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Résumé
L’objectif de cette thèse est de développer des méthodes permettant d’estimer la configu-
ration 3D de scènes contenant des objets rigides et des robots articulés dont les modèles
3D sont connus, en utilisant une ou plusieurs images RGB en entrée. Nous considérons
les scènes difficiles et les conditions visuelles suivantes: (i) des objets sans textures et / ou
symétriques (ii) des robots avec plusieurs degrés de liberté, (iii) des scènes imagées dans
des conditions difficiles (en terme de point de vue ou d’éclairage) et (iv) des objets ou des
robots partiellement occlus.

Les principales contributions de cette thèse sont les suivantes. Tout d’abord, nous intro-
duisons une méthode pour identifier un nombre variable d’objets dans l’espace de travail
d’un robot et estimer les coordonnées 2D des centroïdes des objets dans le système de coor-
données du robot. Notre approche ne nécessite pas de calibration extrinsèque caméra-robot.
Deuxièmement, nous proposons une méthode pour résoudre efficacement le problème de
réarrangement. Nous proposons une paramétrisation d’action discrète de ce problème, et
appliquons efficacement Monte-Carlo Tree Search (MCTS) pour le résoudre. Troisième-
ment, nous introduisons une nouvelle méthode basée sur l’apprentissage pour l’estimation
6D de la pose d’objets rigides dont les modèles 3D sont connus. Notre approche repose
sur une stratégie de rendu et de comparaison. Nous introduisons des innovations dans
le paramétrage de la fonction de coût et de l’orientation de l’objet pour gérer explicite-
ment les symétries d’objets et obtenir un entraînement stable. Nous entraînons notre ap-
proche sur des données synthétiques en utilisant des augmentations d’images importantes
et montrons l’importance cruciale de l’augmentation des données pour le transfert vers
des scènes réelles. Quatrièmement, nous introduisons une approche multi-objet multi-vues
pour l’estimation de pose. Nous introduisons une nouvelle stratégie RANSAC au niveau
des objets pour estimer conjointement les poses relatives des caméras et trouver des corre-
spondances entre les hypothèses de poses prédites dans chacune des vues indépendamment.
Les poses des objets et des caméras sont affinées conjointement en résolvant un problème
d’optimisation. Cinquièmement, nous étendons notre troisième contribution pour estimer
la pose de nouveaux objets, c’est-à-dire des objets inconnus pendant l’entraînement. Nous
introduisons un réseau de notation pour trouver la meilleure estimation initiale parmi un
ensemble d’hypothèses grossières, et un réseau pour le raffinement itératif où la forme de
l’objet et le système de coordonnées sont implicitement fournis en entrée. Les réseaux
sont entraînés sur un nouvel ensemble de données synthétiques à grande échelle affichant
des milliers d’objets différents dans des conditions visuelles difficiles. Enfin, nous intro-
duisons une méthode pour estimer la pose 6D et les angles articulaires d’un robot articulé.
Nous étendons la stratégie de rendu et de comparaison pour gérer les robots avec plusieurs
degrés de liberté. Nous montrons l’importance cruciale du paramétrage du robot dans ce
problème, et proposons une stratégie efficace et indépendante du robot.

Les méthodes présentées dans cette thèse font progresser l’état de l’art sur les bench-
marks existants pour l’estimation de la pose d’objets et de robots. Pour les objets rigides
connus, notre approche CosyPose est la méthode qui a gagné le BOP Challenge 2020.
Notre approche pour les objets inconnus pendant l’entraînement, MegaPose, atteint des
performances similaires tout en ne nécessitant pas que les objets soient connus à l’avance
pour l’entraînement, ouvrant la voie à des applications où le déploiement rapide est crucial.
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Abstract
The goal of this thesis is to develop methods for recovering the 3D configuration of scenes
containing rigid objects and articulated robots with known 3D models using one or multiple
RGB images as inputs. We consider the following challenging scenes and visual conditions:
(i) textureless and/or symmetric objects (ii) robot arms with several degrees of freedom,
(iii) scenes imaged under challenging conditions (e.g. viewpoint or illumination) and (iv)
objects or robots partially occluded.

The key contributions of this thesis are as follows. First, we introduce a method for
identifying a variable number of objects in a robot’s workspace and estimate the 2D coor-
dinate of the object’s centroids in the robot coordinate frame. Our approach does not require
extrinsic camera-to-robot calibration. Second, we propose a method for efficiently solving
the planar rearrangement planning problem. We propose a discrete action parametrization
of this problem, and efficiently apply Monte-Carlo Tree Search (MCTS) to solve it. Third,
we introduce a novel learning-based method for 6D pose estimation of rigid objects with
known 3D models. Our approach relies on the render-and-compare strategy. We introduce
innovations of the training loss and rotation parametrization to explicitly handle object sym-
metries and achieve stable training. We train our approach on synthetic data using heavy
image augmentations and show the crucial importance of data augmentation for the trans-
fer to real scenes. Fourth, we introduce an approach for multi-view multi-object 6D pose
estimation. We introduce a novel object-level RANSAC strategy to jointly estimate rela-
tive camera poses and find correspondences between single-view pose hypotheses. Poses
of all objects and cameras are jointly refined by solving an object-level bundle adjustment
problem. Fifth, we develop an approach to estimate the pose of novel objects, i.e. objects
unseen during training, but for which the 3D model is available at test time. We introduce a
scoring network for finding the best initial estimate among a set of coarse hypotheses, and
design a network for iterative refinement where the object shape and coordinate system are
implicitly provided as inputs. The model is trained on a novel large-scale synthetic dataset
displaying thousands of different objects in challenging visual conditions. Finally, we in-
troduce a method for estimating the 6D pose and joint angles of an articulated robot. We
extend the render-and-compare strategy to handle robots with several degrees of freedom.
We show the crucial importance of robot parametrization in this problem, and propose an
effective strategy that is independent of the robot.

The methods presented in this thesis advance the state-of-the-art on existing datasets
and benchmarks for object and robot pose estimation. For known rigid objects, our single-
view approach CosyPose is the winning entry in the BOP Challenge 2020. Our approach
for unseen objects, MegaPose, achieves similar performance while not requiring the objects
to be known in advance for training, paving the way for real applications where rapid
deployment is key.
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Chapter 1

Introduction

1.1 Goals
The goal of this thesis is to develop methods for recovering a 3D configuration of a scene
using visual sensors. We consider scenes containing rigid objects and articulated robots
with known geometric descriptions, i.e. CAD models and kinematic description. Given
these descriptions of real-world assets (objects or robots), we consider the following prob-
lems: (i) identifying which of the known assets appear in a given scene, and (ii) what are
the unknown parameters defining the state of these assets within the 3D scene. The state of
a rigid object is defined by its 6D pose, composed of 3D rotation and 3D translation with
respect to a reference coordinate frame located, e.g. at the camera. The state of a robot is
defined by (i) the 6D pose with respect to a reference coordinate frame, and (ii) the joint
parameters, e.g. the angle value of a revolute joint.

Existing methods for these tasks suffer from limitations that prevent them from be-
ing widely deployed to real-world applications in open and uncontrolled environments. In
this thesis, the focus is on methods that (i) can be applied to any type of assets, includ-
ing texture-less or symmetric objects and robots with high degrees of freedom; (ii) can
be applied to cluttered scenes where the observed assets are occluded; (iii) do not rely on
costly dedicated sensors (e.g. depth or LIDAR); (iv) do not require tedious calibration of the
acquisition system (e.g. camera-to-robot calibration) or other time consuming procedures
specific to a given scene or objects; (v) can deal with environment variations during execu-
tion on a real robotic system; (vi) are end-to-end learnable and trained entirely on synthetic
data without manual annotations; (vii) do not require the CAD models of the objects to be
known in advance for training. Examples of scenes obtained by methods developed in this
thesis are shown in figures 1-1 and 1-2.

1.2 Motivation
Objects play a central role in how humans and robots interact with their environment.
Robots are instances of articulated objects which are omnipresent in the context of robot
manipulation (e.g. a robot handing an object to a human) where knowledge of the robot
configuration within the scene is crucial for planning a task and avoiding collisions. Iden-
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Output scene model

Input images

Input image Output scene model

(a)

(b)

(c)

Figure 1-1: Goal of the thesis: reconstructing the configuration of scenes containing
multiple objects. In (a), multiple RGB images captured from cameras with unknown
viewpoints are available as illustrated in the top row of images. The goal is to identify
the objects among a set of known 3D models (not displayed here) and recover their poses
as well as the poses of the cameras. Output scene model is shown in the bottom row. In
(b), the goal is to detect objects and recover their 6D poses using a single RGB image of
a cluttered scene. In (c), we show the high accuracy that we aim to achieve in this thesis
for objects whose CAD models are known at test time, but not in advance for training. The
green contours represent the contours of the object models projected into the image. The
results presented in this figure are obtained with the methods presented in chapters 4 and 5.
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(a)

(b)

(B)

(A)

Figure 1-2: Goal of the thesis: reconstructing the configuration of scenes containing
robots. (a) Given a single RGB image of a known robot (left column), the goal is to
recover the state of the robot: it’s 6D pose with respect to the camera and the joint angles.
The right column shows for each example an overlay of the robot model in the estimated
configuration. In (b), a robot and multiple objects are visible in the scene. Given a single
RGB image (left), the goal is to estimate the location of each object (colored cubes) on the
table. We show the 2D coordinates of two objects (A and B) with repect to the 2D (on the
table) coordinate system of the robot placed at the base of the robot. The results presented
in this figure are obtained with the methods presented in chapters 3 and 6.
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(a)

(c)

(e) (f)

(b)

(d)

Figure 1-3: Motivation. Examples of robotic applications requiring visual object and robot
state estimation. In (a) [80], (b) [62], (c) [16] a mobile robot performs household tasks: (a)
loading a glass into a dishwasher (b) serving a cup of water (c) storing food items in a
drawer. In (d) [75], (e) [162] a robot performs industrial tasks: (d) storing and picking
objects from a shelf, (e) bin picking. In (f) [195], two robots collaborate to assemble parts
of an Ikea chair.
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(a)

(b) (c)

(e)

(d)

(f)

(g)

Figure 1-4: Motivation. Example applications of estimating the 3D state of objects and
robots in a scene. In (a) [88], the object-level reconstruction of a scene allows a robot to
plan a motion to grasp an object on a shelf while avoiding collision with other objects in the
environment. In (b) [208], estimating the pose of a robot and objects in the camera coordi-
nate frame enables object manipulation without time-consuming camera-to-robot calibra-
tion. In (c) [247], an inexpensive robot without rotary encoders on its motors is controlled
to stack objects using visual joint angle estimation. In (d) [220] and (e) [178], an object-
level SLAM algorithm leverages object detection and pose estimation to jointly create a
map of the environment and localize the camera, with applications to (d) autonomous driv-
ing and (e) indoor localization. In (f) [4], estimating the pose of an urban building (left)
allows an architect to directly visualize variations of the building with augmented reality
(right). In (g) [190], pose estimation of industrial objects with respect to the camera of a
hand-held consumer tablet provides information to a human operator performing service &
maintenance operations.
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tifying the objects and their spatial configurations within a scene is a task humans perform
seamlessly with their cognitive visual system. Yet, this task remains challenging to perform
for machines equipped with visual sensors like cameras. Several important real-world ap-
plications would be enabled by the development of algorithms that can quickly process
digital images coming from one or multiple cameras into a simple and explicit scene repre-
sentation: a list of objects associated with their 3D configuration within the observed scene.
Some of these applications are discussed below.

Robotic manipulation. Deploying autonomous robotic systems that can interact with the
environment and each other in open and uncontrolled environments would have a profound
impact on society, by helping or replacing humans performing tedious tasks in industrial
environments or for personal assistance. Example applications are illustrated in figure 1-3.
Current robotic manipulation systems are however typically constrained to specific scenes,
where it is possible to design and instrument an entire system for the given environment
and the set of objects: e.g by designing a production line to ensure manufactured objects
always arrive at the same position with respect to a robot, by placing fiducial markers
on objects beforehand or by placing a fixed camera and calibrating it with respect to the
robot. The deployment of existing systems to novel environments is thus limited by costly
and environment-specific instrumentation and calibration steps. Estimating the accurate
position and orientation of all objects within any scene would allow robots to plan, navigate
and interact with any novel environment. In this thesis, we make a step towards this vision
by developing an approach that can estimate the 6D pose of objects that have a known 3D
shape (e.g. in the form of a CAD model) but this CAD model does not need to be known in
advance for training, only at test time. The object-level representation of a scene considered
in this thesis is particularly suited for modular robotic systems and can be directly combined
with existing planning and control algorithms as illustrated in figure 1-4(a)(b).

Multi-robot interaction. Estimating the 3D state of a robot from the images of a camera
would allow one robot to understand the behavior of another robot, perform collaborative
tasks and avoid collisions during manipulation or navigation. An example of two robots
performing a collaborative task is illustrated in figure 1-3.

Low-level visually-guided robotic control. Estimating values of robot joints from a
camera provides visual measurements that can be used to replace robot’s proprioceptive
sensors (e.g. the rotary encoders mounted on the motors of the robot revolute joints), or
increase their accuracy. Knowledge of a robot state is critical for controlling its actuators
with a closed-loop feedback loop. Visual state measurements can be useful for controlling
inexpensive robots (such as the Owi-535 illustrated in figure 1-4) that have no proprio-
ceptive sensors. For other robots, the proprioceptive sensor measurements alone may be
unreliable, for example on a robot with revolute joints composed of one motor and a gear
box. The gear box introduces mechanical angular backlash in the articulations due to me-
chanical flexibilities, which are not measured by the rotary encoders on the motors. Such
errors accumulate and can be large for robots with high degrees of freedom like humanoid
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robots. Again, using visual measurements coming from an external camera would allow
reducing such errors.

Simultaneous localization and mapping. Robotic navigation requires a robot to be able
to localize itself within a map of the environment. Environments are often composed of
objects and can be represented using an object-level description, i.e. a list of objects asso-
ciated with their poses in the environment. Building such a map in real-time using one or
multiple moving cameras while also localizing the cameras in the environment is a prob-
lem known as object-level SLAM [178]. Algorithms for solving this problem strongly
rely on detection and pose estimation of objects, and their performance correlates with the
performance of the detection and pose estimation algorithms, which is the focus of this
thesis. Applications of object-level SLAM include autonomous driving of a car or indoor
navigation and localization of a mobile robot, as illustrated in figure 1-4.

Virtual and augmented reality. A virtual object-level scene reconstruction can be en-
hanced with other computer-generated visual information. The augmented scene can be
visualized by humans in a virtual environment using a virtual reality headset (virtual real-
ity, VR), or superimposed on an image of the real world (augmented reality, AR). Appli-
cations of AR and VR are numerous and include art visualization, education, urban design
and planning, architecture, or service&maintenance operations. Example applications are
illustrated in figure 1-4(f)(g).

3D scene understanding. Object-level reconstruction of everyday scenes provides in-
formation that can be used to understand how humans interact with their environment.
Applications of scene understanding include cognitive sciences and can be used for exam-
ple to develop artificial intelligence inspired by humans. For example, reconstructing the
trajectory of a tennis racket during a swing, or the pose of a bottle with respect to a glass
during pouring could be used to extract motion primitives for training robots to perform
similar actions.

1.3 Challenges
Identifying objects or robots and estimating their state within a scene is important for many
applications. There are however several challenges that need to be addressed:

• Viewpoint, illumination. The visual appearance of an object depends on its pose
with respect to the camera (which we seek to estimate), but also on external factors
such as the lighting conditions, as illustrated in figure 1-5, or the presence/absence
of visual occluders as illustrated in figure 1-6.

• Symmetries. The pose of an object is defined by the object coordinate system at-
tached to its CAD model, which is arbitrary and can be ambiguous. If the object is
symmetric, multiple poses are equivalent and correct for an object in a given image,
as illustrated in figure 1-7.
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Figure 1-5: Challenges of pose estimation — illumination variations. In the top row,
we show four different images of the same object under different illumination conditions.
Notice how the visual appearance of each object is affected. In the bottom, we show the
influence of shadows on the visual appearance of objects (see red ovals). Images are from
the TUD-L [70] (top) and HOPE [211] (bottom) datasets.
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(a)

(b)

(c)

Figure 1-6: Challenges of object detection and pose estimation — Occlusions. (a) illus-
trates examples of scenes where objects are occluded by another object. Notice how some
objects are barely visible from certain viewpoints (right). (b) [125] shows other exam-
ples of dynamic occlusions where an object is occluded by an active manipulator, a human
hand (right), or a robotic gripper (left). (c) illustrates self-occlusions of articulated robots:
parts of the robot are occluded by other parts for certain configurations (right). Images
are from the LM-O [66] (a, left), IC-BIN [35] (a, right), DexYCB (b, right), and Owi535-
Youtube [247] (c) datasets.
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Figure 1-7: Challenges of pose estimation — Object symmetries. Two examples of
symmetric objects. On the left is the object’s CAD model with the coordinate system
defining its 6D pose, and the object symmetries: a plane (top row) or an axis of revolution
(bottom row). On the right, we show two possible pose estimates for the same observation
of each object. Images and objects are from the T-LESS [68] (top) and YCB-V [230]
(bottom) datasets.
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Textured objects

Textureless objects

Figure 1-8: Challenges of object detection and pose estimation — Presence or absence
of textures. We show examples of textured objects (top) and textureless objects (bottom).
The visual details on the textured objects are important to define their pose, while the pose
of textureless objects entirely depends on their global shape. Images are from [211] (top-
left), [22] (top-right), [68] (bottom-left), and [38] (bottom-right).
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Figure 1-9: Challenges of robot pose estimation — Infinite number of possible configu-
rations. The top row illustrates, for two robots, that robots can have a high number of parts
and joints. For example, the robotic arm of the fetch manipulator has 7 degrees of freedom
(DoFs), and the bi-arm Baxter robot has 15 DoFs. The number of possible configurations
is infinite, and robots can have very different visual appearance when imaged in a different
configuration even when observed from similar viewpoints (bottom).
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• Textureless objects. The pose of an object depends on characteristics specific to
each object, such as its shape and texture for textured objects, or its shape only for
textureless objects, as illustrated in figure 1-8.

• Articulations. Estimating the state of a robot requires estimating the values of its
joints. This is challenging because robots can have many degrees of freedom, and
each joint affects the position of multiple robot parts, as illustrated in figure 1-9.

1.4 Contributions
We now summarize the main contributions of this thesis, which we divide into six main
themes.

(1) Object-robot relative 2D localization. We develop a method for identifying a vari-
able number of objects in a robot’s workspace and estimate the 2D coordinate of the ob-
ject’s centroids in a coordinate frame centered on the robot. This information is sufficient
for performing top-down grasps with the robot. The method operates from a single input
RGB image and uses the robot as an implicit calibration object. It therefore can be used
without any prior intrinsic camera calibration or camera-to-robot extrinsic calibration. The
key innovation is to combine (i) a neural network that predicts a dense position field map-
ping each pixel of the input image to a 2D coordinate in the robot workspace with (ii) an
object identification stage relying on a mean-shift clustering algorithm for identifying in-
dividual objects. The method is trained entirely on synthetic data generated using domain
randomization. In addition, the method does not require knowledge of the CAD models of
the objects in the scene. Our method is presented in chapter 3.

(2) Rearrangement planning. We propose a method for planar rearrangement planning
with many movable objects, i.e. finding a sequence of robot actions to move a set of
objects from an initial arrangement to a desired one using overhand grasps. The object
arrangements can, for example, be estimated visually. We take inspiration from the success
of Monte-Carlo Tree Search (MCTS) for solving complex sequential decision problems,
which was for example used to develop artificially intelligent systems capable of beating
the best players at the games of chess or Go. The key innovation is a novel discrete action
parametrization of the rearrangement planning problem which allows us to efficiently apply
MCTS. Our method is presented in chapter 3.

(3) Learning-based single-view 6D pose estimation of known rigid objects. We de-
velop single-view CosyPose, a method for 6D pose estimation of rigid objects from a sin-
gle RGB image. We take inspiration from the success of methods based on the iterative
render-and-compare strategy. We propose a method that can be trained to perform 6D pose
estimation given a CAD model of an object, a detection in the form of a 2D bounding box
of that object in an RGB image, and the intrinsic parameters of the camera used to cap-
ture it. Key to the success of our method is to leverage recent advances in the design of
deep learning models for state estimation used in related areas to achieve stable training. In
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particular, (i) we use a training loss that disentangles the effect of the different predictions
(i.e. rotation and translations), and (ii) we use a parametrization of the 3D rotation which
is less sensitive to regression errors compared to quaternions. We explicitly handle object
symmetries in the loss during training to ensure that the gradients used to train the network
are not ambiguous for symmetric objects. The learning-based nature of the approach en-
ables us to leverage visual appearance variations of any object in the training data to gain
robustness with respect to illumination variations and occlusions. We generate synthetic
images of physically plausible scenes using a set of known objects. We apply heavy data
augmentation to the images and train the network on these, and show it generalizes to real
images of the same known objects. We show this heavy data augmentation is key to the
success of the method. Single-view CosyPose is presented in chapter 4.

(4) Multi-view multi-object detection and 6D pose estimation. We develop multi-view
CosyPose, a method for recovering the 6D pose of multiple objects and cameras into a sin-
gle consistent scene. Our method takes inspiration from dense 3D reconstruction methods
but operates at the level of objects instead of operating at the level of low-level primi-
tives like points, lines, or patches. Multi-view CosyPose is designed to address the main
limitations inherent to single-view pose estimation such as failures in the case of severe oc-
clusions, or difficulty to estimate depth along the camera 𝑧 axis. Our first key innovation is
a novel object-level RANSAC procedure to (i) match hypotheses of object candidates (i.e.
single-view pose estimates) across the different views of the same scene, (ii) identify the
outliers, (iii) and estimate the relative camera poses. Our second key innovation consists in
jointly optimizing the poses of objects and cameras in the scene in order to best explain the
single-view inlier candidates by solving an object-level bundle adjustment problem where
object symmetries are handled explicitly. Multi-view CosyPose is presented in chapter 4.

(5) Learning-based single-view 6D pose estimation of novel rigid objects. We intro-
duce MegaPose, a method for single-view 6D pose estimation of rigid objects which ad-
dresses the main drawback of single-view CosyPose. Namely, CosyPose requires the ob-
jects of interest to be known in advance to generate training data specific to these objects
and train the network. Data generation and training require hours or days, which makes
it unusable in open environments where novel objects are encountered frequently. We de-
velop a new method based on the render-and-compare strategy which is agnostic to the
specific objects we seek to estimate the 6D pose of. The key innovation is to implicitly
provide as input all information required to estimate the pose of an object as input, i.e. its
visual shape and information about its coordinate system. Hence, no object-specific infor-
mation needs to be encoded in the network weights during training. MegaPose is trained
using tens of thousands of object CAD models and generalizes to novel objects with CAD
models available only at test time. Our MegaPose approach is presented in chapter 5.

(6) Robot pose and joint angle estimation. We develop a novel method for estimating
the 6D pose and joint angles of a known robot. We take inspiration from the success of
approaches based on the render-and-compare strategy which has been successful for pose
estimation of rigid objects and develop a new method able to handle the specificities of
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articulated robots. One of the key challenges is to generalize to novel robot configurations
unseen during training. Our first key innovation is to use the centroid of the robot as a
reference point for estimating the robot pose with respect to the camera, which can be
visually estimated for novel configurations. Not relying on a specific robot part allows us
to gain robustness with respect to external occlusions and self-occlusions. Our second key
innovation is a simple automatic solution for choosing the anchor part, i.e. the part of
the robot whose pose with respect to the camera is independent of the joint angles values.
We show this choice of anchor part is important and show our solution can be applied to
different robots. RoboPose is presented in chapter 6.

1.5 Outline of the thesis
In chapter 2, we review the literature relevant to this thesis in the areas of object pose
estimation of rigid and articulated objects.

In chapter 3, we present an integrated robotic system for performing closed-loop online
rearrangement planning of objects present on a flat surface in a robot’s workspace. We first
introduce a method for identifying objects and estimating their 2D location with respect to
the robot given a single uncalibrated RGB camera. We then present a method for perform-
ing multi-object rearrangement planning in a workspace with no available buffer space. We
combine both approaches and present real robot experiments on a UR5 robot demonstrat-
ing the robustness of our system with respect to environment variations like background
or types of objects as well as external variations like moving the camera or perturbing the
object positions during the rearrangement.

Chapter 4 introduces CosyPose, a method for estimating the 6D pose of known rigid
objects with known CAD models given one or multiple images captured from cameras with
unknown viewpoints. We first present a method based on the render-and-compare strategy
for single-view 6D pose estimation of individual objects. Notably, this approach achieves
state-of-the-art results on several pose estimation benchmarks, winning five awards in the
BOP Challenge 2020. We then present a multi-view framework based on a robust object-
level matching strategy and global scene refinement achieved by solving an object-level
bundle adjustment problem. This multi-view framework addresses the main limitations
inherent to single-view pose estimation and significantly improves the performance of the
single-view approach. It is also practical to use in robotic applications because (i) it can
be used with any existing single-view approach; (ii) it is relatively fast, taking 300𝑚𝑠 to
estimate the complete state of a scene with 6 objects using 4 cameras; and (iii) it can be used
with any cameras with known intrinsic parameters without any additional assumptions.

In chapter 5, we introduce MegaPose. MegaPose is an approach for 6D pose estimation
of any novel object with an available CAD model. This approach addresses the main draw-
backs of the single-view pose estimation of CosyPose introduced in chapter 4. Namely,
CosyPose requires the objects of interest to be known in advance in order to generate syn-
thetic data and train the network, which can take hours or days, and is thus impractical
to use in robotic scenarios where new objects are frequently encountered. MegaPose is
trained on a large-scale synthetic dataset generated with large databases of CAD models
and generalizes to novel objects with available CAD models but unseen during training.
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Notably, MegaPose achieves performance competitive with CosyPose while not requiring
the objects to be known in advance for training. We experimentally show the method can
be used for grasping novel objects on a real robot.

In chapter 6, we consider the problem of estimating the 6D pose and joint angles of a
known robot given a single image. We introduce a new deep render-and-compare method
for this task trained entirely on synthetic data that generalizes to new unseen robot config-
urations at test time. The approach relies on a novel parametrization to iteratively update
jointly the pose and the joint angles of an observed robot. The proposed parametrization is
independent of the robot structure and can be applied to a variety of robots. We evaluate
the method on existing benchmarks demonstrating significant improvements over the state-
of-the-art for four different robots with up to 15 degrees of freedom and apply the method
to videos from Youtube depicting robots in various un-instrumented environments.

Chapter 7 concludes this thesis by summarizing the main results and contributions,
presenting recent development in the literature that relies on the presented work, and sug-
gesting multiple avenues for future research.

1.6 Publications and software
During the development of this thesis, four papers were presented in major conferences and
journals in computer vision and robotics (RAL’2020, ECCV’2020, CVPR’2021, CoRL’2022).
In addition, an extended version of a paper is available as a technical report. The following
chapters of this thesis present the material from our publications:

• The first version of the work presented in chapter 3 was presented at the Scalable
Learning for integrated Perception and Planning workshop at RSS 2019. An ex-
tended version was then published in the Robotics and Automation Letters (RAL)
2020 [100].

• The work presented in chapter 4 was published at the European Conference on Com-
puter Vision (ECCV) 2020 [96] and an extended version presenting the winning re-
sults in the BOP challenge 2020 [71] is available as a technical report [97].

• The work presented in chapter 5 was published at the Conference on Robot Learning
(CoRL) 2022 [99].

• The work presented in chapter 6 was published at the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) 2021 [98].

All the software, pre-trained models and datasets developed during this thesis are available
at https://www.github.com/ylabbe under open-source licenses.
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Chapter 2

Literature review

This thesis builds on more than 60 years of research from different fields related to com-
puter vision and robotics. The literature review is split into three parts. In section 2.1, we
review methods for estimating the 6D camera-to-object pose of a single known rigid object
using one view as input. We split the main existing methods for this task into different
families. For each family, we show how methods have evolved through the years with gen-
eral advances in computer vision for extracting image features: edge-based methods, local
features, and learning-based methods. We also discuss important aspects of the deploy-
ment of pose estimation methods: pose estimation of novel objects, detection and instance
recognition as well as tracking. In section 2.2, we review methods that use multiple im-
ages for reconstructing scenes and estimating the poses of all camera viewpoints. Finally,
section 2.3 reviews methods for reconstructing the state of scenes containing robots.

In all sections, the focus is on methods that can be applied to RGB images but we also
discuss the main works that assume depth measurements are available.

2.1 Single-view camera-to-object 6D pose estimation

Pose estimation of rigid objects from RGB is one of the oldest problems in computer vi-
sion [172]. The camera pose with respect to a known rigid object was recovered by es-
tablishing correspondences between (i) two-dimensional points in the image and (ii) three-
dimensional points on the object model. 60 years later, many research works still present
advances on how to establish such geometric correspondences, and how to recover the ob-
ject pose given a set of correspondences. We review the literature on correspondence-based
methods in section 2.1.1. In [143], an alternative approach was presented. Many template
images of the object under pre-determined camera viewpoints are captured using an instru-
mented robotic setup. These images are projected into a lower-dimensional appearance
representation space. Given a novel image, the object pose is determined by interpolation
between the poses of the closest image templates, where similarity is measured using the
appearance representation. Several other works have extended this idea, using different
approaches for modeling the viewpoint-dependent object appearance. Methods based on
object appearance are reviewed in section 2.1.2. In section 2.1.3, we present methods that
directly predict the object’s rotation and translation through regression or classification with
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neural networks without explicit correspondences or object appearance representations. In
section 2.1.4, we discuss methods that can be applied directly to novel objects without
costly training or pre-processing. Section 2.1.5 presents the main approaches for 6D pose
tracking, i.e. estimating the 6D pose of an object in a video sequence by leveraging tem-
poral continuity. Finally, section 2.1.6 discusses how to detect an object in an image and
identify it among a set of known 3D models. Object detection and identification are impor-
tant for reconstructing scenes containing many objects. It can however be considered as a
separate problem different than 6D object pose estimation where the goal is to recover an
object pose given (i) a region of interest displaying that object in an image and (ii) a model
of that object. We also refer the reader to surveys on rigid object pose estimation [43, 72,
130].

2.1.1 Correspondence-based methods

In the case of projective cameras, the pose of an object with respect to the camera can be
recovered given four or more 2D-3D correspondences. The problem, known as PnP, can
be solved with an iterative solution [31] or in closed-form [108]. In practice, estimated
correspondences are always noisy and a RANSAC strategy [42] is used. We now review
methods for establishing a set of 2D-3D correspondences.

Edge features. Early works in object pose estimation [172] model objects as a set of
primitives such as line segments or points representing edges on the objects. Primitives
are detected in the images by analyzing the intensity gradients, e.g. using Sobel filters.
Given a set of detected lines, several different methods were proposed to identify objects
in the object database and recover their pose. We illustrate these approaches with [123]
in figure 2-1. [6, 13, 77, 78, 123] rely on a "hypothesize and test" strategy [123]: (i) a
small set of matches is hypothesized, and (ii) an initial object pose is computed using the
hypothesis then tested by measuring the errors between the projection of the 3D model
in the hypohtesized pose and the location of the measured primitives. A search over the
set of possible matches leads to finding a good initial pose estimate. The pose is then
further refined using newton-based optimization with all correspondences. Later works also
consider different types of primitives such as faces and distance/angles between faces [50]
or curves [40].

Local image features. Edge-based methods discard the rich information in image bright-
ness and/or color pattern to identify correspondences. In [175], illustrated in figure 2-2, an
alternative approach leveraging this information is proposed. Objects are modeled as a set
of 3D patches. Each patch is associated with (i) a local image descriptor invariant under
geometric and photometric changes and (ii) the position of the 3D patch within the object
coordinate system. Given a novel image of that object, local invariant regions are then
detected in an image. The description of each region is then used jointly with spatial rela-
tionships to find matches between 2D features and 3D patches. Such methods enable pose
estimation for which estimating the pose requires reasoning about the object texture and
not only its edges, e.g. for a textured cylindrical object. The same idea is extended in [22,
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(a) (b)

(c) (d)

Figure 2-1: 6D pose estimation with edge-based features [123]. An object is represented
as a 3D wire-frame model (a). Given an input image (b), image contours are extracted (c).
These contours are then matched with the contours of the object’s model and the matches
are used to detect the objects and recover their 6D poses. (d) shows the 3D model of the
object in the estimated poses using the SCERPO [123] system. The system can handle
textureless objects occluded in the input image. Figure reproduced from [123].
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(a) (b)

(c)

Figure 2-2: 6D pose estimation with local image features [174]. An object is represented
using a set of 3D patches described by local features. This object model is created using
multiple viewpoints of the object (a). (b) shows a few examples of 3D patches. In (c),
the objects detected in the input image (left) are shown on the right in the estimated poses.
Figure reproduced from [174].

23] where an efficient implementation is proposed to detect objects and estimate their poses
in real time using one or multiple images. This approach can be used with other types of
local features such as SIFT [124], SURF [9] or MSER [132], after taking into account their
covariance properties. BOLD [204] features can be used for textureless objects.

3D features. If depth measurements are available, 3D features can be directly detected
in the image and matched with features extracted from object models. Several 3D features
have been proposed such as Shot [179], KPQ [136], ISS [244], MeshDog [212]. The most
commonly used are Point-Pair features [39] and its variants [1, 11, 20, 37, 67, 89, 92, 213].
We refer to [72] for an overview of the differences between these methods. In this thesis,
the focus is on RGB-only pose estimation where depth measurements are not available.
If depth measurements are available, the poses predicted using RGB-only images can be
refined using a registration technique like Iterative Closest Points (ICP) [243].
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(a) (b)

Figure 2-3: Predictions of sparse keypoints using a deep neural network [169]. The
method is illustrated in (a). Given an input image (top), a CNN is used to predict the 2D
location of 8 keypoints corresponding to the reprojections of the object’s 3D bounding box.
Predicted keypoints are shown in the bottom image. Results are shown in (b) for textureless
and symmetric objects. Figure reproduced from [169].

Learning-based correspondences. In [169], illustrated in figure 2-3, a method based on
a deep network is used to predict the location of the 8 corners of the 3D bounding box
of an object. In this approach, the network directly predicts the correspondences between
the 2D image and the 3D model, and the pose is recovered by solving an EPnP problem.
Other learning-based approaches rely on predicting a sparse set of correspondences. [202]
extends the approach [169] to handle multiple objects simultaneously without a separate
detection stage, and [207] proposes to train a network similar to [169] using synthetic data.
[76, 158, 160] rely on semantic object keypoints. To gain robustness to occlusions, dense
correspondences can be predicted using a CNN [69, 113, 155, 191, 240], as illustrated
in figure 2-4. Estimating the 6D pose can be done using RANSAC and PnP similar to
earlier works where dense correspondences were established using local features. While
correspondences are established using deep neural networks, these methods rely on non-
learning-based PnP and RANSAC stages for pose estimation.

Fiducial markers. An alternate approach to all the ones presented above is to place mark-
ers on the objects to ease the process of establishing correspondence between the image and
the object. The most popular strategy is based on April tags [41, 45, 151]. Such an approach
can only be used in instrumented environments where it is possible to precisely place mark-
ers on each object. These methods are also not robust to occlusions of the marker.
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(a)

(c)

(b)

Figure 2-4: Dense keypoint predictions using a deep neural network [155]. The method
is illustrated in (a). Given an input image (right), a CNN is used to map each pixel to a
3D position on the object’s model (left). The CNN is trained using a data augmentation
strategy that simulates occlusions (b). Example predictions for textureless objects severely
occluded are shown in (c). Figure reproduced from [155].
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2.1.2 Methods based on global appearance

In [143], images of an object are captured under different camera viewpoints with known
poses using an instrumented robotic setup with a turntable. This allows building an ap-
pearance representation mapping images to a space where the euclidean distance is repre-
sentative of the similarity between the poses of the object in two different images. During
inference, retrieving the closest templates of an image in this appearance space allows for
fast estimation of the pose.

Handcrafted representation. In [143], illustrated in figure 2-5, the appearance space is
created using the raw pixel intensities. The appearance space, or eigenspace, is constructed
by computing the most prominent eigenvectors of the set. However this space is not invari-
ant to illumination, and thus the method requires generating a large number of templates
with varying illumination. This problem can be addressed by modeling an object’s appear-
ance using edges and oriented pixels as in [150]. Edges are typically extracted using a
Canny edge detection method, which is sensitive to illumination changes, noise and blur.
Images gradient orientations instead of image contours can be used to solve this problem,
as proposed in [65]. Surface normals orientations can also be added to gain robustness with
respect to background clutter as proposed in [64, 66]. While these handcrafted representa-
tions can be applied to any kind of objects without a training procedure, they cannot benefit
from being trained on a large amount of data.

Learning-based features. A CNN can be used to project an image into a learned ap-
pearance representation space as presented in [226]. The CNN is trained using a metric
learning loss combining pair-wise and triplet-wise terms that encourage two descriptors of
the same object in similar poses to be close in the appearance space, and far in every other
case. This method requires annotations of the 3D orientations of the objects and is sensi-
tive to symmetry ambiguities. A representation space can be learned using a CNN without
explicit SO(3) orientation using an auto-encoder as done in [199], illustrated in figure 2-
6, where the auto-encoder is trained to reconstruct object images augmented with domain
randomization.

2.1.3 Direct pose estimation

These methods directly estimate the position and orientation of the object given an image.
Due to the difficulty of finding explicit relations between raw pixel intensities and an ob-
ject’s 6D pose, these methods are learning-based and rely on neural networks. We make
the difference between two regression-based approaches. The first family of methods relies
on a single-shot pose estimation network that directly estimates the pose given an input im-
age. The second family of methods iteratively refines the pose using a render-and-compare
strategy. The initial estimate can be provided by any method, but typically some method
from the first family. Methods presented in this section have an advantage of only relying
on learning-based components, allowing to improve their performance by scaling up the
training datasets.
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Figure 2-5: Pose estimation using global appearance and image templates [143]. An in-
strumented setup composed of a robot and a turntable (a) is used to capture image templates
of an object under different viewpoints (b). The image templates annotated are projected
in a low-dimensional eigenspace shown in (c), where each point represents an image tem-
plate. (d) shows the inference strategy. Given an image, the recognition system projects the
image to the eigenspace. The exact position of the projection on the manifold determines
the object’s pose. Figure reproduced from [143].
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Figure 2-6: Using a CNN to extract a global appearance representation [199]. Given
a set of object models (a), images of the objects are generated with various augmentations
(b). An auto-encoder is trained to reconstruct the images without augmentations (c). The
latent space of the auto-encoder provides a global appearance representation of an object
in the observed pose. Figure reproduced from [199].

One-shot pose estimation. SSD6D [87], illustrated in figure 2-7 extends the single-shot
object detector SSD [120] to predict a pose for each detection. A classification-based ap-
proach is employed, where the space of possible rotations is discretized. The translation
of the object is, however, computed using explicit geometric approximations based on the
position and size of the predicted object bounding box. The 3D translation can be directly
predicted by a network using a tesselation of SE-3 as done in [109], where a classification
network is thus employed to directly predict the full 6D pose. The 3D translation can also
be predicted using a regression-based network with a differentiable layer for translation
estimation as done in PoseCNN [230].

Iterative regression via render-and-compare. The pose of a known object can be ob-
tained by iteratively estimating the pose differences between a real observed image and a
rendering of the object. The estimated pose of the object corresponds to the pose of the
rendered object once the rendering and observed images are closely similar. Similarity be-
tween two images and pose gradients can be computed using mutual information (MI) [28,
184], used in [15] for object pose estimation. Later on, CNNs are used to measure simi-
larity and compute pose gradients. A CNN is used to define an energy function between
an image of an object and a rendering of the observed object in a given pose in [95]. The
pose is estimated by minimizing this energy using a regression-classification random for-
est. [147, 148] uses a pose update CNN that is trained to directly refine the error between a
rendering and an observed image of a hand. The pose is optimized by successively render-
ing the current estimate and refining the pose using the refinement network multiple times.
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Figure 2-7: One-shot pose estimation [87]. A CNN (a) is used to directly detect the posi-
tion and size of objects in the image as well as their orientation. (b) shows the discretization
of the space of possible object orientations. (c) illustrates the simple geometric reasoning
used to recover the 𝑧-axis translation of the object pose given the size of the object’s 2D
bounding box. Figure reproduced from [87].
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Figure 2-8: Pose estimation via iterative render-and-compare from [112]. Given an
input pose(0), the object’s 3D model is used to render an image of the object in the input
pose. A network taking as input the rendered and observed images predicts a pose up-
date Δpose(0). The same strategy is applied multiple times iteratively. Figure reproduced
from [112].

The approach is extended to handle objects in [169], where the refinement network itera-
tively updates 2D reprojection of the corners of the 3D object bounding box. [127] uses
a refinement CNN that directly regresses rotation and translation and uses a proxy visual
alignment loss for training. In [112], illustrated in figure 2-7, a novel parametrization of
the pose update that does not use intermediate keypoints and can be trained end-to-end is
introduced. Rotation and translation are disentangled. The rotation update is estimated in
the camera coordinate systems to be invariant with respect to the orientation of the object’s
coordinate system. The translation is updated using intermediate scale and 2D reprojection
of the object center in the image, but operations are made differentiable using camera ge-
ometry. The refinement network is trained end-to-end using a loss function on the pose. In
chapter 4, we present a novel approach based on render-and-compare. Our approach builds
on the parametrization introduced DeepIM [112] but we introduce a novel disentangled
loss that leads to more stable training and improved performance.

2.1.4 Pose estimation of novel objects

Non-learning-based methods require limited efforts to handle novel objects. Edge features
of a model can be easily obtained by processing an object’s CAD model, and building
a representation of the object based on 3D patches can be done using a small number
of object views [175]. These methods have been outperformed by learning-based meth-
ods [71]. Learning-based methods presented in the previous sections however require ob-
taining training data and training for the objects of interest. They cannot generalize to
novel objects due to object-specific information (appearance and coordinate system) being
encoded in the network weights during training. In this section, we review learning-based
methods that can be applied to novel objects without re-training.
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(a) (b)

Figure 2-9: Category-level pose estimation with normalized coordinates [219]. (a)
shows the normalized object coordinate space, a 3D space contained within a unit cube.
For a given category, e.g. camera, the orientation of all instances is aligned and their size
is normalized in the unit cube. The space is shared across all instances of a given cate-
gory, allowing for directly predicting 2D-3D correspondences of novel objects of a known
category. Example categories are shown in (b): bowls, cameras, cans, laptops and mugs.
Figure reproduced from [219].

Category-level pose estimation. In category-level pose estimation methods [19, 110,
118, 128, 129, 219, 221], illustrated by [219] in figure 2-9, the CAD models of the test
objects are not known, but the objects are assumed to belong to a known category. These
methods rely on object properties that are common within categories to define and estimate
the object pose, and thus cannot generalize to novel categories. For many types of objects
like industrial ones, the notion of a class is often ambiguous and such methods can therefore
not be easily applied to estimate the pose of novel objects.

Pose estimation with available mesh. Learning-based methods relying on correspon-
dences, appearance representation, and direct estimation have been extended to handle
novel objects. [164, 165] uses a keypoint detection network to predict a sparse set of
the 2D location and parameters of generic 3D corners. [185] predicts dense correspon-
dences between an image and a rendering of the observed object. [5, 145, 197] present
techniques for building learning-based appearance representation spaces that can general-
ize to novel objects. These methods however still require to generate thousands of template
views for novel objects at test time, which take minutes or hours to generate. [234] uses a
direct regression method to estimate the orientation of an object, using a shape encoder or
multi-view encoder to encode a novel object’s appearance and coordinate system.

Pose estimation without mesh. In [60, 121, 154, 196, 232], a CAD model of the novel
object is not known but a set of reference views with known viewpoints are captured and
used to define the object pose. Acquiring such viewpoints is costly in terms of time and
requires a preprocessing stage to annotate images with their pose.

In chapter 5, we present MegaPose, an approach for estimating the 6D pose of novel
objects, i.e. objects unseen during training. The method only requires knowledge of the
CAD model of the object at test time.
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(b)
Training with shape and pose Testing on unseen objects

Figure 2-10: Pose estimation of novel objects using mesh models [234]. A network (a)
is used to predict the orientation of a novel object in an RGB image. The 3D shape of the
object is provided as input to the network using the shape encoder. (b) illustrates training
and testing. The network is trained on a large collection of object shapes (left), e.g. cars,
sofas and planes. And can be tested on novel objects such as horses or figurines (right).
Figure reproduced from [234].
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2.1.5 Object tracking
In robotics and augmented reality applications, pose estimation must often be carried out
in real-time on a video stream with moving objects and/or cameras. When multiple images
are available, it is possible to leverage temporal continuity. We refer to [107] for a survey
of methods for tracking pose estimates. These early works mention that a limitation of all
tracking approaches is that they may fall into local minima. Nowadays, most works focus
on estimating the pose of objects in a single image. Fast and accurate pose estimation
in single images allows for tracking-by-detection, e.g. estimating the pose individually in
each image. These poses can be temporally smoothed using temporal filters [32, 208].
An advantage of the methods based on the iterative render-and-compare strategy is they
can be used for both (i) single-image pose estimation and (ii) tracking by using the pose
estimate in the previous frame as an initial guess. Such strategy has been demonstrated to
be effective, as shown in [112] and chapters 5 and 6 of this thesis.

2.1.6 Object detection and identification
Recovering the state of a scene requires (i) detecting the objects that are in the scene and (ii)
estimating the pose of each individual object. The detection and pose estimation problem
were initially treated jointly under the term of 3D object recognition [123]. In early non-
learning-based works, the search for correspondences between observed features in images
and features on the object model was carried out for all keypoints and types of objects
in the database of known objects. Later, fast and accurate 2D object detectors based on
CNNs [58, 116, 171] were used to detect the objects. The pose estimation problem can be
treated jointly by incorporating pose estimation branches in a detection network [87, 230].
The state-of-the-art methods [71, 198] treat the detection and pose estimation problems
separately. For each detection, a crop of the entire image around each detected object is
used to estimate the object pose with an independent pose estimation method.

2.2 Multi-image pose estimation
Multiple images - captured from different distinct cameras or a single moving camera -
can be used to reconstruct scenes with improved detection and pose estimation accuracy
over single-image methods presented in section 2.1. In this section, we review methods
that use multiple input images for recovering the 6D poses of the observed objects as well
as estimating all the camera viewpoints. We first present methods that focus on detecting
objects and recovering their pose using multiple images of a scene. In a second paragraph,
we discuss SLAM methods where the focus is on constructing a map of the environment
while localizing a camera in this map in real-time.

Object pose estimation. When multiple images of a scene are available, the different
cameras (e.g. perspective) can be modeled as a single camera using a generalized multi-
camera model [51, 166] which explicitly models geometric constraints between the images.
[22, 23] use the constraints between the 2D locations of local features detected in different
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Figure 2-11: Multi-view object pose estimation [109]. A one-shot pose estimation net-
work is used to predict the pose of an object in a single image (a). The multi-view strategy
is illustrated in (b). The same network is applied to multiple views of the same object. The
poses are then registered in the same coordinate system using viewpoint alignment based
on known relative camera poses. The hypotheses from each view are finally aggregated to
predict a single object pose estimate. Figure reproduced from [109].

images in order to estimate the object poses in a common coordinate frame. In [109],
illustrated in figure 2-11, a CNN is used to predict an object pose hypothesis in each image.
The multiple hypotheses are then registered and aggregated in a common coordinate frame
using known relative camera poses, obtained for example through a calibration step. In [7],
the relative camera poses are not assumed to be known, and 2D human keypoints detected
in different images are used to jointly optimize the pose of a single human and the position
of the observing cameras.

Simultaneous localization and mapping (SLAM). SLAM systems reconstruct a repre-
sentation of a scene (the map) while also estimating the 6D pose of a moving camera in
real-time. In dense SLAM approaches such as ORB-SLAM [141, 142], no prior knowledge
of the structure of the scene is assumed, and a dense reconstruction approach is used (sim-
ilar to Structure-from-Motion (SfM), e.g. [180, 181]) to recover a dense 3D point cloud of
the scene. The semantic and geometric properties associated with known rigid objects are
leveraged in [8]. Using object-level information leads to increased camera pose estimation
accuracy over SfM algorithms, and using multiple images improves the detection and pose
estimation accuracy of the objects in the scene. The method however still relies on local im-
age feature detection and matching. In [163], the representation of the scene only contains
objects, but the objects are detected in a 3D point cloud recovered with feature-based ORB-
SLAM [141]. In [178], illustrated in figure 2-12, feature points are completely omitted, and
an RGB-D method for 3D object recognition and tracking is used to provide camera-object
constraints. A database of objects with known 3D models is used for recognition in [178].
The requirement for known 3D object models can be removed. The objects can be recon-
structed on the fly by using a 3D reconstruction approach like KinectFusion [144] on an
RGB-D point cloud segmented with a CNN, as done in [133]. A deep network can also
be used for 3D recognition, as done in [238] where 3D cuboids are fit to observed objects.
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Approaches that reconstruct 3D object models [133, 238] can fail to identify individual
objects in object stacks, a problem that can be solved by considering physical constraints
between objects and using a latent space learned using simulated object stacks to segment
new objects as done in [102]. Methods for dense and object-level SLAM can also be com-
bined. A planar surface can be extracted from a 3D point cloud to add a planar constraint
between objects and environment[47, 48]. Dense volumetric information can be used to
provide context and physical constraints for 6D object pose estimation as done in [216], an
approach which has been used for robotic manipulation in challenging scenes [214, 215].
In all SLAM methods, temporal continuity between the images is assumed and the methods
are not suitable for images with large baselines. In addition, leveraging temporal continuity
makes it challenging to deal with scenes that contain both static and dynamic objects [236,
242]. Our multi-image approach introduced in chapter 4 recovers an object-level represen-
tation of a scene without using intermediate keypoints or local image features, is suitable
for multiple cameras with large baselines, and can be used with dynamic objects as the
estimates do not assume any form of temporal continuity.

2.3 State estimation of scenes with robots
Methods described in previous sections consider scenes containing objects. We now review
methods for recovering the state of scenes containing objects and robots. Knowledge of the
object poses in a robot’s coordinate frame can be used to directly plan robot movements
to grasp this object. In section 2.3.1, we present methods that seek to estimate the pose of
objects with respect to the robot in order to plan manipulation movements. We show that
these methods can be direct or indirect. In the case of indirect methods, the poses of objects
and robots are estimated separately in a common coordinate frame - typically the camera
coordinate frame - then registered in a single coordinate frame. In this case, the poses
of the objects with respect to the camera can be recovered using the methods reviewed in
sections 2.1 and 2.2. In section 2.3.2, we review methods for estimating the state of the
robot composed of (i) the robot-to-camera pose and (ii) the values of robot’s joints.

2.3.1 Robot-to-object pose estimation
Direct approaches. [122] presents a method to directly predict the 2D position and ori-
entation of a single object in the coordinate frame of a known robot. The workspace is
discretized in 2D bins and a CNN-based classification network is used to predict a coarse
estimate of the localization of the object with respect to the visible robot that serves as the
reference for the estimation. A second refinement network uses a finer grid to precisely
estimate the position of the object with respect to the gripper when the gripper is close
to the object. The prediction from multiple views can be directly combined without a re-
quirement for camera calibration because all predictions are done in the robot or gripper
coordinate frame. All networks are trained using thousands of synthetic data displaying
the known object and robot. Training data is generated using domain randomization [81,
122, 177, 203] to ensure good sim2real transfer. The main limitation of this work is that it
is limited to predicting the 2D location of a single known object with respect to the robot.
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(c)

Figure 2-12: Simultaneous localization and mapping of a scene at the level of ob-
jects [178]. A single hand-held camera is moved in a scene (a). The pose of visible objects
is detected and tracked in each image. Each pose represents a camera-object constraint.
(b) shows the scene graph representation. Blue nodes are cameras, red nodes are objects
and edges are camera-object constraints. A graph optimization problem is used to recover
a unique object-level representation of the scene. The recovered scene is illustrated in (c).
Figure reproduced from [178].
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Figure 2-13: Direct relative object-to-robot localization[122]. The robot (left) and grip-
per (right) workspaces are discretized using 2D bins. A CNN is trained to predict the
location of a block in robot or gripper coordinate systems directly. The CNN is trained
on synthetic data generated with domain randomization (b). (c) illustrates a robotic setup
where the system is used to precisely estimate the robot-to-object position and grasp the
object. Figure reproduced from [122].

In chapter 3, we present a visual system able to directly predict the positions of the 2D
centroids of multiple unknown objects in the coordinate system of a robot.

Indirect approaches. A method that can estimate the pose of multiple objects with re-
spect to the robot is proposed in [208]. The method separately (i) detects and estimates the
pose of the objects using the DOPE [207] detection and pose estimation method, and (ii)
detects the pose of a robot with a known internal state using a method for estimating the 6D
pose of a robot [106]. Each pose estimate is predicted in the camera coordinate system. The
object poses are then expressed with respect to the robot using simple coordinate system
transformations. Temporal filters are used to predict smooth pose trajectories by leveraging
temporal continuity. The main advantage of this approach is its modularity: the estimation
of the object and robot pose is done separately. The main drawback is that errors from the
different predictors accumulate when the predictions are expressed in the robot coordinate
frame.

2.3.2 Estimating the 6D pose and joint angles of a robot

Camera-to-robot 6D pose estimation. Hand-eye calibration [210] is the problem of re-
covering the relative pose between a robot and a camera. In early works [74, 210], the
camera is mounted on the robot gripper. The robot takes multiple pictures of a calibration
target, an object with known dimensions easy to detect in the images. For example, edge
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Figure 2-14: Indirect object-to-robot 6D pose estimation [208]. (a) Two distinct neural
networks are used to predict the location of robot keypoints (in red) and object keypoints
(corners of the object bounding boxes). (b) Keypoints are used to recover camera-to-robot
and camera-to-object poses. Robot-to-object poses are recovered using simple coordinate
system transformation and used to manipulate the objects using the robot. Figure repro-
duced from [208].

detections or fiducial markers presented in section 2.1.1 are used to detect feature points on
the calibration target. The robot gripper moves and several cameras are captured. The rel-
ative camera-to-robot pose is then obtained by solving an optimization problem [79, 153,
237]. In [61], a SfM technique is used to estimate the camera poses to remove the require-
ment for using a calibration target. Later, methods are developed for hand-eye calibration
of external cameras. When the joint values of the robots are known, recovering the pose
of the robot with respect to the camera can be done with the same techniques used for
pose estimation of rigid objects. In each image, the robot in a given configuration can be
considered as a rigid object. 2D keypoints are detected on the robot using CNNs in [101,
106], and the camera-to-robot pose is recovered using PnP. These methods however assume
knowledge of the robot’s internal state, i.e. the values of the joint angles.

Articulated objects. Several works consider reconstructing the entire structure of artic-
ulated objects, including the definition of the kinematic structure: the type of joints and
their position with respect to the object’s parts. In [56, 85, 86, 131], the kinematic struc-
ture is discovered through active manipulation of the object parts with a robot. The motion
of feature points on each object’s parts used to recover the definition of the joints. The
same problem is later addressed using learning-based methods [1, 111, 239, 245]. These
works are related to this thesis because a robot is an instance of articulated object. In this
thesis, we assume the kinematic structure of the robot is known, and only the joint angle
and camera-to-robot pose are unknown. [34, 137, 157] make similar assumptions for ar-
ticulated objects and aim to recover the same unknown parameters as what is done in this
thesis. However, all these works consider articulated objects with simple kinematic chains
with few degrees of freedom, e.g. laptops or drawers.
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Figure 2-15: Robot pose and joint angle estimation [247]. The method is illustrated in
(a). A CNN predicts keypoints on several parts of the known robot shown in (b). The robot
pose and joint angles are then recovered by solving a non-linear non-convex optimization
problem. The pose and joint angle estimates are used to stack dice (c) using closed-loop
control with visual feedback. Figure reproduced from [247].

Visual robot state estimation. The pose and joint angles of a robot with four degrees of
freedom are estimated using a single RGB image in [247], illustrated in figure 2-15. 2D
keypoints are recognized in the images, and the 6D pose and joint angles are recovered by
solving a nonlinear non-convex optimization problem. In chapter 6 we present an approach
that directly estimates the pose and joint angles of a robot without using an intermediate
keypoints representation.
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Chapter 3

Visually guided multi-object
rearrangement planning

In this chapter, we address the problem of visually guided rearrangement planning with
many movable objects, i.e., finding a sequence of actions to move a set of objects from an
initial arrangement to a desired one, while relying on visual inputs coming from an RGB
camera. To do so, we introduce a complete pipeline relying on two key contributions. First,
we introduce an efficient and scalable rearrangement planning method, based on a Monte-
Carlo Tree Search exploration strategy. We demonstrate that because of its good trade-off
between exploration and exploitation our method (i) scales well with the number of objects
while (ii) finding solutions which require a smaller number of moves compared to the other
state-of-the-art approaches. Note that on the contrary to many approaches, we do not re-
quire any buffer space to be available. Second, to precisely localize movable objects in the
scene, we develop an integrated approach for robust multi-object workspace state estima-
tion from a single uncalibrated RGB camera using a deep neural network trained only with
synthetic data. We validate our multi-object visually guided manipulation pipeline with
several experiments on a real UR-5 robotic arm by solving various rearrangement planning
instances, requiring only 60 ms to compute the plan to rearrange 25 objects. In addition,
we show that our system is insensitive to camera movements and can successfully recover
from external perturbations. Video, source code and pre-trained models are available on
the project page [168].

3.1 Introduction

Using a robot to clean up a room is a dream shared far beyond the robotics community.
This would require a robot to both localize and re-arrange many objects. Other industrial
scenarios, such as sorting and packing objects on a production line or car assembly tasks,
share similar objectives and properties. This chapter presents an integrated approach that
makes a step towards the efficiency, scalability and robustness required for solving such
rearrangement planning tasks. Figure 3-1 shows an example of the problem we consider,
where objects have to be moved from an initial position to a target one. The current and
target states are described only by a single image taken from an uncalibrated RGB camera.
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...
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(c)

(d)

Figure 3-1: Visually guided rearrangement planning. Given a source (a) and target
(b) RGB images depicting a robot and multiple movable objects, our approach estimates
the positions of objects in the scene without the need for explicit camera calibration and
efficiently finds a sequence of robot actions (c) to re-arrange the scene into the target scene.
Final object configuration after re-arrangement by the robot is shown in (d).

Rearrangement planning has a long history in robotics [3, 83, 103, 104, 188, 194] and
remains an active research topic [29, 52, 57, 93] in the motion planing community. The goal
is to find a sequence of transit and transfer motions [3, 103] to move a set of objects from an
initial arrangement to a target arrangement, while avoiding collisions with the environment.
This leads to a complex sequential decision process, whose complexity depends on the
number of objects to move, on the free-space available around the objects, and the robot
kinematics.

Several solutions have been proposed in the literature which can be roughly classified
into two groups. Methods in the first group [29, 44, 52, 83, 93, 193] rely on the task
and motion planning hierarchy where a high-level task planner is combined with a local
motion planner [104]. Methods in the second group [94, 138, 188, 194] aim at solving a
single unified formulation of the problem by using classic sample-based algorithms such
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Figure 3-2: Approach overview. Given an image of the scene, the visual state prediction
module outputs a list of objects and their coordinates in the robot coordinate frame. To-
gether with a target state, these serve as inputs to the task and motion planning module
which combines Monte-Carlo Tree Search with a standard robot motion planning algo-
rithm.

as Probabilistic RoadMap (PRM) or Rapidly-Exploring Random Tree (RRT) [104] or use
advanced optimization strategies to solve a unique optimization instance [205].

While methods from both groups have been shown to work well in practice with few
objects, existing methods do not scale to a large set of objects, because the number of pos-
sible action sequences increases exponentially with the number of objects to move. Some
recent methods [52, 93, 94] scale better with the number of objects but these methods either
only focus on feasibility, producing solutions with sub-optimal number of grasps [93], or
are limited to specific constrained scenarios, for example, with explicitly available buffer
space [52] or strict constraints of monotony (i.e. an object can be moved only once during
the plan).

In this work we describe an efficient and generic approach for rearrangement planning
that overcomes these limitations: (i) it scales well with the number of objects, by taking
only 60 ms to plan complex rearrangement scenarios for multiple objects, and (ii) it can be
applied to the most challenging table-top re-arrangement scenarios, not requiring explicit
buffer space. Our approach is based on Monte-Carlo Tree Search [140], which allows us
to lower the combinatorial complexity of the decision process and to find an optimistic
number of steps to solve the problem, by making a compromise between exploration (us-
ing random sampling) and exploitation (biasing the search towards the promising already
sampled action sequences to cut off some of the search directions).

To demonstrate the benefits of our planning approach in real scenarios we also intro-
duced a multi-object calibration-free deep neural network architecture for object position
estimation. It is trained entirely from synthetic images and, compared to other currently
available methods [45, 112, 207, 230], does not use markers or require known CAD mod-
els of the specific observed object instances. To the best of our knowledge, the approach
we present is the first one able to locate multiple objects in such difficult and generic con-
ditions. This is of high practical interest, since it allows to perform the full task using only
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a single non-calibrated, or even hand-held, RGB camera looking at the robot.
Our complete pipeline for visually guided rearrangement planning, illustrated in fig-

ure 3-2, is composed of three main stages. The goal of the first stage, visual state predic-
tion (section 3.3), is to estimate the positions of multiple objects relative to a robot given
a single non-calibrated image of the scene. The second stage (section 3.4), is our MCTS-
based task planner: at each planning step, this module chooses which object to move and
computes its new desired position in the workspace. The last stage is a standard RRT-based
local motion planner which plans robot movements given the high-level plan computed by
the MCTS planner.

3.2 Related work
We build our framework on results in robotics, search algorithms and computer vision,
which we review below.
Rearrangement planning is NP-hard [225]. As a result, standard hierarchical [29, 44, 83,
93] and randomized methods [138, 188, 194] for solving general manipulation planning
problems do not scale well with the number of objects. The most efficient and scalable
high-level planners only address specific constrained set-ups leveraging the structure of the
rearrangement problem [52, 93, 94]. In addition, they often focus on feasibility but do not
attempt to find high-quality solutions with a low number of object moves [93, 94]. For
instance, some methods [94] only consider the monotone problem instances, where each
object can be grasped at most once. In contrast, our method finds high-quality plans but
also addresses the more general cases of non-monotone re-arrangement problems, which
are known to be significantly harder [194]. Others works have looked at finding optimal
plans [52] but address only constrained set-ups that have available buffer space (i.e. space
that does not overlap with the union of the initial and target configurations), noting that
solving the general case without available buffer space is significantly harder [52]. In
this work, we address this more general case and describe an approach that efficiently
finds high-quality re-arrangement solutions without requiring any available buffer space.
In addition and unlike previous works [52, 93, 94], we also propose a complete system able
to operate from real images in closed loop.

Search algorithms. The problem of rearrangement planning can be posed as a tree
search. Blind tree search algorithms such as Breadth-First search (BFS) [176] can be used
to iteratively expand nodes of a tree until a goal node is found, but these methods do not
exploit information about the problem (e.g. a cost or reward) to select which nodes to ex-
pand first, and typically scale exponentially with the tree depth. Algorithms such as greedy
BFS [176] allow to exploit a reward function to drive the exploration of the tree directly
towards nodes with high reward, but might get stuck in a local mimima. Other algorithms
such as 𝐴⋆ [53] can better estimate the promising branches using additional hand-crafted
heuristic evaluation function. We choose Monte-Carlo Tree Search over others, because it
only relies on a reward and iteratively learns a heuristic (the value function) which allows to
efficiently balance between exploration and exploitation. It has been used in related areas
to solve planning and routing for ground transportation [159] and to guide the tree-search
in cooperative manipulation [206]. MCTS is also at the core of AlphaGo, the first system
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able to achieve human performance in the game of Go [186], where it was combined with
neural networks to speed-up the search. These works directly address problems whose ac-
tion space is discrete by nature. In contrast, the space of possible object arrangements is
infinite. We propose a novel discrete action parameterization of the rearrangement planning
problem which allows us to efficiently apply MCTS.
Vision-based object localization. In robotics, fiducial markers are commonly used for
detecting the objects and predicting their pose relative to the camera [45] but their use
limits the type of environments the robot can operate in. This constraint can be removed
by using a trainable object detector architecture [73, 112, 207, 228, 230, 241]. However,
these methods often require gathering training data for the target objects at hand, which
is often time consuming and requires the knowledge of the object (e.g. in the form its
3D model) beforehand. In addition, these methods estimate the pose of the objects in the
frame of the camera and using these predictions for robotic manipulation requires calibra-
tion of the camera system with respect to the robot. The calibration procedure [61, 74] is
time-consuming and must be redone each time the camera is moved. More recently, [122]
proposed to directly predict the position of a single object in the robot coordinate frame by
training a deep network on hundreds of thousands of synthetically generated images using
domain randomization [81, 122, 177, 203]. We build on the work [122] and extend it for
predicting the 2D positions of multiple objects with unknown dimensions relative to the
robot.

3.3 Visual scene state prediction with multiple objects
In this section, we detail the visual state prediction stage. Our visual system takes as input
a single photograph of a scene taken from an uncalibrated camera and predicts a workspace
state that can then be used for rearrangement-planning. More precisely it outputs the 2D
positions of a variable number of objects expressed in the coordinate system of the robot.
This problem is difficult because the scene can contain a variable number of objects, placed
on different backgrounds, in variable illumination conditions, and observed from different
viewpoints, as illustrated in figure 3-1. In contrast to [203], we do not assume that the
different types of objects are known at training time. In contrast to state-of-the-art pose
estimation techniques in RGB images [45, 112], we do not use markers and do not assume
the CAD models of the objects are known at test time.

To address these challenges, we design a visual recognition system that does not require
explicit camera calibration and outputs accurate 2D positions. Moreover, even if we deploy
our system on a real robot, we show that it can be trained entirely from synthetic data using
domain randomization [203], avoiding the need for real training images. Also, our system
does not require any tedious camera calibration because it is trained to predict positions
of objects directly in the coordinate frame of the robot, effectively using the robot itself,
which is visible in the image, as an (known) implicit calibration object. This feature is
important for applications in unstructured environments such as construction sites contain-
ing multiple unknown objects and moving cameras for instance. Our recognition system
is summarized in figure 3-3 and in the rest of this section, we present in more details the
different components.
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Figure 3-3: The visual recognition system. The input is an image of the scene captured by
an uncalibrated camera together with the joint configuration vector of the depicted robot.
Given this input a convolutional neural network (CNN) predicts the foreground-background
object segmentation mask and a dense position field that maps each pixel of the (downsam-
pled) input image to a 2D coordinate in a frame centered on the robot. The estimated
masks and position fields are then combined by the object identification module to identify
individual object instances. The output is a set of image patches associated with the 2D
position of the object in the workspace.

Figure 3-4: Examples of synthetic training images. We generate images displaying the
robot and a variable number of objects in its workspace. The images are taken by cameras
with different viewpoints and depicting large scene appearance variations.

3.3.1 Position prediction network

In this section, we give details of the network for predicting a dense 2D position field and an
object segmentation mask. The 2D position field maps each input pixel to a 2D coordinate
frame of the robot acting as implicit calibration.
Architecture. Our architecture is based on ResNet-34 [59]. We remove the average pool-
ing and fully connected layers and replace them by two independent decoders. Both de-
coders use the same architecture: four transposed convolution layers with batch normaliza-
tion and leaky ReLU activations in all but the last layer. The resolution of the input image is
320 × 240 and the spatial resolution of the output of each head is 85 × 69. We add the 6D
joint configuration vector of the robot as input to the network by copying it into a tensor
of size 320 × 240 × 6, and simply concatenating it with the three channels of the input
image. The two heads predict an object mask and a 2D position field which are visualized
in figure 3-3. In addition, we found that predicting depth and semantic segmentation dur-
ing training increased the localization accuracy at test time. These modalities are predicted
using two additionnal decoders with the same architecture.
Synthetic training data. Following [81, 122, 177, 203], we use domain randomization
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for training our network without requiring any real data. We generate two million images
displaying the robot and a variable number of objects with various shapes (cubes, cylinders
and triangles) in its workspace. In each scene, we randomly sample from 1 up to 12 objects,
with various dimensions between 2.5 and 8 cm. Examples of training images are shown
in figure 3-4. Randomization parameters include the textures of the robot and objects,
the position of the gripper, the position, orientation and field of view of the camera, the
positions and intensities of the light sources and their diffuse/ambient/specular coefficients.
Training procedure. We train our network by minimizing the following loss: ℒ = ℒpos +
ℒmask + ℒsegm + ℒdepth, where the individual terms are explained next. For the position
field loss we use ℒpos = ∑︀

𝑖,𝑗 𝛿𝑖,𝑗 [(�̂�𝑖,𝑗 − 𝑥𝑖,𝑗)2 + (𝑦𝑖,𝑗 − 𝑦𝑖,𝑗)2] where (𝑖, 𝑗) are the pixel
coordinates in the output; 𝛿𝑖,𝑗 is the binary object mask; 𝑥𝑖,𝑗 , 𝑦𝑖,𝑗 are the ground truth 2D
coordinates of the center of the object (that appears at pixel (𝑖, 𝑗)) and �̂�𝑖,𝑗, 𝑦𝑖,𝑗 are the
components of the predicted position field. For ℒmask, ℒsegm and ℒdepth we respectively
use the following standard losses: binary cross entropy loss, cross entropy loss and mean
squared error. These losses are computed pixel-wise. Note that depth is not used to estimate
object positions at test time. 𝐿segm and 𝐿depth are auxiliary losses used only for training,
similar to [81]. We use the Adam optimizer [90] and train the network for 20 epochs,
starting with a learning rate of 10−3 and decreasing it to 10−4 after 10 epochs.

3.3.2 Identifying individual objects

The model described above predicts a dense 2D position field and an object mask but does
not distinguish individual objects in the scene. Hence, we use the following procedure to
group pixels belonging to each individual object. Applying a threshold to the predicted
mask yields a binary object segmentation. The corresponding pixels of the 2D position
field provide a point set in the robot coordinate frame. We use the mean-shift algorithm
[25] to cluster the 2D points corresponding to the different objects and obtain an estimate
of the position of each object. The resulting clusters then identify pixels belonging to each
individual object providing instance segmentation of the input image. We use the resulting
instance segmentation to extract patches that describe the appearance of each object in the
scene.

3.3.3 Source-Target matching

To perform rearrangement, we need to associate each object in the current image to an
object in the target configuration. To do so, we use the extracted image patches. We
designed a simple procedure to obtain matches robust to the exact position of the object
within the patches, their background and some amount of viewpoint variations. We rescale
patches to 64×64 pixels and extract conv3 features of an AlexNet network trained for
ImageNet classification. We finally run the Hungarian algorithm to find the one-to-one
matching between source and target patches maximizing the sum of cosine similarities
between the extracted features. We have tried using features from different layers, or from
the more recent network ResNet. We found the conv3 features of AlexNet to be the most
suited for the task, based on a qualitative evaluation of matches in images coming from
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the dataset presented in section 3.5.2. Note that our patch matching strategy assumes all
objects are visible in the source and target images.

3.4 Rearrangement Planning with Monte-Carlo Tree Search
(MCTS)

Given the current and target arrangements, the MCTS task planner has to compute a se-
quence of pick-and-place actions that transform the current arrangement into the target
one. In this section, we first review Monte-Carlo Tree Search and then explain how we
adapt it for rearrangement planning.

3.4.1 Review of Monte-Carlo Tree Search
The MCTS decision process is represented by a tree, where each node is associated to
a state 𝑠, and each edge represents a discrete action 𝑎 = {1, ..., 𝑁}. For each node in
the tree, a reward function 𝑟(𝑠) gives a scalar representing the level of accomplishment
of the task to solve. Each node stores the number of times it has been visited 𝑛(𝑠) and a
cumulative reward 𝑤(𝑠). The goal of MCTS is to find the most optimistic path, i.e. the path
that maximizes the expected reward, starting from the root node and leading to a leaf node
solving the task. MCTS is an iterative algorithm where each iteration is composed of three
stages.

During the selection stage, an action is selected using the Upper Confidence Bound (UCB)
formula:

𝑈(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝑐

⎯⎸⎸⎷ 2 log 𝑛(𝑠)
𝑛(𝑓(𝑠, 𝑎)) , (3.1)

where 𝑓(𝑠, 𝑎) is the child node of 𝑠 corresponding to the edge (𝑠, 𝑎) and 𝑄(𝑠, 𝑎) = 𝑤(𝑓(𝑠,𝑎))
𝑛(𝑓(𝑠,𝑎))

is the expected value at state 𝑠 when choosing action 𝑎. The parameter 𝑐 controls the trade-
off between exploiting states with high expected value (first term in (3.1)) and exploring
states with low visit count (second term in (3.1)). We found this trade-off is crucial for
finding good solutions in a limited number of iterations as we show in section 3.5.1. The
optimistic action selected 𝑎selected is the action that maximizes 𝑈(𝑠, 𝑎) given by (3.1). Start-
ing from the root node, this stage is repeated until an expandable node (a node that has
unvisited children) is visited. Then, a random unvisited child node 𝑠′ is added to the tree
in the expansion stage. The reward signal 𝑟(𝑠′) is then back-propagated towards the root
node in the back-propagation stage, where the cumulative rewards 𝑤 and visit counts 𝑛 of
all the parent nodes are updated. The search process is run iteratively until the problem is
solved or a maximal number of iterations is reached.

3.4.2 Monte-Carlo Tree Search task planner
We limit the scope to tabletop rearrangement planning problems with overhand grasps but
our solution may be applied to other contexts. We assume that the complete state of any
object is given by its 2D position in the workspace, and this information is sufficient to
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Figure 3-5: Examples of source and target object configurations. The planner has to find a
sequence of actions (which object to move and where to displace it inside the workspace),
while avoiding collisions with other objects. Workspace limits are shown as dashed lines.
Grey circles depict the collision radius for each object. We demonstrate our method solving
this complex rearrangement problem in the video available on the project page [168]. Here
source and target states are known (state estimation network is not used).

grasp it. The movements are constrained by the limited workspace, and actions should not
result in collisions between objects. The planner has to compute a sequence of actions
which transform the source arrangement into the target arrangement while satisfying these
constraints. Each object can be moved multiple times and we do not assume that explicit
buffer space is available. An example of source and target configurations is depicted in
figure 3-5. We now detail the action parametrization and the reward.

Let {𝐶𝑖}𝑖=1,..,𝑁 denote the list of 2D positions that define the current arrangement with
𝑁 objects, {𝐼𝑖}𝑖 and {𝑇𝑖}𝑖 the initial and target arrangements respectively, which are fixed
for a given rearrangement problem. MCTS state corresponds to an arrangement 𝑠 = {𝐶𝑖}𝑖.

As a reward 𝑟(𝑠) we use the number of objects located within a small distance of their
target position:

𝑟(𝑠) =
𝑁∑︁

𝑖=1
𝑅𝑖 with 𝑅𝑖 =

⎧⎨⎩1 if ||𝐶𝑖 − 𝑇𝑖||2 ≤ 𝜖

0 otherwise.
, (3.2)

where 𝑁 is the number of objects, 𝐶𝑖 is the current location of object 𝑖, 𝑇𝑖 is the target
location of object 𝑖 and 𝜖 is a small constant.

We define a discrete action space with 𝑁 actions where each action corresponds to one
pick-and-place motion moving one of the 𝑁 objects. The action is hence pararametrized
by 2D picking and placing positions defined by the function GET_MOTION outlined in
detail in Algo. 1. The input to that function is the current state {𝐶𝑖}𝑖, target state {𝑇𝑖}𝑖 and
the chosen object 𝑘 that should be moved. The function proceeds as follows (please see
also Algo. 1). First, if possible, the object 𝑘 is moved directly to it’s target 𝑇𝑘 (lines 3-4 in
Algo. 1), otherwise the obstructing object 𝑗 which is the closest to 𝑇𝑘 (line 7 in Algo. 1)
is moved to a position inside the workspace that does not overlap with 𝑇𝑘 (lines 8-10 in
Algo. 1). The position 𝑃 where to place 𝑗 is found using random sampling (line 8). For
collision checks, we consider simple object collision models with fixed radiuses as depicted
in figure 3-5. If no suitable position is found, no objects are moved (line 11). Note that
additional heuristics could be added to the action parametrization to further improve the
quality of the resulting solutions and to reduce the number of iterations required. Examples
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include (i) avoiding to place 𝑗 at target positions of other objects and (ii) restricting the
search for position 𝑃 in a neighborhood of 𝐶𝑗 . The parameters of the pick-and-place
motion for a given state and MCTS action are computed only once during the expansion
stage and then cached in the tree and recovered once a solution is found.

Algorithm 1: Action Parametrization
1 function GET_MOTION({𝐶𝑖}𝑖, {𝑇𝑖}𝑖, 𝑘):
2 /* Check if object 𝑘 can be moved to 𝑇𝑘 */
3 if IS_MOVE_VALID ({𝐶𝑖}𝑖 ̸=𝑘, 𝐶𝑘, 𝑇𝑘) then
4 return (𝐶𝑘, 𝑇𝑘)
5 else
6 /* Move obstructing object 𝑗 to position 𝑃 */
7 𝑗 = FIND_CLOSEST_OBJECT ({𝐶𝑖}𝑖, 𝑇𝑘)
8 found, 𝑃 = FIND_POSITION ({𝐶𝑖}�̸�=𝑗 ∪ {𝑇𝑘})
9 if found then

10 return (𝐶𝑗 , P)

11 return (𝐶𝑘, 𝐶𝑘)

As opposed to games where a complete game must be played before having access to
the outcome (win or lose), the reward in our problem is defined in every state. Therefore,
we found that using a MCTS simulation stage is not necessary.

The number of MCTS iterations to build the tree is typically a hyper-parameter. In
order to have a generic method that works regardless of the number of objects, we adopt
the following strategy: we run MCTS until a maximum (large) number of iterations is
reached or until a solution is found. We indeed noticed that the first solution provided by
MCTS is already sufficiently good compared to the next ones when letting the algorithm
run for longer.

The presented approach only considers tabletop rearrangement planning with overhand
grasps. The main limitation is that we assume the motion planning algorithm can success-
fully plan all the pick-and-place motions computed in Algo. 1. This assumption does not
hold for more complex environment where some objects are not reachable at any time (e.g.
moving objects in a constrained space such as inside a refrigerator). In this case, the func-
tion IS_MOVE_VALID can be adapted to check whether the movement can be executed
on the robot. Note that we consider simple collision models in FIND_POSITION but
meshes of the objects and environment could be used if available.

3.5 Experiments
We start by evaluating planning (section 3.5.1) and visual scene state estimation (sec-
tion 3.5.2) separately, demonstrating that: (i) our MCTS task planner scales well with
the number of objects and is efficient enough so that it can be used online (i.e. able to
recompute a plan after each movement); (ii) the visual system detects and localizes the
objects with an accuracy sufficient for grasping. Finally, in section 3.5.3 we evaluate our
full pipeline in challenging setups and demonstrate that it can efficiently perform the task
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Figure 3-6: Comparison of the proposed MCTS planning approach against the strong base-
line heuristic. MCTS is able to solve more complex scenarios (with more objects) in a
significantly lower number of steps. MCTS does not require free space to be available or
that the problems are monotone.

and can recover from errors and perturbations as also shown in the video available on the
project page [168].

3.5.1 MCTS planning
Experimental setup. To evaluate planning capabilities and efficiency we randomly sample
3700 initial and target configurations for 1 up to 37 objects in the workspace. It is difficult
to go beyond 37 objects as it becomes hard to find valid configurations for more due to the
workspace constraints.
Planning performance. We first want to demonstrate the interest of MCTS-based ex-
ploration compared to a simpler solution in term of efficiency and performances. As a
baseline, we propose a fast heuristic search method, which simply iterates over all actions
once in a random order, trying to complete the rearrangement using the same action space
as our MCTS approach, until completion or a time limit is reached. Instead of moving
only the closest object that is obstructing a target position 𝑇𝑘, we move all the objects that
overlap with 𝑇𝑘 to their target positions or to a free position inside the workspace that do
not overlap with 𝑇𝑘. Our MCTS approach is compared with this strong baseline heuristic
in figure 3-6. Unless specified otherwise, we use 𝑐 = 1 for MCTS and set the maximum
number of MCTS iterations to 100000.

As shown in figure 3-6(a), the baseline is able to solve complex instances but its success
rate starts dropping after 33 objects whereas MCTS is able to find plans for 37 objects with
80% success. More importantly, as shown in figure 3-6(b), the number of object movements
in the plans found by MCTS is significantly lower. For example, rearranging 30 objects
takes only 40 object moves with MCTS compared to 60 with the baseline. This difference
corresponds to more than 4 minutes of real operation in our robotics setup. The baseline
and MCTS have the same action parametrization but MCTS produces higher quality plans
because it is able to take into consideration the future effects of picking-up an object and
placing it at a specific location. On a laptop with a single CPU core, MCTS finds plans for
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Figure 3-7: Exploration-exploitation tradeoff in MCTS. MCTS performs better than a ran-
dom baseline heuristic search. Balancing the exploration term of UCB with the parameter
𝑐 is crucial for finding good solutions while limiting the number of collision checks.

25 objects in 60 ms. This high efficiency allows to replan after each pick-and-place action
and perform rearrangement in a closed loop.
Exploration-exploitation trade-off. We now want to demonstrate that the benefits of our
planning method are due to the quality of the exploration/exploitation trade-off in MCTS.
An important metric is the total number of collision checks that the method requires for
finding a plan. The collision check (checking whether an object can be placed to a certain
location) is indeed one of the most costly operation when planning. figure 3-6(c) shows
that MCTS uses more collision checks compared to the baseline because MCTS explores
many possible optimistic action sequences while the baseline is only able to find a solu-
tion and does not optimize any objective. We propose another method that we refer to
as baseline+randperm which solves the problem with the baseline augmented with a ran-
dom search over action sequences: the baseline is run with different random object orders
until a number of collision checks similar to MCTS with 𝑐 = 1 is reached and we keep
the solution which has the smallest number of object moves. As can be see in figure 3-7,
baseline+randperm has a higher success rate and produces higher quality plans with lower
number of object moves compared to the baseline (figure 3-7(b)). However, MCTS with
𝑐 = 1, still produces higher quality plans given the same amount of collision checks. The
reason is that baseline+randperm only relies on a random exploration of action sequences
while MCTS allows to balance the exploration of new actions with the exploitation of
promising already sampled partial sequences through the exploration term of UCB (equa-
tion 3.1). In figure 3-7, we also study the impact of the exploration parameter 𝑐. MCTS
with no exploration (𝑐 = 0) finds plans using fewer collision checks compared to 𝑐 > 0
but the plans have high number of object moves. Increasing 𝑐 leads to higher quality plans
while also increasing the number of collision checks. Setting 𝑐 too high also decreases the
success rate (c=3, c=10 in Fig 3-7(a)) because too many nodes are added to the tree and the
limit on the number of MCTS iterations is reached before finding a solution.
Generality of our set-up. Previous work for finding high-quality solutions to rearrange-
ment problems has been limited to either monotone instances [94] or instances where buffer
space is available [52]. The red curve in figure 3-6(a) clearly shows that in our set-up the
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Figure 3-8: Comparison of our MCTS planning approach with several other state-of-the-art
methods. MCTS performs better than other methods applied to the rearrangement planning
problem. MCTS finds high quality plans (b) using few collisions checks (c) with 100%
success rate for up to 10 objects.

number of problems where some buffer space is available for at least one object quickly
decreases with the number of objects in the workspace. In other words, the red curve is an
upper bound on the success rate of [52], which requires available buffer space. In order to
evaluate the performance of our approach on monotone problems, we generated the same
number of problems but the target configuration was designed by moving object from the
initial configuration one by one, in a random order into free space. This ensures that the
instances are monotone and can be solved by moving each object once. Our MCTS-based
approach was able to solve 100% of these instances optimally in 𝑁 steps. Our method
can therefore solve the problems considered in [94] while also being able to handle sig-
nificantly more challenging non-monotonic instances, where objects need to be moved
multiple times.
Comparisons with other methods. To demonstrate that other planning methods do not
scale well when used in a challenging scenario similar to ours, we compared our planner
with three other methods of the state of the art: STRIPStream [44], the Humanoid Path-
Planner [138], mRS and plRS [93]. Results are presented in figure 3-8 for 900 random
rearrangement instances, we limit the experiments to problems with up to 10 objects as
evaluating these methods for more complex problems is difficult given a reasonable amount
of time (few hours). HPP [138] is the slowest method and could not handle more than 4 ob-
jects, taking more than 45 minutes of computation for solving the task with 4 objects. HPP
fails to scale because it attempts to solve the combined task and motion planning problem
at once using RRT without explicit task/motion planning hierarchy thus computing many
unnecessary robot/environment collision checks. The other methods adopt a task/motion
planning hierarchy and we compare results for the task planners only. The state-of-the-art
task and motion planner for general problems, STRIPSStream [44], is able to solve prob-
lems with up to 8 objects in few seconds but do not scale (figure 3-8(a)) when target loca-
tions are specified for all objects in the scene as it is the case for rearrangement planning
problems. The success rate of specialized rearrangement methods, mRS and plRS, drops
when increasing number of objects because these methods cannot handle situations where
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Figure 3-9: (a) Example images from the dataset that we use to evaluate the accuracy of
object position estimation as a function of number of objects. (b) Evaluation of our visual
system for a variable number of objects. We report the localization accuracy (left) and the
percentage of images where all objects are correctly identified (right). Please see the video
on the project webpage [168] for examples where our system is used in more challenging
visual conditions.

objects are permuted, i.e. placing an object at its target position requires moving another
objects first thus requiring longer term planning capability. When used in combination
with a PRM, more problems can be addressed but the main drawback is that these meth-
ods are slow as they perform a high number of collision checks (figure 3-8(c)). Overall,
the main limitation of STRIPSTream, PRM(mRS) and PRM(plRS) comes from the fact
that the graph of possible states is sampled randomly whereas MCTS will prioritize the
most optimistic branches (exploitation). MCTS and it’s tree structure also allows to build
the action sequence progressively (moving one object at once) compared to PRM-based
approaches that sample entire arrangements and then try to solve them.

3.5.2 Visual scene state estimation
Experimental setup. To evaluate our approach, we created a dataset of real images with
known object configurations. We used 1 to 12 small 3.5 cm cubes, 50 configurations for
each number of cubes, and captured images using two cameras for each configuration,
leading to a total of 1200 images depicting 600 different configurations. Example images
from this evaluation set are shown in figure 3-9(a).
Single object accuracy. When a single object is present in the image, the mean-shift algo-
rithm always succeeds and the precision of our object position prediction is 1.1 ± 0.6 cm.
This is comparable to the results reported in [203] for positioning of a known object with
respect to a known table without occlusions and distractors, 1.3 ± 0.6 cm, and to re-
sults reported in [122] for the coarse alignment of a single object with respect to a robot,
1.7 ± 3.4 cm. The strength of our method, however, is that this accuracy remains constant
for up to 10 previously unknown objects, a situation that neither [203] nor [122] can deal
with.
Accuracy for multiple objects. In figure 3-9(b), we report the performance of the object
localization and object identification modules as a function of the number of objects. For
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localization, we report the percentage of objects localized with errors below 2 cm and 3 cm
respectively. For 10 objects, the accuracy is 1.1 ± 0.6 cm. The 3 cm accuracy approxi-
mately corresponds to the success of grasping, that we evaluate using a simple geometric
model of the gripper. Note that grasping success rates are close to 100% for up to 10
objects. As the number of objects increases, the object identification accuracy decreases
slightly because the objects start to occlude one each other in the image. This situation is
very challenging when the objects are unknown because two objects that are too close can
be perceived as a single larger object. Note that we are not aware of another method that
would be able to directly predict the workspace position of multiple unseen objects with
unknown dimensions using only (uncalibrated) RGB images as input.

Discussion. Our experiments demonstrate that our visual predictor is able to scale well up
to 10 objects with a constant precision that is sufficient for grasping. We have also observed
that our method is able to generalize to objects with shapes not seen during training, such
as cups or plastic toys. While we apply our visual predictor to visually guided rearrange-
ment planning, it could be easily extended to other contexts using additional task-specific
synthetic training data. Accuracy could be further improved using a refinement similar to
[122]. Our approach is limited to 2D predictions for table-top rearrangement planning.
Predicting 6DoF pose of unseen objects precise enough for robotic manipulation remains
an open problem.

3.5.3 Real robot experiments using full pipeline

We evaluated our full pipeline, performing both online visual scene estimation and rear-
rangement planning by performing 20 rearrangement tasks, each of them composed with
10 objects. In each case, the target configuration was described by an image of a config-
uration captured from a different viewpoint, with a different table texture and a different
type of camera. Despite the very challenging nature of the task, our system succeeded in
correctly solving 17/20 of the experiments. In case of success, our system used on average
12.2 steps. The three failures were due to errors in the visual recognition system (incor-
rectly estimated number of objects, mismatch of source and target objects). Interestingly,
the successful cases were not always perfect runs, in the sense that the re-arrangement strat-
egy was not optimal or that the visual estimation confused two objects at one step of the
matching process. However, our system was able to recover robustly from these failures
because it is applied in a closed-loop fashion, where then plan is recomputed at each object
move.

The video available on the project page [168] shows additional experiments including
objects other than cubes, different backgrounds, a moving hand-held camera and external
perturbations, where an object is moved during the rearrangement. These results demon-
strate the robustness of our system. To the best of our knowledge, rearranging a priory
unknown number of unseen objects with a robotic arm while relying only on images cap-
tured by a moving hand-held camera and dealing with object perturbations has not been
demonstrated in prior work.
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3.6 Conclusion
We have introduced a robust and efficient system for online rearrangement planning, that
scales to many objects and recovers from perturbations, without requiring calibrated camera
or fiducial markers on objects. To our best knowledge, such a system has not been shown in
previous work. At the core of our approach is the idea of applying MCTS to rearrangement
planning, which leads to better plans, significant speed-ups and ability to address more
general set-ups compared to prior work. While in this work we focus on table-top re-
arrangement, the proposed MCTS approach is general and opens-up the possibility for
efficient re-arrangement planning in 3D or non-prehensile set-ups.

A limitation of the existing visual system is that it can only be used to predict the
2D position of the centroid of an object in the robot coordinate system. Manipulation is
hence limited to overhand grasps of objects relying on a planar 2D surface. To address this
limitation, we consider the problem of 6D pose estimation of rigid objects in chapter 4.
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Chapter 4

Single-view and multi-view 6D pose
estimation of known rigid objects

In chapter 3, we have presented a robotic system to manipulate objects given a single RGB
image of a scene. The visual system was, however, only able to predict the 2D location of
the centroid of objects with respect to the robot. In order to perform more complex tasks,
we focus on estimating the full 6D pose of an object with a known 3D model. We focus on
camera-to-object 6D pose estimation. For manipulating the objects with a robot, knowledge
of the robot pose is also required. The problem of camera-to-robot pose estimation will be
addressed in chapter 6.

In detail, in this chapter we introduce an approach for recovering the 6D pose of mul-
tiple known objects in a scene captured by a set of input images with unknown camera
viewpoints. First, we present a single-view single-object 6D pose estimation method based
on a render & compare strategy, which we use to generate 6D object pose hypotheses. Sec-
ond, we develop a robust method for matching individual 6D object pose hypotheses across
different input images in order to jointly estimate camera viewpoints and 6D poses of all
objects in a single consistent scene. Our approach explicitly handles object symmetries,
does not require depth measurements, is robust to missing or incorrect object hypotheses,
and automatically recovers the number of objects in the scene. Third, we develop a method
for global scene refinement given multiple object hypotheses and their correspondences
across views. This is achieved by solving an object-level bundle adjustment problem that
refines the poses of cameras and objects to minimize the reprojection error in all views. We
demonstrate that the proposed method, dubbed CosyPose, outperforms current state-of-
the-art results for single-view and multi-view 6D object pose estimation by a large margin
on several pose estimation benchmarks. Code and pre-trained models are available on the
project webpage [26].

4.1 Introduction

The goal of this work is to estimate accurate 6D poses of multiple known objects in a 3D
scene captured by multiple cameras with unknown positions, as illustrated in figure 4-1.
This is a challenging problem because of the texture-less nature of many objects, the pres-
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(a) Input: RGB images. (b) Output: full scene model including objects and cam-
era poses.

Figure 4-1: CosyPose: 6D object pose estimation optimizing multi-view COnSistencY.
Given (a) a set of RGB images depicting a scene with known objects taken from unknown
viewpoints, our method accurately reconstructs the scene, (b) recovering all objects in the
scene, their 6D pose and the camera viewpoints. Objects are enlarged for the purpose of
visualization.

ence of multiple similar objects, the unknown number and type of objects in the scene, and
the unknown positions of cameras. Solving this problem would have, however, important
applications in robotics where the knowledge of accurate position and orientation of objects
within the scene would allow the robot to plan, navigate and interact with the environment.

Object pose estimation is one of the oldest computer vision problems [123, 124, 172],
yet it remains an active area of research [112, 155, 160, 169, 207, 217, 219, 240]. The
best performing methods that operate on RGB (no depth) images [69, 112, 113, 155, 199,
217, 240] are based on trainable convolutional neural networks and are able to deal with
symmetric or textureless objects, which were challenging for earlier methods relying on
local [9, 22, 23, 63, 124] or global [27] gradient-based image features. However, most of
these works consider objects independently and estimate their poses using a single input
(RGB) image. Yet, in practice, scenes are composed of many objects and multiple images
of the scene are often available, e.g. obtained by a single moving camera, or in a multi-
camera set-up. In this work, we address these limitations and develop an approach that
combines information from multiple views and estimates jointly the pose of multiple objects
to obtain a single consistent scene interpretation.

While the idea of jointly estimating poses of multiple objects from multiple views may
seem simple, the following challenges need to be addressed. First, object pose hypotheses
made in individual images cannot easily be expressed in a common reference frame when
the relative transformations between the cameras are unknown. This is often the case in
practical scenarios where camera calibration cannot easily be recovered using local feature
registration because the scene lacks texture or the baselines are large. Second, the single-
view 6D object pose hypotheses have gross errors in the form of false positives, missed
detections, or large pose estimation errors. Third, the candidate 6D object poses estimated
from input images suffer from depth ambiguities inherent to single view methods.
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In this work, we describe an approach that addresses these challenges. We start from 6D
object pose hypotheses that we estimate from each view using a new render-and-compare
approach inspired by DeepIM [112]. First, we match individual object pose hypotheses
across different views and use the resulting object-level correspondences to recover the rel-
ative positions between the cameras. Second, gross errors in object detection are addressed
using a robust object-level matching procedure based on RANSAC, optimizing the overall
scene consistency. Third, noisy single-view object poses are significantly improved using
a global refinement procedure based on object-level bundle adjustment. The outcome of
our approach that optimizes multi-view COnSistencY, hence dubbed CosyPose, is a single
consistent reconstruction of the input scene.

Our single-view single-object pose estimation method obtains state-of-the-art results
on several 6D pose estimation benchmarks, achieving a significant 34.2% absolute im-
provement over the state-of-the-art [155] on T-LESS and winning the BOP 2020 6D pose
estimation competition [70, 71] in multiple categories. Notably, our method does not rely
on an external coarse pose estimation method and unlike prior works we train our networks
on all objects of a dataset simultaneously. Our multi-view framework further significantly
improves the pose estimation and 6D detection accuracy of our single-view method. Com-
pared to prior works that consider multiple views for 6D pose estimation, our multi-view
framework clearly outperforms [109] while not requiring known camera poses and not
being limited to a single object of each class per scene. We released the full code, state-
of-the-art pre-trained single-view 6D detection and pose estimation models for 7 common
object sets, and our multi-view framework which can be combined with any other single-
view pose estimator.

4.2 Related work
Our work builds on results in single-view and multi-view object 6D pose estimation from
RGB images and object-level SLAM.
Single-view single-object 6D pose estimation. The object pose estimation problem [123,
124, 172] has been approached either by estimating the pose from 2D-3D correspondences
using local invariant features [9, 22, 23, 124], or directly by estimating the object pose
using template-matching [63]. However, local features do not work well for texture-less
objects and global templates often fail to detect partially occluded objects. Both of these
approaches (feature-based and template matching) have been revisited using deep neural
networks. A convolutional neural network (CNN) can be used to detect sparse object fea-
tures in 2D (such as 2D keypoints) [46, 76, 87, 158, 160, 169, 202, 207] or to directly find
dense 2D-to-3D correspondences [69, 155, 160, 164, 191, 230, 240]. The resulting 2D-to-
3D correspondences are used to recover the camera pose using PnP [108]. Deep approaches
have also been used to match implicit pose features, which can be learned without requir-
ing ground truth pose annotations [197, 199]. The estimated 6D pose of the objects can
be further refined [112, 127, 147, 169] using an iterative procedure that effectively moves
the camera around the object so that the rendered image of the object best matches the
input image. Such a refinement step provides important performance improvements and
is becoming common practice [217, 240] as a final stage of the estimation process. Our
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single-view single-object pose estimation described in section 4.3.2 builds on the ideas of
DeepIM [112]. Unlike[112], our method does not rely on a separate method for coarse
estimation like PoseCNN [230]. The performance of 6D pose estimation can be further im-
proved using depth sensors [39, 92, 112, 217, 230]. The performance of our pose estimates
can be improved using a strategy based on Iterative Closest Points (ICP) alignment [243]
if depth is available as shown in section 4.4.3. In the rest of this chapter, we focus on the
most challenging scenario where only RGB images are available.

Multi-view single-object 6D pose estimation. Multiple views of an object can be used
to resolve depth ambiguities and gain robustness with respect to occlusions. Prior work
using local invariant features includes [22, 23, 51, 166] and involves some form of fea-
ture matching to establish correspondences across views to aggregate information from
multiple viewpoints. More recently, the multi-view single-object pose estimation problem
has been revisited with a deep neural network that predicts an object pose candidate in
each view [109] and aggregates information from multiple views assuming known rela-
tive camera poses. In contrast, our work does not assume the camera poses to be known.
We experimentally demonstrate that our approach outperforms [109] despite requiring less
information.

Multi-view multi-object 6D pose estimation. Other works consider all objects in a scene
together in order to jointly estimate the state of the scene in the form of a compact rep-
resentation of the object and camera poses in a common coordinate system. This prob-
lem is known as object-level SLAM [178] where a depth-based object pose estimation
method [39] is used to recognize objects from a database in individual images and estimate
their poses. The individual objects are tracked across frames using depth measurements,
assuming the motion of the sensor is continuous. Consecutive depth measurements also en-
able to produce hypotheses for camera poses using ICP [243] and the poses of objects and
cameras are finally refined in a joint optimization procedure. Another approach [35] uses
local RGBD patches to generate object hypotheses and find the best view of a scene. All
of these methods, however, strongly rely on depth sensors to estimate the 3D structure of
the scene while our method only exploits RGB images. In addition, they assume temporal
continuity between the views, which is also not required by our approach.

Other works have considered monocular RGB-only object-level SLAM [8, 163, 238].
Related is also [7] where semantic 2D keypoint correspondences across multiple views and
local features are used to jointly estimate the pose of a single human and the positions of
the observing cameras. All of these works rely on local images features to estimate camera
poses. In contrast, our work exploits 6D pose hypotheses generated by a neural network
which allows to recover camera poses in situations where feature-based registration fails,
as is the case for example for the complex texture-less images of the T-LESS dataset. In
addition, [163, 238] do not consider full 6D pose of objects, and [7, 109] only consider
scenes with a single instance of each object. In contrast, our method is able to handle
scenes with multiple instances of the same object.

This chapter is an extended version of [96]. It provides a significantly extended descrip-
tion of the proposed approach and a new set of results on the seven datasets of the BOP 6D
pose estimation challenge [70, 71] together with their analysis.
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Figure 4-2: Multi-view multi-object 6D pose estimation. In the first stage, we obtain
initial object candidates in each view separately. In the second stage, we match these object
candidates across views to recover a single consistent scene. In the third stage, we globally
refine all object and camera poses to minimize multi-view reprojection error.

4.3 Multi-view multi-object 6D object pose estimation

In this section, we present our framework for multi-view multi-object pose estimation. We
begin with an overview of the approach (section 4.3.1 and figure 4-2), and then detail the
three main steps of the approach in the remaining sections.

4.3.1 Approach overview

Our goal is to reconstruct a scene composed of multiple objects given a set of RGB images.
We assume that we know the 3D models of objects of interest. However, there can be
multiple objects of the same type in the scene and no information on the number or type of
objects in the scene is available. Furthermore, objects may not be visible in some views,
and the relative poses between the cameras are unknown. Our output is a scene model,
which includes the number of objects of each type, their 6D poses and the relative poses of
the cameras. Our approach is composed of three main stages, summarized in figure 4-2.

In the first stage, we build on the success of recent methods for single-view RGB object
detection and 6D pose estimation. Given a set of objects with known 3D models and a
single image of a scene, we output a set of candidate detections for each object and for
each detection the 6D pose of the object with respect to the camera associated to the image.
Note that some of these detections and poses are wrong, and some are missing. We thus
consider the poses obtained in this stage as a set of initial object candidates, i.e. objects
that may be seen in the given view together with an estimate of their pose with respect to
this view. This object candidate generation process is described in section 4.3.2.

In the second stage, called object candidate matching and described in detail in sec-
tion 4.3.3, we match objects visible in multiple views to obtain a single consistent scene.
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This is a difficult problem since object candidates from the first stage typically include
many errors due to (i) heavily occluded objects that might be mis-identified or for which
the pose estimate might be completely wrong; (ii) confusion between similar objects; and
(iii) unusual poses that do not appear in the training set and are not detected correctly. To
tackle these challenges, we take inspiration from robust patch matching strategies that have
been used in the structure from motion (SfM) literature [54, 200]. In particular, we design
a matching strategy similar in spirit to [175] but where we match entire 3D objects across
views to obtain a single consistent 3D scene, rather than matching local 2D patches on a
single 3D object [175].

The final stage of our approach, described in section 4.3.4, is a global scene refinement.
We draw inspiration from bundle adjustment [209], but the optimization is performed at the
level of objects: the 6D poses of all objects and cameras are refined to minimize a global
reprojection error.

4.3.2 Stage 1: single-view 6D pose estimation for object candidate gen-
eration

Our system takes as input multiple photographs of a scene {𝐼𝑎} and a set of 3D models,
each associated to an object label 𝑙. We assume the intrinsic parameters of camera 𝐶𝑎 asso-
ciated to image 𝐼𝑎 are known as is usually the case in single-view pose estimation methods.
In each view 𝐼𝑎, we obtain a set of object detections using an object detector (e.g. Faster-
RCNN [171], RetinaNet [116], or Mask R-CNN [58]), and a set of candidate pose esti-
mates using a single-view single-object pose estimator (e.g. PoseCNN [230], DPOD [240],
DeepIM [112]). Each 2D candidate detection in view 𝐼𝑎 is identified by an index 𝛼 and
corresponds to an object candidate 𝑂𝑎,𝛼, associated with a predicted object label 𝑙𝑎,𝛼 and a
6D pose estimate 𝑇𝐶𝑎𝑂𝑎,𝛼 , composed of a 3D rotation matrix and a 3D translation vector,
with respect to camera 𝐶𝑎. While our multi-view framework is agnostic to the particular
single-view 6D pose estimation method used to generate the candidates, we develop our
own single-view single-object pose estimator which improves significantly over state of
the art and is described next.
Single-view 6D pose estimation. We introduce a method for single-view 6D object pose
estimation that builds on the ideas of the iterative render & compare refinement method of
DeepIM [112] with some simplifications and technical improvements which are detailed
next. The 6D pose estimator takes as input a 2D candidate detection (a bounding box
associated with a detected object label) and outputs a 6D pose estimate for this object. The
same method is applied to each candidate detection independently. For simplificity, we
focus on one view and one detection and drop the subscripts 𝑎 and 𝛼 of the estimated pose
𝑇𝐶𝑎𝑂𝑎,𝛼 .
Iterative render & compare strategy. Building on prior work that use render & compare
strategy [112, 127, 240] for pose estimation, we use a deep neural network that iteratively
refines the 6D pose estimate of the considered object. Our network takes as input two RGB
images. The first image is the (real) input image 𝐼 cropped on the region of the image
showing the object, denoted 𝐼𝑐 and derived from the object detection bounding box as
explained in section 4.6.1 of the appendix. At iteration 𝑘, the second image is a (synthetic)
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rendering of the object with label 𝑙 rendered in a pose 𝑇 𝑘−1
𝐶,𝑂 that corresponds to the object

pose estimated at the previous iteration. The network outputs an updated refined pose
𝑇 𝑘

𝐶,𝑂, and the same procedure is iterated 𝐾 times. The initial pose 𝑇 0
𝐶,𝑂 can be provided

by any coarse 6D pose estimation method. While previous works use different methods for
coarse estimation, for example DeepIM [112] relies on PoseCNN [230], we show that the
same network architecture can be used for performing coarse pose estimation, as described
below. We now give details of our pose estimation network and present the main differences
from [112].

Pose estimation network. The network takes as input the concatenation of the synthetic
and real cropped images. Both images are resized to the input resolution: 320 × 240. The
backbone is EfficientNet-B3 [201] followed by spatial average pooling. The prediction
layer is a single fully connected layer, which outputs 9 values corresponding to one 3-vector
[𝑣𝑥, 𝑣𝑦, 𝑣𝑧] to predict an update of the translation of the input pose, and two 3-vectors 𝑒1, 𝑒2
that define the rotation update as explained below. Given these predictions, the pose update
is obtained as

𝑥𝑘+1 =
(︃

𝑣𝑥

𝑓𝐶
𝑥

+ 𝑥𝑘

𝑧𝑘

)︃
𝑧𝑘+1, (4.1)

𝑦𝑘+1 =
(︃

𝑣𝑦

𝑓𝐶
𝑦

+ 𝑦𝑘

𝑧𝑘

)︃
𝑧𝑘+1, (4.2)

𝑧𝑘+1 = 𝑣𝑧𝑧𝑘, (4.3)
𝑅𝑘+1 = 𝑅(𝑒1, 𝑒2)𝑅𝑘, (4.4)

where [𝑥𝑘, 𝑦𝑘, 𝑧𝑘] is the 3D translation vector of the relative camera-object pose 𝑇 𝑘
𝐶𝑂 at it-

eration 𝑘, 𝑅𝑘 the rotation matrix of 𝑇 𝑘
𝐶𝑂, 𝑓𝐶

𝑥 and 𝑓𝐶
𝑦 are the (known) focal lengths that cor-

respond to the (virtual) camera associated with the cropped input image 𝐼𝐶 , and 𝑅(𝑒1, 𝑒2)
is a rotation matrix describing the rotation update recovered from 𝑒1, 𝑒2 using [246] by
orthogonalizing the basis defined by the two predicted rotation vectors 𝑒1, 𝑒2 (equations
are provided in section 4.6.1 of the appendix). Finally, [𝑥𝑘+1, 𝑦𝑘+1, 𝑧𝑘+1] and 𝑅𝑘+1 are,
respectively, the translation and rotation components of the output updated pose estimate
𝑇 𝑘+1

𝐶𝑂 . The main differences from the DeepIM approach [112] are threefold. First, we use
the rotation parametrization of [246], which has been shown in [246] to be better suitable
for learning compared to quaternions used in [112]. Second, we use EfficientNet-B3[201],
which is a more recent backbone compared to FlowNet used in [112] and we do not in-
clude auxiliary predictions of flow and mask, which makes the method simpler and easier
to train. Third, we use the intrinsics 𝑓𝐶

𝑥 , 𝑓𝐶
𝑦 of the cropped camera associated with the input

(cropped) image. DeepIM uses the intrinsics parameters of the non-cropped camera 𝑓𝑥, 𝑓𝑦

and fixes them to 1 during training because the intrinsic parameters of the input camera
are fixed on their datasets. We use the cropped focal lengths instead because cropping and
resizing the crop of the input image changes the apparent focal length. Using the cropped
focal lengths forces the network to only predict xy translations in pixels and the network
can therefore become invariant to the intrinsic parameters of the input (cropped) camera.

Object symmetries. Handling object symmetries is a major challenge for object pose
estimation since the object pose can only be estimated up to a symmetry. We thus need
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to consider symmetries explicitly together with the pose estimates. Each 3D model 𝑙 is
associated to a set of symmetries 𝑆(𝑙). Inspired by [165], we define the set of symmetries
𝑆(𝑙) as the set of transformations 𝑆 that leave the appearance of object 𝑙 unchanged:

𝑆(𝑙) = {𝑆 ∈ SE(3) s.t ∀𝑇 ∈ SE(3),ℛ(𝑙, 𝑇) = ℛ(𝑙, 𝑇𝑆)}, (4.5)

where ℛ(𝑙, 𝑋) is the rendered image of object 𝑙 captured in pose 𝑋 and 𝑆 is the rigid
motion associated to the symmetry. We introduce a symmetric distance 𝐷𝑙 which measures
the distance between two 6D poses represented by transformations 𝑇1 and 𝑇2 and takes into
account the symmetries of the object 𝑙:

𝐷𝑙(𝑇1,𝑇2) = min
𝑆∈𝑆(𝑙)

1
|𝒳𝑙|

∑︁
x∈𝒳𝑙

||𝑇1𝑆x − 𝑇2x||2, (4.6)

where 𝒳𝑙 is the set of 3D points of the object 𝑙 and |𝒳𝑙| the number of 3D points. 𝐷𝑙(𝑇1, 𝑇2)
measures the average error between the points transformed with 𝑇1 and 𝑇2 for the symmetry
𝑆 that best aligns the (transformed) points. In practice, to compute this distance for objects
with axes of symmetries for which 𝑆(𝑙) is infinite (e.g. bowls), we discretize 𝑆(𝑙) using
64 rotation angles around each symmetry axis, similar to [219]. The distance 𝐷𝑙 is used to
compute the loss, which we detail next.
Disentangled loss. Our pose update parametrization, detailed in equations (4.1)-(4.4), dis-
entangles the predictions of the 3D translation and the 3D rotation: these two components
of the pose update can be predicted independently. However, the camera-object pose 𝑇 𝑘

𝐶,𝑂

and hence the loss are computed using non-linear relations between the parameters pre-
dicted by the network, which can lead to unstable training as pointed out by [189]. We
follow the recommendations of [189] for better training by disentangling the effects of the
relative depth predictions 𝑣𝑧, image-space 𝑥𝑦 translation 𝑣𝑥, 𝑣𝑦 and rotation 𝑅. In order to
compute the loss, we define the pose update function 𝐹 which takes as input the initial esti-
mate of the pose 𝑇 𝑘

𝐶𝑂, the predictions of the neural network [𝑣𝑥, 𝑣𝑦, 𝑣𝑧] and 𝑅, and outputs
the updated pose:

𝑇 𝑘+1
𝐶𝑂 = 𝐹 (𝑇 𝑘

𝐶𝑂, [𝑣𝑥, 𝑣𝑦, 𝑣𝑧], 𝑅), (4.7)

where the closed form of function 𝐹 is expressed in equations (4.1)-(4.4). We also write
[𝑣𝑥, 𝑣𝑦, 𝑣𝑧] and �̂� as the target predictions, i.e. the predictions such that

𝑇𝐶𝑂 = 𝐹 (𝑇 𝑘
𝐶𝑂, [𝑣𝑥, 𝑣𝑦, 𝑣𝑧], �̂�), (4.8)

where 𝑇𝐶𝑂 is the ground truth camera-object pose. The pose update network is trained
using the following loss function:

ℒ = 𝐷𝑙(𝐹 (𝑇 𝑘
𝐶𝑂, [𝑣𝑥, 𝑣𝑦, 𝑣𝑧], �̂�), 𝑇𝐶𝑂) (4.9)

+ 𝐷𝑙(𝐹 (𝑇 𝑘
𝐶𝑂, [𝑣𝑥, 𝑣𝑦, 𝑣𝑧], �̂�), 𝑇𝐶𝑂) (4.10)

+ 𝐷𝑙(𝐹 (𝑇 𝑘
𝐶𝑂, [𝑣𝑥, 𝑣𝑦, 𝑣𝑧], 𝑅), 𝑇𝐶𝑂), (4.11)

where 𝐷𝑙 is the symmetric distance defined in equation (4.6), with the 𝐿2 norm replaced by
the 𝐿1 norm. The different terms of this loss separate the influence of: 𝑥𝑦 translation (4.9),
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relative depth (4.10) and rotation (4.11).
Coarse estimation. The network architecture presented above can be used to iteratively
refine the pose of an object given an initial coarse estimate. We use the same strategy to
perform coarse pose estimation. This is done by providing as input to a separate coarse
pose estimation network a canonical pose that corresponds to the object being rendered at
a fixed distance of 1 meter of the camera in the center of the input 2D bounding box with
a fixed rotation with the 𝑧 axis of the object model pointing upwards and the other axes
parallel to the camera. The coarse and refinement networks use the same architecture, but
the weights are distinct and each network is trained independently. During training, the
distribution of rendered input pose is sampled by adding noise to the ground truth for the
refinement network, and generated using the initialization strategy described above for the
coarse network. At test time, the coarse pose estimation network is only ran for 1 iteration
while the refinement network can be run for multiple iterations. While only one network
could be used for both coarse and refinement, we observed better results by training two
separate networks with the same architecture but different weights obtained by training
with different input training distributions.

4.3.3 Stage 2: object candidate matching
The output of the first stage is a set of object candidates {𝑂𝑎,𝛼} in all views, each associ-
ated with a 6D pose estimate 𝑇𝐶𝑎𝑂𝑎,𝛼 with respect to camera 𝐶𝑎. Given these single-view
object candidates, our multi-view matching module illustrated in figure 4-2 aims at (i) re-
moving the object candidates that are not consistent across views and (ii) matching object
candidates that correspond to the same physical object. We solve this problem in two steps
detailed below: (A) selection of candidate pairs of objects in all pairs of views, and (B)
scene-level matching.
A. 2-view candidate pair selection. We first focus on a single pair of views (𝐼𝑎, 𝐼𝑏) of
the scene and find all pairs of object candidates (𝑂𝑎,𝛼, 𝑂𝑏,𝛽), one in each view, which
correspond to the same physical object in these two views. To do so, we use a RANSAC
procedure where we hypothesize a relative pose between the two cameras and count the
number of inliers, i.e. the number of consistent pairs of object candidates in the two views.
We then select the solution with the most inliers which gives associations between the
object candidates in the two views. In the rest of the section, we describe in more detail
how we sample relative camera poses and how we define inlier candidate pairs.
Sampling of relative camera poses. Sampling meaningful camera poses is one of the main
challenges for our approach. Indeed, directly sampling at random the space of possible
camera poses would be inefficient. Instead, as usual in RANSAC, we sample pairs of
object candidates (associated to the same object label) in the two views, hypothesize that
they correspond to the same physical object and use them to infer a relative camera pose
hypothesis. However, since objects can have symmetries, a single pair of candidates is not
enough to obtain a relative pose hypothesis without ambiguities and we thus sample two
pairs of object candidates, which in most cases is sufficient to disambiguate symmetries.

In detail, we sample two tentative object candidate pairs with pair-wise consistent la-
bels (𝑂𝑎,𝛼, 𝑂𝑏,𝛽) and (𝑂𝑎,𝛾, 𝑂𝑏,𝛿) and use them to build a relative camera pose hypothesis,
𝑇𝐶𝑎𝐶𝑏

. We obtain the relative camera pose hypothesis by (i) assuming that (𝑂𝑎,𝛼, 𝑂𝑏,𝛽) cor-
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respond to the same physical object and (ii) disambiguating symmetries by assuming that
(𝑂𝑎,𝛾, 𝑂𝑏,𝛿) also correspond to the same physical object, and thus selecting the symmetry
that minimize their symmetric distance

𝑇𝐶𝑎𝐶𝑏
= 𝑇𝐶𝑎𝑂𝑎,𝛼𝑆⋆𝑇 −1

𝐶𝑏𝑂𝑏,𝛽
, with (4.12)

𝑆⋆ = argmin
𝑆∈𝑆(𝑙)

𝐷𝑙(𝑇𝐶𝑎𝑂𝑎,𝛾 , (𝑇𝐶𝑎𝑂𝑎,𝛼𝑆𝑇 −1
𝐶𝑏𝑂𝑏,𝛽

)𝑇𝐶𝑏𝑂𝑏,𝛿
), (4.13)

where 𝑙 = 𝑙𝑎,𝛼 = 𝑙𝑏,𝛽 is the object label associated to the first pair, and 𝑆⋆ is the object
symmetry which best aligns the point clouds associated to the second pair of objects (𝑂𝑎,𝛾

and 𝑂𝑏,𝛿). This relative camera pose estimation step is illustrated in section 4.6.2 of the
appendix. If the union of the two physical objects is symmetric, e.g. two spheres, the pose
computed may be incorrect but it would not be verified by a third pair of objects, and the
hypothesis would be discarded.
Counting pairs of inlier candidates. Let’s assume we are given a relative pose hypothesis
between the cameras 𝑇𝐶𝑎𝐶𝑏

. For each object candidate 𝑂𝑎,𝛼 in the first view, we find the
object candidate in the second view 𝑂𝑏,𝛽 with the same label 𝑙 = 𝑙𝑎,𝛼 = 𝑙𝑏,𝛽 that minimizes
the symmetric distance 𝐷𝑙(𝑇𝐶𝑎𝑂𝑎,𝛼 , 𝑇𝐶𝑎𝐶𝑏

𝑇𝐶𝑏𝑂𝑏,𝛽
). In other words, 𝑂𝑏,𝛽 is the object can-

didate in the second view closest to 𝑂𝑎,𝛼 under the hypothesized relative pose between the
cameras. This pair (𝑂𝑎,𝛼, 𝑂𝑏,𝛽) is considered an inlier if the associated symmetric distance
is smaller than a given threshold 𝐶. The total number of inliers is used to score the rela-
tive camera pose 𝑇𝐶𝑎𝐶𝑏

. Note that we discard the hypothesis which have fewer than three
inliers.
B. Scene-level matching. We use the result of the 2-view candidate pair selection applied
to each image pair to define a graph between all candidate objects. Each vertex corresponds
to an object candidate in one view and edges correspond to pairs selected from 2-view
candidate pair selection, i.e. pairs that had sufficient inlier support. We first remove isolated
vertices, which correspond to object candidates that have not been validated by other views.
Then, we associate to each connected component in the graph a unique physical object,
which corresponds to a set of initial object candidates originating from different views. We
call these physical objects 𝑃1, ...𝑃𝑁 with 𝑁 the total number of physical objects, i.e. the
number of connected components in the graph. We write (𝑎, 𝛼) ∈ 𝑃𝑛 to denote the fact that
an object candidate 𝑂𝑎,𝛼 is in the connected component of object 𝑃𝑛. Since all the objects
in a connected component share the same object label (they could not have been connected
otherwise), we can associate without ambiguity an object label 𝑙𝑛 to each physical object
𝑃𝑛.

4.3.4 Stage 3: scene refinement

After the previous stage, the correspondences between object candidates in the individual
images are known, and the non-coherent object candidates have been removed. The final
stage aims at recovering a unique and consistent scene model by performing global joint
refinement of objects and camera poses.

In detail, the goal of this stage is to estimate poses of physical objects 𝑃𝑛, repre-
sented by transformations 𝑇𝑃1 , . . . , 𝑇𝑃𝑁

, and cameras 𝐶𝑣, represented by transformations
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𝑇𝐶1 , . . . , 𝑇𝐶𝑉
, in a common world coordinate frame. This is similar to the standard bundle

adjustment problem where the goal is to recover the 3D points of a scene together with the
camera poses. This is typically addressed by minimizing a reconstruction loss that mea-
sures the 2D discrepancies between the projection of the 3D points and their measurements
in the cameras. In our case, instead of working at the level of points as done in the bundle
adjustment setting, we introduce a reconstruction loss that operates at the level of objects.

More formally, for each object present in the scene, we introduce an object-candidate
reprojection loss accounting for symmetries. We define the loss for a candidate object 𝑂𝑎,𝛼

associated to a physical object 𝑃𝑛 (i.e. (𝑎, 𝛼) ∈ 𝑃𝑛) and the estimated candidate object
pose 𝑇𝐶𝑎𝑂𝑎,𝛼 with respect to 𝐶𝑎 as:

𝐿
(︁
𝑇𝑃𝑛 , 𝑇𝐶𝑎|𝑇𝐶𝑎𝑂𝑎,𝛼

)︁
=

min
𝑆∈𝑆(𝑙)

1
|𝒳𝑙|

∑︁
x∈𝒳𝑙

||𝜋𝑎(𝑇𝐶𝑎𝑂𝑎,𝛼𝑆x)− 𝜋𝑎(𝑇 −1
𝐶𝑎

𝑇𝑃𝑛x)||,
(4.14)

where || · || is a truncated 𝐿2 loss, 𝑙 = 𝑙𝑛 is the label of the physical object 𝑃𝑛, 𝑇𝑃𝑛 the 6D
pose of object 𝑃𝑛 in the world coordinate frame, 𝑇𝐶𝑎 the pose of camera 𝐶𝑎 in the world
coordinate frame, 𝒳𝑙 the set of 3D points associated to the 3D model of object 𝑙, 𝑆(𝑙) the
symmetries of the object model 𝑙, and the operator 𝜋𝑎 corresponds to the 2D projection of
3D points expressed in the camera frame 𝐶𝑎 by the intrinsic calibration matrix of camera
𝐶𝑎. The inner sum in Eq. (4.14) is the error between (i) the 3D points x of the object model
𝑙 projected to the image with the single view estimate of the transformation 𝑇𝐶𝑎𝑂𝛼 that is
associated with the physical object (i.e. (𝑎, 𝛼) ∈ 𝑃𝑛) (first term, the image measurement)
and (ii) the 3D points 𝑇𝑃𝑛x on the object 𝑃𝑛 projected to the image by the global estimate
of camera 𝐶𝑎 (second term, global estimates).

Recovering the state of the unique scene which best explains the measurements consists
in solving the following consensus optimization problem:

min
𝑇𝑃1 ,...,𝑇𝑃𝑁

,𝑇𝐶1 ,...,𝑇𝐶𝑉

𝑁∑︁
𝑛=1

∑︁
(𝑎,𝛼)∈𝑃𝑛

𝐿
(︁
𝑇𝑃𝑛 , 𝑇𝐶𝑎 |𝑇𝐶𝑎𝑂𝑎,𝛼

)︁
, (4.15)

where the first sum is over all the physical objects 𝑃𝑛 and the second one over all object
candidates 𝑂𝑎,𝛼 corresponding to the physical object 𝑃𝑛. In other words, we wish to find
global estimates of object poses 𝑇𝑃𝑛 and camera poses 𝑇𝐶𝑎 to match the (inlier) object
candidate poses 𝑇𝐶𝑎𝑂𝑎,𝛼 obtained in the individual views. The optimization problem is
solved using the Levenberg-Marquart algorithm. We provide more details in section 4.6.3
of the appendix.

4.4 Results
In this section, we evaluate and analyze our method on several 6D pose estimation bench-
marks. We first consider the YCB-Video [230] and T-LESS[68] datasets, which both pro-
vide multiple views and ground truth 6D object poses for cluttered scenes with multiple
objects. We start by evaluating our single-view 6D pose estimator in section 4.4.1. We
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AUC of AUC of
ADD-S ADD(-S)

PoseCNN [230] - 61.3
MCN [109] 75.1 -
PVNet [160] - 73.4
DeepIM [112] 88.1 81.9
Ours 89.8 84.5

(a) YCB-Video

𝑒vsd < 0.3
Implicit [199] 26.8
Pix2pose [155] 29.5
Ours 63.8
w/o loss 60.1
w/o network 59.5
w/o rot. 61.0
w/o data augm. 37.0

(b) T-LESS SiSo task

Table 4.1: Single-view 6D pose estimation. Comparisons with state-of-the-art methods
on the YCB-Video (a) and T-LESS datasets (b).

notably show that our single-view method already improves state-of-the-art results. In sec-
tion 4.4.2, we validate our multi-view multi-object framework by demonstrating consistent
improvements over the single-view baseline on both datasets and multiple metrics. We
then consider the BOP 6D pose estimation challenge [70] which includes seven different
datasets in section 4.4.3. We report the results of our approach for single-view 6D detection
(2D detection and 6D pose estimation). Our approach was the top performing method in
the 2020 edition of the challenge [71] in multiple categories. We further show that these
results can be consistently improved using our multi-view framework when multiple im-
ages of a scene are available and we present additional multi-view results on the recently
released HomebrewDB dataset [84].

4.4.1 Single-view single-object experiments
Implementation details. Training data. Due to the complexity of annotating real data with
6D pose at large scale, most recent methods[112, 199, 240] generate additionnal synthetic
training data. All of our models are trained using either only synthetic images, or a combi-
nation of real and synthetic images. The synthetic images considered are generated using
a standard OpenGL renderer. The synthetic images are generated using domain random-
ization [100, 122, 203]. We refer to [71] for more details of the synthetic data generation
process. In addition to using synthetic images during training, we add data augmentation
to all training images (both synthetic and real when available). Data augmentation includes
Gaussian blur, contrast, brightness, color and sharpness filters from the Pillow library [21].
We also use images from the Pascal VOC dataset as a background with a probability 0.3,
following [112]. The data augmentation was found to be a key ingredient for a success-
ful sim-to-real transfer. We illustrate example of training images with data augmentation
applied in figure 4-3.
Training procedure. Only two networks are used to represent all objects in each dataset:
one network for coarse pose estimation and one network for iterative refinement. All the
networks are randomly initialized and are trained with the same procedure. We use syn-
chronous distributed training on 32 GPUs, with 32 images on each GPU for a total batch
size of 1024. We use the Adam optimizer [90] with a learning rate of 3.10−4 and default
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Figure 4-3: Training images for our single-view pose estimation networks. Examples
of images used for training the networks on T-LESS and YCB-Video. Notice the heavy
data augmentation which is a key ingredient for successful sim-to-real transfer.
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momentum parameters. First, the network is trained for 80k iterations on synthetic data
only. Following [49], we also use a warm-up phase where we progressively increase the
learning rate from 0 to 3.10−4 during the first 5k iterations and drop the learning rate to
3.10−5 at 50𝑘 iterations. If real training images are available, the network is trained for
another 80k iterations on both real and synthetic training images. In this second phase, the
real training images account for around 25% of each batch.
Evaluation on YCB-Video. Following [112, 160, 230], we evaluate on a subset of 2949
keyframes from videos of the 12 testing scenes. We use the standard ADD-S and ADD(-S)
metrics and their area-under-the-curves [230] (please see section 4.6.4 of the appendix for
details on the metrics). We evaluate our refinement method using the same detections and
coarse estimates as DeepIM [112], provided by PoseCNN [230]. We ran two iterations of
pose refinement network. Results are shown in Table 4.1a. Our method improves over the
current-state-of-the-art DeepIM [112], by approximately 2 points on the AUC of ADD-S
and ADD(-S) metrics.
Evaluation on T-LESS. As explained in section 4.3.2, we use our single-view approach
both for coarse pose estimation and refinement. We compare our method against the two re-
cent RGB-only methods Pix2Pose [155] and Implicit [199] which were the top-performing
methods on this dataset at the moment of the submission. For a fair comparison of the 6D
pose estimation method, we use the detections from the same RetinaNet model as in [155].
We report results on the SiSo task [70] and use the standard visual surface discrepancy
(vsd) recall metric with the same parameters as in [155, 199]. Results are presented in
Table 4.1b. Using the 𝑒vsd < 0.3 metric, our {coarse + refinement} solution achieves a sig-
nificant 34.2% absolute improvement compared to existing state-of-the-art methods. Note
that [112] did not report results on T-LESS. We also evaluate on this dataset the benefits
of the key components of our single-view approach compared to the components used in
DeepIM[112]. More precisely, we evaluate the importance of the base network (our Effi-
cientNet vs FlowNet pre-trained), loss (our symmetric and disentangled vs. point-matching
loss with 𝐿1 norm), rotation parametrization (our using [246] vs. quaternions) and data aug-
mentation (our color augmentation, similar to [199] vs. none). Loss, network and rotation
parametrization bring a small but clear improvement. Using data augmentation is crucial
on the T-LESS dataset where training is performed only on synthetic data and real images
of the objects on dark background.

4.4.2 Multi-view experiments

As shown above, our single-view method achieves state-of-the-art results on both datasets.
We now evaluate the performance of our multi-view approach to estimate 6D poses in
scenes with multiple objects and multiples views.

Implementation details. On both datasets, we use the same hyper-parameters. In stage
1, we only consider object detections with a score superior to 0.3 to limit the number of
detections. In stage 2, we use a RANSAC 3D inlier threshold of 𝐶 = 2 cm. This low
threshold ensures that no outliers are considered while associating object candidates. We
use a maximum number of 2000 RANSAC iterations for each pair of views, but this limit is
only reached for the most complex scenes of the T-LESS dataset containing tens of detec-
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1 view 5 views
[109] 75.1 80.2
Ours 89.8 93.4

(a) YCB-Video
(AUC of ADD-S)

1 view 4 views 8 views
AUC of ADD-S 72.1 76.0 78.9
ADD-S < 0.1d 68.0 72.6 76.6

𝑒vsd < 0.3 62.6 67.6 71.6
mAP@ADD-S<0.1d 55.0 61.6 69.0

(b) T-LESS ViVo task (ours, 1000 images)

Table 4.2: Multi-view multi-object results. (a) Our approach significantly outper-
forms [109] on the YCB-Video dataset in both the single view and multi-view scenarios
while not requiring known camera poses. (b) Results on the T-LESS dataset. Using multi-
ple views clearly improves our results.

tions. For instance, in the context of two views with six different 6D object candidates in
each view, only 15 RANSAC iterations are enough to explore all relative camera pose hy-
potheses. For the scene refinement (stage 3), we use 100 iterations of Levenberg-Marquart
(the optimization typically converges in less than 10 iterations).
Evaluation details. In the single-view evaluation, the poses of the objects are expressed
with respect to the camera frame. To fairly compare with the single-view baseline, we also
evaluate the object poses in the camera frames, that we compute using the absolute object
poses and camera placements estimated by our global scene refinement method. Standard
metrics for 6D pose estimation strongly penalize methods with low detection recall. To
avoid being penalized for removing objects that cannot be verified across several views, we
thus add the initial object candidates to the set of predictions but with confidence scores
strictly lower than the predictions from our full scene reconstruction.
Multi-view multi-object quantitative results. The problem that we consider, recovering
the 6D object poses of multiple known objects in a scene captured by several RGB images
taken from unknown viewpoints has not, to the best of our knowledge, been addressed by
prior work reporting results on the YCB-Video and T-LESS datasets. The closest work is
[109], which considers multi-view scenarios on YCB-Video and uses ground truth camera
poses to align the viewpoints. In [109], results are provided for prediction using 5 views.
We use our approach with the same number of input images but without using ground truth
calibration and report results in Table 4.2a. Our method significantly outperforms [109] in
both single-view and multi-view scenarios.

We also perform multi-view experiments on T-LESS with a variable number of views.
We follow the multi-instance BOP[70] protocol for ADD-S<0.1d and 𝑒vsd < 0.3. These
metrics only consider the top-𝑚 predictions with highest score for each class in each image,
where 𝑚 is the number of ground truth objects of the class in the scene. As a consequence,
these metrics do not penalize making incorrect predictions for classes that are not in the
scene, which happens for most methods and is problematic for any practical application.
We thus propose to analyze precision-recall tradeoff similar to the standard practice in
object detection. We consider positive predictions that satisfy ADD-S<0.1d and report
mAP@ADD-S<0.1d. Results are shown in Table 4.2b for the ViVo task on 1000 images.
Benefits of scene refinement. To demonstrate the benefits of global scene refinement
(stage 3), we report in Table 4.3 the average ADD-S errors of the inlier candidates before

75



YCB dataset T-LESS dataset
Before refinement 6.40 4.43
After refinement 5.05 3.19

Table 4.3: Benefits of the scene refinement stage. We report pose ADD-S errors (in mm)
for the inlier object candidates before and after global scene refinement. Scene-refinement
improves 6D pose estimation accuracy.

and after solving the optimization problem of Eq.(4.15). We note a clear relative improve-
ment, around 20% on both datasets.
Relative camera pose estimation. A key feature of our method is that it does not require
camera position to be known and instead robustly estimates it from the 6D object candi-
dates. We investigated alternatives to our joint camera pose estimation. First, we used
COLMAP [180, 181], a popular feature-based SfM software, to recover camera poses. On
randomly sampled groups of 5 views from the YCB-Video dataset COLMAP outputs cam-
era poses in only 67% of cases compared to 95% for our method. On groups of 8 views
from the more difficult T-LESS dataset, COLMAP outputs camera poses only in 4% of
cases, compared to 74% for our method. Our method therefore demonstrates a significant
interest compared to COLMAP that uses features to recover camera poses, especially for
complex textureless scenes like in the T-LESS dataset. Second, instead of estimating cam-
era poses using our approach, we investigated using ground truth camera poses available
for the two datasets. We found that the improvements using ground truth camera poses over
the camera poses recovered automatically by our method were only minor: within 1% for
T-LESS (4 views) and YCB-Video (5 views), and within 3% for T-LESS (8 views). This
demonstrates that our approach recovers accurate camera poses even for scenes containing
only symmetric objects as in the T-LESS dataset.
Please see section 4.6.5 of the appendix for additional results, including a detailed and
illustrated discussion of the main limitations of the approach.
Computational cost. For a case with 4 views and 6 2D detections per view, our approach
takes approximately 320 ms to predict the state of the scene. This timing includes: 190 ms
for estimating the 6D poses of all candidates (stage 1, 1 iteration of the coarse and refine-
ment networks), 40 ms for the object candidate association (stage 2) and 90 ms for the scene
refinement (stage 3). Further speed-ups towards real-time performance could be achieved,
for example, by exploiting temporal continuity in a video sequence.

4.4.3 6D Pose estimation challenge
We now consider the BOP 6D pose estimation challenge [70, 71]. This challenge evaluates
the performance of 6D detection and pose estimation methods on 7 datasets: LineMOD
Occlusion (LM-O) [66], T-LESS [68], TUD-L [70], IC-BIN [35], ITODD [38], Home-
brewDB (HB) [84] and YCB-Video (YCB-V) [230] using the 𝐴𝑅 score, which is an aver-
age of multiple metrics over all datasets. We refer to [71] for more details on the metrics
and the evaluation protocol. In the following, we first give details of our method used to
perform 6D detection and pose estimation on all datasets, and then present our entries in
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Figure 4-4: Single-view qualitative results from the 2020 6D object pose estimation
(BOP) challenge. We present twelve examples of predictions by our 2D detector and 6D
pose estimation strategy on 7 different datasets. For each example, the first column presents
the input RGB image. The second column presents the 6D pose estimates, here illustrated
by overlaying the detected object CAD models in the predicted 6D poses over the input
image. Notice how our method is robust to partial occlusions (a) (g) (i) (k) and is able to
handle complex scenes with many similar (c) (e) and symmetric (c) (i) objects.
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Figure 4-5: Multi-view qualitative results. We present three examples of scene recon-
structions using our multi-view framework. For each scene, two (out of 8) views that were
used to reconstruct the scene are shown as two rows. In each row, the first column shows
the input RGB image and the name of the corresponding dataset. The second column
shows the 2D detections. The third column shows all object candidates with marked inliers
(green) and outliers (red). The fourth column shows the final scene reconstruction. The
last column shows the ground truth when available. Notice, for example, in the first ex-
ample on T-LESS how our method estimates accurate 6D object poses for many objects in
challenging scenes containing texture-less and symmetric objects, severe occlusions, and
where many objects are similar to each other. More examples are in section 4.6.5 of the
appendix.
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Method
Real

training images Avg. LM-O T-LESS† TUD-L† IC-BIN ITODD HB YCB-V† Time (s)

CosyPose-Synt+Real (Ours) ✓ 63.7 63.3 72.8 82.3 58.3 21.6 65.6 82.1 0.449
CDPVNv2 [113] ✓ 52.9 62.4 47.8 77.2 47.3 10.2 72.2 53.2 0.935
Pix2Pose [155] ✓ 34.2 36.3 34.4 42.0 22.6 13.4 44.6 45.7 1.215
CosyPose-PBR (Ours) × 57.0 63.3 64.0 68.5 58.3 21.6 65.6 57.4 0.475
CDPVNv2 [113] × 47.2 62.4 40.7 58.8 47.3 10.2 72.2 39.0 0.978
EPOS [69] × 45.7 54.7 46.7 55.8 36.3 18.6 68.0 49.9 1.874

Table 4.4: Results of the 2020 6D object pose estimation (BOP) challenge for the RGB-
only methods. We report the AR score on each of the 7 datasets considered in the BOP
challenge and the average across datasets. † denotes datasets for which real and synthetic
training images are available. Only synthetic ones are available for the other datasets.

the different categories of the 2020 edition of the competition.
Our 2D detector. The experiments presented in Sections 4.4.1 and 4.4.2 used 2D de-
tections provided by prior works, PoseCNN [230] on YCB-Video and a RetinaNet model
trained on images generated by the authors of Pix2pose [155] on T-LESS. Because the chal-
lenge requires to use the same method with the same hyper-parameters across all datasets,
we trained our own 2D detector on each of the 7 datasets. Our 2D detector is a Mask
R-CNN model [58] with a ResNet-50 [59] feature pyramid (FPN) backbone [115]. The
network weights are initialized from a network trained on Microsoft COCO [117] and the
first ten convolutional layers remained fixed during training while all other layers are fine-
tuned using the following procedure. We use distributed training on 32 GPUs (2 images
per GPU, global batch size of 64) with SGD using a learning rate of 0.04, weight decay
0.0001 and momentum 0.9. The learning rate is increased progressively from 0 to 0.04
during the first 5000 iterations and is divided by 10 at 40k iterations. The network is ini-
tially fine-tuned using this procedure on synthetic images, and we use the same procedure
to train it a second time on both synthetic and real images if real images are available for
the considered dataset.
Pose estimation details. For estimating the 6D pose of an object given the 2D detection,
we use our coarse and refinement networks with 4 refinement iterations. For the challenge,
we improved the input pose in the coarse estimation stage that is used to initialize the
alignment. Instead of using a fixed initial guess of the depth 𝑧 = 1, we compute it using
the size of the 2D detection such that the reprojection of the object in the canonical pose
approximately matches the size and position of the 2D bounding box. This strategy is used
for training and testing the coarse estimation network. The details of this pose initialization
are given in the section 4.6.1 of the appendix.
Training data. For each dataset, we use the 50000 photorealistic training images generated
with the BlenderProc [33] physically-based renderer (PBR) that were provided for the chal-
lenge. These PBR training images are used for training the detection and pose estimation
networks. On T-LESS, TUD-L and YCB-V datasets, real images are also available.
Single-view RGB results. We first consider the RGB-only category, where 6D detection
is performed using individual RGB images of a scene. We present two variants of our
method. CosyPose-PBR trains the detector, coarse estimation and refinement networks on
synthetic images only. CosyPose-Synt+Real fine-tunes these models on the combination
of synthetic PBR images and real images. For this second variant, we also used our syn-
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Method Depth AR Time (s)
CosyPose-Synt+Real-ICP (Ours) ✓ 69.8 13.74
Koenig Hybrid DL PointPairs [92] ✓ 63.9 0.633
CosyPose-Synt+Real (Ours) × 63.7 0.449
Pix2Pose + ICP ✓ 59.1 4.844
CDPNv2 + ICP ✓ 56.8 1.462

Table 4.5: Results of the 2020 6D object pose estimation (BOP) challenge for the RGB-
D methods. We report the AR score and running time averaged across the 7 core datasets.

thetic OpenGL images in addition to the PBR ones on T-LESS and YCB-V. We found that
using only the PBR images is sufficient and the synthetic OpenGL images can be com-
pletely omitted when photorealistic rendered images are available. We present the results
of the two variants (CosyPose-PBR and CosyPose-Synt+Real) and compare them with the
closest competitors trained with similar images in Table 4.4. In both scenarios (real train-
ing images available or not) our approach outperforms its closest competitor with a margin
of around 10%. A more detailed analysis on the impact of the quality of the synthetic im-
ages is provided in [71] which notably shows that using photorealistic images is crucial for
the performance of the 2D detector, but less important for 6D pose estimation. The BOP
challenge also evaluates the running time for 6D detection of all objects in a single-image.
In our case, the running time for an image corresponds to computing 2D object detections
and predicting the 6D pose of each detection, without using ground truth information of
the number of objects in the scene. As shown in Table 4.4, our method is also significantly
faster than its closest competitors. We present qualitative results of CosyPose-Synt+Real
in figure 4-4 on each of the 7 datasets.
Single-view RGB-D results. While our method focuses on the RGB-only setting, images
of the 7 core datasets used in the BOP challenge are captured with depth sensors. The
results of our single-view method can be improved by running a post-processing refine-
ment step on each 6D pose estimate. This refinement step leverages the measured object
3D points using a simple strategy based on iterative closest point (ICP) refinement. The
RGB-only 6D pose estimation of the object is used as an initialization to ICP and the
target point cloud of each of the object is extracted from the full depth image using the in-
stance segmentation mask predicted by Mask R-CNN. We report results for this approach,
CosyPose-Synt+Real-ICP, in Table 4.5 where we compare it with the closest competitors
that also use the depth information. Our method achieves a significant 5.9 improvement
on the AR metric over the second best RGB-D method. One drawback of our RGB-D ap-
proach is its running time which could be significantly improved by using a more efficient
ICP implementation like the one used by [92] whose running time remains below a second
despite also relying on ICP. Notably, our RGB-only method achieves a score similar to the
best RGB-D method while being faster.
Multi-view RGB results. While the BOP challenge focuses on single-view pose estima-
tion, we also ran our full multi-view pipeline (2D detection, single-view 6D pose estima-
tion, multi-view multi-object pose estimation) on 3 datasets for which multiple views of
each scenes are available: YCB-V, T-LESS and HB. For our multi-view approach, we use
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Method Avg. T-LESS YCB-V HB
Time (s)

per image
Time (s)

total
Ours - 1 view 73.5 72.8 82.1 65.6 0.449 0.449
Ours - 4 views 77.9 80.1 84.0 69.6 0.518 2.07
Ours - 8 views 82.3 83.9 85.3 74.6 0.561 4.49

Table 4.6: RGB-only multi-view results of our full approach (2D detection + 6D pose
estimation + multi-view multi-object reconstruction). We report the AR score on the BOP
challenge datasets for which multiple views of each scene are available. The same set of
hyper-parameters is used across all datasets.

the hyperparameters presented in section 4.4.2 that are fixed across the 3 datasets. We
consider using 4 or 8 views for estimating the state of a scene. Results are presented in
Table 4.6. Using the same hyper-parameters as in section 4.4.2 (where different 2D de-
tections and different 6D pose estimation models are used), our multi-view framework
again demonstrates significant improvements over the single-view baseline, including on
the recent HomebrewDB dataset. We provide examples of recovered 6D object poses in
figure 4-5 where we show both object candidates and the final estimated scenes on the
three multi-view datasets.

4.5 Conclusion
We have developed an approach, dubbed CosyPose, for recovering the 6D pose of mul-
tiple known objects viewed by several non-calibrated cameras. Our main contribution is
to combine learnable 6D pose estimation with robust multi-view matching and global re-
finement to reconstruct a single consistent scene. Our approach explicitly handles object
symmetries, does not require depth measurements, is robust to missing and incorrect object
hypotheses, and automatically recovers the camera poses and the number of objects in the
scene. These results make a step towards the robustness and accuracy required for visually
driven robotic manipulation in unconstrained scenarios with moving cameras, and open-up
the possibility of including object pose estimation in an active visual perception loop.

The main limitation of this approach toward its deployment in real robotic scenarios
is that the single-view 6D pose estimation approach must be trained on the objects it will
be tested on. Training pose estimation networks for a novel object requires to (i) generate
synthetic data and (ii) train the networks for this specific object. Synthetic data generation
and training takes hours and requires access to 32 GPUs. We address this limitation in
chapter 5, where we design an approach that can directly be applied to novel objects unseen
during training.

4.6 Appendix
The appendix of this chapter is organized as follows. In section 4.6.1, we give additional
details of our single-view single-object 6D object pose estimator. In section 4.6.2 we il-
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lustrate the object candidate matching strategy on a simple 2D example. In section 4.6.3,
we give additional details about our parametrization and initialization of the object-level
bundle adjustment problem, introduced in section 4.3.4. Section 4.6.4 provides additional
details on metrics used on YCB-Video and T-LESS. Finally, in section 4.6.5 we present
additional qualitative results of our multi-view multi-object 6D pose estimation approach.
We discuss in detail some examples to illustrate the key benefits of our method as well as
point out the main limitations. Additional qualitative results on the YCB-V and T-LESS
datasets are available on the project webpage [26].

4.6.1 Our single-view single-object method
We now give additional details on our single-view single-object pose estimation method
introduced in section 4.3.2.
Rotation parametrization. Given two vectors 𝑒1 and 𝑒2 (6 values) predicted by the neural
network, we recover a rotation parametrization 𝑅 by following [246]:

𝑒′
1 = 𝑒1

||𝑒1||2
(4.16)

𝑒′
3 = 𝑒′

1 × 𝑒2

||𝑒2||2
(4.17)

𝑒′
2 = 𝑒′

3 × 𝑒′
1, (4.18)

where × is the cross product between two 3D vectors. This representation has been
shown to be better than quaternions (used by DeepIM [112]) to regress with a neural net-
work [246].
Cropping strategy. DeepIM uses (a) the input 2D detections and (b) the bounding box
defined by 𝑇 𝑘

𝐶𝑂 and the vertices of the object 𝑙 to define the size and location of the crop in
the real input image during training. Indeed, the ground truth bounding box is known during
training. At test time, only (b) is used by DeepIM because ground truth bounding boxes
are not available. In our case, we only use (b) while training and testing. The intrinsic
parameters of the cropped camera are also used to directly render the cropped synthetic
image at a resolution of 320 × 240 instead of rendering at a larger resolution followed by
cropping.
Pose initialization in the 6D object pose estimation (BOP) challenge. Let 𝑢𝑑𝑒𝑡 =
(𝑢𝑑𝑒𝑡,𝑥, 𝑢𝑑𝑒𝑡,𝑦) and Δ𝑢𝑑𝑒𝑡 = (Δ𝑢𝑑𝑒𝑡,𝑥, Δ𝑢𝑑𝑒𝑡,𝑦) define the center and the size, respectively,
of the approximate 2D detection of the object in the image, provided by the detector. The
orientation of the object is set parallel to the axes of the camera with the 𝑧 axis pointing
upwards. The center of the object model 𝑂 is set to match the center of the bounding box
𝑢𝑑𝑒𝑡. We make the first hypothesis of the depth by setting 𝑧𝑔𝑢𝑒𝑠𝑠

𝐶𝑂 = 1m and use this initial
value to estimate the coordinates 𝑥 and 𝑦 of the object center in the camera frame:

𝑥𝑔𝑢𝑒𝑠𝑠
𝐶𝑂 = 𝑢𝑑𝑒𝑡,𝑥

𝑧𝑔𝑢𝑒𝑠𝑠
𝐶𝑂

𝑓𝐶
𝑥

, (4.19)

𝑦𝑔𝑢𝑒𝑠𝑠
𝐶𝑂 = 𝑢𝑑𝑒𝑡,𝑦

𝑧𝑔𝑢𝑒𝑠𝑠
𝐶𝑂

𝑓𝐶
𝑦

, (4.20)
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where 𝑓𝐶
𝑥 , 𝑓𝐶

𝑦 denote the known focal lengths of the virtual cropped camera, and 𝑥𝑔𝑢𝑒𝑠𝑠
𝐶𝑂 , 𝑦𝑔𝑢𝑒𝑠𝑠

𝐶𝑂 , 𝑧𝑔𝑢𝑒𝑠𝑠
𝐶𝑂

are the components of an initial guess of the 3D translation of the object with respect to the
camera. We then update the depth estimate 𝑧𝑔𝑢𝑒𝑠𝑠

𝐶𝑂 using the following strategy. We project
the points of the object using the initial guess. These points define a bounding box with
dimensions Δ𝑢𝑔𝑢𝑒𝑠𝑠,𝑥 = (Δ𝑢𝑔𝑢𝑒𝑠𝑠,𝑥, Δ𝑢𝑔𝑢𝑒𝑠𝑠,𝑦) and the center of the bounding box remains
unchanged 𝑢𝑔𝑢𝑒𝑠𝑠 = 𝑢𝑑 by construction. We compute an updated depth of the object such
that it’s width and height approximately match the size of the 2D detection:

𝑧0
𝐶𝑂 = 𝑧𝑔𝑢𝑒𝑠𝑠

𝐶𝑂

1
2

(︃
𝑓𝑥

Δ𝑢𝑔𝑢𝑒𝑠𝑠,𝑥

Δ𝑢𝑑,𝑥

+ 𝑓𝑦
Δ𝑢𝑔𝑢𝑒𝑠𝑠,𝑦

Δ𝑢𝑑,𝑦

)︃
(4.21)

and use this new depth to compute 𝑥0
𝐶𝑂 and 𝑦0

𝐶𝑂 using equations (4.19) and (4.20). The 3D
rotation of the object 𝑅0

𝐶𝑂 is set such that the object model’s 𝑧 axis points upwards and has
all axes parallel to the axes of the camera. The initial 6D pose 𝑇 𝑘

𝐶𝑂 of the object is fully
defined by (𝑥0

𝐶𝑂, 𝑦0
𝐶𝑂, 𝑧0

𝐶𝑂) and 𝑅0
𝐶𝑂.

4.6.2 Object candidate matching: additional illustration

In figure 4-6, we illustrate our method for “Sampling of relative camera poses sampling”
described in section 4.3.3 with a simple 2D example.

4.6.3 Scene refinement

Initialization. There are multiple ways to initialize the optimization problem defined in
equation (4.15). We use the following procedure. We start by picking a random camera
and setting it’s coordinate frame as the world coordinate frame. Then, we iterate over all
cameras, trying to initialize each one. In order to initiliaze a camera 𝑎, we randomly sample
another camera 𝑏 which is already initialized (placed in the world coordinate frame) and
use the relative pose between these two cameras 𝑇𝐶𝑎𝐶𝑏

estimated while running RANSAC
(relative camera pose sampling in section 4.3.4) to place camera 𝑎 in the world coordinate
frame. Once all the cameras have been initialized, we initalize objects by randomly picking
an object 𝑝 and initializing it using a candidate associated with this physical object from a
random view.
Rotation parametrization. We use the same rotation parametrization as the one used for
our single-view single-object network for which the equations are provided in section 4.6.1
of this appendix.

4.6.4 Metrics

In this section, we give some details about the metrics reported in the main chapter. We
refer to [66, 70, 230] for more information about these metrics.

The ADD (average distance) metric is introduced in [66] and is typically used to mea-
sure the accuracy of pose estimation for non-symmetric objects. Given a label 𝑙 of an object
and following the notation introduced in section 4.3.2, this metric is computed as :
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Figure 4-6: Relative camera pose estimation. Given two pairs of object candidates
(𝑂𝑎,𝛼, 𝑂𝑏,𝛽) and (𝑂𝑎,𝛾, 𝑂𝑏,𝛿), we estimate the relative camera pose 𝑇𝐶𝑎𝐶𝑏

that best aligns
candidates 𝑂𝑎,𝛾 , 𝑂𝑏,𝛿. In this example, the red camera pose 𝐶 ′

𝑏 is also valid due to the sym-
metries of the triangular object 𝑙𝛼. It is discarded because the error between 𝑂′

𝑏,𝛿 and 𝑂𝑎,𝛾

is bigger than between 𝑂𝑏,𝛿 and 𝑂𝑎,𝛾 .

84



ADD(𝑙, 𝑇, 𝑇 ) = 1
𝐻𝑙

∑︁
ℎ

||𝑇𝑋ℎ
𝑙 − 𝑇𝑋ℎ

𝑙 ||2, (4.22)

where 𝑇 is the predicted object pose, 𝑇 is the ground truth pose, 𝑋ℎ
𝑙 are the vertices of the

3D models and 𝐻𝑙 is the number of vertices of the model of the object 𝑙.

For symmetric objects, the average distance is computed using the closest point distance
and noted ADD-S:

ADD-S(𝑙, 𝑇, 𝑇 ) = 1
𝐻𝑙

∑︁
ℎ

min
𝑔
||𝑇𝑋ℎ

𝑙 − 𝑇𝑋𝑔
𝑙 ||2. (4.23)

The notation ADD(-S) corresponds to computing ADD for non symmetric objects and
ADD-S for symmetric objects. It is also common to report the percentage of objects for
which the pose is estimated within a given threshold such as 10% of it’s diameter. We
use the notations ADD-S < 0.1d and ADD(-S) < 0.1d for this metric and report the mean
computed over object types.

The authors of PoseCNN [230] also proposed to report the area under the accurracy-
threshold curve for a threshold (on ADD-S, or ADD(-S)) varying between 0 to 10cm. We
note this metric as AUC of ADD(-S) or AUC of ADD-S and we use the implementation
provided with the evaluation code1 of YCB-Video.

When evaluating on the T-LESS dataset, we also report the Visual Surface Discrep-
ancy metric (vsd). This metric is invariant to object symmetries and takes into account the
visibility of the object. As in [155, 199], the pose is considered correct when the error is
less than 0.3 with 𝜏 = 20𝑚𝑚 and 𝛿 = 15𝑚𝑚. We note this metric 𝑒vsd < 0.3 and use
the official implementation code of the BOP challenge [70]2. There are multiple instances
of objects in multiple scenes of the T-LESS dataset. When comparing with prior work
[155, 199] on all images of the primesense camera, we only evaluate the prediction which
has the highest detection score for each class, and only objects visible more than 10% are
considered as ground truth targets. This corresponds to the SiSo task.

When evaluating our multi-view method, we follow the more recent 6D localization
protocol of the ViVo BOP challenge which considers the top-𝑚 predictions with highest
score for each class in each image, where 𝑚 is the number of ground truth objects of the
class in the scene.

When computing the mean of ADD-S errors in our scene refinement ablation, we only
consider as true positives predictions the ones which have an ADD-S error lower than half
of the diameter of the object, to ensure that the prediction is matched to the correct ground
truth object. Without limiting the error to this threshold and using only class labels and
scores, some predictions may be matched to ground truth objects which are at a very dif-
ferent location in the scene. This tends to increase the errors while not being representative
only of the 6D pose accuracy of the predictions.

1https://github.com/yuxng/YCB_Video_toolbox
2https://github.com/thodan/bop_toolkit
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4.6.5 Additional multi-view multi-object results
Each scene reconstruction is presented with a dedicated figure and we provide close-ups on
various parts of the visualization to illustrate the different aspects in detail. The explanation
is provided in the caption of each figure.
Layout of the figures. In each figure presented below, four (on T-LESS) or five (on YCB-
Video) RGB images were used to reconstruct each scene. In each figure, each row cor-
responds to results associated with one image and different columns present the results of
different stages of our method. The last column shows the ground truth scene. The different
columns are described next.

• “Input image” is the (RGB) image used as input to the method.

• “2D detections” shows the detections obtained by the object detector (RetinaNet on
T-LESS, PoseCNN on YCB-Video), after removing detections that have scores be-
low 0.3. The color of each 2D bounding box illustrates the object label predicted for
this detection, each color is associated with a unique type of 3D object in the object
database. Note that the colors for each type of 3D object are shared for all visu-
alizations corresponding to one scene (one figure) but not shared across the figures
because of the high number of objects in the database.

• “Object candidates” illustrates the 6D object poses predicted for each 2D detection.
The candidates considered as outliers (those who have not been matched with a can-
didate from another view and are discarded) are marked with red color and are trans-
parent. The candidates considered inliers are shown in green. Inliers are used in the
final scene reconstruction. Note that the red and green colors in this (3rd) column are
only used to indicate inliers and outliers and there is no correspondence with red and
green colors in the 4th column that denote the different object types.

• “Scene reconstruction” illustrates the scene reconstructed by our method using all the
views presented in the figure. Once the scene is reconstructed, we use the recovered
6D poses of physical objects and cameras to render the scene imaged from each of
the predicted viewpoints. The renderings are overlaid over the input image.

• “Ground truth” corresponds to the ground truth scene viewed from the ground truth
viewpoints. These images are shown to enable visual comparison with the results
of our method. The ground truth information (number of objects, types of objects,
poses of cameras, poses of objects) is not used by our method.

In the following, we illustrate the main capabilities of our system.

4.6.5.1 Highlights of the capabilities of our system

Large number of objects, robustness to occlusions, symmetric objects. Our method is
able to recover the state of complex scenes that contain multiple objects, even if parts or
the scene are partially or completely occluded in some of the views. The poses of cameras
and objects can be correctly recovered even if all objects in the scene are symmetric. An
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Input image 2D detections Object candidates Ground truthReconstruction

(a)

(b)

(d)(c)

(a) (b) (c) (d)

Figure 4-7: Highlight I: Scene with many symmetric objects and occlusions. Our
method is able to correctly identify and predict the poses of the 8 symmetric objects present
in the scene. Please note how object poses and labels/colors are similar in the output of our
method, shown in close-up (c), and the ground truth, shown in close-up (d). This is partic-
ularly challenging because of the high object density, varying level of occlusions and the
fact that all objects of the scene are symmetric, as shown in close-ups (a) and (b).
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example is presented in figure 4-7. Note how some objects are missing in each individual
view but our method is able to recover correctly all objects.
Multiple object instances. Our method is able to successfully identify the correct number
of objects and their labels even if there are multiple objects of the same type in the image,
objects are partially occluded in some views and multiple types of objects have very similar
visual appearance. An example is presented in figure 4-8
Cluttered scenes with distractors. Our method is also robust to distractor objects that
are not in the database of objects. We present in figure 4-9 a complex example with many
distractors where our method is able to successfully recover all objects in the scene, which
are in the object database while filtering out the other ones. This is especially important for
robotic applications in unstructured environments where the objects of interests are known
and should not be confused with other background objects.
High accuracy. One of the key components of our approach is scene refinement (sec-
tion 4.3.4 in the main chapter), which significantly improves the accuracy of pose pre-
dictions using information from multiple views. In Fig 4-10, we show an example of a
reconstruction that highlights the accuracy that can be reached by our method using only 4
input images.

4.6.5.2 Detailed examples

We now explain in detail few simpler examples that demonstrate how our system works
and how it achieves the kind of results presented in the previous section.
Robustness to missing detections. In some situations, objects are partially or completely
occluded in some of the views. As a result, 2D detections for one physical object are
missing in some views. If this physical object is visible in other views, our reconstruction
method is able to estimate it’s pose with respect to the other objects. If all cameras can
be positioned with respect to the rest of the scene using other non-occluded objects, our
approach can also position the partially occluded object with respect to all cameras, even if
there were initially no candidates corresponding to the object in these views. An example
is shown in figure 4-11.
Robustness to incorrect detections. In T-LESS, many objects have similar visual appear-
ance. As a result, the 2D detector often makes mistakes, predicting incorrect labels for
some of the detections in some views. Our method is able to handle multiple 2D detections
that have different labels at the same location in the image. In this case, a pose hypothesis is
generated for each of the label hypothesis. If the object candidate cannot be matched with
another view - either because the incorrect label is predicted in only one view or because
the poses are not consistent - our method is able to discard this object candidate. An exam-
ple is shown in figure 4-12. Please see the discussion “Duplicate objects” and figure 4-13
for examples where an object is consistently mis-identified across multiple views.
Duplicate objects. When multiple objects share the same visual appearance as it is the case
in the T-LESS dataset, there are often multiple label hypotheses that are consistent across
views for the same physical object. Because these objects look similar to each other and
match the observed image, the pose estimation network (which tries to match a rendering
with the observed image, regardless of the object type) predicts reasonable poses for each
label that are consistent across different views. These candidates are matched across views
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Input image 2D detections Object candidates Ground truthReconstruction

(a) (b) (c)

(a) (b) (c)

(d)

(d)

Figure 4-8: Higlight II: Scene with multiple object instances of the same object type.
Note how our method is able to correctly identify all objects in this challenging scene.
Object poses and labels/colors predicted by our method, shown in close-up (b) are very
similar to the ground truth, shown in close-up (c). This is particularly challenging because
the green and orange objects have similar visual appearance, are close to each other in the
scene, and objects are partially occluded in some of the views, as shown in close-ups (a)
and (d).
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Input image 2D detections Object candidates Ground truthReconstruction

(c)(b)(a)

(a) (b) (c)

Figure 4-9: Highlight III: Scene with multiple distractors. Our method is also robust to
distractor objects that are not in the database of objects. Our method correctly localizes and
estimates the pose of all databse objects in the scene (cf. our reconstruction (4th column)
and the ground truth (5th column)) despite the presence of several distractor objects (objects
not colored in the ground truth). A single-view approach (Object candidates, 3rd column)
incorrectly detects three of the distractor objects and places them in the scene because they
look similar to some objects of the database, as shown in the close-up (a). Our robust
multi-view approach is able to filter these outliers: the objects estimated at the positions
of the distractors are marked in red in (a). Distractor objects have been filtered in the final
reconstruction as shown in the close-up (b) (cf. ground truth close-up (c)).
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Input images (a) (b)

Figure 4-10: Highlight IV: Accuracy of our approach. Left: input images. Then (a) and
(b) shows the output scene imaged from two viewpoints different from the views used for
the reconstruction. Please note in (a) how the yellow object is accurately estimated to only
touch the green objects, and in (b) how the brown object is correctly plugged inside the
yellow object.

and multiple objects with different labels are predicted in the final scene at the same spatial
position. In our visualization, we remove these duplicate objects by using a simple 3D
non-maximum suppression (NMS) strategy on the estimated physical objects of the final
scene. If multiple objects are too close to each other in the 3D scene, we keep the object
with the highest score – the sum of the 2D detection scores of all inlier object candidates
that are associated with one physical 3D object. Duplicate objects and 3D non-maximum
suppression are illustrated in figure 4-13, including one correct and one incorrect example.
The column “Reconstruction” in all figures corresponds to the output of our method after
the 3D NMS.
Robustness to distractors and false positives. The complex scenes in the T-LESS dataset
also have background distractor objects that are not in the object database. Some of these
distractors look similar to objects in the database and can be incorrectly detected, some-
times in multiple images. In these cases, the pose estimator most often produces 6D pose
estimates that are not consistent across views because the input real images are outside of
the training distribution (they display objects that are not used to generate the training data).
Because these estimates are not consistent across views, our method is able to filter them
and mark them as outliers (red), thus gaining robustness with respect to these distractors.
An example is shown in figure 4-14.

4.6.5.3 Limitations

We now describe the most challenging scenarios that our method is currently not able to
recover from. For each of these, we briefly discuss possible improvements.
Limitation I: consistent mistakes If two incorrect 6D object candidates are consistent
across at least two views, an (incorrect) object will be present in the reconstructed scene.
Such failure case typically happens when two viewpoints are similar to each other. An
example is shown in figure 4-15. If two views are very similar, the incorrect candidates
will be matched together. Note that this failure mode could be resolved by using a higher
number of views, and by only considering physical objects that have a sufficiently high
number of associated object candidates.
Limitation II: Objects missing in the final reconstruction. Our current approach re-
quires that a candidate in one view is matched with at least one candidate from another
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Figure 4-11: Example I: robustness to missing detections. One of the objects (marked
by purple circle) in the scene is detected in two views (b) (d), but not in the other two views
due to partial (c) or complete (a) occlusion. Our method is able to (i) position the views 1
and 3 with respect to the scene using the other visible candidate objects and (ii) position
the purple object with respect to these other objects using views 2 and 4, where the purple
object is visible. Once the scene is reconstructed, it is also possible to directly recover the
pose of the purple object with respect to views, where it was not originally detected, like in
(e).
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(a)
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Figure 4-12: Example II: Robustness to incorrect detection labels. One of the objects
that is correctly identified in two views (a) (c), has two label hypotheses in view (b) and is
not detected in view (d). Our method keeps the two hypotheses in (b) and predicts two 6D
object candidates (e) but it is able to discard one of them because it’s label is not consistent
with the other views: one of the two object candidates is marked as an outlier (red) in (e).
In our final scene reconstruction, the gray object is correctly recognized (it has the same
color (gray) in out output “Reconstruction” and in the “Ground truth”).
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(a)
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Figure 4-13: Example III: Duplicate objects. 2D detections with two different labels
(grey and pink) are predicted for the same object consistently across two views, (a) and
(c). Because the 3D models of the pink and grey objects are similar, the poses predicted in
both views are consistent and thus both pairs of object candidates are associated to separate
objects. In the final scene reconstruction, two objects (grey and pink) overlap at the same
3D location (e). We use a 3D non-maximum suppression strategy to retain only a single
hypothesis. In the final output (after NMS), the correct object is retained (pink), c.f. the
ground truth column. In some cases, incorrectly identified objects are kept as shown in (b),
(d), (f), (h).
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Figure 4-14: Example IV: Robustness to false positive detections. One of the distractor
objects is incorrectly detected in three views, see close-up (a), (b) and (c), with a consistent
label (brown). For each of these detections, a 6D object candidate is generated, see close-
ups (d), (e) and (f), but the poses are inconsistent across views because the pose estimation
network has not been trained for this object. These candidates are filtered by our robust
candidate matching strategy and considered outliers (red), see (d), (e) and (f). Note how
this distractor is not present in the final scene reconstruction, as shown in close-up (g).
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Figure 4-15: Limitation I: Consistent mistakes. One of the distractors is incorrectly
detected as an orange object (from the object database), as shown in close-ups (a) and (c).
The two viewpoints are quite similar and as a result the two estimated object poses are
consistent, as shown in (c) and (d). The object is present in the final reconstruction (e) but
it does not correspond to the ground truth object (f).
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Figure 4-16: Limitation II: missing objects. An object is detected correctly in one view
as shown in the close-up (b), but the detection is missing in other views, shown in close-up
(a), or the detection is incorrect and inconsistent, as shown in close-up (c). The object
candidate (b) cannot be matched with another candidate and thus is missing from the final
reconstruction, as shown in close-up (d) of the output (cf. ground truth close-up (e)).

view. If a candidate detection and pose estimate is correct in one view but not in any other
view, it will be missing from the final reconstruction. An example is presented in figure 4-
16. Note that in this case, all camera poses are still estimated correctly. An interesting
direction to overcome this problem would be to grow the number of object candidates in
each view by reprojecting the detection from other views, as done in guided matching.
Limitation III: Incorrect estimates of camera pose. To position the camera with respect
to the scene, our method requires that there are at least three object candidate inliers in the
view: two for positioning the camera with respect to the scene, and another one to validate
the camera pose hypothesis. Sometimes, however, there is an insufficient number of inliers.
This typically happens if only two objects are visible, or if there is a small number of objects
visible and some of the detections are incorrect. An example is shown in figure 4-17.
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Figure 4-17: Limitation III: incorrect estimates of camera pose. If one view has only
two visible objects, as shown in close-up (a), the corresponding camera view with respect
to the rest of the scene cannot be estimated as it requires at least three correctly estimated
objects. As a result the objects are not reprojected in the image (c). This also happens if
three candidates are detected in one view, as shown in close-up (b), but one of the object
candidates is not consistent with the other views (here red object instead of green object).
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Chapter 5

Pose estimation of novel objects

In chapter 4, we have introduced an approach for estimating the 6D pose of objects with
known CAD models using one multiple image as inputs. The method relies on a learning-
based approach for single-view 6D object pose estimation. This method however must
be trained on the objects it will be tested on. Deploying this method for novel objects
requires costly synthetic data generation and training. In this chapter, we build on the
results presented in chapter 4 and design an approach that can directly be applied to novel
objects without retraining.

We introduce MegaPose, a method to estimate the 6D pose of novel objects, that is,
objects unseen during training. At inference time, the method only assumes knowledge
of (i) a region of interest displaying the object in the image and (ii) a CAD model of the
observed object. The contributions of this work are threefold. First, we present a 6D pose
refiner based on a render-and-compare strategy which can be applied to novel objects. The
shape and coordinate system of the novel object are provided as inputs to the network by
rendering multiple synthetic views of the object’s CAD model. Second, we introduce a
novel approach for coarse pose estimation which leverages a network trained to classify
whether the pose error between a synthetic rendering and an observed image of the same
object can be corrected by the refiner. Third, we introduce a large scale synthetic dataset
of photorealistic images of thousands of objects with diverse visual and shape properties
and show that this diversity is crucial to obtain good generalization performance on novel
objects. We train our approach on this large synthetic dataset and apply it without retraining
to hundreds of novel objects in real images from several pose estimation benchmarks. Our
approach achieves state-of-the-art performance on the ModelNet dataset. An extensive
evaluation on the 7 core datasets of the BOP challenge demonstrates that our approach
achieves performance competitive with existing approaches that require access to the target
objects during training.

5.1 Introduction

Accurate 6D object pose estimation is essential for many robotic and augmented reality
applications. Current state-of-the-art methods are learning-based [55, 71, 96, 119, 218]
and require 3D models of the objects of interest at both training and test time. These
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methods require hours (or days) to generate synthetic data for each object and train the
pose estimation model. They thus cannot be used in the context of robotic applications
where the objects are only known during inference (e.g. CAD models are provided by
a manufacturer or reconstructed [36]), and where rapid deployment to novel scenes and
objects is key.

The goal of this work is to estimate the 6D pose of novel objects, i.e., objects that are
only available at inference time and are not known in advance during training. This prob-
lem presents the challenge of generalizing to the large variability in shape, texture, lighting
conditions, and severe occlusions that can be encountered in real-world applications. Some
prior works [19, 110, 118, 128, 129, 219, 221] have considered category-level pose esti-
mation to partially address the challenge of novel objects by developing methods that can
generalize to novel object instances of a known class (e.g. mugs or shoes). These methods
however do not generalize to object instances outside of training categories. Other meth-
ods aim at generalizing to any novel instances regardless of their category [112, 121, 145,
149, 154, 185, 197, 234]. These works present important technical limitations. They rely
on non-learning based components for generating pose hypotheses [149] (e.g. PPF [39]),
for pose refinement [185] (e.g. PnP [108] and ICP [10, 243]), for computing photometric
errors in pixel space [154], or for estimating the object depth [145, 197] (e.g. using only
the size of a 2D detection [87]). These components however inherently cannot benefit from
being trained on large amount of data to gain robustness with respect to noise, occlusions,
or object variability. Learning-based methods also have the potential to improve as the
quality and size of the datasets improve.

Pipelines for 6D pose estimation of known (not novel) objects that consist of multiple
learned stages [96, 119] have shown excellent performance on several benchmarks [71]
with various illumination conditions, textureless objects, cluttered scenes and high lev-
els of occlusions. We take inspiration from [96, 119] which split the problem into three
parts: (i) 2D object detection, (ii) coarse pose estimation, and (iii) iterative refinement via
render & compare. We aim at extending this approach to novel objects unseen at training
time. The detection of novel objects has been addressed by prior works [135, 152, 185,
233] and is outside the scope of this chapter. In this work, we focus on the coarse and
refinement networks for 6D pose estimation. Extending the paradigm from [96] presents
three major challenges. First, the pose of an object depends heavily on both its visual ap-
pearance and choice of coordinate system (defined in the CAD model of the object). In
existing refinement networks based on render & compare [96, 112], this information is en-
coded in the network weights during training, leading to poor generalization results when
tested on novel objects. Second, direct regression methods for coarse pose estimation are
trained with specific losses for symmetric objects [96], requiring that object symmetries be
known in advance. Finally, the diversity of shape and visual properties of the objects that
can be encountered in real-world applications is immense. Generalizing to novel objects
requires robustness to properties such as object symmetries, variability of object shape, and
object textures (or absence of).
Contributions. We address these challenges and propose a method for estimating the pose
of any novel object in a single RGB or RGB-D image, as illustrated in Figure 5-1. First, we
propose a novel approach for 6D pose refinement based on render & compare which en-
ables generalization to novel objects. The shape and coordinate system of the novel object
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Figure 5-1: MegaPose is a 6D pose estimation approach (a) that is trained on millions
of synthetic scenes with thousands of different objects and (b) can be applied without re-
training to estimate the pose of any novel object, given a CAD model and a region of
interest displaying the object. It can thus be used to rapidly deploy visually guided robotic
manipulation systems in novel scenes containing novel objects (c).

are provided as inputs to the network by rendering multiple synthetic views of the object’s
CAD model. Second, we propose a novel method for coarse pose estimation which does
not require knowledge of the object symmetries during training. The coarse pose estima-
tion is formulated as a classification problem where we compare renderings of random pose
hypotheses with an observed image, and predict whether the pose can be corrected by the
refiner. Finally, we leverage the availability of large-scale 3D model datasets to generate a
highly diverse synthetic dataset consisting of 2 million photorealistic [33] images depict-
ing over 20K models in physically plausible configurations. The code, dataset and trained
models are available on the project page [134].

We show that our novel-object pose estimation method trained on our large-scale syn-
thetic dataset achieves state-of-the-art performance on ModelNet [112, 229]. We also per-
form an extensive evaluation of the approach on hundreds of novel objects from all 7 core
datasets of the BOP challenge [71] and demonstrate that our approach achieves perfor-
mance competitive with existing approaches that require access to the target objects during
training.

5.2 Related work

In this section, we first review the literature on 6D pose estimation of known rigid objects.
We then focus on the practical scenario similar to ours where the objects are not known
prior to training.
6D pose estimation of known objects. Estimating the 6D pose of rigid objects is a fun-
damental computer vision problem [123, 124, 172] that was first addressed using corre-
spondences established with locally invariant features [9, 22, 23, 39, 124] or template
matching [63, 82]. These have been replaced by learning-based methods with convolu-
tional neural networks that directly regress sets of sparse [76, 87, 158, 160, 169, 202, 207]
or dense [55, 155, 160, 191, 230, 240] features. All these approaches use non-learning
stages relying on PnP+Ransac [54, 108] to recover the pose from correspondences in RGB
images, or variants of the iterative closest point algorithm, ICP [10, 243], when depth is
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available. The best performing methods rely on trainable refinement networks [96, 112,
119, 217] based on render & compare [112, 127, 148, 156]. These methods render a single
image of the object, which is not sufficient to provide complete information on the shape
and coordinate system of a 3D model to the network. This information is thus encoded
in the networks weights when training, which leads to poor generalization when tested on
novel objects unseen at training. Our approach renders multiple views of an object to pro-
vide this 3D information, making the trained network independent of these object-specific
properties.
6D pose estimation of novel objects. Other works consider a practical scenario where the
objects are not known in advance. Category-level 6D pose estimation is a popular prob-
lem [19, 110, 118, 128, 129, 219, 221] in which CAD models of test objects are not known,
but the objects are assumed to belong to a known category. These methods rely on object
properties that are common within categories (e.g. handle of a mug) to define and estimate
the object pose, and thus cannot generalize to novel categories. Our method requires the 3D
model of the novel object instance to be known during inference, but does not rely on any
category-level information. Other works address a scenario similar to ours. [5, 145, 197,
231, 233, 234] only estimate the 3D orientation of novel objects by comparing rendered
pose hypotheses with the observed image using features extracted by a network. They rely
on handcrafted [145, 197] or learning-based DeepIM [234] refiners to recover accurate 6D
poses. We instead propose a method that estimates the full 6D pose of the object and show
our refinement network significantly outperforms DeepIM [112] when tested on novel ob-
ject instances. The closest works to ours are OSOP [185] and ZePHyR [149]. OSOP
focuses on the coarse estimation by explicitly predicting 2D-2D correspondences between
a single rendered view of the object and the observed image, and solves for the pose using
PnP or Kabsch [10] which makes inference slower and less robust compared to directly
predicting refinement transforms with a network as done in our solution. ZePHyR [149]
strongly relies on the depth modality, whereas our approach can also be used in RGB-
only images. Finally, [60, 121, 154, 196] investigate using a set of real reference views
of the novel object instead of using a CAD model. These approaches have only reported
results on datasets with limited or no occlusions. Our use of a deep render & compare net-
work trained on a large-scale synthetic dataset displaying highly occluded object instances
enables us to handle highly cluttered scenes with high occlusions like in the LineMOD
Occlusion, HomebrewedDB or T-LESS datasets.

5.3 Method
In this section we present our framework for pose estimation of novel objects. Our goal is
to detect the pose 𝒯CO (the pose of object frame O expressed in camera frame C composed
of 3D rotation and 3D translation) of a novel object given an input RGB (or RGBD) im-
age, 𝐼𝑜, and a 3D model of the object. Similar to DeepIM [112] and CosyPose [96], our
method consists of three components (1) object detection, (2) coarse pose estimation and
(3) pose refinement. Compared to these works, our proposed method enables generaliza-
tion to novel objects not seen during training, requiring novel approaches for the coarse
model, the refiner and the training data. Our approach can accept either RGB or RGBD
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Figure 5-2: ⊕ denotes concatenation. (a) Coarse Estimator: Given a cropped input image
the coarse module renders the object in multiple input poses {𝒯 𝑗

CO}. The coarse network
then classifies which rendered image best matches the observed image. (b) Refiner: Given
an initial pose estimate 𝒯 𝑘

CO the refiner renders the objects at the estimated pose 𝒯CO,1 :=
𝒯 𝑘

CO (blue axes) along with 3 additional viewpoints {𝒯CO,𝑖}4
𝑖=2 (green axes) defined such

that the camera 𝑧-axis intersects the anchor point 𝒪. The refiner network consumes the
concatenation of the observed and rendered images and predicts an updated pose estimate
𝒯 𝑘+1

CO .

inputs, if depth is available the RGB and D images are concatenated before being passed
into the network. Detection of novel-objects in an image is an interesting problem that has
been addressed in prior work [121, 151, 152, 185, 233] but lies outside the scope of this
chapter. Thus for our experiments we assume access to an object detector, but emphasize
that our method can be coupled with any object detector, including zero-shot methods such
as those in [151, 152].

5.3.1 Technical Approach

Coarse pose estimation. Given an object detection, shown in Figure 5-1(b), the goal of
the coarse pose estimator is to provide an initial pose estimate 𝒯CO,coarse which is suffi-
ciently accurate that it can then be further improved by the refiner. In order to generalize to
novel-objects we propose a novel classification based approach that compares observed and
rendered images of the object in a variety of poses and selects the rendered image whose
object pose best matches the observed object pose.

Figure 5-2(a) gives an overview of the coarse model. At inference time the network
consumes the observed image 𝐼𝑜 along with rendered images {𝐼𝑟(𝒯 𝑗

CO)}𝑀
𝑗=1 of the ob-

ject in many different poses {𝒯 𝑗
CO}𝑀

𝑗=1. For each pose 𝒯 𝑗
CO the model predicts a score

(𝐼𝑜, 𝐼𝑟(𝒯 𝑗
CO)) → 𝜉𝑗 that classifies whether the pose hypothesis is within the basin of at-
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traction of the refiner. The highest scoring pose 𝒯 𝑗*

CO, 𝑗* = argmax𝑗 𝜉𝑗 is used as the initial
pose for the refinement step. Since we are performing classification, our method can im-
plicitly handle object symmetries, as multiple poses can be classified as correct.
Pose refinement model. Given an input image and an estimated pose, the refiner predicts
an updated pose estimate. Starting from a coarse initial pose estimate 𝒯CO,coarse we can
iteratively apply the refiner to produce an improved pose estimate. Similar to [96, 112]
our refiner takes as input observed 𝐼𝑜 and rendered images 𝐼𝑟(𝒯 𝑘

CO) and predicts an updated
pose estimate 𝒯 𝑘+1

CO , see Figure 5-2 (b), where 𝑘 refers to the 𝑘𝑡ℎ iteration of the refiner. Our
pose update uses the same parameterization as DeepIM [112] and CosyPose [96] which
disentangles rotation and translation prediction. Crucially this pose update Δ𝒯 depends on
the choice of an anchor point 𝒪, see section 5.6.1 of the appendix for more details. In prior
work [96, 112] which trains and tests on the same set of objects, the network can effectively
learn the position of the anchor point 𝒪 for each object. However in order to generalize to
novel objects we must enable the network to infer the anchor point 𝒪 at inference time.

In order to provide information about the anchor point to the network we always render
images 𝐼𝑟(𝒯 𝑘

CO) such that the anchor point 𝒪 projects to the image center. Using rendered
images from multiple distinct viewpoints {𝒯CO,𝑖}𝑁

𝑖=1 the network can infer the location of
the anchor point 𝒪 as the intersection point of camera rays that pass through the image
center, see Figure 5-2(b).

Additional information about object shape and geometry can be provided to the network
by rendering depth and surface normal channels in the rendered image 𝐼𝑟. We normalize
both input depth (if available) and rendered depth images using the currently estimated
pose 𝒯 𝑘

CO to assist the network in generalizing across object scales, see section 5.6.3 of the
appendix for more details.
Network architecture. Both the coarse and refiner networks consists of a ResNet-34 back-
bone followed by spatial average pooling. The coarse model has a single fully-connected
layer that consumes the backbone feature and outputs a classification logit. The refiner
network has a single fully-connected layer that consumes the backbone feature and outputs
9 values that specify the translation and rotation for the pose update.

5.3.2 Training Procedure

Training data. For training, both the coarse and refiner models require RGB(-D)1 images
with ground-truth 6D object pose annotations, along with 3D models for these objects. In
order for our approach to generalize to novel-objects we require a large dataset containing
diverse objects. All of of our methods are trained purely on synthetic data generated us-
ing BlenderProc [33]. We generate a dataset of 2 million images using a combination of
ShapeNet [229] (abbreviated as SN) and Google-Scanned-Objects (abbreviated as GSO)
[36]. Similar to the BOP [70] synthetic data, we randomly sampled objects from our dataset
and dropped them on a plane using a physics simulator. Materials, background textures,
lighting and camera positions are randomized. Example images can be seen in Figure 3-
1(a) and in the section 5.6.5 of the appendix. Some of our ablations also use the synthetic

1Our method can consume either RGB or RGB-D images depending on the input modalities that are
available.
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training datasets provided by the BOP challenge [70]. We add data augmentation similar to
CosyPose [96] to the RGB images which was shown to be a key to successful sim-to-real
transfer. We also apply data augmentation to the depth images as explained in section 5.6.5
of the appendix.
Refiner model. The refiner model is trained similarly to [96]. Given an image with an
objectℳ at ground-truth pose 𝒯 *

CO we generate a perturbed pose 𝒯 ′
CO by applying a random

translation and rotation to 𝒯 *
CO. Translation is sampled from a normal distribution with a

standard deviations of (0.02, 0.02, 0.05) centimeters and rotation is sampled as random
Euler angles with a standard deviation of 15 degrees in each axis. The network is trained to
predict the relative transformation between the initial and target pose. Following [96, 112]
we use a loss that disentangles the prediction of depth, 𝑥-𝑦 translation, and rotation. See
the section 5.6.2 appendix for more details.
Coarse model. Given an input image 𝐼𝑜 of an objectℳ and a pose 𝒯 ′

CO the coarse model is
trained to classify whether pose 𝒯 ′

CO is within the basin of attraction of the refiner. In other
words, if the refiner were started with the initial pose estimate 𝒯 ′

CO would it be able to esti-
mate the ground-truth pose via iterative refinement? Given a ground-truth pose-annotation
𝒯 *

CO we randomly sample poses 𝒯 ′
CO by adding random translation and rotation to 𝒯 *

CO. The
positives are sampled from the same distribution used to generate the perturbed poses the
refiner network is trained to correct (see above), and other poses sufficiently distinct to this
one (see section 5.6.4 of the appendix for more details) are marked as negatives. The model
is then trained with binary cross entropy loss.

5.4 Experiments
We evaluate our method for 6D pose estimation of novel objects using the seven challeng-
ing datasets of the BOP [70, 71] 6D pose estimation benchmark, and the ModelNet [112]
dataset. The dataset and the standard 6D pose estimation metrics we use are detailed in
Section 5.4.1. In all our experiments, the objects are considered novel, i.e. they are only
available during inference on a new image and they are not used during training. In Sec-
tion 5.4.2, we evaluate the performance of our approach composed of coarse and refinement
networks. Notably, we show that (i) our method is competitive with others that require the
object models to be known in advance, and (iii) our refiner outperforms current state-of-
the-art on the ModelNet and YCB-V datasets. Section 5.4.3 validates our technical contri-
butions and shows the crucial importance of the training data in the success of our method.
Finally, we discuss the limitations in Section 5.4.4.

5.4.1 Dataset and metrics
We consider the seven core datasets of the BOP challenge [70, 71]: LineMod Occlusion
(LM-O) [66], T-LESS [68], TUD-L [70], IC-BIN [35], ITODD [38], HomebrewedDB
(HB) [84] and YCB-Video (YCB-V) [230]. These datasets exhibit 132 different objects in
cluttered scenes with occlusions. These objects present many factors of variation: textured
or untextured, symmetric or asymmetric, household or industrial (e.g. watcher pitcher, sta-
pler, bowls, multi-socket plug adaptor) which makes them representative of objects that
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Pose Initialization Pose Refinement BOP Datasets

Method
Novel
objects Method

Novel
objects

RGB-D
Input LM-O T-LESS TUD-L IC-BIN ITODD HB YCB-V Mean

1 CosyPose [96] ✗ CosyPose ✗ 63.3 64.0 68.5 58.3 21.6 65.6 57.4 57.0
2 SurfEmb [55] ✗ BFGS ✗ 66.3 73.5 71.5 58.8 41.3 79.1 64.7 65.0
3 SurfEmb [55] ✗ BFGS+ICP ✓ ✓ 75.8 82.8 85.4 65.6 49.8 86.7 80.6 75.2

4 OSOP [185] ✓ Multi-Hyp. ✓ 31.2 - - - - 49.2 33.2 -
5 OSOP [185] ✓ MH+ICP ✓ ✓ 48.2 - - - - 60.5 57.2 -
6 (PPF, Sift) + Zephyr [149] ✓ - ✓ ✓ 59.8 - - - - - 51.6 -
7 (PPF, Sift) + Our coarse ✓ Our refiner ✓ ✓ 57.0 - - - - - 62.3 -

8 CosyPose [96] ✗ – 53.6 52.0 57.6 53.0 13.1 33.5 33.3 42.3
9 CosyPose [96] ✗ Ours ✓ 65.5 72.0 70.1 57.3 28.4 67.0 56.8 59.6

10 CosyPose [96] ✗ Ours ✓ ✓ 71.2 63.8 85.0 55.1 39.9 73.2 69.2 66.0

11 Ours ✓ – 18.7 19.7 20.5 15.3 8.00 18.6 13.9 16.2
12 Ours ✓ Ours ✓ 53.7 62.2 58.4 43.6 30.1 72.9 60.4 54.5
13 Ours ✓ Ours ✓ ✓ 58.3 54.3 71.2 37.1 40.4 75.7 63.3 57.2

Table 5.1: Results on the BOP challenge datasets. We report the AR score on each of the
7 datasets considered in the BOP challenge and the mean score across datasets. With the
exception of Zephyr (row 11), all approaches are trained purely on synthetic data. For each
column, we denote the best over result in italics and the best novel-object pose estimation
method in bold.

are typically encountered in robotic scenarios. The ModelNet dataset depicts individual
instances of objects from 7 classes of the ModelNet [229] dataset (bathtub, bookshelf, gui-
tar, range hood, sofa, tv stand and wardrobe). We use initial poses provided by adding
noise to the ground truth, similar to previous works [112, 154, 197]. The focus is on refin-
ing these inital poses. We follow the evaluation protocol of [71] for BOP datasets, and of
DeepIM [112] for ModelNet.

5.4.2 6D pose estimation of novel objects
Performance of coarse+refiner. Table 5.1 reports results of our novel-object pose estima-
tion method on the BOP datasets. We first use the detections and pose hypotheses provided
by a combination of PPF and SIFT, similar to the state-of-the-art method Zephyr [149].
For each object detection, these algorithms provide multiple pose hypotheses. We find the
best hypothesis using the score of our coarse network, and apply 5 iterations of our refiner.
Results are reported in row 7. On YCB-V, our method achieves a +10.7 AR score improve-
ment compared to Zephyr (row 6). Averaged across the YCB-V and LM-O datasets, the
AR score of our approach is 59.7 compared to 55.7 for Zephyr (row 6). Next, we provide a
complete set of results using the detections from Mask-RCNN networks. Please note that
since detection of novel objects is outside the scope of this chapter, we use the networks
trained on the synthetic PBR data of the target objects [71] which are publicly available for
each dataset. We report the results of our coarse estimation strategy (Table 5.1, row 11),
and after running the refiner network, on RGB (row 12) or RGB-D (row 13) images. We
observe that (i) our refinement network significantly improves the coarse estimates (+41.0
mean AR score for our RGBD refiner) and (ii) the performance of both models is com-
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Average Recall

Method RGB-D (5°, 5cm) ADD (0.1d) Proj2D (5px)

DeepIM [112] ✓ 64.3 83.6 73.3
Multi-Path [197] 84.8 90.1 81.6
LatentFusion[154] ✓ 85.5 94.3 94.7
Ours 88.6 90.5 88.9
Ours ✓ 97.6 98.9 97.5

Table 5.2: Evaluation of the refiner on the ModelNet [112] dataset. The mean average
recall is computed over the seven classes of the dataset.

petitive with the learning-based refiner of CosyPose [96] (row 1) while not requiring to be
trained on the test objects. The recent SurfEmb [55] performs better than our approach, but
heavily relies on the knowledge of the objects for training and cannot generalize to novel
objects.
Performance of the refiner. We now focus on the evaluation of our refiner which can be
used to refine arbitrary initial poses. Our refiner is the only learning-based approach in
Table 5.1 which can be applied to novel objects. In rows 9 and 10, we apply our refiner
to the coarse estimates of CosyPose [96] (row 11). Again, we observe that our refiner
significantly improves the accuracy of these initial pose estimates (+23.7 in average for the
RGB-D model). Notably, the RGB-only method (row 9) performs better than the CosyPose
refiner (row 1) on average, while not having seen the BOP objects during training. This is
thanks to our large-scale training on thousands of various objects, while CosyPose is only
trained on tens of objects for each dataset.

One iteration of our refiner takes approximately 50 milliseconds on a RTX 2080 GPU,
making it suitable for use in an online tracking application. Five iterations of our refiner
are also 5 times faster than the object-specific refiner of SurfEmb [55] which takes around
1 second per image crop. Finally, we evaluate our refiner on ModelNet and compare it with
the state-of-the-art methods MP-AAE [197] and LatentFusion [154]. For this experiment,
we remove the ShapeNet categories that overlap with the test ones in ModelNet from our
training set in order to provide a fair comparison on novel instances and novel categories
similar to [112, 154, 197]. Results reported in Table 5.2 show that our refiner significantly
outperforms existing approaches across all metrics.

5.4.3 Ablations
In this section we perform ablations of our approach to validate our main contributions.
Additional ablations are in section 5.6.6 of the appendix. For these ablations, we consider
the RGB-only refiner and re-train several models with different configurations of hyper-
parameters and training data.
Encoding the anchor point and object shape. As discussed in Section 5.3.1 the refiner
must have information about the anchor point𝒪 in order to generalize to novel objects. We
accomplish this by using 4 rendered views pointing towards the anchor point, see Figure 5-
2(b). Table 5.3(a) shows the performance of the refiner increases as we increase the number
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Coarse Refined Coarse Refined

Figure 5-3: Qualitative results. For each pair of images, the left image is a visualization of
our coarse estimate, and the right image is after applying 5 iterations of our refiner. None
of these objects from the YCBV, LMO, HB, or T-LESS datasets were used for training our
approach. Please notice the high accuracy of MegaPose despite (i) severe occlusions and
(ii) the varying properties of the novel objects (e.g. the texture-less industrial plug in the
top-right example, textured mustard bottle in the top-left).

Rendered
views

Rendered
normals

BOP5
ModelNet

ADD(0.1d)

1 ✓ 52.0 83.3
2 ✓ 59.0 90.4
4 ✓ 61.7 96.1
4 59.1 83.1

(a)

Training objects Num. objects BOP5
ModelNet

ADD(0.1d)

GSO+ShapeNet 10 + 100 47.9 28.7
GSO+ShapeNet 100 + 1000 49.3 80.3
GSO+ShapeNet 250 + 2000 56.9 82.0
GSO+ShapeNet 500 + 10000 59.3 89.3
GSO+ShapeNet 1000 + 20000 61.7 96.1

GSO 1000 62.2 95.7
BOP 132 62.6 93.4

(b)

Table 5.3: Ablation study. We study (a) using multiple rendered object views and normal
maps as input to our RGB-only refiner model and (b) training the refiner on different vari-
ations of our large-scale synthetic dataset. Average recall is reported on BOP5 (mean of
LM-O, T-LESS, TUD-L, IC-BIN and YCB-V) and ModelNet.
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of views from 1 to 4, validating our design choice. Multiple views may also help the
network to understand the object’s appearance from alternate viewpoints, thus potentially
helping the refiner to overcome large initial pose errors. We also validate our choice to
provide a normal map of the object to the network. This information can help the network
use subtle object appearance variations that are only visible under different illumination
like the details on the cross of a guitar.
Number of training objects. We now show the crucial role of the training data. We
report in Table 5.3 (b) the results for our refiner trained on an increasing number of CAD
models. The performance steadily increases with the number of objects, which validates
that training on a large number of object models is important to generalize to novel ones.
These results also suggest that the performance of our approach could be improved as more
datasets of high-quality CAD models like GSO [36] become available.
Variety in the training objects. Next, we restrict the training to different sets of objects.
We observe in the bottom of Table 5.3(b) that models from the GoogleScannedObjects
are more important to the performance of the method on the BOP dataset compared to
using both ShapeNet and GSO. We hypothesize this is due to the presence of high-quality
textured objects in the GSO dataset. Finally, we train our model on the 132 objects of
the BOP dataset. When testing on the same BOP objects, the performance benefits from
knowing these objects during training is small compared to using our GSO+ShapeNet or
GSO dataset.

5.4.4 Limitations
While MegaPose shows promising results in robot experiments (please see the video on
the project page [134]) and 6D pose estimation benchmarks, there is still room for im-
provement. We illustrate the failure modes of our approach in the section 5.6.8 of the
appendix. The most common failure mode is due to inaccurate initial pose estimates from
the coarse model. The refiner model is trained to correct poses that are within a constrained
range but can fail if the initial error is too large. There exist multiple potential approaches
to alleviate this problem. We can increase the number of pose hypotheses 𝑀 at the expense
of increased inference time, improve the accuracy of the coarse model, and increase the
basin of attraction for refinement model. Another limitation is the runtime of our coarse
model. We use 𝑀 = 520 pose hypotheses per object which takes around 2.5 seconds to
be rendered and evaluated by our coarse model. In a tracking scenario however, the coarse
model is run just once at the initial frame and the object can be tracked using the refiner
which runs at 20Hz. Additionally, our refiner could also be coupled with alternate coarse
estimation approaches such as [145, 185] to achieve improved runtime performance.

5.5 Conclusion
We propose MegaPose, a method for 6D pose estimation of novel objects. Megapose can
estimate the 6D pose of novel objects given a CAD model of the object available only at
test time. We quantitatively evaluated MegaPose on hundreds of different objects depicted
in cluttered scenes, and performed ablation studies to validate our network design choices
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and highlight the importance of the training data. We released our models and large-scale
synthetic dataset to stimulate the development of novel methods that are practical to use
in the context of robotic manipulation where rapid deployment to new scenes with new
objects is crucial. While this work focuses on the coarse estimation and fine refinement of
an object pose, detecting any unknown object given only a CAD model is still a difficult
problem that remains to be solved for having a complete framework for detection and pose
estimation of novel objects. Future work will address zero-shot object detection using our
large-scale synthetic dataset.

In chapters 4 and 5, we have developed methods for 6D pose estimation of rigid objects
with respect to one or multiple cameras. The camera-to-object pose of an object can be
used directly for virtual and augmented reality applications. However in the context of
robotic applications like the ones considered in chapter 3, knowledge of object-to-robot
pose is necessary for visually-guided manipulation. In chapter 6, we seek to recover the
camera-to-robot pose which can be combined with the camera-to-object pose to obtain the
object-to-robot pose. For controlling the robot arm, knowledge of the internal robot state
is also necessary. We consider the most general scenario where this information is not
available and must be inferred from images of the robot.

In chapter 6, we address the problem of recovering the full state of a robot state within
a scene - the camera-to-robot pose and the joint angles - using a single RGB image, thus
enabling 6D manipulation of objects given a single RGB image when combined with the
approaches presented in chapters 4 and 5.

5.6 Appendix
The appendix of this chapter is organized as follows. In section 5.6.1, we provide the equa-
tions of the pose update predicted by the refiner network, and show it depends on the anchor
point. In section 5.6.2, we give details on the loss used to train the refiner network. Sec-
tion 5.6.3 explains the normalization strategy we apply to the observed and rendered depth
images of the RGB-D refiner. Section 5.6.4 details the pose hypotheses used during train-
ing and inference of the coarse model. In section 5.6.5, we provide examples of training
images and give details on the data augmentation and training hardware. In section 5.6.6,
we perform additional ablations to validate (i) the contributions of our coarse network, (ii)
the choice of hyper-parameter 𝑀 . We also provide details on the robot experiments shown
in the video available on the project page [173]. In section 5.6.7, we illustrate qualitatively
that our approach is robust to illumination condition variations. Section 5.6.8 illustrates the
main failure modes of our approach. Finally, section 5.6.9 investigates the robustness of
our approach with respect to an incorrect 3D model.

The video available on the project webpage [134] shows predictions of our approach
on real images. We apply our approach in tracking mode on several videos. Tracking
consists in running the coarse estimator on the first frame of a video sequence, and then
applying one iteration of the refiner on each new image, using the prediction in the previous
image as the pose initialization at the input of refinement network. This approach can
process 20 images per second. The video notably demonstrates the method is robust to
occlusion and can be used to perform visually guided robotic manipulation of novel objects.
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5.6.1 Pose update and anchor point

Pose update. We use the same pose update as DeepIM [112] and CosyPose [96]. The
network predicts 9 values corresponding to one 3-vector [𝑣𝑥, 𝑣𝑦, 𝑣𝑧] to predict an update of
the translation of a 3D anchor point, and two 3-vectors 𝑒1, 𝑒2 that define a rotation update
explained below. The pose update consists in updating (i) the position of a 3D reference
point 𝒪 attached on the object, and (ii) the rotation matrix 𝑅𝐶𝑂 of the object frame ex-
pressed in the camera frame (please note the different notations for the anchor point 𝒪 and
the object frame 𝑂):

𝑥𝑘+1
𝒪 =

(︃
𝑣𝑥

𝑓𝐶
𝑥

+ 𝑥𝑘
𝒪

𝑧𝑘
𝒪

)︃
𝑧𝑘+1

𝒪 , (5.1)

𝑦𝑘+1
𝒪 =

(︃
𝑣𝑦

𝑓𝐶
𝑦

+ 𝑦𝑘
𝒪

𝑧𝑘
𝒪

)︃
𝑧𝑘+1

𝒪 , (5.2)

𝑧𝑘+1
𝒪 = 𝑣𝑧𝑧𝑘

𝒪, (5.3)
𝑅𝑘+1

𝐶𝑂 = 𝑅(𝑒1, 𝑒2)𝑅𝑘
𝐶𝑂, (5.4)

where [𝑥𝑘
𝒪, 𝑦𝑘

𝒪, 𝑧𝑘
𝒪] is the 3D position of the anchor point expressed in camera frame at

iteration 𝑘, 𝑅𝑘
𝐶𝑂 a rotation matrix describing the objects orientation expressed in camera

frame, 𝑓𝐶
𝑥 and 𝑓𝐶

𝑦 are the (known) focal lengths that correspond to the (virtual) camera
associated with the cropped observed image, and 𝑅(𝑒1, 𝑒2) is a rotation matrix describing
the rotation update recovered from 𝑒1, 𝑒2 using [246] by orthogonalizing the basis defined
by the two predicted rotation vectors 𝑒1, 𝑒2 similar to [96]. Finally, [𝑥𝑘+1

𝒪 , 𝑦𝑘+1
𝒪 , 𝑧𝑘+1

𝒪 ] and
𝑅𝑘+1

𝐶𝑂 are, respectively, the translation and rotation after applying the pose update. The 3D
translation of the anchor point and the rotation matrix 𝑅𝐶𝑂 are used to define the pose the
object.

Dependency to the anchor point. We now show that the predictions the network
must make to correct a pose error between an initial pose 𝒯 𝑘

𝐶𝑂 and a target pose 𝒯 𝑘+1
𝐶𝑂 is

independent of the choice of the orientation of the objects coordinate frame 𝑂 but depends
on the choice anchor point 𝒪. Let us denote 𝒪1,𝒪2 two different anchor points, and
𝑅𝐶𝑂1 , 𝑅𝐶𝑂2 the rotation matrices of the object (expressed in the fixed camera frame) for
two different choices of object coordinate frames 𝑂1 and 𝑂2. We note 𝑡𝒪1𝒪2 = 𝒪2−𝒪1 =
[𝑥12, 𝑦12, 𝑧12] the 3D translation vector between 𝒪2 and 𝒪1; and 𝑅𝑂1𝑂2 = 𝑅𝑇

𝐶𝑂1𝑅𝐶𝑂2 the
rotation of coordinate frame 𝑂2 expressed in 𝑂1. For one choice of anchor point and object
frame, e.g. 𝒪1 and 𝑅𝐶𝑂1 , we derive the predictions the network has to make to correct the
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error using equations (5.1),(5.2),(5.3),(5.4):

𝑣1
𝑥 = 𝑓 𝑐

𝑥

(︃
𝑥𝑘+1

𝑂1

𝑧𝑘+1
𝑂1
− 𝑥𝑘

𝑂1

𝑧𝑘
𝑂1

)︃
(5.5)

𝑣1
𝑦 = 𝑓𝐶

𝑦

(︃
𝑦𝑘+1

𝑂1

𝑧𝑘+1
𝑂1
− 𝑦𝑘

𝑂𝑘

𝑧𝑘
𝑂𝑘

)︃
(5.6)

𝑣1
𝑧 = 𝑧𝑘+1

𝑂1

𝑧𝑘
𝑂1

(5.7)

𝑅1 = 𝑅𝑘+1
𝐶𝑂1

(︁
𝑅𝑘

𝐶𝑂1

)︁𝑇
, (5.8)

and similar for 2 by replacing the superscript. From these equations, we derive:

𝑣1
𝑥 − 𝑣2

𝑥 = 𝑓 𝑐
𝑥

(︃
𝑥𝑘+1

𝑂1

𝑧𝑘+1
𝑂1
− 𝑥𝑘

𝑂1

𝑧𝑘
𝑂1
− 𝑥𝑘+1

𝑂2

𝑧𝑘+1
𝑂2

+ 𝑥𝑘
𝑂2

𝑧𝑘
𝑂2

)︃
(5.9)

𝑣1
𝑦 − 𝑣2

𝑦 = 𝑓𝐶
𝑦

(︃
𝑦𝑘+1

𝑂1

𝑧𝑘+1
𝑂1
− 𝑦𝑘

𝑂1

𝑧𝑘
𝑂1
− 𝑦𝑘+1

𝑂2

𝑧𝑘+1
𝑂2

+ 𝑦𝑘
𝑂2

𝑧𝑘
𝑂2

)︃
(5.10)

𝑣1
𝑧 − 𝑣2

𝑧 = 𝑧𝑘+1
𝑂1

𝑧𝑘
𝑂1
− 𝑧𝑘+1

𝑂2

𝑧𝑘
𝑂2

(5.11)

𝑅1
(︁
𝑅2
)︁𝑇

= 𝑅𝑘+1
𝐶𝑂1

(︁
𝑅𝑘

𝐶𝑂1

)︁𝑇
𝑅𝑘

𝐶𝑂2

(︁
𝑅𝑘+1

𝐶𝑂2

)︁𝑇
= 𝑅𝑘+1

𝐶𝑂1𝑅𝑂1𝑂2𝑅𝑘+1
𝑂2𝐶 = 𝐼𝑑. (5.12)

From eq. (5.12), we have 𝑅1 (𝑅2)𝑇 = 𝐼𝑑. In other words, the rotation matrices that the
network must predict to correct the errors in scenarios 1 and 2 are the same. The network
predictions for the rotation components thus do not depend on the choice of the choice
of object coordinate system. However the other components of the translation cannot be

simplified further. For example, derivations of eq. (5.11) leads to 𝑣1
𝑧 − 𝑣2

𝑧 = 𝑧12(𝑧𝑘+1
𝒪1 −𝑧𝑘

𝒪1)
𝑧𝑘

1 (𝑧𝑘
1 +𝑧12)

which is non-zero in the general case where 𝑂1 and 𝑂2 are different and there is an error
between the initial and target poses. This proves that different choices of anchor point leads
to different predictions. For the network to generalize to a novel object, the network be able
to infer the 3D position of the anchor point on this object. We achieve this by rendering
multiple views of the objects in which the anchor point reprojects to the center of each
image as explained in section 5.3.

5.6.2 Refiner loss
Our refiner network is trained using the same loss as in CosyPose [96], but without using
symmetry information on the objects because it is not typically not available for large-
scale datasets of CAD models like ShapeNet or GoogleScannedObjects. We first define
the distance 𝐷𝑂(𝒯1, 𝒯2) to measure the distance between two 6D poses represented by
transformations 𝒯1 and 𝒯2 using the 3D points 𝒳𝑂 of an object O:

𝐷𝑂(𝒯1, 𝒯2) = 1
|𝒳𝑂|

∑︁
𝑥∈𝒳𝑂

|𝒯1𝑥− 𝒯2𝑥|, (5.13)
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where | · | is the 𝐿1 norm. In practice, we uniformly sample 2000 points on the surface of
an object’s CAD model to compute this distance. We also define the pose update function
𝐹 which takes as input the initial estimate of the pose 𝒯 𝑘

𝐶𝑂, the predictions of the neural
network [𝑣𝑥, 𝑣𝑦, 𝑣𝑧] and 𝑅, and outputs the updated pose:

𝒯 𝑘+1
𝐶𝑂 = 𝐹 (𝒯 𝑘

𝐶𝑂, [𝑣𝑥, 𝑣𝑦, 𝑣𝑧], 𝑅), (5.14)

where the closed form of function 𝐹 is expressed in equations (5.1) (5.2) (5.3) (5.4). We
also write [𝑣⋆

𝑥, 𝑣⋆
𝑦, 𝑣⋆

𝑧 ] and 𝑅⋆ as the target predictions, i.e. the predictions such that 𝒯 ⋆
𝐶𝑂 =

𝐹 (𝒯 𝑘
𝐶𝑂, [𝑣⋆

𝑥, 𝑣⋆
𝑦 , 𝑣⋆

𝑧 ], 𝑅⋆), where 𝒯 ⋆
𝐶𝑂 is the ground truth camera-object pose. The loss used

to train the refiner is the following:

ℒ =
𝐾∑︁

𝑘=1
𝐷𝑂(𝐹 (𝒯 𝑘

𝐶𝑂, [𝑣𝑥, 𝑣𝑦, 𝑣⋆
𝑧 ], 𝑅⋆), 𝒯 ⋆

𝐶𝑂) (5.15)

+ 𝐷𝑂(𝐹 (𝒯 𝑘
𝐶𝑂, [𝑣⋆

𝑥, 𝑣⋆
𝑦, 𝑣𝑧], 𝑅⋆), 𝑇 ⋆

𝐶𝑂) (5.16)

+ 𝐷𝑂(𝐹 (𝒯 𝑘
𝐶𝑂, [𝑣⋆

𝑥, 𝑣⋆
𝑦, 𝑣⋆

𝑧 ], 𝑅), 𝒯 ⋆
𝐶𝑂), (5.17)

where 𝐷𝑂 is the distance defined in eq. (5.13) and 𝐾 is the number of training iterations.
The different terms of this loss separate the influence of: 𝑥𝑦 translation (5.15), relative
depth (5.16) and rotation (5.17). We sum the loss over 𝐾 = 3 refinement iterations to
imitate how the refinement algorithm is applied at test time but the error gradients are not
backpropagated through rendering and iterations. For simplicity, we write the loss for a
single training sample (i.e. a single object in an image), but we sum it over all the samples
in the training set.

5.6.3 Depth normalization

When depth measurements are available, the observed depth image and depth images of the
renderings are concatenated with the images, as mentioned in section 5.3. At test time, the
objects may be observed at different depth outside of the training distribution. In order for
the network to become invariant to the absolute depth values of the inputs, we normalize
both observed and rendered depth. Let us denote 𝐷 a depth image (rendered or observed
are treated similarly). We apply the following operations to 𝐷. (i) Clipping of the metric
depth values of 𝐷 to lie between 0 and 𝑧𝑘

𝒪 + 1, where 𝑧𝑘
𝒪 is the depth of the anchor point

on the object in the input pose at iteration 𝑘:

𝐷 ← clip(𝐷𝑘, 0, 𝑧𝑘
𝒪 + 1), (5.18)

and (ii) centering of the depth values:

𝐷 ← 𝐷

𝑧𝑘
𝒪
− 1. (5.19)
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5.6.4 Pose hypotheses in the coarse model

Training hypotheses. Given the ground truth object pose 𝒯 ⋆
𝐶𝑂, we generate a perturbed

pose 𝒯 ′
𝐶𝑂 by applying random translation and rotation to 𝒯 ′

𝐶𝑂. The parameters of this
(small) perturbation are sampled from the same distribution as the distribution used to sam-
ple the perturbed poses the refiner network is trained to correct. The translation is sampled
from a normal distribution with a standard deviations of (0.02, 0.02, 0.05) centimeters and
rotation is sampled as random Euler angles with a standard deviation of 15 degrees in each
axis.

We then define several poses that depend on 𝒯 ′
𝐶𝑂 and cover a large variety of viewing

angles of the object. We define a cube of size 2𝑧′
𝒪, where 𝑧′

𝒪 is the 𝑧 component of the
3D translation in the pose 𝒯 ′

𝐶𝑂. The CAD model of the object observed under orientation
𝑅′

𝐶𝑂 is placed at the center of the cube. We then place 26 cameras at the locations of each
corner, half-side and face centers of the cube. By construction, one of these cameras, which
we denote 𝐶0, has the same camera-object orientation as 𝒯 ′

𝐶𝑂, and all others {𝐶𝑖}𝑖=1..25
correspond to cameras observing the object under viewpoints which are sufficiently far
from 𝑅𝐶0𝑂 and outside the basin of attraction of the refiner by construction. In addition,
we apply inplane rotations of 90∘, 180∘ and 270∘ to each camera, which leads to a total of
26 * 4 = 104 cameras with one positive and 103 negatives.

We mark 𝒯𝐶0𝑂 as a positive for the coarse model because the error between 𝒯𝐶0𝑂 and
𝒯 ⋆

𝐶𝑂 lies within the basin of attraction of the refiner. All other cameras are marked as
negatives. During training, the positives account for around 30% of the total numbers of
images in a mini-batch.

Test hypotheses. At test time, a 2D detection of the object is available. Let 𝑢𝑑𝑒𝑡 =
(𝑢𝑑𝑒𝑡,𝑥, 𝑢𝑑𝑒𝑡,𝑦) and (Δ𝑢𝑑𝑒𝑡 = Δ𝑢𝑑𝑒𝑡,𝑥, Δ𝑢𝑑𝑒𝑡,𝑦) define the center and the size of the ap-
proximate 2D bounding box of the object in the image. We start by defining a random
camera-object orientation 𝑅𝑝. The anchor point on the object is set to match the center of
the bounding box 𝑢𝑑𝑒𝑡. We make a first hypothesis of the depth of the anchor by setting
𝑧𝑔𝑢𝑒𝑠𝑠

𝒪𝑝 = 1m and use this initial value to estimate the coordinates 𝑥𝒪𝑝 and 𝑦𝒪𝑝 of the anchor
point in the camera frame:

𝑥𝑔𝑢𝑒𝑠𝑠
𝒪𝑝 = 𝑢𝑑𝑒𝑡,𝑥

𝑧𝑔𝑢𝑒𝑠𝑠
𝒪𝑝

𝑓𝑥

(5.20)

𝑦𝑔𝑢𝑒𝑠𝑠
𝒪𝑝 = 𝑢𝑑𝑒𝑡,𝑦

𝑧𝑔𝑢𝑒𝑠𝑠
𝒪𝑝

𝑓𝑦

, (5.21)

where 𝑓𝑥 and 𝑓𝑦 are the (known) focal lengths of the camera. We then update the depth
estimate 𝑧𝑔𝑢𝑒𝑠𝑠

𝒪𝑝 using the following simple strategy. We project the points of the ob-
ject 3D model using 𝑅𝑝 and the initial guess of the 3D position of the anchor point we
have just defined. These points define a bounding box with dimensions Δ𝑢𝑔𝑢𝑒𝑠𝑠,𝑥 =
(Δ𝑢𝑔𝑢𝑒𝑠𝑠,𝑥, Δ𝑢𝑔𝑢𝑒𝑠𝑠,𝑦) and the center remains unchanged 𝑢𝑔𝑢𝑒𝑠𝑠 = 𝑢𝑑𝑒𝑡 by construction. We
compute an updated depth of the anchor point such that its width and height approximately
match the size of the 2D detection:

𝑧𝒪𝑝 = 𝑧𝑔𝑢𝑒𝑠𝑠
𝒪𝑝

1
2

(︃
𝑓𝑥

Δ𝑢𝑔𝑢𝑒𝑠𝑠,𝑥

Δ𝑢𝑑𝑒𝑡,𝑥

+ 𝑓𝑦
Δ𝑢𝑔𝑢𝑒𝑠𝑠,𝑦

Δ𝑢𝑑𝑒𝑡,𝑦

)︃
(5.22)
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Figure 5-4: Example of training images. Randomly sampled images from our large-scale
synthetic dataset generated with BlenderProc [33]. CAD models from the ShapeNet [229] and
GoogleScannedObjects [36] datasets are used.

and use this new depth to compute 𝑥𝒪𝑝 and 𝑦𝒪𝑝 using equations (5.20) and (5.21) that were
used to define 𝑥𝑔𝑢𝑒𝑠𝑠

𝒪𝑝 and 𝑦𝑔𝑢𝑒𝑠𝑠
𝒪𝑝 . The rotation 𝑅𝑝 and 3-vector [𝑥𝒪𝑝 , 𝑦𝒪𝑝 , 𝑧𝒪𝑝 ] define the

pose of hypothesis 𝑝. We then use the same strategy used to define the training hypotheses
(described above) in order to define 103 additional viewpoints depending on 𝑝. We repeat
the operation 𝑃 = 5 times, for a total of 5 * 104 = 520 pose hypotheses.

5.6.5 Training details

Training images. We generate 2 million photorealistic images using BlenderProc [33] as
explained in section 5.3.2. Randomly sampled images from the training set are shown in
Figure 5-4.
Data augmentation. We apply data augmentation to the synthetic images during training.
We use the same data augmentation as CosyPose [96] for the RGB images. It includes
Gaussian blur, contrast, brightness, colors and shaprness filters from the Pillow library [21].
For the depth images, we take inspiration from the augmentations used in [126, 223, 235].
Augmentations include blur, ellipse dropout, correlated and uncorrelated noise.
GPU hardware and training time. Training time is respectively 32 and 48 hours for the
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Pose hypotheses YCB-V LM-O

PPF 52.7 34.4
PPF+Zephyr [149] 59.8 45.8
PPF+Our coarse 61.6 52.1

Table 5.4: Performance of the coarse model. We compare the performance of our coarse
network with Zephyr [149].

coarse and refiner models using 32 V-100 GPUs. This training is performed once, and
estimating the pose of novel objects does not require any fine-tuning on the target objects.

5.6.6 Additional experiments.
Coarse network. In order to evaluate the validate the contributions of our coarse scoring
network, we use a set of pose hypotheses generated for novel objects by the commercial
Halcon 20.05 Progress software which implements the PPF algorithm described in [22].
Note that these are the same pose hypotheses used in Zephyr [149]. We then find the best
hypotheses using the scores of PPF, the scoring network of Zephyr or our coarse network,
and report AR results for the LM-O and YCB-V datasets in the table 5.4. On both datasets,
our coarse network is better than the two baselines (PPF and Zephyr) for selecting the best
poses among a given set of hypotheses.
Classification-based coarse network. To validate our classification-based coarse model,
we consider a regression-based alternative. We trained a regression-based network similar
to the coarse model of CosyPose [96] which takes as input six views of the objects covering
viewpoints at the poles of a sphere centered on the object. The network collapsed during
training, leading to large errors that cannot be recovered by the refiner and a performance
close to zero on the BOP datasets. We hypothesize this failure is due to the presence of
symmetric objects in our training set which leads to ambiguous gradients during training.
This failure could also be attributed to other factors, such as the difficulty to interpret the
full 3D geometry of an object with a CNN given six views of its 3D model captured under
distant viewpoints.
Number of coarse pose hypotheses. 𝑀 is an important parameter of our method, which
can be used to choose a trade-off between running time and accuracy. The performance
significantly improves from M=104 to M=520 (+11.4 AR on BOP5) while keeping the
running-time of the coarse model reasonable (1.6 seconds for M=520 compared to 0.3
seconds for M=120). Above M=520, the performance improvement is marginal, e.g. (+0.9
AR) for 4608 hypotheses.
Robotic grasping experiments. We performed a qualitative real-robot grasping exper-
iment. For multiple YCB-V objects, we manually annotated one grasp with respect to
the object’s coordinate frame. We then placed the considered object (e.g. the drill in the
supplementary video available on the project page [134]) in a scene among other objects
representing visual distractors. The object may be placed on the table or on another object.
We then take a single RGB image of the scene using a RealSense D415 camera mounted
on the gripper of a Franka Emika Panda robot. We detect the object in 2D using the Mask-
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Figure 5-5: Qualitative examples on the TUD-L dataset. Each row presents one example
prediction on a real image. The first column is the real observed image, the second column
is the prediction of our approach here illustrated using a rendering of the object’s CAD
model in the predicted pose, and an overlay of the prediction and output is shown on the
right.

RCNN detector from CosyPose [96], and run our Megapose approach composed of coarse
and refiner modules for estimating the 6D pose of the object with respect to the camera.
We then express the 6D pose of the object and grasp with respect to the robot using the
known camera-to-robot extrinsic calibration. We then use a motion planner to generate
a robot motion that reaches the estimated grasp pose with the gripper and lift the object.
This experiment shown in the video available on the project page [134] shows that the pose
estimates are of sufficiently high quality to be useful for a robotic manipulation task.

5.6.7 Robustness to illumination conditions

In Figure 5-5, we show qualitative predictions of our approach for the watering can on
the TUD-L dataset. Please notice the high accuracy of our approach despite challenging
illumination conditions.
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Figure 5-6: Per-object analysis on the YCB-V dataset. For each object, we report the
percentage of estimates for which the error between our pose prediction and the ground
truth is within 5 centimeters in translation and 15 degrees in rotation.

5.6.8 failure modes and performance on specific types of objects

we carry out a per-object analysis of the performance of our approach on the ycb-v dataset.
For each of the 21 objects of the dataset, we report the percentage of predictions for which
the error with the ground truth is within a threshold of 15∘ in rotation and 5cm in translation.
Results are reported in Figure 5-6.

Next, we illustrate the main failure modes of our approach using a set of objects which
have a performance below average on this dataset. Examples of failure cases are presented
in Figure 5-7. We observed three main failure modes to our approach. First, we observe
the orientation of a novel object may be incorrectly predicted if the object has a similar
visual appearance under different viewpoint. We observed this failure mode in particular
for textureless objects such as a red bowl that appears similar whether it is standing upside
or it is flipped. Second, we observe that our approach may fail to disambiguate the pose
of objects that are asymmetric but for which it is necessary to look at fine details on the
objects to disambiguate multiple possible poses. An example is a pair of scissors which
have left and right handles with slightly different dimensions. In both of these failure
modes, we observed that our refiner gets stuck into a local minimal due to an inaccurate
coarse estimate outside of the basin of attraction of our refiner model. Finally, using a
CAD model with incorrect scale leads to an incorrect estimation of the depth of the object
due to the object scale/depth ambiguity in RGB images. We observe for example that the
translation estimates of the wooden block of YCB-V have systematically large error despite
the rendering of our prediction correctly matching the contours of the object in the observed
image. This is because the scale of the CAD model of the wooden block publicly available
does not match the correct dimensions of the real object which was used for annotating the
ground truth.
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Figure 5-7: Illustration of the main failure modes of our approach. In (1) and (2), the con-
tours of the object in the predicted poses correctly overlay the observed image, but the pose
is incorrect because these objects have a similar appearance under different viewpoints. In
(3), our approach fails to correctly distinguish the left and right handles with different di-
mensions in order to disambiguate the orientation of the asymmetric pair of scissors. In (4),
our pose prediction does not match the ground truth annotation, because the CAD model of
the wooden block we use for pose estimation has different dimensions that do not match the
dimensions of the real objects which was used for annotating the ground truth. Please no-
tice in all examples how the contours of the object in the predicted pose are closely aligned
with the contours of the object in the input image.
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Figure 5-8: Predictions using low-fidelity CAD models. In (a) we show the result of our
approach on LineMOD Occlusion for three different objects which have only low-fidelity
CAD models available. In (1) and (2), the quality of the mesh and textures is poor as
illustrated in (b). Notice for example how the annotations on the glue box or the brand of
the drill are not readable on the CAD models. In (3), the hole of the watering can does
not appear in the CAD model. Despite these discrepancies between the real object and the
CAD model, our approach correctly estimates the pose of each object.

5.6.9 3D model quality
Our approach can be applied even if the 3D model of the object does not exactly matches
the real object. In figure 5-8, we show examples of correctly estimated poses using low-
fidelity CAD models with low-quality textures or geometric discrepancies between the real
object and its 3D model.
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Chapter 6

Robot pose and joint angle estimation

In the previous chapters, 4 and 5, we focus on estimating the 6D of pose of rigid objects.
In this chapter we consider articulated objects and focus on robots, which are a type of
articulated objects with potentially a large number of degrees of freedom (e.g. up to 15).

We introduce RoboPose, a method to estimate the joint angles and the 6D camera-to-
robot pose of a known articulated robot from a single RGB image. This is an important
problem to grant mobile and itinerant autonomous systems the ability to interact with other
robots using only visual information in non-instrumented environments, especially in the
context of collaborative robotics. It is also challenging because robots have many degrees
of freedom and infinite space of possible configurations that often result in self-occlusions
and depth ambiguities when imaged by a single camera. The contributions of this work
are three-fold. First, we introduce a new render & compare approach for estimating the
6D pose and joint angles of an articulated robot that can be trained from synthetic data,
generalizes to new unseen robot configurations at test time and can be applied to a variety
of robots. Second, we experimentally demonstrate the importance of robot parametrization
for the iterative pose updates and design a parametrization strategy that is independent of
the robot structure. Finally, we show experimental results on existing benchmark datasets
for four different robots and demonstrate that our method significantly outperforms the
state of the art. Code and pre-trained models are available on the project webpage [173].

6.1 Introduction

The goal of this work is to recover the state of a known articulated robot within a 3D scene
using a single RGB image. The robot state is defined by (i) its 6D pose, i.e. a 3D translation
and a 3D rotation with respect the camera frame, and (ii) the joint angle values of the
robot’s articulations. The problem set-up is illustrated in figure 6-1. This is an important
problem to grant mobile and itinerant autonomous systems the ability to interact with other
robots using only visual information in non-instrumented environments. For instance, in
the context of collaborative tasks between two or more robots, having knowledge of the
pose and the joint angle values of all other robots would allow better distribution of the
load between robots involved in the task [14]. The problem is, however, very challenging
because robots can have many degrees of freedom (DoF) and an infinite space of admissible
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Figure 6-1: RoboPose. (a) Given a single RGB image of a known articulated robot in an
unknown configuration (left), RoboPose estimates the joint angles and the 6D camera-to-
robot pose (rigid translation and rotation) providing the complete state of the robot within
the 3D scene, here illustrated by overlaying the articulated CAD model of the robot over
the input image (right). (b) When the joint angles are known at test-time (e.g. from internal
measurements of the robot), RoboPose can use them as an additional input to estimate
the 6D camera-to-robot pose to enable, for example, visually guided manipulation without
fiducial markers.
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configurations that often result in self-occlusions and depth ambiguities when imaged by
a single camera. The current best performing methods for this problem [106, 247] use
a deep neural network to localize in the image a fixed number of pre-defined keypoints
(typically located at the articulations) and then solve a 2D-to-3D optimization problem
to recover the robot 6D pose [106] or pose and configuration [247]. For rigid objects,
however, methods based on 2D keypoints [9, 22, 23, 76, 87, 124, 158, 160, 169, 202,
207] have been recently outperformed by render & compare methods that forgo explicit
detection of 2D keypoints but instead use the entire shape of the object by comparing the
rendered view of the 3D model to the input image and iteratively refining the object’s 6D
pose [96, 112, 169, 240]. Motivated by this success, we investigate how to extend the
render & compare paradigm for articulated objects. This presents significant challenges.
First, we need to estimate many more degrees of freedom than the sole 6D pose. Articulated
robots we consider in this work can have up to 15 degrees of freedom in addition to their
6D rigid pose in the environment. Second, the space of configurations is continuous and
hence there are infinitely many configurations in which the object can appear. As a result,
it is not possible to see all configurations during training and the method has to generalize
to unseen configurations at test time. Third, the choice of transformation parametrization
plays an important role for 6D pose estimation of rigid objects [112] and finding a good
parametrization of pose updates for articulated objects is a key technical challenge.
Contributions. To address these challenges, we make the following contributions. First,
we introduce a new render & compare approach for estimating the 6D pose and joint angles
of an articulated robot that can be trained from synthetic data, generalizes to new unseen
robot configurations at test time, and can be applied to a large variety of robots (robotic
arms, bi-manual robots, etc.). Second, we experimentally demonstrate the importance
of the robot pose parametrization for the iterative pose updates and design an effective
parametrization strategy that is independent of the robot. Third, we apply the proposed
method in two settings: (i) with known joint angles (e.g. provided by internal measure-
ments from the robot such as joint encoders), only predicting the camera-to-robot 6D pose,
and (ii) with unknown joint angles, predicting both the joint angles and the camera-to-robot
6D pose. We show experimental results on existing benchmark datasets for both settings
that include a total of four different robots and demonstrate significant improvements com-
pared to the state of the art.

6.2 Related work
6D pose estimation of rigid objects from RGB images [123, 124, 172] is one of the
oldest problems in computer vision. It has been successfully approached by estimating the
pose from 2D-3D correspondences obtained via local invariant features [9, 22, 23, 124], or
by template-matching [63]. Both these strategies have been revisited using convolutional
neural networks (CNNs). A set of sparse [76, 87, 158, 160, 169, 202, 207] or dense [155,
191, 230, 240] features is detected on the object in the image using a CNN and the resulting
2D-to-3D correspondences are used to recover the camera pose using PnP [108]. The best
performing methods for 6D pose estimation from RGB images are now based on variants
of the render & compare strategy [96, 112, 127, 147, 148, 169, 240] and are approaching
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the accuracy of methods using depth as input [70, 71, 96, 112].
Hand-eye calibration (HEC) [61, 74] methods recover the 6D pose of the camera with re-
spect to a robot. The most common approach is to detect in the image fiducial markers [41,
45, 151] placed on the robot at known positions. The resulting 3D-to-2D correspondences
are then used to recover the camera-to-robot pose using known joint angles and the kine-
matic description of the robot by solving an optimization problem [79, 153, 237]. Recent
works have explored using CNNs [101, 106] to perform this task by recognizing 2D key-
points at specific robot parts and using the resulting 3D-to-2D correspondences to recover
the hand-eye calibration via PnP. The most recent work in this direction [106] demonstrated
that such learning-based approach could replace more standard hand-eye calibration meth-
ods [210] to perform online calibration and object manipulation [208]. Our render & com-
pare method significantly outperforms [106] and we also demonstrate that our method can
achieve a competitive accuracy without requiring known joint angles at test time.
Depth-based pose estimation of articulated objects. Previous work on this problem can
be split into three classes. The first class of methods aims at discovering properties of the
kinematic chain through active manipulation [56, 85, 86, 131] using depth as input and
unlike our approach cannot be applied to a single image. The second class of methods aims
at recovering all parameters of the kinematic chain from a single RGBD image, including
the joint angles, without knowing the specific articulated object [1, 111, 239, 245]. In
contrast, we focus on the set-up with a known 3D model, e.g. a specific type of a robot.
The third class of methods, which is closest to our set-up, considers pose and joint angle
estimation [34, 137, 157] for known articulated objects but relies on depth as input and
only considers relatively simple kinematic chains such as laptops or drawers where the
joint parameters only affect the pose of one part. Others recover joint angles of a known
articulated robot part [12, 224] but do not recover the 6D pose of the camera and also rely
on depth. In contrast, our method accurately estimates the pose and joint angles of a robotic
arm with many degrees of freedom from a single RGB image.
Robot pose and joint angle estimation from an RGB image. To the best of our knowl-
edge, only [247] has addressed a scenario similar to us where the robot pose and joint
angles are estimated together from a single RGB image.

A set of predefined 2D keypoints is recognized in the image and the 6D pose and joint
angles are then recovered by solving a nonlinear non-convex optimization problem. Results
are shown on a 4 DoF robotic arm. In contrast, we describe a new render & compare
approach for this problem, demonstrate significantly improvements in 3D accuracy and
show results on robots with up to 15 DoF.

6.3 Approach
We present our render & compare framework to recover the state of a robot within a 3D
scene given a single RGB image. We assume the camera intrinsic parameters, the CAD
model and kinematic description of the robot are known. We start by formalizing the
problem in section 6.3.1. We then present an overview of our approach in section 6.3.2
and explain our training in section 6.3.3. Finally, we detail the key choices in the problem
parametrization in section 6.3.4.
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Figure 6-2: Problem definition. Given an RGB image (a) of a known robot, the goal is to
recover (b) the 6D pose 𝒯𝐶,𝑎 of an anchor part 𝒫𝑎 with respect to the camera frame and all
the joint angles 𝑞𝑖 of the known robot kinematic description (in green).

6.3.1 Problem formalization

Our notations are summarized in Figure 6-2. We consider a known robot composed of rigid
parts 𝒫0,...,𝒫𝑁 whose 3D models are known. An articulation, or joint, connects a parent
part to a child part. Given the joint angle 𝑞𝑖 of the 𝑖-th joint, we can retrieve the relative 6D
transformation between the parent and child reference frames. Note that for simplicity we
only consider revolute joints, i.e. joints parametrized by a single scalar angle of rotation
𝑞𝑖, but our method is not specific to this type of joints. The rigid parts and the joints define
the kinematic tree of the robot. This kinematic description can be used to compute the
relative 6D pose between any two parts of the robot. In robotics, the full state of a robot 𝒮
is defined by the joint angles and the 6D pose of the root of the kinematic tree. Defining the
6D pose of the robot with respect to the root (whose pose is independent of the joint angles
since it is not a child of any joint) is a crucial choice in the parametrization of the problem,
but also arbitrary, since an equivalent kinematic tree could be defined using any part as the
root. We instead define the full state of the robot by (i) the selection of an anchor part
𝒫𝑎, (ii) the 6D pose of the anchor with respect to the camera 𝒯𝐶,𝑎, and (iii) the joint angles
𝑞 = (𝑞1, ..., 𝑞𝐷) ∈ R𝐷, where 𝐷 is the number of joints. Note the anchor part can change
across iterations of our approach. We discuss the choice of the anchor in section 6.3.4 and
experimentally demonstrate it has an important influence on the results.

125



Figure 6-3: RoboPose overview. Given a single input RGB image, the state 𝑆 (6D camera-
to-robot pose and joint angles) of the robot is iteratively updated using renderer and refiner
modules to match the input image. The refinement module takes as input the cropped
observed image and a rendering of the robot as well as the mask of an anchor part. The
anchor part is used for updating the rigid 6D pose of the robot while the rest of the parts
are updated by changing their joint angles. Note that the anchor part is changing across
iterations making the refinement more robust.

6.3.2 Render & compare for robot state estimation

We now present our iterative deep render & compare framework, illustrated in figure 6-3.
We iteratively refine the state estimate as follows. First, given a current estimate of the state
𝒮𝑘 we render an RGB image of the robotℛ(𝑆𝑘) and the mask of the anchor part. We then
apply a deep refiner network that takes as input crops of the rendered image and the input
RGB image 𝐼 of the scene. It outputs a new state of the robot 𝒮𝑘+1 = 𝑓𝜃(𝒮𝑘, 𝐼) to attempt
to match the ground truth state 𝒮𝑔𝑡 of the observed robot. Unlike prior works that have used
render & compare strategies for estimating the 6D pose of rigid objects [96, 112, 240], our
method does not require a coarse pose estimate as initialization.
Image rendering and cropping. To render the image of the robot we use a fixed focal
length (defining an intrinsic camera matrix) during training. The rendering is fully defined
by the state of the robot and the camera matrix. Instead of giving to the refiner network
the full image and the rendered view, we focus the inputs on the robot by cropping the
images as follows. We project the centroid of the rendered robot in the image, consider the
smallest bounding box of aspect ratio 4/3 centered on this point that encloses the projected
robot and increase its size by 40% (see details in the appendix). This crop depends on the
projection of the robot to the input image that varies during training, and thus provides
an augmentation of the effective focal length of the virtual cropped cameras. Hence, our
method can be applied to cameras with different intrinsics at test time as we show in our
experiments.
Initialization. We initialize the robot to a state 𝒮0 defined by the joint configuration 𝑞0

and the pose 𝒯 0
𝐶,𝑎 of the anchor part 𝑎 with respect to the camera 𝐶. At training time we

define 𝒮0 using perturbations of the ground truth state. At test time we initialize the joints
to the middle of the joint limits, and the initial pose 𝒯 0

𝐶,𝑎 so that the frame of the robot
base is aligned with the camera frame and the 2D bounding box defined by the projection
of the robot model approximately matches the size of image. More details are given in
section 6.6.4 of the appendix.
Refiner and state update. At iteration 𝑘, the refiner predicts an update Δ𝑞𝑘 of the joint
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angles 𝑞𝑘 (composed of one scalar angle per joint), such that

𝑞𝑘+1 = 𝑞𝑘 + Δ𝑞𝑘, (6.1)

and an update Δ𝒯 𝑘 of the current 6D pose 𝒯 𝑘
𝐶,𝑎 of the anchor part, such that

𝒯 𝑘+1
𝐶,𝑎 = 𝒯 𝑘

𝐶,𝑎 ∘Δ𝒯 𝑘, (6.2)

where we follow DeepIM [112]’s parametrization for pose update Δ𝒯 𝑘. This parametriza-
tion disentangles rotation and translation prediction but crucially depends on the choice of
a reference point we call 𝑂. In DeepIM this point is simply taken as the center of the ref-
erence frame of the rigid object but there is not such a natural choice of reference point for
articulated objects, which have multiple moving parts. We discuss several possible choices
of the reference point 𝑂 in section 6.3.4 and demonstrate experimentally it has an important
impact on the results. In particular, we show that naively selecting the reference frame of
the root part is sub-optimal.

6.3.3 Training

In the following, we describe our loss function, synthetic training data, implementation
details and discuss how to best use known joint angles if available.
Loss function. We train our refiner network using the following loss:

ℒ(𝜃) =
𝐾−1∑︁
𝑘=0
ℒ𝑎(𝒯 𝑘

𝐶,𝑎, Δ𝒯 𝑘, 𝒯 𝑔𝑡
𝐶,𝑎) + 𝜆ℒ𝑞(𝑞𝑘, Δ𝑞𝑘, 𝑞gt), (6.3)

where 𝜃 are the parameters of the refiner network, 𝐾 is the maximum number of iterations
of the refinement algorithm, 𝒯 𝑔𝑡

𝐶,𝑎 is the ground truth 6D pose of the anchor, 𝑞gt are the
ground truth joint angles and 𝜆 is a hyper-parameter to balance between the 6D pose loss
ℒ𝑎 and the joint angle loss ℒ𝑞. The 6D pose loss ℒ𝑎 measures the distance between the pre-
dicted 3D point cloud obtained using 𝒯 𝑘

𝐶,𝑎 transformed with Δ𝒯 𝑘 and the ground truth 3D
point cloud (obtained using 𝒯 𝑔𝑡

𝐶,𝑎) of the anchor 𝒫𝑎. We use the same loss as [96] that dis-
entangles rotation, depth and image-plane translations [189] (see equations in section 6.6.2
of the appendix). For ℒ𝑞, we use a simple 𝐿2 regression loss, ℒ𝑞 = ‖𝑞𝑘 + Δ𝑞𝑘 − 𝑞𝑔𝑡‖2

2.
Note that the 6D pose loss is measured only on the anchor part 𝑎 while the alignment

of the other parts of the robot is measured by the error on their joint angles (rather than
alignment of their 3D point clouds). This disentangles the 6D pose loss ℒ𝑎 from the joint
angle loss ℒ𝑞 and we found this leads to better convergence. We sum the loss over the
refinement iterations 𝑘 to imitate how the refinement algorithm is applied at test time but
the error gradients are not backpropagated through rendering and iterations. Finally, for
simplicity the loss (6.3) is written for a single training example, but we sum it over all
examples in the training set.
Training data. For training the refiner, we use existing datasets [106, 247] provided by
prior works for the Kuka, Panda, Baxter, OWI-535 robots. All of these datasets are syn-
thetic, generated using similar procedures based on domain randomization [81, 122, 177,
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203]. The joint angles are sampled independently and uniformly within their bounds, with-
out assuming further knowledge about their test time distribution. We add data augmenta-
tion similar to [96].

We sample the initial state 𝒮0 by adding noise to the ground truth state in order to
simulate errors of the network prediction at the previous state of the refinement as well as
the error at the initalization. For the pose, we sample a translation from a centered Gaussian
distribution with standard deviation of 10 cm, and a rotation by sampling three angles from
a centered Gaussian distribution of standard deviation 60∘. For the joint angles, we sample
an additive noise from a centered Gaussian distribution with a standard deviation equal to
5% of the joint range of motion, which is around 20∘ for most of the joints of the robots we
considered.
Implementation details. We train separate networks for each robot. We use a standard
ResNet-34 architecture [59] as the backbone of the deep refiner. The hyper-parameters
are 𝜆 = 1 and 𝐾 = 3 training iterations. Note that at test time we can perform more
iterations, and the results we report correspond to 10 iterations. The anchor is sampled
randomly among the 5 largest parts of the robot at each iteration. This choice is motivated
in section 6.3.4 and other choices are considered in the experiments, section 6.4.3. We
initialize the network parameters randomly and perform the optimization using Adam [90],
with the procedure described in section 6.6.5 of the appendix for all the networks.
Known joint angles at test time. The approach described previously could be used at test
time with measured joint angles 𝑞0 = 𝑞𝑔𝑡 and by ignoring the joint update, but we observed
better results by training a separate network which only predicts a pose update for this
scenario. In this context where the joint values are known and constant, the full robot is
considered as a single and unique anchor. Yet, the problem remains different from classic
rigid object 6D object pose estimation because the network must generalize to new joint
configurations unseen during training.

6.3.4 Parametrization choices
There are two main parametrization choices in our approach: (i) the choice of the reference
point 𝑂 for the parametrization of the pose update Δ𝒯 𝑘 in equation (6.2) and (ii) the choice
of the anchor part to update the 6D pose and measure pose loss in equation (6.3). These
choices have a significant impact on the results, as shown in section 6.4.
Choice of the reference point for the pose update. Similar to [112], we parametrize the
pose update as a rotation around a reference point 𝑂 and a translation defined as a function
of the position of 𝑂 with respect to the camera. The fact that the rotation is around 𝑂 is a
first obvious influence of this choice on the transformation that needs to be predicted. The
impact on the translation update parameters is more complicated: they are defined by a
multiplicative update on the depth of 𝑂 and by an equivalent update in pixels in the image,
which is also related to the real update by the depth of 𝑂 (see equations in section 6.6.1 of
the appendix).

A seemingly natural choice for reference point 𝑂 would be a physical point on the robot,
for example the center of the base of the robot or the anchor part. However, on the contrary
to the rigid object case, if that part is not visible or is partially occluded, the network cannot
infer the position of the reference 𝑂 precisely, and thus cannot predict a relevant translation
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Figure 6-4: Choice of the anchor part. (a) We analyze how the choice of the anchor part
affects the complexity of the rigid alignment Δ𝒯 and the joint angle update Δ𝑞 to align an
initial state of the robot (green) with the target state of the robot (red). (b) We show the
required rigid pose update (composed of a rotation and a translation) and the required joint
update for two different choices of the anchor part (shown using a dashed line). In (1), the
required pose update of the anchor part consists of successively applying rotation Δ𝑅 and
translation Δ𝑡 along 𝑥 and 𝑦 axes (in blue). In (2), the anchor part is aligned using only a
translation along the 𝑦 axis resulting in a simpler solution compared to (1). These examples
illustrate that the choice of the anchor can have a significant impact on the complexity of
the alignment problem.

and rotation update. In experiments, we show it is better to use as 𝑂 the centroid of the
estimated robot state, which takes into account the estimated joint configuration, and can
be more reliably estimated.
Choice of the anchor part. The impact of the choice of the anchor part 𝒫𝑎 used for
computing the 6D pose loss in equation (6.3), is illustrated in figure 6-4. We explore several
choices of anchor part in our experiments, and show that this choice has a significant impact
on the results. Since the optimal choice depends on the robot, and the observed pose, we
introduce a strategy where we randomly select the anchor among the largest parts of the
robot, during both training and refinement, and show that on average it performs similarly
or slightly better than the optimal oracle choice of a single unique anchor on the test set.

6.4 Experiments
We evaluate our method on recent benchmarks for the following two tasks: (i) camera-to-
robot 6D pose estimation for three widely used manipulators (Kuka iiwa7, Rethink robotic
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Dataset informations DREAM [106] DREAM [106] DREAM [106] Ours Ours
Robot Robot (DoF) Real # images # 6D poses cam. VGG19-F VGG19-Q ResNet101-H ResNet34 Unknown angles
Baxter DR Baxter (15) × 5982 5982 GL - 75.47 - 86.59 32.66
Kuka DR Kuka (7) × 5997 5997 GL - - 73.30 89.62 80.17
Kuka Photo Kuka (7) × 5999 5999 GL - - 72.14 86.87 73.23
Panda DR Panda (8) × 5998 5998 GL 81.33 77.82 82.89 92.70 82.85
Panda Photo Panda (8) × 5997 5997 GL 79.53 74.30 81.09 89.89 79.72
Panda 3CAM-AK Panda (8) ✓ 6394 1 AK 68.91 52.38 60.52 76.54 70.37
Panda 3CAM-XK Panda (8) ✓ 4966 1 XK 24.36 37.47 64.01 85.97 77.61
Panda 3CAM-RS Panda (8) ✓ 5944 1 RS 76.13 77.98 78.83 76.90 74.31
Panda ORB Panda (8) ✓ 32315 27 RS 61.93 57.09 69.05 80.54 70.39

Table 6.1: Comparison of RoboPose (ours) with the state-of-the-art approach
DREAM [106] for the camera-to-robot 6D pose estimation task using the 3D reconstruc-
tion ADD metric (higher is better). The robot joint configuration is assumed to be known
(results in black) and is different in each of the image in the dataset, but the pose of the
camera with respect to the robot can be fixed (# number of 6D poses). Multiple cameras
are considered to capture the input RGB images: synthetic rendering (GL), and real Mi-
crosoft Azure (AK), Microsoft Kinect360 (XK) and Intel RealSense (RS), which all have
different intrinsic parameters. Our results in blue do not use ground truth joint angles (see
section 6.4.2) and the accuracy of the robot 3D reconstruction is evaluated using both the
estimated 6D pose and the joint angles.

Baxter, Franka Emika Panda) [106], and (ii) full state estimation of the low-cost 4 DoF
robotic arm OWI-535 [247]. In section 6.4.1, we consider the first task, where an image
of a robot with fixed known joint angles is used to estimate the 6D camera-to-robot pose.
We show that our approach outperforms the state-of-the-art DREAM method [106]. In
section 6.4.2, we evaluate our full approach where both the 6D pose and joint angles are
unknown. We show our method outperforms the state-of-the-art method [247] for this
problem on their dataset depicting the low-cost 4 DoF robot and that it can recover the 6D
pose and joint angles of more complex robotic manipulators. Finally, section 6.4.3 analyzes
the parametrization choices discussed in section 6.3.4.

6.4.1 6D pose estimation with known joint angles

Datasets and metrics. We focus on the datasets annotated with 6D pose and joint angle
measurements recently introduced by the state-of-the-art method for single-view camera-
to-robot calibration, DREAM [106]. We use the provided training datasets with 100k im-
ages generated with domain randomization. Test splits are available as well as photoreal-
istic synthetic test images (Photo). For the Panda robot, real datasets are also available.
The Panda 3CAM datasets display the fixed robot performing various motions captured by
3 fixed different cameras with different focal lengths and resolution, all of which are dif-
ferent than the focal length used during training. The largest dataset with the more varied
viewpoints is Panda-ORB with 32,315 real images in a kitchen environnement captured
from 27 viewpoints with different joint angles in each image.

We use the 3D reconstruction ADD metric which directly measures the pose estimation
accuracy, comparing distances between 3D keypoints defined at joint locations of the robot
in the ground truth and predicted pose. We refer to the section 6.6.6 of the appendix for
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Figure 6-5: Qualitative results of RoboPose 6D pose and joint angle estimation for four
different robots. (a) The OWI-535 robot from the CRAVES-lab (first row) and CRAVES-
youtube (second and third row) datasets, (b) the Panda robot from the Panda 3CAM dataset
and (c) the Panda, Baxter and Kuka robots on example images from the Internet. Please
see additional results in section 6.6.9 of the appendix and in the video on the project
webpage [173].

exact details on the evaluation protocol of our comparison with DREAM [106].
Comparison with DREAM [106]. We train one network for each robot using the same
synthetic datasets as [106] and report our results in Table 6.1. Our method achieves sig-
nificant improvements across datasets and robots except on Panda 3CAM-RS where the
performance of [106] with ResNet101-H variant is similar to ours. On the Panda 3CAM-
AK and Panda 3CAM-XK datasets, the performance of our method is significantly higher
than the ResNet101-H model of [106] (e.g. +21.96 on 3CAM-XK), which suggests that
the approach of [106] based on 2D keypoints is more sensitive to some viewpoints or cam-
era parameters. Note that our method trained with the synthetic GL camera can be applied
to different real cameras with different intrinsics at test time thanks to our cropping strategy
which provides an augmentation of the effective focal length during training.

On Panda-ORB, the largest real dataset that covers multiple camera viewpoints, our
method achieves a large improvement of 11.5 points. Our performance on the synthetic
datasets for the Kuka and Baxter robots is also significantly higher than [106]. We believe
the main reason for this large improvements is the fact that our Render & Compare ap-
proach can directly use the shape of the entire robot rendered in the observed configuration
for estimating the pose rather than detecting a small number of keypoints.
Running time. In Table 6.2 we report the running time of our method on the Panda-ORB
dataset which consists of robot motion videos captured from 27 different viewpoints. The
first observation is that the accuracy increases with the number of refinement iterations 𝐾
used at test-time, and the most significant improvements are during the first 3 iterations.
The importance of using multiple network iterations during training is further discussed
in section 6.6.7 of the appendix. We also report an online version of our approach that
leverages temporal continuity. It runs the refiner with 𝐾 = 10 iterations on the first frame
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Ours (individual frames) Ours (online) DREAM [106]
K=1 K=2 K=3 K=5 K=10 K=1 ResNet101-H

ADD 28.5 72.8 79.1 80.4 80.7 80.6 69.1
FPS 16 8 4 2 1 16 30

Table 6.2: Benefits of iterative refinement and running time on Panda-ORB video sequence
of robot trajectories. We report ADD and running time (frames per second, FPS) for a
varying number of refiner iterations 𝐾. The frames are either considered individually,
or the estimate is used to initialize the refiner in the subsequent frames (online) without
additionnal temporal filtering.

CRAVES [247] CRAVES [247] ours
synt synt+real* synt

PCK@0.2 95.66 99.55 99.20
Error all top 50% all top 50%
Joints (degrees) 11.3 4.74 5.49 3.22
Trans xyz. (cm) 10.1 5.52 0.61 0.42
Trans norm. (cm) 19.6 10.5 1.31 0.90
Rot. (degrees) 10.3 5.29 4.12 2.91

Table 6.3: Results on the CRAVES-lab [247] dataset with unknown joint angles. We report
average errors on all the images of the dataset, or on the top 50% images selected according
to the best joint angle accuracy with respect to the ground truth. Networks are trained on
synthetic data only (synt) or also using non-annotated real images of the robot (synt+real*).

of the video and then uses the output pose as the initialization for the next frame and so
on, without any additional temporal filtering of the resulting 6D poses. This version runs
at 16 frames per second (FPS) and achieves a similar performance as the full approach that
considers each frame independently and runs at 1 FPS.

6.4.2 6D pose and joint angle estimation

We now evaluate the performance of our method in the more challenging scenario where
the robot joint angles are unknown and need to be estimated jointly with the 6D pose from a
single RGB image. Qualitative results on the considered datasets as well as on real images
crawled from the web are shown in figure 6-5. Please see section 6.6.9 of the appendix
for additional qualitative examples, and the project page [173] for a movie showing our
predictions on several videos.
Comparison with CRAVES [247]. CRAVES [247] is the state-of-the-art approach for
this task. We consider the two datasets used in [247]. CRAVES-lab displays the OWI-535
4DoF in a lab environment and contains 20,000 RGB images of which 428 key frames are
annotated with 2D robot keypoints, ground truth joint angles (not used by our method) and
camera intrinsics. CRAVES-youtube is the second dataset containing real-world images
crawled from YouTube depicting large variations in viewpoint, illumination conditions and
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CRAVES CRAVES Ours, synt
synt [247] synt+real* [247] f=500 f=1000 f=1500 f=2000 f=best

81.61 88.89 87.34 88.97 87.37 85.49 92.91

Table 6.4: PCK@0.2 on the CRAVES-Youtube dataset [247].

robot appearance. It contains 275 frames annotated with 2D keypoints but no camera in-
trinsic parameters, 6D pose or joint angle ground truth. In addition to metrics that measure
the 6D pose and joint angle estimates, we report a 2D keypoint metric, PCK (percentage
of keypoints), following [247]. We refer to section 6.6.6 of the appendix for details of the
metrics and the evaluation protocol.

We compare with two variants of CRAVES, one trained only on synthetic images (synt),
and one that also requires real non-annotated images (synt+real*). Our method is trained
only using the 5, 000 provided synthetic images. We report results on CRAVES-lab in
Table 6.3. To compare with the 2D keypoint metric PCK@0.2, we project in the image
the 3D keypoints of our estimated robot state. On this metric, our method outperforms
CRAVES trained only on synthetic images and achieves a near-perfect score, similar to
their approach trained with real images. More importantly, we achieve much better results
when comparing with the 3D metrics (joint angles error and translation/rotation error).
CRAVES achieves high average errors when all images of the datasets are considered,
which is due to the complexity of solving the nonlinear nonconvex 2D-to-3D optimization
problem for recovering 6D pose and joint angles given 2D keypoint positions. Our method
trained to directly predict the 6D pose and joint angles, achieves large improvements in
precision. We reduce the translation error by a factor of 10, demonstrating robustness to
depth ambiguities.

We also evaluated our method on CRAVES-youtube. On this dataset, the camera in-
trinisic parameters are unknown and cannot be used for projecting the estimated robot pose
into the 2D image. We therefore report results for different hypothesis of (fixed) focal
lengths for all the images of the dataset, as well as using an oracle (f=best) which selects
the best focal length for each image. Results are reported in Table 6.4. For 2D keypoints,
our method for 𝑓 = 1000 achieves results superior to CRAVES while not requiring real
training images. Our method also clearly outperforms CRAVES when selecting the best
focal length. 3D ground truth is not available, but similar to CRAVES-lab we could expect
large improvements in 3D accuracy.

Experiments on 7DoF+ robots. We also train our method for jointly predicting 6D pose
and joint angles for the robots considered in section 6.4.1. We evaluate the 6D pose and
joint angles accuracy using ADD. Results are reported in Table 6.1 in blue (last column).
For the 7DoF robotic arms (Kuka and Panda), these results demonstrate a competitive or su-
perior ADD accuracy compared to [106] for inferring the 3D geometry of a known robot,
but our method does not require known joint angles. The more complex 15 DoF Baxter
robot remains challenging although our qualitative results often show reasonable align-
ments. We discuss the failure modes of our approach in section 6.6.10 of the appendix.
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Reference point ADD
on Root 𝒫0 75.02
on Middle 𝒫4 79.45
on Hand 𝒫7 00.00
Centroid (ours) 80.54

(a)

Reference point
Volume
(𝑐𝑚3) ADD

on 𝒫5 3092 74.40
on 𝒫2 2812 75.06
on 𝒫1 2763 74.89
on 𝒫0 2660 75.02
on 𝒫4 2198 79.45
Centroid (ours) - 80.54

(b)

Table 6.5: Analysis of the choice of reference point 𝑂. Networks are trained and eval-
uated with known joint angles as in section 6.4.1. The reference point is placed on (a) a
naively chosen part and (b) on one of the 5 largest parts. Our strategy of using the centroid
of the imaged robot performs the best.

6.4.3 Analysis of parametrization choices

We analyze our method on the Panda-ORB dataset: it is the largest real dataset containing
significant variations in joint angles and camera viewpoints and the Panda robot has a long
kinematic chain with 8 DoF. We study the choice of reference point 𝑂 for the 6D pose
update and the choice of the anchor part (see section 6.3.4).

Reference point. We train different networks with the reference point at the origin of the
root 𝒫0, the part in the middle of the kinematic chain 𝒫4 and at the end of the kinematic
chain 𝒫7. Results are reported in Table 6.5(a). We observe that the performance indeed
depends on the choice of the reference point and our approach of using the centroid of
the robot as the reference point performs the best. The network trained with the “Hand”
part (𝒫7, the end effector) as a reference point fails to converge because this part is often
difficult to identify in the training images and its pose cannot be inferred from any other
part because the robot is not a rigid object. We investigate picking the reference point on
one of the five largest parts (measured by their 3D volume which is correlated with 2D
visibility) in Table 6.5(b) again demonstrating our approach of using the centroid of the
robot performs better than any of these specific parts.

Choice of the anchor part. Table 6.6 reports results using different strategies for chosing
the anchor part during training and testing. First, in 6.6(a) we show that choosing different
parts as one (fixed) anchor results in significant variation in the resulting performance. To
mitigate this issue we consider in 6.6(b) a strategy where the anchor is picked randomly
among the robot parts at each iteration (both during training and testing). This strategy
performs better than always naively selecting the root 𝒫0 as anchor. By restricting the
sampled anchors to the largest parts, our automatic strategy can also perform better than
the best performing part 𝒫4.
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Anchor
Volume
(𝑐𝑚3) ADD

𝒫5 3092 68.01
𝒫2 2812 65.56
𝒫1 2763 60.40
𝒫0 2660 57.44
𝒫4 2198 69.54
𝒫7 637 63.40

(a)

Anchor ADD
Root part 𝒫0 57.44
Middle part 𝒫4 69.54
Hand part 𝒫7 63.40
Random (all) 64.28
Random (5 largest) 70.39
Random (3 largest) 71.36

(b)

Table 6.6: Analysis of the choice of the anchor part. Networks are trained and evaluated
with unknown joint angles as in section 6.4.2. (a) Results when one fixed anchor part is
used during training and testing. (b) Randomly selecting the anchor part among a given set
of largest robot parts during refinement in both training and testing.

6.5 Conclusion
We have introduced a new render & compare approach to estimate the joint angles and
the 6D camera-to-robot pose of an articulated robot from a single image demonstrating
significant improvements over prior state-of-the-art for this problem. These results open-
up exciting applications in visually guided manipulation or collaborative robotics without
fiducial markers or time-consuming hand-eye calibration. To stimulate these applications,
we released the training code as well as the pre-trained models for commonly used robots.

6.6 Appendix
The appendix of this chapter is organized as follows. In section 6.6.1, we provide the com-
plete set of equations for the pose update and its relation to the reference point introduced
in section 6.3.4. In section 6.6.2, we give the details of the pose loss ℒ𝑎 used in equa-
tion (6.3) in the main chapter. Sections 6.6.3, 6.6.4, 6.6.5 and 6.6.6 give details of the
cropping strategy, the state initialization, training strategy and evaluation, respectively. In
section 6.6.7, we provide additional experiments showing the benefits of the iterative for-
mulation and studying the importance of running the refiner network for multiple iterations
during training. In section 6.6.8, we discuss the applicability of our approach to real robotic
problems. Section 6.6.9 presents additional qualitative examples randomly selected from
the images in the datasets introduced in section 6.4. Finally, we discuss and illustrate the
main failure modes of our approach in section 6.6.10. Additional examples are in the video
available on the project page [173].

6.6.1 Pose update

Any rigid motion can be modeled by a transformation in 𝑆𝐸(3). The 6D pose of the
anchor part of the robot at iteration 𝑘 + 1 is therefore defined by the composition of its
current transformation w.r.t. to the camera coordinate system 𝒯 𝑘

𝐶,𝑎 at iteration 𝑘 composed
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with a pose update transformation Δ𝒯 ∈ 𝑆𝐸(3):

𝒯 𝑘+1
𝐶,𝑎 = 𝒯 𝑘

𝐶,𝑎 ∘Δ𝒯 , (6.4)

as introduced in section 6.3.2 in the main chapter. In the following we present the equations
that define this pose update. We follow the parametrization of DeepIM’s [112] pose update
and explicitly parametrize the pose update using a 3D reference point we call 𝑂𝑘. We
choose to use the centroid of the estimated robot at the 𝑘-th iteration as 𝑂𝑘, but other
choices are also possible. Our neural network refiner predicts parameters 𝑣𝑥, 𝑣𝑦, 𝑣𝑧 that are
used to compute the 3D translation Δ𝑡. The refiner also predicts the 3D rotation Δ𝑅 that
together with Δ𝑡 define the pose update Δ𝒯 in (6.4). The parameters 𝑣𝑥 and 𝑣𝑦 correspond
to the displacement in the image plane (in pixels) of the reference point 𝑂𝑘 at iteration 𝑘
and 𝑣𝑧 corresponds to a relative update of the depth of 𝑂𝑘, again relative to the camera
coordinate system:

𝑣𝑥 = 𝑢𝑘+1
𝑂𝑘,𝑥 − 𝑢𝑘

𝑂𝑘,𝑥 = 𝑓 𝑐
𝑥

(︃
𝑥𝑘+1

𝑂𝑘

𝑧𝑘+1
𝑂𝑘

− 𝑥𝑘
𝑂𝑘

𝑧𝑘
𝑂𝑘

)︃
(6.5)

𝑣𝑦 = 𝑢𝑘+1
𝑂𝑘,𝑦 − 𝑢𝑘

𝑂𝑘,𝑦 = 𝑓𝐶
𝑦

(︃
𝑦𝑘+1

𝑂𝑘

𝑧𝑘+1
𝑂𝑘

− 𝑦𝑘
𝑂𝑘

𝑧𝑘
𝑂𝑘

)︃
(6.6)

𝑣𝑧 = 𝑧𝑘+1
𝑂𝑘

𝑧𝑘
𝑂𝑘

, (6.7)

where 𝑢𝑘
𝑂𝑘 = (𝑢𝑘

𝑂𝑘,𝑥, 𝑢𝑘
𝑂𝑘,𝑦) is the 2D projection onto the image plane of the 3D point 𝑂𝑘

before applying the pose update, 𝑢𝑘+1
𝑂𝑘 the 2D reprojection onto the image plane of 𝑂𝑘 after

applying the pose update,
[︁
𝑥𝑘

𝑂𝑘 , 𝑦𝑘
𝑂𝑘 , 𝑧𝑘

𝑂𝑘

]︁
are the 3D coordinates of the reference point 𝑂𝑘

before the pose update expressed in the camera frame, and
[︁
𝑥𝑘+1

𝑂𝑘 , 𝑦𝑘+1
𝑂𝑘 , 𝑧𝑘+1

𝑂𝑘

]︁
are the 3D

coordinates of the reference point 𝑂𝑘 after the pose update expressed in the camera frame.
𝑓𝐶

𝑥 and 𝑓𝐶
𝑦 are the intrinsic parameters of the virtual cropped camera that are assumed

known and fixed.

From these equations, we can derive the update of the 3D translation of the 3D point
𝑂𝑘:

𝑡𝑘+1
𝑂𝑘 = 𝑡𝑘

𝑂𝑘 + Δ𝑡𝑂𝑘 , (6.8)

with the 𝑥, 𝑦 and 𝑧 components of translation update Δ𝑡𝑂𝑘 defined as :

Δ𝑡𝑂𝑘,𝑥 =𝑥𝑘+1
𝑂𝑘 − 𝑥𝑘

𝑂𝑘 = 1
𝑓𝐶

𝑥

𝑣𝑥𝑣𝑧𝑧𝑘
𝑂𝑘 + 𝑥𝑘

𝑂𝑘(𝑣𝑧 − 1) (6.9)

Δ𝑡𝑂𝑘,𝑦 =𝑦𝑘+1
𝑂𝑘 − 𝑦𝑘

𝑂𝑘 = 1
𝑓𝐶

𝑦

𝑣𝑦𝑣𝑧𝑧𝑘
𝑂𝑘 + 𝑦𝑘

𝑂𝑘(𝑣𝑧 − 1) (6.10)

Δ𝑡𝑂𝑘,𝑧 = 𝑧𝑘+1
𝑂𝑘 − 𝑧𝑘

𝑂𝑘 = 𝑧𝑘
𝑂𝑘(𝑣𝑧 − 1). (6.11)

Note that Δ𝑡𝑂𝑘 depends on the 3D point 𝑂𝑘. Hence the network has to learn to inter-
nally infer this point to predict consistent transformation updates. The rotation update Δ𝑅
(parametrized by three angles) predicted by the refiner network is applied around the 3D
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reference point 𝑂𝑘. This defines the transformation of any 3D point on the anchor. Let’s
consider a point 𝑎 on the anchor part in position 𝑡𝑘

𝑎 at iteration 𝑘, its position at iteration
𝑘 + 1 is given by:

𝑡𝑘+1
𝑎 = Δ𝑅(𝑡𝑘

𝑎 − 𝑡𝑘
𝑂𝑘) + 𝑡𝑘

𝑂𝑘 + Δ𝑡𝑂𝑘 , (6.12)

where Δ𝑅 is the rotation matrix predicted by the network using the same rotation parametriza-
tion used in [96, 246]. The equation (6.12) can also be used to define the rotation matrix of
the anchor part with respect to the camera:

𝑅𝑘+1
𝐶,𝑎 = Δ𝑅𝑅𝑘

𝐶,𝑎, (6.13)

where 𝑅𝑘
𝐶,𝑎 defines the rotation of the anchor part with respect to the camera before the

pose update, 𝑅𝑘+1
𝐶,𝑎 defines the rotation of the anchor part with respect to the camera after

the pose update and Δ𝑅 is the rotation matrix predicted by the network. The equations
(6.12) and (6.13) fully define the pose update given by equation (6.4) as a function of the
network predictions 𝑣𝑥, 𝑣𝑦, 𝑣𝑧 and Δ𝑅, and the reference point 𝑂𝑘. For computing the loss
in the next section, we write the pose 𝒯 𝑘+1

𝐶,𝑎 of the anchor part 𝑎 in the camera coordinate
system 𝐶 at iteration 𝑘 + 1 (after the pose update) as

𝒯 𝑘+1
𝐶,𝑎 = 𝒰([𝑣𝑥, 𝑣𝑦, 𝑣𝑧], Δ𝑅), (6.14)

where 𝒰 expresses the updated pose of the anchor as a function of all network predictions
𝑣𝑥, 𝑣𝑦, 𝑣𝑧, Δ𝑅, and can be computed in a closed form using the equations derived above.

6.6.2 Pose loss

We define the following distance 𝐷𝑎(𝒯1, 𝒯2) to measure the distance between two transfor-
mations 𝒯1 and 𝒯2 using the 3D points 𝒳𝑎 on the anchor part 𝑎 :

𝐷𝑎(𝒯1, 𝒯2) = 1
|𝒳𝑎|

∑︁
𝑥∈𝒳𝑎

|𝒯1𝑥− 𝒯2𝑥|, (6.15)

where |·| is the 𝐿1 norm. The pose lossℒ𝑎 in equation (6.3) in the main chapter follows [96]
and is written as:

ℒ𝑝𝑜𝑠𝑒 = 𝐷𝑎(𝒰([𝑣𝑥, 𝑣𝑦, 𝑣𝑧], Δ�̂�), 𝑇𝐶,𝑎) (6.16)

+ 𝐷𝑎(𝒰([𝑣𝑥, 𝑣𝑦, 𝑣𝑧], Δ�̂�), 𝑇𝐶,𝑎) (6.17)

+ 𝐷𝑎(𝒰([𝑣𝑥, 𝑣𝑦, 𝑣𝑧], Δ𝑅), 𝑇𝐶,𝑎), (6.18)

where 𝒰 defines the pose update as explained in (6.14) in section 6.6.1, 𝑇𝐶,𝐴 is the ground
truth 6D pose of the anchor with repect to the camera, 𝑣𝑥, 𝑣𝑦, 𝑣𝑧, Δ𝑅 are the parameters
of the pose update predicted by the network, and 𝑣𝑥, 𝑣𝑦, 𝑣𝑧, Δ�̂� are the values of these
updates that would lead to the ground truth pose. The different terms of this loss separate
(or disentangle) the influence of different subsets of parameters on the loss. In detail, the
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first term (6.16) of the loss considers only the 𝑥𝑦 translation of the anchor part, where the
rest of the parameters are fixed to their ground truth values, 𝑣𝑧 and Δ�̂� . The second term
(6.17) of the loss considers only the relative depth of the anchor part where the rest of the
parameters are fixed to their ground truth values. Finally, the last term (6.18) of the loss
considers only the rotation update Δ𝑅 (6.18) where the rest of the parameters are fixed to
their ground truth values.

6.6.3 Cropping strategy
Let 𝑢𝑂 = (𝑢𝑂,𝑥, 𝑢𝑂,𝑦) be the 2D projection of the 3D centroid 𝑂 of the robot by the
camera with intrinsics 𝐾. We use a cropping strategy similar to DeepIM but using only the
projection of the 3D points of the model in the current pose estimate to define the bounding
box of the crop. Let 𝑢1 = (𝑢1,𝑥, 𝑢1,𝑦), 𝑢2 = (𝑢2,𝑥, 𝑢2,𝑦) be the coordinates of the upper left
and lower right corners of the bounding box defined by the robot projection in the image,
respectively. We define:

Δ𝑢𝑥 = 𝑚𝑎𝑥(𝑢𝑑𝑖𝑠𝑡,𝑥, 𝑢𝑑𝑖𝑠𝑡,𝑦/𝑟) · 2𝜆, (6.19)
Δ𝑢𝑦 = 𝑚𝑎𝑥(𝑢𝑑𝑖𝑠𝑡,𝑥/𝑟, 𝑢𝑑𝑖𝑠𝑡,𝑦) · 2𝜆, (6.20)

where

𝑢𝑑𝑖𝑠𝑡,𝑥 = 𝑚𝑎𝑥(|𝑢1,𝑥 − 𝑢𝑂,𝑥|, |𝑢2,𝑥 − 𝑢𝑂,𝑥|), (6.21)
𝑢𝑑𝑖𝑠𝑡,𝑦 = 𝑚𝑎𝑥(|𝑢1,𝑦 − 𝑢𝑂,𝑦|, |𝑢2,𝑦 − 𝑢𝑂,𝑦|), (6.22)

𝑟 = 4/3 is the aspect ratio of the crop and 𝜆 = 1.4 following DeepIM [112]. The crop is
centered at 𝑢𝑂, of width Δ𝑢𝑥 and height Δ𝑢𝑦. An example of a crop is given in figure 6-6.

6.6.4 State initialization
Let 𝑢𝑑𝑒𝑡 = (𝑢𝑑𝑒𝑡,𝑥, 𝑢𝑑𝑒𝑡,𝑦) and (Δ𝑢𝑑𝑒𝑡 = Δ𝑢𝑑𝑒𝑡,𝑥, Δ𝑢𝑑𝑒𝑡,𝑦) define the center and the size of
the approximate 2D bounding box of the robot in the image. In our experiments, there is
only one robot per image and thus we use the entire image as the 2D bounding box and
denote the bounding box 𝑢𝑑𝑒𝑡. The orientation of the base of the robot 𝒫0 is set parallel to
the axes of the camera with the 𝑧 axis pointing upwards. The centroid of the robot 𝑂 is set
to match the center of the bounding box 𝑢𝑑𝑒𝑡. We make the first hypothesis of the depth of
the centroid by setting 𝑧𝑔𝑢𝑒𝑠𝑠

𝐶,𝑂 = 1m and use this initial value to estimate the coordinates 𝑥
and 𝑦 of the centroid in the camera frame:

𝑥𝑔𝑢𝑒𝑠𝑠
𝐶,𝑂 = 𝑢𝑑𝑒𝑡,𝑥

𝑧𝑔𝑢𝑒𝑠𝑠
𝐶,𝑂

𝑓𝑥

(6.23)

𝑦𝑔𝑢𝑒𝑠𝑠
𝐶,𝑂 = 𝑢𝑑𝑒𝑡,𝑦

𝑧𝑔𝑢𝑒𝑠𝑠
𝐶,𝑂

𝑓𝑦

. (6.24)

We then update the depth estimate 𝑧𝑔𝑢𝑒𝑠𝑠
𝐶,𝑂 using the following simple strategy. We project

the points of the robot using the initial guess we have just defined. These points define a
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Figure 6-6: Cropping strategy. (a) input RGB image, (b) illustration of the cropping strat-
egy: bounding box [𝑢1, 𝑢2] (shown in red) defined by the reprojection of the robot in the
input state to the image (blue points). Bounding box defining the crop is shown in green.
(c) The cropped input image, (d) Cropped rendered image, (e) The crop and the input im-
age are overlaid. These two images are given as input to our network (the anchor mask is
not displayed).

bounding box with dimensions Δ𝑢𝑔𝑢𝑒𝑠𝑠,𝑥 = (Δ𝑢𝑔𝑢𝑒𝑠𝑠,𝑥, Δ𝑢𝑔𝑢𝑒𝑠𝑠,𝑦) and the center remains
unchanged 𝑢𝑔𝑢𝑒𝑠𝑠 = 𝑢𝑑𝑒𝑡 by construction. We compute an updated depth of the centroid
such that its width and height approximately match the size of the 2D detection:

𝑧0
𝐶,𝑀 = 𝑧𝑔𝑢𝑒𝑠𝑠

𝐶,𝑂

1
2

(︃
𝑓𝑥

Δ𝑢𝑔𝑢𝑒𝑠𝑠,𝑥

Δ𝑢𝑑𝑒𝑡,𝑥

+ 𝑓𝑦
Δ𝑢𝑔𝑢𝑒𝑠𝑠,𝑦

Δ𝑢𝑑𝑒𝑡,𝑦

)︃
(6.25)

and use this new depth to compute 𝑥0
𝐶,𝑂 and 𝑦0

𝐶,𝑂 using equations (6.23) and (6.24) that
were used to define 𝑥𝑔𝑢𝑒𝑠𝑠

𝐶,𝑂 and 𝑦𝑔𝑢𝑒𝑠𝑠
𝐶,𝑂 . The initial state 𝒮0 of the robot is defined by

(𝑥0
𝐶,𝑀 , 𝑦0

𝐶,𝑀 , 𝑧0
𝐶,𝑀), 𝑅0

𝐶,𝑂 = 𝐼𝑑, and the initial joint angles are set (when they are not
measured) to 𝑞0 = 𝑞++𝑞−

2 , where 𝑞+ and 𝑞− define the interval of the robot articulation
angles. An example of initialization is shown in figure 6-7.

In the experiments of section 6.4 of the main chapter, we use the entire image as the
2D bounding box because the test images show a single robot. Please note however that
it would be straightforward to process multiple bounding boxes like [96] for multiple rigid
objects. If multiple robots are in the input bounding box (e.g. as in some of the examples in
the results video on the project webpage [173]), our iterative refinement typically converges
to the largest robot in the image.
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Figure 6-7: Example of initialization. (a) Input RGB image, (b) robot in the initial state,
(c) output of RoboPose (pose and joint angles are predicted) after 𝐾 = 10 refinement
iterations.

6.6.5 Training strategy

The training of the neural networks is performed with Adam [90] using a learning rate of
0.003 and batches of 1408 images, split on 44 GPUs. The networks are trained for 60k
iterations. Following recommendations from [49] for distributed training, we use a warm
up-phase: the learning rate is linearly increased from to 0. to 0.003 during the first 5k
iterations. The learning rate is reduced to 0.0003 at 45k iterations. In order to speed up
the training, we start by training with 𝐾 = 1 refinement iterations and add other iterations
𝐾 = 2, 𝐾 = 3 at 15k and 30k iterations respectively. We found that starting to train with
𝐾 = 1 and increasing the number of refinement iterations during training has no effect on
the results, but allows to train the refiner network faster.

6.6.6 Evaluation details

Next, we give more details about the evaluation metric and the evaluation protocol of our
comparison with DREAM [106] and CRAVES [247].
Comparison with DREAM. The average distance (ADD) metric measures the distance
between 3D keypoints on the robot transformed with the predicted and ground truth 6D
poses. The 3D keypoints are the same as in [106] for the Kuka, Panda and Baxter robots
and are defined at the locations of robot joints. The ADD errors of the 3D keypoints for
the robot depicted in the image are averaged, and we report the area-under-the-curve of the
ADD pass rate vs. threshold following [106]. We refer to [106, 230] for more details about
this metric. A slight difference with the evaluation protocol of [106] is that all images are
considered as possible evaluation targets, whereas [106] discards images where there are
fewer than 4 robot keypoints visible in the ground truth because PnP cannot be solved in
this situation. This favors methods that rely on keypoints and does not fully consider the
difficulty of estimating the pose of robots in situations with high self-occlusions, a situation
that our method can handle. We thus evaluate ADD on all images, even those with fewer
than four visible robot keypoints. The models from DREAM [106] were re-evaluated with
this protocol and in practice the difference is only minor compared to the results reported
in DREAM [106], less than 2% for all datasets. For reproducing DREAM results reported
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in Table 6.1 of the main chapter, we used the provided code and pre-trained models1 using
the instructions to reproduce the results from the paper, e.g. using the “shrink-and-crop”
cropping strategy. Note that while evaluating these models, we found some results to be
higher than reported in the original paper, e.g. the ResNet101-H is the best model on
the largest real dataset Panda-ORB (69.05) but only the VGG19-F (61.93) was reported
in [106]. We reported results for all models of DREAM [106] in Table 6.1 of the main
chapter.

When evaluating our method that predicts joint angles, ADD is computed using 3D
keypoints on the robot that are computed using both the estimated 6D pose and the pre-
dicted joint angles using the robot forward kinematics. This provides a principled way to
measure the accuracy of the 3D reconstruction of the robot without giving arbitrary weights
to rotation, translation or joint angle errors.
Comparison with CRAVES. For the comparison with CRAVES [247], we based our eval-
uation on the code provided with the paper2. The 3D metrics reported in Table 3 for
CRAVES-lab are:

• Joints (degrees): Errors of the joint angle predictions over the 4 articulations 1
4
∑︀4

𝑖=1 |𝑞
𝑝𝑟𝑒𝑑
𝑖 −

𝑞𝑔𝑡
𝑖 |, where 𝑞𝑝𝑟𝑒𝑑

𝑖 is the predicted value of the joint angle for joint 𝑖 and 𝑞𝑔𝑡
𝑖 is the

ground truth value of the joint angle for joint 𝑖.

• Trans xyz. (cm): Translation error for the base averaged over the 𝑥, 𝑦, 𝑧 axes:
1
3(|𝑥𝑝𝑟𝑒𝑑 − 𝑥𝑔𝑡| + |𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑔𝑡| + |𝑧𝑝𝑟𝑒𝑑 − 𝑧𝑔𝑡|), where "pred" denotes the predicted
and "gt" the ground truth values.

• Trans norm. (cm): Translation error for the base computed using the 𝐿2 norm:
||𝑡𝑝𝑟𝑒𝑑 − 𝑡𝑔𝑡||2.

• Rot. (degrees): Errors between the Euler angles that define the rotation of the base
with respect to the camera 1

3(|𝜃𝑝𝑟𝑒𝑑
𝑥 − 𝜃𝑔𝑡

𝑥 |+ |𝜃𝑝𝑟𝑒𝑑
𝑦 − 𝜃𝑔𝑡

𝑦 |+ |𝜃𝑝𝑟𝑒𝑑
𝑧 − 𝜃𝑔𝑡

𝑧 |), where again
"pred" denotes the predicted and "gt" the ground truth values.

We found that the "Joints”, “Trans xyz.” and "Rot." metrics reported in [247] under
"3D pose estimation errors" were an average computed only over the top 50% images with
the best predictions according to the joint angle errors. We also report the errors averaged
over all images of the dataset (all) in Table 6.3 of the main chapter as our method can
successfully recover the 3D configuration of the robot in all images of the dataset because
it does not rely on solving the 2D-to-3D nonlinear, nonconvex optimization problem that is
difficult to solve in some situations.

On CRAVES-Youtube only the visible 2D keypoints are considered as estimation tar-
gets to provide a fair comparison with “Youtube-vis” of [247]. The results that we repro-
duced with the provided pre-trained models were slightly lower (around 0.5% lower) than
reported in the paper for the PCK@0.2 metric, but we kept the (higher) results reported in
the paper when comparing with their method.

1https://github.com/NVlabs/DREAM
2https://github.com/zuoym15/craves.ai
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PPPPPPPP𝐾𝑡𝑟𝑎𝑖𝑛

𝐾𝑡𝑒𝑠𝑡 1 2 3 5 10

1 0.43 24.31 34.72 39.77 41.25
2 1.70 32.22 52.08 62.76 65.73
3 1.14 25.51 49.22 65.64 70.39
5 0.61 15.80 36.81 61.08 70.77

Table 6.7: Benefits of the iterative refinement. We study the influence of the number of
training and testing iterations, denoted 𝐾𝑡𝑟𝑎𝑖𝑛 and 𝐾𝑡𝑒𝑠𝑡, respectively. We report the 𝐴𝐷𝐷
metric (higher is better) on the Panda ORB dataset with unknown joint angles. The best
performing set-up is shown in bold.

6.6.7 Benefits of the iterative formulation

In this section, we investigate the benefits of the number of refiner iterations at training and
test time. In the following, we denote as 𝐾𝑡𝑟𝑎𝑖𝑛 the number of refiner network iterations
used during training (denoted 𝐾 in equation (6.3) of the main chapter) and as 𝐾𝑡𝑒𝑠𝑡 the
number of iterations used at test time. We experimentally evaluate the influence of 𝐾𝑡𝑟𝑎𝑖𝑛

and 𝐾𝑡𝑒𝑠𝑡 using the ADD metric on the Panda-ORB dataset with unknown joint angles,
similar to the experimental set-up reported in section 6.4.2. We trained four networks with
𝐾𝑡𝑟𝑎𝑖𝑛 = 1/2/3/5 and report the results for a varying number of iterations at test time for
each network. Results are reported in Table 6.7.

First, we observe that for each refiner network (each row in the table), the accuracy is
significantly improved by using multiple iterations at test time as opposed to running the
network for a single iteration (𝐾𝑡𝑒𝑠𝑡 = 1) in a single-shot regression fashion. These results
demonstrate that the iterative formulation is crucial to the success of the approach.

Second, we observe that running the network for multiple iterations during training sig-
nificantly improves the results. For example, for 𝐾𝑡𝑒𝑠𝑡 = 10, the ADD results are improved
from 41.25 for 𝐾𝑡𝑟𝑎𝑖𝑛 = 1 to 70.77 for 𝐾𝑡𝑟𝑎𝑖𝑛 = 5. Using multiple training iterations
without backpropagating through the renderer augments the distribution of errors between
the input state and the ground truth state with actual errors the refiner makes. These results
show the importance of training the refiner network to correct both the large errors (be-
tween the initial state 𝒮0 and the ground truth state 𝒮𝑔𝑡) as well as smaller errors (between
the prediction at iteration k, 𝒮𝑘, and 𝒮𝑔𝑡) to simulate what the network is going to see at
test-time where the network is run for multiple iterations. In our experiments in chapter 6,
we used 𝐾𝑡𝑟𝑎𝑖𝑛 = 3 as it is a good trade-off between performance and training speed.

6.6.8 Applications in robotic set-ups

Similar to related work [106, 247], our approach can be applied in real robotic set-ups. For
example, the offline hand-eye calibration approach DREAM [106] has been used in [208]
for a manipulation task on a real robot, and CRAVES [247] demonstrates visually guided
closed-loop control of a low-cost robot without reliable joint angle measurements. Our
approach significantly improves over the accuracy of DREAM [247] and CRAVES [106],
and therefore we expect to also improve the capabilities of robotic systems similar to [208,
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Figure 6-8: Random selection of examples on the CRAVES-lab datasets. Both joint
angles and the 6D pose of the robot are predicted from the input image. For each of the 9
examples, we show the input RGB image (left) and the predicted state of the robot within
the 3D scene (right). We illustrate the predicted state (right) by overlaying the articulated
CAD model of the robot in the predicted state over the input image.

247]. Please note that while this chapter focuses on the robot state estimation from a single
image, it is also suited for real-time and online applications as explained in section 6.4.1.
In this scenario (also illustrated in the video on the project webpage [173]), our predictions
could be temporally smoothed to reduce the jitter in the predictions by applying a simple
temporal low-pass filter similar to [208].

6.6.9 Qualitative examples
Random examples. Here we provide more qualitative examples on the datasets where
we have shown the quantitative evaluation. All the presented results consider the most
challenging scenario where the joint angles are unknown and are predicted together with
the robot’s 6D pose. For each dataset, we have randomly sampled 9 images without any
further manual selection and show the input RGB image and the output state predicted by
our method. Results are presented for the CRAVES-lab (figure 6-8), CRAVES-youtube
(figure 6-9), Panda ORB (figure 6-10), Kuka Photo (figure 6-11) and Baxter DR (figure 6-
12) datasets.

6.6.10 Failure modes
There are four main failure modes and limitations of our approach in the most challenging
set-up with unknown joint angles, illustrated in figure 6-13. First, while our method is
tolerant to some amount of self-occlusion, it can fail in situations where multiple parts
of the robot are occluded by external objects. Second, in some in-the-wild images (where
camera intrinsics are also unknown), our iterative alignment can get stuck in a local minima.
This could be improved by (i) using a better initialization (e.g. by using a separate external
coarse estimation method) or by (ii) trying multiple initializations and selecting the best
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Figure 6-9: Random selection of examples on the CRAVES-youtube dataset. Both joint
angles and the 6D pose of the robot are predicted from the input image. For each of the 9
examples, we show the input RGB image (left) and the predicted state of the robot within
the 3D scene (right). We illustrate the predicted state (right) by overlaying the articulated
CAD model of the robot in the predicted state over the input image.

result. The third failure mode is related to the symmetry of individual robot parts or of
entire robot configurations that are not taken into account in our method. Finally, robots
with many degrees of freedom such as the 15 DoF Baxter remain challenging (please see
the quantitative evaluation in section 6.4.2 in the main chapter), although our qualitative
results often show reasonable alignment, as illustrated in figure 6-12.
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Figure 6-10: Random selection of examples on the Panda ORB dataset. Both joint
angles and the 6D pose of the robot are predicted from the input image. For each of the 9
examples, we show the input RGB image (left) and the predicted state of the robot within
the 3D scene (right). We illustrate the predicted state (right) by overlaying the articulated
CAD model of the robot in the predicted state over the input image.

Figure 6-11: Random selection of examples on the Kuka Photo dataset. Both joint
angles and the 6D pose of the robot are predicted from the input image. For each of the
9 examples, we show the input RGB image (on the left) and the predicted state of the
robot within the 3D scene (on the right). We illustrate the predicted state (on the right)
by overlaying the articulated CAD model of the robot in the predicted state over the input
image.
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Figure 6-12: Random selection of examples on the Baxter DR dataset. Both joint angles
and the 6D pose of the robot are predicted from the input image. For each of the 9 examples,
we show the input RGB image (left) and the predicted state of the robot within the 3D scene
(right). We illustrate the predicted state (right) by overlaying the articulated CAD model of
the robot in the predicted state over the input image.
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Figure 6-13: Main failure modes. We illustrate the four main failure modes of our ap-
proach. In (1), the severe occlusions (circled in red) of the base of the robot and of one of
the parts in the middle of the kinematic chain lead to an incorrect prediction. In (2), the
state of the robot is incorrectly estimated because our iterative procedure gets stuck in a
local minimum. In (3), the gripper of the robot (circled in red) is a symmetric part, which
leads to an incorrect estimate of the joint angle between the gripper and the rest of the
robot. In (4), we illustrate an example of incorrect alignment of parts (circled in red) for
the complex 15 DoF Baxter robot.
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Chapter 7

Conclusions

In this chapter, we summarize the main results and contributions of the thesis, present
recent developments in the literature that rely on the presented work, and suggest multiple
avenues for future research.

7.1 Contributions

In this thesis, we have proposed methods for identifying the state of assets with known de-
scriptions within a scene using visual sensors. In particular, we focused on estimating the
pose of rigid objects as well as the pose and joint angles of articulated robots. The methods
proposed in this thesis can be applied to a wide variety of assets, including textureless or
symmetric objects, and robots with many degrees of freedom. We proposed learning-based
methods which can be trained entirely on synthetic data without manual annotations and
can be deployed in real environments. The approaches were evaluated on real challeng-
ing scenes depicting clutter and various illumination conditions, demonstrating significant
improvements over previous state-of-the-art on several benchmarks. The methods are also
fast and practical. They can be used online during execution on a real robotic system and
can be deployed in un-instrumented environments using cheap RGB sensors, without a
requirement for fiducial markers or time-consuming extrinsic camera calibration.

In chapter 3, we have proposed a multi-object calibration-free deep neural network for
estimating object positions within a robot workspace. The network directly maps image
pixels to 2D coordinates in the robot’s coordinate frame, using the (known) robot as an
implicit calibration target. We have also developed an efficient algorithm for planar rear-
rangement planning of multiple objects based on Monte-Carlo Tree Search. Visual state
estimation and planning modules were combined to demonstrate a full system on a real
robot that can operate from a hand-held camera and is robust to external perturbations of
the object positions during execution.

In chapter 4, we have developed methods for single-view and multi-view 6D pose es-
timation of known rigid objects. We first proposed a new method based on the iterative
render-and-compare strategy for single-view pose estimation. We introduced a new training
loss for pose estimation that handles symmetric objects and disentangles the effect of the
different components of the pose predictions. Our learning-based method leverages heavy
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data augmentation and advances in deep neural network architecture design for extracting
visual features and predicting a 3D rotation. It achieves significant improvements over the
previous state-of-the-art methods, winning the BOP challenge 2020. We then proposed a
multi-view method that addresses the failure modes inherent to single-view pose estima-
tion. We developed (i) an object-level RANSAC procedure to match 6D object detections
across different camera viewpoints and filter-out single-view outliers; and (ii) a multi-view
refinement strategy that recovers a single consistent scene by solving an object-level bundle
adjustment problem.

In chapter 5, we have addressed an important limitation of most learning-based methods
for 6D pose estimation of rigid objects. Namely, the best-performing methods require
the mesh model of the objects to be known in advance for generating synthetic data and
training, thus making them unusable in many robotic scenarios where rapid deployment
to novel objects is key. We introduced MegaPose, a learning-based method trained on a
large-scale synthetic dataset of thousands of objects that generalizes to novel objects given
their mesh model only available during inference. We first presented a 6D pose refiner
based on the render-and-compare strategy which can be applied to novel objects. The
shape and coordinate system of the novel object are provided as inputs to the network by
rendering multiple synthetic views of the object’s CAD model. We then introduced a novel
approach for coarse pose estimation which leverages a network trained to classify whether
a pose error between a synthetic rendering and an observed image of the same object can be
corrected by the refiner. We demonstrate the performance of our approach is competitive
with other methods that require the object models to be known in advance and show it can
be used to grasp novel objects with a real robot.

In chapter 6 we have presented a method to recover the full state of a robot within a
scene given an RGB image. We present an approach based on the render-and-compare
strategy that iteratively updates the 6D pose of the robot and its joint angles. We highlight
multiple choices of update parametrization are possible because one robot part attached
to others can be moved in 3D space by the 6D transformation of the anchor part, or by
joint angle displacements. We show the importance of the selection of the anchor part, and
propose an automatic strategy where the anchor part is randomly sampled among the largest
robot parts at each iteration of the iterative pose estimation procedure. We demonstrate our
approach significantly outperforms existing state-of-the-art and we notably present results
on robots with up to 15 degrees of freedom.

7.2 Recent developments and applications
In this section, we present examples of recent works in the literature that build on the
methods introduced in this thesis. The examples are illustrated in figure 7-1
Focal length and pose estimation. The approach introduced in chapters 4, 5 and 6 assume
the intrinsic parameters of the camera are known. For many "in-the-wild" images such
as internet pictures or archival photographs, these parameters are unknown. This problem
was addressed in [167] where a novel method for jointly estimating the pose of a known
object and the focal length of the camera is presented. FocalPose - the method introduced
in [167] - builds on CosyPose which we introduced in chapter 4 and takes inspiration from
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(a)

(b)

(c)

(d)

Figure 7-1: Recent works in the literature building on the methods introduced in this
thesis. In (a) [167], FocalPose [167] builds on CosyPose (chapter 4) to predict jointly the
focal length of the camera and an object pose. Results are presented for "in-the-wild" im-
ages of furniture like sofas, beds, tables; and large objects like cars. In (b)[18], CosyPose
(chapter 4) is used to predict the pose of YCB-V object during active human manipulation
(left). The poses are then used to generate robot grasps for human-robot handover (right).
In (c)[30], CosyPose (chapter 4) is used to predict stair steps (left). The information is com-
bined with the IMU of a quadruped robot to recover a robot trajectory in real-time (right).
In (d)[17], CosyPose is combined with physical constraints and task-and-motion planning
tools to perform assembly planning with textureless objects on a real robotic platform.
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the pose update and disentangled loss of CosyPose to address the scenario where the focal
length of the camera is unknown. In this work, the CAD model of an observed object is
used as an implicit calibration target, which draws similarities with our work presented
in chapter 3 where the known robot is used as implicit calibration for performing object
position estimation without assuming the focal length of the camera is known.
Reconstructing hand-object interaction. In [18], CosyPose is used to estimate the 6D
pose of objects during active manipulation by a human. The estimated poses are used to
generate robotic grasps and experiments on a real robot demonstrate the estimated poses
can be used to perform human-to-robot handover.
Object-level SLAM. In [30], CosyPose is trained to estimate the poses of stair steps using
the onboard camera of a quadruped robot. An object-level SLAM method is presented
to fuse the predicted poses with inertial measurements to reliably estimate the pose of the
robot in real-time. The output is the trajectory of the robot with respect to a set of candidate
contact surfaces, which could be combined with model predictive control (MPC) to allow
the robot to walk on the stairs.
Assembly planning of textureless objects. In [17], CosyPose is used to estimate the pose
of textureless industrial objects to perform assembly planning. Instead of using multiple
views for correcting failure modes inherent to single-view pose estimation, this method
proposes to use a combination of physical stability constraints, convex optimization, and
Monte-Carlo Tree search. The proposed approach is robust to detection errors and experi-
ments presented on a real robot demonstrate the accuracy of CosyPose is sufficient to grasp
textureless objects.

These examples of recent works building on CosyPose illustrate that the works intro-
duced in this thesis open-up applications in the domains of robotics and augmented reality.

7.3 Future research directions
In this section we outline several directions for future research.

7.3.1 Motion planning
• In chapter 3, we propose a formulation of the planar rearrangement planning problem

that can be solved with Monte-Carlo Tree Search (MCTS). An interesting direction
is to consider other planning problems such as planning the motion of a robotic arm
in presence of obstacles.

• The efficiency and speed of the MCTS solver could be improved using learned action
policy and value function introduced in Alpha Go [187]. For example [192] uses a
deep-learning based action policy for non-prehensile rearrangement planning.

7.3.2 Single-view 6D object detection
• The ablation study of section 5.4.3 on the number of objects used to train MegaPose

suggests the performance could be improved with a larger number of training objects.
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Additional meshes could be obtained by considering other datasets such as Abc [91],
Amazon Berkeley Objects (ABO) [24], or Common Objects in 3D (CO3D) [170].

• The MegaPose method could be used for estimating the 6D pose of a camera out-
door given 3D models of buildings, or to localize an indoor camera in a 3D-scanned
building.

• The running time of MegaPose could be improved with a more efficient rendering
pipeline. In the current implementation, 70% of the running time is spent rendering
images and transferring them back and forth between GPU and CPU due to technical
incompatibilities between renderer based on OpenGL and Pytorch. Running time
could be improved by rendering images in batch and converting buffers directly to
pytorch tensors.

• The coarse estimation strategy used in MegaPose relies on a network that predicts
a similarity score between an object in a specific pose in the rendered and observed
images. This network could be used to score pose hypotheses for sensor fusion, e.g.
for a SLAM application. Another interesting direction is to investigate if this score
is correlated with discrepancies between the mesh of the rendered object and the real
observed object. A score discriminative of both object pose and appearance could be
used for fine-grained object classification and pose verification.

7.3.3 Multi-view pose estimation
• The multi-view approach presented in chapter 4 could be extended to leverage tem-

poral continuity. For example, the candidate matching stage could be run only once.
The object hypotheses would be tracked with a single-view tracker (e.g. CosyPose or
MegaPose) in each separate view and refined globally by solving object-level bundle
adjustment in real-time.

• The running-time performance of the bundle adjustment solver could be improved
by using an efficient C++ solver such as CERES [2].

• Physical constraints could be leveraged to further improve the reconstruction ac-
curacy. For example, a term penalizing penetration between the objects could be
added to the loss of the global object-level bundle adjustment problem. This term
could be made differentiable using recent developments in differentiable contact de-
tection [139].

7.3.4 Beyond 6D pose estimation with render-and-compare
• In RoboPose introduced in chapter 6, different networks are used for each robot. The

robot kinematics are encoded in the weights of the networks and learned during train-
ing. Future work should consider developing a single network that can be applied to
novel robots without re-training. The robot kinematics could be provided as input
to the network by showing multiple images of the robot in different configurations,
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or the robot kinematics could be integrated explicitly inside the network using the
(differentiable) forward kinematics.

• In MegaPose introduced in chapter 5, the information on a novel object’s coordinate
system is implicitly provided as input to the network by providing multiple views of
the object. The same idea could be used to provide information about the basis of an
arbitrary transformation. For example, polyhedrons could be deformed iteratively by
a render-and-compare network to match parts of the environment. The visual effects
of network predictions (e.g. a 3-axis relative scale deformation of the polyhedron)
would be provided as input to the network. Such an approach could be used to
reconstruct walls, floors, or contact surfaces for a walking robot, and directly be used
for motion planning. A network based on render&compare could also be used to
iteratively refine deformable object models [146, 182, 183].

• The render&compare networks used in this thesis predict a 6D pose that aligns two
images, the input image and a rendering. A similar network could be used to predict
6D motion between multiple real images with applications in computational photog-
raphy, e.g. super-resolution or HDR from burst images [105, 227].

7.3.5 Predicting SE-3 transforms for robotic manipulation
• The scope of the methods presented in this thesis is limited to an object-level recon-

struction of a scene. Future work should explore how to use reconstructed scenes
for robotic manipulation. MegaPose could for example be used to extract the trajec-
tory of specific object poses during active manipulation, e.g. bottle and mugs during
pouring. Extracting the object-to-object pose trajectory on many human demonstra-
tions could be used to extract object-centric motions [114, 161, 222] that could be
transferred to a robot.

• The networks (e.g. in MegaPose) presented in this thesis present effective ways
for predicting 6D pose updates given 2D RGB images. The information learned in
this network could be re-used for other tasks that bypass the explicit object-level
representation of a scene. For example, the networks trained for 6D pose estimation
could be used as pre-training for policies with actions in the form of a rigid gripper
motion.
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MOTS CLÉS

Vision par ordinateur, robotique, estimation de pose, apprentissage automatique.

RÉSUMÉ

Cette thèse présente des méthodes permettant de récupérer la configuration 3D de scènes contenant des objets rigides et
des robots articulés en utilisant une ou plusieurs images RGB en entrées. Les scènes et conditions visuelles considérées
incluent des objets sans texture et/ou symétriques, des robots à plusieurs degrés de liberté, des scènes imagées dans des
conditions difficiles et des objets ou robots partiellement occlus. Les contributions comprennent des méthodes pour (i) la
détection et l’estimation de la position 2D des objets dans l’espace de travail d’un robot, (ii) la résolution efficace du problème
de réarrangement 2D, (iii) l’estimation de pose 6D d’objets basées sur l’apprentissage statistique, (iv) l’estimation de pose
multi-vues multi-objects, (v) l’estimation de la pose de nouveaux objets (c’est-à-dire inconnus pendant l’entraînement) et
(vi) l’estimation de la pose 6D et des angles articulaires d’un robot. Ces méthodes font progresser l’état de l’art sur les
benchmarks existants pour l’estimation de pose d’objets et de robots.

ABSTRACT

This thesis develops methods for recovering the 3D configuration of scenes containing rigid objects and articulated robots
using one or multiple RGB images as inputs. The scenes and visual conditions considered include textureless and/or sym-
metric objects, robot arms with several degrees of freedom, scenes imaged under challenging conditions, and objects or
robots partially occluded. The contributions include methods for (i) detection and 2D position estimation of objects in a
robot’s workspace, (ii) efficient planar rearrangement planning, (iii) learning-based 6D pose estimation of rigid objects with
known 3D models, (iv) multi-view multi-object 6D pose estimation, (v) pose estimation of novel objects (i.e. unseen during
training), and (vi) estimating the 6D pose and joint angles of an articulated robot. These methods advance the state-of-the-art
on existing datasets and benchmarks for object and robot pose estimation.

KEYWORDS

Computer vision, robotics, pose estimation, machine learning.
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