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Summary

English

Any image, digital or analogic, contains not only information from the scene being pho-
tographed but also external interferences known as noise. The resulting image is the combination
of the ideal image without noise with noise itself.

The “ideal image without noise” is a mathematic abstraction and it is not available in reality.
Thus, it is needed methods that given only the degraded image are capable to properly characterize
noise. This characterization using the noisy image is known as blind noise estimation since it does
not use any additional information out the the noisy image.

Once noise has been properly characterized, the next step is to obtain a version of the image
which is as close as possible to the ideal image. This process is known as blind denoising, since the
ideal image is not available. Denoising methods exploit the property of autosimilarity of the small
blocks that form the image to infer the geometry of the blocks of the ideal image. Denoising is a
process guided by previous noise estimation.

Given that both noise estimation and denoising are performed blindly, it is important that noise
characterization is as complete as possible. In this thesis several techniques for noise estimation
are discussed, from the simplest which just consider homoscedastic noise, through those which
consider the Poissonian model, to finally the new technique that we propose to obtain a complex
noise model that depends on both intensity and frequency.

Regarding denoising, this thesis is mainly focuses on Bayesian techniques. The thesis finally
reaches with the presentation of the Noise Clinic, the tool which we propose for automatic noise
estimation and denoising. The Noise Clinic combines the automatic estimation of a complex noise
model with its elimination at each of the scales of the image. This allows to restore a large typology
of images, including those compressed with JPEG.

Català

Qualsevol imatge, ja sigui digital o analògica, conté no només informació de l’escena fotografi-
ada, sinó també interferències externes conegudes com renou. La imatge resultant és la combinació
de la imatge ideal sense renou, amb el renou mateix.

La “imatge ideal sense renou” és una abstracció matemàtica i no està disponible a la realitat.
Per tant, cal utilitzar mètodes que, donada únicament la imatge deteriorada, siguin capaços de
caracteritzar adequadament el renou. Aquesta caracterització a partir de la imatge amb renou es
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10 SUMMARY

coneix com estimació a cegues del renou, atés que no s’utilitza cap altra informació addicional a
part de la imatge amb renou.

Un cop caracteritzat adequadament el renou, el següent pas és obtenir una versió de la imatge
que sigui tan fidel com sigui possible a la imatge ideal. Aquest procés es coneix com eliminació
de renou a cegues, ja que la imatge ideal no està disponible. Els mètodes d’eliminació de renou
aprofiten la propietat d’ autosimilaritat dels petits blocs que componen la imatge per inferir la
geometria dels blocs de la imatge ideal. L’eliminació de renou és un procés guiat per l’estimació
de renou prèvia.

Atès que tant l’estimació com l’eliminació de renou es realitzen a cegues, és important que
la caracterització del renou sigui tan completa com sigui possible. En aquesta tesi es discuteixen
en detall les diverses tècniques per a l’estimació de renou, des de les més simples que únicament
consideren renou homoscedàstic, passant per les que consideren el model poissonià de renou, fins
a finalment la nova tècnica que proposem per obtenir un model de renou complex, que depèn tant
de la intensitat com de la freqüència .

Pel que fa a l’eliminació de renou, aquesta tesi se centra especialment en les tècniques basades
en el model bayesià. La tesi culmina amb la presentació de la Noise Clinic , l’eina que proposem per
a l’estimació i eliminació automàtiques del renou. La Noise Clinic combina l’estimació automàtica
d’un model de renou complex amb la seva eliminació en cadascuna de les escales de la imatge.
Això permet restaurar una tipologia extensa d’imatges, incloent les comprimides amb JPEG.

Castellano

Cualquier imagen, ya sea digital o analógica, contiene no solamente información de la escena
fotografiada, sino también interferencias externas conocidas como ruido. La imagen resultante es
la combinación de la imagen ideal sin ruido, con el propio ruido.

La “imagen ideal sin ruido” es una abstracción matemática y no está disponible en la realidad.
Por lo tanto, es necesario utilizar métodos que, dada únicamente la imagen deteriorada, sean
capaces de caracterizar adecuadamente el ruido. Esta caracterización a partir de la imagen ruidosa
se conoce como estimación a ciegas del ruido, ya que no se utiliza ninguna otra información
adicional aparte de la imagen ruidosa.

Una vez caracterizado adecuadamente el ruido, el siguiente paso es obtener una versión de la
imagen que sea tan fiel como sea posible a la imagen ideal. Este proceso se conoce como eliminación
de ruido a ciegas, ya que la imagen ideal no está disponible. Los métodos de eliminación de ruido
aprovechan la propiedad de autosimilaridad de los pequeños bloques que componen la imagen para
inferir la geometría de los bloques de la imagen ideal. La eliminación de ruido es un proceso guiado
por la estimación de ruido previa.

Dado que tanto la estimación como la eliminación de ruido se realizan a ciegas, es importante
que la caracterización del ruido sea tan completa como sea posible. En esta tesis se discuten en
detalle las diversas técnicas para la estimación de ruido, desde las más simples que únicamente
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consideran ruido homoscedástico, pasando por las que consideran el modelo poissoniano de ruido,
hasta finalmente la nueva técnica que proponemos para obtener un modelo de ruido complejo, que
depende tanto de la intensidad como de la frecuencia.

En cuanto a la eliminación de ruido, esta tesis se centra especialmente en las técnicas basadas
en el modelo bayesiano. La tesis culmina con la presentación de la Noise Clinic, la herramienta
que proponemos para la estimación y eliminación automáticas del ruido. La Noise Clinic combina
la estimación automática de un modelo de ruido complejo con su eliminación en cada una de las
escalas de la imagen. Esto permite restaurar una tipología extensa de imágenes, incluyendo las
comprimidas con JPEG.





Preface

Digital images are matrices of regularly spaced pixels, each containing a photon count. This
photon count is a stochastic process due to the physical quantum nature of light. It follows that
all images are noisy. Ever since digital images exist, numerical methods have been proposed to
improve the signal to noise ratio. Such “denoising” methods require a noise model and an image
model. This thesis addresses the definition of noise models and their estimation from the digital
image themselves. It also develops the main application which we call “blind denoising”, namely
the fully automatic noise detection and removal. This is done in the framework of state of the
art denoising algorithms which are mostly patch-based. For this reason, the thesis also presents a
synthetic theory of patch-based methods.

This thesis is divided into three parts:

(1) Noise Estimation
(2) Patch Denoising
(3) Reproducible Research Contributions

Part 1: NOISE ESTIMATION

In the first part of the thesis, Noise Estimation, we discuss several strategies to estimate the
noise. The simplest experimental procedure to evaluate a noise estimation strategy just consists
on simulating white Gaussian noise and adding it to a noise-free image (or to an image which
is supposed to contain a very small or negligible noise). Then, the noise is estimated with some
homoscedastic1 noise estimator and its variance is obtained (in this context, “homoscedastic" means
that the variance of the noise does not vary depending on the intensity or the frequencies in the
noisy image). In Chapter 1 several homoscedastic noise methods are presented and discussed. This
work by Lebrun, Colom, Buades, and Morel was published in the Acta Numerica journal with the
article Secrets of image denoising cuisine [1].

Unfortunately, the simple homoscedastic noise model is not useful to estimate the noise in
real digital noise images. Indeed, the very first image acquired by the camera at the focal plane
(the raw image) exhibits a noise that depends on the intensity. This noise, called the photon noise
can be modeled with a Poisson distribution, for which the variance is an increasing function of the
expectation (the mean intensity), also called a noise curve. This is related to the physical quantum

1Here homoscedastic noise refers to a set of random variables with the same finite variance regardless their

mean.
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14 PREFACE

nature of light, for which the emission of individual photons by any body is a Poisson random
process. Therefore, even in the raw image the noise is signal-dependent: the amount of noise
increases with the intensity of the underlying ideal image. This invalidates for real applications
the use of classic methods (discussed in Chapter 1) that only estimate a global variance of the
noise for the whole image. However, most of the noise estimation methods are patch-based and in
consequence they can be easily adapted to estimate signal-dependent noise. Although the exact
distribution for photon noise is the Poisson distribution, when the exposure time λ is large enough
(λ > 1000), the Poisson distribution of parameter λ can be approximated with small error by
a Gaussian distribution with µ = σ2 = λ. Therefore, many signal-dependent noise estimation
methods assume that the noise is white and Gaussian for each intensity level [2, 3, 4, 5, 6].
However, the assumption that states that the variance is linear with the intensity is false in general,
since the saturation of the detectors at the most dark and bright pixels of the image gives a nonlinear
function of the variance according to the intensity. Even if the noise function under saturation can
be predicted quite accurately, as shown by Foi in the article Practical Poissonian-Gaussian Noise
Modeling and Fitting for Single-Image Raw-Data [7], the noise does not need to follow at all the
linear model and might follow any other model, as demonstrated by Boie and Cox in An Analysis
of Camera Noise [8]. In general, the information about the noise model that corrupted an image,
the characteristics of the detector and the exact transformations it suffered until the final image
was formed, are unknown. Therefore, in that situation the only solution is to obtain a noise model
directly from the noisy image, without assuming any prefixed model or parameters (nonparametric
estimation). In Chapter 2 we present to procedure to adapt any patch-based homoscedastic noise
estimator to obtain a signal-dependent noise estimation. In continuation we give a nonparametric
method that overcomes the state of the art in signal-dependent noise estimation for raw images. An
extensive cross-validation procedure is described to compare this new method with state-of-the-art
parametric methods and with laboratory calibration methods giving a reliable ground-truth, even
for nonlinear detectors. The procedure to obtain a ground-truth is described in detail. This work
was published by Colom, Buades, and Morel in the Journal of the Optical Society of America A,
with the article Nonparametric Noise Estimation Method for Raw Images [9].

In Chapter 3 we study in detail the characteristics of the noise through each step of the camera
processing chain, namely:

(1) The raw image acquisition at the focal plane of the camera.
(2) Demosaicing, the obtain a color image.
(3) White balance, the compensate the different gains of the detector at each channel in order

to get realistic colors.
(4) Gamma correction, to increase the dynamics of the image and therefore enhance the

visualization of dark pixels.
(5) JPEG compression, to reduce the size of the file that will finally contain the data of the

image by lossy compression.

The aim is to understand how each of these transformations affects the noise curve obtained
with a signal-dependent noise estimator. We used two different cameras (Canon EOS 30D and
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Figure 2. Typical color spots or stains that can be observed in a JPEG image,
caused mainly by two different steps of the camera processing. First, demosaicing
correlates noise (thus creating low frequency noise that looks like color spots) and
afterwards the gamma correction step increases the energy of the pixels, specially
the darkest. As a result, the noise is converted in color spots which are clearly
visible all over the image, specially at the darkest zones.

Nikon D80), two ISO speeds (1250 and 1600), and four exposure times (1/30s, 1/250s, 1/400s,
1/640s). We identify and discuss the sources of the global perturbation that we observe as “noise"
(dark noise, photon noise, readout noise, shot noise, and electronic noise), explain each of the
steps in the camera processing pipeline, and for each of the step, discuss the obtained noise curves.
Chapter 3 explains the origin of the kind of noise that is observed at the final JPEG image: small
colors spots, especially at the darkest zones. Figure 2 shows the typical color spots or stains that
can be observed in a JPEG image, caused mainly by two different steps of the camera processing.
First, demosaicing correlates noise (thus creating low frequency noise that looks like color spots)
and afterwards the gamma correction step increases the energy of the pixels, specially at the
darkest. As a result, the noise is converted in color spots which are clearly visible all over the
image, specially at the darkest zones.

Under the same ISO speed and exposure time conditions, the noise curves obtained by different
cameras differ. Some cameras do not pre-process at all the data acquired at the CCD or CMOS
detector and therefore it would be possible to assume a Poisson model for the noise. However, in
other cameras the data at the raw image has been already altered in an unknown way, thus making
it impossible to assume any model. Therefore, it is preferable to use non-parametric models that
directly estimate a noise curve from the image itself with assuming a predefined model.

Figure 3 shows the noise curves obtained with a signal-dependent noise estimation along all
the processing chain: raw image, demosaicing, white balance, gamma (tone curve) correction and
JPEG compression, using a Canon EOS 30D camera. In solid lines, the temporal estimation
(ground-truth) and in dashed lines the spatial estimation.

In fact, if the noise estimator assumes that the noise is signal-dependent but does not take
into account that the noise depends on the frequency, the noise is strongly subestimated, as can be
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Figure 3. Complete pipeline for ISO 1600, t=1/30s, Canon: raw image, demo-
saicing, white balance, gamma (tone curve) correction and JPEG compression. In
the first step (raw image), all four color channels share the same noise curve. After
demosaicing, each color channel have a different noise curve, since the Adams-
Hamilton algorithm treats each channel in a different way. Finally, the gamma
correction saturates the noise curve, which starts to decrease from a certain in-
tensity. The final JPEG noise curve exhibits the combination of all these effects
along the processing chain. In solid lines, the temporal estimation (ground-truth)
and in dashed lines the spatial estimation.

observed in Figure 3, where the spatial estimation given by the algorithm (dashed lines) is really
underestimating the noise (solid lines, the ground truth from the temporal estimation). In general,
denoising algorithms need an accurate estimation of the noise to properly denoise an image. Since
the exact transformations that have been applied to the noisy image are unknown, assuming a
model is too risky and it is preferable to get a profile of the noise depending of the intensity,
frequency and scale from the noisy image itself. Chapter 3 concludes that any noise estimation
algorithm that is intended for real images must consider the noise not only signal-dependent, but
also frequency-dependent (SFD noise). The noise must be estimated according both the intensity
and the frequency.

Chapter 4 presents our proposed method to estimate SFD noise. We present a new semi-
distance to measure the likeliness between two patches, called the sparse distance and depict a new
algorithm that overcomes the current state of the art algorithm for frequency-dependent noise. The
algorithm is validated using both simulations and observations of denoising results on real images.
This work by Colom, Lebrun, Buades, and Morel is submitted to the IEEE Transactions On Image
Processing with the article Multiscale Estimation of Intensity and Frequency Dependent Noise [10].
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Part 2: PATCH DENOISING

The second part of the thesis, Patch Denoising, discusses the obvious application of noise estima-
tion: using the noise model obtained from the noisy image itself to remove the noise from it and
obtain a new version of the image for which the noise has been removed (or at least, minimized).
Of course, details, textures, and edges must be preserved. This process is called denoising.

Chapter 5 discusses the Bayesian patch-based method, which gives an optimal formulation
under the assumption that the patches similar to a given image patch follow a stochastic model.
Given a noiseless patch P of u with dimension κ × κ, and P̃ an observed noisy version of P , the
model gives by assuming a Gaussian model and the independence of noise pixel values

P(P̃ |P ) = c · exp

(
−∥P̃ − P∥2

2σ2

)
,

where P and P̃ are considered as vectors with κ2 components, ||P || denotes the Euclidean norm of
P , σ2 the variance of the Gaussian noise, and c is the normalizing constant. Knowing P̃ , the goal
is to deduce P by maximizing P(P |P̃ ). Using Bayes’ rule, the last conditional probability can be
written as

P(P |P̃ ) =
P(P̃ |P )P(P )

P(P̃ )
.

P̃ being observed, this formula can in principle be used to deduce the patch P maximizing the
right term, viewed as a function of P . If we assume that patches Q similar to a given patch P

also follow the Gaussian model with empirical sample covariance matrix CP and empirical sample
mean P , then

P(Q) = c · exp
(
−(Q− P )tC−1

P (Q− P )

2

)
.

Using the classical Bayesian equivalence of problems,

max
P

P(P |P̃ ) ⇔ max
P

P(P̃ |P )P(P )

and after some calculus, Chapter 5 concludes that a restored patch P̂1 can be obtained from the
observed patch P̃ by the one step estimation

P̂1 = P̃ +
[
CP̃ − σ2I

]
C−1

P̃
(P̃ − P̃ ).

Chapter 6 discusses and gives also the detailed algorithmic descriptions of three generic tools
used to denoise an image:

• Aggregation
• “Oracle”
• Color transform

The idea behind aggregation techniques is to combine for any pixel a set of m possible esti-
mates. If these estimates were independent and had equal variance, then a uniform average would
reduce this estimator variance by a factor m. For most denoising methods the variance of the
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estimators is high near image edges. When applied without aggregation, the denoising methods
leave visible “halos” of residual noise near edges (for example, in the sliding window DCT method).

Aggregation techniques aim at a superior noise reduction by increasing the number of values
being averaged for obtaining the final estimate or selecting those estimates with lower variance.
Another type of aggregation technique, like in the works of Raphan, Van De Ville, and Deledalle,
considers the risk estimate rather than the variance to locally attribute more weight to the esti-
mators with small risk [11, 12, 13].

The use of an “oracle" is another technique used to improve the denoising results. Iterative
strategies to remove residual noise would drift from the initial image. Instead, a first step denoised
image can be used to improve the reapplication of the denoising method to the initial noisy image.
In a second step application of a denoising principle, the denoised DCT coefficients, or the patch
distances, can be computed in the first step denoised image. They are an approximation to the
true measurements that would be obtained from the noise-free image. Thus, the first step denoised
image is used as an “oracle” for the second step.

A color transform is also a useful tool to avoid artifacts introduced by denoising. Indeed, most
denoising algorithms treat each image channel independently, which may introduce color artifacts
easily noticeable by the eye. Denoising the image in a different color space avoids this problem.
For example, passing from the RGB to the YUV colorspace. Finally, Chapter 6 shows an example
(Figure 1) where it can be clearly identified the effect of each of these tools when performing
denoising.

Chapter 7 presents and discusses in detail two patch-based denoising methods, the classic
NL-means method which uses similar patches to denoise by aggregation and the NL-Bayes method
(Chapter 7), which uses an oracle step to obtain a list of similar patches for each patch it denoises.
A cleaned version of the patch is obtained from the improved sample covariance matrix of the
similar patches thanks to the oracle. Detailed algorithmic descriptions for both methods are given
in Algorithm 18 and Algorithm 19, namely.

Chapter 8 develops the project which we named Noise Clinic, that involves applying the multi-
scale intensity-frequency estimation method in Chapter 4 to obtain a noise model from the patches
of the noisy image itself (nonparametric estimation) to denoise it without any prior information
(blind denoising) using a Bayesian patch-based method. The method uses a multiscale strategy
that allows to estimate accurately strongly correlated low-frequency noise, as long as the image is
large enough.

Indeed, in most images handled by the public and even by scientists, the noise model is
imperfectly known or unknown. End users only dispose of the result of a complex image processing
chain effectuated by uncontrolled hardware and software (and sometimes by chemical means).
For such images, recent progress in noise estimation permits to estimate from a single image
a noise model which is simultaneously signal and frequency dependent. Chapter 8 proposes a
multiscale denoising algorithm adapted to this broad noise model. This leads to a blind denoising
algorithm which we demonstrate on real JPEG images and on scans of old photographs for which
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the formation model is unknown. The consistency of this algorithm is also verified on simulated
distorted images. This algorithm is finally compared to the unique state of the art previous blind
denoising method [14] by Portilla.

Figure 4 shows a 7 February 1966 picture of the Honolulu Conference, with General Earle
Wheeler, Secretary of State Dean Rusk, and President Lyndon B. Johnson depicted in Camp
Smith, Hawaii2 (a), a detail in the noisy image (b), and the same detail in the denoised image (c).
It can be observed that the noise has been removed, while keeping the details of the image. Figure
5 shows the noise curves obtained when denoising the image using two scales with the Noise Clinic.
On the left, the mean of the standard deviations of the high (a) and low (b) frequencies at the first
scale. On the right, the mean of the standard deviations of the high (b) and low (d) frequencies at
the second scale. It can be observed that the noise at the first scale is lower than the noise at the
second scale, and that within any of the scales the noise at the low frequencies is higher than the
noise at the high frequencies. This is because the noise has mainly energy in its low frequencies
and is highly correlated. Figure 6 shows a detail of difference between the noisy image and the
image denoised at each scale. In scale #1 (b), the noise has a particular spatial structure, since
low-frequency noise is detected at the second scale. On scale #0 (a), the noise is less correlated,
but still mainly low-frequency noise. To improve the visualization of the images, the histogram of
the difference image has been equalized.

Part 3: REPRODUCIBLE RESEARCH CONTRIBUTIONS

The third part of the thesis presents three of the reproducible research contributions of this dis-
sertation:

• how to adapt block-based homoscedastic noise estimators to measure intensity-dependent
noise;

• how to filter the obtained noise curves to cancel undue oscillations;
• how saturated pixels distort the shape of noise curve and how to avoid them.

The articles presented in this third part were published in the Image Processing On Line
(IPOL) journal. It publishes image processing and image analysis algorithms, described in ac-
curate literary form, coupled with code. This way, scientists are allowed to check directly the
published algorithms online with any uploaded image. It also promotes reproducible research, and
the establishment of a state of the art verifiable by all, and on any image.

Section 1.1 of Chapter 9 discusses how to adapt most of the patch-based noise estimation
methods to measure intensity-dependent noise. For a signal-dependent noise, a “noise curve” must
be established. This noise curve associates with each image value U(x, y) an estimation of the
standard deviation of the noise associated with this value. Thus, for each block in the image, its
mean must be computed and will give an estimation of a value in U. The measurement of the

2From the National Archives and Records Administration. The National Archives and Records Administration

provides images depicting American and global history which are public domain or licensed under a free license.
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(a)

(b) (c)

Figure 4. A 7 February 1966 picture of the Honolulu Conference, with General
Earle Wheeler, Secretary of State Dean Rusk, and President Lyndon B. Johnson
depicted in Camp Smith, Hawaii (a), a detail in the noisy image (b), and the
same detail in the denoised image (c). It can be observed that the noise has been
removed, while keeping the details of the image.

variation of the block (for example, its variance) will also be stored. The means are classified into a
disjoint union of variable intervals or bins, in such a way that each interval contains a large enough
number of elements. These measurements allow for the construction of a list of block variances
whose corresponding means belong to the given bin. The procedure to obtain the noise curve is
discussed and the description is given in Algorithm 21.

The noise curve obtained may present peaks when some given gray level interval contains
mostly means of blocks belonging to a highly textured region. In this case, the measured block
variance would be caused by the signal itself and not by the noise and the noise variance would
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(d)

Figure 5. Noise curves obtained when denoising the image with two scales. On
the left, the mean of the standard deviations of the high (a) and low (b) frequencies
at the first scale. On the right, the mean of the standard deviations of the high
(b) and low (d) frequencies at the second scale.

be overestimated. To solve it, the noise curve obtained can be filtered. The pseudocode of the
filtering is detailed in Algorithm 24.

When the number of photons measured by the CCD or CMOS detector during the exposure
time is too high, its output may get saturated, and therefore underestimated. When the signal
saturates the output of the CCD or CMOS detector, the measured variance in the saturated areas
of the image is zero. If saturated pixels are taken into account when measuring the noise, the
noise curve is no more reliable. Section 1.3 of Chapter 9 presents the strategy proposed to discard
saturated pixels, that consists on rejecting the blocks that contain a group of four connected exactly
equal pixels, in any of the channels. The pseudocode can be found in Algorithm 25.

These three general tools (adaptation to signal-dependent noise, noise curve filtering, and
avoiding saturated pixels in the estimation) were applied to the

• Ponomarenko et al. method;
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(a) (b)

Figure 6. Detail of difference between the noisy image and the image denoised
at each scale. In scale #1 (b), the noise has a particular spatial structure, since
low-frequency noise is detected at the second scale. On scale #0 (a), the noise is
less correlated, but still mainly low-frequency noise. To improve the visualization
of the images, the histogram of the difference image has been equalized.

• Percentile method;
• PCA method.

Chapter 10 discusses and analyzes in deep detail the Ponomarenko et al. method inside this
new framework. In the article An Automatic Approach to Lossy Compression of AVIRIS Images
[15, 16] N. N. Ponomarenko, V. V. Lukin, M. S. Zriakhov, A. Kaarna, and J. T. Astola propose
a new method to specifically compress AVIRIS (Airborne Visible/Infrared Imaging Spectrometer)
images. As part of the compression algorithm, a noise estimation is performed with a proposed
new algorithm based on the computation of the variance of overlapping 8 × 8 blocks. The noise
is estimated on the high-frequency orthonormal DCT-II coefficients of the blocks. To avoid the
effect of edges and textures, the blocks are sorted according to their energy measured on a set
of low-frequency coefficients. The final noise estimation is obtained by computing the median of
the variances measured on the high-frequency part of the spectrum of the blocks using only those
whose energy (measured on the low-frequencies) is low. A small percentile of the total set of blocks
(typically the 0.5%) is used to select those blocks with the lower energy at the low-frequencies.

Chapter 11 discusses and analyzes in depth the Percentile method [17] using the presented
framework. Given a white Gaussian noise signal Nσ on a sampling grid, its variance σ2 can be
estimated from a small w×w pixels sample. However, in natural images we observe Ũ = U+Nσ,
the combination of the geometry of the scene that is photographed and the added noise. In this
case, estimating directly the standard deviation of the noise from w × w samples of Ũ is not
reliable since the measured standard deviation is not explained just by the noise but also from
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the geometry of U. The Percentile method tries to estimate the standard deviation σ from w×w

blocks of a high-passed version of Ũ by a small p-percentile of these standard deviations. The idea
behind is that edges and textures in a block of the image increase the observed standard deviation
but they never make it decrease. Therefore, a small percentile (0.5%, for example) in the list of
standard deviations of the blocks is less likely to be affected by the edges and textures than a
higher percentile (50%, for example). The 0.5%-percentile is empirically proven to be adequate for
most natural, medical and microscopy images.

Chapter 12 discusses and analyzes in deep detail the PCA method from the article Image
Noise Level Estimation by Principal Component Analysis [18, 3], where S. Pyatykh, J. Hesser,
and L. Zheng propose a new method to estimate the variance of the noise in an image from the
eigenvalues of the covariance matrix of the overlapping blocks of the noisy image. Instead of
using all patches of the noisy image, the authors propose an iterative strategy to adaptively chose
the optimal set containing the patches with lowest variance. The method is analyzed inside the
presented framework.

For these three methods, the following tests were performed in Chapter 13 for the Ponomarenko
et al., Percentile and PCA methods:

• Tests on simulated white Gaussian noise using the noise-free images. In this case we took
seven bins to classify the blocks according to their means (see Section 1.1 of Chapter 9).

• Tests on a set of real raw images obtained by a Canon EOS 30D camera (see Figure 2).
The procedure explained in Section 1.1 of Chapter 9 was used to get a noise curve. The
results were compared to the ground-truth noise curve of the camera.

• Test on multiscale coherence. The standard deviation of a Gaussian white noise is divided
by two when the image is down-scaled. By down-scaling the image we mean a sub-
sampling of the image where each block of four pixels is substituted by their mean. This
test checks if the measured noise is divided by two at each image down-scaling.

We show the results obtained with the set of images for the Ponomarenko et al., Percentile
and PCA methods.

Of course, estimating homoscedastic noise is not enough to characterize the signal-dependent
noise in real digital images. In order to evaluate the accuracy of the three methods with signal-
dependent noise, we obtained a ground-truth noise curve of the Canon EOS 30D camera with the
procedure explain in Chapter 2. Then, we obtained the noise curves for each of the raw images
in 2 and compared them with the ground-truth noise curve of the camera. Figure 7 shows the
ground-truth noise curve for raw images for the Canon EOS 30D camera, with ISO speed 1600.

To evaluate the accuracy of each method, we compared the obtained noise curve obtained by
each method with the ground-truth.

After evaluating all three methods with the three tests (simulated homoscedastic noise, intensity-
dependent noise, and multiscale coherence), the conclusion is that the strategy followed by the
modified Ponomarenko et al. method is the best and can be considered as the state of the art
in intensity-dependent noise estimation. The Percentile method gives slightly worse results than
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Figure 7. Ground-truth noise curve for the Canon EOS 30D camera, for ISO
speed 1600.

Ponomarenko et al. method and PCA is in general worse and requires at least the double of
samples than Ponomarenko and Percentile to achieve similar results.

Section 5 of Chapter 13 discusses about the algorithmic complexity the operations needed to
adapt homoscedastic noise estimation methods into intensity-dependent, the noise filtering, and
the detection of blocks with saturated pixels. These operations can be considered a common
framework where almost all noise estimation algorithms can be put inside and estimate intensity-
dependent noise. The algorithmic complexity analysis of the Ponomarenko et al., Percentile, and
PCA methods within the common framework is also given.

Chapter 6 presents the conclusions of the research presented in this thesis.
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Part 1

NOISE ESTIMATION



In this first part of the thesis, we address the problem of the different noise models and how ade-
quate they are to estimate noise in different scenarios. From the simplest models for white Gaussian
noise to the most complex noise model which are able to estimate noise in JPEG-compressed im-
ages. All the noise estimation models described in this thesis (and thus, all denoising methods),
are block-based.

Chapter 1 discusses the homoscedastic white Gaussian noise model, the simplest model. It is
not directly applicable to real images, where the physics of light make the variance of the noise
depend on the intensity. However, it is possible to adapt the noise estimator under this model to
measure signal-dependent noise, as explained in Chapter 2 and hence the interest of considering
this model. In this chapter we evaluate several homoscedastic noise estimation methods and also
introduce the objective of noise estimation which is, obviously, denoising. The classic NL-means
denoiser is shown as an example, and three generic tools for denoising are discussed.

In Chapter 2 we discuss the adaptation of block-based noise estimators to measure signal-
dependent noise, a model that is consistent with the photon noise (modeled with the Poisson dis-
tribution). The concept of “noise curve" is introduced and a non-parametric estimating the noise
curve directly from a single raw image is described. We also detail the procedure that permits to
obtain a ground-truth noise curve.

In order to check the validity of the signal-dependent noise model, Chapter 3 shows the noise
curves at each step of the camera processing pipeline (from the initial raw to the final JPEG image)
and compares them with the corresponding ground-truth curve. The signal-dependent noise model
is valid for raw images, but is not enough for correlated noise, as shown in Chapter 3 This noise
curves along the step of the camera pipeline show that, indeed, the signal-dependent model is not
sufficient after demosaicing.

Chapter 4 discusses a new estimation method able to measure the noise even in JPEG-encoded
images, where the noise model is complex, with low-frequency noise, and highly correlated.



CHAPTER 1

The homoscedastic noise model

In this chapter, our main goal is to review not less than 13 blind homoscedastic white noise
estimation methods using a single image. These methods will be discussed within the context of
block-based denoising. Indeed, the main idea behind denoising techniques is to exploit the self-
similarity property of natural images, to find similar patches whose aggregation gives a denoised
version of them. The measure of the distance between patches depends on the variance of the noise
and therefore noise estimation is a needed step for blind denoising. We will show this using a
classic denoiser (NL-means) as an example. The performance of all methods depends on three
generic tools: color transform, aggregation, and an “oracle” step, which will be presented in this
chapter.

In this chapter we will only focus on homoscedastic noise estimation, that is, assuming that
the noise variance is fixed and does not depend on the intensity or the frequency of the underlying
noise-free image. Since adapting block-based noise estimators to signal and frequency dependent
noise is relatively easy, it is justified to analyze first homoscedastic noise estimators. Later in
Chapter 2 we discuss the adaptation of block-based noise estimator to signal-dependent noise and
in Chapter 4 the adaptation to signal and frequency dependent noise.

1. Introduction

Most digital images and movies are currently obtained by a CCD or CMOS detector. The value
ũ(i) observed by a sensor at each pixel i is a Poisson random variable whose mean u(i) would be
the ideal image. The difference between the observed image and the ideal image ũ(i)− u(i) = n(i)
is called “shot noise”. On a motionless scene with constant lighting, u(i) can be approached by
simply accumulating photons for a long exposure time, and by taking the temporal average of this
photon count, as illustrated in Figure 1.

Accumulating photon impacts on a surface is therefore the essence of photography. The
first Nicéphore Niépce photograph in 1826 [23] was obtained after an eight hours exposure. The
problem of a long exposure is the variation of the scene due to changes in light, camera motion,
and incidental motions of parts of the scene. The more these variations can be compensated, the
longer the exposure can be, and the more the noise can be reduced. If a camera is set to a long
exposure time, the photograph risks motion blur. If it is taken with short exposure, the image is
dark, and enhancing it reveals the noise.

A possible solution is to take a burst of images, each with short-exposure time, and to average
them after registration. This technique, illustrated in Figure 1, was evaluated recently in a paper

29
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that proposes fusing bursts of images taken by cameras [24]. This paper shows that the noise
reduction by this method is almost perfect: fusing m images reduces the noise by a

√
m factor.

It is not always possible to accumulate photons. There are obstacles to this accumulation in
astronomy, biological imaging and medical imaging. In day to day images, the scene is moving,
which limits the exposure time. The main limitations to any imaging system are therefore the
noise and the blur. In this review, experiments will be conducted on photographs of scenes taken
by normal cameras. Nevertheless, the image denoising problem is a common denominator of all
imaging systems.

A naive view of the denoising problem would be: how to estimate the ideal image, namely the
mean u(i), given only one sample ũ(i) of the Poisson variable? The best estimate of this mean is
of course this unique sample ũ(i). Getting back a better estimate of u(i) by observing only ũ(i) is
impossible. Getting a better estimate by using also the rest of the image is obviously an ill-posed
problem. Indeed, each pixel receives photons coming from different sources.

Nevertheless, a glimpse of a solution comes from image formation theory. A well-sampled
image u is band-limited [25]. Thus, it seems possible to restore the band-limited image u from its
degraded samples ũ, as was proposed in 1966 in [26]. This classic Wiener-Fourier method consists
in multiplying the Fourier transform by optimal coefficients to attenuate the noise. It results in a
convolution of the image with a low-pass kernel.

From a stochastic viewpoint, the band-limitedness of u also implies that values ũ(j) at neigh-
boring pixels j of a pixel i are positively correlated with ũ(i). Thus, these values can be taken
into account to obtain a better estimate of u(i). These values being nondeterministic, Bayesian
approaches are relevant and have been proposed as early as 1972 in [27].

In short, there are two complementary early approaches to denoising, the Fourier method, and
the Bayesian estimation. The Fourier method has been extended in the past thirty years to other
linear space-frequency transforms such as the windowed DCT [28] or the many wavelet transforms
[29].

Being first parametric and limited to rather restrictive Markov random field models [30], the
Bayesian method are becoming non-parametric. The idea for the recent non parametric Markovian
estimation methods is a now famous algorithm to synthesize textures from examples [31]. The
underlying Markovian assumption is that, in a textured image, the stochastic model for a given
pixel i can be predicted from a local image neighborhood P of i, which we shall call “patch”.

The assumption for recreating new textures from samples is that there are enough pixels
j similar to i in a texture image ũ to recreate a new but similar texture u. The construction
of u is done by nonparametric sampling, amounting to an iterative copy-paste process. Let us
assume that we already know the values of u on a patch P surrounding partially an unknown pixel
i. The Efros-Leung [31] algorithm looks for the patches P̃ in ũ with the same shape as P and
resembling P . Then a value u(i) is sorted among the values predicted by ũ at the pixels resembling
j. Indeed, these values form a histogram approximating the law of u(i). This algorithm goes back
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Figure 1. From left to right: (a) one long-exposure image (time=0.4 s, ISO=100),
one of 16 short-exposure images (time=1/40 s, ISO=1600) and their average after
registration. The long exposure image is blurry due to camera motion. (b) The
middle short-exposure image is noisy. (c) The third image is about four times
less noisy, being the result of averaging 16 short-exposure images. From [24].

to Shannon’s theory of communication [25], where it was used for the first time to synthesize a
probabilistically correct text from a sample.

As was proposed in [32], an adaptation of the above synthesis principle yields an image
denoising algorithm. The observed image is the noisy image ũ. The reconstructed image is the
denoised image û. The patch is a square centered at i, and the sorting yielding u(i) is replaced
by a weighted average of values at all pixels ũ(j) similar to i. This simple change leads to the
“non-local means” algorithm, which can therefore be sketched in a few rows.

Algorithm 1 Non-local means algorithm
1: Input: noisy image ũ, σ noise standard deviation. Output: denoised image û.

2: Set parameter κ× κ: dimension of patches.

3: Set parameter λ× λ: dimension of research zone in which similar patches are searched.

4: Set parameter C.

5: for each pixel i do
6: Select a square reference sub-image (or “patch”) P̃ around i, of size κ× κ.

7: Call P̂ the denoised version of P̃ obtained as a weighted average of the patches Q̃ in a square

neighborhood of i of size λ × λ. The weights in the average are proportional to w(P̃ , Q̃) = e
− d2(P̃ ,Q̃)

Cσ2

where d(P̃ , Q̃) is the Euclidean distance between patches P̃ and Q̃.

8: end for
9: Aggregation: recover a final denoised value û(i) at each pixel i by averaging all values at i of all

denoised patches Q̂ containing i

It was also proved in [32] that the algorithm gave the best possible mean square estimation
if the image was modeled as an infinite stationary ergodic spatial process (see Chapter 7 for an
exact statement). The algorithm was called “non-local” because it uses patches Q̃ that are far
away from P̃ , and even patches taken from other images. NL-means was not the state of the
art denoising method when it was proposed. As we shall see in the comparison Section 4 of
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Chapter 4, the 2003 Portilla et al. [33] algorithm has a better PSNR performance. But quality
criteria show that NL-means creates less artifacts than wavelet based methods. This may explain
why patch-based denoising methods have flourished ever since. By now, 1500 papers have been
published on nonlocal image processing. Patch-based methods seem to achieve the best results in
denoising. Furthermore, the quality of denoised images has become excellent for moderate noise
levels. Patch-based image restoration methods are used in many commercial software.

An exciting recent paper in this exploration of nonlocal methods raises the following claim
[34]: For natural images, the recent patch-based denoising methods might well be close to optimality.
The authors use a set of 20000 images containing about 1010 patches. This paper provides a second
answer to the question of absolute limits raised in [35], “Is denoising dead?”. The Cramer-Rao type
lower bounds on the attainable RMSE performance given in [35] are actually more optimistic:
they allow for the possibility of a significant increase in denoising performance. The two types
of performance bounds considered in [34] and [35] address roughly the same class of patch-based
algorithms. It is interesting to see that these same authors propose denoising methods that actually
approach these bounds, as we shall see in Chapter 7.

The denoising method proposed in [34] is actually based on NL-means (algorithm 1), with the
adequate parameter C to account for a Bayesian linear minimum mean square estimation (LMMSE)
estimation of the noisy patch given a database of known patches. The only and important difference
is that the similar patches Q are found on a database of 1010 patches, instead of on the image itself.
Furthermore, by a simple mathematical argument and intensive simulations on the patch space,
the authors are able to approach the best average estimation error which will ever be attained by
any patch-based denoising algorithm [34].

These optimal bounds are nonetheless obtained on a somewhat restrictive definition of patch-
based methods. A patch-based algorithm is understood as an algorithm that denoises each pixel by
using the knowledge of: a) the patch surrounding it, and b) the probability density of all existing
patches in the world. It turns out that state of the art patch-based denoising algorithms use
more information taken in the image than just the patch. For example, most algorithms use the
obvious but powerful trick to denoise all patches, and then to aggregate the estimation of all patches
containing a given pixel to denoise it better. Conversely, these algorithms generally use much less
information than a universal empirical law for patches. Nevertheless, the observation that at least
one algorithm, BM3D [36] might be arguably very close to the best predicted estimation error is
enlightening. Furthermore, doubling the size of the patch used in the [34] paper would be enough
to cover the aggregation step. The difficulty is to get a faithful empirical law for 16× 16 patches.

The “convergence” of all algorithms to optimality will be corroborated here by the thorough
comparison of nine recent algorithms (Section 4 of Chapter 4). These state of the art algorithms
seem to attain a very similar qualitative and quantitative performance. Although they initially
seem to rely on different principles, our final discussion will argue that these methods are equivalent.

Image restoration theory cannot be reduced to an axiomatic system, as the statistics of images
are still a widely unexplored continent. Therefore, a complete theory, or a single final algorithm
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closing the problem are not possible. The problem is not fully formalized because there is no
rigorous image model. Notwithstanding this limitation, rational recipes shared by all methods can
be given, and the methods can be shown to rely on only very few principles. More precisely, this
chapter will present the following recipes, and compare them whenever possible:

• three techniques that improve every denoising method (Chapter 6);
• a complete review on several families of homoscedastic noise estimation techniques (Sec-

tion 3);

Nevertheless, this convergence of results and techniques leaves several crucial issues unsolved.
(This is fortunate, as no researcher likes finished problems.) With one exception, (the BLS-GSM
algorithm [37, 14, 38]), state of the art denoising algorithms are not multiscale. High noises and
small noises also remain unexplored.

In a broader perspective, the success of image denoising marks the discovery and exploration
of one of the first densely sampled high dimensional probability laws ever (numerically) accessible
to mankind: the “patch space”. For 8 × 88 patches, by applying a local PCA to the patches
surrounding a given patch, one can deduce that this space has a dozen significant dimensions (the
others being very thin). Exploring its structure, as was initiated in [39], seems to be the first step
toward the statistical exploration of images. But, as we shall see, this local analysis of the patch
space already enables state of the art image denoising.

Most denoising and noise estimation algorithms commented here are be available at the Image
Processing on Line (IPOL) journal, http://www.ipol.im/. Each algorithm is given a complete
description, the corresponding source code, and can be run online on arbitrary images.

2. Noise models

The main source of noise in digital images is the so-called shot noise, which is is inherent to
photon counting. The value ũ(i) observed by a sensor at each pixel i is a Poisson random variable
whose mean would be the ideal image. The standard deviation of this Poisson distribution is equal
to the square root of the number of incoming photons ũ(i) in the pixel captor i during the exposure
time. This noise adds up to a thermal noise and to an electronic noise which are approximately
additive and white.

For sufficiently large values of ũ(i), (ũ(i) > 1000), the normal distribution N (ũ(i),
√
ũ(i)) with

mean ũ(i) and standard deviation
√
ũ(i) is an excellent approximation to the Poisson distribution.

If ũ(i) is larger than 10, then the normal distribution still is a good approximation if an appropriate
continuity correction is performed, namely P(ũ(i) ≤ a) ≃ P(ũ(i) ≤ a + 0.5), where a is any non-
negative integer.

As a rule of thumb, the noise model is relatively easy to estimate when the raw image comes
directly from the imaging system, in which case the noise model is known and only a few parameters
must be estimated. For this, efficient methods are described by Foi et al. [40, 7] for Poisson and
Gaussian noise.
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Nevertheless, the pixel value is signal dependent, since its mean and variance depend on ũ(i).
To get back to the classic “white additive Gaussian noise” used in most researches on image denois-
ing, a variance-stabilizing transformation can be applied: when a variable is Poisson distributed
with parameter ũ(i), its square root is approximately normally distributed with expected value of
about

√
ũ(i) and variance of about 1/4. Under this transformation, the convergence to normality is

faster than for the untransformed variable [41]. The most classic VST is the Anscombe transform
[42] which has the form f(u0) = b

√
u0 + c.

The denoising procedure with the standard variance stabilizing transformation (VST) proce-
dure follows three steps:

(1) apply VST to approximate homoscedasticity;
(2) denoise the transformed data;
(3) apply an inverse VST.

Note that the inverse VST is not just an algebraic inverse of the VST, and must be optimized to
avoid bias [43].

Consider any additive signal dependent noisy image, obtained for example by the Gaussian
approximation of a Poisson variable explained above. Under this approximation, the noisy image
satisfies ũ ≃ ũ + g(ũ)n where n ≃ N (0, 1). We can search for a function f such that f(ũ) has
uniform standard deviation,

f(ũ) ≃ f(ũ) + f ′(ũ)g(ũ)n.

Forcing the noise term to be constant, f ′(ũ)g(ũ) = c, we get

f ′(ũ) =
c

g(ũ)
,

and integrating

f(ũ) =

∫ ũ

0

c dt

g(t)
.

When a linear variance noise model is taken, this transformation gives back an Anscombe transform.
Most classic denoising algorithms can also be adapted to signal dependent noise. This requires
varying the denoising parameters at each pixel, depending on the observed value ũ(i). Several
denoising methods indeed deal directly with the Poisson noise. Wavelet-based denoising methods
[44] and [45] propose to adapt the transform threshold to the local noise level of the Poisson
process. Lefkimmiatis et al. [46] have explored a Bayesian approach without applying a VST.
Deledalle et al., [47] argue that for high noise level it is better to adapt NL-means than to apply
a VST. These authors proposed to replace the Euclidean distance between patches by a likelihood
estimation taking into account the noise model. This distance can be adapted to each noise model
such as the Poisson, the Laplace or the Gamma noise [48], and to more complex (speckle) noise
occurring in radar (SAR) imagery [49].

Nonetheless, dealing with a white uniform Gaussian noise makes the discussion on denoising
algorithms far easier. The recent papers on the Anscombe transform [43] (for low count Poisson
noise) and [50] (for Rician noise) argue that, when combined with suitable forward and inverse
VST transformations, algorithms designed for homoscedastic Gaussian noise work just as well as
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ad-hoc algorithms signal-dependent noise models. This explains why in the rest of this chapter
the noise is assumed uniform, white and Gaussian, having previously applied, if necessary, a VST
to the noisy image. This also implies that we deal with raw images, namely images as close as
possible to the direct camera output before processing. Most reflex cameras, and many compact
cameras nowadays give access to this raw image.

But there is definitely a need to denoise current image formats, which have undergone unknown
alterations. For example, the JPEG-encoded images given by a camera contain a noise that has
been altered by a complex chain of algorithms, ending with lossy compression. Noise in such
images cannot be removed by the current state of the art denoising algorithms without a specific
adaptation. The key is to have a decent noise model. For this reason, it is important to be
able to estimate the noise from the noisy image itself, without assuming any noise model and
without relying or trusting any prior information, such as the model of the captor or the kinds of
transformations that the image might have undergone.

Compared to the denoising literature, research on noise estimation is a poor cousin. Few
papers are dedicated to this topic. Among the recent papers one can mention [51], which argues
that images are scale invariant and therefore noise can be estimated by a deviation from this
assumption. Unfortunately this method is not easily extended to estimate scale dependent or
signal dependent noise, like the one observed in most digital images in compressed format. As a
rule of thumb, the noise model is relatively easy to estimate when the raw image comes directly
from the imaging system, in which case the noise model is known and only a few parameters must
be estimated. For this, efficient methods are described in [7], [40] for Poisson and Gaussian noise.

In this chapter we will focus on methods that allow for local, signal and scale dependent
noise. Later on Chapter 3 it will be shown why only considering signal and scale dependent noise
is not enough and Chapter 4 will present our proposed algorithm for signal, frequency, and scale
dependent noise.

One cannot denoise an image without knowing its noise model. It might be argued that the
noise model comes with the knowledge of the imaging device. Nevertheless, the majority of images
dealt with by the public or by scientists have lost this information. This loss is caused by format
changes of all kinds, which may include resampling, denoising, contrast changes and compression.
All of these operations change the noise model and make it signal and scale dependent.

The question that arises is why so many researchers are working so hard on denoising models,
if their corpus of noisy images is so ill-informed. It is common practice among image processing
researchers to add the noise themselves to noise-free images to demonstrate the performance of
a method. This proceeding permits to reliably evaluate the denoising performance, based on a
controlled ground truth. Nevertheless the denoising performance may, after all, critically depend
on how well we are able to estimate the noise. Most world images are actually encoded with lossy
JPEG formats. Thus, noise is partly removed by the compression itself. Furthermore, this removal
is scale dependent. For example, the JPEG 1985 format divides the image into a disjoint set of
8× 8 pixels blocks, computes their DCT, quantizes the coefficients and the small ones are replaced
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by zero. This implies that JPEG performs a frequency dependent threshold, equivalent to a basic
Wiener filter. The same is true for JPEG 2000 (based on the wavelet transform).

In addition, the Poisson noise of a raw image is signal dependent. The typical image pro-
cessing operations, demosaicking, white balance and tone curve (contrast change) alter this signal-
dependency in a way which depends on the image itself.

In short:

• the noise model is different for each image;
• the noise is signal dependent;
• the noise is scale dependent;
• the knowledge of each dependence is crucial to denoise properly any given image which

is not raw, and for which the camera model is available.

Thus, estimating JPEG noise is a complex and risky procedure, as well explained in [52] and [53].
It is argued in [54] that noise can be estimated by involving a denoising algorithm. Again, this
procedure is probably too risky for noise and scale dependent signal.

A review and comparison of classic homoscedastic noise estimation methods is presented in
Section 3.

3. Review of homoscedastic block-based noise estimators

This chapter presents a comparison and discussion of classic block-based noise estimation
methods, most of them from [55]. To evaluate them, ten noise-free images are used in the tests.
Noiseless images are obtained by taking snapshots with a reflex camera of scenes under good
lighting conditions and with a low ISO level. To reduce further the noise level, the average of each
block of 5× 5 pixels is computed, reducing therefore the noise by a 5 factor. Since the images are
RGB, the mean of the three channels can computed, reducing the noise by a further

√
3 factor. The

noise is therefore reduced by a 5
√
3 ≃ 8.66 factor, and the images can be considered noise-free. The

set of images can be seen in Figure 3. Some of them present large flat regions with little texture,
while others do not contain any flat regions and are highly textured. The size of each noise-free
test image is 704× 469 pixels.

In this chapter we only evaluate the performance of the estimator using simulated homoscedas-
tic (fixed variance) noise. The noise is added to the noise-free images and then the estimation given
by each noise estimator is compared to the value of the simulated noise. Seven noise levels were
applied to these noise-free images: σ ∈ {1, 2, 5, 10, 20, 50, 80}. Figure 2 shows the result of adding
white homoscedastic Gaussian noise with σ ∈ {1, 2, 5, 10, 20, 50, 80} to the noise-free image traffic.

These images, from left to right and from top to bottom will be referred to as bag, building1,
computer, dice, flowers2, hose, leaves, lawn, stairs, and traffic. For the uniform-noise tests, five
noise levels were applied to these noise-free images: σ ∈ {1, 2, 5, 10, 20, 50, 80}. Figure 2 shows the
result of adding white Gaussian noise with σ ∈ {1, 2, 5, 10, 20, 50, 80} to the noise-free image traffic.
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Figure 2. Result of adding white homoscedastic Gaussian noise with σ ∈
{2, 5, 10, 20, 50, 80} to the noise-free image traffic. It may need a zoom in to
perceive the noise for σ = 2 and σ = 5.
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Figure 3. Noise-free images used in the tests. From left to right and from top
to bottom: bag, building1, computer, dice, flowers2, hose, leaves, lawn, stairs and
traffic.
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Figure 4. 3× 3 window centered at pixel u5.

3.1. The Average method. The “Average method” [55] tries to minimize the effect of edges
and textures in the image by subtracting a low-pass filtered version of the image from the noisy
image: U = I − f(I). In the Average method, function f is the mean of the pixels centered at
some given pixel with a w × w pixels window (w = 3). Since the blocks only contain 9 pixels, the
sample variance is biased and must be corrected. Indeed, if pixel u5 is in the center of the block

(Figure 4), the computed sample variance is S2
9−1

(
u5 −

9∑
i=1

ui

)
= S2

8

(
u5 − 1

9u5 − 1
9

9∑
i=1,i̸=5

ui

)
=

S2
8

(
8
9u5

)
+ 1

81S
2
8

(
9∑

i=1,i̸=5

ui

)
= 64

81σ
2 + 8

81σ
2 = 8

9σ
2. Here, S2

8 is the sample variance. That is,

S2
8(B) = 1

8

9∑
i=1

(Bi − B̄), where B̄ = 1
9

9∑
i=1

Bi and Bi are pixel intensities of the block B. To avoid

that the remaining edges and textures affect the noise estimation, blocks where the magnitude of
the intensity gradient is above a certain threshold are discarded. The gradient is computed at the
central pixel of each block. For example, if u5 is the central pixel (Figure 4), the magnitude of
the gradient would be calculated as

√
(u6 − u5)2 + (u8 − u5)2. The threshold is obtained from the

normalized cumulative histogram of the magnitude of the intensity gradients. The threshold is
the value in the cumulative histogram corresponding to the p percent of the blocks, with p = 1%.
Because of the fact that only blocks with smallest variance are taken into account, the estimate is
biased and has to be corrected by a factor learned on noise in order to get the final σ̃ estimate. With
p = 1%, the empirical correction factor is k = 1.1609. The standard deviation of all blocks whose
intensity gradient magnitude is below the threshold is computed. The mean of these standard
deviations, multiplied by the correction factor, is estimated as σ̃. The pseudo-code for the Average
method is in Algorithm 2. The results for white Gaussian noise are given in Table 1.
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Algorithm 2 Average noise estimation algorithm.
1: AVERAGE - Return the standard deviation of the image noise. Input U: input image. Input p:

percent of pixels to compute (1% typically). Output σ̃: estimated standard deviation of the noise in

the image.

2: w = 3.

3: k = 1.1608823968593502.

4: g[x, y] =
√

(U [x+ 1, y]− U [x, y])2 + U [x, y + 1]− U [x, y]),∀(x, y) ∈ supp(I). ▷ Compute gradient

magnitude

5: hc, hl = HISTOGRAM(g). ▷ Compute the histogram of g. Here, hc is a list containing the number

of elements in each bin and hc a list containing the limits hl of each bin.

6: acc = ACC(hc, hl). ▷ Accumulated histogram of g

7: i = i : acc[i] = p
100

. ▷ Index of threshold bin

8: t = hl[i]+hl[i+1]
2

. ▷ Get threshold

9: B ← all w × w overlapped blocks in U.

10: F ← mean(B) ▷ Mean of all overlapped blocks in U

11: D = C(B)− F . ▷ Filter image: the mean of the block is subtracted from the central pixel C(B) in

the block B.

12: S = 0. ▷ List of standard deviations

13: for all w × w blocks BD ∈ D, where (x, y) is the center of the block do
14: if g[x, y] < t then
15: S ←

√
9
8
S2
w2−1

(BD)

16: end if
17: end for

return σ̃ = k ×mean(S). ▷ k is the correction factor

Image / σ̃ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

bag 6.00 6.75 9.18 13.56 22.45 51.51 80.79
building1 1.99 3.25 6.77 12.23 22.12 51.62 81.17
computer 3.51 4.40 7.68 12.79 22.58 51.96 81.56
dice 1.30 2.27 5.26 10.27 20.27 50.35 80.61
flowers2 1.69 2.71 5.74 10.63 20.57 50.67 80.37
hose 2.46 3.31 6.05 10.80 20.60 50.25 80.37
leaves 4.91 5.58 7.98 12.28 21.58 50.89 80.48
lawn 5.13 5.79 8.05 12.30 21.58 50.96 80.78
stairs 2.37 3.33 6.08 10.75 20.48 50.39 80.39
traffic 4.04 5.26 8.63 13.74 23.37 52.30 81.44
constant 1.00 2.01 5.00 10.01 20.04 50.06 80.52

Table 1. Average method results with simulated homoscedastic white Gaussian noise.
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Image / σ̃ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

bag 6.39 7.18 9.67 14.03 22.92 52.01 81.46
building1 2.03 3.33 6.92 12.51 22.46 52.11 81.80
computer 3.63 4.56 8.00 13.22 23.06 52.61 82.34
dice 1.33 2.31 5.34 10.38 20.42 50.68 81.23
flowers2 1.78 2.85 5.97 10.90 20.87 51.12 80.89
hose 2.56 3.42 6.18 10.94 20.82 50.68 81.00
leaves 5.13 5.83 8.23 12.53 21.86 51.34 81.10
lawn 5.37 6.04 8.28 12.55 21.90 51.39 81.53
stairs 2.46 3.45 6.22 10.90 20.70 50.79 81.05
traffic 4.21 5.58 9.14 14.26 23.98 53.04 82.22
constant 1.01 2.02 5.03 10.07 20.17 50.36 81.04

Table 2. Median method results with simulated homoscedastic white Gaussian noise.

3.2. Median method. The Median method [55] is a variant of the Average (Section 3.1).
In this method, function f to filter the image is the median. The same correction factor used for
the Average method is used here. The white Gaussian noise estimates are given in Table 2. The
only difference with the Average method in the algorithm description is that the mean of the block
is replaced by the median of the block.
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Image / σ̃ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

bag 3.51 4.20 7.07 12.36 22.10 51.87 81.00
building1 1.23 2.20 5.28 10.50 20.58 51.04 81.02
computer 1.42 2.42 5.54 10.62 20.82 51.24 81.63
dice 1.20 2.16 5.11 10.09 20.13 50.21 80.04
flowers2 1.23 2.23 5.34 10.47 20.53 50.52 80.26
hose 1.61 2.59 5.61 10.58 20.45 50.40 79.97
leaves 2.96 3.65 6.54 11.53 21.33 50.75 80.81
lawn 2.43 3.29 6.35 11.48 21.14 50.55 80.75
stairs 1.37 2.44 5.51 10.59 20.39 50.31 79.76
traffic 1.32 2.33 5.55 10.77 21.23 51.34 81.31
constant 1.00 1.99 5.01 9.93 20.00 49.90 80.11

Table 3. Block method results with simulated homoscedastic white Gaussian noise.

3.3. Block method. The Block method [56, 57] measures the noise from the set of 7 × 7

pixels blocks with minimal variance. The size of this set of blocks is chosen as a fixed small
percentage p of the total number of pixels in the image. The direct estimation σ̂2 is the mean of
the set of sample variances under the p-percentile. Of course, this produces a biased result, because
only the blocks with the minimal variance are chosen. Therefore, to obtain σ̃2, the direct sampled
variance estimation σ̂2 has to be multiplied by a correction factor. This factor is k = 1.8350 for
p = 1%. The pseudo-code for the Block method is in Algorithm 3 and its results with white
Gaussian noise in Table 3. Two different block sized where tests: w = 11 (Table 4) and w = 15

(Table 5), but increasing the block size does not give, in general, better results. The computation
time, however, increases significantly with the block size. The correction factors for w = 11

isk = 1.4429 and for w = 15 it is k = 1.2994.

Algorithm 3 Block algorithm.
1: BLOCK - Return the standard deviation of the image noise. Input U: input image. Input p:

percentage of blocks to compute (1% typically). Output σ̃: estimated standard deviation of the noise

in the image.

2: w = 7.

3: k = 1.8350297625014702.

4: B ← all w × w blocks in U.

5: V = 0 ▷ List of sample variances

6: for all w × w blocks BD ∈ B do
7: V ← S2

w2−1(BD). ▷ Add sample variances to list V

8: end for
9: σ̃ = k

√
Mean

(
V
[
0 . . . |V | p

100

])
. ▷ k is the correction factor
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Image / σ̃ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

bag 4.58 5.01 7.31 12.46 22.19 52.03 81.33
building1 1.23 2.17 5.22 10.35 20.43 50.94 80.86
computer 1.42 2.41 5.48 10.59 20.80 50.94 81.62
dice 1.21 2.18 5.12 10.12 20.14 50.22 80.20
flowers2 1.20 2.19 5.29 10.42 20.60 50.59 80.35
hose 1.70 2.60 5.63 10.57 20.54 50.46 80.23
leaves 3.37 3.91 6.54 11.50 21.33 50.97 80.88
lawn 2.77 3.46 6.25 11.36 21.13 50.78 80.72
stairs 1.31 2.37 5.43 10.54 20.43 50.47 79.82
traffic 1.31 2.28 5.42 10.61 21.05 51.37 81.17
constant 1.00 2.00 5.01 9.93 20.01 49.96 80.03

Table 4. Block method results with simulated homoscedastic white Gaussian
noise (w = 11).

Image / σ̃ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

bag 5.67 5.98 7.88 12.65 22.30 52.20 81.43
building1 1.24 2.16 5.20 10.33 20.36 50.90 81.13
computer 1.43 2.40 5.45 10.52 20.70 50.95 81.40
dice 1.22 2.19 5.14 10.14 20.12 50.21 80.23
flowers2 1.19 2.18 5.26 10.34 20.55 50.66 80.50
hose 1.79 2.64 5.61 10.56 20.59 50.35 80.21
leaves 3.79 4.26 6.66 11.46 21.23 50.99 80.90
lawn 2.99 3.58 6.20 11.26 21.18 50.83 80.52
stairs 1.28 2.33 5.38 10.53 20.48 50.50 79.91
traffic 1.34 2.28 5.36 10.54 20.94 51.32 81.27
constant 1.00 2.00 5.01 9.97 19.97 49.99 80.08

Table 5. Block method results with simulated homoscedastic white Gaussian
noise (w = 15).
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3.4. Gradient method. In the Gradient method [58, 59], the magnitude of the intensity
gradient is computed using a 3× 3 least squares fit for all possible pixels of the image (excluding
those pixels in the edges of the image, where the gradient can not be computed). For the 3 × 3

least squares fit, both the Sobel and Prewitt operators were tested. The Sobel operator uses the
following matrices for the horizontal and vertical gradient components:

Sx =


−1 0 +1

−2 0 +2

−1 0 +1

 , Sy =


−1 −2 −1

0 0 0

+1 +2 +1


The Prewitt operator uses these matrices:

Px =


−1 0 +1

−2 0 +2

−1 0 +1

 , Py =


−1 −2 −1

0 0 0

+1 +2 +1


The same results were obtained computing the gradient with the Sobel or the Prewitt oper-

ators. Because for a white Gaussian noise the horizontal and vertical magnitudes in the intensity
gradient are normally distributed (with mean µ = 0 and variance σ2), the magnitude of the noise
intensity gradient is Rayleigh distributed. Indeed, if X and Y are normal random variables with
mean µ = 0 and variance σ2

R, then R =
√
X2 + Y 2 is Rayleigh distributed, with parameter σR.

Note that σR is not the variance of the noise, but the variance of the directional gradient compo-
nents.

It is important that blocks do not overlap, because the random variables X and Y must be
independent in order to obtain a Rayleigh distribution R with σ parameter. A histogram of the
magnitude of the intensity gradient is made. As explained in Section 1 of Chapter 11, edges and
textures affect the right part of the histogram mainly. If the image is not dominated by edges
and textures, the σR parameter can be estimated by finding the mode (the value at which the
distribution is maximal) of the Rayleigh distribution. However, this is only possible if edges and
textures are moderate, and therefore not affecting the part of the histogram containing the mode.
Before finding the mode of the distribution, the histogram is filtered at least four times. To low-
pass filter the histogram, the same procedure used to filter the noise curves explained in Chapter
1.2 was applied.

Once the mode σR is found in the filtered histogram, the noise standard deviation σ̃ can be
obtained by multiplying the mode by a correction factor f = 0.7607. Unfortunately, trying to fit
a Rayleigh distribution to the normalized histogram is a difficult task, because edges and textures
affect the histogram, changing the shape of the distribution. When normalizing the histogram,
these undesired values in the tail change the shape of the normalized distribution. Therefore,
even if a Rayleigh if fitted onto the steep rising portion of the affected histogram, it would not
be fitting the noise image distribution. Figure 5 illustrates this problem. In green, the ground-
truth distribution (pure noise). In blue, the distribution obtained with a noisy image with several
edges and textures. In red, the Rayleigh distribution fitted to the steep rising part (20%) of the
histogram. On the left, fitting a Rayleigh distribution to the steep rising portion histogram of the
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Figure 5. Left: fitting a Rayleigh distribution to the steep rising portion (20%)
histogram of the variance of pure-noise (σ = 5) patches. The fit (red) is very close
to the ground truth (green) and therefore the obtained σ̂ is accurate. Right: trying
to fit a Rayleigh distribution to the steep rising portion (20%) histogram of the
variance of the leaves image (many edges and textures). The obtained parameter
σ does not correspond to that of the noise (ground truth distribution).

variance of pure-noise (σ = 5) patches. The fit (red) is computed over the ground truth (green).
Thus the obtained σ̂ is accurate. On the right, trying to fit a Rayleigh distribution to the steep
rising portion histogram of the variance of the leaves image (many edges and textures). The
obtained parameter σ does not correspond to that of the noise (ground truth distribution). The
pseudo-code for the algorithm is presented in Algorithm 4 and the results for white Gaussian noise
in Table 6.

Algorithm 4 Gradient noise estimation algorithm.
1: GRADIENT - Return the standard deviation of the image noise. Input U: input image. Output

σ̃: estimated standard deviation of the noise in the image.

2: f = 0.76071735110441019. ▷ Correction factor

3: for [x, y] ∈ [1, Nx − 2]× [1, Ny − 2] do
4: gx[x, y] = (U [x+1, y−1]+2U [x+1, y]+U [x+1, y+1]−U [x−1, y−1]−2U [x−1, y]−U [x−1, y+1])/8

5: gy[x, y] = (U [x−1, y−1]+2U [x, y−1]+U [x+1, y−1]−U [x−1, y+1]−2U [x, y+1]−U [x+1, y+1])/8.

6: g[x, y] =
√

g2x + g2y ▷ Compute 3× 3 least squares fit gradient magnitude

7: end for
8: H = HISTOGRAM(g). ▷ Compute the histogram of g. Here, H is a list with the number of

elements in each bin.

9: k = argmaxk(H[k]).

10: mode = median(bink). ▷ Median of the elements in bin #k

11: σ̃ = f ×mode.
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Image / σ̃ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

bag 5.04 5.42 7.47 12.58 20.64 47.99 74.67
building1 0.76 2.78 6.20 11.14 20.91 51.57 77.98
computer 1.02 1.09 6.75 11.67 20.52 49.16 80.61
dice 0.92 2.10 4.97 9.71 19.94 51.17 80.50
flowers2 0.74 2.73 6.35 9.83 19.43 51.44 83.17
hose 2.14 3.12 5.81 10.68 20.39 48.95 75.72
leaves 4.26 5.35 6.77 12.09 19.19 51.54 82.97
lawn 4.06 5.05 7.07 11.81 21.49 49.06 76.83
stairs 2.21 3.19 5.81 10.52 20.37 50.67 83.89
traffic 0.96 1.06 6.62 11.33 23.15 49.29 80.19
constant 0.98 2.00 5.31 9.43 17.72 50.89 80.32

Table 6. Gradient method results with simulated homoscedastic white Gaussian noise.
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Rule # Condition Computation of σ̃

1 q[l, 4] < 1 σ̃ = 0

2 l0 = n σ̃ =
√

v[n]

3, 4 l0 = 3 or l0 = 4 WARNING: CAN NOT ESTIMATE
5.1 ρ0 < ρ ≤ ρ1 σ̃ =

√
v[3]

5.2 ρ1 < ρ ≤ ρ2 σ̃ =
√

δv[3] + (1− δ)v[4]

5.3 ρ2 < ρ ≤ ρ3 σ̃ =
√

δv[4] + (1− δ)v[5]

5.4 ρ3 < ρ ≤ ρ4 σ̃ =
√

δv[5] + (1− δ)v[6]

6.1 T < α[l0 − 1] ≤ 0 σ̃ =
√
δv[l0 − 2] + (1− δ)v[l0 − 1]

6.2 −1 < α[l0] ≤ −0.5 σ̃ =
√
δv[l0 − 2] + (1− δ)v[l0 − 1]

6.3 −0.5 < α[l0] ≤ T σ̃ =
√

((1 + δ)v[l0 + 1] + (1− δ)v[l0])/2

Table 7. Summary of the Pyramid method rules.

3.5. Pyramid method. The Pyramid method [6] considers n levels in the input image,
l = 2, 3, . . . , n, where N = 2n is the size of the image. At each level, the variance of all non-
overlapping blocks of size 2l × 2l is computed. To compute this variance, the unbiased estimator

for the population variance is used: S2
B−1(X) = 1

B−1

B∑
i=1

(X − X̄), where X̄ = 1
B

B∑
i=1

xi and B

the number of elements in X. For l = 2, 3, . . . , n − 1, the four smallest values for each level
l are stored. A slippage test in levels l = 2, 3, . . . , n − 2 is done and the set v(l) is defined
as the mean of the smallest values (between one and four values are used, depending on the
case). Finally, the contribution to v(l) (signal) and that of the noise is obtained by analyzing the
shape of α(l) = v(l−1)

v(l) − β(l). The function β is experimentally determined by the authors to be

β(l) = 1 − 26−l

10 . The method proposes several conditional rules that, if held, give an estimate of
the noise. It can happen that the method determines that the noise is poorly separated from the
signal and no result is obtained. However, the method can detect this situation and prevents giving
a bad result. The results for the Pyramid method for white Gaussian noise are given in Table 9.
Code NE means that the method considered that noise and signal were not well separated and
therefore it did not gave any estimation. Rule 6.3 was applied when no rule held.

Function α is computed at each level l as α[l] = v[l−1]
v[l] − β[l]. lu is the minimal argument

l that gets α[l] < 0 for l = 3, . . . , n and l0 the minimal argument l that gets
l∑

i=lu

α[l] < T with

l = 3, . . . , n − 2, where T = −0.1. The pyramid method proposes several rules as conditions that
if held, provide a way to get the noise standard deviation estimation. This rules are summarized
in Table 7. Some of the rules interpolate to get the value of δ. The interpolation function is:
INTERPOLATION(a, ρ, b) = ρ−b

a−b . Rules 5.2, 5.3, 5.4, 6.1, 6.2 and 6.3 use interpolation. The
interpolation parameters to get δ according to the rule are given in Table 8. Rules 5.1, 5.2, 5.3 and
5.4 use the following variables: ρ = α[5] + α[6], ρ0 = −2, ρ1 = −1.5, ρ2 = −1, ρ3 = −0.5, ρ4 = T ,
where T = −0.1.
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Algorithm 5 Pyramid noise estimation algorithm.
1: PYRAMID - Return the standard deviation of the image noise. Input U: input image. Output σ̃:

estimated standard deviation of the noise in the image.

2: n = log(N)
log(2) . ▷ Image is N ×N and N = 2n.

3: β[l] = 1− 0.1× 26−l for l = 1 . . . n.

4: Q = ∅. i-order statistic q[l, i], i ∈ {1, 2, 3, 4}
5: r = ∅. ▷ Thresholds r[l, i], l ∈ {1, 2, . . . , n}, i ∈ {1, 2, 3}
6: v = ∅. ▷ Variances v[l], l ∈ {1, 2, . . . , n}
7: for l = 1 to n do
8: K = 4n−l, c = 2l, V = ∅. ▷ List of variances in level l

9: for x = 0 to N step c do
10: for y = 0 to N step c do
11: v = Var(u[x . . . , x+ c− 1, y . . . , y + c− 1]). ▷ Sample variances

12: V ← v. ▷ Store sample variance

13: end for
14: end for
15: q[l, 1], q[l, 2], q[l, 3], q[l, 4] = Min(V ). ▷ Find 1, 2, 3 and 4 order statistics of V

16: r[l, 1] = (q[l, 2]− q[l, 1])/(q[l, 4]− q[l, 1])

17: r[l, 2] = (q[l, 3]− q[l, 2])/(q[l, 4]− q[l, 2])

18: r[l, 3] = (q[l, 4]− q[l, 3])/(q[l, 4]− q[l, 2])

19: v[l] = Mean(q[l, :]) if r[l, 1] ≤ 0.5.

20: v[l] = (q[l, 2] + q[l, 3] + q[l, 4])/3 if r[l, 2] ≤ 0.7.

21: v[l] = (q[l, 3] + q[l, 4])/2 if r[l, 3] <= 0.7.

22: v[l] = q[l, 4] otherwise.

23: end for
24: Compute α and lu

25: PYRAMID_APPLY_RULES.

Rule # Interpolation

5.2 δ = INTERPOLATION(ρ1, ρ, ρ2)

5.3 δ = INTERPOLATION(ρ2, ρ, ρ3)

5.4 δ = INTERPOLATION(ρ3, ρ, ρ4)

6.1 δ = INTERPOLATION(T, α[l0 − 1], 0)

6.2 δ = INTERPOLATION(−1, α[l0],−0.5)

6.3 δ = INTERPOLATION(−0.5, α[l0], T ),
Table 8. Pyramid method interpolation parameters.
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Image / σ̃ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

bag NE NE NE 19.40 26.37 49.03 73.02
building1 0.00 1.96 4.44 8.92 21.12 62.97 83.91
computer 0.00 1.82 4.38 10.08 20.63 69.31 75.54
dice 0.00 0.00 4.32 10.88 29.48 43.42 75.34
flowers2 0.00 1.58 5.28 9.80 23.04 64.19 84.65
hose 0.00 NE 6.30 12.37 19.46 46.34 79.86
leaves 3.25 3.63 6.72 13.28 28.53 50.15 83.29
lawn 3.13 4.39 6.66 10.18 27.44 49.68 74.18
stairs 0.00 1.87 5.37 13.28 19.25 48.51 79.78
traffic 0.00 NE 5.01 10.37 25.69 52.96 67.94
constant 0.00 0.00 4.61 7.27 19.39 36.29 77.57

Table 9. Pyramid method results with simulated homoscedastic white Gaussian noise.
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Figure 6. Problem of the Scatter method when trying to figure out the standard
deviation of the noise from the peak of the histogram in images dominated by
textures and edges. On the left, the normalized histograms of standard deviations
for pure noise and bag images. On the right, the normalized standard deviation
histograms for pure noise and dice images. The noise standard deviation is σ = 5

for both images.

3.6. The Scatter method. The Scatter method [60] is intended not only for additive noise,
but also for multiplicative noise. It uses the Hough transform to have a plot of the averages
M and variances V of all 8 × 8 blocks in the image. Then, it fits a straight line to the main
cluster, using the Hough transform. The slope and intercept of this line are the multiplicative
and additive components of the noise. In the case of signal independent white Gaussian noise, the
Hough transform boils down to the largest peak of the standard deviations histogram. Therefore
the standard deviation is figured out by the largest peak, which is enough to compare this method
with the other ones.

In the white Gaussian noise test, it was used the largest peak in the histogram to figure out
σ̃ (Algorithm 7). When the peak of the histogram technique is used, σ̂ must be corrected by a
factor k = 1.0229 to get the final estimation σ̃. If the image is dominated by edges and textures,
the Scatter method fails to get a reliable estimation because the large peak can be produced by
them and not by the noise.

Figure 6 illustrates this problem. On the left, it shows the normalized histogram of standard
deviations corresponding to pure noise and the one corresponding to the bag image, both with
σ = 5. On the right, the normalized histograms of a pure noise and of the dice image. The image
bag has many edges and textures, while the dice image has not. The estimate in bag is wrong,
because the variance retrieved from the blocks corresponds to the variations of the signal, rather
than noise. The estimate in dice is accurate, because this image contains large flat regions and
little texture (although a small bump can be observed on the right part of the histogram). When
the peak of the histogram is used to get σ̂, a correction factor k = 1.0229 must be used to get σ̃.
The pseudo-code for the Scatter method for signal-dependent noise is Algorithm 6. However, here
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the method is evaluated for white Gaussian noise (Algorithm 7) and its results are shown in Table
10.

Algorithm 6 Scatter signal-dependent noise estimation algorithm.
1: SCATTER - Return the standard deviation of the image noise. Input U: input image. Output σ̃:

estimated standard deviation of the noise in the image.

2: w = 8.

3: B ← all w × w block in U .

4: M ← Mean(B). ▷ Obtain the mean of each w × w block.

5: V ← Var(B). ▷ Obtain the variance of each w × w block.

6: Construct scatter plot of V vs. M2.

7: Fit a straight line fitted to the main cluster, using the Hough transform.

8: Model the fitted line as Y = mU + a. ▷ m is the multiplicative and a the additive noise component.

Algorithm 7 Scatter white Gaussian noise estimation algorithm.
1: SCATTER_PEAK - Return the standard deviation of the image noise. Input U: input image.

Output σ̃: estimated standard deviation of the noise in the image.

2: w = 8.

3: k = 1.0229490535653729.

4: B ← all w × w block in U .

5: M ← Mean(B). ▷ Obtain the mean of each w × w block

6: V ← Var(B). ▷ Obtain the variance of each w × w block

7: H = HISTOGRAM(V ). ▷ Compute the histogram of V . Here, H is a list with the number of

elements in each bin.

8: m = argmaxi(H[i]). ▷ Look for the bin with most elements (mode of the histogram).

9: σ̂ = Mean[H(m)].

return σ̃ = k × σ̂. ▷ Corrected value

These experiments show clearly that block variances are not at all reliable to estimate low
noises. See how all images having textures lead to a strong over estimation of the noise. They
therefore amply justify the use high pass filters to clean up the blocks from slow variations due to
the signal and give prominence to noise components.
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Image / σ̃ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

bag 13.52 13.50 14.43 16.87 23.75 52.54 82.71
building1 1.34 2.05 5.32 10.47 20.53 51.57 81.38
computer 1.54 2.32 5.31 10.65 20.63 51.58 83.29
dice 1.32 2.20 5.18 10.19 20.38 50.86 80.96
flowers2 1.29 2.30 5.26 10.51 20.53 51.18 80.14
hose 2.88 2.98 5.63 10.84 21.15 51.03 80.12
leaves 6.85 6.59 8.01 12.05 21.59 51.67 82.07
lawn 6.52 6.71 8.07 11.96 21.47 51.42 80.72
stairs 1.62 2.49 5.61 10.68 20.76 50.71 80.56
traffic 1.18 2.20 5.28 10.59 20.97 51.93 83.44
constant 1.01 2.00 4.97 9.94 20.05 50.83 80.36

Table 10. Scatter method results with simulated homoscedastic white Gaussian noise.



3. REVIEW OF HOMOSCEDASTIC BLOCK-BASED NOISE ESTIMATORS 53

3.7. The mean of DCT high-frequency coefficients method. It is well known that the
energy in high-frequency coefficients of a DCT image block corresponds mainly to the noise and
edges, while the medium an low frequency coefficients contribute to the geometry of the image.
This method computes the variance of the noise from the high-frequency coefficients.

Since the orthonormal DCT-II is a isometry, the variance can be computed both at the spatial
domain or the frequential domain. However, computing it at the frequential domain has the
advantage that it decorrelates the signal and compacts its energy on a few coefficients, thus making
it possible to estimate the noise using only high-frequency DCT-II coefficients.

A correction factor k = 1.0061 is needed to correct the obtained standard deviation.

The estimated σ̃2 is obtained as the mean of the variance of coefficient at frequencies [6, 7], [7, 6],
and [7, 7]. To compute the variance, the unbiased estimator for the population variance is used:

S2
N−1(X) = 1

N−1

N∑
i=1

(X − X̄), where X̄ = 1
N

N∑
i=1

xi and N the number of elements in X. The

pseudo-code for the DCT method is given in Algorithm 8 and the results for white Gaussian noise
in Table 11.

Algorithm 8 DCT noise estimation algorithm.
1: DCT - Return the standard deviation of the image noise. Input U: input image. Output σ̃:

estimated standard deviation of the noise in the image.

2: w = 8.

3: k = 1.0061426171829178. ▷ Correction factor

4: B ← all w × w block in U .

5: N = number of blocks in B.

6: C = 2D-DCT(B). ▷ Compute the 2D orthonormal DCT of each block in B

7: C1 ← C[6, 7]. ▷ Obtain all coefficients at position [6, 7]

8: C2 ← C[7, 6]. ▷ Obtain all coefficients at position [7, 6]

9: C3 ← C[7, 7]. ▷ Obtain all coefficients at position [7, 7]

10: σ̂ =
√

Mean [Var(C1),Var(C2),Var(C3)].

return σ̃ = k × σ̂.
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Image / σ̃ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

bag 2.59 3.10 5.58 10.31 20.30 50.24 80.66
building1 3.78 4.18 6.24 10.71 20.40 50.40 80.56
computer 3.51 3.94 6.06 10.57 20.47 50.62 80.52
dice 1.24 2.14 5.10 10.03 20.25 50.23 80.53
flowers2 1.47 2.28 5.16 10.10 20.05 50.27 79.97
hose 1.42 2.23 5.15 10.12 20.12 50.29 81.18
leaves 2.80 3.27 5.64 10.40 20.32 50.04 81.12
lawn 3.06 3.53 5.79 10.44 20.37 50.35 80.24
stairs 1.46 2.28 5.15 10.15 20.11 50.18 80.90
traffic 4.84 5.13 6.90 11.01 20.54 50.63 80.93
constant 1.00 2.02 5.04 10.04 20.15 49.84 80.36

Table 11. The Mean of DCT high-frequency coefficients method results with
uniform noise.
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Image / σ̃ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

bag 1.90 2.71 5.47 10.23 20.20 50.10 80.30
building1 1.71 2.77 5.75 10.59 20.23 50.13 80.29
computer 1.72 2.68 5.60 10.38 20.39 50.44 80.15
dice 1.16 2.10 5.08 9.98 20.17 49.92 80.28
flowers2 1.19 2.14 5.12 10.04 19.98 50.08 79.74
hose 1.32 2.19 5.11 10.06 20.03 50.07 81.21
leaves 2.35 3.00 5.57 10.36 20.26 49.98 81.14
lawn 2.60 3.23 5.70 10.41 20.30 50.22 79.87
stairs 1.39 2.25 5.13 10.11 19.94 50.07 80.46
traffic 2.25 3.23 6.06 10.74 20.43 50.63 80.48
constant 1.00 2.01 5.00 10.05 19.95 49.49 79.58

Table 12. Mean of DCT high-frequency coefficients method with MAD estimator
results with white Gaussian noise.

3.8. The Mean of DCT high-frequency coefficients method with MAD estimator.
We know of no particular reference for this method, except that in view of the other ones, it
is simply necessary to test it. The Median of Absolute Deviations (MAD) estimator [61] is a
robust estimator of the standard deviation that can be used when the data present outliers. The
MAD estimator of X is defined as MAD(X) = median (|X − median(X)|). If X follows a normal
distribution, MAD is a biased estimator of the standard deviation and must be multiplied by
k = 1.4865 to get back σ̃. This method is essentially the same as in Section 3.7, but using the
MAD estimator instead of directly computing the sampled variance. The pseudo-code for the
DCT-MAD method is given in Algorithm 9 and the results for white Gaussian noise in Table 12.

Algorithm 9 DCT-MAD noise estimation algorithm.
1: DCT - Return the standard deviation of the image noise. Input U: input image. Output σ̃:

estimated standard deviation of the noise in the image.

2: w = 8.

3: k = 1.486495980422939.

4: B ← all w × w block in U .

5: C = 2D-DCT(B). ▷ Compute the 2D orthonormal DCT of each block in B

6: C1 ← C[6, 7]. ▷ Obtain all coefficients at position [6, 7]

7: C2 ← C[7, 6]. ▷ Obtain all coefficients at position [7, 6]

8: C3 ← C[6, 7]. ▷ Obtain all coefficients at position [7, 7]

9: σ̂ = Mean [MAD(C1),MAD(C2),MAD(C3)].

return σ̃ = k × σ̂.
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3.9. Deconvolution method (E.I.N.V.). The Estimation of Image Noise Variance method
[5] (E.I.N.V) first computes the finite differences derivative of the image, then makes a histogram
of the local standard deviations of these high pass filtered values, and finally it evaluates the
histogram iteratively in order to converge to the noise standard deviation estimate.

Step 1: suppression of the original image x

Given an image y(m,n) corrupted with Gaussian noise w(m,n), y(m,n) = x(m,n)+w(m,n) ∀(m,n) ∈
the domain of the ideal image x:

First, the horizontal derivative is computed:

y1(m,n) = 1√
2
[y(m+ 1, n)− y(m,n)]

Then, the vertical derivative of the horizontal derivative y1:

y2(m,n) = 1√
2
[y1(m,n+ 1)− y1(m,n)].

Step 2: computing the histogram of local standard deviations Using a window of size
L×L pixels, with L = 2K+1, K ∈ N, the variance is estimated by the classic unbiased estimator

σ̂2(m,n) = 1
NL−1

([
K∑

i=−K

K∑
j=−K

y22(m+ i, n+ j)

]
−NLµ̂

2(m,n)

)
.

NL is the number of pixels in the window (L2).

The local mean is computed as:

µ̂(m,n) = 1
NL

K∑
i=−K

K∑
j=−K

y2(m+ i, n+ j).

The authors explain that they tested several different window sizes and found that the best
results are achieved with the minimal possible window size, L = 3.

The histogram h(k) with entries σ̂(m,n) is defined as:

h(k) =

#{(m,n) : k − 1
2 ≤ ασ̂(m,n) < k + 1

2}, if k = 1, . . . , kmax;

2#{(m,n) : 0 ≤ ασ̂(m,n) < 1
2}|, if k = 0,

where “#" means the cardinal of the set.

The value α = 1 was considered adequate by the authors for most of the images.

Step 3: Evaluation of the histogram

An averaging of the values σ̂2(m,n) can be performed by computing the mean square value of the
histogram,

s2l =

kmax∑
k=0

k2h(k)

kmax∑
k=0

h(k)

.

The value s2l /α
2 is an initial global estimate for the noise variance σ2

w.

The estimation can be improved iteratively thanks to the prior knowledge of the shape which the
histogram should have. The histogram should exhibit a rapid descent for large values of k, but
for a natural image, the descent is significantly slower. The reason they give for this fact is that
the histogram is the convolution of a noisy uniform image with the histogram of the ideal image.
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Image / σ̃ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

bag 3.20 3.82 6.45 11.12 20.65 50.35 80.59
building1 1.58 2.53 5.79 11.14 20.92 50.57 80.46
computer 2.02 2.87 5.99 11.09 21.05 50.76 80.68
dice 1.07 2.12 5.11 10.08 20.12 50.25 80.63
flowers2 1.12 2.15 5.16 10.15 20.17 50.36 80.33
hose 1.68 2.56 5.38 10.24 20.25 50.08 80.63
leaves 3.60 4.12 6.45 11.01 20.64 50.26 80.65
lawn 3.51 4.03 6.39 10.95 20.60 50.33 80.51
stairs 1.84 2.67 5.42 10.29 20.14 50.36 80.48
traffic 2.14 2.98 6.14 11.41 21.21 50.79 80.64
constant 1.00 2.00 5.04 10.00 20.03 50.28 80.40

Table 13. Method for the Estimation of Image Noise Variance (deconvolution
method) results with white Gaussian noise.

Therefore, it is a deconvolution problem. The method fades-out the histogram by a descending
weighting function g(k). The following function is used:

gl(k) =


1 if k ≤ sl

1
2

[
1− cos

(
β− k

sl

1−β

)]
if sl < k < βsl

0 if k ≥ βsl.

The value of β must be obtained experimentally. The authors of the method found that
β = 2.12 is adequate. This value was used in all tests for this method. An improved value of the
square mean s2 can be obtained iteratively by

s2l+1 =

kmax∑
k=0

k2gl(k)h(k)

kmax∑
k=0

gl(k)h(k)

.

A fixed value lmax = 4 is enough. The initial value sl if taken from s2l =

kmax∑
k=0

k2h(k)

kmax∑
k=0

h(k)

. Finally, the

estimate σ̃2 =
slmax

α2 . It was found that a correction factor F = 1.0141 is needed to get an unbiased
estimation. The pseudo-code for this method is given in Algorithm 10 and the results for white
Gaussian noise in Table 13.

This is comparable to the other ones, in that it computes the average of a weighted quantile of
the variance histogram. The chosen differential operator, the second cross derivative, is judicious.
The results are bad for low noise. They show that either the high pass filter has not a large enough
order, or the quantile is not low enough.
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Algorithm 10 Estimation of Image Noise Variance (deconvolution method) algorithm.
1: EINV - Return the standard deviation of the image noise. Input U: input image. Output σ̃:

estimated standard deviation of the noise in the image.

2: F = 1.0140974819332935. ▷ Correction factor

3: y1(m,n) = 1√
2
[y(m+ 1, n)− y(m,n)].

4: y2(m,n) = 1√
2
[y1(m,n+ 1)− y1(m,n)].

5: σ̂2(m,n) = 1
NL−1

([
K∑

i=−K

K∑
j=−K

y2
2(m+ i, n+ j)

]
−NLµ̂

2(m,n)

)
.

6: Create histogram h(k). ▷ View step 2

7: Q = ones(kmax + 1). ▷ Array of kmax ones

8: for i = 1 . . . 4 do
9: N = 0. ▷ Numerator

10: D = 0. ▷ Denominator

11: for k = 0, ...kmax do
12: N = N + k2Q(k)h(k)

13: D = D +Q(k)h(k)

14: end for
15: sl =

√
N/D

16: for k = 0, . . . , kmax do
17: if k < sl then
18: gl(k) = 1

19: end if
20: if sl < k and k < βsl then
21: gl(k) = 0.5

[
1− cos

(
π(β−k/sl)

1−β

)]
22: end if
23: if k ≥ βsl then
24: gl(k) = 0

25: end if
26: end for
27: Q = gl. ▷ Copy array

28: σ̃ = (sl/α)F

29: end for
return σ̃
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Figure 7. Laplace-like operators.

Figure 8. Difference of Laplacian operators to get the noise estimation operator
in the article Fast Noise Variance Estimation [4].

3.10. Method for Fast Noise Variance Estimation. The Fast Noise Variance Estimation
method [4] tries to avoid the interference of image structures (edges and textures) present on the
image when estimating the noise. To do it, it detects these structures using an operator based on
the Laplacian, and cancels them. It considers two 3 × 3 Laplacian stencils L1 and L2 (Figure 7)
and makes their difference to obtain the noise estimation operator L = 2(L2 − L1) (Figure 8).

Operator L cancels edges and structures in the image, but it is a biased estimator of the
variance. The correction factor to get an unbiased estimation of the variance is 1

36 . The pseudo-
code for this method is given in Algorithm 11 and the results for white Gaussian noise in Table
14.

Algorithm 11 Fast Noise Variance Estimation algorithm.
1: FNVE - Return the standard deviation of the image noise. Input U: input image. Output σ̃:

estimated standard deviation of the noise in the image.

2: L = [[1,−2, 1], [−2, 4,−2], [1,−2, 1]].
3: V = 0.

4: for [x, y] ∈ [1, Nx − 2]× [1, Ny − 2] do
5: A = 0.

6: for (i, j) ∈ (−1, . . . 1,−1 . . . 1) do
7: A = A+ U(x+ i, y + i)L(1 + i, 1 + j).

8: end for
9: V = V +A2.

10: end for
return σ̃ =

√
V

36(Nx−1)(Ny−1)
.
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Image / σ̃ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

bag 3.61 4.00 6.09 10.60 20.29 49.94 80.14
building1 5.00 5.30 7.01 11.14 20.57 50.15 80.11
computer 5.21 5.50 7.17 11.21 20.66 50.42 80.10
dice 1.34 2.19 5.09 10.01 20.05 49.94 80.25
flowers2 1.79 2.49 5.21 10.09 20.00 50.11 79.81
hose 1.76 2.47 5.21 10.11 20.09 49.92 80.33
leaves 3.65 4.03 6.10 10.61 20.36 49.84 80.36
lawn 3.78 4.16 6.18 10.63 20.34 50.03 80.06
stairs 1.81 2.51 5.22 10.13 20.03 50.05 80.25
traffic 6.02 6.25 7.76 11.59 20.80 50.41 80.24
constant 1.00 2.00 5.02 9.96 19.92 50.04 80.22

Table 14. Fast Noise Variance Estimation method results with simulated ho-
moscedastic white Gaussian noise.
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Image / σ̃ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

bag 2.37 3.12 5.78 10.48 20.03 49.81 79.58
building1 1.77 2.85 5.91 10.71 20.39 49.85 79.52
computer 1.99 2.97 5.92 10.79 20.28 49.74 79.90
dice 1.11 2.08 5.03 9.96 19.80 49.81 78.97
flowers2 1.16 2.11 5.05 9.98 20.07 49.33 79.08
hose 1.47 2.33 5.17 10.06 19.85 49.67 79.27
leaves 2.89 3.50 5.86 10.44 20.08 49.64 79.76
lawn 3.06 3.68 6.07 10.61 20.19 49.64 79.43
stairs 1.77 2.57 5.31 10.16 20.03 49.13 79.68
traffic 2.25 3.29 6.24 11.01 20.67 50.22 79.66
Flat image 0.99 1.96 4.92 9.92 19.63 48.85 78.59

Table 15. Wavelet DB3 MAD results with white Gaussian noise.

3.11. Wavelet MAD. This method consists on applying the MAD estimator to the detail
(HH) coefficients of the Discrete Wavelet Transform (DWT) of the image.

The algorithmic description for this method can be found in Algorithm 12 and its results for
white Gaussian noise in Table 15. The DB3 Daubechies wavelet were used.

Algorithm 12 Wavelet-MAD noise estimation algorithm.
1: Wavelet-MAD - Return the standard deviation of the image noise. Input U: input image. Output

σ̃: estimated standard deviation of the noise in the image.

2: w = 8.

3: Obtain multiresolution wavelet coefficients LL, HL, LH, HH of U .

4: M = median(HH).

return σ̃ = median(|HH−M|)
0.6745

3.12. Conclusion. In this chapter we presented a review of classic homoscedastic noise esti-
mation methods.

Table 16 gives the RMSE values obtained by evaluating these methods with white Gaussian
noise, with σ ∈ {1, 2, 5, 10, 20, 50, 80} along all the images. This table is the final result of this
study of homoscedastic noise estimation methods, and is particularly decisive for the low noise
values. Giving the RMSE depending on σ for white Gaussian noise is perhaps not quite intuitive,
and requires some attention. For example, a RMSE of 1.0 is an excellent estimate for σ = 80, but
is quite bad if σ = 2. Thus this last table shows that the results are very bad for all methods but
the Ponomarenko et al. and the Percentile methods. Still the error is about 8% for low level noise
σ = 2, 5, but it only doubles for much larger noises, which means that it is ridiculously low for
high noise. These precisions on the noise estimation are more than enough for applying denoising
algorithms.
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Method σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

PCA [3] 0.31 0.21 0.13 0.25 0.37 1.17 2.57
DCT-MAD 0.59 0.85 0.48 0.29 0.12 0.38 0.71
DCT 0.99 2.21 0.71 0.31 0.19 0.46 0.74
Ponomarenko et al. [15, 16] 0.56 0.39 0.28 0.34 0.49 1.38 1.60
Wavelet MAD 0.91 0.91 0.73 0.43 0.05 0.25 0.83
F.N.V.E. [4] 1.64 3.12 1.40 0.45 0.17 0.26 0.25
Percentile [17] 0.58 0.52 0.51 0.47 0.67 1.22 2.07
E.I.N.V. [5] 1.36 0.72 1.01 0.67 0.39 0.56 0.59
Block [56, 57] 1.47 0.41 0.94 1.05 1.27 1.00 1.05
Gradient [58, 59] 2.44 0.96 1.45 1.30 0.54 1.17 1.76
Scatter [60] 7.24 0.58 1.75 1.39 2.23 1.56 2.26
Average [55] 3.02 2.15 2.31 1.64 1.43 1.63 0.99
Median [55] 3.26 2.35 2.54 1.83 1.81 2.17 1.61

Table 16. Comparison of the averaged RMSE along all test images in Figure 3
using simulated homoscedastic white Gaussian noise.

In table 16 they appear three additional methods: the Ponomarenko et al., the Percentile, and
the PCA methods. These methods have an special interest because their performance is clearly
superior to that of the classic method (the case of the Ponomarenko et al. and the Percentile
methods), or because they are relatively recent (the PCA method). These methods have been
studied with great detail in the third part of the thesis. The Ponomarenko et al. method is
detailed in Chapter 10, the Percentile method in Chapter 11, and the PCA method in Chapter 12,
and evaluated in Chapter 13.

The method Estimation of Image Noise Variance is referred to as E.I.N.V. [5] and the method
Fast Noise Variance Estimation as F.N.V.E [4]. The Pyramid method [6] is not evaluated here,
because it was not able to give a estimate for all σ levels. The Ponomarenko et al. method was
configured with p = 0.005 and w = 8.

It can be concluded that for simulated homoscedastic white Gaussian noise, the PCA methods
gives better results than its competitors, for low and moderated noises (σ < 10). For σ > 10,
simpler methods, as F.N.V.E and the Wavelet MAD methods give the best results.

It is important to note that this table only shows the preliminary results of the study presented
in this thesis, where the noise is homoscedastic, white, and simulated. As it will be explained in
Chapter 2, simulating this kind is simple noise is not realistic at all, since real images are (at least)
signal-dependent, and thus the variance of the noise increases with the intensity. Adapting the
method to signal-dependent noise implies changes that make this classification change significantly.
In fact, the classic method give inaccurate results when adapted, whereas the Ponomarenko et al.
method gives the best results, followed by Percentile and PCA.
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In Chapter 3 it will be shown than the signal-dependent noise is not enough (for example, it
does not apply to digital images after demosaicing the raw image at the focal plane). In Chapter
13 it will be shown that after adapting the methods to signal-dependent noise, the PCA method
is not reliable when the image contains high noise, and needs much more samples/bin than the
Ponomarenko et. al and Percentile methods, which perform much accurately.





CHAPTER 2

Signal-dependent noise estimation

Optimal denoising works at best on raw images (the image formed at the output of the focal
plane, at the CCD or CMOS detector), which display a white signal-dependent noise. The noise
model of the raw image is characterized by a function that given the intensity of a pixel in the noisy
image returns the corresponding STD; the plot of this function is the noise curve. This chapter
develops a non-parametric approach estimating the noise curve directly from a single raw image.
An extensive cross-validation procedure is described to compare this new method with state-of-the-
art parametric methods and with laboratory calibration methods giving a reliable ground-truth, even
for nonlinear detectors.

The signal-dependent noise model is valid for raw images, but when the noise is correlated
and thus frequency-dependent (for example, after demosaicing the raw image), the noise model
presented here is not enough, as will be shown in Chapter 3. Chapter 4 will discuss a new model
able to measure the noise even in JPEG-encoded images.

1. Introduction

Most denoising methods assume that the noise in the image is additive, homoscedastic, white,
and Gaussian. Homoscedastic means that the variance of the Gaussian noise is fixed and does
not depend on the pixel position or value. By “white” noise, we mean that the noise pixel values
are independent (look at Section 3 of Chapter 1 for a review of classic homoscedastic white noise
estimators). We shall retain this terminology throughout.

The homoscedasticity assumption is not realistic. The photon emission by a body follows a
Poisson distribution which can be approximated by a Gaussian distribution when the number of
photons is large enough. But the variance of this Gaussian is signal dependent. In the Poisson
model [62, 63, 64, 65, 66, 67, 68], an image value Ũ(x, y) at pixel (x, y) is a Poisson variable
with variance and mean equal to U(x, y), where U is the ideal noise-free image. The Poisson
noise has therefore a standard deviation (STD) equal to [U(x, y)]

1/2. Thus, an ideal raw image
is a white Poisson noise whose mean at each pixel is the noiseless value. Note that this is related
to the quantum nature of light and the probability of emitting a photon, independently of the
technology used at the CFA (CCD, CMOS). This Poisson noise adds up to a thermal noise and to
an electronic noise which are approximately additive and white, making the final noise model not
necessarily Poisson distributed, but still white and signal dependent.

Noise estimation is a necessary preliminary step for most image processing and computer
vision algorithms [1]. Nevertheless, several other denoising methods propose to deal directly with

65
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Poisson noise. Wavelet-based denoising methods [45, 44] propose to adapt the transform threshold
to the local noise level of the Poisson process. Lefkimmiatis et al. [46] have explored a Bayesian
approach and Deledalle et al. [47] have adapted the Non-local means algorithm [32] to Poisson
noise. These papers assume that no variance stabilizing transform (VST) transforming the signal
dependent noise into a nearly homoscedastic noise is accurate enough to transform the Poisson noise
into homoscedastic noise. The advantage of VSTs is that they permit the application of a classic
denoising algorithm. The VST associated with Poisson noise is often called Anscombe transform
[42], but one can attach a VST to any signal dependent noise model [1]. As a matter of fact,
papers on the Anscombe transform [43] (for low count Poisson noise) and [50] (for Rician noise)
argue that, when combined with suitable forward and inverse variance stabilizing transformations,
algorithms designed for signal independent Gaussian noise work just as well as ad-hoc algorithms
for Poisson noise models. These considerations confirm the importance of estimating as accurately
as possible the noise curves of raw images, since their accurate knowledge is required to compute
the VST. In most CCDs and CMOS detectors, the variance of the noise at a pixel is approximated
(assuming that all detectors at the CFA are equivalent and thus neglecting the fixed pattern noise)
by a simple linear model σ2 = A+BU, where U is the expectation of the intensity of this pixel in
the noisy image. This model is valid under the assumption mentioned above of a combination of
a Poisson with a thermal noise. Yet, this assumption holds only if the signal is not saturated and
the photon count large enough. At the darkest pixels, the Poisson distribution of the noise cannot
be approximated by a Gaussian and it becomes a shot noise. In short, the noise variance does
not necessarily follow the linear model in the darkest and brightest image regions. An accurate
estimation of the noise at the darkest zones is crucial since subsequent processes in the camera
chain (specially, the gamma correction step) are designed to increase the dynamics in the dark
zones. If the noise is not removed at the raw image stage, it might end up really augmented at the
final stage.

Parametric noise estimation methods try to obtain the parameters that control a noise model
(for example, the A and B parameters of the linear model). Yet, to get a realistic estimation, they
have to take into account the effect of the saturation in the darkest and brightest pixels in the
final noise curve. To validate the estimation of a noise estimation method, its noise curve must be
compared to a ground-truth curve. Such a ground-truth for a particular camera and settings can
be obtained by taking a series of photographs of a pattern, that is mostly flat and contains a wide
range of gray levels. The temporal variation of the gray level at a given pixel gives an estimate of
the noise STD associated with this gray level. However, the series of photographs must be taken
under controlled conditions, to ensure that any variation of the intensity of a pixel can be only
explained by the noise. In short, it is a heavy procedure (that is, it requires constant lighting, a
camera stabilizer to fix its position, and isolation from any kind of electromagnetic source that may
introduce electronic noise into the camera) which also needs access to the camera that took the
photographs. It also requires the a priori knowledge of the form of the camera noise model, which
is not granted. This explains why the establishment of a method able to estimate automatically the
noise model from a single snapshot is a valid question. Furthermore, if the method can be shown
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to be reliable even without any a priori model guess, its credibility will be somewhat augmented.
In this chapter, we show that it is indeed possible to use a non-parametric estimator to get an
accurate noise curve from the noisy image itself, by measuring the variance locally with patch-
based methods [69, 70, 71, 3, 56, 72]. This eliminates the need for lab calibration procedure.
Indeed, the procedure described uses one or several photographs taken in arbitrary environment
and yields a non-parametric noise model as good (for those images) as the one obtained by the
heavier ground truth procedure (laboratory calibration). We also examine the question of whether
it is better to use a parametric or a non parametric model when dealing with a single or a few
photographs. Our conclusion is that the non parametric method gives results comparable to the
parametric method, but is somewhat less risky as it does not propagate local estimation errors
caused by the presence of texture in the image.

Our plan follows from the above discussion. Since noise estimation is a well-known proce-
dure for white homoscedastic noise, Section 2 will review the literature on white homoscedastic
noise estimation and will point out competitive algorithms. Section 3 explains the procedure that
should be followed to get a reliable non-parametric noise curve from a series of images, under con-
trolled conditions. Section 4 discusses how homoscedastic white noise estimation algorithms can
be adapted to estimate an arbitrary signal-dependent noise curve. Section 5 compares the Root
Mean Squared Errors (RMSE) between the non-parametric ground-truth, the STDs from the series
of images and two state of the art parametric methods. Finally, Section 6 presents the conclu-
sions, that validate our proposed nonparametric method, but also the use of two state-of-the-art
parametric methods.

2. State-of-the-art in white noise estimation

Many noise estimation methods share the following features, which can be summarized in two
sentences:

• estimate noise in high frequencies, where noise dominates over signal;
• estimate noise in image regions with the least variation, typically the blocks with the

smallest STDs.

Thus, these numerous methods [4, 5, 6, 16, 56, 72, 55, 57, 60, 58, 59, 73, 74] proceed
roughly as follows:

• they start by applying some high-pass filter, which concentrates the image energy on its
edges, while the noise remains spatially homogeneous;

• they compute the energy of many blocks extracted from this high-passed image;
• they estimate the STDs of the blocks;
• to avoid blocks whose STD is mostly explained by the underlying ideal image, a statistic

robust to (many) outliers must be applied. The methods therefore prefer the flattest
blocks, which belong to a (low) percentile of the STDs of all the blocks.

Note that the power spectral density of a natural image is not homogeneous. Most of the
energy corresponding to its geometry is located at the low and medium frequencies, whereas high



68 2. SIGNAL-DEPENDENT NOISE ESTIMATION

frequency coefficients bring little visual information (with the exception of the edges). Conversely,
an image can be considered “highly textured" if the energy at the high-frequency coefficients is as
high as the energy observed at edges. Thus, high-passing the image before estimating the noise
spatially (or equivalently, estimating the noise only at the high-frequency DCT coefficients) is an
initial step for many noise estimation algorithms. This enhances the contribution of the noise. Yet,
avoiding edges and textures in the estimation remains necessary.

We shall limit ourselves to discuss the method acknowledged as the best estimator for ho-
moscedastic noise in the review [1], the Ponomarenko et al. method [16], along with the two of
the most competitive parametric methods for noise estimation in raw images [7, 75]. We briefly
describe these competitors in the next paragraphs. For a complete review on noise estimation
methods, we refer the reader to [1] and [55].

2.0.0.1. The Ponomarenko et al. approach. The Ponomarenko et al. [16] method is an ex-
tension of the previous method [72], based on the analysis of the DCT coefficients. In short, the
Ponomarenko et al. method computes the variance of the high-frequency coefficients of a set of
blocks whose variance measured at the low frequencies is minimal. We refer the reader to Chapter
10, where this method is analyzed in deep detail.

We now discuss two parametric methods that will be compared here.

2.0.0.2. Practical Poissonian-Gaussian Noise Modeling and Fitting for Single-image Raw-data.
Foi et al. proposed a simple parametric noise model [7] that takes into account the non-linear
response of the CCD due to the saturation of the signal and noise at the darkest and brightest
pixels of the image. The model assumes the well-known normal approximation, for which the
Poisson distribution P(λ) of the noise can in practice be approximated by the normal distribution:
P(λ) → N (µ = λ, σ = λ). The method has two stages. In the first step it estimates several pairs
intensity/STD that form a scatter plot. In the second step, the observed pairs are used to fit a
global parametric model. Before applying these two steps, the image is preprocessed. First, the
2D-wavelet transform of the image is computed and the wavelet detail coefficients stored. The 1D
Daubechies wavelet and scaling functions are used to create the 2D kernels of the transform. The
STD of the noise is obtained from the detail coefficients of the transformed signal. In order to
be robust against edges, the image is segmented into level sets according to the intensity. Since
the image to be segmented is noisy, the segmentation is done in a low-pass filtered version. With
the selected regions of the image, the intensity of each pair is obtained as the sample mean of the
approximation wavelet coefficients and the estimated variance with the unbiased sample variance
estimator. The last step of the method is to fit the A and B parameters of the linear model of the
variance, for which a maximum-likelihood (ML) fitting is performed. However, since saturation
makes the response of the CCD or CMOS detector non-linear, the method needs to modify the
expectation and variance estimators to take saturation into account. The authors calculated the
new estimators from the distribution of the non-saturated signal and gave the explicit expression for
the expectation and variance estimators under saturation. Finally, these new pairs are incorporated
into the ML fitting in order to get the A and B parameters of the linear model despite the presence
of saturation. The model is able to predict the non-linear response of the CCD or CMOS detector
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under saturation, giving explicitly the variance of the clipped noise for any intensity. Therefore,
this method will be used as an example where parametric and nonparametric methods are cross-
validated (Section 5).

2.0.0.3. Image Informative Maps for Component-wise Estimating Parameters of Signal-dependent
Noise. In the paper [75] Uss et al. propose to adapt the use of disjoint informative maps [76] to
estimate a parametric signal-dependent Poisson-like noise model. It discriminates between two
kinds of non-overlapping blocks (SW – scanning window): those which belong to textures (TI –
texture informative) and those that are suitable for noise estimation (NI – noise informative). To
describe the textures of a given SW in the image, the 2D fractal Brownian motion (fBm) model
is used, since the model is able to characterize a texture with few parameters. The roughness of
the texture is obtained from the Hurst exponent in the fBm model. The estimation of the noise is
obtained from a limited set of high-frequency coefficients of the DCT transform of the SWs that
belong to the NI map. This idea was introduced in the Ponomarenko et al. method [16] and
stated as the state of the art technique for noise estimation [1]. The Cramér-Rao Lower Bound
(CRLB) is used to decide if a SW belongs to the TI or NI maps, on the texture parameters and
the noise STD of the SW. All the SWs in the image are sorted according to increasing CRLB and
then compared to a threshold. The SW below the threshold have the lowest CRLB and therefore
belong to the NI map. The rest are assumed to be textures and assigned to the TI map. Since the
criterion based on the CRLB relies on the (unknown) texture and noise parameters, the method
begins with an initial guess for the NI and TI maps by fixing a noise STD and texture level to have
an initial and rough CRLB criterion. Then, with the available CRLB criterion better STD and
texture levels are computed, allowing for an even better CRLB criterion. The refining loop is iter-
ated until convergence is reached. To estimate signal-dependent noise, the set of SW is partitioned
into disjoint intensity sets according to their mean intensity and the method is applied separately
to each set in order to get an (intensity–STD) pair. Therefore, this method is coherent with the
claim we make in Section 4, which states that any block-based homoscedastic noise estimation
method can be easily adapted to deal with signal-dependent noise, just by splitting the whole set
of image blocks of the image into disjoint in intensity sets to apply then the homoscedastic version
of the method to each of these sets. For example, if the input image has size Nx ×Ny, there are
M = (Nx−w+1)(Nx−w−1) overlapping blocks, that may be distributed into a set of M/k bins,
where each bin contains k image blocks/bin whose mean intensity is a part of complete intensity
range of the image.

3. Non-parametric noise ground-truth curve

Parametric methods fix an a priori model for the noise. For example, at the output of the CCD
or CMOS detector a good approximation of the Poisson noise is to use the normal distribution
approximation, at least when the number of incoming photons is large enough. Therefore, the
variance of the noise is equal to the expectation. The noise at the output of the CCD or CMOS
detector is Poissonian and therefore its variance is linear with the intensity. Also, thermal and
electronic noise are added, and the noisy signal is amplified afterwards. Thus, the variance of the
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noise can be modeled as a function of the intensity of the ideal (noise-free) image: σ2(U) = A+BU.
However, since the dynamics of the digital output from the CCD or CMOS detector is limited,
the darkest and brightest pixels of the image can get saturated because of the noise, that becomes
clipped noise. Because of the saturation, the probability distribution of the noise is no longer a
symmetric normal distribution, but a truncated version with different statistics. The variance of
the truncated distribution does not coincide with that of the normal distribution. Therefore, any
realistic parametric estimation method must take into account that under saturation the simpler
linear model is no longer valid. Some methods [7] adapt their expectation and variance estimators
in order to take into account the effect of the saturation before fitting the linear function, while
others [75] try to fit with polynomials of higher order or transform the image in such a way that
the linear model holds.

In any case, the parametric model has to be validated in order to ensure that the curve they
provide is indeed a function that accurately relates the intensity of the ideal image with the STD
of the added noise. To do it, the estimations of the parametric method must be compared with
a ground-truth noise curve. For the construction of the ground-truth the constraint of using just
a single image is not needed. Indeed, it can be built from a series of snapshots of a calibration
pattern taken from a camera in fixed position. The series must be taken under controlled laboratory
conditions that ensure that the temperature and lighting remain constant. Ideally, any two images
of the series should be exactly equal in absence of noise. Therefore, any variation between the
images is only explained by stochastic light fluctuations (photon noise and shot noise) and the
noise generated by the camera itself (dark noise, readout noise and electronic noise). In Section 1.2
of Chapter 3 it is explained in detail how to build the ground-truth curve for a particular camera
and ISO speed. The ground-truth noise curves of the Canon EOS 30D and Nikon D80 for ISO
speeds 1250 and 1600 are shown.

If Ũi(x, y) is a pixel of the noisy image i at position (x, y), the intensity of the ideal image
can be approximated by its empirical expectation µ̂(x, y) = E

[
{Ũi(x, y)}

]
for i = 1, . . . , N , where

N is the number of snapshots in the series. The empirical variance associated to intensity µ̂(x, y)

is σ̂2(x, y) = Var
[
{Ũi(x, y)}

]
.

The calibration pattern must be mostly flat and represent a wide range of gray levels. Since
the noise curve mainly depends on the ISO sensitivity, a different noise curve is estimated for each
ISO level. Series of different exposure times were taken for each ISO in order to get representative
information in the whole gray level range. The noise curves for different times of exposure were
combined to obtain a single curve. In order to get a ground-truth noise curve, for each exposure
time (1/30s, 1/250s, 1/400s, 1/640s) about two hundred pictures of the calibration pattern were
taken. Since each 2 × 2 block of the CFA (Color Filter Array) contains one sample of the red
channel, two samples of the green channel and one sample of the blue channel, the raw image was
resampled as an image with four different color channels of half width and height. Thus, four
different noise ground-truth curves were obtained from the series, each corresponding to one of the
four channels of the CFA. By splitting the color range into bins (disjoint in intensity intervals) and
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computing the median value of the STDs at each bin, a ground-truth is obtained for the camera
noise curve given the ISO and exposure times.

Figure 1 shows the noise curves obtained with a Nikon D80 camera with fixed ISO sensitivity
of 1250 and 1600 and four exposure times, t ∈ {1/30s, 1/250s, 1/400s, 1/640s}. The obtained
curves overlap perfectly. Each one treats a different color interval, thus permitting to fuse them
into a single noise curve. This fused curve can be observed in the same figure. For each color value,
the fused noise estimation is obtained by the median of the available estimations obtained for the
different exposure time. The value for each curve is linearly interpolated using the two closest
neighbors. Since the noise curve does not depend on the exposure time, these curves overlap
(hence the double values). However, this overlap is not perfect because the STD is computed
with a finite number of samples and therefore the estimation has some variance that causes a
small error centered at the theoretical value. Curve (b) is the mean of all four curves at different
exposure times, which cancels their variation around the theoretical value and therefore it can be
used finally as a ground-truth for evaluating noise estimation algorithms. Figure 5 displays the
approximation of the computed ground-truth values by a linear model with the Nikon D80 camera.
Because of the saturation at the darkest zones, the estimated noise in the dark gray level does not
follow a linear model. However, using the partial linear model splitting the curve into three parts
might be useful to model this kind of curves is the noise model is known in advance. The ground-
truth curve obtained with the procedure presented here describes accurately the characteristics
of the noise without depending only on the minimal assumption that the noise depends only on
the intensity. Parametric methods assume priors for a particular noise model and therefore their
accuracy depends on how realistic these assumptions are. Section 4 shows that it is possible to
get a reliable noise curve that matches with negligible error the non-parametric ground-truth and
Section 5 shows that indeed it is possible to validate parametric methods with the non-parametric
ground-truth curve.

4. Non-parametric signal-dependent noise estimation

Parametric models are accurate under the condition of prior knowledge about the noise model.
For example, the Foi et al. [7] method assumes the linear model σ2 = A+BU for the variance, but
with a saturation effect. On the other hand, Uss et al. showed that the measured noise variance
cannot always be fitted with a linear function, but with a polynomial of at least second order [75].
However, we were unable to fit a 2nd, 3rd or 4th order polynomial to the saturated noise curve
in Figure 5. In order to use a linear function, these authors modify the intensity of the pixels at
each SW of the image by a function that nullifies quadratic and higher terms of the noise variance
model. After this transformation, the estimation is accurate.

Parametric methods require a validation, by a comparison to ground truth noise curves. The
data in the ground-truth must be empirical, in the sense that it does not assume any prior (with
the exception that the variance of the noise is a function of the expectation) and simply measures
the variance of the noise as-is. As discussed in Section 3, the major problem of the comparison
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Figure 1. Noise ground-truth curves obtained for a Nikon D80 camera
with fixed ISOs of 1250 (a) and 1600 (c) and four exposure times, t ∈
{1/30s, 1/250s, 1/400s, 1/640s} using laboratory calibration. Channels G1 and
G2 give the same STD. The obtained curves overlap perfectly. Since they cover
different color intervals, their fusion yields a complete noise curve (b), (d).

against the ground-truth is that it is different for each camera model and it must be obtained
under controlled laboratory conditions.

Our goal here is precisely to show that the laboratory calibration method used to obtain the
ground truth can be replaced by a non-parametric method, estimating directly on the image the
signal-dependent noise. We adapted the Ponomarenko et al. method [16], since it is scored as the
best method in a previous review [1]. Other non-parametric estimation methods could be used as
well. For example, in the paper of Liu et al. [52] a flexible eigenfunction representation of the
noise level curves was proposed, but it needs a prior segmentation of the noisy image.

We extended the Ponomarenko et al. method [16] to be able to estimate signal-dependent
noise (see the details in Chapter 10). To this aim, the means of the blocks are classified into a
disjoint union of variable intervals (bins), in such a way that each interval contains a fixed and
large enough number of elements. Thus, these intervals are automatically adapted to the image
itself instead of prefixed, since the intensity range of each bin depends on the mean intensity of
the w × w blocks in the image. We found that each bin should contain at least 42000 samples,
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which seems to be the lowest number permitting a reliable estimation. The value of p for the
p-quantile of block variances must be small to avoid blocks with large variance, corresponding to
edges and textures. In general, if a bin is made of blocks that belong to a flat or smooth zone,
we found experimentally that 210 per bin are enough to estimate the variance (using p = 0.5, the
median). However, with a smaller p = 0.005 percentile value, we can discard 99.5% of the blocks
with a higher variance and therefore in general all of the blocks affected by edges and textures.
By choosing a large value for the bin cardinality, namely 42000, we ensure that the blocks below
this low quantile are still numerous enough: 42000 × 0.005 = 210, so that they ensure a reliable
estimate of the noise variance.

To each bin a list of image blocks is associated, each of them being endowed with a list of
STDs. Notice that a bin does not correspond to a spatial region of the image, but only to a set of
blocks with similar means.

Another modification with respect to the original method is the procedure to find the best
p-quantile. The values in the list {VH(i, j)} depend on the choice of p-quantile. If p is small,
the method becomes more robust to the influence of textures and geometry of the image; but the
accuracy of the estimation also decreases with p. Our assumption is that the variance measured
using p = 0.5 (the median) should not be significantly different to the variance obtained with lower
values of p, unless the image is composed mainly of textures. The proposed iteration to get a
robust estimation of the variance, adapting p, is as follows. At each bin,

(1) Initially, p = 0.5 (the median) and ∆p = 0.005.
(2) Set S = {VH(i, j) | i+ j ≥ T}.
(3) Set Vs to the median of the values of S under the ∆p-quantile.
(4) Set Vp to the median of the values of S under the p-quantile.
(5) If p ≥ ∆p and Vp ≤ Vs then [Set p = p−∆p and go to step 3] else END.

This procedure decreases the initial p from the median to a lower value that makes the estimation
robust to textures and geometry, if needed.

About the w × w size of the scanning window, we use the same value that the authors of the
original algorithm proposed, and we found that indeed the best results are obtained with w = 8

in most natural images. Since the optimal size of the window depends on the density of edges and
level of texturization of the noisy image, if it is a priori known that the image is mainly composed
by large flat or smooth areas, it is better to use a larger window (up to 21 × 21) and to choose a
smaller size in the opposite case (but at least 3× 3) to obtain a reliable variance noise estimation.
A larger window estimates the noise more accurately (since the sample variance estimator has
itself a variance that depends on the number of available samples), but is less likely to contain only
data from flat or smooth zones, and more likely to capture edges and geometry. Nevertheless, the
proposed method is “blind", in the sense that no prior information about the characteristics of the
image or the noise is available. Adapting the window size is beyond the scope of this chapter and
it is left as future work.
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To avoid outliers in the estimation, we systematically discard completely saturated blocks.
Indeed, when the number of photons counted by the CCD or CMOS detector during the exposure
time is too high, its output may get saturated, and therefore underestimated. When the signal
saturates the output of the CCD or CMOS detector, the measured variance in the saturated areas
of the image is zero. Indeed, the effect of the saturation must be measured and given by the non-
parametric method in the produced noise curve, but the completely saturated pixels have outlier
intensities. Figure 2 shows a noise curve obtained by using or avoiding the saturated blocks, where
the modified Ponomarenko et al. [16] algorithm was performed with 49 bins. Since the intensity of
the saturated pixels is much higher (outlier) than the intensity of the rest of the points, the noise
curve is linearly interpolated along the gap in between. This natural image is a normal scene that
is useful to illustrate the problem of the saturation. The bike is not illuminated directly by any
source of light (only ambient light) and therefore it does not reflect much light, with the exception
of a few points at the handlebar that reflect light with enough power to saturate the detectors. The
STD equal to zero (measured near intensity 4000) is indeed correct, but all the interpolated points
in between are definitely not. The strategy we adopted was to discard the blocks that contain a
sub-group of 2× 2 pixels sharing the same intensity, in any of the channels. It must be noted that
this only removes the blocks containing pixels that are completely saturated, but keeps the rest of
the blocks, including those where the noise distribution is truncated, but not absolutely saturated.
This permits to measure and observe the saturation in the curve, as shown in Figure 5.

5. Cross-validation of several methods. Discussion

In order to compare ground-truth, parametric methods and our non-parametric method, we
used a dataset of 20 images obtained with a Nikon D80 camera using ISO 1250 and exposure time
1/640s. In these images the darkest pixels are saturated and therefore the noise curve does not
follow the linear variance model. Our dataset contains some views of a room with objects over a
table, images of corridors, bookshelves, (Figure 5) stairs, and classrooms inside a building, with
different lighting levels. Also, two outdoor images of highly textured images (Figure 4). For each
test image, we computed the RMSE between the STDs given by the method and by the ground-
truth. The control points are given by the method and the STD of the ground-truth corresponding
to that intensity is obtained by linear interpolation between the two nearest intensity control points
of the ground-truth curve.

Figure 3 shows the obtained results. In general, the RMSE of the modified Ponomarenko et
al. (red curve) method is close to zero, which means that it could be used to establish a (non-
parametric) ground truth. The estimations given by Foi et al. (green curve) and Uss et al. (blue
curve) are really close to the non-parametric ground-truth, and are therefore also validated by
our approach. The Foi et al. method failed to measure the noise correctly when the images are
composed mainly by textures (images #19 and #20, see Figure 4), whereas the Uss et al. and
the proposed method gave good results in that case. Note that textures cause a localized error
in the non-parametric curve (middle), whereas they cause a global error in the parametric curves.
Fig 5 shows three examples of images in our dataset (images #8 and #12) where all algorithms



5. CROSS-VALIDATION OF SEVERAL METHODS. DISCUSSION 75

(a)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Intensity

0

10

20

30

40

50

St
an

da
rd

 d
ev

ia
tio

n

Noise curve for raw image IMG_1071, ch=1. Avoiding saturated pixels

(b)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Intensity

0

10

20

30

40

50

St
an

da
rd

 d
ev

ia
tio

n

Noise curve for raw image IMG_1071, ch=1. Using saturated pixels

(c)

Figure 2. Noise curve obtained when the saturated pixels are avoided in the noise
estimation (b) and when they are taken into account (c) by using the Ponomarenko
et al. method [16] with 49 bins in an image with saturated pixels (a).

estimated the noise correctly. Foi et al. method (red curve) matches accurately the ground-truth
curves (green and blue), since it is designed to predict the shape of the curve under saturation
conditions, whereas Uss et al. estimation is overall correct, except in the saturation zone, as
expected. As explained in Section 2, the original Ponomarenko method is only able to estimate
homoscedastic noise, that is, a value of STD that does not depend on the intensity. However, in
Figs. 4 and 5 we show noise curves, that correspond to the modified Ponomarenko method: added
bins to get control points in the curve for different intensities and avoid using completely saturated
points before the estimation. Of course, the over-estimation caused by a bin where all samples
belong to textures can be avoided if more than a single image is available, by estimating the noise
in the mosaic made of several different input images.

As shown in Figure 5, the linear model does not hold when the image is saturated. Uss et al.
tried to use a second-order polynomial to fit the saturated noise curve. However, we found that a
second-order polynomial was not general enough to fit the saturated curves. Foi et al. assumed
the linear model, but taking into account the effect of the saturation. However, both methods
assume that the noise can be modeled with a linear function when there is no saturation. This
is true for most CCDs or CMOS detectors, but the output recorded in the raw file given by the
camera might not be a linear function of the intensity [77]. This makes clear the necessity of
validating parametric methods, which assume an a priori model for the noise. In contrast, the
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Figure 3. RMSE between the methods and the ground-truth for all the 20 images
in our dataset. In general, the RMSE of the modified Ponomarenko et al. (red
curve) method is close to zero, which means that indeed it can be considered
to be a non-parametric ground-truth curve. The estimations given by Foi et al.
(green curve) and Uss et al. (blue curve) are really close to the non-parametric
ground-truth, and therefore they are also validated by our approach. (a): obtained
RMSEs/image, (b): detailed view.

estimates of a non-parametric method rely on the minimal assumption that the signal is a function
of the expectation. In general, the best results are obtained with the modified Ponomarenko et al.
method.

To decide if a method is valid or not, its RMSE with respect to the non-parametric ground-
truth has to be compared to a threshold. We consider that a method is valid if the RMSE between
the measured STD and the ground-truth is less or equal to ∆σ̂8 = 0.15 (assuming that the images
are encoded with 8 bits. This value was chosen to be as low as possible and, at the same time,
consistent with the accuracy of state-of-the-art noise estimation methods. Since the raw images
are encoded with 12 bits, the threshold is γ = ∆σ̂8 × 16 = 2.4. The estimation of the Foi et. al
method is considered valid in 17 of 20 images whereas the Uss et al. method is validated with all
the images in our dataset.

5.1. Complexity. The Uss et al. method follows four steps: (1) initialization of the TI map
and the polynomial function for the variance, (2) estimate texture and noise variance for each TI
and NI SWs and label the SW into NI or TI, (3) update the CRLB and finally, (4) apply the
noise estimator to the samples associated to each bin and update the variance polynomial. Steps
2, 3 and 4 are iterated until convergence is reached. The complexity of the Uss and the modified
Ponomarenko method is similar and their complexity is linear with the number of pixels in the
image. Both imply an estimation of the noise variance at the DCT coefficients in small patches of
the image after classifying the them according to their intensity. For its part, the Foi et al. method
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Figure 4. highly textured images that caused small oscillations in the noise
curves with the proposed method and wrong results with Foi et al: images #19
(a) and #20 (b) (see the obtained RMSEs in Figure 3). (c), (d): the ground-truth
obtained with the series (green), the non-parametric ground-truth (darker blue),
the Uss et al. method (brighter blue) and the Foi et al. method (red).

follows these steps in order to obtain the final parametric model: compute the detail wavelet
coefficients of the image, segment the image to find homogeneous zones, estimate locally pairs of
intensity/variance, and finally the maximum-likelihood fitting of the global parametric model. All
steps can be computed quickly, but unlike Uss. and the modified Ponomarenko method, it requires
a previous segmentation of the image.

5.2. Denoising results. We used the noise curves obtained with the Uss, Foi, and the mod-
ified Ponomarenko methods as the input of the NL-Bayes [78] denoising algorithm, after applying
a VST to the noisy image. Only the green channel was used. Note that according to our threshold
criterion, both the Uss and Foi methods are validated and therefore their denoising results in al-
most all images in the dataset are very similar. Figure 6 (a) shows details of the results obtained
for the image #3 of our dataset, where the Foi et al. method failed to estimate correctly the noise.
While Uss and the modified Ponomarenko methods denoise the image properly, the noise at the
dark zone (the bag over the table) remains visible. The image (e) is the test image #20 of our
dataset, where the Uss and the modified Ponomarenko method give an valid estimation, whereas
the Foi method overestimates. All methods gave an increased RMSE for that particular image,
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Figure 5. Examples of images (#8 (a) and #12 (b) in our dataset) where all
algorithms estimated the noise correctly. Their noise curves along all the intensity
range (c), (d). Detail of the noise curves only within the range of the estimation
given by the modified Ponomarenko et al. method (non-parametric ground-truth,
green curve), (e), (f). Note that the Foi et al. method (red curve) matches accu-
rately the ground-truth curves (green and blue), since it is designed to predict the
shape of the curve under saturation conditions, whereas the Uss et al. estimation
is overall correct, except in the saturation zone.
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which causes blurred denoised images and loss of fine details. Both the Uss and the modified
Ponomarenko methods give similar visual results, whereas the overestimation in the method blurs
the image even more.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Details of the denoising results with the NL-Bayes algorithm using the
noise curves obtained from the noisy images (a, e) with the modified Ponomarenko
(b, f), Uss et al. (c, g), and Foi et al. (d, h) methods. Image (a) is the test image
#3 of our dataset (it is very dark, so we increased brightness for visualization
purposes), where the Foi method was unable to give a reliable estimation and
thus the noise is not removed at the dark zones and remains visible (the bag over
the table). Image (e) is a detail from the test image #20 of our dataset, where
the Uss and the modified Ponomarenko method give an valid estimation, whereas
the Foi method overestimates.

6. Conclusion

We showed that estimating an accurate noise curve from a single raw image is possible and can
be done by an adaptation of a non-parametric noise estimator [16]. The only minimal assumption
is that the noise STD is a function of the expected signal. Being able to apply a noise estimator
(with relatively low complexity compared to denoising algorithms) to each raw image frees the users
of a tedious and sometimes impossible camera calibration task. Indeed, noise curves obtained in
an optical lab require measurements for each ISO and each optical setup, a heavy and costly
procedure. By estimating the noise directly on the raw image, there is no risk of model error or
accuracy loss caused by a noise parameter estimation on another camera.

According to the provided RMSE results (see Figure 3), the non-parametric method proposed
here exhibits a very stable error (close to RMSE=0.5) when the image is not composed mainly of
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textures. However, even if the image is highly textured (see images #19 and #20 in Figure 4), the
error is small and similar to the RMSE obtained with the compared state-of-the-art methods.

In general, the estimation given by the proposed method is as reliable as the actual ground-
truth obtained from the temporal series of the series of images of a calibration pattern in the
laboratory, and matches the best parametric methods.

Signal-dependent noise is a sufficient model when estimating noise in raw images, but this
model is not enough, in general. Noise is transformed at each step of the camera processing chain
(raw image, demosaicing, white balance, gamma correction, and JPEG encoding). After demo-
saicing, the noise becomes correlated (and thus, frequency-dependent), as explained in Chapter 3.
Chapter 4 will propose an algorithm for estimating both intensity and frequency dependent noise,
which is valid even for JPEG-encoded images.



CHAPTER 3

The noise throughout the camera processing pipeline

Noise in raw images follow a signal-dependent Poisson model and can be estimated by adapting
the state of the art homoscedastic noise estimation algorithms [9, 16]. However, the JPEG standard
[79] is preferred in general, since it reduces drastically the size of the file by using lossy and
lossless compression. In the raw image the noise follows a Poisson distribution, it is white, and
uncorrelated. After JPEG compression, the noise is frequency-dependent, correlated and no longer
white. We will show how the noise is affected at each step of the camera processing chain. The
noise curves obtained with the Ponomarenko et al. method [15, 16] along the complete camera
processing chain (raw image, demosaicing, white balance, gamma correction, and JPEG-encoding)
are shown (along the corresponding autocorrelation matrices of the noise) and compared to the
temporal estimation (nonparametric ground-truth curve, see Section 2 of Chapter 3).

1. The noise curves at each step of the camera pipeline

In this chapter, the effects of the camera processing chain (from the raw to the final JPEG
image) on the noise will be discussed, showing detailed noise curves at each step, using different
cameras, ISO speeds, and exposure times. Finally, it will be shown that it is possible to obtain
a unique noise curve for raw images depending only on the camera model and the ISO that was
configured when the picture was taken. For all the experiments in this chapter, two different
cameras (Canon EOS 30D and Nikon D80) were used, combining two ISO speeds (ISO 1250, ISO
1600) and four exposure times (1/30s, 1/250s, 1/400s, 1/640s).

1.1. Noise at the Color Filter Array. Each cell of the mosaic acquired by the CCD1 or
CMOS2 detectors of most digital cameras presents a value at each pixel that can be modeled as
a Poisson variable whose expectation is the actual “true" color [8]. The random fluctuations of
this value around its mean can be considered independent and can be estimated accurately with
state-of-the-art homoscedastic noise estimation algorithms [16, 1, 3]. More precisely, the noise
measured at the CCD or CMOS detector is the combination of several sources:

• Dark noise, caused by a small electronic current known as the dark current, created at
the depletion zone of the semiconductors of the CCD or CMOS detector because of the
high intensity electric fields. The dark current (and therefore the dark noise) increases
with the temperature. The dark current at the same temperature is a function of each
captor at the CCD or CMOS detector, and therefore the additional current does not

1Charge-Coupled Device.
2Complementary Metal-Oxide Semiconductor.
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vary between snapshots. This pattern observed by the camera when the CCD or CMOS
detector is not exposed to light is known as the dark frame. Since the dark frame pattern
is always the same and nothing more than a constant bias, it can be subtracted after
taking the photograph of a scene.

• Photon noise, due to the physical nature of light. The photons are emitted as quantum
of energy with a rate that has some variance. As we mentioned, this process can be
modeled with a Poisson distribution.

• Readout noise. Since the charge accumulated at the CCD is really small, it must be
processed by an analogic amplifier which adds noise to the measurement.

• Shot noise. The noise of the Poisson photon acquisition can be modeled in good light
as an additive Gaussian noise with standard deviation equal to the square root of the
expected intensity. Nevertheless, this approximation is no longer true for very low photon
income, in which case the Poissonian image is called “shot noise”. Indeed, in a dark scene
most of the photosensitive surface receives a few photons whereas the rest of the surface
does not. Therefore, after the amplification of the measured charge, it causes that isolated
bright dots appear in the output image.

• Electronic noise caused by the absorption of electromagnetic energy by the semicon-
ductors of the camera circuits and the crosstalk phenomenon, among others.

1.2. The camera pipeline. Most of the noise evaluation methods assume or require the
noise to be uncorrelated and thus they are adequate to estimate directly the noise in the image
formed at the CFA3, the raw image. Unfortunately, the first transformation applied to the CFA
to obtain a color image (by demosaicing the Bayer pattern) correlates the noise. In addition,
the lossy compression performed by JPEG encoding makes the noise frequency-dependent. Many
methods [16, 1] assume that the variance of the noise can be estimated by measuring the variance
only at high-frequency coefficients, supposing that noise is frequency-independent. Yet, JPEG
compression quantizes the values of the coefficients depending of the frequency. This energy loss
of certain coefficients causes an underestimation of the noise estimation in these methods.

The following steps and transformations are performed in the camera processing pipeline in
order to obtain a final JPEG image from the raw:

(1) Acquire the image data from the CFA (raw image);
(2) interpolate the data from the CFA to obtain a color image from the grayscale mosaic

(demosaicing);
(3) adjust the weight of each color channel in order that the picture has the same colors as

the photographed scene (white balance);
(4) modify the dynamic range of the image in order to give more importance to the intensities

that human observers are more adapted to detect. This is done a non-linear function to

3Color Filter Array.
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Figure 1. Left: calibration pattern used to obtain the ground-truth of the cam-
eras. Right: photograph of the calibration pattern taken by the Canon EOS 30D
camera, raw image. The image is not grayscale because no white balance has been
applied at this first step.

each pixel, called gamma correction. For some cameras this function cannot be formu-
lated with a simple expression and it is given as a table that maps the input intensities
into different values (tone curve);

(5) apply lossy compression (quantization of the DCT coefficients).
(6) apply lossless compression (Huffman encoding).

Another objective of this chapter is to build ground-truth (GT) noise curve for the noise at the
CFA for both the Canon and Nikon cameras, depending on the ISO. A noise curve associates with
each observable intensity in each color channel a value for its standard deviation. To evaluate
and validate different noise estimation algorithms the GT is an absolute requirement. To build
the ground-truth curves, the calibration pattern shown in Figure 1 (left) was printed with a high
quality plotter and several (about 500) raw image pictures of the calibration pattern were taken
with the Canon and Nikon cameras with the same lighting conditions, fixing the ISO and the
exposure times. To minimize the effect of the edges in the image causing fluctuations due to sub-
pixel displacements of the still camera, and not to noise, the photographed calibration pattern
contains large different gray level rectangles (Figure 1, right). The image has a green tone because
the Bayer pattern presents two green pixels for one red and one blue. The variance of a pixel value
along different snapshots of the same still scene (Figure 2) can only be explained by the noise and
therefore the noise. Thus, the noise curve obtained computing the standard deviation values of
the temporal series gives the ground-truth noise curve for that camera. This noise curve obviously
also depends on the ISO and on the exposure time (Figure 4). As shown in Section 2, since the
standard deviation of the noise is a function of the intensity, it is possible to overlap all the noise
curves from different exposure times into a single ground-truth curve combining the curves from
all the exposure times.

1.2.1. Step 1/5: raw image. The first step to acquire the raw image is to count the number of
incident photons over the CFA along the exposure time, using a CCD or CMOS detector. Because
of the photoelectric effect, the CCD or CMOS detector is able to accumulate electric charge by
the absorption of electromagnetic energy. The camera electronics measures the voltage produced
by the accumulated charge during the exposure time, digitizes the values and finally stores them
using some proprietary format (NEF for the Canon and CR2 for the Nikon cameras). For both
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Figure 2. Computing the STD of the temporal series with the calibration pattern.

cameras, the intensity of a pixel in one of the four channels (R, G1, G2, B) is encoded with 12 bits.
At this first step, the noise is uncorrelated, that is, the noise at a certain pixel is not related with
the noise at any other pixel with the same signal intensity. Figure 3 shows the autocorrelation
function of a rectangle in the calibration pattern. This function only presents a peak at [0, 0], that
is, the pixels are almost only correlated with themselves and not with any other neighbor pixel.
It can also be observed, for the Canon camera (left), a pattern of some pixels at distance 2 and
beyond with small autocorrelation, caused by crosstalk between captors of the same type in the
CFA.
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Figure 3. Autocorrelation function for a rectangle of the calibration pattern for
the Canon (left) and Nikon (right) cameras with ISO 1600 and t=1/250s in the
raw image. The noise is mostly not correlated, although it can be observed, for
the Canon camera, a pattern of some pixels at distance 2 and beyond with small
autocorrelation, caused by crosstalk between captors of the same type in the CFA.
On the other hand, the autocorrelation at [0, 0] shows that the image obtained
with the Nikon camera contains more noise than the image of the Canon camera.

The noise curve obtained by the temporal series (ground-truth) and the noise curve obtained
by any accurate noise estimation algorithm coincide, since the noise is Poisson distributed. Figure
4 shows how the curves match in the case of the Ponomarenko et al. method [16], using ISO 1600
and t=1/250s for both the Canon and Nikon cameras.
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Figure 4. Comparison between the temporal series standard deviation (ground-
truth) and the noise curve obtained by the Ponomarenko et al. algorithm in raw
images. The images were taken with ISO 1600 and t=1/250s. The solid lines
correspond to the temporal series and the dashed to the single image estimation
with the Ponomarenko et al. algorithm. Left: Canon camera. Right: Nikon
camera.

Since noise is Poisson distributed, the variance of the noise is directly related to the intensity
of the underlying signal. Therefore, the variance of the noise should follow a simple σ2 = a + bu

linear relation, where u is the intensity of the ideal noiseless image and constant a a is due to
the other mentioned sources of uniform white noise explained in Section 1.2, dark, readout, and
electronic noise. In the case of raw images, the noise is only a function of ISO, since it controls
the intensity multipliers. Therefore, it is possible to combine the curves obtained with different
exposure times (and the same ISO) to get a unique ground-truth curve.

However, some cameras pre-process the data acquired at the CCD before writing the raw
image. Also, the saturation of the captors at the most dark and bright zones breaks the linearity
between the intensity and the variance. Figure 5 shows the square root of the linear model of the
variance obtained by the least squares method. In the case of the Nikon camera, the image is dark
enough to show the non-linear effect of the saturation in the noise curve. It is therefore preferable
and more reliable to estimate the noise curve without assuming a priori a noise model. Thus we
shall prefer non-parametric estimation methods that give a signal-dependent noise curve from the
image itself.

1.2.2. Step 2/5: demosaicing. The image acquired at the CFA is just a mosaic where each
captor measures the intensity of the R, G1, G2 or B channels. Depending on the CFA, the
disposition of the pixels associated with each channel may be different. The goal of the demosaicing
step is to create a color image from the mosaic using an interpolation algorithm. In our tests we
used the Adams-Hamilton [80, 81] because of its simplicity. Indeed, it bases its estimation on the
gradients and pixels at distance one and two.
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Figure 5. Linear approximation of the variance ground-truth for the Canon (up)
and the Nikon (down) cameras with ISO 1600 (solid line: original values, dashed
line: linear approximation). Globally, the linear approximation coincides with the
computed ground-truth values. On the right, a detailed view of the estimation for
the darkest pixels in the same noise curve. For the Nikon camera, the estimated
noise in the dark gray level values does not coincide with the linear approximation,
because of saturation.

Figure 6 shows the comparison between the temporal series and the estimation obtained using
the Ponomarenko et al. algorithm for both the Canon (left) and Nikon (right) cameras.

It shows that

• each channel has a different noise level.
• the temporal series has more noise than the single image estimation.

Now each channel has a different noise level since the Adams-Hamilton algorithm does not
process each channel in the same way. The temporal series and the single image estimation co-
incide in the raw image but not after the demosaicing. The reason is that the Adams-Hamilton
demosaicing does, among other operations, an averaging of pixels at distance one, and therefore
reduces the spatial standard deviation that is measured in a single image. However, in the tem-
poral series the standard deviation is computed using pixels at the same location in the temporal
series. This explains why the noise in the temporal series is higher than the noise measured using
a single image. Since the image processing pipeline is sequential, the temporal noise curves and
those measured on a single image will not coincide anymore after the demosaicing step. Figure 6
permits to compare the estimation obtained using the temporal series and using the Ponomarenko
et al. algorithm.
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Figure 6. Comparison between the temporal series standard deviation and the
noise curve obtained by the Ponomarenko et al. algorithm after demosaicing.
The images were taken with ISO 1600 and t=1/250s. The solid lines correspond
to the temporal series and the dashed to the single image estimation with the
Ponomarenko et al. algorithm. The curves do not coincide anymore. Left: Canon
camera. Right: Nikon camera.

In the raw image, the autocorrelation is close to zero for any location different from [0, 0],
meaning that the noise is not spatially correlated. In the demosaiced image the autocorrelation
goes down to zero at distance two or more. This means that the pixel noise is correlated with
the noise at pixels whose distance is one. Figure 7 shows that the maximum autocorrelation
is attained at [0, 0], but the four points at distance 1, {[0,−1], [0, 1], [−1, 0], [1, 0]}, also have a
significant autocorrelation. This result is coherent with the Adams-Hamilton algorithm, where
pixels at distance higher than one show a very low autocorrelation and can be considered non-
correlated in practice.
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Figure 7. Autocorrelation function for a rectangle of the calibration pattern for
the Canon (left) and Nikon (right) cameras with ISO 1600 and t=1/250s in the
demosaiced image. Each pixel is correlated with four pixels at distance one. Pixels
at a distance higher than one show a very low autocorrelation and they can be
considered to be non-correlated in practice. Also, the Nikon camera shows a higher
autocorrelation because the noise is higher.
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1.2.3. Step 3/5: white balance. After the demosaicing each pixel of the image has a color, but
it has to be corrected in order to show the same colors a human would observe. The reason is that
the color filters of the CFA do not have all the same gain. Therefore, taking a picture of a gray
object will produce a colored image if the gain for the R (red), G (green) and B (blue) channels
is not balanced. For example, the photograph of the calibration pattern in Figure 1 (right) is
bluish since the blue channel has more gain than the others. However, apart from correcting the
colors, the white balance allows to simulate the kind of light on a scene. The kind of light is
well defined using its color temperature, that is, the kind of light that would emit a blackbody at
that temperature. For example, a candle light is within the range [1000K, 2000K], the fluorescent
lamps within [4000K, 5000K], the light of a sunny day within [5000K, 6500K], etc. Because the
calibration pattern only contains gray rectangles, the multipliers are chosen in such a way that
the resulting rectangles are gray, that is, the same intensity at each color channel. For example,
fixing ISO 1600 and exposure time 1/250s, the multipliers for the Canon camera are MR = 1.30,
MG = 1.00, MB = 1.08 and for the Nikon they are MR = 1.8, MG = 1.00, MB = 1.14. In
both cameras, the green channel is more sensitive that the red or blue channels and therefore the
white balance step increases them more. Figure 8 shows the results of the noise estimation after
the white balance for both Canon and Nikon cameras, with ISO 1600 and exposure time 1/250s.
Since the white balance factors are higher than one, the whole dynamic range of the image is
increased. Compare the maximum intensities of the noise curves corresponding to the demosaicing
step and the white balance step. The white balance of course increases the noise. For example,
the factor MR is higher than MG and MB as it can be seen in the curves. The red is now the most
noisy channel (then the blue and finally the green channel, which was not modified by the white
balance). Because of the dark, readout, and electronic noises, the minimum intensity registered by
the camera is not encoded at zero, but at some fixed value. It can be observed that this value in
the Canon camera (near intensity 128) is higher than in the Nikon camera (near intensity 30) and
therefore multiplying the red channel by 1.30 is much more noticeable in the Canon curve than in
the curve corresponding to the Nikon camera.

1.2.4. Step 4/5: gamma correction (tone curve). Human vision perception is not linear with
the signal intensity and can be modeled approximately with a power function. However, the charge
accumulated by the CCD or CMOS detector is linear with the number of incident photons on the
device during the exposure time. Since the information at the darkest zones is invisible to a human
observer, it is applied a power function called the gamma correction to the linear data captured
by the CCD or CMOS detector before attempting lossy compression. The idea is not to only
enhance the contrast of the image but also to encode more accurately the information in the dark
areas that is invisible in the raw image by enhancing it with the concave gamma function. This
gamma function has the form fk,γ(u) = kuγ , where the typical values for γ vary from 1.8 to 2.2.
However, commercial cameras do not apply this simple formula but use some precomputed tables
to simulate the non-linearity, called tone curves. In general, the tone curves saturate the signal
at the brightest zones of the image. Figure 9 shows the effect of applying the gamma correction
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Figure 8. Comparison between the temporal series standard deviation and the
noise curve obtained by the Ponomarenko et al. algorithm after white balance.
The images were taken with ISO 1600 and t=1/250s. The solid lines correspond
to the temporal series and the dashed to the single image estimation with the
Ponomarenko et al. algorithm. The minimum intensity value is much lower for
the Canon than for the Nikon. Therefore, the displacement to the right of the red
channel is more noticeable for the Canon camera. The dynamic range is increased
and since each channel has different multipliers, the noise now is higher for the red
channel, then for the blue and finally for the green, that has not been modified.
Left: Canon camera. Right: Nikon camera.

to the images obtained by the Canon and Nikon cameras. Previously, the demosaicing and white
balance were applied.

It can be observed that

• the dynamic range is clearly increased, much more than the white balance stretching,
specially in the dark areas;

• the noise increases significantly because of the power law function;
• the noise curve function is no longer monotonically increasing. When the intensity is

over some threshold the noise saturates the captor and the measured standard deviation
decreases instead of increasing (see Figure 9, right). Indeed, the derivative of the gamma
function, which is concave, is larger than 1 in the dark part and smaller than 1 in the
bright part. It is easily checked that in a first approximation, the noise standard deviation
is multiplied by the derivative of the gamma function. Indeed, assuming that the noise n
is small with respect to the signal u, we have by a first order asymptotic expansion γ(u+

n) ≃ γ(u) + γ′(u)n. Thus, after gamma correction the noise at level u is approximately
γ′(u)n.

1.2.5. Step 5/5: JPEG compression. The final step is to encode the image with the JPEG
standard in order to reduce the size of the resulting file. The encoding is not done in the RBG
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Figure 9. Comparison between the temporal series standard deviation and the
noise curve obtained by the Ponomarenko et al. algorithm after gamma correction.
The images were taken with ISO 1600 and t=1/250s. The solid lines correspond
to the temporal series and the dashed to the single image estimation with the
Ponomarenko et al. algorithm. The dynamic range is clearly increased specially
in the dark areas. The noise increases significantly because of the power law
function. When the intensity is over some threshold the noise level begins to
decrease instead of increasing because the signal gets saturated. Left: Canon
camera. Right: Nikon camera.

color space but in the Y ′CBCR, where Y ′ is the luma component and CB and CR the blue-
difference and red-difference chroma components, namely. Also, the number of bits is reduced to
8 bits/channel/pixel. Since human perception is much more sensitive to changes in luma than in
chroma components, the CBCR components are subsampled. Usually the 4 : 2 : 0 subsampling is
performed, which means that both the horizontal and vertical resolutions are halved. This step
implies loss of information. After the chroma subsampling, the image is tessellated into blocks
of 8 × 8 pixels and the 2D DCT-II of each is computed. Human perception is not adapted to
distinguish accurately differences in luma and chroma when the signal varies rapidly, that is, at
its high frequencies. Therefore, it is possible to quantize the information at the high-frequencies
without the notice of human observers. Also, it is well known that the variance of the high
frequency coefficients in the 2D-DCT transformation of a block is mainly explained by the noise.
Since JPEG encoding implies quantizing these high-frequency coefficients, most of the methods
will not be able to detect the noise by using these high frequencies. For example, the Ponomarenko
et al. method [16] which tries to estimate the noise using these high-frequency coefficients, gives
an underestimation if the image is JPEG encoded.

For each coefficient Ci,j of the DCT block of the image (i, j ∈ [0, 7]), JPEG applies the
operation

Ji,j = round
(
Ci,j

Ri,j

)
Ri,j ,
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

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99


Figure 10. Example of quantization matrix for JPEG encoding, as given in the
standard [79].

where Ji,j is the resulting quantized coefficient and Ri,j is the value of the quantization matrix for
the coefficient at frequency [i, j]. Figure 10 shows the quantization matrix proposed by the JPEG
standard [79].

Matrix R contains low values for the low-frequencies and higher values for the high-frequencies,
to quantize them more. It is designed such a way that it causes a great energy loss in the high
frequencies (the energy at the high-frequencies comes mainly from edges and textures) whereas the
medium and low frequencies (where most of the visual information is located, with the exception
of edges) are mostly respected. The actual values of the matrix depend on the quality at which the
JPEG encoder is configured, where the less quality, the higher the quantization. The quality of
the final JPEG image is determined by a quality parameter that goes from Q = 0 (worst quality)
to Q = 100 (best quality). Most of the cameras use quality Q = 92 as the standard quality by
default.

As an example, let us consider an image made of samples of pure white Gaussian noise of
mean zero and standard deviation σ = 10. Then, compute the 2D DCT-II of all non-overlapping
8×8 blocks in the image. If we denote by Dk[i, j] the coefficient of frequency [i, j] ∈ [0, 7]2 of block
k ∈ [0,M − 1], then the empirically estimated variance of the noise at that frequency along all

the blocks is Vark (Dk[i, j]) =
1

M − 1

M−1∑
k=0

(Dk[i, j])
2, where M is the number of non-overlapping

blocks. Table 11 shows the averaged STD of all blocks according to the frequency. On the left,
result from an image of pure white Gaussian noise of STD=10. On the right, the same image
after JPEG encoding with quality Q = 70. The [0, 0] frequency (DC) is at the leftmost top corner.
Note that after JPEG compression, the STD decreases as the frequency increases, because of
the quantization matrix. The slightly increased energy overall the matrix is due to the blocking
artifacts created by JPEG compression.

After quantization, the number of possible values for each DCT coefficient is reduced. In this
situation the lossless Huffman encoder can achieve good compression ratios. This is the last step
of the compression, that encodes the quantized coefficients found following a zig-zag scan of the
DCT block. Since the energy of the signal in natural images decreases as the frequency increases,
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

10.00 9.83 10.04 9.95 10.08 9.85 9.88 9.92

10.09 10.00 9.87 10.02 10.03 10.23 9.91 9.93

9.94 10.10 9.87 9.91 9.92 10.07 10.20 10.07

10.05 10.14 10.04 9.84 9.92 9.91 9.91 9.90

10.10 10.16 10.06 10.18 9.98 9.75 9.98 10.14

10.02 10.08 9.94 9.98 10.08 9.85 10.10 9.97

9.88 9.98 9.93 9.87 9.90 9.92 10.09 9.85

9.99 10.05 10.06 10.03 10.08 9.91 10.00 10.06




10.39 10.06 10.21 10.42 10.82 11.39 10.59 9.39

10.31 10.24 10.12 10.57 11.14 10.52 9.27 10.38

10.22 10.34 10.30 10.71 11.56 10.40 8.28 10.20

10.32 10.52 10.72 10.84 10.45 4.50 5.64 9.24

10.57 10.79 11.75 10.51 8.30 2.24 2.62 7.33

10.81 11.52 10.46 9.04 6.14 2.63 1.67 4.29

11.09 9.26 6.52 4.78 2.62 1.47 1.05 2.27

7.90 4.01 3.76 3.70 0.98 3.15 2.47 3.51


Figure 11. Averaged variance along all the blocks at all frequencies. Up: result
from an image of pure white Gaussian noise of STD=10. Down: the result using
same image after JPEG encoding with quality Q = 70. The [0, 0] frequency
(DC) is at the leftmost top corner. Note that after JPEG compression, the STD
decreases as the frequency increases, because of the quantization matrix. The
slightly increased energy overall the matrix is due to the blocking artifacts created
by JPEG compression.

the encoder uses a special code word EOB (end-of-block) which indicates that next coefficients in
the zig-zag scan are all zero. This improves even more the compression ratio.

To study the effect of JPEG encoding, the parameter Q = 92 was used to encode the images
for the experiments of this chapter. Figure 12 shows the noise curves for both the Canon and
Nikon cameras after JPEG encoding.

It can be observed that

• the dynamic range of the image has not changed after JPEG encoding.
• the noise is reduced after JPEG encoding, because of the quantization of the coefficients,

particularly those corresponding to the high frequencies.

Figure 13 shows the autocorrelation function after JPEG encoding for both the Canon and
Nikon cameras. Each pixel is strongly correlated with the four pixels at distance 1, and since JPEG
removes most of the energy at the high-frequencies, it can also be observed some small correlations
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Figure 12. Comparison between the temporal series standard deviation and the
noise curve obtained by the Ponomarenko et al. algorithm after JPEG encoding.
The images were taken with ISO 1600 and t=1/250s. The solid lines correspond
to the temporal series and the dashed to the single image estimation with the
Ponomarenko et al. algorithm. The dynamic range is not modified because of
JPEG encoding. The curves are shown using a 12 bits intensity range to compare
with the previous steps, although in reality the image is encoded with 8 bits instead
of 12 bits/color channel. Left: Canon camera. Right: Nikon camera.

with pixels with distances up to 5 pixels. Also, the Nikon camera shows a higher autocorrelation
because the noise is higher than the noise of the Canon camera.
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Figure 13. Autocorrelation function for a rectangle in the calibration pattern
for the Canon (left) and Nikon (right) cameras with ISO 1600 and t=1/250s in
the JPEG-encoded image. Each pixel is strongly correlated with the four pixels at
distance 1, and since JPEG removes most of the energy at the high-frequencies,
it can also be observed some small correlations with pixels with distances up to 5

pixels. Also, the Nikon camera shows a higher autocorrelation because the noise
is higher than the noise of the Canon camera.

1.3. Synthesis: effect of the complete image processing pipeline on the noise curve.
In this chapter we show the evolution of the noise curves throughout the complete processing
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Figure 14. Complete pipeline for ISO 1250, t=1/30s, Canon: raw image, de-
mosaicing, white balance, gamma (tone curve) correction and JPEG compression.
In the first step (raw image), all four color channels show share the same noise
curve. After demosaicing, each color channel have a different noise curve, since
the Adams-Hamilton algorithm treats each channel in a different way. Finally,
the gamma correction saturates the noise curve, which starts de decrease from a
certain intensity. The final JPEG noise curve exhibits the combination of all these
effects along the processing chain.

pipeline of the cameras, from the initial raw to the final JPEG image. We fixed an exposure
time t=1/30s and two ISO speeds, ISO 1250 (Figure 14) and ISO 1600 Figure 15 for both the
Canon and Nikon cameras. In the first step (raw image), all four color channels show share the
same noise curve. After demosaicing, each color channel have a different noise curve, since the
Adams-Hamilton algorithm treats each channel in a different way. Finally, the gamma correction
saturates the noise curve, which starts de decrease from a certain intensity. The final JPEG noise
curve exhibits the combination of all these effects along the processing chain. Comparing the raw
noise curves from both pipelines, it can be observed that the noise of the images with ISO 1600 is
higher than the noise of the images with ISO 1250, as expected. Also, the dynamic range is larger
with ISO 1600, since the sensitivity is higher. Apart of the different dynamic ranges, the curves
from ISO 1250 and ISO 1600 show the same behavior along the processing chain. Figure 16 and
Figure 17 show the curves corresponding to ISO 1250 and ISO 1600 for the Nikon camera.

The main difference between the Canon and Nikon cameras that can be observed is that when
using the same exposure time and ISO, the dynamic range of the Nikon camera is larger in the
Nikon compared to the Canon camera. In other terms, the Nikon camera is more sensitive to light
than the Canon, under the same ISO configuration. This explains why in all measurements the
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Figure 15. Complete pipeline for ISO 1600, t=1/30s, Canon: raw image, de-
mosaicing, white balance, gamma (tone curve) correction and JPEG compression.
In the first step (raw image), all four color channels show share the same noise
curve. After demosaicing, each color channel have a different noise curve, since
the Adams-Hamilton algorithm treats each channel in a different way. Finally,
the gamma correction saturates the noise curve, which starts de decrease from a
certain intensity. The final JPEG noise curve exhibits the combination of all these
effects along the processing chain.

Nikon camera always show more noise. Since the Nikon camera is more sensitive to light than the
Canon, the gamma correction functions start to saturate the signal earlier. This effect can be seen
looking at the curves after the gamma correction step. For example, the noise at the red channel
begins to decrease at intensity 2000 approximately with both ISO 1250 and ISO 1600 in the Canon
camera. In the case of the Nikon camera it begins at intensity 700, approximately.

2. Overlapping of noise curves with different exposure times

Historically, the ISO speed (standard ISO 5800:2001) was related to the sensitivity of the
photographic film used to take a picture with analogic cameras. With modern digital cameras,
the ISO level follows the ISO 12232:2006 norm, that sets the reference values for the calibration of
digital still cameras. In general, the ISO speed is simulated by multiplying the readouts at the raw
image by some fixed factors. As a consequence, the standard deviation of the noise varies linearly
with the ISO factors. However, changing the exposure time using the same ISO does not alter the
shape noise curve, but only increases the dynamic range with the exposure time. In Section 1.2,
several noise curves corresponding to different exposure times were shown. Since the shape of the
noise curve just depends on the ISO, it makes sense to combine the curves obtained at different



96 3. THE NOISE THROUGHOUT THE CAMERA PROCESSING PIPELINE

0 500 1000 1500 2000 2500 3000 3500 4000
Mean

0

50

100

150

200

250

300

350

St
an

da
rd

 d
ev

ia
tio

n

Temp. series (t) and single im. est. (s), nikon, ISO=1250, t=1/30 s

t-G1
t-B
t-R
t-G2
s-G1
s-B
s-R
s-G2

0 500 1000 1500 2000 2500 3000 3500 4000
Mean

0

50

100

150

200

250

300

350

St
an

da
rd

 d
ev

ia
tio

n

Temp. series (t) and single im. est. (s), nikon, ISO=1250, t=1/30 s

t-R
t-G
t-B
s-R
s-G
s-B

0 500 1000 1500 2000 2500 3000 3500 4000
Mean

0

50

100

150

200

250

300

350

St
an

da
rd

 d
ev

ia
tio

n

Temp. series (t) and single im. est. (s), nikon, ISO=1250, t=1/30 s

t-R
t-G
t-B
s-R
s-G
s-B

0 500 1000 1500 2000 2500 3000 3500 4000
Mean

0

50

100

150

200

250

300

350

St
an

da
rd

 d
ev

ia
tio

n

Temp. series (t) and single im. est. (s), nikon, ISO=1250, t=1/30 s

t-R
t-G
t-B
s-R
s-G
s-B

0 500 1000 1500 2000 2500 3000 3500 4000
Mean

0

50

100

150

200

250

300

350

St
an

da
rd

 d
ev

ia
tio

n

Temp. series (t) and single im. est. (s), nikon, ISO=1250, t=1/30 s

t-R
t-G
t-B
s-R
s-G
s-B

Figure 16. Complete pipeline for ISO 1250, t=1/30s, Nikon: raw image, demo-
saicing, white balance, gamma (tone curve) correction and JPEG compression.
In the first step (raw image), all four color channels show share the same noise
curve. After demosaicing, each color channel have a different noise curve, since
the Adams-Hamilton algorithm treats each channel in a different way. Finally,
the gamma correction saturates the noise curve, which starts de decrease from a
certain intensity. The final JPEG noise curve exhibits the combination of all these
effects along the processing chain.

exposure times and same ISO to get a unique noise curve. If this procedure is applied to the raw
image, the resulting curve can be used as a ground-truth for some ISO of a given camera. Figures
18 and 19 show the overlapping of the noise curves corresponding to 1/30s, 1/250s, 1/400s and
1/640s for the Canon and Nikon cameras at the raw, demosaicing, white balance, gamma correction
and JPEG encoding steps.

3. Mean ground-truth curves

Section 2 showed that noise curves coming from different exposure times overlap at the raw
image step. After the demosaicing step, the curves do not overlap anymore because the demosaicing
algorithm computes different interpolations depending on the channel. Since the image at the raw
step has not yet been processed by the demosaicing and further algorithms, it is only a function
of the exposure time and ISO speed and can be used as a ground-truth curve. This is particularly
useful to get an estimation of the accuracy of noise estimation algorithms. The noise curves
corresponding to different exposure times should overlap. In practice, there is some small error
due to the random nature of noise itself and the limited accuracy of the noise estimation algorithms.
Figures 18 and 19 show that the noise curves overlap almost exactly in the raw image step, but
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Figure 17. Complete pipeline for ISO 1600, t=1/30s, Nikon: raw image, demo-
saicing, white balance, gamma (tone curve) correction and JPEG compression.
In the first step (raw image), all four color channels show share the same noise
curve. After demosaicing, each color channel have a different noise curve, since
the Adams-Hamilton algorithm treats each channel in a different way. Finally,
the gamma correction saturates the noise curve, which starts de decrease from a
certain intensity. The final JPEG noise curve exhibits the combination of all these
effects along the processing chain.

with some negligible error. To get a unique noise curve, the average of the values of the curves
corresponding to different exposure times is computed (see Algorithm 13). Figures 20 and 21 show
the computed ground-truth for the Canon camera for ISO 1250 and ISO 1600. Figures 22 and 23
show the same for the Nikon camera. On the right, a detailed view of the noise curve at darkest
intensities.

The darkest zone of the noise curve has a particular interest, since the gamma correction
increases the energy of the image specially in these dark zones, making the noise really noticeable
afterwards. After the white balance step, the noise has been multiplied by a different factor that
depends on the channel. If the noise is convolved by some kernel, this visible noise will appear to
the observer as colored stains on the image. The DCT coefficient quantization step in JPEG is
similar to convolution with a kernel that low-passes the image and therefore these kind of artifacts
are still visible after JPEG compression.

4. Comparison of the autocorrelation functions at different scales

Consider the operator S that tessellates the image into sets of 2×2 pixels blocks, and replaces
each block by a pixel having the average of the four pixels. We define the n-th subscale of an
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Figure 18. Noise curves overlapping for 1/30 s, 1/250 s, 1/400 s and 1/640

s exposure times for the Canon camera with ISO 1250. Up: raw image, after
demosaicing and after white balance. Down: after the application of the tone
curve, and after JPEG compression.
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Figure 19. Noise curves overlapping for 1/30 s, 1/250 s, 1/400 s and 1/640

s exposure times for the Nikon camera with ISO 1250. Up: raw image, after
demosaicing and after white balance. Down: after the application of the tone
curve, and after JPEG compression.
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Algorithm 13 Compute the average of overlapping noise curves.
1: MEAN_OVERLAPPING - Computes the average of the standard deviations coming from noise

curves of different exposure times with the same ISO speed. Input Xt, Xy: noise curves vectors

(intensity and standard deviation) from different exposure times and the same ISO speed. Output g:

u with one quarter of its medium/high frequencies set to zero.

2: x_range = arange(0.0, 4096, 0.1) ▷ The whole intensity range with 12 bits and step 0.1

3: Y_mean = zeros(num_channels, len(x_range)) ▷ Output array with the averaged stds.

4: for ch = 0 . . . num_channels do
5: x_idx = 0

6: for x ∈ x_range do
7: num = 0

8: mean = 0.0

9: for t ∈ range(4) do ▷ 4 is the number of captors at the CFA

10: if min(Xt[t, ch, :]) ≤ x ≤ max(Xt[t, ch, :]) then ▷ If intensity belongs to any curve

11: idx = argmini (|Xt[t, ch, i]− x|)
12: while Xt[t, ch, idx] > x do
13: idx = idx - 1

14: end while
15: if idx == num_bins - 1 then
16: idx = idx - 1

17: end if
▷ The coordinates of the control points in between

18: x1, x2 = Xt[t, ch, idx], Xt[t, ch, idx + 1]

19: y1, y2 = Yt[t, ch, idx], Yt[t, ch, idx + 1]

20: mean = mean + y1 + (x− x1)× (y2 − y1)/(x2 − x1) ▷ Interpolation of the std.

21: num = num + 1

22: end if
23: end for
24: if num > 0 then ▷ If at least one overlapping noise curve

25: mean = mean / num

26: Y_mean[ch, x_idx] = mean ▷ Store final averaged std.

27: end if
28: x_idx = x_idx + 1 ▷ Next intensity

29: end for
30: end for

image u as the result of applying n times operator S to u. If u is a discrete pure Gaussian
noise image with standard deviation σ, then S(u) has standard deviation σ

2 . Indeed, if a block
W contains pixels {p1, p2, p3, p4} each one with variance σ2, the variance of the mean of W is
Var(W̄) = Var

(
p1+p2+p3+p4

4

)
= 1

16 [Var(u1) + Var(u2) + Var(u3) + Var(u4)] =
1
16 [4σ

2] = σ2

4 . The
standard deviation is Std(W̄) = σ

2 , that is, the noise is divided by two at each subscale.
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Figure 20. Mean noise curve for the Canon camera with ISO 1250. Since this
noise curve was obtained from raw images, it can be used as the ground-truth of
the noise of the camera for that ISO. On the right, a detail of the curve at the
darkest pixels.
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Figure 21. Mean noise curve for the Canon camera with ISO 1600. Since this
noise curve was obtained from raw images, it can be used as the ground-truth of
the noise of the camera for that ISO. On the right, a detail of the curve at the
darkest pixels..

In this chapter we compare the autocorrelation matrix of a 10×10 pixels block of an rectangle
in one snapshot of the calibration pattern with ISO 1600 and exposure time 1/250s for both the
Canon and Nikon cameras. The autocorrelation function has support 11× 11 pixels.

Figure 24 shows the autocorrelation matrices with support 11×11 with the calibration pattern
obtained using the Canon camera. From up to bottom, the autocorrelation functions obtained at
the raw, demosaiced, white balance, gamma correction and JPEG compression accumulated steps
of the chain. From left to right, the measurements at the first, second, third and fourth subscales
of the image. Note that the scale of the color bar changes at each processing step. Figure 25
shows the same for the Nikon camera. The following discussing is applicable to both cameras. At
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Figure 22. Mean noise curve for the Nikon camera with ISO 1250. Since this
noise curve was obtained from raw images, it can be used as the ground-truth of
the noise of the camera for that ISO. On the right, a detail of the curve at the
darkest pixels.
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Figure 23. Mean noise curve for the Nikon camera with ISO 1600. Since this
noise curve was obtained from raw images, it can be used as the ground-truth of
the noise of the camera for that ISO. On the right, a detail of the curve at the
darkest pixels.

the raw image step, it can be observed that the noise is not correlated at any scale. The central
value at [0, 0] is the only significant value and corresponds to the correlation of the signal with
itself without shifting. Since a subscale just consists of computing the average of each disjoint
set of 2 × 2, the autocorrelation values decrease as the number of scales increase. This can be
observed no matter the step of the camera processing chain. The effect of demosaicing (by the
Adams-Hamilton algorithm) is clearly noticeable, as it correlates strongly the pixels at distance 1

and slightly the pixels at distance
√
2. As expected, this effect is minimized at the second scale

and beyond, due to the pixel averaging. Finally, the JPEG step result is similar to that obtained
at the gamma correction. The value at [0, 0] is lower, since the JPEG algorithm averages the red,
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green and blue color channels in order to turn the RGB color space into Y ′CBCR. Note that the
autocorrelation pattern observed after the demosaicing step will remain along all the rest of the
camera processing chain steps. The origin of the correlation observed in the JPEG image is the
demosaicing step.
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Figure 24. Autocorrelation functions for the Canon camera, ISO 1600 and ex-
posure time 1/250s. From up to bottom: results of the steps raw, demosaicing,
white balance, gamma correction and JPEG correction. From left to right: first,
second, third and fourth scales. Note that the scale of the color bar changes at
each processing step.

5. Conclusions

Under the same ISO speed and exposure time conditions, the noise curves obtained by different
cameras differ. Some cameras do not pre-process at all the data acquired at the CCD or CMOS
detector and therefore it would be possible to assume a Poisson model for the noise. However,
in other cameras the data at the raw image has been already altered in an unknown way, thus
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Figure 25. Autocorrelation functions for the Nikon camera, ISO 1600 and ex-
posure time 1/250s. From up to bottom: results of the steps raw, demosaicing,
white balance, gamma correction and JPEG correction. From left to right: first,
second, third and fourth scales. Note that the scale of the color bar changes at
each processing step.

making impossible to assume any model. Therefore, it is preferable to use non-parametric models
that directly estimate a noise curve from the image itself with assuming a predefined model. The
only necessary assumption of such estimation methods is that the noise is signal and frequency
dependent. The frequency dependency is justified because the final JPEG encoding is equivalent to
low-pass filtering the image (besides adding block artifacts and shot noise). Since the quantization
matrix of the JPEG encoder depends on the unknown quality parameter, the only way to find a
proper model for the noise is again to estimate the noise at each frequency, avoiding any predefined
model for the JPEG filter. In general, denoising algorithms need an accurate estimation of the
noise to properly denoise an image. Since the exact transformations that have been applied to the
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noisy image are unknown, assuming a model is too risky and it is preferable to get a profile of the
noise depending of the intensity and the frequency from the noisy image itself.

In raw images both the spatial and temporal estimations matched accurately, but after the
next step (demosaicing), they did not. The explanation for this is that demosaicing correlates the
noise (thus, it becomes frequency-dependent) and the signal-dependent noise model is not enough
to measure the noise in these kind of real images. Most of the signal-dependent noise estimators
assume that the variance at any frequency is the same, and thus they compute an average of the
variances measured at the high-frequencies (where the noise dominates over the geometry of the
image). After demosaicing, this does not hold. In Chapter 4 a method for estimating both intensity
and frequency dependent noise is presented.



CHAPTER 4

Multiscale estimation of intensity and frequency dependent

noise

The camera calibration and the image processing chain that generated a given image are gen-
erally no more accessible to the receiver. This happens for example with scanned photographs and
for most JPEG images. These images have undergone various nonlinear contrast changes and lin-
ear and nonlinear filters. To deal with remnant noise in such images, we introduce a general non
parametric intensity and frequency dependent noise model. We demonstrate by simulated and real
experiments that this model, which requires the estimation of more than 1000 parameters, performs
an efficient noise estimation.

The proposed noise model is a patch model. Its estimation can therefore be used as a prelim-
inary step to any patch-based denoising method. Our noise estimation method introduces several
new tools for performing this complex estimation. One of them is a new sparse patch distance
function permitting to detect efficiently pure noise patches. We also show a new way to avoid the
bias of noise estimation methods based on the use of low variance patches.

A validation of the noise model and of its estimation method is obtained by comparing its results
to ground-truth noise curves for both raw and JPEG-encoded images, and by visual inspection of
the denoising results of real images. A fair comparison to the state of the art is also performed.

This chapter presents a complex noise model that makes it possible to measure the noise even
in images where the noise is highly correlated, as in the case of JPEG-encoded images. It is the
final step of the study on noise estimation presented in this thesis, that begins with the simple but
absolutely unrealistic simulated homoscedastic white Gaussian noise (Chapter 1), later the signal-
dependent noise, which is only useful for raw images (Chapter 2), and finally the intensity-frequency
dependent noise that is presented in this chapter. Chapter 8 describes a new denoising algorithm
able to denoise even JPEG-encoded images using the noise estimation algorithm presented here,
where medium and specially low-frequency noise remains after compression.

1. Introduction

The noise initially present in a raw digital image is transformed at each step of the processing
chain of the camera. When acquired at the focal plane in a color filter array, the noise is Poisson
distributed, intensity-dependent and frequency-independent. Yet the image at the Color Filter Ar-
ray (CFA) is possibly saturated, which infringes the simple linear dependency of the noise variance
with the intensity [7]. Even without saturation, the variance of the noise may not follow the linear
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model, depending on the characteristics of the detector [8]. At the very first step of the camera pro-
cessing chain a demosaicing algorithm [81, 80] must be applied to get a color image from the raw
mosaic acquired at the CFA. This causes the noise to be spatially correlated. It therefore becomes
frequency-dependent. The colored noise caused by the demosaicing undergoes further nonlinear
transforms such as the white balance and a gamma-correction. Finally, JPEG-encoding [79] accen-
tuates the frequency dependence, as JPEG encoding applies a frequency-dependent quantification
matrix to the coefficients of the 8×8 DCT-II blocks of the image. Therefore, the remaining noise in
a JPEG image is signal dependent and highly correlated. It generally contains little high frequency
noise, as the quantization removes the image high frequencies. But it too often still contains strong
noise at the low and medium DCT block frequencies. This annoying noise is hard to evaluate and
to remove.

Such noise characteristics are observed in modern digital images, but also in scans of old
photographs, which contain chemical noise. The assumption that their final observed noise is both
signal and frequency dependent (SFD) is clearly a minimal model. The purpose of this chapter is
to develop a method for estimating such SFD noise, and to validate it by comparing the estimated
results to the appropriate ground-truth.

Little has been written on SFD noise estimation from a single digital image. A method
estimating a “JPEG compression history” from a single image can be found in [82]. The noise
estimation method for JPEG images proposed in [52] estimates a signal dependent noise level
which is not frequency dependent and therefore only gives a “noise level”. One of the most complete
attempt to estimate a general noise model is contained in the blind denoising method [37], which
estimates multiscale noise covariances for noise wavelet coefficients. This model is nevertheless not
signal dependent. The recent method for estimating frequency dependent noise on patches in [83]
is probably the closest to our endeavor. We will detail the points in common and the proposed
extensions and improvements of this method. To the best of our knowledge, no method has
proposed so far to estimate a general SFD noise patch model. The situation is nonetheless favorable,
as most homoscedastic noise estimation algorithms are actually patch based [2, 3, 4, 5, 6, 1], and
can therefore be adapted to measure SFD noise models on patches.

Our plan is this Chapter follows. Section 2 develops the principles of blind noise estimation,
defines the signal and frequency dependent (SFD) model, and explains progressively how to esti-
mate it. Section 3 details the proposed algorithm. Section 4 performs a comparison of the method
with the current state of the art. Section 5 is the core of the chapter. It validates the sufficiency of
the SFD model for JPEG images by calculating a ground truth SFD model and checking that it is
indeed obtained by the algorithm. This section also performs a final consistency check by display-
ing denoising results obtained with a multiscale version of the NL-Bayes algorithm [84, 22]. To
that aim, it compares the estimated noise model before and after denoising. Section 5.1 contains
the conclusions.
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2. Blind noise estimation principles

This chapter is a progressive presentation of patch based noise modeling. It gives a definition
of the SFD noise model and discusses how to estimate it with minimal bias from well chosen blocks
extracted from the image itself.

2.0.0.1. The search for blocks with low variance. The first principle adopted by most recent
methods is to look for small image blocks that contain only noise. Indeed, all image blocks contain
a sum of signal and noise. Being independent, the variances of noise and signal add. This leads to
the conclusion that blocks with minimal variance extracted from the image are likely to contain
no signal, and therefore only noise. In the algorithms adopting this strategy, all image blocks are
ordered by their variance, and the noise estimation is performed on their lowest quantile (typically
taking the 0.5% blocks with lowest variance).

2.0.0.2. Compensating the bias. Computing a median of these variances gives an estimate
of the noise variance. Yet, this estimation is biased. Indeed, if the image were a pure white
noise realization, the above method would estimate the noise variance on the blocks with lowest
variance, leading to an obvious underestimation. This bias can nevertheless be compensated by a
multiplicative correction factor learnt on a white noise image of the same size.

2.0.0.3. Using instead block differences. A recent method [83] has proposed a clever way to
extend the low variance block method by involving the image self similarity. The idea is to associate
with each block its most similar block in a neighborhood. Then, assuming that this similarity is
essentially caused by the signal, the difference of both blocks is assumed to give a pure noise block,
with twice the variance of the original block. Then, again, only a small quantile of those “noise
blocks” should be retained for the final noise estimation. In practice, most of the selected blocks
correspond to flat zones (as we shall see in the comments of Figure 1). If the image lacks flat zones,
this selection of block differences may nevertheless also contain differences of non flat patches with
similar geometry.

2.0.0.4. Dealing with signal dependency. The emission of photons by a physical body is a
random process that can be modeled with a Poisson distribution, for which the mean is equal to
the variance. Thus, the image formed at the CFA contains noise that depends on the intensity
of the underlying image. This intensity dependence of the noise model begins at the very first
step (acquisition at the detector: the raw image) and remains until the last step of the camera
processing chain (JPEG encoding). The value of the tabulated gamma correction function is
generally unknown. Even when this information is available, the CCD or CMOS detector do not
necessarily follow a simple linear relation intensity/variance [8] when acquired at the detector.

Therefore, the noise estimation algorithm must estimate intensity-dependent noise. A famous
alternative is to transform the data to turn it into homoscedastic noise via an Anscombe transform
[85, 43]. Yet an Anscombe transform is only possible if we deal with raw images. In the general
setting of a signal dependency that can be different for every frequency, there is no other way
to estimate the signal dependent noise model than dividing the set of blocks into disjoint bins,
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each for a different intensity and to estimate a separate frequency-dependent noise model on each
intensity bin.

Fortunately, as recalled in [1, 9], it is possible to adapt most patch-based homoscedastic noise
estimation methods [2] [3] [4] [5] [17] [15] to measure intensity-dependent noise, by simply splitting
the list of input blocks into sets of blocks disjoint in mean intensity (bins).

2.0.0.5. Dealing with frequency dependency: the DCT diagonal assumption. According to the
above considerations, the SFD noise estimation should start by finding a set of pure noise patches
for each intensity bin. Our main assumption will be that the unknown linear and nonlinear
transforms that have been applied to the image can be approximated by a diagonal operator on
the DCT patch coefficients. There are two arguments in favor of this diagonality. First, it is
easily checked that every linear real symmetric filter applied to an image is a diagonal operator on
the DCT transform. This observation is actually exact for a global DCT transform, but remains
approximately true for the (local) block DCT. Second, we mentioned that JPEG 1985 also is a
diagonal (nonlinear) operator on the DCT coefficients. The demosaicing operation itself is more
complex, but a good demosaicing algorithm must avoid creating structure in noise, and must
therefore be close to a linear isotropic filter, which again is a diagonal operator. Nevertheless,
these arguments are no end proofs. The DCT diagonal assumption can only be conjectured and
must be verified empirically, as we shall do in the experimental chapters. Under this assumption,
a patch noise model is described by the variances of its DCT coefficients.

2.0.0.6. Definition of the SFD noise model and its evaluation. The proposed signal and fre-
quency dependent (SFD) noise model follows from the above observations, that also hint at an
estimation algorithm. It is enough to find sufficiently many noise patches in a given image, and
to apply to them a DCT before measuring the variance of their DCT coefficients. In that way the
SFD model is defined (and can be empirically estimated) for each patch size w as a map:

(i, j, b) ∈ [[0, w − 1]]2 × [[0, B − 1]] → σ(i, j, b),

where (i, j) is the DCT frequency, w the block size, B the number of color level bins, and σ(i, j, b)

the observed noise standard deviation for this particular frequency and bin. This model must be
estimated independently for each color channel. The SFD model has therefore many parameters.
For example for a (minimal) block size w = 4, B = 25 bins and a three channels, 16×25×3 = 1200

parameters must be estimated. This also explains why a more sophisticated model can hardly be
envisaged. It might for example seem natural to estimate a whole covariance matrix for the
noise patches, but this would require many more samples than those available in a single image.
(Nevertheless, this extension might be considered for video noise estimation.)

The method proposed in [83] is the closest to the above considerations. It computes a fre-
quency dependent noise model for the purpose of estimating homoscedastic frequency dependent
noise. We shall now propose several extensions and improvements to make it fit for accurate SFD
estimation, when many more free parameters are being estimated. Our goal is indeed to extend
the frequency dependent model to a general enough model permitting to cope with most images.
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We saw that introducing a signal dependence in the noise model is a necessary extension. The
next improvement will be to define an unbiased block distance as explained in the next paragraph.

2.0.0.7. A sparse semi-distance between blocks. The frequency dependent noise estimation of
[83] proposed to generate pure noise blocks by pairing similar blocks and making their difference
to eliminate the signal. Their distance is evaluated in this method on a random choice of 50% of
the block DCT coefficients. We shall explain the bias caused by this method and try to alleviate
it. We propose to compare blocks with a sparse semi-distance which we introduce now. Given an
image DCT block m̃1, the idea it to only use its w2/4 coefficients with largest absolute value for
comparing them with the coefficients at the same frequencies in another block m̃2. According to the
transform thresholding principle [73], these high-energy coefficients belong with high probability
to the signal and not to the noise. Indeed, the w × w DCT-II matrices of the blocks in a natural
and not noisy image are generally sparse, and the signal is mainly contained in some low and
medium frequency coefficients. Thus, we can assume that the semi-distance1 computed with that
set of coefficients is not guided by the noise in the patch, but by the image geometry.

To compute the sparse semi-distance between a reference block m̃1 and a candidate m̃2, the
absolute values of the DCT coefficients A[i, j], [i, j] ∈ [0, w − 1]2 of m̃1 are sorted. The decreasing
sorting indices are stored in Q. The sparse semi-distance is then computed based on the w2/4 DCT

Algorithm 14 Sparse distance algorithm
1: Input : m̃1: patch of size w × w

2: Input : m̃2: patch of size w × w

3: Output : sparse distance between m̃1 and m̃2.

4: Compute the absolute value of the DCT-II coefficients of m̃1, A[i, j] = {|m̃1[i, j]| : [i, j] ∈
[0, w − 1]2}.

5: Sort A from the highest to the lowest value and put the sorting indices in Q; Q = argsort(A).
6: Compute the SD on the first w2/4 sorting indices in Q: SDm̃1,m̃2

=
∑w2/4−1

q=0 (m̃1[Qq] −
m̃2[Qq])

2.

coefficients in m̃1 with the largest absolute value. This computation is summarized in Algorithm
14.

2.0.0.8. Should noise be estimated on block differences? The proposal made in [83] to choose
the differences 1√

2
(m̃1 − m̃2) as noise block samples is quite tempting. Indeed, the sparse semi-

distance ensures that in this difference the part of the signal that was contained jointly in m̃1 and
m̃2 has been canceled, thus giving a pure noise sample. Nevertheless, we found that it was better
not to operate this subtraction, and that the noise estimation based on the blocks m̃1 such that
m̃1 − m̃2 is minimal was more accurate than the estimation based on the normalized differences
1√
2
(m̃1 − m̃2). Experimental evidence confirms that the subtraction is advised only in the case

where the image is known a priori to be made mainly of textures and to lack flat or smooth
zones. We can anticipate the following explanation. Consider an image of pure Gaussian noise of

1We call it semi-distance and not distance, as it is not symmetric and does not satisfy the triangle inequality.
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variance σ2. Given a block m̃1, and its most resembling block m̃2, the similar DCT coefficients
in both m̃1 and m̃2 are anyway due to noise. Thus the (small) block m̃1 − m̃2 generally looses
low frequency coefficients belonging to the noise. In this situation, the estimated noise can be
drastically distorted and underestimated. On the other hand, it turns out that the blocks m̃1

such that the distance m̃1 − m̃2 is minimal are a better choice than blocks with minimal variance.
Indeed, the minimal difference criterion is less biased than the minimal variance criterion. This
empirical statement will be checked experimentally in Section 4. This explains why we shall select
the best noise blocks m̃1 based on their difference with the most resembling block, but keep m̃1

for the final noise estimation.

2.0.0.9. The multiscale approach to estimate low frequency noise. The selection of noise blocks
faces another dilemma: on the one hand it is much easier to find small (typically 4 × 4) blocks
containing only noise, than larger (e.g. 8× 8) blocks. Yet, small blocks do not permit to estimate
the noise low frequencies. Such low frequencies are prominent in JPEG images because of the
demosaicing, which creates sometimes long range correlation, and because of the JPEG compression
itself. So noise can appear in large spots, as shown in Figure 9. This image is the result of convolving
an image of pure Gaussian noise with mean 127 and σ = 50 with the kernel G in Equation 4. A
multiscale approach solves the dilemma. Defining the input noisy image as the image at the first
scale, a second scale image can be obtained by a 2-subsampling. Estimating again noise in this
subsampled image permits to catch the noise low frequencies.

2.0.0.10. Denoising. Once the STD of the noise at each intensity b and each frequency [i, j] ∈
[0, w − 1]2, [i, j] ̸= [0, 0] is known, it is possible to fully characterize the noise by its covariance
matrix. Thus, it is possible to denoise the image by obtaining the covariance matrix of the noise
at each scale, and then denoising each scale using the obtained noise profile. Since the number of
samples is divided by 4 after each subscaling, the number of pixels of the input image is a limiting
factor (highly correlated noise cannot be measured in small images). The Nonlocal Bayes [84, 22]
algorithm will be used for that purpose, as it only requires a knowledge of the noise covariance
matrix.

3. Noise estimation algorithm

Our proposed SFD noise estimator (Algorithm 15) follows from the considerations of the
preceding chapter.

In the first step, w × w (typically, w = 8 or w = 4) overlapping blocks are extracted from
the input noisy image, and their 2D orthonormal DCT-II is computed. For each of these DCT
blocks m̃1, the most similar block m̃2 in a fixed neighborhood is found. The candidate blocks are
at a spatial range belonging to the interval [r1, r2] = [4, 14] (the spatial distance is defined as the
maximum between the horizontal and vertical distances of the block centers). Given a block m̃1

at spatial position [x1, y1] ∈ [0, Nx − w] × [0, Ny − w], the candidate blocks are searched only at
positions [x2, y2] : x2 > x1 ∧ y2 > y1 to avoid repeating matching pairs. The similarity between
m̃1 and any other block in its neighborhood is evaluated with the Sparse Distance (SD) function
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(Algorithm 14), designed to avoid the interference of the noise in the similarity evaluation. For
each m̃1 in the image, a corresponding most similar block m̃2 is found, and m̃1 and the sparse
distance SDm̃1,m̃2 are stored in list L.

Algorithm 15 Noise estimation algorithm
1: Input : Noisy image u of size Nx ×Ny pixels.
2: Input : w × w size of the block in pixels.
3: Output : SFD noise curve σ̃.

4: Extract from the input image u of size Nx ×Ny all possible M = (Nx − w + 1)(Ny − w + 1)

overlapping w × w blocks Bk and compute their 2D orthonormal DCT-II, B̃k, k ∈ [0,M − 1].
5: Set L = ∅ ▷ Empty set.
6: for each DCT block m̃1 ∈ B̃, do
7: Find the block m̃2 that minimizes the sparse distance SDm̃1,m̃2 (see Algorithm 14). Consider

only m̃2 blocks whose horizontal and vertical distance with respect to m̃1 belongs to the interval
[r1, r2] = [4, 14].

8: Extract from m̃1 the mean of m1.
9: Add block m̃1 and the associated sparse distance ([m̃1, SDm̃1,m̃2]) to list L.

10: end for
11: Classify the elements of list L into disjoint bins according to the mean intensity of the blocks

[1, 75]. Each bin contains (with the exception of the last) 42000 DCT blocks.
12: for each bin, do
13: Obtain the set Sp made by those DCT blocks inside the current bin whose SD is below the

p-quantile, with p = 0.005.
14: Assign to the current bin the intensity I (Equation 3).
15: for each frequency [i, j] with [i, j] ∈ [0, w − 1]2, [i, j] ̸= [0, 0], do
16: Compute the (biased) STD of the noise at the current bin and frequency [i, j] using the

MAD estimator (Equation 1).
17: Correct the biased σ̂[I][i, j] and obtain the final STD estimate (Equation 2).
18: end for
19: end for

In order to estimate intensity-dependent noise, the set of blocks in L is split according to the
mean intensity of the blocks. Each division of L is called a bin and contains only the blocks (and
their associated SD) whose mean intensity belongs to a certain range. The bins are disjoint in
intensity and their union gives the whole intensity range of the image.

At each bin the list Sp is filled in with the blocks whose associated SD is below the p-quantile,
with p = 0.005. The value of p must be kept small, to ensure that Sp contains blocks for which it
was possible to find another block with minimal SD between them.

In step 9, block m̃1 and the sparse distance SDm̃1,m̃2
are stored in list L.
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Finally, for the DCT blocks in Sp, the standard deviation (STD) according to each frequency
[i, j] ∈ [0, w − 1]2, [i, j] ̸= [0, 0] is computed using the MAD estimator (Equation 1).

σ̂[I][i, j] = MAD(Sp)

= median
ñ∈Sp

(∣∣∣∣ñ[i, j]− median
m̃∈Sp

(m̃[i, j])

∣∣∣∣) .
(1)

Equation 2 gives the correction factor for the STD depending on the size of the blocks, for
p = 0.005. A correction of the STD is needed because MAD is a biased estimator of the STD and
also because the available number of coefficients to compute the (sample) variance is finite and thus
biased. To obtain the correction factors, we added simulated homoscedastic noise of STD σ = 5

to a synthetic image of a calibration pattern with large flat zones of several different grayscale
intensities. The biased STD σ̂ was estimated with our algorithm and compared with σ = 5. The
ratio σ/σ̂ gives the correction factor. In Equation (2) we only give corrections for w = 4 and w = 8,
but of course more correction factors may be tabulated if needed.

(2) σ̃[I][i, j] =

1.775× σ̂[I][i, j] if w = 4;

1.677× σ̂[I][i, j] if w = 8.

The corresponding intensity I is computed with Equation (3), as the median of the mean
intensities under the p-quantile of blocks SD.

(3) I = median
m̃∈Sp

(m̃[0, 0]/w)

The size of the block depends on the application of the noise estimation. A small block, say
4 × 4 (w = 4) is preferable for highly textured images, as the probability of capturing flat zones
decreases with the size of the block. However, a larger block gives a more accurate frequency
information about the noise and is more consistent with JPEG compression. As we mentioned the
solution to this dilemma is to perform a two scale estimation with small blocks.

4. Comparison

In this chapter we compare our proposed noise estimation method with the best state-of-the-
art paper on estimation of correlated noise [83]. This method is designed to estimate homoscedastic
noise, but since it is patch-based, it is relatively easy to adapt it to intensity-dependent noise. As
explained in Section 2, being able to estimate intensity-dependent noise is a mandatory step for
any noise estimation methods that intends to be used with real images, where the noise is highly
correlated after the demosaicing step.

We introduced the sparse distance function to avoid the interference of noise in the similarity
measure between two noisy blocks. Figure 1 shows the blocks selected by Algorithm 15 using the
sparse similarity function of Algorithm 14. If the image contains flat or smooth zones, the algorithm
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(a) (b)

(c) (d)

Figure 1. Blocks selected by Algorithm 15 using the sparse similarity function
of Algorithm 14, using the traffic test image shown in Figure 3 after adding ho-
moscedastic noise of STD = 10, for the bins #0 (a), #2 (b), #4 (c), and #6 (d)
(7 bins are used). In a highly textured image, where is difficult to find smooth
zones, the sparse similarity function will choose patches with similary geometry.

will prefer them to estimate the noise, since they give the maximum similarity. Finally, in [83]
the difference between similar blocks is stored for subsequent noise estimation, but as explained in
Section 2, it is better not to compute the difference, to prevent the possibility of choosing blocks
that are similar because of the noise and thus giving underestimations.

Now we will pass to compare and discuss the influence of two decisions taken in the design
of our proposed SFD noise estimation: the subtraction or not of similar blocks in the list of DCT
blocks under the 0.005-quantile and the performance of the new similarity function (Algorithm 14).
In order to measure the influence of textures in the performance of the compared noise estimation
methods, we used a synthetic noise-free calibration pattern (see Fig.2, left). Since calibration
patterns lack texture, it is easy to find flat zones for which any variation of the intensity is due to
the noise. Thus most noise estimation methods are expected to perform optimally on such images.
To simulate the effect of textures, we considered an image that combines both the calibration
pattern and a noise-free image. For example Figure 2 (right) shows the noise-free image obtained
by adding 80% of the intensity of the calibration pattern and 20% of a noise-free textured image
traffic. As both combined images are noise-free, the result is still noise-free, but textured.

To show the influence of textures in the noise estimation depending on the method, we added
simulated intensity-dependent noise of variance σ2 = 100+7u to the combination of the calibration
pattern image with several noise-free images and then estimated the Root Mean Squared Error
(RMSE) along all frequencies and intensity bins (u is the pixel intensity of the combined image).
The level of texture of the image analyzed was controlled by a parameter α, the combination being
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Noise-free calibration pattern Combined with traffic

Figure 2. On the left, synthetic noise-free calibration pattern. On the right, the
weighted sum of the calibration pattern with the noise-free test image traffic (with
weights 0.8 for the calibration pattern and 0.2 for the traffic image. Since both
combined images are noise-free, the result is still noise-free, but textured.

Bag Computer

Flowers Traffic

Figure 3. Noise-free images used to measure the robustness of the methods to
the presence of texture. Each image is 704× 469 pixels.

αP + (1 − α)T , where P is the calibration pattern and T the noise-free image that brings the
texture. We used the four noise-free images shown in Figure 3.

Figure 4 shows the RMSEs obtained for the test images in Figure 3 using 8× 8 blocks. In the
horizontal axis, the value of α ∈ [0, 1] (the texture level) and in the vertical axis, the RMSE along
all frequencies and intensity bins.

We compared the adaptation to intensity-dependent noise of the Ponomarenko et al. method
[83] (state-of-the-art in frequency-dependent noise estimation using patches) and our method, with
two variants for each method: subtracting the blocks under the MSE quantile and not subtracting
them (see the discussion of Section 2). It can be observed that, regardless of the texture level,
it is almost systematically better not to subtract similar blocks before estimation. Compare the
Ponomarenko method (labeled Ponomarenko sub) with the variant which does not subtract similar
blocks (labeled Ponomarenko no-sub): the estimation obtained with subtraction has a lower RMSE
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Figure 4. RMSEs obtained for the test images in Figure 3 using 8× 8 blocks. In
the horizontal axis, the value of α ∈ [0, 1] (the texture level) and in the vertical axis,
the RMSE along all frequencies and intensity bins. We compared the adaptation to
intensity-dependent noise of the Ponomarenko et al. method [83] and our method,
and two variants for each method: subtracting the blocks under the low quantile
and not subtracting them (see the discussion in Section 2). In general, avoiding
the subtraction is the best option and it is what we propose in the presented
method.

than when performing subtraction. Only in the case of extremely highly-textured images (as in
the case of the bag image), the subtraction brings to a lower RMSE. The plots also compare the
proposed method (labeled Proposed no-sub) with the variant that subtracts the blocks (labeled
Proposed sub). It can be clearly seen that the proposed method gives a lower RMSE thanks to
the use of a better similarity function (Algorithm 14. The new similarity function is less affected
by textures, since it measures the difference between blocks using only the coefficients with most
energy. This coefficients are related to the geometry of the image and are not biased by other
coefficients that carry information from the noise (as it happens in [83]). In the plot of the Bag
image it can be observed that for high values of α, the RMSE of the variant that does not subtract
the blocks is similar to the variant subtracting the blocks.

Depending on the image (computer, flowers), the variant subtracting the blocks is slightly
better than the variant without subtraction, for high values of α, but only for highly-textured
images, as shown in Figure 4. But the proposed method has a better overall RMSE.



116 4. MULTISCALE ESTIMATION OF INTENSITY AND FREQUENCY DEPENDENT NOISE

5. Validation with ground truth JPEG noise

The SFD noise estimation method gives an estimation of the standard deviation (STD) of the
noise that depends both on the intensity and frequency in a single image. It uses the observation of
blocks at many spatial locations and will therefore be called in this chapter the spatial estimation,
to match it with the ground truth temporal estimation. We validated the spatial estimation method
by taking raw and JPEG photographs with a given camera. The value of the spatially estimated
STD on a single image should match the ground-truth STD for that camera for the configured
ISO speed [7], obtained from multiple frames. Note that with JPEG images we do not refer to
the result of a mere JPEG compression, but to the result of the whole camera processing chain
applied the raw image acquired at the focal plane of the camera on the CCD (or CMOS), including
demosaicing, white balance, gamma correction, and the final JPEG encoding.

For that purpose, we took a sequence of pictures of the same scene taken with fixed camera
position and constant lighting. Under these conditions, any variation of the intensity in any pixel
through the sequence is only attributable to the effect of the noise. It is therefore possible to
build a ground-truth noise curves for both raw and JPEG-encoded images, associating with each
observed mean signal value the corresponding STD of its observed samples. Similarly, by frequency
noise curve we mean a numerical function associating with each value of the block mean the STD
of the DCT coefficient of the noise at that frequency. Thus, there are as many noise curves as
DCT coefficients. To obtain such curves, instead of measuring the variation of the intensity of the
pixels in a fixed position along the sequence, we consider all M overlapping w × w blocks in the
image, compute their orthonormal DCT-II, and measure the variance at the intensity of the bin
and frequency [i, j] ∈ [0, w−1]2, [i, j] ̸= [0, 0] along the coefficients of the blocks at the same spatial
position and with varying image index.

The noise curve obtained this way for each DCT frequency will be called the temporal estima-
tion and can be used as a ground-truth to compare with the spatial estimation. Even if a noise
model for JPEG images has never been proposed in the literature, it is therefore possible to obtain
reliable empirical curves for JPEG images. To obtain them, it suffices to JPEG-encode each image
of the snapshot with the same quality parameter, and to apply the described procedure.

The objective of this chapter is to verify that the spatial STD measured at any frequency
[i, j] ∈ [0, w − 1]2, [i, j] ̸= [0, 0] using the algorithm in Section 3 coincides with the STD of the
temporal series measured only at that frequency for all intensities. To build the temporal STD
noise curve we used 100 snapshots of the same calibration pattern, for both raw and JPEG-encoded
images. In principle, any image might be used to get the temporal STD of the noise, but it is
preferable to use an object with large flat regions of different gray levels, in order to avoid the
effect of textures in the temporal estimation. To be robust to outliers (the edges between the large
flat zones), we considered only the 0.05-quantile [17] of the STD estimations that was corrected
afterwards to obtain an unbiased estimate.

The procedure to compute the ground-truth curve for JPEG-encoded images for frequency
[i, j] ∈ [0, w − 1]2, [i, j] ̸= [0, 0] from a set of H images is detailed in Algorithm 16.
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Algorithm 16 Algorithm to obtain the SFD ground-truth noise curve from a sequence of images

1: Input : Sequence of JPEG (or raw) images.
2: Input : H number of images in the sequence.
3: Input : Nx ×Ny the size of each image in the sequence, in pixels.
4: Output : Ground-truth noise curve σ̃.

5: Set M = (Nx − w + 1)(Ny − w + 1) the number of overlapping blocks.
6: Set E1 = E2 = E3 = array(M). ▷ Array of size M

7: for each JPEG (or raw) image of the series of H images, do
8: Extract from the input image u of size Nx ×Ny all possible M overlapping w × w blocks

Bk and compute their 2D orthonormal DCT-II, B̃k, k ∈ [0,M − 1].
9: for k ∈ [0,M − 1] do

10: E1[k] = E1[k] + (B̃k[i, j])
2.

11: E2[k] = E2[k] + B̃k[i, j].
12: E3[k] = E3[k] + B̃k[0, 0]/w. ▷ The mean of Bk

13: end for
14: E1[k] = E1[k]/H.

15: E2[k] = E2[k]/H.

16: E3[k] = E3[k]/H. ▷ Normalization
17: end for
18: Set L = array(M) ▷ Array of size M

19: for k ∈ [0,M − 1] do

20: Set L[k] =
[

k
k−1

(
E1[k]− (E2[k])2

)]1/2
. ▷ STD

21: end for
22: Classify the elements of list L into disjoint bins [1, 75] according to the mean intensity E3[k]

of the blocks. Each bin contains (with the exception of the last) 42000 sample variance esti-
mations.

23: for each bin b, do
24: Set X the means of the blocks in bin b.
25: Set Y the STDs of the blocks in bin b.
26: Get the 0.05-quantile of Y and set µ̂ the mean in X associated with it.
27: Assign the 0.05-quantile of Y to σ̂[µ̂][i, j].
28: Set σ̂[µ̂][i, j] the 0.05-quantile of X. Set µ̂ the mean at the quantile position in X.
29: Correct σ̂ biased by the quantile and obtain the final control point of the ground-truth for

intensity µ̂ and frequency [i, j]:

σ̃[µ̂][i, j] = 1.22× σ̂[µ̂][i, j].

30: end for
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Figure 5. Comparison of the temporal (ground-truth, in green) and spatial STD
(in red) for the Canon EOS 30D in raw images for ISO speed 1600 using blocks
of 4 × 4 DCT coefficients. The temporal and spatial STD match despite some
oscillation in the spatial estimation. The curve at the bottom right is the compar-
ison between the averaged mean temporal STDs and the averaged mean spatial
STDs (along all frequencies except DC), showing that on average both estimations
match accurately.

In the sequel, we compare the results of the spatial estimation to the ground-truth, for both
raw and JPEG-encoded images taken with a Canon EOS 30D camera with exposure time t = 1/30s,
ISO speed 1600, and blocks of w × w DCT coefficients with w = 4 and w = 8. Figure 5 compares
the temporal and the spatial STDs for raw images and Figure 7 shows the same for JPEG-encoded
images with compression factor Q = 92 for w = 4. Only coefficients [1, 1], [2, 2], and [3, 3] are
shown, but equivalent results were obtained with all 15 coefficients. Respectively, Figure 6 and
Figure 8 for w = 8. Only coefficients [2, 2], [5, 5], and [7, 7] are shown for w = 8. The average of
the estimations along all coefficients [i, j] ∈ [0, w − 1]2, [i, j] ̸= [0, 0] is also given in both cases.

Despite small oscillations in the spatial estimation, there is an accurate match between both
the spatial and temporal estimations in the case of raw and JPEG images. It can be concluded
that the method is able to estimate reliably SFD noise.

This test was performed with snapshots of the calibration pattern, which is not textured and
contains large flat areas whose spatial variations are caused mainly by the noise. Thus, the final
validation must use real natural images compressed with JPEG. Since a proper noise model for
JPEG encoding has not been already described, a visual comparison of the quality of the images
before and after denoising using the frequency-by-frequency estimation given by the proposed
method is needed. This comparison is performed in Section 5.1.
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Figure 6. Comparison of the temporal (ground-truth, in green) and spatial STD
(in red) for the Canon EOS 30D in raw images for ISO speed 1600 using blocks
of 8 × 8 DCT coefficients. The temporal and spatial STD match despite some
oscillation in the spatial estimation. The curve at the bottom right is the compar-
ison between the averaged mean temporal STDs and the averaged mean spatial
STDs (along all frequencies except DC), showing that on average both estimations
match accurately.

We also compared the accuracy of the proposed method by simulating colored noise and
comparing the temporal STD (ground-truth) with the spatial estimation given by our algorithm
for images of pure noise, frequency by frequency. To obtain the temporal STD, we created a list
of 210 blocks of size 8× 8 pixels made of simulated Gaussian noise of mean 127 and σ = 10 after
applying a convolution with the discrete Gaussian kernel G in Equation 4. Figure 9 shows a crop
of the convolved noise image, where it can be observed that it contains spatial structure, as the
noise is correlated because of the Gaussian convolution.

(4) G =
1

273



1 4 7 4 1

4 16 26 16 4

7 26 41 26 7

4 16 26 16 4

1 4 7 4 1


.

Table 1 compares for several frequencies (first column) the temporal STD obtained for the 210
8 × 8 blocks of pure noise (second column), the spatial STD estimation obtained by our method
for pure noise after convolution with the discrete Gaussian kernel G in Equation 4 (third column),
and the spatial STD estimation given by our algorithm after adding homoscedastic Gaussian noise
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Figure 7. Comparison of the temporal (ground-truth, in green) and spatial STD
(in red) for the Canon EOS 30D in JPEG-encoded images with quality factor
Q = 92 for ISO speed 1600 using blocks of 4 × 4 DCT coefficients. The curve at
the bottom right is the comparison between the averaged temporal STDs and the
averaged mean spatial STDs (along all frequencies except DC), showing that in
average both estimations match.

of σ = 50 to the noise-free test image computer (in Figure 3, top right) and then convolving it
with G (fourth column). With a small margin of error, the proposed method is able to measure
the STD of the noise for both pure noise and textured natural images. If nevertheless the STD of
the noise is below 0.4, the method is unable to estimate it accurately and in some cases the MAD
estimator gives negative values that the algorithm sets to zero afterwards.

5.1. Denoising results. Old photographs are particularly well adapted to be evaluated with
a SFD noise model. Indeed, as such images involve two different successive acquisition systems,
one chemical and one digital, the noise model is fully unknown and could not be learnt but from
the image itself. And there is, of course, no ground-truth. Yet the visual inspection of the noise
gives a very good hint at its independence from the (recovered) signal. To denoise JPEG digital
images of old photographs, we used a modified version of the NL-Bayes algorithm [84] using the
noise DCT coefficients estimated by our algorithm in Section 3. The details of the denoiser can
be found in [22]. Of course, other patch-based denoisers [37, 36, 86, 87] might be used instead.
For the denoising tests shown in this chapter, we estimated the noise at two scales to go deeper
in low frequencies: a noise patch model was estimated at the finer scale and a second noise model
was also computed after a Gaussian image zoom in.

Figure 10 shows denoising results for images with unknown noise model. In the first row,
details of the noisy images; in the second row, details of the denoised images; in the third row,
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Figure 8. Comparison of the temporal (ground-truth, in green) and spatial STD
(in red) for the Canon EOS 30D in JPEG-encoded images with quality factor
Q = 92 for ISO speed 1600 using blocks of 8 × 8 DCT coefficients. The curve at
the bottom right is the comparison between the averaged temporal STDs and the
averaged mean spatial STDs (along all frequencies except DC), showing that on
average both estimations match.

Figure 9. Crop of the image of pure Gaussian noise with mean 127 and σ = 50

after convolution with the kernel G in Equation 4. The noise has spatial structure,
as it gets correlated after Gaussian convolution.

enhanced difference image (removed noise) between the noisy and denoised image. The color spots
in the difference image and their random aspect at zones with the same intensity indicate that the
denoising algorithm removed colored noise and, since details are kept at the denoised image, it can
be concluded that the noise estimation was successful.

Figs. 11 and 12 show the noise curves corresponding to the low and high frequencies of the
Apollo and Kleiner images for which a detail is shown at the bottom of Figure 10 using DCT
blocks of 4× 4 coefficients. A coefficient at frequency [i, j] ∈ [0, 3]2 is assumed to belong to a “low-
frequency" if i + j ≤ 2 and to a “high-frequency" otherwise. Image Apollo was taken in 18 May
1969 during the prelaunch tasks at the Launch Control Center’s Firing Room 3 at the Kennedy
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Table 1. This table compares for several frequencies (first column), the tempo-
ral STD obtained for the 210 8 × 8 blocks of Gaussian noise of σ = 50 (second
column), the spatial STD estimation obtained by our method for pure noise after
convolution with the Gaussian kernel G in Equation 4 (third column), and the
spatial STD estimation given by our algorithm after adding homoscedastic Gauss-
ian noise of σ = 50 to the noise-free test image computer and then convolving it
with G (fourth column). Both STD estimation in pure noise and in a textured
natural image match with small error the temporal STD. For the image of pure
noise a single bin is used and 7 bins for the computer image.

Frequency Temporal STD Spatial (pure noise) Spatial (computer)

[1, 1] 31.45 29.20 30.72

[2, 2] 21.77 19.93 21.06

[3, 3] 10.03 11.16 10.73

[4, 4] 3.44 3.72 3.76

[5, 5] 0.73 0.62 0.61

[6, 6] 0.15 0 0

[7, 7] 0.13 0 0

Space Center2 and image Kleiner is a picture of an old tramway called “Kleiner Hecht" taken in
1998 in Dresden3. Both images contain large low-frequency noise and JPEG compression artifacts.
We show the mean of the noise curves from the low-frequencies before (a) and after (b) denoising,
where it can be observed that most of the noise remains at the low-frequencies of the image and
that is strongly reduced after denoising. We also show the means for the high-frequencies before
(c) and after (d) denoising. Since JPEG quantizes the value of the DCT coefficients at the high-
frequencies (thus canceling most of them), the noise is clearly lower that what is observed at the
low-frequencies, but nevertheless the noise could also be removed.

This chapter presented a non-parametric noise estimation method for SFD noise. It can be
applied to images where the noise model is not available [8], as in the case of JPEG images. In
general, a non-parametric estimation of SFD noise is needed for almost any kind of image, since
the very first step in the camera processing chain is to demosaic the raw image, which correlates
the noise. In general, the information of what algorithm used to demosaic the image is not made
available by camera makers. However, the goal of blind noise estimation and denoising is to retrieve
the noise model from the image itself, without relying at additional information such as metadata

2This file is in the public domain because it was solely created by NASA. NASA copyright policy states

that “NASA material is not protected by copyright unless noted". http://dayton.hq.nasa.gov/IMAGES/LARGE/

GPN-2000-001849.jpg
3Image licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license, taken by Wikimedia

Commons user Olaf1541. http://commons.wikimedia.org/wiki/File:Kleiner_hecht.jpg

http://dayton.hq.nasa.gov/IMAGES/LARGE/GPN-2000-001849.jpg
http://dayton.hq.nasa.gov/IMAGES/LARGE/GPN-2000-001849.jpg
http://commons.wikimedia.org/wiki/File:Kleiner_hecht.jpg
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Figure 10. Denoising results of real images with unknown noise model. Up:
detail of the noisy image. Middle: detail of the denoised image. Bottom: difference
image (removed noise). The color spots in the difference image and its random
geometry at zones with the same intensity indicate that the denoising algorithm
removed colored noise and, since details are kept at the denoised image, it can
be concluded that the noise estimation was accurate. In order to see clearly the
low-frequency noise and the denoising results, the reader is invited to look at the
images on the screen with a 400% zoom at least.

in the file format. Of course, for old photographs the metadata information might not exist at all
(analogic photography) or may have been lost after image manipulation and re-encoding.

To determine if two patches contain the same geometric information, a new similarity function
based on the sparse distance between the patches introduced. It exploits the sparsity between
patches to give a likelihood measure which is robust to noise. The use of the MAD estimator to
compute the STD confers more robustness to the method.

The method was validated by showing that the STD obtained at the temporal series (the
ground-truth) coincides with the spatial STD given by the proposed algorithm, for both raw
and JPEG images. The denoising results show that indeed the noise estimator is able to give
an accurate estimation, as low frequency noise is removed and most of the fine details are kept.
Our next endeavor would be to include an impulse noise estimator to the non-parametric noise
estimation model. Old photographs can indeed present this sort of noise.

Nevertheless this estimation algorithm cannot be applied to any noisy image. For example, it
does not apply if the noise is space dependent (and not only signal dependent), as can be observed
in some synthetic images. Another limitation for estimating highly-correlated noise is the size of
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Low-freqs., denoised (c)
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Figure 11. Noise curves corresponding to the low and high frequencies of the
Apollo image (a) for which a detail is shown at the second column of Figure 10
using DCT blocks of 4 × 4 coefficients. (b) and (c): mean noise curve at the
low-frequencies before (b) and after (c) denoising. (d) and (e): mean noise curves
at the high-frequencies before (d) and after (e) denoising. Most of the noise is at
the low-frequencies.

the noisy image, since two scales of the image are needed and the number of available samples
(pixels) and the second scale is one quarter of the pixels in the noisy image. If the image is small
and contains highly correlated noise, it may not be possible to characterize it properly.

Chapter 8 describes a new denoising algorithm able to denoised even JPEG-encoded images,
using the noise estimation algorithm presented in this chapter.
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Original noisy image Kleiner (a)
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Low-freqs., noisy (b)
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Low-freqs., denoised (c)

0 50 100 150 200 250
Intensity

0

2

4

6

8

10

12

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

Noisy, high-frequencies (Kleiner)

High-freqs., noisy (d)

0 50 100 150 200 250
Intensity

0

2

4

6

8

10

12

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

Denoised, high-frequencies (Kleiner)

High-freqs, denoised (e)

Figure 12. Noise curves corresponding to the low and high frequencies of the
Kleiner image (a) for which a detail is shown at the last column of Figure 10
using DCT blocks of 4× 4 coefficients. (b) and (c): mean noise curve at the low-
frequencies before (b) and after (c) denoising. (d) and (e): mean noise curves at
the high-frequencies before (d) and after (e) denoising. Most of the noise is at the
low-frequencies. The color of each of the curves corresponds to each color channel
of the image (red, green, and blue).





Part 2

PATCH DENOISING



Once the noise estimation models and methods have been studied in the first part of the dis-
sertation, in this second part we focus on the problem of denoising. In Chapter 5 we discuss the
Bayesian patch-based methods. This formalism permits to obtain a closed formula that given a
noisy patch in the image gives a denoised version from it.

Regardless of the block-based denoising method used, it is possible to improve dramatically the
results by using the three generic tools explained in Chapter 6: aggregation of estimates, iteration
and “oracle" filters, and colorspace transform. This remark is valid for all block-based denoising
principles and will be used in our final Noise Clinic (Chapter 8). The effect of this tools is demon-
strated with an example of a simple DCT transform threshold, where the three generic tools are
applied successively.

In Chapter 7 we give a detailed description and analysis of two denoising methods for which
reliable faithful implementations are available: the Non-local means and Non-local Bayes methods.
The algorithmic descriptions of both methods is provided. We shall extend this non-local Bayes
algorithm in our final Chapter 8 on the Noise Clinic.

Chapter 8 presents a new algorithm for both blind noise estimation and denoising for images
where the noise model is imperfectly known or even unknown. For such images, it is possible to
estimate from a single image a noise model which is simultaneously signal and frequency dependent,
as we showed in Chapter 4. We propose a multiscale denoising algorithm adapted to this broad noise
model, based on the NL-Bayes denoising algorithm (Chapter 7). This brings to a blind denoising
algorithm which we demonstrate on real JPEG images and on scans of old photographs for which
the formation model is unknown. This algorithm is finally compared to the unique state of the art
previous blind denoising method, based on Gaussian Scale Mixtures In The Wavelet Domain.



CHAPTER 5

Bayesian patch-based methods

Bayesian patch-based methods give an optimal formulation under the assumption that the
patches similar to a given image patch follow a stochastic model. Given a noiseless patch P of
the ideal noiseless image u, and Gaussian model and assuming a Gaussian noise model with inde-
pendence of pixel values, the probability P(P̃ |P ) (the probability of observing a noisy patch P̃ with
the prior information that the noiseless version of the noisy patch is P ) can be obtained directly.
Thanks to Bayes’ formula, it is possible to obtain P(P |P̃ ), the probability of the noiseless patch P

knowing that the noisy patch P̃ has been observed. The goal is to deduce P from P̃ by finding P

which maximizes P(P |P̃ ). This chapter concludes with a closed formula that gives a restored patch
P̂1 from an observed noisy patch P̃ , using the covariance matrix CP̃ of P̃ .

1. Obtaining a restored patch P̂1 from an observed noisy patch P̃

In this chapter, we will review the Bayesian patch-based method applied to denoising, under
the additive white Gaussian noise model. The Bayesian principle is coupled with a Gaussian (or
a mixture of Gaussians) model for noiseless patches. Given u the noiseless ideal image and ũ the
noisy image corrupted with Gaussian noise of standard deviation σ so that

(5) ũ = u+ n,

the conditional distribution P(ũ | u) is

(6) P(ũ | u) = 1

(2πσ2)
M
2

exp
(
−||u− ũ||2

2σ2

)
,

where M is the total number of pixels in the image.

In order to compute the probability of the original image given the degraded one, P(u | ũ),
we need to introduce a prior on u. In the first models [30], this prior was a parametric image
model describing the stochastic behavior of a patch around each pixel by a Markov random field,
specified by its Gibbs distribution. A Gibbs distribution for an image u takes the form

P(u) =
1

Z
exp (−E(u)/T ) ,

where Z and T are constants and E is called the energy function and writes

E(u) =
∑
C∈C

VC(u),

129
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where C denotes the set of cliques associated to the image and VC is a potential function. The
maximization of the a posteriori distribution writes by Bayes formula

Argmax
u

P(u | ũ) = Argmax
u

P(ũ | u)P(u),

which is equivalent to the minimization of − logP(u | ũ),

Argmin
u

∥u− ũ∥2 + 2σ2

T
E(u).

This energy writes as a sum of local derivatives of pixels in the image, thus being equivalent to a
classic Tikhonoff regularization [30, 88].

Recent Bayesian methods have abandoned as too simplistic the global patch models formulated
by an a priori Gibbs energy. Instead, the methods build local non parametric patch models
learnt from the image itself, usually as a local Gaussian model around each given patch, or as
a Gaussian mixture. The term “patch model” is now preferred to the terms “neighborhood” or
“clique” previously used for the Markov field methods. In the nonparametric models, the patches
are larger, usually 8 × 8, while the cliques were often confined to 3 × 3 neighborhoods. Given a
noiseless patch P of u with dimension κ×κ, and P̃ an observed noisy version of P , the same model
gives by the independence of noise pixel values

(7) P(P̃ |P ) = c · exp

(
−∥P̃ − P∥2

2σ2

)

where P and P̃ are considered as vectors with κ2 components, ||P || denotes the Euclidean norm of
P , σ2 the variance of the Gaussian noise, and c is the normalizing constant. Knowing P̃ , our goal
is to deduce P by maximizing P(P |P̃ ). Using Bayes’ rule, we can compute this last conditional
probability as

(8) P(P |P̃ ) =
P(P̃ |P )P(P )

P(P̃ )
.

P̃ being observed, this formula can in principle be used to deduce the patch P maximizing the
right term, viewed as a function of P . This is only possible if we have a probability model for
P , and these models will be generally learnt from the image itself, or from a set of images. For
example [89] applies a clustering method to the set of patches of a given image, and [90] applies it
to a huge set of patches extracted from many images. Each cluster of patches is thereafter treated
as a set of Gaussian samples. This permits to associate to each observed patch its likeliest cluster,
and then to denoise it by a Bayesian estimation in this cluster. Another still more direct way to
build a model for a given patch P̃ is to group the patches similar to P̃ in the image. Assuming
that these similar patches are samples of a Gaussian vector yields a standard Bayesian restoration
[47, 91]. We shall now discuss this particular case, where all observed patches are noisy.

Why Gaussian? As usual when we dispose of several observations but of no particular guess
on the form of the probability density, a Gaussian model is adopted. In the case of the patches Q

similar to a given patch P , the Gaussian model has some pertinence, as it is assumed that many
contingent random factors explain the difference between Q and P : other details, texture, slight
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lighting changes, shadows, etc. The Gaussian model in presence of a combination of many such
random and independent factors is heuristically justified by the central limit theorem. Thus, for
good or bad, assume that the patches Q similar to P follow a Gaussian model with (observable,
empirical) covariance matrix CP and (observable, empirical) mean P . This means that

(9) P(Q) = c · exp
(
−(Q− P )tC−1

P (Q− P )

2

)
From (6) and (8) we obtain for each observed P̃ the following equivalence of problems:

max
P

P(P |P̃ ) ⇔ max
P

P(P̃ |P )P(P )

⇔ max
P

[
exp

(
−∥P − P̃∥2

2σ2

)
exp

(
−(P − P )tC−1

P (P − P )

2

)]

⇔ min
P

[
∥P − P̃∥2

σ2
+ (P − P )tC−1

P (P − P )

]
.

This expression does not yield an algorithm. Indeed, the noiseless patch P and the patches similar
to P are not observable. Nevertheless, we can observe the noisy version P̃ and compute the patches
Q̃ similar to P̃ . An empirical covariance matrix can therefore be obtained for the patches Q̃ similar
to P̃ . Furthermore, using (5) and the fact that P and the noise n are independent,

(10) CP̃ = CP + σ2I; EQ̃ = P .

Notice that these relations assume that we searched for patches similar to P̃ at a large enough
distance, to include all patches similar to P , but not too large either, because otherwise it can
contain outliers. Thus the safe strategy is to search similar patches in a distance slightly larger than
the expected distance caused by noise. If the above estimates are correct, our MAP (maximum
a posteriori estimation) problem finally boils down by (10) to the following feasible minimization
problem:

max
P

P(P |P̃ ) ⇔ min
P

[
∥P − P̃∥2

σ2
+ (P − P̃ )t(CP̃ − σ2I)−1(P − P̃ )

]
.

Differentiating this quadratic function with respect to P and equating to zero yields

P − P̃ + σ2(CP̃ − σ2I)−1(P − P̃ ) = 0.

Taking into account that I + σ2(CP̃ − σ2I)−1 = (CP̃ − σ2I)−1CP̃ , this yields

(CP̃ − σ2I)−1CP̃P = P̃ + σ2(CP̃ − σ2I)−1P̃ .

and therefore

P = C−1

P̃
(CP̃ − σ2I)P̃ + σ2C−1

P̃
P̃

= P̃ + σ2C−1

P̃
(P̃ − P̃ )

= P̃ +
[
I − σ2C−1

P̃

]
(P̃ − P̃ )

= P̃ +
[
CP̃ − σ2I

]
C−1

P̃
(P̃ − P̃ )
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Thus we have proved that a restored patch P̂1 can be obtained from the observed patch P̃ by the
one step estimation

(11) P̂1 = P̃ +
[
CP̃ − σ2I

]
C−1

P̃
(P̃ − P̃ ),

which resembles a local Wiener filter.

Remark 1. It is easily deduced that the expected estimation error is

E||P − P̂1||2 = Tr

[(
C−1

P +
I
σ2

)−1
]
.

Chapter 7 will examine two deriving patch-based denoising algorithms from variants of (11).
The first question when looking at this formula is obviously how the matrix CP̃ can be learnt from
the image itself. Each method proposes a different notion to learn the patch model.

Of course, other, non Gaussian, Bayesian models are possible, depending on the patch density
assumption. For example [11] assumes a local exponential density model for the noisy data, and
gives a convergence proof to the optimal (Bayes) least squares estimator as the amount of data
increases.



CHAPTER 6

Generic tools for noise reduction

This chapter describes three generic tools (aggregation of estimates, iteration and “oracle"
filters, and colorspace transform) that permit to increase the performance of any denoising princi-
ple. We shall illustrate them on DCT denoising. Starting from the application of a simple DCT
transform threshold, the three generic tools will applied successively. We shall observe a dramatic
improvement of the denoising performance. This remark is valid for all denoising principles and
will be used in our final Noise Clinic (Chapter 8).

1. Aggregation of estimates

Aggregation techniques combine for any pixel a set of m possible estimates. If these estimates
were independent and had equal variance, then a uniform average would reduce this estimator
variance by a factor m. Such an aggregation strategy was the main proposition of the translation
invariant wavelet thresholding algorithm [92]. This method denoises several translations of the
image by a wavelet thresholding algorithm and averages these different estimates once the inverse
translation has been applied to the denoised images.

An interesting case is when one is able to estimate the variance of the m estimators. Statis-
tical arguments lead to attribute to each estimator a weight inversely proportional to its variance
[93]. For most denoising methods the variance of the estimators is high near image edges. When
applied without aggregation, the denoising methods leave visible “halos” of residual noise near
edges. For example in the sliding window DCT method, patches containing edges have many large
DCT coefficients which are kept by thresholding. In flat zones instead, most DCT coefficients are
canceled and the noise is completely removed. The proposition of [94] is to use the aggregation
for DCT denoising, approximating the variance of each estimated patch by the number of non
zero coefficients after thresholding. In the online paper [95] one can test an implementation of
DCT denoising. It actually uses an aggregation with uniform weights: “translation invariant DCT
denoising is implemented by decomposing the image to sliding overlapping patches, calculating
the DCT denoising in each patch, and then aggregating the denoised patches to the image aver-
aging the overlapped pixels. The translation invariant DCT denoising significantly improves the
denoising performance, typically from about 2 to 5 dB, and removes the block artifact”.

The same risk of “halo” occurs with non-aggregated NL-means (Chapter 7), since patches
containing edges have many less similar instances in the image than flat patches. Thus the non-local
averaging is made over less samples, and the final result keeps more noise near image edges. The
same phenomenon occurs with BM3D if the aggregation step is not applied [36]. As a consequence,
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an aggregation step is applied in all patch-based denoising algorithms. This weighted aggregation
favors, at each pixel near an edge, the estimates given by patches which contain the pixel but do
not meet the edge.

Aggregation techniques aim at a superior noise reduction by increasing the number of values
being averaged for obtaining the final estimate or selecting those estimates with lower variance.
Kervrann et al [96] considered the whole Bias+Variance decomposition in order to also adapt the
search zone of neighborhood filters or of NL-means. Since the bias term depends on the original
image, it cannot be computed in practice, and Kervrann et al. proposed to minimize both bias
and variance by choosing the smallest spatial neighborhood attaining a stable noise reduction.

Another type of aggregation technique considers the risk estimate rather than the variance to
locally attribute more weight to the estimators with small risks. In [12], Van De Ville and Kocher
give a closed form expression of Stein’s Unbiased Estimator of the Risk (SURE) for NL-Means.
(See also generalizations of the SURE estimator to the non-Gaussian case in [97].) The aim is
to select globally the best bandwidth for a given image. In [98], Duval et al. also use the SURE
technique for minimizing the risk by selecting locally the bandwidth. Deledalle et al. [13] apply
the same technique for combining the results of NL-means with different window sizes and shapes.
A similar treatment can be found in [11], but with the assumption of a local exponential density
for the noisy patches.

2. Iteration and “oracle” filters

Iterative strategies to remove residual noise would drift from the initial image. Instead, a
first step denoised image can be used to improve the reapplication of the denoising method to
the initial noisy image. In a second step application of a denoising principle, the denoised DCT
coefficients, or the patch distances, can be computed in the first step denoised image. They are an
approximation to the true measurements that would be obtained from the noise-free image. Thus,
the first step denoised image is used as an “oracle” for the second step.

For averaging filters such as neighborhood filters or NL-means, the image u can be denoised in
a first step by the method under consideration. This first step denoised image denoted by û1 is used
for computing more accurate color distances between pixels. Thus, the second step neighborhood
filter is

YNFh,ρũ(i) =
1

C(i)

∑
j∈Bρ(j)

ũ(j)e−
|û1(j)−û1(i)|2

h2 ,

where ũ is the observed noisy image and û1 the image previously denoised by Equation (12).

(12) YNFh,ρũ(i) =
1

C(i)

∑
j∈Bρ(i)

ũ(j) e−
|ũ(i)−ũ(j)|2

h2 .

Similarly, for linear transform Wiener-type methods, the image is first denoised by its classic
definition, which amounts to approximate the oracle coefficients of Theorem 1 using the noisy ones.
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In a second iteration, the coefficients of the denoised image approximate the true coefficients of
the noise-free image. Thus, the second step filter following the first step (Equation 13) is

DŨ =
∑
i

a(i) ⟨Ũ , Gi⟩ Gi , with a(i) =
|⟨Û1, Gi⟩|2

|⟨Û1, Gi⟩|2 + σ2
,

where Û1 is the denoised image by applying a first time the thresholding algorithm to the observed
image Ũ .

(13) DŨ =

M∑
i=1

a(i) ⟨Ũ , Gi⟩Gi.

Theorem 1. Operator Dinf minimizing the mean square error (MSE),

Dinf = argmin
D

E{∥U −DŨ∥2}

is given by the family {a(i)}i, where

(14) a(i) =
|⟨U,Gi⟩|2

|⟨U,Gi⟩|2 + σ2
,

and the corresponding expected mean square error (MSE) is

(15) E{∥U −Dinf Ũ∥2} =

M∑
i=1

|⟨U,Gi⟩|2σ2

|⟨U,Gi⟩|2 + σ2
.

2.0.0.1. Alternatives and extensions: “twicing” and Bregman iterations. In the recent review
paper [99], many denoising operators are formalized in a general linear framework, noting that
they can be associated with a doubly stochastic diffusion matrix W with nonnegative coefficients.
For example in NL-means, this matrix is obtained by the symmetrization of the matrix of the
NL-means weights wP̃ ,Q̃ defined in Algorithm 1. Unless it is optimal, as is the case with an ideal
Wiener filter, the matrix W associated with the denoising filter can be iterated. A study of MSE
evolution with these iterations is proposed in [99] for several denoising operators, considering
several different patch types (texture, edge, flat). Iteration is, however, different from the oracle
iteration described above. In the oracle iteration, the matrix W is changed at each step, using
its better estimate given by the previously denoised image. One does not generally observe much
improvement by iterating the oracle method more than once. [99] points out another generic tool,
used at least for total variation denoising, the so-called “twicing”, term due to Tukey [100]. Instead
of repeated applications of a filter, the idea is to process the residual obtained as the difference
between the estimated image and the initial image. If the residuals contain some of the underlying
signal, filtering them should recover part of it. The author shows that the Bregman iterations [101]
used for improving total variation based denoising are a twicing and so is the matching pursuit
method used in the K-SVD filter.
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3. Dealing with color images

The straightforward strategy to extend denoising algorithms to color or multivalued images
is to apply the algorithm independently to each channel. The use of this simple strategy often
introduces color artifacts, easily detected by the eye. Two different strategies are observable in
state of the art denoising algorithms.

Depending on the algorithm formulation, a vector-valued version dealing at the same time with
all color channels can be proposed. This solution is adopted by averaging filters like neighborhood
filters or NL-means. These algorithms compute color differences directly in the vector valued
image, thus yielding a unified weight configuration which is applied to each channel.

The alternative option is to convert the usual RGB image to a different color space where the
independent denoising of each channel does not create noticeable color artifacts. Most algorithms
use the Y UV system which separates the geometric and chromatic parts of the image. This change
writes as a linear transform by multiplication of the RGB vector by the matrix

Y UV =


0.30 0.59 0.11

−0.15 −0.29 0.44

0.61 −0.51 −0.10

 , YoUoVo =


1
3

1
3

1
3

1
2 0 − 1

2
1
4 − 1

2
1
4


The second color transform to the space YoUoVo is an orthogonal transform. It has the advantage
of maximizing the noise reduction of the geometric component, since this component is an average
of the three color. The geometric component is perceptually more important than the chromatic
ones, and the presence of less noise permits a better performance of the algorithm in this part.
It also permits a higher noise reduction on the chromatic components Uo and Vo, due to their
observable regularity.

This latter strategy is adopted by transform thresholding filters for which the design of an
orthonormal basis coupling the different color channels is not trivial.

4. Trying all generic tools on an example

This chapter applies incrementally the previous generic denoising tools to the DCT sliding
window to illustrate how these additional tools permit to drastically improve the algorithm perfor-
mance. We start with the basic DCT “neighborhood filter” as proposed by Yaroslavsky [28]. Its
principle is to denoise a patch around each pixel, and to keep only the central denoised pixel.

Figure 1 displays the denoised images obtained by incrementally applying each of the following
ingredients:

- Basic DCT thresholding algorithm by the neighborhood filter technique (keeping only
the central pixel of the window). Each color channel is treated independently.

- Use of an orthogonal geometric and chromatic decomposition color system YoUoVo; grey
parts are better reconstructed and color artifacts are reduced.

- Uniform aggregation; the noise reduction is superior and isolated noise points are removed.
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- Adaptive aggregation using the estimator variance; the noise reduction near edges is
increased, "halo" effects are removed.

- Additional iteration using “oracle” estimation; residual noise is totally removed and the
sharpness of details is increased.

The PSNR’s obtained by incrementally applying the previous strategies respectively are
26.85, 27.33, 30.65, 30.73, 31.25. This experiment illustrates how the use of these additional tools
is crucial to achieve competitive results. This last version of the DCT denoising algorithm, incorpo-
rating all the proposed generic tools, will be the one used in the comparison chapter. A complete
description of the algorithm can be found in Algorithm 17. The color version of the algorithm
applies the denoising independently to each YoUoVo component. This version is therefore slightly
better than the version online in [95], which does not use the oracle step.
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Algorithm 17 DCT denoising algorithm. DCT coefficients lower than 3σ are canceled in the first
step and a Wiener filter is applied in the “oracle” second step. The color DCT denoising algorithm
applies the current strategy independently to each YoUoVo component.

1: Input: noisy image ũ, σ noise standard deviation.

2: Optional: prefiltered image û1 for “oracle" estimation.

3: Output: output denoised image.

4: Set parameter κ = 8: size of patches.

5: Set parameter h = 3σ: threshold parameter.

6: for each pixel i do

7: Select a square reference patch P̃ around i of size κ× κ.

8: if û1 then
9: Select a square reference patch P1 around i in û1.

10: end if

11: Compute the DCT transform of P̃ .

12: if û1 then
13: Compute the DCT transform of P1.

14: end if

15: if û1 then
16: Modify DCT coefficients of P̃ as

P̃ (i) = P̃ (i)
P1(i)

2

P1(i)2 + σ2

17: else
18: Cancel coefficients of P̃ with magnitude lower than h.

19: end if

20: Compute the inverse DCT transform obtaining P̂ .

21: Compute the aggregation weight wP̃ = 1/#{number of non-zero DCT coefficients}.
22: end for

23: for each pixel i do
24: Aggregation: recover the denoised value at each pixel i by averaging all values at i of all denoised

patches Q̂ containing i, weighted by wQ̃.

25: end for
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Figure 1. Top: original and noisy images with an additive Gaussian white noise
of standard deviation 25. Below, from top to bottom and left to right: crop of
denoised images by sliding DCT thresholding filter and incrementally adding use
of a YoUoVo color system, uniform aggregation, variance based aggregation and
iteration with the “oracle” given by the first step. The corresponding PSNR are
26.85, 27.33, 30.65, 30.73, 31.25.





CHAPTER 7

Detailed analysis of the Non-Local Means and the Non-local

Bayes methods

In this chapter, we give a detailed description and analysis of two denoising methods for which
reliable faithful implementations are available: the Non-local means and Non-local Bayes methods.
The algorithmic descriptions of both methods is provided. We shall extend this non-local Bayes
algorithm in our final Chapter 8 on the Noise Clinic.

1. Non-local means

The Non-local means (NL-means) algorithm tries to take advantage of the redundancy of most
natural images. The redundancy, or self-similarity hypothesis is that for every small patch in a
natural image one can find several similar patches in the same image, as illustrated in figures 1 and
2. This similarity is true for patches whose centers stand at a one pixel distance of the center of
the reference patch. In that case the self-similarity boils down to a local image regularity assump-
tion. Such a regularity is guaranteed by Shannon-Nyquist’s sampling conditions, which require the
image to be blurry. In a much more general sense inspired by neighborhood filters, one can define
as “neighborhood of a pixel i” any set of pixels j in the image such that a patch around j looks like
a patch around i. All pixels in that neighborhood can be used for predicting the value at i, as was
first shown in [102] for the synthesis of texture images. This self-similarity hypothesis is a gen-
eralized periodicity assumption. The use of self-similarities is actually well-known in information
theory from its foundation. In his 1948 Mathematical Theory of Communication, Shannon [25]
analyzed the local self-similarity (or redundancy) of natural written language, and gave probably
the first stochastic text synthesis algorithm. The Efros-Leung texture synthesis method adapted
this algorithm to images, and NL-Means [103] seems to be first adaptation of the same idea to
denoising1

NL-means denoises a square reference patch P̃ around i of dimension κ × κ by replacing it
by an average of all similar patches Q̃ in a square neighborhood of i of size λ × λ. To do this,
a normalized Euclidean distance between P̃ and Q̃, d(P̃ , Q̃) = 1

κ2 ∥P̃ − Q̃∥2 is computed for all
patches Q̃ is the search neighborhood. Then the weighted average is

1Nevertheless, some researchers have pointed out to us the report [104] as giving an early intuition that

intuition could use signal redundancy. This very short paper describes an experiment in a few sentences. It suggests

that region redundancy on both sides of an edge can be detected, and used for image denoising. Nevertheless, no

algorithm is specified in this paper.
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(a) (b) (c) (d)

Figure 1. q1 (a) and q2 (c) have a large weight because their similarity windows
are similar to that of p (b). On the other side, for q3 (d) weight w(p, q3) is much
smaller because the intensity grey values in the similarity windows are very dif-
ferent.

P̂ =

∑
Q̃ Q̃e−

d(P̃ ,Q̃)2

h2∑
Q̃ e−

d(P̃ ,Q̃)2

h2

.

The thing that helps NL-means over the neighborhood filters is the concentration of the noise law,
as the number of pixels increases. Because the distances are computed on many patch samples
instead of only one pixel, the fluctuations of the quadratic distance due to the noise are reduced.

Related attempts: [105] proposed a “universal denoiser" for digital images. The authors prove
that this denoiser is universal in the sense “of asymptotically achieving, without access to any
information on the statistics of the clean signal, the same performance as the best denoiser that
does have access to this information". In [106] the authors presented an implementation valid
for binary images with an impulse noise, with excellent results. Awate and Whitaker [107] also
proposed a method whose principles stand close to NL-means, since the method involves comparison
between patches to estimate a restored value. The objective of the algorithm is to denoise the image
by decreasing the randomness of the image.

A consistency theorem for NL-means. NL-means is intuitively consistent under stationarity
conditions, namely if one can find many samples of every image detail. It can be proved [32] that
if the image is a fairly general stationary and mixing random process, for every pixel i, NL-means
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(a) (b) (c) (d) (e) (f)

Figure 2. On the right-hand side of each pair, one can see the weight distribution
used to estimate a centered patch of the left image by NL-means. (a) In flat zones,
the weights are uniformly distributed, NL-means acts like a low pass isotropic filter.
(b) On straight edges, the weights are distributed in the direction of the edge (like
for anisotropic filters). (c) On curved edges, the weights favor pixels belonging
to the same contour. (d) In a flat neighborhood, the weights are distributed in
a grey-level neighborhood (exactly like for neighborhood filters). In the cases of
(e) and (f), the weights are distributed across the more similar configurations,
even though they are far away from the observed pixel. This behavior justifies the
“non local” appellation.

converges to the conditional expectation of i knowing its neighborhood, which is the best Bayesian
estimate.

NL-means as an extension of previous methods. A Gaussian convolution preserves only
flat zones, while contours and fine structure are removed or blurred. Anisotropic filters instead
preserve straight edges, but flat zones present many artifacts. One could think of combining these
two methods to improve both results. A Gaussian convolution could be applied in flat zones,
while an anisotropic filter could be applied on straight edges. Still, other types of filters should be
designed to specifically restore corners, or curved edges, or periodic texture. Figure 2 illustrates
how NL-means chooses the right weight configuration for each sort of image self-similarity.
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Algorithm 18 NL-means algorithm (parameter values for κ, λ are indicative).

1: Input: noisy image ũ, σ noise standard deviation.

2: Output: output denoised image.

3: Set parameter κ = 3: size of patches.

4: Set parameter λ = 31: size of research zone for which similar patches are searched.

5: Set parameter h = 0.6σ: bandwidth filtering parameter.

6: for each pixel i do

7: Select a square reference patch P̃ around i of dimension κ× κ.

8: Set P̂ = 0 and Ĉ = 0.

9: for each patch Q̃ in a square neighborhood of i of size λ× λ do

10: Compute the normalized Euclidean distance between P̃ and Q̃, d(P̃ , Q̃) = 1
κ2 ∥P̃ − Q̃∥2.

11: Accumulate Q̃e
− d(P̃ ,Q̃)2

h2 to P̂ and e
− d(P̃ ,Q̃)2

h2 to Ĉ.

12: end for

13: Normalize the average patch P̂ by dividing it by the sum of weights Ĉ

14: end for

15: for each pixel x do
16: Aggregation: recover the denoised value at each pixel i by averaging all values at i of all denoised

patches Q̂ containing i
17: end for
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2. Non-local Bayesian denoising

It is apparent that Equation (11) given in Chapter 5,

P̂1 = P̃ +
[
CP̃ − σ2I

]
C−1

P̃
(P̃ − P̃ ),

gives by itself a denoising algorithm, provided we can compute the patch expectations and patch
covariance matrices. We shall now explain how the Non-local Bayes algorithm proposed in [47, 91]
does it. Let P(P̃ ) be the set of patches Q̃ similar to the patch P̃ , which have obtained with a
suitably chosen tolerance threshold, so that we can assume that they represent noisy versions of
the patches similar to P . Then, by the law of large numbers, we have

(16) CP̃ ≃ 1

#P(P̃ )− 1

∑
Q̃∈P(P̃ )

(
Q̃− P̃

)(
Q̃− P̃

)t
, P̃ ≃ 1

#P(P̃ )

∑
Q̃∈P(P̃ )

Q̃.

Nevertheless, the selection of similar patches at the first step is not optimal and can be improved in
a second estimation step where the first step estimation is used as oracle. Thus, in a second step,
where all patches have been denoised at the first step, all the denoised patches can be used again to
obtain an estimation CP̂1

for CP , the covariance of the cluster containing P , and a new estimation

of P̃ , the average of patches similar to P̃ . Indeed, the patch similarity is better estimated with the
denoised patches. Then it follows from (10) and (11) that we can obtain a second better denoised
patch,

(17) P̂2 = P̃
1
+ CP̂1

[
CP̂1

+ σ2I
]−1

(P̃ − P̃
1
)

where

(18) CP̂1
≃ 1

#P(P̂1)− 1

∑
Q̂1∈P(P̂1)

(
Q̂1 − P̃

1
)(

Q̂1 − P̃
1
)t

, P̃
1
≃ 1

#P(P̂1)

∑
Q̂1∈P(P̂1)

Q̃.

We write the denoised patches P̃ in (16) and P̃
1

in (17). Indeed, in (17), the denoised version of
P̃ computed as the average of noisy patches Q̃ whose denoised patch is similar to P̂1.

In short, the estimates (11) and (17) appear equivalent, but they are not in practice. CP̂1
,

obtained after a first denoising step, is a better estimation than CP̃ . Furthermore, P̃
1

is a more
accurate mean than P̃ . It uses a better evaluation of patch similarities. All above quantities being
computable from the noisy image, we obtain the two step algorithm 19.

As pointed out in [47, 91], the Nonlocal Bayes algorithm only is an interpretation (with some
generic improvements like the aggregation) of the PCA based algorithm. This paper has a self-
explanatory title: “Two-stage image denoising by principal component analysis with local pixel
grouping.” It is equivalent to apply a PCA on the patches similar to P̃ , followed by a Wiener filter
on the coefficients of P̃ on this PCA, or to apply formula (11) with the covariance matrix of the
similar patches. Indeed the PCA computes nothing but the eigenvalues of the empirical covariance
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Algorithm 19 Non local Bayes image denoising

1: Input: noisy image

2: Output: denoised image

3: for all patches P̃ of the noisy image do

4: Find a set P(P̃ ) of patches Q̃ similar to P̃ .

5: Compute the expectation P̃ and covariance matrix CP̃ of these patches by

CP̃ ≃
1

#P(P̃ )− 1

∑
Q̃∈P(P̃ )

(
Q̃− P̃

)(
Q̃− P̃

)t
, P̃ ≃ 1

#P(P̃ )

∑
Q̃∈P(P̃ )

Q̃.

6: Obtain the first step estimation:

P̂1 = P̃ +
[
CP̃ − σ2I

]
C−1

P̃
(P̃ − P̃ ).

7: end for
8: Obtain the pixel value of the basic estimate image û1 as an average of all values of all denoised patches

Q̂1 which contain i.
9: for all patches P̃ of the noisy image do

10: Find a new set P1(P̃ ) of noisy patches Q̃ similar to P̃ by comparing their denoised “oracular”

versions Q1 to P1.

11: Compute the new expectation P̃
1

and covariance matrix CP̂1
of these patches:

CP̂1
≃ 1

#P(P̂1)− 1

∑
Q̂1∈P(P̂1)

(
Q̂1 − P̃

1
)(

Q̂1 − P̃
1
)t

, P̃
1

≃ 1

#P(P̂1)

∑
Q̂1∈P(P̂1)

Q̃.

12: Obtain the second step patch estimate

P̂2 = P̃
1

+ CP̂1

[
CP̂1

+ σ2I
]−1

(P̃ − P̃
1

).

13: end for
14: Obtain the pixel value of the denoised image û(i) as an average of all values of all denoised patches Q̂2

which contain i.

matrix. Thus, the method in [91] gets its Bayesian interpretation. A study on the compared
performance of local PCA versus global PCA for TSID is actually proposed in [70].



CHAPTER 8

The “Noise Clinic”: a universal denoiser

Arguably several thousands papers are dedicated to image denoising. Most papers assume a
fixed noise model, mainly white Gaussian or Poissonian (Chapters 1 and 2). This assumption is
only valid for raw images. Yet in most images handled by the public and even by scientists, the noise
model is imperfectly known or unknown. End users only dispose of the result of a complex image
processing chain (Chapter 3) effectuated by uncontrolled hardware and software (and sometimes
by chemical means). For such images, it is possible to estimate from a single image a noise
model which is simultaneously signal and frequency dependent, as we showed in Chapter 4. In this
chapter we propose a multiscale denoising algorithm adapted to this broad noise model, based on
the NL-Bayes denoising algorithm (Chapter 7). This leads to a blind denoising algorithm which
we demonstrate on real JPEG images and on scans of old photographs for which the formation
model is unknown. This algorithm is finally compared to the unique state of the art previous blind
denoising method, based on Gaussian Scale Mixtures In The Wavelet Domain [14].

1. Introduction

1.1. Motivations. Blind denoising is the conjunction of a thorough noise estimation method
followed by the application of an adapted denoising method. To cope with the broad variety of
observed imaging noises, the noise model must be far more comprehensive than the usual white
Gaussian noise. Our lead example will be JPEG images from digital CCD or CMOS cameras,
where the initial signal dependent white Poisson noise has undergone nonlinear transforms, linear
filters and a quantization of its DCT coefficients. After such alterations, a signal, frequency and
scale dependency is a minimal assumption for the remaining noise. This requires dealing with
a noise model depending on hundreds of parameters, in contrast with the usual one-parameter
Gaussian white noise and the two-parameter Poisson noise. A flexible denoising method must also
be conceived to cope with this signal, scale, and frequency dependent noise model.

To be useful to all image users, who generally have only access to the end result of a complex
processing chain, blind denoising must be able to cope with both raw and preprocessed images of
all sorts. The archives of the online executions at the IPOL journal of six classic denoising methods,
namely DCT denoising [108], TV denoising [109], K-SVD [110], NL-means [111], BM3D [112] and
NL-Bayes [84] are replete with such puzzling noisy images. IPOL users are in principle requested
to upload noiseless images, to which the noise is added on line to test the performance of each
algorithm. Yet, as one can observe in this public archive, the demand for a blind denoiser is so
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strong that more than 10000 noisy images have been unduly uploaded. This shows how necessary
“blind” methods are, for diffusing image processing techniques in science and technology.

1.2. Antecedents. We found only a few references on blind denoising approaches: Portilla
[37], [14], Rabie [113] and Liu, Freeman, Szeliski and Kang [52]. Portilla’s method is an adaptation
of the famous BLS-GSM algorithm, which models wavelet patches at each scale by a Gaussian scale
mixture (GSM), followed by a Bayesian least square (BLS) estimation for wavelet patches. This
method is in principle adapted to homogeneous, Gaussian or mesokurtic noise. Yet, according to
the author, the GSM model provides an automatic way to separate noise from signal. Indeed, for
natural images, a GSM captures for the wavelet coefficients both high kurtosis marginals and a
positive covariance between neighbor coefficient amplitudes. These coefficients are not shared by
Gaussian or lower kurtosis noise sources. Then, for each wavelet subband a correlated Gaussian
model can be used to estimate the noise and a correlated GSM is used for the signal. This algorithm
is fully automatic, and will be compared to our results in Chapter 6.3. Our proposed solution shares
many features with Portilla’s method. Our noise model is nonetheless more general, being signal
dependent, and our patch model is local, while the GSM wavelet patch model is global. (A recent
local version of BLS-GSM [38] obtains a better performance than BLS-GSM.)

Liu, Freeman, Szeliski and Kang [52] proposed a unified denoising framework for JPEG images
with two tasks in view: 1) automatic estimation and 2) removal of colored noise from a single image.
These steps are performed by involving a piecewise smooth image model and a segmentation. The
authors introduce the so called “noise level functions” (NLF) to estimate the noise level as a function
of the image grey level. The obtained noise curve by their algorithm is an estimate of an upper
bound of the real NLF, done by fitting a lower envelope to the standard deviations of per-segment
image variances. In their denoising procedure, the chrominance of the colored noise is significantly
removed by projecting pixel values onto a line fitted to the RGB values in each segment. Then,
a Gaussian conditional random field is constructed to obtain the underlying clean image from the
noisy input. Unfortunately no code is available for this complex procedure.

The method proposed by Rabie [113] seems less effective and works only for Gaussian noise.
Here the blind denoising filter is based on the theory of robust statistics. The denoising part is done
by minimizing a stationary cost function. For an adaptive window around the pixel of interest,
noise pixels are seen as outlier pixels and rejected according to the Lorentzian robust estimator.
The noise is basically estimated over a flat area of the noisy image. “Optimal-size” adaptive
window are used to obtain the largest area containing relatively uniform structures around each
pixel of interest. The uniformity is based on local signal variance estimate. This method seems less
general than Portilla’s method, since it can only deal with a signal-independent Gaussian noise.
Observing the results shown in [113], indicates that this method mainly works on images with large
homogeneous areas. An entropy-based noise level estimator has been proposed in [114], which may
work for any sort of noise. Unfortunately it delivers a noise level but not a noise model. So we
could not use it for noise estimation. Our denoising method will be based on a noise signal and
frequency noise estimator proposed by Colom et al. [10], relying on a Ponomarenko et al. general
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principle [83] to build a noise patch model. This method is proved in the aforementioned reference
to estimate accurately the variances of DCT coefficients of noise patches in a JPEG image. We
shall see that it can be easily extended to cope with a scale dependency.

2. A generalized nonlocal Bayesian algorithm

Most denoising methods in the literature focus on Gaussian white noise, which is a reasonable
simplification of the problem, since for example Poisson noise can be transformed into approxi-
mately white Gaussian noise by the Anscombe transform [85]. In this chapter we show that one
of them, the NL-Bayes method, designed for Gaussian white noise, can be extended to deal with
a signal, scale and frequency dependent noise. NL-Bayes only requires the knowledge of a local
Gaussian patch model and of a Gaussian noise model. It is therefore possible to extend the noise
model to make obtain a denoising method compatible with a scale and signal dependent.

Like other patch based denoising methods, NL-Bayes denoises all noisy square patches ex-
tracted from the noisy image ũ and then obtains the final denoised image û by replacing every
image pixel value by an average of the denoised values obtained for this pixel in all denoised patches
containing it. We shall denote by P̃ a reference patch extracted from the image, and by P(P̃ ) a
set of patches Q̃ similar to the reference patch P̃ . Assuming that Q̃ follows a Gaussian model, a
first basic estimation of the denoised patch P can be obtained [78] by

(19) Pbasic = P̃ + [CP̃ − Cn]C−1

P̃

(
P̃ − P̃

)
where

• P̃ is the empirical average of the patches similar to P̃ :

(20) P̃ ≃ 1

#P(P̃ )

∑
Q̃∈P(P̃ )

Q̃;

• Cn is the covariance matrix of the noise;
• CP̃ is the empirical covariance matrix of the patches similar to P̃ , which may be obtained

by

(21) CP̃ ≃ 1

#P(P̃ )− 1

∑
Q̃∈P(P̃ )

(
Q̃− P̃

)(
Q̃− P̃

)t
.

For pure Gaussian signal-independent noise with variance σ2, we simply have Cn = σ2I. The
above estimate would the optimal Bayesian estimate, if CP̃ and P̃ were the true covariance matrix
and expectation of the patches similar to P̃ . In a second step, all the denoised patches obtained
after the previous first step estimation can be reused by a classic Wiener argument to obtain a
better unbiased estimation Cbasic

P̃
for the covariance of the 3D group containing P . Similarly, a

new estimation P̃
basic

of the average of patches similar to P can be obtained. This leads to a
second Wiener-Bayes estimate

(22) Pfinal = P̃
basic

+ Cbasic
P̃

[
Cbasic

P̃
− Cn

]−1
(
P̃ − P̃

basic
)
.
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2.0.0.1. Adaptation to Signal-Dependent Noise. As formulas (19) and (22) show, the above
Bayesian principle is compatible with a patch noise model Cn depending on each patch P̃ . The
above formulas only require a good estimate of the covariance matrix of the noise associated with
each group of similar patches. The algorithm computing this matrix is given in Chapter 3. The
noise model being signal dependent, for each intensity i in the range intensity [0, 255] of the image
a noise covariance matrix Cni will be available. The noise model for each group of patches similar
to P̃ will depend on P̃ through their mean i. The reference intensity for the current 3D group P(P̃ )

must therefore be estimated to apply formulas (19) and (22) with the appropriate noise covariance
matrix. This intensity is simply estimated as the average of all pixels contained in P(P̃ ).

2.0.0.2. Local Correction of the Covariance Matrix. The denoising performance strongly de-
pends on the noise covariance matrices estimation. If the matrices {Cni}i∈[0,255] are not accurate
enough, denoising can cause ugly artifacts, particularly in the first step. The noise estimation pro-
cedure from the image is always at risk of an overestimation, particularly when the image is small
or when it contains a uniform texture which becomes indistinguishable from colored noise. If Cn

is overestimated, then (19) risks adding “negative noise” to the image, because of the −Cn term in
this equation. Thus, a conservative estimation strategy must be applied on the first Bayesian step
to avoid noise overestimation artifacts. This strategy ensures that the noise variances are always
smaller than the noisy patch variances. This sanity check based on the diagonal values of both
CP̃ and Cn covariance matrices leads to the following more conservative estimate of the diagonal
elements of the patch covariance matrix used in (19):

(23) ∀p ∈ [[0, κ2 − 1]],CP̃ (p, p) = max (CP̃ (p, p) ,Cn (p, p)).

2.0.0.3. Homogeneous Area Detection. The original NL-Bayes algorithm [78] has a statistical
test to determine if a 3D group belongs to a homogeneous area, and in this case the estimation of
all patches is replaced by the global mean over all pixels contained in the 3D group. This criterion
is merely based on the comparison of the empirical standard deviation of all pixels of P(P̃ ) with
σ2.

In our generalization of this algorithm, σ doesn’t exist since Cn ̸= σ2I. So this criterion must
be adapted to better take into account Cn in the following way:

• First, compute the difference of the traces of both covariance matrices for each channel
c,

(24) δc = Tr(CP̃ )− Tr(Cn).

• Denote by ˆ̃Q a first estimation of Q̃ obtained by (19). Then the basic estimate is ∀Q̃ ∈
P(P̃ ),

(25) Qbasic =


P̃ if δc < αTr(Cn)

ˆ̃Q if δc > βTr(Cn)

t ˆ̃Q+ (1− t)P̃ otherwise.



3. OBTAINING THE COVARIANCE MATRIX OF NOISE PATCHES 151

where

t =
δc − αTr(Cn)

βTr(Cn)− αTr(Cn)

and

P̃ =
1

#P(P̃ )κ2

∑
Q̃∈P(P̃ )

κ∑
p=1

κ∑
q=1

Q̃(p, q)

The thresholds (α, β) are chosen equal to
(
−1

3
,
1

3

)
. This (optional) correction which generally

increases the PSNR is only used for the first step of the finest scale of the multiscale algorithm.

3. Obtaining the covariance matrix of noise patches

Colom et al., [10], proposed an adaptation of the Ponomarenko et al. [83] method estimating a
frequency dependent noise to estimate noise in JPEG images. Given a patch size κ×κ, the method
extracts from the image a set with fixed cardinality of sample blocks with very similar patches in
DCT space, which are therefore likely to contain only noise. These noise blocks are transformed by
a DCT, and an empirical standard deviation of their DCT coefficients is computed. This gives a
noise model that is proved in [10] to be accurately consistent with noise observed in JPEG images.
This algorithm computes for every intensity i with a multi-frequency noise estimate given by a
κ2 × κ2 matrix

(26) Mi := E
(
DNi (DNi)

t
)

where:

• D is the κ2 × κ2 matrix of the discrete cosine transform (DCT) ;
• Ni denotes the κ× κ stochastic noise patch model at intensity i.

3.1. Are noise covariances negligible in the block DCT space? The method of the
preceding chapter only estimates the variances of the DCT coefficients of noise blocks and not
their covariances. The covariance matrices are therefore assumed to be diagonal, which amounts
to assume that the DCT decorrelates the noise. A formal argument can be given in favor of this
assumption. Assume that the initial image noise was white Gaussian, and that the image has
undergone a symmetric, real, periodic linear filter H. Then this filter corresponds to applying a
diagonal operator to the image in the DCT frequency domain. Thus the noise covariance of the
filtered noise remains diagonal in the DCT domain. Yet, this argument is only valid for a global
image DCT. Here, because we need a signal dependent noise model, we are estimating it on local
DCTs applied to each block. It is therefore no more true that the blocks have undergone a periodic
convolution filter. Thus, it cannot be exactly true that after the application of a global linear filter,
the noise block DCTs have a diagonal covariance. To check nonetheless the quantitative validity
of this assumption, we tested three different filters applied to a white noise:

• H1 with coefficients 1
4

(
1 1

1 1

)
supported by the pixels (− 1

2 ,−
1
2 ), ( 12 ,

1
2 ), ( 12 ,−

1
2 ),

(− 1
2 ,

1
2 );
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κ 4 6 8 16

mean {|Ci,j |}i ̸=j 0.83 0.48 0.31 0.10
mean {|Ci,j |}i=j 24.89 25.31 24.95 24.73

median {|Ci,j |}i̸=j 0.04 0.03 0.02 0.01
median {|Ci,j |}i=j 19.42 17.14 16.28 14.41

Table 1. Statistics of the estimated DCT covariance matrix of noise filtered by H1.

κ 4 6 8 16

mean {|Ci,j |}i ̸=j 0.48 0.28 0.19 0.06
mean {|Ci,j |}i=j 14.59 13.95 14.45 14.23

median {|Ci,j |}i̸=j 0.010 0.008 0.005 0.002
median {|Ci,j |}i=j 6.75 4.50 3.77 2.35

Table 2. Statistics of the estimated DCT covariance matrix of noise filtered by H2.

• H2 the centered filter with coefficients 1
16


1 2 1

2 4 2

1 2 1

;

• H3 the centered filter with coefficients 1
88


1 2 4 8 4 2 1

2 4 8 16 8 4 2

1 2 4 8 4 2 1

.

The noise image ũ was a 256 × 256 Gaussian white noise with mean 128, and standard deviation
σ = 20. After convolution, we extracted N distinct κ × κ patches {Pn}n∈N from the image and
a 2D normalized DCT was applied on them. Finally, their empirical κ2 × κ2 covariance matrix C
was computed as

(27)

∀(p, q), (i, j) ∈ [[0, κ− 1]]2,

C(p, q, i, j) =
1

N

N∑
n=1

P̂ (p, q)P̂ (i, j)

− 1

N2

(
N∑

n=1

P̂ (p, q)

)(
N∑

n=1

P̂ (i, j)

)
These covariances matrices can be visualized by the absolute value of their coefficients |Ci,j |,
normalized in [0, 1] so that the largest coefficient is set equal to 1, and the smallest equal to 0.
The following color code is used in the visualization: a coefficient appears in blue if it is near 0;
in green if it is near 0.5 and in red if it is near 1. The results for various patch sizes are shown
in Figure 1. This illustration and the quantitative tables 1, 2 and 3 confirm that the block DCT
noise covariance matrices are nearly diagonal.

So from now on, only variance coefficients will be considered in DCT space.

3.2. Covariance matrix filtering. Since the noise covariance matrices can only be esti-
mated for sparse bins in the intensity range, an interpolation must be applied to obtain a noise
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κ 4 6 8 16

mean {|Ci,j |}i ̸=j 0.22 0.15 0.10 0.04
mean {|Ci,j |}i=j 9.28 8.94 9.04 8.51

median {|Ci,j |}i̸=j 0.020 0.016 0.010 0.003
median {|Ci,j |}i=j 3.32 2.86 2.44 1.73

Table 3. Statistics of the estimated DCT covariance matrix of noise filtered by H3.

Figure 1. Visualization of the noise covariance matrices in DCT space after
applying filter H1 to illustrate that it is almost diagonal. From left to right, top
to bottom patch size κ = 4, 6, 8.

covariance matrix of the noise for each given intensity. The covariance matrices must be smoothed
before such an interpolation. This can be obtained by a regularization of the covariance matrices in
DCT space before applying the inverse DCT to get back a covariance matrix in the image domain.
We found that a robust regularization could be performed in the following two steps:

(1) For each frequency independently, perform a linear interpolation between the bin values
to obtain a noise curve for this frequency, giving the variance as a function of the signal
i. Smooth this curve by applying a sliding average;

(2) For every bin, replace each matrix coefficient by the median of its four neighbors and
itself.

Since the filtering is channel independent, the pseudo-code only describes the filtering for one
channel.

3.2.0.1. Getting Back to the Space Domain. For a given intensity i, the covariance matrix of
the noise is by definition

Cov(Ni) = E
(
NiN

t
i
)

which leads to

(28)

DCov(Ni)Dt = DE
(
NiN

t
i
)
Dt

= E
(
DNiN

t
i Dt

)
= E

(
DNi (DNi)

t
)

= Mi

thanks to equation (26). Since D−1 = Dt , then from equation (28) we get

(29) Cov(Ni) = DtMiD.
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4. The multiscale algorithm

4.1. Why a multiscale algorithm? Classic denoising algorithms such as BM3D (Dabov
et al. [36]), NL-means (Buades et al. [86]), K-SVD (Mairal et al. [115], [116]), Wiener filters
applied on DCT (Yaroslavsky et al. [117], [118]) or on wavelet transform (Donoho et al. [119])
and the total variation minimization (Rudin et al. [120]) achieve good results for moderate noise
(σ ≤ 20). Yet for larger noise artifacts inherent to each method (and different for each method)
start appearing. In particular all keep an often disturbing low frequency noise. A natural idea to
deal with low frequency noise is to involve a coarse to fine multiscale procedure, which promises
three improvements:

(1) in the patch-based methods, it favors a better patch comparison, because the patch low
frequencies are denoised before grouping them by similarity for denoising their higher
frequencies;

(2) at coarse scales the noise decreases by zoom out, and state-of-the-art algorithms work
better;

(3) subsampling the image before denoising amounts to enlarge the size of the neighborhood
on which the denoising is performed, thus permitting to grab and remove low frequency
noise on larger regions.

A still stronger argument in favor of a multiscale procedure is that in most images submitted
by users, the main bulk of the noise is contained in the low frequencies. This is explainable by
several factors. In accurately scanned old photographs, the chemical noise is over-sampled and its
grain has low frequency components. In JPEG images, compression has strongly attenuated high
frequency noise components, but the low frequency components after the third octave are intact.

Figure 2. A multiscale process is required to remove the low frequency noise.
This is particularly apparent in the flat image regions. From left to right: Noisy
image (σ = 30), result of the “Classic NL-Bayes”, result of the multiscale (three
scales) NL-Bayes.

To define a coarse to fine multiscale structure, we proceed by a classic oversampled wavelet
denoising strategy [121]. The image is convolved by a Haar “mother wavelet”, which is nothing
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but a box-filter F where each lower scale pixel is the mean of four samples in the higher scale.
This cumulates the advantage of dividing the noise standard deviation by two and of maintaining
the independence of the samples after down-sampling. By this process a white noise remains white
after subsampling. A classic objection to this wavelet method is that the sub-sampled image is
aliased and cannot be up-sampled after denoising. The classic wavelet method avoids this obstacle
by denoising simultaneously the three wavelet components obtained by convolving the image with
the three Haar wavelets, before reconstructing the finer scale. Yet when dealing with patch based
methods, it is better to keep all frequency components together to perform a better nonlocal patch
comparison. For this reason the proposed multiscale algorithm keeps and processes four channels
that are partly redundant. The four channels are obtained by moving the sub-sampling grid by
respectively (0, 0), (1, 0), (0, 1), (1, 1). In that way there is enough information for up-sampling
after denoising the denoised images at the lower scale.

The above method is multiscale but does not take advantage of the sub-sampling in the lower
scales to increase the algorithm speed. A normal multiscale algorithm is only 1+ 1

4 +
1
16 + · · · = 4

3

more complex than the single scale algorithm. Instead a multiscale algorithm keeping all sub-
images when sub-sampling will be twice to five times slower, depending on the number of scales
involved, (by default two). Yet, the redundancy of this denoising at lower scales notably increases
the restoration quality. This is particularly important, as any denoising error on a down-sampled
image is amplified by a four-factor after upsampling.

4.2. The mean sub-sampling method. We shall denote by s the current dyadic scale of
the multiscale algorithm. For the particular case of white noise, the aim of the sub-sampling is to
obtain from ũs an image ũs+1 where the standard deviation of the noise has been divided by two
compared to the noise contained in ũs. To get this result, one can use a filter f(i, j) satisfying∑

i,j

f(i, j) = 1 and
∑
i,j

f(i, j)2 =
1

4
.

The simplest filter coping with these conditions is the average filter F, defined by

F(i, j) =

 1
4 if (i, j) ∈ [(0, 0), (0, 1), (1, 0), (1, 1)] ,

0 otherwise.

which averages each group of four adjacent neighboring pixels. There are four different filter+sub-
sample results, as shown in figure 3. Moreover if the image ũs is well-sampled, so is ũs ∗ F.
Thus, the difference image is not aliased. Since all sub-sampled images are available, the noise
estimation can work with the same amount of samples at every scale, which favors a good precision
on the noise estimation at lower scales. All sub-sampled images must also be denoised. To avoid
handling them separately, we introduce here a new procedure to process them jointly in a single
image, while avoiding creating artificial borders. The four sub-sampled images are regrouped in
one mosaic image, as shown in figure 4. The boundaries of the sub-images are in that way better
denoised, because they are included in a smooth larger image.
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Figure 3. Four different ways to average red neighbors of the yellow reference pixel.

Figure 4. Left: mosaic of the scale 1 sub-images. Right: mosaic of the scale 2
sub-images, The input image has scale 0.

4.3. The mean up-sampling method. The aim of the up-sampling is to go back to the
upper scale, after denoising the four sub-images obtained by sub-sampling as seen in Chapter 4.2.
The four sub-images ũ1, ũ2, ũ3 and ũ4 have their pixel center (resp. in red, purple, green and blue
in figure 5) located at the center of four pixels of ũ (in black in figure 5). Thus they are shifted
by ± 1

2 in both coordinate directions. The reconstruction of the pixels of ũ (see the example of the
pixel in yellow in figure 5) will be done by averaging their four neighbors, each one belonging to
each sub-image.

4.4. Noise estimation. If the input noisy image had pure Gaussian noise, then after each
sub-sampling the noise should be divided by two and remain white. For raw images it is the case,
since (almost) no alteration nor transformations are applied to the original noisy pixels. Then the
noise is a Poisson random process, which can be approximated by a signal-dependent Gaussian
noise.

However, the proposed algorithm must deal with all kinds of noisy images. A large majority of
them are JPEG images where JPEG has quantized DCT coefficients, making the energy decrease
as the frequency increases. In such images the noise increases at lower scales, as illustrated in
Figure 6, which are the noise curves of the image shown in Figure 16. This figure displays average
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Figure 5. Position of the center of pixels in the original image ũ in black, in the
four sub-images ũ1 in red, ũ2 in purple, ũ3 in green and ũ4 in blue. The yellow
pixel will be reconstructed by averaging the top left red pixel, the top right purple
pixel, the bottom left green pixel and the bottom right blue pixel of its four pixel
neighborhood.

noise curves for high and low frequencies respectively, in the three scales noise estimation from a
JPEG image. The low-frequency noise is not altered by JPEG and becomes a high-frequency noise
after three1 subsampling operations.

In our redundant noise estimation, the noise covariance matrices are estimated at each dyadic
scale. Chapter 4.2 explains how the noise estimation is applied on the mosaic image composed
of all sub-images. Then for every scale the same number of samples is available, which allows
the noise estimation to retain a decent accuracy even at coarse scales. At each given scale, all
sub-images of the mosaic are denoised with the same set of noise covariance matrices.

The whole coarse to fine multiscale procedure is summarized in Algorithm 20. During the
sub-sampling the four sub-images are kept and assembled in a mosaic to be denoised together. It
follows that for each scale, the mosaic keeps the original image size. Thus the complexity for the
whole algorithm is approximately equal to N times the complexity of the one scale algorithm. In
the sequel we shall call our proposed algorithm the “Noise Clinic” as it combines a diagnose of the
image illness with an immediate cure.

5. Validation

Blind denoising is designed mainly for images where the image history is unknown and no
ground truth available. But we can test the denoising performance of the Noise Clinic after simu-
lating a whole image processing chain on a Poisson noisy image for which the ground truth is avail-
able. One of the worst possible noise distortion is provided by the image processing chain applied in
the camera hardware and generally ending with JPEG compression. This chain includes nonlinear
corrections on the raw image, followed by some denoising, demosaicing, gamma-correction, white
balance and JPEG compression, namely the quantization of local block DCT coefficients. To see
to which extent the method works, we started with perturbations consistent with our noise model

1Since JPEG transform is based on the 8× 8 DCT transform, after three subsamplings the 8× 8 pixels patches

become a single pixel. Thus, at the third scale the noise is only high-frequency and uncorrelated.
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Figure 6. Average noise curves for a typical JPEG-encoded image (shown in
Figure 16). From left to right: low frequencies, high frequencies. From top to
bottom: scale 2, scale 1, scale 0. Instead of being divided by two at each scale (as
it should happen with white noise), the noise grows in lower scales, where JPEG
has not removed it.

and then simulated a typical camera image processing chain ending with JPEG compression. We
first obtained a noise-free raw image uraw by subsampling a high quality outdoor image. Then a
Poisson noisy ũraw was simulated from it. Four validation experiments were performed.

First, we computed a reference denoised version of the image:

• the Noise Clinic was directly applied on ũraw to get ûraw;



5. VALIDATION 159

Algorithm 20 Noise Clinic
1: Input : Noisy image ũ0

2: Input : Number of scales N

3: Output : Denoised image û0

4: Part 1 : Builds the image scale pyramid and records the difference images
5: for each scale s = 1 to N − 1 do
6: Let {ũk

s−1}k∈[[1,4s−1]] be the set of noisy subsampled images obtained at the previous scale.
(For scale s = 1, it is ũ0);

7: for k = 1 to 4s−1 do
8: Downsample ũk

s−1 into 4 sub-images : {ũ4(k−1)+i
s }i∈[[1,4]] as described in Chapter 4.2;

9: Save difference images for this scale :

d̃ks−1 = ũk
s−1 − U

(
{ũ4(k−1)+i

s }i∈[[1,4]]

)k
.

10: end for
11: if s = N − 1 then
12: Set {ṽkN−1}k = {ũk

N−1}k
13: Build the noisy mosaic image m̃N−1 from the set of sub-images {ṽkN−1}k∈[[1,4N−1]].
14: end if
15: end for

16: Part 2 : Estimates noise and denoises bottom-up in the pyramid
17: for s = N − 1 to 0 do
18: Estimate the noise covariance matrices on the mosaic m̃s as explained in Chapter 3;
19: Denoise the noisy mosaic image m̃s with the NL-Bayes extension of Chapter 2, using the

noise covariance matrices {DtMiD}i to obtain m̂s;
20: if s > 0 then
21: for k = 1 to 4s−1 do
22: Up-sample {ûs,4(k−1)+i}i∈[[1,4]] and add the saved details d̃ks−1 to get ṽks−1 as described

in Chapter 4.3
23: end for
24: Construct the mosaic image of the next scale m̃s−1 from the set of sub-images {ṽks−1}.
25: else
26: û0 = û1

0

27: end if
28: end for

• a white balance and a gamma correction were applied on uraw, ũraw and ûraw to get urgb,
ũrgb and ûrgb.

Those images will be used as reference, to see how other parts of the image processing chain (such
as the demosaicing and the JPEG compression) impact the result of the denoising. Table 4 shows
RMSEs between the noisy and denoised images and the reference one. One can also remark that
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ũrgb ûrgb|s2 ûrgb|s3 v̂rgb

8.62 3.63 3.65 6.46
Table 4. RMSE between noisy/denoised images and corresponding reference im-
age (uraw) when two and three scales are used. v̂rgb denotes the result of Blind
BLS-GSM for this experiment.

ũd ûd|s2 ûd|s3 v̂d

8.64 4.84 4.84 6.43
Table 5. RMSE between noisy/denoised images and corresponding reference im-
age (ud) when two and three scales are used for the demosaicking experiment. v̂d

denotes the result of Blind BLS-GSM for this experiment.

the best result of the denoising (both in term of RMSEs and visual aspects) is obtained when the
Noise Clinic is applied directly before any transformation.

Second, a demosaicing algorithm was added to the image processing chain before calling the
denoising part:

• extract the mosaic2 of the noise-free image: um = Mosaic(uraw);
• do the same for the noisy image: ũm = Mosaic(ũraw);
• apply a classic demosaicing method3 on both images, followed by a white balance and a

gamma correction to get ud and ũd;
• finally apply the Noise Clinic on ũd to get ûd.

Table 5 shows RMSEs for this experiment. One may notice that after a demosaicing the noise
is no more white, and some structures appears in the noise. These structures are preserved and
sometimes enhanced by the denoising algorithm, since it is seen as structure and not as noise. This
explains why RMSEs are less favorable than when the denoising is directly applied on the raw
images.

Third, a complete image processing chain was simulated to obtain a final JPEG compressed
image:

• apply a JPEG compression of quality 92 over both ud and ũd to get ujpeg and ũjpeg;
• apply the Noise Clinic to get ûjpeg.

Table 6 shows RMSEs for this experiment. Of course, as JPEG compression creates more artifacts
and structured noise, results are worse than with the first two experiments. This only means that
the denoising should be applied as soon as possible in the whole image processing chain. However,

2The mosaic image is obtained by keeping only the Bayer (R Gr Gb B) over a group of four pixels instead of

all RGB values.
3The demosaicing algorithm used in this experiment was Self-similarity Driven Demosaicking algorithm [122],

available on IPOL.
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ũjpeg ûjpeg|s2 ûjpeg|s3 v̂jpeg

8.70 5.34 5.53 6.30
Table 6. RMSE between noisy/denoised images and corresponding reference im-
age (ujpeg) for the JPEG experiment, with compression quality of 92. v̂jpeg denotes
the result of Blind BLS-GSM for this experiment.

ũf ûf1 |s2 ûf1 |s3 ûf2 |s2 ûf2 |s3 v̂f1 v̂f2

1.58 0.75 0.82 0.75 0.75 1.24 1.28
Table 7. RMSE between noisy/denoised images and corresponding reference im-
age (uf ) for the filtered experiment. v̂f1 and v̂f2 denote results of Blind BLS-GSM
for this experiment.

results are not very far from the ideal case, which confirms the interest and the strength of the
Noise Clinic.

Fourth, the filter H2 seen in Chapter 3.1 was used to get:

• a reference filtered image: uf = H2 ∗ uraw;
• a noisy filtered image: ũf = H2 ∗ ũraw;
• the result of the Noise Clinic of the noisy filtered image: ûf1 = NC(H2 ∗ ũraw);
• the filtered result of the Noise Clinic of the noisy image: ûf2 = H2 ∗NC(ũraw).

Table 7 shows RMSEs associated to this experiment. Of course after this filtering, there only
remains low frequency noise, which explains why RMSEs values are better than in the ideal case.
However, the Noise Clinic is still able to give good results.

Figure 7 (resp. 8 and 9) shows results associated of the raw experiment (resp. demosaicking
and JPEG).

Figure 10 (resp. 11 and 12) shows a comparison between the Noise Clinic and Blind BLS-GSM
for the raw experiment (resp. demosaicking and JPEG).

6. Results

6.1. Detailed results. In this chapter we applied the blind denoising to real noisy images
for which no noise model was available. To illustrate the algorithm structure and its action at each
scale, we present for each experiment the noisy input image and for each scale:

• the noisy image where noise has already been removed at coarser scales;
• the denoised image at this scale;
• the difference image = noisy - denoised at this scale;
• the average noise curve over high frequencies;
• the average noise curve over low frequencies.
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Figure 7. Visual results of the reference (first) experiment. From top to bottom,
and left to right: full noise-free image, crop of the noise-free image urgb, crop of
the noisy image ũrgb, crop of the result of the Noise Clinic using two scales ûrgb|s2

and crop of the result of the Noise Clinic using three scales ûrgb|s3.
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Figure 8. Visual results of the demosaicking (second) experiment. From top to
bottom, and left to right: crop of the noise-free image ud, crop of the noisy image
ũd, crop of the result of the Noise Clinic using two scales ûd|s2 and crop of the
result of the Noise Clinic using three scales ûd|s3.

For each scale larger than 1, the subsampled images are up-sampled to keep the original image size.
Similarly, the noisy image shown at each scale is the sum of the upsampled version of the denoised
sub-images of the previous scale and of the still noisy difference image kept in reserve. In other
terms this image contains the remaining noise at the current scale; the noise at coarser scales has
in principle already been removed. Visual results are shown in Figure 13. The corresponding noise
curves are presented in Figure 14. The experiments made on JPEG photographs from unknown
sources are obviously noisy but, as the noise curves illustrate, the noise is not white and is signal
dependent. This is easily detected by the fact that the noise curves are not flat and that they are
not divided by two from a scale to the next, as they should if the noise were white. A typical fact
of JPEG images is that the noise increases at the lower scales. This confirms the necessity of a
multiscale algorithm.
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Figure 9. Visual results of the JPEG (third) experiment. From top to bottom,
and left to right: crop of the noise-free image ujpeg, crop of the noisy image ũjpeg,
crop of the result of the Noise Clinic using two scales ûjpeg|s2 and crop of the result
of the Noise Clinic using three scales ûjpeg|s3.

6.2. Influence of the number of scales. Theoretically any number of scales could be used.
Indeed at a very coarse scale the noise should be almost null and estimated as such, so that no
denoising eventually would occur at very coarse scales. In practice however, some structure of
the image may be confused with noise in the noise estimation step. Indeed the noise estimation
method is tight on very large images on which pure noise samples in large numbers can be found
[83]. After several subsamplings, the image becomes too small, and the risk of confusing texture
with noise increases. In consequence applying a blind denoising on a small image is increasingly at
risk of removing detail when the scale increases. Thus, it is almost always better to use a minimal
number of scales, in most cases not more than two. However, we found that for some images with
large low frequency noise it is sometimes better to use up to five scales. From that point of view our
“blind denoising” is not fully blind and requires an user evaluation of the number of scales involved.
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Figure 10. Visual comparison of the reference (first) experiment. From left to
right: crop of the result of the Noise Clinic using three scales ûrgb|s3 and crop of
the result of the Blind BLS-GSM algorithm v̂rgb.

Figure 11. Visual comparison of the demosaicking (second) experiment. From
left to right: crop of the result of the Noise Clinic using three scales ûd|s3 and
crop of the result of the Blind BLS-GSM algorithm v̂d.

Nevertheless our default value is two, and works on a large majority of the images. Illustrations
of the use of the “right” number of scales are presented in Figure 15 .

For the “Palace” image in Figure 15, five scales are needed to obtain a noise-free result because
of the huge low-frequency noise. In the difference image using five scales one can see that some
image structure has been included in the noise. Yet, this low frequency loss is harmless, being
undetectable in the resulting denoised image.

6.2.0.1. Result on typical low-light JPEG image . The amount of noise is directly related to
the amount of light during the acquisition. Images as shown in Figure 16, taken in a bar with low
light conditions are typically very difficult to denoise, even if we had directly access to the RAW
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Figure 12. Visual comparison of the JPEG (third) experiment. From left to
right: crop of the result of the Noise Clinic using three scales ûjpeg|s3 and crop of
the result of the Blind BLS-GSM algorithm v̂jpeg.

image, due to the huge amount of noise. One can observe big colored spots caused by demosaicing.
JPEG compression ends up creating structured noise. The big colored spots are well attenuated
by blind denoising, but the structure created by JPEG is partly left. This is easily explained.
These artifacts present sharp recurrent structures which are necessarily confused with signal in an
algorithm based on image self-similarity.

6.2.0.2. Results on Old Photographs . Scanned old photographs form a vast image corpus for
which the noise model can’t be anticipated. The noise is chemical, generally with big grain and
further altered by the scanning and JPEG encoding. Figures 17 and 18 show results obtained by
the Noise Clinic over this kind of noisy images.

6.3. Comparison to one of the very few available blind denoising algorithms. We
end this experimental chapter with a comparison of the Noise Clinic with blind BLS-GSM intro-
duced in [14] and [37], a state-of-the-art blind denoising algorithm. The comparison was performed
on several images with various noise models. BLS-GSM also is a multiscale algorithm modeling
wavelet coefficient patches at each scale and making a global sophisticated Bayesian estimation of
them as a Gaussian mixture. NL-Bayes instead has a simpler, but local patch Gaussian model. The
global patch model in BLS-GSM has to be more complex to cope with the global patch variability.

In Figure 19 noisy images present strongly structured periodic noise, which is remarkably
removed by the blind BLS-GSM algorithm, whereas our blind denoising keeps it and even re-
enforces it. However one can argue that this structured noise may be seen as a repetitive texture
belonging to the image and therefore must be treated as detail and not as noise.

In Figure 20 the noise is more “normal” and closer to what can be expected from a natural
image, and our blind denoising performs better. Blind BLS-GSM manages to remove some noise,
but a slightly structured noise still remains, appearing in horizontal strips.
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Noisy image Denoised image Diff. image

Noisy (scale 2) Denoised (scale 2) Diff. (scale 2)

Noisy (scale 1) Denoised (scale 1) Diff. (scale 1)

Noisy (scale 0) Denoised (scale 0) Diff. (scale 0)

Figure 13. Illustration of blind denoising of a JPEG image, the “Frog” image. It
is advised to zoom in the high quality .pdf to see detail.

Figures 21, 22 and 23 show comparisons for low-light JPEG image and old Photographs
presented in Chapters 6.2.0.1 and 6.2.0.2

7. Discussion

Blind denoising can be performed with minimal assumptions on the nature of the noise. We
observed good results on almost any natural image, even if it had been modified by destructive
applications such as JPEG compression or chemical processes. Particularly in old photographs,
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Low frEquation av. curve (s. 2) High frEquation av. curve (s. 2)

Low frEquation av. curve (s. 1) High frEquation av. curve (s. 1)

Low frEquation av. curve (s. 0) High frEquation av. curve (s. 0)

Figure 14. Noise estimation of the “Frog” image: The noise in this image is
clearly colored: it increases with descending octaves instead of being divided by
two, as it should if it were white.

noise can acquire a thick grain which is only efficiently denoised at low scales. This method does
not apply to impulse or multiplicative noise and should be extended to such alterations. Also our
local noise estimation procedure did not detect the strength of the fully structured noise present
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 15. Blind denoising when varying the number of scales on “Palace”.
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Figure 16. Blind denoising on “Bar”, using three scales. From left to right, top to
bottom : input noisy image, crop of the noisy image, crop of the output denoised
image, crop of the difference image.

in the third infrared image of Figure 19. The case of a globally frequency dependent noise is of
course better treated by Portilla’s method which assumes a global noise model.

We wrote that the proposed method was “signal, scale and frequency” dependent. In fact as
indicated by the preceding caveat, the method estimates and processes noise frequencies in the DCT
of small blocks. So these frequency coefficient are far less precise than global image frequencies.
Furthermore they are scale dependent, since we applied a dyadic subsampling procedure. Since at
each dyadic scale, frequencies are estimated for blocks with at least 4× 4 size, it follows that these
scale dependent frequencies overlap. This leads to a redundant denoising since left-over noise at
a coarse scale can be estimated again, and removed again at the overlapping finer dyadic scale.
This redundancy of estimators is particularly necessary for such a complex noise model. The fact
that JPEG images can be denoised in that way was far from granted. Indeed, it is impossible to
really model noise in JPEG images, which are the result of a chain of nonlinear operators. It can
be argued that our noise signal, frequency and scale dependent noise estimation is not yet general
enough to cope with such alterations. This objection is definitely valid for block artifacts apparent
in strong JPEG compression. Thus, strongly compressed images where blocking effects dominate
remain beyond our scope.
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Figure 17. Blind denoising on “Marilyn”, using two scales. From left to right,
top to bottom : input noisy image, crop of the noisy image, crop of the output
denoised image, crop of the difference image.
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Figure 18. Blind denoising on “Solvay conference, 1927”, using three scales. From
left to right, top to bottom : input noisy image, crop of the noisy image, crop of
the output denoised image, crop of the difference image.
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Figure 19. Results of our blind denoising and of Blind BLS-GSM on several
images from [14]. From left to right: Noisy image, result of the Noise Clinic,
result of the Blind BLS-GSM algorithm. It is advised to zoom in by a 300% factor
the digital document to examine details.
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Figure 20. Comparing our blind denoising with Blind BLS-GSM on several im-
ages. It is advised to zoom in by a 400% factor the digital document to examine
details. From left to right: Noisy image, result of the Noise Clinic, result of the
Blind BLS-GSM algorithm.
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Figure 21. Blind denoising on “Bar”. From left to right: crop of the result of the
Noise Clinic by using three scales and crop of the result of the Blind BLS-GSM
algorithm.

Figure 22. Blind denoising on Marilyn”. From left to right: crop of the result of
the Noise Clinic by using two scales and crop of the result of the Blind BLS-GSM
algorithm.
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Figure 23. Blind denoising on “Solvay conference, 1927”. From left to right: crop
of the result of the Noise Clinic by using three scales and crop of the result of the
Blind BLS-GSM algorithm.



Part 3

REPRODUCIBLE RESEARCH

CONTRIBUTIONS



This part contains a fully detailed and reproducible account of the three main basic noise es-
timation methods that we extended in our work to reach more and more general noise estimation
methods, culminating in the SFD noise model estimation. We present in order a general method to
make any homoscedastic noise estimation method into a signal-dependent noise estimation (Chap-
ter 9).

The three methods detailed here are:

• The Ponomarenko et al. method (Chapter 10), which estimates the standard deviation of
the noise using the high-frequency coefficients on a low quantile of the blocks in the image
whose energy measured in the low-frequency coefficients is minimal.

• The Percentile method (Chapter 11), which estimates the standard deviation of the noise
from the blocks of a high-passed version of the noisy image, using only the blocks whose
standard deviation is under a small quantile.

• The PCA method (Chapter 12), which estimates the variance of the noise from the eigen-
values of the covariance matrix of the blocks of the noisy image.

In Chapter 13 these three methods are evaluated in different scenarios.



CHAPTER 9

How to adapt homoscedastic noise estimators to

signal-dependent noise

Most block-based homoscedastic noise estimators can be easily adapted to deal with signal-
dependent noise. Even if the signal-dependent noise model by itself is not sufficient to characterize
the correlated noise (see Chapters 3 and 4), yet it is useful to obtain the noise curves of raw images,
where the noise is only-signal dependent. Section 1.1 explains in detail the procedure to adapt a
block-based noise estimator to measure signal-dependent noise.

Once the noise curve has been obtained, it might happen that some of its control points exhibit
an overestimation for some particular intensities. This happens when all blocks in a small intensity
range belong to a texture. Section 1.2 proposes a filtering algorithm to minimize the overestimation
in the noise curve. Another problem that block-based noise estimators are expected to find is the
presence of saturated points in the image. This special points appear at extreme intensities as
isolated control points that distort the noise curve when interpolation is performed in between.
Section 1.3 presents a procedure to avoid taking into account completely saturated pixels in the
noise estimation.

The techniques presented in this chapter are general, in the sense that they can be applied
to almost any block-based noise estimator. In Chapters 10, 11, and 12, we apply them to the
Ponomarenko et al., Percentile and PCA methods, namely. The articles presented in this third
part were published in the Image Processing On Line (IPOL) journal. It publishes image processing
and image analysis algorithms, described in accurate literary form, coupled with code. This way,
scientists are allowed to check directly the published algorithms online with any uploaded image. It
also promotes reproducible research, and the establishment of a state of the art verifiable by all,
and on any image.

1. General techniques for adapt to signal-dependent noise estimation

1.1. Extension to signal-dependent noise. Most noise estimation methods found in the
literature assume that the noise in the image is additive, signal-independent, and Gaussian. Note
that in this context uniform means that the variance of the Gaussian noise is fixed and it does
not depend on the intensity of the pixels of the ideal image. This assumption is not realistic
because of the quantum nature of light itself and the way a CCD or CMOS detector responds
to light. It is well-known that the emission of photons by a body follows a Poisson distribution.
This distribution can be approximated by a Gaussian distribution when the number of photons
is large enough. For very dark regions of the image this assumption does not hold. We consider
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an image pixel Ũ(x, y) as a Poisson variable with variance and mean U(x, y). The Poisson noise
has therefore a standard deviation of

√
U(x, y). (An image is nothing but a noise whose mean

would be the ideal image.) This noise adds up to a thermal noise and to an electronic noise which
are approximately additive and white. On a motionless scene with constant lighting, the expected
value U can be approximated by simply accumulating photons for a long exposure time, and then
by taking the temporal average of this photon count. Any noise estimation algorithm assuming
that the noise is uniform is unrealistic. Fortunately, most block-based methods are easily adapted
to signal-dependent noise.

For a signal-dependent noise, a “noise curve” must be established. This noise curve associates
with each image value U(x, y) an estimation of the standard deviation of the noise associated
with this value. Thus, for each block in the image, its mean must be computed and will give
an estimation of a value in U. The measurement of the variation of the block (for example, its
variance) will also be stored. The means are classified into a disjoint union of variable intervals
or bins, in such a way that each interval contains a large enough number of elements. These
measurements allow for the construction of a list of block variances whose corresponding means
belong to the given bin. To find the number of samples/bin that minimizes the committed RMSE of
the obtained noise curve compared to the ground-truth noise curve, we simulated signal-dependent
noise with variance σ2 = 1+ 2U on a set of noise-free images (Figure 1) of 1080× 808 pixels each.
Then, the mean RMSE along all the images in the set was computed depending on the number
of bins used. The number of bins that minimizes the RMSE depends on the method. For the
Ponomarenko et al. and Percentile methods, the required number of samples/bin is 42000. Figure
2 shows the RMSE depending on the number of bins for the PCA method. The minimum for the
PCA method is attained when using 5 bins. However, since the error committed when using 8

bins is not much worse than the error using 5 bins and a noise curve with 8 control points is more
informative that the noise curve with 5 bins, we decided to use 8 bins for images of 1080 × 808

pixels. Therefore, the number of samples/bin is 1080×808
8 = 109080. Experimental results with

other noise-free natural images refined the minimum to 112000 samples/bin for the PCA method.

Therefore, it is possible to apply the generic noise estimator to each set of blocks associated
with a given bin. In this way, an estimation of the noise for the intensities inside the limits of the
bin is obtained. Because the set of bins is disjoint and there is no gap between bins, is it possible to
deduce by interpolation a curve that relates the means of the blocks with their standard deviation,
hence obtaining a signal-dependent noise curve. The intensity associated to each bin is given by
the mean of the block at the percentile. The algorithmic description of the function building this
histogram of block means can be found in Algorithm 21. This algorithm works as follows:

(1) It takes as input the number of bins that will be used (“bins” variable), the input data (the
variances of the blocks, “data” variable), the associated intensities of the input data (the
means of the blocks, “datal” variable) and the total number of samples (“N” variable).
The algorithm stores at the variable “samples_per_bin” the integer value of N/bins.
In general, samples_per_bin = 112000 samples/bin. Since the last bin contain the
remaining samples, it may contain less than samples_per_bin samples.
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Figure 1. Set of noise-free images used to determine empirically the optimal
number of bins that the algorithm should use, as a function of the size of the
image. Each image is 1080× 808 pixels.
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Figure 2. Mean RMSE of the estimation of the signal-dependent noise with
variance σ2 = 1+2U along all the noise-free test images in Figure 1, for the PCA
method.

(2) It returns for each bin b its intensity bounds (“limits_begin[b]” and “limits_end[b]” vari-
ables), the list of variances that belong to bin b (“data_bins[b]” variable) and the list of
intensities (block means) that belong to bin b (“datal_bins[b]” variable).

(3) For each bin b, the algorithm fills the data_bins[b] and datal_bins[b] buffers with the
variances and intensities of the blocks, sorted by their mean.

(4) The lower and upper intensity bounds of the current bin b are stored into the variables
limits_begin[b] and limits_end[b]. Then, the next bin is processed.
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1.2. Filtering the noise curve. Optionally, the noise curve obtained on real images can be
filtered. Indeed, it may present peaks when some given gray level interval contains mostly means
of blocks belonging to a highly textured region. In this case, the measured block variance would
be caused by the signal itself and not by the noise and the noise variance would be overestimated.

Given the i-th control point of the noise curve (µ̂i, σ̂i) a closed intensity interval centered at
this bin is considered, that is, [µ̂i −D, µ̂i +D]. For each intensity µ inside the interval (assuming
that µ starts at µ̂i−D and it is incremented with a step of 0.05 while it is less or equal to µ̂i+D),
it is obtained the interpolated standard deviation that corresponds to each intensity µ. In order
to avoid an excessive interpolation, if µ̂i−D < µ̂0 for the i-th bin, then the diameter D is changed
to the value µ̂b − µ̂0. In the same way, if µ̂i +D > µ̂B−1 (being B the number of bins), then the
diameter D is changed to the value µ̂B−1 − µ̂b. Since each µ̂i can be seen as an oscillation (given
by the RMSE) around the ideal value, averaging the noise curve inside the interval [µ̂i−D, µ̂i+D]

for each control point attenuates the oscillations and puts them closer to the ground-truth. Once
the oscillations have been attenuated, it might happen that a control point corresponds to a peak
caused by a texture. In that case, the action taken is to compute the average inside the interval
[µ̂i−D, µ̂i+D] and to substitute the standard deviation µ̂i of the i-th control point by the average
only if it is lower than the average of the intensities in the interval. The filtering procedure is
iterated five times. In the first three iterations the control points are allowed to go up and down,
thus canceling the oscillations around the ideal value. In the next two iterations the points are only
allowed to go down, to attenuate the overestimation of the noise because of textures. The simple
strategy presented here performs properly for most natural images and in general not more than
five filtering iterations are needed to get a reliable estimation of the noise. Applying more than five
iterations does not improve the results significantly and for certain images it could produce noise
curves that are excessively smooth. A diameter D = 7 is recommended. The pseudo-code of the
filtering is detailed in Algorithm 24. It uses Algorithm 23 to interpolate the standard deviation
corresponding to a given intensity. Algorithm 23 uses Algorithm 22 to get the corresponding
standard deviation by a simple affine transformation.

Figure 3 shows the noise curve for the test image Lena. The non-filtered curve is drawn with
solid lines and the filtered curve (five iterations) with dashed lines, using D = 7, p = 0.5%, w = 8

and 6 bins. Note that the peak in the blue channel has decreased.

1.3. Discarding saturated pixels. When the number of photons measured by the CCD or
CMOS detector during the exposure time is too high, its output may get saturated, and therefore
underestimated. When the signal saturates the output of the CCD or CMOS detector, the mea-
sured variance in the saturated areas of the image is zero. Figure 4 shows an image with some
saturated pixels. If the saturated pixels are taken into account when measuring the noise, the
noise curve is no more reliable. Since the intensity of the saturated pixels is much higher than
the intensity of most of the pixels in the image, there is usually a large gap between the values
of normal non saturated pixels and the saturated ones and the noise curve will interpolate the
standard deviation values. Of course, the information given by the noise curve inside this gap is
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Figure 3. (a): test image Lena used to compare the noise curves with and with-
out filtering; (b): noise curve for Lena. The non-filtered curve is drawn with
solid lines and the filtered curve (five iterations) with dashed lines, using D = 7,
p = 0.5%, w = 8 and 6 bins. Note that the peak in the blue channel is corrected
after the filtering.

Figure 4. Image with saturated pixels.

not correct at all. In general, the strategy used to discard saturated pixels is to avoid the blocks
that contain a group of four connected exactly equal pixels, in any of the channels. This is useful
not only to discard saturated pixels, but also to avoid processing blocks whose pixels have suffered
other types of alterations that can be detected by finding these special blocks. For example, JPEG
encoding with a high compression factor sets to zero the value of the high-frequency coefficients in
many of the 8×8 blocks. Among other undesired effects like lower frequency artifacts and blocking
patterns, it can also create smooth zones, since high-frequency coefficients of the DCT of the block
were set to zero by the JPEG encoder. In natural images that have not been highly compressed,
the probability of finding a set of four connected pixels sharing exactly the same value is very low,
because of noise and texture. Nevertheless, we were unable to reproduce this problem using the
PCA algorithm, which does not seem to be affected by saturated pixels in raw images. However,
the option is left available to the user in the demo. The pseudo-code can be found in Algorithm
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25. This algorithm checks if a pixel belong to a group of 2× 2 pixels whose intensity is the same
(in practice, with a difference between them below ε = 10−3). The blocks that contain at least one
invalid pixels are not taken into account by the algorithm.
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Algorithm 21 Algorithm classifying blocks by their means.
1: CLASSIFY_BY_MEAN - Splits the input elements into disjoint bins according to the mean of the

elements trying that each bin has the same cardinality. Input bins: number of bins. Input data: list

of input data elements. Input N: number of elements/bin. Input datal: list of means of the input

elements. Output limits_begin[b]: the lower intensity bound for bin b. Output limits_end[b]:
the upper intensity bound for bin b. Output data_bins[b]: list of elements at bin b. Output
datal_bins[b]: list of means of the elements at bin b.

2: samples_per_bin = ⌊N/bins⌋
3: limits_begin = zeros(bins)

4: limits_end = zeros(bins)

5: num_elements = zeros(bins)

6: data_bins = array(bins)

7: datal_bins = zeros(bins)

8: buffer = array(N)

9: bufferl = zeros(N)

▷ Sort data by datal

10: indices = argsort(datal, N)

▷ Min and max

11: min_datal = datal[indices[0]]

12: max_datal = datal[indices[N-1]]

13: lim0 = min_datal

14: elements_count = 0

15: bin = 0

16: for idx = 0 . . . N do
17: if idx == N then
18: finished_loading = true

19: else
20: lim1 = datal[indices[idx]]

21: finished_loading = ¬ (bin == bins - 1) ∧ (elements_count ≥ samples_per_bin)

22: end if
23: end for
24: if finished_loading then
25: data_bins[bin] ← buffer

26: datal_bins[bin] ← bufferl

▷ Update limits and number of elements of the bin

27: limits_begin[bin] = lim0

28: limits_end[bin] = lim1

29: num_elements[bin] = elements_count

▷ Prepare for the next element

30: lim0 = lim1

31: bin = bin + 1

32: elements_count = 0

33: else ▷ Keep loading...

34: buffer[elements_count] = data[indices[idx]]

35: bufferl[elements_count] = datal[indices[idx]]

36: elements_count = elements_count + 1

37: end if
38: limits_end[bins-1] = max_datal
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Algorithm 22 Obtain a corresponding standard deviation by an affine transformation.
1: AFFINE. Input (µc, σc): current control point. Input (µe, σe): endpoint control point. Input µ:

intensity of the control points whose standard deviation is wanted. Output σ: standard deviation

attributed to the intensity µ.

2: ε = 10−6

3: if |µc − µe| < ε then ▷ Avoid dividing by zero

4: s = 0

5: else
6: s = σc−σe

µc−µe

7: end if
8: σ = (µ− µe)s+ σe

Algorithm 23 Interpolates an affine standard deviation from of the points of the given noise
curve.
1: INTERPOLATION. Input (µc, σc): known control points. Input µ: the intensity of the point

whose interpolated standard deviation is wanted. Output σ: the interpolated standard deviation of

the point whose intensity is µ.

▷ Find the nearest control point

2: i = argmini (µc[i]− µ|)
3: m = µc[i]

4: if µ < m then ▷ on the right of µ

5: if i = 0 then ▷ Treat boundary

6: i = 1

7: m = µc[i]

8: end if
9: m1 = µc[i− 1]

10: m2 = m

11: s1 = σc[i− 1]

12: s2 = σc[i]

13: else ▷ on the left of µ

14: N = len(µc)

15: if i ≥ N − 1 then ▷ Treat boundary

16: i = N − 2

17: m = µc[i]

18: end if
19: m1 = m

20: m2 = µc[i+ 1]

21: s1 = σc[i]

22: s2 = σc[i+ 1]

23: end if
return AFFINE(m1, s1,m2, s2, µ)
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Algorithm 24 Filters a noise curve.
1: FILTER_CURVE Input (µc, σc): list of control points to be filtered. Input D: diameter. Input

allow_up: allow the points to go up and down. Otherwise, they are only allowed to go down. Output
σo
c : returned list filtered standard deviations

2: B = len(µc)

3: σo
c ← ∅

4: for b = 0 . . . B − 1 do
5: mu_current, std_current = µc[b], σc[b]

6: left = mu_current−D

7: right = mu_current +D

▷ Adjust the diameter for the points near the boundary

8: if left < µc[0] then
9: dist = µc[b]− µc[0]

10: left = mu_current - dist

11: right = mu_current + dist

12: else
13: if right > µc[B − 1] then
14: dist = µc[B − 1]− µc[b]

15: left = mu_current - dist

16: right = mu_current + dist

17: end if
18: end if

▷ Add the interpolated control points inside the interval [left, right]

19: sum_window = 0

20: L = 0

21: for µ = left . . . right (with step ∆ = 0.05) do
22: sum_window += INTERPOLATION(µc, σc, µ)

23: L += 1

24: end for
25: std_new /= L

26: if allow_up then
27: std_filtered = std_new

28: else
29: std_filtered = std_new if std_new < std_current else std_current

30: end if
31: σo

c ← std_filtered

32: end for
return σo

c
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Algorithm 25 Algorithm for the detection of groups of four equal pixels.
1: DETECT_EQUAL_PIXELS - Creates a mask of valid pixels. Input I: input image. Input Nx:

width of I. Input Ny: height of I. Input w: block side. Input num_channels: number of channels

of I. Output mask: mask of VALID/INVALID pixels.

2: ε = 10−3

3: for i = 0 . . . Nx − 1 do
4: for j = 0 . . . Ny − 1 do ▷ Check if the pixel is not too close to the image boundary

5: if i < Nx − w + 1 ∧ j < Ny − w + 1 then
6: for c = 0 . . . num_channels - 1 do
7: u = I.get_channel(c) ▷ Look if the 2× 2 block is constant

8: pixel_status = (INVALID if c == 0 else mask[x,y]) ▷ Try to validate pixel

9: if |u[i, j]− u[i+ 1, j]| > ε ∨ |u[i+ 1, j]− u[i, j + 1]| > ε ∨ |u[i, j + 1]− u[i+ 1, j + 1]| > ε

then
10: pixel_status = VALID

11: end if
12: mask[i, j] = pixel_status

13: end for
14: else
15: mask[i, j] = INVALID

16: end if
17: end for
18: end for



CHAPTER 10

The Ponomarenko et al. method

In the article An Automatic Approach to Lossy Compression of AVIRIS Images N.N. Pono-
marenko et al. propose a new method to specifically compress AVIRIS (Airborne Visible/Infrared
Imaging Spectrometer) images. As part of the compression algorithm, a noise estimation is per-
formed with a proposed new algorithm based on the computation of the variance of overlapping
8× 8 blocks. The noise is estimated on the high-frequency orthonormal DCT-II coefficients of the
blocks. To avoid the effect of edges and textures, the blocks are sorted according to their energy
measured on a set of low-frequency coefficients. The final noise estimation is obtained by comput-
ing the median of the variances measured on the high-frequency part of the spectrum of the blocks
using only those whose energy (measured on the low-frequencies) is low. A small percentile of the
total set of blocks (typically the 0.5%) is used to select those blocks with the lower energy at the
low-frequencies. Although the method measures uniform Gaussian noise, it can be easily adapted
to deal with signal-dependent noise, which is realistic with the Poisson noise model obtained by a
CCD or CMOS detector in a digital camera.

1. Noise Estimation Method

1.1. Notation and Terminology. This chapter prepares the detailed description of the
noise estimation algorithm given in Section 1.2 by fixing its notation and terminology.

• U: the noiseless ideal image.
• Ũ: the discrete noisy image of U.
• Nx, Ny: the width and height of Ũ in pixels.
• Ũ(x, y): the gray-level value of Ũ at pixel (x, y), x ∈ [0, Nx − 1] and y ∈ [0, Ny − 1].
• W(x, y): a w × w pixels block in Ũ, W(x, y) = {Ũ(x + i, y + j) : i ∈ [0, w − 1], j ∈
[0, w − 1], x ∈ [0, Nx − w + 1], y ∈ [0, Ny − w + 1]}.

• w: the side of the overlapping w × w pixels blocks W(x, y).
• M : the total number of overlapping blocks. M = (Nx − w + 1)(Ny − w + 1).
• Dx,y: the result of applying the orthonormal 2D DCT-II to a block W(x, y). Its coeffi-

cients are Dx,y(i, j) and the transform is defined as

Dx,y(i, j) = Qw(i)Qw(j)

w−1∑
nx=0

w−1∑
ny=0

W(x+ nx, y + ny) cos

[
π

w

(
nx +

1

2

)
i

]
cos

[
π

w

(
ny +

1

2

)
j

]
,

with x ∈ [0, Nx − w − 1], y ∈ [0, Ny − w − 1], i ∈ [0, w − 1], j ∈ [0, w − 1] and QN (k) is a
normalization factor
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QN (k) =


1√
N
, k = 0√
2
N , k ̸= 0

.

From now on the DCT operator will refer specifically to this definition of the orthonormal
2D DCT-II.

• Wm: a w × w pixels block in Ũ according to its index m in a list of overlapping blocks
Wm = W(x, y) where y =

⌊
m

Nx−w+1

⌋
, x = m− y(Nx − w + 1),m ∈ {0, 1, . . . ,M − 1}.

• Dm(i, j) = DCT (Wm) where m is the index of the block.
• T : threshold used by the function δ(i, j) that labels the coefficients of the transformed

blocks Dx,y(i, j) as low-frequency coefficients (see Section 1.2.2 for more details).

1.2. The Algorithm.

1.2.1. Step 1: Computing the Set of Transformed Blocks {Dm(i, j)}. From an image Ũ of width
Nx and height Ny, corrupted with additive white Gaussian noise of variance σ2, it is extracted a set
of M = (Nx−w+1)(Ny−w+1) (overlapping) w×w blocks {Wm}, where m is the index of the block,
m ∈ {0, 1, . . . ,M − 1}. Many noise estimation algorithms [4, 60, 6, 5] compute local estimates of
the noise variance in small blocks that are used for a final statistical estimation (median, average,
percentile, . . . ). Unlike other methods that pre-filter the image before extracting noise variance
information from the blocks [57], the Ponomarenko et al. method measures the variance directly
on Wm. The DCT of each of these blocks is computed and gives the set {Dm} of transformed
blocks. The DCT coefficients in each block are denoted by Dm(i, j) where m is the index of the
block and 0 ≤ i, j < w is the frequency pair associated to that coefficient.

1.2.2. Step 2: Defining a Function to Label the Low/High Frequency Coefficients. The algo-
rithm labels coefficients of the transformed blocks as belonging to low or medium/high frequencies.
A coefficient corresponds to a low frequency if and only if δ(i, j) = 1. If not, it is labeled as be-
longing to the medium/high frequencies set, where δ is defined by

δ(i, j) =

1, (i+ j < T ) ∧ (i+ j ̸= 0),→ low frequencies

0, (i+ j ≥ T ) ∨ (i+ j = 0) → medium/high frequencies.

where T is a given threshold, and ∧ and ∨ stand for the AND and OR logical operators, namely.
Note that this function does not label the mean of the block term (i+ j = 0) as a low-frequency.

1.2.3. Step 3: Estimating the Block Empirical Variance only with the Low-Frequency Coeffi-
cients. Given the set of transformed blocks {Dm} with m = 0, 1, . . . ,M − 1 the set of (empirical)
variances associated to the low-frequency coefficients of the block m is defined as

VL
m =

1

θ

w−1∑
i=0

w−1∑
j=0

[Dm(i, j)]
2
δ(i, j),

where θ =
w−1∑
i=0

w−1∑
j=0

δ(i, j) is the adequate normalization factor to get a mean.
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1.2.4. Step 4: Computing the Empirical Variance of the High-Frequency Coefficients. The set
of transformed blocks {D0, . . . ,Dm, . . . ,DM−1} is rewritten with respect to the corresponding
value of VL

m in ascending order. The block that gives the lowest low-frequency variance will be
noted as D(0), the next with the lowest low-frequency variance as D(1) and so on. The block with
the highest low-frequency variance is D(M−1). Given the list of sorted blocks {D(m)}, the noise
variance estimate associated with the high-frequency coefficient at (i, j) is defined by

VH(i, j) =
1

K

K−1∑
k=0

[
D(k)(i, j)

]2
,

where i+j ≥ T and K = ⌊pM⌋, p < 1 is the position of the p-quantile in the list {D(m)}m∈[0,M−1].
Note that this empirical variance estimate is made with the list of the K transformed blocks whose
empirical variance as measured in their low-frequencies is lowest. It is understood that these blocks
are likely to contain only noise. Thus their high frequencies are good candidates to estimate the
noise. Noise in high and low frequencies is uncorrelated and since most of the energy of the ideal
image is concentrated in the low and medium frequency coefficients (because of the sparsity of most
natural images), one can assume that VH(i, j) gives an accurate estimation of the noise variance.
However, if the image is highly textured, those high-frequency coefficients might give a variance
that is explained by the textures of the image and not by the noise.

1.2.5. Step 5: Choosing the Best K and Obtaining the Final Noise Estimate. The final noise
estimation is given by the median of the variance estimates VH(i, j),

σ̂ :=

√
mediani,j

(
{VH(i, j) | i+ j ≥ T}

)
.

However, the values in the list {VH(i, j)} depend on the value of the quantile K. Ponomarenko
et al. [16] propose to use the following adaptive strategy to find out the best value for K:

(1) Set K =
√
M . The original setting is K = M/512, because the algorithm is designed to

work with AVIRIS images of size 512× 677. In order to be able to use any size of image,
we propose to set K =

√
M .

(2) Compute an upper bound of noise variance as A = 1.3VL
K/2.

(3) Determine a new K = mmin, where mmin is the value of m that minimizes |A− VL
m|.

(4) Repeat seven times the steps 2 and 3.
(5) Set A = A/5.

Nevertheless, we found that fixing directly a small percentile equal to 0.5% of the set of variances
gives more accurate and reliable results than the above procedure. This is the only place where our
implementation differs from the original algorithm. The complete algorithmic description of the
original method is summarized in algorithm 26. The modified version of the algorithm that uses a
fixed percentile p = 0.5% instead of the iterations to find the value of K is given in algorithm 27.

For a review of several noise estimation methods we refer the reader to the Secrets of image
denoising cuisine [1] and Estimation of noise in images: an evaluation [55] articles.



192 10. THE PONOMARENKO ET AL. METHOD

Algorithm 26 Pseudo-code for the Ponomarenko et al. noise estimation algorithm.
PONOMARENKO - Returns the standard deviation of the white Gaussian noise of the input image.

Input Ũ: noisy image.

Output σ̃: estimated standard deviation of its noise.

1: w = 8.

2: T = 9.

3: Nx = width(Ũ)

4: Ny = height(Ũ)

5: M = (Nx − w + 1)(Ny − w + 1) ▷ number of (overlapping) blocks in Ũ
6: W← all M possible w × w (overlapping) blocks in Ũ.

7: D← DCT (W). ▷ 2D orthonormal DCT-II of the w × w blocks in W
8: δ[i, j] = 1 if (i+ j < T ) ∧ (i+ j ̸= 0) else 0, ∀(i, j) ∈ [0, w − 1]2.

9: θ =
w−1∑
i=0

w−1∑
j=0

δ[i, j].

10: VL
m = 1

θ

w−1∑
i=0

w−1∑
j=0

[Dm(i, j)]2 δ[i, j]

11: K =
√
M .

12: for n = 1 . . . 7 do
13: A = 1.3VL

K/2.

14: K = argminm

(
|A−VL

m|
)
.

15: end for
16: K = K/5.

17: I = sortm(VL
m). ▷ I contains the sorting indices

18: VH [i, j] = 1
K

K−1∑
k=0

D2
I[k](i, j) ▷ VH [i, j] is defined only for those [i, j] such that i+ j ≥ T .

19: σ̂ =
√

mediani,j

(
VH(i, j)

)
2. Online Demo

2.1. Example: traffic Image. The results of this example can be reproduced by adding
noise with parameters A = 0 and B = 0.5 to the traffic image. The rest of the parameters are
the default parameters of the demo. Figure 1 shows the input noiseless image traffic before adding
signal dependent noise with variance σ2 = 0.5U.

Figure 2 shows the noise estimated for the three first scales of the signal-dependent noise with
variance σ2 = 0.5U added to the traffic image. Because the noise was added to a noise-free image,
we can compute the RMSE for the different scales S0, S1 and S2, and the corresponding errors are
0.15, 0.18 and 0.16, respectively. Note that, as expected, the noise standard deviation is divided
by approximately two when down-scaling the image by the same ratio.
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Algorithm 27 Pseudo-code for the Ponomarenko et al. noise estimation algorithm (using a fixed
percentile).
PONOMARENKO WITH FIXED PERCENTILE - Returns the standard deviation of the white

Gaussian noise of the input image.

Input Ũ: noisy image.

Output σ̃: estimated standard deviation of its noise.

1: w = 8.

2: T = 9.

3: p = 0.005.

4: Nx = width(Ũ)

5: Ny = height(Ũ)

6: M = (Nx − w + 1)(Ny − w + 1) ▷ number of (overlapping) blocks in Ũ
7: W← all M possible w × w (overlapping) blocks in Ũ.

8: D← DCT (W). ▷ 2D orthonormal DCT-II of the w × w blocks in W
9: δ[i, j] = 1 if (i+ j < T ) ∧ (i+ j ̸= 0) else 0, ∀(i, j) ∈ [0, w − 1]2.

10: θ =
w−1∑
i=0

w−1∑
j=0

δ[i, j].

11: K = pM . ▷ Get the p-quantile position in the list of variances. Typically p = 0.005⇒ the

0.5%-percentile.

12: VL
m = 1

θ

w−1∑
i=0

w−1∑
j=0

[Dm(i, j)]2 δ[i, j].

13: I = sortm(VL
m). I contains the sorting indices.

14: VH [i, j] = 1
K

K−1∑
k=0

D2
I[k](i, j), ▷ VH [i, j] is defined only for those [i, j] such that i+ j ≥ T

15: σ̂ =
√

mediani,j

(
VH(i, j)

)

Figure 1. Noise free input image traffic before adding noise with variance σ2 = 0.5U.
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Figure 2. The noise estimated with the IPOL Ponomarenko et al. demo, for the
three first scales of the signal-dependent noise with variance σ2 = 0.5U added to
the traffic image. From left to right: scales S0 (original), S1 and S2. Note that
the noise standard deviation is approximately divided by two when down-scaling.



CHAPTER 11

The Percentile method

Given a white Gaussian noise signal Nσ on a sampling grid, its variance σ2 can be estimated
from a small w × w pixels sample. However, in natural images we observe Ũ = U + Nσ, the
combination of the geometry of the scene that is photographed and the added noise. In this case,
estimating directly the standard deviation of the noise from w × w samples of Ũ is not reliable
since the measured standard deviation is not explained just by the noise but also from the geometry
of U. The Percentile method tries to estimate the standard deviation σ from w × w blocks of a
high-passed version of Ũ by a small p-percentile of these standard deviations. The idea behind is
that edges and textures in a block of the image increase the observed standard deviation but they
never make it decrease. Therefore, a small percentile (0.5%, for example) in the list of standard
deviations of the blocks is less likely to be affected by the edges and textures than a higher percentile
(50%, for example). The 0.5%-percentile is empirically proven to be adequate for most natural,
medical, and microscopy images. The Percentile method is adapted to deal with signal-dependent
noise, which is realistic with the Poisson noise model obtained by a CCD or CMOS detector in a
digital camera.

1. Introduction

The Percentile method [1] assumes the signal-dependent noise model. The output of the
Percentile method is a noise curve, that is, a function that relates the intensity of the image with a
noise standard deviation. The Percentile method tries to estimate the standard deviation σ from
w × w blocks of a high-passed version of Ũ by a small p-percentile of these standard deviations.
The idea behind is that edges and textures in a block of the image increase the observed standard
deviation but they never make it decrease. Therefore, a small percentile (0.5%, for example) in the
list of standard deviations of the blocks is less likely to be affected by the edges and textures than a
higher percentile (50%, for example). However, it might happen that for a certain intensity interval
all the samples belong to textures and edges. In that case, the variance measured is explained by
the geometry of the image and not the by noise. In order to minimize that effect, the noise curves
can be filtered as explained in Section 1.2 of Chapter 9.

For a review of several noise estimation methods we refer the reader to the work of Lebrun et
al. [1] and Olsen [55].

195
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2. Noise Estimation Method

2.1. Notation and Terminology. This chapter prepares the detailed description of the
noise estimation algorithm given in Chapter 2.2 by fixing its notation and terminology.

• U: the noiseless ideal image.
• Ũ: the noisy input image.
• Nx, Ny: the size of Ũ. Nx and Ny are always odd. If they are not, the leftmost column

or the bottom row are first removed from Ũ.
• Ũc: the discrete noisy image Ũ after cropping (s− 1)/2 columns and rows from each of

the four sides of Ũ using the function CROP(s−1)/2, where s is odd. The details of this
function are given in algorithm 28. The size of Ũc is therefore (Nx − (s − 1)) × (Ny −
(s− 1)) = (Nx − s+ 1)× (Ny − s+ 1).

• R: the operator used to obtain the discrete filter F with support s× s, with s odd.
• F: the discrete filter with support s× s used to high-pass the noisy image, obtained from

operator R.
• F(x, y): the value of the discrete filter F at position (x, y), x ∈ [0, s− 1], y ∈ [0, s− 1].
• ∧: logical conjunction (and operator).
• ∨: logical disjunction (or operator).
• ¬: logical negation (not operator).
• Ũf : the cropped high-passed version of Ũ: Ũf := CROPs−1

[
(Ũ ∗ F)

]
, where ∗ is the

discrete convolution operator:

Ũf (x, y) := CROPs−1

[
(Ũ ∗ F)(x, y)

]
= CROPs−1

 ∞∑
i=−∞

∞∑
j=−∞

Fz(i, j)Ũz(x− i, y − j)

 =

(30) = CROPs−1

s−1∑
i=0

s−1∑
j=0

F(i, j)Ũz(x− i, y − j)

 ,

where Fz(x, y) :=

F(x, y), x ∈ [0, s− 1] ∧ y ∈ [0, s− 1]

0 otherwise
extends F with zeros,

Ũz(x, y) :=

Ũ(x, y), x ∈ [0, Nx − 1] ∧ y ∈ [0, Ny − 1]

0 otherwise
extends Ũ with zeros and the

CROPs−1 function removes s− 1 columns or rows at each of the four boundaries of the
filtered image to avoid boundary effects. Since the convolution (Ũ ∗ F)(x, y) is defined
for x ∈ [0, Nx + s − 2] ∧ y ∈ [0, Nx + s − 2], the cropped image Ũf (x, y) is defined for
x ∈ [0, Nx − s] ∧ y ∈ [0, Ny − s]. The Fast Fourier Transform (FFT) algorithm [123] is
used to speed-up the computation of the convolution; the details are given in Chapter
2.2.1.

• Ũc(x, y): the gray-level intensity of the pixel of Ũc at column x and row y, x ∈ [0, Nx−s],
y ∈ [0, Ny − s].
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• Ũf (x, y): the gray-level intensity of the pixel of Ũf at column x and row y, x ∈ [0, Nx−s],
y ∈ [0, Ny − s].

• w: the side of the overlapping w × w pixels blocks W(x, y).
• M : the total number of overlapping blocks. M = (Nx − w − s+ 1)(Ny − w − s+ 1).
• W(x, y): a w × w pixels block in Ũc, W(x, y) = {Ũc(x + i, y + j) : i ∈ [0, w − 1], j ∈
[0, w − 1]}.

• Wf (x, y): a w × w pixels block in Ũf , Wf (x, y) = {Ũf (x+ i, y + j) : i ∈ [0, w − 1], j ∈
[0, w − 1]}.

• Wm: a w ×w pixels block in Ũc according to its index m in a list of overlapping blocks
Wm = W(x, y) where y =

⌊
m

Nx−s+1

⌋
, x = m− y(Nx − s+ 1),m ∈ [0,M − 1].

• Wf
m: a w×w pixels block in Ũf according to its index m in a list of overlapping blocks

Wf
m = Wf (x, y) where y =

⌊
m

Nx−s+1

⌋
, x = m− y(Nx − s+ 1),m ∈ [0,M − 1].

• V: the list of M variances from the blocks {Wf
m}. V[m] corresponds to the variance of

the block Wf
m.

• T: the list of M means from the blocks {Wm}. T[m] corresponds to the mean of the
block Wm.

• IVn: the index of the element at the position n in the list V after sorting the elements
of V in ascending order.

• p: the (small) p-percentile.
• σ̂2: biased variance at the p-percentile of V.
• σ̃2: final unbiased variance at the p-percentile of V.

2.2. The Algorithm.

2.2.1. Step 1: Pre-filtering the Input Noisy Image. In order to get rid of deterministic tenden-
cies due to signal structure, the image is first pre-filtered with a high-pass filter F implemented
as a discrete stencil with support s × s. This stencil corresponds to a discretization of a certain
operator R, typically a differential operator or a waveform. Convolving the image with such a
filter removes smooth variations inside the blocks, which increases the number of blocks where
noise dominates and on which the variance estimate will be reliable. Mastis proposed a similar
approach [57], where operator F writes as a simple subtraction of the average or median to each
7× 7 block. For the Percentile method a filter based on the DCT with support 7× 7 is proposed.
Given an s× s block in the image Ũ at position (x, y), its orthonormal 2D DCT-II is

(31)

DCT
(
Ũ(x, y)

)
(i, j) := Qs(i)Qs(j)

s−1∑
nx=0

s−1∑
ny=0

Ũ(x+nx, y+ny) cos

[
π

s

(
nx +

1

2

)
i

]
cos

[
π

s

(
ny +

1

2

)
j

]

with x ∈ [0, Nx−s−1], y ∈ [0, Ny−s−1], i ∈ [0, s−1], j ∈ [0, s−1] and QN (k) is the normalization
factor
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
0 1 0

1 −4 1

0 1 0

 ,



0 0 1 0 0

0 2 −8 2 0

1 −8 20 −8 1

0 2 −8 2 0

0 0 1 0 0


,



0 0 0 1 0 0 0

0 0 3 −12 3 0 0

0 3 −24 57 −24 3 0

1 −12 57 −112 57 −12 1

0 3 −24 57 −24 3 0

0 0 3 −12 3 0 0

0 0 0 1 0 0 0


Figure 1. From left to right, the discrete stencils associated ∆, ∆∆ and ∆∆∆

discrete operators, respectively.

(32) QN (k) :=


1√
N
, k = 0√
2
N , k ̸= 0.

Filter F is made by taking the normalized product of cosines that correspond to the highest
frequency [s− 1, s− 1], that is,

(33) F(nx, ny) :=
2

s
cos

[
π

(
nx +

1

2

)
s− 1

s

]
cos

[
π

(
ny +

1

2

)
s− 1

s

]
, (nx, ny) ∈ [0, s− 1]2.

The filter F presented here was empirically proven to give the best results. However, other typical
differential operators can be used, like directional derivatives, the ∆ (Laplace) operator, or its
iterations ∆∆, ∆∆∆, all implemented as discrete stencils. Figure 1 shows the discrete stencils
associated to these operators.

The filtered image Ũf is obtained by cropping the discrete convolution, CROPs−1

[
(Ũ ∗ F)(x, y)

]
.

Note that this cropping operation avoids the boundary effects of the convolution. To speed-up the
computation, the Fast Fourier Transform (FFT) algorithm is used:

(1) Consider the signal

(34) Ũz(x, y) :=

Ũ(x, y), x ∈ [0, Nx − s] ∧ y ∈ [0, Ny − s]

0 otherwise.

Ũz(x, y) is defined for x ∈ [0, Nx + s− 2] ∧ y ∈ [Ny + s− 2].
(2) Consider the signal

(35) Fz(x, y) :=

F(x, y), (x, y) ∈ [0, s− 1]2

0 otherwise.

Fz(x, y) is defined for x ∈ [0, Nx + s− 2] ∧ y ∈ [Ny + s− 2].
(3) Compute the FFT of Ũz(x, y): FFT[Ũz(x, y)].
(4) Compute the FFT of Fz(x, y): FFT[Fz(x, y)].
(5) Compute the point-wise product of the FFTs:

FFT[Ũz(x, y)]× FFT[Fz(x, y)].



2. NOISE ESTIMATION METHOD 199

(6) Compute the inverse FFT of the point-wise product:

FFT−1(FFT[Ũz(x, y)]× FFT[Fz(x, y)]).

(7) Crop (see algorithm 28) the result to get Ũf , the cropped and low-pass filtered version
of the noisy input image Ũ:

(36) Ũf (x, y) := CROPs−1

[
FFT−1

(
FFT[Ũz(x, y)]× FFT[Fz(x, y)]

)]
.

Algorithm 28 Crops the boundary of the input image.
1: CROPb - Crops the boundary of the input image.

2: Input I: input image.

3: Input Nx: width of I.
4: Input Ny: height of I.
5: Input b: width of the boundary that will be removed at each of the four sides of I.
6: Output V: the cropped image

7: V = zeros(Nx − 2b,Ny − 2b)

8: for y = b . . . Ny − b− 1 do
9: for x = b . . . Nx − b− 1 do

10: V[x− b, y − b] = I[x, y]
11: end for
12: end for

2.2.2. Step 2: Computing the Sample Variances from Ũf and the Means from Ũ. The size
of the filtered noisy image Ũf is Nx − s + 1 × Ny − s + 1 pixels. Therefore, there are M =

(Nx −w− s+ 1)(Ny −w− s+ 1) overlapping blocks of size w×w pixels. Each overlapping block
is referred to as {Wf

m}, where m is the index of the block, m ∈ {0, 1, . . . ,M − 1}. Many noise
estimation algorithms [4, 60, 6, 5] compute local estimates of the noise variance in small blocks
that are used for a final statistical estimation (median, average, percentile, . . . ).

The empirical variance of each block Wf
m is computed as

(37) VarWf
m :=

1

w2 − 1

w−1∑
x=0

w−1∑
y=0

[Wf
m(x, y)− W̄f

m]2

where W̄f
m = 1

w2

w−1∑
x=0

w−1∑
y=0

Wf
m(x, y) is the mean of the block. Let V be the list of variances of

the blocks {Wf
m}, V[m] := VarWf

m. The corresponding means from {Wm} are stored in the

list T[m] = W̄m = 1
w2

w−1∑
x=0

w−1∑
y=0

Wm(x, y), m ∈ {0, 1, . . . ,M − 1}. The mean of each patch will

be needed when extending the method to signal-dependent noise (Section 1.1 of Chapter 9), and
therefore is stored at this stage of the method.

2.2.3. Step 3: Obtaining a (biased) Noise Variance Estimation from V Using p. Once the
list V is built a biased noise variance estimation is obtained by the p-percentile. Set IV n :=

SORTED (V) [n] as the function that given a list of real numbers, sorts them in ascending order
and returns the sorting indices. For example, if n = 0 then IV 0 is the index of the minimum in
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Figure 2. Left: Noise-free test image computer (see Section 1 of Chapter 13) after
adding homoscedastic white Gaussian noise of σ = 10. Right: pure homoscedastic
white Gaussian noise of σ = 10 image. Both images have the same 704× 469 size.

the list V and therefore V[IV 0] is that minimum. In this step, a biased estimation of the variance
is obtained by the small p-percentile and is given by

(38) σ̂2 = V
[
IV
⌊

p

100
M +

1

2

⌋]
,

where M is the cardinal of V. We obtain a list of variances IV n of V sorted in ascending
order, V[IV n] with n ∈ [0,M − 1]. Since in general the variance of the signal (geometry of the
image) is higher than the variance of the noise, small percentiles of V are related more to the noise
than to the signal. To illustrate it, figure 2 shows the noise-free test image computer after adding
homoscedastic white Gaussian noise of σ = 10, and an image of pure homoscedastic Gaussian noise
of σ = 10. Figure 3 shows the values of V[IV n] depending on n and using 21× 21 blocks without
any filtering. We refer to Section 1 of Chapter 13 for the details about how the noise-free images
are obtained. Only for small percentiles the estimation of the variance on the computer image is
close to the estimation on pure noise because of the effect of the image edges and textures. The
Percentile method tries to avoid the effect of edges and textures by considering the variances under
a very low percentile of the block variance histogram.

2.2.4. Step 4: Correcting the Biased Estimation σ̂2 to Obtain the Final σ̃2 Estimation. When
a percentile different from the median (p = 0.5) is used, the estimation of the variance obtained
is biased by the percentile. Figure 4 shows the values of V[IV n] depending on n using 21 × 21

blocks without any filtering in the image of pure white Gaussian noise (figure 2, right). If the
percentile is under the median of the distribution an underestimation of the variance of the noise is
obtained; on the other hand, if it is over the median, the result is an overestimation. The median
is attained at position n =

(Nx−w+1)(Ny−w+1)
2 = (704−21+1)(469−21+1)

2 = 153558. Since only a small
percentile gives a reliable biased estimation of the noise (see Chapter 2.2.3), the estimation is lower
than the real average block variance and it has to be corrected in order to get an estimation close
to the median. The correction consists of multiplying the biased estimation σ̂ by a factor. This
correction only depends on the percentile, block size and on the chosen operator used to filter the
image. Figure 5 shows the correction Cw,R(p) = (σ̂ − σ̃)w,R vs. the direct estimation σ̂ learned
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Figure 3. Values of V[IV n] depending on n using 21 × 21 blocks without any
filtering in the noise-free test image computer after adding homoscedastic white
Gaussian noise of σ = 10 (red) and for pure homoscedastic white Gaussian noise
of σ = 10 image (green). Only a part of the values is shown. The estimation in
the computer image is only reliable when the percentile of V is small.

with pure-noise images. The correction is linear with the observed σ̂. As a matter of fact it can
be easily proven that there exists a constant kw,R such that σ̂ = kw,RCw,R(p) = kw,R(σ̂ − σ̃) and
then (kw,R − 1)σ̂ = kw,Rσ̃. As a consequence,

(39) σ̃ =
kw,R − 1

kw,R
σ̂.

Nevertheless, this constant kw,R is not easy to calculate explicitly, but can be learned from
simulations. To obtain it, a large image of 4320 × 3232 pixels with all pixels set to zero is
used. Homoscedastic Gaussian noise with standard deviation σ is simulated and added to this
image. Then, the noise is estimated from the noisy image using 200 bins, with a percentile
p ∈ {0.01%, 0.1%, 0.5%, 5%, 10%, 50%}, a pre-filter operator R, which can be chosen between the
following: Identity (no filtering), Directional derivative, Laplace, Laplace (2 iterations), Laplace (3
iterations), Laplace (4 iterations), DCT with support 7 × 7, DCT with support 5 × 5, DCT with
support 3× 3 or the filter of the article Fast Noise Variance Estimation [4]. The size of the block
is w × w with w ∈ {3, 7, 8, 21}. No curve filtering iterations are used. The averaged estimation
along all the bins gives σ̂.

The Fast Noise Variance Estimation method tries to avoid the influence of image structures
(edges and textures) on the image when estimating the noise. To do it, it detects these structures
using an operator based on the Laplacian and cancels them. It therefore considers two 3 × 3

Laplacian stencils L1 and L2 and computes their difference to obtain the noise estimation operator
L = 2(L2 − L1).
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Figure 4. values of V[IV n] depending on n using 21 × 21 blocks without any
filtering in the image of pure white Gaussian noise (figure 2, right). If the percentile
is under the median one obtains an underestimated value; if it is above the median,
an overestimation. The median is attained at position n =

(Nx−w+1)(Ny−w+1)
2 =

(704−21+1)(469−21+1)
2 = 153558.
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Figure 5. Corrections Cw,R(p) = σ̂ − σ̃ for several different percentiles, with
21× 21 blocks and the R = ∆∆∆ operator, learnt on pure-noise patches.

For example, with p = 0.5%, w = 21 and R = ∆∆∆, this empirical kw,R
kw,R−1 factor learned on

pure noise is 1.208610869.

The complete algorithmic description of the Percentile method is summarized in algorithm 29.
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Algorithm 29 Percentile noise estimation algorithm.
1: PERCENTILE - Returns the standard deviation of the image noise.

2: Input Ũ: discrete noisy image U after cropping.

3: Input Nx: (odd) width of the image before cropping.

4: Input Ny: (odd) height of the image before cropping.

5: Input F: discrete filter with support s× s.

6: Input s: support parameter of the discrete filter F.

7: Input w: side of the w × w pixels blocks.

8: Output σ̃: estimated standard deviation of the image noise.

9: Ũf = CROPs−1

[
Ũ ∗ F

]
. ▷ Filter Ũ with the discrete filter F according to formula (2.1).

10: M = (Nx − w − s+ 1)(Ny − w − s+ 1). ▷ Number of overlapping blocks.

11: for m = 0 . . .M − 1 do
12: Wf (x, y) = {Ũf (x+ i, y + j) : i ∈ [x, x+ w − 1], j ∈ [y, y + w − 1]}
13: Wf

m = Wf (x, y) where y =
⌊

m
Nx−s+1

⌋
, x = m− y(Nx − s+ 1),m ∈ [0,M − 1].

14: V[m] = VarWf
m = 1

s2−1

s−1∑
x=0

s−1∑
y=0

[Wf
m(x, y)− W̄f

m]2. ▷ Compute sample variances of the blocks.

15: end for
16: IV n = SORTED (V) (n) ∀n ∈ [0,M − 1]. ▷ Get ascending sorting indices.

17: σ̂2 = V
[
IV
⌊

p
100

M + 1
2

⌋]
. ▷ Get biased variance estimation.

18: σ̂ =
√
σ̂2. ▷ Get biased standard deviation.

19: σ̃ =
kw,R−1

kw,R
σ̂. ▷ Obtain the final unbiased estimation by correcting σ̂.

3. Optimal Parameters

The optimal parameter choice depends on the size of the image. Three possible sizes were
fixed: S0 = 6M , S1 = S0

4 = 6M
4 , S2 = S1

4 = 6M
16 , S3 = S2

4 = 6M
32 and S4 = S3

4 = 6M
128 , where M

stands for megapixels. Table 1 shows the choice of the parameters values according to the size of
the image.

Image size Percentile p Block size w × w Pre-filter operator R

S0 0.005 21× 21 DCT supp. 7× 7

S1 0.005 15× 15 DCT supp. 7× 7

S2 0.005 15× 15 DCT supp. 7× 7

S3 0.005 15× 15 DCT supp. 7× 7

S4 0.005 5× 5 ∆∆∆

Table 1. Best percentile p, block size w × w, and pre-filter operator R for the
Percentile method according to the size of the image.

4. Online demo

4.1. Example: traffic Image. The results of this example can be reproduced by adding
noise with parameters A = 0 and B = 0.5 to the traffic image. The rest of the parameters are
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the default parameters of the demo. Figure 1 shows the input noiseless image traffic before adding
signal dependent noise with variance σ2 = 0.5U.

Figure 6 shows the noise estimated for the three first scales of the signal-dependent noise with
variance σ2 = 0.5U added to the traffic image. Because the noise was added to a noise-free image,
we can compute the RMSE for the different scales S0, S1 and S2, and the corresponding errors are
0.15, 0.18 and 0.16, respectively. Note that, as expected, the noise standard deviation is divided
by approximately two when down-scaling the image by the same ratio.
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Figure 6. The noise estimated with the IPOL Percentile demo, for the three first
scales of the signal-dependent noise with variance σ2 = 0.5U added to the traffic
image. From left to right: scales S0 (original), S1 and S2.



CHAPTER 12

The PCA method

In the article Image Noise Level Estimation by Principal Component Analysis [3], S. Pyatykh,
J. Hesser, and L. Zheng propose a new method to estimate the variance of the noise in an image
from the eigenvalues of the covariance matrix of the overlapping blocks of the noisy image. Instead
of using all patches of the noisy image, the authors propose an iterative strategy to adaptively chose
the optimal set containing the patches with lowest variance. Although the method measures uniform
Gaussian noise, it can be easily adapted to deal with signal-dependent noise, which is realistic with
the Poisson noise model obtained by a CCD or CMOS detector in a digital camera.

1. Noise estimation method

Noise estimation is a necessary preliminary step for most image processing and computer
vision algorithms. Most noise estimation algorithms start by applying a high-pass filter to the
image or image patches. The energies of these high-passed image patches are used in order to
estimate the noise standard deviation by some statistical criterion. Instead of using any fixed
high-pass filter, S. Pyatykh, J. Hesser, and L. Zheng [3] decided to apply Principal Component
Analysis in order to select an adapted representation for image patches. The energy of the patches
with fewer variation are used in order to estimate the noise variance since they are supposed to
be less affected by edges and textures [124, 59]. Computing a local estimate of the noise variance
from small blocks than then infering the variance of the noise by applying some statistic (median,
average, percentile, . . . ) is technique shared by most noise estimation methods [4, 60, 6, 5].
Unlike other methods that pre-filter the image before extracting noise variance information from
the blocks [57], the PCA method measures the variances directly from the noisy patches. For a
review of several noise estimation methods we refer the reader to the “Secrets of image denoising
cuisine” [1] and “Estimation of noise in images: an evaluation” [55] articles.

The algorithm proposed in [3] applies only for the estimation of white Gaussian noise. How-
ever, this assumptions is not realistic because of the way a CCD or a CMOS detector responds to
light. The photon emission by a body follows a Poisson distribution which can be approximated
by a Gaussian distribution when the number of photons is large enough. But the variance of this
Gaussian is signal-dependent. For this reason, the PCA noise estimation algorithm is adapted (see
Section 1 of Chapter 9) in order to estimate signal-dependent noise and get a noise curve that
assigns an standard deviation of the noise for each gray level intensity of the input image.

1.1. Notation and terminology. This chapter prepares the detailed description of the noise
estimation algorithm given in Section 3 by fixing its notation and terminology.

205
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• x: the discrete noise-free image of size S1 × S2 pixels.
• n: a discrete additive Gaussian noise of variance σ2 and zero mean of size S1 ×S2 pixels.
• y = x+n: the corrupted image resulting from adding the noise n to the noise-free image

x.
• M = M1 ×M2: the size in pixels of the overlapping blocks; M1 = M2 = 5 ⇒ M = 25.
• Q(p): the p-quantile of the list of the variances of the overlapping blocks in y.
• N = (S1 −M1 + 1)× (S2 −M2 + 1): the number of overlapping blocks.
• X: matrix of samples of a random vector made from realizations xi, i ∈ [1, N ]. It can be

written in matrix notation as

X =


x1

x2

...
xN

 =


x11 x12 . . . x1M

x21 x22 . . . x2M

...
...

. . .
...

xN1 xN2 . . . xNM


where each row of the matrix contains a different blocks, that is, a realization xi with

i ∈ [0, N ].
• Y: matrix of samples of a random vector made from realizations yi, i ∈ [1, N ].
• N: matrix of samples of a random vector made from realizations ni, i ∈ [1, N ] such that

N ∼ NM (0, σ2I) and cov(X,Y) = 0, where N represents the normal distribution and I
is the identity matrix.

• SX and SY: the empirical covariance matrices obtained from X and Y, respectively.
• λX,1 ≥ λX,2 ≥ . . . λX,M : the eigenvalues of SX.
• λY,1 ≥ λY,2 ≥ . . . λY,M : the eigenvalues of SY.

2. Principal components on natural images

The authors claim [3] that information in a natural image patch can be represented by fewer
values than the number of pixels in the patch. Formally, the authors claim that any patch lies in a
sub-space VM−m ⊂ RM whose dimension M −m is smaller than the number of pixels of the patch,
M .

Assumption 1. Let X be the matrix of samples made of N rows, each describing a noise free
patch of size M . Then we assume that all realizations xi lie in a sub-space VM−m ⊂ RM whose
dimension M − m is smaller that the dimension M of the xi. Therefore, xi have zero variance
along any direction orthogonal to VM−m

(40) λX,M−m−1 = · · · = λX,M = 0.

By assuming the previous result the authors show that for noisy patch observations Y the
following results holds.

Theorem 2. Let Y = X+ n, where n is uniform Gaussian noise of variance σ2 then

(41) E
∣∣λY,i − σ2

∣∣ ≤ Tσ2/
√
N, i = M −m+ 1, . . . ,M
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where λY,i denote the eigenvalues of the covariance matrix SY, N the number of rows in Y and T

is a positive constant.

If the number of blocks is large enough, the variance of noise can be estimated from λY,M .
Indeed, taking N → ∞ and the M -th eigenvector λY,M leads to

(42) lim
N→∞

E
∣∣λY,M − σ2

∣∣ = 0.

This result provides the way to estimate the variance of the noise from the M -th eigenvector λY,M

when the number of blocks N is large enough. In order to check that this approximation is correct
the authors use inequality (41) with i = M −m+ 1 and approximating σ2 by λM

(43) λY,M−m+1 − λY,M < Tσ2/
√
N.

The authors fix the parameter m = 7 for blocks of M1 ×M2 = 5× 5 pixels and T = 49.

In order to impose patches to actually belong to a VM−m subspace, the authors choose a
subset of patches defined as those with smallest variance. The authors choose to use the variance
of the blocks in y as a measure of the distance of a block yi to VM−m, i ∈ [1, N ]. A simple strategy
to select the subset of blocks for which equation (43) is verified consists in taking a small enough
p-quantile Q(p) of the list of variances of the noisy blocks and to set

(44) B(p) := {yi : s
2(yi) ≤ Q(p), i ∈ [1, N ]}.

In practice, the authors propose an iterative strategy which reduces the quantile p while equation
(43) is not satisfied.

3. Algorithm

The noise variance estimation algorithm (Algorithm 30) first obtains an upper bound of the
variance of the noise. This upper bound is also used as initialization for the iterative procedure
which refines the estimated variance, Function GetNextEstimate (in Algorithm 30). This function
is iterated until the absolute difference between the new variance and the previous one is negligible.

The function GetNextEstimate uses a noise variance initialization, σest, in order to test in-
equality (43). The eigenvalues of the set of patches are computed and checked to see if they satisfy
Equation (43) with σ = σest. The number of patches used for this estimation is reduced by de-
creasing p for the set of blocks B(p) while inequality (43) does not hold. The iteration begins
setting p = 1 and it is decremented by ∆p = 0.05 after each iteration.

4. Optimizing the PCA computation

Computing the eigenvectors and the corresponding eigenvalues of the sample covariance matrix
is a time consuming operation which is called several times in Function GetNextEstimate. The PCA
is computed on the set B(p) for different values of p. It is possible to use the nested structure of
these sets in order to avoid recomputing the covariance matrix at each step.
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Algorithm 30 PCA noise estimation.
1: PCA noise estimation - Compute noise variance.

Input y: list of blocks of the noisy image.

Output σ2
est: variance of the noise.

2: imax = 10

3: ε = 0.001

4: σ2
ub = 3.1Q(0.0005,y) ▷ Function Q(p,y) gives the p-quantile of y

5: σ2
est = σ2

ub

6: for i = 1 . . . imax do
7: σ2

next = GetNextEstimate(y, σ2
est, σ

2
ub)

8: if
∣∣σ2

est − σ2
next
∣∣ < ε then

return σ2
est

9: end if
10: σ2

est = σ2
next

11: end for
return σ2

est

1: GetNextEstimate - Refine current variance estimation

Input y: list of blocks of the noisy image.

Input σ2
est: current value of the estimated noise variance.

Input σ2
ub: upper bound of the noise variance.

Output σ2
next: next approximation of the estimated noise variance.

2: pmin = 0.06

3: ∆p = 0.05

4: M = M1 ×M2 = 5× 5 = 25

5: m = 7

6: T = 49

7: p = 1

8: σ2
next = 0

9: while p ≥ pmin do
10: λY,i = ApplyPCA(B(p)) ▷ λY,i is the i-th eigenvalue of SY.

11: σ2
next = λY,M

12: if
(
λY,M−m+1 − λY,M <

Tσ2
est√

|B(p)|

)
∧
(
σ2

next ≤ σ2
ub
)

then

return σ2
next

13: end if
14: p = p−∆p

15: end while
return σ2

next

The sample covariance matrix can be written as

(45)
1

|B(p)− 1|

 ∑
yi∈B(p)

yiy
T
i − 1

|B(p)|
∑

yi∈B(p)

yi

∑
yi∈B(p)

yT
i

 .
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Figure 1. Raw image IMG_0177.

The number of operations needed to compute directly this matrix is proportional to |B(p)|M2.

Since the sets B(p)

B(p) = {yi : s
2(yi) ≤ Q(p), i ∈ [1, N ]}.

satisfy

B(1) ⊃ B(1−∆p) ⊃ B(1− 2∆p) ⊃ B(1− 3∆p) ⊃ . . . ,

then the set B(1 − j∆p) can be written as B(1 − j∆p) = B(1 − (j + 1)∆p) ∪ Yj being the set
Yj := {yi : Q(1− (j + 1)∆p) < s2(yi) ≤ Q(1− j∆p)}.

Since for disjoint sets X1 and X2 one has CX1∪X2 = CX1 + CX2 , then

CB(1−j∆p) = CB(1−(j+1)∆p) + CY .

Let CX :=
∑

yi∈X yiyT
i and cX :=

∑
yi∈X yi. With this notation, Expression (45) can be written

as

(46)
1

|B(p)− 1|

(
CB(p) −

1

|B(p)|
cB(p)cTB(p)

)
.

This strategy permits to use the covariance matrices of previous iteration, but not the eigen-
value decomposition. With Expression (46) the number of operations needed is proportional to
M2.

5. Online demo

5.1. Example: raw image IMG_0177 (ISO 1250, t=1/30s). The results of this ex-
ample can be reproduced by estimating the noise of the raw image without adding any noise (set
A = B = 0) and choosing the raw image IMG_0177 (Figure 1) The rest of the parameters are the
default parameters of the demo. Figure 1 shows the input noisy image.

Figure 2 shows the noise estimated for the three first scales of the signal-dependent noise with
variance σ2 = 0.5U added to the IMG_0177 image. From left to right: scales S0 (original), S1 and
S2. Note that, as expected, the noise standard deviation is divided by approximately two when
down-scaling the image by the same ratio.
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Figure 2. The noise estimated for the two first scales of the noisy raw image
IMG_0177 (Figure 1) as shown in the IPOL PCA demo. Left: scale S0. Right:
scale S1.

6. Appendix: proof of Theorem 2

The PCA noise estimation method is based on the fact that the noise variance can be estimated
from λY,M when the condition of Theorem 2 holds and converge is reached (Algorithm 15). To
justify completely this result, the proof of Theorem 2 the authors used is reproduced here. To
proof Theorem 2 the Gerschgorin circle theorem has to be reviewed, since a lemma from it will be
used in the demonstration.

Theorem 3. (Gerschgorin) [125] For a matrix A ∈ CM×M with entries aij let

ai :=
∑
j ̸=i

|ai,j |

and

Gi(A) := {z ∈ C : |z − aii| ≤ ai}

Then all eigenvalues of A lie in
M⋃
i=1

Gi(A). Moreover, if m of the Gerschgorin disks Gi(A) are

isolated from the other M −m, then there are exactly m eigenvalues of A in their union.

Lemma 1. Let A ∈ CM×M be a random Hermitian matrix, λ an eigenvalue of A with multi-
plicity m and normalized eigenvectors v1, . . . , vm and Ã = A+B a perturbed matrix. If there is a
constant δ > 0 such that the distance between λ and the other eigenvalues of A is always greater
than δ, then there are exactly m eigenvalues λ̃k of Ã, which satisfy∣∣∣λ̃k − λ

∣∣∣ ≤ max
i=1,...,m

m∑
j=1

∣∣vTi Bvj
∣∣+O(∥B∥2)

Proof : let Λ = QTAQ be the eigen-decomposition of A and qi the columns of Q. Without
loss of generality

Λ = diag{λ, . . . , λ︸ ︷︷ ︸
m

, λ′, . . . , λ′︸ ︷︷ ︸
M−m

}
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where λ′ is an eigenvalue of A other than λ. Then the vectors v1, . . . ,vm form the fist m columns
of Q:

qi = vi, i = 1, . . . ,m.

Let us consider the matrix Λ̃a = D−1
a QT ÃQDa, where

Da = diag{1, . . . , 1︸ ︷︷ ︸
m

, a, . . . , a︸ ︷︷ ︸
M−m

}, a > 0.

The matrices Ã and Λ̃a are similar and, hence, have the same eigenvalues.

Λ̃a = D−1
a QT (A+B)QDa =

= Λ+D−1
a QTBQDa =

= Λ+



b11 · · · b1m ab1 m+1 · · · ab1M
...

. . .
...

...
. . .

...
bm1 · · · bmm abm m+1 · · · abmM

a−1bm+1 1 · · · a−1bm+1 m bm+1 m+1 · · · bm+1 M

...
. . .

...
...

. . .
...

a−1bM1 · · · a−1bMm bM m+1 · · · bMM


where bij = qT

i Bqj . Note that |bij | ≤ ∥qi∥ ∥B∥
∥∥qj

∥∥ ≤ ∥B∥. The first m Gerschgorin disks of Λ̃a

have centers λ+ bii and radii bounded by
m∑
j=1

|bij | − |bii|+ (M −m)a ∥B∥ .

Hence, these disks lie entirely in the circle

C = {z ∈ C : |z − λ| ≤ p+ (M −m)a ∥B∥}

where p = maxi=1,...,m

m∑
j=1

|bij |. The other M −m Gerschgorin disks have centers λ′+ bii and radii

bounded by

ma−1 ∥B∥+ (M −m− 1) ∥B∥ .

Therefore, if

(47) p+ (M −m)a ∥B∥+ma−1 ∥B∥+ (M −m) ∥B∥ < δ,

the circle C will be disjoint from the last M −m Gerschgorin disks. Let B be so small that

p+ (M −m) ∥B∥ <
δ

2
.

In this case, (47) is satisfied if

(48) (M −m)a ∥B∥+ma−1 ∥B∥ <
δ

2
,

and (48) is satisfied if

(49) Ma ∥B∥+Ma−1 ∥B∥ <
δ

2
,
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If B is small enough so that 4M ∥B∥ < δ, (49) holds for

a =
4M ∥B∥

δ
.

Then, the circle C:

(1) has the radius bounded by

p+ 4M(M −m) ∥B∥2 /δ = p+O(∥B∥2)

(2) contains the first m Gerschgorin disks of Λ̃a.
(3) is disjoint from the last M −m Gerschgorin disks of Λ̃a.

From Gerschgorin’s theorem, C contains exactly m eingenvalues of Λ̃a and, therefore, exactly m

eigenvalues of Ã.

Proof of Theorem 2: Consider the matrices

A := SX +
σ2N

N − 1
I,

B := SN − σ2N

N − 1
I + SXN + SNX.

The matrix SY can be represented in the following form: SY = SX+SN+SXN+SNX = A+B.

Since

AvX,i = SXvX,i +
σ2N

N − 1
vX,i =

(
λX,i +

σ2N

N − 1

)
vX,i,

each eigenvalue of A equals the sum of an eigenvalue of SX and σ2N
N−1 , and the eigenvectors of SX

and A are the same. Under assumption 1, the last m eigenvalues of SX are zeros, therefore the
last m eigenvalues of A equal σ2N

N−1 . Let J = {M − m + 1, . . . M} be the set of indices of zero
eigenvalues of SX. Using Lemma 1, for j ∈ J

(50)
∣∣∣∣λY,k − σ2N

N − 1

∣∣∣∣ ≤ max
i∈J

∑
j∈J

∣∣vT
X,iBvX,j

∣∣+O(∥B∥2).

Consider the first part on the right side of (50). Denoting the sample covariance by q, for
i, j ∈ J we have∣∣vT

X,iSXNvX,j

∣∣ = ∣∣q(vT
X,iX,vT

X,jN)
∣∣ ≤√s2(vT

X,iX)s2(vT
X,jN) =

√
λX,is2(vT

X,jN) = 0

and, similarly,

vT
X,iSNXvX,j = 0.

Hence, for i ∈ J ∑
j∈J

∣∣∣vT
X,iBvX,j

∣∣∣ =
∑

j∈J

∣∣∣vT
X,i(SN − σ2N

N−1I)vX,j

∣∣∣ ≤
≤

∑
j∈J ∥vX,i∥

∥∥∥SN − σ2N
N−1I

∥∥∥ ∥vX,j∥ =

= m
∥∥∥SN − σ2N

N−1I
∥∥∥
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and

(51) max
i∈J

∑
j∈J

∣∣vT
X,iBvX,j

∣∣ ≤ m

∥∥∥∥SN − σ2N

N − 1
I

∥∥∥∥ ≤ m

√√√√ M∑
i,j=1

(
nij −

δijσ2N

N − 1

)2

,

where nij are the entries of SN and δij is the Kronecker delta. Since N ∼ NM (0, σ2I), the matrix
(N − 1)SN has the Wishart distribution WM (σ2I,M). Therefore,

E (nii) =
Nσ2

N − 1
, Var (nii) =

2σ4N

(N − 1)2
,

(52) E (nij) = 0, Var (nij) =
σ4N

(N − 1)2
, i ̸= j

and

(53)
[
E
(
nij −

δijσ
2N

N − 1

)]2
= Var (nij) ≤

2σ4N

(N − 1)2
.

Since E
(√

X
)
≤
√
E (X), (51) and (53) can be combined to give

(54)

E

max
i∈J

∑
j∈J

∣∣vT
X,iBvX,j

∣∣ ≤ m

√√√√ M∑
i,j=1

E

((
nij −

δijσ2N

N − 1

)2
)

≤ mMσ2
√
2N

N − 1
= O(σ2/

√
N).

For the second part on the right side of (50), let us construct an upper bound for E
(
∥B∥2

)
now.

Let bij be the entries of B and cij the entries of SXN + SNX. Since

E (SXN + SNX) = cov(X,N) + cov(N,X) = 0,

E (cij) = 0. Additionally, Var (cij) = σ2Var(X)
N−1 . Combining it with (52), it gives

E (bij) = 0

and

Var (bij) = Var (nij) + Var (cij) + 2cov(nij , cij) ≤

≤
(√

Var (nij) +
√

Var (cij)
)2

≤

≤
(

σ2
√
2N

N−1 +
σ
√

Var(X)√
N−1

)2

=

= O

((
σ2+σ

√
Var(X)

)2

N

)
.

Therefore,

(55) E
(
∥B∥2

)
≤ E

 M∑
i,j=1

b2i,j

 =

M∑
i,j=1

Var (bij) = O


(
σ2 + σ

√
Var (X)

)2
N

 .
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Combining (50), (54), and (55) gives the final result. Since N → ∞, 1
N is infinitesimal compared

to 1√
N

,

E
(∣∣∣∣λY,i −

σ2N

N − 1

∣∣∣∣) = O

(
σ2

N

)
+O


(
σ2 + σ

√
Var (X)

)2
N

 = O(σ2/
√
N) □



CHAPTER 13

Evaluation of the adapted methods

In Chapters 10, 11, and 12, the Ponomarenko et al., Percentile and PCA signal-dependent
noise estimation methods were described in detail. In this chapter we evaluate them using three
different tests:

• A test with simulated white Gaussian noise using the noise-free images in Figure 1 (Sec-
tion 1). The aim of this test is to verify that the methods give accurate results for the
noise is homoscedastic (fixed variance, not depending on the intensity). As explained in
Chapter 9, it is needed that the noise estimator is accurate before adapting it to signal-
dependent noise, since the number of samples will be shared by total number of bins. We
consider seven bins to classify the blocks according to their means (see Section 1.1 of
Chapter 9).

• A test with raw images (Section 2), which compares the noise curve obtained by the
methods to the ground-truth noise curve obtained by the camera that took the photograph,
under the same ISO speed (see Chapter 2).

• A test on multiscale coherence (Section 3). The standard deviation of a Gaussian white
noise is divided by two when the image is down-scaled. By down-scaling the image we
mean a sub-sampling of the image where each block of four pixels is substituted by their
mean. This test checks if the measured noise is divided by two at each image down-scaling.

1. Evaluation with simulated white Gaussian noise

In this test, white Gaussian noise was simulated and then added to a set of ten noise-free
images. Since the noise is perfectly known a priori, it can be used as a ground truth. One can
therefore compute the RMSE of the standard deviation estimations. Fig. 1 shows a set of 704×469

pixels noise-free images that were used in this test. In order to get the noise-free images, we have
applied the following procedure. The pictures were taken with a Canon EOS 30D reflex camera of
scenes under good lighting conditions and with a low ISO level. To reduce further the noise level,
the average of each block of 5× 5 pixels was computed, reducing therefore the noise by a factor of
5. Since the images are RGB, the mean of the three channels was computed, reducing the noise by
a further

√
3 factor. Therefore the noise was reduced by a 5

√
3 ≃ 8.66 factor. Finally, the images,

which already had a good SNR before they were processed, can be considered noise-free.

To measure the error made when estimating the standard deviation σ of the simulated noise
in the bin b in the image i, the RMSE along all the bins was used. This RMSE is denoted by E

(1)
i,σ

215
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Figure 1. Set of noise-free images used to test the noise estimation algorithm
with white Gaussian noise. From left to right and from top to bottom: bag,
building1, computer, dice, flowers2, hose, lawn, leaves, stairs and traffic. Each
image is 704× 469 pixels.

and it is defined by

(56) E
(1)
i,σ :=

√√√√ 1

|B|

|B|∑
b=1

|σ̂i,b − σ|2,

where |I| is the number of images, i is the image index (1 ≤ i ≤ |I|), |B| is the number of bins, b
is the index of the bin (1 ≤ b ≤ |B|), σ is the standard deviation of the simulated noise and σ̂i,b is
the estimated noise for the image i at the bin b. Tables 1, 2, and 3 show the obtained E

(1)
i,σ for each

image i and each σ of the simulated noise, for the Ponomarenko, Percentile, and PCA methods,
namely. For the Ponomarenko et. al and the Percentile methods seven bins are used. For the PCA
method three bins are used, since it requires mores samples/bin. A new image is added to the set
of noise-free images, the flat image, which is a constant image where all pixels have the value 127,
useful to measure the performance of the noise estimators with an image of pure homoscedastic
Gaussian noise.

Note that the PCA method is able to give an accurate estimation of the noise even when σ = 1

when the image has large flat zones (building1, computer, dice, flowers2, traffic), but fails to give
a good estimation for very textured images (bag, hose, leaves, lawn). For very high noise levels
(σ = 50, σ = 80) the estimation is inaccurate. Surprisingly, the PCA method behaves better for
small levels of noise.

For the Percentile method, it is apparent that the highly textured images create a significant
error, particularly when little noise was added. Estimates of noise below σ = 2 are therefore
obviously clearly unreliable. All in all, the estimate is nevertheless quite reliable for values σ > 5.
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Image / E
(1)
i,σ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

bag 0.86 0.48 0.28 0.59 0.45 1.10 1.05
building1 0.19 0.16 0.06 0.29 0.52 1.16 1.66
computer 0.20 0.10 0.19 0.21 0.48 2.26 1.82
dice 0.12 0.05 0.11 0.18 0.43 0.94 2.17
flowers2 0.19 0.08 0.13 0.30 0.50 1.60 0.89
hose 0.86 0.60 0.39 0.42 0.58 1.68 1.18
lawn 1.46 1.25 0.68 0.47 0.51 1.40 1.92
leaves 1.47 1.09 0.65 0.56 0.44 1.43 2.17
stairs 0.59 0.32 0.34 0.28 0.49 0.80 1.30
traffic 0.13 0.09 0.21 0.22 0.64 1.44 2.21
Flat image 0.02 0.03 0.05 0.17 0.37 1.34 1.23

E
(2)
σ 0.56 0.39 0.28 0.34 0.49 1.38 1.60

Table 1. This table shows, for the Ponomarenko method, the E
(1)
i,σ RMSE after

adding simulated noise to the set of noise-free images (Figure 1) with several values
of standard deviation σ. The last row is the E

(2)
σ RMSE using the estimated σ̂i,b

of all the images. The percentile p = 0.005 and seven bins are used.

Image / E
(1)
i,σ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

bag 0.74 0.62 0.47 0.37 0.81 0.73 2.26
building1 0.34 0.24 0.55 0.62 0.82 1.20 1.58
computer 0.35 0.36 0.55 0.64 0.86 1.25 3.10
dice 0.12 0.12 0.17 0.24 0.50 1.20 1.68
flowers2 0.15 0.13 0.15 0.27 0.81 1.54 2.82
hose 0.87 0.62 0.49 0.41 0.49 1.37 1.55
lawn 0.99 1.20 0.86 0.64 0.62 1.64 1.90
leaves 1.43 1.11 0.95 0.74 0.70 0.96 1.67
stairs 0.94 0.89 0.66 0.56 0.64 0.89 1.34
traffic 0.45 0.42 0.56 0.58 0.91 1.36 2.23
Flat image 0.02 0.04 0.15 0.10 0.20 1.25 2.63

E
(2)
σ 0.58 0.52 0.51 0.47 0.67 1.22 2.07

Table 2. This table shows, for the Percentile method, the E
(1)
i,σ RMSE after

adding simulated noise to the set of noise-free images (Figure 1) with several values
of standard deviation σ. The last row is the E

(2)
σ RMSE using the estimated σ̂i,b

of all the images. The parameters used in the tests are percentile p = 0.005, block
of size 15× 15, DCT filter with support 7× 7 and seven bins.

The last row is the RMSE obtained for a given σ and all the images. It is denoted by E
(2)
σ

and defined as

(57) E(2)
σ :=

√√√√ 1

|B||I|

|I|∑
i=1

|B|∑
b=1

|σ̂i,b − σ|2 =

√√√√ 1

|I|

|I|∑
i=1

(
E

(1)
i,σ

)2
.
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Image / E
(1)
i,σ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

bag 0.65 0.49 0.29 0.27 0.40 6.04 22.98
building1 0.18 0.10 0.21 0.46 0.65 2.17 2.38
computer 0.14 0.11 0.17 0.37 0.67 1.10 3.43
dice 0.13 0.06 0.09 0.30 0.59 1.81 3.77
flowers2 0.17 0.10 0.07 0.22 0.81 2.78 9.28
hose 0.76 0.66 0.35 0.28 0.25 9.61 26.78
lawn 0.87 0.62 0.46 0.57 0.32 13.71 29.49
leaves 1.16 0.71 0.35 0.31 0.40 3.67 17.83
stairs 0.55 0.55 0.50 0.53 1.01 17.15 33.67
traffic 0.14 0.23 0.34 0.59 0.59 0.58 3.36
Flat image 0.58 1.18 2.90 5.85 11.59 28.92 46.80

E
(2)
σ 0.49 0.44 0.52 0.89 1.57 7.96 18.16

Table 3. This table shows, for the PCA method, the E
(1)
i,σ RMSE after adding

simulated noise to the set of noise-free images (Figure 1) with several values of
standard deviation σ. The last row is the E

(2)
σ RMSE using the estimated σ̂i,b of

all the images. Note that the PCA method is able to give an accurate estimation
of the noise even when σ = 1 when the image has large flat zones (building1,
computer, dice, flowers2, traffic), but fails to given a good estimation for very
textured images (bag, hose, leaves, lawn). For very high levels of noise (σ = 50,
σ = 80) the estimation is inaccurate. Surprisingly, the method behaves better for
small levels of noise. Three bins are used.

For completeness, the results corresponding to the estimation using just a single bin are shown
in Tables 4 (Ponomarenko), 5 (Percentile), and 6 (PCA). Assuming homoscedastic noise is not a
realistic model, but it is needed that the algorithms give accurate results with homoscedastic noise
before attempting their adaptation to signal-dependent noise (see Chapter 2).

Tables 7 (Ponomarenko), 8 (Percentile), and 9 (PCA) show the obtained E
(2)
σ RMSE depending

on the number of the iterations of the noise curve filter (see Section 1.2). Using five filtering
iterations seems to be safe for any image with independence of the standard deviation of the noise,
the kind of textures or the number and type of the edges the image may contain. More than five
iterations is useless.

2. Evaluation comparing the noise curve of the raw image with the ground truth

In this test, the noise curve obtained by the algorithm for the raw images in Figure 2 (12
bits/channel, ISO 1600, t=1/30s) was compared to the “ground truth" noise curve of the camera
for that ISO and exposure times. The ground truth was obtained by computing for each pixel the
standard deviation of a large burst [24] of fixed snapshots of the same calibration pattern (Figure
3).
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Image / E
(1)
i,σ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

bag 1.78 1.57 0.73 0.32 0.26 0.13 0.16
building1 0.16 0.09 0.02 0.10 0.07 0.04 0.30
computer 0.15 0.05 0.08 0.05 0.05 0.15 0.23
dice 0.11 0.06 0.01 0.03 0.07 0.51 0.29
flowers2 0.09 0.03 0.02 0.05 0.11 0.17 0.07
hose 0.75 0.36 0.24 0.17 0.06 0.44 0.22
lawn 1.86 0.42 0.75 0.27 0.37 0.09 0.00
leaves 3.04 1.30 0.55 0.67 0.44 0.41 0.05
stairs 1.06 0.85 0.45 0.23 0.14 0.41 0.27
traffic 0.10 0.07 0.08 0.13 0.11 0.47 0.27
Flat image 0.00 0.01 0.01 0.02 0.05 0.23 0.22

E
(2)
σ 0.83 0.44 0.27 0.18 0.16 0.28 0.19

Table 4. This table shows, for the Ponomarenko method, the E
(1)
1,σ RMSE after

adding simulated noise to the set of noise-free images (Figure 1) with several values
of standard deviation σ. The last row is the E

(2)
σ RMSE using the estimated σ̂1,b

of all the images. It corresponds to the original signal-independent method, using
a single bin and the iterations show in Algorithm 26 to fix percentile K.

Image / E
(1)
i,σ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

bag 0.71 0.60 0.43 0.32 0.65 0.29 1.22
building1 0.21 0.22 0.29 0.21 0.51 0.55 1.24
computer 0.29 0.25 0.38 0.32 0.08 0.99 0.86
dice 0.11 0.11 0.05 0.08 0.29 1.06 1.24
flowers2 0.13 0.10 0.12 0.03 0.00 0.54 2.03
hose 0.60 0.44 0.28 0.19 0.11 0.29 0.48
lawn 0.68 0.81 0.65 0.50 0.28 0.74 0.39
leaves 1.34 1.10 0.91 0.64 0.51 0.76 0.05
stairs 0.82 0.80 0.59 0.40 0.56 0.38 0.52
traffic 0.32 0.33 0.42 0.21 0.58 0.50 0.34
Flat image 0.02 0.03 0.05 0.05 0.16 0.61 1.93

E
(2)
σ 0.47 0.44 0.38 0.27 0.34 0.61 0.94

Table 5. This table shows, for the Percentile method, the E
(1)
1,σ RMSE after

adding simulated noise to the set of noise-free images (Figure 1) with several values
of standard deviation σ. The last row is the E

(2)
σ RMSE using the estimated σ̂1,b

of all the images. The parameters used in the tests are percentile p = 0.005, block
of size 15× 15, DCT filter with support 7× 7 and a single bin.
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Image / E
(1)
i,σ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

bag 0.55 0.40 0.21 0.08 0.35 0.15 1.27
building1 0.17 0.08 0.08 0.12 0.18 1.48 1.83
computer 0.11 0.05 0.12 0.28 0.25 0.69 3.03
dice 0.11 0.07 0.07 0.26 0.52 1.71 3.76
flowers2 0.14 0.09 0.02 0.08 0.54 1.87 2.76
hose 0.32 0.25 0.08 0.20 0.18 0.91 2.83
lawn 0.33 0.12 0.15 0.32 0.38 1.97 1.65
leaves 1.02 0.62 0.06 0.18 0.18 0.29 2.34
stairs 0.38 0.24 0.24 0.44 0.29 1.25 2.61
traffic 0.25 0.28 0.17 0.33 0.29 0.03 2.99
Flat image 0.04 0.08 0.20 0.40 0.85 2.47 3.22

E
(2)
σ 0.31 0.21 0.13 0.25 0.37 1.17 2.57

Table 6. This table shows, for the PCA method, the E
(1)
1,σ RMSE after adding

simulated noise to the set of noise-free images (Figure 1) with several values of
standard deviation σ. The last row is the E

(2)
σ RMSE using the estimated σ̂1,b of

all the images. A single bin is used.

Image / E
(2)
σ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

No filtering 0.56 0.39 0.28 0.34 0.49 1.38 1.60
1 iteration 0.55 0.38 0.26 0.27 0.41 1.23 1.35
2 iterations 0.54 0.37 0.24 0.24 0.38 1.16 1.22
3 iterations 0.53 0.37 0.23 0.23 0.36 1.12 1.13
4 iterations 0.53 0.36 0.23 0.22 0.36 1.10 1.11
5 iterations 0.52 0.35 0.22 0.21 0.35 1.09 1.10
6 iterations 0.51 0.35 0.21 0.21 0.35 1.08 1.10
7 iterations 0.51 0.34 0.21 0.21 0.35 1.08 1.09

Table 7. This table shows, for the Ponomarenko method, the obtained E
(2)
σ

RMSE values depending on the number of iterations of the noise curve filtering
and the standard deviation of the noise (see Section 1.2). The percentile p = 0.005

and seven bins are used. Five iterations is the recommend value, since using more
iterations does not improve the result significantly and it could soften too much
the noise curves for certain images.

To get the ground truth of the camera, we fixed the ISO sensitivity (in this case at ISO 1600)
and used four exposure times, t ∈ {1/30s, 1/250s, 1/400s, 1/640s}. For each exposure time about
two hundred pictures of the pattern were taken (see Figure 3). After cropping the area of the image
that does not contain the calibration pattern, the final size of the raw image was 1352×1952. Since
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Image / E
(2)
σ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

No filtering 0.58 0.52 0.51 0.47 0.67 1.22 2.07
1 iteration 0.57 0.52 0.49 0.44 0.60 1.12 1.84
2 iterations 0.56 0.52 0.49 0.42 0.57 1.07 1.75
3 iterations 0.56 0.51 0.48 0.41 0.55 1.04 1.70
4 iterations 0.55 0.50 0.47 0.39 0.53 1.02 1.68
5 iterations 0.55 0.50 0.46 0.38 0.52 1.00 1.67
6 iterations 0.54 0.49 0.46 0.38 0.51 0.99 1.66
7 iterations 0.54 0.48 0.45 0.37 0.50 0.98 1.65

Table 8. This table shows, for the Percentile method, the obtained E
(2)
σ RMSE

values depending on the number of iterations of the noise curve filtering and
the standard deviation of the noise (see Section 1.2). The parameters used are
percentile p = 0.005, block of size 15× 15, the DCT filter with support 7× 7 and
seven bins. Five iterations is the recommend value, since using more iterations
does not improve the result significantly and it could soften too much the noise
curves for certain images.

Image / E
(2)
σ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

No filtering 0.49 0.44 0.52 0.89 1.57 7.96 18.16
1 iteration 0.49 0.42 0.48 0.82 1.46 7.22 16.90
2 iterations 0.49 0.41 0.46 0.78 1.39 6.66 15.93
3 iterations 0.49 0.41 0.45 0.76 1.35 6.23 15.17
4 iterations 0.48 0.40 0.45 0.75 1.34 6.25 15.19
5 iterations 0.48 0.40 0.45 0.75 1.34 6.26 15.20
6 iterations 0.48 0.40 0.45 0.74 1.33 6.27 15.21
7 iterations 0.47 0.40 0.45 0.74 1.33 6.28 15.23

Table 9. This table shows, for the PCA method, the obtained E
(2)
σ RMSE values

depending on the number of iterations of the noise curve filtering and the standard
deviation of the noise (see Section 1.2). Three bins are used. Five iterations is
the recommended value, since using more iterations does not improve the result
significantly and it could smooth too much the noise curves for certain images.

each 2 × 2 block of the CFA1 contains one sample of the red channel, two samples of the green
channel and one sample of the blue channel, one of the green channels can be discarded to get a
single color pixel of each 2× 2 block of the CFA, given an effective size of the color raw image of
676 × 976 pixels. The position of the camera was fixed when taking the snapshots of the image.
Assuming constant lighting, the variance along several samples of image coming from different

1Color Filter Array.
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Figure 2. Set of raw images used to test the noise estimation algorithm using 25

bins and without any noise curve filtering. The images are raw 12 bits/channel,
taken with a Canon EOS 30D camera, ISO 1600 and exposure time t=1/30s. From
left to right and up to bottom: images 1, 2, 3, 4, 5, 6, 7, and 8.

Figure 3. One of the pictures of the calibration pattern mire used to build the
ground truth noise curve of the camera.

images for the same pixel position can only be explained by the noise. Therefore, it was possible to
measure the mean of a block and the temporal standard deviation along all the snapshots to create
an association mean→standard deviation, that is, a ground truth for camera noise curve, given the
ISO and exposure times. Moreover, since the exposure time only affects the photon count and not
the noise model, it was possible to overlap the noise curves for the four exposure times tested in a
single ground truth noise curve depending only on the ISO parameter (see Figure 4).

Given an estimated noise curve A of a test image, its control points are the pairs (µ̂A,i,b, σ̂A,i,b) ∈
A where µ̂A,i,b is the mean intensity for bin b and image i in A and σ̂A,i,b is the corresponding
standard deviation values for bin b and image i in A. In the same way, given a ground truth noise
curve G, its control points are the pairs (µG,v, σG,v) ∈ G. Unfortunately the means of the noise
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Figure 4. Ground truth of the Canon EOS 30D camera with ISO=1600.
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Figure 5. Checking a noise curve A (red) against the ground truth G (green),
where i is the index of the image, b is the index of the bin, (µ̂A,i,b, σ̂A,i,b) are the
control points of the noise curve A, (µG,v, σG,v) are the control points of G, and
σ̃Gi,i,b is the standard deviation value projected from A into G.

curve A and those in G do not necessarily coincide; that is, µ̂A,i,b ̸= µG,v for most (b, v) pairs. To
solve this problem, instead of using G, a new ground truth curve G̃i is used. This G̃i curve has the
same means µ̂A,i,b as A (and therefore the same number of bins), and its standard deviation values
are obtained by a simple proportionality rule. Therefore, the control points in the new curve G̃i

are (µ̂A,i,b, σ̃Gi,i,b) =
(
µ̂A,i,b,

σG,v+1−σG,v

µG,v+1−µG,v
(µ̂A,i,b − µG,v+1) + σG,v

)
where v is the index of the bin

in the curve G such that µG,v ≤ µ̂A,i,b < µG,v+1 (see Figure 5).
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The error between the ground truth noise curve G and the test noise curve A for the image i

and bin b is defined as

E
(3)
G,A,i,b := |σ̃Gi,i,b − σ̂A,i,b| =

∣∣∣∣ (σG,v+1 − σG,v)(µ̂A,i,b − µG,v+1)

µG,v+1 − µG,v
+ σG,v − σ̂A,i,b

∣∣∣∣ .
The values of E(3)

G,A,i,b for each test image in Figure 2 and each method are shown in Table 10.
The Ponomarenko method gives systematically the smallest error. The PCA method is significantly
sensitive to textures: the error is worse for those images that are highly textured (for example,
Img. 3) and better when they contain large flat zones (for example, Img. 6 and Img. 7).

Method Img. 1 Img. 2 Img. 3 Img. 4 Img. 5 Img. 6 Img. 7 Img. 8
Ponomarenko 0.802 0.381 0.372 0.307 0.437 0.694 0.436 0.580
Percentile 0.910 0.680 0.836 0.850 0.871 0.867 0.779 0.669
PCA 0.984 1.107 3.577 1.640 2.103 1.010 0.788 1.381

Table 10. Values of E
(3)
G,A,i,b measuring the error between the noise curve A

obtained for each test image i (Figure 2) and the ground truth curve G for the
Canon EOS 30D with ISO 1600. The Ponomarenko method gives systematically
the smallest error. The PCA method is significatly sensitive to textures: the error
is worse for those images that are highly textured (for example, Img. 3) and better
when they contain large flat zones (for example, Img. 6 and Img. 7).

To test the average behavior of the algorithm in all the bins of any test image, we define a
mean error function E

(4)
G,A,b as the mean of the E

(3)
G,A,i,b values over the |I| images for each of the

|B| bins, that is,

(58) E
(4)
G,A,b :=

1

|I|

|I|−1∑
i=0

E
(3)
G,A,i,b.

Figure 6 shows the E
(4)
G,A,b error for all the 49 bins (25 bins in the PCA method) of the test

images in Figure 2 for the first green channel, in the three methods.

3. Evaluation of the multiscale coherence of the result

Consider the down-scaling operator S that tessellates the image into 2× 2 pixels blocks, and
replaces each block by a pixel having the mean of the four previous pixels as new value. If Ũ is a
discrete pure Gaussian noise image with standard deviation σ, then S(Ũ) has standard deviation σ

2 .
Indeed, if a block W contains the pixels {u1, u2, u3, u4} each one with variance σ2, the variance of
the mean of W is VarW̄ = Varu1+u2+u3+u4

4 = 1
16 [Varu1+Varu2+Varu3+Varu4] =

1
16 [4σ

2] = σ2

4 .
Therefore, the standard deviation is Std(W̄) = σ

2 ; the noise has been divided by two. The objective
of this test is to check if the noise estimation algorithm indeed divides the noise by two when the
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Figure 6. Mean error E(4)
G,A,b for the 49 bins (25 in the case of the PCA method)

of all the eight tests images in Figure 2, for the Ponomarenko (a), Percentile (b)
and PCA (c) methods.

image is down-scaled several times.
(59)

Set: E
(5)
A0,Ak,i,b

=

∣∣∣∣ σ̃A0,i,b

σ̂Ak,i,b
− 2k

∣∣∣∣ = ∣∣∣∣ (σ̂A0,i,v+1 − σ̂A0,i,v)(µ̂Ak,i,b − µ̂A0,i,v+1)

σ̂Ak,i,b(µ̂A0,i,v+1 − µ̂A0,i,v)
+

σ̂A0,i,v

σ̂Ak,i,b
− 2k

∣∣∣∣ ,
where

• Ak is the noise curve corresponding to the input image i after applying the down-scaling
operator k times. For example, if k = 2 then A corresponds to the curve of the noise
estimation of SS(Ũ).

• i is the image index, for the raw images in Fig. 2, 1 ≤ i ≤ |I|, where |I| is the number of
images. |I| = 8 images were used.

• b is the bin index, 1 ≤ b ≤ |Bk| where |Bk| is the number of bins of the noise curve at
scale k. For the test images |B0| = 49, |B1| = 12 and |B2| = 3 bins are used.

• v is the index of the bin in the curve A0 such that µ̂A0,i,v ≤ µ̂Ak,i,b < µ̂A0,i,v+1 (see
Figure 7).

Remark: since the noise should be divided by two when operator S is applied and an ideal
noise estimator is used, the relation σ̃A0,i,b

σ̂Ak,i,b
between the standard deviation estimations at scale 0

and scale k (applying k times D) should be equal to 2k. The error E
(5)
A0,Ak,i,b

measures, for the
tested noise estimator, the absolute deviation from the ideal value 2k at each bin. To get a mean
estimation of the error E

(5)
A0,Ak,i,b

along all the test images and bins in Figure 2, we define another
error function as

(60) E
(6)
A0,Ak,b

:=
1

|I||Bk|

|I|∑
i=1

|Bk|∑
b=1

E
(5)
A0,Ak,i,b

Table 11 shows the obtained mean down-scale error E
(6)
A0,Ak,b

for the raw images in Figure 2
depending on the scale k, for the three methods. The measurements are done for one of the green
channels of the raw images. The results of the PCA method are significantly worse than those
given by the Ponomarenko et al. [15] and the Percentile [17] methods. The reason is that the
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Figure 7. Checking a noise curve Ak at scale k (red) against the noise curve A0

of the same image at scale 0 (green), where i is the index of the image, b is the
index of the bin, (µ̂Ak,i,b, σ̂Ak,i,b) are the control points of the noise curve of the
sub-scaled image, (µ̂A0,i,v, σ̂A0,i,v) are the control points of the noise curve of the
image at scale 0, and σ̃A0,i,b is the standard deviation value projected from Ak

into A0.

Method k = 1 k = 2 k = 3

Ponomarenko 0.195 0.738 1.684
Percentile 0.158 0.922 3.416
PCA 0.627 2.407 4.997

Table 11. Evaluation E
(6)
A0,Ak,b

for the raw images in Figure 2 depending on the
scale k. The measurements are done for one of the green channels of the raw
images.

PCA method needs 112000 samples/bin while Ponomarenko et al. and the Percentile need 42000

samples/bin (see Section 1.1 of Chapter 9). When the image is down-scaled it becomes too small
for the PCA method to get an accurate estimation, since the minimum number of samples/bin is
not attained and only one bin is used for the third and fourth scales.

4. Online demo

An online demo is available for all three methods in IPOL. The users can upload any image to
measure its noise. The demo also offers several types of pre-uploaded images to test the algorithm:

• Raw images obtained by splitting the raw channels R,G1, G2, B and leaving out the G2

channel. Then, an RGB image is formed by using the R,G1, B channels. Since in the
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raw image no gamma correction has been done yet, the values of the image are multiplied
by 32 to increase their dynamics and screen visibility. The colors of these images are
not quite adapted to human visualization, because no white balance has been applied to
them.

• The JPEG versions of the same raw images, as they are encoded by the camera.
• Various JPEG images.
• High SNR raw images, down-scaled by eight with their color channels averaged, so that

they are nearly noiseless. In the demo they are referred to as “no noise" images.

Once an image has been chosen the following parameters can be configured:

• Treatment of groups (2 × 2) of equal pixels. It allows to choose between ignoring
the blocks that contain a group of four equal pixels in any channel (default), or using all
the blocks (see Section 1.3 of Chapter 9) unconditionally.

• Curve filter iterations. It indicates the number of filtering iterations that are applied
to filter the noise curve (see Section 1.2). Default: five iterations.

• Number of bins. It is the number of bins in the noise curve (see Section 1.1 of Chap-
ter 9). If it is set to automatic selection, each bin will contain approximately 112000

samples/bin.
• A and B noise parameters. Add a simulated noise with variance A+BŨ is added to

the input image. If A = B = 0 no noise will be added. If B = 0 white Gaussian noise
with variance A will be added. Default: A = B = 0.

For the Ponomarenko method, the following parameters can be configured:

Percentile.: The possible values are 0.01%, 0.1%, 0.5% (default), 5%, 10%, 50%. It can be also
configured to use the iterations of the original method in order to find the percentile K

(see Algorithm 26).
Block size.: The possible choices are 3 × 3, 5 × 5, 7 × 7, 8 × 8 (default), 11 × 11, 15 × 15 and

21× 21.
Mean of blocks computation.: permits to choose how the intensity associated to each bin is

calculated. The possible choices are the average of the mean value of the pixels of the
blocks that belong to the bin, or the median of the pixels of the blocks that belong to
the bin (default).

Curve filter iterations.: It indicates the number of filtering iterations that are applied to filter
the noise curve (see Section 1.2). Default: five iterations.

Treatment of groups (2× 2) of equal pixels.: It allows to choose between ignoring the blocks
that contain a group of four equal pixels in any channel (default), or using all the blocks
unconditionally (see Section 1.3 of Chapter 9).

Number of bins.: It is the number of bins in the noise curve (see Section 1.1 of Chapter 9). The
number of bins that are used depends on the size of the image when “automatic selection"
is chosen. First, a nearest compatible size of the image is considered. For images whose
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size is S0, S1 or S2, the number of bins is given by dividing the total number of pixels of
the image by 42000. Default: automatic selection.

A and B noise parameters.: Add a simulated noise with variance A+BŨ is added to the input
image. If A = B = 0 no noise will be added. If B = 0 white Gaussian noise with variance
A will be added. Default: A = B = 0.

For the Percentile method, the following parameters can be configured:

• Percentile. The possible values are 0.01%, 0.1%, 0.5% (default), 5%, 10% and 50%.
• Pre-filter operator. Operator R whose stencil F is used to convolve the image with.

The possible operators are: Identity (no filter), Directional derivative, Laplace, Laplace
(2 iterations), Laplace (3 iterations), Laplace (4 iterations), DCT with support 7 × 7

(default), DCT with support 5× 5, DCT with support 3× 3 and the filter of the article
Fast Noise Variance Estimation [4].

• Block size. Possible choices: 3× 3, 7× 7, 8× 8, 15× 21 and 21× 21 (default).
• Curve filter iterations.
• Treatment of groups (2× 2) of equal pixels.
• Number of bins.
• A and B noise parameters.

For the PCA method, the following parameters can be configured:

• Treatment of groups (2× 2) of equal pixels.
• Curve filter iterations.
• Number of bins.
• A and B noise parameters.

4.1. Subtraction of the quantization noise. In the online demo, all the images are en-
coded using 8 bits/pixel/channel. This adds a quantization error over the noise being estimated

that must be subtracted. Indeed, the variance of a uniform random variable is σ2
q =

1
2∫

− 1
2

(x−x̄)2 dx =

1
2∫

− 1
2

x2 dx =
[
x3

3

] 1
2

− 1
2

= 1
12 . This is the variance of the quantization error that must be subtracted

at each scale. The standard deviation of the noise is computed at each bin as the square root
of the noise variance computed directly by the algorithm minus the variance of the variance of
the (independent) quantization error. At each scale k the variance is divided by 4k and thus the
corrected standard deviation of the noise given by the demo is

σ̃k =

√
σ̂2
k −

σ2
q

4k
=

√
σ̂2
k − 1

4k12
.

5. Complexity analysis of the algorithms

5.1. Common subalgorithms. This chapter discusses the algorithmic complexity of the
sub-algorithms which are common to any method adapted to signal-dependent noise with the
techniques explained in Chapter 9.
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Algorithm 21 first executes the argsort (implemented with the Quicksort algorithm) operation
with complexity O(N logN). The loop that iterates idx = 0 . . . N just copies data in linear time
O(N). Therefore, Algorithm 21 is executed with complexity O(N logN). Algorithm 22, simply
checks the condition at the if statement and computes simple arithmetic operations. Therefore,
Algorithm 22 is executed in constant time O(1). Algorithm 24 loops over the number of bins of
the noise curve and inside the loop Algorithm 22 is called. Since Algorithm 22 is executed in
constant time O(1), Algorithm 24 has a linear complexity O(B), being B the number of bins.
Algorithm 25 loops over all possible pixels in the image (with the exception of the boundary of
the image). The loop iterates through all the channels of the image and looks for groups of four
connected pixels. Therefore, the inner loop is executed in linear time with the number of channels,
O(num_channels). It can actually be considered executed in constant time O(1) once the number
of channels have been fixed. The complexity of Algorithm 25 is given by its main loop, that is
executed in linear time with complexity O(N).

Algorithm 25 loops over all possible pixels in the image (with the exception of the boundary
of the image). The loop iterates through all the channels of the image and looks for groups of four
connected pixels. Therefore, the inner loop is executed in linear time with the number of channels,
O(num_channels). Since the number of channels is fixed and smaller than M , the complexity of
Algorithm 25 is given by its main loop, that is executed in linear time with complexity O(M).

5.2. Analysis specific to Ponomarenko et al. This complexity analysis is specific to the
Ponomarenko et al. method.

The noise estimation procedure (Algorithm 26) first computes the DCT of all the w × w

blocks in the image. Since the DCT is computed using the FFT algorithm, that has a complexity
O(M logM). The loop that iterates seven times to get the optimal K executes the argmin operation
that involves the Quick-sort algorithm and therefore it can be done with O(n log n) with n = |VL

m|.

The computation of VL
m = 1

θ

w−1∑
i=0

w−1∑
j=0

[Dm(i, j)]
2
δ(i, j) and VH(i, j) = 1

K

K−1∑
k=0

[
D(k)(i, j)

]2 have

linear complexity O(M) and O(K), namely. Therefore, Algorithm 26 has a linear complexity O(M)

since M > K. Algorithm 27 performs the same operations with the exception of substituting the
seven iterations to get K with the product k = pM . Therefore, Algorithm 27 has also linear
complexity O(M).

5.3. Analysis specific to Percentile. This complexity analysis is specific to the Percentile
method.

Algorithm 28 creates a matrix of (Nx − 2b×Ny − 2b) elements and then fills matrix V with
Ny − b− 1×Nx − b− 1 values. Therefore, the complexity is linear, O(N) with N ∼ Nx ×Ny. The
noise estimation procedure (Algorithm 29) computes the convolution Ũ ∗F in the Fourier domain
using the FFT algorithm and then crops the result using Algorithm 28, that has linear complexity.
The complexity of computing the convolution is O(N logN), where N ∼ (Nx−s+1)×(Ny−s+1).
Therefore, the complexity of cropping the convolution is O(N logN). Then, Algorithm 28 iterates
M times through a loop that reads the blocks Wf

m and computes its variance. Since s is fixed,
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the complexity of the loop is linear with the number of iterations, O(M), where M = (Nx − w −
s + 1) × (Ny − w − s + 1) is the number of overlapping blocks. After the execution of this loop,
the SORTED function (implemented with the Quicksort algorithm) is called. Thus, the sorting
operation has complexity O(M logM). Therefore, Algorithm 29 has complexity O(M logM).

5.4. Analysis specific to PCA. This complexity analysis is specific to the PCA method.

In Function GetNextEstimate (in Algorithm 30) the most computationally expensive part is
the ApplyPCA function that is iterated several times until convergence is reached. The ApplyPCA
function implies two steps:

• Computing the sample covariance matrix (45). If computed directly, it comprises about
|B(p)|M2 operations.

• Computing of the eigenvalues of the sample covariance matrix. Without any optimization,
the number of operations is proportional to M3. Again, since M is fixed, the cost of this
step can be considered constant, O(1).

With the optimization explained in Section 4 of Chapter 12, the sample covariance matrix can
be expressed as

1

|B(p)− 1|

(
CB(p) −

1

|B(p)|
cB(p)cTB(p)

)
where CX :=

∑
yi∈X yiyT

i and cX :=
∑

yi∈X yi.

Since the optimized algorithm first pre-computes the matrix CB(1−j∆p) and the vector cB(1−j∆p)

for j = n−1, . . . , 0, if the worst case is considered (j = 0), then B(1−j∆p) = B(1), that is, all the N
blocks in the images would be used. The matrices and vectors are computed at most 1

∆p = 1
0.05 = 20

times. To get the subsets of BB(1 − j∆p) according to j it suffices to call just one the argsort
function, implemented with the Quicksort algorithm with complexity O(N logN). Assuming that
the matrices CB(p) and vectors cB(p) and computed 20 times with the worst case p = 1, we have
that CB(p) = CB(1) =

∑
yi∈B(1) yiyT

i is executed with complexity O(|B(1)|) = O(N). The same
for cB(1) :=

∑
yi∈B(1) yi, also with complexity O(N). In summary, the computation of the sample

covariance matrix consists on the execution of the argsort operation with complexity N logN and
then looping at most 20 times through a loop that executes operations with complexity O(N).
Therefore, the complexity of Function GetNextEstimate (in Algorithm 30) is N logN , being N the
number of overlapping M ×M blocks in the image.

6. Conclusion

The Ponomarenko et al. method gave the best results according to its RMSE, when adapted
to the signal-dependent noise. The Percentile method achieves a similar accuracy, but is slightly
worse.

Although the PCA method gave the best results when the noise is a priori known to be
homoscedastic, when it is signal-dependent the method looses accuracy. It is easily explained if we
take into account that to get a reliable estimation of the noise variance it needs at least 112000
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samples/bin, whereas the Ponomarenko et al. and the Percentile methods only require 42000

samples/bin.

The strategy follow by the Ponomarenko et al. method (measuring the variance of the noise
at high-frequency coefficients in a low quantile of the set of blocks whose variance measured at
the low-frequencies is minimal) gives the best results and can be considered the state of the art in
signal-dependent noise estimation.





Final conclusion

In the first part of this thesis, Noise Estimation, we have discussed several strategies to estimate
the noise, from the simplest techniques, that simply consist on simulating white Gaussian noise
and adding it to a noise-free image, signal-dependent noise estimators, to the most complete noise
estimators, that permit to estimate a complex model on which the noise depends on both the
intensity and the frequency.

For the homoscedastic white Gaussian noise estimators, Chapter 1 introduces the importance
of the noise estimation for denoising and reviews the most representative classic methods. However,
the simply homoscedastic noise model is only useful for raw images, where the noise is known to
depend on the intensity, as explained in Chapter 2. This chapter also proposes a way to obtain a
ground-truth noise curve for a particular camera configured with some ISO speed.

Chapter 3 showed the noise curves of the noise throughout the complete camera processing
pipeline. This chapter made it clear that the signal-dependent noise model is not enough to measure
the noise in most of the pictures, because after demosaicing the noise becomes highly correlated
and signal-dependent noise estimators give underestimations in these conditions.

Therefore, a new noise estimation algorithm was developed and presented in Chapter 8. This
new multiscale method is able to accurately measure the variance of highly correlated noise, even in
the case of JPEG-compressed images, which have undergone demosaicing, white balance, gamma
correction, and lossy JPEG-encoding. We introduced a new method to compute the difference
between to noise blocks, the sparse distance, which is robust to noise and compares only the
geometry of the blocks, without the interference of the noise. The comparison between the spatial
and the temporal noise curves demonstrates that indeed the method is valid. Other tests also
proved the method valid: a comparison of the noise estimates with the values expected after
filtering the image with a low-pass filter and the observation of denoising results.

In the second part of this thesis, Patch Denoising, we propose in Chapter 8 a new denoising
algorithm. It uses the noise estimation of the method presented in Chapter 4 to denoise each patch
of the noisy image. With this fully automatic tool, users input a noisy image with unknown noise
model, the noise is characterized, the noise is removed at each scale, and finally a denoised image
is returned to the users without any other interaction. We called this tool the “Noise Clinic",
as a metaphor of a real clinic, where the patients enter with some unknown problem, which is
diagnosed, and sometimes cured.

Definitely, this thesis studied in detail the problem of how to estimate noise to afterwards
denoise an image, using only the information of the noisy image (blind noise estimation and blind
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denoising) and assuming only SFD noise. This minimal assumption of SFD permits to denoise
most of the images obtained with digital cameras, even when they are JPEG-compressed.

The third part of the thesis, Reproducible Research Contributions, presents three of the meth-
ods that were adapted to measure signal-dependent noise, along with some proposed general tech-
niques that permit to reliably adapt almost any block-based noise estimator to signal-dependent
noise. The articles presented in this third part were published in the Image Processing On Line
(IPOL) journal.

Some problems are still open and invite to further research, as the case of images with position-
dependent noise, adapting the size of the scanning window to the characteristics of the image, or
the search of optimal functions to compute the similarity between two noisy patches.
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