional probabilities pi are given by

pi(±|j) = 1± zj(i)

2
∈ [0, 1].

The compatibility norm of a tensor A is related to the noise parameter Γ from Definition
9.3.7. The following proposition provides an operational interpretation of the compatibility
norm ∥A∥c, as the inverse of the minimal quantity of white noise that needs to be mixed in the
measurements A in order to render them compatible.

Proposition 9.7.4. For any N -tuple of observables A = (A1, A2, . . . , AN ) ̸= 0,

Γ(A) =
1

∥A∥c
.

Proof. Note first that, on the level of observables, adding noise to a dichotomic measurement
corresponds to scaling:

Aη =

[
ηE + (1− η)

I

2

]
−
[
I − ηE − (1− η)

I

2

]
= 2ηE − ηI = ηA.

Hence,

Γ(A) = max{η : (Aη1, . . . , A
η
N ) compatible}

= max{η : ∥Aη1, . . . , A
η
N∥c ≤ 1}

= max{η : η∥A1, . . . , AN∥c ≤ 1}

=
1

∥A∥c
.
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Example 9.7.5. Let us consider the example of the unbiased Pauli measurements,

1

2
(I2 ± xσX),

1

2
(I2 ± yσY ),

1

2
(I2 ± zσZ),

where (x, y, z) ∈ [0, 1]3 are real parameters describing the noise in the measurements. These
three POVMs correspond to the observables

AX = xσX , AY = yσY , AZ = zσZ .

It is known [135, 136] that these observables are compatible if and only if x2 + y2 + z2 ≤ 1,
hence

∥(AX , AY , AZ)∥c =
√
x2 + y2 + z2 = ∥(x, y, z)∥2.

9.8 The relation between nonlocality and incompatibility

Having introduced the main conceptual definitions of the (in)compatibility norm and M-Bell-
locality norm in the previous sections that formalize the compatibility and the nonlocality
physical notions for fixed measurements on Alice’s side apparatus and invertible non-local games
M , we bring together and compare the two norms. In this section we introduce the main
theorems of the paper. It was shown in [9] that the two notions are equivalent in the case of
the CHSH game. Using the framework of tensor norms, we shall give a quantitative and precise
answer to the following question:

When is measurement incompatibility equivalent to nonlocality for general games?

It turns out that the answer to this question is given by a comparison between the compatibility
norm and the M-Bell-locality norm. For the reader’s convenience, we recall the definitions of
the two tensor norms that we introduced in the Sections 9.6 and 9.7, in relation to, respectively,
Bell inequality violations and measurement incompatibility.

• The M -Bell-locality norm (see Definition 9.6.1 and Theorem 9.6.10)

∥A∥M := sup
∥ψ∥=1

sup
∥By∥≤1

〈
ψ
∣∣∣ N∑
x,y=1

Mxy Ax ⊗By

∣∣∣ψ〉 = λmax

[ N∑
y=1

∣∣∣∣ N∑
x=1

Mxy Ax

∣∣∣∣].
• The compatbility norm (see Definition 9.7.1 and Theorem 9.7.3)

∥A∥c := inf

∥∥∥
K∑
j=1

Hj

∥∥∥
∞

: A =
K∑
j=1

zj ⊗Hj , s.t. ∀j ∈ [K], ∥zj∥∞ ≤ 1 and Hj ≥ 0

 .

In what follows, we shall compare these two norms, in order to relate, in a quantitative
manner, the two fundamental physical phenomena of Bell nonlocality and measurement incom-
patibility.

We start with a reformulation, using the language of tensor norms, of the following well
established fact: an observed violation of the Bell inequality M implies necessarily the incom-
patibility of Alice’s measurements. Mathematically, this corresponds to upper bounding the
M -Bell-locality norm of Alice’s measurements by their compatibility norm.

Theorem 9.8.1. Consider a N -input, 2-output non-local inevrtible game M , corresponding to
a matrix M ∈ MN (R). Then, for any N -tuple of self-adjoint matrices A = (A1, . . . , AN ), we
have

∥A∥M ≤ ∥A∥c∥M∥ℓN1 ⊗εℓN1
= ∥A∥c β(M). (9.5)

In particular, if Alice’s measurements A are M -Bell-non-local (in the sense of Definition 9.6.3),
then they must be incompatible.
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Proof. Let us consider the optimal decomposition ∥A∥c = ∥
∑N

j=1Cj∥∞ with A =
∑N

j=1 zj⊗Cj ,
∥zj∥∞ ≤ 1 and Cj ≥ 0 for all j. Thus we have Ax =

∑N
j=1 zj(x)Cj .

We compute the upper bound of the M -Bell-locality norm ∥A∥M .

∥A∥M = λmax

 N∑
y=1

∣∣∣∣ N∑
x=1

Mxy Ax

∣∣∣∣
 = λmax

 N∑
y=1

∣∣∣∣ N∑
j=1

N∑
x=1

Mxy zj(x)Cj

∣∣∣∣


≤ λmax

 N∑
j=1

N∑
y=1

∣∣∣∣ N∑
x=1

Mxy zj(x)

∣∣∣∣Cj
 = λmax

 N∑
j=1

N∑
y=1

N∑
x=1

εyMxy zj(x)Cj


We have used

N∑
y=1

∣∣∣∣ N∑
x=1

Mxy zj(x)

∣∣∣∣ = N∑
y=1

N∑
x=1

εyMxy zj(x)

with ε = {±1}N .
Then we have

∥A∥M ≤ λmax

 N∑
j=1

N∑
y=1

N∑
x=1

εyMxy zj(x)Cj

 ≤ λmax

 N∑
j=1

Cj ∥M∥ℓ1⊗εℓ1


= λmax

 N∑
j=1

Cj

 ∥M∥ℓ1⊗εℓ1 = ∥A∥c∥M∥ℓ1⊗εℓ1

where ∥M∥ℓ1⊗εℓ1 = sup
∥ε∥∞≤1,∥zj∥∞≤1

⟨M, zj ⊗ ε⟩.

In the following we will show, for invertible Bell functionals, that the compatibility is upper
bounded by the M -Bell-locality norm.

Theorem 9.8.2. Consider a N -input, 2-output non-local game M , corresponding to an invert-
ible matrix M ∈ MN (R). Then, for any N -tuple of self-adjoint matrices A = (A1, . . . , AN ), we
have

∥A∥c ≤ ∥A∥M∥M−1∥ℓN∞⊗εℓN∞
. (9.6)

Proof. Let us consider

Cy =

N∑
x=1

MxyAx = (M⊤A)y =⇒ Ax = ((M⊤)−1C)x =

N∑
y=1

(M−1)y,xCy.

Let us also consider the following decomposition of A =
∑N

x=1 ex ⊗ Ax with ex the canonical
basis vectors. We have

A =
N∑
x=1

ex ⊗Ax =
N∑
y=1

N∑
x=1

(M−1)y,xex ⊗ Cy

=
N∑
y=1

[
N∑
x=1

(M−1)y,xex

]
⊗ C+

y +

N∑
y=1

[
−

N∑
x=1

(M−1)y,xex

]
⊗ C−

y

=
N∑
y=1

e′y ⊗ C+
y +

N∑
y=1

−e′y ⊗ C−
y
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where we have decomposed Cy = C+
y − C−

y into positive and negative parts C±
y ≥ 0 for all

y ∈ [N ] and e′y :=
∑N

x=1(M
−1)y,xex.

Observe that

∥e′y∥∞ =
∥∥∥ N∑
x=1

(M−1)y,xex

∥∥∥
∞

=
∥∥∥(M−1e)y

∥∥∥
∞

≤ ∥M−1∥∞∥e∥∞ = ∥M−1∥ℓN∞⊗εℓN∞

where we recall by the Definition 10.2.12 that

∥M−1∥ℓN∞⊗εℓN∞
:= sup

a,b∈B(ℓN1 (R))
|⟨M−1, a⊗ b⟩| = max

i,j
|(M−1)i,j | = ∥M−1∥∞.

With the norm formulation above, ∥M−1∥ℓN∞⊗εℓN∞
and ∥M−1∥∞ are equal if we consider M−1

in its matrix or tensor representations. Hence, we have

∥e′y∥∞ ≤ ∥M−1∥ℓN∞⊗εℓN∞
.

We consider now the normalised vectors

ay :=
ey

∥M−1∥ℓN∞⊗εℓN∞

∈ B(ℓ∞(RN ))

By normalising the vectors one has

A =
N∑
y=1

∥M−1∥ℓN∞⊗εℓN∞
ay ⊗ C+

y −
N∑
y=1

∥M−1∥ℓN∞⊗εℓN∞
ay ⊗ C−

y

We recognize above a valid decomposition of the tensor A as in Eq. (9.4). Hence

∥A∥c ≤
∥∥∥ N∑
y=1

∥M−1∥ℓN∞⊗εℓN∞
(C+

y + C−
y )
∥∥∥
∞

= ∥M−1∥ℓN∞⊗εℓN∞
λmax

( N∑
y=1

∣∣∣Cy∣∣∣) = ∥M−1∥ℓN∞⊗εℓN∞
∥A∥M .

Putting together Theorems 9.8.1 and 9.8.2, we recover the main result from [9]: for N = 2
and the CHSH matrix

MCHSH =
1

2

[
1 1
1 −1

]
,

we have

β(MCHSH) = 1 and (MCHSH)
−1 =

[
1 1
1 −1

]
.

It follows thus, from Eqs. (10.5.9) and (10.2) that

∥ · ∥c = ∥ · ∥MCHSH
. (9.7)

Remark 9.8.3. We have seen in Section 9.5 that for the CHSH game we have

∥A∥MCHSH
=

1

Γ(A)
.

One can see also that within Proposition 9.7.4 we have, with respect to the compatibility norm,

∥A∥c =
1

Γ(A)
.
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In what follows, we compare the compatibility norm and the Bell-locality norm in two special
settings, a modified CHSH game, and the pure correlation I3322 game. As we shall see, in these
situations, the two norms are different.

Let us first consider the following modified CHSH game defined by the following matrix

Mt :=

[
1 1
1 −t

]
,

where t is a real parameter taking values in R \ {−1}, such that the matrix Mt is invertible.
We start by normalizing the matrix Mt such that its classical bias β is equal to 1. A simple
calculation shows that

β(Mt) :=

{
3− t for t ≤ 1

1 + t for t > 1
= 2 + |t− 1|.

We are thus going to work with the normalized version

M ′
t =

1

β(Mt)

[
1 1
1 −t

]
,

for which β(M ′
t) = 1. We consider the following pair of spin observables

A := (σX , yσY ),

where y ∈ [−1, 1] is a parameter we shall vary. These two observables correspond to, respectively,
a sharp measurement in the eigenbasis of σX and a noisy measurement in the eigenbasis of σY .

In the following, we calculate ∥A∥c and ∥A∥M ′
t
, for different values of the parameters t and

y. Since the t = 1 value corresponds to the CHSH game (for which ∥ · ∥c = ∥ · ∥MCHSH
), the

compatibility norm reads

∥A∥c = ∥A∥M ′
t=1

= ∥A∥MCHSH
= λmax

[ 2∑
y=1

∣∣∣∣ 2∑
x=1

MxyAx

∣∣∣∣] = 1

2
λmax

[
|σX + yσY |+ |σX − yσY |

]
.

A simple calculation shows that

∥A∥c =
√
1 + y2 =: r.

We now compute ∥A∥M ′
t
for the normalized modified CHSH game:

∥A∥M ′
t
=

1

2 + |t− 1|
λmax

[
|σX + yσY |+ |σX − tyσY |

]
=

rt + r

2 + |t− 1|
.

with rt :=
√

1 + (yt)2; above, we have used the following fact:

∀x, y ∈ R, |xσX + yσY | =
∣∣∣∣[ 0 x− iy
x+ iy 0

]∣∣∣∣ =√x2 + y2 I2.

. We plot the norm ∥A∥M ′
t
in Figure 9.4, the region t and y where Alice observes a Bell inequality

violation ∥A∥M ′
t
> β(Mt) = 1 in Figure 9.5, and the ratio of the two norms in Figure 9.6. Note

that the plot for t = 1 corresponds to the CHSH game: the two norms are equal (see Eq. (9.7)).
At y = 1, Alice’s measurements are sharp: A = (σX , σY ). One observes violations of the game
M ′
t for the parameter values

∥Ay=1∥M ′
t
> 1 ⇐⇒ t >

9− 4
√
2

7
=: t∗.
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The values at y = 0 also have a special meaning, since, in this case,

A = (σX , 0) = (1, 0)⊗ σX .

By the tensor norm property of the compatibility norm (see Proposition 9.7.2), we have

∥A∥c = ∥(1, 0)∥ℓ∞ · ∥σX∥S∞ = 1.

Similarly, the tensor norm property of the Bell-locality norm yields

∥A∥M ′
t
= ∥(1, 0)∥M ′

t
· ∥σX∥S∞ =

2

β(Mt)
· 1 =

2

2 + |t− 1|
≤ 1.

In Figure 9.6, the dashed curve corresponds to the limit |t| → ∞, in which case

lim
|t|→∞

∥A∥M ′
t

∥A∥c
=

|y|√
1 + y2

.

Finally, the dotted line corresponds to the game M ′
t for t = −1. This game is not invertible, so

the quantity ∥ · ∥M ′
−1

is not a norm.

-1.0 -0.5 0.5 1.0
y

0.4

0.6

0.8

1.0

1.2

1.4

||A||M't

t=0

t=0.3

t=0.5

t=0.9

t=1

t=2

t=10

β(M't)=1

Figure 9.4: The norm ∥A∥M ′
t
for y ∈ [−1, 1] and different value of t. The measurements A

are σX and yσY , a noisy version of σY . For t = 1 (the CHSH game), one observes violations
(i.e. ∥A∥M ′

t
> β(M ′

t) = 1) for every value of y ∈ [−1, 1].

In the same spirit as the example above we shall now analyze another deformation of the
CHSH game that was considered in [137]. In the following we shall recall the game, and analyse
it as the game considered before with the tools that we introduced.

The deformation of the CHSH game that was considered in [137], was given by

G(p, q) =

[
p q p (1− q)

q (1− p) −(1− q) (1− p)

]
,

where p, q ∈ [0, 1]2. Note that this matrix is invertible for all (p, q) ∈ (0, 1)2.
In the following we give the classical bias β(G(p, q)) for different p, q ∈ [0, 1]2.
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-1.0 -0.5 0.0 0.5 1.0

0

1

2

3

4

5

y

t

Figure 9.5: The filled region corresponds to the set of parameters (y, t) for which Alice’s mea-
surements (σX and yσY ) are Bell non-local (for the game M ′

t): ∥A∥M ′
t
> 1 = β(M ′

t). Note

that for t > t∗ = (9 − 4
√
2)/7, the game M ′

t does not allow quantum violations when Alice’s
measurements are of the form A = (σX , yσY ).

• For p and q satisfying p, q ≥ 1
2 , the classical bias of the game β(G(p, q)) is given by

β(G(p, q)) = 1− 2 (1− p) · (1− q)

• For p and q satisfying p ≤ 1
2 , q ≥

1
2 , the classical bias of the game β(G(p, q)) is given by

β(G(p, q)) = 1− 2 p · (1− q)

• For p and q satisfying q ≤ 1
2 , p ≥

1
2 , the classical bias of the game β(G(p, q)) is given by

β(G(p, q)) = 1− 2 q · (1− p)

• For p and q satisfying p, q ≤ 1
2 , the classical bias of the game β(G(p, q)) is given by

β(G(p, q)) = 1− 2p · q

.

Remark 9.8.4. The classical bias of the game β(G(p, q)) for p, q ≥ 1
2 was already shown in

[137].
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t=2

t=10

t=2

t=-1

|y|/ 1 + y2

Figure 9.6: The ratio ∥A∥M ′
t
/ ∥A∥c for y ∈ [−1, 1] and different value of t. We notice that the

ration is always smaller than 1, except for t = 1, which is the CHSH game.

To give the classical bias of the game β(G(p, q)) for different p, q ∈ [0, 1]2, one shall use
min(·, ·) defined as

min(x, y) :=
1

2
(x+ y − |x− y|).

with x, y ∈ R.
One can easily check that for p ∈ [0, 1] we have

min(p, 1− p) =
1

2
(1− |2p− 1|) =

{
1− p for p ≥ 1

2

p for p ≤ 1
2

The same results hold for min(q, 1− q) with q ∈ [0, 1].
It can be easily seen that the classical bias of the game for p, q ∈ [0, 1]2 is given by:

β(G(p, q)) = 1− 2 ·min(p, 1− p)min(q, 1− q).

In our setting, we shall consider the normalised game G′(p, q) for all p, q ∈ [0, 1]2

G′(p, q) =
1

β(G(p, q))

[
p q p (1− q)

q (1− p) −(1− q) (1− p)

]
.

As in the example above we consider the following pair of spin observables

A := (σX , yσY ),

where y ∈ [−1, 1] is a parameter we shall vary. In the following we will compute the ∥A∥G′(p,q).

∥A∥G′
p,q

:= λmax

[ 2∑
y=1

∣∣∣∣ 2∑
x=1

G′(p, q)x,yAx

∣∣∣∣]
=

1

|β(G(p, q))|
λmax

(∣∣∣p q σX + y q (1− p)σY

∣∣∣+ ∣∣∣p (1− q)σX − y (1− p) (1− q)σY

∣∣∣).
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A simple calculation shows that

∥A∥G′(p,q) =
1

|1− 2min(p, 1− p)min(q, 1− q)|

([
p2 q2+y2 q2 (1−p)2

] 1
2
+
[
p2 (1−q)2+y2 (1−p)2 (1−q)2

] 1
2
)
.

Note that for p = 1/2, we have a simplification:

∥A∥G′(1/2,q) =

√
1 + y2

2max(q, 1− q)
=

∥A∥c
2max(q, 1− q)

.

We plot in Figure 9.7 the set of pairs (p, q) such that ∥A∥G′(p,q) > 1, that is the game
parameter region where Alice observes a Bell violation for different values of y ∈ [0, 1]. In
Figure 9.8 we plot the norm ∥A∥G′(p,q) while in Figure 9.9 the ratio of ∥A∥G′(p,q)/∥A∥c for fixed
value of p and q .
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Figure 9.7: The p,q region where Alice observe a violation ∥A∥G′(p,q) > 1 for different value of
y.

We now move on to the last example, the pure correlation part of the I3322 tight Bell
inequality (here, N = 3):

M3322 =
1

4

1 1 1
1 1 −1
1 −1 0

 .
The inverse of the matrix above has entries with absolute value 2, so our main result does not
apply. Indeed, one can see that

∥s(σX , σY , σZ)∥c ≤ 1 ⇐⇒ s ≤ 1√
3
,
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Figure 9.8: The norm ∥A∥G′(p,q) for y ∈ [−1, 1] and different value of p and q.
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Figure 9.9: The ratio ∥A∥G′(p,q)/∥A∥c for y ∈ [−1, 1] and different value of p and q.

while

∥s(σX , σY , σZ)∥M3322 ≤ 1 ⇐⇒ s ≤ 4√
2 + 2

√
3
>

1√
3
.

This shows that, for tensors in the positive direction (σX , σY , σZ), for parameter values

s ∈
(

1√
3
,

4√
2 + 2

√
3

]
,

we have
∥s(σX , σY , σZ)∥M3322 ≤ 1 < ∥s(σX , σY , σZ)∥c,

so there exist incompatible dichotomic Pauli measurements which do not violate the pure cor-
relation I3322 Bell inequality [89].
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9.9 Non-local games which characterize incompatibility

Up to this point, we have seen the following two inequalities relating the M -Bell-locality norm
∥ · ∥M and the compatibility norm ∥ · ∥c of a tuple of dichotomic quantum measurements:

∥A∥M ≤ ∥A∥c∥M∥ℓN1 ⊗εℓN1
and ∥A∥c ≤ ∥A∥M∥M−1∥ℓN∞⊗εℓN∞

.

In this section, we ask for which (invertible) non-local games M , these two inequalities, used
together, allow us to conclude that ∥ · ∥M = ∥ · ∥c. Such an equality would prove a strong
equivalence of Bell inequality violations and incompatibility for the gameM , in the spirit of [9].

First, note that, for an invertible gameM and a non-zero tuple of measurements A, we have

∥A∥M ≤ ∥A∥c∥M∥ℓN1 ⊗εℓN1
≤ ∥A∥M∥M−1∥ℓN∞⊗εℓN∞

∥M∥ℓN1 ⊗εℓN1
,

hence
∥M−1∥ℓN∞⊗εℓN∞

∥M∥ℓN1 ⊗εℓN1
≥ 1. (9.8)

In order to deduce that ∥ · ∥M = ∥ · ∥c, one requires

β(M) = ∥M∥ℓN1 ⊗εℓN1
= 1 and ∥M−1∥ℓN∞⊗εℓN∞

= 1.

Up to rescaling, this is equivalent to requiring that the inequality (10.3) should be saturated.
We now study the equality case in (10.3), which can be seen as an “uncertainty relation” for
the non-local game M .

Let us first show that (10.3) cannot be saturated for N ≥ 3. We recall and use a definition
from [138] to understand the ratio of ∥ · ∥X⊗πY and ∥ · ∥X⊗εY for two given Banach spaces X
and Y .

Definition 9.9.1. [138] Given two finite-dimensional Banach spaces X and Y . There will
always exist a constant 1 ≤ C <∞ such that:

∥ · ∥X⊗εY ≤ ∥ · ∥X⊗πY ≤ C∥ · ∥X⊗εY

One denotes ρ(X,Y ) the smallest C satisfying this inequality. Equivalently one has

ρ(X,Y ) = sup
0̸=z∈X⊗Y

∥z∥X⊗πY

∥z∥X⊗εY

We recall one of the important properties of ρ(X,Y ) in the case of ℓ1 and ℓ∞ spaces.

Proposition 9.9.2. [138, Proposition 13] For all N ≥ 2, we have

ρ(ℓN1 , ℓ
N
1 ) = ρ(ℓN∞, ℓ

N
∞) ≤

√
2N.

With the help of the definition of ρ(X,Y ) and proposition above, we can1 improve the
inequality (10.3).

Proposition 9.9.3. Let M a real and invertible matrix. Then one has

∥M−1∥ℓN∞⊗εℓN∞
∥M∥ℓN1 ⊗εℓN1

≥ N

ρ(ℓN∞, ℓ
N
∞)

≥
√
N

2
≥ 1.

for N ≥ 2. In particular, for N ≥ 3, the last inequality above is strict.

1We thank Carlos Palazuelos for the proof of the proposition.
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Proof. Let
N = Tr[M−1M ] = ⟨M̃,M⟩H.S ≤ ∥M∥ℓN1 ⊗εℓN1

∥M̃∥ℓN∞⊗πℓN∞

Where M̃ := (M−1)T Thus we have by definition 9.9.1 and we recall ⟨A,B⟩H.S := Tr[A∗B]

N ≤ ∥M∥ℓN1 ⊗εℓN1
∥M̃∥ℓN∞⊗εℓN∞

ρ(ℓN∞, ℓ
N
∞)

Thus we have

1 ≤ N

ρ(ℓN∞, ℓ
N
∞)

≤ ∥M∥ℓN1 ⊗εℓN1
∥M−1∥ℓN∞⊗εℓN∞

.

Having shown that inequality (10.3) cannot be saturated for N ≥ 3, we now focus on the
N = 2 case. We need the following lemma2.

Lemma 9.9.4. For any matrix X ∈ MN (C) and for any unitary operators U, V ∈ UN , we have

∥UXV ∗∥ℓN∞⊗εℓN∞
∥X∥ℓN∞⊗εℓN∞

≥ 1

N
| detX|2/N .

Equality holds if and only if both X and UXV ∗ are scalar multiples of Hadamard matrices.

Proof. Let x ∈ CN2
be the vectorization of X; we have

∥X∥ℓN∞⊗εℓN∞
= max

i,j∈[N ]
|Xij | = ∥x∥

ℓN2
∞
.

Moreover, the vectorization of UXV ∗ is given by

y := (U ⊗ V̄ )x.

Using the unitarity of U, V and the fact that for all vectors z ∈ CN2
, ∥z∥

ℓN2
∞

≥ ∥z∥2/N , we have

∥UXV ∗∥ℓN∞⊗εℓN∞
∥X∥ℓN∞⊗εℓN∞

= ∥y∥
ℓN2
∞

∥x∥
ℓN2
∞

≥ 1

N2
∥y∥2∥x∥2

=
1

N2
∥x∥22 =

1

N2
∥X∥22 =

1

N2

N∑
i=1

σi(X)2.

Above, σi(X) denote the singular values of X. Using now the arithmetic mean-geometric mean
(AM-GM) inequality, we have

1

N

N∑
i=1

σi(X)2 ≥

(
N∏
i=1

σi(X)2

) 1
N

= |detX|
2
N .

Hence

∥UXV ∗∥ℓN∞⊗εℓN∞
∥X∥ℓN∞⊗εℓN∞

≥ 1

N
|detX|

2
N ,

proving the inequality.
In the derivation above, we have used three inequalities: the lower bound on the ℓ∞ norm of

the vectors x, y by their ℓ2 norms, and the arithmetic and geometric inequality. If the former,
equality holds iff the entries of, respectively, x and y are flat; this corresponds to the matrices
X and UXV ∗ having, respectively, entries of identical absolute values. The latter corresponds
to the singular values of X being identical, which corresponds to X being a scalar multiple of
a unitary matrix. The announced equality condition follows from these considerations.

2We thank Zbigniew Pucha la for this result.
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Recall that the Fourier matrix, also known as the discrete Fourier transform (DFT), is given
by

F = N−1/2
[
ωij
]N−1

i,j=0
,

where ω = exp(2πi/N).

Proposition 9.9.5. For N = 2, all the invertible Bell functionals M ∈ M2(R) satisfying

∥M−1∥ℓ2∞⊗εℓ2∞
∥M∥ℓ21⊗εℓ21

= 1

are of the form

M = a

[
1 1
1 −1

]
with a ∈ R, a ̸= 0.

Proof. Since M ∈ M2(R) one note that

∥M−1∥ℓ2∞⊗εℓ2∞
=

1

|det(M)|
∥M∥ℓ2∞⊗εℓ2∞

and
∥M∥ℓ21⊗εℓ21

= ∥(T ⊗ T )M∥ℓ2∞⊗εℓ2∞
= 2 ∥(F ⊗ F )M∥ℓ2∞⊗εℓ2∞

where T =

[
1 1
1 −1

]
=

√
2F , is an isometry T : ℓ21 → ℓ2∞; geometrically, this corresponds to the

fact that the unit ball of ℓ21 (a diamond) is a scaled rotation of the unit ball of ℓ2∞ (a square).
Now using the lemma above one has

∥M−1∥ℓ2∞⊗εℓ2∞
∥M∥ℓ21⊗εℓ21

=
2

| det(M)|
∥M∥ℓ2∞⊗εℓ2∞

∥(F⊗F )M∥ℓ2∞⊗εℓ2∞
≥ 2

| det(M)|
| det(M)|

2
= 1

The equality holds as the lemma above iff M is a unitary and the entries of (F ⊗ F )M and M
are flat (i.e. have the same absolute value). Then M is a multiple of a Hadamard matrix :

M = a

[
1 1
1 −1

]
a ∈ R, a ̸= 0.

Gathering Propositions 9.9.3 and 9.9.5, we obtain the following important characterization
of non-local games M achieving equality in (10.3).

Theorem 9.9.6. The only invertible non-local games M ∈ MN (R) satisfying

∥M−1∥ℓ2∞⊗εℓ2∞
∥M∥ℓ21⊗εℓ21

= 1

have two questions (N = 2) and are variants of the CHSH game: M = aMCHSH for some a ̸= 0.

Note that saturating inequality (10.3) is just a sufficient condition for having ∥ · ∥M = ∥ · ∥c.
We leave the general case open: for which non-local games M , does one have ∥ · ∥M = ∥ · ∥c?
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9.10 Conclusion

Two of the most fundamental features of quantum mechanics are measurement incompatibility
and the nonlocality of correlations. In this work, we address the relation between the two con-
cepts within the natural framework of tensor norms. It was well-known that in order to observe
correlation nonlocality in a Bell-type experiment, one should use incompatible measurements.
Moreover, it was shown that in some particular cases, such as the CHSH game, incompatibility
and the violation of the Bell inequality are equivalent. In the current paper, we introduced a
natural framework in which one can directly compare the two notions. We have shown that the
incompatibility is not in general equivalent to the nonlocality, by comparing two tensor norms.

Finally, let us address some questions we have left open. First and foremost, our setting is
only adapted to dichotomic (2-outcome) POVMs; it would be interesting to extend the results
in this paper to measurements with an arbitrary number of outcomes. The main obstacle here
is encoding the outcomes of the g POVMs with more than 2 outcomes into a relevant tensor. In
Section 9.9, we have shown that the two tensor norms, the one associated to a non-local game
and the one associated to compatibility, cannot be shown to be equal using a simple chain of
inequalities (except in the case of the CHSH game and its variants). The question whether the
two norms can be equal (using other methods) is open. Here, one would need to rely on a more
general argument instead of relying on some particular inequalities. Finally, our methods only
cover XOR games with pure correlation terms; associating a tensor norm to more general games
(such as the full I3322 game) is an interesting open problem.
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Chapter 10

Resume en français
1

Ce chapitre est un résumé de thèse en français où chacune des sections correspond à un chapitre
du manuscrit. Nous reprendrons les deux concepts fondamentaux de la théorie quantique, à
savoir la compatibilité des mesures quantiques, les violations de l’inégalité de Bell, ainsi le
lien entre les deux. Il est bien connu que l’une des différences fondamentales entre la théorie
quantique et la physique classique est l’existence de mesures incompatibles. Nous disons que
deux mesures sont compatibles si nous pouvons les mesurer en même temps ; si elles ne le
sont pas, nous disons qu’elles sont incompatibles. L’autre notion que nous aborderons dans
cette thèse est la non-localité de la théorie quantique : au niveau quantique, le principe de
localité n’est pas respecté. Dans la Section 10.1, nous donnerons une brève introduction à la
théorie de l’information quantique. Dans la Section 10.2, nous donnerons une introduction à
la théorie des normes tensorielles sur les espaces de Banach, celle-ci jouera un rôle crucial dans
le cadre du lien entre la non-localité et l’incompatibilité. Dans la Section 10.3, nous donnons
une introduction à la non-localité et aux inégalités de Bell, nous introduisons le cadre des jeux
non-locaux. Dans la Section 10.4, nous introduirons la notion standard de compatibilité. Nous
introduirons la nouvelle notion de dimension de compatibilité introduite dans [1], qui est utilisée
pour analyser l’effet de la dimension de l’espace de Hilbert sur la compatibilité des mesures
quantiques. Intuitivement, la dimension de compatibilité demande si, pour un tuple donné de
mesures incompatibles dans un espace de Hilbert donné, on peut trouver un sous-espace de
dimension réduite pour qu’elles deviennent compatibles. Nous présenterons différents types de
modèles de bruit connus dans la littérature qui rendent compatibles des mesures incompatibles
en construisant des mesures bruitées données comme une combinaison convexe de la mesure
originale et d’un opérateur trivial. Nous explorerons également le lien entre le modèle de bruit
et le clonage quantique approximatif. Comme application de la dimension de compatibilité,
nous verrons que certaines mesures projectives bruitées incompatibles construites à partir de
bases mutuellement non biaisées deviennent compatibles si on réduit la dimension de l’espace
de Hilbert. Nous concluons cette section en introduisant la formulation de la compatibilité avec
le formalisme de la norme tensorielle connue sous le nom de norme (tensorielle) de compatibilité
. Dans la Section 10.5 nous allons faire le lien entre (in)compatibilité des mesures quantiques
et non localité. Il a été montré dans [9] que l’incompatibilité est équivalente à la violation de
l’inégalité de Bell pour le jeu CHSH, et la question de savoir si cette équivalence est valable pour
d’autres jeux restait ouverte. Dans cette section, nous allons aller au-delà du jeu CHSH, pour
cela nous allons prendre le point de vue des jeux non locaux. Dans ce cadre, pour analyser l’effet
de l’incompatibilité des mesures d’Alice sur les effets non-locaux, nous fixons les mesures d’Alice.
À partir de ses mesures, elle construira un tenseur et calculera la norme de G-Bell-(non)localité
et la norme du tenseur de compatibilité. La nouvelle notion de G-Bell-(non)localité capture la
violation d’une inégalité de Bell correspondant au jeu G. La norme de G-Bell-(non)localité est
calculée en optimisant les mesures de Bob sur l’état quantique partagé. Nous disons que les

1French summary, as required by the doctoral school rules
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mesures d’Alice sont G-Bell-locales si elles sont inférieures à la valeur classique du jeu, qui est
l’espérance maximale de gagner le jeu dans le cadre classique. Nous avons montré, à l’aide de
certaines inégalités, que la norme du tenseur de compatibilité et la norme de G-Bell-(non)localité
ne sont, en général, pas égales. Cependant, dans [9], pour le jeu CHSH, les auteurs ont montré
qu’elles sont équivalentes ; en traduisant ce résultat dans notre contexte, nous voyons que les
deux normes sont égales. Avec l’équivalence forte au sens de [9], nous avons montré qu’avec des
conditions suffisantes, le seul jeu satisfaisant cette équivalence est le jeu CHSH. Dans la Section
10.6, nous conclurons en passant en revue les contributions, et nous terminerons par quelques
questions ouvertes et des directions de recherche futures.

10.1 Information quantique

Dans cette section, nous introduisons les concepts et outils de l’information quantique. A un
système physique S, nous associons un espace de Hilbert complexe de dimension finie H. Pour
des systèmes physiques plus compliqués comme l’oscillateur harmonique ou les systèmes de spin
les espaces de Hilbert sont de dimension infinie.

Un état quantique est un vecteur normalisé |ψ⟩ sur H qui encode toutes les informations du
système physique. Deux vecteurs |ψ⟩ et |φ⟩ sur H décrivent le même système physique si

|ψ⟩ = λ |φ⟩ .

avec λ ∈ C∗, les vecteurs sont définis modulo une phase globale.
Les observables en mécanique quantique caractérisant une quantité physique mesurable,

comme par exemple l’énergie du système, sont décrites par des opérateurs auto-adjoints A =
A∗ ∈ B(H) ∼= Md(C). En dimension finie, la décomposition spectrale d’une observable A est
donnée par

A =
∑
i

λiPi,

où λi ∈ R sont les valeurs propres de A et Pi sont les projecteurs
2. La distribution de probabilité

d’obtenir le résultat λi lors de la mesure de l’observable A sur un système quantique dans un
état |ψ⟩ est donnée par la règle de Born:

P(λi) := ∥Pi |ψ⟩ ∥2,

La mesure du résultat λi induit un changement de l’état quantique donné par

|ψ′⟩ := Pi |ψ⟩
∥Pi |ψ⟩ ∥

.

Cet effet se nomme l’effondrement de la fonction d’onde.
L’évolution des systèmes quantiques est régie par une matrice unitaire U ∈ U(H) : |ψ′⟩ =

U |ψ⟩. Un état initial |ψ(t0)⟩ évolue à un temps t vers un état |ψ(t)⟩ ainsi on a

|ψ(t)⟩ := U(t, t0) |ψ(t0)⟩ .

La matrice unitaire U(t, t0), est donnée par

U(t, t0) = e−iH(t−t0).

où H ∈ B(H) est un opérateur auto-adjoint connu comme l’Hamiltonien du système quantique.
En général, un système quantique est complètement décrit par des matrices de densité que nous

2Aussi les projecteurs sont connus dans la littérature sous le nom de mesure de von Neumann ou mesure à
valeur projective qu’on notera par PVM.
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désignerons par ρ. Les matrices de densité sont des matrices définies positives de trace un. Nous
désignerons l’ensemble de ces matrices par M1,+

d donné par:

M1,+
d :=

{
ρ ∈ Md(C) : ρ ≥ 0 ; Tr ρ = 1

}
.

L’ensemble des matrices de densité est un ensemble convexe, où les points extrémaux sont des
projecteurs de rang un que nous noterons par |ψ⟩⟨ψ|, où ⟨ψ| est le vecteur dual de |ψ⟩.

Comme précédemment, l’évolution du système quantique est donnée par un unitaire U ∈
U(H), où l’évolution d’un état ρ0 à t0 vers ρt à t est donnée par:

ρt = U(t, t0) ρ0 U
∗(t, t0).

La probabilité d’observer le résultat λi, la valeur propre d’une observable A est donnée par

P(λi) = Tr(Pi ρ) = ⟨Pi , ρ⟩HS .

où nous avons utilisé le produit scalaire Hilbert-Schmidt sur Md(C) définit comme suit :

⟨·, ·⟩HS : Md(C)×Md(C) → C,
(A,B) → ⟨A ,B⟩HS := Tr(A∗B).

La mesure induit un changement de l’état quantique, où l’état quantique résultant est donné
par

ρ′ =
Pi ρPi
Tr(Pi ρ)

.

En fait, ces types de mesures sont très spécifiques et sont connus sous le nom de mesure
projective, mais en général, le processus de mesure est décrit par Positive operator Valued
Measure ou plus brièvement POVM. Les éléments des POVM sont des matrices positifs dont la
somme est l’identité ainsi nous avons la définition suivante.

Definition 10.1.1. Un POVM sur Md avec k résultats possible est un k-tuple A = (A1, . . . , Ak)
d’opérateurs auto-adjoints de Md qui definis positifs et dont la somme est égale à l’identité :

∀i ∈ [k]3, Ai ≥ 0 et
k∑
i=1

Ai = Id.

Lorsque l’on mesure un état quantique ρ avec l’appareil décrit par A, on obtient un résultat
aléatoire de l’ensemble [k] :

∀i ∈ [k], P(outcome = i) = Tr[ρAi].

Ce formalisme mathématique utilisé pour décrire les mesures quantiques (ou POVMs) ne
rend pas compte de ce qui se passe avec la particule quantique après la mesure.

A fin de décrire un système physique SAB composé de deux sous-systèmes SA et SB décrits
par leurs espaces de Hilbert respectifs HA

∼= CdA et HB
∼= CdB . Nous associerons au système

physique SAB l’espace de Hilbert total HAB donné par le produit tensoriel de HA et de HB que
nous noterons par HAB = HA ⊗HB.

Nous distinguerons deux classes d’états quantiques dans un système composite SAB, nous
avons des états dit intriqués et d’autre séparables, plus précisément on a la définition suivante:

Definition 10.1.2. Un état quantique ρAB ∈ M1,+
dAdB

est:

• Produit, si ρAB = ρA ⊗ ρB.

3Nous utilisons la notation [k] pour l’ensemble {1, · · · , k}.
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• Séparable, si c’est une combinaison convexe d’états produits :

ρAB =
∑
x

px ρ
x
A ⊗ ρxB

avec px ≥ 0 et
∑

x px = 1.

• Intriqué, si n’est pas séparable.

Ci-dessus, dA et dB sont les dimensions des espaces de Hilbert HA et HB respectivement.

Nous introduisons les canaux quantiques, ces derniers sont des outil mathématique jouant
un rôle fondamental dans la théorie de l’information quantique. D’un point de vue physique,
ils représentent les opérations possibles que nous pouvons effectuer sur un système physique.
D’un point de vue mathématique, ils représentent une classe d’application linéaire connues sous
le nom d’ application complètement positives.

Definition 10.1.3. Une application linéaire Φ(·) : Md(C) → MD(C) est dite positive si elle
satisfait la propriété suivante :

X ∈ Md(C) , X ≥ 0 =⇒ Φ(X) ≥ 0.

Nous rappelons que X ≥ 0 si σ(X)4 ⊆ [0,∞[. Une autre manière équivalente de définir
X ≥ 0 ⇐⇒ ∃Y ∈ Md(C), telle que X = Y ∗Y. Une telle matrice X est appelée semi-définie
positive.

Les applications complétement positives, peuvent être comprises comme une généralisation
des applications positives.

Definition 10.1.4. Une application linéaire Φ(·) : Md(C) → MD(C) est appelée complètement
positive si pour tout K ≥ 1 et X ∈ Md(C)⊗MK(C), on a

X ≥ 0 =⇒ [Φ⊗ idK ](X) ≥ 0,

où idK désigne la carte d’identité sur MK(C). En d’autres termes, Φ est complètement positif
si ∀K ≥ 1 l’application Φ⊗ IdK est positive.

Definition 10.1.5. Une application complètement positive Φ(·), est un canal quantique si elle
préserve la trace :

∀Y ∈ Md(C), TrΦ(Y ) = TrY.

En fait, il existe une manière équivalente de décrire les canaux quantiques, qui ne nécessite
pas l’utilisation de la structure du produit tensoriel.

Theorem 10.1.6. Une application linéaire Φ(·) : Md(C) → Md(C) est un canal quantique si
seulement si ∃{Li}ki=1 ⊂ Md(C) satisfaisant les conditions suivantes :

∀X , Φ(X) =
k∑
i=1

LiXL
∗
i .

et
k∑
i=1

L∗
iLi = Id.

4Nous rappelons que σ(X) est le spectre de X défini comme l’ensemble des nombres complexes z tels que
X − zI n’est pas inversible
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10.2 Normes tensorielles

Dans cette section, nous introduisons les outils de normes tensorielles sur des espaces de Banach.
Celle-ci joueront un rôle crucial pour comprendre le lien entre l’incompatibilité de mesures
quantiques et la non-localité.

Nous rappelons qu’un Espace de Banach de dimension finie est un espace vectoriel X, doté
d’une norme ∥ ·∥X , que nous noterons par (X, ∥ ·∥X). Dans ce qui suit, nous utiliserons X, Y, Z
à fin de désigner différents espaces de Banach avec leurs normes respectives ∥ · ∥X , ∥ · ∥Y , ∥ · ∥Z .

On note l’espace des applications linéaires de l’espace vectoriel X à Y par L(X,Y ). En
particulier, si nous considérons deux espaces de Banach (X, ∥·∥X) et (Y, ∥·∥Y ), nous désignerons
l’espace de toutes les applications linéaires de X à Y par L(X,Y ) et nous avons

φ ∈ L(X,Y ) , φ : (X, ∥ · ∥X) → (Y, ∥ · ∥Y ).

Remark 10.2.1. Nous utiliserons la convention d’écrire L(X) au lieu de L(X,X). Rappelons
que l’espace vectoriel dual X∗ est identifié à L(X,C). Ses éléments sont connus sous le nom de
formes linéaires.

On peut mener l’espace des applications linéaires de X vers Y , d’une structure de norme
définie par :

φ ∈ L(X,Y ) , ∥φ∥X→Y := sup{ ∥φ(x)∥Y , ∥x∥X ≤ 1}.

Ainsi l’espace des applications linéaires est un espace de Banach muni de la norme définit
au-dessus. En particulier, l’éspace des formes X∗ est un éspace de Banach muni de la norme

∥φ∥X∗ := sup{ |φ(x)|, ∥x∥X ≤ 1}.

On note l’espace des formes linéaire muni de la norme définit au-dessus par (X∗, ∥ · ∥X∗). Dans
ce qui suit nous introduirons les espaces de Banach ℓN (R) et leurs analogues non commutatives

les éspaces SNp (R) définit sur l’espace vectoriel des matrices, nous introduiserons aussi pour
chaque cas l’énoncè du theorem de Hölder.

Definition 10.2.2. L’espace de Banach ℓNp (R) definit par ℓNp (R) = (RN , ∥ · ∥p) avec la norme
∥ · ∥p est donnè par :

∥ · ∥p : RN → R+,

x→ ∥x∥p :=


(∑N

i=1 |xi|p
) 1

p
if 1 ≤ p <∞

sup
{
|xi|, i ∈ {1, · · · , N}

}
if p = ∞.

Theorem 10.2.3. (Theorem de Hölder) Soit x ∈ ℓNp (R) et y ∈ ℓNq (R) avec des entiers p et q
tels que 1 ≤ p, q ≤ +∞ verifiant la condition

1

p
+

1

q
= 1.

Alors on a

|⟨x, y⟩| ≤
N∑
i=1

|xi yi| ≤ ∥x∥p ∥y∥q.

Remark 10.2.4. L’inégualitè ci-dessus ce réduit à l’inigualitè de Cauchy-Schwarz pour p =
q = 2.
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Grâce au theorem de Hölder on peut identifier l’espace dual de ℓNp (R) (voir [35]):

(ℓNp (R))∗ = (RN , ∥ · ∥p)∗ = ℓNq (R) = (RN , ∥ · ∥q),

avec p et q tels que 1 ≤ p, q ≤ +∞ et 1
p +

1
q = 1.

Soit MN (C) l’espace vectoriel dess matrices, on peut munir l’espace des matrices par une
norme connu sous le nom de Schattern p−norm ainsi on notera l’espace de Banach SNp (C) :=
(MN (C), ∥ · ∥p).

Definition 10.2.5. L’espace de Banach SNp (C) = (MN (C), ∥ · ∥p) pour 1 ≤ p ≤ +∞,

∥ · ∥p : MN (C) → R+,

M → ∥M∥p :=


(
Tr |M |p

) 1
p

si 1 ≤ p <∞.

sup
{
∥M · x∥, ∥x∥ ≤ 1

}
si p = ∞.

avec |M | :=
√

(M∗M) et ∥ · ∥ est la norme euclidienne dans CN .

Ainsi dans le cadre non-commutative on a le theorem de Hölder.

Theorem 10.2.6. (Theorem de Hölder) Soit M ∈ SNp (C) et N ∈ SNq (C) avec p et q de entiers
tels que 1 ≤ p, q ≤ +∞ verifiant

1

p
+

1

q
= 1.

Alors on a
|⟨M,N⟩| = |Tr(M∗N)| ≤ ∥M∥p ∥N∥q.

Remark 10.2.7. L’inégalité ci-dessus ce réduit à l’inégualité de Cauchy Schwarz pour p = q =
2 avec le produit scalaire de Hilbert-Schmidt definit par ⟨M,N⟩ := Tr(M∗N).

Grâce au théoreme de Hölder, on peut identifier l’espace dual d’un espace de Banach non-
commutative SNp (C). Ainsi on a la dualité suivante entre les espaces de Banach:

(SNp (C))∗ = (MN (C), ∥ · ∥p)∗ = SNq (C) = (MN (C), ∥ · ∥q),

avec p et q tels que 1 ≤ p, q ≤ ∞ et 1
p +

1
q = 1.

Dans ce qui suit nous introduirons le concept de norme tensorielle sur des espaces de Banach,
nous introduirons la norme tensoriel projective et injective qui joueront le rôle respectif d’une
norme maximal et minimal qu’on peut obtenir lorsqu’on munit d’une norme l’espace tensoriel
de deux espace de Banach.

On définit la norme tensorielle projective sur deux espaces de Banach (X, ∥·∥X) et (Y, ∥·∥Y ).

Definition 10.2.8. Soit deux espaces de Banch de dimension finie X et Y avec leurs normes
respectives ∥ · ∥X et ∥ · ∥Y . Soit u ∈ X ⊗ Y , on définit la norme tensorielle projective de u par:

∥u∥X⊗πY := inf

{
N∑
i=1

∥xi∥X∥yi∥Y : u =
N∑
i=1

xi ⊗ yi

}
,

avec l’infimum est pris sur toute les décompositions possible de u =
∑N

i=1 xi ⊗ yi avec N un
entier arbitraire.

L’espace de Banach induit par la norme projective est X ⊗π Y :=
(
X ⊗ Y, ∥ · ∥X⊗πY

)
.
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Remark 10.2.9. La définition de la norme projective peut être définie sur le produit tensoriel
de plusieurs espaces. Afin d’illustrer cela, on considère M espaces de Banach (Xi, ∥ · ∥Xi), avec
i ∈ {1 · · ·M}. On munit le produit tensoriel des M Banach spaces par une norme projective
définie par:

u ∈
M⊗
i=1

Xi , ∥u∥π := inf
{ r∑
k=1

∥x1k∥ · · · ∥xMk ∥ : r ∈ N , xik ∈ Xi , u =

r∑
k=1

x1k ⊗ · · · ⊗ xMk

}
.

où on a utilisé la notation ∥ · ∥π au lieu de ∥ · ∥X1⊗π ···⊗πXM
.

La norme tensorielle projective satisfait metric mapping property.

Definition 10.2.10. Soit les applications linéaires T ∈ L(X,Z) et S ∈ L(Y,W ) où (X, ∥ ·
∥X) , (Y, ∥ · ∥Y ) , (Z, ∥ · ∥Z) , (W, ∥ · ∥W ) sont des espaces de Banch, on dit qu’une norme définie
sur X ⊗ Y satisfait metric mapping property si pour tout application billineaire T ⊗ S on a:

∥T ⊗ S∥ ≤ ∥T∥ ∥S∥.

Lemma 10.2.11. Soit les applications linéaires T ∈ L(X,Z) and S ∈ L(Y,W ), et les espaces
de Banach X⊗πY et Z⊗πW . La norme tensorielle projective satisfait metric mapping property.
Plus précisément on a:

∥T ⊗ S : X ⊗π Y → Z ⊗π W∥ ≤ ∥T∥∥S∥.

where ∥T ⊗ S : X ⊗π Y → Z ⊗π W∥ := sup∥u∥X⊗πY ≤1 ∥(T ⊗ S)(u)∥.

Dans ce qui suit, on introduit la norme tensoriel injective de deux espaces de Banach
(X, ∥ · ∥X) et (Y, ∥ · ∥Y ).

Definition 10.2.12. Soit deux espaces de Banach de dimension finie X et Y avec leurs normes
respectives ∥ · ∥X et ∥ · ∥Y . Soit u ∈ X ⊗ Y , on définit la norme injective de u par:

∥u∥X⊗εY := sup
∥λ∥X∗ , ∥σ∥Y ∗≤1

|⟨λ⊗ σ, u⟩|.

avec λ ∈ X∗ et σ ∈ Y ∗ sont des formes linéaires.

Remark 10.2.13. Dans la définition donné ci-dessus, on a utilisé l’abus de notation: ⟨λ⊗σ, ·⟩
doit être comprise comme étant (λ⊗ σ)(·).

L’espace de Banach induit par la norme injective est X ⊗ε Y :=
(
X ⊗ Y, ∥ · ∥X⊗εY

)
.

Remark 10.2.14. La definition de la norme injective peut être definit pour plusieurs espaces de
Banach. Afin d’illustrer cela, on considèreM espaces de Banach (Xi, ∥·∥Xi), avec i ∈ {1 · · ·M}.
On munit le produit tensoriel des M espaces de Banach par la norme injective definit par:

u ∈
M⊗
i=1

Xi , ∥u∥ε := sup
{
|⟨x1 ⊗ · · · ⊗ xM , u⟩|; xi ∈ X∗

i , ∥xi∥X∗
i
≤ 1
}
.

où on a utilisé la notation ∥ · ∥ε au lieu de ∥ · ∥X1⊗ε···⊗εXM
.

La norme tensorielle injective satisfait metric mapping property. L’introduction de la norme
tensorielle projective et injective nous permet d’introduire la notion d’une norme tensoriel sur
deux espaces de Banach (X, ∥ · ∥X) et (Y, ∥ · ∥Y ).
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Lemma 10.2.15. Considérons la carte linéaire T ∈ L(X,Z) et S ∈ L(Y,W ), ainsi que les
espaces de Banach X⊗εY et Z⊗εW . La norme projective satisfait la metric mapping property.
Explicitement on a :

∥T ⊗ S : X ⊗ε Y → Z ⊗εW∥ ≤ ∥T∥∥S∥.

où ∥T ⊗ S : X ⊗ε Y → Z ⊗εW∥ := sup∥u∥X⊗εY ≤1 ∥(T ⊗ S)(u)∥.

Definition 10.2.16. Soit (X, ∥ · ∥X), (Y, ∥ · ∥Y ) deux espaces de Banach et leurs espaces dual
(X∗, ∥ · ∥X∗) et (Y ∗, ∥ · ∥Y ∗). On définit une norme α est une norme tensorielle sur X ⊗ Y

• Pour u = x⊗ y ∈ X ⊗ Y on a:

∥u∥X⊗αY ≤ ∥x∥X ∥y∥Y .

• Pour tout φ ∈ X∗ et ψ ∈ Y ∗, al forme bilineaire φ⊗ ψ sur X ⊗ Y satisfait:

∥φ⊗ ψ∥X∗⊗α∗Y ∗ ≤ ∥φ∥X∗ ∥ψ∥Y ∗ .

avec α∗ est la norme dual de α définit sur X∗ ⊗ Y ∗.

Remark 10.2.17. On notera par X ⊗α Y := (X ⊗ Y, ∥ · ∥X⊗αY ) l’espace de Banach induit par
α sur X ⊗ Y . La norme tensorielle dual α∗ est une norme tensorielle sur X∗ ⊗ Y ∗, l’espace de
Banach induit par α∗ est X∗ ⊗α∗ Y ∗ := (X∗ ⊗ Y ∗, ∥ · ∥X∗⊗α∗Y ∗). Ainsi on a la dualité suivante
en dimension finie donné par: (

X ⊗α Y
)∗

= X∗ ⊗α∗ Y ∗.

Proposition 10.2.18. Soit X et Y deux espaces de Banach.

• une norme α sur X ⊗ Y est une norme tensorielle si seulement si:

∥u∥X⊗εY ≤ ∥u∥X⊗αY ≤ ∥u∥X⊗πY .

pour tout u ∈ X ⊗ Y .

• Si α est une norme tensorielle sur X ⊗ Y alors ∥x ⊗ y∥X⊗αY = ∥x∥X ∥y∥Y pour tout
x ∈ X et y ∈ Y . Pour tout φ ∈ X∗ et ψ ∈ Y ∗, la forme linaire φ⊗ψ sur X⊗αY satisfait:

∥φ⊗ ψ∥X∗⊗α∗Y ∗ = ∥φ∥X∗ ∥ψ∥Y ∗ .

10.3 Non localité

Dans cette section, nous présentons le concept de non-localité dans le cadre desjeux non-locaux
et leurs liens intrinsèques aux produits tensoriels des espaces de Banach.

Comme dans tout jeu, nous avons besoin de joueurs et de règles. Dans le cadre des jeux
non locaux, les joueurs sont Alice et Bob et un arbitre dictant les règles du jeu. Avant le début
du jeu, Alice et Bob sont autorisés à choisir une stratégie pour jouer le jeu, où la stratégie
consiste à choisir l’un des différents ensembles de corrélation : soit classique, soit quantique,
soit nonsignaling. Après leurs choix de stratégies ils se séparent et ne sont plus autorisés à com-
muniquer. Lorsque le jeu commence, l’arbitre pose des questions aux joueurs, nous désignerons
l’ensemble des questions pour Alice par X et pour Bob par Y. L’arbitre choisit une paire de
questions au hasard avec une distribution de probabilité π : X × Y → π(x, y) ∈ [0, 1] où x ∈ X
désigne la question que l’arbitre envoie à Alice et y ∈ Y à Bob. Lorsque Alice et Bob reçoivent
leurs questions, ils génèrent certaines réponses ou résultats a ∈ A et b ∈ B. L’arbitre reçoit les
réponses des joueurs et décide si elles sont correctes ou fausses, ce qui correspond au gain. Le
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x y

a b

Referee

Alice Bob

shared entanglement

shared randomness

Figure 10.1: Représentation d’un jeu non-local, où Alice et Bob utilisent des stratégies classique
ou quantique

gain est donné par V : X ×Y ×A×B → V (x, y, a, b) où V (x, y, a, b) peut être soit 0 soit 1 selon
que les joueurs perdent ou gagnent la partie ; pour une illustration d’un jeu non local, voir la
figure 10.1.

Le gain attendu d’Alice et de Bob est donné par:

ω(G,P) =
∑

(x,y)∈X×Y

∑
(a,b)∈A×B

π(x, y)V (x, y, a, b)P(a b|x y)

=
∑

(x,y)∈X×Y

∑
(a,b)∈A×B

Ga,bx,y P(a b|x y).

avec Ga,bx,y = π(x, y)V (x, y, a, b).
Le jeux CHSH est définit par X = Y = A = B = {±1}. L’arbitre choisit uniformément de

questions π(x, y) = 1
4 , pour tout x, y. Le gain du jeux CHSH est donné par

V (x, y, a, b) =

{
1 a⊕ b = x · y
0 autrement

Definition 10.3.1. On est maintenant en mesure de donner la valeur du jeux classique, quan-
tique et nonsignaling.

• La valeur classique d’un jeux ω(G) est donnée par l’optimisation du gain sur l’ensemble
de probabilités classique:

ω(G) = sup
Pl(a b|x y)∈LN,M

|ω(G,Pl)|.

avec l’ensemble des probabilités classiques LN,M donné par:

LN,M :=
{
Pl(a b|x y)

∣∣∣Pl(a b|x y) = ∫
Λ
dµ(λ)PA(a|x , λ)PB(b|y , λ)

}
.
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• La valeur quantique d’un jeux ω∗(G) est donnée par l’optimisation du gain sur l’ensemble
de probabilités quantique:

ω∗(G) := sup
PQ(a b|x y)∈QN,M

|ω(G,PQ)|.

avec l’ensemble des probabilités quantiques QN,M donné par:

QN,M :=
{
PQ(a b|x y)

∣∣∣PQ(a b|x y) = ⟨ψ|Aa|x ⊗Bb|y |ψ⟩ ; Aa|x, Bb|y ≥ 0,

∀x
M∑
a=1

Aa|x = IdA ; ∀y
M∑
b=1

Bb|y = IdB

}
.

• La valeur nonsignaling d’un jeux ωNS(G) est donnée par l’optimisation du gain sur
l’ensemble des probabilités de type nonsignaling:

ωNS(G) := sup
PNS(a b|x y)∈NSN,M

|ω(G,PNS)|.

avec l’ensemble des probabilités nonsignaling NSN,M donné par:

NSN,M =
{
PNS(a b|x y)

∣∣∣∑
a

PNS(a b|x y) =
∑
a

PNS(a b|x′ y) ∀b, x, x′, y

and
∑
b

PNS(a b|x y) =
∑
b

PNS(a b|x y′) ∀a, x, y′, y
}
.

Dans ce qui suit, on se limitera dans le cadre des jeux XOR et on ne s’intéressera qu’aux
stratégies classique et quantique. Un jeux XOR sont une classe de jeux où Alice et Bob
donnent seulement deux réponses A = B = {0, 1} et le gain est donné par V (x, y, a, b) :=
1
2(1 + (−1)a⊕b⊕cx,y) with cx,y ∈ {0, 1}. Ainsi dans le cadre des jeux de type XOR on a :

ω(G,P) =
∑

(x,y)∈X×Y

∑
(a,b)∈A×B

π(x, y)V (x, y, a, b)P(a b|x y)

=
∑

(x,y)∈X×Y

∑
(a,b)∈{0,1}2

π(x, y)
1

2
(1 + (−1)a⊕b⊕cxy)P(a b|x y)

=
1

2
+

1

2

∑
(x,y)∈X×Y

π(x, y)(−1)cx,y(P(0 0|x y) + P(1 1|x y)− P(0 1|x y)− P(1 0|x y))

=
1

2
+
β(G,P)

2
,

où nous avons définit le biais d’un jeux XOR donné par

β(G,P) :=
∑

(x,y)∈X×Y

Gx,y (P(0 0|x y) + P(1 1|x y)− P(0 1|x y)− P(1 0|x y)) ∈ [−1, 1]

avec Gx,y := π(x, y)(−1)cx,y .

Definition 10.3.2. Le biais classique β(G) d’un jeux XOR est donné par:

β(G) := sup
γx,y∈LN

∣∣∣ ∑
(x,y)∈X×Y

Gx,y γx,y

∣∣∣.
avec l’ensemble des corrélations classiques est donné par:

LN :=

{
γx,y

∣∣∣γx,y = ∫
Λ
Ax(λ)By(λ) dµ(λ); |Ax(λ)|, |By(λ)| ≤ 1

}
⊆ MN (R).

où Ax(λ) =
∑

a∈{0,1} aPA(a|x, λ) , By(λ) =
∑

b∈{0,1} bPB(b|y, λ).
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Definition 10.3.3. Le biais quantique β∗(G) d’un jeux XOR est donné par:

β∗(G) = sup
γx,y∈QN

∣∣∣ ∑
(x,y)∈X×Y

Gx,y γx,y

∣∣∣.
avec l’ensemble des corrélations quantiques est donné par:

QN :=
{
γx,y

∣∣∣γx,y = ⟨ψ|Ax ⊗By |ψ⟩ ; ∥ψ∥ = 1, ∥Ax∥∞, ∥By∥∞ ≤ 1
}
⊆ MN (R).

où Ax = A1|x −A
1|x et By = B1|y −B

1|y.

Le biais classique et quantique pour les jeux XOR sont intrinsèquement reliés aux normes
tensorielles. A fin de mettre le lien en évidence en introduit une norme tensorielle γ2.

Definition 10.3.4. Soit deux espaces de Banach de dimension finie X et Y avec leurs normes
respectives ∥ · ∥X et ∥ · ∥Y . On définit la norme tensorielle γ2 de u ∈ X ⊗ Y par:

∥u∥X⊗γ2Y
:= inf

 sup
α∗∈B(X∗)

(
N∑
i=1

|α∗(xi)|2
) 1

2

sup
β∗∈B(Y ∗)

 N∑
j=1

|β∗(yj)|2
 1

2

: u =

N∑
i=1

xi ⊗ yi

 .

avec l’infimum est pris sur toute les décompositions possibles de u =
∑N

i=1 xi ⊗ yi avec xi ∈ X
et yj ∈ Y . On note X ⊗γ2 Y = (X ⊗ Y, ∥ · ∥X⊗γ2Y

) induit par la norme γ2.

Ainsi on peut relier le biais classique et quantique avec des normes tensorielles.

Theorem 10.3.5. Le biais classique d’un jeux G est donné par la norme injective définie sur
ℓN1 (R)⊗ ℓN1 (R), plus précisément on a:

β(G) = ∥G∥ℓN1 (R)⊗εℓN1 (R)

ainsi par dualité l’ensemble de corrélations classiques est donné par:

LN = B
(
ℓN∞(R)⊗π ℓ

N
∞(R)

)
.

avec B(X) est la boule unité d’un espace de Banach X.

Theorem 10.3.6. Le biais quantique d’un jeux G est donné par la norme dual γ∗2 définie sur
ℓN1 (R)⊗ ℓN1 (R), plus précisément on a:

β∗(G) = sup
γ∈Q

{|⟨G, γ⟩|} = ∥G∥ℓN1 (R)⊗γ∗2
ℓN1 (R)

ainsi par dualité l’ensemble des corrélations quantiques est donné par:

QN = B
(
ℓN∞(R)⊗γ2 ℓ

N
∞(R)

)
,

avec la norme dual ∥G∥ℓN1 (R)⊗γ∗2
ℓN1 (R) est donné par:

∥G∥ℓN1 (R)⊗γ∗2
ℓN1 (R) := sup

{
|⟨G, γ⟩| : ∥γ∥ℓN∞(R)⊗γ2ℓ

N
∞(R) ≤ 1

}
.
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10.4 Compatibilité

L’une des principales différences entre le monde classique et le monde quantique est l’existence
de mesures incompatibles qui décrivent des mesures que nous ne pouvons pas effectuer en même
temps. Dans la section suivante, nous introduirons la notion d’(in)compatibilité des mesures
quantiques, nous introduisons ça formulation en SDP. Nous introduirons la nouvelle notion
de compatibilité dimensionnelle introduite dans [1]. Il se trouve qu’il existe certains types de
mesures qu’on ne peu pas rendre compatible, à fin qu’il le devienne, on introduit l’effet d’un
paramètre de bruit. Nous introduirons trois types de modèle de bruit et leurs lien avec le
clonage asymétrique. Nous introduirons aussi la formulation de la compatibilité par une norme
tensorielle, celle-ci jouera un rôle crucial pour comprendre le lien entre incompatibilité des
mesures quantique et violation des inégalités de Bell.

1 2 3 k

· · ·

1 2 3 l

· · ·

A

B

⇐⇒

1 2 3 k

· · ·

1 2 3 l

· · ·

A

B
1 2 3 kl

· · ·

C

Figure 10.2: L’opérateur joint de A et de B peut être simulé par un troisième POVM C.

Definition 10.4.1. Deux POVMs A = (A1, . . . , Ak), B = (B1, . . . , Bl) dans Md sont dit
compatible s’il existe un POVM joint C = (C11, . . . , Ckl) dans Md tels que A et B sont ses
marjinaux:

∀i ∈ [k], Ai =

l∑
j=1

Cij .

∀j ∈ [l], Bj =

k∑
i=1

Cij .

Plus généralement, a g-tuplets de POVMs A = (A(1), . . . , A(g)) sont compatible s’il existe un
POVM C avec [k1]× · · · × [kg] résultats possibles tels que, pour tout x ∈ [g], le POVM A(x) est
le x-th marginal de C:

∀ix ∈ [kx], A
(x)
ix

=

k1∑
i1=1

· · ·
kx−1∑
ix−1=1

kx+1∑
ix+1=1

· · ·
kg∑
ig=1

Ci1i2···ig

=
∑

j∈[k1]×···×[kg ]
jx=ix

Cj.

La compatibilité de mesures quantiques est intrinsèquement différente de la commutativité,
où le lien entre ces deux notions n’est possible que si on utilise des projecteurs. Ainsi plus
précisément on a la proposition suivante:

Proposition 10.4.2. Soit Ai et Bj deux observables dans un espace de Hilbert, si Ai et Bj
satisfait l’inégalité suivante:

∥[Ai, Bj ]∥ ≤ 4∥Ai −A2
i ∥ · ∥Bj −B2

j ∥.
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alors Ai, et Bj sont compatibles.
En particulier si Ai et Bj sont des PVMs alors ils sont compatibles si et seulement si

[Ai, Bj ] = 0. ∀i, j.

On peut illustrer l’opérateur joint C comme une grande bôıte noire où on peut déduire à la
fois les mesures A et B (voir Figure 10.2 pour une illustration).

Proposition 10.4.3. Soit un N -uplets de POVMs A = (A(1), . . . , A(N)). Ces derniers sont
compatibles si et seulement si il existe POVM joint (Ck)k∈[K] et une famille de probabilités
conditionnelles

(
px(·|·)

)
x∈[N ]

tels que

∀x ∈ [N ], ∀i ∈ [kx], A
(x)
i =

∑
k∈[K]

px(i|k)Ck.

Déterminer si des POVMs sont compatibles est généralement très compliqué, par ailleurs il
existe une méthode numérique permettant de déterminer s’ils sont compatibles connue sous le
nom de programme semidefinit ou simplement SDP.

Proposition 10.4.4. Soit deux POVMs {Q, I −Q} et {P, I −P}, avec P,Q sont des matrices
autoadjointes de dimension d × d tels que 0 ≤ P,Q ≤ Id. Les deux POVMs sont compatible si
seulement si ε0 ≤ 1, avec

ε0 := inf
{
ε : ∃δ ≥ 0 s.t. δ + I −Q− P ≥ 0, Q+ εI − δ ≥ 0, P + εI − δ ≥ 0

}
, (10.1)

où X est une matrice définie positive.

Proposition 10.4.5. La formulation duale du programme semi-définie est donnée par:

ε∗ = sup
X,Y,Z≥0

{
Tr[X(Q+ P − I)]− Tr[Y Q]− Tr[PZ]withX ≤ Y + Z, Tr[Y + Z] = 1

}
,

L’introduction de la compatibilité dimensionnelle a été le résultat majeur de l’article [1],
on a pu analyser l’effet de la dimension de l’espace de Hilbert sur la compatibilité des mesures
quantiques.

Definition 10.4.6. Soit un g-uplets de POVMs A = (A(1), . . . , A(g)) défini sur un espace de
dimension d, on définit la notion de compatibilité dimensionnel comme étant la dimension
maximale r pour laquelle il existe une isométrie V : Cr → Cd telle que les g-uplets de POVMs
deviennent compatibles :

R(A) := max{r ∈ [d] : ∃V : Cr → Cd isom. s.t. V ∗A(1)V, . . . , V ∗A(g)V sont comp.}

On définit la notion forte de compatibilité dimensionnelle si pour un g-uplets de POVMs
A, la dimension maximale r telle que pour toute isometrie V : Cr → Cd le g-tuple POVM soit
compatible:

R̄(A) := max{r ∈ [d] : ∀V : Cr → Cd isom., V ∗A(1)V, . . . , V ∗A(g)V sont comp.}

Dans ce qui suit, nous introduirons les différents types de modèles de bruit et leurs liens
avec le clonage asymétrique et on donnera une application de compatibilité dimensionnelle dans
le cadre des projecteurs bruités construits à partir des MUB.

Il existe une procédure qui rend les mesures incompatibles aussi compatibles que nous le
souhaitons. Ceci est réalisé en ajoutant un certain bruit classique aux POVMs. Le bruit est
généralement donné par un paramètre t ∈ [0, 1] qui mélangera les POVMs originaux avec un
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opérateur de mesure trivial. Intuitivement, plus le paramètre t crôıt, plus les POVMs deviennent
compatibles. Dans ce qui suit, nous présenterons différents modèles de bruit qui ont été établis.
Nous présenterons également le lien entre l’un des modèles de bruit et le problème du clonage
asymétrique, qui est un moyen de contourner le théorème de non-clonage. Le premier type de
modèle de bruit que nous allons introduire est le bruit blanc. Au lieu de mesurer la POVM
A1, · · · , AN , on mesure la POVM bruyante A′

1, · · · , A′
N donnée par une combinaison convexe

de A1, · · · , AN et du Id avec un paramètre t ∈ [0, 1] :

Ai → A′
i := t Ai + (1− t)

Id
N
, i ∈ [N ].

Le nouveau POVM (A′
1, · · · , A′

N ) correspond à un dispositif qui effectue la mesure originale
avec une probabilité t et qui, avec une probabilité 1 − t, produit un résultat uniformément
aléatoire. En fait, la POVM I := ( IdN , · · · ,

Id
N ) est une POVM triviale : les mesures de I

produisent les mêmes statistiques de résultat pour chaque état quantique. Il existe d’autres
classes d’opérateurs triviaux où la POVM I est une POVM spéciale. La classe des POVM
triviaux est de la forme E = (e1Id, · · · , eN Id) avec e := (e1, · · · , eN ) est une distribution de
probabilité, où le choix d’une distribution donnée spécifie complètement le type de modèle de
bruit. Un autre type de modèle de bruit qui a également été considéré dans la littérature est
donné par e := (Tr[A1]/d · Id, · · · ,Tr[AN ]/d · Id) qui dépend du POVM initial lui-même

Ai → A′
i := t Ai + (1− t)

Tr[Ai]

d
Id, i ∈ [N ].

On voit immédiatement que ce modèle de bruit est linéaire en Ai.

Remark 10.4.7. Dans toute cette description, nous n’avons considéré qu’un seul paramètre
de bruit t. On peut en fait étudier ces différents types de modèles de bruit avec un vecteur de
paramètres t := (t1, · · · , tg) ∈ [0, 1]g en clonant g-tuples de POVMs

Dans ce qui suit, nous allons introduire la connexion entre les modèles de bruit et le clonage
quantique approximatif. Le théorème de non-clonage est l’un des concepts clés qui différencient
le monde classique du monde quantique, techniquement on ne peut pas construire un canal
quantique Φ : Md → M⊗g

d tel que pour tout

ρ ∈ M1,+
d , ∀j ∈ {1, · · · , g}, Tr[g]\{j}Φ(ρ) = ρ.

Le clonage quantique approximatif (symétrique ou asymétrique) caractérise une machine à
cloner imparfaite, dont le rôle est de produire des clones (copies) imparfaits pour des états
quantiques d’entrée arbitraires. L’imperfection repose sur le fait que nous agissons avec le
canal quantique, et en prenant les marginales du canal nous obtenons un état résiduel bruyant
décrit par une combinaison convexe de l’état initial et d’un opérateur trivial avec un certain
paramètre t ∈ [0, 1]. La machine de clonage quantique asymétrique est caractérisée par un
uplet de paramètres ti ∈ [0, 1]g et le cas symétrique se réduit à un seul paramètre t ∈ [0, 1].
Formellement, nous avons la définition suivante du clonage quantique asymétrique :

Definition 10.4.8. L’ensemble des paramètres correspondant à un clonage asymétrique 1 → g
dans Cd est décrit par l’ensemble suivant:

Γclone(g, d) :=
{
t ∈ [0, 1]g : ∃Φ : Md → M⊗g

d canal quantique tel que

∀ρ ∈ Md,∀j ∈ [g], Tr[g]\{j}Φ(ρ) = tjρ+ (1− tj)
Id
d

}
.

Le clonage des états quantiques peut être réinterprétée dans la représentation de de Heisen-
berg de la mécanique quantique en regardant l’application duale d’un canal ; cette opération
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agit naturellement sur les mesures quantiques. Cette dualité permet de faire le lien entre
l’obtention des clones imparfaits et le fait d’utiliser des mesures bruités. Définissons l’application
duale correspondant de paramètres de clonage. Considérons l’ensemble de paramètres associé
à l’application duale donné par:

Γ̃clone(g, d) :=
{
t ∈ [0, 1]g : ∃Ψ : M⊗g

d → Md unital and completely positive such that

∀X ∈ Md, ∀j ∈ [g], Ψ(I⊗(j−1) ⊗X ⊗ I⊗(g−j)) = tjX + (1− tj)
TrX

d
I
}
.

Proposition 10.4.9. L’espace des paramètres de clonages asymétriques et son dual sont iden-
tiques: ∀g, d ≥ 2,

Γ̃clone(g, d) = Γclone(g, d).

Theorem 10.4.10. Soit A = (A(1), . . . , A(g) un g-uplets de POVM dans Md ayant k1, . . . , kg
résultats. Soit pour tout x ∈ [g],

sx := 1− min
i∈[kx]

dλmin(A
(x)
i )

TrA
(x)
i

∈ [0, 1].

avec λmin(·) la valeur propre minimale d’un opérateur. Si s ∈ Γclone(g, d), alors les POVMs A
sont compatibles.

Dans ce qui suit une application de la compatibilité dimensionnelle: soit de POVMs con-
struits à partir des MUBs, on peut trouver un espace de Hilbert de dimension plus petite tel que
ces dernier deviennent compatibles. Pour cela on se donne un g uplets de bases orthonormales{
{|b(x)i ⟩}i∈[d]

}
x∈[g]

on dit qu’elles sont mutually unbiased (MUB) si

∀x ̸= y ∈ [g], ∀i, j ∈ [d], | ⟨b(x)i |b(y)j ⟩ |2 = 1

d
.

Soit deux mutually unbiased bases {|a1⟩ , . . . , |ad⟩} and {|b1⟩ , . . . , |bd⟩} in Cd. Soit la version
bruités de A et B donné par:

Nλ[A] =

(
λ|a1⟩⟨a1|+ (1− λ)

Id
d
, . . . , λ|ad⟩⟨ad|+ (1− λ)

Id
d

)
Nµ[B] =

(
µ|b1⟩⟨b1|+ (1− µ)

Id
d
, . . . , µ|bd⟩⟨bd|+ (1− µ)

Id
d

)
.

Pour (λ, µ) ∈ [0, 1]2, Nλ[A] and Nµ[B] sont compatibles si et seulement si

λ+ µ ≤ 1 ou λ2 + µ2 +
2(d− 2)

d
(1− λ)(1− µ) ≤ 1.

Pour le cas symétrique où λ = µ, les POVMs Nλ[A] et Nλ[B] sont compatibles si seulement
si:

λ ≤ 1

2

(
1 +

1

1 +
√
d

)
.

Comme application de la compatibilité dimensionnelle on a le théorème suivant où même si on
considère que des PVMs bruités construits à partir de MUB celle restent incompatible alors il
existe une dimension r <

√
d tels qu’ils deviennent compatible.

Theorem 10.4.11. Soit deux POVMs A,B correspendant à des mutually unbiased bases, celle-
ci pouvant être etendu à un triplet de MUBs. Pour tout 2 ≤ r <

√
d, il existe un interval non

vide Λr,d ⊂ [0, 1] tel que, pour tout λ ∈ Λr,d,
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• les mesures bruitès de types MUB Nλ[A], Nλ[B] sont incompatible

• leurs version reduite V ∗Nλ[A]V , V ∗Nλ[B]V sont compatible,

avec V : Cr → Cd est une isométrie obtenu à partir d’un troisième MUB où l’isométrie V :=∑r
k=1 |ck⟩ ⟨k| et

Λr,d :=

(
2 +

√
d

2(1 +
√
d)
,

2 + r

2(1 + r)

]
Dans la suite de cette section nous introduisons la nouvelle description de la compatibilité

par une norme tensorielle ∥ · ∥c qu’on nommera norme de compatibilité. Celle-ci jouera un rôle
crucial à la compréhension du lien entre l’incompatibilité des mesures quantiques et la violation
des inégalités de Bell.

Definition 10.4.12. Soit un tenseur A ∈ RN ⊗Msa
d (C), on défit la quantité suivante:

∥A∥c := inf

{∥∥∥ K∑
j=1

Hj

∥∥∥
∞

: A =
K∑
j=1

zj ⊗Hj , s.t. ∀j ∈ [K], ∥zj∥∞ ≤ 1 et Hj ≥ 0

}
.

La quantité ∥·∥c est une norme tensorielle sur (RN , ∥·∥∞)⊗(Msa
d (C), ∥·∥∞), plus précisément

on a:
∥A∥ℓN∞(R)⊗εSd

∞(C) ≤ ∥A∥c ≤ ∥A∥ℓN∞(R)⊗πSd
∞(C)

avec la norme injective et projective définit sur ℓN∞(R)⊗ Sd∞(C) are sont donné par:

∥A∥ℓN∞(R)⊗εSd
∞(C) := sup

{
⟨x⊗ Y,A⟩, ∥x∥ℓN1 (R) ≤ 1, ∥Y ∥Sd

1 (C)
≤ 1
}
.

et
∥A∥ℓN∞(R)⊗πSd

∞(C) := inf
{∑

i

∥xi∥ℓN1 (R) ∥Yi∥Sd
1 (C)

; A =
∑
i

xi ⊗ Yi

}
.

plus précisément on a la proposition suivante

Proposition 10.4.13. La quantité ∥·∥c est une norme tensorielle sur (RN , ∥·∥∞)⊗(Msa
d (C), ∥·

∥∞).

La norme tensorielle ∥ · ∥c caractérise si les mesures avec deux résultats possibles sont com-
patibles. Le théorème suivant donne une formulation géométrique de la compatibilité.

Theorem 10.4.14. Soit A = (A1, . . . , AN ) est un N -uplets de matrices complexe auto-adjointe
de dimension d× d. Alors on a:

1. A est une collection de mesures dichotomiques d’observable quantique (i.e. ∥Ai∥∞ ≤ 1 ∀i)
si seulement si ∥A∥ε ≤ 1, où ∥ · ∥ε est une norme tensorielle sur ℓN∞ ⊗ε S

d
∞.

2. A est une collection de mesure dichotomique compatible si seulement si ∥A∥c ≤ 1.

10.5 Comptabilité et non-localité

Dans cette section, nous donnerons un cadre commun pour analyser l’incompatibilité des
mesures et la non-localité. Pour cela, nous considérerons que Alice et Bob jouent un jeu non
local, où les mesures d’Alice sont fixes. Si ses mesures sont incompatibles, elle veut savoir si elle
viole une inégalité de Bell. Pour cela, elle calculera deux normes tensorielles ∥ · ∥c et ∥ · ∥G d’un
tenseur construit à partir de ses dispositifs de mesure. La compréhension du lien entre incom-
patibilité et non-localité se traduit dans ce cadre par la comparaison des deux normes ∥ · ∥c et

138



Figure 10.3: Alice et Bob jouent le jeu XOR avec les mesures d’Alice sont fixées.

∥ · ∥G. Le résultat obtenu dans [9], est que pour le jeu CHSH, l’incompatibilité est équivalente
à la violation de l’inégalité de Bell, ce qui signifie dans notre cadre que ∥ · ∥GCHSH

= ∥ · ∥c.
La question est restée ouverte pour les jeux généraux G. A fin d’unifier l’incompatibilité des
mesures quantiques et les violations de l’inégalité de Bell, nous utiliserons le cadre naturel
des jeux non locaux et en particulier les jeux XOR généralisant celui de CHSH. Mais au lieu
d’optimiser la mesure d’Alice à travers le biais quantique, nous supposerons dans ce cadre que
les mesures d’Alice sont fixes. Pour un jeu G donné, elle demande si elle viole une inégalité de
Bell avec des mesures incompatibles (voir figure 10.3 pour une représentation de l’expérience de
pensée). Pour unifier ces deux notions fondamentales de la théorie quantique, l’incompatibilité
des mesures et la violation des inégalités de Bell, nous considérerons le cadre des jeux XOR
non locaux, où les règles du jeu sont encodées dans une matrice réelle G de taille N ×N , et les
mesures dichotomiques d’Alice sont fixées.

Comme on l’avait décrit auparavant un jeu nonlocal est complètement décrit par une matrice
réelle G de dimension N × N . Si Alice veut savoir si elle viole une inégalité de Bell, elle doit
calculer la norme suivante ∥A∥G associée à un N -uplets de ces appareils de mesure donné par
A = (A1, · · · , AN ) ∈ RN ⊗ Msa

d (C) où Ax = A0|x − A1|x est l’observable correspondant au
POVM dichotomique (A0|x, A1|x).

Definition 10.5.1. Soit un jeu non local décrit par la matrice G ∈ MN (R). Les mesures d’Alice
étant fixées, elles sont décrites par un N -uplets d’observable A = (A1, . . . , AN ) ∈ Msa

d (C)N . La
valeur maximale du biais quantique du jeu G avec des mesures d’Alice fixe décrit par l’observable
Ax est donnée par:

∥A∥G := sup
∥ψ∥=1

sup
∥By∥≤1

〈
ψ
∣∣∣ N∑
x,y=1

Gxy Ax ⊗By

∣∣∣ψ〉,
où le supremum est pris sur un état bipartite ψ ∈ Cd ⊗ CD et les mesures de Bob B =
(B1, . . . , BN ) ∈ Msa

D (C)N , avec D un paramètre de dimension libre.
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Definition 10.5.2. Soit un jeu non local G, on dit que les mesures d’Alice A = (A1, . . . , AN )
sont G-Bell-locale si pour tout choix des mesures de Bob B et pour tout état quantique partagé
ψ, on ne peut violer une inégalité de Bell correspondant au jeux G:

∥A∥G ≤ β(G).

si l’inégalité n’est pas satisfaite on dit que les mesures d’Alice sont G-Bell-non-locales.

L’intuition physique de la définition donnée ci-dessus, est pour n’importe qu’elle optimisation
sur les mesures de Bob et pour toute optimisation sur les états quantiques partagés, si Alice
n’arrive pas à obtenir des résultats supérieurs au biais classique alors ces mesures sont locales.

Lemma 10.5.3. Soit un jeu quantique (Gxy)
N
{x,y=1} on peut donner une formulation équivalente

à ∥A∥G donné par:

∥A∥G = λmax

 N∑
y=1

∣∣∣∣ N∑
x=1

Gxy Ax

∣∣∣∣
 .

Remark 10.5.4. Dans la définition de ∥ · ∥G la dimension de l’espace des mesures d’Alice est
fixé à (d), par ailleurs la dimension de l’espace de Hilbert de Bob est libre et donné par (D).
Dans ce qui suit, nous montrerons qu’en toute généralité il suffit de prendre les dimensions des
espaces de Hilbert d’Alice et de Bob comme étant les mêmes, on montrera que cela est suffisant
pour le problème d’optimisation. Assumant que D ≥ d, un état quantique |ψ⟩ ∈ Cd ⊗ CD, et
N opérateur de mesure à deux résultats B1, . . . , BN ∈ Msa

D (C). En utilisant la décomposition
de Schmidt sur un état pure bipartite |ψ⟩ induira une réduction effective de la dimension de
l’espace de Hilbert de Bob de D à d. Soit la décomposition de Schmidt de |ψ⟩ donné par:

|ψ⟩ =
d∑
i=1

√
λi |ai⟩ ⊗ |bi⟩ .

Dans l’équation donnée, notez que le nombre de termes est borné par la dimension la plus
petite entre d et D donc d. La décomposition orthonormale de la famille {|bi⟩}i∈[d] engendre le

sous-espace de dimension d dans CD. Soit une une base orthonormale {|b̃i⟩}i∈[d] de Cd et une
isométrie

V : Cd → CD tel que ∀i ∈ [d], V |b̃i⟩ = |bi⟩ .
En introduisant l’état quantique donné par:

Cd ⊗ Cd ∋ |ψ̃⟩ :=
d∑
i=1

√
λi |ai⟩ ⊗ |b̃i⟩

Ainsi les appareils de mesures sont donné par:

Msa
d (C) ∋ B̃y := V ∗ByV, ∀y ∈ [N ].

La normalisation de l’état quantique et la réduction des B̃y sont dûs à l’isométrie V . Ainsi on
a 〈

ψ
∣∣∣ N∑
x,y=1

Gxy Ax ⊗By

∣∣∣ψ〉 =

N∑
x,y=1

Gxy

d∑
i,j=1

√
λiλj⟨ai|Ax|aj⟩ ⟨bi|By|bj⟩︸ ︷︷ ︸

=⟨b̃i|V ∗ByV |b̃j⟩

=
N∑

x,y=1

Gxy

d∑
i,j=1

√
λiλj⟨ai|Ax|aj⟩⟨b̃i|B̃y|b̃j⟩

=
〈
ψ̃
∣∣∣ N∑
x,y=1

Gxy Ax ⊗ B̃y

∣∣∣ψ̃〉.
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Ainsi on a pu montrer que toute les corrélations qu’on peut obtenir avec les mesures de Bob
sur un espace de dimension D, sont les même corrélations qui peuvent être obtenues si les
dimensions des espaces de Hilbert d’Alice et de Bob sont égales.

L’un des résultats majeurs de cette section est que ∥A∥G est une norme tensorielle, plus
précisément on a:

∥A∥RN⊗εMsa
d (C) ≤ ∥A∥G ≤ ∥A∥RN⊗πMsa

d (C)

avec (RN , ∥ · ∥G) and (Msa
d (C), ∥ · ∥∞).

On munit les espaces vectoriels RN et Msa
d (C) avec leurs normes respectives données par

∥ · ∥G et la norme d’opérateur (ou la norme Schatten-∞, S∞). Notez qu’on a utilisé l’abus de
notation suivant: on a utilisé ∥ · ∥G pour une norme dan RN et dans RN ⊗Msa

d (C); cet abus de
notation sera clair à partir du contexte. Nous allons explorer les propriétés de la norme ∥ · ∥G
vis à vis du produit tensoriel. Soit un N -uplets d’observables (A1, A2, . . . , AN ), leur associant
la quantité suivante:

A :=

N∑
x=1

ex ⊗Ax ∈ RN ⊗Msa
d (C).

Definition 10.5.5. Soit p ∈ RN , on définit la quantité suivante:

∥p∥G :=
N∑
y=1

∣∣∣∣ N∑
x=1

Gxy px

∣∣∣∣ = ∥G⊤p∥1.

Lemma 10.5.6. Soit une matrice inversible G, la fonction RN ∋ p 7→ ∥p∥G est une norme.

Dans ce qui suit on étudiera l’espace dual de (RN , ∥ · ∥G). pour cela on calculera la norme
duale de ∥ · ∥G donnée par ∥ · ∥∗G.

Proposition 10.5.7. La norme duale ∥ · ∥∗G est donnée par :

∀p ∈ RN , ∥p∥∗G = max
y

∣∣∣ N∑
z=1

(G−1)yz pz

∣∣∣ = ∥G−1p∥∞.

Le théorème suivant montre que ∥ · ∥G est une norme tensorielle dans RN ⊗Msa
d (C).

Theorem 10.5.8. Soit un jeu non local inversible G de N questions et réponses, la quantité ∥·∥G
caractérisant la valeur maximale du biais quantique d’un jeu G avec les mesures dichotomique
d’Alice fixe, est une norme tensorielle dans Msa

d (C)N ∼= RN ⊗Msa
d (C):

∥A∥RN⊗εMsa
d (C) ≤ ∥A∥G ≤ ∥A∥RN⊗πMsa

d (C)

avec (RN , ∥ · ∥G) and (Msa
d (C), ∥ · ∥∞).

Dans ce contexte la norme projective et injective est donné par:

∥A∥RN⊗πMsa
d (C) := inf

{ k∑
i=1

∥pi∥G ∥Xi∥∞, A =

k∑
i=1

pi ⊗Xi

}
.

∥A∥RN⊗εMsa
d (C) := sup

{
⟨π ⊗ α,A⟩; ∥π∥∗G ≤ 1, ∥α∥1 ≤ 1

}
.

avec Msa
d (C) ∋ α→ ∥α∥1 = Tr |α| est la la Schatten 1-norm. Dans le cadre des jeux XOR où les

mesures d’Alice sont fixes, si Alice veut savoir si ses mesures sont locales, elle devra calculer la
norme ∥·∥G et si cette norme est inférieure ou égale au biais classique β(G) alors nous disons que
ses mesures sont G−Bell-locales. Afin de savoir si ses mesures sont compatibles, elle calculera
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la norme du tenseur de compatibilité ∥ · ∥c. Le problème de la compréhension du lien entre
l’incompatibilité des mesures quantiques et la violation de l’inégalité de Bell devient naturel,
dans le sens où Alice doit comparer les deux normes. Nous commençons par une reformulation,
en utilisant le langage des normes tensorielles, du fait bien établi suivant : une violation de
l’inégalité de Bell M observée implique nécessairement la incompatibilité des mesures d’Alice.
Mathématiquement, cela correspond à la limitation supérieure de la norme de localité de Bell
M des mesures d’Alice par leur norme de compatibilité.

Theorem 10.5.9. Soit un jeu non local inversible décrit par la matrice G ∈ MN (R). Alors
pour tout N -uplets de matrice auto-adjointe A = (A1, . . . , AN ), on a

∥A∥G ≤ ∥A∥c∥G∥ℓN1 ⊗εℓN1
= ∥A∥c β(G).

Theorem 10.5.10. Soit un jeu non local inversible décrit par la matrice G ∈ MN (R). Alors,
pour tout N -uplets de matrice auto-adjointe A = (A1, . . . , AN ), on a

∥A∥c ≤ ∥A∥G∥G−1∥ℓN∞⊗εℓN∞
. (10.2)

Ces deux théorèmes montrent, que l’égalité suivante ∥ · ∥G = ∥ · ∥c. n’est pas toujours vraie.
Ainsi on retrouve que pour le jeu CHSH donné par:

GCHSH =
1

2

[
1 1
1 −1

]
,

on a

β(GCHSH) = 1 and (GCHSH)
−1 =

[
1 1
1 −1

]
.

Ainsi à partir des deux théorèmes on a l’égalité suivante:

∥ · ∥c = ∥ · ∥GCHSH

L’équivalence forte entre incompatibilité et non localité consiste à l’égalité entre ∥ · ∥c et ∥ · ∥G.
Ainsi on se pose la question, pour quel type de jeu G on peut retrouver cette équivalence stricte.
Notez que pour n’importe quel jeu inversible G avec un N−uplets de mesure fixe donné par A
on a:

∥A∥G ≤ ∥A∥c∥G∥ℓN1 ⊗εℓN1
≤ ∥A∥G∥G−1∥ℓN∞⊗εℓN∞

∥G∥ℓN1 ⊗εℓN1
,

ainsi on a:
∥G−1∥ℓN∞⊗εℓN∞

∥G∥ℓN1 ⊗εℓN1
≥ 1. (10.3)

A fin d’obtenir l’égalité suivante ∥ · ∥G = ∥ · ∥c, il suffit de normaliser

β(G) = ∥G∥ℓN1 ⊗εℓN1
= 1 and ∥G−1∥ℓN∞⊗εℓN∞

= 1.

A une constante prés, ceci est équivalent à une saturation de l’inégalité donné ci-dessus.

Theorem 10.5.11. L’unique jeu inversible G ∈ MN (R) satisfait

∥G−1∥ℓ2∞⊗εℓ2∞
∥G∥ℓ21⊗εℓ21

= 1

sont des jeux à (N=2) questions proportionnel au jeu CHSH: G = aGCHSH avec a ̸= 0. Donc le
jeu CHSH (et ces permutations) donnant une inégalité stricte entre l’incompatibilité de mesures
quantiques et la violation des inégalités de Bell.
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10.6 Conclusion

En résumé, l’(in)compatibilité et la non-localité sont deux concepts fondamentaux non équivalents.
Nous avons introduit la compatibilité des mesures quantiques où nous avons introduit la di-
mension de compatibilité comme nouveau concept pour comprendre l’effet de la dimension de
l’espace de Hilbert sur la compatibilité des mesures quantiques. Comme cela a été décrit, afin
de rendre compatibles des mesures incompatibles, on peut ajouter du bruit, plusieurs modèles
de bruit ayant été établis dans la littérature. Dans un projet en cours, nous introduisons un
tel modèle de bruit basé sur un processus de mesure indirect. Au cours de ce processus, l’état
quantique est couplé à une sonde, et l’évolution totale est prise comme aléatoire. La mesure
sur la sonde induira un POVM bruyant effectif, où le paramètre de bruit est complètement en-
codé dans la sonde. À partir de cette expérience de pensée, nous trouvons des POVM effectifs
bruités différents de ceux introduits dans la littérature ; nous étudions comment ce type de
modèle de bruit affecte la compatibilité des POVM. Nous avons développé un nouveau cadre
pour unifier la (in)compatibilité de la mesure quantique et la non-localité, basé sur le cadre des
jeux non-locaux (jeux XOR) et des normes tensorielles. Les appareils de mesure d’Alice sont
fixes, et elle calcule deux normes décrivant respectivement l’(in)compatibilité de ses mesures
et la non-localité. En comparant les normes, les seuls jeux satisfaisant l’égalité entre les deux
normes sont (au sens fort) le jeu CHSH et ses permutations.

Pour conclure, l’incompatibilité des mesures quantiques et la non-localité quantique sont
des sujets fascinants pour comprendre les limites de la théorie quantique. De plus, plusieurs
directions peuvent être explorées pour des recherches futures. Dans ce qui suit, nous donnons
quelques extensions et directions de recherche qui peuvent être abordées :

• Une question naturelle à poser est la suivante : si l’inversibilité du jeu est une condi-
tion nécessaire, peut-on trouver des jeux non inversibles qui donnent l’équivalence entre
l’incompatibilité et la non-localité ?

• Dans [9] l’équivalence forte entre l’incompatibilité et la non-localité est donnée par l’égalité
de ∥ · ∥c = ∥ · ∥G ; pour la satisfaire, il suffit de saturer l’inégalité donnée par l’équation
(10.3). Peut-on relaxer cette condition pour trouver d’autres matrices satisfaisant l’inégalité
(10.3)?

• Peut-on étendre les résultats obtenus pour des jeux non locaux avec N questions et M
réponses ? Peut-on définir une norme de compatibilité pour de tels jeux M -résultats avec
M ≥ 3 ?

• Il a été montré dans [91, 92] que la plus grande violation de Bell diverge avec le nombre de
questions. On peut se demander si l’un des deux joueurs utilise des mesures incompatibles,
comment cela affectera la violation de Bell?

• Les auteurs dans [46, 49] ont montré que si nous considérons des jeux avec trois joueurs,
N questions et deux réponses, la violation de Bell maximale diverge avec le nombre de
questions. On peut se demander si l’on fixe l’appareil de mesure d’un des joueurs, comment
cela affectera quantitativement la quantité par laquelle une inégalité de Bell est violée ?
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Resumé en français
L’un des concepts majeurs introduit par la théorie quantique est celui de la compatibilité

des mesures quantiques. Il existe certains types de mesures qui ne peuvent pas être effectuées en
même temps. Ainsi, on dit que les mesures sont compatibles si on peut mesurer en même temps
et d’autre sont incompatibles. L’autre concept majeur de la mécanique quantique est celui de
la non-localité qui est l’un des concepts les plus contre-intuitifs de la physique quantique. Ce
concept majeur est dû à John Bell qui a montré que la mécanique quantique est intrinsèquement
non locale. Ainsi, on parle de violation des inégalités de Bell par la mécanique quantique.
Aujourd’hui, la non-localité est comprise à travers les jeux non-locaux. Un jeux non-local
consiste en deux joueurs ou plus Alice et Bob et un arbitre. Ce dernier posera un certain nombre
de questions aux joueurs qui devront générer un certain nombre de réponses en utilisant une
stratégie classique ou quantique. Il se trouve que le maximum des réponses qu’Alice et Bob
peuvent générer est intrinsèquement relié à une norme tensorielle caractérisant le jeu. Dans
ce formalisme, l’utilisation des stratégies classiques est reliée à la norme de la matrice du jeux
lui-même, ainsi la violation des inégalités de Bell se traduit par une inégalité stricte entre les
normes tensorielles. Le but de cette thèse consiste à comprendre l’incompatibilité des mesures
quantiques ainsi que le lien avec les inégalités de Bell. Dans un premier temps, nous avons
introduit la compatibilité des mesures quantiques sous un nouveau point de vue, et analysé les
types de bruit qu’on peut effectuer à fin de rendre le système compatible. Ce nouveau point
de vue consiste à comprendre et à analyser l’effet de la dimension de l’espace de Hilbert sur
l’incompatibilité des mesures. Par ailleurs à fin de rendre des mesures compatibles, on peut
introduire l’effet d’un bruit. Comme application, certains états connus sous le nom de MUB
sont de nature incompatible, on montre même si on rajoute du bruit aux MUB celle-ci restant
incompatible, il existe une isométrie et un espace de Hilbert de dimension plus petite rendant
les MUB compatibles. Dans un deuxième temps, nous avons analysé le lien intrinsèque reliant
l’incompatibilité des mesures quantique et la violation des inégalités de Bell. Pour cela, on a
considéré le cadre des jeux non locaux, où les mesures d’Alice sont fixées. Il est connu qu’une
violation des inégalités de Bell nécessite l’utilisation des mesures incompatibles. Par ailleurs, si
Alice veut savoir si elle observera une violation des inégalités de Bell si elle utilise des mesures
incompatibles. Pour cela, elle doit calculer deux normes tensorielles d’un tenseur construit à
partir de ses mesures. Ces normes tensorielles vont caractériser d’une part la compatibilité
des mesures d’Alice et d’autre part la violation des inégalités de Bell. Dans ce cadre naturel,
comprendre le lien entre incompatibilité des mesures quantiques et de la violation des inégalités
de Bell, revient à comparer les deux normes tensorielles. Or, il se trouve que pour le jeu CHSH
ces deux normes sont égales, mais on peut montrer généralement qu’elles ne le sont pas. On peut
se demander s’il existe d’autre types de jeux satisfaisant cette égalité des normes tensorielles
? Il se trouve que nous avons montré qu’avec des conditions suffisantes, seul le jeu CHSH à
constante multiplicative près donne l’égalité entre les normes tensorielles.
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English summary
One of the major concepts introduced by quantum theory is the compatibility of quantum

measurements. There are certain types of measurements that cannot be made at the same
time. Thus,we say that measurements are compatible if they can be measured at the same
time and others are incompatible. The other major concept of quantum mechanics is that of
nonlocality which is one of the most counterintuitive concepts of quantum physics. This ma-
jor concept is due to John Bell who showed that quantum mechanics is intrinsically non-local.
Thus, we speak of violation of Bell’s inequalities by quantum mechanics. Today, nonlocality is
understood through nonlocal games. A nonlocal game consists of two or more players Alice and
Bob playing against a referee. The referee will ask a number of questions to the players who
will have to generate a number of answers using a classical or quantum strategy. It turns out
that the maximum number of answers that Alice and Bob can generate is intrinsically linked
to a tensor norm characterizing the game. In this formalism, the use of classical strategies
is related to the norm of the matrix of the game itself, so the violation of Bell’s inequalities
results in a strict inequality between the tensor norms. The aim of this thesis is to under-
stand the incompatibility of quantum measures and the link with Bell’s inequalities. First, we
introduced the compatibility of quantum measures from a new point of view, and analyzed
the types of noise that can be made to make the system compatible. This new point of view
consists in understanding and analyzing the effect of the dimension of the Hilbert space on the
incompatibility of measurements. Moreover, in order to make the measurements compatible,
we can introduce the effect of a noise. As an application, some states known as MUB are in-
compatible in nature, we show that even if we add noise to the MUB it remains incompatible,
there is an isometry and a Hilbert space of smaller dimension making the MUB compatible.
In a second step, we have analyzed the intrinsic link between the incompatibility of quantum
measurements and the violation of Bell’s inequalities. For this purpose, we considered the
framework of non-local games, where Alice’s measurements are fixed. It is known that a viola-
tion of Bell’s inequalities requires the use of incompatible measurements. On the other hand, if
Alice wants to know if she will observe a violation of Bell’s inequalities if she uses incompatible
measures. To do this, she must compute two tensor norms of a tensor constructed from her
measurements. These tensorial norms will characterize on the one hand the compatibility of
Alice’s measurements and on the other hand the violation of Bell’s inequalities. In this natural
framework, to understand the link between the incompatibility of quantum measurements and
the violation of Bell’s inequalities, we have to compare the two tensorial norms. Now, it turns
out that for the CHSH game these two norms are equal, but it can be shown generally that
they are not. We can ask ourselves if there are other types of games satisfying this equality
of the tensorial norms? It turns out that we have shown that with sufficient conditions, only
the CHSH game with a multiplicative constant gives the equality between the tensor norms.
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30. Aubrun, G., Lami, L., Palazuelos, C. & Plávala, M. Entangleability of cones. Geometric
and Functional Analysis. https://doi.org/10.1007%2Fs00039-021-00565-5 (May
2021).

31. Albiac, F. & Kalton, N. J. Topics in Banach space theory (Springer, 2006).

32. Megginson, R. E. An introduction to Banach space theory (Springer Science & Business
Media, 2012).

33. Ryan, R. A. & a Ryan, R. Introduction to tensor products of Banach spaces (Springer,
2002).

34. Defant, A. & Floret, K. Tensor norms and operator ideals (Elsevier, 1992).

35. Rudin, W. & Abouhazim, A. Analyse fonctionnelle isbn: 9782840741138. https : / /
books.google.fr/books?id=Psv-PQAACAAJ (Ediscience international, 1995).
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49. Pérez-Garcıéa, D., Wolf, M. M., Palazuelos, C., Villanueva, I. & Junge, M. Unbounded
violation of tripartite Bell inequalities. Communications in Mathematical Physics 279,
455–486 (2008).

50. Pisier, G., Cassels, J., Society, L. M. & Hitchin, N. Introduction to Operator Space Theory
isbn: 9780521811651. https://books.google.fr/books?id=0pKL-o7WUOAC (Cambridge
University Press, 2003).

51. June 2019. https://doi.org/10.19086%2Fda.8805.

52. Pisier, G. Tripartite Bell inequality, random matrices and trilinear forms 2012. https:
//arxiv.org/abs/1203.2509.

53. Ji, Z., Natarajan, A., Vidick, T., Wright, J. & Yuen, H. MIP*=RE 2020. https://
arxiv.org/abs/2001.04383.

54. Capraro, V. A Survey on Connes’ Embedding Conjecture 2010. https://arxiv.org/
abs/1003.2076.

55. Kirchberg, E. On non-semisplit extensions, tensor products and exactness of groupC*-
algebras. Inventiones mathematicae 112, 449–489 (1993).

56. Fritz, T. Tsirelson’s problem and Kirchberg’s conjecture. Reviews in Mathematical Physics
24, 1250012 (2012).

57. Junge, M. et al. Connes’ embedding problem and Tsirelson’s problem. Journal of Math-
ematical Physics 52, 012102 (2011).

58. Vidick, T. MIP= RE.

59. Murray, F. J. & von Neumann, J. On rings of operators. IV. Annals of Mathematics,
716–808 (1943).

148

https://doi.org/10.1063%2F1.1928727
https://doi.org/10.1063%2F1.1928727
https://doi.org/10.1103%2Frevmodphys.86.419
https://doi.org/10.1103%2Frevmodphys.86.419
https://www.sciencedirect.com/science/article/pii/0375960187900752
https://www.sciencedirect.com/science/article/pii/0375960187900752
https://books.google.fr/books?id=0pKL-o7WUOAC
https://doi.org/10.19086%2Fda.8805
https://arxiv.org/abs/1203.2509
https://arxiv.org/abs/1203.2509
https://arxiv.org/abs/2001.04383
https://arxiv.org/abs/2001.04383
https://arxiv.org/abs/1003.2076
https://arxiv.org/abs/1003.2076


60. Connes, A. Une classification des facteurs de type III. fr. Annales scientifiques de l’École
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